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Preface

Every attempt to employ mathematical methods in the study of chemical questions must be
considered profoundly irrational and contrary to the spirit of chemistry. If mathematical
analysis should ever hold a prominent place in chemistry-an aberration which is happily
almost impossible-it would occasion a rapid and widespread degeneration of that science.

Augustus Compte, French philosopher, 1798–1857; in Philosophie Positive, 1830.

A dissenting view:

The more progress the physical sciences make, the more they tend to enter the domain of
mathematics, which is a kind of center to which they all converge. We may even judge the
degree of perfection to which a science has arrived by the facility to which it may be
submitted to calculation.

Adolphe Quetelet, French astronomer, mathematician, statistician, and sociologist,

1796–1874, writing in 1828.

This third edition differs from the second in these ways:

1. The typographical errors that were found in the first edition have been (I hope)

corrected.

2. Sentences and paragraphs have on occasion been altered to clarify an

explanation.

3. The biographical footnotes have been updated as necessary.

4. Significant developments since 2010 (the year of the latest references in the

second edition), up to the end of 2015, have been added and referenced in the

relevant places.

As might be inferred from the word Introduction, the purpose of this book, like
that of previous editions, is to teach the basics of the core concepts and methods of

computational chemistry. This is a textbook, and no attempt has been made to

please every reviewer by dealing with esoteric “advanced” topics. Some funda-

mental concepts are the idea of a potential energy surface, the mechanical picture of

a molecule as used in molecular mechanics, and the Schr€odinger equation and its

elegant taming with matrix methods to give energy levels and molecular orbitals.

All the needed matrix algebra is explained before it is used. The fundamental
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techniques of computational chemistry are molecular mechanics, ab initio, semi-

empirical, and density functional methods. Molecular dynamics and Monte Carlo

methods are only mentioned; while these are important, they utilize several funda-

mental concepts and methods explained here, and if presented at the level of the

topics treated here would require a book of their own. I wrote the first edition (2003)

because there seemed to be no text quite right for an introductory course in

computational chemistry for a fairly general chemical audience, and the second

(2011) edition was issued in the same belief; although there are several good books

on quantum chemistry and on its disciplinary associate (“handmaiden” might seem

somewhat disparaging) computational chemistry, this edition is submitted in the

same spirit as the first two. I hope it will be useful to anyone who wants to learn

enough about the subject to start reading the literature and to start doing computa-

tional chemistry. As implied above, there are excellent books on the field, but

evidently none that seeks to familiarize the general student of chemistry with

computational chemistry in quite the same sense that standard textbooks of those

subjects make organic or physical chemistry accessible. To that end the mathemat-

ics has been held on a leash; no attempt is made to prove that molecular orbitals are

vectors in Hilbert space, or that a finite-dimensional inner-product space must have

an orthonormal basis, and the only sections that the nonspecialist may justifiably

view with some trepidation are the (outlined) derivation of the Hartree-Fock and

Kohn-Sham equations. These sections should be read, if only to get the flavor of the

procedures, but should not stop anyone from getting on with the rest of the book.

Computational chemistry has become a tool used in much the same spirit as

infrared or NMR spectroscopy, and to use it sensibly it is no more necessary to be

able to write your own programs than the fruitful use of infrared or NMR spectros-

copy requires you to be able to build your own spectrometer. I have tried to give

enough theory to provide a reasonably good idea of how standard procedures in the

programs work. In this regard, the concept of constructing and diagonalizing a Fock

matrix is introduced early, and there is little talk of computationally less relevant

secular determinants (except for historical reasons in connection with the simple

Hückel method). Many results of actual computations, some done specifically for

this book, are given. Almost all the assertions in these pages are accompanied by

literature references, which should make the text useful to researchers who need to

track down methods or results, and to anyone who may wish to delve deeper. It

would be clearly inappropriate, if not impossible, to exhaustively reference each

topic discussed. The choice of references has been oriented toward (besides justi-

fying a particular assertion) reviews, and publications illustrating a topic in a

general way, rather than some specialized aspect of it. In this age of the Internet

once one is aware of the existence of some subject, it is usually not hard to obtain

more information about it. The material should be suitable for senior undergradu-

ates, graduate students, and novice researchers in computational chemistry. A

knowledge of the shapes of molecules, covalent and ionic bonds, spectroscopy,

and some familiarity with thermodynamics at about the second- or third-year
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undergraduate level is assumed. Some readers may wish to review basic concepts

from physical and organic chemistry.

The reader, then, should be able to acquire the basic theory of, and a fair idea of

the kinds of results to be obtained from, common computational chemistry tech-

niques. You will learn how one can calculate the geometry of (some may quibble

and say “a geometry for”) a molecule, its IR and UV spectra and its thermodynamic

and kinetic stability, and other information needed to make a plausible guess at its

chemistry.

Computational chemistry is more accessible than ever. Hardware has become

cheaper than it was even a few years ago, and powerful programs once available

only for expensive workstations have been adapted to run on inexpensive personal

computers. The actual use of a program is best explained by its manuals and by

books written for a specific program, and the directions for setting up the various

computations are not given here. Information on various programs is provided in

Chap. 9. Read the book, get some programs, and go out and do computational

chemistry. You may make mistakes, but they are unlikely to put you in the same

kind of danger that a mistake in a wet lab might.

For the first and second editions, it is a pleasure to acknowledge the help of:

Professor Imre Csizmadia of the University of Toronto, who gave unstintingly of

his time and experience;

The knowledgeable people who subscribe to CCL, the computational chemistry list,

an exceedingly helpful forum anyone seriously interested in the subject;

My editor for the first edition at Kluwer, Dr Emma Roberts, who was always most

helpful and encouraging;

My very helpful editors for the second edition at Springer, Ms Claudia Culierat and

Dr Sonia Ojo;

For guidance with the third edition, Ms Karin de Bie at Springer;

Professor Roald Hoffmann of Cornell University, who has insight and knowledge

on matters that were at times somewhat arcane;

Dr Andreas Klamt of COSMOlogic GmbH & Co., for sharing his expertise on

solvation calculations;

Professor Joel Liebman of the University of Maryland, Baltimore County for

stimulating discussions;

Professor Matthew Thompson of Trent University, for stimulating discussions.

For the third edition, it is a pleasure to acknowledge the help of:

Springer Senior Publishing Editor, Chemistry, Dr Sonia Ojo;

Springer Production Editor Books, Ms Karin de Bie;

Professor Robert Stairs of the department of Chemistry, Trent University, for his

insight in fruitful discussions;
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and finally, since this edition is not fully de novo, all those whom I thank, above, for

the first and second editions.

No doubt some names have been unjustly and inadvertently omitted, for which I

tender my apologies.

Peterborough, ON, Canada Errol G. Lewars

January 2016
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Chapter 1

An Outline of What Computational
Chemistry Is All About

Knowledge is experiment’s daughter
Leonardo da Vinci, in Pensieri, ca. 1492

Nevertheless:

Abstract You can calculate molecular geometries, rates and equilibria, spectra,

and other physical properties with the tools of computational chemistry: molecular

mechanics, ab initio, semiempirical and density functional methods, and molecular

dynamics. Computational chemistry is widely used in the pharmaceutical industry

to explore the interactions of potential drugs with biomolecules, for example by

docking a candidate drug into the active site of an enzyme. It is used to investigate

the properties of solids (e.g. plastics) in materials science, and to study catalysis in

reactions important in the lab and in industry. It does not replace experiment, which

remains the final arbiter of truth about Nature.

1.1 What You Can Do with Computational Chemistry

In this chapter we briefly overview the scope and methods of computational

chemistry or molecular modelling. One can argue (some might say quibble) over

whether there is difference between these two terms [1]. Pursuing this question is

probably not a useful activity, and we shall take both terms as denoting a set of

techniques for investigating chemical problems on a computer. Matters commonly

investigated computationally are:

Molecular geometry: the shapes of molecules–bond lengths, angles and dihedrals.

Energies of molecules and transition states: this tells us which isomer is favored

at equilibrium, and (from transition state and reactant energies) how fast a reaction

should go.

Chemical reactivity: for example, knowing where the electrons are concentrated

(nucleophilic sites) and where they want to go (electrophilic sites) helps us to

predict where various kinds of reagents will attack a molecule. A particularly useful

application of this is elucidating the likely mode of action of catalysts, which could

lead to improved versions.

IR, UV and NMR spectra: these can be calculated, and if the molecule is

unknown, someone trying to make it knows what to look for.
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The interaction of a substrate with an enzyme: seeing how a molecule fits into

the active site of an enzyme is one approach to designing better drugs.

The physical properties of substances: these depend on the properties of indivi-

dual molecules and on how the molecules interact in the bulk material. For

example, the strength and melting point of a polymer (e.g. a plastic) depend on

how well the molecules fit together and on how strong the forces between them are.

People who investigate things like this work in the field of materials science.

1.2 The Tools of Computational Chemistry

In studying these questions computational chemists have a selection of methods at

their disposal. The main tools available belong to five broad classes:

(1) Molecular mechanics is based on a model of a molecule as a collection of balls

(atoms) held together by springs (bonds). If we know the normal spring lengths and

the angles between them, and how much energy it takes to stretch and bend the

springs, we can calculate the energy of a given collection of balls and springs, i.e. of a

given molecule; changing the geometry until the lowest energy is found enables us to

do a geometry optimization, i.e. to calculate a geometry for the molecule.

Molecular mechanics is fast: a fairly large molecule like a steroid (e.g. choles-

terol, C27H46O) can be optimized in seconds on an ordinary personal computer.

(2) Ab Initio calculations (ab initio, Latin: “from the start”, i.e. “from first

principles”) are based on the Schr€odinger equation. This is one of the fundamental

equations of modern physics and describes, among other things, how the electrons in

a molecule behave. The ab initio method solves the Schr€odinger equation for a

molecule and gives us an energy and a wavefunction. The wavefunction is a math-

ematical function that can be used to calculate the electron distribution (and, in theory

at least, anything else about the molecule). From the electron distribution we can tell

things like how polar the molecule is, and which parts of it are likely to be attacked by

nucleophiles or by electrophiles. The Schr€odinger equation cannot be solved exactly
for any molecule with more than one (!) electron. Thus approximations are used; the

less serious these are, the “higher” the level of the ab initio calculation is said

to be. Regardless of its level, an ab initio calculation is based only on basic physical

theory (quantum mechanics) and is in this sense “from first principles”.

Ab initio calculations are relatively slow: the geometry and IR spectra (¼ the

vibrational frequencies) of propane can be calculated at a high level in a few

minutes on a personal computer but a fairly large molecule, like a steroid, could

take at least several days for geometry optimization at a reasonably high level.

Current personal computers, with four or more GB of RAM and a thousand or more

GB of disk space, are serious computational tools and now compete with UNIX

machines even for the demanding tasks associated with high-level ab initio calcu-

lations. Indeed, one now hears little talk of “workstations”, machines that once

cost ca. $15 000 or more [2]. For really demanding number crunching, personal

access to supercomputers is available through cloud computing, i.e. access to

computers at a distant site through the internet [3].
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(3) Semiempirical calculations are, like ab initio, based on the Schr€odinger
equation. However, more approximations are made in solving it, and the very

demanding integrals that must be calculated in the ab initio method are not

actually evaluated in semiempirical calculations: instead, the program draws on

a kind of library of integrals that was compiled by finding the best fit of some

calculated entity like geometry or energy (heat of formation) to experimental or,

nowadays, high-level theoretical values. This plugging of experimental values

into a mathematical procedure to get the best calculated values is called param-
eterization (or parametrization). It is the mixing of theory and experiment

that makes the method “semiempirical”: it is based on the Schr€odinger equation,
but parameterized with experimental (or high-level theoretical) values (empirical
means experimental). Of course one hopes that semiempirical calculations

will give good answers for molecules for which the program has not been

parameterized and this is often indeed the case (molecular mechanics, too, is

parameterized).

Semiempirical calculations are slower than molecular mechanics but much

faster than ab initio calculations. Semiempirical calculations take perhaps roughly

100 times as long as molecular mechanics calculations, and ab initio calculations

can take roughly 100–1000 times as long as semiempirical. A semiempirical

geometry optimization on a steroid might a minute on a good PC.

(4) Density functional calculations (often called DFT calculations, density

functional theory; a functional is a mathematical entity related to a function.) are,

like ab initio and semiempirical calculations, based on the Schr€odinger equation
However, unlike the other two methods, DFT does not calculate a wavefunction,

but rather derives the electron distribution (electron density function) directly.
Density functional calculations are usually faster than ab initio, but slower than

semiempirical. DFT is somewhat new: chemically useful DFT computational

chemistry goes back to the 1980s, while “serious” computational chemistry with

the ab initio method was being done in the 1970s and with semiempirical

approaches in the 1950s.

(5) Molecular Dynamics calculations apply the laws of motion to molecules,

which change shape or move under the influence of a forcefield. Thus one can

simulate the motion of an enzyme as it changes shape on binding to a substrate, or

the motion of a swarm of water molecules around a protein molecule. Such

biochemically oriented studies rely on molecules moving under he influence of

forces calculated by molecular mechanics, and since this is not an electronic

structure method, covalent bond-breaking and bond-making (in contrast to confor-

mational changes) cannot be studied with molecular dynamics programs that use

this kind of forcefield. For the study of chemical reactions with molecular dynamics

a forcefield generated with semiempirical, ab initio, or density functional methods

can be used. Do not confuse molecular dynamics (“motion”) with molecular

mechanics (a “mechanical” treatment of molecules.
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1.3 Putting it All Together

Very large molecules are often studied only with molecular mechanics, because

other methods (quantum mechanical methods, based on the Schr€odinger equa-
tion: semiempirical, ab initio and DFT) would take too long. Novel molecules,

with unusual structures, are best investigated with ab initio or possibly DFT

calculations, since the parameterization inherent in MM or semiempirical

methods makes them unreliable for molecules that are very different from

those used in the parameterization. DFT is newer than ab initio and semiempir-

ical methods and its limitations and possibilities are less clear than those of the

other methods.

Calculations on the structures of large molecules like proteins or DNA are

usually done with molecular mechanics. The conformational motions of these

large biomolecules can be studied with molecular dynamics utilizing a molecular

mechanics forcefield; molecular motions including bond-breaking and -making can

be studied with molecular dynamics utilizing semiempirical, ab initio or density

functional methods. Key portions of a very large molecule, like the active site of an

enzyme, can be studied with semiempirical or even ab initio methods. Moderately

large molecules like steroids, say, can be studied with semiempirical calculations,

or if one is willing to invest the time, with ab initio calculations. Of course

molecular mechanics can be used with these too, but note that this technique does

not give information on electron distribution, so chemical questions connected with

nucleophilic or electrophilic behaviour, say, cannot be addressed by molecular

mechanics alone.

The energies of molecules can be calculated by MM, semiempirical, ab initio or

DFT. The method chosen depends very much on the particular problem. Reactivity,

which depends largely on electron distribution, must usually be studied with a

quantum-mechanical method (semiempirical, ab initio or DFT). Spectra are most

reliably calculated by high-level ab initio or DFT methods, but useful results can be

obtained with semiempirical methods, and some MM programs will calculate fairly

good IR spectra (balls attached to springs vibrate!).

Docking a molecule into the active site of an enzyme to see how it fits is an

extremely important application of computational chemistry. One could manipulate

the substrate with a mouse or a kind of joystick and try to fit it (dock it) into the

active site, but automated docking is now standard. This work is usually done with

MM, because of the large molecules involved, although selected portions of large

biomolecules can be studied by one of the quantum mechanical methods. The

results of such docking experiments serve as a guide to designing better drugs,

such as molecules that will interact better with the desired enzyme but be ignored

by other enzymes.

Computational chemistry is valuable in studying the properties of materials,

i.e. in materials science. Semiconductors, superconductors, plastics, ceramics – all

these have been investigated with the aid of computational chemistry. A recent

ingenious development which could be very potent if it fulfills its promise is a
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procedure for discovering materials with computationally specifiable properties [4].

Such studies tend to involve a knowledge of solid-state physics and to be somewhat

specialized. On a less utilitarian note, artifacts of artistic value have also been

studied with the aid of this science [5].

Computational chemistry is fairly cheap, it is fast compared to experiment, and it

is environmentally safe (although the profusion of computers in the last decade has

raised concern about the consumption of energy [6] and the disposal of obsolescent

machines [7]). It does not replace experiment, which remains the final arbiter of

truth about Nature. Furthermore, tomake something–new drugs, new materials–one

has to go into the lab. Also, the caveat is in order that despite the power of

computations [8], one should be careful not to so overstep their sphere of validity:

in extreme cases you might be, in Pauli’s cutting words, “not even wrong” [9].

Nevertheless, computation has become so reliable in some respects that, more and

more, scientists in general are employing it before embarking on an experimental

project, and the day may come when to obtain a grant for some kinds of experi-

mental work you will have to show to what extent you have computationally

explored the feasibility of the proposal.

1.4 The Philosophy of Computational Chemistry

Computational chemistry is the culmination (to date) of the view that chemistry is

best understood as the manifestation of the behavior of atoms and molecules, and

that these are real entities rather than merely convenient intellectual models [10].

It is a detailed physical and mathematical affirmation of a trend that hitherto found

its boldest expression in the structural formulas of organic chemistry [11], and it is

the unequivocal negation of the till recently trendy claim [12] that science is a kind

of game played with “paradigms” [13].

In computational chemistry we take the view that we are simulating the behav-

iour of real physical entities, albeit with the aid of intellectual models; and that as

our models improve they reflect more accurately the behavior of atoms and

molecules in the real world.

1.5 Summary

Computational chemistry allows one to calculate molecular geometries, reactiv-

ities, spectra, and other properties. It employs:

Molecular mechanics–based on a ball-and-springs model of molecules

Ab initio methods–based on approximate solutions of the Schr€odinger equation
without appeal to fitting to experiment

1.5 Summary 5



Semiempirical methods–based on approximate solutions of the Schr€odinger equa-
tion with appeal to fitting to experiment (i.e. using parameterization)

Density functional theory (DFT) methods–based on approximate solutions of the

Schr€odinger equation, bypassing the wavefunction that is a central feature of ab

initio and semiempirical methods.

Molecular dynamics methods study molecules in motion.

Ab initio and the faster DFT enable novel molecules of theoretical interest to be

studied, provided they are not too big. Semiempirical methods, which are much

faster than ab initio or even DFT, can be readily applied to fairly large molecules

(e.g. cholesterol, C27H46O, and bigger), while molecular mechanics will calculate

geometries and energies of very large molecules such as proteins and nucleic acids;

however, molecular mechanics does not give information on electronic properties.

Computational chemistry is widely used in the pharmaceutical industry to explore

the interactions of potential drugs with biomolecules, for example by docking a

candidate drug into the active site of an enzyme. It is also used to investigate the

properties of solids (e.g. plastics) in materials science.

Easier Questions

1. What does the term computational chemistry mean?

2. What kinds of questions can computational chemistry answer?

3. Name the main tools available to the computational chemist. Outline (a few

sentences for each) the characteristics of each.

4. Generally speaking, which is the fastest computational chemistry method

(tool), and which is the slowest?

5. Why is computational chemistry useful in industry?

6. Basically, what does the Schr€odinger equation describe, from the chemist’s
viewpoint?

7. What is the limit to the kind of molecule for which we can get an exact solution

to the Schr€odinger equation?
8. What is parameterization?

9. What advantages does computational chemistry have over “wet chemistry”?

10. Why can’t computational chemistry replace “wet chemistry”?

Harder Questions

Discuss the following, and justify your conclusions.

1. Was there computational chemistry before electronic computers were available?

2. Can “conventional” physical chemistry, such as the study of kinetics, thermo-

dynamics, spectroscopy and electrochemistry, be regarded as a kind of com-

putational chemistry?
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3. The properties of a molecule that are most frequently calculated are geometry,

energy (compared to that of other isomers), and spectra. Why is it more of a

challenge to calculate “simple” properties like melting point and density?

Hint: is there a difference between a molecule X and the substance X?

4. Is it surprising that the geometry and energy (compared to that of other isomers)

of a molecule can often be accurately calculated by a ball-and-springs model

(molecular mechanics)?

5. What kinds of properties might you expect molecular mechanics to be unable to

calculate?

6. Should calculations from first principles (ab initio) necessarily be preferred to

those which make some use of experimental data (semiempirical)?

7. Both experiments and calculations can give wrong answers. Why then should

experiment have the last word?

8. Consider the docking of a potential drug molecule X into the active site of an

enzyme: a factor influencing how well X will “hold” is clearly the shape of X;

can you think of another factor?

Hint: molecules consist of nuclei and electrons.

9. In recent years the technique of combinatorial chemistry has been used to

quickly synthesize a variety of related compounds, which are then tested for

pharmacological activity (S. Borman, Chemical & Engineering News: 2001,

27 August, p. 49; 2000, 15 May, p. 53; 1999, 8 March, p. 33). What are the

advantages and disadvantages of this method of finding drug candidates,

compared with the “rational design” method of studying, with the aid of

computational chemistry, how a molecule interacts with an enzyme?

10. Think up some unusual molecule which might be investigated computationally.

What is it that makes your molecule unusual?
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Chapter 2

The Concept of the Potential Energy Surface

Everything should be made as simple as possible, but not
simpler.

Attributed to Albert Einstein, but these precise words,

or the German equivalents, do not appear in his

collected works (available online).

Abstract The potential energy surface (PES) is a central concept in computational

chemistry. A PES is the relationship – mathematical or graphical – between the

energy of a molecule (or a collection of molecules) and its geometry. The Born-

Oppenheimer approximation says that in a molecule the nuclei are essentially

stationary compared to the electrons. This is one of the cornerstones of computa-

tional chemistry because it makes the concept of molecular shape (geometry)

meaningful, makes possible the concept of a PES, and simplifies the application

of the Schr€odinger equation to molecules by allowing us to focus on the electronic

energy and add in the nuclear repulsion energy later; this third point, very important

in practical molecular computations, is elaborated on in Chap. 5. Geometry opti-

mization and the nature of transition states are explained.

2.1 Perspective

We begin a more detailed look at computational chemistry with the potential energy

surface (PES) because this is central to the subject. Many important concepts that

might appear to be mathematically challenging can be grasped intuitively with the

insight provided by the idea of the PES [1].

Consider a diatomic molecule AB. In some ways a molecule behaves like balls

(atoms) held together by springs (chemical bonds); in fact, this simple picture is the

basis of the important method molecular mechanics, discussed in Chap. 3. If we

take a macroscopic balls-and-spring model of our diatomic molecule in its normal

geometry (the equilibrium geometry), grasp the “atoms” and distort the model by

stretching or compressing the “bonds”, we increase the potential energy of the

© Springer International Publishing Switzerland 2016
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molecular model (Fig. 2.1). The stretched or compressed spring possesses energy,

by definition, since we moved a force through a distance to distort it – work was

done on the spring. Since the model is motionless while we hold it at the new

geometry, this energy is not kinetic and so is by default potential (“depending on

position”). The graph of potential energy against bond length is an example of a

potential energy surface. A line is a one-dimensional “surface”; we will soon see an

example of a more familiar two-dimensional surface rather than the line of Fig. 2.1.

Real molecules behave similarly to, but differ from our macroscopic model in

two relevant ways:

1. They vibrate incessantly (as we would expect from Heisenberg’s uncertainty

principle: a stationary molecule would have an exactly defined momentum and

position) about the equilibrium bond length, so that they always possess kinetic

energy (T) and/or potential energy (V ): as the bond length passes through the

equilibrium length,V ¼ 0, while at the limit of the vibrational amplitude, T ¼ 0;

at all other positions both T and V are nonzero. The fact that a molecule is never

actually stationary with zero kinetic energy (it always has zero point energy;
ZPE or zero point vibrational energy, ZPVE, Sect. 2.5) is usually shown on

potential energy/bond length diagrams by drawing a series of lines above the

bottom of the curve (Fig. 2.2) to indicate the possible amounts of vibrational

energy the molecule can have (the vibrational levels it can occupy). A molecule

never sits at the bottom of the curve, but rather occupies one of the vibrational

levels, and in a collection of molecules the levels are populated according to

their spacing and the temperature [2]. We will usually ignore the vibrational

levels and consider molecules to rest on the actual potential energy curves or

(see below) surfaces, and:

bond length, q 

energy

0

qe

Fig. 2.1 The potential

energy surface for a

diatomic molecule. The

potential energy increases if

the bond length q is

stretched or compressed

away from its equilibrium

value qe. The potential
energy at qe (zero distortion

of the bond length) has been

chosen here as the zero of

energy
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2. Near the equilibrium bond length qe the potential energy/bond length

curve for a macroscopic balls-and-spring model or a real molecule is

described fairly well by a quadratic equation, that of the simple harmonic

oscillator (E ¼ ð1=2Þk q� qeð Þ2, where k is the force constant of the spring).

However, the potential energy deviates from the quadratic (q2) curve as we move

away from qe (Fig. 2.2); that is, the deviations frommolecular reality represented

by this anharmonicity become more important further away from the equilib-

rium geometry.

Figure 2.1 represents a one-dimensional PES in the two-dimensional graph of

E vs. q. A diatomic molecule AB has only one geometric parameter for us to vary,

the bond length qAB. Suppose we have a molecule with more than one geometric

parameter, for example water: the geometry is defined by two bond lengths and a

bond angle. If we reasonably content ourselves with allowing the two bond lengths

to be the same, i.e. if we limit ourselves to C2v symmetry (two planes of symmetry

and a two-fold symmetry axis; see Sect. 2.6) then the PES for this triatomic

molecule is a graph of E vs. two geometric parameters, q1 ¼ the O–H bond length,

andq2 ¼ the H–O–H bond angle (Fig. 2.3). Figure 2.3 represents a two-dimensional

PES (a normal surface is a 2-D object) in the three-dimensional graph; we could

make an actual 3-D model of this drawing of a 3-D graph of E vs. q1 and q2.
We can go beyond water and consider a triatomic molecule of lower symmetry,

such as HOF, hypofluorous acid. This has three geometric parameters, the H–O and

O–F lengths and the H–O–F angle. To construct a Cartesian PES graph for HOF

analogous to that for H2O would require us to plot E vs. q1 ¼ H–O, q2 ¼ O–F, and

q3 ¼ angle H–O–F. We would need four mutually perpendicular axes (for E, q1, q2,

bond length,q 

energy

0

qe

quadratic curve

true molecular potential energy
curve.

.

.

vibrational levels

Fig. 2.2 Actual molecules do not sit still at the bottom of the potential energy curve, but instead

occupy vibrational levels. Also, only near qe, the equilibrium bond length, does the quadratic curve

approximate the true potential energy curve
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q3, Fig. 2.4), and since such a four-dimensional graph cannot be constructed in our

three-dimensional space we cannot accurately draw it. The HOF PES is a 3-D

“surface” of more than two dimensions in 4-D space: it is a hypersurface, and

potential energy surfaces are sometimes called potential energy hypersurfaces.

Despite the problem of drawing a hypersurface, we can define the equation E ¼ f
q1, q2, q3ð Þ as the potential energy surface for HOF, where f is the function that

describes how E varies with the q’s, and treat the hypersurface mathematically. For

q1 = O H bond length

angle

H H

Oq2 = 

O
H H

energy

.

Pmin

q1 = 0.958 A

q2 = 104.5

Fig. 2.3 The H2O potential energy surface. The point Pmin corresponds to the minimum-energy

geometry for the three atoms, i.e. to the equilibrium geometry of the water molecule

q1

q2

q3

energyFig. 2.4 To plot energy

against three geometric

parameters in a Cartesian

coordinate system we would

need four mutually
perpendicular axes. Such a

coordinate system cannot be

actually constructed in our

three-dimensional space.

However, we can work with

such coordinate systems,

and the potential energy

surfaces in them,

mathematically
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example, in the AB diatomic molecule PES (a line) of Fig. 2.1 the minimum

potential energy geometry is the point at which dE=dq ¼ 0. On the H2O PES

(Fig. 2.3) the minimum energy geometry is defined by the point Pm, corresponding

to the equilibrium values of q1 and q2; at this point dE=dq1 ¼ dE=dq2 ¼ 0.

Although hypersurfaces in general cannot be faithfully rendered pictorially, it is

very useful to a computational chemist to develop an intuitive understanding of

them. This can be gained with the aid of diagrams like Figs. 2.1 and 2.3, where we

content ourselves with a line or a two-dimensional surface, in effect using a slice of

a multidimensional diagram. This can be understood by analogy: Fig. 2.5 shows

how 2-D slices can be made of the 3-D diagram for water. The slice could be made

holding one or the other of the two geometric parameters constant, or it could

involve both of them, giving a diagram in which the geometry axis is a composite of

more than one geometric parameter. Analogously, we can take a 3-D slice of the

hypersurface for HOF (Fig. 2.6) or even a more complex molecule and use an E vs.

q1, q2 diagram to represent the PES; we could even use a simple 2D diagram, with

q representing one, two or all of the geometric parameters. We shall see that these

2D and particularly 3D graphs preserve qualitative and even quantitative features of

the mathematically rigorous but unvisualizable E ¼ f q1, q2, . . . qnð Þ n-dimen-

sional hypersurface.

q1 = O H bond length

angle
H H

Oq2 = 

O
H Henergy

slice parallel to
angle axis

slice parallel to bond length axis

energy
energy

bond lengthbond angle

2D surface

1D "surface" 1D "surface"

Fig. 2.5 Slices through a 2D potential energy surface give 1D surfaces. A slice that is parallel to

neither axis would give a plot of geometry vs. a composite of bond angle and bond length, a kind of

average geometry
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2.2 Stationary Points

Potential energy surfaces are important because they aid us in visualizing and

understanding the relationship between potential energy and molecular geometry,

and in understanding how computational chemistry programs locate and character-

ize structures of interest. Among the main tasks of computational chemistry are to

determine the structure and energy of molecules and of the transition states

involved in chemical reactions: our “structures of interest” are molecules and the

transition states linking them. Consider the reaction

Reaction 1

O

O O

transition state

O

O O

isoozone

O

O O

ozone

A priori, it seems reasonable that ozone might have an isomer (call it isoozone)

and that the two could interconvert by a transition state as shown in Reaction 1. We

can depict this process on a PES. The potential energy E may be plotted against

q1 = O H bond length

q2 = O bond lengthF

H

O
F

energy

.

Pmin

Fig. 2.6 A potential energy surface (PES) for HOF. Here the HOF angle is not shown. This

picture could represent one of two possibilities: the angle might be the same (some constant,

reasonable value) for every calculated point on the surface; this would be an unrelaxed or rigid
PES. Alternatively, for each calculated point the geometry might be that for the best angle

corresponding to the other two parameters, ie the geometry for each calculated point might be

fully optimized (Sect. 2.4); this would be a relaxed PES
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only two geometric parameters, the bond length and the O–O–O bond angle. We

shall (reasonably) assume that the two O–O bonds of ozone are equivalent, and that

these bond lengths remain equal throughout the reaction. Figure 2.7 shows the PES

for Reaction (2.1), as calculated by the AM1 semiempirical method (Chap. 6; the

AM1 method is unsuitable for quantitative treatment of this problem, but the

potential energy surface shown makes the point), and shows how a 2D slice from

this 3D diagram gives the energy/reaction coordinate type of diagram commonly

used by chemists. The slice goes along the lowest-energy path connecting ozone,

isoozone and the transition state, that is, along the reaction coordinate, and the

horizontal axis (the reaction coordinate) of the 2D diagram is a composite of O–O

bond length and O–O–O angle. In most discussions this horizontal axis is left

quantitatively undefined; qualitatively, the reaction coordinate represents the pro-

gress of the reaction. The three species of interest, ozone, isoozone, and the

transition state linking these two, are called stationary points. A stationary point

on a PES is a point at which the surface is flat, ie parallel to a horizontal line

corresponding to one geometric parameter, or to a plane corresponding to two

geometric parameters, or to a hyperplane corresponding to more than two geometric

parameters). A marble placed on a stationary point will remain balanced, ie

stationary (in principle; for a transition state the balancing would have to be

exquisite indeed). At any other point on a potential surface the marble will roll

toward a region of lower potential energy.

Mathematically, a stationary point is one at which the first derivative of the

potential energy with respect to each geometric parameter is zero:

∂E
∂q1

¼ ∂E
∂q2

¼ � � � ¼ 0 ð*2:1Þ

Partial derivatives, ∂E=∂q, are written here rather than dE/dq, to emphasize that

each derivative is with respect to just one of the variables q of which E is a function.

Stationary points that correspond to actual molecules with a finite lifetime

(in contrast to transition states, which exist only for an instant), like ozone or

isoozone, are minima, or energy minima: each occupies the lowest-energy point

in its region of the PES, and any small change in the geometry increases the energy,

as indicated in Fig. 2.7. Ozone is a global minimum, since it is the lowest-energy

minimum on the whole PES, while isoozone is a relative minimum, a minimum

compared only to nearby points on the surface. The lowest-energy pathway linking
the two minima, the reaction coordinate or intrinsic reaction coordinate (IRC;

dashed line in Fig. 2.7) is the path that would be followed by a molecule in going

from one minimum to another should it acquire just enough energy to overcome the

activation barrier, pass through the transition state, and reach the other minimum.

Not all reacting molecules follow the IRC exactly: a molecule with sufficient

energy can stray outside the IRC to some extent [3].

Inspection of Fig. 2.7 shows that the transition state linking the two minima

represents a maximum along the direction of the IRC, but along all other directions
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Fig. 2.7 The ozone/isoozone potential energy surface (calculated by the AM1method; Chap. 6), a

2D surface in a 3D diagram. The dashed line on the surface is the reaction coordinate (intrinsic

reaction coordinate, IRC). A slice through the reaction coordinate gives a 1D “surface” in a 2D

diagram. The diagram is not meant to be quantitatively accurate
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it is a minimum. This is a characteristic of a saddle-shaped surface, and the

transition state itself is called a saddle point (Fig. 2.8). The saddle point lies at

the “center” of the saddle-shaped region and is, like a minimum, a stationary point,

since the PES at that point is parallel to the plane defined by the geometry parameter

axes: we can see that a marble placed (precisely) there will balance. Mathemati-

cally, minima and saddle points differ in that although both are stationary points

(they have zero first derivatives; Eq. 2.1), a minimum is a minimum in all direc-

tions, but a saddle point is a maximum along the reaction coordinate and a

minimum in all other directions (examine Fig. 2.8). Recalling that minima and

maxima can be distinguished by their second derivatives, we can write:

For a minimum

∂2
E

∂q2
> 0 ð*2:2Þ

for all q.
For a transition state

∂2
E

∂q2
> 0 ð*2:3Þ

for all q, except along the reaction coordinate, and

∂2
E

∂q2
< 0 ð*2:4Þ

along the reaction coordinate.

.

minimum

.

transition state

transition state region

reaction coordinate

energy

Fig. 2.8 A transition state or saddle point and a minimum. At both the transition state and the

minimum ∂E/∂q ¼ 0 for all geometric coordinates q (along all directions). At the transition state

∂E2/∂q2< 0 for q¼ the reaction coordinate and> 0 for all other q (along all other directions). At a
minimum ∂E2/∂q2 > 0 for all q (along all directions)
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The distinction is sometimes made between a transition state and a transition
structure [4]. Strictly speaking, a transition state is a thermodynamic concept, a

member of an ensemble which is in a kind of equilibrium with the reactants in

Eyring’s1 transition-state theory [5]. Since equilibrium constants are determined by

free energy differences, the transition state species is logically a free energy

maximum along the reaction coordinate, in so far as a single species can be

considered representative of the ensemble. This species is also often (but not

always [5]) also called an activated complex, a term apparently used more in

experimental kinetics. A transition structure, in strict usage, is the saddle point

(Fig. 2.8) on a theoretically calculated (eg Fig. 2.7) PES. Normally such a surface

is drawn (conceptually anyway) through a set of points each of which represents

the enthalpy (in this context the potential energy) of a molecular species at a

certain geometry; recall that free energy differs from enthalpy by temperature

times entropy. The transition structure, the point you “see” when you look at a

figure like Fig. 2.7, is thus a saddle point on an enthalpy surface. The energy of

each of the calculated points on a PES does not normally include vibrational

energy, which by standard calculations is meaningful only for stationary points

(Sect. 2.5). In fact, however, any molecular assemblage, stationary or not, has

zero point vibrational energy, even at even at 0 K. The usual calculated PES is

thus a hypothetical, somewhat physically unrealistic surface in that it neglects

vibrational energy, but it should qualitatively, and usually even semiquantita-

tively, resemble a vibrationally-corrected one since in considering relative
enthalpies ZPEs commonly at least roughly cancel. In accurate work ZPEs are

calculated for stationary points and added to the “frozen-nuclei” energy in an

attempt to give improved relative energies; at 0 K these represent enthalpy

differences and thus, at this temperature where entropy is zero, free energy

differences too. It is also routinely possible to calculate free energies of stationary

points at, say, room temperature (Chap. 5, Sect. 5.5.2). This provides theoretically

sound energy differences for calculating activation and reaction energies at

temperatures above 0 K. For more on energy calculations, (see Chap. 5, Sect.

5.5.2). Many chemists do not routinely distinguish between the terms transition

state and transition structure, and in this book the commoner term, transition state,

is used. Unless indicated otherwise, it will mean a calculated saddle point species

with one imaginary frequency (Sect. 2.5) and “known” (calculated) free energy,

normally at standard temperature, 298 K.

The geometric parameter corresponding to the reaction coordinate is usually a

composite of several parameters (bond lengths, angles and dihedrals), although for

some reactions one two may predominate. In Fig. 2.7, the reaction coordinate is a

composite of the O–O bond length and the O–O–O bond angle.

1 H Eyring, American chemist. Born Colonia Juarárez, Mexico, 1901. Ph.D. University of Cali-

fornia, Berkeley, 1927. Professor Princeton, University of Utah. Known for his work on the theory

of reaction rates and on potential energy surfaces. Died Salt Lake City, Utah, 1981.
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A saddle point, the point on a PES where the second derivative of energy with

respect to one and only geometric coordinate (possibly a composite coordinate) is

negative, corresponds to a transition state. Some PES’s have points where the

second derivative of energy with respect to more than one coordinate is negative;

these are higher-order saddle points or hilltops: for example, a second-order saddle
point is a point on the PES which is a maximum along two paths connecting

stationary points. The propane PES, Fig. 2.9, provides examples of a minimum, a

transition state and a hilltop–a second-order saddle point in this case. Figure 2.10

shows the three stationary points in more detail. The “doubly-eclipsed”

conformation, A, in which there is eclipsing as viewed along the C1–C2 and the

C3–C2 bonds (the dihedral angles are 0� viewed along these bonds) is a second-

order saddle point because single bonds do not like to eclipse single bonds and

rotation about the C1–C2 and the C3–C2 bonds will remove this eclipsing: there are

two possible directions along the PES which lead, without a barrier, to lower-energy

regions, i.e. changing the H–C1/C2–C3 dihedral and changing the H–C3/C2–C1

dihedral. Changing one of these leads to a “singly-eclipsed” conformation (B) with

only one offending eclipsing CH3–CH2 arrangement, and this is a first-order saddle

point, since there is now only one direction along the PES which leads to relief of

A, hilltop

B, transition state

C, minimum
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Fig. 2.9 The propane potential energy surface as the two HCCC dihedrals are varied (calculated

by the AM1 method, Chap. 6). Bond lengths and angles were not optimized as the dihedrals were

varied, so this is not a relaxed PES; however, changes in bond lengths and angles from one propane

conformation to another are small, and the relaxed PES should be very similar to this one
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the eclipsing interactions (rotation around C3–C2). This route gives a conformation

C which has no eclipsing interactions and is therefore a minimum. There are no

lower-energy structures on the C3H8 PES and so C is the global minimum.

The geometry of propane depends on more than just two dihedral angles, of

course; there are several bond lengths and bond angles and the potential energy
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Fig. 2.10 The stationary points on the propane potential energy surface. Hydrogens at the end of

CH bonds are omitted for clarity
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will vary with changes in all of them. Figure 2.9 was calculated by varying in

modest steps only the two dihedral angles associated with the H–C–C–C–H

bonds, keeping the other geometrical parameters the same as they are in the

all-staggered conformation. If at every point on the dihedral/dihedral grid all the

other parameters (bond lengths and angles) had been optimized (adjusted to give

the lowest possible energy, for that particular calculational method; Sect. 2.4),

the result would have been a relaxed PES. In Fig. 2.9 this was not done, but

because bond lengths and angles change only slightly with changes in dihedral

angles the PES would not be altered much, while the time required for the

calculation (for the potential energy surface scan) would have been longer.

Figure 2.9 is a nonrelaxed or rigid PES, albeit not very different, in this case,

from a relaxed one.

Chemistry is essentially the study of the stationary points on potential energy

surfaces: in studying more or less stable molecules we focus on minima, and in

investigating chemical reactions we study the passage of a molecule from a

minimum through a transition state to another minimum. There are four known

forces in nature: the gravitational force, the strong and the weak nuclear forces,

and the electromagnetic force. Celestial mechanics studies the motion of stars

and planets under the influence of the gravitational force and nuclear physics

studies the behaviour of subatomic particles subject to the nuclear forces.

Chemistry is concerned with aggregates of nuclei and electrons (with molecules)

held together by the electromagnetic force, and with the shuffling of nuclei,

followed by their obedient retinue of electrons, around a potential energy surface

under the influence of this force. A potential energy surface might be called a

reactivity surface.

The concept of the chemical potential energy surface apparently originated

with R. Marcelin [6]: in a dissertation-long paper (111 pages) which is somehow

not well-known he laid the groundwork for transition-state theory 20 years

before the much better-known work of Eyring [5, 7]. The importance of

Marcelin’s work is acknowledged by Rudolph Marcus in his Nobel Prize

(1992) speech, where he refers to “. . .Marcelin’s classic 1915 theory which

came within one small step of the transition state theory of 1935.” The paper

was published the year after the death of the author, who was killed in World

War I, as shown by the footnote “Tué �a l’ennemi en sept 1914”. The first

potential energy surface was calculated in 1931 by Eyring and Polanyi,2 using

a mixture of experiment and theory [8].

2Michael Polanyi, Hungarian-British chemist, economist, and philosopher. Born Budapest 1891.

Doctor of medicine 1913, Ph.D. University of Budapest, 1917. Researcher Kaiser-Wilhelm

Institute, Berlin, 1920–1933. Professor of chemistry, Manchester, 1933–1948; of social studies,

Manchester, 1948–1958. Professor Oxford, 1958–176. Best known for book “Personal Knowl-

edge”, 1958. Died Northampton, England, 1976.
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Our treatment of a PES can be subjected to a more sophisticated examination, by

examining changes in the direction and curvature of the reaction path, the reaction

path Hamiltonian (RPH) and the united reaction valley approach (URVA) [9]; these

can reveal deeper detail about a reaction than one obtains only from the energies of

the various species (as in the simple treatment of Sect. 2.4).

The potential energy surface for a chemical reaction has just been presented as

a saddle-shaped region holding a transition state which connects wells containing

reactant(s) and products(s) (which species we call the reactant and which the

product is inconsequential here). This picture is immensely useful, and may well

apply to the great majority of reactions. However, for some reactions it is

deficient. Carpenter has shown with molecular dynamics that in some cases a

reactive intermediate does not tarry in a PES well and then surmount a barrier

[10]. Rather it appears to scoot over a plateau-shaped region of the PES, and

retaining a memory (“dynamical information”) of the atomic motions it acquired

when it was formed, diverges along, say, two paths (“bifurcates”). When this

happens there are two intermediates with the same crass geometry, but different

atomic motions, leading to different products. The details are subtle, and the

interested reader is commended to the relevant literature [10]. Such a bifurcating

PES has been implicated in the biosynthesis of the natural terpenoid abietic acid

[11]. Even a conventional PES, with minima connected by transition states, can

exhibit surprises, as in the case of a reaction preferring to go over the higher-

rather than the lower-energy transition state (because of quantum-mechanical

tunnelling) [12]. Molecular dynamics (above and Chap. 1, Sects. 1.2 and 1.3) is

mentioned little more than peripherally in this book, but as indicated it has

revealed unexpected features of the traversing of potential energy surfaces by

reacting molecules; further, it offers the possibility of providing an intuitive

feeling (literally) for the movement of molecules on this surface, by allowing

the chemist to experience by interactive feedback the molecular forces experi-

enced by the molecules [13].

2.3 The Born-Oppenheimer Approximation

A potential energy surface is a plot of the energy of a collection of nuclei and

electrons against the geometric coordinates of the nuclei—essentially a plot of

molecular energy vs. molecular geometry (or it may be regarded as the mathemat-

ical equation that gives the energy as a function of the nuclear coordinates). The

nature (minimum, saddle point or neither) of each point was discussed in terms of

the response of the energy (first and second derivatives) to changes in nuclear

coordinates. But if a molecule is a collection of nuclei and electrons why plot

energy vs. nuclear coordinates—why not against electron coordinates? In other

words, why are nuclear coordinates the parameters that define molecular geometry?

The answer to this question lies in the Born-Oppenheimer approximation.
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Born3 and Oppenheimer4 showed in 1927 [14] that to a very good approximation

the nuclei in a molecule are stationary with respect to the electrons. This is a

qualitative expression of the principle; mathematically, the approximation states

that the Schr€odinger equation (Chap. 4) for a molecule may be separated into an

electronic and a nuclear equation. One consequence of this is that all (!) we have to

do to calculate the energy of a molecule is to solve the electronic Schr€odinger
equation and then add the electronic energy to the internuclear repulsion (this

latter quantity is trivial to calculate) to get the total internal energy (see Chap. 4,

Sect. 4.4.1). A deeper consequence of the Born-Oppenheimer approximation is that

a molecule has a shape.

The nuclei see the electrons as a smeared-out cloud of negative charge which

binds them in fixed relative positions and which defines the (somewhat fuzzy)

surface of the molecule; a standard molecular surface, corresponding to the size as

determined experimentally, eg by X-ray diffraction, encloses about 98% of the

electron density [15] (see Fig. 2.11). Because of the rapid motion of the electrons

compared to the nuclei the “permanent” geometric parameters of the molecule are

the nuclear coordinates. The energy (and the other properties) of a molecule is

r1
r2

r3
a1

a2

Fig. 2.11 The nuclei in a molecule see a time-averaged electron cloud. The nuclei vibrate about

equilibrium points which define the molecular geometry; this geometry can be expressed simply as

the nuclear Cartesian coordinates, or alternatively as bond lengths and angles r and a here) and

dihedrals, i.e. as internal coordinates. As far as size goes, the experimentally determined van der

Waals surface encloses about 98 percent of the electron density of a molecule

3Max Born, German-British physicist. Born in Breslau (now Wroclaw, Poland), 1882, died in

G€ottingen, 1970. Professor Berlin, Cambridge, Edinburgh. Nobel prize, 1954. One of the founders

of quantum mechanics, originator of the probability interpretation of the (square of the)

wavefunction (Chap. 4).
4 J. Robert Oppenheimer, American physicist. Born in New York, 1904, died in Princeton 1967.

Professor California Institute of Technology. Fermi award for nuclear research, 1963. Important

contributions to nuclear physics. Director of the Manhattan Project 1943–1945. Victimized as a

security risk by senator Joseph McCarthy’s Un-American Activities Committee in 1954. Central

figure of the eponymous PBS TV series (Oppenheimer: Sam Waterston).
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a function of the electron coordinates (E ¼ ψ (x, y, z of each electron); Chap. 5,

Sect. 5.2), but depends only parametrically on the nuclear coordinates, ie for

each geometry 1, 2, . . . there is a particular energy: E1 ¼ ψ1 x, y, z . . .ð Þ, E2 ¼ ψ2

x, y, z . . .ð Þ; cf. xn, which is a function of x but depends only parametrically on the

particular n. Actually, the nuclei are not stationary, but execute vibrations of small

amplitude about equilibrium positions; it is these equilibrium positions that we

mean by the “fixed” nuclear positions. It is only because it is meaningful to speak of

(almost) fixed nuclear coordinates that the concepts of molecular geometry or shape

and of the PES are valid [16]. The nuclei are much more sluggish than the electrons

because they are much more massive (a hydrogen nucleus is about 2000 more

massive than an electron).

Consider the molecule H3
þ, made up of three protons and two electrons. Ab

initio calculations assign it the geometry shown in (Fig. 2.12). The equilibrium

positions of the nuclei (the protons) lie at the corners of an equilateral triangle and

H3
þ has a definite shape. But suppose the protons were replaced by positrons, which

have the same mass as electrons. The distinction between nuclei and electrons,

which in molecules rests on mass and not on some kind of charge chauvinism,

would vanish. We would have a quivering cloud of flitting particles to which a

shape could not be assigned on a macroscopic time scale.

A calculated PES, which we might call a Born-Oppenheimer surface, is

normally the set of points representing the geometries, and the corresponding

energies, of a collection of atomic nuclei; the electrons are taken into account in

the calculations as needed to assign charge and multiplicity (multiplicity is

connected with the number of unpaired electrons). Each point corresponds to a

set of stationary nuclei, and in this sense the surface is somewhat unrealistic (see

Sect. 2.5).

Two reservations should be stated about the Born-Oppenheimer approximation:

first, it appears that there is actually no rigorous proof of its validity, and second,

although it does usually work, there are cases where its use is inappropriate.

0.851 A

0.851 A

0.851 A

H

H H

–

–

++

+

The H3
+ cation: 3 protons, 2 electrons

make the masses of the
nuclei and electrons equal

Definite geometry
No definite geometry

Fig. 2.12 A molecule has a definite shape because unlike the electrons, the nuclei are (relatively)

stationary (since they are much more massive). If the masses of the nuclei and the electrons could

be made equal, the distinction in lethargy would be lost, and the molecular geometry would

dissolve
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Regarding the alleged proof [14], Sutcliffe shows in an amusing (in the opening

paragraphs) yet mathematically formidable paper that when the problem is

“reformulated in a precise manner and re-examined” the mathematical description

of the terms describing the coupling between nuclear and electronic motion is

“rather elusive and their theoretical status often problematic.” The coupling prob-

lem “is, at the moment, without a sensible solution and that is an area where much

future work can and must be done” [17]. Nineteen years later, the conclusion

seemed the same, although the utility of the potential energy surface concept was

conceded:

The clamped-nuclei Hamiltonian and the associated notion of PES are crucial to the

method; on the other hand PES make no appearance in the formally exact description

based on spectral projection, so it is hard to claim any fundamental role for Potential Energy

Surfaces in the quantum mechanics of molecules. This is not of course, to ignore the

important role of PES in approximate calculations and their role in interpreting experimen-

tal results. It is simply to place PES properly in relation to quantum theory. [18].

Practising computational chemists have rarely claimed that their calculations are

“formally exact”, but anyone familiar with the literature knows that on occasion

calculations within the Born-Oppenheimer rubric can be highly accurate.

The Born-Oppenheimer approximation is inappropriate in some cases. One is

the reaction mentioned above in which the higher-energy transition state was

preferred [12]. Another is illustrated by a study of the vibrational levels of CIH2

(sic) and the Clþ H2 reaction; although the results were good with Born-

Oppenheimer, they improved about tenfold when this approximation was removed

[19]. Another paper on comparing calculations with and without the approximation

has a section entitled, “. . .Corrections to the BO Energy for Molecules Containing

up to Three Nuclei”, and focusses on H3
þ, hinting at the magnitude of the task of

going beyond Born-Oppenheimer for any but the smallest molecules [20]. A study

applying non-Born-Oppenheimer calculations (augmented with relativity) to dis-

sociation energies was limited to H2, HD,D2, T2, and HeHþ [21]. That the approx-

imation would be most approximate for cases where the nuclei are protons or He2þ

is understandable given that it is these nuclei that most closely resemble the electron

in mass. One experiment on Hþ H2 replaced the H atom with muonium, in which

an electron orbits not a proton but rather a positive muon, which is only 206 times

heavier than an electron, versus the 1836 proton-electron ratio [22]. This is a

remarkable experimental tour de force, but is somewhat removed from standard

chemistry.

The possibility of calculating highly accurate potential energy surfaces, and

practical approaches to this formidable task, have been examined [23]. Although

modern 3D graphics programs render excellent pictures of potential energy

surfaces on the screen and on the page (as any observant reader of current

chemistry journals will attest), some might wish an actual 3D model; the advent

of 3D printing has made possible the translation of digital data beyond the printed

page [24].
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2.4 Geometry Optimization

The characterization (the “location” or “locating”) of a stationary point on a PES,

that is, demonstrating that the point in question exists and calculating its geometry

and energy, is a geometry optimization. The stationary point of interest might be a

minimum, a transition state, or, occasionally, a higher-order saddle point. Locating

a minimum is often called an energy minimization or simply a minimization, and

locating a transition state is often referred to specifically as a transition state

optimization. Geometry optimizations are done by starting with an input structure

that is believed to resemble (the closer the better) the desired stationary point and

submitting this plausible structure to a computer algorithm that systematically

changes the geometry until it has found a stationary point. The curvature of the

PES at the stationary point, ie the second derivatives of energy with respect to the

geometric parameters (Sect. 2.2) may then be determined (Sect. 2.5) to characterize

the structure as a minimum or as some kind of saddle point.

Let us consider a problem that arose in connection with an experimental study.

Propanone (acetone) was subjected to ionization followed by neutralization of the

radical cation, and the products were frozen in an inert matrix and studied by IR

spectroscopy [25]. The spectrum of the mixture suggested the presence of the enol

isomer of propanone, 1-propen-2-ol:

C
C C

O

H3 H3 H2C
C

CH3

OH

Reaction 2

To confirm (or refute) this the IR spectrum of the enol might be calculated (see

Sect. 2.5 and the discussions of the calculation of IR spectra in subsequent chap-

ters). But which conformer should one choose for the calculation? Rotation about

the C–O and C–C bonds creates six plausible stationary points (Fig. 2.13), and a

PES scan (Fig. 2.14) indicated that there are indeed six such species. Examination

of this PES shows that the global minimum is structure 1 and that there is a relative

minimum corresponding to structure 3. Geometry optimization starting from an

input structure resembling 1 gave a minimum corresponding to 1, while optimiza-

tion starting from a structure resembling 3 gave another, higher-energy minimum,

resembling 3. Transition-state optimizations starting from appropriate structures

yielded the transition states 2, 4 and 5, and requesting optimization to a “second-

order transition state” gave the hilltop 6, with two imaginary frequencies; these six

stationary points were all characterized as minima, transition states or hilltops by

second-derivative calculations (Sect. 2.5). Figure 2.15 is a projection onto two

dimensions of the surface in Fig. 2.14, with the vertical axis representing the

energies of the fully optimized structures of Fig. 2.13; this is a typical representa-

tion of a PES, and shows clearly the interrelationships of the various stationary
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points. The calculated IR spectrum of 1 (using the ab initio HF/6–31G* method–

chapter 5) was in excellent agreement with the observed spectrum of the putative

propenol.

This illustrates a general principle: the optimized structure one obtains is that

closest in geometry on the PES to the input structure (Fig. 2.16). If we wish to be

sure we have found the global minimum we must (except for very simple or very

rigid molecules) search the potential energy surface. There are algorithms that will

do this in an attempt to find the lowest-energy minimum, but there appears to be in
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C CH3

0 kJ mol–1

minimum

minimum
7.9 kJ mol–15.8 kJ mol–1

TS

11.6 kJ mol–1

TS

14.4 kJ mol–1

TS

18.3 kJ mol–1

hilltop (2 imaginary frequencies)

Fig. 2.13 The plausible stationary points on the propenol potential energy surface according to

AM1 geometry optimization-frequency calculations (the frequencies show if a stationary point is a

minimum, a transition state, or a hilltop). A PES scan (Fig. 2.14) indicated that 1 is the global

minimum and 3 is a relative minimum, while 2, 4 and 5 are transition states and 6 is a hilltop; this is
confirmed (at the AM1 level at least) by these calculations. Constructing input structures

corresponding to these points on the surface, guided by the dihedral angles, then optimizing,

gave the AM1 relative energies for 1–6 (these are room-temperature free energies relative to 1 set
as zero).The arrowsmerely show the structural relationships of one-step (rotation about one bond,

as indicated) conversion of one species into another, not connectivity on a PES – for example, 2 is
not a TS linking 1 and 4; such reactivity relationships are shown in Figs. 2.14 and 2.15
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general no way to guarantee that the lowest-energy structure one finds is indeed the
global minimum. For concise reviews of this difficult problem see Jensen (six

methods) [26] and Levine (nine methods) [27]. These draw attention to the fact

that the fairly small, but floppy, unbranched tridecane (C13H28) has 59 049 con-

formers, while for the slightly bigger but more rigid cycloheptadecane (C17H34)

20 469 were found. For tridecane a systematic dihedral-stepping search is possible,

and 59 049 is presumably the actual number of conformers with the lowest-energy

one being the global minimum, but a perfectly systematic search seems to be not

feasible for a cyclic molecule (which present special problems) of the size of

cycloheptadecane, and, conceivably, the true global minimum eluded this search.

Of course we may not be interested in the global minimum; for example, if we wish

to study the cyclic isomer of ozone (Sect. 2.2) we will use as input an equilateral

triangle structure, probably with bond lengths about those of an O–O single bond.

In the propenol example, the PES scan suggested that to obtain the global

minimum we should start with an input structure resembling 1, but the exact values

of the various bond lengths and angles were unknown (the exact values of even the

Fig. 2.14 The 1-propen-2-ol potential energy surface (calculated by the AM1 method), the result

of a scan in which the H–O–C¼C and H–C–C¼C dihedral angles were varied. Compare with

Figs. 2.13 and 2.15
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Fig. 2.15 The 1-propen-2-ol potential energy surface, drawn from the result of the geometry

optimizations-frequency calculations of Fig. 2.13. The energies are room-temperature free ener-

gies relative to 1 set as zero. The reaction coordinate, which is qualitative here, is essentially a

composite of the H–O–C¼C and H–C–C¼C dihedral angles since other geometry parameters, like

bond lengths, should change only slightly with conformation. The transition states 2 and 4 are for

degenerate reactions, connecting “identical” minima, which could be distinguished by labelling a

CH3 hydrogen. The hilltop 6 connects transition states 2 and 4 and the “identical” transition states
5 and 5

energy

geometry

TS

B

A

B'

A'

several steps
several steps

Fig. 2.16 Geometry optimization to a minimum gives the minimum closest to the input structure.

The input structure A0 is moved toward the minimum A, and B0 toward B. To locate a transition

state a special algorithm is usually used: this moves the initial structure A0 toward the transition

state TS. Optimization to each of the stationary points would probably actually require several

steps (see Fig. 2.17)
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dihedrals was not known with certainty, although general chemical knowledge

made H–O–C–C ¼ H–C-C¼C ¼ 0� seem plausible). The actual creation of input

structures is usually done nowadays with an interactive mouse-driven program, in

much the same spirit that one constructs plastic models or draws structures on

paper. An older alternative is to specify the geometry by defining the various bond

lengths, angles and dihedrals, i.e. by using a so-called Z-matrix (internal

coordinates).

To move along the PES from the input structure to the nearest minimum is

obviously trivial on the 1-dimensional PES of a diatomic molecule: one simply

changes the bond length till that corresponding to the lowest energy is found. On

any other surface, efficient geometry optimization requires a sophisticated algo-

rithm. One would like to know in which direction to move, and how far in that

direction (Fig. 2.17). It is not possible, in general, to go from the input structure to

the proximate minimum in just one step, but modern geometry optimization

algorithms commonly reach the minimum in about ten steps, given a reasonable

input geometry. The most widely-used algorithms for geometry optimization [28]

use the first and second derivatives of the energy with respect to the geometric

parameters. To get a feel for how this works, consider the simple case of a

1-dimensional PES, as for a diatomic molecule (Fig. 2.18). The input structure is

at the point Pi(Ei, qi) and the proximate minimum, corresponding to the optimized

structure being sought, is at the point Po(Eo, qo). Before the optimization has been

energy

geometry

geometry

optimized structure

input structure

Fig. 2.17 An efficient optimization algorithm knows approximately in which direction to move

and how far to step, in an attempt to reach the optimized structure in relatively few (commonly

about 5–10) steps
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carried out the values of Eo and qo are of course unknown. If we assume that near a

minimum the potential energy is a quadratic function of q, which is a fairly good

approximation, then

E� Eo ¼ k q� qoð Þ2 ð2:5Þ

At the input point

dE=dqð Þi ¼ 2k qi � qoð Þ ð2:6Þ

At all points

d2E=dq2 ¼ 2k ¼ force constantð Þ ð2:7Þ

From (2.6) and (2.7),

dE=dqð Þi ¼ d2E=dq2
� �

qi � qoð Þ ð2:8Þ

bond length, q
0

qe

E

E – E0 = k(q – q0)
2

Pi (Ei,qi)
Input structure

Equilibrium (optimized) structure
Po(E0,q0)

Fig. 2.18 The potential energy of a diatomic molecule near the equilibrium geometry is approx-

imately a quadratic function of the bond length. Given an input structure (i.e. given the bond length

qi), a simple algorithm would enable the bond length of the optimized structure to be found in one

step, if the function were strictly quadratic
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and

qo ¼ qi � dE=dqð Þi= d2E=dq2
� � ð2:9Þ

Equation 2.9 shows that if we know (dE/dq)i, the slope or gradient of the PES at the

point of the initial structure, (d2E/dq2), the curvature of the PES (which for a

quadratic curve E(q) is independent of q) and qi, the initial geometry, we can

calculate qo, the optimized geometry. The second derivative of potential energy

with respect to geometric displacement is the force constant for motion along that

geometric coordinate; as we will see later, this is an important concept in connec-

tion with calculating vibrational spectra.

For multidimensional PES’s, i.e. for almost all real cases, far more sophisti-

cated algorithms are used, and several steps are needed since the curvature is not

exactly quadratic. The first step results in a new point on the PES that is

(probably) closer to the minimum than was the initial structure. This new point

then serves as the initial point for a second step toward the minimum, etc.

Nevertheless, most modern geometry optimization methods do depend on calcu-

lating the first and second derivatives of the energy at the point on the PES

corresponding to the input structure. Since the PES is not strictly quadratic, the

second derivatives vary from point to point and are updated as the optimization

proceeds.

In the illustration of an optimization algorithm using a diatomic molecule,

Eq. 2.9 referred to the calculation of first and second derivatives with respect to

bond length, which latter is an internal coordinate (inside the molecule). Optimi-

zations are actually commonly done using Cartesian coordinates x, y, z. Consider
the optimization of a triatomic molecule like water or ozone in a Cartesian

coordinate system. Each of the three atoms has an x, y and z coordinate, giving

9 geometric parameters, q1, q2, . . ., q9; the PES would be a 9-dimensional hyper-

surface on a 10D graph. We need the first and second derivatives of E with respect

to each of the 9 q’s, and these derivatives are manipulated as matrices. Matrices are

discussed in Chap. 4, Sect. 4.3.3; here we need only know that a matrix is a

rectangular array of numbers that can be manipulated mathematically, and that

they provide a convenient way of handling sets of linear equations. The first-

derivative matrix, the gradient matrix, for the input structure can be written as a

column matrix

gi ¼
∂E=∂q1ð Þi
∂E=∂q2ð Þi

⋮
∂E=∂q9ð Þi

0
BB@

1
CCA ð2:10Þ
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and the second-derivative matrix, the force constant matrix, is

H ¼
∂2

E=∂q1∂q1 ∂2
E=∂q1∂q2 . . . ∂2

E=∂q1∂q9
∂2

E=∂q2∂q1 ∂2
E=∂q2∂q2 . . . ∂2

E=∂q2∂q9
⋮ ⋮ . . . ⋮

∂2
E=∂q9∂q1 ∂2

E=∂q9∂q2 . . . ∂2
E=∂q9∂q9

0
BB@

1
CCA ð2:11Þ

The force constant matrix is called the Hessian.5 The Hessian is particularly

important, not only for geometry optimization, but also for the characterization of

stationary points as minima, transition states or hilltops, and for the calculation of

IR spectra (Sect. 2.5). In the Hessian ∂2
E=∂q1q2 ¼ ∂2

E=∂q2q1, as is true for all

well-behaved functions, but this systematic notation is preferable: the first subscript

refers to the row and the second to the column. The geometry coordinate matrices

for the initial and optimized structures are

qi ¼
qi1
qi2
⋮
qi9

0
BB@

1
CCA ð2:12Þ

and

qo ¼
qo1
qo2
⋮
qo9

0
BB@

1
CCA ð2:13Þ

The matrix equation for the general case can be shown to be:

qo ¼ qi �H�1gi ð2:14Þ

which is analogous to Eq. 2.9 for the optimization of a diatomic molecule, which

could be written

qo ¼ qi � d2E=dq2
� ��1

dE=dqð Þi

For n atoms we have 3n Cartesians; qo, qi and gi are 3n� 1 column matrices and

H is a 3n� 3n square matrix; multiplication by the inverse ofH rather than division

byH is used because matrix division is not defined. Equation 2.14 shows that for an

efficient geometry optimization we need an initial structure (for qi), initial gradients

(for gi) and second derivatives (forH). With an initial “guess” for the geometry (for

example from a model-building program followed by molecular mechanics) as

input, gradients can be readily calculated analytically (from the derivatives of the

5 Ludwig Otto Hesse, 1811–1874, German mathematician.
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molecular orbital coefficients and the derivatives of certain integrals). An approx-

imate initial Hessian is often calculated from molecular mechanics (Chap. 3). Since

the PES is not really exactly quadratic, the first step does not take us all the way to

the optimized geometry, corresponding to the matrix qo. Rather, we arrive at q1, the

first calculated geometry; using this geometry a new gradient matrix and a new

Hessian are calculated (the gradients are calculated analytically and the second

derivatives are updated using the changes in the gradients–see below). Using q1 and

the new gradient and Hessian matrices a new approximate geometry matrix q2 is

calculated. The process is continued until the geometry and/or the gradients (or with

some programs possibly the energy) have ceased to change appreciably.

As the optimization proceeds the Hessian is updated by approximating each

second derivative as a ratio of finite increments:

∂2
E

∂qi∂qj
� Δ ∂E=∂qj

� �
Δqi

ð2:15Þ

i.e. as the change in the gradient divided by the change in geometry, on going from

the previous structure to the latest one. Analytic calculation of second derivatives is

relatively time-consuming and is not routinely done for each point along the optimi-

zation sequence, in contrast to analytic calculation of gradients. A fast lower-level

optimization, for a minimum or a transition state, usually provides a good Hessian

and geometry for input to a higher-level optimization [29]. Finding a transition state

(i.e. optimizing an input structure to a transition state structure) is a more challenging

computational problem than finding a minimum, as the characteristics of the PES at

the former are more complicated than at a minimum: at the transition state the surface

is a maximum in one direction and a minimum in all others, rather than simply a

minimum in all directions. Nevertheless, modifications of the minimum-search

algorithm enable transitions states to be located, albeit often with less ease than

minima. The geometry optimization procedure just outlined is the Newton–Raphson

method. Despite the relatively challenging tasks of calculating and inverting the

Hessian, it is the probably the default optimization method in most programs. Jensen

gives a detailed discussion of the algorithms for geometry optimization [30].

A recent (2015) paper presents a method of calculating geometries which, unlike

those just mentioned, does not involve iterative refinement of a “guess” input [31].

In this method geometries were fitted to experimental rotational constants (micro-

wave spectra) with the aid of ab initio vibration-rotation constants. The

bond lengths from this are more accurate, except for diatomics, than those from

experiment or high-level conventional ab initio geometry optimization. This is

understandable since microwave spectra are very sensitive to molecular geometry.

Results were reported only for 18 very small molecules, mostly triatomics.

In a recent method of exploring a PES, still under development, an algorithm

generates from a reactant possible products and attempts to connect reactant and

products in a one-step (elementary) reaction [32]. Products are generated from

reactant by specifying the reactant as a bond electron matrix (this has no particular

connection with the matrices described above for geometry optimization) and

allowing a reaction matrix to act on this. The bond electron matrix is a square
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symmetric matrix with element aij corresponding to atom i bonded to atom j; the value
of the element is the number of covalent bonds between atom i and atom j, or for
diagonal elements the number of valence electrons not involved in bonds. So row

i specifies atom i, and the sum of the values for this row is the number of valence

electrons which belong to that atom; for HOOHnumbered 1, 2, 3, 4 row 2would be 1 4

1 0. The reaction matrix, also a square symmetric matrix, is such that when added to

the reactant matrix to generate a product matrix the total number of electrons is

conserved and the product matrix corresponds to an isomeric species. Intermediates

are optimized by molecular mechanics (Chap. 3) and appropriate optimization algo-

rithms are invoked to help locate transition states. It may divert the reader to explore

the matrix manipulation by which HOOHmay generate HO(O)H, where a proton has

migrated from one oxygen to the other. The method is said to require no human

intervention and to work “fairly well” at discovering new elementary reaction steps.

Akin to the electron matrix method in the goal (but not the mathematical details) of

automating the exploration of reaction mechanisms is a “heuristics-guided” method

[33]. Here electronic structure rules are used to automatically generate intermediates;

these are then subjected to geometry optimization by a quantum-mechanical method,

and pairs of plausibly related intermediates are automatically selected for a search for

a connecting transition state. Searches based on stochastic (probabilistic) methods of

locating conformations, rather than on straightforward systematic calculation of the

result of torsional changes (as described for simple molecules like propane, Sect. 2.2)

can use advanced techniques fromcomputational physics [34]. Themethods described

in references [31–34] for exploring potential energy surfaces or optimizing geometries

are at present (2016) novel, in contrast to the standard approach of optimizing “trial”

structures and characterizing them (Sect. 2.5) by Hessian-calculated frequencies.

An incursion into chemistry of what one might have thought was pure, even

rarefied, theoretical physics is the connection of reactivity with quantum entangle-

ment. Entanglement is the puzzling connection that persists between particles (pho-

tons, electrons, atoms, molecules) that originate from the same event, causing one

particle to appear to “know” instantaneously the result of a measurement on the other

particle. This is of deep significance for a fundamental question in quantum mechan-

ics, the existence and (if they exist) the nature of hidden variables [35]. Entanglement

is relevant to chemical reactivity in at least those cases where a molecule dissociates.

In one of the few studies of the relevance of entanglement to chemistry the dissoci-

ation of H2O and of H3 were studied [36]. The authors compared energy hypersur-

faces (standard PESs) and “entanglement hypersurfaces” and concluded that the latter

“grasp the chemical capability to transform from one state system to a new one”.

2.5 Stationary Points and Normal-Mode Vibrations.
Zero Point Energy

Once a stationary point has been found by geometry optimization, it is usually

desirable to check whether it is a minimum, a transition state, or a hilltop. This is

done by calculating the vibrational frequencies. Such a calculation involves finding
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the normal-mode frequencies; these are the simplest vibrations of the molecule,

which, in combination, can be considered to result in the actual, complex vibrations

that a real molecule undergoes. In a normal-mode vibration all the atoms move in

phase with the same frequency: they all reach their maximum and minimum

displacements and their equilibrium positions at the same moment. The other

vibrations of the molecule are combinations of these simple vibrations. Essentially,

a normal-modes calculation is a calculation of the infrared spectrum, although the

experimental spectrum is likely to contain extra bands resulting from interactions

among normal-mode vibrations.

A nonlinear molecule with n atoms has 3n � 6 normal modes: the motion of

each atom can be described by 3 vectors, along the x, y, and z axes of a Cartesian
coordinate system; after removing the 3 vectors describing the translational

motion of the molecule as a whole (the translation of its center of mass) and

the 3 vectors describing the rotation of the molecule (around the 3 principal

axes needed to describe rotation for a three-dimensional object of general

geometry), we are left with 3n � 6 independent vibrational motions. Arranging

these in appropriate combinations gives 3n � 6 normal modes. A linear mole-

cule has 3n � 5 normal modes, since we need subtract only three translational

and two rotational vectors, as rotation about the molecular axis does not produce

a recognizable change in the nuclear array. So water has 3n� 6 ¼ 3 3ð Þ � 6 ¼ 3

normal modes, and HCN has 3n� 5 ¼ 3 3ð Þ � 5 ¼ 4 normal modes. For water

(Fig. 2.19) mode 1 is a bending mode (the H–O–H angle decreases and

increases), mode 2 is a symmetric stretching mode (both O–H bonds stretch

and contract simultaneously) and mode 3 is an asymmetric stretching mode

(as the O–H1 bond stretches the O–H2 bond contracts, and vice versa). At any

moment an actual molecule of water will be undergoing a complicated

stretching/bending motion, but this motion can be considered to be a combina-

tion of the three simple normal-mode motions.

Consider a diatomic molecule A–B; the normal-mode frequency (there is only

one for a diatomic, of course) is given by [2]:

ev ¼ 1

2πc
k

μ

� �1=2

ð*2:16Þ

O
H H

O
H H

O
H H

cm–11595 3652 3756cm–1 cm–1

bend symmetric stretch asymmetric stretch

Fig. 2.19 The normal-mode vibrations of water. The arrows indicate the directions in which the

atoms move; on reaching the maximum amplitude these directions are reversed
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where

ev ¼ vibrational “frequency”, really wavenumber, in cm�1; from deference to

convention we use cm�1 although the cm is not an SI unit, and so the other

units will also be non-SI;

ṽ signifies the number of wavelengths that will fit into one cm. The symbol v is the
Greek letter nu, which resembles an angular vee; ṽ could be read “nu tilde”; v,
“nu bar”, has been used less frequently.

c ¼ velocity of light

k ¼ force constant for the vibration

μ ¼ reduced mass of the molecule ¼ mAmBð Þ= mA þ mBð Þ;
mA and mB are the masses of A and B.

The force constant k of a vibrational mode is a measure of the “stiffness” of the

molecule toward that vibrational mode –the harder it is to stretch or bend the

molecule in the manner of that mode, the bigger is that force constant (for a

diatomic molecule k simply corresponds to the stiffness of the one bond). The

fact that the frequency of a vibrational mode is related to the force constant for the

mode suggests that it might be possible to calculate the normal-mode frequencies of

a molecule, that is, the directions and frequencies of the atomic motions, from its

force constant matrix (its Hessian). This is indeed possible: matrix diagonalization
of the Hessian gives the directional characteristics (which way the atoms are

moving), and the force constants themselves, for the vibrations. Matrix diagonal-

ization (Chap. 4, Sect. 4.3.3.) is a process in which a square matrixA is decomposed

into three square matrices, P, D, and P�1: A ¼ PDP�1. D is a diagonal matrix: as

with k in Eq. 2.17 all its off-diagonal elements are zero. P is a premultiplying

matrix and P�1 is the inverse of P. When matrix algebra is applied to physical

problems, the diagonal row elements of D are the magnitudes of some physical

quantity, and each column of P is a set of coordinates which give a direction

associated with that physical quantity. These ideas are made more concrete in the

discussion accompanying Eq. 2.17, which shows the diagonalization of the Hessian

matrix for a triatomic molecule, e.g. H2O.

H ¼
∂2

E=∂q1∂q1 ∂2
E=∂q1∂q2 . . . ∂2

E=∂q1∂q9
∂2

E=∂q2∂q1 ∂2
E=∂q2∂q2 . . . ∂2

E=∂q2∂q9
⋮ ⋮ . . . ⋮

∂2
E=∂q9∂q1 ∂2

E=∂q9∂q2 . . . ∂2
E=∂q9∂q9

0
BB@

1
CCA

¼
q11 q12 � � � q19
q21 q22 � � � q29
⋮
q91 q92 � � � q99

0
BB@

1
CCA

k1 0 � � � 0

0 k2 � � � 0

⋮
0 0 � � � k9

0
BB@

1
CCAP�1

P k

ð2:17Þ
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Equation 2.17 is of the form A ¼ PDP�1. The 9� 9 Hessian for a triatomic

molecule (three Cartesian coordinates for each atom) is decomposed by diagonal-

ization into a P matrix whose columns are “direction vectors” for the vibrations

whose force constants are given by the k matrix. Actually, columns 1, 2 and 3 of

P and the corresponding k1, k2 and k3 of k refer to translational motion of the

molecule (motion of the whole molecule from one place to another in space); these

three “force constants” are nearly zero. Columns 4, 5 and 6 of P and the

corresponding k4, k5 and k6 of k refer to rotational motion about the three principal

axes of rotation, and are also nearly zero. Columns 7, 8 and 9 of P and the

corresponding k7, k8 and k9 of k are the direction vectors and force constants,

respectively, for the normal-mode vibrations: k7, k8 and k9 refer to vibrational

modes 1, 2 and 3, while the 7th, 8th, and 9th columns of P are composed of the

x, y and z components of vectors for motion of the three atoms in mode 1 (column

7), mode 2 (column 8), and mode 3 (column 9). “Mass-weighting” the force

constants, ie taking into account the effect of the masses of the atoms

(cf. Eq. 2.16 for the simple case of a diatomic molecule), gives the vibrational

frequencies. The P matrix is the eigenvector matrix and the k matrix is the

eigenvalue matrix from diagonalization of the Hessian H. “Eigen” is a German

prefix meaning “appropriate, suitable, actual” and is used in this context to denote

mathematically appropriate entities for the solution of a matrix equation. Thus the

directions of the normal-mode frequencies are the eigenvectors, and their magni-

tudes are the mass-weighted eigenvalues, of the Hessian.

Vibrational frequencies are calculated to obtain IR spectra, to characterize

stationary points, and to obtain zero point energies (below). The calculation of

meaningful frequencies is valid only at a stationary point and only using the same

method that was used to optimize to that stationary point (for example an ab initio

method with a particular correlation level and basis set–see Chap. 5). This is

because (1) the use of second derivatives as force constants presupposes that the

PES is quadratically curved along each geometric coordinate q (Fig. 2.2) but it is

only near a stationary point that this is true, and (2) use of a method other than that

used to obtain the stationary point presupposes that the PES’s of the two methods

are parallel (that they have the same curvature) at the stationary point. Of course,

“provisional” force constants at nonstationary points are used in the optimization

process, as the Hessian is updated from step to step. Calculated IR frequencies are

usually somewhat too high, but (at least for ab initio and density functional

calculations) can be brought into reasonable agreement with experiment by multi-

plying them by an empirically determined factor, commonly about 0.9 [37] (see the

discussion of frequencies in Chaps. 5, 6 and 7).

A minimum on the PES has all the normal-mode force constants (all the

eigenvalues of the Hessian) positive: for each vibrational mode there is a restoring

force, like that of a spring. As the atoms execute the motion, the force pulls and

slows them till they move in the opposite direction; each vibration is periodic, over

and over. The species corresponding to the minimum sits in a well and vibrates

forever (or until it acquires by collisions or absorption of light enough energy to

react). For a transition state, however, one of the vibrations, that along the reaction
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coordinate, is different: motion of the atoms corresponding to this mode takes the

transition state toward the product or toward the reactant, without a restoring force.

This one “vibration” is not a periodic motion but rather takes the species through

the transition state geometry on a one-way journey. Now, the force constant is the

first derivative of the gradient or slope (the derivative of the first derivative);

examination of Fig. 2.8 shows that along the reaction coordinate the surface slopes

downward, so the force constant for this mode is negative. A transition state (a first-

order saddle point) has one and only one negative normal-mode force constant (one

negative eigenvalue of the Hessian). Since a frequency calculation involves taking

the square root of a force constant (Eq. 2.16), and the square root of a negative

number is an imaginary number, a transition state has one imaginary frequency,

corresponding to the reaction coordinate. In general an nth-order saddle point

(an nth-order hilltop) has n negative normal-mode force constants and so

n imaginary frequencies, corresponding to motion from one stationary point of

some kind to another.

A stationary point could of course be characterized just from the number of

negative force constants, but the mass-weighting requires much less time than

calculating the force constants, and the frequencies themselves are often wanted

anyway, for example for comparison with experiment. In practice one usually

checks the nature of a stationary point by calculating the frequencies and seeing

how many imaginary frequencies are present; a minimum has none, a transition

state one, and a hilltop more than one. If one is seeking a particular transition state

the criteria to be satisfied are:

1. It should look right. The structure of a transition state should lie somewhere

between that of the reactants and the products; for example, the transition state

for the unimolecular isomerization of HCN to HNC shows an H bonded to both

C and N by an unusually long bond, and the CN bond length is in-between that of

HCN and HNC.

2. It must have one and only one imaginary frequency (some programs indicate

this as a negative frequency, eg �1900cm�1 instead of the correct

1900i i ¼ √ �1ð Þ� �
.

3. The imaginary frequency must correspond to the reaction coordinate. This is

usually clear from animation of the frequency (the motion, stretching, bending,

twisting, corresponding to a frequency may be visualized with a variety of

programs). For example, the transition state for the unimolecular isomerization

of HCN to HNC shows an imaginary frequency which when animated clearly

shows the H migrating between the C and the N. Should it not be clear from

animation which two species the transition state connects, one may resort to an

intrinsic reaction coordinate (IRC) calculation [38]. This procedure follows the

transition state downhill along the IRC (Sect. 2.2), generating a series of

structures along the path to the reactant or product. Usually it is clear where

the transition state is going without following it all the way to a stationary point.

4. The energy of the transition state must be higher than that of the two species it

connects.
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Besides indicating the IR spectrum and providing a check on the nature of

stationary points, the calculation of vibrational frequencies also provides the zero

point energy (ZPE; most programs will calculate this automatically as part of a

frequency job by summing the energies of the normal-mode vibrations). The ZPE is

the energy a molecule has even at absolute zero (Fig. 2.2), as a consequence of the

fact that even at this temperature it still vibrates [2]. The ZPE of a species is usually

not small compared to activation energies or reaction energies, but ZPEs tend to

cancel out when these are calculated (by subtraction), since for a given reaction the

ZPE of the reactant, transition state and product tend to be roughly the same.

However, for accurate work the ZPE should be added to the “total” (electronic

+ nuclear repulsion) energies of species and the ZPE-corrected energies should then

be compared (Fig. 2.20). Like the frequencies, the ZPE is usually corrected by

multiplying it by an empirical factor; this is sometimes the same as the frequency

correction factor, but slightly different factors have been recommended [37].

The Hessian that results from a geometry optimization was built up in steps

from one geometry to the next, approximating second derivatives from the

changes in gradients (Eq. 2.15). This Hessian is not accurate enough for the

calculation of frequencies and ZPE’s. The calculation of an accurate Hessian

for a stationary point can be done analytically or numerically. Accurate

numerical evaluation approximates the second derivative as in Eq. 2.15, but

instead of Δ ∂E=∂qð Þ and Δq being taken from optimization iteration steps, they

are obtained by changing the position of each atom of the optimized structure

slightly Δq ¼ about0:01Åð Þ and calculating analytically the change in the gradi-

ent at each geometry; subtraction givesΔ ∂E=∂qð Þ. This can be done for a change
in one direction only for each atom (method of forward differences) or more

accurately by going in two directions around the equilibrium position and aver-

aging the gradient change (method of central differences). Analytical calculation

of ab initio frequencies is much faster than numerical evaluation, but an analytical

algorithm may not be available for a particular method in some program suites, or

demands on computer resources may make numerical calculation the only

recourse at high ab initio levels (Chap. 5). A method of accurately estimating

ZPE which does not involve calculation of second derivatives, but rather draws on

tabulated values for atom types has been published recently [39]. This additive,

atom-type based (ATB) method requires essentially no time and has been called a

“zero-cost estimation” method.

2.6 Symmetry

Symmetry is important in theoretical chemistry (and even more so in theoretical

physics), but our interest in it here is bounded by modest considerations: we want to

see why symmetry is relevant to setting up a calculation and interpreting the results,

and to make sense of terms like C2v, Cs, etc., which are used in various places in this

40 2 The Concept of the Potential Energy Surface

http://dx.doi.org/10.1007/978-3-319-30916-3_5


book. Excellent expositions of symmetry are given by, for example, Atkins [40] and

Levine [41].

The symmetry of a molecule is most easily described by using one of the

standard designations like C2v, Cs. These are called point groups (Schoenflies

point groups) because when symmetry operations (below) are carried out on a

molecule (on any object) with symmetry, at least one point is left unchanged. The

H C N

HC N

H

C N

47.22

0

219

52.2

30.49

44.77

0

202

49.7

raw ab initio energy

ZPE

corrected ab initio energy

–92.87520
   0.01798

–92.85722

–92.79195
   0.01161

–92.78034

–92.85533
   0.01705

–92.83828

ZPE
0.01798 x 2626

using the raw energies

using the ZPE-corrected energies

Reaction profile

energy

reaction coordinate

Fig. 2.20 Correcting relative energies for zero-point energy (ZPE). These are ab initio HF/6-31G*

(Chap. 5) results for the HCN ! HNC reaction. The corrections are most simply made by adding

the ZPE to the raw energy (in energy units called hartrees or atomic units), to get the corrected

energies. Using corrected or uncorrected energies, relative energies are obtained by setting the

energy of one species (usually that of lowest energy) equal to zero. Finally, energy differences in

hartrees were multiplied by 2626 to get kJ mol�1. The ZPEs are also shown here in kJ mol�1, just

to emphasize that they are not small compared to reaction energies or activation energies, but tend

to cancel; for accurate work ZPE-corrected energies should be used
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classification is according to the presence of symmetry elements and corresponding

symmetry operations. The main symmetry elements are mirror planes (symmetry

planes), symmetry axes, and an inversion center; other symmetry elements are the

entire object, and an improper rotation axis. The operation corresponding to a

mirror plane is reflection in that plane, the operation corresponding to a symmetry

axis is rotation about that axis, and the operation corresponding to an inversion

center is moving each point in the molecule along a straight line to that center then

moving it further, along the line, an equal distance beyond the center. The “entire

object” element corresponds to doing nothing (a null operation); in common

parlance an object with only this symmetry element would be said to have no

symmetry. The improper rotation axis corresponds to rotation followed by a

reflection through a plane perpendicular to that rotation axis. We are concerned

mainly with the first three symmetry elements. The examples below are shown in

Fig. 2.21.

C1 A molecule with no symmetry elements at all is said to belong to the group C1

(to have “C1 symmetry”). The only symmetry operation such a molecule permits is

the null operation–this is the only operation that leaves it unmoved. An example is

CHBrClF, with a so-called asymmetric atom; in fact, most molecules have no

symmetry–just think of steroids, alkaloids, proteins, most drugs. Note that a mol-

ecule does not need an “asymmetric atom” to have C1 symmetry: HOOF in the

conformation shown is C1 (has no symmetry).

Cs A molecule with only a mirror plane belongs to the group Cs. Example: HOF.

Reflection in this plane leaves the molecule apparently unmoved.

C2 A molecule with only a C2 axis belongs to the group C2. Example: H2O2 in

the conformation shown. Rotation about this axis through 360� gives the same

orientation twice. Similarly C3, C4, etc. are possible.

C2v A molecule with two mirror planes whose intersection forms a C2 axis

belongs to the C2v group. Example: H2O. Similarly NH3 is C3v, pyramidane is C4v,

and HCN is C1v.

Ci A molecule with only an inversion center (center of symmetry) belongs to the

group Ci. Example: meso-tartaric acid in the conformation shown. Moving all

points in the molecule along a straight line to this center, then continuing on an

equal distance leaves the molecule apparently unchanged.

C2h A molecule with a C2 axis and a mirror plane horizontal to this axis is C2h

(a C2h object will also perforce have an inversion center). Example: (E)-1,2-
difluoroethene. Similarly B(OH)3 is C3h.

D2 A molecule with a C2 axis and two more C2 axes, perpendicular to that axis,

has D2 symmetry. Example: the tetrahydroxycyclobutadiene shown. Similarly, a

molecule with a C3 axis (the principal axis) and three other perpendicular C2 axes

is D3.

D2h A molecule with a C2 axis and two perpendicular C2 axes (as for D2 above),

plus a mirror plane is D2h. Examples: ethene, cyclobutadiene. Similarly, a C3 axis

(the principal axis), three perpendicular C2 axes and a mirror plane horizontal to the
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Fig. 2.21 Examples of molecules with various symmetry elements (belonging to various point

groups)
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principal axis confer D3h symmetry, as in the cyclopropenyl cation. Similarly,

benzene is D6h, and F2 is D1h.

D2dAmolecule is D2d if it has a C2 axis and two perpendicular C2 axes (as for D2

above), plus two “dihedral” mirror planes; these are mirror planes that bisect two C2

axes (in general, that bisect the C2 axes perpendicular to the principal axis).

Example: allene (propadiene). Staggered ethane is D3d (it has D3 symmetry ele-

ments plus three dihedral mirror planes. Dnd symmetry can be hard to spot.

Molecules belonging to the cubic point groups can, in some sense, be fitted

symmetrically inside a cube. The commonest of these are Td, Oh and I; they will be

merely exemplified:

Td This is tetrahedral symmetry. Example: CH4,

Oh This might be considered “cubic symmetry”. Example: cubane, SF6.

I Also called icosahedral symmetry. Example: buckminsterfullerene.

H

H

H

H

.

O

O
O

O
HH

H
H

D2  A C2 axis perpendicular to the ring plane,
and two C2 axes perpendicular to that axis

.

H H

HH

.

H2C C CH2
.H H

H

H

H

CH

H
H

The bonds are of two kinds, with lengths 
ca. 1.39 and 1.46 A

o

buckminsterfullerene, C60

oo

F

F
C h

D2h  As for D2 (above), plus a mirror plane

D2d  As for D2 (above), plus two dihedral mirror
planes: the two planes that contain the HCH groups
bisect the two axes that are shown as dashed lines
(the third axis passes through CCC). 

Td

S

F

F

F

F

F

F

Oh

I

Fig. 2.21 (continued)
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Less-common groups are S4, and the cubic groups T, Th (dodecahedrane is Th)

and O (see [41]). Atkins [40] and Levine [41] give flow charts which make

it relatively simple to assign a molecule to its point group, and Atkins

provides pictures of objects of various symmetries which often make it possible

to assign a point group without having to examine the molecule for its symmetry

elements.

We saw above that most molecules have no symmetry. So why is a knowledge of

symmetry important in chemistry? Symmetry considerations are essential in the

theory of molecular electronic (UV) spectroscopy and sometimes in analyzing in

detail molecular wavefunctions (Chap. 4), but for us the reasons are more prag-

matic. A calculation run on a molecule whose input structure has the exact

symmetry that the molecule should have will tend to be faster and will yield a

“better” (see below) geometry than one run on a structure of lower symmetry,

however close this may be to the exact one. Input molecular structures for a

calculation are usually created with an interactive graphical program and a com-

puter mouse: atoms are assembled into molecules much as with a model kit, or the

molecule might be drawn on the computer screen. If the molecule has symmetry

(if it is not C1) this can be imposed by optimizing the geometry, often with

molecular mechanics (Chap. 3). Now consider water: we would of course normally

input the H2O molecule with its exact equilibrium C2v symmetry, but we could also

alter the input structure slightly making the symmetry Cs (three atoms must lie in a

plane). The C2v structure has two degrees of freedom: a bond length (the two bonds

are the same length) and a bond angle. The Cs structure has three degrees of

freedom: two bond lengths and a bond angle. The optimization algorithm has

more variables to cope with in the case of the lower-symmetry structure. A

moderately high-level geometry optimization and frequencies job on

C2v(CH3)2O, dimethyl ether, took 5.7 min, but on the Cs ether 6.8 min (actually,

small molecules like water, and low-level calculations, show a levelling effect,

taking only seconds and requiring about the same time regardless of symmetry).

What do we mean by a better geometry? Although a successful geometry

optimization will give essentially the same geometry from a slightly distorted

input structure as from one with the perfect symmetry of the molecule in question,

corresponding bond lengths and angles (eg the four C–H bonds and the two HCH

angles of ethene) will not be exactly the same. This can confuse an analysis of the

geometry, and carries over into the calculation of other properties like, say, charges

on atoms–corresponding atoms should have exactly the same charges. Thus both

esthetic and practical considerations encourage us to aim for the exact symmetry

that the molecule should possess. An error still found in the literature is that there is

some advantage to optimizing “with no constraints”. This may come from the days

when the calculation of frequencies was not routine; nowadays, if the optimized

structure is not, say, a minimum and such was desired, this can be corrected by

altering a geometry coordinate in accordance with the desire of the structure to relax

along the direction revealed by an imaginary frequency.
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2.7 Summary

The potential energy surface (PES) is a central concept in computational chemistry.

A PES is the relationship–mathematical or graphical–between the energy of a

molecule (or a collection of molecules) and its geometry.

Stationary points on a PES are points where ∂E=∂q ¼ 0 for all q, where
q is a geometric parameter. The stationary points of chemical interest are minima

(∂2
E=∂qi∂qj > 0 for all q) and transition states or first-order saddle points; ∂2

E=

∂qi∂qj < 0 for one q, along the reaction coordinate (intrinsic reaction coordinate,

IRC), and>0 for all other q. Chemistry is the study of PES stationary points and the

pathways connecting them.

The Born-Oppenheimer approximation says that in a molecule the nuclei are

essentially stationary compared to the electrons. This is one of the cornerstones

of computational chemistry because it makes the concept of molecular shape

(geometry) meaningful, makes possible the concept of a PES, and simplifies the

application of the Schr€odinger equation to molecules by allowing us to focus on

the electronic energy and add in the nuclear repulsion energy later; this third

point, very important in practical molecular computations, is elaborated on in

Chap. 5.

Geometry optimization is the process of starting with an input structure

“guess” and finding a stationary point on the PES. The stationary point found

will normally be the one closest to the input structure, not necessarily the global

minimum. A transition state optimization usually requires a special algorithm,

since it is more demanding than that required to find a minimum. Modern

optimization algorithms use analytic first derivatives and (usually numerical)

second derivatives.

It is usually wise to check that a stationary point is the desired species

(a minimum or a transition state) by calculating its vibrational spectrum (its

normal-mode vibrations). The algorithm for this works by calculating an accurate

Hessian (force constant matrix) and diagonalizing it to give a matrix with the

“direction vectors” of the normal modes, and a diagonal matrix with the force

constants of these modes. A procedure of “mass-weighting” the force constants

gives the normal-mode vibrational frequencies. For a minimum all the vibrations

are real, while a transition state has one imaginary vibration, corresponding to

motion along the reaction coordinate. The criteria for a transition state are appear-

ance, the presence of one imaginary frequency corresponding to the reaction

coordinate, and an energy above that of the reactant and the product. Besides

serving to characterize the stationary point, calculation of the vibrational frequen-

cies enables one to predict an IR spectrum and provides the zero-point energy. The

ZPE is needed for accurate comparisons of the energies of isomeric species. The

accurate Hessian required for calculation of frequencies and ZPE’s can be obtained
either numerically or analytically (faster, but much more demanding of hard drive

space).
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Easier Questions

1. What is a potential energy surface (give the two viewpoints)?

2. Explain the difference between a relaxed PES and a rigid PES.

3. What is a stationary point? What kinds of stationary points are of interest to

chemists, and how do they differ?

4. What is a reaction coordinate?

5. Show with a sketch why it is not correct to say that a transition state is a

maximum on a PES.

6. What is the Born-Oppenheimer approximation, and why is it important?

7. Explain, for a reaction A ! B, how the potential energy change on a PES is

related to the enthalpy change of the reaction. What would be the problem with

calculating a free energy/geometry surface?

Hint: Vibrational frequencies are normally calculated only for stationary

points.

8. What is geometry optimization? Why is this process for transition states (often

called transition state optimization) more challenging than for minima?

9. What is a Hessian? What uses does it have in computational chemistry?

10. Why is it usually good practice to calculate vibrational frequencies where

practical, although this often takes considerably longer than geometry

optimization?

Harder Questions

1. The Born-Oppenheimer principle is often said to be a prerequisite for the

concept of a potential energy surface. Yet the idea of a potential energy surface

(Marcelin, 1915) predates the Born-Oppenheimer principle (1927). Discuss.

2. How high would you have to lift a mole of water for its gravitational potential

energy to be equivalent to the energy needed to dissociate it completely into

hydroxyl radicals and hydrogen atoms? The strength of the O–H bond is about

400 kJ mol�1; the gravitational acceleration g at the Earth’s surface (and out to

hundreds of km) is about 10ms�2. What does this indicate about the role of

gravity in chemistry?

3. If gravity plays no role in chemistry, why are vibrational frequencies different

for, say, C–H and C–D (deuterium is called heavy hydrogen) bonds?

4. We assumed that the two bond lengths of water are equal. Must an acyclic

molecule AB2 have equal A–B bond lengths? What about a cyclic molecule

AB2?

5. Why are chemists but rarely interested in finding and characterizing second-

order and higher saddle points (hilltops)?

6. What kind(s) of stationary points do you think a second-order saddle point

connects?
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7. If a species has one calculated frequency very close to 0 cm�1 what does that

tell you about the (calculated) potential energy surface in that region?

8. The ZPE of many molecules is greater than the energy needed to break a bond;

for example, the ZPE of hexane is about 530 kJ mol�1, while the strength of a

C–C or a C–H bond is only about 400 kJ mol�1. Why then do such molecules

not spontaneously decompose?

9. Only certain parts of a potential energy surface are chemically interesting:

some regions are flat and featureless, while yet other parts rise steeply and are

thus energetically inaccessible. Explain.

10. Consider two potential energy surfaces for the HCN⇌HNC reaction: A, a plot
of energy vs. the H–C bond length, and B, a plot of energy vs. the HCN angle.

Recalling that HNC is the higher-energy species (Fig. 2.19), sketch qualita-

tively the diagrams A and B.
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Chapter 3

Molecular Mechanics

We don’t give a damn where the electrons are.
Words to the author, from the president of a well-known

chemical company, emphasizing his firm’s position
on basic research.

Abstract Molecular mechanics (MM) rests on a view of molecules as balls held

together by springs, ignoring electrons. The potential energy of a molecule can be

written as the sum of terms involving (at least) bond, stretching, angle bending,

dihedral angles, and nonbonded interactions. Giving these terms explicit mathe-

matical forms constitutes devising a forcefield, and giving actual numbers to the

constants in it constitutes parameterizing the forcefield. Calculations on large bio-

molecules is a very important application of MM, and the pharmaceutical industry

designs new drugs with the aid of MM. Organic synthesis now makes use of MM,

which enables chemists to estimate which products are likely to be favored in a

reaction and to devise realistic routes to a target molecule. In molecular dynamics
MM is often used to generate the forces acting on molecules and hence to calculate

their motions.

3.1 Perspective

Molecular mechanics (MM) [1] is based on a mathematical model of a molecule as

a collection of balls (corresponding to the atoms) held together by springs

(corresponding to the bonds) (Fig. 3.1). Within the framework of this model, the

energy of the molecule changes with geometry because the springs resist being

stretched or bent away from some “natural” length or angle, and the balls resist

being pushed too closely together. The mathematical model is thus conceptually

very close to the intuitive feel for molecular energetics that one obtains when

manipulating molecular models of plastic or metal: the model resists distortions

(it may break!) from the “natural” geometry that corresponds to the bond lengths

and angles imposed by the manufacturer, and in the case of space-filling models

atoms cannot be forced too closely together. The MM model clearly ignores

electrons.
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The principle behind MM is to express the energy of a molecule as a function of

its resistance toward bond stretching, bond bending, and atom crowding, and to use

this energy equation to find the bond lengths, angles, and dihedrals corresponding to

the minimum-energy geometry – or more precisely, to the various possible potential

energy surface minima (Chap. 2). In other words, MM uses a conceptually mechan-
ical model of a molecule to find its minimum-energy geometry (for flexible

molecules, the geometries of the various conformers). The form of the mathemat-

ical expression for the energy, and the parameters in it, constitute a forcefield
(or force field), and molecular mechanics methods are sometimes called forcefield

methods. The term arises because the negative of the first derivative of the potential

energy of a particle with respect to displacement along some direction is the force

on the particle; a “forcefield” E(x, y, z coordinates of atoms) can be differentiated

to give the force on each atom.

The method makes no reference to electrons, and so cannot (except by some kind

of empirical algorithm) throw light on electronic properties like charge distribu-

tions or nucleophilic and electrophilic behaviour. Note that MM implicitly uses the

Born-Oppenheimer approximation, for only if the nuclei experience what amounts

to a static attractive force, whether from electrons or springs, does a molecule have

a distinct geometry (Chap. 2, Sect. 2.3).

An important point, which students sometimes have a problem with, is that the

concept of a bond is central to MM, but not essential – although often useful – in

electronic structure calculations. In MM a molecule is defined by the atoms and the

bonds, which latter are regarded almost literally as springs holding the atoms

together. Usually, bonds are placed where the rules for drawing structural formulas

require them, and to do a MM calculation you specify with the graphical user input

each bond as single, double, etc., since this tells the program how strong a bond

to use (Sects. 3.2.1 and 3.2.2). In an electronic structure calculation–ab initio

(Chap. 5), semiempirical (Chap. 6), and density functional theory (Chap. 7) – a

molecule is defined by the relative positions of its atomic nuclei, the charge, and

the “multiplicity” (which follows easily from the number of unpaired electrons).

An oxygen nucleus and two protons with the right x, y, z coordinates, no charge, and
multiplicity one (no unpaired electrons) is a water molecule. There is no mention

C C
C

H

H
H

H
H

H H

H

Fig. 3.1 Molecular mechanics (the forcefield method) considers a molecule to be a collection of

balls (the atoms) held together by springs (the bonds)
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of bonds here, although the chemist might wish to somehow extract this useful

concept from this picture of nuclei and electrons. This can be done by calculating

the electron density and associating a bond with, for example, a path along which

electron density is concentrated, but there is no unique definition of a bond in

electronic structure theory. It is worth noting, too, that in some computational

chemistry graphical interfaces bonds are specified by the user in the input and

remain displayed, while in other interfaces they are shown by the program

depending on the separation of pairs of atoms. The novice may find it disconcerting

to see a specified bond still displayed, as a long line, even when a change in

geometry has moved a pair of atoms far apart, or to see a bond vanish when a

pair has moved slightly beyond some default distance of the program.

Historically [2], molecular mechanics seems to have begun as an attempt to

obtain quantitative information about chemical reactions at a time when the possi-

bility of doing quantitative quantum mechanical (Chap. 4) calculations on anything

much bigger than the hydrogen molecule seemed remote. Specifically, the princi-

ples of MM, as a potentially general method for studying the variation of the energy

of molecular systems with their geometry, were formulated in 1946 by

Westheimer1 and Meyer [3a], and by Hill [3b]. In this same year Dostrovsky,

Hughes2 and Ingold3 independently applied molecular mechanics concepts to the

quantitative analysis of the SN2 reaction, but they do not seem to have recognized

the potentially wide applicability of this approach [3c]. In 1947 Westheimer [3d]

published detailed calculations in which MM was used to estimate the activation

energy for the racemization of biphenyls.

Among several major contributors to the development of MM have been

Schleyer4 [2b], c and Allinger5 [1a, d]; one of Allinger’s publications on MM

[1d] is, according to the Citation Index, one of the most frequently cited chemistry

papers. The Allinger group has, since the 1960s, been responsible for the develop-

ment of the “MM-series” of programs, commencing with MM1 and continuing with

MM2 and the currently widely-used MM3, and MM4 [4]. MM programs [5] like

Sybyl and UFF will handle molecules involving much of the periodic table, albeit

with some loss of accuracy that one might expect for trading depth for breadth, and

MM is the most widely-used method for computing the geometries and energies of

large biological molecules like proteins and nucleic acids (although recently

1 Frank H. Westheimer, born Baltimore, Maryland, 1912. Ph.D. Harvard 1935. Professor

University of Chicago, Harvard. Died 2007.
2 Edward D. Hughes, born Wales, 1906. Ph.D. University of Wales, D.Sc. University of London.

Professor, London. Died 1963.
3 Christopher K. Ingold, born London 1893. D.Sc. London 1921. Professor Leeds, London.

Knighted 1958. Died London 1970.
4 Paul von R. Schleyer, born Cleveland, Ohio, 1930. Ph.D. Harvard 1957. Professor Princeton;

institute codirector and professor University of Erlangen-N€urnberg, 1976–1998. Professor

University of Georgia. Died 2014.
5 Norman L. Allinger, born Rochester New York, 1930. Ph.D. University of California at Los

Angeles, 1954. Professor Wayne State University, University of Georgia.

3.1 Perspective 53

http://dx.doi.org/10.1007/978-3-319-30916-3_4


semiempirical (Chap. 6) and even ab initio (Chap. 5) methods have begun to be

applied to these large molecules. The 2013 Nobel Prize in chemistry was awarded

to Martin Karplus, Michael Levitt, and Arieh Warshel for the application of

molecular mechanics to large biological molecules [1k].

3.2 The Basic Principles of Molecular Mechanics

3.2.1 Developing a Forcefield

The potential energy of a molecule can be written

E ¼
X
bonds

Estretchþ
X
angles

Ebend þ
X

dihedrals

Etorsion þ
X
pairs

Enonbond ð*3:1Þ

where Estretch etc. are energy contributions from bond stretching, angle bending,

torsional motion (rotation) around single bonds, and interactions between atoms or

groups which are nonbonded (not directly bonded together). The sums are over all

the bonds, all the angles defined by three atoms A–B–C, all the dihedral angles

defined by four atoms A–B–C–D, and all pairs of significant nonbonded interac-

tions. The mathematical form of these terms and the parameters in them constitute a

particular forcefield. We can make this clear by being more specific; let us consider

each of these four terms.

The Bond Stretching Term The increase in the energy of a spring (remember that

we are modelling the molecule as a collection of balls held together by springs)

when it is stretched (Fig. 3.2) is approximately proportional to the square of the

extension:

ΔEstretch ¼ kstretch l� leq
� �2

kstretch ¼ the proportionality constant (actually one-half the force constant of the
spring or bond [6]; but note the warning about identifying MM force constants

with the traditional force constant from, say, spectroscopy – see Sect. 3.5,

Weaknesses); the bigger kstretch, the stiffer the bond/spring – the more it resists

being stretched.

l ¼ length of the bond when stretched

leq ¼ reference length of the bond, its “natural” length

If we take the energy corresponding to the reference length leq as the zero of

energy, we can replace ΔEstretch by Estretch:

Estretch ¼ kstretch l� leq
� �2 ð*3:2Þ
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The Angle Bending Term The increase in energy of system ball-spring-ball-spring-

ball, corresponding to the triatomic unit A–B–C (the increase in “angle energy”)

is approximately proportional to the square of the increase in the angle (Fig. 3.2);

analogously to Eq. (*3.2):

Ebend ¼ kbend a� aeq
� �2 ð*3:3Þ

kbend ¼ a proportionality constant (one-half the angle bending force constant [6];

note the warning about identifying MM force constants with the traditional force

constant from, say, spectroscopy – see Sect. 3.3))

a ¼ size of the angle when distorted

aeq ¼ reference size of the angle, its “natural” value

The Torsional Term Consider four atoms sequentially bonded: A–B–C–D

(Fig. 3.3). The dihedral angle or torsional angle of the system is the angle between

the A–B bond and the C–D bond as viewed along the B–C bond. Conventionally

this angle is considered positive if regarded as arising from clockwise rotation

(starting with A–B covering or eclipsing C–D) of the back bond (C–D) with respect

Δ l = l - leq

Δ a = a - aeq

aeq

a

+

Δ l or Δ a

leq

l

0

energy

Fig. 3.2 Changes in bond lengths or in bond angles result in changes in the energy of a molecule.

Such changes are handled by the Estretch and Ebend terms in the molecular mechanics forcefield.

The energy is approximately a quadratic function of the change in bond length or angle
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to the front bond (A–B). Thus in Fig. 3.3 the dihedral angle A–B–C–D is 60�

(it could also be considered as being�300�). Since the geometry repeats itself every

360�, the energy varies with the dihedral angle in a sine or cosine pattern, as shown
in Fig. 3.4 for the simple case of ethane. For systems A–B–C–D of lower symmetry,

like butane (Fig. 3.5), the torsional potential energy curve is more complicated, but

a combination of sine or cosine functions will reproduce the curve:

Etorsion ¼ k0 þ
Xn
r¼1

kr 1þ cos rθð Þ½ � ð*3:4Þ

A

B C

D

AD

B C

:

60oA

D

B C

:

A

B C

D

dihedral angle = 0o dihedral angle = 60o

rotate C-D bond
about the B-C bond

Fig. 3.3 Dihedral angles (torsional angles) affect molecular geometries and energies. The energy

is a periodic (cosine or combination of cosine functions) function of the dihedral angle; see

e.g. Figs. 3.4 and 3.5
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D3d
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D3h D3h

Fig. 3.4 Variation of the energy of ethane with dihedral angle. The curve can be represented as a

cosine function
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The Nonbonded Interactions Term This represents the change in potential energy

with distance apart of atoms A and B that are not directly bonded (as in A–B) and

are not bonded to a common atom (as in A–X–B); these atoms, separated by at least

two atoms (A–X–Y–B) or even in different molecules, are said to be nonbonded

(with respect to each other). Note that the A-B case is accounted for by the bond

stretching term Estretch, and the A–X–B term by the angle bending term Ebend, but

the nonbonded term Enonbond is, for the A–X–Y-B case, superimposed upon the

torsional term Etorsion: we can think of Etorsion as representing some factor inherent

to resistance to rotation about a (usually single) bond X–Y (MM does not attempt to

explain the theoretical, electronic basis of this or any other effect), while for certain

atoms attached to X and Y there may also be nonbonded interactions.

The potential energy curve for two nonpolar nonbonded atoms has the general

form shown in Fig. 3.6. A simple way to approximate this is by the so-called

Lennard-Jones 12–6 potential [7]:

Enonbond ¼ knb
σ
r

� �12
� σ

r

� �6� �
ð*3:5Þ

r ¼ the distance between the centers of the nonbonded atoms or groups.

The function reproduces the small attractive dip in the curve (represented by the

negative term) as the atoms or groups approach one another, then the very steep rise

in potential energy (represented by the raising the positive, repulsive term raised to

MeMe

Me
Me

Me

Me
Me

Me

CH 3
H3C

C C
H

H H
H

CCCC dihedral, degrees

energy
kJ mol-1

0 60 120 180

10

20

25 kJ mol-1

3 kJ mol -1

14 kJ mol-1

Fig. 3.5 Variation of the energy of butane with dihedral angle. The curve can be represented by a
sum of cosine functions
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a large power) as they are pushed together closer than their van der Waals radii.

Setting dE=dr ¼ 0, we find that for the energy minimum in the curve the

corresponding value of r is rmin ¼ 21=6σ,

i:e: σ ¼ 2�1=6rmin ð3:6Þ

If we assume that this minimum corresponds to van der Waals contact of the

nonbonded groups, then rmin ¼ RA þ RBð Þ, the sum of the van der Waals radii of

the groups A and B. So

21=6σ ¼ RA þ RBð Þ

.
RB

. RA

r

A
B

0

energy

r

rmin = (RA + RB)

Emin

Fig. 3.6 Variation of the energy of a molecule with separation of nonbonded atoms or groups.

Atoms/groups A and B may be in the same molecule (as indicated here) or the interaction may be

intermolecular. The minimum energy occurs at van der Waals contact. For small nonpolar atoms

or groups the minimum energy point represents a drop of a few kJ mol�1 (Emin ¼ �1.2 kJ mol�1

for CH4/CH4), but short distances can make nonbonded interactions destabilize a molecule by

many kJ mol�1
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and so

σ ¼ 2�1=6 RA þ RBð Þ ¼ 0:89 RA þ RBð Þ ð3:7Þ

Thus σ can be calculated from rmin or estimated from the van der Waals radii.

Setting E ¼ 0, we find that for this point on the curve r ¼ σ,

i:e: σ ¼ r E ¼ 0ð Þ ð3:8Þ

If we set r ¼ rmin ¼ 21=6σ (from Eq. (3.6)) in Eq. (3.5), we find

E rminð Þ ¼ �1=4ð Þknb
i:e: knb ¼ �4E rminð Þ ð3:9Þ

So knb can be calculated from the depth of the energy minimum.

In deciding to use equations of the form Eqs. (3.2, 3.3, 3.4 and 3.5) we have

decided on a particular MM forcefield. There are many alternative forcefields. For

example, we might have chosen to approximate Estretch by the sum of a quadratic

and a cubic term:

Estretch ¼ kstretch l� leq
� �2 þ k l� leq

� �3
This gives a somewhat more accurate representation of the variation of energy with

length. Again, we might have represented the nonbonded interaction energy by a

more complicated expression than the simple 12–6 potential of Eq. (3.5) (which

is by no means the best form for nonbonded repulsions). Such changes would

represent changes in the forcefield.

3.2.2 Parameterizing a Forcefield

We can now consider putting actual numbers, kstretch, leq, kbend, etc., into Eqs 3.2,

3.3, 3.4 and 3.5, to give expressions that we can actually use. The process of finding

these numbers is called parameterizing (or parametrizing) the forcefield. The set of

molecules used for parameterization, perhaps hundreds for a good forcefield, is

called the training set. In the purely illustrative example below we use just ethane,

methane and butane.

Parameterizing the Bond Stretching Term A forcefield can be parameterized by

reference to experiment (empirical parameterization) or by getting the numbers

from high-level ab initio or density functional calculations, or by a combination of

both approaches. For the bond stretching term of Eq. (3.2) we need kstretch and leq.
Experimentally, kstretch could be obtained from IR spectra, as the stretching fre-

quency of a bond depends on the force constant (and the masses of the atoms
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involved) [8], and leq could be derived from X-ray diffraction, electron diffraction,

or microwave spectroscopy [9].

Let us find kstretch for the C/C bond of ethane by ab initio (Chap. 5) calculations.

Normally high-level ab initio calculations would be used to parameterize a

forcefield, but for illustrative purposes we can use the low-level but fast STO-3G

method [10]. Eq. (3.2) shows that a plot of Estretch against (l�leq)
2 should be linear

with a slope of kstretch. Table 3.1 and Fig. 3.7 show the variation of the energy of

ethane with stretching of the C/C bond, as calculated by the ab initio STO-3G

method. The reference bond length has been taken as the STO-3G length:

leq C� Cð Þ ¼ 1:538Å ð3:10Þ

The slope of the graph is

kstretch C� Cð Þ ¼ 1735kJmol�1Å
�2 ð3:11Þ

Similarly, the CH bond of methane was stretched using ab initio STO-3G

calculations; the results are

leq C� Hð Þ ¼ 1:083Å ð3:12Þ
kstretch C� Hð Þ ¼ 1934 kJ mol�1Å

�2 ð3:13Þ

Parameterizing the Angle Bending Term From Eq. (3.3), a plot of Ebend against

(a�aeq)
2 should be linear with a slope of kbend. From STO-3G calculations on

bending the H–C–C angle in ethane we get (cf. Table 3.1 and Fig. 3.7)

aeq HCCð Þ ¼ 110:7� ð3:14Þ
kbend HCCð Þ ¼ 0:093kJmol�1 degree�2 ð3:15Þ

Table 3.1 Change in energy

as the C–C bond in CH3–CH3

is stretched away from its

equilibrium length

C–C length, l l� leq (l� leq)
2 Estretch, kJ mol�1

1.538 0 0 0

1.55 0.012 0.00014 0.29

1.56 0.022 0.00048 0.89

1.57 0.032 0.00102 1.86

1.58 0.042 0.00176 3.15

1.59 0.052 0.0027 4.75

1.6 0.062 0.00384 6.67

The calculations are ab initio (STO-3G; Chap. 5). Bond lengths

are in Å
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Calculations on staggered butane gave for the C–C–C angle

aeq CCCð Þ ¼ 112:5� ð3:16Þ
kbend CCCð Þ ¼ 0:110 kJmol�1 degree�2 ð3:17Þ

Parameterizing the Torsional Term For the ethane case (Fig. 3.4), the equation for

energy as a function of dihedral angle can be deduced fairly simply by adjusting the

basic equation E ¼ cos θ to give E ¼ 1=2Emax 1þ cos 3 θ þ 60ð Þ½ �.
For butane (Fig. 3.5), using Eq. (*3.4) and experimenting with a curve-fitting

program shows that a reasonably accurate torsional potential energy function can be

created with five parameters, k0 and k1�k4:

Etorsion CH3CH2 � CH2CH3ð Þ ¼ k0 þ
X4
r¼1

kr 1þ cos rθð Þ½ � ð3:18Þ

The values of the parameters k0�k5 are given in Table 3.2. The calculated curve can
be made to match the experimental one as closely as desired by using more terms

(Fourier analysis).

Parameterizing the Nonbonded Interactions Term To parameterize Eq. (3.5) we

might perform ab initio calculations in which the separation of two atoms or groups

in different molecules (to avoid the complication of concomitant changes in bond

A
2(l - leq)2,

0

Estretch, kJ mol-1

0.001 0.002 0.003 0.004

1

2

3

4

5

6

7

Fig. 3.7 Energy vs. the square of the extension of the C–C bond in CH3–CH3. The data in

Table 3.1 were used
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lengths and angles) is varied, and fit Eq. (3.5) to the energy vs. distance results. For

nonpolar groups this would require quite high-level calculations (Chap. 5), as van

der Waals or dispersion forces are involved. We shall approximate the nonbonded

interactions of methyl groups by the interactions of methane molecules, using

experimental values of knb and σ, derived from studies of the viscosity or the

compressibility of methane. The two methods give slightly different values [7b],

but we can use the values

knb ¼ 4:7kJ mol�1 ð3:19Þ

and

σ ¼ 3:85 Å ð3:20Þ

Summary of the Parameterization of the Forcefield Terms The four terms of

Eq. (*3.1) were parameterized to give:

Estretch C� Cð Þ ¼ 1735 l� 1:538ð Þ2 ð3:21Þ
Estretch C� Hð Þ ¼ 1934 l� 1:083ð Þ2 ð3:22Þ
Ebend HCHð Þ ¼ 0:093 a� 110:7ð Þ2 ð3:23Þ
Ebend CCCð Þ ¼ 0:110 a� 112:5ð Þ2 ð3:24Þ

Etorsion CH3CCCH3ð Þ ¼ k0 þ
X4
r¼1

kr 1þ cos rθð Þ½ � ð3:25Þ

The parameters k of Eq. (3.25) are given in Table 3.2.

Table 3.2 The experimental potential energy values for rotation about the central C�C bond of

CH3CH2�CH2CH3 can be approximated by Etorsion CH3CH2 � CH2CH3ð Þ ¼ k0þP4
r¼1

kr 1þ cos rθð Þ½ �with k0 ¼ 20.1, k1 ¼�4.7, k2 ¼ 1.91, k3 ¼ �7.75, k4 ¼ 0.58

θ (degrees) E(calculated) E(experimental)

0 0.15 0

30 6.7 7

60 14 14

90 8.8 9

120 3.5 3.3

150 15 15

180 25 25

Experimental energy values at 30�, 90�, and 150� were interpolated from those at 0�, 60�, 120�,
and 180�; energies are in kJ mol�1
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Enonband CH3=CH3ð Þ ¼ 4:7
3:85

r

� 	12

� 3:85

r

� 	6
" #

ð3:26Þ

Note that this parameterization is only illustrative of the principles involved; any

really viable forcefield would actually be much more sophisticated. The kind we

have developed here might at the very best give crude estimates of the energies of

alkanes. An accurate, practical forcefield would be parameterized as a best fit to

many experimental and/or calculational results, and would have different para-

meters for different kinds of bonds, e.g. C–C for acyclic alkanes, for cyclobutane

and for cyclopropane. A forcefield able to handle not only hydrocarbons would

obviously need parameters involving elements other than hydrogen and carbon.

Practical forcefields also have different parameters for various atom types, like sp3

carbon vs. sp2 carbon, or amine nitrogen vs. amide nitrogen. In other words, a

different value would be used for, say, stretching involving an sp3/sp3 C–C bond

than for an sp2/sp2 C–C bond. This is clearly necessary since the force constant of a

bond depends on the hybridization of the atoms involved. Obtaining the force

constants for the stretching of an sp3C/spC3 and an sp2C/spC2 single bond, from

examination of the IR spectra of, say, butane and of 1,3-butadiene, is not straight-

forward, since because these vibrations are coupled with those of C–H bonds,

which is “the” appropriate C–C vibration is ambiguous. That the sp2C/spC2

C–C bond is significantly stronger and thus presumably significantly stiffer, as

expected, is indicated by the fact that its bond energy (the energy needed to break

the bond homolytically) is 1.3 times greater, 485 kJmol�1 : 372 kJ mol�1 ; this is

from the values for the central C–C bonds of 1,3-butadiene and of butane [11]. For

corresponding atoms, force constants are roughly proportional to bond order

(double bonds and triple bonds are about two and three times as stiff, respectively,

as the corresponding single bonds). Some forcefields account for the variation of

double bond order with conformation (twisting p orbitals out of alignment reduces

their overlap) by performing a simple PPP molecular orbital calculation (Chap. 6)

to obtain the bond order.

A sophisticated forcefield might also consider all H/H nonbonded interactions

explicitly, rather than simply subsuming some into, say, methyl/methyl interactions

(combining atoms into groups is the feature of a united atom forcefield). Further-

more, nonbonded interactions between groups with charges or partial charges, like

C ¼ O, need to be accounted for in a field that is not limited to hydrocarbons. These

can be handled by the well-known potential energy/electrostatic charge relationship

E ¼ k q1q2=rð Þ

which has also been used to model hydrogen bonding [12]. A dielectric constant can

be placed in the denominator to account for attenuation of the electrostatic potential

by the medium of the molecule lying between the two groups or atoms. The charges

can be assigned to atoms as parameters obtained by electronic structure calculations

3.2 The Basic Principles of Molecular Mechanics 63

http://dx.doi.org/10.1007/978-3-319-30916-3_6


on model molecules. Alternatively, electrostatic repulsion can be treated as repul-

sion between bond dipoles, values of which were assigned by fitting trial dipoles to

experimental or calculated dipole moments of small molecules.

Another kind of energy term in good forcefields is one for out-of-plane bending
around a tricoordinate atom like that in carbonyl compounds. The four atoms of

XYC¼O are not necessarily in the same plane, but can be made to pay an energy

penalty which depends on the deviation of the C¼O bond from the XYC plane.

A subtler problem with the naive forcefield developed here is that stretching,

bending, torsional, nonbonded etc. terms are not completely independent. For

example, the butane torsional potential energy curve (Fig. 3.5) does not apply

precisely to all CH3–C–C–CH3 systems, because the barrier heights will vary

with the length of the central C–C bond, obviously decreasing (other things being

equal) as the bond is lengthened, since there will be a decrease in the interactions

(whatever causes them) between the CH3’s and H’s on one of the carbons of the

central C–C and those on the other carbon. This could be accounted for by making

the k’s of Eq. (3.25) a function of the X�Y length. This would be a stretch-torsion

cross term. Partitioning the energy of a molecule into stretching, bending, etc. terms

is really somewhat formal; for example, the torsional barrier in butane can be

considered to be partly due to nonbonded interactions between the methyl groups.

It should be realized that there is no one, right functional form for an MM forcefield

(see, e.g., [1a, b, c]); accuracy, versatility and speed of computation are the deciding

factors in devising a forcefield. Finally, once initial parameters have been obtained

in some fashion, as outlined above, the forcefield should be iteratively refined to

obtain a parameter set that working together gives the best fit to, say, all geometric

parameters (bond length, angle, and torsions), by minimizing the sum of the squares

of the deviations from the“correct” (experimental or high-level calculated) values

for a training set of molecules.

3.2.3 A Calculation Using our Forcefield

Let us apply the naive forcefield developed here to comparing the energies of two

2,2,3,3-tetramethylbutane ((CH3)3CC(CH3)3, i.e. t-Bu-Bu-t) geometries. We com-

pare the energy of structure 1 (Fig. 3.8) with all the bond lengths and angles at our

“natural” or standard values (i.e. at the STO-3G values we took as the reference

bond lengths and angles in Sect. 3.2.2) with that of structure 2, where the central

C-C bond has been stretched from 1.538 Å to 1.600 Å, but all other bond lengths, as
well as the bond angles and dihedral angles, are unchanged. Fig. 3.8 shows the

nonbonded distances we need, which would be calculated by the program from

bond lengths, angles and dihedrals. Using Eq. (*3.1):

E ¼
X
bonds

Estretch þ
X
angles

Ebend þ
X

dihedrals

Etorsion þ
X
pairs

Enonbond

 !
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For Structure 1X
bonds

Estretch C� Cð Þ ¼ 7� 1735 1:538� 1:538ð Þ2 ¼ 0

Bond stretch contribution cf. structure with leq ¼ 1:538

X
bonds

Estretch C� Hð Þ ¼ 18� 1934 1:083� 1:083ð Þ2 ¼ 0

Bond stretch contribution cf. structure with leq ¼ 1:083

X
angles

Ebend HCHð Þ ¼ 18� 0:093 110:7� 110:7ð Þ2 ¼ 0

Bond bend contribution cf. structure with aeq ¼ 110:7�

X
angles

Ebend CCCð Þ ¼ 12� 0:110 112:5� 112:5ð Þ2 ¼ 0

Bond bend contribution cf. structure with aeq ¼ 112:5�

X
dihedrals

Etorsion CH3CCCH3ð Þ ¼ 6� 3:5 ¼ 21:0

Torsional contribution cf. structure with no gauche – butane interactions

Actually, nonbonding interactions are already included in the torsional term

(as gauche-butane interactions); we might have used an ethane-type torsional

function and accounted for CH3/CH3 interactions entirely with

C C

CH3

CH3

CH3

H3C

H3C

H3C

3.974

3.120

C C

CH3

CH3

H3C

H3C

H3C

3.931

3.065

stretch central C-C bond
CH3

1.538 A 1.600 A

keeping bond angles and
other bond lengths constant

1 2

Fig. 3.8 Structures for a simple MM “by hand” calculation on the effect of changing the central

C—C length of (CH3)3C–C(CH3)3 from 1.538 Å to 1.600 Å
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X
nonbond

Enonbond anti� CH3=CH3ð Þþ
X

nonbond

Enonbond gauche� CH3=CH3ð Þ

¼ 3� 4:7
3:85

3:931

� 	12

� 3:85

3:931

� 	6
" #

þ 6� 4:7
3:85

3:065

� 	12

� 3:85

3:065

� 	6
" #

¼ 3� �0:487ð Þ þ 6� 54:05ð Þ ¼ �1:463þ 324:3 ¼ 323 kJ mol�1

nonbonding contribution cf. structure with noninteracting CH
=
3 s nonbonded terms.

However, in comparing calculated relative energies the torsional term will cancel

out.

Etotal ¼ Estretch þ Ebend þ Etorsion ¼ 0þ 0þ 21:0þ 323 kJ mol�1 ¼ 344kJ mol�1

For Structure 2X
bonds

Estretch C� Cð Þ ¼ 6�1735 1:538� 1:538ð Þ2 þ 1� 1735 1:600� 1:538ð Þ2

¼ 0þ 6:67 ¼ 6:67kJ mol�1

Bond stretch contribution cf. structure with leq ¼ 1:538

X
bonds

Estretch C� Hð Þ ¼ 18 �1934 1:083� 1:083ð Þ2 ¼ 0

Bond stretch contribution cf. structure with leq ¼ 1:083

X
angles

Ebend HCHð Þ ¼ 18� 0:093 110:7� 110:7ð Þ2 ¼ 0

Bond stretch contribution cf. structure with aeq ¼ 110:7�

X
angles

Ebend CCCð Þ ¼ 12� 0:110 112:5� 112:5ð Þ2 ¼ 0

Bond stretch contribution cf. structure with aeq ¼ 112:5�

X
dihedrals

Etorsion CH3CCCH3ð Þ ¼ 6� 3:5 ¼ 21:0

Torsional contribution cf. structure with no gauche–butane interactions

The stretching and bending terms for structure 2 are the same as for structure 1,

except for the contribution of the central C-C bond; strictly speaking, the torsional

term should be smaller, since the opposing C(CH3) groups have been moved apart.
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X
nonbondEnonbond anti� CH3=CH3ð Þþ

X
nonbond

Enonbond gauche� CH3=CH3ð Þ

¼ 3� 4:7
3:85

3:974

� 	12

� 3:85

3:974

� 	6
" #

þ 6� 4:7
3:85

3:120

� 	12

� 3:85

3:120

� 	6
" #

¼ 3� �0:673ð Þ þ 6� 41:97ð Þ ¼ �2:019þ 251:8

¼ 250 kJ mol�1

nonbonding contribution cf. structure with noninteracting CH
=
3 S

Etotal ¼ Estretch þ Ebend þ Etorsion ¼ 6:67þ 0þ 21:0þ 250 kJ mol�1

¼ 277kJ mol�1

So the relative energies are calculated to be

E structure 2ð Þ � E structure 1ð Þ ¼ 277� 344 kJ mol�1 ¼ �67 kJ mol�1

This crude method predicts that stretching the central C/C bond of

2,2,3,3-tetramethylbutane from the approximately normal sp3–C–sp3–C length of

1.583 Å (structure 1) to the quite “unnatural” length of 1.600 Å (structure 2) will

lower the potential energy by 67 kJ mol�1, and indicates that the drop in energy is

due very largely to the relief of nonbonded interactions. A calculation using the

accurate forcefield MM3 [13] gave an energy difference of 54 kJ mol�1 between

a “standard” geometry approximately like structure 1, and a fully optimized geom-

etry, which had a central C/C bond length of 1.576 Å. The surprisingly good

agreement is largely the result of a fortuitous cancellation of errors, but this does

not gainsay the fact that we have used our forcefield to calculate something of

chemical interest, namely the relative energy of two molecular geometries. In

principle, we could have found the minimum-energy geometry according to this

forcefield, i.e. we could have optimized the geometry (Chap. 2). Geometry optimi-

zation is in fact the main use of MM. Some people distinguish between a molecular

mechanics forcefield, which is an expression like that in Eq. (*3.1) for the energy of

a molecule, and a molecular mechanics program, which uses a forcefield along with

specific algorithms to calculate, e.g., optimized geometries or vibrational frequen-

cies. Different programs could use the same forcefield but different algorithms, and

vice versa.

Geometry optimizations with really viable MM programs are not done piece-

meal as was just done here for illustrative purposes. Rather, a systematic algorithm

is used, based on the fact that the energy is a known, fairly simple function of the

nuclear (“atomic”) coordinates and so first and second derivatives of the energy can

be calculated analytically and used, with matrices, to iteratively find a potential

energy surface minimum. This was explained in Sect. 2.4 and will be only modestly

augmented here with regard to molecular mechanics. The MM energy is

(cf. Eq. (3.1) etc.):
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E ¼ f l, a, � � �ð Þ

E is also a parametric function (Sect. 2.3) of leq, aeq, etc., but for a given

forcefield these are constants. The variables l, a etc. are internal coordinates,

since the their values are inherent in the molecule and can be specified without an

external frame of reference like Cartesian X, Y, Z axes. Clearly the same geometric

information can be conveyed with Cartesian coordinates:

E ¼ f q1, q2, q3� � �ð Þ

where q1, q2, q3 etc. are x, y, z coordinates of atom 1, q4, q5, q6, of atom 2 (“atom” is

a more appropriate word than “nucleus” in MM), etc. Bond lengths, angles and

dihedrals are simply related to the Cartesians by trigonometry. The Cartesian

representation of geometry is preferred for optimization algorithms. The initial

geometry matrix (cf. Sect. 2.4) is the column matrix of q1, q2, q3� � �, and analytical
differentiation provides ∂E=∂q1 and ∂

2
E=∂q1∂q1 etc. for the gradient and Hessian

matrices, so the geometry can be optimized using Eq. (2.14):

qo ¼ qi �H�1gi

i.e. a Newton-Raphson algorithm. In fact, because MM is often used to optimize

very large molecules, with hundreds or thousands of atoms, the conjugate gradient
method is sometimes more appropriate in MM, since the time for the inversion of

the Hessian rises steeply (as the cube) with the number of atoms, and the conjugate

gradient method uses only first derivatives; this and other geometry optimization

methods are discussed by Jensen [14]. The Newton-Raphson and conjugate gradi-

ent methods are briefly mentioned in comparison by Allinger ([1a], pp. 47 and 310).

The energy calculated by MM, which we have called potential energy, is also

sometimes called strain energy, since it is relative to an unobservable standard,

by-definition undistorted, reference structure. However, the term strain in chemis-

try has long been used to denote an experimentally observable set of properties

connected mostly with distorted angles, and so MM energies are better denoted

steric energies, steric being perhaps used to acknowledge the dependence of energy
on molecular shape in general.

3.3 Examples of the Use of Molecular Mechanics

If we consider the applications of MM from the viewpoint of the goals of those who

use it, then the main applications have been:

1. To obtain reasonable input geometries for lengthier (ab initio, semiempirical or

density functional) kinds of calculations.

2. To obtain good geometries (and perhaps energies) for small- to medium-sized

molecules.

68 3 Molecular Mechanics

http://dx.doi.org/10.1007/978-3-319-30916-3_2
http://dx.doi.org/10.1007/978-3-319-30916-3_2
http://dx.doi.org/10.1007/978-3-319-30916-3_2


3. To calculate the geometries and energies of very large molecules, usually

polymeric biomolecules (proteins and nucleic acids).

4. To generate the potential energy function under which molecules move, for

molecular dynamics or Monte Carlo calculations.

5. As a (usually quick) guide to the feasibility of, or likely outcome of, reactions in

organic synthesis.

Examples of these five facets of the use of MM will be given.

3.3.1 To Obtain Reasonable Input Geometries for Lengthier
(ab Initio, Semiempirical or Density Functional) Kinds
of Calculations

The most frequent use of MM is probably to obtain reasonable starting structures

for ab initio, semiempirical, or DFT (Chaps. 5, 6 and 7 calculations. Nowadays this

is usually done by building the molecule with an interactive builder in a graphical

user interface, with which the molecule is assembled by clicking atoms or groups

together, much as one does with a “real” model kit. A click of the mouse invokes

MM and provides, in most cases, a reasonable geometry. The resulting

MM-optimized structure is then subjected to an ab initio, etc. calculation, usually

beginning with geometry optimization; one expects this “higher-level” optimiza-

tion to be faster than if the preliminary MM optimization had not been done.

By far the main use of MM is to find reasonable geometries for “normal”

molecules, but it has also been used to investigate transition states. The calculation

of transition states involved in conformational changes is a fairly straightforward

application of MM, since “reactions” like the interconversion of butane or cyclo-

hexane conformers do not involve the deep electronic reorganization that we call

bond-making or bond-breaking. The changes in torsional and nonbonded interac-

tions that accompany them are the kinds of processes that MM was designed to

model, and so good transition state geometries and energies can be expected for this

particular kind of process; transition state geometries cannot be (readily) measured,

but the MM energies for conformational changes agree well with experiment:

indeed, one of the two very first applications of MM [3a, d] was to the rotational

barrier in biphenyls (the other was to the SN2 reaction [3c]). Since MM programs

are usually not able to optimize an input geometry toward a saddle point (see

below), one normally optimizes to a minimum subject to the symmetry constraint

expected for the transition state. Thus for ethane, optimization to a minimum within

D3h symmetry (i.e. by constraining the HCCH dihedrals to be 00, or by starting with

a structure of exactly D3h symmetry) will give the transition state, while optimiza-

tion with D3d symmetry gives the staggered ground-state conformer (Fig. 3.9).

Optimizing an input C2v cyclohexane structure (Fig. 3.10) gives the stationary point

nearest this input structure, which is the transition state for interconversion of

enantiomeric twist cyclohexane conformers.
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Nevertheless there are several examples of the application of MM to actual

chemical reactions, as distinct from conformational changes; the ones mentioned

here are taken from the review by Eksterowicz and Houk [15]. The simplest way to

apply MM to transition states is to approximate the transition state by a ground-state

molecule. This can sometimes give surprisingly good results. The rates of solvol-

ysis of compounds RX to the cation correlated well with the energy difference

between the hydrocarbon RH, which approximates RX, and the cation Rþ, which
approximates the transition state leading to this cation. This is not entirely unex-

pected, as the Hammond postulate [16] suggests that the transition state should

D3h

Input structure with this symmetry will be
optimized to the transition state

Input stuctures not of D3h symmetry will
be optimized to the minimum-energy
conformation

energy

dihedral angle

Fig. 3.9 Optimizing ethane within D3h symmetry (i.e. by constraining the HCCH dihedral to

be 0�, or by inputting a structure with exact D3h symmetry)) will give the transition state, while

optimization without requiring D3d symmetry gives the ground-state conformer

reaction coordinate

energy

D3d

C2v

C2

A C2v input structure will be optimized to 
the transition state linking the C2 conformers 

halfchair
Cs

twist, or twist-boat

chair

boat

Fig. 3.10 Optimizing cyclohexane within C2v symmetry gives a transition state, not one of the

minima
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resemble the cation, a high-energy species. In a similar vein, the activation energy

for solvolysis has been approximated as the energy difference between a

“methylalkane”, with CH3 corresponding to X in RX, and a ketone, the sp2 carbon
of which corresponds to the incipient cationic carbon of the transition state. MM has

been used to study the transition states involved in SN2 reactions, hydroborations,

cycloadditions (mainly the Diels-Alder reaction), the Cope and Claisen

rearrangements, hydrogen transfer, esterification, nucleophilic addition to carbonyl

groups and electrophilic C/C bonds, radical addition to alkenes, aldol condensa-

tions, and various intramolecular reactions [15]. These studies approximate the TS,

usually by using a normal molecule or ion as a surrogate, rather than finding a

stationary point with one negative force constant.

One may wish a more precise approximation to the transition state geometry

than is represented by an intermediate or a compound somewhat resembling the

transition state. This can sometimes be achieved by optimizing to a minimum,

subject to the constraint that the bonds being made and broken have lengths

believed (e.g. from quantum mechanical calculations on simpler systems, or from

chemical intuition) to approximate those in the transition state, and perhaps with

appropriate angles and dihedrals also constrained. With luck this will take the

stretched-bond input structure to a point on the potential energy surface near the

saddle point. For example, an approximation to the geometry of the transition

state for formation of cyclohexene in the Diels-Alder reaction of butadiene with

ethene can be achieved (Fig. 3.11) by essentially building a boat conformation of

H2C

3

C2v

C

H H

C

H H

make a C/C double bond;
set constraints on two C/C
bonds

(2.1 A)

constrain to
constrain to

(2.1 A)

butadiene

ethene

H

HH

H

H
H

H

H

H

H

2.1 A

2.1 A

2.1 A

2.1 A

2.1 A
2.1 A

from 

start with chair cyclohexane attach a CH2 1,4

Cf. the transition state

1 2

4

optimize

optimize
optimize

5

C

H H

6

H HHH

remove CH2, set 1,2,3,4 dihedral to 0

1
2 34

7

H
H

HH

Cs

Cs

Fig. 3.11 Using molecular mechanics to get the (approximate) transition state for the Diels-Alder

reaction of butadiene with ethene. This procedure gives a structure with the desirable Cs, rather

than a lower, symmetry
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cyclohexene, constraining the two forming C/C bonds to about 2.1 Å, and optimiz-

ing, using the CH2 bridge (later removed) to avoid twisting and to maintain Cs

symmetry; optimization with a dihedral constraint removes steric conflict between

two hydrogens and gives a reasonable starting structure for, say, an ab initio

transition state optimization.

The most sophisticated approach to locating a transition state with MMwould be

to use an algorithm that optimizes the input structure to a true saddle point, that is to

a geometry characterized by a Hessian with one and only one negative eigenvalue

(Chap. 2). To do this the MM program would have to be able not only to calculate

second derivatives, but should also be parameterized for the partial bonds in

transition states. Because this parameterization is lacking in MM forcefields, an

approach to transition state location by finding the intersection or seam (the method

is called the “SEAMmethod”) of the reactant and product potential energy surfaces

has been experimented with [17]. Nevertheless, MM is not much used to find

transition states (this is distinct from its routine use in creating approximate input

structures for proper transition state optimizations by some other method).

3.3.2 To Obtain (Often Excellent) Geometries

Molecular mechanics can provide excellent geometries for small (roughly C1 to

about C10) and medium-sized (roughly C11 to C100) organic molecules. It is by no

means limited to organic molecules, as forcefields like SYBYL and UFF [5] have

been parameterized for most of the periodic table, but the great majority of MM

calculations have been done on organics, perhaps largely because MM was the

creation of organic chemists (this is probably because the concept of geometric

structure has long been central in organic chemistry). The two salient features of

MM calculations on small to medium-sized molecules is that they are fast and they
can be very accurate. Times required for geometry optimization without/with

frequencies for unbranched C20H42, of C2h symmetry (zigzag conformation), with

the Merck Molecular Force Field (MMFF, i. e. MMFF94), the semiempirical AM1

(Chap. 6) and the ab initio HF/3-21G (a lower-level ab initio method, Chap. 5)

methods, as implemented in the program SPARTAN [18], on a year 2014 machine,

were:

MMFF, input from the molecule builder: optimization effectively 1 s, opt

+ frequencies effectively 1 s

Starting from the MMFF geometry:

AM1, optimization 1 s, opt + frequencies 52 s

HF/3-21G, optimization 3.0 min, opt + frequencies 9.6 min

Clearly as far as speed goes there is little contest between the methods, and the

edge in favor of MM increases sharply with the size of the molecule. In fact, MM

was till some years ago the only practical method for calculations on molecules
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with more than about 100 heavy atoms (in computational chemistry a heavy atom is

any atom heavier than helium). Even MM programs not designed specifically for

macromolecules will handle molecules with thousands of atoms on a good personal

computer.

MM geometries are usually reasonably good for small to medium-sized mole-

cules [4], [9a], [19]; for the MM3 program (see below) the RMS error in bond

lengths for the moderately large cholesteryl acetate was only about 0.007 Å [4a].

“Bond length” is, if unqualified, somewhat imprecise, since different methods of

measurement give somewhat different values [4a]; [9a] (Chap. 5, Sect. 5.5.1). MM

geometries are routinely used as input structures for quantum-mechanical calcula-

tions, but in fact the MM geometry and energy are in some cases as good or better

than those from a “higher-level” calculation [20]; see too the discussion in connec-

tion with Fig. 3.12 and Tables 3.3 and 3.4. The MM forcefields MM3, OPLS and

AMOEBA were better than semiempirical quantum mechanical methods (although

these latter are admittedly quite approximate–Chap. 6) for calculating the geome-

tries and binding energies of benzene dimers, species held together by weak

“dispersion” forces [21]. The best structures for this were taken as those from the

high-level ab initio CCSD(T) method (Chap. 5, Sect. 5.4.3). The benchmark MM

programs for small to medium-sized molecules are probably MM3 and MM4. The

Merck Molecular Force Field (MMFF) [22] is likely to remain very popular, not

least because of its implementation in popular program suites like SPARTAN [18].

Inorganic compounds, particularly organometallics, present special problems for

MM because by comparison with organics, on which the vast majority of work in

this field has been expended, their bonding tends to be less literally interpretable in

a ball-and-springs manner; for example, would the simplest and most widely

transferable model of ferrocene (the dicyclopentadienyliron compound) use ten

C-Fe bonds or two ring-center to iron bonds? A forcefield called Momec3 has been

developed specially for inorganics [23].

3.3.2.1 Some Results for Geometries Calculated by MM

Figure 3.12 compares geometries calculated with the Merck Molecular Force Field

(MMFF) with those from a reasonably high-level ab initio calculation MP2ð ÞFC�=
6-31G* ; Chap. 5) and from experiment. The MMFF is a popular forcefield,

applicable to a wide variety of molecules. Popular prejudice holds that the ab initio

method is “higher” than molecular mechanics and so should give superior geom-

etries. The set of 20 molecules in Fig. 3.12 is also used in Chaps. 5, 6, and 7, to

illustrate the accuracy of ab initio, semiempirical, and density functional calcula-

tions in obtaining molecular geometries. The data in Fig. 3.12 are analyzed in

Table 3.3. Table 3.4 compares dihedral angles for eight molecules, which are

also used in Chaps. 5, 6, and 7. The experimental data for Fig. 3.12 come from

Hehre et al. [24a], and for Table 3.4 from [24a], Harmony et al. [24b], and

Huang et al. [24c].
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This survey suggests that: For common organic molecules the Merck Molecular

Force Field is nearly as good as the ab initio MP2(FC)/6 ‐ 31G* method for

calculating geometries. Both methods give good geometries, but MP2/6 ‐ 31G*
calculations take longer. Admittedly, for these small molecules the difference is
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Fig. 3.12 A comparison of some MMFF, MP2(FC)/6-31G* and experimental geometries. Calcu-

lations are by the author and experimental geometries are from ref. [23a]. Note that all CH bonds

are ca. 1 Å, all other bonds range from ca. 1.2–1.8 Å, and all bond angles (except for linear
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scarcely consequential: for MM effectively about one second for each of the 20; for

MP2(FC)/6 ‐ 31G*, CH3COCH3, 16 s; CH3Cl, 7 s; (CH3)2SO, 33 s, on a vintage

2014 machine. But for larger molecules where MP2 would need hours, MM

calculations might still take only seconds. Note, however, that ab initio methods

provide information that molecular mechanics cannot, and are far more reliable for

molecules outside those of the kind used in the MM training set (Sect. 3.2.2). The

worst MMFF bond length deviation from experiment among the 20 molecules is

0.021 Å (the C ¼ C bond of propene; the MP2 deviation is 0.020 Å); most of the

other errors are ca. 0.01Å or less. The worst bond angle error is 13.6�, for HOF, and
for HOCl the deviation is 7.9�, the second worst angle error in the set. This suggests
a problem for the MMFF with X–O–Halogen angles, but while for CH3OF devia-

tion from the MP2 angle (which is likely to be close to experiment) is

MMFF�MP2 ¼ 110:7� � 102:8� ¼ 7:9�, for CH3OCl the deviation is only

112:0� � 109:0� ¼ 3:0�.
MMFF dihedral angles are remarkably good, considering that torsional barriers

are believed to arise from subtle quantum mechanical effects. The worst dihedral

angle error is 10�, for HOOH, and the second worst, �5:0�, is for the analogous

HSSH. The ab initio HF/3-21G (Chap. 5) and semiempirical PM3 (Chap. 6)

methods also have trouble with HOOH, predicting a dihedral angle of 180�. For

Table 3.4 MMFF, MP2(FC)/6-31G* and experimental dihedral angles (degrees)

Molecule

Dihedral Angles Errors

MMFF MP2/6-31G* Exp.

HOOH 129.4 121.3 119.1a 10/2.2

FOOF 90.7 85.8 87.5b 3.2/�1.7

FCH2CH2F (FCCF) 72.1 69 73b �1.0/�4

FCH2CH2OH (FCCO) 65.9 60.1 64.0c 1.9/�3.9

(HOCC) 53.5 54.1 54.6c �1.1/�0.5

ClCH2CH2OH (ClCCO) 65.7 65.0 63.2b 2.5/1.8

(HOCC) 56.8 64.3 58.4b �1.6/5.9

ClCH2CH2F (ClCCF) 69.8 65.9 68b 1.8/�2.1

HSSH 84.2 90.4 90.6a �6.4/�0.2

FSSF 82.9 88.9 87.9b �5.0/1.0

Deviations:

5+, 5�/4+, 6�
mean of 10: 3.5/2.3;

Errors are given in the Errors column as MMFF/MP2/6-31G*. A minus sign means that the

calculated value is less than the experimental. The numbers of positive and negative deviations

from experiment and the average errors (arithmetic means of the absolute values of the errors) are

summarized at the bottom of the Errors column. Calculations are by the author; references to

experimental measurements are given for each measurement. The AM1 and PM3 dihedrals vary

by a fraction of a degree depending on the input dihedral. Some molecules have calculated minima

at other dihedrals in addition to those given here, e.g. FCH2CH2F at FCCF 180�
a[23a], pp.151, 152
b[23b]
c[23c]
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those dihedrals not involving OO or SS bonds, (an admittedly small selection), the

MMFF errors are only ca. 1� � 2�, cf. ca. 2� � 6� for MP2.

3.3.2.2 Geometries of Very Large Molecules, Usually Polymeric
Biomolecules (Proteins and Nucleic Acids)

Next to generating geometries and energies of small to medium-sized molecules,

the main use of MM is to model polymers, mainly biopolymers (proteins, nucleic

acids, polysaccharides). Forcefields have been developed specifically for this; two

of the most widely-used of these are CHARMM (Chemistry at HARvard using

Molecular Mechanics) [25] (the academic version; the commercial version is

CHARMm) and the forcefields in the computational package AMBER (Assisted

Model Building with Energy Refinement) [26]. CHARMM was designed to deal

with biopolymers, mainly proteins, but has been extended to handle a range of small

molecules. AMBER is perhaps the most widely used set of programs for biological

polymers, being able to model proteins, nucleic acids, and carbohydrates. Programs

like AMBER and CHARMM that model large molecules have been augmented

with quantum mechanical methods (semiempirical [27] and even ab initio [28]) to

investigate small regions where treatment of electronic processes like transition

state formation may be critical. This so-called QM/MM approach utilizes the ability

of QM to calculate electronic phenomena and the ability of MM to calculate the

geometry of large molecules [1k], [29].

An extremely important aspect of the modelling of biomolecules (which is done

largely with MM) is designing pharmacologically active molecules that can fit into

active sites (the pharmacophores) of biomolecules and serve as useful drugs. For

example, a molecule might be designed to bind to the active site of an enzyme and

block the undesired reaction of the enzyme with some other molecule. Pharmaceu-

tical chemists computationally craft a molecule that is sterically and electrostati-

cally complementary to the active site, and try to dock the potential drug into the

active site. The binding energy of various candidates can be compared and the most

promising ones can then be synthesized, as the second step on the long road to a

possible new drug. The computationally assisted design of new drugs and the study

of the relationship of structure to activity (quantitative structure-activity relation-

ships, QSAR) is one of the most active areas of computational chemistry [30]. Par-

ticularly relevant to the investigation of biochemical processes is the combining of

quantum mechanics with MM in the QM/MM method mentioned above.

3.3.3 To Obtain (Sometimes Excellent) Relative Energies

As explained in Sect. 3.5, Weaknesses, one should not compare the steric energies

of molecules of different structural types, like functional group isomers such

CH3CH2OH and CH3OCH3, and even an unbranched 1-alkene cf. an isomeric
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internal alkene is suspect, since a monosubstituted and a disubstituted C ¼ C unit

are different in a heavily parameterized forcefield. The range of valid energy

comparison is greatly extended if the MM program can calculate not merely steric

energies, but also enthalpies of formation (heats of formation), ΔH0
f, the heat

energy that must be input to make a mole of the compound from its elements in

their standard states: the enthalpies of any two compounds with the same molecular

formula can be validly compared since both values are relative to the same number

of moles of the elements in their standard states. The MM4 forcefield can calculate

accurate enthalpies of formation for hydrocarbons by combining steric energy with

appropriate parameterization [31], [1f]. The connection between the steric energy

Vsteric of a molecule and its enthalpy of formation is somewhat involved, since

(in essence) one is a kind of strain energy relative to a hypothetical ideal molecule

and the other is a kind of difference in bond energies between the molecule and its

elements in their standard states. The principle behind the calculation of enthalpies

of formation from MM steric energies is shown below.

Consider for conceptual and notational simplicity the specific case of ethane,

C2H6. The formation reaction equation for ethane from its elements in their

standard states is

2C graphiteð Þ þ 3H2 ! C2H6

and the change in internal energy for the formation reaction at 0 K is

ΔEtotal ¼ Etotal productsð Þ � Etotal reactantsð Þ,
ΔEtotal ¼ Vsteric �

X
BECH�

X
BECC

� �
� 2Etotal graphiteð Þ þ 3Etotal H2ð Þ� �

ð3:27Þ

Here ΔEtotal is the change in the total electronic plus internuclear repulsion energy

and BE is bond energy. Etotal (using the notation in this book: Chap. 5, Eq. (5.93)) is

conventionally called the electronic energy, although it is really the sum of the

electronic energy and the internuclear repulsion energy. We will encounter this in

Chap. 5, as the ab initio energy of a molecule. The internal energy of ethane, the

product, is here equated to the molecular mechanics steric (“strain” in looser

terminology) energy minus the energy of the reference structure, whose energy is

just the sum of its bond energies; from the definition of bond energy this sets the

energy zero here at the energy of the separated atoms. Regarding the reactants,

although graphite is polymeric, we consider for energy changes a hypothetical

monatomic but standard-state solid graphite, and the other reactant is dihydrogen.

The internal energy change of Eq. 3.27 ignores changes in ZPE, which we hope to

take into account in parameterization.

All this was at T ¼ 0 K because it ignores contributions to internal energy from

translational and rotational terms involving RT; we now bring in these terms and

go to T > 0. We need the gas phase molar change in translational and rotational
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internal energies for the formation reaction, ΔE(trans) and ΔE(rot). The

usual symbol for internal energy is U, but here I use E for notational concordance

with ΔEtotal, the internal energy change in Eq. (3.26). The gas phase species in the

formation equation are dihydrogen and ethane; graphite is a solid. ΔE(trans) is
simply the change in the number of gas-phase molecules times 3=2RT ¼ 1� 3ð Þ
3=2ð ÞRT ¼ �3RT (since each gas-phase particle regardless of structure has 3

degrees of translational freedom, each corresponding to (1/2)RT of internal energy

– see any good book on statistical thermodynamics). ΔE(rot) is E rot, C2H6ð Þ � 3E
rot, H2ð Þ ¼ 1 3ð Þ 1=2RTð Þ � 3 2ð Þ 1=2ð ÞRT ¼ �3=2ð ÞRT (since there is one C2H6

molecule (or mole), and it has three rotational degrees of freedom, for a factor of

1� 3� 1=2RT of internal energy, while there are three H2 molecules, and as a linear

molecule each has 2 rotational degrees of freedom, for a factor of 1� 3� 1=2RT of

internal energy). The internal energy change due to the translational and rotational

energy change is therefore �3� 3=2ð ÞRT ¼ �9=2ð ÞRT. We now go from internal

energy to enthalpy, since we want to calculate enthalpy of formation.

The enthalpy change is the internal energy change plus ΔnRT (Chap. 5,

Sect. 5.5.2.1.1), where Δn ¼ change in the number of gas-phase molecules; here

Δn ¼ 1� 3 ¼ �2. So at temperature T, usually chosen to be 298 K (298.15 K,

“standard ambient temperature”) for parameterization (below), the enthalpy change

for the formation reaction is (adding to the change in 0 K internal energy the

rotational and translational terms (�9/2)RT and the -2RT enthalpy adjustment)

ΔHf,T
� ¼ ΔEtotal � 9=2ð ÞRT � 2RT ¼ ΔEtotal � 13=2ð ÞRT

and since (Eq. (3.27))

Δ Etotal ¼ Vsteric �
X

BECH�
X

BECC

� �
� 2Etotal graphiteð Þ þ 3Etotal H2ð Þ� �

then

ΔHf,T
� ¼ Vsteric �

X
BECH�

X
BECC � 2Etotal graphiteð Þ � 3 Etotal H2ð Þ

� 13=2ð ÞRT

or

ΔHf,T
� ¼ Vsteric � 6BECH � 1BECC � 2Etotal graphiteð Þ � 3 Etotal H2ð Þ � 13=2ð ÞRT

ð3:28Þ

for ethane, which has 6 CH bonds and one CC bond.

The problem here is the two Etotal terms, because MM can’t calculate electronic
energies. Now, a similar but conceptually more intricate derivation of ΔHf,T

� for a
general alkane or cycloalkane gives [1f]:
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ΔHf,T
� ¼ Vsteric

� NCH BECH þ 1=4ð ÞEtotal graphiteð Þ þ 1=2ð ÞEtotal H2ð Þ þ 7=4ð ÞRT
 �
� NCC BECC þ 1=2ð ÞEtotal graphiteð Þ
 �þ 4RT

ð3:29Þ

where NCH and NCC are the number of CH and CC bonds. For NCH ¼ 6 and

NCC ¼ 1, this reduces to Eq. 3.28, which was derived specifically for ethane. The

general Eq. 3.29 solves the problem of the Etotal terms, because we can write it

ΔHf,T
� ¼ Vsteric þ kCHNCH þ kCCNCC þ 4RT ð3:30Þ

where

kCH ¼ � BECH þ 1=4ð ÞEtotal graphiteð Þ þ 1=2ð ÞEtotal H2ð Þ þ 7=4ð ÞRT
 �
and

kCC ¼ � BECC þ 1=2ð ÞEtotal graphiteð Þ
 �
4RT ¼ 9:92 kJ mol�1 at 298K

The Etotal quantities can now be parameterized away by finding the best kCH and kCC
that fit MM-calculated enthalpies of formation to those of experimental

(or nowadays often high-level ab initio or DFT) enthalpies of formation, for a set

of alkanes or cycloalkanes. Parameterization has not only the essential feature of

taking care of Etotal but also the nice features of handling the bond energy terms, and

of implicitly accounting for zero point vibrational energy, because Etotal does not

include ZPE. The parameterization is illustrated below. The treatment above has

not mentioned the fact that acyclic molecules in particular are usually floppy and so

when we measure experimentally an enthalpy of formation, this may be for a

Boltzmann distribution mixture of conformers, while a single calculation of Vsteric

is for a particular conformer. So if one conformer does not heavily predominate, or

is not, as for a rigid molecule, the sole one, then if the calculated ΔHf,T
� is to

correspond to what is actually measured, the enthalpy of formation of the confor-

mational mixture must be calculated by weighting ΔHf,T
� (calculated) for the

individual conformers according to their relative abundance; this could be done

automatically as part of the enthalpy of formation calculation by an algorithm

which searches Vsteric conformational space.

The ten compounds in Table 3.5 were used to find the fitting parameters kCH and

kCC in Eq. 3.30 and thus obtain a usable equation. These ten compounds each

consist of essentially just one conformer, avoiding the conformer mixture problem.

In principle the parameterization could be done with a multiple regression analysis

computer program, but the kCH and kCC used here were found, in the spirit of

Eq. 3.30, by noting ([1f], page 645) that “Typically” these values are ca. �4.5 and

2:5 kcal mol�1, i.e. ca. �19 and 10 kJ mol�1. Using these quantities as starting
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points, incremental variations of ca. 0:5 kJmol�1 around these pairs of values gave

(within these limitations of parameter space, and using the compounds of Table 3.5)

as the best equation of the type (3.30), Eq. (3.31):

ΔHf,T
� ¼ Vsteric � 16NCH þ 8NCC þ 9:92 4RT ¼ 9:92 kJmol�1 ð3:31Þ

This is our illustrative MM equation for calculating the enthalpies of formation of

alkanes and cycloalkanes. It applies to Vsteric calculated by the Merck Molecular

Force Field. Now let’s check Eq. (3.31) first against the ten compounds used to

parameterize it. The results of this are summarized in Table 3.6. The absolute mean

deviation of the calculated ΔHf,T
� from the experimental is 13:8 kJ mol�1 and the

largest deviation is 27:2 kJ mol�1. This doesn’t look so bad but, after all, the check

is against the training set. As a second check let’s try Eq. (3.31) for the first

35 compounds in Allinger’s book [1a] in Table 11.1 on page 266. Note that several
of these compounds (most of the open-chain alkanes) are mixtures of conformers;

in a rigorous treatment the Boltzmann distribution would have to be addressed.

The results of this comparison of calculated and experimental values are summa-

rized in Table 3.7. The absolute mean deviation of the calculated ΔHf,T
� from the

experimental is 39:7 kJ mol�1 and the largest deviation is 214:6 kJ mol�1. Nine

of the 35 compounds have an absolute mean deviation |dev| of more than

50 kJ mol�1. All of these have one or more quaternary carbons (a carbon

bonded to four other carbons); the only compound with a quaternary carbon for

which jdevj < 50 kJ mol�1 is 1,1-dimethylcyclopentane, jdevj ¼ 45:5 kJ mol�1.

If we accept that this simple parameterization can’t handle quaternary carbons

and remove the nine offenders and the borderline case, we get Table 3.8, with

25 entries. This has a mean absolute deviation of 17:3 kJ mol�1 and a maximum

absolute deviation of 43:6 kJ mol�1 (nonane). These deviations are way below the

spectacular errors seen before removal of the ten cases addressed above, and begin

to verge on tolerable accuracy, which is perhaps surprising for such a small training

Table 3.5 Experimental 298 K enthalpies of formation (kJ mol�1), Vsteric, NCH, and NCC for ten

compounds; data to obtain the parameters kCH and kCH in Eq. (3.30), i.e. to obtain Eq. (3.31)

Compound Exp ΔHf,T
o Vsteric NCH NCC

Ethane �84 �19.81 6 1

Propane �104.7 �20.45 8 2

Isobutane �134.2 �1.98 10 3

Cyclopentane �76.4 6.47 10 5

Cyclohexane �124.6 �14.90 12 6

Methylcyclohexane �154.8 2.92 14 7

Methylcyclopentane �106 23.47 12 6

Norbornane �54.9 82.74 12 7

cis-Decalin �169.2 34.23 18 11

trans-Decalin �182.2 26.19 18 11

The experimntal ΔHf,T
o are from the NIST website and Vsteric was calculated using the Merck

Molecular Force Field (MMFF)
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Table 3.6 Checking Eq. (3.31) with the ten compounds used in the parameterization

Compound Calc. ΔHf,T
o Exp. ΔHf,T

o |deviation|

Ethane �97.9 �84 13.9

Propane �122.5 �104.7 17.8

Isobutane �128.1 �134.2 6.1

Cyclopentane �103.6 �76.4 27.2

Cyclohexane �149 �124.6 24.4

Methylcyclohexane �155.2 �154.8 0.4

Methylcyclopentane �110.6 �106 4.6

Norbornane �43.3 �54.9 11.6

cis-Decalin �155.9 �169.2 13.3

trans-Decalin �163.9 �182.2 18.3

Calculated and experimental 298 K enthalpies of formation (kJ mol�1) from ΔHf,T
o ¼ Vsteric

�16NCH + 8NCC + 9.92 (Eq. 3.31).Maximum |deviation|¼ 27.2, average |deviation|¼ 13.8 kJmol�1

Table 3.7 Testing Eq. (3.31) (ΔHf,T
o ¼ Vsteric �16NCH + 8NCC + 9.92) with the first 35 com-

pounds in [1a], Table 11.1, p. 266 (seven of these 35, marked *, were used in the parameterization

list of Tables 3.5 and 3.6). Maximum |deviation| ¼ 214.6, average |deviation| ¼ 39.7 kJ mol�1

Compound Vsteric NCH NCC Calc. ΔHf,T
o Exp. ΔHf,T

o |dev|

Methane 0.11 4 0 �54 �74.9 20.9

Ethane* �19.8 6 1 �97.9 �84.7 13.2

Propane* �20.5 8 2 �122.5 �103.3 19.2

Butane �21.2 10 3 �147.3 �126.1 21.2

Pentane �22.1 12 4 �128 �146.4 18.4

Hexane �22.9 14 5 �197 �167.2 29.8

Heptane �23.8 16 6 �221.8 �187.8 34

Octane �24.6 18 7 �246.7 �208.4 38.3

Nonane �25.5 20 8 �271.6 �228 43.6

Isobutane* �2 10 3 �128.1 �134.5 6.4

Isopentane 1.38 12 4 �148.7 �154.5 5.8

Neopentane 35.57 12 4 �114.5 �168.5 54

2,3-Dimethylbutane 27.75 14 5 �146.3 �177.8 31.5

2,2,3-Trimethylbutane 72.61 16 6 �125.5 �204.8 79.3

2,2-Dimethylpentane 42.3 16 6 �155.8 �205.9 50.1

3,3-Dimethylpentane 52.55 16 6 �145.5 �201.2 55.7

3-Ethylpentane 10 16 6 �188.1 �189.3 1.2

2,4-Dimethylpentane 22.75 16 6 �175.3 �201.7 26.4

2,5-Dimethylhexane 23.48 18 7 �198.6 �222.5 23.9

2,2,3,3-Tetramethylbutane 124.5 18 7 �97.6 �225.6 128

2,2,3,3-Tetramethylpentane 137.2 20 8 �108.9 �237 128.1

di-tert-butylmethane 132.8 20 8 �113.3 �241.8 128.5

Tetraethylmethane 67.51 20 8 �178.6 �232.9 54.3

Tri-tert-butylmethane 363.6 28 12 21.4 �236 214.6

(continued)
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Table 3.7 (continued)

Compound Vsteric NCH NCC Calc. ΔHf,T
o Exp. ΔHf,T

o |dev|

Cyclopentane* 6.47 10 5 �103.6 �78.41 25.2

Cyclohexane* �14.9 0 12 6 �149 �123.1 25.9

Cycloheptane 25 14 7 �133.1 �118.1 15

Cyclooctane 56.82 16 8 �125.3 �124.4 0.9

Cyclononane 74.73 18 9 �131.4 �132.8 1.4

Cyclodecane 84.77 20 10 �145.3 �154.3 9

Cyclododecane 77.14 24 12 �200.9 �228.4 27.5

1,1-Dimethylcyclopentane 65.42 14 7 �92.7 �138.2 45.5

Methylcyclopentane* 23.47 12 6 �110.6 �105.7 4.9

Ethylcyclopentane 23.66 14 7 �134.4 �126.8 7.6

Methylcyclohexane* 2.92 14 7 �155.2 �154.8 0.4

Table 3.8 The 25 compounds in Table 3.5 without quaternary carbons

Compound Vsteric NCH NCC Calc. ΔHf,T
o Exp. ΔHf,T

o |dev|

Methane 0.11 4 0 �54 �74.9 20.9

Ethane* �19.8 6 1 �97.9 �84.7 13.2

Propane* �20.5 8 2 �122.5 �103.3 19.2

Butane �21.2 10 3 �147.3 �126.1 21.2

Pentane �22.1 12 4 �128 �146.4 18.4

Hexane �22.9 14 5 �197 �167.2 29.8

Heptane �23.8 16 6 �221.8 �187.8 34.0

Octane �24.6 18 7 �246.7 �208.4 38.3

Nonane �25.5 20 8 �271.6 �228 43.6

Isobutane* �2.0 10 3 �128.1 �134.5 6.42

Isopentane 1.38 12 4 �148.7 �154.5 5.8

2,3-Dimethylbutane 27.8 14 5 �146.3 �177.8 31.5

3-Ethylpentane 10.0 16 6 �188.1 �189.3 1.2

2,4-Dimethylpentane 22.75 16 6 �175.3 �201.7 26.4

2,5-Dimethylhexane 23.5 18 7 �198.6 �222.5 23.9

Cyclopentane* 6.47 10 5 �103.6 �78.41 25.2

Cyclohexane* �14.9 12 6 �149 �123.1 25.9

Cycloheptane 25.0 14 7 �133.1 �118.1 15.0

Cyclooctane 56.8 16 8 �125.3 �124.4 0.9

Cyclononane 74.7 18 9 �131.4 �132.8 1.4

Cyclodecane 84.8 20 10 �145.3 �154.3 9.0

Cyclododecane 77.14 24 12 �200.9 �228.4 27.5

Methylcyclopentane* 23.47 12 6 �110.6 �105.7 4.9

Ethylcyclopentane 23.66 14 7 �134.4 �126.8 7.6

Methylcyclohexane* 2.92 14 7 �155.2 �154.8 0.4
*Compounds with an asterisk were used in the parameterization list of Tables 3.3 and 3.4

With Eq. (3.31), ΔHf,T
o ¼ Vsteric �16NCH + 8NCC + 9.92, the maximum |deviation| ¼ 43.6, and

average |deviation| ¼ 17.3 kJ mol�1
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set. A “real” equation for calculating ΔHf,T
� from Vsteric might be based on a far

bigger training set. Figure 3.13 shows a plot of the data in Table 3.8. The impression

of correlation is obvious, and on a less intuitive note, the correlation coefficient of

0.800, while not spectacular, is as much as might have been expected for a

rudimentary parameterization. The errors for quaternary carbon compounds reflect

the simple parameterization used here. A more elaborate procedure might have

k-parameters not just for the numbers of general CH and CC bonds (the NCH

and NCC columns in Table 3.5), but, say, a parameter for the number of CH

bonds to methyl groups, another for the number to methylene groups, etc., and

analogous distinctions for the number of CC bonds to CH3, to CH2, etc. For

the MM4 program, for standard hydrocarbons ΔH0
f errors are usually less than

4 kJmol�1 (less than 1 kcal mol�1), which is comparable to experimental error [31];

the errors in MM conformational energies are often only about 2 kJ mol�1 [32].

3.3.4 To Generate the Potential Energy Function Under
Which Molecules Move, for Molecular Dynamics
or Monte Carlo Calculations

Programs like those in AMBER are used not only for calculating geometries and

energies, but also for simulating molecular motion, i.e. for molecular dynamics

[33], and for calculating the relative populations of various conformations or
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Fig. 3.13 Relationship between experimental enthalpy of formation and that calculated from

Eq. (3.31), ΔHf,T
o ¼ Vsteric �16NCH + 8NCC + 9.92. The points correspond to the 25 compounds

in Table 3.8. Correlation coefficient r2 ¼ 0.800 (the best-fit line, shown, has the equation Exp ¼
0.846Calc – 19.56)
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other geometric arrangements (e.g. solvent molecule distribution around a macro-

molecule) in Monte Carlo simulations [34]. In molecular dynamics Newton’s laws
of motion are applied to molecules moving in a molecular mechanics forcefield,

although relatively small parts of the system (system: with biological molecules in

particular modelling is often done not on an isolated molecule but on a molecule

and its environment of solvent and ions) may be simulated with quantum mechan-

ical methods [27, 28]. In Monte Carlo methods random numbers decide how atoms

or molecules are moved to generate new conformations or geometric arrangements

(“states”) which are then accepted or rejected according to some filter. Tens of

thousands (or more) of states are generated, and the energy of each is calculated by

MM, generating a Boltzmann distribution. Do not confuse molecular mechanics,
the forcefield approach to calculating molecular structure and properties, with

molecular dynamics, a set of techniques for following through time the motions,

and in some cases the reactions, of molecules.

Molecular dynamics (MD) simulations of actual chemical reactions, in contrast

to conformational movements and the shuffling of solvent molecules, cannot be

done with MM because, as discussed above in connection with calculating transi-

tion states (Sect. 3.3.1), MM cannot handle bond-breaking and -making. Such

molecular dynamics simulations are done with electronic structure methods

(ab initio, semiempirical and density functional, Chaps. 5, 6, and 7).

3.3.5 As a (Usually Quick) Guide to the Feasibility of, or
Likely Outcome of, Reactions in Organic Synthesis

In the past 15 years or so MM has become widely used by synthetic chemists,

thanks to the availability of inexpensive computers (personal computers will easily

run MM programs) and user-friendly and relatively inexpensive programs

[5]. Since MM can calculate the energies and geometries of ground state molecules

and (within the strong limitations alluded to above) transition states, it can clearly

be of great help in planning syntheses. To see which of two or more putative

reaction paths should be favored, one has a choice of three methods: (1) use MM

like a hand-held model to examine the substrate molecule for factors like steric

hindrance or proximity of reacting groups, or (2) approximate the transition states

for alternative reactions using an intermediate or some other plausible proxy (cf. the

treatment of solvolysis in the discussion of transition states above), or (3) attempt to

calculate the energies of competing transition states (cf. the above discussion of

transition state calculations).

The examples given here of the use of MM in synthesis are taken from the

review by Lipkowitz and Peterson [35]. In attempts to simulate the metal-binding

ability of biological acyclic polyethers, the tricyclic 1 (Fig. 3.14) and a tetracyclic

analogue were synthesized, using as a guide the indication from MM that these
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molecules resemble the cyclic polyether 18-crown-6, which binds the potassium

ion; the acyclic compounds were found to be indeed comparable to the crown ether

in metal-binding ability.

Enediynes like 2 (Fig. 3.14) are able to undergo cyclization to a phenyl-type

diradical 3, which in vivo can attack DNA; in molecules with an appropriate

triggering mecha;nism this forms the basis of promising anticancer activity. The

effect of the length of the constraining chain (i.e. of n in 2) on the activation energy
was studied by MM, aiding the design of compounds (potential drugs) that were

found to be more active against tumors than are naturally-occurring enediyne

antibiotics.
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Fig. 3.14 Some molecules (1, 2, 4) which have been synthesized with the aid of molecular

mechanics
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To synthesize the very strained tricyclic system of 4 (Fig. 3.14), a photochemical

Wolff rearrangement was chosen when MM predicted that the skeleton of 4 should

be about 109 kJ mol�1 less stable than that of the available 5. Photolysis of the

diazoketone 6 gave a high-energy carbene which lay above the carbon skeleton

of 4 and so was able to undergo Wolff rearrangement ring contraction to the ketene

precursor of 4.

A remarkable (and apparently still unconfirmed) prediction of MM is the claim

that the perhydrofullerene C60H60 should be stabler with some hydrogens inside the
cage [36].

3.4 Frequencies and Vibrational Spectra Calculated
by MM

Any method that can calculate the energy of a molecular geometry can in principle

calculate vibrational frequencies, since these can be obtained from the second

derivatives of energy with respect to molecular geometry (Chap. 2, Sect. 2.5),

and the masses of the vibrating atoms. Many commercially available molecular

mechanics programs can calculate frequencies. Frequencies are useful (Chap. 2,

Sect. 2.5) (1) for characterizing a species as a minimum (no imaginary frequencies)

or a transition state or higher-order saddle point (one or more imaginary frequen-

cies), (2) for obtaining zero point vibrational energies to correct frozen-nuclei

energies (Chap. 2, Sect. 2.2), and (3) for interpreting or predicting infrared spectra.

1. Characterizing a species as a minimum or a transition state. This is not often
done with MM, because MM is used mostly to create input structures for other

kinds of calculations, and to study known (often biological) molecules. Never-

theless MM can yield information on the curvature of the potential energy

surface (see Chap. 2), as calculated by that particular forcefield, anyway, at

the point in question. For example, the MMFF-optimized geometries of D3d

(staggered) and D3h (eclipsed) ethane (Fig. 3.3) show, respectively, no imagi-

nary frequencies and one imaginary frequency, the latter corresponding to

rotation about the C/C bond. Thus the MMFF (correctly) predicts the staggered

conformation to be a minimum, and the eclipsed to be a transition state

connecting successive minima along the torsional reaction coordinate. Again,

calculations on cyclohexane conformations with the MMFF correctly give the

boat an imaginary frequency corresponding to a twisting motion leading to the

twist conformation, which latter has no imaginary frequencies (Fig. 3.10).

Although helpful for characterizing conformations, particularly hydrocarbon

conformations, MM is less appropriate for species in which bonds are being

formed and broken. For example, the symmetrical (D3h) species in the fluoride/

fluoromethane bimolecular reaction, with equivalent C/F partial bonds, is incor-

rectly characterized by the MMFF as a minimum rather than a transition state,

and the CF bonds are calculated to be 1.298 Å long, cf. the value of ca. 1.8 Å
from methods known to be trustworthy for transition states.
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2. Obtaining zero point energies (ZPEs). ZPEs are essentially the sum of the

energies of each normal-mode vibration. They are added to the raw energies

(the frozen-nuclei energies, corresponding to the stationary points on a Born-

Oppenheimer surface; Chap. 2, Sect. 2.3) in accurate calculations of relative

energies using ab initio (Chap. 5) or DFT (Chap. 7) methods. However, the ZPEs

used for such corrections are usually obtained from an ab initio or DFT

calculation.

3. Infrared spectra. The ability to calculate the energies cm�1ð Þ and relative

intensities of molecular vibrations amounts to being able to calculate infrared

spectra. MM as such cannot calculate the intensities of vibrational modes, since

these involve changes in dipole moments (Chap. 5, Sect. 5.5.3), and dipole

moment is related to electron distribution, a concept that lies outside

MM. However, approximate intensities can be calculated by assigning dipole

moments to bonds or charges to atoms, and such methods have been

implemented in MM programs [37]. Figs. 3.15, 3.16, 3.17 and 3.18 compare
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the experimental IR spectra (taken by the author in the gas phase) of acetone,

benzene, dichloromethane and methanol with those calculated with the MMFF

program and by the “higher”, computationally much more demanding, ab initio

MP2(FC)/6 ‐ 31G* method (Chap. 5). In Chaps. 5, 6, and 7, spectra for these four

molecules, calculated by ab initio, semiempirical, and density functional

methods, respectively, are given. MP2 spectra seem to generally match exper-

iment better than those from MM, but the latter method furnishes a rapid way of

obtaining approximate IR spectra. For a series of related compounds, MMmight

be a reasonable way to quickly investigate trends in frequencies and intensities.

Extensive surveys showed that MMFF root-mean-square errors are ca. 60 cm�1,

and MM4 errors 25� 52 cm�1 [5b].
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3.5 Strengths and Weaknesses of Molecular Mechanics

3.5.1 Strengths

MM is fast, as shown by the times for optimization of C20H42 in Sect. 3.3.2. The

speed of MM is not always at the expense of accuracy: for the kinds of molecules

for which it has been parameterized, it can rival or surpass experiment in the

reliability of its results (Sects. 3.3.2 and 3.4). MM is undemanding in its hardware

requirements: except perhaps for work on large biopolymers, MM calculations on

moderately well-equipped personal computers are quite practical. The characteris-

tics of speed, (frequent) accuracy and modest computer requirements have given

MM a place in many modelling program suites.
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Because of its speed and the availability of parameters for almost all the elements

(Sect. 3.3), MM–even when it does not provide very accurate geometries–can supply

reasonably good input structures for semiempirical, ab initio or density functional

calculations, and this is one of its main applications. The ability of many MM

programs to calculate IR spectra seems to be of somewhat limited application, since

although frequency calculation by quantum mechanical methods usually requires

considerably more time than geometry optimization, frequencies should be calculated

using the same method used for the geometry optimization (Chap. 2, Sect. 2.5).

