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Chapter 1
Introduction to Carbon Metabolism
in Yeast

Concetta Compagno, Sofia Dashko and Jure Piškur

1.1 A Brief History of Yeast Carbon Metabolism

Yeast fermentation of different plant carbohydrate sources, like grape must, is one
of the oldest human technologies and its origins date back to the Neolithic period.
These fermentations were initially spontaneous and their chemical, physiological,
or microbiological background were not understood until the late eighteenth
century. The first scientific studies were presented by Antoine Lavoisier in 1789,
and he was the first who proposed the chemical changes, conversion of sugar into
alcohol and CO2, occurring during wine fermentation. In 1836–1837 Charles
Cagniard-Latour, Friedrich Kützing, and Theodor Schwann independently found
that alcoholic fermentation was carried out by living organisms, the sugar fungus.
Starting in the late 1850s Louis Pasteur carried out physiological studies; he also
clearly demonstrated the role of yeast in alcoholic fermentation, and determined
the quantitative differences between aerobic and anaerobic conversion of sugar.
Under Pasteur’s influence, Emil Christian Hansen isolated the first pure yeast
cultures and used them in malt-based fermentation, thereby starting a revolution in
brewing industry (reviewed in Barnet 1998, 2003a).

In 1897, Eduard Buchner carried out fermentation by cell-free extracts and
opened the way to determine the main biochemical steps. Further studies of yeast
and muscle revealed the pathway of glycolysis and demonstrated that under
anaerobic conditions pyruvate in yeast was converted into ethanol, whereas muscle
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converted it to lactate (Fig. 1.1). Soon afterward, it became recognized that gly-
colysis was a universal biochemical pathway found in all organisms and yeast one
of the central model organisms to understand this crucial pathway. In the first half
of the twentieth century, the discovery of phosphorylated compounds, phosphate
bond energy, NAD, and NADH, added important details to the understanding of
the energy and redox aspects of the glycolytic and fermentation pathways
(reviewed in Barnett 2003b, c).

From the mid-twentieth century, yeast became one of the central model
organisms to study the role of genes behind different physiological and bio-
chemical traits. Availability of the first mutants opened a new window to under-
stand the molecular background of alcohol fermentation. For example, in the
1950s and 1960s a lot of focus was on respiration deficient mitochondrial mutants,
the so-called petites (for review see Piskur 1994).

Over the last few decades, gene sequences have enabled us to study and
understand regulatory mechanisms determining the quantitative outcome of sugar
conversion into ethanol. In 1996, Saccharomyces cerevisiae became the first
eukaryote to have its genome fully sequenced (Goffeau et al. 1996). This repre-
sented the beginning of the genomics and post-genomic era (for review see Piskur
and Langkjaer 2004), which provided new in silico-based approaches and tools,
such as comparative genomics, transcriptomics, proteomics, and metabolomics.
These global approaches can now provide further insight into the regulatory net-
works operating at various levels in the yeast carbon metabolism.

Fig. 1.1 Generation of lactate and ethanol. Sugar is in general degraded to pyruvate and later to
CO2, releasing the stored chemical energy. However, if the availability of oxygen is low, then
pyruvate can be reduced either to lactate (in the muscle cell) or to ethanol (in the yeast cell). In
this way only little ATP is generated but the NAD/NADH balance is preserved
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1.2 Yeast Biodiversity

In 2011, almost 99,000 fungal species were described, and more recent data from
high-throughput sequencing approaches supported an estimate of over 3.5 million
species; thus, a majority of fungi still needs to be described (McLaughlin et al.
2009). While a majority of fungi live as multicellular organisms, several lineages
have independently adopted a unicellular life mode, the so-called yeast form.

In nature, yeasts are the predominant group of organisms involved in breakdown
of simple carbohydrates, especially in the autumn when fruits ripen. Yeasts also
include important industrial organisms, pathogens, and popular laboratory organ-
isms that serve as general models to understand the eukaryotic cell. For decades
S. cerevisiae, baker’s yeast, has been one of the best characterized organisms from
the genetics, biochemistry, and physiology points of view, and the first eukaryote
with a sequenced genome. In analogy with fungi in general, several hundred yeast
species have been described so far, but these represent only a small fraction of yeast
biodiversity on our planet (Kurtzman et al. 2011).

Within Ascomycota two yeast lineages are well-studied, one is called Sac-
charomycetes (Hemiascomycetes) and includes S. cerevisiae, and the other is
Schizosaccharomycetes and includes the fission yeast Schizosaccharomyces pombe
(Fig. 1.2) The two groups, separated more than 500 million years ago, have
independently developed yeast life-forms (Medina et al. 2011). Several yeasts can
also be found among Basidiomycota.

The Hemiascomycetes clade includes several interesting yeast groups, like the
pathogenic Candida group (including Candida albicans), the wine yeasts Dekkera/
Brettanomyces, the methylotrophic yeasts Komagataella (including Komagataella/
Pichia pastoris, and the Saccharomycotina group (Kurtzman et al. 2011).

Many of the industrially interesting yeasts belong to Saccharomycotina, and
this family covers over 200 million years of the yeast evolutionary history; and
includes six post-whole genome duplication (post-WGD) genera: Saccharomyces,
Kazachstania, Naumovia, Nakseomyces, Tetrapisispora, and Vanderwaltozyma;
and six non-WGD genera: Zygosaccharomyces, Zygotorulaspora, Torulaspora,
Lachancea, Kluyveromyces, and Eremothecium (Kurtzman and Robnett 2003;
Casaregola et al. 2011). A rough phylogenetic relationship among a few Hemi-
ascomycetes yeasts, thoroughly presented in later chapters, is shown in Fig. 1.2.

1.3 Sugar Uptake

Yeast needs a supply of energy for growth and maintenance of the biological order
in the cell. This energy comes from the chemical energy stored in food molecules,
such as carbohydrates. Before sugars, such as glucose and fructose, can be utilized
in the cell, they need to be transported through the plasma membrane. Monohexose
uptake in yeast is mainly mediated by hexose transporters (HXT). In S. cerevisiae
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all monohexose transport takes place by facilitated diffusion. The HXT family in
this yeast has 20 members, identified as HXT1-17, GAL2, SNF3, and RGT2, and
they differ in their affinity toward glucose.

Snf3p and Rgt2p act as sensors of extracellular glucose, in particular, Snf3p
senses low glucose levels, and Rgt2p high glucose levels (Özcan and Johnoston
1999). In this way S. cerevisiae can detect the availability of glucose in the
environment and respond by expressing the appropriate transporters. This is due to
the combined action of different regulatory mechanisms, including transcriptional
regulation of some HXT genes and inactivation of Hxt transporters in response to
extracellular glucose (Sabina and Johnston 2009). The high-affinity transporters
are most useful when glucose is scarce, and the corresponding genes are repressed
by high glucose levels. The low-affinity glucose transporter Hxt1 is, on the con-
trary, expressed when glucose is abundant (Diderich et al. 1999; Kaniak et al.
2004). This controlled expression can then allow S. cerevisiae to fine tune sugar
uptake in response to the substrate availability.

Also, the uptake of amino acids and nucleotide bases is relatively well-studied
in several yeast models. The ability to use different amino acids, purines, and
pyrimidines varies among different yeasts (Kurtzman et al. 2011). On the other
hand, the uptake of free fatty acids has not yet been fully characterized in yeasts
(Casal et al. 2008; see also further chapters).

Fig. 1.2 Phylogenetic relationship among some studied yeasts. Note that some of the shown
yeast lineages separated from each other many million years ago and have therefore accumulated
several molecular and physiological changes regarding their carbon metabolism
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1.4 Glycolysis and Fermentation

Sugars, which are preferable yeast food, must be broken down into smaller mol-
ecules to become a source of energy and building blocks for the synthesis of other
molecules. The major initial process for oxidizing sugars, glycolysis, is a series of
ten reactions breaking down a glucose molecule into two molecules of pyruvate.
During glycolysis, the cell produces ATP and NADH, without the involvement of
molecular oxygen (Fig. 1.3). In the first step, glucose is activated by hydrolysis of

Fig. 1.3 Glycolytic pathway degrades glucose to pyruvate. Glycolysis is a several-step
degradation pathway found in many bacteria and almost all eukaryotes. Carbon molecules are
shown as blue circles, and phosphates as red circles. Only the most central intermediates and
enzymes are presented. The final products obtained from one molecule of glucose are two
molecules of pyruvate, two reduced NADH molecules, and two ATP molecules
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one ATP molecule to generate glucose 6-phosphate. In S. cerevisiae, this reaction
is catalyzed by three hexokinases (EC 2.7.1.1) encoded by HXK1, HXK2, and
GLK1. Hxk2p plays also an important role in the regulation of glucose metabo-
lism, being involved in the mechanism of glucose repression (Klein et al. 1998;
Palaez et al. 2010). Later, another ATP molecule is used to generate a central
intermediate fructose 1,6-biphosphate, which may play one of the central roles in
the regulation of the carbon flow in the cell. The key enzyme catalyzing the
irreversible generation of fructose 1,6-biphosphate is 6-phosphofructo-1-kinase
(EC 2.7.1.11) and is encoded by PFK1 and PFK2. Studies on the regulation of
glycolytic genes indicate that glucose strongly induces the expression of PFK1 and
PFK2 (Moore et al. 1991). On the other hand, phosphofructokinase activity is
inhibited by ATP and citrate and activated by other adenine nucleotides and
fructose-2,6-bisphosphate (F2,6P).

Fructose 1,6-biphosphate is converted into two three-carbon products, glycer-
aldehyde-3-phosphate and dihydroxyacetone phosphate. These two intermediates
can be reversibly interconverted. The two three-carbon molecules are oxidized in
several steps and electrons removed by NAD resulting in two NADH molecules
(from one glucose molecule). The reduced equivalents need to be later re-oxidized
in the respiratory chain or during the fermentation pathways to keep the redox
balance. Four ATP molecules are also generated during the last glycolytic steps
resulting in the final production of two ATP molecules per molecule of glucose.
The final glycolysis products are also two molecules of pyruvate. In a majority of
organisms, pyruvate is transported into the mitochondria, where it is converted into
acetyl CoA and CO2, and the former later completely oxidized in the presence of
molecular O2 into CO2 and H2O. The conversion of pyruvate into acetyl CoA is
catalyzed by the pyruvate dehydrogenase complex in the mitochondria. However,
in many yeasts, cytoplasmic pyruvate enters into the alcoholic fermentation
pathway (Fig. 1.4). Yeasts, depending on conditions, can use sugars by fermen-
tation and/or by respiration (Flores et al. 2000). Since respiration of sugars is
energetically more favorable than fermentation, most organisms use fermentation
only when respiration is impaired, for example when oxygen availability
decreases. However, in several yeast species, like S. cerevisiae, the metabolic
destiny of pyruvate formed at a high rate is largely switched from respiration to
fermentation even when oxygen is abundant. In other words, S. cerevisiae may
ferment sugars also under aerobic conditions, showing the so-called ‘‘Crabtree
positive’’ phenotype (for review see Pronk et al. 1996; Piskur et al. 2006).

The first step in the production of ethanol from pyruvate is the cytosolic
decarboxylation to acetaldehyde and CO2 by the enzyme pyruvate decarboxylase
(EC 4.1.1.1). In S. cerevisiae three genes encode this enzymatic activity, PDC1,
PDC5, and PDC6. PDC2 encodes a positive regulator of the transcription of PDC1
and PDC5 (Hohmann and Cederberg 1990; Hohmann 1993). Acetaldehyde is then
reduced to ethanol by the activity of alcohol dehydrogenase (EC 1.1.1.1), leading to
the cytosolic re-oxidation of glycolytic NADH. In S. cerevisiae five genes encode
alcohol dehydrogenases involved in ethanol metabolism (Thomson et al. 2005).
Four of these enzymes, Adh1p, Adh3p, Adh4p, and Adh5p, preferentially reduce
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acetaldehyde to ethanol during glucose fermentation, whereas Adh2p preferentially
catalyzes the reverse reaction of oxidizing ethanol to acetaldehyde. As described
elsewhere in this book, the alcohol fermentation pathway is crucial for production
of bio-ethanol and alcoholic beverages.

In addition to this route, pyruvate can also be converted into acetyl CoA at the
cytoplasmic level by ‘‘pyruvate dehydrogenase bypass.’’ This pathway involves the
conversion of acetaldehyde into acetic acid, which is then converted into acetyl CoA.
The involved enzymes are an NADP-dependent acetaldehyde dehydrogenase isoform
(Ald6p) and an acetyl CoA synthetase (van den Berg and Steensma 1995; Saint-Prix
et al. 2004). This bypass route has in S. cerevisiae been demonstrated to be essential
for growth on glucose, because it is the only source of cytoplasmic acetyl CoA and
thus necessary for lipid biosynthesis (van den Berg and Steensma 1995).

Fig. 1.4 Alcohol fermentation pathway. NADH generated in the glycolytic pathway is
re-oxidized to NAD by the help of acetaldehyde reduction to ethanol. The regeneration of
NAD thus results in redox balance of the glycolytic and fermentation pathways. The conversion
of acetaldehyde into ethanol is reversible and catalyzed by alcohol dehydrogenases
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1.5 Respiration Part I: Krebs Cycle and Fatty
Acid Beta-Oxidation

In eukaryotes, if oxygen is present, the pyruvate produced during glycolysis is
transported from cytoplasm into the mitochondria. There, it is decarboxylated and
oxidized by a complex of three enzymes, called pyruvate dehydrogenase. In yeast,
the decarboxylation reaction is catalyzed by the E1 alpha subunit (EC 1.2.4.1),
encoded by the PDA1 gene. The products are acetyl CoA, NADH, and CO2.
S. cerevisiae can also use fatty acids as carbon and energy sources. In this case a
remarkable proliferation of peroxisomes is observed, in which fatty acid beta-
oxidation occurs (Hiltunen et al. 2003). Fatty acids are broken down by a cycle of
reactions, which remove two carbons at a time from their carboxyl end, generating
acetyl CoA (Trotter 2001). The main export route of this compound is through the
peroxisomal isoform of citrate synthase Cit2p (see also below), and citrate is then
able to leave the peroxisomal compartment. Export of acetyl CoA is also
accomplished through its conjugation to carnitine by the carnitine acetyl trans-
ferase Cat2p, which is localized in both peroxisomes and mitochondria. This
pathway is only possible when yeast cells are grown in rich media that contain
carnitine, which otherwise cannot be synthesized by the yeast cell. Acetyl CoA is a
central intermediate where the sugar and fatty acid degradation pathways meet
(Fig. 1.5). The acetyl CoA molecules still store a majority of useful energy and
this gets first released in the subsequent degradation cycles.

The citric acid cycle, also known as the tricarboxylic (TCA) acid cycle or the
Krebs cycle, accounts for a majority of the total oxidation of carbon compounds in
most cells. The Krebs cycle is also an important provider for several substrate
molecules, which are crucial in de novo biosynthesis of several amino acids and
other essential cellular compounds. Acetyl CoA reacts with oxaloacetate in a
reaction catalyzed by citrate synthase (EC 2.3.3.1) to produce citrate. Three genes
encoding citrate synthases have been identified in S. cerevisiae: CIT1 and CIT3
encoding mitochondrial enzymes, and CIT2 encoding the peroxisomal isoenzyme.
In the next step citrate is converted into isocitrate by aconitase (Jia et al. 1997).

The genes corresponding to several of the Krebs cycle and fatty acid catabolism
enzymes have been well characterized (Ciriacy 1977; Huynen et al. 1999; Black
and DiRusso 2007). IDH1 and IDH2 encode the two subunits of the NAD-
dependent isocitrate dehydrogenase (EC 1.1.1.41), which transforms isocitrate in
2-oxoglutarate. Another mitochondrial NADP-specific isocitrate dehydrogenase
catalyzes the oxidation of isocitrate to 2-oxoglutarate, encoded by IDP1, but other
isoforms exist; a cytosolic one is encoded by IDP2 and a peroxisomal one by
IDP3. The mitochondrial 2-oxoglutarate dehydrogenase complex (EC 1.2.4.2)
catalyzes the oxidative decarboxylation of 2-oxoglutarate to form succinyl-CoA.
Succinate dehydrogenase (EC 1.3.5.1), composed of four subunits (Sdh1p, Sdh2p,
Sdh3p, Sdh4p), couples the oxidation of succinate to the transfer of electrons to
ubiquinone as part of the TCA cycle and the mitochondrial respiratory chain. FAD
binding to Sdh1p is required for the assembly of the succinate dehydrogenase
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subunits. The fumarate molecule is then converted by fumarase (EC: 4.2.1.2) into
L-malic acid in the TCA cycle; its cytosolic and mitochondrial distribution is
determined by the N-terminal targeting sequence, protein conformation, and status
of glyoxylate shunt. Mitochondrial malate dehydrogenase (EC 1.1.1.37), encoded
by MDH1 gene, catalyzes interconversion of malate and oxaloacetate. The cyto-
plasmic form (encoded by MDH2) and the peroxisomal one (encoded by MDH3)
catalyze interconversion of malate and oxaloacetate in the glyoxylate cycle, during
growth on two-carbon compounds as well as on fatty acids (described below).

1.6 Respiration Part II: Respiratory Chain
and ATP Synthase

The major end products of acetyl CoA degradation through TCA cycle are CO2

and high-energy electrons stored in NADH. During the respiration part, the NADH
electrons are passed to a membrane-bound electron-transport cascade. The respi-
ratory chain consists of several complexes: NADH dehydrogenase complex,
cytochrome b-c1 complex, and cytochrome oxidase complex (Fig. 1.5). In com-
bination with oxygen, which is the terminal acceptor of electrons, proton gradient
and H2O are generated. It is interesting to point out that the genes coding for the

Fig. 1.5 The respiratory part of the sugar catabolism. If oxygen is available as the terminal
acceptor of sugar electrons, pyruvate enters mitochondria and is converted into acetyl CoA.
During the citric acid cycle CO2 and reduced equivalents, such as NADH, are generated. NADH
is re-oxidized during a cascade of reactions within the respiratory chain, a proton gradient is
generated, and oxygen becomes the final acceptor of the electrons and is reduced to water. The
proton gradient drives the synthesis of ATP

1 Introduction to Carbon Metabolism in Yeast 9



respiratory chain elements can be found in the nuclear as well as in the mito-
chondrial genome. One of the first studied classes of yeast mutants, called petites,
were respiratory deficient strains with mitochondrial DNA, which had lost the
coding ability for the respiratory chain and/or ATP synthase (reviewed in Piskur
1994). The cytochrome bc1 complex (also known as ubiquinol:cytochrome c
oxidoreductase, ubiquinol:ferricytochrome c oxidoreductase, and respiratory
complex III) (EC 1.10.2.2) is a highly conserved enzyme of the mitochondrial
respiratory chain (Smith et al. 2012). In S. cerevisiae it consists of three catalytic
subunits, Cobp, Rip1p, and Cyt1p, plus seven additional subunits: Cor1p, Qcr2p,
Qcr6p, Qcr7p, Qcr8p, Qcr9p, and Qcr10p.

The nuclear CYC1 and CYC7 genes and the corresponding products, iso-1-
cytochrome c and iso-2-cytochrome c are among the most thoroughly studied
gene-protein systems (Sherman 1990) and pioneered the development of yeast
molecular genetics. The cytochrome c oxidase complex (EC 1.9.3.1) catalyzes
the terminal step in the electron transport chain involved in cellular respiration
(Soto et al. 2012). This multisubunit enzyme of the mitochondrial inner mem-
brane, also known as Complex IV, is composed of three core subunits encoded by
the mitochondrial genome (Cox1p, Cox2p, and Cox3p) and eight additional
subunits encoded by nuclear genes (Cox4p, Cox5Ap or Cox5Bp, Cox6p, Cox7p,
Cox8p, Cox9p, Cox12p, and Cox13p).

The electron transport, through the established proton gradient, drives the
synthesis of the majority of ATP (Fig. 1.5). The generation of ATP is catalyzed by
F1F0 ATP synthase, which is a large, evolutionarily conserved enzyme complex
required for ATP synthesis (EC 3.6.3.14) (Stuart 2008).

The efficiency of proton pumping by respiratory chain and ATP synthesis is
represented by the P/O ratio (ATP formed per electron pair transferred to oxygen).
Several independent yeast lineages, including S. cerevisiae, do not have Complex
I. As a result, its effective P/O ratio is low, close to 1, and the complete glucose
oxidation probably only yields 16 ATP (Bakker et al. 2001). In contrast, in
mammals the complete oxidation of a glucose molecule can in theory produce
about 30 molecules of ATP. On the other hand, during the glycolytic and fer-
mentation pathways only 2 ATP molecules can be produced. In some yeast species
alternative oxidases that transfer electrons from cytochrome c to molecular oxygen
without proton translocation have been described (Veiga et al. 2003).

1.7 Glycolysis Reversed: Gluconeogenesis
and Glyoxylate Cycle

Metabolism consists of catabolic and anabolic pathways. In the previous sections
we mainly focused on the catabolic or degradation aspects. Gluconeogenesis is the
process whereby glucose and other sugars are synthesized from other precursors,
enabling yeast cells to grow on ethanol, glycerol, or peptone (amino acids).

10 C. Compagno et al.



In short, this pathway provides hexose building blocks when the yeast food con-
sists of only C2 and C3 compounds (non-fermentable carbon sources). Reactions
of gluconeogenesis mediate the conversion of pyruvate into glucose, in a sense the
opposite of glycolysis. Overall, the gluconeogenic reactions convert two molecules
of pyruvate into a molecule of glucose, with the expenditure of six high-energy
phosphate bonds, four from ATP and two from GTP. While the two pathways,
glycolysis and gluconeogenesis, have several reactions in common, they are not
the exact reverse of each other. As the glycolytic enzymes 6-phosphofructo-1-
kinase (EC 2.7.1.11) and pyruvate kinase (EC 2.7.1.40) only function in the for-
ward direction, the gluconeogenesis pathway replaces those steps with the enzyme
phosphoenolpyruvate carboxykinase (EC 4.1.1.49, encoded by PCK1), generating
phosphoenolpyruvate from oxaloacetate, and with the enzyme fructose-1,6-bis-
phosphatase (EC 3.1.3.11, encoded by FBP1) to generate fructose-6-phosphate.

Intermediates from the TCA cycle are removed for biosynthesis, and the cycle
needs to be replenished. The enzyme pyruvate carboxylase (EC 6.4.1.1, encoded
by PYC1 and PYC2) generates oxaloacetate from pyruvate. The glyoxylate cycle
comprises many of the same reactions as the Krebs cycle, but intermediates and
enzymes are located in the yeast peroxisome and cytoplasm, and decarboxylation
enzyme activities are missing. Thus, this cycle allows cells to utilize simple carbon
compounds as an energy and carbon source when glucose is absent. Two-carbon
substrates, such as acetate or ethanol, can enter as acetyl CoA and are converted
into four-carbon compounds and later to other essential compounds (Strijbis and
Distel 2010). This cycle can also be a provider of NADH for de novo biosynthetic
reactions and helps to balance the redox potential in the cell. Enzymes activities
specific for this cycle are isocitrate lyase (EC 4.1.3.1 encoded by ICL1) and malate
synthase (EC: 2.3.3.9 encoded by MLS1).

1.8 Aerobic and Anaerobic Yeasts

The availability of oxygen varies among different niches. One of the main problems
an organism faces under anaerobic conditions is the lack of the final electron
acceptor in the respiratory chain. This reduces or completely eliminates the activity
of Krebs cycle, respiratory chain, and mitochondrial ATP synthases. As a response
to hypoxic and anaerobic conditions, organisms have developed several processes
to optimize the utilization of oxygen and even reduce the dependence on the
presence of oxygen. According to the dependence on oxygen during the life cycle,
yeasts are classified as: (i) obligate aerobes displaying exclusively respiratory
metabolism, (ii) facultative fermentatives (or facultative anaerobes), displaying
both respiratory and fermentative metabolism, and (iii) obligate fermentatives (or
obligate anaerobes) (Merico et al. 2007).

The ability of yeasts to grow under oxygen-limited conditions seems to be
strictly dependent on the ability to perform alcoholic fermentation. In other words,
enough ATP should be generated during glycolysis to support the yeast growth,
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and NADH generated during glycolysis gets re-oxidized. The yeast also needs to
develop resistance to larger quantities of the final fermentation product, ethanol, as
well as any other fermentation products. Apart from the energy and NADH/NAD
redox problems, under anaerobic conditions, yeast must also find a way to run
various reactions independent of the respiratory chain and a normal Krebs cycle. In
other words, substrates (intermediates) for de novo reactions, for example for the
amino acid pathways (synthesis), need to originate from a modified metabolic
network. One of the alternative providers is the glyoxylate cycle. However, as
detailed elsewhere in this book, under anaerobic growth, some mitochondrial
Krebs cycle enzymes must be active, at least to generate 2-oxoglutarate.

Anaerobically growing S. cerevisiae cells contain only a few large, branched
mitochondria (Visser et al. 1990). Under these conditions the mitochondria do not
play a role in free-energy metabolism. However, important assimilatory reactions
still take place in the mitochondria, generating NADH, which then needs to be
re-oxidized (Nissen et al. 1997). During anaerobic growth in S. cerevisiae the
Krebs cycle operates as two branches, but there is no flux from 2-oxoglutarate to
fumarate (Nissen et al. 1997). Anaplerotic pathways and the glyoxylate cycle
provide intermediates for anabolic reactions. Glycerol production is the primary
redox sink for the re-oxidation of NADH, under anaerobic conditions (van Dijken
and Scheffers 1986). The mitochondrial form of alcohol dehydrogenase Adh3p is
essential to couple the reoxidation of mitochondrial NADH and glycerol formation
(Bakker et al. 2000).

On the other hand, some yeast compounds, like unsaturated fatty acids and
sterols, cannot be synthesized in the cell under anaerobiosis and must originate from
the medium or from previous aerobic growth. Also, the ability to translocate ATP
generated in the cytoplasm into the mitochondria, for biosynthetic purposes, should
be well developed to survive in the absence of oxygen. In S. cerevisiae, the presence
of the mitochondrial ATP transporters, encoded by AAC2 and AAC3, is essential for
growth under anaerobic conditions (Sabova et al. 1993; Betina et al. 1995).

1.9 Physiological Aspects: Crabtree Effect

One of the most prominent features of the baker’s yeast S. cerevisiae is its ability
to rapidly convert sugars into ethanol and carbon dioxide at both anaerobic and
aerobic conditions. When oxygen is absent, acetaldehyde is the final electron
acceptor and gets converted into ethanol under purely fermentative growth. Under
aerobic conditions, respiration is possible with oxygen as the final electron
acceptor, but S. cerevisiae still exhibits alcoholic fermentation until the sugar/
glucose reaches a low level (Fig. 1.6). This phenomenon is called the Crabtree
effect (De Deken 1966) and the yeasts expressing this trait called Crabtree-positive
yeasts. In contrast, ‘‘Crabtree-negative’’ yeasts lack fermentative products, and
under aerobic conditions, biomass and carbon dioxide are the sole products.

12 C. Compagno et al.



However, it is possible to obtain pure respiratory utilization of glucose by
S. cerevisiae under aerobic conditions if the glucose concentration is kept very low
in the medium, e.g., by using a glucose-limited continuous culture operating below
a certain strain-specific threshold value (called ‘‘critical’’ dilution rate) or by using
fed-batch cultivations (Postma et al. 1989). Briefly, glucose is sensed by the yeast
cell, and this signal is transmitted further to diminish the respiratory activities (see
further chapters). This glucose repression phenomenon involves different signal
transduction pathways activated by extracellular and intracellular levels of glucose
and related metabolites and/or their fluxes through the key glycolytic enzymes
(reviewed in Klein et al. 1998; Johnston 1999; Westergaard et al. 2007). In other
words, the complexity of glucose repression regulatory networks is still far from
being completely understood. Some of the regulatory activities operate at the
transcriptional regulation level and some may operate directly on the involved
enzymes and their regulators.

There does not seem to be a clear consensus about the definition of the Crabtree
effect, and different physiological and molecular approaches have been used as the
background for the current definitions (von Meyenburg 1969; Barford and Hall
1981; Kappeli 1986; Alexander and Jeffries 1990). We define the long-term
Crabtree effect as aerobic alcoholic fermentation under steady-state conditions at
high growth rates. When S. cerevisiae is cultivated in a glucose-limited chemostat,
the long-term effect appears when the dilution rate (or in other words: the glucose
uptake rate) exceeds the strain-specific threshold value. The same effect is observed
also when yeast cells are cultivated in glucose-based conditions, e.g., batch culti-
vations. The molecular background for the long-term Crabtree effect seems to be a
limited respiratory capacity due to the repression of the corresponding respiration
associated genes (Postma et al. 1989). On the other hand, we define the short-term
Crabtree effect as the immediate appearance of aerobic alcoholic fermentation upon

Fig. 1.6 Batch culture of a Crabtree-positive yeast. The yeast was grown under aerobic
conditions in a defined minimal medium and the disappearance of glucose and the appearance of
biomass and ethanol were followed. When glucose disappeared, a characteristic diauxic growth
occurs, due to the utilization of ethanol, previously generated from glucose, as the main carbon
source. This represents a switch between fermentative and respiratory metabolism

1 Introduction to Carbon Metabolism in Yeast 13



addition of excess sugar to sugar-limited and respiratory cultures. This effect has
also been explained as an overflow in the sugar metabolism and could be associated
directly with the biochemical properties of the respiration-associated enzymes and
their regulators (Petrik et al. 1983; Postma et al. 1989; Pronk et al. 1996). In
addition, it could depend on immediate repression of some key genes involved in
respiration. However, it is still unclear if the regulatory molecular mechanisms
operating during the long-term and short-term Crabtree effect are indeed different
from each other. A very interesting aspect is the evolutionary background for the
development of these regulatory mechanisms (Piskur et al. 2006).

The oxygen availability during sugar metabolism can also determine other
kinds of effects. The Pasteur effect has been defined as the inhibition of fermen-
tative metabolism by oxygen, but in S. cerevisiae this phenomenon is observable
only at low glycolytic fluxes (Pronk et al. 1996). In some yeast species the absence
of oxygen impairs the utilization of particular disaccharides, although one or both
of the monosaccharide components can be used anaerobically by fermentation, the
so-called ‘‘Kluyver effect’’ (Fukuhara 2003). This characteristic seems to be
determined mainly by the activity of sugar carriers (Goffrini et al. 2002). The
inhibition of fermentation of glucose as well as of other sugars in the absence of
oxygen has been described as the Custer effect. This effect has been found in some
Brettanomyces/Dekkera and Candida species, and proposed to be due to a redox
imbalance (van Dijken and Scheffers 1986), as confirmed in a recent study
(Galafassi et al. 2013).

1.10 Regulatory Aspects

In S. cerevisiae, the main elements of the glucose sensing systems have been studied
from many years, and apparently the main involved elements have been charac-
terized (Fig. 1.7). Snf3p and Rgt2p have been shown to likely act as receptors that
sense external glucose concentration, Snf3p for low and Rgt2p for high levels of
glucose (Özcan and Johnoston 1999). The signal is then transduced to Rgt1p, a
transcription factor for glucose-regulated genes. The signal that causes the
repressing capacity of Rgt1p is lost, allowing derepression of the appropriate HXT
genes and enabling glucose transport. Another sugar signaling mechanism has been
described, the Gpr1-Gpa2 system, which is linked to the Ras/cAMP-PKA cascade.
This system mediates many effects produced by glucose, as stimulating glycolysis,
inhibiting gluconeogenesis, regulating carbohydrate metabolism, as well as cell
cycle progression, stress response, and ribosomal biogenesis (Verstrepen et al.
2004). Transcription activators Rap1/Gcr1/Gcr2 and Sfp1 are known to stimulate
the transcription of glycolytic and ribosomal protein genes in response to the glu-
cose presence (Shore 1994; Clifton and Fraenkel 1981; Marion et al. 2004).

The presence of glucose is also known to trigger the repression of hundreds of
genes. The key elements are: (i) transcription repressors Mig1, Mig2, and Mig3;
(ii) protein kinase Snf1; and (iii) protein phosphatase Glc7-Reg1. A drop in level
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of glucose activates the Snf1 kinase activity, causing phosphorylation of Mig1p,
and promotes the Mig1p to leave the nucleus. This results in de-repression of
glucose-repressed genes. The sensor of this pathway is not yet known, but it is
believed to involve Hxk2p, which also acts in the nucleus as a regulator of the
transcription of several Mig-regulated genes (through interaction with Mig1 and
Snf1 protein kinase). Under high glucose conditions, in fact, it has been found that
nuclear Hxk2p stabilises the repressor complex blocking the phosphorylation of
Mig1 by Snf1 kinase (Ahuatzi et al. 2007). Recent developments have provided
two important observations: the cross-talk between the different pathways
involved in carbon source metabolism and the induction/repression duality of
some involved transcription factors, like Mig1, Rgt1, and others (Westergaard
et al. 2007; Santangelo 2006; see also further chapters).

An important regulatory system is the Hap2/3/4/5p complex, which activates
transcription of genes encoding respiratory chain components and enzymes of the
TCA cycle in the absence of easily fermentable carbon sources such as glucose
(Schuller 2003). The utilization of non-fermentable substrates requires also the
induction/derepression of gluconeogenesis and glyoxylate enzymes, which occurs
by carbon source-responsive element (CSRE) binding factor Cat8p (Schuller
2003). HAP4 and CAT8 are both glucose repressed genes.

The availability of oxygen is another environmental factor that widely affects
cell metabolism. Functional analyses indicate that the transcription factors Rox1p
and Upc2p predominate in the regulation of carbon metabolism, lipid metabolism,
and cell wall maintenance (Kwast et al. 2002; see also further chapters).

1.11 Evolution of Ethanol Fermentation

A majority of ascomycotic fungi under aerobic conditions convert sugar-based
substrates into CO2. However, at least three groups, including budding and fission
yeasts, have apparently independently evolved the metabolic ability to produce

Fig. 1.7 Regulatory aspects
of glucose utilization. Some
of the main players in yeast
glucose sensing and signal
transduction are shown. Some
of these elements can act as
activators or repressors of the
terminal genes involved in
glucose and other sugars
uptake and metabolism
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ethanol in the presence of oxygen and excess of glucose (reviewed in Rozpedowska
et al. 2011; Rhind et al. 2011). This metabolic invention (Crabtree effect), represents
in nature a possible tool to outcompete other microbes. For example when fruits
ripen, microbial communities start a fierce competition for the freely available
sugars. Yeasts from the Saccharomyces clade, which are good ethanol producers
and also ethanol-resistant and facultative anaerobes, soon become the predominant
microbes in these niches. Both groups of ethanol-producing budding yeast,
including S. cerevisiae and Dekkera bruxellensis, can also efficiently catabolize
ethanol, and therefore their corresponding life style has been named as ‘‘make-
accumulate-consume (ethanol)’’ strategy (Thomson et al. 2005; Piskur et al. 2006;
Rozpedowska et al. 2011). On the other hand, the third Crabtree positive group,
including the fission yeast Sch. pombe, only poorly metabolizes ethanol (Fig. 1.2).

The onset of yeast genomics (Goffeau et al. 1996) has provided a tool to
reconstruct several molecular events, which have reshaped the budding yeasts
during their evolutionary history (reviewed in Dujon 2010). Several molecular
events have left a clear fingerprint in the modern genomes, while the origin of more
complex traits, like the Crabtree effect, is often not easy to determine using only a
genome analysis approach. Until recently, very few yeast species have been studied
for their carbon metabolism (Merico et al. 2007). In a recent work, over 40 different
Saccharomycetales yeasts have been studied for the presence of long-term Crabtree
effect and it has been found that this effect originated after the split of the Sac-
charomyces-Lachancea and Kluyveromyces-Eremothecium lineages, approxi-
mately 125 million years ago, prior to the whole genome duplication (WGD) event,
and after the loss of the respiratory complex I (Hagman et al. 2013). The origin of
modern plants with fruits, more than 125 million years ago, brought to microbial
communities a new larger and increasingly abundant source of food based on
simple sugars. On the other hand, ancient yeasts could hardly produce the same
amount of new biomass as bacteria during the same time interval, and could
therefore be outcompeted. We speculate that slower growth rate could in principle
be counteracted by production of compounds that could inhibit the growth rate of
bacteria, like ethanol and acetate. However, the initial molecular mechanisms that
promoted the evolution of the new ‘‘lifestyle’’ and rewiring of the carbon metab-
olism are so far not identified.
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Chapter 2
Glucose Sensing and Signal Transduction
in Saccharomyces cerevisiae

Ken Peeters and Johan M. Thevelein

Abstract Cells of the yeast Saccharomyces cerevisiae have an exquisite preference
for high concentrations of glucose compared to other sugars or carbon sources. The
likely explanation is that glucose is the best fermentable sugar, i.e., the sugar that
allows the yeast to accumulate most rapidly high levels of ethanol, which are
strongly inhibitory to competing microorganisms. To accomplish rapid fermenta-
tion of glucose, S. cerevisiae has evolved multiple glucose sensing and signaling
pathways, which stimulate both fermentation and rapid cell proliferation. The latter
is important for rapid fermentation in order to recycle the ATP generated in gly-
colysis to ADP. Downregulation of respiration to maximize ethanol production is
accomplished by the main glucose repression pathway, in which the Snf1 protein
kinase is a central regulator. It is inactivated by dephosphorylation upon glucose
addition, and its reactivation upon glucose exhaustion is essential for induction of
genes sustaining respiration, gluconeogenesis, and the catabolism of alternative
carbon sources. Stimulation of fermentation and growth is mainly exerted by the
protein kinase A pathway, which senses glucose with an extracellular and intra-
cellular sensing mechanism that activates protein kinase A in a concerted manner
through stimulation of cAMP synthesis. Sensing of other nutrients by plasma
membrane transceptors integrates with this glucose-sensing mechanism to maintain
high protein kinase A activity throughout fermentative growth. Induction of
appropriate glucose transporters during fermentative growth is controlled by plasma
membrane transporter-like proteins, which function as glucose sensors. Although
detailed knowledge has been gained on the molecular mechanisms involved in
glucose signaling, multiple important questions still remain.
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2.1 Introduction

Glucose is the preferred source of energy and building blocks for the yeast Sac-
charomyces cerevisiae. It is mainly metabolized by fermentation and also sustains
the fastest growth rate in spite of producing much less ATP per mole glucose than
respiration. Other sources of carbon and energy, like glycerol, ethanol, and acetate,
are respired and sustain much slower growth rates. Some sugars, like galactose, are
slowly fermented and partially respired. The preference of S. cerevisiae for glu-
cose and related rapidly fermented sugars, like fructose and mannose, is mani-
fested by the multiple regulatory pathways triggered by these sugars, which all
have as main goal to stimulate both fermentation and cell proliferation (Rolland
et al. 2001, 2002; Santangelo 2006). Regulation occurs at different levels: allo-
steric, post-translational, and transcriptional. We can distinguish different regu-
latory pathways, which have been elucidated in great detail during many years of
focussed research. These pathways are connected to each other and to signaling
pathways for other nutrients, but at this moment we understand much less about
these interconnections than about the components and regulation within the
pathways.

2.2 The Snf3/Rgt2 Glucose Sensors for Induction of HXT
Glucose Transporter Expression

Glucose is transported into yeast cells by an extensive set of glucose transporters,
which function as facilitated diffusion carriers and are encoded by the HXT genes
(Ozcan and Johnston 1999; Boles and Hollenberg 1997; Bisson et al. 1993). These
carriers have different affinities and catalytic activities, and their expression is
adjusted according to the glucose concentration in the medium (Ozcan and
Johnston 1995). The Snf3-Rgt2 regulatory pathway plays a major role in this
control (Fig. 2.1). It was a breakthrough in the glucose-sensing field when two
plasma membrane proteins were discovered with high sequence similarity to
glucose carriers, which were unable to transport glucose and instead functioned as
glucose sensors (Ozcan et al. 1996; Bisson et al. 1987). Snf3 has a high affinity
while Rgt2 has a low affinity for extracellular glucose. Snf3 is required for
expression of HXT2 and HXT4 in the presence of low levels of glucose, but not for
induction of HXT1 by high glucose levels (Bisson et al. 1987; Ozcan and Johnston
1999). In contrast, Rgt2 seemed to exert the opposite effect by playing a vital role
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in the induction of HXT1 expression by high levels of glucose (Ozcan et al. 1996;
Ozcan and Johnston 1999).

Both Snf3 and Rgt2 consist of two functional parts, a transmembrane-spanning
part, which binds glucose, and a large cytosolic extension that is involved in
triggering an intracellular signal to the downstream machinery (Fig. 2.1)
(Marshall-Carlson et al. 1990; Moriya and Johnston 2004). The precise mechanism
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corepressors Std1 and Mth1 are recruited to the plasma membrane to be phosphorylated by the Yck
kinases. SCFGrr1 targets phosphorylated Std1 and Mth1 to the ubiquitin conjugating complex for
degradation by the proteasome. Rgt1 becomes hyperphosphorylated by PKA when glucose is
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Ssn6-Tup1, the Rgt1/Mth1/Std1 complex represses the transcription of the HXT and HXK2 genes

2 Glucose Sensing and Signaling 23



of how the two glucose sensors generate the glucose signal and transduce it to the
intracellular machinery is not fully understood. It appears to include the phos-
phorylation of two signal transduction proteins, Mth1 and Std1, via Yck kinases
(Robinson et al. 1992; Moriya and Johnston 2004; Babu et al. 2002; Ozcan and
Johnston 1999). Yck1 and its paralog Yck2 are anchored in the plasma membrane
via palmitate chains. They are activated through interaction with Snf3 and Rgt2,
when these sense glucose (Babu et al. 2002; Johnston and Kim 2005; Moriya and
Johnston 2004). The large C-terminal domain of the glucose sensor, Snf3 or Rgt2,
facilitates interaction with the Yck kinases as well as their substrates, Mth1 and
Std1 (Coons et al. 1997; Dlugai et al. 2001; Moriya and Johnston 2004). Once
activated, Yck1 and Yck2 inactivate Std1 and Mth1 by phosphorylation. The latter
two proteins function as inhibitors of glucose-induced HXT gene expression in the
absence of glucose (Johnston and Kim 2005; Moriya and Johnston 2004). The
phosphorylation of Std1 and Mth1 will cause their ubiquitination and subsequent
degradation by the proteasome, which occurs through the SCF-Grr1 complex. The
F-box protein Grr1 has two protein interaction domains that are essential for its
function. The F-box motif interacts with Skp1, a subunit of the SCF complex. It is
preceded by a leucine rich repeat domain that is necessary for substrate recruit-
ment (Kishi et al. 1998).

Grr1 is required for glucose regulation of the transcription factor Rgt1 (Ozcan
and Johnston 1999). Rgt1 exerts a repressor role on glucose-induced genes and
recruits the transcriptional co-repressor complex Ssn6-Tup1. Together with Rgt1,
it will condense chromatin into a repressive conformation (Edmondson et al.
1996). This process occurs at the promoters of the HXT genes and causes
repression of their transcription in the absence of glucose. Transcriptional
repression by Rgt1 also requires Mth1, which causes a conformational change that
allows Rgt1 to bind to its recognition sites in DNA (Polish et al. 2005). In addition,
the presence of Std1 is also required although it does not regulate Rgt1 binding
capacity (Lakshmanan et al. 2003). Under conditions of high glucose, Rgt1 is
hyperphosphorylated and this process requires Snf3 and Rgt2 as glucose sensors. It
converts Rgt1 from a repressor into an activator although the latter function does
not act through direct DNA binding (Kim et al. 2003; Mosley et al. 2003).

The Snf3-Rgt2 signaling pathway is connected to other glucose signaling
pathways. It was discovered that Rgt1 can act as a repressor of HXK2 expression.
Hxk2 is the most active hexokinase isoenzyme and is required for glucose
repression through the main glucose repression pathway, also called ‘‘catabolite
repression pathway’’ (Palomino et al. 2005). The Snf1 protein kinase, a central
component of the main glucose repression pathway, seems to be involved in this
process possibly through phosphorylation of Rgt1, which is essential for HXK2
repression (Palomino et al. 2006). The latter study also showed that Tpk3 relieves
HXK2 repression by hyperphosphorylation of Rgt1. Tpk3 is one of the isoenzymes
functioning as catalytic subunits of protein kinase A (PKA), which is the mediator
of the cAMP glucose signaling pathway. Recent work has shown that Mth1 reg-
ulates the interaction between the Rgt1 repressor and the Ssn6-Tup1 co-repressor
complex by modulating PKA-dependent phosphorylation of Rgt1 (Roy et al.
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2013). Much more, however, has to be learned about the precise interactions of the
Snf3-Rgt2 signaling pathway with other glucose signaling pathways.

2.3 Glucose Signaling Through the cAMP-PKA Pathway

2.3.1 Physiological Role of the cAMP-PKA Pathway
in Nutrient Signaling

The PKA protein kinase affects a wide variety of processes in yeast, supporting its
crucial role as a main cellular regulator. It is involved in control of metabolic
pathways, like glycolysis and gluconeogenesis, in control of growth, proliferation,
and aging of the cells, in reserve carbohydrate accumulation, stress tolerance, in
developmental pathways, like pseudohyphal differentiation, invasive growth and
sporulation, and multiple other pathways and processes (Santangelo 2006; Smets
et al. 2010; Thevelein et al. 2000; Thevelein and de Winde 1999). The general role
of PKA is stimulation of fermentative growth and inhibition of stationary-phase
characteristics and other processes, like sporulation, which depend on respiration.
Investigation of PKA targets in different growth conditions has revealed a striking
correlation with the nutrient composition of the medium. Conditions supporting
rapid fermentative growth, i.e., the presence of glucose or another rapidly fer-
mented sugar, and a complete growth medium, are always associated with a status
of the PKA targets indicating high activity of PKA in vivo. On the other hand,
conditions supporting slow, respiratory growth, i.e., the presence of a nonfer-
mentable carbon source, like glycerol, ethanol or acetate, or stationary phase
conditions after carbon source depletion, are always associated with a status of the
PKA targets indicating low activity of PKA in vivo. Up to this point, this corre-
lation suggests that glucose and other fermentable sugars are activators of PKA
in vivo. This has led to the concept that PKA is part of a glucose signaling
pathway, which has been confirmed by the discovery of a complex glucose-sensing
network controlling the level of cAMP, the second messenger that controls the
activity of PKA.

Subsequently, however, a novel level of PKA regulation has been discovered
following the awareness that starvation of yeast cells on a glucose-containing
medium for any other single essential nutrient downregulated the PKA targets in a
manner consistent with the presence of low PKA activity in vivo (Thevelein et al.
2005; Thevelein and de Winde 1999). Hence, fermentable sugar was clearly not
the sole determinant for high PKA activity. Observations linking PKA targets, like
trehalose and glycogen content, to conditions of starvation for specific essential
nutrients on a glucose-containing medium, were already made long before the
glucose-sensing role of the PKA pathway had become clear (Lillie and Pringle
1980). Subsequently, the role of other nutrients in regulating PKA activity was
clearly demonstrated by experiments showing rapid activation of PKA targets after
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addition of nitrogen sources, phosphate, and sulfate, to appropriately starved cells
on a glucose-containing medium (Hirimburegama et al. 1992; Thevelein and
Beullens 1985; Thevelein 1984a). Hence, this previous work has revealed that
maintenance of high PKA activity in yeast cells requires the combination of a
rapidly fermented sugar and a complete growth medium, which led to the concept
of a ‘‘fermentable–growth-medium’’ (FGM)-induced pathway for activation of
PKA in vivo.

Further research on the FGM pathway led to the discovery of multiple nutrient
transporters/receptors or ‘‘transceptors,’’ acting as sensors for activation of PKA
by the other nutrients, and apparently without using cAMP as a second messenger
(Kriel et al. 2011; Thevelein and Voordeckers 2009; Thevelein et al. 2005, 2008;
Holsbeeks et al. 2004). Hence, in the case of the PKA pathway, integration of
glucose sensing with sensing of other nutrients is very well established although
the mechanistic details of the integration are not well understood.

2.3.2 Glucose Activation of cAMP Synthesis and PKA

The dramatic effects of glucose addition to yeast cells on PKA targets, like tre-
halose and trehalase, led already in 1974 to the discovery of the ‘‘glucose-induced
cAMP signal,’’ a conspicuous and drastic, but very transient spike in the cAMP
level that happens in the first 1–3 min after addition of glucose to respiring yeast
cells (either growing or stationary-phase cells) (van der Plaat 1974). This cAMP
signal activates PKA, which then phosphorylates target proteins like trehalase.
This enzyme shows a conspicuous and rapid increase in activity, as measured in
cell extracts, following the cAMP signal. Initially, nonspecific mechanisms were
evaluated as possible triggers for the glucose-induced cAMP signal (Mazon et al.
1982; Purwin et al. 1982; Thevelein 1984a; Tortora et al. 1982). The observation
that intracellular acidification caused a strong and persistent accumulation of
cAMP in yeast cells (Purwin et al. 1986; Thevelein 1991; Caspani et al. 1985),
while glucose addition triggered a rapid, transient drop in the intracellular pH, led
to the suggestion that the cAMP signal was caused by the glucose-induced tran-
sient intracellular acidification. This explanation as well as other suggestions of
transient plasma membrane depolarization or increases in ATP, the substrate of
adenylate cyclase, were contradicted by a variety of experimental approaches
(Thevelein et al. 1987a, b).

Like previously established for mammalian PKA, yeast PKA is also a hetero-
tetrameric protein consisting of two catalytic and two regulatory subunits. The
catalytic subunits are encoded by TPK1, TPK2, and TPK3, while the regulatory
subunits are encoded by BCY1 (Toda et al. 1987a, b). Binding of the second
messenger cAMP to the regulatory subunit Bcy1 causes its dissociation from the
Tpk1-3 catalytic subunits, resulting in activation of PKA (Kuret et al. 1988)
(Fig. 2.2). The three catalytic subunits have redundant functions for some phe-
notypes and specific functions for other phenotypes. For instance, any TPK gene

26 K. Peeters and J. M. Thevelein



can sustain viability of the cells while the absence of all three is lethal (Thevelein
and de Winde 1999). On the other hand, pseudohyphal growth induction is
stimulated by Tpk2 but counteracted by Tpk3 (Robertson and Fink 1998), while
mitochondrial biogenesis is specifically stimulated by Tpk3 (Chevtzoff et al.
2010).

Synthesis of the second messenger molecule cAMP from ATP is catalyzed by
adenylate cyclase, which is encoded by CYR1/CDC35 (Kataoka et al. 1985;
Matsumoto et al. 1982). The activity of adenylate cyclase is controlled in yeast by
two distinct G-protein systems, the Ras1,2 proteins (Toda et al. 1985; Broek et al.
1985) and Gpa2, a homolog of the Ga subunit of the heterotrimeric G-proteins
(Nakafuku et al. 1988; Lorenz and Heitman 1997; Kubler et al. 1997) (Fig. 2.2).
This led to the discovery that these G-protein systems are involved in intracellular
and extracellular glucose sensing, respectively (Rolland et al. 2000).

2.3.3 The Ras Proteins and Their Role in Intracellular
Glucose Sensing

Discovery of the yeast Ras proteins The yeast Ras proteins were discovered based
on sequence similarity with the mammalian RAS oncogenes (Kataoka et al. 1984;
Powers et al. 1984; Tatchell et al. 1984). The purpose was to use yeast as a model
system to identify the elusive physiological function of the mammalian RAS gene
products. Deletion of both RAS genes in yeast was lethal because it caused cell
cycle arrest in G1 and entrance into stationary phase, similar to cells starved for
nutrients. A specific category of temperature-sensitive cell cycle mutants (cdc
mutants), including the cdc35 mutant, also arrested at the restrictive temperature at
the same point in the cell cycle (Hayles and Nurse 1986). This suggested that the
function of these gene products was related to that of Ras. Cloning of CYR1/
CDC35 revealed that it encodes adenylate cyclase (Kataoka et al. 1985;
Matsumoto et al. 1982), and subsequent work showed that the yeast Ras proteins
act as essential G-proteins for yeast adenylate cyclase (Toda et al. 1985). This
work formed the basis for the further elucidation of the cAMP-PKA pathway in
yeast, but it failed to deliver originally expected insight on two points. First, in
mammalian cells, the Ras proteins do not act on adenylate cyclase (Beckner et al.
1985) and the yeast work therefore failed to help identify the mammalian Ras
target. Second, in spite of many efforts no upstream activators of Cdc25 could be
found, which would have pointed to the physiological signal being transmitted by
the Ras proteins in yeast. Hence, the original goal of using yeast as a model system
to understand the physiological function of the mammalian Ras proteins as signal
transmission proteins and thus to shed light on their oncogenic mechanism was not
fulfilled.
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Ras and its regulatory proteins In spite of this, detailed analysis of the Ras
proteins and their direct, physical regulators in yeast revealed strong conservation
with the system in mammalian cells. The yeast Ras1 and Ras2 proteins share more
than 70 % amino acid similarity and approximately 90 % similarity in their
180 N-terminal residues (Powers et al. 1984; Kataoka et al. 1984), and these 180
amino acids are also highly conserved in the human Ras proteins. The Ras proteins
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Fig. 2.2 The cAMP-PKA pathway in S. cerevisiae. Glucose activates PKA via two different
pathways. When glucose is transported and phosphorylated, it activates the Ras proteins by
increasing their GTP/GDP loading state. The mechanism involved is not known. Active Ras will
consequently activate Cyr1, the adenylate cyclase of yeast. Cyr1 catalyzes the synthesis of cAMP
from ATP. This second messenger is able to bind to the regulatory subunit of PKA, Bcy1, thereby
dissociating it from the catalytic subunits, Tpk1, Tpk2, and Tpk3. These are then able to
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Extracellular glucose can also activate PKA through the glucose-sensing G-protein-coupled
receptor Gpr1. This receptor triggers activation of the G-protein Gpa2, of which the intrinsic
GTPase activity is stimulated by Rgs2. Active Gpa2 in turn activates Cyr1 with the generation of
cAMP as a consequence. Gpa2 can also inhibit the Krh proteins, thereby, activating PKA through
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are monomeric GTPases whose activity depends on GDP/GTP exchange and GTP
hydrolysis (Broach and Deschenes 1990). The activity of monomeric GTPases is
displayed as a binary switch. When GTP is bound, the Ras proteins are activated
and stimulate cAMP synthesis by activating Cyr1/adenylate cyclase (Matsumoto
et al. 1982). Conversely, when Ras-bound GTP is hydrolysed to GDP by the
intrinsic Ras GTPase activity, it switches to the inactivated state. Mammalian Ras
oncogene products usually contain mutations that render the protein constitutively
active, for instance by reducing the intrinsic GTPase activity. A major example is
Rasval12, in which glycine12 is converted into a valine residue. The corresponding
mutation was engineered into the yeast Ras2 protein, which resulted in the
Ras2 val19 protein, which is also constitutively active in yeast (Broek et al. 1985).
It causes higher cAMP levels and PKA activity, which is detrimental to the cells
when they grow on non- or poorly fermentable carbon sources or enter into sta-
tionary phase. Originally, the failure of this mutant to arrest properly at the start
site in the G1 phase of the cell cycle upon nitrogen starvation was ascribed to its
oncogenic character, causing defective cell cycle control, but was later attributed
to its inability to complete the cell cycle because of deficient internal amino acid
stores (Markwardt et al. 1995).

Ras activity is modulated by stimulation of guanine nucleotide exchange and
stimulation of the intrinsic GTPase activity (Fig. 2.2). Cloning of the CDC25 gene
by complementation of another temperature-sensitive mutant that arrested at the
restrictive temperature like nutrient-starved cells, showed that it encodes an
essential guanine nucleotide exchange factor (GEF) of Ras (Broek et al. 1987;
Camonis et al. 1986; Jones et al. 1991). Later work also identified a homolog of
CDC25, SDC25, but this gene contains an inactivating nonsense mutation in the
S288c background causing CDC25 to be essential (Boy-Marcotte et al. 1996;
Damak et al. 1991). In the W303 lab strain, deletion of CDC25 is not lethal under
growth conditions in which SDC25 is expressed (Folch-Mallol et al. 2004; Boy-
Marcotte et al. 1996). These GEF proteins only bind and thereby stabilize the open
nucleotide-free state of Ras (Lai et al. 1993; Haney and Broach 1994). Because the
cytosolic concentration of GTP is higher than that of GDP in well-energized cells,
nucleotide-free Ras will be loaded preferentially with GTP when it binds a new
nucleotide, leading to activation of Ras. GTP enters Ras together with one mol-
ecule of Mg2+, which creates a GTP-Mg2+ complex that will close the Ras protein
and stabilize its active conformation (Pai et al. 1990; Farnsworth and Feig 1991).
The C-terminus of Cdc25 includes the catalytic domain and a membrane locali-
zation signal, while the N-terminus contains an SH3 domain that regulates Ras
interaction with adenylate cyclase (Daniel 1986; Garreau et al. 1996; Mintzer and
Field 1999). The C-terminus of Cdc25 shows very high sequence similarity with
the human Ras GEF factor hSos1. The catalytic part of hSos1 is referred to as the
Cdc25 domain (Boguski and McCormick 1993).

Inactivation of the Ras proteins occurs through their intrinsic GTPase activity.
However, without aid this reaction is very slow, and therefore it is stimulated by
two GTPase activating proteins (GAPs), Ira1 and Ira2 (Tanaka et al. 1990). These
proteins stick an arginine finger into the catalytic site of Ras, which decreases the
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activation energy for hydrolysis of the c-phosphate from GTP (Kotting et al.
2008). Ira1 and Ira2 are among the largest proteins present in yeast (3,093 and
3,080 amino acids, respectively) and, in addition to their GTPase activating
function, they show further regulatory functions (Tanaka et al. 1990). Ira1, for
instance, was found to interact with Cyr1 and seems to be necessary for its
membrane localization (Mitts et al. 1991). Tfs1 was found to inhibit Ira2, but not
Ira1 (Chautard et al. 2004). Deletion of Ira1 or Ira2 can suppress lethality caused
by deletion of CDC25, just like the presence of a constitutively active allele of
Ras. This is consistent with higher activity of Ras in ira1 and ira2 deletion strains
(Tanaka et al. 1990).

The essential character of Cyr1/Cdc35/adenylate cyclase as well as its regu-
lators Ras1 and Ras2, or Cdc25 and Sdc25, for cell viability in all tested genetic
backgrounds, indicates that a critical concentration of cAMP is essential for cell
growth in yeast and more specifically for progression over the START site in the
G1 phase of the cell cycle and prevention of precocious entrance into the stationary
phase G0 (Boy-Marcotte et al. 1998; Broach and Deschenes 1990; Ptacek et al.
2005; Smith et al. 1998; Thevelein 1994). Since nutrient starvation also prevents
progression through G1 and forces cells into G0, this suggested that the Cdc25-
Ras-adenylate cyclase system responds to nutrient availability (Thevelein 1994;
Thevelein et al. 2000). The precise connection between glucose and cAMP,
however, was not revealed in cell cycle studies but rather by research on glucose
regulation of storage carbohydrate metabolism (Thevelein 1991; Thevelein and de
Winde 1999). Whether there is a mechanistic connection between the availability
of all the other nutrients, besides glucose and related rapidly fermented sugars, and
cAMP synthesis remains unclear up to today. In this respect, it is important to
realize that a critical level of PKA activity may be required for growth rather than
a critical concentration of cAMP per se. In the presence of a basal level of cAMP,
other regulators, such as the kelch repeat proteins Krh1 and Krh2, may modulate
PKA activity (Peeters et al. 2007).

Another protein involved in activation of Cyr1/adenylate cyclase by Ras is Srv2
(Fedor-Chaiken et al. 1990; Field et al. 1990). It is bound to Cyr1 (and therefore
also called CAP or cyclase-associated protein) and also binds to actin, which
facilitates the interaction between Cyr1 and Ras. Its main task, however, appears to
be in the regulation of the actin skeleton in yeast, although there is also evidence
that modulation of the actin cytoskeleton can cause hyperactivation of Ras
(Gourlay and Ayscough 2006).

Glucose activation of Ras and its role in glucose activation of cAMP synthesis
Investigation of the glucose-induced cAMP signal in different mutants in yeast
glycolysis revealed that glucose phosphorylation was essential for the glucose-
induced cAMP signal (Beullens et al. 1988). This suggested that the trigger for this
process was an intracellular event originating in intracellular glucose catabolism.
Subsequently, evidence was provided that the Ras proteins were involved in
mediating the glucose-induced cAMP signal, which indicated for the first time a
connection between glucose sensing and Ras (Mbonyi et al. 1988). Combined with
the previous finding, it suggested that Ras is activated by one or more factors
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generated in glucose catabolism. Other evidence for involvement of Ras in
glucose-induced cAMP signaling has later been provided. Ras is anchored in the
plasma membrane via palmitoylation and farnesylation of the two cysteine resi-
dues at positions 318 and 319, respectively. Membrane targeting of Ras is not
required for maintenance of a basal level of cAMP and thus for sustaining via-
bility, but is required for rapid glucose-induced cAMP signaling (Bhattacharya
et al. 1995). Evidence for involvement of Cdc25 and especially its C-terminus in
glucose-induced cAMP signaling was also reported, strengthening the evidence for
a role of the Ras proteins as signal transducers in glucose-induced cAMP signaling
(van Aelst et al. 1990, 1991). In the absence of glucose, Cdc25 is also located at
the plasma membrane, and adenylate cyclase, although not an intrinsic membrane
protein in yeast, also associates with the plasma membrane. This configuration of
Cdc25, Ras, and adenylate cyclase at the plasma membrane appears to be
important for rapid glucose-induced cAMP signaling and its loss may play a role in
the rapid decrease of the cAMP level after the initial surge. The increase in cAMP
activates PKA, which hyperphosphorylates Cdc25 resulting in its translocation to
the cytosol and reduction of its ability to activate Ras (Gross et al. 1992; Dong and
Bai 2011; Jian et al. 2010).

Direct measurement of the GTP/GDP loading state on Ras after addition of
glucose, however, failed to reveal any increase in GTP, as opposed to intracellular
acidification, which triggered a rapid and huge increase in Ras-GTP (Colombo
et al. 1998). For technical reasons, these experiments required overexpression of
Ras, and subsequent work, using a more sensitive assay for Ras-GTP based on the
interaction of mammalian Ras with the Ras-binding domain of Raf, revealed that
the overexpression of Ras, possibly through a feedback inhibition mechanism,
prevented detection of the glucose-induced increase in the Ras-GTP level
(Colombo et al. 2004). In the same work, it was shown that glucose activation of
Ras requires glucose phosphorylation, again linking glucose catabolism with
activation of Ras. How glucose catabolism causes activation of Ras is still not
clear today.

The establishment of Ras activation by glucose catabolism in yeast brings us
back to the original aim of the studies of Ras in yeast. The purpose was to
understand the physiological role of the oncogenic Ras protein in mammalian cells
with a goal of finding an explanation for its role in induction of cancer. The
absence of the Ras—adenylate cyclase connection in mammalian cells (Beckner
et al. 1985) suggested that yeast Ras had a different function compared to mam-
malian Ras and that yeast, therefore, was not a good model system to learn about
Ras functionality, which made the interest in the yeast Ras system by mammalian
researchers fade away. However, cancer cells and yeast cells present a striking
similarity in the related so-called Warburg and Crabtree effects (Diaz-Ruiz et al.
2011). As opposed to other eukaryotic cells, cancer cells and (in the presence of a
high concentration of fermentable sugar) yeast cells favor fermentation over res-
piration in the presence of oxygen and also show the most rapid proliferation when
fermenting in spite of the fact that fermentation delivers much less ATP compared
to respiration. Whether the high glycolytic flux in cancer cells is a consequence or
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a cause of the cancerous state has been a matter of much debate and is still not
clear (Upadhyay et al. 2013). In this respect, the connection between glucose
catabolism and activation of the oncogenic Ras protein in yeast might still serve as
a valuable model system to understand the Warburg effect in cancer cells and to
make a distinction between high fermentation activity as a consequence or a cause
of cancer.

2.3.4 The Gpr1-Gpa2 GPCR System and Its Role
in Extracellular Glucose Sensing

The observation that the Ras proteins were not activated after glucose addition in
cells overexpressing Ras stimulated the search for an alternative G-protein involved
in glucose-induced cAMP signaling. This led to the discovery of a G-protein-
coupled receptor (GPCR) system that senses extracellular glucose and is dependent
on the intracellular glucose-sensing system that activates Ras for stimulation of
adenylate cyclase and cAMP signaling (Thevelein and de Winde 1999).

The GPCR system is composed of the receptor, Gpr1, and its Ga protein Gpa2
(Fig. 2.2). Gpr1 has the typical structure of a GPCR with seven transmembrane
domains but little sequence similarity to other GPCR families (Kraakman et al.
1999; Xue et al. 1998; Yun et al. 1997). Together with its homologues in other
fungi, it represents a separate subfamily in the large GPCR superfamily (Graul and
Sadee 2001). Glucose and sucrose, but not fructose, mannose, galactose, or other
sugars, act as ligands of the Gpr1 receptor, with sucrose having much higher
affinity (±1 mM) compared to glucose (±20 mM) (Lemaire et al. 2004). The
sugar specificity of Gpr1 indicates that fructose- and mannose-induced cAMP
signaling are exclusively mediated by the intracellular sugar catabolism-dependent
activation of Ras. The glucose sensitivity fits with the concentrations of glucose
that cause full stimulation of fermentative growth in yeast, while the high sensi-
tivity for sucrose suggests that detection of low sucrose concentrations may be
important for survival in the natural habitat of yeast (Van de Velde and Thevelein
2008). Deletion of Gpr1 is not lethal and causes delayed activation of the cAMP-
PKA signaling pathway upon addition of glucose (Kraakman et al. 1999). Whereas
extracellular glucose signaling through the Gpr1–Gpa2 system is entirely depen-
dent on intracellular activation of Ras by glucose catabolism, the opposite is not
true, and therefore glucose still causes stimulation of the cAMP-PKA pathway in
the absence of Gpr1 or Gpa2 (Rolland et al. 2000). A constitutively active allele of
Ras2 also causes a stronger effect on gene expression controlled by the cAMP-
PKA pathway compared to a constitutively active allele of Gpa2 (Wang et al.
2004) consistent with the Ras system having a more dominant effect on adenylate
cyclase than the Gpr1–Gpa2 GPCR system. Gpr1 was discovered in two inde-
pendent ways. The C-terminus of Gpr1 was isolated in two hybrid screens with
Gpa2, and a mutant with delayed glucose-induced stimulation of PKA targets

32 K. Peeters and J. M. Thevelein



turned out to have a nonsense mutation in Gpr1 (Kraakman et al. 1999; Xue et al.
1998).

Gpa2 is a member of the Ga family of heterotrimeric G-proteins (Nakafuku
et al. 1988; Kubler et al. 1997). It was the first member of this family that does not
function in association with a classical Gb and Gc subunit (Peeters et al. 2007;
Hoffman 2007). Deletion of Gpa2 is not lethal; it delays glucose-induced stimu-
lation of the cAMP-PKA pathway and affects other PKA-dependent phenotypes
like pseudohyphal growth (Nakafuku et al. 1988; Kubler et al. 1997; Colombo
et al. 1998). In general, deletion of Gpa2 seems to cause stronger phenotypic
effects than deletion of Gpr1, which may hint to additional regulation at the level
of Gpa2. The intrinsic GTPase activity of Gpa2 is stimulated by the RGS2 gene
product, which thus acts as an inhibitor of signaling (Versele et al. 1999). Gpa2 is
anchored in the plasma membrane via myristoylation and palmitoylation of its
N-terminus (Harashima and Heitman 2005).

The observation that Gpa2 functions without classical b and c subunits has led
to intensive research and also much debate concerning possible alternative Gb and
Gc proteins. Initially, the kelch repeat proteins, Krh1 and Krh2, were proposed as
alternative Gb subunits (and called Gpb2 and Gpb1) and Gpg1 was proposed to be
the c subunit of Gpa2. Krh1 and Krh2 have a seven-kelch repeat structure, which
results in a conformation very similar to the seven-WD-40 repeat structure of Gb
proteins, and physically binds to Gpa2 (Harashima and Heitman 2002, 2005). This
initial suggestion was contradicted by later, more extensive work (Hoffman 2007;
Niranjan et al. 2007). Krh1 and Krh2 do not interact with Gpa2 in a way that
would be expected from a genuine Gb replacement subunit. Deletion of Krh1 and
Krh2 causes a high PKA phenotype, but this is apparently not due to relief of
inhibition on Gpa2, as would be expected for a genuine Gb protein. Krh1 and Krh2
directly interact with the catalytic subunits of PKA, Tpk1-3, and stimulate their
interaction with the regulatory subunit, Bcy1, causing a higher cAMP level to be
required for their dissociation. Krh1 and Krh2 promote the phosphorylation of the
Bcy1 regulatory subunit of PKA and this produces a form of Bcy1 that is more
stable and more effective as an inhibitor catalytic subunits (Budhwar et al. 2010).
Hence, inactivation of Krh1 and Krh2 causes higher PKA activity in the presence
of the same cAMP concentration. Gpa2 appears to inhibit Krh1 and Krh2, creating
a bypass pathway for activation of adenylate cyclase, directly from the Ga protein
Gpa2 to PKA (Batlle et al. 2003; Lu and Hirsch 2005; Peeters et al. 2006; Niranjan
et al. 2007). Krh1 and Krh2 were also shown to function as regulators of the Ras
GAPs, Ira1, and Ira2, either by stabilizing the proteins (Harashima et al. 2006) or
target them for degradation (Phan et al. 2010). Asc1, another protein with seven-
WD-40 repeats that binds most tightly to the GDP-loaded Gpa2 protein, has also
been proposed as an alternative Gb subunit (Zeller et al. 2007). There remain
many questions concerning the precise role of Krh1 and Krh2 and the two
G-protein signaling modules, Ras and Gpa2, in the control of cAMP synthesis and
PKA activity in yeast.
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2.3.5 Downstream Targets of PKA

Negative feedback regulation of PKA on cAMP synthesis Yeast strains with
reduced PKA activity display huge increases in the basal cAMP level (Nikawa
et al. 1987). This suggested that PKA downregulates cAMP synthesis by negative
feedback regulation. This phenomenon also explains why the glucose-induced
cAMP increase is very short-lived and actually occurs as a sharp cAMP signal. The
extent of the glucose-induced cAMP signal is inversely correlated with the activity
of PKA, and strains with attenuated PKA activity display large glucose-induced
cAMP increases (Mbonyi et al. 1990). In a strain with elevated PKA activity, the
cAMP signal is completely suppressed. This explains the seemingly contradictory
finding that in a yeast strain devoid of the two cAMP phosphodiesterases the
glucose-induced cAMP signal is virtually absent, rather than strongly enhanced
(Ma et al. 1999). In spite of many efforts, the main target of the negative feedback
regulation still remains elusive. Several targets have been proposed, including Ras
and Cdc25. Mutagenesis of Ser214 to alanine (Ras2S214A) caused phenotypes
consistent with higher activity of the cAMP-PKA pathway and also resulted in a
higher basal level of cAMP and stronger glucose-induced cAMP signaling (Xiaojia
and Jian 2010). However, the increase in the basal cAMP level was very limited
compared to the huge cAMP increases in the Tpk-attenuated strains, indicating
that phosphorylation of Ras cannot be the main target of the negative feedback
regulation. As previously mentioned, glucose-induced hyperphosphorylation of
Cdc25 resulting in its translocation from the plasma membrane to the cytosol and
hence, reduced ability to activate Ras, may also form part of the negative feedback
regulation mechanism (Gross et al. 1992; Dong and Bai 2011; Jian et al. 2010).
Moreover, it has been shown that the Ras2 guanine nucleotide exchange activity of
Cdc25 in vitro is inhibited by phosphorylation, due to downregulation of the
association between Cdc25 and GTP-bound Ras2 (Dong and Bai 2011; Jian et al.
2010). Based on these data, it was suggested that PKA causes negative feedback
regulation on cAMP synthesis through phosphorylation of Cdc25 (Jian et al. 2010).
Putative phosphorylation sites in Cdc25 have been eliminated, and multiple
truncations of the protein were made with various effects on the basal cAMP level
or on glucose-induced cAMP signaling, but in all cases these changes were limited
and never even approached the huge increase in cAMP as observed in Tpk-
attenuated strains (Schomerus et al. 1990; van Aelst et al. 1990, 1991).

The low-affinity cAMP phosphodiesterase, Pde1, was shown to have a specific
function in downregulating glucose-induced cAMP signaling, whereas the high-
affinity cAMP phosphodiesterase, Pde2, controls the basal cAMP level in the cell.
Pde1 is a target of PKA, and inactivation of its PKA phosphorylation site, Ser252,
caused a higher glucose-induced cAMP signal (Ma et al. 1999). Pde2 is also
regulated by PKA (Hu et al. 2010). The half-life of Pde2 seems to be increased in
strains growing on glucose or strains with a high PKA phenotype. Pde2 locali-
zation in these strains is mainly in the nucleus. In contrast, in derepressed cells or
strains with an attenuated PKA phenotype, Pde2 protein levels are lower and it is
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distributed over the nucleus and cytoplasm. Neither mutagenesis of the PKA
phosphorylation site in Pde1 nor mutagenesis of any other putative target of PKA
negative feedback regulation has resulted in a strain with equally high cAMP
hyperaccumulation as in a tpk-attenuated strain. This seems to indicate that the
main target of PKA negative feedback regulation has not been identified yet or that
there are multiple parallel targets.