3.5.2 Weaknesses

The possible pitfalls in using MM are discussed by Lipkowitz [38]. The weaknesses

of MM stem from the fact that it ignores electrons. The viewpoint behind MM is to
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think of a molecule as a collection of atoms subject to forces and to use any

practical mathematical treatment of these forces to express the energy in terms of

the geometric parameters. By parameterization MM can “calculate” electronic

properties; for example, using assigned atom charges or bond dipoles it can find a

dipole moment for a molecule. However, such results are obtained purely by

analogy, and their reliability can be negated by unexpected electronic factors to

which MM is oblivious. MM cannot provide information about the shapes and

energies of molecular orbitals nor about related phenomena such as electronic

spectra. Of course, one could perform a quantummechanical calculation of orbitals,

etc., on a geometry obtained by a MM optimization (a so-called single-point

calculation, since no quantum mechanical geometry optimization was performed).

Because of the severely empirical nature of MM, interpreting MM parameters in

terms of traditional physical concepts is dangerous; for example, the bond-

stretching and angle-bending parameters cannot rigorously be identified with spec-

troscopic force constants [38]; Lipkowitz suggests that the MM proportionality

constants (Sect. 3.2.1) be called potential constants. Other dangers in using MM

are:

1. Using an inappropriate forcefield: a field parameterized for one class of com-

pounds is not likely to perform well for other classes.

2. Transferring parameters form one forcefield to another. This is usually not valid.
3. Optimizing to a stationary point that may not really be a minimum (it could be a

“maximum”, a transition state), and certainly may not be a global minimum

(Chap. 2). If there is reason to be concerned that a structure is not a minimum,

alter it slightly by bond rotation and reoptimize; a transition state should slide

down toward a nearby minimum (e.g. eclipsed ethane altered slightly from the

D3h geometry and optimized goes to the staggered conformer (Fig. 3.8).

4. Being taken in by vendor hype: MM programs, more so than semiempirical ones

and unlike ab initio or DFT programs, are ruled by empirical factors (the form of

the forcefield and the parameters used in it), and perhaps some vendors tend not

to caution buyers about potential deficiencies.

5. Ignoring solvent and nearby ions: for polar molecules using the in vacuo structure
can lead to quite wrong geometries and energies. This is particularly important for

biomolecules. One way to mitigate this problem is to explicitly add solvent

molecules or ions to the system, which can considerably increase the time for a

calculation. Another might be to subject various plausible in vacuo-optimized

conformations to single-point (no geometry optimization) calculations that simu-

late the effect of solvent and take the resulting energies as being more reliable than

the in vacuo ones. The most practical in-solution calculations, those simulating the

solvent as a continuous medium (Chap. 8, Sect. 8.1) can be applied to MM,

although ab initio and DFT are the standard, reliable methods here.

6. Lack of caution about comparing energies calculated with MM. The method

calculates the energy of a molecule relative to a hypothetical strainless ideali-

zation of the molecule. Using MM to calculate the relative energy of two isomers

by comparing their steric (“strain”) energies, the normal MM energies, is

dangerous because the two energies are not necessarily relative to the same

hypothetical unstrained species (steric energies are not an unambiguous
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observable [39]). This is particularly true for functional group isomers, like

(CH3)2O/CH3CH2OH and CH3COCH3=H2C ¼ C OHð ÞCH3, which have quite

different atom types. For isomers consisting of the same kinds of atoms (alkanes

cf. alkanes, say), and especially for conformational isomers and E/Z isomers

(geometric isomers), a good MM forcefield should give steric energies which

reasonably represent relative energies. For example, the MMFF gives for CH3

COCH3=H2C ¼ C OHð ÞCH3 steric energies of 6:9=� 6:6kJ mol�1, i.e. relative

energies of 0=� 13 kJ mol�1, but the experimental value is ca. 0/44 kJ mol– 1,

i.e. H2C ¼ C OHð ÞCH3 is much the higher-energy molecule. On the other

hand, the MMFF yields for gauche-butane/anti-butane steric energies of

�21:3=� 18:0 kJ mol�1, i.e. relative energies of 0=3:3 kJ mol�1, reasonably

close to the experimental value of 0=2:8 kJ mol�1. For chair (D2d), twist (D2),

and boat (C2v) cyclohexane, the MMFF steric energies are �14.9, 9.9 and

13:0 kJ mol�1, i.e. relative energies of 0, 24.8 and 27:9 kJ mol�1, cf. the exper-

imental the estimates of 0, 24 and 29kJ mol�1. As was shown above

(Sect. 3.3.3), MM programs can be parameterized to give, not just steric energy,

but enthalpies of formation, and the use of these enthalpies makes possible

energy comparisons between isomers of even entirely disparate structural kinds.

Although chemists often compare stabilities of isomers using enthalpies, we

should remember that equilibria are actually determined by free energies. The

lowest-enthalpy isomer is not necessarily the one of lowest free energy: a

higher-enthalpy molecule may have more vibrational and torsional motion

(it may be springier and floppier) and thus possess more entropy and hence

have a lower free energy. Free energy has an enthalpy and an entropy compo-

nent, and to calculate the latter, one needs the vibrational frequencies. Programs

that calculate frequencies will usually also provide entropies, and with param-

eterization for enthalpy (Sect. 3.3.3) this can permit the calculation of free

energies. Note that the species of lowest free energy does not necessarily

dominate a mixture: one low-energy conformation could be outnumbered by

many of higher energy, each demanding its share of the Boltzmann pie.

7. Assuming that the major conformation determines the product. In fact, in a

mobile equilibrium the product ratio depends on the relative reactivities, not

relative amounts, of the conformers (the Curtin-Hammett principle [40]).

8. Failure to exercise judgement: small energy differences (say up to 10� 20 kJ

mol�1) mean nothing in many cases. The excellent energy results referred to for

the MM4 program in Sect. 3.3.3 can be expected only for families of molecules

(usually small to medium-sized) for which a forcefield has been extensively

parameterized.

Many of the above dangers can be avoided simply by performing test calcula-

tions on systems for which the results are known (experimentally, or “known” from

high-level quantum mechanical calculations). Such a reality check can have salu-

tary effects on the reliability of one’s results, and not only with reference to

molecular mechanics.
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3.6 Summary

This chapter explains the basic principles of molecular mechanics (MM), which

rests on a view of molecules as balls held together by springs. MM began in the

1940s with attempts to analyze the rates of racemization of biphenyls and SN2

reactions.

The potential energy of a molecule can be written as the sum of terms involving

bond stretching, angle bending, dihedral angles and nonbonded interactions. Giving

these terms explicit mathematical forms constitutes devising a forcefield, and

giving actual numbers to the constants in the forcefield constitutes parameterizing

the field. An example is given of the devising and parameterization of an MM

forcefield.

MM is used mainly to calculate geometries and energies for small to medium-

sized molecules. Such calculations are fast and can be very accurate, provided that

the forcefield has been carefully parameterized for the types of molecules under

study. Calculations on biomolecules is a very important application of MM; the

pharmaceutical industry designs new drugs with the aid of MM: for example,

examining how various candidate drugs fit into the active sites of biomolecules

(docking) and the related aspect of QSAR are of major importance. MM is of some

limited use in calculating the geometries and energies of transition states. Organic

synthesis now makes considerable use of MM, which enables chemists to estimate

which products are likely to be favored and to devise more realistic routes to a target

molecule than was hitherto possible. In molecular dynamics MM is used to generate

the forces acting on molecules and hence to calculate their motions, and in Monte

Carlo simulations MM is used to calculate the energies of the many randomly

generated states.

MM is fast, it can be accurate, it is undemanding of computer power, and it

provides reasonable starting geometries for quantum mechanical calculations. MM

ignores electrons, and so can provide parameters like dipole moment only by

analogy. One must be cautious about the applicability of MM parameters to the

problem at hand. Stationary points from MM, even when they are relative minima,

may not be global minima. Ignoring solvent effects can give erroneous results for

polar molecules. MM gives so-called steric energies, the difference of which for

structurally similar isomers represent enthalpy differences; parameterization to give

enthalpies of formation is possible. Strictly speaking, relative amounts of isomers

depend on free energy differences. The major conformation (even when correctly

identified)y is not necessarily the reactive one.

Easier Questions

1. What is the basic idea behind molecular mechanics?

2. What is a forcefield?
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3. What are the two basic approaches to parameterizing a forcefield?

4. Why does parameterizing a forcefield for transition states present special

problems?

5. What is the main advantage of MM, generally speaking, over the other methods

of calculating molecular geometries and relative energies?

6. Why is it not valid in all cases to obtain the relative energies of isomers by

comparing their MM steric (“strain”) energies?

7. What class of problems cannot be dealt with by MM?

8. Give four applications for MM. Which is the most widely used?

9. MM can calculate the values (cm�1 ) of vibrational frequencies, but without

“outside assistance” it can’t calculate their intensities. Explain.
10. Why is it not valid to calculate a geometry by some slower (e.g. ab initio)

method, then use that geometry for a fast MM frequency calculation?

Harder Questions

1. One big advantage of molecular mechanics over other methods of calculating

geometries and relative energies is speed. Does it seem likely that continued

increases in computer speed could make MM obsolete?

2. Do you think it is possible (in practical terms? In principle?) to develop a

forcefield that would accurately calculate the geometry of any kind of

molecule?

3. What advantages or disadvantages are there to parameterizing a forcefield with

the results of “high-level” calculations rather than the results of experiments?

4. Would you dispute the suggestion that no matter how accurate a set of MM

results might be, they cannot provide insight into the factors affecting a

chemical problem, because the “ball and springs” model is unphysical?

5. Would you agree that hydrogen bonds (e.g. the attraction between two water

molecules) might be modelled in MM as weak covalent bonds, as strong van

der Waals or dispersion forces, or as electrostatic attractions? Is any one of

these three approaches to be preferred in principle?

6. Replacing small groups by “pseudoatoms” in a forcefield (e.g. CH3 by an

“atom” about as big) obviously speeds up calculations. What disadvantages

might accompany this simplification?

7. Why might the development of an accurate and versatile forcefield for inor-

ganic molecules be more of a challenge than for organic molecules?

8. What factor(s) might cause an electronic structure calculation (e.g. ab initio or

DFT) to give geometries or relative energies very different from those obtained

from MM?

9. Compile a list of molecular characteristics/properties that cannot be calculated

purely by MM.

10. How many parameters do you think a reasonable forcefield would need to

minimize the geometry of 1,2-dichloroethane?
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Chapter 4

Introduction to Quantum Mechanics
in Computational Chemistry

It is by logic that we prove, but by intuition that we discover.
J.H. Poincaré, ca. 1900.

Abstract A historical view demystifies the subject. The focus is strongly on

chemical applications. The use of quantum mechanics (QM) in computational

chemistry is shown by explaining the Schr€odinger equation and showing how this

led to the simple H€uckel method, from which the extended H€uckel method

followed. This sets the stage well for ab initio theory, in Chap. 5.

QM grew out of studies of blackbody radiation and of the photoelectric effect.

Besides QM, radioactivity and relativity contributed to the transition from classical

to modern physics. The classical Rutherford nuclear atom, the Bohr atom, and the

Schr€odinger wave-mechanical atom are discussed. Hybridization, wavefunctions,

matrices and determinants and other basic concepts are explained. For obtaining

eigenvectors and eigenvalues from the secular equations the elegant and simple

matrix diagonalization method is explained and used. All the necessary mathemat-

ics for this is explained.

4.1 Perspective

Chapter 1 outlined the tools that computational chemists have at their disposal,

Chap. 2 set the stage for the application of these tools to the exploration of potential

energy surfaces, and Chap 3 introduced one of these tools, molecular mechanics. In

this chapter you will be introduced to quantum mechanics, and to quantum chem-
istry, the application of quantum mechanics to chemistry. Molecular mechanics is

severely empirical and insofar as it makes appeals to theory it uses largely princi-

ples from basic classical physics, physics before modern physics; it treats a

molecule as a collection of balls and springs, with refinements for such deviations

as interatomic repulsions and attractions. One of the cornerstones of modern

physics is quantum mechanics, and ab initio (Chap. 5), semiempirical (Chap. 6),

and density functional (Chap. 7) methods, on which most of the remainder of this

book focusses, belong to quantum chemistry. This chapter is designed to ease the

way to an understanding of the role of quantum mechanics in computational
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chemistry. The word quantum comes from Latin (quantus, “how much?”, plural

quanta) and was first used in our sense by Max Planck in 1900, as an adjective and

noun, to denote the constrained quantities or amounts in which in which energy can

be emitted or absorbed. The term quantum mechanics was apparently first used by

Born (of the Born-Oppenheimer approximation, Chap. 2, Sect. 2.3) in 1924, as a

contrast to classical mechanics. Techniques for tackling the quantum mechanics of

atoms and molecules not as patches to classical physics (Bohr, 1913; Sommerfeld,

1915), but rather head-on, were presented in 1925 (Heisenberg, matrix mechanics)

and 1926 (Schr€odinger, a wave equation).
“Mechanics” as used in physics is traditionally the study of the behavior of

bodies under the action of forces like, e.g., gravity (celestial mechanics). Molecules

are made of nuclei and electrons, and quantum chemistry deals, fundamentally,

with the motion of electrons under the influence of the electromagnetic force

exerted by nuclear charges and other electrons. An understanding of the behavior

of electrons in atoms and molecules, and thus of the structures and reactions of

chemical entities, rests on quantum mechanics and in particular on that adornment

of quantum chemistry, the Schr€odinger equation. For that reason we will consider in
outline the development of quantum mechanics leading up to the Schr€odinger
equation, and then the birth of quantum chemistry with (at least as far as molecules

of reasonable size goes) the application of the Schr€odinger equation to chemistry by

H€uckel. This simple H€uckel method is currently disdained by some theoreticians,

but its discussion here is justified by the fact that (1) it continues to be useful in

research and (2) it “is immensely useful as a model, today. . .Because it is the model

which preserves the ultimate physics, that of nodes in wave functions. It is the

model which throws away absolutely everything except the last bit, the only thing

that if thrown away would leave nothing. So it provides fundamental understand-

ing.”1 A discussion of a generalization of the simple H€uckel method, the extended

H€uckel method, sets the stage for Chap. 5. The historical approach used here,

although perforce somewhat superficial, may help to ameliorate the apparent

arbitrariness of certain features of quantum chemistry [1, 2]. An excellent intro-

duction to quantum chemistry is the text by Levine [3].

Our survey of the factors that led to modern physics and quantum chemistry will

follow the sequence:

1. The origins of quantum theory: blackbody radiation and the photoelectric effect.

2. Radioactivity (brief)

3. Relativity (very brief)

4. The nuclear atom

5. The Bohr atom

6. The wave mechanical atom and the Schr€odinger equation

1 Personal communication from Professor Roald Hoffmann, 2002 February 13. See too Sect. 4.4.1,

footnote).
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4.2 The Development of Quantum Mechanics. The
Schr€odinger Equation

4.2.1 The Origins of Quantum Theory: Blackbody Radiation
and the Photoelectric Effect

Three discoveries mark the transition from classical to modern physics: quantum

theory, radioactivity, and relativity (Fig. 4.1). Quantum theory had its origin in the

study of blackbody radiation and the photoelectric effect.

4.2.1.1 Blackbody Radiation

A black body (blackbody) in physics is one that is a perfect absorber of radiation: it

absorbs all the radiation falling on it, without reflecting any. More relevant for us,

the radiation emitted by a hot black body depends, as far as the distribution of

energy with wavelength goes, only on the temperature, not on the material the body

is made of, and is thus amenable to relatively simple analysis. The sun is approx-

imately a black body (in terms of its radiation-temperature characteristics; a hot

black body need not be literally black). In the lab a good source of blackbody

radiation is a furnace with blackened insides and a small aperture for the radiation

to escape. In the second half of the nineteenth century the distribution of energy

with respect to wavelength that characterizes blackbody radiation was studied, in

research that is associated mainly with Lummer and Pringsheim [1]. They plotted

the flux ΔF (in modern SI units, J s�1m�2, energy emitted per second per unit area,

power output per unit area) per wavelength increment Δλ versus the wavelength λ
for a black body, for various temperatures (Fig. 4.2): ΔF/Δλ vs. λ. The result is a

histogram or bar graph in which the area of each rectangle is ΔF=Δλð ÞΔλ ¼ ΔFand
represents the flux in the wavelength range covered by that Δλ; ΔF/Δλ can be

called the flux density for that particular wavelength range Δλ. The total area of all

classical physics (physics before 1900)

mechanics
Galileo, Newton, etc.

optics
Newton, Huygens, Young

electromagnetism
Faraday, Maxwell

modern physics (after 1900)

quantum theory
Planck, Einstein,etc.

radioactivity
Becquerel

relativity
Einstein

blackbody radiation photoelectric effect

Fig. 4.1 The discoveries marking the transition from classical to modern to physics. Although

radioactivity was discovered in 1896, its understanding had to wait for relativity and quantum

theory
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the rectangles is the total flux emitted over its whole wavelength range by the black

body. As Δλ approaches zero (note that for the nonmonochromatic radiation from a

black body the flux at a particular wavelength is essentially zero) the histogram

approaches being a smooth curve, the ratio of finite increments approximates a

derivative, and we can ask: what is the function (Fig. 4.2) dF=dλ ¼ f λð Þ? In the

answer to this question lay the beginnings of quantum theory.

Late nineteenth century physics, classical physics at its zenith, predicted that the

flux density from a black body should rise without limit as the wavelength

decreases. This is because classical physics held that radiation of a particular

frequency was emitted by oscillators (atoms or whatever) vibrating with that

frequency, and that the average energy of an oscillator was independent of its

frequency; since the number of possible frequencies increases without limit, the

flux density (energy per second per unit area per wavelength interval) from the

black body should rise without limit toward higher frequencies or shorter wave-

lengths, into the ultraviolet, and so the total flux (energy per second per unit area)

should be infinite. This is clearly absurd and was recognized as being absurd; in

fact, it was called “the ultraviolet catastrophe” [1]. To understand the nature of

blackbody radiation and to escape the ultraviolet catastrophe, physicists in the

1890s tried to find the function (Fig. 4.2) f(λ).
Without breaking with classical physics, Wien had found a theoretical equation

that fit the Lummer-Pringsheim curve at relatively short wavelengths, and Rayleigh

and Jeans one that fit at relatively long wavelengths. Max Planck2 adopted a

different approach: he found, in 1900, a purely empirical equation dF=dλ ¼ f λð Þ

dl

FACT CLASSICAL PHYSICS
(FALSE)

dFΔF

Δλ

λ λ

Fig. 4.2 In the limit the bar graph becomes a curve, the graph of f(λ) vs. λ, where

f λð Þ ¼ lim
Δλ!0

ΔF
Δλ ¼ dF

dλ, essentially intensity of radiation vs. wavelength. Planck’s efforts to find

the function f(λ) led to the quantum theory

2Max Planck, born Kiel, Germany, 1858. Ph.D. Berlin 1879. Professor, Kiel, Berlin. Nobel prize

in physics for quantum theory of blackbody radiation 1918. Died G€ottingen, 1947.
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that fit the facts, and then tried to interpret the equation theoretically. To do this he

had to make two assumptions:

(1) the total energy possessed by the oscillators in the frequency range nþ dn (n is
the Greek letter nu, commonly used for frequency, not to be confused with v,
vee, commonly used for velocity) is proportional to the frequency:

Etot nþ dnð Þ / n ð4:1Þ

and (2), the emission or absorption of radiation of frequency n by the collection of

oscillators is caused by jumps between energy levels, with loss or gain of a quantity

of energy kn:

ΔE ¼ kn ð4:2Þ

The constant k, now recognized as a fundamental constant of nature, 6:626� 10�34

J.s particle�1, is called Planck’s constant, and is denoted by h, so Eq. (4.2) becomes

ΔE ¼ hn ð*4:3Þ

Why the letter h? Evidently because h is sometimes used in mathematics to denote

infinitesimals and Planck intended to let this quantity go to zero (this was suggested

to the author by the late Professor Philip Morrison of MIT). In the event, it turned

out to be small but finite. Apparently the letter was first used to denote the new

constant in a talk given by Planck at a session (Sitzung) of the German Physical

Society in Berlin, on 14 December 1900 [4]. The interpretation of Eq. (4.3), a

fundamental equation of quantum theory, as meaning that the energy represented by

radiation of frequency n is absorbed and emitted in quantized amounts hn (definite,
constrained amounts; jerkily rather than smoothly) was, ironically, apparently

never fully accepted by Planck [5]. It does not belittle his achievement to suggest

that his discovery of the discontinuity of energy transfer was almost accidental.

Planck’s constant is a measure of the graininess of our universe: because it is so

small processes involving energy changes often seem to take place smoothly, but on

an ultramicroscopic scale the graininess is there [6]. The constant h is the hallmark

of quantum expressions, and its finite value distinguishes our universe from a

nonquantum one.

4.2.1.2 The Photoelectric Effect

An apparently quite separate (but in science no two phenomena are really ever

completely unrelated) phenomenon that led to Eq. (4.3), which is to say to quantum

theory, is the photoelectric effect: the ejection of electrons from a metal surface
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exposed to light. The first inkling of this phenomenon was due to Hertz,3 who in

1888 noticed that the potential needed to elicit a spark across two electrodes

decreased when ultraviolet light shone on the negative electrode. Beginning in

1902, the photoelectric effect was first studied systematically by Lenard,4 who

showed that the phenomenon observed by Hertz was due to electron emission.

Facts (Fig. 4.3) that classical physics could not explain were the existence of a

threshold frequency for electron ejection, that the kinetic energy of the electrons is

linearly related to the frequency of the light, and the fact that the electron flux

(electrons per unit area per second) is proportional to the intensity of the light.

Classical physics predicted that the electron flux should be proportional to the light

frequency, decreasing with a decrease in frequency, but without sharply falling to

zero below a certain frequency, and that the kinetic energy of the electrons should

be proportional to the intensity of the light, not the frequency.

These facts were explained by Einstein5 in 1905 in a way that now appears very

simple, but in fact relies on concepts that were at the time revolutionary. Einstein

went beyond Planck and postulated that not only was the process of absorption and

kinetic energy
of the emitted electrons,
1/2 mv 2

0

1/2 mv 2 = h −W

−W

frequency, , of the light 

Fig. 4.3 The photoelectric effect. Einstein explained the effect by extending to light Planck’s idea
of the absorption and emission of energy in discrete amounts: he postulated that light itself

consisted of discrete particles

3 Heinrich Hertz, born Hamburg, Germany, 1857. Ph.D. Berlin, 1880. Professor, Karlsruhe, Bonn.

Discoverer of radio waves. Died Bonn, 1894.
4 Philipp Lenard, German physicist, born Pozsony, Austria-Hungary (now Bratislava, Slovakia),

1862. Ph.D. Heidelberg 1886. Professor, Heidelberg. Nobel prize in physics 1905, for work on

cathode rays. Lenard supported the Nazis and rejected Einstein’s theory of relativity. Died

Messelhausen, Germany, 1947.
5 Albert Einstein, German-Swiss-American physicist. Born Ulm, Germany, 1879. Ph.D. Z€urich
1905. Professor Z€urich, Prague, Berlin; Institute for Advanced Studies, Princeton, New Jersey.

Nobel Prize in physics 1921 for theory of the photoelectric effect. Best known for the special

(1905) and general (1915) theories of relativity. Died Princeton, 1955.
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emission of light quantized, but that light itself was quantized, consisting in effect

of particles of energy

Eparticle ¼ hn ð4:4Þ

n¼ frequency of the light

These particles became known as photons (the word was coined by Gilbert Lewis,

ca. 1923, but his photon was not the particle of modern physics). If the energy of the

photon before it removes an electron from the metal is equal to the energy required

to tear the electron free of the metal, plus the kinetic energy of the free electron,

then

hn ¼ W þ 1=2mev
2 ð4:5Þ

W ¼ work function of the metal, energy needed to remove an electron (with no

energy left over)

me ¼ mass of an electron

v ¼ velocity of electron ejected by the photon
1=2me v

2 ¼ kinetic energy of the free electron

Rearranging Eq. (4.5):

1=2me v
2 ¼ hn�W ð4:6Þ

Thus a plot of the kinetic energies of the electrons 1=2me v
2ð Þvs. the frequency n of the

light should be a straight line of positive slope (h; this is another way to find

Planck’s constant) intersecting the horizontal axis at a positive value, as experiment

indeed showed (Fig. 4.3).

Planck’s explanation of the blackbody radiation curves (1900 [4]) and Einstein’s
explanation of the facts of the photoelectric effect (1905 [7]) indicated that the flow

of energy in physical processes did not take place continuously, as had been

believed, but rather jerkily, in discrete jumps, quantum by quantum. The contribu-

tions of Planck and Einstein were the signal developments marking the birth of

quantum theory and the transition from classical to modern physics.

4.2.2 Radioactivity

Brief mention of radioactivity is in order because it, along with quantum mechanics

and relativity, transformed classical into modern physics. Radioactivity was dis-

covered by Becquerel in 1896. However, an understanding of how materials like

uranium and radium could emit, over the years, a million times more energy than

would be permitted by chemical reactions, had to await Einstein’s special theory of

4.2 The Development of Quantum Mechanics. The Schr€odinger Equation 107



relativity (Sect. 4.2.3), which showed that a tiny, unnoticeable decrease in mass

represented the release of a large amount of energy.

4.2.3 Relativity

Relativity is relevant to computational chemistry because it must often be explicitly

taken into account in accurate calculations involving atoms heavier than about

chlorine or bromine (see below), and because the Schr€odinger equation, the funda-
mental equation of quantum chemistry, is an approximation to a relativistic equa-

tion, the Dirac6 equation.

Relativity was discovered by Einstein in 1905, when he formulated the special

theory of relativity, which deals with nonaccelerated motion in the absence of

significant gravitational fields (general relativity, published by Einstein in 1915, is

concerned with accelerated motion and gravitation). Special relativity predicted a

relationship between mass and energy, the famous E ¼ mc2 equation and, of more

direct relevance to computational chemistry, showed that the mass of a particle

increases with its velocity, dramatically so near the velocity of light. In heavier

elements the inner electrons are moving at a significant fraction of the speed of

light, and the relativistic increase in their masses affects the chemistry of these

elements (actually, some physicists do not like to think in terms of separate rest

mass and relativistic mass, but that is a controversy that need not concern us here).

In computational chemistry relativistic effects on electrons are usually accounted for

by what are called effective core potentials or pseudopotentials (Chap. 5, Sect. 5.3.3).

4.2.4 The Nuclear Atom

The “nuclear atom” is the picture of the atom as a positive nucleus surrounded by

negative electrons. Although the idea of atoms in speculative philosophy goes back

to at least the time of Democritus,7 the atom as the basis of a scientifically credible

theory emerges only in nineteenth century, with the rationalization by Dalton8 in

6 Paul Adrien Maurice Dirac, born Bristol, England, 1902. Ph.D. Cambridge, 1926. Professor,

Cambridge, Dublin Institute for Advanced Studies, University of Miami, Florida State University.

Nobel prize in physics 1933 (shared with Schr€odinger). Known for his mathematical elegance, for

connecting relativity with quantum theory, and for predicting the existence of the positron. Died

Tallahassee, Florida, 1984.
7 Democritus, Greek philosopher, born Abdera, Thrace (the eastern Balkans) ca. 460 B.C. Died

ca. 370 B.C.
8 John Dalton, born Eaglesfield, England, 1766. Considered the founder of quantitative chemical

atomic theory: law of definite proportions, pioneered determination of atomic weights. Cofounder

of British Association for the Advancement of Science. Died Manchester, England, 1844.
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1808 of the law of definite proportions. Nevertheless, atoms were regarded by many

scientists of the positivist school of Ernst Mach as being at best a convenient

hypothesis, despite the success of the atomistic Maxwell-Boltzmann9 kinetic theory

of gases and it was not until 1908, when Perrin’s10 experiments confirmed

Einstein’s atomistic analysis of Brownian motion that the reality of atoms was at

last accepted by such eminent holdouts as Boltzmann’s opponent Ostwald11.
The atom has an internal structure; it is thus not “atomic” in the Greek sense and

is more than the mere restless particle of kinetic theories of gases or of Brownian

motion. This was shown by two lines of work: the study of the passage of electricity

through gases and the behavior of certain solutions. The study of the passage of

electricity through gases at low pressure was a very active field of research in the

nineteenth century and only a few of the pioneers in what we can now see as the

incipient field of subatomic physics will be mentioned here. The observation by

Pl€ucker in 1858 of a fluorescent glow near the cathode on the glass walls of a

current-carrying evacuated tube was one of the first inklings that particles might be

elicited from atoms. That these were indeed particles rather than electromagnetic

rays (in the language of classical physics) was indicated by Crookes in the 1870s, by

showing that they could be deflected by a magnet. Goldstein showed in 1886 the

presence of particles of opposite charge to those emitted from the cathode, and

christened the latter “cathode rays”. That the cathode rays were negative particles

was proved by Perrin in 1895, when he showed that they imparted this charge to an

object on which they fell. Further evidence of the negative particle nature of

cathode rays came at around the same time from Thomson12, who showed (1897)

that they are deflected in the expected direction by an electric field. Thomson also

measured their mass-to-charge ratio and from the smallest possible value of charge

in electrochemistry calculated the mass of these particles to be about 1/1837 of the

mass of a hydrogen atom. Lorentz later applied the name “electron” to the particle,

adopting a term that had been appropriated from the Greek by Stoney for a unit of

electric current (ελεkτρon: amber, which acquires a charge when rubbed). Thomson

has been called the discoverer of the electron.

9 Ludwig Boltzmann, born Vienna 1844. Ph.D. Vienna. Professor Graz, Vienna. Developed the

kinetic theory of gases independently of Maxwell (viz., Boltzmann constant’s, k). Firm supporter

of the atomic theory in opposition to Mach and Ostwald, helped develop concept of entropy (S).
Died Duino, Austria (now in Italy), 1906 (suicide incurred by depression). Inscribed on grave-

stone: S ¼ k log W.
10 Jean Perrin, born Lille, France, 1870. Ph.D. École Normal Supérieure, Paris. Professor Univer-

sity of Paris. Nobel prize in physics 1923. Died New York, 1942.
11Wilhelm Friedrich Ostwald, German chemist, born Riga, Latvia, 1853. Ph.D. Dorpat, Estonia.

Professor Riga, Leipzig. A founder of physical chemistry, opponent of the atomic theory till

convinced by the work of Einstein and Perrin. Nobel prize in chemistry 1909. Died near

Leipzig, 1932.
12 Sir Joseph John Thomson, born near Manchester, 1856. Professor, Cambridge. Nobel prize in

physics 1906. Knighted 1908. Died Cambridge, 1940.
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It was perhaps Thomson who first suggested a specific structure for the atom in

terms of subatomic particles. His “plum pudding” model (ca. 1900), which placed

electrons in a sea of positive charge, like raisins in a pudding, accorded with the

then-known facts in evidently permitting electrons to be removed under the influ-

ence of an electric potential. The modern picture of the atom as a positive nucleus

with extranuclear electrons was proposed by Rutherford13 in 1911. It arose from

experiments in which alpha particles from a radioactive sample were shot through

very thin gold foil. Most of the time the particles passed through, but occasionally

one bounced back, indicating that the foil was mostly empty space, but that present

were particles which were small and, compared to the mass of the electron (which

was much too light to stop an alpha particle), massive. From these experiments

emerged our picture of the atom as consisting of a small, relatively massive positive

nucleus surrounded by electrons: the nuclear atom. Rutherford gave the name

proton (from Greek πρωτoζ, primary or first) to the least massive of these nuclei

(the hydrogen nucleus).

There is another thread to the development of the concept of the atom as a

composite of subatomic particles. The enhanced effect of electrolytes (solutes that

provide electrically conducting solutions) on boiling and freezing points and on the

osmotic pressure of solutions led Arrhenius14 in 1884 to propose that these sub-

stances exist in water as atoms or groups of atoms with an electric charge. Thus

sodium chloride in solution would not, as was generally held, exist as NaCl

molecules but rather as a positive sodium “atom” and a negative chlorine “atom”;

the presence of two particles instead of the expected one accounted for the

enhanced effects. The ability of atoms to lose or gain charge hinted at the existence

of some kind of subatomic structure, and although the theory was not warmly

received (Arrhenius was almost failed on his Ph.D. exam), the confirmation by

Thomson (ca. 1900) that the atom contains electrons made acceptable the concept

of charged atoms with chemical properties quite different from those of the neutral

ones. Arrhenius was awarded the Nobel prize for his (albeit significantly modified)

Ph.D. work.

4.2.5 The Bohr Atom

The nuclear atom as formulated by Rutherford faced a serious problem: the

electrons orbit the nucleus like planets orbiting the Sun. An object engaged in

circular (or elliptical) motion experiences an acceleration because its direction is

13 Ernest Rutherford (Baron Rutherford), born near Nelson New Zealand, 1871. Studied at

Cambridge under J. J. Thomson. Professor McGill University (Montreal), Manchester, and

Cambridge. Nobel prize in chemistry 1908 for work on radioactivity, alpha particles, and atomic

structure. Knighted 1914. Died London, 1937.
14 Svante Arrhenius, born near Uppsala, Sweden, 1859. Ph.D. University of Stockholm. Nobel

prize in chemistry 1903. Professor Stockholm. Died Stockholm 1927.
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changing and thus its velocity, which unlike speed is a vector, is also changing. An

electron in circular motion about a nucleus would experience an acceleration

toward the nucleus, and since from Maxwell’s equations of electromagnetism an

accelerated electric charge radiates away energy, the electron should lose energy by

spiralling in toward the nucleus, ending up there, with no kinetic and potential

energy; calculations show this should happen in a fraction of a second [8].

A way out of this dilemma was suggested by Bohr15 in 1913 [9, 10]. He retained

the classical picture of electrons orbiting the nucleus in accord with Newton’s laws,
but subject to the constraint that the angular momentum of an electron must be an

integral multiple of h/2π:

mvr ¼ n h=2πð Þ, n ¼ 1, 2, 3, . . . ð4:7Þ

m¼ electron mass

v¼ electron velocity

r¼ radius of electron orbit

h¼ Planck’s constant

Equation ( 4.7) is the Bohr postulate, that electrons can defy Maxwell’s laws

provided they occupy an orbit whose angular momentum (i.e. an orbit of appropri-

ate radius) satisfies Eq. ( 4.7). The Bohr postulate is not based on a whim, as most

textbooks imply, but rather follows from: (1) the Planck equation Eq. (4.3), ΔE
¼ hn and (2) starting with an orbit of large radius such that the motion is essentially

linear and classical physics does not force the electron to radiate since no acceler-

ation is involved, then extrapolating to small-radius orbits. The fading of quantum-

mechanical equations into their classical analogues as macroscopic conditions are

approached, the reverse of the reasoning just described, is called the correspon-
dence principle [11].

Using the postulate of Eq. ( 4.7) and classical physics, Bohr derived an equation

for the energy of an orbiting electron in a one-electron atom (a hydrogenlike atom,

H or Heþ, etc.) in terms of the charge on the nucleus and some constants of nature.

Starting with the total energy of the electron as the sum of its kinetic and potential

energies:

Et ¼ 1

2
mv2 � Ze2

4πE0r
ð4:8Þ

Z ¼ nuclear charge (1 for H, 2 for He, etc.)

e ¼ electron charge

E0 ¼ permitivity of the vacuum

15Niels Bohr, born Copenhagen, 1885. Ph.D. University of Copenhagen. Professor, University of

Copenhagen. Nobel prize in physics 1922. Founder of the “Copenhagen school” interpretation of

quantum theory. Died Copenhagen, 1962.
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Using force ¼ mass � acceleration:

Ze2

4πE0r2
¼ mv2

r
ð4:9Þ

i.e.

Ze2

4πE0r
¼ mv2 ð4:10Þ

So from Eq. ( 4.8)

Et ¼ 1

2
mv2 � mv2 ¼ �1

2
mv2 ð4:11Þ

From Eqs. ( 4.7) and (4.10):

v ¼ Ze2

2E0nh
ð4:12Þ

So from Eqs. (4.11) and (4.12):

Et ¼ � Z2e4m

8E02n2h2
ð4:13Þ

Equation (4.13) expresses the total (kinetic plus potential) energy of the electron

of a hydrogenlike atom in terms of four fundamental quantities of our universe:

electron charge, electron mass, the permittivity of empty space, and Planck’s
constant. From Eq. (4.13) the energy change involved in emission or absorption

of light by a hydrogenlike atom is simply

ΔE ¼ Et2 � Et1 ¼ mZ2e4

8E02h2
1

n21
� 1

n22

� �
ð4:14Þ

where ΔE is the energy of a state characterized by quantum number n2, minus the

energy of a state characterized by quantum number n1. Note that from Eq. (4.13) the

total energy increases (becomes less negative) as n increases ¼ 1, 2, 3, ...ð Þ, so
higher-energy states are associated with higher quantum numbers n and ΔE > 0

corresponds to absorption of energy andΔE < 0 to emission of energy. The Planck

relation between the amount of radiant energy absorbed or emitted and its fre-

quency (ΔE ¼ hn, Eq. (4.3)), Eq. (4.14) enables one to calculate the frequencies of

spectroscopic absorption and emission lines for hydrogenlike atoms. The agree-

ment with experiment is excellent, and the same is true too for the calculated

ionization energies of hydrogenlike atoms (ΔE for n2 ¼ 1 in Eq. (4.14)).
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4.2.6 The Wave Mechanical Atom and the Schr€odinger
Equation

The Bohr approach works well for hydrogenlike atoms, atoms with one electron:

hydrogen, singly-ionized helium, doubly-ionized lithium, etc. However, it showed

several deficiencies for all other atoms. The problems with the Bohr model for these

cases were:

1. There were lines in the spectra corresponding to transitions other than simply

between two n values (cf. Eq. (4.14)). This was rationalized by Sommerfeld in

1915, by the hypothesis of elliptical rather than circular orbits, which essentially

introduced a new quantum number k, a measure of the eccentricity of the

elliptical orbit. Electrons could have the same n but different k’s, increasing
the variety of possible electronic transitions; k is related to what we now call the

azimuthal quantum number, l; l ¼ k � 1.

2. There were lines in the spectra of the alkali metals that were not accounted for by

the quantum numbers n and k. In 1925 Goudsmit and Uhlenbeck showed that

these could be explained by assuming that the electron spins on an axis; the

magnetic field generated by this spin around an axis could reinforce or oppose

the field generated by the orbital motion of the electron around the nucleus. Thus

for each n and k there are two closely-spaced “magnetic levels”, making possible

new, closely-spaced spectral lines. The spin quantum number, ms ¼ þ1=2 or

�1=2, was introduced to account for spin.

3. There were new lines in atomic spectra in the presence of an external magnetic

field (not to be confused with the fields generated by the electron itself) This

Zeeman effect (1896) was accounted for by the hypothesis that the electron

orbital plane can take up only a limited number of orientations, each with a

different energy, with respect to the external field. Each orientation was associ-

ated with a magnetic quantum number mm (often designated m) ¼ �l, �(l� 1),

. . ., (l� 1), l ). Thus in an external magnetic field the numbers n, k (later l ) andms

are insufficient to describe the energy of an electron and new transitions,

invoking mm,, are possible.

The only quantum number that flows naturally from the Bohr approach is the

principal quantum number, n; the azimuthal quantum number l (a modified k), the
spin quantum number ms and the magnetic quantum number mm are all ad hoc,

improvised to meet an experimental reality. Why should electrons move in

elliptical orbits that depend on the principal quantum number n? Why should

electrons spin, with only two values for this spin? Why should the orbital plane of

the electron take up with respect to an external magnetic field only certain

orientations, which depend on the azimuthal quantum number? All four quantum

numbers should follow naturally from a satisfying theory of the behaviour of

electrons in atoms.
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The limitations of the Bohr theory arise because it does not reflect a fundamental

facet of nature, namely the fact that particles possess wave properties. These

limitations were transcended by the wave mechanics of Schr€odinger16, when he

devised his famous equation in 1926 [12, 13]. Actually, the year before the

Schr€odinger equation was published, Heisenberg17 published his matrix mechanics

approach to calculating atomic (and in principle molecular) properties. The matrix

approach is at bottom equivalent to Schr€odinger’s use of differential equations, but
the latter has appealed to chemists more because, like physicists of the time, they

were unfamiliar with matrices (Sect. 4.3.3), and because the wave approach lends

itself to a physical picture of atoms and molecules while manipulating matrices

perhaps tends to resemble numerology. Matrix mechanics and wave mechanics are

usually said to mark the birth of quantum mechanics (1925, 1926), as distinct from
the more purely conceptual quantum theory (1900). We can think of quantum

mechanics as the rules and equations used to calculate the properties of molecules,

atoms, and subatomic particles.

Wave mechanics grew from the work of de Broglie18, who in 1923 was led to

this “wave-particle duality” by his ability to deduce the Wien blackbody equation

(Sect. 4.2.1) by treating light as a collection of particles (“light quanta”) analogous

to an ideal gas [14]. This suggested to de Broglie that light (traditionally considered

a wave motion) and the atoms of an ideal gas were actually not fundamentally

different. He derived a relationship between the wavelength of a particle and its

momentum, by using the time-dilation principle of special relativity, and also from

an analogy between optics and mechanics. The reasoning below, while perhaps less

profound than de Broglie’s, may be more accessible. From the special theory of

relativity, the relation between the energy of a photon and its mass is

Ep ¼ mc2 ð*4:15Þ

where c is the velocity of light. From the Planck Eq. (4.3) for the emission and

absorption of radiation, the energy Ep of a photon may be equated with the energy

change ΔE of an oscillator, and we may write

Ep ¼ hn ð*4:16Þ

From Eqs. (4.15) and (4.16)

16 Erwin Schr€odinger, born Vienna, 1887. Ph.D. University of Vienna. Professor Stuttgart, Berlin,
Graz (Austria), School for Advanced Studies Dublin, Vienna. Nobel prize in physics 1933 (shared

with Dirac). Died Vienna, 1961.
17Werner Heisenberg, born W€urzburg, Germany, 1901. Ph.D. Munich, 1923. Professor, Leipzig

University, Max Planck Institute. Nobel Prize 1932 for his famous uncertainty principle of 1927.

Director of the German atomic bomb/reactor project 1939–1945. Held various scientific admin-

istrative positions in postwar (Western) Germany 1945–1970. Died Munich 1976.
18 Louis de Broglie, born Dieppe, 1892. Ph.D. University of Paris. Professor Sorbonne, Institut

Henri Poincaré (Paris). Nobel prize in physics 1929. Died Paris, 1987.
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mc2 ¼ hn ð4:17Þ

Since n ¼ c=λ, Eq. (4.17) can be written

mc ¼ h=λ ð4:18Þ

and because the product of mass and velocity is momentum, Eq. (4.18) can be

written

pp ¼ h=λ ð4:19Þ

relating the momentum of a photon (in its particle aspect) to its wavelength (in its

wave aspect). If Eq. (4.19) can be generalized to any particle, then we have

p ¼ h=λ ð*4:20Þ

relating the momentum of a particle to its wavelength; this is the de Broglie

equation.

If a particle has wave properties it should be describable by somehow combining

the de Broglie equation and a classical wave equation. A highly developed nine-

teenth century mathematical theory of waves was at Schr€odinger’s disposal, and the
union of a classical wave equation with Eq. (4.20) was one of the ways that he

derived his wave equation. Actually, it is sometimes said that the Schr€odinger
equation cannot actually be derived, but is rather a postulate of quantum mechanics

that can only be justified by the fact that it works [15]; this fine philosophical point

will not be pursued here. Of his three approaches [15], Schr€odinger’s simplest is

outlined here. A standing wave (one with fixed ends like a vibrating string or a

sound wave in a flute) whose amplitude varies with time and with the distance from

the ends is described by

d2f xð Þ
dx2

¼ � 4π2

λ2
f xð Þ ð4:21Þ

f xð Þ ¼ amplitude of the wave

x ¼ distance from some chosen origin

λ ¼ wavelength

From Eq. (4.20):

λ ¼ h=mv ð4:22Þ

λ ¼ wavelength of particle of mass m and velocity v
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Identifying the wave with a particle and substituting for λ from (4.22) into (4.21):

d2f xð Þ
dx2

¼ � 4π2m2v2

h2
f xð Þ ð4:23Þ

Since the total energy of the particle is the sum of its kinetic and potential energies:

Ekin ¼ E� Epot ¼ E� V ð4:24Þ

E ¼ total energy of the particle

V ¼ potential energy (the usual symbol)

1

2
mv2 ¼ E� V ð4:25Þ

i.e.

Substituting Eq. (4.25) for mv2 into Eq. (4.23):

d2f xð Þ
dx2

¼ � 8π2m

h2
E� Vð Þf xð Þ ð4:26Þ

f xð Þ ¼ amplitude of the particle/wave at a distance x from some chosen origin

m ¼ mass of the particle

E ¼ total energy (kinetic þ potential) of the particle

V ¼ potential energy of the particle (possibly a function of x)

This is the Schr€odinger equation for one-dimensional motion along the spatial

coordinate x. It is usually written

d2ψ

dx2
þ 8π2m

h2
E� Vð Þψ ¼ 0 ð4:27Þ

ψ ¼ amplitude of the particle/wave at a distance x from some chosen origin

The one-dimensional Schr€odinger equation is easily elevated to three-

dimensional status by replacing the one-dimensional operator d2/dx2 by its three-

dimensional analogue

∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2
¼ ∇2 ð4:28Þ

∇2 is the Laplacian operator “del squared.” Replacing d2/dx2 by ∇2, Eq. (4.27)

becomes
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∇2ψ þ 8π2m

h2
E� Vð Þψ ¼ 0 ð*4:29Þ

This is a common way of writing the Schr€odinger equation; it relates the amplitude

ψ of the particle/wave to the mass m of the particle, its total energy E and its

potential energy V. The equation is frequently written by introducing �h (h-bar), the
reduced Planck constant or the Dirac constant, ¼ h=2π; the reader can verify that

this effects a minor notational simplification.

The meaning of ψ itself is, we might venture to say, unknown [2] but the

currently popular interpretation of ψ2, due to Born (Chap. 2, Sect. 2.3) and

Pauli19 is that it is proportional to the probability of finding the particle near a

point P(x, y, z) (recall that ψ is a function of x, y, z):

Prob dx, dy, dzð Þ ¼ ψ2dxdydz ð*4:30Þ

Prob Vð Þ ¼
Z
V

ψ2dxdydz ð4:31Þ

The probability of finding the particle in an infinitesimal cube of sides dx, dy, dz is
ψ2dxdydz, and the probability of finding the particle somewhere in a volume V is

the integral over that volume of ψ2 with respect to dx, dy, dz (a triple integral); ψ2

is thus a probability density function, with units of probability per unit volume.

Born’s interpretation was in terms of the probability of a particular state, Pauli’s
the chemist’s usual view, that of a particular location.

The Schr€odinger equation overcame the limitations of the Bohr approach (see

the beginning of Sect. 4.2.6): the quantum numbers follow naturally from it

(actually the spin quantum number ms requires a relativistic form of the

Schr€odinger equation, the Dirac equation, and electron “spin” is apparently not

really due to the particle spinning like a top). The Schr€odinger equation can be

solved in an exact analytical way only for one-electron chemical systems like the

hydrogen atom, the helium monocation and the hydrogen molecule ion, but the

mathematical approach is complicated and of no great relevance to the application

of this equation to the study of serious molecules. However a brief account of the

results for hydrogenlike atoms is in order.

The standard approach to solving the Schr€odinger equation for hydrogenlike
atoms involves transforming it from Cartesian (x, y, z) to polar coordinates (r, θ, ϕ),
since these accord more naturally with the spherical symmetry of the system. This

makes it possible to separate the equation into three simpler equations,

f rð Þ ¼ 0, f θð Þ ¼ 0, and f ϕð Þ ¼ 0: Solution of the f(r) equation gives rise to the

n quantum number, solution of the f(θ) equation to the l quantum number, and

solution of the f(ϕ) equation to the mm (often simply called m) quantum number.

19Wolfgang Pauli, born Vienna, 1900. Ph.D. Munich 1921. Professor Hamburg, Zurich, Princeton,

Zurich. Best known for the Pauli exclusion principle. Nobel Prize 1945. Died Zurich 1958.
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For each specific n ¼ n
0
; l ¼ l

0
and mm ¼ mm

0
there is a mathematical function

obtained by combining the appropriate f(r), f(θ) and f(ϕ):

ψ r, θ, ϕ, n
0
, l

0
,mm

0
� �

¼ f rð Þf θð Þf ϕð Þ ð4:32Þ

The function ψ(r, θ, ϕ) (clearly ψ could also be expressed in Cartesians), depends

functionally on r, θ, ϕ and parametrically on n, l and mm: for each particular set

(n0, l0, mm
0) of these numbers there is a particular function with the spatial coordi-

nates variables r, θ, ϕ (or x, y, z). A function like ksinx is a function of x and depends
only parametrically on k. This ψ function is an orbital (“quasi-orbit”; the term was

invented by Mulliken, Sect. 4.3.4), and you are doubtless familiar with plots of its

variation with the spatial coordinates. Plots of the variation of ψ2 with spatial

coordinates indicate variation of the electron density (recall the Born interpretation

of the wavefunction) in space due to an electron with quantum numbers n0, l0 and
mm

0. We can think of an orbital as a region of space occupied by an electron with a

particular set of quantum numbers, or as a mathematical function ψ describing the

energy and the shape of the spatial domain of an electron. For an atom or molecule

with more than one electron, the assignment of electrons to orbitals is an (albeit

very useful) approximation, since orbitals follow from solution of the Schr€odinger
equation for a hydrogen atom.

The Schr€odinger equation that we have been talking about is actually the time-
independent (and nonrelativistic) Schr€odinger equation: the variables in the equa-

tion are spatial coordinates, or spatial and spin coordinates (Chap. 5, Sect. 5.2.3.1)

when electron spin is taken into account. The time-independent equation is the one

most widely-used in computational chemistry, but the more general time-dependent
Schr€odinger equation, which we shall not examine, is important in certain appli-

cations, like some treatments of the interaction of a molecule with light, since light

(radiation) is composed of time-varying electric and magnetic fields. The time-

dependent density functional theory method of calculating UV spectra (Chap. 7) is

based on the time-dependent Schr€odinger equation.
The (reluctant) recognition of the de facto discontinuous absorption and emission

of radiation by Planck, the quantum mechanics of the Bohr atom, based on a semi-

classical modification of Newtonian mechanics, and Sommerfeld’s attempts to extend

this by attaching refinements such as elliptical orbits, constitute the old quantum
theory (1900–1925). Its application to atoms and molecules is characterized by

attempts to modify classical dynamics with limitations imposed by the quantum of

action h; this is clearly seen in the work on atoms by Bohr and by Sommerfeld. The

physically austere (almost numerological?) matrix formalism of Heisenberg (1925),

and the more visual but mathematically equivalent application to atoms by

Schr€odinger (1926) of the wave-mechanical postulate of de Broglie (1923), constitute

the beginning of modern quantum mechanics, sometimes called the new quantum
theory. Some regard quantum mechanics as having arisen in the development of

quantum theory when physicists ceased appending the concept of quantum jumps to

classical motion as had been done by, for example, Bohr and Sommerfeld.
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4.3 The Application of the Schr€odinger Equation
to Chemistry by H€uckel

4.3.1 Introduction

The quantum mechanical methods described in this book are all molecular orbital

(MO) methods, or oriented toward the molecular orbital approach: ab initio and

semiempirical methods use the MO method, and density functional methods are

oriented toward the MO approach. There is another approach to applying the

Schr€odinger equation to chemistry, namely the valence bond method. Basically

the MO method allows atomic orbitals to interact to create the molecular orbitals of

a molecule, and does not focus on individual bonds as shown in conventional

structural formulas. As is the case with the wavefunction, the question of the

physical significance of molecular orbitals, to what extent they are mathematical

conveniences or potentially observable, is unsettled [2(i)]. The term “the orbital

approximation” implies that they are “only” a mathematical convenience for

handling the overall molecular wavefunction. The VB method, on the other hand,

takes the molecule, mathematically, as a sum (a linear combination) of structures

each of which corresponds to a structural formula with a certain pairing of electrons

[16]. The MO method explains in a relatively simple way several phenomena that

can be understood only with difficulty using the VB method, like the triplet nature

of dioxygen or the fact that benzene is aromatic but cyclobutadiene is not [17]. The

MO approach also lends itself well to computational algorithms. With the applica-

tion of computers to quantum chemistry the MO method almost eclipsed the VB,

but the latter has in recent years made a limited comeback [18].

The first application of quantitative quantum theory to chemical species signif-

icantly more complex than the hydrogen atom was the work of H€uckel20 on

unsaturated organic compounds, in 1930–1937 [19]. This approach, in its simplest

form, focuses on the p electrons of double bonds, aromatic rings and heteroatoms.

Although H€uckel did not initially explicitly consider orbital hybridization (the

concept is usually credited to Pauling21, 1931 [20]), the method as it became widely

applied [21] confines itself to planar arrays of sp2-hybridized atoms, usually carbon

atoms, and evaluates the consequences of the interactions among the p electrons

(Fig. 4.4). Actually, the simple H€uckel method has been occasionally applied to

nonplanar systems [22]. Because of the importance of the hybridization concept in

the simple H€uckel method a brief discussion of this is warranted.

20 Erich H€uckel, born Berlin, 1896. Ph.D. G€ottingen. Professor, Marburg. Died Marburg, 1980.
21 Linus Pauling, born Portland, Oregon, 1901. Ph.D. Caltech. Professor, Caltech. Known for work

in quantum chemistry and biochemistry, campaign for nuclear disarmament, and controversial

views on vitamin C. Nobel prize for chemistry 1954, for peace 1963. Died near Big Sur,

California, 1994.
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4.3.2 Hybridization

Hybridization is the mixing of orbitals on an atom to produce new, “hybridized”

(in the spirit of the biological use of the term), atomic orbitals. This is done

mathematically but can be appreciated pictorially (Fig. 4.5). One way to justify

the procedure theoretically is to recognize that atomic orbitals are vectors in the

generalized mathematical sense of being elements of a vector space [23] (if not in

the restricted sense of the physicist as physical entities with magnitude and direc-

tion); it is therefore permissible to take linear combinations of these vectors to

produce new members of the vector space. A good, brief introduction to hybridi-

zation in is given by Streitwieser [24].

i.e.

C 4H 6

i.e.

C 4H 6

. .

i.e.

C 6H 6

Fig. 4.4 The simple H€uckel method is used mainly for planar arrays of π systems
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In a familiar example, a 2 s orbital can be mixed with three 2p orbitals to give

four hybrid orbitals; this can be done in an infinite number of ways, such as (from

now on ϕ will be used for atomic orbitals and ψ for molecular orbitals):

ϕ1 ¼
1

2
sþ px þ py þ pz
� �

ϕ2 ¼
1

2
sþ px þ py � pz
� �

ϕ3 ¼
1

2
sþ px � py � pz
� �

ϕ4 ¼
1

2
sþ px � py þ pz
� �

ð4:33Þ

or

ϕa ¼
1

2
sþ px þ 21=2pz

� �
ϕb ¼

1

2
sþ px � 21=2pz

� �
ϕc ¼

1

2
s� px þ 21=2py

� �
ϕd ¼

1

2
s� px � 21=2py

� �
ð4:34Þ

Both the set (4.33) and the set (4.34) consist of four sp3 orbitals, since the electron
density contributions from the component s and p orbitals to the hybrid is, in each

case (considering the squares of the coefficients; recall the Born interpretation of

the square of a wavefunction, Sect. 4.2.6) in the ratio 1:3, i.e. 1/4:3(1/4) and 1/4:

(1/4 + 2/4), and in each set we have used a total of one s orbital, and one each of the
px, py and pz orbitals. An sp3 orbital is said to have 25% s character (and 75%

p character), from the ratio of the squares of the atomic orbital coefficients, 1/4:3/4.

“Character” here is most easily interpreted as diffuseness of electron density: an

electron in an sp2 orbital, with 33% s character, spends more time close to the

y

z

+ −

an sp hybrid

y

z

+
+−

2s
2s

2py

2py

2py

2py
2

1

2

1
2s − 

2

1

2

1
i.e. 2s + (− )

2

1

2

1
 +

z

+
−

an sp hybrid

y

Fig. 4.5 Hybridization is forming new atomic orbitals, on an atom, by mathematically mixing

(combining) “original” atomic orbitals on that atom. Mixing two orbitals gives two hybrid orbitals,

and in general n AOs give n hybrid AOs. Orbitals are mathematical functions and so can be added

and subtracted as shown above
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nucleus than one in an sp3 orbital, following the order of “tightness” of s and

p atomic orbitals of the same quantum number. This has consequences for the

acidity and NMR signal of an attached hydrogen.

Hybridization is purely a mathematical procedure, originally invented to recon-

cile the quantum mechanical picture of electron density in s, p, etc. orbitals with
traditional views of directed valence. For example, it is sometimes said that in the

absence of hybridization combining a carbon atom with four unpaired electrons

with four hydrogen atoms would give a methane molecule with three equivalent,

mutually perpendicular bonds and a fourth, different, bond (Fig. 4.6). Actually, this

is incorrect: the 2 s and three 2p orbitals of an unhybridized carbon along with the

four 1 s orbitals of four hydrogen atoms provide, without invoking hybridization, a

tetrahedrally symmetrical valence electron distribution that leads to tetrahedral

methane with four equivalent bonds (Fig. 4.6). In fact, it has been said “It is

sometimes convenient to combine aos [atomic orbitals] to form hybrid orbitals

that have well defined directional character and then to form mos [molecular

orbitals] by combining these hybrid orbitals. This recombination of aos to form

x

z

y

2px

2py

2pz

2s

C

H

H

H
H

+ 4 H atoms
(no hybridization)

C

H

HH

H

One C-H bond somehow skewed, 
and different in length and strength
from the others, which are mutually
perpendicular, like the p orbitals

WRONG RIGHT

The four C-H bonds
tetrahedrally oriented
and of equal length and 
strength

Fig. 4.6 Hybridization is not needed to explain bonding, e.g. the tetrahedral geometry of methane
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hybrids is never necessary . . .” [25]. Interestingly, the MOs accommodating the

four highest-energy electron pairs of methane (the eight valence electrons) are not
equivalent in energy (not degenerate). This is an experimental fact that can be

shown by photoelectron spectroscopy [26]. Instead of four orbitals of the same

energy we have three degenerate orbitals and one lower in energy (and of course the

almost undisturbed 1 s core orbital of carbon). This surprising arrangement is a

consequence of the fact that symmetry requires one combination (i.e. one MO) of

carbon and hydrogen orbitals (essentially a weighted sum of the C2s and the four

H1s orbitals) to be unique and the other three AO combinations (the other three

MOs) to be degenerate (they involve the C2p and the H1s orbitals) [26, 27]. It must

be emphasized that although the methane valence orbitals are energetically differ-
ent, the electron and nuclear distribution is tetrahedrally symmetrical–the molecule

indeed has Td (Chap. 2, Sect. 2.6) symmetry. The four MOs formed directly from

AOs are the canonical MOs. They are delocalized (spread out over the molecule),

and do not correspond to the familiar four bonding Csp3/H1sMOs,, each of which is

localized between the carbon nucleus and a hydrogen nucleus. However, the

canonical MOs can be mathematically manipulated to give the familiar localized

MOs (Chap. 5, Sect. 5.2.3.1). Truhlar addresses the matter of hybridization,

delocalized and localized orbitals, and the photoelectron results, in a short exposi-

tion (which might be clearer after reading Chap. 5, Sects. 5.2.3.1 and 5.4.3) [28].

Another example illustrates a situation somewhat similar to that we saw with

methane, and what was until not so long ago a serious controversy: the best way to

represent the carbon/carbon double bond [29]. The currently popular way to

conceptualize the C ¼ Cbond has it resulting from the union of two sp2 -hybridized
carbon atoms (Fig. 4.7); the sp2 orbitals on each carbon overlap end-on forming a σ
bond and the p orbitals on each carbon overlap sideways forming a π bond. Note

that the usual depiction of a carbon p orbital is unrealistically spindle-shaped,

necessitating depicting overlap with connecting lines as in Fig. 4.7. Figure 4.8

shows a picture in better accord with the calculated electron density in the p orbital,
i.e. corresponding to the square of the wavefunction. The leftover sp2 orbitals can
be used to bond to, say, hydrogen atoms (Fig. 4.7). From this viewpoint the double

bond is thus composed of a σ bond and a π bond. However, this is not the only way

to represent the C ¼ C bond. One can, for example, mathematically construct a

carbon atom with two sp2 orbitals and two sp5 orbitals; the union of two such

carbons gives a double bond formed from two sp5/sp5 bonds (Fig. 4.9; this shows
why bonds that do not overlap end-on are called bent bonds; the more jocular

“banana bonds” has also been used), rather than from a σ bond and a π bond. Which

is right? They are only different ways of viewing the same thing: the electron

density in the C ¼ C bond decreases smoothly from the central C/C axis in both

models (Fig. 4.10), and the experimental 13C/H NMR coupling constant for the C-H

bond would, in both models, be predicted to correspond to 33% s character in the

orbital used by carbon to bond to hydrogen [30]. The ability of the hybridization

concept to correlate and rationalize acidities of hydrocarbons in terms of the

s character of the carbon orbital in a C-H bond [30] is an example of the usefulness

of this idea. Most of the systems studied by the simple H€uckel method are

essentially flat, as expected for sp2 arrays, and many properties of these molecules
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can be at least qualitatively understood by considering the in-plane σ electrons of

overlapping sp2 orbitals to simply represent a framework that holds the perpendic-

ular p orbitals, in which we are interested, in an orientation allowing neighboring

p orbitals to overlap.

C C
H

H

C

.
.

:

H

H

C

.
.

Csp2/H1s overlap

Csp2/H1s overlap

H

H

C

H

H

C

:

and

H

H

H

H

Csp2/Csp2 overlap
(the sigma bond)

Cp/Cp overlap, equal above
and below the C2H4 plane
(the pi bond)

i.e. 

Fig. 4.7 The currently popular view of the C/C double bond: an sp2/sp2 σ bond and a p/p π bond.

Compare this with Figs. 4.8 and 4.9

x

z

+

-

C CC C

CC than like this:
The C 2p electron density 
(the square of the wavefunction)
looks more like this:

The wavefunction
itself looks like

Hence p/p overlap looks like this: rather than like this:

Fig. 4.8 The electron density is represented by the square of the mathematical function we call

the orbital. A carbon 2p orbital is actually more buxom than its conventional representation, and

two 2p orbitals overlap better than the usual picture, e.g. Fig. 4.7, suggests
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Before moving on to H€uckel theory we take a look at matrices, since matrix

algebra is the simplest and most elegant way to handle the linear equations that arise

when MO theory is applied to chemistry.

4.3.3 Matrices and Determinants

Matrix algebra was invented by Cayley22 as a systematic way of dealing with

systems of linear equations. The single equation in one unknown

ax ¼ b

has the solution x ¼ a�1b
Consider next the system of two equations in two unknowns

1. a11xþ a12y ¼ c1
2. a21xþ a22y ¼ c2

and C

H

H

Csp2/H1s overlap

Csp2/H1s overlap

sp5

sp5

C

H

H

C

H

H
C

H

H

one sp5/sp5 bond 

another sp5/sp5 bond 

two banana bonds1
6 6

5 p( s +

1
3 3

(sp2) = s + p

sp5) = 

2

Fig. 4.9 The C/C double bond can be built from two sp5 orbitals. The result is the same as using a

σ bond and a π bond (Fig. 4.7): see Fig. 4.10

22 Arthur Cayley, lawyer and mathematician, born Richmond, England, 1821. Graduated Cam-

bridge. Professor, Cambridge. After Euler and Gauss, history’s most prolific author of mathemat-

ical papers. Died Cambridge, 1895.
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The subscripts of the unknowns coefficients a indicate row 1, column 1, row

1, column 2, etc. We’ll see that using matrices the solutions (the values of x and y)
can be expressed in a way analogous to that for the equation ax ¼ b.

A matrix is a rectangular array of “elements” (numbers, derivatives, etc.) that

obeys certain rules of addition, subtraction, and multiplication. Curved or angular

brackets are used to denote a matrix:

1 2

7 2

� � 5

2

0

0
@

1
A 0 0 7 4ð Þ

2� 2matrix 3� 1matrix 1� 4matrix

or:

1 2

7 2

� 	 5

2

0

2
4
3
5 0 0 7 4½ �

Do not confuse matrices with determinants (below), which are written with straight

lines, e.g.

C C
C C +

C C

C C C C+

C C

pi bond

sigma bond

sp5/sp5 bond

sp5/sp5 bond

Approximately

But more like

Fig. 4.10 The model of a C/C double bond as a σ/π bond is at bottom really equivalent to the sp5/
sp5 + sp5/sp5 model: both result in the same electron distribution, which is the physically

significant thing. There are no gaps in electron density between the carbons: as the contribution

to density from the σ bond (or one of the sp5/sp5 bonds) falls off, the contribution from the π bond

(or the other sp5/sp5 bond) increases. The electron density falls off smoothly with distance from the

C/C axis. For some purposes one of the models, σ/π or bent (banana) bonds, may be more useful
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1 2

7 3












is a determinant, not a matrix. This determinant represents the number

1� 3� 2� 7 ¼ 3� 14 ¼ �11. In contrast to a determinant, a matrix is not a

number, but rather a vector in some cases, or an operator, although some would

consider matrices to be generalizations of numbers, with e.g. the 1� 1 matrix

3ð Þ ¼ 3. An operator acts on a function (or a vector) to give a new function,

e.g. d/dx acts on (differentiates) f(x) to give f0(x):

d

dx
f xð Þ ¼ df xð Þ

dx
¼ f

0
xð Þ

and the square root operator acts on y2 to give y. When we have done matrix

multiplication you will see that a matrix can act on a vector and rotate it through an

angle to give a new vector.

Let’s look at matrix addition, subtraction, multiplication by scalars, and matrix

multiplication (multiplication of a matrix by a matrix).

4.3.3.1 Addition and Subtraction

Matrices of the same size (2� 2 and 2� 2, 3� 1 and 3� 1, etc.) can be added just

by adding corresponding elements:

2 1

7 4

� �
þ 1 3

5 6

� �
¼ 2þ 1 1þ 3

7þ 5 4þ 6

� �
¼ 3 4

12 10

� �
7

0

3

0
@

1
A þ

4

4

1

0
@

1
A ¼

7þ 4

0þ 4

3þ 1

0
@

1
A ¼

11

4

4

0
@

1
A

Subtraction is similar:

2 1

7 4

� �
� 1 3

5 6

� �
¼ 2� 1 1� 3

7� 5 4� 6

� �
¼ 1 �2

2 �2

� �

4.3.3.2 Multiplication by a Scalar

A scalar is an ordinary number (in contrast to a vector or an operator), e.g. 1, 2, √2,
1.714, π, etc. To multiply a matrix by a scalar we just multiply every element by the

number:
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2
2 1

7 4

� �
¼ 2� 2 2� 1

2� 7 2� 4

� �
¼ 4 2

14 8

� �

4.3.3.3 Matrix Multiplication

We could define matrix multiplication to be analogous to addition: simply multi-

plying corresponding elements. After all, in mathematics any rules are permitted, as

long as they do not lead to contradictions. However, as we shall see in a moment,

for matrices to be useful in dealing with simultaneous equations we must adopt a

slightly more complex multiplication rule. The easiest way to understand matrix

multiplication is to first define series multiplication. If

series a ¼ Sa ¼ a1 a2 a3 . . . , and series b ¼ Sb ¼ b1 b2 b3 . . .

then we define the series product as

Sa Sb ¼ a1b1 þ a2 b2 þ a3 b3 þ . . .

So for example, if Sa ¼ 5 2 1 and Sb ¼ 3 6 2

then Sa Sb ¼ 5 3ð Þ þ 2 6ð Þ þ 1 2ð Þ ¼ 15þ 12þ 2 ¼ 29

Now it’s easy to understand matrix multiplication: if AB¼C, where A, B, and

C are matrices, then element i,j of the product matrix C is the series product of row

i of A and column j of B. For example

AB ¼ 1 3

7 2

� �
2 4

5 6

� �
¼ 1 2ð Þ þ 3 5ð Þ 1 4ð Þ þ 3 6ð Þ

7 2ð Þ þ 2 5ð Þ 7 4ð Þ þ 2 6ð Þ
� �

¼ 17 22

24 40

� �

(With practice, you can multiply simple matrices in your head). Note that matrix

multiplication is not commutative: AB is not necessarily BA, e.g.

BA ¼ 2 4

5 6

� �
1 3

7 2

� �
¼ 2 1ð Þ þ 4 7ð Þ 2 3ð Þ þ 4 2ð Þ

5 1ð Þ þ 6 7ð Þ 5 3ð Þ þ 6 2ð Þ
� �

¼ 30 14

47 27

� �

(two matrices are identical if and only if their corresponding elements are the

same). Note that two matrices may be multiplied together only if the number of

columns of the first equals the number of rows of the second. Thus we can multiply

A 2� 2ð ÞB 2� 2ð Þ, A 2� 2ð ÞB 2� 3ð Þ, A 3� 1ð ÞB 1� 3ð Þ, and so on. A useful

mnemonic is a��bð Þ �b� cð Þ ¼ a� cð Þ, meaning, for example that A 2� 1ð Þ
times B 1� 2ð Þ gives C 2� 2ð Þ:
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5

2

� �
0 3ð Þ ¼ 5 0ð Þ 5 3ð Þ

2 0ð Þ 2 3ð Þ
� �

¼ 0 15

0 6

� �

It is helpful to know beforehand the size i.e. 2� 2ð Þ, 3� 3ð Þ; whatever, of the
matrix you will get on multiplication.

To get an idea of why matrices are useful in dealing with systems of linear

equations, let’s go back to our system of equations

1ð Þ a11xþ a12y ¼ c1
2ð Þ a21xþ a22y ¼ c2

Provided certain conditions are met this can be solved for x and y, e.g. by solving

(1) for x in terms of y then substituting for x in (2) etc. Now consider the equations

from the matrix viewpoint. Since

AB ¼ a11 a12
a21 a22

� �
x
y

� �
¼ a11xþ a12y

a21xþ a22y

� �

clearly AB corresponds to the lefthand side of the system, and the system can be

written

AB¼C where C ¼ c1
c2

� �

A is the coefficients matrix, B is the unknowns matrix, and C is the constants

matrix. Now, if we can find a matrix A�1 such that A�1AB¼B (analogous to the

numbers a�1ab ¼ b) then

A�1AB¼A�1C i:e: B¼A�1C

Thus the unknowns matrix is simply the inverse of the coefficients matrix times the

constants matrix. Note that we multiplied by A�1 on the left (A�1AB¼A�1C),

which is not the same as multiplying on the right, which would give ABA�1 ¼ C

A�1; this is not necessarily the same as B.

To see that a matrix can act as an operator consider the vector from the origin to

the point P(3,4). This can be written as a column matrix, and multiplying it by the

rotation matrix shown transforms it (rotates it) into another matrix:

vector
new, rotated
vector

x

y

x

y
3
4 −4

 3

0 −1
1   0

multiply on the left
by rotation matrix
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4.3.3.4 Some Important Kinds of Matrices

These matrices are particularly important in computational chemistry:

1. the zero matrix (the null matrix)

2. diagonal matrices

3. the unit matrix (the identity matrix)

4. the inverse of another matrix

5. symmetric matrices

6. the transpose of another matrix

7. orthogonal matrices

1. The zero matrix or null matrix, 0, is any matrix with all its elements zero.

Examples:

0 0

0 0

� �
0 0 0

0 0 0

� �
0 0 0 0ð Þ

Clearly, multiplication by the zero matrix (when the a��bð Þ �b� cð Þmnemonic

permits multiplication) gives a zero matrix.

2. A diagonal matrix is a square matrix that has all its off-diagonal elements zero;

the (principal) diagonal runs from the upper left to the lower right. Examples:

2 0

0 4

� � 3 0 0

0 6 0

0 0 1

0
@

1
A 0 0 0

0 0 0

0 0 0

0
@

1
A

3. the unit matrix or identity matrix 1 or I is a diagonal matrix whose diagonal

elements are all unity. Examples:

1ð Þ 1 0

0 1

� � 1 0 0

0 1 0

0 0 1

0
@

1
A

Since diagonal matrices are square, unit matrices must be square (but zero

matrices can be any size). Clearly, multiplication (when permitted) by the unit

matrix leaves the other matrix unchanged: 1A¼A1¼A

4. The inverse A�1 of another matrix A is the matrix that, multiplied A, on the left

or right, gives the unit matrix: A�1A ¼ AA�1 ¼ 1: Examples:

If A ¼ 1 2

3 4

� �
then A�1 ¼ �2 1

3=2 �1=2

� �

Check it out.
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5. A symmetric matrix is a square matrix for which aij ¼ aji for each element.

Examples:

1 4

4 3

� �
a12 ¼ a21 ¼ 4

2 7 1

7 3 5

1 5 4

0
@

1
A a12 ¼ a21 ¼ 7, etc:

Note that a symmetric matrix is unchanged by rotation about its principal

diagonal. The complex-number analogue of a symmetric matrix is a Hermitian

matrix (after the mathematician Charles Hermite); this has aij ¼ aji
*, e.g. if

element (2,3) ¼ aþ bi, then element (3,2) ¼ a� bi, the complex conjugate of

element (2,3); i ¼ √� 1. Since all the matrices we will use are real rather than
complex, attention has been focussed on real matrices here.

6. The transpose (AT or ~A) of a matrix A is made by exchanging rows and columns.

Examples:

If A ¼ 2 3

4 7

� �
then AT ¼ 2 4

3 7

� �

If A ¼ 2 1 6

1 7 2

� �
then AT ¼

2

1

6

1

7

2

0
@

1
A

Note that the transpose arises from twisting the matrix around to interchange

rows and columns. Clearly the transpose of a symmetric matrix A is the same

matrix A. For complex-number matrices, the analogue of the transpose is the

conjugate transpose A{; to get this form A *, the complex conjugate of A, by
converting each complex number element aþ bi in A to its complex conjugate

a - bi, then switch the rows and columns ofA * to get A*ð ÞT ¼ A{. Physicists call

A{ the adjoint of A, but mathematicians use adjoint to mean something else.

7. An orthogonal matrix is a square matrix whose inverse is its transpose: if A�1

¼ AT then A is orthogonal. Examples:

A1 ¼ 1=√2 �1=√2
1=√2 1=√2

� �
A2 ¼

1=√6 �1=√2 �1=√3
2=√6 0 1=√3
1=√6 1=√2 �1=√3

0
@

1
A

We saw that for the inverse of a matrixA�1A ¼ AA�1 ¼ 1, so for an orthogonal

matrix ATA ¼ AAT ¼ 1, since here the transpose is the inverse. Check this out

for the matrices shown. The complex analogue of an orthogonal matrix is a

unitary matrix; its inverse is its conjugate transpose.

The columns of an orthonormal matrix are orthonormal vectors. This means that

if we let each column represent a vector, then these vectors are mutually orthogonal

and each one is normalized. Two or more vectors are orthogonal if they are
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mutually perpendicular (i.e. at right angles), and a vector is normalized if it is of

unit length. Consider the matrix A1 above. If column 1 represents the vector v1 and

column 2 the vector v2, then we can picture these vectors like this (the long side of a
right triangle is of unit length if the squares of the other sides sum to 1):

x

y

0

v1
v2

1
_1

2

1_

2

1_

2

1_

−
2

1_

v1 =
2

1_

2

1_

−
2

1_

v2 =

2

1_

The two vectors are orthogonal: from the diagram the angle between them is

clearly 90� since the angle each makes with, say, the x-axis is 45�. Alternatively, the
angle can be calculated from vector algebra: the dot product (scalar product) is

v1 � v2 ¼ v1j j v2j j cos θ
where |v| (“mod v”) is the absolute value of the vector, i.e. its length:

vj j ¼ v2x þ v2y

� �1=2

or v2x þ v2y þ v2z

� �1=2

for a 3D vector

� �
:

Each vector is normalized, i.e. v1j j ¼ v2j j 1=2 þ 1=2ð Þ1=2 ¼ 1.

The dot product is also

v1 � v2 ¼ v1x v2x þ v1y v2y ðwith an obvious extension to 3D spaceÞ

i.e.

cos θ ¼ v1x v2x þ v1y v2y
� �

= v1j j v2j j
¼ 1=√2
� � �1=√2

� � þ 1=√2
� �

1=√2
� �� �

= 1ð Þ 1ð Þ ¼ 0

and so

θ ¼ 90�

Likewise, the three columns of the matrix A2 above represent three mutually

perpendicular, normalized vectors in 3D space. A better name for an orthogonal

matrix would be an orthonormal matrix. Orthogonal matrices are important in

computational chemistry because molecular orbitals can be regarded as orthonor-

mal vectors in a generalized n-dimensional space (Hilbert space, after the mathe-

matician David Hilbert). We extract information about molecular orbitals from

matrices with the aid of matrix diagonalization.

132 4 Introduction to Quantum Mechanics in Computational Chemistry



4.3.3.5 Matrix Diagonalization

Modern computer programs use matrix diagonalization to calculate the energies

(eigenvalues) of molecular orbitals and the sets of coefficients (eigenvectors) that
help define their size and shape. We met these terms, and matrix diagonalization,

briefly in Chap. 2, Sect. 2.5; “eigen” means suitable or appropriate, and we want

solutions of the Schr€odinger equation that are appropriate to our particular problem.

If a matrix A can be written A ¼ PDP�1, where D is a diagonal matrix (you could

call P and P�1 pre- and postmultiplying matrices), then we say that A is diagonal-

izable (can be diagonalized). The process of finding P and D (getting P�1 from P is

simple for the matrices of computational chemistry–see below) is matrix diagonal-
ization. For example

A ¼ 4 �2

1 1

� �
then P ¼ 1 2

1 1

� �
, D ¼ 2 0

0 3

� �
, and P�1 ¼ �1 2

1 �1

� �

Check it out. Linear algebra texts describe an analytical procedure using determi-

nants, but computational chemistry employs a numerical iterative procedure called

Jacobi matrix diagonalization, or some related method, in which the off-diagonal

elements are made to approach zero stepwise.

Now, it can be proved that if and only if A is a symmetric matrix (or more

generally, if we are using complex numbers, a Hermitian matrix–see symmetric

matrices, above), then P is orthogonal (or more generally, unitary–see orthogonal

matrices, above) and so the inverseP�1 of the premultiplying matrix P is simply the

transpose of P, PT (or more generally, what computational chemists call the

conjugate transpose A{ –see transpose, above). Thus

If A ¼ 0 1

1 0

� �
then

P ¼ 0:707 0:707

0:707 �0:707

� �
, D ¼ 1 0

0 �1

� �
, P�1 ¼ 0:707 0:707

0:707 �0:707

� �

(In this simple example the transpose of P happens to be identical with P). In the

spirit of numerical methods 0.707 is used instead of 1=√2. A matrix like A above,

for which the premultiplying matrix P is orthogonal (and so for which P�1 ¼ PT) is

said to be orthogonally diagonalizable. The matrices we will use to get molecular

orbital eigenvalues and eigenvectors are orthogonally diagonalizable. A matrix is

orthogonally diagonalizable if and only if it is symmetric; this has been described as

“one of the most amazing theorems in linear algebra” (see S. Roman, “An Intro-

duction to Linear Algebra with Applications”, Harcourt Brace, 1988, p. 408)

because the concept of orthogonal diagonalizability is not simple, but that of a

symmetric matrix is very simple.
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4.3.3.6 Determinants

A determinant is a square array of elements that is a shorthand way of writing a sum

of products; if the elements are numbers, then the determinant is a number.

Examples:

a11 a12
a21 a22










 ¼ a11a22 � a12a21,

5 2

4 3










 ¼ 5 3ð Þ � 2 4ð Þ ¼ 7

As shown here, a 2� 2 determinant can be expanded to show the sum it represents

by “cross multiplication”. A higher-order determinant can be expanded by reducing

it to smaller determinants until we reach 2� 2 determinants; this is done like this:

2 1 3 0

1 7 3 5

3 4 6 1

1 8 2 �2




















¼ 2

7 3 5

4 6 1

8 2 �2














� 1

1 3 5

3 6 1

1 2 �2














 þ 3

1 7 5

3 4 1

1 8 �2
















� 0

1 7 3

3 4 6

1 8 2
















Here we started with element (1,1) and moved across the first row. The first of the

above four terms is 2 times the determinant formed by striking out the row and

column in which 2 lies, the second term is minus 1 times the determinant formed by

striking out the row and column in which 1 lies, the third term is plus 3 times the

determinant formed by striking out the row and column in which 3 lies, and the

fourth term is minus 0 times the determinant formed by striking out the row and

column in which 0 lies; thus starting with the element of row 1, column 1, we move

along the row and multiply byþ1, � 1, þ 1, � 1. It is also possible to start at, say

element (2,1), the number 1, and move across the second row �;þ;�;þð Þ, or to
start at element (1,2) and go down the column �;þ;�;þð Þ, etc. One would likely

choose to work along a row or column with the most zeroes. The n� 1ð Þ � n� 1ð Þ
determinants formed in expanding an n� n determinant are called minors, and a

minor with its appropriate + or � sign is a cofactor. Expansion of determinants

using minors/cofactors is called Lagrange expansion (Joseph Louis Lagrange,

1773). There are also other approaches to expanding determinants, such as manip-

ulating them to make all the elements but one of a row or column zero; see any text

on matrices and determinants. The third-order determinants in the example above

can be reduced to second-order ones and so the fourth-order determinant can be

evaluated as a single number. Obviously every determinant has a corresponding

square matrix and every square matrix has a corresponding determinant, but a

determinant is not a matrix; it is a function of a matrix, a rule that tells us how to

take the set of numbers in a matrix and get a new number. Approaches to the study

of determinants were made by Seki in Japan and Leibnitz in Europe, both in 1683.
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The word “determinant” was first used in our sense by Cauchy (1812), who also

wrote the first definitive treatment of the topic.

4.3.3.7 Some Properties of Determinants

These are stated in terms of rows, but also hold for columns; D is “the determinant”.

1. If each element of a row is zero, D is zero (obvious from Lagrange expansion).

2. Multiplying each element of a row by k multiplies D by k (obvious from

Lagrange expansion).

3. Switching two rows changes the sign of D (since this changes the sign of each

term in the expansion).

4. If two rows are the same D is zero. (follows from 3, since if n ¼ �n, n must

be zero.

5. If the elements of one row are a multiple of those of another, D is zero (follows

from 2 to 4).

6. Multiplying a row by k and adding it (adding corresponding elements) to another

row leaves D unchanged (in the Laplace expansion the terms with k cancel).
7. A determinant A can be written as the sum of two determinants B and C which

differ only in row i in accordance with this rule: if row i of A is bi1 þ ci1 bi2 þ ci2
. . . then row i of B is bi1 þ bi2 . . . and row i of C is ci1 þ ci2 . . . An example

makes this clear; with row i ¼ row3:

1 3 6

5 4 2

8 11 9














 ¼

1 3 6

5 4 2

5þ 3 7þ 4 4þ 5














 ¼

1 3 6

5 4 2

5 7 4














þ

1 3 6

5 4 2

3 4 5
















4.3.4 The Simple H€uckel Method–Theory

The derivation of the H€uckel method (SHM, or simple H€uckel theory, SHT; also
called H€uckel molecular orbital method, HMO method) given here is not rigorous

and has been strongly criticized [31]; nevertheless it has the advantage of showing

how with simple arguments one can use the Schr€odinger equation to develop, more

by a plausibility argument than a proof, a method that gives useful results and which

can be extended to more powerful methods with the retention of many useful

concepts from the simple approach.

The Schr€odinger equation (Sect. 4.2.6, Eq. (4.29))

∇2ψ þ 8π2m

h2
E� Vð Þψ ¼ 0

can after very simple algebraic manipulation be rewritten
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� h2

8π2m
∇2 þ V

� �
ψ ¼ Eψ ð4:35Þ

This can be abbreviated to the seductively simple-looking form

Ĥ ψ ¼ Eψ ð*4:36Þ

where

Ĥ ¼ � h2

8π2m
∇2 þ V

� �
ð*4:37Þ

The symbol Ĥ (“H hat” or “H peak”) is an operator (Sect. 4.3.3): it specifies that an
operation is to be performed on ψ , and Eq. (4.36) says that the result of the

operation will be E multiplied by ψ . The operation to be performed on ψ (i.e. ψ
(x,y,z)) is “differentiate it twice with respect to x, to y and to z, add the partial

derivatives, and multiply the sum by �h2=8π2m; then add this result to V times ψ”
(now you can see why symbols replaced words in mathematical discourse). The

notation Ĥψ means Ĥ of ψ , not Ĥ times ψ .
Equation (4.36) says that an operator (Ĥ) acting on a function (ψ) equals a

constant (E) times the function (“H hat of psi equals E psi”). Such an equation

Ô f ¼ kf , Ô ¼ operator ð4:38Þ

is called an eigenvalue equation. The functions f and constants k that satisfy

Eq. (4.38) are eigenfunctions and eigenvalues, respectively, of the operator Ô.
The operator Ĥ is called the Hamiltonian operator, or simply the Hamiltonian.

The term is named after the mathematician Sir William Rowan Hamilton, who

formulated Newton’s equations of motion in a manner analogous to the quantum

mechanical Eq. (4.36). Eigenvalue equations are very important in quantum

mechanics, and we shall again meet eigenfunctions and eigenvalues.

The eigenvalue formulation of the Schr€odinger equation is the starting point for

our derivation of the H€uckel method. We will apply Eq. (4.36) to molecules, so in

this context Ĥ and ψ are the molecular Hamiltonian and wavefunction, respectively.

From Ĥ ψ ¼ Eψ
We get

ψĤ ψ ¼ Eψ2 ð4:39Þ

Note that this is not the same as Ĥ ψ2 ¼ Eψ2, just as xdf(x)/dx, say, is not the same

as dxf(x)/dx. Integrating and rearranging we get

E ¼

Z
ψĤ ψdvZ
ψ2dv

ð4:40Þ

The integration variable dn indicates integration with respect to spatial coordinates

(x, y, z in a Cartesian coordinate system), and integration over all of space is
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implied, since that is the domain of an electron in a molecule, and thus the domain

of the variables of the function ψ . One might wonder why not simply use E ¼ Ĥ
ψ=ψ ; the problems with this function are that it goes to infinity as ψ approaches

zero, and it is not well-behaved with regard to finding a minimum by

differentiation.

Next we approximate the molecular wavefunction ψ as a linear combination of

atomic orbitals (LCAO). The molecular orbital (MO) concept as a tool in

interpreting electronic spectra was formalized by Mulliken23 starting in 1932 and

building on earlier (1926) work by Hund24 [32] (recall that Mulliken coined the

word orbital). The postulate behind the LCAO approach is that an MO can be

“synthesized” by combining simpler functions, now called basis functions; these
functions comprise a basis set. This way of calculating MOs is based on suggestions

of Pauling (1928) [33] and Lennard-Jones25 (1929) [34]. Perhaps the most impor-

tant early applications of the LCAO method were the simple H€uckel method (1931)

[19], in which p AOs orbitals are combined to give πAOs (probably the first time

that the MOs of relatively big molecules were represented as a weighted sum of

AOs with optimized coefficients), and the treatment of all the lower electronic

states of the hydrogen molecule by Coulson26 and Fischer (1949) [35]. The basis

functions are usually located on the atoms of the molecule, and may or may not (see

the discussion of basis functions in Chap. 5, Sect. 5.3) be conventional atomic

orbitals. So strictly speaking we use in general a linear combination of basis
functions rather than atomic orbitals, but the term LCAO is still popular. The

wavefunction can in principle be approximated as accurately as desired by using

enough suitable basis functions. In this simplified derivation of the H€uckel method

we at first consider a molecule with just two atoms, with each atom contributing one

basis function to the MO. Combining basis functions on different atoms to give

MOs spread over the molecule is somewhat analogous to combining atomic orbitals

on the same atom to give hybrid atomic orbitals (Sect. 4.3.2) [27]. The combination

of n basis functions always gives n MOs, as indicated in Fig. 4.11, and we expect

two MOs for the two-atomic-orbital diatomic molecule we are using here.

23 Robert Mulliken, born Newburyport, Massachusetts, 1896. Ph.D. University of Chicago. Pro-

fessor New York University, University of Chicago, Florida State University. Nobel prize in

chemistry 1966, for the MO method. Died Arlington, Virginia, 1986.
24 Friedrich Hund, born Karlsruhe, Germany, 1896. Ph.D. Marburg, 1925, Professor Rostock,

Leipzig, Jena, Frankfurt, G€ottingen. Died G€ottingen, 1997.
25 John Edward Lennard-Jones, born Leigh, Lancaster, England, 1894. Ph.D. Cambridge, 1924.

Professor Bristol. Best known for the Lennard-Jones potential function for nonbonded atoms. Died

Stoke-on-Trent, England, 1954.
26 Charles A. Coulson, born Worcestershire, England, 1910. Ph.D. Cambridge, 1935. Professor of

theoretical physics, King’s College, London; professor of mathematics, Oxford; professor of

theoretical chemistry, Oxford. Best known for his book "Valence" (the 1st Ed., 1952). Died

Oxford, 1974.
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Using the LCAO approximation

ψ ¼ c1ϕ1 þ c2ϕ2 ð4:41Þ

where ϕ1 and ϕ2 are basis functions on atoms 1 and 2, and c1 and c2 are weighting
coefficients to be adjusted to get the best ψ , and substituting into Eq. (4.40) we get
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Fig. 4.11 Linear combination of n atomic orbitals (or, more generally, basis functions) gives

n MOs. The coefficients c are weighting factors that determine the magnitude and the sign of the

contribution from each basis function. The functions contributing to the MO change sign at a node

(actually a nodal plane) and the energy of the MOs increases with the number of nodes
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E ¼

Z
c1ϕ1 þ c2ϕ2ð ÞĤ c1ϕ1 þ c2ϕ2ð ÞdvZ

c1ϕ1 þ c2ϕ2ð Þ2dv
ð4:42Þ

If we multiply out the terms in Eq. (4.42) we get

E ¼ c21H11 þ 2c1c2H12 þ c22H22

c21S11 þ 2c1c2S12 þ c22S22
ð4:43Þ

where Z
ϕ1Ĥ ϕ1dv ¼ H11Z
ϕ1Ĥ ϕ2dv ¼ H12 ¼

Z
ϕ2Ĥ ϕ1dv ¼ H21Z

ϕ2Ĥ ϕ2dv ¼ H22Z
ϕ2

1
dv ¼ S11Z

ϕ1ϕ2dv ¼ S12 ¼
Z

ϕ2ϕ1dv ¼ S21Z
ϕ2
2dv ¼ S22

ð4:44Þ

Note that in Eqs. ( 4.43) and (4.44) the Hij are not operators hence are not given

hats; they are integrals involving Ĥ and basis functions ϕ.
For any particular molecular geometry (i.e. nuclear configuration: Chap. 2, Sect.

2.3, the Born-Oppenheimer approximation) the energy of the ground electronic

state is the minimum energy possible for that particular nuclear arrangement and

the collection of electrons that goes with it. Our objective now is to minimize the

energy with respect to the basis set coefficients. We want to find the c’s
corresponding to the minimum on an energy vs. c’s potential energy surface. To

do this we follow a standard calculus procedure: set ∂E=∂c1 equal to zero, explore

the consequences, then repeat for ∂E=∂c2. In theory, setting the first derivatives

equal to zero guarantees only that we will find in “MO space” (an abstract space

defined by an energy axis and two or more coefficient axes) a stationary point

(cf. Chap. 2, Sect. 2.2), but examining the second derivatives shows that the

procedure gives an energy minimum if all or most of the electrons are in bonding

MOs, which is the case for most real molecules [36]. Write Eq. ( 4.43) as

E c21S11 þ 2c1c2S12 þ c22S22
� � ¼ c21H11 þ 2c1c2H12 þ c22H22 ð4:45Þ

and differentiate with respect to c1:

∂E
∂c

� �
c21S11 þ 2c1c2S12 þ c22S22
� �þ E 2c1S11 þ 2c2S12ð Þ ¼ 2c1H11 þ 2c2H12
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Set ∂E=∂c1 ¼ 0

E 2c1S11 þ 2c2S12ð Þ ¼ 2c1H11 þ 2c2H12

This can be written

H11 � ES11ð Þc1 þ H12 � ES12ð Þc2 ¼ 0 ð4:46Þ

The analogous procedure, beginning with Eq. ( 4.45) and differentiating with

respect to c2 leads to

H12 � ES12ð Þc1 þ H22 � ES22ð Þc2 ¼ 0 ð4:47Þ

Equation ( 4.47) can be written as Eq. ( 4.48):

H21 � ES21ð Þc1 þ H22 � ES22ð Þc2 ¼ 0 ð4:48Þ

since as shown in Eq. (4.44) H12 ¼ H21 and S12 ¼ S21, and the form used in

Eq. (4.48) is preferable because it makes it easy to remember the pattern for the

two-basis function system examined here and for the generalization (see below) to

n basis functions. Equations ( 4.46) and ( 4.48) form a system of simultaneous linear

equations:

H11 � ES11ð Þc1 þ H12 � ES12ð Þc2 ¼ 0

H21 � ES21ð Þc1 þ H22 � ES22ð Þc2 ¼ 0
ð4:49Þ

The pattern is that the subscripts correspond to the row and column in which they

lie; this is literally true for the matrices and determinants we will consider later, but

even for the system of Eq. (4.49) we note that in the first equation (“row 1”), the

coefficient of c1 has the subscripts 11 (row 1, column 1) and the coefficient of c2 has
the subscripts 12 (row 1, column 2), while in the second equation (“row 2”) the

coefficient of c1 has the subscripts 21 (row 2, column 1) and the coefficient of c2 has
the subscripts 22 (row 2, column 2).

The system of Eq. (4.49) are called secular equations, because of a supposed

resemblance to certain equations in astronomy that treat the long-term motion of the

planets; from the Latin saeculum, a long period of time (not to be confused with

secular meaning worldly as opposed to religious, which is from the Latin secularis,
worldly, temporal). From the secular equations we can find the basis function

coefficients c1 and c2, and thus the MOs ψ , since the c’s and the basis functions ϕ
make up the MOs (Eq. (4.41)). The simplest, most elegant and most powerful way

to get the coefficients and energies of the MOs from the secular equations is to use

matrix algebra (Sect. 4.3.3). The following exposition may seem a little involved,

but it must be emphasized that in practice the matrix method is implemented

automatically on a computer, to which it is highly suited.
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The secular Eq. (4.49) are equivalent to the single matrix equation

H11 � ES11 H12 � ES12
H21 � ES21 H22 � ES22

� �
c1
c2

� �
¼ 0

0

� �
ð4:50Þ

Since theH-ESmatrix is anHmatrix minus an ESmatrix, and since the ESmatrix is

the product of an S matrix and the scalar E, Eq. (4.50) can be written:

H11 H12

H21 H22

� �
� S11 S12

S21 S22

� �
E

� 	
c1
c2

� �
¼ 0

0

� �
ð4:51Þ

which can be more concisely rendered as

H� SE½ �c ¼ 0 ð4:52Þ

and Eq. (4.52) can be written

Hc ¼ SEc ð4:53Þ

H and S are square matrices and c and 0 are column matrices (Eq. (4.51)), and

E is a scalar (an ordinary number). We have been developing these equations for a

system of two basis functions, so there should be two MOs, each with its own

energy and its own pair of c’s (Fig. 4.11). We need two energy values and four c’s:
we want to be able to calculate c11 and c12 of ψ1 (MO1, energy level 1) and c12 and
c22 of ψ2 (MO2, energy level 2); in keeping with common practice the energies of

the MOs are designated ε1 and ε2. Equation (4.53) can be extended (our simple

derivation shortchanges us here) [31] to encompass the four c’s and two ε’s; the
result we want is

HC ¼ SCε ð*4:54Þ

The much more elaborate and rigorous derivation in Chap. 5 leads naturally to this.

We now have only square matrices; in Eq. (4.53) c was a column matrix and E was

not a matrix, but rather a scalar–an ordinary number. The four matrices are:

H ¼ H11 H12

H21 H22

� �

C ¼ c11 c12
c21 c22

� �

S ¼ S11 S12
S21 S22

� �

ε ¼ ε1 0

0 ε2

� �
ð*4:55Þ
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The H matrix is an energy-elements matrix, the Fock27 matrix, whose elements are

integrals Hij (Eq. (4.44)). Fock actually developed an elaborate mathematically

explicit form of the matrix elements for ab initio calculations; we will meet “real”

Fock matrices in Chap. 5. For now, we just note that in the simple (and extended)

H€uckel methods as an ad hoc prescription, at most two electrons, paired, are

allowed in each MO. Each Hij represents some kind of energy term, since Ĥ is an

energy operator (Sect. 4.3.3). The meaning of the Hij’s is discussed later in this

section.

TheCmatrix is the coefficients matrix, whose elements are the weighting factors

cij that determine to what extent each basis function ϕ (roughly, each atomic orbital

on an atom) contributes to each MO ψ . Thus c11 is the coefficient of ϕ1 in ψ1, c21 the
coefficient of ϕ2 in ψ1, etc., with the first subscript indicating the basis function and

the second subscript the MO (Fig. 4.11). In each column of C the c’s belong to the

same MO.

The S matrix is the overlap matrix, whose elements are overlap integrals Sij
which are a measure of how well pairs of basis functions (roughly, atomic orbitals)

overlap. Perfect overlap, between identical functions on the same atom, corre-

sponds to Sij ¼ 1, while zero overlap, between different functions on the same

atom or well-separated functions on different atoms, corresponds to Sij ¼ 0.

The diagonal ε matrix is an energy-levels matrix, whose diagonal elements are

MO energy levels ψ i, corresponding to the MOs εi. Each εi is ideally the negative of
the energy needed to remove an electron from that orbital, i.e. the negative of the

ionization energy for that orbital. Thus it is ideally the energy of an electron attracted

to the nuclei and repelled by the other electrons, relative to the energy of that electron

and the corresponding ionized molecule, infinitely separated from one another. This

is seen by the fact that photoelectron spectra correlate well with the energies of the

occupied orbitals, in more elaborate (ab initio) calculations [26]. In simple H€uckel
calculations, however, the quantitative correlation is largely lost.

Now suppose that the basis functions ϕ had these properties (the H and

S integrals, involving ϕ, are defined in Eq. (4.44)):

S11 ¼ 1

S12 ¼ S21 ¼ 0

S22 ¼ 1

ð4:56Þ

More succinctly, suppose that

Sij ¼ δij ð4:57Þ

27 Vladimer Fock, born St. Petersburg, 1898. Ph.D. Petrograd University, 1934. Professor Lenin-

grad University, also worked at various institutes in Moscow. Worked on quantum mechanics and

relativity, e.g. the Klein-Fock equation for particles with spin in an electromagnetic field. Died

Leningrad, 1974.
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where δij is the Kronecker delta (Leopold Kronecker, German mathematician,

ca. 1860) which has the property of being 1 or 0 depending on whether i and j are
the same or different. Then the S matrix (Eq. (4.55)) would be

S ¼ 1 0

0 1

� �
ð4:58Þ

Since this is a unit matrix Eq. (4.54) would become

HC ¼ Cε ð4:59Þ

and by multiplying on the right by the inverse of C we get

H ¼ CεC-1 ð*4:60Þ

So from the definition of matrix diagonalization, diagonalization of theHmatrix will

give theC and the εmatrices, i.e. it will give the coefficients c and the MO energies ε
(Eq. (4.55)), if Sij ¼ δij (Eq. (4.57)). This is a big if, and in fact it is not true. Sij ¼ δij
would mean that the basis functions are both orthogonal and normalized,

i.e. orthonormal. Orthogonal atomic (or molecular) orbitals or functions ϕ have zero

net overlap (Fig. 4.12), corresponding to

Z
ϕiϕjdv ¼ 0. A normalized orbital or

functionϕ has the property

Z
ϕϕdv ¼ 1.We can indeed use a set of normalized basis

functions: a suitable normalization constant k applied to an unnormalized basis

function ϕ0 will ensure normalization ϕ ¼ kϕ
0� �
. However, we cannot simply choose

a set of orthogonal atom-centered basis functions, because orthogonality implies zero

C
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Fig. 4.12 We cannot simply choose a set of orthonormal basis functions, because in a typical

molecule many pairs of basis functions will not be orthogonal, i.e will not have zero overlap. In the

allyl species shown, the 2s and the 2p functions (i.e. AOs) on C1 are orthogonal (the + part of the

p orbital cancels the – part in overlap with the s orbital; in general AOs on the same atom are

orthogonal), and the 2p functions on C2 and C3 are also orthogonal, if their axes are at right angles.

However, the C1(2s)/C2(2p) and the C1(2p)/C2(2p) pairs are not orthogonal
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overlap between the two functions in question, and in a molecule the overlap between

pairs of basis functions will depend on the geometry of the molecule (Fig. 4.12).

(However, as wewill see later, the basis functions can bemanipulatedmathematically

to give combinations of the original functions which are orthonormal).

The assumption of basis function orthonormality is a drastic approximation, but

it greatly simplifies the H€uckel method, and in the present context it enables us to

reduce Eq. (4.54) to Eq. (4.59), and thus to obtain the coefficients and energy levels

by diagonalizing the Fock matrix without further ado. Later we will see that in the

absence of the orthogonality assumption the set of basis functions can be mathe-

matically transformed so that a modified Fock matrix can be diagonalized; in the

simple H€uckel method we are spared this transformation. In the matrix approach to

the H€uckel method, then, we must diagonalize the Fock matrix H; to do this we

have to assign numbers to the matrix elements Hij, so that the computer algorithm

will have something to work with. This brings us to other simplifying assumptions

of the SHM, concerning the Hij.

In the SHM the energy integralsHij are approximated as just three quantities (the

units are of energy per “amount”, e.g., kJ mol�1):

α, the coulomb integralZ
ϕiĤ ϕidv ¼ Hii ¼ α i:e basis functions on the same atom; ð*4:61aÞ

β, the bond integral or resonance integralZ
ϕiĤ ϕjdv ¼ Hij ¼

Z
ϕjĤ ϕidv ¼ Hij ¼ β ð*4:61bÞ

for basis functions on adjacent atoms,

and finally Z
ϕiĤ ϕjdv ¼ Hij ¼

Z
ϕjĤ ϕidv ¼ Hji ¼ 0 ð*4:61cÞ

for basis functions neither on the same or on adjacent atoms.

To give these approximations some physical significance, we must realize that in

quantum mechanical calculations the zero of energy is normally taken as

corresponding to infinite separation of the particles of a system. In the simplest

view, α, the coulomb integral, is the energy of the molecule relative to a zero of

energy taken as the electron and basis function (i.e. AO; in the simple H€uckel method,

ϕ is usually a carbon p AO) at infinite separation. Since the energy of the system

actually decreases as the electron falls from infinity into the orbital, α is negative

(Fig. 4.13). The negative of α, in this view, is the ionization energy (a positive

quantity) of the orbital (the ionization energy of the orbital is defined as the energy

needed to remove an electron from the orbital to an infinite distance away).

The quantity β, the bond integral or resonance integral is, in the simplest view,

the energy of an electron in the overlap region (roughly, a two-center MO) of
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adjacent p orbitals relative to a zero of energy taken as the electron and two-center

MO at infinite separation. Like α, β is a negative energy quantity. A rough, naive

estimate of the value of β would be the average of the ionization energies (a positive
quantity) of the two adjacent AOs, multiplied by some fraction to allow for the fact

that the two orbitals do not coincide but are actually separated. These views of α and
β are oversimplifications [31].

We derived the 2� 2 matrices of Eq. (4.55) starting with a two-orbital system.

These results can be generalized to n orbitals:

H ¼
H11 H12 � � � H1n

H21 H22 � � � H2n

⋮ ⋮ � � � ⋮
Hn1 Hn2 � � � Hnn

0
BB@

1
CCA ð4:62Þ

The H elements of Eq. (4.62) become α, β, or 0 according to the rules of Eq. (4.61).
This will be clear from the examples in Fig. 4.14.

The computer algorithms for matrix diagonalization use some version of the

Jacobi rotation method [37], which proceeds by successive numerical approxima-

tions (mathematics textbooks describe a diagonalization method based on

expanding the determinant corresponding to the matrix; this is not used in compu-

tational chemistry). Therefore, to diagonalize our Fock matrices we need numbers

in place of α and β. In methods more advanced than the SHM, like the extended

C

C C
= Hii < 0 kJ mol−1

= Hij < 0 kJ mol−1

0

Energy

e−

electron falls from infinite
distance into a p AO on C electron falls from infinite

distance into a MO formed
by overlap of two p AOs on
adjacent carbons

a

b

Fig. 4.13 The coulomb integral α is most simply (but not too accurately) viewed as the energy of

an electron in a carbon 2p orbital, relative to its energy an infinite distance away. The bond integral
(resonance integral) β is most simply (but not too accurately) viewed as the energy of an electron in

an MO formed by adjacent 2p orbitals, relative to its energy an infinite distance away
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H€uckel method (EHM), other semiempirical methods, and ab initio methods, theHij

integrals are calculated to give numerical (in energy units) values. In the SHM we

simply use energy values in |β| units relative to α (recall that β is a negative

quantity: Fig. 4.13). The matrix of Fig. 4.14a then becomes

H ¼ α β
β α

� �
¼ 0 �1

�1 0

� �
ð4:63Þ

An electron in an MO represented by a 1,2-type interaction is lower in energy than

one in a p orbital (1,1-type interaction) by one |β| energy unit. Similarly, the

H matrix of Fig. 4.14b becomes

H ¼
0 �1 0

�1 0 �1

0 �1 0

0
@

1
A ð4:64Þ

and the H matrix of Fig. 4.14c becomes

C C

H

H

H

H

1 2

*
* = + or . or –

1

2

3

1

23

4

a

b

c

a

a

a
a

a

a

a

a

abb
b b

bb

b b

b

bb

b

b

b

0

0

0

0

0

0

Fig. 4.14 Some conjugated molecules, their p orbital arrays, simplified representations of

the molecules, and their simple H€uckel Fock matrices. Same-atom interactions are α
adjacent-atom interactions are β, and all other interactions are 0. To diagonalize the matrices,

we use α ¼ 0 and β ¼ �1
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H ¼
0 �1 0 �1

�1 0 �1 0

0 �1 0 �1

�1 0 �1 0

0
BB@

1
CCA ð4:65Þ

TheHmatrices can be written down simply by setting all i,i-type interactions equal
to 0, and all i,j-type interactions equal to �1 where i and j refer to atoms that are

bonded together, and equal to 0 when i and j refer to atoms that are not bonded

together.

Diagonalization of the two-basis-function matrix of Eq. (4.63) gives

H¼ 0 �1

�1 0

� �
¼ 0:707 0:707

0:707 �0:707

� � �1 0

0 1

� �
0:707 0:707
0:707 �0:707

� �
C ε C�1

ð4:66Þ

Comparing Eq. (4.66) with Eq. (4.60), we see that we have obtained the matrices we

want: the coefficients matrix C and the MO energy levels matrix ε. The columns of

C are eigenvectors, and the diagonal elements of ε are eigenvalues; cf. Eq. (4.38)

and the associated discussion of eigenfunctions and eigenvalues. The result of

Eq. (4.66) is readily checked by actually multiplying the matrices (multiplication

here is aided by knowing that an analytical rather than numerical diagonalization

shows that�0:707are approximations to1=√2). Note thatCC�1 ¼ 1, and thatC�1 is

the transpose of C. The first eigenvector of C, the left-hand column, corresponds to

the first eigenvalue of ε, the top left element; the second eigenvector corresponds to

the second eigenvalue; in Eqs. (4.67) the “equivalent to hat” symbol means

“corresponds to”. The individual eigenvectors, v1 and v2, are column matrices:

0:707
0:707

� �
�̂ � 1 and

0:707
�0:707

� �
�̂ 1

v1 v2

ð4:67Þ

Figure 4.15 shows a common way of depicting the results for this two-orbital

calculation. Since the coefficients are weighting factors for the contributions of the

basis functions to the MOs (Fig. 4.11 and associated discussion), the c’s of

eigenvector v1 combine with the basis functions to give MO1 (ψ1) and the c’s of
eigenvector v2 combine with these same basis functions to give MO2 (ψ2). MOs

below α are bonding and MOs above α are antibonding. The εmatrix translates into

an energy level diagram with ψ1 of energy αþ β and ψ2 of energy α� β, i.e. the
MOs lie one |β| unit below and one |β| above the nonbonding α level. Since β, like α,
is negative, the αþ β and α� β levels are of lower and higher energy, respectively,
than the nonbonding α level.
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Diagonalization of the three-basis function matrix of Eq. (4.64) gives

0 �1 0

�1 0 �1

0 �1 0

0
BB@

1
CCA¼

0:500 0:707 0:500

0:707 0 �0:707

0:500 �0:707 0:500

0
BB@

1
CCA

�1:414 0 0

0 0 0

0 0 1:414

0
BB@

1
CCA

0:500 0:707 0:500

0:707 0 �0:707

0:500 �0:707 0:500

0
BB@

1
CCA

v1 v2 v3 ε1, 0, 0

0, ε2, 0

0, 0, ε3

C ε C�1

ð4:68Þ

The energy levels and MOs corresponding to these results are shown in Fig. 4.16.

C C

+

–

+

–

+

– +

–

C C

nonbonding level

bonding MO

antibonding MO

energy

e = 1

e = –1

y 2 = 0.707   1 – 0.707   2

a − b

a + b

a 

f f

y 1 = 0.707   1 + 0.707   2f f

Fig. 4.15 The π molecular orbitals and π energy levels for a two-p-orbital system in the simple

H€uckel method. The MOs are composed of the basis functions (two p AOs) and the eigenvectors,

while the energies of the MOs follow from the eigenvalues (Eq. (4.66)). The paired arrows

represent a pair of electrons of opposite spin (in the electronic ground state of the neutral ethene

molecule ψ1 is occupied and ψ2 is empty)
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Diagonalization of the four-basis-function matrix of Eq. (4.65) gives

0 �1 0 �1

�1 0 �1 0

0 �1 0 �1

�1 0 �1 0

0
BBB@

1
CCCA¼

0:500 0:500 0:500 0:500

0:500 �0:500 0:500 �0:500

0:500 �0:500 �0:500 0:500

0:500 0:500 �0:500 �0:500

0
BBB@

1
CCCA

�2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

0
BBB@

1
CCCA

0:500 0:500 0:500 0:500

0:500 �0:500 �0:500 0:500

0:500 0:500 �0:500 �0:500

0:500 �0:500 0:500 �0:500

0
BBB@

1
CCCA

v1 v2 v3 v4

ε1 0 0 0

0 ε2 0 0

0 0 ε3 0

0 0 0 ε4
C ε C�1

ð4:69Þ

+
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+

–

+

–
C

C
C

+

–
+

–
+

–
C

C
C

+

– +

–

C
C

C

energy

e = 1.414    antibonding MO

e = 0    nonbonding MO

a− b

a +b

a

y 3 = 0.500  1 – 0.707 2 + 500 3

y 2 = 0.700  1 + 0.000 2 – 0.700 3

f

f f f

e = –1.414    bonding MO

y 1 = 0.500  1 + 0.707 2 + 0.500 3f f f

f f

Fig. 4.16 The π molecular orbitals and π energy levels for an acyclic three-p-orbital system in the

simple H€uckel method. The MOs are composed of the basis functions (three p AOs) and the

eigenvectors (the c’s), while the energies of the MOs follow from the eigenvalues (Eq. (4.68)). In

the drawings of the MOs, the relative sizes of the AOs in each MO suggest the relative contribution

of each AO to that MO. This diagram is for the propenyl radical. The paired arrows represent a
pair of electrons of opposite spin, in the fully-occupied lowest MO, ψ1, and the single arrow

represents an unpaired electron in the nonbonding MO, ψ2; the highest π MO, ψ3, is empty in the

radical
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The energy levels and MOs from these results are shown in Fig. 4.17. Note that all

these matrix diagonalizations yield orthonormal eigenvectors: vi � vi ¼ 1 and

vi � vj ¼ 0, as required the fact that the Fock matrices are symmetric (see the

discussion of matrix diagonalization in Sect. 4.3.3).

4.3.5 The Simple H€uckel Method–Applications

Applications of the SHM are discussed in great detail in several books [21]; here we

will deal only with those applications which are needed to appreciate the utility of

the method and to smooth the way for the discussion of certain topics (like bond

orders and atomic charges) in later chapters. We will discuss: the nodal properties

of the MOs; stability as indicated by energy levels and aromaticity (the 4nþ 2 rule);

resonance energies; and bond orders and atomic charges.

4.3.5.1 The Nodal Properties of the MOs

A node of an MO is a plane at which, as we proceed along the sequence of basis

functions, the sign of the wavefunction changes (Figs. 4.15, 4.16 and 4.17). For a
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–

C C
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+

–+
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+
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+
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+
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+
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–

C C

C C

energy

+

bonding MO

antibonding MO

nonbonding MOs

e = –2

e = 2

e = 0 e = 0

y 4  = 0.500 f1 – 0.500 f2 + 0.500 f3 – 0.500 f4

y 3  = 0.500 f1 + 0.500 f2 – 0.500 f3 – 0.500 f4

y 2  = 0.500 f1 – 0.500 f2 – 0.500 f3 + 0.500 f4

y 1  = 0.500 f1 + 0.500 f2 + 0.500 f3 + 0.500 f4

a − 2b

a + 2b

a − b

a + b

a

Fig. 4.17 The π molecular orbitals and π energy levels for a cyclic four-p-orbital system in the

simple H€uckel method. The MOs are composed of the basis functions (four p AOs) and the

eigenvectors, while the energies of the MOs follow from the eigenvalues (Eq. ( 4.69)). This

particular diagram is for the square cyclobutadiene molecule. The paired arrows represent a pair of

electrons of opposite spin, in the fully-occupied lowest MO, ψ1, and the single arrows represents

unpaired electrons of the same spin, one in each of the two nonbonding MOs, ψ2 and ψ3; the

highest π MO, ψ4, is empty in the neutral molecule
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given molecule, the number of nodes in the π orbitals increases with the energy. In

the two-orbital system (Fig. 4.15), ψ1 has zero nodes and ψ2 has one node. In the

three-orbital system (Fig. 4.16), ψ1, ψ2 and ψ3 have zero, one and two nodes,

respectively. In the cyclic four-orbital system (Fig. 4.17), ψ1 has zero nodes, ψ2 and

ψ3, which are degenerate (of the same energy) each have one node (one nodal

plane), and ψ4 has two nodes. We can take a node as lying midway between the

sign-change atoms. In a given molecule, the energy of the MOs increases with the

number of nodes. The nodal properties of the SHM π orbitals form the basis of one

of the simplest ways of understanding the predictions of the Woodward-Hoffmann

orbital symmetry rules [38]. For example, the thermal conrotatory and disrotatory

ring closure/opening of polyenes can be rationalized very simply in terms of the

symmetry of the highest occupied π MO of the open-chain species. That the highest

π MO should dominate the course of this kind of reaction is indicated by more

detailed considerations (including extended H€uckel calculations) [38]. Figure 4.18
shows the situation for the ring closure of a 1,3-butadiene to a cyclobutene. The

phase þor�ð Þ of the π HOMO (ψ2) at the end carbons (the atoms that bond) is

opposite on each face, because this orbital has one node in the middle of the C4

chain. You can see this by sketching the MO as the four AOs contributing to it, or

even–remembering the node–drawing just the end AOs. For the electrons in ψ2 to

bond, the end groups must rotate in the same sense (conrotation) to bring orbital

lobes of the same phase together. Remember that plus and minus phase has nothing

to do with electric charge, but is a consequence of the wave nature of electrons

(Sect. 4.2.6): two electron waves can reinforce one another and form a bonding pair

if they are “vibrating in phase”; an out-of-phase interaction represents an antibond-

ing situation. Rotation in opposite senses (disrotation) would bring opposite-phase

lobes together, an antibonding situation. The mechanism of the reverse reaction is

simply the forward mechanism in reverse, so the fact that the thermodynamically

favored process is the ring-opening of a cyclobutene simply means that the

cyclobutene shown would open to the butadiene shown on heating. Photochemical

processes can also be accommodated by the Woodward-Hoffmann orbital symme-

try rules if we realize that absorption of a photon creates an electronically excited

molecule in which the previous lowest unoccupied MO (LUMO) is now the

HOMO. For more about orbital symmetry and chemical reactions see e.g. the

book by Woodward and Hoffmann [38].

4.3.5.2 Stability as Indicated by Energy Levels, and Aromaticity

The MO energy levels obtained from an SHM calculation must be filled with

electrons according to the species under consideration. For example, the neutral

ethene molecule has two π electrons, so the diagrams of Fig. 4.19a (cf. 4.15) with

one, two and three π electrons, would refer to the cation, the neutral and the anion.

We might expect the neutral, with its bonding π orbital ψ1 full and its antibonding π
orbital ψ2 empty, to be resistant to oxidation (which would require removing

4.3 The Application of the Schr€odinger Equation to Chemistry by H€uckel 151



electronic charge from the low-energy ψ1) and to reduction (which would require

adding electronic charge to the high-energy ψ2).

The propenyl (allyl) system has two, three or four π electrons, depending on

whether we are considering the cation, radical or anion (Fig. 4.19b; cf. Fig. 4.16).

The cation might be expected to be resistant to oxidation, which requires removing

an electron from a low-lying π orbital (ψ1) and to be moderately readily reduced, as

this involves adding an electron to the nonbonding π orbital ψ2, a process that

should not be strongly favorable or unfavorable. The radical should be easier to

oxidize than the cation, for this requires removing an electron from a nonbonding,

rather than a lower-lying bonding, orbital, and the ease of reduction of the radical
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Fig. 4.18 The stereochemistry of many reactions is easily predicted from the symmetry of

molecular orbitals, usually the highest occupied π MO (π HOMO). In the ring closure of

1,3-butadiene to cyclobutene the phase (+ or �) of the HOMO (ψ2) at the end carbons (the

atoms that bond) is such that closure must occur in a conrotatory sense, giving a definite

stereochemical outcome. In the example above there is only one product. The reverse process is

actually thermodynamically favored, and the cis dimethyl cyclobutene opens to the cis, trans
diene. No attempt is made here to show quantitatively the positions of the energy levels or to size

the AOs according to their contributions to the MOs
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energy

H2C CH2 H2C CH2
H2C CH2
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nonbonding level

bonding orbitals
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−

neutralradical cation radical anion
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++ − −
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c

neutraldication dianion
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neutral radical

.
+ −

a

b

nonbonding orbitals

bonding orbitals

antibonding orbitals

cation anion

Fig. 4.19 Filling π MOs with electrons
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should be roughly comparable to that of the cation, as both can accommodate an

electron in a nonbonding orbital. The anion should be oxidized with an ease

comparable to that of the radical (removal of an electron from the nonbonding

ψ2), but be harder to reduce (addition of an electron to the antibonding ψ3).

The cyclobutadiene system (Fig. 4.19c; cf. Fig. 4.17) can be envisaged with,

amongst others, two (the dication), four (the neutral molecule) and six π (the

dianion) electrons. The predictions one might make for these the behavior of

these three species toward redox reactions are comparable to those just outlined

for the propenyl cation, radical and anion, respectively (note the occupancy of

bonding, nonbonding and antibonding orbitals). The neutral cyclobutadiene mole-

cule is, however, predicted by the SHM to have an unusual electronic arrangement

for a diene: in filling the π orbitals, from the lowest-energy one up, one puts

electrons of the same spin into the degenerate ψ2 and ψ3 in accordance with

Hund’s rule of maximum multiplicity. Thus the SHM predicts that cyclobutadiene

will be a diradical, with two unpaired electrons of like spin. Actually, more

advanced calculations [39] indicate, and experiment confirms, that cyclobutadiene

is a singlet molecule with two single and two double C/C bonds. A square

cyclobutadiene diradical with four 1.5 C/C bonds would distort to a rectangular,

closed-shell (i.e. no unpaired electrons) molecule with two single and two double

bonds (Fig. 4.20). This could have been predicted by augmenting the SHM result

with a knowledge of the phenomenon known as the Jahn-Teller effect [40]: cyclic

systems (and certain others) with an odd number of electrons in degenerate (equal-

energy) MOs will distort to remove the degeneracy.

What general pattern of molecular orbitals emerges from the SHM? Acyclic π
systems (ethene, the propenyl system, 1,3-butadiene, etc.), have MOs distributed

singly and evenly on each side of the nonbonding level; the odd-AO systems also

have one nonbonding MO (Fig. 4.21). Cyclic π systems (the cyclopropenyl system,

Jahn-Teller-
type distotion

(pseudo-Jahn-Teller
distortion)

i.e.

bond order 1.5

square

bond order 1

bond order 2

rectangular
energy

nonbonding level

Fig. 4.20 Cyclic systems with degenerate energy levels tend to undergo a geometric distortion to

remove the degeneracy, a consequence of the Jahn-Teller theorem
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cyclobutadiene, the cyclopentadienyl system, benzene, etc.) have a lowest MO and

pairs of degenerate MOs, ending with one highest or a pair of highest MOs,

depending on whether the number of MOs is even or odd. The total number of

MOs is always equal to the number of basis functions, which in the SHM is, for

organic polyenes, the number of p orbitals (Fig. 4.21). The pattern for monocyclic

systems can be predicted qualitatively simply by sketching the polygon, with one

vertex down, inside a circle (Fig. 4.22). If the circle is of radius 2 |β| the energies can

cyclic species

nonbonding level

C5 C6 C7C4C3

0

acyclic species

nonbonding level

C2 C6C5C4C3

a− 2b

a−b

a+b

a+2b

0

a− 2b

a−b

a+b

a+2b

Fig. 4.21 The MO pattern for acyclic and cyclic π systems, as predicted by the simple H€uckel
method
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even be calculated by trigonometry [41]. It follows from this pattern that cyclic

species (not necessarily neutral) with 2, 6, 10, . . . π electrons have filled ðMOs and

might be expected to show particular stability, analogously to the filled AOs of the

unreactive noble gases (Fig. 4.23). The archetype of such molecules is, of course,

benzene, and the stability is associated with the general collection of properties

called aromaticity [17]. These results, which were first perceived by H€uckel [19]
(series of papers 1931–1937), are summarized in a rule called the 4nþ 2 rule or

H€uckel’s rule, although the 4nþ 2 formulation was evidently actually due to

Doering and Knox (1954) [42]. This says that cyclic arrays of sp2 -hybridized

atoms with 4nþ 2 π electrons are characteristic of aromatic molecules; the

canonical aromatic molecule benzene with six π electrons corresponds to n ¼ 1.

For neutral molecules with formally fully conjugated perimeters this amounts to

saying that those with an odd number of C/C double bonds are aromatic and those

with an even number are antiaromatic (see resonance energies, below).
H€uckel’s rule has been abundantly verified [17] notwithstanding the fact that the

SHM, when applied without regard to considerations like the Jahn-Teller effect (see

above) incorrectly predicts 4n species like cyclobutadiene to be triplet diradicals.

The H€uckel rule also applies to ions; for example, the cyclopropenyl with system

two π electrons, the cyclopropenyl cation, corresponds to n ¼ 0, and is strongly

nonbonding level,.. ..

a − b a − b
a  − b

a − 2 b

a − b

a + 2 b
a + 2 b

a  +  b a + b

a + 2 b

a aa

a + 2 b

a – 2b
a – 1.618b

a  + 0.618 b a  + 0.618b

a – 1.618 b

Fig. 4.22 A useful mnemonic for getting the simple H€uckel method pattern for cyclic π systems.

Setting the radius of the circle at 2|β|, the energy separations from the nonbonding level can even

be calculated by trigonometry
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a + 0.618 b

a – 1.618 b
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a + 0.618 b

a + 2 b
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Fig. 4.23 H€uckel’s rule says that cyclic π systems with 4n+2 π electrons (n ¼ 0, 1, 2, . . .; 4n+2 ¼
2, 6, 10, . . .) should be especially stable, since they have all bonding levels full and all antibonding
levels empty. The special stability is usually equated with aromaticity. Shown here are the

cyclopropenyl cation, the cyclobutadiene dication, the cyclopentadienyl anion, and benzene;

formal structures are given for these species-the actual molecules do not have single and double

bonds, but rather electron delocalization makes all C/C bonds the same

156 4 Introduction to Quantum Mechanics in Computational Chemistry



aromatic. Other aromatic species are the cyclopentadienyl anion (six π electrons,

n ¼ 1 ; H€uckel predicted the enhanced acidity of cyclopentadiene) and the

cycloheptatrienyl cation. Only reasonably planar species can be expected to provide

the AO overlap need for cyclic electron delocalization and aromaticity, and care is

needed in applying the rule. Electron delocalization and aromaticity within the

SHM have fairly recently been revisited [43].

4.3.5.3 Resonance Energies

The SHM permits the calculation of a kind of stabilizing energy, or, more logically

stated, an energy that reflects the stability in some sense of molecules. This energy

is calculated by comparing the total electronic energy of the molecule in question

with that of a reference compound, as shown below for the propenyl systems,

cyclobutadiene, and the cyclobutadiene dication.

The propenyl cation, Fig. 4.19b; cf. Fig. 4.16. If we take the total π electronic

energy of a molecule to be simply the number of electrons in a π MO times the

energy level of the orbital, summed over occupied orbitals (a gross approximation,

as it ignores interelectronic repulsion), then for the propenyl cation

Eπ prop: cationð Þ ¼ 2 αþ 1:414βð Þ ¼ 2αþ 2:828β

We want to compare this energy with that of two electrons in a normal molecule

with no special features (the propenyl cation has the special feature of an empty

p orbital adjacent to the formal C/C double bond), and we can choose neutral ethene

for our reference energy (Fig. 4.15)

Eπ referenceð Þ ¼ 2 αþ βð Þ ¼ 2αþ 2β

The stabilization energy is then

E stab, cationð Þ ¼ Eπ prop: cationð Þ � Eπ referenceð Þ
¼ 2αþ 2:828βð Þ � 2αþ 2βð Þ ¼ 0:828β

Since β is negative, the π -electronic energy of the propenyl cation is calculated to

be below that of ethene: providing an extra, empty p orbital for the electron pair

causes the energy to drop. Actually, resonance energy is usually presented as a

positive quantity, e.g. “100 kJ mol�1”. We can interpret this as 100 k mol�1 below a

reference system. To avoid a negative quantity in SHM calculations like these, we

could use |β| instead of β.
The propenyl radical, Fig. 4.16. The total ð electronic energy by the SHM is

Eπ prop: radicalð Þ ¼ 2 αþ 1:414βð Þ þ α ¼ 3αþ 2:828β
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For the reference energy we can use one ethene molecule and one nonbonding

p electron (like the electron in a methyl radical):

Eπ referenceð Þ ¼ 2αþ 2βð Þ þ α ¼ 3αþ 2β

The stabilization energy is then

E stab, radicalð Þ ¼ Eπ prop: radicalð Þ � Eπ referenceð Þ
¼ 3α þ 2:828βð Þ � 3α þ 2βð Þ ¼ 0:828β

The propenyl anion. An analogous calculation (cf. Fig. 4.16, with four electrons

for the anion) gives

E stab anionð Þ ¼ Eπ prop: anionð Þ � Eπ referenceð Þ
¼ 4α þ 2:828βð Þ � 4α þ 2βð Þ ¼ 0:828β

Thus the SHM predicts that all three propenyl species will be lower in energy than if

the π electrons were localized in the formal double bond and (for the radical and

anion) in one p orbital. Because this lower energy is associated with the ability of

the electrons to spread or be delocalized over the whole π system, what we have

called E(stab) is often denoted as the delocalization energy, and designated ED.

Note that ER (or ED) is always some multiple of β (or is zero). Since electron

delocalization can be indicated by the familiar resonance symbolism the H€uckel
delocalization energy is often equated with resonance energy, and designated ER.

The accord between calculated delocalization and the ability to draw resonance

structures is not perfect, as indicated by the next example.

Cyclobutadiene (Fig. 4.17). The total π electronic energy is

Eπ cyclobutadieneð Þ ¼ 2 α þ 2βð Þ þ 2α ¼ 4α þ 4β

Using two ethene molecules as our reference system:

Eπ referenceð Þ ¼ 2α þ 2β

and so for E(stab) (¼ ED or ER) we get

E stab, cyclobutadieneð Þ ¼ Eπ cyclobutadieneð Þ � Eπ referenceð Þ
¼ 4α þ 4βð Þ � 4α þ 4βð Þ ¼ 0

Cyclobutadiene is predicted by this calculation to have no resonance energy,

although we can readily draw two “resonance structures” apparently exactly anal-

ogous to the Kekulé structures of benzene. The SHM predicts a resonance energy of

2β for benzene. Equating 2|β| with the commonly-quoted resonance energy of 150

kJ mol�1 36 kcal mol�1
� �

for benzene gives a value of 75 kJ mol�1 for |β|, but this
should be taken with more than a grain of salt, for outside a closely related series of
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molecules, β has little or no quantitative meaning [44]. However, in contrast to the

failure of simple resonance theory in predicting aromatic stabilization (and other

chemical phenomena) [45], the SHM is quite successful.

The cyclobutadiene dication (cf. Fig. 4.17). The total π electronic energy is

Eπ dicationð Þ ¼ 2 α þ 2βð Þ ¼ 2α þ 4β

Using one ethene molecule as the reference:

Eπ referenceð Þ ¼ 2α þ 2β

and so

E stab, dicationð Þ ¼ Eπ dicationð Þ � Eπ referenceð Þ
¼ 2α þ 4βð Þ � 2α þ 2βð Þ ¼ 2β

Thus the stabilization energy calculation agrees with the deduction from the

disposition of filled MOs (i.e. with the 4nþ 2 rule) that the cyclobutadiene dication

should be stabilized by electron delocalization, which is in some agreement with

experiment [46].

More sophisticated calculations indicate that cyclic 4n systems like

cyclobutadiene (where planar; cyclooctatetraene, for example, is buckled and is

simply an ordinary polyene) are actually destabilized by π electronic effects: their

resonance energy is not just zero, as predicted by the SHM, but less than zero. Such

systems are antiaromatic [17, 46]. This dramatic contrast between 4n and 4nþ 2

cyclic polyenes can actually be captured by the SHM if as the reference molecule

for calculating the stabilization energy one uses not, as above, isolated ethene

double bonds and nonbonding electrons, but instead an acyclic conceptual precur-

sor. Thus we can compare cyclobutadiene with 1,3-butadiene, and the stabilization

energy is the energy gained when the chain is closed (in reality two H atoms would

have to be removed) to make cyclobutadiene. Do not confuse this possibly only

hypothetical process with the known reaction, a quite different cyclization, the

isomerization of 1,3-butadiene to cyclobutene, discussed above in connection with

conrotatory and disrotatory precesses. For this hypothetical process:

E stab, cyclobutadieneð Þ ¼ Eπ cyclobutadieneð Þ � Eπ referenceð Þ
¼ Eπ cyclobutadieneð Þ � Eπ butadieneð Þ
¼ 4α þ 4βð Þ � 4α þ 4:472βð Þ ¼ -0:472β;

rather than zero as above.

Since β is itself a negative energy quantity the stabilization energy of

cyclobutadiene is predicted within the convention used here to be positive, or

more conventionally the resonance energy is�0:472


β

, negative. It is destabilized

(of higher energy) compared to 1,3-butadiene.
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Similarly, comparing benzene with 1,3,5-hexatriene:

E stab, benzeneð Þ ¼ Eπ benzeneð Þ � Eπ referenceð Þ
¼ Eπ benzeneð Þ � Eπ hexatrieneð Þ
¼ 6α þ 8βð Þ � 6α þ 6:988βð Þ ¼ 1:012β

Here the stabilization energy is negative, more conventionally the resonance energy

is 1:012


β

, positive. It is stabilized (of lower energy) compared to hexatriene.

Using as the reference for resonance energy an acyclic conjugated molecule seems

intuitively to be a more reasonable choice than isolated double bonds and nonbond-

ing electrons, because it focusses on the effect on the π-electron energy of

converting an acyclic π-system into one differing only by cyclic conjugation.

4.3.5.4 Bond Orders

The meaning of this term is easy to grasp in a qualitative, intuitive way: an ideal

single bond has a bond order of one, and ideal double and triple bonds have bond

orders of two and three, respectively. Invoking Lewis electron-dot structures, one

might say that the order of a bond is the number of electron pairs being shared

between the two bonded atoms. However, calculated quantum mechanical bond

orders should be more widely applicable than those from the Lewis picture, because

electron pairs are not localized between atoms in a clean pairwise manner; thus a

weak bond, like a hydrogen bond or a long single bond, might be expected to have a

bond order of less than one. However, there is no unique definition of bond order in

computational chemistry, because there seems to be no single, correct method to

assign electrons to particular atoms or pairs of atoms [47]. Various quantum

mechanical definitions of bond order can be devised [48], based on basis-set

coefficients. Intuitively, these coefficients for a pair of atoms should be relevant

to calculating a bond order, since the bigger the contribution two atoms make to the

wavefunction (whose square is a measure of the electron density; Sect. 4.2.6), the

bigger should be the electron density between them. In the SHM the order of a bond

between two atoms Ai and Bj is defined as

Bi, j ¼ 1þ
X
all occ

ncicj ð4:70Þ

Here the 1 denotes the single bond of the ubiquitous spectator σ bond framework,

which is taken as always contributing a σ bond order of unity. The other term is the

π bond order; its value is obtained by summing over all the occupied MOs the

number of electrons n in each of these MOs times the product of the c’s of the two
atoms A, B for each MO. This is illustrated in these examples:
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Ethene The occupied orbital is ψ1, which has 2 electrons), and the coefficients of

c1 and c2 for this orbital are 0.707, 0.707 (Eq. (4.67)). Thus

Bi, j ¼ 1þ
X
all occ

ncicj ¼ 1þ 2 0:707ð Þ0:707 ¼ 1þ 1:000 ¼ 2:000

which is reasonable for a double bond. The order of the σ bond is 1 and that of the π
bond is 1.

The ethene radical anion The occupied orbitals are ψ1, which has 2 electrons,

and ψ2, which has 1 electron; the coefficients of c1 and c2 for ψ1 are 0.707, 0.707

and for ψ2, 0.707, �0.707 (Eq. (4.66)). Thus

Bi, j ¼ 1þ
X
all occ

ncicj ¼ 1þ 2 0:707ð Þ0:707þ 1 0:707ð Þ �0:707ð Þ
¼ 1þ 1 � 0:500 ¼ 1:500

The π bond order of 0.500 (1.500 � σ bond order) accords with two electrons in the

bonding MO and one electron in the antibonding orbital.

4.3.5.5 Atomic Charges

In an intuitive way, the charge on an atom might be thought to be a measure of the

extent to which the atom repels or attracts a charged probe near it, and to be

measurable from the energy it takes to bring a probe charge from infinity up to

near the atom. However, this would tell us the charge at a point outside the atom, for

example a point on the van der Waals surface of the molecule, and the repulsive or

attractive forces on the probe charge would be due to the molecule as a whole.

Although atomic charges are generally considered to be experimentally

unmeasurable, chemists find the concept very useful (thus calculated charges are

used to parameterize molecular mechanics force fields–Chap. 3), and much effort

has gone into designing various definitions of atomic charge [48, 49]. Intuitively,

the charge on an atom should be related to the basis set coefficients of the atom,

since the more the atom contributes to a multicenter wavefunction (one with

contributions from basis functions on several atoms), the more it might be expected

to lose electronic charge by delocalization into the rest of the molecule (cf. the

discussion of bond order above). In the SHM the charge on an atom Ai is defined as

(cf. Eq. (4.70))

qi ¼ 1�
X
all occ

nc2i ð4:71Þ

The summation term is the charge density, and is a measure of the electronic charge

on the molecule due to the π electrons. For example, having no π electrons

(an empty p orbital, formally a cationic carbon) would mean a π electron charge

density of zero; subtracting this from unity gives a charge on the atom ofþ1. Again,
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having two π electrons in a p orbital would mean a π electron charge density of 2 on

the atom; subtracting this from unity gives a charge on the atom of �1 (a filled

p orbital, formally an anionic carbon). The application of Eq. (4.72) will be

illustrated using methylenecyclopropene (Fig. 4.24).

4.3.5.6 Methylenecyclopropene

q1 ¼ 1�
X
all occ

nc21 ¼ 1� 2 0:282ð Þ2 þ 2 0:815ð Þ2
h i

¼ 1� 1:487 ¼ �0:487

q2 ¼ 1�
X
all occ

nc22 ¼ 1� 2 0:612ð Þ2 þ 2 0:254ð Þ2
h i

¼ 1� 0:878 ¼ 0:122

q3 ¼ q4 ¼ 1�
X
all occ

nc23 ¼ 1� 2 0:523ð Þ2 þ 2 �0:368ð Þ2
h i

¼ 1� 0:817

¼ 0:182

The results of this charge calculation are summarized in Fig. 4.24; the negative

charge on the exocyclic carbon and the positive charges on the ring carbons are in

accord with the resonance picture (Fig. 4.24), which invokes a contribution from

the aromatic cyclopropenyl cation [50]. Note that the charges sum to (essentially)

zero, as they must for a neutral molecule (the hydrogens, which actually also carry

–

+

c = –0.368 in

c = 0.254 in

0.612 in

c = 0.815 in

0.282 in

0.523 in

q 1 = –0.487

q 2 = 0.122

q 3 = 0.182

+ 2.1700

a − 2b

a + 2b

a − b

a

a + b
a + 0.311 b

y 2

y 2

y 2

y 2

y 1

y 1

y 1

y 1

Fig. 4.24 The SHM charges on the atoms of a molecule can be calculated from the number of

electrons in each occupied MO and the coefficients of these MOs. The predicted dipolar nature of

methylenecyclopropene has been ascribed to a cyclopropenyl-cation-like resonance contributor
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charges, have been excluded from consideration here). A HF=6� 31G* calculation

(Chap. 5) places a total charge (carbon plus hydrogen) – albeit defined in a different

way – of�0:430 on the CH2 group andþ0:430 on the ring, and about 0.24 on each
hydrogen, compared with�0:487 andþ0:487 for the exocyclic carbon and the ring
carbons in the SHM calculation.

There are many other applications of the SHM [21c, e] including recent and

perhaps unexpected ones such as correlation with UV solvent shifts [51] and even

physicochemical properties [52].

4.3.6 Strengths and Weaknesses of the Simple H€uckel
Method

4.3.6.1 Strengths

The SHM has been extensively used to correlate, rationalize, and predict many

chemical phenomena, having been applied with surprising success to dipole

moments, esr spectra, bond lengths, redox potentials, ionization energies, UV and

IR spectra, aromaticity, acidity/basicity, and reactivity, and specialized books on

the SHM should be consulted for details [21]. The method will give probably give

some insight into any phenomenon that involves predominantly the π electron

systems of conjugated molecules. The SHM may have been underrated [53] and

reports of its death are probably exaggerated. However, it is not used very much in

research nowadays, partly because more sophisticated π electron approaches like

the PPP method (Chap. 6, Sect. 6.2.2) are available, but mainly because of the great

success of all-valence-electron semiempirical methods (Chap. 6), and the increas-

ing applicability to quite large molecules of sophisticated all-electron ab initio

(Chap. 5) and density functional (Chap. 7) methods, thanks to improvements in

algorithms and to phenomenal increases in computer speed.

4.3.6.2 Weaknesses

The defects of the SHM arise from the fact that it treats only π electrons, and these

only very approximately. The basic H€uckel method described here has been

augmented in an attempt to handle non- π substituents, e.g. alkyl groups, halogen

groups, etc., and heteroatoms instead of carbon. This has been done by treating the

substituents as π centers and embodying empirically altered values of α and β, so
that in the Fock matrix values other than �1 and 0 appear. However, the values of

these modified parameters that have been employed vary considerably [54], which

tends to diminish one’s confidence in their reliability.

The approximations in the SHM are its peremptory treatment of the overlap

integrals S (Sect. 4.3.4, discussion in connection with Eq. (4.55)), its drastic

truncation of the possible values of the Fock matrix elements into just α, β and
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0 (Sect. 4.3.4, discussion in connection with Eq. (4.61)), its complete neglect of

electron spin, and its glossing over (although not exactly ignoring) interelectronic

repulsion by incorporating this into the α and β parameters. In some more detail:

The overlap integrals S are divided into just two classes:Z
ϕiϕjdv ¼ Sij ¼ 1 or 0

depending on whether the orbitals on the atoms i and j are on the same or different

atoms. This approximation, as explained earlier, reduces the matrix form of the

secular equations to standard eigenvalue form HC ¼ Cε (Eq. (4.59)), so that the

Fock matrix can (after giving its elements numerical values) be diagonalized

without further ado (the ado is explained in Sect. 4.4.1, in connection with the

extended H€uckel method). In the older determinant, as opposed to matrix, treatment

(Sect. 4.3.7), the approximation greatly simplifies the determinants. In fact, how-

ever, the overlap integral between adjacent carbon p orbitals is ca. 0.24 [55].

Setting the Fock matrix elements equal to just α, β and 0: SettingZ
ϕiĤ ϕjdv ¼ Hij ¼ α, β or 0

depending on whether the orbitals on the atoms i and j are on the same, adjacent or

further-removed atoms is an approximation, because all the Hii terms are not the

same, and all the adjacent-atom Hjj terms are not the same either; these energies

depend on the environment of the atom in the molecule. For example, atoms in the

middle of a conjugated chain should have somewhat different Hii and Hjj parame-

ters than ones at the end of the chain. Of course, the approximation simplifies the

Fock matrix (or the determinant in the old determinant method, Sect. 4.3.7).

The neglect of electron spin and the deficient treatment of interelectronic

repulsion is obvious. In the usual derivation (Sect. 4.3.4): in Eq. (4.40) the integra-

tion is carried out with respect to only spatial coordinates (ignoring spin coordi-

nates; contrast ab initio theory, Chap. 5, Sect. 5.2), and in calculating π energies

(Sect. 4.3.5, Resonance energies subsection) we simply took the sum of the number

of electrons in each occupied MO times the energy level of the MO. However, the

energy of an MO is the energy of an electron in the MO moving in the force field of

the nuclei and all the other electrons (as pointed out in Sect. 4.3.4, in explaining the
matrices of Eq. (4.55)). If we calculate the total electronic energy by simply

summing MO energies times occupancy numbers, we are assuming, wrongly, that

the electron energies are independent of one another, i.e. that the electrons do not

interact. An energy calculated in this way is said to be a sum of one-electron

energies. The resonance energies calculated by the SHM can thus be only very

rough, unless the errors tend to cancel in the subtraction step, which probably

occurs to some extent (this is presumably why the method of Hess and Schaad

for calculating resonance energies works so well [53]). The neglect of electron

repulsion and spin in the usual derivation of the SHM is discussed in reference

[31a].
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4.3.7 The Determinant Method of Calculating the H€uckel c’s
and Energy Levels

An older method of obtaining the coefficients and energy levels from the secular

equations (Eq. (4.49)) utilizes determinants rather than matrices. The method is

much more cumbersome than the matrix diagonalization approach of Sect. 4.3.4,

but in the absence of cheap, readily-available, easy-to-use computers (matrix

diagonalization is easily handled by a personal computer) its erstwhile employment

may be forgiven; it could be done with paper, pencil and patience. It is outlined here

because traditional presentations of the SHM [21] use it.

Consider again the secular Eq. (4.49):

H11 � ES11ð Þc1 þ H12 � ES12ð Þc2 ¼ 0

H21 � ES21ð Þc1 þ H22 � ES22ð Þc2 ¼ 0

By considering the requirements for nonzero values of c1 and c2 we can find how to

calculate the c’s and the molecular orbital energies (since the coefficients are

weighting factors that determine how much each basis function contributes to the

MO, zero c’s would mean no contributions from the basis functions and hence no

MOs; that would not be much of a molecule). Consider the system of linear

equations

A11x1 þ A12x2 ¼ b1
A21x1 þ A22x2 ¼ b2

Using determinants:

x1 ¼
b1 A12

b2 A22












D

x2 ¼
A11 b1
A21 b2












D

D ¼ A11 A12

A21 A22












where D is the determinant of the system. This is Cramer’s rule– see any book on

linear algebra.

Ifb1 ¼ b2 ¼ 0 (the situation in the secular equations), then in the equations for x1
and x2 the numerator is zero, and so x1 ¼ 0=D and x2 ¼ 0=D. The only way that x1
and x2 (corresponding to our basis function coefficients) can be nonzero in this case
is that the determinant of the system be zero,i.e.

D ¼ 0
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for then x1 ¼ 0=0 and x2 ¼ 0=0, and 0/0 can have any finite value; mathematicians

call it indeterminate. This is easy to see (the argument is more persuasive than

mathematically rigorous):

Let

0

0
¼ a

then

a� 0 ¼ 0

which is true for any finite value of a.
So for the secular equations the requirement that the c’s be nonzero is that the

determinant of the system be zero:

D ¼ H11 � ES11 H12 � ES12
H21 � ES21 H22 � ES22










 ¼ 0 ð4:72Þ

Equation (4.74) can be generalized to n basis functions (cf. the matrix of

Eq. (4.62)):

H11 � ES11 H12 � ES12 . . . H1n� ES1n
H21 � ES21 H22 � ES22 . . . H2n� ES2n

⋮ ⋮ . . . ⋮
Hn1 � ESn1 Hn2 � ESn2 . . . Hnn � ESnn




















¼ 0 ð4:73Þ

If we invoke the SHM simplification of orthogonality of the S integrals (pp. 37–39),
then Sii ¼ 1 and Sij ¼ 0 and Eq. (4.75) becomes

H11 � E H12 . . . H1n

H21 H22 � E . . . H2n

⋮ ⋮ . . . ⋮
Hn1 Hn2 . . . Hnn � E




















¼ 0 ð4:74Þ

Substituting α, β and 0 for the appropriate H’s (p. 39) we get

α� E β . . . 0

β α� E . . . 0

⋮ ⋮ . . . ⋮
0 0 . . . α� E




















¼ 0 ð4:75Þ

The diagonal terms will always be α ‐E, but the placement of β and 0 will depend on
which i, j terms are adjacent and which are further-removed, which depends on the

numbering system chosen (see below). Since multiplying or dividing a determinant

by a number is equivalent to multiplying or dividing the elements of one row or
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column by that number (Sect. 4.3.3), multiplying both sides of Eq. (4.76) by 1/βn
times, i.e. by (1/β)n gives

α-Eð Þ=β 1 . . . 0

1 α-Eð Þ=β . . . 0

⋮ ⋮ . . . ⋮
0 0 . . . α-Eð Þ=β




















¼ 0 ð4:76Þ

Finally, if we define α-Eð Þ=β ¼ x, we get

x 1 . . . 0

1 x . . . 0

⋮ ⋮ . . . ⋮
0 0 . . . x




















¼ 0 ð4:77Þ

The diagonal terms are always x but the off-diagonal terms, 1 for adjacent and

0 for nonadjacent orbital pairs, depend on the numbering (which does not affect the

results: Fig. 4.25). Any specific determinant of the type in Eq. (4.77) can be

expanded into a polynomial of order n (where the determinant is of order n � n),
making Eq. (4.78) yield polynomial equation:

xn þ a1x
n�1 þ a2x

n�2 þ � � � an ¼ 0 ð4:78Þ

The polynomial can be solved for x and then the energy levels can be found from

α� Eð Þ=β ¼ x, i.e. from

E ¼ α� βx ð4:79Þ

The coefficients can then be calculated from the energy levels by substituting the

E’s into one of the secular equations, finding the ratio of the c’s, and normalizing to

get the actual c’s. An example will indicate how the determinant method can be

implemented.

Consider the propenyl system. In the secular determinant the i,i-type interactions
will be represented by x, adjacent i,j-type interactions by 1, and non-adjacent i,j-
type interactions by 0. For the determinantal equation we can write (Fig. 4.25)

x 1 0

1 x 1

0 1 x














 ¼ 0 ð4:80Þ

(compare this with the Fock matrix for the propenyl system). Solving this equation

(see Sect. 4.3.3):
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x 1 0

1 x 1

0 1 x














 ¼ x

x 1

1 x










� 1

1 1

0 x










þ 1

1 x
0 1












¼ x x2 � 1ð Þ � x� 0ð Þ þ 0 ¼ x3 � x� x ¼ x3 � 2x ¼ 0

ð4:81Þ

This cubic can be factored (but in general polynomial equations require for prac-

tical solution numerical approximation methods):

x x2 � 2
� � ¼ 0 so x ¼ 0 andx2 � 2 ¼ 0 or x ¼ �√2

From α� Eð Þ=β ¼ x, E ¼ α� xβ and

x ¼ 0 leads to E ¼ α
x ¼ þ√2 leads to E ¼ α� √2β
x ¼ �√2 leads to E ¼ αþ √2β

So we get the same energy levels as from matrix diagonalization ( √2 ¼ 1:414
� �

).

1

2
3

1

2 x    1    0

1 x    1

0    1    x
3

x    1    1

1 x    0

1    0    x

= x 3 - 2x

x 1    1

1    x    1

1    1    x

= x3 - 2x

1

2 3

= x3 - 3x + 2

Fig. 4.25 The determinants corresponding to different numbering patterns can seem to differ, but

on expansion they give the same polynomial

168 4 Introduction to Quantum Mechanics in Computational Chemistry



To find the coefficients we substitute the energy levels into the secular equations;

for the propenyl system these are, projecting from the secular equations for a

two-orbital system, Eq. (4.49):

H11 � ES11ð Þc1 þ H12 � ES12ð Þc2 þ H13 � ES13ð Þc3 ¼ 0

H21 � ES21ð Þc1 þ H22 � ES22ð Þc2 þ H23 � ES23ð Þc3 ¼ 0

H31 � ES31ð Þc1 þ H32 � ES32ð Þc2 þ H33 � ES33ð Þc3 ¼ 0

ð4:82Þ

These can be simplified (Eqs. (4.57), (4.61) to

α� Eð Þc1 þ βc2 þ 0c3 ¼ 0

βc1 þ α� Eð Þc2 þ βc3 ¼ 0

0c1 þ βc2 þ α� Eð Þc3 ¼ 0

ð4:83Þ

For the energy levelE ¼ αþ √2β (MO level 1, ψ1), substituting into the first secular

equation we get

�√2βc11 þ βc21 ¼ 0, so c21=c11 ¼ √2

(Recall the cij notation; c11 is the coefficient for atom 1 in ψ1, c21 is the coefficient

for atom 2 in ψ1, etc.). Substituting Eþ αþ √2β into the second secular equation

we get

βc11 þ βc31 ¼ 0, so c11=c31

We now have the relative values of the c’s:

c11=c11 ¼ 1, c21=c11 ¼ √2, c31=c11 ¼ 1 ð4:84Þ

To find the actual values of the c’s, we utilize the fact that the MO (we are talking at

present about MO level 1, ψ1) must be normalized:Z
ψ2
1dv ¼ 1 ð4:85Þ

Now, from the LCAO method

ψ1 ¼ c11ϕ1 þ c21ϕ2 þ c31ϕ3 ð4:86Þ

Therefore

ψ2
1 ¼ c211ϕ

2
1 þ c221ϕ

2
2 þ c231ϕ

2
3 þ 2c11c21ϕ1ϕ2 þ 2c11c31ϕ1ϕ3 þ 2c21c31ϕ2ϕ3

ð4:87Þ
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So from Eq. ( 4.87), and recalling that in the SHM we pretend that the basis

functions ϕ are orthonormal, i.e. that Sij ¼ δij, we getZ
ψ2
1dn ¼ c211 þ c221 þ c231 ¼ 1 ð4:88Þ

Using the ratios of the c’s from Eq. (4.84):

c211
c2
11

þ c221
c2
11

þ c231
c2
11

¼ 1

c2
11

i.e.

12 þ
ffiffiffi
2

p� �2
þ 12 ¼ 1

c211

and so

c11 ¼ 1

2

and

c21 ¼
ffiffiffi
2

p� �
c11 ¼ 1ffiffiffi

2
p

and

c31 ¼ c11 ¼ 1

2

By substituting into the secular Eq. (4.83) the E values for ψ2 and ψ3 we could

find the ratios of the c’s for ψ2 and ψ3 and with the aid of the orthonormalization

equation analogous to Eq. (4.89) we could get the actual values of c12, c22, c32 and
c13, c23, and c33.

Large determinants that would give higher-order polynomial equations can be

reduced to a series of smaller determinants by group theory, if the molecule has

symmetry (in addition to a symmetry plane of course). Thus the 4� 4 butadiene

determinant can be reduced to two 2� 2 determinants and the 10� 10 determinant

for naphthalene can be reduced to two 2� 2 and two 3� 3 determinants.

Although the determinant method was streamlined (see particularly [21d],

compared to matrix diagonalization it is conceptually and algorithmically clumsy,

and has been replaced by matrix diagonalization implemented in a computer

program. In fact, free online programs now allow one to do SHM calculations

without writing out either matrices or determinants, just by sketching the molecule

on a computer screen [56].
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4.4 The Extended H€uckel Method

4.4.1 Theory

In the simple H€uckel method, as in all modern molecular orbital methods, a Fock

matrix is diagonalized to give coefficients (which with the basis set give the

wavefunctions of the molecular orbitals) and energy levels (i.e. molecular orbital

energies). The SHM and the extended H€uckel method (EHM, extended H€uckel
theory, EHT) differ in how the elements of the Fock matrix are obtained and how

the overlap matrix is treated. The EHM was popularized and widely applied by

Hoffmann28 [57], although earlier work using the approach had been done by

Wolfsberg and Helmholz [58]. We now compare point by point the SHM and the

EHM.

4.4.1.1 Simple H€uckel Method

1. Basis set is limited to p orbitals. Each element of the Fock matrixH is an integral

that represents an interaction between two orbitals. The orbitals are in almost all

cases a set of p orbitals (usually carbon 2p) supplied by an sp2 framework, with

the p orbital axes parallel to one another and perpendicular to the plane of the

framework. In other words, the set of basis orbitals – the basis set – is limited

(in the great majority of cases) to pz orbitals (taking the framework plane, i.e. the

molecular plane, to be the xy plane).
2. Orbital interaction energies are limited to α, β and 0. The Fock matrix orbital

interactions are limited to α, β and 0, depending on whether the Hij interaction is,

respectively i,i, adjacent, or further-removed. The value of β does not vary

smoothly with the separation of the orbitals, although logically it should

decrease continuously to zero as the separation increases.

3. Fock matrix elements are not actually calculated. The Fock matrix elements are

not any definite physical quantities, but rather energy levels relative to α in units

of |β|, making them 0 or �1. The Fock matrix depends only on connectivity, not

on geometry (except for unusual cases where one performs a SHM calculation

on a nonplanar molecule, when an Hij element might depend on the cosine of the

atomic orbital pi/pj axes). One can try to estimate α and β, but the SHM does not

define them quantitatively.

4. Overlap integrals are limited to 1 or 0. We pretend that the overlap matrix S is a

unit matrix, by setting Sij ¼ δij. This enables us to simplify HC ¼ SCε

28 Roald Hoffmann, born Zloczow, Poland, 1937. Ph.D. Harvard, 1962, Professor, Cornell. Nobel

prize 1981(shared with Kenichi Fukui; Chap. 7, Sect. 7.3.5) for work with organic chemist Robert

B. Woodward, showing how the symmetry of molecular orbitals influences the course of chemical

reactions (theWoodward Hoffmann rules or the conservation of orbital symmetry). Main exponent

of the extended H€uckel method. He has written poetry, and several popular books on chemistry.
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(Eq. (4.54)) to the standard eigenvalue form HC ¼ Cε (Eq. (4.59)) and so

H ¼ CεC�1, which is the same as saying that the SHM Fock matrix is directly

diagonalized to give the c’s and ε ’ s.

Now compare these four points with the corresponding features of the EHM:

4.4.1.2 Extended H€uckel Method

1. All valence s and p orbitals are used in the basis set. As in the SHM each

element of the Fock matrix is an integral representing an interaction between two

orbitals; however, in the EHM the basis set is not just a set of 2pz orbitals but
rather the set of valence-shell orbitals of each atom in the molecule (the

derivation we saw of the secular equations says nothing about what kinds of

orbitals we are considering). Thus each hydrogen atom contributes a 1 s orbital
to the basis set and each carbon atom a 2 s and three 2p orbitals. Lithium and

beryllium, although they have no 2p electrons, are assigned a 2 s and three 2p
orbitals (experience shows that this works better than omitting these basis

functions) so the atoms from lithium to fluorine each contribute a 2 s and three

2p orbitals. A basis set like this, which uses the normal valence orbitals of atoms,

is called a minimal valence basis set.
2. Orbital interaction energies are calculated and vary smoothly with geometry.

The EHM Fock matrix orbital interactions Hij are calculated in a way that

depends on the distance apart of the orbitals, so their values vary smoothly

with orbital separation with the help of the overlap integrals, see below.

3. Fock matrix elements are actually calculated. The EHM Fock matrix elements

are calculated from well-defined physical quantities (ionization energies) with

the aid of well-defined mathematical functions (overlap integrals), and so are

closely related to ionization energies and have definite quantitative values.

4. Overlap integrals are actually calculated. We do not in effect ignore the overlap

matrix, i.e. we do not set it equal to a unit matrix. Instead, the elements of the

overlap matrix are calculated, with each Sij integral depending on the distance

apart of the atoms i and j, which has the important consequence that the S values
depend on the geometry of the molecule. Because the S values play a role in the

calculation of the Fock matrix integrals (see below) these vary smoothly with

geometry and the energy levels depend on molecular geometry. Since S is not

taken as a unit matrix, we cannot go directly from HC ¼ SCε to HC ¼ Cε and
thus we cannot simply diagonalize the EHM Fock to get the c’s and ε’s.

These four points are elaborated on below.

1) Use of a minimal valence basis set in the EHM is more realistic than treating

just the 2pz orbitals, since all the valence electrons in a molecule are likely to be

involved in determining its properties. Further, the SHM is largely limited to π
systems, i.e. to alkenes and aromatics and derivatives of these with attached π electron
groups, but the EHM, in contrast, can in principle be applied to any molecule. The use
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of a minimal valence basis set makes the Fock matrix much larger than in the

“corresponding” SHM calculation. For example in an SHM calculation on ethene,

only two orbitals are used, the 2pz on C1 and the 2pz on C2, and the SHM Fock matrix

is (using the compact Dirac notation ϕi Ĥ


 

ϕj

� � ¼ Z ϕiĤ ϕjdv
�

H SHMð Þ ¼ C1 2pzð Þ Ĥ

 

C1 2pzð Þ� �
C1 2pzð Þ Ĥ

 

C2 2pzð Þ� �

C2 2pzð Þ Ĥ

 

C1 2pzð Þ� �
C2 2pzð Þ Ĥ

 

C2 2pzð Þ� �

 !

¼ 0 �1

�1 0

� �
2� 2 matrix

ð4:89Þ

To write down the EHM Fock matrix, let us label the valence orbitals like this:

H1 1sð Þ ϕ1 C1 2sð Þ ϕ5 C1 2pxð Þ ϕ7 C1 2py
� �

ϕ9 C1 2pzð Þ ϕ11

H2 1sð Þ ϕ2 C2 2sð Þ ϕ6 C2 2pxð Þ ϕ8 C2 2py
� �

ϕ10 C2 2pzð Þ ϕ12

H3 1sð Þ ϕ3

H4 1sð Þ ϕ4

The size of the Fockmatrix 12 � 12ð Þ is equal to the number of basis functions (12):

H EHMð Þ ¼
ϕ1 Ĥ


 

ϕ1

� �
ϕ1 Ĥ


 

ϕ2

� �
. . . ϕ1 Ĥ



 

ϕ12

� �
ϕ2 Ĥ


 

ϕ1

� �
ϕ2 Ĥ


 

ϕ2

� �
. . . ϕ2 Ĥ



 

ϕ12

� �
⋮ ⋮ . . . ⋮

ϕ12 Ĥ


 

ϕ1

� �
ϕ12 Ĥ


 

ϕ2

� �
. . . ϕ12 Ĥ



 

ϕ12

� �
0
BB@

1
CCA

12� 12 matrix

ð4:90Þ

The SHM and EHM basis sets are shown in Fig. 4.26.

C C

H

H H

H

C CC CCC

The simple Huckel method basis set for ethene.
Each carbon has one 2p basis function.
C2H4 has two basis functions

.. ..
The extended Huckel method basis set for ethene.

..

Each carbon has one 2s and three 2p  basis functions.
Each H has one 1s basis function.
C2H4 has 12 basis functions.

H

H H

H

Fig. 4.26 The simple H€uckel method normally uses only one basis function per “heavy atom”:

only one 2p orbital on each carbon, oxygen, nitrogen, etc., ignoring the hydrogens. The extended

H€uckel method uses for each carbon, oxygen, nitrogen, etc., a 2s and three 2p orbitals, and for each
hydrogen a 1s orbital. This is called a minimal valence basis set
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2) The EHM Fock matrix interactions i,j do not have just two values (α or β) as in
the SHM, but are functions of the orbitals (the basis functions) ϕi and ϕj and of the

separation of these orbitals, as explained in (3) below.

3) The EHM matrix elements hϕi|Ĥ|ϕji and hϕi|Ĥ|ϕji are calculated (rather than

set equal to 0 or �1), although the calculation is a simple one using overlap

integrals and experimental ionization energies; in ab initio calculations (Chap. 5)

and more advanced semiempirical calculations (Chap. 6), the actual mathematical

form of the operator Ĥ is taken into account. Here the i,i-type interactions are taken
as being proportional to the negative of the ionization energy [59] of the orbital ϕi

and the i,j-type interactions as being proportional to the overlap integral between ϕi

and ϕj and the negative of the average of the ionization energies Ii and Ij of ϕi and ϕj

(the negative of the orbital ionization energy is the energy of an electron in the

orbital, compared to the zero of energy of the electron and the ionized species

infinitely separated and at rest):

ϕi Ĥ


 

ϕi

� � ¼ �Ii ð4:91Þ

ϕi Ĥ


 

ϕj

� � ¼ �1

2
KSij IiþIj

� � ð4:92Þ

A proportionality constant K of about 2 seems to work best.

For H(1 s), C(2 s) and C(2p), experiment shows

I H 1sð Þð Þ ¼ 13:6 eV, I C 2sð Þð Þ ¼ 20:8 eV, I C 2sð Þð Þ ¼ 11:3 eV ð4:93Þ

The overlap integrals are calculated using Slater-type (Chap. 5, Sect. 5.3.2) func-

tions for the basis functions, e.g.

ϕ 1sð Þ ¼ ζ31
π

� �1
2

exp �ζ1 r� R1sj jð Þ ð4:94Þ

ϕ 2sð Þ ¼ ζ52
96π

� �1
2

r� R2sj jexp �ζ2 r� R2sj j
2

� �
ð4:95Þ

where the parameters ζ depend on the particular atom (H, C, etc.) and orbital (1 s,
2 s, etc). The variable r�R is the distance of the electron from the atomic nucleus

on which the function is centered; r is the vector from the origin of the Cartesian

coordinate system to the electron, a variable, and R is the vector from the origin to

the nucleus on which the basis function is centered, a structural parameter:

r� RAj j ¼ x� xAð Þ2 þ y� yAð Þ2 þ z� zAð Þ2
h i1

2 ð4:96Þ

where (xA, yA, zA) are the coordinates of the nucleus bearing the Slater function.

The Slater function is thus a function of three variables x,y,z and depends
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parametrically on the location (xA, yA, zA) of the nucleus A on which it is centered.

The Fock matrix elements are thus calculated with the aid of overlap integrals

whose values depend the location of the basis functions; this means that the

molecular orbitals and their energies will depend on the actual geometry used in

the input, whereas in a simple H€uckel calculation, the MOs and their energies

depend only on the connectivity of the molecule).

4) The overlap matrix S in the EHM is not simply treated as a unit matrix, in

effect ignoring it, for the purpose of diagonalizing the Fock matrix. Rather, the

overlap integrals are actually evaluated, not only to help calculate the Fock ele-

ments, but also to reduce the equation HC¼SCε to the standard eigenvalue form

HC¼Cε. This is done in the following way. Suppose the original set of basis

functions {ϕi} could be transformed by some process into an orthonormal set

{ϕ
0
i} (since atom-centered basis functions can’t be orthogonal, as explained in

Sect. 4.3.4, the new set must be delocalized over several centers and is a linear

combination of the atom-centered set) such that with a new set of coefficients c0 we
have LCAO molecular orbitals with the same energy levels as before, i.e.

S
0
ij ¼

Z
ϕ

0
iϕ

0
jdv ¼ δij ð4:97Þ

where δij is the Kronecker delta (Eq. 4.57). The result of the process referred to

above is

HC ¼ SCε
Process

▶ H
0
C

0 ¼ S
0
C

0
ε ð4:98Þ

(ε, not ε0, as the energy will not depend on algebraic manipulation of a fundamen-

tally fixed, given set of basis functions) where the matrices H, C, S and ε were

defined in Sect. 4.3.4 (Eq. (4.55)) andH0 and S0 are analogous toH and S with ϕ0 in
place of ϕ ;C0 is the matrix of coefficients c0 that satisfies the equation with the

energy levels ε (the elements of ε) being the same as in the original equation

HC¼SCε. Since from Eq. (4.97) S
0 ¼ 1, the unit matrix (Sect. 4.3.3), Eq. (4.98)

simplifies to

HC ¼ SCε
Process

▶H
0
C

0 ¼ C
0
ε ð*4:99Þ

The Process that effects the transformation is called orthogonalization, since the

result is to create an orthogonal basis set. The favored orthogonalization procedure

in computational chemistry, which I will now illustrate, is L€owdin orthogonalization
(after the quantum chemist Per-Olov L€owdin; also called symmetric

othogonalization) [60].

Define a matrix C0 such that
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C
0 ¼ S1=2C i:e: C ¼ S�1=2C

0 ð4:100Þ

(By multiplying on the left by S�1=2 and noting that S�1=2S1=2 ¼ S0 ¼ 1 ).

Substituting (4.100) into HC ¼ SCε and multiplying on the left by S�1=2 we get

S�1=2HS�1=2C
0 ¼ S�1=2SS�1=2C

0
ε ð4:101Þ

Let

S�1=2HS�1=2 ¼ H
0 ð4:102Þ

and note that S�1=2SS�1=2 ¼ S1=2S�1=2 ¼ 1 Then we have from (4.101) and

(4.102)

H
0
C

0 ¼ 1C
0
ε

i.e

H
0
C

0 ¼ C
0
ε ð4:103Þ

Thus the orthogonalizing Process of (4.99) (or rather one possible orthogonaliza-

tion process, L€owdin orthogonalization) is the use of an orthogonalizing matrix

S�1=2 to transformH by pre- and postmultiplication (Eq. 4.102) intoH0.H0 satisfies
the standard eigenvalue equation (Eq. 4.103), so

H
0 ¼ C

0
εC

0�1 ð4:104Þ

In other words, using S�1=2 we transform the original Fock matrix H, which is not

directly diagonalizable to eigenvector and eigenvalue matrices C and ε, into a

related matrix H0 which is diagonalizable to eigenvector and eigenvalue matrices

C0 and ε. The matrix C0 is then transformed to the desired C by multiplying by

S�1=2 (Eq. 4.100). So without using the drastic S ¼ 1 approximation we can use

matrix diagonalization to get the coefficients and energy levels from the Fock

matrix.

The orthogonalizing matrix S�1=2 is calculated from S: the integrals S are

calculated and assembled into S, which is then diagonalized:

S ¼ PDP�1 ð4:105Þ

Now it can be shown that any function of a matrix A can be obtained by taking the

same function of its corresponding diagonal alter ego and pre- and postmultiplying

by the diagonalizing matrix P and its inverse P�1:
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f Að Þ ¼ Pf Dð ÞP�1 ð4:106Þ

and diagonal matrices have the nice property that f(D) is the diagonal matrix whose

diagonal element i, j ¼ f (element i,j of D). So the inverse square root of D is the

matrix whose elements are the inverse square roots of the corresponding elements

of D. Therefore

S�1=2 ¼ PD�1=2P�1 ð4:107Þ

and to findD�1=2 we (or rather the computer) simply take the inverse square root of

the diagonal (i.e. the nonzero) elements of D. To summarize: S is diagonalized to

give P, P�1 and D, D is used to calculate D�1=2, then the orthogonalizing matrix

S�1=2 is calculated (Eq. (4.107)) fromP, D�1=2 andP�1. The orthogonalizing matrix

is then used to convert H to H0, which can be diagonalized to give the eigenvalues

and the eigenvectors (Sect. 4.4.2). All this will be clearer after you read the review

of the procedure and, especially, the example worked out for the protonated helium

molecule.

4.4.1.3 Review of the EHM Procedure

The EHM procedure for calculating eigenvectors and eigenvalues, i.e. coefficients

(or in effect molecular orbitals – the c’s along with the basis functions comprise the

MOs) and energy levels, bears several important resemblances to that used in more

advanced methods (Chaps. 5 and 6) and so is worth reviewing.

1. An input structure (a molecular geometry) must be specified and submitted to

calculation. The geometry can be specified in Cartesian coordinates (probably

the usual way nowadays) or as bond lengths, angles and dihedrals (internal

coordinates), depending on the program. In practice a virtual molecule would

likely be created with an interactive model-building program (usually by

clicking together groups and atoms) which would then supply the EHM program

with the coordinates.

2. The EHM program calculates the overlap integrals S and assembles the overlap

matrix S.

3. The program calculates the Fock matrix elements Hij ¼ ϕi Ĥ


 

ϕj

��
(Eqs. (4.91,

4.92)) using stored values of ionization energies I, the overlap integrals S, and
the proportionality constant K of that particular program. The matrix elements

are assembled into the Fock matrix H.

4. The overlap matrix is diagonalized to give P, D and P�1 (Eq. (4.105)) andD�1=2

is then calculated by finding the inverse square roots of the diagonal elements of

D. The orthogonalizing matrix S�1=2 is then calculated from P, D�1=2 and P�1

(Eq. 4.107).
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5. The Fock matrixH in the atom-centered nonorthogonal basis {ϕ} is transformed

into the matrix H0 in the delocalized, linear combination orthogonal basis {ϕ0}
by pre- and postmultiplyingH by the orthogonalizing matrixS�1=2 (Eq. (4.102)).

6. H0 is diagonalized to give C0 ε and C
0�1

(Eq. (4.104)). We now have the energy

levels ε (the diagonal elements of the ε matrix).

7. C0 must be transformed to give the coefficients c of the original, atom-centered

set of basis functions {ϕ} in the MOs (i.e. to convert the elements c0 to c). To get
the c’s in the MOs ψ j ¼ c1jϕ1 þ c2jϕ2 þ � � �, we transform C0 to C by

premultiplying by S�1=2 (Eq. (4.100)).

4.4.1.4 Molecular Energy and Geometry Optimization in the Extended

H€uckel Method

Steps (1)–(7) take an input geometry and calculate its energy levels (the elements of

ε) and their MOs or wavefunctions (the ψ 0s; from the c’s, the elements of C, and the

basis functions ϕ). Now, clearly any method in which the energy of a molecule

depends on its geometry can in principle be used to find minima and transition states

(see Chap. 2). This brings us to the matter of how the EHM calculates the energy of

a molecule. The energy of a molecule, that is, the energy of a particular nuclear

configuration on the potential energy surface, is the sum of the electronic energies

and the internuclear repulsions Eelectronic þ VNNð Þ. Actually, this is the energy on a
Born-Oppenheimer surface, ignoring zero point energy (Chap. 2).

In comparing the energies of isomers, or of two geometries of the same mole-

cule, one should, strictly, compare Etotal ¼ Eelectronic þ VNN. The electronic

energy is the sum of kinetic energy and potential energy (electron-electron repul-

sion and electron-nucleus attraction) terms. The internuclear repulsion, due to all

pairs of interacting nuclei and trivial to calculate, is usually represented by V, a
symbol for potential energy. The EHM ignores VNN. Furthermore, the method

calculates electronic energy simply as the sum of one-electron energies

(Sect. 4.3.5 Weaknesses), ignoring electron-electron repulsion. Hoffmann’s tenta-
tive justification [57a] for ignoring internuclear repulsion and using a simple sum of

one-electron energies was that when the relative energies of isomers are calculated,

by subtracting two values of Etotal, the electron repulsion and nuclear repulsion

terms approximately cancel, i.e. that changes in energy that accompany changes in

geometry are due mainly to alterations of the MO energy levels. Actually, it seems

that the (quite limited) success of the EHM in predicting molecular geometry is due

to the fact that Etotal is approximately proportional to the sum of the occupied MO

energies; thus although the EHM energy difference is not equal to the difference in

total energies, it is (or tends to be) approximately proportional to this difference

[61]. In any case, the real strength of the EHM lies in the ability of this fast and

widely applicable method to assist chemical intuition, if provided with a reasonable
molecular geometry.
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4.4.2 An Illustration of the EHM: The Protonated Helium
Molecule

Protonation of a helium atom gives He-Hþ, the helium hydride cation, the simplest

heteronuclear molecule [62]. Conceptually, of course, this can also be formed by the

union of a helium dication and a hydride ion, or a helium cation and a hydrogen atom:

He: þ Hþ ! He:Hþ

or He2þ þ :H� ! He:Hþ

or Heþ	 þ 	H ! He:Hþ

Its lower symmetry makes this molecule better than H2 for illustrating molecular

quantum mechanical calculations (most molecules have little or no symmetry).

Following the prescription in points (1)–(7):

(1) Input structure

We choose a plausible bond length: 0.800 Å (the H–H bond length is 0.742 Å
and the H-X bond length is ca. 1.0 Å, where X is a “first-row” element (in quantum

chemistry, first-row means Li to F, not H and He). The Cartesian coordinates could

be written H1 (0,0,0), He2 (0,0, 0.800).

(2) Overlap integrals and overlap matrix
The minimal valence basis set here consists of the hydrogen 1 s orbital (ϕ1) and

the helium 1 s orbital (ϕ2). The needed integrals are S11 ¼ S22 and S12 ¼ S21,

where Sij ¼
Z

ϕiϕjdv. The Slater functions for ϕ1 and ϕ2 are [63]

ϕ1 H1sð Þ ¼ ζ3H
π

� �1=2

e�ζH r�RHj j ð4:108Þ

and

ϕ2 He1sð Þ ¼ ζ3He
π

� �1=2

e�ζH r�RHej j ð4:109Þ

Reasonable values [62] are ζH ¼ 1:24 Bohr�1 and ζHe ¼ 2:0925 Bohr�1, if r is in

atomic units, a.u. (see Chap. 5, Sect. 5.2.2); 1 a.u. ¼ 0:5292 Å. The overlap

integrals are

S11 ¼ S22 ¼ 1 (as must be the case if ϕ1 and ϕ2 are normalized) and S12 ¼
S21 ¼ 0:435 (for all well-behaved functions

Z
f 1f 2dq ¼

Z
f 2f 1dq).

The overlap matrix is thus

S ¼ 1 0:435
0:435 1

� �
ð4:110Þ
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(3) Fock matrix
We need the matrix elements H11 ¼ H22 and H12 ¼ H21, where the integrals

Hij ¼< ϕi Ĥ


 

ϕj > are not actually calculated from first principles but rather are

estimated with the aid of overlap integrals and orbital ionization energies:

ϕi Ĥ


 

ϕi

� � ¼ �Ii

ϕi Ĥ


 

ϕj

� � ¼ �1

2
KSij IiþIj

� �
Using simply the ionization energies (cf. [59], and harder questions, (9)):

I Hð Þ ¼ I1 ¼ 13:6 eV, I Heð Þ ¼ I2 ¼ 24:6 eV

Hoffmann used in his initial calculations [57a] K ¼ 1:75.
So

H11 ¼ �13:6 eV

H12 ¼ H21 ¼ �½ 1:75ð Þ 0:435ð Þ 13:6 þ 24:6ð Þ ¼ �14:5
H22 ¼ �24:6

And the Fock matrix is

H ¼ �13:6 �14:5
�14:5 �24:6

� �
ð4:111Þ

(4) Orthogonalizing matrix

As explained above, we (a) diagonalize S, (b) calculateD�1=2, then (c) calculate

the orthogonalizing matrix S�1=2:

(a) diagonalize S

S ¼ 1 0:435
0:435 1

� �
¼ 0:707 0:707

0:707 �0:707

� �
1:435 0

0 0:565

� �
0:707 0:707
0:707 �0:707

� �
P D P�1

ð4:112Þ

(b) calculate D�1=2

D�1=2 ¼ 1:435�1=2 0

0 0:565�1=2

� �
¼ 0:835 0

0 1:330

� �
ð4:113Þ

(c) calculate the orthogonalizing matrix S�1=2

S�1=2 ¼ 0:707 0:707
0:707 �0:707

� �
0:835 0

0 1:330

� �
¼ 0:707 0:707

0:707 �0:707

� �
¼ 1:083 �0:248

�0:248 1:083

� �
P D�1=2 P�1

ð4:114Þ
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(5) Transformation of the original Fock matrix H to H0Using Eq. (4.102):

H
0 ¼ 1:083 �0:248

�0:248 1:083

� � �13:6 �14:5
�14:5 �24:6

� �
1:083 �0:248
�0:248 1:083

� �
¼ �9:67 �7:65

�7:68 �21:74

� �
S�1=2 H S�1=2

ð4:115Þ

(6) Diagonalization of H0

From Eq. (4.104) H
0 ¼ C

0
εC

0-1
� �

, diagonalization of H0 gives an eigenvector

matrix C0 and the eigenvalue matrix ε; the columns of C0 are the coefficients of the
transformed, orthonormal basis functions:

H
0 ¼ �9:67 �7:65

�7:68 �21:74

� �
¼ 0:436 0:899

0:900 �0:437

� � �25:5 0

0 �5:95

� �
0:436 0:900
0:899 �0:437

� �
C

0
ε C

0�1

ð4:116Þ

We now have the energy levels (�25.5 eV and �5.95 eV), but the eigenvectors of

C0 must be transformed to give us the coefficients of the original, nonorthogonal

basis functions.