Post-translational targets of PKA in storage carbohydrate metabolism and
glycolysis The first cellular target of the cAMP-PKA pathway identified was
storage carbohydrate metabolism. Yeast has two storage carbohydrates, glycogen
and trehalose, of which the second also serves as a stress protectant sugar. Tre-
halose appears most important for long-term survival in stationary phase cells and
likely also in ascospores since these are devoid of glycogen (Thevelein 1984b).
Addition of glucose to derepressed yeast cells, i.e., cells growing on a nonfer-
mentable carbon source, glucose-starved stationary phase cells or ascospores,
causes rapid mobilization of trehalose and glycogen, which is mediated by acti-
vation of the PKA pathway. Neutral trehalase was probably the first PKA target
identified in yeast. It is within a few minutes activated after glucose addition to
glucose-deprived cells (van der Plaat 1974), which is due to phosphorylation by
PKA on several sites of the enzyme and binding of 14-3-3 proteins to the phos-
phorylated sites (Schepers et al. 2012; App and Holzer 1989). Mutants with
reduced or constitutively enhanced activation of PKA show similarly reduced or
constitutively elevated trehalase activity (Hirimburegama et al. 1992; Durnez et al.
1994; Giots et al. 2003; Mbonyi et al. 1990; Thevelein and Beullens 1985; Van
Nuland et al. 2006). Glycogen synthase is downregulated by phosphorylation,
while glycogen phosphorylase is activated by phosphorylation. Although it is well
established that PKA activity in vivo is inversely correlated with the glycogen
level and that both enzymes are phosphorylated by PKA in vitro, the precise
contribution of direct phosphorylation by PKA of these enzymes is not very clear
(Francois and Hers 1988; Hardy and Roach 1993; Francois and Parrou 2001;
Wilson et al. 2010).

A second well-characterized target activated by PKA is 6-phosphofructo-2-
kinase, which synthesizes fructose-2,6-bisphosphate, an allosteric activator of
phosphofructokinase 1 and allosteric inhibitor of fructose-1,6-bisphosphatase
(Dihazi et al. 2003; Noda et al. 1984). Fructose-1,6-bisphosphatase is also directly
inactivated through phosphorylation by PKA (Pohlig and Holzer 1985). Through
these mechanisms, activation of PKA stimulates glycolysis and fermentation,
while it inhibits gluconeogenesis. Additional stimulation of glycolysis occurs
through phosphorylation of pyruvate kinase (Cytrynska et al. 2001; Portela et al.
2006). This fits with the conclusion that fermentatively growing cells have high
PKA activity while respiratively growing cells have low PKA activity.

Transcription factors as direct and indirect targets of PKA PKA has dramatic
effects on the expression of a wide variety of genes involved in energy metabo-
lism, cell cycle progression, stress response, ribosomal biogenesis and accumu-
lation of the storage carbohydrate glycogen, and the storage and stress protectant
sugar trehalose (Boy-Marcotte et al. 1998; Broach and Deschenes 1990; Ptacek
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et al. 2005; Smith et al. 1998; Thevelein 1994). Ninety percentage of the
transcriptional remodeling of the cell in response to glucose is mediated via the
G-proteins Ras1, Ras2, and Gpa2, which act in a redundant manner through
activation of the cAMP-PKA pathway (Wang et al. 2004).

Since PKA activity is high in cells growing on glucose or other rapidly fer-
mented sugars, i.e., glucose-repressed cells, and it is low in cells growing on
nonfermentable carbon sources or glucose-starved, i.e., glucose-derepressed cells,
there has initially been confusion between the function of the main glucose
repression pathway and the PKA pathway in repression of transcription. Initially,
the genes regulated by both pathways appeared to be very similar. The distinction
between the two sets of transcription targets, however, can be made based on the
fact that the main glucose repression pathway is only regulated by glucose or
related rapidly fermented sugars, whereas the PKA pathway is also regulated by all
other essential nutrients. Hence, when yeast cells are starved on a glucose-con-
taining medium for another essential nutrient, e.g., nitrogen or phosphate, the main
glucose repression pathway will remain active and the cells glucose repressed as
long as there is a sufficient level of glucose in the medium. The PKA pathway, on
the other hand, will be downregulated when the cells enter stationary phase and its
target genes therefore will either no longer be repressed or induced. This does not
preclude that the expression of some genes, like GSY2, encoding glycogen syn-
thase, is regulated both by the main glucose repression and the PKA pathway
(Wilson et al. 2010).

PKA controls the transcription factors Msn2, Msn4, and Gis1 by direct phos-
phorylation but also through control of protein kinases Rim15 and Yak1. Msn2 and
Msn4 mediate the induction of a set of stress responsive genes, which contain
so-called STRE elements (STress Response Element) in their promoters
(Boy-Marcotte et al. 1998; Estruch and Carlson 1993; Martinez-Pastor et al. 1996;
Schmitt and McEntee 1996; Smith et al. 1998). The STRE element consists of a
pentameric core of CCCCT (Wieser et al. 1991). Glucose-induced activation of
PKA triggers phosphorylation of Msn2 and Msn4, which blocks their translocation
toward the nucleus and in this way inhibits targeted gene expression. As a result,
high PKA activity counteracts the stress response and thus prevents establishment
of high stress tolerance in yeast cells (Gorner et al. 1998, 2002). Deletion of both
Msn2 and Msn4 suppresses the lethality caused by inactivation of the cAMP-PKA
pathway, e.g., it can rescue a tpk-null strain or a ras1D ras2D strain (Smith et al.
1998), which reflects the importance of Msn2/Msn4-dependent targets for control
of cell proliferation.

The Gis1 transcription factor supports expression of another set of genes
through the PDS (Post-Diauxic Shift) element T(T/A)AGGGAT in their promoter
(Pedruzzi et al. 2000; Zhang et al. 2009). These genes are expressed during the
diauxic shift, and their regulation is not dependent on Msn2 or on Msn4 (Boy-
Marcotte et al. 1998). However, most genes containing the PDS consensus
sequence also contain one or more STRE consensus sequences.

The Rim15 and Yak1 protein kinases are positive effectors of gene expression
and regulate the activity of the transcription factors Msn2, Msn4, and Gis1
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(Garrett and Broach 1989; Garrett et al. 1991; Reinders et al. 1998). Rim15 is a
glucose-repressible protein kinase (Vidan and Mitchell 1997) that is inhibited by
PKA via direct phosphorylation. The deletion of RIM15 can also suppress the
lethality caused by the loss of PKA activity (Reinders et al. 1998). This protein
acts as an activator of STRE-controlled gene expression during entry into sta-
tionary phase (G0). The induction of genes during the diauxic shift via Rim15 is
almost entirely mediated via the Msn2, Msn4, and Gis1 transcription factors
(Cameroni et al. 2004; Pedruzzi et al. 2000; Reinders et al. 1998). Yak1 and PKA
have an antagonistic effect on cell cycle progression through G1 (Garrett and
Broach 1989; Garrett et al. 1991). Expression of the protein kinase Yak1 is con-
trolled in a Msn2/Msn4-dependent manner (Smith et al. 1998). The deletion of
YAK1 rescues lethal PKA deletion, i.e., it renders a tpk-null strain viable (Garrett
and Broach 1989) and the activation of Yak1 is directly counteracted by PKA
phosphorylation (Lee et al. 2008). Yak1 in turn can activate Msn2 by direct
phosphorylation and in this way provides a positive feedback loop upon glucose
limitation (Lee et al. 2008). Nuclear localization of Yak1 is promoted by glucose
availability, while glucose limitation causes phosphorylation of Pop2, a substrate
of the Yak1 protein kinase, and a regulator of transcription of many genes (Moriya
et al. 2001). In addition, upon glucose starvation, Bcy1 is phosphorylated by Yak1
and restricted to the cytoplasm (Griffioen et al. 2001; Werner-Washburne et al.
1991). PKA thus counteracts stationary phase and stress response-related gene
expression in at least two ways, by phosphorylation of the transcription factors and
by phosphorylation of protein kinases required for proper activity of the same
transcription factors.

PKA also plays a role in the transcriptional induction of genes upon addition of
glucose. This has been investigated most intensively for the glucose-induced
upshift in expression of the ribosomal protein genes (Herruer et al. 1987; Griffioen
et al. 1994; Kraakman et al. 1993). In general, expression of ribosomal protein
genes is strongly correlated with the growth rate of the cells. The glucose-induced
upshift was claimed not to involve cAMP signaling. PKA was shown to promote
expression of the ribosomal protein genes through the transcription factor Sfp1.
Under optimal growth conditions, Sfp1 is localized in the nucleus, bound to the
promoters of ribosomal protein genes, and helps promote ribosomal protein gene
expression. When glucose gets depleted, Sfp1 is released from ribosomal protein
gene promoters and leaves the nucleus, resulting in downregulation of ribosomal
protein gene expression (Marion et al. 2004).

Although it has been known for a long time that inactivation of the Ras-cAMP-
PKA pathway causes arrest in the G1 phase of the cell cycle and permanent entry
into G0, the underlying mechanism is not well understood. Recent work has shown
that Whi3, a negative regulator of the G1 cyclins, is inhibited through phosphor-
ylation by PKA on Ser568. Phosphorylation of Whi3 by PKA leads to decreased
interaction with CLN3 G1 cyclin mRNA and is required for the promotion of G1/S
progression, implicating Whi3 in PKA regulation of cell cycle control (Mizunuma
et al. 2013).
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2.3.6 The PKA-Related Protein Kinase Sch9

The Sch9 protein kinase was originally discovered as a multicopy suppressor of
lethality caused by inactivation of the cAMP-PKA pathway, i.e., as a suppressor of
a cdc25ts strain (Toda et al. 1988). Although much new information on Sch9 has
been obtained since then, including evidence for requirement of Sch9 in different
nutrient signaling processes (Zaman et al. 2008), its precise role in nutrient sig-
naling remains enigmatic. Sch9 is a serine/threonine kinase and is part of the AGC
kinase family (including protein kinase A, G and C). The sequence of Sch9 shows
high similarity with other AGC protein kinases like Tpk1, 2, and 3 (Toda et al.
1988). Overexpression of SCH9 also suppresses other lethal PKA mutations like
the tpk triple deletion strain, cyr1D or ras1D ras2D. This is probably due to the fact
that Sch9 regulates a similar set of genes as the Ras-cAMP-PKA pathway
(Jorgensen et al. 2002). For example, overexpression of SCH9 induces expression
of ribosomal protein genes and represses genes involved in carboxylic acid
metabolism (Zaman et al. 2008). Sch9 affects the PKA pathway since its deletion
causes increased PKA activity in derepressed cells (Crauwels et al. 1997), which is
probably mediated by controlling the localization and phosphorylation of Bcy1,
the regulatory subunit of PKA. In repressed cells, Bcy1 is almost entirely localized
in the nucleus. However, when yeast is grown on nonfermentable carbon sources,
Bcy1 is observed both in the nucleus and in the cytoplasm (Griffioen et al. 2000,
2001). Deletion of SCH9 causes constitutive nuclear localization of Bcy1, even in
cells growing on glycerol (Zhang et al. 2011; Zhang and Gao 2012). Also the
feedback regulation of Cdc25 by PKA phosphorylation seems to be controlled by
Sch9 (Zhang et al. 2011). Although these studies provided evidence for direct
involvement of Sch9 in control of PKA, other studies indicated that PKA and Sch9
also work in parallel, with either the same or different effects on specific pheno-
types (Roosen et al. 2005). Sch9 also directly phosphorylates Rim15, which causes
its inhibition by preventing its nuclear accumulation. Proper entrance into G0

requires release of both PKA-mediated inhibition of its protein kinase activity and
Sch9-mediated inhibition of its nuclear accumulation (Pedruzzi et al. 2003; Wanke
et al. 2008).

Sch9 itself is a phosphoprotein, and its phosphorylation state is dramatically
decreased upon carbon, nitrogen, and phosphate starvation. It has been shown that
the rapamycin-sensitive, nutrient-responsive TORC1 (target of rapamycin
complex 1) protein kinase causes activation of Sch9 by direct phosphorylation of
its C-terminal part when nutrients are available (Urban et al. 2007). This activation
leads to enhanced expression of ribosomal protein genes, stimulates ribosome
biogenesis and translation initiation, and prevents entry into the G0 phase (Urban
et al. 2007; Huber et al. 2009, 2011). Sch9 is also phosphorylated and activated by
the Snf1 protein kinase complex (Lu et al. 2011). Also the Pkh1 and Pkh2 protein
kinases, which are involved in nutrient and stress signaling, are able to phos-
phorylate Sch9 (Roelants et al. 2004). Most likely, there are also other yet
unknown kinases involved in the phosphorylation and regulation of Sch9.
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2.4 The Main Glucose Repression Pathway

Another major regulator of cellular homeostasis in yeast carbon metabolism is the
main glucose repression pathway. This pathway is responsible for the downreg-
ulation of respiration and the utilization of alternative sugars in the presence of
glucose or related fermentable sugars, like fructose and mannose. In a typical
aerobic yeast culture on glucose, the yeast will first grow rapidly by fermentation
on the glucose, a phase in which respiration is repressed and ethanol accumulated.
In this phase, the main glucose repression pathway is active and the cells are said
to be glucose repressed. When the glucose concentration drops to a low level, the
cells show a transient growth arrest, called diauxic shift, during which the enzymes
for respiration and utilization of ethanol are being derepressed. Subsequently, the
derepressed cells start to consume the ethanol utilizing respiration. In this phase,
they grow much more slowly than during the first fermentation phase. When the
ethanol is depleted, the cells enter stationary phase and remain derepressed. In this
phase, they utilize storage carbohydrates (trehalose and glycogen) with respiration.

The Snf1 protein kinase is a major player in the main glucose repression
pathway. It is an ortholog of the AMPK kinase family in mammalian cells. Snf1
acts in the sensing of glucose limitation (less than ±20 mM) and allows the cells to
grow on less-preferred sugars, like sucrose and galactose, and on nonfermentable
carbon sources, like ethanol and glycerol (Hedbacker and Carlson 2008; Zaman
et al. 2008). Snf1 stands for ‘‘Sucrose Non Fermenting,’’ a name allocated to the
snf1 mutant strain since it was unable to ferment sucrose but still able to ferment
glucose (Carlson et al. 1981). The snf1 mutant showed a defect in the expression of
SUC2, which encodes invertase, an enzyme that catalyzes the conversion of
sucrose into glucose and fructose (Neigeborn and Carlson 1984). The snf4 mutant
had the same phenotype and was also discovered in a screen for genes affecting the
regulation of SUC2 gene expression (Neigeborn and Carlson 1984). Subsequent
work showed that Snf1 is part of a serine/threonine protein kinase complex with a
heterotrimeric structure: it contains one catalytic a subunit (encoded by SNF1), one
of three b subunits (encoded by SIP1, SIP2, and GAL83), and one regulatory c
subunit (encoded by SNF4) (Celenza and Carlson 1984, 1986).

The Snf1 protein kinase complex is regulated in different ways (Fig. 2.3).
Activation of Snf1 occurs upon glucose limitation through phosphorylation by
upstream protein kinases, release of autoinhibition by Snf4, and through control of
its subcellular localization, which is regulated by the b subunits (Celenza et al.
1989; Celenza and Carlson 1989; Jiang and Carlson 1996; Leech et al. 2003). Three
protein kinases with related kinase domains, Sak1, Elm1, and Tos3, activate Snf1
by phosphorylation of Thr210. These kinases display high similarity and exert
overlapping functions, so that abolishment of Snf1 activity in vivo is only observed
in the triple mutant (Hong et al. 2003; Sutherland et al. 2003). The three upstream
protein kinases are not affected by a drop in the external glucose level (Rubenstein
et al. 2008), and glucose sensing for downregulation of Snf1 must therefore be
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Fig. 2.3 The main glucose repression pathway in S. cerevisiae. In the inactive state, the
regulatory domain (RD) of Snf1 covers the kinase domain of the catalytic domain (KD) thereby
autoinhibiting it. In the absence of glucose, Snf4 can counteract the inhibition thereby opening up
the complex. This open complex is phosphorylated by the redundant kinases Sak1, Elm1, and
Tos3. The open phosphorylated Snf1/Snf4 complex is the active state and phosphorylates
downstream targets. Upon glucose addition, the Snf1 complex is dephosphorylated by the Protein
Phosphatase 1 (PP1) catalytic subunit Glc7, as controlled by its regulatory subunit Reg1. Glucose
phosphorylation, possibly through activation of PKA, is probably responsible for PP1 activation.
Active Snf1 complex is localized by its b subunits (Sip1, Sip2, and Gal83). Sip1 localizes the
Snf1 complex toward the vacuole, Sip2 keeps the Snf1 complex in the cytoplasm, and Gal83 (the
most abundant b) translocates the Snf1 complex toward the nucleus. In the nucleus, Snf1
phosphorylates Mig1, thereby inhibiting its repression of many target genes. Snf1 also
phosphorylates the transcription factors Sip4 and Cat8 causing their activation
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mediated by another mechanism. The activity of Snf1 is downregulated by
dephosphorylation, mediated by Protein Phosphatase 1 (PP1). The catalytic subunit
of this enzyme is encoded by GLC7. It has multiple regulatory subunits that target
the catalytic domain to specific substrates, of which the Reg1 regulatory subunit
plays a role in the downregulation of Snf1 and thus in control of the main glucose
repression pathway (Feng et al. 1991; Tu and Carlson 1995; Tu et al. 1996). In a
reg1D mutant, Snf1 is constitutively phosphorylated and active (McCartney and
Schmidt 2001).

The control of Snf1 activity via phosphorylation/dephosphorylation is tightly
connected with a second way of regulation, which is mediated by Snf4, the c
subunit of the Snf1 complex. Interaction between Snf1 and Snf4 is regulated by
glucose availability. When glucose levels are low, Snf1 is phosphorylated on
Thr210 and is then able to interact with Snf4. This leads to an open and active
conformation of the complex, and thereby releases the autoinhibition caused by the
regulatory domain of Snf1 (Celenza and Carlson 1989; Jiang and Carlson 1996;
Estruch et al. 1992; Ludin et al. 1998). The active Snf1 kinase complex phos-
phorylates Reg1, thereby stabilizing the interaction between Snf1 and Reg1-Glc7
(Sanz et al. 2000). Upon glucose addition, Glc7 dephosphorylates Reg1 and
subsequently dephosphorylates Snf1, causing its inactivation. The dephosphoryl-
ation of Reg1 by Glc7 seems to require Hxk2 activity (Sanz et al. 2000). Deletion
of HXK2 leads to an Snf1 kinase complex that is trapped in the active confor-
mation. The hxk2 mutant lacks glucose repression, and overexpression of REG1
suppresses this defect (Sanz et al. 2000). The dephosphorylation of the Snf1
complex seems to stimulate its conversion from an open, active conformation to a
closed, inactive autoinhibitory conformation (Ludin et al. 1998). The autoinhibi-
tory state of the complex is thus restored by the dephosphorylation of Snf1 by
Glc7. New evidence has shown that Reg1 can also bind to Snf1 independently of
Glc7 (Elbing et al. 2006), and binding of Reg1 to Snf1 seems to use the same site
in Reg1 as binding of Glc7 to Reg1 (Tabba et al. 2010), suggesting competition
between the binding of Glc7 and Snf1 with Reg1.

Recent studies have identified Sit4 as a second phosphatase involved in the
deactivation of Snf1 by dephosphorylation (Ruiz et al. 2011). The intracellular
ADP concentration is also involved in the regulation of Snf1. Increased concen-
trations of ADP protect Snf1 from dephosphorylation by binding to Snf4
(Chandrashekarappa et al. 2011; Mayer et al. 2011). This contrasts with regulation
of its mammalian homolog, which is protected from dephosphorylation by both
high AMP and ADP levels (Davies et al. 1995; Xiao et al. 2011).

How glucose is sensed for regulation of the main glucose repression pathway has
remained enigmatic in spite of the many detailed studies of this pathway. Also the
discovery of the three upstream kinases of Snf1 did not bring an answer to
this question, since they do not appear to be regulated by glucose availability
(Rubenstein et al. 2008). All evidence, on the other hand, points to regulation of
Snf1 dephosphorylation by glucose availability. Recent work may finally have
brought an answer to this question. It revealed that addition of glucose to dere-
pressed yeast cells triggers a rapid increase in the intrinsic activity of the PP1
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protein phosphatase and that this activation depends on the regulatory subunits
Reg1 and Shp1. Deletion of Shp1 also caused strong derepression of the invertase
gene SUC2. Rapid glucose-induced activation of PP1 was dependent on activation
of the PKA pathway (Castermans et al. 2012). There has been other evidence for
interaction between the PKA pathway and the main glucose repression pathway.
The deletion of IRA1, IRA2, or BCY1, which causes constitutive activation of the
PKA pathway, causes reduced activation of the Snf1 kinase complex and suppresses
the slow-growth phenotype of a reg1 mutant. Conversely, downregulation of the
PKA pathway by deletion of GPR1 caused elevated Snf1 kinase activation (Barrett
et al. 2012).

Finally, the activity of the Snf1 complex is also regulated by control of its
intracellular localization as a function of glucose availability. When glucose
concentrations are high, Snf1 and the three b subunits reside in the cytosol. Upon
glucose limitation, the different b subunits direct the Snf1 kinase complex to
different locations within the cell. Gal83 is the most abundant b subunit and is
involved in the translocation of active Snf1 toward the nucleus (Vincent et al.
2001; Hedbacker et al. 2004a). Sip1 is involved in localization toward the vacuolar
membrane, but in glucose-grown cells the maintenance of the cytosolic Sip1
localization is dependent on PKA activity (Hedbacker et al. 2004b). Sip2 is
required to keep the Snf1 kinase complex in the cytoplasm (Vincent et al. 2001).

The activation of the Snf1 kinase complex has multiple functions. The complex
can be translocated in a Gal83-mediated way toward the nucleus to affect the
expression of a set of genes involved in the metabolism of alternative carbon
sources, gluconeogenesis, respiration, transport, and meiosis (Hedbacker and
Carlson 2008; Schuller 2003; Zaman et al. 2009). This set of genes is only small
compared with the much more extensive changes in gene expression triggered by
the Ras-cAMP-PKA pathway. In addition, a large part of the genes repressed after
inactivation of Snf1 is also repressed by activation of the Ras-cAMP-PKA path-
way (Zaman et al. 2009). This reflects the possible cooperation of PKA with the
Snf1 kinase complex at least under certain conditions in affecting a similar set of
cellular functions (Thompson-Jaeger et al. 1991; Hubbard et al. 1992).

Mig1 is the main transcription factor downstream in the glucose repression
pathway (Nehlin et al. 1991; Nehlin and Ronne 1990). It is involved in glucose
repression of at least 90 different genes, mostly required for the metabolism of
alternative carbon sources (Klein et al. 1998; Lutfiyya et al. 1998). Snf1 phos-
phorylates the Mig1 transcriptional repressor and thereby promotes its nuclear
export, causing derepression of Mig1-controlled genes. Mig1 also recruits the
transcriptional co-repressor complex Ssn6-Tup1 (Treitel and Carlson 1995). Hxk2
is translocated toward the nucleus in a Mig1-dependent way and is part of the
Mig1 repressor complex (Ahuatzi et al. 2007). For interaction between Mig1 and
Hxk2, the serine at position 311 of Mig1 seems to be important. This site is the
major Snf1 phosphorylation site and promotes nuclear export of Mig1 after
phosphorylation. Hxk2 binds to this site thereby inhibiting Snf1-dependent
phosphorylation of Mig1 (Ahuatzi et al. 2007).
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Snf1 also positively regulates the transcriptional activators Cat8 and Sip4
(Lesage et al. 1996; Rahner et al. 1999; Hiesinger et al. 2001). These two tran-
scriptional activators bind specifically to carbon source responsive elements
(CSRE) under glucose-limiting conditions (Vincent and Carlson 1998). When
activated, they induce the expression of genes involved in gluconeogenesis, res-
piration, and the glyoxylate cycle (Santangelo 2006). SIP4 has a CSRE element in
its promoter and is expressed upon activation of Cat8 by Snf1 phosphorylation
(Vincent and Carlson 1998). The expression of CAT8 in turn, is repressed by Mig1
(Hedges et al. 1995; Randez-Gil et al. 1997). Besides regulating gene transcription,
Snf1 also regulates through phosphorylation proteins involved in fatty acid
metabolism, carbohydrate storage, and transport (Hedbacker and Carlson 2008).
For instance, Snf1 phosphorylates and inactivates acetyl-CoA carboxylase (Acc1).
This results in blocked fatty acid biosynthesis under glucose-limiting conditions
(Woods et al. 1994).

2.5 Conclusions

The exquisite preference of the yeast S. cerevisiae for glucose as carbon source is
reflected in the multiple, sophisticated mechanisms that it has developed to detect
the presence of glucose and to adjust various cellular functions accordingly. Two
types of plasma membrane glucose sensors have been discovered first in S. ce-
revisiae: transporter homologues, which have developed into nontransporting
glucose sensors, and a glucose-sensing GPCR. The concerted action of extracel-
lular and intracellular glucose sensing has also been demonstrated and elucidated
for the first time in S. cerevisiae. The Snf1 protein kinase has been discovered in
S. cerevisiae as a central element of a glucose signaling pathway and has served as
a model for investigation of the related AMP-activated kinase in other organisms.
Elucidation of the enigmatic role of Ras in yeast glucose signaling may have
important consequences for understanding aberrant glucose metabolism in tumor
cells. We predict that glucose regulation of major protein phosphatases will reveal
many novel and important aspects about glucose signaling and its interplay with
other signal transduction pathways and mechanisms of cellular regulation.
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Chapter 3
Anaerobic Carbon Metabolism
of Saccharomyces cerevisiae

Paula Jouhten and Merja Penttilä

3.1 Introduction

The yeast Saccharomyces cerevisiae is a facultative anaerobic organism able to
grow in the absence of oxygen. Oxygenation is one of the major costs in bio-
technical production processes, and the anaerobic performance of S. cerevisiae is
thus attractive in the development of low-cost bioprocesses. Understanding of the
carbon metabolism of S. cerevisiae in the lack of oxygen is crucial also for the
optimization of oxygenated large-scale processes. Transient oxygen-depleted
conditions and oxygen gradients commonly appear in large bioreactors and in
high-cell density cultures due to imperfect mixing. In addition of being an
industrial production organism, S. cerevisiae is an attractive model organism for
studying the cell physiology and regulation under conditions of different energetic
challenges such as anaerobiosis. The observations and understanding can be
translated to higher eukaryotes since many of the regulatory mechanisms are
conserved within Eukaryota. It is also fascinating that there is a similarity between
the anaerobic organization of the carbon metabolism of S. cerevisiae and the ‘low
ATP yield-high rate’ energy metabolism, which is a regulatory choice and com-
petitive advantage behind the behaviour of not only S. cerevisiae but also for
example cancer cells. In this review, the response of the carbon metabolism of
S. cerevisiae to the lack of oxygen will be discussed in the light of comprehensive
data on multiple levels of cell function.
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3.1.1 Many Factors Provide Competence for Anaerobic
Growth

Lack of oxygen is both a relief and a challenge to the cells. While being a strong
threat due to the oxidative damage it may provoke (Jamieson 1998), oxygen is
essential for energy generation through respiration, which is highly efficient.
Oxygen acts as the final electron acceptor in the respirative ATP generation. The
electrons of the redox cofactor NADH are transferred to oxygen in the mito-
chondrial electron transfer chain, and the proton pumping enzymes in the chain
generate a proton-motive force across the mitochondrial inner membrane. The
proton-motive force rotates the ATP synthase enzyme, which transforms the
energy of the rotation into the chemical bonds of ATP. In the absence of oxygen
energy can be loaded into ATP only through substrate level phosphorylations.
S. cerevisiae is able to efficiently remodel its carbon metabolism to produce ATP
with an adequate speed also under anaerobiosis to fuel the biosynthesis. In par-
ticular, the glycolytic and fermentative pathways respond to oxygen depletion with
an immediate increase in the flux and concomitant high rate of ATP generation in
glucose fermentation to ethanol. In addition, in the lack of oxygen as an acceptor
of the electrons from NADH, NAD+ must be regenerated by alternative means to
maintain the redox balance within the cell and its compartments. S. cerevisiae
maintains the redox balance under anaerobic conditions by generation of by
products, mainly ethanol and glycerol. The high tolerance of S. cerevisiae against
the by-products further supports anaerobic growth. Even the metabolite and ion
transport are altered in the absence of an active electron transfer chain creating a
proton gradient across the mitochondrial membrane in anaerobic conditions
(Visser et al. 1990). The transport of molecules and ions from cytosol to mito-
chondria or vice versa requires simultaneous proton translocation and thus is
affected by anaerobic conditions.

Oxygen is essential not only for the aerobic respiration but also for the bio-
synthesis of biomass constituents like haem, unsaturated fatty acids and sterols
(Rosenfeld and Beauvoit 1998). To fuel the anabolic needs of continuous growth
under anaerobiosis, S. cerevisiae must import from outside the cell unsaturated
fatty acids and ergosterol, which provide essential functional properties for the cell
membrane (Jacquier and Schneiter 2012; Sinensky 1974). The ratio of unsaturated
to saturated fatty acids in the membrane determines the membrane fluidity
(Sinensky 1974). Both the membrane and the cell wall adapt to anaerobiosis to
meet the challenges caused by the condition and the altered import of extracellular
compounds (Abramova et al. 2001; Kwast et al. 2002), i.e. uptake of sterols is
activated in the absence of oxygen (Jacquier and Schneiter 2012). The capability to
take up sterols has been suggested to provide competence for anaerobic growth.
The capability for anaerobic growth emerged in evolution after the split of
S. cerevisiae and Kluyveromyces lineages (Hagman et al. 2013; Møller et al. 2001).
Kluyveromyces lactis which is unable to grow under anaerobiosis lacks a few of
the corresponding genes that are functioning in anaerobiosis in S. cerevisiae
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(Snoek and Steensma 2006), including genes involved in sterol uptake. Conse-
quently, the inability to import sterols was suggested as one of the possible reasons
why K. lactis requires oxygen for growth.

De novo nucleotide synthesis includes an essential dihydroorotate dehydroge-
nase (EC 1.3.3.1) reaction which is an oxygen utilizing reaction for instance in
Pichia stipitis (Scheffersomyces stipitis), which is incapable of continuous growth
when oxygen is lacking (Shi and Jeffries 1998). On the contrary, the S. cerevisiae
dihydroorotate dehydrogenase is known to be independent of the respiratory chain
and active also under anaerobic conditions (Nagy et al. 1992; Gojkovic et al.
2004). The dihydroorotate dehydrogenase of S. cerevisiae has specificity for
alternative electron acceptors such as fumarate (Nagy et al. 1992). When intro-
duced into P. stipitis, continuous anaerobic growth was enabled (Shi and Jeffries
1998). A transfer of a gene encoding dihydroorotate dehydrogenase, independent
of respiratory activity, from bacteria to Saccharomyces yeasts has been proposed
(Gojkovic et al. 2004). Moreover, it is not fully known, how S. cerevisiae copes
with the absence of haem synthesis under anaerobic conditions and is able to
support continuous growth (Kwast et al. 2002). It was suggested that recycling of
haem bound to proteins could be involved but this would not be sustainable during
continuous growth, and alternative solutions must exist.

3.1.2 Models Allow for Simulations of Anaerobic
Performance

The genome-scale metabolic models currently allow for simulations of oxygen-
dependent and anaerobic metabolism of S. cerevisiae. The first consensus genome-
scale metabolic network reconstruction of S. cerevisiae was created in 2008
(Herrgård et al. 2008). In 2010, the model was refined in pathway connectivity and
thereby turned into a computable form allowing constraint-based analyses (Dobson
et al. 2010). Recently, the model was revised in the lipid metabolism, in particular
in the reactions involved in sphingolipid metabolism (Heavner et al. 2012), and in
oxidative phosphorylation and other oxygen-dependent and anaerobic metabolic
reactions (Jouhten et al. 2012). After the revision, the metabolic behaviour of
S. cerevisiae culture upon sudden depletion of oxygen and subsequent adaptation to
anaerobiosis was successfully simulated with dynamic flux balance analysis
(dFBA) at genome-scale (Jouhten et al. 2012).

3.1.3 Haem and Sterols as Sensors of Anaerobiosis

A delicate transcriptional regulatory system of S. cerevisiae utilises haem and sterols
in sensing the lack of oxygen. The transcriptional regulation of S. cerevisiae in
response to anaerobic conditions has been extensively studied (ter Linde et al. 1999;
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Tai et al. 2005; Lai et al. 2006; Kwast et al. 2002; Rintala et al. 2009, 2011; Wiebe
et al. 2008). The main mediator of oxygen-responsive transcriptional regulation is
Hap1p which acts both as an activator and a repressor depending on the presence
of haem (Hon et al. 2005). Under aerobic conditions, when haem is present, Hap1p
activates genes involved, e.g. in respiration and oxidative stress (Becerra et al.
2002; Zhang and Guarente 1994). It also activates ROX1 encoding a repressor of
anaerobic genes (Lowry and Zitomer 1984; ter Linde and Steensma 2002). Rox1p
together with Mot3p, which also is at least partly under the regulation of Hap1p,
synergistically repress anaerobic genes (Sertil et al. 2003). Under conditions where
oxygen and haem are lacking, Hap1p represses genes involved in the biosynthesis
of ergosterol (Hickman and Winston 2007). The transcription factor complex
Hap2/3/4/5p, in which the activator subunit is Hap4p, is responsive to respiratory
carbon sources and haem (Forsburg and Guarente 1989). Under respiratory con-
ditions Hap2/3/4/5p triggers the expression of genes involved in respirative
metabolism, which are down-regulated under anaerobiosis. However, it is inter-
esting that despite the absence of oxygen S. cerevisiae fails to fully down-regulate
oxidative phosphorylation when growing anaerobically on the five carbon sugar
xylose, which is a non-natural carbon source for S. cerevisiae (Runquist et al.
2009). The most likely reason is the cofactor imbalance caused in the engineering
of the xylose utilization pathway using xylose reductase (XR) and xylitol dehy-
drogenase (XDH) (Toivari et al. 2001; Runquist et al. 2009). The observation
suggests that induction of the respiratory pathway in S. cerevisiae is not solely
dependent on oxygen.

A large fraction of the anaerobic genes, including genes involved in the import
of sterols, possess a promoter binding site shared by the transcriptional activators
Upc2p/Ecm22p (Kwast et al. 2002). Upc2/Ecm22p mediated regulation is
dependent on the presence of sterols (Davies and Rine 2006).

3.2 Remodelling of Carbon Metabolism in the Absence
of Oxygen

Under anaerobic conditions the widely used S. cerevisiae strain CEN.PK is able to
grow with maximal specific growth rate as high as 0.30 h-1 on minimal medium
(Verduyn et al. 1992), using glucose as the sole carbon source, at 30 �C, pH 5,
given that essential ergosterol and unsaturated fatty acids are provided (supple-
mentation with 10 mg l-1 of ergosterol and 420 mg l-1 of Tween-80) (van Hoek
et al. 2000). The rate is not much lower than the observed maximum specific
growth rate of 0.41 h-1 of the same strain under aerobic conditions in the same
medium with glucose as the sole carbon source, at 30 �C, pH 5. Thus, the reor-
ganization of the carbon metabolism of S. cerevisiae is efficient—in terms of
retaining the specific growth rate—when the cells encounter anaerobic conditions.
Observations on the anaerobic reorganization and regulation of the central path-
ways of carbon metabolism of S. cerevisiae are reviewed below. The reviewed
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data provide a wide view across the multiple levels of cell function during
anaerobic adaptations.

3.2.1 High Glycolytic Flux Supports Anaerobic Growth

Under conditions where oxygen is lacking, ATP generation occurs in substrate-
level phosphorylations mainly in glycolysis (Fig. 3.1). When one molecule of
glucose is fermented to two molecules of ethanol, the yield of ATP molecules is
two (Verduyn et al. 1990b), whereas a complete oxidation of a mole of glucose
through aerobic respiration, in addition to the glycolytic ATP generation, would
produce approximately 16 moles of ATP (assuming an apparent P/O ratio of 1 in
the oxidative phosphorylation), two moles of which is consumed in glycolysis
(Verduyn et al. 1991). Consequently, the glycolytic flux must adapt for a sub-
stantially higher speed in anaerobic conditions in order to not severely limit
growth by the availability of energy. S. cerevisiae is able to meet this challenge
and increase the glycolytic rate correspondingly. In anaerobic glucose-limited
continuous cultures at a low growth rate, the glycolytic flux of S. cerevisiae has
been observed to be 7.5 times higher than under otherwise same but fully aerobic
conditions (Jouhten et al. 2008) (Fig. 3.2). Most of the glycolytic proteins are also
significantly more abundant under anaerobiosis than under aerobic conditions
(de Groot et al. 2007; Bruckmann et al. 2009; Rintala et al. 2009), and the enzyme
activities have been shown to be higher in the absence of oxygen (Daran-Lapujade
et al. 2004; van Hoek et al. 2000). The glycolytic enzymes are very abundant
proteins in general in the proteome of S. cerevisiae making approximately 8 % of
the total abundance under aerobic conditions (van Hoek et al. 2000). In the
absence of oxygen, the relative abundance of glycolytic proteins increases to
21 %, which most likely corresponds to a substantial fraction of the capacity of
the translational machinery (de Groot et al. 2007). The protein abundances of
glycolytic enzymes in S. cerevisiae have been observed to be post-transcriptionally
regulated in response to anaerobiosis (de Groot et al. 2007; Bruckmann et al. 2009;
Rintala et al. 2009). However, the regulation of glycolytic flux has turned out to
be even more complex than the regulation of the protein levels. Early attempts
to increase the glycolytic flux by single, double (Schaaff et al. 1989) and multiple
(Hauf et al. 2000; Smits et al. 2000) overexpressions of glycolytic enzymes did
not succeed. Smits et al. (2000) observed substantially increased enzyme levels as
a result of multiple overexpressions of lower glycolytic enzymes and yet in
batch cultivations the engineered strain behaved as the control strain showing no
sign of an increased glycolytic rate. In later studies, no direct dependences
between protein levels or the transcript abundances and flux have been observed
(Daran-Lapujade et al. 2004, 2007). Accordingly, the expression of genes
encoding hexose transporters are not upregulated under anaerobic conditions,
despite the substantially increased glucose uptake rate compared to aerobic con-
ditions (Rintala et al. 2008). The decrease in the activity of the transporters having
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lower affinity and the consequent relative increase in the high affinity transport
have been suggested to accomplish the increased specific uptake flux in the
absence of oxygen.
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Fig. 3.1 Glycolytic pathway of S. cerevisiae under anaerobic conditions. Glycolytic pathway
from glucose to pyruvate and diverging glycerol synthesis route are shown with the enzymes
catalyzing the reactions (in light blue) and relevant genes encoding the enzymes (in black) in
S. cerevisiae under anaerobic growth conditions
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The glycolytic metabolite pools that are interdependent with the flux through the
mechanistic kinetic activities of the glycolytic enzymes, adjust to enable the high
glycolytic rate. Metabolites affect the reaction rates as substrates, products and
allosteric effectors mediating activation or inhibition. The concentrations of upper
glycolytic intermediates (glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-
bisphosphate) and lower glycolytic pyruvate (Fig. 3.1) are higher under anaerobic
conditions than in aerobic conditions whereas the lower glycolytic metabolites
(2-phosphoglycerate+3-phosphoglycerate, phosphoenolpyruvate) (Fig. 3.1) are
less abundant in the absence oxygen than under aerobic conditions (Wiebe et al.
2008). Allosteric enzyme regulation creates couplings also between metabolic
pathway reactions which are not directly coupled such as between reactions of the
upper and lower parts of glycolysis. The lower glycolytic enzyme pyruvate kinase
(Fig. 3.1) is activated by the anaerobically abundant upper glycolytic metabolite
fructose 1,6-bisphosphate (Murcott et al. 1992), and the lower glycolytic metabolite
phosphoenolpyruvate inhibits the upper glycolytic enzyme triose phosphate
isomerase (Grüning et al. 2011). Thus, the low anaerobic pool of phosphoenol-
pyruvate (Wiebe et al. 2008) supports a high flux through triose phosphate isom-
erase and the high anaerobic concentration of fructose 1,6-bisphosphate supports
the high rate of conversion of phosphoenolpyruvate to pyruvate. Further, the upper
glycolytic enzyme phosphofructokinase is activated by fructose 2,6-bisphosphate
and the products AMP and ADP, and is inhibited by ATP, which have global effects

pyruvate pyruvate 

Aerobic 
glucose limited 
chemostat 0.1 h-1 a 

Anaerobic 
glucose limited 
chemostat 0.1 h-1 a 

Aerobic 
glucose excess 
batch 0.37 h-1 b 

pyruvate 

a Jouhten et al. 2008, b Gombert et al. 2001 

Fig. 3.2 Illustration of the capacity of glycolytic flux of S. cerevisiae. Magnitudes of the
glycolytic flux of S. cerevisiae under anaerobic glucose-limited and aerobic glucose-excess
conditions relative to the magnitude of the glycolytic flux under aerobic glucose-limited
conditions visualised as the thickness of the arrows. Glycolytic flux has been observed to be
7.5 times higher under anaerobic than aerobic conditions in glucose-limited continuous cultures
at specific growth rate of 0.1 h-1 (Jouhten et al. 2008). Under glucose-excess conditions in batch
cultures in cells growing at maximum specific growth rate of 0.37 h-1 a 20.3 times higher
glycolytic flux has been observed than in aerobic glucose-limited continuous cultures at specific
growth rate of 0.1 h-1 (Gombert et al. 2001)
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in the metabolism. The low-affinity effects of ATP, ADP and AMP on the activities
of those glycolytic enzymes for which they are neither substrates nor products were
recently investigated by Mensonides et al. (2013). They found that all those
enzymes were affected by the nucleotides, slightly or substantially. For example
phosphoglucose isomerase activity was severely inhibited by ATP.

S. cerevisiae makes a regulatory choice of ‘low ATP yield-high rate’ energy
metabolism under conditions of high glucose abundance even in presence of
oxygen. This choice is called the Crabtree effect, which is thought to give
S. cerevisiae a capability to out-compete other consumers of glucose in the
environment. S. cerevisiae consumes glucose fast, makes and accumulates ethanol
which becomes toxic for competitors, and then after the depletion of glucose it
consumes the ethanol. It produces ethanol rather than gains high yields of energy
and biomass which respirative metabolism under aerobic conditions would allow
for. High glycolytic flux observed under anaerobiosis is characteristic also for the
metabolism of S. cerevisiae in high-glucose conditions. Hagman et al. (2013) has
recently showed that the emergence of the ‘make-accumulate-consume’ strategy of
S. cerevisiae followed the anaerobic capability in yeast evolution. The high
capacity of the glycolytic pathway which is important for the anaerobic growth
was one of the factors enabling also the aerobic alcoholic fermentation as a reg-
ulatory strategy. The relative magnitude of the high glycolytic flux under excess-
glucose conditions (Gombert et al. 2001) in comparison to the glycolytic flux
under aerobic and anaerobic glucose-limited conditions is shown in Fig. 3.2.

The glycolytic pathway is not directly or primarily regulated by the lack of
oxygen, which can be learned from the observations made when anaerobic xylose
metabolism in engineered S. cerevisiae strains has been investigated. Xylose is a
five carbon sugar abundant in hemicellulose but not naturally metabolised by
S. cerevisiae. During anaerobic xylose metabolism in S. cerevisiae strains with
engineered heterologous xylose utilization pathway, the glycolytic flux is low and
gluconeogenetic enzymes catalysing the reverse activity of glycolysis are
expressed in contrast to being repressed under anaerobic conditions on glucose
(Runquist et al. 2009). In accordance with the low glycolytic flux, the pools of the
lower glycolytic metabolites glyceraldehyde 3-phosphate and phosphoenolpyr-
uvate are high whereas the level of fructose 6-phosphate was low during anaerobic
xylose metabolism (Toivari et al. 2001; Klimacek et al. 2010). Klimacek et al.
(2010) further found that the low concentration of fructose 6-phosphate limited the
activity of the phosphofructokinase reaction. Even higher levels of anaerobically
accumulated phosphoenolpyruvate were found in a S. cerevisiae strain harbouring
xylose isomerase (XI) reaction for xylose metabolism than in the xylose reductase
(XR)/xylitol dehydrogenase (XDH) reaction pair containing strain in response to
switch from glucose to xylose utilization (Bergdahl et al. 2012). XI harbouring
strain had lower xylose uptake rate, which implies lower glycolytic flux, than in
the XR/XDH harbouring strain. Accordingly, an overexpression of xylulokinase
encoding XKS1 in a S. cerevisiae strain harbouring the XR/XDH pathway for
xylose utilization increased the uptake rate of xylose which resulted in higher
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anaerobic concentrations of the metabolites of the upper glycolysis, glucose
6-phosphate and fructose 6-phosphate and higher rate of ethanol production than in
the control strain (Toivari et al. 2001).

S. cerevisiae maintains an overcapacity in its glycolytic and fermentative
pathways, which is mobilised in need of energy (van Hoek et al. 1998). Such a
need of energy, drop of ATP levels, occurs for example when cells in respirative
metabolic state are suddenly exposed to excess glucose (Rizzi et al. 1997; Visser
et al. 2004; van den Brink et al. 2008b). The glycolytic flux is indeed readily
increased in response to both sudden depletion of oxygen and a sudden appearance
of excess glucose. The glycolytic rate increased almost eight times when fully
respirative cells of S. cerevisiae growing continuously at 0.1 h-1 were suddenly
exposed to anaerobiosis and let to adapt to an anaerobic steady state (Jouhten et al.
2012). Similarly, an eight-fold increase in the glycolytic flux occurred, when
S. cerevisiae cells growing under aerobic conditions were suddenly exposed to
fermentative conditions of both anaerobiosis and excess glucose (van den Brink
et al. 2008b). The immediate flux increase within the initial 45 min occurred on
the level of metabolic regulation without any increases in the capacities of the
enzymes (van den Brink et al. 2008b). The upper glycolytic metabolite concen-
trations (glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate)
increased whereas the lower glycolytic phosphoenolpyruvate concentration
decreased and pyruvate concentration increased to support the increase in flux. An
equal response was observed by Wiebe et al. (2008) when S. cerevisiae cells
grown in glucose-limited aerobic chemostat cultures were switched to anaerobic
conditions. Further, the response was generally independent of the level of aero-
biosis, the level of oxygen in the chemostat inlet gas before the switch to
anaerobiosis. The response of glycolytic intermediates to a pulse of glucose is
similar (Visser et al. 2004; Wu et al. 2006). Wu et al. (2006) observed fast
dynamics of glycolytic intermediates when S. cerevisiae cells growing under
aerobic glucose-limited conditions were exposed sudden pulse of glucose. The
lower glycolytic metabolites (2-phosphoglycerate+3-phosphoglycerate, phospho-
enolpyruvate) responded within 10 s whereas the upper glycolytic metabolites
(glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate) reached
their highest levels within approximately 1 min. The capacities (in vitro measured
Vmax) of most of the glycolytic enzymes increased, and hierarchical regulation,
including transcriptional, post-transcriptional, translational, and post-translational
regulation, accounted for further flux increase of the majority of glycolytic
enzymes only later, after 45 min of the shift of aerobically grown glucose-
derepressed cells of S. cerevisiae into fully fermentative conditions of anaerobiosis
and glucose excess (van den Brink et al. 2008b). In contrast, hexokinase, phos-
phofructokinase and phosphoglycerate kinase (Fig. 3.1) were regulated solely at
metabolic level in S. cerevisiae during the 2 h after the shift into the fully fer-
mentative conditions. Yet unknown effectors of phosphofructokinase are expected
to exist since van den Brink et al. (2008a) found that it was not possible to fit the
in vivo flux data obtained as a response to the shift to fully fermentative conditions
with a kinetic equation taking into account the known metabolic regulators of
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phosphofructokinase. After 2 h of the perturbation, the glycolytic flux had
increased 13-fold, and van den Brink et al. (2008b) could conclude that the
enzyme capacity increases had only marginally contributed to the substantial
increase in the glycolytic rate.

In addition to metabolic regulation, post-translational modifications such as
protein phosphorylation, enable fast, often reversible, responses in metabolism
in sudden changes of conditions. The prevalence of phosphorylation as a post-
translational modification in S. cerevisiae was shown by Breitkreutz et al. (2010)
who mapped genome-wide kinase and phosphatase interactions into a dense net-
work (Breitkreutz et al. 2010). The phosphorylation mediated control of in vivo
activity of reactions in the central carbon metabolism of S. cerevisiae was recently
investigated with a novel phosphoproteomics approach by Oliveira et al. (2012). It
was known prior to their investigation that phosphorylation plays a functional role in
17 enzymes of the central carbon metabolism of S. cerevisiae. Among those are
glycolytic enzymes encoded by HXK2 (phosphorylation causing change in intra-
cellular localizational), PYK1/CDC19 (enzyme activation) and FBP1 (enzyme
inhibition). When comparing cells growing aerobically or anaerobically on glucose
Oliveira et al. (2012) observed changes in phosphoenzyme abundances of five
glycolytic enzymes encoded by HXK2, PFK2, FBA1, TDH1/2/3, and GPM1.
Phosphofructokinase encoded by PFK2, was found to be inhibited by phosphory-
lation at amino acid position S163 and the amount of non-phosphorylated enzyme
correlated with the glycolytic flux over four common culture conditions including
anaerobic growth conditions (Oliveira et al. 2012). Thus, if the phosphofructokinase
reaction was rate controlling, the rate of glycolytic flux could be quickly modulated
with dynamic phosphorylation or dephosphorylation of the enzyme.

3.2.2 The Relative Pentose Phosphate Pathway Flux
is Lower Under Anaerobic Than Aerobic Conditions

The in vivo activity of the pentose phosphate pathway (PPP) of S. cerevisiae,
relative to the glycolytic flux, is lower under anaerobic than aerobic conditions,
which has been confirmed with 13C-labelling in chemostat cultivations at a dilution
rate of 0.1 h-1 (Fiaux et al. 2003; Jouhten et al. 2008). Pentose phosphate pathway
contributed to less than 10 % of the phosphoenolpyruvate pool under anaerobic
conditions whereas under fully aerobic conditions the contribution of pentose
phosphate pathway to the phosphoenolpyruvate pool was over 30 % at maximum
(Table 3.1). Interestingly, the ZWF1 gene encoding glucose 6-phosphate dehy-
drogenase in the entry point of the oxidative branch of PPP (Nogae and Johnston
1990) has an elevated expression under anaerobic conditions at low growth rates
on glucose (Rintala et al. 2009). Runquist et al. (2009) found it even more
upregulated under anaerobic conditions on xylose. S. cerevisiae with an engi-
neered xylose pathway of XR and XDH enzymes requires NADPH for the XR
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reaction of xylose dissimilation. The oxidative branch of PPP is the main source of
reducing power NADPH, also under anaerobic conditions (Fig. 3.3). In vivo
activity of the NADPH generating oxidative branch of PPP has been proposed to
be affected by the cellular NADPH/NADP+ ratio and MgATP2- pool, which
regulate the activity of glucose 6-phosphate dehydrogenase (Fig. 3.1) (Llobell
et al. 1988; Vaseghi et al. 1999). NADPH is utilised mostly in biosynthesis, i.e. in
the reduction steps in lipid and amino acid biosyntheses. Accordingly, a depen-
dency of the relative in vivo pentose phosphate pathway flux on the growth rate
and biomass yield has been observed in S. cerevisiae growing at different constant
rates ranging from below the critical dilution rate, above which aerobic alcoholic
fermentation occurs, to higher dilution rates (Frick and Wittmann 2005). This
dependency has been observed also in different yeast species (Blank et al. 2005).
Under aerobic conditions, NADPH is utilised also as a redox buffer in the defence
against oxidative damage under aerobic conditions (Minard and Mc Alister-Henn
1999). The transcription factor Stb5p, which regulates the transcription of the
genes encoding the enzymes of the NADPH producing oxidative branch and most
of the other genes involved in the pentose phosphate pathway (Larochelle et al.
2006), responses to oxidative stress (Cadière et al. 2010). Stb5p is also required for
normal growth under aerobic conditions, while anaerobic growth was not found
impaired by the deletion of STB5 (Cadière et al. 2010).

A low relative in vivo activity of PPP has been observed also in aerobic batch
cultivations of S. cerevisiae during exponential maximal growth rate by
13C-labelling experiments (Maaheimo et al. 2001) (Table 3.1). Thus, the low
in vivo activity of PPP relative to the glycolytic flux is associated with a high
glycolytic flux during fermentative metabolism irrespective of the oxygenation
conditions. The dependency of the in vivo activity of PPP on the biomass yield
(Frick and Wittmann 2005) is not contradictory to this statement since the higher
the proportion of the fermentative metabolism the lower is the biomass yield.

3.2.3 Roles of the Isoenzymes of Fermentative Pathway
Depend on the Availability of Oxygen

At the pyruvate branching point, the glycolytic flux is distributed into three main
directions via pyruvate dehydrogenase, pyruvate carboxylase and pyruvate
decarboxylase (Fig. 3.4). The fermentative pathway of S. cerevisiae starts at the
pyruvate decarboxylase reaction producing acetaldehyde. Acetaldehyde has two
alternative destinations via either an alcohol dehydrogenase reaction to ethanol or
via acetaldehyde dehydrogenase reaction to acetate. The pathway possesses fer-
mentative capacity (van Hoek et al. 1998) together with the glycolytic pathway,
which enable a rapid onset of a substantial ethanol production in response to
altered conditions (van den Brink et al. 2008b). When respirative cells of
S. cerevisiae were exposed to a pulse of glucose, Wu et al. (2006) observed an
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onset of substantial ethanol accumulation as fast as in 50 s. van den Brink et al.
(2008a) in turn reported an ethanol production rate of 19.6 ± 1.4 mmol/g-1 CDW
h-1 2 h after a fully respiratory culture of S. cerevisiae producing no ethanol had
been switched to conditions of excess glucose and anaerobiosis. S. cerevisiae
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Fig. 3.3 Illustration of redox cofactor regeneration of S. cerevisiae under anaerobic conditions.
The main reactions responsible for the regeneration of NADPH and NAD+ redox cofactors in
S. cerevisiae under anaerobic conditions. The genes encoding the main enzymes are shown in
black and the minor contributors in grey. NADPH regeneration occurs mainly in cytosol whereas
for the regeneration of mitochondrial NAD+ S. cerevisiae can utilise also the reductive branch of
TCA cycle or alcohol dehydrogenase reaction
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possesses five isoenzymes of alcohol dehydrogenase encoded by separate genes
(Russel et al. 1983; Young and Pilgrim 1985). The ADH2 encoded isoform is
mainly involved in the reverse reaction of the utilization of ethanol under respi-
rative conditions (Russel et al. 1983) and it is transcriptionally downregulated on
high glucose concentrations (Gancedo 1998). ADH2 is also downregulated under
anaerobic conditions (Wiebe et al. 2008; ter Linde et al. 1999; Piper et al. 2002).
The abundance of Adh2p has also been found to be lower under anaerobiosis than
in aerobic conditions (Rintala et al. 2009). Accordingly, the expression of ADH2
has been observed to be rapidly downregulated in correlation with the cessation of
respirative metabolism in a sudden depletion of oxygen (Jouhten et al. 2012).
Decrease in the expression of ADH2 was observed within 12 min of the switch of
gas flow from air to nitrogen, and correspondingly the expression of PDC1
encoding pyruvate decarboxylase responded within 12 min (Wiebe et al. 2008). In
contrast, ADH1 is more highly expressed under anaerobic conditions than fully
aerobic conditions (Wiebe et al. 2008; ter Linde et al. 1999). Nevertheless, Adh1p
has been found to be the only isoform of alcohol dehydrogenase capable of effi-
cient conversion of acetaldehyde into ethanol during growth on glucose inde-
pendent of oxygen availability (de Smidt et al. 2012). The ADH1 and ADH2
encoded isoforms of alcohol dehydrogenase are cytosolic whereas the ADH3
encoded isoenzyme has a mitochondrial localization and is involved in an
anaerobic ethanol—acetaldehyde redox shuttle between mitochondria and cytosol
(Bakker et al. 2000) (Fig. 3.3). Shuttling mechanisms are required since the redox
cofactors cannot directly pass the mitochondrial membrane and under anaerobic
conditions the surplus of NADH which is produced in mitochondria cannot be
oxidised in the respiratory chain, but need to be transferred into cytosol.

The major isoforms of acetaldehyde dehydrogenase producing acetate under
anaerobic conditions are encoded by ALD6 and ALD5, which are cytosolic and
mitochondrial, respectively (Saint-Prix et al. 2004) (Fig. 3.4). The acetaldehyde
dehydrogenase reaction catalysed by ALD6 encoded isoform is an alternative
source of cytosolic NADPH, in addition to the main source, PPP (Grabowska and
Chelstowska 2003). The IDP2 encoded cytosolic isocitrate dehydrogenase is able
to compensate the loss of both PPP and acetaldehyde dehydrogenase as cytosolic
NADPH sources but only in aerated conditions since the enzyme is active only in
the respirative metabolic state (Minard and McAlister-Henn 2005). Thus, ALD6
encoded acetaldehyde dehydrogenase is presumably an essential alternative for
NADPH production in PPP under anaerobic conditions (Saint-Prix et al. 2004)
(Fig. 3.2). ALD4 encodes a mitochondrial isoform of acetaldehyde dehydrogenase
which is NAD+ specific (Saint-Prix et al. 2004). The activity of the ALD4 encoded
isoform has been found to be strain and medium dependent under anaerobic
conditions. Both ALD6 and ALD4 encoded acetaldehyde dehydrogenases have
lower mRNA and protein abundances under anaerobic than aerobic conditions, in
a set up where S. cerevisiae CEN.PK113-1A was cultured in chemostats on
minimal medium having glucose as the sole carbon source, and where no acetate
secretion was detected (Rintala et al. 2009). The other two isoforms of
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acetaldehyde dehydrogenase do not contribute to acetate production on glucose
(Saint-Prix et al. 2004).

3.2.4 Synthesis of Acetyl-CoA is Regulated in Response
to the Absence of Oxygen

In S. cerevisiae acetate can be converted into acetyl-CoA via acetyl-CoA synthetase
reaction which is ATP consuming (Fig. 3.4). There are two isoforms of acetyl-CoA
synthetases in S. cerevisiae encoded by ACS1 and ACS2 (van den Berg et al. 1996).
The isoforms have distinct expression depending on the availability of oxygen and
whether the metabolism is respirative or fermentative. The ACS1-encoded isoform is
induced under respirative metabolism whereas the ACS2-encoded isoform is con-
stitutively expressed independent of the metabolic state (van den Berg and Steensma
1995). Thus, ACS2-encoded enzyme is also the anaerobically active isoform (van
den Berg et al. 1996). Consistently, Wiebe et al. (2008) observed that the expression
level of ACS1 was very low in an anaerobic chemostat culture while ACS2 was
highly expressed (Wiebe et al. 2008). The ACS1-encoded aerobic isoform has been
shown to have a dual distribution between cytosol and peroxisomes (Chen et al.
2012), but Acs1p has also been observed in the mitochondrial proteome (Sickmann
et al. 2003) and localised additionally into nucleus based on a GFP signal (Huh et al.
2003). The anaerobic isoenzyme encoded by ACS2 is active in cytosol (van den Berg
et al. 1996). Acetyl-CoA requires transport systems to move between compartments
since the membranes of intracellular organelles are impermeable for acetyl-CoA
(van Roermund et al. 1995). There are two possible transport systems for the
transport of acetyl-CoA across the mitochondrial membrane in S. cerevisiae, car-
nitine shuttle and glyoxylate shunt. However, it has been stated that exogenous
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Fig. 3.4 Fermentative pathway and acetyl-CoA synthesis of S. cerevisiae under anaerobic
conditions. Fermentative pathway branching from pyruvate and the acetyl-CoA synthesis reaction
are shown with the enzymes catalysing the reactions (in light blue) and the relevant genes
encoding the enzymes (in black) in S. cerevisiae under anaerobic growth conditions
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carnitine is required for the carnitine shuttle to be active since S. cerevisiae does not
synthesise carnitine (Lange 2002; Swiegers et al. 2001; van Roermund et al. 1999).
In addition, carnitine acetyltransferase activity that is required for the carnitine
shuttle transporting acetyl-CoA across the mitochondrial membrane, has not been
detected in S. cerevisiae grown in anaerobic chemostats at 0.1 h-1 (Nissen et al.
1997). The second option, glyoxylate shunt is involved in respirative metabolism
and is repressed on glucose (Duntze et al. 1969). Further, no in vivo activity of the
glyoxylate cycle was observed in 13C-labelling experiments on glucose under
anaerobic conditions (Jouhten et al. 2008). Thus, under anaerobic conditions and
during aerobic growth on glucose the pyruvate dehydrogenase bypass and the Acs2p
catalysed acetyl-CoA synthetase reaction form an essential route to the generation of
cytosolic acetyl-CoA, which is required for lipid biosynthesis (Flikweert et al. 1996).

3.2.5 Glycerol Production as a Redox Sink

The pathway from glucose to ethanol is redox-neutral. Two NADH units are
formed when one glucose unit is metabolised in glycolysis. The NADH molecules
are oxidised by alcohol dehydrogenase when two molecules of ethanol are pro-
duced (from the two pyruvates formed of one molecule of glucose) (Fig. 3.2).
However, a fraction of glucose is directed to biosynthesis and a net generation of
NADH occurs in assimilatory reactions. Under aerobic conditions the anabolic
NADH is oxidised by the external or internal NADH dehydrogenases which
shuttle the electrons into the mitochondrial electron transfer chain (Bakker et al.
2001; Rigoulet et al. 2004). The electrons of cytosolic NADH can enter the
mitochondria and the electron transfer chain via the external NADH dehydro-
genases and the glycerol 3-phosphate shuttle. If oxygen availability is limiting
S. cerevisiae uses oxygen preferentially to oxidise the anabolic NADH (Weusthuis
et al. 1994; Franzen 2003). Glycerol production is triggered when there is not
enough oxygen to accept all the electrons required to regenerate NAD+ (see
Figs. 3.1 and 3.2). The ATP requirement for glycerol production could be
important for this regulation. In the glycerol production pathway, the glycolytic
intermediate dihydroxyacetone phosphate is first reduced to glycerol 3-phosphate.
A transient increase in glycerol 3-phosphate concentration has been observed as a
response to a sudden switch of S. cerevisiae into fully fermentative conditions
(anaerobiosis and glucose excess) (van den Brink et al. 2008b). The accumulation
of glycerol 3-phosphate has been suggested to generally imply an increased
intracellular NADH/NAD+ ratio (Påhlman et al. 2001). The conversion of
dihydroxyacetonephosphate into glycerol 3-phosphate is catalysed by glycerol
3-phosphate dehydrogenase which exists in two isoforms in S. cerevisiae encoded by
GPD1 (Albertyn et al. 1994) and GPD2 (Eriksson et al. 1995), respectively. Both
GPD1 and GPD2 encoded isoenzymes are NAD+ specific. Glycerol formation is
associated not only with fermentative metabolism but also with osmoregulation in
S. cerevisiae (Ansell et al. 1997). The two isoenzymes of glycerol 3-phosphate
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dehydrogenase have distinct roles, the GPD2 encoded isoform being the one induced
in the absence of oxygen. De Groot et al. (2007) observed the effect of transcriptional
regulation of GPD1 and GPD2 at a protein level. Gpd2p had a higher abundance
under anaerobic conditions than aerobic conditions whereas Gpd1p had a slightly
lower anaerobic than aerobic abundance. In addition, the growth of a gpd2 deletion
mutant is impaired under anaerobic conditions whereas gpd1 deletion does not affect
growth in the absence of oxygen (Björkqvist et al. 1997). The double deletion mutant
of gpd1 gpd2 is unable to grow without oxygen or a supplementation of NADH-
oxidizing agent in the medium (Ansell et al. 1997). While the transcriptional reg-
ulation of glycerol 3-phosphate dehydrogenases is seen at protein level, additional
post-translational regulation of the activity is possible. Indeed, at least the activity of
the isoform of glycerol 3-phosphate dehydrogenase encoded by GPD1 is inhibited
by phosphorylation in S. cerevisiae (Oliveira et al. 2012). Only a deletion of all four
phosphosites in the enzyme abolished this inhibition. Glycerol 3-phosphate is con-
verted to glycerol by glycerol 3-phosphate phosphatases encoded by GPP1 and
GPP2 (Norbeck et al. 1996). The glycerol 3-phosphate phosphatase encoding genes
are also regulated differentially under anaerobiosis. The GPP1 gene is induced under
anaerobic conditions whereas GPP2 mRNA is present at a lower abundance under
anaerobic than aerobic conditions (Påhlman et al. 2001). GPP1 induction has been
observed to correlate with an increase in the amount of protein (de Groot et al. 2007).
A substantially higher abundance of Gpp1p has been observed under conditions
where oxygen is lacking than under aerobiosis.

Glycerol secretion is performed by the FPS1 encoded plasma membrane channel
protein (Luyten et al. 1995). FPS1 is upregulated in the absence of oxygen (ter
Linde et al. 1999). Glycerol secretion in S. cerevisiae occurs in stoichiometric
relation to the anabolic NADH generation under anaerobic conditions. The theo-
retical amount of assimilatory NADH formed is 11 mmol g biomass-1 at a growth
rate 0.1 h-1 (Verduyn et al. 1990a), which is consistent with an experimentally
observed glycerol production rate (Wiebe et al. 2008). However, when S. cerevisiae
was simultaneously exposed to sudden oxygen depletion and glucose excess,
glycerol formation transiently exceeded the rate expected on the basis of anabolic
NADH generation (van den Brink et al. 2008b).

3.2.6 Anaerobic TCA Cycle Operates in a Branched Mode

Under anaerobic conditions the TCA cycle of S. cerevisiae operates as a branched
pathway of oxidative and reductive branches (Nissen et al. 1997; Maaheimo et al.
2001; Fiaux et al. 2003; Camarasa et al. 2003). The cycle is interrupted at suc-
cinate dehydrogenase which is not active under anaerobiosis (Camarasa et al.
2003). The oxidative branch has an important anabolic function in the production
of the biosynthetic precursor 2-oxoglutarate while the reductive branch may
contribute to redox balancing. Under aerobic glucose-limited conditions the
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relative anaplerotic flux of S. cerevisiae, which replenishes the TCA cycle inter-
mediates drawn for biosynthesis, is about 30 % whereas under anaerobic condi-
tions there is no respiratory activity and the relative anaplerotic flux is 100 %
(Jouhten et al. 2008; Maaheimo et al. 2001) (Table 3.1). Even under aerobic
conditions in the presence of glucose excess, the relative anaplerotic flux to the
TCA cycle is high (Table 3.1), which indicates of a low respiratory versus
biosynthetic activity of the TCA cycle (Maaheimo et al. 2001). Under aerobic
conditions, the TCA cycle flux of S. cerevisiae has been observed to show
inversely correlated activity with the specific glucose uptake rate (Blank and Sauer
2004). When the glucose uptake rates are high, the cyclic TCA cycle flux is low or
becomes completely interrupted even in the presence of oxygen (Maaheimo et al.
2001). The metabolites of the TCA cycle (citrate, succinate, fumarate, malate) are
more abundant in the absence of oxygen than under aerobic conditions (Wiebe
et al. 2008; Villas-Boas et al. 2005). Higher anaerobic concentrations have been
observed independent of the simultaneous glucose repression. The importance of
the anabolic function of mitochondria even in the absence of aerobic respiration
has been recognised for long time (Visser et al. 1994). Interestingly, most of the
enzyme complexes of oxidative phosphorylation are present under anaerobiosis,
though in lower abundances than under normoxic conditions (Helbig et al. 2009).

After the mitochondrial conversion of pyruvate into acetyl-CoA by pyruvate
dehydrogenase, acetyl-CoA enters the oxidative branch of the TCA cycle which is
a chain of reactions producing 2-oxoglutarate from acetyl-CoA and oxaloacetate.
While oxygen is available and the respiratory pathway is active, most of the TCA
cycle enzymes, including enzymes of oxidative branch, are under transcriptional
regulation of the haem dependent Hap2/3/4/5p complex. Retrograde signalling
between mitochondria and the nucleus is triggered in dysfunction or absence of the
aerobic respiration in mitochondria in order to align nitrogen and carbon metab-
olisms (Butow and Avadhani 2004). The expression of enzymes in the oxidative
branch of the TCA cycle, i.e. citrate synthase, aconitase and isocitrate dehydro-
genase, encoded by CIT1, ACO1 and IDH1/2, respectively, switch from Hap2/3/4/
5p dependent regulation to regulation by the retrograde transcription factors (Liu
and Butow 1999). The retrograde regulation is mediated by the transcription
factors Rtg1p, Rtg2p and Rtg3p. Retrograde regulation of the oxidative branch of
the TCA cycle has been proposed to ensure sufficient production of L-glutamate
when the respiratory activity is low or absent. The proteins of the oxidative branch
(Cit1p, Aco1p, Aco2p, Idh1p, Idh2p) have been shown to increase or have
unchanged expression in the absence of oxygen compared to aerobic conditions
(de Groot et al. 2007). On the contrary, Lsc2p, Sdh2p and Kgd2p belonging to the
enzyme complexes involved in the conversion of 2-oxoglutarate to succinate were
less abundant under anaerobic than aerobic conditions. In earlier studies, the
activities of the corresponding enzymes, 2-oxoglutarate dehydrogenase, isocitrate
dehydrogenase and succinate dehydrogenase, have been observed to be low or
absent under anaerobiosis (Machado et al. 1975; Camarasa et al. 2003). Interest-
ingly, defects either in the 2-oxoglutarate dehydrogenase complex or aconitase in
the oxidative branch of TCA cycle have been observed to induce expression of
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anaerobic genes and down-regulation of aerobic genes, similarly as occurs when
haem dependent regulation is triggered (McCammon et al. 2003). This suggests a
role of the oxidative branch in the sensing of the status of respirative metabolism.

During anaerobic growth malate dehydrogenase and fumarate reductase of the
reductive branch of the TCA cycle can contribute to the regeneration of mito-
chondrial pool of NAD+ together with mitochondrial alcohol dehydrogenase
(Nissen et al. 1997) (Fig. 3.2). Cytoplasmic and mitochondrial fumarate reductases
are encoded by FRD1 and OSM1, respectively. While fumarate reductase is a
major contributor to the anaerobic production of succinate, a substantial produc-
tion of succinate by 2-oxoglutarate dehydrogenase has been observed also under
anaerobic conditions when the nitrogen source is glutamate (Camarasa et al. 2003).
On the other hand, a double deletion mutant of frd1 osm1 is unable to grow under
anaerobiosis (Camarasa et al. 2007). Camarasa et al. (2007) proposed that fuma-
rate reductase activity is essential for the reoxidation of FADH2 in the absence of
oxygen. The cytosolic fumarate reductase is the main isoform under anaerobiosis
but can be partly replaced by the mitochondrial enzyme (Camarasa et al. 2007).
Replacement is possible since flavin co-factors can be transferred across the
mitochondrial membrane by the carrier Flx1p (Bafunno et al. 2004; Tzagoloff
et al. 1996). Recently, Liu et al. (2013) proposed that the reoxidation of FADH2 by
fumarate reductase is required for protein folding under anaerobiosis since FAD in
the endoplasmic reticulum acts as an electron acceptor for the protein folding
associated electrons. Fum1p (fumarase) and Frd1p of the reductive branch of TCA
have been observed in higher abundances in conditions lacking oxygen compared
to aerobic conditions (de Groot et al. 2007). In addition to the Fum1p and Frd1p
protein amounts, the operation of the reductive branch under anaerobic conditions
is further supported by an upregulated protein abundance of pyruvate carboxylase
(Pyc1p) which compensates the anabolic loss from the TCA cycle by production of
oxaloacetate. Nevertheless, results by Oura et al. (1980) in their early study
implicated that the flux of the reductive branch of TCA cycle of S. cerevisiae is
substantially lower than the flux in the oxidative branch under anaerobic condi-
tions. Expression of MAE1 encoding a malic enzyme has been shown to be
induced under anaerobic conditions (Boles et al. 1998) and higher protein abun-
dance of Mae1p has been observed in the absence of oxygen than under aerobic
conditions (de Groot et al. 2007). Malic enzyme may contribute to the provision of
NADPH in mitochondria (Boles et al. 1998).

The in vivo activity of the TCA cycle in S. cerevisiae, closely coupled to
aerobic respiration, has been found to be less robust against deletions of tran-
scription factors than other parts of the central carbon metabolism (Fendt et al.
2010). Interestingly, single transcription factor deletions can interrupt the in vivo
activity of the TCA cycle and aerobic metabolism whereas fermentative metab-
olism is more robust, even though several regulators have assigned target genes
encoding the TCA cycle enzymes in S. cerevisiae, the haem dependent Hap2/3/4/
5p complex being among them. Fendt et al. (2010) identified Gcn4p as a novel
upstream regulator of the Hap2/3/4/5p complex. Gcn4p was previously shown to
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be a major regulator of amino acid biosynthesis (Hinnebusch and Fink 1983;
Natarajan et al. 2001) with many of its target genes upregulated under anaerobiosis
(ter Linde et al. 1999; Piper et al. 2002; Lai et al. 2006). In 2008 Beckhouse et al.
noted that Gcn4p activity is essential for anaerobic adaptation. Gcn4 deletion
mutants exhibit an extended lag-phase of growth in sudden depletion of oxygen
but remain viable (Tsoi et al. 2009). Tsoi et al. (2009) further observed that during
adaptation to anaerobiosis S. cerevisiae has an increased L-serine demand. This
occurs most likely to supply the cell wall with serine-rich mannoproteins Dan1-4p
and Tir1-4p that are expressed under anaerobic conditions. To fulfil the increased
L-serine demand, C1-metabolism is activated as an alternative synthesis route of
L-serine. However, in the adapted anaerobic state, the fraction of L-serine origi-
nating from the C1-pool is not higher than under fully aerobic conditions (Jouhten
et al. 2008), supporting only a transient requirement of the activation of
C1-metabolism for L-serine synthesis at the exposure to anaerobic conditions.

3.3 Conclusions

The central carbon metabolism distributes major fluxes in cells by merging the
catabolic pathways and providing precursors for anabolic pathways. Also energy
generation occurs in the central metabolism. The yeast S. cerevisiae is superior in
its adaptability to anaerobiosis. In response to anaerobic conditions, it increases the
glycolytic rate substantially and remodels the central carbon metabolism exten-
sively, as is evident from the literature reviewed above. Systems biology
approaches have provided a vast amount of data on the anaerobic adaptation of
cellular components at different functional levels and also on the time-dependent
progress of the adaptation. Also quantitative data is abundant. Yet, the picture isn’t
complete. The remodelling of metabolism occurs as a flow of events, some of
which are directly triggered by the depletion of oxygen, whereas others are
mediated by intracellular regulatory interactions and feedback systems. A flow
chart describing the order and relative importance of the cellular events for the
adaptability of S. cerevisiae is still sketchy. An ability to target metabolic engi-
neering to specific events occurring through regulatory interactions would open
new prospects for the exploitation of the strength of the anaerobic performance of
S. cerevisiae in industrial processes, e.g. in conversion of biomass sugars into
valuable biochemicals. The remodelling of carbon metabolism of S. cerevisiae in
response to the absence of oxygen offers also an ideal model case for the inves-
tigations of ‘low ATP yield-high rate’ energy metabolism and the importance of
components and interactions involved in the adaptation to such a mode.
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Chapter 4
Systems Biology: Developments
and Applications

Rahul Kumar, Petri-Jaan Lahtvee and Jens Nielsen

General systems theory provides the conceptual framework for systems-level
analysis in science and underlines the fact that general systems principles are
common in all fields of science (Bertalanffy 1950). Systems theory vision for
biological analysis began in the 1960s but took off only after the technological
breakthroughs in high-throughput analysis of living cells in the 1990s (Mesarovic
1968; Kitano 2002). The developments in molecular biology, high-throughput
technologies, and computation precede the acceptance of systems biology as a new
scientific discipline (Box 4.1), where the use of mathematical models is closely
integrated with experimental research. Thus, systems biology relies on systems
theory concepts and is applicable to both fundamental studies of cellular biology and
applied research such as metabolic engineering (Fig. 4.1) (Nielsen and Olsson
2002).

Availability of the whole genome sequence of the yeast Saccharomyces cerevi-
siae followed by the development of DNA microarrays provided the opportunity to
observe and investigate the environmental perturbations and subsequent phenotypic
changes at the systems level (Goffeau et al. 1996; Lashkari et al. 1997). However, the
ease of high throughput data generation clearly illustrated the biological complexity
(Weng 1999; Csete and Doyle 2002; DeRisi 1997). The genome scale reconstruction
of the S. cerevisiae metabolic network was a first attempt to provide a framework for
data integration, in silico assessment of the metabolic capabilities, and analysis of
phenotypic functions (Förster et al. 2003; Famili et al. 2003; Herrgård et al. 2008).
High-throughput technology developments for metabolome, fluxome, and proteome
quantification further aided in the comprehensive understanding at the systems level
through global integration of such information into genome scale models (Kell et al.
2005; Karr et al. 2012; Picotti et al. 2013; Sauer 2006; Osterlund et al. 2013).
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Understanding of such basic mechanisms as sensing of the environment; transport of
the nutrients; metabolism of carbon sources to provide precursor metabolites and
their conversion into cellular building blocks and macromolecular components;
product formation to generate Gibbs free energy and biomass is of the critical
importance for the efficient utilization of S. cerevisiae in the biotechnological
applications as well as for the elucidation of the mechanistic details of the homol-
ogous eukaryotic processes, which may provide the targets for therapeutic inter-
ventions. This chapter focuses on the current understanding of the carbon
metabolism in S. cerevisiae from the systems-level perspective in particular glucose
and galactose, and highlights the need for an integrative analysis approach for elu-
cidating the underlying molecular mechanisms.

Box 4.1 Key Technological Developments

Timeline Milestones

1953 Structure of DNA (Watson and Crick, Cold Spring Harb Symp Quant Biol, 1953)
1970s Recombinant technologies 2D-PAGE for protein measurements (Wein, Anal

Biochem, 1969) Enzyme-linked immunosorbent assay (Engvall and Perlmann,
Immunochem, 1971)

1980s DNA sequencing (Sanger et al., Proc Natl Acad Sci, 1977)
1985–1989 Development of soft ionizaion techniques for MS analysis (MALDI and ESI; Karas,

Anal Chem, 1985; Fenn, Science, 1989)
1986 First FBA model (Fell and Small, Biochem J, 1986)
1987 PCR (Mullis and Faloona, Meth. Enzymol. 1987)
1990 BLAST- Basic Local Alignment Search Tool (Altschul et al., J. Mol. Biol. 1990)
1995 First sequenced genome (Fleischmann, Science, 1995) Metabolic flux analysis (van

Gulik and Heijnen, Biotechnol Bioeng, 1995) KEGG—Kyoto Encyclopedia of
Genes and Genomes (Kanehisa, Trends Genet, 1997)

1996 Pyrosequencing (Ronaghi et al., Anal Biochem, 1996)
1997 First complete genome DNA microarray (Lashkari et al., Proc Natl Acad Sci, 1997)
1998 RNA interference technology (Fire et al., Letters to Nature, 1998)
2001 SBML—Systems Biology Markup Language (SBML) (Hucka et al., 2001) First

Genome Scale Model (GSM) (Edwards et al., Nat Biotechnol, 2001) Synthetic
Genetic Array (SGA) analysis (Tong et al., Science, 2001)

2002 Launch of UCSC Genome Browser
2004 METLIN database (Smith et al., Ther Drug Monit, 2005)
2005 Second generation sequencing (Shendure et al., Science, 2005; Margulies et al.,

Nature, 2005)
2006 Orbitrap mass spectrometer (Makarov et al., Anal Chem, 2006)
2007 Quantitative shotgun proteomics
2008 RNA-seq (Ryan et al., Bio Techniques, 2008)
2009 Third generation sequencing (SMRT; Eid et al., Science, 2009) Ribosome profiling

(Ingolia et al., Science, 2009)
2010 Global scale analysis of posttranslational modifications (Bodenmiller et al., Science

Signaling, 2010)
2013 Complete map of yeast proteome (Picotti et al., Nature, 2013)
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4.1 Yeast Carbon Metabolism: Progress

Evolution has increased the complexity in biological systems as simple life forms
have evolved into more advanced organisms. However, the common guiding
principles of substrate consumption, the energy production, and biomass formation
in the central carbon metabolism are highly conserved. The central carbon

Fig. 4.1 Toward holistic understanding of biological systems: a An overview of the scientific
progress from the ‘‘black box’’ model to the mechanistic details at molecular level that may help to
explain phenotypes. Beginning from the determination of the DNA structure, key innovations (see
Box 4.1) facilitate the development of new scientific disciplines such as molecular biology,
metabolic engineering, systems biology, and synthetic biology. These disciplines allow to
understand the dynamic interactions of the genetic material with the physical and chemical
environment which potentially determines the unique phenotype of each organism and this
understanding can be used for biotechnological or pharmaceutical applications. b Timeline of the
developments of new scientific fields highlights the inherent interdisciplinary nature of the scientific
progress. Chart is based on time-dependent PubMed search of key words as of July 25, 2013
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metabolism provides all precursor metabolites required for biosynthesis of mac-
romolecules such as proteins, DNA, RNA, lipids, and carbohydrates as well as it
provides the Gibbs free energy and redox power required for cell growth. Despite
the high degree of conservation in these pathways, their regulation varies widely
among different organisms. Central carbon metabolism consists of sequential
enzymatic reactions arranged to derive energy from the carbon sources such as
sugars, and has possibly evolved based on the optimality principle where metab-
olism represents thermodynamically the most favorable walk between the carbon
sources and precursor metabolites (Noor et al. 2010; Fell 2010; Hatzimanikatis
et al. 2005). The energetic efficiency of the central carbon metabolism is likely to
be one of the reasons for its conservation, which allows the breakdown of car-
bohydrate monomers to be sensed, transported, and metabolized through various
pathways. Although, individual pathways or systems are often investigated with
exhausting details, obtaining a holistic view of metabolism and understanding
global regulatory principles are still in infancy. Mechanistic approaches to
understand the metabolism as a series of reactions precede the current approach of
systems-level analysis where metabolism consists of complex and functional
biological networks (Mesarovic 1968; Wolkenhauer 2001). Sugars are the favored
carbon sources for S. cerevisiae where the metabolism has preferentially evolved
for glucose consumption leading to the repressed utilization of other carbon
sources in its presence (Carlson 1999). In glucose rich environment, energy for the
production of precursor metabolites becomes available via substrate level phos-
phorylation in glycolysis where ethanol is one of the main products. In the pres-
ence of oxygen, S. cerevisiae consumes ethanol after the depletion of glucose in
the environment; and this phenomenon is known as the diauxic shift which is
essentially a shift from fermentative to respiratory metabolism. However, in glu-
cose-limited aerobic continuous cultures (generally referred to as chemostat cul-
tures), it is possible to keep the glucose concentration sufficiently low to prevent
glucose repression and hereby enable respiro-fermentative metabolism of glucose.
The first microarray experiment in S. cerevisiae studied the diauxic shift to obtain
temporal changes in the gene expression as metabolism switched from fermen-
tation to respiration (DeRisi 1997). This was followed by the investigation of the
transcriptional switch in response to the reduction or loss of the respiratory
function (Liu and Butow 1999).

S. cerevisiae has evolved to have glucose and fructose as its preferred carbon
sources, but it can consume various other sugars such as sucrose, mannose, and
galactose. Availability of the genome sequence and microarray provides the
opportunity to explore the question of adaptation in a new environment by culti-
vating it under selective pressure and analyzing the transcriptional and genome-
wide changes that may occur as subsequent generations get accustomed to the new
environment through the process of adaptive evolution. Such studies have led to
the identification that S. cerevisiae responds to environmental shifts including
exposure to less-preferred carbon sources with a remarkable variety of responses,
including transcriptional regulation of specific mRNAs (Ferea et al. 1999; Gasch
et al. 2000; Kuhn et al. 2001; Hong et al. 2011). Integrative analysis of the genome
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sequence, the metabolic network, and the transcriptional response has revealed the
underlying transcriptional regulatory networks which map the regulator-gene
interactions among the potential pathways that S. cerevisiae can use to regulate the
global gene expression much in the same fashion as maps of metabolic networks
describe the potential pathways that may be used by a cell to accomplish metabolic
processes (Lee et al. 2002; Ihmels et al. 2004). The yeast S. cerevisiae senses
glucose through multiple signal transduction pathways. Two of these pathways are
connected in a regulatory network that serves to integrate the different glucose
signals operating in these pathways. First, the Snf1 kinase dependent Mig1 path-
way enforced glucose repression and, second, the Rgt1 pathway that involves
induction of the hexose transporter genes, HXT, by cell surface sensors affecting
the Rgt1 transcription factor (Kaniak et al. 2004). Flux analysis indicates that the
respiratory metabolism is dependent on the tricarboxylic acid cycle (TCA) activity
which in S. cerevisiae is a function of the environmentally determined specific
growth rate and glucose uptake rates (Blank and Sauer 2004). Flux analysis
combined with transcriptome analysis of aerobically grown glucose-limited steady
state chemostat cultures indicates that the transcripts involved in the glyoxylate
cycle and gluconeogenesis showed a good correlation with in vivo fluxes, while no
such correlation exists for other important pathways such as pentose-phosphate
pathway, TCA cycle, and, specially, glycolysis. In this cultivation condition, fluxes
are controlled to a large extent via posttranscriptional mechanisms which highlight
the limitations of solely using transcriptome analysis in order to identify global
regulation of the central carbon metabolism (Daran-Lapujade et al. 2004; Feder
and Walser 2005).

Despite this limitation much has, however, been learned from transcriptome
analysis. In particular, the homeostatic adjustment and metabolic remodeling that
occurs in glucose-limited chemostat cultures despite the theoretical possibility of a
switch to fully aerobic metabolism of glucose; homeostatic mechanisms enforce
metabolic adjustment as if fermentation of the glucose is the preferred option until
the glucose is entirely consumed (Brauer et al. 2005). Application of genome scale
models and metabolism driven treatment of the transcriptome data have assisted
systems-level analysis and revealed a close interaction and crosstalk between the
two pathways responsible for glucose repression (Westergaard et al. 2007; Förster
et al. 2003; Patil and Nielsen 2005). These studies also highlight the importance of
not only transcriptome analysis, but the need for quantitative information about the
proteome and metabolome to understand the carbon metabolism in S. cerevisiae
(Kolkman et al. 2006; Kresnowati et al. 2006). Large-scale multi-layered data
necessitate reconstruction of genome scale models and the integrated analysis of
regulatory and metabolic networks to reveal novel regulatory mechanism and
further improvements to the model through experimental validation (Herrgård et al.
2006; Hu et al. 2007). Adopting this integrated approach reconstruction of the yeast
Snf1 kinase regulatory network revealed its role as a global energy regulator in
yeast (Usaite et al. 2009). In another approach conditional mutation in combination
with transcriptome analysis revealed that glucose regulates transcription in yeast
through a network of signaling pathways and growth is decided by both sensing and
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import of glucose (Zaman et al. 2009; Youk and van Oudenaarden 2009).
Systematic quantification of the metabolic fluxes in 119 transcription factor dele-
tion mutants in S. cerevisiae revealed that while most knockout deletions did not
affect fluxes, a total of 23 transcription factors mediate 42 condition-dependent
interactions that control almost exclusively the cellular decision between respira-
tion and fermentation. This approach clearly demonstrates the importance of
identifying and quantifying the role of regulatory effectors in altering cellular
functions, while also emphasizing that the flux distribution in the central carbon
metabolism is tightly controlled and therefore difficult to perturb. This is explained
by the fact that perturbations in individual enzyme capacity leading to alteration of
one network constituent can be efficiently buffered by converse alteration by other
network constituents, a system that has evolved to ensure metabolic homeostasis at
varying environmental conditions and in response to mutations appearing in central
carbon metabolism enzymes (Fendt et al. 2010a, b). Recent advances in proteomics
have revealed that the yeast central carbon metabolism is to a large extent regulated
by enzyme phosphorylation (Oliveira et al. 2012), but the full quantitative effect of
this type of regulation has still not been studied.

In conclusion, systems-level analysis facilitates the progress on understanding
such fundamental aspects as diauxic shift by revealing that multiple events are
temporally organized to affect transition from fermentation to respiration and
changes in metabolism in response to changes in glucose concentration (Zampar
et al. 2013; Geistlinger et al. 2013). In the following two sections, we will focus on
specific aspects of glucose and galactose metabolism where combined top-down
and bottom-up experimental systems biology approaches provide insights for
better understanding of the regulatory mechanisms (Fig. 4.2).

4.2 Molecular Mechanisms in Glucose Metabolism

Ethanol and carbon dioxide are the two main products of the yeast metabolism
when glucose is in excess. Production of these compounds is also the main reason
why yeast is extensively used in the alcohol and food industry. However, there is
an increasing interest to use yeast as a cell factory for the production of various
biochemicals, recombinant proteins, biofuels, etc. In those cases ethanol and
carbon dioxide represent an important carbon loss which drives carbon away from
the desired product. Hence, understanding the molecular mechanism of the for-
mation of these products is essential for the successful redistribution of the fluxes
toward the desired pathways and products.

Pyruvate is the branch point intermediate between respiratory dissimilation of
sugars and alcoholic fermentation (Pronk et al. 1996). Isolation and characterization
of the pyruvate decarboxylase (PDC) show the critical role this enzyme plays in the
decarboxylation of pyruvate to acetaldehyde and in supplying the cytosolic acetyl-
CoA pool (Schmitt and Zimmermann 1982; Hohmann and Cederberg 1990;
Pronk et al. 1996). A complete knockout strain without PDC genes reveals the
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indispensable role of this enzyme for growth of S. cerevisiae on glucose and indi-
cates that the mitochondrial pyruvate dehydrogenase (PDH) complex cannot
function as the sole source of acetyl-CoA during the growth on glucose (Flikweert
et al. 1996). Two different approaches result in the partial growth recovery of PDC
negative S. cerevisiae strains on glucose as the only carbon source. First, the
overexpression of GLY1 gene which encodes threonine aldolase and catalyzes the
cleavage of threonine to glycine and acetaldehyde that can be converted to acetyl-
CoA. Second, the PDC negative strain subjected to directed evolution in the batch
and, independently, in glucose-limited continuous cultures where acetate concen-
tration in in-flow feed was gradually reduced (van Maris et al. 2003, 2004).
Molecular mechanisms of underlying the glucose-tolerant phenotype remain elusive
in these studies; transcriptome analysis shows an increase in glucose-repressible
genes relative to the isogenic wild type in nitrogen-limited chemostat cultures with
excess glucose (van Maris et al. 2004). Understanding glucose signaling mecha-
nisms appears to be critical for elucidating molecular mechanisms that result in
glucose sensitivity of PDC negative strain of S. cerevisiae. Genetic analysis iden-
tifies that glucose signaling is mediated, partially, through the interactions of Std1,
Mth1, Snf3, and Rgt2 (Schmidt et al. 1999). Glucose reacts via the F-box protein
Grr1 to promote the degradation of Mth1 which leads to phosphorylation and dis-
association of Rgt1 from the HXT promoters, thereby activating HXT gene
expression (Flick et al. 2003; Moriya and Johnston 2004). Genome scale analysis of
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Fig. 4.2 a Typical time profile of the diauxic shift. In the 1st phase, there is consumption of
glucose with co-current formation of ethanol and biomass. In the 2nd phase, there is transition, and
in the 3rd phase, there is consumption of ethanol and further growth of the biomass. Activity of key
protein kinases is indicated in the different phases. b Overview of carbon flows in the 1st and 3rd
phases of the diauxic shift. In the 1st phase, there is ethanol production with very little TCA cycle
activity. In the 3rd phase, there is ethanol uptake and respiration with an active TCA cycle
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adaptively evolved PDC negative strain identifies a 225 bp in-frame internal
deletion in MTH1. This internal deletion results in the loss of a phosphorylation site
and, hypothetically, increases protein stability (Oud et al. 2012a). Reverse engi-
neering of this phenotype into the nonevolved PDC negative strain allows, albeit
slow, growth on glucose as sole carbon source. Stable Mth1 in PDC negative strain
reduces glucose uptake that likely prevents intracellular accumulation of pyruvate
and/or redox problems, while releasing the glucose repression (Oud et al. 2012).
Although we are still far from recovering the wild-type growth profile for the PDC
negative phenotype in S. cerevisiae, the combination of systems biology tools such
as directed evolution, genome scale analysis, and reverse engineering suggest a
plausible mechanism and solution to the glucose sensitivity of this strain that may
allow it to grow on glucose (Fig. 4.3).

4.3 Molecular Mechanisms in Galactose Metabolism

One of the rationales to understand the underlying molecular mechanisms is the
potential opportunity to perturb the metabolism for various applications. These
perturbations should be able to redirect the metabolic flux toward the desired
pathway, however, due to rigid control of the fluxes through inherently complex
molecular mechanisms, it is a difficult goal (Ostergaard et al. 2000). Overex-
pression of seven glycolytic enzymes in S. cerevisiae show that transcriptional
perturbations do not necessarily result in the flux change in the central carbon
metabolism, partially due to such factors as saturating levels of enzyme concen-
trations and post-translational modifications (Hauf et al. 2000). A similar con-
clusion was attained for the Leloir pathway that is responsible for metabolism of
galactose. Overexpression of either the individual enzymes or combination of
these did not result in improved galactose uptake (de Jongh et al. 2008). On the
contrary the galactose utilization was reduced, and this was shown to be due to
accumulation of pathway intermediates (de Jongh et al. 2008). However, by per-
turbing the GAL gene regulatory network through the elimination of three known
regulators of the GAL system, GAL6, GAL80, and MIG1, it was possible to obtain
a 41 % increase in flux through the galactose utilization pathway compared with
the wild type strain. Improved galactose consumption of the Gal mutants increased
the respiro-fermentative metabolism where ethanol production rate linearly cor-
relates with glycolytic flux (Ostergaard et al. 2000). Transcriptome analysis further
shows the role of phosphoglucomutase (PGM2), and it is shown that overex-
pression of PGM2 results in an increased galactose uptake rate by 70 % compared
to the one of the reference strain. This strongly suggests that PGM2 plays a key
role in controlling the flux through the Leloir pathways, probably due to increased
conversion of glucuose-1-phosphate to glucose-6-phosphate (Bro et al. 2005).
However, the molecular mechanism of this very significant enhancement in the
glycolytic flux through the galactose metabolism indicates that increased
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phosphoglucomutase (PGM1) activity alleviates the galactose growth defect
associated with elevated levels of Ras signaling in S. cerevisiae (Howard et al.
2006). Investigation of the Ras-pathway indicates its dual role on galactose
metabolism through indirect interaction with a nucleotide exchange factor Cdc25p
and intracellular energy status. This interaction is an important factor for the
metabolic adaptation upon change in its environment such as a switch between

GAL genes 

Galactose 

Galactose 

Galactose-1-P 

Glucose-1-P Glucose-6-P 

Glucose 

Glucose 

Gal2 HXTs Gpr1 

cAMP 

PKA 

Gpa2 

CYR1* 

Nrg1 

Gis1 

Msn2/4 

Rph1 

Ssn6 

tTup1* 
Mig1 

Cyc8 
Tup1 

Nrg1 

PGM2 

RAS2* 

Cdc25 

Reg1/ 
Glc7 

Snf1 Snf1 

Snf1 

Mig1 

Reserve 
carbohydrate 
metabolism 

MTH1 MIG1 SUC ADH 

Adr1 

Yck1, 2 

Std1 

Std1 

Mth1 

Mth1 

Rgt1 

STD HXT HXK 

Rgt1 Rgt1 

Acetaldehyde 

Acetyl-CoA 

Fatty Acids 

Threonine 

PPP 

Pyruvate 

Pyruvate 

Acetyl-CoA 

TCA 

PDC 
GLY1 

Mit Nucleus 

Cytosol 

Mig1 

Mig1 

? 
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through the canonical regulation of sugar consumption pathways via the Ras/PKA signaling
mechanism. Mutations in RAS2 or CYR1 result in decreased Ras/PKA pathway activity and
corresponding increase in galactose uptake. The overexpression of PGM2 or expression of
truncated Tup1 (tTup1*) also increases galactose uptake as truncated Tup1 cannot inhibit the
expression of galactose pathway genes. Dashed lines with arrows represent activation; dashed
lines with circles inhibition; bold lines metabolic conversion; dotted bold line several combined
reactions; thin lines relocation; bold circles active form of a gene; black filled circles
phosphorylation; pathways are pictured in bold boxes; Mit—mitochondrion
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glucose-galactose or galactose-glucose (Mirisola et al. 2007; van den Brink et al.
2009). Integrated systems-level analysis further clarifies role of the Ras signaling
pathway in galactose metabolism with the identification of point mutations in
RAS2 in adaptively evolved strains with increased galactose uptake rate and val-
idation of these mutations in the wild type strain (Hong et al. 2011). A genome-
wide perturbation approach led to the identification of TUP1, a small nuclear
RNA, as a regulatory target for the improved galactose fermentation and inverse
metabolic engineering of truncated TUP1 results in 250 % higher galactose con-
sumption rate and ethanol productivity compared to the control strain (Lee et al.
2011). In conclusion, molecular mechanisms underlying galactose metabolism
show the significance and importance of the systems biology approach where basic
understanding of regulation of the central carbon metabolism can lead to bio-
technological breakthroughs.

4.4 Perspective

Systems biology progress is the result of conceptual leaps based on several
technological developments in the past decades. In the last decade, we have moved
from genome-centered viewpoint to a systems-level thinking where metabolic
control of subjected perturbations spreads across multiple regulatory layers. Next
generation of technological breakthrough in genomics, transcriptomics, proteo-
mics, metabolomics, single cell analysis, and computing should facilitate the
development of new paradigms that can help to advance our understanding of the
molecular mechanisms for designing microbial cell factories as well as thera-
peutics interventions for personalized medicine.

These kinds of developments necessitate the multidisciplinary studies where
dynamic data can be analyzed and modeled using static or dynamic modeling
tools. Dynamic data allow identification and monitoring of metabolic switch points
in detail and give a comprehensive overview of metabolic response to perturba-
tions. To get the systems-level understanding, used metabolic models should be
able to integrate various data including extracellular fluxes, transcriptional regu-
lation, energetic constraints, and posttranslational modifications. Here, absolute
quantitative data represent an invaluable source that can be used as an input for
metabolic models. Static, constraint-based models can be used to describe dynamic
data and analyze the interactions. However, these models lack the predictive
possibilities present in dynamic models. However, dynamic models are used for
describing smaller subsystems as dynamic information about, e.g., enzyme
activities for the whole genome scale network is currently missing. Recently, steps
toward this direction have been made for the minimal microorganisms and it could
be expected that similar models will be constructed for higher organisms where
compartmentalization and lack of information about transportation and regulation
pose additional obstacles.
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High-throughput data generation provides holistic understanding of the bio-
logical complexity which can be used for such nontrivial tasks as strain
improvement but challenges remain in mapping networks and perturbing those in
space and time (Stephanopoulos et al. 2004; Lehner et al. 2005). Some of the
approaches are already resulting in the interaction mapping of such regulators as
Snf1 and TORC1, which control glucose and nitrogen assimilation in S. cerevisiae
and developments in the proteomics may provide posttranslational and epigenetic
regulatory information than is currently available (Zhang et al. 2011; Oliveira et al.
2012). And for one of the simplest microbes, Mycoplasma genitalium, computa-
tional model is able to predict phenotype from genotype which is a significant
progress from 1960s when first systems biology model showed cardiac action and
pacemaker potentials based on the Hodgkin-Huxley equations. Such methods
combined with information on membrane transport and cellular compartmentali-
zation are useful for revealing novel molecular mechanism based on network
properties in eukaryotes (Nobel 1960; Karr et al. 2012; Esvelt and Wang 2013;
Agren et al. 2013). Molecular mechanisms can also be tested in vitro and synthetic
organelles and cells may provide the future insights into the question of how
biology works (Jewett et al. 2013).
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Chapter 5
Comparative Genomics and Evolutionary
Genetics of Yeast Carbon Metabolism

Zhenguo Lin and Wen-Hsiung Li

Abstract Yeasts display highly diversified physiological characteristics. The most
distinct physiological character in many yeast species is their special sugar
metabolism. In particular, the baker’s yeast Sacharomyces cerevisiae and its rela-
tives predominantly ferment sugars into ethanol even in the presence of oxygen,
which is known as Crabtree effect or aerobic fermentation. It has been postulated that
this unusual carbohydrate metabolism provides these yeasts selective advantages in
sugar-rich environments. However, it has long been a mystery as to genetically how
these yeasts evolved a predominantly fermentative lifestyle. The rapid accumulation
of genomic, transcriptomic, and epigenetic data in many yeast species in recent years
has greatly increased our understanding of the genetic basis and molecular mech-
anism for the diversified sugar metabolisms among yeasts. In this chapter, we
provide a review of recent comparative genomics and evolutionary studies related to
the metabolisms of glucose and galactose, whose metabolic pathways have been
extensively studied in yeasts. A series of studies suggested that the evolution of
aerobic fermentation involved many different factors, including increases in copy
numbers of genes involved in glucose transport, glycolysis and ethanol production;
sequence divergence; and transcriptional reprogramming of genes involved in
mitochondrial functions through changes of cis-regulatory elements and promoter
structures. It has also been found that the different abilities among yeasts to use
galactose is strongly correlated with the presence of the galactose pathway genes in
their genomes. These studies revealed that the adaptation of yeasts to specific niches
has greatly shaped the genomic content and the regulatory program.
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5.1 Introduction

Although yeasts are single cell organisms, they have evolved highly diversified
physiological characters, especially in carbohydrate metabolism (Barnett et al.
2000). The monosaccharide glucose is the basic carbohydrate unit of cellular
metabolism and is the most important carbohydrate source of cellular energy. In
the presence of oxygen, most eukaryotic species fully degrade glucose into CO2

and H2O through the respiration pathway for the maximum energy yield. How-
ever, many yeast species, including Saccharomyces cerevisiae and its close rela-
tives, have evolved a remarkable ability to predominantly ferment sugars even
under aerobic conditions to produce ethanol. This characteristic is called aerobic
fermentation or Crabtree effect (De Deken 1966). These fermentative yeasts are
able to tolerate a high concentration of extracellular ethanol and to utilize ethanol
as the carbon source after depletion of sugars. This fermentative lifestyle was
termed the ‘‘make–accumulate–consume’’ strategy, which in natural habitats
enables Saccharomyces yeasts to outcompete other microorganisms (Piskur et al.
2006). How S. cerevisiae evolved to be a good fermenter has become a subject of
intense research in the last decade.

Thanks to the availability of genomic sequences in many yeast species and the
abundant high-throughput transcriptomic and epigenetic data, recent studies have
greatly advanced our knowledge about the yeast carbon metabolism. As one of the
most intensely studied eukaryotic model organisms, S. cerevisiae is the first
eukaryotic species to have a completely sequenced genome (Goffeau et al. 1996).
The second completely sequenced yeast genome came 6 years later from the
fission yeast Schizosaccharomyces pombe, which diverged from S. cerevisiae
probably more than 300 million years ago (Wood et al. 2002). With advances in
sequencing technology, the number of completely sequenced genomes has been
increasing rapidly. To date, the complete genomes of at least 50 different yeast
species have been registered at Genbank. In addition, the genomes of 33 different
wild and domestic strains of S. cerevisiae have also been sequenced (Engel and
Cherry 2013). Compared to other eukaryotes, yeasts have streamlined genomes
ranging from 9 to 20 megabases in haploid, containing 4,700–6,500 protein-coding
genes (Dujon 2010). In addition to the genomic data, the first eukaryotic genome-
wide gene expression data was completed in S. cerevisiae by microarray tech-
nology in 1997 (DeRisi et al. 1997). Since then, large amounts of transcriptomic
data have been generated in many yeast species by micro-array, tiling-array, and
next-generation sequencing technologies (Ferea et al. 1999; Ihmels et al. 2002;
Yuan et al. 2005; Miura et al. 2006; Field et al. 2008; Tsankov et al. 2010).
Furthermore, genome-wide epigenetic data and protein-protein interaction data
have also been accumulated in several yeast species (Ferea et al. 1999; Ihmels
et al. 2002; Yuan et al. 2005; Miura et al. 2006; Field et al. 2008, Tsankov et al.
2010). These various types of data and the availability of powerful bioinformatics
tools for data analyses paved the way for comparative genomic and transcriptomic
studies and for elucidating the genetic basis underlying the evolution of phenotypic
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traits. Many comparative genomics and evolutionary genetics studies relevant to
yeast carbohydrate metabolism focused on the glucose and galactose pathways.
This chapter will provide a brief overview of recent advances in our understanding
of the genetic basis of yeast glucose and galactose metabolisms.

5.2 Copy Number Variation and Sequence Divergence
of Genes Involved in Glucose Metabolism

5.2.1 Copy Number Variation of Hexose Transporter Genes

Glucose does not freely permeate cellular membranes, so the first step in glucose
metabolism is to transport glucose across cellular membranes, which requires the
aid of transporters (Fig. 5.1). In S. cerevisiae, glucose uptake is carried out by a
large group of hexose transporters (Hxts) (Boles and Hollenberg 1997; Ozcan and
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Johnston 1999). The hexose transporters belong to a superfamily of monosac-
charide facilitators that are highly conserved in eukaryotes (Reifenberger et al.
1995). Twenty HXT genes have been identified in S. cerevisiae: HXT1–HXT17
encode 17 glucose transporters, GAL2 encodes a galactose transporter, and SNF3
and RGT2 encode two glucose sensors (Boles and Hollenberg 1997).

Phylogenetic analyses of the HXT genes from 23 completely sequenced fungal
genomes revealed that the 20 S. cerevisiae HXT genes were separated into two
groups prior to the divergence of major fungal groups (Lin and Li 2011b).
According to functional characterizations of these HXT genes in S. cerevisiae, the
two groups play distinct roles in glucose metabolism. One group comprises
S. cerevisiae SNF3 and RGT2, which encode sensors that recognize the concen-
tration of extracellular glucose for the induction of HXT expression (Boles and
Hollenberg 1997; Ozcan and Johnston 1999); this group is called the Sensor sub-
family (Lin and Li 2011b). All of the yeast species examined, except for the fission
yeast Sch. pombe, have 1–4 Sensor genes and most species contain two copies
(Table 5.1), suggesting that the number of Sensor genes remain largely constant
during the evolution of yeast species. S. cerevisiae SNF3 and RGT2 appear to be
derived from the whole genome duplication (WGD) event that occurred about
100 million years ago (mya) (Wolfe and Shields 1997; Kellis et al. 2004; Lin and Li
2011b). The Sensor gene is absent from the genome of Sch. pombe, probably
because Sch. pombe primarily detects glucose via a cAMP-signaling pathway
(Hoffman 2005).

The remaining 18 S. cerevisiae HXT genes (HXT1–17 and GAL2) form the
other HXT group. Because the products of these genes are directly involved in
transporting glucose or galactose across cellular membrane, this group was named
the Transporter subfamily (Lin and Li 2011b). In contrast to the Sensor group, the
number of Transporter genes varies substantially among yeast species (Table 5.1).
Evolutionary analyses showed that the Transporter genes originated from a single
gene in the common ancestor of hemiascomycete (Saccharomycotina) yeasts. The
copy number of Transporter genes has continually increased during the evolution
of the S. cerevisiae lineage, starting from a single copy in Yarrowia lipolytica,
which is most distantly related to S. cerevisiae in hemiascomycetes, to 2–8 copies
in Kluyveromyces lactis and Lachancea kluyveri (Saccharomyces kluyveri), and to
18–19 copies in the Saccharomyces sensu stricto species (including S. cerevisiae,
S. paradoxus and S. bayanus) (Table 5.1). All post-WGD species examined con-
tained at least 10 Transporter genes except for Vanderwaltozyma polyspora
(Kluyveromyces polysporus), a species most distantly related to S. cerevisiae
among the post-WGD yeasts (Kurtzman and Robnett 2003), which contains only 5
Transporter genes.

Some studies proposed that the WGD event was a major source for the expan-
sion of Transporter genes. As the first study that proposed WGD in the ancestor of
S. cerevisiae, Wolfe and Shields noticed that sugar transporters are among the few
gene families that are enriched with WGD gene pairs (Wolfe and Shields 1997).
After examining the hexose transporter genes in 7 hemiascomycete yeasts, Conant
and Wolfe (2007) found that all of the post-WGD species have at least twice as
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many hexose transporter genes as the three pre-WGD species, indicating the impact
of WGD. However, based on phylogenetic analysis and gene syntenic structures
from 23 species, Lin and Li showed that only two pairs of Transporters genes were
produced by WGD and most duplicate pairs had become lost immediately after the
WGD (Lin and Li 2011b). Most of the Transporters genes present in the extant
S. cerevisiae genome were generated by tandem duplication or can be attributed to
the dynamic pattern of telomeric regions where 8 Transporter genes are located
(Lin and Li 2011b). The Transporter genes were also expanded from a single copy
to eight copies (GTH1-GTH8) in the Sch. pombe lineage. Similar to S. cerevisiae,
Sch. pombe is capable of aerobic fermentation in the presence of excess sugars
(Alexander and Jeffries 1990). However, Sch. pombe did not experience a WGD,
suggesting that other mechanisms rather than WGD led to its increase in the number
of Transporter genes. Four of the eight Transporter gene in Sch. pombe are tan-
demly arrayed on chromosome III, indicating that they were produced by a series of
tandem duplication events (Lin and Li 2011b).

Table 5.1 Copy number variations of the Sensor and Transporter subfamily genes in the HXT
gene family

Phylum/Class Species Sensors Transporters

Hemiascomycetes Saccharomyces cerevisiae* 2 18
Saccharomyces paradoxus* 2 19
Saccharomyces mikatae* 2 19
Saccharomyces bayanus* 2 18
Naumovozyma castellii* 2 16
Candida glabrata* 2 10
Vanderwaltozyma polyspora� 1 5
Zygosaccharomyces rouxii� 1 4
Lachancea thermotolerans� 4 5
Lachancea kluyveri� 2 7
Lachancea waltii� 2 8
Kluyveromyces lactis 1 2
Eremothecium gossypii 1 4
Candida albicans 2 4
Debaryomyces hansenii 2 3
Scheffersomyces stipitis 2 4
Yarrowia lipolytica 2 1

Dothideomycetes Phaeosphaeria nodorum 1 3
Sordariomycetes Gibberella zeae 1 3

Magnaporthe grisea 2 1
Schizosaccharomycetes Schizosaccharomyces pombe* 0 8
Eurotiomycetes Aspergillus fumigatus 3 3
Basidiomycota Ustilago maydis 2 1

Species name underlined are post-WGD yeasts. The data of gene copy number were retrieved
from (Lin and Li 2011b)
* Crabtree-positive species
� Medium Crabtree effect species (van der Sluis et al. 2000; Moller et al. 2002; Christen and
Sauer 2011; Hagman et al. 2013)
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Past studies have suggested that glucose uptake is the major rate-limiting step in
glycolysis and largely controls glucose metabolism activities (Gancedo and
Serrano 1989; Diderich et al. 1999; Ye et al. 1999; Pritchard and Kell 2002; Elbing
et al. 2004; Otterstedt et al. 2004; Conant and Wolfe 2007). Otterstedt et al. found
that an S. cerevisiae strain with very limited capacity to transport hexoses switched
to respiration in the presence of oxygen (Otterstedt et al. 2004). Replacing the
S. cerevisiae HXT1–17 genes by a chimera HXT gene decreased its ethanol pro-
duction or even caused a switch to fully respiratory metabolism due to reduced
glucose consumption rates (Elbing et al. 2004; Otterstedt et al. 2004). Moreover,
when yeast cells were grown under glucose limitation, spontaneous duplication of
hexose transporters was observed (Brown et al. 1998). The significant expansion of
Transporter genes had independently occurred in both Saccharomyces and
Schizosaccharomyces lineages, which in parallel evolved aerobic fermentation
(Lin and Li 2011b). Furthermore, there is a significant positive correlation between
the number of Transporter genes and efficiency to produce ethanol from glucose
(Lin and Li 2011b). In cells that are operating near their maximal glucose uptake
rates, an increase in Transporter genes confers a selective advantage in glucose-
rich environments to support higher growth rates (Brown et al. 1998). These lines
of evidence support the view that the expansion of Transporter genes had facili-
tated the evolution of aerobic fermentation in the two different lineages.

5.2.2 Copy Number Variation of Genes Involved
in Glycolysis

A glucose molecule is converted into two molecules of pyruvate through a series
of reactions in glycolysis, which is believed to be among the oldest biochemical
pathways and is highly conserved in prokaryotes and eukaryotes. Several studies
have shown that the occurrence of WGD in the hemiascomycete lineage has had
profound impacts on the enzyme dosages involved in glycolysis. Soon after the
WGD, there was a period of rapid losses of duplicate genes (Scannell et al. 2006).
Most duplicate genes produced by the WGD have been lost in the post-WGD
species, and less than 10 % of WGD gene pairs have remained in the genome of S.
cerevisiae (Wolfe and Shields 1997; Kellis et al. 2004; Thomson et al. 2005;
Conant and Wolfe 2007). Conant and Wolfe (2007) found that there are six WGD
duplicate pairs of genes that have been maintained in the five out of the ten
reactions of glycolysis in S. cerevisiae (Fig. 5.1). The retained WGD pairs are not
the same among post-WGD species. In general, each post-WGD species has
preserved 5–6 WGD pairs, but only one duplicate pair (GLK1 and EMI2) is
retained in all pot-WGD species examined (Table 5.2). As only 551 WGD
duplicate pairs were preserved in S. cerevisiae, it is unlikely that the glycolysis
genes were preserved in duplicates at the same frequency as the remainder of the
genome (Conant and Wolfe 2007).
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The significant higher survival rate of WGD pairs in glycolysis than other
pathways might have increased the relative levels of glycolytic enzymes. Papp
et al. proposed that the retention of gene duplicates is better explained by selection
for high enzymatic flux (Papp et al. 2004). A simulation of the effect of increased
concentration of enzymes on glycolytic flux revealed that, when the concentration
of glycolytic enzyme increases from 65 to 100 %, the end product of glycolysis
pyruvate is increased by 17 % (Conant and Wolfe 2007). This observation is
consistent with several studies proposing that the WGD event enhanced S. cere-
visiae’s ability to metabolize glucose (Wolfe and Shields 1997; Wolfe 2004; Liti
and Louis 2005). Pyruvate is the branching point between respiration and fer-
mentation (Fig. 5.1). Pyruvate decarboxylase (Pdc) and pyruvate dehydrogenase
(Pdh) compete for pyruvate, and the destiny of pyruvate depends on the conse-
quence of substrate competition. Due to the different inherent kinetics between the
two enzyme complexes, increasing the pyruvate concentration increases relative
flux through Pdc and thus the fermentation pathway (Conant and Wolfe 2007).
Therefore, more pyruvate molecules are directed to the fermentation pathway in
post-WGD species as a result of increased glycolytic flux. Another reason for
increased pyruvate rerouting to the fermentation pathway is probably the limited
availability of mitochondria. Unlike fermentation which occurs in the cytosol,
respiration takes place in mitochondria. The increased glycolytic flux might
exceed the capacity of mitochondria due to the limitation in the number and size of
mitochondria (Pronk et al. 1996). Indeed, it appears that during aerobic respiration,
yeast mitochondria are larger and closer to the cell membrane than during
anaerobic growth, possibly because this location is more efficient for oxygen
uptake (Hoffmann and Avers 1973; Jensen et al. 2000). The WGD did not increase
the number of mitochondria or make mitochondria larger, so the increased gly-
colytic flux might have exceeded the respiratory capacity of mitochondria. Fur-
thermore, unlike the high retention rate of WGD pairs in glycolysis pathway genes,
the WGD pairs were preserved in only two out of nine reactions in the TCA cycle
in S. cerevisiae (Conant and Wolfe 2007).

A survey of over 40 yeast species both with and without the WGD indicates that
the presence of the Crabtree effect is strongly associated with yeasts with the WGD
(Merico et al. 2007). Another study also found a general, though weak, trend for
higher rates of ethanol production in post-WGD yeasts than in pre-WGD yeasts
(Blank et al. 2005). These studies suggested that the WGD event played a sig-
nificant role in the adaptation of S. cerevisiae toward aerobic fermentation (Wolfe
and Shields 1997; Kellis et al. 2004; Thomson et al. 2005; Conant and Wolfe
2007). However, not all aerobic fermentative species have experienced WGD. For
example, Dekkera bruxellensis, which is a pre-WGD species separated from the
Saccharomyces lineage more than 200 mya, also efficiently makes, accumulates
and consumes ethanol (Rozpedowska et al. 2011). In addition, the fission yeast
Sch. pombe, which also predominantly assimilates glucose through the fermen-
tation pathway, diverged from the hemiascomycete lineage about 300 mya and has
not experienced WGD (Wood et al. 2002). Based on the analysis of the Crabtree
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effect for over 40 species in 12 genera of hemiascomycete yeasts, Hagman et al.
found that many pre-WGD species demonstrate an intermediate level of Crabtree
effect (Hagman et al. 2013). They argued that the evolution of Crabtree effect is
gradual process or at least a two-step ‘‘invention’’. The progressive evolution of
aerobic fermentation coincides with gradual duplication of hexose transporter
genes (Lin and Li 2011b). The WGD event and regulatory rewiring of respiration-
related genes, which occurred at different time points, have further strengthened
the Crabtree effect in the lineages of S. cerevisiae (Hagman et al. 2013). Therefore,
WGD might have facilitated the evolution of aerobic fermentation, but apparently
it is not a prerequisite factor.

5.2.3 Copy Number Variation of Genes Involved
in Fermentation

In aerobic fermentative species, most pyruvate molecules remain in cytosol and are
converted into acetaldehyde by pyruvate decarboxylase (Pdc). The S. cerevisiae
genome contains three copies of the Pdc encoding gene (PDC1, PDC5 and PDC6),
though PDC1 encodes the major enzyme in this reaction and is highly expressed in
rich medium. The evolutionary history of PDC genes in hemiascomycetes suggests
that the three PDC genes were generated by two consecutive duplication events in
the common ancestor of the sensu stricto species (Fig. 5.2a). After duplications,
loss of PDC genes have been detected in some sensu stricto species. For example,
only PDC1 is present in the genome of S. mikatae (Fig. 5.2a), and loss of PDC6
genes was observed in S. kudriavzevii (Scannell et al. 2011). However, comparing
with other sensu stricto species, no significant difference in ability of ethanol
production was detected in S. mikatae (Hagman et al. 2013). In general, 2–3 copies
of PDC genes are present in most aerobic fermentative species. The number of PDC
genes in the respiratory species varies from 1 to 4 copies. For example, only a single
PDC gene is found in K. lactis (Bianchi et al. 1996), while three copies are found in
Debaryomyces hansenii (Fig. 5.2a). Therefore, there is no significant increase in
the number of PDC genes in fermentative species, in agreement with a previous
finding that the number of PDC genes is not correlated with the intensity of alco-
holic fermentation (Moller et al. 2004).

The second and the last step of reaction in the fermentation pathway is con-
verting acetaldehyde into ethanol and recycling the NADH generated during
glycolysis (Fig. 5.1). In most species, this reaction is catalyzed by alcohol dehy-
drogenase (Adh). In S. cerevisiae, there are five genes that encode Adh, ADH1–
ADH5. Adh1p is the major enzyme responsible for converting acetaldehyde into
ethanol, while Adh2p catalyzes the reverse reaction to consume ethanol (Leskovac
et al. 2002). ADH1 and ADH2 were derived from a duplication event prior to the
divergence of sensu stricto yeast species (Thomson et al. 2005). Thomson et al.
(2005) have reconstructed the last common ancestor of Adh1p and Adh2p, which is
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called AdhA. The AdhA protein has a high Michaelis constant KM for ethanol,
which is similar to Adh1p, suggesting that AdhA was optimized to make ethanol
(Thomson et al. 2005). Therefore, Adh1p maintains the ancestral function for
making ethanol, while Adh2p has evolved a much lower KM for ethanol, which is
optimized for consuming ethanol. Because many microorganisms cannot grow in a
high concentration of ethanol, accumulating ethanol may help yeasts to outcom-
pete their competitors for fruit resources (Piskur et al. 2006). Thus, the birth of
ADH2 might have enabled yeasts to tolerate a higher concentration of ethanol
produced from fermentation by efficiently consuming ethanol after depletion of
sugars (Thomson et al. 2005). By including more hemiascomycete species, we
show here (Fig. 5.2b) that the gene duplication event that produced ADH1 and
ADH2 occurred after the split between the common ancestor of sensu stricto yeast
species and other post-WGD yeasts including Candida glabrata and N. castelli.
Because C. glabrata and N. castelli are both Crabtree-positive species (Merico
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Fig. 5.2 The evolutionary history and copy number variations of the PDC and ADH gene
families in hemiascomycete yeasts. a Phylogenetic tree of the PDC gene family. b Phylogenetic
tree of the ADH gene family. The three PDC genes (PDC1, PDC5 and PDC6) and the three ADH
genes (ADH1, ADH2 and ADH5) in S. cerevisiae were produced by two consecutive duplications
prior to divergence of the Senso stricto group. The S. cerevisiae ADH4 is a distant relative to the
other four ADH genes and was not included in the tree. Both phylogenetic trees were constructed
using the Neighbor-Joining (NJ) method with 1,000 bootstrap replicates. The evolutionary
distances were computed using the JTT matrix-based method. Species names are abbreviated as
follows: Scer: Saccharomyces cerevisiae; Spar: S. paradoxous; Smik: S. mikatae; Sbay: S.
bayanus; CAGL: Candida glabrata; Scas: S. castellii (Naumovozyma castellii); KLLA:
Kluyveromyces lactis; SAKL: S. kluyveri (Lachancea kluyveri); Kwal: K. waltii (Lachancea
waltii); Cal: C. albicans; DEHA: Debaryomyces hansenii; YALI: Yarrowia lipolytica
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et al. 2007), it means that ADH2 is not necessary for the Crabtree effect, suggesting
that the birth of ADH2 might have increased ethanol tolerance, but it was probably
not essential for aerobic fermentation.

5.2.4 Elevated Evolutionary Rates and Biased Codon Usage
of Respiration-Related Genes

In view of the fact that post-WGD yeasts predominantly assimilate glucose
through the fermentation pathway, the role of mitochondria in generating energy
for cellular growth appears to be weakened (Merico et al. 2007). Kellis et al.
(2004) noticed that some WGD gene pairs have accelerated evolutionary rate at
nucleotide level, but not at amino acid level. For example, the pyruvate kinase
genes CDC19 and PYK2 were produced by WGD, and PYK2 shows a three-fold
acceleration in substitution rate at degenerate third-codon positions (Kellis et al.
2004). Jiang et al. (2008) calculated the rate of non-synonymous substitution (dN)
for 2,603 one-to-one orthologous genes, including 296 nuclear genes for mito-
chondrial proteins, among six post-WGD yeast species and three closely related
pre-WGD yeast species. They found that the rates of sequence divergence of
mitochondrial genes are very similar within the post-WGD species and within the
pre-WGD species. However, the average evolutionary distance for mitochondrial
genes for the post-WGD species pairs is about 13 % higher than that for the pre-
WGD species pairs (Jiang et al. 2008), supporting the view that genes involved in
mitochondrial functions have experienced relaxation of functional constraints in
post-WGD yeasts.

It was postulated that to ensure efficient and accurate translation, highly
expressed genes tend to have strong codon usage bias (Ikemura 1981, 1982). The
codon usage bias can be reduced if the gene product undergoes a reduction in
functional constraint (Akashi 1997; Gu et al. 2005). Therefore, if mitochondrial
energy production became less important to the post-WGD species, a decreased
codon usage bias is expected for the mitochondrial genes of these species. The
codon usage bias for six genes encoding the electron transport chain cytochrome-c
(CYC) from five yeasts was found to be stronger in aerobic respiration species than
in fermentative species (Freire-Picos et al. 1994). The difference in codon usage of
CYC genes was correlated with their difference in mRNA level between the two
types of yeasts (Freire-Picos et al. 1994). Jiang et al. also found that mitochondrial
genes displayed significantly stronger codon usage bias than non-mitochondrial
genes in all three studied pre-WGD species. In contrast, there was no significant
difference in codon usage bias between mitochondrial and non-mitochondrial
genes for all the studied post-WGD species (except for V. polyspora). Therefore,
the accelerated evolution of mitochondrial function genes in post-WGD yeasts at
the nucleotide level appears to reflect a relaxation in selection on the codon usage.

5 Comparative Genomics and Evolutionary Genetics 107



5.3 Comparative Studies of Gene Regulation
in Carbohydrate Metabolism

5.3.1 Differential Expression of Genes Involved
in Carbohydrate Metabolism Among Yeasts

The major difference between the two glucose metabolism styles depends on how
pyruvate is degraded. In respiratory yeasts, most pyruvate enters mitochondria and
is completely degraded to CO2 and H2O under aerobic conditions, while in fer-
mentative species, most pyruvate remains in the cytosol and is converted into
ethanol and CO2. Because the respiration-related genes have been retained in
both respiratory and fermentative species, it means that the evolution of aerobic
fermentation required modifications of the regulation of respiration-related genes.
Differential expression of genes involved in glucose metabolism between fer-
mentative and respiratory species has been observed in several studies of indi-
vidual genes. The respiration-related genes, such as CYC1, QCR7, and QCR8, are
highly expressed in the presence of oxygen in the Crabtree-negative species
K. lactis (Freire-Picos et al. 1995; Mulder et al. 1995). In contrast, although the
expression of glycolysis and fermentation-related genes is induced in S. cerevisiae
under growth on glucose, the expression of respiration-related genes is repressed
(Holland and Holland 1978; Schmitt et al. 1983; Forsburg and Guarente 1989;
DeRisi et al. 1997; Carlson 1999).

The global modification of regulatory control of respiration-related genes has
been confirmed by recent studies based on large sets of genome-wide gene
expression data from yeasts. Significant expression differences in genes related to
carbohydrate metabolism and respiratory functions have been detected by heter-
ologous DNA arrays between S. cerevisiae and K. lactis growing in a sugar-rich
medium (Becerra et al. 2004). Ihmels et al. (2005) compared datasets of 1,000 and
198 published genome-wide expression profiles between S. cerevisiae and the
human pathogen Candida albicans (Ihmels et al. 2002). C. albicans, which
diverged from the S. cerevisiae lineage approximately 100–300 million years ago,
is predominantly Crabtree negative. Because the large number of cytosolic ribo-
somal proteins (CRP) genes are coherently expressed under different conditions
and show a strong correlation with cell growth (Mager and Planta 1991; Gasch
et al. 2000), they can be used as a good proxy to evaluate the expression profiles
for different sets of genes. Ihmels et al. found that genes coding for mitochondrial
ribosomal proteins (MRP) and CRP display a strongly correlated expression pat-
tern in C. albicans, but this correlation is lost in the fermentative yeast S. cere-
visiae (Ihmels et al. 2005). Instead, the expression of the 72 MRP genes in
S. cerevisiae exhibits a distinct correlation with that of genes induced in response
to environmental stress conditions. Because the Crabtree positive yeasts evolved
from respiratory yeasts, the authors concluded that the regulation of MRP genes in
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S. cerevisiae has been rewired during the evolution of aerobic fermentation
(Ihmels et al. 2005).

Field et al. (2009) reanalyzed the same sets of gene expression data using the
Gene Ontology (GO) groups as units and calculated their expression correlation
with CRP genes in both S. cerevisiae and C. albicans (Field et al. 2009). Based on
the gene expression correlation with CRP genes, the authors identified 13 GO
groups of genes (called ‘‘category III’’ genes) that are differentially expressed
between the two species. The ‘‘category III’’ set includes 157 and 146 genes in
S. cerevisiae and C. albicans, respectively. The S. cerevisiae ‘‘category III’’ genes
include 34 MRP genes as well as genes related to cellular respiration and mito-
chondrial functions, such as the TCA cycle and oxidative phosphorylation. Similar
to the MRPgenes, a high expression correlation between ‘‘category III’’ genes and
CRP genes was observed in C. albicans but not in S. cerevisiae (Field et al. 2009).
Therefore, in addition to the MRP genes, the transcriptional regulation of other
respiration-related genes has also been reprogrammed during the evolution of
S. cerevisiae (Fig. 5.3).

A recent study measured the genome-wide gene expression levels growing
under the same rich medium in 12 completely sequenced yeasts using tiling arrays
(Tsankov et al. 2010). The 12 yeasts include six aerobic fermentative species and
six respiratory species, offering an ideal opportunity to identify the genes that have
highest significant expression differences between the two types of yeasts. Using

MRP genes

Respiration module genes

AATTTT

CACGTGA

MRP genes

Respiratory yeasts Fermentative yeasts

Active gene expression

Respiration

Less active gene expression

Switch to fermentation

Respiration module genes

Fig. 5.3 A schematic illustration of the genetic basis underlying the regulatory rewiring of
respiration-related genes in fermentative yeasts. In respiratory yeasts, the expression of MRP
genes is activated by a transcription factor through binding to the AATTTT motif. The
Respiration module genes, such as CYC1, ATP4, QCR7, and QCR and QCR8, are activated by
Cbf1p through its binding to the CACGTGA motif. Both groups of genes appear to have
nucleosome-depleted type of promoters. The AATTTT and Cbf1 motifs have been lost and the
promoter became nucleosome-occupied in the fermentative species. As a consequence of the
changes in promoter chromatin structure and cis-regulatory elements, the respiration-related
genes are not actively expressed, so that most pyruvate is directed to the fermentation pathway in
the Crabtree-positive species
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the 82 transcriptional modules (Ihmels et al. 2002) as units, Lin et al. (2013)
compared the difference in gene expression level for each module between the two
types of yeasts. They found that the modules that include the MRP genes showed
only the sixth largest expression difference among the 82 modules based on the
two-sample Kolmogorov-Smirnov test. In contrast, a module (Module 5) that
includes genes involved in mitochondrial energy generation and phosphorylation
oxidation has the largest expression difference between the two types of species.
For convenience, Module 5 is thereafter called the Respiration module. S. cere-
visiae respiration module includes 49 genes, 23 of which overlap with the ‘‘cat-
egory III’’ genes identified by Field et al. (2009). Thus, the genes associated with
mitochondrial energy production, instead of MRP genes, have experienced the
most significant changes in gene expression levels during the evolution of aerobic
fermentation (Lin et al. 2013).

The fission yeast Sch. pombe independently evolved the Crabtree effect. So, it
was interesting to see if gene expression reprogramming had also occurred during
the evolution of Sch. pombe. Lin and Li (2011a) conducted pairwise comparisons
for the *1,000 sets of genome-wide gene expression profiles in Sch. pombe, and
gene expression data in S. cerevisiae and C. albicans. They found that the two
fermentative species S. cerevisiae and Sch. pombe are more similar to each other
on the genome-wide gene expression patterns than to the respiratory yeast
C. albicans, although S. cerevisiae is evolutionarily closer to C. albicans. Lin and
Li identified a group of genes that are differentially expressed between Sch. pombe
and C. albicans and most of them are involved in mitochondrial respiration pro-
cess. In summary, similar to what happened in the S. cerevisiae lineage, the
evolution of aerobic fermentation in the Sch. pombe lineage was also associated
with regulatory rewiring of genes involved in the mitochondrial respiration process
(Lin and Li 2011a).

5.3.2 Genetic Basis for Gene Expression Reprogramming

Although there are some discrepancies about what genes have experienced regulation
reprogramming among studies (Ihmels et al. 2005; Field et al. 2009; Lin et al. 2013),
there is a general agreement that all these genes are involved in respiration-related
processes. However, with respect to the genetic basis underlying these gene
expression divergences, these studies have reached different conclusions. Ihmels
et al. found a sequence motif ‘‘AATTTT’’ significantly overrepresented in the pro-
moters of the MRP genes in C. albicans, but not in their orthologous genes in
S. cerevisiae (Ihmels et al. 2005). The AATTTT motif was proposed to be involved in
the regulation of rRNA processing genes in S. cerevisiae, but the protein binding to
this motif remains to be identified (Tavazoie and Church 1998). Therefore, Ihmels
et al. concluded that the loss of the AATTTT sequence was associated with global
regulatory reprogramming of MRP genes in the S. cerevisiae lineage, and contributed
to its evolution of aerobic fermentation (Ihmels et al. 2005). The loss of AATTTT
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motif was also observed in other species that independently evolved aerobic fer-
mentative ability. As mentioned above, aerobic fermentation evolved independently
in the pre-WGD hemiascomycete yeast D. bruxellensis (Rozpedowska et al. 2011).
Similar to what was observed in S. cerevisiae, the AATTTT motif did not exhibit any
positional conservation in the promoters of the MRP genes in D. bruxellensis
(Rozpedowska et al. 2011). The authors suggested that the AATTTT element
underwent independent massive losses in the promoter of MRP genes in both
S. cerevisiae and D. bruxellensis (Rozpedowska et al. 2011).

It is worth noting that only intermediate numbers of the AATTTT motif in the
promoters of MRP genes were observed in the post-WGD yeast V. polyspora
(Fekete et al. 2007; Chen et al. 2008; Jiang et al. 2008). Moreover, there are
several other genetic and physiological characteristics in V. polyspora that are
more similar to aerobic respiratory yeasts than to the rest of post-WGD yeasts. For
example, only five hexose transporter genes are present in V. polyspora, compared
to 10–19 copies in other post-WGD species (Lin and Li 2011b). V. polyspora also
shows a different pattern of mitochondrial gene codon usage bias from the other
post-WGD species (Fekete et al. 2007; Chen et al. 2008; Jiang et al. 2008). In
addition, other post-WGD species are petite positive, the ability to tolerate the loss
of mtDNA, whereas V. polyspora is petite negative (Fekete et al. 2007; Chen et al.
2008; Jiang et al. 2008). V. polyspora was thus speculated as an intermediate
fermentative species that cannot carry out efficient aerobic fermentation (Fekete
et al. 2007; Chen et al. 2008; Jiang et al. 2008). Surprisingly, a recent study
revealed that V. polyspora actually has high fermentation efficiency (Hagman et al.
2013). Hagman et al. suggested that the evolution of aerobic fermentation is a
progressive process which involves multiple genetic modifications that gradually
remodel the yeast carbon metabolism. It is likely that V. polyspora represents an
intermediate lineage where some traits are still in transition.

On the other hand, Lin et al. (2013) found that in respiratory yeasts, a motif
with the core consensus sequence CACGTGA is prevalent in the promoters of
Respiration module genes, but present at a much lower frequency in the promoters
of their orthologous genes in the aerobic fermentation species (Fig. 5.3). This
motif matches that of Cbf1p binding sites in S. cerevisiae; Cbf1p is a transcription
factor that regulates chromatin modification (Cai and Davis 1990). The homolog
of S. cerevisiae CBF1 has been characterized in K. lactis and the Cbf1p proteins
from the two species are functionally interchangeable (Mulder et al. 1994).
However, despite the functional conservation of CBF1, unlike in S. cerevisiae,
inactivation of the CBF1 gene in K. lactis is not viable, indicating that the normal
function of CBF1 is essential for K. lactis (Mulder et al. 1994). Lin et al. (2013)
suggested that Cbf1p is a general activator for the respiration-related genes in
respiratory yeasts and the massive losses of the Cbf1 motif in fermentative species
have led to the reduced expression of respiration-related genes.

In addition to changes in cis-regulatory elements, it was suggested that the
distinct nucleosome organizations in the promoters of respiration-related genes
between the aerobic respiration and the fermentation yeasts are partly responsible
for their expression divergences (Field et al. 2009; Tsankov et al. 2010). In
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eukaryotes, DNA is repetitively wrapped around nucleosomes. The presence of
nucleosome may hinder the direct interaction between a transcription factor and its
binding sites and may, therefore, obstruct the transcriptional initiation of a gene. In
S. cerevisiae, the binding sites of transcription factors are highly enriched in the
nucleosome depleted region of promoters (Lin et al. 2010). Several studies have
found that genes with different expression profiles are associated with distinct
nucleosome occupancy patterns in the promoter regions (Tirosh and Barkai 2008;
Jiang and Pugh 2009). The promoters of constantly expressed genes usually
contain a nucleosome-depleted region where most transcription factor-binding
sites are located (Yuan et al. 2005; Lee et al. 2007). In contrast, conditionally
expressed genes, such as stress-response genes, are associated with nucleosome-
occupied promoters (Tirosh and Barkai 2008). Field et al. (2009) compared the
promoter nucleosome occupancy patterns among 12 hemiascomycete yeasts and
found that the promoters of respiration-related genes tend to be more depleted of
nucleosomes in respiratory yeasts than that in aerobic fermentative species. They
concluded that in aerobic fermentation yeasts, respiration-related gene promoters
have evolved from the nucleosome-depleted type to the nucleosome-occupied type
and that this change has contributed to regulatory reprogramming of respiration-
related genes and the evolution of aerobic fermentation in the hemiascomycete
lineage (Field et al. 2009).

However, it is not clear whether the nucleosome reorganization was the leading
or a minor cause for the evolution of aerobic fermentation (Tirosh et al. 2010).
Comparative studies of nucleosome occupancy between S. cerevisiae and its close
relative S. paradoxus showed that genes that are associated with diverged nucle-
osome positions are not more likely to diverge in expression and genes that are
differentially expressed are not more likely to diverge in nucleosome positioning
(Tirosh et al. 2010). Consistent with Tiroshi et al.’s observation, Lin and Li
(2011a) found that changes in nucleosome organization were not coupled with the
expression reprogramming of respiration-related genes in Sch. pombe. Specifi-
cally, although the expression regulation of the respiration-related genes in Sch.
pombe has been reprogrammed during the evolution of aerobic fermentation, their
promoter nucleosome organization remains depleted as in aerobic respiration
species (Lin and Li 2011a).

In addition, a recent study suggested that changes in the length of the 50

untranslated region (50UTR) were linked to the gene expression divergence of
respiration-related genes in S. cerevisiae (Lin and Li 2012). The length of 50UTR
varies considerably among the genes in a genome, ranging from a few base pairs to
several thousand base pairs (Pesole et al. 2001; Mignone et al. 2002; Nagalakshmi
et al. 2008). It has been noticed that genes with different functions show distinct
50UTR lengths in vertebrates and yeasts (Kozak 1987; Hurowitz and Brown 2003;
David et al. 2006; Nagalakshmi et al. 2008; Bruno et al. 2010). In general, genes
with a long 50UTR, such as those involved in development or meiosis, are gen-
erally highly and finely regulated, whereas genes with a reduced need for regu-
lation, such as housekeeping genes and the ribosomal subunit genes, usually have
shorter 50UTRs. Lin and Li (2012) examined the association between UTR lengths
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and the patterns of gene expression across various conditions in S. cerevisiae and
C. albicans (Berman and Sudbery 2002; Sudbery et al. 2004). They calculated the
expression correlation of all eligible GO group genes with CRP genes and found
that such correlations are negatively associated with their 50UTR lengths in both
species (Lin and Li 2012). It suggests that genes with a longer 50UTR tend to have
higher expression plasticity under different conditions. Among a few GO groups
with the largest increase in 50UTR length in S. cerevisiae and the largest decrease
in this gene expression correlation, most of these genes are involved in mito-
chondrial respiration process. It is well known that the expression of mitochondrial
respiration genes has been reprogrammed in S. cerevisiae during the evolution of
aerobic fermentation. These results suggest that the elongation of 50UTR might
have contributed to this global gene regulation modification process. As it is not
clear how changes in 50UTR length affect gene expression plasticity, it was
speculated that an increase in 50 UTR length may affect the nucleosome occupancy
patterns in promoters (Lin and Li 2012).

5.4 Comparative Genomics of Galactose Metabolism

Although glucose is the preferred carbohydrate in yeasts, most yeasts are able to
use galactose well. Galactose itself cannot be directly used for glycolysis. As
shown in Fig. 5.1, after galactose is transported into cells by galactose permease
Gal2p, it needs to be converted into glucose-6-phosphate to enter the glycolysis
pathway. The pathway that catalyzes this conversion is also called the Leloir
pathway (Johnston 1987; Bhat and Murthy 2001). In S. cerevisiae, the Leloir
pathway is composed of five enzymes: galactose mutarotase, UDP-galactose-4-
epimerase Gal10p, galactokinase Gal1p, galactose-1-phosphate uridyl transferase
Gal7p, phosphoglucomutase Pgm1 and Pgm2. The genes encoding the Leloir
pathway enzymes (often called the GAL genes) are tightly controlled at the tran-
scriptional level in yeasts (Sellick et al. 2008). In the presence of glucose, the GAL
genes are repressed. The repression is released when glucose is absent, and rapid
and high-level activation of the GAL genes is triggered by three other proteins,
Gal4p, Gal80p, and Gal3p (Sellick et al. 2008). The GAL genes are broadly dis-
tributed in all eukaryotes, bacteria, and archaea.

A number of yeast species lack the ability to use galactose (Naumov et al.
2000). Hittinger et al. examined the genomic data for seven species that can use
galactose and four that cannot. The phylogeny of the 11 yeast species suggests that
galactose utilization was present in their common ancestor and the loss of gal-
actose utilization in the four species were due to at least three parallel losses
(Hittinger et al. 2004). The seven GAL genes (GAL1, GAL2, GAL3, GAL4, GAL7,
GAL10 and GAL80) are present in all species that can use galactose. In contrast,
these GAL genes are absent in the four species lacking the galactose utilization
ability, suggesting the degeneration of the entire pathway (Hittinger et al. 2004).
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Remarkably, different galactose utilization abilities due to presence/absence of
GAL genes are also observed between different strains in a species. The Japanese
strains of Saccharomyces kudriavzevii, a close relative of S. cerevisiae, lack the
galactose utilization ability. All the seven GAL genes in the Japanese strains of
S. kudriavzevii were heavily degenerated and became pseudogenes soon after the
split between the S. kudriavzevii and S. cerevisiae lineages (Hittinger et al. 2004).
However, the S. kudriavzevii strains isolated from Portugal were found to be
capable of utilizing galactose because of the presence of six functional GAL genes
in their genomes (the GAL3 gene is absent) (Hittinger et al. 2010). Because none
of the functional GAL genes in the Portuguese strains appeared to be acquired from
other species, the polymorphisms in these GAL genes may have co-existed
throughout the evolutionary history of S. kudriavzevii, providing a classic example
of balancing selection on the multi-loci gene network.

In summary, these lines of evidence revealed a tight correlation between the
ability to use galactose and the presence of the GAL genes in the genome. This
strong correlation of genomic content and galactose utilization probably reflects
the adaptation of yeasts to their own niches in which the galactose content varies
substantially (Gross and Acosta 1991). The independent losses of all GAL pathway
genes in multiple lineages were probably facilitated by the clustered organization
of these genes. In most species, the GAL genes are not clustered. Slot and Rokas
found that the genes encoding three major enzymes of the Leloir pathway (GAL1,
GAL7, and GAL10) have independently become clustered in four different fungal
lineages by different mechanisms (Slot and Rokas 2010). Moreover, a significant
higher rate of GAL pathway gene loss in the species with clustered GALs than in
those without clustered GAL genes was observed, suggesting that the adaptation of
fungal species to different environments by gain or loss of galactose utilization
ability could be facilitated by the clustering of GAL genes (Slot and Rokas 2010).
However, even though the structural members and arrangement of GAL gene
cluster are conserved among different yeast lineages, their regulatory circuits have
been rewired in the Hemiascomycete lineage (Martchenko et al. 2007). In
S. cerevisiae, the GAL genes are activated by Gal4p and repressed by Mig1p
through binding to the Gal4 or Mig1 binding sites in their promoters (Lohr et al.
1995). Interestingly, the Gal4 and Mig1 binding sites are absent from the
C. albicans GAL genes clusters (Martchenko et al. 2007). In contrast, it is found
that the expression of GAL genes in C. albicans is activated by Cph1p, a homolog
of S. cerevisiae transcription factor Ste12p (Martchenko et al. 2007). By com-
paring the promoter sequences of GAL genes in 11 yeast species, the author
proposed that Gal4p and Mig1p were recruited to co-regulate GAL genes with
Cph1p prior to WGD. The Cph1 binding sites were eventually lost during evo-
lution of S. cerevisiae lineage, resulting in the switch of the control GAL gene from
Chp1p to Gal4p and Mig1p (Martchenko et al. 2007).

As discussed above, the WGD event was considered to have a strong impact on
the glucose metabolism. Similarly, it may also have enhanced the ability of gal-
actose utilization. In S. cerevisiae, the galactokinase gene GAL1 and the co-
inducer gene GAL3 are paralogous genes that arose from a single bifunctional
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ancestral gene by the WGD (Wolfe and Shields 1997; Hittinger et al. 2004; Kellis
et al. 2004). The bifuntional gene is still present in some pre-WGD yeasts, such as
K. lactis. In S. cerevisiae, the expression of GAL1 is highly induced up to 1,000
fold, in the presence of galactose, while GAL3 is only induced three–five-fold. The
sharply different regulations on the two paralogous genes are believed to be
advantageous for galactose utilization. The single bifunctional gene in K. lactis
may be subject to adaptive conflict at the level of transcriptional regulation. The
adaptive conflict appeared to be resolved by the WGD event that produced an extra
copy of the GAL gene. Specific modifications on the promoters of the GAL1 and
GAL3 genes allowed them to have totally different ranges of transcription in post-
WGD species (Hittinger and Carroll 2007).