(7) Transformation of C0 to C

Using Eq. (4.102), p. 81 (C ¼ S�1=2C
0
):

C ¼ 1:083 �0:248
�0:248 1:083

� �
0:436 0:839
0:900 �0:437

� �
¼ 0:249 1:082

0:867 �0:696

� �
S�1=2 C

0
c11 c12
c21 c22

ð4:117Þ

Note that unlike the case in the SHM, the sum of the squares of the c’s for an MO

does not equal 1, since overlap integrals Sij for basis functions on different atoms

are not set equal to 0; in other words, the basis functions are not assumed to be

orthogonal, and the overlap matrix is not a unit matrix. Thus for ψ1 (recall that ϕ1 is

for H and ϕ2 for He):

ψ1 ¼ c11ϕ1 þ c21ϕ2, soZ
ψ2
1dv ¼

Z
c211ϕ

2
1 þ 2c11c21ϕ1ϕ2 þ c221ϕ

2
2

� �
dv ¼ 1

since the probability of finding an electron in ψ1 somewhere in space is 1. The basis

functions ϕ are normalized, so

c211 þ 2c11c21S12 þ c221 ¼ 1, i:e:

c211 þ c221 ¼ 1� 2c11c21S12

not ¼ 1 as in the simple H€uckel method.
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4.4.3 The Extended H€uckel Method–Applications

The EHM was initially applied to the geometries (including conformations) and

relative energies of hydrocarbons [57a], but the calculation of these two basic

chemical parameters is now much better handled by molecular mechanics

(Chap. 3) and semiempirical methods like AM1 and PM3 (Chap. 6) and by ab

initio (Chap. 5) and DFT (Chap. 7) methods. The main use of the EHM nowadays is

to study large, extended systems [64] like polymers, solids and surfaces. Indeed, of

four papers by Hoffmann and coworkers in the J. Am. Chem. Soc. in 1995, using the
EHM, three applied it to such polymeric systems [65]. The ability of the method to

illuminate problems in solid-state science makes it useful to physicists. Even when

not applied to polymeric systems, the EHM is frequently used to study large, heavy-

metal-containing molecules [66] that might not be very amenable to more elaborate

approaches.

4.4.4 Strengths and Weaknesses of the Extended H€uckel
Method

4.4.4.1 Strengths

One advantage of the EHM over ab initio methods (Chap. 5), more elaborate

semiempirical methods (Chap. 6), and density functional theory (DFT) methods

(Chap. 7), is that the EHM can be applied to very large systems, and can treat almost

any element since the only element-specific parameter needed is an ionization

energy (valence-state ionization energy is preferred [59]), which is usually avail-

able. In contrast, more elaborate semiempirical methods have not been parameter-

ized for many elements (although recent parameterizations of PM3 and MNDO for

transition metals make these much more generally useful than hitherto–Chap. 6,

Sect. 6.2.6.7). For ab initio and DFT methods, basis functions may not be available

for basis sets and elements of interest, and besides, ab initio and even DFT methods

are hundreds or thousands of times slower than the EHM and thus limited to much

smaller systems. The applicability of the EHM to large systems and a wide variety

of elements is one reason why it has been extensively applied to polymeric and

solid-state structures. The EHM is faster than more elaborate semiempirical

methods because calculation of the Fock matrix elements is so simple and because

this matrix needs to be diagonalized only once to yield the eigenvalues and

eigenvectors; in contrast, semiempirical methods like AM1 and PM3 (Chap. 6),

as well as ab initio and DFT calculations, require repeated matrix diagonalization

because the Fock matrix must be iteratively refined in the SCF (self-consistent-

field) procedure (Chap. 5, Sect. 5.2.3.6).

The spartan reliance of the EHM on empirical parameters helps to make it

relatively easy (in the right hands) to interpret its results, which depend, in the

last analysis, only on geometry (which affects overlap integrals) and ionization
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energies. With a strong dose of chemical intuition this has enabled the method to

yield powerful insights, such as counterintuitive orbital mixing [67], and the very

powerful Woodward-Hoffmann rules [38].

The applicability to large systems, including polymers and solids, containing

almost any kind of atom, and the relative transparency of the physical basis of the

results, are the main advantages of the EHM.

Surprisingly for such a conceptually simple method, the EHM has a

theoretically-based advantage over otherwise more elaborate semiempirical

methods like AM1 and PM3, in that it treats orbital overlap properly: those other

methods use the “neglect of differential overlap” or NDO approximation (Chap. 6,

Sect. 6.2), meaning that they take Sij ¼ δij, as in the simple H€uckel method . This

can lead to superior results from the EHM [68].

The EHM is a very valuable teaching tool because it follows straightforwardly

from the simple H€uckel method yet uses overlap integrals and matrix orthogonal-

ization in the same fashion as the mathematically more elaborate ab initio method.

Finally, the EHM, albeit more elaborately parameterized than in its original

incarnation, has been claimed to offer some promise as a serious competitor to the

very useful and popular semiempirical AM1 method (Chap. 6, Sect. 6.2.6.4) for

calculating molecular geometries [69]; however, this variation on the EHM does

not seem to have become a recognized, generally available method.

4.4.4.2 Weaknesses

The weaknesses of the standard EHM probably arise at least in part from the fact

that it does not (contrast the ab initio method, Chap. 5) take into account electron

spin or electron-electron repulsion, ignores the fact that molecular geometry is

partly determined by internuclear repulsion, and makes no attempt to overcome

these defects by parameterization (a variation with careful parameterization has

been claimed to give good geometries [69]).

The standard EHM gives, by and large, poor geometries and relative energies.

Although it predicts a C-H bond length of ca. 1.0 Å, it yields C/C bond lengths of

1.92 Å, 1.47 Å and 0.85 Å for ethane, ethene and ethyne, respectively, cf. the actual

values of 1.53 Å, 1.33 Å and 1.21 Å, and although the favored conformation of an

alkane is usually correctly identified, the energy barriers and differences are

generally at best in only modest agreement with experiment. Because of this

inability to reliably calculate geometries, EHM calculations are usually not used

for geometry optimizations, but rather utilize experimental or otherwise-calculated

geometries as inputs.
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4.5 Summary

This chapter introduces the application of quantum mechanics (QM) to computa-

tional chemistry by outlining the development of QM up to the Schr€odinger
equation and then showing how this equation led to the simple H€uckel method,

from which the extended H€uckel method followed.

QM teaches, basically, that energy is quantized: absorbed and emitted in discrete

packets (quanta) of magnitude hn, where h is Planck’s constant and n (Greek nu) is
the frequency associated with the energy. QM grew out of studies of blackbody

radiation and of the photoelectric effect. Besides QM, radioactivity and relativity

contributed to the transition from classical to modern physics. The classical

Rutherford nuclear atom suffered from the deficiency that Maxwell’s electromag-

netic theory demanded that its orbiting electrons radiate away energy and swiftly

fall into the nucleus. This problem was countered by Bohr’s quantum atom, in

which an electron could orbit stably if its angular momentum was an integral

multiple of h/2π. However, the Bohr model contained several ad hoc fixes and

worked only for the hydrogen atom. The deficiencies of the Bohr atom were

surmounted by Schr€odinger’s wave mechanical atom; this was based on a combi-

nation of classical wave theory and the de Broglie postulate that any particle is

associated with a wavelength λ ¼ h=p, where p is the momentum. The quantum

numbers, except spin, follow naturally from the wave mechanical treatment and the

model does not break down for atoms beyond hydrogen.

H€uckel was the first to apply QM to species significantly more complex than the

hydrogen atom. The H€uckel approach is treated nowadays within the framework of

the concept of hybridization: the π electrons in p orbitals are taken into account and
the σ electrons in an sp2 framework are ignored. Hybridization is a purely mathe-

matical convenience, a procedure in which atomic (or molecular) orbitals are

combined to give new orbitals; it is analogous to the combination of simple vectors

to give new vectors (an orbital is actually a kind of vector).

The simple H€uckel method (SHM; simple H€uckel theory, SHT; H€uckel molec-

ular orbital method, HMO method) starts with the Schr€odinger equation in the form

Ĥ ψ ¼ Eψ where Ĥ is a Hamiltonian operator, ψ is a MO wavefunction and E is the

energy of the system (atom or molecule). By expressing ψ as a linear combination

of atomic orbitals (LCAO) and minimizing E with respect to the LCAO coefficients

one obtains a set of simultaneous equations, the secular equations. These are

equivalent to a single matrix equation, HC¼SCε ; H is an energy matrix, the

Fock matrix, C is the matrix of the LCAO coefficients, S is the overlap matrix

and ε is a diagonal matrix whose nonzero, i.e. diagonal, elements are the MO energy

levels. The columns of C are called eigenvectors and the diagonal elements of ε are
called eigenvalues. By the drastic approximation S ¼ 1 (1 is the unit matrix), the

matrix equation becomesHC ¼ Cε, i.e.H ¼ Cε C�1 which is the same as saying

that diagonalization ofH gives C and ε, i.e gives the MO coefficients in the LCAO,

and the MO energies. To get numbers for H the SHM reduces all the Fock matrix

elements to α (the coulomb integral, for AOs on the same atom) and β (the bond
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integral or resonance integral, for AOs not on the same atom; for nonadjacent atoms

β is set ¼ 0), and to get actual numbers for the Fock elements, α and β are defined

as energies relative to α, in units of |β|; this makes the Fock matrix consist of just 0’s
and �1’s, where the 0’s represent same-atom interactions and nonadjacent-atom

interactions, and the �1’s represent adjacent-atom interactions. The use of just two

Fock elements is a big approximation. The SHM Fock matrix is easily written down

just by looking at the way the atoms in the molecule are connected.

Applications of the SHM include predicting:

The nodal properties of the MOs, very useful in applying the Woodward-

Hoffmann rules.

The stability of a molecule based on its filled and empty MOs, and its delocal-

ization energy or resonance energy, based on a comparison of its total π -energy

with that of a reference system. The pattern of filled and empty MOs led to H€uckel’s
rule (the 4n þ 2 rule) which says that planar molecules with completely conjugated

p orbitals containing 4n þ 2 electrons should be aromatic.

Bond orders and atom charges, which are calculated from the AO coefficients of

the occupied MOs (in the SHM LCAO treatment, p AOs are basis functions that

make up the MOs).

The strengths of the SHM lie in the qualitative insights it gives into the effect

of molecular structure on π orbitals. Its main triumph in this regard was its

spectacularly successful prediction of the requirements for aromaticity (the H€uckel
4nþ 2 rule).

The weaknesses of the SHM arise from the fact that it treats only π electrons

(limiting its applicability largely to planar sp2 arrays), its all-or-nothing treatment

of overlap integrals, the use of just two values for the Fock integrals, and its neglect

of electron spin and interelectronic repulsion. Because of these approximations it is

not used for geometry optimizations and its quantitative predictions are sometimes

viewed with suspicion. For obtaining eigenvectors and eigenvalues from the secular

equations an older and inelegant alternative to matrix diagonalization is the use of

determinants.

The extended H€uckel method (EHM; extended H€uckel theory, EHT) follows
from the SHM by using a basis set that consists not just of p orbitals, but rather of all
the valence AOs (a minimal valence basis set), by calculating (albeit very empir-

ically) the Fock matrix integrals, and by explicitly calculating the overlap matrix

S (whose elements are also used in calculating the Fock integrals). Because S is not

taken as a unit matrix, the equationHC ¼ SCεmust be transformed to one without

S before matrix diagonalization can be applied. This is done by a matrix multipli-

cation process called orthogonalization, involving S�1=2, which converts the orig-

inal Fock matrix H, based on nonorthogonal atom-centered basis functions, into a

Fock matrix H0, based on orthogonal linear combinations of the original basis

functions. With these new basis functions, H
0
C

0 ¼ C
0ε, i.e H

0 ¼ C
0ε C0�1

, so

that diagonalization ofH0 gives the eigenvectors (of the new basis functions, which

are transformed back to those corresponding to the original set: C
0 ! C ) and

eigenvalues of H.
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Because the overlap integrals needed by the EHM depend on molecular geom-

etry, the method can in principle be used for geometry optimization, although the

results are generally poor, so more reliable geometries are used as input. Applica-

tions of the EHM involve largely the study of big molecules and polymeric systems,

often containing heavy metals.

The strengths of the EHM derive from its simplicity: it is very fast and so can be

applied to large systems; the only empirical parameters needed are (valence-state)

ionization energies, which are available for a wide range of elements; the results of

calculations lend themselves to intuitive interpretation since they depend only on

geometry and ionization energies, and on occasion the proper treatment of overlap

integrals even gives better results than those from more elaborate semiempirical

methods. The fact that the EHM is conceptually simple yet incorporates several

features of more sophisticated methods enables it to serve as an excellent introduc-

tion to higher-level quantum mechanical computational methods.

The weaknesses of the EHM are due largely to its neglect of electron spin and

electron-electron repulsion and the fact that it bases the energy of a molecule simply

on the sum of the one-electron energies of the occupied orbitals, which ignores

electron-electron repulsion and internuclear repulsion; this is at least partly the

reason it usually gives poor geometries.

Easier Questions

1. What do you understand by the term quantum mechanics?
2. Outline the experimental results that led to quantum mechanics.

3. What approximations are used in the simple H€uckel method?

4. How could the SHM Fock matrix for 1,3-butadiene be modified in an attempt to

recognize explicitly the fact that the molecule has, formally anyway, two

double bonds and one single bond?

5. What are the most important kinds of results that can be obtained from H€uckel
calculations?

6. Write down the simple H€uckel Fock matrices (in each case using α, β and 0, and
0, �1 and 0) for: (1) the pentadienyl radical (2) the cyclopentadienyl radical

(3) trimethylenemethane, C(CH2)3 (4) trimethylenecyclopropane (5) 3-methy-

lene-1,4-pentadiene.

7. The SHM predicts the propenyl cation, radical and anion to have the same

resonance energy (stabilization energy). Actually, we expect the resonance

energy to decrease as we add π electrons; why should this be the case?

8. What molecular feature cannot be obtained at all from the simple H€uckel
method? Why?

9. List the differences between the underlying theory of the simple H€uckel
method and the extended H€uckel method.

10. A 400 � 400 matrix is easily diagonalized. How many carbons would an

alkane have for its EHM Fock matrix to be 400 � 400 (or just under this size)?

How many carbons would a (fully) conjugated polyene have if its SHM Fock

matrix were 400 � 400?
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Harder Questions

1. Do you think it is reasonable to describe the Schr€odinger equation as a postulate
of quantum mechanics? What is a postulate?

2. What is the probability of finding a particle at a point?
3. Suppose we tried to simplify the simple H€uckel method even further, by

ignoring all interactions i, j; i 6¼ j (ignoring adjacent instead interactions of

setting them¼ β). What effect would this have on energy levels? Can you see

the answer without looking at a matrix or determinant?

4. How might the i,j-type interactions in the simple H€uckel Fock matrix be made

to assume values other than just �1 and 0?

5. What is the result of using as a reference system for calculating the resonance

energy of cyclobutadiene, not two ethene molecules, but 1,3-butadiene? What

does this have to do with antiaromaticity? Is there any way to decide if one

reference system is better than another?

6. What is the problem with unambiguously defining the charge on an atom in a

molecule?

7. It was claimed that the extended H€uckel method can be parameterized to give

good geometries. Do you think this might be possible for the simple H€uckel
method? Why or why not?

8. Give a reference to a journal paper that used the SHM, and one that used the

EHM, since the year 2000. For each paper quote the sentence in the abstract or

the paper that states that the SHM was used..

9. The ionization energies usually used to parameterize the EHM are not ordinary

atomic ionization energies, but rather valence-state atomic orbital ionization
energies (VSAO ionization energies, valence state ionization energies). What

does the term “valence state” mean here? Should the VSAO ionization energies

of the orbitals of an atom depend somewhat on the hybridization of the atom?

In what way?

10. Which should require more empirical parameters: a molecular mechanics force

field (Chap. 3) or an extended H€uckel method program? Explain.
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Chapter 5

Ab initio Calculations

“I could have done it in a much more complicated way”, said
the Red Queen, immensely proud.

Attributed, probably apocryphally, to Lewis Carroll

Abstract Ab initio calculations rest on solving the Schr€odinger equation; the

nature of the necessary approximations determines the level of the calculation. In

the simplest approach, the Hartree-Fock method, the total molecular wavefunction

Ψ is approximated as a Slater determinant composed of occupied spin orbitals.

To use these in practical calculations the spatial orbitals are approximated as a

linear combination (a weighted sum) of basis functions. Electron correlation

methods are also discussed. The main uses of the ab initio method are calculating

molecular geometries, energies, vibrational frequencies, spectra, ionization ener-

gies and electron affinities, and properties like dipole moments which are connected

with electron distribution. These calculations find theoretical and practical appli-

cations, since, for example, enzyme-substrate interactions depend on shapes and

charge distributions, reaction equilibria and rates depend on energy differences, and

spectroscopy plays an important role in identifying and understanding novel

molecules. The visualization of calculated phenomena can be very important in

interpreting results.

5.1 Perspective

Chapter 4 showed how quantum mechanics was first applied to molecules of real

chemical interest (pace chemical physics) by Erich Hückel, and how the extension

of the simple Hückel method by Hoffmann gave a technique of considerable

usefulness and generality, the extended Hückel method. The simple and the

extended Hückel methods (SHM and EHM) are both based on the Schr€odinger
equation, and this makes them quantum mechanical methods. Both depend on
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reference to experimental quantities (i.e. on parameterization against experiment)

to give actual values of calculated parameters: the SHM gives energy levels in

terms of a parameter β which we could try to assign a value by comparison with

experiment (actually the results of SHM calculations are usually left in terms of β),
while the EHM needs experimental valence ionization energies to calculate the

Fock matrix elements. The need for parameterization against experiment makes the

SHM and the EHM semiempirical (“semiexperimental”) theories. In this chapter

we deal with a quantum mechanical approach that does not rely on calibration

against measured chemical parameters and is therefore called ab initio [1, 2]

meaning “from the first”, from first principles. It is true that ab initio calculations

give results in terms of fundamental physical constants – Planck’s constant, the

speed of light, the charge of the electron – that must be measured to obtain their

actual numerical values, but a chemical theory could hardly be expected to calcu-

late the fundamental physical parameters of our universe; for that we might be

content to defer to cosmology.

5.2 The Basic Principles of the Ab initio Method

5.2.1 Preliminaries

In Chap. 4 we saw that wavefunctions and energy levels could be obtained by

diagonalizing a Fock matrix: the equation

H¼CεC�1 ð*5:1Þ

is just another way of saying that diagonalization of H gives the coefficients or

eigenvectors (the columns of C that, combined with the basis functions, yield the

wavefunctions of the molecular orbitals) and the energy levels or eigenvalues (the

diagonal elements of ε). Eq. (5.1) followed from

HC¼SCε ð*5:2Þ

which gives Eq. (5.1) when S is approximated as a unit matrix (simple Hückel
method, Chap. 4 Sect. 4.3.4) or when the original Fock matrix is transformed into

H (into H0 in the notation of Chap. 4, Sect. 4.4.1) using an orthogonalizing matrix

calculated from S (extended Hückel method, Chap. 4 Sect. 4.4.1). To do a simple or

an extended Hückel calculation the algorithm assembles the Fock matrix H and

diagonalizes it. This is also how an ab initio calculation is done; the essential

difference compared to the Hückel methods lies in the evaluation of the matrix
elements.

In the simple Hückel method the Fock matrix elementsHij are not calculated, but

are instead set equal to 0 or �1 according to simple rules based on atomic

connectivity (Chap. 4, Sect. 4.3.4); in the extended Hückel method the Hij are
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calculated from the relative positions (through Sij) of the orbitals or basis functions

and the ionization energies of these orbitals (Chap. 4, Sect. 4.4.1); in neither case is

Hij calculated from first principles. Chapter 4, Sect. 4.3.4, Eqs. (4.44) imply thatHij is:

Hij ¼
Z

ϕiĤ ϕjdv ð*5:3Þ

In ab initio calculations Hij is calculated from Eq. (5.3) by actually performing

the integration using explicit mathematical expressions for the basis functions ϕi

and ϕj and the Hamiltonian operator Ĥ ; of course the integration is done by a

computer following a detailed algorithm. How this algorithm works will now be

outlined.

5.2.2 The Hartree SCF Method

The simplest kind of ab initio calculation is a Hartree-Fock (HF) calculation.

Modern molecular HF calculations grew out of calculations first performed on

atoms by Hartree1 in 1928 [3]. The problem that Hartree addressed arises from

the fact that for any atom (or molecule) with more than one electron an exact

analytic solution of the Schr€odinger equation (Chap. 4, Sect. 4.3.2) is not possible,

because of the electron-electron repulsion term(s). Thus for the helium atom the

Schr€odinger equation (cf. Chap. 4, Sect. 4.3.3, Eqs. (4.36) and (4.37)) is, in SI units

� h2

8π2m
∇2

1 þ∇2
2

� �� Ze2

4πε0r1
� Ze2

4πε0r2
þ e2

4πε0r12

� �
ψ ¼ Eψ ð5:4Þ

Here m is the mass (kg) of the electron, e is the charge (Coulombs, positive) of

the proton (¼ minus the charge on the electron), the variables r1, r2, and r12 are the
distances (meters) of electrons 1 and 2 from the nucleus, and from each other, Z¼ 2

is the number of protons in the nucleus, and ε0 is something called the permitivity of

empty space; the factor 4πε0 is needed to make SI units consistent. The force

(newtons) between charges q1 and q2 separated by r is q1q2/4πε0r
2, so the potential

energy (joules) of the system is q1q2/4πε0r (energy is force� distance).

Hamiltonians can be written much more simply by using atomic units. Let’s take
Planck’s constant, the electron mass, the proton charge, and the permitivity of space

as the building blocks of a system of units in which h/2π, m, e, and 4πε0 are

numerically equal to 1 (i.e. h¼ 2π, m¼ 1, e¼ 1, and ε0¼ 1/4π; the numerical

values of physical constants are always dependent on our system of units). These

1Douglas Hartree, born Cambridge, England, 1897. Ph.D. Cambridge, 1926. Professor applied

mathematics, theoretical physics, Manchester, Cambridge. Died Cambridge, 1958.
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(h/2π, m, e, and 4πε0) are the units of angular momentum, mass, charge, and

permitivity in the system of atomic units. In this system Eq. (5.4) becomes

�1

2
∇2

1 �
1

2
∇2

2 �
Z

r1
� Z

r2
þ 1

r12

� �
ψ ¼ Eψ ð5:5Þ

Using atomic units simplifies writing quantum-mechanical expressions, and also

means that the numerical (in these units) results of calculations are independent of

the currently accepted values of physical constants in terms of kg, Coulombs,

meters, and seconds (of course, when we convert from atomic to SI units we

must use accepted SI values of m, e, etc.). The atomic units of energy and length

are particularly important to us. We can get the atomic unit of a quantity by

combining h/2π, m, e, and 4πε0 to give the ab expression with the required

dimensions. The atomic units of length and energy, the bohr and the hartree, turn

out to be:

Length 1 bohr ¼ a0 ¼ 4πε0 h=2πð Þ2=me2 ¼ ε0h
2=πme2 ¼ 0:05292nm ¼ 0:5929Å

Energy 1 hartee ¼ Eh orhð Þ ¼ e2=4πε0a0; 1 hartree=particle ¼ 2625:5kJmol�1

The bohr is the radius of a hydrogen atom in the Bohr model (Chap. 4,

Sect. 4.2.5), or the most probable distance of the electron from the nucleus in the

fuzzier Schr€odinger picture (Chap. 4, Sect. 4.2.5). The hartree is the energy needed
to move a stationary electron one bohr distant from a proton away to infinity. The

energy of a hydrogen atom, relative to infinite proton/electron separation as zero, is

�½ hartree: the potential energy is �1 h and the kinetic energy (always positive) is

þ½ h. Note that atomic units derived by starting with the old Gaussian system (cm,

grams, statcoulombs) differ by a 4πε0 factor from the SI-derived ones.

The helium atom Hamiltonian

Ĥ ¼ �1

2
∇2

1 �
1

2
∇2

2 �
Z

r1
� Z

r2
þ 1

r12
ð*5:6Þ

consists of five terms, signifying (Fig. 5.1) from left to right: the kinetic energy of

electron 1, the kinetic energy of electron 2, the potential energy of the attraction of

the nucleus (charge Z¼ 2) for electron 1, the potential energy of the attraction of the

nucleus for electron 2, and the potential energy of the repulsion between electron

1 and electron 2. This is not the exact Hamiltonian, for it neglects effects due to

relativity and to magnetic interactions such as spin-orbit coupling [4]; these effects

are rarely important in calculations involving lighter atoms, say those in the first

two or three full rows of the periodic table (up to about chlorine or bromine).

Relativistic quantum chemical calculations will be briefly discussed later. The

wavefunction c is the “total”, overall wavefunction of the atom and can be

approximated, as we will see later for molecular HF calculations, as a combination

of wavefunctions for various energy levels. The problem with solving Eq. (5.5)

exactly arises from the 1/r12 term. This makes it impossible to separate the
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Schr€odinger equation for helium into two one-electron equations which, like the

hydrogen atom equation, could be solved exactly (for treatments of the hydrogen

and helium atoms see the appropriate sections of references 1). This problem arises

in any system with three or more interacting moving objects, whether subatomic

particles or planets. In fact the many-body problem is an old one even in classical

mechanics, going back to eighteenth century studies in celestial mechanics [5]. The

three-particle hydrogen molecule ion, HH�þ, with two heavy particles and one light
one, can be solved”exactly” – but only within the Born-Oppenheimer approxima-

tion [6]. The impossibility of an analytic solution to polyelectronic atoms and

molecules prompted Hartree’s approach to calculating wavefunctions and energy

levels for atoms.

Hartree’s method was to write a plausible approximate polyelectronic

wavefunction (a “guess”) for an atom as the product of one-electron wavefunctions:

ψ0 ¼ ψ0 1ð Þψ0 2ð Þψ0 3ð Þ� � �ψ0 nð Þ ð5:7Þ

This function is called a Hartree product. Here ψ0 is a function of the coordinates of

all the electrons in the atom, ψ0(1) is a function of the coordinates of electron

1, ψ0(2) is a function of the coordinates of electron 2, etc.; the one-electron

functions ψ0(1), ψ0(2), etc. are called atomic orbitals (molecular orbitals if we

were dealing with a molecule). The initial guess, c0, is our zeroth approximation to

the true total wavefunction c, zeroth because we have not yet started to refine it

with the Hartree process; it is based on the zeroth approximations ψ0(1), ψ0(2), etc.

To apply the Hartree process we first solve for electron one a one-electron
Schr€odinger equation in which the electron-electron repulsion comes from electron

one and an average, smeared-out electrostatic field calculated from ψ0(2), ψ0(3),

. . ., ψ0(n), due to all the other electrons. The only moving particle in this equation is

–1 / 2∇2
2

–1 / 2∇1
2

kinetic energy potential energy from attraction, stabilizing

potential energy from repulsion, destabilizing

+ +

–

–

electron 1

electron 2

1 / r12

Z = 2

–Z / r1

–Z / r2

Fig. 5.1 The terms in the helium atom Hamiltonian, Ĥ ¼ �1
2
∇2

1 � 1
2
∇2

2 � Z
r1
� Z

r2
þ 1

r12
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electron one. Solving this equation gives ψ1(1), an improved version of ψ0(1). We

next solve for electron 2 a one-electron Schr€odinger equation with electron two

moving in an average field due to the electrons of ψ1(1), ψ0(3), . . ., ψ0(n),
continuing to electron n moving in a field due to ψ1(1), ψ1(2), . . ., ψ1(n� 1). This

completes the first cycle of calculations and gives

ψ1 ¼ ψ1 1ð Þψ1 2ð Þψ1 3ð Þ� � �ψ1 nð Þ ð5:8Þ

Repetition of the cycle gives

ψ2 ¼ ψ2 1ð Þψ2 2ð Þψ2 3ð Þ� � �ψ2 nð Þ ð5:9Þ

The process is continued for k cycles till we have a wavefunction Ψk and/or an

energy calculated from Ψk that are essentially the same (according to some reason-

able criterion) as the wavefunction and/or energy from the previous cycle. This

happens when the functions ψ(1), ψ(2), . . ., ψ(n) are changing so little from one

cycle to the next that the smeared-out electrostatic field used for the electron-

electron potential has (essentially) ceased to change. At this stage the field of

cycle k is essentially the same as that of cycle k� 1, i.e. it is “consistent with”

this previous field, and so the Hartree procedure is called the self-consistent-field-
procedure, which is usually abbreviated as the SCF procedure.

There are two problems with the Hartree product of Eq. (5.7). Electrons have a

property called spin, among the consequences of which is that not more than two

electrons can occupy one atomic or molecular orbital (this is one statement of the

Pauli exclusion principle (Chap. 4, Sect. 4.2.6). In the Hartree approach we

acknowledge this only in an ad hoc way, simply by not placing more than two

electrons in any of the component orbitals ψ that make up our (approximate) total

wavefunction ψ . The second problem comes from the fact that electrons are

indistinguishable. If we have a wavefunction of the coordinates of two or more

indistinguishable particles, then switching the positions of two of the particles,

i.e. exchanging their coordinates, must either leave the function unchanged or

change its sign. This is because all physical manifestations of the wavefunction

must be unchanged on switching indistinguishable particles, and these manifesta-

tions depend only on its square (more strictly on the square of its absolute value,

i.e. on
��c��2, to allow for the fact that c may be a complex, as distinct from a real,

function). This should be clear from the equations below for a two-particle

function:

if ψa ¼ f x1; y1; z1; x2; y2; z2ð Þ

and ψb ¼ f x2; y2; z2; x1; y1; z1ð Þ
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then
��ψa

��2 ¼ ��ψb

��2
if and only if ψb ¼ ψa orψb ¼ �ψa

If switching the coordinates of two of the particles leaves the function unchanged, it

is said to be symmetric with respect to particle exchange, while if the function

changes sign it is said to be antisymmetric with respect to particle exchange.

Comparing the predictions of theory with the results of experiment shows [7] that

electronic wavefunctions are actually antisymmetric with respect to exchange (such

particles are called fermions, after the physicist Enrico Fermi; particles like photons

whose wavefunctions are exchange-symmetric are called bosons, after the physicist

S. Bose). Any rigorous attempt to approximate the wavefunction ψ should use an

antisymmetric function of the coordinates of the electrons 1, 2, � � � n, but the Hartree
product is symmetric rather than antisymmetric; for example, if we approximate a

helium atom wavefunction as the product of two hydrogen atom 1 s orbitals, then if
ψa¼ 1s(x1, y1, z1) 1s(x2, y2, z2) and ψb¼ 1s(x2, y2, z2) 1s(x1, y1, z1), then ψa¼ψb.

These defects of the Hartree SCF method were corrected by Pauling (1928) [8a],

Slater (1929) [8b] and Fock (1930) [8c]. Pauling (Chap. 4, footnote 21) and Slater

showed that as a first approximation at least a wavefunction can be written as a

determinant of spin orbitals (Sect. 5.2.3.1). Although Slater’s publication appeared

in the year after Pauling’s, this determinant is called a Slater2 determinant, perhaps

because physicists paid little attention to publications by chemists. Fock (Chap. 4,

footnote 27), in a long, mathematically elaborate paper [8c], developed the explicit

form of the Fock operator (Sect. 5.2.3.4), the operator which acts on the

wavefunction to create atomic or molecular energy levels in the Hartree-Fock

equations. Slater, in the year following his presentation of the determinant formu-

lation of the wavefunction, made an admittedly tenuous suggestion [8d] for

extending the Hartree method to molecules, but its brevity and the lack of any

explicit equations justifies limiting the name of the method to Hartree-Fock.

5.2.3 The Hartree-Fock Equations

5.2.3.1 Slater Determinants

The Hartree wavefunction (above) is a product of one-electron functions called

orbitals, or, more precisely, spatial orbitals: these are functions of the usual space

2John Slater, born Oak Park Illinois, 1900. Ph.D. Harvard, 1923. Professor of physics, Harvard,

1924–1930; MIT 1930–1966; University of Florida at Gainesville, 1966–1976. Author of 14 text-

books, contributed to solid-state physics and quantum chemistry, developed X-alpha method

(early density functional theory method). Died Sanibel Island, Florida, 1976.
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coordinates x,y,z. The Slater wavefunction is composed, not just of spatial orbitals,

but of spin orbitals. A spin orbital ψ(spin) is the product of a spatial orbital and a

spin function, α or β: The spin orbitals corresponding to a given spatial orbital are

ψ spinαð Þ ¼ ψ spatialð Þα ¼ ψ x; y; zð Þα
and ψ spinβð Þ ¼ ψ spatialð Þβ ¼ ψ x; y; zð Þβ

As the function ψ(spatial) has as its variables the coordinates x,y,z, so the spin

functions α and β have as their variables a spin coordinate, sometimes denoted ξ
(Greek letter kzi or zi) or ω (Greek omega). We know that a wavefunction ψ fits in

with an operator and eigenvalues, say the energy operator and energy eigenvalues,

according to the equation Ĥ ψ ¼ Eψ . Analogously, the spin functions α and β are

associated with the spin operator Ŝz according to Ŝ zα ¼ ½ h=2πð Þα and

Ŝ zβ ¼ �½ h=2πð Þβ. Unlike most other functions, then, α and β each have only

one eigenvalue, ½(h/2π) and �½(h/2π), respectively. A spin function has the

peculiar property that it is zero unless ξ¼½ (α spin function) or ξ¼�½ (β spin

function). A function that is zero everywhere except at one value of its variable,

where it spikes sharply, is a delta function (invented by Dirac–footnote Chap. 4,

Sect. 4.2.3). Since the spin function ψ (spin α or β) describing an electron exists

only when the spin variable ξ¼�1/2, these two values can be considered the

allowed values of the spin quantum number ms mentioned in Chap. 4, Sect. 4.2.6.
Sometimes an electron with spin quantum number 1/2 (“an electron with spin 1/2”)

is called an α electron, and said to have up spin, and an electron with spin �1/2 is

called a β electron, and said to have down spin. Up and down electrons are often

denoted by arrows " and #,respectively. A nice, brief treatment of the delta function

and of the mathematical treatment of the spin functions is given by Levine [9].

The Slater wavefunction differs from the Hartree function not only in being

composed of spin orbitals rather than just spatial orbitals, but also in the fact that it

is not a simple product of one-electron functions, but rather a determinant (Chap. 4,
Sect. 4.3.3) whose elements are these functions. To construct a Slater wavefunction

(Slater determinant) for a closed-shell species (the only kind we consider in any

detail here), we use each of the occupied spatial orbitals to make two spin orbitals,

by multiplying the spatial orbital by α and, separately, by β. The spin orbitals are

then filled with the available electrons. An example should make the procedure

clear (Fig. 5.2). Suppose we wish to write a Slater determinant for a four-electron

closed-shell system. We need two spatial molecular orbitals, since each can hold a

maximum of two electrons; each spatial orbital ψ(spatial) is used to make two spin

orbitals, ψ(spatial)α and ψ(spatial)β (alternatively, each spatial orbital could be

thought of as a composite of two spin orbitals, which we are separating and using to

build the determinant). Along the first (top) row of a determinant we write succes-

sively the first α spin orbital, the first β spin orbital, the second α spin orbital, and

the second β spin orbital, using up our occupied spatial (and thus spin) orbitals.

Electron one is then assigned to all four spin orbitals of the first row–in a sense it is

allowed to roam among these four spin orbitals [10]. The second row of the
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determinant is the same as the first, except that it refers to electron two rather than

electron one; likewise the third and fourth rows refer to electrons three and four,

respectively. The result is the determinant of Eq. (5.10).

Ψ ¼ 1ffiffiffiffi
4!

p
ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ ψ2 1ð Þα 1ð Þ ψ2 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ ψ1 2ð Þβ 2ð Þ ψ2 2ð Þα 2ð Þ ψ2 2ð Þβ 2ð Þ
ψ1 3ð Þα 3ð Þ ψ1 3ð Þβ 3ð Þ ψ2 3ð Þα 3ð Þ ψ2 3ð Þβ 3ð Þ
ψ1 4ð Þα 4ð Þ ψ1 4ð Þβ 4ð Þ ψ2 4ð Þα 4ð Þ ψ2 4ð Þβ 4ð Þ

��������

��������
ð*5:10Þ

The 1=√ 4!ð Þ factor ensures that the wavefunction is normalized, i.e. that
��ψ��2

integrated over all space¼ 1. This Slater determinant ensures that there are no more

than two electrons in each spatial orbital, since for each spatial orbital there are only

two one-electron spin functions, and it ensures that ψ is antisymmetric since

switching two electrons amounts to exchanging two rows of the determinant, and

this changes its sign (Chap. 4, Sect. 4.3.3). Note that instead of assigning

the electrons successively to row 1, row 2, etc., we could have placed them in

column 1, column 2, etc.: ψ0 of Eq. (5.11)¼ψ of Eq. (5.10). Some authors use the

row format for the electrons, others the column format:

used with "electron 1" to make row 1
y1(1)a(1)  y1(1)b(1)  y2(1)a(1)  y2(1)b(1)

used with "electron 2" to make row 2
y1(2)a(2)  y1(2)b(2)  y2(2)a(2)  y2(2)b(2)

used with "electron 3" to make row 3
y1(3)a(3)  y1(3)b(3)  y2(3)a(3)  y2(3)b(3)

used with "electron 4" to make row 4
y1(4)a(4)  y1(4)b(4)  y2(4)a(4)  y2(4)b(4)

y1

y2 y2a

y1b

y2b

y1a

y3

y4

y5

energy

Fig. 5.2 A Slater determinant is made from spin orbitals derived from the occupied spatial

molecular orbitals and two spin functions, α and β
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Ψ0 ¼ 1ffiffiffiffi
4!

p
ψ1 1ð Þα 1ð Þ ψ1 2ð Þα 2ð Þ ψ1 3ð Þα 3ð Þ ψ1 4ð Þα 4ð Þ
ψ1 1ð Þβ 1ð Þ ψ1 2ð Þβ 2ð Þ ψ1 3ð Þβ 3ð Þ ψ1 4ð Þβ 4ð Þ
ψ2 1ð Þα 1ð Þ ψ2 2ð Þα 2ð Þ ψ2 3ð Þα 3ð Þ ψ2 4ð Þα 4ð Þ
ψ2 1ð Þβ 1ð Þ ψ2 2ð Þβ 2ð Þ ψ2 3ð Þβ 3ð Þ ψ2 4ð Þβ 4ð Þ

��������

��������
ð5:11Þ

Slater determinants enforce the Pauli exclusion principle, which forbids any two

electrons in a system to have all quantum numbers the same. This is readily seen for

an atom: if the three quantum numbers n, l andmm of ψ(x, y, z) (Chap. 4, Sect. 4.2.6)
and the spin quantum number ms of α or β were all the same for any electron, two

rows (or columns, in the alternative formulation) would be identical and the

determinant, hence the wavefunction, would vanish (Chap. 4, Sect. 4.3.3).

For 2n electrons (we are limiting ourselves for now to even-electron species, as

the theory for these is simpler) the general form of a Slater determinant is clearly the

2n� 2n determinant

Ψ2n ¼ 1ffiffiffiffiffiffiffiffiffiffi
2nð Þ!p

�
ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ ψ2 1ð Þα 1ð Þ ψ2 1ð Þβ 1ð Þ � � � ψn 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ ψ1 2ð Þβ 2ð Þ ψ2 2ð Þα 2ð Þ ψ2 2ð Þβ 2ð Þ � � � ψn 2ð Þβ 2ð Þ

⋮ ⋮ ⋮ ⋮
ψ1 2nð Þα 2nð Þ ψ1 2nð Þβ 2nð Þ ψ2 2nð Þα 2nð Þ ψ2 2nð Þβ 2nð Þ � � � ψn 2nð Þβ 2nð Þ

��������

��������
ð5:12Þ

The Slater determinant for the total wavefunction ψ of a 2n-electron atom or

molecule is a 2n� 2n determinant with 2n rows due to the 2n electrons and 2n
columns due to the 2n spin orbitals (you can interchange the row/column format);

since these are closed-shell species, the number of spatial orbitals ψ is half the

number of electrons. We use the n occupied spatial orbitals (the 2n occupied spin

orbitals) to make the determinant. Antisymmetry can also be imposed on the

wavefunction, less transparently, with an antisymmetrization operator [11].
The determinant (¼ total molecular wavefunction ψ) just described will lead to

(remainder of Sect. 5.2) n occupied, and a number of unoccupied, component

spatial molecular orbitals ψ . These orbitals ψ from the straightforward Slater

determinant are called canonical (in mathematics the word means “in simplest or

standard form”) molecular orbitals. Since each occupied spatial ψ can be thought of

as a region of space which accommodates a pair of electrons, we might expect that

when the shapes of these orbitals are displayed (“visualized”; Sect. 5.5.4) each one

would look like a bond or a lone pair. However, this is often not the case; for

example, we do not find that one of the canonical MOs of water connects the O with

one H, and another canonical MO connects the O with another H. Instead most of

these MOs are spread over much of a molecule–delocalized (lone pairs, unlike

conventional bonds, do tend to stand out). However, it is possible to combine the

canonical MOs to get localized MOs which look like our conventional bonds

and lone pairs. This is done by using the columns (or rows) of the Slater ψ to create
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a ψ with modified columns (or rows): if a column/row of a determinant is multiplied

by k and added to another column/row, the determinant is unchanged (Chap. 4,

Sect. 4.3.3). We see that if this is applied to the Slater determinant, we will get a

“new” determinant corresponding to exactly the same total wavefunction, i.e. to the

same molecule, but built up from different component occupied MOs ψ . The new ψ
and the new ψ’s are no less or more correct than the previous ones, but by

appropriate manipulation of the columns/rows the ψ’s can be made to correspond

to our ideas of bonds and lone pairs. These localized MOs are sometimes useful.

5.2.3.2 Calculating the Atomic or Molecular Energy

The next step in deriving the Hartree-Fock equations is to express the energy of the

molecule or atom in terms of the total wavefunction ψ; the energy will then be

minimized with respect to each of the component molecular (or atomic; an atom is a

special case of a molecule) spin orbitals ψα and ψβ (cf. the minimization of energy

with respect to basis function coefficients in Chap. 4, Sect. 4.3.4). The derivation of

these equations involves considerable algebraic manipulation, which is at times

hard to follow without actually writing out the intermediate expressions. The

procedure has been summarized by Pople and Beveridge [12a] and Pople and

Nesbet [12b], and a less condensed account is given by Lowe [13].

It follows from the Schr€odinger equation that the energy of a system is given by

E ¼
R
ψ*ĤψdτR
ψ*ψdτ

ð5:13Þ

This is similar to Eq. (4.40) in Chap. 4, but here the total wavefunction ψ has

been specified, and allowance has been made for the possibility of ψ being a

complex function by utilizing its complex conjugate ψ*; this ensures that E, the
energy of the atom or molecule, will be real. If ψ is complex then ψ2dτ will not be a
real number, while ψ*ψdτ ¼ ��ψ��2dτ will, as must be the case for a probability.

Integration is with respect to three spatial coordinates and one spin coordinate, for

each electron. This is symbolized by dτ (τ¼Greek tau), which means dxdydzdξ, so
for a 2n-electron system these integrals are actually 4� 2n-fold, each electron

having its set of four coordinates. Working with the usual normalized

wavefunctions makes the denominator unity, and Eq. (5.13) can then be written

E ¼
Z

ψ*Ĥψdτ

or using the more compact Dirac notation for integrals (Chap. 4, Sect. 4.4.1)

E ¼ ψ
��Ĥ ��ψi
 ð5:14Þ
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In Eq. (5.14) it is understood that the first ψ is really ψ*, and that the integration
variables are the space and spin coordinates. The vertical bars are only to visually

separate the operator from the two functions, supposedly for clarity.

We next substitute into Eq. (5.14) the Slater determinant for ψ (and ψ*) and the

explicit expression for the Hamiltonian. A simple extension of the helium Hamil-

tonian of Eq. (5.5) to a molecule with 2n electrons and μ atomic nuclei (the μth
nucleus has charge Zμ) gives

Ĥ ¼
X2n
i¼1

�1

2
∇2

i �
X
all μ, i

Zμ

rμi
þ
X
all ij

1

rij
ð5:15Þ

Just like the helium Hamiltonian, the molecular Hamiltonian Ĥ in Eq. (5.15) is

composed (from left to right) of electron kinetic energy terms, nucleus-electron

attraction potential energy terms, and electron-electron repulsion potential

energy terms (cf. Fig. 5.1). This is actually the electronic Hamiltonian, since

nucleus-nucleus repulsion potential energy terms have been omitted; from the

Born-Oppenheimer approximation (Chap. 2, Sect. 2.3) these can simply be added

to the electronic energy after this has been calculated, giving the total molecular

energy for a molecule with “frozen nuclei” (calculation of the vibrational energy,

the zero-point energy, is discussed later). Calculation of the internuclear potential

energy is trivial:

VNN ¼
X
all μ, v

ZμZv

rμv
ð5:16Þ

Substituting into Eq. (5.14) the Slater determinant and the molecular Hamilto-

nian gives, after much algebraic manipulation

E ¼ 2
Xn
i¼1

Hii þ
Xn
i¼1

Xn
j¼1

2Jij � Kij

� � ð5:17Þ

for the electronic energy of a 2n-electron molecule (the sums are over the

n occupied spatial orbitals ψ). The terms in Eq. (5.17) have these meanings:

Hii ¼
Z

ψ*
i 1ð ÞĤ core

1ð Þψ i 1ð Þdv ð5:18Þ

where

Ĥ
core

1ð Þ ¼ �1

2
∇2

1 �
X
all μ

Zμ

rμ1
ð5:19Þ

The operator Ĥ core is so called because it leads to Hii, the electronic energy of a

single electron moving simply under the attraction of a nuclear “core”, with all the
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other electrons stripped away; Hii is the electronic energy of, for example, H, He+,

H2
þ, or CH4

9þ (of course, it is different for these various species) . Note that Ĥ core

(1) represents the kinetic energy of electron 1 plus the potential energy of attraction

of that electron to each of the nuclei μ; the 1 in parentheses in these equations is just

a label showing that the same electron is being considered in ψ*
i , ψi and Ĥ core

(we could have used, say, 2 instead). The integration in Eq. (5.18) is respect to

spatial coordinates only, (dv ¼ dxdydz, not dτ) because spin coordinates have been

“integrated out”: on integration, i.e. on summation over the discrete spin variable,

these give 0 or 1 [12, 14]. We are left with the three spatial coordinates as

integration variables (x,y,z) for each electron and so the integral is sixfold:

Jij ¼
Z

ψ*
i 1ð Þψ i 1ð Þ 1

r12

� �
ψ*
j 2ð Þψ j 2ð Þdv1dv2 ð5:20Þ

J is called a Coulomb integral; it represents the electrostatic (i.e. Coulombic)

repulsion between an electron in ψ i and one in ψ j (ψ ii for repulsion between

electrons in the same spatial orbital). This may be clearer if one considers the

integral as a sum of potential energy terms involving repulsion between infinites-

imal volume elements dv (Fig. 5.3). The 1 and 2 are just labels showing we are

considering two electrons. The integrals J and K allow each electron to experience

the average electrostatic repulsion of a charge cloud due to all the other electrons.
This pretence that electron-electron repulsion occurs between an electron and a

charge cloud rather than between all possible pairs of electrons as point particles is

the major deficiency of the Hartree-Fock method and transcending this approxima-

tion is the reason for the development of the post-Hartree-Fock methods discussed

y i y j

2nortcelesniatnoc1nortcelesniatnoc

dv2

Potential energy between dv1 and dv2 is y i (1) y i (1) dv1        y j (2) y j (2) dv2

(product of the charges divided by their distance apart)

volume dv1 contains
charge y i (1) y i (1) dv1

volume dv2 contains
charge y j (2) y j (2) dv2

dv1

r12

1

Fig. 5.3 The coulomb integral (J integral) represents the electrostatic repulsion between two

charge clouds, due to electron 1 in orbital ψ i and electron 2 in orbital ψ j (for an electron pair in the

same spatial orbital, the charge clouds can be taken as due to different spin orbitals).

Jij ¼
Z

ψ*
i 1ð Þψ i 1ð Þ 1

r12

� �
ψ*
j 2ð Þψ j 2ð Þdv1dv2
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later. Since J represents potential energy corresponding to a destabilizing electro-

static repulsion, it is positive. As for Hii in Eq. (5.18), the integration is with respect

to spatial coordinates because the spin coordinates have been integrated out. There

are six integration variables, x,y,z for electron 1 (dv1) and x,y,z for electron 2 (dv2),
and so the integral is sixfold. Note that the ab initio Coulomb integral J is not

the same as what we called a Coulomb integral in simple Hückel theory; that was
α ¼ R ϕiĤ ϕidv (Chap. 4, Eq. (4.61)) and represents at least very crudely the energy

of an electron in the p orbital ϕi (Chap. 4, Sect. 4.3.4). The ab initio Coulomb

integral can also be written

Jij ¼
Z

ψ*
i 1ð Þψ*

j 2ð Þ 1

r12

� �
ψ i 1ð Þψ j 2ð Þdv1dv2 ð5:21Þ

but unlike (20) this does not notationally emphasize the repulsion (invoked by the

1/r12 operator) between electron 1 and electron 2, on the left and right, respectively,
of 1/r12 in Eq. (5.20).

Kij ¼
Z

ψ*
i 1ð Þψ*

j 2ð Þ 1

r12

� �
ψ i 2ð Þψ j 1ð Þdv1dv2 ð5:22Þ

K is called an exchange integral; mathematically, it arises from Slater determi-

nant expansion terms that differ only in exchange of electrons. Note that the terms

on either side of 1/r12 differ by exchange of electrons. It is often said to have no

simple physical interpretation, and even to represent an “exchange force”, but

looking at Eq. (5.17), we see we can regard K as a kind of correction to J, reducing
the effect of J (both J and K are positive, with K smaller), i.e. reducing the

electrostatic potential energy due to the mutual ψ i, ψ j charge cloud repulsion

referred to above in connection with J and K. This reduction in repulsion arises

because as particles with an antisymmetric wavefunction, two electrons can’t
occupy the same spin orbital (roughly, can’t be at the same point at the same

time), and can occupy the same spatial orbital only if they have opposite spins. Thus

two electrons of the same spin avoid each other more assiduously than expected

only from the Coulombic repulsion that is taken into account by J. We could

consider the summed 2 J – K terms of Eq. (5.17) to be the true Coulombic repulsion,

corrected for electron spin, i.e. corrected for the Pauli exclusion principle effect.

The J and K interactions are shown in Fig. 5.4 for a four-electron molecule, the

smallest closed-shell system in which K integrals arise. A detailed exposition of the

significance of the Hartree-Fock integrals is given by Dewar [15]. The extra

tendency of same-spin electrons to avoid one another is sometimes called “Pauli

repulsion”, and is said to be what prevents all material objects (like molecules) from

interpenetrating; this term is convenient but can be misleading, because there is no

special force associated with the effect: the only forces known to science are the

electromagnetic, gravitational, weak nuclear and strong nuclear. Note that outside

the nucleus the only significant forces in atoms and molecules are electrostatic
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i.e. electromagnetic); there are no weird “quantum-mechanical forces” in chemistry

[16] (in nuclear chemistry the well-defined weak and strong forces may come into

play). Chemical reactions involve the shuffling of atomic nuclei under the influence

of the electromagnetic force.

5.2.3.3 The Variation Theorem (Variation Principle)

The energy calculated from Eq. (5.14) is the expectation value of the energy

operator Ĥ , i.e. the expectation value of the Hamiltonian operator. In quantum

mechanics an integral of a wavefunction “over” an operator, like ψ
��Ĥ ��ψi


in

Eq. (5.14), is the expectation value of that operator. The expectation value is the

value (strictly, the quantum-mechanical average value) of the physical quantity

represented by the operator. Every “observable”, i.e. every measurable property of

a system, is thought to have a quantum mechanical operator from which the

property could be calculated, at least in principle, by integrating the wavefunction

over the operator. The expectation value of the energy operator Ĥ (for which

a better symbol might have been Ê ) is the energy E of the molecule or atom. Of

course this energy will be the exact, true energy of the molecule only if the

wavefunction Ψ and the Hamiltonian Ĥ are exact. The variation theorem states

that the energy calculated from Eq. (5.14) must be greater than or equal to the true
ground-state energy of the molecule. The theorem [17] (it can be stated more

rigorously, specifying that Ĥ must be time-independent and Ψ must be normalized

and well-behaved) assures us that any ground state (we examine electronic

ground states much more frequently than we do excited states) energy we calculate

6 J integrals
(between all pairs of electrons)

2 K integrals
(between electrons of the same spin)

Fig. 5.4 The J integrals represent interactions between all pairs of electrons; the K integrals

represent interactions between only electrons of the same spin
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“variationally”, i.e. using Eq. (5.14), must be greater than or equal to the true energy

of the molecule. This is useful because it tells us that a test for the quality of a

wavefunction is the value of the energy calculated from it variationally: the lower

the better. We can try to improve our wavefunction, checking the variational energy

against that from previous functions. In practice, any molecular wavefunction we

insert into Eq. (5.14) is always only an approximation to the true wavefunction and

so the variationally calculated molecular energy will always be greater than the true

energy. The Hartree-Fock energy is variational, but as we will see, not all quantum

chemical energies are. The Hartree-Fock energy levels off at a value above the true

energy as the Hartree-Fock wavefunction, based on a Slater determinant, is

improved; this is discussed in Sect. 5.5, in connection with post-Hartree-Fock

methods.

5.2.3.4 Minimizing the Energy; The Hartree-Fock Equations

The Hartree-Fock equations are obtained from Eq. (5.17) by minimizing the energy

with respect to the atomic or molecular orbitals ψ . The minimization is carried out

with the constraint that these orbitals ψ comprising Ψ in Eq. (5.14) remain orthog-

onal, for any two eigenvectors of the energy operator corresponding to different

eigenvalues (energy levels) are orthogonal (see the discussion of Hermitian oper-

ators in any standard book on quantum mechanics), and we also choose to make the

ψ normalized, thus making their overlap matrix S simply orthonormal. Minimizing

a function subject to constraints can be done using the method of undetermined

Lagrangian multipliers [18]. For orthonormality the overlap integrals S of Smust be

constants (¼ δij, i.e. 0 or 1) and at the minimum the energy is constant (¼ Emin).

Thus at Emin any linear combination of E and Sij is constant:

Eþ
Xn
i¼1

Xn
j¼1

lijSij ¼ constant ð5:23Þ

where lij are the Lagrangian multipliers; we don’t know what they are, physically,

yet (after all, they are “undetermined”). Differentiating with respect to the ψ ’ s of

the S’s:

dEþ d
Xn
i¼1

Xn
j¼1

lijSij ¼ 0 ð5:24Þ

Substituting the expression for E from Eq. (5.17) into Eq. (5.24) we get

2
Xn
i¼1

dHii þ
Xn
i¼1

Xn
j¼1

2dJij � dKij

� �þXn
i¼1

Xn
j¼1

lijdSij ¼ 0 ð5:25Þ
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Note that this procedure of minimizing the energy with respect to the molecular
orbitals ψ is somewhat analogous to the minimization of energy with respect to the

atomic orbital coefficients c in the less rigorous procedure which gave the Hückel
secular equations in Chap. 4, Sect. 4.3.4. It is also somewhat similar to finding a

relative minimum on a PES (Chap. 2, Sect. 2.4), but with energy in that case being

varied with respect to geometry rather than parameters of MOs. Since the procedure

starts with Eq. (5.14) and varies the MO’s to find the minimum value of E, it is
called the variation method; the variation theorem/principle (Sect. 5.2.3.3) assures

us that the energy we calculate from the results will be greater than or equal to the

true energy.

From the definitions of Hii, Jij, Kij and Sij we get

dHii ¼
Z

dψ*
i 1ð ÞĤ core

1ð Þψ i 1ð Þdv1 þ
Z

ψ*
i 1ð ÞĤ core

1ð Þdψ i 1ð Þdv1 ð5:26Þ

dJij ¼
Z

dψ*
i 1ð ÞĴj 1ð Þψ i 1ð Þdv1 þ

Z
dψ*

j 1ð ÞĴi 1ð Þψ j 1ð Þdv1 þ complex conjugate

ð5:27Þ

dKij ¼
Z

dψ*
i 1ð ÞK̂j 1ð Þψ i 1ð Þdv1 þ

Z
dψ*

j 1ð ÞK̂i 1ð Þψ j 1ð Þdv1 þ complex conjugate

ð5:28Þ

where

Ĵi 1ð Þ ¼
Z

ψ*
i 2ð Þ 1

r12

� �
ψ i 2ð Þdv2 ð5:29Þ

and

K̂i 1ð Þψ j 1ð Þ ¼ ψ i 1ð Þ
Z

ψ*
i 2ð Þ 1

r12

� �
ψ j 2ð Þdv2 ð5:30Þ

and similarly for Ĵj and K̂ j.

dSij ¼
Z

dψ*
i 1ð Þψ j 1ð Þdv1 þ ψ*

i 1ð Þdψ j 1ð Þv1 ð5:31Þ

Using for dH, dJ, dK and dS the expressions in Eqs. (5.26), (5.27), (5.28) and

(5.31), Eq. (5.25) becomes

2
Xn
i¼1

Z
dψ*

i 1ð Þ Ĥ
core

1ð Þψ i 1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ�ψ i

�
1

� �þ 1

2

Xn
j¼1

lijψ j 1ð Þ
" #

dv

þ complexconjugate ¼ 0

ð5:32Þ
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Since the MOs can be varied independently, and the expression on the left side is

zero, both parts of Eq. (5.32) (the part shown and the complex conjugate) equal

zero. It can be shown that a consequence of

2
Xn
i¼1

Z
dψ*

i 1ð Þ Ĥ
core

1ð Þψ i 1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ�ψ i

�
1

� �þ 1

2

Xn
j¼1

lijψ j 1ð Þ
" #

dv ¼ 0

ð5:33Þ

is that

Ĥ
core

1ð Þψ i 1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ�ψ i

�
1

� �þ 1

2

Xn
j¼1

lijψ j 1ð Þdv ¼ 0

i.e.

Ĥ
core

1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ� �" #
ψ i 1ð Þ ¼ �1

2

Xn
j¼1

lijψ j 1ð Þ ð5:34Þ

Eq. (5.34) can be written

F̂ψ i 1ð Þ ¼ �1

2

Xn
j¼1

lijψ j 1ð Þ ð5:35Þ

where F̂ is the Fock operator :

F̂ ¼ Ĥ
core

1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ� � ð5:36Þ

We want an eigenvalue equation because (cf. Sect. 4.3.4) we hope to be able to

use the matrix form of a series of such equations to invoke matrix diagonalization to

get eigenvalues and eigenvectors. Eq. (5.35) is not quite an eigenvalue equation,

because it is not of the form Operation on function¼ k� function, but rather

Operation on function¼ sum of (k� functions). However, by transforming the

molecular orbitals ψ to a new set the equation can be put in eigenvalue form

(with a caveat, as we shall see). Eq. (5.35) represents a system of equations

F̂ψ1 1ð Þ ¼ �1

2
l11ψ1 1ð Þ þ l12ψ2 1ð Þ þ l13ψ3 1ð Þ þ � � � þ l1nψn 1ð Þ½ � i ¼ 1

F̂ψ2 1ð Þ ¼ �1

2
l21ψ1 1ð Þ þ l22ψ2 1ð Þ þ l23ψ3 1ð Þ þ � � � þ l2nψn 1ð Þ½ � i ¼ 2

⋮
F̂ψn 1ð Þ ¼ �1

2
ln1ψ1 1ð Þ þ ln2ψ2 1ð Þ þ ln3ψ3 1ð Þ þ � � � þ lnnψn 1ð Þ½ � i ¼ n

ð5:37Þ
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There are n spatial orbitals ψ since we are considering a system of 2n electrons

and each orbital holds two electrons. The 1 in parentheses on each orbital empha-

sizes that each of these n equations is a one-electron equation, dealing with the same

electron (we could have used a 2 or a 3, etc.), i.e. the Fock operator (Eq 5.36)) is a

one-electron operator, unlike the general electronic Hamiltonian operator of

Eq. (5.15), which is a multi-electron operator (a 2n electron operator for our specific
case). The Fock operator acts on a total of n spatial orbitals, the ψ1, ψ2, . . ., ψn in

Eqs. (5.35).

The series of Eqs. (5.37) can be written as the single matrix equation (cf. Chap. 4,

Eq. (4.50))

F̂

ψ1 1ð Þ
ψ2 1ð Þ
ψ3 1ð Þ
⋮

ψn 1ð Þ

0
BBBB@

1
CCCCA ¼ �1

2

l11 l12 l13 � � � l1n
l21 l22 l23 � � � l2n
⋮ ⋮ . . . ⋮
ln1 ln2 ln3 � � � lnn

0
BB@

1
CCA

ψ1 1ð Þ
ψ2 1ð Þ
ψ3 1ð Þ
⋮

ψn 1ð Þ

0
BBBB@

1
CCCCA ð5:38Þ

i.e.

F̂c ¼ �1

2
Lc ð5:39Þ

In Eqs. (5.37), each equation will be of the form F̂ψ i ¼ kψ i, which is what we

want, if all the lij¼ 0 except for i¼ j (for example, in the first equation F̂ψ1 1ð Þ ¼ �
1=2ð Þl11ψ1 1ð Þ if the only nonzero l is l11). This will be the case if in Eq 5.39) L is a

diagonal matrix. It can be shown that L is diagonalizable (Chap. 4, Sect. 4.3.3),

i.e. there exist matrices P, P�1 and a diagonal matrix L0 such that

L ¼ PL0P�1 ð5:40Þ

Substituting L from Eq. (5.40) into Eq. (5.39):

F̂c ¼ �1

2
PL

0
P�1c ð5:41Þ

Multiplying on the left by P�1 and on the right by P we get

F̂P�1cP ¼ �1

2
P�1P
� �

L
0
P�1cP
� �

which, since P�1P¼ 1 can be written

F̂c
0 ¼ �1

2
L0c0 ð5:42Þ

where
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c0 ¼ P�1cP ð5:43Þ

We may as well remove the -1/2 factor by incorporating it into L0, and we can

omit the prime from Ψ (had we been prescient we could have started the derivation

using primes then written Ψ ¼ P�1ψ0P for Eq. (5.43)). Equation (5.42) then

becomes (notationally anticipating the soon-to-be-apparent fact that the diagonal

matrix is an energy-level matrix)

F̂c ¼ εc ð5:44Þ

where

ε ¼
�1=2ð Þl11 0 0 . . . 0

0 �1=2ð Þl22 0 . . . 0

⋮ ⋮ . . . ⋮
0 0 0 . . . �1=2ð Þlnn

0
BB@

1
CCA ð5:45Þ

Equation (5.44) is the compact form of (cf. Eq. (5.38)). Thus

F̂

ψ1 1ð Þ
ψ2 1ð Þ
ψ3 1ð Þ
⋮

ψn 1ð Þ

0
BBBB@

1
CCCCA ¼

ε1 0 0 . . . 0

0 ε2 0 . . . 0

⋮ ⋮ . . . ⋮
0 0 0 . . . εn

0
BB@

1
CCA

ψ1 1ð Þ
ψ2 1ð Þ
ψ3 1ð Þ
⋮

ψn 1ð Þ

0
BBBB@

1
CCCCA ð5:46Þ

where the superfluous double subscripts on the ε’s have been replaced by single

ones. Eqs. (5.44/5.46) are the matrix form of the system of equations

F̂ψ1 1ð Þ ¼ ε1ψ1 1ð Þ
F̂ψ2 1ð Þ ¼ ε2ψ2 1ð Þ
F̂ψ3 1ð Þ ¼ ε3ψ3 1ð Þ

⋮
F̂ψn 1ð Þ ¼ εnψn 1ð Þ

ð*5:47Þ

These Eqs. (5.47) are the Hartree-Fock equations; the matrix form is Eq. (5.44)

or Eq. (5.46). By analogy with the Schr€odinger equation Ĥψ ¼Eψ , we see that they
show that the Fock operator acting on a one-electron wavefunction (an atomic or

molecular orbital) generates an energy value times the wavefunction. Thus the

Lagrangian multipliers lii turned out to be (with the �1/2 factor) the energy values

associated with the orbitals ψ i. Unlike the Schr€odinger equation the Hartree-Fock

equations are not quite eigenvalue equations (although they are closer to this ideal

than is Eq. (5.35)), because here in F̂ψ i ¼ kψ i the Fock operator F̂ is itself dependent
on ψ i; in a true eigenvalue equation the operator can be written down without

reference to the function on which it acts. The significance of the Hartree-Fock

equations is discussed in the next section.
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5.2.3.5 The Meaning of the Hartree-Fock Equations

The Hartree-Fock Eqs. (5.47) (in matrix form Eqs. (5.44) and (5.46)) are

pseudoeigenvalue equations asserting that the Fock operator F̂ acts on a

wavefunction ψ i to generate an energy value εi, times ψ i. Pseudoeigenvalue
because, as stated above, in a true eigenvalue equation the operator is not dependent

on the function on which it acts; in the Hartree-Fock equations F̂ depends on ψ

because (Eq. (5.36)) the operator contains Ĵ and K̂, which in turn depend

(Eqs. (5.29) and (5.30)) on ψ . Each of the equations in the set (5.47) is for a single

electron (“electron one” is indicated, but any ordinal number could be used), so the

Hartree-Fock operator F̂ is a one-electron operator, and each spatial molecular

orbital ψ i is a one-electron function (of the coordinates of the electron). Two

electrons can be placed in a spatial orbital because the full description of each of

these electrons requires a spin function α or β (Sect. 5.2.3.1) and each electron

“moves in” a different spin orbital. The result is that the two electrons in the spatial

orbital ψ do not have all four quantum numbers the same (for an atomic 1 s orbital,
for example, one electron has quantum numbers n¼ 1, l¼ 0, m¼ 0 and s¼ 1/2,

while the other has n¼ 1, l¼ 0, m¼ 0 and s¼�1/2), and so the Pauli exclusion

principle is not violated.

The functions ψ are the spatial molecular (or atomic) orbitals or wavefunctions

that (along with the spin functions) make up the overall or total molecular

(or atomic) wavefunction ψ , which can be written as a Slater determinant

(Eq. (5.12)). Concerning the energies εi, from the fact that

εi ¼
Z

ψ iF̂ψ idv ð5:48Þ

(this follows simply from multiplying both sides of a Hartree-Fock equation by ψ i

and integrating, noting that ψ i is normalized) and the definition of F̂ (Eq. (5.36))

we get

εi ¼
Z

ψ i 1ð ÞĤcore
1ð Þψ i 1ð Þdvþ

Xn
j¼1

2Jij 1ð Þ � Kij 1ð Þ� � ð5:49Þ

i.e.

εi ¼ H core
ii þ

Xn
j¼1

2Jij 1ð Þ � Kij 1ð Þ� � ð5:50Þ

(the operators Ĵ and K̂ in Eq. (5.36) have been transformed by integration into the

integrals J and K in Eq 5.49)). Eq. (5.50) shows that εi is the energy of an electron in
ψ i subject to interaction with all the other electrons in the molecule: Hcore

ii

(Eq (5.18)) is the integral giving the energy of the electron due only to its motion
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(kinetic energy) and to the attraction of the nuclear core (electron-nucleus potential

energy), while the sum of J and K terms represents the exchange-corrected (via K )

Coulombic repulsion (through J) energy resulting from the interaction of the

electron with all the other electrons in the molecule or atom [19].

In principle the Eqs. (5.47) allow us to calculate the molecular orbitals (MO’s) ψ
and the energy levels ε. We could start with “guesses” (possibly obtained by

intuition or analogy) of the MO’s (the zeroth approximation to the MOs) and use

these to construct the operator F̂ (Eq. (5.36), then allow F̂ to operate on the guesses

to yield energy levels (the first approximation to the εi) and new, improved

functions (the first calculated approximations to the ψ i). Using the improved

functions in F̂ and operating on these gives the second approximations to the ψ i

and εi, and the process is continued until ψ i and εi no longer change (within preset

limits), which occurs when the smeared-out electrostatic field represented in

Eq. (5.17) by
PP

2J � Kð Þ (cf. Fig. 5.3) ceases to change appreciably–is

consistent from one iteration cycle to the next, i.e. is self-consistent. How do we

know that iterations improve psi and epsilon? This is usually, but not invariably, the
case [20]; in practice “initial guess” solutions to the Hartree-Fock equations usually

converge fairly smoothly to give the best wavefunction and orbital energies (and

thus total energy) that can be obtained by the HF method from the particular kind

of guess wavefunction (e.g. basis set; Sect. 5.2.3.6.5).

To expand a bit on Dewar’s cautious endorsement of the SCF procedure [20]

(“SCF calculations are by no means foolproof; . . .Usually one finds a reasonably

rapid convergence to the required solution”): occasionally a wavefunction is

obtained that is not the best one available from the chosen basis set. This phenom-

enon is called wavefunction instability. To see how this could happen note that

the SCF method is an optimization procedure somewhat analogous to geometry

optimization (Chap. 2, Sect. 2.4). In geometry optimization we seek a relative

minimum or a transition state on a hypersurface in a mathematical energy versus

nuclear coordinates space defined by E¼ f (nuclear coordinates); in wavefunction

optimization we seek a global minimum on a hypersurface in an energy versus basis

function coefficients space defined by E¼ f (basis function coefficients). The

wavefunction found may correspond to a point on the hypersurface that is not

even a minimum, but rather a saddle point. Even if it is the global minimum, if we

are using a restricted Hartree-Fock (RHF) wavefunction rather than an unrestricted

(UHF) one (end of Sect. 5.2.3.6.5), there are cases in which a lower energy will

be obtained by switching to a UHF function. The RHF function is then said to

show external or triplet instability. If within the type of wavefunction we are using

(RHF or UHF) a better function can be found by moving to another point on the

hypersurface, away from a saddle point or a higher-energy minimum, the

wavefunction is said to show internal instability. There are algorithms that will

test for wavefunction instability and alter coefficients to obtain the best

wavefunction from the chosen basis set. Seeger and Pople pioneered the mathe-

matical analysis of and some cures for wavefunction instability [21], and in more

chemical language Dahareng and Dive have examined about 80 molecules for the
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phenomenon and offer some generalizations [22]. Instability can occur also with

post-Hartree-Fock (correlated) (Sect. 5.4) wavefunctions [23]. Chemists do not

routinely test for wavefunction stability, and indeed it is rarely a problem except

for unusual molecules, e.g. p-benzyne [24]. However, when investigating exotic

(as judged by the experienced chemist) molecules, it is good practice to carry out

this check.

The Hartree-Fock SCF method is, of course, in exactly the same iterative spirit

as the procedure described in Sect. 5.2.2 using the Hartree product as our total or

overall wavefunction Ψ. The main difference between the two methods is that the

Hartree-Fock method represents Ψ as a Slater determinant of component spin MOs

rather than as a simple product of spatial MOs, and a consequence of this is that the

calculation of the average Coulombic field in the Hartree method involves only the

Coulomb integral J, but in the Hartree-Fock modification we need the Coulomb

integral J and the exchange integral K, which arises from Slater determinant terms

that differ in exchange of electrons. Because K acts as a kind of “Pauli correction”

to the classical electrostatic repulsion, reminding the electrons that two of them of

the same spin cannot occupy the same spatial orbital, electron-electron repulsion

is less in the Hartree-Fock method than if a simple Hartree product were used.

Of course K does not arise in calculations involving no electrons of like spin, as in

H2 or (Chap. 4, Sect. 4.4.2; also Sect. 5.2.3.6.5) HHe
+, which have only two, paired-

spin, electrons. At the end of the iterative procedure we have the MO’s ψ i and their

corresponding energy levels εi, and the total wavefunctionΨ, the Slater determinant

of the ψ i’s. The εi can be used to calculate the total electronic energy of the

molecule, and the MO’s ψ i are useful heuristic approximations to the electron

distribution, while the total wavefunction Ψ can in principle be used to calculate

anything about the molecule, as the expectation value of some operator. Applica-

tions of the energy levels and the MO’s are given in Sect. 5.4.

5.2.3.6 Basis Functions and The Roothaan-Hall Equations

5.2.3.6.1 Deriving the Roothaan-Hall Equations

As they stand, the Hartree-Fock Eqs. (5.44), (5.46) or (5.47) are not very useful for

molecular calculations, mainly because (1) they do not prescribe a mathematically

viable procedure getting the initial guesses for the MO wavefunctions ψ i, which we

need to initiate the iterative process (Sect. 5.2.3.5), and (2) the wavefunctions may

be so complicated that they contribute nothing to a qualitative understanding of the

electron distribution.

For calculations on atoms, which obviously have much simpler orbitals than

molecules, we could use for the ψ’s atomic orbital wavefunctions based on the

solution of the Schr€odinger equation for the hydrogen atom (taking into account the

increase of atomic number and the screening effect of inner electrons on outer ones.

This yields the atomic wavefunctions, which in pre-computer days, anyway, were

recorded as tables of ψ at various distances from the nucleus [25]. This is not a
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suitable approach for molecules because among molecules there is no prototype

species occupying a place analogous to that of the hydrogen atom in the hierarchy

of atoms, and as indicated above it does not readily lend itself to an interpretation of

how molecular properties arise from the nature of the constituent atoms.

In 1951 Roothaan and Hall independently pointed out [26] that these problems

can be solved by representing MO’s as linear combinations of basis functions (just

as in the simple Hückel method, in Chap. 4, the πMO’s are constructed from atomic

p orbitals). Roothaan’s paper was more general and more detailed than Hall’s,
which was oriented to semiempirical calculations and alkanes, and the method is

sometimes called the Roothaan method. For a basis-function expansion of MO’s we
write

ψ1 ¼ c11ϕ1 þ c21ϕ2 þ c31ϕ3 þ � � � þ cm1ϕm

ψ2 ¼ c12ϕ1 þ c22ϕ2 þ c32ϕ3 þ � � � þ cm2ϕm

ψ3 ¼ c13ϕ1 þ c23ϕ2 þ c33ϕ3 þ � � � þ cm3ϕm

⋮
ψm ¼ c1mϕ1 þ c2mϕ2 þ c3mϕ3 þ � � � þ cmmϕm

ð*5:51Þ

In devising a more compact notation for this set of equations it is very helpful,

particularly when we come to the matrix treatment in Sect. 5.2.3.6.3, to use

different subscripts to denote the MO’s ψ and the basis functions ϕ. Convention-
ally, Roman letters have been used for the ψ’s and Greek letters for the ϕ’s, or i, j, k,
l, . . . for the ψ’s and r, s, t, u, . . . for the ϕ’s. The latter convention will be adopted

here, and we can write the Eqs. (5.51) as

s=1

m

m basis functions s th basis function 

c of the s th basis function of i th MO

i = 1, 2, 3, ..., m (m MOs) yi =  ∑csi fs

i th MO

ð5:52Þ

We are expanding each MO ψ in terms of m basis functions. The basis functions

are usually (but not necessarily) located on atoms, i.e. for the function ϕ(x, y, z),
where x, y, z are the coordinates of the electron being treated by this one-electron

function, the distance of the electron from the nucleus is:

r ¼ x� x0ð Þ2 þ y� y0ð Þ2 þ z� z0ð Þ2
h i1=2

ð5:53Þ

where x0, y0, z0 are the coordinates of the atomic nucleus in the coordinate system

used to define the geometry of the molecule. Because each basis function may

usually be regarded (at least vaguely) as some kind of atomic orbital, this linear

combination of basis functions approach is commonly called a linear combination

of atomic orbitals (LCAO) representation of the MO’s, as in the simple and

216 5 Ab initio Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_4


extended Hückel methods (Chap. 4, Sects. 4.3.4 and 4.4.1). The set of basis

functions used for a particular calculation is called the basis set.
We need at least enough spatial MO’s ψ to accommodate all the electrons in the

molecule, i.e. we need at least n ψ’s for the 2n electrons (recall that we are dealing

with closed-shell molecules). This is ensured because even the smallest basis sets

used in ab initio calculations have for each atom at least one basis function

corresponding to each orbital conventionally used to describe the chemistry of

the atom, and the number of basis functions ϕ is equal to the number of (spatial)

MOs ψ (Chap. 4, Sect. 4.3.4; this is analogous to two AOs generating twoMOs). An

example will make this clear: for an ab initio calculation on CH4, the smallest basis

set would specify for C:

ϕ C, 1sð Þ, ϕ C, 2sð Þ, ϕ C, 2pxð Þ, ϕ C, 2py
� �

, ϕ C, 2pzð Þ

and for each H:

ϕ H, 1sð Þ

These nine basis functions ϕ (5 on C and 4� 1¼ 4 on H) create nine spatial

MO’s ψ , which could hold 18 electrons; for the 10 electrons of CH4 we need only

5 spatial MO’s. There is no upper limit to the size of a basis set: there are commonly

many more basis functions, and hence MO’s, than are needed to hold all the

electrons, so that there are usually many unoccupied (“virtual”) MO’s. In other

words, the number of basis functionsm in the expansions (5.52) can be much bigger

than the number n of pairs of electrons in the molecule, although only the

n occupied spatial orbitals are used to construct the Slater determinant which

represents the HF wavefunction (Sect. 5.2.3.1). This point, and basis sets, are

discussed further in Sect. 5.3.

To continue with the Roothaan-Hall approach, we substitute the expansion

(5.52) for the ψ’s into the Hartree-Fock Eqs. (5.47), getting (we will work with

m, not n, HF equations since there is one such equation for each MO, and our

m basis functions will generate m MO’s):

Xm
s¼1

cs1F̂ϕsj ¼ ε1
Xm
sj¼1

cs1ϕs

Xm
s¼1

cs2F̂ϕs ¼ ε2
Xm
s¼1

cs2ϕs

⋮Xm
s¼1

csmF̂ϕs ¼ εm
Xm
s¼1

csmF̂ϕs

ð5:54Þ

( F̂ perates on the functions ϕ, not on the c’s, which have no variables x, y, z).
Multiplying each of these m equations by ϕ1, ϕ2,. . ., ϕm, (or ϕ1* etc. if the ϕ’s are
complex functions, as is occasionally the case) and integrating transforms the Fock

operators into Fock integrals, and we get m sets of equations (one for each of the

basis functions ϕ).
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Basis function ϕ1 gives

Xm
s¼1

cs1F1s ¼ ε1
Xm
s¼1

cs1S1s

Xm
sj¼1

cs2F1s ¼ ε2
Xm
s¼1

cs2S1s

⋮Xm
s¼1

csmF1s ¼ εm
Xm
s¼1

csmS1s

ð5:54-1Þ

where

Frs ¼
Z

ϕrF̂ϕsdv and Srs ¼
Z

ϕrϕsdv ð5:55Þ

Basis function ϕ2 gives

Xm
s¼1

cs1F2s ¼ ε1
Xm
s¼1

cs1S2s

Xm
s¼1

cs2F2s ¼ ε2
Xm
s¼1

cs2S2s

⋮Xm
s¼1

csmF2s ¼ εm
Xm
s¼1

csmS2s

ð5:54-2Þ

Finally, basis function ϕm gives

Xm
s¼1

cs1Fms ¼ ε1
Xm
s¼1

cs1Sms

Xm
s¼1

cs2Fms ¼ ε2
Xm
s¼1

cs2Sms

⋮Xm
s¼1

csmFms ¼ εm
Xm
s¼1

csmSms

ð5:54-mÞ

In the m sets of Eqs. (5.54) each set itself contains m equations (the subscript of

ε, for example, runs from 1 to m), for a total of m�m equations. These equations

are the Roothaan-Hall version of the Hartree-Fock equations; they were obtained by

substituting for the MO’s ψ in the HF equations a linear combination of basis

functions (ϕ’s weighted by c’s). The Roothaan-Hall equations are usually written

more compactly, as
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Xm
s¼1

Frscsi ¼
Xm
s¼1

Srscsiεi r ¼ 1, 2, 3, . . . , m,

foreach i ¼ 1, 2, 3, . . . , mð Þ
ð5:56Þ

We have m�m equations because each of the m spatial MO’s ψ we used (recall

that there is one HF equation for each ψ , Eqs. (5.47)) is expanded with m basis

functions. The Roothaan-Hall equations connect the basis functions ϕ (contained in

the integrals F and S, Eqs. (5.55)), the coefficients c, and the MO energy levels ε.
Given a basis set {ϕs, s¼ 1, 2, 3, . . ., m} they can be used to calculate the c’s, and
thus the MOs ψ (Eq. (5.52)) and the MO energy levels ε. The overall electron

distribution in the molecule can be calculated from the total wavefunction Ψ, which
can be written as a Slater determinant of the “component” spatial wavefunctions ψ
(by including spin functions), and in principle anyway, any property of a molecule

can be calculated from Ψ. The component wavefunctions ψ and their energy levels

ε are extremely useful, as chemists rely heavily on concepts like the shape and

energies of, for example, the HOMO and LUMO of a molecule (MO concepts are

reviewed in Chap. 4). The energy levels enable (with a correction term) the total

energy of a molecule to be calculated, and so the energies of molecules can be

compared and reaction energies and activation energies can be calculated. The

Roothaan-Hall equations, then, are a cornerstone of modern ab initio calculations,

and the procedure for solving them is outlined next. These ideas are summarized

pictorially in Fig. 5.5.

weighted sum

energyMO #

Using, e.g., a set of 4 basis functions:

y4 e4

y3 e3

y2 e2

y1 e1

(the weighting factors are the MO coefficients c){ f1, f2, f3, f4}

y1(1)a(1)  y1(1)b(1)  y2(1)a(1)  y2(1)b(1)

y1(4)a(4)  y1(4)b(4)  y2(4)a(4)  y2(4)b(4)

y1(3)a(3)  y1(3)b(3)  y2(3)a(3)  y2(3)b(3)

y1(2)a(2)  y1(2)b(2)  y2(2)a(2)  y2(2)b(2)

If there are 4 electrons in the molecule, then y1 and y2
are occupied (and y3 and y4 are virtual orbitals). The
occupied orbitals are used to construct the total wavefunction,
as a Slater determinant of spin orbitals.

ψ =

Fig. 5.5 Pictorial representation of basis functions, MO’s, total wavefunction, and energy levels
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The fact that the Roothaan-Hall equations Eqs. (5.56) are really a total of m�m
equations suggests that they might be expressible as a single matrix equation, since

the single matrix equation AB¼ 0, where A and B are m�m matrices, represents

m�m “simple” equations, one for each element of the product matrix AB (work it

out for two 2� 2 matrices). A single matrix equation would be easier to work with

than m2 equations and might allow us to invoke matrix diagonalization as in the

case of the simple and extended Hückel methods (Chap. 4, Sects. 4.3.4 and 4.4.1).

To subsume the sets of Eqs. (5.54), i.e. Eqs. (5.56), into one matrix equation, we

might (eschewing a rigorous deductive approach) suspect that the matrix form is the

fairly obvious possibility

FC ¼ SCε ð*5:57Þ
Here F, C and S would have to be m�mmatrices, since there are m2 F’s, c’s and

S’s, and ε would be an m�m diagonal matrix with the nonzero elements ε1, ε2, . . .,
εm, since ε must contain only m elements, but has to be m�m to make the right

hand side matrix product the same size as that on the left.

This is easily checked: the left hand side of Eq. (5.57) is

FC¼
F11 F12 F13 � � � F1m

F21 F22 F23 � � � F2m

⋮ ⋮ . . . ⋮
Fm1 Fm2 Fm3 � � � Fmm

0
BB@

1
CCA

c11 c12 c13 � � � c1m
c21 c22 c23 � � � c2m
⋮ ⋮ . . . ⋮
cm1 cm2 cm3 � � � cmm

0
BB@

1
CCA

¼
F11c11 þ F12c21 þ F13c31 � � � F11c12 þ F12c22 þ F13c32 � � � � � �
F21c11 þ F22c21 þ F23c31 � � � F21c12 þ F22c22 þ F23c33 � � � � � �

⋮

0
@

1
A

ð5:58Þ
The right hand side of Eq. (5.57) is

SCε ¼
S11 S12 � � � S1m
S21 S22 � � � S2m
⋮ ⋮ � � � ⋮
Sm1 Sm2 � � � Smm

0
BB@

1
CCA

c11 c12 � � � c1m
c21 c22 � � � c2m
⋮ ⋮ � � � ⋮
cm1 cm2 � � � cmm

0
BB@

1
CCA

ε11 0 � � � 0

0 ε22 � � � 0

⋮ ⋮ � � � ⋮
0 0 � � � εmm

0
BB@

1
CCA

¼
ε1 S11c11 þ S12c21 þ S13c31� � �ð Þ ε2 S11c12 þ S12c22 þ S13c32� � �ð Þ � � �
ε1 S21c11 þ S22c21 þ S23c31� � �ð Þ ε2 S21c12 þ S22c22 þ S23c33� � �ð Þ � � �

⋮

0
@

1
Aε

¼
S11c11 þ S12c21 þ S13c31 � � � S11c12 þ S12c22 þ S13c32 � � � � � �
S21c11 þ S22c21 þ S23c31 � � � S21c12 þ S22c22 þ S23c33 � � � ⋮

⋮

0
@

1
A
ð5:59Þ

Now compare FC (5.58) and SCε (5.59). Comparing element a11 of FC (mul-

tiplied out to give a single matrix as shown in (5.58)) with element a11 of SCε
(multiplied out to give a single matrix as shown in (5.59)) we see that if FC¼ SCε,
i.e. if (5.57) is true, then

220 5 Ab initio Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_4
http://dx.doi.org/10.1007/978-3-319-30916-3_4
http://dx.doi.org/10.1007/978-3-319-30916-3_4


F11c11 þ F12c21 þ F13c31 þ � � � ¼ ε S11c11 þ S12c21 þ S13c31 þ � � �ð Þ

i.e.

Xm
s¼1

csiFrs ¼ ε
Xm
s¼1

csiSrs ð5:60Þ

But this is the first equation of the set (5.54-1). Continuing in this way we see

that matching each element of the multiplied-out matrix FC (5.58) with the

corresponding element of the multiplied-out matrix SCε gives one of the equations
of the set (5.54), i.e. of the set (5.56). This can be so only if FC¼ SCε, so this

matrix equation is indeed equivalent to the set of Eqs. (5.54-1 to 5.54-m).
Now we have FC¼ SCε (5.57), the matrix form of the Roothaan-Hall equations.

These equations are sometimes called the Hartree-Fock-Roothaan equations, and,

often, the Roothaan equations, as Roothaan’s exposition was the more detailed and

addresses itself more clearly to a general treatment of molecules. Before showing

how they are used to do ab initio calculations, a brief review of how we got these

equations is in order.

Summary of the Derivation of the Roothaan-Hall Equations

1. The total wavefunction Ψ of an atom or molecule was expressed as a Slater

determinant of spin MO’s ψ(spatial)α and ψ(spatial)β, Eq. (5.12).
2. From the Schr€odinger equation we got an expression for the electronic energy of

the atom or molecule, E ¼ Ψ Ĥ
�� ��Ψ
 �

, Eq. (5.14).

3. Substituting the Slater determinant for the total molecular wavefunction Ψ and

inserting the explicit form of the Hamiltonian operator Ĥ into (5.14) gave the

energy in terms of the spatial MO’s ψ , (Eq. (5.17):

E ¼ 2
Xn
i¼1

Hii þ
Xn
i¼1

Xn
j¼1

�
2Jij � Kij

�

4. Minimizing E in (5.17) with respect to the ψ’s (to find the best ψ’s) gave the

Hartree-Fock equations F̂ψ ¼ εψ (5.44).

5. Substituting into the Hartree-Fock equations F̂ψ ¼ εψ (5.44) the Roothaan-Hall

linear combination of basis functions (LCAO) expansions ψ i ¼
X

csiϕs (5.52)

for the MO’s ψ gave the Roothaan-Hall equations (Eqs. (5.56)), which can be

written compactly as FC¼ SCε (Eqs. (5.57)).

5.2.3.6.2 Using the Roothaan-Hall Equations to Do Ab initio

Calculations–The SCF Procedure

The Roothaan-Hall matrix equations FC¼ SCε (Eqs. (5.57)) (F, C, S and ε are

defined in connection with Eqs. (5.58) and (5.59); the matrix elements F and S,
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defined by Eq. (5.55), are of the same matrix form as Eq. (4.54), HC¼ SCε,
in the simple Hückel method (Chap. 4, Sect. 4.3.4) and the extended Hückel
(Chap. 4, Sect. 4.4.1) method. Here, however, we have seen (in outline) how the

equation may be rigorously derived. Also, unlike the case in the Hückel methods

the Fock matrix elements are rigorously defined theoretically: from Eqs. (5.55)

Frs ¼
Z

ϕrF̂ϕsdv ð5:61 ¼ 4:54Þ

and Eq. (5.36)

F̂ ¼ Ĥ
core

1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ� � ð5:62 ¼ 5:36Þ

it follows that

Frs ¼
Z

ϕr Ĥ
core

1ð Þ þ
Xn
j¼1

2Ĵj 1ð Þ � K̂j 1ð Þ� �" #
ϕsdv ð5:63Þ

where

Ĥ
core

1ð Þ ¼ �1

2
∇2

1 �
X
all μ

Zμ

rμ1
ð5:64 ¼ 5:19Þ

Ĵj 1ð Þ ¼
Z

ψ*
j 2ð Þ 1

r12

� �
ψ j 2ð Þdv2 ð5:65 ¼ 5:29Þ

and

K̂i 1ð Þψ j 1ð Þ ¼ ψ i 1ð Þ
Z

ψ*
i 2ð Þ 1

r12

� �
ψ j 2ð Þdv2 ð5:66 ¼ 5:30Þ

To use the Roothaan-Hall equations we want them in standard eigenvalue-like

form so that we can diagonalize the Fock matrix F of Eq. (5.57) to get the

coefficients c and the energy levels ε, just as we did in connection with the extended
Hückel method (Chap. 4, Sect. 4.4.1). The procedure for diagonalizing F and

extracting the c’s and ε’s and is exactly the same as that explained for the extended

Hückel method (although here the cycle is iterative, i.e. repetitive, see below):

1. The overlap matrix S is calculated and used to calculate an orthogonalizing

matrix S�1=2, as in Eqs. (4.105, 4.106, 4.107):

S ! D ! S�1=2 ð5:67Þ
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2. S�1=2 is used to convert F to F0 (cf. (4.104):

F0 ¼ S�1=2FS�1=2 ð5:68Þ

The transformed Fock matrix F0 satisfies

F0 ¼ C0εC0�1 ð5:69Þ

(cf. Eq. (4.104)). The overlap matrix S is readily calculated, so if F can be

calculated it can be transformed to F0, which can be diagonalized to give C0 and
ε, which latter yields the MO energy levels εi.

3. Transformation of C0 to C (Eq. (4.102)) gives the coefficients csi in the expan-

sion of the MO’s ψ in terms of basis functions ϕ:

C ¼ S�1=2C0 ð5:70Þ

Equations (5.63, 5.64, 5.65 and 5.66) show that to calculate F, i.e. each of the

matrix elements F, we need the wavefunctions ψ i, because Ĵ hat and K̂ hat, the

Coulomb and exchange operators (Eqs. (5.65) and (5.66)), are defined in terms of

the ψ’s. It looks like we are faced with a dilemma: the point of calculating F is

to get (besides the ε’s) the ψ’s (the c’s with the chosen basis set {ϕ} make up the

ψ’s), but to get F we need the ψ’s. The way out of this is to start with a set of

approximate c’s, e.g. from an extended Hückel calculation (there are several other

possibilities), which needs no c’s to begin with because the extended Hückel
“Fock” matrix elements are calculated from experimental ionization energies

(Chap. 4, Sect. 4.4.1). These c’s, the initial guess, are used with the basis functions

ϕ to in effect (Sect. 5.2.3.6.5) calculate initial MO wavefunctions ψ , which are used
to calculate the F elements Frs. Transformation of F to F0 and diagonalization gives
a “first- cycle” set of ε’s and (after transformation of C0 to C) a first-cycle set of c’s.
These c’s are used to calculate new Frs, i.e. a new F, and this gives a second-cycle

set of ε’s and c’s. The process is continued until things–the ε’s, the c’s (as the density
matrix–Sect. 5.2.3.6.4), the energy, or, more usually, some combination of these –

stop changing within certain pre-defined limits, i.e. until the cycles have essentially

converged on the limiting ε’s and c’s. Typically, about ten cycles are needed to

achieve convergence. It is because the operator F̂ depends on the functions ϕ on

which it acts, making an iterative approach necessary, that the Roothaan-Hall

equations, like the Hartree-Fock equations, are called pseudoeigenvalue (see

Sect. 5.2.3.5).

Now, in the Hartree-Fock method (the Roothaan-Hall equations represent one

implementation of the Hartree-Fock method) each electron moves in an average
field due to all the other electrons (see the discussion in connection with Fig. 5.3,

Sect. 5.2.3.2). As the c’s are refined the MO wavefunctions improve and so this

average field that each electron feels improves (since J and K, although not

explicitly calculated (Sect. 5.2.3.2) improve with the ψ’s). When the c’s no longer
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change the field represented by this last set of c’s is (practically) the same as that of

the previous cycle, i.e. the two fields are “consistent” with one another, i.e. “self-

consistent”. This Roothaan-Hall-Hartree-Fock iterative process (initial guess, first

F, first-cycle c’s, second F, second-cycle c’s, third F, etc.) is therefore a self-
consistent-field- procedure or SCF procedure, like the Hartree procedure of

Sect. 5.2.2. The terms “Hartree-Fock calculations/method” and “SCF calcula-

tions/method” are in practice synonymous. The key point to the iterative nature of
the SCF procedure is that to get the c’s (for the MO’s Ψ) and the MO ε’s we

diagonalize a Fock matrix F, but to calculate F we need an initial guess for the c’s
and we then improve the c’s by repeatedly recalculating and diagonalizing F. The

procedure is summarized in Fig. 5.6. Note that in the simple and extended Hückel
methods we do not need the c’s to calculate F, and there is no iterative refinement of

the c’s, so these are not SCF methods (other semiempirical procedures, however

(Chap. 6) do use the SCF approach). A corollary of the SCF procedure is that the

Step 1

Specify geometry, charge and electronic state,
e.g. CH4 cartesian coordinates, charge = 0, singlet
or    CH4 cartesian coordinates, charge = 0, triplet, etc.

Choose a basis set.
Start the calculation.

Define molecule

Step 2
Program calculates integrals: kinetic energy, potential energy, and
overlap integrals.

Step 3

Program calculates orthogonalizing matrix using overlap matrix (composed of
overlap integrals).

Step 4

Program calculates initial Fock matrix using kinetic energy and potential energy integrals
and an initial guess of basis set coefficients (initial guess from, e.g., an extended  
H••ckel calculation; the guess c's usually have to be "projected" to the ab initio basis,
which is almost always bigger than that used for the guess calculation).

Step 5

Program uses orthogonalizing matrix to transform Fock matrix to one based on an
orthonormal set of functions derived from th e original atom-centered basis functions.

Step 6

Program diagonalizes Fock matrix to get c's (based on the orthonormal, derived basis
set) and energy levels.

Step 7

Program transforms the c's to a set based on the original, atom-centered basis functions. 

Step 8

Program compares c's (and/or energy, or other parameters) with the previous set; if the
match is not close enough, another SCF cycle, steps 4--8, is done, using as input for 
step 4 the latest c's. If the match is close enough, the iterations stop.

calculate integrals

calculate othogonalizing
matrix

calculate initial
Fock matrix

1

2

3

4

5

6

7

8

transform Fock matrix

diagonalize Fock matrix

transform c's

compare parameters
with previous ones

Fig. 5.6 Summary of the steps in the Hartree-Fock-Roothaan-Hall SCF procedure
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molecular orbitals ψ to be filled are chosen before calculation of these orbitals. This
is clear from the fact that the MO coefficients of the filled orbitals are used to

construct the elements of the density matrix (Sect. 5.2.3.6.4). In contrast, in the

simple and extended Hückel methods the MOs are calculated with the aid of a

coefficients-free prescription and simply filled according to the electronic state

desired (from the bottom up for the ground state).

5.2.3.6.3 Using The Roothaan-Hall Equations to Do Ab initio Calculations–

The Equations in Terms of The c’s and ϕ’s of The LCAO
Expansion

The key process in the HF ab initio calculation of energies and wavefunctions is

calculation of the Fock matrix, i.e. of the matrix elements Frs (Sect. 5.2.3.6.2).

Eq. (5.63) expresses these in terms of the basis functions φ and the operators Ĥcore, Ĵ

and K̂, but the Ĵ and K̂ operators (Eqs. (5.28) and (5.31)) are themselves functions of

the MO’s ψ and therefore of the c’s and the basis functions ϕ. Obviously the Frs can

be written explicitly in terms of the c’s and ϕ’s; such a formulation enables the Fock

matrix to be efficiently calculated from the coefficients and the basis functions

without explicitly evaluating the operators Ĵ and K̂ after each iteration. This

formulation of the Fock matrix will now be explained.

To see more clearly what is required, write Eq. (5.63) as

Frs ¼ ϕr 1ð Þ��Ĥcore
1ð Þ��ϕs 1ð Þ

D E
þ
Xn
j¼1

2 ϕr 1ð Þ��Ĵj 1ð Þϕs 1ð Þ
 �� � ϕr 1ð Þ��K̂j 1ð Þ��ϕs 1ð Þ
 �
ð5:71Þ

using the compact Dirac notation. The operator Ĥcore(1) involves only the Laplacian

differentiation operator, atomic numbers and electron coordinates, so we do not

have to consider substituting the Roothaan-Hall c’s and ϕ’s into Ĥcore. The operators

Ĵ and K̂, however, invoke the integrals ϕr 1ð Þ��Ĵ 1ð Þϕs 1ð Þ
 �
and ϕr 1ð Þ��K̂ 1ð Þϕs 1ð Þ
 �

.

We now examine these two integrals.

The first integral, from Eq. (5.65) is

Ĵj 1ð Þϕs 1ð Þ ¼ ϕs 1ð Þ
Z

ψ*
j 2ð Þψ j 2ð Þ

r12
dv2

Substituting for ψ�
j (2) the basis function expansion

P
c*tjϕ

*
t 2ð Þ and for ψ j(2) the

expansion
P

cujϕu 2ð Þ (cf. Eq. (5.52)):

Ĵj 1ð Þϕs 1ð Þ ¼ ϕs 1ð Þ
Xm
t¼1

Xm
u¼1

c*tj cuj

Z
ϕ*
t 2ð Þϕu 2ð Þ

r12
dv2
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where the double sum arises because we multiply the ψ* sum by the ψ sum. To get

the desired expression for ϕr 1ð Þ��Ĵ 1ð Þϕs 1ð Þ
 �
we multiply this by ϕ�

r (1) and inte-

grate with respect to the coordinates of electron 1, getting:

ϕr 1ð Þ��Ĵj 1ð Þϕs 1ð Þ
 � ¼Xm
t¼1

Xm
u¼1

c*tjcuj

Z Z
ϕ*
r 1ð Þϕs 1ð Þϕ*

t 2ð Þϕu 2ð Þ
r12

dv1d

Note that this is really a sixfold integral, since there are three variables (x1, y1, z1)
for electron 1, and three (x2, y2, z2) for electron 2, represented by dv1 and dv2
respectively. This equation can be written more compactly as

ϕr 1ð Þ��Ĵj 1ð Þϕs 1ð Þ
 � ¼Xm
t¼1

Xm
u¼1

c*tjcuj rs
��tu� � ð5:72Þ

The notation

rs
��tu� � ¼ Z Z

ϕ*
r 1ð Þϕs 1ð Þϕ*

t 2ð Þϕu 2ð Þ
r12

dv1dv2 ð5:73Þ

is a common shorthand for this kind of integral, which is called a two-electron
repulsion integral (or two-electron integral, or electron repulsion integral: the

physical significance of these is outlined in Fig. 5.10 and the discussion immedi-

ately following Eq. (5.110)). This parentheses notation should not be confused with

the Dirac bra-ket notation, hj(a bra) and ji a ket:
by definition

f
��g
 � ¼ Z f * qð Þg qð Þdq ð5:74Þ

so

rs
��tu
 � ¼ Z ϕr 1ð Þϕs 1ð Þð Þ*ϕt 1ð Þϕu 1ð Þdv1 ð5:75Þ

Several notations have been used for the integrals of Eq. (5.73) and for other

integrals; make sure to ascertain which symbolism a particular author is using.

The second integral, from Eq. (5.66), is

K̂j 1ð Þϕs 1ð Þ ¼ ψ j 1ð Þ
Z

ψ*
j 2ð Þϕs 2ð Þ

r12
dv2

Substituting for ψ j(1) the basis function expansion
P

cujϕu 1ð Þ and for ψ�
j (2) the

expansion
P

c*tjϕ
*
t 2ð Þ (cf. Eq. (5.52)):
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K̂j 1ð Þϕs 1ð Þ ¼ ϕu 1ð Þ
Xm
t¼1

Xm
u¼1

c*tjcuj

Z
ϕ*
t 2ð Þϕs 2ð Þ

r12
dv2

To get the desired expression for ϕr 1ð Þ��K̂ 1ð Þϕs 1ð Þ
 �
we multiply this by

ϕ�
r (1) and integrate with respect to the coordinates of electron 1:

ϕr 1ð Þ��K̂j 1ð Þϕs 1ð Þ
 � ¼Xm
t¼1

Xm
u¼1

c*tjcuj

ZZ
ϕ*
r 1ð Þϕu 1ð Þϕ*

t 2ð Þϕs 2ð Þ
r12

dv1dv

which can be written more compactly as

ϕr 1ð Þ��K̂j 1ð Þϕs 1ð Þ
 � ¼Xm
t¼1

Xm
u¼1

c*tjcuj ru
��ts� � ð5:76Þ

where of course (cf. (5.73))

ru
��ts� � ¼ ZZ ϕ*

r 1ð Þϕu 1ð Þϕ*
t 2ð Þϕs 2ð Þ

r12
dv1dv2 ð5:77Þ

Substituting Eqs. (5.72) and (5.76) for ϕr 1ð Þ��Ĵ 1ð Þϕs 1ð Þ
 �
and ϕr 1ð Þ��K̂ 1ð Þϕs 1ð Þ
 �

into Eq. (5.71) for Frs we get

Frs ¼ ϕr 1ð Þ��Ĥcore
1ð Þ��ϕs 1ð Þ

D E
þ
Xn
j¼1

�
2
Xm
t¼1

Xm
u¼1

c*tjcuj rs
��tu� ��Xm

t¼1

Xm
u¼1

c*tjcuj ru
��ts� �

i.e.

Frs ¼ H core
rs 1ð Þ þ

Xm
t¼1

Xm
u¼1

Xn
j¼1

c*tjcuj 2 rs
��tu� �� ru

��ts� ��  ð5:78Þ

where the integral of the operator Ĥcore over the basis functions has been written

Hcore
rs 1ð Þ ¼ ϕr 1ð Þ��Ĥcore

1ð Þ��ϕs 1ð Þ
D E

ð5:79Þ

with Ĥcore defined by Eq. (5.64).

Equation (5.78), with its ancillary definitions Eqs. (5.73), (5.77) and (5.79), is

what we wanted: the Fock matrix elements in terms of the basis functions ϕ and

their weighting coefficients c, for a closed-shell molecule; m is the number of basis

functions and n is the number of electrons. We can use Eq. (5.78) to calculate MO’s
and energy levels (Sects. 5.2.3.6.4 and 5.2.3.6.5). Given a basis set and molecular

geometry (the integrals depend on molecular geometry, as will be illustrated) and
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starting with an initial guess at the c’s, one (or rather the computer algorithm)

calculates the matrix elements Frs, and assembles them into the Fock matrix F,

etc. (Fig. 5.6). Let us now examine certain details connected with Eq. (5.78) and

this procedure.

5.2.3.6.4 Using The Roothaan-Hall Equations to Do Ab initio Calculations–

Some Details

Equation (5.78) is normally modified by subsuming the c’s into Ptu, the elements of

the density matrix P:

P

P11 P12 P13 � � � P1m

P21 P22 P23 � � � P2m

⋮ ⋮ � � � ⋮
Pm1 Pm2 Pm3 � � � Pmm

0
BB@

1
CCA ð5:80Þ

where the density matrix elements are

Ptu ¼ 2
Xn
j¼1

c*tjcuj t ¼ 1, 2, . . . , m and u ¼ 1, 2, . . . ,m ð*5:81Þ

(sometimes P is defined as
X

c*c). From Eq. (5.78) and Eq. (5.81):

Frs ¼ H core
rs 1ð Þ þ

Xm
t¼1

Xm
u¼1

Ptu

�
rs
��tu� �� 1

2
ru
��ts� � ð*5:82Þ

Equation (5.82), a slight modification of Eq. (5.78), is the key equation in

calculating the ab initio Fock matrix. Each density matrix element Ptu represents

the coefficients c for a particular pair of basis functions ϕt and ϕu, summed over all

the occupied MO’s ψ i(i¼ 1, 2, . . ., n). We use the density matrix here just as a

convenient way to express the Fock matrix elements, and to formulate the calcu-

lation of properties arising from electron distribution (Sect. 5.5.4), although there is

far more to the density matrix concept [27]. Equation (5.82) enables the MO

wavefunctions ψ (which are linear combinations of the c’s and ϕ’s) and their energy
levels ε to be calculated by iterative diagonalization of the Fock matrix.

Equation (5.17) E ¼ 2
P

H þ PP
2J � Kð Þð Þ gives one expression for the

molecular electronic energy E. If we wish to calculate E from the energy levels, we

must note that in the HF method E is not simply twice the sum of the energies of

the n occupied energy levels, i.e. it is not the sum of the one-electron energies

(as we take it to be in the simple and extended Hückel methods). This is because the

MO energy level value ε represents the energy of one electron subject to interaction
with all the other electrons. The energy of an electron is thus its kinetic energy plus
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its electron-nuclear attractive potential energy (Hcore), plus, courtesy of the J and

K integrals (Sect. 5.2.3.5 and Eqs. (5.48), (5.49) and (5.50¼ 5.83)), the potential

energy from repulsion of all the other electrons:

εi ¼ H core
ii þ

Xn
j¼1

2Jij 1ð Þ � Kij 1ð Þ� � ð5:83 ¼ 5:50Þ

If we add the energies of electron 1 and electron 2, say, we are adding, besides

the kinetic energies of these electrons, the repulsion energy of electron 1 on electron

2, 3, 4, . . ., and the repulsion energy of electron 2 on electron 1, 3, 4, . . . – in other

words, we are counting each repulsion twice. The simple sum thus represents

properly the total kinetic and electron-nuclear attraction potential energy, but

overcounts the electron-electron repulsion potential energy (recall that we are

working with 2n electrons and thus n filled MOs):

E overestimatedð Þ ¼ 2
Xn
i¼1

εi ð5:84Þ

Note that we cannot just take half of this simple sum, because only the electron-

electron energy terms, not all the terms, have been doubly-counted. The solution is

to subtract from 2
P

ε the superfluous repulsion energy; from our discussion of

Eq. (5.50) in Sect. 5.2.3.5 we saw that the sum
P

2J � Kð Þ over n represents the

repulsion energy of one electron interacting with all the other electrons, so to

remove the superfluous interactions we subtract
PP

2J � Kð Þ, the sum over

n of the repulsion energy sum, to get [15]

EHF ¼ 2
Xn
i¼1

εj �
Xn
i¼1

Xn
j¼1

2Jij 1ð Þ � Kij 1ð Þ� � ð5:85Þ

EHF is the Hartree-Fock electronic energy: the sum of one-electron energies

corrected (within the average-field HF approximation) for electron-electron repul-

sion. We can get rid of the integrals J and K over MO’s ψ and obtain an equation for

EHF in terms of c’s and ϕ’s. From (5.83),

Xn
i¼1

Xn
j¼1

2Jij 1ð Þ � Kij 1ð Þ� � ¼Xn
i¼1

εi �
Xn
i¼1

H core
ii

and from this and (5.85) we get

EHF ¼
Xn
i¼1

εi þ
Xn
i¼1

H core
ii ð5:86Þ
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From the definition of Hii
core in Eqs. (5.49) and (5.50), i.e. from

Hii
core ¼ ψ i 1ð Þ��Ĥcore��ψ i

D E
ð5:87Þ

and the LCAO exapansion (5.52)

ψ i ¼
Xm
s¼1

csiϕs ð5:88 ¼ 5:52Þ

we get from Eq. (5.86)

EHF ¼
Xn
i¼1

εi þ
Xm
r¼1

Xm
s¼1

Xn
i¼1

c*ricsiH
core
rs ð5:89Þ

Using Eq. (5.81), Eq. (5.89) can be written in terms of the density matrix

elements P:

EHF ¼
Xn
i¼1

εi þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs ð5:90Þ

This is the key equation for calculating the HF electronic energy of a molecule. It

can be used when self-consistency has been reached, or after each SCF cycle

employing the ε’s and c’s yielded by that particular iteration, and Hcore
rs , which

latter does not change from iteration to iteration, since it is composed only of the

fixed basis functions and an operator which does not contain ε’s or c’s: from
Eqs. (5.64¼ 5.19) and (5.79)

H core
rs ¼ ϕr

��1
2
∇2

i �
X
all μ

Zμ

rμi

��ϕs

* +
ð5:91Þ

Hcore
rs does not change because the SCF procedure refines the electron-electron

repulsion (till the field each electron feels is “consistent” with the previous one),

but Hcore
rs in contrast represents only the contribution to the kinetic energy plus the

potential energy represented by electron-nucleus attraction of the electron density

associated with each pair of basis functions ϕr and ϕs.

Equation (5.90) gives the HF electronic energy of the molecule or atom–the

energy of the electrons due to their motion (their kinetic energy) plus their energy

due to electron-nucleus attraction and (within the HF approximation) to electron-

electron repulsion (their potential energy). The total energy of the molecule,

however, involves not just the electrons but also the nuclei, which contribute

potential energy due to internuclear repulsion, and kinetic energy due to nuclear

motion. This motion persists even at 0 K, because the molecule vibrates even at this
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temperature; this unavoidable vibrational energy is called the zero point vibrational
energy or zero point energy (ZPVE or ZPE; Chap. 2, Sect. 2.5, Fig. 2.20 and

associated discussion). Calculation of the internuclear repulsion energy is trivial,

as this is just the sum of all pairs of Coulombic repulsions between

VNN ¼
X
all μ, v

ZμZv

ruv
ð5:92 ¼ 5:16Þ

Calculation of the ZPE is more involved; the standard method requires calcu-

lating the harmonic frequencies (i.e. the normal-mode vibrations of Chap. 2,

Sect. 2.5) and summing the energies of each mode [28a] (all this is done by standard

programs, which print out the ZPE after the frequencies). Adding the HF electronic

energy and the internuclear repulsion gives what we might call Etotal
HF , the total

“frozen-nuclei” (no ZPE) energy:

E total
HF ¼ EHF þ VNN ¼

Xn
i¼1

εi þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs þ VNN ð5:93Þ

from (5.90) to (5.92). Etotal
HF , the energy usually displayed at the end of a Hartree-

Fock calculation is, in ordinary parlance, “the Hartree-Fock energy”. Some pro-

gram printouts state or imply that this is the HF electronic energy, but strictly

speaking it is electronic plus internuclear energy.

An aggregate of such energies, plotted against various geometries, represents an

HF Born-Oppenheimer PES (Chap. 2, Sect. 2.3). The zero of energy for the

Schr€odinger equation for an atom or molecule is normally taken as the energy of

the electrons and nuclei at rest at infinite separation. The Hartree-Fock energy (any

ab initio energy, in fact) of a species in thus relative to the energy of the electrons

and nuclei at rest at infinite separation, i.e. it is the negative of the minimum energy

required to break up the molecule or atom and separate the electrons and nuclei to

infinity. We are normally interested in relative energies, differences in “absolute”

ab initio energies of chemical species. Ab initio energies are discussed in

Sect. 5.5.2.

In a geometry optimization (Chap. 2, Sect. 2.4) a series of single-point calcula-

tions (calculations at a single point on the potential energy surface, i.e. at a single

geometry) is done, each of which requires the calculation of Etotal
HF , and the geometry

is changed systematically until a stationary point is reached (one where the poten-

tial energy surface is flat; ideally Etotal
HF should fall monotonically in the case of

optimization to a minimum). The ZPE calculation, which is valid only for a

stationary point on the potential energy surface (Chap. 2, Sect. 2.5; discussion in

connection with Fig. 2.19), can be used to correct Etotal
HF of the optimized structure

for vibrational energy; adding the ZPE gives the total internal energy of the

molecule at 0 K, which we could call Etotal
0K :

E total
0K ¼ E total

HF þ ZPE ð*5:94Þ
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The relative energies of isomers may be calculated by comparing Etotal
HF , but for

accurate work the ZPE should be taken into account, even though the required

frequency calculations usually take significantly longer than the geometry

optimization–see Sect. 5.3.3, Table 5.3). Fortunately, it is valid to correct Etotal
HF

with a ZPE from a lower-level optimization-plus-frequency job (not a lower-level

frequency job on the higher-level geometry). Figure 2.19 in Chap. 2, Sect. 2.5

compares energies for the species in the isomerization of HNC to HCN. The relative

energies with/without the ZPE correction for HCN, transition state, and HNC are

0/0, 202/219, and 49.7/52.2 kJ mol�1. The ZPEs of isomers tend to be roughly equal

and so to cancel when relative energies are calculated (less so where transition

states are involved), but, as implied above, in accurate work it is standard to

compare the ZPE-corrected energies Etotal
0K . A method of accurately estimating

ZPE which does not involve the sometimes-lengthy calculation of second deriva-

tives (Chap. 2, Sect. 2.5), but rather draws on tabulated values for atom types has

been published [28b]. This additive, atom-type based (ATB) method requires

essentially no time and has been called a “zero-cost estimation” method.

5.2.3.6.5 Using The Roothaan-Hall Equations to Do Ab initio Calculations–

An Example

The application of the Hartree-Fock method to an actual calculation will now be

illustrated in detail with protonated helium, H�He+, the simplest closed-shell

heteronuclear molecule. This species was also used to illustrate the details of the

extended Hückel method (EHM) in Chap. 4, Sect. 4.3.2. In this simple example all

the steps were done with a pocket calculator, except for the evaluation of the

integrals (this was done with the ab initio program Gaussian 92 [29]) and the matrix

multiplication and diagonalization steps (done with the program Mathcad [30]).

Step 1 Specifying the geometry, basis set and MO orbital occupancy

We start by specifying a geometry and a basis set. We will use same geometry as

with the EHM, 0.800 Å, i.e. 1.5117 a.u. (bohr). In ab initio calculations on

molecules, the basis functions are almost always Gaussian functions (basis func-
tions are discussed in Sect. 5.3). Gaussian functions differ from the Slater functions

we used in the EHM in Chap. 4 in that the exponent involves the square of the

distance of the electron from the point (usually an atomic nucleus) on which the

function is centered:

An s-type Slater function

ϕ ¼ aexp �brð Þ ð5:95Þ

An s-type Gaussian function

ϕ ¼ aexp �br2
� � ð5:96Þ
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In ab initio calculations the mathematically more tractable Gaussians are used to

approximate the physically more realistic Slater functions (see Sect. 5.3). We use

here the simplest possible Gaussian basis set: a 1 s atomic orbital on each of the two

atoms, each 1 s orbital being approximated by one Gaussian function. This is called

an STO-1G basis set, meaning Slater-type orbitals-one Gaussian, because we are

approximating a Slater-type 1 s orbital with a Gaussian function. The best STO-1G

approximations to the hydrogen and helium 1 s orbitals in a molecular environment

[31] are

ϕ Hð Þ ¼ ϕ1 ¼ 0:3696exp �0:4166
��r� R1

��2� � ð5:97Þ
ϕ Heð Þ ¼ ϕ2 ¼ 0:5881exp �0:7739

��r� R2

��2� � ð5:98Þ

where
��r� Ri

�� is the distance of the electron in ϕi (ϕ is a one-electron function)

from nucleus i on which ϕi is centered (Fig. 5.7). The larger constant in the helium

exponent as compared to that of hydrogen (0.7739 vs. 0.4166) reflects the intui-

tively reasonable fact that since an electron in ϕ2 is bound more tightly to its

doubly-charged nucleus than is an electron in ϕ1 is to its singly-charged nucleus,

electron density around the helium nucleus falls off more quickly with distance than

does that around the hydrogen nucleus (Fig. 5.8).

x

y

z

electron

r

basis function f1 centered on atomic nucleus 1

basis function f2 centered on atomic nucleus 2

r – R1

r – R2

R1

R2

f3

f4

Fig. 5.7 A four-atom molecule in a coordinate system. Only one of possibly many electrons is

shown. The basis functions ϕ are one-electron functions, usually centered on atomic nuclei. R1,

R2, etc., are vectors representing the x, y, z coordinates (conveniently as 3� 1 column matrices;

Chap. 4, Sect. 4.3.3) of the nuclei (“of the atoms”), and r is a vector representing the x, y, z
coordinates of an electron. The distances of the electron from the centers of the various basis

functions are the absolute values of the various vector differences: |r�R1|, |r�R2|, etc. For a

particular molecular geometry, R1, R2, etc. are fixed and enter the functions ϕ1, ϕ2, etc., only

parametrically, i.e. to denote where the ϕ’s are centered; r is the variable in these functions, which
are thus ϕ(x, y, z). Several basis functions may be centered on each nucleus
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We have a geometry and a basis set, and wish to do an SCF calculation on HHe+

with both electrons in the lowest MO, ψ1, i.e. on the singlet ground state. In general,
SCF calculations proceed from specification of geometry, basis set, charge and

multiplicity. Themultiplicity is a way of specifying the number of unpaired

electrons:

Multiplicity ¼ S ¼ 2sþ 1 ð5:99Þ

where S¼ total number of unpaired electron spins (each electron has a spin of�½),

taking each unpaired spin as þ½. Figure 5.9 shows some examples of the specifi-

cation of charge and multiplicity. By default an SCF calculation is performed on the

ground state of specified multiplicity, i.e. the MO’s are filled from ψ1 up to give the

lowest-energy state of that multiplicity.

Step 2 Calculating the integrals

Having specified a Hartree-Fock calculation on singlet HHe+, with H–He ¼
0.800 Å (1.5117 bohr), using an STO-1G basis set, the most straightforward way to

proceed is to now calculate all the integrals, and the orthogonalizing matrix S�1/2

that will be used to transform the Fock matrix F to F0 and to convert the transformed

coefficient matrix C0 to C (Eqs. (5.67), (5.68), (5.69), and (5.70)). The integrals are

those required for Hcore, the one-electron part of the elements Frs of F, and the two-
electron repulsion integrals ( rsjtu ), ( rujts ) (Eq. (5.82)), as well as the overlap

integrals, which are needed to calculate the overlap matrix S and thus the orthog-

onalizing matrix S�1/2 (Eq. (5.67)).

0

0.5

1.0

2.0

3.0

0.370
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0.009

0.588

0.485

0.271

0.027

0.0006

0

0.2

0.4

0.6

1 2 3

f(x, y, z) = f(|r – R|)

f(He)

f(H)

|r – R| Å

|r – R| f(H) = 0.3696exp(-0.4166|r – R1|) f(He) = 0.5881exp(–0.7739|r – R2|)

Fig. 5.8 Electron density around the helium nucleus falls off more quickly than electron density

around the lower-charge hydrogen nucleus
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Efficient methods have been developed for calculating these integrals [32] and

their values will simply be given later. For our calculation the elements Frs of the

Fock matrix (Eq. (5.82)) are conveniently written

Frs ¼H core
rs 1ð Þ þ

Xm
t¼1

Xm
u¼1

Ptu rs
��tu� �� 1

2
ru
��ts� �� �

¼ Trs þ Vrs Hð Þ þ Vrs Heð Þ þ Grs

ð5:100Þ

Here Hcore(1) has been dissected into a kinetic energy integral T and

two potential energy integrals, V(H) and V(He). From the definition of the operator

eV (1 eV particle–1 = 96.5 kJ mol–1)

20

10

0

–10

–20

–30

–500

–40

–50

H2O
neutral, singlet

H2O
neutral, triplet

H2O
radical cation, doublet

0 unpaired electrons,
S = 0
multiplicity = 2S + 1 = 1

2 unpaired electrons,
S = 1 / 2 + 1 / 2 = 1
multiplicity = 2S + 1 = 3

i.e. H2O .+

1 unpaired electron,
S = 1 / 2
multiplicity = 2S + 1 = 2

Fig. 5.9 Some examples of the results of specification of charge and multiplicity. The calculations

used the STO-3G basis set (Sect. 5.3) which has seven basis functions, and so creates seven MOs.

All calculations were at the HF/STO-3G geometry of the neutral singlet
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Ĥcore (Eq. (5.64)) and the Roothaan-Hall expression for the integral Hcore

(Eq. (5.79)) we see that (the (1) emphasizes that these integrals involve the

coordinates of only one electron):

Trs 1ð Þ ¼
Z

ϕr �1

2
∇2

1

� �
ϕsdv

¼
Z

ϕr �1

2

∂2

∂x2
þ ∂2

∂y2
þ ∂2

∂z2

 !" #
ϕsdv

ð5:101Þ

Vrs H; 1ð Þ ¼
Z

ϕr

ZH

rH1

� �
ϕsdv ð5:102Þ

and

Vrs He; 1ð Þ ¼
Z

ϕr

ZHe

rHe1

� �
ϕsdv ð5:103Þ

In Eq. (5.102) the variable is the distance of the electron (“electron 1”–see the

discussion in connection with Eqs. (5.18) and (5.19)) from the hydrogen nucleus,

and in Eq. (5.103) the variable is the distance of the electron from the helium

nucleus; ZH and ZHe are 1 and 2, respectively.

From Eq. (5.100) the two-electron contribution to each Fock matrix element is

Grs ¼
Xm
t¼1

Xm
u¼1

Ptu rs
��ts� �� 1

2
ru
��ts� �� �

ð5:104Þ

Each element Grs is calculated from a density matrix element Ptu (Eqs. (5.80) and

(5.81)) and two two-electron integrals (rs
��tu) and (ru

��ts) (Eqs. (5.73) and (5.77)).

The required 1-electron integrals for calculating the Fock matrix F are

T11 ¼ 0:6249 T12 ¼ T21 ¼ 0:2395 T22 ¼ 1:1609
V11 Hð Þ ¼ �1:0300 V12 Hð Þ ¼ V21 Hð Þ ¼ �0:4445 V22 Hð Þ ¼ �0:6563
V11 Heð Þ ¼ �1:2555 V12 Heð Þ ¼ V21 Heð Þ ¼ �1:1110 V22 Heð Þ ¼ �2:8076

ð5:105Þ

To see which two-electron integrals are needed we evaluate the summation in

Eq. (5.104) for each of the matrix elements (G11, G12, G21, G22):

G11 ¼
X2
t¼1

X2
u¼1

Ptu 11
��tu� �� 1

2
1u
��t1� �h i
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i:e G11 ¼
X2
t¼1

�
Pt1

�
11
��t1� �� 1

2

�
11
��t1�þ Pt2 11

��t2� �� 1

2
12
��t1� �� �

¼ P11 11
��11� �� 1

2
11
��11� �� �

þ P12 11
��12� �� 1

2
12
��11� �� �

þP21 11
��21� �� 1

2
11
��21� �� �

þ P22 11
��22� �� 1

2
12
��21� �� � ð5:106Þ

G12 ¼ G21 ¼
X2
t¼1

X2
u¼1

Ptu

�
12
��tu� �� 1

2
1u
��t2� �

i:e G12 ¼ G21 ¼
X2
t¼1

Pt1 12
��t1� �� 1

2
11
��t2� �� �

þ Pt2

�
12
��t2� �� 1

2
12
��t2� �� �

¼ P11 12
��11� �� 1

2
11
��12� �� �

þ P12 12
��12� �� 1

2
12
��12� �� �

þP21 12
��21� �� 1

2
11
��22� �� �

þ P22 12
��22� �� 1

2
12
��22� �� �
ð5:107Þ

G22 ¼
X2
t¼1

X2
u¼1

Ptu 22
��tu� �� 1

2
2u
��t2� �h i

i:e: G22 ¼
X2
t¼1

Pt1 22
��t1� �� 1

2
21
��t2� �� �

þ P 22
��t2� �� 1

2
22
��t2� �� �� �

¼ P11 22
��11� �� 1

2
21
��12� �� �

þ P12 22
��12� �� 1

2
22
��12� �� �

þP21 22
��21� �� 1

2
21
��22� �� �

þ P22 22
��22� �� 1

2
22
��22� �� � ð5:108Þ

Each element of the electron repulsion matrix G has eight 2-electron repulsion

integrals, and of these 32 there appear to be 14 different ones:

from G11 : 11
��11� �

, 11
��12� �

, 12
��11�, 11

��21� �
, 11

��22� �
, 12

��21� �
new with G12 ¼ G21 : 12

��12� �
, 12

��22� �
new with G22 : 22

��11� �
, 21

��12� �
, 22

��12� �
, 22

��21� �
, 21

��22� �
, 22

��22� �
However, examination of Eq. (5.73) shows that many of these are the same. It is

easy to see that if the basis functions are real (as is almost always the case) then

rs
��tu� � ¼ rs

��ut� � ¼ sr
��tu� � ¼ sr

��ut� � ¼ tu
��rs� � ¼ tu

��sr� �
¼ ut

��rs� � ¼ ut
��sr� � ð5:109Þ

Taking this into account, there are only six unique 2-electron repulsion integrals,

whose values are:
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11
��11� � ¼ 0:7283 21

��21� � ¼ 0:2192

21
��11� � ¼ 0:3418 22

��21� � ¼ 0:4368

22
��11� � ¼ 0:5850 22

��22� � ¼ 0:9927

ð5:110Þ

The integrals (11
��11) and (22��22) represent repulsion between two electrons both

in the same orbital (ϕ1or ϕ2, respectively), while ( 22
��11 ) represents repulsion

between an electron in ϕ2 and one in ϕ1; (21
��11) could be regarded as representing

the repulsion between an electron associated with ϕ2 and ϕ1 and one confined to ϕ1,

and analogously for (22
��21), while (21

��21) can be thought of as the repulsion

between two electrons both of which are associated with ϕ2 and ϕ1 (Fig. 5.10). Note

that in the T and V terms of the Fock matrix elements, the operator in the integrals is

– 1=2ð Þ∇2 and ZH/rH1 or ZHe/rHe1, while in the G terms it is 1/r12 (Eqs. (5.101),
(5.102), (5.103), and (5.73)).

The overlap integrals are

S11 ¼ 1:0000 S12 ¼ S21 ¼ 0:5017 S22 ¼ 1:0000 ð5:111Þ

and the overlap matrix is

S ¼ 1:0000 0:5017
0:5017 1:0000

� �
ð5:112Þ

–

–

– –

–

–
– –

(22|11)
f1 superposed right on f1

(11|11)

f2 f1

(21|11)

f2 f1

(21|21)

f2 f1

Fig. 5.10 Schematic depictions of the physical meaning of some two-electron repulsion integrals

(Sect. 5.2.3.6.5). Each basis function ϕ is normally centered on an atomic nucleus. The integrals

shown here are one-center and two-center two-electron repulsion integrals–they are centered on

one and on two atomic nuclei, respectively. For molecules with three nuclei three-center integrals

arise, and for molecules with four or more nuclei, four-center integrals arise
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Step 3 Calculating the orthogonalizing matrix

Calculating the orthogonalizing matrix S�1/2 (see Eqs. (5.67), (5.68), and (5.69)

and the discussion referred to in Chap. 4):Diagonalizing S:

S ¼ 0:7071 0:7071
0:7071 �0:7071

� �
1:5017 0:0000
0:0000 �0:4983

� �
0:7071 0:7071
0:7071 �0:7071

� �
P D P�1

ð5:113Þ

Calculating D�1/2:

D�1=2 ¼ 1:5017�1=2 0:0000
0:0000 0:4983�1=2

� �
¼ 1:8160 0:0000

0:0000 1:4166

� �
ð5:114Þ

Calculating S�1/2:

S�1=2 ¼ PD�1=2P�1 ¼ 1:1163 �0:3003
�0:3003 1:1163

� �
ð5:115Þ

Step 4 Calculating the Fock matrix

(a) The 1-electron matrices

From Eq. (5.100)

F ¼ Tþ V Hð Þ þ V Heð Þ þG ¼ Hcore þG ð5:116Þ

The 1-electron matrices T, V(H) and V(He) (i.e.Hcore) follow immediately from

the 1-electron integrals. The kinetic energy matrix is

T
T11 T12

T21 T22

� �
¼ 0:6249 0:2395

0:2395 1:1609

� �
ð5:117Þ

T11 is smaller than T22, as the kinetic energy of an electron in ϕ1 (ϕ(H)) is
smaller than that of an electron in ϕ2 (ϕ(He)); this is expected since the larger

charge on the helium nucleus results in a larger kinetic energy for an electron in its

1 s orbital than for an electron in the hydrogen 1 s orbital–classically speaking, the

electron must move faster to stay in orbit around the stronger-pulling He nucleus.

T12 can be regarded as the kinetic energy of an electron in the H(1 s)-He(1 s) overlap
region.

The hydrogen potential energy matrix is

V Hð Þ ¼ V11 Hð Þ V12 Hð Þ
V21 Hð Þ V22 Hð Þ

� �
¼ �1:0300 �0:4445

�0:4445 �0:6563

� �
ð5:118Þ
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All the V(H) values represent the attraction of an electron to the hydrogen nucleus.
V11(H) is the potential energy due to attraction of an electron in ϕ1 to the hydrogen

nucleus, and V22(H) is the potential energy due to attraction of an electron in ϕ2 to the

hydrogen nucleus. As expected, an electron in ϕ1 (ϕ(H)) is attracted to the H nucleus

more strongly (the potential energy is more negative) than is an electron in ϕ2

(ϕ(He)). V12(H) can be regarded as the potential energy of attraction to the hydrogen

nucleus of an electron in the H(1 s)–He(1 s) overlap region.

The helium potential energy matrix is

V Heð Þ ¼ V11 Heð Þ V12 Heð Þ
V21 Heð Þ V22 Heð Þ

� �
¼ �1:2555 �1:1110

�1:1110 �2:8076

� �
ð5:119Þ

All the V(He) values represent the attraction of an electron to the helium nucleus.

V11(He), the potential energy of attraction of an electron in ϕ(H) to the helium

nucleus, is of course less negative than the potential energy of attraction of an

electron in ϕ(He) to this same nucleus. V12(He) can be taken as the potential energy

of attraction to the helium nucleus of an electron in the H(1 s)-He(1 s) overlap

region. An electron in ϕ(He) is attracted to the helium nucleus more strongly than

an electron in ϕ(H) is attracted to the hydrogen nucleus (-2.8076 in V(He) cf.
-1.0300 in V(H)), due to the greater nuclear charge of helium.

The total 1-electron energy matrix, Hcore, is

Hcore ¼ Tþ V Hð Þ þ V Heð Þ ¼ �1:6606 �1:3160
�1:3160 �2:3030

� �
ð5:120Þ

This matrix represents the 1-electron energy (the energy the electron would have

if interelectronic repulsion did not exist) of an electron in H�He+, at the specified

geometry, for this STO-1G basis set. The (1,1), (2,2) and (1,2) terms represent,

ignoring electron-electron repulsion, the energy of an electron in ϕ1, ϕ2, and the

ϕ1�ϕ2 overlap region, respectively; the values are the net result of the various

kinetic energy and potential energy terms discussed above.

(b) The 2-electron matrix

The 2-electron matrix G, the electron repulsion matrix (Eq. (5.111)), is calcu-

lated from the 2-electron integrals and the density matrix elements (Eq. (5.104)).

This is intuitively plausible since each 2-electron integral describes one

interelectronic repulsion in terms of basis functions(Fig. 5.10) while each density

matrix element represents (see Sect. 5.2.3.6.4) the electron density on (the diagonal
elements of P in Eq. (5.80)) or between (the off-diagonal elements of P) basis
functions. To calculate the matrix elements Grs (Eqs. (5.106), (5.107) and (5.108))

we need the appropriate integrals (Eqs. 5.110) and density matrix elements. These

latter are calculated from

Ptu ¼ 2
Xn
j¼1

c*tjcuj t ¼ 1, 2, � � �,m and u ¼ 1, 2, � � �,m ð5:121 ¼ 5:81Þ
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Each Prs involves the sum over the occupied MO’s ( j¼ 1–n; we are dealing with
a closed-shell ground-state molecule with 2n electrons) of the products of the

coefficients of the basis functions ϕr and ϕs. As pointed out in Sect. 5.2.3.6.2 the

Hartree-Fock procedure is usually started with an “initial guess” at the coefficients.

We can use as our guess the extended Hückel coefficients we obtained for HeH+,

with this same geometry (Chap. 4, Sect. 4.4.2); we need the c’s only for the

occupied MO’s:

c11 ¼ 0:249, c21 ¼ 0:867 ð5:122Þ

(Usually we need more c’s than the small basis set of an extended Hückel or
other semiempirical calculation supplies; a projected semiempirical wavefunction

is then used, with the missing c’s extrapolated from the available ones). Using these

c’s and Eq. (5.121) we calculate the initial-guess P’s for Eqs. (5.106), (5.107), and
(5.108); since there is only one occupied MO (n¼ 1 in Eq 5.121) the summation has

only one term:

P11 ¼ 2c11c11 ¼ 2 0:249ð Þ0:249 ¼ 0:1240
P12 ¼ 2c11c21 ¼ 2 0:249ð Þ0:867 ¼ 0:4318
P22 ¼ 2c21c21 ¼ 2 0:867ð Þ0:867 ¼ 1:5034

ð5:123Þ

G may now be calculated. From Eqs. (5.106), (5.107), and (5.108), using the

above values of P and the integrals of Eq. (5.110), and recalling that integrals like

ð11��12Þ and (21
��11) are equal (Eq. (5.109) we get:

G11 ¼ P11 11
��11� �� 1

2
11
��11� �� �

þ P12 11
��12� �� 1

2
12
��11� �� �

þP21 11
��21� �� 1

2
11
��21� �� �

þ P22 11
��22� �� 1

2
12
��21� �� �

¼ 0:1240 0:3642ð Þ þ 0:4318 0:1709ð Þ
þ0:4318 0:1709ð Þ þ 1:5034 0:4754ð Þ ¼ 0:9075

ð5:124Þ

G12 ¼ G21 ¼ P11 12
��11� �� 1

2
11
��12� �� �

þ P12 12
��12� �� 1

2
12
��12� �� �

þP21 12
��21� �� 1

2
11
��22� �� �

þ P22 12
��22� �� 1

2
12
��22� �� �

¼ 0:1240 0:1709ð Þ þ 0:4318 0:1096ð Þ
þ0:4318 0:0733ð Þ þ 1:5034 0:2184ð Þ ¼ 0:3652

ð5:125Þ

G22 ¼ P11 22
��11� �� 1

2
21
��12� �� �

þ P12 22
��12� �� 1

2
22
��12� �� �

þP21 22
��21� �� 1

2
21
��22� �� �

þ P22 22
��22� �� 1

2
22
��22� �� �

¼ 0:1240 0:4754ð Þ þ 0:4318 0:2184ð Þ
þ0:4318 0:2184ð Þ þ 1:5034 0:4964ð Þ ¼ 0:9938

ð5:126Þ
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From the G values based on the initial guess c’s the initial-guess electron repulsion

matrix is

G0 ¼ 0:9075 0:3652
0:3652 0:9938

� �
ð5:127Þ

The initial-guess Fock matrix is (Eqs. (5.116), (5.120) and (5.126))

F0 ¼ Tþ V Hð Þ þ V Heð Þ þG0 ¼ Hcore þG0

¼ �1:6606 �1:3160
�1:3160 �2:3030

� �
þ 0:9095 0:3652

0:3652 0:9938

� �
¼ �0:7511 �0:9508

�0:9508 �1:3092

� �
ð5:128Þ

The zero subscripts in Eqs. (5.127) and (5.128) emphasize that the initial-guess c’s,
with no iterative refinement, were used to calculate G; in the subsequent iterations

of the SCF procedure Hcore will remain constant while G will be refined as the c’s,
and thus the P’s, change from SCF cycle to cycle. The change in the electron

repulsion matrix G corresponds to that in the molecular wavefunction as the c’s
change (recall the LCAO expansion); it is the wavefunction (squared) which

represents the time-averaged electron distribution and thus the electron/charge

cloud repulsion.

Step 5 Transforming F to F0, the Fock matrix that satisfies F0 ¼ C0εC0�1

As in Chap. 4, Sect. 4.4.2, we use the orthogonalizing matrix S�1/2 (of Step 3)
to transform F to a matrix F0 which when diagonalized gives the energy levels ε and
a coefficient matrix C0 which is subsequently transformed to the matrix C of the

desired c’s (see Sect. 5.2.3.6.2):

F
0
0 ¼

1:1163 �0:3003

�0:3003 1:1163

� � �0:7511 �0:9508

�0:9508 1:3092

� �
1:1163 �0:3003

�0:3003 1:1163

� �
S�1=2 F0 S�1=2

¼ �0:4166 �0:5799

�0:5799 �1:0617

� �
F

0
0

ð5:129Þ

Step 6Diagonalizing F0 to obtain the energy level matrix ε and a coefficient matrixC0

F
0
0 ¼

0:5069 0:8620
0:8620 �0:5069

� � �1:4027 0:0000
0:0000 �0:0756

� �
0:5069 0:8620
0:8620 �0:5069

� �
C

0
1 ε1 C

0
1

�1

ð5:130Þ
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The energy levels (the eigenvalues of F
0
0) from this first SCF cycle are�1.4027 h

and �0.0756 h (h¼ hartrees, the unit of energy in atomic units), corresponding to

the occupied MO ψ1 and the unoccupied MO ψ2. The MO coefficients (the

eigenvectors of F
0
0) of ψ1 and ψ2, for the transformed, orthonormal basis functions,

are, from C
0
1 (here C

0
1 and its inverse, C

0
1

�1
are the same):

v
0
1 ¼

0:5069
0:8620

� �
and v

0
2 ¼

0:8620
�0:5069

� �
ð5:131Þ

v
0
1 is the first column of C

0
1 and v2

0 is the second column of C
0
1. These coefficients

are the weighting factors that with the transformed, orthonormal basis functions

give the MO’s:

ψ1 ¼ 0:5069ϕ
0
1 þ 0:8620ϕ

0
2 and ψ2 ¼ 0:8620ϕ

0
1 � 0:5069ϕ

0
2 ð5:132Þ

where ϕ
0
1 and ϕ

0
2 are linear combinations of our original basis functions ϕ1 and ϕ2.

The original basis functions ϕ were centered on atomic nuclei and were normalized

but not orthogonal, while the transformed basis functions ϕ0 0 are delocalized over

the molecule and are orthonormal (Chap. 4, Sect. 4.4.2)). Note that the sum of the

squares of the coefficients of ϕ
0
1 and ϕ

0
2 is unity, as must be the case if the basis

functions are orthonormal. In the next step C
0
1 is transformed to obtain the coeffi-

cients of the original basis functions ϕ in the MO’s. We want the MOs in terms of

the original, atom-centered basis functions (roughly, atomic orbitals–Sect. 5.3)

because such MOs are easier to interpret.

Step 7 Transforming C0 to C, the coefficient matrix of the original, nonorthogonal

basis functions

As in Chap. 4, Sect. 4.4.2, we use the orthogonalizing matrix S�1=2 to transform

C0 to C:

C1 ¼ 1:1163 �0:3003
�0:3003 1:1163

� �
0:5069 0:8620
0:8620 �0:5069

� �
¼ 0:3070 1:1145

0:8100 �0:8247

� �
S�1=2 C

0
1 C1

ð5:133Þ

This completes the first SCF cycle. We now have the first set of MO energy levels

and basis function coefficients:

From Eq. (5.130):

ε1 ¼ � 1:4027 and ε2 ¼ � 0:0756 ð5:134Þ
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From Eq. (5.133) (cf. Eq. (5.132)):

ψ1 ¼ 0:3070ϕ1 þ 0:8100ϕ2 and ψ2 ¼ 1:1145ϕ1 � 0:8247ϕ2 ð5:135Þ

Note that the sum of the squares of the coefficients of ϕ1 and ϕ2 is not unity,

since these atom-centered functions are not orthogonal (contrast the simple Hückel
method, Chap. 4, Sect. 4.3.4)).

Step 8 Comparing the density matrix from the latest c’s with the previous density

matrix to see if the SCF procedure has converged

The density matrix elements based on the c’s ofC1 (Eq. (5.133) can be compared

with those (Eq. (5.123)) based on the initial guess:

P11 ¼ 2c11c11 ¼ 2 0:3070ð Þ0:3070 ¼ 0:1885
P12 ¼ 2c11c21 ¼ 2 0:3070ð Þ0:8100 ¼ 0:4973
P22 ¼ 2c21c21 ¼ 2 0:8100ð Þ0:8100 ¼ 1:3122

ð5:136Þ

Suppose our convergence criterion was that the elements of P must agree with

those of the previous Pmatrix to within 1 part in 1000. Comparing Eq. (5.136) with

Eq. (5.123) we see that this has not been achieved: even the smallest change is

1:312� 1:503ð Þ=1:503j j ¼ 0:127, far above the required 0.001. Therefore another
SCF cycle is needed.

Step 9 Beginning the second SCF cycle: using the c’s of C1 to calculate a new Fock

matrix F1 (cf. Step 4, (b))

The first Fock matrix F0 used c’s from our initial guess (Step 4, (b)). An
improved F may now be calculated using the c’s from the first SCF cycle. Calcu-

lating G1 as we did in Step 4, (b) for G0, but using the new P’s:

G11 ¼ P11 11
��11� �� 1

2
11
��11� �� �

þ P12 11
��12� �� 1

2
12
��11� �� �

þP21 11
��21� �� 1

2
11
��21� �� �

þ P22 11
��22� �� 1

2
12
��21� �� �

¼ 0:1885 0:3642ð Þ þ 0:4973 0:1709ð Þ
þ0:4973 0:1709ð Þ þ 1:3122 0:4754ð Þ ¼ 0:8624

ð5:137Þ

G12 ¼ G21 ¼ P11 12
��11� �� 1

2
11
��12� �� �

þ P12 12
��12� �� 1

2
12
��12� �� �

þP21 12
��21� �� 1

2
11
��22� �� �

þ P22 12
��22� �� 1

2
12
��22� �� �

¼ 0:1885 0:1709ð Þ þ 0:4973 0:1096ð Þ
þ0:4973 �0:0733ð Þ þ 1:3122 0:2184ð Þ ¼ 0:3369

ð5:138Þ
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G22 ¼ P11 22
��11� �� 1

2
21
��12� �� �

þ P12 22
��12� �� 1

2
22
��12� �� �

þP21 22
��21� �� 1

2
21
��22� �� �

þ P22 22
��22� �� 1

2
22
��22� �� �

¼ 0:1885 0:4754ð Þ þ 0:4973 0:2184ð Þ
þ0:4973 0:2184ð Þ þ 1:3122 0:4964ð Þ ¼ 0:9582

ð5:139Þ

From the G values based on the first-cycle c’s the electron repulsion matrix is

G1 ¼ 0:8624 0:3369
0:3369 0:9582

� �
ð5:140Þ

and the Fock matrix from this is

F1 ¼ Hcore þG1 ¼ �1:6606 �1:3160
�1:3160 �2:3030

� �
þ 0:8624 0:3369

0:3369 0:9582

� �

¼ �0:7982 �0:9791
�0:9791 �1:3448

� � ð5:141Þ

Step 10 Transforming F1 to F
0
1 (cf. Step 5)

F
0
1 ¼

1:1163 �0:3003

�0:3003 1:1163

� � �0:7982 �0:9791

�0:9791 1:3448

� �
1:1163 �0:3003

�0:3003 1:1163

� �
S�1=2 F1 S�1=2

¼ �0:4595 �0:5900

�0:5900 �1:0913

� �
F

0
1

ð5:142Þ

Step 11 Diagonalizing F
0
1 to obtain the energy levels ε and a coefficient matrix C0

(cf. Step 6)

F
0
1 ¼

0:5138 0:8579
0:8579 �0:5138

� � �1:4447 0:0000
0:0000 �0:1062

� �
0:5138 0:8579
0:8579 �0:5138

� �
C

0
2 ε2 C

0
2

�1

ð5:143Þ

The energy levels from this second SCF cycle are �1.4447 h and �0.1062 h. To

get the MO coefficients corresponding to these MO energy levels in terms of the

original basis functions ϕ1 and ϕ2 we now transform C
0
2 to C2.
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Step 12 Transforming C
0
2 to C2 (cf. Step 7)

C2 ¼ 1:1163 �0:3003
�0:3003 1:1163

� �
0:5138 0:8579
0:8579 �0:5138

� �
0:3159 1:1120
0:8034 �0:8319

� �
S�1=2 C

0
2 C2

ð5:144Þ

This completes the second SCF cycle. We now have the MO energy levels and basis

function coefficients:

From Eq. (5.143):

ε1 ¼ �1:4447 and ε2 ¼ �0:1062 ð5:145Þ

From Eq. (5.144):

ψ1 ¼ 0:3159ϕ1 þ 0:8034ϕ2 and ψ2 ¼ 1:1120ϕ1 � 0:8319ϕ2 ð5:146Þ

Step 13 Comparing the density matrix from the latest c’s with the previous density

matrix to see if the SCF procedure has converged

The density matrix elements based on the c’s of C2 are

P11 ¼ 2c11c11 ¼ 2 0:3159ð Þ0:3159 ¼ 0:1996
P12 ¼ 2c11c21 ¼ 2 0:3159ð Þ0:8034 ¼ 0:5076
P22 ¼ 2c21c21 ¼ 2 0:8034ð Þ0:8034 ¼ 1:2909

ð5:147Þ

Comparing Eqs. (5.147) with Eqs. (5.136) we see that convergence to within our

1-part- in-1000 criterion has not occurred: the largest change in the density matrix is

0:1996� 0:1885ð Þ=0:1885j j ¼ 0:059, which is above 0.001, so the SCF procedure

is repeated.

Three more SCF cycles were carried out; the results of the “zeroth cycle” (the

initial guess) and the five cycles are summarized in Table 5.1. Only with the fifth

cycle has convergence been achieved, i.e. have the changes in all the density matrix

elements fallen below 1 part in 1000 (the largest change is in P11,�� 0:2020� 0:2019ð Þ=0:2019 ¼ 0:0005 < 0:001 ). In actual practice, a conver-

gence criterion of from about 1 part in 104 to 1 in 108 is used, depending on the

program and the particular kind of calculation. The coefficients and the density

matrix elements change smoothly, although the energy levels and Etotal
HF show some

oscillation. To reduce the number of steps needed to achieve convergence, pro-

grams sometimes extrapolate the density matrix, i.e. estimate the final P values and

use these estimates to initiate the final few SCF cycles.

Often the main result from a Hartree-Fock (i.e. an SCF) calculation is the energy

of the molecule (the calculation of energy may be subsumed into a geometry
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optimization, which is the task of finding the minimum-energy geometry). The

STO-1G energy of HHe+ with an internuclear distance of 0.800 Å may be calcu-

lated from our results:

the electronic energy is

EHF ¼
Xn
i¼1

εi þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs ð5:147 ¼ 5:90Þ

the internuclear repulsion energy is

VNN ¼
X
all μ, v

ZμZv

rμv
ð5:148 ¼ 5:92Þ

and the total internal energy of the molecule at 0 K (except for zero point energy—

Sect. 5.2.3.6.4) is

E total
HF ¼ EHF þ VNN ¼

Xn
i¼1

εi þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs þ VNN ð5:149 ¼ 5:93Þ

Etotal
HF , which is what is normally meant by the Hartree-Fock energy, is printed by the

program at the end of a single-point calculation or a geometry optimization, or by

some programs at the end of each step of a geometry optimization.

Using the energy levels and density matrix elements from the first cycle

(Table 5.1), with the Hcore elements from Eq. (5.120), Eq. (5.147) gives for the

purely electronic energy

Table 5.1 Results of initial guess and SCF cycles on HHe + at bond length 0.800 Å using the

STO-1G basis set. Energies (ε1, ε2, and EHF
total) are in hartrees

Initial guess

(zeroth cycle) 1st cycle 2nd cycle 3rd cycle 4th cycle 5th cycle

ε1, ε2, – �1.4027,

�0.0756

�1.4447,

�0.1062

�1.4466,

�0.1054

�1.4473,

�0.1056

�1.4470,

�0.1051

c11, c21 0.249, 0.867 0.3070,

0.8100

0.3159,

0.8034

0.3175,

0.8022

0.3177,

0.8021

0.3178,

0.8020

c12, c22 – 1.1145,

�0.8247

1.1120,

�0.8319

1.1115,

�0.8323

1.1115,

�0.8325

1.1114,

�0.8325

P11 0.1240 0.1885 0.1996 0.2010 0.2019 0.2020

P12 0.4318 0.4973 0.5076 0.5094 0.5097 0.5097

P22 1.5034 1.3122 1.2909 1.2870 1.2867 1.2864

EHF
total – �2.3992 �2.4419 �2.4428 �2.4443 �2.4438
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EHF ¼ ε1 þ 1

2

X2
r¼1

X2
s¼1

PrsH
core
rs

¼ ε1 þ 1

2

X2
r¼1

�
Pr1H

core
r1 þ Pr2H

core
r2


¼ ε1 þ 1

2

�
P11H

core
11 þ P12H

core
12 þ P21H

core
21 þ P22H

core
22

¼�1:4027hþ 1

2

�
0:1885 �1:6606ð Þ þ 0:4973 �1:3160ð Þ

þ 0:4973 �1:3160ð Þ þ 1:3122 �2:3030ð Þh
¼�3:7222h

ð5:150Þ

From Eq. (5.148) the internuclear repulsion energy is (0.800 Å ¼ 1.5117 bohr)

VNN ¼ ZHZHe

rHHe

¼ 1 2ð Þ
1:5117

h ¼ 1:3230h

ð5:151Þ

and from Eq. (5.149) the total Hartree-Fock energy is

E total
HF ¼ EHF þ VNN ¼ �3:7222 h þ 1:3230 h ¼ �2:3992 h ð5:152Þ

The Hartree-Fock energies for the five SCF cycles are given in Table 5.1.

Instead of starting with eigenvectors from a non-SCF method like the extended

Hückel method, as was done in this illustrative procedure, an SCF calculation is

occasionally initiated by taking Hcore as the Fock matrix, that is, by initially

ignoring electron-electron repulsion, setting equal to zero the second term in

Eq. (5.82), or G in Eq. (5.100), whereupon Frs becomes Hcore
rs . This is usually a

poor initial guess, but is occasionally useful. You are urged to work your way

through several SCF cycles starting with this Fock matrix; this tedious calculation

will help you to appreciate the power and utility of modern electronic computers

and may enhance your respect for those who pioneered complex numerical calcu-

lations when the only arithmetical aids were mathematical tables and mechanical

calculators (mechanical calculators were machines with rotating wheels, operated

by hand-power or electricity. There were also, in astronomy at least, armies of

women arithmeticians called computers–the original meaning of the word).

If we calculate the electronic energy simply as twice the sum of the energies

of the occupied MO orbitals, as with the simple and extended Hückel methods,

we get a much higher value than from the correct procedure (Eq. (5.147));

with a 0.800 Å bond length and the converged results this naive electronic energy

is 2(�1.4470) h¼�2.8940 h, while the correct electronic energy (not given in

Table 5.1–the HF energies there are electronic plus internuclear repulsion) is
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�3.7668 h, i.e. 30% lower when we correct for the fact that simply double-

summing the MO energies counts electron repulsion terms twice (Sect. 5.2.3.6.4).

A geometry optimization for HHe+ can be done by calculating the Hartree-Fock

energy (electronic plus internuclear) at different bond lengths to get the minimum-

energy geometry. The results are shown in Fig. 5.11; the optimized bond length for

the STO-1G basis set is ca. 0.86 Å. Note that it is customary to report ab initio

energies in hartrees to 5 or 6 decimal places (and bond lengths in Å to 3 decimals);

the truncated values used here are appropriate for these illustrative calculations.

Summary of the steps in a single-point Hartree-Fock (SCF) calculation using the
Roothaan-Hall LCAO expansion of the MO’s

1. Specify a geometry, basis set, and orbital occupancy (this latter is done by

specifying the charge and multiplicity, with an electronic ground state being

the default).

2. Calculate the integrals: Trs, Vrs for each nucleus, and the 2-electron integrals

(ru
��ts) etc. needed for Grs, as well as the overlap integrals Srs for the orthogo-

nalizing matrix derived from S (see step 3). Note: in the direct SCF method

(Sect. 5.3) the 2-electron integrals are calculated as needed, rather than all

at once.

3. Calculate the orthogonalizing matrix S�1/2

(a) diagonalize S: S¼PDP�1 S ¼ PDP�1

(b) Calculate D�1/2 (take the �1/2 power of the elements of D)

(c) Calculate S�1/2¼PD�1/2P�1

–2.4300

–2.4350

–2.4400

–2.4450

–2.4500

0.700 0.800 0.900

.

.

.

.

.

E,
hartrees r, A

Fig. 5.11 STO-1G energy vs. bond length r for H�He+. The calculation for r¼ 0.800 Å was done

largely “by hand” (see Sect. 5.2.3.6.5); the others were done with the program Gaussian 92 [29]
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4. Calculate the Fock matrix F

(a) Calculate the 1-electron matrix Hcore¼TþV1þV2þ � � � using the T and

V integrals from step 2.

(b) The 2-electron matrix (the electron repulsion matrix) G:

Use an initial guess of the coefficients of the occupied MO’s to calculate initial-
guess density matrix elements:

Ptu ¼ 2
Xn
j¼1

c*tjcuj t ¼ 1, 2, � � �,m and u ¼ 1, 2, � � �,m

Use the density matrix elements and the 2-electron integrals to calculate G:

Grs ¼
Xm
t¼1

Xm
u¼1

Ptu rs
��tu� �� 1

2
ru
��ts� �h i

The Fock matrix is F¼HcoreþG

5. Transform F to F0, the Fock matrix that satisfies F
0 ¼ C

0
εC

0 �1

F
0 ¼ S�1=2FS�1=2

6. Diagonalize F0 to get energy levels and a C0 matrix

F
0 ¼ C

0
εC

0 �1

7. Transform C0 to C, the coefficient matrix of the original basis functions

C ¼ S�1=2C
0

8. Compare the density matrix elements calculated from the C of the previous step

with those of the step before that one (and/or use other criteria, e.g. the molecular

energy); if convergence has not been achieved go back to step 4 and calculate a

new Fock matrix using the P’s from the latest c’s. If convergence has been

achieved, stop.

It should be realized modern ab initio programs do not rigidly follow the basic

SCF procedure described in this section. To speed up calculation they employ a

variety of tricks. Among these are: the use of symmetry to avoid duplicate calcu-

lation of identical integrals; testing two-electron integrals quickly to see if they are

small enough to be neglected (as is the case for functions on distant nuclei; this

decreases the time of a calculation from an n4 dependence on the number of basis

function to about an n2.3 dependence); recalculating integrals to avoid the bottle-

neck of hard-drive access (direct SCF, Sect. 5.3.2); representing the MOs as a set of

gridpoints in space, in addition to a basis set expansion, which eliminates the need

250 5 Ab initio Calculations



to explicitly calculate two-electron integrals (this pseudospectral method speeds up
ab initio calculations by a factor of perhaps three or four); for very large systems,

calculating the Coulomb interaction between distant regions as the repulsion

between points at the centers of the regions ( fast multipole method). Methods of

speeding up calculations are explained, with references to the literature, by

Levine [33].

The method of calculating wavefunctions and energies that has been described in

this chapter applies to closed-shell, ground-statemolecules. The Slater determinant

we started with (Eq. (5.12)) applies to molecules in which the electrons are fed

pairwise into the MO’s, starting with the lowest-energy MO; this is in contrast to

free radicals, which have one or more unpaired electrons, or to electronically

excited molecules, in which an electron has been promoted to a higher-level MO

(e.g. Fig. 5.9, neutral triplet). The Hartree-Fock method outlined here is based on

closed-shell Slater determinants and is called the restricted Hartree-Fock method

or RHF method; “restricted” means that the electrons of α spin are forced to occupy

(restricted to) the same spatial orbitals as those of β spin: inspection of Eq. (5.12)

shows that we do not have a set of α spatial orbitals and a set of β spatial orbitals.
The same spatial orbital, ψ1 for example, is used to create an alpha and a beta spin

orbital. If unqualified, a Hartree-Fock (i.e. an SCF) calculation means an RHF

calculation.

The commonest way to treat free radicals is with the unrestricted Hartree-Fock
method or UHF method [12b]. In this method, we employ separate spatial orbitals

for the α and the β electrons, giving two sets of MO’s, one for α and one for β
electrons. There are thus basis function coefficients to be optimized separately for

the α-accommodating and for the β-accommodating spatial orbitals, and we have α-
and β-Fock matrices . That these spatial orbitals are not identical is apparent from

the fact that the “lone” (unpaired) electron of a free radical is expected to interact

differently with α- than with β-electrons, since electrons of the same spin have an

extra aversion to one another due to “Pauli repulsion”. The UHF method is

“unrestricted” because the alternative of putting α- and β-electrons in the same

spatial orbitals would force (restrict) them to trace out the same spatial regions

despite their different interactions with the unpaired electron(s). Less commonly,

free radicals are treated by the restricted open-shell Hartree-Fock or ROHF

method, in which electrons occupy MO’s in pairs as in the RHF method, except

for the necessarily unpaired electron(s).

Both the UHF and ROHF methods have their advantages and problems. UHF

calculations mirror reasonably well spin densities from electron spin resonance and

so are useful in analyzing electron distribution in open-shell species. A ROHF, in

contrast, cannot reflect properly the interaction of paired-up electrons with an

unpaired electron, because the paired electrons are in mutually restricted spatial

orbitals. The main problem with UHF is that it does not give a true wavefunction of

the system, but rather one that may be significantly contaminated with contributions

from wavefunctions of higher multiplicity; for example, a simple free monoradical,

properly a doublet, may have contributions from a quartet, sextet, and so on. The

extent of this contamination can be judged from inspection of the expectation
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values (the eigenvalues if the wavefunction is uncontaminated by higher spin

states)< S2> of the spin-squared operator Ŝ2. This is automatically evaluated for

a calculation on a radical, and if the deviation from the expectation value seems

unreasonable, the geometry and energy may be unacceptable. For a mono-, a di-,

and a triradical, the total spin is respectively 1/2, 1, and 3/2 and the multiplicity

(Eq. 5.99) is 2S+1 is 2 (doublet), 3 (triplet), and 4 (quartet). The theoretical expec-

tation values< S2> are, from the eigenvalue expression S(Sþ 1) (reference 1a,

p 266), 0.7500, 2.0000, and 3.7500. Most algorithms apply an “annihilation oper-

ator” which attempts to remove higher-spin contamination, and print< S2> before

and after annihilation. Here is a comparison of< S2> from UHF and ROHF for the

monoradicals A and B, the diradical C, and the triradical D, below:

.

.

..

.

CH2
.

C
H

H

H
.

A C DB

C6H5
C6H10 C6H9CH2

A UHF before/after annihilation 0.7625/0.7501; theory 0.7500

ROHF before/after annihilation 0.7500/0.7500; theory 0.7500

B UHF before/after annihilation 1.4330/1.1781; theory 0.7500

ROHF before/after annihilation 0.7500/0.7500; theory 0.7500

C UHF before/after annihilation 2.0237/2.0004; theory 2.0000

ROHF before/after annihilation 2.0000/2.0000; theory 2.0000

D UHF before/after annihilation 3.7880/3.7507; theory 3.7500

ROHF before/after annihilation 3.7500/3.7500; theory 3.7500

We see that with UHF, for A, C and D contamination is small and annihilation

brings the expectation value< S2> still closer to theoretical. Contamination is bad

for B, and annihilation helps little; properties from this wavefunction are of

questionable validity. The ROHF wavefunctions are uncontaminated. An advan-

tage of ROHF over UHF is that when the latter gives a strongly spin-contaminated

result, the ROHF geometry is likely to be more reliable.

Excited states, and those unusual molecules with electrons of opposite spin

singly occupying different spatial MO’s (open-shell singlets) cannot be properly

treated with a single-determinant wavefunction. They must be handled with

approaches beyond the Hartree-Fock level, such as configuration interaction

(Sect. 5.4). The theoretical treatment of open-shell species is discussed in refer-

ences [1] and [10], and [1k] and [1l], in particular, compare the performance of the

UHF and ROHF methods.

252 5 Ab initio Calculations



5.3 Basis Sets

5.3.1 Introduction

We encountered basis sets in the simple Hückel and extended Hückel methods

(Sects. 4.4.1.1 and 4.4.1.2). A basis set is a set of mathematical functions (basis

functions), linear combinations of which yield molecular orbitals, as shown in

Eqs. (5.51) and (5.52). The functions are usually, but not invariably, centered on

atomic nuclei (Fig. 5.7). Approximating molecular orbitals as linear combinations

of basis functions is usually called the LCAO or linear combination of atomic

orbitals approach, although the functions are not necessarily conventional atomic

orbitals: they can be any set of mathematical functions that are convenient to

manipulate and which in linear combination give useful representations of MO’s.
With this reservation, LCAO is a useful acronym. Physically, several (usually)

basis functions describe the electron distribution around an atom and combining

atomic basis functions yields the electron distribution in the molecule as a whole.

Basis functions not centered on atoms (occasionally used) can be considered to lie

on “ghost atoms”; see basis set superposition error, Sect. 5.4.3.3.

The simplest basis sets are those used in the simple Hückel and the extended

Hückel methods (SHM and EHM, Chap. 4). As applied to conjugated organic

compounds (its usual domain), the simple Hückel basis set consists of just p atomic

orbitals (or “geometrically p-type” atomic orbitals, like a lone-pair orbital which can

be considered not to interact with the σ framework). The extended Hückel basis set
consists of only the atomic valence orbitals. In the SHM we don’t worry about the

mathematical form of the basis functions, reducing the interactions between them to

0 or �1 in the SHM Fock matrix (e.g. Eqs. 4.62 and 4.64). In the EHM the valence

atomic orbitals are represented as Slater functions (Sect. 4.4.1.2).

5.3.2 Gaussian Functions; Basis Set Preliminaries;
Direct SCF

The electron distribution around an atom can be represented in several ways.

Hydrogenlike functions based on solutions of the Schr€odinger equation for the

hydrogen atom, polynomial functions with adjustable parameters, Slater functions

(Eq. (5.95)), and Gaussian functions (Eq. (5.96)) have all been used [34]. Of these,

Slater and Gaussian functions are mathematically the simplest, and it is these that

are currently used as the basis functions in molecular calculations. Slater functions

are used in semiempirical calculations, like the extended Hückel method (Chap. 4,

Sect. 4.4) and other semiempirical methods (Chap. 6). Modern molecular ab initio

programs employ Gaussian functions.

Slater functions are good approximations to atomic wavefunctions and would be

the natural choice for ab initio basis functions, were it not for the fact that the

evaluation of certain 2-electron integrals requires excessive computer time if Slater
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functions are used. The 2-electron integrals (Sects. 5.2.3.6.3 and 5.2.3.6.5) of the

G matrix (Eq. (5.100)) involve four functions, which may be on from one to four

centers (normally atomic nuclei). Those 2-electron integrals with three or four

different functions (( rs
��tt ), ( rs��rt ) and ( rs

��tu )) and three or four nuclei (three-

center or four-center integrals) are extremely difficult to calculate with Slater

functions, but are readily evaluated with Gaussian basis functions. The reason is

that the product of two Gaussians on two centers is a Gaussian on a third center.

Consider an s-type Gaussian centered on nucleus A and one on nucleus B; we are

considering real functions, which is what basis functions normally are:

gA ¼ aAe
�αA

��r�rA

��2
, gB ¼ aBe

�αB

��r�rB

��2 ð5:153Þ

where

��r� rA
��2 ¼ x� xAð Þ2 þ y� yAð Þ2 þ z� zAð Þ2

and
��r� rB

��2 ¼ x� xBð Þ2 þ y� yBð Þ2 þ z� zBð Þ2 ð5:154Þ

with the nuclear and electronpositions inCartesian coordinates (if thesewere not s-type
functions, the preexponential factor would contain one or more cartesian variables to

give the function – the “orbital”– nonspherical shape). It is not hard to show that

gAgB ¼ ace
�αC

��r�rC

��2 ¼ gC ð5:155Þ

The product of gA and gB is the Gaussian gC, centered at rC. Now consider the

general electron-repulsion integral

rs
��tu� � ¼ ZZ ϕ*

r 1ð Þϕs 1ð Þϕ*
t 2ð Þϕu 2ð Þ

r12
dv1dv2 ð5:156 ¼ 5:73Þ

If each basis function ϕ were a single, real Gaussian, then from Eq. (5.155) this

would reduce to

v=wð Þ ¼
ZZ

ϕv 1ð Þϕw 2ð Þ
r12

dv1dv2 ð5:157Þ

i.e. three- and four-center two-electron integrals with four basis functions would

immediately simplify to tractable two-center integrals with two functions. Actually,

things are a little more complicated. A single Gaussian is a poor approximation to

the nearly ideal description of an atomic wavefunction that a Slater function pro-

vides. Figure 5.12 shows that a Gaussian (designated STO-1G) is rounded near

r¼ 0 while a Slater function has a cusp there (zero slope vs. a finite slope at r¼ 0);

the Gaussian also decays somewhat faster than the Slater function at large r. The
solution to the problem of this poor functional behaviour is to use several Gaussians

to approximate a Slater function. In Fig. 5.12 a single Gaussian and a linear

combination of three Gaussians have been used to approximate the Slater function
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shown; the nomenclature STO-1G and STO-3G mean “Slater-type orbital (approx-

imated by) one Gaussian” and “Slater-type orbital (approximated by) three Gauss-

ians”, respectively. The Slater function shown is one suitable for a hydrogen atom

in a molecule (ζ ¼ 1:24 [31]) and the Gaussians are the best fit to this Slater

function. STO-1G functions were used in our illustrative Hartree-Fock calculation

on HHe+ (Sect. 5.2.3.6.5), and the STO-3G function is the smallest basis function

used in standard ab initio calculations by commercial programs. Three Gaussians

are a good speed vs. accuracy compromise between two and four or more [31].

The STO-3G basis function in Fig. 5.12 is a contracted Gaussian consisting of

three primitive Gaussians each of which has a contraction coefficient (0.4446,
0.5353 and 0.1543). Typically, an ab initio basis function consists of a set of

primitive Gaussians bundled together with a set of contraction coefficients. Now

consider the 2-electron integral (rsjtu) (Eq. (5.156). Suppose each basis function is

an STO-3G contracted Gaussian, i.e.

ϕr ¼ d1rg1r þ d2rg2r þ d3rg3r ð5:158Þ

and analogously for ϕs, ϕt, and ϕu. Then it is easy to see that

1 2 3

0.5

1.0

Slater

STO-3G

STO-1G

0
r, Å

f (STO–3G) = 0.4446            e –ar 2
 + 0.5353            e –ar 2 

+ 0.1543            e –ar 2 

     = 0.0835 e –0.1689r 2 
+ 0.2678 e –0.6239r 2 

+ 0.2769 e –3.4253r 2

2a
p

3 / 4 2a
p

3 / 4 2a
p

3 / 4

2a
p

3 / 4

f (STO–1G) =             e –ar 2 
= 0.3696e –0.4166r 2 

z 3

p

1 / 2

f (Slater) =            e –z r = 0.7790e–1.24r

f

Fig. 5.12 Comparison of Slater, STO-1G and STO-3G functions for hydrogen. The Slater

function shown is the most appropriate one for hydrogen in a molecular environment, and the

Gaussians are the best 1-G and 3-G fits to this Slater function. Slater and Gaussian functions are

usually characterized by parameters designated ζ (zeta) and α, respectively, as shown [31]
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rsjtuð Þ ¼
ZZ

d1rd1sg1r1s
1

r12
d1td1ug1t1udv1dv2

þ
ZZ

d1rd1sg1r1s
1

r12
d1td2ug1t2udv1dv2 þ � � �

þ
ZZ

d3rd3sg3r3s
1

r12
d3td3ug3t3udv1d

ð5:159Þ

where g1r1s¼ g1r� g1s and so on. Thus with contracted Gaussians as basis func-

tions, each two-electron integral becomes a sum of easily calculated two-center

two-electron integrals. Gaussian integrals can be evaluated so much faster than

Slater integrals that the use of contracted Gaussians instead of Slater functions

speeds up the calculation of the integrals enormously, despite the larger number of

integrals. Discussions of the number of integrals in an ab initio calculation usually

refer to those at the contracted Gaussian level, rather than the greater number

engendered by the use of primitive Gaussians; thus the program Gaussian 92 [29]

says that both an STO-1G and an STO-3G calculation on water use the same

number (144) of 2-electron integrals, although the latter clearly involves more

“primitive integrals.” The fruitful suggestion to use Gaussians in molecular calcu-

lations came from Boys (1950 [35]); it played a major role in making ab initio

calculations practical, and this is epitomized in the names of the Gaussian series of

programs, which are primarily devoted to ab initio and DFT (Chap. 7) and are

among the most widely-used quantum mechanics -oriented computational chemis-

try programs [36].

Fast calculation of integrals is particularly important for the 2-electron integrals,

as their number increases rapidly with the size of the molecule and the basis set

(basis sets are discussed in Sect. 5.3.3). Consider a calculation on water with an

STO-1G basis set (and bear in mind that the smallest basis set normally used in ab

initio calculations is the STO-3G set). In a standard ab initio calculation we use at

least one basis function for each core orbital and each valence-shell orbital. Thus

the oxygen requires five basis functions, for the 1s, 2s, 2px, 2py and 2pz orbitals; we
can designate these functions ϕ1, ϕ2, . . . ϕ5, and denote the 1s hydrogen functions,

one for each H, ϕ6 and ϕ7. In computational chemistry atoms beyond hydrogen and

helium in the periodic table are called “heavy atoms”, and the computational “first

row” is lithium–neon. With experience, the number of heavy atoms in a molecule

gives a quick indication of about how many basis functions will be invoked by a

specified basis set. Following the procedure for HHe+ in Eq. (5.106):

G11 ¼
X7
t¼1

X7
u¼1

Ptu 11jtuð Þ � 1

2
1ujt1ð Þ

h i

Now u runs from 1 to 7 and t from 1 to 7, so G11 will consist of 49 terms, each

containing two 2-electron integrals for a G11 total of 98 integrals. The Fock

matrix for seven basis functions is a 7� 7 matrix with 49 elements, G11, G12,. . .
G17, . . .G77, so apparently there are 49� 98¼ 4802 2-electron integrals. Actually,
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many of these are duplicates (Gij¼Gji, so an n� n Fock matrix has only about n2/2
different elements), differ from other integrals only in sign, or are very small, and

the number of unique nonvanishing 2-electron integrals is 119 (calculated with

Gaussian 92 [29]). For an STO-1G calculation on hydrogen peroxide (12 basis

functions), there are ca. 700 unique nonvanishing 2-electron integrals (cf. a naive

theoretical maximum of 41,472). The usual formula for estimating the maximum

number of unique 2-electron integrals for a set of m real basis functions derives

from the fact that there are four basis functions in each integral and ( rsjtu ) is

eightfold degenerate (Eq. (5.109)); this approximates the maximum number of

these integrals as

Nmax ¼ m4=8 ð5:160Þ

In the above calculations the symmetry of water (C2v) and hydrogen peroxide

(C2h) plays an important role in reducing the number of integrals which must really

be calculated, and modern ab initio programs recognize and utilize symmetry where

it can be used (most molecules lack symmetry, but the small molecules of particular

theoretical interest usually possess it), and are also able to recognize and avoid

calculating integrals below a threshold size. Nevertheless the rapid rise in the

number of 2-electron integrals with molecular and basis set size portends problems

for ab initio calculations. An ab initio calculation on aspirin, a fairly small (C9H8O4,

13 heavy atoms) molecule of practical interest, using the 3–21G basis set

(Sect. 5.3.3), which is the smallest that is usually used, requires 133 basis functions,

which from Eq. (5.160) could invoke up to 39 million (1334/8) 2-electron integrals.

Clearly, a modest ab initio calculation could require tens of millions of integrals.

Information on molecular size, symmetry, basis sets and number of integrals is

summarized in Table 5.2 (the 3–21G basis set is explained in Sect. 5.3.3). Note that

for those molecules with no symmetry (C1), the number of 2-electron integrals

calculated from Eq. (5.160) is about the same as that actually calculated by

Gaussian 92.

There are two problems with so many 2-electron integrals: the time needed to

calculate them, and where to store them. Solutions to the first problem are, as

explained, to use Gaussian functions, to utilize symmetry where possible, and to

Table 5.2 Molecular size, number of basis functions, and number of 2-electron integrals

Basis functions 2-Electron integrals

STO-3G 3–21G(*) from m4/8 from G92a from m4/8 from G92

HHe+ C1v 2 4 2 6 32 55

H2O C2v 7 13 300 144 3570 1314

H2O2 C2h 12 22 2592 738 29,282 7713

H2O2 C1
* 12 22 2592 2774 29,282 28,791

H2O3 C2v 17 31 10,440 3421 115,440 31,475

H2O3 C1 17 31 10,440 11,046 115,440 107,869
aThe coordinates of one of the atoms was altered slightly to get this unnatural symmetry
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ignore those integrals that a preliminary check reveals are “vanishing”. The other

problem can be dealt with by storing the integrals in the RAM (the random access

memory, i.e. the electronic memory), storing the integrals on the hard drive, or not

storing them at all, but rather calculating them as they are required. Calculating all

the integrals at the outset and storing them somewhere is called conventional scf,
being the earlier-used procedure. The latter procedure of calculating only those

2-electron integrals needed at the moment, and recalculating them again when

necessary, is called direct scf (presumably using “direct” in the sense of “just

now” or “at the moment”). Calculating all the 2-electron the integrals and storing

them in the RAM is the fastest approach, since it requires them to be calculated only

once, and accessing information from the electronic memory is fast. However,

RAM cannot yet store as many integrals as the hard drive. A (currently) modest

memory of 4 GB can store all the integrals generated by perhaps about 2000 basis

functions (up to about 100 million); beyond this the computer essentially grinds to a

halt. The capacity of the hard drive is typically considerably greater than that of the

RAM (say, 1000 GB for a moderately respectable hard drive, and storing all the

2-electron integrals on the hard drive is often a viable option, but suffers from the

disadvantage that the time taken to read data from a mechanical device into the

RAM, where it can be used by the cpu, is much greater (perhaps a millisecond or so

compared to a nanosecond) than the time needed to access the information were it

stored in a purely electronic device like the RAM (which is the only alternative to

direct scf in, for example, Spartan [37]). For these reasons, ab initio calculations

with many basis functions (beyond some hundreds, depending on the size of the

RAM) nowadays use direct scf, despite the need to recalculate integrals [38]. These

considerations will change with improvements in hardware, and the availability of

very large electronic memories may make storage of all the 2-electron integrals in

RAM the only choice for ab initio calculations.

5.3.3 Types of Basis Sets and Their Uses

We have met the STO-1G (Sects. 5.2.3.6.5 and 5.3.2) and STO-3G (Sect. 5.3.2)

basis sets. We saw that a single Gaussian gives a poor representation of a Slater

function, but that this approximation can be improved by using a linear combination

of Gaussians (Fig. 5.12). In this section the basis sets commonly used in ab initio

calculations are described and their domains of utility are outlined. Note that the

STO-1G basis, although it was useful for our illustrative purposes, is not used

in research calculations (Fig. 5.12 shows how poorly it approximates a Slater

function). We will consider the STO-3G, 3–21G, 6–31G*, and 6–311G* basis

sets, which, with variations obtained by adding polarization (*) and diffuse (+)

functions, are the most widely-used; other sets will be briefly mentioned. Informa-

tion on some basis sets is summarized in Fig. 5.13. Good discussions of currently

popular basis sets are given in, e.g., references 1a, 1e and 1i; the compilations by

Hehre et al. [1g, 39] are extensive and critically evaluated.
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The basis sets described here in most detail are those developed by Pople3 and

coworkers [40], which are probably the most popular now, but all general-purpose

(those not used just on small molecules or on atoms) basis sets utilize some sort of

contracted Gaussian functions to simulate Slater orbitals. A brief discussion of basis

sets and references to many, including the widely-used Dunning correlation-

consistent (below) and Huzinaga sets, is given by Simons and Nichols [41].

There is no one procedure for developing a basis set. One method is to optimize

Slater functions for atoms or small molecules, i.e. to find the values of ζ that give
the lowest energy for these, and then to use a least-squares procedure to fit

contracted Gaussians to the optimized Slater functions [42]. Whatever the details

1H
1s
1 function

2He
1s
1 function

3Li–10Ne
1s
2s 2p 2p 2p
5 functions

11Na–18Ar
1s
2s 2p 2p 2p
3s 3p 3p 3p
9 functions

19K–20Ca
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
13 functions

21Sc–30Zn
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
3d 3d 3d 3d 3d
18 functions

31Ga–36Kr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
3d 3d 3d 3d 3d
18 functions

37Rb–38Sr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s 5p 5p 5p
3d 3d 3d 3d 3d
22 functions

39Y–48Cd
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s 5p 5p 5p
3d 3d 3d 3d 3d
4d 4d 4d 4d 4d
27 functions

49In–54Xe
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s 5p 5p 5p
3d 3d 3d 3d 3d
4d 4d 4d 4d 4d
27 functions

a, STO-3G

Fig. 5.13 (a) The STO-3G basis set (b) The 3–21G basis set (c) The 3–21G(*) basis set (d) The
6–31G* basis set

3John Pople, born in Burnham-on-Sea, Somerset, England, 1925. Ph.D. (Mathematics) Cam-

bridge, 1951. Professor, Carnegie-Mellon University, 1960–1986, Northwestern University

(Evanston, Illinois) 1986–2004. Nobel Prize in chemistry 1998 (with Walter Kohn, chapter

5, section 7.1). Died Chicago, 2004.
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of their genesis, ab initio basis sets are constructed by some kind of mathematical

minimization procedure, and not by fitting them to reproduce experimental atomic

or molecular properties: they are not semiempirical.