5.5 Conclusions and Prospects

Different yeasts show highly distinct preferences in carbohydrate metabolism.
Recent comparative genomics and bioinformatics studies revealed that different
glucose and galactose metabolisms were associated with changes in genomic
content and regulatory landscape. While the evolution of galactose utilization was
mainly due to gain or loss of GAL genes and changes in cis-regulatory elements,
the evolution of different glucose metabolisms in yeasts was influenced by many
different factors including changes in gene copy number, cis-regulatory elements,
promoter chromatin structure, and 50UTR length. The expansion of glucose
transporter genes and the high retention rate of WGD gene pairs in glycolytic
enzymes have increased the glycolytic flux in the aerobic fermentative species. In
addition, the switch from the respiration pathway to the fermentation pathway also
required regulatory rewiring of genes involved in mitochondrial functions, so that
most pyruvate is directed to the fermentation pathway. However, it would only
make sense if the ancestral yeasts had already evolved the active and highly
efficient fermentation pathway under aerobic conditions prior to global repression
of mitochondrial function, or the yeast cells would suffer selective disadvantages
due to shortage of energy and reduced growth rate. Most studies so far focused on
the glycolysis and mitochondrial respiration pathways. It is not known if the genes
involved in fermentation reactions have been activated in the presence of oxygen
or the enzyme activities have been greatly improved at an early evolutionary stage
of aerobic fermentation. Further work will be needed to study what evolutionary
changes in the fermentation pathway have triggered the switch from the respiratory
to the fermentative style.
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Chapter 6
Similarities and Differences Between
Cancer and Yeast Carbohydrate
Metabolism

Matic Legiša

Abstract At first glance, there is a high degree of similarity between the
metabolisms of human cancer and yeast. Tumors consume larger amounts of
glucose compared to normal tissues with most being converted into lactate and
excreted, despite the abundant oxygen (Warburg effect). Similarly, yeast cells
growing at high specific growth rates accumulate ethanol under aerobic conditions
(Crabtree effect). However, advances in our knowledge during the last decade,
particularly regarding cancer metabolism, have revealed some details that suggest
differences between carbohydrate metabolisms in these two cell types. Although
primary metabolism is fairly conservative between all living organisms, some
differences have arisen through the course of evolution between the yeast and
human cancer cells that were mostly impelled by the different environments these
cells proliferate. In this chapter, the most important similarities and differences
between cancer and yeast metabolism are outlined and discussed. Despite these
differences, the yeast Saccharomyces cerevisiae is still a useful model for
understanding many aspects of the cancer primary metabolism.
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HXT Hexose transporter
HK Hexokinase
PFK 6-Phosphofructo-1-kinase
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PDH Pyruvate dehydrogenase complex
PDC Pyruvate decarboxylase
PC Pyruvate carboxylase
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LDH Lactate dehydrogenase
ALD Aldehyde dehydrogenase
c-Myc Oncogenic transcription factor
HIF-a Hypoxia inducible factor
TIGAR TP53-inducible glycolysis and apoptosis regulator
TCA cycle Tri-carboxylic acid cycle
ETC Electron transport chain
OXPHOS Oxidative phosphorylation
ROS Reactive oxygen species

6.1 Introduction

The baker’s or budding yeast Saccharomyces cerevisiae is most likely the best-
studied organism and is often used as a model organism to study primary
metabolism in other biological systems, including cancer (Guaragnella et al.
2014). As a single-cell organism, yeast is small and easy to cultivate, and its
shortest generation time is less than 2 h (Lord and Wheals 1981). As a eukaryote,
S. cerevisiae has a complex internal cell structure similar to that of animals and
plants, but noncoding DNA regions are less common in S. cerevisiae than in higher
eukaryotes. The genome of baker’s yeast was also the first eukaryotic genome to
be completely sequenced and publicly released in 1996 (Goffeau et al. 1996), and
the genomic data has been updated regularly since then. Last but not least, yeast is
an extremely important commercial microorganism; owing to its role in bioethanol
production, yeast is the most widely used microbial cell factory.

In the past, S. cerevisiae has served as an excellent organism to study the
metabolism of carbohydrates; this work began during the time of Louis Pasteur.
These early studies have been nicely reviewed by Barnett and Entian (2005).
Although the central carbon metabolism seems to be roughly similar in all
eukaryotic organisms, there are differences that are particularly evident in the steps
involved in pyruvate metabolism. Specifically, one feature of primary metabolism
in yeast cells is their ability to excrete ethanol and carbon dioxide under anaerobic
conditions. The phenomenon, known as the Pasteur effect, is characterized by
suppression of alcoholic fermentation in the presence of oxygen in slowly growing
S. cerevisiae cells (Pronk et al. 1996). It is believed to be caused by higher affinity
(Vmax/Km) of the respiratory (aerobic) system for pyruvate via pyruvate dehy-
drogenase (PDH), than that of the fermentative (anaerobic) route via pyruvate
decarboxylase (PDC) (Lagunas 1986). Baker’s yeast cells can also excrete ethanol
under aerobic conditions. A similar effect was first described in cancer cells by
Crabtree (1929), who observed a modest (12 %) reduction in respiration after
adding glucose to a solution of tumor tissue that was undergoing an abnormally
high amount of aerobic glycolysis. In yeast cells, the phenomenon is most likely
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triggered by an ‘‘insufficient capacity of respiratory routes of pyruvate dissimila-
tion’’ (Postma et al. 1989), which starts ethanol excretion—and is named after the
author who first described a similar event in cancer cells as a ‘‘Crabtree effect.’’

Indeed, at first glance, there appears to be some similarity between the
metabolisms of cancer and yeast. Rapidly growing human cancers are character-
ized by the consumption of more glucose than normal tissues, with most of this
glucose being converted into lactate and excreted, despite an abundance of oxy-
gen. The phenomenon was first described in 1925 (Warburg 1925) and is known as
the Warburg effect. Similarly, yeast cells growing at high specific growth rates
accumulate ethanol under aerobic conditions (the Crabtree effect), but are there in
fact similar or identical underlying metabolic processes in these organisms?

6.2 External Factors That Determine Growth

For a better understanding of the metabolism of cancer and yeast, the environmental
growth conditions of both types of cells should be described first. Tumors develop
and grow in multicellular metazoic organisms; under these conditions, the cells are
more or less constantly supplied with nutrients. However, the growth and prolif-
eration of normal human cells is under the strict control of specific growth factors to
preserve the function and shape of the body. On the other hand, one of the hallmarks
of cancer cells is their ability to sustain proliferative signaling (Hanahan and
Weinberg 2011); in other words, they do not need growth factors to induce growth
and duplication, and their growth is thus unrestricted. In contrast, yeast cells must
survive in the environment as unicellular organisms where they are exposed to huge
fluctuations in nutrient availability. Their metabolic machinery must sense an
adequate supply of nutrients and rapidly adjust to such changes. When nutrients are
abundant, yeast cells synthesize cellular building blocks to reproduce as quickly as
possible, and when supplies of carbon or nitrogen sources are limited, their
metabolism must go idle. Through the course of evolution, environmental condi-
tions favored selection for yeast cells with higher specific growth rates and shorter
doubling times (Hagman et al. 2013), but the specific growth rates of human cells
are significantly slower (Friberg and Mattson 1997).

S. cerevisiae can duplicate within 1–2 h (Lord and Wheals 1981), but the actual
doubling times depend on the availability of nutrients and the fastest specific
growth rates can only be reached under optimal growth conditions. Human cells
grow significantly slower. Rapidly growing tumors, such as testicular carcinomas,
pediatric tumors, and some mesenchymal tumors, have doubling times measured
in days, but cancers from the breast, prostate, and colon are frequently slow-
growing, displaying doubling times measured in months or years (Friberg and
Mattson 1997). Cancer, as a typical genetic disease, is initiated by the accumu-
lation of mutations during the process of tumorigenesis. Recent comprehensive
sequencing has revealed the genomic landscapes of common forms of human
cancer. The studies have discovered approximately 140 genes that can promote or
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drive tumorigenesis when altered by intragenic mutations. A typical tumor con-
tains 2–8 of these ‘‘driver’’ mutations that provide a selective growth advantage for
cancer cells, and the remaining mutations are known as passengers and confer no
selective advantage (Vogelstein et al. 2013). It has been estimated that each
‘‘driver’’ mutation has a surprisingly small contribution to the overall selective
growth advantage in a cell, of the order of a 0.4 % increase in the difference
between the birth and death of a cell (Bozic et al. 2010). However, some somatic
mutations in human tumors cause the constitutive activation of signaling circuits
that are normally triggered by activated growth factor receptors. Therefore, it
seems that cancer cells do not gain a significantly faster growth rate during
tumorigenesis but that they can proliferate with a rate similar to that of normal
human embryonic cells.

The key oncogenic signaling pathway that affects metabolism in cancer cells is
the PI3K/Akt/mTOR pathway. This pathway becomes constitutively active after
specific oncogenes are mutated and enhances many of the metabolic activities that
enable fast proliferation in a growth factor independent way (DeBerardinis et al.
2008). It is important to realize that each individual tumor is distinct with respect to
its genetic alternations (Vogelstein et al. 2013); this suggests that mutations in
different components of the PI3K/Akt/mTOR signaling pathway can lead to the
constitutive activation. An active PI3K/Akt/mTOR pathway has a stimulatory
impact on cancer biosynthesis at three distinct levels: First, it stimulates cells to
increase the expression of nutrient transporters in the membrane, promoting a more
rapid uptake of glucose, amino acids, and other nutrients (Roos et al. 2007). Second,
Akt kinase upgrades glycolysis by increasing the activity of the c-Myc and HIF-1a
transcription factors that promote the expression of a majority of the glycolytic
genes (Yeung et al. 2008; Elstrom et al. 2004). Finally, activation of this pathway
enhances the biosynthesis of cellular building blocks. For example, mTOR is
involved in the regulation of protein translation initiation (Gingras et al. 2001).

In yeast, no mutations or growth factors are needed to affect primary metabo-
lism, but minor changes in nutrient availability can have significant consequences.
The most profound effect can be observed by adding glucose to glucose-starved
cells in a well-aerated system. Glucose is a highly desired carbon and energy source
for yeasts and can be rapidly oxidized under both aerobic and anaerobic conditions.
Within seconds after glucose enters the cells, it is rapidly metabolized by the
accelerated glycolysis and ultimately causes a saturation of the respiratory pathway.
As a consequence of metabolic blockage, ethanol starts to be excreted out of the
cells (a short-term Crabtree effect) (Van Urk et al. 1990). A similar long-term
Crabtree effect can be observed under growth conditions that support the fast
growth of yeast cells, where again the respiratory metabolism has insufficient
capacity to deal with the underlying catabolic reactions, especially pyruvate dis-
similation (Pronk et al. 1996). Glucose also acts as a signal molecule. The stimulus
that is generated by the glucose is transmitted through the cell to specific targets by
the Ras/cAMP/PKA nutrient signaling pathway (Thevelein and de Winde 1999).
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Glucose triggers the activation of cellular growth by regulating the expression of
several glucose transporters and glycolytic genes (DeRisi 1997), induces the
mobilization of storage compounds (Verstrepen et al. 2004), and causes the dimi-
nution of cellular stress-resistance (Marchler et al. 1993). There is another
important signaling pathway controlled by glucose in S. cerevisiae that tailors
primary metabolism: the glucose repression pathway that, after transmitting a
signal through the cascade of specific kinases, represses the expression of the genes
involved in breakdown of alternative carbon sources and genes involved in glu-
coneogenesis (Thevelein and de Winde 1999). However, it is important to realize
that glucose signaling pathways are only induced when the glucose or sucrose
concentration exceeds a threshold of 20–40 mM (Meneses et al. 2002). In fact,
nutritional glucose acts like a hormone in S. cerevisiae (Verstrepen et al. 2004) and
exhibits a role similar to that of growth factors in mammalian cells.

6.3 Primary Metabolism

For both mammalian and yeast cells, glucose is the preferred carbon and energy
source. Glucose can enter the cells by a number of specific transmembrane carriers
that are expressed under specific circumstances; the nature and function of trans-
porters often defines the overall cellular metabolism because the first and often
limiting step of glucose metabolism is its transport across the plasma membrane.

6.3.1 Sugar Transporters

A total of 14 glucose transporters (GLUT) are expressed in various human tissues
and cell types, and their physiological roles have been recently extensively
reviewed (Mueckler and Thorens 2013). In a wide variety of tumors, GLUT1
overexpression has been reported, and an increase in GLUT1 is likely to be an
essential step in tumor progression (Younes et al. 1996). HIF-1a (hypoxia
inducible factor) was reported to be involved in overexpression of GLUT1; this
overexpression enables fast-growing cancer cells to acquire energy by harnessing
glycolysis, even under hypoxic conditions (Keith and Simon 2007).

S. cerevisiae has 20 genes that encode proteins similar to glucose (hexose)
transporters. These hexose transporters (HXT) proteins belong to the major
facilitator superfamily (MFS) of transporters (Pao et al. 1998). S. cerevisiae has
the largest number of MFS transporters of any organism studied so far. MFS
proteins transport their substrates by passive, energy-independent facilitated dif-
fusion, with glucose moving down its concentration gradient (Pao et al. 1998).

In general, two uptake systems have been described in S. cerevisiae: a constitu-
tive, low affinity system (high Km, 15–20 mM), and a glucose-repressed high-
affinity system (low Km, 1–2 mM). It now seems clear that the low- and high-affinity
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GLUT activities represent the sum of several transporters rather than being the result
of individual transporters. The presence of multiple HXTs with different affinities for
glucose in baker’s yeast is not surprising, given the fact that it grows well in a broad
range of glucose concentration (from a few lM to 2 M) (Ozcan and Johnston 1999).

Therefore, it could be stated that glucose transport, both in cancer and yeast
cells, does not represent any obstacle for the substantial fueling of the glycolytic
flux.

6.3.2 Glycolytic Flux

Glycolysis is central to primary metabolism and is normally tightly regulated by
three allosteric enzymes: hexokinase (HK), 6-phosphofructo-1-kinase (PKF1), and
pyruvate kinase (PK), which catalyze individual irreversible steps.

6.3.2.1 Hexokinase

Hexokinase is the first regulatory step of glycolysis and is normally feedback-
inhibited by its own product, glucose-6-phosphate. In human cells, four different HK
isoenzymes can be found, and one, HK2, is predominant in cancer cells (Chen and
Russo 2012). HK2 specifically binds to the mitochondrial outer membrane facing
the cytosol (Mathupala et al. 2009), where it has preferential access to newly syn-
thesized ATP for the phosphorylation of glucose; additionally, HK2 is not sensitive
to inhibition by its own product, glucose-6-phosphate (Mathupala et al. 2009).

S. cerevisiae possess three different HK isoenzymes (HK I, II, and glucokinase)
that are not inhibited by their own product (Muratsubaki and Katsume 1979).
While HKI and glucokinase are involved predominantly in the glycolytic flux
under aerobic conditions, HKII prevails during fermentation where it phosphor-
ylates glucose (Muratsubaki and Katsume 1979) and regulates glucose repression
(Gancedo 1998).

6.3.2.2 6-Phosphofructo-1-Kinase

The most complex control over glycolytic flux is attributed to (PFK1), which
surmounts the regulatory roles of the other two allosteric enzymes. PFK1 catalyzes
the phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, using
MgATP as a phosphoryl donor (Dunaway 1983). PFK1 is stimulated by fructose-
2,6-bisphosphate (F-2,6-BP), ADP/AMP and ammonium ions, whereas citrate and
ATP act as strong inhibitors (Dunaway 1983).

During the course of evolution, eukaryotic PFK1 enzymes have developed by
duplication, tandem fusion, and divergence of the catalytic and effector binding
sites of a prokaryotic ancestor (Poorman et al. 1984). However, the strict
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conservation between the active site residues in the N-terminal segment of the
eukaryotic enzyme and those of bacterial PFKs suggests that the active site of
eukaryotic PFK1 is located only in the N-terminal portion (Poorman et al. 1984).
In contrast, the allosteric ligand-binding sites that developed during evolution by
mutations in the C-terminus enable fine-tuning of the regulatory enzyme by the
elevated levels of specific downstream metabolites. One of the allosteric ligands is
citrate, which acts as a potent inhibitor of all the mammalian PFK1 isoforms
(Usenik and Legiša 2010).

In mammalian genomes, three different PFK1 genes are present and are differ-
entially expressed in individual tissues. In human tissues, their protein products
have the following molecular masses: muscle type (PFK-M), 85,051 Da (Yamasaki
et al. 1991); liver type (PFK-L) 84,917 Da (Elson et al. 1990); and platelet type
(PFK-P), 85,596 Da (Eto et al. 1994).

All three isoenzymes are strongly inhibited by citrate, with IC50 values of 0.08,
0.13, and 0.18 mM for brain (platelet), muscle, and liver PFK1, respectively (Vora
et al. 1985). All the human PFK1 isoforms are also reported to be intensely
inhibited by ATP concentrations higher than 0.05 mM, yet F-2,6-BP can antag-
onize the negative effects of ATP to some extent (Dunaway 1983).

In cancer cells, the activity of the PFK1 enzymes is upregulated by the loss of
p53 function, which results in the downregulation of the TIGAR protein, which in
turn acts as a fructose-2,6-bisphosphatase (Bensaad et al. 2006). Consequently, the
level of F-2,6-BP remains high in tumors and acts as a strong positive stimulus.

The expression of PFK1 genes is enhanced in cancer cells due to the increased
activity of the HIF-1a transcription factor, which, in combination with c-Myc,
enhances the synthesis of the majority of glycolytic enzymes (Huang 2008).
Increased amounts of the wild-type enzymes consequently result in increased
specific activities. However, the glycolytic flux in eukaryotic organisms is tightly
controlled by allosteric enzymes that maintain their regulation by feedback inhi-
bition despite the elevated activities of intermediary enzymes. Among other
effectors, citrate has been reported to play a vital role in suppressing the enzymatic
activity of PFK1. Analyses of the variations in allosteric binding sites between
different eukaryotic organisms revealed that stronger inhibition of PFK1 enzymes
by citrate has developed during evolution, enabling better control over glucose
consumption in the slow-growing somatic cells of higher metazoans (Usenik and
Legiša 2010). Therefore, one is forced to conclude that important modifications to
the kinetics of regulatory enzymes must also be involved in the metabolic changes
that occur during the transformation of normal mammalian cells into cancer cells.

Recently, it has been reported that the human 85 kDa native protein PFK of
muscular type (PFK-M) is subjected to posttranslational modification (Šmerc et al.
2011). Proteolytic cleavage of the C-terminal portion of PFK-M led to an active,
shorter 47 kDa fragment that was insensitive to citrate and ATP inhibition. More
importantly, only the short 47 kDa fragment but not the native 85 kDa PFK-M was
detected in tumorigenic cell lines, including B16-F10 mouse melanoma cells,
HeLa carcinoma cells and two lymphomas, the rat Nb2-11 line and the human
TF-1 line. Similar fragments were also detected in tumor tissue that developed in
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mice after the subcutaneous infection with tumorigenic B16-F10 cells. The
insertion of modified truncated human pfkM genes also stimulated glucose con-
sumption and lactate excretion in stable transfectants of nontumorigenic human
HEK cells, suggesting an important role of these shorter PFK1 fragments in
enhancing the glycolytic flux (Šmerc et al. 2011). Thus, posttranslational modi-
fication of the PFK-M enzyme might be the pivotal factor of deregulated glyco-
lytic flux in tumors that, in combination with altered signaling mechanisms,
essentially supports the fast proliferation of cancer cells.

In contrast to the cancer PFK1 enzymes, the S. cerevisiae enzyme is consti-
tutively expressed under the control of two promoters that are not controlled by
regulatory elements (Heinisch et al. 1991). However, the expression of some other
glycolytic genes (e.g., pgk, eno2, pyk, pdc) is induced by glucose (Chambers et al.
1995). The RAP1 DNA binding protein was found to be involved in transcriptional
control; moreover, the transcription activation function of RAP1 can be increased
as a result of phosphorylation by cAMP-dependent protein kinase (PKA), triggered
by the presence of glucose (Klein and Struhl 1994). The kinetic measurements of
yeast PFK1 displayed a less pronounced inhibition of the enzyme by citrate
(apparent Ki = 3.5 mM) (Yoshino and Murakami 1982) than was observed in
cancer cells. It seems that the most important control of the key glycolytic enzyme
is mediated by the fructose-2,6-bisphosphate (F-2,6BP), which is the most potent
activator of eukaryotic PFK1 enzymes and an inhibitor of fructose-1,6-bisphos-
phatase. F-2,6-BP is synthesized by 6-phosphofructo-2-kinase (PFK2), which was
shown to be phosphorylated and activated by increased extracellular glucose
concentrations. The Ras-cAMP signaling pathway has been reported to mediate
phosphorylation and activation of PFK2 (Dihazi et al. 2003). Another enzyme,
fructose-2,6-bisphosphatase (FBPase-2) affects the levels of F-2,6-BP in yeast
cells; FBPase-2 is not needed to sustain an adequate glycolytic flux under fer-
mentative conditions, but rather maintains the homeostasis of metabolite con-
centrations (Müller et al. 1997). Interestingly, 6-phosphofructo-2-kinase and
fructose-2,6-bisphosphatase are two separate enzymes in S. cerevisiae (Kretschmer
et al. 1987); this is not the case in mammalian cells, where a single homodimeric
bifunctional enzyme PFK2/FBPase-2 is responsible for both the synthesis and
degradation of F-2,6-BP (Rider et al. 2004).

6.3.2.3 Pyruvate Kinase

Pyruvate kinase, another regulatory enzyme of the glycolytic pathway, catalyzes
the conversion of phospho-enol-pyruvate (PEP) and ADP into ATP and pyruvate.
Humans have two PK genes (PKLR and PKM2) and four tissue-specific isoen-
zymes (L, R, M1, and M2). PK-L and PK-R are expressed from alternative PKLR
promoters in liver and erythroid cells, respectively. PK-M1 and PK-M2 are formed
after alternative splicing of PKM2 transcripts. PK-M1 can be found in skeletal
muscle, heart, and brain, whereas PK-M2 is predominantly expressed in the fetus
and rapidly proliferating cells, including cancer cells (Netzker et al. 1992). PK-M2
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can adopt two different quaternary structures: a highly active tetramer favoring the
formation of pyruvate and ATP, and a less active dimer, which predominates in
tumor cells (Mazurek et al. 2005). PK-M2 is allosterically activated by fructose-
1,6-bisphosphate (FBP), which was found to have a significantly higher concen-
tration in cancer cells than in normal human cells (Lu et al. 2010). Indeed, FBP can
trigger the re-association of PK-M2 into a tetramer (Mazurek et al. 2005). However,
PK-M2 can also be negatively regulated by binding to phosphotyrosine-containing
proteins. But again, a concentration of FBP above 20 lM is able to compete for
binding of recombinant PK-M2 to phosphotyrosine peptides (Christofk et al. 2008).
Because FBP can reach very high levels in tumor cells, a possible predominance of
tetrameric form of PK-M2 under physiological conditions and not the dimeric form
can be assumed in cancer cells during aerobic glycolysis. However, further research
will be needed in the future to clarify this issue.

In yeast cells, initially only one gene (Pyk1) encoding the PK was discovered
(Burke et al. 1983). The biochemical properties of yeast PYK1 protein suggest that it
plays a central regulatory role in carbon metabolism during the transition between
glycolysis and gluconeogenesis, when sugars are abundant. Specifically, the enzyme
is positively regulated by FBP, which is present at high levels intracellularly during
glycolysis and at low levels after the depletion of sugars from the medium. After the
completion of the yeast genome sequencing project, a new open reading frame on
chromosome XV was found with high degree of similarity to the Pyk1 sequence
(Purnelle and Goffeau 1996). More detailed analyses of the Pyk2 gene revealed that
its expression is subject to glucose repression while its enzymatic activity is
insensitive to FBP activation. It seems that the PYK2 may be the predominant
enzyme under the conditions of very low glycolytic flux (Boles et al. 1997).

6.3.3 Pyruvate Metabolism

In cancer cells, glycolysis significantly outpaces the maximal rate of pyruvate
oxidation, so the cells must eliminate pyruvate by converting it into lactate. Using
13C-nuclear magnetic resonance spectroscopy measurements to study glioblastoma
cell metabolism under aerobic glycolysis, it has been shown that up to 90 % of
glucose has been converted into lactate and alanine, leaving a moderate amount of
pyruvate to enter the mitochondrial matrix (DeBerardinis et al. 2007). The con-
version of pyruvate into lactate involves the enzyme lactate dehydrogenase (LDH),
whose synthesis is enhanced by the c-Myc and HIF-1a transcription factors in the
cells with constitutively active PI3K/Akt/mTOR signaling pathway (Shim et al.
1997). HIF-1a also promotes the expression of pyruvate dehydrogenase kinase 1
(PDK1) to inhibit pyruvate dehydrogenase (PDH) activity (Kim et al. 2006), which
further contributes to the diminished mitochondrial metabolism of glucose. On the
other hand, the significance of another enzyme that may be responsible for the
entry of pyruvate into the TCA cycle—pyruvate carboxylase (PC) was found to be
negligible in glioblastoma cells (DeBerardinis et al. 2007).
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Lactate accumulation in tumors, similar to ethanol excretion by yeast cells, is the
result of a dissimilative event where glycolytic NADH is reoxidized to NAD+ while
pyruvate and acetaldehyde, respectively, function as terminal electron acceptors.
Lactate formation and excretion is, therefore necessary for the cells with enhanced
glycolysis to maintain NADH/NAD+ redox balance. Tests with LDH-null tumor
cell lines showed severely decreased tumorigenesis, indicating that LDH plays a
prominent role in tumor proliferation and progression (Fantin et al. 2006). Because
it is a weak acid, lactate proves to be toxic when accumulated in the extracellular
matrix but it may be consumed by some nontumorigenic cells in tumor tissue as a
carbon source. Tumor-associated fibroblasts express high levels of proteins
involved in lactate absorption (MCT1/MCT2) and lactate oxidation (LDH1) and
reduced levels of proteins involved in glucose transport (GLUT1) (Koukourakis
et al. 2006). It seems that cancer cells and nontumorigenic cells have harmoniously
collaborating metabolisms that enable the survival of the tumor tissue. Extracellular
lactate was found also to inhibit the differentiation of monocytes to dendritic
cells and to inactivate the cytokine release from dendritic and cytotoxic T cells
(Hirschhaeuser et al. 2011), the key players in anti-tumoral immune response. The
conceptual progress in the study of the immune response to cancer development in
the human body has recently added the ability of tumors to evade immune
destruction to the list of hallmarks of cancer (Hanahan and Weinberg 2011).

In the yeast S. cerevisiae, pyruvate metabolism and the regulation of fluxes at
the pyruvate branch point have been extensively studied in the past and were
reviewed by Pronk et al. (1996). There are three enzymes that play crucial roles in
the assimilation or dissimilation of pyruvate: pyruvate dehydrogenase complex
(PDH), which enables the direct decarboxylation of pyruvate to acetaldehyde;
(PDC), which catalyzes the decarboxylation of pyruvate to acetaldehyde; and
(PC), which promotes the formation of oxaloacetate by the anaplerotic carbox-
ylation of pyruvate. Several authors have proposed that the intracellular concen-
tration of pyruvate itself is an important factor in the regulation of fermentative
and respiratory dissimilation. That is, the Km value of the PDH complex is lower
than that of PDC (Boiteux and Hess 1970; Kresze and Ronft 1981). However, PDH
as a mitochondrial and PDC as a cytosolic enzyme are located in different sub-
cellular compartments and are therefore unable to evenly compete for pyruvate
(Van Urk et al. 1989). According to Holzer’s model, PDC is largely bypassed at
low intracellular pyruvate concentrations, enabling the respiratory dissimilation of
pyruvate by the PDH complex during aerobic conditions, accompanied by low
specific growth rates (Holzer 1961). In contrast, high intracellular concentrations
of pyruvate enable higher PDC activity, triggering alcoholic fermentation under
anaerobic conditions and during aerobiosis at high specific growth rates (a long-
term Crabtree effect) (Pronk et al. 1996). The PDC enzyme produces acetaldehyde
which can be either reduced to ethanol or oxidized to acetate. The Km of the
acetaldehyde dehydrogenase for acetaldehyde is 100-fold lower than that of eth-
anol dehydrogenase, suggesting that acetate is formed under conditions where no
ethanol is produced. Acetate is then transformed into acetyl-CoA by acetyl-CoA
synthetase, which enters the mitochondria to bypass the PDH pathway. At slightly
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higher specific growth rates, acetate accumulates extracellularly as a result of
insufficient activity of acetyl-CoA synthetase, which is required for the complete
oxidation of acetate, and ultimately, ethanol formation results from an insufficient
activity of acetaldehyde dehydrogenase (Postma et al. 1989). PC in yeast cells
appears to be predominantly regulated by the concentrations of substrate and
effectors, rather than by changes in enzyme synthesis. An increase in the cytosolic
pyruvate concentration, accompanied by an increased growth rate, primarily
increases the flux through PDC (Km 5 mM), but the PC activity is also accelerated
(Km 0.8 mM) (Ruiz-Amil et al. 1965). Therefore, the anaplerotic rate of oxalo-
acetate formation must increase linearly with the growth rate. The increased flux
through PDC may be a direct consequence of the requirement for an increased rate
of oxaloacetate formation by PC (Pronk et al. 1996).

6.3.4 Tri-Carboxylic Acid Cycle

The major route of entry of pyruvate into the TCA cycle of glioblastoma cells is
through PDH, while the role of PC is negligible (DeBerardinis et al. 2007). The
active TCA cycle can be detected by 13C-NMR spectroscopy analysis but it is
characterized by an efflux of substrates for use in biosynthetic pathways, particularly
fatty acid synthesis. Mitochondrial citrate functions as a precursor for fatty acid
synthesis that must be first exported out of mitochondria and subsequently processed
by citrate lyase to acetyl-CoA, which is channeled into lipid production. Spectro-
scopic measurements show that approximately 60 % of the lipogenic acetyl-CoA
pool is derived from glucose, while the rest is believed to be formed from glutamine
(DeBerardinis et al. 2007). The consumption of citrate for lipid synthesis results in a
net loss of oxaloacetate (OAA), the acceptor for pyruvate derived acetyl-CoA,
which must be regenerated to maintain the integrity of the TCA cycle. Metabolic
flux analyses have revealed that glutamine, the most abundant amino acid in the
mammalian blood serum, is used by rapidly growing cancer cells to generate the
pool of a-ketoglutarate, which can be metabolized through the TCA cycle to gen-
erate OAA. In fact, glutamine is an important source of energy for proliferating
cancer cells (DeBerardinis et al. 2008). However, the majority of glutamine
(approximately 60 %) is converted into lactate and alanine, two molecules that are
largely excreted from the cells as waste (DeBerardinis et al. 2007).

In yeasts, the TCA cycle enzymes are fully functional during growth on non-
fermentable carbon sources, and the addition of glucose to the medium represses the
activities of some mitochondrial enzymes. Isocitrate lyase, an enzyme of the gly-
oxylate shunt, is inactivated by phosphorylation mediated by cAMP-dependent
protein kinase (PKA) that is triggered by a transient peak in cAMP concentration
after sensing glucose or sucrose (Ordiz et al. 1996). Similarly, the inactivation of the
cytosolic malate dehydrogenase isoenzyme has been shown to be induced by
phosphorylation after a glucose pulse, but no specific kinase has been identified
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(Minard and McAlister-Henn 1994). No reports are available in the literature on the
changes in the activities of other TCA cycle enzymes in S. cerevisiae, suggesting a
poor regulation of these enzymes by environmental factors.

6.3.5 Balancing the NADH/NADPH Ratio

In tumors, rapidly proliferating cells demand a stable supply of ATP and reducing
power in the form of NADPH. When there is enough ATP formed by substrate-
level phosphorylation during accelerated glycolysis, NADPH may become the
limiting factor of growth. However, during glutaminolysis, malate must be oxi-
dized to pyruvate by NADP+-specific malate dehydrogenase (malic enzyme) in the
cytosol; this enzyme enables the robust production of NADPH, the reducing power
urgently needed as the electron donor primarily for fatty acid synthesis (Vander
Heiden et al. 2009). Cancer cells are particularly sensitive to glutamine withdrawal
because the glutamine depletion was found to trigger apoptosis after the drop in
TCA cycle intermediates (Yuneva et al. 2007). In tumors, glutaminolysis is driven
by the c-Myc oncogene, and the genes involved in glutamine metabolism appear to
be under both the direct and indirect control of the c-Myc transcription factor
(Wise et al. 2008; Gao et al. 2009).

In the yeast S. cerevisiae, acetate formation plays a significant role in NADPH/
NADH balance. During rapid aerobic growth of cells, a notable amount of acetic
acid is produced in addition to ethanol. The acid continues to accumulate after
glucose exhaustion and ethanol oxidation. At higher specific growth rates (higher
dilution rates in a chemostat), acid production is considerable, notably in the phase
of ethanol consumption, when the alcohol is almost quantitatively converted to
acetic acid (Dijken and Scheffers 1986). It is important to realize that acetic acid
production results in the formation of NADH or NADPH by the isoforms of
acetaldehyde dehydrogenase. Thus, acetic acid production by the NADH depen-
dent mitochondrial isoform of acetaldehyde dehydrogenase (ALD4p) would
indicate a limitation in another NADH-producing pathway, such as the TCA cycle,
providing that the respiratory capacity to reoxidize the formed NADH is not
saturated. Acetic acid production by the NADPH-dependent cytosolic isoenzyme
(ALD6p) indicates a limited NADPH production, such as by the pentose phosphate
pathway (Ferreira et al. 2004).

6.4 Respiration

Over 80 years ago, Otto Warburg hypothesized that in addition to deregulated gly-
colysis, mitochondrial respiration is irreversibly damaged in cancer (Warburg 1956).
Indeed, it was later confirmed that the mitochondrial number and oxidative phos-
phorylation (OXPHOS) are downregulated in most cancers (Modica-Napolitano
et al. 2007). The main reason for OXPHOS disfunction seems to be the mutations that
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occur at different levels. For example, the mitochondrial OXPHOS enzyme succinate
dehydrogenase (SDHD, complex II) is shown to be mutated in paragangliomas and
pheochromocytomas (Baysal et al. 2000). Complex II and IV activities decrease in
some hepatoma cell lines (Sun and Cederbaum 1980), and mitochondrial DNA
mutations have been increasingly identified in some colorectal tumors (Polyak et al.
1998). However, it was proposed that injury to OXPHOS induces a mitochondrial
checkpoint response, which regulates reversible epigenetic modification (such as
DNA methylation) and irreversible genetic changes in the nuclear genome (Chandra
and Singh 2011). No reports could be found in the literature on the allosteric inhi-
bition of respiratory complexes in cancer cells that would downregulate OXPHOS
and therefore contribute to the overflow of lactate.

On the other hand, in Crabtree-positive yeasts (FBP), an intermediate of gly-
colysis, was found to inhibit the respiration of isolated mitochondria. More pre-
cisely, FBP in physiological concentrations decreased the activity of mitochondrial
complexes III and IV (Díaz-Ruiz et al. 2008). The importance of this finding can
be supported by the fact that no such phenomenon could be detected in Crabtree-
negative yeasts.

6.5 Ros

High specific growth rates supported by nutrient excess in the environment can
cause a nutrient stress both in metazoans and unicellular organisms. Under growth
conditions with an unlimited supply of nutrients, intracellular intermediates are
elevated. When the breakdown of metabolites in the TCA cycle exceeds the
capacity of the electron transport chain (ETC) of OXPHOS to assimilate the
resulting electrons, an increased production of reactive oxygen species (ROS) is
detected, including H2O2, superoxide anion, and hydroxyl radical (Wellen and
Thompson 2010). Therefore, an elevated NADH/NAD+ ratio is the major factor
leading to increased mitochondrial production of ROS. ROS cause wide-ranging
damage to macromolecules, resulting in genetic degeneration and physiological
disfunction, and eventually lead to cell death (Gutteridge 1993).

In cancer cells, the stalling of the ETC due to mutated OXPHOS genes can cause
a buildup of electrons and enhanced production of superoxide (Brandon et al.
2006). Mitochondrial ROS production increases with oncogene-induced metabolic
stress (the Warburg effect), and substantial evidence indicates that elevated ROS
levels can further promote tumorigenesis (Halliwell 2007). Highly reactive ROS
can, therefore, promote cancer by increasing DNA mutations, regulating signaling
and transcription, and promoting inflammation (Wellen and Thompson 2010).

In yeasts, similar nutrient stress may occur when nutrients are in excess, and
concomitant ROS overproduction can even trigger apoptosis (Madeo et al. 1999).
Interestingly, Crabtree-positive yeasts can reach higher specific glucose con-
sumption rates than Crabtree-negative yeasts, while growth rate is similar among
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both types of yeasts (Hagman et al. 2013). Therefore, it is tempting to speculate
that ethanol overflow by Crabtree-positive yeasts may be a mechanism to prevent
metabolic stress and excessive ROS formation. It seems that two mechanisms are
needed to efficiently prevent ROS formation in Crabtree-positive yeasts: (i)
pyruvate metabolism toward the ethanol production and (ii) inhibition of respi-
ratory Complex III by elevated levels of FBP that are characteristic of rapid
growth forcing the cells to reoxidize mitochondrial NADH at the level of ethanol
dehydrogenase (Díaz-Ruiz et al. 2008). Recently, another mechanism of control-
ling redox metabolism in yeast was described with pyruvate kinase (PYK) as a key
player. A shift from fermentative to oxidative metabolism caused a decrease in
PYK activity that prevented the increase in ROS formation. This adaptation was
attributable to accumulation of the PYK substrate phosphor-enol-pyruvate that
acted as a feedback inhibitor of glycolytic enzyme triose-phosphate-isomeraze
(TPI). TPI inhibition stimulated the pentose phosphate pathway, increased anti-
oxidative metabolism, and prevented ROS accumulation (Grüning et al. 2011).

6.6 Conclusion

Although yeasts and humans both have eukaryotic cellular structures, there are
huge differences between them. Although the catabolic part of the metabolism
appears to be similar, there are obvious differences in the organization of their
genomes. While the genome of haploid S. cerevisiae contains approximately 12
million base pairs and 6,275 genes (Goffeau et al. 1996), the genome of haploid
human cells consists of 3 billion base pairs, and the diploid genome found in
somatic cells has twice the DNA content. It is estimated that there are approxi-
mately 21,000 protein-coding genes in human cells, and it has recently been
confirmed that approximately 80 % of the human genome serves a specific bio-
chemical purpose (Pennisi 2012). In other words, the human genome in somatic
and cancer cells is approximately 500 times larger than the yeast genome. Such
complex organization of the human genome, together with the more complex
physiology of human cells, especially at the level of signal transduction, must be
reflected in the slower growth of human cells with respect to yeast cells. Moreover,
because each tumor is distinct with respect to its genetic alternations (Vogelstein
et al. 2013), different tumor cells may display different metabolic features. For
instance, some cell lines exhibit enhanced glycolytic flux in the presence of
oxygen, convert the majority of consumed glucose into lactate (glioblastoma cells)
(DeBerardinis et al. 2007), and show reduction of OXPHOS. In contrast, studies on
different types of cancer cells have revealed contradictory modifications with
upregulated OXPHOS components and larger dependence of cancer cells on
oxidative energy production (Jose et al. 2011).

As all catabolic reactions within the cells must be balanced with anabolic
reactions, it is difficult to compare the metabolism of two organisms with different
specific growth rates, such as human cancers and yeast cells. However, there are
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also numerous similarities between these two types of cells. In general, tumor and
yeast cells show accelerated metabolic flux through glycolysis under aerobic
conditions; a major portion of ATP is formed by substrate-level phosphorylation at
the expense of OXPHOS in both cell types, the NADH/NAD+ ratio in the cells is
maintained by dissimilative production of lactate or ethanol, and the NADPH/
NADH balance is sustained by glutaminolysis or by acetate formation. All of these
common features enable fast proliferation on the one hand and survival of the cells
on the other in both cancer and yeast cells. However, the underlying mechanisms
for these features may differ between the various cancer cell lines and yeast cells
that have been outlined in this chapter. It is important to realize that primary
metabolism is fairly well-conserved between all living organisms but that
numerous variations have developed during the course of evolution that are
characteristic to individual organisms or cell types.

Schematic
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This schematic shows the vital similarities and differences between Warburg effect
in cancer cells and Crabtree effect in yeasts. In both cell types, metabolic flux
through glycolysis is enhanced (bold arrows) and both cell types excrete a primary
metabolite lactate and ethanol, respectively. Enhanced glycolysis is characterized
by overproduction of NADH which is partly reoxidized by lactate and ethanol
formation but NADH/NADPH ratio cannot be sufficiently maintained by NADPH
production through the pentose phosphate shunt. Additional reactions are needed
in both cell types for efficient reducing power formation, however, different
mechanisms are functional in each cell types. In cancer cells glutaminolysis
enables NADPH formation by the activity of cytosolic malic enzyme and in yeasts
mitochondrial NADP+-dependent acetaldehyde dehydrogenase isoenzyme
(ALD6) plays an important role in balancing the NADH/NADPH ratio.
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Chapter 7
Carbon Metabolism in Pathogenic Yeasts
(Especially Candida): The Role of Cell
Wall Metabolism in Virulence

Keunsook K. Lee and Carol A. Munro

7.1 Introduction

Fungal pathogens are found in the natural environment and associated with living
organisms including humans. The major life-threatening human fungal pathogens
are Cryptococcus, Aspergillus, and Candida species (spp.). Among Candida spp.,
C. albicans is the most prevalent human pathogen responsible for a range of
infections that differ in their severity according to the host’s immune status. Unlike
C. neoformans and A. fumigatus, which are found in the environment, C. albicans
is only found in mammalian hosts. For that reason, C. albicans has specifically
adapted to assimilate and utilise the available nutrients to grow and colonise
diverse niches in the human body such as the skin, oral cavity, gastrointestinal and
urogenital tracts (Odds 1988; Barelle et al. 2006; Fleck et al. 2011). These niches
provide a variety of unique environments that combine different conditions
including pH, temperature, oxygen availability, competition with resident micro-
biota and available nutrients. Therefore, C. albicans has acquired the ability to
adapt and grow in diverse microenvironments facilitated by a flexible metabolism.

The frontline of the pathogen–host interaction or contact is the fungal cell wall.
Cell walls of fungal pathogens play an important role in (i) protection from
harmful environments, (ii) providing physical rigidity to maintain cell shape but
also control morphogenesis during different developmental stages of the fungus
such as formation of mating projections and appressoria, (iii) host immune rec-
ognition and pathogenicity and (iv) maintaining cellular integrity as a robust cell
wall is essential for cell growth (Kapteyn et al. 2000; Gow and Hube 2012).
Hexose sugars such as glucose, mannose and galactose are used by C. albicans
primarily to produce energy and to synthesise the cell wall polysaccharides glu-
cans, mannan and chitin. The cell wall comprises about a third of the total cellular
biomass and cells have to carefully coordinate the production of new wall material
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to enable cell growth. A number of studies have demonstrated the impact of niche-
specific metabolic regulation on cell wall remodelling in C. albicans, which leads
to alterations in host–pathogen interactions and importantly sensitivity to anti-
fungal agents. For example, during Candida infections in a rabbit systemic model,
transcriptional profiling revealed alterations in the expression of genes associated
with alternative carbon source utilization, glucose assimilation, sugar transporters
and cell surface remodelling (Walker et al. 2009). Up-regulation of genes asso-
ciated with gluconeogenesis and the glyoxylate cycle has been observed in
C. albicans and C. glabrata exposed to either human blood or neutrophils (Fradin
et al. 2004; Hube 2006; Fradin and Hube 2006; Fukuda et al. 2013). Fluorescent
reporter constructs have revealed that the metabolic status of individual C. albi-
cans cells within kidney lesions from a murine infection model can vary with some
cells undergoing gluconeogenesis and others glycolysis (Barelle et al. 2006),
which suggests carbon starvation is relevant in vivo. Utilisation of an alternative
carbon source in vitro like lactate by C. albicans results in changes in cell wall
architecture, and eventually alteration in the host’s immune responses (Ene et al.
2012a, 2013). Taken together, the architecture of the C. albicans cell wall is
strongly influenced by the cell’s metabolic status, which is regulated by nutrient
availability within the host’s niches. Indeed, this leads to the modification of host–
pathogen interactions.

The C. albicans cell wall is a complex and dynamic polysaccharide and protein
network, which undergoes remodelling of both architecture and composition
depending on the available carbon sources, growth phase, developmental stage and
in response to various external signals (Ene et al. 2012a, 2013; Chaffin et al. 1998;
Bowman and Free 2006). The composition of fungal cell walls varies depending on
the fungal species. The C. albicans cell wall consists of two major layers, a
skeletal inner layer (glucan and chitin) and a fibrillar outer layer (mannoproteins)
(Bowman and Free 2006; Klis et al. 2001). The composition of the C. albicans cell
wall is 1–5 % chitin, 60–65 % glucan, and 35–40 % mannoproteins (per dry wall
weight) (Klis et al. 2001; Munro et al. 1998). However, the cell wall composition
can be flexibly changed under stress conditions such as exposure to antifungal
drugs or in response to certain environments. A number of genes that are involved
in cell wall biosynthesis and regulation have been shown to be vital for cell
growth, viability and pathogenicity. From a therapeutic aspect, fungal cell wall
components, especially chitin and glucan, are absent from mammalian host cells,
which highlight the potential of the fungal cell wall as a target for antifungal
agents. Accordingly, the fungal cell wall is of significant biological interest in
order to understand its contribution to pathogenicity and for the development of
novel clinical therapies, vaccines and diagnostics. This chapter focuses on
C. albicans cell wall biosynthesis, mainly discussing key polysaccharides related
to sugar metabolism, and to a lesser extent cell wall proteins, related to fungal
pathogenesis.
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7.2 Glucose Metabolism and Glucan Synthesis

b-glucans, polymers of D-glucose, represent the major and essential components
of the fungal cell wall. b(1,3)-linked glucan is the most abundant polymer in the
fungal cell wall. Other glucans, such as b(1,6)-linked, b(1,3)/(1,4)-linked, a(1,3)-
linked and a(1,4)-linked, have also been found in cell walls of different fungal spp.
(Klis et al. 2001; Latgé 2007; Free 2013). In the C. albicans cell wall, b-glucans
contribute to approximately 60–65 % of total cell wall dry weight with
b(1,3)glucan and b(1,6)glucan representing approximately 70 and 30 %, respec-
tively, of the total cell wall glucan (Klis et al. 2001). b-glucan together with chitin
represent the key structural components of the C. albicans cell wall, and give cells
physical strength, rigidity and some flexibility.

b-glucans are formed by polymerisation of UDP-D-glucose monomers linked by
b-glycosidic bonds, and synthesised by glucan synthases. D-glucose is transported
into the cells via glucose transporters (e.g. HGT family in C. albicans) (Fan et al.
2002). As shown in Fig. 7.1, UDP-glucose in the cytosol is synthesised by a
number of enzymes. Glk1 and Glk4 (glucokinases) and Hxk2 (hexokinase) catalyse
the phosphorylation of D-glucose, mannose and galactose, and possibly glucosa-
mine (GlcN) and N-acetylglucosamine (GlcNAc). The glucose-6-phosphate formed
is converted into either fructose-6-phosphate by Pgi1 (glucose-6-phosphate isom-
erase) or glucose-1-phosphate by Pgm2. Fructose-6-phosphate is consumed as a
substrate for glycolysis, gluconeogenesis, and can feed into glucan, mannan and
chitin biosynthesis pathways (see below). An UDP-glucose pyrophosphorylase,
Ugp1, converts UTP and glucose-1-phosphate into UDP-glucose, which is a direct
substrate for glucan and glycogen synthesis. Although, our understanding of these
enzymes is superficial in the case of pathogenesis and cell wall biosynthesis in
C. albicans, some evidence has been gathered recently (Hoehamer et al. 2010). In
S. cerevisiae defects in the phosphorylation of ScUgp1 results in hypersensitivity to
Congo Red and Calcofluor White (CFW) and a weakened cell wall due
to decreased glucan content (Smith and Rutter 2007). Exposure of C. albicans cells
to caspofungin, a b(1,3)glucan synthase inhibitor, which reduces cell wall glucan
levels, induced Pgm2 and Hxk2 according to MALDI-TOF mass spectroscopy
proteomic analysis (Hoehamer et al. 2010). This study links cell wall stress
response to carbohydrate metabolism in vitro. Gene expression of C. albicans
GLK1 and UGP1 is significantly upregulated in oropharyngeal candidiasis com-
pared to in vitro conditions (Fanning et al. 2012). Furthermore, exposure of
C. albicans to macrophages significantly upregulates expression of genes associ-
ated with carbohydrate transport/metabolism/assimilation; HXT5, HGT2, HGT12,
PCK1, GLK1, GLK4, ICL1, GAL1, INO1 and NAG1 (see below) (Lorenz et al.
2004; Marcil et al. 2008), indicating that C. albicans modulates carbohydrate
metabolism in response to in vivo conditions including interactions with host cells,
which confer a nutrient-deplete environment. Therefore alterations in the pathway
to UDP-glucose synthesis are likely to confer changes in the cell wall and thereby
influence host–pathogen interactions.
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b(1,3)glucan synthase in C. albicans is a complex consisting of alternative
catalytic subunits (Fks1/Gsc1, Fks2/Gsl2 and Gsl1) and a regulatory subunit
(Rho1) (Qadota et al. 1996; Mio et al. 1997a). Both FKS1 and RHO1 in
C. albicans are essential for cell growth, as attempts to create a null mutant of
FKS1 were unsuccessful (Mio et al. 1997a; Becker et al. 2010). However, partial
disruption of FKS1 resulted in a 50 % reduction of b-glucan levels compared to
the control (Mio et al. 1997a). The b(1,3)glucan synthase Fks subunits are the
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targets of the echinocandin antifungal drugs (Douglas et al. 1997; Denning 2002).
As both FKS1 and RHO1 genes are essential for cell viability, they are required for
virulence in vivo. Repression of FKS1 or RHO1 in C. albicans using the regu-
latable TET-off system resulted in significantly attenuated virulence in a murine
model (Becker et al. 2010). Fks1 also plays a role in C. albicans biofilm formation
(Nett et al. 2007; Sardi et al. 2013). The b(1,3)glucan content in the C. albicans
biofilm matrix is higher than in the walls of planktonic cells (Nett et al. 2007,
2010). The glucanase gene, XOG1, and transglycosidase genes, BGL2 and PHR1,
are more highly expressed in Candida biofilms compared to planktonic cells (Taff
et al. 2012). Deletion of each of these genes resulted in reduced b(1,3)glucan
matrix upon biofilm formation. Detection of circulating b-glucan has been utilised
for the diagnosis of invasive and bloodstream fungal infections (Ostrosky-Zeichner
2012) with moderate sensitivity and specificity (*80 %) for candidiasis and
aspergillosis (Onishi et al. 2012).

Compared to b(1,3)-glucan synthesis, we have little understanding of b(1,6)
glucan synthesis despite this polymer having an important role in covalently tethering
the major class of cell wall proteins, the GPI-modified proteins to the wall. So far,
several enzymes involved in b(1,6)glucan assembly and organisation have been
identified; Kre1, Kre5, Kre6, Kre9, Skn1 and Big1. C. albicans strains lacking one of
these genes show a significant reduction in b(1,6)glucan levels (Mio et al. 1997b;
Lussier et al. 1998; Herrero et al. 2004; Umeyama et al. 2006). Cell wall composition
is altered in response to loss of function of b(1,6)glucan-associated genes. For
example, deletion of KRE5 resulted in an approximately 2-fold decrease in mannan,
1.5-fold increase in b(1,3)glucan, and 2-fold increase in chitin content (Herrero et al.
2004), while a C. albicans big1 mutant had a 2-fold higher chitin content with
unchanged b(1,3)glucan levels (Umeyama et al. 2006). C. albicans KRE6 is an
essential gene for cell growth (Mio et al. 1997b). The C. albicans KRE6/kre6 het-
erozygous mutant had unchanged b(1,3)glucan levels but high sensitivity to CFW
compared to the control, indicating that this mutant had a higher chitin content (Mio
et al. 1997b). According to these studies, deletion of KRE5, KRE6 or BIG1 also leads
to defects in hyphal induction by serum and/or virulence in a murine model. Inter-
estingly homozygous disruption of KRE9 is lethal in cells grown on glucose, but
viability can be restored when cells are grown on galactose (Lussier et al. 1998). Also,
a KRE9 conditional mutant generated using the TET-off suppression system showed
significantly decreased virulence in a murine model under repression conditions
(Becker et al. 2010). It has been reported that derivatives of pyridobenzimidazole
inhibit b(1,6)glucan synthesis and their primary target is known to be Kre6 in
S. cerevisiae (Kitamura et al. 2009). b(1,6)glucan biosynthesis is, therefore,
responsible for (i) growth depending on carbon source, (ii) hyphal formation, (iii) cell
wall integrity and (iv) virulence, and could be a potential target for antifungal agents
(Kitamura et al. 2009). Thus it is important to gain a better understanding of the
b(1,6)glucan synthesis pathway.
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7.3 Cell Wall Chitin Biosynthesis

Chitin is a linear polymer of b(1,4)-linked N-acetylglucosamine (GlcNAc) and is the
second most abundant polysaccharide in the environment after cellulose. Although,
it is a minor component of C. albicans cell walls, it is crucial for cell growth,
viability and virulence (Bulawa et al. 1995; Munro et al. 2001; Lenardon et al. 2010).
Generally, chitin is thought to be enriched in a region between the plasma membrane
and the glucan complex. It is covalently attached to the non-reducing end of
b(1,3)glucan (Kollar et al. 1995, 1997), and cross-linked to b(1,6)glucan (Cabib
et al. 2007; Cabib 2009). Chitin can be deacetylated to chitosan by chitin deacety-
lases and in Cryptococcus neoformans chitosan is important for virulence (Baker
et al. 2011). C. albicans has a putative chitin deacetylase Cda2, which has not been
fully explored yet.

C. albicans synthesises chitin from UDP-GlcNAc through the chitin biosyn-
thesis pathway (Fig. 7.1). This pathway is regulated by several enzymes that
convert substrates including glucose, GlcNAc and GlcN to chitin (Milewski et al.
2006). Synthesis of the chitin building blocks, UDP-GlcNAc, begins with con-
version of fructose-6-phosphate to glucosamine-6-phosphate by glucosamine-6-
phosphate synthase (Gfa1), which is then acetylated by an acetyltransferase (Gna1)
to GlcNAc-6-phosphate. Agm1 (acetylglucosamine phosphomutase) converts
GlcNAc-6-phosphate into GlcNAc-1-phosphate. UDP-GlcNAc is produced from
UTP and GlcNAc-1-phosphate by the catalytic reaction of UDP-GlcNAc pyro-
phosphorylase (Uap1). UDP-GlcNAc is used as a substrate by C. albicans chitin
synthases (Chs1, Chs2, Chs3 and Chs8) to produce chitin chains.

In S. cerevisiae some genes (ScGFA1, ScGNA1, ScAGM1 and ScUAP1)
involved in chitin biosynthesis are essential for cell viability (Milewski et al.
2006). Similarly, C. albicans GFA1 and GNA1 genes are essential for growth on
glucose (Smith et al. 1996; Mio et al. 2000). C. albicans gfa1D and gna1D mutants
require GlcNAc to grow, provision of GlcNAc bypasses the essential steps cata-
lysed by Gfa1 and Gna1 in the UDP-GlcNAc pathway. Enzyme activity of Gfa1 is
inhibited by UDP-GlcNAc (a negative feedback loop) and N3-(4-methoxyfuma-
royl)-(S)-2,3-diaminopropanoic acid (FMDP, a glutamine analogue and a specific
inhibitor of GlcN-6-phosphate synthase) (Smith et al. 1996). Becker et al. (2010)
have shown that the TET-off suppressed GFA1 and GNA1 conditional mutants
were severely attenuated in a murine model of candidiasis. Among these enzymes,
Gfa1, in particular, has been shown to play a key role in cell wall stress responses,
compensatory mechanisms that results in up-regulation of chitin synthesis in
response to cell wall defects. Many fungi respond to cell wall stress caused by
chemical agents or mutation of cell wall-related genes by increasing cell wall
chitin and elevating Gfa1 enzyme activity and mRNA levels (Lagorce et al. 2002;
Bulik et al. 2003; Ram et al. 2004; Copping et al. 2005). In S. cerevisiae, cell wall-
defective mutants such as Scfks1D, Scmnn9D and Scoch1D contain a 4- to 5-fold
increase in chitin and have up to 7-fold higher activity of Gfa1 (Bulik et al. 2003).
Furthermore, those mutants have a significant increase in expression of CHS3
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(Ram et al. 2004) and elevated Chs3 activity (Bulik et al. 2003). GFA1 expression
levels were threefold upregulated in C. albicans exposed to caspofungin (Copping
et al. 2005). Likewise, Aspergillus niger stimulates chitin biosynthesis in response
to CFW (Ram et al. 2004). AngfaA gene similar to ScGFA1 is also transcrip-
tionally activated when the cell wall integrity of A. niger is disrupted by treatment
with CFW or caspofungin. Induction of orthologous gfa genes has also been found
in other fungal spp. such as Penicillium chrysogenum and Fusarium oxysporum in
response to CFW treatment (Ram et al. 2004).

7.4 GlcNAc Metabolism and Signalling

C. albicans is able to utilise amino sugars such as glucosamine (GlcN) and its
acetylated form GlcNAc as alternative carbon sources (Singh and Datta 1979;
Konopka 2012). These sugars can be readily found in human host niches in par-
ticular mucosal membranes, one of the niches colonised by C. albicans (Sengupta
and Datta 2003). Also, GlcNAc can be produced by bacteria inhabiting the human
gastrointestinal tract (Plumbridge 1989) and is a component of bacterial cell wall
peptidoglycan.

In C. albicans, a cluster of Nag proteins on chromosome 6 are involved in
GlcNAc catabolism and chitin biosynthesis (Fig. 7.1). The cluster is comprised of
Nag3 and Nag4 (putative hexose-sugar transporters), Nag5/Hxk2 (GlcNAc
kinase, EC2.7.1.59), Nag2/Dac1 (GlcNAc-6-P deacetylase, EC3.5.1.25), Nag1
(GlcN-6-P deaminase, EC3.5.99.6) and Nag6 (a cytosolic protein with a putative
GTP-binding motif) (Konopka 2012; Natarajan and Datta 1993; Jyothi Kumar
et al. 2000; Yamada-Okabe et al. 2001; Yamada-Okabe and Yamada-Okabe
2002). Nag3 and Nag4 are thought to be involved in uptake of exogenous hexoses
such as GlcNAc, glucose and galactose (Yamada-Okabe and Yamada-Okabe
2002). Nag3 is a member of the major facilitator superfamily and has 81 %
homology to Nag4 at the amino acid level, homologues exist in S. cerevisiae
(Yamada-Okabe and Yamada-Okabe 2002). In addition to these putative trans-
porters, the first GlcNAc-specific transporter Ngt1 has been characterised in
C. albicans (Alvarez and Konopka 2007), although it does not belong to the Nag
cluster (Fig. 7.1). Deletion of NGT1 resulted in a reduction in efficiency of
GlcNAc uptake. Ngt1-GFP was highly induced in cells grown in medium sup-
plemented with GlcNAc, but not any other sugars including glucose, galactose,
fructose, N-acetylmannosamine (ManNAc) and GlcN, and repressed by glucose
(Alvarez and Konopka 2007). Furthermore, Ngt1-GFP was specifically induced
by GlcNAc in vitro, and expressed after phagocytosis by murine macrophages
ex vivo. This indicates activation of alternative carbon source metabolism inside
macrophages, in agreement with a previous study (Lorenz et al. 2004). The
function of Nag6, has not been elucidated. The expression of NAG6 (as well as
NAG3 and NAG4) in C. albicans was not induced by GlcNAc, whereas deletion
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of NAG6 (or NAG3 or NAG4) resulted in growth inhibition upon exposure to
cycloheximide (Yamada-Okabe and Yamada-Okabe 2002).

In particular, Nag5, Nag2 and Nag1 enzymes in C. albicans are involved in the
conversion of GlcNAc into Fructose-6-phosphate, the reverse of the Gfa1- and
Gna1-catalysed reactions. Nag5 phosphorylates GlcNAc to produce GlcNAc-6-
phosphate, which is deacetylated into GlcN-6-phosphate by Nag2, and Nag1
converts GlcN-6-phosphate into fructose-6-phosphate. Compared to C. albicans,
there are no S. cerevisiae homologues of NAG1, NAG2 and NAG5, suggesting that
GlcNAc catabolism differs in S. cerevisiae to C. albicans (Wendland et al. 2009).
For example, addition of both exogenous GlcN (Walker et al. 2008) and GlcNAc
(unpublished) to the growth medium resulted in increased chitin in C. albicans
cell walls. On the other hand, GlcN (not GlcNAc) stimulated Chs3 activity in
S. cerevisiae, and increased cell wall chitin content (Bulik et al. 2003). As
expected, exogenous GlcNAc does not affect chitin levels in S. cerevisiae.
Therefore, C. albicans differs from S. cerevisiae in that exogenous GlcNAc can
activate chitin synthesis and C. albicans specific genes NGT1 and the GlcNAc
cluster of genes are likely to be involved in this. As well as inducing higher chitin
levels mass spectrometry analysis of membrane proteins revealed that a number of
cell wall-related proteins (Ecm331, Phr1, Dcw1, Bgl2, Sap9, Rho1 and Pga52)
were highly expressed in C. albicans cells exposed to GlcNAc (Alvarez and
Konopka 2007). This may reflect more global changes in the cell wall in response
to exogenous GlcNAc, through Rho1-signalling or by action of carbohydrate-
active enzymes such as Phr1.

NAG1, NAG2 and NAG5 have been shown to be involved in host interactions
and virulence in addition to or as a consequence of cell wall remodelling. For
example, deletion of NAG5 increased sensitivity to the chitin synthase inhibitor
Nikkomycin Z (Rao et al. 2013). The nag5 mutant displayed a reduction in
adherence to human buccal epithelial cells and attenuated virulence in a murine
model of candidiasis (Yamada-Okabe et al. 2001; Singh et al. 2001). Localisation
of Nag5-GFP was mainly observed in the cytosol of C. albicans grown with
GlcNAc, but no detectable signals were found in C. albicans cells grown in a
medium containing glucose or serum or Spider medium (Rao et al. 2013). Inter-
estingly, this study also demonstrates that when C. albicans cells are grown in a
medium containing 5 % ethanol, a non-fermentable carbon, Nag5-GFP was
localised to mitochondria. This suggests localisation of Nag5 can be influenced by
different carbon sources, and this may influence its cellular function.

GlcNAc is an important signalling molecule, besides inducing C. albicans
chitin synthesis, GlcNAc also induces white-opaque switching (Huang et al. 2010).
C. albicans can undergo a phenotypic switch from the normal white cells to
opaque cells that have a dramatically increased ability to mate and are altered in
interactions with host cells (Soll 2009). The frequency of white-opaque switching
was higher when C. albicans a/a or a/a cells (homozygous at the mating type
locus) were grown on GlcNAc-containing medium compared to glucose-grown
cells. Genome-wide expression profiles of opaque cells compared to white cells
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showed up-regulation of genes involved in carbohydrate metabolism (NAG1,
MLS1, MDH1 and IDP2), degradation of fatty acid (POX1, FAA2, FOX2 and
FOX3), amino acid permeases (AGP2, CAN3 and GAP1) and cell wall proteins
(SCW4, and CHT1) (Lan et al. 2002). Although, we do not have a full under-
standing of the role of white-opaque switching in pathogenicity opaque cells are
able to colonise the skin of a cutaneous infection murine model better than white
cells (Huang et al. 2010; Kvaal et al. 1999). SAP1 encoding a secreted aspartyl
proteinase is highly expressed in opaque cells, and its expression impacts on
colonisation and adherence to skin in a mouse cutaneous infection model (Kvaal
et al. 1999). Fatty acid b-oxidation and increased proteinase activity could con-
tribute to better colonisation of the skin by opaque cells as the skin is rich in lipids
but lacks free sugars.

GlcNAc also stimulates hypha formation in C. albicans (Konopka 2012;
Naseem et al. 2011; Martin et al. 2013). Promoter analysis revealed that promoters
of NAG5, NAG2 and NAG1 contain STE12 elements (unpublished). The homo-
logue of ScSTE12 in C. albicans is CPH1 that encodes a transcription factor
involved in the mitogen-activated protein kinase (MAPK) pathway required for
mating, virulence, hyphal growth on solid media and filamentous growth in a
matrix via Czf1 (Brown et al. 1999; Huang 2012). Cph1 as well as Efg1, a key
transcription factor downstream of the cAMP-protein kinase (PKA) (Brown et al.
1999; Stoldt et al. 1997) and the transcriptional repressor Nrg1 contribute to the
induction of expression of hyphal-associated genes upon GlcNAc stimulation
(Konopka 2012; Naseem et al. 2011; Martin et al. 2013).

7.5 GlcNAc and Galactose Metabolism

Kamthan et al. (2013) recently revisited the biological significance of the link
between GlcNAc metabolism and GAL gene activation in C. albicans (Kamthan
et al. 2013). The regulation of galactose metabolism (Leloir metabolism) has
been re-wired in C. albicans compared to S. cerevisiae (Campbell et al. 2008).
Gal1 (galactokinase) phosphorylates galactose to produce galactose-1-phosphate,
and then Gal7 (galactose-1-phosphate uridyl-transferase) converts this to UDP-
galactose. UDP-galactose can also be converted to UDP-glucose by Gal10
(UDP-galactose-4-epimerase) (Fig. 7.1). In S. cerevisiae ScGal4 plays a role in
regulating ScGAL gene expression, while in C. albicans Gal4 has a different role
(Martchenko et al. 2007). However, C. albicans Gal4 along with Tye7 is a key
transcriptional activator that orchestrates control of glycolytic genes (Askew
et al. 2009) and cell wall-related genes such as SUN4 (cell wall glycosidase
gene), PGA52, PGA56, PGA14, PGA29, ALS4 and CWH8 (Martchenko et al.
2007). Deletion of GAL4 in C. albicans resulted in up-regulation of TYE7
(Martchenko et al. 2007), suggesting compensatory regulation of TYE7. Also,
both C. albicans GAL4 and TYE7 are required for full virulence in a Galleria
mellonella infection model. Based on promoter analysis, the GAL genes in
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C. albicans are transcriptionally regulated via Cph1, a transcription factor
required for hyphal growth (Martchenko et al. 2007). It has been known for some
time that C. albicans cells grown in galactose-containing medium were more
adherent than glucose-grown cells (Ener and Douglas 1992), which implies
changes in cell surface properties. As expected ALS2 and ALS4 encoding
adhesin-like proteins were 2–3 fold upregulated in C. albicans grown on gal-
actose compared to glucose (Martchenko et al. 2007). In this study, genes
associated with fatty acid degradation (POX1-3, FOX2, FOX3 and FAA2-2),
gluconeogenesis (PCK1) and cell wall functions (ECM38, and RBR2) were
highly expressed in galactose-grown cells. Treatment of C. albicans with
GlcNAc upregulated expression levels of GAL1, GAL7 and GAL10, compared to
glucose-grown cells (Kamthan et al. 2013; Gunasekera et al. 2010). Kamthan
et al. proposed indirect evidence that GAL1 induction by GlcNAc could possibly
occur via the activation of a secondary pathway. C. albicans GAL1 and GAL7
activation by GlcNAc is GAL10-dependent. Mass spectrometry analysis of
C. albicans treated with GlcNAc identified upregulated proteins that included
Nag1, Nag2, Gal1 and Gal10 (Kamthan et al. 2012). Interestingly, metabolomic
analysis highlighted carbohydrates such as xylulose and D-glucose were only
found in glucose-grown C. albicans cells, whereas GlcNAc and ManNAc were
observed in GlcNAc-grown cells (Kamthan et al. 2012). This suggested changes
in metabolite levels between GlcNAc and glucose-grown conditions. Although
there is no direct evidence to link galactose metabolism and chitin synthesis via
the Nag pathway, deletion of GAL10 increased the sensitivity of cells to CFW
and Congo Red (Singh et al. 2007). Further investigation is required to under-
stand the connection between galactose, GlcNAc metabolism, and cell wall
integrity.

7.6 Mannose Metabolism and Glycosylation

The outermost layer of the C. albicans cell wall is composed of mannan, a
mannose-rich polymer covalently linked to proteins, and represents approximately
40 % of the total cell wall composition (Klis et al. 2001). Mannan is composed of
a(1,2)-, a(1,3)-, a(1,6)- and b(1,2)-linked mannose monomers (Shibata et al.
2012). N-linked mannan is linked to a protein moiety via asparagine and O-linked
mannan via serine or threonine (Chaffin et al. 1998; Shibata et al. 2012). Both
N-linked and O-linked mannan are important for host immune interactions and
virulence (Gow and Hube 2012; Netea et al. 2008). N-linked mannan has been
described as a comb-like structure comprised of a core glycan and an extensive
outer branched structure. The branched outer chain has an a(1,6)-linked mannose
backbone and a variety of a(1,2)-, a(1,3)-linked and sometimes b(1,2)-linked side
chains as well as an acid-labile b(1,2)-linked phosphomannan side chain joined
to the backbone by a phosphodiester bond. O-mannan is a linear chain of
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a(1,2)-linked mannose residues, in C. albicans this is typically composed of up to
five mannose units (Munro et al. 2005).

Mannan is synthesised by a sequence of mannosyltransferase reactions that occur
in the ER and Golgi. The mannose-rich glycan is elaborated by the sequential
addition of mannose monomers to the growing mannan chain as the glycoprotein it
is attached to moves through the secretory pathway. The substrate of the mann-
osyltransferases is GDP-mannose as well as dolichol-phosphate-mannose (Dol-P-
Man) (Fig. 7.1). A number of enzymes are involved in the synthesis of N-linked
mannan. First the conserved Man8GlcNAc2 glycan core is synthesised in the ER
and then joined to a protein bearing a N-X-S/T motif by an oligosaccharyltrans-
ferase complex (reviewed by Aebi 2013). Further elaboration of the core N-glycan
takes place in the Golgi initiated by Och1 with the addition of the first a(1,6)-linked
mannose to the core glycan. (Bates et al. 2006). The a(1,6)-linked backbone is
extended to contain up to 200 mannose units with side chains composed of a(1,2)-,
a(1,3)- and sometimes b(1,2)-linked mannose that are added by specific families of
Golgi-localised mannosyltransferases. TEM analysis revealed that an och1D
C. albicans mutant had severely altered cell wall architecture with a thicker cell
wall (glucan and chitin layer) and a barely detectable fibrillar mannoprotein layer
(Netea et al. 2006). The och1 null mutant was avirulent in a murine model of
systemic infection (Bates et al. 2006). In addition, stimulation of cytokines such as
TNF, INFc, IL-6 and IL-10 was significantly lower in C. albicans lacking OCH1
(Netea et al. 2006). These studies reflect the importance of the outer mannan layer in
host interactions. Bmt1–9 are a novel family of C. albicans b(1,2)-mann-
osyltransferases that synthesise the b(1,2)-linked oligosaccharide side chains, these
enzymes are not found in S. cerevisiae (Mille et al. 2008). b(1,2)-linked oligom-
annosides have been shown to reduce the stimulation of inflammatory cytokine
production by dendritic cells (Ueno et al. 2013). A C. albicans mnn4 mutant lacking
the acid-labile phosphomannan side chain was significantly less phagocytosed by
macrophages compared to control cells (McKenzie et al. 2010). Mnn2 is responsible
for the addition of the first a(1,2)-linked mannose to the a(1,6)-linked mannose
backbone in C. albicans. A family of six Mnn2-like enzymes exist and generation of
a sextuple mutant lacking the whole family confirmed the important role of this
family in generating the outer fibrillar mannan layer, virulence in a mouse model of
candidiasis and the stimulation of proinflammatory cytokine production by
monocytes (Hall et al. 2013).

The linear O-mannan is synthesised by a simpler pathway. The initial a(1,2)-
linked mannose is added in the ER to serine or threonine residues of the target
protein by the Pmt family of mannosyltransferases that use as their substrate
mannose activated with dolichyl phosphate. C. albicans has a five-membered Pmt
family and disruption of family members in particular Pmt1 results in a broad
range of defects commensurate with a damaged wall that influences virulence and
host interactions (Prill et al. 2005). The O-mannan chain is extended by the a(1,2)-
mannosyltransferases Mnt1 and Mnt2 that add the second and third mannose
sugars to the chain, respectively (Munro et al. 2005). O-linked mannan is involved
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in adhesion of C. albicans to human buccal epithelial cells, and is required for
virulence (Munro et al. 2005; Buurman et al. 1998).

PMR1 encodes a P-type Ca2+/Mn2+-ATPase required for transporting Mn2+

into the Golgi. Mn2+ is an essential co-factor of Golgi-resident mannosyltransfe-
rases and loss of Pmr1 function affects O-linked and N-linked mannan synthesis
(Bates et al. 2005). The C. albicans pmr1 mutant is hypersensitive to CFW and
Congo Red, and is significantly attenuated in virulence in a murine model of
systemic candidiasis (Bates et al. 2005). Dectin-2 and Mincle have been shown to
recognise a-mannose structures on the C. albicans cell surface (Vautier et al. 2012).
Galectin-3 has an important role in recognition of b(1,2)-mannose of N-linked
mannan in C. albicans (Netea et al. 2008). Galectin-3, associated with TLR2, also
recognises phospholipomannan.

Therefore, defects in mannan biosynthesis alter the properties of cell surface
proteins, for example their adhesiveness and results in activation of a compensa-
tory response, which triggers increased chitin levels. Importantly, altered man-
nosylation and changes in the underlying cell wall architecture, affects the host
immune responses and impact on virulence. Recently, mannan has been proposed
as a potential target for vaccine development for prevention of C. albicans
infections, because mannan is highly antigenic (Lipinski et al. 2012).