5.3.3.1 STO-3G

This is called a minimal basis set, although some atoms actually have more basis

functions (which for this basis can be equated with atomic orbitals) than are needed

to accommodate all their electrons. For the earlier part of the periodic table

(hydrogen to argon) each atom has one basis function corresponding to its usual

atomic orbital description, with the proviso that the orbitals used by the later atoms

of a row are available to all those of the row. A hydrogen or helium atom has a 1s
basis function. Each “first-row” atom (lithium to neon) has a 1s, a 2s, and a 2px, 2py
and 2pz function, giving 5 basis functions for each of these atoms: although lithium

b, 3-21G

Fig. 5.13 (continued)
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2 functions
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9 functions
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3d 3d 3d 3d 3d 3d
19 functions
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21 30Sc– Zn
1s
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3d  3d  3d  3d  3d  3d
29 functions

31 36Ga– Kr
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2s 2p 2p 2p
3s 3p 3p 3p
4s  4p  4p  4p
4s  4p  4p  4p
3d  3d  3d  3d  3d  3d
3d  3d  3d  3d  3d  3d
29 functions

37 38Rb– Sr
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s  5p  5p  5p
5s  5p  5p  5p
3d 3d 3d 3d 3d 3d
4d 4d 4d 4d 4d 4d
33 functions

39 48Y– Cd
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s  5p  5p  5p
5s  5p  5p  5p
3d 3d 3d 3d 3d 3d
4d  4d  4d  4d  4d  4d
4d  4d  4d  4d  4d  4d
39 functions

49 54In– Xe
1s
2s 2p 2p 2p
3s 3p 3p 3p
4s 4p 4p 4p
5s  5p  5p  5p
5s  5p  5p  5p
3d 3d 3d 3d 3d
4d  4d  4d  4d  4d  4d
4d  4d  4d  4d  4d
4d
39 functions

c, 3-21G(*)

d, 6-31G*

Fig. 5.13 (continued)
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and beryllium are often not thought of as using p orbitals, all the atoms of this row

are given the same basis, because this has been found to work better than a literally

minimum basis set. Second-row atoms (sodium to argon) have a 1s and a 2s, as well
as three 2p functions, plus a 3s and three 3p functions, giving 9 basis functions.

In the third row, potassium and calcium, as expected, have the 9 functions of the

previous row, plus a 4s and three 4p functions, for a total of 13 basis functions.

Starting with the next element, scandium, five 3d orbitals are added, so that

scandium to krypton have 13þ 5¼ 18 basis functions. The STO-3G basis is

summarized in Fig. 5.13(a).

The STO-3G basis introduces us to the concept of contraction shells in

constructing contracted Gaussians from primitive Gaussians (Sect. 5.3.2). The

Gaussians of a contraction shell share common exponents. Carbon, for example,

has one s shell and one sp shell. This means that the 2s and 2p Gaussians (belonging
to the 2sp shell) share common α exponents (which differ from those of the 1s
function). Consider the contracted Gaussians

ϕ 2sð Þ ¼ d1se
�α1sr þ d2se

�α2sr þ d3se
�α3sr

ϕ 2pxð Þ ¼ d1pxe
�α1pr þ d2pxe

�α2pr þ d3pxe
�α3pr

ϕ 2pzð Þ ¼ d1pze
�α1pr þ d2pze

�α2pr þ d3pze
�α3pr

ϕ 2py
� � ¼ d1pye

�α1pr þ d2pye
�α2pr þ d3pye

�α3sr

The usual practice is to set α1s¼ α1p, α2s¼ α2p, and α3s¼ α3p. Using common α’s
for the s and p primitives reduces the number of distinct integrals that must be

calculated. An STO-3G calculation on CH4, for example, involves nine basis

functions (five for C and one for each H) in six shells: for C one s (i.e. a 1s)
shell, and one sp (i.e. a 2s plus 2p) shell, and for each H one s (i.e. a 1s) shell. The
current view is that the STO-3G basis is not very good, and it would normally be

considered unacceptable for research. Nevertheless, one hesitates to endorse Dewar

and Storch’s assertion that “it must be considered obsolete” [43]. We do not know

how many publications report work which began with preliminary and unreported

but valuable investigations using this basis. Its advantages are speed (it is probably

the smallest basis set that would even be considered for an ab initio calculation)

and the ease with which the molecular orbitals can be dissected into atomic orbital

contributions. The STO-3G basis is roughly twice as fast (Table 5.3) as the next

larger commonly used one, the 3–21G. Sophisticated semiempirical methods

(Chap. 6) are perhaps more likely to be used nowadays in preliminary investiga-

tions, and to obtain reasonable starting structures for ab initio optimizations, but for

systems significantly different from those for which the semiempirical methods

were parameterized one might prefer to use the STO-3G basis. As for examining

atomic contributions to bonding, interpreting bonding in terms of hybrid orbitals

and the contribution of particular atoms to MO’s is simpler when each atom has just

one conventional orbital, rather than split orbitals (as in the basis sets to be

discussed). Thus an analysis of the electronic structure of three- and four-membered

rings used the STO-3G basis explicitly for this reason [44], as did an interpretation

of the bonding in the unusual molecule pyramidane [45].
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The shortcomings (and virtues) of the STO-3G basis are extensively documented

throughout Ref. [1g]. Basically, the drawbacks are that by comparison with the

3–21G basis, which is not excessively more demanding of time, it gives signifi-

cantly less accurate geometries and energies (this was the reason for the call to

abandon this basis [43]). Actually, even for second-row atoms (Na–Ar), where the

defects of such a small basis set should be, and are, most apparent, the STO-3G

basis supplemented with five d or polarization functions (the STO-3G* basis;

polarization functions are discussed below) can give results comparable to those

of the 3–21G basis set. Thus for the S–O bond length of Me2SO we get (Å):
STO-3G, 1.820; STO-3G*, 1.480; 3–21G, 1.678; 3–21G(*), 1.490; exp., 1.485,

and for NSF [46] the geometries shown in Fig. 5.14. Nevertheless, the STO-3G*

basis is not in the normally-used repertoire.

N

S

F

N

S

F

N

S

F N

S

F

1.611 1.654
101.2

1.468 1.570

N

S

F
114.4

1.567 1.672
107.8

1.440 1.609
113.8

116.9
1.448 1.643

experiment

STO-3G STO-3G*

3-21G 3-21G*

Fig. 5.14 Some STO-3G, STO-3G*, 3–21G and 3–21G* geometries

Table 5.3 Effect of basis set and symmetry on times for single-point, geometry optimization and

geometry optimization + frequencies calculations on acetone, (CH3)2CO

Basis set

Single point

Geometry

optimization

Geometry

optimizationþ frequencies

Time, seconds Time, seconds Time, seconds

C2v C1 C2v C1 C2v C1

STO-3G 0.2 (0.2) 0.3 (0.2) 1 (2) 2 (7) 2 (13) 3 (59)

3–21G(*) 0.5 (0.3) 0.6 (0.5) 2 (2) 3 (5) 3 (20) 8 (75)

6–31G* 1.4 (2) 2 (3) 9 (15) 22 (54) 15 (172) 30 (586)

The starting geometry for the ab initio jobs was a molecular mechanics (MMFF) one. The C2v

geometry is that with two C–H/C¼O eclipsed arrangements (the global minimum). The C1

symmetry starting geometry was obtained by rotating one C–C bond very slightly (by 1�) in the

C2v precursor molecular mechanics structure (after MM optimization). These calculations were

done with a 2006 version of Spartan [37] on a quadcore 2.66 GHz personal computer with 4.0 GB

of RAM, vintage 2007. For times of ca. one second, time differences are scarcely meaningful.

Numbers in parentheses were for calculations done in ca. 2001
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5.3.3.2 3–21G and 3–21G* Split Valence and Double-Zeta Basis Sets

First consider what we could denote as the “simple” 3–21G basis set. This splits

each valence orbital into two parts, an inner shell and an outer shell. The basis

function of the inner shell is represented by two Gaussians, and that of the outer

shell by one Gaussian (hence the “21”); the core orbitals are each represented by

one basis function, each composed of three Gaussians (hence the “3”). Thus H and

He have a 1s orbital (the only valence orbital for these atoms) split into 1s0 (1s
inner) and 1s00 (1s outer), for a total of 2 basis functions. Carbon has a 1s function
represented by three Gaussians, an inner 2s, 2px, 2py and 2pz (2s

0, 2px0, 2py0 2pz0)
function, each composed of two Gaussians, and an outer 2s, 2px, 2py and 2pz (2s

00,
2px

00,2py00, 2pz00) function, each composed of one Gaussian, making 9 basis func-

tions. The terms inner and outer derive from the fact that the Gaussian of the outer

shell has a smaller α than the Gaussians of the inner shell, and so the former

function falls off more slowly, i.e. it is more diffuse and effectively spreads out

further, into the outer regions of the molecule. The purpose of splitting the valence

shell is to give the SCF algorithm more flexibility in adjusting the contributions of

the basis functions to the molecular orbitals, thus achieving a more realistic

simulated electron distribution. Consider carbene, CH2 (Fig. 5.15). We can denote

the basis functions ϕ1�ϕ13:

C1s: ϕ1

C2s0, 2px0, 2py0, 2pz0: ϕ2, ϕ3, ϕ4, ϕ5 (inner valence shell)

C2s00, 2px00, 2py00, 2pz00: ϕ6, ϕ7, ϕ8, ϕ9 (outer valence shell)

H11s
0: ϕ10 (inner shell)

H11s
00: ϕ11 (outer shell)

H21s
0: ϕ12 (inner shell)

H21s
00: ϕ13 (outer shell)

Thirteen basis functions (“atomic orbitals”) give thirteen LCAO MO’s:

ψ1 ¼ c11ϕ1 þ c21ϕ2 þ � � � þ c13,1ϕ13

ψ1 ¼ c12ϕ1 þ c22ϕ2 þ � � � þ c13,2ϕ13

⋮
ψ13 ¼ c1,13ϕ1 þ c2,13ϕ2 þ � � � þ c13,13ϕ13

C

H H

..
9 basis functions

2 basis functions 2 basis functions

8 electrons

C,

H, H,

13 basis functions

Fig. 5.15 Carbene, with

3–21G basis functions
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Note that since there are thirteen MO’s but only eight electrons to be accommo-

dated, only the first four MO’s (ψ1�ψ4) are occupied (recall that we are talking

about closed-shell molecules in the ground electronic state). The nine empty MO’s
are called unoccupied or virtual molecular orbitals. We shall see that virtual MO’s
are important in certain kinds of calculations. Now, in the course of the SCF process

the coefficients of the various inner-shell and outer-shell basis functions can be

varied independently to find the best wavefunctions ψ (those corresponding to the

lowest energy). As the iterations proceed some outer-shell functions, say, could be

given greater (or lesser) emphasis, independently of any inner-shell functions,

allowing a finer-tuning of the electron distribution and a lower energy, than

would be possible with unsplit basis functions.

A still more malleable basis set would be one with all the basis functions, not just
those of the valence AO’s but the core ones too, split; this is called a double zeta

(double ζ) basis set (perhaps from the days before Gaussians, with exp(�αr2), had
almost completely displaced Slater functions with exp(�ζr) for molecular calcu-

lations). Double zeta basis sets are much less widely used than split valence sets,

since the former are computationally more demanding and for many purposes only

the contributions of the “chemically active” valence functions to the MO’s need to

be fine-tuned, and “double zeta” is sometimes used to refer to split valence

basis sets.

Returning to the 3–21G basis: here lithium to neon have a 1s function and inner

and outer 2s, 2px, 2py and 2pz (2s’, 2s”, . . ., 2pz”) functions, for a total of 9 basis

functions. These inhabit three contraction shells (see the STO-3G discussion): a 1s,
an sp inner and an sp outer contraction shell. Sodium to argon have a 1s, a 2s and
three 2p functions, and an inner and outer shell of 3s and 3p functions, for a total of
1þ 4þ 8 basis functions. These are in four shells: a 1s, an sp (2s, 2p), an sp inner

and an sp outer (3s and 3p inner, 3s and 3p outer). Potassium and calcium have a 1s,
a 2s and three 2p, and a 3s and three 3p functions, plus inner and outer 4s and 4p
functions, for a total of 1þ 4þ 4þ 8¼ 17 basis functions. The 3–21G basis set is

summarized in Fig. 5.13b.

For molecules with atoms beyond the first row (beyond neon), this “simple”

3–21G basis set tends to give poor geometries. This problem is largely overcome

for second-row elements (sodium to argon) by supplementing this basis with

d functions, called polarization functions. The term arises from the fact that

d functions permit the electron distribution to be polarized (displaced along a

particular direction), as shown in Fig. 5.16. Polarization functions enable the SCF

process to establish a more anisotropic electron distribution (where this is appro-

priate) than would otherwise be possible (cf. the use of split valence basis sets to

permit more flexibility in adjusting the inner and outer regions of electron density).

The 3–21G basis set augmented where appropriate (beyond neon) with six

d functions is in some computational programs designated 3–21G(*), where the

asterisk indicates polarization functions (d in this case) and the parentheses empha-

size that these extra (compared to the “simple” 3–21G basis) functions are present

only beyond the first row. For H to Ne, the 3–21G and the 3–21G* basis sets are

identical. The simple 3–21G basis, without the possibility of invoking polarization
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functions, is probably obsolete, and when we see “3–21G” we can usually take

it to mean, really, the 3–21G(*) basis summarized in Fig. 5.13c; for precision, the

3–21G(*) designation will be preferred here from now on. p-Polarization functions

can also be added not only to heavy atoms (recall that in computational chemistry

atoms beyond hydrogen and helium in the periodic table are called heavy atoms),

but to hydrogen and helium also (below).

Examples of geometries calculated with the simple and augmented 3–21G basis

sets are shown in Fig. 5.14. The 3–21G(*) gives remarkably good geometries for

such a small set, and it is used for the geometry optimization step of some high-

accuracy energy methods (Sect. 5.5.2). Since it is roughly five times as fast

(Table 5.3) as the next bigger widely-used basis, the 6–31G* (below) and is much

less demanding of computer power, the 3–21G(*) basis set has been used as a kind of

workhorse for relatively big molecules; see for example a study using it for

geometry optimization investigations of pericyclic reactions [47]. As long ago

as 1988 the somewhat similar but now obsolete 4–21G basis was used, with the

3–21G(*) basis specifically on sulfur, for geometry optimization of a protein

(crambin) with 46 amino acid residues and 642 atoms. This represented 3597

basis functions, and the job took 260 days [48]. It seems likely that now it would

be shorter by a factor of at least about 20, on an inexpensive desktop machine.

Nevertheless, the 6–31G* and even bigger basis sets seem to have largely displaced

the 3–21G(*). More recently novel approaches, such as dividing a large molecule

into fragments, have been explored [49]. The general problem of optimizing large

molecules has been reviewed [50]. Even where geometry optimizations with larger

bases are practical, a survey of the problem with the 3–21G(*) basis is sometimes

useful (it is HF/3–21G(*) geometries rather than relative energies which are

.
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atomic
nucleus

p function d function

C1 f1 C2 f2 C1 f1 + C2 f2

Weighted sum of
p function and d function.

The p function has been
shifted (polarized) toward
the right by the d function.

Fig. 5.16 One basis function can be used to shift another in a given direction (to polarize it).

In minimizing the energy, the program adjusts the relative contributions of the two functions to

shift the electron density where it is needed to get the minimum energy. p Functions are also

commonly used to polarize the s functions on hydrogen atoms, but the main use of polarization

functions is the utilization of d functions on “heavy” atoms (atoms other than H and He)

266 5 Ab initio Calculations



reasonable; consistently getting good relative energies is a more challenging

problem–see Sect. 5.5.2).

5.3.3.3 6–31G*

This is a split valence basis set with polarization functions (these terms were

explained in connection with the 3–21G(*) basis set, above). The valence shell of

each atom is split into an inner part composed of three Gaussians and an outer part

composed of one Gaussian (hence “31”), while the core orbitals are each

represented by one basis function, each composed of six Gaussians (“6”). The

polarization functions (*) are present on “heavy atoms”–those beyond helium.

Thus H and He have a 1s orbital represented by an inner 1s’ and an outer 1s’
basis function, making two basis functions. Carbon has a 1s function represented by
six Gaussians, an inner 2s, 2px, 2py and 2pz (2s

0, 2px0, 2py0 2pz0) function, each
composed of three Gaussians, and an outer 2s, 2px, 2py and 2pz (2s

00, 2px00, 2py00

2pz
00) function, each composed of one Gaussian, and six (not five) 3d functions,

making a total of 15 basis functions. A 6–31G* calculation on CH2 uses

15þ 2þ 2¼ 19 basis functions, and generates 19 MO’s. In the closed-shell species
the eight electrons occupy four of these MO’s, so there are 15 unoccupied or virtual
MO’s; compare this with a 3–21G(*) calculation on CH2 (above) where there are a

total of 13 MO’s with nine of them virtual. The 6–31G* basis, also often called

6–31G(d), is summarized in Fig. 5.13d.

The 6–31G* is perhaps the most popular basis at present. It gives good geom-

etries and, often, reasonable relative energies (Sect. 5.5.2); however, there seems to

be little evidence that it is, in general, much better than the 3–21G(*) basis for

geometry optimizations. Since it is about five times as slow (Table 5.3) as the

3–21G(*) basis, the general preference for the 6–31G* for geometry optimizations

may be due to its better relative energies (Sect. 5.5.2). The 3–21G(*) basis does have
certain geometry deficiencies compared to the 6–31G*, particularly its tendency to

overzealously flatten nitrogen atoms (the N of aniline is wrongly predicted to be

planar), and this, along with inferior relative energies and less consistency, may be

responsible for its being moribund in favor of the 6–31G* basis set [51]. The virtues

of the 3–21G(*) and 6–31G* basis sets for geometry optimizations are discussed

further in Sect. 5.5.1. Note that the geometries and energies referred to here are

those from Hartree-Fock-level calculations. Post-Hartree-Fock (Sect. 5.4) calcula-

tions, which can give significantly better geometries and much better relative

energies (Sects. 5.5.1 and 5.5.2), are considered to require a basis set of at least

the 6–31G* size for meaningful results.

The 6–31G* basis adds polarization functions only to so-called heavy atoms

(those beyond helium). Sometimes it is helpful to have polarization functions on the

hydrogens as well; a 6–31G* basis with three 2p functions on each H and He atom

(in addition to their 1s’ and 1s” functions) is called the 6–31G** (or 6–31(d,p))

basis. The 6–31G* and 6–31G** bases are the same except that in the 6–31G** each

H and He has five, rather than two, functions. The 6–31G** basis probably offers
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little advantage over the 6–31G* unless the hydrogens are engaged in some special

activity like hydrogen bonding or bridging [52]. In high-level calculations on

hydrogen bonding or on boron hydrides, for example, polarization functions are

placed on hydrogen. For calculations on and references to the hydrogen bonded

water dimer, see Sect. 5.4.3.

5.3.3.4 Diffuse Functions

Core electrons or electrons engaged in bonding are relatively tightly bound to the

molecular nuclear framework. Lone-pair electrons or electrons in a (previously)

virtual orbital, are relatively loosely held, and are on the average at a larger distance

from the nuclei than core or bonding electrons. These “expanded” electron clouds

are found in molecules with heteroatoms, in anions, and in electronically excited

molecules. To simulate well the behaviour of such species diffuse functions are

used. These are Gaussian functions with small values of α; this causes exp(�αr2) to
fall off very slowly with the distance r from the nucleus, so that by giving enough

weight to the coefficients of diffuse functions the SCF process can generate

significant electron density at relatively large distances from the nucleus. Typically

a basis set with diffuse functions has one such function, composed of a single

Gaussian, for each valence atomic orbital of the “heavy atoms”. The 3–21þG basis

set for carbon (¼ 3–21þG(*) for this element) is

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

2sþ, 2pþ, 2pþ, 2pþ
13 basis functions

and the 6–31þG* basis for carbon is

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

3d 3d 3d 3d 3d 3d
2sþ, 2pþ, 2pþ, 2pþ
19 basis functions

Sometimes diffuse functions are added to hydrogen and helium as well as to the

heavy atoms; such a basis set is indicated by þþ. The 3–21þþG and 6–31þþG

basis for hydrogen and helium is

1s
1s0

1sþ
3 basis functions

268 5 Ab initio Calculations



A 3–21þþG calculation on CH2 would use 13þ 3þ 3¼ 19 basis functions, a

6–31þþG* calculation 19þ 3þ 3¼ 25 basis functions, and a 6–31þþG** calcu-

lation 19þ 6þ 6¼ 31 basis functions.

There is some disagreement over when diffuse functions should be used. Cer-

tainly most workers employ them routinely in studying anions and excited states,

but not ordinary lone pair molecules (molecules with heteroatoms, like ethers and

amines). A reasonable recommendation is to study with and without diffuse func-

tions species representative of the problem at hand, for which experimental results

are known, and see if these functions help. A paper by Warner [52] gives useful

references and a good account of the efficacy of diffuse functions in treating certain

molecules with heteroatoms. He settles on the 6–31þG*, i.e. 6–31þG(d), basis.

5.3.3.5 Large Basis Sets

The 3–21G(*) is a small basis set and the 6–31G* and 6–31G** are moderate-size

basis sets. Of those we have discussed, only the 6–31G* and 6–31G** with diffuse

functions (6–31þG*, 6–31þþG*, 6–31þG** and 6–31þþG**) might be consid-

ered fairly large. A large basis set might have a doubly-split or even triply-split

valence shell with d, p and f, and maybe even g, functions on at least the heavy

atoms. An example of a large (but not very large) basis set is the 6–311G**

(i.e. 6–311(d,p)) set. This is a split valence set with each valence orbital split into

three shells, composed of three, one and one Gaussian, while the core orbitals are

represented by one basis function composed of six Gaussians; each heavy atom also

has five (not six in this case) 3d functions and each hydrogen and helium has three

2p functions. The 6–31G** basis for carbon is then

1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

2s000 2p000 2p000 2p000

3d 3d 3d 3d 3d
18 basis functions

and for hydrogen

1s0

1s00

1s000

2p 2p 2p
6 basis functions

Unequivocally large basis sets would be triply-split valence shell sets with d and
f functions on heavy atoms and p functions on hydrogen. At the smaller end of such

sets is the 6–311G(df,p) basis, with five 3d’s and seven 4f ’s on each heavy atom and

three 2p’s on each hydrogen and helium. For carbon this is
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1s
2s0 2p0 2p0 2p0

2s00 2p00 2p00 2p00

2s000 2p000 2p000 2p000

3d 3d 3d 3d 3d
4f 4f 4f 4f 4f 4f 4f
25 basis functions

and for hydrogen

1s0

1s00

1s000

2p 2p 2p
6 basis functions

A more impressive example of a large basis set would be 6–311G(3df,3pd). This

has for each heavy atom three sets of five d functions and one set of seven

f functions, and for each hydrogen and helium three sets of three p functions and

one set of five d functions, i.e. for carbon

1s
2s0 2p02p0 2p0

2s00 2p00 2p00 2p00

2s000 2p000 2p000 2p000

3d 3d 3d 3d 3d
3d 3d 3d 3d 3d
3d 3d 3d 3d 3d
4f 4f 4f 4f 4f 4f 4f
35 basis functions

and for hydrogen

1s0

1s00

1s000

2p 2p 2p
2p 2p 2p
2p 2p 2p
3d 3d 3d 3d 3d
17 basis functions

Note that all these large basis sets can be made still bigger by adding diffuse

functions to heavy atoms (þ) or to heavy atoms and hydrogen/helium (þþ). The

number of basis functions on CH2 using some small, medium and large bases is

summarized CþHþH):

STO–3G 5þ 1þ 1¼ 7 functions

3 – 21G (¼ 3 – 21G(*) here) 9þ 2þ 2¼ 13 functions
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6 – 31G* (6 – 31G(d)) 15þ 2þ 2¼ 19 functions

6 – 31G** (6 – 31G(d,p)) 15þ 5þ 5¼ 25 functions

6 – 311G** (6 – 311G(d,p)) 18þ 6þ 6¼ 30 functions

6 – 311G(df,p) 25þ 6þ 6¼ 37 functions

6 – 311G(3df,3pd) 35þ 17þ 17¼ 69 functions

6 – 311þþG (3df,3pd) 39þ 18þ 18¼ 75 functions

Large basis sets are used mainly for post-Hartree-Fock level (Sect. 5.4) calcu-

lations, where the use of a basis smaller than the 6–31G* seems to be essentially

pointless. At the Hartree-Fock level the smallest basis normally used is the 6–31G*

or 6–31G** (augmented if appropriate by diffuse functions), and post- HF geom-

etry optimizations are frequently done using the 6–31G* or 6–31G** basis too. Use

of the larger bases (6–311G** and up) tends to be confined to single-point calcu-
lations on structures optimized with a smaller basis set (e.g. Sect. 5.4.2). These are

not firm rules: the high-accuracy CBS (complete basis set) methods (Sect. 5.5.2.3.2)

use as part of their procedure single-point HF (rather than post-HF) level calcula-

tions with very large basis sets, and geometry optimizations with large basis sets

were performed at both HF and post-HF levels in studies of the theoretically and

experimentally challenging oxirene system [53].

5.3.3.6 Correlation-Consistent Basis Sets

All the previously explicitly designated basis sets, from STO-3G through

6–311þþG (3df,3pd) (in Large basis sets), are Pople (from the group of John

Pople; see above) basis sets. Another class of popular basis sets was developed by

the research group of T. H. Dunning, Jr. [54]. These are specially designed for post-

Hartree Fock calculations (Sect. 5.4), methods in which electron correlation is

better taken into account than at the Hartree Fock level. Because they are intended,

ideally, to give with such calculations improved results in step with (correlated

with) their increasing size, they are called correlation-consistent (cc) basis sets.

Ideally, they systematically improve results with increasing basis set size, and

permit extrapolation to the infinite basis set limit. The cc-sets are designated

cc-pVXZ, where p stands for polarization functions, V for valence, X for the

number of shells the valence functions are split into, and Z for zeta (cf. Split valence
and double-zeta basis sets, above). Thus we have cc-pVDZ (cc polarized valence

doubly-split zeta), cc-pVTZ (cc polarized valence triply-split zeta), cc-pVQZ

(cc polarized valence quadruply-split zeta), and cc-pV5Z (cc polarized valence

fivefold-split zeta). These basis sets can be augmented with diffuse and extra
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polarization functions, giving aug-cc-pVXZ sets. The number of basis functions on

CH2 using some Dunning sets (cf. the data on Pople sets, above) is CþHþH):

cc-pVDZ 14þ 5þ 5¼ 24 functions

cc-pVTZ 30þ 14þ 14¼ 58 functions

cc-pVQZ 55þ 30þ 30¼ 115 functions

cc-pV5Z 91þ 55þ 55¼ 201 functions

We see that only the cc-pVDZ is (roughly) comparable in size to the 6–31G*

(15þ 2þ 2¼ 19 functions); the other cc sets are much bigger. Correlation-

consistent basis sets sometimes [55] but do not necessarily [56] give results superior

to those with Pople sets that require about the same computational time.

Ideally an ab initio calculation would use an infinite basis set (and perfect

electron correlation). In attempts to simulate an infinite basis, techniques for

extrapolation to this limit have been devised; as hinted above, the preferred basis

sets in this iterative procedure are correlation-consistent. Clearly, basis set limit

calculations can in principle be applied to any correlation level, for example

Hartree-Fock (conventionally considered uncorrelated, Sect. 5.4.1), MP2

(Sect. 5.4.2), or coupled-cluster (Sect. 5.4.3), but efforts in this area have evidently

been applied mainly to MP2 and coupled-cluster; see e.g. R12 and F12 methods

[57]. The most widely-used methods incorporating extrapolation to the basis set

limit are automated multistep procedures that we might designate Gx, CBSx, and

Wx (Sect. 5.5.2.3.2).

5.3.3.7 Effective Core Potentials (Pseudopotentials)

At about the third row (potassium to krypton) of the periodic table, the large number

(19 or more) of electrons in each atom begins to have a significant slowing effect on

conventional ab initio calculations, because of the many two-electron repulsion

integrals they engender. The usual way of avoiding this problem is to add to the

Fock operator a one-electron operator that takes into account in a collective way the

effect of the core electrons on the valence electrons, which latter are still considered

explicitly. This “average core effect” operator is called an effective core potential

(ECP) or a pseudopotential. With a set of valence orbital basis functions optimized

for use with it, it simulates the effect on the valence electrons of the atomic nuclei

plus the core electrons. A distinction is sometimes made between an ECP and a

pseudopotential, the latter term being used to mean any approach limited to the

valence electrons, while ECP is sometimes used to designate a simplified

pseudopotential corresponding to a function with fewer orbital nodes than the

“correct” functions. However, the terms are usually used interchangeably to desig-

nate a nuclei-plus-core electrons potential used with a set of valence functions, and

that is what is meant here. The use of an ECP stands in contrast to using all-electron
basis sets like the Pople or Dunning sets discussed above.

So far we have discussed nonrelativistic ab initio methods: they ignore those

consequences of Einstein’s special theory of relativity that are relevant to chemistry
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(Chap. 4, Sect. 4.2.3 [58](a)). These consequences arise from the dependence of

mass on velocity [58](b). This dependence causes the masses of the inner electrons

of heavy atoms to be significantly greater than the electron rest mass; since the

Hamiltonian operator in the Schr€odinger equation contains the electron mass

(Eqs. (5.36) and (5.37)), this change of mass should be taken into account. Rela-

tivistic effects in heavy-atom molecules affect geometries, energies, and other

properties [59]. Relativity is accounted for in the relativistic form of the

Schr€odinger equation, the Dirac equation (interestingly, Dirac thought his equation
would not be relevant to chemistry [60]). This equation is not commonly used

explicitly in molecular calculations, but is instead used to develop [61] relativistic
effective core potentials (relativistic pseudopotentials). Relativistic effects can

begin to become significant for about third-row elements, i.e. the first transition

metals. For molecules with these atoms ECPs begin to be useful for speeding up

calculations, so it makes sense to take these effects into account in developing these

potential operators and their basis functions, and indeed ECPs are generally rela-

tivistic. Such ECPs can give accurate results for molecules with third-row and

beyond atoms by simulating the electronic relativistic mass increase. Examples are

calculations on reactions with transition metals [62a] and on platinum compounds

[62b]. Weigend and Ahlrichs have published an extensively-tested collection of

basis sets for all elements, except lanthanides, from hydrogen to radon [63].

Calculations on “very-heavy-atom” molecules, particularly transition metal

molecules, rely heavily on the use of pseudopotentials, although all-electron basis

sets sometimes give good results with quite heavy atoms [64]. A concise description

of pseudopotential theory [33] and relativistic effects in molecules [65], with

several references, is given by Levine. Reviews oriented toward transition metal

molecules [66a,b,c] and the lanthanides [66d] have appeared, as well as detailed

reviews of the more “technical” aspects of the theory [67]. After all this concerning

ECPs and ab initio calculations, one should nevertheless note that the currently

favored method for computations on transition metal compounds is density func-

tional theory, DFT (Chap. 7), rather than ab initio, albeit also with ECP use favored

for heavy atoms; for example the ECP calculations of [62a,b] were done with DFT.

The dominant position of DFT here could change as faster computers make very

high-level ab initio methods more practical.

5.3.3.8 Which Basis Set Should I Use?

Scores, perhaps hundreds of basis sets have been developed, and new ones appear

yearly, if not monthly. There is something to be said for having a variety of tools in

our armamentarium, but one tends to be not entirely unsympathetic to the descrip-

tion, more than two decades ago, of this situation as a “chaotic proliferation”

[68]. There are books of practical advice [1, 69] which help to provide a feel for

the appropriateness of various basis sets. By reading the research literature one

learns what approaches, including which basis sets, are being applied to a various

problems, especially those related to the one’s research. This said, one should avoid
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simply assuming that the basis used in published work was the most appropriate

one: it is possible that it was either too small or unnecessarily big. Hehre has shown

[39] that in many cases the use of very large bases is pointless; on the other hand

some problems yield, if at all, only to very large basis sets (see below). A

Goldilocks-like basis can rarely (except for calculations of a cursory or routine

nature) be correctly simply picked; rather, one homes in on an it, by experimenting

and comparing results with experimental facts as far as possible. Where egregious

deviations from experiment are found at theoretical levels that experience suggests

should be reliable, one may be justified in questioning the “facts”. Bachrach places

“the first chink in the armor of the inherent superiority of experiment over compu-

tation” in 1970 [70].

A rational approach in many cases might be to survey the territory first with a

semiempirical method (Chap. 6) or with the STO-3G basis and to use one of these to

create input structures and input Hessians (Chap. 2, Sect. 2.4) for higher-level

calculations) then to move on to the 3–21G(*) or the 6–31G* basis for a better

exploration of the problem. For a novel system for which there is no previous work

to serve as a guide one should move up to larger basis sets and to post-Hartree-Fock

methods (Sect. 5.4), climbing the latter of sophistication until reasonable conver-

gence of at least qualitative results has been obtained. It is possible for results to

become worse with increasing basis set size [71, 72], because of fortuitous cancel-

lation of errors at a lower level. This kind of thing is discussed, albeit with the focus

not directly on basis functions, in several papers with the very apposite words

“. . .the right answer for the right reason” [73]. To achieve this happy coincidence of
experiment and reality, quite high theoretical levels may be necessary. A somewhat

bizarre phenomenon is that at post Hartree-Fock levels, at least, some fairly large

basis sets predict nonplanar geometries for benzene and similar aromatic hydrocar-

bons! [74]. Janoschek has given an excellent survey indicating the reliability of ab

initio calculations and the level at which one might need to work to obtain

trustworthy results by [75]. After this short litany of warnings, let the reader be

reassured that good geometries, reasonably reliable relative energies, and useful

reactivity parameters, based e.g. on orbital shapes and energies, can often obtained

routinely by standard methods which were chosen by comparing their predictions

with the experimental facts for a set of related compounds. Examples of such results

are given later in this chapter.

Oxirene (oxacyclopropene) provides a canonical example of a molecule which

even at the highest current levels of theory has declined to reveal its basic secret:

whether it can exist (“Oxirene: to Be or Not to Be?” [53b]). Very large basis sets

and advanced post-Hartree-Fock methods suggest it is a true minimum on the

potential energy surface, but its disconcerting tendency to display an imaginary

(Chap. 2, Sect. 2.5) calculated ring-opening vibrational mode at some of the highest

levels used leaves the judicious chemist with no choice but to reserve judgement on

its being. The nature of a series of substituted oxirenes, studied likewise at high

levels, appears to be clearer [53a].

Another system that has yielded results which are dependent on the level of

theory used, but which unlike the oxirene problem provides a textbook example of a
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smooth gradation in the nature of the answers obtained, is the ethyl cation

(Fig. 5.17). At the Hartree-Fock STO-3G and 3–21G(*) levels the classical structure

is a minimum and the bridged nonclassical structure is a transition state, but with

the 6–31G* basis the bridged ion has become a minimum and the classical one,

although the global minimum, is not securely ensconced as such, being only

3.4 kJ mol�1 lower than the bridged ion. At the post-Hartree-Fock (Sect. 5.4)

MP2 level with the 6–31G* basis the bridged ion is a minimum and the classical

one has lost the dignity of being even a stationary point. The ethyl cation and

several other systems have been reviewed [75].
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bridged; the classical ion is not
a stationary point at this level

Fig. 5.17 The ethyl cation problem at various levels. At the three Hartree-Fock levels the classical

cation is a minimum, but at the post-Hartree-Fock (MP2/6–31G*) level only the symmetrical

bridged ion is a minimum. The HF/6–31G* results are calculations by the author (ZPE ignored),

the other three levels are taken from Ref. [75]
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In summary, in many cases [39] the 3–21G (i.e. 3–21G(*)) or 6–31G* basis sets,

or for that matter even the much faster molecular mechanics (Chap. 3) or semiem-

pirical (Chap. 6) methods, are entirely satisfactory, but there are problems that

require quite high levels of attack.

5.4 Post-Hartree-Fock Calculations: Electron Correlation

5.4.1 Electron Correlation

Electron correlation is the phenomenon of the motion of pairs of electrons in atoms

or molecules being connected (“correlated”) [76]. The purpose of post-Hartree-
Fock calculations (correlated calculations) is to treat such correlated motion better

than does the Hartree-Fock method. In the Hartree-Fock treatment, electron-

electron repulsion is handled by having each electron move in a smeared-out,

average electrostatic field due to all the other electrons (Fig. 5.3), and the proba-

bility that an electron will have a particular set of spatial coordinates at some

moment is independent of the coordinates of the other electrons at that moment.

In reality, however, each electron at any moment moves under the influence

of the repulsion, not of an average electron cloud, but rather of individual
electrons (actually current physics regards electrons as point particles–with wave

properties of course). The consequence of this is that the motion of an electron in a

real atom or molecule is more complicated than that for an electron moving in a

smeared-out field [77] and the electrons are thus better able to avoid one another.

Because of this enhanced (compared to the Hartree-Fock treatment) standoffish-

ness, electron-electron repulsion is really smaller than predicted by a Hartree-Fock

calculation, i.e. the electronic energy is in reality lower (more negative). If you walk

through a crowd, regarding it as a smeared-out collection of people, you will

experience collisions that could be avoided by looking at individual motions and

correlating yours accordingly. The Hartree-Fock method overestimates electron-

electron repulsion and so gives higher electronic energies than the correct ones,

even with the biggest basis sets, because it does not treat electron correlation

properly.

Hartree-Fock calculations are sometimes said to ignore, or at least to neglect,

electron correlation. Actually, the Hartree-Fock method allows for some electron

correlation: according to our current understanding, two electrons of the same spin

can’t be in the same place at the same time. This is reflected in the Hartree-Fock

formulation of the wavefunction as a determinant (Sect. 5.2.3.1). Because their

spatial and spin coordinates of the two electrons would then be the same, the Slater

determinant representing the total molecular wavefunction would vanish, since a

determinant is zero if two rows or columns are the same (Chap. 4, Sect. 4.3.3). This

is just a consequence of the antisymmetry of the wavefunction: switching rows or

columns of a determinant changes its sign; if two rows/columns are the same then
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D1¼D2 and D1¼�D2, so D1¼D2¼ 0. If the wavefunction were to vanish so

would the electron density, which can be calculated from the wavefunction; this

seems physically unreasonable. This is one way of looking at the Pauli exclusion

principle. The probability of finding an electron in a small region centered on a

point defined by a triplet of spatial coordinates can in principle be calculated from

the wavefunction. Now, since the probability is zero that at any moment two

electrons of like spin are at the same point in space, and since the wavefunction

is continuous, the probability of finding them at a given separation should decrease

smoothly with that separation. This means that even if electrons were uncharged,
with no electrostatic repulsion between them, around each electron there would still

be a region increasingly (the closer we approach the electron) unfriendly to other

electrons of the same spin. This quantum mechanically engendered “Pauli exclu-

sion zone” around an electron is called a Fermi hole, after Enrico Fermi; it applies

to fermions (Sect. 5.2.2) in general. Besides the quantum mechanical Fermi hole,

each electron is surrounded by a region unfriendly to all other electrons, regardless

of spin, because of the classical electrostatic (Coulomb) repulsion between point
particles (¼ electrons). For electrons of opposite spin, to which the Fermi hole

effect does not apply, this electrostatic exclusion zone is called a Coulomb hole

(of course, electrons of the same spin also repel one another electrostatically). Since

the HF method does not treat the electrons as discrete point particles it largely

ignores the existence of the Coulomb hole, allowing electrons to get too close on the

average. This is the main source of the overestimation of electron-electron repul-

sion in the HF method. Post-HF calculations attempt to allow electrons, even of

different spin, to avoid one another better than in the HF approximation.

Hartree-Fock calculations give an electronic energy (and thus a total internal

energy, Sect. 5.2.3.6.4) that is too high (the variation theorem, Sect. 5.2.3.3, assures

us that the Hartree-Fock energy will never be too low). This is partly because of the
overestimation of electronic repulsion and partly because of the fact that in any real

calculation the basis set is not perfect. For sensibly-developed basis sets, as the

basis set size increases the Hartree-Fock energy gets smaller, i.e. more negative.

The limiting energy that would be given by an infinitely large basis set is called

the Hartree-Fock limit (i.e. the energy in the Hartree-Fock limit). Table 5.4 and

Fig. 5.18 show the results of some Hartree-Fock and post-Hartree-Fock calculations

on the hydrogen molecule; the limiting energies are close to the accepted ones

[78]. Errors in energy, or in any other molecular feature, that can be ascribed to

using a finite basis set are said to be caused by basis set truncation. Basis set

truncation does not always cause serious errors; for example, the small HF/3–21G(*)

basis often gives good geometries (Sect. 5.3.3). Where necessary, the truncation

problem can be minimized by using a large (provided the size of the molecule

makes this practical), appropriate basis set.

A measure of the extent to which any particular ab initio calculation does not

deal perfectly with electron correlation is the correlation energy. In a canonical

exposition [79] L€owdin defined correlation energy thus: “The correlation energy for
a certain state with respect to a specified Hamiltonian is the difference between the

exact eigenvalue of the Hamiltonian and its expectation value in the Hartree-Fock
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Table 5.4 Dependence of the calculated energy of H2 on basis set and on correlation level

Correlated energy

Basis No. basis functions HF energy Method Energy

3–21G(*) 4 �1.12292 – –

6–31G* 10 �1.13127 MP2 �1.15761

6–311++G** 14 �1.13248 MP2 �1.16029

6–311++G(3df,3pd) 36 �1.13303 MP2 �1.16493

6–311++G(3df,3p2d) 46 �1.13307 MP2 �1.16543

6–311++G(3df,3p2d) 46 �1.13307 MP4 �1.17226

6–311++G(3df,3p2d) 46 �1.13307 full Cl �1.17288

cf. Fig. 5.18

All calculations are single-point, without ZPE correction, on H2 at the experimental bond length of

0.742 Å, using G94W [199]; energies are in hartrees. The accepted Hartree-Fock (Etotal
HF ;

Eq. (5.149)) and correlated limiting energies are about �1.1336 and �1.1744 h, respectively
[78], cf. �1.13307 and �1.17288 h here)

–1.13

–1.18

energy (hartrees)
0

10 20 30 40 50
number of basis functions

–1.122

–1.124

–1.126

–1.128

–1.130

–1.132

–1.134

–1.13307 h, Hartree-Fock limit
according to these calculations

–1.17288 h,  "exact" energy (full CI
with the 6-311++G(3df, 3p2d) basis set

correlation energy = –1.17288 – (–1.13307) h
= –0.03981 h

–1.13307 h, Hartree-Fock limit

Fig. 5.18 (based on Table 5.4). The Hartree-Fock limit and correlation energy for H2. From the

values calculated here, the HF limit, the exact energy (see text) and the correlation energy

are �1.13307, �1.17288 and �0.03981 hartrees (see inset); the accepted values [78] are about

�1.1336, �1.17439 and �0.04079
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approximation for the state under consideration.” This is usually taken to be the

energy from a nonrelativistic but otherwise perfect quantum mechanical procedure,

minus the energy calculated by the Hartree-Fock method with the same nonrela-

tivistic Hamiltonian and a huge (“infinite”) basis set:

Ecorrel ¼ E exactð Þ � E HFlimitð Þ
using the same Hamiltonian for both terms

From this definition the correlation energy is negative, since E(exact)
(a nonrelativistic energy here) is more negative than E(HF limit). The Hamiltonians

of Sect. 5.2.2, Eqs. (5.4), (5.5), (5.6) and associated discussion exclude relativistic

effects, which are significant only for heavy atoms. Unless qualified the term

correlation energy means nonrelativistic correlation energy. The correlation energy

is essentially the energy that the Hartree-Fock procedure fails to account for.

If relativistic effects (and other, usually small, effects like spin-orbit coupling) are

negligible then Ecorrel is the difference between the experimental value (of the

energy required to dissociate the molecule or atom into infinitely separated nuclei

and electrons) and the limiting Hartree-Fock energy.

A distinction is sometimes made between dynamic (or dynamical), and

nondynamic or static correlation energy. Dynamic correlation energy is the energy

a Hartree-Fock calculation does not account for because it fails to keep the electrons

sufficiently far apart; this is the usual meaning of “correlation energy”. Static

correlation energy is the energy a calculation (Hartree-Fock or otherwise) may

not account for because it uses a single determinant, or starts from a single

determinant (is based on a single-determinant reference–Sect. 5.4.3); this problem

arises with singlet diradicals, for example, where a closed-shell description of the

electronic structure is qualitatively wrong. This is because there are (two, usually)

highest-energy orbitals (frontier orbitals) of equal or nearly equal energy and the

Hartree-Fock method cannot unambiguously decide which of these should receive

an electron pair and which should be empty–which should be the HOMO and which

the LUMO. A singlet diradical actually has two essentially half-filled orbitals. The

term correlation energy is applied to the unaccounted-for energy in such cases

perhaps because as with dynamic correlation energy the problem can be at least

partly overcome by expressing the wavefunction with more than one determinant.

Dynamic correlation energy can be calculated (“recovered”) by the Møller-Plesset

method or by multiditerminant configuration interaction methods (Sects. 5.4.2

and 5.4.3) and static correlation energy can likewise be recovered by basing

the wavefunction on more than one determinant, as in a multiconfigurational

method like a complete active space SCF (CASSCF, Sect. 5.4.3) calculation.

Although Hartree-Fock calculations are satisfactory for many purposes

(Sect. 5.5) there are cases where a better treatment of electron correlation is needed.

This is particularly true for the calculation of relative energies, although

geometries and other some other properties can benefit from post-Hartree-Fock

calculations Sect. 5.4). As an illustration of a shortcoming of Hartree-Fock
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calculations consider an attempt to find the C/C single bond dissociation energy of

ethane by comparing the energy of ethane with that of two methyl radicals:

H3C� CH3 þ Ediss ! H3C � CH3

Let us simply subtract the energy of two methyl radicals from that of an ethane

molecule, and compare with experiment the results of Hartree-Fock calculations

and (anticipating Sect. 5.4.2) the post-Hartree-Fock (i.e. correlated) MP2 method.

In Table 5.5 the energies shown for CH3� and CH3CH3 are successively the

“uncorrected” ab initio energies (the energy displayed at the end of any calculation;

this is the electronic energy + the internuclear repulsion), the ZPE, and the

“corrected” energy (uncorrected energy +ZPE); see Sect. 5.2.3.6.4. The ZPEs

used here are from HF/6–31G* optimization/frequency jobs; these are fairly fast

and give reasonable ZPEs. The ZPEs were all calculated by multiplying by an

empirical correction factor of 0.9135. This brings them into better agreement with

experiment [80a] (recently a quadratic correction to frequencies has been

recommended [80b], rather than the popular linear correction normally used for

ZPEs and frequencies). Although frequencies must be calculated with the same

method (HF, MP2, etc.) and basis set as were used for the geometry optimization,

ZPEs from a particular method/basis may legitimately be used to correct energies

Table 5.5 The C–C bond energy of ethane calculated by the Hartree-Fock and MP2 methods

Energy

Method/basis CH3� CH3CH3 E(2CH3 � �CH3CH3)

HF/6–31G* �39.55899 �79.22876 0.09451

0.02829 0.07285 248

�39.53070 �79.15591

HF/6–311++G(3df,3p2d) �39.57712 �79.25882 0.08831

0.02829 0.07285 232

�39.54883 �79.18597

MP2/6–31G* �39.66875 �79.49474 0.14097

0.02829 0.07285 370

�39.64046 �79.42189

MP2/6–311++G** �39.70866 �79.57167 0.13808

0.02829 0.07285 363

�39.68037 �79.49882

The radical CH3 � and the closed-shell CH3CH3 were calculated by unrestricted and restricted

methods, respectively: UHF and UMP2, vs. RHF and RMP2–see concluding part of

Sect. 5.2.3.6.5); the HF method largely ignores electron correlation, while MP2 recovers about

85% of the electron correlation. The set of three numbers for each species are respectively, in

hartrees, the uncorrected ab initio energy, the corrected (0.9135 factor, see text) HF/6–31G* ZPE,

and the corrected ab initio energy (uncorrected energy +ZPE). Calculated (by subtraction) bond

energies are in hartrees and kJ mol�1 (2626� hartrees). The experimental C–C energy of ethane

has been reported at 377 kJ mol�1 [81]. Each species was optimized at the level shown (i.e. none of

these are single-point calculations)
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obtained with another method/basis. The only calculations that give reasonable

agreement with the experimental ethane C–C dissociation energy (reported at

377 kJ mol�1 [81]) are the correlated (MP2) ones, 370 and 363 kJ mol�1 with

different basis sets; because of error in the experimental value the two MP2 results

may be equally good. The Hartree-Fock values (248 and 232 kJ mol�1) are very

poor, even (especially!) when the very large 6–311þþG (3df,3p2d) basis is used.

Accurate calculation of reaction energies is now usually done with one of the

multistep methods like G4 or a CBS method (Sect. 5.5.2.3.2).

This inability of Hartree-Fock calculations to model correctly homolytic bond

dissociation is commonly illustrated by curves of the change in energy as a bond is

stretched, e.g. Fig. 5.19. The phenomenon is discussed in detail in numerous

expositions of electron correlation [82]. Suffice it to say here that representing the

wavefunction as one determinant (or a few), as is done in Hartree-Fock theory, does

not permit correct homolytic dissociation to two radicals because while the reactant

(e.g. H2) is a closed-shell species that can (usually) be represented well by one

determinant made up of paired electrons in the occupied MOs, the products are two

radicals, each with an unpaired electron. Ways of obtaining satisfactory energies,

with and without the use of electron correlation methods, for processes involving

homolytic cleavage, are discussed further in Sect. 5.5.2.

There are basically three approaches to dealing with electron correlation:

explicit use of the interelectronic distances as variables in the Schr€odinger equation,
treatment of the real molecule as a perturbed Hartree-Fock system, and explicit

H H distance, A

0 4

energy (relative
to equilibrium bond
length energy)

1 2 3

kJ mol-1

200

400

600

800

1000

HF/6-31G*

MP2/6-31G*

Fig. 5.19 Dissociation curves (change in energy as the bond is stretched) for H2, from HF/6–31G*

and MP2/6–31G* calculations. The equilibrium bond lengths are reasonable (HF/6–31G*, 0.730;

MP2/6–31G*, 0.737 (cf. experimental, 0.742), but only the MP2 curve approximates the actual

dissociation behavior of the molecule
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inclusion in the wavefunction of electronic configurations other than the ground-

state one. Using interelectronic distances explicitly can quickly become mathemat-

ically intractable but recent methods offer accurate energies and near-linear scaling

with quite large systems. For example an “explicitly correlated pair natural orbital

local second-order Møller-Plesset perturbation theory (PNO-LMP2-F12)” method

calculates an energy with up to 10,000 basis functions on a small cluster in an

hour [83]. The other two methods, below, are general and very important: the

perturbation approach is used in the very popular Møller-Plesset4 methods, and

the use of higher electronic configurations in the wavefunction forms the basis of

configuration interaction, which in various forms is employed in some of the most

advanced ab initio methods currently used for dealing with electron correlation.

A powerful method that is becoming increasingly popular and incorporates math-

ematical features of the perturbation and higher-electronic-state methods, the

coupled-cluster approach, is also described.

5.4.2 The Møller-Plesset Approach to Electron Correlation

The Møller-Plesset (MP) treatment of electron correlation [84] is based on pertur-

bation theory, a very general approach used in physics to treat complex systems

[85]; this particular approach was described by Møller and Plesset in 1934 [86] and

developed into a practical molecular computational method by Binkley and Pople

[87] in 1975. The basic idea behind perturbation theory is that if we know how to

treat a simple (often idealized) system then a more complex (and often more

realistic) version of this system, if it is not too different, can be treated mathemat-

ically as an altered (perturbed) version of the simple one. Møller-Plesset calcula-

tions are denoted as MP, MPPT (Møller-Plesset perturbation theory) or MBPT

(many-body perturbation theory) calculations. The derivation of the Møller-Plesset

method [88] is somewhat involved, and only the flavor of the approach will be

given here. There is a hierarchy of MP energy levels: MP0, MP1 (these first two

designations are not actually used), MP2, etc. . . ., which successively account more

thoroughly for interelectronic repulsion.

“MP0” would use the electronic energy obtained by simply summing the Hartree-

Fock one-electron energies (Sect. 5.2.3.6.4, Eq. (5.84)). This ignores interelectronic

repulsion except for refusing to allow more than two electrons in the same spatial

MO. “MP1” corresponds to MP0 corrected with the Coulomb and exchange integrals

J and K (Eqs. (5.85) and (5.90)), i.e. MP1 is just the Hartree-Fock energy. As we have

seen (Sects. 5.2.3.2, 5.2.3.6.2), this handles interelectronic repulsion in an average

way. We could write EMP1 ¼ E total
HF ¼ EMP0 þ E 1ð Þ, where EMP0 is the sum of

one-electron energies and internuclear repulsions and E(1) is the J, K correction

(corresponding respectively to the two terms in Eqs. (5.85) and (5.90)), regarding

4Møller-Plesset: the Danish-Norwegian letter ø is pronounced like French eu or German €o.
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the second term as a kind of perturbational correction to the sum of one-electron

energies.

MP2 is the first MP level to go beyond the HF treatment: it is the first “real”

Møller-Plesset level. The MP2 energy is the HF energy plus a correction term

(a perturbational adjustment) that represents a lowering of energy brought about

by allowing the electrons to avoid one another better than in the HF treatment:

EMP2 ¼ E total
HF þ E 2ð Þ ð5:161Þ

The HF term includes internuclear repulsions, and the perturbation correction E(2) is

a purely electronic term. E(2) is a sum of terms each of which models the promotion

of pairs of electrons. So-called double excitations from occupied to formally

unoccupied MOs (virtual MOs) are required by Brillouin’s theorem [89], which

says, essentially, that a wavefunction based on the HF determinant D1 plus a

determinant corresponding to exciting just one electron from D1 cannot improve

the energy.

Let’s do an MP2 energy calculation on HHe+, the molecule for which a Hartree-

Fock (i.e. an SCF) calculation was shown in detail in Sect. 5.2.3.6.5. As we did for

the HF calculation, we will take the internuclear distance as 0.800 Å and use the

STO-1G basis set; we can then use for our MP2 calculation these HF results that we

obtained in Sect. 5.2.3.6.5:

The MO coefficients:

For the occupied MO ψ1, c11 ¼ 0:3178, c21 ¼ 0:8020
Recall that these are respectively the coefficient of basis function 1, ϕ1, in

MO1 and the coefficient of basis function 2, ϕ2, in MO1. In this simple case

there is one function on each atom: ϕ1 and ϕ2 on atoms 1 and 2 (H and He).

For the unoccupied (virtual) MO ψ2, c12 ¼ 1:1114, c22 ¼ � 0:8325

The 2-electron repulsion integrals:

11j11ð Þ ¼ 0:7283 21j21ð Þ ¼ 0:2192

21j11ð Þ ¼ 0:3418 22j21ð Þ ¼ 0:4368

22j11ð Þ ¼ 0:5850 22j22ð Þ ¼ 0:9927

The energy levels:

Occupied MO, ε1¼�1.4470, virtual MO, ε2¼�0.1051

The HF energy: E total
HF ¼ �2:4438

The MP2 energy correction for a closed-shell two-electron/two-MO system

is [90]:
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E 2ð Þ ¼

ZZ
ψ1 1ð Þψ 2ð Þ 1

r12

� �
ψ2 1ð Þψ 2ð Þdv1dv2

� �
2 ε1 � ε2ð Þ

2

ð5:162Þ

Applying this formula “by hand” is straightforward, although the arithmetic is

tedious. Nevertheless it is worth doing (as was true for theHartree-Fock calculation
in Sect. 5.2.3.6.5) in order to appreciate how much arithmetical work is involved in

even this simplest molecular MP2 job. Consider the integral in the numerator of

Eq. (5.162); substituting for ψ1 and ψ2:ZZ
ψ1 1ð Þψ1 2ð Þ 1

r12

� �
ψ2 1ð Þψ2 2ð Þdv1dv2

¼
ZZ

c11ϕ1 1ð Þ þ c21ϕ2 1ð ÞÞ c11ϕ1 2ð Þ þ c21ϕ2 2ð Þð Þ 1

r12

� ���

� c12ϕ1 1ð Þ þ c22ϕ2 1ð Þð Þðc12ϕ1 2ð Þ
��

Multiplying out the integrand gives a total of 16 terms (from 4 terms to the left of

1/r12 and 4 terms to the right), and leads to a sum of 16 integrals:

ZZ
ψ1 1ð Þψ1 2ð Þ 1

r12

� �
ψ2 1ð Þψ2 2ð Þdv1dv2

¼ c211c
2
12

Z
ϕ1 1ð Þϕ1 2ð Þ 1

r12

� �
ϕ1 1ð Þϕ1 2ð Þdv1dv2þ� � � þ c221c

2
22

Z
ϕ2 1ð Þϕ2 2ð Þ 1

r12

� �
¼ c211c

2
12 11j11ð Þ þ � � � þ c221c

2
22 22j22ð Þ;

recalling the notational degeneracy in the two-electron integrals (Sect. 5.2.3.6.5,

“Step 2 Calculating the integrals”). Substituting the values of the coefficients and

the 2-electron integrals:

ZZ
ψ1 1ð Þψ1 2ð Þ 1

r12

� �
ψ2 1ð Þψ2 2ð Þdv1dv2

¼ 0:12475 0:7283ð Þ þ � � � þ 0:44577 0:9927ð Þh ¼ 0:12932h

So from Eq. (5.162)

E 2ð Þ ¼ 0:129322

2 ε1 � ε2ð Þ h ¼ 0:129322

2 �1:4470þ 0:1051ð Þ h ¼ �0:00623h

The MP2 energy is the Hartree-Fock energy plus the MP2 correction (Eq. (5.162)):

EMP2 ¼ E total
HF þ E 2ð Þ ¼ �2:4438 h� 0:00623 h ¼ �2:4500 h
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This energy, which includes internuclear repulsion, since Etotal
HF includes this

(Eq. (5.93)), is the MP2 energy normally printed out at the end of the calculation.

To get an intuitive feel for the physical significance of the calculation just

performed look again at Eq. (5.162), which applies to any two-electron/two-basis

function species. The equation shows that the absolute value (the correction is

negative since ε1 is smaller than ε2 – the occupied MO has a lower energy than the

virtual one) of the correlation correction increases, i.e. the energy decreases, with

the magnitude of the integral (which is positive). This integral represents the

decrease in energy arising from allowing an electron pair in the occupied MO

(ψ1) to spill over into the virtual MO (ψ2):

ψ1(1) represents electron 1 in ψ1 and ψ1(2) represents electron 2 in ψ1.

ψ2(1) represents electron 1 in ψ2 and ψ2(2) represents electron 2 in ψ2.

The operator 1/r12 brings in Coulombic interaction: the Coulombic repulsion

energy between infinitesimal volume elements ψ1(1)ψ1(2)dv1 and ψ2(1)ψ2(2)dv2
separated by a distance r12 is (ψ1(1)ψ1(2)dv1) (ψ2(1)ψ2(2)dv2)/r12, and the integral

is simply the sum over all such volume elements (cf. the discussion in connection

with Fig. 5.3 and the average-field integrals J and K in Sect. 5.2.3.2). Physically, the

decrease in energy makes sense: allowing the electrons to be partly in the formally

unoccupied virtual MO rather than confining them strictly to the formally occupied

MO enables them to avoid one another better than in the HF treatment, which is

based on a Slater determinant consisting only of occupied MOs (Sect. 5.2.3.1). The
essence of the Møller-Plesset method (MP2, MP3, etc.) is that the correction term

handles electron correlation by promoting electrons from occupied to unoccupied

(virtual) MOs, giving electrons, in some sense, more room to move and thus making

it easier for them to avoid one another; the decreased interelectronic repulsion

results in a lower electronic energy. The contribution of the “ψ1/ψ2 interaction” to

E(2) decreases as the occupied/virtual MO gap ε1� ε2, increases, since this is in the
denominator . Physically, this makes sense: the bigger the gap between the occu-

pied and higher-energy virtual MO, the harder it is to promote electrons from the

one into the other, so the less can such promotion contribute to electronic stabili-

zation. So in the expression for E(2) (Eq. 5.162), the numerator represents the

promotion of electrons from the occupied to the virtual orbital, and the denominator

represents a check on how hard it is to do this.

As we just saw, MP2 calculations utilize the Hartree-Fock MOs (their coeffi-

cients c and energies ε). The HF method gives the best occupied MOs obtainable

from a given basis set and a one-determinant total wavefunction c, but it does not
optimize the virtual orbitals (after all, in the HF procedure we start with a deter-

minant consisting of only the occupied MOs–Sects. 5.2.3.1, 5.2.3.2, 5.2.3.3 and

5.2.3.4). To get a reasonable description of the virtual orbitals and to obtain a

reasonable number of them into which to promote electrons, we need a basis set that

is not too small. The use of the STO-1G basis in the above example was purely

illustrative; the smallest basis set generally considered acceptable for correlated

calculations is the 6–31G*, and in fact this is perhaps the one most frequently used
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for MP2 calculations. The 6–311G** basis set is also widely used for MP2 and MP4

calculations. Both bases can of course be augmented (Sect. 5.3.3) with diffuse

functions. MP2 calculations increase rapidly in complexity with the number of

electrons and orbitals, involving as they do a sum of terms (rather than just one term
as in HHe+), each representing the promotion of an electron pair from an occupied

to a virtual orbital; thus an MP2 calculation on CH2 with the 6–31G* basis involves

8 electrons and 19 MOs (4 occupied and 15 virtual MOs).

In MP2 calculations doubly excited states (doubly excited configurations) inter-

act with the ground state (the integral in Eq. (5.162) involves ψ1 with electrons

1 and 2, and ψ2 with electrons 1 and 2). In MP3 calculations doubly excited states

interact with one another (there are integrals involving two virtual orbitals). In MP4

calculations singly, doubly, triply and quadruply excited states are involved. MP5

and higher expressions have been developed, but MP2 and MP4 are by far the most

popular Møller-Plesset levels (also called MBPT(2) and MBPT(4)–many-body

perturbation theory). MP2 calculations, which are much slower than Hartree-

Fock, can be speeded up somewhat by specifying MP2(fc), MP2 frozen-core, in

contrast to MP2(full); frozen-core means that the core (non-valence electrons) are

“frozen”, i.e. not promoted into virtual orbitals, in contrast to full MP2 which takes

all the electrons into account in summing the contributions of excited states to the

lowering of energy. Most programs, e.g. Gaussian, Spartan) perform MP2(fc) by

default when MP2 is specified, and “MP2” usually means frozen-core. When seen

in this book referring to a specific calculation rather than a general method, it may

be taken as shorthand for MP2(fc). MP4 calculations are sometimes done omitting

the triply excited terms (MP4SDQ) but the most accurate (and slowest) implemen-

tation is MP4SDTQ (singles, doubles, triples, quadruples).

Calculated properties like geometries and relative energies tend to be better

(to be closer to the true ones) when done with correlated methods (Sects. 5.5.1,

5.5.2, 5.5.3 and 5.5.4). To save time, energies are sometimes calculated with a

correlated method on a Hartree-Fock geometry, rather than carrying out the geom-

etry optimization at the correlated level. This is called a single-point calculation
(it is performed at a single point on the HF potential energy surface, without

changing the geometry). A single-point MP2(fc) calculation using the 6–311G**

basis, on a structure that was optimized with the Hartree-Fock method and the

6–31G* basis, is designated asMP2(fc)/6–311G**//HF/6–31G*. A HF/6–31G* (say)

geometry optimization, without a subsequent single-point calculation, is sometimes

designated HF/6–31G*//HF/6–31G*, and an MP2 optimization MP2/6–31G*//MP2/

6–31G*. The correlation treatment (HF, MP2, MP4, . . .) is often called the method,
and the basis set (STO-3G, 3–21G(*), 6–31G*, . . .) the level, but we will often find it
convenient to let level denote the combined procedure of method and basis set,

referring, say, to an MP2/6–31G* calculation as being at a higher level than an

HF/6–31* one. Actually, thanks to increases in computer speed, nowadays single-

point calculations are frequently done not with correlation on a Hartree-Fock geom-

etry, but with higher correlation on a lower-level correlated geometry.

Figure 5.20 shows the rationale behind the use of single-point calculations for

obtaining relative energies. In the diagram a single-point MP2 calculation on a

stationary point at the HF geometry gives the same energy as would be obtained by
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optimizing the species at the MP2 level, which is often true (it would be exactly true

if the MP2 and HF geometries were identical). For example, the single-point and

optimized energies of butanone are �231.68593 h and �231.68818 h, a difference

of 0.00225 h (2.3 mh) or 6 kJ mol�1, not large bearing in mind that special high-

accuracy calculations (Sect. 5.5.2.2) are needed to reliably get relative energies to

within, say, 10 kJ mol�1. Single-point calculations would also give relative ener-

gies similar to those from the use of optimized correlated geometries if the

incremental deviations from the optimized-geometry energies were about the

same for the two species being compared (e.g. reactant and TS for an activation

energy, reactant and product for a reaction energy).

The method can occasionally give not just quantitatively, but qualitatively

wrong results. The HF and correlated surfaces may have different curvatures: for

example a minimum on one surface may be a transition state or may not exist (may

E HF

E MP2

geometry
0

MP2

HF

Gmin,MP

GTS,MP2

Gmin,HF

GTS,HF

single-point
calculation

single-point
calculation

absolute ab
initio energy
(negative)

Fig. 5.20 Hartree-Fock and MP2 (or other correlated) potential energy surfaces. “Absolute”

(as distinct from relative) ab initio energies are negative, and correlated energies are lower

(more negative) than Hartree-Fock energies. The geometries of the minima and the transition

states are designated Gmin and GTS. Activation energies are denoted by Ez. HF activation energies

are, as shown, usually bigger than MP2. In this diagram a single-point MP2 calculation on a

stationary point at the HF geometry gives the same energy as would be obtained by optimizing the

species at the MP2 level; this is often true, but single-point MP2 relative energies would be similar

to optimized-MP2 relative energies even if it were not so, provided the incremental energy change

were about the same for the two species being compared (e.g. reactant and TS for an activation

energy, reactant and product for a reaction energy)
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not be a stationary point) on another. Thus difluorodiazomethane is a minimum at

the HF level but not at the MP2: it dissociates at this level [91]. Nevertheless,

because HF optimizations followed by single-point correlated (MP2 or higher-

level) energy calculations are much faster (“cheaper”) than correlated optimiza-

tions, and do usually give improved relative energies, the method is widely used for

large molecules. Figure 5.21 compares some MP2 single-point, MP2-optimized,

and HF energies; the biggest MP2 single-point/MP2 optimized difference is

6.9 kJ mol�1 (HCN reaction energy). The limited salient experimental information

on these reactions is given in [92]. Because of the sketchy and uncertain nature of

the experimental values, relative enthalpies from CBS-APNO (Sect. 5.5.2.3.2,

Comparison of high-accuracy multistep methods; see too Chap. 7, Sect. 7.3.2.2.)

calculations are given in Fig. 5.21. These are considered to be excellent surrogates

for, and likely superior to, any available experimental values. The other relative

energies in Fig. 5.21 are 0 K enthalpy differences (with raw energy corrected for

ZPE), for uniformity and simplicity, but usually experimental barriers are given as

Arrhenius activation energies Ea, which are simply related to enthalpies of activa-

tion ΔHz (Eq. (5.175)), and the extent of a reaction is quantified as an equilibrium

constant which is related (Eq. (5.183)) to a Gibbs free energy difference ΔGreact

(Sect. 5.5.2.1). Free energies of activation ΔGz can be used to calculate rate

constants (Sect. 5.5.2.3.4) and enthalpies of reaction ΔHreact are often used (not

theoretically rigorously) as an indication of the extent and even the ease of a

reaction. To give a feel for the quantitative difference in the values of the relative

0 K energies and these five other energy quantities, the calculated values are given

below for the four reactions of Fig. 5.21. The 0 K energies are ZPE-corrected

MP2/6–31G* energies relative to that of the reactant, and the other energies are at

291 K (standard room temperature) and are also from MP2/6–31G* calculations

and employ standard ideal-gas statistical thermodynamics algorithms; energy units

are kJ mol�1.

Ethenol to Ethanal

Transition state 0 K relative E¼ 233 Product 0 K relative E¼� 71.7

Ea ¼ ΔHz þ RT ¼ ΔHz þ 2:48 ¼ 234:3

ΔHz ¼ 231:8
ΔGreact ¼ �73:1

ΔGz ¼ 233:1
ΔHreact ¼ �70:9
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Fig. 5.21 Calculated geometries and energies for four reactions (most H’s are omitted, for

clarity). One purpose of the Fig. is to compare the single-point energies with energies from

optimization at a higher level. Geometries are HF/6–31G* and MP2/6–31G*. Energies are

MP2/6–31G*//HF/6–31G* (i.e. single-point) with HF ZPE, MP2/6–31G*//MP2//6–31G* with

MP2/6–31G* ZPE, and (only relative energies shown, in parentheses) HF/6–31G*//HF/6–31G*

with HF ZPE. Ab initio E (hartrees)þZPE (hartrees)¼ corrected ab initio E; relative E (strictly

speaking, 0 K enthalpy differences): E differences are hartrees� 2626¼ kJ mol�1). The ZPEs

shown are the ab initio ZPEs multiplied by 0.9135 (HF) or 0.967 (MP2) [80]. The relative energies

in brackets (0, 234, �43); 0, 125, �61; 0, 163, �101; 0, 26, �280) are CBS-APNO energies (see

text) and are expected to be excellent surrogates for the skimpy and sometimes uncertain

experimental values [92]
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HNC to HCN

Transition state 0 K relative E¼ 140 Product 0 K relative E¼�87.2

Ea ¼ ΔHz þ RT ¼ ΔHz þ 2:48 ¼ 142:7

ΔHz ¼ 140:2
ΔGreact ¼ �86:9

ΔGz ¼ 136:1
ΔHreact ¼ �87:8

CH3NC to CH3CN

Transition state 0 K relative E¼ 173 Product 0 K relative E¼�120

Ea ¼ ΔHz þ RT ¼ ΔHz þ 2:48 ¼ 174:0

ΔHz ¼ 171:5
ΔGreact ¼ �119:3

ΔGz ¼ 169:2
ΔHreact ¼ �120:0

Cyclopropylidene to Allene

Transition state 0 K relative E¼ 25.7 Product 0 K relative E¼�288

Ea ¼ ΔHz þ RT ¼ ΔHz þ 2:48 ¼ 27:8

ΔHz ¼ 25:3
ΔGreact ¼ �285:1

ΔGz ¼ 23:9
ΔHreact ¼ �285:9

For these reactions the 0 K activation enthalpy and the room temperature

activation enthalpies and free energies are almost the same, and so are the 0 K

reaction enthalpy and the room temperature reaction enthalpies and free energies.

This is presumably so because these are unimolecular reactions, in which the

relative translational velocities of reacting molecules are not a factor.

The HF method tends to overestimate the barriers, making unstable molecules

seem stabler than they really are. Geometries are discussed further in Sect. 5.5.1.

Approximate versions of the MP2 method that speed up the process with little loss

of accuracy are available in some program suites: LMP2, localized MP2, and

RI-MP2, resolution of identity MP2. LMP2 starts with a Slater determinant which

has been altered so that its MOs are localized, corresponding to our ideas of bonds

and lone pairs (Sect. 5.2.3.1), and permits only excitations into spatially nearby

virtual orbitals [93]. RI-MP2 [94a,b,c] approximates four-center integrals
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(Sect. 5.3.1) by three-center ones. Other variations on MP2 which may not be

widely available are MP2[V] [94d], which is said to provide essentially the same

results using smaller basis sets, and MP2.5 [94e] which strikes a balance between

overestimating (MP2) an underestimating (MP3) noncovalent interactions and thus

improves results for thermochemistry and kinetics.

5.4.3 The Configuration Interaction Approach to Electron
Correlation. The Coupled Cluster Method

The configuration interaction (CI) treatment of electron correlation [82, 95] is based

on the simple idea that one can improve on the HF wavefunction, and hence energy,

by adding on to the HF wavefunction terms that represent promotion of electrons

from occupied to virtual MOs. The HF term and the additional terms each represent

a particular electronic configuration, and the actual wavefunction and electronic

structure of the system can be conceptualized as the result of the interaction of these

configurations. This electron promotion, which makes it easier for electrons to

avoid one another, is as we saw (Sect. 5.4.2) also the physical idea behind the

Møller-Plesset method; the MP and CI methods differ in their mathematical

approaches.

HF theory (Sects. 5.2.3.1, 5.2.3.2, 5.2.3.3, 5.2.3.4, 5.2.3.5, and 5.2.3.6) starts

with a total wavefunction or total MO Ψ which is a Slater determinant made of

“component” wavefunctions or MOs ψ . In Sect. 5.2.3.1 we approached HF theory

by considering the Slater determinant for a four-electron system:

Ψ ¼ 1ffiffiffiffi
4!

p
ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ ψ2 1ð Þα 1ð Þ ψ2 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ ψ1 2ð Þβ 2ð Þ ψ2 2ð Þα 2ð Þ ψ2 2ð Þβ 2ð Þ
ψ1 3ð Þα 3ð Þ ψ1 3ð Þβ 3ð Þ ψ2 3ð Þα 3ð Þ ψ2 3ð Þβ 3ð Þ
ψ1 4ð Þα 4ð Þ ψ1 4ð Þβ 4ð Þ ψ2 4ð Þα 4ð Þ ψ2 4ð Þβ 4ð Þ

��������

��������
ð5:163 ¼ 5:10Þ

To construct the HF determinant we used only occupied MOs: four electrons require

only two spatial “component” MOs, ψ1 and ψ2, and for each of these there are two

spin orbitals, created by multiplying ψ by one of the spin functions α or β; the
resulting four spin orbitals (ψ1α, ψ1β, ψ2α, ψ2β) are used four times, once with each

electron. The determinant Ψ, the HF wavefunction, thus consists of the four lowest-

energy spin orbitals; it is the simplest representation of the total wavefunction that is

antisymmetric and satisfies the Pauli exclusion principle (Sect. 5.2.2), but as we shall

see it is not a complete representation of the total wavefunction.

In the Roothaan-Hall implementation of ab initio theory each “component” ψ is

composed of a set of basis functions (5.2.3.6):

ψ i ¼
Xm
s¼1

csiϕs i ¼ 1, 2, 3, � � �, m component MOsð Þ ð5:164 ¼ 5:52Þ
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Now note that there is no definite limit to how many basis functions ϕ1, ϕ2, . . . can
be used for our four-electron calculation; although only two spatial ψ’s, ψ1 and ψ2,

(i.e. four spin orbitals) are required to accommodate the four electrons of this ψ , the
total number of ψ’s can be greater. Thus for the hypothetical H–H–H–H an STO-3G

basis gives four ψ’s, a 3–21G basis gives 8, and a 6–31G** basis gives 20

(Sect. 5.3.3). The idea behind CI is that a better total wavefunction, and from this

a better energy, results if the electrons are confined not just to the four spin orbitals

ψ1α, ψ1β, ψ2α, ψ2β, but are allowed to roam over all, or at least some, of the virtual

spin orbitals ψ3α, ψ3β, ψ4α, . . ., ψmβ. To permit this we could write Ψ as a linear

combination of determinants

Ψ ¼ c1D1 þ c2D2 þ c3D3 þ � � � þ ciDi ð5:165Þ

where D1 is the HF determinant of Eq. (5.163) and D2, D3, etc. correspond to the

promotion of electrons into virtual orbitals, e.g. we might have

Di ¼ 1ffiffiffiffi
4!

p
ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ ψ3 1ð Þα 1ð Þ ψ2 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ ψ1 2ð Þβ 2ð Þ ψ3 2ð Þα 2ð Þ ψ2 2ð Þβ 2ð Þ
ψ1 3ð Þα 3ð Þ ψ1 3ð Þβ 3ð Þ ψ3 3ð Þα 3ð Þ ψ2 3ð Þβ 3ð Þ
ψ1 4ð Þα 4ð Þ ψ1 4ð Þβ 4ð Þ ψ3 4ð Þα 4ð Þ ψ2 4ð Þβ 4ð Þ

��������

��������
ð5:166Þ

Di was obtained from D1 by promoting an electron from spin orbital ψ2α to the spin

orbital ψ3α. Another possibility is

Dj ¼ 1ffiffiffiffi
4!

p
ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ ψ3 1ð Þα 1ð Þ ψ3 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ ψ1 2ð Þβ 2ð Þ ψ3 2ð Þα 2ð Þ ψ3 2ð Þβ 2ð Þ
ψ1 3ð Þα 3ð Þ ψ1 3ð Þβ 3ð Þ ψ3 3ð Þα 3ð Þ ψ3 3ð Þβ 3ð Þ
ψ1 4ð Þα 4ð Þ ψ1 4ð Þβ 4ð Þ ψ3 4ð Þα 4ð Þ ψ3 4ð Þβ 4ð Þ

��������

��������
ð5:167Þ

Here two electrons have been promoted, from the spin orbitals ψ2α and ψ2β to

ψ3α and ψ3β. Di and Dj represent promotion into virtual orbitals of one and two

electrons, respectively, starting with the HF electronic configuration (Fig. 5.22).

Equation (5.165) is analogous to Eq. (5.164): in (5.164) “component” MOs ψ are

expanded in terms of basis functions ϕ, and in (5.165) a total MO Ψ is expanded in

terms of determinants, each of which represents a particular electronic configura-

tion. We know that the m basis functions of Eq. (5.164) generate m component

MOs ψ (Sect. 5.2.3.6.1), so the i determinants of Eq. (5.165) must generate i total
wavefunctions Ψ, and Eq. (5.165) should really be written

Ψ1 ¼ c11D1 þ c21D2 þ c31D3 þ � � � þ ci1Di

Ψ2 ¼ c12D1 þ c22D2 þ c32D3 þ � � � þ ci2Di

⋮
Ψi ¼ c1iD1 þ c2iD2 þ c3iD3 þ � � � þ ciiDi

ð5:168Þ
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i.e. (cf. Eq. (5.164)

Ψi ¼
Xi
s¼1

csiDs i ¼ 1, 2, 3, � � �, i totalMOsð Þ ð5:169Þ

What is the physical meaning of all these total wavefunctions Ψ? In order of

correspondence to increasing energy (the expectation value of the integral of a

wavefunction over a Hamiltonian operator) Ψ1 is the wavefunction for the ground

electronic state and Ψ2, Ψ3 etc. represent the wavefunctions of excited electronic

states.

The single-determinant HF wavefunction of Eq. (5.163) (or the general single-

determinant wavefunction of Eq. (5.12)) is merely an approximation to the Ψ1 of

Eqs. (5.168). Each determinant D (or possibly a linear combination of a few

determinants for an open-shell species [96]), represents an idealized (in the sense

of contributing to the real electron distribution) configuration, called a configura-
tion state function (or configuration function), CSF. A CSF is a linear combination

of determinants for equivalent states, states which differ only by whether an α or a β

D1 Di Dj

The HF determinant A single-excited determinant A doubly-excited determinant

b spin MOsa spin MOs

y4

y3

y2

y1

y4

y3

y2

y1

y4

y3

y2

y1

Fig. 5.22 Configuration interaction (CI): promotion of electrons from the occupied MOs

(corresponding to the Hartree-Fock determinant) gives determinants corresponding to excited

states. A weighted sum of determinants D1, D2, . . ., Di, . . ., corresponds to a molecule in which

the electrons partly populate virtual MOs and are not strictly confined to the lowest-energy MOs,

thus giving them a better chance to avoid one another and decreasing electron-electron repulsion.

The method generates a series of wavefunctions and energies; the lowest-energy wavefunction and

energy corresponds to the ground electronic state, the others to excited states
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electron was promoted. In many cases one determinant suffices for the Hartree-

Fock wavefunction, and then this determinant is the CSF. The CI wavefunctions of

Eqs. (5.168) or Eqs. (5.169), then, are linear combinations of CSFs. No single CSF

fully represents any particular electronic state. Each wavefunction Ψi is the total

wavefunction of one of the possible electronic states of the molecule, and the

weighting factors c in its expansion determine to what extent particular CSF’s
(idealized electronic states) contribute to any Ψi. For Ψ1, representing the ground

electronic state, we expect the HF determinant D1 to make the largest contribution

to the wavefunction.

If every possible idealized electronic state of the system, i.e. every possible

determinant D, were included in the expansions of Eqs. (5.168), then the

wavefunctions Ψ would be full CI wavefunctions. Full CI calculations are possible
only for very small molecules, because the promotion of electrons into virtual

orbitals can generate a huge number of states unless we have only a few electrons

and orbitals. Consider for example a full CI calculation on a very small system,

H–H–H–H with the 6–31G* basis set. We have eight basis functions and four

electrons, giving eight spatial MOs and 16 spin MOs, of which the lowest four are

occupied. There are two α electrons to be promoted into 6 virtual α spin MOs, i.e. to

be distributed among 8 α spin MOs, and likewise for the β electrons and β spin

orbitals. This can be done in [8!/(8� 2!)2!]2¼ 784 ways. The number of configu-

ration state functions is about half this number of determinants (since some CSFs

are composed of a few determinants). CI calculations with more than five billion

(sic) CSFs have been performed on ethyne, C2H2 [97]; rightly called benchmark

calculations, such computational tours de force are, although of limited direct

application, important for evaluating the efficacy, by comparison, of other methods.

The simplest implementation of CI is analogous to the Roothaan-Hall imple-

mentation of the HF method: Eq. (5.168) lead to a CI matrix, as the HF equations

(Eq. (5.164)) lead to a HF matrix (Fock matrix; Sect. 5.2.3.6). Do not confuse a

matrix with a determinant (Chap. 4, 4.3.3)! We saw that the Fock matrix F can be

calculated from the c’s and ϕ’s of Eq. (5.164) (starting with a “guess” of the c’s),
and that F (after transformation to an orthogonalized matrix F0 and diagonalization)
gives eigenvalues ε and eigenvectors c, i.e. F leads to the energy levels and the

wavefunctions (cϕ) of the component MOs ψ ; all this was shown in detail in

Sect. 5.2.3.6.5. Similarly, a CI matrix can be calculated in which the determinants

D play the role that the basis functions ϕ play in the Fock matrix, since the D’s in
Eq. (5.168) correspond mathematically to the ϕ’s in Eq. (5.164)). The D’s are

composed of spin orbitals ψα and ψβ, and the spin factors can be integrated out,

reducing the elements of the CI matrix to expressions involving the basis functions

and the coefficients of the spatial component MOs ψ . The CI matrix can thus be

calculated from the MOs resulting from an HF calculation. Orthogonalization and

diagonalization of the CI matrix gives the energies and the wavefunctions of the

ground state Ψ1 and, from i determinants, i� 1 excited states. A full CI matrix

would give the energies and wavefunctions of the ground state and all the excited

states obtainable from the basis set being used. Full CI with an infinitely large basis

set would give the exact energies of all the electronic states; more realistically, full

CI with a large basis set gives good energies for the ground and many excited states.
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Full CI is out of the question for any but small molecules, and the expansion of

Eq. (5.169) must usually be limited by including only the most important terms.

Which terms can be neglected depends partly on the purpose of the calculation. For

example, in calculating the ground state energy quadruply excited states are,

unexpectedly, much more important than triply and singly excited ones, but the

latter are usually included too because they affect the electron distribution of the

ground state, and in calculating excited state energies single excitations are impor-

tant. A CI calculation in which all the D’s involve only single excitations is called

CIS (CI singles); such a calculation yields the energies and wavefunctions of

excited states and often gives a reasonable account of electronic spectra. Another

common kind of CI calculation is CI singles and doubles (CISD, which actually

indirectly includes triply and quadruply excited states). Various mathematical

devices have been developed to make CI calculations recover a good deal of the

correlation energy despite the necessity of (judicious) truncation of the CI expan-

sion. Probably the currently most widely-used implementations of CI are

multiconfigurational SCF (MCSCF) and its variant complete active space SCF
(CASSCF), and the coupled-cluster (CC) method.

The CI strict analogue of the iterative refinement of the coefficients that we saw

in HF calculations (Sect. 5.2.3.6.5) would refine just the weighting factors of the

determinants (the c’s of Eqs. (5.168), but in the MCSCF version of CI the spatial

MOs within the determinants are also optimized (by optimizing the c’s of the

LCAO expansion, Eq. (5.164)). A widely-used version of the MCSCF method is

the CASSCF method, in which one carefully chooses the orbitals to be used in

forming the various CI determinants. These active orbitals, which constitute the

active space, are the MOs that one considers to be most important for the process

under study. Thus for a Diels-Alder reaction, the two π and two π*MOs of the diene

and the π and π*MO of the alkene (the dienophile) would be a reasonable minimum

as candidates for the active space of the reactants [98a]; the six electrons in these

MOs would be the active electrons, and with the 6–31G* basis this would be a

(specifying electrons, MOs) CASSCF (6,6)/6–31G* calculation. CASSCF calcula-

tions are used to study chemical reactions and to calculate electronic spectra. They

require judgement in the proper choice of the active space and are not essentially

automatic algorithms like other methods [98b]. Approaches that make possible the

use of active spaces much bigger than those in conventional CASSCF are being

explored [99].

An extension of the MCSCF method is multireference CI (MRCI), in which the

determinants (the CSFs) from an MCSCF calculation are used to generate still more

determinants, by promoting electrons in them into virtual orbitals (multireference,

since the final wavefunction “refers back” to several, not just one, determinant).

A “fast, robust and versatile code for accurate multireference computations”,

BALOO, is said to be much faster than conventional codes for multireference

calculations [100].

Just as HF geometries can be subjected to MPn (commonly MP2) single-point

calculations to account for dynamic correlation and obtain better relative energies,

geometries from CASSCF calculations, which are commonly used to take static
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correlation into account, can be subjected to (usually single-point) perturbational

calculations to account for dynamic correlation. The most reliable and widely-used

of these “post-CAS”) methods is the CASPT2N (complete active space perturba-

tional treatment second order, a kind of analogue of MP2) [101].

The coupled cluster (CC) method is related to both the perturbation (Sect. 5.4.2)

and the CI approaches (Sect. 5.4.3). Like perturbation theory, CC theory is

connected to the linked cluster theorem (linked diagram theorem) [102], which

proves that MP calculations are size-consistent (see below). Like standard CI it

expresses the correlated wavefunction as a sum of the HF ground state determinant

and determinants representing the promotion of electrons from this into virtual

MOs. As with the Møller-Plesset equations, the derivation of the CC equations is

complicated. The basic idea is to express the correlated wavefunction Ψ as a sum of

determinants by allowing a series of operators T̂1, T̂2, � � �, to act on the HF

wavefunction:

Ψ ¼ 1þ T̂ þ T̂
2

2!
þ T̂

3

3!
þ � � �

 !
ΨHF ¼ eT̂ΨHF ð5:170Þ

where T̂ ¼ T̂1 þ T̂2 þ � � �. The operators T̂1, T̂2, � � � are excitation operators and

have the effect of promoting one, two, etc., respectively, electrons into virtual

spin orbitals. Depending on how many terms are actually included in the summa-

tion for T̂, one obtains the coupled cluster doubles (CCD), coupled cluster singles
and doubles (CCSD) or coupled cluster singles, doubles and triples (CCSDT)

method:

T̂CCD ¼ eT̂2ΨHF

T̂CCSD ¼ e T̂1þT̂2ð ÞΨHF

T̂CCSDT ¼ e T̂1þT̂2, T̂3ð ÞΨHF

CCSDT calculations are very demanding except for very small systems, and

a compromise often used is CCSD(T) (note the parentheses), coupled cluster

singles and doubles with approximate triples (or perturbative triples). The

quadratic configuration interaction method, QCI, is very similar to the CC method.

QCISD(T) (quadratic CI singles, doubles, with approximate triples) has been

largely replaced by the CCSD(T) method, which is usually only moderately slower

than QCISD(T), and is more reliable [103]. CCSD(T) calculations are, generally

speaking, the current benchmark for practical molecular calculations on molecules

of up to moderate size.

Like MP methods, CI and CC methods require reasonably large basis sets for

good results. The smallest basis used with these methods is the 6–31G*, but where

practical the 6–311G** basis, developed especially for post-HF calculations, might

be preferable (see Table 5.6). The energies by themselves mean little: it is energy

differences, corresponding to a chemical (or conformational) change that counts.
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Higher-correlated single-point calculations on MP2 geometries tend to give more

reliable relative energies than do MP2 single-point calculations on HF geometries

(Sect. 5.4.2, in connection with Figs. 5.20 and 5.21). There is some limited evidence

that when a correlation method is already being used, one tends to get improved

geometries if the next step is to use a bigger basis set rather than to go to a yet higher

correlation level [104]. Figure 5.21 shows the results of HF and MP2 methods

applied to chemical reactions. The limitations and advantages of numerous such

methods are shown in a practical way in the Gaussian 94 workbook by Foresman

and Frisch [1e]. Energies and times for a Hartree-Fock level and some correlated

calculations are given in Table 5.6.

A big advance in coupled-cluster implementation is the domain-based local pair

natural orbital coupled cluster method with single, double and perturbative triple

excitations (DLPNO-CCSD(T)), which is based on local pair natural orbital

(LPNO), localized, rather than canonical, Slater determinants (Sect. 5.2.3.1)

[105a]. This approach is largely associated with the group of Neese. It is said to

give energies nearly as good (within 1 kJ mol�1 with the Tight setting) as those

from conventional CCSD(T) at a “cost” (i.e. time) “Many orders of magnitude”

less, and scales nearly linearly with system size. This paper [105a] showed that

DLPNO-CCSD(T) was more accurate than any of the DFT functionals (Chap. 7)

tested against it and concluded that “coupled cluster energies can indeed be

obtained at near DFT cost”. Anticipating Chap. 7, we note that modern DFT is,

broadly speaking, more accurate than Hartree-Fock and roughly as fast, but that

unlike HF it lacks a satisfying theoretical transparency. In contrast, conventional

CCSD(T) is very accurate but much slower than DFT. So DLPNO-CCSD(T)

promises the theoretical rigor of ab initio with the speed of DFT. These methods

are available in the program ORCA (ORCA is cited in Chap. 9). DLPNO-CCSD(T)

Table 5.6 Energies and times for some calculations on acetone involving electron correlation; a

HF job is shown for comparison

Method/basis Input geometry Energy Time, sec.

HF/6–31G* opt + freq AM1 �191.962236 19

MP2/6–31G* opt + freq AM1 �192.523905 41

MP2/6–311G** opt + freq AM1 �192.647954 142

CCSD(T)/6–31G* single point MP2/6–311G** �192.577986 21

CCSD(T)/6–311G** single point MP2/6–311G** �192.707241 58

The calculations were done with the G09 program suite on a computer with a 64-bit 3.40 GHz Intel

Core 2 Duo Quad CPU, 16 GB RAM, and 1.8 TB diskspace, running under Windows 7. They

reflect the times for these methods on a well-equipped personal computer as of ca. mid-2013.

Energies here are those immediately following the optimization (or single point calculation),

before the frequency calculation, i.e. without ZPE, but times are for optimization + frequency

where frequencies were requested. A lower absolute energy does not guarantee that a method/basis

will give a more accurate activation or reaction energy, as these latter two are energy differences,
not absolute energies. MP2 was the usual MP2(fc). Methods are given in order of the increasing

thoroughness with which they might be expected to treat electron correlation. Note that none of the

correlation methods is variational: they can give an energy lower than the true energy
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made possible a CC-level calculation (albeit single point) on the protein crambin,

with 644 atoms, 6187 basis functions [105b]. Another recent modification of

conventional CCSD(T) based on local orbitals is the divide-expand-consolidate

model, DEC-CCSD(T), which does not seem to offer increased speed but does scale

linearly [105c].

5.4.3.1 Size-Consistency

Two factors that should be mentioned in connection with post-HF calculations are

the questions of whether a method is size-consistent and whether it is variational.
A method is size-consistent if it gives the energy of a collection of n widely-

separated atoms or molecules as being n times the energy of one of them. For

example, the HF method gives the energy of two water molecules 20 Å apart

(considered as a single system, i.e. a “supermolecule”) as being twice the energy

of one water molecule. The example below gives the result of HF/3–21G(*)

geometry optimizations on a water molecule, and on two water molecules at

increasing distances (with the two-H2O supermolecule the O/H internuclear dis-

tance r was held constant at 10, 15. . . .Å while all the other geometric parameters

were optimized):

H
O

H

r

H
H

O

Energy of H2O¼�75.58596

2�Energy or H2O¼�151.17192

Energy of (H2O)2¼�151.17206, at r¼ 10 Å
Energy of (H2O)2¼�151.17196, at r¼ 15 Å
Energy of (H2O)2¼�151.17194, at r¼ 20 Å
Energy of (H2O)2¼�151.17193, at r¼ 25 Å
Energy of (H2O)2¼�151.17193, at r¼ 30 Å

As the two water molecules are separated any stabilizing intermolecular inter-

actions tend to zero and the energy rises, levelling off at 20–25 Å to twice the

energy of one water molecule. With the HF method we find that for any number n of
molecules M, at large separation the energy of a “noninteracting supermolecule”

(M)n equals n times the energy of one M. The HF method is thus size-consistent.

We might say that a size-consistent method is one that scales with the number of

species in a way that makes sense.

Now, it is hard to see why, physically, the energy of n identical molecules so

widely-separated that they cannot affect one another should not be n times the
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energy of one molecule. Any mathematical method that does not mimic this

physical behaviour would seem to have a conceptual flaw, and in fact lack of

size-consistency also places limits on the utility of the computational method. For

instance, in trying to study the hydrogen-bonded water dimer we would not be able

to equate the decrease in energy (compared to twice the energy of one molecule)

with stabilization due to hydrogen bonding, and it is unclear how we could

computationally turn off hydrogen bonding and evaluate the size-consistency

error separately (actually, there is a separate problem, basis set superposition

error–see below–with species like the water dimer, but this source of error can be

dealt with). It might seem that any computational method must be size-consistent

(why shouldn’t the energy of a large-separation (M)n come out at n times that of

M?). However, it is not hard to show that CI is not size-consistent unless

Eqs. (5.168) include all possible determinants, i.e. unless it is full CI. Consider a
CISD calculation with a very large (“infinite”) basis set on two helium atoms which

are separated by a large (“infinite”; say ca. 20 Å) distance, and are therefore

non-interacting. Note that although helium atoms do not form covalent He2 mole-

cules, at short distances they do interact to form van der Waals molecules. The

wavefunction for this four-electron system will contain, besides the HF deter-

minant, only determinants with single and double excitations (because we are

using CI SD). Lacking the triple and quadruple excitations which are possible in

principle for a four-electron system, it is not a full CI calculation, and so it will not

yield the exact, full-CI energy of our noninteracting He-He system, which logically

must be twice the full-CI energy one helium atom; instead it will yield a higher

energy. Now, a CISD calculation with an infinite basis set on a single He atom will
give the exact wavefunction, and thus the exact energy of the atom (because only

single and double promotions are possible for a two-electron system, this is a full CI

calculation). Thus in this CISD calculation, the energy of the infinitely-separated

He–He system is not, as it “should” be, twice the energy of a single He atom. This

conclusion holds for any CI calculation which does not confer full “upward

mobility” on all the electrons.

5.4.3.2 Variational Behavior

The other factor to be discussed in connection with post-HF calculations is whether

a particular method is variational. A method is variational (see the variation

theorem, Sect. 5.2.3.3) if any energy calculated from it is not less than the true

energy of the electronic state and system in question, i.e. if the calculated energy is

an upper bound to the true energy. Using a variational method, as the basis set size

is increased we get lower and lower energies, levelling off above the true energy

(or at the true energy in the unlikely case that our method treats perfectly electron

correlation, relativistic effects, and any other minor effects). Figure 5.18 shows that

the calculated energy of H2 using the HF method approaches a limit (�1.133 h)

with increasingly large basis sets. The calculated energy can be lowered by using a
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correlated method and an adequate basis: full CI with the very big 6–311þþG

(3df,3p2d) basis gives �1.17288 h, only 4.0 kJ mol�1 (small compared with the

H–H bond energy of 435 kJ mol�1) above the accepted exact energy of �1.17439 h

(Fig. 5.18). Variational behavior is helpful because it serves as a guide to the quality

of our wavefunction–the lower the energy the better the function.

If we can’t have both, it is more important for a method to be size-consistent than

variational. Of the methods we have seen in this book:

Hartree-Fock is size-consistent and variational.

MP (MP2, MP3, MP4, etc.) is size-consistent but not variational.

Full CI, including its full MCSCF and MRCI variants, are size-consistent and

variational.

Straightforward truncated CI (CIS, CISD, etc.) is not size-consistent but is

variational.

CASSCF, a kind of truncated CI, can be size-consistent: if the active space is

chosen properly so that the MOs correspond throughout the process being

examined. CASSCF is not variational.

CC (e.g. CCSD, CCSD(T), CCSDT) and its QCI variants (e.g. QCISD, QCISD(T),

QCISDT) are size-consistent but not variational.

We could use one of the size-consistent methods to compare the energies of, say,

water and the water dimer, but only with HF or full CI can we be sure that the

calculated energy is an upper bound to the exact energy, i.e. that the exact energy is

really lower than the calculated (only a very high correlation level and big basis set

are likely to give essentially the exact energy; see Sect. 5.5.2). There is however

another thing to consider in connection the energy of water compared to its dimer,

and similar problems: basis set superposition error, below.

5.4.3.3 Basis Set Superposition Error, BSSE

This is not associated with a particular method, like HF or CI, but rather is a basis

set problem. Consider what happens when we compare the energy of the hydrogen-

bonded water dimer with that of two noninteracting water molecules. Here is the

result of an MP2(fc)/6–31G* calculation; both structures were geometry-optimized,

and the energies are corrected for ZPE:

Energy of H2O¼�76.27547 h

2�Energy of H2O¼�152.55094 h

Energy of H2O dimer¼�152.55658 h

2� Energy of H2Oð Þ � Energy of H2O dimerð Þ
¼ �152:55094� �152:55658ð Þ h ¼ 0:00564 h ¼ 14:8 kJ mol�1

The straightforward conclusion is that at the MP2(fc)/6–31G* level the dimer is

stabler than two noninteracting water molecules by 14.8 kJ mol�1. If there are no

other significant intermolecular forces, then we might say the H-bond energy in the

water dimer [106] is 14.8 kJ mol�1 (that it takes this energy to break the bond–to
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separate the dimer into noninteracting water molecules). Unfortunately there is a

problem with using this simple subtraction approach to compare the energy of a

weak molecular association AB with the energy of A plus the energy of B. If we do

this we are assuming that if there were no interactions at all between A and B at the

geometry of the AB species, then the AB energy would be that of isolated A plus

that of isolated B. The problem is that when we do a calculation on the AB species

(say the dimer HOH� � �OH2), in this “supermolecule” the basis functions (“atomic

orbitals”) of B are available to A so A in AB has a bigger basis set than does isolated

A; likewise B has a bigger basis than isolated B. In AB each of the two components

can borrow basis functions from the other. The error arises from “imposing”

(superimposing) B’s basis set upon A and vice versa, hence the name basis set

superposition error. Because of BSSE the separated species A and B are not being

fairly compared with AB, which has an unfair basis set advantage. We should use

for the energies of separated A and of B lower, “better” values than we get in the

absence of the borrowed functions available in the weak complex. Accounting for

BSSE will thus give a smaller energy drop on AB formation. Treated properly, the

value for the hydrogen bond energy (or van der Waals’ energy, or dipole-dipole
attraction energy, or whatever weak interaction is being studied) will be less than if

BSSE were ignored.

There are two ways to deal with BSSE. One is to say, as we implied above, that

we should really compare the energy of AB with that of A with the extra basis

functions provided by B, plus the energy of B with the extra basis functions

provided by A. This method of correcting the energies of A and B with extra

functions is called the counterpoise method [107], presumably because it balances

(counterpoises) functions in A and B against functions in AB. In the counterpoise

method the calculations on the components A and B of AB are done with ghost
orbitals, which are basis functions (“atomic orbitals”) not accompanied by atoms

(spirits without bodies, one might say): one specifies for A, at the positions that

would be occupied by the various atoms of B in AB, atoms of zero atomic number

bearing the same basis functions as the real atoms of B. This way there is no effect

of atomic nuclei or extra electrons on A, just the availability of B’s basis functions.
Likewise one uses ghost orbitals of A on B. A detailed description of the use of

ghost orbitals in Gaussian 82 was given by Clark [107a] (the actual implementation

of BSSE in Gaussian has changed since then). The counterpoise correction is rarely

applied to anything other than weakly-bound dimers, like hydrogen-bonded and van

der Waals species: strangely, the correction worsens calculated atomization ener-

gies (e.g. covalent AB!AþB), and it is has been said to be not uniquely defined

for species of more than two components [107b]; however, see calculations on a

ternary complex, ethene-water-ethene [107c]. A review of criticisms and a defence

of the counterpoise method is given in [107d], and the controversy continues with

fairly recent rejection of the validity of the method from a study of Be2 [107e]. Until

the situation is clearer one might best report results for weakly-bound dimers with

and without the counterpoise correction, and, where possible, from the use of very

large basis sets (below).
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The second way one might handle BSSE is to swamp it with basis functions.

If each fragment A and B is endowed with a very big basis set, then extra functions

from the other fragment won’t alter the energy much–the energy will already be

near the asymptotic limit. So if one simply carries out a calculation on A, B and AB

with a sufficiently big basis, the straightforward procedure of subtracting the energy

of AB from that of AþB should give a stabilization energy essentially free of

BSSE. Nevertheless, the counterpoise method is the standard way of overcoming

BSSE. The best experimental estimate of the binding enthalpy of the water dimer

was said to be�13.4 kJ mol�1 (�3.2� 0.5 kcal mol�1) [106c]; this is the enthalpy,

at room-temperature, 298 K, of the dimer minus twice the enthalpy of the monomer.

Here are four calculated values of this binding enthalpy, without the BSSE correc-

tion; hartrees are converted to kJ mol�1 by multiplying by 2626:

CBS-Q, a high-accuracy multistep method with correlation energy correction

and large basis sets (Sect. 5.5.2.3.2)

�152:67093� �152:66546ð Þ ¼ �0:00547 ¼ �14:4 kJ;

MP2=6� 311þþG 3df, 3pdð Þ
�152:60355� �152:59780ð Þ ¼ �0:00575 ¼ �15:1 kJ;

MP2=6� 31G*

�152:35198� �152:34318ð Þ ¼ �0:00880 ¼ �23:1 kJ;

HF=6� 311þþG 3df, 3pdð Þ
�152:06881� �152:06510ð Þ ¼ �0:00371 ¼ �9:74 kJ;

HF=6� 31G*

�151:97417� �151:96798ð Þ ¼ �0:00619 ¼ �16:3 kJ

The correlation-correction/large basis CBS-Q calculation gives a binding enthalpy

�14.4 kJ mol�1 not too far from the experimental �13.4 kJ mol�1 and the MP2

method with the very big MP2/6–311þþG(3df,3pd) basis gives a slightly worse

deviation, while with MP2 and a smaller basis the binding value is still worse. This

is in accord with the above assertion that accounting for BSSE will give a smaller

energy drop than without it, i.e. that non-counterpoise calculations give the bigger

energy drop. However one should add “other things being equal”: with the Hartree-

Fock method, the smaller basis (6–31G*) actually gives a smaller enthalpy drop

(9.74 kJ mol�1) than the ca. 13 kJ mol�1 decrease expected from a good counter-

poise calculation (and the binding enthalpy is, coincidentally, slightly better esti-

mated than with HF/6–311þþG(3df,3pd)). Presumably the somewhat erratic

results at the HF level are due to neglect of dynamic correlation (Sect. 5.4.1).

The water dimer has been examined in detail with the accent on density

functional (Chap. 7) methods [108a], and with ab initio as well as DFT in counter-

poise calculations on it [108b]. Using large basis sets and high correlation levels to

get high-quality atomization energies (which are of course not of a weak interaction
type, and which the counterpoise correction is said to worsen [107b]) is explained
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in the book by Foresman and Frisch [1e]. BSSE may also be significant intramo-
lecularly; for attempts to treat this and weak interactions in general (dispersion

forces) within density functional theory see Chap. 7, Sect. 7.2.3.4.8. Less effort

seems to have been expended on grappling with dispersion by ab initio, rather than

by DFT, methods. Conrad and Gordon describe a method with an empirical DFT

dispersion correction to π� π interactions at the Hartree-Fock level [109a], and in a

somewhat similar vein Goldey et al. supplemented MP2 with DFT and parameters

from high-level ab initio databases of noncovalent interactions [109b]. Accurate

purely ab initio (no empirical or DFT assistance) calculation of noncovalent

interaction energies (which includes dispersion) requires high-level correlation

methods, which nowadays means some form of coupled-cluster calculations, and

may only now be becoming practical for other than very small molecules. See for

example Řezáč et al., including e.g. benzene-trifluoroiodomethane [109c]; for very

elaborate calculations on the hydrogen fluoride dimer, see Řezáč and Hobza [109d].

At the other end of the computational effort scale, some molecular mechanics

forcefields were better than semiempirical methods (Chap. 6; albeit not ab initio)

in reproducing dispersion in the benzene dimer [109e]. Energy calculations are

discussed further in Sect. 5.5.2.

5.5 Applications of The Ab initio Method

An extremely useful book by Hehre [39] discusses critically the merits of various

computational levels (ab initio and others) for calculating molecular properties, and

contains a wealth of information, admonitory and tabular, on this general subject.

5.5.1 Geometries

It is probably the case that the two parameters most frequently sought from ab initio

calculations (and most semiempirical and DFT calculations too) are geometries and

(Sect. 5.5.2) energies, although this is not to say that other quantities, like vibra-

tional frequencies (Sect. 5.5.3) and parameters arising from electron distribution

(Sect. 5.5.4) are unimportant. Molecular geometries are important: they can reveal

subtle effects of theoretical importance, and in designing new materials and,

particularly, new drugs [110] the shapes of the candidates for particular roles should

be known with reasonable accuracy–for example, docking a putative drug into the

active site of an enzyme requires that we know the shape of the drug and the active

site. While the creation of new pharmaceuticals or materials can be realized with

the aid of molecular mechanics (Chap. 3) or semiempirical methods (Chap. 6), the

increasingly facile application of ab initio techniques to large molecules makes it

likely that this method will play a more important role in such utilitarian pursuits.

Novel molecules of theoretical interest can be studied reliably only by ab initio
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methods, or possibly by density functional theory (Chap. 7), which is closer in

theoretical tenor to the ab initio, rather than semiempirical, approach. The theory

behind geometry optimizations was outlined in Chap. 2, Sect. 2.4, and some

mention has been made of the suitableness of different basis sets and correlation

methods for optimizations. Extensive discussions of the virtues and shortcomings

of various ab initio levels for calculating geometries can be found in references

[1e], [1g] and [39].

Molecular geometries or structures refer to the bond lengths, bond angles, and

dihedral angles that are defined by two, three and four, respectively, atomic nuclei.
In speaking of the distance, say, between two “atoms” we really mean the

internuclear distance, unless we are considering nonbonded interactions, when

we might also wish to examine the separation of the van der Waals surfaces. In

comparing calculated and experimental structures we must remember that calcu-

lated geometries correspond to a fictional frozen-nuclei molecule, one with no zero-

point energy (Sect. 5.2.3.6.4), while experimental geometries are averaged over the

amplitudes of the various vibrations [111a]. Furthermore, different methods mea-

sure somewhat different things. The most widely-used experimental methods for

finding geometric parameters are X-ray diffraction, electron diffraction and micro-

wave spectroscopy. X-ray diffraction determines geometries in a crystal lattice,

where they may be somewhat different from in the gas phase to which ab initio

reactions usually apply (although structures and energies can be calculated taking

solvent effects into account; see Refs. [1a, e, f, i, k, l]. X-ray diffraction depends on

the scattering of photons by the electrons around nuclei, while electron diffraction

depends on the scattering of electrons by the nuclei, and microwave spectroscopy

measures rotational energy levels, which depend on nuclear positions. Neutron

diffraction, which is less used than these three methods, depends on scattering by

atomic nuclei.

The main differences are between X-ray diffraction (which probes nuclear

positions via electron location) on the one hand and electron diffraction, microwave

spectroscopy and neutron diffraction (which probe nuclear positions more directly),

on the other hand. The differences result from (1) the fact that X-ray diffraction

measures distances between mean nuclear positions, while the other methods

measure essentially average distances, and (2) from errors in internuclear distances

caused by the nonisotropic (uneven) electron distribution around atoms. The mean

vs. average distinction is illustrated here:

Aetc. B etc.r

Suppose that nucleus A is fixed and nucleus B is vibrating in an arc as indicated.

The distance between the mean positions is r (shown), but on the average B is

further away than r.
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Differences resulting from nonisotropic electron distribution are significant only

for H¼X bond lengths: X-rays see electrons rather than nuclei, and the simplest

inference of a nuclear position is to place it at the center of a sphere whose surface is

defined by the electron density around it. However, since a hydrogen atom has only

one electron, for a bonded hydrogen there is relatively little electron density left

over from covalent sharing to blanket the nucleus, and so the proton, unlike other

nuclei, is not essentially at the center of an approximate sphere defined by its

surrounding electron density:

XH

actual position of 
proton

position inferred from
supposing it to be at
center of sphere defined by
electron density around proton
i.e. X-ray-inferred position

X nucleus

. ..

Clearly, the X-ray-inferred H–X distance will be less than the actual internuclear

distance measured by electron diffraction, neutron diffraction, or microwave spec-

troscopy, methods which see nuclei rather than electrons. These and other sources

of error that can arise in experimental bond length measurements (like bond length,

bond angles and dihedral angles will obviously also depend on nuclear positions)

are detailed by Burkert and Allinger [111b], who mention nine (!) kinds of

internuclear distance r, and a comprehensive reference to the techniques of struc-

ture determination may be found in the book edited by Domenicano and Hargittai

[112]. Despite all these problems with defining and measuring molecular geometry

we will adopt the position that it is meaningful to speak of experimental geometries

to within 0.01 Å or better for bond lengths, and to within 0.5� for bond angles and

dihedrals [113].

Let’s briefly compare HF/3–21G(*), HF/6–31G* and MP2/6–31G* geometries.

Figure 5.23 gives bond lengths and angles calculated at these three levels and

experimental bond lengths and angles, for 20 molecules. The geometries shown

in Fig. 5.23 are analyzed in Table 5.7, and Table 5.8 provides information on

dihedral angles in eight molecules. There should be little difference between MP2

(full) geometries and the MP2(fc) geometries used here. This (admittedly limited)

survey suggests that:

HF/3–21G(*) geometries are almost as good as HF/6–31G* geometries.

MP2/6–31G* geometries are on the whole slightly but significantly better than

HF/6–31G* geometries, although individual MP2 parameters are sometimes a
bit worse.
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HF/3–21G(*) and HF/6–31G* C–H bond lengths are consistently slightly

(ca. 0.01–0.03 and ca. 0.01 Å, respectively) shorter than experimental, while

MP2/6–31G* C-H bond lengths are not systematically over- or underestimated.

HF/6–31G* O-H bonds are consistently slightly (ca. 0.01 Å) shorter than

experimental, while MP2/6–31G* O-H bond lengths are consistently slightly

(ca. 0.01 Å) longer. HF/3–21G(*) O-H bond lengths are not consistently over- or

underestimated.
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Fig. 5.23 A comparison of some HF/3–21G(*), HF/6–31G* and MP2(fc)/6–31G* geometries.

Calculations are by the author and experimental geometries are from Ref. [1g]. Note that all

CH bonds are ca. 1 Å, all other bonds range from ca. 1.2–1.8 Å, and all bond angles (except for

linear molecules) are ca. 90–120�
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None of the three levels consistently over- or underestimates C–C bond lengths.

HF/6–31G* C�X(X¼O, N, CI, S) bond lengths tend to be underestimated

slightly (ca. 0.015 Å) while MP2/6–31G* C–X bond lengths may tend to be

slightly (ca. 0.01 Å) overestimated. HF/3–21G(*) C–X bond lengths are not

consistently over- or underestimated.

HF/6–31G* bond angles may tend to be slightly larger (ca. 1�) than experimental,

while MP2/6–31G* angles may tend to be slightly (0.7�) smaller.

HF/3–21G(*) bond angles are not consistently over- or underestimated.

Dihedrals do not seem to be consistently over-or underestimated by any of the

Table 5.8 HF/3–21G(*), HF/6–31G* and MP2(fc)/6–31G* dihedral angles (degrees)

Molecule

Dihedral angles

HF/3–21G(*) HF/6–31G* MP2/6–31G* Experiment Errors

HOOH 180.0 116.0 121.3 119.1a 61(sic)/�3.1/2.2

FOOF 84.1 84.1 85.8 87.5b �3.4/�3.4/�1.7

FCH2CH2F

(FCCF)

74.9 69.4 69.0 73b 1.9/�4/�4

FCH2CH2OH

(FCCO)

58.4 61.3 60.1 64.0c �5.6/�2.7/�3.9

(HOCC) 52.7 57.8 54.1 54.6c �1.9/2.5/�0.5

ClCH2CH2OH

(ClCCO)

65.8 65.7 65.0 63.2b 2.6/2.5/1.8

(HOCC) 66.0 67.0 64.3 58.4b 7.6/8.6/5.9

ClCH2CH2F

(ClCCF)

65.9 67.0 65.9 68b �2.1/�1/�2.1

HSSH 89.8 89.8 90.4 90.6a �0.8/�0.8/�0.2

FSSF 89.4 88.7 88.9 87.9b 1.5/0.8/1.0

Deviations: 5+,

5�/4+, 6�/4+,

6� mean of 10:

8.8/2.9/ 2.3.*

Omitting the largest error for each of the three methods (61/8.6/8.9/ for HF/3–21G(*)/HF/6–31G*/

MP2(fc)/6–31G*, respectively, the mean of 9 errors for each method is 3.0/2.3/1.9

Errors are given in the Errors column as HF/3–21G(*)/HF/6–31G*/MP2/6–31G* A minus sign

means that the calculated value is less than the experimental. The numbers of positive and negative

deviations from experiment and the average errors (arithmetic means of the absolute values of the

errors) are summarized at the bottom of the Errors column. Calculations are by the author;

references to experimental measurements are given for each measurement. Some molecules

have calculated minima at other dihedrals in addition to those given here, e.g. FCH2CH2F at

180�. Errors are presented: HF/3–21G(*)/HF/6–31G*/MP2/6–31G*
aReference [1g], pp.151, 152
bM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwenderman, D. A. Ramsay, F. J.

Lovas, W. H. Lafferty, A. G. Makai, “Molecular Structures of Gas-Phase Polyatomic Molecules

Determined by Spectroscopic Methods”, J. Physical and Chemical Reference Data, 1979, 8,
619–721
cJ. Huang and K. Hedberg, J. Am. Chem. Soc., 1989, 111, 6909
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three levels. The HF/3–21G(*) level breaks down completely for HOOH, where a

dihedral angle of 180�, far from the experimental 119.1�, is calculated; omitting this

error of 61� and the ClCH2CH2OH HOCC dihedral error of 7.6� lowers the

HF/3–21G(*) error from 8.8 to 2.5�. The experimental value of 58.4� for the

ClCH2CH2OH HOCC dihedral is suspect because of its anomalously large devia-

tion from all three calculated results, and because it is among those dihedrals which

are said to be suspect or having a large or unknown error (designated X in Harmony

et al.–see reference in Table 5.8). The error for the HOOH dihedral is represents a

clear failure of the HF/3–21G(*) level and is an example of a case which provides an

argument for using the 6–31G* rather than the 3–21G(*) basis, although the latter is

much faster and often of comparable accuracy (of course with correlated methods

like MP2 a smaller basis than 6–31G* should not be used, as pointed out in

Sect. 5.4). The errors in calculated dihedral angles are ca. 2–3� for HF/6–31G*,

and ca. 2� for MP2/6–31G*: omitting the ClCH2CH2OH HOCC dihedral errors

of 8.6� and 5.9� from the sample lowers the HF error from 2.9� to 2.3� and the MP2

error from 2.3 to 1.9.

The accuracy of ab initio geometries is astonishing, in view of the approxima-

tions present: the 3–21G(*) basis set is small (it is in fact used little nowadays) and

the 6–31G* is only moderately large, and so these probably cannot approximate

closely the true wavefunction; the HF method does not account properly for

electron correlation, and the MP2 method is only the simplest approach to handling

electron correlation; the Hamiltonian in both the HF and the MP2 methods used

here neglects relativity and spin-orbit coupling. Yet with all these approximations

the largest error (Table 5.7) in bond lengths is only 0.033 Å (HF/3–21G(*) level for

HCHO) and the largest error in bond angles is only 3.2� (HF/3–21G(*) level for

H2O). The largest error in dihedral angles (Table 5.8), omitting the 3–21G(*) result

for H2O2, is 8.6� (HF/6–31G* for ClCH2CH2OH HOCC), but as stated above

the reported experimental dihedral of 58.4� is suspect.
From Fig. 5.23 and Table 5.7, the mean error in 39(13þ 8þ 9þ 9) bond lengths is

0.01�0.015 Å at the HF/3–21G(*) and MP/6–31G* levels, and ca. 0.05�0.008 Å at

the MP2/6–31G* level. The mean error in 18 bond angles is only 1.3� and 1.0� at the
HF/3–21G(*) and HF/6–31G* levels, respectively, and 0.7� at the MP2(fc)/6–31G*

level. From Table 5.8 the mean dihedral angle error at the HF/3–21G(*) level for

9 dihedrals (omitting the questionable ClCH2CH2OH dihedral) is 3.0�; the mean of

8 dihedral errors (omitting the ClCH2CH2OH and the HOOH errors) is 2.5�. For the
other two levels the mean of 10 dihedral angles (including the questionable

ClCH2CH2OH dihedral) is 2.9� (HF/6–31G*) and 2.3� (MP2/6–31G*). If we agree

that errors in calculated bond lengths, angles and dihedrals of up to 0.02 Å, 3� and 4�

respectively correspond to fairly good structures, then all the HF/3–21G(*),

HF/6–31G* and MP2/6–31G* geometries, with the exception of the HF/3–21G(*)

HOOH dihedral, which is simply wrong, and the possible exception of the HOCC

dihedral of ClCH2CH2OH, are fairly good. We should, however, bear in mind that, as

with the HF/3–21G(*) HOOH dihedral, there is the possibility of an occasional

unwelcome surprise. Interestingly, HF/3–21G(*) geometries are, for some series of
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compounds, somewhat better than MP2/6–31G* ones. For example, the RMS errors

in geometry for the series H2, CH, NH, OH, HF, CN, N2, H2O, HCN, CH3, and CH4

using UHF/3–21(*), MP2/6–31G*, and MP2/6–31G{ (a modified basis used in CBS

calculations–Sect. 5.5.3.2.2) are 0.012 Å, 0.016 Å and 0.015 Å, respectively [113].

The calculations summarized in Tables 5.7 and 5.8 are in reasonable accord with

conclusions based on information available ca. 1985 and given by Hehre, Radom,

Schleyer and Pople [114]: HF/6–31G* parameters for A-H, A/B single and A/B

multiple bonds are usually accurate to 0.01, 0.03 and 0.02 Å, respectively, bond
angles to ca. 2� and dihedral angles to ca. 3�, with HF/3–21G(*) values being not

quite as good. MP2 bond lengths appear to be somewhat better, and bond angles are

usually accurate to ca. 1�, and dihedral angles to ca. 2�. These conclusions from

Hehre et al. hold for molecules composed of first-row elements (Li to F) and

hydrogen; for elements beyond the first row larger errors not uncommon.

The main advantage of MP2/6–31G* optimizations over HF/3–21G(*) or

HF/6–31G* ones is not that the geometries are much better, but rather that for a

stationary point, MP2 optimizations followed by frequency calculations are more

likely to give the correct curvature of the potential energy surface (Chap. 2) for the

species than are HF optimizations/frequencies. In other words, the correlated

calculation tells us more reliably whether the species is a relative minimum or

merely a transition state (or even a higher-order saddle point; see Chap. 2). Thus

difluorodiazomethane [91] and several oxirenes [53] are (apparently correctly)

predicted by MP2 calculations not to be PES relative minima, while HF calcula-

tions indicate them to be minima. The interesting hexaazabenzene (“benzene-N6”)

is predicted to be a minimum at the HF/6–31G* level, but a hilltop with two

imaginary frequencies at the MP2/6–31G* level [115]. For transition states, in

contrast to ground states, we don’t have experimental geometries, but correlation

effects can certainly be important for their energies (Sect. 5.5.2), which can be

experimentally probed by kinetics, and MP2/6–31G* geometries for transition

states are probably significantly better in general than HF/6–31G* ones.

Suppose we want something better than “fairly good” structures? Experienced

workers in computational chemistry have said [116]

When we speak of “accurate” geometries, we generally refer to bond lengths that are within

about 0.01–0.02Å of experiment and bond and dihedral angles that are within about 1–2� of
the experimentally-measured value (with the lower end of both ranges being more

desirable).

Even by these somewhat exacting criteria, MP2/6–31G* and even HF/6–31G*

calculations are not, in the cases studied here, far wanting; the worst deviations

from experimental values seem to be for dihedral angles, and these may be the least

reliable experimentally. However, since some larger deviations from experiment

are seen in our sample, it must be conceded that HF/6–31G* and even MP2/6–31G*

calculations cannot be relied on to provide “accurate” (sometimes called high-

quality) geometries. Furthermore, there are some molecules that are particularly

recalcitrant to accurate calculation of geometry (and sometimes other characteris-

tics); two notorious examples are FOOF (dioxygen difluoride) and ozone (these
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have been described as “pathological” [117]). Here are the HF/6–31G*, MP(fc)/

6–31G* and experimental [118] geometries:

O O

F F

 1.367
 1.495
(1.575)

105.8
106.9
(109.5)

( )

84.1
85.8
87.5

 1.311
 1.293
(1.217)

HF/6-31G*

MP2/6-31G*
Experiment

O

O

O

1.204
1.300
1.272)(119.0

116.3
116.8)(

F-O-O-F dihedral

The errors (calculated – experimental) in the calculated geometries are

(HF/6–31G*/MP2/6–31G*):

FOOF: FO length �0.208/�0.080 Å
OO length 0.094/0.076 Å
FOO angle �3.7�/�2.6�

FOOF dihedral �3.4�/�1.7�

O3: OO length �0.068/�0.028 Å
OOO angle �2.2/�0.5

These calculated geometries do not satisfy even our “fairly good” criterion

(errors in calculated bond lengths, angles and dihedrals of up to 0.02 Å, 3� and 4�

respectively) and are well short of being “accurate” (bond lengths about

0.01�0.02 Å, bond and dihedral angles about 1� 2�); the bond lengths are partic-

ularly bad. Using the HF method and the 6–311þþG** basis (for FOOF, 88 vs.

60 basis functions; for O3, 66 vs. 45 basis functions) we get for calculated

geometries (errors) using (HF/3–311þþG**):

FOOF: FO length 1.353 Å (�0.222)

OO length 1.300(0.083)Å
FOO angle 106.5�(�3.0)

FOOF dihedral 85.3�(�2.2)

O3: OO length 1.194 Å (�0.078)

OOO angle 119.4�(2.6)

Thus with a much larger basis than 6–31G*, but still using the Hartree-Fock

method, the FOOF geometry is about the same and the O3 geometry has become

even worse than at the HF/6–31G* level !

In a 2001 paper FOOF was called “the unsolved problem” of structure predic-

tion, and a really good structure was obtained only by DFT with the aid of a

somewhat contrived procedure [119]. How has the situation changed since then?

312 5 Ab initio Calculations



Here are the best results for FOOF from two 2007 studies [120, 121] of that and

other small O/F molecules:

O O

F F

 1.209
 1.211
(1.217)  1.628

 1.579
(1.575) 109.2

 111.0
(109.5)

OOOF dihedral:
 88.7
 88.8
(87.5)

CCSD(T)/aug-cc-pVDZ [118]
G96PW91/D95(3df) [119]
Experiment

The errors in the CCSD(T) (their DFT results were quite similar) [120] and the

G96PW91 (a DFT method) [121] calculations are:

FO length 0.053 [120]/0.004 Å [121]

OO length �0.008 [120]/ �0.006 Å [121]

FOO angle �0.3 [120]/�1.5 [121]

FOOF dihedral �0.2 [120]/1.3� [121]

Here the only problematic parameter is the CCSD(T) FO bond length: the

CCSD(T) error was 0.053 Å, still a bit outside our imposed 0.01� 0.02 Å error

limits. The DFT geometry is fully high-quality.

Ozone is an easier target than FOOF for a high-quality geometry. Some results

for this molecule are [122]:

O

O

O

 1.276
 1.277
(1.272)

 117.1
 118.2
(116.8)

CCSD(T)/aug-cc-pVTZ

BPW91)/aug-cc-pVTZ

Experiment

The errors in the CCSD(T) and BPW91 (a DFT method) calculations easily fall

within our limits:

OO length 0.004 (CCSD(T)/0.005 ÅS (BPW91)

OOO angle 0.3� (CCSD(T))/1.4� (BPW91)
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Other coupled-cluster calculations [123] and CASPT2 [124] gave similar results.

The problem with ozone probably arises at least partly from the fact that this

molecule has singlet diradical character: it is approximately a species in which two

electrons, although having opposite spin, are not paired in the same orbital [125]:

O

O

O

The Hartree-Fock method works best with normal closed-shell molecules,

because it uses a single Slater determinant, but ozone has open-shell diradical

character: it is, or at least resembles, a species with two half-filled orbitals, one

with a single α electron and the other with a single β electron. Correlated methods,

which go beyond the HF method by including in the wavefunction determinants

corresponding to states in which electrons have been promoted (“excited”) into

virtual orbitals, handle molecules like ozone better, but can still give problems if we

demand highly accurate geometries (or energies). For some techniques for handling

molecules like this see Foresman and Frisch [118] and Chap. 8, Sect. 8.2.

The cause of the problems with FOOF are harder to explain, but fluorine is

known to be a somewhat troublesome element [126], although some fluoro organics

apparently give good geometries at moderate computational levels [127].

If we do not insist of purely ab initio calculations, there is a possible route to very

accurate geometries which, however, has so far been reported only for a few, very

small, molecules. This is based on fitting geometries to experimental rotational

constants (Chap. 2, Sect. 2.4).

5.5.2 Energies

5.5.2.1 Energies: Preamble

We used the concept of energy in Chaps. 2 (potential energy surfaces), 3 (molecular

mechanics energies), and 4 (molecular orbital energy levels from simple and

extended Hückel calculations). We saw that all these energies were relative to
something: that of a species on a potential energy surface (PES) can be taken as

being relative to the energy of the global minimum, the MM energy is relative to

that of some hypothetical unstrained isomer, and the energy of a molecular orbital

is, with qualifications, the energy of an electron in it compared to the energy of the

electron infinitely distant from the orbital, at rest. Before considering the ab initio

calculation of energy, it is worthwhile to look briefly further into the meaning of

“energy”, because this entity manifests itself in several ways and in favorable cases

all of them can be calculated by ab initio methods. We will take cognisance of seven

kinds of energy: potential, kinetic, internal, “heat energy” or enthalpy, Gibbs free

energy, Helmholtz free energy, and Arrhenius activation energy. The reader may

wonder why we need so many kinds of energy (we could add even more, like

electrical energy and nuclear energy). The answer is, partly because in different
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situations energy appears in different guises, and partly because although some

kinds are really composites of others with thermodynamic concepts like tempera-

ture and entropy (thus the Gibbs free energy is enthalpy minus the product of

temperature and entropy), it is neater to have one word and symbol for the

composite. I present the seven kinds of energy in the approximate order in which

some build conceptually on others. Five are of considerable importance in chem-

istry: potential energy, internal energy, enthalpy, Gibbs free energy, and, in exper-

imental studies of reaction rates, Arrhenius activation energy. In this short

preliminary to the calculation of energies, we consider the subject from the view-

point of molecular chemistry, rather than that of classical thermodynamics, which,

albeit elegant, knows nothing of atoms and molecules. The connection between the

two stances is made in the subject of statistical mechanics. Besides the many

standard texts on these subjects, one may recommend Atkin’s graceful, compact,

and masterful book on the four laws of thermodynamics [128]. We can safely

ignore here relativity theory, which requires conservation of “mass-energy”.

1. Potential energy is the work obtainable from a body that “temporarily” resists a

restoring force, so that if the body is allowed to submit to the force it will do

work. We use here Newton’s concept of a force: something that acting on a body

produces an acceleration. An example is a stone at the edge of a cliff, tempo-

rarily resisting the gravitational force; a kick submits it to gravity and it will gain

kinetic energy, which could be converted into useful work by a machine (replace

the stone by water and you get hydroelectric power). In chemistry the relevant

potential energy is the energy of a molecule on a Born-Oppenheimer surface

(a potential energy surface, Chap. 2). In this more abstract situation, a molecule

not at the global minimum resists the electromagnetic force–chemistry’s only
force – that could eventually (delayed by kinetic barriers) pull it downhill to that

minimum. In this process energy is released as heat or light. On the usual Born-

Oppenheimer surfaces, which include simple two-dimensional potential energy

curves such as plots of energy against torsional (dihedral) angle, as well as

hypersurfaces, the energy at various points can be taken as being relative to the

global minimum. The units of this energy could be from molecular mechanics or

some kind of quantum mechanical (ab initio, semiempirical, density functional)

calculation. In any case, since vibrational calculations are meaningful only at

stationary points, the surface usually excludes ZPE and thermal contributions to

energy, and is a hypothetical 0 K energy surface, corresponding at least roughly to

the electronic energy plus internuclear repulsion, cf. Eq. (5.94), but with the ZPE

term excluded and the E term obtained from any quantum mechanical method or

from a molecular mechanics surrogate of one by virtue of parameterization.

Although we may not explicitly consider potential energy here, electronic energy

is partly, and internuclear repulsion wholly, this kind of energy.

Symbol: potential energy on a Born-Oppenheimer surface (i.e. in a PES diagram)

is denoted in Chap. 2 by E. Other common designations are V (origin obscure)

and PE, and sometimes U, but this latter is best reserved for internal energy.

Equation: potential energy is the integral over the relevant distance of the force,
itself usually a function of distance.
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2. Kinetic energy (translational energy) is the energy of motion, and is taken into

account for the motion of a molecule as a whole by a term (3/2)RT, (1/2)RT for

each degree of freedom of motion; R is the ideal gas constant and T the

temperature. Part of the electronic energy of a molecule is the electronic kinetic

energy.

Symbol: kinetic energy is denoted by KE or by T (origin obscure), although this

could occasionally be confused with temperature.

Equation: in classical physics kinetic energy is the (1/2)mv2. The electronic

kinetic energy of a molecule can be calculated from the Schr€odinger equation as
explained in Sect. 5.2.

3. The internal energy of a molecule is the energy due to its electronic kinetic and

potential energy, its internuclear potential energy and nuclear ZPE, its rotational

energy, and its translational motion (this does not include the “external” trans-

lational motion imposed on the molecule by moving the vessel containing a

collection of molecules). Changes in internal energy are usually largely changes

in bond energies, arising from changes in electronic energy.

Symbol: internal energy is denoted by U (occasionally E), possibly because in

the alphabet U lies close to other thermodynamic quantities: Q (heat), R (the gas

constant), S (entropy), T (temperature), V (volume) andW (work), and Uwas not

yet (ca. 1860) taken. According to the English translation [129a] The Mechan-
ical Theory of Heat of Clausius’s Die Mechanische W€armetheorie, [129b]. the
symbol was introduced by simply saying “. . . U denotes an arbitrary function of

v and t” but the German edition attributes the symbol to Zeuner, 1860, although

Clausius with considerable circumspection denotes his U as meaning the sum of

kinetic and potential energy, the latter being however called by him without

etymological explanation Ergal, a Greek word meaning work; “potentielle

Energie” was deemed somewhat too long.

Equation: for a molecule we can write for the internal energy at T Kelvins

(cf. Eq. (5.94)):

UT ¼ E total
0K ¼ Etotal þ Evr þ 3

2
RT ð*5:171Þ

where Etotal is the electronic energy + internuclear repulsion, not necessarily at

the Hartree-Fock level, Evr is the total vibrational and rotational energy, and

(3/2)RT is the translational energy, (1/2)RT for each translational degree of

freedom. Internal rotations tend to be regarded as low-energy vibrations,

although more realistic treatments are possible [130]. Rotation of the molecule

as a whole, and population of upper vibrational levels, is taken into account in

calculating by statistical mechanics the thermal contribution to the energy at

temperatures above 0 K [130]. Upper electronic levels are usually scarcely

significantly populated at “chemically accessible” temperatures. R, the gas

constant, is 8.314� 10�3 kJ K�1 mol�1 and at 298 K, RT¼ 2.478 kJ mol�1

and (3/2)RT is 3.717 kJ mol�1. Thus the internal energy of the proton at 298 K,

with no electronic, vibrational or rotational energy, is (3/2)RT [131]. Both Etotal
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and ZPE are often readily calculated quantum mechanically. Differences in U at

0 K (where there is no translational term) take into account the electronic energy

and the ZPE and are the simplest realistic measure of molecular energy differ-

ences like reaction energies and activation energies, although differences of just

Etotal (no ZPE) provide a rough measure of these quantities (Chap. 2, Sect. 2.5).

4. Enthalpy is the “heat content” of a system. This term is not very precise, for as

Atkins points out [128] heat is not a thing, but rather a process, the transfer of

energy because of a difference of temperature (or accompanied by a difference

of temperature in the case of phase transition enthalpies). Nevertheless “amount

of heat” is a useful shorthand for amount of energy transferred because of a

temperature difference. The enthalpy change is the amount of heat released or

absorbed when a reaction occurs at constant pressure. The standard conditions

are 298 K and 101.3 kPa (1 atmosphere). The enthalpy of formation, or heat of

formation, of a substance is a useful quantity (Sect. 5.5.2.3.3). Like Gibbs free

energies of formation, these have been widely tabulated. These enable the heat

evolved or absorbed in reactions (reaction enthalpies) to be calculated by simply

taking the enthalpy difference of the products and reactants. These enthalpy

changes refer, strictly, to changes at constant pressure, although the difference

compared to constant volume is usually less than 1% [128]. Reaction enthalpies

can also be calculated from the change in bond energies in a reaction, but this is

quite approximate since bond energies are not fully transferable, but vary

somewhat from molecule to molecule and can even differ from one, say C-H,

bond to another C-H bond even in the same molecule. Enthalpies of formation

can be accurately calculated with the aid of quantum mechanical methods if the

molecule is not too big (Sect. 5.5.2.3.3). The enthalpy change of a reaction is

often taken as measure of its thermodynamic feasibility, and often, tacitly, as an

indication of its kinetic ease, but the rigorous criteria for these are really the

Gibbs free energies (below) of reaction and activation.

Symbol: enthalpy is denoted by H: the word comes (H. Kammerlingh-Onnes,

1909) from the Greek thalpos, heat, or enthalpos, internal heat. Denoting it by

H was suggested by H. W. Porter in 1922, because the symbol H is a letter in the

Roman alphabet and also the capital Greek initial letter eta (H or η) of enthalpos
(ηnθαλπoζ) [132].
Equation: the “energy” (internal energy) of an atom or molecule at a temperature

T can be converted to its enthalpy by adding RT, since H¼UþPV and PV¼RT,
on a molar basis, assuming ideal gas behavior. Thus

H ¼ interalenergyþ RT ð*5:172Þ

¼ internal energyþ 2.478 kJ mol�1 at 298 K. The enthalpy of the proton at

298 K (cf. its internal energy, above) is (3/2)RTþRT¼ 6.195 kJ mol�1 [131].

5. Gibbs free energy is the work obtainable from a system at a constant temperature

and pressure. Unless specified otherwise, in chemistry we may take “free
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energy” to mean Gibbs free energy. A free energy change is an enthalpy change

adjusted by a temperature-weighted entropy change:

ΔG ¼ ΔH � TΔS ð*5:173Þ

The TΔS term is often a minor contributor to ΔG at room temperature or below,

but will dominate at sufficiently high temperatures. If the entropy change is

positive (increased freedom of motion), this tends to make the free energy

change favorable (negative). Entropy can also be viewed in terms of dispersal

of energy (Sect. 5.5.2.2). A change in free energy is the best indicator of the ease,

as measured by rate, or the extent, as measured by completeness, of a chemical

reaction. Rate and completeness are quantified by the rate constant and the

equilibrium constant, which can be calculated, respectively, from the free energy

of activation and the free energy of reaction. These two energy differences

(transition state energy minus reactants energy, and products energy minus

reactants energy) can often be calculated quantum-mechanically fairly readily.

Free energies of formation have been tabulated and the values can be used to

calculate free energies of reaction and thus equilibrium constants. Such tables

should be better for such purposes than enthalpy tables, but actually are less

widely used. This is probably because free energy tends to be harder to measure

than enthalpy, and could not be calculated accurately until fairly recently,

largely because of the problem of calculating accurate vibrational frequencies.

Free energy changes can be obtained from experiment when equilibrium con-

stants (Eq. (5.183)) can be accurately measured, and enthalpies can usually be

obtained from combustion measurements.

Symbol: Gibbs free energy is denoted eponymously by G, after Josiah Willard

Gibbs, ca. 1873, who single-handedly created much of chemical thermodynam-

ics. In the older literature F was sometimes used.

Equation: since G¼H� TS, the free energy of a molecule can be calculated

from its enthalpy (above) and entropy at temperature T; the entropy is calculated
by standard statistical mechanics methods [130a].

6. Helmholtz free energy (or Helmholtz energy) is the work obtainable from a

system at a constant temperature and volume. It is much less used in chemistry

than Gibbs free energy, because most chemical reactions occur at constant

pressure, not constant volume. However, Helmholtz free energy is relevant to

reactions with rapid pressure changes (explosions).

Symbol: Helmholtz free energy is denoted in chemistry by A (German Arbeit,
work), in physics by F, free energy.
Equation: A¼U� TS, where U¼ internal energy, T¼Temperature,

S¼ entropy.

7. Arrhenius activation energy is the energy term in an empirical equation that

shows the dependence of the rate constant on temperature (experiments of J. H.

van’t Hoff, 1884, interpreted by S. Arrhenius, 1889):

k ¼ Ae�Ea=RT ð*5:174Þ
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The preexponential factor is tied to the probability of some favorable situation

like a propitious collision and involves entropy, while the exponential term

reflects the energy barrier for the reaction. A and Ea are usually approximately

constant over the limited range of laboratory interest. The modified version of

Eyring, Polanyi and Evans (the “Eyring equation”) lends itself directly to the

theoretical calculation of rate constants: k ¼ kBT=hexp �ΔGz=RT
� �

, where kB is

Boltzmann’s constant, h is Planck’s constant, and ΔGz is the free energy of

activation. High-level calculation of rate constants is best done with a special-

ized program like, e.g., Polyrate [133] for unimolecular reactions, using RRKM

(Rice-Ramsperger-Kassel-Marcus) theory [134].

Symbol: Ea.

Equation: the activation energy calculated as the transition state enthalpy minus

the reactant enthalpy, ΔHz (or Ez), is related to the Arrhenius activation energy

for a gas-phase unimolecular reaction by [135]

Ea ¼ ΔHz þ RT ¼ ΔHz þ 2:48 kJ mol�1 ð*5:175Þ

at room temperature (298.15 K).

A nice mnemonic for the relationships among various forms of energy is [136]:

U A

H G

–TS

+ PV

U – TS = A

U + PV = H

H – TS = G

A + PV = G

ie.

5.5.2.2 Energies: Preliminaries

Along with geometries (Sect. 5.5.1), the molecular features most frequently sought

from ab initio calculations are probably energies. An ab initio calculation gives an

energy quantity that represents the energy of the molecule (or atom) relative to its

constituent electrons and nuclei at rest at infinite separation; this separated state is

taken as the zero of energy. The ab initio energy of a species is thus the negative of

the energy needed to dissociate it completely, to infinite separation, into the

electrons and nuclei, with no kinetic energy left over, or the negative of the energy

given out when the electrons and nuclei “fall together” from rest at infinite

separation to form the species. This was pointed out for Hartree-Fock energies

(Sect. 5.2.3.6.4, in connection with Eq. (5.93)), and the infinite-separation reference

point also holds for correlated ab initio energies. By ab initio energy, then,

we normally mean the purely electronic energy (the kinetic and potential energy
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of the electrons, whether calculated by the Hartree-Fock or by a correlation method)

plus the internuclear repulsion (cf. Eq. (5.93):

Ab initio energy (Hartree-Fock):

E total
HF ¼ EHF þ VNN ð*5:176Þ

Ab initio energy (a correlated method):

E total
correl ¼ Ecorrel þ VNN ð*5:177Þ

If the ab initio energy has been corrected by adding the zero-point energy

(cf. Eq. (5.94)), giving the total internal energy at 0 K, this should be pointed

out: ab initio energy, corrected for ZPE:

E total
0K ¼ Etotal þ ZPE ð*5:178Þ

As has been pointed out, the ZPE-corrected ab initio energy is preferred over the

uncorrected for calculating relative energies. At the end of a calculation Etotal

(HF or correlated) is given; if we wish to include ZPE and so get Etotal
0K a frequency

calculation is necessary. The format in which these quantities appear at the end of a

calculation depends on the program.

What we really want is rarely these “absolute” ab initio energies, because

chemistry deals with relative energies; all energies are relative to something of

course, but in this context it is useful to restrict the term to the energy difference

between reactants and products or between reactants and transition states (the

energy difference between isomers is a special case reactants/products). We are

thus interested in the reaction energy (product energy minus reactant energy) and

what we might call the activation energy (transition state energy minus reactant

energy; note however–see below and Eq. (5.175)–that above 0 K the well-known

Arrhenius activation energy is not exactly simply the difference in calculated

energies of transition state and reactants).

Figure 5.24 shows what Coulson meant when he said that calculating the relative

stabilities of isomers by subtracting absolute energies is like finding the weight of

the captain by weighing the ship with and without him [137]. The absolute ab initio

energies of the two isomers shown are each about 407,700 kJ mol�1, and the

difference in their energies is only about 9 kJ mol�1, which is 1 part in 45,000,

and these figures are quite typical. If we conservatively assign a captain a weight of

100 kg, the analogy corresponds to a small ship weighing 4,500,000 kg or about

5000 tonnes. Yet the astonishing thing is that modern ab initio calculations can, as

we shall see, accurately and reliably predict relative energies. Comprehensive

accounts of energy calculations by ab initio and other methods are given by Irikura

and Frurip [138] and by Cramer [139].
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Reaction energies belong to the realm of thermodynamics, and activation ener-

gies to that of kinetics: the energy difference between the products and the reactants

(“difference” is defined here as product energy minus reactant energy) governs the

extent to which a reaction has progressed at equilibrium, i.e. to the equilibrium

constant, and the energy difference between the transition state and the reactants

(transition state energy minus reactant energy) governs (partially; see

Sect. 5.5.2.3.4) the rate of the reaction, i.e. the rate constant (Fig. 5.25). The term

“energy” in chemistry usually means potential energy (often denoted by E),
enthalpy H, or Gibbs free energy, G. The potential energy on a computed Born-

Oppenheimer surface (the usual “potential energy surface”; Chap. 2, Sect. 2.3)

represents 0 K enthalpy differences without ZPE. Enthalpy differences, ΔH, and
free energy differences, ΔG, are related through the temperature-weighted entropy

difference:

ΔG ¼ ΔH � TΔS ð*5:179 ¼ 5:173Þ

More detailed discussions of enthalpy, free energy, and entropy are given in

books on thermodynamics, and the relationships between these quantities and

processes at the molecular level are explained in books on statistical mechanics

[140]; general discussions of these topics are given in physical chemistry texts.

To get an intuitive feel for ΔH we can regard it as essentially a measure of the

strengths of the bonds in the products or the transition state, compared to the

strengths of the bonds in the reactants [141]:

0

4C6+, 8 H+, and (4 × 6) + (8 × 1) = 32 electrons, 
infinitely separated and at rest

H H

Me Me
ZPE =
304.1 kJ mol–1

0.11582 h

ZPE =
304.7 kJ mol–1

0.11604 h

 –155.24291 h –155.24637 h

–155.12709 h –155.13033 h

MeH

HMe

uncorrected ab initio E

ZPE-corrected ab initio E ΔE0K
total = –155.12709 – (–155.13033) h

= 0.00324 h = 8.51 kJ mol–1

~ ~
407363.74 kJ mol–1 407372.25 kJ mol–1

Fig. 5.24 Absolute and relative ab initio energies, with and without ZPE correction. These are

from HF/3–21G(*) calculations. The calculated reaction energy for the (E) to (Z ) (cis to trans)
isomerization is �8.51 kJ mol�1
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ΔH ¼ H pdts=TSð Þ � H reactantsð Þ
’ Σ bond energies reactantsð Þ � Σ bond energies pdts=TSð Þ ð*5:180Þ

(pdt or TS depending on whether we are considering reaction enthalpy or activation

enthalpy; we can ignore bonds that are neither broken nor made). Thus an exother-

mic process, which from the definition has ΔH< 0, has stronger bonds in the

products than in the reactants; in some sense the bonds lose heat energy, becoming

tighter and stabler. The bond energy tables given in most organic chemistry

textbooks can be used to calculate rough values of ΔH (reaction), and accurate
reaction enthalpies can sometimes be obtained from the more sophisticated use of

bond energies and similar quantities [142]. To see an application of simple bond

energy tables [143], consider the keto/enol reaction:

Using Eq. (5.180):

CH3 C

O

H

H2C C

O

H

H

reactants

products

transition state

activation energy (>0) ===> krate 

reaction energy (<0 in his case) ===> Keq

energy

geometry

Fig. 5.25 The reaction energy, the energy difference of products and reactants, determines the

extent of a reaction, i.e. its equilibrium constant. The activation energy (the simple ab initio energy

difference shown here is not exactly the conventional Arrhenius activation energy), the energy

difference of transition state and reactants, partially determines the rate of a reaction, i.e. its rate

constant. Unfortunately, “energy” is ambiguous, since chemists use the terms potential energy,

enthalpy (heat energy), and free energy: see Sect. 5.5.2.1
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ΔH ¼’ Σ bond energies reactantsð Þ � Σ bond energies pdfs=TSð Þ
¼ 4C� Hþ C� Cþ C ¼ Oð Þ � 3C� Hþ C ¼ Cþ C� Oþ O� Hð Þ
¼ 4� 414þ 347þ 749ð Þ � 3� 414þ 611þ 360þ 464ð Þ kJ mol�1

¼ 2752� 2677 kJ mol�1 ¼ 75 kJ mol�1

The ethanal to ethenol (acetaldehyde to vinyl alcohol) reaction is predicted to be

endothermic by 75 kJ mol�1, i.e. neglecting entropy the enol is predicted to lie

75 kJ mol�1 above the aldehyde. Because these are only average bond energies, the

apparently remarkable agreement with the ab initio calculations in Fig. 5.21

(71.6 kJ mol�1; the connection between ΔH from calculations like this and ΔE
from ab initio calculations is discussed below) must be regarded as a coincidence.

In any case, the correct (experimental) free energy value is ca. 36 kJ mol�1 [92].

Crude bond energy calculations like this can be expected to be in error by 50 or

more kJ mol�1. More accurate bond energy calculations can be done [142] using

bond energies that refer to very specific structural environments; for example, a

C–H bond on a primary sp3 carbon that is in turn attached to another sp3 carbon.

For a reaction taking place at 0 K the enthalpy change is simply the internal

energy change at 0 K:

ΔH 0Kð Þ ¼ ΔE total
0K ð5:181Þ

Note that although the calculation of Etotal
0K values to get ΔEtotal

0K demands fre-

quency jobs, which are relatively time-consuming (“expensive”), accurate relative

energy differences do require this, and we will regard the ZPE-uncorrected ab

initio energy difference ΔEtotal, the difference in electronic energy + internuclear

repulsion, as only an approximation to ΔEtotal
0K (see Eq. (5.94) and Chap. 2,

Fig. 2.20). At temperatures other than 0 K, ΔH is ΔEtotal
0K plus the increases in

translational, rotational, vibrational and electronic energies on going from 0 K to

the higher temperature T, plus the work done by the system in effecting a pressure

or volume change:

ΔH Tð Þ ¼ ΔE total
0K þ ΔEtrans þ ΔErot þ ΔEvib þ ΔEel þ Δ PVð Þ ð5:182Þ

One frequently chooses the standard temperature of 298.15 K, about room temper-

ature. From 0 K to room temperature the increase in electronic energy is negligible

and the increase in vibrational energy is small.

The entropy difference ΔS for a process is a measure of the disorder of the

products or the transition state, compared to the disorder of the reactants:

ΔS ¼ S pdts=TSð Þ � S reactantsð Þ
¼ disorder pdts=TSð Þ � disorder reactantsð Þ

(pdt or TS depending on whether we are considering reaction entropy or activation

entropy). Entropy is a sophisticated concept, and explaining it in terms of disorder
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has been strongly criticized [144], but in the author’s opinion this viewpoint works

quite well used pictorially at the molecular level and is more useful in interpreting

reactions than is the counterview of dispersal of energy. Suffice it to say that a

disordered system is more probable than an ordered one, and the entropy of a system

is proportional to the logarithm of its probability [145]. Intuitively, we see that

ΔS> 0 for a process in which the product or the transition state is less symmetrical

or has more freedom of motion than the reactants–is less ordered. For example, ring-

opening reactions, since they relieve constraints on intramolecular motion, should be

accompanied by an increase in entropy. Note that an increase in entropy favors a

process: it increases a rate constant (activation entropy) or an equilibrium constant

(reaction entropy), while an increase in enthalpy disfavors a process.
Details on the calculation of entropies are given by Ochterski [130a] and in the

book by Hehre, Radom, Schleyer and Pople, who also tabulate the errors in

calculated entropy for small molecules composed of elements from H to F

[146]. Errors in calculated entropies at 300 K are 1.7, 1.3 and 0.8 J mol�1 K�1

(0.4, 0.3 and 0.2 cal mol�1 K�1) at 300 K, for frequency calculations at the

HF/3–21G(*), HF/6–31G* and MP2/6–31G* levels, respectively. From Eq. (5.173)

this corresponds to an error in free energy at 300 K of about 0.5 kJ mol�1. This is

much smaller than the enthalpy error of ca. 10 kJ mol�1 which can be routinely

reliably obtained with practical high-accuracy methods (see below) and shows that in

current ab initio work errors in free energies can be expected to comemainly from the

enthalpy. Many programs, e.g. Gaussian and Spartan, automatically calculate the

correction terms to be added to ΔEtotal
0K in Eq. (5.182) at the end of a frequency

calculation, and print out the 298.15 K enthalpy or the correction to the 0 K enthalpy.

Reaction entropies are needed to calculate free energies of reaction (from

Eq. (5.179)), from which equilibrium constants [147] can be calculated:

ΔGreact ¼ �RT In Keq ð*5:183Þ

Where several species are in equilibrium, the ratios are proportional to their

Boltzmann exponential factors. For example, if the relative free energies G of A,

B and C are 0, 5.0 and 20.0 kJ mol�1 (here G for species A has been set to zero and

B and C lie 5.0 and 20.0 kJ mol�1 higher) then

A½ � : B½ � : C½ � ¼ exp �0=RTð Þ : exp �5:0=RTð Þ : exp �20:0=RTð Þ;

at room temperature RT¼ 2.48 kJ mol�1 and so at this temperature

A½ � : B½ � : C½ � ¼ 1 : 0:133 : 0:000315 ¼ 3175 : 422 : 1

Activation entropies are useful because they can give information on the struc-

ture of a transition state (as stated above, a more confined transition state is

signalled by a negative, unfavorable, activation entropy), but the ab initio calcula-

tion of rate constants [148] from activation free energies is not as straightforward as
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is the calculation of equilibrium constants from reaction free energies. The crudest

way to calculate a rate constant is to use the Arrhenius equation [140, 149]

k ¼ Ae�Ea=RT ð*5:184 ¼ 5:174Þ

and to simply approximate the preexponential factor A by that known for a similar

reaction (a typical value for unimolecular reactions is 1012� 1015 [150])and

to approximate Ea by ΔEtotal
0K (Eq. (5.181 and discussion). Theoretically more

satisfying is to represent Ea by ΔHz þ RT, using the temperature in question, in

accordance with

Ea ¼ ΔHz þ RT ð*5:185 ¼ 5:175Þ

for a gas-phase unimolecular reaction, and by

Ea ¼ ΔHz þ 2RT ð5:186Þ

for a gas phase bimolecular reaction [151]. The main problem with this is that the

preexponential A varies by a large factor even for, say, reactions which are formally

unimolecular [150]:

CH3NC ! CH3CN 3:98� 1013

cyclopropane ! propene 1:58� 1015

C2H6 ! 2 CH3 2:51� 1017

so that this method of guessing A by analogy could give a value that was out by a

factor of 104 unless one was judicious (or lucky) enough to choose a good model

reaction. The exponential factor is prone to smaller errors, since calculating ΔHz to
within 10 kJ mol�1 or better is now feasible, and an error of this size corresponds to

an error factor in exp(�ΔEa) of exp(�10/2.48)¼ 57 (at T¼ 298 K). This may seem

to be itself very big, but an easy method of reliably calculating rate constants to

within a factor of even just 100 might be useful for estimating the stability of

unknown substances. In fact, a simple and very useful rule is that the threshold

barrier for the stability of a compound at room temperature is about 100 kJ mol�1;

allow a latitude of about 20 kJ mol�1 [152]. This rule has been used frequently in

the computational search for stable nitrogen allotropes [153a], and was used to

conclude that the novel aromatic molecule bowtiene (a tricyclodecapentaene)

should be stable at room temperature [153b].

Note that for unimolecular processes the halflife, an intuitively more meaningful

quantity than the rate constant, is simply

t1=2 ¼ ln 2

kr
¼ 0:693

kr

i.e. the halflife of a unimolecular reaction is approximately the reciprocal of its rate

constant.
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5.5.2.3 Energies: Calculating Quantities Relevant to Thermodynamics

and to Kinetics

5.5.2.3.1 Thermodynamics; “Direct” Methods; Isodesmic Reactions

Here we are concerned with the relative energies of species other than transition

states. Such molecules are sometimes called “stable species”, even if they are not at

all stable in the usual sense, to distinguish them from transition states, which exist

only for an instant on the way from reactants to products. A “stable species”, in

contrast, sits in a potential energy well and survives at least a few molecular

vibrations (> ca. 10�13 s). The very useful book by Hehre [39] contains a wealth

of information on computational and experimental results concerning thermo-

dynamic quantities.

The ab initio reaction energy that is most commonly calculated is simply the

difference in ZPE-corrected energies, ΔEtotal
0K , which is the reaction enthalpy change

at 0 K (Eq. (5.181)). This provides an easily-obtained indication of whether a

reaction is likely to be exothermic or endothermic, or of the relative stabilities of

isomers. Table 5.9 illustrates this procedure. The results are only semiquantitatively

correct, and the HF/6–31G* method is not necessarily much better here than the

HF/3–21G(*) for such “direct” (simple subtraction) energies. In fact, it has been

Table 5.9 Reaction energies and relative energies of isomers (HF/3–21G(*) and HF/6–31G*)

Reactants, E, h Reactants, E, h

Reaction energy, or relative energy of isomers

Calculated, h/ kJ mol�1 Exp, kJ mol�1

H2 +Cl2
� 1.11234 + (�914.75715)

¼�915.86949

� 1.11625+ (�918.91145)
¼�920.02770

2HCl

2(�457.97423)

¼�915.94846

2(�460.05272)
¼�920.10544

�915.94846� (�915.86949)

¼�0.07897/�207

� 920.10544� (�920.02770)
¼�0.07774/�204

�185

2H2 +O2

2

(�1.11234) + (�148.76540)

¼�150.99008

2(�1.11625)
+ (�149.61336)
¼�151.84586

2H2O

2(�75.56419)

¼�151.12838

2(�75.98778)
¼�151.97556

�151.12838� (�150.99008)

¼�0.13830/�363

� 151.97556� (�151.84586)
¼�0.12970/�341

�484

trans-2-butene
�155.13032

� 155.99472

cis-2-butene
�155.12768

� 155.99196

�155.12768� (�155.13032)

¼ 0.00264/6.93

� 155.99196� (�155.99472)
¼ 0.00276/7.2

4.6

HCN

�92.33570

� 92.85721

HNC

�92.32215

� 92.83828

�92.32215� (�92.33570)

¼ 0.01355/35.6

� 92.83828� (�92.85721)
¼ 0.01893/49.7

60.7

The energies in hartrees are ab initio energies including ZPE. The calculations on O2 are UHF, on

triplet O2. Calculations are by the author, experimental energies are from reference [39],

Tables 2.13 and 2.14
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documented by extensive calculations that such HF/3–21G and HF/6–31G* energy

differences generally give only a rough indication of energy changes. Much better

results are obtained fromMP2/6–31G* calculations on MP2/6–31G*, HF/3–21G or

even semiempirical AM1 geometries (the latter two are single-point energies), and

it is well worth consulting the book by Hehre for details [154]. We shall see in

Sect. 5.5.2.3.2 that it is possible to obtain good relative energies “directly”.

To get from relatively low-level calculations the best energy changes, one can

utilize isodesmic reactions (Greek: “same bond”, i.e. similar bonding on both sides

of the equation). These are reactions in which the number of each kind of bond is

conserved. For example

NH3 þ CH3NH
þ
3 ! NHþ

4 þ CH3NH2 ð5:187Þ

and

CH2F2 þ CH4 ! CH3Fþ CH3F ð5:188Þ

are isodesmic reactions; the first one conserves six N–H, three C–H, and one C–N

bond and the second conserves six C–H and two C–F bonds. The reaction

H3C� CH3 þ H2 ! 2CH4 ð5:189Þ

is, strictly speaking, not isodesmic, since although it has the same number of bonds,

even the same number of single bonds (eight), on both sides, there are six C–H, one

C–C, and one H–H bonds on one side and eight C–H bonds on the other. Note that

an isodesmic reaction does not have to be experimentally realizable: it is an artifice
to obtain a reasonably accurate energy difference by ensuring that as far as possible

errors due to limitations of basis sets and treatment of electron correlation cancel.

This will happen to the extent that particular errors are associated with particular

structural features; electron correlation effects are thought to be especially impor-

tant in calculating energy differences, and such effects tend to cancel when the

number of electron pairs of each kind is conserved. The concept and the name

appear first in a 1970 paper by Hehre et al., where the method was introduced to

calculate enthalpy changes for complete hydrogenation of molecules using the

small basis sets then available [155], and the approach was applied to many kinds

of reaction in the classic book by Hehre, Pople, Radom and Schleyer [1g]. The

purpose of such reactions is to calculate stabilization or destabilization energies that

can be ascribed to factors like aromaticity [156], strain [157], or replacement of one

group by another, say H by F [158]. In attempts to focus on these factors and

exclude the beside-the-point effect of different bond strengths, a hierarchy of

increasingly finicky reactions grew up, and the nomenclature for isodesmic-type

reactions spun out of control. One encounters the terms homodesmotic,

hyperhomodesmotic, semihomodesmotic, quasihomodesmotic, homomolecular

homodesmotic, isogeitonic, and isoplesiotic, to cite some. To “expose the wide-

spread confusion over such classes of equations” and bring order and rigor to what
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might well be called a chaotic proliferation (to borrow a term [68]), Wheeler, Houk,

Schleyer and Allen extensively reviewed the subject and made recommendations

[159]. Here we can sidestep technicalities and the menagerie of terms and simply

call this general class of reactions isodesmic. We shall look at examples of two

applications of isodesmic reactions, namely, calculation of: strain energy, and of

aromatic stabilization energy ASA, which measures stabilization by aromaticity or

destabilization by its opposite, antiaromaticity. We can take the ASA as being the

time-honored resonance energy, RE.

Strain Energy Molecular strain is a concept nicely grasped by trying to build with

rigid plastic components a model of a molecule with small angles, like cyclopro-

pane, and noting that the bonds break. This old concept of angle strain [160a] has

been expanded to encompass torsional and steric strain [160b]. We will consider

two examples of angle strain, that in cyclopropane and that in norbornane. We

(conceptually) open cyclopropane to propane by using two Hs from two ethanes

and join the resulting ethyl groups to make butane; we use ethane rather than

methane to effect cleavage because with ethane we break a bond between second-

ary carbons and make a bond, in butane, joining secondary carbons, but with

methane we would make a bond, in ethane, joining primary carbons. Following

Khoury et al. [157] we use B3LYP/6–31G* (a DFT method, Chap. 7) energies/

geometries without ZPE; this energy is shown under each species:

CH3H3C CH3H3C

-117.89525

-79.83002

-119.14423

-158.45804

Release of strain must correspond to an exothermic process and by convention

we take strain energy as being positive (where not zero), so the strain energy is the

energy of the reactants minus that of the products:

SE cyclopropaneð Þ ¼ �117:89525þ 2 �79:83002ð Þ½ � � �119:14423� 158:45804½ �
¼ �277:55529þ 277:60227 ¼ 0:04698 ¼ 123 kJ mol�1

We’ve converted atomic units (hartrees) to kJ mol�1 by multiplying by 2626.

Khoury et al. report a value of 121 kJ mol�1 (29.0 kcal mol�1), similar to the

experimental (115 kJ mol�1) and to other calculated values, which they cite.

A concept called protobranching leads to a substantially lower strain energy for

cyclopropane than the accepted value of ca. 120 kJ mol�1; this has been challenged

(Fishtik) and rebutted (Schleyer, McKee) [161].

A slightly more involved example is the strain of norbornane, bicyclo[2.2.1]

heptane. We can open this to heptane (two steps are hinted at here for clarity);
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molecules like butane and heptane are used in the all-transoid, lowest-energy

conformations:

–273.96832

H3C CH3 H3C CH3

H3C CH3 H3C CH3

–79.83002

–158.45804

2

–276.39909

SE norbornaneð Þ ¼ �273:96832þ 4 �79:83002ð Þ½ �
� �276:39909 þ 2 �158:45804ð Þ½ �

¼ �593:28840þ 593:31517 ¼ 0:02677 ¼ 70:3 kJ mol�1

Khoury et al. report a value of 69.5 kJ mol�1 (16.6 kcal mol�1), tolerably close to

the experimental value (60.2 kJ mol�1), which they cite.

The two calculations shown here are simplified versions of the slightly more

involved methods of Khoury et al. [157], which attempt to make the bonds in the

reactants and the products more alike than in the very straightforward manner used

here; for example, the two C-C bonds in norbornane that we break are between a

secondary and a tertiary carbon, but the two C–C bonds we make to form two

butanes are between a secondary and a secondary carbon. Instead of using ethane

and ethane and making butane, we might have used ethane and propane and made a

bond between a secondary and a tertiary carbon in 2-methylbutane. This gives a

strain energy of 64.7 kJ mol�1, closer to the experimental one.

In comparing the strain in two hydrocarbon molecules, it is probably fairer to

compare the strain per C–C bond, because other things being equal, in a bigger

molecule the strain is more dispersed. Thus cubane, with six cyclobutane rings and

twelve C–C bonds, has a strain energy of 622 kJ mol�1 [162], while cyclobutane,

with only one ring and four C–C bonds, has a strain energy of 110.0 kJ mol�1

[157]. With the raw numbers, cubane is 5.7 times as strained as cyclobutane. On a

per-C–C-bond basis however, the strain energy of cubane and cyclobutane are

622/12¼ 52 kJ mol�1 and 110.0/4¼ 27.5 kJ mol�1; using these numbers, cubane

is effectively only about twice as strained as cyclobutane. The role of strain in

connection with kinetic and thermodynamic stability has been discussed for

polyprismanes and superstrained C5 molecules [163]. Calculations of the kind we

have done here are approximations to 0 K enthalpy changes (because ZPE and

thermal energy increases on going above 0 K are ignored). The importance of an

appropriate choice for the reference molecules has been emphasized with calcula-

tions on substituted cyclohexanes, where instead of acyclic references, a series of

lesser-substituted cyclohexanes was referred to, to obtain realistic ring-strain ener-

gies; this semi-homodesmotic method was said to properly cancel intramolecular

interactions [164]. Previous isodesmic-type (homodesmotic) calculations had given

unrealistic and erratic results, like the strain energy of c�C6Cl12 ranging from

431 to �163 kJ mol�1.
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Aromatic Stabilization Energy, ASE We skirt the enormous literature on the

meaning and detection of aromaticity [165] and assert that a good measure of the

phenomenon is the aromatic stabilization energy, the energy rise when an aromatic

ring is opened isodesmically [166]. This gives consistent results in an incrementally

varying series of compounds [167]. Let’s apply this approach to benzene using the

same kind of equation as we did for cyclopropane and for norbornane, above,

continuing with B3LY/6–31G* energies/geometries. We should think in terms of

the numbers of sp2–sp2 C-C bonds and sp2 C-H bonds, rather than view benzene as

having three double and three single C-C bonds, although we will use the useful

Kekulé structure. Here we have 8 sp2–sp2 C–C bonds and 14 sp2 C–H bonds on each

side; we break an sp2–sp2 C–C bond and make an sp2–sp2 C–C bond, effecting this

by breaking and making and making two sp2 C–H bonds:

H2C CH2

−232.24958

+  2 

−78.58745 −233.39857

+

−155.99213

Loss of aromaticity must correspond to an endothermic process (since aromaticity

is stabilizing) and we take the ASE as being positive for an aromatic compound, so

this quantity is the energy of the products minus that of the reactants. If the molecule

being opened were strained, that would have to be taken into account, for example by

an extrapolation method [168] or by balancing the strain on both sides of the

equation, as in the oxirene calculation below. The ASE is calculated here thus:

ASE ¼ �233:39857� 155:99213½ � � �232:24958þ 2 �78:58745ð Þ½ �
¼ �398:39070þ 389:42448 ¼ 0:03378 ¼ 89 kJ mol�1

There is no single correct isodesmic reaction for studying a phenomenon;

another reasonable, although conceptually less straightforward, reaction for

obtaining an ASE for benzene is:

H2C CH2

–78.58745 –155.99213
+ 3

–232.24958

3

This too satisfies our isodesmic criterion, because on both sides of the equation

we have nine sp2–sp2 C–C bonds and 18 sp2 C–H bonds. This equation gives:

ASE ¼ 3 �155:99213ð Þ½ � � �232:24958þ 3 �78:58745ð Þ½ �
¼ �467:97639þ 468:01193 ¼ 0:03554 ¼ 93 kJ mol�1

Isodesmic reactions have also been applied to heteroatom analogues of benzene

[167, 169]. Like our strain energy calculations, these energy changes are approx-

imations to 0 K enthalpy changes (we ignored ZPE and thermal energy increases on
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going above 0 K). Isodesmic reactions and other aspects of the energetics of benzene,

cyclobutadiene and related compounds have been reviewed by Slayden and Liebman

[170]. Schleyer and Puhlhofer discuss various isodesmic schemes and recommend for

calculating resonance energies (which we take here as being aromatic stabilization

energies) isomerization methyl/methylene reactions like [171]:

CH3 CH2

They consider the resonance energy of benzene from reasonable isodesmic

reactions to be ca. 125 kJ mol�1. Mo has reviewed the various ways of assigning

resonance energy to benzene and studied the problem with the valence bond

method [172].

Now we turn from benzene to another formally cyclically delocalized molecule,

oxirene or oxacyclopropene [173]. Is oxirene stabilized or destabilized by its

π-electron system? We can answer this question using an isodesmic equation,

with B3LYP/6–31G* energies/geometries as usual. Here we try to cancel out the

strain in oxirene by having on each side of the equation about the same amount of

ring strain (on each side two sp2 C–O bonds, etc.):

.. O..O
+ +

–152.46609 –194.03545 –116.61905 –229.93969

ASE ¼ �116:61905� 229:93969½ � � 152:46609� 194:03545½ �
¼ �346:55874þ 346:50154 ¼ �0:05720 ¼ �150 kJ mol�1

We calculated the ASE as product energies minus reactant energies, as we did for

benzene, and it came out negative, which means that the aromatic “stabilization”

energy here is really destabilizing: oxirene is antiaromatic [174].

One has to be careful with balancing bonds in isodesmic reactions. Consider this

equation:

+ 32

–232.24958 –235.87949 –234.64832

Here ASE ¼ ½3ð�234:64832� � �232:24958þ 2 �235:87949ð Þ½ �
¼ �703:94496þ 704:00856 ¼ 0:06360 ¼ 167 kJ mol�1
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This seems unreasonably big: above, we got 89 and 93 kJ mol�1 for the benzene

ASA. Yet the equation seems at first sight reasonable: on each side 3 C¼C, 15 C–C,

and 30 C–H bonds. But actually the numbers of each kind of bond differ at the

hybridization level; for example, the reactants have six sp2–sp2 C-C bonds but the

products have only three of these. Overall, we are converting stronger bonds into

weaker ones, and part of the rise in energy is due to this, rather than to loss of

aromatic stabilization, inflating the supposed ASE. Another example of an

ill-chosen isodesmic-type reaction is illustrated by Slayden and Liebman, where

benzene seems to have an ASE of 270 kJ mol�1 (!) [170]:

C6H6 þ 6CH4 ! 3H2C ¼ CH2 þ 3H3C� CH3

(Our B3LYP/6–31G* energy/geometry method gives 286 kJ mol�1). This shows

the need to choose isodesmic-type reactions judiciously, and helps to explain the

profusion of methods and terms [159]. The only “perfect” isodesmic reaction would

be an identity reaction, which would be useless.

5.5.2.3.2 Thermodynamics; High-Accuracy Calculations

As the previous discussion suggests (Sect. 5.5.2.3.1), the calculation of good

relative energies is much more challenging than the calculation of good geometries.

Nevertheless, it is now possible to reliably calculate energy differences to within

about �10 kJ mol�1. An energy difference with an error of �10 kJ mol�1 is said to

be within chemical accuracy. The term seems to have been first used in connection

with computational chemistry in 1984 by Moskowitz and Schmidt (“Can Monte

Carlo Methods Achieve Chemical Accuracy?”) [175] and was popularized by

Pople (biographical footnote Sect. 5.3.3) in connection with the G1 and G2 (see

below) methods. Around the time these pioneering high-accuracy methods were

being developed, the term appeared in the title of a review by Bauschlicher and

Langhoff [176]. An accuracy of about 2 kcal mol�1 (8.4 kJ mol�1, rounded here to

10 kJ mol�1) was set by Pople and coworkers in 1989 for the G1 method [177] as a

realistic and chemically useful goal, perhaps because this is small compared to

typical bond energies (roughly 400 kJ mol�1), and comparable or superior to typical

experimental errors. The ab initio energies and methods needed for results of

chemical accuracy are called high-accuracy (or multistep, or multilevel, or high-

accuracy multistep) energies and methods. These seem to have raised the bar, for in

their application to thermochemistry the term “chemical accuracy” has been said to

mean ca. 4 kJ mol�1 (1 kcal mol�1) – see below.

As one might expect, high-accuracy energy methods are based on high- level

correlational methods and big basis sets. However, because the straightforward

application of such computational levels would require unreasonable times (be very

“expensive” in the language of pre-personal computer days), the calculations are

broken up into several steps, each of which provides an energy value; summing

these gives a final energy close to that which would be obtained from the more

unwieldy one-step calculation. There are two classes of widely-used high-accuracy
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energy methods: the Gaussian methods, which originated in the Pople group and

derive their names from being first available as keywords in the Gaussian series of

computational chemistry suites [178], and the complete basis set methods, which
come from Petersson’s group.

The Gaussian Methods

The key to these methods is the use of high correlation levels and big basis sets.

This series began in 1989 with (note: by G1 to G4 here is meant methods, not

versions of the Gaussian suite of programs) Gaussian 1, G1 [177], continued with

G2 (1991) [179] and G3 (1998) [180], and saw the publication (2007) of G4

[181]. G1 and G2 are obsolete. The most popular Gaussian high-accuracy methods

at present are probably G4 and G3 and their faster but nearly as accurate variants,

G4(MP2) [182] and G3(MP2) [183]. Continued use of G3 and G3(MP2) (rather G4

and G4(MP2)) may be justified by the desire to compare some current work with

the body of results accumulated with these somewhat older methods).

For G3 the average absolute deviation from experiment is 1.13 kcal mol�1

(4.7 kJ mol�1) and for G3(MP2) 1.2–1.3 kcal mol�1(5.0–5.4 kJ mol�1), and G3

(MP2) seems to be 7–8 times as fast as G3 [183]. Curtiss et al. give the details of the

G4 [181] method and compare it with G3 and to some extent G1 and G2. They

report that “. . .the average absolute deviation from experiment shows significant

improvement from 1.13 kcal/mol [4.7 kJ mol�1] (G3 theory) to 0.83 kcal/mol

[3.5 kJ mol�1] (G4 theory)”. G4 is about 2–3 times as slow as G3. To speed up

the G4 method, its MP4 steps were replaced with MP2 and MP3 (Sect. 5.4.2) giving

G4(MP2) and G4(MP3) [182]. These have respectively average absolute deviations

from experiment of 1.04 kcal/mol [4.35 kJ mol�1] and 1.03 kcal/mol [4.3 kJ mol�1].

The G4(MP2) method appears overall to be the better of the two; it is 2–3 times as

fast as G3 and although about twice as slow as G3(MP2) (see below), Curtiss

et al. say [182] “Overall, the G4(MP2) method provides an accurate and economical

method for thermodynamic predictions”. It has an overall accuracy for the G3/05

test set of molecules that is significantly better than G3(MP2) theory (1.04 vs

1.39 kcal/mol) [4.35 vs 5.8 kJ mol�1] and even better than G3 theory (1.04 vs

1.13 kcal/mol) [4.35 vs 4.7 kJ mol�1]. G4(MP2) was said to perform “reasonably

well” for the thermochemistry of transition metals, species that present special

problems for computational chemistry [184]. G4(MP2) and G3(MP2) can handle

molecules with up to about 16 heavy atoms. See Table 5.10.

Because the G4(MP2) method [182] is far faster and almost as accurate

(see below) as the G4 [181], the steps in the G4(MP2) will be summarized here.

A G4(MP2) calculation, invoked in Gaussian 09 simply with the keyword G4MP2,

reports seven steps:

1. A density functional (Chap. 7) B3LYP/6–31G(2df,p) geometry optimiza-

tion. All subsequent calculations are on this geometry.

geometry optimization, to get a structure for a frequency calculation

2. A B3LYP/6–31G(2df,p) frequency calculation on the optimized geometry

to get the ZPE (which is then scaled by 0.9854). Subsequent calculations

are for high-level estimates of electron correlation.
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3. An energy calculation, CCSD(T)/6–31G*. This is followed by three

energy corrections, in steps 4, 5 and 6:

4. An MP2 energy calculation with a special large basis set..

5 and 6. Two HF calculations with modified aug-cc-pVTZ and aug-cc-pVQZ basis

sets, to extrapolate to the basis set limit (for applying the correlation

corrections to this).

7. Finally, a high level correction (HLC) with six empirical parameters is

added to minimize any remaining insufficiencies in the electron correla-

tion treatment.

These seven steps are used to assemble a molecular energy as the sum of various

energy differences and a final empirical energy increment (the “higher level

correction”) based on the number of paired and unpaired electrons. The G4(MP2)

energy is essentially a kind of CCSD(T)/6–31G* energy performed on a B3LYP/

6–31G(2df,p) geometry, with a B3LYP/6–31G(2df,p) scaled-ZPE and an empirical

energy correction, but such a direct calculation would be slower than breaking it

into the steps used here.

One way G4(MP2) saves time is by replacing an MP3 and an MP4 calculation

with an MP2 one. A key improvement in G4/G4(MP2) over G3/G3(MP2) is the

replacement of the quadratic CI correlation method by the coupled cluster method

(Sect. 5.4.3); this particular change did not alter the accuracy for the test set of

molecules, but it presumably improves the reliability, as “. . .the QCISD(T) method

has rather dramatic failures, which does not occur with the CCSD(T) method”

[181]. See too Hrusak et al. for a comparison of quadratic CI and coupled-cluster

[103]. In the G3(MP2) method, the main change from G3 is that MP2 calculations

replace MP4 ones [183].