7.7 C. albicans Cell Wall Glycoproteins

There are two major classes of covalently attached cell wall proteins (CWPs) in
C. albicans; (1) glycosyl-phophatidylinositol (GPI)-modified proteins linked to the
wall via b(1,6)glucan, and (2) Pir (Protein with Internal Repeat)-CWPs that are
linked directly to b(1,3)glucan (Kapteyn et al. 2000; Klis et al. 2001; Chaffin 2008;
Munro and Richard 2012). Pir-CWPs in C. albicans are represented by Pir1/Pir2
and Pir3/Pir32. Deletion of either allele of PIR1 increases sensitivity to CFW and
Congo Red (Martínez et al. 2004). C. albicans pir32D is hyper-filamentous,
resistant to SDS, H2O2, and NaCl, and hyper-virulent in a murine model of sys-
temic infection (Bahnan et al. 2012). Interestingly, pir32D shows up-regulation of
cell wall chitin deposition. Therefore, the Pir family in C. albicans is involved in
cell wall integrity and virulence.

GPI-modified proteins are the major CWPs, and have been shown to play a role
in morphology, cell wall integrity/organisation, stress responses, host immune
responses and virulence (Klis et al. 2009; Shepardson and Cramer 2013). GPI-
anchors are post-translationally attached to proteins in the ER, and target proteins
to the plasma membrane, some proteins then become translocated to the cell wall,
the GPI-anchor is modified and a remnant becomes attached to b(1,6)glucan
(Chaffin 2008; Klis et al. 2009; de Groot et al. 2003; Richard and Plaine 2007).
The core structure of GPI-anchors consists of GlcN, phosphatidylinositol, etha-
nolamine-phosphate, and mannose sugars (Mora-Montes et al. 2009; Fujita and
Kinoshita 2012).
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A number of GPI-modified CWPs are adhesins or adhesin-like proteins including
the Als family (Hoyer 2001; Hoyer et al. 2008). Als1 and Als3 have been shown to
contribute to virulence as well as cell wall remodelling. C. albicans als1 null mutant
has a significant reduction in adherence to oral mucosa in murine oropharyngeal
candidiasis (Kamai et al. 2002). In addition, an als1D mutant had decreased
adherence to human umbilical vein endothelial cells (HUVECs), but not to buccal
epithelial cells (BECs) (Zhao et al. 2004). In contrast, the als3D mutant was less
adherent to both HUVECs and BECs. Likewise, adhesion of the als3D mutant to
buccal reconstituted human epithelium was also notably defected (Zhao et al. 2004).
Als3 is an important invasin (Phan et al. 2007) as well as being capable of binding
ferritin (Almeida et al. 2008). Deletion of ALS3 resulted in decreased adhesion and
less damage to TR146 oral epithelial cell monolayers (Murciano et al. 2012) and
production of G-CSF, IL-6 and IL-1a cytokines was significantly reduced in com-
parison to wild type (Murciano et al. 2012). Als1 and Als3 are promising targets for
vaccine development (Spellberg et al. 2008; Liu and Filler 2011).

Some other GPI-anchored proteins play a direct role in cell wall assembly and
remodelling (Munro 2013). The Crh family is required for cross-linking chitin and
b(1,3)glucan (Cabib et al. 2007; Pardini et al. 2006; Cabib et al. 2008). The Phr
family are pH-responsive transglycosidases that modulate b(1,3)glucan (Fonzi
1999). C. albicans cells lacking a member of the CRH family (CRH11, CRH12
and/or UTR2) are sensitive to cell wall disturbing agents such as CFW, Ca2+ and
Congo Red. A triple mutant lacking the entire family had similar total glucan
levels, but reduced alkali-insoluble b(1,3)glucan and increased chitin. Further-
more, CRH11 is significantly up-regulated in C. albicans cells treated with
caspofungin (Liu et al. 2005; Bruno et al. 2006). Large numbers of null mutants of
predicted GPI-anchored protein genes have been screened to identify genes
involved in cell wall integrity and caspofungin sensitivity (Plaine et al. 2008). The
rbt1D and hwp1D mutants were sensitive to CFW. The pga31D and ssr1D mutants
were sensitive to both CFW and caspofungin. However, deletion of PGA62 or
PHR1 resulted in an increase in sensitivity to CFW but a reduction in susceptibility
to caspofungin. In this study, cell wall component analysis indicated that both
pga62D and phr1D mutants had higher chitin content and decreased glucan con-
tent. Recently, Pga13 has been characterised in C. albicans (Gelis et al. 2012).
Deletion of PGA13 led to an increase in sensitivity to CFW and Congo Red. Also,
the pga13D mutant is resistant to heat shock and 5-fluorocytosine. Thus, several
GPI-anchored proteins are important for maintenance and assembly of the cell wall
and antifungal susceptibility.
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7.8 Dynamic Changes in the C. albicans Cell Wall
in Response to Nutrient Availability Affect
Host–Pathogen Interactions and Virulence

The C. albicans cell wall can be dynamically modified depending on growth
conditions, morphology, nutrient and oxygen availability, and stress conditions
produced by the host. Within the different host niches, C. albicans is able to cope
with these environmental changes by shifting to alternative metabolic pathways
such as glycolysis, gluconeogenesis, and the glyoxlyate cycle to produce energy
and substrates for other biological functions (Barelle et al. 2006; Fukuda et al.
2013; Lorenz et al. 2004; Marcil et al. 2008; Rubin-Bejerano et al. 2003; Miramón
et al. 2012). Recently, published studies illustrate that an alternative carbon source
such as lactate noticeably affects the architecture and properties of the C. albicans
cell wall, stress responses, host immune recognition and virulence (Ene et al.
2012a, b, 2013). Transmission electronic microscopy (TEM) demonstrated that
lactate-grown C. albicans cells have much thinner glucan/chitin and mannan
layers compared to glucose-grown cells (Ene et al. 2012a). This study also showed
that cells grown in the presence of different sugars such as fructose, galactose and
oleic acid displayed differential sensitivity to CFW and virulence in a mouse
model. For example, lactate-grown cells were hyper-virulent as indicated by the
higher kidney burdens and severe weight loss of animals compared to glucose-
grown cells. Cells pre-grown in medium supplemented with oleic acid were
attenuated in virulence with low fungal kidney burdens and reduced weight loss of
mice, in comparison to glucose-grown cells (Ene et al. 2012a). Galactose-grown
cells were (partially) more virulent as indicated by higher fungal kidney burdens
and greater weight loss of animals (Ene et al. 2012a). As expected, there was a
critical impact on the cell wall proteome and secretome of lactate-grown cells (Ene
et al. 2012b). In particular, chitinases Cht1 and Cht3, glycosidases Phr1 and Phr2
and some GPI-modified proteins Pga4 and Pga31 were notably induced on lactate-
grown cells. Changes on the surface and underlying architecture of the cell wall of
lactate-grown cells influence interactions with the host immune cells and cytokine
profiles (Ene et al. 2013). Lactate-grown C. albicans cells strongly stimulated anti-
inflammatory responses by producing the IL-10 cytokine. Moreover, murine
macrophages phagocytosed lactate-grown C. albicans cells less efficiently, but
lactate-grown cells killed more macrophages than glucose-grown cells (Ene et al.
2013). Therefore, availability of different carbon sources results in cell wall
remodelling that impacts on stress responses and leads to changes in virulence.
Unlike S. cerevisiae, the fungal pathogen C. albicans has an increased capacity to
utilise alternative carbon sources even in the presence of glucose and this should
be considered a virulence attribute (Sandai et al. 2012). In summary, the metabolic
flexibility of C. albicans significantly impacts cell wall properties and so influ-
ences host interactions including immune recognition and modulation and
pathogenesis.
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Analysis of transcriptional profiling from an early stage in the interaction of
C. albicans with mammalian macrophages highlighted a rapid shift to a starvation
mode including increased expression of genes related to gluconeogenesis, fatty
acid degradation, and the oxidative stress response and repression of protein
translation genes (Lorenz et al. 2004). In later stages of macrophage interactions,
C. albicans can switch to hyphal growth, escape from the macrophage and gly-
colysis and protein translation then resume. Similarly, when C. albicans cells were
exposed to human blood, the expression of gluconeogenic genes such as PCK1,
ENO1 and FBA1 was elevated (Fradin et al. 2004). In this study, they also reported
that higher hypha formation was observed in C. albicans cells exposed to plasma
in comparison to human blood. The hypha-associated gene HWP1 was trans-
criptionally more expressed in plasma-exposed C. albicans than human blood-
exposed cells, whereas PHR2 was highly expressed in human blood-exposed cells
(Fradin et al. 2004). A recent study also demonstrated that the glyoxylate cycle is
activated when C. albicans is phagocytosed by human neutrophils indicated by
increased expression of ICL1p-GFP and MLS1p-GFP using a GFP reporter con-
trolled by the promoter of each gene (Miramón et al. 2012). ICL1 is required to
survive neutrophil killing. In addition, when exposed to human neutrophils
C. albicans stimulates up-regulation of amino acid synthesis (Rubin-Bejerano
et al. 2003). GCN4 encoding the transcriptional activator of the general amino acid
control response was upregulated upon exposure to human neutrophils (Rubin-
Bejerano et al. 2003) as well as when cells are grown in the presence of GlcNAc
(Kamthan et al. 2012). Only a couple of genes such as AGP2 encoding an amino
acid permease and ECM17 encoding an enzyme for sulphur amino acid biosyn-
thesis, are Gcn4-regulated and associated with cell wall regeneration or synthesis.
AGP2 expression is upregulated in C. albicans cells treated with caspofungin
(Bruno et al. 2006), and regulated during the white-opaque switching (Lan et al.
2002). When phagocytosed by human neutrophils, C. albicans also initiates
transcriptional activation of antioxidant responses illustrated by up-regulation of
superoxide dismutase (SOD1), or catalase (CTA1/CCT1) (Rubin-Bejerano et al.
2003), and high expression of CTA1p-GFP and SOD5p-GFP (Miramón et al.
2012). Therefore, exposure of C. albicans to the environments generated by host
immune cells such as macrophages and neutrophils impacts on metabolism, amino
acid starvation, morphology, and stress responses as well as cell wall biosynthesis.

Environmental cues for C. albicans yeast-hypha transition are nutrient starva-
tion, accessibility of GlcNAc, CO2 sensing and changes in pH and temperature
(Gow and Hube 2012; Mattia et al. 1982; Sudbery 2011). The response of
C. albicans to these signals is often accompanied by changes in cell wall com-
position and architecture, and expression of cell wall proteins, which impacts on
the host immune recognition and virulence. C. albicans cells grown with serum
abundantly induce hyphal-associated proteins such as Als3, Hwp2 and Hyr1 and
cell wall remodelling proteins including Phr1 (Heilmann et al. 2011). Hwp2, is a
putative GPI-modified cell wall protein, similar to Hwp1, which contributes to
hypha formation, invasive growth and virulence (Hayek et al. 2010). A C. albicans
mutant lacking HWP1, encoding a hypha-associated surface protein has a
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significant reduction in the stable attachment to human BECs, compared to the
control, and is distinctly attenuated in a murine model of systemic infection (Staab
et al. 1999). Hwp1 is a substrate for host transglutaminases. C. albicans HWP1 is
also required for biofilm formation (Ene and Bennett 2009), and is associated with
cell wall remodelling (Plaine et al. 2008). In addition, it has been shown that some
regulators of the yeast-hyphal transition, especially Efg1 (a transcription factors
that lies downstream of protein kinase A) and Rim101 (a transcription factor
involved in the alkaline pH response), are involved in regulating the expression of
cell wall protein genes and in cell wall remodelling (Sohn et al. 2003; Baek et al.
2006; Gregori et al. 2011).

The inner layer of the cell wall of C. albicans consists of b-glucan and chitin,
which is masked by the outer layer of mannoproteins (Kapteyn et al. 2000; Klis
et al. 2001). However, b-glucan becomes exposed preferentially in hyphae com-
pared to yeast in vivo and in vitro. Deletion of C. albicans EDT1 encoding a key
regulator of filamentation resulted in constitutive growth of yeast (Chen et al.
2004). This yeast-locked edt1D mutant showed less cell surface glucan exposure in
comparison to wild-type hyphae and the hypha-locked nrg1D mutant in vitro
(Wheeler et al. 2008). Whereas b-glucan exposure was observed in both hyphae
and yeast cells (but preferentially hyphae) during in vivo infection and in response
to caspofungin treatment (Wheeler et al. 2008; Wheeler and Fink 2006). Exposure
of b-glucan, in particular b(1,3)glucan, stimulates immune responses, which leads
to an increase in both pro- and anti-inflammatory responses as indicated by pro-
duction of cytokines such as TNF-a, IL-6, IL-10 and IFN-c (Wheeler and Fink
2006; Gow et al. 2007). The well-characterised pattern recognition receptors
(PRRs) for b(1,3)-glucan are Dectin-1 as well as TLR2, which are expressed on
macrophages, dendritic cells and other myeloid cells (Gow and Hube 2012; Netea
et al. 2008; Vautier et al. 2012). A possible PRR for b(1,6)glucan is expressed by
neutrophils (Rubin-Bejerano et al. 2007). In this study, human neutrophils effi-
ciently ingested beads coated with b(1,6)glucan extracted from C. albicans while
ignoring b(1,3)glucan-coated beads.

Chitin is thought to be located in the inner most part of the cell wall, close to the
plasma membrane. Mammalian cells are unable to make chitin, but produce
chitinases including CHIT-1 and acidic mammalian chitinases (AMCases) (Lee
et al. 2008; Lee 2009; Vega and Kalkum 2012). Chitinase activity is thought to be
involved in immune responses to fungal infections. Chitin and chitin derivatives
such as chitosan can also be pathogen-associated molecular patterns (PAMPs) and
stimulate immune responses including allergic inflammation (Lee et al. 2008; Lee
2009). High expression of AMCases is found in the lungs of an allergy animal
model. Furthermore, intravenous administration of chitin particles (1–10 lm) into
the mouse lung stimulates macrophages and NK cells, and leads to production of
cytokines: IL-12, TNFa, IL-18, and INF-c (Lee 2009). Similarly, chitin micro-
particles stimulated IL-10 cytokine production in non-inflamed colons in acute and
chronic colitis models (Nagatani et al. 2012). The immunological effects of chitin
seem to be critically dependent on the size of the chitin-containing particle (Lee
2009). A number of PRRs have been suggested to recognise chitin including the
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mannose receptor, Dectin-1, and TLR2 on macrophages (Lee 2009; Vega and
Kalkum 2012). Interestingly, Mora-Montes et al. showed that chitin is involved in
blocking immune recognition of C. albicans, mediated via Dectin-1 (Mora-Montes
et al. 2011). When C. albicans cells were co-incubated with chitin, production of
TNFa, IL-6 and IL-1b cytokines was significantly reduced. Furthermore,
C. albicans hyphae have 3–5 fold higher chitin content than yeast cells (Munro
et al. 1998), and cytokine production of IL-6, TNFa, and IL-1b was stimulated less
in hyphae compared to yeast, which may be a result of the increase in chitin
content associated with C. albicans hyphae (personal communication Liliane
Mukaremera and Neil Gow, University of Aberdeen, UK).

An increase in chitin content in the cell wall has been observed as a primary
rescue phenomenon when cell wall integrity has been compromised in an attempt to
maintain cellular integrity (Walker et al. 2008; Popolo et al. 2001; Munro et al.
2007). Indeed, defects in the cell wall caused by deletion of many cell wall-related
genes or exposure to stress reagents, such as CFW and the echinocandins, leads to
significant elevation of chitin levels. Walker et al. (2008) have shown that pre-
treatment of caspofungin-hypersensitive C. albicans cells (chs3D, mkc1D and
cna1D) with GlcN resulted in enhanced chitin levels and protected against
caspofungin (Walker et al. 2008). High-chitin cells (pre-treated with CaCl2 and
CFW) which had 3–4 fold higher chitin were avirulent in a murine model of
candidiasis and did not kill the majority of mice despite causing higher fungal
kidney burdens compared to cells with normal chitin levels (Lee et al. 2012). These
high-chitin cells were resistant to caspofungin in vivo and obtained an amino acid
substitution in Fks1. Clinical isolates that have acquired point mutations within the
FKS1 gene have increased chitin levels, a reduced inflammatory response mediated
via Dectin-1, and were unable to form hyphae under inducing condition (Ben-Ami
et al. 2011; Ben-Ami and Kontoyiannis 2012). Caspofungin treatment of C. albi-
cans results in exposure of chitin as well as b(1,3)glucan at the cell surface
(Wheeler et al. 2008; Mora-Montes et al. 2011). C. albicans treated with sub-MIC
of caspofungin stimulated less TNFa, IL-6, IL-1b and IL-10 production by human
PBMCs (Mora-Montes et al. 2011). Interestingly, caspofungin-exposed C. albicans
cells had higher expression of proteins associated with glycolysis and gluconeo-
genesis (Cdc19, Pdp1, Pgk1, Gnd1, Pgm2, Fba1 and Hxk2), the glyoxylate cycle
(Mdh1, Cit1, Idh2 and Aco1) and amino acid biosynthesis (Bat22, Hom2, Gdh3 and
Sah1) (Hoehamer et al. 2010). Similar results were observed in a previous study
looking at the transcriptional response to caspofungin (Copping et al. 2005).
Therefore, in C. albicans accessibility of wall polysaccharides at the cell surface,
which are key triggers of immune recognition, stimulation and immune evasion,
could be affected by antifungal agents, morphology and carbon sources.
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7.9 Conclusions and Future Challenges

This chapter describes the influence of metabolism on C. albicans cell wall bio-
synthesis, host interactions and virulence. There are countless enzymes involved in
carbon metabolism and cell wall biosynthesis (Fig. 7.1). These enzymes are
directly or indirectly responsible for cell viability, cell wall integrity, metabolism,
morphology and virulence. All fungi, including C. albicans, have to somehow
coordinate utilisation of sugars as a source of energy with the production of
activated sugars (UDP-glucose, GDP-mannose, UDP-N-acetylglucosamine) that
are incorporated into the major cell wall polysaccharides (glucan, mannan and
chitin) in order to generate the new cell wall required for growth. In addition, fungi
can alter the structure and composition of their cell walls in response to external
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transition 

Glucan recognised by Dectin-1 
Chitin recognised by unknown 
chitin receptor 

Mannoproteins recognised by 
mannose receptor and TLR4

Host environmental factors impact on C. albicans 
morphogenesis and cell wall structure 
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Fig. 7.2 Cell wall remodelling of C. albicans in response to host environmental niches. a Factors
within the host environment such as available nutrients, temperature, pH, oxygen levels and other
stresses produced by host immune cells stimulate the yeast to hyphal transition, which leads to
dynamic alterations in cell wall architecture and composition, and rearrangement of cell wall
proteins. For instance, hyphal-associated proteins including Als3, Hwp1 and Hyr1 are highly
expressed on the surface of hyphae in comparison to yeast cells which specifically express Ywp1.
Also, hyphal cells contain 3–5 fold higher chitin levels than yeast cells. This cell wall remodelling
affects host-pathogen interactions and immune recognition. b The figure of a high pressure freezing,
freeze-substitution TEM shows C. albicans cell wall (scale bar = 200 nm). As cell wall
components do not exist in the mammalian host and are specific to the invading pathogen, in this
case C. albicans, they are unique targets for antifungal agents, diagnostics and vaccine development
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and internal signals by modulating the production of the cell wall polysaccharides
and how they are linked together. The C. albicans cell wall can rapidly and
dynamically change in response to external signals including oxidative stress
produced by macrophages and neutrophils, pH changes depending on host niches,
body temperature, amino acid starvation, exposure to antifungal drugs and avail-
ability of carbon sources (Fig. 7.2). A better understanding of cell wall remodel-
ling mechanisms in vivo will improve the efficacy of antifungal agents and aid the
development of de novo antifungal therapeutics, and rapid, sensitive and accurate
diagnostic. Therefore, the complex, dynamic inter-relationship between cell wall
synthesis and remodelling, and carbon metabolism is vital for viability and
strongly influences host–pathogen interactions and pathogenicity.
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Chapter 8
Molecular Mechanisms in Yeast Carbon
Metabolism: Lipid Metabolism
and Lipidomics

Birgit Ploier, Günther Daum and Uroš Petrovič

Abstract Lipids play several essential roles in the biology and metabolism of
eukaryotic cells. In addition to their structural role as constituents of cell mem-
branes, they have been increasingly recognized as dynamic and vital molecules,
involved in a variety of cellular processes. Examples are cell signalling, membrane
trafficking and influencing the stability of protein complexes in membranes. This
chapter provides an overview of lipid classes and metabolic pathways in yeast.
Lipid metabolism involves various organelles such as the endoplasmic reticulum
(ER), mitochondria, peroxisomes and lipid droplets (LD), which will be high-
lighted. Specific attention is devoted to examples of recently discovered key
players in yeast lipid metabolism, which illustrate our improved understanding of
cells as an interconnected biological system. This chapter comprises descriptions
of regulatory networks, multifunctional enzymes and lipids that serve as modu-
lators of their own synthesis. The last part of the chapter is dedicated to the
increasing numbers of biotechnological processes based on lipid metabolism.
Besides the prominent model organism Saccharomyces cerevisiae, other pre-
dominantly oleaginous yeasts are also included.
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Abbreviations
ABC ATP-binding cassette
ATP Adenosine triphosphate
CDP Cytidinediphosphate
CL Cardiolipin
CoA Coenzyme A
CTP Cytidine triphosphate
DAG Diacylglycerol
DGPP Diacylglycerol diphosphate
DMAPP Dimethylallyl diphosphate
ER Endoplasmic reticulum
ERMES ER-mitochondria encounter structure
FA Fatty acids
FIT Fat storage-inducing transmembrane proteins
FPP Farnesyl diphosphate
GGPP Geranylgeranyl diphosphate
GPI Glycosylphosphatidylinositol
GPP Geranyl diphosphate
IMM Inner mitochondrial membrane
IPC Inositol phosphorylceramide
IPP Isopentenyl diphosphate
LD Lipid droplets
MAM Mitochondria-associated membrane fraction
M(IP)2C Mannosyl (inositol phosphoryl)2 ceramide
MINOS Mitochondrial inner membrane organizing system
MIPC Mannosylinositol phosphorylceramide
Mt Mitochondria
NADPH Reduced nicotinamide adenine dinucleotide phosphate
Nu Nucleus
OMM Outer mitochondrial membrane
PA Phosphatidic acid
PC Phosphatidylcholine
PDR Pleiotropic drug response
PE Phosphatidylethanolamine
PI Phosphatidylinositol
PIP Phosphatidylinositol phosphate
PL Phospholipids
PS Phosphatidylserine
PUFA Polyunsaturated FA
Px Peroxisomes
SE Steryl esters
SPT Serine palmitoyltransferase complex
TG Triacylglycerols
TORC2 Target of rapamycin complex 2
UASINO Inositol-responsive upstream activating sequence element
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8.1 Introduction

The link between central carbon metabolism and lipid synthesis is easily found:
acetyl-CoA is the common precursor for all lipid biosynthetic pathways. Mem-
brane biogenesis is, along with amino acid synthesis, one of the major consumers
of acetyl-CoA and NADPH—the biosynthesis of one molecule of palmitic acid
requires 8 acetyl-CoA and 14 NADPH molecules (Natter and Kohlwein 2012).
However, while the understanding of connections between different metabolic
routes has already reached an advanced state at the level of metabolites, the
identification of regulatory mechanisms is only in its infancy.

Lipids are essential constituents of every living cell. They were long seen as
primarily structural components of cellular membranes. However, lipid research
over the past decades has shown that they fulfil many more vital functions that are
increasingly recognized. Prominent examples are their role as regulators of energy
metabolism, cell integrity and membrane-based processes such as endocytosis and
vesicular trafficking (Daum et al. 1998; Souza and Pichler 2007). The accepted
general definition of lipids is that they are relatively small, hydrophobic or
amphiphilic molecules that are classified into eight distinct groups based on their
chemical and biochemical properties: fatty acids (FA), glycerolipids, glycero-
phospholipids, sphingolipids, sterols and sterol derivatives, prenol lipids, glyco-
lipids and polyketides. Altogether, more than 10,000 different lipid structures have
been identified (Fahy et al. 2009). In this chapter we focus on the first five most
commonly found lipid classes in yeast.

The field of lipid research has attracted more and more interest over the past
decades as many lipid-associated disorders such as obesity, type-II-diabetes,
insulin resistance and cardiovascular diseases have become increasing health risks
in the Western world and recently also in developing countries. As the principles
of lipid metabolism are well conserved between all eukaryotes and because of the
many advantages of working with yeast, Saccharomyces cerevisiae has become a
powerful model organism for lipid research. One established approach to dissect
the complex network of enzymes and molecular mechanisms responsible for lipid
homeostasis is the use of readily available single and multiple deletions mutants.
One of the major resources that have enabled systematic studies in this direction is
the repertoire of yeast deletion mutants of all non-essential genes, which have
helped, in combination with different cultivation conditions, to understand the
basics of lipid synthesis, storage and degradation pathways (Winzeler et al. 1999).

Many different cellular compartments are involved in lipid metabolism (Natter
et al. 2005). Lipid synthesis takes place mainly in the endoplasmic reticulum (ER)
and the Golgi compartment, but also lipid droplets (LD), mitochondria and per-
oxisomes play influential roles and will therefore be highlighted in this intro-
duction. LD and peroxisomes, especially with respect to their role in lipid
metabolism, were recently reviewed (Kohlwein et al. 2012).

LD are generally seen as a storage compartment for the non-polar lipids, tria-
cylglycerols (TG) and steryl esters (SE). They are small spherical organelles of
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approximately 400 nm in diameter consisting of a highly hydrophobic core of
mainly TG, surrounded by shells of SE which are covered by a phospholipid
monolayer with only a few embedded proteins (Athenstaedt et al. 1999a; Czabany
et al. 2008). Proteome analysis revealed that these proteins are predominantly
enzymes involved in lipid metabolism, for example TG lipases and SE hydrolases
(Grillitsch et al. 2011). LD will be further described in the section on non-polar
lipids.

Mitochondria are of special interest for lipid research. They provide an inde-
pendent fatty acid synthesizing system (Tehlivets et al. 2007) and synthesize some
phospholipids (Kuchler et al. 1986; Henry et al. 2012), but the majority of lipids
are imported. Examples of autonomously formed mitochondrial lipids are phos-
phatidic acid (PA), cardiolipin (CL) or phosphatidylethanolamine (PE), whereas
phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) as
well as sterols and sphingolipids have to be imported. Various mechanisms have
been proposed for the import of lipids, such as direct membrane contact between
the ER and mitochondria via the mitochondria-associated membrane (MAM)
fraction, vesicular transport and the involvement of specific lipid binding and
transfer proteins (Daum and Vance 1997). Mitochondria are also special regarding
their lipid distribution, having an increased amount of CL and PI. The phospho-
lipid CL comprises up to 15 %, which is very high compared to other organelles.
Therefore, CL is often referred to as the typical mitochondrial phospholipid
(Zinser and Daum 1995). Mitochondria are compartmentalized into four different
subcompartments: the outer mitochondrial membrane, the intermembrane space
and the inner mitochondrial membrane with its cristae and the matrix. A mito-
chondrial complex connecting the inner boundary membrane to the cristae
membrane was recently identified and termed MINOS (mitochondrial inner
membrane organizing system) or MitOS (mitochondrial organizing structure), and
shown to be responsible for maintaining mitochondrial morphology (Hoppins et al.
2011; van der Laan et al. 2012; Zerbes et al. 2012). Most interestingly, even
among the four subcompartments, lipids are not distributed randomly (Daum
1985). Therefore, intramitochondrial lipid transfer as well as the interorganelle
transport of lipids is of outstanding interest. Some recent findings will be reported
in the section on novel key players.

Peroxisomes deserve special attention in the description of lipid metabolism.
They are spherical organelles with a diameter of about 0.1 lm, consisting of a fine
granular matrix with a crystalline core, all surrounded by a single membrane. The
protein content of these membranes is typically relatively low, whereas the matrix
contains the highest protein concentration in eukaryotic cells with hydrogen per-
oxide-producing oxidase and catalase as prominent representatives (Kohlwein
et al. 2012). Peroxisomes are ubiquitous and are involved in various metabolic
pathways, especially detoxification processes and degradation of FA. The latter
process, termed b-oxidation, makes FA available as an energy source. In contrast
to mammalian cells, where b-oxidation occurs in mitochondria and peroxisomes,
yeast b-oxidation takes place exclusively in peroxisomes (Poirier et al. 2006).
Prior to degradation, FA have to be activated by one of six specific activators
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Faa1p, Faa2p, Faa3p, Faa4p, Fat1p or Fat2p. The uptake of FA into peroxisomes
can proceed by different mechanisms. Short and medium-chain length FA are
thought to be taken up by diffusion, whereas long chain and very long chain FA
require ABC (ATP-binding cassette) transport proteins. In yeast peroxisomes, the
two ABC transporters, Pxa1p and Pxa2p, are thought to be responsible for the
uptake of FA. These transporters hydrolyze FA-CoA esters prior to their entry into
peroxisomes, releasing CoA into the cytoplasm, whereas FA are then re-esterified
by a peroxisomal synthetase (van Roermund et al. 2012). Lipid composition of
peroxisomes comprises nearly 50 % PC, 23 % PE, 16 % PI together with a
remarkably high content of CL (7 %) (Zinser et al. 1991).

Recently, techniques for lipid content analysis have advanced substantially. The
prerequisite for lipid analysis is usually lipid extraction into organic solvents,
followed by chromatographic separation of lipid species that can then be detected
by advanced spectrometric technologies. Currently, lipid research is shifting from
basic molecular characterization to a global understanding of dynamic lipid reg-
ulation in the cell context. Lipids have been proposed to act as a molecular
collective rather than as single molecules, best demonstrated by Guan et al. (2009)
who showed that sphingolipids and sterols can interact functionally. In particular,
lipidomic approaches and mathematical modelling are promising methods
for interpreting lipid metabolism on a global scale (Alvarez-Vasquez et al. 2011;
Santos and Riezman 2012). Lipidomics, which involves mapping all lipids of an
organism or a cell, is facilitated by sophisticated mass spectrometry techniques
combined with state-of-the-art data analysis software (Dennis 2009; Ejsing et al.
2009). The absolute quantification of lipids depends on internal standards which
are not always available. Quantitative analysis would be particularly important in
finding out how cells adapt their lipid profile to changes in the environment.
Specifically, points of regulation could be identified by mathematical modelling,
although this approach is still in its infancy. From the experimental point of view,
however, mass spectrometry-based shotgun lipidomics has been applied to quan-
titatively and comprehensively asses the yeast lipidome (Ejsing et al. 2009). This
approach was recently used to determine changes in the yeast lipidome under
different growth conditions including growth on different carbon sources. Inter-
estingly, different flexibilities (defined as dispersion of a given lipidomic feature
across the dataset) were determined for different classes of lipids (Klose et al.
2012). The authors observed marked differences in the lipidome between growth
on glucose- and non-glucose-based media.

Another hot topic of lipid research is the investigation of membrane organi-
zation by visualizing specific lipids in the cell. Visualization techniques confirmed
the view that lipids and proteins are not moving freely within a membrane but that
their diffusion is restricted in certain domains called rafts, which are enriched in
sphingolipids and sterols (Lingwood and Simons 2010; Eggeling et al. 2009).
However, the techniques are challenging, comprising high temporal and spatial
super resolution microscopy and are limited by the availability of appropriate
probes.
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More recently, other yeast genera besides Saccharomyces have been attracting
interest in lipid research. In particular, oleaginous yeasts, such as Candida curvata
and Yarrowia lipolytica, have been shown to be industrially relevant for the sus-
tainable production of lipids with compositions similar to those of vegetable oils
and fats (Beopoulos et al. 2011). Pichia pastoris, an industrially highly relevant
yeast especially for the expression of heterologous proteins, is another important
model organism for lipid-related research, especially in organelle biology studies.
Unless indicated otherwise, we will refer to S. cerevisiae in this chapter, but
particularly in the section on biotechnological aspects other yeasts will also be
mentioned.

The aim of this chapter is to provide a fundamental overview of yeast lipid
metabolism, but also to point out novel findings and applications of the highly
dynamic field of yeast lipid research. For detailed information beyond the scope of
this chapter readers will be referred to other recent reviews (Henry et al. 2012;
Jacquier and Schneiter 2012; Kohlwein et al. 2012; Natter and Kohlwein 2012;
Rajakumari et al. 2008; Santos and Riezman 2012).

8.2 Lipid Classes

Lipids are divided into classes based on their structure and function. The major
classes discussed in this chapter are FA, glycerophospholipids, sphingolipids,
sterols and the non-polar storage lipids TG and SE. These five classes will be
described with special emphasis on a basic understanding of their metabolism and
function of their members. Regulatory mechanisms, especially newly identified
ones, will be discussed in the section on novel key players.

8.2.1 Fatty Acids

FA are carboxylic acids with long hydrocarbon tails and differ from each other in
chain length and degree of saturation. In S. cerevisiae, the overall composition of
FA is rather simple, the members being mainly of C18:1 (oleate), C16:1 (palmi-
toleate) and C16:0 (palmitate) followed by C18:0 (stearate) and minor amounts of
C14:0 (myristate) and C26:0 (cerotate) (Daum et al. 1998). The composition
differs in the different yeast genera. In particular, in the oleaginous yeasts such as
Y. lipolytica, the FA composition is highly diverse, comprising longer chain
lengths and, especially, more double bonds, which makes such organisms useful
for the production of nutritionally valuable polyunsaturated fatty acids (PUFA)
(Beopoulos et al. 2011) as will be described below.

FA fulfil many different roles in cells. Most importantly, they serve as
basic molecules for the biosynthesis of complex membrane and storage lipids
(Tehlivets et al. 2007). Other functions include their role as signalling molecules,
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transcriptional regulators and post-translational modifiers of proteins (Nadolski and
Linder 2007). One prominent example of the latter is the palmitoylation of Ras
proteins, but myristate is also often added as lipid moiety (Linder and Deschenes
2004).

FA metabolism in yeast is illustrated in Fig. 8.1. There are three main sources
for FA: (i) de novo synthesis (ii) uptake by specific transporters and (iii) catabolism
of complex lipids (Tehlivets et al. 2007). A small proportion of FA derives from the
catabolism of proteins (Tehlivets et al. 2007). Two independent pathways exist for
the biosynthesis of FA, the major cytosolic pathway and the mitochondrial path-
way. The former pathway involves mainly three key enzymes, encoded by ACC1,
FAS1 and FAS2 (for review see Henry et al. 2012). Biosynthesis of FA starts with
the carboxylation by Acc1p of acetyl-CoA to give malonyl-CoA. Acc1p possesses
three different activities: it can act as a biotin carboxylase, as a biotin carboxyl-
carrier protein and as a transcarboxylase. It is located on the cytoplasmic surface of
the ER, contains one covalently bound biotin molecule and is essential for growth.
Malonyl-CoA is metabolized by a series of reactions catalyzed by FA synthases
(FAS genes) and elongases. FAS1 and FAS2 encode two different subunits of the FA
synthase complex. The active FAS complex consists of six a-units and six b-units
(Chirala et al. 1987). FAS1 encodes the b-subunit, which comprises four different
activities: acetyltransferase, enoyl reductase, dehydratase and malonyl-palmitoyl
transferase activities. FAS2 encodes the a-subunit that displays acyl carrier protein,
3-ketoreductase, 3-ketosynthase and phosphopantetheinyl transferase activities
(reviewed by Tehlivets et al. 2007). In yeast, double bonds are introduced by a
single acyl-CoA D9 desaturase encoded by OLE1 (Stukey et al. 1990). Elongation
is carried out predominantly by Elo1p, although elongation of very long FA,
especially for sphingolipid synthesis, is catalyzed mainly by Elo2p and Elo3p. De
novo synthesis of FA takes place mainly in the cytosol, whereas elongation and
desaturation reactions are carried out in the ER (Tehlivets et al. 2007).

Imported FA, which can be taken up by diffusion or by transporters, can fully
compensate for endogenously synthesized FA. Prerequisite for the uptake of FA is
the activation of free FA with coenzyme A, which is carried out by the acyl-CoA
synthetases Faa1p, Faa2p, Faa3p, Faa4p and Fat1p. These enzymes are also
believed to be involved in the uptake of FA into the cell (reviewed by Black and
DiRusso 2007; Henry et al. 2012). While in S. cerevisiae machinery for utilization
of extracellular complex lipids as energy or carbon source has not been identified,
oleaginous yeast species produce extracellular lipases for this purpose. The best
studied model for the utilization of hydrophobic substrates such as alkanes, TG
and FA is Y. lipolytica (reviewed by Fickers et al. 2005). Y. lipolytica produces
surfactants when grown on lipids as the only carbon source and changes the
biophysical and morphological properties of the cell surface to enable adhesion of
water insoluble growth substrates. The cells produce both membrane-bound and
extracellular lipases, the major one being Lip2p which catalyzes hydrolysis of TG
to free FA and glycerol. Free FA are then taken up by a mechanism that is not
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completely understood, activated by specific acyl-CoA synthetases and further
metabolized similarly as described below for S. cerevisiae.

In general, free FA are metabolized very quickly. Elevated levels of free FA are
harmful to cells because they can perturb membrane properties due to changes in
fluidity. Thus, FA are either incorporated into complex lipids, i.e. PL or the storage
lipids TG and SE, or they are oxidized to provide energy. Regardless of the source
of free FA, the prerequisite for further conversion is activation by thioesterification
with coenzyme A, which requires the action of acyl-CoA synthetases (Faa1-4,
Fat1) (Black and DiRusso 2007). In mitochondria, the biosynthesis of FA is
carried out by a totally different set of enzymes: Hfa1p, the mitochondrial acetyl-
CoA carboxylase, catalyzes the production of malonyl-CoA which is then further
processed by a different Fas complex (Hiltunen et al. 2010).

As mentioned in the introduction, catabolism of FA in yeast takes place
exclusively in peroxisomes. Under standard growth conditions, the abundance of
peroxisomes is quite low, but can be increased by FA supplementation to the
medium (van Roermund et al. 1995). The classical b-oxidation starts with the
oxidation of acyl-CoA to trans-2-enoyl-CoA by Fox1p (frequently called Pox1p).
This reaction releases hydrogen peroxide, which is detoxified by catalase. The
second step is the conversion, by Fox2p, of trans-2-enoyl-CoA to 3-ketoacyl-CoA.

Fig. 8.1 Overview of fatty acid metabolism in yeast. FA derive mainly from three routes:
catabolism of storage lipids, de novo synthesis and external uptake. They can be incorporated into
storage lipids, degraded by b-oxidation to provide energy or converted into complex lipids like
phospholipids or sphingolipids. FA can also act as effectors of transcription. LD lipid droplets, Px
peroxisomes, Mt mitochondria, Nu nucleus, ER endoplasmic reticulum. For details see text
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This compound is the substrate of Fox3p, a 3-ketoacyl-CoA thiolase, which yields
acetyl-CoA and a C2-shortened FA (Einerhand et al. 1991; Hiltunen et al. 1992).
The route of FA directed to the site of peroxisomal b-oxidation, either via plasma
membrane transport from an exogenous source, or from LD as an endogenous
storage compartment, is still not completely understood.

8.2.2 Phospholipids

Phospholipids (PL) are regarded as bulk membrane constituents, since they can
form lipid bilayers. They consist of a diacylglycerol backbone and a phosphate
group at the sn-3 position that is linked to a polar head group. PL can be classified
based on their different head groups. The major PL in yeast are PC, which com-
prises about 45 % of the total phospholipid content, PE, which makes up to 20 %,
PI with 15 %, PS accounting for 5 % and CL being present at 2 % (Janssen et al.
2000; Zinser et al. 1991; Schneiter et al. 1999). However, the subcellular distri-
bution of different phospholipids varies quantitatively and by origin. Especially,
PS and CL are present just at low amounts in most organelle membranes but are
major components of the plasma membrane and the inner mitochondrial mem-
brane, respectively (Zinser and Daum 1995). In general, the lipid composition of
membranes is not stochastic but characteristic of each organelle.

In addition to the role of PL as major structural components of cellular mem-
branes, they are involved in a variety of other processes. They provide precursors
for the synthesis of membranes, act as reservoirs of second messengers, conduct the
lipidation of proteins for membrane association and function as molecular
chaperones (reviewed by Carman and Han 2011; Dowhan and Bogdanov 2009;
van Meer et al. 2008). PL can also be differentiated according to their shape, which
is dictated by their head-to-tail area ratio. PC, PS and phosphatidylglycerol are
cylindrically shaped since they display a head group similar to fatty acid chain area.
Cylindrical PL are known to favour bilayer structures, while PE and CL, which
belong to the group of non-bilayer forming PL, are conically shaped, the result of a
smaller head-to-tail area (Cullis et al. 1986).

A key molecule in PL synthesis is PA (Fig. 8.2), which is also an important
signalling molecule and regulator of lipid metabolism. PA derives from either
glycerol-3-phosphate or dihydroxyacetone phosphate following fatty acyl-CoA
dependent acyl transfer. These reactions are catalyzed by the SCT1- (GAT2) and
GPT2 (GAT1)-encoded glycerol-3-phosphate acyltransferases and the SLC1- and
ALE1-encoded lysophospholipid acyltransferases (Athenstaedt and Daum 1997;
Athenstaedt et al. 1999b; Chen et al. 2007b; Jain et al. 2007; Riekhof et al. 2007).
Dihydroxyacetone phosphate is reduced by Ayr1p, which is present in LD, the
ER and the mitochondrial outer membrane. PA is a branch point between the
CDP-DAG (cytidinediphosphate- diacylglycerol) pathway and the formation of
DAG (Athenstaedt and Daum 1999). In the first case, PA is metabolized to CDP-
DAG under the catalytic action of the CDS1-encoded CDP-DAG synthase
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(Shen et al. 1996). In the second case, the PAH1-encoded PA phosphatase forms
DAG (Han et al. 2006). CDP-DAG and DAG are both used in the synthesis of PE
and PC, but by different pathways. The first biosynthetic route is the CDP-DAG
pathway, whereas in the Kennedy pathway DAG is used as a substrate for the
conversion (for reviews see Carman and Han 2011; Henry et al. 2012). Both
pathways are used in wild-type cells, but the CDP-DAG pathway is the major
route for the synthesis of PE and PC when cells are grown in the absence of
ethanolamine and choline. It starts with the conversion of CDP-DAG into PS by
the ER-localized, CHO1-encoded PS synthase. PS is further decarboxylated to PE
by two PS decarboxylases, Psd1p and Psd2p. Psd1p is localized to the inner
mitochondrial membrane and accounts for the major enzymatic activity, whereas
Psd2p is associated with Golgi and vacuolar membranes (Trotter and Voelker
1995; Clancey et al. 1993; Voelker 2003). PE is methylated by Cho2p and Opi3p
yielding PC. PE and PC can also be obtained from exogenously supplied lysoPE
and lysoPC, which can be acylated by the ALE1-encoded lysophospholipid
acyltransferase (Riekhof and Voelker 2006; Riekhof et al. 2007). CDP-DAG can
also be converted into PI by reaction with inositol catalyzed by Pis1p (Fischl and

Fig. 8.2 Simplified pathway of phospholipid synthesis in the yeast S. cerevisiae. For details see
text. DHAP dihydroxyacetone phosphate, PA phosphatidic acid, CDP-DAG cytidinediphosphate
diacylglycerol, DAG diacylglycerol, CL cardiolipin, PI phosphatidylinositol, PS phosphatidyl-
serine, PE phosphatidylethanolamine, PC phosphatidylcholine
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Carman 1983). The biosynthesis of CL takes place only in mitochondria, initiated
by the transfer of the phosphatidyl moiety of CDP-DAG to glycerol-3-phosphate
by Pgs1p and continued by dephosphorylation of phosphatidylglycerophosphate
by Gep4p (Chang et al. 1998a; Osman et al. 2010). The CRD1-encoded CL
synthase finally produces CL (Chang et al. 1998b; Tuller et al. 1998; Jiang et al.
1997).

In the Kennedy pathway, exogenous ethanolamine and choline are transported
into the cell by the choline/ethanolamine transporter Hnm1p. They are phos-
phorylated with ATP by the kinases Eki1p and Cki1p. They are then activated with
CTP to form CDP-ethanolamine and CDP-choline, under the action of ethanol-
aminephosphate cytidylyltransferase Ect1p and cholinephosphate cytidylyltrans-
ferase Pct1p (Kennedy and Weiss 1956; Kim et al. 1999; Henry et al. 2012). PE
and PC are finally formed by the sn-1,2-diacylglycerol ethanolaminephospho-
transferase Ept1p and the cholinephosphotransferase Cpt1p catalyzing the reac-
tions of CDP-ethanolamine and CDP-choline with DAG (Hjelmstad and Bell
1992). DAG is provided by dephosphorylation of PA by Pah1p (Fig. 8.2).

The organization of phospholipids within membranes is believed to occur via
two principal mechanisms: lateral diffusion within the plane of a membrane and
bidirectional, ATP-dependent movement facilitated by flippases. Intercompart-
mental phospholipid transport mainly occurs via vesicles and monomeric
exchange (reviewed by Vehring and Pomorski 2005). These transport mechanisms
do not lead to a homogeneous distribution of phospholipids. Moreover, there is
increasing evidence that distinct lipid domains exist within certain cellular
membranes which are called rafts (London and Brown 2000; Simons and Sampaio
2011).

The majority of PL undergoes rapid turnover and acyl-chain remodelling,
which is catalyzed by specific acyltransferases, phospholipases and lipid phos-
phatases (reviewed in Henry et al. 2012).

8.2.3 Sterols

Sterols are important compounds in eukaryotic cells, serving as both structural and
signalling molecules. Due to their rigid structure, they strongly affect membrane
fluidity and permeability (Nes et al. 1993). It has been shown that yeast cells are
not viable without sterols (Daum et al. 1998). They are often referred to as steroid
alcohols that contain cyclopentanoperhydrophenanthrene as parent structure. The
main sterol in yeast, and also the final product of sterol biosynthesis in other fungi,
is ergosterol. Structural differences from the mammalian counterpart cholesterol
are the double bonds between C-7,8 in the ring and C-22 in the side chain and the
presence of a methyl group at C-24. The hydroxyl group at the C-3 position is the
only hydrophilic component of the molecule which facilitates integration into
membranes. The ergosterol biosynthetic pathway is one of the most complex
biochemical pathways, comprising nearly 30 different biochemical reactions
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catalyzed by the so-called Erg proteins (for recent reviews see Kristan and Rižner
2012; Kuranda et al. 2010; Pichler 2005). The most important steps are summa-
rized in the following paragraph.

The ergosterol biosynthetic pathway is divided into the pre-squalene and post-
squalene pathways, displayed in a much simplified scheme in Fig. 8.3. Most Erg
proteins are located to the ER membrane, with the exception of Erg1p, Erg6p and
Erg7p, which are localized mainly to LD (Athenstaedt et al. 1999a; Leber et al.
1994, 1998). The first steps of sterol synthesis are similar in fungi, plants and
animals starting with the condensation of two acetyl-CoA molecules, catalyzed by
Erg10p. This reaction yields acetoacetyl-CoA which reacts with another acetyl-
CoA molecule to form (3S)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). In the
yeast, this important intermediate is subsequently reduced to mevalonate by HMG-
CoA reductases 1 and 2 (HMG1/2). This reaction is not only the rate-limiting step
of sterol biosynthesis but also one of the major control points, since HMG-CoA
reductase shows feedback inhibition by ergosterol (Bard and Downing 1981).
Polakowski et al. (1998) showed that overexpression of a truncated version
of Hmg1p leads to an increase in early sterol precursors. A cascade of phospho-
rylations and decarboxylations, also known as the mevalonate pathway, leads to

Fig. 8.3 Simplified ergosterol biosynthesis divided into the pre-squalene and post-squalene
pathways, the latter being highlighted in the box. Important metabolic intermediates as well as
the chemical structure of ergosterol are shown. For details see text. CoA Coenzyme A, HMG
(3S)-3-hydroxy-3-methylglutaryl-CoA, IPP isopentenyl diphosphate, DMAPP dimethylallyl
diphosphate, GPP geranyl diphosphate, FPP farnesyl diphosphate

180 B. Ploier et al.



isopentenyl pyrophosphate (IPP), which is the precursor not only for squalene but
also for other isoprenoids (Toth and Huwyler 1996). Isomerization of IPP to
dimethylallyl pyrophosphate (DMAPP) and a subsequent head-to-tail condensa-
tion reaction of IPP and DMAPP yield geranyl pyrophosphate (GPP). These
reactions are catalyzed by Idi1p and Erg20p (Anderson et al. 1989a, b; Chambon
et al. 1991). Erg20p also facilitates the formation of farnesyl pyrophosphate (FPP)
by adding two IPP units to DMAPP. Finally, coupling of two FPP molecules by
Erg9p leads to squalene.

The first step of the post-squalene pathway is epoxidation of squalene by Erg1p.
This reaction is followed by a number of complex cyclization events, catalyzed by
Erg7p, that form lanosterol, which is the first intermediate with the typical sterol
structure. A cascade of demethylations, desaturations and subsequent reduction
events (ERG24–ERG28) leads to zymosterol. The reaction steps yielding zymos-
terol are conserved in all eukaryotic cells. It was shown that deletion of genes
downstream this biosynthetic sequence leads to sterol auxotrophy, whereas cells
depleted of ERG genes acting later in the pathway are still viable. The further
methylation of zymosterol at the C-24 position by Erg6p yields fecosterol, an
intermediate which is unique to yeast and other fungi. Then, Erg2p catalyzes the
shift of a double bond to the C-7 position, followed by the introduction of a further
double bond at the C-5 position by Erg3p. The last steps of the pathway intro-
ducing and removing double bonds (ERG5, ERG4) yield the end product,
ergosterol.

Yeast cells usually synthesize sterols in excess. Since yeast is unable to degrade
sterols, mechanisms of detoxification are required to avoid harmful influence on
membranes. There are three main mechanisms to maintain sterol homeostasis: (i)
esterification of free sterols with FA by Are1p and Are2p and storage in LD (Yang
et al. 1996; Yu et al. 1996; Zweytick et al. 2000); (ii) downregulation of sterol
biosynthesis; and (iii) sterol acetylation by Aft2p, which enables yeast cells to
efficiently secrete excess sterols in the form of sterol acetates into the med-
ium. The latter process is reversible and catalyzed by Say1p (Tiwari et al. 2007;
Choudhary and Schneiter 2009). Acetylation of sterols has also been discussed as a
possible quality control mechanism. It was suggested that sterols which do not pass
a quality control cycle are acetylated and secreted. Recently, the PRY proteins
(pathogen-related yeast proteins) that are involved in the secretion of acetylated
sterols have been identified (Choudhary and Schneiter 2012).

Since some steps of the sterol biosynthetic pathway require oxygen, yeast
becomes strictly sterol auxotroph under anaerobic conditions (Lees et al. 1995).
Uptake of external sterols from the exterior is mediated by two ATP-binding
cassette transporters, encoded by AUS1 and PDR11, both targets of the tran-
scriptional activator Upc2p (Crowley et al. 1998; Wilcox et al. 2002).

The intracellular sterol concentration is lowest at its place of biosynthesis, the
ER and increases along the protein secretory pathway until it reaches its maximum
at the plasma membrane (Zinser et al. 1993). The distribution of sterols between
different cellular membranes has to be tightly regulated to maintain distinct
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membrane properties such as fluidity and thickness. Intracellular sterol transport
involves both vesicular and non-vesicular routes but is mainly ATP-dependent.
Non-vesicular sterol transport, in addition, requires the action of carrier proteins
(for review see Jacquier and Schneiter 2012). Over the last couple of years, spe-
cific yeast sterol carrier proteins have been identified, the so-called oxysterol-
binding proteins homologues Osh1–7 (reviewed by Schulz and Prinz 2007).
Deletion of all seven Osh proteins was found to be lethal and accompanied by a
3.5-fold increase in the cellular level of ergosterol (Schulz and Prinz 2007). Sterols
can be either transported to the cell surface or sent to the trans-Golgi network
where they associate with sphingolipids to form lipid rafts (Mesmin and Maxfield
2009). The exact role of Osh proteins in sterol transport still has to be elucidated.
Georgiev et al. (2011) reported that Osh proteins act as sterol sensors and regulate
the organization of sterols at the plasma membrane rather than being involved in
the transport of sterols between the ER and the plasma membrane. Intracellular
sterol trafficking between membranes might also be governed by Arv1p as
reported by Tinkelenberg et al. (2000). Mutations of ARV1 have been shown to
render cells which are anaerobically non-viable, depend on sterol esterification and
show altered intracellular sterol distribution. The balance of sterol synthesis,
uptake, storage and mobilization as well as internal transport is very complex and a
hot topic of lipid research.

8.2.4 Non-polar Lipids: TG and SE

TG and SE are storage lipids preserving free FA and sterols in a biologically inert
form. All eukaryotic cells store excess FA in specific organelle-like compartments,
often referred to as LD, lipid particles or oil bodies, used as energy depots. Yeast
cells accumulate only little TG as long as they proliferate but can reach high TG
levels in the stationary phase. When required, e.g. during growth or starvation, TG
and SE can be mobilized to provide building blocks for membrane biosynthesis.
Under these conditions the released FA are channelled into phospholipid bio-
synthesis (Zanghellini et al. 2008). In yeast, LD are about 400 nm in diameter and
consist of a highly hydrophobic core of TG, surrounded by shells of SE and a
phospholipid monolayer containing a distinct set of proteins (Czabany et al. 2008;
Athenstaedt et al. 2006; Grillitsch et al. 2011; Kohlwein et al. 2012). TG are
synthesized by the acyltransferases Dga1p and Lro1p, and SE by the steryl ester
synthases Are1p and Are2p. All TG- and SE-synthesizing enzymes are located at
the ER. Additionally, Dga1p is also found in LD. The direct precursor for TG is
diacylglycerol (DAG), that can derive from different routes: (i) dephosphorylation
of de novo synthesized PA, (ii) degradation of PL by phospholipases and (iii)
deacylation of TG (see Fig. 8.4) (Henry et al. 2012). For synthesis of TG, DAG is
acylated in the sn-3 position by Dga1p, Lro1p and with low efficiency by Are1p
and Are2p. In S. cerevisiae, the acyl-CoA:diacylglycerol acyltransferase Dga1p is
the most efficient TG-synthesizing enzyme. Lro1p is an acyl-CoA independent
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enzyme which uses the sn-2 acyl group from glycerophospholipids as cosubstrate
for the acylation of DAG (Czabany et al. 2007; Rajakumari et al. 2008; Horvath
et al. 2011). SE of S. cerevisiae are synthesized by the two acyl-CoA:cholesterol
acyltransferase (ACAT) related enzymes, Are1p and Are2p (Yang et al. 1996; Yu
et al. 1996). Both proteins are located in the ER and harbour multiple trans-
membrane domains. Are1p and Are2p are 49 % identical in sequence, but have
different substrate specificities. Under standard cultivation conditions, Are2p
accounts for approximately 70 % of the total SE synthase activity and esterifies
preferentially ergosterol. Are1p esterifies mainly sterol intermediates with a slight
preference for lanosterol and becomes particularly important under hypoxic con-
ditions (Zweytick et al. 2000). The esterification takes place at the hydroxyl group
at the C3-atom with C16:1 as the preferred fatty acid substrate followed by C18:1.
Both TG and SE accumulate mainly during the stationary growth phase.

Storage of non-polar lipids would be useless without the possibility to mobilize
them as required in order to provide sterols, DAG and FA for membrane synthesis
and energy production. TG are mobilized by TG lipases. Currently, four LD-
resident TG lipases are known, namely Tgl3p, Tgl4p, Tgl5p and Ayr1p
(Athenstaed and Daum 2003, 2005; Ploier et al. 2013). SE are hydrolyzed by the
three SE hydrolases Yeh1p, Yeh2p and Tgl1p (Köffel et al. 2005; Müllner et al.
2005), the highest activity being attributed to Yeh2p. The cycle of esterification of
free sterols and the hydrolysis of SE are of utmost importance for a balanced level
of free ergosterol (Wagner et al. 2009). Yeh1p and Tgl1p are localized to LD,
whereas Yeh2p was surprisingly detected in the plasma membrane. The existence
of further hydrolytic enzymes is currently under investigation (our own unpub-
lished results). Especially, peroxisomal enzymes might be involved in the mobi-
lization of non-polar lipids (Thoms et al. 2011; Debelyy et al. 2011). TG and SE

Fig. 8.4 Overview of non-
polar lipid metabolism in S.
cerevisiae. For details see
text. PA phosphatidic acid,
PL phospholipids, DAG
diacylglycerol, FA fatty
acids, LD lipid droplets
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have long been viewed as just storage molecules, but this view has changed in
recent years. TG in particular appear to be important for various cellular processes
and their levels have been found to influence lipotoxicity, iron and phospholipid
metabolism and cell cycle progression (Kohlwein 2010).

Non-polar lipid metabolism is inevitably connected to LD biology. Their bio-
genesis is still a matter of debate and different possible models have been pub-
lished (Farese and Walther 2009). The most widely accepted model describes its
formation at special membrane microdomains in the ER, where non-polar lipids
accumulate between the two leaflets of the phospholipid bilayer until the size of
the LD reaches a critical dimension (Murphy and Vance 1999; Ploegh 2007). At
this stage, LD may bud off forming an independent organelle-like structure. Apart
from their classical role as a storage compartment, it has to be noted that LD also
participate in many other cellular processes (reviewed by Kohlwein et al. 2012).
Connerth et al. (2010) described an indirect role of LD in the maintenance of
membrane fluidity under environmental pressure of exogenous FA. Functions of
LD unrelated to lipid turnover have also been investigated. As an example, Fei
et al. (2009) reported that LD accumulated in yeast mutants with compromised
protein glycosylation. The authors discussed a possible role of LD as a temporary
safe depot for protein aggregates or incorrectly folded proteins. In recent studies,
LD emerged as dynamic organelles through their interaction with the ER (Fei et al.
2009; Jacquier et al. 2011; Wolinski et al. 2011), peroxisomes (Binns et al. 2006),
or mitochondria (Pu et al. 2011), and novel factors influencing the biogenesis and
dynamics of LD were identified (Adeyo et al. 2011).

8.2.5 Sphingolipids

Sphingolipids are composed of a sphingoid base, a fatty acid and a polar head
group. In yeast, the sphingoid base can be dihydrosphingosine or phytosphingo-
sine, linked through an amide bond to a very long chain fatty acid, mostly C26:0,
and O-linked to the charged head group inositol. The de novo synthesis of
sphingolipids is carried out in the ER starting with the condensation of serine and
palmitoyl-CoA (Fig. 8.5). This reaction is catalyzed by the serine palmitoyl-
transferase complex (SPT), which is a heterodimeric complex consisting of two
major subunits, Lcb1p and Lcb2p (Nagiec et al. 1994), and one minor subunit,
Tsc3p, which is necessary for full enzymatic activity (Gable et al. 2000). The
product of this reaction, 3-ketodihydrosphingosine, is rapidly converted to
dihydrosphingosine (also named sphinganine) by Tsc10p (Beeler et al. 1998). This
product is the first sphingoid base that can be further hydroxylated by Sur2p,
yielding a second sphingoid base, phytosphingosine (Grilley et al. 1998). These
sphingoid bases can be either acylated to ceramides by gene products of LIP1,
LAG1 and LAC1, or phosphorylated by the sphingoid kinases encoded by LCB4
and LCB5 (Nagiec et al. 1998). Sphingoid base phosphates are further converted
by Dpl1p to form fatty aldehydes and ethanolamine phosphates. This is the only
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route by which sphingolipids can exit the pathway and the link of sphingolipid
metabolism to the CDP-ethanolamine branch of the Kennedy pathway (Saba et al.
1997; Panwar and Moye-Rowley 2006).

If sphingolipids are not phosphorylated, both sphingoid bases can be N-acylated
with C26-CoA by a ceramide synthase. Ceramide synthase comprises an ER
membrane protein complex consisting of Lip1p, Lag1p and Lac1p (Schorling et al.
2001; Vallée and Riezman 2005). The two sphingoid bases and ceramides are the
first products in the sphingolipid synthetic pathway. Ceramides are N-acylated
sphingoid bases lacking additional head groups. They serve as substrates for the
formation of complex lipids that may comprise up to 10 % of total membrane
lipids. Prior to the formation of the complex sphingolipids, inositol-P-ceramide
(IPC), mannose-inositol-P-ceramide (MIPC) and mannose-(inositol-P)2-ceramide
[M(IP)2C], ceramides are a-hydroxylated by Scs7p (Haak et al. 1997; Dunn et al.
1998). Aur1p, the inositolphosphorylceramide synthase, attaches a phosphoinositol
headgroup to the ceramide-yielding IPC (Nagiec et al. 1997), which is then
mannosylated by Csg1p, Csg2p and Csh1p to MIPC. After mannosylation, another

Fig. 8.5 Sphingolipid synthesis in S. cerevisiae. For details see text. IPC inositol-P-ceramide,
MIPC mannose-IPC, M(IP)2C mannose-(inositol-P)2-ceramide
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inositol phosphate group is added by Ipt1p forming M(IP)2C (Beeler et al. 1997;
Uemura et al. 2003; Dickson et al. 1997).

The key players of sphingolipid catabolism are encoded by ISC1, YPC1 and
YDC1 (Sawai et al. 2000; Mao et al. 2000a, b). Isc1p hydrolyzes the head groups
of complex sphingolipids yielding both phyto- and dihydroceramides that can be
cleaved reversibly to sphingoid bases. This reaction is catalyzed by the two ce-
ramidases, Ypc1p and Ydc1p.

Although sphingolipids fulfil many important physiological roles (Dickson
et al. 2006), little is known about the regulation of cellular sphingolipid levels.
Cowart and Obeid (2007) showed that there is no stringent transcriptional regu-
lation of the key enzymes of sphingolipid metabolism. One control mechanism
could be phosphorylation of the sphingoid base kinase Lcb4p by interaction of
Pho85p with two of its cyclin partners, Pcl1p and Pcl2p, which leads to down-
regulation of Lcb4p. This effect is accompanied by a decrease in sphingoid base
phosphate levels and a decrease of the cell cycle. Another study showed that
ceramide synthase is regulated by casein kinase Cka2p, whose deletion resulted in
a 70–75 % reduction of ceramide synthase activity (Kobayashi and Nagiec 2003).
Kolaczkowski et al. (2004) found that the promoters of some sphingolipid meta-
bolic enzymes contain a PDR (pleiotropic drug response) element for binding of
the transcriptional activators Pdr1p and Pdr3p. Active PDR elements have been
found in LAC1, LCB2 and SUR2. A central element of sphingolipid regulation
appears to be the interplay of Orm proteins (inhibitors of SPT) with Ypk1p (a
kinase that inactivates Orm1p and Orm2p). These links were discovered recently
(Breslow et al. 2010; Roelants et al. 2011; Sun et al. 2000) and will be discussed in
the section on novel key players.

Sphingolipids are mainly found in the yeast plasma membrane where they are
thought to interact with sterols to form so-called lipid rafts, also described as
detergent-resistant membrane domains (Bagnat et al. 2000; Guan et al. 2009;
Simons and Sampaio 2011). These domains have been proposed to constitute an
important platform for certain membrane proteins, such as Pma1p, Gas1p and
Gap1p (Dickson et al. 2006). The physiological role of lipid rafts has been
exemplified by mis-localization of Pma1p, plasma membrane proton pump, and
Gap1p, a general amino acid permease, in strains with impaired sphingolipid
metabolism (Gaigg et al. 2006; Lauwers et al. 2007). The example of mis-local-
ization of Gap1p also illustrates a functional link between sphingolipid and amino
acid metabolism. In addition to their structural role, sphingolipids and their
metabolites have emerged as important signalling molecules involved in endo-
cytosis, heat stress response and cell cycle regulation (Cowart and Obeid 2007).
Additionally, sphingolipids are necessary for the transport of GPI-anchored pro-
teins from the ER to the Golgi (Skrzypek et al. 1997; Horvath et al. 1994). As
mentioned above, they also influence the topology, localization, cell surface
delivery and stability of important proteins, including the uracil permease Fur4p
(Hearn et al. 2003), the plasma membrane ATPase Pma1p (Gaigg et al. 2005) and
the vacuolar ATPase (Chung et al. 2003).
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8.3 A Selection of Novel Key Players in Yeast
Lipid Metabolism

A list of the major yeast lipid synthesizing and degrading enzymes is currently
available, but a detailed understanding of lipid homeostasis and regulation of lipid
metabolism still awaits clarification. In recent years, several new enzymes
involved in lipid metabolism and related mechanisms have been identified. This
development shows that the field of lipid research has become broader as links to
other cellular processes became evident. To give the reader an impression of the
complexity of lipid metabolism and its regulation, a few selected examples of
novel insights into yeast lipid homeostasis covering different lipid species will be
discussed in the following section.

8.3.1 Regulation of Phospholipid Synthesis:
Inositol, PA and Opi1p

Besides acetyl-CoA, inositol is a major link of carbon metabolism to lipid
metabolism. It is a carbohydrate synthesized from glucose-6-P in two steps, and is
not essential under standard cultivation conditions. Inositol forms the structural
component of a number of secondary messenger molecules, the inositol phos-
phates. In addition to its signalling role, inositol is also an important component of
PI and its phosphates (PIPs), and can be regarded as the master regulator of PL
biosynthesis. Inositol used for PI synthesis is either synthesized de novo or
imported into the cell from the growth medium by inositol transporters encoded by
ITR1 and ITR2 (Nikawa et al. 1991). The switch between these two possibilities is
regulated by PA, which acts as an essential metabolic intermediate and a regulator
of phospholipid homeostasis.

The link between inositol and PA is an effector named Opi1p (Loewen et al.
2004). As noted in a previous section, many genes involved in phospholipid
biosynthesis carry a cis-acting, inositol-sensitive upstream activating sequence
(UASINO) response element (Chen et al. 2007a). All these genes are regulated by
the same transcription factors. They are activated by Ino2p and Ino4p, and
repressed by Opi1p. The location of Opi1p is the key whether or not it acts as a
repressor. In the absence of extracellular inositol, Opi1p is bound to the ER,
together with the integral ER membrane protein Scs2p (interaction of an FFAT
motif) and PA. With Opi1p in this location, genes involved in inositol synthesis are
transcribed. When inositol is added to the medium, PA is consumed by conversion
into PI, leading to the translocation of Opi1p to the nucleus where it represses
genes carrying the UASINO element (Carman and Han 2011). This latter process is
influenced by pH, because deprotonated PA is a better ligand for Opi1p than
protonated PA. The intracellular pH of yeast cells is strongly dependent on the
nutritional environment. During glucose starvation, it falls rapidly compromising
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the binding between PA and Opi1p. This effect leads to the translocation of Opi1p
to the nucleus where it acts as a repressor of phospholipid synthesis (Ktistakis
2010).

The example described above is only one among many other regulatory aspects
involved in phospholipid metabolism. As another recent example, Moir et al.
(2012) reported that Yft2p and Scs3p, the yeast homologues of the mammalian
FIT proteins (fat storage-inducing transmembrane proteins), are required for
normal ER membrane biosynthesis. It is suggested that these proteins could be
candidates involved in global regulation of phospholipid metabolism. For a more
detailed description of phospholipid regulatory networks and interconnections
with other pathways, the reader is referred to a recent review (Carman and Han
2011).

8.3.2 Regulation of Sphingolipid Metabolism

Sphingolipid metabolism is regulated by a series of factors, Orm1p, Orm2p,
Ypk1p, Slm1p, Slm2p and TORC2. Orm1p and Orm2p are evolutionarily con-
served proteins that act as inhibitors of serine:palmitoyl-CoA transferase (SPT),
encoded by LCB1 and LCB2, which catalyzes the first and rate-limiting step in the
de novo synthesis of sphingolipids (Fig. 8.5) (Breslow et al. 2010). Ypk1p is a
serine/threonine protein kinase that inactivates Orm1p and Orm2p by phosphor-
ylation in response to compromised sphingolipid synthesis (Roelants et al. 2011;
Sun et al. 2000). Slm1p and Slm2p are phosphoinositide-binding proteins that
form a complex with each other and are both phosphorylated by the TORC2
complex (Niles and Powers 2012). The interplay of these factors can be regarded
as an important control mechanism for sphingolipid homeostasis, because not only
do the end products of sphingolipid synthesis but also several intermediates play
an essential role for the cell. The feedback loop that controls sphingolipid
metabolism can be summarized as follows: Orm1p and Orm2p form a stable
complex with SPT when they are dephosphorylated, repressing SPT activity. Upon
sphingolipid deficiency, Orm proteins are phosphorylated by Ypk1p, which leads
to their relief of SPT. Ypk1p activity is in turn controlled by phosphorylation in a
TORC2-dependent manner (Raychaudhuri et al. 2012). The TORC2-dependent
phosphorylation of Ypk1p requires the activation of Slm proteins. These proteins
appear to sense membrane stress caused by sphingolipid depletion and react by
redistribution among different membrane domains. The relocation from eisosomes
is caused by the inhibition of sphingolipid synthesis, which is then followed by
activation of TORC2-Ypk1 signalling (Berchtold et al. 2012).
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8.3.3 Phosphatidate Phosphatase Pah1p, a Switch Point
in Glycerolipid Metabolism

PAH1 encodes the enzyme phosphatidate phosphatase which has gained more and
more attention, in particular because of its homology to the mammalian lipins 1
and 2, which are involved in several lipid-associated disorders in human physi-
ology (Han et al. 2006; Reue and Brindley 2008; Reue and Dwyer 2009). Pah1p
catalyzes dephosphorylation of PA, yielding DAG and Pi, in a Mg2+-dependent
manner. Since both the substrate and the product of this reaction are important
lipid mediators, Pah1p can be regarded as a central regulator of lipid homeostasis.
This enzyme is an important control point deciding whether cells produce storage
lipids or phospholipids as membrane constituents (for review see Pascual and
Carman 2013). Pah1p is evolutionarily conserved, since genes encoding PAP
(phosphatidic acid phosphatase) enzymes have been identified in humans, mice,
flies, worms and plants. The influence of Pah1p was best studied in pah1D yeast
deletion strains which were severely affected at several levels of lipid homeostasis.
These strains showed defects in the synthesis of TG and PL, elevation in cellular
content of PA and decreased levels of DAG and TG (Fakas et al. 2011; Han et al.
2006). Moreover, the amounts of PL, FA and SE were also increased in these
mutants. The importance of Pah1p is further underlined by the occurrence in a
pah1D deletion strain of several phenotypic appearances such as slow growth,
defects in the biogenesis and morphology of LD, aberrant expansion of the
nuclear/ER membranes, FA-induced toxicity and effects in vacuole homeostasis
and membrane fusion, as well as in respiratory deficiency (O’Hara et al. 2006;
Adeyo et al. 2011; Fakas et al. 2011; Sasser et al. 2012). The increased amount of
PL is also typical of a pah1D mutant, which could be caused by the derepression of
UASINO-containing lipid synthesis genes in response to elevated PA levels (see
below) (Carman and Henry 2007; Chirala et al. 1994). Recently, Dgk1p was found
to be a cellular counterpart of Pah1p by its regulation of PA homeostasis (Han
et al. 2008). Dgk1p is a CTP-dependent DAG kinase that catalyzes the reverse
reaction of Pah1p and restores PA levels in a pah1D mutant. As unbalanced levels
of PA and DAG result in many phenotypic consequences, the activity of Pah1p
must be fine-tuned to maintain lipid homeostasis and normal cell physiology.
Some regulatory mechanisms of Pah1p activity were reported, but all of them are
very complex, occurring on different levels (Pascual and Carman 2013). Pah1p
expression was found to depend on various physiological conditions such as zinc
depletion or different growth phases. Regulation by lipids and nucleotides was
identified as another regulatory mechanism since Pah1p activity is stimulated in
response to CDP-DAG, PI and CL, whereas it is inhibited by sphingosines,
phytosphingosine and sphinganine and the nucleotides ATP and CTP (Wu and
Carman 1994, 1996; Wu et al. 1993). Pah1p activity and subcellular distribution
are governed by the Nem1p-Spo7p protein phosphatase complex, and several
kinases such as Pho85p-Pho80p, Cdc28p-cyclin B, protein kinase A and C as well
as casein kinase II can act on Pah1p using phosphorylation/dephosphorylation
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mechanisms; however, the fine-tuning of Pah1p still has to be examined (Choi
et al. 2011; Siniossoglou et al. 1998). The action of the transmembrane protein
phosphatase complex, Nem1p-Spo7p, is responsible for the recruitment of the
phosphorylated form of Pah1p from the cytosol to the nuclear/ER membrane. The
Nem1p-Spo7p complex dephosphorylates Pah1p, enabling a short aminoterminal
amphipathic helix to anchor Pah1p, thus allowing access to its substrate PA
(Pascual and Carman 2013).