Because of the empirical energy corrections in the Gaussian multistep methods,

they are not fully ab initio, but rather somewhat semiempirical, except when these

corrections cancel out. This cancelling happens, for example, in calculating proton

affinities as the energy difference of the protonated and unprotonated species,

where the spin-orbit corrections and the number of α- and β-spin electrons are the

same on both sides of the equation. We shall take G4(MP2) as the Gaussian method

of choice, with a good compromise between accuracy and speed, but we will also

refer to G3(MP2) calculations, because of their competitive speed and accuracy and

their widespread legacy. These Gaussian methods, and others not mentioned here,

as well as the CBS methods (below) are reviewed (2012) by Peterson, Feller and

Dixon, with the accent on thermochemistry, structures and frequencies; these

authors recognize ca. 4 kJ mol�1 (1 kJ mol�1) as accepted chemical accuracy in

thermochemistry [185]. Here is a comparison of Gaussian methods and a CBS

method, using 1,4-benzoquinone ( p-benzoquinone, O¼C6H4¼O) and showing

times (done on a 2013 vintage computer) and, as an indication of accuracy,

enthalpies of formation calculated by the atomization method (Sect. 5.5.2.3.3);

note that the G4 calculation took nine times as long (160/18) as the G4(MP2), and

both gave almost the same enthalpy of formation:
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Enthalpy of formation, kJ mol�1 and times, minutes/relative times

G4 �117.5 160/21

G4(MP2) �118.5 18/2.4

G3 �118.6 24/3.2

G3(MP2) �120.0 7.5/1

CBS-QB3 �115.9 16/2.1

The accepted literature enthalpy of formation is �122.6� 3.8 kJ mol�1 [186].

The first four calculated values accommodate the experimental value to within

1 kJ mol�1, however the CBS-QB3 value is 3 kJ mol�1 above the higher estimated

error. But one should not generalize from a sample of one compound.

The CBS Methods

The key to these methods is the extrapolation of the basis set to an infinite limit

(to completion). There are three basic CBS methods: CBS-4 (for fourth-order

extrapolation), CBS-Q (for quadratic CI) and CBS-APNO (for asymptotic pair

natural orbitals, referring to extrapolation to the basis set limit), in order of

increasing accuracy (and increasing computer time) [113]. These methods are

available with keywords in the Gaussian 94 and later Gaussian programs, where

the preferred versions of CBS-4 and CBS-Q are specified by the keywords CBS-4M

[187a] and CBS-QB3 [187b] (M for minimum population localization, B3 for use

of the B3LYP density functional). CBS-4M can handle molecules with up to about

19 heavy atoms and its has its “largest errors in the neutral heats of formation . . . for
ClF3 (13.6 kcal/mol), O3 (12.6 kcal/mol), and C2Cl4 (11.0 kcal/mol)” but “these

errors are systematic and their effect may be greatly reduced by the use of

isodesmic bond additivity corrections.” [187a]. More typical CBS-4M errors are

(mean absolute deviation from experiment) 3.26 kcal mol�1 (13.6 kJ mol�1) [187a].

There is a modification of CBS-4M designed to decrease the accumulation of errors

with increasing molecular size [188]. CBS-QB3 can handle molecules with up to

about 13 heavy atoms and has a mean absolute deviation from experiment of

1.10 kcal mol�1 (4.6 kJ mol�1) [187b]. CBS-APNO can handle molecules with

up to about 7 heavy atoms and has a mean absolute deviation from experiment of

0.53 kcal mol�1 (2.2 kJ mol�1) [113]. See Table 5.10.

Complete basis set methods [113] involve essentially seven or eight steps:

1. A geometry optimization (at the HF/3–21G(*) or MP2/6–31G* level, depending

on the particular CBS method).

2. A ZPE calculation at the optimization level.

3. An HF single-point calculation with a very big basis set (6–311 +G(3d2f,2df,p)

or 6–311 +G(3d2f,2df,2p), depending on the particular CBS method).

4. An MP2 single-point calculation (basis depending on the particular CBS

method).

5. Something called a pair natural orbital extrapolation to estimate the error due to

using a finite basis set.

6. An MP4 single-point calculation.
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7. For some CBS methods, a QCISD(T) single-point calculation.

8. One or more empirical corrections.

Note, as with Gaussian methods, the semiempirical aspect of CBS methods.

Comparison of High-Accuracy Multistep Methods

We will concentrate on Gaussian-type and CBS methods, because these have

been the most widely-used and have thus accumulated an archive of results, are

the most accessible, and because several versions of them are available. However,

there are other high-accuracy multistep methods, such as the Weizmann procedures

of Martin and de Oliveira, W1 and W2 [189], and of Boese et al., W3 and

W4 [190a] and the faster modifications of these like W2X and W3X-L of Chan

and Radom [190b], which like the CBS methods are based on basis set extrapola-

tion. W1 and W2 have a mean absolute deviation for relative energies of about

1 kJ mol�1 (not 1 kcal mol�1), and incorporate relativistic effects, and W2 has no

empirical parameters, unlike the Gaussian and CBS methods. W3 and W4 methods

have similar errors to W1 and W2, and the authors speculate on the reasons for the

obstinate “0.1 kcal/mol barrier”. Some of these Weizmann methods (W1, W2X,

W1X-1, W1X-2), can be used for molecules with up to 10 or 12 heavy atoms.

See the review of high-accuracy multistep methods by Peterson et al. [185]. Note:

the lead author of this review is Professor K. A. Peterson of Washington State

University; the CBS methods come primarily from the research group of Professor

G. A. Petersson (different spelling) of Wesleyan University; both researchers are

active in computational quantum thermochemistry.

Of the Gaussian-type and CBS methods, for high accuracy on very small

molecules CBS-APNO is the appropriate choice, and for “large” molecules the

choice falls on CBS-4M with the acceptance of the possibility of moderately large

errors. For intermediate size molecules the best choice is probably between

G4(MP2) and CBS-QB3. Recall that G4(MP2) is much faster than G4, with little

loss of accuracy in most cases. Within these confines, the question will then

be whether to use G4(MP2) or CBS-QB3. Which one, if either, has the edge can

be found only by comparing calculations with experiment for the properties and the

kinds of molecules of interest. Here are a few examples of studies using these

methods. Pokon et al. compared CBS-QB3, CBS-APNO, and G3 (this latter being

presumably similar to G3(MP2) and a bit less accurate than G4(MP2) for such

calculations) for the enthalpies and free energies of gas-phase deprotonation reac-

tions and found that “The combination of high accuracy and relatively low com-

putational cost makes the CBS-QB3 method the best choice of the three” (all three

gave a mean absolute deviation from experiment of about 1 kcal mol�1, i.e. about

4 kJ mol�1) [191]. Bond compared G2, G2(MP2), G3, G3(MP2), G3(B3),

G3(MP2B3), CBS-QB3, and DFT for the calculation of enthalpies and free energies

of formation of nearly 300 organic compounds and found G3 to be best with G3

(MP2) a little worse; CBS-QB3 was also accurate but more limited in the size of
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molecules it could handle [192]. The mean absolute deviations for those three

methods using an isodesmic reaction (see Sect. 5.5.2.3.3) were (kJ mol�1):

Enthalpy Free energy

G3 3.1 3.7

G3(MP2) 3.2 4.1

CBS-QB3 4.5 5.6

Other work by Bond also showed little difference between enthalpies of forma-

tion by isodesmic-type reactions from the G3 and the G3(MP2) methods [193]. Ess

and Houk found CBS-QB3 to be satisfactory for the activation enthalpies of

pericyclic reactions [194], which is noteworthy because the high-accuracy methods

we are discussing were designed to give good results for thermodynamics, not

kinetics; the problem here lies in the parameterization, particularly for paired and

unpaired spins, the number of which might alter along a reaction coordinate

[195]. However, CBS-QB3 has been explicitly stated to be suitable for activation

energies [187b]. An indication of the speed and size capacities of G4(MP2),

G3(MP2) and CBS-4M, CBS-QB3, and CBS-APNO is given in Table 5.10.

5.5.2.3.3 Thermodynamics; Calculating Enthalpies of Formation

A discussion of enthalpy and other flavors of energy was given in Sect. 5.5.2.3.1.

The enthalpy of formation (heat of formation; enthalpy is a better word than heat

here since it is more precisely defined in this context: see Sect. 5.5.2.3.1) of a

compound is an important thermodynamic quantity, because a table of enthalpies of

Table 5.10 Comparison of speed and ability to handle molecular size for five popular high-

accuracy multistep methods: G4(MP2), G3(MP2), CBS-4M, CBS-QB3, and CBS-APNO

Time, minutes or hours

Molecule N(heavy)a G4(MP2) G3(MP2) CBS-4M CBS-QB3 CBS-APNO

CH3COO� 4 5.5 m 1.1 m 0.9 m 2.2 m 22 m

CH2FCOO� 5 8.9 m 2.0 m 0.9 m 4.2 m 45 m

CHF2COO� 6 12 m 4.8 m 1.1 m 7.0 m 3.4 h

CF3COO� 7 18 m 5.7 m 1.6 m 15 m 2.9 h

C2F5COO� 10 80 m 37 m 5.4 m 89 m failed

C3F7COO� 13 4.3 h 7.1 h 5.8 m 6.9 h failed

C4F9COO� 16 13.2 h 25.1 h 26 m failed failed

C5F11COO� 19 failed failed 55 m failed failed

C6F13COO� 22 failed failed failed failed failed

The calculations were done with the G09 program suite on a computer with a 64-bit 3.40 GHz Intel

Core 2 Duo Quad CPU, 16 GB RAM, and 1.8 TB diskspace, running under Windows 7. They

reflect the times and size limitations of these methods on a well-equipped personal computer as of

ca. mid-2013. The use of anions here is adventitious, stemming from another project. Input

geometries were Merck Molecular Force Field, Cs symmetry, zigzag carbon chain
aN(heavy) is the number of heavy (non-hydrogen) atoms
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formation of a limited number of compounds enables one to calculate the enthalpies

of reaction (heats of reaction) of a great many processes, that is, how exothermic or

endothermic these reactions are. The enthalpy of formation of a compound at a

specified temperature T is defined [196] as the standard enthalpy of reaction

(standard heat of reaction) for formation of the compound at T from its elements

in their standard states (their reference states). By the standard state of an element

we mean the thermodynamically stablest state at 105 Pa (standard pressure, about

normal atmospheric pressure), at the specified temperature. The exception is phos-

phorus, for which the standard state is white phosphorus; although red phosphorus

is stabler under normal conditions, these allotropes are apparently somewhat

ill-defined. The specified temperature is usually 298.15 K (“room temperature”).

The enthalpy of formation of a compound at a specified temperature is thus the

amount of heat energy (enthalpy) that must be put into the reaction at that temper-

ature to make the compound from its elements in their normal (room temperature

and atmospheric pressure) states; it is the “heat content” or enthalpy of the com-

pound compared to that of the elements. For example, at 298 K the enthalpy of

formation of CH4 is �74 kJ mol�1, and the enthalpy of formation of CF4 is

�933 kJ mol�1 [197]. To make a mole of CH4 from solid graphite (carbon in its

standard state at 298 K) and hydrogen gas (dihydrogen) requires�74 kJ, i.e. 74.9 kJ

are given out – the reaction is mildly exothermic. To make a mole of CF4 from solid

graphite and fluorine gas requires �933 kJ, i.e. 933 kJ are given out–the reaction is

strongly exothermic. In some sense CF4 is thermodynamically much stabler with

respect to its elements than is CH4 with respect to its elements, in their standard

states. Note that the standard enthalpy of formation of an element is zero, since

the reaction in question is the formation of the element from the element, in the

same state (no reaction). Enthalpy of formation is denoted ΔH	
f and enthalpy of

formation at, say, 298 K by ΔH	
f298, “delta H sub f standard at 298 K”. The delta

indicates that this is a difference (enthalpy of the compound minus enthalpy of the

elements) and the superscript denotes “standard”.

There are extensive tabulations of experimentally-determined heats of forma-

tion, mostly at 298 K. One way to determine ΔH	
f298 is from heats of combustion:

burning the compound and measuring calorimetrically the heat evolved enables one

to calculate the enthalpy of formation (for a C, H, O compound, anyway). ΔH	
f298

can also be obtained by ab initio calculations. This is valuable because (1) it is far

easier and cheaper than doing a thermochemical experiment, (2) many compounds

have not had their enthalpies of formation measured and tabulated, and (3) highly

reactive compounds, or valuable compounds available only in very small quantity,

cannot be subjected to the required experimental protocol, e.g. combustion.

Let’s see how enthalpies of formation can be calculated.

Atomization Method

By far the most frequent temperature quoted for the enthalpy of formation of a

compound is the standard “room temperature”, 298.15 K. Suppose we want to

calculate the enthalpy of formation of methanol. We will now see a detailed
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calculation of the enthalpy of formation, first at 0 K(ΔH	
f0) and then the adjustment

of this to 298 K. After this instructive calculation, a much shorter calculation giving

ΔH	
f298 directly is shown.

Figure 5.26 shows the principle behind what has been called the “atomization”

method [198]. Methanol is (conceptually) atomized at 0 K into carbon, hydrogen

and oxygen atoms, in their ground electronic states. The elements in their normal,

unatomized states are also used to make these atoms, and to make methanol. The

enthalpy of formation of methanol at 0 K follows from equating the energy (the

enthalpy, to be precise) needed to generate the atoms (in their ground electronic

states) from the elements via methanol (ΔH	
f0 CH3OHð Þ þ ΔH	

a0 CH3OHð Þ) to that

needed to make them directly from the elements in their normal states:

ΔH	
f0 CH3OHð Þ þ ΔH	

a0 CH3OHð Þ ¼ ΔH	
f0 C 3P

� �þ 4H 2S
� �þ O 3S

� �� �
i.e.

ΔH	
f0 CH3OHð Þ ¼ ΔH	

f0 C 3P
� �þ 4H 2S

� �þ O 3S
� �� �� ΔH	

f0 CH3OHð Þ ð5:190Þ

ΔH	
a0 CH3OHð Þ is the 0 K ab initio atomization enthalpy of methanol, the enthalpy

difference between the atoms and methanol. There are a couple points to note about

this conceptual scheme. We are converting into carbon atoms graphite, a polymeric

material, so strictly speaking Fig. 5.26 should shownC graphiteð Þ ! nC 3Pð Þ, where
n is a number large enough to represent the substance graphite rather than just an

atom. All the species in the figure will then be increased in number by a factor of n,
but division by this common factor will still give us Eq. (190). Another point is that

although hydrogen and oxygen are solids at 0 K, we are considering isolated

molecules being atomized.

ab initio energy differenceH

ΔHf0 (C(3P) + 4H(2S) + O(3P))

ΔHf0 (CH3OH)

ΔHa0 (CH3OH)

CH3OH

1
2C(graphite) + 2H2 + O2

(C(3P) + 4H(2S) + O(3P)

–

–

Fig. 5.26 The principle behind the ab initio calculation of heat of formation (enthalpy of

formation) by the atomization method. Methanol is (conceptually) atomized at 0 K into carbon,

hydrogen and oxygen atoms; the elements in their standard states are also used to make these

atoms, and to make methanol. The heat of formation of methanol at 0 K, ΔH	
f00(CH3OH), follows

from equating the energy needed to generate the atoms via methanol (ΔH	
f00(CH3OH)þΔH	

a0(CH3OH)) to that needed to make them directly from the elements in their standard states. The

diagram is not meant to imply that methanol necessarily lies above its elements in enthalpy
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To calculate ΔH	
f0 CH3OHð Þ we need the 0 K enthalpy of formation of C, H and

O atoms, i.e. the atomization enthalpies of graphite, molecular hydrogen, and

molecular oxygen, and the 0 K atomization enthalpy of methanol. The atomization

enthalpies of hydrogen and oxygen can be calculated ab initio, but not reliably

accurately that of graphite, which is a very big “molecule”. For consistency we will

use experimental values of all three elemental atomization enthalpies, as

recommended [198]. From Eq. (5.191), the 0 K atomization enthalpy of methanol

is simply the ab initio enthalpies of its constituent atoms minus the ZPE-corrected

ab initio enthalpy of methanol:

ΔH	
a0 CH3OHð Þ ¼ ΔE total

0K C 3P
� �þ 4H 2S

� �þ O 3S
� �� �� ΔE total

0K CH3OHð Þ
ð5:191Þ

Experimental values of 0 K atomization enthalpiesΔH	
f0C

3Pð Þ,ΔH	
f0H

2Sð Þ, and
ΔH	

f0O
3Sð Þ (as well as ΔH	

f0 for other atoms, and references to more extensive

tabulations) are given in [198]; in kJ mol�1:

C 711:2
H 216:035
O 246:8

To calculateΔH	
a0 CH3OHð Þcwe need (Eq. (191)) ΔEtotal

0K for C, H and O atoms

in the electronic states shown and for methanol. Instead of the G2 method that was

employed by Nicolaides et al. [198] and was used here (from the Gaussian 94 pro-

gram suite [199]) in earlier editions of this book, we now use the G4(MP2) method

in Gaussian 09 [178]. We get these values (hartrees) for the G4(MP2) 0 K

enthalpies of the atoms and the molecule:

C �37:79420
H �0:50209
O �75:00248
CH3OH �115:57107

The methanol value of �115.57107 h could be called the “absolute” 0 K

enthalpy of methanol, the enthalpy relative to that of the dissociated nuclei and

electrons (cf. the zero-energy reference point of an ab initio energy, explained

following Eq. (5.93)); this is shown at the end of any Gaussian-suite geometry

optimization/frequency calculation (although only for very high-accuracy calcula-

tions is the value suitable for accurate atomization enthalpy determinations). This

absolute enthalpy will be used in the calculation of the enthalpy of formation.
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From Eq. (191) the calculated atomization energy of methanol at 0 K is:

ΔH	
a0 CH3OHð Þ ¼ �37:79420þ 4 �0:50209ð Þ � 75:00248� �115:57107ð Þ h

¼�114:80504þ 115:57107 h ¼ 0:76603� 2625:5 kJ mol�1

¼ 2011:2 kJ mol�1

From Eq. (190) the 0 K enthalpy of formation of methanol is:

ΔH	
f00 CH3OHð Þ ¼ 711:2þ 4 216:035ð Þ þ 246:8� 2011:21 kJ mol�1

¼ 1822:1� 2011:2 kJ mol�1 ¼ �189:1 kJ mol�1

Reference [198] gives the 0 K G2 value by the atomization method as

�195.7 kJ mol�1 and the experimental value (from two sources) as �190.7 or

�189.8 kJ mol�1, in essentially perfect agreement with the G4(MP2) value calcu-

lated here. Any inaccuracy in the calculated atomization energy will show up

correspondingly in the enthalpy of formation, and only a good high-accuracy

method can reliably mitigate this error.

To adjust the 0 K enthalpy of formation to that at 298.15 K we add the increase in

enthalpy of methanol on going from 0 K to 298 K and subtract the corresponding

increases for the elements in their standard states. The value for methanol is the

difference of two G4(MP2) quantities (298 K and 0 K) provided in the thermo-

chemical summary at the end of the G4(MP2) calculation as implemented in

Gaussian 09. Increase in enthalpy of methanol on going from 0 K to 298 K:

ΔΔH	 CH3OHð Þ ¼G4 MP2ð Þ Enthalpy i:e: at 298 Kð Þ � G4 MP2ð Þ 0 Kð Þ
¼ �115:56679� �115:57107ð Þ h

¼ 0:00428� 2625:5 kJ mol�1

¼ 11:24 kJ mol�1

G4(MP2) (0 K) is the G4(MP2) value for what we have called ΔEtotal
0K .

The experimental enthalpy increases for the elements are given in [198];

in kJ mol�1:

ΔΔH	 element

C graphiteð Þ 1:050
H2 8:468
O2 8:680

From these and ΔΔH	
f CH3OHð Þ, the 298 K enthalpy of methanol is calculated

to be (we add the increase in enthalpy of methanol on going from 0 K to 298 K

and subtract the corresponding increases for the elements in their standard

states):
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ΔH	
f298 CH3OHð Þ ¼ ΔH	

f0 CH3OHð Þ þ ΔΔH	 CH3OHð Þ
� ΔΔH	 Cð Þ þ 2ΔΔH	 H2ð Þ þ 1

2
ΔΔH	 O2ð Þ

� �

¼ �189:1þ 11:24� 1:050þ 2 8:468ð Þ þ 1

2
8:680ð Þ

� �
kJmol�1

¼ �189:1þ 11:2� 22:3ÞkJmol�1 ¼ �189:1� 11:1kJmol�1

¼ �200:2kJmol�1

ð5:192Þ

The accepted 298 K experimental value [200] is �205� 10 kJ mol�1. The calcu-

lated value is well within the estimated experimental error.

Note that ifΔH	
f0 is not wanted, which it usually is not,ΔH

	
f298 can be calculated

directly, since from Eqs. (5.190) and (5.192) the 0 K ab initio energy of the

compound is subtracted out and it follows that

ΔH	
f298 CH3OHð Þ ¼ ½ΔH	

f0 Cð Þ þ 4ΔH	
f0 Hð Þ þ ðΔH	

f0 Oð Þ�
� ΔE total

0K þ 4ΔE total
0K Hð Þ þ ΔE total

0K Oð Þ� þ G4MP2Enthalpy CH3OHð Þ

� ΔΔH	 Cð Þ þ 2ΔΔH	 H2ð Þ þ 1

2
ΔΔH	 O2ð Þ

� �
¼ 711:2þ 4 216:035ð Þ þ 246:8ð Þ½ �kJmol�1

� �37:79420þ 4 �0:50209ð Þ � 75:00248ð Þ½ �hþ �115:56679ð Þh

� 1:050þ 2 8:468ð Þ þ 1

2
8:680ð Þ

� �
kJmol�1

¼ 1822:1kJmol�1 �114:80504½ �h� 115:56679h� 22:33kJmol�1

¼ 1822:1kJmol�1 � 0:76175� 2625:5kJmol�1 � 22:33kJmol�1

¼ 1822:1� 2000:0� 22:33kJmol�1 ¼ �200:2kJmol�1

ð5:193Þ

as obtained more circuitously above (Eq. (5.192)). This straightforward direct

calculation of 298 K enthalpies of formation can be implemented on a spreadsheet.

Formation Method

An alternative to the atomization method is what has been called the “formation”

method, which is illustrated for methanol in Fig. 5.27. This method utilizes a kind of

“pseudo enthalpy of formation”, ΔH0
f0(pseudo), of the compound from atomic

carbon and molecular hydrogen and oxygen (the conventional enthalpy of forma-

tion is relative to graphite and molecular hydrogen and oxygen). From Fig. 5.27

ΔH	
f0 CH3OHð Þ ¼ ΔH	

f0 C 3P
� �� �þ ΔHf0 pseudoð Þ ð5:194Þ

where the experimental value of ΔH	
f0

3Cð Þ is used, and
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ΔH	
f0 pseudoð Þ ¼ ΔE total

0K CH3OHð Þ � ΔE total
0K C 3P

� �� �þ 2H2 þ 1

2
O2Þ ð5:195Þ

A calculation of the 0 K enthalpy of formation of methanol using G4(MP2) gives

(711.2 kJ mol�1 is the experimental 0 K atomization enthalpy of graphite; dioxygen

here is of course triplet, the ground state):

ΔH	
f0 CH3OHð Þ ¼ 711:2kJmol�1 þ ΔH0

f0 pseudoð Þ
¼ 711:2kJmol�1 þ �115:57107½ �
�ð�37:79420þ 2 �1:17040ð Þ þ 1

2
�150:19099ð Þh

¼ 711:2kJmol�1 þ �115:57107þ 115:23050½ �h
¼ 711:2kJmol�1 � 0:34058h
¼ 711:2� 0:34058 � 2625:5kJmol�1

¼ 711:2� 894:2kJmol�1 ¼ �183:1kJmol�1:

Like the atomization calculation in the previous method, the pseudo enthalpy of

formation requires a good high-accuracy method. The 0 K value calculated in [198]

by this procedure using the G2 method was �191.3 kJ mol�1; the G4(MP2) value

calculated above by the atomization method was�189.1 kJ mol�1. The atomization

method was said [198] to “perform somewhat better, especially for organic mole-

cules” (the methods in that paper were all Gaussian type, G2 and G2 variants). Here

the atomization method G4(MP2) 0 K enthalpy of formation (�189.1 kJ mol�1,

above) is indeed better than the formation method value, the experimental value

being� 190.7 or �189.8 kJ mol�1 [198].

H

ΔHf0 (CH3OH)

ΔH ′f0 (CH3OH)

ΔHf0(C(3P)) CH3OH

1
2C(graphite) + 2H2 + O2

1
2C(3P) + 2H2  + O2

–

–

Fig. 5.27 The principle behind the ab initio calculation of heat of formation (enthalpy of

formation) by the formation method. Methanol is (conceptually) formed from atomic carbon

and molecular hydrogen and oxygen; the enthalpy input for this resembles that for the heat of

formation of methanol (hence the name) except that atomic carbon rather than graphite is used.

Graphite is converted to atomic carbon, and the elements in their normal states are also used to

make methanol. The heat of formation of methanol at 0 K follows from equating this quantity to

the heat of atomization of graphite plus the energy needed to make methanol from atomic carbon

and molecular hydrogen and oxygen. The diagram is not meant to imply that methanol necessarily
lies above its elements in enthalpy
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Isodesmic Reaction Method

Finally, heats of reaction can be calculated by ab initio methods with the aid of

isodesmic reactions (Sect. 5.5.2.3.1), as indicated in Fig. 5.28; see reference 39 in

[198]. Actually, the scheme in Fig. 5.28 is not strictly isodesmic – for example, only

on one side of the “isodesmic” equation is there an H-H bond. From this scheme

ΔH	
f0 CH3OHð Þ ¼ ΔH	

f0 CH4ð Þ þ ΔH	
f0 H2Oð Þ þ ΔEisodesmic ð5:196Þ

where

ΔEisodesmic ¼ ΔE total
0K CH3OHþ H2ð Þ � ΔE total

0K CH4 þ H2Oð Þ

Using G4(MP2) values :

ΔEisodesmic ¼ �115:57107� 1:17040ð Þ � �40:42767� 76:35585ð Þh
¼�116:74147þ 116:78352h ¼ 0:04205h

With this and the experimental 0 K heats of formation of CH4 and H2O [198]:

ΔH	
f0 CH3OHð Þ ¼ �66:8� 238:92þ 0:04205� 2625:5kJmol�1

¼�195:3kJmol�1:

So the isodesmic value is ca. 6 kJ mol�1 lower, and the formation value ca.

6 kJ mol�1 higher, than the value from atomization (atomization, formation,

isodesmic: �189.1, �183.1, �195.3 kJ mol�1; the experimental value is

�190.7 or �189.8 kJ mol�1 [198]).

Of the three approaches to calculating heats of formation (atomization, forma-

tion and isodesmic), the atomization was recommended over the formation,

H

1
2C(graphite) + 3H2 + O2

CH4 + H2O

CH3OH + H2

ΔEisodesmic

ΔHf0 (CH3OH)

ΔHf0 (CH4) + ΔHf0 (H2O)
– –

–

Fig. 5.28 The principle behind the ab initio calculation of heat of formation (enthalpy of

formation) using an isodesmic reaction. Methanol and hydrogen are (conceptually) made from

methane and water (other isodesmic reactions could be used); the 0 K enthalpy input for this is the

ab initio energy difference between the products and reactants. Graphite, hydrogen and oxygen are

converted into methane and water and into methanol and hydrogen, with input of the appropriate

heats of formation. The heat of formation of methanol at 0 K follows from equating the heat of

formation of methanol with the sum of the energy inputs for the other two processes. The diagram

is not meant to imply that methanol necessarily lies above its elements in enthalpy
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although the isodesmic approach was said, within G2-type methods, to “In certain

special cases, e.g. specific large hydrocarbons. . .perform better”: reference 39 in

[198]. One might expect the isodesmic method with carefully-chosen reactions to

be at least as accurate as the other two, because of the ability of isodesmic processes

to compensate for basis set and correlation deficiencies (Sect. 5.5.2.3.1). In princi-

ple isodesmic calculations do not demand high-accuracy methods for reasonably

good energy differences. Indeed, for the calculation of free energies of formation,

which is methodically related to enthalpies of formation but includes entropies,

Bond found in his study of nearly 300 organic compounds that a kind of isodesmic

reaction method gave considerably smaller errors than did the atomization method:

with G3(MP2), 4.1 vs. 17.3 kJ mol�1, with CBS-QB3, 5.6 vs. 13.1 kJ mol�1

[192]. In a related paper, these studies were said to be the “first comprehensive

review of computational methodologies used to compute free energies” [193]. The

atomization approach to enthalpies and free energies of formation is conceptually

the most straightforward, but requires a good high-accuracy method (CBS-APNO

would be very suitable were it not for its size limitations) because dissociating a

molecule into its atoms makes drastic demands on the accurate treatment of

correlation energy. A nice feature of the atomization method is that, unlike the

use of isodesmic reactions, it is a model chemistry; a term apparently first used by

Pople to denote a sharply-defined procedure that does not require choosing among

various possibilities (like different isodesmic schemes) and which will thus not vary

from one worker to another [[201]. For a collection of various approaches to

calculating heats of formation see [202]. The conclusion from all this is that

when the size of the molecules makes it practical, to calculate enthalpies of

formation ab initio the atomization approach with the best applicable high-accuracy

multistep method should probably be used, not omitting where possible a reality

check against experimental values.

Note that these three calculations of enthalpy of formation are not purely ab

initio (quite apart in from the empirical correction terms in the multistep high-

accuracy methods), since they required experimental values of either the enthalpy

of atomization of graphite (atomization and formation methods) or the enthalpy of

formation of some molecules like methane and water (formation method). Also,

adjustment from 0 K to 298 K uses experimental values for the elements. The

inclusion of experimental values makes the calculation of enthalpy of formation

with the aid of ab initio methods a somewhat semiempirical procedure (do not

confuse the term as used here with semiempirical programs like AM1, discussed in

Chap. 6). Augmentation with experimental data is still needed for accurate calcu-

lations when an ab initio calculation would involve an extended, solid substance

like graphite (see the discussion in connection with the atomization method); other

examples are phosphorus and sulfur. For estimation of solid-state enthalpies see

[203]; there has been work on the ab initio calculation of enthalpies of sublimation,

which is relevant to the enthalpy change in going from the solid to isolated

atoms [204].

Let us briefly compare the atomization calculation of the 298 K enthalpies of

formation of 1,4- and 1,2-benzoquinone by the G4(MP2) and the CBS-QB3
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methods. These calculations summarize the procedure of going directly to the

298 K enthalpies of formation (i.e. without calculating first the 0 K value).

1,4-Benzoquinone (p-benzoquinone), C6H4O2, using G4(MP2)

ΔH	
f0 C,

3Pð Þ 711:2kJmol�1 experimental 0 Katomization E

ΔH	
f0 H,

2Sð Þ 216:035kJmol�1 experimental 0 Katomization E

ΔH	
f0 O,

3Pð Þ 246:8kJmol�1 experimental 0 Katomization E

ΔE total
0K C,

3Pð Þ �37:79420h G4 MP2ð Þenthalpyat0K
ΔE total

0K H,
2Sð Þ �0:50209h G4 MP2ð Þenthalpyat0K

ΔE total
0K O,

2Pð Þ �75:00248h G4 MP2ð Þenthalpyat0K
H298K 1, 4� BQð Þ �380:95376h G4 MP2ð Þenthalpyat298:15K

ΔΔH	 C, graphiteð Þ 1:050kJmol�1 experimental enthalpy increase, 0Kto298K

ΔΔH	 H2ð Þ 8:468kJmol�1 experimental enthalpy increase, 0Kto298K

ΔΔH	 O2ð Þ 8:680kJmol�1 experimental enthalpy increase, 0Kto298K

ΔH	
f298 1, 4� BQ, G4 MP2ð Þð Þ

¼ 6 711:2ð Þ þ 4 216:035ð Þ þ 2 246:8ð Þ½ �kJmol�1

� 6 �37:79420ð Þ þ 4 �0:50209ð Þ þ 2 �75:00248ð Þ½ � þ �380:95376ð Þ h
� ð6 1:050ð Þ þ 2 8:468ð Þ þ 8:680ð ÞkJmol�1

¼ 5624:9kJmol�1 � �378:77852 h½ � � 380:95376h� 31:92kJmol�1

¼ 5593:0kJmol�1 � �378:77852 h½ � � 380:95376h

¼ 2:13026 h� �378:77852 h½ � � 380:95376h

¼ 380:90878 h� 380:95376 h ¼ 0:04498 h,

i:e: 2625:5��0:04498 kJmol�1 ¼ �118:1 kJmol�1

The best experimental value for the enthalpy of formation of 1,4-benzoquinone

appears to be �122.6� 3.8 kJ mol�1 (�29.3� 0.9 kcal mol�1) [186], although an

overlapping value of �115.9� 12.6 kJ mol�1 has been reported [205].

1,4-Benzoquinone, using CBS-QB3

ΔH	
f0 C,

3Pð Þ 711:2kJmol�1 experimental 0 Katomization E

ΔH	
f0 H,

2Sð Þ 216:035kJmol�1 experimental 0 Katomization E

ΔH	
f0 O,

3Pð Þ 246:8kJmol�1 experimental 0 Katomization E

ΔE total
0K C,

3Pð Þ �37:785377h CBS-QB3enthalpyat0K

ΔE total
0K H,

2Sð Þ �0:499818h CBS-QB3enthalpyat0K

ΔE total
0K O,

2Pð Þ �74:987629h CBS-QB3enthalpyat0K

H298K 1, 4-BQð Þ �380:861093h CBS-QB3enthalpyat298:15K

ΔΔH	 C, graphiteð Þ 1:050kJmol�1 experimental enthalpy increase, 0Kto298K

ΔΔH	 H2ð Þ 8:468kJmol�1 experimental enthalpy increase, 0Kto298K

ΔΔH	 O2ð Þ 8:680kJmol�1 experimental enthalpy increase, 0Kto298K
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ΔH	
f298 1, 4� BQ, CBS� QB3ð Þ

¼ 6 711:2ð Þ þ 4 216:035ð Þ þ 2 246:8ð Þ½ � kJmol�1

� 6 �37:785377ð Þ þ 4 �0:499818ð Þ þ 2 �74:987629ð Þ½ �
þ �380:861093ð Þ h� ð6 1:050ð Þ þ 2 8:468ð Þ þ 8:680ð ÞkJmol�1

¼ 5624:9kJmol�1 � �378:68679 h½ � � 380:861093h� 31:92kJmol�1

¼ 5624:9kJmol�1 � 2:17430� 2625:5 kJmol�1 � 31:92kJmol�1

¼ 5624:9� 5708:62� 31:92kJmol�1 ¼ �115:6kJmol�1

The best experimental value for the enthalpy of formation of 1,4-benzoquinone

appears to be �122.6� 3.8 kJ mol�1 (�29.3� 0.9 kcal mol�1) [186], although an

overlapping value of �115.9� 12.6 kJ mol�1 has been reported [205].

It follows from this method that to calculate the 298 K enthalpy of formation of

any other C6H4O2 compound, e.g. 1,2-benzoquinone (o-benzoquinone), we now

need only the value for 1,4-benzoquinone and the “absolute” molecular enthalpies

of the two compounds, since these are isomers:

Using the G4(MP2) value for 1,4-benzoquinone, the G4(MP2) 298 K

enthalpy of formation of 1,2-benzoquinone is ΔH	
f
0
298

1, 2-BQ, G4 MP2ð Þð Þ ¼
ΔH	

f
0
298

1, 4� BQð Þ þ enthalpy1, 2� BQ � enthalpy1, 4-BQ½ �

¼ �118:1þ �380:94160� �380:95376ð Þ½ � � 2625:5 kJmol�1

¼ �118:1þ 0:01216� 2625:5 kJmol�1 ¼ �118:1þ 31:9 kJmol�1 ¼ �86:2 kJmol�1

For the CBS-QB3 value ΔH	
f
0
298

1, 2� BQ, CBS� QB3ð Þ ¼ ΔH	
f
0
298

enthalpy ofð
formation1, 4� BQÞ þ enthalpy 1, 2½ �BQ � enthalpy1, 4� BQ�

¼ �115:6þ �380:848379� �380:861093ð Þ½ � � 2625:5kJmol�1

¼ �115:6þ 33:38kJmol�1 ¼ �81:9kJmol�1

The best experimental value for the enthalpy of formation of 1,2-benzoquinone

appears to be �87.9� 13.0 kJ mol�1 [205].

Both G4(MP2) and CBS-QB3 give reasonably satisfactory enthalpies of forma-

tion for these quinones by the atomization method.

Considerable attention has been given here to heats (enthalpies) of formation,

because there are extensive tabulations of these, e.g. [206] and papers on their

calculation appear often in the literature, e.g. [202]. However, we should remember

that equilibria [147] are dependent not just on enthalpy differences, but also on the

often-ignored entropy changes, as reflected in free energy differences, and so the

calculation of entropies is also important [192, 193, 207].
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5.5.2.3.4 Kinetics; Calculating Reaction Rates

Ab initio kinetics calculations are far more challenging than thermodynamics

calculations. In other words, the calculation of rate constants is much more involved

than that of equilibrium constants or quantities like reaction enthalpy, reaction free

energy, and enthalpy of formation, which are related to equilibrium constants. Why

is this so? After all, both rates and equilibria are related to the energy difference

between two species: the rate constant to that between the reactant and transition

state (TS), and the equilibrium constant to that between the reactant and product

(Fig. 5.25). Furthermore, the energies of transition states, like those of reactants and

products, can be calculated. The reason for the difference is partly because the

energies of transition states are harder to calculate to high accuracy than are those of

relative minima (“stable species”). Another problem is that the rate does not depend

strictly on the TS/reactant free energy difference (which can often, at sufficiently

high levels, be accurately calculated).

To understand the problem consider a unimolecular reaction (here B is a

transition state)

A ! B

Figure 5.29 shows the potential energy surface for two reactions of this type,

A1!B1 and A2!B2. The reactions have identical calculated free energies of

activation. By calculated, we mean here using some computational chemistry

method (e.g. ab initio) and locating a stationary point with no imaginary frequen-

cies, corresponding to A, and an appropriate stationary point with one imaginary

PE surface curved gently upward
in the transition state region

Many molecules pass
per second through the 
TS region Only relatively few molecules pass

per second through the
TS region

PE surface curved steeply upward
in the transition state region

1 2

intrinsic reaction coordinate

TS
TS

Free energy

reactant reactant

Fig. 5.29 Possible potential energy surfaces for two reactions with the same calculated free

energy of activation. Reaction 1 is nevertheless faster than reaction 2 because its transition state

region is flatter. As a result, in a given time more molecules can stray from the intrinsic reaction

coordinate and pass through the transition state region to the product
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frequency, etc. (Chap. 2, Sect. 2.5), corresponding to B. The “traditional” calcu-

lated rate constant then follows from a standard expression involving from the

energy difference between the TS and reactant (our calculated free energy of

activation) and the partition functions of the two species. However, in the TS region

the PES for the first process is flatter than for the second process–the saddle-shaped

portion of the surface is less steeply-curved for reaction 1 than for reaction 2. If all

reacting A molecules followed exactly the intrinsic reaction coordinate (IRC;

Chap. 2, Sect. 2.2; the minimum-energy path, MEP) and passed through the

calculated TS species, then we might expect the two reactions to proceed at exactly

the same rate, since all A1 and A2 molecules would have to surmount identical

barriers. However, the IRC is only an idealization [208], and molecules passing

through the TS region toward the product frequently stray from this path. Clearly

for the reaction A1!B1 at any finite temperature more molecules (reflected in a

Boltzmann distribution) will have the extra energy needed to traverse the higher-

energy regions of this flatter saddle, away from the exact TS point, than in the case

of A2!B2; if the saddle were curved infinitely steeply, no molecules could stray

outside the reaction path. Thus reaction 1 must be faster than reaction 2, although

they have identical computed free energies of activation; the rate constant for

reaction 1 must be bigger than that for reaction 2. The difficulty of obtaining

good rate constants from accurate calculations on just two PES points, the reactant

and the TS, is mitigated by the fact that the vibrational frequencies of the TS sample

the curvature of the saddle region both along the reaction path (this curvature is

represented by the imaginary frequency) and at “right angles” to the reaction path

(represented by the other frequencies). High frequencies correspond to steep cur-

vature. So when we use the TS frequencies in the partition function equation for the

rate constant we are, in a sense, exploring regions of the PES saddle other than just

the stationary point. The role of the curvature of the PES in affecting reaction rates

is nicely alluded to by Cramer, who also shows the place of partition functions in

rate equations [209].

Another way to calculate rates is by molecular dynamics [210]. Molecular

dynamics calculations use the equations of classical physics to simulate the motion

of a molecule under the influence of forces; in general the required force fields can

be computed by ab initio methods or, for large systems, semiempirical methods

(Chap. 6) or molecular mechanics (Chap. 3). For investigating chemical reactions,

which involve breaking and making bonds, a quantum-mechanical method, not

molecular mechanics, must be used. In a molecular dynamics simulation of the

reaction A!B, molecules of A are “shaken” out of their potential well, and some

pass through the saddle region. A shaken mechanical model with a molded surface

and ball-bearing molecules would represent an analogue of the computer simula-

tion. At a given temperature, the rate of passage of molecules (or ball bearings)

through the saddle region will depend on the height of this region and on its

curvature. The shape of the hypersurface is a function of atomic coordinates

E ¼ f q1, q2, . . .ð Þ
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The hypersurface can be found by fitting to a finite number of calculated points, or it

can be calculated “on the fly”. The function E can in favorable cases be used to

calculate reliable rate constants. The situation can be complicated by quantum

mechanical tunnelling [211], which, particularly where light atoms like hydrogen

move, can speed up a reaction by orders of magnitude compared to classical

predictions. Furthermore, since 1992 [212] it has been shown by molecular dynam-

ics that the traditional concept of a potential energy surface with a straightforward

intrinsic reaction coordinate (minimum energy path) may in some cases be inade-

quate and even incorrect. Briefly, reacting molecules sometimes move on to a

plateau region or a “bifurcated” region of the surface and then head toward products

in directions determined by their internal motions; the details can be “quite com-

plex” [213]. Such surfaces are probably exceptional and the traditional picture of

Chap. 2 seems likely to be applicable in most cases. Here we will merely attempt to

apply some fundamentals of rate theory to unimolecular reactions to illustrate how

straightforward calculations can provide useful information about the stability of

molecules. For rigorous calculations of rate constants one best utilizes a specialized

program, for example Polyrate ([133], based on RRKM theory [134]). There are

many discussions of the theory of reaction rates, in various degrees of detail

[148, 214]. A particularly rigorous application of RRKM code to alkene ozonolysis

is by Oliveira and Bauerfeldt [214d]. In this section we limit ourselves to gas-phase

unimolecular reactions [215] and examine the results of some calculations. We will

use the simplified Eyring (Chap. 2, Sect. 2.2) equation, and make no claims to very

high accuracy

kr ¼ kBT

h
e�ΔGz=RT ð*5:197Þ

where kr¼ unimolecular rate constant (units¼ s�1)

kB¼Boltzmann constant, 1.381� 10�23 J K�1

T¼ temperature, K

h¼ Planck’s constant, 6.626� 10�34 J s

ΔGz ¼ the transition-state-reactant free energy difference (in some calculations

we will try the ZPE-corrected 0 K energy difference, ΔEtotal
0K , which is the 0 K

enthalpy difference)

R¼ gas constant, 8.314 J K�1 mol�1

For T¼ 298 K (“room temperature”), (kBT )/h¼ 6.22� 1012 s�1 and

RT¼ 2.478 kJ mol�1

With these values Eq. (5.197) becomes

kr ¼ 6:22� 1012e�ΔGz=2:478 ð5:198Þ
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Equation (5.198) was used to calculate rate constants for the three unimolecular

reactions in Fig. 5.30 (cf. Fig. 5.21). Reactants, products and transition state

structures were created with Spartan [37, 216] at the AM1 (a kind of semiempirical

method; Chap. 6) level. Transition states were calculated with Spartan’s transition
state routine starting from a guess based on the reactant and product structures

and the experience that bonds being broken or made in a transition state tend to

be roughly 50 percent longer than in a reactant or product. The AM1 structures

were used as inputs for MP2/6–31G* (Sect. 5.4.2), B3LYP/6–31G* (a kind of

DFT calculation; Chap. 7), G3(MP2), G4(MP2) and CBS-QB3 calculations

(Sect. 5.5.2.3.2) with Gaussian 09 [178]. A few remarks are appropriate on the

choice of these five computational levels. First, a correlated electron method

(Sect. 5.4) is almost mandatory for a reasonably accurate reaction rate. MP2 and

B3LYP (or instead of this latter some other density functional method) are probably

the most popular methods for routine calculations at correlated levels. Both are

often used with bigger basis sets than 6–31G*, while G3(MP2), G4(MP2) and

CBS-QB3 are, where applicable (Sect. 5.5.2. 3.2), reasonable choices for high-

accuracy multistep calculations. The Hartree-Fock level does not, as a rule, give

reasonably accurate reaction barriers [217], although the rule is not quite

unbreakable; for example, simple HF/6–31G* calculations give fairly good tor-

sional barriers for hindered methylbenzenes [218]. Hartree-Fock relative barriers in
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Fig. 5.30 Reactions used to illustrate the calculation of rate constants and half lives with

Eq. (5.198) (cf. Fig. 5.21)

5.5 Applications of The Ab initio Method 351

http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_7


a series of related reactions can be useful [219]. Note that the high-accuracy

Gaussian and CBS methods were developed for thermodynamics, not kinetics.

Nevertheless, they have been applied to the calculation of reaction barriers, and

CBS-QB3 in particular has been implied to be suitable for this purpose [187b].

However, this and other standard Gaussian and CBS high-accuracy methods were

unsatisfactory for the reaction of ozone with ethyne and ethene, and CBS-QB3 was

singled out for special cautioning; the reaction did yield to a kind of extrapolation

method, the “reference focal point approach” [220]. Ozone is, of course, a problem

molecule (Sect. 5.5.1), and CBS-QB3 worked well for other cycloadditions [194].

The results of the calculations are summarized in Table 5.11 (calculated from the

data in Table 5.12). For each of the five computational levels, the free energy of

Table 5.11 Calculated (298 K) rate constants kr (s
�1) and halflives t1/2 (s) from kr¼ (kBT/h)e

ΔG/RT

/kr¼ (6.22� 1012)e�ΔGz/2.478 (Eqs. (5.197/5.198)) and t1/2¼ ln2/kr¼ 0.693/kr, using free energies

of activation ΔGz (kJ mol�1) from five methods. The calculation of the free energies of activation

are given in Table 5.12

Reaction MP2/6–31G* B3LYP/6–31G* G3(MP2) G4(MP2) CBS-QB3

CH3NC!
CH3CN

kr 1.50� 10�17 kr 3.63� 10�16 kr 1.17� 10�15 kr 1.82� 10�15 kr 4.26� 10�16

t1/2 4.6� 1016 t1/2 1.9� 1015 t1/2 5.9� 1014 t1/2 8.5� 1014 t1/2 1.6� 1015

ΔGz 169.2 ΔGz 161.1 ΔGz 158.2 ΔGz 157.1 ΔGz 160.7

CH2¼
CHOH!
CH3CHO

kr 8.72� 10�29 kr 3.17� 10�27 kr 7.15� 10�30 kr 1.11� 10�29 kr 6.33� 10�30

t1/2 7.95� 1027 t1/2 2.2� 1026 t1/2 9.7� 1028 t1/2 6.2� 1028 t1/2 1.1� 1029

ΔGz 233.1 ΔGz 224.2 ΔGz 239.3 ΔGz 238.2 ΔGz 239.6

cyclopropylidene

! allene

kr 4.03� 108 kr 4.19� 108 kr 4.36� 109 kr 6.28� 108 kr 4.19� 108

t1/2 2.5� 10�9 t1/2 2.4� 10�9 t1/2 1.6� 10�10 t1/2 1.0� 10�9 t1/2 2.4� 10�9

ΔGz 23.9 ΔGz 23.8 ΔGz 18.0 ΔGz 22.8 ΔGz 23.8

Table 5.12 Free energies of reactant and transition state (hartrees) and free energy of activation

ΔGz (hartrees/kJ mol�1) by five methods; hartrees were converted to kJ mol�1 by multiplying

by 2626

Reaction MP2/6–31G* B3LYP/6–31G* G3(MP2) G4(MP2) CBS-QB3

CH3NC!CH3CN �132.26990 �132.69425 �132.53125 �132.55043 �132.51216

�132.20547 �132.63289 �132.47102 �132.49063 �132.45098

ΔGz 0.06443/
169.2

ΔGz 0.06136/
161.1

ΔGz 0.06023/
158.2

ΔGz 0.05980/
157.1

ΔGz 0.06118/
160.7

CH2¼CHOH

!CH3CHO

�153.28714 �153.77339 �153.60839 �153.63152 �153.59006

�153.19837 �153.68802 �153.51725 �153.54081 �153.49883

ΔGz 0.08877/
233.1

ΔGz 0.08537/
224.2

ΔGz 0.09114/
239.3

ΔGz 0.09071/
238.2

ΔGz 0.09123/
239.6

cyclopropylidene

! allene

�116.09212 �116.51746 �116.35895 �116.37680 �116.33697

�116.08301 �116.50839 �116.35211 �116.36813 �116.32789

ΔGz 0.00911/
23.9

ΔGz 0.00907/
23.8

ΔGz 0.00684/
18.0

ΔGz 0.00867/
22.8

ΔGz 0.00908/
23.8

The rate constants and halflives calculated from these values are given in Table 5.11
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activation was used to calculate a rate constant and halflife for each of the three

reactions, using Eq. (5.197/5.198). Table 5.12 reveals the usefulness of this simple

way of calculating unimolecular reaction rates. All five methods yield for each

reaction approximately the same activation free energy: for CH3NC!CH3CN,

ca. 160 kJ mol�1, for CH2¼CHOH!CH3CHO, ca. 238 kJ mol�1, and for

cyclopropylidene! allene, ca. 20 kJ mol�1. For the three high-accuracy methods,

the calculated activation free energies are particularly similar, all within 6 kJ mol�1.

The qualitative, and even semiquantitative, predictions for the kinetic stability

of each compound are the same for all five methods (Table 5.11): for CH3NC,

a halflife of ca. 1015� 1016 s, for CH2¼CHOH a halflife of ca. 1026� 1029 s,

and for cyclopropylidene, a halflife of ca. 10�10� 10�9 s. Note however, that using

Eq. (5.198), a change in activation free energy of 5 kJ mol�1 can alter a rate

constant or halflife by a factor of about 10:

ΔGz ¼ 100kJmol�1, kr ¼ 1:9� 10�5s�1, t1=2 ¼ 4� 104 s

ΔGz ¼ 105kJmol�1, kr ¼ 2:5� 10�6s�1, t1=2 ¼ 3� 105 s

ΔGz ¼ 110kJmol�1, kr ¼ 3:3� 10�7s�1, t1=2 ¼ 3� 106 s

Comparing our calculations with the experimental facts:

CH3NC ! CH3NCReaction

The experimental Arrhenius activation energy and rate constant for the gas

phase isomerization of methyl isocyanide have been reported; at the lowest

pressure used, Ea¼ 36.27 kcal mol�1, i.e. 151.8 kJ mol�1, and log A¼ 10.46,

i.e. A¼ 2.88� 1010s�1 [221]. We want to compare our calculated activation free

energy with an experimental value, so we must calculate ΔGz from Ea and A.
From the Arrhenius equation Eq. (5.174) and the Eyring equation Eq. (5.197) it

follows that

ΔGz ¼ �RTln A=kBT=hð Þ þ Ea ð5:199Þ

Using the values of the constants given above for Eq. (5.197), we find

ΔGz ¼ �2:478 lnðA= 6:22� 1012
� �þ Ea ð5:200Þ

with energies in kJ mol�1 as usual. Using this equation and Ea and A from [221], the

experimentally-derived ΔGz is 165.1 kJ mol�1. This is in good agreement with the

calculated values of 157� 169 kJ mol�1 in Table 5.12.

CH2 ¼ CHOH ! CH3CHOReaction

The reported halflife of ethenol (vinyl alcohol) in the gas phase at room tem-

perature is ca. 30 minutes [222], far shorter than our calculated 1028� 1029 s.
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However, the 30 minute halflife is very likely that for a protonation/deprotonation

isomerization catalyzed by the walls of the vessel, rather than for the concerted

hydrogen migration (Fig. 5.30) considered here. Indeed, the related ethynol has
been detected in planetary atmospheres and interstellar space [223], showing that

that molecule, in isolation, is long-lived. Even under the more confined conditions

of the lab, ethenol can be studied in the gas phase [222, 224] and in solution

[225]. All five computational methods predict very long halflives for the

uncatalyzed reaction.

Cyclopropylidene ! allene Reaction

Cyclopropylidene has apparently never been isolated [226], so its halflife is likely

to be short even well below room temperature. Employing a variety of methods,

Bettinger et al. obtained a barrier for its rearrangement to allene of about

4 kcal mol�1, i. e ca. 17 kJ mol�1 [227], close to our values of 18� 24 kJ mol�1.

Our calculations predict room temperature halflives for cyclopropylidene of about

10�9 to 10�10 s. Attempts to generate cyclopropylidene at 77 K gave allene

[226]. We can calculate the halflife at 77 K, instructing Gaussian 03 to use this

temperature for thermochemistry. Using CBS-QB3, the resulting ΔGz is

25.1 kJ mol�1 (very little change from the 298 K value of 23.8 kJ mol�1), and with

this and T¼ 77 K, Eq. (5.197) gives kr¼ 1.49� 10�5 and a halflife of 4.7� 105 s,

ca. 13 h. Cyclopropylidene ought to be observable at 77 K.

From Eq. (5.197) and the fact that for a unimolecular reaction t1/2¼ ln 2/kr it
follows that

logt1=2 ¼ log ln2ð Þ h

kBT

� �
þ ΔGz

RT
� loge ð5:201Þ

At 298 K (about room temperature) this becomes

logt1=2 ¼ 0:175ΔGz � 13:0 ð5:202Þ

where ΔGz is in kJ mol�1. Eq. (5.201) shows that for ΔGz ¼ 0 kJmol�1, t1/2 is

10�12� 10�13 s; this is as expected, since the period of a molecular vibration is

about 10�13� 10�14 s and with no barrier a species should survive for only about

one vibrational motion (the one along the reaction coordinate, corresponding to

the imaginary frequency) as it passes through the saddle region (e.g. Fig. 5.29).

Figure 5.31, a graph of Eq. (5.202), can be used to estimate halflives at room

temperature from the free energy of activation, for unimolecular isomerizations.

This regards ΔGz as only a weak function of T, as seems to be the case–see the

above calculation for cyclopropylidene at 77 K. We see that the threshold value of

ΔGz for observability at room temperature for a species that decays by a

unimolecular process is predicted to be about 80� 90 kJ mol�1(t1/2¼ 10 s� 9 min),

with quite a strong dependence on ΔGz. Experience gives a similar result: the
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threshold barrier for observing or isolating a compound at room temperature is

about 100 kJ mol�1 [152, 153].

So far as Eq. (5.197) can deliver them, loosely “quantitatively accurate” reaction

rates, say to within a factor of two, require activation energies accurate to within

about 2 kJ mol�1. Nevertheless, the equation does provide a simple way of

obtaining serviceably good rate constants. The (admittedly small) selection of

reactions here shows no bias toward low or high calculated barriers for any of the

four methods, and for a particular kind of reaction it is advisable to choose a method

based on a comparison of methods with experimental results where this information

is available.

5.5.2.3.5 Energies: Concluding Remarks

Foresman and Frisch [228], in a chapter with very useful data and recommendations

regarding accuracy, show large mean absolute deviations (MAD) and unreservedly

enormous maximum errors for Hartree-Fock calculations and even for MP2 calcu-

lations with reasonably big basis sets; for example:

HF=6�31þ G** MAD, 195kJmol�1 46:7kcalmol�1
� �

Max:Error, 753kJmol�1 179:9kcalmol�1
� �

MP2=6�311þ G 2d, 9ð Þ MAD, 37kJmol�1 8:9kcalmol�1
� �

Max:Error, 164kJmol�1 39:2kcalmol�1
� �

log t1 / 2 (t in s)

50 100 1500

10

20

30

40
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–10

–20

ΔG , kJ mol–1

Fig. 5.31 Graph of log t1/2¼ 0.175ΔGz � 13.0. If this equation for the halflife of a unimolecular

reaction were strictly true, then the threshold value of ΔGz for ready observability at room

temperature would be about 85 kJ mol�1, corresponding to t1/2¼ 75 s. Actually, a rough rule of

thumb is that the threshold barrier for observability at room temperature is about 100 kJ mol�1
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How can this be reconciled with the results shown in this chapter and the modest

levels endorsed by Hehre [39]? As hinted in reference [228] (“Don’t Panic!” p. 146,
and “Don’t be overly alarmed, p. 149), the large errors reported are a composite

including some “tough cases” [229] like atomization energies (Sect. 5.4.1). A good

feel for the accuracy of various levels of calculation will emerge from examining

the extensive data in Hehre’s book [39], not losing sight of the fact that there are
cases, like accurate atomization energies, that yield only to high-accuracy methods.

For relief and reassurance, Table 5.13 compares with experiment the relative

energies of some isomers calculated at the modest levels HF/6–31G* and

MP2/6–31G*; for a reality check, we also see values from G3(MP2) and G4

(MP2) and experiment (experiment: fulvene/benzene, [230]/[231]; cyclopropane/

propene, [232]/[232]; dimethyl ether/ethanol, [233]/[234]; methylcyclopentane/

cyclohexane, [231]/[235]). The calculated energy differences chosen for this illus-

tration are enthalpy differences, because differences in experimental enthalpies of

formation yield these, and enthalpies of formation represent the most extensive

compilations of experimental energy quantities relevant to our purpose. All the

levels predict the correct stability orders. Even the HF/6–31G* level is not wildly

inaccurate, being out by at most about 10� 20 kJ mol�1, for fulvene/benzene and

dimethyl ether/ethanol. MP2/6–31G* is similar or even in one case a bit worse

(cyclopropane/propene, about 11 kJ mol�1 smaller than the HF/6–31G* value). The

G3(MP2) and G3(MP2) methods give essentially the same results and agree with

experiment to within 5 kJ mol�1, except for the apparent 10 kJ mol�1 discrepancy

for fulvene/benzene, which could be due to experimental error (footnote in the

table) for fulvene [230], a reactive, sensitive compound difficult to purify.

Of course the values shown here are differences in heats of formation, and may

benefit from cancellation of errors in calculated 298 K enthalpies. However, it is

enthalpy differences that are of primary interest to chemists.

5.5.3 Frequencies and Vibrational (IR) Spectra

The calculation of normal-mode frequencies (Chap. 2, Sect. 2.5) is important

because:

1. The number of imaginary frequencies of a molecular species tells us the curva-

ture of the potential energy surface at that particular stationary point: whether an

optimized structure (i.e. a stationary point-species) is a minimum, a transition

state (a first-order saddle point), or a higher-order saddle point. Note that

frequency calculations are normally valid only for stationary points; this rule

is knowingly violated occasionally, e.g. when technically invalid but useful

force constants or frequencies are calculated as aids to an algorithmic process

like geometry optimization (Chap. 2, Sect. 2.4) or following an IRC (Chap. 2,

Sects. 2.2, 2.5, 2.6). Routinely checking optimized structures with a frequency

calculation is a good idea. Frequency calculations can take much longer than
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optimizations, and for very big molecules and extended systems like crystals

methods for calculating frequencies on only a part of the system have been

developed [236].

2. The frequencies must be calculated to get the zero point energy of the molecule.

This is needed for accurate energy comparisons (Chap. 2, Sect. 2.5).

3. The normal-mode vibrational frequencies of a molecule correspond, with qual-

ifications, to the bands seen in the infrared (IR) spectrum of the substance.

Discrepancies may arise from overtone and combination bands in the experi-

mental IR, and from problems in accurate calculation of relative intensities (less

so from problems in calculation of frequency positions). Thus the IR spectrum of

a substance that has never been made can be calculated to serve as a guide for the

experimentalist. Unidentified IR bands observed in an experiment can some-

times be assigned to a particular substance on the basis of the calculated

spectrum of a suspect; if the spectra of the usual suspects are not available

from experiment (they might be extremely reactive, transient species), we can

calculate them.

The characterization of stationary points by the number of imaginary frequen-

cies was discussed in Chap. 2, and zero-point energies in Chap. 2 and earlier

sections of this chapter. Here we will examine the utility of ab initio calculations

for the prediction of IR spectra [237]. It is important to remember that frequencies

should be calculated at the same level (e.g. HF/3–21G(*), MP2/6–31G*,. . .) as was
used for the geometry optimization (Chap. 2, Sect. 2.4). This is because accurate

calculation of the curvature of the PES at a stationary point requires that the second

derivatives∂2
E=∂qi∂qj be found at the same level as was used to create the surface

on which the point sits.

5.5.3.1 Positions (Frequencies) of IR Bands

In Chap. 2, Sect. 2.5, we saw that diagonalization of the force constant matrix gives

an eigenvector matrix whose elements are the “direction vectors” of the normal-

mode vibrations, and an eigenvalue matrix whose elements are the force constants

of these vibrations. “Mass-weighting” the force constants gives the wavenumbers

(“frequencies”) of the normal-mode vibrations, and their motions can be identified

by using the direction vectors to animate the vibrations. So we can calculate the

wavenumbers of IR bands and associate each band with some particular vibrational

mode (the details of the calculation of vibrational frequencies/wavenumbers is

actually quite complex [130b]). The wavenumbers (“frequencies”) from ab initio

calculations are larger than the experimental ones, i.e. the frequencies are too high.

There are two reasons why this might be so: the principle of equating second

derivatives of energy (with respect to geometry changes) with force constants

might be at fault, or the basis set and/or correlation level might be deficient.

The principle of equating a second derivative with a stretching or bending force

constant is not exactly correct. A second derivative∂2
E=∂q2 would be strictly equal
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to a force constant only if the energy were a quadratic function of the geometry,

i.e. if a graph of E vs. q were a parabola. However vibrational curves are not exactly
parabolas (Fig. 5.32). For a parabolic E/q relationship, and considering a diatomic

molecule for simplicity, we would have:

E ¼ k

2
q� qeq
� �2 ð5:203Þ

where qeq is the equilibrium geometry. Here k is by definition the force constant, the

second derivative of E, i.e. ∂2
E=∂q2 ¼ k. For a real molecule, however, the E/q

relationship is more complicated, being a power series in q2, q3, etc., terms, and

there is not just one constant. Eq. (5.203) holds for what is called simple harmonic
motion, and the coefficients of the higher-power terms in the more accurate

equation are called anharmonicity corrections. Assuming that bond vibrations are

simple harmonic is the harmonic approximation.
For small molecules it is possible to calculate from the experimental IR spectrum

the simple harmonic force constant k and the anharmonicity corrections. Using k,
theoretical harmonic frequencies can be calculated [238]. These correspond to a

parabolic E/q relationship (Fig 5.32), i.e. to a steeper curve than the real one, and

thus to stiffer bonds. Stiffer bonds need more energy to stretch them (or bend them,

for bending force constants), and thus absorb higher-frequency infrared light. These

theoretical harmonic frequencies are not real-world frequencies, but rather the

frequencies that would be observed if bonds were simple harmonic oscillators.

Such theoretical harmonic frequencies, derived from experimental IR spectra, are

Δ r

E
energy idealized 

actual E vs. Δ r
curve

0 extension of bond
(amount of stretching)

E vs.  Δ r curve (a parabola)

Fig. 5.32 The actual curve for potential energy vs. stretch for a bond is not really a parabola,

i.e. not really E¼ (Δr)2, but near the equilibrium bond length (Δr¼ 0) the parabola fits the actual

curve fairly well
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higher than the observed “raw” experimental frequencies, and are closer to ab initio

frequencies than are the observed frequencies [239]. Since both theoretically

calculated (e.g. by ab initio methods) frequencies and experimentally-derived

theoretical harmonic frequencies are based on a parabolic E/q relationship, it is

sometimes considered better to compare calculated frequencies with theoretical

experimentally-derived harmonic frequencies rather than with observed frequen-

cies [240]. Because both ab initio- and experimentally-derived harmonic frequen-

cies rest on second derivatives, we might expect ab initio frequencies to converge

not toward the observed experimental, but rather toward the theoretical experiment-

derived harmonic frequencies, as correlation level/basis set are increased. This is

indeed the case, as has been shown by calculations on water with high correlation

levels (CCSD(T); Sect. 5.4.3) and large basis sets (polarization functions and triply-

or quadruply- split valence shells (Sect. 5.3.3). The observed water frequencies are

3756, 3657, and 1595 cm�1. For these three fundamental frequencies, the devia-

tions fell from 269, 282, and 127 cm�1 at the Hartree-Fock level to only 9, 13 and

10 cm�1 higher than the theoretical experiment-derived harmonic values of 3943,

3832 and 1649 cm�1 [241]. Such harmonic frequencies are typically about 5%

higher, and ab initio calculated frequencies about 5–10% higher, than observed

frequencies. From the foregoing discussion it appears that the fundamental reason

ab initio frequencies are too high is because of the harmonic approximation:

equating of ∂2
E=∂q2 with a force constant. There is no theoretical reason why

high-level calculations should converge toward the observed frequencies; this

statement applies to frequencies calculated, as is almost always the case, by the

harmonic approximation (above). Frequencies (theoretical experiment-derived har-

monic values) accurate to within about 1% were obtained for a set of small

molecules using high correlation levels and medium-size basis sets [242].

Fortunately for us, we often wish only to calculate IR spectra that resemble, or

would resemble, experimental spectra, and for this there is a simple expedient.

Calculated and observed frequencies differ by a fairly constant factor, and ab initio

(and other theoretically-calculated) frequencies can be brought into reasonable

agreement with experiment by multiplying them by a correction factor. An exten-

sive comparison by Scott and Radom of calculated and experimental frequencies

[80a] has provided empirical correction factors for frequencies calculated by a

variety of methods. A few of the correction factors from this compilation are:

HF=3�21G *ð Þ 0:9085
HF=6�31G* 0:8953
HF=6�311G df; pð Þ 0:9054
MP2 fcð Þ=6�31G* 0:9434
MP2 fcð Þ=6�311G** 0:9496

The correction factors at the HF level with the three basis sets are similar,

0.90–0.91; the factors at the MP2 level are significantly closer to 1, but Scott and
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Radom say that “MP2/6–31(d) does not appear to offer a significant improvement

in performance over HF/6–31G(d) and occasionally shows large errors”, and

“The most cost-effective procedures found in this study for predicting vibrational

frequencies are HF/6–31(d) and [certain density functional methods]”. Separate

correction factors for zero-point vibrational energies were also given, and although

it was hitherto common practice to use the same correction factor for frequencies

and for ZPEs, the use of separate factors may now be standard. Better agreement

with experiment can be obtained by using empirical correction factors for specific

kinds of vibrations (Scott and Radom give separate factors for low-frequency

vibrations, as opposed to the relatively high-frequency ones to which the factors

listed above refer), but this is rarely done. A recent paper recommends correction of

ab initio frequencies, and to a lesser extent DFT (Chap. 7) ones using quadratic,

rather than linear, increments [80b].

5.5.3.2 Intensities of IR bands

The bands in an IR spectrum have not just positions (“frequencies”, denoted by

various wavenumbers), but also intensities. IR intensities present considerably

more difficulties in their measurement and theoretical calculation than do frequen-

cies, and actually experimental intensities are not routinely quantified, but are

commonly merely described as weak, medium, or strong. To calculate an IR

spectrum for visual comparison with experiment it is desirable to compute both

wavenumbers and intensities. The intensity of a vibration is determined by the

change in dipole moment accompanying the vibration. If a vibrational mode leads

to no change in dipole moment, the mode will, theoretically, not result in absorption

of an IR photon, because the oscillating electric fields of the radiation and the

vibrational mode will be unable to couple. Such a vibrational mode is said to be

IR-inactive, i.e. it should cause no observable band in the IR spectrum. Stretching

vibrations that, because of symmetry, are not accompanied by a change in dipole

moment, are expected to be IR-inactive. These occur mainly in homonuclear

molecules like O2 and N2, and in linear molecules; thus the C/C triple bond stretch

in symmetrical akynes, and the symmetric OCO stretch in carbon dioxide, do

not engender bands in the IR spectrum. For Raman spectroscopy, in which one

measures the scattered rather than the transmitted IR light, the requirement for

observing a vibrational mode is that the vibration occur with a change in polariz-

ability. Raman spectra are routinely calculable (e.g. by the Gaussian programs [36];

the IR and Raman frequencies, but not intensities, are the same) along with IR

spectra. The complementarity of IR and Raman spectra can be useful in studying

the symmetry of molecules. A band which should be IR-inactive or at least

very weak can sometimes be seen because of coupling with other vibrational

modes; thus the triple-bond stretch of 1,2-benzyne (o-benzyne, dehydrobenzene,

C6H4) has been observed [243], although it apparently should be accompanied by
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only a very small change in dipole moment. Bands like this are expected to be,

at best, weak.

As might be expected from the foregoing discussion, the intensity of an IR

normal mode can be calculated from the change in the dipole moment with the

change in geometry accompanying the vibration. The intensity is proportional to

the square of the change in dipole moment with respect to geometry

(to displacements along the directions of the normal coordinates):

I ¼ constant� dμ

dq

� �2

ð5:204Þ

This can be used to calculate the relative intensities of IR bands; the calculation of

absolute intensities, which are very rarely measured, requires calculation of the

proportionality constant. The calculation of dipole moments is discussed in the next

section. One way to calculate the derivative is to approximate it as a ratio of finite

increments (d becomes Δ) and calculate the change in dipole moment with a small

change in geometry; there are also analytical methods for calculating the derivative

[244]. A book has been written on the subject of vibrational intensities [245]. It has

been reported that at the HF-level calculated IR-band intensities often differ from

experiment by a factor of over 100% but at the MP2 level are typically within 30%

of experiment [246]. Nevertheless, Scott and Radom, surprisingly, in their paper on

corrections to frequencies and ZPEs (above) recommend HF/6–21G* over

MP2/6–31G* [80a]. Schaefer and coworkers achieved “Quantitative accord”

between theory and experiment for the absolute IR intensities of six very small

molecules using QCISD, CCSD, and CCSD(T) (Sect. 5.4.3) with Dunning’s aug-
cc-pVTZ (Sect. 5.3.1) basis sets [247], but these levels may be currently too high

for routine optimization and frequencies on even small to medium (say about

10 heavy atoms) molecules. With continued growth in computer power this situa-

tion will change. It should be possible to increase the accuracy of predicted spectra

empirically by performing calculations on a series of known compounds and fitting

the experimental to the calculated wavenumbers, and perhaps intensities, to obtain

empirical corrections tailored specifically to the functional group of interest. Such

painstaking work would be unusual. A few IR spectra calculated at routinely very

practical levels are compared with experiment (taken in the gas phase by the author)

in Figs. 5.33, 5.34, 5.35, and 5.36. This sample, although limited, gives an idea of

the kind of similarity one can expect between experimental and ab initio IR spectra.

A detailed resemblance cannot be expected, but the general features of a spectrum

are reproduced. Probably the main utility of calculated ab initio IR spectra is in

predicting the IR spectra of unknown molecules, as an aid to their synthesis, and the

levels shown here are evidently adequate for this.
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5.5.4 Properties Arising from Electron Distribution: Dipole
Moments, Charges, Bond Orders, Electrostatic
Potentials, Atoms-in-Molecules

We have seen three applications of ab initio calculations: finding the shapes

(geometries), the relative energies, and the frequencies of stationary points (usually

minima and transition states) on a potential energy surface:

1. The shape of a molecular species can provide clues to the existence of theoret-

ical principles (why is it that benzene has six equal-length CC bonds, but

cyclobutadiene has two “short” and two “long” bonds [248]?), or act as a

guide to designing useful molecules (docking a candidate drug snugly into the

active site of an enzyme requires a knowledge of the shapes of the drug and of

the active site [110]). Although shape is one of the fundamental characteristics of

a molecule, it is amusing and yet thought-provoking that the question has been
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asked whether this is really a necessary property [249]! The basic problem here

seems to be that according to quantummechanics, for any observable property of

a system there is a corresponding operator, which in principle allows the

property (its expectation value, strictly speaking) to be calculated using the

wavefunction (Sect. 5.2.3.3); however, there is no shape operator. Trindle has

worked on reconciling this quantum mechanical conundrum with reality [250a].

Molecular shape has been treated at book length by Mezey [250b].

2. The energy of a molecular species relative to the energies of other species on a

potential energy surface is fundamental to a knowledge of its kinetic and

thermodynamic behaviour, and this can be important in attempts to synthesize it.

3. The vibrational frequencies of a molecule provide information about the elec-

tronic nature of its bonds, and prediction of the spectra represented by these

frequencies may be useful to experimentalists.
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A fourth important characteristic of a molecule is the distribution of electron
density in it. Calculation of the electron density distribution enables one to predict

the dipole moment, the charge distribution, the bond orders, and the shapes of

various molecular orbitals.

5.5.4.1 Dipole Moments

The dipole moment [251] of a system of two charges Q and�Q separated by a

distance r is, by definition, the vector Qr; the direction of the vector is officially

from�Q towardþQ, but chemists usually assign a molecular or bond dipole

(see below) the direction from the positive end of the bond or molecule to the
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negative (Fig. 5.37a). The dipole moment of a collection of charges Q1, Q2, . . ., Qn,

with corresponding position vectors r1, r2, . . ., rn (Fig. 5.37b) is

μ ¼
Xn
1

Qiri ð5:205Þ

and the so the dipole moment of a molecule is seen to arise from the charges and

positions of its component electrons and nuclei. For a neutral molecule the dipole

moment is an unambiguous experimental observable [252] (unlike some other

quantities based on electron distribution), and comparison of calculated and exper-

imental dipole moments is in principle sound methodology. The dipole moment is

the simplest quantitative measure of the evenness or unevenness of electron distri-

bution in a molecule. It is often convenient to think of the molecular dipole moment

in a more pictorial form than that presented by Eq. (5.205), namely as the vector

sum of bond moments (Fig. 5.37c). Two points should be noted: we are discussing

an average dipole moment, because electron and nuclear motions will cause the
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dipole moment to fluctuate, so that even a spherical atom can have (very) temporary

nonzero dipole moments. Another point is that we usually consider the dipole

moments of neutral molecules only, not of ions, because the dipole moment of a

charged species is not unique, but depends on the choice of the point in the

coordinate system from which the position vectors are measured.

m1 m2
O

H H

a

z

x

y

Q1

Q2

Q3

.

.

.

b

Q–Q+

r

r1

r2

r3

(vector sum of products of charges and distance vectors)

c

m = vector sum of m1 and m2

m= ∑ Q ir i

m= Qr

Fig. 5.37 (a) Chemists usually consider the dipole moment of a diatomic molecule, the vectorQr,
to be directed from the positive to the negative atom. (b) The dipole moment of a collection of

charges, such as a molecule, arises from the magnitudes of the charges, and their locations

(i.e. distances and directions from the origin. (c) The dipole moment of a molecule can be thought

of as the vector sum of bond moments
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Let us look at the calculation of the dipole moment within the Hartree-Fock

approximation. The quantum mechanical analogue of Eq. (5.205) for the electrons

in a molecule is

μ ¼ ψj
X2n
j¼1

erjjψ
* +

ð5:206Þ

Here the summation of charges times position vectors is replaced by the integral

over the total wavefunction Ψ (the square of the wavefunction is a measure of

charge) of the dipole moment operator (the summation over all electrons of the

product of an electronic charge and the position vectors of the electrons). To

perform an ab initio calculation of the dipole moment of a molecule we want an

expression for the moment in terms of the basis functions ϕ, their coefficients c, and
the geometry (for a molecule of specified charge and multiplicity these are the only

“variables” in an ab initio calculation). The Hartree-Fock total wavefunction ψ is

composed of those component orbitals ψ which are occupied, assembled into a

Slater determinant (Sect. 5.2.3.1), and the ψ’s are composed of basis functions and

their coefficients (Sect. 5.3). Eq. (5.201), with the inclusion of the contribution of

the nuclei to the dipole moment, leads to the dipole moment in Debyes as (Ref. [1g],

p. 41)

μ ¼ �2:5416
XN
A

ZARA �
Xm
r

Xm
s

Prs ϕrjrjϕsh i
" #

ð5:207Þ

Here the first term refers to the nuclear charges and position vectors and the

second term (the double summation) refers to the electrons. Prs¼ the density matrix

elements (Sects. 5.2.3.6.4 and 5.2.3.6.5), cf.:

Ptu ¼ 2
Xn
j¼1

c*tjcuj ð5:208 ¼ 5:81Þ

The P summation is over the occupied orbitals ( j¼ 1, 2, . . ., n; we are consid-

ering for simplicity closed-shell systems, so there are 2n electrons) and the double

summation in Eq. (5.207) is over the m basis functions. The operator r is the

electronic position vector.

How good are ab initio dipole moments? Hehre’s extensive survey of

practical ab initio methods [39] indicates that fairly good results are given by

HF/6–31G*//HF/6–31G* (dipole moment from a HF/6–31G* calculation on

a HF/6–31G* geometry) calculations, and that MP2/6–31G*//MP2/6–31G*

calculations are usually not much better. Some calculated and experimental

dipole moments are compared in Table 5.14. These results, which are quite

typical, indicate that calculated values tend to be about 0.0–0.5 D higher than

experimental, with a mean deviation of about 0.3 D; negative deviations are rare.
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HF/3–21G(*)//HF/3–21G(*) (a low ab initio level unlikely to be used nowadays)

calculations may show the largest deviations. Single-point HF/3–21G(*) calcula-

tions on HF/6–31G* geometries appear to give results about as good as (or better

than? Note CH3NH2, and Ref. [39], pp. 76, 77) those from MP2(fc)/6–31G*//MP2

(fc)/6–31G* calculations. As is the case for other properties, 3–21G(*) calculations

of dipole moments on molecules with atoms beyond neon require polarization

functions for reasonable results (the 3–21G(*) basis; Ref. [39], pp. 23–30). The

3–21G(*) calculations in Table 5.14 show a mean deviation 0.33; the HF/6–31G*

calculations are only slightly better (mean deviation 0.26) and the MP2/6–31G*

calculations appear to be, if anything, slightly worse (mean error 0.34). If high-

accuracy calculated dipole moments (0.1 D or better) are needed, high-level

correlation and large basis sets must be used; such calculations may be needed to

reproduce the magnitude and even the direction of small dipole moments [253],

such as in carbon monoxide, a notoriously fickle case [254].

5.5.4.2 Charges and Bond Orders

Chemists make extensive use of the idea that the atoms in a molecule can be

assigned electrical charges. Thus in a water molecule each hydrogen atom is

considered to have an equal, positive, charge, and the oxygen atom to have a

negative charge, equal in magnitude to the sum of the hydrogen charges. This

concept is clearly related to the dipole moment: in a diatomic (for simplicity)

molecule one expects the negative end of the dipole vector to point toward the

Table 5.14 Some calculated dipole moments compared to experimental ones

Computational level

HF/3–21G(*)//

HF/3–21G(*)
HF/6–31G*//

HF/3–21G(*)
HF/6–31G*//

HF/6–31G*
MP2(fc)/6–31G*//

MP2(fc)/6–31G* exp.

CH3NH2 1.44 1.3 1.53 1.6 1.3

H2O 2.39 2.18 2.2 2.24 1.9

HCN 3.04 3.2 3.21 3.26 3

CH3OH 2.12 1.95 1.87 1.95 1.7

Me2O 1.85 1.64 1.48 1.6 1.3

H2CO 2.66 2.79 2.67 2.84 2.3

CH3F 2.34 2.18 1.99 2.11 1.9

CH3Cl 2.31 2.32 2.25 2.21 1.9

Me2SO 4.27 4.55 4.5 4.63 4

CH3CCH 0.71 0.64 0.64 0.66 0.8

Deviations 9+, 1� 8+, 2� 9+, 1� 9+, 1�
Mean: 0.33 0.31 0.26 0.34

Dipole moments are in Debyes; the computational levels are arranged, from left to right, in what is

conventionally considered lowest to highest. Calculations are by the author; experimental values

are taken from reference [1g], pages 326, 329, 332, 335. For each level is given the number of

positive and negative deviations and the arithmetic mean of the absolute values of the deviations
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atom assigned the negative charge. However, there are two problems with the

concept: first, the charge on an atom in a molecule, unlike the dipole moment of

a molecule, cannot be (readily [255]) measured. Second, there is no unique, correct

theoretical method for calculating the charge on an atom in a molecule (devotees of

atoms-in-molecules (AIM) theory, to be discussed, may dispute this).

Both the measurement and calculational problems arise from the difficulty of

defining what we mean by “an atom in a molecule”. Consider the hydrogen chloride

molecule. As we move from the hydrogen nucleus to the chlorine nucleus, where
does the hydrogen atom end and the chlorine atom begin? If we had a scheme for

partitioning the molecule into atoms (Fig. 5.38a), the charge on each atom could be

defined as the net electric charge within the space of the atom, i.e. the algebraic sum

of the electronic and the nuclear charges. The electronic charge in the defined space

could be found by integrating the electron density (which can be calculated from the

wavefunction–see Atoms-in-molecules, below) over that region of space.

Bond order is a term with conceptual difficulties related to those associated with

atom charges. The simplest electronic interpretation of a bond is that it is a pair of

electrons shared between two nuclei, somehow [256] holding them together. From

this criterion and Lewis structures the C/C bond order in ethane is 1, in ethene 2, and

in ethyne 3, in accordance with the classical assignment of a single, a double, and a

triple bond, respectively. However, if a bond is a manifestation of the electron

density between two nuclei, then the bond order need not be an integer; thus the

C¼C bond in H2C¼CH–CHO, might be expected to have a lower bond order than

A
B

C

A
B

C

a

b

A

B C

A

B C

A-B bonding
region ?

 W here does atom A end and B begin?

? ?

Fig. 5.38 (a) In a molecule where does one atom end and another begin? How is the dividing

surface to be drawn? (b) How is the bonding region between two nuclei to be defined?
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the C¼C in H2C¼CH–CH3, because the C¼O group might drain electron density

away toward the electronegative oxygen. However, an attempt to calculate bond

order from electron density runs into the problem that in a polyatomic molecule, at

any rate, it is not clear how to define precisely the region “between” two atomic

nuclei (Fig. 5.38b).

Assigning atom charges and bond orders involves, respectively, calculating the

number of electrons “belonging to” an atom or shared “between” two atoms, i.e. the

“population” of electrons on or between atoms; hence such calculations are said to

involve population analysis. Earlier schemes for population analysis bypassed the

problem of defining the space occupied by atoms in molecules, and the space

occupied by bonding electrons, by partitioning electron density in a somewhat

arbitrary way. The earliest such schemes were utilized in the simple Hückel or
similar methods [257], and related these quantities to the basis functions (which in

these methods are essentially valence, or even just p, atomic orbitals; see Chap. 4,

Sect. 4.3.4). The simplest scheme used in ab initio calculations is Mulliken popu-
lation analysis [258].

Mulliken population analysis is in the general spirit of the scheme used in the

simple Hückel method, but allows for several basis functions on an atom and does

not require the overlap matrix to be a unit matrix. In ab initio theory each molecular

orbital has a wavefunction ψ (Sect. 5.2.3.6.1):

ψ1 ¼ c11ϕ1 þ c21ϕ2 þ c31ϕ3 þ . . . þ cm1ϕm

ψ2 ¼ c12ϕ1 þ c22ϕ2 þ c32ϕ3 þ . . . þ cm2ϕm

ψ3 ¼ c13ϕ1 þ c23ϕ2 þ c33ϕ3 þ . . . þ cm3ϕm

⋮
ψm ¼ c1mϕ1 þ c2mϕ1 þ c3mϕ3 þ . . . þ cmmϕm

ð5:209 ¼ 5:51Þ

Here the chosen basis set {ϕ1, ϕ2, . . .ϕm} engenders MOs ψ1, ψ2,. . ., ψm. Several

basis functions can reside on each atom, so csi is the coefficient of basis function s in
MO i (not, as in simple Hückel theory, the sole coefficient of atom s in MO i). For
any MO ψ i, squaring and integrating over all space givesZ

jψ ij2dv ¼ 1 ¼ c1ic1iS11 þ c2ic2iS22 þ � � �
þ 2c1ic2iS12 þ 2c1ic3iS13 þ 2c2ic3iS23 þ � � �

ð5:210Þ

The integral equals one because the probability that the electron is somewhere in the
MO (which, strictly, extends over all space) is one; the Sij (both ϕ’s the same)

overlap integrals are also unity, since the basis functions are normalized (cf. Chap. 4,

Sect. 4.4.2).

In the Mulliken scheme each electron in ψ i is taken to contribute a “fraction of an

electron” c1i c1i S11 ¼ c21i to basis function ϕ1 and a fraction of an electron

2c1ic2iS12 (see Eq. (5.210)) to the ϕ1ϕ2 overlap region, and in general to contribute

a fraction of an electron c2ri to the basis function (loosely, the atomic orbital) ϕr on

an atom, and a fraction of an electron 2cricsiSrs to the ϕr/ϕs interatomic overlap
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space; see Fig. 5.39a. This seems reasonable since (1), the terms sum to one (the

“fractions” of the electron must add to one), and (2) it seems reasonable to partition

out the contribution of electrons to basis functions and to overlap regions from the

“electron density sum” in Eq. (5.210). Now if there are ni electrons in MO ψ i, then

the contributions of ψ i to the electron population of basis function ϕr and of

the overlap region between ϕr and ϕs are

nr, i ¼ nic
2
ri ð5:211Þ

fs1 fs2

b

nr / s2
nr / s1nr

(population due solely to fr) 

MO yi, formed from basis functions f1 and f2

a

– – –

–

–
–

–

–– –
–

–

fr fr

fr
fr fs

Fig. 5.39 The Mulliken scheme for partitioning electron density
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and

nr=s, i ¼ ni 2cricsiSrsð Þ ð5:212Þ

The total contributions from all the MOs to the electron population in ϕr and in

the overlap region between ϕr and ϕs are

nr ¼
X
i

nr, i ¼
X
i

nic
2
ri ð5:213Þ

and

nr=s ¼
X
i

nr=s, i ¼
X
i

ni 2cricsiSrsð Þ ð5:214Þ

The sums are over the occupied MOs, since ni¼ 0 for the virtual MOs. The

number nr is the Mulliken net population in the basis function ϕr, and the number

nr/s is the Mulliken overlap population for the pair of basis functions ϕr and ϕs.

The net population summed over all r plus the overlap population summed over all

r/s pairs equals the total number of electrons in the molecule.

The quantities nr and ns are used to calculate atom charges and bond orders. The

Mulliken gross population in the basis function ϕr is defined as the Mulliken net

population nr (Eq. (5.211)) plus one half of all those Mulliken overlap populations

nr/s (Eq. (5.212)) which involve ϕr (of course for some ϕs, nr/s may be negligible;

e.g. for well-separated atoms Srs is very small):

Nr ¼ nr þ 1

2

X
s 6¼r

nr=s ð5:215Þ

The gross population Nr is an attempt to represent the total electron population in

the basis function ϕr; this is considered here to be the net population nr, the
population that all the occupied MOs contribute to ϕr through the representation

of ϕr in each ψ i by its coefficient cri (Eq. (5.213), plus one-half of the all the

populations in the overlap regions involving ϕr (Fig. 5.39b). Assigning to ϕr

one-half, rather than some other fraction, of the electron population in an overlap

region with ϕs is said to be arbitrary. Of course it is not arbitrary, in the sense that

Mulliken thought about it carefully and decided that one-half was at least as good as

any other fraction. One might imagine a more elaborate partitioning in which the

fraction depends on the electronegativity difference between the atoms on which ϕr

and ϕs reside, with the more electronegative atom getting the larger share of the

electron population. To get the charge on an atom A we calculate the gross atomic
population for A:

NA ¼
X
r2A

Nr ð5:216Þ
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This is the sum over all the basis functions ϕr on atom A (r 2 A qualifying the

summation means “r belonging to A”) of the gross populations in each ϕr

(Eq. (5.215); it involves all the basis functions on A and all the overlap regions

these functions have with other basis functions ϕs. We can regard NA as the total

electron population on atom A (within the limits of the Mulliken treatment). The

Mulliken charge on atom A, the net charge on A, is then simply the algebraic sum

of the charges due to the electrons and the nucleus:

qA ¼ ZA � NA ð5:217Þ

The Mulliken bond order for the bond between atoms A and B is the total

population for the A/B overlap region:

bAB ¼
X

r, s2A,B
nr=s ð5:218Þ

The overlap population for basis functions ϕr and ϕs (Eq. (5.214)) is summed

over all the overlaps between basis functions on atoms A and B.

Since the formulas for calculating Mulliken charges and bond orders

(Eqs. (5.211), (5.212), (5.213), (5.214), (5.215), (5.216), (5.217), and (5.218))

involve summing basis function coefficients and overlap integrals, it is not too

surprising that they can be expressed neatly in terms of the density matrix

(Sect. 5.2.3.6.4) P and the overlap matrix S (Chap. 4, Sect. 4.3.3). The elements

of the density matrix P are (cf. Eqs. (5.208¼ 5.81))

Prs ¼ 2
Xn
i¼1

cricsi ð5:219Þ

The matrix element Prs is summed over all filled MOs (from ψ1 to ψn for the

ground electronic state of a 2n-electron closed-shell molecule); an example of the

calculation of P was given in Sect. 5.2.3.6.5. The elements of the overlap matrix

S are simply the overlap integrals:

Srs ¼
Z

ϕrϕsdv ð5:220Þ

From Eq. (5.219) it follows that the matrix (PS) obtained by multiplying

corresponding elements of P and S,

PSð Þ ¼
PSð Þ11 PSð Þ12 PSð Þ13 . . . PSð Þ1m
PSð Þ21 PSð Þ22 PSð Þ23 . . . PSð Þ2m
⋮ ⋮ . . . ⋮
PSð Þm1 PSð Þm2 PSð Þm3 . . . PSð Þmm

0
BB@

1
CCA ð5:221Þ

374 5 Ab initio Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_4
http://dx.doi.org/10.1007/978-3-319-30916-3_4


has elements

PSð Þrs ¼ PrsSrs ¼ 2
Xn
i¼1

cricsiSrs ð5:222Þ

Note that (PS) is not the matrix PS obtained by matrix multiplication of P and S;

each element of that matrix would result from series multiplication: a row of

P times a column of S (Chap. 4, Sect. 4.3.3).

The diagonal elements of (PS) are

PSð Þrr ¼ PrrSrr ¼ 2
Xn
i¼1

c2ri ð5:223Þ

Compare this with Eq. (5.213): for a ground-state closed-shell molecule there

are two electrons in each occupied MO and Eq. (5.213) can be written

nr ¼ 2
Xn
i¼1

c2ri ð5:224Þ

i.e.

nr ¼ PSð Þrr ð5:225Þ

The off-diagonal elements of (PS) are given by Eq. (5.222), r 6¼ s. Compare this

with Eq. (5.214): for a ground-state closed-shell molecule there are 2 electrons in

each occupied MO and Eq. (5.214) can be written

nr=s ¼ 2
Xn
i¼1

2cricsiSrsð Þ ð5:226Þ

i.e.

nr=s ¼ 2 PSð Þrs ð5:227Þ

Thus the matrix (PS) can be written

PSð Þ ¼
n1

1=2n1=2
1=2n1=3 . . . 1=2n1=m

1=2n2=2 n2
1=2n3=3 . . . 1=2n2=m

⋮ ⋮ . . . ⋮
1=2nm=1

1=2nm=2
1=2nm=3 . . . nm

0
BB@

1
CCA ð5:228Þ

The matrix (PS) (or sometimes 2(PS)) is called a population matrix.
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5.5.4.3 An Example of Population Analysis: H�He+

As a simple illustration of the calculation of atom charges and bond orders, consider

H�He+. From our ab initio Hartree-Fock calculations on this molecule

(Sect. 5.2.3.6.5) we have

P ¼ 0:2020 0:5097
0:5079 1:2864

� �
and S ¼ 1:0000 0:5017

0:5017 1:0000

� �
ð5:229Þ

Therefore PSð Þ ¼ 0:2020 0:2557
0:2557 1:2864

� �
ð5:230Þ

From Eq. (5.228), (PS) gives us

n1 ¼ 0:2020
n2 ¼ 1:2864
n1=2 ¼ n2=1 ¼ 2 0:2557ð Þ ¼ 0:5114

Charge on H, qH For this we need NH, the sum of all the Nr on H (Eqs. (5.216)

and (5.215)). There is only one basis function on H, ϕ1, so there is only one relevant

Nr for H, and for ϕ1 there is only one overlap, with ϕ2, so the summation involves

only one term, n1/2. Using Eq. (5.215):

Nr ¼ N1 ¼ nr þ 1

2

X
s6¼r

nr=s ¼ n1 þ 1

2
n1=2
� � ¼ 0:2020þ 1

2
0:5114ð Þ ¼ 0:4577

The sum of all the Nr on H has only one term, N1, since there is only one basis

function on H. Using Eq. (5.216):

NA ¼ NH ¼
X
r 2H

Nr ¼ N1 ¼ 0:4577

The charge on H, qH, is the algebraic sum of the gross electronic population and

the nuclear charge: (Eq. (5.217)):

qA ¼ qH ¼ ZH � NH ¼ 1� 0:4577 ¼ 0:5423

Charge on He, qHe For this we need NHe, the sum of all the Nr on He (Eq. (5.216).

There is only one basis function on He, ϕ2, so there is only one relevant Nr for He,

and for ϕ2 there is only one overlap, with ϕ1, so the summation involves only one

term, n2/1(¼ n2/1):

Nr ¼ N2 ¼ nr þ 1

2

X
s6¼r

nr=s ¼ n2 þ 1

2
n2=1
� � ¼ 1:2864þ 1

2
0:5114ð Þ ¼ 1:5421
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The sum of all the Nr on He has only one term, N2, since there is only one basis

function on He:

NA ¼ NHe ¼
X
r 2He

Nr ¼ N2 ¼ 1:5421

The charge on He, qHe, is the algebraic sum of the gross electronic population

and the nuclear charge:

qA ¼ qHe ¼ ZHe � NHe ¼ 2� 1:5421 ¼ 0:4579

The charges sum to 0.5423þ 0.4579¼ 1.000, the total charge on the molecule.

The less positive charge on helium is in accord with the fact that electronegativity

increases from left to right along a row of the periodic table. Charges for HHe+ from

bigger basis sets and other methods likewise give helium the smaller charge, but

make the distribution much more uneven, with ca. 0.8 on H and 0.2 on He.

H-He bond order For this we use Eq. (5.218); nr/s is summed for all overlaps

between basis functions on atoms A and B. There is only one such overlap, that

between ϕ1 and ϕ2, so

bAB ¼ bHHe ¼
X

r, s2A,B
nr=s ¼ n1=2 ¼ 2 0:2557ð Þ ¼ 0:5114

Note that the elements of the population matrix (PS) sum to the number of

electrons in the molecule: 0.2020þ 1.2864þ 0.2557þ 0.2557¼ 2.000. This is

expected, since the diagonal elements are the number of electrons in the “atomic

space” of the basis functions, and the off-diagonal elements are the number of

electrons in the overlap space of the basis functions. Bond orders for HHe+ from

bigger basis sets and other methods are similar, in the range 0.4–0.5. The higher

charge on hydrogen and the low bond order are consistent with a very low basicity

or proton affinity for a helium atom: G4 calculations on the equilibrium

HHeþ þ H2O ⇆ He þ H3O
þ

place the products (as written) 503 kJ mol�1 lower in free energy than the reactants,

corresponding to an equilibrium constant of ca. 1088 in favor of the protonation of

water.

The Mulliken approach to population analysis has problems; for example, it

sometimes assigns more than two electrons, and sometimes a negative number of

electrons, to an orbital. It is also fairly basis-set dependent (Hehre, Radom, Schleyer

and Pople compare Mulliken charges for a variety of molecules using the STO-3G,

3–21G(*) and 6–31G* basis sets: Ref. [1g], pp. 337–339). Partitioning half of the

electrons “arbitrarily” in the overlap region is not as serious as one might have

thought, because in a series of calculations a meaningful trend can emerge, even if

a charge or bond order taken in isolation is of dubious quantitative significance.
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No doubt Mulliken never intended his population analysis numbers to be of stand-

alone quantitative significance – see the comments on this in Chap. 6, Sect. 6.3.4.2.

Other approaches to manipulating basis function coefficients for partitioning elec-

trons among orbitals and thus calculating charges and bond orders are those of

Mayer [259] and L€owdin [260] and the natural population analysis (NPA) of

Weinhold [261]. One point of interest in the Mayer method is that it seems to be

the only one that assigns the hydrogen molecule ion, H •þ
2 , with one electron, the

intuitively sensible bond order of 0.5, rather than 0.25 [262]. Mayer bond orders

appear to have been used particularly in inorganic chemistry [263]. The most

popular method of population analysis now is probably Weinhold’s NPA, and the

favored atom charges are evidently those from NPA, and electrostatic potential

charges (next section). The methods of Mulliken, L€owdin and Weinhold are

explained and compared in more detail by Cramer [264], and those of Mulliken,

L€owdin and Mayer by Leach [265]. Atom charges have been calculated from IR

stretching intensities, and show generally good agreement with those from methods

based on electrostatic potential [266].

A fairly recent (2013), rather elaborate procedure for resolving the electron

distribution in molecules into orbitals that seem chemically more intuitively sensi-

ble than the delocalized canonical molecular orbitals (end of Sect. 5.2.3.1) is based

on the idea of “quasi-atomic” orbitals. These minimal-basis localized orbitals

resemble the orbitals of isolated atoms and “reveal the atomic structure and the

bonding pattern of a molecule” [267a]. This work rests largely on a series of papers

by Ruedenberg and coworkers, beginning with a conceptually deep and mathemat-

ically very elaborate exploration of how a wavefunction might be analyzed to

exhibit chemically useful information [267b]. Quasi-atomic orbitals have been

used to analyze the electron distribution in urea [267c] and the dissociation of

dioxetane, C2H4O2, into formaldehyde [267d]. For some purposes one may be

satisfied with interpreting electron distribution with the aid of the simpler methods

in this section: dipole moment, atom charges, bond orders, electrostatic potential,

and even atoms-in-molecules.

5.5.4.4 Electrostatic Potential

The electrostatic potential (ESP) is a measure of charge distribution that also

provides other useful information [268]. The electrostatic potential at a point P in

a molecule is defined as the amount of energy (work) needed to bring a unit point

positive “probe charge” (e.g. a proton) from infinity to P. It can be thought of as a

measure of how positive or negative the molecule is at P: a positive value at the

point means that the net effect experienced by the probe charge as it was brought

from infinity was repulsion, while a negative value means that the probe charge was

attracted to P, i.e. energy was released as it fell from infinity to P. The ESP at a

point is the net result of the effect of the positive nuclei and the negative electrons.

The calculation of the effect of the nuclei is trivial, following directly from the fact
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that the potential due to a point charge Z at a distance r away from the unit charge is,

at point P:

V Pð Þ ¼
Z1
r

Z � 1

r2
dr ¼ Z

r
ð5:231Þ

Thus the ESP created by the nuclei is

V Pð Þnuc ¼
X
A

ZA

rP � rAj j ð5:232Þ

where jrp � rAj is the distance from nucleus A to the point P, i.e. the absolute value

of the difference of two vectors. To obtain the expression for the ESP due to the

electrons, we can modify Eq. (5.232) by replacing the summation over the nuclei by

an integral over infinitesimal volume elements of the electron density or charge

density ρ(r) (see Sect. 5.5.4.5, Atoms-in-molecules). We get for the total ESP at P

V Pð Þtot ¼ V Pð Þnuc þ V Pð Þel ¼
X
A

ZA

rP � rAj j �
Z

ρ rð Þ
rP � rj jdr ð5:233Þ

The ESP at many points on the surface of the molecule can be calculated

(Sect. 5.5.6) and a set of atom charges then calculated to fit (by a least-squares

procedure) the ESP values, and also to sum to the net charge on the molecule (the

use of visualization of the ESP is discussed in Sect. 5.5.6). Values of Mulliken and

L€owdin bond orders, and Mulliken, natural and ESP atom charges, are compared in

Table 5.15, for hydrogen fluoride. We see that the Mulliken charges vary consid-

erably, but apart from the STO-3G values, the electrostatic charges vary very little,

Table 5.15 Comparing Mulliken, electrostatic potential and natural charges, and Mulliken and

L€owdin bond orders, at various levels, for hydrogen fluoride

charge on H (¼� charge on F) bond order

level Mulliken electrostatic natural Mulliken L€owdin

HF/STO-3G 0.19 0.28 0.23 0.96 0.98

HF/3–21G(*) 0.45 0.49 0.5 0.78 0.93

HF/6–31G* 0.52 0.45 0.56 0.72 0.82

HF/6–31G** 0.39 0.45 0.56 0.86 1.07

HF/6–311G** 0.32 0.46 0.54 0.95 1.32

6–31 +G* 0.57 0.48 0.58 0.64 0.75

6–311++G** 0.3 0.47 0.55 0.98 1.27

MP2/6–31G* 0.52 0.45 0.56 0.72 0.81

The geometry used in each case corresponds to the method/basis set for that charge or bond order,

but any reasonable geometry should give essentially the same results. There are no experimental

data!
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and the natural charges little, with the level of calculation. Bond orders, however,

are more sensitive to the level of calculation. The utility of charges and bond orders

lies not in their absolute values, but rather in the fact that a comparison of, say,

L€owdin charges or bond orders, calculated at the same level for a series of

molecules, can provide insights into a trend. For example, one might argue that

the electron-withdrawing power of a series of groups A, B, etc. could be compared

by comparing the C/C bond orders in A–CH¼CH2, B–CH¼CH2, etc. Bond orders

have been used to judge whether a species is free or really covalently bonded, and

have been proposed as an index of progress along a reaction coordinate [269].

5.5.4.5 Atoms-In-Molecules (AIM)

A method of population analysis that may be less arbitrary than any of those

mentioned so far is based on the theory of atoms in molecules, designated AIM,

or the quantum theory of atoms in molecules, QTAIM. This was developed by

Bader5 and coworkers, and is based on the mathematical partitioning of molecules

into regions which correspond to atoms. The concept may have developed from

Berlin’s ca. 1950 work on partitioning molecules into “binding” and “antibinding”

regions [270a], cited by Bader in a 1964 paper on electron distribution [270b]. The

first specific assertion that atoms in molecules in a sense retain their identities rather

than dissolving into a molecular pool of nuclei and electrons seems to have been

made even before the use of the terms encapsulated in the AIM or QTAIM

acronyms: in a 1973 paper by Bader and Beddall the question “are there atoms in

molecules?” was posed and answered in the affirmative [271]. An early review

(1975) proposed “a return to....’the atoms in molecules’ approach to chemistry”

(“return” in the sense of focussing on atoms rather than on bonds, which latter had

risen to supremacy with MO theory) and summarized the essential concepts of AIM

theory [272]. Bader reviewed the subject a decade later [273], and summarized it a

few years after that in his comprehensive 1990 book [274] and in a 1991 review

[275]. Popelier updated the subject in his 1999 book [276] and in the 2007 book

edited by Matta and Boyd, the ideas of Bader’s “classic 1990 treatise” are again

updated [277]. Bader simplified the derivation of the theory in seven pages opti-

mistically titled “Everyman’s Derivation of the Theory of Atoms in Molecules”

which he hoped would aid “its general acceptance by experimental chemists”

[278]. We now examine the theory and some applications.

The AIM approach rests on analyzing the variation from place to place in a

molecule of the electron density function (electron probability function, charge

density function, charge density), ρ. This is a function ρ(x, y, z) which gives the

variation of the total electron density from point to point in the molecule: ρ(x, y, z)
dxdydz¼ ρ(x, y, z)dv is the probability of finding an electron in the infinitesimal

5Richard Bader, born in Kitchener, Ontario, Canada, 1931. Ph.D. Massachusetts Institute of

Technology, 1958. Professor, University of Ottawa, 1959–1963, McMaster University,

1963–2012. Died Burlington, Ontario, 2012.
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volume dv centered on the point (x, y, z) (the probability of finding more than one
electron in dv is insignificant). This probability is the same as the charge in dv if we
take the charge on an electron as our unit of charge, hence the name charge density

for the electron density function ρ. Since ρdv has the “units” of probability, a pure
number, the function ρ logically has the units volume�1. However, the probability

we deal with here is the same as the number (or fraction) of electrons in dv, which is
the charge in dv in electronic units, so the units of ρ can be taken more physically

concretely as electrons volume�1 or charge volume�1. In atomic units this is

electrons bohr�3. The electron density function can be calculated from the

wavefunction. It is not, as one might have thought, simply jψj2, where ψ is the

multielectron wavefunction of space and spin coordinates (Sect. 5.2.3.1). This latter
is the probability function for finding in the region of (x, y, z) electron 1 with a

specified spin, electron 2 with a specified spin, etc., at points (x, y, z). The function ρ
is the number of electrons in the molecule times the sum over all their spins of the

integral of the square of the molecular wavefunction integrated over the coordinates

of all but one of the electrons [279]. We can write it in the condensed notation

ρ x, y, zð Þ ¼ n
X

all spins

Zn
2

ψ2dr2 . . . :drn ð5:234Þ

where r is vector notation for the coordinates of electrons. If we think of the

electrons as being smeared out in a fog around the molecule, then the variation of

ρ from point to point corresponds to the varying density of the fog, and ρ(x, y, z)
centered on a point P(x, y, z) corresponds to the amount of fog in the volume

element dxdydz¼ dv. Alternatively, in a scatterplot of electron density (charge

density) in a molecule, the variation of ρ with position can be indicated by varying

the volume density of the points. The electron density function ρ is the “density” in
density functional theory, DFT (Chap. 7). Let us look at some properties of ρ that

are relevant to AIM, the theory of atoms in molecules.

Consider first the electron density function ρ around an atom. As we approach

the nucleus this rises toward a maximum, or the negative of the electron density,

�ρ, falls toward a minimum (Fig. 5.40). Viewing the electron distribution in terms

of�ρ rather than ρ is useful because it more easily enables us to discern analogies

between the variation of ρ in a molecule (a ρ vs. location-in-molecule graph), and a

potential energy surface (PES, an energy vs. geometry graph), with which we are

familiar from Chap. 2. Examine the distribution of�ρ in a homonuclear diatomic

molecule X2 (Fig. 5.41). This shows a plot of�ρ vs. two of the three Cartesian

coordinates needed to assign positions to all the points in the molecule. The graph

retains the internuclear axis (by convention the z-axis) and one other axis, say y; the
molecule is symmetrical with respect to reflection in the yz plane. The negative of
the electron density, �ρ, dips toward a minimum at the atomic nuclei (ρ goes

toward a maximum), analogously to the occurrence of a minimum on a PES. The

analogy is not perfect, because the nuclei do not correspond to true stationary

points: the point is a cusp, where ∂ρ=∂q is discontinuous rather than zero (unlike

∂E=∂q for a stationary point on a PES; q is a geometric parameter) [280]. This is

not the death knell for our analogy, because there is always a function “similar” –
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Fig. 5.40 The distribution of electron density (charge density) ρ for an atom; the nucleus is at the

origin of the coordinate system. (a) Variation of ρ with distance from the nucleus. Moving away

from the nucleus ρ decreases from its maximum value and fades asymptotically toward zero.

(b) Variation of� ρ with distance from the nucleus; �ρ becomes less negative and approaches

zero as we move away from the nucleus. The� ρ picture is useful for molecules (Fig. 5.41)

because it makes clearer analogies with a potential energy surface. (c) A “4-D” picture (ρ vs. x, y,
z) of the variation of ρ in an atom: the density of the dots (number of dots per unit volume)

indicates qualitatively electron density ρ in various regions

–r

–r

y

z..

nucleus

.

saddle point

.

nucleusbond critical point

surface

Fig. 5.41 The distribution of the electron density (charge density) ρ for a homonuclear diatomic

molecule X2. One nucleus lies at the origin, the other along the positive z-axis (the z-axis is

commonly used as the molecular axis). The xz plane represents a slice through the molecule along

the z-axis. The� ρ¼ f(x, z) surface is analogous to a potential energy surface E¼ f (nuclear
coordinates), and has minima at the nuclei (maximum value of ρ) and a saddle point,

corresponding to a bond critical point, along the z axis (midway between the two nuclei since

the molecule is homonuclear)
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technically, homeomorphic – to ρ(x, y, z) for which the nuclear positions are

stationary points [280]. With the caveat that strictly speaking the derivatives

apply to the homeomorphic function, we can write:

∂ �ρð Þ
∂z

¼ 0,
∂ �ρð Þ
∂y

¼ 0,
∂ �ρð Þ
∂x

¼ 0 ð5:235Þ

and

∂2 �ρð Þ
∂z2

> 0,
∂2 �ρð Þ
∂y2

> 0,
∂2 �ρð Þ
∂x2

> 0 ð5:236Þ

Moving along the internuclear line we find a point in a saddle-shaped region,

analogous to a transition state, where the surface again has zero slope (all first

derivatives zero), and is negatively curved along the z-axis but positively curved in
all other directions (Fig. 5.41), i.e.

∂2 �ρð Þ
∂z2

< 0,
∂2 �ρð Þ
∂y2

> 0,
∂2 �ρð Þ
∂x2

> 0 ð5:237Þ

This transition-state-like point is called a bond critical point. All points at which the
first derivatives are zero (caveat above) are critical points, so the nuclei are also

critical points. Analogously to the energy/geometry Hessian of a potential energy

surface, an electron density function critical point (a relative maximum or mini-

mum or saddle point) can be characterized in terms of its second derivatives by

diagonalizing the ρ/q Hessian (q¼ x, y, or z) to get the number of positive and

negative eigenvalues:

ρ=q Hessian ¼
∂2ρ=∂x2 ∂2ρ=∂xy ∂2ρ=∂xz
∂2ρ=∂yx ∂2ρ=∂y2 ∂2ρ=∂yz
∂2ρ=∂zx ∂2ρ=∂zy ∂2ρ=∂z2

0
@

1
A ð5:238Þ

For the ρ/q surface of Fig. 5.41 the number of positive and negative eigenvalues

for a nuclear critical point are 3 and 0, and for a bond critical point, 2 and 1.

Thus for the ρ/q surface to which the Hessian of Eq. (5.238) refers (the

mirror image of the� ρ/q surface), the number of positive and negative eigenvalues

is, respectively, 0 and 3 (for a nucleus), and 1 and 2 (for a bond critical

point). The behavior of the second derivative of ρ, the Laplacian of

ρ, ∂2
=∂x2 þ ∂2

=∂y2 þ ∂2
=∂z2

� �
ρ ¼ ∇2ρ, is a key concept in AIM theory.

The minimum-(�ρ) path (maximum ρ path) from one X nucleus to the other is

the bond path; with certain qualifications this can be regarded as a bond. It is

analogous to the minimum-energy path connecting a reactant and its products,

i.e. to the intrinsic reaction coordinate. Such a bond is not necessarily a straight
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line: in strained molecules it may be curved (bent bonds). The bond passes through

the bond critical point, which for a homonuclear diatomic molecule X2 is the

midpoint between of the internuclear line. Now consider Fig. 5.42, which shows

in the X2 molecule another characteristic of the electron density function. The

contour lines represent electron density, which rises as we approach a nucleus

and falls off as we go to and beyond the van der Waals surface. If it is true that

the molecule can be divided into atoms, then for X2 the dividing surface S

(represented as vertical lines in Fig. 5.42) must lie midway between the nuclei,

with the internuclear line being normal to S and meeting S at the bond critical point.

The electron density defines a gradient vector field, the totality of the trajectories
each of which results from starting at infinity and moving along the path of steepest

increase in ρ. Figure 5.42 shows that only two of the trajectories (of those in the

plane of the paper) that originate at infinity do not end at the nuclei; these end at

the bond critical point. These two trajectories define the intersection of S with the

plane of the paper. None of the trajectories cross S, which is thus called a zero-flux
surface (the gradient vector field is analogous to an electric field whose “flux lines”

point along the direction of attraction of a positive charge toward a central negative

charge). Because X2 is homonuclear, the zero-flux surface S is a plane. For a

molecule with different nuclei, the zero-flux surfaces are curved, convex in one

direction, concave in the other (Fig. 5.43). The space within a molecule bounded by

one (for a diatomic molecule) or more zero-flux surfaces is an atomic basin. Away
from the nuclei toward the outside of the molecule the basin extends outward to

C
X X

S

Fig. 5.42 Contour lines for ρ, the electron density distribution, in a homonuclear diatomic

molecule X2. The lines originating at infinity and terminating at the nuclei and at the bond critical

point C are trajectories of the gradient vector field (the lines of steepest increase in ρ; two
trajectories also originate at C). The line S represents the dividing surface between the two

atoms (the line is where the plane of the paper cuts this surface). S passes through the bond critical

point and is not crossed by any trajectories
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infinity, becoming shallower as the electron density fades toward zero. The nucleus

and the electron density in an atomic basin constitute an atom in a molecule. Even

for molecules other than homonuclear diatomics, atoms are still defined by atomic

basins partitioned off by unique zero-flux surfaces, as illustrated in Fig. 5.43.

In the AIM method, the charge on an atom is calculated by integrating the

electron density function ρ(x,y, z) over the volume of its atomic basin. The charge is

the algebraic sum of the electronic charge and the nuclear charge (i.e. the atomic

number of the nucleus minus the number of electrons, which could be fractional, in

the basin). An AIM bond order can be defined in terms of the electron density ρb at
the bond critical point, and the bond order bAB for two particular atoms A and B is

then defined by an empirical equation obtained by fitting ρb to a few accepted A–B

bond orders [281]. For example, for nitrogen/nitrogen bonds a linear equation

bAB¼ aNNρbþ bNN correlates bAB and ρb for, say, H2N–NH2,HN¼NH and N
N;

from this equation bond orders can be assigned to other nitrogen/nitrogen bonds

from their ρb values. AIM bond orders seem surprisingly empirical in contrast to the

general spirit of the theory, but this may be because of the need to connect the

rigorous mathematical nature of the continuous electron density function with the

discrete (1, 2, 3, . . .) concept of bond order.

The main application of AIM has been to investigate whether, in questionable

cases, there really is a bond between certain atoms. Fairly recent (2006–2009)

examples of this are studies of: the differences between results from AIM and from

other methods of population analysis [282], hydrogen bonding to π-donors [283],
hydrogen bonding to σ-donors [284], and secondary interactions (i.e. weak bond-

ing) in Diels-Alder reactions [285]. Other recent applications are studies of strain

S

C

A B

Fig. 5.43 Heteronuclear (as well as homonuclear; cf. Fig. 5.42) molecules can be partitioned into

atoms. S represents a slice through the zero-flux surface that defines the atoms A and B in a

molecule AB. The lines with arrows are the trajectories of the gradient vector field. S passes

through the bond critical point C and is not crossed by any trajectory lines
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energies in small rings [286] and of electron distribution in protonated

nitriles [287].

AIM theory and applications, and the inextricable question of the virtues and

defects of the wavefunction versus the electron density, have engendered an

entertaining series of polemics. Frenking censured Gillespie and Popelier for

being enamored with electron density and slighting wavefunctions [288], eliciting

a spirited reply from those authors [289] and then a defence of his review by

Frenking [290]. Bader jumped into the fray with a rather spirited appeal to funda-

mental physics, defending what he took to be Schr€odinger’s prescient view that the

wavefunction should be regarded as a mathematical abstraction en route to the

electron density [291] (a more sedate defence of AIM calculation of atom charges

rebutted criticisms of charges as being not observable or not unique [292]). A return

to polemics was seen when Kovacs et al. [293] allegedly used “wrong physics”

[294] in interpreting the Laplacian of the electron density. This educed a rebuke of

(in a certain context at least) “orthodox understanding of physics” and an assertion

that “Chemical research begins where the physics of Richard Bader ends.”
[295]. Another, almost anticlimactic, thread sprung from an AIM analysis by

Bader and coworkers that inferred bonding between ortho-hydrogens in planar

biphenyl [296]. This was criticised by Poater et al. [297], defended by Bader

[298], and again criticised by Poater et al. with an interesting reference to the

apparent (according to AIM) bonding of helium trapped in an adamantane

cage [299].

There are many technical terms, qualifications, and fine points which could not

be gone into here. The reader will gather that the correct use of the AIMmethod can

be tricky, and one is urged to consult review papers and books for more details, and

to proceed with caution, especially if one is sensitive to criticism.

5.5.5 Miscellaneous Properties–UV and NMR Spectra,
Ionization Energies, and Electron Affinities

A few other properties that can be calculated by ab initio methods are briefly

treated here.

5.5.5.1 UV Spectra

Ultraviolet spectra result from the promotion of an electron in an occupied MO of a

ground electronic state molecule into a virtual MO, thus forming an electronically

excited state [300] (excited state-to-excited state spectra are not much studied by

experimentalists). Calculation of UV spectra with reasonable accuracy requires

some method of dealing with excited states. Simply equating energy differences

between ground and excited states with hn does not give satisfactory results for the
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absorption frequency/wavelength, because the energy of a virtual orbital, unlike

that of an occupied one, is not a good measure of its energy (of the energy needed to

remove an electron from it; this is dealt with in connection with ionization energies

and electron affinities) and because this method ignores the energy difference

between a singlet and a triplet state.

Electronic spectra of modest accuracy can be calculated by the configuration

interaction CIS method (Sect. 5.4.3) [301]. Compare, for example, the UV spectra

of methylenecyclopropene calculated by the CIS/6–31þG* method (diffuse func-

tions appear to be desirable in treating excited states, as the electron cloud is

relatively extended) with the experimental spectrum, in Table 5.16. The geometry

used is not critical; here HF/6–31G* was employed, but the AM1 geometry

(a semiempirical method, Chap. 6, far faster than ab initio) gave essentially the

same UV. The agreement in wavelength is not particularly good for the longest-

wavelength band, although this result can be made more palatable by noting that

both calculation and experiment agree reasonably well on relative intensities, if we

take the two calculated bands not observed to correspond to the strong band seen at

206 nm. The CIS approach to excited states has been said [302] to be analogous to

the Hartree-Fock approach to ground states in that both give at least qualitatively

useful results. Better results are sometimes obtained by semiempirical methods like

ZINDO (Chap. 6) or density functional methods like TDDFT (Chap. 7).

5.5.5.2 NMR Spectra

NMR spectra result from the transition of an atomic nucleus in a magnetic field

from a low-energy to a high-energy state [236]. There are two aspects to the

quantum-mechanical calculation of NMR spectra [303]: calculation of shielding

(chemical shifts) and calculation of splitting (coupling constants). Most of the

computational work on NMR spectra has focussed on calculating the shielding

(magnetic field strength needed for the transition relative to that needed for some

reference) of a nucleus. This requires calculation of the magnetic shielding of the

nuclei of the molecule of interest, and of the reference nuclei, usually those of

tetramethylsilane, TMS. The chemical shift of (e.g.) the 13C or 1H nucleus is then its

Table 5.16 Calculated and experimental UV spectra of methylenecyclopropene, using the RCIS/

6–3+G* method on the HF/6–31G* geometry

Calculated Experimental

wavelength (nm) Relative intensity wavelength (nm) Relative intensity

222 15 309 13

209 7 242 0.6

196 0 206 100

193 9

193 100

The procedure and the experimental values are given in reference [1e], Chap. 9
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(absolute) shielding value minus that of the TMS 13C or 1H nucleus. The theory

behind the calculation of shielding and splitting has been reviewed [303]. NMR

chemical shifts can be calculated with remarkable accuracy even at the Hartree-

Fock level [304], and good results were obtained for 13C, 15N, and 17O nuclei even

using HF/6–31G*, although density functional calculations gave smaller errors

[305]. More advanced calculations, considering electron correlation and even

relativity, and biochemical applications (the binding of 129Xe to proteins), have

been reviewed [306]. Highly accurate “near quantitative agreement with experi-

mental gas-phase values. . .” were achieved by highly correlated (CCSD and CCSD

(T)) methods with big basis sets on methanol [307]. Such elaborate calculations on

a very small molecule are valuable as theoretical benchmarks rather than practical

methods, and near the other extreme, a study of (possibly pharmacologically

relevant?) chloropyrimidines in solution tackled the “accuracy vs. time dilemma”

and compared ab initio and density functional 13C and 1H chemical shifts with

results from database programs [308]. The latter method of obtaining shift values

relies on comparing the locations of the various nuclei in one’s molecule with the

locations and experimental shifts of nuclei in a large library of molecules. With a

judicious comparison algorithm, good results can be obtained (references in [308]).

One conclusion of this study was that “Unlike 13C chemical shifts, high correlated

levels of theory and large basis sets are equally very important for the accurate

prediction of proton chemical shieldings.” Nevertheless, if high accuracy is not

demanded, then as stated above [304, 305] useful results can be obtained at modest

levels. This is clearly shown in Fig. 5.44; particularly interesting is the nice

replication of the remarkable shielding effect of the benzene ring in [7]

paracyclophane [309]. In this connection, the calculation of NMR spectra has

become an important tool in probing aromaticity [156] and antiaromaticity [174],

using the NICS (nucleus-independent chemical shift) test [310].

NMR splitting (obtaining coupling constants) is harder to calculate than

shielding (chemical shifts), because it requires “calculation of the response of

the wave function with respect to the full set of nuclear magnetic moments” and

“is a much more expensive undertaking than the evaluation of all the shielding

constants.” [303]. The subject has been treated in a review which concurs that

“Accurate calculation of spin-spin coupling constants is a difficult task” [311].

5.5.5.3 Ionization Energies and Electron Affinities

Ionization energies (the term is preferred to the older one, ionization potentials) and

electron affinities are related in that both involve transfer of an electron between a

molecular orbital and infinity: in one case (IE) we have removal of an electron from

an occupied orbital and in the other (EA) addition of an electron to a virtual (or a

half-occupied) orbital. The IE for an orbital (or an atom or molecule) is defined as

the energy needed to remove an electron from the entity to infinite separation, while

the EA of an orbital (or an atom or molecule) can be defined as the energy released

when the it accepts an electron from infinity [312]. Molecules often don’t have
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a “real” electron affinity, frequently ejecting an added electron spontaneously.

The term IE when applied to a molecule means the minimum energy needed to

remove an electron to infinity, i.e. to form the radical (for an originally closed-shell

molecule) cation. The IE of a “stable” species, i.e. any molecule or atom that can

exist (a relative minimum on the potential energy surface), is always positive. The

EA of a molecule as defined above is positive if the accepted electron is bound,

i.e. if it is not spontaneously ejected; if the new electron is ejected in microseconds

or less (is unbound), the molecule has a negative EA (is a “resonance state”–this has

C

C C

H H

HH

O

210.8
199.8
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Fig. 5.44 Calculated and experimental 1H and 13C NMR spectra: chemical shifts relative to TMS

H and C, respectively. The calculations were done on the B3LYP/6–31G* geometry (B3LYP is a

density functional method; Chap. 7) at the HF/6–311+G(2d,p) and HF/6–31G* levels using the

default NMR method (GIAO) implemented in Gaussian 94W [199]. The experimental values are

from Ref. [236], except for the values for [7]paracyclophane [309]. The larger basis set may be

somewhat more accurate (note acetone CO 13C), but takes longer. Compare with Chap. 7, Fig. 7.9
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nothing to do with the term resonance as in a resonance hybrid). These quantities

are commonly given in eV, electron volts; 1 eV¼ 96.485 kJ mol�1¼
0.03675 hartrees, 1 hartree¼ 27.212 eV. A typical IE for an organic molecule is

8–9 eV (e.g. benzene 9.24 eV), which is ca. 800 kJ mol�1 or about twice the energy

of a typical covalent bond. For a positive EA a reasonable value might be ca. 2 eV

(1,4-benzoquinone, 1.9 eV).

IEs and EAs may be vertical or adiabatic: the energy difference between the

precursor molecule M1 and the species M2 formed by removing or adding an

electron gives the vertical value if M2 is at the same geometry as M1, while the

adiabatic value is obtained if M2 has its own actual, relaxed, equilibrium geometry.

Since the equilibrium geometry of M2 is clearly of lower energy than the unrelaxed

geometry corresponding to M1, vertical IEs are larger than adiabatic, relaxed, IEs,

and vertical EAs are smaller than adiabatic EAs. Experimental IEs and EAs may

be vertical or adiabatic, depending on how fast the ionization process is; see the

discussion by Gross [313]. Compilations of IEs and EAs sometimes do not state

explicitly whether their listed values are adiabatic or vertical; a welcome exception

is the book by Levin and Lias [314]. Many IEs and EAs are available on the

worldwide web, e.g. [206a], and a good brief discussion of these, including various

measurement techniques, is to be found in the compilation by Lias et al. [206b]. The

review by Rienstra-Kiracofe et al. lists many EAs [312b]. The vertical values ought

to be of more interest to chemists, since these represent a more inherent property

of the molecule (see Koopmans’ theorem below) than the adiabatic, the latter

being the energy difference between a neutral and a cation after its geometric

reorganization. The initial cation may even rearrange to a species with quite a

different structure.

Ionization energies and electron affinities can be calculated simply as the energy

difference between the neutral and the ion. Approximate IEs can be obtained by

applying Koopmans’ (not Koopman’s) theorem [315], which says that the energy

required to remove an electron from an orbital is the negative of the orbital energy.

Thus the IE of a molecule is approximately the negative of the energy of its HOMO

(the principle does not work as well for ionization of electrons more tightly bound

than those in the HOMO). This makes it simple to obtain approximate IEs for

comparison with photoelectron spectroscopy [316] results. Unfortunately, the prin-

ciple does not work well for EAs: the EA of a molecule is not reasonably well

approximated as the negative of the LUMO energy. In fact, ab initio calculations

normally give virtual MOs (vacant MOs) positive energies, implying that molecules

will not accept electrons to form anions (i.e. that they have negative EAs), which is

sometimes false. Koopmans’ theorem works because of a cancellation of errors in

the IE case (which actually leads to modest overestimation of the IE) but not for

EAs. Errors arise from approximate treatment of electron correlation, and from the

fact that when an electron is removed from or added to a molecule electronic

relaxation (not to be confused with geometry relaxation) occurs. A further problem

for EAs is that the procedure for minimizing the energies of MOs (Sect. 5.2.3.4)

gives, within the limits of the HF procedure and the basis set, the best occupied, but
not the best virtual, MOs.
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Some calculated and experimental [314, 317] IEs are given in Table 5.17, based

on the raw data in Table 5.18. Because of the problem of assigning a meaningful

ZPE to a non-stationary state structure like the unrelaxed cation at the neutral

geometry (Chap. 2, Sect. 2.5), the cation and neutral energies used for the vertical

IEs do not include ZPE. The calculations (experimental data are sparse) indicate

vertical IEs to be indeed slightly (about 0.2 eV) higher than adiabatic. The

HF/6–31G*ΔE values underestimate the IE by about 1� 1.5eV while MP2(fc)/

6–31G*ΔE values underestimate it by only about 0.1� 0.4 eV (others have

reported them to be generally too low by 0.3–0.7 eV [318]). The Koopmans’
theorem (�HOMO) energies for both the HF and MP2 level calculations are

about 1� 1.5 eV too high. Electron affinities (which seem to be generally of less

interest than ionization energies) can be calculated as the energy difference between

the neutral molecule and its anion. High-accuracy adiabatic IEs and EAs can be

calculated by multistep high-accuracy methods (Sect. 5.5.2.3.2); the convenient

procedures implemented for these methods in the Gaussian programs do not allow

calculation of vertical values since the geometry of the ion will be automatically

optimized. Better-calculated IEs than those from the ab initio methods in

Tables 5.17 and 5.18, and good EAs, can be obtained with density functional

methods (Chap. 7).

The subject of electron affinity leads to a closer look at the concept of the lowest

unoccupied molecular orbital (LUMO) than has so far been considered. Although

this idea is used even in elementary presentations of molecular electronic theory, it

is not easy to attach a simple, precise meaning to it, even apart from the question of

the reality of the orbitals used to construct the overall molecular wavefunction from

basis functions in the “orbital approximation” (Sect. 5.2.3). From a practical,

operational viewpoint the highest occupied molecular orbital (HOMO) is a reason-

able approximation to the experimentally measurable ionization energy. In contrast,

the LUMO as calculated by all standard methods is not a reasonable quantitative

approximation to anything. Further, while the HOMO can be qualitatively envis-

aged as a region of space occupied by one or two electrons of definite energy, the

LUMO is only a region potentially available to an electron. Schmidt et al. even refer

to the traditional LUMO as “hypothetical” in contrast to “the much more concrete

Table 5.17 Some ionization energies (eV). The basis set is 6–31G*; the calculations are based on

the data in Table 5.18

IE from ΔE IE from Koopmans’ theorem Exp.

HF MP2(fc) HF MP2(fc)

CH3OH adiabatic 9.38 10.57 – – 10.9

CH3OH vertical 9.66 10.79 12.06 12.12 10.95

CH3SH adiabatic 8.34 8.97 – – 9.44

CH3SH vertical 8.38 9.03 9.69 9.69 (sic) –

CH3COCH3 adiabatic 8.19 9.63 – – 9.71, 9.74

CH3COCH3 vertical 8.37 9.78 11.07 11.19 9.5, 9.72

The experimental values are from Ref. [314], except for CH3SH [317]
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highest occupied molecular orbital”, and assert that the “poor connection between

the LUMO concept and the lowest empty canonical orbital” although well recog-

nized by theoretical chemists, is less well understood in the wider chemical

community [319a]. These observations were the impetus for these workers to

devise valence virtual orbitals (VVOs), which they present as “an unambiguous

ab initio quantification of the LUMO concept” [319a]. VVOs are said to have

sensible energies and realistic shapes, to be nearly independent of the basis set,

and to provide excellent starting orbitals for multireference computations. The

procedure involves constructing from the “large sea” of canonical virtual orbitals

(Sect. 5.2.3.1) a set of unoccupied molecular orbitals with the characteristics

specified for VVOs. In density functional theory (Chap. 7) in contrast to ab initio

Table 5.18 The raw data for Table 5.17: energies, ZPEs and HOMO values, for calculating

ionization energies

HF/6–31G* MP2(fc)/6–31G*

CH3OH �115.03542 �115.34514

0.05055 0.05086

�114.98487 �115.29528

CH3OH
.+ cation geom. �114.68722 �114.95358

0.04723 0.04665

�114.63999 �114.90693

CH3OH
.+ neutral geom. �114.6804 �114.94849

CH3OH, HOMO �0.44328 �0.44526

CH3SH �437.70032 �437.95267

0.04534 0.04621

�437.65498 �437.90646

CH3SH
.+ cation geom. �437.39316 �437.62211

0.04468 0.04526

�437.34848 �437.57685

CH3SH
.+ neutral geom. �437.39227 �437.62089

CH3SH, HOMO �0.35596 �0.35627

CH3COCH3 �191.96224 �192.52391

0.08214 0.08309

�191.88010 �192.44082

CH3COCH3
.+ cation geom. �191.65994 �192.16837

0.08071 0.08128

�191.57923 �192.08709

CH3COCH3
.+ neutral geom. �191.65451 �192.16448

CH3COCH3, HOMO �0.40692 �0.41119

The numbers are hartrees, and represent (other than the HOMO energies): for the neutrals and the

cations at the cation geometry, uncorrected ab initio energy, ZPE, and corrected ab initio energy.

The ZPEs shown have been multiplied [80] by 0.9135 (HF) or 0.9670 (MP2(fc)). For the cations at

the neutral geometry, ZPE was not used and is not shown. Adiabatic IE¼E(cation)�E(neutral),
both corrected for ZPE. Vertical IE¼E(cation)�E(neutral), both without ZPE. Hartrees were

converted to eV in Table 5.17 by multiplying by 27.2116
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wavefunction methods, van Meer et al. reported that the Kohn-Sham orbitals

for hypothetical noninteracting electrons, calculated in a certain way, can show

characteristics similar to those just mentioned for VVOs [319b].

Another case of orbital ambiguity is the assignment of occupied orbitals

as bonding or antibonding, which may not be obvious in complex molecules.

Robinson and Alexandrova showed that the bonding nature of orbitals is revealed

by their energetic response to compression (or stretching) [320]. They tested the

effect on the eigenvalues of orbitals of compressing or expanding the molecule,

preserving symmetry. Squeezing atoms together tends to lower the energy of a

bonding orbital, and stretching the interatomic distance tends to raise the energy;

electrons in antibonding orbitals show the opposite effect. This is intuitively

reasonable, as the effect (bonding or antibonding) of the electrons in the orbital

on the relevant atoms should be more pronounced, the less separated the atoms are.

5.5.6 Visualization

Modern computer graphics have given visualization, the pictorial presentation of

the results of calculations, a very important place in science. Not only in chemistry,

but in physics, aerodynamics, meteorology, and even mathematics, the remarkable

ability of the human mind to process visual information is being utilized [321].

Gone are the days when it was de rigeur to pore over tables of numbers to

comprehend the factors at work in a system, whether it be a galaxy, a supersonic

airliner, a thunderstorm, or a novel mathematical entity. We will briefly examine

below the role of computer graphics in computational chemistry, limiting ourselves

to molecular vibrations, van der Waals surfaces, charge distribution, and molecular

orbitals.

With due respect to the tremendous power of virtual models on a computer

screen or within virtual reality glasses [322], I feel it worthwhile to add, with a

small apology (for this is a book on computational chemistry) that real molecular

models which you can hold and examine still have a place in chemistry. Professor

Roald Hoffmann has cautioned against slavish adherence to computer graphics and

commended traditional molecular models, saying there is no substitute to “running

one’s hands” over a molecular model and experiencing the “visual-tactile link [that

is] so important for establishing three-dimensionality in our minds....What I believe

is that the two generations of chemists who have seen molecules only on a screen

are missing something in their three-dimensional perception. The visual-tactile link

is so strong, and so direct – when we handle a model of a molecule in our hands as

we struggle to draw down on paper, in some primitive visual code its structure, the

molecule’s three-dimensionality forever enters our mind. As long as we are alive

we will see it and feel it”.6 Hoffmann and Laszlo point out that for most chemists

6R. Hoffmann, personal communication, 2009 August 12.
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“the real, physical handling of models” imprints better the “full glory” of a three-

dimensional structure than do the (possibly somewhat problematically) direct

results of, say, X-ray crystallography [323].

5.5.6.1 Molecular Vibrations

Animation of normal-mode frequencies usually readily enables one to ascribe a

band in the calculated vibrational (i.e. IR) spectrum to a particular molecular

motion (a stretching, bending, or torsional mode, involving particular atoms). It

sometimes requires a little ingenuity to describe clearly the motion involved, but

animation is far superior to trying to discern the motion by the presumably now

obsolete method of examining printed direction vectors (Chap. 2, Sect. 2.5; these

show the extent of motion in the x, y, and z directions). Useful, however, are the

direction vectors that some programs, GaussView [324] for example, can attach as

arrows to a picture of the molecule, catching the vibration in the act so to speak.

Animating vibrations is useful not only for predicting or interpreting an IR

spectrum; it can be extremely valuable in probing a potential energy surface.

Suppose we wish to locate computationally the intermediate through which the

chair conformers of cyclohexane interconvert 1 � 10, Fig. 5.45). This reaction,

although degenerate, can be studied by NMR spectroscopy [325]. One might

surmise that the intermediate is the boat conformation 2, but a geometry

1

2

3 3'

4 4'

1'

energy

C2v

Cs
Cs

D2 D2

D3d
D3d

Fig. 5.45 One might have guessed that the chair cyclohexane conformations 1 and 10 are

connected by a boat-shaped intermediate 2. However, this C2v structure shows an imaginary

frequency: it is a transition state which wants to twist toward 3 (arrows) or 30 (arrows in opposite

directions, not shown), which are the actual intermediates (no imaginary frequencies) between

1 and 10. The chair conformation reaches the twist via a half-chair 4
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optimization and frequencies calculation on this C2V structure (note that in a

quantum mechanical calculation, whether ab initio or otherwise, the input symme-

try is normally preserved) followed by animation of the vibrations, shows other-

wise. There is one imaginary vibration (Chap. 2, Sect. 2.5), and this transition state

wants to escape from its saddle point by twisting to a D2 structure 3, called the twist

or twist-boat, which latter is the true intermediate. The enantiomeric twist structures

3 and 30 go to 1 and 10, respectively, over a high-energy form 4 (or 40) called the

half-chair. A geometry optimization starting with a D2 structure leads to the desired

relative minimum. Similarly, if one obtains a second-order saddle point (one kind of

hilltop), animation of the two imaginary frequencies often indicates what the

species seeks to do to escape from the hilltop to a become a first-order saddle

point (a transition state) or a minimum, and it is often possible to obtain the desired

transition state or minimum by altering the shape of the input structure so that it has

the symmetry and approximates the shape of the desired structure.

In this connection another example (E. Lewars, unpublished) is provided by

cyclopropylamine (Fig. 5.46). At the B3LYP/6–31G* level (a density functional

H
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Fig. 5.46 Cyclopropylamine conformations at the B3LYP/6–31G* level. Structure 3 is a hilltop

whose two imaginary frequencies indicate that it wants to undergo nitrogen pyramidalization and

rotation about the C–N bond to form the transition states (nomenclature: ts 1/2 connects 1 and 2,
etc.) and, eventually, the minima. Each C1 species has an enantiomer of the same energy
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method, Chap. 7), apart from enantiomers five stationary points were found: two

minima, two transition states, and one hilltop. The structure 3 is a hilltop whose two

imaginary frequencies indicate that it wants to undergo nitrogen pyramidalization

and rotation about the C-N bond to form other conformations. Removing the

stricture of a planar nitrogen without further disturbing the structure, and optimiz-

ing, yields the relative minimum 2. Rotating the planar N around the C-N bond to

the alternative Cs structure and optimizing gives the global minimum 1. The

transition states were found by allowing the transition state algorithm to operate

on input structures lying structurally between the two relevant minima. The exper-

imental gas-phase structure of cyclopropylamine, from electron diffraction, corre-

sponds to 1 [326].

5.5.6.2 Electrostatic Potential

Electrostatic potential (ESP), the net electrostatic potential energy (roughly, the

charge) due to nuclei and electrons was mentioned in Sect. 5.5.4 in connection with

calculation of atom charges. The ESP can be displayed (visualized) by (a) showing

it with contour lines on a slice through the molecule, by (b) displaying it as a surface

itself, or by (c) color-coding it onto the van der Waals surface; the three possibilities

are shown for the water molecule in Fig. 5.47. Color-coding (mapping) the ESP

onto the surface of the molecule enables one to see how an approaching reagent

would perceive the charge distribution. Showing the ESP as a surface residing in the

region of space where the net charge is negative gives a very useful picture of those

parts of a molecule where the electrostatic effect of the electrons wins out over that

of the nuclei; this is a particularly good way of seeing the presence of lone pairs, as

Fig. 5.48, also, makes clear. Note that in Fig. 5.47a and b (slice, and depicting the

ESP itself as a surface) the lone pairs do not stick out like rabbit ears [327]. This is

because as electron density which can be ascribed to one orbital falls off, that due to

Fig. 5.47 Distribution of net charge in the water molecule (electrostatic charge, calculated with

AM1–Chap. 6). Negative to positive: red to blue R O Y G B). (a) Slice through the plane of the

molecule; the contour lines show the decrease in net negative charge. (b) Charge in space; this

corresponds essentially to the lone pairs. (c) Charge mapped on the van der Waals surface
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another increases: there is no “electron hole” between the two lone pairs (for the

same reason the electron density cross section through a σ-π double bond is

elliptical and through a σ-π-π triple bond circular; see Chap. 4, Sect. 4.3.2).

Showing the ESP as a surface made clear that the remarkable cycloalkane

pyramidane [45] has a lone pair, like the carbene CH2 (Fig. 5.48). Depicting the

ESP by contour lines on a slice through the molecule reveals its internal structure,

but sometimes more relevant to reactivity is the picture seen by mapping it onto the

van der Waals surface, because this is the picture presented to the outside molecular

world. Examining the ESP interactions between a molecule and the active site of an

enzyme can be important in drug design [110]. Various applications of the ESP are

discussed by Politzer and Murray [328] and Brinck [267a]. The ESP at any point on

the van der Waals surface can be assigned a quantitative value, namely the energy

needed to move a charge (say, a proton) from infinity to that point, and some

programs will calculate the ESP at any point on the surface on which one clicks

with the mouse.

5.5.6.3 Molecular Orbitals

Visualization of molecular orbitals shows the location of those regions where the

highest-energy electrons are concentrated (the highest occupied MO, the HOMO),

and those regions which offer the lowest-energy accommodation to any donated

electrons (the lowest unoccupied MO, the LUMO). Electrophiles should bond to the

atom where the HOMO is “strongest” (where the electron density due to the

highest-energy electron pair is greatest) and nucleophiles to the atom where the

LUMO is strongest, at least as seen on the van der Waals surface by an approaching

Fig. 5.48 The hydrocarbon pyramidane, C5H4, evidently (pyramidane has not been synthesized)

has a lone pair of electrons on its pyramidal carbon atom, like carbene (methylene), CH2. While

the lone pair on CH2 is no surprise (draw the Lewis structure for the singlet), a cycloalkane with an

unshared electron pair is remarkable
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reagent. The information provided by inspection of the HOMO and LUMO (the

frontier orbitals) is thus somewhat akin to that given by visualizing the ESP

(electrophiles should tend to go to regions of negative ESP, nucleophiles to regions

of positive ESP). Figure 5.49 shows the LUMOs of the ketones norcamphor and

camphor, mapped onto their van der Waals surfaces. For norcamphor (Fig. 5.49a),

the prominence of its LUMO at the carbonyl carbon as seen from the “top” or exo
face (the face with the CH2 bridge) rather than the bottom (endo) face, suggests that
nucleophiles should attack from the exo direction. In accord with this, hydride

donors, for example, approach from the exo face to give mainly the endo alcohol.

For camphor (Fig. 5.49b), where the bridge is CH(CH3)2 instead of CH2, the exo
face is shielded by a CH3 group which sterically thwarts the electronically preferred

attack from this direction, and so nucleophiles tend to approach rather the endo face
(a fact which could be nicely depicted by visualizing simultaneously the LUMO and

the van der Waals surface) [329].

Figure 5.50 shows three related molecules, the 7-methyl substituted (the visual

orbital progression explained here is not quite as smooth for the unsubstituted

molecules) derivatives of the 7-norbornyl cation (a), the neutral alkene norbornene

(b), and the 7-norbornenyl cation (c) (the Chemical Abstracts names are, respec-

tively, the bicyclo[2.2.1]hept-7-yl cation, bicyclo[2.2.1]hept-2-ene, and the bicyclo

[2.2.1]hept-2-ene-7-yl cation). For each species an orbital is shown as a 3D region

of space, rather than mapping it onto a surface as was done in Fig. 5.49. In (a) we

see the LUMO, which is as expected essentially an empty p atomic orbital on C7,

Fig. 5.49 (a) Norcamphor, with the LUMO mapped onto the van der Waals surface. The LUMO

as seen on the surface is most prominent at the carbonyl carbon, on the “top” of the molecule (the

exo face), as shown by the blue area. Viewed from the bottom of the molecule (not shown here),

the LUMO still lies at the C¼O carbon, but is less prominent (the blue is less intense). We can thus

predict that nucleophiles will attack the C¼O carbon, from the exo direction. (b) Camphor

(norcamphor with three methyl groups): the carbonyl carbon is shielded from exo attack by a

methyl group, so for steric reasons nucleophiles tend to attack this carbon from the endo direction,
despite exo attack being electronically favored
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and in (b) the HOMO, which is, as expected, largely the π molecular orbital of the

double bond. The interesting conclusion from (c) is that in this ion the HOMO

of the double bond has donated electron density into the vacant orbital on C7

forming a 3-center, 2-electron bond. Two π electrons may be cyclically delocalized,

making the cation a bishomo (meaning expansion by two carbons) analogue of the

aromatic cyclopropenyl cation [330]. This delocalized bishomocyclopropenyl

structure for 7-norbornenyl cations has been controversial, but is supported by

NMR studies [331].

5.5.6.4 Visualization–Closing Remarks

Other molecular properties and phenomena that can benefit from the aid of visual-

ization are the distribution of unpaired electron spin in radicals and the changes

in orbitals and charge distribution as a reaction progresses. These and many

other visualization exercises are described in publications by Wavefunction, Inc.,

e.g. [332].

Fig. 5.50 Visualization supports the view that the 7-methyl-7-norbornenyl cation is delocalized:

(a) In the 7-methyl-7-norbornyl cation (no double bond) the LUMO is largely an empty p atomic

orbital on C7; (b) In the neutral alkene norbornene the HOMO is largely the filled CC Πmolecular

orbital; (c) In the 7-methyl-7-norbornenyl cation the HOMO is essentially the merged HOMO of

(b) and LUMO of (a), indicating donation of electron density from the CC double bond into the

“previously” empty orbital on C7
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5.6 Strengths and Weaknesses of Ab initio Calculations

5.6.1 Strengths

Ab initio calculations are based on a fundamental physical equation, the

Schr€odinger equation, without empirical adjustments. This makes them esthetically

satisfying, and ensures (if the Schr€odinger equation is true) that they will give

correct answers provided the approximations needed to obtain numerical results
(to solve the Schr€odinger equation) are not too severe for the problem at hand. The
level of theory needed for a reliable answer to a particular problem must be found

by experience – comparison with experiment for related cases–so in this sense

current ab initio calculations are not fully a priori [2, 43]. A few “ab initio methods”

do not even fully eschew empirical parameters: the Gaussian and the CBS series of

methods have empirical factors which, unless they cancel (as in proton affinity

calculations, Sect. 5.5.2.3.2) make these methods somewhat semiempirical. A con-

sequence of the (usual) absence of empirical parameters is that ab initio calculations

can be performed for any kind of molecular species, including transition states and

even non-stationary points, rather than only species for which empirical parameters

are available (see Chap. 6). These characteristics of reliability (with the reservations

alluded to) and generality are the strengths of ab initio calculations.

5.6.2 Weaknesses

Compared to other methods (molecular mechanics, semiempirical calculations,

density functional calculations–Chaps. 3, 6 and 7, respectively) ab initio calcula-

tions are slow, and they are relatively demanding of computer resources (memory

and disk space, depending on the program and the particular calculation). These

disadvantages, which increase with the level of the calculation, have been very

largely overcome by tremendous increases in computer power, accompanied by

impressive decreases in price. In 1959 Coulson doubted the possibility (he also

questioned the desirability, but in this regard visualization has been of enormous

help) of “accurate” calculations on molecules with more than 20 electrons [333a],

but about 30 years later (1992 cf. 1959) computer speed had increased by a factor of

100,000, and ab initio calculations on molecules with 100 electrons (about 15 heavy

atoms) were common [333b]. Not too wide of the mark would be the estimate that

in ca. 2015, less than 60 years after Coulson’s cheerfully fatalistic assessment and

about 6 years after the 2009 reassessment of computer power in reference [333b],

computers had again increased in speed by a factor of two or three. This assessment

refers to inexpensive desktop machines, “personal (in a non-proprietary sense)

computers”. The popularity of computer gaming has made available cheap graph-

ical processing units (GPUs), and these have been applied to computational chem-

istry: a recent paper describes a calculation on a silicon nanoparticle, Si72H64, by a
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modification of CASSCF called complete active space configuration interaction,

CASCI [334]. This used a 6–31G** basis and a 16-active-electron/16-active-orbital

space with more than 100,000,000 configurations, taking only 39 minutes. GPUs

are said to be comparable in power to a small cluster, at a cost of hundreds to a few

thousand dollars. The increase in power of expensive institutional machines has of

course been even more impressive.

More efficient algorithms (software) have accompanied the increase in hardware

speed. Augmenting the fast but electronically oblivious method of molecular

mechanics is the treatment of a small part of a large molecule by quantum

mechanics (Chap. 3, Sect. 3.3.3), i.e. by ab initio, or by semiempirical (Chap. 6),

or density functional (Chap. 7) calculations, in the so-called QM/MM method

[335]. Recently, full QM treatments of large molecules have been accomplished

by dividing the molecule into more manageable parts, in so-called fragment QM

methods [336]. It appears that continued increases in computer power and algo-

rithm efficiencies will, for the foreseeable future, steadily overcome those weak-

nesses of the ab initio approach that remain.

5.7 Summary

Ab initio calculations rest on solving the Schr€odinger equation; the nature of the

necessary approximations determine the level of the calculation. In the simplest

approach, the Hartree-Fock method, the total molecular wavefunction Ψ is approx-

imated as a Slater determinant composed of occupied spin orbitals (each spin

orbital is a product of a conventional spatial orbital ψ and a spin function). Writing

the molecular energy as the expectation value of the wavefunction (E ¼ Ψ Ĥ
�� ��Ψ
 �

)

i.e. invoking the Schr€odinger equation, then differentiating E with respect to the

spin orbitals that compose the wavefunction (¼ the Slater determinant), we get the

HF equations. To use these in practical calculations the spatial orbitals are approx-

imated as a linear combination (a weighted sum) of basis functions. These are

usually identified with atomic orbitals, but can be any mathematical functions that

give a reasonable wavefunction, i.e. a wavefunction which gives reasonable

answers when we do the calculations. The main defect of the HF method is that it

does not treat electron correlation properly: each electron is considered to move in

an electrostatic field represented by the average positions of the other electrons,

whereas actually electrons avoid each other better than this model predicts, since

any electron A really sees any other electron B as a moving particle and the two

mutually adjust (correlate) their motions to minimize their interaction energy.

Electron correlation is treated better in post-HF methods, such as the Møller-Plesset

(MP), configuration interaction (CI), and coupled cluster (CC) methods. These

methods lower electron-electron interaction energy by allowing the electrons to

reside not just in conventionally occupied MOs (the n lowest MOs for a 2n-electron
species), but also in formally unoccupied MOs (virtual MOs).
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The main uses of the ab initio method are calculating molecular geometries,

energies, vibrational frequencies, spectra (IR, UV, NMR), ionization energies and

electron affinities, and properties like dipole moments which are directly connected

with electron distribution. These calculations find theoretical and practical appli-

cations, since, for example, enzyme-substrate interactions depend on shapes and

charge distributions, reaction equilibria and rates depend on energy differences, and

spectroscopy plays an important role in identifying and understanding novel mol-

ecules. The visualization of calculated phenomena, such as molecular vibrations,

charge distributions, and molecular orbitals, can be very important in interpreting

the results of calculations.

Easier Questions

1. In the term Hartree-Fock, what, essentially, were the contributions of each of

these two people?

2. What is a spin orbital? A spatial orbital?

3. At which step in the derivation of the Hartree-Fock energy does the assumption

that each electron sees an “average electron cloud” appear?

4. For a closed-shell molecule the number of occupied molecular orbitals is half

the number of electrons, but there is no limit to the number of virtual orbitals.

Explain.

5. In the simple Hückel method, csi denotes the basis function coefficient for the

contribution of atom number s (in whatever numbering scheme we choose) to

MO number i. In the ab initio method, csi still refers to MO number i, but the
s does not necessarily denote atom number s. Explain.

6. The derivation of the Roothaan-hall equations involves some key concepts:

Slater determinant, Schr€odinger equation, explicit Hamiltonian operator,

energy minimization, and LCAO. Using these, summarize the steps leading

to the Roothaan-Hall equations FC¼ Scε.
7. What are the similarities and the differences between the basis set of the

extended Hückel method and the ab initio STO-3G basis set?

8. In the simple and extended Hückel methods, the molecular orbitals are calcu-

lated and then filled from the bottom up with the available electrons. However,

in ab initio calculations the occupancy of the orbitals is taken into account as

they are being calculated. Explain.

Hint: look at the expression for the Fock matrix elements in terms of the density

matrix.

9. Isodesmic reactions have been used to investigate aromatic stabilization, but

there is not a unique isodesmic reaction for each problem. Write two isodesmic

reactions for the ring-opening of benzene, both of which have on each side of

the equation the same number of each kind of bond. Have you any reason to

prefer one of the equations to the other?
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10. List the strengths and weaknesses of ab initio calculations compared to molec-

ular mechanics and extended Hückel calculations. State the molecular features

that can be calculated by each method.

Harder Questions

1. Does the term ab initio imply that such calculations are “exact”? In what sense

might ab initio calculations be said to be semiempirical–or at least not fully a
priori?

2. Can the Schr€odinger equation be solved exactly for a species with two protons

and one electron? Why or why not?

3. The input for an ab initio calculation (or a semiempirical calculation of the type

discussed in Chap. 6, or a DFT calculation–Chap. 7) on a molecule is usually

just the cartesian coordinates of the atoms (plus the charge and multiplicity).

So how does the program know where the bonds are, i.e. what the structural

formula of the molecule is?

4. Why is it that (in the usual treatment) the calculation of the internuclear

repulsion energy term is easy, in contrast to the electronic energy term?

5. In an ab initio calculation on H2 or HHe
+, one kind of interelectronic interac-

tion does not arise; what is it, and why?

6. Why are basis functions not necessarily the same as atomic orbitals?

7. One desirable feature of a basis set is that it should be “balanced.” How might a

basis set be unbalanced?

8. In a Hartree-Fock calculation, you can always get a lower energy (a “better”

energy, in the sense that it is closer to the true energy) for a molecule by using

a bigger basis set, as long as the HF limit has not been reached. Yet a bigger

basis set does not necessarily give better geometries and better relative

(i.e. activation and reaction) energies. Why is this so?

9. Why is size-consistency in an ab initio method considered more important than

variational behavior (MP2 is size-consistent but not variational)?

10. A common alternative to writing a Hartree-Fock wavefunction as an explicit

Slater determinant is to express it using a permutation operator P̂ which

permutes (switches) electrons around in MOs. Examine the Slater determinant

for a two-electron closed-shell molecule, then try to rewrite the wavefunction

using P̂.
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virtues of RI-MP2 are extolled in: Jurečka P, Nachtigall P, Hobza P (2001). Chem Phys,

3, 4578; (d) Deng J, Gilbert ATB, Gill PMW (2015). J. Chem. Theory Comput. 11:
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Chapter 6

Semiempirical Calculations

Current “ab initio” methods were limited to very inaccurate

calculations for very small molecules.

M.J.S. Dewar, A Semiempirical Life, 1992

Abstract Semiempirical quantum mechanical calculations are based on the

Schr€odinger equation. This chapter deals with SCF semiempirical methods, in

which repeated (in contrast to the simple and extended Hückel methods) diagonal-

ization of a Fock matrix refines the wavefunction and molecular energy. These

calculations are much faster than ab initio ones, mainly because the number of

integrals to be dealt with is greatly reduced by ignoring some and approximating

others with the help of experimental quantities, or with values from high-level

ab initio or DFT calculations. In order of increasing sophistication, these SCF

semiempirical methods have been developed: PPP (Pariser-Parr-Pople), CNDO

(complete neglect of differential overlap), INDO (intermediate neglect of differen-

tial overlap), and NDDO (neglect of diatomic differential overlap). Today the

most popular SCF semiempirical methods are variations of NDDO: AM1 (Austin

model 1, from Austin, Texas) and its offshoot PM3 (parametric method 3), which

are carefully parameterized to reproduce experimental quantities, mainly heats of

formation. Fairly recent extensions of AM1 (RM1, Recife model 1, from Recife,

Brazil) and PM3 (PM6, PM7) seem to represent substantial improvements and may

become the standard semiempirical methods.

6.1 Perspective

We have already seen examples of semiempirical methods, in Chap. 4: the simple

Hückel method (SHM, Erich Hückel, ca. 1931) and the extended Hückel method

(EHM, Roald Hoffmann, 1963). These are semiempirical (“semi-experimental”)

because they combine physical theory with experiment. Both methods start with the

Schr€odinger equation (theory) and derive from this a set of secular equations which

may be solved for energy levels and molecular orbital coefficients (most efficiently

by diagonalizing a Fock matrix; see Chap. 4). However, the SHM gives energy
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levels in units of a parameter (β) that can be translated into actual quantities only by
comparing SHM results with experiment, and the EHM uses experimental ioniza-

tion energies to translate the Fock matrix elements into actual energy quantities.

Semiempirical calculations stand in contrast to purely empirical methods, like

molecular mechanics (Chap. 3), and theoretical methods, like ab initio calculations

(Chap. 5). Molecular mechanics starts with a model of a molecule as balls and

springs, a model that works and whose justification lies in this fact. The ab initio

method, like the Hückel methods, starts with the Schr€odinger equation but strictly

ab initio calculations do not appeal to experiment, beyond invoking, when actual

quantities are needed, experimental values for Planck’s constant, the charge on the

electron and proton, and the masses of the electron and atomic nuclei. These

fundamental physical constants could be calculated only by some deep theory of

the origin and nature of our universe [1].

The Hückel methods were discussed in Chap. 4 rather than here because

extensive application of those methods came before widespread use of ab initio

methods, and because the simple Hückel, extended Hückel and ab initio methods

form a conceptual progression in which the first two methods aid understanding of

the third in this hierarchy of complexity. The semiempirical methods treated in this

chapter are logically regarded as simplifications of the ab initio method, since they

use the SCF procedure (Chap. 5) to refine the Fock matrix, but do not evaluate these

matrix elements ab initio. The SHM was developed (1931) outside the realm of

SCF theory (which was invented for atoms: Hartree, 1928 [2]), as the first applica-

tion of the Schr€odinger equation to molecules of reasonable size, and the EHM is a

straightforward extension of this. In contrast, the methods of this chapter began as a
conscious attempt to provide practical alternatives to the ab initio approach, the
application of which to molecules of reasonable size understandably seemed

hopeless in the infancy of electronic computers. The PPP method, one of the first

SCF semiempirical methods, was published in 1953, just when the first electronic

computers began to be available to chemists [3]. Semiempirical calculations are

much less demanding of computer power than ab initio ones, because parameter-

ization and approximations drastically reduce the number of integrals which must

be calculated. The pessimism with which the ab initio approach was viewed is clear

in the words of several pioneers of quantum chemistry:

C. A. Coulson, 1959: “I see little chance–and even less desirability–of dealing in this

accurate manner with systems containing more than 20 electrons. . .” [4]
M. J. S. Dewar,1 1969: “How then shall we proceed? The answer lies in abandoning

attempts to carry out rigorous a priori calculations.” [5].

Neither Coulson nor Dewar could have foreseen the enormous increase in

computer power that was to come over the next few decades. What Coulson

1Michael J. S. Dewar, born Ahmednagar, India, 1918. Ph.D. Oxford, 1942. Professor of chemistry

at Universities of London, Chicago, Texas at Austin, and University of Florida. Died

Florida, 1997.
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meant by “even less desirability” was perhaps that the computed results would be

too complex to interpret; one factor which has obviated this problem is the visual

display of information (Chap. 5, Sect. 5.5.6, Chap. 6, Sect. 6.3.6). The development

of improved algorithms and far faster computers has altered the situation almost out

of recognition; for example, an energy calculation on a moderate-size molecule

(1,3,5-triamino-2,4,6-trinitrobenzene) was faster in mid-2009 by these factors:

compared to 17 years before, 1700; compared to 25 years before, 90,000; compared

to 42 years before, 108 [6]. Why, then, are semiempirical calculations still used?

Because they are still about 100–1000 times faster than ab initio (Chap. 5) or

density functional (Chap. 7) methods. The increase in computer speed means that

we can now routinely examine by ab initio methods moderately large molecules –

up to, say, steroids, with about 30 heavy atoms (non-hydrogen atoms), and by

semiempirical methods huge molecules, even proteins and nucleic acids.

In the following presentation of the development of semiempirical methods, the

general approach and the distinction between the various methods is perhaps best

appreciated by understanding the concepts in words, rather than attempting to

memorize admittedly somewhat formidable-looking equations (unless you plan to

develop a new semiempirical method).

6.2 The Basic Principles of SCF Semiempirical Methods

6.2.1 Preliminaries

The semiempirical methods we saw in Chap. 4 simply construct a Fock matrix and

diagonalize it once to get MO energy levels and MOs (i.e. the coefficients of the

basis functions that make up the MOs). The simple Hückel method Fock matrix

elements are just relative energies, 0 and�1 (in jβj units, relative to the nonbonding
level α), and the extended Hückel method Fock matrix elements are calculated from

ionization energies. In both the simple and extended Hückel methods a single

matrix diagonalization gives the energy levels and MO coefficients. This chapter

is concerned with semiempirical methods that are closer to the ab initio method in

that the SCF procedure (Chap. 5, Sect. 5.2.3.6, particularly Sects. 5.2.3.6.4 and

5.2.3.6.5) is used to refine the energy levels and MO coefficients: basis set coeffi-

cients from a “guess” are improved by repeated matrix diagonalization. As in ab

initio calculations each Fock matrix element is calculated from a core integralHcore
rs ,

density matrix elements Ptu, and electron repulsion integrals (rs|tu), (ru|ts):

Frs ¼ H core
rs 1ð Þ þ

Xm
t¼1

Xm
u¼1

Ptu½ rsjtuð Þ � 1

2
rujtsð Þ� ð6:1 ¼ 5:82Þ

As stated above, the following discussion applies to semiempirical methods that,

Iike ab initio, use the SCF procedure and so pay some service to Eq. (6.1).
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To initiate the process we need an initial guess of the coefficients, to calculate the

density matrix values Ptu. The guess can come from a simple Hückel calculation (for
a π electron theory like the PPP method) or from an extended Hückel calculation
(for an all-valence-electron theory, like CNDO and its descendants). The Fock matrix

of Frs elements is diagonalized repeatedly to refine energy levels and coefficients.

The semiempirical methods we consider here diverge from ab initio calculations

through the use of several approximations. The basic ideas were discussed in detail

by Dewar (ca. 1969) well before the currently popular AM1 (1985) and its variants

appeared [7]. An excellent yet compact survey of the principles behind all the major

semiempirical methods is given by Levine [8], and semiempirical methods have

also been reviewed (ca. 1996) by Thiel [9]. A detailed exposition of the basic

(pre-1970) theory behind these methods can be found in the book by Pople and

Beveridge [10]. Clark has written (ca. 2000) a very thoughtful review going beyond

purely technical details, of the “philosophy” of the semiempirical approach, its

strengths and weaknesses, its past and future [11]. The divergence from the ab initio

method lies in (1) treating only valence or π electrons, i.e. in the meaning of the

“core”, (2) the mathematical functions used to expand the MOs (the nature of the

basis set functions), (3) how the core and two-electron repulsion integrals are

evaluated, and (4) the treatment of the overlap matrix.

Expanding on points (1)–(4):

1. Treating only valence or π electrons, i.e. the meaning of the “core”. In an ab initio
calculation Hcore

rs is the kinetic energy of an electron moving in the force-field of

the atomic nuclei, plus the potential energy of attraction of the electron to these

atomic nuclei: the electron is moving under the influence of a positive core

composed of atomic nuclei. Semiempirical calculations handle at most valence

electrons (the PPP method handles only π electrons), so each element of the core

becomes an atomic nucleus plus its core electrons (for the PPP method, a nucleus

with the core electrons plus all σ valence electrons). Instead of a cloud of all the

electrons moving in a framework of nuclei, we have a cloud of valence electrons
(for the PPP method, π electrons) moving in a framework of atomic cores (atomic

core¼ nucleiþ all electrons not being used in the calculation). The SCF semiem-

pirical energy is calculated in a manner analogous to that of an ab initio calculation

of the Hartree-Fock energy (cf. Eq. (5.149)), but n in Eq. (6.2) is not half the total
number of electrons, but rather half the number of valence electrons (half the

number of π electrons for a PPP calculation), i.e. n is the number of MOs formed

from the those electrons being included in the basis set. ESE is the valence

electronic (π electronic for the PPP method) energy, rather than the total electronic

energy, and VCC is the core–core repulsion, rather than the nucleus–nucleus

repulsion:

E total
SE ¼ ESE þ VCC ¼

Xn
i¼1

εi þ 1

2

Xm
r¼1

Xm
s¼1

PrsH
core
rs þ VCC ð6:2Þ

Treating the core electrons in effect as part of the atomic nuclei means that we

need basis functions only for the valence electrons. With a minimal basis set
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(Chap. 5, Sect. 5.3.3) an ab initio calculation on ethene, C2H4, needs five basis

functions (1 s, 2 s, 2px, 2py, 2pz) for each carbon and one basis function (1 s)
for each hydrogen, a total of 14 basis functions, while a semiempirical cal-

culation needs four functions for each carbon and one for each hydrogen, for

a total of 12; for cholesterol, C27H46O, the numbers of basis functions are

186 and 158 for ab initio and semiempirical, respectively. For both molecules

the semiempirical calculation needs about 85% as many basis functions as the

ab initio calculation. The semiempirical basis set advantage is small compared

to a minimal basis set ab initio calculation, a kind not much used nowadays,

but it is large compared to ab initio calculations with split valence and split

valence plus polarization (Chap. 5, Sect. 5.3.3) basis sets. For ethene, comparing

a 6 ‐ 31G * ab initio calculation with a minimal basis semiempirical calculation,

the numbers of basis functions are 38 and 12, for cholesterol, 522 and 158;

the semiempirical calculation needs only about 30% as many basis functions

for both molecules. Semiempirical calculations use only a minimal basis set

and hope to compensate for this by parameterization of the two-electron

integrals (below).

2. The basis set functions. In semiempirical methods the basis functions correspond

to atomic orbitals (valence AOs orp� πAOs), while in ab initio calculations this
is strictly true only for a minimal basis set, since an ab initio calculation can use

many more basis functions than there are conventional AOs. Almost all the SCF-

type semiempirical methods we are considering in this chapter use Slater basis

functions, rather than approximating Slater functions as sums of Gaussian

functions (Chap. 5, Sect. 5.3.2). Recall that the only reason ab initio calculations

use Gaussian, rather than the more accurate Slater, functions, is because calcu-

lation of the electron repulsion integrals is far faster with Gaussian functions

(Chap. 5, Sect. 5.3.2). In semiempirical calculations these integrals have been

parameterized into the calculation (see below). Mathematical forms of the basis

functions ϕ are still needed, to calculate overlap integrals ϕrjϕsh i, for although
these methods treat the overlap matrix as a unit matrix, some overlap integrals

are evaluated rather than simply being taken as 0 or 1. Approximate MO theory

has some apparent logical contradictions [7]. The calculated overlap integrals

are used to help calculate core integrals and electron-repulsion integrals.

As in ab initio calculations linear combinations of the basis functions are used

to construct MOs, which in turn are multiplied by spin functions and used to

represent the total molecular wavefunction as a Slater determinant (Chap. 5,

Sect. 5.2.3.1).

3. The integrals. The core integrals and the two-electron repulsion integrals

(electron-repulsion integrals), Eq. (6.1), are not calculated from first principles

(i.e. not from an explicit Hamiltonian and basis functions, as illustrated in

Chap. 5, Sect. 5.2.3.6.5), but rather many integrals are taken as zero, and those

that are used are evaluated in an empirical way from the kinds of atoms involved

and their distances apart. Recall that calculation of the two-electron integrals,

particularly the three- and four-center ones (those involving three or four

different atoms) takes up most of the time in an ab initio calculation. The
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integrals to be ignored (set equal to zero) are determined from the extent to

which differential overlap is neglected. The differential overlap dS is the differ-

ential of the overlap integral (e.g. Sect. 4.3.3) S:

S ¼
Z

ϕr 1ð Þϕs 1ð Þdv1 ð*6:3Þ

dS ¼ ϕr 1ð Þϕs 1ð Þdv1 ð*6:4Þ

Semiempirical methods differ amongst themselves in, amongst other ways, the

criteria for setting dS ¼ 0, i.e. for applying zero differential overlap, ZDO.
4. The overlap matrix. SCF-type semiempirical methods take the overlap

matrix as a unit matrix, S ¼ 1, so S vanishes from the Roothaan-Hall equations

FC ¼ SCεwithout the necessity of using an orthogonalizing matrix to transform

these equations into standard eigenvalue form FC ¼ Cε so that the Fock matrix

can be diagonalized to give the MO coefficients and energy levels (Chap. 4,

Sect. 4.4.1.2; Chap. 5, Sect. 5.2.3.6.5). A partial exception is the OMx methods

(Sect. 6.2.5.9), where orthogonalization is applied to some integrals.

We begin our examination of specific SCF-type semiempirical methods with the

simplest, the Pariser-Parr-Pople method.

6.2.2 The Pariser-Parr-Pople (PPP) method

The first semiempirical SCF-type method to gain widespread use was the Pariser-

Parr-Pople method (1953) [12, 13]. Like the simple Hückel method, PPP calcula-

tions are limited to π electrons, with the other electrons forming a σ framework to

hold the atomic p orbitals in place. The Fock matrix elements are calculated from

Eq. (6.1); for a PPP calculation Hcore
rs represents the nuclei plus all non-π-system

electrons, Ptu is calculated from the coefficients of those p AOs contributing to the

π system, and the two-electron repulsion integrals refer to electrons in the π system.

The one-center core integrals Hcore
rs are estimated empirically from the ionization

energy of a 2p AO and (see below) the two-electron integral (rrjss). The two-center
core integrals Hcore

rs are calculated from

H core
rs ¼ k ϕr 1ð Þjϕs 1ð Þh i r 6¼ s ð6:5 ¼ 5:82Þ

where k is an empirical parameter chosen to give the best agreement with experi-

ment of the wavelength of UV absorption bands, and the overlap integral ϕrjϕsh i is
calculated from the basis functions, with the proviso that if ϕr and ϕs are on atoms

that are not connected then the integral is taken as zero.

The two-electron integrals are evaluated by applying the ZDO approximation

(above) to all different orbitals r and s:

dS ¼ ϕr 1ð Þϕs 1ð Þdv1 ¼ 0 for r 6¼ s ð6:6Þ
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From Eq. (6.6) and the definition of the two-electron integral

rsjtuð Þ ¼
Z Z

ϕ*
r 1ð Þϕs 1ð Þϕ*

t 2ð Þϕu 2ð Þ
r12

dv1dv2 ð6:7 ¼ 5:73Þ

it follows that (1) for r 6¼ s, rsjtuð Þ ¼ 0, and (2) for r ¼ s and t ¼ u, rsjtuð Þ ¼ rrjttð Þ.
Both cases are taken into account by writing

rsjtuð Þ ¼ δrsδtu rrjttð Þ ð6:8Þ

where the δs are Kronecker deltas (¼ 1 if the subscripts are the same, zero

otherwise). Thus the four-center (i.e. (rsjtu)) and three-center (i.e. (rrjtu)) two-
electron integrals are ignored, but not the two-center (i.e. (rrjtt)) and one-center

(i.e. (rrjrr)) two-electron integrals. The one-center integrals (rrjrr) are taken as the

difference between the valence-state ionization energy and the electron affinity of

the atom bearing ϕr (these valence-state parameters refer to a hypothetical isolated

atom in the same hybridization state as in the molecule, and can be found spectro-

scopically; Chap. 4, Sect. 4.4.4.1). The two-center integrals (rrjtt) are estimated

from (rrjrr) and (ttjtt) and the distance between the ϕr and ϕt atoms.

Although the overlap integrals f rjf sh iare actually calculated for the evaluation of
Hcore

rs (Eq. (6.5), the overlap matrix is taken as a unit matrix as far as the matrix

Roothaan-Hall equations FC ¼ SCε go; thus FC¼Cε or F ¼ CεC�1 and the Fock

matrix is diagonalized, without transforming it with an orthogonalizing matrix (but

see the OMx methods, Sect. 6.2.5.9), to give the MO coefficients and energy levels.

That the overlap matrix is a unit matrix is a corollary of the ZDO approximation of

Eq. (6.6), from which it follows that the off-diagonal matrix elements are zero; the

diagonal elements are of course unity if normalized AO basis functions are used.

PPP energies are π electron electronic energies ESE, or electronic energies plus

core-core repulsions, Etotal
SE , if VCC is added (Eq. (6.2)).

The PPP method has been used to calculate the UV spectra of conjugated

compounds, especially dyes [14], a task it performs fairly well. The accuracy of

these calculations can be improved by incorporating electron correlation (Chap. 5,

Sect. 5.4), using the configuration interaction (CI) method. The calculations were

usually done at a fixed geometry, although an empirical bond length-bond order

relation permits optimization of bond length. The classical PPP method is not

much used now, having evolved into other neglect of differential overlap (NDO)

methods, especially those parameterized for spectra, like INDO/S and the very

successful ZINDO/S (below). We now look at a hierarchy NDO methods that,

unlike the PPP approach, are not limited to planar arrays of p-orbitals, but instead

permit calculations on molecules of general geometry. In order of increasing

sophistication these are complete neglect of differential overlap CNDO), interme-

diate neglect of differential overlap (INDO), and neglect of diatomic differential

overlap (NDDO).
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6.2.3 The Complete Neglect of Differential Overlap (CNDO)
Method

The first semiempirical SCF-type method to go beyond just π electrons was the

complete neglect of differential overlap method (ca. 1966) [15]. This was a general-

geometry method, since it is not limited to planar π systems (molecules with

conjugated π electron systems, like benzene, are usually planar). Like the other

early general-geometry method, the extended Hückel method, which appeared in

1963 (Chap. 4, Sect. 4.4), CNDO calculations use a minimal valence basis set of

Slater-type orbitals, using just the valence electrons and the conventional atomic

orbitals of each atom. The Fock matrix elements are calculated from Eq. (6.1); for a

CNDO calculation Hcore
rs represents the nuclei plus all core electrons, Ptu is calcu-

lated from the coefficients of the valence AOs, and the two-electron repulsion

integrals refer to valence electrons. The CNDO to PPP relationship is analogous

to the extended Hückel to the simple Hückel one, a main difference between the two

duos being that CNDO/PPP are SCF-type methods, unlike EH/SH.

There are two versions of CNDO, CNDO/1 and an improved version, CNDO/2.

First look at CNDO/1. Consider the core integrals Hcore
rArA, where both orbitals are the

same (i.e. the same orbital occurs twice in the integral hϕr 1ð ÞjĤ core

rr jϕr 1ð Þi) and are

on the same atomA. Recall the example of an ab initio calculation onHHeþ (Chap. 5,

Sect. 5.2.3.6.5). Consider, say, element (1,1) of that Hcore matrix. From Eq. 5.116:

H core
11 ¼ ϕ1 1ð ÞjT̂ jϕ1 1ð Þ� �þ ϕ1 1ð ÞjV̂Hjϕ1 1ð Þ� �þ ϕ1 1ð ÞjV̂Hejϕ1 1ð Þ� �

¼ ϕ1 1ð ÞjT̂ þ V̂Hjϕ1 1ð Þ� �þ ϕ1 1ð ÞjV̂Hejϕ1 1ð Þ� � ð6:9Þ

Equation (6.9) can be generalized to a matrix element (r,r) and a molecule with

atoms A, B, etc. . . ., giving

H core
rArA ¼ ϕrA 1ð ÞjT̂ þ V̂AjϕrA 1ð Þ� �þ ϕrA 1ð ÞjV̂BjϕrA 1ð Þ� �

þ ϕrA 1ð ÞjV̂CjϕrA 1ð Þ� �þ � � �
¼ Urr þ

X
B 6¼A

ϕrA 1ð ÞjV̂BjϕrA 1ð Þ� � ¼ Urr þ VAB ð6:10Þ

where ϕrA is a basis function on atom A. The Urr term in Eq. (6.10) is regarded as

the energy of an electron in the AO on A corresponding to the function ϕrA, and is

taken as the negative of the valence-state ionization energy of such an electron. The

integrals in the VAB term are simply calculated as the potential energy of a valence

s orbital in the electrostatic field of the core of atom A, B, etc., e.g.

ϕrA 1ð ÞjV̂BjϕrA 1ð Þ� � ¼ SA 1ð Þ CB

r1B

����SA 1ð Þ
����

� �
ð6:11Þ

where CB is the charge on the core of atom B, i.e. the atomic number minus the

number of core (non-valence) electrons, and the variable r1B is the distance of the

2 s electron from the center of the core (from the atomic nucleus). The core integrals
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with different orbitals ϕr and ϕs, on the same atom (A ¼ B; one-center integrals) or

on different atoms are taken as being proportional to the overlap integral of the

relevant orbitals:

H core
rAsB ¼ βAB ϕr 1ð Þjϕs 1ð Þh i r 6¼ s ð6:12Þ

The overlap integral here is calculated from the basis functions, although (as for the

PPP method, above) the overlap matrix is simply taken as a unit matrix as far as the

matrix Roothaan-Hall equations are concerned. The proportionality constant βAB is

taken as the arithmetic mean of parameters for atoms A and B, these parameters

being those that give the best fit of CNDO MO coefficients to those of minimal-

basis-set ab initio calculations. Since different AOs on the same atom are orthog-

onal, when A ¼ B these integrals are zero. Note that calculating βAB from a best-fit

to minimal-basis-set ab initio calculations means that CNDO parameterization is

not purely empirical, but rather to some extent attempts to match (low-level) ab

initio results. This is a weakness of CNDO and a potential weakness of its

successors INDO and NDDO (below). As repeatedly emphasized by Dewar, this

deficiency was avoided in his methods (Sect. 6.2.5.1) by consistently parameteriz-

ing to match experiment.
As with the PPP method, the two-electron repulsion integrals are evaluated by

applying the ZDO approximation to all different orbitals r and s (Eq. (6.6)). Thus
the two-electron integrals reduce to rsjtuð Þ ¼ δrsδtu rrjttð Þ (Eq. (6.8), i.e. only one-

and two-center two-electron integrals are considered. All one-center integrals on

the same atom A are given the same value, γAA, and all two-center integrals between
atoms A and B are given the same value, γAB. These integrals are calculated from

valence s Slater functions on A and B.

CNDO/2 differs from CNDO/1 in two modifications to the Hcore
rArA matrix elements

(Eq. (7.0)): (1) to account better for both ionization energy and electron affinity,Urr is

evaluated not just from ionization energy but as a kind of average of ionization

energy and electron affinity, and (2) the integrals in the VAB term are calculated from

the two-electron integrals γAB, as VAB ¼ �CBγAB. This latter evaluation amounts to

neglecting so-called penetration integrals; these integrals make nonbonded atoms

attract one another, and cause bond lengths to be too short and bond energies to be too

large [15–18]. CNDO energies are valence electron electronic energies ESE, or

electronic energies plus core-core repulsions, Etotal
SE , if VCC is added (Eq. (6.2)).

CNDO is now obsolete, having served its purpose as a precursor to the more effective

general-geometry methods INDO and NDDO (below).

6.2.4 The Intermediate Neglect of Differential Overlap
(INDO) Method

INDO [19] goes beyond CNDO by curtailing the application of the ZDO approx-

imation. Instead of applying it to all different ( r 6¼ s ) atomic orbitals in the

two-electron integrals (Eq. (6.6)), as in the PPP and CNDO methods, in INDO
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ZDO is not applied to those one-center two-electron integrals, (rsjtu), with ϕr, ϕs,

ϕt, and ϕu all on the same atom; obviously, these repulsion integrals should be the

most important. Although more accurate than CNDO, INDO is nowadays used

mostly only for calculating UV spectra, in specially parameterized versions called

INDO/S and ZINDO/S (S denoting spectra), which give good UV-spectral pre-

dictions for a variety of compounds [20].

6.2.5 The Neglect of Diatomic Differential Overlap (NDDO)
Methods

NDDO [21] goes beyond INDO in that the ZDO approximation (Sect. 6.2.1,

point (3)) is not applied to orbitals on the same atom, i.e. ZDO is used only for

atomic orbitals on different atoms. NDDO is the basis of the currently popular

semiempirical methods developed byM. J. S. Dewar and by coworkers who took up

the torch: MNDO, AM1 and PM3 (as well as SAM1, PM5, PM6 and PM7). NDDO

methods are the gold standard in general-purpose semiempirical methods, and the

rest of this chapter concentrates on them.

6.2.5.1 NDDO-Based Methods from the Dewar Group: MNDO, AM1,

PM3 and SAM1, and Related Methods–Preliminaries

SCF-type (see Sect. 6.1) semiempirical theories are based to a large extent on the

approximate molecular orbital theory (see the book of this title [10]) developed by

Pople and coworkers. The Pople school, however, went on to concentrate on the

development of ab initio methods, and indeed it is for his contributions to these,

which are largely encapsulated in the Gaussian series of programs [22], that Pople

was awarded the 1998 Nobel Prize in chemistry [23] (shared with Walter Kohn, a

pioneer in density functional theory; see Chap. 7). In contrast, Dewar pursued the

semiempirical approach almost exclusively [24], taking to heart his stricture “The

answer lies in abandoning attempts to carry out rigorous a priori calculations”

(quoted in Perspective near the start of this chapter). He continued till the end of

his career to stoutly maintain that at least as far as molecules of real chemical

interest go his semiempirical methods were superior to ab initio ones (“There is

clearly little point in using a procedure that requires thousands of times more

computing time than ours do if it is no better than ours, let alone one that is

inferior.”) [25]. The rivalry between the Dewar school and the adherents of the ab

initio approach began relatively early in the development of Dewar methods (see

e.g. [26–28]), intensified to actual polemic [29], and is passionately described from

an unabashedly partisan viewpoint in Dewar’s autobiography [24]. The ab initio vs.
Dewar semiempirical controversy was largely rooted in a difference of viewpoints

and in a focus by Dewar on the inability of ab initio calculations to give reasonably

accurate absolute molecular energies (an absolute molecular energy is the energy

needed to dissociate a molecule into its nuclei and electrons, infinitely separated
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and at rest; for this discussion it may be taken as the atomization energy). In the

absence of error cancellation, errors in absolute energies lead to errors in activation

and reaction energies, and the errors in absolute energies were, ca. 1970, commonly

in the region of a 1000 kJ mol�1. Cancellation (actually not as untrustworthy as

Dewar thought–Chap. 5, Sect. 5.5.2.1) could not, he held, be relied on to provide

chemically useful relative energies (reaction and activation energies), say with

errors of no more than a few tens of kilojoules per mole. The exchange with

Halgren, Kleir and Lipscomb nicely illustrates the viewpoint difference [28]: one

side held that even when inaccurate, ab initio calculations can teach us something

fundamental, while semiempirical calculations, no matter how good, do not con-

tribute to fundamental theory. Dewar focussed on the study of reactions of “real”

chemical interest. Toward the end of his career as an active chemist, he coauthored

a review of pericyclic reactions such as the Cope and Diels-Alder processes,

defending the results of AM1 (below) studies [30]. The divergence of these

conclusions from those of other workers engendered a rebuke from Houk and Li,

[31]. Interestingly, most of the high-accuracy multistep “ab initio” methods that in

recent years have achieved chemical accuracy (Chap. 5, Sect. 5.5.2.3.2), considered

to be about 10kJmol�1 or better, employ some empirical parameters (an exception

is W2), a fact that would have amused Dewar.

In contrast to the viewpoint of the ab initio school, Dewar regarded the semi-

empirical method not merely as an approximation to ab initio calculations, but

rather as an approach that, carefully parameterized, could give results far superior

to those from ab initio calculations, at least for the foreseeable future: “The situation

[ca. 1992] could be changed only by a huge increase in the speed of computers, larger

than anything likely to be attained before the end of the century, or by the develop-

ment of some fundamentally better ab initio approach.“ [32]. The conscious decision

to strive for experimental accuracy rather than merely to reproduce low-level ab initio

results (note the remarks in connection with Eq. (6.12)) was clearly stated several

times [27, 29, 33] in the course of the development of these semiempirical methods:

“We set out to parametrize [semiempirical methods] in an entirely different manner,

to reproduce the results of experiment rather than those of dubious ab initio calcu-

lations.” [33]. Of the several experimental parameters that the Dewar methods are

designed to reproduce, probably the two most important are geometry and heat of

formation. As with ab initio calculations, optimized geometries are found by an

algorithm which uses first and second derivatives of energy with respect to geometric

parameters to locate stationary points (Chap. 2, Sect. 2.4). The method of finding

heats of formation is described below.

6.2.5.2 Enthalpies of Formation (Heats of Formation) from

Semiempirical Electronic Energies

As with ab initio calculations, SCF-type semiempirical calculations initially find

electronic energies ESE, using Eq. (6.2), but the energy finally reported is com-

monly the enthalpy of formation. For this the procedure encoded in the methods is

the following [34]. Inclusion of the core-core repulsion VCC, which is necessary for

geometry optimization, gives the total semiempirical energy Etotal
SE , which could be
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expressed in atomic units (hartrees), as in an ab initio calculation (e.g. Chap. 5,

Sect. 5.2.3.6.4). This energy Etotal
SE , the total internal energy of the molecule except

for zero point vibrational energy, is used to calculate the heat of formation

(enthalpy of formation) of the molecule. Fig. 6.1 will help to make it clear how

this is done. The quantities in Fig. 6.1 are

1. ΔH�
f298(M), the 298 K heat of formation of the molecule M, i.e. the heat energy

needed to make M from its elements. This is the quantity we want.

2. The atomization energy of M, which is the energy of the atoms minus the energy

of M. The energy of the atoms is F
X

ESE Aið Þ; the conversion factor F converts

ESE(Ai), the energy per atom in hartrees, into the same units, kJ mol‐ 1 or

kcal mol�1, as is used for the experimental heats of formation of the atoms;

F is 2625:5 kJ mol�1 per hartree atom�1 (or molecule�1). The energy of the

molecule M is F Etotal
SE (M), the optimized geometry being used. The same

semiempirical method is used to calculate atomic and molecular energies, both

of which are negative quantities, the energy of the species relative to electrons

and one or more atomic cores infinitely separated. ESE(Ai) is purely electronic,

since an atom has no core-core repulsion (i.e. it has no atoms to separate), while

the molecular energy Etotal
SE (M) includes core-core repulsion.

3.
X

ΔH�
f 298 Aið Þ the sum, over all the atoms A of M, of the experimental 298 K

heats of formation of these atoms.

Equating the two paths from the elements in their standard states at 298 K to

atoms we get

ΔH�
f 298 Mð Þ ¼

X
ΔH�

f 298 Aið Þ � F
X

ESE Aið Þ þ FE total
SE Mð Þ ð6:13Þ

elements in their
standard states

ΣΔHf298(Ai)

ΔHf298(M)

molecule M

atoms in their
standard states

atomization energy of M =

F ΣESE(Ai) –FESE (M)

–

–

total

Fig. 6.1 The principle behind the semiempirical calculation of heat of formation (enthalpy of

formation). The molecule is (conceptually) atomized at 298 K; the elements in their standard states

are also used to make these atoms, and to make the molecule M. The heat of formation of M at

298 K follows (with some approximations) from equating the energy needed to generate the atoms

via M to that needed to make them directly from the elements
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Thus the desired quantity, the heat of formation of the molecule, can be

calculated from the experimental heats of formation of the atoms and the semiem-

pirical energies of the atoms and the molecule. The calculation using Eq. (6.13) is

automatically done by the program using stored values for atomic heats of forma-

tion and semiempirical atomic energies, and the “freshly calculated” calculated

molecular energy, and one may never see Etotal
SE (M). These calculations are for the

gas phase, and if one wants the heat of formation of a liquid or a solid, then the

experimental heat of vaporization or sublimation must be taken into account. Note

that this procedure is conceptually almost the same as the atomization method for

ab initio calculation of heats of formation (Chap. 5, Sect. 5.5.2.3.3). However, the

purpose here is to obtain the heat of formation at room temperature (298 K) from

the molecular “total semiempirical energy”, the electronic energy plus core-core

repulsion; in the ab initio atomization method the 0 K heat of formation is

calculated with the aid of the molecular energy including ZPE (the 0 K heat of

formation can be corrected to 298 K – see Sect. 5.5.2.3.3). The semiempirical

procedure for enthalpy of formation involves some approximations. The ZPE of the

molecule is not used (so a frequency calculation is not needed for this), and the

increase in thermal energy from 0 to 298 K is not calculated. The good news is that

Etotal
SE (M) is parameterized (below) to reproduce ΔH�

f298(M); to the extent that

this parameterization succeeds the neglect of ZPE and of the 0–298 K increase

in thermal energy are overcome, and electron correlation is also implicitly taken

into account. The key to obtaining reasonably accurate heats of formation

from these methods is thus their parameterization to give the values of Etotal
SE (Ai)

and Etotal
SE (M) used in Eq. (6.13). This parameterization, which is designed to also

give reasonable geometries, dipole moments and ionization energies, is discussed

below.

6.2.5.3 MINDO

The first (1967) of the Dewar-type methods was PNDDO [35], partial NDDO),

but because further development of the NDDO approach turned out to be

“unexpectedly formidable” [33], Dewar’s group temporarily turned to INDO,

creating MINDO/1 [36] (modified INDO, model 1). The third version of this

method, MINDO/3, was said [33] “[to have] so far survived every test without

serious failure”, and it became the first widely-used Dewar-type method. Keeping

their promise to return to NDDO the group soon came up with MNDO, modified

NDDO, the first of their NDDO methods. MINDO/3 was made essentially obsolete

by MNDO, except perhaps for the study of carbocations (Clark has summarized

the strengths and weaknesses of MINDO/3, and the early work on MNDO [37]).

MNDO (and MNDOC and MNDO/d, C and d for correlation and d-orbitals)
and its descendants, the very popular AM1 and PM3, are discussed below.

Briefly mentioned are modifications of AM1 and PM3 and successors to PM3,

up to PM7.
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6.2.5.4 MNDO

MNDO [37], a modified NDDO (Sect. 6.2.5) method, was reported in 1977

[38]. MNDO is conveniently explained by reference to CNDO (Sect. 6.2.3).

MNDO is a general geometry method with a minimal valence basis set of Slater-

type orbitals. The Fock matrix elements are calculated using Eq. (6.1¼5.82). We

discuss the core and two-electron integrals in the same order as for CNDO.

The core integrals Hcore
rArA, with the same orbital ϕr twice on the same atom A are

calculated using Eq. (6.10). Unlike the case in CNDO, where Urr is found from

ionization energies (CNDO/1) or ionization energies and electron affinities

(CNDO/2), in MNDO Urr is one of the parameters to be adjusted. The integrals

in the summation term VAB are evaluated similarly to the CNDO/2 method from a

two-electron integral (see below) involving ϕrA and the valence s orbital on atom B:

ϕrA 1ð ÞjV̂BjϕrA 1ð Þ� � ¼ �CB ϕrϕrjsBsBð Þ ð6:14Þ

The core integrals Hcore
rAsA with different orbitals ϕr and ϕs, on the same atom A

are not simply taken as being proportional to the overlap integral, as in CNDO

(Eq. (6.12)), but rather are also (like the case of both orbitals on the same atom)

evaluated from Eq. (6.10), which in this case becomes

H core
rAsA ¼ ϕrA 1ð ÞjT̂ þ V̂AjϕsA 1ð Þ� �þ ϕrA 1ð ÞjV̂BjϕsA 1ð Þ� �

þ ϕrA 1ð ÞjV̂CjϕsA 1ð Þ� �þ � � �
¼ Urs þ

X
B 6¼A

ϕrA 1ð ÞjV̂BjϕsA 1ð Þ� � ð6:15Þ

The first term is zero from symmetry [39]. Each integral of the summation term

is again evaluated, as in CNDO/2, from a two-electron integral:

ϕrA 1ð ÞjV̂BjϕsA 1ð Þ� � ¼ �CB ϕrAϕsAjsBsBð Þ ð6:16Þ

The core integrals Hcore
rAsB with different orbitals ϕr and ϕs, on different atoms A

and B are taken, as in CNDO (cf. Eq. (6.12)), to be proportional to the overlap

integral between ϕr and ϕs, where again the proportionality constant is the arith-

metic mean of parameters for atoms A and B:

H core
rAsE ¼ 1

2
βrA þ βsBð Þ ϕr 1ð Þjϕs 1ð Þh i r 6¼ s ð6:17Þ

The overlap integral is calculated from the basis functions although the overlap

matrix is taken as a unit matrix as far as the Roothaan-Hall equations go

(Sect. 6.2.2). These core integrals are sometimes called core resonance integrals.
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The two-electron integrals are evaluated applying ZDO (Sect. 6.2.1) within the

framework of the NDDO approximation (Sect. 6.2.5). As with the PPP (Sect. 6.2.2)

and CNDO (Sect. 6.2.3) methods, this makes all two-electron integrals become

rsjtuð Þ ¼ δrsδtu rrjttð Þ, i.e only one- and two-center two-electron integrals are non-

zero. The one-center integrals are evaluated from valence-state ionization energies.

The two-center integrals are evaluated from the one-center integrals and the

separation of the nuclei by an involved procedure in which the integrals are

expanded as sums of multipole-multipole interactions [38a, 40] that make the

two-center integrals show correct limiting behavior at zero and infinite separation.

As in CNDO, in MNDO the penetration integrals are neglected (Sect. 6.2.3,

CNDO/2). A consequence of this is that the core-core repulsions (VCC in Eq. (6.2))

cannot be realistically calculated simply as the sum of pairs of classical electrostatic

interactions between point charges centered on the nuclei. Instead, Dewar and

coworkers chose [38a] the expression

VCC ¼
X
B>A

X
A

CACB sAsBjsBsBð Þ þ f RABð Þ½ � ð6:18Þ

where CA and CB are the core charges of atoms A and B and sA and sB are the

valence s orbitals on A and B (the two-electron integral in Eq. (6.18) is actually

approximately proportional to 1/RAB, so there is some connection with the simple

electrostatic model). The f(RAB) term is a correction increment to make the result

come out better; it depends on the core charges and the valence s functions on A

and B, their separation R, and empirical parameters αA and αB:

f RABð Þ ¼ CACB sAsAjsBsBð Þ e�αARAB þ e�αBRAB
� � ð6:19Þ

The above mathematical treatment constitutes the creation of the form of the

semiempirical equations. To actually use these equations, they must be parameter-

ized somehow (as stressed above, Dewar used experimental data). This is analogous

to the situation in molecular mechanics (Chap. 3), where a force field, defined by

the form of the functions used (e.g. a quadratic function of the amount by which a

bond is stretched, for the bond-stretch energy term) is constructed, and must then be

parameterized by inserting specific quantities for the parameters (e.g. values for the

stretching force constants of various bonds). For each kind of atom A (a maximum

of) six parameters is needed:

1. the kinetic-energy-containing term Urr of Eq. (6.10) (as explained above, this

CNDO equation is also used in MNDO to evaluate Hcore
rArA where ϕrA is a valence

s AO.
2. the term Urr of Eq. (6.10) where ϕrA is a valence p AO.

3. the parameter ζ in the exponent of the Slater function (e.g Sect. 5.3.2, Fig. 5.12)

for the various valence AOs (MNDO uses the same ζ for the s and p AOs).
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4. the parameter β (Eq. (6.17)) for a valence s AO.
5. the parameter β for a valence p AO.

6. the parameter α in the correction increment ( f(RAB), (Eq. (6.19)) to the core-core

repulsion (Eq. (6.18)).

Some atoms have five parameters because for them MNDO takes β to be the

same for s and p orbitals, and hydrogen has four parameters because MNDO does

not assign it p orbitals.

We want the parameters that will give the best results, for a wide range of

molecules. What we mean by “results” depends on the molecular characteristics of

most interest to us. MNDO (and its siblings AM1 and PM3, below) was parame-

terized [38a] to reproduce heat of formation, geometry, dipole moment, and the first

vertical ionization energy (from Koopmans’ theorem; Chap. 5, Sect. 5.5.5.3). To

parameterize MNDO a training set of molecules (a “molecular basis set” is Dewar’s
term – no connection with a basis set of functions used to construct molecular

orbitals) of small, common molecules (e.g. methane, benzene, dinitrogen, water,

methanol; 34 molecules were used for the C, H, O, N set) was chosen and the six

parameters above (Urr etc.) were adjusted in an attempt to give the best values of the

four molecular characteristics (heat of formation, geometry, dipole moment, ioni-

zation energy). Specifically, the objective was to minimize Y, the sum of the

weighted squares of the deviations from experiment of the four molecular

characteristics:

Y ¼
XN
i¼1

Wi

	
Yi calcð Þ � Yi expð Þ
2 ð16:20Þ

N is the number of molecules in the training set, and Wi is a weighting factor

chosen to determine the relative importance of each characteristic Yi. The actual

process of assigning values to the parameters is formally analogous to the problem

of geometry optimization (Chap. 2, Sect. 2.4). In geometry optimization we want

the set of atomic coordinates that correspond to a minimum (sometimes to a

transition state) on a potential energy hypersurface. In parameterizing a semiem-

pirical method we want the set of parameters that correspond to the minimum

overall calculated deviation of the chosen characteristics from their experimental

values–the parameters that give the minimum Y, above. Details of the parameter-

ization process for MNDO have been given by Dewar [38a] and by Stewart [41].

The results of MNDO calculations on 138 compounds limited to the elements C,

H, O, N were reported by Dewar and Thiel [38b]. The absolute mean errors were: in

heat of formation, 26kJ mol�1 for all 138 compounds; in geometry, 0.014 Å for

bond lengths for 228 bonds, 2� for angles at C for acyclics (less for cyclic

molecules); in dipole moment, 0.30 D for 57 compounds; in ionization energy,

0.48 eV for 51 compounds. To put the errors in perspective, typical values of these

quantities are, respectively, roughly �600 to 600kJ mol�1, 1.0–1.5 Å, 0–3 D, and

10–15 eV. Although MNDO can reproduce these and other properties of a wide

variety of molecules [37, 42], it is little-used nowadays, having been largely

superseded by AM1 and, perhaps to a somewhat lesser extent, PM3 (below).
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Variations on the basic MNDO are MNDO/d and MNDOC, both developed by

the research group of Thiel. MNDO/d has d functions added to the minimal-basis

valence s and p functions, in an attempt to solve one of the most persistent problems

of semiempirical methods, that of obtaining good results for compounds tradition-

ally believed to utilize d orbitals, including “hypervalent” compounds

[43]. Although the term hypervalent is not unambiguous, hypercoordinate being

perhaps preferable, and the role of d orbitals here is controversial [44], parameter-

ization with d functions is a pragmatic approach to finding a semiempirical method

that works. MNDO/d was applied to “normal” molecules and, more to the point,

compounds of metals like magnesium, zinc, cadmium and mercury, and some

hypercoordinate molecules. MNDO/d was said to give “significant improvements

over established semiempirical methods, especially for hypervalent compounds’”
[43a]. The particularly difficult task of parameterizing MNDO for transition metal

compounds does not appear to have been ever satisfactorily solved. The application

of MNDO and related methods to such compounds has been reviewed [45].

MNDOC denotes MNDO with configuration interaction (CI; Chap. 5,

Sect. 5.4.3) [46]. This may seem odd, since MNDO (and the related AM1 and

PM3, . . ., PM6) are parameterized to match experiment, and should therefore

“automatically” include electron correlation (Chap. 5, Sect. 5.4.1), which configu-

ration interaction is designed to handle. However, the parameterization uses com-

pounds (ground-electronic state species), not transition states and excited states,

and electron correlation changes on going from a ground state to a transition or

excited state. In a transition state this is because of a loosening of bonds, akin to the

effect discussed in connection with homolytic bond cleavage (Chap. 5, Sect. 5.4.1),

and in an excited state there is of course a dramatic altering of the electron

arrangement. A perfect parameterization based on compounds would therefore

give perfect properties, such as heats of formation and geometries, for ground-

state molecules only. Specific inclusion of CI in MNDO is designed to improve the

modeling of transition states and excited states, andMNDOCwas said, compared to

MNDO, to be “superior for [transition states]” [46b] and to warrant “cautious

applications. . .to photochemical problems” [46c]. In other studies involving tran-

sition states, MNDOC was said to outperformMNDO and compare reasonably well

with ab initio calculations [47]. Augmenting an experimental study in which

matrix-isolated dimethyloxirene was said to be have been observed, Bachmann

et al. performed MNDOC calculations to estimate the barriers for the ring-opening

of some oxirenes to the oxo carbenes (“ketocarbenes”) [48]:

O

RR

..
O

RR

They obtained these barriers (kJ mol�1=kcal mol�1): oxirene (R ¼ H, 24/5.8);

dimethyloxirene (R ¼ CH3, 31/7.3); di-t-butyloxirene (R ¼ t� C4H9, 56/13.5); cyclo-

hexyne oxide (R, R ¼ CH2CH2CH2CH2, 0/0); benzyne oxide (R, R ¼ CHCHCHCH,

67/16). The ordering of energies may well be correct, but MNDOC seems to
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considerably exaggerate the barriers (assuming high-level ab initio calculations are

correct here!). High-level calculations are available for oxirene and dimethyloxir-

ene. For oxirene, these gave a barrier of merely 1� 4kJmol�1 [49] and 3kJ mol�1

[50]; in this later case the carbene is not a stationary point and the barrier is for

direct rearrangement of oxirene to ketene (H2C¼C¼O) with hydrogen migration.

For dimethyloxirene there do not appear to be high-level results for the actual barrier,

but based on a not-fully-optimized transition state a barrier of about 11kJ mol�1

was estimated [50], and a “periodic scan” (R¼H, BH2, CH3, NH2, OH, F) by

Fowler et al. showed only dimethyloxirene to be clearly stabilized by the sub-

stituents [51]. The oxirene problem has been reviewed [52]; it is one that does not

yield readily to even high-level probing (see particularly [53]), and thus constitutes

a quite rigorous test for a semiempirical method. Curiously, more than two decades

after its development, it was said that MNDOC “has not yet been compared to other

NDDO methods to the degree necessary to evaluate whether the formalism lives up

to [its] potential” [54]. This may be because MNDOC (and MNDO/d) were not

widely available, unlike MNDO, AM1 and PM3, which have long been included in

popular “multimethod” (molecular mechanics, semiempirical, ab initio and DFT)

program suites like Gaussian [55] and Spartan [56]. MNDOC and MNDO/d are

included in the AMPAC [57], and MNDO/d in the very widely-used MOPAC [58]

two specifically semiempirical suites.

6.2.5.5 AM1

AM1 (Austin method 1, developed at the University of Texas at Austin [59]) was

introduced by Dewar, Zoebisch, Healy and Stewart in 1985 [60]. AM1 is an

improved version of MNDO in which the main change is that the core-core

repulsions (Eq. (6.18)) were modified to overcome the tendency of MNDO to

overestimate repulsions between atoms separated by about their van der Waals

distances (the other change is that the parameter ζ in the exponent of the Slater

function – see parameter 3 in the list of the six parameters above – need not be the

same for s and p AOs on the same atom). The core-core repulsions were modified

by introducing attractive and repulsive Gaussian functions centered at internuclear

points [61], and the method was then re-parameterized. The great difficulties

experienced in the parameterization of AM1 and its predecessors are emphasized

by Dewar and coworkers in many places, e.g.: “All our work has therefore been

based on a very laborious purely empirical technique. . .” for the MINDO methods

[33]; parameterization is a “purely empirical affair” and “needs infinite patience

and enormous amounts of computer time” for AM1 [60]. In his autobiography

Dewar says [62] “This success [of these methods] is no accident and it has not been

obtained easily” and summarizes the problems with parameterizing these methods:

(1) the parametric functions are of unknown form, (2) the choice of molecules for

the training set affects the parameters to some extent, (3) the parameters are not

unique, there is no way to tell if the set of values found is the best one, and there is
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no systematic way to find alternative sets, (4) deciding if a set of parameters is

acceptable is a matter of judgment. Dewar et al. chose to call their modified MNDO

method AM1, rather than MNDO/2, because they felt that their methods were being

confused (presumably because of the “INDO” and “NDO” components of the

appellations) with “grossly inaccurate” [60] ZDO SCF semiempirical methods

like CNDO and INDO.

Dewar et al. reported [60] that AM1 calculations on compounds containing

nitrogen and/or oxygen gave an absolute mean error in heats of formation of

25kJ mol�1 for 80 compounds, “generally satisfactory” agreement with experi-

ment for the geometries of 138 molecules, absolute mean error in dipole moment of

0.26 D for 46 compounds, and absolute mean error in ionization energy of 0.40 eV

for 29 compounds. These results are slightly better than those for MNDO, but the

real advantages of AM1 over MNDO were said [60] to lie in its better treatment of

crowded molecules, four-membered rings, activation energies, and hydrogen bond-

ing. Nevertheless, misrepresentations of hydrogen bonding remain a problem with

AM1 [63]. AM1 and PM3 (below) are probably still the most widely-used semi-

empirical methods, and are available in practically all commercial program suites

which have not made a point of being strictly devoted to some other method(s) than

semiempirical ones.

A fairly recent reparameterization of AM1, called RM1 (for Recife, a city in

Brazil where three of the four authors work; by analogy with Austin method 1) is

said to be better than AM1 and PM3 and to be “at least very competitive” with PM5

(PM3, PM5 and PM6: see below) [64]. RM1 keeps “the mathematical structure and

qualities of AM1, while significantly improving its quantitative accuracy with the

help of today’s computers and also of the more advanced techniques available for

nonlinear optimization.” RM1 can be implemented in AM1 software without

changing the code, other than altering the parameters. For 1736 species considered

in the parameterization some average errors were:

Heat of formation (kJ mol�1=kcal mol�1):

AM1 47/11.15, PM3 33/7.98, PM5 25/6.03, RM1 24/5.77

Bond length (Å):
AM1 0.036, PM3 0.029, PM5 0.037, RM1 0.027

Bond angle (degrees):

AM1 5.88, PM3 6.98, PM5 9.83, RM1 6.82

The impetus behind RM1 was to make calculations on big biomolecules more

accurate. RM1 is available in Spartan ‘06 [56] and later versions and in AMPAC 9.0

[57] and MOPAC2009 [58] and later versions of these.

Another variation of AM1 is AM1/d. This is similar in structure to MNDO/d; d

functions appear to have been first introduced into AM1 to parameterize it for

molybdenum [65], and other parameterizations seem to have been done on an

as-needed basis, e.g. for magnesium [66] and for phosphoryl transfer reactions

[67]. AM1/d was available in an early version of MOPAC [58], WinMOPAC v.2.0

(reported in a study of the reaction of ethene with oxygen atoms on a silver surface)

[68], and in MOPAC2000 [58] but it is unclear if any current commercial program
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suite carries it. AM1/d was modified and parameterized for P, S and Cl to give a

variant called AM1 * [69].

6.2.5.6 PM3 and Extensions (PM3(tm), PM5, PM6 and PM7)

PM3, parametric method 3, is a variation of AM1 differing mainly in how the

parameterization is done. There were no explicit PM1 and PM2 because the

developer (below) considered the first two viable parameterized methods of this

type to be MNDO and AM1. When PM3 was first published [41], those two

parameterizations of MNDO-type methods had been carried out, and PM3 was at

first called MNDO-PM3, meaning MNDO parametric method 3. Three papers

[41, 70, 71] define the PM3 method. The Dewar school’s approach to parameter-

ization was a painstaking one (see e.g. Sect. 6.2.5.5, “infinite patience”), making

liberal use of chemical intuition. The developer of PM3, J. J. P. Stewart, employed a

faster, more algorithmic approach, “several orders of magnitude faster than those

previously employed.” [41]. Although it is based on AM1, PM3 did not enjoy

Dewar’s blessing. The reasons for this appear to be at least twofold: (1) Dewar felt

(on the basis of very early results [72]) that PM3 represented at best an only

marginal improvement over AM1, and that a new semiempirical method should

make previous ones essentially obsolete, as MNDO made MINDO/3 obsolete, and

AM1 largely replaced MNDO. Stewart defended his approach [73] with the rejoin-

der, inter alia, that if PM3 was only a marginal improvement over AM1, then AM1

was only a marginal improvement over MNDO. (2) Dewar objected strongly to any

proliferation of computational chemistry methods, whether it be in the realm of ab

initio basis sets [74] or of semiempirical methods [72, 74].

For compounds containing H, C, N, O, F, Cl, Br, and I, Holder et al. reported
[75] that PM3 calculations gave an absolute mean error in heat of formation of

22kJ mol�1 for 408 compounds (cf. 27kJ mol�1 for AM1), and Dewar et al.

reported an absolute mean error in bond lengths of 0.022 Å for 344 bonds (cf. 0.027

for AM1), 2.8� for 146 angles (cf. 2.3� for AM1) [76], and 0.40 D for 196 com-

pounds (cf. 0.35 D for AM1) [76].

PM3(tm) is a version (1996, 1997) parameterized with d orbitals for geometries,

but not for heats of formation, dipole moments, or ionization energies, for transition

metals [77]. It was evaluated ca. 2000 by Bosque and Maseras [78], who also briefly

mentioned 11 earlier (1996–1999) publications testing this method. The consensus

seems to be that the method tends to be good for geometries but not for energies, and

that “its reliability has to be proved on a case by case basis” [78]. There have since

been many published tests of PM3/tm, a few of which are given in reference [79].

The designation PM4 is said to have been reserved for “a separate, collaborative

parameterization effort” [80], and the results of this do not appear to have been

published. PM5 was an improvement of PM3 that appeared in MOPAC2002

[58]. An idea of the accuracy of PM5 compared to MNDO, AM1, and PM3 is

given by this information on errors in the MOPAC2002 manual [81] (I converted

kcal mol�1 to kJ mol�1):
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MNDO AM1 PM3 PM5

Heat of formation 77 50 42 25kJ mol�1

Bond length 0.066 0.053 0.065 0.051 Å

Bond angle 6.298 5.467 5.708 5.413�

In mid 2009 the latest version of the PMx series was PM6, which Stewart

described in detail in a long paper [82]; in this paper, which also gives a brief

history of NDDO methods, it was explicitly said that PM4 and PM5 were

“unpublished”, presumably meaning that the details of their parameterization had

not been revealed. PM6 is available in Gaussian 09 [55], Spartan’14, AMPAC

10 [57], and MOPAC 12 (MOPAC2012) [58]. It appears to be a significant

improvement over PM3 and AM1 and will likely be the standard general-purpose

semiempirical method for some years, except in those program suites which retain

PM3 and AM1 without introducing a later PM version. A brief summary of the

performance of PM6, from the MOPAC2009 brochure [83] (much more detail is

given in [82], mainly for the parameterization for heats of formation) indicates that

this method:

1. Was parameterized with data from over 9000 compounds; experimental and ab

initio data were used, so unlike earlier NDDO methods (MNDO, AM1, PM3;

ca. 1975–1990) the parameterization is not purely empirical). Only about

500 compounds were used for PM3.

2. Gives better heats of formation (from tests on 1373 compounds) than those from

B3LYP/6 ‐ 31G* (a DFT method), PM3, HF/6 ‐ 31G*, and AM1: the average

unsigned errors for PM6 and those four methods were 20.0 (PM6), 21.7, 26.2,

30.8, and 41:9kJ mol�1. Using a version of NDDO specially parameterized just

for heats of formation and somewhat more accurate for this purpose than PM6

(average unsigned errors 16.1 vs. 20:0kJ mol�1), several errors were identified

in a survey of ca. 1300 compounds in the NIST Chemistry WebBook

database [84].

3. Treats hydrogen bonds better than PM3 and AM1.

4. Is parameterized for all main group and transition elements.

Some other information on the accuracy of PM6 is available from the

MOPAC2009 manual [85]:

PM6 PM3 AM1

Bond length 0.091 0.104 0. 130 Å

Bond angle 7.86 8.50 8.77�

Dipole moment 0.85 0.72 0.67 Debye

Ionization energy 0.50 0.68 0.63 eV

As of the beginning of 2015 the latest version of the PMx series is PM7, which was

presented in 2012 in MOPAC 12 (http://openmopac.net/MOPAC2012brochure.pdf);

its salient features are outlined in that website. Details of PM7 are soberly given in a

2013 paper [86] which focusses on comparing it with PM6; it seems to be a modest

improvement.
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PM3 and MNDO have been modified by further parameterizing their core-core

repulsion functions with another parameterized function, called the pairwise

distance directed Gaussian function (PDDG function), giving PDDG/PM3 and

PDDG/MNDO, with the aim of improving the calculated heats of formation

without causing significant changes in geometries, ionization energies and dipole

moments [87]. The parameterization for C, H, N, O compounds gave a reduction in

mean absolute errors for heats of formation of from 18.4 to 13:4kJ mol�1 for

PDDG/PM3 cf. PM3 and from 35.1 to 21:8kJ mol�1 for PDDG/MNDO cf. MNDO

[87a]. Parameterization for halogen-containing compounds gave significant heats

of formation improvement over reparameterized (with the same training set)

PM3 and MNDO, called PM30 and MNDO0, and considerable improvement over

PM3, MNDO and AM1 [87b]. Among the semiempirical methods investigated,

PDDG/PM3 gave the best agreement with ab initio G2 and CCSD(T) calculations

of activation energy for SN2 reactions of methyl halides with halogen anions [87b].

PDDG parameterization was extended to compounds with S, Si and P. For 1480

neutrals, ions and complexes with H, C, N, O, F, Si, P, S, Cl, Br, and I the mean

absolute errors in heats of formation were ( kJ mol�1 ) 27.2 (PDDG/PM3),

36.4 (PM3), 43.1 (MNDO/d), 45.2 (AM1), and 82.8 (MNDO) [87c].

6.2.5.7 SAM1 and SCC-DFTB

SAM1 (semi ab initio method number 1) was the last semiempirical method to be

reported (1993, [76]) by Dewar’s group. SAM1 is essentially a modification of

AM1 in which the two-electron integrals are calculated ab initio using contracted

Gaussians (an STO-3G basis set) as in standard ab initio calculations (Chap. 5,

Sect. 5.3.2). This is in contrast to AM1, where the two-center two-electron integrals

are calculated from the one-center two-electron integrals, which are estimated

spectroscopically. As Holder and Evleth point out in a brief but lucid outline of

the basis of AM1 and SAM1 [88], a key distinguishing feature of each semi-

empirical method is how it calculates the two-electron repulsion integrals. Since

the NDDO approximation discards all the three- and four-center two-electron

integrals, the number of two-electron integrals to be calculated is greatly reduced.

This, and the limitation to valence electrons, makes SAM1 only about twice as slow

as AM1 [88].

One of the main reasons for developing SAM1 was to improve the treatment of

hydrogen bonding (this was also a primary reason for developing AM1 from

MNDO; evidently success there was only limited [63]). SAM1 is indeed an

improvement over AM1 in this respect, and “appears to be the first semiempirical

parameterization to handle a wide variety of [hydrogen bonded] systems cor-

rectly.”; in fact, it was said that “The results from SAM1 for virtually every system

has improved over AM1 and PM3, fulfilling the criteria for SAM1 to be a reason-

able successor to AM1 and PM3 for general purpose semiempirical calculations”

[88]. An extensive list of experimental heats of formation compared with those
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calculated by SAM1, AM1 and PM3 has been published [75]. Actually, despite its

apparent generally significant superiority over AM1, there have been relatively few

publications using SAM1. This is probably because the program is at present

available only in the commercial semiempirical package AMPAC [57], and

because the latest “PMX”, the fully semiempirical PM6, appears to be so powerful.

That the parameterization of SAM1 has not been fully disclosed in the open

literature may also play a role–researchers are perhaps uncomfortable about using

a set of black box techniques.

The melding of semiempirical methods with some ab initio computation seen in

SAM1 has an analogue in the intrusion of density functional theory (DFT, Chap. 7)

into the semiempirical sphere: the self-consistent-charge density functional tight-

binding (SCC-DFTB) method of Elstner [89]. In SAM1 ab initio calculations are

used only to calculate the two-electron integrals; in SCC-DFTB, in keeping with the

ethos of DFT, the wavefunction has been replaced by the electron density function.

The semiempirical methods mentioned previously were wavefunction methods: the

simple and extended Hückel (Chap. 4), and the SCF semiempirical methods of this

chapter, all use a wavefunction created by diagonalizing a Fock matrix to give the

coefficients of chosen basis functions; these weighted basis functions in linear

combination are molecular orbital wavefunctions which arrayed in one or more

Slater determinants comprise the total atomic or molecular wavefunction (Chaps 4

and 5). In contrast, density function theory is based on the electron density function,

a conceptually simple function of the variation of electron density with position in

space. Although DFT does not demand a wavefunction, current practical DFT

methods use a wavefunction of hypothetical noninteracting electrons to calculate

the electron density function, which is then transformed into a molecular energy

with aid of a mathematical recipe called a functional (Chap. 7). Tight-binding refers

to a variation of the LCAO method that was developed for treating extended solids

in solid-state physics; for a detailed review see Goringe et al. [90]. The SCC-DFTB

method is an application to molecules of a method that was used (ca. 2000) in the

physics of solids and clusters. It is derived from standard DFT “by neglect,

approximation, and parametrization of interaction integrals” [89]. The impetus

behind its development was the study of large biomolecules, and its speed is said

to be comparable to that of other semiempirical methods.

6.2.5.8 Polarized Molecular Orbital Model, PMO; Dispersion Effects

This is a fairly recent NDDO method, initially (2011) used for only H, O molecules

but now extended to include also at least C, N, S [91a]. The PMO2 version is said to

be “especially accurate for polarizabilities, atomization energies, proton transfer

energies, noncovalent complexation energies, and chemical reaction barrier

heights, and to have good across-the-board accuracy for a range of other properties,

including dipole moments, partial atomic charges, and molecular geometries”

[91b]. The PMO method includes an optional explicit empirical dispersion term;

explicit recognition of dispersion is a feature lacking in most semiempirical
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programs (it has been introduced into AM1 and PM3, giving AM1-D and PM3-D,

see references in [91b]). Some molecular mechanics forcefields were found to be

more accurate than semiempirical methods for dispersion in the case of the benzene

dimer [91c]. For references to dispersion in ab initio and in DFT, see Chap. 5,

Sect. 5.4.3.3, at end of discussion of BSSE, and Chap. 7, Sect. 7.2.3.4.8. As of

mid-2015 the use of the PMO semiempirical method may have been confined to the

Truhlar group.

6.2.5.9 OMx, Orthogonalization Method x (x ¼ 1, 2, 3)

These NDDO methods are variations of MNDO in which orthogonalization

has been applied, not straightforwardly to the whole Fock matrix as in the

extended Hückel method and ab initio methods (Chap. 4, Sect. 4.4.1; Chap. 5,

Sect. 5.2.3.6.2), but instead in a more involved way, only to certain integrals of the

Fock matrix; the way these “orthogonalization corrections” are applied distin-

guishes among OM1, OM2, and OM3 [92a]. Also, unlike MNDO and most other

semiempirical SCF methods, the OMx methods use Gaussian rather than Slater

orbitals. Although the OMx methods are not new, going back to 1993–2003 [92a],

there seems to have been more recently (ca. 2011) a renewed interest in testing their

accuracy: an extensive benchmarking study found them, especially OM2 and OM3,

to significantly outperform AM1, PM6, and SCC-DFTB. OM2 and OM3 compared

well with DFT (Chap. 7) [92b]. As of 2014 these methods appear to have been

parameterized only for H, C, N, O, F.

6.2.5.9.1 General Comments on NDDO Methods

The general-purpose (not limited to π-electrons) methods presented in this

Sect. (6.2.5) are all variations on the theme of Dewar’s first reasonably successful

NDDO method, MINDO/3 (SCC-DFTB, above, as a DFT rather than a wave-

function method, lies outside this group). MINDO/3 was made obsolete by

MNDO and MNDO was largely replaced by AM1, which today competes with

PM3 (and PM6 and PM7). The variants of Dewar-type methods in use today, to a

greater or lesser extent, are MNDO, MNDO/d, MNDOC, AM1, RM1, PM3, PM6,

PM7, PDDG/PM3, and SAM1. Here is the availability of general-purpose semi-

empirical methods in four widely-used program suites, as of December 2015:

AMPAC 10 MNDO/3, MNDO, MNDO/d, MNDOC, AM1, RM1, PM3, PM6,

SAM1

See Semichem, Inc.

Gaussian 09 Extended Hückel, CNDO/2, INDO, ZINDO, MINDO/3, MNDO,

AM1, PM3, PM3MM (optional molecular mechanics amide

correction), PM6, PDDG/PM3, DFTB (original Elstner et al.),

DFTBA (modified DFTB).
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See Gaussian, Inc.

MOPAC 12 MNDO, AM1, RM1, PM3, PM6, PM7, PM7-TS (for transition

states), MOZYME. J. J. P. Stewart informed the author2 “MNDOD

is included in MOPAC2012, and in all earlier versions after

MNDOD was published” under the keyword MNDOD, and now

(2015 November 19) MNDO/d; “MNDOC was never in any copy of

MOPAC. This was my choice. MNDOC is theoretically a more

correct formulation than any of the other NDDO methods, in that

it included correlation, via C.I.. However in practice it was much

slower and offered no significant advantage. For this reason, I

decided not to put it in MOPAC”.

See Stewart Computational Chemistry – MOPAC Home page.

Spartan ’14 MNDO, MNDO/d, AM1, RM1, PM3, PM6

See Wavefunction, Inc.

If this seems, ironically, like a chaotic proliferation, the charge Dewar levelled

against what he saw as the wild growth of ab initio basis sets (Chap. 5, Sect. 5.3.3,

Which basis Set Should I Use?) the situation is somewhat ameliorated by the fact

that the currently very widely used methods are possibly only AM1, PM3, PM6 and

PM7 (this does not mean that for some purposes others may not be better).

6.3 Applications of Semiempirical Methods

A good, brief overview of the performance of AM1, PM3, and related semiempir-

ical methods as of ca. 2014 is given by Levine [93]. Hehre has compiled a very

useful book comparing AM1 with molecular mechanics (Chap. 3), ab initio

(Chap. 5) and DFT (Chap. 7) “practical strategies” for calculating geometries and

other properties [94], and an extensive collection of AM1 and PM3 geometries is to

be found in Stewart’s second PM3 paper [70].

6.3.1 Geometries

Many of the general remarks on molecular geometries in Chap. 5, Sect. 5.5.1,

preceding the discussion of results of specifically ab initio calculations, apply also

to semiempirical calculations. Geometry optimizations of large biomolecules like

proteins and nucleic acids, which a few years ago were limited to molecular

2J. J. P. Stewart, personal communication, 2015 November 19.
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mechanics, can now be done routinely [95a] with semiempirical methods on

inexpensive personal computers with the program MOZYME (a program in the

suite of semiempirical programs MOPAC), which uses localized orbitals to solve

the SCF equations [95b]. Localized orbitals speed up the Roothaan-Hall SCF

process (Chap. 5, Sect. 5.2.3.6.2) because with these more compact (compared to

the dispersed canonical orbitals; Chap. 5, Sect. 5.2.3.1) fewer long-range basis

function interactions need be considered. Clearly, this saving in “outreach” is

especially important in a very big molecule.

Let’s compare AM1, PM3, and MP2(fc)/6‐31G* (Chap. 5, Sect. 5.4.2) and

experimental geometries; the MP2(fc)/6‐31G* method is a reasonably high-level

ab initio method that is routinely used. Fig. 6.2 gives bond lengths and angles

calculated by these three methods and experimental [96] bond lengths and angles,

for the same 20 molecules as in Chap. 5, Fig. 5.23. The geometries shown in Fig. 6.2

are analyzed in Table 6.1, and Table 6.2 provides information on dihedral angles for

the same eight molecules as in Chap. 5, Table 5.8. Fig. 6.2 corresponds to Fig. 5.23,

Table 6.1 to Table 5.7, and Table 6.2 to Table 5.8.

This survey suggests that: AM1 and PM3 give quite good geometries (although

dihedral angles, below, sometimes show quite significant errors): bond lengths are

mostly within 0.02 Å of experimental (although the AM1 C–S bonds are about

0.06Å too short), and angles are usually within 3� of experimental (the worst case is

the AM1 HOF angle, which is 7.1� too big).

Of AM1 and PM3, neither has a clear advantage over the other in predicting

geometry, although PM3 C–H and C–X (X¼O, N, F, Cl, S) bond lengths appear to

be more accurate than AM1. MP2 geometries are considerably better than AM1 and

PM3, butHF=3-21Gð*Þ and HF/6‐31G* (basis sets: Chap. 5, Sect. 5.3.3) geometries

(Chap. 5, Fig. 5.23 and Table 5.7) are only moderately better.

AM1 and PM3 C-H bond lengths are almost always (AM1) or tend to be (PM3)

longer than experimental, by ca. 0.004–0.025 (AM1) or ca. 0.002 Å (PM3). AM1

O–H bonds tend to be slightly longer (up to 0.016 Å) and PM3 O–H bonds to be

somewhat shorter (up to 0.028 Å) than experimental.

Both AM1 and PM3 consistently underestimate C–C bond lengths (by about

0.02 Å).
C–X (X¼O, N, F, Cl, S) bond lengths appear to be consistently neither over- nor

underestimated by AM1, while PM3 tends to underestimate them; as stated above,

the PM3 lengths seem to be the more accurate (mean errors 0.013 Å vs. 0.028 Å for

AM1). Both AM1 and PM3 give quite good bond angles (largest error ca. 4�, except
for HOF for which the AM1 error is 7.1�).

AM1 tends to overestimate dihedrals (10þ , 0�), while PM3 may do so to a

lesser extent (7þ , 3�). PM3 breaks down for HOOH (calculated 180�, experi-
mental 119.1�, and does poorly for FCH2CH2F (calculated 57�, experimental 73�).
Omitting the case of HOOH, the mean dihedral angle errors for AM1 and PM3 are

5� and 4.5�.; however, the variation here is from 1� to 11� for AM1 and from�1� to
�16� for PM3 (although not wildly out of line with the AM1, PM3 or MP2

calculations, the reported experimental CICH2CH2OH HOCC dihedral of 58.4� is
suspect; see Chap. 5, Sect. 5.5.1).
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The accuracy of AM1 and PM3 then, is quite good for bond lengths and angles,

but fairly approximate for dihedrals. The largest error (Table 6.1) in bond lengths is

0.065 Å (AM1 for MeSH) and in bond angles 7.1� (AM1 for HOF). The largest
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Fig. 6.2 A comparison of some AM1, PM3, MP2(fc)/6–31G* and experimental geometries.

Calculations are by the author and experimental geometries are from reference [96]. Note that

all CH bonds are ca. 1 Å, all other bonds range from ca. 1.2–1.8 Å, and all bond angles (except for
linear molecules) are ca. 90�–120�

6.3 Applications of Semiempirical Methods 447



T
a
b
le

6
.1

E
rr
o
rs
in

A
M
1
,
P
M
3
,
an
d
M
P
2
(f
c)
/6
-3
1
G
*
b
o
n
d
le
n
g
th
s
an
d
an
g
le
s,
fr
o
m

F
ig
.
6
.2

B
o
n
d
le
n
g
th

er
ro
rs
,
r-
r e
x
p
,
Å

B
o
n
d
an
g
le

er
ro
rs
,
a-
a e

x
p
,
d
eg
re
es

C
–
H

O
–
H
,
N
–
H
,
S
–
H

C
–
C

C
–
O
,
N
,
F
,
C
l,
S

M
eO

H
H
2
O

M
e 2
C
O

M
eO

H
H
2
O
(H

O
H
)

0
.0
2
5
/0
.0
0
0
/�

0
.0
0
4

0
.0
0
3
/�

0
.0
0
7
/0
.0
1
1

�0
.0
1
1
/�

0
.0
0
2
/0
.0
0
6

0
.0
0
1
/�

0
.0
1
4
/0
.0
0
7

�0
.9
/3
.2
/�

0
.6

0
.0
2
5
/0
.0
0
3
/
0
.0
0
3

H
C
H
O

H
2
O
2

C
H
3
C
H
3

H
C
H
O

H
2
O
2
(H

O
O
)

�0
.0
0
5
/�

0
.0
2
4
/�

0
.0
1
2

0
.0
1
6
/�

0
.0
2
0
/0
.0
1
1

�0
.0
3
1
/�

0
.0
2
7
/�

0
.0
0
5

0
.0
1
9
/�

0
.0
0
6
/0
.0
1
3

4
.4
/�

3
.5
/�

1
.4

M
eF

M
eO

H
C
H
2
C
H
2

M
eF

M
eO

H
(H

C
O
)

0
.0
2
1
/�

0
.0
0
8
/�

0
.0
0
8

0
.0
0
1
/�

0
.0
1
4
/0
.0
0
7

�0
.0
1
3
/�

0
.0
1
7
/�

0
.0
0
2

�0
.0
0
8
/�

0
.0
3
2
/0
.0
0
9

�2
.2
/�

2
.7
/�

0
.9

(C
O
H
)
�0

.2
/�

0
.5
/

�0
.6

H
C
N

H
O
F

H
C
C
H

H
C
N

H
C
H
O

(H
C
H
)

0
.0
0
4
/0
.0
0
6
/0
.0
0
4

0
.0
0
5
/�

0
.0
2
0
/0
.0
1
3

�0
.0
0
8
/�

0
.0
1
3
/0
.0
1
5

0
.0
0
7
/0
.0
0
3
/0
.0
2
4

�1
.0
/�

0
.1
/�

0
.9

M
eN

H
2

M
eN

H
2

C
H
3
C
H
2
C
H
3

M
eN

H
2

M
eF

(H
C
H
)

0
.0
2
1
/0
.0
0
2
/0
.0
0
1

�0
.0
1
0
/�

0
.0
1
1
/0
.0
0
8

�0
.0
1
9
/�

0
.0
1
4
/0
.0
0
0

�0
.0
3
9
/�

0
.0
0
2
/�

0
.0
0
6

�1
.1
/�

0
.3
/�

0
.8

0
.0
2
3
/�

0
.0
0
1
/�

0
.0
0
7

C
H
3
C
H
3

H
O
C
l

C
H
2
C
H
C
H
3

M
e 2
C
O

H
O
F
(H

O
F
)

0
.0
2
1
/0
.0
0
2
/�

0
.0
0
3

�0
.0
1
4
/�

0
.0
2
8
/0
.0
0
4

�0
.0
2
7
/�

0
.0
2
1
/�

0
.0
0
2

0
.0
1
3
/�

0
.0
0
6
/0
.0
0
6

7
.1
/2
.6
/0
.4

0
.0
1
3
/0
.0
1
0
/0
.0
2
0

C
H
2
C
H
2

H
2
S

H
C
C
C
H
3

M
eC

l
M
eN

H
2
(H

C
N
)

0
.0
1
3
/0
.0
0
1
/0
.0
0
0

�0
.0
1
3
/�

0
.0
4
6
/0
.0
0
4

�0
.0
3
2
/�

0
.0
2
6
/0
.0
0
4

�0
.0
4
0
/�

0
.0
1
6
/�

0
.0
0
2

0
.4
/0
.8
/1
.5

�0
.0
0
9
/�

0
.0
1
4
/0
.0
1
4

C
H
C
H

M
eS
H

M
eS
H

M
e 2
C
O

(C
C
C
)

0
.0
0
0
/0
.0
0
3
/0
.0
0
5

�0
.0
1
5
/�

0
.0
3
0
/0
.0
0
5

�0
.0
6
5
/�

0
.0
1
8
/�

0
.0
0
3

�1
.8
/�

1
.8
/�

0
.8

M
eC

l
M
e 2
S
O

C
H
3
C
H
3
(H

C
H
)

0
.0
1
5
/�

0
.0
0
2
/�

0
.0
0
7

�0
.0
6
0
/0
.0
1
9
/0
.0
1
0

0
.4
/�

0
.6
/�

0
.1

M
eS
H

C
H
2
C
H
2
(H

C
H
)

0
.0
2
4
/0
.0
0
6
/0
.0
0
0

�3
.2
/�

4
.0
/�

1
.2

448 6 Semiempirical Calculations



0
.0
2
1
/0
.0
0
4
/�

0
.0
0
1

C
H
3
C
H
2
C
H
3
(C
C
C
)

�0
.6
/�

0
.7
/�

0
.1

C
H
2
C
H
C
H
3
(C
C
C
)

0
.0
/�

0
.9
/0
.2

M
eC

l
(H

C
H
)

0
.6
/�

1
.0
/0
.0

H
2
S
(H

S
H
)

3
.4
/1
.2
/1
.2

M
eS
H

(C
S
H
)

3
.1
/3
.5
/0
.3

M
e2
S
O

(C
S
C
)

3
.1
/2
.8
/�

0
.8

(C
S
O
)

�1
.0
/�

2
.2
/0
.7

1
2
+
,
1
�,

n
o
n
e
0

4
+
,
4
�,

n
o
n
e
0

1
+
/
8
�,

n
o
n
e
0

4
+
,
5
�,

n
o
n
e
0

8
+
,
9
�,

o
n
e
0

8
+
,
4
�,

o
n
e
0

0
+
,
8
�,

n
o
n
e
0

1
+
,
8
�,

n
o
n
e
0

2
+
,
7
�,

n
o
n
e
0

6
+
,
1
2
�,

n
o
n
e
0

4
+
,
7
�,

tw
o
0

8
+
,
0
�,

n
o
n
e
0

5
+
,
3
�,

o
n
e
0

6
+
,
3
�,

n
o
n
e
0

6
+
,
1
1
�,

o
n
e
0

M
ea
n
o
f
1
3
:
0
.0
1
7
/0
.0
0
5
/

0
.0
0
4

M
ea
n
o
f
8
:
0
.0
1
0
/0
.0
2
2
/

0
.0
0
8

M
ea
n
o
f
9
:
0
.0
1
8
/0
.0
1
6
/

0
.0
0
8

M
ea
n
o
f
9
:
0
.0
2
8
/0
.0
1
3
/

0
.0
0
9

M
ea
n
o
f
1
8
:
1
.9
/1
.8
/0
.7

E
rr
o
rs
ar
e
g
iv
en

as
A
M
1
/P
M
3
/M

P
2
.
In

so
m
e
ca
se
s
(e
.g
.M

eO
H
)
er
ro
rs
fo
r
tw
o
b
o
n
d
s
ar
e
g
iv
en
,o
n
o
n
e
li
n
e
an
d
o
n
th
e
li
n
e
b
el
o
w
.
A
m
in
u
s
si
g
n
m
ea
n
s
th
at
th
e

ca
lc
u
la
te
d
v
al
u
e
is
le
ss

th
an

th
e
ex
p
er
im

en
ta
l.
T
h
e
n
u
m
b
er
s
o
f
p
o
si
ti
v
e,
n
eg
at
iv
e,
an
d
ze
ro

d
ev
ia
ti
o
n
s
fr
o
m

ex
p
er
im

en
t
ar
e
su
m
m
ar
iz
ed

at
th
e
b
o
tt
o
m

o
f
ea
ch

co
lu
m
n
.
T
h
e
av
er
ag
es

at
th
e
b
o
tt
o
m

o
f
ea
ch

co
lu
m
n
ar
e
ar
it
h
m
et
ic

m
ea
n
s
o
f
th
e
ab
so
lu
te

v
al
u
es

o
f
th
e
er
ro
rs

6.3 Applications of Semiempirical Methods 449



error in dihedrals (Table 6.2), omitting the PM3 result for HOOH, is 16� (PM3 for

FCH2CH2F).

From Fig. 6.2 and Table 6.1, the mean error in 39 (13þ 8þ 9þ 9) bond lengths

is ca. 0:01� 0:03 Å for the AM1 and PM3 methods, with PM3 being somewhat

better except for O-H and O-S. The mean error in 18 bond angles is ca. 2� for both
AM1 and PM3. From Table 6.2, the mean dihedral angle error for 9 dihedrals for

AM1 and PM3 (omitting the case of HOOH, where PM3 simply fails) is ca. 5�; if
we include HOOH, the mean errors for AM1 and PM3 are 6� and 10�, respectively.

Schr€oder and Thiel have compared MNDO (Sect. 6.2.5.4) and MNDOC

(Sect. 6.2.5.4) with ab initio calculations for the study of the geometries and

energies of 47 transition states [47]. AM1 and PM3 calculations should give

somewhat better results than MNDO for these systems, since these two methods

are essentially improved versions of MNDO. The general impression is that the

Table 6.2 AM1, PM3, MP2(fc)/6-31G* and experimental dihedral angles (degrees)

Molecule

Dihedral Angles

AM1 PM3 MP2/6-31G* Exp. Errors

HOOH 128 180 121.3 119.1a 9/61(sic)/2.2

FOOF 89 90 85.8 87.5b 1.5/2.5/�1.7

FCH2CH2F (FCCF) 81 57 69 73b 8/�16/�4

FCH2CH2OH (FCCO) 65 66 60.1 64.0c 1/2/�3.9

(HOCC) 58 62 54.1 54.6c 3/7/�0.5

ClCH2CH2OH (ClCCO) 74 65 65.0 63.2b 11/2/1.8

(HOCC) 62 59 64.3 58.4b 4/1/5.9

ClCH2CH2F (ClCCF) 79 61 65.9 68b 11/�7/�2.1

HSSH 99 93 90.4 90.6a 8/2/�0.2

FSSF 89 87 88.9 87.9b 1/�1/1.0

Deviations:

10þ, 0�/7þ, 3�/4þ, 6�
mean of 10:

6/10/2.3;

mean of 9,

omitting 9/61/2.2

errors: 5/4.5/1.9

Errors are given in the Errors column as AM1/PM3/MP2/6-31G*. A minus sign means that the

calculated value is less than the experimental. The numbers of positive and negative deviations

from experiment and the average errors (arithmetic means of the absolute values of the errors) are

summarized at the bottom of the Errors column. Calculations are by the author; references to

experimental measurements are given for each measurement. The AM1 and PM3 dihedrals vary

by a fraction of a degree depending on the input dihedral. Some molecules have calculated minima

at other dihedrals in addition to those given here, e.g. FCH2CH2F at FCCF 180�
aW. J. Hehre, L. Radom, p. v. R. Schleyer, J. A. Pople, “Ab initio molecular orbital theory”, Wiley,

New York, 1986, pp 151, 152
bM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwenderman, D. A. Ramsay, F. J.

Lovas, W. H. Lafferty, A. G. Makai, “Molecular structures of gas-phase polyatomic molecules

determined by spectroscopic methods”, J. Physical and Chemical Reference Data, 1979, 8,
619–721
cJ. Huang and K. Hedberg, J. Am. Chem. Soc., 1989, 111, 6909
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semiempirical and ab initio transition states are qualitatively similar in most cases,

with MNDOC geometries being sometimes a bit better. The semiempirical and ab

initio geometries were in most cases fairly similar, so that as far as geometry goes

one would draw the same qualitative conclusions.

Semiempirical and ab initio geometries are compared further in Fig. 6.3, which

presents results for four reactions, the same as for the ab initio calculations

summarized in Fig. 5.21. As expected from the results of Fig. 6.2, the semiempirical
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Fig. 6.3 Geometries (Å, degrees) and relative energies (kJ mol�1) for four reactions, the same as

for the ab initio calculations of Chap. 5, Fig. 5.21; most Hs are omitted, for clarity. In Fig. 5.21, raw

energies in hartrees and ZPEs are given. The APNO enthalpies (see text) are considered to be good

surrogates for the somewhat skimpy and approximate experimental values [97]

6.3 Applications of Semiempirical Methods 451

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


geometries of the reactants and products (energy minima) are quite good, taking the

MP2/6‐31G* results as our standard. The semiempirical transition state geometries,

however, also seem to be surprisingly good: with only small differences between

the AM1 and PM3 results, in all four cases the semiempirical transition states

resemble the ab initio ones so closely that qualitative conclusions based on geom-

etry would be the same whether drawn from the AM1 or PM3, or from the MP2/6‐
31G* calculations. The largest bond length error (if we accept the MP2 geometries

as accurate) is about 0.09 Å (for the CH3NC transition state, 1.897–1.803), and the

largest angle error is 9� (for the HNC transition state, 72:8� � 63:9� ; most of the

angle errors are less than 3�).
These results, together with those of Schr€oder and Thiel [47], indicate that

semiempirical geometries are usually quite good, even for transition states. Excep-

tions might be expected for hypervalent compounds, and for unusual structures like

the C2H5 cation; for the latter AM1 and PM3 predict the classical CH3CH2

structure, but MP2/6‐31G* calculations predict this species to have a hydrogen-

bridged structure (Chap. 5, Fig. 5.17). Semiempirical energies are considered in

Sect. 6.3.2.

6.3.2 Energies

6.3.2.1 Energies: Preliminaries

As with ab initio (Chap. 5) and molecular mechanics (Chap. 4) calculations, the

molecular parameters usually sought from semiempirical calculations are geome-

tries (preceding section) and relative energies. As explained (Sect. 6.2.5.2), SCF-

type semiempirical methods, AM1 and PM3 and their variations (and the DFT-type

SCC-DFTB), give standard (room temperature, 298 K) enthalpies (heats) of for-

mation. It is enthalpies that are meant in this chapter in reference to semiempirical

energies, enthalpies of formation, reaction or activation, depending on the context.

This is in distinct contrast to ab initio calculations, which give (the negative of) the

energy for total dissociation of the molecule into nuclei and electrons, starting from

a hypothetical zero-vibrational energy state or from the 0 K state with ZPE included

(Chap. 5, Sect. 5.5.2.2). Ab initio methods can be made to provide heats of

formation, by slightly roundabout methods (Chap. 5, Sect. 5.5.2.3.3). Semiempir-

ical energies are addressed in Figs. 6.3 and 6.4, and Tables 6.3, 6.4 and 6.5.

Table 6.3 compares with experiment calculated enthalpies of formation for the

20 compounds used to test geometries in Fig. 6.2; although the accuracy of

semiempirical methods for energies has been tested for much larger sample sizes

(Sect. 6.3.2.2), this table and the errors summarized there nevertheless convey the

flavor of the accuracy that may be expected from these five methods.

Figure 6.3, which was discussed above in connection with geometries, also gives

the relative energies for the reaction profiles (reactant, transition state, product) of

four reactions, for AM1, PM3, ab initio MP2/6‐31G*, and from experiment [97].
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The relative energies in Fig. 6.4 are based on the data in Table 6.4, which also gives

the semiempirical “raw data” (enthalpies of formation); Table 6.4 and Fig. 6.4

augment the AM1 and PM3 values of Fig. 6.3 with those from RM1, PDDG/PM3,

and PM6. The APNO energies of Fig. 6.3 and Table 6.4 are relative enthalpies from

the very high-accuracy CBS-APNO method (Chap. 5, Sect. 5.5.2.3.2, Comparison
of high-accuracy multistep methods) and should serve as good surrogates for the
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Fig. 6.4 Relative energies (kJ mol�1) for the four reactions of Fig. 6.3. Compared to the reactants

(the four species shown), the transition state energies are all positive and the product energies all

negative
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sketchy experimental information for these four reactions [97]. See too Chap. 7,

Sect. 7.3.2.2. The reaction profiles in Table 6.4 are perhaps better apprehended in

the visual presentation of Fig. 6.4. Table 6.5 shows enthalpy values for two

“elemental” reactions (H2 þ Cl2 and H2 þ O2 ) for AM1, RM1, PM3, PDDG/

PM3, and PM6, and provides reaction enthalpies and semiempirical enthalpies of

formation for H2, Cl2 and O2 (which by definition should be zero, but here are not).

6.3.2.2 Energies: Calculating Quantities Relevant to Thermodynamics

and Kinetics

What do Table 6.4 (an elaboration with more semiempirical methods of the

energies in Fig. 6.3) and Fig. 6.4, a visual presentation of the reaction energies of

Table 6.4, indicate? Literature results for much larger test samples than these four

reactions are presented below for several methods. Consider first the enthalpies

of formation in Table 6.4 (from which are obtained the relative enthalpies of

reactant, transition state and product in Fig. 6.4). For each of the four reactions

Table 6.3 Enthalpies of formation (kJ mol�1) of the 20 compounds in Fig. 6.2, from the five

semiempirical methods used to study reaction profiles (Table 6.4)

Compound AM1 RM1 PM3 PDDG PM6 Exp.

H2O �248 �242 �224 �221 �227 �241.8

HOOH �148 �155 �171 �171 �100 �136.1

HOF �94.5 �78.2 �122 �121 �72.6 �98.3

HOCl �91.0 �87.6 �144 �70.7 �74.4 �74.5

H2S 5.0 8.7 �3.8 4.9 �7.1 �20.6

CH3SH �18.2 �24.8 �23.1 �22.0 �14.1 �22.8

Me2SO �165 �173 �162 �163 �137 �150.5

CH3F �255 �221 �225 �220 �224 �234.3

CH3Cl �79.3 �78.9 �61.4 �70.2 �63.0 �83.7

CH3OH �239 �210 �217 �205 �202 �205.

HCHO �132 �124 �154 �126 �86.5 �115.9

Me2CO �206 �221 �223 �234 �228 �218.5

HCN 130 128 138 112 139 135.1

Me2NH2 �30.9 �17.7 �21.7 �30.1 �10.1 �23.5

CH3CH3 �72.9 �73.3 �75.9 �78.9 �66.1 �84.

CH3CH2CH3 �102 �94.6 �98.8 �101 �87.6 �104.7

H2CCH2 68.9 61.7 69.6 60.9 65.9 52.5

CH3CH¼CH2 27.5 32.7 26.8 19.4 23.8 20.4

HCCH 229 194 212 199 238 226.7

CH3CCH 182 159 168 172 190 185.4

Experimental values are from the NIST website; when errors were given these were< 2 kJ mol�1,

except for CH3OH (�10. kJ mol�1)

Average absolute error/maximum error (molecule), kJ mol�1: AM1 10.9/33.6 (CH3OH); RM1

10.6/32.4 (HCCH); PM3 16.8/38.5 (HCHO); PDDG 12.7/35.2 (HOOH); PM6 13.5/35.9 (HOOH)
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Table 6.4 Enthalpies of formation (kJ mol�1) for reactant, transition state and product for each of

the four reactions in Fig. 6.3, using AM1, RM1 (a modified AM1), PM3, PDDG/PM3 (a modified

PM3), and PM6

Method Reaction

Species

Relative EnthalpyReactant TS Product

AM1 Ethenol to ethanal �140.3 167.9 �173.9 0 308 �34

HNC to HCN 204.3 495.6 129.7 0 291 �75

CH3NC to CH3CN 210.8 558.4 80.7 0 348 �130

Cyclopropylidene to allene 506.5 607.5 193.0 0 101 �314

RM1 Ethenol to ethanal �136.4 106.6 �171.6 0 243 �35

HNC to HCN 177.6 464.2 127.7 0 287 �50

CH3NC to CH3CN 192.1 512.2 91.0 0 320 �101

Cyclopropylidene to allene 469.7 565.1 184.5 0 95 �285

PM3 Ethenol to ethanal �132.1 128.5 184.9 0 261 �53

HNC to HCN 236.8 452.2 137.9 0 215 �99

CH3NC to CH3CN 228.8 471.4 97.4 0 243 �131

Cyclopropylidene to allene 479.2 584.8 196.9 0 106 �282

PDDG/PM3 Ethenol to ethanal �143.0 84.9 �182.3 0 228 �39

HNC to HCN 180.9 386.4 112.2 0 206 �69

CH3NC to CH3CN 197.0 449.1 85.2 0 252 �112

Cyclopropylidene to allene 435.2 549.4 196.4 0 114 �239

PM6 Ethenol to ethanal �138.6 80.4 �159.6 0 219 �21

HNC to HCN 194.8 498.9 139.1 0 304 �56

CH3NC to CH3CN 190.2 482.0 85.9 0 292 �104

Cyclopropylidene to allene 406.5 544.5 157.5 0 138 �249

The relative enthalpies from CBS-APNO (see text), which should be good surrogates for exper-

iment, are: ethenol to ethanal, 0 : 234 : �43; HNC to HCN, 0 : 125 : �61; CH3NC to CH3CN, 0 :

163 : �101; cyclopropylidene to allene, 0 : 26 : �280

Table 6.5 Enthalpies of formation and reaction (kJ mol�1) for two reactions using AM1, RM1

(a modified AM1), PM3, PDDG/PM3 (a modified PM3), and PM6

Reaction

Method H2 + Cl2 ! 2HCl ΔH�
f0(exp) ¼ �185 H2 + O2 ! 2H2O ΔH�

f0(exp) ¼ �484

AM1 �21.7 �59.3 ! 2(�103) ΔH�
f0(calc) ¼

2(�103) �(�81.0) ¼ �125

2(�21.7) �116 ! 2(�248) ΔH�
f0(calc)

¼ 2(�248) �(�159) ¼ �337

RM1 �8.0 �30.5 ! 2(�100) ΔH�
f0(calc) ¼ 2

(�100) �(�38.5) ¼ �162

2(�8.0) �89.7 ! 2(�242) ΔH�
f0(calc)

¼ 2(�242) �(�106) ¼ �378

PM3 �56.0 �48.4 ! 2(�85.6) ΔH�
f0(calc) ¼

2(�85.6) �(�104) ¼ �67.2

2(�56.0) �17.5 ! 2(�224) ΔH�
f0(calc)

¼ 2(�224) �(�130) ¼ �318

PDDG/

PM3

�93.0 �40.9 ! 2(�117) ΔH�
f0(calc) ¼

2(�117) �(�134) ¼ �100

2(�93.0) �27.5 ! 2(�221) ΔH�
f0(calc)

¼ 2(�221) �(�214) ¼ �228

PM6 �108 �1.7 ! 2(�134) ΔH�
f0(calc) ¼ 2

(�134) �(�110) ¼ �158

2(�108) �72.9 ! 2(�227) ΔH�
f0(calc)

¼ 2(�227) �(�289) ¼ �165

The enthalpy of reaction is the enthalpy of formation of the products minus the sum of the enthalpies

of formation of the reactants. Note that the semiempirical methods use enthalpies of formation of the

elements in their standard states (H2, Cl2, O2) which are well-removed from the theoretical values of

zero. Experimental reaction enthalpies (inferred): NISTwebsite; the enthalpies of formation reported

for HCl and H2O are �92.31 and �241.826 kJ mol�1, respectively
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we can summarize the ranges of enthalpies of formation thus R ¼ reactant,

TS ¼ transition state, P ¼ product; kJ mol�1):

Ethenol reaction:
R�143—�132,�138� 6; TS 80— 168, 124� 44; P�185—�160,�173� 13

HNC reaction:
R 178 — 237, 208� 30; TS 386 — 488, 443� 57; P 112 — 138, �125� 13

CH3NC reaction:
R 190 — 229, 210� 20; TS 449 — 558, 504� 55; P 81 — 97, �89� 8

Cyclopropylidene reaction:
R 407 — 507, 457� 50; TS 545 — 608, 577� 32; P 158 — 197, �178� 20

This shows for each species of each reaction the range (across the five semiem-

pirical methods) of calculated enthalpies of formation and the mean (average)

value. Here plus/minus accommodates the maximum and minimum values, rather

than indicating the possible error in the value. Thus for the ethenol isomerization

the lowest (most negative) heat of formation for the reactant is �143kJ mol�1

(PDDG/PM3) and the highest is �132kJ mol�1 (PM3), and this range is accom-

modated by the mean value �138� 6kJ mol�1. As might be expected for species

more difficult to pin down computationally than “stable” molecules (than relative

minima on the potential energy surface), the transition states show the biggest

variation around the average value, 44, 57, 55, 32kJ mol�1; the variations for the

reactants are 6, 30, 20, 50 and for the products 13, 13, 8, 20kJ mol�1. These are not

wild variations and indicate that none of the methods is so superior as to render

others obsolete.

What about the range of semiempirical enthalpies for the reaction profiles, the
relative energies rather than absolute ones, of reactants, transition states, and

products, from Table 6.4 and Fig. 6.4? Again, the spread is bigger for enthalpies

involving transition states (for barriers, i.e. activation enthalpies) than for reaction

enthalpies (product enthalpy minus reactant enthalpy). In kJ mol�1:

Ethenol reaction, barriers 219–308, 264� 45; reaction enthalpies �53 to �21,

�37� 16.

HNC reaction, barriers 206–304, 255� 49 ; reaction enthalpies �99 to �50,

�75� 25.

CH3NC reaction, barriers 243–348, 296� 53; reaction enthalpies �131 to �101,

�116� 15.

Cyclopropylidene reaction, barriers 95–138, 117� 22; reaction enthalpies �314 to

�239, �277� 38.

The variations of the barriers for the four reactions are 45, 49, 53, 22 and for the

overall reactions 16, 25, 15, 38kJ mol�1; only the cyclopropylidene isomerization
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shows a smaller spread for the barrier than for the overall reaction. Again, these are

not wild variations among different methods for barriers whose calculated absolute

values are in the area of about, respectively, 260, 260, 300, and 120kJ mol�1, and

for overall reactions in the range �40, �75, �120, and �300kJ mol�1.

We have seen that the five semiempirical methods being discussed do not differ

wildly for the four reactions being examined here. How accurate are these

methods? The very limited size of this survey (only four reactions) does not warrant

a detailed numerical evaluation of the results, but a few points may be noted.

Fig. 6.4 shows that for the HNC, CH3NC and cyclopropylidene isomerizations

the semiempirical methods overestimate the barriers compared to experiment [97]

and MP2/6 ‐ 31G * (by roughly 100kJ mol�1), which is in accord with the literature

(below). For the ethenol reaction only AM1 overestimates the reported barrier

(MP2 underestimates it). The reaction enthalpies are mostly underestimated (not

negative enough) for the ethenol and cyclopropylidene reactions, and overestimated

(too negative) for the HNC and CH3NC cases. The MP2 reaction enthalpy is lower

than the experimental, by ca. 20� 30kJ mol�1, except for the cyclopropylidene

reaction, where the values are close, �287 and �293kJ mol�1. None of the five

semiempirical methods is statistically consistently closer to the experimental bar-

rier or reaction enthalpy than any other. None of the semiempirical methods

matches MP2 consistently for the barriers, while MP2 is within 50kJ mol�1 of

experiment for all these barriers (within 49 for the ethenol isomerization). The

semiempirical reaction enthalpies are all within ca. 40kJ mol�1 (within 41 for the

HNC isomerization), not far from the MP2 accuracy, for which the largest absolute

error is 30kJ mol�1 (ethenol case).

Table 6.5 shows enthalpy values and reaction enthalpies for H2 þ Cl2 ! 2HCl

and H2 þ O2 ! 2H2O for our five semiempirical methods. This shows that semi-

empirical enthalpies of formation for elements need be nowhere near the theoretical

(by definition) value of zero. For H2 the PM6 value is �108kJ mol�1, for Cl2 the

AM1 value is �59kJ mol-1, and for O2 the AM1 value is �116kJ mol�1. Other

calculations confirm this perhaps unexpected discrepancy: for F2, Br2, and I2 the

AM1/PM3 heats of formation are �94=� 90:8, �22:1=þ 20:6, þ83:0=þ 86:8kJ

mol�1; for N2, þ46:7=þ 73:5kJmol�1. Evidently parameterizing a semiempirical

method for acceptable enthalpies of formation for compounds requires sacrificing

the by-definition enthalpies of formation for elements in their standard states. The

calculated enthalpies of the compounds (HCl and H2O), in contrast to the case of

the elements (H2, Cl2 and O2), are more reasonable: for HCl the mean absolute error

(from AM1, 103–92, etc.) is 18kJ mol�1, and for H2O (from AM1, 248–242, etc.)

12kJ mol�1; the maximum absolute errors for the two compounds are 42 (PM6)

and 21kJ mol�1 (PDDG/PM3). As expected from poor elemental enthalpies of

formation but more tolerable product enthalpies of formation, the calculated reac-

tion enthalpies are poor: for the HCl reaction the mean absolute error (from AM1

185–125, etc.) is 63kJ mol�1, and for the H2O reaction (from AM1 484–337, etc.)

199kJ mol�1 ; the maximum absolute errors for the two reactions are 118 and
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319kJ mol�1. Of course if one simply uses the by-definition zero values for the

elements, the calculated reaction enthalpies follow from only the calculated

enthalpies of formation of the compounds. From the stoichiometry of the reactions

these will be e.g. for the AM1 method 2 �103ð ÞkJ mol�1 ¼ �206 cf. experimental

2 �92:31ð Þ ¼ �185kJ mol�1 for formation of HCl, and 2 �248ð Þ ¼ �496

cf. experimental 2 �241:826ð Þ ¼ �484kJ mol�1 for formation of H2O. Here the

maximum absolute errors in calculated reaction enthalpies are 83kJ mol�1 (for the

HCl reaction using PM6, �268 cf. �185) and 42kJ mol�1 (for the H2O reaction

using PDDG/PM3, �442 cf. �484), twice the compound formation enthalpies,

as required arithmetically.

The accuracy of semiempirical methods for enthalpies of formation and for

reactions (barriers and enthalpy of reaction) has been tested for very large sample

sizes. An extensive compilation of AM1 and PM3 heats of formation (which

corrects errors in earlier values) [70] gave for 657 normal-valent compounds

these average errors for the absolute deviations (AM1/PM3, kJ mol�1 ): 53/33;

for 106 hypervalent compounds 348 (sic)/57. These results are not as bad as they

may at first seem if we note that (1) the heats of formation of organic compounds are

commonly in the region of �400� 800kJ mol�1, (2) often we are interested in

trends, which are more likely to be qualitatively right than actual numbers are to be

quantitatively accurate, and (3) usually chemists are concerned with energy differ-
ences, i.e. relative energies (below). AM1 heats of formation for hypervalent

compounds (above and reference [47]) appear to be distinctly inferior to those

from PM3. Thiel has compared MNDO, AM1, PM3, and MNDO/d heats of

formation with those from some ab initio and DFT methods [98]. The results

(ca. 1998) are somewhat dated, as more accurate ab initio (e.g. G3- and G4-type;

Chap. 5, Sect. 5.5.2.3.2), DFT (Chap. 7) and semiempirical (RM1, PM6) methods

(above) are now available. However, it remains true that multistep high-accuracy ab

initio methods are the most accurate ways to calculate heats of formation. These

give an error of about 3� 5kJ mol�1 compared with about 20kJ mol�1 for RM1

and PM6. Nevertheless, the fact that semiempirical calculations are faster than ab

initio by factor of the order of about 1000 can be decisive when dealing with big

molecules or with a large collection of molecules. As mentioned. Such a survey

uncovered several errors in reported experimental heats of formation [84].

The discussion of enthalpy, free energy, and reaction and activation energies in

Sect. 5.5.2.1 applies to semiempirical calculations too. Now let’s retrace some of

the calculations of Chap. 5, using AM1 and PM3 rather than ab initio methods. We

are usually interested in relative energies. A simple ab initio energy difference (for

isomers, or isomeric systems like reactants cf. products), preferably including the

zero point energies, represents a 0 K energy difference, i.e. a 0 K enthalpy

difference (entropy being zero at 0 K), whereas an energy difference from a

standard SCF semiempirical method like AM1, PM3 or PM6 represents a room

temperature enthalpy difference. Thus even if the ab initio and semiempirical
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calculations both had negligible errors, they would not be expected to give exactly

the same relative energy, unless the 0–298 K enthalpy change on both sides of the

equation cancelled. A typical change in heat of formation is shown by methanol;

the (ab initio calculated) heats of formation of methanol at 0 K and 298 K are

�195.9 and �207:0kJ mol�1, respectively (Chap. 5, Sect. 5.5.2.3.3). This change

of 11kJ mol�1 is fairly small compared to the errors in semiempirical and many ab

initio calculations, so discrepancies between energy changes calculated by the two

approaches must be due to factors other than the 0–298 K enthalpy change. The

errors in heats of formation cannot be counted on to consistently cancel when we

subtract to obtain relative energies, and because of average errors in individual

heats of formation of ca. 20kJ mol�1 (above) for some of the best current methods,

RM1 and PM6, errors of about 40kJ mol�1 should not be surprising, although

much smaller errors are often obtained. Consider the relative energies of (Z)- and
(E)-2-butene (Chap. 5, Fig. 5.24). The HF/3-21G(*) energy difference, corrected

for ZPE (although in this case the ZPE is practically the same for both isomers) is

Zð Þ � Eð Þ ¼ �155:12709 – (�155.13033) h ¼ 0:00324 h ¼ 8:5kJ mol�1.

AM1 calculations (ZPE is not considered here, since as explained in Sect. 6.2.5.2,

this is taken into account in the parameterization) give Zð Þ � Eð Þ ¼ �9:24 –

(�14.01) kJmol�1 ¼ 4:8kJmol�1. The experimental heats of formation (298 K,

gas phase) are Zð Þ ¼ �29:7kJmol�1, Eð Þ ¼ �47:7kJmol�1, i.e. Zð Þ � Eð Þ ¼ 18:0

kJ mol�1 [99b].

The comparison by Schr€oder and Thiel [47a] (Sect. 6.3.1) of semiempirical

(MNDO and MNDOC) and ab initio geometries and energies concluded that the

semiempirical methods usually overestimate barriers (activation energies). Of

21 activation energies (Table IV in ref. [47a], entries I, K, W omitted), MNDO

overestimated (compared with “best” correlated ab initio calculations) 19 and

underestimated 2; the overestimates ranged from 8� 201kJ mol�1 and the under-

estimates were 46 and 13kJ mol�1. MNDOC overestimated 16 and underestimated

5; the overestimates ranged from 2� 109kJ mol�1 and the underestimates from

4� 63kJ mol�1. Thus for calculating activation energies MNDOC is significantly

better than MNDO, and it is probably better than AM1 for this purpose, since, like

MNDO but unlike MNDOC, AM1 is parameterized to take into account electron

correlation for ground states, but not transition states. For these 21 reactions,

restricted Hartree-Fock calculations overestimated 18 activation energies and

underestimated 3; the overestimates of energies ranged from 3� 105kJ mol�1

and the underestimates from 13� 28kJ mol�1. The mean absolute deviations from

the “best” correlated ab initio calculations for the 21 reactions were: MNDO, 92kJ

mol�1; MNDOC, 38kJ mol�1; RHF, 50kJ mol�1. Evidently MNDOC is some-

what better than RHF (uncorrelated) calculations for activation energies.

Correlated-level ab initio calculations, however, appear to be superior to

MNDOC; in particular, MNDOC predicts substantial barriers for isomerization of

carbenes by hydrogen migration. Other work showed that AM1 greatly overesti-

mates the barrier for decomposition or rearrangement of some highly reactive

species [100]. Despite the lack of quantitative accuracy, semiempirical methods
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have been used fairly frequently to study transition states in biochemical reactions,

where large molecules are involved [101].

From all this information then, we can conclude that semiempirical heats of

formation and reaction energies (reactant cf. product) tend to be semiquantitatively

reliable. Activation energies (reactant cf. transition state) are often considerably

overestimated by all these methods except MNDOC, which actually gives results

somewhat better than those from RHF calculations, at least in many cases. An

extensive comparison of AM1 with ab initio and density functional methods for

calculating geometries and relative energies is given in Hehre’s book [94]. Consis-

tently good calculated reaction energies and especially activation energies require

correlated ab initio methods (Chap. 5, Sects 5.4.2, 5.4.3) or DFT methods (Chap. 7).

However, semiempirical methods are well suited for a preliminary exploration of a

potential energy surface, and are usually good for creating input structures for

refinement by ab initio or DFT. It is interesting that these methods, which were

parameterized mainly to give good energies (heats of formation) actually com-

monly provide fairly good geometries but energies of only modest quality.

6.3.3 Frequencies and Vibrational Spectra

The general remarks and the theory concerning frequencies in Chap. 5, Sect. 5.5.3,

apply to semiempirical frequencies too, but the zero-point energies associated with

a frequency calculation are usually not needed, since the semiempirical energy is

normally not adjusted by adding the ZPE (Sect. 6.2.5.2). As with ab initio calcu-

lations, semiempirical frequencies are used to characterize a species as a minimum

or a transition state (or a higher-order saddle point), and to get an idea of what the

IR spectrum looks like. As with ab initio frequencies too, in semiempirical methods

the wavenumbers (“frequencies”) of vibrations are calculated from a mass-

weighted second-derivative matrix (a Hessian) and intensities are calculated from

the changes in dipole moment accompanying the vibrations. Like their ab initio

counterparts, semiempirical frequencies are higher than the experimental ones;

presumably this is at least partly due to the harmonic approximation, as was

discussed in Chap. 5, Sect. 5.5.3.

Correction factors improve the fit between semiempirically calculated and

experimentally measured spectra, but the agreement does not become as good as

does the fit of corrected ab initio to experimental spectra. This is because deviations

from experiment are less systematic for semiempirical than for ab initio methods

(a characteristic that has been noted for errors in semiempirical energies [102]). For

AM1 calculations, correction factors of 0.9235 [103] and 0.9532 [104], and for

PM3, factors of 0.9451 [103] and 0.9761 [104], have been recommended. A factor

of 0.86 has been recommended for SAM1 for non-H stretches [105]. However, the

variation of the correction factor with the kind of frequency is bigger for semiem-

pirical than for ab initio calculations; for example, for correcting carbonyl

stretching frequencies, examination of a few molecules indicated (author’s work)
that (at least for C, H, O compounds) correction factors of 0.83 (AM1) and 0.86

(PM3) give a much better fit to experiment.
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The calculated intensities of semiempirical vibrations seem likely to be in

general more approximate than those for ab initio vibrations [106], which latter

are typically within 30% of the experimental intensity at the MP2 level

[107]. This is somewhat surprising, since semiempirical (AM1 and PM3 and later

derivatives) dipole moments, from the vibrational changes of which intensities

are calculated, are fairly accurate (Sect. 6.3.4.1). Note however that unlike the

case with UV spectra, IR intensities are rarely actually measured; rather, one

usually simply visually classifies a band as strong, medium, etc., by visual com-

parison with the strongest band in the spectrum. There do not seem to have been

any published surveys comparing, for a variety of compounds, the intensities

of IR bands calculated by modern NDDO methods with those from experiment,

but an idea of the reliability of semiempirical frequencies and intensities is

given by the IR spectra in Figs. 6.5, 6.6, 6.7, and 6.8, which compare experi-

mental spectra (taken by the author in the gas phase) with AM1 and ab initio
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(MP2/6-31G*) spectra, for the same four compounds (acetone, benzene,

dichloromethane, methanol) shown in Chap. 5, Figs. 5.33, 5.34, 5.35 and 5.36.

The experimental and MP2 spectra are the ones used in Chap. 5, Figs. 5.33, 5.34,

5.35 and 5.36. For acetone and methanol (Figs. 6.5 and 6.8) the MP2 spectra match

the experimental distinctly better than do the AM1; and other work [106] indicates

that MP2 IR spectra resemble the experimental spectra more closely than do AM1

spectra.

All the normal (in the technical sense) modes are formally (some may be very

weak or even of zero intensity) present in the results of a semiempirical frequency

calculation, as is the case for an ab initio or DFT calculation, and animation of these
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will usually give, approximately, the frequencies of these modes. A very extensive

compilation of experimental, MNDO and AM1 frequencies has been given by

Healy and Holder, who conclude that the AM1 error of 10% can be reduced to

6% by an empirical correction, and that entropies and heat capacities are accurately

calculated from the frequencies [108]. In this regard, Coolidge et al. conclude–
surprisingly, in view of our results for the four molecules in Figs. 6.5, 6.6, 6.7,

and 6.8 – from a study of 61 molecules that (apart from problems with ring- and

heavy atom-stretch for AM1 and S-H, P-H and O-H stretch for PM3) “both AM1

and PM3 should provide results that are close to experimental gas phase

spectra” [109].
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6.3.4 Properties Arising from Electron Distribution: Dipole
Moments, Charges, Bond Orders

The discussion in Chap. 5, Sect. 5.5.4 on dipole moments, charges and bond orders

applies in a general way to the calculation of these quantities by semiempirical

methods too. Electrostatic potentials, whether visualized as regions of space or

mapped onto van der Waals surfaces, are usually qualitatively the same for AM1

and PM3 as for ab initio methods. Atoms-in-molecules calculations are not viable

for semiempirical methods, because the core orbitals, lacking in these methods, are

important for AIM calculations.
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6.3.4.1 Dipole Moments

Hehre’s extensive survey of practical computational methods reports the results of

ab initio and DFT single point dipole moment (μ) calculations on AM1 geometries

[110]. There does not appear to be much advantage to calculating HF/6-31G*

dipole moments on HF/6-31G* geometries (HF/6-31G*//HF/6-31G* calculations)

rather than on the much more quickly- obtained AM1 geometries (HF/6-31G*//

AM1 calculations). Indeed, even the relatively time-consuming MP2/6-31G*//

MP2/6-31G* calculations seem to offer little advantage over fast HF/6-31G*//

AM1 calculations as far as dipole moments are concerned (Tables 2.19 and 2.21

in ref. [94]). This is consistent with our finding that AM1 geometries are usually

quite good (Sect. 6.3.1). Table 6.6 compares calculated with experimental [94, 111]

dipole moments for ten molecules, using these methods: AM1 (using the AM1

method to calculate μ for the AM1 geometry, AM1//AM1), HF/6‐31*//AM1, PM3

(PM3//PM3), HF/6‐31G*//PM3, and MP2/6‐31G* (MP2/6‐31G*//MP2/6‐31G*).
For this set of molecules, the smallest deviation from experiment, as judged by

the arithmetic mean of the absolute deviations from the experimental values, is

shown by the AM1 calculation (0.21 Debyes), and the largest deviation is shown by

the “highest” method, MP2/6‐31G* (0.34 D). The other three methods give essen-

tially the same errors (0.27–0.29 D). It is of course possible that AM1 gives the best

results (for this set on molecules, at least) because errors in geometry and errors in

the calculation of the electron distribution cancel. A study of 196 C, H, N, O, F, Cl,

Br, I molecules gave these mean absolute errors: AM1, 0.35 D; PM3, 0.40 D;

SAM1, 0.32 D [76]. Another study with 125 H, C, N, O, F, Al, Si, P, S, Cl, Br, I

Table 6.6 Some calculated dipole moments compared to experimental ones. Dipole moments are

in Debyes

Computational method

AM1

HF/6-31G*

//AM1 PM3

HF/6-31G*

//PM3 MP2/6-31G* exp

CH3NH2 1.5 1.42 1.4 1.54 1.6 1.3

H2O 1.86 2.25 1.74 2.16 2.24 1.9

HCN 2.36 3.24 2.7 3.24 3.26 3

CH3OH 1.62 1.9 1.49 1.88 1.95 1.7

Me2O 1.43 1.54 1.25 1.51 1.6 1.3

H2CO 2.32 2.87 2.16 2.76 2.84 2.3

CH3F 1.62 2 1.44 1.91 2.11 1.9

CH3Cl 1.51 2.07 1.38 2.14 2.21 1.9

Me2SO 3.95 4.56 4.49 4.83 4.63 4

CH3CCH 0.4 0.58 0.36 0.6 0.66 0.8

Deviations 4 +, 6�
mean 0.21

9+, 1�
mean 0.29

2+, 8�
mean 0.27

9+, 1�
mean 0.29

9+, 1�
mean 0.34

Calculations are by the author; experimental values are taken from [94] and [111]. For each

method is given the number of positive and negative deviations from experiment and the

arithmetic mean of the absolute values of the deviations
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molecules gave mean absolute errors of: AM1, 0.35 D and PM3, 0.38 D [70]. So

with these larger samples the AM1 errors were somewhat bigger. Nevertheless, all

these results taken together do indicate that unless one is prepared to use a slower

approach, e.g. large basis sets with density functional (Chap. 7) methods (errors of

ca. 0.1 D [112]; this paper also gives some results for ab initio calculations), AM1

dipole moments using AM1 geometries may be as good a way as any to calculate

this quantity. This applies, of course, only to conventional molecules; molecules of

exotic structure and “hypervalent” molecules (Sects 6.3.1, 6.3.2.1) tend to defy

accurate semiempirical predictions.

6.3.4.2 Charges and Bond Orders

The conceptual and mathematical bases of these concepts were outlined in Chap. 5,

Sect. 5.5.4, in the discussion of population analysis. We saw that unlike, say,

frequencies and dipole moments, there are problems with regarding charges and

bond orders as experimental observables (carefully defined atom charges can, it is

said be measured [113]), and with settling on a single, right way to calculate them.

Some would argue that the atoms-in-molecules theory does provide such a unique

ansatz. Nevertheless, we saw that there are several prescriptions for calculating

charges and bond orders, and as with ab initio calculations, semiempirical charges

and bond orders can be defined in various ways. The concepts are nevertheless

useful, and for charges and bond orders the methods of Mayer, L€owdin or Weinhold

are often now preferred. One might almost wonder what all the fuss is about:

evidently Mulliken never intended his population analysis method to be taken

quantitatively, but rather to be a guide to trends: his friend and colleague Roothaan

is reported to have said (in a close paraphrase by P. S. Bagus) that “Robert didn’t
believe populations had quantitative value. He meant them to be a guide to the

chemistry and the bonding.” [114].

Figure 6.9 shows charges and bond orders calculated for an enolate (the conju-

gate base of ethenol or vinyl alcohol) and for a protonated enone system (protonated

propenal). Consider first Mulliken charges and bond orders of the enolate

(Fig. 6.9a). The AM1 and PM3 charges, which are essentially the same, are a bit

surprising in that the carbon which shares charge with the oxygen in the alternative

resonance structure is given a bigger charge than the oxygen; intuitively, one

expects most of the negative charge to be on the more electronegative atom,

oxygen; this “defect” of AM1 and PM3 has been noted by Anh et al. [115]. The

HF=3-21Gð*Þ method gives the oxygen the bigger charge (�0:80 vs. �0:67). The
two semiempirical and the HF methods all give C/C and C/O bond orders of about

1.5; this, and the rough equality of O and C charges, suggests approximately equal

contributions from the O-anion and C-anion resonance structures.

The Mulliken charges of the protonated enone system (Fig. 6.9b) make the

oxygen negative, which may seem surprising. However, this is normal for proton-

ated oxygen and nitrogen (though not protonated sulfur and phosphorus): the hetero
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atom inH3O
þ and inNH4

þ is calculated to be negative (i.e. the positive charge is on

the hydrogens) and the hetero atom is also negative inH2C¼OHþ andH2C¼NH2
þ.

On the oxygen and the carbon furthest from the oxygen (C3) the HF=3-21Gð*Þ

charges differ considerably from the semiempirical ones: the HF calculations make

the O much more negative, and make C3 negative, suggesting that they place more

positive charge on the hydrogens than do the semiempirical calculations (in all

cases the charge on C2 is 0.3–0.5). The three methods do not differ as greatly in

their bond orders (that bond orders are less fickle than charges has been noticed

before [116]), although the HF method makes the formal C/O double bond essen-

tially a single bond (bond order 1.18).
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Fig. 6.9 Atom charges and bond orders calculated using the AM1, PM3 and HF/3-21G(*)

methods. In (a) and (b) the charges and bond orders are all from the Mulliken approach. In

(c) and (d) the charges are all electrostatic potential charges, and the bond orders are Mulliken for

AM1 and PM3, and L€owdin for HF/3-21G(*) (L€owdin bond orders were not available for AM1 and

PM3 from the Spartan program used). Note that charges and bond orders involving hydrogens

have been omitted
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Finally, electrostatic potential (ESP) charges and, for the HF/3-21G(*) calcula-

tions, L€owdin bond orders, are shown (Fig. 6.9c, d). For the enolate, all three

methods make the ESP charge on carbon more negative than that on oxygen, but

the bond orders are not greatly altered. For the protonated enone system, AM1 and

PM3 suggest more polarization of electrons toward the O in the C/O bond than is

shown by the Mulliken charges, but while the HF ESP charge on this carbon is

greater than the Mulliken (0.76 vs. 0.45), the charge on oxygen is unchanged.

The Hartree-Fock L€owdin bond orders for all three bonds of the CCO framework

(1.55, 1.29, 1.76) are all somewhat bigger than the Mulliken bond orders (1.18,

1.15, 1.59).

These results suggest that charges are more dependent than are bond orders on

the method used to calculate them, and that charges are also harder to interpret than

are bond orders. As with ab initio charges and bond orders, the semiempirically

calculated parameters may be useful in revealing trends in a series of compounds or

changes as a reaction proceeds. For example, ab initio bond order changes along a

reaction coordinate have been shown to be useful [117], but presumably

semiempirically calculated bond orders would also yield similar information, at

least if the species being studied were not too exotic. Clearly, one must use the same

semiempirical method (e.g. AM1) and the same procedure (e.g. the Mulliken

procedure) in studying a series.

6.3.5 Miscellaneous Properties–UV Spectra, Ionization
Energies, and Electron Affinities

All the properties that can be calculated by ab initio methods can in principle also

be calculated semiempirically, bearing in mind that the more the molecule of

interest differs from the training set used to parameterize the semiempirical pro-

gram, the less reliable the results will be. For example, a program parameterized to

predict the UV spectra of aromatic hydrocarbons may not give good predictions for

the UV spectra of heterocyclic compounds. NMR spectra are usually calculated

with ab initio (Chap. 5, Sect. 5.5.5.2) or density functional (Chap. 7) methods. UV

spectra, and ionization energies (ionization potentials) and electron affinities will be

discussed here.

6.3.5.1 UV Spectra

As pointed out in Sect. 5.5.5, although ultraviolet spectra result from the promotion

of electrons from occupied to unoccupied orbitals, UV spectra cannot be calculated

with reasonable accuracy simply from the HOMO/LUMO gap of the ground

electronic state, since the UV bands represent energy differences between the

ground and excited states. Furthermore the HOMO/LUMO gap does not account
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for the presence of the several bands often found in UV spectra, and gives no

indication of the intensity of a band. In wavefunction theory, accurate prediction of

UV spectra requires calculation of the energies of excited states. Semiempirical UV

spectra are usually calculated with programs specifically parameterized for this

purpose, such as INDO and ZINDO (intermediate neglect of differential overlap

and Zerner’s INDO), sometimes denoted INDO/S and ZINDO/S, S ¼ spectra

(Sect. 6.2.4) [20]. INDO and ZINDO, which appears to have largely superseded

INDO, are included in the primarily ab initio and DFT package Gaussian

[55]. Table 6.7 compares the UV spectrum of methylenecyclopropene calculated

by ZINDO/S on the AM1 geometry with the ab initio-calculated RCIS (Chap. 5,

Table 5.16) and the experimental spectra [118] (calculations with Gaussian

03 [55]). The ZINDO/S spectrum resembles the experimental spectrum consider-

ably better than does the ab initio one (the experimental 242 nm, and particularly

the 309 nm band, are matched better than by the ab initio calculation). The times for

the calculations on a vintage ca. 2002 computer were 0.5 and 1 min (ZINDO/S and

RCIS). Parameterized methods like ZINDO/S are probably the only way to calcu-

late reasonably accurate UV spectra for large molecules.

6.3.5.2 Ionization Energies and Electron Affinities

The concepts of IE and EA were discussed in Chap. 5, Sect. 5.5.5.3. In Table 6.8 the

results of some semiempirical calculations are compared with ab initio and exper-

imental values [119, 120], for the molecules of Chap. 5, Table 5.17. This admittedly

very small sample suggests that semiempirical IEs calculated as energy differences

might be comparable to ab initio values. Koopmans’ theorem (the IE for an electron

is approximately the negative of the energy of its molecular orbital; applying this to

the HOMO gives the IE of the molecule) values are consistently bigger than those

from energy differences using the same method (by 0.1–0.8 eV). No consistent

advantage for any of the six methods is evident here, but a large sample would

Table 6.7 Calculated and experimental [118] UV spectra of methylenecyclopropene

Calculated

ExperimentalZINDO/S//AM1 RCIS/6-31+G*// HF/6-31G*

Wavelength

(nm)

Relative

intensity

Wavelength

(nm)

Relative

intensity

Wavelength

(nm)

Relative

intensity

288 12 222 15 309 13

224 0.2 209 7 242 0.6

213 100 196 0 206 100

204 1 193 9

193 100

The semiempirical calculations were done with ZINDO/S in G94W; the ab initio results are from

Chap. 5, Table 5.16. The ab initio method shown was explained in Chap. 5
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likely show the most accurate of these methods to be the energy difference using

MP2(fc)/6‐31G* (see Table 5.17 and accompanying discussion).

Calculations by Stewart on 256 molecules (of which 201 were organic), using

Koopmans’ theorem, gave mean absolute IE errors of 0.61 eV for AM1 and 0.57 eV

for PM3; 60 of the AM1 errors (23%) and 88 of the PM3 (34%) were negative

(smaller than the experimental values) [70]. Particularly large errors (2.0–2.9 eV)

were reported for nine molecules: 1-pentene, 2-methyl-1-butene, acetylacetone,

alanine (AM1), SO3 (AM1), CF3Cl (AM1), 1,2-dibromotetrafluoroethane, H2SiF

(PM3), and PF3 (AM1). For some of these it may be the experimental results that
are at fault; for example, there seems to be no reason why 2-methyl-1-butene and

2-methyl-2-butene should have such different IEs, and in the opposite order to those

calculated: experimental, 7.4 and 8.7 eV; calculated, 9.7 and 9.3 (AM1), 9.85 and

9.4 (PM3) eV, respectively. Ab initio HF=3-21Gð*Þ energy-difference calculations
by the author give IEs in line with the AM1, rather than the claimed experimental,

results: 2-methyl-1-butene, 9.4 eV; 2-methyl-2-butene, 9.1 eV. Calculations by the

author on the first 50 of these 256 molecules (of these 50 all but H2 and H2O are

organic) gave these mean absolute IE errors: AM1, 0.46 (12 negative); PM3, 0.58

(5 negative); ab initioHF=3-21Gð*Þ, 0.71 (11 negative). So for the set of 256 mostly

organic molecules AM1 and PM3 gave essentially the same accuracy, and for the

set of 50 molecules AM1 was slightly better than PM3 and the ab initio method was

slightly worse than the semiempirical ones. The HF=3-21Gð*Þ level is the lowest ab
initio one routinely used (or at least reported) nowadays, and is less popular now

than HF/6‐31G*. Ionization energies and electron affinities comparable in accuracy

to those from experiment can be obtained by high-accuracy ab initio calculations

(Chap. 5, Sects 5.5.2.3.2 and 5.5.5) and by DFT (Chap. 7), using the energy

difference of the two species involved.

Dewar and Rzepa found that the MNDO (Sect. 6.2.5.3) electron affinities of

26 molecules with delocalized HOMOs (mostly radicals and conjugated organic

molecules) had an absolute mean error of 0.43 eV; for ten molecules with the

HOMO localized on one atom, the error was 1.40 eV [121]. The errors from AM1 or

PM3 should be less than for these MNDO calculations.

Table 6.8 Some ionization energies (eV)

ΔE Koopmans’

experimentAM1 PM3 ab in. AM1 PM3 ab in.

CH3OH 10.5 10.7 10.6 11.1 11.1 12.1 10.9

CH3SH 8.7 9 9 8.9 9.2 9.7 9.4

CH3COCH3 9.9 10.1 9.6 10.7 10.8 11.2 9.7

The ΔE values (cation energy minus neutral energy) correspond to adiabatic, and the Koopmans’
theorem values to vertical IEs. The ab initio energies are MP2(fc)/6-31G* (Table 5.17). Experi-

mental values are adiabatic, from [119] (CH3OH and CH3COCH3) and [120] (CH3SH)
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6.3.6 Visualization

Many molecular features that have been calculated semiempirically can be visual-

ized, in a manner analogous to the case of ab initio calculations (Chap. 5,

Sect. 5.5.6). Clearly, one wishes to be able to view the molecule, rotate it, and

query it for geometric parameters. Semiempirically calculated vibrations, electro-

static potentials, and molecular orbitals also provide useful information when

visualized, and little need be added beyond that already discussed for the visuali-

zation of ab initio results. AM1 and PM3 surfaces (van der Waals surfaces,

electrostatic potentials, orbitals) are usually very similar in appearance to those

calculated by ab initio methods, but exceptions occasionally occur. An example

is the case of HCC�, the conjugate base of ethyne (acetylene), Fig. 6.10. AM1

predicts that there is one HOMO and that it is of σ symmetry (symmetric about the

molecular axis), but anHF=3-21Gð*Þ calculation predicts that there are two HOMOs

of equal energy at right angles, each of π symmetry (having a nodal plane

containing the molecular axis; one of these π -HOMOs is shown in Fig. 6.10).

The HF/3-21G orbital pattern persists at the HF/6‐31G* and MP2/6‐31G* levels.

Different orbital patterns at different calculational levels is not the rule, but is

understandable since near-lying MOs may have their energetic priorities reversed

on going to a different level.

eV

9.9 eV

HOMO –3.1 eV

H CC

H C C

HF / 3-21G

LUMO
14.5 eV

HOMO

–2.3 eV

LUMO

AM1

Fig. 6.10 The HOMO of the ethyne conjugate base, calculated by AM1 and by HF/3-21G(*). AM1

predicts the HOMO to be unique and of σ symmetry (symmetrical about the molecular axis), but

HF/3-21G(*) predicts degenerate HOMO levels (the other is rotated 90� about the molecular axis)

of π symmetry (with nodal planes containing the molecular axis) Only one of the degenerate 3-21G

HOMOs is shown here. The orbitals were calculated and visualized with Spartan [56]. From your

knowledge of the anion as a reagent in synthesis, which result do you think is more likely to be the

correct one?
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6.3.7 Some General Remarks

AM1 and PM3 have become extremely useful not only because they allow quantum

mechanical calculations to be done on molecules which are still too big for ab initio

or DFT (Chap. 7) methods, but also as adjuncts to these latter methods, since they

often allow a relatively rapid survey of a problem, such as an exploration of a

potential energy surface: one can locate minima and transition states, then use the

semiempirical structures as inputs for initial geometries, wavefunctions and Hes-

sians (Chap. 5, Sect. 2.4) in a higher-level geometry optimization, size permitting.

If geometry optimizations are not feasible, single-point calculations on AM1 or

PM3 geometries, which are usually reasonably good, will likely give improved

relative energies. The time is well past when semiempirical calculations were

regarded by many as “worthless” [122], or, at best, a poor substitute for ab initio

calculations. In fact, in his thoughtful review Tim Clark, a major worker in the field

of developing semiempirical methods has described “The NDDO-approximation

[as] one of the most successful and least appreciated in modern theoretical chem-

istry” [11]. Recall that modern general-purpose semiempirical methods are based

on NDDO (Sect. 6.2.5). In his book which focusses on ab initio and density

functional methods, Bachrach implies that faster computers and more efficient

algorithms will make semiempirical methods less important [123]; a more extreme

view was recently expressed by the president of a major computational chemistry

software company, who told this author that he thought semiempirical methods

would soon be replaced by DFT; and a rather dismissive rejection of the general

enterprise of employing the semiempirical approach in science came from the

mathematician John von Neumann “ [124]: “With four parameters I can cover an

elephant, and with five I can make him wiggle his trunk.” Elephants aside, Clark

rejects the opinion of “pundits [who] predict the demise” of modern semiempirical

methods. He makes the interesting point that Dewar (Sect. 6.2.5.1 and [24]) may

have made a mistake in “trying to match” the ab initio methods of the time “on its

own ground”, namely achieving good geometries and energies for small molecules,

instead of concentrating on the forte of semiempirical methods, large molecules.

This review [11] is commended to the reader. A caveat is in order regarding the

application of semiempirical methods to large biomolecules: the most popular

program suites for studying proteins and nucleic acids, AMBER [125] and

CHARMM/CHARMm [125], use molecular mechanics (MM, Chap. 3). One

seems justified in being sceptical [e.g. [126]) of the appropriateness of semiempir-

ical methods for geometry optimization of such biomolecules, since the relevant

MM forcefields have been very carefully parameterized for them and are much

faster. A useful procedure would be to optimize the molecule with MM, then

perform a single-point (unchanged geometry) semiempirical calculation to obtain

a wavefunction, from which electronic properties like charges can be calculated.

The philosophical divide we saw in, for example, the exchange between Dewar

and Halgren, Kleir and Lipscomb (Sect. 6.2.5.1), persists. One gets the impression

that certain journals are reluctant to publish purely theoretical semiempirical
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papers; ironically, these journals have no such reservations against density func-

tional theory (Chap. 7), despite its significant semiempirical characteristics

[11]. Where the emphasis is on getting practical results for commercial applica-

tions, rather than on esthetic purity, semiempirical and molecular mechanics

methods rule. In the fields of cheminformatics (chemoinformatics, chemical infor-

matics) [127], and quantitative structure-activity relationships, QSAR [128], thou-

sands of drug candidates (usually “small” molecules) can be geometry-optimized

and screened for potential pharmacological activity in 1 day [11]. In this connec-

tion, since ca. 2012 machine-learning methods have been applied to improving the

parameterization of semiempirical programs, which can greatly reduce average

and maximum energy errors for sets of compounds, and is said to hold “promise

for fast and reasonably accurate high-throughput screening of materials and

molecules.” [129]

6.4 Strengths and Weaknesses of Semiempirical Methods

These remarks refer to NDDO methods like AM1 and PM3.

6.4.1 Strengths

Semiempirical calculations are very fast compared to ab initio and even to DFT

(Chap. 7), and this speed is often obtained with at most a tolerable loss of accuracy.

Semiempirical geometries of normal molecules are entirely adequate for many

purposes, and even transition state geometries are often adequate. Reaction and

activation energies, although not accurate (except by chance cancellation of heat of

formation errors), will probably expose any marked trends in a series. Surprisingly,

although they were parameterized using normal, stable molecules, AM1 and PM3

usually give fairly realistic geometries and useful relative energies for cations,

radicals, anions, strained molecules, and even transition states.

6.4.2 Weaknesses

A major weakness of semiempirical methods is that they must be assumed to be

unreliable outside molecules of the kind used for their training set (the set of

molecules used to parameterize them), until shown otherwise by comparison of

their predictions with experiment or with high-level ab initio (or probably DFT)

calculations. Although, as Dewar and Storch pointed out [130], the reliability of ab

initio calculations, too, should be checked against experiment, the situation is

somewhat different for these latter, at least at the higher levels; studies of exotic
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species, in particular, are certainly more trustworthy when done ab initio than

semiempirically (see Chap. 8). Semiempirical heats of formation are subject to

errors of tens of kJ mol�1, and thus heats (enthalpies) of reaction and activation

could be in error by scores of kJ mol�1. AM1 and PM3 underestimate steric

repulsions, overestimate basicity and underestimate nucleophilicity, and can give

unreasonable charges and structures; PM3 has been reported to tend to give more

reliable structures, and AM1 better energies [115]. Neither AM1 nor PM3 are

generally reliable in modelling hydrogen bonds [131, 132], and the reclusive

SAM1 appears to be the semiempirical method of choice here [88], although

PM6 (Sect. 6.2.5.6) has been said [82, 83] to represent an improvement in the

treatment of hydrogen bonds.

In general, the accuracy of semiempirical methods, particularly in energetics,

falls short of that of current routine ab initio methods (this may not have been the

case when AM1 was developed, in 1985 [130]). Parameters may not be available

for the elements in the molecules one is interested in, and obtaining new parameters

is something rarely done by people not actively engaged in developing new

methods. Semiempirical errors are less systematic than ab initio, and thus harder

to correct for. Clark has soberly warned that “All parameterized techniques can

interpolate and none can extrapolate consistently and well”, thus we can expect on

occasion “a catastrophic failure”; but semiempirical methods “will do what they are

designed to do.” [11].

6.5 Summary

Semiempirical quantum mechanical calculations are based on the Schr€odinger
equation. This chapter deals with SCF semiempirical methods, in which repeated

diagonalization of the Fock matrix refines the wavefunction and the molecular

energy. The simple and extended Hückel methods, in contrast, need only one matrix

diagonalization because their Fock matrix elements are not calculated using a

wavefunction guess (Chap. 4). The methods of this chapter are much faster than ab

initio ones, mainly because the number of integrals to be dealt with is greatly reduced

by ignoring some and approximating others with the help of experimental (“empir-

ical”) quantities, and, nowadays, results from high-level ab initio or DFT calcula-

tions. In order of increasing sophistication, these SCF semiempirical procedures have

been developed: PPP (Pariser-Parr-Pople), CNDO (complete neglect of differential

overlap), INDO (intermediate neglect of differential overlap), and NDDO (neglect of

diatomic differential overlap). The PPP method is limited to π electrons, while

CNDO, INDO and NDDO use all the valence electrons. All four use the ZDO

(zero differential overlap) approximation, which sets the differential of the overlap

integral equal to zero; this greatly reduces the number of integrals to be calculated.

Traditionally, these methods were parameterized mostly using experimental quanti-

ties (usually ionization energies and electron affinities), but also (PPP and CNDO)

making some use of minimal-basis-set (i.e. low-level) ab initio calculations. Of
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these original methods, only versions of INDO parameterized to reproduce exper-

imental UV spectra (INDO/S and its variant ZINDO/S) are much used nowadays.

Today the most popular SCF semiempirical methods are AM1 (Austin method 1)

and PM3 (parametric method 3), which are NDDO-based, carefully parameterized

to reproduce experimental quantities (primarily heats of formation). AM1 and PM3

perform similarly and usually give quite good geometries, but less satisfactory heats

of formation and relative energies. A modification of AM1 called SAM1 (semi-ab

initio method 1), relatively little-used, is said to be an improvement over AM1.

AM1 and SAM1 represent work by the group of M. J. S. Dewar. PM3 is a version of

AM1, by J. J. P. Stewart, differing mainly in a more automatic approach to

parameterization. Recent extensions of AM1 (RM1) and PM3 (PM6. PM7) seem

to represent significant improvements and are likely to be the standard general-

purpose semiempirical methods in the near future.

Easier Questions

1. Outline the similarities and differences between the extended Hückel method

on the one hand and methods like AM1 and PM3 on the other. What advantages

does the EHM have over more accurate semiempirical methods?

2. Outline the similarities and differences between molecular mechanics, ab

initio, and semiempirical methods.

3. Both the simple Hückel and the PPP methods are π electron methods, but PPP

is more complex. Itemize the added features of PPP.

4. What is the main advantage of an all-valence-electron method like, say, CNDO

over a purely π electron method like PPP?

5. Explain the terms ZDO, CNDO, INDO, and NDDO, showing why the latter

three represent a progressive conceptual improvement.

6. How does an AM1 or PM3 “total electron wavefunction”Ψ differ from theΨ of

an ab initio calculation?

7. Ab initio energies are “total dissociation” energies (dissociation to electrons

and atomic nuclei) and AM1 and PM3 energies are standard heats of formation.

Is one of these kinds of energy more useful? Why or why not?

8. For certain kinds of molecules molecular mechanics can give better geometries

and relative energies than can even sophisticated semiempirical methods. What

kinds of properties can the latter calculate that MM cannot?

9. Why do transition metal compounds present special difficulties for AM1 and

PM3?

10. Although both AM1 and PM3 normally give good molecular geometries, they

are not too successful in dealing with geometries involving hydrogen bonds.

Suggest reasons for this deficiency.
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Harder Questions

1. Why are even very carefully-parameterized semiempirical methods like AM1

and PM3 not as accurate and reliable as high-level (e.g. MP2, CI, coupled-

cluster) ab initio calculations?

2. Molecular mechanics is essentially empirical, while methods like PPP, CNDO,

and AM1/PM3 are semiempirical. What are the analogies in PPP etc. to MM

procedures of developing and parameterizing a forcefield? Why are PPP etc.

only semiempirical?

3. What do you think are the advantages and disadvantages of parameterizing

semiempirical methods with data from ab initio calculations rather than from

experiment? Could a SE method parameterized using ab initio calculations

logically be called semiempirical?
4. There is a kind of contradiction in the Dewar-type methods (AM1, etc.) in that

overlap integrals are calculated and used to help evaluate the Fock matrix

elements, yet the overlap matrix is taken as a unit matrix as far as diagonali-

zation of the Fock matrix goes. Discuss.

5. What would be the advantages and disadvantages of using the general MNDO/

AM1 parameterization procedure, but employing a minimal basis set instead of

a minimal valence basis set?

6. In SCF semiempirical methods major approximations lie in the calculation of

the Hcore
rs , ( rsjtu ), and ( rujts ) integrals of the Fock matrix elements Frs

(Eq. (6.1¼5.82)). Suggest an alternative approach to approximating one of

these integrals.

7. Read the exchange between Dewar on the one hand and Halgren, Kleir and

Lipscomb on the other [27]. Do you agree that semiempirical methods, even

when they give good results “inevitably obscure the physical bases for success

(however striking) and failure alike, thereby limiting the prospects for learning

why the results are as they are.” Explain your answer.

8. It has been said of semiempirical methods: “They will never outlive their

usefulness for correlating properties across a series of molecules. . .I really

doubt their predictive value for a one-off calculation on a small molecule on

the grounds that whatever one is seeking to predict has probably already been

included in with the parameters.” (A. Hinchliffe, “Ab Initio Determination of

Molecular Properties”, Adam Hilger, Bristol, 1987, p. x). Do you agree with

this? Why or why not? Compare the above quotation with ref. [24], pp

133–136.

9. For a set of common organic molecules Merck Molecular Force field geome-

tries are nearly as good as MP2(fc)/6–31G* geometries (Chap. 3, Sect. 3.4).

For such molecules single-point MP2(fc)/6–31G* calculations (Chap. 5,

Sect. 5.4.2), which are quite fast, on the MMFF geometries, should give energy

differences comparable to those from MP2(fc)/6–31G*//MP2(fc)/6–31G*

calculations. Example: CH2 ¼ CHOH=CH3CHO, ΔE (MP2 opt, including

ZPE) ¼ 71:6kJmol�1, total time 1064 s.; ΔE (MP2 single point on MMFF
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geometries) ¼ 70:7kJmol�1, total time ¼ 48 s. (G98 on a Pentium 3). What

role does this leave for semiempirical calculations?

10. Semiempirical methods are untrustworthy for “exotic” molecules of theoretical

interest. Give an example of such a molecule and explain why it can be

considered exotic. Why can’t semiempirical methods be trusted for molecules

like yours? For what other kinds of molecules might these methods fail to give

good results?
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Chapter 7

Density Functional Calculations

My other hope is that. . .a basically new ab initio treatment
capable of giving chemically accurate results a priori, is
achieved soon.

M.J.S. Dewar, A Semiempirical Life, 1992.

Abstract Density functional theory is based on the two Hohenberg-Kohn

theorems, which state that the ground-state properties of an atom or molecule are

determined by its electron density function, and that a trial electron density must

give an energy greater than or equal to the true energy (the latter theorem is true

only if the exact functional could be used). In the Kohn-Sham approach the energy

of a system in formulated as a deviation from the energy of an idealized system with

noninteracting electrons. From the energy equation, by minimizing the energy with

respect to the Kohn-Sham orbitals the Kohn-Sham equations can be derived,

analogously to the Hartree-Fock equations. Finding good functionals is the main

problem in DFT. Various levels of DFT and kinds of functionals are discussed. The

mutually related concepts of electronic chemical potential, electronegativity, hard-

ness, softness, and the Fukui function are discussed.

7.1 Perspective

We have seen three broad techniques for calculating the geometries and energies

of molecules: molecular mechanics (Chap. 3), ab initio methods (Chap. 5), and

semiempirical methods (Chaps. 4 and 6). Molecular mechanics is based on a

balls-and-springs model of molecules. Ab initio methods are based on the subtler

model of the quantummechanical molecule, which we treat mathematically starting

with the Schr€odinger equation. Semiempirical methods, from simpler ones like the

Hückel and extended Hückel theories (Chap. 4) to the more complex SCF semi-

empirical theories (Chap. 6), are also based on the Schr€odinger equation, and in fact
their “empirical” aspect comes from the desire to avoid the mathematical problems

that this equation imposes on ab initio methods. Both the ab initio and the semi-

empirical approaches calculate a molecular wavefunction (and molecular orbital

energies), and thus represent wavefunction methods. However, a wavefunction is

not a measurable feature of a molecule or atom – it is not what physicists call an
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“observable”. In fact there is no general agreement among physicists just what a

wavefunction is – is it “only” a mathematical convenience for calculating observ-

able properties, or is it a real physical entity? [1].

Density functional theory, DFT, is based not on the wavefunction, but rather on

the electron probability density function or electron density function, commonly

called simply the electron density or the charge density, and designated by ρ(x, y, z).
This was discussed in Chap. 5, Sect. 5.5.4, in connection with atoms-in-molecules

(AIM). This electron density ρ is the “density” in density functional theory, and is

the basis not only of DFT, but of a whole suite of methods of regarding and studying

atoms and molecules [2]; unlike the wavefunction, it is measurable, e.g. by X-ray

diffraction or electron diffraction [3]. Apart from being an experimental observable

and being readily grasped intuitively [4], the electron density has a mathematical

property particularly suitable for any method with claims to being an improvement

on, or at least a valuable alternative to, wavefunction methods: it is a function of

position only, that is, of just three variables (x, y, z), while the wavefunction of an n-
electron molecule is a function of 4n variables, three spatial coordinates and one

spin coordinate, for each electron. A wavefunction for a ten-electron molecule will

have 40 variables. In contrast, no matter how big the molecule may be, the electron

density remains a function of three variables. The electron density function, then,

trumps the wavefunction in three ways: it is measurable, it is intuitively compre-

hensible, and it is mathematically more tractable.

The mathematical term functional, which is akin to function, is explained in

Sect. 7.2.3.1. To the chemist, the main advantage of DFT is that in about the same

time needed for an HF calculation one can often obtain results of about the same

quality as from MP2 calculations (cf. Chap. 5, Sect. 5.4.2). Chemical applications

of DFT are but one aspect of an ambitious project to recast conventional quantum

mechanics, i.e. wave mechanics, in a form in which “the electron density, and only

the electron density, plays the key role” [5]. It is noteworthy that the 1998 Nobel

Prize in chemistry was awarded to John Pople (Chap. 5, Sect. 5.3.3), largely for his

role in developing practical wavefunction-based methods, and Walter Kohn,1 for

the development of density functional methods [6]. The wavefunction is the

quantum mechanical analogue of the analytically intractable multi-body problem

(n-body problem) in astronomy [7], and indeed electron-electron interaction, elec-

tron correlation, is at the heart of the major problems encountered in wavefunction

calculations (Chap. 5, Sect. 5.4.1). It may be significant that early in his career Kohn

worked on a many-body problem in atomic physics [8].

A question sometimes asked is whether DFT should be regarded as a special

kind of ab initio method. The case against this view is that the correct mathematical

form of the DFT functional is not known, in contrast to conventional ab initio

1Walter Kohn, born in Vienna 1923. B.A., B. Sc., University of Toronto, 1945, 1946. Ph.D.

Harvard, 1948. Instructor in physics, Harvard, 1948–1950. Assistant, Associate, full Professor,

Carnegie Mellon University, 1950–1960. Professor of physics, University of California at Santa

Diego, 1960–1979; University of California at Santa Barbara 1979-present. Nobel Prize in

chemistry 1998. Died Santa Barbara, CA, 2016.

484 7 Density Functional Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


theory where the correct mathematical form of the fundamental equation, the

Schr€odinger equation, is (we think), known. In conventional ab initio theory, the

wavefunction can be improved in a conceptually straightforward way by going to

bigger basis sets and higher correlation levels, which takes us closer and closer to an

exact solution of the Schr€odinger equation, but in DFT there is so far no such

straightforward way to systematically improve the functional (Sect. 7.2.3.2); one

must feel one’s way forward with help from intuition and comparison of the results

with experiment and with high-level conventional ab initio calculations. One might

argue that in this sense current DFT is semiempirical, but the limited use of

empirical parameters (typically from zero to about 10), and the possibility of one

day finding the exact functional, makes it ab initio in spirit. Indeed, DFT using

functionals with no empirical parameters (below) is mathematically as ab initio as

wavefunction methods. Were the exact functional known, DFT might indeed give

“chemically accurate results a priori” (the Dewar quotation at the start of this

chapter). The question of the semiempirical nature of DFT is briefly taken up

again, after we have examined the various levels of the method, at the end of

Sect. 7.2.3.4.9.

7.2 The Basic Principles of Density Functional Theory

7.2.1 Preliminaries

In the Born interpretation (Chap. 4, Sect. 4.2.6) the square of a one-electron

wavefunction ψ at any point X is the probability density (with units of volume�1)

for the wavefunction at that point, and jψ j2 dxdydz is the probability (a pure number)

at any moment of finding the electron in an infinitesimal volume dxdydz around the
point (the probability of finding the electron at a mathematical point is zero). For

a multielectron wavefunction ψ the relationship between the wavefunction ψ and

the electron density ρ is more complicated, being the number of electrons in

the molecule times the sum over all their spins of the integral of the square of the

molecular wavefunction integrated over the coordinates of all but one of the

electrons (Chap. 5, Sect. 5.5.4.5, AIM discussion). It can be shown [9] that ρ(x, y, z)
is related to the “component” one-electron spatial wavefunctions ψ i (the molecular

orbitals) of a single-determinant wavefunction ψ (recall from Chap. 5, Sect. 5.2.3.1

that the Hartree-Fock ψ can be approximated as a Slater determinant of spin orbitals

ψ iα and ψ iβ) by

ρ ¼
Xn
i¼1

nijψ ij2 ð*7:1Þ

This sum is over the n occupied MOs ψ i for a closed-shell molecule, for a total

of 2n electrons. Equation (7.1) applies strictly only to a single-determinant
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wavefunction ψ, but for multideterminant wavefunctions arising from configura-

tion interaction treatments (Chap. 5, Sect. 5.4) there are similar equations [10].

A shorthand for ρ(x, y, z) dxdydz is ρ(r)dr, where r is the position vector of the point
with coordinates (x, y, z). If the electron density ρ rather than the wavefunction

could be used to calculate molecular geometries, energies, etc., this might be an

improvement over the wavefunction approach because, as mentioned above, the

electron density in an n-electron molecule is a function of only the three spatial

coordinates x, y, z, but the wavefunction is a function of 4n coordinates. Density

functional theory seeks to calculate all the properties of atoms and molecules from

the electron density.

Some introductions to and reviews of DFT are:

Introductions:

1. [11] The magisterial book by Parr and Yang. The accent on rigorous presentation

of the fundamentals makes it as relevant now as when first published (1989), but

one does not have to be faint-hearted to prefer to be initiated by less “technical”

introductions.

These provide good, brief summaries:

2. [12] Levine (2014)

3. [13] Cramer (2004)

4. [14] Jensen (2007)

Reviews:

These are oriented toward developments in and the more recent state of the field

(but also give some background information on the theory):

1. [15] Peverati and Truhlar (2014). The quest for a universal density functional: The
accuracy of density functionals across a broad spectrum of databases in chemistry
and physics. The accent is on the functionals from the Truhlar group (e.g. the M06

family, below), but 65 other functionals are examined with 451 data items.

2. [16] Burke (2012). Perspective on density functional theory. A good read,

pleasantly whimsical (e.g. a disadvantage of DFT is that it “Can only be learned

from a DFT guru”). Good compact history and introduction.

3. [17] Cohen, Mori-Sánchez, Yang (2012). Challenges for Density Functional
Theory. Background, current problems. Quite “technical”.

4. [18a] J. P. Wagner, P. R. Schreiner (2015). London dispersion in molecular
chemistry–reconsidering steric effects. Emphasizes realization of importance of

dispersion. [18b] Corminboeuf (2014). Minimizing Density Functional Failures
for Non-Covalent Interactions Beyond van der Waals Complexes. These weak

interactions, often called dispersion in computational chemistry, are one of the

main challenges to current DFT (see Sect. 7.2.3.4.8).

5. [19] Application of DFT to materials (2014): an issue of Acc. Chem. Res.

6. [20] R. O. Jones (2015). Density Functional Theory: Its origins, rise to promi-
nence, and future. Starts with historical survey with knowledgeable references to
numerous original papers, moves on to current problems and illustrates triumphs

of DFT, yet closes with a thoughtful questioning of its fundamental nature and

its future, with ab initio theory as the rival.
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After the theory behind DFT has been presented in some detail, references will

be given (Sect. 7.2.3.4) to reviews which more specifically address steps toward

improving the performance of the method.

7.2.2 Forerunners to Current DFT Methods

The idea of calculating atomic and molecular properties from electron density

appears to have arisen from calculations made independently by Enrico Fermi

and P. A. M. Dirac in the 1920s on an ideal electron gas, work now well-known

as the Fermi-Dirac statistics [21]. In independent work by Fermi [22a] and

Thomas [22b], atoms were modelled as systems with a positive potential (the

nucleus) located in a uniform (homogeneous) electron gas. This obviously unreal-

istic idealization, the Thomas-Fermi model [23], or with embellishments by Dirac

the Thomas-Fermi-Dirac model [23], gave surprisingly good results for atoms, but

failed completely for molecules: it predicted all molecules to be unstable toward

dissociation into their atoms (indeed, this is a theorem in Thomas-Fermi theory).

The Xα (X ¼ exchange, α is a parameter in the Xα equation) method gives much

better results [24]. It can be regarded as a more accurate version of the Thomas-

Fermi model, and is probably the first chemically useful DFT method. It was

introduced in 1951 by Slater [25], who regarded it [26] as a simplification of the

Hartree-Fock (Chap. 5, Sect. 5.2.3) approach. The Xα method, which was devel-

oped mainly for atoms and solids, has also been used for molecules, but has been

replaced by the more accurate Kohn-Sham type (Sect. 7.2.3) DFT methods.

7.2.3 Current DFT Methods: The Kohn-Sham Approach

7.2.3.1 Functionals. The Hohenberg-Kohn Theorems

Nowadays DFT calculations on molecules are based on the Kohn-Sham approach,

the stage for which was set by two theorems published by Hohenberg and Kohn in

1964 (proved in Levine [27]). The first Hohenberg-Kohn [28] theorem says that all

the properties of a molecule in a ground electronic state are determined by the

ground state electron density function ρ0(x, y, z). In other words, given ρ0(x, y, z) we
can in principle calculate any ground state property, e.g. the energy, E0; we could

represent this as

ρ0 x, y, zð Þ ! E0 ð7:2Þ

The relationship (7.2) means that E0 is a functional of ρ0(x, y, z). A function is a

rule that transforms a number into another (or the same) number:
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2!x3 8

1!x3 1

A functional is a rule that transforms a function into a number:

f xð Þ ¼ x3!
R 2

0
f xð Þdx x4

4

����
2

0

¼ 4 ð7:3Þ

The functional
R 2
0
f xð Þdx transforms the function x3 into the number 4. We

designate the fact that the integral is a functional of f(x) by writing

Z 2

0

f xð Þdx ¼ F f xð Þ½ � ð7:4Þ

A functional is a function of a “definite” (cf. the definite integral above) function.

The first Hohenberg-Kohn theorem, then, says that any ground state property of

a molecule is a functional of the ground state electron density function, e.g. for the

energy

E0 ¼ F ρ0½ � ¼ E ρ0½ � ð7:5Þ

The theorem is “merely” an existence theorem: it says that a functional F exists, but

does not tell us how to find it; this omission is the main problem with DFT. The

significance of this theorem is that it assures us that there is in principle a way to

calculate molecular properties from the electron density. Thus we can infer that

approximate functionals will give at least approximate answers. The theorem is

sometimes expressed in a way that may at first sight seem less relevant to calcu-

lating energies, namely that the nuclear potential determines the ground-state

electron density, or that there is a one-to-one correspondence between the energy

and the electron density.

The second Hohenberg-Kohn theorem [28] is the DFT analogue of the

wavefunction variation theorem that we saw in connection with the ab initio

method (Chap. 5, Sect. 5.2.3.3): it says that any trial electron density function

will give an energy higher than (or equal to, if it were exactly the true electron

density function) the true ground state energy. In DFT molecular calculations the

electronic energy from a trial electron density is the energy of the electrons moving

the under the potential of the atomic nuclei. This nuclear potential is called the

“external potential”, presumably because the nuclei are “external” if we concentrate

on the electrons. This nuclear potential is designated v(r), and the electronic energy
is denoted by Ev ¼ Ev ρ0½ � (meaning “the Ev functional of the ground state electron

density”). The second theorem can thus be stated

Ev ρt½ � � E0 ρ0½ � ð7:6Þ
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where ρt is a trial electronic density and E0[ρ0] is the true ground state energy,

corresponding to the true electronic density ρ0. The trial density must satisfy the

conditions
R
ρt rð Þdr ¼ n, where n is the number of electrons in the molecule (this is

analogous to the wavefunction normalization condition; here the number of elec-

trons in all the infinitesimal volumes must sum to the total number in the molecule)

and ρt rð Þ � 0 for all r (the number of electrons per unit volume can’t be negative).
This theorem tells us that any value of the molecular energy we calculate from the

Kohn-Sham equations (below, a set of equations analogous to the Hartree-Fock

equations, obtained by minimizing energy with respect to electron density) will be

greater than or equal to the true energy. This is actually true only if the functional

used were exact; see below. The Hohenberg-Kohn theorems were originally proved

only for nondegenerate ground states, but have been shown to be valid for degen-

erate ground states too [29]. The functional of the inequality (7.6) is the correct,

exact energy functional (the prescription for transforming the ground state electron

density function into the ground state energy). The exact functional is unknown, so

actual DFT calculations use approximate functionals, and are thus not variational:
they can give an energy below the true energy. Being variational is a nice charac-

teristic of a method, because it assures us that any energy we calculate is an upper

bound to the true energy. However, this is not an essential feature of a method:

Møller-Plesset and practical configuration interaction calculations (Chap. 5, Sects.

5.4.2, 5.4.3) are not variational, but this is not regarded as a serious problem.

7.2.3.2 The Kohn-Sham Energy and the KS Equations

The first Kohn-Sham theorem tells us that it is worth looking for a way to calculate

molecular properties from the electron density. The second theorem suggests that a

variational approach might yield a way to calculate the energy and electron density

(the electron density, in turn, could be used to calculate other properties). Recall

that in wavefunction theory, the Hartree-Fock variational approach (Chap. 5, Sect.

5.2.3.4) led to the HF equations, which are used to calculate the energy and the

wavefunction. An analogous variational approach led (1965) to the Kohn-Sham

equations [30], the basis of current molecular DFT calculations. If we had an

accurate molecular electron density function ρ and if we knew the correct energy

functional, we could (assuming the functional were not impossibly complicated) go

straight from the electron density function to the molecular energy, courtesy of the

functional. Unfortunately we do not a priori have an accurate ρ, and we certainly do
not have the correct energy functional, this latter fact being the key problem in

density functional theory. The Kohn-Sham approach to DFT mitigates these two

problems.

The two basic ideas behind the KS approach are: (1) To express the molecular

energy as a sum of terms, only one of which, a relatively small term, involves the

“unknown” functional. Thus one hopes that even moderately large errors in this

term will not introduce large errors into the total energy. (2) To use an initial guess
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of the electron density ρ in the KS equations (analogous to the HF equations) to

calculate an initial guess of the KS orbitals and energy levels (below); this initial

guess is then used to iteratively refine these orbitals and energy levels, in a manner

similar to that used in the HF SCF method. The final KS orbitals are used to

calculate an electron density that in turn is used to calculate the energy.

7.2.3.2.1 The Kohn-Sham Energy

The strategy here is to separate the electronic energy of our molecule into a portion

which can be calculated accurately without using DFT, and a relatively small term

which requires the elusive functional. A key idea in this approach is the concept of a

fictitious noninteracting reference system, defined as one in which the electrons do

not interact and in which (this is very important) the ground state electron density ρr
is exactly the same as in our real ground state system: ρr ¼ ρ0. Noninteracting
electrons are readily treated exactly, and the deviations from the behavior of real

electrons are swept into a small term involving a functional with which we have to

grapple. We are talking here about the electronic energy of the molecule; the total

internal “frozen-nuclei” energy can be found later by adding in the trivial-to-

calculate internuclear repulsions, and the 0 K total internal energy by further adding

the zero-point energy from the normal-mode vibrations, just as in HF calculations

(Chap. 5, Sect. 5.2.3.6.4).

The ground state electronic energy of the real molecule is the sum of the electron

kinetic energies, the nucleus-electron attraction potential energies, and the electron-

electron repulsion potential energies:

E0 ¼ T ρ0½ �h i þ VNe ρ0½ �h i þ Vee ρ0½ �h i ð*7:7Þ

The angle brackets remind us that these energy terms are quantum-mechanical

average values or “expectation values”; each is a functional of the ground-state

electron density, and each has an operator, for kinetic energy etc., just as the total

energy has an operator Ĥ. Focussing first on the middle term, the one most easily

dealt with: the nucleus-electron potential energy is the sum over all 2n electrons

(as with our treatment of ab initio theory, we will work with a closed-shell molecule

which perforce has an even number of electrons) of the potential corresponding to

attraction of an electron for all the nuclei A. The operator is, cf. Chap. 5, Eq. (5.15),

middle term :

V̂ Ne ¼
X2n
i¼1

X
nuclei A

�ZA

riA
¼
X2n
i¼1

v rið Þ ð7:8Þ

ZA/riA is the potential energy due to interaction of electron i with nucleus A at

the varying distance r; v(ri) is the “external potential” (explained in Sect. 7.2.3.1, in
connection with Eq. (7.6)) for the attraction of electron i to all the nuclei, and with it
we can write the double summation more compactly.
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The density function ρ can be introduced into <VNe> by using the fact [31] that

Z
ψ
X2n
i¼1

f rið Þψdτ ¼
Z

ρ rð Þf rð Þdr ð7:9Þ

where f(ri) is a function of the coordinates of the n electrons of a system and ψ is the

total wavefunction (the integrations are over spatial and spin coordinates tau on

the left and spatial coordinates on the right). From Eqs. (7.8) and (7.9), invoking the

concept of average or expectation value (Chap. 4, Sect. 5.2.3.3)

VNeh i ¼ ψ V̂ Ne

� �
ψ

� �
(the quantum mechanical average value of a quantity is the

integral of the operator over the wavefunction) we get

VNeh i ¼
Z

ρ0 rð Þv rð Þdr ð7:10Þ

So Eq. (7.7) can be written

E0 ¼ T ρ0½ �h i þ
Z

ρ0 rð Þv rð Þdrþ Vee ρ0½ �h i ð7:11Þ

The middle term is now a classical electrostatic attraction potential energy

expression. Unfortunately this equation for the energy cannot be used as it stands,

since we don’t know the kinetic and potential energy functionals in the energy

terms hT[ρ0]i and hVee[ρ0]i.
To utilize Eq. (7.11), Kohn and Sham introduced the idea of a fictitious reference

system of noninteracting electrons which give exactly the same electron density

distribution as the real system has. Addressing electronic kinetic energy, let us

define the quantity ΔhT[ρ0]i as the deviation of the real electronic kinetic energy

from that of the reference system:

Δ T ρ0½ �h i � T ρ0½ �h irea � T ρ0½ �h iref
i:e: T ρ0½ �h i � T ρ0½ �h iref

ð7:12Þ

Addressing next electronic potential energy, let us define a term ΔhVeei as the
deviation of the real electron–electron repulsion energy from a classical charge-

cloud coulomb repulsion energy. The classical electrostatic repulsion energy is the

summation of the repulsion energies for pairs of infinitesimal volume elements

ρ(r1)dr1 and ρ(r2)dr2 (in a classical, nonquantum cloud of negative charge) sepa-

rated by a distance r12, multiplied by one-half (so that we do not count the r1/r2
repulsion energy and again the r2/r1 energy). The sum of infinitesimals is an

integral and so

Δ Vee ρ0½ �h i ¼ Vee ρ0½ �h irea �
1

2

ZZ
ρ0 r1ð Þρ0 r2ð Þ

r12
dr1dr2 ð7:13Þ
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Actually, the classical charge-cloud repulsion is somewhat inappropriate for

electrons in that smearing an electron (a particle) out into a cloud forces it to

repel itself, as any two regions of the cloud interact repulsively. One way to

compensate for this physically incorrect electron self-interaction is with a good

exchange-correlation functional (below).

Using (7.12) and (7.13), Eq. (7.11) can be written

E0 ¼
Z

ρ0 rð Þv rð Þdrþ T ρ0½ �h iref þ
1

2

ZZ
ρ0 r1ð Þρ0 r2ð Þ

r12
dr1dr2

þΔ T ρ0½ �h i þ Δ Vee ρ0½ �h i
ð7:14Þ

The two “delta terms” which have been placed side by side encapsulate the main

problem with DFT: the sum of the kinetic energy deviation from the reference

system and the electron–electron repulsion energy deviation from the classical

system, called the exchange-correlation energy. In each term an unknown func-

tional transforms electron density into an energy, kinetic and potential respectively.

This exchange-correlation energy is a functional of the electron density function:

EXC ρ0½ � � Δ T ρ0½ �h i þ Δ Vee ρ0½ �h i ð7:15Þ

The ΔhTi term represents the kinetic correlation energy of the electrons and the

hΔVeei term the potential correlation and exchange energy (although exchange and

correlation energy in DFT do not have exactly the same significance as in HF theory

[32]). Using Eq. (7.15), Eq. (7.14) becomes

E0 ¼
Z

ρ0 rð Þv rð Þdrþ T ρ0½ �h iref þ
1

2

ZZ
ρ0 r1ð Þρ0 r2ð Þ

r12
dr1dr2 þ EXC ρ0½ � ð7:16Þ

Let’s look at the four terms in the expression for the molecular energy E0 of

Eq. (7.16).

(1) The first term (the integral of the density times the external potential) is

Z
ρ0 rð Þv rð Þdr ¼

Z
ρ0 r1ð Þ

X
nuclei A

�ZA

r1A

" #
dr1 ¼ �

X
nuclei A

ZA

Z
ρ0 r1ð Þ
r1A

dr1 ð7:17Þ

We integrate the potential energy of attraction of each nucleus for an infinitesimal

portion of the charge cloud and sum for all the nuclei. If we know ρ0 the integrals to
be summed are readily calculated.

(2) The second term (the electronic kinetic energy of the noninteracting-

electrons reference system) is the expectation value of the sum of the

one-electron kinetic energy operators over the ground state multielectron

wavefunction of the reference system (Parr and Yang explain this in detail [33]).

Using the compact Dirac notation for integrals:
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T ρ0½ �h iref ¼ ψrj
X2n
i¼1

�1

2
∇2

i jψr

* +
ð7:18Þ

Since these hypothetical electrons are noninteracting ψr can be written exactly
(for a closed-shell system) as a single Slater determinant of occupied spin molecular

orbitals (Chap. 5, Sect. 5.2.3.1. For a real system, the electrons interact and using a

single determinant causes errors due to neglect of electron correlation (Chap. 5,

Sect. 5.4), the root of most of our troubles in wavefunction methods. Thus for a

four-electron system

ψr ¼
1ffiffiffiffi
4!

p
ψKS
1 1ð Þα 1ð Þ ψKS

1 1ð Þβ 1ð Þ ψKS
2 1ð Þα 1ð Þ ψKS

2 1ð Þβ 1ð Þ
ψKS
1 2ð Þα 2ð Þ ψKS

1 2ð Þβ 2ð Þ ψKS
2 2ð Þα 2ð Þ ψKS

2 2ð Þβ 2ð Þ
ψKS
1 3ð Þα 3ð Þ ψKS

1 3ð Þβ 3ð Þ ψKS
2 3ð Þα 3ð Þ ψKS

2 3ð Þβ 3ð Þ
ψKS
1 4ð Þα 4ð Þ ψKS

1 4ð Þβ 4ð Þ ψKS
2 4ð Þα 4ð Þ ψKS

2 4ð Þβ 4ð Þ

��������

��������
ð7:19Þ

The 16 spin orbitals in this determinant are the Kohn-Sham spin orbitals of the

reference system; each is the product of a Kohn-Sham spatial orbital ψKS
i and a spin

function α or β. Equation (7.18) can be written in terms of the spatial KS orbitals by

invoking a set of rules (the Slater-Condon or Condon-Slater rules [34]) for simpli-

fying integrals involving Slater determinants:

T ρo½ �h iref ¼ �1

2

X2n
i¼1

ψKS
1 1ð Þj∇2

1jψKS
1 1ð Þ� � ð7:20Þ

The integrals to be summed are readily calculated. Note that DFT per se does not
involve wavefunctions, and the Kohn-Sham approach to DFT uses orbitals only as a

kind of subterfuge to calculate the noninteracting-system kinetic energy and the

electron density function; see below.

(3) The third term in Eq. (7.16), the classical electrostatic repulsion energy term,

is readily calculated if ρ0 is known.
(4) This leaves us with the exchange-correlation energy functional, EXC[ρ0]

(Eq. (7.15)) as the only term for which some new method of calculation must be

devised. Devising good exchange-correlation functionals for calculating this energy

term from the electron density function is the main problem in DFT research. This

is discussed in Sect. 7.2.3.4.

Written out more fully, then, Eq. (7.16) is

E0 ¼ �
X

nuclei A

ZA

Z
ρ0 r1ð Þ
r1A

dr1 � 1

2

X2n
i¼1

ψKS
1 1ð Þj∇2

1jψKS
1 1ð Þ� �

þ 1

2

ZZ
ρ0 r1ð Þρ0 r2ð Þ

r12
dr1dr2 þ EXC ρ0½ �

ð7:21Þ

The term most subject to error is the relatively small EXC[ρ0] term, which

contains the “unknown” (not precisely known) functional. Into this term the exact
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electron correlation and exchange energies have been swept, and for it we must find

at least an approximate functional.

7.2.3.2.2 The Kohn-Sham Equations

The KS equations are obtained by differentiating the energy with respect to the KS

molecular orbitals, analogously to the derivation of the Hartree-Fock equations,

where differentiation is with respect to wavefunction molecular orbitals (Chap. 5,

Sect. 5.2.3.4). We use the fact that the electron density of the reference system,

which is by decree exactly the same as that of the ground state of our real system

(see the definition at the beginning of the discussion of the Kohn-Sham energy), is

given by [9]

ρ0 ¼ ρr ¼
X2n
i¼1

jψKS
i 1ð Þj2 ð*7:22Þ

where the ψKS
i are the Kohn-Sham spatial orbitals. Substituting the above expres-

sion for the electron density in terms of orbitals into the energy expression of

Eq. (7.21) and differentiating to vary E0 with respect to the ψKS
i subject to the

constraint that these remain orthonormal (the spin orbitals of a Slater determinant

are orthonormal) leads to the Kohn Sham equations (the derivation is discussed in

considerable detail by Parr and Yang [35]):

�1

2
∇2

i �
X

nuclei A

ZA

r1A
þ
Z

ρ r2ð Þ
r12

dr2 þ vXC 1ð Þ
" #

ψKS
i 1ð Þ ¼ εKSi ψKS

i 1ð Þ ð7:23Þ

where εKSi are the Kohn-Sham energy levels (the KS orbitals and energy levels are

discussed later) and vXC(1) is the exchange correlation potential.The expression in

brackets is the Kohn-Sham operator, ĥKS. In the KS orbitals and the exchange

correlation potential we arbitrarily installed here electron number 1, since the KS

equations are a set of one-electron equations (cf. the Hartree-Fock equations) with

the subscript i running from 1 to 2n, over all the electrons in the system. The

exchange correlation potential vXC is a functional derivative of the exchange-

correlation energy EXC[ρ(r)]. The energy EXC[ρ(r)] is a functional of ρ(r) and the

process of obtaining vXC is functional differentiation; vXC is defined as

vXC rð Þ ¼ δEXC ρ rð Þ½ �
δρ rð Þ ð7:24Þ

Here the differentiation is shown as being with respect to ρ(r), but note that in

Kohn-Sham theory ρ(r) is expressed in terms of Kohn-Sham orbitals (Eq. (7.22)).

Functional derivatives, which are akin to ordinary derivatives, are discussed by Parr

and Yang [36] and outlined by Levine [37].
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The KS Eq. (7.23) can be written as

ĥ
KS

1ð ÞψKS
i 1ð Þ ¼ εKSi ψKS

i 1ð Þ ð*7:25Þ

The Kohn-Sham operator ĥKS is defined by Eq. 7.23; the significance of these

orbitals and energy levels is considered later, but we note here that in practice they

can be interpreted in a similar way to the corresponding wavefunction entities. Pure

DFT theory has no orbitals or wavefunctions; these were introduced by Kohn and

Sham only as a way to turn Eq. (7.11) into a useful computational tool, via the

artifice of noninteracting electrons, but if we can interpret the KS orbitals and

energies in some physically useful way, so much the better.

The Kohn-Sham energy Eq. (7.21) is exact, but there is a catch: only if we knew

the density function ρ0(r) and the exchange-correlation energy functional EXC[ρ0],
would it give the exact energy. The Hartree-Fock energy equation (Chap. 5,

Eq. (5.17), on the other hand, is an approximation that does not treat electron

correlation properly. Even in the basis set limit, the HF equations would not give

the correct energy, but the KS equations would, if we knew the exact exchange-
correlation energy functional. In wavefunction theory we know how to improve on

HF-level results: by using perturbational or configuration interaction treatments of

electron correlation (Chap. 5, Sect. 5.4), but in DFT theory there is as yet no

systematic way of improving the exchange-correlation energy functional. It has

been said [38] that “while solutions to the [HF equations] may be viewed as exact

solutions to an approximate description, the [KS equations] are approximations to

an exact description!”; Parr and Yang give a somewhat similar but more recondite

assertion: “The conventional Hartree-Fock approximation can be regarded as a

density-functional approach in the HFKS scheme with correlation completely

neglected, but not in the KS scheme. Instead of the exact nonlocal exchange

potential in the HFKS equations, the KS equations use an effective nonlocal
potential that is not known and has to be approximated. Another trade of accuracy

for simplicity!” [39].

7.2.3.3 Solving the KS Equations

First lets review the steps in carrying out a HF calculation (Chap. 5, Sects. 5.2.3.6.2,

5.2.3.6.3, 5.2.3.6.4 and 5.2.3.6.5). We start with a guess of the basis function

coefficients c, because the HF operator F̂ (the Fock operator) itself contains the

wavefunction, which is composed of the basis functions and their coefficients.

The operator is used with the basis functions to calculate the HF Fock matrix

elements Frs ¼ ϕrjF̂ jϕs

� �
which constitute the Fock matrix F. An orthogonalizing

matrix calculated from the overlap matrix S puts F into a form F0 that satisfies
F0 ¼ C0εC0�1

(Chap. 5, Sect. 5.2.3.6.2). Diagonalization of F0 gives a coefficients
matrix C0 and an energy levels matrix ε; transforming C0 to C gives the matrix

with the coefficients corresponding to the original basis set expansion, and these
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are then used as a new guess to calculate a new F; the process continues till it

converges satisfactorily on the c’s, i.e. on the wavefunction, and the energy levels
(which can be used to calculate the electronic energy); the procedure was shown

in detail in Sect. 5.2.3.6.5.

The standard strategy for solving the KS eigenvalue equations, like that for

solving the HF equations, which they resemble, is to expand the KS orbitals in

terms of basis functions ϕ:

ψKS
i ¼

Xm
s¼1

csiϕs i ¼ 1, 2, 3, � � �,m ð*7:26Þ

This is exactly the same as was done with the Hartree-Fock orbitals in Chap. 5,

Sect. 5.2.3.6.1, and in fact the same basis functions are often used as in

wavefunction theory, although as in all calculations designed to capture electron

correlation (the Kohn-Sham electrons are noninteracting, but the functional

attempts to account for electron correlation), sets smaller than split-valence

(Chap. 5, Sect. 5.3.3) should not be used. A popular basis in DFT calculations is

the 6-31G*. Substituting the basis set expansion into the KS Eqs. (7.23, 7.25) and

multiplying by ϕ1,ϕ2, . . .,ϕm leads, as in Chap. 5 Sect. 5.2.3.6.1, to m sets of

equations, each set with m equations, which can all be subsumed into a single

matrix equation analogous to the HF equation FC ¼ SCε. The key to solving the

KS equations then becomes, as in the standard HF method, the calculation of Fock

matrix elements and diagonalization of the matrix (Chap. 5, Sect. 5.2.3.6.2). In a

DFT calculation we start with a guess of the density function ρ(r), because this is

what we need to obtain an explicit expression for the KS Fock operator ĥKS

(Eqs. (7.23, 7.24 and 7.25). This guess is usually a noninteracting atoms guess,

obtained by summing mathematically the electron densities of the individual

atoms of the molecule, at the molecular geometry. The KS Fock matrix elements

hrs ¼ ϕrjĥ
KSjϕs

D E
are calculated and the KS Fock matrix is orthogonalized and

diagonalized, etc., to give initial guesses of the c’s in the basis set expansion of

Eq. (7.26) (and also initial values of the ε’s). These c’s are used in Eq. (7.26) to

calculate a set of KS MOs which with Eq. (7.22) are used to calculate a better ρ.
This new density function is used to calculate improved matrix elements hrs which
in turn give improved c’s and then an improved density function, the iterative

process being continued until the electron density etc. converge. The final density

and KS orbitals are used to calculate the energy from Eq. (7.21).

The KS Fock matrix elements are integrals of the Fock operator over the basis

functions. Because useful functionals are so complicated, these integrals, specifi-

cally the ϕrjvXCjϕsh i integrals, unlike the corresponding ones in Hartree-Fock

theory, cannot be solved analytically. The usual procedure is to approximate the

integral by summing the integrand in steps determined by a grid. For example,

suppose we want to integrate e�x2 from �1 to 1. This could be done approxi-

mately, using a grid of width Δx ¼ 0:2 and summing from �2 to 2 (limits at which

the function is small):

496 7 Density Functional Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


Z 1

�1
e�x2dx ¼

Z 1

�1
f xð Þdx ’ 0:2f �2þ 0:2ð Þ þ 0:2f �2þ 0:4ð Þ

þ � � � þ0:2f 2ð Þ ¼ 0:2 9:80ð Þ ¼ 1:96

The integral is π1=2 ¼ 1:77. For a function f(x, y) the grid would define the steps in

x and y and actually look like a grid or net, approximating the integral as a sum of

the volumes of parallelepipeds, and for the DFT function f(x, y, z) the grid specifies
the steps of x, y and z. Clearly the finer the grid the more accurately the integrals are

approximated, and reasonable accuracy in DFT calculations requires (but is not

guaranteed by) a sufficiently fine grid.

Here is a summary of the steps in obtaining the Kohn-Sham orbitals and energy

levels:

1. Specify a geometry (and charge and multiplicity; electron spin can be handled

in DFT by using separate α‐ and β‐spin density functions).

2. Specify a basis set {ϕ} and a functional EXC[ρ].
3. Make an initial guess of ρ (e.g by superposing atomic ρ functions).

4. Use the guess of ρ to calculate an initial guess initial vxc(r) from
vxc rð Þ ¼ functional derivative δExc/δρ (Eq. (7.24)). This uses the approximate

functional Exc we have chosen for the calculation.

5. Use the initial guesses of ρ and vxc(r) to calc the K-S operatorh ĥKS:

�1

2
∇2

i �
X

nuclei A

ZA

r1A
þ
Z

ρ r2ð Þ
r12

dr2 þ vXC 1ð Þ

(See Eq. (7.23)).

6. Use the K-S operatorh ĥKS and the basis functions {ϕ} to calc Kohn-Sham

matrix elements Krs (cf. Fock matrix elements Frs (Chap. 5, Sect. 5.2.3.6),

Krs ¼ ϕrjĥ
KSjϕs

D E
ð*7:27Þ

and assemble a Kohn-Sham matrix, the square matrix of Krs elements.

7. Orthogonalize the KS matrix, diagonalize it to get a coefficients matrix C0 and
an energy levels matrix ε, and transform C0 to C, the matrix of the coefficients

that give the KS orbitals as a weighted sum of the original non-orthogonal

basis functions (cf. Chap. 5, Sect. 5.2.3.6.2). We now have the first-iteration

values of the energy levels εi and the KS molecular orbitals ψ i (getting the

coefficients is equivalent to getting the MOs, once a basis set is in hand, since

ψKS
i ¼P cϕbasis).

8. Use the first-iteration values of the KS MOs to calculate an improved ρ:

ρ0 ¼ ρr ¼
X2n
i¼1

jψKS
i 1ð Þj2

(See Eq. (7.22))
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9. Go back to step 4, but with the improved, first-iteration ρ instead of the guess.

At the new step 7 we will have the second-iteration values of the energy levels

εi and the KS molecular orbitals ψ i (and the first-iteration ρ, from the first

application of step 8). Check them for significant change. If these do not differ

(within specified limits) from the first-iteration values, and the first-iteration ρ
is unchanged from the guess we started with, stop. If they differ, go through the

process again, to get the third-iteration values of the energy levels εi and the KS
molecular orbitals, and the second-iteration ρ. Check for significant change;

and so on.

10. When the iterations have satisfactorily converged, calculate the energy using

Eq. (7.21).

11. The geometry can be optimized with the aid of derivatives of the energy with

respect to geometry, as outlined in Chap. 2, Sect. 2.4. Any method in which the

calculated energy varies with the geometry can in principle at least, optimize

geometry.

7.2.3.4 The Exchange-Correlation Energy Functional: Various Levels

of Kohn-Sham DFT

We have to consider the calculation of the fourth term, the problem term, in the KS

operator of Eq. (7.23), the exchange-correlation potential vXC(r). This is defined as

the functional derivative [36, 37] of the exchange-correlation energy functional,

EXC[ρ(r)], with respect to the electron density functional (Eq. (7.23). The

exchange-correlation energy functional EXC[ρ(r)], a functional of the electron

density function ρ(r), is a quantity which depends on the function ρ(r) and on just

what mathematical form the functional has, while the exchange-correlation poten-

tial vXC(r), the functional derivative of EXC[ρ(r)], is a function of the variable r,

i.e. of x, y, z. Clearly, vXC(r) depends on ρ(r) and, like ρ(r), varies from point to

point in the molecule. The functional is a recipe for transforming ρ into the

exchange-correlation energy EXC. Actually, as hinted in connection with

Eq. (7.13), this energy ideally also compensates for the classical self-repulsion in

the charge cloud of ρ, and for the deviation of the kinetic energy of the

noninteracting KS electrons from that of real electrons. Thus a good functional

handles not only exchange and correlation errors, but also self-repulsion and kinetic

energy errors. The functional is normally tackled as an exchange term and a

correlation term; for example in the B3LYP functional (below) B3 denotes the

Becke 88 3-parameter exchange functional and LYP the Lee, Yang, Parr correlation

functional, and in the TPSS functional (below), both functionals enshrine the names

Tao, Perdew, Staroverov, Scuseria, and some programs require TPSS be denoted

TPSSTPSS. Devising good functionals EXC[ρ(r)] is the main problem in density

functional theory, for all the theoretical difficulties of Kohn-Sham DFT have been

swept into the functional.

Below we look briefly at functionals based, in order of increasing sophistication

(although not quite invariably smoothly increasing excellence), on these methods:
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(a) the local density approximation (LDA), (b) the local spin density approximation

(LSDA), (c) the generalized gradient approximation (GGA), (d) meta-GGA

(MGGA), (e) hybrid GGA or adiabatic connection methods (ACM methods),

(f) hybrid meta-GGA hybrid MGGA) methods, and (g) “fully nonlocal” theory.

This hierarchy of theory has been likened to the biblical ladder reaching up to

heaven [40], and this DFT Jacob’s ladder [41] will, one hopes, culminate in what

has been appropriately called the divine functional [42]. Jensen has listed some of

the properties that the divine functional must on theoretical grounds possess

[43]. Some valuable reviews which tend to illustrate the improvement of the

method with specific functionals are:

1. Sousa et al. 2007 [44]; 14 pp. A concise historical introduction to the various

methods and extensive comparisons of many functionals for various purposes;

see especially Table 3; highlights the predominance of B3LYP.

2. Zhao and Truhlar 2011, 2007 [45]; 13, 11 pp. Extensive comparison of the very

popular B3LYP functional with some new functionals; focuses on overcoming

problems of transition metals, barrier heights, and weak interactions. A class of

functionals, the M06 family, “with better across-the-board average performance

than B3LYP” is presented.2 These are successors to the M05 family. A

restrained choice of data is clearly presented. Clear recommendations are

given for various kinds of calculations. The basic specialties of the four members

of the then-new M06 family were said to be:

M06 itself General thermochemistry and kinetics, where noncovalent

interactions and/or transition metals may be involved. For

“problems involving multireference rearrangements or reactions

where both organic and transition-metal bonds are formed or

broken”. This “M06” functional was actually published in 2008

(Table 2 in reference [15]).

M06-2X 2X means twice as much (54%) HF-exchange as for M06. General

thermochemistry and kinetics; said to be better than M06 for

noncovalent interactions. It “predicts accurate valence and Rydberg

electronic excitation energies. . .excellent for aromatic-aromatic

stacking interactions”. This “M06-2X” functional was actually

published in 2008 (Table 2 in reference [15]). As of 2015 M06-2X

is probably the functional most competitive with B3LYP where

transition metals and weak interactions are not of primary

importance (see Sects. 7.3, 7.3.1, and 7.3.2).

M06-L No HF-exchange. Local and so “affordable” for very large systems.

The only local functional with better general performance than

B3LYP. The most accurate of the family for transition metals.

2M06: :”M zero six", or colloquially “M oh six”. A descendant of M05, Minnesota ‘05 (2005):

Y. Zhao, N. E. Schultz, D. E. Truhlar, J. Chem. Phys., 2005, 123, 161103.
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M06-HF H means high (100%) HF-exchange. Good performance for valence,

Rydberg and charge transfer excited states with minimum sacrifice of

ground-state accuracy. Can handle noncovalent interactions. Full HF

exchange avoids long-range self-interaction error.

These four functionals constituted what were called the Minnesota functionals.

The family with this geographic appellation has grown since then: see (3) below.

3. Peverati and Truhlar 2014 [15]; 81 ppþ supplementary material (61 pp þ200

referencesþ supplementary material). The emphasis is on the Minnesota func-

tionals, a group that has expanded quite quickly beyond the four M06-type

functionals (Zhao and Truhlar reviews [45], above): twelve Minnesota and

65 other functionals are examined with 452 data points in various databases

[45b]. Besides the M05 and M06-type some newer kinds of functionals are

discussed: M08 (M08-HX, M08-SO), M011 (M011, M11-L), and M012

(M012-L, MN12-SX). As of 2015 these three latter families are of only limited

availability, e.g. in “locally” (University of Minnesota) modified versions of the

Gaussian program suite. Because of a dearth of applications of these in the

literature, they are not discussed further here.

4. Riley et al. 2007 [46]; 27 pp. The efficacy of DFT is examined “for small

molecules containing elements commonly found in proteins, DNA, and RNA”

The results are very clearly presented with figures. Very extensive comparison:

37 DFT methods (functional/basis set pairs) are compared with ab initio HF

and MP2. The Pople 6-31G* basis (sometimes used with one or two sets

of þ functions) is competitive with or better than the much bigger Dunning

aug-cc-pVDZ and cc-pVTZ sets. An all-round best functional was not found but

B1B95 and B98 were among the best.

5. Perdew et al. 2005 [47]; 9 pp. Nicely prescriptive exposition of “personal

preferences and metaphysical principles” for designing and choosing func-

tionals. Exhorts developers to adopt a nonempirical methodology of climbing

the DFT Jacob’s ladder by proceeding to the next higher rung by building on

what works at each tested level, and striving to obey the known theoretical

constraints. Holds that with these provisos DFT is not semiempirical, but rather a

“middle way” between semiempirical and ab initio. Favors functionals without

empirical parameters. Defends the LSDA as a still useful method and as a

limiting case to which more sophisticated functionals should devolve in the

uniform electron gas limit. Summarizes some known exact constraints on the

ideal functional. They recommend functionals with “few fitted parameters” like

PBE or TPSS.

6. Mattsson 2002 [42]; 2 pp. A very brief sketch of the development of DFT.

7. Kurth et al. 1999 [48]; 21 pp. Delves well into the mathematical background

behind functionals and discusses solids and metal surfaces in addition to atoms

and molecules. Examines functionals constructed semiempirically as well as

purely by considering known theoretical constraints.

We now consider the rungs of Jacob’s ladder.
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7.2.3.4.1 The Local Density Approximation (LDA)

The simplest approximation to Exc[ρ(r)], the bottom rung of the DFT Jacob’s
ladder, results from the local density approximation, LDA. In mathematics a

local property of a function at a point on the surface (line, or 2-dimensional surface,

or hypersurface) that is defined by the function is a property that depends on the

behavior of the function only in the immediate vicinity of the point [49]. “Immediate

vicinity” can be taken to mean the region within an infinitesimal distance beyond

the point. Consider the derivative at some point Pi on the line defined by plotting

y ¼ f xð Þ against x. This property, the derivative or gradient, is the limit

Δx ! 0
lim Δy

Δx
¼ dy

dx

and depends on the behavior of the curve at just an infinitesmal distance away from

Pi, i.e. in the immediate vicinity of Pi. The derivative may exist at Pi but not at some

other point, where the curve may have, say, a cusp. The opposite of a local property

is a property in the large [49]. Kurth et al. [48] define “locality” somewhat

differently: they take a local functional to be one for which the energy density

(below) at a point is determined by ρ at the point, designate by “semilocal” a

functional for which the energy density depends on ρ in the infinitesimal neighbor-

hood of the point, and use nonlocal to describe a functional for which the energy

density is determined by ρ at finite distances from the point. It is more important to

know how the functionals behave than to worry about their strict adherence to

mathematical definitions.

The local density approximation is based on the assumption that at every point in

the molecule the energy density has the value that would be given by a homoge-

neous electron gas which had the same electron density ρ at that point. The energy
density is the energy (exchange plus correlation) per electron of a homogeneous

electron gas. Note that the LDA does not assume that the electron density in a

molecule is homogeneous (uniform); that drastic situation would be true of a

“Thomas-Fermi molecule”, which, as we said above, cannot exist [23]

(Sect. 7.2.2). The term local was used to contrast the method with ones in which

the functional depends not just on ρ but also on the gradient (first derivative) of ρ,
the contrast apparently arising from the assumption that a derivative is a nonlocal

property. However, under the mathematical definition above a gradient is local, and

DFT methods formerly called “nonlocal” are now commonly designated as gradi-
ent-corrected (Sect. 7.2.3.4.3). LDA functionals have been largely replaced by a

family representing an extension of the method, local spin density approximation

(LSDA; below) functionals. In fact, in extolling the virtues of a systematic

nonempirical ascent of the DFT Jacob’s ladder, Perdew et al. [47] slight LDA

and assign to the lowest rung LSDA functionals.
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7.2.3.4.2 The Local Spin Density Approximation (LSDA)

The “spin” here means that electrons of opposite spin are placed in different Kohn-

Sham orbitals, analogously to the Hartree-Fock UHF method (Chap. 5, end of Sect.

5.2.3.6.5). LSDA functionals are occasionally called LSD functionals. The elabo-

ration of the LDAmethod to the LSDA assigns electrons of α and β spin to different
spatial KS orbitals ψKS

α and ψKS
β , from which different electron density functions ρα

and ρβ follow. This “spin-density theory”, LSDA, has the advantages that it can

handle systems with one or more unpaired electrons, like radicals, and systems in

which electrons are becoming unpaired, such as molecules far from their equilib-

rium geometries, and that even for ordinary molecules it appears to be more

forgiving toward the use of (necessarily) inexact EXC functionals [50]. For species

in which all the electrons are securely paired, the LSDA is equivalent to the LDA.

LSDA geometries, frequencies and electron-distribution properties tend to be

reasonably good, but (as with HF calculations) the dissociation energies, including

atomization energies, are very poor. A popular LSDA functional was the SVWN

(Slater exchange plus Vosko, Wilk, Nusair) [51]. Atomization energies are often

used as a kind of touchstone for the goodness of a method: for example, they are one

of the criteria for parameterizing and evaluating the high-accuracy energy multistep

“ab initio” methods of Chap. 5 (Sect. 5.5.2.3.2). LSDA functionals are useful in

solid-state physics, but for molecular calculations have been largely replaced

by higher rungs of the ladder. The local spin density method has however been

stoutly defended by knowledgeable practitioners [47], who point out that it gives

“remarkably accurate bond lengths”, that its atomization energy errors “can be

dramatically reduced” with one empirical parameter, and that “For chemistry

without free atoms, LSD is not such a bad starting point”. A recently developed,

potentially very useful local function is M06-L (below) [45]. Nevertheless, LSDA

calculations have been largely replaced by an approach that uses not just the

electron density, but also its gradient.

7.2.3.4.3 Gradient-Corrected Functionals; the Generalized Gradient

Approximation (GGA)

Most DFT calculations nowadays use exchange-correlation energy functionals EXC

that utilize both the electron density and its gradient, the first derivative of ρ with

respect to position, ∂=∂xþ ∂=∂yþ ∂=∂zð Þρ ¼ ∇ρ. These functionals are called

gradient-corrected, or said to use the generalized-gradient approximation (GGA).

They have also been called nonlocal functionals, in contrast to LDA and LSDA

functionals, but it has been suggested [52] that the term nonlocal be avoided in

referring to gradient-corrected functionals; recall the discussion of “local” in

Sect. 7.2.3.4.1. The exchange-correlation energy functional can be written as the

sum of an exchange-energy functional and a correlation-energy functional, both

negative, i.e.EXC ¼ Ex þ Ec; jExj is much bigger than jEcj. For the argon atom Ex is
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�30.19 hartrees, while Ec is only �0.72 hartrees, calculated by the HF method

[53]. Thus it is not surprising that gradient corrections have proved more effective

when applied to the exchange-energy functional, and a major advance in practical

DFT calculations was the introduction of the B88 (Becke 1988) functional [54], a

“new and greatly improved functional for the exchange energy” [55]. Examples of

gradient-corrected correlation-energy functionals are the LYP (Lee-Yang-Parr) and

the P86 (Perdew 1986) functionals. All these functionals are commonly used with

Gaussian-type (i.e. functions with exp �r2ð Þ) basis functions for representing the KS
orbitals (Eq. (7.26)). A calculation with B88 for the exchange functional Ex, and

LYP for the Ec, and the 6-31G* basis set (Chap. 5, Sect. 5.3.3) would be designated

as a B88LYP/6‐31G* or B88LYP/6‐31G* calculation. Sometimes rather than the

analytical functions that constitute the standard Gaussian basis sets, numerical basis

sets are used. A numerical basis function is essentially a table of the values that an

atomic orbital wavefunction has at many points around the nucleus, derived from

best-fit functions devised to pass through these points. These numerical functions

can be used instead of the analytical Gaussian-type functions ubiquitous in ab initio

calculations.

7.2.3.4.4 Meta-Generalized Gradient Approximation Functionals (Meta-

GGA, MGGA)

We saw that functionals which use the first derivative of the electron density

function, GGA functionals (Sect. 7.2.3.4.3), are usually an improvement

over ones relying only on ρ itself. One might therefore suspect that further

improvement could be obtained by invoking the second derivative of ρ,

∂2
=∂x2 þ ∂2

=∂y2 þ ∂2
=∂z2

� 	
ρ ¼ ∇2ρ. This is the Laplacian of the electron

density function (so important in AIM theory, Chap. 5, Sect. 5.5.4.5). Functionals

which use the second derivative of ρ are called meta-gradient corrected (meta-

GGA, MGGA); meta¼ beyond. This approach seems to offer some improvement,

but functionals that depend on the Laplacian of ρ present computational problems.

One way to sidestep this is to make the MGGA functional dependent not on ρ itself
but on the kinetic energy density τ, obtained by summing the squares of the

gradients of the Kohn-Sham MOs:

τ rð Þ ¼ 1

2

Xoccupied
i¼1

j∇ψKS
i rð Þj2 ð7:28Þ

This varies with ρ essentially the same as does the Laplacian of ρ [56]. Examples

of MGGA functionals are the τHCTH (Hamprecht, Cohen, Tozer, Handy) and the

B98 (Becke1998). MGGA functionals are, like GGA ones, local. A detailed

discussion of the theory and mathematics behind MGGA functionals is given in

reference [48], where they are said to “in general perform well for atomization

energies”, and PKZP and KCIS are designated the best MGGA performers.
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7.2.3.4.5 Hybrid GGA (HGGA) Functionals; the Adiabatic Correction

Method (ACM)

These are functionals to which Hartree-Fock exchange has been added. The justi-

fication for this lies in the adiabatic connection method (ACM) [17]. In

wavefunction theory, an adiabatic process is one in which the wavefunction

remains on the same PES, i.e. the variables that define it change smoothly as the

process evolves. The process seamlessly connects two states without crossing into

another electronic state. The ACM shows that the exchange-correlation energy

EXC(ρ) can be taken as a weighted sum of the DFT exchange-correlation energy

and HF exchange energy. This is the justification of hybrid DFT functionals (hybrid

DFT methods have been called ACM methods), which include an energy contribu-

tion from HF-type electron exchange, calculated from the KS wavefunction of the

noninteracting electrons. Those electrons have no coulomb interaction, but being,

after all, still electrons with spin, like all good fermions they show “Pauli repulsion”

(Chap. 5, Sect. 5.2.3.5), represented by the exchange K integral (Chap. 5, Eq. (5.22).

Hybrid functionals are functionals (of the GGA level or higher) that contain HF

exchange, the correction energy to the classical coulomb repulsion. The percentage

of HF exchange energy to use is a main distinguishing characteristic of the various

hybrid functionals. The first popular, successful hybrid method was B3LYP. This

is the B3PW91 functional first proposed by Becke [57], modified by Stephens

et al. [58]. The B3LYP functional has a total of eight purely empirical parameters.

B3LYP has been wildly popular: Sousa et al. [44] show in their 2007 paper that

from 2002 to 2006 in each year it has accounted for ca. 80% of the names of the

functionals in journal articles and abstracts, and Zhao and Truhlar single it out for

special comparison with their new functionals [45b]. This popularity is despite the

fact that evidently, for almost any particular application, one can find a better

functional. The durability of B3LYP and the advisability of its continued use are

discussed at the beginning of Sect. 7.3; for now we note that near the end of their

extensive comparison, Sousa et al. [44] said, ca. 2007, that “B3LYP still remains a

valid and particularly efficient alternative for the ‘average’ quantum chemistry

problem”.

Some hybrid methods base the HF percentage not on experimental parameter-

ization (“parameter-free” hybrid methods), but on theoretical arguments; this does

not automatically give them superior performance. GGA functionals tend to under-

estimate barriers and HF methods tend to overestimate them, but a happy adjust-

ment of HF exchange for barriers tends to reduce the accuracy for other properties.

7.2.3.4.6 Hybrid Meta-GGA (HMGGA) Functionals

These are analogous to the hybrid GGA functionals of Sect. 7.2.3.4.5 above, but

with Hartree-Fock exchange added on to meta-GGA (Sect. 7.2.3.4.4), rather than

GGA, functionals (Sect. 7.2.3.4.3). Hybrid MGGA (HMGGA) uses the first deriv-

ative of ρ and its second derivative, or the kinetic energy density (Sect. 7.2.3.4.4),
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and Hartree-Fock exchange. They are the highest-level functionals in routine use.

Most are, as of mid-2009, fairly recent: in Table 2 of ref. [44] (2007), of the

52 “most common” functionals listed and referenced, 14 are HMGGA and of

these one is vintage 1996 and the others 2003–2005; this paper depicts HMGGA

on the fourth rung of the ladder, rather than the sixth implied here, because it

effectively collapses on to rung 1 LDA and LSDA, and places on rung 4 both

HGGA and HMGGA. The strongpoint of HMGGA seems to be “an improvement

over the previous formalisms in . . .barrier heights and atomization energies” [44].

7.2.3.4.7 Fully Nonlocal Theory

This is the seventh and highest rung in our ordering, the fifth on the “collapsed”

ladder of Sousa et al. [44], a step above HMGGA functionals. Perdew et al. say [47]

that “a fully nonlocal functional of the density. . .can be satisfied on the fourth rung

by hyper-GGAs that use full exact exchange” that “Exact exchange can only be

combined with a fully nonlocal correlation, constructed on the fourth or fifth rungs

of the ladder” and that “there is also continuing interest � � � in the weighted density

approximation, a nonempirical and fully nonlocal functional that does not fit on

Jacob’s ladder.” From this it is evident that “fully nonlocal” DFT theory does not

promise a single, sharply defined functional, although the divine functional [42]

must be fully nonlocal. What does fully nonlocal mean? Kurth et al. use local,
semilocal, and nonlocal to refer to properties that are determined at a point, at an

infinitesimal distance beyond the point, and at a finite distance beyond the point,

respectively [48]. These are not the strict mathematical definitions of the terms [49],

but they are working intuitive concepts: to determine the gradient at a point one

must move an infinitesimal distance beyond. Exact electron exchange energy is an

example of a nonlocal property of ρ, because it arises from “Pauli repulsion”

between electrons a finite distance apart; a fully nonlocal functional would pre-

sumably take into account all such nonlocal phenomena. Attention is paid to the

local nature or otherwise of various functionals in the reviews by Zhao and Truhlar

[45]. Nonlocal functionals have been under development for years [59], but fully

nonlocal ones, with all relevant properties treated nonlocally, are apparently not yet

available for practical molecular calculations. However, some (2006 and later)

functionals, for example B2PLYP [60], which uses hybrid-GGA with MP2-like

(Chap. 5, Sect. 5.4.2) promotion of electrons into virtual orbitals for treating

electron correlation, rival coupled-cluster ab initio calculations (Chap. 5, Sect. 5.4.3)

for certain purposes, [61].