8.3.4 PS Decarboxylase 1 (Psd1p)

PE belongs to the bulk PL of yeast. It can be synthesized by four different path-
ways, namely by (i) decarboxylation of PS through Psd1p, (ii) by decarboxylation
of PS though Psd2p, (iii) by reacylation of lyso-PE by Ale1p and Tgl3p and (iv)
via the CDP-ethanolamine pathway (Henry et al. 2012; Böttinger et al. 2012).
These pathways account for different proportions of cellular PE. Horvath et al.
(2011) reported that the CDP-ethanolamine pathway preferentially contributes to
TG synthesis by providing PE as co-substrate for Lro1p catalyzed TG synthesis,
indicating a close interaction between TG and PE synthesis. The main source for
PE, however, is the conversion of PS into PE by Psd1p. Psd1p is encoded by a
nuclear gene, synthesized on free ribosomes and imported into mitochondria,
where protein maturation takes place. This processing occurs in three steps,
involving the action of the mitochondrial processing peptidase (MPP), the action
of Oct1p (a mitochondrial peptidase that cleaves destabilizing N-terminal residues
of a subset of proteins) and autocatalytic cleavage at a highly conserved LGST
motif. These processing steps yield the mature form of the enzyme that contains an
a-subunit, exposed to the intermembrane space, and a b-subunit anchoring the
activated protein to the inner mitochondrial membrane. Correct localization is
crucial for full enzymatic activity and also for maintaining lipid homeostasis
(Horvath et al. 2012). Deletion of PSD1 leads to reduced growth on glucose,
morphological changes in mitochondria, ethanolamine auxotrophy and an altered
pattern of PL (Birner et al. 2001). These observations underline the importance of
Psd1p in lipid homeostasis. PE levels were shown to have a tremendous impact,
not only on the distribution of other lipids, but also on the function and stability of
mitochondrial proteins (Böttinger et al. 2012).

8.3.5 Ups1p, ERMES and Gem1p: Components Affecting
Mitochondrial Lipid Transfer

Lipid transfer between and within organelles has been an important issue for
several decades but is still under intense investigation. Import of lipids into
mitochondria and interaction of mitochondria with the ER are classical examples

190 B. Ploier et al.



for such studies. Recently, identification of new components provided some deeper
insight into these problems.

Intramitochondrial lipid transport is important to provide substrates like PA or
PS for efficient CL and PE synthesis, respectively, in the inner mitochondrial
membrane. Transport of PA between the outer (OMM) and inner mitochondrial
membranes (IMM) was found to be mediated by Ups1p, a protein localized to the
intermembrane space (Connerth et al. 2012; Tamura et al. 2010). PA is transported
in three steps starting with the binding of PA by Ups1p at the surface of the OMM.
Ups1p then associates with Mdm35p to be protected against proteases before PA is
released at the IMM (Potting et al. 2010). This transport is bidirectional and
independent of the acyl-chain composition. Dissociation of Mdm35p from the
complex is a prerequisite for PA release and facilitated by the interaction with
negatively charged PL like CL. However, a very high concentration of CL pre-
vents the detachment of Ups1p from the acceptor membrane, subsequently
impairing the PA flux. This finding indicates that CL is a regulator of its own
synthesis (Connerth et al. 2012). Deletion of UPS1 leads to a decrease in Psd1p
levels and causes a reduction of PE. This defect has been explained as Ups1p being
responsible not only for PA transport, but also for the import of Psd1p into
mitochondria. Moreover, it was shown that Ups1p also mediates the export of PE
from the IMM to the OMM and promotes the conversion of PE to PC, which
makes Ups1p a central regulator of phospholipid metabolism by influencing lipid
traffic (Tamura et al. 2012).

A complex termed ERMES (ER mitochondria encounter structure) that tethers
the ER to the OMM has been identified. This complex is composed of the five
proteins Mmm1p, Mdm34p, Mdm10p, Mdm12p and Gem1p (Kornmann et al.
2009; Stroud et al. 2011). Gem1p is an OMM GTPase with a C-terminal single
transmembrane segment that is exposed to the cytosol (Kornmann et al. 2011;
Meisinger et al. 2007). Mmm1p, Mdm34p and Mdm12p each contain an SMP
domain (synaptotagmin-like mitochondrial and lipid-binding proteins) that is
involved in binding hydrophobic ligands like lipids. This arrangement suggests a
possible role for the ERMES complex in lipid transport between the ER and
mitochondria (Kopec et al. 2010). A transport route between these two compart-
ments is important because the substrate of the mitochondrial Psd1p, PS, is syn-
thesized in the ER, and PE synthesized by Psd1p in mitochondria is substrate of
the ER-localized PC-synthesizing machinery. How lipid transport via ERMES
may happen is controversial and still a matter of debate. Kornmann et al. (2009)
reported that strains bearing mutations in the ERMES proteins showed phenotypes
related to phospholipid metabolism such as decreased CL levels. However, ER-
MES and Gem1p have been shown not to play a direct role in the transport of PS
from the ER to mitochondria. Rather, ERMES fulfils a structural role in main-
taining the morphological integrity of mitochondria (Nguyen et al. 2012).
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8.3.6 Squalene

Squalene is a polyunsaturated triterpene consisting of six isoprene units. It
possesses several beneficial properties, e.g. as antioxidant or emollient, and has
therefore become relevant for biotechnological applications (for review see
Spanova and Daum 2011). As described above, squalene is an important inter-
mediate of the sterol biosynthetic pathway. Under normal growth conditions, it is
rapidly converted and therefore does not accumulate in yeast. However, under
certain growth conditions or by genetic manipulations (overexpression of HMG1/
2, ERG1 or ERG6; deletion of HEM1) the amount of squalene can be increased
(Polakowski et al. 1998; Jahnke and Klein 1983; Lorenz et al. 1989). Spanova
et al. (2010) showed that under squalene-accumulating conditions this lipid is
stored in LD. Unexpectedly, accumulation of squalene did not result in lipotoxic
effects. In a yeast strain lacking TG and SE, which is unable to synthesize LD,
squalene was found mainly in mitochondria and microsomes without causing
deleterious effects. Recent reports (Spanova et al. 2012) described functions of
squalene as a modulator of membrane properties affecting mainly membrane
fluidity. It was shown that ER membranes become more rigid when enriched in
squalene, whereas samples of plasma membranes became softer. Unlike sterols,
squalene does not necessarily rigidify membranes, but modulates their dynamics in
both directions. This effect could depend on the ratio of ergosterol to squalene.

8.3.7 Tgl3p, Tgl4p and Tgl5p: More Than Just
Triacylglycerol Lipases?

As described in the section on non-polar lipids, Tgl3p, Tgl4p and Tgl5p are the main
TG lipases of the yeast S. cerevisiae. Recently, Ayp1p was identified as another TG
lipase with minor lipolytic activity (Ploier et al. 2013). They catalyze the cleavage
of TG to DAG and FA. However, these enzymes are not only responsible for
mobilization of the main storage lipids but also contribute to lipid metabolism as
acyltransferases and phospholipases, which makes them novel key players in lipid
metabolism (Grillitsch and Daum 2011; Rajakumari and Daum 2010a, b).

In general, lipases are a subclass of hydrolases whose catalytic activity depends
on the so-called interfacial activation, which means that they act only at an
aqueous/non-aqueous interface (Verger 1997). As all other lipases, the three main
TG lipases of yeast, Tgl3p, Tgl4p and Tgl5p, share a common consensus sequence
GXSXG, where serine is the essential residue as interaction partner of the catalytic
triad aspartic acid, glutamic acid and histidine (Schrag and Cygler 1997). They
also contain a patatin domain, named after a plant storage protein that possesses
lipid acyl hydrolase activity (Mignery et al. 1988).

Tgl3p was the first yeast TG lipase to be identified and characterized in
S. cerevisiae (Athenstaedt et al. 1999a; Athenstaedt and Daum 2003). Tgl4p and
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Tgl5p, identified some years later, exhibit about 30 % and 26 % similarity with
Tgl3p (Athenstaedt and Daum 2005; Kurat et al. 2006). Localization studies have
revealed that all three TG lipases are localized to LD, although none of these three
lipases show hydrophobic domains (Athenstaedt and Daum 2005; Müllner et al.
2004). In vitro, all three proteins possess lipolytic activity whereas in vivo only
Tgl3p and Tgl4p mobilize TG efficiently. This finding was explained by different
substrate specificities. It appears that Tgl5p accepts mainly TG-containing cerotic
acid (C26:0), a fatty acid of low abundance in yeast, whereas overall effects
in vivo on bulk TG hydrolysis were not observed. The main TG lipase in yeast,
Tgl3p, was shown to hydrolyze TG as well as DAG, whereas substrate specificity
of Tgl4p is restricted to TG (Kurat et al. 2006). A tgl3Dtgl4Dtgl5D yeast strain
lacking all three TG lipases does not reveal any growth defect under standard
growth conditions, although mutations in TGL3 or TLG4 lead to fat yeast cells that
accumulate TG (Athenstaedt and Daum 2005; Kurat et al. 2006). Moreover,
deletion of TGL4 and TGL5 leads to decreased sporulation efficiency.

Recent characterization of TG lipases has revealed novel functions of these
enzymes. Protein sequences of all three TG lipases contain additional sequence
motifs besides the conserved GXSXG lipase motif. Tgl3p, Tgl4p and Tgl5p har-
bour an acyltransferase motif (H-(X)4-D), and Tgl4p was found to have in addition
a phospholipase motif (GXGXXG). Further investigations revealed decreased
amounts of total PL in a tgl3D deletion strain and increased amounts of PL in a
TGL3 overexpressing strain (Rajakumari et al. 2010; Rajakumari and Daum
2010a). In vitro enzyme assays showed that both Tgl3p and Tgl5p act as lyso-
phospholipid acyltransferases with different substrate specificities. Tgl3p mainly
acylates lysophosphatidylethanolamine, whereas Tgl5p prefers lysophosphatidic
acid as a substrate (Rajakumari and Daum 2010a). The lipase activity of Tgl3p acts
independently from the acyltransferase activity and vice versa as demonstrated by
site-directed mutagenesis, inactivating either one of the two motifs. Interestingly,
the sporulation defect in a tgl3Dtgl5D double mutant was still observed in a strain
with mutated lipase motif but not when the acyltransferase activity was abolished.

Besides the conserved lipase motif, Tgl4p contains a (G/A)XGXXG Ca2+-
independent phospholipase A2 domain. Phospholipase activity of Tgl4p was also
established in vitro with PC and PE as substrates but not with PA or PS. Addi-
tionally, Tgl4p hydrolyzed SE and revealed lysophospholipid acyltransferase
activity (Rajakumari and Daum 2010b). Kurat et al. (2009) reported an impact of
phosphorylation of Tgl4p activity. They showed that the lipolytic activity of Tgl4p
was strongly reduced when phosphorylation sites were mutated, whereas the
lysophospholipid acyltransferase activity was not affected (Rajakumari and Daum
2010b). In conclusion, Tgl4p is an excellent example of a multifunctional enzyme
involved in yeast lipid metabolism, which does not only hydrolyze TG and SE but
also contributes to PL synthesis and membrane remodelling. Recent publications,
as well as our own unpublished data, led to the conclusion that besides the currently
known TG lipases, Tgl3p, Tgl4p and Tgl5p, also other TG lipases may play a role in
the turnover of non-polar lipids (Debelyy et al. 2011; Thoms et al. 2008, 2011).
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8.3.8 Phospholipases

Phospholipases cleave different bonds in glycerophospholipid molecules, and their
physiological effects are based on the resulting products. Depending on the bond(s)
cleaved, phospholipases are divided into groups A1, A2, B, C and D (Fig. 8.6). A
thoroughly studied example of Plc1p, the canonical yeast phospholipase C,
illustrates well how phospholipases activate signalling cascades by generating, in
the case of Plc1p, DAG and inositol 1,4,5-triphosphate, both of which exert their
intrinsic biological activity as secondary messengers (reviewed in Rebecchi and
Pentyala 2000; Strahl and Thorner 2007; York 2006). However, the activity of
some phospholipases appears to be restricted to metabolic functions, such as that
of Pgc1p, another yeast phospholipase C, which is specific for PG hydrolysis and
required for its degradation (Simocková et al. 2008). The third known yeast
phospholipase C is encoded by the ISC1 gene. It accepts phosphosphingolipids
(see above) as substrates and generates phytoceramide, a signalling molecule
affecting several cellular processes (reviewed in Matmati and Hannun 2008). Two
phospholipases D, Spo14p and Fmp30p, have also been described in S. cerevisiae.
The former hydrolyzes PC to choline and PA and is involved in several cellular
processes including growth, secretion and regulation of INO1 expression
(Sreenivas et al. 1998), as well as sporulation (Rudge et al. 1998) and general
transcription (García-López et al. 2011). Fmp30p, an IMM protein with sequence
similarity to mammalian N-acylethanolamine-specific phospholipases D (Merkel
et al. 2005), is also required for CL homeostasis (Kuroda et al. 2011).

Deacylating phospholipases in yeast include phospholipases B, Plb1p, Plb2p,
Plb3p, Nte1p and Spo1p; phospholipases A2, Cld1p, Tgl4p, Per1p and Bst1p; and
Yor022cp, a putative phospholipase A1. A detailed understanding of the bio-
chemical pathways leading to the specific FA composition of PL is important,
among other reasons also from the perspective of yeast-based biofuel production
(see below). All deacylating phospholipases could, in principle, be involved in
acyl-chain remodelling of phospholipids, but a recent study showed that, rather
than phospholipases B, it is the PL:DAG acyltransferase Lro1p which provides FA
for PL remodelling (Mora et al. 2012). Two other acyltransferases, Psi1p
(=Cst26p) and Taz1p, play crucial roles in PL acyl-chain remodelling (reviewed
by Henry et al. 2012). Plb1/2/3 proteins, on the other hand, have been proposed to
be involved in biosynthesis and, together with the phospholipase D Fmp30p, in
signalling through N-acylethanolamines and N-acylphosphatidylethanolamines
(Merkel et al. 2005).

A special case among yeast phospholipases is Tgl4p which, as described above,
is a multifunctional enzyme with reported triacylglycerol lipase, steryl ester
hydrolase and Ca2+-independent phospholipase A2 activities (Rajakumari and
Daum 2010b). Importantly, regulation of the activity of this protein also links lipid
metabolism to cell-cycle regulation (Kurat et al. 2009). Multiple cellular processes
are also affected by the activity of Per1p and Bst1p, albeit the diversity of their
effects stems from the fact that these phospholipases A2 are active on GPI-protein
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anchors that enable specific localization of the proteins targeted to lipid raft
regions of the plasma membrane (Fujita et al. 2006; Tanaka et al. 2004). SPO1 is a
meiosis-induced gene that encodes a phospholipase B with a role in distinct steps
of sporulation, exhibiting epistasis with Spo14p phospholipase D, whereas the
absence of Spo1p can be partially suppressed by overexpression of PLB3 gene
(Tevzadze et al. 2007). CLD1 codes for a cardiolipin-specific deacetylase which,
together with Taz1p, ensures the biosynthesis of mature CL (Beranek et al. 2009).
Also, Nte1p seems to play an interesting role possibly regulating transcription of
PL biosynthesis genes through its PC-specific phospholipase A2 activity and
subsequent modulation of Opi1p activity (see above) (Fernández-Murray et al.
2009).

8.3.9 Izh Proteins, Zinc Homeostasis and Regulation
by Inositol and Fatty Acids

As described in the previous sections, regulation of inositol biosynthesis is one of
the central processes in yeast lipid and general metabolism homeostasis. In this
section, we will address the role of Izh (Implicated in Zinc Homeostasis) proteins,
yeast homologues of the mammalian adiponectin receptors, which have recently
emerged as players enabling the connection between inositol and FA metabolism
and zinc homeostasis. Zinc depletion in yeast activates Zap1p transcriptional
activator which affects several target genes, among them the PIS1-encoded PI
synthase and the DPP1-encoded DGPP phosphatase. Zn depletion thus causes a
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decrease in PE and an increase in PI concentration (Carman and Han 2011;
Iwanyshyn et al. 2004). In addition, zinc depletion results in a decreased con-
centration of PA, thus triggering the release of Opi1p from the ER membrane and
its translocation into the nucleus, where it represses expression of CHO1 gene that
encodes PS synthase by binding to and inhibition of the Ino2/4 complex (Carman
and Han 2011). There are four genes in yeast, IZH1, IZH2, IZH3 and IZH4 which
encode proteins with sequence similarity to adiponectin receptors. In humans,
adiponectin receptors mediate the antidiabetic metabolic activity of the polypep-
tide hormone adiponectin (Kadowaki et al. 2006). The yeast Izh2p has been
confirmed as a functional homolog of adiponectin receptors in an experiment
where heterologous expression of human adiponectin receptors in yeast func-
tionally complemented Izh2p (Kupchak et al. 2007). IZH1/2/3/4 genes were
implicated to have a role in zinc metabolism after they had been identified in a
screening for Zap1p targets, and were confirmed to have zinc-related phenotypes
(Lyons et al. 2004). Expressions of IZH1 and IZH2 are directly regulated by
Zap1p, and the promoters of these genes contain zinc-response elements. In
addition, IZH1, IZH2 and IZH3 genes are regulated by exogenous FA through
Oaf1p/Pip2p transcription factors that bind to oleate-response elements present in
their promoters (Lyons et al. 2004). Specifically, IZH2 expression is highly
induced in cells grown in the presence of saturated FA such as myristate, and
strains without this gene fail to grow normally in the presence of myristate
(Karpichev et al. 2002). Transcriptome analysis of izh2D cells has revealed that a
number of genes encoding proteins involved in FA metabolism and in the phos-
phate signalling pathway are regulated by Izh2p (Karpichev et al. 2002). Three
functions of Izh proteins have been proposed by Lyons et al. (2004): (i) a role in
sterol metabolism by which they would influence the permeability of the plasma
membrane and consequently zinc homeostasis; (ii) a role as transporters for zinc;
and (iii) a role in a zinc-independent signal transduction cascade with Zap1p as
downstream target. The above results imply that, at least for Izh2p, the third
possibility is the most likely one. Thus, Izh2p is emerging as a central component
of a putative feedback regulatory pathway leading from FA to Zap1p activation
and finally to inositol and regulation of PL biosynthesis.

8.4 Biotechnological Aspects

Lipids and their expansive roles have become increasingly recognized, resulting in
a great demand for industrial high-level production of particular valuable lipid
compounds. Lipid metabolism in yeasts as described above has been studied
intensively and well described. Since this process is well conserved in eukaryotic
cells, yeasts are ideal host systems for the biotechnological production of indus-
trially and pharmaceutically relevant lipid compounds. S. cerevisiae, in particular,
has been successfully applied for their production. This section describes exam-
ples, selected to illustrate the importance of lipid metabolism in biotechnology.
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In this section, some of the most important approaches are described. The reader is
also referred to recent reviews on these topics (such as Beopoulos et al. 2011; de
Jong et al. 2012; Ruenwai et al. 2011; Uemura 2012; Veen and Lang 2004) for
more details.

8.4.1 Polyunsaturated Fatty Acids

PUFA are FA with more than 16 carbon atoms in the chain that contain more than
one double bond. They have multiple positive effects on human health, such as
lowering the risk of heart attacks, cardiovascular diseases and cancer, and they also
have major impacts on the development and improvement of retinal and brain
function and on the regulation of membrane fluidity (Uemura 2012; Opekarová
and Tanner 2003). Since mammals are not able to synthesize essential PUFA such
as linoleic acid (C18:2n-6) or the omega-3 and omega-6 PUFA, they must be taken
up from the diet. Since natural sources, such as fish oils, are limited, it is highly
desirable to produce PUFA from alternative and sustainable sources. One prom-
ising option is S. cerevisiae or other yeasts. S. cerevisiae, in particular, has been
shown to have a considerable potential for metabolic engineering approaches to
the production of certain metabolites (Ostergaard et al. 2000).

The physiological FA composition of S. cerevisiae includes mainly C16:1 and
C18:1 as described above in the section on FA. Since OLE1, that encodes a D9-
fatty acid desaturase, is the only endogenous desaturase (Stukey et al. 1990),
production of PUFA in S. cerevisiae requires the introduction of further desaturase
and elongase genes from donor organisms such as Mucor rouxii, Caenorhabditis
elegans, Arabidopsis thaliana or Mortierella alpina to produce, for example, a-
linolenic acid (C18:3n-3), eicosapentaenoic acid (C20:5) and docosahexaenoic
acid (C22:6) (Ruenwai et al. 2011; Uemura 2012). Combinations of multiple
desaturases and elongases from various organisms were tried, but since D5- and
D6-fatty acid desaturases can accept both n-3 and n-6 FA, the resulting products
mostly depend on the substrate fatty acid added to the medium. Most studies used
a large excess of precursor FA, yet the final yield of the PUFA produced was still
low and strongly depended on cultivation conditions, such as growth media,
temperature and incubation time (Uemura 2012; Misawa 2011). Construction of
the complete pathway for the production of C20-PUFA, such as DGLA (di-
homogamma linoleic acid) from the endogenous oleic acid, has been described by
Yazawa et al. (2007). The authors cloned a D12-desaturase gene from K. lactis,
and a D6-desaturase and the elongase ELO1 genes from rat into S. cerevisiae.

One severe limitation of S. cerevisiae as a production host for PUFA is the low
total lipid content compared to some other yeast genera. One alternative is the use
of oleaginous yeasts such as Y. lipolytica which are characterized by their ability to
accumulate lipids up to 40 % of their biomass (Beopoulos et al. 2011). Y. li-
polytica has been applied successfully for the production of x-3 and x-6 PUFA
such as docosahexaenoic acid, eicosapentaenoic acid and c-linolenic acid. DuPont
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de Nemours, for example, genetically engineered Y. lipolytica by expressing
heterologous desaturases and elongases from organisms like M. alpina and
Fusarium moniliforme, and by genetically inhibiting peroxisomal fatty acid deg-
radation that produces lipids with the highest content of docosahexaenoic and
eicosapentaenoic acids available (Xue et al. 2013).

8.4.2 Isoprenoids

Isoprenoids, also referred to as terpenoids, comprise a large group of naturally
occurring secondary metabolites built from isoprene units, IPP (isopentenyl
diphosphate) and its isomer DMAPP (dimethylallyl diphosphate). Eukaryotes
synthesize IPP via the mevalonate pathway as described in the section on sterols.
Head-to-tail condensation of IPP and DMAPP yields GPP, which is then converted
into FPP by linkage of another molecule IPP. IPP is a branching point between
GGPP (geranylgeranyl diphosphate) and the sterol pathway (see Fig. 8.3) (Pichler
2005). GPP and FPP are the precursors of monoterpenoids and sesquiterpenoids,
respectively, and GGPP of diterpenes. Typically, two molecules of FPP are con-
densed to yield squalene, the precursor of sterols and phytoene which can be
converted into carotenoids. Steroids will be discussed in the next section while the
other isoprenoids are dealt with in this section.

Terpenoids comprise over 40,000 structurally different compounds. They are
the largest group of natural products and have valuable properties for medical and
industrial usage, especially as constituents of plant oils such as limonene, menthol
and citronellol, which are used as flavours and fragrances, in their occurrence of
carotenoids and as pharmaceuticals such as taxol (Misawa 2011; Chang and
Keasling 2006).

S. cerevisiae does not produce monoterpenoids. Due to industrial requirement
of these compounds, however, metabolic engineering approaches have been
accomplished to this end (Lee et al. 2009). Herrero et al. (2008), for example,
reported a recombinant wine yeast strain of S. cerevisiae that expresses the (S)-
linalool synthase gene from the plant Clarkia breweri, and concomitantly over-
expresses HMG-CoA reductase, resulting in efficient excretion of linalool reaching
concentrations of 77 lg/L.

Sesquiterpenoids comprise the largest group of isoprenoids, and occur in plants
and insects as pheromones and defensive agents. Because of their anti-cancer, anti-
tumour and antibiotic properties, they are industrially important compounds (As-
adollahi et al. 2010). One prominent example is artemisin, which is an effective
anti-malarial drug and has been discussed as an anti-cancer agent (Firestone and
Sundar 2009; Chaturvedi et al. 2010).

Several pharmaceuticals belong to the group of diterpenoids, including taxol,
which is used as a potent anti-cancer agent (Wani et al. 1971). As the demand for
taxol exceeds the amounts which can be isolated from its natural source Taxus
bevifolia, heterologous production in S. cerevisiae by introducing parts of the 19
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enzymatic step biosynthetic pathway is one alternative. Engels et al. (2008)
described the production of a precursor of taxol, taxa-4(5),11(12)-diene, by
expressing Taxus chinensis taxadiene synthase and truncated HMG-CoA reductase
genes in S. cerevisiae together with an archaeal GGPP synthase gene from Sulf-
olobus aciocaldarius. These manipulations resulted in formation of 8.7 mg/L of
taxadiene.

Carotenoids, such as b-carotene, astaxanthin and lycopene, are also isoprenoids.
They are widely distributed as yellow, orange and red natural pigments in all
phototrophic plants as well as in some bacteria, algae and fungi. In addition to their
important physiological roles as components of the photosynthetic complex, pre-
cursors of phytohormones and chromophoric compounds of animals and plants,
their anti-oxidative and photoprotective effects were proposed (Fraser and
Bramley 2004). These effects are also beneficial for human health and carotenoids
attracted attention as nutraceutical agents. Lycopene, for example, which occurs in
tomatoes, is thought to prevent cardiovascular disease, UV-light ageing in humans
and age-related macular degeneration. Carotenoid biosynthetic pathways have
been introduced into S. cerevisiae to produce lycopene and b-carotene. The
engineered strains yielded b-carotene at 5.9 mg/g dry cell weight and lycopene ate
7.8 mg/g dry cell weight (Verwaal et al. 2007; Yamano et al. 1994). For a recent
review of this topic see Wriessnegger and Pichler (2013).

8.4.3 Steroids

Steroids comprise a large group of compounds with cyclopentanoperhydrophe-
nanthrene as the common basic structure as described in the section on sterols.
This group of components are roughly divided into sterols, which are steroid
alcohols with a hydroxyl group in the 3-position of the A-ring, steroid hormones,
steroid alkaloids and bile acids. Hundreds of distinct steroids are found in plants,
animals and fungi, all of them sharing the mutual precursor squalene. They have
sex-determining, growth regulating and anti-inflammatory properties and are
responsible for membrane fluidity and permeability (Riad et al. 2002). The
chemical synthesis is very difficult and extraction from natural sources is low-
yielding and unsustainable. Therefore, the production in yeast is an appreciated
alternative (Heiderpriem et al. 1992).

Several sterol intermediates are of biotechnological interest and have already
found applications in industry (Donova and Egorova 2012). Lanosterol, for
example, serves as an emulsifier in cosmetics, zymosterol as a precursor for
cholesterol lowering substances and ergosterol itself as provitamin D2 and as a
constituent of liposomal steroids used as carriers for drugs. As special pharma-
ceutical interest, they can serve as valuable precursors for the production of
hydrocortisone and other steroid hormones like dehydroepiandosteroine, proges-
terone, testosterone and estrogens. The natural content of sterols in yeast is,
however, too low for commercial applications and several attempts have therefore
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been made to increase the total sterol content in this microorganism (Veen et al.
2003). The most successful strategies were the concomitant overexpression of
ERG1 and ERG11 and a truncated version of HMG1, and the overexpression of
ERG4 and ARE2. The accumulation of sterols can also be promoted by the
addition of ethanol into the cultivation medium by fermentation under nitrogen-
limiting conditions (Sajbidor et al. 1995; Shang et al. 2006). For recent reviews of
yeast metabolic engineering targeting sterol metabolism see (Wriessnegger and
Pichler 2013).

8.4.4 Biofuels

Current transportation fuels are obtained mainly from fossil sources, which are not
only limited but also associated with air pollution and global warming. These
developments have prompted a desire for a shift from fossil fuels to biofuels. The
concept of biofuels relies on the conversion of renewable resources into fuels. It
comprises not only first-generation biofuels such as bioethanol and biodiesel, but
also advanced biofuels such as alkanes, terpenes, short-chain alcohols and fatty
acyl ethyl esters. Compared to bioethanol, the latter compounds promise energy
content and combustion properties similar to those of current petroleum-based
fuels (de Jong et al. 2012).

The most frequently employed microorganism to produce bioethanol is S. ce-
revisiae since it is able to hydrolyze sucrose from sugar cane into glucose and
fructose at concentrations over 100 g/L, which can be converted by fermentation
into ethanol. However, the availability of inexpensive fermentable sugars is lim-
ited, and re-dedicating farmland for biofuel production causes economic and
ethical problems. Another limitation for ethanol as biofuel is the difficulty to distill
it from fermentation broth due to its miscibility with water and its corrosive effect
to storage and distribution infrastructures. As alternatives, non-food cellulose
sources, including wheat straw and forest waste, can be used for the production of
biofuels but, since S. cerevisiae is unable to convert cellulose or efficiently ferment
C-5 sugars (pentoses), metabolic engineering approaches are necessary or the
employment of other yeast genera (Madhavan et al. 2012).

Biodiesel is a biodegradable, non-toxic and sulphur-free alternative form of
fuel, currently produced mainly by chemical transesterification of vegetable oils.
One promising alternative is to use oleaginous yeasts, such as Y. lipolytica,
Cryptococcus curvatus or Lipomyces starkeyi to produce lipids using cellulosic
sugars as carbon source. These yeasts accumulate lipids at up to 40 % of their
biomass, under nutrient-limiting conditions even up to 70 % (Chen et al. 2009).
The microbial lipids produced show similar composition and energy values to
those of vegetable oils, comprising mainly myristic (C14:0), palmitic (C16:0),
palmitoleic (C16:1, n-7), stearic (C18:0), oleic (C18:1, n-9), linoleic (C18:2, n-6)
and a- linolenic (C18:3 n-3) acids, and are therefore of great commercial value for
the production of sustainable biodiesel which requires C16-C18 FA (Zhao et al.
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2011; Yu et al. 2011). However, from an economic point of view, the development
of yeasts that produce more than 80 % lipids of their biomass would be necessary.
Several engineering strategies have already been published and patented as
reviewed by Beopoulos et al. (2011).

8.4.5 Flavour Compounds

Yeast biosynthesis of flavour compounds is important in fermentations of wine,
beer and sake. An important group of volatile compounds produced by yeast
during fermentation, which include fusel alcohols, monoterpenoids and volatile
sulphur compounds, are lipid metabolism-derived acetate esters and medium-chain
fatty acid (MCFA) ethyl esters (reviewed by Cordente et al. 2012). These esters are
produced intracellularly by acetyl transferases from acetyl-CoA and ethanol or
complex alcohols as substrates, or by acyl transferases from MCFA-CoA and
ethanol as substrates. Many such esters can pass the plasma membrane and diffuse
into the medium. The best studied group from the perspective of biosynthesis
pathway are acetate esters. Their synthesis is catalyzed by acetyl transferases I and
II, encoded by ATF1 and ATF2 genes (Fujii et al. 1994; Nagasawa et al. 1998).
ATF1 has been shown to be localized to LD (Verstrepen et al. 2004). Apart from
volatile esters such as ethyl acetate or isoamyl acetate, ATF1P and ATF2P are also
responsible for the formation of less volatile esters which add no flavour char-
acteristics to the fermentation products. A certain amount of acetate esters are
produced also in cells deleted of both AFT genes, indicating that additional, as yet
unknown acetyl transferases may exist in yeast. Ethyl esters are the product of
Eeb1p- or Eht1p-catalyzed condensation reaction between acyl-CoA and ethanol
(Saerens et al. 2006). These two acyl transferases differ in their specificity towards
different length of the substrate molecules and they also possess esterase activity.
Similar to acetyl transferases, undiscovered acyl transferases responsible for
MCFA ethyl ester biosynthesis are encoded in the yeast genome.

Understanding the physiological regulation of volatile esters biosynthesis is the
prerequisite to the engineering of flavour compounds in yeast-fermented bever-
ages. For the synthesis of acetate esters, the main regulatory step is the reaction
catalyzed by acetyl transferases, whereas for MCFA ethyl ester formation, the
availability of MCFA-CoA substrate is the limiting factor (Saerens et al. 2010).
The amount and nature of acetyl esters could therefore be regulated by overex-
pression of AFT1 or AFT2 at different levels, possibly from different strains and
therefore with different substrate specificities. The amount of MCFA ethyl esters
could be controlled by modifying lipid metabolic pathways, specifically at the
level of acetyl-CoA carboxylase whose activity determines the release of MCFAs
from the fatty acid synthase complex (Dufour et al. 2003). Alternatively, the level
of peroxisomal uptake of MCFAs may be changed, because a specific system
exists for the import of this group of FA towards oxidative degradation (van
Roermund et al. 2001).
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For more details describing the nature and properties of yeast flavour com-
pounds, the reader is referred to recent reviews (Saerens et al. 2010; Sumby et al.
2010; Cordente et al. 2012).

8.5 Conclusions and Perspectives

Over the last few decades, outstanding advancements have been made to identify
the major enzymes involved in the pathways of lipid metabolism. Most of them are
now known, covering the main cellular routes for synthesis, storage and degra-
dation of lipid compounds. However, some gaps still remain. One intriguing open
question is how cells can sense and manage their lipid composition under different
environmental conditions. Investigations addressing such lipid sensors might also
shed more light on the issue of how the different lipid compositions of different
membranes within a single organism can be maintained. The situation gets even
more complicated by the fact that enzymes of lipid synthesis are located in close
vicinity to each other. To elucidate the topology of these enzymes in detail will be
a challenge for the future. Other examples of unsolved problems are metabolic
channelling and lipid trafficking that are just beginning to be addressed and
understood. Regulation of lipid metabolism is an issue under discussion. It occurs
at many different levels, and the cellular lipid composition is not only extremely
dependent on growth conditions, such as nutrient availability, growth phase and
pH, but also on many transcriptional control mechanisms that have been reported.
Thus, the crosstalk between lipid metabolism and other cellular processes, as well
as the regulatory network and interconnections of lipid metabolic pathways, will
have to be studied in more detail. The elucidation of all these questions will foster
the powerful role of yeast as a model organism.
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Chapter 9
Molecular Mechanisms in Yeast Carbon
Metabolism: Bioethanol and Other
Biofuels

Volkmar Passoth

Abstract Biofuels, such as ethanol, biodiesel and biogas, have the potential to
replace a large proportion of transportation fuels that presently are mainly pro-
duced from fossil raw materials. Bioethanol, which is the product of the fer-
mentative energy metabolism of yeasts, is currently the major biofuel on the global
market. It is to a large extent generated from first-generation substrates, i.e. food
grade raw materials. There are huge research efforts to develop ethanol processes
based on non-food lignocellulosic materials. Using—omics technologies, meta-
bolic and evolutionary engineering, strains of, predominantly, Saccharomyces
cerevisiae have been isolated that display enhanced inhibitor and general stress
tolerance, lowered glycerol production and a broadened substrate spectrum
(including the fermentation of pentose sugars released from hemicellulose).
Expression of these features in industrial isolates may within a relatively short
time generate strains robust enough for commercial ethanol production from lig-
nocellulose. S. cerevisiae has also been modified to produce the advanced biofuel
butanol. Although yields and production rates are still below the threshold for
industrial applications, tools for further developments are now available. Biodiesel
production by either oleaginous yeast species that can naturally accumulate high
amounts of lipids or by genetically engineered S. cerevisiae are further examples
of how yeasts can be used for biofuel production. Sustainable production of bio-
fuels requires the integration of all steps of handling biomass, including preser-
vation, pretreatment, fermentation and conversion of side products into high value
compounds. In all these steps, yeasts have great technological potential.
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9.1 Introduction

Biofuels are reduced organic compounds, whose oxidation energy is used for
heating, producing electricity and running combustion engines, mainly for trans-
portation. The metabolic activity of photosynthetic organisms is the basis for both
the origin of fossil fuels and biofuel generation, but, in contrast to fossil fuels,
biofuels are generated from renewable biomass. Currently, bioethanol, biogas and
biodiesel are those biofuels that are commercially used in transportation. However,
the present global society primarily runs on fossil fuels; biofuels represent less
than 4 % of the total global transportation energy. To move away from this large-
scale consumption of fossil resources requires both, measures to reduce the global
energy consumption and a considerable development of sustainable energy tech-
nologies (Cheng and Timilsina 2011; Vanholme et al. 2013). Yeasts are able to
produce a variety of reduced organic molecules and have good potential to play a
central role in these developments (Nielsen et al. 2013).

Bioethanol is the major biofuel on the global market (Cheng and Timilsina
2011; Caspeta et al. 2013; Amorim et al. 2011). It is mainly produced by the yeast
Saccharomyces cerevisiae as the final product of fermentative sugar metabolism.
The production of ethanol is one of the mankind’s oldest biotechnologies. Ethanol
has had a major impact on the development of human civilisation as a beverage
component, conservation agent and drug (Vallee 1998; McGovern et al. 2004). It
also has a history as a transportation fuel. The combustion engine developed by
Nikolaus Otto in 1860 ran on ethanol, and, similarly, cars developed by Henry
Ford at the end of the nineteenth and the beginning of the twentieth centuries could
be driven with ethanol. However, at the beginning of the twentieth century, ethanol
was no longer competitive with the relatively cheap gasoline made from mineral
oil. In the following years, the interest in ethanol as a fuel declined, except on
certain occasions when the supply with mineral oil was perturbed. During the oil
crisis of the 1970s, the interest in ethanol as a fuel increased again, but with the
exception of Brazil, this interest decreased with decreasing oil prices. Only
towards the end of the twentieth and the beginning of the twenty-first centuries did
ethanol became increasingly regarded as an alternative motor fuel, at first because
it can replace lead-containing compounds as an octane booster, but nowadays,
more and more because of growing concerns about the environmental impact
of using fossil fuels and issues of supply and access (Solomon et al. 2007;
Gnansounou 2010).

Considering the long history of ethanol production, it might be surprising that
there is still a huge demand for research in this field. However, biofuel production
has been debated during recent years, mainly because of low efficiency of pro-
duction, low or occasionally negative impact on greenhouse gas and fossil fuel
balance, and potential conflicts between food and energy production (Caspeta et al.
2013). New substrates derived from second-generation, lignocellulosic materials
must be introduced into the production process to address these shortcomings.
Lignocellulose provides the most abundant biomass resource on earth, and the
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amount of lignocellulose produced by land plants has been estimated to be about
10–200 9 109 t per year (Vanholme et al. 2013). However, due to its recalcitrance
and its heterogenic composition, conversion of lignocellulose into biofuels
requires new methods of pretreatment and modified yeast strains. Newly devel-
oped methods of metabolic analyses and metabolic engineering are providing a
variety of opportunities for optimising ethanol production (Nielsen et al. 2013;
Van Vleet and Jeffries 2009). Even ethanol production from first-generation
substrates could still be greatly improved by identifying optimal strains, metabolic
engineering and optimising fermentation conditions (Amorim et al. 2011; Nielsen
et al. 2013).

Apart from ethanol production, research efforts have also focused on producing
biofuels such as biodiesel or biobutanol with the help of yeasts. Microbial bio-
diesel could overcome the low energy yield per hectare obtained from oil plants,
and if produced from lignocellulose a food versus fuel conflict might be avoided
(Caspeta et al. 2013). Biodiesel production can be achieved either by oleaginous
yeasts, which can accumulate lipids to more than 30 % of their biomass, or by
genetically engineered S. cerevisiae. Investigation and manipulation of lipid
metabolism in yeasts will also provide new insights into the carbon metabolism of
yeasts, as pathways towards lipid accumulation require oxygen, in contrast to the
well-investigated alcoholic fermentation (Buijs et al. 2013; Ratledge and Wynn
2002).

Butanol, compared to ethanol, has a higher energy density, can be better
blended with gasoline and is less hygroscopic. In 2008, 2.8 million t were pro-
duced, corresponding to a market value of about 5 billion US dollars. Most butanol
is currently produced by chemical synthesis from mineral oil compounds. A fer-
mentative process based on solventogenic clostridia was commercialised already
in 1912, but is currently not competitive with chemical synthesis (Green 2011).
Several approaches for producing biobutanol with genetically engineered yeasts
have been developed (Buijs et al. 2013).

Sustainable conversion of biomass into biofuels and chemicals requires the
integration of production, storage, pretreatment, processing of the feedstock in a
biorefinery, treatment and generating value from the remnant feedstock (Vanholme
et al. 2013). Yeasts can play important roles in such processes. This chapter aims to
provide a survey on the efforts to understand and manipulate the yeast carbon
metabolism to develop ethanol, butanol and biodiesel production for a biofuel
refinery.

9.2 Ethics of Biofuel Production: Food Versus Fuel?

Biofuels are seen as a step towards a more sustainable society that is less
dependent on fossil raw materials and that produces less or no surplus greenhouse
gases (Cheng and Timilsina 2011; Vanholme et al. 2013; Solomon et al. 2007).
However, production of biofuels, as well as human food, is based on plant

9 Molecular Mechanisms in Yeast Carbon Metabolism 219



biomass. Recent years have seen an increased demand for biofuels and, in parallel,
a dramatic increase in worldwide food prices. Moreover, there are examples where
the effect of biofuel production on saving fossil resources and reducing greenhouse
gas emission was negligible (Hill et al. 2006). In some cases, biofuel production
has had negative impacts on the environment, for instance, when vast areas of
rainforest in Borneo were deforested to grow oil palms (Graham-Rowe 2011).
Given that marginalised members of the population, particularly in developing
countries, struggle to meet their basic nutritional requirements, this raises the
question of whether it is ethically acceptable to use food grade raw materials for
producing biofuels (Thompson 2012). There is, however, no simple answer. Prices
of food are influenced by additional factors beyond the competitive use of agri-
cultural products for biofuel generation. Current agriculture is to a large extent
dependent on an input of fossil fuels and increasing oil prices have a major
influence on food prices. Moreover, there is also a global increase in average meat
intake per capita, and animal production requires 2.5–10-fold more energy input
per generated nutritive calorie compared to plant-based food, which is also driving
prices up (Pelletier et al. 2011). Increasing prices should not necessarily be viewed
as a negative phenomenon per se, they may support food producers in developing
countries. According to the United Nations, about 50 % of people in extreme
poverty (i.e. with an income of less than 1 Euro per day) are food producers, 30 %
are to some extent involved in agricultural production, and thus, a majority of
extremely poor people might benefit from price increases. Moreover, farmers
might be encouraged by higher prices to produce more food, which might in the
long term even help marginalised non-producers. On the other hand, there are a
number of examples where poor farmers have been evicted due to the increasing
value of land. Such cases may not specifically be linked issues of biofuel pro-
duction, but rather may stem from political circumstances (Thompson 2012).
Arising from this background, principles have been formulated to evaluation sit-
uations in which production of biofuels could be considered ethically acceptable.
These criteria include: keeping essential rights of people (including food, water,
health rights or land entitlements); sustainability of biofuels; greenhouse gas
savings; and fair trade. If all of these criteria are met even a duty to develop these
biofuels is postulated (Buyx and Tait 2011).

There is a certain consensus that the development of lignocellulose as raw
material for biofuel production will solve the issue of competing food and fuel
production. Exploitation of underutilised feedstocks may indeed provide a broader
basis for biofuel production (Tilman et al. 2009). However, if second-generation
energy plants turn out to be profitable, it is likely that they will also be produced in
areas that can be used for food production (Graham-Rowe 2011). In this case,
second-generation biofuels would also compete with food production. Moreover, if
technologies are developed to gain access to the nutrients stored in the lignocel-
lulose structure, it might be possible that these nutrients can also be used for food
production (Thompson 2012). This has, in principle, been a long-established
alternative in the feed industry by producing fodder yeast from lignocellulose
residues (Johnson 2013).
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Current biofuel production cannot be seen as the major cause of hunger in
developing countries. The refinement of second- and higher generation biofuels
will indeed provide essential technologies for a sustainable global economy, but
technologies cannot in themselves change political circumstances. However, the
scientific community developing these technologies can and should emphasise
well-formulated ethical criteria regarding biofuels when communicating with
society at large. Moreover, by sharing knowledge with colleagues from developing
countries and especially supporting projects that enable local farmers to introduce
low-tech innovations for food preservation or processing into their food value
chains, scientists can actively support a development that empowers people and
preserves their fundamental rights. Yeast-based technology can also play a role in
such low-tech applications (e.g. Hellström et al. 2010; Leong et al. 2012).

9.3 First- and Second-Generation Ethanol Production

9.3.1 Towards Optimisation of First-Generation Biofuel
Production

As ethanol production from first-generation substrates is still of great economic
importance, significant research efforts are directed towards improving these well-
established processes, especially in Brazil. Most Brazilian ethanol factories rely on
a fermentation method in which yeast cells are recycled and inoculated to the next
round of fermentation. This decreases the amount of sugar spent on biomass
formation, increases the ethanol yield and shortens the fermentation time. On the
other hand, the yeast cells are exposed to considerable stresses, e.g. high ethanol
concentrations, high temperatures, osmotic stress, low pH, sulphite and contami-
nation by bacteria. Thus, there are specific demands placed on strains used in these
environments (Amorim et al. 2011; Della-Bianca et al. 2013). During a time frame
of 12 years highly competitive, non-foaming and non-flocculating strains have
been isolated and further tested for fermentation performance and competitiveness
in commercial distilleries. However, most of the isolates had a poor implantation
capability, highlighting that many factors influencing population dynamics in
industrial ethanol fermentation are still unknown (Basso et al. 2008). In fermen-
tations running with cell recirculation contamination with Dekkera bruxellensis
has frequently been observed (de Souza Liberal et al. 2007; Passoth et al. 2007).
D. bruxellensis is a slow-growing yeast with a highly efficient energy metabolism
and, most probably, a high affinity to the limiting sugar substrate (Blomqvist et al.
2010, 2012; Tiukova et al. 2013), indicating that these characteristics play a major
role in the ecosystem of industrial ethanol fermentation. Several genome analyses
of S. cerevisiae isolates obtained from industrial ethanol fermentations have been
performed. Almost all isolates were diploid strains with a high degree of hetero-
zygosity, i.e. with a high number of polymorphisms between different alleles.
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The number of transposable elements was comparably low, which may contribute
to genome stability (Della-Bianca et al. 2013; Zheng et al. 2012). On the other
hand, chromosomal rearrangements have been observed, but these were mostly
restricted to the chromosome ends. Suppression of flocculation-related genes may
contribute to competitiveness of Brazilian fermentation strains (Babrzadeh et al.
2012; Della-Bianca et al. 2013). A variety of genes may be responsible for effi-
ciency in industrial ethanol production, including those involved in vitamin and
glycerol metabolism (Babrzadeh et al. 2012; Della-Bianca et al. 2013; Zheng et al.
2012).

9.3.2 Strains for Second-Generation Ethanol Production

The situation is more complicated for second-generation substrates. A variety of
inhibitors are formed during lignocelluloses pretreatment (Fig. 9.1), including
furfural, hydroxymethylfurfural (HMF), acetate and other organic acids, and
aromatic compounds (Palmqvist and Hahn-Hägerdal 2000; Klinke et al. 2004).
Apart from this, lignocellulose hydrolysate contains a number of sugars, mainly
released from hemicellulose, which cannot be fermented by wild-type S. cerevi-
siae. The most prominent of these sugars is the pentose xylose, which is, after
glucose, the second most abundant sugar in nature. Several studies have demon-
strated that the ability to convert this sugar into a valuable product is a key factor
for the economic feasibility of ethanol production from lignocellulose (Kuhad
et al. 2011). Attempts have been taken to manipulate strains to convert xylose and
other lignocellulose sugars into ethanol (see below).

Occasionally, strains have been isolated from spent sulphite liquor (SSL) plants
(Margeot et al. 2009). One isolated strain exhibited enhanced ethanol productivity
and yield in SSL. This strain had high furaldehyde reductase activity and floccu-
lated heavily, which may contribute to resistance against inhibitors in the hydro-
lysate (Sanchez et al. 2012). In terms of flocculation, the optimal characteristics for
a production strain in second-generation substrates may thus differ from those
for first-generation substrates (see above). Metabolic manipulation of industrial
isolates has been recently performed regarding xylose fermentation and may result
in strains that can be used in commercial plants (Garcia Sanchez et al. 2010b).

9.4 Second-Generation Ethanol Production
on Commercial and Pilot Scale

Commercially available bioethanol is currently mainly produced from first-gen-
eration substrates such as cereal grain or sugar cane. Although it is desirable to
develop second-generation processes, for both environmental and global food
security reasons, their costs are still too high to replace first-generation ethanol
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(Stephen et al. 2012). However, there are examples of commercial second-gen-
eration ethanol production and an increasing number of near-commercial ethanol
production on a pilot scale. Borregaard (http://www.borregaard.com/Business-
Areas/Borregaard-ChemCell) is a Norwegian company, mainly producing cellu-
lose products from spruce. Sugars released from the cellulose process are used for
producing second-generation ethanol, with an annual capacity of 20 million litres
(Rødsrud et al. 2012). There is also a plant in Russia (Kirov Biochemical Plant)
that converts wood biomass into pellets, furfural, fodder yeast, bioethanol and
biogas. The ethanol process is based on thermophilic bacteria, and production
capacity is not described on the company website (http://biochim.org/). In October
2013, the largest second-generation bioethanol plant to date was started in Cres-
centino (Italy), with a capacity of 75 million litres (60,000 metric tons) per year.
The plant uses mixed feedstocks: wheat or rice straw, or the energy plant, giant cane
(Arundo donax). Apart from this, energy is provided from burning of lignin. In the
future, production of butanol and other chemicals are also planned. The plant’s
construction was driven by the BIOLYFE project, which was co-financed by the
seventh framework program for Energy Research (FP7) of the European Union
(http://www.biolyfe.eu/). The Danish company Inbicon AS has developed a process
called Integrated Biomass Utilization System (IBUS). In this process, the cellulose
of wheat straw is converted into ethanol, the lignin to a solid fuel, delivering process
energy, and the hemicellulose fraction is planned to be converted into animal feed

Cellulose Hemicellulose Lignin

Hexoses
Glucose Mannose Galactose

Pentoses
Xylose Arabinose

Phenolic compounds
4-Hydroxybenzaldehyde
4-Hydroxybenzoic acid

Vanillin
Dihydroxyconiferyl alcohol

Coniferyl aldehyde
Syringaldehyde

Syringic acid

Acetic acid
CH3 -COOH

FurfuralHMF

Formic acid
HCOOH

HOCH 2 CHOO CHOO

Fig. 9.1 Inhibitors (red boxes) released during pretreatment of lignocellulosic biomass. Acetic
acid is released from acetylated hemicellulose and lignin. The major degradation products of
lignin are phenolic compounds (the most prominent examples are given); sugars are primarily
degraded to furans, especially furfural and hydroxymethylfurfural (HMF). Furans can be further
degraded to weak acids, mainly formic acid
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(Larsen et al. 2008). With support of the Danish energy authority and FP7, a pilot
plant has now been built and is able to fully operate 7 days per week. The pro-
duction potential is 576 kg (730 l) per hour, which is still not at profitable levels.
However, the produced ethanol is sold and distributed at more than 100 filling
stations in Denmark (Larsen et al. 2012). In an ongoing European project
(KACELLE), the fermentation of C5 sugars with genetically engineered strains (see
below) will also be investigated (http://www.inbicon.com/projects/kacelle/pages/
kacelle_project.aspx). A variety of international projects are currently supported by
FP7, with the aim to develop new enzymes, new pretreatment strategies and new
yeast strains for commercial second-generation ethanol production (http://www.
biofuelstp.eu/cell_ethanol.html#ce2). Similar efforts are underway all around the
world. In 2007, the US Department of Energy (DOE) announced an investment of
up to $385 million for six biorefinery projects (http://www.biofuelstp.eu/cell_
ethanol.html#ce8). In July 2013, INEOS Bio announced the start of a commercial
ethanol plant in Vero Beach, Florida, using vegetative and yard waste, citrus, oak,
pine and pallet wood waste. Its annual output is projected to be 8 million gallons
(24,000 t) (http://www.ineos.com/en/businesses/INEOS-Bio/News/INEOS-Bio-
Produces-Cellulosic-Ethanol/). There are also projects for demonstration and
commercial plans in Canada and Brazil (http://www.biofuelstp.eu/cell_ethanol.
html) and also China is encouraging efforts to obtain lignocellulosic ethanol pro-
duction by offering specific subsidies (Qiu et al. 2012). The above-mentioned
examples demonstrate that, although costs are still quite high compared to both
first-generation ethanol and mineral oil, lignocellulosic ethanol has reached the
threshold of commercial reality. Ongoing research efforts towards more efficient
enzymes and pretreatment methods, novel strains fermenting all sugars present in
hydrolysates, and learning effects when running large-scale lignocellulose-based
ethanol production will most probably rapidly result in technologies with increased
economical robustness and higher acceptance within society.

9.5 Manipulation of Yeast Carbon Metabolism to Obtain
Higher Ethanol Production

9.5.1 Enabling Fermentation of Pentoses and Other Sugars

Lignocellulose mainly consists of the polysaccharides, cellulose and hemicellu-
lose, and the polyaromatic compound, lignin. Hemicellulose, in contrast to cel-
lulose that consists of polyglucose, contains a variety of sugars. Among them,
xylose comprises the highest proportion. In softwood xylose comprises 5–10 % of
the total lignocellulose biomass, however, in straw and hardwood its percentage
can be higher than 20 and 25 %, respectively. Other sugars include the pentose
arabinose (prominent in some softwoods and grasses, up to 10 % of the total
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biomass) and the hexoses mannose (up to 15 % of the total biomass in softwoods)
and galactose (about 4 % of the total biomass in softwoods and some agricultural
materials) (Girio et al. 2010). Whereas the hexoses can be converted into ethanol
by S. cerevisiae, this yeast is unable to assimilate pentoses (Kurtzman et al. 2011).
The predominant pathway for xylose assimilation in fungi consists of two steps:
NAD(P)H-dependent reduction by xylose reductase (XR) to xylitol and subsequent
NAD+-dependent re-oxidation by xylitol dehydrogenase (XDH) to xylulose. In
most known xylose-assimilating fungi, the XR utilises only NADPH as co-factor,
whereas for ethanol production from this sugar NADH utilisation by XR is
essential (Bruinenberg et al. 1984). Interestingly, S. cerevisiae has enzymes that
can reduce xylose to xylitol and oxidise xylitol to xylulose. The NADPH-depen-
dent aldose reductase encoded by GRE3 is the main XR in S. cerevisiae, and it is
obviously involved in xylitol production by recombinant strains. Its disruption
significantly decreases the xylitol production of those strains (Träff et al. 2001,
2002), and thus in many constructs that have been engineered during the recent
years, this gene is knocked out (see below). There is also a gene encoding an XR in
the S. cerevisiae genome (YLR070c or XYL2). This gene seems only to be
expressed in the presence of a non-repressing carbon source and xylose. Thus,
S. cerevisiae has the xylose assimilation pathway in its genome, but it is expressed
at too low levels to enable the yeast to grow on this sugar (Richard et al. 1999).
These results are supported by earlier findings that S. cerevisiae, although not able
to grow on xylose as sole carbon source, can metabolise this sugar (van Zyl et al.
1989). A few years ago, S. cerevisiae strains were isolated that could grow slowly
on xylose. When applying a series of mass matings and selection experiments on
xylose medium, strains were obtained that could grow on xylose with doubling
times down to 6 h, forming some ethanol (Attfield and Bell 2006). Several xylose-
fermenting yeast species are known, but these have drawbacks such as low tol-
erance of ethanol and of inhibitors released during pretreatment of lignocellulose,
or a requirement for a very controlled regime of oxygenation (Hahn-Hägerdal et al.
2007). Therefore, substantial efforts have been taken to engineer S. cerevisiae to
ferment xylose. Bacteria directly convert xylose into xylulose using a co-factor-
independent xylose isomerase (XI). However, early attempts to express bacterial
XIs in S. cerevisiae did not result in active enzymes (Amore et al. 1989; Sarthy
et al. 1987), and thus, a two-step, redox factor-dependent fungal xylose assimi-
lation pathway was introduced. Xylose fermentation in S. cerevisiae could be
achieved by expressing the genes of XR and XDH, encoded by XYL1 (active both
with NADPH and NADH) and XYL2 (active with NAD+) of the xylose-fermenting
yeast Scheffersomyces (Pichia) stipitis (Kötter and Ciriacy 1993). The first
recombinant strains produced substantial amounts of the side product xylitol,
indicating a redox imbalance in the cell. Since then, several targets have been
approached to improve S. cerevisiae’s ability to ferment xylose, including xylose
transport, the xylose assimilation pathway, reduction of xylitol formation, redox
factor regeneration or the general performance of the sugar metabolism (sum-
marised in Hahn-Hägerdal et al. 2007). One example to approach the redox factor
imbalance was the expression of GDP1 of Kluyveromyces lactis in S. cerevisiae.
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GDP1 encodes an NADP+-dependent glycerol-aldehyde-phosphate dehydroge-
nase, which results in a lower production of NADH from glycolysis. Deletion of
the gene encoding the naturally NADPH-generating glucose-6-phosphate dehy-
drogenase (ZWF1) resulted in an additional increase of ethanol production and
lowered CO2 production (Verho et al. 2003). The first functional XI expressed in
S. cerevisiae was the xylA gene of the thermophilic bacterium Thermus thermo-
philus; however, as this enzyme operated far away from its temperature optimum,
its activity was rather low (Walfridsson et al. 1996). Higher XI activity was
obtained by expressing the XylA gene from the cellulolytic fungus Pyromyces sp.
E2 (Kuyper et al. 2003). When this gene was expressed in a strain overexpressing
all enzymes involved in converting xylulose into ethanol, i.e. xylulokinase, ribu-
lose-5-phosphate isomerase, ribulose-5-phosphate epimerase, transketolase and
transaldolase, and with a deleted GRE3 gene encoding aldose reductase, xylose
was relatively rapidly converted into ethanol with comparatively low xylitol
production and an ethanol yield of 0.43 g per g consumed xylose (Kuyper et al.
2005). Karhumaa et al. compared strains either expressing XR/XDH or XI. The
genetic background was the same as in the strain of Kuyper et al. The ethanol yield
was quite high in the XI strain, and accordingly, the xylitol yield rather low. On the
other hand, xylose uptake was lower than in the XR/XDH-strain and also lower as
described by Kuyper et al. 2005. Table 9.1 summarises important fermentation
characteristics of selected manipulated strains. Obviously, some unknown factors
are influencing the performance during xylose fermentation. Apart from the lab-
oratory strains, an industrial isolate was also engineered to ferment xylose, using
XR/XDH. This isolate essentially behaved like the XR/XDH strain on xylose as
sole carbon source. However, in contrast to the two strains, which were derived
from the laboratory strain CEN.PK, the industrial strain could ferment un-detox-
ified lignocellulose hydrolysate. Interestingly, in contrast to the cultivation on pure
xylose, no xylitol was formed from the hydrolysate, and a substantially higher
ethanol yield was obtained (Karhumaa et al. 2007). Expression of an XI from
Orpinomyces in an S. cerevisiae strain overexpressing the homologous xylulo-
kinase and the S. stipitis sugar transporter SUT1 resulted in a xylose-fermenting
strain that obtained an ethanol yield of 0.39 g per g consumed xylose (Table 9.1).
However, not all xylose was consumed and substantial amounts of xylitol were
produced (Madhavan et al. 2009). XI activities were still quite low, resulting in a
carbon-starvation response of an engineered strain (Bergdahl et al. 2012). High XI
activity was reached by expressing a codon-optimised XylA gene from Clostridium
phytofermentans. An industrial strain transformed with this gene was able to grow
on xylose after four serial transfers in xylose medium, without additional
manipulations. In contrast to the eukaryotic XI, this enzyme was not inhibited by
xylitol, which is always formed in S. cerevisiae due to the action of unspecific
aldose reductases (Brat et al. 2009).

To identify genes critical for xylose fermentation, genomes and transcriptomes
of yeasts naturally fermenting or assimilating xylose have been compared to other
yeasts. Forty-three genes were specific for xylose-assimilating yeasts, including a
putative xylose transporter and a variety of endoglucanases. Global gene
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expression analysis of cells grown in glucose or xylose revealed additional genes
critical for xylose assimilation and fermentation. Besides the known genes of the
xylose assimilation pathway, genes involved in plant biomass degradation like
glucosidases and cellulases were strongly induced. Moreover, genes involved in
redox metabolism and the pentose phosphate pathway were activated. Several of
the identified genes were expressed in an S. cerevisiae strain engineered to ferment
xylose. Two genes, a Candida tenuis aldo/keto reductase and a Spathaspora
passalidarum gene, with homology to uncharacterised fungal-specific proteins had
the greatest effect on xylose assimilation (Wohlbach et al. 2011).

L-Arabinose is the second most abundant pentose in plant biomass, and several
attempts have been made to generate yeast strains able to ferment this sugar. In
L-arabinose-assimilating fungi, the sugar is first reduced to L-arabinitol (NADPH
dependent), which is then re-oxidised to L-xylulose (NAD+ dependent). L-xylu-
lose is reduced to xylitol (NADPH dependent), which is subsequently converted
into D-xylulose by the NAD+-dependent XDH. The redox factor imbalance
generated by this pathway makes it almost impossible to ferment L-arabinose in
fungi (Richard et al. 2002). In contrast, the bacterial pathway of L-arabinose
assimilation is independent of redox factors and consists of L-arabinose isomerase,
ribulokinase and L-ribulose-phosphate 4-epimerase. Genes encoding this pathway,
derived from several species, have been expressed in S. cerevisiae and L-arabi-
nose-fermenting strains have been obtained (Weber et al. 2010). Expressing AraA,
AraB and AraD from Lactobacillus plantarum in an S. cerevisiae strain did not
immediately result in arabinose assimilation. At first, cells were precultivated in
galactose, as it has been shown that cells grown on galactose can transport arab-
inose into the cell. Subsequently, cells were cultivated in several passages in
medium containing arabinose as sole carbon source. Finally, arabinose-assimi-
lating cells were transferred to oxygen limited conditions, which resulted in
arabinose-fermenting cells. The strain used for this selection had also been engi-
neered to ferment xylose. However, this ability was lost during the selection
procedure (Wisselink et al. 2007). Therefore, a strain containing genes for xylose
and arabinose assimilation was selected in consecutive selection cycles on medium
containing (i) glucose, xylose and arabinose, (ii) xylose and arabinose and (iii)
only arabinose as carbon sources. The resulting strain (Table 9.1) was able to
ferment all provided sugars (30 g/l glucose, 15 g/l xylose and 15 g/l arabinose)
within 35 h, reaching an ethanol yield of 0.44 g per g total sugar (Wisselink et al.
2009). Another potential step towards efficient arabinose-fermenting S. cerevisiae
strains may be the cloning and expression of L-arabinose transporters from nat-
urally L-arabinose-fermenting yeasts (Verho et al. 2011).

The majority of the above-mentioned manipulations were performed in labo-
ratory strains, which are very efficient tools in research but most probably not
competitive under harsh industrial conditions. Recently, the xylose and arabinose
fermentation pathways have been introduced in industrial strains. S. stipitis XYL1
and XYL2, the S. cerevisiae XKS1 and bacterial genes of the arabinose assimilation
pathway were overexpressed in the diploid wine strain USM21 (Garcia Sanchez
et al. 2010b; Westhuizen and Pretorius 1992). The resulting strain was then further
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improved by evolutionary engineering using continuous cultivation for about 65
generations with xylose and arabinose as carbon sources, and with gradually
increasing dilution rates as soon as a steady state was reached. In test fermenta-
tions with mixed sugars, the evolved strain completely consumed xylose and
arabinose. A significant amount of ethanol was produced from xylose, however,
also a substantial amount of xylitol. Arabinose was almost completely converted
into arabitol in the mixed sugar fermentation (Garcia Sanchez et al. 2010b). In
another attempt (Demeke et al. 2013b), the industrial Ethanol Red strain was
transformed with a cassette containing a modified HXT7 (transporting both glucose
and xylose into the cell), the codon-optimised C. phytofermentans XylA gene, and
genes coding enzymes of the pentose phosphate pathway. In addition, bacterial
genes of the arabinose assimilation pathway and a codon-optimised arabinose
transporter from S. stipitis (Subtil and Boles 2011) were introduced. However,
these manipulations still did not result in efficient xylose fermentation. Resulting
strains were chemically mutagenised and xylose-assimilating strains were further
manipulated by genome shuffling (mass mating of isolated spores) with each other
and the parental strain. The isolated strain fermented both glucose and xylose at
the same time with comparable high rates and ethanol yields. Xylitol production
was substantially diminished (0.04 g per g consumed xylose) compared to other
studies. On the other hand, the evolved strain showed a decreased glucose uptake
rate compared to the strain before random mutagenesis (2.71 and 3.83 g g-1 cell
dry weight h-1, respectively) and also a reduced ethanol productivity (1.38 and
1.79 g g-1 cell dry weight h-1). Moreover, it was less ethanol tolerant and had a
reduced respiratory capacity compared to the parental strain. Fermentation of
arabinose has not been tested yet, although the arabinose assimilation pathway had
also been expressed in the strain (Demeke et al. 2013b). To improve the fer-
mentation capacity, several crossing/segregation experiments of this strain with
isolates showing exceptional inhibitor tolerance have been performed. Three
superior strains have been isolated. Although showing a lower xylose consumption
rate compared to the original strain in complete medium, they exhibited signifi-
cantly improved tolerance to spruce hydrolysate, higher glucose consumption
rates, higher aerobic growth rates and higher maximum ethanol accumulation in
high gravity ethanol production (Demeke et al. 2013a). These results illustrate that
although there are still unknown factors when it comes to the manipulation of
industrial isolates, the application of engineered pentose-fermenting strains in
industrial fermentations may soon become a reality.

Apart from xylose and arabinose fermentation, some efforts have been directed
towards a more efficient fermentation of other sugars. Overexpressing the PGM2
gene encoding a phosphoglucomutase improved galactose fermentation, but at the
same time also xylose fermentation. This indicates that interactive effects may
occur when engineering multiple metabolic pathways in one strain (Garcia
Sanchez et al. 2010a). Sucrose is the major substrate of sugar cane- and sugar beet-
based ethanol production, and thus, its improvement would have a substantial
effect on sustainability of global ethanol production. S. cerevisiae hydrolyses most
of the sucrose extracellularly by secreting invertase. There is also some capacity to
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directly transport sucrose into the cell via a proton symport system. This system
consumes energy, hence, less biomass would be formed and thus more ethanol.
Basso et al. constructed a strain where the signal sequence of the invertase was
removed. This strain hydrolysed most of the sucrose intracellularly; however,
growth rate was diminished and the residual sucrose concentration in the medium
was high. Selection in anaerobic, sucrose-limited continuous fermentation finally
resulted in a strain with higher affinity and higher growth and ethanol production
rates and increased ethanol yield compared to the wild type (Basso et al. 2011).
This indicates that even on a conventional substrate such as sucrose there is
potential for process improvement.

Surface engineering of S. cerevisiae may provide an approach to obtain con-
solidated bioprocessing of biomass. Surface-engineered strains express extracel-
lular, polymer-degrading enzymes such as cellulases, hemicellulases or amylases
fused to a glycosylphosphatidylinositol anchoring system, resulting in the display
of these enzymes on the surface of the engineered cells. Using those strains, direct
conversion of lignocellulosic biomass into ethanol and other compounds has been
demonstrated (Hasunuma and Kondo 2012).

9.6 Metabolic Engineering of Non-conventional Yeasts
for Ethanol Production from Lignocellulose and Other
Substrates

Apart from S. cerevisiae, other yeasts have been manipulated to ferment xylose
and other sugars. Engineering of thermotolerant yeasts may be of special interest,
as fermentation at higher temperatures reduces cooling costs, enables simultaneous
saccharification and fermentation closer to the optimum temperature of polysac-
charide-degrading enzymes and decreases the risk of contamination. The yeast,
Ogataea polymorpha (widely known by its previous name Hansenula polymor-
pha), had originally not been described to ferment xylose to ethanol. However,
carefully performed growth tests demonstrated that this yeast can convert xylose
into ethanol at higher fermentation temperatures (Ryabova et al. 2003). Interest-
ingly, expression of a bacterial XI gene (xylA of Escherichia coli) resulted in an
active protein in this yeast. Expressing this gene in a strain with deleted natural
XR/XDH-dependent xylose assimilation pathway resulted in higher ethanol pro-
duction compared to the wild type (Dmytruk et al. 2008). Further improvements
could be obtained for instance by overexpressing the PDC1 gene, or by over-
expressing heat shock proteins and at the same time deleting ATH1, encoding for
an acid trehalase. The latter resulted in an even more thermotolerant strain with
increased ethanol formation (Ishchuk et al. 2008, 2009). Expression of genes
encoding for a-amylase, glucoamylase, xylanase and b-xylosidase resulted in a
starch- and xylane-fermenting strain (Voronovsky et al. 2009). However, ethanol
productivities and yields of all engineered O. polymorpha strains are still far below
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levels obtained by other xylose fermenting yeasts or engineered S. cerevisiae; thus,
further efforts are required to introduce this yeast into industrial bioethanol
production.

A thermotolerant strain of Kluyveromyces marxianus has been manipulated by
surface engineering to display endoglucanase and b-glucosidase at its cell surface.
The resulting strain converted glucan into ethanol with a yield close to the theo-
retical maximum (Yanase et al. 2010).

9.7 Inhibitor Tolerance

Yeasts detoxify furfural and HMF (Fig. 9.1) by converting them into the less toxic
alcohols, furfuryl alcohol (mainly NADH dependent) and 2, 5-bis-hydrox-
ymethylfuran (mainly NADPH dependent), respectively (Liu 2006). Inhibitor-tol-
erant strains isolated from pilot-scale lignocellulose fermentations showed
increased NADPH- and NADH-dependent furfural and HMF reduction abilities
(Sanchez et al. 2012). In accordance with this, several successful attempts of
manipulation included overexpression of enzymes with NADPH- or NADH-
dependent aldehyde reduction activity. Other approaches increased the flux through
the pentose phosphate cycle, which, apart from improving pentose fermentation,
may also have provided higher amounts of NADPH, which can be utilised as
co-factor in the reduction of furfural and HMF (Hasunuma and Kondo 2012; Liu
et al. 2009b), and to detoxify reactive oxygen species (ROS). It has been shown that
ROS are released in yeast cells upon exposure to furfural. Interestingly, in contrast
to ROS generated by acetic acid (see below), this does not seem to induce pro-
grammed cell death (Allen et al. 2010). Overexpression of ALD6, encoding an
NADP+-dependent cytosolic aldehyde dehydrogenase also increased the tolerance
against lignocellulose hydrolysate, probably by generating NADPH. However, a
strain overexpressing this gene also generated more acetate (Zheng et al. 2012),
which is itself a potent inhibitor present in lignocellulose hydrolysate (Fig. 9.1).

Acetic acid is a powerful antimicrobial agent, which is used for food preser-
vation. At a pH below the pKa value 4.76, acetic acid is protonated and can diffuse
into the cell either directly through the hydrophobic cell membrane or via the
facilitator Fps1. Inside the cell the molecule dissociates, which affects the intra-
cellular pH, and by this a variety of metabolic reactions. Yeast cells exposed
to acetic acid stress have been described to undergo programmed cell death
(Ludovico et al. 2001). This is probably tightly connected to the development of
ROS, which are formed as response to acetic acid stress. A variety of other
disturbances are caused by acetic acid, including inhibition of amino acid uptake
and inhibition of glycolysis (Sousa et al. 2012). As a response to acetic acid stress,
the Hog1 MAP kinase and the transcription factor Haa1 are activated. These
factors in turn deactivate Fps1 and activate a corresponding stress response,
including energy demanding proton transport out of the cell (Piper 2011). Acetic
acid-tolerant strains were isolated by long-time cultivation in increasing acetate
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concentrations at pH below the pKa of acetic acid: resulting strains could tolerate
up to 6 g/l acetate. Remarkably, during the selection procedure, a very high
specific xylose uptake rate was monitored, probably due to the increased energy
demand of the cell to run the energy-dependent defence mechanisms (Wright et al.
2011). However, after storing the cells under non-selective conditions, the resis-
tance phenotype disappeared and could only be re-established by precultivating in
sub-lethal acetate concentration, indicating an inducible resistance mechanism. It
has been shown that catalase is activated upon pre-incubation at sub-lethal con-
centrations of acetic acid, pointing towards a mechanism detoxifying ROS by the
inducible resistance (Martani et al. 2013). A loss of resistance after cultivation
under non-selective conditions has also been observed in other systems (e.g.
Tiukova et al. 2014), indicating a demand for further investigation of the mech-
anism of adaptation. In another attempt, an acetate-tolerant strain was isolated by
screening about 500 isolates from different origins. The strain showed higher
expression of HAA1p- and HOG1p-regulated genes, although transcription of
HOG1 was less enhanced compared to a more sensitive strain. Remarkably,
additional genes regulated by another transcription factor, Aft1p, were upregu-
lated. These genes are mainly involved in iron transport. It is to date unclear which
role they play in acetate resistance (Haitani et al. 2012). Genetic engineering of
S. cerevisiae towards production of vitamin C (L-ascorbic acid) resulted in low-
ered production of ROS and a higher viability of cells exposed to acetic acid stress
(Martani et al. 2013). Overexpression of HAA1 resulted in constitutive increased
acetate tolerance in S. cerevisiae (Tanaka et al. 2012). Guadalupe-Medina et al.
expressed an NADH-dependent aldehyde dehydrogenase in S. cerevisiae. The
resulting strain was able to use acetate as electron acceptor and converted it
into ethanol, which is an example of combining detoxification with product gen-
eration (Guadalupe-Medina et al. 2013). Deletion of the PHO13 gene, encoding
p-nitrophenyl phosphatase, improved xylose fermentation in genetically engi-
neered S. cerevisiae (Van Vleet et al. 2008). Moreover, increased ethanol pro-
duction by the deletion strain was also observed in the presence of common
inhibitors such as acetate, formic acid, furfural and HMF, and in lignocellulose
(rice straw) hydrolysate. The physiological basis for this improvement is not clear,
but increased expression of genes involved in the pentose phosphate cycle, gly-
colysis and alcoholic fermentation has been observed (Fujitomi et al. 2012).