7.2.3.4.8 Dispersion

An important effect which these sundry levels of functional sophistication treat

with varying degrees of effectiveness (from essentially not at all, to fairly well in

some situations) is dispersion. The term, although useful, is not precise, and to
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avoid definite commitment “dispersion-like” has been invoked (pp. 19–22 in [15]).

It denotes weak forces between molecules and is evidently applied mainly to

attraction, rather than repulsion: to the attractive side to the right of the minimum

in the nonbonded interactions curve shown in Chap. 3 (Fig. 3.6). It refers to

noncovalent bonding and seems to exclude hydrogen bonding, and so corresponds

(some may quibble here) to those phenomena called van der Waals or London (after

Fritz London) forces. London recognized this fuzziness in pinning down the origin

of weak attractions in his 1927 paper [62a] on interatomic attraction when he wrote

that the interplay of forces (Kräftespiel) shows a characteristic “multifold ambigu-

ity” (Mehrdeutigkeit). Note that although we talk about dispersion “forces”, the

only true forces known to science are gravity, electromagnetism, and the weak and

strong nuclear forces, and only electromagnetism plays a significant chemical role

of any kind outside nuclear changes. The term “dispersion”, written the same in

English and German, was chosen (1930) because in estimating these “forces”

London was led to a dispersion formula in optics [62b], where the term refers

straightforwardly to the variation in the spreading, i.e. to the dispersion, of light

according to wavelength. On a qualitative level, dispersion is due to electrostatic

dipole-dipole attraction between two molecules caused by temporary uneven elec-

tron distributions engendered by the moving electrons. Because this electron

movement is correlated, the rigorous quantum mechanical treatment of the phe-

nomenon (not possible in 1930) requires addressing electron correlation (Chap. 5,

Sect. 5.4). Although individual dispersion attractions are weak, the total effect,

summed over the surface areas of large molecules or of several molecules, can

be large.

Explicit attempts to treat dispersion have been made mainly within the frame-

work of DFT; brief reference was made to the subject in connection with molecular

mechanics (Chap. 3, Sect. 3.3.2), ab initio calculations, in the discussion of basis set

superposition error (Chap. 5, at the end of Sect. 5.4.3.3), and semiempirical

calculations (Chap. 6, Sect. 6.2.5.8). Handling dispersion is not, at present anyway,

simple; for example, in this connection the question of “range-separation” arises,

how to address short-range, medium-range, and long-range interactions, which may

be attractive or repulsive (e.g. [15]). The correct treatment of dispersion is currently

one of the major activities in research on DFT (Cohen, Mori-Sánchez and Yang,

2012, dispersion as one of the challenges to DFT) [17], the magnitude of this

challenge being evident from the rate of growth that has occurred in the numbers

of papers on the subject in recent years: from fewer than 80 in the decade of the

1990s to over 800 in 2011 (Klimes and Michaelis, 2012 review) [63a]. Some other

useful orienting publications are those by Wagner and Schreiner [18a] and

Corminboeuf [18b], Guidez and Gordon (2015, dispersion from first principles

for DFT and Hartree-Fock) [63b], Conrad and Gordon (2015, π � π interactions)

[63c], and Kruse, Goerigk and Grimme (2012, dispersion correction for B3LYP)

[63d]. Goerigk and Grimme (2011, a huge compendium of benchmark results)

[63e] reported what seems to be “the by far largest and most comprehensive DFT

benchmark regarding. . .systems and functionals”; they examined 47 functionals

and the effect on most of their D3 dispersion correction. One gets the impression
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from this study that the number of functionals out there, the variability of their

ranges of appropriate application, their responses to dispersion correction, and the

caveats attending their use make DFT a method that should be used only with

considerable deliberation. Martin mapped the potential energy surface of n-pentane
with CCSD(T)-F1 (i.e. near the basis set limit) and analyzed the conformation

distribution with many electronic structure methods and several empirical disper-

sion corrections, to investigate the facts that “conformer energies in alkanes (and

other systems) are highly dispersion-driven and that uncorrected DFT functionals

fail badly at reproducing them, while simple empirical dispersion corrections tend

to overcorrect” [63f]. Among his conclusions is that “novel spin-component scaled

double hybrid functionals such as DSD-PBEP86-D2 acquit themselves very well”

here. van Santen and DiLabio found that dispersion corrections tacked on to

otherwise deficient functionals inproved their perfromance and offered this as a

“low-cost approach” to improving their performance [63g], which is akin to the

approach of Goerigk and Grimme [63e].

The treatment of dispersion can crop up when one is not explicitly investigating

weak interactions and might not expect to be led astray by treating it inadequately.

For example, hexaphenylethane is apparently (the compound is unknown as of

mid-2016) very crowded, so it natural to ascribe its resistance to synthesis to steric

hindrance. Yet all-meta -t-butyl hexaphenylethane (twelve t-butyl groups), formi-

dably more crowded than the parent molecule, is a known, stable compound. This

quite unanticipated fact has been convincingly explained by “state-of-the-art quan-

tum chemical computations” to be due to dispersion attraction between pairs of

t-butyl groups [64]. They are positioned close enough for such attraction but not

close enough for the traditional steric hindrance of “Pauli repulsion” (Chap. 5,

Sect. 5.2.3.2, in connection with Eq. (5.22)). Dispersion can be treated in DFT by

using a functional with dispersion “inherent” (e.g. M06-2X or an M08 functional;

Table 10 in [65]) or by a “conventional” functional augmented with an empirical

dispersion correction, a technique considerably associated with Grimme and

coworkers, e.g. a B3LYP‐gCP‐D3/6‐31G* calculation, which is said to also essen-

tially eliminate basis set superposition error, BSSE (Chap. 5, Sect. 5.4.3), of an

intramolecular nature [63e]. Relevant to interactions in large systems and to the

dismissal of the need for BSSE, like the studies of [63e] and [64], is a paper on host-

guest supramolecular systems [63h]. Many options for addressing dispersion in

DFT are provided in recent versions of the Gaussian program suite, as shown on

their website.

7.2.3.4.9 Is DFT a Semiempirical Method?

Having just examined the various DFT levels, we can return to the question posed at

the end of Sect. 7.1: is DFT semiempirical, or is it a kind of ab initio method? We

can also ask: does it matter? Addressing the first question: a semiempirical method

is one that is parameterized against experiment (but in chemistry we wisely do not

demand that fundamental constants like the velocity of light and Planck’s constant
be calculated from first principles!). It is possible to develop functionals that have
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not been parameterized against experiment, and the review [47] in which Perdew

et al. “present the case for the nonempirical construction” of such functionals

argues convincingly for the classification of DFT as an ab initio-type technique

when it follows these strictures. Nevertheless, the results of the wide-ranging study

of Goerigk and Grimme [63e] make one uneasy on this point.

Regarding the second question: quite apart from the esthetic value that some see

in a purely nonempirical calculation (recall von Neumann’s jaundiced view of

empirical equations: Chap. 6, Sect. 6.3.7), it may well be true that empirical

approaches can reliably interpolate, but not extrapolate, and that they are, outside

their parameterized domains, susceptible to “catastrophic failure” [66]; Clark raised

this spectre explicitly in connection with DFT. We close this discussion of the

“philosophy” of DFT with a look at a provocative stance by Nooijen, namely that

DFT resembles molecular mechanics in that there “exists an exact force field for

each electronic state with a given number of electrons” and that “the existence of

many different exact functionals. . .also suggests that the physical content of DFT is

easily overrated” (relevant to the latter statement he points out that “there are many,

many, different ways to tackle the electronic structure problem from a density

functional point of view. . .”) [67]. The likening of DFT to molecular mechanics

might appear mischievous: certainly MM does not recognize electron distribution,

an objective feature of chemical reality with measurable consequences like dipole

moments and optical activity. Nevertheless, this paper raises points which seem to

be generally unappreciated, particularly with regard to “the enormous flexibility of

in-principle-exact formulations” of DFT. The insecurity of even some practitioners

of DFT in connection with its theoretical robustness is at least hinted at in the

review by Jones [20]. The reader may wish to console him/herself with the

possibility implied by Perdew et al. [47] that an exact (if not unique?)

nonparameterized functional can be gradually approached. We now consider

some applications of DFT.

7.3 Applications of Density Functional Theory

In examining the literature for applications of DFT one is (or ought to be) struck by

the fact that there is no method (functional/basis set combination) that is generally
best. For every property there seems to be one or two functionals that are superior to

the others, but only for that property. This profusion is more exuberant than for

methods and basis sets in the wavefunction realm (Sousa et al. list 52 functionals in

their Table 2 [44]). One might conclude that the situation almost borders on the

chaotic, to borrow the term used by Dewar to criticise what he saw as the profusion

of basis sets [68] (Chap. 5, Sects. 5.3.3 and 5.5.2.2.1). However, this judgement

would be unfair, if only because the relative infancy of DFT as a general, practical

tool for molecular calculations requires the exploration of “functional space” for

good methods. Furthermore, in the absence of a perfect solution one should be

thankful for the availability of one that is acceptable for the task at hand. Zhao and

Truhlar grant that those concerned about the profusion of functionals have a case,
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but make the point that really satisfactory all-purpose functionals are “unlikely to

be discovered in the foreseeable future” and that therefore for now we need

specialized functionals [69]. Apparent exceptions to the claim that a universally

applicable functional is wanting are presented by B3LYP and the recent M06-type,

a family of four functionals, M06, M06-2X, M06-L, and M06-HF [45]. However,

none of these excels for all tasks, although M06 in particular is said to be [45b] “for

general-purpose applications” and the M06 member “with broadest applicability”.

As briefly mentioned in Sect. 7.2.3.4.5, B3LYP [57, 58] was so popular

ca. 2007–2011 that it was singled out for special attention by Sousa et al. [44]

(where striking pie charts show B3LYP like PacMan devouring other functionals)

and by Zhao and Truhlar [45], who nevertheless cite its deficiencies. The M06-type

functionals were said to provide “better across-the-board average performance than

B3LYP” [45b]. Although for any specific task a better functional than B3LYP,

perhaps one of the M06 family, can probably be found, a case might be made for

still using B3LYP on occasion, for the sake of “backwards comparison”, where the

results are not simply unreasonably inaccurate. However it seems inevitable that an

M06 type or some even newer functional will in the next few years overcome inertia

and replace B3LYP as the most popular generally-used.

Levine mentions comparisons of some characteristics and properties of DFT

versus ab initio [70]. Hehre [71] and Hehre and Lou [72] have provided extensive,

very useful compilations of ab initio, semiempirical, DFT, and some molecular

mechanics results. Recent surveys oriented toward the quality of molecular prop-

erties from DFT, are those by Sousa et al. (geometries, barrier heights, atomization

energies, ionization energies, electron affinities, heats of formation, isomerization

energies, weak interactions) [44], Zhao and Truhlar (geometries, barrier heights,

frequencies, various thermochemical parameters–atomization energy etc., ioniza-

tion energies, electron affinities, UV, transition metal reactions, weak interactions)

[45], and Riley et al. (geometries, barrier heights frequencies, ionization energies,

electron affinities, heats of formation, conformational energies, hydrogen bonds;

great emphasis on comparing Pople vs. Dunning basis sets) [46].

7.3.1 Geometries

With regard to geometries, Figures and Tables in this chapter correspond to those in

Chap. 5 (ab initio) and Chap. 6 (semiempirical) like this:

Fig. 7.1 (geometries of 20 molecules), Figs. 5.23 and 6.2

Fig. 7.2 (four reactions, various functionals, geometries and energies), Figs. 5.21 and 6.3

Fig. 7.3 (four reactions, various basis sets, B3LYP, geometries and energies),

Figs. 5.21 and 6.3

Table 7.1 (analysis of bond lengths and angles), Tables 5.7 and 6.1

Table 7.2 (dihedral angles), Tables 5.8 and 6.2

For Fig. 7.1 and Tables 7.1 and 7.2, for comparison with the presentations in

Chaps. 5 and 6, values from MP2/6 ‐ 31G* calculations (the standard post-Hartree
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Fig. 7.1 Comparison of some B3LYP/6-31G*, M06-2X/6-31G*, MP2(fc)/6-31G*, and experi-

mental geometries. Calculations are by the author and experimental geometries are from [69]

(Note that all CH bonds are ca. 1 Å, and all other bonds range from 1.2 to 1.8 Å, and all bond

angles (except for linear molecules) are ca. 90–120�)
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Table 7.1 Errors in calculated bond lengths (Å) and angles (degrees) for the 20 molecules of

Fig. 7.1

Molecule B3LYP M06-2X TPSS MP2 Exp

H2O 0.011 0.008 0.018 0.011 L 0.958

1 L, 1 A �0.8 �0.4 �1.5 �0.6 A 104.5

HCN 0.006 0.005 0.008 0.004 L 1.065

2 L, 0 A 0.004 0.001 0.013 0.024 L 1.153

Propane 0.007 �0.001 0.011 0.000 L 1.526

1 L, 1 A 0.4 �0.4 0.3 �0.1 A 112.4

HOOH 0.008 0.005 0.017 0.011 L 0.965

2 L, 1 A 0.004 �0.025 0.027 0.017 L 1.452

�0.4 0.6 �1.3 �1.4 A 100.0

CH3NH2 0.005 0.007 0.009 0.001 L 1.099

4 L, 1 A �0.003 �0.006 �0.001 �0.007 L 1.099

0.009 0.007 0.015 0.008 L 1.010

�0.006 �0.010 0.002 �0.006 L 1.471

1.8 1.6 2.0 1.5 A 113.9

Propene 0.015 0.011 0.022 0.020 L 1.318

2 L, 1 A 0.002 �0.001 0.005 �0.002 L 1.501

0.8 0.4 0.8 0.2 A 124.3

CH3OH �0.001 0.002 0.011 �0.004 L 1.094

4 L, 2 A 0.007 0.004 0.010 0.003 L 1.094

0.006 0.003 0.013 0.007 L 0.963

�0.002 �0.010 0.008 0.004 L 1.421

�0.5 0.0 �1.1 �0.9 A 107.2

�0.3 �0.4 �1.1 �0.6 A 108.0

Propanone �0.006 �0.013 0.003 0.006 L 1.222

2 L, 1 A 0.013 0.009 0.019 0.006 L 1.507

�0.5 �0.9 �0.6 �0.8 A 117.2

Propyne 0.001 �0.002 0.008 0.014 L 1.206

2 L, 0 A 0.001 0.003 0.005 0.004 L 1.459

HCHO �0.006 �0.007 �0.003 �0.012 L 1.116

2 L, 1 A �0.001 �0.009 0.008 0.013 L 1.208

�1.2 �0.7 s �1.1 �0.9 A 116.5

Ethane 0.000 �0.002 0.003 �0.003 L 1.096

2 L, 1 A 0.000 �0.005 0.004 �0.005 L 1.531

�0.3 �0.2 �0.1 �0.1 A 107.5

CH3Cl �0.006 �0.007 �0.003 �0.007 L 1.096

2 L, 1 A 0.022 0.005 0.027 �0.002 L 1.781

0.4 0.3 0.7 0.0 A 110.0

HOCl 0.001 �0.003 0.009 0.004 L 0.975

2 L, 1 A 0.038 0.005 0.053 0.027 L 1.690

�0.1 1.0 �1.0 0.1 A 102.5

H2S 0.013 0.005 0.014 0.004 L 1.336

1 L, 1 A 0.8 0.7 0.5 1.2 A 92.1

CH3F �0.004 �0.006 �0.001 �0.008 L 1.100

2 L, 1 A 0.001 �0.009 0.010 0.009 L 1.383

�1.2 �1.1 �1.1 �0.8 A 110.6

Ethene 0.003 0.001 0.005 0.000 L 1.085

(continued)



Table 7.1 (continued)

Molecule B3LYP M06-2X TPSS MP2 Exp

2 L, 1 A �0.008 �0.012 �0.002 �0.002 L 1.339

�1.5 �1.2 �1.5 �1.2 A 117.8

CH3SH 0.002 0.000 0.004 0.000 L 1.091

4 L, 1 A 0.001 �0.001 0.004 �0.001 L 1.091

0.014 0.002 0.015 0.005 L 1.336

0.017 0.007 0.020 �0.003 L 1.819

0.5 0.2 0.2 0.3 A 96.5

HOF 0.011 0.008 0.019 0.013 L 0.966

2 L, 1 A �0.008 �0.037 0.011 0.003 L 1.442

1.0 1.8 0.3 0.4 A 96.8

Ethyne 0.006 0.006 0.008 0.005 L 1.061

2 L, 0 A 0.002 �0.001 0.008 0.015 L 1.203

0.038 0.016 0.053 0.010 L 1.799

Me2SO 0.026 0.017 0.036 0.027 L 1.485

2 L, 2 A �0.8 �0.9 �1.7 �0.8 A 96.6

0.9 0.1 1.2 0.7 A 106.7

The errors are calculated value–experimental value. The basis set is 6-31G*. L is bond length and

A bond angle. For example, for propane one bond length and one angle were examined, and for

B3LYP L was 0.007Å longer than the experimental 1.566Å. The Exp column shows experimental

bond lengths and angles. The errors are discussed in the text

Table 7.2 Calculated dihedral angles and errors (dihedral)/error) and experimental dihedral

angles, for eight molecules

Molecule B3LYP M06-2X TPSS MP2 Exp

HOOH 119.3/0.2 116.7/�2.4 119.6/ 0.5 121.2/2.1 119.1

FOOF 87.2/�0.3 84.6/�2.9 87.8/0.3 85.8/�1.7 87.5b

FCH2CH2F (FCCF) 69.8/�3.2 68.9/�4.1 69.6/�3.4 69.0/�4.0 73b

FCH2CH2OH

(FCCO) 63.3/�0.7 61.9/�2.1 62.4/�1.6 60.1/�3.9 64.0c

(HOCC) 62.7/8.1 62.3/7.7 63.0/8.4 54.1/�0.5 54.6c

ClCH2CH2OH

(ClCCO) 61.2/�2.0 59.9/�3.3 60.2/�3.0 65.0/1.8 63.2b

(HOCC) 60.0/1.6 59.9/1.5 60.5/2.1 64.3/5.9 58.4b

ClCH2CH2F

(ClCCF) 66.7/�1.3 65.4/�2.6 66.2/�1.8 65.9/�2.1 68b

HSSH 90.7/0.1 90.5/�0.1 90.8/0.2 90.4/�0.2 90.6a

FSSF 89.1/1.2 89.2/1.3 89.3/1.4 88.9/1.0 87.9b

The errors are calculated value–experimental value. The basis set is 6-31G*. Calculations are by

the author
aW. J. Hehre, L. Radom, p. v. R. Schleyer, J. A. Pople, “Ab initio Molecular Orbital Theory”,

Wiley, New York, 1986; pp. 151, 152. These dihedrals are believed (p. 136) to be from gas phase

microwave spectroscopy or electron diffraction
bM. D. Harmony, V. W. Laurie, R. L. Kuczkowski, R. H. Schwenderman, D. A. Ramsay, F. J.

Lovas, W. H. Lafferty, A. G. Makai, “Molecular Structures of Gas-Phase Polyatomic Molecules

Determined by Spectroscopic Methods”, J. Physical and Chemical Reference Data, 1979, 8,
619–721. From gas phase microwave spectroscopy or electron diffraction
cJ. Huang, K. Hedberg, J. Am. Chem. Soc., 1989, 111, 6909. From gas phase microwave

spectroscopy augmented with electron diffraction



Fock ab initio method; Chap. 5, Sect. 5.4.2) and from experiment (geometries,

Fig. 7.1 [73], energies, Fig. 7.2 [77]; see too the explanation of the use of CBS-

APNO energies as a surrogate for the relative energies of these four reactions,

Sect. 7.3.2.2) were clearly necessary. This choice of the relatively small 6-31G*

basis is discussed below.
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Fig. 7.2 Calculated geometries (Å and degrees; most H’s are omitted for clarity) and reaction

profiles for four reactions. The energies (0 : 223 :�66, kJ mol�1 etc.) are relative 298 K enthalpies

(activation enthalpy 223 k mol�1, reaction enthalpy �66 kJ mol�1) calculated by B3LYP, M06-

2X, TPSS, and MP2 with the 6-31G* basis set; the fifth (the bottom) enthalpy value for each

species is a 298 K CBS-APNO enthalpy value, and is considered more reliable than reported [70]

experimental values; see text. The purpose of the Figure is to compare these three functionals and

MP2 (Calculations are by the author)
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The choice of DFT functionals for these illustrative geometry (and energy)

calculations presented here needed some consideration. B3LYP is retained from

the first and second editions of this book because of its vast archive of results. The

pBP/DN* functional/basis set (described in [72]) that was a feature of Spartan [75]

and was used in the first edition of the book showed certain problems and is no

longer available, and its replacement required some deliberation. The remaining

choice was now narrowed to three possibilities:

1. Considering the “general-purpose” M06 family. This are hybrid meta-GGA

functionals (Sect. 7.2.3.4.6) parameterized with nonmetals and metals (for a

review and for details see respectively [45] and [69]). They lie on rung 6 of our

ladder (rung 5 if LDA and LSDA are collapsed into rung one as indicated in

Table 2 of [44] and as implied in [69]). As stated in Sect. 7.3, these may

eventually replace B3LYP. Of the four functionals in this class, the choice of

M06-2X was made from the recommendations in [45]. M06-L and M06-HF

were not used here because the former sacrifices some accuracy for speed, and

the latter some ground state accuracy for excited states. M06-2X was chosen

over M06 (used in the previous edition) because if transition metals are not

involved M06-2X seems to be the preferred functional of these two, and

M06-2X was said to be better than M06 for noncovalent interactions. Persuaded

by the case made by Perdew et al. for nonempirical functionals, the following

recommended [47] ones were also considered:

2. PBE [76] (a nonempirical GGA functional; Sect. 7.2.3.4.3), and

3. TPSS [77] (a nonempirical meta-GGA functional; Sect. 7.2.3.4.4).

In our classification (Sects. 7.2.3.4.1, 7.2.3.4.2, 7.2.3.4.3, 7.2.3.4.4, 7.2.3.4.5,

7.2.3.4.6 and 7.2.3.4.7) PBE is on rung three and TPSS is on rung four (these are

rungs two and three if LDA and LSDA are collapsed into rung one). TPSS was

given precedence over PBE because it lies on a higher rung, which does not mean

that for every task it will be more accurate; however “TPSS usually provides better

accuracy than PBE for a very modest increase of computational cost....TPSS

is close to being the best nonempirical functional so far. . .”.3 A choice could

not be made between M06-2X and TPSS, and for geometries (and energies)

calculated here both were used, because it appears that M06-2X may become the

general purpose functional of choice, while TPSS is nonempirical, giving it

an esthetic virtue as well as (one hopes) shielding it against “catastrophic failure”

(see Sect. 7.2.3.4.9). Thus in Figs. 7.1 and 7.2, and in Tables 7.1 and 7.2,

we compare geometries from B3LYP, M06-2X, TPSS, and MP2(fc)/6‐31G*
(perhaps the highest-level ab initio method in routine use) with experiment. The

M06-2X calculations reported here were done with Gaussian 09 with the keywords

3Personal communication from Professor J. P. Perdew, 2009 November 7. As of 2015 February,

TPSS evidently still held essentially this position, although a nonempirical meta-GGA close to

TPSS for molecules, but more accurate for solids, revTPSS (revised TPSS) had been developed

(personal communication from Professor J. P. Perdew, 2015 February 25).
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Opt ¼ Tightð Þ and Int ¼ Grid ¼ Ultrafineð Þ ; an ultrafine grid has been

recommended for the M06-type functionals [78].

Table 7.1 shows the errors in 43 bond lengths, and 19 bond angles for which

symmetry does not impose a value of 180�, taken from 20 molecules; compare this

with Fig. 7.1. For each of these parameters the deviation from experiment (calcu-

lated – experimental value) is shown for B3LYP, M06-2X, TPSS, and MP2 (with

the 6 ‐ 31G* basis in each case). The mean absolute deviations from experiment

(arithmetic mean of the unsigned errors), MAD, are:

B3LYP M06-2X TPSS MP2

Bond lengths 0.008 0.007 0.013 0.008

Bond angles 0.75 0.7 0.95 0.7

(For M06 the results were very similar: the MAD for bond lengths and angles

were 0.008 and 0.8).

For bond lengths the biggest error was 0.053 Å (TPSS, for the C-S bond of

Me2SO). For bond angles, the biggest error was 2
�
(TPSS, for the HCN angle of

CH3NH2). For the bonds, the number of parameters for which the direction of

deviation was zero (bond or angle the same as experiment), positive (bond bigger

than experiment), and negative are:

B3LYP M06-2X TPSS MP2

0.000 deviation 2 1 0 3

positive 30 22 38 27

negative 11 20 5 13

(For M06 the results were very similar: the number of zero, positive and negative

deviations were 1, 25 and 17).

For bond angles the corresponding deviations are:

B3LYP M06-2X TPSS MP2

0.0 deviation 0 1 0 1

positive 11 9 11 11

negative 8 9 8 7

(For M06 the results were very similar: the number of zero, positive and negative

deviations were 1, 10 and 8).

Qualitative conclusions from all this are: reasonably good bond lengths

(to within ca. 0.01 Å) are given with the 6-31G* basis by B3LYP, M06-2X, and

MP2; TPSS values (0.013 MAD error) are satisfactory for most purposes. All four

methods give good bond angles (to within ca. 2�, mostly less than 1�). For bond
lengths positive deviations are somewhat more frequent than negative (for TPSS

they are about eight times as frequent), and for bond angles (where errors are

usually trivial) the number of positive and negative deviations are roughly the same.

Table 7.2. presents for examination ten dihedral angles from eight molecules.

For each of these the dihedral was calculated by B3LYP, M06-2X, TPSS, and MP2
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(with the 6-31G* basis in each case). The mean absolute deviations (degrees,

arithmetic mean of the unsigned errors), MAD, are:

B3LYP M06-2X TPSS MP2

1.9 2.8 2.3 2.3

(For M06 the results were very similar: the MAD for these dihedrals was 2.0).

Because of the periodic (sinusoidal) nature of the energy-dihedral angle func-

tion, the direction of deviation from experiment, the number of positive vs. negative

deviations, is not meaningful, provided these are small (under 10�), as they are here.
The calculated dihedral angles are all within ca. 3�, except FCH2CH2OH (HOCC

by B3LYP. M06-2X, TPSS) and ClCH2CH2OH (HOCC by MP2), where they are

ca. 7�. In view of the soft nature of the energy-dihedral function (energies do not

rise or fall steeply with small changes in dihedrals, unlike changes in bond lengths

or angles), and of possible errors in the experimental values, this is not serious.

All four methods seem to be satisfactory for dihedrals.

B3LYP/6‐31G*, M06-2X, TPSS and MP2(fc)/6‐31G* geometries (and relative

energies) are compared for the species shown in four reaction profiles in Fig. 7.2.

These correspond to the ab initio comparisons of Fig. 5.21 and the semiempirical

comparisons of Fig. 6.3. Since experimental geometries are not available for any of

the transition states and also not for cyclopropylidene, we content ourselves with

some simple comparisons among the calculated geometries. For the reactants and

products the DFT bond length deviations from the MP2 geometries, which latter we

tacitly take to be reasonably good (Chap. 5, Sect. 5.51), are all within 0.02 Å. For
the transition states deviations from the MP2 values are bigger, up to 0.055 (for the

partial “single” NC bond of the CH3NC transition state with M06-2X). The DFT

angles do not deviate by more than 3.5� (for an NCC angle of the CH3NC transition

state with TPSS) from the MP2 values. The consistency of the three DFT methods

and their good agreement with MP2 suggest that these DFT methods are quite

comparable to MP2/6‐31G* in calculating transition state geometries. For the

geometries of the species in Figs. 7.1 and 7.2, there is little difference between

the results from the M06-2X functional used here and the M06 used in the second

edition of this book.

Geometry errors for 108 molecules were reported by Scheiner et al. [79], com-

paring several ab initio and DFT methods. They found that Becke’s original

3-parameter function (which they denote ACM, for adiabatic connection method;

B3LYP was developed as a modification of this [58]), with a 6-31G**-type and

with the 6-31G** basis sets, gave average bond length errors of about 0.01 Å and

bond angle errors of about 1.0�. They concluded that of the methods they examined

ACM is the best choice for both geometries and reaction energies. St-Amant

et al. [52] also compared ab initio and DFT methods and found average dihedral

angle errors of ca. 3� for eleven molecules using a perturbative gradient-corrected

DFT method with an approximately 6-311G**-type basis set. These workers found

average bond length errors of, e.g., 0.01 Å for C–H and 0.009 Å for C–C single
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bonds, and average bond angle errors of 0.5�. El-Azhary reported B3LYP with the

6-31G* and cc-pVDZ basis sets to give slightly better geometries than MP2, but

MP2 avoided the occasional large errors given by B3LYP [80]. The effect of using

different basis sets was minor. In a comparison of Hartree-Fock, MP2 and DFT

(five functionals), Bauschlicher found B3LYP to be the best method overall

[81]. Hehre has compared bond lengths calculated by the DFT non-gradient-

corrected SVWN method, B3LYP, and MP2, using the 6-31G (no polarization

functions) and 6-31G* basis sets [71]. His work confirms the necessity of using

polarization functions with the correlated (DFT and MP2) methods to obtain

reasonable results, and also shows that for equilibrium structures (i.e. structures

that are not transition states) there is little advantage to correlated over Hartree-

Fock methods as far as geometry is concerned, a conclusion presented in Chap. 5,

Sect. 5.5.1 with regard to correlated ab initio methods. Hehre and Lou [72] carried

out extensive comparisons of HF, MP2 and DFT (SVWN, pBP, B3LYP) methods

with 6-31G* and larger basis sets, and the numerical DN* and DN** bases. For a

set of 16 hydrocarbons, MP2/6-311+G(2d,p), B3LYP/6-311+G(2d,p), pBP/DN**

and pBP/DN* calculations gave errors of 0.005 Å, 0.006 Å, 0.010 Å and 0.010 Å,
respectively. HF/6-311+G(2d,p) and SVWN calculations also gave errors of

0.010 Å. For 14 C-N, C-O and C ¼ O bond lengths B3LYP and pBP (errors of

0.007 Å and 0.008 Å) were distinctly better than HF and SVWN (errors of 0.022 Å
and 0.014 Å, respectively).

The overall indication from the literature and the results in Fig. 7.1 and Table 7.1

(errors are evaluated above) is that the somewhat old (1994 [58]) B3LYP functional

gives good geometries. Of the newer functionals tested here, M06-2X (2011, 2007,

2008 [45, 69]) and TPSS (2003 [77]), the indication from our (admittedly quite

limited) results is that M06-2X is about as good as B3LYP and that TPSS is

somewhat inferior (but note that lacking empirical parameters TPSS may be less

prone to unexpected (or “catastrophic” [66]; Sect. 7.2.3.4.9) failure. Recently

published (2007) extensive general (not just for geometry as the title of this section

implies) evaluations of functionals are those by Sousa et al. [44], Zhao and Truhlar

[45], and Riley et al. [46]. Synopses of these papers are given in Sect. 7.2.3.4.

Besides the functional, the choice of basis set needs to be addressed. Larger basis

sets may tend to increase accuracy, but the increase in time may not make this

worthwhile. DFT calculations have been said to become “saturated” more quickly

by using bigger basis sets than are ab initio calculations: Merrill et al. noted that

“Once the double split-valence level is reached, further improvement in basis set

quality offers little in the way of structural or energetic improvement.” [38]. Ste-

phens et al. report that “Our results also show that B3LYP calculations converge

rapidly with increasing basis set size and that the cost-to-benefit ratio is optimal at

the 6-31G* basis set level. 6-31G* will be the basis set of choice in B3LYP

calculations on much larger molecules [than C4H6O2]” [58]. Figure 7.3 shows the

effect on geometry and relative energies of B3LYP with the modest 6-31G*, the

fairly big 6-311+G**, and the big 6-311++G(2df, 2p) bases. These results support

the basis set saturation assertion for geometries, but cast doubt on the ease of
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Fig. 7.3 Comparison of geometries (Å and degrees) and relative energies (kJ mol–1) from the

B3LYP functional using three basis sets (energies are also compared with those from MP2(fc)/

6-31G* and CBS-APNO, Sect. 7.3.2.2): 6-31G* (53 basis functions for C2H4O, 32 for HCN, 51 for

C2H3N, 53 for C3H4). 6-311+G** (90 basis functions for C2H4O, 50 for HCN, 84 for C2H3N,

90 for C3H4). 6-311++G(2df, 2p) (142 basis functions for C2H4O, 78 for HCN, 132 for C2H3N,

142 for C3H4). B3LYP and MP2 energies are 0 K energy (i.e. 0 K enthalpy) differences) with ZPE

correction; only for MP2 was the ZPE itself corrected (multiplied by 0.9670 [78]), because for

DFT methods the corrections appear to lie between 0.96 and unity [78]. The fifth (the bottom)

value for each species is a 298 K enthalpy value from CBS-APNO, and is considered more reliable

than reported [70] experimental activation and reaction energies; see text. The purpose of the

Figure is to show how basis set size can affect geometry and relative energies (Calculations are by

the author)
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saturation where relative energies are concerned; energies are discussed in the next

section. The insensitivity of geometries to basis sets beyond 6-31G* is also shown

in Figures 1 and 3 in reference [46], where with a wide selection of functionals very

similar errors resulted with the 6-31G*, 6-31+G*, and 6-31++G* basis sets.

7.3.2 Energies

7.3.2.1 Energies: Preliminaries

With regard to energies, Figures and Tables in this chapter correspond to those in

Chap. 5 (ab initio) and Chap. 6 (semiempirical) like this:

Fig. 7.2 (four reactions, various functionals,

geometries and energies)

Figs. 5.21, 6.3, and 6.4

Fig. 7.3 (four reactions, various basis sets,

B3LYP, geometries and energies)

Figs. 5.21, 6.3, and 6.4

Tables 7.3, 7.4, 7.5, 7.6 and 7.7 (general

concern with energies)

Tables 5.4, 5.5, 5.6, 5.9, 5.12, 5.13, 6.3, and 6.4

Usually, we seek from a DFT calculation, as from an ab initio or semiempirical

one, geometries (preceding section) and energies. Like an ab initio energy, a DFT

energy is relative to the energy of the nuclei and electrons infinitely separated and at

rest, i.e. it is the negative of the energy needed to dissociate the molecule into its

nuclei and electrons. Semiempirical energies like those from AM1 and PM3

(Chap. 6, Sect. 6.3.2) are heats of formation, and by parameterization zero-point

energies are included. In contrast, an ab initio (Chap. 5, Sect. 5.2.3.6.4) or DFT

molecular energy, the energy printed out at the end of any calculation, is the energy

of the molecule sitting motionless at a stationary point (Chap. 2, Sect. 2.2) on the

potential energy surface; it is the purely electronic energy plus the internuclear

repulsion. In accurate work on a reaction profile (reactant, transition state, product

series) this “raw” energy should be corrected by adding the zero-point vibrational

energy, from a frequency calculation, to obtain the total internal energy at 0 K.

Analogously to the HF equation in Chap. 5, Sect. 5.2.3.6.4, Eq. (5.94) we have

E total
0 K ¼ E total

DFT þ ZPE ð*7:29Þ

(Calculations using the Gaussian program suite denote the DFT energy called here

Etotal
DFT as HF, e.g. (in hartrees or atomic units) “HF ¼ �308:86101”). The main

advantage of DFT over Hartree-Fock calculations is in being able to provide, in a

comparable time, superior energy-difference results: reaction energies and activa-

tion energies.

7.3 Applications of Density Functional Theory 519

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_2
http://dx.doi.org/10.1007/978-3-319-30916-3_2
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


7.3.2.2 Energies: Calculating Quantities Relevant to Thermodynamics

and Kinetics

Regarding the use of CBS-APNO calculations as a surrogate for experimental

energy values, particularly for the four reactions whose energies are addressed in

Figs. 7.2 and 7.3: experimental results are skimpy and sometimes of only limited

relevance (for example, activation energies may be lowered by surface effects) for

these four reactions. For them CBS-APNO are shown in the Figures as benchmarks

against which to compare the accuracy of the relative energies from the other

methods. These APNO values provide a methodologically uniform set of accurate

relative enthalpies; they are expected to be at least as accurate as available or any

likely future experimental values (mean absolute deviations 2:2 kJmol�1; Chap. 5,

Sect. 5.5.2.3.2, Comparison of high-accuracy multistep methods). For Figs. 7.2

and 7.3, comparison of the APNO relative activation and reaction enthalpies with

those from other high-accuracy methods considered somewhat less accurate

showed excellent consistency (kJ mol�1):

ethenol (vinyl alcohol) to ethanal:
APNO, 0 : 234 : �43; CBS-QB3, 0 : 238 : �44; G4MP2, 0 : 237 : �42

HNC to HCN:
APNO, 0 : 125 : �61; CBS-QB3, 0 : 129 : �60; G4MP2, 0 : 122 : �61

CH3NC to CH3CN:
APNO, 0 : 163 : �101; CBS-QB3, 0 : 164 : �100; G4MP2, 0 : 160 : �99

cyclopropylidene to allene:
APNO, 0 : 26 : �280; CBS-QB3, 0 : 25 : �280; G4MP2, 0 : 24 : �277

This is consistent with the view that these three high-accuracy methods are good

stand-ins for experimental values.

7.3.2.2.1 Thermodynamics

Let’s first see how DFT handles a case where Hartree-Fock with its cavalier

treatment of electron correlation fails badly: homolytic breaking of a covalent

bond (Chap. 5, Sect. 5.4.1). Consider the reaction

H3C� CH3 þ Ediss ! H3C � � CH3

In principle the dissociation energy can be found simply as the energy of two

methyl radicals minus the energy of ethane. Table 7.3 (cf. Table 5.5) shows the

results of HF, MP2, and DFT (B3LYP, M06-2X, and TPSS) calculations, with the

6-31G* basis. The energies shown for each species are 0 K energies (enthalpies)

and 298 K enthalpies for bond-breaking. The HF and MP2 0 K values are corrected

for ZPE with the ZPE itself corrected, by 0.9135(HF) and 0.9670 (MP2(fc)), as

prescribed by Scott and Radom [82a]. For the DFT 0 K energies the ZPEs were
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not corrected, as the factor appears to lie between 0.96 and unity [82a] (a recent

paper prefers a quadratic, rather than the popular linear, correction for IR frequen-

cies [82b]). The enthalpies were calculated with Gaussian 09 [83a] using a statis-

tical mechanics algorithm that is “appropriate for calculating enthalpies of

reaction” [83b]. Product enthalpies minus reactant enthalpies give the calculated

bond enthalpy; standard, tabulated bond enthalpies are for 298 K. The 298 K

experimental bond energy has been reported to be 90:1 � 0:1kcal mol�1, i.e.

377 � 0:4 kJ mol�1 [84], and the CBS-APNO value (above, Sect. 7.3.2.2), is

379:3 kJ mol�1, essentially the same as the reported experimental bond energy. In

Table 7.3 we see that for the 298 K bond dissociation enthalpy the Hartree-Fock

value is hopelessly too low (by 122 kJ mol�1), the errors for M06-2X and TPSS are

not bad (þ20 and �11 kJ mol�1), and the MP2 and B3LYP enthalpies are good,

withinþ4 and�2 kJ mol�1 of what we hold to be the correct bond energy. Thus all

of these electron correlation methods handle homolytic bond breaking at least

tolerably well. The M06-2X value might have been expected to be better, but this

is just one example (the M06 298 K bond enthalpy,390 kJ mol�1, is 13 kJ mol�1 too

high).

The reaction profiles in Fig. 7.3, mentioned above in connection with geometry,

also explore the effect of basis set size on relative energies (barriers and reaction

energies) for the B3LYP functional. As stated in Sect. 7.3.1, these geometries seem

to be reasonably insensitive to basis set, but there are some significant changes in

energies on going from the 6-31G* to the 6-311+G* or the 6-311++G(2df, 2p)

basis: the reaction energy for the ethenol isomerization rises from ca. -67 to ca.

�45 kJ mol�1 and for the HNC isomerization from ca. �69 to ca. �57 kJ mol�1.

The insensitivity of the activation energies, compared to the reaction energies, for

these two reactions, can be rationalized with the Hammond postulate [85], which

Table 7.3 The C–C bond energy of ethane by HF, MP2(fc), and DFT (B3LYP, M06-2X, and

TPSS) calculations, at 0 K and 298 K

Method 0 K 298 K

HF 248 255

MP2(fc) 372 381

B3LYP 363 375

M06-2X 387 397

TPSS 357 366

References to the methods: HF, Chap. 5, Sect. 5.2.2; MP2, Chap. 5, Sect. 5.4.2; B3LYP [57, 58];

M06-2X [45, 65]; TPSS [77]

The basis set is 6-31G*. Standard, tabulated bond energies are for dissociation at 298 K. Bond

energy¼ 2(CH3 radical enthalpy)� (CH3CH3 enthalpy). For the radical the unrestricted method

(UHF etc.) was used. For the 0 K dissociation enthalpy, the HF and MP2 calculations use energies

corrected for ZPE, with the ZPE itself corrected by a factor of 0.9135 (HF) or 0.9670 (MP2)

[82]. The 0 K dissociation enthalpy for the DFT calculations is uncorrected for ZPE, and the 298 K

dissociation enthalpy is from standard statistical thermodynamics methods [83b]. The experimen-

tal 298 K C–C energy of ethane has been reported as 90.1� 0.1 kcal mol�1, i.e. 377� 0.4 kJ mol�1

[84]. Calculations are by the author
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implies that for an exothermic reaction the reactant resembles its subsequent

transition state; thus the effect of changing the basis set might be much the same

for both reactant and transition state. Why the CH3NC and cyclopropylidene

B3LYP reaction energies are almost unperturbed is unclear. The effect of basis

set on the energies of these reactions is discussed further in Sect. 7.3.2.2.2, under

kinetics (where some reference is also made to reaction energies).

Table 7.4 compares with experiment [86] the effect of functionals and of basis

set size on the reaction enthalpies of the important H2/Cl2 and H2/O2 reactions. First

we note that the high-accuracy (G4(MP2), CBS-QB3, and CBS-APNO; Chap. 5,

Sect. 5.5.2.3.2) acquit themselves well with two qualifications: the highly accurate

CBS-APNO method (mean absolute deviation from experiment, 2:2 kJ mol�1) [87]

was not applicable to the H2 þ Cl2 reaction because of its inability to treat Cl, and

this method indicates that the reaction enthalpy of the 2 H2 þ O2 reaction is closer

to �477 than to the reported �484 kJ mol�1. We compare the functional/basis set

combinations by comparison with the experimental values of �184 (for H2 þ Cl2

! 2HCl ) and �484 kJ mol�1 (for 2 H2 þ O2 ! 2H2O ). Concerning the three

functionals: in all cases the 6-311þþG (2df,2p) basis performs better, usually

dramatically so, than the 6‐31G*; M06-2X/6-311þþG(2df,2p) gives a good result

for the H2 þ O2 reaction, with B3LYP/6-311þþG(2df,2p) somewhat worse. Even

with the bigger basis, TPSS does not perform well here. These calculations show

that contrary to what might be inferred from [58], the 6-31G* basis is too small to

count on for reasonably good results for general thermochemistry with DFT. For

Table 7.4 Reaction enthalpies (298 K, kJ mol�1), calculated with three functionals and two basis

sets, 6-31G* and 6-311++G(2df, 2p), and with three high-accuracy methods (but CBS-APNO is

unable to handle Cl species)

Method

Reaction

H2 +Cl2! 2 HCl H2 +O2! 2 H2O

B3LYP

6-31G* �169 �344

6-311++G(2df, 2p) �182 �447

M06-2X

6-31G* �172 �381

6-311++G(2df, 2p) �177 �466

TPSS

6-31G* �152.5 �295

6-311++G(2df, 2p) �162 �393

G4(MP2) �180 �479

CBS-QB3 �182 �474

CBS-APNO Unavailable �477

Experimenta �184 �484

The calculated reaction enthalpies follow from the calculated 298 K molecular enthalpies and the

product enthalpies minus the reactant enthalpies
aExperimental heats of formation of HCl and H2O: [86]
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certain classes of reactions, however, 6-31G* may be acceptable, e.g. the Diels-

Alder reaction [88], and bond dissociation (Table 7.3). Only tests with model

systems can show (by comparison with experiment of “higher” levels) if a partic-

ular functional/basis can be expected to be satisfactory for the desired purpose.

There are many studies in the literature of the ability of DFT to handle molecular

thermochemistry (thermodynamics). Martell et al. tested six functionals on 44 atom-

ization energies and six reactions and concluded that the best atomization energies

were obtained with hybrid functionals, but slightly better reaction enthalpies were

obtained with non-hybrid ones [89]. St-Amant et al. found that gradient-corrected

functionals gave good geometries and energies for conformers; the dihedrals were

on average within 4� of experiment and the relative energies were nearly as accurate

as those from MP2 [52]. Scheiner et al. found that, as for geometries, Becke’s
original 3-parameter function (also called ACM, adiabatic connection method [57])

gave the best reaction energies [79]. Many energy difference comparisons have

been published comparing B3LYP/6 ‐ 31G* with HF, MP2 and experiment

[71]. These comparisons involve homolytic dissociation, various reactions partic-

ularly hydrogenations, acid–base reactions, isomerizations, isodesmic reactions,

and conformational energy differences. This wealth of data shows that while

gradient-corrected DFT and MP2 calculations are vastly superior for homolytic

dissociations, for “ordinary” reactions (involving only closed-shell species), their

advantage is much less marked; for example, HF/3-21G, HF/6‐31G*, SVWN/

6‐31G* (non-gradient-corrected DFT), all usually give energy differences similar

to those from B3LYP/6 ‐ 31G* and in fair agreement with experiment. Table 7.5

compares with experiment (tabulated by Hehre [90]) errors for hydrogenations,

isomerizations, bond separation reactions (a kind of isodesmic reaction), and proton

affinities; the methods are HF, SVWN, MP2, and B3LYP, all using the 6‐31G*
basis. In two of the four cases (hydrogenation and isomerization) the HF/6‐31G*
method gave the best results; in one case MP2 was best and in one case B3LYP.

For the energy comparison of normal (not involving transition states) closed-shell

organic species correlated methods like MP2 and DFT often seem to offer little or

no advantage, unless one needs accuracy within ca. 10� 20 kJ mol�1 of experi-

ment, in which case high-accuracy methods should be used. The strength of

gradient-corrected DFT methods appears to lie largely in their ability to give

Table 7.5 Energy errors for hydrogenation reactions, isomerizations, bond separation reactions,

and proton affinities, using four different methods; the basis set is 6-31G*

Reaction

Method

HF SVWN MP2 B3LYP

Hydrogenation 15 20 17 23

Isomerization 15 19 16 17

Bond separation 11 5 4 10

Proton affinity 14 18 11 7

The errors, in kJ mol�1, in each case the arithmetic mean of the absolute deviations from

experiment of 10 reactions, were calculated from the data in Hehre [90]
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homolytic dissociation energies and activation energies with an accuracy compa-

rable to that from MP2, but at a time cost comparable to that from HF calculations.

Bauschlicher et al. compared various methods and recommended B3LYP over HF

and MP2, to a large extent on the basis of the performance of B3LYP with regard to

atomization energies and transition metal compounds [81]. Wiberg and Ochterski

compared HF, MP2, MP3, MP4, B3LYP, CBS-4 and CBS-Q with experiment in

calculating energies of isodesmic reactions (hydrogenation and hydrogenolysis,

hydrogen transfer, isomerization, and carbocation reactions) and found that while

MP4/6‐31G* and CBS-Q were the best, B3LYP/6‐31G* was also generally satis-

factory [91]. Rousseau and Mathieu developed an economical way of calculating

heats of formation by performing pBP/DN* calculations on molecular mechanics

geometries; rms deviations from experiment were about 16 kJ mol�1 for a variety of

compounds [92]. Although the pBP/DN* method was removed from Spartan

(Sect. 7.3.1), it is said [72] to give results similar to those from BP86/6‐311G*,
which is available in several program suites. Ventura et al. found DFT to be better

than CCSD(T) (a high-level ab initio method, Chap. 5, Sect. 5.4.3) for studying the

thermochemistry of compounds with the O-F bond [93].

Regarding the application of functionals to thermochemistry, more recent refer-

ences than those in the preceding paragraph (which run from 1993 to 2000) are

three thorough compilations, [44, 45b] and [46]. References [44] and [45] give the

impression that for best results on should select a functional based on quite specific

requirements. Reference [46] indicates that of the functionals we have considered

(the M06 and the related M05 families are not examined here), with Pople basis sets

TPSS with 6-31G*, 6-31+G* or 6-31++G* gives among the smallest average heat

of formation errors: ca. 5 kcal mol�1, ca. 20 kJ mol�1, and these values were similar

with Dunning basis sets. This is surprising in view of the poor performance of TPSS

with the H2/Cl2 and H2/O2 reactions (Table 7.4). B3LYP gave similar heat of

formation errors (ca. 20 kJ mol�1 ) with 6-31G* but capriciously ca. 60 kJ mol�1

with 6-31+G* or 6-31++G*, and with the biggest Dunning basis its error was ca.

20 kJ mol�1. There is a lack of regularity in the thermochemical results from DFT

calculations, and a user would do well to first explore results from model systems

related to the particular project at hand. Reliably accurate thermochemistry still

requires some largely (these usually incorporate empirical corrections and sometimes

DFT optimizations) ab initio high-accuracy method like one from the Gaussian or

CBS family (Chap. 5, Sect. 5.5.2.3.2).

7.3.2.2.2 Kinetics

Consider the reaction profiles in Fig. 7.2. The experimental data on these activation

and reaction enthalpies is limited [74], but as argued above (Sect. 7.3.2.2) the

APNO (as well as the CBS-QB3 and G4MP2) values are good substitutes. Despite

the paucity of experimental data, for all these reactions the qualitative situation is

known and agrees with Fig. 7.2: ethenol, HNC and CH3NC are much less stable
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than their isomers CH3CHO, HCN, and CH3CN and the barriers inhibit the

uncatalyzed isomerization at room temperature (the threshold barrier for room

temperature stability is ca. 100kJ mol�1 ); cyclopropylidene has never been

observed and a reasonable inference is that it isomerizes rapidly (even at 77 K)

and essentially completely to allene. Even with this modest (6-31G*; compare the

discussion in Sect. 7.3.1 for Fig. 7.3 and the effect of bigger basis sets on geometry)

basis set, all the results are in qualitative agreement with experiment.

The effect of basis set size on the kinetics of the four reactions of Fig. 7.2 was

explored; see Fig. 7.3. and Tables 7.6 and 7.7. Free energies, rather than enthalpies,

of activation (reaction free energies are also given) were used here. Although the

free energy/enthalpy differences are small, the quantitative effect of rate and

equilibrium constants can be significant because the values appear in an exponent

(Chap. 5, Sect. 5.5.2.3.4). In Table 7.6 the DFT results are checked with CBS-QB3.

Reservations have been expressed about the reliability of methods like CBS-QB3

and G4-type for barriers, because they are parameterized for thermodynamics, and

specifically, one might wonder about the effect of changes in the number of paired

Table 7.6 Barriers and reaction energies calculated by CBS-QB3, for comparison with the DFT

and MP2 results in Figs. 7.2 and 7.3 and Table 7.7

Reaction Barrier Reaction energy

CH2¼CHOH!CH3CHO 240 �45.6

HNC!HCN 125 �58.5

CH3NC!CH3CN 161 �98.6

Cyclopropylidene! allene 23.8 �279

The barrier is the free energy of activation at 298 K and the reaction energy is the free energy of

reaction at 298 K, in kJ mol�1. Cf. Chap. 5, Table 5.12

Table 7.7 Barriers and reaction energies (relative energies for reactant, transition state, product)

calculated for the B3LYP, M06-2X, and TPSS functionals using the 6-31G*, 6-311 +G**, and

6-311++G(2df,2p) basis sets (shown respectively from top to bottom line)

Functional

Reaction (cf. Table 7.6)

H2C¼CHOH HNC CH3NC Cyclopropylidene

B3LYP 0, 224, �68 0, 123, �67 0, 161, �100 0, 24, �282

0, 231, �48 0, 123, �58 0, 158, �100 0, 18, �286

0, 232, �45 0, 124, �56 0, 160, �98 0, 16, �289

M06-2X 0, 235, �60 0, 126, �62 0, 160, �95 0, 47, �264

0, 238, �42 0, 124, �53 0, 156, �93 0, 42, �265

0, 239, �39 0, 123, �53 0, 156, �92 0, 40, �270

TPSS 0, 205, �71 0, 119, �71 0, 151, �98 0, 20, �274

0, 211, �53 0, 118, �64 0, 147, �99 0, 16, �276

0, 212, �50 0, 118, �62 0, 149, �97 0, 14, �280

The barrier is the free energy of activation at 298 K and the reaction energy is the free energy of

reaction at 298 K, in kJ mol�1. Cf. Table 7.6. and Chap. 5, Table 5.12
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spins along the reaction coordinate [94]. Nevertheless, despite a caveat [95] the

CBS-QB3 method has been explicitly recommended for barriers [96, 97]. We shall

assume that as well as the reaction energies, the CBS-QB3 barriers also are reliable

for these four reactions. Comparison of the values in Table 7.6 (CBS-QB3)

and those in Table 7.7 (B3LYP, M06-2X and TPSS functionals and 6-31G*,

6-311+G** and 6-311++G(2df,2p) basis sets) reveals the effect on barriers and

reaction energies of increasing basis set size with the three functionals. Table 7.7

also extends the information in Fig. 7.3 for relative energies, shown in the

Figure only for B3LYP, to M06-2X and TPSS, and may be also be compared

with Table 5.12 in Chap. 5, which shows free energies of activation for the

H2C¼CHOH, CH3NC and cyclopropylidene reactions, using MP2/6‐31G*,
B3LYP/6‐31G*, G4(MP2), and CBS-QB3. The values in Tables 7.6 and 7.7 are

298 K relative free energies, while as discussed above those in Fig. 7.3 and 7.2 are

the very similar (for these reactions, anyway) relative ZPE-corrected 0 K energies.

Table 7.7 suggests that the 6-311+G** basis leads to essential saturation,

with reaction energies becoming almost constant (the CH3NC and cyclopro-

pylidene reactions and all the barriers are almost indifferent to these basis sets).

By comparison with Table 7.6, TPSS seems to be inferior to B3LYP and M06-2X

for barriers but about as good for reaction energies. All things considered for

these reactions, B3LYP and M06-2X (except that this overestimates the

cyclopropylidene barrier by about 20 kJ mol�1 ) with the 6-311+G** or (very

similar results) 6-311++G(2df,2p) basis set were best in comparison with

CBS-QB3. This shows that with the 6-311+G** basis these functionals are satu-

rated and give, particularly for B3LYP and M06-2X, at least for these particular

isomerizations, barriers and reaction energies comparable to those from the high-

accuracy CBS-QB3 method, and probably in good agreement with experiment.

There seems to be no advantage here of the 6-311++G(2df,2p) basis over the more

“economical” 6-311+G** one.

Another demonstration that the assertion [38, 58] that the 6-31G* basis is

generally adequate in DFT should be viewed with some skepticism was provided

by del Rio et al., who found for methyl rotation barriers, in several cases DFT

needed much bigger bases than MP2 or MP4 [98]. This quirky behavior emphasizes

the importance of reality checks: testing the kind of calculation at hand against

model systems for which experimental data are available.

Some references to the calculation of barriers with DFT are:In a study of alkene

epoxidation with peroxy acids, B3LYP/6‐31G* gave an activation energy similar to

that calculated with MP4/6‐31G*//MP2/6‐31G* but yielded kinetic isotope effects

in much better agreement with experiment than did the ab initio calculation

[99]. Even better activation energies than from B3LYP (which it is said tends to

underestimate barriers [100, 101]) have been reported for the BH&H-LYP func-

tional [101–104]. In a study by Baker et al. [105] of 12 organic reactions using

7 methods (semiempirical, ab initio and DFT), B3PW91/6‐31G* was best (average
and maximum errors 15.5 and 54 kJ mol�1 ) and B3LYP/6‐31G* second best

(average and maximum errors 25 and 92 kJ mol�1 ). Jursic studied 28 reactions
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and recommended “B3LYP or B3PW91 with an appropriate basis set”, but warned

that highly exothermic reactions with a small barrier (ca. 10�20 kJ mol�1) involv-

ing hydrogen radicals “are particularly difficult to reproduce.” [106]. Barriers

“above 10 kcal mol�1 [ca. 40 kJ mol�1 ] should be reliable. Lower activation

energies should be underestimated by 3�4 kcal mol�1 [ca. 13�17 kJ mol�1 ]”

[106]. As with thermodynamic energy differences, i.e. energy differences not

involving a transition state, consistently obtaining with some confidence activation

energies accurate to 10�20 kJ mol�1 may require a high-accuracy multistep

method like CBS-QB3. For some barriers the problem seems to be with the

functionals: Merrill et al. found that for the fluoride ion-induced elimination of

HF from CH3CH2F none of the 11 functionals tested (including B3LYP) was

satisfactory, by comparison with high-level ab initio calculations. Transition states

were often looser and stabler than predicted by ab initio, and in several cases a

transition state could not even be found. They concluded that hybrid functionals

offer the most promise, and that “the ability of density functional methods to predict

the nature of TS’s demands a great deal more attention than it has received to

date.” [38].

More recent references to the accuracy of DFT in calculating barriers are the

extensive compilations noted above for thermochemistry, namely [44, 45] and

[46]. Of the functionals considered in reference [44] only B3LYP is among the

few on which we have focussed (B3LYP, M06-2X, and TPSS), and it, scrutinized

throughout the review because of its popularity, was well down on the barrier

accuracy list, with typical errors of ca. 16 kJ mol�1 ; the star functionals in this

regard were MPW1K and BB1K with errors typically of ca. 5 kJ mol�1. References

[45] document a litany of shortcomings of B3LYP and extol the virtues of the

M06-class of functionals. For barriers (kinetics) it recommends “M06-2X, BMK,

and M05-2X for main-group thermochemistry and kinetics”, and “M06-2X,

M05-2X, and M06 for systems where main-group thermochemistry, kinetics,

and noncovalent interactions are all important”. M06, a general-purpose

M06-class functional, apparently has an error of about 0.63 to 2.2 kcal mol�1

(2.6 to 9.2 kJ mol�1), depending on the database used to test it. The rather extensive

tests by Riley et al. ([46], summarized in Figs. 16–19) of functionals and their

partner bass sets indicated, as far as this wealth of data can be encapsulated into a

few words, that the best functionals for barriers were BBB1K, B1B95, and B1LYP

(with B3LYP being only very slightly less accurate than this latter), and with no

clear advantage to either the Pople or the Dunning basis sets. Typical barrier errors

for these functionals were ca. 3�5 kcal mol�1 (13�21 kJ mol�1).

7.3.3 Frequencies and Vibrational Spectra

The general remarks and theory about frequencies that were given in Chap. 5,

Sect. 5.5.3, apply to DFT frequencies also. As with ab initio frequency
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calculations, but unlike semiempirical, one reason for calculating DFT frequencies

is to get zero-point energies to correct the frozen-nuclei energies. The frequencies

are also used to characterize the stationary point as a minimum, transition state, etc.,

and to predict the IR spectrum. As usual the wavenumbers (“frequencies”) are the

mass-weighted eigenvalues of the Hessian, and the intensities are calculated from

changes in dipole moment incurred by the vibrations.

Unlike ab initio and semiempirical frequencies, DFT frequencies are not always

significantly lower than observed ones (indeed, calculated values slightly higher

than experimental frequencies have been reported). Here are some correction

factors that have been calculated for various functionals, as well as for some ab

initio and semiempirical methods (slightly different correction factors were

recommended for the ZPE) [82a]; except for HF/3-21G the basis set for the ab

initio and DFT methods is 6‐31G*:

HF/3-21G HF/6-31G* MP2(FC) AM1 BLYP BP86 B3LYP B3PW91

0.909 0.895 0.943 0.953 0.995 0.991 0.961 0.957

The BLYP/6‐31G* and BP/86 correction factors are very close to unity. For the

frequencies of polycyclic aromatic hydrocarbons calculated by the B3LYP/6‐31G*
method, Bauschlicher multiplied frequencies below 1300 cm�1 by 0.980 and

frequencies above this by 0.967 [81]. In their paper introducing the modification

of Becke’s hybrid functional to give the B3LYP functional, Stephens et al. studied

the IR and CD spectra of 4-methyl-2-oxetanone and recommended the B3LYP/6‐
31G* as an excellent and cost-effective way to calculate these spectra [58]. With six

different functionals, Brown et al. obtained an agreement with experimental fun-

damentals of ca. 4–6%, except for BHLYP [107]. The 2007 review by Riley

et al. [46] shows that a wide assortment of functionals/basis sets gives errors of

ca. 50�120 cm�1. For characterizing new molecules such errors are probably not

important, because each functional/basis (indeed, each method) has a fairly con-

stant multiplicative correction factor [82a] which brings its IR spectrum into

reasonable positional agreement with experiment. More important than accurate

wavenumber matching is reasonable agreement of relative intensities with reality.

Intensities are calculated from the variation of dipole moments with vibrational

distortions (Chap. 5, discussion in connection with Eq. (5.204). If calculated dipole

moments do not vary much from one method to another and are similar to

experimental values, as is suggested by Table 7.8, calculated relative intensities

may be expected to be similar too. This is supported by Figs. 7.4, 7.5, 7.6, and 7.7.

Let’s examine the IR spectra of acetone, benzene, dichloromethane, and methanol,

the same four compounds used in Chaps. 3, 5 and 6 (Figs. 3.15, 3.16, 3.17 and

3.18, 5.33, 5.34, 5.35 and 5.36 and 6.5, 6.6, 6.7 and 6.8) to illustrate spectra

calculated by molecular mechanics, ab initio, and semiempirical methods. The

DFT spectra in Figs. 7.4, 7.5, 7.6, and 7.7 are compared with experiment (taken

in the gas phase by the author) and, for commonality with Chaps. 3, 5 and 6,

MP2(fc)/6‐31G*. B3LYP/6‐31G* was chosen because, as was justified in

retaining it for geometries (Sect. 7.3.1), it is just possible that it is still
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Table 7.8 Some calculated dipole moments (Debyes) compared to experiment

Computational method

ExpB3LYP M06-2X AM1 MP2(fc)

CH3NH2 1.47 1.51 1.31 1.57 1.3

H2O 2.1 2.15 2.1 2.24 1.9

HCN 2.91 2.94 2.9 3.26 3

CH3OH 1.69 1.76 1.68 1.95 1.7

Me2O 1.28 1.34 1.25 1.44 1.3

H2CO 2.19 2.27 2.23 2.84 2.3

CH3F 1.72 1.76 1.65 2.11 1.9

CH3Cl 2.09 2.08 1.91 2.21 1.9

Me2SO 3.93 4.07 3.98 4.63 4

CH3CCH 0.69 0.67 0.66 0.66 0.8

Deviation 3+, 5�, two 0 5+, 3�, two 0 2+, 4�, four 0 9+, 1�, none 0

mean 0.11 mean 0.12 mean 0.22 mean 0.31

For each method is given the number of positive, negative, and formal (to one decimal place) zero

deviations from experiment, and the unsigned arithmetic mean of the absolute values of the

deviations. The basis sets for the DFT and MP2 calculations is 6-31G*. Experimental values are

taken from [71] and [73];.calculations are by the author
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the most popular functional. We see that here B3LYP/6‐31G* simulates the exper-

imental IRs reasonably well, and is in this regard very similar to MP2(fc)/6‐31G*.

7.3.4 Properties Arising from Electron Distribution–Dipole
Moments, Charges, Bond Orders, Atoms-in-Molecules

The theory behind calculating dipole moments, charges, and bond orders, and using

atoms-in-molecules analyses, was outlined in Chap. 5, Sect. 5.5.4; here the results

of applying DFT calculations to these will be presented.

80

60

40

20

0

T
R

_T
N

T
R

N
S

T
R

_T
N

T
R

N
S

0

26

52

78

4000

4000

3000

30003500

2000

20002500

1000

50010001500

3091Benzene
Experimental

B3LYP / 6-31G*

MP2 / 6-31G*

3050

1480

1040

674

692

1083
1540

689

1071
1533

3201

3239

FREQ_VAL

FREQ_VAL

0

37

73

1.1e+002

00030004 00020053 0050052 10001500

Fig. 7.5 Experimental (gas phase), DFT (B3LYP/6-31G*) and ab initio (MP2(fc)/6-31G*)

calculated IR spectra of benzene

530 7 Density Functional Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


7.3.4.1 Dipole Moments

Hehre [71] and Hehre and Lou [72] have provided quite extensive compilations of

calculated dipole moments. These confirm that Hartree-Fock dipole moments tend

to be bigger than experimental, and electron correlation, through DFT or MP2,

tends to lower the dipole moment, bringing it closer to the experimental value

(e.g. for thiophene, from 0.80 D to 0.51 D for B3LYP; the MP2 value is 0.37 D and

the experimental dipole moment is 0.55 D [72]).

Table 7.8 compares with experiment dipole moments calculated by B3LYP/

6‐31G*, M06 ‐ 2X/6‐31G*, AM1 (as a check on this fast method), and MP2(fc)/

6‐31G*, for 10 molecules. The two DFT methods give essentially the same mean

unsigned error, 0.11 and 0.12 D, three times smaller than the error of 0.31 D from

the slowest method, MP2 (at least for this small selection of molecules), and the

very fast AM1 moments lie in-between, 0.22 D. None of these methods consistently
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gives values accurate to within 0.1 D. Very accurate dipole moments (mean

absolute deviation 0.06–0.07 D) can be obtained with gradient-corrected DFT and

very large basis sets [79].

7.3.4.2 Charges and Bond Orders

The theory behind these was given in Chap. 5, Sect. 5.5.4. Although it is sometimes

said that charges on atoms cannot be measured, i.e. are not observables, carefully

defined atom charges can apparently be measured [108]. However, such experi-

mental charges are not readily available, and there is no agreed-on standard for

judging the “correctness” of calculated charges (and bond orders). In practice,

electrostatic potential charges and L€owdin bond orders are often preferred to
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Mulliken charges and bond orders. The effect of various computational levels on

atom charges has been examined [109].

Figure 7.8 shows charges and bond orders calculated for an enolate and a

protonated enone system (the same as in Chap. 6, Fig. 6.9), using B3LYP/6‐31G*
and HF/3-21G. The results are qualitatively similar regardless of whether one uses

B3LYP or HF, or Mulliken vs. electrostatic potential/L€owdin. This is in contrast to
the results in Fig. 6.9, where there were some large differences between the

semiempirical and HF/3-21G values, and even between AM1 and PM3. For exam-

ple, for the protonated species using the Mulliken method, AM1 and PM3 gave the

oxygen a small negative charge, ca. �0.1, but the HF/3-21G method gave it a

large negative charge, �0.63; even stranger, the terminal carbon had charges

of 0.09, 0.23, and �0.25 by the AM1, PM3, and HF methods. In Fig. 7.8

the biggest differences among corresponding parameters is for the electrostatic

potential charges in the protonated species, where the charges on the oxygen

..
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Fig. 7.8 Atom charges and bond orders calculated using B3LYP/6-31G* and HF/3-21G methods.

Note that charges and bond orders involving hydrogens have been omitted
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(�0.35 and �0.63) and on the carbonyl carbon (0.41 and 0.76) differ by a factor of

about two. With both B3LYP and HF the terminal carbon of the enolate is

counterintuitively assigned a bigger negative electrostatic potential charge than

the oxygen, as was the case for AM1 and DFT. The calculated negative charge on

the formally positive oxygen of the protonated molecule was commented on in

Chap. 6, Sect. 6.3.4.2. As with the semiempirical values, bond orders are less

variable here than are the charges, but even for this parameter there is one

qualitative discrepancy: for the cation C/OH bond the Mulliken HF bond order is

essentially single (1.18), while for the L€owdin B3LYP calculation the bond is

essentially double (bond order 1.70). These results remind us that charges and

bond orders are useful mainly for revealing trends, when a series of molecules, or

stages along a reaction coordinate [110] are studied, all with the same methods

(e.g. B3LYP/6‐31G* and L€owdin bond orders).

7.3.4.3 Atoms-in-Molecules

The atoms-in-molecules (AIM) analysis of electron density, using ab initio calcu-

lations, was considered in Chap. 5, Sect. 5.5.4.5. A comparison of AIM analysis by

DFT with that by ab initio calculations by Boyd et al. showed that results from DFT

and ab initio methods were similar, but gradient-corrected methods were somewhat

better than the SVWN method, using QCISD ab initio calculations as a standard.

DFT shifts the CN, CO, and CF bond critical points of HCN, CO, and CH3F toward

the carbon and increases the electron density in the bonding regions, compared to

QCISD calculations [111].

7.3.5 Miscellaneous Properties–UV and NMR Spectra,
Ionization Energies and Electron Affinities,
Electronegativity, Hardness, Softness and the Fukui
Function

7.3.5.1 UV Spectra

In wavefunction theory, i.e. conventional quantum mechanics, UV spectra (elec-

tronic spectra) result from promotion of an electron from a molecular orbital to a

higher-energy molecular orbital by absorption of energy from a photon: the mole-

cule goes from the electronic ground state to an excited state. Since current DFT is

said to be essentially a ground-state theory (e.g. [13–16]), one might suppose that it

could not be used to calculate UV spectra. However, there is an alternative

approach to calculating the absorption of energy from light. One can use the

time-dependent Schr€odinger equation to calculate the effect on a molecule of a

time-dependent electric field, i.e. the electric component of a light wave; this wave

is an oscillating electromagnetic field, and can set the electron cloud of a molecule

oscillating in synch [112]. This is a semiclassical treatment in that it uses the

Schr€odinger equation but avoids equating the absorbed energy to hν, the energy
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of a photon. The calculation of UV spectra by DFT is based on the time-dependent

Kohn-Sham equations, derived from the time-dependent Schr€odinger equation

[88]. The implementation of time-dependent DFT (TDDFT, occasionally called

time-dependent density functional response theory, TD-DFRT) in Gaussian [83a]

has been described by Stratman et al. [113]. Wiberg et al. used this implementation

to study the effect of five functionals and five basis sets on the transition energies

(the UV absorption wavelengths) of formaldehyde, acetaldehyde, and acetone

[114]. Satisfactory results were obtained, and the energies were not strongly

dependent on the functional, but B3P86 seemed to be the best and B3LYP the

worst. The 6-311++G** basis was recommended. Although these workers used

MP2/6-311+G** geometries, the results in Table 7.9 indicate that AM1 geometries,

which can be calculated perhaps a thousand times faster, gives transition energies

that are nearly as accurate (mean absolute errors of 0.12 eV and 0.18 eV, respec-

tively). Table 7.10 compares with experiment [115] the UV spectrum of

methylenecyclopropene, calculated by ab initio, semiempirical, and DFT methods.

The best of the three is the TDDFT calculation, which is the only one that

Table 7.9 UV spectra (as transition energies in eV) of acetone, acetaldehyde, and formaldehyde,

calculated by time-dependent DFT, using Gaussian 98 [83a]

MP2 geometry AM1 geometry Experiment

Acetone 4.41 4.26 4.43

6.28 6.19 6.36

7.26 7.17 7.41

7.43 7.4 7.36

7.67 7.59 7.49

7.89 7.82 8.09

Acetaldehyde 4.29 4.14 4.28

6.76 6.69 6.82

7.29 7.26 7.46

7.7 7.68

7.89 7.98 7.75

8.35 8.16 8.43

Formaldehyde 3.95 3.83 4.1

6.98 6.97 7.13

7.93 7.95 8.14

8.09 8.07 7.98

8.81 8.84

9.23 8.87

5+, 10� 4+, 11�
Mean of 15: 0.12 Mean of 15:

0.18

The results of using MP2/6-311++G** [114] and (calculations by the author) AM1 geometries are

compared; both sets of calculations are single-point B3P86/6-311++G**. For each molecule only

6 transitions, all singlets, are shown. The number of positive and negative deviations from

experiment and the mean absolute errors are given
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reproduces the 308 nm band. Jacquemin et al. obtained very accurate UV spectra

of indigo dyes by taking solvent into account with a polarizable continuum

(in contrast to explicit solvent molecules) model and employing TDDFT at the

PBE0/6-311+G(2d,p) level [116]. Zhao and Truhlar have presented their M06-HF

functional as being particularly good for electronic transitions of the Rydberg and

charge-transfer type [117].

The HOMO-LUMO gap calculated with hybrid gradient-corrected functionals is

approximately equal to theπ ! π*UV transition of unsaturated molecules, and this

could be of some use in predicting UV spectra (see ionization energies and electron
affinities, below).

7.3.5.2 NMR Spectra

As with ab initio methods (Chap. 5, Sect. 5.5.5), NMR shielding constants can be

calculated from the variation of the energy with a magnetic field and the nuclear

magnetic moment. For the commonest NMR spectra, those of 1H and 13C, the

chemical shift of a nucleus is its shielding value relative to the shielding of the TMS

(tetramethylsilane) carbon or hydrogen nucleus; other magnetic nuclei have various

reference molecules. The main general methodology of NMR calculations is GIAO

(gauge-independent atomic orbitals); a much less widely-used alternative is CSGT

(continuous-set gauge transformations); both can give good results [118].

The most accurate results have been said to be obtained with MP2 calculations

[119], but empirical corrections improved the accuracy of DFT [120]. More recent

studies are those by Sefzik et al. [121], Wu et al. [122], Zhao and Truhlar [123], and

Perez et al. [124]; in these four studies only GIAO was used, except for [123],

which used both GIAO and CSGT. For 13C chemical shifts DFT was found to often,

but not always, beat ab initio Hartree-Fock, and the B3LYP and mpw1pw91

functionals tended to do well [121]. A survey of the nuclei 13C, 15N, 17O, and 19F

in 23 molecules using 21 functionals showed OPBE and OPW91 to be significantly

Table 7.10 Calculated (ab initio, semiempirical, DFT) and experimental [115] UV spectra of

methylenecyclopropene, wavelength, nm (relative intensity)

Calculated

Experimental

RCIS/6-31 +G*//B3LYP/6-

31G*

ZINDO/S//

AM1

TDDFT: B3P86/6-311+

+G**//AM1

224 (15) 228 (12) 309 (26) 308 (13)

209 (6) 224 (0.2) 226 (3) 242 (0.6)

196 (0) 213 (100) 210 (0) 206 (100)

194 (8) 204 (1) 208 (100)

193 (100) 190 (0)

The recommended ab initio basis set [115] and DFT functional and basis set [114] are used. The ab

initio results are from Chap. 5, Table 5.16, and the semiempirical results are from Chap. 6,

Table 6.7

536 7 Density Functional Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_6
http://dx.doi.org/10.1007/978-3-319-30916-3_6


better than B3LYP and PBE1PBE and in many cases better than wavefunction

calculations; OPTX was said to perform “remarkably well.” [122]. Surprisingly,

B3LYP has been reported to be less accurate than GGA or even local (LSDA)

functionals (see Sects. 7.2.3.4.1, 7.2.3.4.2, 7.2.3.4.3, 7.2.3.4.4, 7.2.3.4.5 and

7.2.3.4.6), and the newer M06-L, itself a local functional (Sect. 7.2.3.4.2), was

said to be the best for NMR chemical shifts [123]. A detailed study of the effect of

solvent also compared DFT calculations with database programs for calculating

NMR spectra, keeping an eye on balancing time versus accuracy [124]. In a detailed

study of the role of calculated geometries and 1H NMR spectra in the elucidation

of the structure of [12] annulene, Castro et al. reported GIAO B3LYP/6-311+G(d,p)

shifts to be in good agreement with experiment when appropriate calculated

geometries were used [125].

Figure 7.9 compares with experiment [126, 127] 13C and 1H NMR spectra

calculated at these levels:

1. B3LYP/6-311þþG** for the NMR calculations, using B3LYP/6-311þþG

(2df,2p), and HF/3‐21G(*) for the geometries, and

C

(2.17, experimental room 
temperature average)

–3.26
–6.33
–6.38
 (–8.7)

CH H

H

H

0.29  B3LYP / 6-31G* NMR
0.27  B3LYP / 6-311+G* NMR
0.25  B3LYP / 6-311++G** NMR
(0.23  experimental)

H2C CH2

H H

0.32
0.32
0.22

 (0.22)

0.48
–1.42 
–0.95
 (1.4)

H

7.21
7.42
7.56

(7.27)

121.1
133.4
134.3

 (128.5)

O

C

C C

H

H
H

H

H
H

1.66
1.88
1.87

2.06
2.15
2.20

192.7
212.7
212.1

 (206.7)

28.3
31.1
31.6

 (30.6)

0.25 B3LYP / 6-311++G(2df, 2p) geom
0.17 HF / 3-21G(*) geom

–6.31
–6.94

B3LYP / 6-31G* geomB3LYP / 6-311++G** NMR

0.19
0.01

–0.93
–1.23

B3LYP / 6-311++G** NMR

B3LYP / 6-31G* geom

7.63
7.54

134.2
133.0

B3LYP / 6-311++G** NMR
B3LYP / 6-31G* geom

31.6
31.7

1.86
1.75

2.21
2.14

211.3
212.8

B3LYP / 6-311++G** NMR
B3LYP / 6-31G* geom

Fig. 7.9 Calculated and experimental 1H and 13C NMR spectra. Chemical shifts (* values) are

relative to the H and C of TMS. The calculations were done with the default NMR method (GIAO)

implemented in Gaussian 03 [83a]. The experimental values (in parentheses) are from [126],

except for the 13C values for methane and cyclopropane [127] (for these [126] gave �2.3 and

�2.9, which seem suspect). The calculated values are in vacuo and the experimental are in CDCl3,

except for methane and cyclopropane, which are gas-phase measurements which were given

relative to benzene and have been adjusted here to be relative to TMS. The changes in going from

vacuum to CDCl3 are likely to be fairly small (within ca. * 1) for these molecules. Values to the left

of the structures are all for B3LYP/6-311þþG** NMR calculations on B3LYP/6-311þþG(2df,2p)

(first line) or HF/3-21G(*) (second line) geometries. Values to the right of the structures are all for

B3LYP/6-31G* geometries with NMR calculations at the B3LYP/6-31G*, B3LYP/6-311þG*, and

B3LYP/6-311þþG** levels (upper, middle and lowest lines, respectively)
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2. B3LYP/6‐31G* for the geometries, using B3LYP/6‐31G*, B3LYP/6-311þG*,

and B3LYP/6-311þþG** for the NMR calculations.

Thus the figure shows for each of these molecules: (1) a fairly high-level NMR

calculation on a high-level and a low-level geometry, and (2) a medium-level

geometry probed with a medium-, a fairly high-, and a still higher-level calculation.

For such a very small sample the results cannot reasonably be expected to do more

than show up gross differences in accuracy, but they do suggest that for DFT NMR

chemical shifts, if high accuracy is not needed B3LYP/6-311+G* on B3LYP/

6‐31G* geometries may be adequate.

7.3.5.3 Ionization Energies and Electron Affinities. The Kohn-Sham

Orbitals

Ionization energies (ionization potentials) and electron affinities were discussed in

Chap. 5, Sect. 5.5.5. We saw that IEs and EAs can be calculated in a straightforward

way as the energy difference between a molecule and the species derived from it by

loss or gain, respectively, of an electron. Using the energy of the optimized

geometry of the radical cation or radical anion (in the case where the species

whose IE or EA we seek is a neutral closed-shell molecule) gives the adiabatic IE

or EA, while using the energy of the ionized species at the geometry of the neutral

gives the vertical IE or EA. Muchall et al. have reported adiabatic and vertical

ionization energies and electron affinities of eight carbenes, calculated in this way

by semiempirical, ab initio, and DFT methods [128]. They recommend B3LYP/

6-31+G*//B3LYP/3-21G(*) as the method of choice for predicting first ionization

energies; the use of the small 3 ‐ 21G(*) basis with B3LYP for the geometry

optimization is unusual–see Chap. 5, Sect. 5.4.2–usually the smallest basis used

with a correlated method is 6‐31G*. This combination is relatively undemanding

and gave accurate (largest absolute error 0.14 eV) adiabatic and vertical ionization

energies for the carbenes studied. Table 7.11 shows the results of applying this

method to some other (non-carbene) molecules. The B3LYP/6-31+G* ionization

energies are essentially the same with B3LYP/3‐21G(*) geometries and AM1

geometries; they are good estimates of the experimental IE [129, 130], are some-

what better than the ab initio MP2 ionization energies, and are considerably better

than the MP2 Koopmans’ theorem (below) IEs. Of course, for unusual molecules

(like the carbenes studied by Muchall et al. [128]) AM1 may not give good

geometries, and for such species it would be safer to use B3LYP/3‐21G(*) or

B3LYP/6‐31G* geometries for the single-point BLYP/6-31+G* calculations.

Golas et al. obtained fairly good IEs (� 0:2 eV for IEs of ca. 8–9 eV) and useful

EAs (� 0:4eV for EAs of ca. 1–2 eV) with B3LYP/6-311+G** energies on B3LYP/

6‐31G* geometries [131].

In wavefunction theory an alternative way to find IEs for removal of an electron

from a molecular orbital (usually the highest), is to invoke Koopmans’ theorem: the

IE for an orbital is the negative of the orbital energy; Chap. 5, Sect. 5.5.5.3). By the
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“ionization energy” we usually mean the lowest one, corresponding to removing an

electron from the HOMO. In Chaps. 5 and 6 both the energy difference and the

Koopmans’ theorem methods were used to calculate some IEs (Tables 5.17 and

6.8). The problem with applying Koopmans’ theorem to DFT is that in “strict” DFT

there are no molecular orbitals, only electron density, while in Kohn-Sham DFT

(practical DFT) the MOs, the orbitals ψKS that make up the Slater determinant of

Eq. (7.19), were, as explained in Sect. 7.2.3.2, introduced only to provide a way to

calculate the energy (note Eqs. (7.21), (7.22), and (7.26)). The problem is to see if

these Kohn-Sham MOs are, as there was a tendency to view them, mere mathe-

matical artifices or if they are in themselves useful. There was at one time a fair

amount of argument over the physical meaning, if any, of the Kohn-Sham orbitals.

Baerends and coworkers compared DFT with Hartree-Fock theory and concluded

that “The Kohn-Sham orbitals are physically sound and may be expected to be more

suitable for use in qualitative molecular orbital theory than either Hartree-Fock or

semiempirical orbitals.” [132]. Cramer echoes this in pointing out that there are

reasons to even prefer the Kohn-Sham MOs: they all feel the same external

potential, while HF MOs feel varying potentials, the virtual MOs carrying this to

an extreme [133]. Stowasser and Hoffmann showed that the KS orbitals resemble

those of conventional wavefunction theory (extended Hückel and Hartree-Fock ab

initio, Chaps. 4 and 5) in shape, symmetry, and, usually, energy ordering

[134]. They conclude that these orbitals can indeed be treated much like the more

familiar orbitals of wavefunction theory. Furthermore, they showed that although

the KS orbital energy values (the eigenvalues ε from diagonalization of the DFT

Fock matrix–Sect. 7.2.3.3) are not good approximations to the ionization energies

of molecular orbitals (as revealed by photoelectron spectroscopy), there is a linear

relation between jεi KSð Þ � εi HFð Þj and εi(HF). Salzner et al., too, showed that in

DFT, unlike ab initio theory calculations, negative HOMO energies are not good

approximations to the IE (with an exact functional Koopmans’ theorem would be

exact), but, surprisingly, HOMO-LUMO gaps from hybrid functionals agreed well

Table 7.11 Some ionization energies (eV)

ΔE¼ IE

Koopmans’
(MP2(FC)/

6-31G*) Exp

B3LYP/6-31+G*//

B3LYP/3-21G(*)

B3LYP/

6-31+G*//

AM1

MP2(FC)/

6-31G*

CH3OH 10.77 (10.92) 10.76 (10.85) 10.6 12.1 10.9

CH3SH 9.40 (9.43) 9.53 (9.36) 9 9.2 9.4

CH3COCH3 9.60 (9.70) 9.67 (9.68) 9.6 11.2 9.7

The ΔE ionization energy values (cation energy minus neutral energy) correspond to adiabatic and

(in parentheses) vertical IEs; the Koopmans theorem values are vertical IEs. Experimental IEs are

adiabatic (CH3OH and CH3COCH3 [129], CH3SH [130]). The use of B3LYP/3-21G(*) geometries

is based on [128]. That the vertical IE is smaller than the adiabatic for the B3LYP/6-31+G*//AM1

calculation on CH3SH is presumably due to a somewhat inaccurate geometry, probably for the

cation (experimental vertical IEs are always bigger than adiabatic since it takes energy to distort

the relaxed-geometry cation to the geometry of the neutral)
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with the π!π* UV transitions of unsaturated molecules [135]. Vargas

et al. introduced a “Koopmans-like approximation” to obtain a relation between

the Kohn-Sham orbital energies and vertical IEs and EAs, and assert that their

method improves the calculation of electron density indexes (below) of hardness,

electronegativity and electrophilicity [136]. The utility of the Kohn-Sham orbital

energies to predict IE, EA and the hardness index was studied by Zhan et al. [137],

and Zhang et al. explored the ability of various functionals to use these orbitals to

predict IE, EA and the lowest-energy UV transition [138].

Concerning electron affinities, in Hartree-Fock calculations the negative LUMO

energy of a species M corresponds to the electron affinity not of M but rather of the

anion M� [139]. However, Salzner et al. reported that the negative LUMOs from

LSDA functionals gave rough estimates of EA (ca. 0.3–1.4 eV too low; gradient-

corrected functionals were much worse, ca. 6 eV too low) [135]. Brown et al. found

that for eight medium-sized organic molecules the energy difference method using

gradient-corrected functionals predicted electron affinities fairly well (average

mean error less than 0.2 eV) [107]. Relevant to the LUMO in DFT, and to the

calculation of UV spectra (e.g. by TDDFT), is a report on “close to”exact Kohn-

Sham orbitals from the “statistical average of orbital potentials” [140]. These

orbitals show occupied-virtual gaps very close to UV excitation energies, and

“realistic shapes of virtual orbitals, leading to straightforward interpretation of

most excitations as single orbital transitions.” The authors assert that “[this gap]

is physically an approximation to the lowest excitation energy, which is a beautiful

property. There is nothing problematic about it.” The properties of these virtual

Kohn-Sham orbitals are reminiscent of those described for valence virtual orbitals

in ab initio theory [141] (Chap. 5, Sect. 5.5.5.3, ionization energies and electron
affinities).

7.3.5.4 Electronegativity, Hardness, Softness and the Fukui Function:

Electron Density Reactivity Indexes

The idea of electronegativity was born as soon as chemists suspected that the

formation of chemical compounds involved electrical forces (before the discovery

of the electron): metals and nonmetals were seen to possess opposite appetites for

the “electrical fluid(s)” of eighteenth century physics. This “electrochemical dual-

ism” is most strongly associated with Berzelius [142], and is clearly related to our

qualitative notion of electronegativity as the tendency of a species to attract

electrons. Parr and Yang have given a sketch of attempts to quantify the idea

[143]. Electronegativity is a central notion in chemistry.

Hardness and softness as chemical concepts were presaged in the literature as

early as 1952, in a paper byMulliken [144], but did not become widely used till they

were popularized by Pearson in 1963 [145]. In the simplest terms, the hardness of a

species, atom, ion or molecule, is a qualitative indication of how polarizable it is,

i.e. how much its electron cloud is distorted in an electric field. The adjectives hard

and soft were said to have been suggested by D. H. Busch, [146], but they appear in
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Mulliken’s paper [144], p. 819, where they characterize the response to spatial

separation of the energy of acid–base complexes. The analogy with the conven-

tional use of these words to denote resistance to deformation by mechanical force is

clear, and independent extension, by more than one chemist, to the concept of

electronic resistance, is no surprise. The hard/soft concept proved useful, particu-

larly in rationalizing acid–base chemistry [147]. Thus a proton, which cannot be

distorted in an electric field since it has no electron cloud, is a very hard acid, and

tends to react with hard bases. Examples of soft bases are those in which sulfur

electron pairs provide the basicity, since sulfur is a big fluffy atom, and such bases

tend to react with soft acids. Perhaps because it was originally qualitative, the hard-

soft acid–base (HSAB) idea met with skepticism from at least one quarter: Dewar

(of semiempirical fame) dismissed it as a “mystical distinction between different

kinds of acids and bases” [148]. For a brief review of Pearson’s contributions to the
concept, which has been extended beyond strict conventional acid–base reactions,

see [149].

The Fukui function or frontier function was introduced by Parr and Yang in 1984

[150]. They generously gave it a name associated with the pioneer of frontier

molecular orbital theory, who emphasized the roles of the HOMO and LUMO in

chemical reactions. In a reaction a change in electron number clearly involves

removing electrons from or adding electrons to the HOMO or LUMO, respectively,

i.e. the frontier orbitals whose importance was emphasized by Fukui.4 The math-

ematical expression (below) of the function defines it as the sensitivity of the

electron density at various points in a species to a change in the number of electrons

in the species. If electrons are added or removed from the species, how much is the

electron density at various places altered? This function measures changes in

electron density that accompany chemical reactions, and has been used to try to

rationalize and predict the variation of reactivity from site to site in a molecule.

Electronegativity, hardness and softness, and the Fukui function will now be

explained quantitatively. These concepts can be analyzed using wavefunction

theory, but are often treated in connection with DFT, perhaps because much of

the underlying theory was formulated in this context [151]. Consider the effect on

the energy of a molecule, atom or ion, of adding electrons. Figure 7.10 shows how

the energy of a fluorine cationFþ changes as one and then another electron is added,

giving a radical F. and then an anion F�. The number of electrons N we can add to

Fþ is integral, 1, 2, . . .(N is taken here as 0 for Fþ, and is thus 1 for the radical and

2 for the anion), but mathematically we can consider adding continuous electronic

charge N; the line through the three points is then a continuous curve and we can

examine ∂E=∂Nð ÞZ, the derivative of Ewith respect to N at constant nuclear charge.

In 1876 Josiah Willard Gibbs published his theoretical studies of the effect on the

energy of a system of a change in its composition. The derivative μ ¼ ∂E=∂nð ÞT,p,
is the change in energy caused by an infinitesimal change in the number of moles n.

4Kenichi Fukui, born Nara, Japan, 1918. Ph.D. Kyoto Imperial University 1948, Professor Kyoto

Imperial University 1951. Nobel Prize 1981. Died 1998.
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This derivative is called the chemical potential. Here E is Gibbs free energy

G and temperature and pressure are constant; the chemical potential can also be

defined with respect to internal energy U or Helmholtz free energy A (Chap. 5,

Sect. 5.5.2.1) [152]. By analogy, ∂E=∂Nð ÞZ, the change in energy with respect to

number of added electrons at constant nuclear charge, is the electronic chemical

potential (or in an understood context just the chemical potential) of an atom. For a

molecule the differentiation is at constant nuclear framework, the charges and their

positions being constant, i.e. constant external potential, v (Sect. 7.2.3.1). So for an

atom, ion or molecule

μ ¼ ∂E
∂N


 �
v

ð7:30Þ

The electronic chemical potential of a molecular (including atomic or ionic)

species, according to Eq. (7.30), is the infinitesimal change in energy when elec-

tronic charge is added to it. Figure 7.10 suggests that the energy will drop

when charge is added to a species, at least as far as common charges (from about

þ3 to�1) go, and indeed, even for fluorine’s electronegative antithesis, lithium, the

energy drops along the sequenceLiþ, Li., Li� (QCISD Tð Þ=6-311þG* gives energies

N = number of electrons added

E = energy
(hartrees)

–98.00000

–100.00000

–99.00000

0

F.  –99.57169

F– –99.68061

F+   –98.84358

21

Fig. 7.10 Change of energy (for Fþ, F• and F–) as electrons are added to a species. The energies

were calculated at the QCISD(T)/6-311+G* level. The slope of the curve at any point (first

derivative) is the electronic chemical potential, and the negative of the slope the electronegativity,

of the species at that point. The curvature at any point (second derivative) is the hardness of the

species) (See too Table 7.12)
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of �7.23584, �7.43203, �7.45448 h, respectively). Now, since one feels intui-

tively that the more electronegative a species, the more its energy should drop when

it acquires electrons, we suspect that there should be a link between the chemical

potential and electronegativity. If we choose for convenience to tag most electro-

negativities with positive values, then since ∂E=∂Nð ÞZ is negative we might define

the electronegativity χ as the negative of the electronic chemical potential:

χ ¼ �μ ¼ � ∂E
∂N


 �
v

ð7:31Þ

From this viewpoint the electronegativity of a species is the drop in energy when

an infinitesimal amount (infinitesimal so that it remains the same species) of

electronic charge enters it. It is a measure of how hospitable an atom or ion, or a

group or an atom in a molecule (Chap. 5, Sect. 5.5.4), is to the ingress of electronic

charge, which fits in with our intuitive concept of electronegativity.

This definition of electronegativity was given in 1961 [153] and later (1978)

discussed in the context of DFT [154]. Eq. (7.31) could be used to calculate

electronegativity by fitting an empirical curve to calculated energies for, e.g. Mþ,
M and M�, and calculating the slope (gradient, first derivative) at the point of

interest; however, the equation can be used to derive a simple approximate formula

for electronegativity using a three-point approximation. For consecutive species

Mþ, M andM� (constant nuclear framework), let the energies beE Mþð Þ, E(M), and

E M�ð Þ. Then by definition

E Mþð Þ � E Mð Þ ¼ I, the ionization energy of M

and E Mð Þ � E M�ð Þ ¼ A, the electron affinity of M

Adding: E Mþð Þ � E M�ð Þ ¼ I þ A
So approximating the derivative at the point corresponding to M as the change in

E when N goes from 0 to 2, divided by this change in electron number, we get

∂E
∂N


 �
v

¼ E M�ð Þ � E Mþð Þ
2� 0

¼ � I þ Að Þ
2

i.e., using Eq. (7.31)

χ ¼ I þ A

2
ð7:32Þ

To use this formula one can employ experimental or calculated adiabatic

(or vertical, if the species from removal or addition of an electron are not stationary

points) values of I and A. This same formula (Eq. (7.32)) for χ was elegantly derived
by Mulliken (1934) [155] using only the definitions of I and A. Consider the

reactions

Xþ Y ! Xþ þ Y�

and
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Xþ Y ! X� þ Yþ

If X and Y have the same electronegativity then the energy changes of the two

reactions are equal, since X and Y have the same proclivities for gaining and for

losing electrons, i.e.

I Xð Þ � A Yð Þ ¼ I Yð Þ � A Xð Þ
i:e: I þ Að Þ for X ¼ I þ Að Þ for Y

So it makes sense to define electronegativity as I þ A; the factor of½ (Eq. (7.32))

was said by Mulliken to be “probably better for some purposes” (perhaps he meant

to make χ the arithmetic mean of I and A, an easily-grasped concept).

Electronegativity has also been expressed in terms of orbital energies, by taking

I as the negative of the HOMO energy and A as the negative of the LUMO energy

[156]. This gives

χ ¼ � EHOMO þ ELUMOð Þ
2

ð7:33Þ

This expression has the advantage over Eq. (7.32) that one needs only the

HOMO and LUMO energies of the species, which are provided by a one-pot

calculation (i.e. by what is operationally a single calculation), but to use

Eq. (7.32) one needs the ionization energy and electron affinity, the rigorous

calculation of which demands the energies of M, Mþ, and M� ; cf. the Fukui

functions for SCN� later in this section. How good is Eq. (7.33)? I ¼ �EHOMO is

a fairly good approximation for the orbitals of wavefunction theory, but not for the

Kohn-Sham orbitals of current DFT, and A ¼ �ELUMO is only a very rough

approximation for the Kohn-Sham orbitals, and for wavefunction orbitals

�ELUMO of M is said to correspond to the electron affinity of M�, not of M (see

the ionization energy and electron affinity subsection above). So how do the results

of calculations using the formula of Eq. 7.33 compare with those using Eq. (7.32)?

Table 7.12 gives values of χ calculated using QCISD Tð Þ=6-311þ G* (Chap. 5,

Sect. 5.4.3) values of I and A, which should give good values of these latter two

quantities, and compares these χ values with those from HOMO/LUMO energies

calculated by ab initio (MP2(FC)/6‐31G*) and by DFT (B3LYP/6‐31G*). For the
two cations the agreement between the three ways of calculating χ is good; for the

other species it is erratic or bad, although the trends are the same for the three

methods within a given family (hardness decreases from cation to radical to anion).

It seems likely that Eq. (7.32) is the sounder way to calculate electronegativity. An

exposition of the concept of electronegativity as the (negative) average of the

HOMO and LUMO energies, and the chemical potential (�χ) as lying at the

midpoint of the HOMO/LUMO gap, was given by Pearson [156].

Chemical hardness and softness are much newer ideas than electronegativity,

and they were quantified only fairly recently. Parr and Pearson (1983) proposed to

identify the curvature (i.e. the second derivative) of the E vs. N graph (e.g. Fig. 7.10)
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with hardness, η [157]. This accords with the qualitative idea of hardness as

resistance to deformation, which itself accommodates the concept of a hard mole-

cule as resisting polarization–not being readily deformed in an electric field: if we

choose to define hardness as the curvature of the E vs. N graph, then

η ¼ ∂2
E

∂N2

 !
v

¼ ∂μ
∂N


 �
v

¼ � ∂χ
∂N


 �
v

ð7:34Þ

where μ and χ are introduced from Eqs. (7.30) and (7.31). The hardness of a species

is then the amount by which its electronegativity–its ability to accept electrons–

decreases when an infinitesimal amount of electronic charge is added to

it. Intuitively, a hard molecule is like a rigid container that does not yield as

electrons are forced in, so the pressure, analogous to the electron density, inside

builds up, resisting the ingress of more electrons. A soft molecule may be likened to

a balloon that can expand as it acquires electrons, so that the ability to accept still

more electrons is not so seriously compromised. Softness is logically the reciprocal

of hardness:

σ ¼ 1

η
ð7:35Þ

and qualitatively, of course, it is the opposite in all ways.

To approximate hardness by I and A (cf. the approximation of electronegativity

by Eq. (7.32)), we approximate the E ¼ f Nð Þ curve (cf. Fig. 7.10) by a general

quadratic (since it looks like a quadratic):

E ¼ aN2 þ bN þ c
∂2

E

∂N2
¼ 2a

We will now let M denote any atom or molecule, and Mþ and M� the species

formed by removal or addition of an electron from M.

E(M) corresponds toN ¼ 1andE M�ð Þcorresponds toN ¼ 2, so substituting into

our quadratic equation

E Mð Þ ¼ a 12
� þ b 1ð Þ þ c ¼ aþ bþ c

and

E M�ð Þ ¼ a 22
� þ b 2ð Þ þ c ¼ 4aþ 2bþ c

and so

2a ¼ cþ E M�ð Þ � 2E Mð Þ
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Since

E 0ð Þ ¼ E Mþð Þ ¼ a 02
� þ b 0ð Þ þ c ¼ c;

2a ¼ E Mþð Þ þ E M�ð Þ � 2E Mð Þ ¼ E Mþð Þ � E Mð Þ½ � � E Mð Þ � E M�ð Þ½ � ¼ I � A

i:e η ¼ ∂2
E

∂N2

 !
v

¼ I � A ð7:36Þ

Actually, the hardness is commonly defined as half the curvature of the E vs.

N graph, giving

η ¼ 1

2

∂2
E

∂N2

 !
v

¼ I � A

2
ð7:37Þ

and from Eq. (7.34)

η ¼ 1

2

∂2
E

∂N2

 !
v

¼ 1

2

∂μ
∂N


 �
v

¼ �1

2

∂X
∂N


 �
v

ð7:38Þ

The one-half factor is [156] to bring η into line with Eq. (7.32), where this factor
arises naturally in applying the three-point approximation and the definitions of

I and A to the rigorous Gibbs equation (Eq. (7.30)) for electronic chemical potential.

Electronegativity has also been expressed in terms of orbital energies, by taking

I as the negative of the HOMO energy and A as the negative of the LUMO energy

[156]. This gives

η ¼ ELUMO � EHOMOð Þ
2

ð7:39Þ

Like the analogous expression for electronegativity (Eq. (7.33)), this requires

only a “one-pot” calculation, of the HOMO and LUMO. Much of what was said

about Eq. (7.33) applies to Eq. (7.39). Table 7.12 gives values of η calculated

analogously to the χ values discussed above. The HOMO/LUMO hardness values

are in even worse agreement with the I/A ones than are the HOMO/LUMO

electronegativity values with the I/A values. The zero values for the HOMO/

LUMO-calculated η of the radicals arise from taking the half-occupied orbital

(semioccupied MO, SOMO) as both HOMO and LUMO. The orbital view of

hardness as the HOMO/LUMO gap is discussed by Pearson, who also reviews the

principle of maximum hardness; according to this, in a chemical reaction hardness

and the HOMO/LUMO gap tend to increase, potential energy surface relative

minima represent species of relative maximum hardness, and transition states are

species of relative minimum hardness [156]. These general ideas about hardness

have been expounded [158] and the reciprocal concept of softness was used (with

the Fukui function) to rationalize some cycloaddition reactions [159].
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The Fukui function (the frontier function) was defined by Parr and Yang [150] as

f rð Þ ¼ δμ

δv rð Þ
� �

N

¼ ∂ρ rð Þ
∂N

� �
v

ð7:40Þ

This says that f(r) is the functional derivative (Sect. 7.2.3.2.2, The Kohn-Sham
equations) of the chemical potential with respect to the external potential (i.e. the

potential caused by the nuclear framework), at constant electron number; and that it

is also the derivative of the electron density with respect to electron number at

constant external potential. The second equality shows f(r) to be the sensitivity of

ρ(r) to a change in N, at constant geometry. A change in electron density should be

primarily electron withdrawal from or addition to the HOMO or LUMO, the

frontier orbitals of Fukui [160] (hence the name bestowed on the function by Parr

and Yang). Since ρ(r) varies from point to point in a molecule, so does the Fukui

function. Parr and Yang argue that a large value of f(r) at a site favors reactivity at

that site, but to apply the concept to specific reactions they define three Fukui

functions (“condensed Fukui functions” [109]):

f * rð Þ ¼ ∂ρ rð Þ
∂N

� �*
v

* ¼ þ, � , 0 ð7:41Þ

The three functions fþ, f�k , and f 0k refer to an electrophile, a nucleophile, and a

radical. They are the sensitivity, to a small change in the number of electrons, of the

electron density in the LUMO, in the HOMO, and in a kind of average HOMO/

LUMO half-occupied orbital. Practical implementations of these condensed Fukui

functions are the “condensed-to-atom” forms of Yang and Mortier [161]:

Table 7.12 Electronegativity, χ, and hardness, η (cf. Fig. 7.10)

I A

HOMO, MP2

(HOMO,

DFT)

LUMO, MP2

(LUMO, DFT)

χ: (I +A)/2, HOMO/

LUMO MP2,

HOMO/LUMO

DFT

η: (I�A)/2,
HOMO/

LUMO MP2,

HOMO/

LUMO DFT

F+ 36 19.8 �37.6 (�30.0) �17.7 (�27.3) 27.9, 27.7, 28.7 8.1, 10.0, 1.4

F. 19.8 3 �19.5 (�14.5) �19.5 (�14.5) 11.4, 19.5, 14.5 8.4, 0, 0

F� 3 �14 �2.1 (4.6) 42.1 (36.4) �5.5, �20.0, �20.5 8.4, 22.1, 15.9

HS+ 20.2 11.3 �20.3 (�16.8) �10.7 (�15.7) 15.8, 15.5, 16.3 4.5, 4.8, 0.6

HS. 11.3 1.7 �12.5 (�8.7) �12.5 (�8.7) 6.5, 12.5, 8.7 4.8, 0, 0

HS� 1.7 �6.4 �1.9 (1.3) 12.3 (8.4) �2.4, �5.2, �4.9 4.1, 7.1, 3.6

For each species χ and η have been calculated in three ways: (1) From ionization energy (I ) and
electron affinity (A), using χ¼½(I +A) and η ¼1/2(I�A). I and A were calculated (QCISD(T)/

6-311+G*) as the energy differences of the optimized-geometry species, i.e. adiabatic values.

(2) From the MP2(FC)/6-31G* HOMO and LUMO, using χ¼�1/2(EHOMO +ELUMO) and

η¼½(ELUMO�EHOMO). (3) From the B3LYP/6-31G* Kohn-Sham HOMO and LUMO, as for

(2). All the numbers refer to units of eV
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fþk ¼ qk N þ 1ð Þ � qk Nð Þ for atom k as an electrophile
f�k ¼ qk Nð Þ � qk N � 1ð Þ for atom k as an electrophile

f 0k ¼
1

2
qk N þ 1ð Þ � qk N � 1ð Þ½ � for atom k as a radical

ð7:42Þ

Here qk(N ) is the electron population (not the charge) on atom k, etc. (see

below). Note that f 0k is just the average of f
þ
k and f�k . The condensed Fukui functions

measure the sensitivity to a small change in the number of electrons of the electron

density at atom k in the LUMO ( fþk ), in the HOMO ( f�k ), and in a kind of

intermediate orbital ( f 0k); they provide an indication of the reactivity of atom k as

an electrophile (reactivity toward nucleophiles), as a nucleophile (reactivity toward

electrophiles), and as a free radical (reactivity toward radicals).

The easiest way to see how these formulas can be used is to give an example.

Let’s calculate f�k for the anion SCN�. We’ll calculate f�S , f
�
C , and f

�
N, to get an idea

of the nucleophilic power of the S, C and N atoms in this molecule. We need the

electron population q on each atom or, what gives us the same information, the

charge on each atom: for an atom in a molecule, electron population¼ atomic

number – charge. To see this, note that if an atom had no electron population, its

charge would equal its atomic number. For each electron added to the atom, the

charge decreases by one. So charge¼ atomic number – electron population. We

perform the calculations for the N-electron species (SCN�) and the (N – 1)-electron

species (SCN.). If we were interested in the nucleophilic power of the atoms in a

neutral molecule M, then to get f�k we would calculate the electron populations or

charges on the atoms in M and in Mþ, and for the electrophilic power of the atoms

in neutral M, to get fþk we calculate the electron populations or charges on the atoms

in M and M�. The calculations are performed for the two species at the same

geometry. In introducing the condensed Fukui function Yang and Mortier [161]

used for each pair of species a single “standard” (presumably essentially average)

geometry, with accepted, reasonable bond lengths and angles, and other workers do

not specify whether they use for, say, M andMþ, the neutral or the cation geometry.

We will adopt the convention that for a calculation on M* * ¼ þ, � or:
� 

, both

geometries will be those of M*, the species of interest to us; this avoids the problem

of trying to do a geometry optimization on a species that may not be a stationary

point on the potential energy surface (assuming that M* is itself a stationary point–

one will rarely be interested in something that is not), a situation that arises

particularly for some anions.

Charges and electron populations from calculations on SCN� and SCN. (and on

CH3CCH and CH3CCH
:þ) are shown in Fig. 7.11. The anion SCN� was optimized

and then the AIM (Chap. 5, Sect. 5.5.4.5) electron population/charges were calcu-

lated (the AIM calculations were done with G98 using the keywordsAIM ¼ Charge).

An AIM calculation was then done on the cation at the anion geometry. The

optimization and both AIM calculations used the B3LYP=6-31þG* method/basis;

results for other charges than AIM and other methods/basis sets are shown shortly.
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The condensed Fukui functions may now be calculated (see Fig. 7.11):

f� Sð Þ ¼ q S, anionð Þ � q S, neutralð Þ ¼ 16:142� 15:488 ¼ 0:654
f� Cð Þ ¼ q C, anionð Þ � q C, neutralð Þ ¼ 5:430� 5:428 ¼ 0:002
f� Nð Þ ¼ q N, anionð Þ � q N, neutralð Þ ¼ 8:431� 8:087 ¼ 0:344

This indicates that in SCN� the order of nucleophilicity is S > N >> C (which is

what any chemist should expect). Sulfur is the softest atom here, and carbon the

hardest. The results of such a calculation vary somewhat with the method/basis

(e.g. HF/6‐31G*, MP2/6‐31G*, etc.), and especially with the way the charges/

electron populations are calculated. Here are the f�k functions from the use of

electrostatic potential charges (the G98 keyword Pop¼MK was used) again using

B3LYP/6-31+G*:

f�k Sð Þ ¼ q S, anionð Þ � q S, neutralð Þ ¼ 16:720� 15:955 ¼ 0:765
f�k Cð Þ ¼ q C, anionð Þ � q C, neutralð Þ ¼ 5:542� 5:707 ¼ �0:165
f�k Nð Þ ¼ q N, anionð Þ � q N, neutralð Þ ¼ 7:738� 7:338 ¼ 0:400

In this case the conclusions, compared to using AIM charges, are unaffected.

In an extensive study, Geerlings et al. [109] showed that with AIM charges

semiquantitatively similar results are obtained with a variety of correlation methods

(HF, MP2, QCISD, and five DFT functionals), using bases similar to 6‐31G*. The

.

S C NS C N

.+

C1C1 CH3CH3
HC2C2

–0.0310.413

6.0315.587

–0.569

H

0.192

5.808 6.569

0.570–0.142 –1.431

5.43016.142 8.431

0.5720.512 –1.087

5.42815.488 8.087

AIM
charges

AIM
electron
populations

AIM
charges

AIM
electron
populations
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charges

ESP
electron
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ESP
charges

ESP
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–

Fig. 7.11 Charges on atoms and corresponding electron populations. For SCN– and SCN. AIM

(Chap. 5, Sect. 5.5.4.5) charges were used, and both species are at the optimized SCN– geometry.

For CH3CCH and CH3CCH.
þ electrostatic potential charges (from Gaussian 98, keyword

Pop¼MK) were used, and both species are at the optimized CH3CCH geometry. The method/

basis for optimization and charge calculation is B3LYP/6-31+G* for SCN– and SCN., and B3LYP/

6-311G** for CH3CCH and CH3CCH.
þ
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biggest deviation from QCISD (Chap. 5, Sect. 5.4.3; QCISD was taken as the most

reliable of the methods used) was shown by MP2. For example, for CH2CHO
� all

correlation methods except MP2 gave O a bigger f� than C. If we disregarded the

MP2 result as anomalous, this could be interpreted as indicating that the O is more

nucleophilic than the C. In fact, in standard organic syntheses enolates usually react

preferentially at the carbon, but the ratio of C:O nucleophilic attack can vary

considerably with the particular enolate, the electrophile, and the solvent. To

complicate things even more, the nucleophile is not always just the simple enolate:

an ion pair or even aggregates of ion pairs may be involved [162]. Even for the case

of an unencumbered enolate, the atom with the biggest f� (the softest atom) cannot

be assumed to be the strongest nucleophilic center, because, as Méndez and

Gázquez point out in their study [163] of enolates using the Fukui function, one

consequence of the hard-soft-acid–base principle is that an electrophile tends

to react with a nucleophilic center of similar softness (soft acids prefer soft

bases, etc.), not necessarily with the softest nucleophilic center. Thus for the

reaction of CH2CHO
� with the electrophile CH3X, one might calculate, for

CH2CHO
�, f‐(C) and f‐(O), and for CH3X, f

þ Cð Þ. The CH3X C would be expected

(in the absence of complications!) to bond to the atom, C or O, whose f� value was

closest to its fþ Cð Þ value. A study of the ethyl acetoacetate enolate using these and

other concepts has been reported by Geerlings and coworkers [164]. This approach,

which is applicable to any ambident species, is further illustrated below by the

reaction of HNC with alkynes.

In a study of the reaction of alkynes with hydrogen isocyanide the condensed

Fukui function was combined with the overall or global softness to try to rationalize

the regioselectivity of attack on the triple bond [159]:

ab
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H
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C C HCH3
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C C
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H

+

_

B
CH3

C C
H

C

N

H

+
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This reaction involves electrophilic attack by HNC on the alkyne, to give a

zwitterion which reacts further. Can our concepts be used to predict which alkyne

atom, C1 or C2 (using the designations of [159]) will be attacked–will the products

be formed primarily through A or through B? Nguyen et al. approached this

problem by first showing that the reaction is indeed electrophilic attack of HNC

(acting as an electrophile) on the alkyne (acting as a nucleophile): the HOMO

(alkyne)/LUMO(HNC) interaction has a smaller energy gap than the HOMO

(HNC)/LUMO(alkyne) interaction. They then calculated the local softness or

condensed softness parameters (not quite the same as the condensed-to-atoms

parameters of Eq. (7.42) that we saw above; see below) of C1 and C2 of the alkyne

and the C of HNC. For C1 and C2 of the alkyne the softness as a nucleophile,

i.e. softness toward electrophiles, was calculated, with the aid of f�k , and for the

550 7 Density Functional Calculations

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


HNC C softness as an electrophile, i.e. softness toward nucleophiles, was calcu-

lated, with the aid of fþk .
Illustrating how the calculations for CH3CCH may be done:

1. Optimize the structure of CH3CCH and calculate its atom charges (and energy).

2. Use the optimized geometry of CH3CCH for a single-point (same geometry)

calculation of the charges (and energy) for the radical cation CH3CCH
:þ.

Steps (1) and (2) enable calculation of f�k .
3. Use the optimized geometry of CH3CCH for a single-point calculation of the

energy of the radical anion CH3CCH
�

Steps (1), (2) and (3) enable us to calculate the global softness (the softness

of the molecule as a whole) of CH3CCH. This is done by calculating the

vertical ionization energy and electron affinity as energy differences, then calcu-

lating the global softness as the reciprocal of global hardness. From Eq. (7.35) this

is σ ¼ 1= I � Eð Þ or σ ¼ 2= I � Eð Þ, depending on whether we define hardness

according to Eq. (7.36) or (7.37). Nguyen et al. use σ ¼ 1= I � Eð Þ, i.e they take

hardness as η ¼ I � Eð Þ rather than ½ I � Eð Þ. The local softness of any atom of

interest may now be calculated by multiplying f�k for that atom by σ. Let’s look at

actual numbers. The CH3CCH B3LYP/6‐311G** basis set and electrostatic poten-

tial charges (with the Gaussian keyword Pop ¼ MK) were used. These gave the

charges (and thus electron populations) shown in Fig. 7.11. From these populations,

f� C1
�  ¼ q C1, neutral

� � q C1, cation
�  ¼ 6:569� 6:031 ¼ 0:538

f� C2
�  ¼ q C2, neutral

� � q C2, cation
�  ¼ 5:808� 5:587 ¼ 0:221

The vertical ionization energy and vertical electron affinity are (here ZPEs have

not been taken into account, as they should nearly cancel; in any case the signif-

icance of a calculated ZPE for the cation or anion at the geometry of the neutral is

questionable, since the two vertical species are not stationary points):

I ¼ E cationð Þ � E neutralð Þ ¼ �116:31237 � �116:69077ð Þ ¼ 0:37840 h
A ¼ E neutralð Þ � E anionð Þ ¼ �116:69077 � �116:58078ð Þ ¼ � 0:10999 h

The softness is thenσ ¼ 1= I � Að Þ ¼ 1= 0:37840� �0:10999ð Þ½ � ¼ 2:048h�1 So

the local softness of the two carbons as nucleophiles (softness toward electrophiles) is

s� C1
�  ¼ 0:538 2:048ð Þ ¼ 1:102

and

s� C2
�  ¼ 0:221 2:048ð Þ ¼ 0:453

(Nguyen et al. report 1.096 and 0.460).

Since electron population is a pure number and global softness has the units of

reciprocal energy, local softness logically has these units too, but the practice is to

simply state that all these terms are in “atomic units”.
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Now consider analogous calculations on the HNC C, but for local softness as an

electrophile (softness toward nucleophiles), using fþk . These calculations gave:

sþ HNC Cð Þ ¼ 1:215

To predict which of the two alkyne carbons, C1 or C2, HNC will preferentially

attack, one now invokes the “local hard-soft acid–base (HSAB) principle” [163],

which says that interaction is favored between electrophile/nucleophile (or radical/

radical) of most nearly equal softness. The HNC carbon softness of 1.215 is closer

to the softness of C1 (1.102) than that of C2 (0.453) of the alkyne, so this method

predicts that in the reaction scheme above the HNC attacks C1 in preference to C2,

i.e. that reaction should occur mainly by the zwitterion A. This kind of analysis

worked for �CH3 and �NH2 substituents on the alkyne, but not for �F.

The concepts of hardness, softness, and of frontier orbitals, with which latter the

Fukui function is closely connected, have been severely criticized [148]. It is also

true that in some cases the results predicted using these methods can also be

understood in terms of more traditional chemical concepts. Thus in the alkyne-

HNC reaction, resonance theory leads one to suspect that the zwitterion A, with the

positive charge formally on the more substituted carbon, will be favored over

B. Nevertheless, the large amount of work which has been done using these ideas

suggests that they offer a useful approach to interpreting and predicting chemical

reactivity. Even an apparently unrelated property, or rather a set of properties,

namely aromaticity, has been subjected to analysis in terms of hardness [165]. As

Parr and Yang say, “This is perhaps an oversimplified view of chemical reactivity,

but it is useful.” [166].

To cite some newer work on Fukui functions: it was claimed that if one accepts

negative values of the function (apparently previously shunned), one can under-

stand reactions in which oxidation of an entire molecule leads to reduction of a part

of it (removing electrons from alkynes can increase the electron density in the CC

bond) [167]; the Fukui functions concept has been extended beyond the “local

philicity” shown above and dual philicity to give a “multiphilic descriptor” which

reflects simultaneously the nucleophilicity and the electrophilicity of a given site in

a molecule [168]; AIM calculations (Chap. 5, in Sect. 5.5.4.5) were said to give the

best results with condensed Fukui functions (Eqs. (7.41) and (7.42)) [169]; and the

appropriateness of the Fukui function for describing hard-hard, as distinct from

soft-soft, interactions has been questioned [170].

7.3.6 Visualization

The only cases for which one might anticipate differences between DFT and

wavefunction theory as regards visualization (Chap. 5, Sect. 5.5.6, Chap. 6, Sect.

6.3.6) are those involving orbitals: as explained in Sect. 7.2.3.2.2, The Kohn-Sham
equations, the orbitals of currently popular DFT methods were introduced to make

the calculation of the electron density tractable, but in “pure” DFT theory orbitals

would not exist. Thus electron density, spin density, and electrostatic potential can
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be visualized in Kohn-Sham DFT calculations just as in ab initio or semiempirical

work. However, visualization of orbitals, so important in wavefunction work

(especially the HOMO and LUMO, which according to frontier orbital theory

[160] strongly influence reactivity) does not seem possible in a pure DFT approach,

one in which wavefunctions are not invoked. In currently popular DFT calculations

one can visualize the Kohn-Sham orbitals, which are qualitatively much like

wavefunction orbitals [134] (Sect. 7.3.5.3, Ionization energies and electron affinities).

7.4 Strengths and Weaknesses of DFT

7.4.1 Strengths

DFT includes electron correlation in its theoretical basis, in contrast to

wavefunction methods, which must take correlation into account by add-ons

(Møller-Plesset perturbation, configuration interaction, coupled-cluster) to ab initio

Hartree-Fock theory, or by parameterization in semiempirical methods. Because it

has correlation fundamentally built in, DFT can calculate geometries and relative

energies with an accuracy comparable to MP2 calculations, in roughly the same

time as needed for Hartree-Fock calculations. Aiding this, DFT calculations tend to

be basis-set-saturated more easily than are ab initio: limiting results are (some-

times) approached with smaller basis sets than for ab initio calculations. Calcula-

tions of post-Hartree-Fock accuracy can thus be done on bigger molecules than ab

initio methods make possible.

DFT appears to be the method of choice for geometry and energy calculations on

transition metal compounds, for which conventional ab initio calculation often give

poor results [81, 171]. In fact, a study of diatomic transition metal molecules led to

the conclusion that “the available experimental data do not provide a justification

for using conventional single-reference CC [coupled cluster] theory calculations to

validate or test” functionals for molecules with 3d transition metals, since CCSD

(T)-type calculations perform only “comparable to, but not necessarily better than

KS density functional calculations with a wide set of choices of xc functionals”

[172]. An example of the use of DFT in investigating transition metal- catalyzed

reactions is the application of B3LYP and M06 to a nickel-compound-catalyzed

cycloaddition of dienes to alkynes [173].

DFT works with electron density, which can be measured and is easily intui-

tively grasped [4], rather than a wavefunction, a mathematical entity whose phys-

ical meaning is still controversial.

7.4.2 Weaknesses

The exact exchange-correlation functional EXC[ρ0], one of the terms in the DFT

expression for the energy, is unknown, and no one knows how to fully
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systematically improve our approximations to it. In contrast, ab initio energies can

be systematically lowered by using bigger basis sets and by expanding the corre-

lation method: MP2, MP3, . . ., or more determinants in the CI approach. It is true

that for a particular purpose 6‐311G* may not be better than 6‐31G*, and MP3 is

certainly not necessarily better than MP2, but bigger basis sets and higher correla-

tion levels will eventually approach an exact solution of the Schr€odinger equation.
The accuracy of DFT is being gradually improved by modifying functionals, not

according to some grand theoretical prescription, but rather with the aid of expe-

rience and intuition, and checking the calculations against experiment. This makes

DFT philosophically somewhat semiempirical. Some functionals contain parame-

ters which must be fitted to experiment; these methods are even more distinctly

empirical. Since the functionals are not based purely on fundamental theory, one

should be cautious about applying DFT to very novel molecules. Of course the

semiempirical character of current DFT is not a fundamental feature of the basic

method, but arises only from our ignorance of the exact exchange-correlation

functional. Because our functionals are only approximate, DFT as used today is

not variational (the calculated energy could be lower than the actual energy).

DFT is not as accurate as the highest-level ab initio methods, like QCISD(T) and

CCSD(T) (but it can handle much bigger molecules than can these methods). Even

gradient-corrected functionals apparently were unable to handle van der Waals

interactions [174], although they did give good energies and structures for

hydrogen-bonded species [175], but more recent progress in treating van der

Waals and other weak interactions was encouraging [44, 45], and the problem

now appears to have been substantially overcome (see the discussion of dispersion,

Sect. 7.2.3.4.8).

DFT today is mainly a ground-state theory, although ways of applying it to

excited states are being developed.

7.5 Summary

Density functional theory is based on the two Hohenberg-Kohn theorems, which

state that the ground-state properties of an atom or molecule are determined by its

electron density function, and that a trial electron density must give an energy

greater than or equal to the true energy. Actually, the latter theorem is true only if

the exact functional (see below) is used; with the approximate functionals in use

today, DFT is not variational–it can give an energy below the true energy. In the

Kohn-Sham approach the energy of a system is formulated as a deviation from the

energy of an idealized system with noninteracting electrons. The energy of the

idealized system can be calculated exactly since its wavefunction (in the Kohn-

Sham approach wavefunctions and orbitals were introduced as a mathematical

convenience to get at the electron density) can be represented exactly by a Slater

determinant. The relatively small difference between the real energy and the energy

of the idealized system contains the exchange-correlation functional, the only
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unknown term in the expression for the DFT energy; the approximation of this

functional is the main problem in DFT. From the energy equation, by minimizing

the energy with respect to the Kohn-Sham orbitals the Kohn-Sham equations can be

derived, analogously to the Hartree-Fock equations. The molecular orbitals of the

KS equations are expanded with basis functions and matrix methods are used to

iteratively find the energy, and to get a set of molecular orbitals, the KS orbitals,

which are qualitatively similar to the orbitals of wavefunction theory.

The simplest version of DFT, the local density approximation (LDA), which

treats the electron density as constant or only very slightly varying from point to

point in an atom or molecule, and also pairs two electrons of opposite spin in each

KS orbital, is little used nowadays. It has been largely replaced by methods which

use gradient-corrected (“nonlocal”) functionals and which assign one set of spatial

orbitals to α -spin electrons, and another set of orbitals to β -electrons; this latter

“unrestricted” assignment of electrons added to LDA constitutes the local-spin-

density approximation (LSDA). The best results appear to come from so-called

hybrid functionals, which include some contribution from Hartree-Fock type

exchange, using KS orbitals. The most popular current DFT method is probably

still the LSDA gradient-corrected hybrid method which uses the B3LYP (Becke

three-parameter Lee-Yang-Parr) functional. However, this may soon be largely

replaced by new functionals, like those of the M06 family.

Gradient-corrected and, especially, hybrid functionals, give good to excellent

geometries. Gradient-corrected and hybrid functionals usually give fairly good

reaction energies, but, especially for isodesmic-type reactions, the improvement

over HF/3-21G or HF/6‐31G* calculations does not seem to be dramatic (as far as

the relative energies of normal, ground-state organic molecules goes; for energies

and geometries of transition metal compounds, DFT is the method of choice). For

homolytic dissociation, correlated methods (e.g. B3LYP and MP2) are vastly better

than Hartree-Fock-level calculations; these methods also give tend to give fairly

good activation barriers.

DFT gives reasonable IR frequencies and intensities, comparable to those from

MP2 calculations. Dipole moments from DFT appear to be more accurate than

those from MP2, and B3LYP/6‐31G* moments on AM1 geometries are good.

Time-dependent DFT (TDDFT) is the best method (with the possible exception

of semiempirical methods parameterized for the type of molecule of interest) for

calculating UV spectra reasonably quickly. DFT is said to be better than Hartree-

Fock (but not as good as MP2) for calculating NMR spectra. Good first ionization

energies are obtained from B3LYP/6-31+G*//B3LYP/3-21G(*) energy differences

(using AM1 geometries makes little difference, at least with normal molecules).

These values are somewhat better than the ab initio MP2 energy difference values,

and are considerably better than MP2 Koopmans’ theorem IEs. Rough estimates

of electron affinities can be obtained from the negative LUMOs from LSDA

functionals (gradient-corrected functionals give much worse estimates). For conju-

gated molecules, HOMO-LUMO gaps from hybrid functionals agreed well with the

π ! π* UV transitions. The mutually related concepts of electronic chemical
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potential, electronegativity, hardness, softness, and the Fukui function are usually

discussed within the context of DFT. They are readily calculated from ionization

energy, electron affinity, and atom charges.

Easier Questions

1. State the arguments for and against regarding DFT as being more a semiem-

pirical than an ab initio-like theory.

2. What is the essential difference between wavefunction theory and DFT? What

is it that, in principle anyway, makes DFT simpler than wavefunction theory?

3. Why can’t current DFT calculations be improved in a stepwise, systematic

way, as can ab initio calculations?

4. Which of these prescriptions for dealing with a function are functionals:

(1) square root of f xð Þ: 2ð Þ sin f xð Þ: 3ð Þ
X3
x¼1

f xð Þ � 4ð Þ
Z

f xð Þdx � 5ð Þexp f xð Þð Þ:
5. For which class(es) of functions is the nth derivative of f(x) a functional?
6. Explain why a kind of molecular orbital is found in current DFT, although DFT

is touted as an alternative to wavefunction theory.

7. What is fundamentally wrong with functionals that are not gradient-corrected?

8. The ionization energy of a molecule can be regarded as the energy required to

remove an electron from its HOMO. How then would a pure density functional

theory, with no orbitals, be able to calculate ionization energy?

9. Label these statements true or false: (1) For each molecular wavefunction there

is an electron density function. (2) Since the electron density function has only

x, y, z as its variables, DFT necessarily ignores spin. (3) DFT is good for

transition metal compounds because it has been specifically parameterized to

handle them. (4) In the limit of a sufficiently big basis set, a DFT calculation

represents an exact solution of the Schr€odinger equation. (5) The use of very

big basis sets is essential with DFT. (6) A major problem in density functional

theory is the prescription for going from the molecular electron density func-

tion to the energy.

10. Explain in words the meaning of the terms electronegativity, hardness, and the

Fukui function.

Harder Questions

1. It is sometimes said that electron density is physically more real than a

wavefunction. Do you agree? Is something that is more easily grasped intui-

tively necessarily more real?
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2. A functional is a function of a function. Explore the concept of a function of a

functional.

3. Why is it that the Hartree-Fock Slater determinant is an inexact representation

of the wavefunction, but the DFT determinant for a system of noninteracting

electrons is exact for this particular wavefunction?

4. Why do we expect the “unknown” term in the energy equation (Exc[ρ0], in
Eq. (7.21)) to be small?

5. Merrill et al. have said that “while solutions to the [HF equations] may be

viewed as exact solutions to an approximate description, the [KS equations] are

approximations to an exact description!” Explain.

6. Electronegativity is the ability of an atom or molecule to attract electrons Why

then is it then (from one definition) the average of the ionization energy and the

electron affinity (Eq. (7.32)), rather than simply the electron affinity?

7. Given the wavefunction of a molecule, it is possible to calculate the electron

density function. Is it possible in principle to go in the other direction? Why or

why not?

8. The multielectron wavefunction Ψ is a function of the spatial and spin coordi-

nates of all the electrons. Physicists say that Ψ for any system tells us all that

can be known about the system. Do you think the electron density function ρ
tells us everything that can be known about a system? Why or why not?

9. If the electron density function concept is mathematically and conceptually

simpler than the wavefunction concept, why did DFT come later than

wavefunction theory?

10. For a spring or a covalent bond, the concepts of force and force constant can be

expressed in terms of first and second derivatives of energy with respect to

extension. If we let a “charge space” N replace the real space of extension of the

spring or bond, what are the analogous concepts to force and force constant?

Using the SI, derive the units of electronegativity and of hardness.
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63. (a) Klimeš J, Michaelides A (2012) J Chem Phys 137:120901; (b) Guidez EB, Gordon M S

(2015) J Phys Chem A 119:2161; (c) Conrad JA, Gordon MS (2015) J Phys Chem A 119:

5377; (d) Kruse H, Goerigk L, Grimme S (2012) J Org Chem 77:10824; (e Goerigk L,

Grimme S (2011) Phys Chem Chem Phys 13:6670; (f) Martin JML (2013) J Phys Chem A

117:3118; (g) van Santen JA, DiLabio GA (2015) J Phys Chem A 119:6710 ; (h) Otero-de-la-

Roza A, Johnson ER (2015) J Chem Theory Comput 113:4033

64. Grimme S, Schreiner PR (2011) Angew Chem Int 50:12639

65. Zhao Y, Truhlar DG (2008) J Chem Theory Comput 4:1849

66. Clark T (2000) J Mol Struct (Theochem) 530:1

67. Nooijen M (2009) Adv Quant Chem 56:181

68. Dewar MJS (1992) “A semiempirical life”, profiles, pathways and dreams series, J. I.

Seeman, Edition, American Chemical Society, Washington, DC. p 185

69. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215

70. Reference 12: HF p. 561, UHF pp. 563, 564, G2 pp. 566, 567, MP2, G3 p. 567, CCSD

(T) p. 571, CI p. 572

71. Hehre WJ (1995) Practical strategies for electronic structure calculations. Wavefunction,

Inc., Irvine

72. Hehre WJ, Lou L (1997) A guide to density functional calculations in Spartan. Wavefunction

Inc., Irvine

73. Hehre WJ, Radom L, Schleyer pvR, Pople JA (1986) Ab initio molecular orbital theory.

Wiley, New York; section 6.2

74. H2C¼CHOH reaction The only quantitative experimental information on the barrier for this

reaction seems to be: Saito S (1976) Chem Phys Lett 42:399, halflife in the gas phase in a

Pyrex flask at room temperature ca. 30 minutes. From this one calculates (chapter 5, section

5.5.2.2d, Eq (5.202)) a free energy of activation of 93 kJ mol-1. Since isomerization may be

catalyzed by the walls of the flask, the purely concerted reaction may have a much higher

References 559



barrier. This paper also shows by microwave spectroscopy that ethenol has the O-H bond syn
to the C¼C. The most reliable measurement of the ethenol/ethanal equilibrium constant, by

flash photolysis, is 5.89	 10-7 in water at room temperature (Chiang Y, Hojatti M, Keeffe JR,

Kresge AK, Schepp NP, Wirz J (1987) J Am Chem Soc 109:4000). This gives a free energy of

equilibrium of 36 kJ mol-1 (ethanal 36 kJ mol-1 below ethenol). HNC reaction The barrier for
rearrangement of HNC to HCN has apparently never been actually measured. The equilib-

rium constant in the gas phase at room temperature was calculated (Maki AG, Sams RL

(1981) J Chem Phys 75:4178) at 3.7	 10-8, from actual measurements at higher tempera-

tures; this gives a free energy of equilibrium of 42 kJ mol-1 (HCN 42 kJ mol-1 below HNC).

According to high-level ab initio calculations supplemented with experimental data (Active

Thermochemical Tables) HCN lies 62.35� 0.36 kJ mol-1 (converting the reported spectro-

scopic cm-1 energy units to kJ mol-1) below HNC; this is “a recommended value. . .based on

all currently available knowledge”: Nguyen TL, Baraban JH, Ruscic B, Stanton JF (2015) J

Phys Chem 119:10929. CH3NC reaction The reported experimental activation energy is

161 kJ mol-1 (Wang D, Qian X (1996) J Peng Chem Phys Lett 258:149; Bowman JM,

Gazy B, Bentley JA, Lee TJ, Dateo CE (1993) J Chem Phys 99:308; Rabinovitch BS,

Gilderson PW (1965) J Am Chem Soc 87:158; Schneider FW, Rabinovitch BS (1962) J

Am Chem Soc 84:4215). The energy difference between CH3NC and CH3NC has apparently

never been actually measured. Cyclopropylidene reaction Neither the barrier nor the equi-

librium constant for the cyclopropylidene/allene reaction have been measured. The only

direct experimental information of these species come from the failure to observe

cyclopropylidene at 77 K (Chapman OL (1974) Pure and applied chemistry 40:511). This

and other experiments (references in Bettinger HF, Schleyer PvR, Schreiner PR, Schaefer HF

(1997) J Org Chem 62:9267 and in Bettinger HF, Schreiner PR, Schleyer PvR, Schaefer HF

(1996) J Phys Chem 100:16147) show that the carbene is much higher in energy than allene

and rearranges very rapidly to the latter. Bettinger et al. 1997 (above) calculate the barrier to

be 21 kJ mol-1 (5 kcal mol-1)

75. Spartan is an integrated molecular mechanics, ab initio and semiempirical program with an

outstanding input/output graphical interface that is available in UNIX workstation and PC

versions: Wavefunction Inc. http://www.wavefun.com. 18401 Von Karman, Suite 370, Irvine

CA 92715, USA

76. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865; Erratum: Perdew JP,

Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

77. Tao J, Pewdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401

78. Wheeler SE, Houk KN (2010) J Chem Theory Comput 6:395

79. Scheiner AC, Baker J, Andzelm JW (1997) J Comput Chem 18:775

80. El-Azhary AA (1996) J Phys Chem 100:15056

81. Bauschlicher CW Jr, Ricca A, Partridge H, Langhoff SR (1997) Recent advances in density

functional methods. Part II. Chong DP (ed) World Scientific, Singapore

82. (a) Scott AP, Radom L (1996) J Phys Chem 100:16502; (b) Sibaev M, Crittenden DL (2015) J

Phys Chem A 119:13107

83. (a) As of early-2015, the latest “full” version (as distinct from more frequent revisions) of the

Gaussian suite of programs was Gaussian 09. Gaussian is available for several operating

systems; see Gaussian, Inc., http://www.gaussian.com. 340 Quinnipiac St., Bldg. 40, Wal-

lingford, CT 06492, USA; (b)The statistical mechanics routines in Gaussian: Ochterski JW

Gaussian white paper “Thermochemistry in Gaussian”, http://www.gaussian.com/g_

whitepap/thermo.htm

84. Blanksby SJ, Ellison GB (2003) Acc Chem Res 36:255; Chart 1

85. Hammond GS (1955) J Am Chem Soc 77:334

86. From the NIST website. http://webbook.nist.gov/chemistry/: Chase Jr MW (1998) NIST-

JANAF themochemical tables, 4th edn. J Phys Chem Ref. Data, Monograph 9, 1998, 1–1951

87. Peterson GA (1998) Chapter 13: Computational thermochemistry. In: Irikura KK, Frurip DJ

(eds) American Chemical Society, Washington, DC

560 7 Density Functional Calculations

http://www.wavefun.com/
http://www.gaussian.com/
http://www.gaussian.com/g_whitepap/thermo.htm
http://www.gaussian.com/g_whitepap/thermo.htm
http://webbook.nist.gov/chemistry/


88. Goldstein E, Beno B, Houk KN (1996) J Am Chem Soc 118:6036

89. Martell JM, Goddard JD, Eriksson L (1997) J Phys Chem 101:1927

90. The data are from Hehre WJ (1995) Practical strategies for electronic structure calculations.

Wavefunction, Inc., Irvine; Chapter 4. In each case, the first 10 examples from the relevant

table were used

91. Wiberg KB, Ochterski JW (1997) J Comput Chem 18:108

92. Rousseau E, Mathieu D (2000) J Comput Chem 21:367

93. Ventura ON, Kieninger M, Cachau RE (1999) J Phys Chem A 103:147

94. For this and other misgivings about the multistep methods see Cramer CJ (2004) Essentials of

computational chemistry, 2nd edn. Wiley, Chichester; pp 241–244

95. CBS-QB3 was found to give unacceptable errors for halogenated compounds: Bond D, J Org

Chem 72:7313

96. For pericyclic reactions: Ess DH, Houk KN (2005) J Phys Chem A 109:9542

97. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

98. del Rio A, Bourcekkine A, Meinel J (2003) J Comput Chem 24:2093

99. Singleton DA, Merrigan SR, Liu J, Houk KN (1997) J Am Chem Soc 119:3385

100. Glukhovtsev MN, Bach RD, Pross A, Radom L (1996) Chem Phys Lett 260:558

101. Bell RL, Tavaeras DL, Truong TN, Simons J (1997) Int J Quantum Chem 63:861

102. Truong TN, Duncan WT, Bell RL (1996) Chemical applications of density functional theory.

Laird BB, Ross RB, Ziegler T (eds) American Chemical Society, Washington, DC

103. Zhang Q, Bell RL (1995) J Phys Chem 99:592

104. Eckert F, Rauhut G (1998) J Am Chem Soc 120:13478

105. Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063

106. Jursic BS (1996) Recent developments and applications of modern density functional theory.

In: Seminario JM (ed) Elsevier, Amsterdam

107. Brown SW, Rienstra-Kiracofe JC, Schaefer HF (1999) J Phys Chem A 103:4065

108. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester; p 309

109. Geerlings P, De Profit F, Martin JML (1996) Recent developments and applications of

modern density functional theory. In: Seminario JM (ed) Elsevier, Amsterdam

110. Lendvay G (1994) J Phys Chem 98:6098

111. Boyd RJ, Wang J, Eriksson LA (1995) Recent advances in density functional methods Part

I. Chong DP (ed) World Scientific, Singapore

112. Reference 12, sections 9.8, 9.9

113. Stratman RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218

114. Wiberg KB, Stratman RE, Frisch MJ (1998) Chem Phys Lett 297:60

115. Foresman JB, Frisch Æ (1996) Exploring chemistry with electronic structure methods.

Gaussian Inc., Pittsburgh, p 218

116. Jacquemin D, Preat J, Wathelet V, Fontaine M, Perpète EA (2006) J Am Chem Soc 128:2072
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Chapter 8

Some “Special” Topics: (Section 8.1)
Solvation, (Section 8.2) Singlet Diradicals,
(Section 8.3) A Note on Heavy Atoms
and Transition Metals

Chapters 1–7: (a) addressed molecules as isolated entities,
without reference to their surroundings (except for the water
dimer); (b) concentrated on calculations by relatively
“automatic” model chemistries; and (c) used mainly organic
molecules as illustrations. This chapter to some extent
redresses these constraints.

Abstract For some purposes solution-phase computations are necessary, e.g. for

understanding certain reactions, and for the prediction of pKa in solution. For

introducing the effects of solvation there are two methodologies (and hybrids of

these two): microsolvation or explicit solvation, and continuum solvation.

Some molecular species are not calculated properly by straightforward model

chemistries: these include singlet diradicals and some excited state species. For

these the standard method is the complete active space approach, CAS (CASSCF,

complete active space SCF). This is a limited version of configuration interaction,

in which electrons are promoted from and to a carefully chosen set of molecular

orbitals.

For systems with heavy atoms we often employ pseudopotential basis sets

(frequently relativistic), which reduce the computational burden of large numbers

of electrons. Transition metals present problems beyond those of main-group

heavy atoms: not only can relativistic effects be significant, but electron d- or

f-levels, variably perturbed by ligands, make possible several electronic states.

Also, nearly degenerate s and d levels can cause convergence problems. DFT

calculations, with pseudopotentials, are the standard approach for computation on

such compounds.

8.1 Solvation

Nature abhors a vacuum
–A dictum of Aristotelian physics

© Springer International Publishing Switzerland 2016
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8.1.1 Perspective

Calculations on isolated molecules, unencumbered by solvent, are undoubtedly

simpler conceptually, theoretically, and algorithmically, than in- solution compu-

tations (although the vacuum is not what it used to be [1]). So we ask: how realistic

are vacuum (gas phase) calculations, and how important is it to take into account the

embrace of solvent molecules? Serious questions about the value of calculations

which ignore solvent are clearly justified in the case of biological molecules and

reactions, since these entities are immersed in water. A relatively early article on

molecular modelling and computer-aided drug design [2] elicited incisive critical

comments: “When a process as fundamental as the absorption of one dioxygen

molecule by hemoglobin involves 80 water molecules. . .what can we learn about

docking a drug in vacuo?” gives the flavor of the critique [3]; a response to this

conceded that neglecting solvation is an “apparent oversimplification”, but

contended that “gas-phase structures correlate surprisingly well with a number of

known physiological facts” [4]. Nearly two decades later a study of the 20 natural

amino acids examined in detail their calculated geometries in the gas phase and in

solution (using various continuum models–see below) and concluded that “the use

of gas-phase-optimized geometries can in fact be quite a reasonable alternative to

the use of the more computationally intensive continuum optimizations” [5]. Exam-

ination of the literature and judicious reflection lead to the conclusion that for some

purposes in vacuo (gas phase) computations are not only adequate but are the

appropriate ones, while for other purposes considering solvation is essential.

If the purpose of a calculation is to probe the inherent properties of a molecule as

a thing in itself, or of a phenomenon centered on isolatedmolecules, then we do not

want the complication of solvent. For example, a theoretically oriented study of the

geometry and electronic structure of a novel hydrocarbon, e.g. pyramidane [6], or of

the relative importance of diatropic and paratropic ring currents [7], properly

examines unencumbered molecules. On the other hand, if we wish, say, to calculate

from first principles the pKa of acids in water, we must calculate the relevant free

energies in (or of transfer to) water [8]. Noteworthy too is the fact that solvation, in
contrast to gas phase treatments, is somewhat akin to molecules in bulk, in crystals

[9]. Here a molecule is “solvated” by its neighbors in a lattice, although the

participants have a much more limited range of motion than in solution. Rates,

equilibria, and molecular conformations are all affected by solvation. Bachrach has

written a concise review of the computation of solvent effects with numerous

apposite references [10].

8.1.2 Ways of Treating Solvation

There are two basic ways to treat solvation computationally: explicit and implicit.

Microsolvation, that is explicit solvation, places solvent molecules around the
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solute molecule. Continuum solvation, implicit solvation, places the solute mole-

cule in a cavity in a continuous medium which simulates the sea of solvent

molecules. There are also hybrid methods: solute microsolvated and this entity

surrounded by a solvent continuum, and the “molecular integral equation theory”

method, the “three-dimensional theory of solvation” and its implementation in the

3D-reference interaction site model, 3D-RISM.

Microsolvation, Explicit Solvation This is called explicit because computationally,

individual solvent molecules are placed around the solute molecule. “Surrounding”

the solute with solvent molecules might be putting it too strongly, because, at least

with routine quantum-mechanical calculations, few molecules of solvent are used,

typically about one to ten. In experimental reality, a solvent molecule is surrounded,

depending on its size, by a first solvation shell of about six (for a monatomic ion) to

probably hundreds or thousands of water molecules for a protein or nucleic acid

molecule. The first solvation shell is in turn solvated by what we could call a second

shell, and so on; when to cease considering the solvent molecules can be problem-

atic [11]. Actually, solvation calculations on large biomolecules in a bath of a large

number of explicit water molecules have been reported. These are typically done

with molecular dynamics, MD, [12a], using molecular mechanics (MM, Chap. 3)

forcefields, which is outside the scope of this book (but see an investigation of the

ability of continuum methods to handle protein-protein interactions in solution:

[12b]). Deng et al. have reported a study of the conformational behavior of alanine

dipeptide in water which was said to combine the advantages of both the explicit

and implicit approaches [12c]. MD calculations on biomolecules have been

reviewed [13a]. An MD procedure for predicting and quantifying the binding of

water molecules to internal sites of macromolecules [13b], and a QM/MM (quan-

tum mechanics/molecular mechanics) procedure with MD for examining reactions

in solution has been described [13c]. In our presentation of explicit solvation we

will concentrate on quantum mechanical calculations in which a few solvent

molecules are used–very literally microsolvation. Two examples of this technique

are discussed:

1. The effect of microsolvation on the E2 and SN2 reaction F� þ C2H5Fþ nHF
Bickelhaupt et al. used DFT to study the reaction of fluoroethane with fluoride

ion, solvating the reactants with from zero (gas phase) to four hydrogen fluoride

solvent molecules [14]. HF is an unusual solvent, and presumably was chosen

rather than water because of its geometric simplicity and because it is, like water,

protic, although an HF molecule can hydrogen bond to only one acceptor at a

time. A virtue was made of the “artificiality” of theHF=F� acid/base system: that

HF is much more acidic than water and fluoride with their basis set is “artificially

strong” was said to “lead to pronounced effects of solvation, facilitating inter-

pretation.” These authors clearly recognized that a microsolvated system of their

type is not really a well-simulated condensed-phase system: solvent molecules

are rationed in the former. The purpose of the computations was to obtain a

qualitative understanding of the effect of solvent on these synthetically useful

reactions. One deficiency of microsolvation here was that an unsolvated fluoride

ion tended to be ejected, since with a limited number of solvent molecules
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transfer of HF molecules from the attacking F� to the forming F� was not

favored, and this raises the activation energy. In “real solvation”, which might be

called macrosolvation, there is an abundance of solvent molecules and all

species can be adequately solvated.

Nevertheless, important features of real solvent reactions were reproduced by

microsolvation. The role of ion-molecule complexes, important in the gas phase,

decreased rapidly with introduction of solvent molecules, the reaction profile

becoming nearly unimodal (see Continuum Solvation, below). Activation energies

for both E2 and SN2 processes increased due to stronger solvation of reactants than

of transition states (although in this work, because of imposed geometric con-

straints, true transition states were not obtained); solution reactions of these kinds

are known to be up to 1020 times slower than in the gas phase. Also, in contrast to

gas-phase conditions, substitution was favored over elimination. The conclusion

was that “the inclusion of a few solvent mols in the quantum mechanical treatment

can significantly improve the theoretical description of some condensed-phase

characteristics.”

2. Hydrolysis of CH3Cl with 13 explicit water molecules Yamataka and Aida used

ab initio calculations to study the reaction of chloromethane (methyl chloride)

with water, solvating the reactants with up to 13 water molecules [15]. With

three or with 13 solvent molecules “three important stationary points” were

located: two “complexes” and a transition state. These were a solvated CH3Cl

molecule (complex 1), the transition state, and solvated products (complex 2),

the latter being methanol and HCl (when 3H2O were used) or methanol, chloride

ion andH3O
þ (when 13 H2O were used). Note that these so-called complexes are

not the same kind of species called complexes in the gas-phase reaction (see

Continuum Solvation, below). With 13 water molecules the transition state was

surrounded by all the solvent molecules with, apparently, no vacant spaces, and

the reaction energetics and secondary deuterium effects were reproduced well.

Compared to the two “complexes”, the transition state was strongly stabilized by

solvation: with 13 H2O the relative energies were complex 1, transition state,

complex 2 ¼ 0, 24.04, �1:59kcal mol�1, i.e. 0, 101 kJ, �6:7 kJ mol�1. The

authors point out that the stationary points they found are probably not unique:

various configurations of reacting species, starting with CH3Cl and water and

ending with CH3CH, Cl
� and H3O

þ, may lie along the reaction pathway.

An important feature of this reaction is that a bond to the solvent is made: in

forming CH3OH a proton is transferred from the oxygen that bonds to carbon, onto

a water molecule, giving H3O
þ. This is nicely reproduced with 13 H2O, but cannot

be modelled with continuum methods since these essentially adjust the electron

distribution in a cavity-ensconced molecule without breaking or making bonds. The

authors concluded that “apparently the 13 water system produced a reasonable

picture of the hydrolysis.”

Continuum Solvation (Implicit Solvation) This is called implicit because a contin-

uous medium, a continuum, is used to “imply” the presence of individual solvent

568 8 Some “Special” Topics: (Section 8.1) Solvation, (Section 8.2). . .



molecules. The algorithm places the solute in a cavity in a solvent medium, and the

interaction between the solute and the cavity is calculated. Using a continuum

instead of individual solvent molecules is, at its best, a way of averaging out the

effect of a large number of solvent molecules; indeed, if microsolvation (above) is

used to calculate thermodynamic properties, then several calculations, best done

with molecular dynamics, would be needed, followed by the calculation of a

Boltzmann average. This is because there are several minimum-energy arrange-

ments of molecules around a solute (as hinted at in [15]). Although microsolvation

studies are needed if one wishes to computationally pinpoint the effect of molecules

of solvent on specific processes, as in the E2/SN2 studies above [14], continuum

calculations are, by and large, the easiest and most popular way of treating solvent

effects.

The key steps in current continuum solvation models are the calculation of the

size and shape of the solvent cavity and of the interaction energy of the solute with

the solvent. Details of these calculations have been presented in, for example,

the books by Cramer [16] and Jensen [17], and in detailed journal reviews

[18–20]. Here I will only outline the basic features and illustrate some applications

of continuum solvation calculations. The simplest cavity for a solute molecule is a

spherical, the next most complex ellipsoidal. For the great majority of molecules,

which are not spherical or ellipsoidal, models based on these are quite unrealistic,

and for quantitative or even much semiquantitative work such models are obsolete.

Realistic continuum models place the solute molecule in a cavity designed to match

its shape, although there are degrees of accuracy for defining this shape, as well as

the size of the cavity. The shape and size of the cavity define the solvent-accessible

surface area (SASA), a quantity needed by the method. The simplest tailored shape

would be that resulting from the exposed surfaces of an overlapping spheres

molecular model (Fig. 8.1); the spheres have scaled van der Waals atomic radii.

However, the V-shaped crannies between some nearby overlapping spheres are

inaccessible to solvent, and a more realistic measure of SASA is the surface defined

by a sphere (of empirical radius for various solvents) rolling over the molecular

surface. A still more sophisticated way of smoothing the overlapping-spheres

surface is to project onto it a large number of small polygons or tessellations

(to tessellate¼ to tile), called tesserae (tessera¼ a small fragment used in making

a mosaic), as in an implementation of the conductor-like screening solvation model

(COSMO, devised by Klamt and coworkers; see below) by Barone and Cossi. This

version of a polarizable continuum method (PCM, see below), called CPCM

(conductor PCM), made geometry optimizations in solution practical [21].

Having obtained a cavity corresponding to a realistic SASA, the energy

of interaction of the solute molecule with the solvent it “sees” is calculated.

This interaction energy can be conceptually divided into terms: (1) the energy

needed to make the cavity in the first place; although one might say that the

solute was formally absent when the cavity was being “prepared”, this cavitation

energy clearly depends on the solute size; (2) the energy of weak solute-solvent

“dispersion” forces; (3) solvent “reorganization energy” caused by disturbing
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solvent-solvent dispersion forces, and (4) the electrostatic interaction energy

between charges on the solute and charges on solvent molecules (in a continuum

context the solute polarizes even a nonpolar medium like pentane, engendering

electrostatic interactions). These divisions are somewhat arbitrary [19, 22]. Terms

(1)–(3) can be subsumed into GCDS, a cavitation-dispersion-solvent-reorganization

free energy term that is a sum of contributions from the atoms of groups in the

molecule, each contribution being the product of an effective exposed surface area

A and a so-called surface tension σ, which has no particular connection with

conventional surface tension, although it has the same units (energy per area or

force per length) [16, 18]:

GCDS ¼
X

i

Aiσi ð8:1Þ

This very empirically, highly parameterized equation for nonelectrostatic terms

is a characteristic of the SMx series (solvent model x . . ., now up to SM12, in order

of appearance) of Cramer, Truhlar and coworkers [23]. As of mid-2015, SMD

may be the most widely-used of this series of methods [23b]. D stands for density,

since unlike the other SM models it uses an electron density function ρ (Chap. 5,

Sect. 5.5.4.5, Atoms-in-molecules (AIM); Chap. 7, Sect. 7.2.1) instead of discrete

. .
.

..

.

.

rolling
sphere

Fig. 8.1 The surface area

of a molecule from

overlapping spheres and

from the surface generated

by a sphere rolling over the

molecular surface. Like the

solvent, the rolling sphere

cannot reach into V-shaped

cavities, so the area of the

surface it defines is a more

realistic measure of the

solvent-accessible surface

than is the overlapping-

spheres surface
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atom charges (Chap. 5, Sect. 5.5.4.2, Charges and bond orders) like most of the

other SM methods. It gives good free energies of solvation (its use is illustrated

below for the effect of solvation on tautomer stability). Amovilli and Floris have

developed a method of calculating the dispersion contribution to free energy of

solvation that is based on the fundamental cause of the dispersion interaction, a

fluctuating electric field interacting with the electric field of another molecule

(Chap. 7, Sect. 7.2.3.4.8). Their equation does not contain empirical parameters,

but appears to have been tested only on He, Ne and fluoride in water [24].

The calculation of the electrostatic part of the interaction energy, the fourth term,

uses as the starting point the Poisson equation, which relates electrostatic potential

ϕ to charge distribution ρ and dielectric constant ε; ϕ and ρ (and possibly ε), vary
from place to place, hence the position vector r:

∇2ϕ rð Þ¼ 4πρ rð Þ
ε

ð8:2Þ

The equation applies to a dielectric medium which responds linearly to

(undergoes polarization linearly with) the charge distribution ρ. A dielectric

medium is a nonconducting, that is, insulating, medium that when subjected to

the field of an electric charge shifts its charge distribution slightly along the

direction of the field, i.e. becomes polarized; ε is the ratio of the electrical conduc-

tivity of the medium to the conductivity of the vacuum. For a solvent it is an

approximate measure of polarity (an index of which is dipole moment μ), if we
constrain our domain to certain classes. For 24 solvents encompassing nonpolar

(e.g. pentane, ε 1.8, μ 0.00), polar aprotic (e.g. dimethyl sulfoxide, ε 46.7, μ 3.96),

and polar protic (e.g. water, ε 80, μ 1.85) dispositions, the author found that the

correlation coefficient r2 of dielectric constant with dipole moment (ε with μ) was
only 0.36 (removing formic acid and water raised it to 0.75). For nine nonpolar,

seven polar aprotic, and eight polar protic solvents, considered as separate classes,

r2 was 0.90, 0.87, and 0.0009 (sic), respectively; dielectric constants and dipole

moments were taken from a table in Wikipedia, http://en.wikipedia.org/wiki/

Solvent. Note that because of parameterization for other factors (e.g. Eq. 8.1),

modern continuum methods do not depend only (if at all–see COSMO and

COSMO-RS, below) on dielectric constant.

The key to current continuum algorithms for calculating the properties of a

molecule in solution is to formulate a solution Hamiltonian operator Ĥ (Chap. 4,

Sect. 4.3.4) in which these energy terms appear in addition to the in vacuo
terms of electron kinetic energy, electron-nucleus attraction, and electron-electron

repulsion. With a basis set {ϕ1, ϕ2, . . ..} (Chap. 4, Sect. 4.3.4), a Fock matrix is

constructed with elements ϕi

��Ĥ
��ϕj

� �
(Dirac notation, Chap. 4, Sect. 4.4.1.2). The

usual SCF procedure (Chap. 5, Sect. 5.2.3.6.2) gives a wavefunction and energy for

the solvated molecule. The wavefunction can be used to calculate the usual

properties, like dipole moment and spectra [25]. Particularly relevant to solute-

solvent interactions is the fact that the charge distribution ρ(r) of the solute
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molecule (Eq. (8.2)) polarizes the solvent continuum of the cavity wall, which in

turn alters ρ(r), and so on. Because of the polarization of the cavity wall these

methods are called polarizable continuum methods/models, PCM. The final inter-

action energy must be calculated iteratively, since the solute polarizes the solvent,

which polarizes the solute, etc., so in this context the SCF procedure is called a self-
consistent reaction field, SCRF, calculation. SCRF calculations have been

implemented in ab initio, semiempirical and DFT calculations. Variations on the

PCM method are IPCM, isodensity PCM, probably now obsolete, which simplified

the calculation by using a vacuum isodensity charge surface [26], and CPCM, a

PCM implementation of the conductor-like screening model [21, 27]. The

conductor-like screening model, COSMO, introduced in 1993, simplified the cal-

culation by using a conducting medium (ε infinite) and introducing the solvent

dielectric constant only as a correction factor [28]. COSMO-RS (realistic solvation,

1995) dispensed with the dielectric constant, which Klamt and coworkers evidently

distrust since the solute does not see a continuous medium. They eschew solvent-

specific parameters and an explicit continuous solvent (although COSMO-RS still

seems to be regarded as being in the spirit of continuum methods) and apply

statistical thermodynamics to solute-solvent fragments and their surface interac-

tions. COSMO-RS uses cavities and surface charges calculated for both solute and

solvent molecules and empirical parameters, eight general ones and two for each

different element, rather than specific macroscopic parameters like dielectric con-

stant for each solvent [29a, 29b]. Thus unlike other continuum methods it does not

fundamentally discriminate between solute and solvent (after all, at which concen-

tration does solute become solvent?). A modification of COSMO-RS, direct

COSMO-RS (DCOSMO-RS), unlike COSMO-RS but like the popular SMx

methods above [23], gives the effect of solvation on the electron distribution in

the solute molecule and thus permits calculation of wavefunction-dependent prop-

erties in the solvent, with very little loss of accuracy for solvation energy compared

to COSMO-RS and SM8 [29c], and, presumably, SMD. COSMO-RS-type calcu-

lations are effective at reproducing thermodynamic and other properties of solu-

tions, and free energies of solvation, as may be seen by examining the numerous

papers from 1993 on by Klamt or Klamt and coworkers on these methods; further

information is available from the company COSMOlogic and Klamt’s book

[30]. All these continuum methods are very fast, especially when used, as is

sometimes the case (there is less justification for this now, with solution geometry

optimization being often practical), with gas phase geometries followed by only

single-point calculations in solvent. The COSMO-RS-type methods are thorough:

they automatically use separate geometry optimizations, and even solvent-tailored

sets of conformations, for the gas and the solution phases. The free energy of

solvation is usually the most relevant energy quantity sought; the keywords for

obtaining this depend on the program. The COSMOtherm suite of programs are

made by the company COSMOlogic and are available in the program suites

Turbomol, ORCA, and others (see Chap. 9).
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We will look at three important processes which have been studied by implicit

solvation techniques, the SN2 reaction in solution, solvation and tautomer stability,

and the calculation of pKa:

(1) The SN2 reaction in solutionWe saw above the application of microsolvation

to SN2 reactions [14, 15]. Let us now look at the chloride ion-chloromethane SN2

reaction in water, as studied by a continuum method. Figure 8.2 shows a calculated

reaction profile (potential energy surface) from a continuum solvent study of the

SN2 attack of chloride ion on chloromethane (methyl chloride) in water. Calcula-

tions were by the author using B3LYP/6-31+G* (plus or diffuse functions in the

basis set are considered to be very important where anions are involved: Chap. 5,

Sect. 5.3.3.4) with the continuum solvent method SM8 [23a] as implemented in

Spartan [31] (SMD [23b] gave similar results). Some of the data for Fig. 8.2 are

given in Table 8.1. Using as the reaction coordinate r the deviation from the

transition state C–Cl bond length r ¼ rC–Cl � 2.426) makes the graph symmetrical

Cl– C Cl

H

HH

Cl–

r = rC – Cl – rT = 0

TS

C

H

H
H

rT
ClCl

0

100

50

r = rC – Cl – rT

1 2 3 40 51–2–3–4–5–

CCl

H

H
H

rC – Cl

TS
rT = 2.426 Å

r = 0

E = 101 kJ mol–1

E (kJ mol–1)
relative to E at rC – Cl = 25 Å, r = 22.574Å

r  = rC – Cl – rT > 0r  = rC – Cl – rT < 0

Fig. 8.2 Profile for the SN2 reaction Cl– þ CH3Cl in water. Calculations by the author using

B3LYP/6-31+G* with the continuum solvent method SM8 [23a] as implemented in Spartan [31]

(Note that r is the distance of the Clfrom the transition state bond length (2.426 Å), not the Cl–/C
distance; thus r measures the “deviation” from the transition state and becomes zero at the

transition state. This makes the graph symmetrical about the energy axis, as it should be presented

for this identity reaction. The zero of energy is taken as rC–Cl ¼ 25 Å, r ¼ 22.574 Å)
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about the energy axis, as it should be presented for this identity reaction. The values

on the energy axis are DFT (B3LYP) energies, 0 K enthalpies, relative to a state of

little Cl�=CH3Cl interaction (rC–Cl ¼ 25Å, r ¼ 22:574 Å). The calculations were

done as a series of constrained geometry optimizations with fixed Cl�/C distance;

the transition state (imaginary frequency 470i cm�1; C–Cl 2.426 Å) was calculated
without constraints beyond the obvious D3h symmetry.

These results are in accord with the accepted mechanism for the SN2 reaction

in water: a smooth, one-step process with no intermediates [32]. This calculation

agrees with a valence bond-calculated profile and activation energy (109 kJ mol�1

[33]), and with molecular dynamics activation energies (113 kJ mol�1 [34, 35]);

those are free energies and the 100 kJ mol�1 of Fig. 8.1 is an enthalpy, but the

difference is not expected to be large here (see comment after Eq. (5.173), Chap. 5).

The experimental free energy of activation is 111 kJ mol�1 [36]. The respectable

quantitative agreement with experiment for our modest computational level is

gratifying, but for us the salient point is the smooth one-step profile: we now

contrast this with the gas phase reaction.

Compare Fig. 8.2 with Fig. 8.3, this latter being the calculated reaction profile

for the SN2 attack of chloride ion on chloromethane in the gas phase; otherwise, the
calculation was implemented as for the water continuum calculation of Fig. 8.2.

Some of the data for Fig. 8.3 are given in Table 8.2. In the gas phase calculation, as

Cl� approached CH3Cl the energy falls, rather than rises, until a “complex”,

a somewhat vague word in chemistry, sometimes indicating a weakly bound

molecule, is formed, then the energy rises toward the transition state. The

complex is indeed weakly bound: its energy of�39 kJ mol�1 compared to separated

Cl� þ CH3Cl is only that of a moderately strong hydrogen bond [37], while a

typical covalent bond has an energy of about 400 kJ mol�1. The simplest, albeit

perhaps incomplete, picture of the complex is that the chloride ion is electrostati-

cally attracted to the partial positive charge on the carbon of chloromethane, and

nicely consonant with this, in an electron density slice the contour lines show a

sharp contrast between the short covalent C–Cl bond (1.856, cf. 1.803 Å in CH3Cl)

and the long (3.200 Å) “complex” bond (this author’s observations). It thus seems

Table 8.1 Some of the data used to construct Fig. 8.2

rC�Cl, Å r, Å SM8 E, Hartrees Relative E kJ mol�1

25 22.574 �960.51789 0

5 2.574 �960.51663 3.3

4 1.574 �960.51495 7.7

3 0.574 �960.50604 31.1

2.5 0.074 �960.48412 88.6

2.426, transition state 0 �960.47955 101

Variation of energy with Cl-/C distance for the SN2 reaction Cl�þCH3Cl in water. Calculations

by the author using B3LYP/6-31+G* with the continuum solvent method SM8 [23a] as

implemented in Spartan [31]. The r of the x-axis in Fig. 8.2 is rC�Cl� r(transition state)¼
rC�Cl� 2.426. Hartrees were converted to kJ mol�1 by multiplying by 2626
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to be an ion-dipole complex. The transition state and the complex were calculated

without constraints (beyond D3h symmetry for the transition state). The negative

activation energy is not paradoxical, as the proximate reactant for its formation is

the complex, making the barrier from this�2.1–(�39.0)kJ mol�1 ¼ 36:9 kJmol�1.

CCl

H

H
H

Cl–
Cl–r  = rC – Cl – rT<0

C Cl

H

HH

r = rC – Cl – rT = 0

TS

C

H

HH

rT ClCl

TS
r T = 2.373 Å
r = 0
E  = –2.10 kJ mol–1

Cl–Cl–

CH3Cl / Cl– complex
E = –39.0 kJ mol–1

CH3Cl /Cl– complex
E = –39.0 kJ mol–1

100

50

r  = rC – Cl – rT

r  = rC – Cl – rT<0

0–5 –4 –3 –2 –1 1 2 3 4 5

E (kJ mol–1)
relative to E at rC – Cl = 25 Å, r = 22.627 Å

complex
complex

C

H

H
H

1.856
Cl

r = 0.827

3.200

rT =
2.373

C

H

HH

1.856
Cl

r = 0.827

3.200

rT =
2.373

Fig. 8.3 Profile for the SN2 reaction Cl– + CH3Cl in the gas phase. Calculations by the author

using B3LYP/6-31+G* in the gas phase, with Spartan [31]. Note that r is the distance of the Cl–

from the transition state bond length (2.373 Å), not the Cl–/C distance; thus r measures the

“deviation” from the transition state and becomes zero at the transition state. This makes the

graph symmetrical about the energy axis, as it should be presented for this identity reaction. The

zero of energy is taken as rC–Cl ¼ 25 Å, r ¼ 22.627 Å. Note the two complexes, which are absent

from the water phase calculation of Fig. 8.2

Table 8.2 Some of the data used to construct Fig. 8.3

rC�Cl, Å r, Å Gas phase E, Hartrees Relative E kJ mol�1

25 22.627 �960.38646 0

5 2.627 �960.394 �19.8

4 1.627 �960.39801 �30.3

3 0.627 �960.40063 �37.2

2.5 0.127 �960.38983 �8.85

2.373 transition state 0 �960.38726 �2.1

Variation of energy with Cl�/C distance for the SN2 reaction Cl�+CH3Cl in the gas phase.

Calculations by the author using B3LYP/6-31 +G* in the gas phase, and Spartan [31]. The r of the
x-axis in Fig. 8.2 is rC�Cl� r(transition state)¼ rC�Cl� 2.373. Hartrees were converted to kJ mol�1

by multiplying by 2626
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These results are in accord with the long-accepted mechanism for the SN2

reaction in the gas phase: experiments using ion cyclotron resonance were

interpreted in the way shown for the calculations of Fig. 8.3: “It is not possible to

explain the observed rates on the basis of a single-well potential” [38]; the profile in

Fig. 8.3 is called a double-well potential. Quantitative information comes from

benchmark calculations by Bento et al., who even checked for relativistic effects,

which were found to be negligible [39]. CCSD(T)/aug-cc-PVQZ (Chap. 5,

Sects. 5.4.3 and 5.3.3.6) gave relative energies of �44 and þ10:5 kJmol�1,

compared to �39 and �2:1 kJmol�1 at out modest computational level. That the

transition state lies slightly below zero in one case and a little above in the other is

of no particular significance; see Bachrach’s discussion of the gas and solution

phase SN2 reaction and in particular his Tables 6.1 and 6.2 [40]. The formation of

the ion-dipole complex in the gas phase but not in solution reflects the fact that in

the absence of solvent the attacking anion “solvates” the carbon of its victim prior

to covalent bonding.

(2) Solvation and tautomer stability The pyridones show a structural ambiguity

related to that of the DNA bases cytosine and thymine, which is perhaps the reason

considerable attention has been paid to the pyridone-hydroxypyridine tautomerism

[41a–e] (for some benchmark calculations on keto-enol tautomers see McCann

et al. [41f]):

O

O

N N N NO

HH H

OH

2-pyridone 4-pyridone2-hydroxypyridine 4-hydroxypyridine
keto form keto formenol form enol form

(OH H syn to N)

Let’s check against experiment calculations on these in the gas phase, and

in water using the continuum model SMD [23b] (D for “the full solute density”),

an extension of the SM8 model [23a] that was used above for the SN2

reaction. The result of free energy (298 K) calculations by the author are compared

with experiment [41a] below. These calculations used free energies from optimi-

zation and frequency calculations in the gas phase and in solution, not “merely” free

energies of solvation (see below) on gas phase geometries. For simplicity only

the syn conformer of 2-hydroxypyridine is considered here. The anti conformer,

related to the syn by rotation about the C–O bond, was calculated to be the higher

in free energy by 22.7 and 5:7kJmol�1 in gas and water, respectively, using

M06‐2X/6-31G* (Chap. 7, Sects. 7.2.3.4 and 7.3), and the higher by 19.7 and

3.4 kJ mol�1 in gas and water, respectively, using G4MP2 (Chap. 5,

Sect. 5.5.2.3.2). For an equilibrium of syn-anti only this would translate to these

percentages of syn conformer in the mixture: M06‐2X/6‐31G* gas 99.99, water 91;
G4MP2 gas 99.96, water 80.
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Here are the percentages of keto and enol from calculation, and deduced from

reported experiments [41a]; the values “gas 4.2”, etc. are free energy (298 K)

differences in kJ mol�1, keto - enol, computed by the two methods:

gas 4.2 gas 17.2

water �11.1 water �4.6

2-keto 2-enol 4-keto 4-enol

M06‐2X/6‐31G* gas 16 84 0.1 99.9

M06-2X/6-31G* water 99 1 86 14

gas 4.4 gas 15.2

water �12.3 water �7.6

G4MP2 gas 14 86 0.2 99.8

G4MP2 water 99.3 0.7 95 5

Experiment gas ca. 30 ca. 70 <10 >90

Experiment water >99 <1 >99 <1

The imprecision in the experimental percentages suggests that the calculated

values, particularly for the gas phase G4MP2, may be more reliable than those

reported for experiment. The only significant differences between the two calcula-

tional levels are for the 4-keto/enol species in water, where M06‐2X/6‐31G* gives

percentages 86/14 and G4MP2 gives 95/5. The calculations match experiment

qualitatively and as far as quantitative comparison is possible: calculation and

experiment agree that on going from the gas phase to water the percentage of

keto tautomer goes from minor or even tiny to overwhelming. This accords with the

expectation that a polar solvent should favor the equilibrium concentration of the

more polar tautomer; in all cases the keto form has a much higher calculated dipole

moment than the corresponding enol:

Calculated dipole moments (Debyes)

2-keto 2-enol

M06‐2X/6‐31G* gas 4.17 1.25

M06‐2X/6‐31G* water 6.55 1.84

G4MP2 gas 4.76 1.53

G4MP2 water 7.57 2.27

4-keto 4-enol

M06‐2X/6‐31G* gas 6.69 2.73

M06‐2X/6‐31G* water 10.59 3.83

G4MP2 gas 7.38 2.62

G4MP2 water 11.96 3.84
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The pyridone-hydroxypyridine calculations above used optimization/frequency

calculations for both the gas phase and for solution. Actually, continuum solvation

methods are frequently used in a much less demanding way to calculate not

standard thermodynamic free energies from frequencies on geometries optimized

at the same level, but rather just the change in free energy on going from the gas

phase to solution, the “solvation energy”, i.e. the free energy of solvation. This is

normally defined as G(solution ) – G(gas phase). For polar or somewhat polar

solutes in water this is negative, since such solutes are stabilized by polar solvation

(Table 6 in [23c]). Illustrating such a “light” calculation for the keto/enol tautomers

of 2-pyridone: using AM1 geometries, which except for very big molecules are

trivially fast to calculate (Chap. 6, Sect. 6.2.5.5), single point (i.e. no geometry

optimization) energies were obtained with M06‐2X/6‐31G* for the gas phase and in
water, the latter using SCRF with SMD. The results were:

keto, gas �323.3740364, keto water �323.3909294; enol, gas �323.3756876,

enol, water �323.3863704. From this we get:

solvationΔG ketoð Þ ¼ �323:3909294� �323:3740364ð Þ
¼ �0:016893, � 44:4 kJmol�1

solvationΔG enolð Þ ¼ �323:3863704� �323:3756876ð Þ
¼ �0:0106828, � 28:0 kJmol�1

So according to these solvation energy results the keto tautomer is stabilized

more than the enol one by 44:4� 28:0 ¼ 16:4 kJmol�1. The data above for the

effect of solvation on the keto/enol composition, obtained by full optimization/

frequency calculations, gave the keto - enol free energy difference as 4.4 (gas) and

�11.1 (water) kJmol�1, a net solvent lowering of 15:5 kJmol�1 in favor of the keto;

this compares well with the shift of 16.4 kJ mol�1 from the simple solvation

energy calculations. If we have a good free energy difference for the gas phase

(e.g. 4:4 kJmol�1 ) from optimization/frequency, this can be combined with the

solvation energy to provide the solution free energy difference (e.g.�11:1 kJmol�1)

thus allowing calculation of the composition in solution without a possibly lengthy

optimization/frequency. On a 2003 vintage machine full and single point SMD

calculations on 4-nitroaniline took 488 and 26 s, a factor of 19 in favor of the single

point. However, the SMx continuum methods are so fast that such “full” solvation

calculations are practical on moderate-size molecules. Nevertheless, in the third

important process described here (below) which has been studied by implicit solva-

tion techniques, the calculation of pKa, not only are solvation free energies used, but

the experimental aqueous solvation energy (and experimental gas phase free energy)

of the proton is resorted to: the proton, a naked nucleus, is computationally intractable

toward continuum methods.

(3) First principles calculation of pKa First, we should realize that the

straightforward-seeming method of calculating the pKa of an acid in water by

simply using optimization/frequencies and routine statistical thermodynamics to
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get the standard free energies of acid, conjugate base and proton in solution is not

yet possible: as hinted above the naked proton does not cooperate with current

continuum (implicit solvation) methods. Explicit solvation, too, presents problems

arising from the numbers and placement of water molecules; advances in molecular

dynamics may eventually solve this.

Nevertheless, thermodynamics seems to assure us that the pKa of an acid is

simply related to the Gibbs free energies of the hydrated (we will limit ourselves to

water here) acid, conjugate base and proton. Surprisingly, in a study of 64 organic

and inorganic acids (accompanied by a brief review of theoretical methods of

calculating pKa), Klamt et al. concluded that “the experimental pKa scale depends

differently on the free energy of dissociation than generally assumed” and “[passed]

the problem forward to the scientific community” [42a]. Kelly et al. attempted to

respond to this challenge, and claimed that adding one water molecule to some

anions and also using the SM6 model “significantly improves the agreement

between the calculated pKa value and experiment” [43]. However, the mixed

microsolvation/continuum approach used there may not be uniform enough to

provide a satisfying method for the general theoretical calculation of pKa.

COSMO models [28–30] were compared with the SM approach [23] by Klamt

[42b] and by Cramer and Truhlar [44]. A 2010 paper by Klamt and coworkers [45]

shows that improved calculated pKa values are obtained for the limited domain of

strong to moderately weak acids by a “cluster-continuum” method in which the acid

and conjugate base are each associated with one or a few solvent molecules and this

“cluster” is then continuum-calculated with COSMO-RS. The authors point out,

however, that for the calculation of pKa “a consistent and generally applicable

method is still lacking”. This paper clarifies the problem raised in [42a]. The matter

is under study.1

I cite three papers to show that standard continuum calculations can give

satisfactory almost-first-principles pKa values: Shields and coworkers used a ther-

modynamic cycle with gas phase and continuum calculations to obtain satisfactory

results for six simple carboxylic acids [46]. These were “absolute” calculations in

the sense that no acid was used as a reference point, although the experimental gas

phase free energy and aqueous solvation energy of the proton were resorted to. It is

the problem of accurately calculating ab initio the solvation energy of the proton

that makes purely ab initio calculations of pKa problematic. Not quite as esthetically

satisfying perhaps, were “relative” calculations in which acetic acid was used as a

reference compound [47]. Similar to the absolute acid calculations was work with

phenols that was said to be “among the most accurate of any such calculations for

any group of compounds” [48]. Note that although the term “first principles” helped

entitle this subsection, and [46–48] describe the showcase methods as “absolute”, in

the thermodynamic cycles both the CBS methods used for gas-phase energies and

the continuum solution calculations contain empirical terms– in fact, these

1A. Klamt, personal communication, 2010 March 13.
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continuum methods are heavily parameterized. So these calculations are not strictly

purely theoretical.

The principles behind the “absolute” pKa calculations in [46] are illustrated with

the aid of Fig. 8.4. The program they used was Gaussian 98 [49], and several ab

initio levels and solvation methods were explored; the favored ones are given here,

with values for acetic acid, CH3COOH:

Term (1) calculated at the HF/6-31+G* level with the CPCM continuous

solvation method was 32:3 kJ mol�1, i.e. the solvation free energy of CH3COOH

was�7:72 kcal mol�1 or�32:3 kJ mol�1. Note that the calculated solvation free

energies, terms (1) and (3), are free energy differences, gas to solvent, estimated

by the program, and do not require possibly time-consuming frequency calcu-

lations as is the case for statistical mechanical calculation of free energies; this

was discussed above in connection with pyridone keto-enol tautomerism.