A formic acid-tolerant strain has been constructed by overexpression of the
FDH1 gene, encoding formate dehydrogenase. The resulting strain produced
ethanol in the presence of 10 mM formic acid, almost as efficient as the original
strain in a control fermentation (Hasunuma et al. 2011). Several attempts have
been made to construct strains resistant to inhibitors released from lignin, e.g. by
expressing the lcc2 gene from Trametes versicolor, encoding a laccase, in
S. cerevisiae (Larsson et al. 2001).
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9.8 Lowering Glycerol Formation

Glycerol is formed during alcoholic fermentation to re-oxidise NADH formed by
processes other than glycolysis. It is also a compatible solute, which is produced in
response to extracellular stress (Ansell et al. 1997). Glycerol production removes
carbon from ethanol formation, decreasing the yield of ethanol production. Dis-
rupting one or both genes encoding cytosolic glycerol-3-P-dehydrogenases in
S. cerevisiae, GPD1 and GPD2, resulted in decreased glycerol and increased
ethanol yield. On the other hand, manipulating the glycerol production genes
resulted in slow growth and low specific ethanol production rates. The double
disruptant lacked the ability to grow anaerobically (Ansell et al. 1997; Valadi et al.
1998). This is similar to the situation in D. bruxellensis, which naturally produces
low amounts of glycerol and has a high ethanol yield, but shows low growth and
ethanol production rates and requires addition of amino acids for anaerobic growth
(Blomqvist et al. 2010, 2012). Apart from directly manipulating the genes
involved in glycerol production, attempts have been made to influence the redox
balance in the cell. For instance, the NADPH-dependent pathway of ammonium
assimilation has been replaced by an NADH- and ATP-dependent pathway in
S. cerevisiae by disrupting the gene of the NADPH-dependent glutamate dehydro-
genase, GDH1, and overexpressing GLN1 and GLT1, encoding glutamine synthetase
and glutamate synthase (Nissen et al. 2000). Replacement of the natural glycerin-
aldehyde-3-P-dehydrogenase by a non-phosphorylating NADP+-dependent
bacterial equivalent also significantly decreased glycerol production. When an
NADH-dependent aldehyde dehydrogenase was expressed in a Dgpd1, Dgpd2
strain, anaerobic growth was restored in the presence of acetate, which served as
alternative electron acceptor and was converted into ethanol (Guadalupe-Medina
et al. 2010, 2013). This is a promising approach, as acetate is one of the inhibitors
of fermentation released during pretreatment of lignocellulose (see above). The
lowered tolerance towards osmotic stress of the Gpd- strain could be compensated
by overexpressing the genes of the trehalose pathway TPS1 and TPS2 (Guo et al.
2011). Apart from this, both approaches reduced the amount of ATP produced per
mol sugar, and due to this, the flux through the fermentation pathway was
increased, resulting in higher ethanol productivity. Deleting FPS1 encoding an
aquaglyceroporin involved in glycerol efflux and acetate uptake (see above)
resulted in lower glycerol production but also slower ethanol formation (Wang
et al. 2012; Zheng et al. 2012). However, strains with low capabilities of glycerol
production are often sensitive to osmotic and other stresses, and thus, they are not
suited to the stressful environment of industrial ethanol production. Apart from
overexpressing stress-related genes like those of the trehalose synthesis pathway,
strategies of genetic manipulation have been combined with genome shuffling by
multi-parental protoplast fusion of strains with desired phenotypes, which resulted
in the generation of stress-tolerant, low glycerol producing strains (Guo et al.
2011; Tao et al. 2012; Wang et al. 2012).
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9.9 Manipulating Yeasts for Butanol Production

Yeasts may have several advantages for producing butanol compared to the
established clostridia, as yeasts produce fewer side products, are less sensitive to
oxygen and are probably more robust. An n-butanol production pathway has been
introduced into S. cerevisiae. In this pathway two acetyl-CoA first form aceto-
acetyl-CoA, which is then reduced by 3-hydroxybutyryl-CoA dehydrogenase to
3-hydroxybutyryl-CoA. This reduction step can be NADH or NADPH dependent
in different organisms. From this, crotonyl-CoA is formed by the crotonase
reaction. Crotonyl-CoA is then in several NADH-dependent steps finally reduced
to butanol (Fig. 9.2). Since S. cerevisiae lacks most of the enzymes required for
these steps, several genes from Clostridium beijerinckii, E. coli, Ralstonia
eutropha, Streptomyces collinus and S. cerevisiae were overexpressed. Higher
butanol production was obtained when an NADH-instead of an NADPH-depen-
dent dehydrogenase was introduced for reduction of acetoacetyl-CoA. However,
the highest concentration reached (2.5 mg/l) was below that of an engineered
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E. coli strain and of the Clostridium-based system. Accumulation of butyryl-CoA
indicated a bottleneck at the butyraldehyde dehydrogenase reaction (Steen et al.
2008).

More intense efforts have been made to produce isobutanol, which has similar
characteristics as a biofuel compared to n-butanol. Yeasts naturally produce iso-
butanol during the catabolism of valine through the Ehrlich pathway (Hazelwood
et al. 2008). Valine is first deaminated to a-ketoisovalerate, which is then decar-
boxylated and reduced to isobutanol. Valine biosynthesis starts from pyruvate, and
a-ketoisovalerate is formed as an intermediate also in the synthesis pathway
(Fig. 9.3). Thus, it is possible to establish an isobutanol production pathway by
combining the valine synthesis and degradation pathways. However, the valine
synthesis pathway is localised in the mitochondrial matrix, whereas valine degra-
dation takes place in the cytoplasm. Thus, strategies of metabolic engineering
aimed, in many cases, to express the corresponding enzymes in the cytoplasm (Buijs
et al. 2013; Matsuda et al. 2012; Brat et al. 2012). Further optimisations included
enhancement of the pyruvate levels by disrupting PDC genes, expressing an optimal
a-ketoisovalerate decarboxylase (Lactococcus lactis KivD) and alcohol dehydro-
genase (ScADH6) (Kondo et al. 2012; Matsuda et al. 2012). Brat et al. transferred
the valine synthesis pathway into the cytosol by overexpressing codon-optimised
ILV2, ILV5 and ILV3 with truncated mitochondrial import signal sequences. The
S. cerevisiae ARO10 (encoding an a-ketoacid decarboxylase, KDC) and ADH2
were found to encode the optimal genes for the final two steps of isobutanol pro-
duction. When these genes were expressed in a Pdc- strain (Dpdc1, Dpdc5, Dpdc6)
with blocked mitochondrial valine synthesis pathway, up to 0.63 g/l, with a yield of
15 mg/g glucose could be obtained (Brat et al. 2012). When additionally XI,
transaldolase and xylulokinase genes were overexpressed, the strain was able to
ferment xylose to isobutanol, with a final concentration of 1.36 mg/g xylose and a
yield of 0.16 mg isobutanol/g xylose (Brat and Boles 2013). A different strategy
was employed by Avalos et al., who expressed the whole isobutanol production
pathway inside the mitochondria. Overexpressing S. cerevisiae ARO10 and the
Lactococcus lactis AdhA (encoding L. lactis ADH7) with mitochondrial targeting
sequences, together with overexpression of ILV2, ILV3 and ILV5, resulted in a
maximal isobutanol titer of 630 mg/l in complete medium. No further gene dele-
tions were required to attain this level (Avalos et al. 2013). Although these values
are still much lower than in bacterial production hosts, they can be regarded as
starting points for further optimisation. In the patent literature, final concentrations
up to 18.6 g/l and yields up to 0.33 g/g (i.e. about 80 % of the theoretical maxi-
mum) have been reported (Buijs et al. 2013).

Using amino acids as substrate may be another way of producing butanol and
isobutanol with S. cerevisiae. Branduardi et al. (2013) obtained isobutanol and
butanol production from glycine, and introducing a heterologous glycine oxidase
gene from Bacillus subtilis (goxB) increased butanol/isobutanol formation. Max-
imum concentrations of 92 and 58 mg/l of butanol and isobutanol, respectively,
were reached.

9 Molecular Mechanisms in Yeast Carbon Metabolism 237



2 Pyruvate

2-Acetolactate

O

COOH

O

COOH

O O

OH
OH

CO2

2,3-Dihydroxy-
isovaleriate

OH O

OH
OH

-Keto-
isovaleriate

O

O

OH

NH2

O

OH

Valine

Mitochondrion Cytoplasm

NH2

O

OH

Valine

αα -Keto-
isovaleriate

O

O

OH

Isobutyraldehyde

O

OH

Isobutanol

GlycolysisPyruvate

ILV2

ILV5

ILV3

NADPH
NADP+

BAT1
BAT2

KDC

ADH

Glutamate
Glutamate2-Oxoglutarate

2-Oxoglutarate

NADH

NAD+

H2O
CO2

238 V. Passoth



9.10 Yeasts for Biodiesel Production

Biodiesel is currently the only liquid biofuel that is produced on a commercial
scale, apart from ethanol. It is generated from oil plants such as soy, oil palms or
oilseed rape, which can accumulate triglycerides. The triglycerides are extracted
from the plant material. Subsequently, the triglycerides are converted by the
transesterification reaction, in which the glycerol is replaced by the short chain
alcohols methanol or ethanol, forming fatty acid methyl or ethyl esters (FAME or
FAEE), respectively (Fig. 9.4). However, the methanol that is preferably used is
generated from mineral oil. Thus, biodiesel cannot completely be considered a
renewable fuel. The oil plants are cultivated on arable land, and thus, biofuel
production may compete with food production. The energy yield per hectare of oil
plants is relatively low compared to sugar plants. Moreover, in contrast to sugar
plants that are the basis of ethanol production, oil plants can be cultivated on
rainforest areas; and examples of deforestation in such areas for oil plant pro-
duction have been documented (Graham-Rowe 2011; Azócar et al. 2010).

To overcome the obvious disadvantages of plant-based biodiesel, microbial
lipids may represent an alternative. Lipid-accumulating microalgae obtained
considerable attention. Indeed, the concept of producing biofuels just from sun-
light and assimilated CO2 is appealing. However, algae have several disadvan-
tages, including slow growth, low lipid accumulation rates, high costs and a high
risk for contamination (Cheng and Timilsina 2011). Certain oleaginous yeasts can
form triglycerides with high specific rates, and to a proportion of their biomass
exceeding 50 %, which is higher than in all other known lipid-accumulating
organisms. Thus, yeasts may have a great potential also for biodiesel production.
There are about 30 known oleaginous yeast species. They belong to different
phylogenetic groups, including ascomycetous species such as Lipomyces starkeyi
and Yarrowia lipolytica or basidiomycetes such as Rhodotorula glutinis and
Rhodosporidium toruloides (Ratledge and Wynn 2002).

Fig. 9.3 Biosynthesis of isobutanol in S. cerevisiae. Isobutanol is produced as a result of the
Ehrlich pathway of valine degradation. a-Ketoisovalerate is a common intermediate of both the
mitochondrially localised valine synthesis and the cytoplasmatic degradation pathways, and by
combining both pathways, isobutanol can be generated from pyruvate. a-Ketoacid decarboxylase
(KDC) and alcohol dehydrogenase (ADH) activities are encoded by several genes, including all
PDC-genes and ARO10 (KDC), and a variety of ADH genes, respectively (Hazelwood et al.
2008). Increased isobutanol production was obtained by either expressing KDC and ADH
proteins with a mitochondrial signal sequence, thus expressing the whole pathway in the
mitochondria, or by expressing cytoplasmic ILV2 (encoding acetolactate synthase), ILV5
(acetohydroxyacid reductoisomerase), and ILV3 (dihydroxyacid dehydratase) (Avalos et al. 2013;
Brat et al. 2012). Transamination is performed by branched chain amino acid transaminase (BAT1
and BAT2)

b
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9.11 Physiology of Lipid Accumulation in Yeasts

Lipid accumulation (Fig. 9.5) follows a common pattern in all known oleaginous
yeasts (Ratledge and Wynn 2002), in spite of their phylogenetic distance: upon
nitrogen limitation, AMP concentration decreases to less than 5 % of its value
under C-limitation. The AMP is deaminated to inosine monophosphate by AMP
deaminase. In oleaginous yeasts, isocitrate dehydrogenase (IDH) is strictly
dependent on AMP. Thus, the activity of the tricarboxylic acid cycle (TCC)
decreases, isocitrate accumulates and is equilibrated with citrate. Citrate is
transported out of the mitochondria and in the cytoplasm it is converted into
acetyl-CoA and oxaloacetate by the ATP citrate lyase (ACL). Oxaloacetate is
channelled back to the mitochondria, while acetyl-CoA is the substrate of the
acetyl-CoA carboxylase (ACC) which forms malonyl-CoA, the substrate of the
fatty acid synthase (FAS) to elongate the acyl-CoA chain (Tehlivets et al. 2007).
Nitrogen concentration should, however, not be below a certain threshold, as under
those circumstances, citrate is secreted from the cells, decreasing the lipid yield
(Morin et al. 2011; Ratledge and Wynn 2002). Lipid accumulation also occurs
upon P and S and other non-carbon limitations, but in these cases, the cellular
processes are less well documented. FAS requires NADPH as co-factor, and
although there are several enzymes in the cell producing NADPH, malic enzyme
was the sole enzyme supposedly involved in fatty acid synthesis. In the transhy-
drogenase cycle, pyruvate is carboxylated to oxaloacetate, which is converted into
malate (NADH dependent). Malic enzyme converts malate into pyruvate, gener-
ating CO2 and NADPH. A physical interaction between malic enzyme and other
lipid synthesis enzymes has been suggested (Ratledge and Wynn 2002). However,
in many yeasts, no cytoplasmic malic enzyme has been found. The oleaginous
yeast L. starkeyi possesses a cytoplasmic malic enzyme, but this has a preference
for NADH over NADPH (Tang et al. 2010). Y. lipolytica contains only a mito-
chondrial malic enzyme, and its overexpression did not affect lipid accumulation
(Beopoulos et al. 2011). Malic enzyme has not been identified among the highly
expressed enzymes in proteome studies of L. starkeyi and R. toruloides; instead,
upregulation of the NADPH-generating 6-P-gluconat dehydrogenase has been
reported (Liu et al. 2009a, 2011). However, an increased level of malic enzyme

Catalysator

Fig. 9.4 Survey of the transesterification process. Glycerol is replaced by a short chain alcohol,
either methanol or ethanol, generating fatty acid methyl or ethyl esters (FAME or FAEE).
Alkaline (NaOH), acid (H2SO4) or lipases can be used as catalysator
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upon lipid production conditions has been recently observed in R. toruloides (Zhu
et al. 2012). Transcriptome analysis of Y. lipolytica in nitrogen-limited fed-batch
culture showed significant transcriptional regulation of 569 genes. Interestingly,
genes encoding assumed key enzymes for fatty acid synthesis like ACL, ACC,
FAS or malic enzyme were not transcriptionally regulated, similar to genes
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Fig. 9.5 Lipid production in oleaginous yeasts. Sugars are metabolised via glycolysis and the
pentose phosphate pathway to pyruvate, which is transported into the mitochondria, converted
into acetyl-CoA by PDH and further metabolised via the TCC. In oleaginous yeasts, isocitrate
dehydrogenase (IDH) depends on AMP. At nitrogen limitation, AMP is deaminated to IMP,
halting the IDH reaction. Isocitrate accumulates and is equilibrated with citrate. Citrate is
transported out of the mitochondria and degraded to acetyl-CoA and oxaloacetate by the ACL.
Oxaloacetate can be transported back to the mitochondria and feed the TCC. Acetyl-CoA is
substrate of the fatty acid synthesising enzymes ACC and FAS. ACC forms malonyl CoA from
two acetyl-CoA. Malonyl-CoA reacts in the FAS reaction with acyl-CoA, prolonging the chain
by two carbons. Finally, the fatty acids react with glycerol and form, in several steps,
triglycerides. The source of the NADPH that is required for the FAS reaction is unclear. It is
supposedly generated in the transhydrogenase cycle of pyruvate carboxylase (PYC), malate
dehydrogenase (MDH) and malate enzyme (ME), but some recent studies rather indicated that the
pentose-P pathway might be the source of NADPH (see text)
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encoding the TCC enzyme IDH (Morin et al. 2011). In the L. starkeyi and
R. toruloides proteomes, ACC was more abundant in lipid accumulation condi-
tions (Liu et al. 2009a, 2011), indicating either a physiological difference to
Y. lipolytica or regulation at the post-transcriptional level. However, fatty acid
accumulation seems to be mainly dependent on regulation of enzyme activities,
with inactivation of IDH due to AMP degradation as a key event. In general,
nitrogen assimilation enzymes were upregulated at onset of lipid accumulation,
which is most likely a physiological response to nitrogen limitation. On the other
hand, enzymes involved in glycolysis and the pentose phosphate pathway were
downregulated, probably as a response to prevent carbon overflow of the metab-
olism (Liu et al. 2009a, 2011; Morin et al. 2011). Similar results have been
reported in a recently performed multi-omic study of R. toruloides, especially in
terms of both transcription and protein concentrations of enzymes involved in
nitrogen metabolism. However, enhanced transcription of genes encoding FAS has
been noted; transcription of most of the other genes involved in fatty acid synthesis
was not significantly altered. On a protein level, increased levels of several
enzymes involved in fatty acid synthesis have been observed, including, apart from
ACC, also ACL, FAS and ME. The behaviour of ME was, to some extent, unusual,
as its transcription was decreased under these conditions. This once again shows
that not all cellular processes influencing lipid production are yet well understood
(Zhu et al. 2012). For lipid production from oleaginous yeasts, obviously culti-
vation conditions have to be carefully optimised. The optimal pH value differs
from species to species, different C:N ratios from 25 to 100 have also been stated
to be optimal (Ageitos et al. 2011; Shen et al. 2013; Ykema et al. 1986). Growth
rate and lipid production have been found to be inversely correlated (although at
very low growth rates, lipid content may decrease), and thus, a compromise
between yield and volume-time productivity must be made (Shen et al. 2013;
Ykema et al. 1986). Thus, fed-batch cultivation where the growth rate can be
regulated probably represents the most efficient fermentation technique for lipid
production (Beopoulos et al. 2011).

9.12 Metabolic Engineering to Improve Biodiesel
Production by Yeasts

Analysing and manipulating the metabolism of oleaginous yeasts is severely
hampered due to the paucity of molecular tools for genetic engineering of these
yeasts. Recently, experiments to improve lipid formation in oleaginous yeasts have
been performed by a kind of evolutionary engineering. After random mutagenesis,
cells of the yeasts R. glutinis and L. starkeyi were plated onto medium containing
cerulenin, an inhibitor of lipid synthesis. Isolates that were able to form bigger
colonies accumulated higher amounts of intracellular lipids (Tapia et al. 2012;
Wang et al. 2009). Identifying the altered genes in those mutants may identify
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targets for improvement of lipid accumulation by oleaginous yeasts. Y. lipolytica,
which can convert glucose, acids, glycerol and hydrophobic substances such as
alkanes into fatty acids, is the only oleaginous yeast for which molecular genetic
tools have been developed (Beopoulos et al. 2009). However, in some oleaginous
yeasts, initial efforts have been taken to perform molecular manipulation (e.g.
Tully and Gilbert 1985), and, with increasing interest in these yeasts, these tools
may rapidly be developed. In Y. lipolytica, disruption of GUT2, encoding a
glycerol-3-P dehydrogenase that converts glycerol-3-P into dihydroxyacetone,
together with the disruption of genes encoding acyl-CoA oxidases (POX1-6)
involved in beta oxidation of fatty acids, resulted in a substantial increase in lipid
production (Beopoulos et al. 2008).

Several efforts have been undertaken to engineer S. cerevisiae to produce
biodiesel. S. cerevisiae is not oleaginous; in fact, storage lipid synthesis is not
essential for this yeast (Sandager et al. 2002). However, it is an established cell
factory with well-developed tools for molecular manipulation and a well-investi-
gated metabolism. In yeasts, acetyl-CoA, the precursor of fatty acid synthesis, is
formed from pyruvate: in the cytosol, by the action of pyruvate decarboxylase,
aldehyde dehydrogenase and acetyl-CoA synthase; and in the mitochondria by
pyruvate dehydrogenase (PDH) (Holzer and Goedde 1957). In contrast to oleag-
inous yeasts, the pathway for synthesising cytosolic acetyl-CoA from surplus
citrate from the mitochondria is absent in S. cerevisiae (Beopoulos et al. 2011).
Thus, increasing the intracellular acetyl-CoA level and redirecting the flux from
ethanol production towards producing precursors of lipids is one of the challenges
when producing biodiesel or related products from S. cerevisiae. An increased
acetyl-CoA level has been achieved by overexpressing the aldehyde dehydroge-
nase gene ALD6 and a mutated acetyl-CoA synthase gene from Salmonella
enterica in S. cerevisiae (Shiba et al. 2007). This system was further improved by
(Chen et al. 2013), who additionally overexpressed ADH2, encoding the assimi-
latory alcohol dehydrogenase. Moreover, ERG10, encoding an acetyl-CoA
acetyltransferase, was overexpressed. By this strategy, substantial amounts of
acetyl-CoA were redirected from ethanol and biomass production towards desired
compounds, in this case the production of a-santalene. This platform can be the
basis for producing a variety of compounds, including biodiesel or n-butanol.
Overexpression of the genes of the isoprenoid synthesis pathway and repressing
ergosterol synthesis, or overexpressing a phosphatase dephosphorylating farnesol
pyrophosphate resulted in strains overproducing farnesol, which can be used as
biodiesel or jet fuel (Hong and Nielsen 2012; Zhang et al. 2011). Expression of
heterologous wax synthases in S. cerevisiae for in vivo production of FAEE, which
can be directly used as biodiesel, has also been reported (Kalscheuer et al. 2004;
Shi et al. 2012). Overexpression of ACC additionally increased FAEE production
by 30 %, resulting in a biodiesel production of 8.2 mg/l (Shi et al. 2012).

Glycerol is a side product from transesterification and its conversion into bio-
fuels can contribute to sustainability of biodiesel production. By overexpression of
genes of the glycerol assimilation pathway (glycerol kinase, GUT1) and the
triaacylglycerol formation pathway (diacylglycerol acyltransferase, DGA1 and
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LRO1), lipid concentrations of 23 mg/l could be obtained from glycerol as sole
carbon source (Yu et al. 2013). Overexpressing the glycerol assimilation pathway
(including a glycerol transport protein) and disruption of the genes of
dihydroxyacetone phosphate degradation and glycerol export resulted in ethanol
production from glycerol in S. cerevisiae. When a wax ester synthase was also
overexpressed, the engineered strain was able to condense the formed ethanol with
externally added oleic acid to ethyl oleate, thus representing FAEE production
from glycerol (Yu et al. 2012).

9.13 Biodiesel Production from Lignocellulose

Lignocellulose hydrolysate seems to have a good potential for lipid production, as
it usually has a high C/N ratio (Hyvönen et al. 2000; Reinertsen et al. 1984).
Moreover, most oleaginous yeasts (unfortunately, except the well-investigated
yeast Y. lipolytica) have the potential to assimilate xylose and other sugars present
in lignocellulose hydrolysate (Kurtzman et al. 2011). On the other hand, the
inhibitors released during pretreatment (Fig. 9.1) also influence oleaginous yeasts.
A variety of oleaginous yeast species have been tested to convert residue materials
such as wheat and rice straw, corn stover hydrolysate or sewage sludge into lipids
(Angerbauer et al. 2008; Galafassi et al. 2012; Huang et al. 2009; Yu et al. 2011).
The final lipid concentrations in these experiments rarely reached more than 10 g/l,
which was relatively low compared to, say, a high cell density cultivation of an
R. toruloides strain on glucose, where a lipid concentration of 151.5 g/l was
obtained (Li et al. 2007). However, most of these tests were performed in batch
cultivation, so there is still a great potential to optimise the fermentations.
Remarkably, the diversion between growth and lipid accumulation as observed in
artificial growth medium was not seen in these experiments. Lipid accumulation
mainly followed biomass formation. In later stages of fermentation, the lipid con-
tent remained constant or slightly decreased, while the biomass was still increasing.
Thus, the lipid proportion on the total biomass was relatively low towards the end of
the fermentation (Huang et al. 2009; Yu et al. 2011). Inhibitors had differing effects
on growth and lipid accumulation. Reports on the inhibitory action of acetate are
conflicting to some extent. In a screening experiment, 5 g/l acetate completely
prevented growth of strains of L. starkeyi, R. glutinis and R. toruloides. Tricho-
sporon cutaneum could grow at this concentration, but was strongly inhibited (Chen
et al. 2009). Similarly, Rhodotorula graminis was already inhibited at acetate
concentrations above 2 g/l (Galafassi et al. 2012). However, only a slight inhibitory
effect of acetate on the growth and even some stimulation of lipid accumulation was
observed for R. toruloides (Hu et al. 2009). Obviously, species and strains differ
substantially. In some studies, acetate seemed to be rather a substrate than an
inhibitor (Lian et al. 2012; Yu et al. 2011). In mixed substrate, it was consumed
faster than the sugars in the medium, and it contributed to lipid accumulation
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(Yu et al. 2011). HMF, which is a strong inhibitor during ethanol production, does
not seem to have a similar deleterious effect on lipid production, whereas furfural
and vanillin were toxic for the yeasts (Chen et al. 2009; Hu et al. 2009).

9.14 Lipid Extraction from Yeasts

In contrast to ethanol, lipids are not secreted into the medium and thus have to be
extracted from the cells. The relatively robust cell walls represent a serious barrier
for extraction. Moreover, several other lipophilic compounds are present in the
lipid bodies, which have to be removed before using the fatty acids to produce
biodiesel. Thus, lipid extraction from the cells represents a major challenge in
establishing yeast-based biodiesel production. Several extraction methods have
been tested at pilot scale, mainly by using ethanol–hexane mixtures, but further
optimisation is required to obtain an optimal process running under commercial
conditions (Ageitos et al. 2011; Jacob 1992). The final step in biodiesel produc-
tion, transesterification, is currently mainly done with the help of alkaline cata-
lysts, which can result in undesirable saponification reactions with biolipids, due to
the high availability of free fatty acids. Thus, the development of an economically
viable enzyme-based transesterification is critical for developing a commercial
biodiesel process based on microbes (Azócar et al. 2010; Robles-Medina et al.
2009).

Forcing secretion of the formed lipids out of the cell might be an alternative to
extraction. Recently, experiments were performed in bacteria to express trans-
porters exporting hydrophobic molecules out of the cell (Dunlop et al. 2011). In
particular, the approach of expressing specific ABC transporters may be also
relevant for yeasts, as ABC transporters are ubiquitous among all kingdoms of life.
When the transporters are expressed under an inducible promoter, the cells can,
after a lipid-accumulating cultivation, be transferred into a biphasic system with an
aquatic and an organic phase. Secreted lipids will then accumulate in the organic
phase, while the cells stay in the liquid phase. After secreting the lipids, the cells
can be re-used in further fermentations (Doshi et al. 2013). Another approach
makes use of the native capacity of yeasts to excrete esterified fatty acids.
Overexpression of a gene encoding Acyl-coenzyme A: ethanol O-transferase can
result in the production of fatty acid ethyl esters. Moreover, it has been shown that
Candida tropicalis excretes free fatty acids to the medium when transferred to
oxygen limited conditions (Phadnavis and Jensen 2013).

9.15 Outlook: Yeasts in a Biofuel/Biochemicals Refinery

The above-mentioned examples illustrate that, based on knowledge of physiology
appropriate yeasts can be selected, processes can be optimised and metabolic
pathways can be manipulated, which leads to substantial improvements in
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producing the desired biofuels. However, it should be noted that currently there is
almost no commercial scale biofuel production from second-generation raw
materials, except biogas production, which is not yeast based. As mentioned
above, high costs are among the major obstacles to commercialising second-
generation biofuel production (Stephen et al. 2012; Cheng and Timilsina 2011).
Integration of the different steps of handling lignocellulose biomass is a way of
improving the process economy. Biomass handling for biofuel production includes
growth, harvest, storage, pretreatment, fermentation, handling side and residual
products, and if possible, generating value out of them (Vanholme et al. 2013;
Liguori et al. 2013). Several of these partial processes can make use of the met-
abolic capacities of yeasts (Fig. 9.6).

Storage of biomass is an essential process, as biomass is seasonally produced,
whereas it is highly desirable that biofuel production facilities run continuously.
Therefore, it is necessary to preserve the harvested biomass until use. The most
frequently used and safest means of biomass preservation is drying; however,
especially in temperate climates, this can require a substantial input of energy
(Olstorpe and Passoth 2011). In the case of lignocellulose material such as straw,
which is usually passively dried in the field, excessively high moisture contents
can result in losses of produced biomass (Nilsson 2000). For the handling of feed
biomass, several methods of biopreserving moist biomass have been developed
(Olstorpe and Passoth 2011; Zheng et al. 2011). When these methods were applied
to preserve raw materials for biofuel production, yeast-based biopreservation of
the moist biomass not only saved the energy that would have been consumed for
drying, but also made the biomass more accessible for the subsequent pretreat-
ment. Biopreservation of wheat straw with a yeast able to partially degrade
hemicellulose (S. stipitis) had a positive effect on the pretreatment efficiency
(Passoth et al. 2009, 2013). Integration of storage and pretreatment can thus
streamline the pretreatment input in the process. This is one of the most critical
issues in obtaining sustainable biofuel production, as pretreatment contributes to
high costs, requires a major input of energy and releases inhibitors (Sassner et al.
2008). Consolidated bioprocessing, in which enzymatic degradation of the bio-
mass and ethanol production are combined, represents another opportunity to
reduce the impact of pretreatment (Hasunuma and Kondo 2012).

Handling fermentation residues from lignocellulose-based ethanol production is
an important issue for the total process. Fermentation residues are nutrient rich and
have a high COD value, and their cleaning represents a major cost factor (Wilkie
et al. 2000). Biogas production is one opportunity for generating value out of the
costly residues. Interestingly, some studies indicated that biogas production from
lignocellulose was positively influenced when the material was fermented to
ethanol and the residues were introduced into the biogas process. The total energy
output from a combined ethanol/biogas production was higher than biogas pro-
duction alone, and the biogas production rate was also enhanced. In this way,
ethanol production acted like a pretreatment for the biogas process (Dererie et al.
2011; Kreuger et al. 2011). Residues from biogas production, in turn, have very
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good potential as fertilisers and can thus close the loop to generate new biomass
for biofuel and food production (Odlare et al. 2011).

Residues from first-generation raw material ethanol production are frequently
used as animal feed. For instance, in the EU, feeding fermentation residues to
animals may result in saving 0.7 Mio ha maize cultivation area for animal feed
production (Özdemir et al. 2009). Utilisation of the fermentation residues as
animal feed in a corn-based ethanol production process contributed to about one-
sixth of the total energy output and was essential to obtain a positive energy
balance for the whole process (Hill et al. 2006). However, residues from ligno-
cellulose-based fermentation may not be suitable for direct incorporation into
animal feed, due to inhibitors and lignin-derived compounds that influence pal-
atability. Recently, the extraction of proteins from lignocellulose to use them as
animal feed or even human food has been suggested (Chiesa and Gnansounou
2011). As discussed above, biofuel production from first-generation raw materials
may raise ethical concerns (Buyx and Tait 2011) and even lignocellulosic feed-
stock may compete with food production. Thus, feed and food production from
side streams of biofuel production may be a way to overcome potential food versus
fuel debates. Moreover, as animal feed production in particular is one of the major
consumers of fossil resources and arable land in agriculture, feed generation from
biofuel production will substantially improve the overall environmental balance of
the entire process (Graham-Rowe 2011).

In a future biofuel refinery, different compounds will be generated according to
corresponding demands. The pentose fraction can primarily be used to produce:
biodiesel using naturally pentose-assimilating oleaginous yeasts; bioethanol, using
engineered S. cerevisiae; or yeast biomass for animal feed. The hexose fraction is
the preferred substrate for ethanol and butanol production; lipid generation by
oleaginous yeasts or engineered S. cerevisiae is also possible. Apart from this, high
value compounds, e.g. platform chemicals for the pharmaceutical or cosmetic
industries can be co-generated, which will significantly improve the total eco-
nomic basis of the biofuel process (Nielsen et al. 2013; Zhang et al. 2011). Lignin

Fig. 9.6 Integrative approach for generating biofuels and chemicals from non-food (lignocel-
lulose) biomass and the role of yeasts in such a process. After harvest, biomass has to be
preserved until pretreatment, which includes thermochemical and enzymatic processing.
Biocontrol yeasts can be used for low-energy biopreservation of the biomass. Certain yeasts
(ISP yeasts) can even de-stabilise the material during storage, and by this, integrate storage and
pretreatment (ISP). After thermochemical treatment, most of the hemicellulose is present in the
liquid fraction, whereas the cellulose together with the lignin is present in the solid fraction. If
necessary, both can be separated by further treatment steps. Enzymatic treatment releases
monosaccharides from the polysaccharides. The sugars can be converted into biofuels, chemicals
and animal feed using appropriate yeasts. Residues from yeast fermentations can be converted
into biogas. Lignin that cannot be degraded to ethanol or biogas can be burned to obtain process
energy, or it can be converted into chemicals and biofuels by chemical processes (pyrolysis).
Residues from pyrolysis can be transformed into lipids using oleaginous yeasts. Biogas residues
and lignin are excellent fertilisers to produce new biomass

b
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is difficult to degrade due to its complex structure. It is typically burned to generate
process energy. However, it is also possible to convert it into valuable chemicals
(Zhu and Pan 2010). Pyrolysis is one method to obtain low molecular weight
chemicals from lignin and other compounds of lignocellulose, and during this
process, several residues, including carboxylic acids, are generated. These acids
can be converted into lipids by oleaginous yeasts (Lian et al. 2012). When used as
fertiliser, lignin plays an important role for the carbon balance of soil (Jarecki and
Lal 2003).

This chapter illustrates that biofuel-related yeast research has undergone an
impressive development: based on the bulk of knowledge about yeast physiology,
culture conditions and metabolic pathways, cells have been manipulated to opti-
mise production of the desired biofuel. The ongoing efforts to obtain strains
producing sufficient amounts of biofuels or platform chemicals in an industrial
environment, and in integrating the processing steps of a biorefinery, are, in their
turn, boosting scientific developments towards understanding yeast and thus
eukaryotic physiology. In this way, biofuel research can be seen as an excellent
example of mutual positive effects when combining fundamental science with an
emerging technology development.
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Chapter 10
Wine, Beer and Cider: Unravelling
the Aroma Profile

Amparo Gamero, Vicente Ferreira, Isak S. Pretorius
and Amparo Querol

Abstract The aroma profile of alcoholic beverages is a major factor that distin-
guishes one product from another, and it is a key attribute that drives consumer
preference at points of sale. A longstanding objective has, therefore, been to
identify those aromatic compounds that are important to particular olfactory
attributes of different styles of wine, beer and cider—whether perceived ortho- or
retro-nasally—and to modulate them according to consumer preferences. That this
has been achieved only to a relatively small extent to date is partly a reflection on
the complexity of the perception of aroma mixtures and also the presence of very
low concentrations of potent aroma compounds in these products. It is known,
although perhaps not appreciated as widely as it should be, that aroma compounds
will interact with each other, with masking or suppressing effects being probably
universal for compounds at supra-threshold concentrations, together with additive
interactions for compounds at sub-threshold concentrations. Thus it is likely that
volatile compounds with marginal aroma impact when isolated, can together
provide an influence on aroma. Some of these aroma-active compounds are pro-
duced during fermentation. Different yeasts produce differing ranges of aroma-
active substances, which may greatly affect the complex flavour of a fermented
product such as wine, beer and cider. While these secondary metabolites are often
formed only in trace amounts, their concentrations may well determine the distinct
aroma of these beverages. This chapter reviews the production of the most
important aroma-active compounds produced by yeast at molecular level and seeks
to understand how they might be perceived by consumers.
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10.1 The Fundamentals of Aroma and Flavour Perception
of Fermented Alcoholic Beverages

The aroma of a given foodstuff is formed by the pool of volatile molecules con-
tained in that product with the ability to impact the olfactory receptors located in
the olfactory region in the human nose. Since volatile molecules can reach this
olfactory region both via orthonasal and retronasal pathways, the information
elicited by those receptors affects two different sensory properties of products, i.e.
their smell and their flavour. Smell is primarily information originating from the
excited olfactory receptors together with, eventually, information produced by
trigeminal nerve terminals located in the nostrils, which are also present in the
mouth, pharynx and eyes. The information generated by these terminals falls in the
category of chemesthesis and is related to semi-tactile properties such as
refreshing/cooling effects (menthol), irritation (acids and alkalis) or pungency
(chilies’ capsaicins) (Bandell et al. 2004; Bautista et al. 2007; Caterina et al. 1997;
Macpherson et al. 2006). Many aroma chemicals are able to produce some che-
mesthesis, although in general the intensity of the response is smaller than the
purely olfactory (Prescott 1999a). On the other hand, the flavour of a product is
formed by the cerebral integration of the different sensory responses elicited
during the consumption of a product. These sensory responses stem from three
different chemical sensory systems (olfaction, taste and chemesthesis) and in the
tactile and thermal sensory systems which give information about the temperature
and rheological properties of the food. From a qualitative point of view, the
olfactory system is the one carrying the biggest amount of information and
that explains the limited amount of sensory information that can be perceived
when the nose is blocked.

Flavour is an integrated cerebral response and it, therefore, not always possible
to clearly assign the origin of the stimulus causing a particular flavour perception
(Delwiche 2004; Prescott 1999b). For instance, whenever vanillin is present
together with sweet tastants, the intensity of its smell increases (Green et al. 2012)
and vice versa, the presence of vanillin can increase the perception of sweetness
(Sakai et al. 2001). These complex phenomena are broadly included into the
concept of perceptual interactions that are responsible for some unexpected and
important observations in wine flavour chemistry, such as the prominent role
played by fruity aromas on the perception of sweetness, bitterness and astringency
(Saenz-Navajas et al. 2010). Although these phenomena are well documented in
the general scientific literature, they are not yet well understood in the context of
wine and other fermented alcoholic beverages. It is therefore important to note that
aroma compounds play a sensory role in fermented beverages that it is not limited
to the perception of an odour.

To fully understand the role played by individual chemicals, it is equally
important to note that fermented beverages are considered by flavour chemists as
‘complex’ products. Although there is no definite border between what products
are categorised as ‘simple’ and ‘complex’, the fact that the aroma of any fermented
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beverage is formed by at least 25 different aroma chemicals—all of which are
present at concentrations above their corresponding odour thresholds—classes
wine, beer and cider as ‘complex’ products. So, given the fact that the sense of
olfaction has to be by nature a ‘synthetic’ rather than ‘analytic’ sense (Wilson and
Stevenson 2003), the overall odour of fermented beverages has to be a global
perception in which the individual chemicals are just poorly identified. In addition,
since the odour of fermented beverages has accompanied humankind since the
beginning of time, we can postulate the existence of what psychophysicists define
as an ‘odour object’ (Ferreira 2012; Stevenson and Wilson 2007; Yeshurun and
Sobel 2010). In other words, the human brain transforms the complex signals
produced by the interactions of the chemicals present in all alcoholic beverages
(alcohol, fusel alcohols, fatty acids, branched acids, ethyl esters, acetates, etc.) into
a single unified concept that would be defined as ‘alcoholic’ or ‘vinous’. This is a
highly efficient and ‘economic’ of signal processing and this capability has great
practical importance in the understanding the chemical basis of aroma perception.

Therefore, although in the following sections we refer to individual compounds
or groups of compounds and mention the specific odour properties of a compound
or groups of compounds, it should not be concluded that those odour properties are
directly responsible for such odour perception in wine, beer or cider.

10.2 The Basic Hierarchy of Aroma Compounds
in Fermented Alcoholic Beverages

The previous notes, together with many experimental observations obtained in
different reconstitution studies performed mainly in wine, make it possible to
provide a basic rationale for understanding the contribution of the different
chemicals to the aroma of a naturally fermented beverage. At the core of this
rationale lies the aforementioned complexity of aroma and flavour perception in
relation to fermented beverages and the so-called ‘aroma buffering effect’. The
‘buffering aroma effect’ of a product’s base refers to the demonstrated resistance of
a particular aroma mixture to change its aroma both upon the elimination of some
of its components or upon the addition of some new aroma compounds (Ferreira
et al. 2002; Escudero et al. 2004). This does not mean that such a base always
bears the same aroma and has the same composition. The composition of the base
depends on some basic factors such as, for example, the concentration of sugar in a
grape must, the prevalent yeast strain(s) and the degree of anaerobiosis during
fermentation. For instance, the latter factor makes white and rosé wines richer in
fatty acids and their ethyl esters while containing less alcohols and isoacids than
red wines (Ferreira et al. 1996). Another less well-known factor is that the con-
centrations of fusel alcohols, fusel alcohol acetates, isoacids and their ethyl esters,
all of them related to the yeast amino acid metabolism, are related to the varietal
origin of the must (Ferreira et al. 2000; Hernández-Orte et al. 2002). Different
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compositions mean slightly different aromas and slightly different buffering
abilities.

Notwithstanding of this, there are some compounds or combinations of
compounds, that at the ‘natural’ concentrations at which they usually occur in
fermented beverages, can break the buffer and transmit to the mixture their specific
aroma or a particular feature of their aroma. There are five different possibilities
for this to happen:

1. The aroma buffer will be broken whenever a beverage contains an ‘aromatic
vector’ with enough odour intensity.

2. Such an aroma vector can be an individual compound (a so-called ‘impact
compound’), a family of aroma compounds belonging to the same chemical
series, such as ethyl esters of fatty acids, or even an association of aroma
compounds sharing a generic descriptor (such as ‘fruity’ or ‘floral’).

3. The vector will express in the beverage an aromatic nuance whose intensity and
vicinity to the innate aroma character of the vector will be proportional to its
concentration. For instance, isoamyl acetate bearing a characteristic smell of
banana, if present at a low concentration does not transmit to the beverage its
characteristic aroma. Rather it just transmits its generic ‘fruity’ character.

4. Hence, concentration modulates the role that the vector actually plays in the
mixture. The following intensity categories can be identified:

a. null
b. minor contributor—the elimination of the vector does not bring about any

clear aromatic change
c. neat contributor—the elimination of the vector brings about a clear decrease

in the intensity of the aroma nuance to which the vector contributes
d. major contributor—in this case the elimination of such vector will cause a

dramatic drop in the intensity of the aroma nuance with even possible
qualitative changes in the overall aroma profile

e. impact compound—in this case the elimination of the vector will cause a
dramatic change on the aroma profile.

5. When several aromatic vectors coexist in the same beverage, they will interact
at perceptual level following three different potential patterns of interaction:

a. competitive—both aroma nuances are simultaneously and competitively
perceived (Campo et al. 2005),

b. destructive—only one of the vectors is perceived at a lower intensity,
c. creative—a new aroma nuance emerges from the blend (San Juan et al.

2011).

Whenever it comes to fermentative compounds, they are the basic constituents
of the base and some of them can also play the role of contributors to different
aroma nuances. To the best of our knowledge, they only seldom play the role of
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impact compounds. For instance, isoamyl alcohol or b-phenyl alcohols, even if
they are present at relatively high concentrations never reach the level at which
they would act as real impact compounds. So far, in wine, only isoamyl acetate,
ethyl acetate, acetic acid, acetaldehyde and diacetyl can play such a role indi-
vidually, and leaving aside some specific quirky wine styles, when they are clearly
perceived the quality of the wine can be questioned. Fermentative compounds
form the following aroma vectors:

1. Alcohols (ethanol, isobutanol, isoamyl alcohol).
2. Methionol.
3. Ethyl esters of fatty acids (ethyl butyrate, hexanoate, octanoate and decanoate).
4. Ethyl acetate.
5. Acetic acid.
6. Fatty acids (butyric, hexanoic, octanoic and decanoic acids).
7. Isoamyl acetate.
8. b-phenyl acetate and b-phenylethanol.
9. Branched fatty acids [isobutyric, isovaleric, 2-methylbutyric and the recently

discovered 2-, 3 and 4-methylpentanoic and cyclohexanoic acids (Campo et al.
2007)].

10. Ethyl esters of the previously mentioned branched fatty acids.
11. Diacetyl.
12. Acetaldehyde.

As previously mentioned, these aroma vectors rarely reach the category of
impact compounds, but they are important contributors to some key aroma
nuances of fermented beverages. The role of two of the vectors, namely fatty acids
and branched fatty acids, is quite complex, since apparently they form a kind of
‘creative’ interaction with the ‘fruity’ vectors (ethyl esters of fatty acids, branched
acids and isoamyl acetate) to form the aroma of ‘fresh fruit’ (San Juan et al. 2011).
Another aspect that must be kept in mind is that compounds of apparently ‘bad’
aroma, such as isovaleric and 2-methylbutyric acids, are in fact precursors for the
strawberry-smelling ethyl isovalerate and ethyl 2-methylbutyrate which are
formed by slow esterification of the acids with ethanol during ageing.

Bearing these fundamental aspects of aroma perception of fermented alcoholic
beverages and the basic hierarchy of aroma compounds involved in mind, the
following sections focus on the contribution of yeast to the aroma and overall
quality of fermented beverages.

10.3 Wine Yeasts

Winemaking is a complex chemical and biological process in which different
genera of yeast and bacteria are involved. During the early stages of spontaneous
wine fermentation, different genera of non-Saccharomyces yeasts, such as Can-
dida, Cryptococcus, Debaryomyces, Hanseniaspora and its asexual counterpart
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Kloeckera, Kluyveromyces, Metschnikowia, Pichia, Rhodotorula, Saccharomy-
codes, Schizosaccharomyces and Zygosaccharomyces play a role (Pretorius et al.
1999). Yeasts of the genera Kloeckera, Hanseniaspora and Candida predominate
in the early stages, followed by several species of Metschnikowia and Pichia in the
middle stages when the ethanol concentration rises to 3–4 % (Fleet and Heard
1993). However, some species of Schizosaccharomyces, Zygosaccharomyces,
Brettanomyces and its sexual (‘perfect’) equivalent, Dekkera, are more resistant to
high concentrations of ethanol and SO2 and, if present under certain conditions,
can adversely affect the sensory quality of wine.

On the other hand, the principal species conducting the alcoholic fermentation in
grape wine is Saccharomyces cerevisiae, but the closely-related Saccharomyces
uvarum (Saccharomyces bayanus var. uvarum) can also participate (Demuyter et al.
2004; Massoutier et al. 1998; Naumov et al. 2000, 2001; Sipiczki 2002, 2008). Both
S. cerevisiae and S. uvarum are able to grow on substrates characterised by high
sugar and ethanol content, low pH, high sulphur dioxide concentrations and remains
of fungicides, demonstrating that they are genetically well adapted to winemaking
conditions (Sipiczki 2008). However, S. cerevisiae has higher resistance to high
temperature stress (up to 37 �C) and ethanol levels (up to 15 %) than S. uvarum
(Belloch et al. 2008). From an oenological point of view, these Saccharomyces
species differ in several properties. Comparison between S. uvarum and S. cere-
visiae reveals that the former is more cryotolerant, produces less acetic acid, lower
levels of amyl alcohols, but higher concentrations of glycerol, succinic acid, malic
acid, isobutyl alcohol, isoamyl alcohol and numerous secondary compounds
(Sipiczki 2002). Wines produced by S. uvarum strains have a higher aromatic
intensity than those produced by S. cerevisiae (Coloretti et al. 2006; Henschke et al.
2000). Specifically, S. uvarum produces more of 2-phenylethanol, 2-phenylethyl
acetate and ethyl lactate than S. cerevisiae (Antonelli et al. 1999; Di Stefano et al.
1981; Gangl et al. 2009). On the other hand, S. uvarum is less common and appears
mainly in fermentations at low temperatures (Antunovics et al. 2003; Demuyter
et al. 2004; Masneuf-Pomarède et al. 2010; Sipiczki et al. 2001).

Other members of the genus Saccharomyces (S. cariocanus, S. kudriavzevii,
S. mikatae, S. paradoxus, S. arboricolus, S. pastorianus) are not likely to play
important roles in wine fermentation (Sipiczki 2008). Nevertheless, S. paradoxus
has been found in grapes in the north-western region of Croatia and it is currently
used to ferment wines (Redzepovic et al. 2002). Likewise, S. kudriavzevii has only
been isolated in natural environments, like decayed leaves (Naumov et al. 2000) or
oak barks (Sampaio and Gonçalves 2008; Lopes et al. 2010). However, there are
reports that indicate that S. kudriavzevii may participate in hybrid formation with
wine-related S. cerevisiae and S. bayanus species. For example, the genome
sequence of a widely used wine yeast strain, VIN7, revealed an allotriploid hybrid
genome with S. cerevisiae and S. kudriavzevii origins (Borneman et al. 2012).
Physiological characterization of S. kudriavzevii strains has shown that they are
able to grow at relatively low (10 �C) and high (up to 30 �C) temperatures;
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however, they are not able to tolerate more than 5 % of ethanol (Belloch et al.
2008).

Natural hybrids of S. cerevisiae, S. bayanus and S. kudriavzevii conducting
wine fermentations have been recently discovered and characterised by genetic
approaches (Belloch et al. 2009; Borneman et al. 2012; Dunn and Sherlock 2008;
González et al. 2006, 2008; Horinouchi et al. 2010; Masneuf et al. 1998; Nguyen
et al. 2000; Sipiczki 2008). The hybridisation process between Saccharomyces
species has been proposed as an adaptation mechanism of yeasts to ferment at low
temperatures (de Barros Lopes et al. 2002; Barrio et al. 2006; Sipiczki 2008).
Physiological data suggest that Saccharomyces hybrids might have inherited the
ability to grow at high temperatures (30–37 �C) and their ethanol tolerance from
their S. cerevisiae parent and the ability to grow at low temperatures (10–16 �C)
from their S. bayanus and S. kudriavzevii parents. These physiological charac-
teristics point to Saccharomyces hybrids as better adapted to meet the winemakers’
trends, such as conducting wine fermentation at low temperatures, which may
cause wine aroma improvement (Lambrechts and Pretorius 2000; Torija et al.
2003; Llauradó et al. 2002, 2005; Novo et al. 2003).

Oenological characterization of S. cerevisiae 9 S. kudriavzevii hybrid strains
has demonstrated that the hybrids are well adapted to ferment at low and inter-
mediate temperatures, producing moderate or higher levels of glycerol and less
acetic acid with regard to reference strains of S. cerevisiae and S. kudriavzevii
(Gangl et al. 2009; González et al. 2007). Similar comparative studies, which also
included S. uvarum and a hybrid between S. cerevisiae and S. uvarum, in wine and
cider (Masneuf et al. 1998; Nguyen et al. 2000), indicated that the highest pro-
duction of glycerol was produced by S. uvarum, S. kudriavzevii and the S. cere-
visiae 9 S. uvarum hybrid (Gamero et al. 2013). Regarding aroma formation, one
study indicated that hybrids produced the same quantity of aromatic compounds as
S. cerevisiae at high temperatures, and the same aromatic intensity as S. ku-
driavzevii at low temperatures (González et al. 2007), whereas in another study
this trend was only observed in the case of fusel alcohol production (Gamero et al.
2013). In the latter study, S. cerevisiae strains yielded the highest aroma amounts
at 28 �C were, whereas S. uvarum and some hybrids excelled at 12 �C. Altogether,
these studies pointed to the fact that aroma formation is highly dependent on both
yeast strain and fermentation temperature (Gamero et al. 2013).

10.4 Beer Yeasts

In brewing, a distinction is made between ale yeasts (top fermentation) and lager
yeasts (bottom fermentation). Ale yeasts are classified as S. cerevisiae and are
mostly used for the production of specialty beers where the fermentation tem-
peratures are relatively high (15–25 �C). Lager yeasts are classified as Saccha-
romyces pastorianus, which include S. carlsbergenis and S. monacensis isolated by
EC Hansen in 1908. Lager yeasts are used for the production of pilsner type beers,
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fermented at lower temperatures than ale yeasts (6–14 �C). The genomes of lager
yeasts are complex as they are aneuploid and consist of a hybrid of mixed genetic
lines of the Saccharomyces genus (Kodama et al. 2006). DNA/DNA reassociation
studies on the type strains of S. bayanus (CBS380), S. carlsbergensis (CBS1513)
and S. monacensis (CBS1503) presented S. bayanus as one of the contributors to
S. pastorianus genome (Vaughan-Martini and Kurtzman 1985). Thereafter many
reports agreed with this fact (Tamai et al. 2000; Rainieri et al. 2006; Dunn and
Sherlock 2008; Nakao et al. 2009). Later, some evidences pointed to S. bayanus to
be a hybrid between S. uvarum and S. cerevisiae (Nguyen et al. 2000; Nguyen and
Gaillardin 2005), which was recently confirmed (Nguyen et al. 2011) and being
one of its parents S. uvarum and the other, a new species isolated from Patagonia
and named S. eubayanus (Libkind et al. 2011). As S. eubayanus carries a ‘pure’ or
monogenome it is very likely to be the common contributor of S. bayanus and
S. pastorianus. Lager brewing yeast is now recognised by many authors as
S. eubayanus/S. cerevisiae hybrid (Dunn et al. 2012; Piotrowski et al. 2012;
Cousseau et al. 2013; Pengelly and Wheals 2012).

10.5 Cider Yeasts

Studies on population dynamics in cider have shown that the composition of yeast
flora can vary according to climatic conditions, apple varieties, geographic loca-
tion and the cider-making technology employed (Cabranes et al. 1990; del Campo
et al. 2003; Suárez et al. 2007a). First, an oxidative phase carried out by
autochthonous non-Saccharomyces yeasts with a low fermentation capacity and
with the predominance of Metschnikowia pulcherrima, Hanseniaspora uvarum,
Hanseniaspora valbyensis and Candida yeasts was observed (Michel et al. 1988;
Morrissey et al. 2004; Coton et al. 2006; Suárez et al. 2007a). Furthermore, species
of the genera Pichia, Torulaspora, Rhodotorula, Cryptococcus, Zygosacchar-
omyces and Brettanomyces/Dekkera yeasts, originating from apples or the envi-
ronment have been also related to cider production (Beech 1993; Michel et al.
1988; Morrissey et al. 2004).

Second, strains with a greater tolerance to ethanol (Saccharomyces spp.) com-
pleted the cider fermentations. In the aforementioned studies on population
dynamics in cider, the Saccharomyces species found to be present were S. cerevisiae
and S. bayanus. The data indicated that S. bayanus was the predominant species at
the beginning and the middle fermentation phases of the fermentation process,
reaching a percentage of isolation between 33 and 41 %, whereas S. cerevisiae took
over the process in the final stages of fermentation (Suárez et al. 2007a). A study that
was carried out to examine the dynamics and variability of wild Saccharomyces spp.
(Suárez et al. 2007b) determined that the number of strains observed was higher than
those reported for Saccharomyces populations in some wine-growing regions in
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other studies (Frezier and Dubourdieu 1992; Querol et al. 1994; Gutiérrez et al.
1999; Torija et al. 2001; Schuller et al. 2005).

Finally and as commented before, natural hybrids between S. bayanus and
S. cerevisiae have been described by some authors in wine and cider some years
ago (Masneuf et al. 1998; Nguyen et al. 2000).

10.6 Fermentative Aroma

The most important compounds within fermentative aroma are higher alcohols,
acetate and ethyl esters, aldehydes (acetaldehyde), ketones (diacetyl), organic
acids (acetic acid), volatile phenols (4-vinylphenol, 4-vinilguaiacol) and sulphu-
rous compounds (hydrogen sulphide, mercaptans, volatile thiols). A scheme of the
synthesis of the main fermentative aroma compounds is shown in Fig. 10.1, while
Table 10.1 presents their aroma descriptors and odour thresholds. Finally,
Table 10.2 depicts the most important genes involved in flavour-active compound
synthesis identified in S. cerevisiae.

Fig. 10.1 Flavour-related metabolism in yeasts
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Table 10.1 Aroma and odour thresholds of the most representative aroma compounds appearing
in alcoholic fermentations

Aromatic compounds Aroma descriptor Odour
threshold

Higher alcohols (mg/l)
Methanol Chemical, medicinal 668a

1-Propanol Ripe fruit, alcohol 0.830a

2-Methyl-1-propanol (Isobutanol) Bitter, green, harsh 0.200b

3-Methyl-1-butanol (Isoamyl alcohol) Alcohol, fusel 30b

3-Methyl-1-pentanol Vinous, herbaceous, cacao 50c

4-Methyl-1-pentanol Almond, toasted 50c

1-Butanol Medicinal, phenolic 150a

2,3-Butanediol Fruity 150a

1-Pentanol Almond, synthetic, balsamic 64a

1-Hexanol Green, grass 8b

(Z)-3-Hexenol Green, cut grass 0.400d

1-Heptanol Oily 2.500a

2-Phenylethyl alcohol Roses, sweet 14b

Benzyl alcohol Sweet, fruity 200a

Acetate esters (mg/l)
Ethyl acetate Fruity, solvent 7.500d

Isoamyl acetate Banana 0.030b

Hexyl acetate Green, floral 1.500c

2-Phenylethyl acetate Rose, flowery 0.250b

Ethyl esters (mg/l)
Ethyl hexanoate (ethyl caproate) Green apple, anise 0.014b

Ethyl octanoate (ethyl caprylate) Sweet, fruity, fresh 0.005b

Ethyl decanoate (ethyl caprate) Pleasant, soap 0.200b

Ethyl butyrate Fruity, apple 0.020b

3-Hydroxy ethyl butyrate Caramel, toasted 20a

Ethyl succinate Wine 6b

Diethyl succinate Wine 200a

Ethyl pyruvate Vegetable, caramel 100a

Ethyl lactate Acid, medicine 155c

Aldehydes (mg/l)
Acetaldehyde Pungent, ripe apple 0.500d

Benzaldehyde Bitter, cherry 2b

Phenylethanal Flowery, rose, honey 0.005b

Ketones (mg/l)
2,3-Butanedione (diacetyl) Buttery 0.200–2.800e

Organic acids (mg/l)
Acetic acid Sour, pungent, vinegar 200d

Propanoic acid Pungent, rancid, soy 8.100c

Benzoic acid Chemical 1a

3-Methylbutanoic acid Cheese, fatty, rancid 0.033b

Butyric acid Rancid, cheese, sweat 0.173a

Isobutyric acid Rancid, butter, cheese 2.300a

(continued)
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Table 10.1 (continued)

Aromatic compounds Aroma descriptor Odour
threshold

Isovaleric acid Sweet, acid, rancid 0.033c

Hexanoic acid Fatty acid, cheese 0.420b

Octanoic acid Fatty acid, rancid 0.500b

Decanoic acid Fatty, rancid, soap 1b

Phenylacetic acid Honey, pollen, flowery 2.500b

Volatile phenols (mg/l)
4-Vinylphenol Stramonium, almond shell 0.180f

4-Vinilguaiacol Clove, curry 0.010f

4-Ethyl guaiacol Phenolic, sweet 0.110e

4-Ethyl phenol Phenol, spicy 0.440f

2-Methoxyphenol Medicine, sweet, smoke 0.010c

Sulphur compounds (lg/l)
Hydrogen sulphide Rotten egg 10000–80000e

3-(Methylthio)-1-propanol Cooked vegetable 1000d

Methanethiol (methyl mercaptan) Cooked cabbage, onion, putrefaction,
rubber

0.300e

Ethanethiol (ethyl mercaptan) Onion, rubber, natural gas 1.100e

Dimethyl sulphide Asparagus, corn, molasses 25e

Diethyl sulphide Cooked vegetables, onion, garlic 0.930e

Dimethyl disulfide Cooked cabbage, intense onion 15, 29e

Diethyl disulfide Garlic, burnt rubber 4.300e

3-(Methylthio)-1-propanol (methionol) Cauliflower, cabbage, potato 500e

Benzothiazole Rubber 50e

Thiazole Popcorn, peanut 38e

4-Methylthiazole Green hazelnut 55e

2-Furanmethanethiol Roasted coffee, burnt rubber 0.001e

Thiophene-2-thiol Burned, burned rubber, roasted coffee 0.800e

Monoterpenes (lg/l)
Geraniol Roses, geranium 30d

Linalool Floral 15d

a-Terpineol Pine, lily of the valley 250f

Citronellol Green lemon 100f

Nerol Rose, lime 400f

Volatile thiols (ng/l)
4-Mercapto-4-methylpentan-2-one

(4MMP)
Cat urine, box tree/blackcurrant, broom 3e

3-Mercaptohexan-1-ol (3MH) Passionfruit, grapefruit 60e

3-Mercaptohexyl acetate (3MHA) Riesling-type note, passionfruit, box
tree

4e

a Etiévant (1991)
b Perestrelo et al. (2006)
c Ferreira et al. (2000)
d Guth (1997)
e Swiegers et al. (2005)
f Vilanova et al. (2010)
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10.6.1 Higher Alcohols

Higher or fusel alcohols are alcohols with two or more carbon atoms with
molecular weights and boiling points higher than those of ethanol (Lambrechts and
Pretorius 2000). From a quantitative point of view, higher alcohols are the most
important group of volatile compounds produced by yeast during wine fermen-
tation. Higher alcohols are classified in aliphatics like isobutanol, hexanol and
isoamyl alcohol and aromatics like 2-phenylethanol and benzyl alcohol. Higher
alcohols contribute with an intense aroma to the flavour of wine and other alco-
holic beverages. According to Rapp and Versini (1991), concentrations of higher
alcohols below 300 mg/l add desirable complexity to wine aroma, whereas higher
concentrations (400 mg/l) can be detrimental to wine quality by disguising ester-
based fruity aromas and imparting a strong, pungent smell and taste. On the other
hand, the concentration of each higher alcohol acting positively or negatively on
the aroma is variable. In beer, the flavour of the aliphatic alcohols is distinctly
alcoholic (e.g. ethanol) and the aromatic alcohols have a rather sweet, alcoholic or
bitter taste (Meilgaard 1975). Nevertheless, in spite of having aroma themselves,
the main oenological importance of higher alcohols lies in the fact that they are
precursors of acetate esters (Soles et al. 1982).

Many factors affect the levels of higher alcohols in alcoholic beverages. For
example, in wine, viticultural conditions, yeast strain and species, initial sugar
content of the grape must, pH and composition of the juice, fermentation temper-
ature, assimilable nitrogen and aeration have a strong influence (Fleet and Heard
1993; Houtman et al. 1980a, b; Houtman and du Plessis 1981). In beer, the addition
of fatty acids and sterols (Taylor et al. 1979), oxygenation (Quain and Duffield 1985)

Table 10.2 Most important genes involved in flavour-active compound synthesis

Aromas Enzymatic activity Genes identified

Higher alcohols Branched-chain amino acid
transferases

BAT1, BAT2

Aromatic amino acid transferases ARO8, ARO9
Decarboxylases ARO10, PDC1, PDC5, PDC6,

THI3
Alcohol dehydrogenases ADH1-7, SFA1

Esters Alcohol acetyl transferases ATF1, ATF2
Acyl transferases EEB1, EHT1, YMR210 W
Esterases EEB1, EHT1, IAH2

Aldehydes Pyruvate decarboxylases PDC1-3
Ketones ILV-encoded enzyme forms

and alcohol dehydrogenases
ILV2, ILV3, ILV5, ADH

Organic acids Acetaldehyde dehydrogenases ALD2-6
Volatile phenols Phenolic acid decarboxylases PAD1 (=POF1)
Sulphur compounds Sulphur metabolism related enzymes CYS4, MET5, MET10, MET14,

MET17, MRX1
Monoterpenes b-glucosidases and glucanases BGL1, BGL2, BEG1, END1, EXG1
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or high temperatures (Landaud et al. 2001), cause an increase in higher alcohol
content. Those factors also stimulate yeast growth in the fermenting wort. In
addition, the production of 2-phenylethyl alcohol appears to be particularly sensitive
to temperature, whereas the synthesis of other higher alcohols is relatively unaf-
fected by this factor.

Several studies have demonstrated that S. bayanus produces higher amounts of
several fusel alcohols (2-phenylethanol, isobutyl alcohol and isoamyl alcohol) than
S. cerevisiae (Antonelli et al. 1999; Massoutier et al. 1998). Other authors
observed that Saccharomyces species generally produce higher concentrations of
fusels alcohols than non-Saccharomyces species (Gil et al. 1996; Herraiz et al.
1990).

Higher alcohols are synthesised by the Ehrlich pathway from branched-chain
amino acids, leucine, valine and isoleucine; aromatic amino acids, phenylalanine,
tyrosine and tryptophan; and the sulphur-containing amino acid methionine. In this
metabolic pathway, the amino acids are transaminated to the corresponding
a-ketoacid, followed by decarboxylation to aldehydes. Finally, these aldehydes are
reduced to higher alcohols and NADH becomes NAD+. These chemical reactions
are carried out by amino acid permeases, transaminases, decarboxylases and
dehydrogenases. Amino acid permeases are encoded by the genes GAP1, BAP2,
BAP3, MMP1 and MUP3 (Didion et al. 1998; Grauslund et al. 1995; Isnard et al.
1996; Jauniaux and Grenson 1990; Mai and Lipp 1994; Rouillon et al. 1999);
branched-chain amino acid transaminases by BAT1 and BAT2 and aromatic amino
acids transaminases by ARO8 and ARO9 (Dickinson and Norte 1993; Eden et al.
2001; Hazelwood et al. 2008; Kispal et al. 1996; Lilly et al. 2006b; Ugliano and
Henschke 2009). In the valine-degradation pathway, any one of the three isozymes
of the pyruvate dehydrogenase complex (PDC), encoded by PDC1, PDC5 and
PDC6, will decarboxylate a-ketoisovaleric acid (Dickinson et al. 1998); in iso-
leucine catabolism, any one of the family of decarboxylases encoded by PDC1,
PDC5, PDC6, KID1 or ARO10 is sufficient for the decarboxylation reaction
(Dickinson et al. 2000); in the leucine-degradation pathway, the major decar-
boxylase is encoded by KID1 (Dickinson et al. 1997); in the case of aromatic
amino acids, PDC1, PDC5, PDC6 or ARO10 are involved (Dickinson et al. 2003).
And finally, ethanol dehydrogenases are codified by ADH1, ADH2, ADH3, ADH4,
ADH5, ADH6, ADH7 and SFA1 (encoding formaldehyde dehydrogenase) (Delneri
et al. 1999; Hazelwood et al. 2008). On the other hand, aryl alcohol dehydro-
genases, AAD10 and AAD14, are believed to be responsible for the degradation of
aromatic aldehydes into their corresponding higher alcohols (Delneri et al. 1999)
and higher alcohols can also be produced de novo through carbohydrate metab-
olism (Äyräpää 1968, 1971).

Several studies have been carried out in order to understand the complexity of
higher alcohol formation and to be able to modulate the aroma of alcoholic
beverages by yeasts Recent screenings based on constructing double- and triple-
deletion mutants presented AAD6, BAT2, HOM2, PAD1, PRO2, SPE1 and THI3 as
the most important genes affecting higher alcohol production, being BAT2 the
dominant gene in this respect and suggesting that the initial transaminase step of
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the Ehrlich pathway is rate-limiting (Styger et al. 2011, 2013). Other studies
showed that overexpression of the branched-chain amino acids transaminases
BAT1 or BAT2 under the control of the constitutive phosphoglycerate kinase I gene
(PGK1) lead to an increase in the levels of isoamyl alcohol, isoamyl acetate and, to
a lesser extent, isobutanol and isobutyric acid or an increase in isobutanol, iso-
butyric acid and propionic acid, respectively. In both cases, wines presenting
higher ‘peach’ and ‘apricot’ notes were obtained (Lilly et al. 2006b). In the case of
the wort fermentation, BAP2 gene was overexpressed under the glyceraldehyde
3-phosphate dehydrogenase promotor (TDH3) in a brewer’s yeast (Kodama et al.
2001). As a result, accelerated assimilation rates of branched-chain amino acids
resulted in an increased production of isoamyl alcohol derived from leucine, while
no increases of isobutyl alcohol derived from valine or of active amyl alcohol
derived from isoleucine were observed. These results suggest that the mechanisms
for the production of each higher alcohol are, although interconnected, not the
same. Finally, a recent study has shown that the synthesis of higher alcohols seems
to be influenced by the NAD+/NADH availability, having the redox balance an
important impact (Jain et al. 2012).

10.6.2 Acetate Esters

Acetate esters such as ethyl acetate (‘solvent’-like aroma), isoamyl acetate
(‘banana’ aroma), ethyl caproate and ethyl caprylate (‘sour apple’ aroma) and
2-phenylethyl acetate (‘flowery’, ‘roses’ and ‘honey’ aromas), give desirable
‘fruity’ and ‘floral’ aromas in the alcoholic beverages (Lambrechts and Pretorius
2000; Swiegers et al. 2005).

The concentration of acetate esters in wines is affected by different factors such
as maturity and sugar content (Houtman et al. 1980a, b), yeast species, fermen-
tation temperature (Piendl and Geiger 1980), alcoholic and malolactic fermenta-
tion, winemaking method (Herraiz and Ough 1993; Gómez et al. 1994) or the
presence of non-soluble material in the must (Edwards et al. 1985). Besides,
different factors after the fermentative process, such as time and temperature of
ageing and storage, affects ester content in wine (Marais and Pool 1980; Ramey
and Ough 1980). Regarding yeast species carrying out the fermentation, acetate
ester production depends on each strain (Antonelli et al. 1999; Mateo et al. 1992).
Some studies have demonstrated that S. cerevisiae produces high amounts of
several acetate esters such as isopenthyl acetate, phenylethyl acetate, isoamyl
acetate, hexyl acetate (Nykänen and Nykänen 1977; Soles et al. 1982; Suoma-
lainen and Lehtonen 1979), whereas S. bayanus has demonstrated to be a good
2-phenylethyl acetate producer (Soles et al. 1982). Comparison between Saccha-
romyces and non-Saccharomyces regarding acetate esters production showed
species dependence in the production of these aromatic compounds (Gil et al.
1996; Lema et al. 1996; Rojas et al. 2001).
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Recently, it has been demonstrated that pure and/or mixed cultures of several
non-Saccharomyces strains are able to increase ester levels in wine: Hansenias-
pora guillermondii (2-phenyl ethyl acetate) and H. uvarum (isoamyl acetate)
(Moreira et al. 2008); Hanseniaspora osmophila, H.vinae and H. anomala
(2-phenyl ethyl acetate) (Viana et al. 2008, 2009, 2011; Izquierdo-Canas et al.
2011); Pichia membranifaciens and Pichia klyuveri (Viana et al. 2009; Swiegers
et al. 2011); Williopsis saturnus and T. delbrueckii (ethyl and isoamyl acetate)
(Erten and Tanguler 2010; Swiegers et al. 2011; Izquierdo-Canas et al. 2011;
Tanguler 2012; Azzolini et al. 2012). Some of the strains of the genera Hanse-
niaspora spp., Torulaspora spp., Kluyveromyces spp., Pichia spp., and Williopsis
spp. have been commercialised.

In lager beers, the only acetate ester that can be sensorially perceived is isoamyl
acetate (Dufour and Malcorps 1995). However, the presence of multiple esters can
have a synergistic effect, having an impact on the overall flavour (Meilgaard
1975). In addition, it has been demonstrated that small changes in ester concen-
tration can have a significant impact on beer flavour (Hammond 1995). Several
fermentation conditions have an important impact on ester formation during
brewery fermentations (Verstrepen et al. 2003a): fatty acids (Saerens et al. 2008a),
temperature (Saerens et al. 2008a), wort gravity (Saerens et al. 2008b; Piddocke
et al. 2009; Lei et al. 2012), pitching rate (Verbelen et al. 2009a) and oxygen
(Verbelen et al. 2009b).

Acetate esters are synthesised by a condensation reaction between higher
alcohols and acetyl-CoA. This reaction is mediated by acetyltransferases codified
by genes ATF1, Lg-ATF1 and ATF2 (Fujii et al. 1994, 1996; Fujiwara et al. 1999;
Lilly et al. 2006a; Saerens et al. 2008b, 2010; Verstrepen et al. 2003c). ATF1 and
ATF2 are present in both ale and lager strains, but Lg-ATF1 is found only in lager
strains (Yoshimoto et al. 1998). During fermentation, acetate ester production rates
are dependent on alcohol acetyltransferases activity (Malcorps et al. 1991).
Besides, the effect of esterases encoded by IAH1 and TIP1 is also important for the
final concentration of acetate esters (Horsted et al. 1998; Lilly et al. 2006a; Saerens
et al. 2008b, 2010).

Deletion/overexpression studies indicated that the ATF2-encoded enzyme of
S. cerevisiae plays a minor role as compared with its ATF1-encoded enzyme (Lilly
et al. 2000, 2006a; Verstrepen et al. 2003b). Additionally, the fact that the double-
deletion strain produced considerable amounts of certain esters suggests the
existence of additional, as yet unknown, ester synthases in the yeast proteome
(Verstrepen et al. 2003b). Interestingly, overexpression of different alleles of ATF1
and ATF2 led to different ester-production rates, indicating that differences in the
aroma profiles of yeast strains may be partially due to mutations in their ATF genes
(Verstrepen et al. 2003b).

In addition, it has been recently postulated that the ratio acetyl-CoA/CoA could
affect acetate ester synthesis (Cordente et al. 2007). The carnitine acetyltransfer-
ases catalyse the reversible reaction between carnitine and acetyl-CoA to form
acetylcarnitine and CoA. Overexpression of CAT2-encoded mitochondrial and
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cytosol carnitine acetyltransferases resulted in lower levels of acetate esters in
the fermentation since less acetyl-CoA is available for acetate ester synthesis
(Cordente et al. 2007).

10.6.3 Ethyl Esters

Ethyl esters such as ethyl propanoate, ethyl butanoate, ethyl hexanoate (ethyl
caprylate), ethyl octanoate (ethyl caproate), ethyl decanoate (ethyl caprate) and
ethyl lactate give desirable fruity and flowery aroma to the wine. They are pro-
duced by condensation between ethanol and acyl-CoA, reaction mediated by
acyltransferases. These acyltransferases are encoded by the genes EHT1 (ethanol
hexanoyl transferase 1) and EEB1 (ethanol hexanoyl transferase) (Rossouw et al.
2008; Saerens et al. 2006, 2008a, 2010), the latter being responsible for the
majority of ethyl ester production in S. cerevisiae as shown in deletion studies
(Saerens et al. 2006). The final concentration of ethyl esters in wine will therefore
be influenced by the esterase activity of EHT1 and EEB1 encoded-transferases
(Saerens et al. 2006), as well as the effect of esterases encoded by IAH1 and TIP1
(Horsted et al. 1998; Lilly et al. 2006a; Saerens et al. 2008b, 2010).

Ethyl ester concentrations in alcoholic beverages are affected by the same
factors mentioned for acetate esters in the previous section. Regarding yeast
species carrying out the fermentation, ester production depends on each strain
(Mateo et al. 1992). Several studies have demonstrated that S. cerevisiae produced
high amounts of several ethyl esters such as ethyl caproate, ethyl caprylate and
ethyl caprate (Antonelli et al. 1999; Nykänen and Nykänen 1977; Soles et al. 1982;
Suomalainen and Lehtonen 1979), whereas S. bayanus has demonstrated to be a
good ethyl caprate and ethyl lactate producer (Antonelli et al. 1999; Soles et al.
1982). Comparison between Saccharomyces and non-Saccharomyces ethyl ester
production showed Saccharomyces species produced equal or higher ethyl esters
amounts (Gil et al. 1996; Lema et al. 1996).

10.6.4 Aldehydes

Acetaldehyde is the most important aldehyde present in alcoholic beverages from
a quantitative point of view. In beer, acetaldehyde is normally present at close to
its flavour threshold (Engan 1981), whereas different levels can be found in wines.
The average values are about 80 mg/l for white wine, 30 mg/l for red wine and
300 mg/l for sherries (McCloskey and Mahaney 1981). At low levels, it gives a
pleasant, fruity aroma, but at high concentrations it possesses a pungent irritating
odour (Miyake and Shibamoto 1993). Excess acetaldehyde produces a ‘green’,
‘grassy’ or ‘apple-like’ off-flavour in beer (Margalith 1981; Adams and Moss
2000), cider (Williams 1974) and wine (Henschke and Jiranek 1993), with the
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exception of sherry-type wines, where high acetaldehyde content is a characteristic
feature (Sponholz 1993; Cortes et al. 1998).

Acetaldehyde, also called ethanal, is an intermediary of alcoholic fermentation
obtained by the decarboxylation of pyruvate. Pyruvate decarboxylase enzymes
encoded by PDC1, PDC2 and PDC3 participate in this process. Later on, acet-
aldehyde is reduced to ethanol by alcohol dehydrogenase enzymes, primarily the
enzyme encoded by the ADH1 gene (Pronk et al. 1996), although a little quantity
always remains in the wine. The conversion of acetaldehyde to ethanol is required
for the maintenance of the redox balance of the cell, since it re-oxidises NADH to
NAD+, which will be available for glycolysis. In this way, sugar is the primary
substrate for acetaldehyde formation, but metabolism of amino acids such as
alanine also contributes to the synthesis of this compound (Henschke and Jiranek
1993; Boulton et al. 1998).

In alcoholic beverages, acetaldehyde is mainly produced in the first stages of
fermentation and its concentration drops at the end of the fermentation and during
maturation due to yeast activity. The levels of acetaldehyde in vinification can be
considerably affected, from 0.5 to 286 mg/l, depending on the yeast strain (Liu and
Pilone 2000), but other factors can affect acetaldehyde level in wines, such as low
quantity of zinc, presence of oxygen late in the fermentation, the nature of
insoluble material used to clarify the must, increasing fermentation temperature or
the excessive use of SO2 in grape must (Delfini and Costa 1993; Romano et al.
1994; Liu and Pilone 2000). Excessive acetaldehyde levels contribute to a per-
ception of oxidation, although in some Jerez wines such as Fino and Manzanilla
high concentrations of this compound are desirable (Zamora 2009). In the case of
the beer, high acetaldehyde concentrations reflect premature flocculation or a
decrease in yeast viability.

10.6.5 Ketones

Vicinal diketones appear normally in beer fermentation and are undesirable
compounds affecting lager beer flavour (Inoue 1992; Wainwright 1973), whereas it
is a characteristic flavour of some ale beers. The two most important vicinal
diketones are diacetyl (2,3-butanedione) and 2,3-pentanedione. Diacetyl confers a
‘butterscotch’-like aroma and pentanedione, a ‘honey’-like aroma. In the case of
the wine, diacetyl can contribute to wine aroma complexity in low concentrations,
giving ‘nutty’ or ‘toasty’ nuances, but it becomes undesirable at levels between 1
and 4 mg/l (Sponholz 1993).

Diacetyl is synthesised from a-acetolactate, an intermediate in the valine and
leucine biosynthesis pathway, by spontaneous oxidative decarboxylation. Yeasts
are also able to reduce diacetyl to acetoin, which may then be further reduced to
2,3-butanediol. Acetoin has a much higher flavour threshold (50 mg/l) than dia-
cetyl, exhibits ‘fruity’, ‘mouldy’ and ‘woody’ flavours (Meilgaard 1975) and does
not cause any off-flavours in the beer. The production of diacetyl in beer is
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increased by low pH, high temperature, oxygen and the presence of metal ions
(Haukeli and Lie 1978) and can be regulated in wort by nitrogen content, valine
addition (Krogerus and Gibson 2013) and the enzyme a-acetolactate decarboxyl-
ase (Godtfredsen and Ottesen 1982).

The ILV-encoded enzyme forms a-acetolactate from pyruvate. This enzyme is
subject to general amino acid control and very strong feedback inhibition by
valine. In the case of lager yeasts, 90–95 % of the diacetyl reductase activity is
accounted for alcohol dehydrogenases (Bamforth and Kanauchi 2004), whereas in
the case of ale yeasts, enzymes other than alcohol dehydrogenases appear to be
more important, these enzymes being only responsible for the 60 % of the
reductase activity.

There have been several attempts to try to reduce diacetyl formation in brewing,
such as the disruption of the gene ILV2. Mutants lacking this gene did not produce
diacetyl but because of their inability to synthesise valine and leucine, such yeasts
fermented poorly (Ryder and Masschelein 1983). Changing the upstream regula-
tory sequence of ILV2 could reduce the level of this enzyme rather than to
eliminate it completely (Petersen et al. 1983). An alternative approach was to
increase the flux to amino acid synthesis, which has been achieved transforming
yeasts with multiple copies of the ILV5 gene (Villanueva et al. 1990; Goossens
et al. 1991). Conversely, transformations with the ILV3 gene had no effect on
diacetyl concentration (Goossens et al. 1987).

10.6.6 Organic Acids

Acetic acid is the main responsible for volatile acidity of wines. Other contributors
to volatile acidity are propionic acid and hexanoic acid. The optimal concentration
in wine is 0.2–0.7 g/l (Corison et al. 1979; Dubois 1983). At high concentrations
(0.7–1.1 g/l), acetic acid imparts a ‘vinegar’ flavour to the wine. S. cerevisiae wine
strains can produce from 100 mg/l to 2 g/l of acetic acid depending on the con-
ditions during fermentation and the type of strain (Radler 1993). S. bayanus and
S. uvarum usually produce less acetic acid than S. cerevisiae (Giudici et al. 1995;
Eglinton et al. 2000). Furthermore, certain strains of T. delbrueckii have been
shown to reduce acetic acid production in wine (Bely et al. 2008; Van Breda et al.
2013).

Acetate is produced through acetaldehyde oxidation in a reaction catalysed by
acetaldehyde dehydrogenases encoded by ALD4 and ALD5 (mitochondrial iso-
forms) and ALD6, ALD2 and ALD3 (cytosolic isoforms) (Navarro-Aviño et al.
1999). During winemaking, Ald6p, Ald5p and Ald4p are the main enzymes
responsible for acetate formation (Saint-Prix et al. 2004). Deletion of both alleles
of ALD6 in a wine yeast caused a 2-fold reduction in the amount of acetate
produced during fermentation, but as a consequence of the redox imbalance
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generated, glycerol, succinate and 2,3-butanedediol production was slightly
increased (Remize et al. 2000).

On the other hand, mutations in the stress response gene YAP1 (Cordente et al.
2013) or use of non-Saccharomyces yeasts such as T. delbrueckii (Bely et al. 2008;
Van Breda et al. 2013) constitute succesful examples of non-GMO approaches to
decrease acetic acid formation during fermentation.

In high-gravity brewing, yeast cells are stressed because of high sugar and
ethanol concentrations, which can lead to higher production of acetic acid, which
can be a problem to beer quality (Mizuno et al. 2003). An alternative to solve this
problem could be to employ a mutant overexpressing ALD4 (Mizuno et al. 2006),
which produced half the amount of acetic acid and 1.1 % more ethanol than beer
brewed using the wild-type.

10.6.7 Volatile Phenols

Volatile phenols can appear in wine as a consequence of a non-oxidative decar-
boxylation of hydroxycinnamic acids p-coumaric and ferulic carried out by yeasts
(Chatonnet et al. 1993; Grando et al. 1993) or through decarboxylation of phenolic
acids, usually first into 4-vinyl derivatives that are then reduced to 4-ethyl
derivatives through enzymes called phenolic acid decarboxylases (Cavin et al.
1993). The genes encoding phenolic acid decarboxylases include PAD1 (also
known as POF1). However, phenolic acid decarboxylase activity is very low in
most S. cerevisiae strains (Barthelmebs et al. 2000a, b) and several attemps have
been carried out to develop mutant strains to modulate volatile phenol production.
Strains overexpressing the Bacillus subtilis phenolic acid decarboxylase gene
(padc), the Lactobacillus plantarum p-coumaric acid decarboxylase gene (pdc)
and strains in which PAD1/POF1 gene was disrupted, are examples of succesful
volatile phenol modulation (Smit et al. 2003). Contrarily, constructed strains
overexpressing S. cerevisiae phenylacrylic acid decarboxylase gene (PAD1/POF1)
has no significant effect in volatile phenol synthesis (Smit et al. 2003).

Volatile phenols possess low sensory thresholds and, in spite of the fact that they
can be desirable in certain wines, normally they appear as off-flavours (‘stable’,
‘barnyard’, ‘pharmaceutical’) (Dubois 1983). Ethyl phenols (4-ethyl guaiacol and
4-ethyl phenol) present a special negative contribution and are derived from the
reduction of vinyl phenols (4-vinyl guaiacol and 4-vinyl phenol). Vinyl reductase
activity is typically associated with Brettanomyces and Dekkera spp.

On the other hand, volatile phenols can contribute positively or negatively
depending on the beer product. The presence of excessive amounts of vinyl
phenols is considered undesirable in bottom-fermented pilsners. Hence the term
‘phenolic off-flavour’ (POF) is attributed to beers with a strong aroma described as
‘pharmaceutical’, ‘medicinal’, ‘solvent’, ‘spicy’, ‘clove-like’, ‘smokey’ or ‘bar-
beque’. However, these compounds are crucial for the characteristic aroma of
Belgian white beers (made with unmalted wheat), German rauch beers and Weizen
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beers (made with malted wheat) and in many top-fermented blond and dark
specialty beers.

10.6.8 Sulphur Compounds

Hydrogen sulphide imparts a ‘rotten egg’ aroma and has a very low odour
threshold of 10–80 lg/l (Swiegers et al. 2005). The concentration of H2S produced
during wine fermentation depends on the presence of sulphur compounds, wine
yeast strain, fermentation conditions, and the nutritional status of the grape juice
(Henschke and Jiranek 1991; Rauhut 1993; Spiropoulos and Bisson 2000).
However, some strains produce H2S constitutively without being affected by
environmental conditions (Jiranek et al. 1995; Spiropoulos and Bisson 2000;
Mendes-Ferreira et al. 2002).

During wine fermentation, yeast can synthesise hydrogen sulphide from either
inorganic sulphur compounds (sulphate and sulfite) or from organic sulphur
compounds (cysteine and glutathionine) (Henschke and Jiranek 1993; Rauhut
1993; Hallinan et al. 1999; Spiropoulos and Bisson 2000).

The sulphate reduction sequence (SRS) is activated in response to the necessity
to produce cysteine and methionine, usually insufficient in wine must (Henschke
and Jiranek 1993). The firs step involves the transportation of suphate from the
medium into the yeast cell by sulphate permease. Several steps follow to reduce
sulphate to sulphide using the enzymes ATP-sulfurylase and sulfite reductase.
Subsequently, O-acetylserine (from the amino acid serine) combines with sulphide
to form cysteine, and O-acetylhomoserine (from the amino acid aspartate) com-
bines with sulphide to form homocysteine, which can then be converted to
methionine (Thornton and Bunker 1989; Yamagata 1989; Henschke and Jiranek
1993; Rauhut 1993; Jiranek et al. 1995; Spiropoulos and Bisson 2000). Nitrogen
limitation leads to insufficient of these precursors and sulphide is accumulated and
released to the medium as hydrogen sulphide (Henschke and Jiranek 1993; Rauhut
1993; Jiranek et al. 1995; Spiropoulos and Bisson 2000). Additionally, significant
amounts of H2S can be produced when the fermentation medium is rich in sulphite
since it can diffuse into the cell.

Several attempts have been made to modulate H2S production by using certain
wine and brewing yeasts that are commercially available. The consequences
of overexpression of the MET17 gene, which encodes O-acetylserine and
O-acetylhomoserine sulfhydrylase in S. cerevisiae, seemed to be strain dependent
(Omura et al. 1995; Spiropoulos and Bisson 2000). Conversely, the deletion of the
MET14 gene (encoding an adenosylphosphosulfate kinase) or the MRX1 gene
(encoding a methionine sulfoxide reductase), might be the most effective way to
prevent wine yeast from producing H2S in fermentations (Pretorius 2000, 2003,
2004; Pretorius and Høj 2005). Another attempt to prevent H2S formation was
carried out through modifying the activity of the sulfite reductase enzyme by
engineering one of the enzyme subunits codified by MET10 (Sutherland et al. 2003).
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This strategy has been succesfully applied in beer (Hansen and Kielland-Brandt
1996). On the other hand, classical mutagenesis which lead to mutants presenting
mutations in MET5 and MET10 genes produced 50–99 % less H2S than the parental
strain (Cordente et al. 2009). Some of these wine strains are now in commercial use.
Finally, increased expression of CYS4 in brewing yeast, encoding the cystathionine
b-synthase, has been shown to suppress the formation of H2S (Tezuka et al. 1992).

Another sulphur compound that can be detrimental for the flavour of alcoholic
beverages is ethanethiol (‘onion’ aroma), synthesised through the reaction of
hydrogen sulphide and ethanol or acetaldehyde (Rauhut 1993). On the other hand,
dimethyl sulphide (DMS), which present ‘asparagus’, ‘corn’ and ‘molasses’ notes,
might be produced in wine via cleavage of S-methyl-L-methionine to homoserine
and DMS. In beer production, heat decomposition during malting of S-methyl-
methionine produces dimethyl sulfoxide (DMSO), which can be reduced to DMS,
during storage (Rauhut 1993) or fermentation by yeasts. In S. cerevisiae, the
MXR1 gene has been shown to encode a methionine sulfoxide reductase and its
disruption prevents DMS production (Hansen 1999). Finally, DMS formation
during fermentation has also been linked to cysteine, cystine or glutathione
metabolism in yeast (Rauhut 1993; Ribéreau-Gayon et al. 2000).

10.7 Yeasts and Its Role in the Development of Varietal
Aroma in Wine

In addition to the aroma-active compounds synthesised by yeasts during alcoholic
fermentations, some yeasts play a relevant role in the development of the primary
or varietal aroma of wines (Gamero et al. 2011a, b). Wine’s primary aroma
consists of lactones, benzenes, volatile phenols, vanillins, norisoprenoids, terpenes
and some polyfunctional mercaptans present at low concentrations in the ng/l–lg/l
range (Loscos et al. 2007; Mateo-Vivaracho et al. 2010; Tominaga et al. 1998b).
Most of these aromas appear in grapes as odourless precursors (glycosides,
polyhydroxylated molecules or cysteinyl-derivatives). It has been demonstrated
that some yeasts are able to release those aroma compounds by cleavage of the
precursor molecules or are even able to synthesise new aroma molecules similar to
the ones present in grapes (Darriet et al. 1988; Delcroix et al. 1994; Delfini et al.
2001; Fernández-González et al. 2003; Fernández-González and Di Stefano 2004;
Gamero et al. 2011a, b; Hernández et al. 2003; Hernández-Orte et al. 2008; Loscos
et al. 2007; Mateo and Di Stefano 1997; Spagna et al. 2002; Ugliano et al. 2006;
Ugliano and Moio 2008). In this way, yeast can enhance wine varietal aroma. For
instance, Saccharomyces species and hybrids are able to release and synthesise de
novo vanillins, terpenes, lipid derivatives, volatile phenols and norisoprenoids
(Gamero et al. 2011a, b).

In certain wines, varietal aroma compounds play a crucial role. This is the case
of some polyfunctional mercaptans in certain white wines (Tominaga et al. 1998b;
Mateo-Vivaracho et al. 2010), of linalool and other terpenols in Muscat wines
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(Ribéreau-Gayon et al. 2000) or of cis-rose oxide in Gewürztraminer (Guth 1997).
On the other hand, in most wines, varietal aroma is formed by combinations of
many grape- and yeast-derived compounds, none of which play a predominant
aroma role, and it is the overall aroma profile the responsible for varietal and
origin related difference (Escudero et al. 2007; Loscos et al. 2007, 2010).

10.7.1 Monoterpenes

Among the most important key odorants in the so-called ‘aromatic’ grape varieties
(e.g. Muscat) are monoterpenes such as linalool, geraniol, nerol, citronellol and
a-terpineol. (Gunata et al. 1985; Loscos et al. 2007; Maicas and Mateo 2005;
Strauss et al. 1986; Ugliano and Henschke 2009). The common precursor of all the
monoterpenoids is isopentyl pyrophosphate.

During must fermentation the grape-derived glycosidic precursors are hydro-
lysed by the action of glycosidases and the aromatic volatile compounds released
into the wine. Among the most important glycosidases are b-glucosidases,
a-L-arabinofuranosidases, a-L-rhamnosidases and b-D-xylosidases (Maicas and
Mateo 2005; Van Rensburg and Pretorius 2000; Sarry and Gunata 2004). Several
research groups the world over have investigated various wine-related Saccharo-
myces and non-Saccharomyces (Brettanomyces/Dekkera, Candida, Debaryomyces,
Hanseniaspora and Pichia) yeasts for their ability to produce suitable glycosidases
and other enzymes that can release varietal aromas (Charoenchai et al. 1997;
Esteve-Zarzoso et al. 1998; Fernández et al. 2000; Fleet 2008; McMahon et al.
1999; Strauss et al. 2001; Ugliano et al. 2006; Zoecklein et al. 1997).

In addition to the search for yeasts that naturally produce aroma-enhancing
enzymes, several mutants have been constructed with the aim of enhancing
monoterpene-based varietal flavours during wine fermentation. These mutants
include a yeast expressing the b-1,4-glucanase gene from Trichoderma longibratum
(Villanueva et al. 2000) and a wine yeast expressing the BGL1 and BGL2
b-glucosidase genes of Saccharomycopsis fibuligera, the ABF2 a-L-arabinofura-
nosidase gene of Aspergillus niger and a glucanase-encoding gene cassette
consisting of several glucanase genes (BEG1, END1 and EXG1) (Pretorius 2000,
2003, 2004; Van Rensburg and Pretorius 2000; Pretorius and Bauer 2002; de Barros
Lopes et al. 2006).

In addition to studies focused on the release of monoterpenes by yeasts, there
were also several studies undertaken concerning the biotransformation of terpenes
by Saccharomyces species and hybrids, such as the reduction of geraniol to cit-
ronellol, translocation of geraniol to linalool, isomerisation of nerol to geraniol and
cyclicizations of linalool to a-terpineol (Gamero et al. 2011b; Gramatica et al.
1982; King and Dickinson 2000; Zea et al. 1995; Zoecklein et al. 1997).

In the case of brewing, it has also recently been shown that different hop
varieties have different concentrations of monoterpenoids (Takoi et al. 2010).

282 A. Gamero et al.



10.7.2 Volatile Thiols

Volatile thiols are sulphur compounds that can appear in wines in very low con-
centrations, but they can have a profound impact on the aroma of certain wine
varieties, such as Sauvignon Blanc, Colombard, Riesling, Semillon, Merlot and
Cabernet Sauvignon, since they present very low sensory thresholds (ng/l level)
(Tominaga et al. 1995, 1998a, b; Murat et al. 2001b). These compounds are
responsible for the ‘fruity’ or ‘tropical’ organoleptic flavours. Some examples of
volatile thiols are 4-mercapto-4-methylpentan-2-one (4MMP), reminiscent of ‘box
tree’, ‘passion-fruit’, ‘broom’ and ‘black current’ bud; 3-mercaptohexan-1-ol
(3MH) and 3-mercaptohexyl acetate (3MHA), responsible for ‘passion-fruit’,
‘grapefruit’ and ‘citrus’ aromas; 4-mercapto-4-methylpentan-2-ol (4MMPOH) that
can also contribute to the characters of ‘citrus’, ‘passion-fruit’ and ‘grapefruit’,
although its organoleptic role is more limited, due to its concentration in wines
seldom exceeding its olfactory threshold of 55 ng/l and 2-furfurylthiol, which can
contribute roast coffee aroma to the bouquet of wines aged in oak barrels (Darriet
et al. 1995; Tominaga et al. 1996, 1998b, 2000; Tominaga and Dubourdieu 2006).

Most of the thiols that are present in grapes appear as non-volatile, cysteine-
bound conjugates and can be released by the action of carbon–sulphur lyases of
certain yeasts (Darriet et al. 1995; Tominaga et al. 1995). Deletion and overex-
pression of the genes encoding these enzymes resulted in a decrease and increase,
respectively, in the levels of the corresponding thiols (Howell et al. 2005; Swiegers
et al. 2007). The release of thiols occurs during fermentation in a low percentage
since it has been detected that only a small fraction of cysteine-bound conjugates
(1.6–3.2 %) is released as 3MH (Dubourdieu et al. 2006; Murat et al. 2001b).
The efficiency of thiol release is strain dependent (Dubourdieu et al. 2006; Howell
et al. 2004); however, some studies reported that S. bayanus and S. bayanus/
S. cerevisiae hybrid strains have stronger abilities than S. cerevisiae in this sense
(Murat et al. 2001a; Swiegers et al. 2006a). In addition, certain non-Saccharomyces
yeasts can have a significant impact on volatile thiol concentration. Co-inoculation
of Pichia kluyveri, isolated from a spontaneous fermentation of Chardonnay must,
with specific commercial wine strains of S. cerevisiae resulted in an increase of the
concentration of 3MHA in Sauvignon Blanc wines (Anfang et al. 2009). Recent
work also showed that some strains of Metschnikowia pulcherrima, T. delbrueckii
and K. thermotolerans have relatively high capacities to release 3MH (Zott et al.
2011).

Thiols can also be synthesised by yeasts. For instance, it has been proposed that
cysteine desulfhydrase enzyme catalyses the formation of furfurylthiol from fur-
fural (Tominaga et al. 2000) and the formation of H2S enhances this process. In
this way, the production of furfurylthiol is linked to the production of the HS-

anion, which is not produced when sufficient ammonium sulphate is present in the
medium (Tominaga et al. 2000). During fermentation, 3MH can be converted to
3MHA by the action of alcohol acetyltransferase, encoded by the ATF1 gene
(Swiegers et al. 2006b). There is significant variation in the conversion rates
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present by the different yeast strains, which is not correlated with the ability to
release 4MMP (Swiegers et al. 2006b).

In addition to the specific yeast strain conducting the fermentation, temperature
is also a relevant factor in determining volatile thiol concentration. Concentrations
of 4MMP, 3MH and 3MHA were higher when the alcoholic fermentation was
conducted at 20 �C compared to 13 �C or a 18 �C compared to 23 �C and 28 �C
(Masneuf-Pomarède et al. 2006; Swiegers et al. 2006a). So around 18–20 �C
seems to be the optimum.

Regarding beer, there is not much knowledge about the occurrence of volatile
thiols. However, Vermeulen et al. (2006) detected more than ten of these com-
pounds in fresh lager beer. Thiols do not appear in wort. The most powerful thiol
in beer is 3-methyl-2-buten-1-thiol, and this thiol together with 2-mercapto-3-
methylbutanol and 3-mercapto-3-methylbutanol are thought to be derived from
hop allylic alcohols (Vermeulen et al. 2006). On the other hand, it is hypothesised
that the origin of 2-mercaptoethanol and 3-mercaptopropanol and their corre-
sponding acetates could be Ehrlich degradation of sulphur amino acids, whereas
2-methyl-3-furanthiol could be produced through Maillard reactions (Vermeulen
et al. 2006).

10.8 Concluding Remarks

The aroma profile of wine, beer and cider is a defining component of the value
proposition to consumers. Producers are therefore keen to understand what the
optimal ‘absolute’ and ‘relative’ concentrations of the most important aroma-
active compounds are and how they can adapt their practices to gain control over
the composition of their products. It is widely accepted that one way to adjust the
aroma profile of certain styles of fermented beverages is choice of yeast strain(s)
with which the fermentation is conducted. However, further research is required
into the range of ‘aroma phenotypes’ that wine yeast exhibit, and how this
knowledge can be applied to develop novel aroma-enhancing yeast strains or
combinations of yeast strains or mixtures of different yeast species.
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Chapter 11
Production of Metabolites
and Heterologous Proteins

Michael Sauer, Paola Branduardi, Hannes Rußmayer, Hans Marx,
Danilo Porro and Diethard Mattanovich

11.1 Introduction

Yeasts and particularly Saccharomyces cerevisiae play a significant role in bio-
technology. They have been employed since ancient times for the production of
alcoholic beverages and bread and are nowadays not only of importance for
chemical and enzyme production but also for the production of biopharmaceutical
ingredients. Clearly, the central carbon metabolism plays a crucial role for every
microbial process. This is quite obvious for the production of central metabolites
such as ethanol, which is a direct end product of the central carbon metabolism. In
this case, the impact is very clear-cut in a direct stoichiometric relation of the
carbon source, which is converted by the central carbon metabolism into the
product. For secondary metabolites and proteins, this relation is less clear. While it
is evident that every fermentation process starts with the carbon source and is
therefore inevitably connected to the central carbon metabolism, various regula-
tory layers control the synthesis of end products and no simple rule exists for
identifying the metabolic bottlenecks for their accumulation. These bottlenecks
might be regulatory events within the metabolic pathways—upstream or down-
stream. Moreover, also less defined phenomena such as energy supply or electron
balances might directly influence the production and the yield of conversion of the
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carbon source. In this chapter we want to outline our current knowledge about
these relations, by describing some major products, divided by their category as
primary or secondary metabolites or protein.

11.2 Products of the Primary Metabolism

The metabolic activities of the primary metabolism are required for cellular
growth, maintenance and survival: as a consequence, the concentration of end-
product molecules of the primary metabolism is directly related to the fluxes
through these reactions. They depend mainly on substrate availability and uptake
and on environmental conditions, such as oxygen levels, pH and temperature.
Remarkably, while the central carbon metabolism is apparently quite simple, it is
very strictly regulated. Some primary metabolites are easily accumulated, while
others are very hard to produce. Table 11.1 summarizes some industrially
important primary metabolites. Special challenges relate to their production. First
of all, most of them are low value added products, requiring the need for opti-
mizing product yield and productivity to minimize costs of goods. This also
implies that many of these products turn out to be toxic even if naturally produced
by the cells because of the high levels of production required for the viability of
the process. Secondarily, cells are usually reluctant to manipulations occurring to
their central metabolism, meaning that eventual manipulations (genetic or envi-
ronmental) have to be fine-tailored for being successful.

11.2.1 Main Pathways: Main Nodes

The core pathway of yeast’s central metabolism is the glycolysis (Fig. 11.1). The
major substrate is glucose, but thanks to other pathways converging into glycol-
ysis, other sugars can also serve as a carbon and energy source. Mannose, fructose,
sucrose, lactose, galactose, glycerol, xylose and arabinose, among others, are all
relevant for biotechnology. Further principal pathways are the TCA cycle, the

Table 11.1 Products of the primary metabolism with industrial relevance, their central precursor
and important organisms for their production

Chemical Precursor metabolite Organisms

Butanol Acetyl-CoA S. cerevisiae
Citric acid Acetyl-CoA, pyruvate Yarrowia lipolytica
Erythritol Glucose-6-phosphate Y. lipolytica
Lactic acid Pyruvate S. cerevisiae, Candida spp.
Mannitol Glucose-6-phosphate Y. lipolytica
Succinic acid Acetyl-CoA, pyruvate S. cerevisiae
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pentose phosphate pathway and the fermentative pathways. Inside the cell, path-
ways can be differently compartmentalized, in the cytosol, mitochondria, peroxi-
somes, or vacuole.

From a biotechnological point of view, ideally all the carbon of the substrate
should end up in a product. Besides high yield, also high production rates are
required for an economically viable biotech process.

Conceptually, the flux rate of a ‘substrate’ along the different pathways towards
the final product can be regulated at least at four main levels:

glucose

Glycolysis

CO2 CO2

TCA

CO2

CO2

CO2

pyruvate lactic acidethanol

citric acid

succinic
acid

Fig. 11.1 Schematic
overview about the primary
metabolism. Ethanol, lactic
acid, succinic acid and citric
acid are depicted as major
products of the primary
metabolism, which have
industrial relevance
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1. Transport mechanisms—substrate uptake, product secretion and trafficking of
compounds between the various cellular compartments

2. Enzyme synthesis—induction, repression and derepression of gene expression
and translation

3. Enzyme activity—activation, inhibition or interconversion of isoenzymes.
4. Redox balance.

In the model yeast S. cerevisiae, fluxes and kinetic activities of glycolytic
enzymes are only minimally controlled by their transcript levels (Daran-Lapujade
et al. 2007). Instead, the modulation of the transport processes for taking up of
substrate by the cells and for the trafficking of substrate(s) between the various
cellular compartments and product secretion have been proven to substantially
influence the production rates. Different hexose transporters (HXTs) are respon-
sible for glucose uptake by S. cerevisiae. At least 20 HXT genes encoding these
transporters have been identified. Remarkably, a simple manipulation of the glu-
cose uptake can strongly alter the mode of metabolic control (Otterstedt et al.
2004). Analyses of the effect of HXT gene inactivation have shown that the hexose
carriers HXT1 to HXT7 are the main transporters. In this respect, it has been shown
that the ethanol (and CO2) productivity and yield (gram of ethanol produced per
gram of glucose consumed) can be improved by overexpression of the HXT1 or
HXT7 transporters in S. cerevisiae (Gutiérrez-Lomelí et al. 2008; Rossi et al.
2010). Lager yeast strain improvement has been shown in terms of substrate
uptake after modulation of the AGT1 (or MAL11) gene encoding for a maltose and
maltotriose transporter (Vidgren et al. 2009). A similar approach has been applied
to improve the xylose consumption. Xylose—constituting a significant fraction of
lignocellulosic biomass—is a key substrate for second-generation productions of
metabolites. However, S. cerevisiae lacks xylose-specific transporters and it takes
up xylose by facilitated diffusion mainly through the non-specific hexose trans-
porters encoded by the HXT gene family. These transporters have lower affinity for
xylose than for glucose, and their xylose transport properties have been mainly
characterized with regard to sugar affinity. The heterologous expression of xylose-
specific transporters in recombinant xylose-utilizing S. cerevisiae strains is crucial
(Tanino et al. 2012; Young et al. 2012).

In addition to trafficking and compartmentalization phenomena, the mainte-
nance of the cellular redox balance strongly modulates the accumulation of
metabolites. As an example, products which differ in their degree of reduction
from the substrate alter the cellular redox balance which in turn impacts their
production and yield. The intracellular redox state is to a large extent dependent on
the intracellular concentration ratios of the two pyridine nucleotide systems
NADH/NAD+ and NADPH/NADP+. In S. cerevisiae, redox cofactors participate
in more than 300 different biochemical reactions involving oxidation and/or
reduction. During growth, NADH is preferentially used in catabolic pathways,
whereas NADPH functions mainly as a reducing equivalent in anabolism (Bakker
et al. 2001). If a product has a higher degree of reduction than the substrate, the
cells need to provide reduction equivalents out of their metabolism. This clearly
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consumes a fraction of the substrate and decreases the product yield. If the degree
of reduction is lower in the product, the cells accumulate redox equivalents which
have to be re-oxidized in the respiratory chain—where oxygen is the terminal
electron acceptor—or under oxygen-limited or anaerobic conditions through
alternative oxidases, or by reduction of a metabolite, what usually leads to by-
product formation.

Last but not least, the operative conditions of an industrial production process
determine that microorganisms meet multiple stresses such as non-optimal pH,
temperature, oxygenation and osmotic stress. Besides these, the product itself is an
important source of stress, due to the high product concentrations required for the
economical viability of the process. All together these factors impair cellular
metabolism and growth and, as a consequence, reduce the productivity of the
process. For said reason, for some of the products reported here several studies
focused on the development of strains more tolerant to the final product. Organic
acids and alcohols are the chemical species where toxicity has been more exten-
sively studied (e.g. reviewed in Abbott et al. 2009; Piper et al. 2001; Teixeira et al.
2011). This focus on organic acids and alcohols is also due to the fact that a
relevant number of products already available on the market (or close to appear on
the market) belong to these categories (see sections below for further details).

Remarkably, the highly desirable evolution of robust cell factories can rarely be
ascribed to a single molecular element, since it requires a complex cellular
reprogramming, implying the simultaneous modification of many regulatory and
operative elements. In the last years, different cellular engineering approaches,
spanning from the global transcription machinery engineering to the genome
shuffling and evolutionary engineering, have been described and applied (i.e. as
reviewed for ethanol in Ma and Liu 2010). These studies will be crucial for closing
the gap between our deep knowledge about many different single key elements and
their still unknown function in the operative networks of the biological systems.
However, it has to be mentioned that most of the protocols developed and applied
for selecting tolerant strains were not simultaneously coupled with production
properties: this means that an improved tolerance might not be reflected in an
improved yield or productivity.

11.2.2 Organic Acids

For a future biobased economy, organic acids constitute central chemical building
blocks and are now extensively used in the chemical industry, food industry,
agriculture and in medicine (Sauer et al. 2008). Weak acids are typically produced
using bacterial hosts. During fermentation, the decreasing pH (due to the weak
acid accumulation) has an inhibitory effect on metabolic activities of the producing
microbial cells. The addition of KOH, Ca(OH)2, CaCO3, NaOH or NH4OH,
among others, to neutralize the organic acid is a conventional operation to mini-
mize the negative effects. The neutralization of the organic acid during
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fermentation has major disadvantages. Additional operations are required to
regenerate undissociated weak acid from its salt and to dispose of or recycle the
neutralizing cation.

All these extra operations and expenses can be reduced if the undissociated
weak acid is accumulated by microorganisms able to grow and metabolize sub-
strates at low pH levels. Yeasts can generally grow and survive at very low pH
values. Indeed, metabolically engineered yeast strains have been proven to be
successful cell factories for the production of lactic acid, succinic acid and citric
acid (Raab and Lang 2011; Rymowicz et al. 2010; Sauer et al. 2010).

Lactic acid is a key example of the impact of the central metabolism on
industrial biotechnology (Fig. 11.1). Lactic acid is commercially available and
produced by microorganisms (Sauer et al. 2008, 2010). The monomer can be used
as an acidulant. More importantly, it can also be used for the production of the
biodegradable plastic PLA (polylactic acid). The global use of bioplastics was 0.85
million metric tons in 2011 and is projected to increase up to 3.7 million metric
tons by 2016.

Nowadays, the production of lactic acid approximates 150,000 tons per year.
The costs related to the purification of the monomer still represent an important
fraction of the overall costs. The production from recombinant yeasts appears well
suited for this task due to the yeast’s tolerance to low pH and the possibility to
grow them on mineral media. Nevertheless, volumetric productivities are signifi-
cantly lower compared to bacterial strains under optimal conditions.

A process employing Candida utilis obtains an overall productivity of 3.1 g/l h
with a final pH of 4 reaching a maximum of 4.9 g/l h during the process. For
S. cerevisiae, production rates of about 1 g/l h reaching a pH of about 2.5 have
been published. While data for industrially achieved productivities are not avail-
able, the order of magnitude can be estimated from the values above. They remain
behind the values of bacterial production hosts. Nevertheless, the advantage of the
easier downstream processing outweighs this fact, so industrial production of lactic
acid is mainly taking place with recombinant yeasts as production host.

According to a study published by the US Department of Energy (DOE) in
2004, succinic acid is one of the twelve most promising ‘platform chemicals’ that
can be sustainably produced from biomass with an estimated 15,000 t/year
worldwide demand. The demand is predicted to expand to commodity chemical
status with 270,000 t/year. Succinic acid is a building block used in the manu-
facture of polymers, resins, food and pharmaceuticals, among other products (i.e.
synthesis of 1,4-butanediol, tetrahydrofuran, butyrolactone, maleic succinimide,
itaconic acid, 2-pyrrolidinone and N-methylpyrrolidinone and as a monomer for
the production of biodegradable polymers). DSM and Roquette have recently
developed a new commercial production facility with a capacity of about 10
kilotons/year, the plant will be the largest of its kind in Europe. The process is
based on recombinant S. cerevisiae hosts growing at low pH values. Also in this
case, data for industrially achieved productivities are not available. However, the
pathways leading to the accumulation of secondary metabolites like glycerol and
ethanol have been deleted, while the production of the organic acid is based on a
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combination of the reductive and oxidative TCA cycle. The overexpression of the
transporter leading to the accumulation of succinic acid in the culture medium has
also been considered.

Remarkably, the metabolic pathway is also based on sequestering some of the
carbon dioxide developed by the process itself. The new production facility will,
for the time being, use starch derivatives as feedstock. In the longer term, the
aspiration is to switch to lignocellulosic biomasses.

Citric acid is an important microbial product used in a wide variety of appli-
cations. It is widely used as an acidulant in pharmaceutical and food industries.
Global citric acid production has reached 2 million tons/year. The classical
microbial process for the production of citric acid is based on the filamentous
fungus Aspergillus niger. The critical parameters, which must be addressed to get
an efficient production, include high substrate concentration, low and finite content
of nitrogen and certain trace metals, thorough maintenance of high dissolved
oxygen and low pH. Many of the biochemical and physiological mechanisms
underlying the process remain unknown. These mechanisms are currently under-
going investigation, in order to allow the improvement in the citric acid production
process, which is hardly improvable by traditional means like mutagenesis or
cultivation optimization. Because of this and considering the ever-increasing
demand for citric acid, alternative fermentation processes using high-yield yeast
strains like Yarrowia lipolytica and different Candida species are investigated for
its production. More in detail, Y. lipolytica yeast attracts the interest of the bio-
technologists due to its ability to produce a wide spectrum of organic acids from
the TCA cycle such as citric, isocitric, pyruvic and alpha-ketoglutaric acid from
various substrates. The citric acid production by wild-type and mutant yeasts is
primarily based on batch cultures. The carbon source is glucose, ethanol, plant oil,
n-paraffins or sucrose. Citric acid concentrations of 140 g/L are easily reached
nowadays using Y. lipolytica. High productivity and yield can also be obtained
with acetate-negative mutants of Y. lipolytica in batch cultures by using a low-cost
carbon substrate like glycerol, a by-product generated in large amounts during the
production of biodiesel (da Silva et al. 2009).

11.2.3 Sugar Alcohols

Sugar alcohols are major compounds synthesized through the pentose phosphate
pathway. These sugars are calorie-free and can be mainly used as sweetener or
flavour additives. Erythritol is a four-carbon sugar alcohol. In comparison with
other sugar alcohols currently used as sucrose replacers, erythritol has a much
lower energy value (*0.2 kcal g-1) when compared to sucrose (4 kcal g-1).
Moreover, this polyol is non-cariogenic, generally free of gastric side effects in
regular use and its use in food is largely desirable. Mannitol—a six-carbon sugar
alcohol—has several applications in the food, pharmaceutical and medical
industries. It is nowadays produced industrially by chemical synthesis using

11 Production of Metabolites and Heterologous Proteins 305



hydrogenation of fructose at high temperature and pressure. This process is not
very efficient and requires a high purity of substrates.

During the production of citric acid from glycerol by Y. lipolytica, erythritol
and mannitol can also be produced. High production of erythritol (80 g/L) and
mannitol (28 g/L) were achieved from a glycerol feedstock (Tomaszewska et al.
2012). Extracellular as well as intracellular erythritol and mannitol ratios depended
on the glycerol used and on the presence of NaCl in the medium.

11.2.4 Alcohols

Ethanol is clearly the major product of yeast’s primary metabolism on the market.
Chapter 9 is dedicated to its biochemistry and production. However, other alcohols
are moving into the focus of biotechnology, above all butanol and isobutanol,
which have superior liquid-fuel characteristics compared to ethanol.

While Clostridia are natural producers of butanol, Escherichia coli and
S. cerevisiae have been engineered in recent years for butanol production (Atsumi
et al. 2008; Steen et al. 2008). The engineering of E. coli has been quite successful,
whereas productivities of yeasts remain limited up to now (Lan and Liao 2013).
Figure 11.2 summarizes the major metabolic pathways to butanol, isobutanol and
2,3-butanediol, including a recently proposed biosynthetic pathway taking
advantage of ketoacids (intermediates of amino acid biosynthesis and degradation)
to produce fusel alcohols in the yeast S. cerevisiae (Branduardi et al. 2013).

11.2.5 Diols

Diols are compounds with two hydroxyl groups having a wide range of applica-
tions as chemicals and fuels, receiving much interest in the new wave of industrial
biotechnology.

1,3-Propanediol (1,3-PDO) and its desirable properties have long been known.
The demand for 1,3-PDO is constantly increasing, since new applications of this
chemical compound are described regularly. It can be used in polymers, cosmetics,
lubricants or drugs production, just to name a few. Of particular interest is its use
as a monomer in a polycondensation reaction yielding polyesters, polyethers and
polyurethanes. The aromatic polyester, polytrimethylene terephthalate (PTT), is
commercially produced and available as CorterraTM or Sorona�.

Although 1,3-PDO cannot be naturally formed from sugars via fermentation, a
wide range of microorganisms (e.g. Klebsiella pneumoniae) is able to ferment
glycerol to 1,3-PDO. However, these organisms lack the enzymes required to form
glycerol from glycolytic dihydroxyacetone phosphate (DHAP). In contrast, many
organisms, including baker’s yeast, are excellent glycerol producers but are unable
to accomplish its subsequent conversion into 1,3-PDO. Therefore, the challenge
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Fig. 11.2 Schematic overview about the primary metabolism with special respect to butanol,
isobutanol and 2,3-butanediol production. Grey boxes highlight recombinant pathways. The
dotted box relates to enzymatic activities present in S. cerevisiae, to which no gene has been
annotated up to now (Branduardi et al. 2013)

11 Production of Metabolites and Heterologous Proteins 307



for metabolic engineering is to integrate both parts of the pathway into a single
organism. Till now, 1,3-PDO was produced only in small detectable amounts by
yeasts from sugars (Celińska 2010).

2,3-Butanediol is an interesting metabolic product as its derivatives can be used
in wide arrays of industries ranging from synthetic rubber, solvents and drugs. This
important metabolite can be produced efficiently via mixed acid fermentation with
bacteria cells such as K. pneumoniae, Klebsiella oxytoca, Enterobacter aerogenes,
Serratia sp. and Bacillus polymyxa. Unfortunately, the use of most of these bac-
teria is undesirable in industrial-scale fermentation in terms of safety regulations.
Despite having more endogenous pathways leading to 2,3-butanediol starting from
pyruvate, the productivity is extremely poor in S. cerevisiae strains when com-
pared to bacteria. Several reconstructions of yeast genome-scale metabolic models
have been published. Using one of these constraint-based stoichiometric models of
yeast, an in silico strain design was performed. High 2,3-butanediol titer
(2.29 g l-1) and yield (0.113 g g-1) were achieved by a Dadh1 Dadh3 Dadh5
yeast strain growing under anaerobic conditions (Ng et al. 2012).

11.3 Products of the Secondary Metabolism

Primary metabolites are of major importance as bulk or fine chemicals. Titers and
productivities are generally high. This is in contrast to the products of the secondary
metabolism, which are emerging as food and feed additives or pharmaceuticals.
Table 11.2 summarizes some industrially important secondary metabolites. Pro-
ductivities and titers for these products are generally lower. Here we outline three
main classes of secondary products: vitamins, phenolics and isoprenoids.

11.3.1 Vitamins

Vitamins are a group of very different chemical compounds defined historically as
being essential in small amounts in the diet of humans or in that of other organ-
isms. Because of their chemical heterogeneity, also the metabolic pathways for
their biosynthesis lack common features. Here we outline the developments for
industrial production of two vitamins: riboflavin and ascorbic acid.

11.3.1.1 Riboflavin

Riboflavin (vitamin B2) is the precursor of coenzymes FMN (flavin mononucle-
otide) and FAD (flavin adenine dinucleotide), which serve as cofactors in various
enzymatic redox reactions. Riboflavin is synthesized by microorganisms and
plants, while higher eukaryotes have to take up riboflavin as part of their nutrition
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(Dmytruk et al. 2011). The microbial production of riboflavin competes with
chemical synthesis. However, the biotechnological production is advantageous in
terms of cost-effectiveness, sustainability and the use of renewable feedstock
(Stahmann et al. 2000). According to Abbas and Sibirny (2011), the annual
riboflavin production capacity in 2008 was 10.000 tons. Most of this vitamin is
produced by a microbial process with A. gossypii or Bacillus subtilis. A process
applying the yeast C. famata (Candida flareri) has been abandoned due to the
genetic instability of the production strain.

Riboflavin is synthesized by microbes from the precursors guanosine triphos-
phate (GTP) and ribulose-5-phosphate. The connection to the central carbon
metabolism is evident, as ribulose-5-phosphate is derived from the oxidative
branch in the pentose phosphate pathway. Although supply of ribulose-5-phos-
phate is not the limiting precursor in most cases, it has been shown that the
overexpression of glucose dehydrogenase in B. subtilis increases the pool of
ribulose-5-phosphate, which enhances riboflavin production (Zhu et al. 2006). In
the natural riboflavin producers A. gossypii and C. famata, the supply of GTP and
its precursors are of highest importance. By deregulating the purine biosynthesis
pathway and supply of glycine as a GTP precursor, high-level producers of
riboflavin have been engineered (Heefner et al. 1988; Jiménez et al. 2005).
Overexpression of rate-limiting enzymes and the positive regulator SEF1
enhanced riboflavin synthesis (Dmytruk et al. 2011). The coenzyme FMN itself
was produced up to 200 mg/L by high-level overexpression of riboflavin kinase
(FMN1) in C. famata (Yatsyshyn et al. 2009).

11.3.1.2 Ascorbic Acid

Ascorbic acid or vitamin C is a naturally occurring organic compound with anti-
oxidant properties. Most higher eukaryotic organisms produce L-ascorbic acid.
Humans are among the few organisms, which are dependent on exogenous provision

Table 11.2 Products of the secondary metabolism with industrial relevance, their central
metabolism precursor and important organisms for their production

Chemical Precursor metabolite Organisms

Artemisinic acid Acetyl-CoA S. cerevisiae
Ascorbic acid Glucose S. cerevisiae, Zygosaccharomyces

bailii
Astaxanthin Acetyl-CoA Xanthophyllomyces dendrorhous
ß-Carotene Acetyl-CoA S. cerevisiae, C. utilis
Ergosterol Glucose-6-phosphate S. cerevisiae
Flavonoids Phenylalanine, tyrosine, malonyl-CoA S. cerevisiae
Paclitaxel Acetyl-CoA S. cerevisiae
Resveratrol Phenylalanine, tyrosine, malonyl-CoA S. cerevisiae
Riboflavin GTP, ribulose-5-phosphate Ashbya gossypii, Candida famata
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of this vitamin. It works as an antioxidant and scavenger of ROS (Padh 1991), and it
has been ascribed various positive health effects. Microbial production of ascorbic
acid is desirable. However, neither yeasts nor bacteria produce this compound
naturally. Yeasts produce the structurally related compound erythroascorbic acid,
which shows chemical properties similar to those of ascorbic acid (Bremus et al.
2006). This natural metabolic pathway has been employed for ascorbic acid pro-
duction from L-galactose by S. cerevisiae and Z. bailii (Sauer et al. 2004).
The biosynthesis of vitamin C from D-glucose by recombinant baker’s yeast was
obtained by employing the biosynthetic pathway from plants (Branduardi et al.
2007; Fossati et al. 2011), which was heterologously expressed in yeast. Glucose is
the starting point for this metabolic pathway. That means that the central carbon
metabolism is directly competing for the same substrate. However, the productiv-
ities obtained so far are apparently too low to exert any metabolic influence of
ascorbic acid production on the primary metabolism.

11.3.2 Phenolics

Phenolics constitute a class of chemical compounds characterized by at least one
hydroxylated aromatic ring. They constitute a large group of secondary metabo-
lites, which has attracted considerable scientific but also commercial interest due
to various promising health applications.

The most important phenolics in this respect are the flavonoids and the stilbenes
with high value as nutritional and/or therapeutic agent (Ververidis et al. 2007).
Other phenolics which are biologically important are the precursors for lignins and
tannins. However, their commercial value as monomers is limited at the time being.

The biosynthesis of these compounds follows the phenylpropanoid metabolic
pathway (Fig. 11.3). In the plant pathway, the amino acid phenylalanine is con-
verted into coumaric acid. However, also tyrosine is a possible starting point,
because it can be converted into coumaric acid by bacterial enzymes. The back-
bone of the flavonoids—the two phenyl ring containing chalcones—is formed
from coumaric acid and malonyl-CoA. Conjugated ring closure of chalcones
results in the three-ringed structure of the flavones, which are derivatized further
down the metabolic pathway to yield flavanones, dihydroflavonols and so on.

11.3.2.1 Stilbenoids: Resveratrol as Commercial Example

Stilbenoids are hydroxylated derivatives of stilbene belonging to the family of
phenylpropanoids. The commercially most important stilbenoid is resveratrol, a
compound found in grapes and wine and connected to potential positive health
effects. It can be produced from coumaric acid through expression of two plant-
derived enzymes in yeast. The first attempts aimed at the conversion of exoge-
nously added coumaric acid (Becker et al. 2003). De novo synthesis of resveratrol
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starting from the primary metabolism requires the introduction of the pathway
synthesizing coumaric acid from phenylalanine and/or tyrosine and has been
accomplished only recently (Wang et al. 2011). Titers and productivities are
apparently still too low to see any impact of the central carbon metabolism.

11.3.2.2 Flavonoids

By the introduction of plant genes, various flavonoids have been produced by yeast
cells, such as naringenin, genistein and kaempferol (Naesby et al. 2009; Trantas
et al. 2009). While biosynthesis of flavonoids from glucose was shown, most of the
approaches aimed at the bioconversion of exogenously added precursors such as
coumaric acid. De novo production of a flavonoid from glucose in baker’s yeast
has been analysed in detail only recently (Koopman et al. 2012). The key inter-
mediate flavonoid, naringenin, was produced by heterologous expression of spe-
cific naringenin biosynthetic genes from Arabidopsis thaliana. However, this led
to only marginal amounts of the desired flavonoid. It turned out that the connection
point to the central carbon metabolism, namely the provision of aromatic amino
acids was a major bottleneck. Deregulation by alleviating feedback inhibition of
two key enzymes for aromatic amino acid biosynthesis appeared to be a pre-
requisite for efficient flavonoid biosynthesis. Additionally, a reduction in by-
product formation, an increased copy number of the chalcone synthase gene and
expression of a heterologous tyrosine ammonia lyase, allowing the direct con-
version of tyrosine into coumaric acid, led to the accumulation of over 400 lM of
naringenin under optimal bioprocess conditions (Koopman et al. 2012).

11.3.3 Isoprenoids

Isoprenoids (or terpenoids) are the largest group of plant secondary metabolites.
Over 40,000 different compounds have been isolated up to now (Misawa 2011).
They are assembled from the phosphorylated five-carbon building blocks iso-
pentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Inter-
estingly, it has been estimated that about 20 % of all carbon fixed by plant
photosynthesis is channelled into this pathway (Ralston et al. 2005). Paclitaxel and
artemisinin are plant-derived isoprenoids, which are used as powerful drugs for the
treatment of the life-threatening diseases cancer or malaria, respectively. Other
isoprenoids, such as the carotenoids are valued in the food industry for their
nutritional, colour or flavour properties.

However, not only plants produce isoprenoids, but most other organisms
including bacteria, fungi and mammals synthesize these secondary metabolites.
Many key functions are controlled by isoprenoids, such as the membrane fluidity
of yeasts by ergosterol.
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Microorganisms, such as yeasts, offer themselves as cell factories for isoprenoid
biosynthesis because the precursors and some intermediates are supplied by native
metabolic processes.

Most prokaryotes and plants (within their plastids) synthesize the central pre-
cursors for isoprenoids—IPP and DMAPP—through the non-mevalonate pathway
starting with the conversion of pyruvate and glyceraldehyde-3-phosphate in seven
enzymatic steps. In contrast, IPP is synthesized via the mevalonate pathway (see
Fig. 11.4) in the cytoplasm of other eukaryotes (and a few bacteria). IPP and
DMAPP are further condensed to higher terpenes as outlined in Fig. 11.4.

11.3.3.1 Carotenoids

Carotenoids are widespread in nature, more than 700 natural variants are known so
far. The major part is synthesized by plants. Animals are not able to synthesize
carotenoids. They are forced to satisfy their demand for carotenoids by vitamin A
ingestion. However, there are some coloured yeasts, bacteria and algae, which
produce a variety of carotenoids. Of special interest is Xanthophyllomyces dend-
rorhous (also known as Phaffia rhodozyma), which naturally accumulates signif-
icant amounts of astaxanthin (up to 400 lg g-1 for wild-type strains). These
amounts are too low for industrial production, so strain improvement is required
(Schmidt et al. 2011). Most of the approaches have been dedicated to mutagenesis
and screening, although the metabolic pathway and the involved enzymes have
been described in detail. The rational engineering approaches have been mainly
centred around the product-specific enzymes catalysing the conversion of gera-
nylgeranyl-PP into astaxanthin. However, interestingly it has been shown that the
astaxanthin titers could be increased by feeding precursors, such as glutamate,
citrate or mevalonate (Schmidt et al. 2011), indicating that the connection to the
central carbon metabolism is a crucial bottleneck. However, this has not been
addressed by metabolic engineering yet.

The metabolic pathway for carotenoid biosynthesis has also been introduced
into C. utilis (Shimada et al. 1998) and S. cerevisiae (Verwaal et al. 2007; Yamano
et al. 1994). Only two genes are necessary to allow the production of ß-carotene in
baker’s yeast. However, in order to allow efficient production, the provision of the
geranylgeranyl-PP has to be optimized. Verwaal et al. (2007) achieved this by
overexpression of the endogenous geranylgeranyl-PP synthase and an increase in
HMG-CoA reductase activity.

11.3.3.2 Sesquiterpenes: Artemisinic Acid

Artemisinin, a sesquiterpene endoperoxide lactone from Artemisia annua, is an
important medicinal drug for the treatment of malaria. Artemisinic acid is a pre-
cursor for chemical synthesis of artemisinin. Recently, all genes encoding the
enzymes required for efficient accumulation of artemisinic acid have been identified
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(Paddon et al. 2013). The starting point for the committed biosynthetic pathway of
artemisinic acid is farnesyl-PP (Fig. 11.4). Various downstream genes have been
identified and expressed in E. coli and S. cerevisiae (Ye and Bhatia 2012) and both
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organisms readily accumulated artemisinin precursors. Interestingly, it turned out
that the flux into the isoprenoid pathway is a major bottleneck for their production.
Significant amounts of the desired compound were only produced upon upregula-
tion of several genes in the mevalonate pathway (Ro et al. 2006); the key regulatory
gene there is HMG-CoA reductase. Overexpression of this gene increased the
artemisinin precursor production fivefold. However, it turned out that competing
metabolic pathways, particularly sterol biosynthesis also limits productivity.
Downregulation of the sterol biosynthesis is consequently a prerequisite for effi-
cient artemisinic acid production. By a combination of the acquired knowledge
with two newly identified specific genes, a yeast-based production process could be
established, which leads to artemisinic acid titers of 26 g/L (Paddon et al. 2013).

11.3.3.3 Diterpenes: Paclitaxel (Taxol)

Paclitaxel (taxol) is a potent drug with excellent activity against a range of cancers.
It is a diterpenoid derived from Taxus species. Particularly, it can be isolated from
the bark of Taxus brevifolia. Currently, industrial production of taxol depends on
semisynthesis from other taxoids such as baccatin III, isolated from the needles of
Taxus baccata.

The entire taxol biosynthetic pathway is considered to involve 19 enzymatic
steps starting from the diterpenoid precursor geranylgeranyl-PP (Jiang et al. 2012).
While most of the enzymes catalysing these steps have been identified, some
remain putative or even unknown up to date. Nevertheless, approaches for
microbial production of taxol precursors have been reported: E. coli has been
engineered to produce taxadiene—the first dedicated precursor of the taxol bio-
synthetic pathway (Ajikumar et al. 2010; Huang et al. 2001). Furthermore, genetic
engineering of baker’s yeast was employed to gain more insight into this complex
biosynthetic pathway (DeJong et al. 2006). However, the desired compounds taxol
or baccatin III have not been produced heterologously yet. Interestingly, also in
case of taxol precursor biosynthesis, it was shown that the provision of the building
blocks by the primary metabolism is a major limiting factor. Taxadiene accu-
mulation in S. cerevisiae was only possible after heterologous expression of a
geranylgeranyl-PP-synthase, catalysing the formation of geranylgeranyl-PP
(Engels et al. 2008). Also in this case the productivity could be further increased
by deregulating the pathway at the HMG-CoA reductase node and downregulation
of sterol biosynthesis. This underlines once more that the central carbon metab-
olism is naturally tightly controlled and not easily prone to provide building blocks
to heterologous biosynthetic pathways, a fact that one should keep in mind when
designing synthetic microbial cell factories for secondary metabolites.
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11.3.3.4 Sterols/Steroids

Sterols and steroids are essential for the physiology of eukaryotic organisms.
Cholesterol or ergosterol affect the cell membranes’ fluidity and form therefore
essential parts of the cellular membrane. In vertebrates, corticosteroids, such as
cortisol, act as hormones and play a crucial role for cellular communication.

In order to construct a yeast strain, which accumulates high amounts of
ergosterol, various genes of the respective biosynthetic pathway have been over-
expressed in S. cerevisiae (Veen et al. 2003). Starting point was in this case a strain
which already produced high amounts of squalene due to a deregulation of HMG-
CoA reductase (Polakowski et al. 1998). Again this step was a bottleneck for
precursor production. Overexpression of downstream genes changed the pattern of
sterols accumulated. The total sterol content in this strain increased threefold
compared to a wild-type strain.

11.4 Protein Production

Based on the development of recombinant DNA technology in the 1970s, the
production of recombinant proteins has become a multi-billion dollar market. The
biopharmaceutical industry has been the driving force of this development, so that
up to now more than 200 biopharmaceuticals have been approved by the US Food
and Drug Association. According to Berlec and Strukelj (2013), 66 (31 %) of the
approved biopharmaceuticals were produced in E. coli, 31 (15 %) in yeast (30 in
S. cerevisiae and 1 in Pichia pastoris) and 91 (43 %) in mammalian cells. In 2009,
the market value of recombinant proteins was 99 billion dollars, representing the
fastest growing segment of the pharmaceutical industry (Walsh 2010).

With respect to the production of recombinant proteins, not only biopharma-
ceuticals are of importance. The production of industrial enzymes is a market of
more than 5 billion dollars (Porro et al. 2011). Industrial enzymes are for example
proteases, lipases and carbohydrases, a large portion of them being produced using
yeast as a host organism. The growing demand for lignocellulolytic enzymes
further drives the production of new recombinant enzymes.

Yeasts bear several advantages compared to other expression systems. Yeasts
can grow to high cell densities, perform eukaryotic post-translational modifications
related to folding and secretion, produce high product titers and do not contain
pyrogens or viruses which are harmful for humans. These advantages make yeasts
interesting for industry as an expression host for protein production. Up to now
mainly S. cerevisiae, P. pastoris and Hansenula polymorpha are used in an
industrial process to produce recombinant proteins, but there are several more
yeast expression systems with a great potential in recombinant protein production
(Mattanovich et al. 2012).
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11.4.1 Impact of Recombinant Protein Production
on the Yeast Metabolism

Production costs of recombinant proteins are an issue for high-volume therapeutic
proteins where manufacturing costs significantly impact total treatment costs per
patient. Even more pronounced, the large-scale use of technical enzymes is often
not feasible unless production costs decrease below a critical threshold. Therefore,
research is focused on a detailed understanding of the impact of recombinant
protein production on the yeast cell physiology (Graf et al. 2009). This knowledge
can be used to engineer cellular processes, e.g. protein synthesis, processing and
secretion, to maximize the titer of the protein produced. Protein folding and
secretion is a complex process involving several hundred cellular proteins (Delic
et al. 2013). Engineering of the secretory pathway has successfully improved
productivity of recombinant proteins in yeast (reviewed in Idiris et al. 2010 and
Delic et al. 2014).

It is well known that the production of a foreign protein causes an additional
stress for the host cell and leads to a decrease in the overall cell fitness. The
phenotype of such cells is a decreased maximum specific growth rate, decreased
by-product formation and increased cell lysis (Gonzalez et al. 2002; Heyland et al.
2011). In addition, cellular stress may also lead to reduced product formation
(Mattanovich et al. 2004).

Limitations in the primary metabolism of a yeast cell can cause a stress situ-
ation, resulting in the aforementioned defects. The changes in metabolism due to
recombinant protein production are summarized under the term metabolic burden
or metabolic load, which can be defined as a portion of host cell’s resources, in
form of either energy or precursor metabolites such as amino acids and nucleotides
(Fig. 11.5), which is required to maintain and express foreign DNA (Glick 1995).
The metabolic processes which lead to a burden on yeast metabolism under protein
production conditions are poorly understood. The extent of the metabolic burden
on a yeast cell is influenced by bioprocess parameters (temperature, dissolved
oxygen, substrate choice or growth rate) and gene dosage (Dragosits et al. 2009;
Hohenblum et al. 2003; Liu et al. 2013).

As stated in the definition of the metabolic burden two possible explanations
can be proposed. First, a limitation in synthesis capacity of certain amino acids can
lead to a burden for the yeast cell. Also a limited supply of amino acid biosynthetic
pathways with precursors from the central carbon metabolism may be a reason for
the observed burden. Second, a higher energy demand (ATP) due to recombinant
protein production is plausible, as additional protein has to be synthesized, folded
and secreted, all processes needing high amounts of energy.
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11.4.2 Amino Acid Metabolism

The production of a foreign protein exhibits a certain metabolic burden even when
the amount of recombinant protein is low compared to total host cell protein. The
building blocks of proteins are amino acids. To produce a recombinant protein, the
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cell metabolism has to ensure that enough of the needed amino acids are available.
The amino acid composition of the recombinant protein may influence protein
production if the frequency of certain amino acids is higher compared to the yeast
cell proteome. In other words, heterologous proteins, especially secreted human
proteins, have a significantly different amino acid composition than total cellular
yeast protein. The effect depends on the metabolic costs of respective amino acids
with higher frequency in the recombinant protein. Metabolic costs of amino acid
synthesis have been calculated by Wagner (2005) based on the amount of activated
phosphate bonds needed for synthesis, and the loss of energy by not using the
precursor for energy production. Thus, aromatic or branched chain amino acids are
most cost intensive. Additionally, amino acids with a very low abundance in the
cellular protein may constitute a bottleneck. For P. pastoris, it has been reported
that cysteine levels are very low (Carnicer et al. 2009), however, cysteine occurs at
a rather high frequency in many recombinant proteins of interest (e.g. antibodies).

Several studies showed that amino acids supplementation to the cultivation
media partly released the metabolic burden and improved heterologous protein
production. Heyland et al. (2011) showed improved production of a bacterial
b-aminopeptidase in P. pastoris by the addition of glutamine, a mixture of TCA-
cycle-derived amino acids (Glu, Gln, Lys and Pro) and energetically expensive
amino acids (His, Leu, Ile, Lys, Met, Phe and Tyr). They suggested that glutamine
as a carbon and nitrogen source is a possible candidate for partly relieving the
metabolic burden. A second study in S. cerevisiae by Görgens et al. (2005) showed
an improvement in xylanase production. A higher production rate of xylanase was
observed by the addition of a mixture of preferred amino acids (Ala, Arg, Asn,
Glu, Gln and Gly) to the cultivation media. The selection of these amino acids was
based on previous screening results. The two main reasons for using this mixture
was the increased production rate of the recombinant protein and the decreased
cellular proteolysis. In a second experiment, they added just the TCA cycle
intermediate succinate to the cultivation media, which also improved recombinant
xylanase production.

Both studies showed that the addition of amino acids derived from TCA cycle
intermediates enhanced recombinant protein production. Additionally, the sup-
plementation of media only with succinate showed the same effect. This suggests
that exogenous amino acids are not only directly incorporated into the recombinant
protein, but metabolized via the TCA cycle, and that both TCA-cycle-related
amino acids and TCA cycle intermediates may have a beneficial effect on protein
production. Heyland et al. (2011) also showed that glutamine is co-metabolized
with glucose and was used for the production of other amino acids.

In summary, the above-mentioned studies showed that under recombinant
protein production condition, a limitation of the supply with amino acids and TCA
cycle intermediates may lead to the observed metabolic burden.
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11.4.3 Energy Metabolism

For the production of a protein, not only the sufficient supply with amino acids is
necessary, but also energy in form of ATP, GTP and reduction equivalents
(NADH, NADPH) is indispensable. Translation costs 4 energy equivalents per
amino acid residue, 2 for charging the tRNA and 2 for ribosomal synthesis. Protein
folding and eventual secretion involve further energy consuming steps like ATP-
dependent chaperone activity. Taken together, yeast cells producing a heterolo-
gous protein have an additional demand for energy, because of the fact that more
protein has to be translated, folded and secreted.

The cellular response to the higher need for energy in the form of ATP can be a
redirection of fluxes within the central carbon metabolism towards the TCA cycle.
To verify this change in the fluxes, metabolic flux analysis is the method of choice
and has been used in different studies to investigate the host cell physiology under
recombinant protein production conditions.

Several studies in P. pastoris showed exactly this redirection of fluxes under
recombinant protein production conditions (Dragosits et al. 2009; Heyland et al.
2010). Dragosits et al. applied glucose-limited chemostat cultures to study the
effect of different growth temperatures on productivity and cell physiology. At
30 �C, the flux through the TCA cycle was higher in a recombinant protein pro-
duction strain as compared to a control strain. At lower temperatures (20 and
25 �C), they observed up to threefold higher protein productivity but no changes in
the TCA cycle flux between the reference strain and the production strains. They
suggest that the higher TCA cycle flux at 30 �C is a cellular response to the extra
energy needed for folding, refolding and secretion of the recombinant protein. It is
proposed that at lower temperature, reduced stress due to less misfolding of the
recombinant protein may also lead to a lower energy demand. In a second study,
Heyland et al. (2010) showed that also in glucose-limited high cell density fed-
batch cultivation of P. pastoris, a higher flux through the TCA cycle was seen. The
calculated ATP generation rate showed a slight increase for the recombinant
protein production strain. These results again indicate the need of extra energy
during heterologous protein production.

The above-mentioned studies with P. pastoris were performed on glucose as a
carbon source, employing the glyceraldehyde-3-phosphate dehydrogenase (GAP)
promoter for recombinant gene expression. Alternatively, the strong alcohol oxi-
dase (AOX1) promoter is used which requires methanol as an inducer, and usually
also as the carbon source for cell growth. Growth on methanol requires efficient
regeneration of reduced redox equivalents and reactive oxygen scavenging (Yano
et al. 2009). Mixed substrate feeds (e.g. glycerol/methanol, glucose/methanol)
have been employed to reduce the oxidative stress onto P. pastoris during meth-
anol induction. Additionally, it was observed that by using multiple carbon
sources, the productivity of the cell in making the desired protein was elevated
(Ramón et al. 2007). Methanol can be metabolized either directly to CO2, gen-
erating 2 mol NADH per mol methanol. NADH can be used for the generation of
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ATP via the respiratory chain. On the other hand, methanol can be assimilated into
biomass. Jordà et al. (2012) analysed the core metabolic fluxes of P. pastoris
growing on glucose/methanol mixtures. Under recombinant protein production
conditions (production of a lipase from Rhizopus oryzae), the contribution of
methanol to biomass production was decreased, which suggests a higher rate
through the dissimilatory pathway which oxidizes methanol to CO2. The additional
NADH generated by this pathway might lead to a lower metabolic burden and the
observed higher productivities under the mixed feed condition. The calculated
NADH and ATP generation rate increased for the production strain, which speaks
again for the higher energy demand due to recombinant protein production.

11.5 Conclusions

Here, we outlined our current knowledge about the interrelation of the central
carbon metabolism and various microbial production processes. While it is obvi-
ous that every production process is inevitably connected to and dependent from
the central carbon metabolism, our knowledge how these relations translate into
flux and titer of product are surprisingly scarce. For primary metabolites, these
relations are known and described in detail. However, for secondary metabolites
and proteins, many points remain unclear. Precursor feeding experiments clearly
show for a lot of products that the provision of central metabolites for secondary
product biosynthesis is often limited. However, very few results have been pub-
lished about addressing this problem by metabolic engineering.
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production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in
batch, repeated batch, and cell recycle regimes. Appl Microbiol Biotechnol 87:971–979.
doi:10.1007/s00253-010-2561-z

Sauer M, Branduardi P, Valli M, Porro D (2004) Production of L-ascorbic acid by metabolically
engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol
70:6086–6091. doi:10.1128/AEM.70.10.6086-6091.2004

324 M. Sauer et al.

http://dx.doi.org/10.1186/1475-2859-8-45
http://dx.doi.org/10.1186/1475-2859-11-68
http://dx.doi.org/10.1186/1475-2859-11-68
http://dx.doi.org/10.1038/sj.embor.7400132
http://dx.doi.org/10.1038/nature12051
http://dx.doi.org/10.1111/j.1753-4887.1991.tb07407.x
http://dx.doi.org/10.1007/s002530051138
http://dx.doi.org/10.1007/s00253-010-3019-z
http://dx.doi.org/10.1007/s00253-010-3019-z
http://dx.doi.org/10.4161/bbug.2.2.14549
http://dx.doi.org/10.1104/pp.104.054502
http://dx.doi.org/10.1016/j.jbiotec.2007.07.133
http://dx.doi.org/10.1038/nature04640
http://dx.doi.org/10.1186/1475-2859-9-15
http://dx.doi.org/10.1007/s00253-010-2561-z
http://dx.doi.org/10.1128/AEM.70.10.6086-6091.2004


Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids:
expanding the markets. Trends Biotechnol 26:100–108. doi:10.1016/j.tibtech.2007.11.006

Sauer M, Porro D, Mattanovich D, Branduardi P (2010) 16 years research on lactic acid
production with yeast—ready for the market? Biotechnol Genet Eng Rev 27:229–256. doi:10.
1080/02648725.2010.10648152

Schmidt I, Schewe H, Gassel S, Jin C, Buckingham J, Hümbelin M, Sandmann G, Schrader J
(2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomy-
ces dendrorhous. Appl Microbiol Biotechnol 89:555–571. doi:10.1007/s00253-010-2976-6

Shimada H, Kondo K, Fraser PD, Miura Y, Saito T, Misawa N (1998) Increased carotenoid
production by the food yeast Candida utilis through metabolic engineering of the isoprenoid
pathway. Appl Environ Microbiol 64:2676–2680

Stahmann KP, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya
gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.
Appl Microbiol Biotechnol 53:509–516. doi:10.1007/s002530051649

Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008)
Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb
Cell Fact 7:36. doi:10.1186/1475-2859-7-36

Tanino T, Ito T, Ogino C, Ohmura N, Ohshima T, Kondo A (2012) Sugar consumption and
ethanol fermentation by transporter-overexpressed xylose-metabolizing Saccharomyces
cerevisiae harboring a xyloseisomerase pathway. J Biosci Bioeng 114:209–211. doi:10.
1016/j.jbiosc.2012.03.004

Teixeira MC, Mira NP, Sá-Correia I (2011) A genome-wide perspective on the response and
tolerance to food-relevant stresses in Saccharomyces cerevisiae. Curr Opin Biotechnol
22:150–156. doi:10.1016/j.copbio.2010.10.011
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