Term (2) calculated by the high-accuracy multistep CBS-APNO method (Chap. 5,

Sect. 5.5.2.3.2) was 341:2 kcal mol�1 or 1426 kJ mol�1. The Sackur-Tetrode

equation for the gas-phase entropy of the proton was mentioned in this regard,

but in fact the algorithm automatically handles this.

Term (3), calculated as for term (1) was �77:58 kcal mol�1 or �324:6 kJ mol�1.

Term (4), the solvation free energy of the proton was taken from experiment as

�264.61 kcal mol�1 or �1107 kJmol�1.

ΔGs(RCOO–) + ΔGs(H
+)

RCOOHg

from gas phase
calcs

RCOOHs

wanted

RCOO–
s +  H+

sRCOO– g + H+ g

ΔGdiss, s

−ΔGs(RCOOH)
free E of solvation of RFCOOH

ΔGhigh

Fig. 8.4 The principle behind the absolute method of calculating pKa. In this thermodynamic

cycle we want ΔG for dissociation of RCOOH in water (g denotes gas phase and s solvent phase,
water; we refer to standard temperature and pressure free energy differences). The other terms are:

(1) �ΔGs(RCOOH), the negative of the solvation free energy of RCOOH (the solvation free

energy itself is negative); we take ΔG of solvation as the free energy that one must put in

(a negative quantity) to solvate a species, so going from solution to gas requires input of �ΔG
(a positive quantity). This quantity is calculated by a continuum method. (2) ΔGhigh, the gas-phase

ionization free energy of RCOOH, calculated by a high-level multistep method. (3) ΔGs(RCOO
�)

+ΔGs(H
+), the free energy of solvation of the anion plus the free energy of solvation of the

proton. The first term is calculated by a continuum method method and the second is an

experimental value. For conservation of energy: ΔGdiss,s ¼ �ΔGs(RCOOH) + ΔGhigh +

ΔGs(RCOOH) + ΔGs(H
+)
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The free energy of dissociation in water follows (Fig. 8.4):

ΔGdiss, s ¼�ΔGs RCOOHð Þ þ ΔGhigh þ ΔGs RCOOHð Þ þ ΔGs H
þð Þ

¼� �32:3ð Þ þ 1426� 324:6� 1107kJmol�1 ¼ 26:70 kJmol�1:

From the usual relation of free energy to ln Keq and the definition of pKa, with RT

at298 K ¼ 2:478 kJ mol�1 and ln10 ¼ 2:303we getpKa ¼ 26:70=2:303RT ¼ 4:68.
The experimental value for acetic acid was reported [46] to be 4.75, for an error of

only �0.07 pKa unit.

As Liptak and Shields point out, accurate values of gas phase deprotonation and

solvation energies are needed for reasonably accurate pKa values. An error of 1 pKa

unit results from an error in ΔG of 1:36 kcal mol�1 or 5:7 kJ mol�1, and an error of

0.5 pKa unit corresponds to an error in ΔG of only 2:9 kJmol�1. For some purposes

such an energy-difference error would be considered small, 1 kcal mol�1 or 4 kJ

mol�1 being a current standard of “chemical accuracy” [50]. High-accuracy multi-

step methods (Chap. 5, Sect. 5.5.2.3.2) other than the computationally very

demanding CBS-APNO gave reasonable pKa values; when more than one confor-

mation (albeit in the gas phase) was significant, conformationally averaged energies

were used. The choice of solvation method, and even the version of a particular

method, is important. UsingHF=6-31þ G* and another version of the CPCMmethod,

calculations for this book gave solvation free energies for CH3COOH andCH3COO
�

of�32.9 and�316:1 kJ mol�1 respectively (cf.�32.3 and�324:6 kJ mol�1 in [46]).

These values yield ΔGdiss, s ¼ 35:8kJmol�1 and pKa ¼ 6.3. With SM8 the

values were �21.16 and �325:5 kJ mol�1, giving ΔGdiss, s ¼ 14:7 kJ mol�1 and

pKa ¼ 2:6. This shows that even with the choice of a generally good solvation

method, one should check out the procedure with some compounds of known pKa.

An accurate gas-phase dissociation energy is important too. The very accurate

CBS-APNO method can seldom be used, being limited to about seven heavy atoms

(atoms other than H or He; Chap. 5, Table 5.10) and being unable to handle other

than C, H, N, O, F. The much less size-challenged CBS-4 M is insufficiently

accurate for meaningful pKa calculations, but CBS-QB3 and G3(MP2)are useful

for up to about 13–16 heavy atoms (Chap. 5, Table 5.10 and [46]). For large

molecules isodesmic-type reactions (Chap. 5, Sect. 5.5.3.1) may be useful. Con-

sider Fig. 8.5; here is an example, where RCOOH is CFH2COOH. Since this has

only 5 heavy atoms we can use a direct calculation of ΔGhigh,1 with CBS-APNO as

a check on the accuracy of the roundabout isodesmic method. CH2FCOOH has

2 conformations of very similar (gas-phase) energy. The “low-level” method

chosen for the isodesmic reaction was the DFT (Chap. 7) B3PW91/6-31G(d,f),

because in related work a number of perflurorinated acids, with up to 31 heavy

atoms, had being studied at this level. The relevant quantities(cf. Fig. 8.5) are:

Term (1) is the gas-phase isodesmically calculated deprotonation free energy of the

“big” acid CH2FCOOH; it is to be calculated from terms (2) and (3).
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Term (2) is the gas-phase isodesmic free energy for proton transfer from RCOOH to

the conjugate base CH3COO
� of our reference acid. At the B3PW91/6-31G(d,f)

level this is [�327.598929 �228.969707] – [�328.158016 �228.394842] ¼
�0:015778 hartrees ¼ �41:43 kJ mol�1

Term (3) is the gas-phase free energy of deprotonation of the reference acid

CH3COOH; this can be calculated accurately with the high-level CBS-APNO,

giving ¼ �228:500394� 0:010000½ � � �229:053416½ � ¼ 0:543022 hartees ¼
1425:7 ¼ kJ mol�1.

The gas-phase isodesmically calculated deprotonation free energy of

CH2FCOOH follows (Fig. 8.4):

ΔGhigh,1 ¼ ΔGiso þ ΔGhigh,2

¼ �41:4þ 1425:7kJ mol�1 ¼ 1384:3 kJ mol�1:

Compare this with a direct CBS-APNO calculation on CH2FCOOH:

ΔGhigh,1 APNOð Þ ¼ �327:754836� 0:010000½ � � �328:290375½ �
¼ 0:525539 hartrees ¼ 1379:8 kJ mol�1

The isodesmically secured energy is 4:5 kJ mol�1 higher than the direct APNO

value. The NIST website gives 1385� 1387 kJmol�1 for the free energy of

deprotonation, with an estimated error of 8:4 kJmol�1 [51]. If we take the

deprotonation energy of CH2FCOOH to be actually in the range 1380–1387, the

isodesmic calculation works well. But note that an error of 1 pKa unit results from a

free energy error of only 5:7 kJ mol�1, and an error of 0.5 pKa units from an error of

only 2:9 kJ mol�1. We are working at the edge of fairly accurate pKa values.

ΔGhigh, 2
reaction 3

RCOOH + CH3COO–

RCOO–    +    H+    +  CH3COO–

RCOO–  +  CH3COOH

Wanted
ΔGhigh, 1

reaction 1
reaction 2

ΔGiso

Fig. 8.5 The principle behind the using isodesmic reaction for calculating an accurate

deprotonation free energy for an acid too big to yield directly to a high-accuracy calculation.

Note that reaction 1 is really only for deprotonation of RCOOH and reaction 3 is only for

deprotonation of CH3COOH; the anion on the starting side of those reactions was added only

for logical consistency, and cancels. (1) ΔGhigh,1 is the wanted quantity, the free energy of

deprotonation of the large acid RCOOH, but cannot be calculated directly. (2) ΔGiso is the free

energy of the isodesmic reaction and can be calculated fairly accurately. (3) ΔGhigh,2 is the free

energy of deprotonation of CH3COOH and can be calculated accurately directly (any appropriate

reference acid could be used here, and an experimental free energy could be used if available). For

conservation of energy: ΔGhigh,1 ¼ ΔGiso þ ΔGhigh,2
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Hybrid Solvation: Implicit Solvation Plus Explicit Solvation; Microsolvation
Subjected to the Continuum Method Here the solute molecule is associated with

explicit solvent molecules, usually no more than a few and sometimes as few as

one, and with its bound (usually hydrogen-bonded) solvent molecule(s) is subjected

to a continuum calculation. Such hybrid calculations have been used in attempts to

improve values of solvation free energies in connection with pKa: [43], and also

[45] and references therein. Other examples of the use of hybrid solvation are the

hydration of the environmentally important hydroxyl radical [52] and of the

ubiquitous alkali metal and halide ions [53]. Hybrid solvation has been reviewed

[43, 54].

If one is investigating a reaction with the intimate participation of solvent

molecules, then in principle they should be explicitly considered, as in the study

of the hydrolysis of CH3Cl with explicit water molecules (Hydrolysis of CH3Cl with
13 explicit water molecules, above), for here at least one water molecule is a

reactant, not a mere enfolding medium. The implicit + continuum approach may

be useful if one seeks not only insight into a mechanism, as in The effect of
microsolvation on the E2 and SN2 reaction F� þ C2H5F þ nHF, above, but
also wants relative energies in solution of various species involved. An attempt

to do this would place the reactants (probably representing a stationary point),

e.g. [F�=C2H5F=explicit solvent] in a continuum cavity to obtain a free energy of

solvation.

Molecular Integral Equation Theory, the Three-Dimensional Theory of Solvation
and Its Implementation in the 3D-Reference Interaction Site Model,
3D-RISM Here the explicit solvent model is made more manageable by working

with solvent distributions, not individual molecules, and first-principles statistical

mechanics are applied [55]. This approach uses molecular dynamics, usually with

the aid of molecular mechanics, and is presumably limited by the accuracy of the

forcefield (Chap. 3). The method appears to be relatively little-used at present, but

may become competitive with SMx and COSMO-RS as its speed and accuracy

improve.

8.2 Singlet Diradicals

For “Is” and “Is-not” though with Rule and Line,
And “Up-and-down” by Logic, I define,. . .
Ah, but my Computations, People say,. . .
– The Rubaiyat of Omar Khayyam, ca. 1100; translated by Edward Fitzgerald, 1859;

Stanzas 56 and 57.
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8.2.1 Perspective

The electrons in molecules, usually designated alpha and beta, but drawn as up and

down arrows in energy level diagrams and occasionally verbally bestowed with

those directional terms, are commonly neatly paired in orbitals and subject to

tolerably good computations by what Pople called a model chemistry [56]. This

is a sharply-defined procedure that, once settled upon, does not require judgement

to execute and will not vary from one worker to another. Examples are a HF/6‐31G*
geometry optimization or a B3LYP/6-31+G** single-point calculation on a spec-

ified molecule. Almost all the molecular mechanics, ab initio, semiempirical and

DFT calculations discussed in this book have used model chemistries. In contrast to

these, some calculations demand judgement regarding the choice of which set of

orbitals and electrons is or is not to be considered. The most important class of such

calculations is on singlet diradicals (also called biradicals). Other open shell

species, like carbenes and excited states, and some transition metal compounds,

can present related problems.

A singlet diradical is a molecule with an even number of electrons in which all

but two are nicely paired in orbitals in the familiar manner; the “last” two electrons

are to some extent (perhaps essentially fully) decoupled by spatial separation from

each other in a molecular orbital that allows them to reside largely in different

regions of the molecule. These two electrons are, like the other pairs, of opposite

spin, giving the spectroscopic state of a singlet (Fig. 8.6). The molecular orbital

with these decoupled electrons tends to resemble two atomic orbitals (Figs. 8.10

and 8.12), and indeed these molecules have chemical radical character, and

are considered open-shell species. Simple examples of singlet diradicals are singlet
.CH2–CH2–CH2

. (1,3-propanediyl, the trimethylene diradical) and the transition

state for rotation around the CC double bond of ethene, in which the π-bond has

been broken by twisting through 90�. Note that if the two electrons responsible for

diradical character had the same spin, they could not reside in the same orbital

.

.

.

.

.

.

Energy

Two orbitals of the same or
slightly different energy  

Fig. 8.6 A singlet

diradical. Two electrons

(often the highest-energy

ones) are largely unpaired

although of opposite spin
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(Pauli exclusion principle), and the molecule would be a triplet. Routine quantum

calculations–model chemistries–do not as a rule work with singlet diradicals. The

reasons for this, and the techniques that are used on such molecules, are discussed

below.

8.2.2 Problems with Singlet Diradicals and Model
Chemistries

Let us first do a reality check: we’ll test the ability of some model chemistry

methods to perform geometry optimizations on singlet 1,3-propanediyl or

trimethylene (CH2–CH2–CH2) and on singlet 1,4-butanediyl or tetramethylene

(.CH2CH2CH2CH2
.), simple singlet diradicals.

1,3-Propanediyl, Trimethylene Four different starting geometries were used

(Fig. 8.7), with symmetry C1, C2, Cs, and C2v, and each of them was submitted to

a geometry optimization/frequency calculation by the HF, the MP2, and the B3LYP

method (see Chaps. 5 and 7 for these ab initio methods and this DFT method), for

twelve calculations in all. The results are summarized in Table 8.3: all but one

optimization, that starting with the C2v structure, led to closing of the diradical to

give cyclopropane. The C2v starting structure gave a stationary point resembling the

starting structure, an open-chain species. At the HF/6‐31G* level this was a hilltop

with a principal imaginary frequency of 668i and a secondary one of 74i cm�1,

Fig. 8.7 The input structures for attempted model chemistry optimizations on 1,3-propanediyl

(.CH2CH2CH2
.). All bond lengths and angles in these structures were standard, e.g. C–C ca. 1.5 Å,

C–H ca. 1.1 Å, bond angles ca. 110�
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while at the MP2/6‐31G* and the B3LYP/6‐31G* levels it was a transition state

(imaginary frequencies191i and 453i, respectively). When MP2 transition state was

slightly distorted along the imaginary mode (the reaction mode; by visualizing the

vibration, replacing a central CH2 H by F and subjecting this now- Cs structure to

just two optimization steps, then restoring the hydrogen and optimizing fully) a Cs

potential energy relative minimum (no imaginary frequencies) was obtained, i.e. a

real molecule (caveat: at this level). At the HF and B3LYP levels the C2v structure,

altered to Cs and optimized, each gave a transition state with a central hydrogen

seeking to migrate to an end carbon. To summarize: the HF calculations led to a

hilltop and a transition state, the MP2 calculations to a transition state and a relative

minimum, and the B3LYP calculations to two transition states. We see below that

many more stationary points resembling 1,3-propanediyl can be found by appro-

priate methods.

1,4-Butanediyl, Tetramethylene Three different starting geometries were used

(Fig. 8.8), with symmetry C2, C2h, and C1, and each was submitted to a geometry

optimization/frequency calculation by the HF, the MP2, and the B3LYP method.

Table 8.3 Results of attempted geometry optimization of the .CH2CH2CH2. singlet diradical by

different model chemistries; the 6-31G* basis was used in all cases

Symmetry of input structure HF MP2 B3LYP

C1 Cyclopropane Cyclopropane Cyclopropane

C2 Cyclopropane Cyclopropane Cyclopropane

Cs Cyclopropane Cyclopropane Cyclopropane

C2v π-cyclopropane? π-cyclopropane? π-cyclopropane?
See Fig. 8.7 for the input structures and text for clarification

Fig. 8.8 The input structures for attempted model chemistry optimizations on 1,4-butanediyl

(.CH2CH2CH2CH2.). All bond lengths and angles in these structures were standard, e.g. C–C ca.

1.5 Å, C–H ca. 1.1 Å, bond angles ca. 110�–120�
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In all cases the U-shaped C2 input geometry closed to a cyclobutane molecule and

the zigzag C2h geometries dissociated to two ethene molecules. We see below that

many stationary points resembling 1,4-butanediyl can be found by appropriate

methods.

8.2.3 Singlet Diradicals, Beyond Model Chemistries

1. 1,3-propanediyl and 1,4-butanediyl, from the literature

2. Complete active space calculations (CAS)

3. Broken symmetry calculations

(1) 1,3-propanediyl and 1,4-butanediyl, from the literature. We now look at

results of calculations on the 1,3- and 1,4-diradicals by methods more appropriate

than the model chemistries just employed.

1,3-Propanediyl, Trimethylene Using general valence bond (GVB) calculations,

Getty and coworkers found eight stationary points with trimethylene-like structures

[57]. The GVB method is somewhat related to the complete active space method,

discussed below, in that as in a CAS calculation electrons are promoted from

occupied to virtual orbitals in a limited form of configuration interaction. The

emphasis on the promotion of electrons from orbitals that can be identified with

bonds into their antibonding counterparts makes this a valence bond method

(Chap. 4, Sect. 4.3.1). Looking back at our model chemistry calculations on

trimethylene, above, let’s focus on the MP2 calculations as the most reliable: in a

general sense correlated ab initio calculations are more reliable than those at the HF

level and arguably more reliable than DFT–granting that MP2 is not really a very

high level [58]. The MP2 calculations could be construed as giving a C2v

1,3-diradical transition state and a Cs 1,3-diradical relative minimum, but the

proximity of the end carbons in these species, 2.663 Å and 2.654 Å, does not

quite dispel the possibility that we are dealing with an unusual closed-shell mole-

cule, a kind of cyclopropane with a very long CC bond. Indeed, a reaction of

cyclopropane, stereomutation, has been the main impetus for the study of singlet

1,3-propanediyl [59]. Stereomutation is the interconversion of cis and trans
1,2-substituted cyclopropanes (for the parent compound deuterium is used as a

stereochemical marker), and in principle can occur by ring opening to a diradical

and rotation about a C–C bond. For a detailed experimental investigation, see

Berson et al. [60]. Among the eight species revealed by the exhaustive GVB search

of the 1,3-propanediyl potential energy surface by Getty et al. were a C2v hilltop

(two imaginary frequencies) and two Cs species, one a relative minimum and one a

transition state [57]. These three are π-cyclopropane structures and resemble our

MP2 species. The term π-cyclopropane appears to have been coined by Crawford

and Mishra [61] to denote a trimethylene in which the atomic p orbitals can,

hypothetically at least, form a pure π -type CC single bond:

8.2 Singlet Diradicals 587

http://dx.doi.org/10.1007/978-3-319-30916-3_4
http://dx.doi.org/10.1007/978-3-319-30916-3_4


H

H

H

HH

H

A π-cyclopropane with the end methylene groups coplanar, as shown here, is

(0,0)-trimethylene; specifying the twist dihedral allows designation of the other

conformers, e.g (0,90)-trimethylene in which the putative π bond is completely

broken [57]. The model chemistries, then, each led to two trimethylene stationary

points: HF to a hilltop and a transition state, MP2 to a transition state and a relative

minimum, and B3LYP to two transition states.

1,4-Butanediyl, Tetramethylene Using complete active space (CAS) calculations

(below), Doubleday found ten stationary points with tetramethylene-like structures,

in work connected with ring-opening of cyclobutane [62]. We saw that model

chemistries simply lead to closure or dissociation of input tetramethylene-type

structures.

(2) Complete active space calculations (CAS). The plethora of stationary points

found by the GVB (for 1,3-propanediyl) and CAS (for 1,4-butanediyl) methods

cannot be rivalled by ordinary model chemistry methods. We now look at complete

active space (CAS) methods, which are the standard techniques for treating singlet

diradicals; CAS was briefly mentioned in Chap. 5, Sect. 5.4.3, as a type of

multiconfiguration CI (MCSCF) calculation. In CASSCF, the coefficients of the

determinants in the (limited) CI expansion of the molecular wavefunction, and the

coefficients of the basis functions in the expansion of each molecular orbital within

the determinants of the expansion, are optimized. The model chemistries are unable

to reliably handle singlet diradicals because they formulate the wavefunction as a

single determinant which places the electrons of an even-electron molecule

pairwise in orbitals (Chap. 5, Sect. 5.2.3.1). This is the Hartree-Fock wavefunction,

written as a Slater determinant. More than one determinant is really needed because

a single-determinant wavefunction presupposes the absence of degenerate

(or nearly degenerate) orbitals: if such orbitals are present, the algorithm will

simply fill one of them with a pair of electrons. Treating these diradicals within

the ab initio framework requires configuration interaction (CI, Chap. 5, Sect. 5.4.3).

Here the molecular wavefunction is represented as a weighted sum of determinants,

rather than simply as one determinant. A full CI calculation would include all the

determinants derived from the Hartree-Fock one, including a determinant in which

one of the degenerate orbitals is doubly occupied, and one in which the other is

doubly occupied, as well as determinants corresponding to all other possible

excitations of electrons from occupied into formally empty (virtual) orbitals (the

number of virtual orbitals depending on the number of electrons and the number of

basis functions (Chap. 5, Fig. 5.5). Such a full CI calculation, if done with an
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infinitely big basis set, would exactly solve the Schr€odinger equation. This is out of
the question, and even with a large finite basis set full CI is applicable only to very

small molecules. The standard method for computations on singlet diradicals is a

limited form of CI, in which the molecular wavefunction is represented by a

weighted sum of the Hartree-Fock determinant and a carefully chosen set of

molecular orbitals embodying all possible variations on electron occupation

among those orbitals. The chosen set of MOs is the active space, and method is

the complete active space method (CAS). To refine the coefficients that, with the

basis functions comprise the MOs, we use the iterative SCF method (Chap. 5, Sects.

5.2.2 and 5.2.3.6.2), so the full appellation of the technique is complete active space
SCF or CASSCF. This gives a limited-CI wavefunction with corresponding geom-

etry and energy, and if needed the other usual properties that can be obtained from a

wavefunction.

To do a CASSCF calculation, one must first choose the active space, that is, the

relevant MOs. Which MOs are relevant depends on the purpose of the calculation,

and on how “complete” one wants the active space to be–the unattainable limit of

course would be full CI. This will be illustrated with a few examples. Consider the

diradicals 1,3-propanediyl and 1,4-butanediyl. Intuitively, it seems that we should

consider at least these two MOs: the MO that resembles a bonding linear combi-

nation (Chap. 5, Sect. 5.2.3.6) of the two p-type atomic orbitals on the end carbons

and the MO that resembles an antibonding linear combination of these atomic

orbitals. We want these to be our HOMO and LUMO. The CAS wavefunction

would then be composed of the HF determinant plus all determinants in which the

two formally unpaired electrons are distributed (cf. Chap. 5, Fig. 5.2.2) among the

HOMO and LUMO. This is the minimum active space for a CAS calculation on

these species, and is called a CAS(2,2) calculation. This means that two electrons

are being distributed in all possible ways among two MOs.

8.2.3.1 A CASSCF Calculation on 1,4-Butanediyl

The procedure will be described first for 1,4-butanediyl, which failed all our simple

model chemistries tests. We first choose a starting geometry. This will depend

somewhat on the purpose of our study. If we wish to compute the reaction profile

for ring opening of cyclobutane to the proximate diradical, i.e. to the immediate

relative minimum following ring opening (the concept of a well-defined transition

state stationary point seems inapplicable here [63]), we might select a starting

geometry that resembles cyclobutane with a stretched C–C bond. If we wish to

explore the whole 1,4-butanediyl potential energy surface, we would perform

geometry optimizations starting with all reasonably distinct conformations, created

randomly or by systematically altering the torsion angles of a beginning structure.

Here we consider a CASSCF calculation starting with the C2h conformation of

1,4-butanediyl (Fig. 8.8), which model chemistries break to two ethenes. The exact

keywords for each step and the possibility of combining two steps into one input file

depend on the program, and are not given specifically here.
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Step 1 is obtains a wavefunction for our starting “guess” geometry. For speed

and to limit the number of MOs (which appear in step 2), an STO-3G basis set

(Chap. 5, Sects. 5.3.2 and 5.3.3) is usually used. A single point calculation with the

specified basis is requested and the wavefunction is stored in a file (Gaussian [49]

calls this a checkpoint file) to be recalled in subsequent steps.

Step 2 is uses the wavefunction from step 1 to localize the MOs. To recapitulate

(Chap. 5, Sect. 5.2.3.1): normally the Hartree-Fock wavefunction is represented

straightforwardly as a Slater determinant in which the chosen basis set {ϕ} is used
to expand the occupied MOs ψ as linear combinations of the ϕ functions. The Fock

matrix derived from this determinant is called the canonical Fock matrix, and when
repeatedly diagonalized and refined in the SCF process it yields a set of MOs, the

canonical MOs. These MOs commonly do not resemble the bonding (or inferred

antibonding) orbitals of Lewis structures: for example, visualizing the canonical

MOs of H2O, one does not see one MO corresponding to one of the O–H bonds, and

one corresponding to the other O–H bond . Canonical MOs tend to be delocalized

over the whole molecule, eluding correspondence with conventional Lewis bonds.

However, it is possible to combine the canonical MOs so as to get localized orbitals

corresponding to bonds and lone pairs. This is done by manipulating the canonical

Hartree-Fock wavefunction determinant by adding multiples of rows or columns to

other rows or columns. The wavefunction is unaltered mathematically (Chap. 4,

Sect. 4.3.3, Determinants, property number 6): it will give the same observable

properties, like geometry, spectra, and dipole moment. There are various require-

ments that can be enforced to produce different kinds of localized orbitals [64]; the

most widely used MO localization schemes in CAS calculations are probably NBO

(natural bond orbitals) and Boys localization. Boys localization [65a] generates

MOs that are as compact as possible, and NBO localization [65b] creates MOs each

of which is essentially composed of basis functions on just two atoms; both might

thus be expected to resemble Lewis structures. We visualize the localized orbitals

and inspect them, in search of which ones to assign to the active space.
The active space is the set of MOs among which the electrons will be distributed:

electrons will be promoted from the formally occupied orbitals into the formally

unoccupied ones in a CI calculation limited to the chosen orbitals. The orbitals are

chosen according to the purpose of the calculation. If we simply wish to obtain the

geometry of a diradical like 1,4-butanediyl, then we look for the troublesome

orbitals, the ones now (we hope) localized on the end carbons. An orbital

corresponding to this occupied one and an orbital corresponding to its vacant

antibonding counterpart constitute the minimum active space for our calculation.

Since two electrons and two orbitals are involved, this is called a CASSCF(2,2)

calculation; with a electrons and b orbitals we have a CASSCF(a,b) calculation.
Figure 8.9 clarifies this: the algorithm will recognize our (2,2) active space as

consisting of the two frontier orbitals (HOMO and LUMO); we want these to be the

two MOs that are localized on the end carbons. If we had decided to use a (6,6)

active space, by including the two proximate C–C σ bonds and their antibonding

counterparts, adding an extra four electrons and four orbitals, the active space

would be recognized as the HOMO, HOMO-1, HOMO-2, and LUMO,
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LUMOþ 1, and LUMOþ 2. If an orbital that should (as shown by its appearance

on visualization) be in the active space is not, i.e. is not really a frontier orbital, it

can be switched by an appropriate command with one initially in the active space

but irrelevant to the calculation. Figure 8.10 shows the two MOs in the active space

of our CASSCF(2,2) calculation, localized by the NBO method ( in this case, with

the Boys method the ordinal numbers of the relevant orbitals was unclear, due to the

their not being nicely localized). The occupancy is revealed by visualization with an

appropriate program or, less conveniently, inspection of printed output, which

shows that the bonding-type C1/C4 MO number 16 is formally occupied by two

electrons and the antibonding-type MO number 17 is formally vacant. Note that this

species has 32 electrons. If, say, the MO resembling MO 16 here had been MO

10 and MO 16 had been a C-H bonding orbital, 10 and 16 could be switched–see

below for cyclopentane. The point is that we want to perform a CI calculation using

the relevant orbitals.

.

.

.

.

.

.

active space for a CAS(2,2)
calculation on .CH2CH2CH2CH2 

.

Energy

MO 16

MO 17

Fig. 8.9 The active space

for a CASSCF(2,2)

calculation on

1,4-butanediyl. There are

two relevant MOs: the

highest occupied and lowest

unoccupied MO, and two

electrons to be distributed

among these. The relevant

MOs must be determined by

inspection (preferably

visual) to be the right ones

for the purpose of the

calculation: see Fig. 8.10

Fig. 8.10 Visualization of the relevant MOs, 16 and 17, for the active space of a CASSCF(2,2)

calculation on 1,4-butanediyl: the algorithm will recognize the active space as consisting of the

two frontier orbitals (HOMO and LUMO; the molecule has 32 electrons); we ensure by visual

inspection that these are the two MOs that are localized on the end carbons. If a desired orbital is

not a frontier orbital to start with, it can be switched with one (see text). NBO localization was used

here. Calculated with the HF/STO-3G basis and localized by the NBO method
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Step 3 is a geometry optimization. Appropriate keywords might be CASSCF

(2, 2)/6‐31G*, specifying a CASSCF(2,2) procedure (a limited CI optimization)

using the 6 ‐ 31G* basis, which will normally be the smallest chosen. Other

keywords might dictate the information to be taken from step 2 and how to calculate

the initial Hessian (e.g., use a semiempirical calculation) for the optimization.

Figure 8.11 compares our CASSCF(2, 2)/6‐31G*C2h relative minimum

(no imaginary frequencies–see below) with the C2hCASSCF(4, 4)/6‐31G* mini-

mum of Doubleday [62].

Step 4 is a frequency calculation on the geometry from step 3, again using the

CASSCF(2, 2)/6‐31G* method. The program might allow this step to automatically

follow the optimization. In most cases the frequency calculation is desirable, to

characterize the nature of the optimized structure as a minimum or some kind of

saddle point, and to obtain thermodynamic data like zero point energy and enthalpy

and free energy (Chap. 2, Sect. 2.5; Chap. 5, Sect. 5.5.2.1.2).

One further step is desirable for obtaining relative energies, namely performing

on the CASSCF(2, 2)/6‐31G* geometry a calculation designed to treat electron

correlation better than was done by the CASSCF calculation. Recall that Hartree-

Fock (also called SCF) calculations treat electron only very approximately

(Chap. 5, Sect. 5.4.1). In a typical CASSCF calculation most of the electrons,

i.e. those outside the active space, are not subjected to the CI calculation, but

instead are treated at the Hartree-Fock level. The CASSCF calculation is said to

treat properly static correlation, but not dynamic correlation (Chap. 5, Sect. 5.4.1).

(1.483)
(1.619)

1.492

.

1.568

1

2

2
3

4

1

7

8

C1C2C3C4 = 180 (180)

H1C1C2C3 = 75.7 (76.0)

H2C1C2H1 = 151.4 (208.0)

H7C4C3C2 = 75.6 (76.0)

H8C4C3H7 = 151.3 (208.0)

This work

Doubleday

Fig. 8.11 The C2h 1,4-butanediyl diradical relative minimum (no imaginary frequencies), as

calculated by CASSCF(2,2)/6-31G* (this work) and CASSCF(4,4)/6-31G* (Doubleday, [61],

Figure 1 and Table III)
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To account more completely for dynamic correlation, a single-point perturbational

calculation based on the CASSCF wavefunction is frequently done. This is a CAS

perturbational theory, second order, or CASPT2, calculation. The most popular

implementation of this is CASPT2N (N ¼ nondiagonal one-particle operator)

[66]. For programs that will do CASPT2-type calculations, see Chap. 9, Sect. 9.3.

Improving a CASSCF energy with a CASPT2 calculation is analogous to improv-

ing a Hartree-Fock- (i.e. SCF-) level calculation with a single point MP2 calculation

(Chap. 5, Sect. 5.4.2). It would be nice if geometry optimizations rather than

just single point calculations (as was once the limitation of MP2, as an energy

adjustment to HF level geometries) could be done at the CASPT2N level and

CASPT2N potential energy surfaces could be explored, but this does not appear

to be yet practical, because analytical derivatives (Chap. 2, Sect. 2.4) are not

available. An attempt to do something like this was reported by Lange et al., who

parameterized with single point CASPT2N energies a quadratic function with

forming and breaking bond lengths as the variables and thus explored regions

near stationary points [67].

8.2.3.2 CASSCF Calculations on 1,5-Pentanediyl and Cyclopentane

I outline another example of CASSCF calculations: a comparison of the energy of

1,5-pentanediyl and cyclopentane:

. .

E(C-C)

This energy difference should be a measure of the C–C bond energy in

cyclopentane. These calculations used NBO localization (the result of Boys local-

ization was messy when visualized) and CASSCF(2, 2)/6‐31G*.
Several starting geometries were explored to obtain a C5 diradical that was a

relative minimum, but a thorough exploration of the potential energy surface was

not attempted. Starting from a roughly sickle-shaped C1 structure created by

constraining the end carbons with molecular mechanics to a separation of 4.5 Å
yielded a C1 relative minimum. The visualization step showed that for the input

structure the default active space MOs, MO 20 and 21, the HOMO and LUMO,

were the desired orbitals, localized at the end carbons. However, for cyclopentane

the occupied C–C bonding MO, representing the bond to be broken, was number

10, while MO 20 was a pure C–H bonding orbital, an unwanted intruder in the
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active space; a command to switch orbitals 10 and 20 was therefore given as part of

the optimization input. See Fig. 8.12. The diradical and cyclopentane, optimized at

the CASSCF(2, 2)/6 ‐ 31G* level, were checked by frequency calculations to ensure
that the structures were relative minima on the potential energy surface and to

obtain the energy parameters below (Gaussian 03 output).

The energies of the diradical and cyclopentane can be compared:

1,5-Pentanediyl

(Energy before frequency calculation (i.e. without ZPE) -195.0603078)

Zero-point correction ¼ 0.140164

Thermal correction to Energy ¼ 0.147459

Thermal correction to Enthalpy ¼ 0.148403

Thermal correction to Gibbs Free Energy ¼ 0.109777

Sum of electronic and zero-point Energies ¼ �194.920144

Sum of electronic and thermal Energies ¼ �194.912849

Sum of electronic and thermal Enthalpies ¼ �194.911905

Sum of electronic and thermal Free Energies ¼ �194.950531

Fig. 8.12 The molecular orbitals of 1,5-pentanediyl and cyclopentane relevant to the C–C

cleavage of the cycloalkane that leads to the acyclic diradical. Calculated with the HF/STO-3G

wavefunction and localized by the NBO method. The cyclopentane C–C bonding orbital,

MO 10, relevant to this reaction, must be switched with MO 20, a pure C–H bonding MO with

no relevance here, to move the C–C MO into the active space (Note that these molecules have

40 electrons)
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Cyclopentane

(Energy before frequency calculation (i.e. without ZPE) -195.1797025)

Zero-point correction ¼ 0.150327

Thermal correction to Energy ¼ 0.155259

Thermal correction to Enthalpy ¼ 0.156203

Thermal correction to Gibbs Free Energy ¼ 0.121800

Sum of electronic and zero-point Energies ¼ �195.029375

Sum of electronic and thermal Energies ¼ �195.024444

Sum of electronic and thermal Enthalpies ¼ �195.023500

Sum of electronic and thermal Free Energies ¼ �195.057902

Diradical enthalpy – cyclopentane energy:

1. The crudest value for this is based on the energies from the optimization step,

i.e. without ZPE:

�195:0603078� �195:1797025ð Þ ¼ 0:119395 ¼ 313:5 kJ mol�1:

2. With ZPE-corrected energies, i.e. 0 K enthalpies, we get

�194:920144� �195:029375ð Þ ¼ 0:109231 ¼ 286:8 kJ mol�1:

3. Using the sum of electronic and thermal enthalpies, i.e. room-temperature

(298 K) enthalpies, we get

�194:911905� �195:023500ð Þ ¼ 0:111595 ¼ 293:0 kJ mol�1:

None of these can be viewed as an accurate standard bond energy [68] for

cyclopentane, whose likely C-C bond energy is ca. 345 kJ mol�1 [69]. Note that

this is significantly lower than that of butane, for which an experimental value of

363:2� 2:5 kJ mol�1 and calculated values of ca. 367, 378 and 379 kJ mol�1 have

been reported [70]. This exercise indicates that good dynamic electron correlation

can be important in handling homolytic cleavage; CASPT2N was not available to

us. Also, the (2,2) active space used here is only the minimum that might be

acceptable.

One more example of the CASSCF procedure will be outlined: calculating the

barrier to rotation around the CC double bond in ethene. Step 2, orbital localization,

showed nicely localized orbitals when NBO localization was used, but the orbitals

were harder to identify with Boys localization. For a CAS(2, 2)/6‐31G* optimiza-

tion the active orbitals chosen were the π and π* MOs, and for a CAS(4, 4)/6‐31G*
optimization the π, π*, σ and σ* MOs. The input structures were the normal planar

ethene and perpendicular (90� twisted) ethene. Optimization and frequency calcu-

lations gave a minimum for the planar and a transition state for the perpendicular

structures. The energies (without ZPE, for comparison with those calculated by the

GVB method by Wang and Poirier, [71]) were:
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CASSCF(2,2):

perpendicular ethene, � 77:9630054, planar ethene, � 78:0673444;
barrier ¼ 0:10434 ¼ 274:0 kJ mol�1:

CASSCF(4,4):

perpendicular ethene, � 77:982972, planar ethene, � 78:0852825;
barrier ¼ 0:10231 ¼ 268:7 kJ mol�1:

Wang and Poirier obtained from GVB calculations [71] a barrier of

263:6 kJmol�1 65:4 kcal mol�1
� �

. The reported experimental value for the barrier

of cis-ethene- d2 is 272 kJ mol�1 [72]. Hartree-Fock, MP2 and DFT (B3LYP)

optimizations on the perpendicular ethene transition state did give an optimized

structure with one imaginary frequency, but the barriers (6-31G*) basis

were respectively 540, 572, and 399 kJ mol�1 (without ZPE, which was only

ca. 10–20 kJ mol�1).

More complex than ethene but amenable to a similar attack is the fascinating

molecule orthogonene. This is so named because in this C14 molecule four C2

clamps hold the C6 tetrasubstituted double bond moiety twisted through ca. 90�:

CASSCF(4, 4)/6‐31G* calculations using the C¼C π and σ bonding and anti-

bonding orbitals led to the conclusion that the molecule can rearrange to a carbene

with a barrier of about 200 kJ mol�1 [73].

Procedures for more involved CASSCF calculations, including calculations on

exited states, are given by Foresman and Frisch, with caveats for assessing the

reliability of the results, and they reassure the reader “not [to be] discouraged by

difficulties that you may encounter” [74]. Although CAS and GVB calculations are

the standard ways of handling singlet diradicals, attempts have been and are being

made to extend the reach of DFT here, perhaps bringing these species one day into

the compass of model chemistry methods. Examples are the work of Kazaryan and

Filatov [75], and Cremer and coworkers [76]. Open shell molecules in general can

present problems for model chemistries; these, and ways of dealing with them, have

been reviewed by Bally and Borden [77].

(3) Broken symmetry calculations. An alternative to a complete active space

calculation is a procedure called a broken symmetry calculation. This is a UHF-type

calculation on a singlet species. We saw that unrestricted calculations (Chap. 5,

toward the end of Sect. 5.2.3.6.5; Chap. 7, Sect. 7.2.3.4.2) are the standard way of
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treating ordinary free radicals, which with one unpaired electron are doublet

species. The unrestricted method, whether Hartree-Fock or DFT UHF or UDFT),

removes the constraint (the restriction) that we do not have separate orbitals for

α‐spin electrons and for β‐spin electrons. In an ordinary radical, having separate

sets of molecular orbitals makes it possible for α‐ and β‐electrons to adjust their

orbital shapes separately to reflect the fact that they feel differently the effect of,

say, an unpaired α-electron. Similarly, an unrestricted calculation on a singlet

diradical allows α‐ and β-electrons to adjust their orbital shapes separately to

minimize their interaction energy with the two (more or less) unpaired electrons.

Figure 8.13 shows the orbital situation for a broken symmetry calculation. In

CASSCF calculations the open shell, diradical character is created by mixing into

the overall wavefunction functions (determinants; Chap. 5, Sect. 5.4.3) in which

one or more electrons have been promoted into virtual orbitals. In broken symmetry

calculations diradical character is created from the start by allowing (ideally, a pair

of) electrons to “chemically decouple” by being in different orbitals. While

unrestricted calculations are well-accepted as a legitimate way to handle

monoradicals, there are reservations about its use with singlet diradicals [78].

1,4-butanediyl (Sects. 8.2.2 and 8.2.2.1), which rejected standard model-chemistry

methods to optimize it to a stationary point, gave from a C2h input structure, using

broken symmetry, a stationary point (a relative minimum) of similar geometry to

that from the CASSCF calculation of Sect. 8.2.2.1. Other cases of satisfactory

geometries from broken symmetry are singlet diradicals resembling

1,4-benzenediyl (benzene with hydrogens removed from the 1,4-positions) in the

Bergman reaction and in the rearrangement of bowtiene [79]. In these two cases a

reaction profile believed to be energetically realistic was obtained by applying to

.

.

.
.
.

.

alpha electrons beta electrons

Energy
Fig. 8.13 The molecular

orbitals for an unrestricted

calculation are divided into

a set for α-electrons and a

set for β-electrons. In the

case shown here each

electron has a “counterpart”

of opposite spin, so this

does not represent a

calculation on a

conventional free radical

(a doublet), but rather on a

singlet
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the broken symmetry reactant, transition state and product geometries an energy

adjustment for dynamic correlation from the CCSD(T) method (Chap. 5, Sect.

5.4.3); like CASSCF, broken symmetry cannot be counted on to handle dynamic

correlation quantitatively. In contrast to the multistep CASSCF procedure

explained above, these broken symmetry opimization/frequency calculations

required only one step, with the command line specifying, beside optimization

and frequency, the use of an unrestricted DFT method and the basis set. With

Gaussian 09 [49] this was done with

#P umpw1pw91=6� 311þ G** guess ¼ INDO, Mix, Alwaysð Þ Opt Freq

and a charge of 0 and a multiplicity of 1. This invokes an unrestricted Kohn-Sham

DFT wavefunction despite the specification, on another line, of singlet multiplicity.

The calculation starts with a semiempirical INDO (Chap. 6, Sect. 6.2.4) guess at the

wavefunction, with Mix removing α and β spatial symmetries by a random rotation

of the HOMO and LUMO. After removing symmetry the algorithm follows the

usual Pople-Nesbet procedure for simple radicals like CH3 (Chap. 5, toward end of

Sect. 5.2.3.6.5). Always makes sure Mix is used at each optimization step. Broken

symmetry is closer to being a model chemistry than is CASSCF, but success seems

to be sensitive to the choice of DFT functional and initial guess.

Abe has reviewed experimental and computational results for diradicals [80],

Yang et al. have examined benchmark-level calculations on radical dissociation of

F2, HOOH, and C2H6 [81], and Ess and Cook have explored the value of DFT for

economical calculations on singlet-triplet gaps of diradicals [82].

8.3 A Note on Heavy Atoms and Transition Metals

All things are Atoms: Earth and Water, Air
And Fire, all, Democritus foretold.
Saw Sulphur, Salt, and Mercury unfold
Amid Millenial hopes of faking Gold.
. . .
The Metals, lustrous Monarchs of the Cave,
Are ductile and conductive and opaque
Because each Atom generously gave
Its own Electrons to a mutual Stake,
. . .
–John Updike, Midpoint, III. The dance of the solids. Composed ca. 1967.
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8.3.1 Perspective

All chemical things are composed of atoms, so one might wonder why heavy atoms

and transition metals should be singled out for special treatment. Part of the

justification is that most of the elements are metals, and most of these are

transition-type metals; I include in this class the lanthanides and actinides

(IUPAC recommends the terms lanthanoids and actinoids, as -ide implies an

anion). The high atomic numbers of most elements, compared to carbon, and the

quirky electronic structures of transition metals, pose problems not encountered

routinely in computations on organic compounds. Beyond about the second

(beyond Ar, Z ¼ 18), certainly beyond the third (beyond Kr, Z ¼ 36), full row of

the periodic table, the pull of about 30–50 nuclear protons forces the inner electrons

of the atom to move at a significant fraction of the speed of light. This makes

relativistic corrections often necessary for accurate work. Further, transition metals

(TMs) tend to fill their outer shells in a manner less than straightforward, and to

exhibit a more baroque style of bonding than seen in typical organic compounds.

The purpose of this short section is merely to make readers aware of these problems

so that should they seek to carry out computations on inorganic species they will

know that further delving into the relevant literature may be advisable.

8.3.2 Heavy Atoms and Relativistic Corrections

The gain in mass [83] of the inner electrons in heavier atoms causes their orbitals to

contract and screen the outer electrons better than they otherwise would, causing

outer, valence d and f orbitals to expand, becoming of higher energy and more

reactive (a semipopular account of relativistic effects and computations is given by

Jacoby [84]). This has striking physical consequences, like the color of gold and the

fact that mercury is liquid, and significantly affects spectra by altering spin-orbit

coupling, while the chemical effects permeate structures and energetics; this is

discussed in Pyykk€o’s comprehensive review of the effects of and computations

dealing with relativity in chemistry [85]. Other reviews relevant to relativistic

computations discuss pseudopotentials and TM compounds (Frenking et al. [86],

Cundari et al. [87]), transactinide elements (Persina [88]) and the theory of relativ-

istic quantum chemistry (Alml€of, Gropen [89]). A thorough account of relativistic

effects in chemistry, a very technical subject, is given in the two-volume work by

Balasubramanian [90a], and the review of Volume B by Wilson is itself worth

reading for a perspective on the subject [90b]. Relativistic effects in molecules are

computed by the Dirac-Fock equation or, more frequently, pseudopotential or

effective core potential methods. Perturbation methods have also been applied to

atomic and molecular relativistic effects [85]. The term pseudopotential is favored
by physicists, while effective core potential or ECP tends to be used often by

chemists. The Dirac-Fock method ([91, 85] and references therein) is based on
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the extension to multielectron systems of the famous one-electron relativistic Dirac

version of the Schr€odinger equation [92]. It is “The most satisfying way to carry out

relativistic molecular calculations” [85], but is apparently not very practical for

many-electron molecules (but see a recent calculation on PbH4 [93]). Less demand-

ing and much more popular are computations using relativistic pseudopotentials

(relativistic ECPs). A relativistic pseudopotential is a one-electron operator, some-

what analogous to the Ĵ and K̂ operators in standard Hartree-Fock theory (Chap. 5,

Eqs. (5.29 and 5.30) which is incorporated into the Fock operator (Chap. 5,

Eq. (5.36) and equations (20)–(21) in reference [85]) and modifies it by treating

the inner, non-valence electrons in an average way, and taking relativity into

account; the valence electrons are treated conventionally. This average treatment

greatly reduces the number of electrons that must be directly addressed and the

number of basis functions needed. Nonrelativistic or relativistic pseudopotentials

can be used even when relativity is not a problem, to reduce the computational

effort arising from many inner-shell electrons. We encountered the concept in a

very crude form in Chap. 6, where we saw that semiempirical methods like AM1

and PM3 treat only the valence electrons explicitly and in effect collapse the inner

electrons into the nuclei. The valence electrons then move in the electrostatic

potential field of a set of “pseudonuclei”, each with a charge equal to the algebraic

sum of an atomic number and the charge of the inner electrons.

Pseudopotentials for molecules come from parameterization for atoms using

Dirac-Fock calculations. Since the pseudopotentials are parameterized for atoms,

we are assuming that the inner electrons are little affected on going from atoms to

molecules. The results justify this assumption. Actually, some pseudopotentials

handle all but the outermost electron shell (all but, say, n ¼ 5), and some all but the

two outermost (all but, say, n ¼ 5 and 4); these are called, respectively, larger-core

or full core, and small core pseudopotentials. Since these calculations do not

directly use the Dirac-Fock equation, they are sometimes called quasirelativistic
calculations. Pseudopotentials are invoked by specifying a basis set that has been

specially designed for them, and a pseudopotential basis set (ECP basis set) is often

simply called a pseudopotential or ECP. They can be used in Hartree-Fock, MP2,

CI, and DFT calculations, and are the standard method of treating molecular

relativistic effects, and of reducing the computational strain incurred by the pres-

ence of large numbers of electrons even when relativity is not significant. Another

problem sometimes met with in heavy atoms is caused by spin-orbit coupling. This

and electron correlation effects have been addressed with pseudopotentials [94].

8.3.3 Some Heavy Atom Calculations

The efficacy of a technique is sometimes best highlighted by studying trends. A

comprehensive review of compounds of the carbon homologue series Si, Ge, Sn

and Pb has been published by Karni et al. [95]. The rotational barriers in ethane and
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its various Si, Ge, Sn and Pb homologs were computed by Schleyer et al. [96], using

pseudopotentials; relativistic effects were important only for Pb Z ¼ 82ð Þ.
Pseudopotential calculations have been extended to the sixth element in this series,

with studies of (114)X2 and (114)X4,X ¼ H, F, Cl [97]. Relativity can be neglected

for certain properties for iodine (Z ¼ 53), krypton (Z ¼ 36) and even Xenon (Z ¼ 54):

MP2 studies on the geometry and thermochemistry of iodine oxides with extended

Pople-type basis sets and comparison with earlier work showed that “relativistic

effects are either small or cancel” [98], and DFT calculations on fluorides of krypton

and xenon (and some work on radon) with and without relativistic effects showed that

for bond lengths, dissociation energies, force constants, and charges “relativistic

effects. . .are negligible” [99]. An extensive list of basis functions, which enables

those available for a desired atom to be identified and downloaded for computation, is

available online [100]. A brief presentation of popular pseudopotentials is given by

Cramer [101]. The literature and some experimentation suggests that one popular

basis, the LANL2DZ (Los Alamos National Laboratory), parameterized for H to Pu,

may be particularly useful.

8.3.4 Transition Metals

The bonding in and structures of transition metal compounds constitute a subject

with rules somewhat sui generis to one primarily versed in organic and main group

chemistry. The relative complexity of bonding in these compounds arises from the

presence in their compounds of partially filled d- or (for the lanthanides and

actinides) f-level atomic orbitals, when the compound is viewed as consisting of

ions surrounded by ligands. This viewpoint is possible not only for simple ionic

compounds MnþXn�, but also for covalent compounds and “complexes”, since the

metal can be assigned an at least formal oxidation state. The classification of a

particular element as a transition metal, a lanthanide or an actinide is not always

unambiguous and universally adhered to. For example, the scandium atom has one

d electron, but in any compound in which it has an oxidation number above zero, it

will have no d electrons. Zinc has 10 d electrons, but its compounds, formed by loss

of two s electrons, also have this fully filled d shell. Were compounds of scandium

(0) and Zn(III) recognized, with one and nine d electrons, respectively, these

elements would be classified as transition metals. Below are generally accepted

classifications for TM-type elements, with the hedge that the electronic structures

are idealized in that subtle shifts in occupancy are possible. For example, a Cu

(I) compound may not have the expected 3d94s1, but rather the 3d104s0

arrangement.

Transition metals, first row, Ti Z ¼ 22, 3d24s2
� �� Cu Z ¼ 29, 3d94s2

� �

Transition metals, second row, Zr Z ¼ 40, 4d25s2
� �� Ag Z ¼ 47, 4d9 5s2

� �

Transition metals, third row, Hf Z ¼ 72, 5d26s2
� �� Au Z ¼ 79, 5d96s2

� �
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Lanthanides, Ce Z ¼ 58, 4f15d16s2
� �� Yb Z ¼ 70, 4f146s2

� �

Actinides, Th Z ¼ 90, 6d27s2
� �� Es Z ¼ 99, 5f117s2

� �
(stopping at what

appears to be the last element available in at least milligram amounts [102]).

The electronic structures of compounds of these elements is complicated by

ambiguities in filling the d or f shells, which can give rise to low-spin and high-spin

compounds with the same number of formal metal electrons (i.e. with the metal in

the same oxidation state) but with different ligands, depending on the gap between

the so-called (for d-shell atoms) t2g and eg sets of orbitals. An accessible and

reasonably compact introduction to the structure of TM compounds and the role

therein of d orbitals is given by Cotton et al. [103]. Hoffmann, in his Nobel Lecture,

presents an interesting and original set of rules, the isolobal analogy, for

interpreting the structures of such species and drawing analogies, which “[allows]

us to see the simple essence of seemingly complex structures” [104]. The detailed

properties of individual elements are discussed in standard textbooks, e.g

[105, 106].

I outline the main salient points relevant to computations on TM compounds.

First, as indicated above, one needs an understanding of the rules behind the

peculiarities of d orbital electronic arrangements, in order to formulate and interpret

rational structures; when a structure is not “rational”, because it is particularly

novel, background theoretical knowledge is even more valuable. Prosaic factual

knowledge of chemical properties does not hurt either. The elucidation of the

structure of ferrocene, (C5H5)2Fe, provides a nice example of the role of factual

and theoretical knowledge in discovery. Ferrocene was initially assigned a conven-

tional C-Fe-C structure, but unlike known compounds with a metal-carbon sigma

bond it was very stable, and like benzene reacted by electrophilic substitution.

Theory led to the formulation of the correct and then-unprecedented sandwich

structure. The ferrocene saga, which initiated a revolution in transition metal

chemistry, has been summarized by Dagani [107] and Laszlo and Hoffmann [108].

In our short survey of the computational techniques available for investigating

TM compounds we first mention molecular mechanics (Chap. 3). It may seem

humble by the standards of the quantum mechanical ab initio, semiempirical and

DFT methods (Chaps. 5, 6 and 8, respectively) but MM is useful for obtaining input

structures for submission to one of those calculations, may even provide in itself

useful information, and it is, of course, extremely fast. Indeed, a recent book on the

modelling of inorganic compounds, mainly TM species [109], is devoted very

largely to molecular mechanics and a program specially parameterized for TM

compounds, Momec3 [109].

Ab initio methods (unparameterized, or almost unparameterized, wavefunction

calculations) were at one time, in contrast to DFT, deprecated for the study of TM

compounds, but it now appears that this inferiority of ab initio may be largely

confined to the first-row metals, titanium to copper [86, 110]. DFT can sometimes

be quite inaccurate, and advanced correlated ab initio methods like CCSD(T) and

even CCSDTQ (Chap. 5, Sect. 5.4.3), may be useful, although these are currently

limited to small systems [111]. Nevertheless, DFT calculations with
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pseudopotentials, commonly relativistic, are now the standard methods for

performing calculations on TM compounds [86, 110, 112]; for example Frenking,

in a paper analyzing bonding in such species, extols the virtues of DFT used with

pseudopotentials [112]. The suitability of various functionals for TM chemistry is

commented on by Zhao and Truhlar in a review which presents their new M0-class

functionals (Chap. 7, Sects. 7.2.3.4 and 7.3), and the most appropriate for this

purpose are said to be M06 and, especially, M06-L [113], but Tekarli et al. found

that with the correlation-consistent cc-p-VQZ basis the B97-1 functional can give

formation enthalpies of first-row transition metals within 4 kJ mol�1 (1 kcal mol�1)

of high-level multistep ab initio methods (cf. Chap. 5, Sect. 5.5.2.3.2) , G4(MP2)

and ccCA-tm [114]. A review by Cramer and Truhlar on the application of DFT to

transition metals boasts 1307 references [115]. DFT and wavefunction methods

have been compared for the actinides [116]. Work has appeared focussed on TM

atoms and their cations for the 4d series (Y to Pd) [117] and the 3d series

(considered as Sc to Zn) [118]. In the former of these two the problem of broken

symmetry is explicitly addressed, while the latter introduces “a new broken sym-

metry method, the reinterpreted broken symmetry method, RBS”, and also points

out that for a TM species the wavefunction may not automatically converge to the

lowest-energy minimum, or even a relative minimum (wavefunction instability,

Chap. 5, Sect. 5.2.3.5). A DFT method called SIESTA (Spanish Initiative for

Electronic Simulation with Thousands of Atoms ), designed for big, extended

systems like large metal clusters has found use in recent years [119].

Finally, TM compounds have been studied by semiempirical methods. One

thinks first of faux-ab initio-type methods like AM1 and PM3 (Chap. 6), since

these are surrogates for “full” quantum mechanical ab initio techniques. However,

the deepest insights into the nature of these compounds that have been afforded by a

semiempirical method have come from the uncomplicated and venerable extended

Hückel method (Chap. 4, Sect. 4.4). In the hands of Hoffmann, to whom we owe the

EHM in its current form [120], extended Hückel calculations have given powerful

insight into the structures of these compounds. Wide-ranging corroboration of this

assertion is seen in Hoffmann’s Nobel lecture [104]. Some other examples are a

polymeric rhenium compound [121], manganese clusters [122] and iridium [123]

and nickel [124] coordination compounds.

Unlike the extended Hückel method, AM1 and PM3 are useful for optimizing

geometries and (less reliably) calculating relative energies of organic compounds, a

purpose for which they were primarily designed. For TM compounds, a version of

PM3, PM3(tm), available in Spartan [31] (in later versions of the program, not

explicitly called PM3(tm) but parameterized for several transition metals) was

developed. This is very fast and has been quite extensively used, with mixed results.

Buda et al. compared PM3(tm) with ab initio (MP2 on HF geometries) and DFT for

30 complexes and found that PM3(tm) reproduced the crystallographic data in 80%

of the cases, compared to 87% for MP2//HF and hybrid DFT, and 90% for pure

DFT [125]. Cooney et al. found it accurate enough as far as steric factors go, for

predicting novel properties of rhodium phosphines [126], and Zakharian and Coon
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reported that “In general, the PM3(tm) method in Spartan shows promise for

predicting adsorption sites and vibrational frequencies of molecules on metal [i.e.

nickel] surfaces” [127], while Goh and Marynick found it to be inadequate for

energies, although its geometries were accurate enough for “energetics at a higher

level” (they refer to isodesmic reaction energies) with compounds of Cr, Mo, W and

Co [128], and Bosque and Maseras obtained geometries ranging from excellent to

very poor by comparison with literature X-ray and neutron diffraction and with ab

initio and DFT calculations, with compounds of Pd, W and Ti [129]. The TM

parameterization of PM3 is discussed by McNamara et al. [130]. With this vari-

ability in performance great care is clearly needed in judging the appropriateness

and reliability of PM3(tm) calculations: results for model systems might be com-

pared with experiment, or, because of its speed, the method could be used in a large,

suggestive survey. Semiempirical approaches to the computation of geometries and

energies (e.g. bond energies, heats of formation) of transition metal compounds

have not reached the same level of reliability that has been attained for organic

compounds with the normal (full) first-row (C, H, N, O, F) elements (Chap. 6).

Some may not regard this as a serious problem in view of the speed of DFT over

high-level ab initio methods like CCSDT, the availability of improved functionals,

and the reliability of pseudopotentials.

8.4 Summary

For some purposes gas-phase calculations are unrealistic, e.g. for understanding

some solution-phase reactions, or even almost useless, e.g. for the prediction of pKa

in solution. For introducing the effects of solvation, there are two methodologies

(and a hybrid of these two): explicit solvation, that is, putting individual solvent

molecules into the system, and continuum solvation, representing the solvent as an

appropriately parameterized continuous medium. Although for some purposes

explicit solvation is needed, particularly where solvent molecules participate in a

reaction, continuum methods are more widely used.

Some molecular species are not calculated properly by straightforward model

chemistries; these include singlet diradicals and some excited state calculations. For

these the standard method is the complete active space approach, CAS (CASSCF,

complete active space SCF). This is a limited version of configuration interaction,

in which electrons are promoted from and to a limited, carefully chosen set of

molecular orbitals. CASSCF calculations require care in choosing these orbitals and

in judging the reliability of the results.

Calculations on systems with heavy atoms often employ pseudopotential basis

sets, which reduce the computational burden that large numbers of electrons would

present, by avoiding explicit treatment of inner electrons. These basis sets are

frequently relativistic, taking into account the effect on chemical properties of
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electrons moving at a significant fraction of the speed of light. Transition metals

present problems beyond those of main-group heavy atoms: not only can relativistic

effects be significant (in the heavier elements), but near-lying electron d- or

f-levels, variably perturbed by various ligands, make possible a variety of electronic

states. Although beyond the first transition metal row ab initio (i.e. wavefunction)

methods have been used, less demanding DFT calculations, with pseudopotentials,

are the standard approach for computations on such compounds.

Solvation

Easier Questions

1. Using microsolvation, roughly how many water molecules might be needed to

provide one layer around CH3F ( suggestion: examine space-filling hand-held or

computer-generated models)?

2. What physical properties of solvents have been used to parameterize them for

continuum calculations?

3. Give an example of a reaction for which just one explicit solvent molecule might

be adequate in simulating a reaction mechanism.

4. For continuum solvation, give an example of a molecule for which a good

approximation might be (a) a spherical cavity, (b) an ellipsoidal cavity.

5. Why are continuum solvation methods more widely used than microsolvation

methods?

Harder Questions

1. In microsolvation, should the solvent molecules be subjected to geometry

optimization?

2. Consider the possibility of microsolvation computations with spherical, polar-

izable “pseudomolecules”. What might be the advantages and disadvantages of

this simplified geometry?

3. In microsolvation, why might just one solvent layer be inadequate?

4. Why is parameterizing a continuum solvent model with the conventional dielec-

tric constant possibly physically unrealistic?

5. Consider the possibility of parameterizing a continuum solvent model with the

dipole moment.
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Singlet Diradicals

Easier Questions

1. A monoradical is a doublet and a diradical can be a singlet or a triplet. How

many spin states are possible for a triradical?

2. What does the Pauli exclusion principle suggest about the relative energies of

singlet and triplet diradicals?

3. What is the simplest singlet diradical hydrocarbon species?

4. Which MOs would be appropriate for CASSCF calculations on

1. the ring-opening of cyclobutene to 1,3-butadiene?

2. the Diels-Alder reaction?

5. How many CI configurations are used in

a CASSCF(2,2) calculation?

a CASSCF(2,3) calculation?

Harder Questions

1. Is CASSCF size-consistent?

2. In one-determinant HF (i.e. SCF) theory, each MO has a unique energy (eigen-

value), but this is not so for the active MOs of a CASSCF calculation. Why?

3. In doubtful cases, the orbitals really needed for a CASSCF calculation can

sometimes be ascertained by examining the occupation numbers of the active

MOs. Look up this term for a CASSCF orbital.

4. Why does an occupation number (see question 3 above) close to 0 or 2 (more

than ca. 1.98 and less than ca. 0.02) indicate that an orbital does not belong in the

active space?

5. It has been said that there is no rigorous way to separate static and dynamic

electron correlation. Discuss.

Heavy Atoms and Transition Metals

Easier Questions

1. Suggest a simple physical property of an atom for which a comparison of

experiment with a calculated value might be used a test of whether the atom

should be regarded as being “heavy” (hint: consider the energy of the valence

electrons).
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2. Suggest a simple property of a compound of element X for which a comparison

of experiment with a calculated value might be used a test of whether element

X should be regarded as being “heavy”.

3. Dirac, the discoverer of the relativistic one-electron equation, thought that

relativity would be unimportant in chemistry (P. A. M. Dirac, “Quantum

Mechanics of Many-Electron Systems”, Proceedings of the Royal Society of

London. Series A, Mathematical and Physical Sciences, 1929, 123(792), 714).
Why was he mistaken?

4. Of the first 100 elements, how many are transition metals?

5. Use the simple semiclassical Bohr equation for the velocity v of an electron in an
atom (Chap. 4, Eq. (4.12) to calculate a value of v for Z ¼ 100 and energy level

n ¼ 1:

v ¼ Ze2

2ε0nh
ð4:12Þ

e ¼ 1:602� 10�19C, ε0 ¼ 8:854� 10�12 C2N�1m�2, h ¼ 6:626� 10�34 J:s

What fraction of the speed of light c ¼ 3:0� 108 ms�1) is this value of v?

Using the “Einstein factor” √ 1� v2=c2ð Þ, calculate the mass increase factor that

this corresponds to.

Harder Questions

1. Is the result of the calculation in question 5 above trustworthy? Why or why not?

2. Should relativistic effects be stronger for d or for f electrons?

3. Why are the transition elements all metals?

4. The simple crystal field analysis of the effect of ligands on transition metal

d-electron energies accords well with the “deeper” molecular orbital analysis

(see e.g [106]). In what way(s), however, is the crystal field method unrealistic?

5. Suggest reasons why parameterizing molecular mechanics and PM3-type pro-

grams for transition metals presents special problems compared with parame-

terizing for standard organic compounds.
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Chapter 9

Selected Literature Highlights, Books,
Websites, Software and Hardware

The yeoman work in any science. . .is done by the
experimentalist, who must keep the theoretician honest.

Michio Kaku, Professor of theoretical physics, City

University of New York.

Abstract Specific applications of some concepts and methods are discussed.

Information on the literature is provided, and the merits and capabilities of various

software packages are presented. The chapter concludes with a note on hardware

developments.

9.1 From the Literature

A small smorgasbord of published papers will be discussed, to show how some of

the things that we have seen in previous chapters have appeared in the literature.

The four topics of this section (oxirene, nitrogen pentafluoride, pyramidane and

nitrogen polymers), and several others, are addressed in more detail in another

book [1].

9.1.1 Molecules

9.1.1.1 Oxirene. To Be or Not to Be

Let’s start with what looks like a simple problem: what can computational chem-

istry tell us about oxirene, oxacyclopropene (Fig. 9.1)? Note that in the literature the

term oxirene is occasionally misused to denote an oxirane (an epoxide), either

through a quirk in nomenclature concerning the position of a double bond [2a]

or through simple error [3]. The oxirene literature has been reviewed in detail to

1983 [2a] and from 1984 to 2007 [2b]. Labelling one of the carbons of a diazo

ketone (R ‐C(N2) ‐CO ‐R) can lead to a ketene (Wolff rearrangement) with scram-

bled labelling. After excluding the possibility of scrambling in the diazo compound,

this indicates that an oxirene species is formed. However, this does not tell us
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whether this species is an intermediate or merely a transition state (Fig. 9.2).

A straightforward way to try to answer this question would seem to be to calculate

the frequencies, at the level used to optimize the structure, and see if there are any

imaginary frequencies–a relative minimum has none, while a transition state has

one (Chap. 2, Sect. 2.5). In a preliminary investigation [4] Schaefer and coworkers

found that oxirene was a minimum with the Hartree-Fock (SCF) method, and also

when electron correlation was taken into account (Chap. 5, Sect. 5.4) with the CISD

and CCSDmethods, using double-zeta basis sets (Chap. 5, Sect. 5.4.3). However, in

going from HF to CISD to CCSD, the ring-opening frequency fell from 445 to

338 to262 cm�1, which was said to be a much steeper drop than would be expected.

A very comprehensive investigation (titled “To be or not to be”) [5], in which the

frequencies of oxirene were examined at 46 (!) different levels, failed to definitively

settle the matter: even using CCSD(T) calculations with large basis sets the results

were somewhat quirky, and in fact of the six highest levels used, three gave an

imaginary frequency and three all real frequencies. At the two highest levels the

ring-opening frequency was real, but uncomfortably low (139 and 163 cm�1 ).

Although at all of the five DFT levels explored in [5] oxirene was a transition

a diazo ketone

R R

ON2

.

oxo carbene a

R R

O

...

oxirene

a b
O

RR

.

oxo carbene b

R R

..O
.

ketene labelled at the other C

O .

R

R

a b

R

R

O.

ketene labelled at CO C

Fig. 9.1 Generating an oxo carbene (a “ketocarbene”) from a labelled diazo ketone sometimes

leads to a ketene in which the label is scrambled. This indicates that a species with the symmetry of

oxirene is formed
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state with an imaginary ring-opening vibrational mode, functionals have been

found which declare it a minimum with some basis sets. The B97-2 [6] and

the PBE0 [7] functionals award oxirene local minimum status and B97-2 predicts

a C2H2O potential energy surface reasonably close to that from much more

“expensive” ab initio CCSD(T) calculations. Wilson and Tozer [6] found with

B97-2 and a triple-zeta correlation-consistent basis that oxirene isomerizes with

a barrier of 1:3 kJ mol�1 (cf. CCSD(T): 1:8 kJ mol�1) to the carbene, which lies

8:6 kJ mol�1 (cf. CCSD(T): 2:1 kJ mol�1 ) lower (Fig. 9.1). Mawhinney and

Goddard [7] found that although very many of their tested functional/basis combi-

nations gave an imaginary frequency, a few found oxirene to be a minimum. In fact,

the PBE0 functional found it to be a minimum with 11 of the 12 bases tried. They

did not explore the C2H2O surface, checking only the energy of the oxirene

structures compared to ketene (ca. 335 kJ mol�1 in all cases), but with big basis

sets ring-opening frequencies and geometries were similar to those from high-level

(CCSD(T)) ab initio calculations. The speed advantage over CCSD(T) tends to

make DFT attractive for such studies, but experienced workers might still tend to

confer more trust on high-level ab initio calculations (“. . .we try to validate the

oxirene intermediate

carbene carbene

?

carbene carbene

oxirene transition state

?

a b

oxo carbene a oxirene oxo carbene b

a b
O

R RR R RR

.. O
..O

Fig. 9.2 A species with the symmetry of an oxirene scrambles the label in an oxo carbene. But this

does not tell us whether the oxirene is an intermediate or merely a transition state
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results by comparison with those from ab initio calculations” [8]), even when the

DFT functional is not empirical, as with PBE0, above.

A flash photolysis study of diazoketones (1995) concluded that “Our experi-

ments neither implicate nor disqualify oxirene as an intermediate” [9]. In more

recent work (2008) ultrafast photolysis of a potential diazo ketone precursor of

p-biphenylmethyloxirene failed to detect the oxirene, the UV absorption of which

could, however, have been hidden by another band [10], but in a combined

experimental/computational (ab initio and molecular dynamics with DFT) study,

flash thermolysis of a formal Diels-Alder adduct was interpreted as affording

acetylmethyloxirene and benzene [11]. A detailed computational study of the

ozonolysis of ethyne skirted the question of the involvement of oxirene by saying

that it “will easily revert to [the carbene]; therefore, the oxirene route was

not further investigated in this work.” [12]. Oxirene was among several CxHyOz

isomers subjected to high-level ab initio energy and frequency calculations in

connection with a suspected correlation between relative energy and detection in

interstellar space [13] (where it has not been detected); it was found to be a local

minimum. In another study it was one of 106 molecules in a high-level protocol for

calculating atomization energies, but a frequency check of its status was not

reported [14]. It remains a notorious case of an unsolved computational “existence

problem”; a cautious verdict is that the heterocycle hovers on the edge of reality.

9.1.1.2 Nitrogen Pentafluoride. Warranted Optimism?

Nitrogen pentafluoride (this has been reviewed to 2007 [15]) represents an inter-

esting contrast to oxirene. Oxirene is, on paper, a reasonable molecule; there is no

obvious reason why, however unstable it might be because of antiaromaticity [16]

or strain [17], it should not be able to exist. On the other hand, NF5 defies the

hallowed octet rule; why should it be more reasonable than, say, CH6? Yet a

comprehensive computational study of this molecule by Bettinger et al. left “little

doubt” that it is a (relative) minimum on its potential energy surface [18]. The

full armamentarium of post-HF ab initio methods, CASSCF, MRCI, CCSDT,

CCSD(T), MP2 (Chap. 5, Sect. 5.4) and DFT (Chap. 7) was employed here, and

all agreed that D3h (Chap. 2, Sect. 2.6) NF5 is a minimum. Nevertheless, it was

unclear that this paper (1998) fully disposed of earlier (1989–1992) reservations

about the ability of nitrogen to bear five fluorines. Christe and coworkers concluded

that “the lack of pentacoordinated nitrogen species is due mainly to steric reasons”,

from their finding that attack ofHF2
� (evidently a surrogate for F�) onNF4þ occurs,

within experimental error, only on F and not on N [19]. This experiment dampened,

but did not negate, hope arising from ab initio computations by Ewig and Van

Wazer indicating that NF5 [20] and evenNF6
� [21] may be able to exist. Comments

by Christe and by Van Wazer and Ewig in letters to C&EN [22] showed that each

was at the time unpersuaded by the position of the other. Reinforcing their studies

with NF4F [19], Christe and Wilson were led by experiment and theoretical
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arguments to conclude that “covalent NF5 should suffer from severe ligand-

crowding effects that would make its synthesis very difficult” [23]. The difficulty

of accurately accounting computationally for crowding around a central atom [24]

was evidently the reason for doubts1 about the possibility of making nitrogen

pentafluoride, but these reservations have been overcome, evidently by reconsid-

eration of the work of Bettinger et al.2 As of mid-2015, NF5 remains unknown.

9.1.1.3 Pyramidane. A Realistic Goal

If oxirene “should” exist and NF5 “should” not, what are we to make of pyramidane

(Fig. 9.3)? This molecule contradicts the traditional paradigm [25] of

tetracoordinate carbon having its bonds tetrahedrally directed: the four bonds of

the apical carbon point toward the base of a pyramid. Note that pyramidane has

been misnamed in the literature at least once: in a study of bond dissociation

energies [26] it was called tetrahedrane, but this latter is (CH)4, a pyramidal

tricyclobutane with a triangular base and a hydrogen on each carbon, while

pyramidane is C(CH)4, a pyramidal tetracyclopentane with a square base and one

unadorned carbon. Pyramidane has been reviewed to 2007 [27].

Part of the calculated [28] potential energy surface of pyramidane is shown

in Fig. 9.3. To improve the accuracy of the relative energies, the MP2 geometries

were subjected to single-point calculations (Chap. 5, Sect. 5.5.2) using the

CCSD(T) method (Chap. 5, Sect. 5.4.3), with the results shown (Fig. 9.3).

At this level pyramidane is predicted to be a relative minimum with a barrier of

100 kJ mol�1 for its lowest-energy isomerization path, to the tricyclic carbene,

which lies 87 kJ mol�1 above it. This presents us with the surprising possibility that

the exotic hydrocarbon may be isolable at room temperature, the threshold barrier

for being isolable at room temperature being about 100 kJ mol�1 [29]. Other

calculations indicate that pyramidane and certain other C5H2n species are local

minima (at least in the singlet state) [30].

Other properties of pyramidane, including ionization energy and electron

affinity (Chap. 5, Sect. 5.5.5), heat of formation (Chap. 5, Sect. 5.5.2.2.3), and

NMR spectra (Chap. 5, Sect. 5.5.5) were calculated [28b]. The pyramidane

CH bond dissociation energy was calculated at 487 kJ mol�1 ; compare this with

the experimental 440 and 445 kJ mol�1 for cubane and cyclopropane [26]. This

accords with expectation in that increasing strain in the framework caused by

increasing p-character of the carbon CC bonds leaves more s-character for the

CH bonds; an sp2 bond, for example (33% s-character) is stronger than an sp3 bond
(25% s-character) [31].

1Personal communication from Professor Christe, 2007 April 24.
2Personal communication from Professor Christe, 2010 April 16; he concludes that NF5 can exist,

although “the synthesis would be difficult”.

9.1 From the Literature 617

http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5
http://dx.doi.org/10.1007/978-3-319-30916-3_5


A notable advance in pyramidane chemistry was the synthesis of analogues with

germanium and tin (germa- and stannylpyramidanes) as the apical atoms

[32]. These two compounds, Ge[C4(SiMe3)4] and Sn[C4(SiMe3)4], which were

stable, were analyzed computationally and, in particular, compared to the

(unknown) parent C(CH)4. Extended Hückel calculations (Chap. 4, Sect. 4.4)

were useful in this “C, Ge, Sn” correlation. The conclusion, supported by experi-

ment, was that the bonding to the base with Ge or Sn is weak and the molecules are

significantly ionic, of type MþþC4R4
��. One might suspect that pyramidane itself

will be less ionic, with stronger apex-to-base bonds, carbon being less metallic than

germanium or tin. The synthesis of a pyramidane C(CR)4 is earnestly awaited.

9.1.1.4 Polynitrogens. More Than a Computational Playground?

There has in recent years been considerable interest in the possibility of making

allotropes of nitrogen with more than two atoms per molecule. Nitrogen polymers

are interesting because to any chemist with imagination the idea of a form of pure

nitrogen that you might hold in your hand at room temperature is fascinating, and

..
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Fig. 9.3 (Part of) the pyramidane potential energy surface, CCSD(T)/6‐31G*//MP2(fc)/6‐31G*
calculations. This is similar to the PES in [28b] and in the second edition of this book, in which

QCISD(T)/6‐31G*//MP2(fc)/6‐31G* was used, and very close to the CCSD(T)/DZP surface

of Kenny et al. [28c], except that there spiropentadiene 7 is 16 kJ mol�1 higher than here and

3-ethynylcyclopropene plus two ring-opened structures are also shown, lower than 1 by 64, 128

and 175 kJ mol�1; unlike 1–7 above, these three do not bear a simple connectivity relationship

to pyramidane

618 9 Selected Literature Highlights, Books, Websites, Software and Hardware

http://dx.doi.org/10.1007/978-3-319-30916-3_4
http://dx.doi.org/10.1007/978-3-319-30916-3_4


because (which might be bad for your hand, depending on the kinetics) any such

compound would be thermodynamically very unstable with respect to decomposi-

tion to dinitrogen. The challenge is to identify computationally a realistic candidate

for synthesis and to make it. A faint hope is that a compound (an allotrope) may be

found with enough kinetic stability to be handled at room temperature. Such a

substance is potentially a useful high-energy-density material. Polynitrogens have

been reviewed to 2007 [33].

Interestingly, almost all the work reported on Nx polynitrogens (consisting solely

of nitrogen) has been computational rather than experimental. In experimental
work, the acyclic N5 cation has been made [34–37]), and the pentaaza analogue

of the cyclopentadienyl anion has been detected by mass spectrometry [38, 39]; its

generation in solution was claimed [40], challenged [41], and eventually “proved

unequivocally” by examination of its labelled decomposition products (dinitrogen

and azide ion) in redesigned experiments [42]. The N5 cation is stable in the sense

that salts of it can be isolated at room temperature, but it explodes capriciously. The

N5 anion was unstable at �40 �C [42] and was not isolated or even seen spectro-

scopically by 15N NMR. These two species, and azide ion, known since 1890 [43],

are the only polynitrogens to have been prepared. We use “prepared” advisedly for

N5
�, and pass over Nx cations that have been observed only in mass spectra [33]

and a polymer that requires high pressure to exist [44], a milieu as unfriendly as that

in a mass spectrometer.

Perhaps the first serious computational study of nitrogen oligomers was by

Engelke, who studied the N6 analogues of the benzene isomers in (Fig. 9.4), first

at the uncorrelated [45] then at the MP2 [46] level. The uncorrelated calculations

suggested that 1–5 were “stable”, i.e. kinetically stable, although thermodynami-

cally much higher in energy than dinitrogen. However, on the MP2/6‐31G* poten-

tial energy surface 1 is a hilltop (Chap. 2, Sect. 2.2) and 5 is a transition state

(Chap. 2, Sect. 2.2). This illustrates the not-so-rare fact that optimistic predictions at

low levels of theory may not be sustained at higher levels. Noncorrelated ab initio,

and in particular, semiempirical (Chap. 6) calculations, tend to be too permissive in

granting reality to exotic molecules. Indeed, hexaazabenzene is almost certainly at

best only marginally capable of existence [47]. Hundreds of computations on

polynitrogens have been published; a representative survey of these (to 2007) can

be found in [33].

1 2 3 4 5

benzene Dewar benzene benzvalene prismane bicyclopropenyl

Fig. 9.4 Nitrogen analogs (CH!N) of these molecules have been investigated computationally
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Computational papers continue to dominate the polynitrogens field. Indeed, if

one insists that a polynitrogen contain only nitrogen, then there appear to have been
no published attempts to make an Nx x > 3ð Þ species since ([34–42] above) these:
(a) the synthesis of the N5 cation (1999), (b) the synthesis of the N5 anion (2008),

and (c) the reaction of N5
þ with N3

� (2004), which did not lead to the isolation of

N8; (a), (b) and (c) have been reviewed in detail [33]. If we relax the constraint of

strict elemental uniformity, there is an abundance of reports of the synthesis of very

nitrogen-rich compounds. Silicon tetraazide (86% nitrogen by weight) is said to

have been known since 1954 [48], and carbon tetraazide (93% nitrogen by weight)

was reported in 2007 [49]. The group 15 triazides have been investigated compu-

tationally, and bismuth triazide (only 45% nitrogen by weight) has been reported,

but an attempt to make nitrogen triazide failed [50]. Particularly since ca. 2000

many nitrogen-rich organic compounds have been reported. These are almost all

made by attaching nitro, or more to the point azide, groups to triazole or tetrazole

(tri- or tetraazacyclopentadiene) rings, giving compounds like this azido tetrazole

derivative C2N14 (89% nitrogen by weight) [51]. Very active here is the group of

Klap€otke; their work to ca. 2011 has been summarized [52].

N
N

N
N N

N3

N3

N3

Returning to computations, many of the compounds examined since the

pioneering studies on small Nx species like N6 [33] are structurally very baroque

and although perhaps not intimidating to the theorist, synthetic chemists would

likely dismiss them as unlikely ever to be made, even in nanogram amounts.

Among these imaginative studies are computations on a pentagonal bipyramid

(C5)2 capped top and bottom with N15 dodecahedrons, i.e. C10N30 [53], and

cylindrical Nx structures, i.e. N66 [54]. Particularly active in computational studies

of polynitrogens with little or no carbon has been the group of Strout. Since

ca. 2002 they have examined cage structures to find features that might stabilize

them kinetically: the strategic placement of carbon and the subtle role of cage

curvature (cylinder versus spheroid) [55]. These cage molecules are all thermody-

namically unstable with respect to dinitrogen, of course, which is what we want for

a high-energy explosive or propellant (a high-energy-density material, HEDM), and

these relative stabilities are relatively easy to calculate; kinetic instability, which we

do not want, is difficult to quantify, and there seem to have been no attempts to put a

number on the barrier to decomposition for most of these. In those cases where the

computations have indeed come to grips with transition states (useful information

on barriers can be obtained from homolytic dissociation energies: see NCNNCN

etc., below) for decomposition and a barrier has been calculated, the calculated

activation energy is too low for any of the substances to be useful as a HED
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material. Examples are some N12 acyclic, monocyclic, pentazole and small cage

compounds, where the highest barrier in the set was 61 kJ mol�1 (14:5 kcal mol�1)

[56]. Experience shows that the threshold barrier for stability at room temperature is

ca. 100 kJ mol�1 [29] . This author’s intuitive view is that all these cage compounds

would be fragile substances, to be handled at one’s peril.
In contrast, the Strout group has identified a class of structures that differ from

cages in offering two satisfying possibilities: vulnerability to synthesis and kinetic

stability. These are nitrogen chains (single and double bonds are drawn here simply

in accord with ordinary valence rules) capped at the ends with cyano (nitrile)

groups [57].

N N
NN

N
NC

CN
CN

NNC

These NC(N2)xCN compounds (“dicyanopolydinitrogens”) are clearly more

realistic synthetic objectives than cage structures. Increased stability was antici-

pated because thermal decomposition of nitrogen chains seems to start at the ends,

and capping these with CN groups was expected to inhibit this [57]. The impetus to

study the longer chains was ascribed to a study of NC(N2)CN [58], where stability

was estimated by calculating the energy for dissociation to various likely products,

like NCNN þ CN; this should be valid because the barrier to homolytic cleavage

of a bond should be close to its dissociation energy. For NCNNCN the dissociation

energies for formation of likely products were endothermic, e.g. in the range

293–339 KJ mol�1 (70–81 kcal mol�1) for CCSD(T)/cc-pVTZ single point

(Chap. 5, Sects. 5.3.3 and 5.4.2) on MP2/cc-pVTZ geometries, depending on the

dissociation products. In contrast, the N4C2 isomer of NC(NN)CN, NNNCCN, has

a low-energy homolytic cleavage mode, the loss of the terminal NN as dinitrogen:

all computational levels used gave for this an exothermic reaction with an energy

drop of ca. 400 kJ mol�1 (ca. 100 kcal mol�1). Now, NCNNCN, commonly called

azodicarbonitrile, is a known compound, first made in 1965 [59]. It is an orange-red

volatile crystalline solid. The vapor decomposes only slowly at 100 �C, but the solid
detonates when shocked. So NCNNCN is thermally stable at room temperature, but

the solid, whose behaviour is harder to evaluate theoretically, is shock-sensitive.

Without knowing the numerical parameters of this (like, e.g. the weight dropped

from a certain height needed to incite detonation) one cannot definitely judge the

safety of azodicarbonitrile as a HEDM. With theoretical (the experimental proper-

ties of azodicarbonitrile were not mentioned in [58]) knowledge obtained about

the first member, the series NC N2ð ÞxCN, x ¼ 1-5 N4C2-N12C2ð Þ, was examined

[57]. The geometries and enthalpies of formation were calculated, and the singlet

electronic states were shown to be well-favored over the triplets. The energy for

dissociation of N6C2 at bonds 1, 2, and 3 (taking bond 1 as that joining atoms 2 and

3 from the end) was calculated. The results for the three modes was (products,

energies in kJ mol�1 ): NCN4 þ CN, 431; NCN3 þ NCN, 130; 2 NCN2, 164.

Since even the lowest dissociation energy here is distinctly above 100 kJ mol�1
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[29], it was concluded that this compound (and the others in the series) should show

good resistance to decomposition. From the experimental behaviour of NCNNCN

(above), and the likely resistance of all these molecules to unravelling starting from

the end, there does seem to be a real chance that they would be stable at room

temperature in the absence of a solid-state proclivity for detonation. Perhaps

concentrated solutions in an inert solvent would have HEDM characteristics.

Their synthesis poses an interesting challenge.

9.1.2 Mechanisms

We have seen, above, that computational chemistry can sometimes tell us with

good reliability if a molecule can exist. It can also often indicate the stability of a

molecule. “Stable” can be used in chemistry in two senses: it is sometimes used to

mean resistant to isomerization or unimolecular dissociation, and sometimes resis-

tant to attack by another molecule. Oxirene (above) is not stable (if it can exist at

all) because it isomerizes so readily, while cyclobutadiene is not stable because it

enters so readily into bimolecular reactions (some might say that it is stable but

highly reactive) [60]. For the four cases above (oxirene, nitrogen pentafluoride,

pyramidane, polynitrogens) we focussed on stability toward isomerization or

unimolecular reaction, to see if these compounds, suitably sequestered from attack

if necessary, could be made. Here we take a look at the ability of computational

chemistry to shed light on reactions involving chemical encounters, reactions

between two molecules. This is the main aspect of the study, by experiment and

theory, of reaction mechanisms (admittedly, unimolecular processes too have

received considerable mechanistic scrutiny, largely in connection with the theory

of orbital symmetry [61]).

9.1.2.1 A Call for Caution in Applying Computational Chemistry

to Reaction Mechanisms: The Morita-Baylis-Hillman Reaction

This example shows what computational chemistry can not do, at last at present.
The Morita-Baylis-Hillman reaction (see Plata and Singleton [62]) is the nucleo-

phile-catalyzed addition of an alkene bearing an electron-withdrawing group

(EWG) to the carbonyl carbon of an aldehyde forming an allylic alcohol:

R

O

H

EWG

R

OH

EWG+
Nu:

The essential process here is that the nucleophile effects a Michael addition on

the alkene, placing charge on the carbon bearing the EWG (which can delocalize

the charge into this group thus stabilizing it), and as shown below the zwitterion
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(assuming the nucleophile was neutral) then nucleophilically attacks the aldehyde

in an aldol reaction, forming a new CC bond. Protonation of the oxygen and

deprotonation of the carbon bearing the EWG creates a carbanion which effects

elimination of the nucleophile, regenerating the CC double bond:

EWG

Nu

R

O-

R

OH

EWGR

O

H
EWG

Nu

:
-

OH

EWG

Nu

R
-

+
+

+

The devil is in the details. For example, the conversion of the alkoxide anion to

the carbanion was widely believed to occur by a “proton-shuttle” mechanism in

which a molecule of (e.g. product) alcohol, ROH here, transferred a proton to

oxygen and simultaneously removed a proton from carbon:

R

N u

O

E W G

H

-

H
O

R

The spur for proposing this elegant-looking six-membered transition state was

the fact that the reaction is autocatalyzed. An impressively detailed experimental

study was sobering (as reality checks sometimes are): “The most notable prediction

of the many computational studies, that of a proton-shuttle pathway, is refuted in

favor of a simple but computationally intractable acid-base mechanism” [62]. The

tone of the paper is respectful toward computational chemists, but where this

reaction, and by implication complex multistep reactions, are concerned, words

are not minced in expressing the conclusions. Discrepancies between experiment

and theory are huge and vary widely with the computational method, yet these

studies “have not been considered falsified by extreme inaccuracies in predictions”:

inaccuracies that include errors in the energy of the proton-shuttle transition state

correspond to rate errors of a factor of up to 35 orders of magnitude (and 1035 is a

very big number). A major problem in the theoretical studies here seems to be the

accurate calculation of solvent entropy changes. The computational studies were

“arguably more misleading than enlightening”, and may have added nothing to

what was already known from experiment. Plata and Singleton invoked for those

studies a stinging aphorism attributed to Wolfgang Pauli concerning work so

divorced from reality that one can’t even pin down where it goes wrong: for this

reaction the computations were “not even wrong” [63]. A short report on the matter

quotes a computational and an experimental chemist who concur in cautioning care

in cases like this [64]. It should be noted that the deficiencies of the computational

work here arise from trying to do quantitative rate calculations on a complex
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multistep reaction in solution. Calculations on an isolated molecule, or a reaction

profile for a sharply defined one-step (reactant, transition state, product) process can

be very reliable; an example is the Diels-Alder reaction, below). This lesson

suggests that the prime architect of one of the most useful computational tools,

the AM1 method (Chap. 6), may have been guilty of hubris when he said in effect

that computational chemistry was superior to experiment in deciphering reaction

mechanisms: Dewar questioned “whether the mechanism of any organic reaction

was really known” before the advent of computational chemistry [65]. His skepti-

cism was engendered by the difficulties and ambiguities in studying very transient

intermediates, and the impossibility (at the time at least) of observing transition

states.

9.1.2.2 The Diels-Alder Reaction. A One- or Two-Step Dance?

This is one of the most important reactions in all of organic synthesis, as it unites

two moieties in a predictable stereochemical relationship, with the concomitant

formation of two carbon-carbon bonds (Fig. 9.5) [66]. The reaction has been used in

the synthesis of complex natural products, for example in an efficient synthesis of

the antihypertensive drug reserpine [67]. Such a reaction seems to be well worth

studying.

MeO2C

H
O

O

H
O

O

H

H
* *

*
MeO2C

Fig. 9.5 The prototypical Diels-Alder reaction is that between 1,3-butadiene and ethene, to form

cyclohexene. The Diels-Alder reaction has been used in the synthesis of complex natural products;

above, methyl 2,4-pentadienoate reacts with 1,4-benzoquinone to form an intermediate in the

synthesis of the drug reserpine. In a one-pot reaction two carbon-carbon bonds are made and three

chiral centers (*) are created with the correct relative orientations (i.e. essentially one diastereomer

is formed)
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The Diels-Alder reaction and related pericyclic reactions, which can be treated

qualitatively by the Woodward-Hoffmann rules (Chap. 4, Sect. 4.3.5.1), have been

reviewed in the context of computational chemistry [68]. The reaction is clearly

nonionic, and the main controversy was whether it proceeds in a concerted fashion

as indicated in Fig. 9.5 or through a diradical, in which one bond has formed and

two unpaired electrons have yet to form the other bond. A subtler question was

whether the reaction, if concerted, was synchronous or asynchronous: whether both

new bonds were formed to the same extent as reaction proceeded, or whether the

formation of one ran ahead of the formation of the other. Using the CASSCF

method (Chap. 5, Sect. 5.4.3), Li and Houk [69] concluded that the butadiene-

ethene reaction is concerted and synchronous, and chided Dewar and Jie [70] for

stubbornly adhering to the diradical (biradical) mechanism.

The favoring of a diradical mechanism here seems to be an artifact of semi-

empirical methods (Chap. 6) and unrestricted HF methods (Chap. 5, Sects. 5.2.3.5

and 5.2.3.6.5); see reference 11 in [69]. A DFT (Chap. 7) study also strongly

supported the concerted mechanism [71].

9.1.2.3 Abstraction of H from Amino Acids by the OH.

Radical. Unavoidable Complexity?

This reaction seems more esoteric than the Diels-Alder, and although not “used”,

may be very important. Proteins are linked amino acid residues, and oxidation of

proteins by hydroxyl radicals play a role in Alzheimer’s disease, cancer, and heart

disease. The initial step in the destruction or modification of proteins by hydroxyl

radical is likely to be abstraction of a hydrogen atom from the α–C (Fig. 9.6). In a

very thorough study using MP2 (Chap. 5, Sect. 5.4.2) and DFT (Chap. 7), Galano

et al. calculated the geometries of the species (amino acid-OH complexes, transition

states, and amino acid radicals) involved in the reactions of glycine and alanine

(Fig. 9.6, R¼H and CH3, respectively) [72]. The rate constants were calculated in

a thorough way, using partition functions to calculate the preexponential factor

(cf. Chap. 5, Sects. 5.5.2.1 and 5.5.2.3.4), and even accounting for tunnelling and

taking into consideration that some “vibrations” are really rotations. This paper

provides a good account of how computational chemistry can be used to calculate

absolute rate constants for reactions of molecules of moderate size.

HO .

C CO2H

H

H2N

R

C CO2H

H2N

R

.

HOH

Fig. 9.6 Abstraction of a hydrogen atom from the α–C of an amino acid by hydroxyl radical has

been investigated computationally
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9.1.3 Concepts

There are some very basic concepts in chemistry that have proved to be helpful in

rationalizing experimental facts, and which have been taught for about the last

50 years, but which have nevertheless been questioned in the last couple decades or

so; an example is the role of resonance in stabilizing species like carboxylate ions.

Some newer concepts, intriguing but not as traditional, have also been scrutinized

and questioned, e.g. homoaromaticity.

9.1.3.1 Resonance vs. Inductive Effects

The traditional explanation of the fact that carboxylic acids are much stronger acids

than alcohols is that resonance stabilization of the conjugate base, which is more

important than the charge-separation resonance in the acid, stabilizes RCOO�

relative to RCOOH, while resonance does not figure in either an alcohol or its

conjugate base. This traditional wisdom was apparently first questioned by Thomas

and Siggel, on the basis of ab initio calculations and photoelectron spectroscopy

[73]. They concluded that the relatively high acidity of carboxylic acids is largely

inherent in the acid itself, as a consequence of the polarization of the COOH group

caused by the electronegative carbonyl group pulling electrons from the hydrogen

atom, an electrostatic phenomenon. This idea was taken up by Streitwieser and

applied to other acids, e.g. nitric and nitrous acids, dimethyl sulfoxide and dimethyl

sulfone [74]. The results for carbonyl compounds were interpreted in accord

with another iconoclastic idea, namely that the carbonyl group is better regarded

as >C+–O– than as >C¼O [75]. This polarization interpretation was arrived at

largely with the aid of atoms-in-molecules (AIM) analysis of the electron

populations on the atoms involved (Chap. 5, Sect. 5.5.4.5), and a simpler variation

of AIM (the projection function difference plot) developed by Streitwieser and

coworkers [76]. Work by others also supports the view that it is “initial-state

electrostatic polarization” that is largely responsible for the acidity of several

kinds of compounds, including carboxylic acids [77]. However, Burk and Schleyer

asserted that the Thomas/ Siggel method at least [73], which initiated giving credit

to electrostatic destabilization of the acid, was not valid because their “relaxation

energy” term, which supposedly measured electron delocalization or resonance,

does not correspond to what chemists normally mean by those terms [78]. Other

studies, albeit with different methodologies, nevertheless assigned major impor-

tance to electrostatic factors: 75% for CH3COOH, using isodesmic reactions with

ab initio energies [79], and roughly 62–65% for HCOOH, using the effect of

separating the CO and OH by –CH¼CH– groups and of rotating the CO relative

to the rest of the conjugated system, with DFT energies [80]. Around the same time

as [79] and [80] lent support to the importance of electrostatic destabilization of

the acid, Exner and Čársky [81], using ab initio calculations and isodesmic reac-

tions, published a “rebuttal”, contending that “In our opinion, there are no doubts
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that the acidity of carboxylic acids is related to the low energy of the anion, not to a

high energy of the acid molecule”, although “the importance of resonance [in the

anion] can only be estimated”, not quantified; they conclude it is a minor factor.

They conclude, however, that “in water” (all these publications focus on the gas

phase, to pinpoint effects inherent to the unencumbered acid) “resonance is the

deciding factor.” They go on to say that “The whole concept of resonance seems at

present somewhat obsolete. . .”. It is relevant to note that resonance/delocalization

does not always stabilize a species [82]. The resonance concept has been “philo-

sophically” examined by Shaik [83]. From all this it appears that consensus has not

been reached on the cause of the enhanced acidity of carboxylic acids compared to

alcohols, and one might almost wonder if to some extent the role of electrostatics

versus resonance is a metaphysical question.

9.1.3.2 Homoaromaticity

Aromaticity [84] is associated with the delocalization of (in the simplest version) π
electrons (the role of these π electrons in imposing symmetry on the prototypical

aromatic species, benzene, is being questioned, but that is another story [85]).

A Hückel number of cyclically delocalized electrons confers aromaticity on a

molecule (Chap. 4, Sect. 4.3.5.2). The idea behind homoaromaticity (homologous

aromaticity) is that if a system is aromatic, then if we interpose one or more atoms

between adjacent p orbitals of the π system, provided overlap is not lost the

aromaticity may persist (Fig. 9.7). While there is little doubt about the reality of

homoaromaticity in ions, neutral homoaromaticity has been elusive [86].

One molecule that might be expected to be homoaromatic, if the phenomenon

can exist in neutral species, is triquinacene (Fig. 9.7): the three double bonds are

held rigidly in an orientation which appears favorable for continuous overlap with

concomitant cyclic delocalization of six π electrons.

Indeed, its potential aromaticity was one of the reasons cited for the synthesis of

this compound [87]. A measurement of the heat of hydrogenation of triquinacene

found a value 18:8 kJ mol�1 lower than that for each of the next two steps (leading

to hexahydrotriquinacene) [88]. This was taken as proof of homoaromaticity in

the triene, i.e. that the compound was 18:8 kJ mol�1 (4:5 kcal mol�1) stabler than

expected for an unstabilized species; note that this is a small stabilization energy

compared to the resonance energy of benzene, most computational estimates of

which are roughly 100 kJ mol�1 (Chap. 5, Sect. 5.5.2.2.1). However, another

experimental and computational study of this question [89] led to the conclusion

that triquinacene is not homoaromatic: combustion of the compound gave an

enthalpy of formation ca. 17 kJ mol�1 (4 kcal mol�1 ) higher than that obtained

from hydrogenation in [88] (241 vs. 224 kJ mol�1, 57.5 vs. 53:6 kcal mol�1). This

negative conclusion was supported by calculation of the heat of hydrogenation of a

double bond in triquinacene and in its di- and tetrahydro derivatives (1, 2, 3,

Fig. 9.8), and by calculation of magnetic properties of the triene and related
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molecules [89]. The heats of hydrogenation of the double bonds were calculated

with the aid of homodesmotic reactions, a kind of isodesmic reaction (Chap. 5,

Sect. 5.5.2.3.1) which preserves the number of each kind of bond, and so in which

correlation errors should cancel well; for 1, 2, and 3 the calculated hydrogenation

energy of a double bond are all essentially the same, showing that a double bond of

1 is an ordinary cyclopentene double bond. Note that using cyclopentane (Fig. 9.8)

rather than, say, ethane–which would also preserve bond types–to (conceptually)

hydrogenate 1, 2, and 3 should largely cancel out energy differences due to ring

strain. Interestingly [88], concludes that “triquinacene is unequivocally stabilized”

relative to reference species, but [89] asserts that, from the thermochemical

measurements, “The only logical conclusion is that [triquinacene] is not

homoaromatic.” The evident absence of homoaromaticity in triquinacene is pre-

sumably due to the three pairs of nonbonded carbons being too far apart, 2.533 Å,
from X-ray diffraction; in the transition state (Fig. 9.9), in contrast, the nonbonded

interposed CH2 group
benzene

homobenzene

i.e. i.e. ?

triquinacene

Fig. 9.7 Homoaromaticity. Interposing a CH2 group between one pair of formal double bonds of

benzene gives monohomobenzene. Is this delocalized like benzene, or is it just cycloheptatriene?

Is triquinacene, with a CH group interposed between each pair of formal double bonds, a

trishomobenzene?
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CC distance has been reduced to 1.867 Å according to a B3LYP/6-311+G**

(Chap. 7, Sect. 7.2.3.4.5) calculation. Significantly, the measured C¼C length,

1.319 Å, is close to the normal C¼C length (calculated and measured parameters

of triquinacene are cited in [89]).

The magnetic properties used to probe aromaticity arise from the presence of a

diatropic ring current which tends to push an aromatic molecule out of a magnetic

field (calculated property: magnetic susceptibility, χ), and which exerts NMR

shielding on a proton at or above the ring center (calculated property: nucleus-

independent chemical shift, NICS). NICS values are obtained from the calculated

NMR shielding (Chap. 5, Sect. 5.4.3.3) of a “ghost nucleus” with no charge or

electrons placed at or above the ring center. A very comprehensive review of the

NICS test [90a] has been published, and an updated, superior variant [90b] has been

presented. Calculation of the changes in χ and in NICS along the reaction coordi-

nate for the known reaction, the isomerization of diademane to triquinacene

H (reaction) = –2.5 kJ mol–1

+

3

+

+

21

+

2

H (reaction) = –1.7 kJ mol–1

H (reaction) = +0.8 kJ mol+ +

3

Fig. 9.8 The heat of hydrogenation of a double bond in triquinacene is essentially the same as that

of a double bond in dihdrotriquinacene and in tetrahydrotriquinacene, and is about the same as in

cyclopentene, indicating that triquinacene is not homoaromatic

triquinacenetransition statediademane

Fig. 9.9 The isomerization of diademane to triquinacene proceeds through an aromatic transition

state, as shown by the magnetic susceptibility and NICS values for the three species
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(Fig. 9.9), showed that the transition state, but neither the reactant nor the product,

was aromatic [89]. Homoaromaticity in transition states, which almost perforce are

not subject to experimental spectroscopic scrutiny, has been claimed [91]. The

phenomenon has for years been controversial for cycloheptatriene, but after having

being said to be “firmly established” computationally [92a] it has evidently been

definitively demonstrated experimentally in a subtle somewhat roundabout way by

examining the NICS characteristics of a cycloheptatriene ring fused to a

dimethyldihydropyrene probe molecule; these workers quantify cycloheptatriene

as being 50% as aromatic as benzene [92b]. A convincing demonstration of

homoaromaticity in a neutral molecule was provided by the unusual medium of

IR, rather than NMR, spectroscopy for a semibullvalene derivative (Fig. 9.10)

[93]. The hydrocarbon semibullvalene undergoes valence tautomerism with a low

barrier through a symmetrical transition state which switches “left-right” the two

ends. The dimethyl dianhydride derivative of semibullvalene captures the essence

of this transition state in a homoaromatic compound. This was shown by analysis of

the IR spectrum of the vapor: the number of carbonyl bands seen was that expected

for the molecule shown, C2v with two symmetry planes, rather than for a

dianhydride with the framework of semibullvalene itself, Cs with one symmetry

plane.

9.2 To the Literature

A feast of information on computational chemistry is available, a small selection of

which is given below.

9.2.1 Books

Books on computational chemistry and some related topics, in alphabetical order of

the author’s (or first-listed author’s) name. The terse characterization of a particular

. .
.
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O

O
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O

O

semibullvalene symmetrical transition state homoaromatic dianhydride

Fig. 9.10 Semibullvalene switches its cyclopropane and diene ends through a delocalized sym-

metrical transition state. The dianhydride derivative of semibullvalene is a delocalized

homoaromatic compound
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book is a personal impression, and does not necessarily imply that it does not share

the virtues ascribed to some other book. The list does not claim to by any means

include all the useful books on computational chemistry.

B

Computational Organic Chemistry, Second Edition, S. M. Bachrach, Wiley-

Interscience, Hoboken, NJ, 2014.

Good source of examples from the literature with critical evaluation of methods

and useful caveats. The first chapter is a very brief introduction to ab initio and DFT

theory.

C
Handbook of Computational Quantum Chemistry, D. B. Cook, Dover Reprint,

Dover Publications, Mineola, New York, 2005 (original 1998).

Concentrates on the math behind quantum chemistry theory and algorithms, yet

not dryly written. Perhaps mainly for those who wish to write or modify programs.

Best read after acquiring the basics from a more general, introductory book.

Essentials of Computational Chemistry. Theories and Models, second Edition,

C. J. Cramer, Wiley, New York, 2004.

Covers a wide range of topics. The level is sometimes quite advanced. Critical

discussions of the literature. Of similar ilk to Jensen, below.

D

The Molecular Orbital Theory of Organic Chemistry, M. J. S. Dewar, McGraw-

Hill, New York, 1969.

Nice introduction to the basics of quantum chemistry, then a focus on semiem-

pirical calculations and perturbation methods. Although published more than

40 years ago, the fundamentals, like the Schr€odinger equation and wavefunctions,

remain true, and the engagingly assertive style of the doyen of modern semiempir-

ical methods makes this book worth reading.

F

Exploring Chemistry with Electronic Structure Methods, second Ed., J. Foresman

and Æ. Frisch, Gaussian, Inc., Pittsburgh, PA, 1996.

Very useful hands-on guide; oriented toward Gaussian 94, but useful for Gauss-

ian 03 and even 09. A third edition became available in 2016, from Gaussian Inc.

H

Ab Initio Molecular Orbital Theory, W. J. Hehre, L. Radom, P. von R. Schleyer,

and J. A. Pople, Wiley, New York, 1986.

Still a good introduction to ab initio calculations, although one should realize

that there have been great advances since 1986. Extremely useful are the extensive

tables of calculated and experimental geometries, energies, and frequencies.

I

Computational Thermochemistry, K. K. Irikura and D. J. Frurip, Eds., American

Chemical Society, Washington, DC, 1998.
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Useful source of information on the calculation of energy quantities: heats of

formation, reaction energies, bond energies, activation energies, etc. Methods:

group additivity, molecular mechanics, semiempirical, DFT, and high-accuracy

ab initio (G2, CBS, etc.); energies of solvation.

J

Introduction to Computational Chemistry, second edition, F. Jensen, Wiley,

New York, 2007.

Good general introduction. Goes fairly deeply into theory. Of similar ilk to

Cramer, above.

K
A Chemist’s Guide to Density Functional Theory, W. Koch and M. C. Holthausen,

Wiley-VCH, New York, Second Edition, 2002.

Detailed introduction to the theory and applications of DFT. Best read after

acquiring a basic knowledge of DFT.

L

Molecular Modelling. Principles and Applications, second Edition, A. R. Leach,

Longman, Essex, England 2001.

Good general introduction. Comprehensive and goes deeply into the topics.

Somewhat like Cramer, Jensen, above.

Quantum Chemistry, seventh Ed., I. N. Levine, Prentice Hall, Upper Saddle

River, NJ, 2014.

Enormously useful book on the broad field of quantum chemistry. Many refer-

ences to the original literature, to books, to programs, and to websites.

Modeling Marvels. Computational Anticipation of Novel Molecules, E. Lewars,
Springer, Amsterdam, 2008.

Thirteen kinds of very novel molecules which were unknown at the end of 2009

(and still in mid-2016), but have been investigated computationally. For people

who are fascinated by novel molecules at the frontier of structural chemistry.

P

Approximate molecular Orbital Theory, J. A. Pople, D. A. Beveridge, McGraw-

Hill, New York, 1970.

Although published nearly 50 years ago, this book is worth perusing because it

provides an indication of the situation at the dawn of ab initio calculations, when

quite approximate semiempirical methods (CNDO and INDO) were important, and

it is one legacy of John Pople, who went on to help make ab initio calculations

practical for much of the chemical community.

R
Molecular Mechanics Across Chemistry, A. K. Rappé and C. J. Casewit, University
Science Books, Sausalito, CA, 1997.

Detailed presentation of the applications of MM, particularly in biochemistry

and drug design.
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S

The Encyclopedia of Computational Chemistry, 5 volumes, P. von R. Schleyer,

Editor in chief, Wiley, New York, 1998.

No doubt authoritative, but pricey (ca. $6000), and multivolume paper-based

encyclopedias have limited useful lifetimes nowadays.

Modern Quantum chemistry. Introduction to Advanced Electronic Structure
Theory, A. Szabo and N. S. Ostlund, Macmillan publishing, New York, 1982.

Revised edition McGraw-Hill 1989, Dover paperback 1996.

A detailed, very advanced introduction to basic Hartree-Fock, CI and MP theory.

Well-known as a rigorous introduction to the mathematical fundamentals. Best read

after one understands the basic principles of ab initio quantum chemistry.

W

Books from Wavefunction, Inc, makers of the Spartan computational chemistry

program. For available books contact Wavefunction, http://www.wavefun.com/

These books, oriented toward Wavefunction’s Spartan program, are useful

introductions to practical methods of getting useful results.

Y

Computational Chemistry: A Practical Guide for Applying Techniques to Real
World Problems, D. Young, Wiley, New York, 2001.

A “meta-book” in that it lists several books on computational chemistry; it also

lists many websites concerned with computational chemistry, and many computa-

tional chemistry programs. Useful lists of references (to ca. 1999).

Available Online

See too: Topics by Dave Young: http://server.ccl.net/cca/documents/dyoung/

Book Series Reviews in Computational Chemistry, K B. Lipkowitz and D. B.

Boyd, Eds., Wiley-VCH, New York.

Useful reviews focussed on various topics, by workers in that particular field.

A volume in this series typically has from four to eleven chapters, each a kind

of tutorial on the theory and application of some computational method.

Volumes 1–18 were edited by K. B. Lipkowitz and D. B. Boyd; the series continues

with Lipkowitz and others, editors. As of June 2015 the latest volume was

Volume 28, which appeared in May 2015.

For tables of contents and other information see http://www.chem.iupui.edu/rcc/

rcc.html, and

http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470587148.html

9.2.2 Websites for Computational Chemistry in General

Information on even specialized scientific topics can often be obtained from

ordinary search engines. For example, a popular search engine gave information

(ten hits for each) on these five topics, using the keywords shown: Hartree Fock,
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potential energy surface, molecular mechanics, Hückel, Extended Hückel. In

several cases the hypertext leads one to tutorials, and to free programs. Neverthe-

less, a list of specific websites can still be helpful. Many websites are given in the

books by Young and by Levine, above; some other useful ones are (should some

of these invoke “Address Not Found”, try a search engine) given below.

1. The computational chemistry list, CCL

http://www.ccl.net/chemistry/

A truly extraordinarily helpful forum for exchanging ideas, asking questions and

getting help. If you join the network you can expect typically 5–10 messages a

day. It often serves as a forum for stimulating discussions. Currently the best

way to locate specific information in CCL may be to go, once in CCL, to CCL

Search and follow the instructions to using Google for a CCL search.

2. National Institute of Standards and Technology, NIST (USA)

(a) General information

http://www.nist.gov/index.html

(b) Chemistry databases

http://www.nist.gov/chemistry-portal.cfm

(c) Computational chemistry comparison and benchmark database

http://cccbdb.nist.gov/

(d) Perhaps the quickest way to get information on a specific molecule is from

this specific site:

NIST chemistry webbook. Options for specifying molecule include formula,

name, reaction, structure, energetics property (e.g. ionization energy,

acidity).

http://webbook.nist.gov/chemistry/

(e) Density functionals from the Truhlar group

This may help one to cope with the plethora of acronyms of DFT functionals.

http://comp.chem.umn.edu/info/dft.htm

3. From the Chemistry Biology Pharmacy Information Center, ETH, Zurich

A long list of information and websites connected with computational chemistry.

Leads to information on methods and software.

http://infozentrum.ethz.ch/uploads/user_upload/pdf/PDFs_von_Drucksachen/

Infobroschure_Englisch.pdf

4. The Cambridge Crystallographic data Centre; contains the Cambridge Structural

Database, which has X-ray or neutron diffraction structures of more than

500 000 compounds. Useful for comparing experimental and calculated struc-

tures, and obtaining “guess” structures for related structures to initiate an

optimization.

www.ccdc.cam.ac.uk/

5. This site allows one to select a basis set for a molecule (“391 published basis

sets”), or for particular atoms in a molecule, and provides options of the format

for various programs. Useful when the program being used lacks that particular

basis set. A minor problem is that Gaussian requires its “outsider” basis sets to

start with the element symbol, not the string of asterisks given here.

http://bse.pnl.gov/bse
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9.3 Software and Hardware

9.3.1 Software

These programs (“software suites”) and others are described in more detail in the

book by Young, above (albeit as of ca. 2001), and in a comprehensive list

on Wikipedia (below). These sources should be consulted for more information.

I mention here some that are particularly useful in a general-purpose sense, and

some more specialized programs that handle advanced methods which cannot be

implemented, or well-implemented, in more “general” programs. Some of the

programs do not have their own input/output GUI (graphical user interface).

Many of these can be found conveniently from the rather extensive list on

Wikipedia, which describes the program and (often) gives quick access to its

website by clicking:

http://en.wikipedia.org/wiki/Category:Computational_chemistry_software

Not listed here are programs for these specialized applications of computational

chemistry: molecular dynamics, drug design (including QSAR, quantitative

structure-activity relationships), crystal structure prediction, and solid-state

physics.

The list here is alphabetical.

ACES III (Advanced Concepts in Electronic Structure)

http://www.qtp.ufl.edu/aces/pubs.shtml

An ab initio program for high-level jobs. Particularly recommended for CCSD

(T) optimizations + frequencies, which latter are perhaps the most reliable calcula-

tions that can currently be done routinely on molecules of up to moderate size (up to

about 10 heavy atoms). CCSD(T) optimizations and frequencies tend to be consid-

erably slower with some other programs, if available at all. Available for UNIX

workstations and supercomputers. Evidently lacks its own GUI.

ADF Amsterdam Density Functional

https://www.scm.com/

“ADF is an accurate, parallelized, powerful computational chemistry program to

understand and predict chemical structure and reactivity with density functional

theory (DFT)”. Available for Windows, Linux or Mac operating system. One might

say this is everything for, and only for, DFT.

AMPAC (Austin method package; cf. AM1 Marketed by Semichem Inc.)

http://www.semichem.com/default.php

A semiempirical suite of programs. See Chap. 6.

COSMOtherm From COSMO (below) and thermochemistry

http://www.cosmologic.de/products/cosmotherm.html

A suite of programs for using quantum chemistry and thermodynamics to

calculate properties of solutions; available from the company COSMOlogic

(http://www.cosmologic.de/home.html). Includes COSMO-RS (COnductor like
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Screening MOdel for Realistic Solvents; Chap. 8, Sect. 8.1.2, Continuum solva-
tion). COSMOtherm is available in the program suite Turbomol (below), in a

somewhat older version (as of mid-2015) in ORCA (below). Gaussian can create

an input file for COSMOtherm.

GAMESS (General Atomic and Molecular Electronic Structure System)

http://www.msg.ameslab.gov/GAMESS/

A fairly general-purpose computational chemistry suite: semiempirical and ab

initio. Not as many options as GAUSSIAN (below) but free. Versions are available

for PCs, Macs, UNIX workstations and supercomputers. lacks its own GUI.

GAUSSIAN (After the Gaussian functions of ab initio computations)

http://www.gaussian.com/

A general-purpose computational chemistry suite. Possibly the most widely used

computational chemistry program. Actually a suite of programs with MM

(AMBER, DREIDING, UFF), ab initio, semiempirical (CNDO, INDO, MINDO/

3, MNDO, AM1, PM3, Extended Hückel) and DFT, and all the usual high-level

correlated ab initio methods. Some molecular dynamics is available. Most methods

are available simply by keywords. There is a large number of basis sets and

functionals. Electronically excited states can be calculated. GAUSSIAN has

appeared in improved versions every few years from 1970 (. . .G92, G94, G98).
The latest version (January 2010) is G09; somewhat minor revisions appear fre-

quently. GAUSSIAN is available in versions for PCs running under Windows and

LINUX, and for UNIX workstations and supercomputers. The program itself does

not have an integrated GUI (one bundled with the actual computing module), but

there are several graphics programs for creating input files and for viewing the

results of calculations. GaussView (latest version in 2015, GaussView 5), expressly

designed for GAUSSIAN, is highly recommended as the solution to all GAUSS-

IAN graphics problems.

HyperChem http://www.hyper.com/

More specific information on the latest version:

http://www.hyper.com/Products/HyperChemProfessional/tabid/360/Default.

aspx

Has MM, semiempirical (including extended Hückel, CNDO, INDO, MINDO/3,

MNDO, ZINDO/1, ZINDO/S, AM1, PM3), ab initio, molecular dynamics. Avail-

able for PCs with Windows and LINUX. It has its own GUI. An option that

Hyperchem seems to be directed toward is drug discovery.

JAGUAR (Jaguar¼ speed) Marketed by Schr€odinger Inc.
http://www.schrodinger.com/products/14/7/

Made by Schr€odinger, Inc., JAGUAR is an ab initio and DFT package that uses

sophisticated algorithms to speed up ab initio calculations. It is said to be particu-

larly good at handling large molecules, transition metals, solvation, and conforma-

tional searching. It is described (above, http: etc.,) as having “particular strength in

treating metal containing systems” and is said to be “much faster than conventional

ab initio programs.”
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MOLCAS Molecular Complete active space

Normally run under LINUX but can be configured for some other operating

systems (see below).

http://molcas.org/

The name is a good clue. Ab initio and some DFT. Its main strength appears to

be its ability to bring advanced correlation methods to bear on excited states and

degenerate states. In this regard it is evidently the only program suite with

CASPT2N (complete active space perturbation theory second order with

nondiagonal one-particle operator [94]). A survey of the literature shows that this

is the most widely-used version of the CASPT2 method, and is the most widely-

accepted technique for treating static correlation (Chap. 5, Sect. 5.4.1) in singlet

diradicals (Chap. 8). A CAS (Chap. 8, Sect. 8.2.3) geometry optimization followed

by a single-point CASPT2N energy calculation is analogous (not identical) to a

Hartree-Fock optimization followed by an MP2 single point calculation to obtain a

better energy (but MP2 calculations are now commonly geometry optimizations).

The method is sometimes called just CASPT2, but there are other second order

perturbational CAS methods implemented in other programs. MOLCAS can be

configured to run under some other operating systems; see the review [95].

MOLPRO Molecular Professional

Available only for LINUX.

http://www.molpro.net/

Mainly high-level correlated ab initio calculations (multiconfiguration SCF,

multireference CI, and CC); and DFT. “The emphasis is on highly accurate

computations. . .accurate ab initio calculations can be performed for much larger

molecules than with most other programs.” An unusual feature is the inclusion of

explicitly correlated calculations (dependence on 1/r; Chap. 5, Sect. 5.4.1).

MOLPRO does not implement the CASPT2N code as in MOLCAS, but “the

multi-reference perturbation theories in MOLPRO and MOLCAS are quite similar,

and the CASPT2N Hamiltonian can be reproduced in MOLPRO”.3 Other programs

that implement methods designed to accomplish “post-CAS” energy calculations

are GAUSSIAN and GAMESS.

MOPAC The name means Molecular Orbital Package, but is said to have been

inspired by this geographical oddity: “The original program was written in Austin,

Texas. One of the roads in Austin is unusual in that the Missouri-Pacific railway

runs down the middle of the road. Since this railway was called the MO-PAC, when

names for the program were being considered, MOPAC was an obvious contender”.

http://openmopac.net/manual/index_troubleshooting.html

A semiempirical suite of programs. See Chap. 6.

3Personal communication, Professor E. V. Patterson, Division of Science, Truman State Univer-

sity, Kirksville, MO, 2005 March 7.
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NWChem Northwest Chemistry

http://www.nwchem-sw.org/index.php/Main_Page

Developed at the Pacific Northwest National Laboratory, a US national scientific

user facility funded by the Department of Energy. This suite of programs can do

molecular mechanics, molecular dynamics, ab initio, and density functional calcu-

lations. It is designed to run on “parallel computing resources from high-

performance parallel supercomputers to conventional workstation clusters”. It is

apparently available for public download.

ORCA The name, whimsically bestowed on his nascent program in the late 1990s

by its originator Frank Neese, was inspired by whale-watching on the California

coast. Neese simply wanted “a name that sounded short and strong”.4 It is not an

acronym, but ORCA denotes a whale of a program in versatility and power.

http://www.thch.uni-bonn.de/tc/orca.

Manual:

http://www.cec.mpg.de/media/Forschung/ORCA/orca_manual_3_0_1.pdf

ORCA, developed by F. Neese and collaborators, is a very comprehensive suite

with semiempirical, ab initio and DFT capability. It handles solvation (including

the COSMOtherm program suite, see above), and does advanced electron correla-

tion calculations like multireference jobs. An important feature is the ability to

do the speeded-up coupled cluster methods CEPA and LPNO (Chap. 5, end of

Sect. 5.4.3), as of mid-2015 being apparently the only program with this full

capability. Review: F. Neese, Wiley Disciplinary Reviews: Computational Molec-

ular Science, 2012, 2, 73. ORCA is free to academic researchers.

PCModel Marketed by Serena Software

http://www.serenasoft.com/

Primarily molecular mechanics, but now includes semiempirical. Can serve as a

GUI for ab initio and DFT program suites.

Q-Chem Quick chemistry

www.q-chem.com/

“The first commercially available quantum chemistry program capable of ana-

lyzing large structures in practical amounts of time.” For ab initio (including high-

level correlated methods) and DFT. Q-Chem is available for PCs running under

LINUX, for UNIX workstations, and for supercomputers.

Simple H€uckel Method programs The simple Hückel method, SHM (Chap. 4,

Sects. 4.3.4, 4.3.5, 4.3.6 and 4.3.7):

This remains important for heuristic and pedagogic reasons, and even

researchers can find it useful. Despite what some think, it “is immensely useful as

a model, today. . .Because it is the model which preserves the ultimate physics, that

of nodes in wave functions. It is the model which throws away absolutely

4Personal Communication, Professor F. Neese, Max Planck Institute for Chemical Energy Con-

version, Müllheim an der Ruhr, Germany, 2015 August 20.
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everything except the last bit, the only thing that if thrown away would leave

nothing. So it provides fundamental understanding” (Professor Roald Hoffmann,

personal communication). SHM programs may be located by googling “simple

huckel method programs”. The program from the University of Calgary is

recommended:

http://www.chem.ucalgary.ca/SHMO/ This can be downloaded or used online.

SPARTAN Spartan meaning spare, uncomplicated. Marketed by Wavefunction

http://www.wavefun.com/

This is a suite of programs with MM (SYBYL and MMFF), ab initio, semiem-

pirical (MNDO, AM1, PM3) and DFT, with its own superb graphical user interface

(GUI) for building molecules for calculations, and for viewing the resulting geom-

etries, vibrational frequencies, orbitals, electrostatic potential distributions, etc.

SPARTAN is a complete package in the sense that one does not need to buy

add-on programs like, say, a GUI. The program is very easy to use and its

algorithms are robust–they usually accomplish their task, e.g. the sometimes tricky

job of finding a transition state usually works with SPARTAN. Versions of the

program are available for PCs running under Windows and LINUX, for Macs, and

for UNIX workstations. It lacks some high-level correlated ab initio methods, like

CASSCF, and its store of basis sets and DFT functionals is limited to the most

commonly used ones (the exact selection varies somewhat from version to version),

but it is nevertheless extremely useful for research (including preliminary work and

creating input structures for other programs), not to mention teaching.

TURBOMOLE http://www.turbomole.com/

“The philosophy behind the development of the code was, and still is, its

usefulness for applications”. The focus is less on new methods than on “a fast

and stable code which is able to treat molecules of industrial relevance at reasonable

time and memory requirements”. The emphasis on industrial applications is clear in

the meshing of TURBOMOLE with the program suite COSMOtherm (see above).

9.3.2 Hardware

Someone beginning computational chemistry might wish to get a high-end PC

running under Windows or LINUX: such a machine is fairly cheap and it will do

even sophisticated electron-correlation ab initio calculations. Some specialized

programs are available only for LINUX. A 64 bit ca. 4 GHz speed machine with

6 or more cores, 8 GB of memory (random access memory, RAM), a 2000 GB

(2 terabytes, 2 TB) hard drive is now (June 2015) not very unusual (soon it may be

substandard); such a machine is available for ca. US $1400 for the whole system,

including monitor etc. This is a reasonable choice for general computational

chemistry. Using standard Gaussian 94 test jobs and various operating systems,

and varying software and hardware parameters, Nicklaus et al. comprehensively

compared a wide range of “commodity computers” [96]. These were ordinary

9.3 Software and Hardware 639

http://www.chem.ucalgary.ca/SHMO/
http://www.wavefun.com/
http://www.turbomole.com/


personal computers of the time (ca. 1998); the costliest was about US $5000 and

most were less than $3000. A computer of this price would now (2015) be about

twenty times as fast as in 1998. They concluded that “commodity-type computers

have. . .surpassed in power the more powerful workstations and even supercom-

puters.... Their price/performance ratios will make them extremely attractive for

many chemists who do not have an unlimited budget. . .” Chemists without unlim-

ited budgets will be reassured to read a slightly more recent study, by an eminent

pioneer in computational chemistry; the account begins in 1965 with a personal

hardware odyssey and concludes, ca. 2001, with an endorsement of the view that

PCs have largely usurped the role of workstations [97]. A workstation was a UNIX-

based desktop computer, commonly about three to ten times as expensive as a PC

ca. 2001; the term may not be obsolete, but now has a vaguely archaic ring.

Calculations that might be daunting to a desktop machine are nowadays often

run on a“cloud” facility, or on a computer cluster. Cloud computing is the term

denoting running the calculations on a machine remote (more or less) from the site

where one works [98]. A computer cluster is the poor person’s supercomputer:

clusters were originally assembled from humbler machines (even before modern

PCs existed) to obtain supercomputer power at a far lower cost [99]. For those who

wish to use or even build a cluster the website http://www.clustermonkey.net/

Books/, offers books and some frank comments. Clusters are now commercially

available.

It is only fair to point out that the enormous decrease in the times, over the

decades, with which computing jobs can be dispatched is not due solely to the

increase in computer speed. In computational chemistry, certainly, the people who

write the codes deserve much credit. Algorithms have been speeded up greatly by

various mathematical “tricks” (stratagems might be a better word) which often

provide considerable increases in speed with little or no loss of accuracy. It might

be interesting to try to untangle the effect of algorithmic efficiency from that of

hardware power.

9.3.3 Postscript

About 15 years ago the president of a leading computational chemistry software

firm told the author that “In a few years you will be able to have a Cray [a leading

supercomputer brand] on your desk for $5000”. Supercomputer performance is a

moving target, but the day has indeed come when one can have on one’s desk for a

few thousand dollars computational power that was not long ago available only to

an institution, and for a good deal more than $5000. A corollary of this is that

computational chemistry has become an important, indeed sometimes essential,

auxiliary to experimental work. More than that, calculations have become so

reliable that not only can parameters like geometries and heats of formation often

be calculated with an accuracy rivalling or exceeding that of experiment, but where

high-level calculations contradict experiment, the experimentalists might be well
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advised to repeat their measurements. The implications for the future of chemistry

of the happy conjunction of affordable supercomputer power and highly sophisti-

cated software need hardly be stressed.
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Garciá P, Willner H, Paci MB, Argüello G (2003) Chem Eur J 9:5135. (c) Racemization of a

twisted pentacene: 100 kJ mol�1/6–9 h: Lu J, Ho DM, Vogelaar NJ, Kraml CM, Pascal RA Jr

(2004) J Am Chem Soc 126:11168
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Answers

Chapter 1, Harder Questions, Suggested Answers

Q1

Was there computational chemistry before electronic computers were available?

Computational chemistry as the term is now understood arose at about the same

time as electronic computers became available to chemists:

In 1951 an international conference was held at Shelter Island near Long Island in

New York, N.Y. most of the leading figures in quantum chemistry were present. Two

persons there symbolized the phasing out of desktop mechanical calculators (Prof. Kotani

from Japan) and the phasing in of electronic digital computers (Prof. Roothaan of the

United Sates). That was the first major conference with a focus on the emerging computer

in theoretical chemistry [1].

With heroic effort, one of the very first molecular mechanics calculations, on a

reasonably big molecule (a dibromodicarboxybiphenyl), was done by the

Westheimer group, ca. 1946, presumably with at most a mechanical calculator

[2]. Molecular mechanics is genuine computational chemistry, but is far less

numerically intensive than quantum mechanical calculations. Nothing remotely

like the quantity and level of complexity of the calculations we see today would

be possible without electronic computers. One can make a case that computational

chemistry without the electronic computer was essentially stillborn, ca. 1950.

To be fair, Hückel molecular orbital calculations, which can be executed with

pencil and paper, might legitimately be held to fall within the purview of computa-

tional chemistry, and these were first done in the 1930s [3] (attaining great popularity

in the 1950s and 1960s [4]). Computational chemistry thus blends into traditional

theoretical chemistry, a good part of which-much of chemical thermodynamics–was

almost singlehandedly created in the late 1800s, by Josiah Willard Gibbs [5].

Histories of the development of computational chemistry in various countries

can be found in the continuing series Reviews in Computational Chemistry [6].
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Chapter 1, Harder Questions, Answers

Q2

Can “conventional” physical chemistry, such as the study of kinetics, thermo-

dynamics, spectroscopy and electrochemistry, be regarded as a kind of computa-

tional chemistry?

First, let’s realize that the boundaries between the old divisions of chemistry–

organic, inorganic, physical, theoretical–are no longer sharp: all chemists should

have a fair amount of theory, and with the help of this a chemist from one of the four

divisions (one hesitates to stress the term division) should not be a complete

outsider in any of the other three. That said, whether someone working in one of

the “conventional” fields is doing computational chemistry depends: the term could

be taken to mean calculation used to anticipate or rationalize experimental results,

to predict unrealized chemistry, or to explain experimental results. So a kineticist

might use computations to predict or explain rate constants, or an organic chemist

might use computations to predict or explain the properties of novel organic

compounds.

Work in one of the conventional fields is not, by tradition, regarded as compu-

tational chemistry, but it can become such if the principles of computational
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chemistry (such as computational characterization of putative intermediates and

transition states) are applied to a problem in the field.

Theoretical chemistry rates some special mention in this context. Nowadays this

activity tends to be quite mathematical [1], but history shows us that theoretical

chemistry need not be mathematical at all. From the first years of the crystallization

of chemistry as a subject distinct from alchemy, chemists have utilized theory, in

the sense of disciplined speculation. Nonmathematical examples are found in the

structural theory of organic chemistry [2] and in most applications of the powerful

Woodward-Hoffman orbital symmetry rules [3].
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Chapter 1, Harder Questions, Answers

Q3

The properties of a molecule that are most frequently calculated are geometry,

energy (compared to that of other isomers), and spectra. Why is it more of a

challenge to calculate “simple” properties like melting point and density?

Hint: Is there a difference between a molecule X and the substance X?

Properties like geometry, energy, and spectra are characteristics of single mol-

ecules (with the reservation that close contact with other molecules, especially

solvation or crystal packing, can affect things), while melting point and density are

bulk properties, arising from an ensemble of molecules. Clearly it should be easier

to deal with a single molecule than with the hundreds or thousands (at least) that

make up even a tiny piece of bulk matter.

Melting points have been calculated [1] extracting thermodynamic information

about the solid and liquid phases by molecular dynamics simulations [2]. The

freezing of water and melting of ice have been studied computationally [3].
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Chapter 1, Harder Questions, Answers

Q4

Is it surprising that the geometry and energy (compared to that of other isomers) of a

molecule can often be accurately calculated by a ball-and springs model (MM)?

Since in some ways molecules really do behave like ball-and-springs toys, it is

not surprising that such a model enables one to calculate geometries and energies,

but what is surprising is the accuracy possible with such calculations. Let’s explore
these two assertions.

In some ways molecules really do behave like ball-and-springs toys.
There are two assumptions here: that molecules have definite bonds, and that

these bonds behave like springs.

1. Do molecules have definite bonds? A molecule is a collection of relatively

immobile atomic nuclei and rapidly moving electrons, with the “relatively

immobile” nuclei vibrating about equilibrium positions. At first sight this picture

offers no hint of the existence of bonds. It might seem that IR spectra show that

molecules have definite bonds, since these spectra are interpreted in terms of

bond vibrations (stretching, bending, and torsional motions). Do the fundamen-

tal vibrations, the normal-mode vibrations (which in principle can be calculated

by any of the standard computational chemistry methods used to optimize

molecular geometry, and from which the experimentally observed vibrations

can be “synthesized”) really show the presence of the conventional, standard

bonds of simple valence theory? Actually, the vibrational spectra show only that

nuclei are vibrating along certain directions, relative to the axes of a coordinate

system in which the molecule is placed. An IR spectrum computed by assigning

to the conventional bonds stretching and bending force constants is said to

correspond to a valence forcefield. Such a forcefield often serves to create a

reasonable Hessian (Chap. 2) to initiate optimization of an input structure to a

minimum (but not to a transition state), but does not always account for the

observed IR bands, due to coupling of normal-mode vibrations [1].

That molecules do have definite bonds, and that these tend to correspond in

direction and number to the conventional bonds of simple valence theory, is
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indicated by the quantum theory of atoms-in-molecules (AIM, or QTAIM) [2].

This is based on an analysis of the variation of electron density in molecules.

2. Do bonds behave like springs? It is well-established that for the small vibrational

amplitudes of the bonds of most molecules at or below room temperature, the

spring approximation, i.e. the simple harmonic vibration approximation, is fairly

good, although for high accuracy one must recognize that molecules are actually

anharmonic oscillators [1].

Is the accuracy of geometries and relative energies obtainable from MM
surprising?

Bearing in mind that MM algorithms are heavily parameterized, this does not

seem so surprising: the mathematician John von Neumann said “With four param-

eters I can cover an elephant, and with five I can make him wiggle his trunk.” [3].

MM uses far more than four parameters. The accuracy is perhaps not surprising, but

it is nevertheless impressive.
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Chapter 1, Harder Questions, Answers

Q5

What kinds of properties might you expect MM to be unable to calculate?

Unassisted MM can’t calculate electronic properties, since MM knows nothing

about electrons. It is possible to use empirical parameters to elicit from a structure

calculated by MM electronic properties such as atomic charges: atoms in “standard

molecules” can be assigned charges based on electronic calculations like ab initio

or DFT, and these could be incorporated into a database. An MM program could

draw on these data obtain a kind of educated guess of the atomic charges (which

might then be used to calculate dipole moments and indicate likely sites of

nucleophilic and electrophilic attack).

Thus pure MM (MM by itself) can’t calculate UV spectra, the shapes and

energies of molecular orbitals, and electron distribution and derivative properties

of this, like atomic charges, dipole moments, and more arcane molecular features

like bond paths (associated with atoms-in-molecules theory, AIMT [1]).
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Chapter 1, Harder Questions, Answers

Q6

Should calculations from first principles (ab initio) necessarily be preferred to those

which make some use of experimental data (semiempirical)?

There are two aspects to confronting this question: a practical and what might be

called a philosophical. On the practical aspect impinge questions of time, reliabil-

ity, and accuracy. The philosophical issue is subtler.

If planned ab initio calculations would take an unacceptably long time with the

software and hardware available, then one must simply either abandon the project

or resort to a semiempirical method; these are typically hundreds to many thousands

of times faster. Reliability and accuracy are not sharply distinct: one might not be

able to rely on a calculation if it is not sufficiently accurate. Reliability could,

alternatively, be equated with consistency (one usual meaning of the term): a

method might be sometimes very accurate, but might erratically lapse in this regard.

Only comparison with experiment for a carefully selected set of relevant cases can

show how accurate and reliable a method is. For some problems the extremely fast

molecular mechanics method is the most accurate and reliable: for reasonably

normal monofunctional compounds, and particularly hydrocarbons, geometries

are commonly accurate to within 0.01 Å for bond lengths and to within 2� for

bond angles, and to within ca. 1 kJ mol�1 for heats of formation [1].

An amusing polemical debate on the virtues of semiempirical versus ab initio

methods took place between Dewar, on the one hand, and Halgren, Kleier, and

Lipscomb, on the other [2]. The Dewar group pioneered the semiempirical AM1

method, which spawned the PM3 method, these two being the most popular

semiempirical quantum-mechanical methods in wide use today, while Lipscomb

and coworkers were early advocates of ab initio methods. Dewar argued that ab

initio methods were hopelessly inaccurate and expensive. Those were the days

(1975) when owning your own computer was a dream and one paid perhaps $500 an

hour to use one; it suffices to note that $500 was worth far more then and the fastest

computer was far slower than a cheap personal computer is today. Dewar concluded

that a study of the interconversion of benzene valence isomers by semiempirical

versus ab initio methods would cost $5000 versus $1 billion! Lipscomb and

coworkers argued that whatever its practical virtues, the semiempirical methods

650 Answers



“obscure the physical bases for success. . .and failure alike”. This controversy is

dated by the enormous increase in computer speed and the sophistication attained

by ab initio methods since then, but it captures the flavor of part of the philosophical

divide between the two approaches: the desire to get answers that might in princi-

ple, but less expediently, have been obtained in the lab, versus the desire to

understand the underlying reasons for the phenomena being studied.

Nowadays chemists do not worry much about the virtues of semiempirical

versus ab initio methods. Ab initio methods, it must be conceded, dominate

computational chemistry studies in the leading journals, and indeed the study of

exotic molecules or reactions by semiempirical calculations would be expected to

be unreliable for lack of appropriate parameterization. Semiempirical methods are

widely used in industry as an aid to the design of drugs and materials, and are quite

possibly employed in preliminary exploration of projects for which only the later,

ab initio results, ever see the light of publication.

To conclude: calculations from first principles are not necessarily to be preferred
to semiempirical ones, although for novel molecules and reactions ab initio-type

methods are more to be trusted.
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Chapter 1, Harder Questions, Answers

Q7

Both experiments and calculations can give wrong answers. Why then should

experiment have the last word?

This is a highly “philosophical” question, but we will try to answer it in a

practical way, relevant to our work as scientists.

First, we should note that in practice experiment does not automatically trump

calculations: calculations which are considered to be reliable have been used to

correct experimental results–or rather experimental claims, in contrast to “con-

firmed” experiments. Perhaps the best example of calculations, rather than exper-

iment, leading to the correct answer is the case of triplet methylene, CH2. The

spectroscopist Gerhardt Herzberg deduced that this molecule has a linear structure,

but the theoretician Henry Schaefer III was led by ab initio calculations to conclude

that it is bent. We might note that correct experimental results can wrongly

interpreted. The story has been reviewed [1]. Other examples of this are the (likely)
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correction of dubious bond energies [2] and heats of formation [3]. So the interest-

ing question is, why should “confirmed” experiments take precedence in credibility

to calculations? Remove the quotation marks and the question almost answers

itself: as scientific realists [4] we believe that a good experiment reflects a reality

of nature; a calculation, on the other hand, is a kind of model of nature, possibly

subject to revision.
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Chapter 1, Harder Questions, Answers

Q8

Consider the docking of a potential drug molecule X into the active site of an

enzyme: a factor influencing how well X will “hold” is clearly the shape of X; can

you think of another factor?

Hint: molecules consist of nuclei and electrons.

Another factor which comes to mind is charge. The shape factor arises from

what could be called steric complementarity: ideally, for each bulge on X there is a

corresponding depression on the active site, and vice versa. Another kind of

complementarity arises from electrical charge: for each positive/negative region

on X there is negative/positive region (ideally also of complementary shape). So for

strong binding we would like each positively charged bulge on X to fit into a

negatively charged depression, ideally of he same shape and size, in the active site,

and analogously for positively charged depressions and negatively charged bulges.

Of course this situation is unlikely to be always exactly realized.

The hint was to remind us that in most molecules there is a substantial imbalance

between positive and negative charge from place to place in the molecule.

Chapter 1, Harder Questions, Answers

Q9

In recent years the technique of combinatorial chemistry has been used to quickly

synthesize a variety of related compounds which are then tested for
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pharmacological activity (S. Borman, Chemical & Engineering News: 2001,

27 August, p. 49; 2000, 15 May, p. 53; 1999, 8 March, p. 33). What are the

advantages and disadvantages of this method of finding drug candidates, compared

with the “rational design” method of studying, with the aid of computational

chemistry, how a molecule interacts with an enzyme?
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First let’s refresh our memories as to the basic technique behind synthesis by

combinatorial chemistry: this is outlined here using, for purely illustrative purposes,

a 3�3 array of reaction cells, i.e. 9 cells:

3-iodopropanoic acid is converted to the methyl, ethyl, and propyl esters, by

effecting across row 1 methylation, across row 2 ethylation, and across row

3 propylation. Then the esters are converted to fluoro-, chloro, and bromo-

compounds by appropriate substitution reactions down columns 1, 2, and 3. In

practice a 10� 10 or bigger array might be used, creating 100 or more different

compounds. The procedure can be automated and carried out on a small “micro-

chip” (“lab on a chip”). One would likely begin with a compound that showed to

some extent the desired activity, and make a host of variants. This relatively

quick synthesis of many drug candidates, followed by mass testing, is called

high-throughput screening (HTS).

There has been some disappointment with combinatorial chemistry. This is

discussed in a nicely balanced article with the engaging cover title “I, chemist.

Researchers trump robots in drug discovery” (shades of Isaac Asimov!) [1]. It

appears that the method may have been oversold; indeed, a cynic might say that

with millions of compounds generated by combinatorial chemistry, we should now

have effective drugs for all diseases. HTS does continue to be useful: “Most sources

agree that combinatorial chemistry is an important part of building a library of

compounds from which to work and that HTS is needed at some point in the process

of drug discovery.” [1]. Nevertheless, if we realize that all diseases are molecular,

we are led to conclude that if our understanding of the mechanisms by which

chemical processes cause disease is sufficiently sophisticated, then rational molec-

ular intervention should be the most effective approach to drug therapy. As Dror

Ofer of Keddem Bioscience was quoted as saying [1]: “The real issue in drug

discovery is that we don’t understand the key steps in developing a drug. We must

say this openly and clearly. To understand, in science, means only one thing: the
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ability to predict results. Medicinal chemists must study physical chemistry–how

atoms really react to one another. You have to go back to the science when

something doesn’t work, rather than applying more brute force.”

Reference

1. Mullin R (2004) Chemical and Engineering News, 26 July, p 23

Chapter 1, Harder Questions, Answers

Q10

Think up some unusual molecule which might be investigated computationally.

What is it that makes your molecule unusual?

The choice and justification for this is very much an individual matter: what kind

of chemistry fascinates you? You can read about some of the molecules that

fascinate other chemists in the books by Hopf [1] and by me [2].
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Chapter 2, Harder Questions, Suggested Answers

Q1

The Born-Oppenheimer principle is often said to be a prerequisite for the concept of

a PES. Yet the idea of a PES (Marcelin, 1915) predates the Born-Oppenheimer

principle (1927). Discuss.

The Born-Oppenheimer principle (Born-Oppenheimer approximation) [1] says

that the electrons in a molecule move so much faster than the nuclei that the two

kinds of motion are independent: the electrons see the nuclei as being stationary,

and so each electron doesn’t have to adjust its motion to maintain a minimized

electron-nucleus interaction energy. Thus we can calculate the purely electronic

energy of a molecule, then the internuclear repulsion energy, and add the separate

energies to get the total molecular energy.
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The concept of a PES can be based simply on the concept of molecular structure,

without specific reference to nuclei and electrons: if one thinks of a molecule as

being defined by the relative positions (in a coordinate system) of its atoms

(no reference to nuclei and electrons), then it is intuitively apparent that as these

positions are altered the energy of the collection of atoms will change. This is

probably how Marcelin thought of molecules [2]. On the mathematical surface

defined by Energy¼ f(atomic coordinates), minima, transition states etc., defined

by first and second derivatives, emerge naturally. On the other hand, if one insists

on going beyond mere atoms, and thinks of a molecule as a collection of nuclei and

electrons, then molecular shape (geometry) has meaning only if the nuclei (in this

context the hallmark of “atoms”) are more or less fixed. This stricture is violated in

CH5
+, which has no clear shape [3].
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Chapter 2, Harder Questions, Answers

Q2

How high would you have to lift a mole of water for its gravitational potential energy

to be equivalent to the energy needed to dissociate it completely into hydroxyl radical

and hydrogen atoms? The strength of the O–H bond is about 400 kJ mol�1; the

gravitational acceleration g at the Earth’s surface (and out to hundreds of km) is about

10 m s�2. What does this suggest about the role of gravity in chemistry?

This was put in the “Harder Questions” category because the answer can’t be
found just be reading the chapter, but actually the solution comes from a straight-

forward application of simple physics.

The energy needed to homolytically dissociate a mole of water into the radicals

HO. and H. is ca. 400 kJ. We want to calculate how high 18 g of water must be lifted

for its gravitational potential energy to be 400 kJ. Working in SI units:

Pot E ¼ force� distance ¼ mass� gravitational acceleration� height ¼ mgh,

energy in J, mass in kg, g in m s�2, h in m

h ¼ Pot E=mg ¼ 400 000= 0:018 � 10ð Þ meters ¼ 2 � 106 m or 2000 km
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Actually the height is the same regardless of the mass of water, since,

e.g. doubling the mass doubles both the energy needed for dissociation, and the

mass m in the denominator. The calculation is flawed somewhat by the fact that the

force of gravity is considerably smaller 2000 km above the surface of the Earth

(radius¼ 6000 km) (by a factor of (8000)2/(6000)2¼ 1.8). A more realistic calcu-

lation would express the gravitational acceleration g as a function of h and integrate

with respect to h. This calculation does however indicate that if all the potential

energy were somehow directed into dissociating the H-O bond, a fall from a great

height would be needed!

Chapter 2, Harder Questions, Answers

Q3

If gravity plays no role in chemistry, why are vibrational frequencies different for,

say, C–H and C–D bonds?

It’s inertia, the resistance of mass to motion, not gravity, that causes the

difference. A deuterium atom is heavier than a hydrogen atom, but the real point

is not its weight, which involves gravity, but its mass, which does not. The

vibrational frequency of a bond depends on its stiffness (the force constant) and

on the masses of the atoms involved. For a diatomic molecule A–B the vibrational

frequency (in wavenumbers) is governed by the simple formula

ev ¼ 1

2πc

k

μ

� �1=2

where c is the velocity of light, k is the force constant, and μ (mu) is the reduced

mass of the two atoms, M1m2/(M1þm2). If M1 is huge compared to m2, this

equation devolves to

ev ¼ constant
k

m2

� ��1=2

ð2:16Þ

as expected, since essentially the big mass does not move. With polyatomic

molecules, accounting for mass is a bit more complicated. The force constant

matrix must be “mass weighted” and diagonalized to give a matrix with the

displacement vectors of the vibrations, and a matrix with the frequencies [1].

Reference
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Chapter 2, Harder Questions, Answers

Q4

We assumed that the two bond lengths of water are equal.Must an acyclic molecule

AB2 have equal A–B bond lengths? What about a cyclic molecule AB2?

Intuitively, there is no reason why acyclic or cyclic AB2 should have unequal

A–B bond lengths: one A–B bond seems just as good as the other. But proving this

is another matter.

Consider a molecule AB2, linear, bent, or cyclic. Each of the two A–B bonds has

the same force constant – we can’t have one, say, single and one double, because

this on-paper arrangement would correspond to a resonance hybrid with each bond

the same ca. 1.5 in bond order:

A

B B
A

B B

A
B B

A
B B

and (1)

(2)

two different molecules if
we distinguish (somehow label)
the Bs

a resonance hybrid

Since A–B1 and A–B2 have the same force constant, a structure with unequal

bond lengths represents only vibrational extremes arising from a symmetric A–B

stretch: the molecule must vibrate around an equilibrium structure with equal A–B

lengths. If you doubt this, imagine constructing a ball and springs model of AB2

with identical A–B springs but different equilibrium A–B lengths; this is clearly

impossible.

The case of cyclobutadiene may at first seem to contradict the above assertion

that if a “central” atom A is connected to two atoms B the force constants must be

the same, giving rise to equal bond lengths. Cyclobutadiene is rectangular rather

than square and so one bond from a carbon is single, and one is double, say the

bonds designated here C1–C2 and C1–C3; 1 and 2 are distinct molecules separated

by a barrier [1]:

C1 C2

C3 C
H

H

H

H C1 C2

C3 C
H

H

H

H

1 2

1 and 2 are not canonical forms of a resonance hybrid, but rather distinct molecules:

chemical reaction

NOT resonance
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Here we can call C1 our central atom, and it seems to be connected to B/C2 by a

single bond and to B/C3 by a double bond. However, C2 and C3 are not equivalent

for our analysis: moving away from C1, C2 is followed by a double bond, and C3 is

followed by a single bond. Whether a molecule will exhibit valence isomerism, as

shown by cyclobutadiene, or resonance, as shown by benzene, is not always easy to

predict.
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Chapter 2, Harder Questions, Answers

Q5

Why are chemists but rarely interested in finding and characterizing second-order

and higher saddle points (hilltops)?

The short answer is, because they (the hilltops, not the chemists) don’t do
anything chemically. In a chemical reaction, we have (at least two) minima, and

molecules move between them, passing through transition states, which are first

order saddle points. Although in passing from one minimum to another all mole-

cules do not strictly follow the intrinsic reaction coordinate (IRC) the lowest energy

pathway on a PES that connects the minima, very few molecules are likely to stray

so far outside the IRC that they pass through a hilltop [1].

Although hilltops are rarely deliberately sought, one sometimes obtains them in

an attempt to find a minimum or a transition state. By a little fiddling with a hilltop

one can often convert it to the desired minimum or transition state. For example,

when the geometry of doubly eclipsed (C2v) propane is optimized, one obtains a

hilltop whose two imaginary frequencies, when animated, show that this geometry

wants to relieve both eclipsing interactions. Altering the hilltop structure to a

doubly staggered (ideally also C2v) geometry and optimizing this yields a mini-

mum. Altering the hilltop to a singly eclipsed structure gives a transition state

interconverting minima.
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Chapter 2, Harder Questions, Answers

Q6

What kind(s) of stationary points do you think a second-order saddle point

connects?

A second-order saddle point has two of its normal-mode vibrations

corresponding to imaginary frequencies, that is, two modes “vibrate” without a

restoring force, and each mode takes the structure on a one-way trip downhill on

the potential energy surface. Now compare this with a first-order saddle point

(a transition state); this has one imaginary normal-mode vibration: as we slide

downhill along the direction corresponding to this vibration, the imaginary mode

disappears and the structure is transformed into a relative minimum, with no

imaginary vibrations. Correspondingly, as a second-order saddle structure moves

downhill along the path indicated by one of the imaginary vibrations, this vibration

vanishes and the structure is transformed into a first-order saddle point. Illustrations

of this are seen in Figs. 2.9 and 2.14, where the hilltops lead to saddle points by

conformational changes.
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Chapter 2, Harder Questions, Answers

Q7

If a species has one calculated frequency very close to 0 cm�1 what does that tell

you about the (calculated) PES in that region?

First let us acknowledge a little inaccuracy here: frequencies are either positive,

imaginary (not negative), or, occasionally, essentially zero. Some programs designate

an imaginary frequency by a minus sign, some by i (the symbol for √�1). Frequen-

cies are calculated from the force constants of the normal vibrational modes, and the

force constant of a vibrational mode is equal to the curvature of the PES along the

direction of the mode (¼ the second derivative of the energy with respect to the

geometric change involved). Whether a frequency is positive or imaginary depends

qualitatively on the curvature. A minimum has positive curvature along the direction

of all normal-mode vibrations, a first-order saddle point has negative curvature along

the direction of one normal-mode vibration and positive curvature along all other

normal-mode directions, and analogously for a second-, third-order etc. saddle point.

Positive curvature corresponds to positive force constants and positive frequencies,

and negative curvature to negative force constants and, taking square roots, imaginary

frequencies. A zero frequency, then, corresponds to a zero force constant (√0¼ 0) and

zero curvature of the potential energy surface along that direction. Moving the atoms

of the structure slightly along that direction leads to essentially no change in the

energy, since the curvature of the energy-distance graph for that motion is the force

constant for the vibration (i.e. the second derivative of the energy with respect to the

motion; the first derivative of energy with respect to motion is the force). Along that

direction the PES is a plateau. There are thus three ways in which a structure can be a

stationary point, i.e. rest on a flat spot on the PES: it can reside at a relative minimum,

where the surface curves up in all directions, at a saddle point, where the surface

curves downward in one or more directions, or it a point where along one direction

the surface does not curve at all (is a plateau).

The third situation could correspond to a “structure” in which an optimization

algorithm, in its zeal to find a stationary point (where all first derivatives are zero)

moves two molecules significantly beyond their van der Waals separation:

geometry

energy

van der Waals
separation 

PES essentially flat along
direction of this geometry change
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The vibrational mode corresponding to altering the separation of the molecules

is ca. 0 cm�1; the internal modes of each molecule, bond stretch, bend, and torsional

modes, are of course nonzero.

Chapter 2, Harder Questions, Answers

Q8

The ZPE of many molecules is greater than the energy needed to break a bond;

e.g. the ZPE of hexane is about 530 kJ mol�1, while the strength of a C–C or a C–H

bond is only about 400 kJ mol�1. Why then do such molecules not spontaneously

decompose?

They do not spontaneously decompose because the ZPE is not concentrated in

just one or a few bonds. An exotic structure could indeed run the risk of

decomposing by such concentration of its vibrational energies. A candidate for

this is the transition state (which is calculated to be nonplanar) for inversion of

methane. Incidentally, this would correspond to racemization if four different

hydrogens could be attached to a carbon; unfortunately 4H has a halflife of only

10�22 s [1]. The question of the possible breaking of a C-H bond here in

preference to inversion has been considered [2].
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Chapter 2, Harder Questions, Answers

Q9

Only certain parts of a PES are chemically interesting: some regions are flat and

featureless, while yet other parts rise steeply and are thus energetically inaccessible.

Explain.

Chemically interesting regions of a PES are areas where relative minima and the

transition states connecting them reside, that is, where chemistry takes place.

Rarely-explored are parts where nothing happens or too much happens.
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Nothing happens where a molecule has been broken into its component atoms

and these atoms are widely separated and thus noninteracting–these are plateau

regions (compare Question 7). Here the reaction coordinate is simply a composite

of the interatomic separations and altering these has no effect on the energy.

Too much happens in regions where molecules or parts of molecules are

squeezed strongly together: here the energy changes very steeply with changes in

the reaction coordinate, rising sharply as intermolecular or nonbonded atomic

distances decrease. Actually, these regions might be of interest in molecular

dynamics studies of reactions under very high pressures [1–3].
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Chapter 2, Harder Questions, Answers

Q10

Consider two PESs for the HCN ⇆ HNC reaction: A, a plot of energy vs. the H–C

bond length, and B, a plot of energy vs. the HCN angle. Recalling that HNC is the

higher-energy species (Fig. 2.19), sketch qualitatively the diagrams A and B.
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Chapter 3, Harder Questions, Suggested Answers

Q1

One big advantage of MM over other methods of calculating geometries and

relative energies is speed. Does it seem likely that continued increases in computer

speed could make MM obsolete?

Let’s rephrase the question a bit to make it more tractable: could increases in

computer speed make MM obsolete? The answer would seem to be yes, eventually.

If computer speed increases indefinitely, the essentially complete solution of the

Schr€odinger equation will become possible for bigger and bigger molecules. This

solution is the holy grail of computational chemistry, as such a solution should

accurately predict the properties of the molecule. All computations might be

perfectly accurate if computers were infinitely fast, a probably unattainable goal,

but one that might be effectively approximated should practical quantum computers

ever become available [1, 2].
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Chapter 3, Harder Questions, Answers

Q2

Do you think it is possible (in practical terms? In principle?) to develop a forcefield

that would accurately calculate the geometry of any kind of molecule?

It is intuitively apparent that with sufficient parameters a physical system, and

even a set of systems, can be simulated to any desired accuracy (although there does

not seem to a formal theorem in physics or mathematics to this effect). In this vein,

the mathematician John von Neumann said “With four parameters I can cover an

elephant, and with five I can make him wiggle his trunk.” [1]. The logistics of

putting together such an enormous suite of algorithms apart, whether such a

forcefield would be practical is another matter.

Reference

1. Speaking to Freeman Dyson, Enrico Fermi quoted von Neumann: Dyson F (2004) Nature

427:297
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Chapter 3, Harder Questions, Answers

Q3

What advantages or disadvantages are there to parameterizing a forcefield with the

results of “high-level” calculations rather than the results of experiments?

If you are a purist and regard molecular mechanics as a semiempirical method

(the theoretical part coming from the physics of springs and the theory of van der

Waals and electrostatic and nonbonded interactions) then you will be uncomfort-

able with any nonexperimental (nonempirical) parameterization. As a practical

matter, however, we simply want a method that works, and we can compare the

two approaches to parameterizing in this context.

Accurate force constants etc. can be obtained from high-level ab initio (Chap. 5)

or DFT (Chap. 7) calculations. If we use these for a forcefield, then we are

parameterizing to match reality only to the extent that the high-level calculations

match experiment. Apart from a possible philosophical objection, which we essen-

tially dismissed, there is the question of the trustworthiness of the ab initio or DFT

results. For “normal” molecules, that is, species which are not in some way exotic

[1], these calculations do indeed deliver quite reliable results. The advantages they

offer over experimental acquisition of the required parameters is that these quan-

tities (1) can be obtained for a wide variety of compounds without regard to

synthetic difficulties or commercial availability, (2) are offered up transparently

by the output of the calculation, rather than being required to be extracted, perhaps

somewhat tortuously, from experiments, (3) are usually more quickly calculated

than determined in the lab, and (4) can be uniformly secured, that is, all parameters

can be obtained from calculations at the same level, say MP2/6-311G(df,p), in

contrast to experiment, where different methods must be used to obtain different

parameters. This last point may be more of an esthetic than a utilitarian advantage.

The advantage of parameterizing with experimental quantities is that, if the

experiment is reliable, then we know that the values of the parameters; we need

not reflect on the reliability of the calculation. Of course, we might wish to ponder

the accuracy of the experiment.

Reference

1. Lewars E (2008) Modeling marvels. Computational anticipation of novel molecules. Springer,

Dordrecht
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Chapter 3, Harder Questions, Answers

Q4

Would you dispute the suggestion that no matter how accurate a set of MM results

might be, they cannot provide insight into the factors affecting a chemical problem,

because the “ball and springs” model is unphysical?

First, the ball and springs model used in molecular mechanics is not completely

nonphysical: to a fair approximation, molecules really do vibrate and bonds do

stretch and bend, as expected from a macroscopic ball and springs model. It is when

we want to examine inescapably electronic properties, like, say, UV spectra or the

donation of electrons from one species to another to make a bond, that the MM

model is completely inadequate.

Since MM gives geometries that vary from fairly to highly accurate for mole-

cules that are not too outré, where steric factors are relevant it can provide chemical

insight.

Chapter 3, Harder Questions, Answers

Q5

Would you agree that hydrogen bonds (e.g. the attraction between two water

molecules) might be modelled in MM as weak covalent bonds, as strong van der

Waals or dispersion forces, or as electrostatic attractions? Is any one of these

approaches to be preferred in principle?

No, none is to be preferred “in principle”, meaning on grounds of theoretical

appropriateness. This is because MM is severely practical, in the sense that the

forcefield need only satisfactorily and swiftly reproduce molecular properties,

mainly geometries. The method makes no apologies for ad hoc additions which

improve results. An example of this is seen in the inclusion of a special term to force

the oxygen of cyclobutanone to lie in the ring plane [1]. Identifying the terms in a

forcefield with distinct theoretical concepts like force constants and van der Waals

forces is at best an approximation.

Hydrogen bonding can be dealt with in principle in any way that works. A weak

covalent bond would be simulated by a small bond stretch constant (roughly, a

force constant), a strong van der Waals force could be modelled by adjusting the

two constants in the Lennard-Jones expression, and electrostatic attraction by a

Coulomb’s law inverse distance expression. These are only simple examples of

how these methods might be implemented; a brief discussion is given by Leach [2].

The choice of method to be implemented is determined by speed and accuracy.

Treating strong hydrogen bonds by MM has been discussed [3].
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Chapter 3, Harder Questions, Answers

Q6

Replacing small groups by “pseudoatoms” in a forcefield (e.g. CH3 by an “atom”

about as big) obviously speeds up calculations. What disadvantages might accom-

pany this simplification?

The obvious disadvantage is that one loses the directional nature of the group

and thus loses any possibility of simulating conformational effects, as far as that

group is concerned. Rotation around a C-CH3 bond alters bond lengths and ener-

gies, albeit relatively slightly, but if we pretend that the CH3 group is spherical or

ellipsoidal, then clearly it cannot engender a torsional energy/dihedral angle curve.

The loss of the conformational dimension could be a significant defect for a polar

group like OH, where rotation about a (say) C-OH bond could in reality lead to

formation or breaking of a hydrogen bond to some lone pair atom, with changes in

the relative energies of different conformations.

Chapter 3, Harder Questions, Answers

Q7

Why might the development of an accurate and versatile forcefield for inorganic

molecules be more of a challenge than for organic molecules?

For the purposes of this question we can consider “unproblematic organics” to

exclude molecules containing elements beyond calcium, element 20: our unevent-

ful organics can thus contain H, Li-F, Na-Cl, K and Ca. We’ll also give a pass to

Br and I. Problem elements are Sc, Ti, . . ., As, Se, Rb, Sr . . ., Sb, Te, Cs, Ba, . . ., Bi,
Po, At, and the subsequent radioactive elements.

The problematic atoms are thus the heavier nonmetals, and the metals scandium

and beyond, most of which are transition metals (or the related lanthanides):

p block, d block and f block elements. In the context of electronic theories these

are, traditionally at least, considered to employ d orbitals in their hypervalent

bonding [1]. Now, in molecular mechanics orbitals simply do not exist so the
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difficulties must be for formulated without reference to them (parameterizing a

quantum mechanical semiempirical method like AM1 or PM3 to account for d

orbital effects also presents special problems [2]). In simplest terms, the problems

with these atoms lies in the unconventional (compared to the usual organics)

geometries encountered. Normal organics have a tetrahedral or simpler disposition

of bonds around each atom, but problem elements (first paragraph above) can have

pentagonal bipyramidal, octahedral, and other geometries. There are more bonds

and more interbond angles to address; some organometallic bonding is not even

usually depicted in terms of bonds between individual atoms, e.g. bonding to

cyclopentadienyl, π-allyl and alkene ligands. A brief discussion of MM applied to

organometallic and inorganic compounds is given by Rappé and Casewit [3].

References
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Chapter 3, Harder Questions, Answers

Q8

What factor(s) might cause an electronic structure calculation (e.g. ab initio or

DFT) to give geometries or relative energies very different from those obtained

from MM?

The most likely factor is electronic: since MMmakes no reference to electrons, it

should not be expected to reflect structural and energetic effects arising from, say,

aromaticity and antiaromaticity, encapsulated in the 4nþ 2 and the corollary

4n rules [1–3].
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Chapter 3, Harder Questions, Answers

Q9

Compile a list of molecular characteristics/properties that cannot be calculated

purely by MM.

Among these properties are:

UV spectra

dipole moment (by pure MM)

delocalization energy (this is related to aromaticity and antiaromaticity)

transition state structures and energies (see the hedge below)

The properties are listed in approximate order of simplicity of connection with

electronic behavior:

UV spectra arise from electronic transitions, automatically placing them outside the

accessible to MM.

Dipole moments arise from uneven distribution of electric charge in a molecule,

which in turn is due to nuclear charges not being “matched” spatially by electron

distribution. This would seem to automatically rule out probing by

MM. However, a subterfuge enables MM molecular geometries to yield dipole

moments: the dipole moment of a molecule can be considered to be the vector

sum of bond moments, and like bond energies these are with a fair degree of

accuracy transferable between molecules. So from the geometry, which gives

the relative positions of the vectors in space, a dipole moment can be calculated,

purely empirically.

Delocalization energy denotes the energy by which a molecule is stabilized or

destabilized compared to a hypothetical reference compound in which electrons

(usually π electrons) are not as mobile. The canonical example is the energy of

benzene compared to the hypothetical 1,3,5-cyclohexatriene in which there are

three distinct double and three distinct triple bonds. With caveats, one measure

of this energy is the heat of hydrogenation of benzene compared to three times

the heat of hydrogenation of cyclohexene. As an electronic phenomenon, this

lies outside the purview of MM.

Transition state structures and energies differ from those of molecules (i.e. from

those of relative minima on a potential energy surface) in that transition states

are not relative minima but rather are saddle points, and that they are not readily

observed experimentally (with molecular beam and laser technology simple

transition states can be, in effect, observed [1]). These differences should not,

in principle, make MM inapplicable to calculating geometries and energies of

transition states: an assembly of atoms connected by bonds (some of these would

be partial bonds for a transition state) of known force constants should permit its

geometry to be adjusted so that one of its normal-mode vibrations has a negative

force constant (the critical feature of a transition state), and force constants of
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transition states could be calculated by quantum mechanical methods.1 Indeed,

MM has been used to calculate geometries and energies of transition states, but

these studies have used force fields developed for very specific reactions,

perhaps the best example being the dihdroxylation of alkenes with osmium

tetroxide under the influence of a chiral catalyst [2]. However, MM is not at

present a generally applicable tool for studying transition states. This is probably

because force constants are not as transferable between transition states (are

more variable from one transition state to another) as they are between ordinary

molecules, making a forcefield that works for one kind of reaction inapplicable

to another.

References

1. (a) Lucht RP (2007) Science 316:207; (b) Rawls RL (2000) Chemical and Engineering News,

May 22, 35

2. Norrby P-O, Rasmussen T, Haller J, Strassner T, Houk KN (1999) J Am Chem Soc 121:10186

Chapter 3, Harder Questions, Answers

Q10

Howmany parameters do you think a reasonable forcefield would need to minimize

the geometry of 1,2-dichloroethane?

Look at the structure of the molecule:

C C

H
H

H

H

Cl

Cl

At a bare minimum, we would need parameters for these six contributors to the

energy (here C is the atom type sp3 C):

1. Estretch(C–C)

2. Estretch(C–H)

3. Estretch(C–Cl)

4. Ebend(HCC)

1Such as ab initio, density functional, and semiempirical methods. The reliability of the geometries

and energies of calculated transition states can be gauged by comparing activation energies

calculated from them with experimental activation energies.
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5. Ebend(ClCC)

6. Etorsion(ClCH2–CH2Cl)

For each of the three Estretch(X–Y) terms, kstretch(X–Y) and leq(X–Y) are needed,

for a total of 6 parameters. For each of the two Ebend(XYY) terms, kbend(XYY) and

aeq(XYY) are needed, for a total of 4 parameters. The torsional curve likely requires

at least 5 parameters (cf. Book, p. 52) for reasonable accuracy. This makes a total of

6þ 4þ 5¼ 15 parameters. But this would be a very stunted forcefield; it has no

parameters for nonbonded interactions and so is not suitable for molecules with

bulky groups, and it is parameterized only for the atom types sp3 C, H, and Cl.

It cannot handle other kinds of carbon and other elements, and it has no special

parameters for electrostatic interactions.

A reasonable forcefield would be of more general applicability: it should

be able to handle the eight common elements C(sp3, sp2, sp), H, O(sp3, sp2),

N(sp3, sp2, sp), F, Cl, Br, I; we are focussing for convenience on an organic

chemistry forcefield. Yet this would have only 13 atom types, compared to the

typical organic forcefield with 50–75 [1]. Similar considerations applied to the

stretching of C–H, C–O, C–N, C–F, . . ., H–O, H–N, etc. bonds, to the bending of

various C–C–C, CO–C, etc. angles, to rotation about single bonds, and to

nonbonded interactions, reveals that we need hundreds of parameters. The popular

Merck Molecular Force Field MMFF94 is said to have about 9000 parameters [2].
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Chapter 4, Harder Questions, Suggested Answers

Q1

Do you think it is reasonable to describe the Schr€odinger equation as a postulate of
quantum mechanics? What is a postulate?

The consensus is that the Schr€odinger equation cannot be derived, but rather it

must be (and in fact it was) arrived at by more or less plausible arguments, then

tested against experiment. Thus it can be regarded as having originated as a

postulate, but as having survived testing so thoroughly that it may now be taken

as, to all intents and purposes, correct. Detailed presentations of the historical facts

connected with the genesis of the equation are given by Moore [1] and Jammer [2].

For a perceptive exegesis of the equation see Whitaker [3].

The simplest “derivation”, given in many books, e.g. in Chap. 4, was in fact

similar to that used by Schr€odinger to obtain an equation which falls short of the
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relativistic Schr€odinger equation only by the absence of spin, a concept which had

not yet arisen [1]. This first quantum-mechanical wave equation is now known as

the Klein-Gordon equation, and applies to particles without spin.
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Chapter 4, Harder Questions, Answers

Q2

What is the probability of finding a particle at a point?

The probability of finding a particle in a small region of space within a system

(say, a molecule) is proportional to the size of the region (assume the region is so

small that within it the probability per unit volume does not vary from one

infinitesimal volume to another). Then as the size of the region considered

approaches zero, the probability of finding a particle in it must approach zero.

The probability of finding a particle at a point is zero.
More quantitatively: the probability of finding a particle in an infinitesimal

volume of space dv in some system (e.g. a molecule) is given by

P dvð Þ ¼ ρ x; y; zð Þdv ¼ ρ x; y; zð Þdxdydz

in Cartesian coordinates, where ρ (rho) is the probability distribution function

characteristic of that particle in that system. The probability is a pure number,

so ρ has the units of reciprocal volume, volume�1, e.g. (m3)�1 or in atomic units

(bohr3)�1. P(dv) generally varies from place to place in the system, as the coordi-

nates x, y, z are varied; referring to an “infinitesimal” volume is a shorthand way of

saying that

lim
Δv!0

P x; y; zð ÞΔv ¼ P x; y; zð Þdv

The probability of finding the particle in a volume V is

P Vð Þ ¼
ð
V

ρ x; y; zð Þdv
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where the integration is carried out over the coordinates of the volume (in cartesian

coordinates, over the values of x, y, z which define the volume). For a point, the

volume is zero and the coordinates will vary from 0 to 0:

p Vð Þ ¼
ð0
0

ρ x; y; zð Þdv ¼ F
�
x,y, z

� �0
0
¼ 0

Note: this discussion applies to a point particle, such as an electron–unlike a

nucleus – is thought to be. For a particle of zonzero size we would have to define

what we mean by “at a point”; for example, we could say that a spherical particle is

at a point if its center is at the point.

Chapter 4, Harder Questions, Answers

Q3

Suppose we tried to simplify the SHM even further, by ignoring all interactions i, j;
i 6¼ j (ignoring adjacent interactions instead of setting them¼ β). What effect would

this have on energy levels? Can you see the answer without looking at a matrix or

determinant?

Setting all adjacent orbital interactions equal to zero removes all connectivity

information. It dissociates the molecule into isolated atoms! This follows because in

the SHM the sole structural information about a molecule is provided by which i,
j pairs are β and which are zero: two atoms are connected if and only their

interaction is represented by β; they are not connected if and only their interaction

is represented by 0.

A look at Fock matrices may make this more concrete. Diagonalization of the

standard SHM matrix for the propenyl system gives

0 �1 0

�1 0 �1

0 �1 0

0@ 1A ¼

0:500 0:707 0:500
0:707 0 �0:707
0:500 �0:707 0:500

0@ 1A 1:414 0 0

0 0 0

0 0 �1:414

0@ 1A 0:500 0:707 0:500
0:707 0 �0:707
0:500 �0:707 0:500

0@ 1A
ð1Þ
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Three molecular orbitals with different energies and p-atomic-orbital

contributions.

Diagonalization of the no-adjacent-interaction matrix gives

0 0 0

0 0 0

0 0 0

0@ 1A ¼
1 0 0

0 1 0:
0 0 1

0@ 1A 0 0 0

0 0 0

0 0 0

0@ 1A 1 0 0

0 1 0

0: 0 1

0@ 1A ð1Þ

-

+

-

+0
-

+00

−1

1

−2

2

0

Three p atomic orbitals.
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Chapter 4, Harder Questions, Answers

Q4

How might the i, j -type interactions in the simple Hückel Fock matrix be made to

assume values other than just �1 and 0?

Such changes in the Fock matrix have been made in an attempt to handle systems

with orbital contributions from atoms other than carbon. Consider the two species

and

BA

C
C

C
..-

H

H

HH

H

C
C ..

H

H

HH

H

N1

2

3 1

2

3

The matrix for the all-carbon π system A is that shown in the answer to question

4 (with four π electrons). The matrix for the hetero (nitrogen) system B is qualita-

tively similar, but its 2,3 and 3,3 interactions should be different from those of A:

0 �1 0

�1 0 �1

0 �1 0

0@ 1A 0 �1 0

�1 0 CN
0 CN NN

0@ 1A ð1Þ

Various modifications of the carbon values have been proposed for heteroatoms [1].

If we use the suggested values CN¼�1 and NN¼�1.5 we have

0 �1 0

�1 0 �1

0 �1 �1:5

0@ 1A
which on diagonalization gives the energy levels �2.111, 0.591, 1.202(cf. for the

carbon system A, �1.414, 0, 1.414). Intuitively, we expect NN to be more negative

than CC (�1.5 cf. 0) because N is more electronegative than C; here CN is the same

as CC (�1), but CX values have usually been taken as being less negative than �1,

reflecting the probably less complete energy-lowering delocalization of an electron

in a CX-type bond compared to a CC-type bond.2

The hetero atom parameters have been obtained in various ways, for example by

striving for a best correlation of HOMO values with ionization energies, or of

2Discussions of heteroatoms in the SHM written in the heyday of that method present the

heteroatom parameters in a slightly more complicated way, in terms of the coulomb and resonance

integrals α and β, rather than as simple numbers.
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polarographic reduction potentials with LUMO values. The whole subject of SHM

parameters and best heteroatom parameters is now of little practical importance,

since much better quantitative molecular orbital methods are now readily available.

Reference

1. (a) A thorough discussion: Streitwieser A Jr (1961) Molecular orbital theory for organic

chemists. Wiley, chapter 5; (b) A short hands-on presentation: Roberts JD (1962) Notes on

molecular orbital calculations. Benjamin, New York, chapter 6

Chapter 4, Harder Questions, Answers

Q5

What is the result of using as a reference system for calculating the resonance

energy of cyclobutadiene, not two ethene molecules, but 1,3-butadiene? What does

this have to do with antiaromaticity? Is there any way to decide if one reference

system is better than another?

1. Compare the use as a reference of two ethene molecules and of butadiene:

Comparing cyclobutadiene with two ethene molecules:

Stabilization energy¼E(CBD)�E(2 ethenes)¼ (4αþ 4β)� 2(2α + 2β)¼ 0
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Comparing cyclobutadiene with butadiene:

Stabilization energy ¼ E(CBD) � E(butadiene) ¼ (4α + 4β) � (4α + 4.472β)
¼ �0.472β

The energy of the CBD π-system is higher than that of the butadiene π-system);

recall that β is a negative energy quantity, so �0.472β is a positive quantity.

Thus the SHM says that a cyclic array of p atomic orbitals is destabilized by the

interactions of four electrons, compared to an acyclic unbranched array.

2. Antiaromaticity [1] is the phenomenon of destabilization of certain molecules by

interelectronic interactions, that is, it is the opposite of aromaticity [2]. The SHM

indicates that when the π-system of butadiene is closed the energy rises, i.e. that

cyclobutadiene is antiaromatic with reference to butadiene. In a related

approach, the perturbation molecular orbital (PMO) method of Dewar predicts

that union of a C3 and a C1 unit to form cyclobutadiene is less favorable than

union to form butadiene [3].

3. Is one reference system better than another? Cyclobutadiene is destabilized

relative to a butadiene reference, but has the same energy as a reference system

of two separated ethenes. Simply closing or opening one system to transform

it into another (e.g. butadiene � cyclobutadiene) is a less disruptive transfor-

mation than uniting two systems or dissociating one (e.g. 2 ethene �
cyclobutadiene); thus one could argue that the systems represented by closing/

opening are the better mutual references. Certainly, cyclobutadiene is regarded

from empirical evidence and more advanced theoretical studies as an electron-

ically destabilized molecule [1], so the butadiene reference, which predicts a

destabilizing effect for four cyclic π electrons, is in much better accord with the

general collection of experimental and computational work.

Note that in fact cyclobutadiene does not have degenerate, singly-occupied

molecular orbitals, as a Jahn-Teller type (actually a pseudo-Jahn-teller) distortion

lowers its symmetry from square to rectangular and leads to a closed-shell paired-

electron molecule [4].
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Chapter 4, Harder Questions, Answers

Q6

What is the problem with unambiguously defining the charge on an atom in a

molecule?

Let us be ambitious and replace “unambiguously” by “uniquely”. The problem is

to define where an atom in a molecule begins and ends. If we can mathematically

specify the region of space over which the electronic charge distribution is to be

integrated, we can calculate the number of electrons which should be assigned to

each atom in the molecule. The algebraic sum of this electronic charge and the

nuclear charge would then give the net charge on the atom. This is the principle

behind the (quantum theory of) atoms in molecules (QTAIM, AIM) method of

Bader [1]. In the AIM method, an atom in a molecule is demarcated from the rest of

the molecule by a “zero-flux surface” defined in terms of the gradient of the electron

density. Bader and coworkers essentially regard their definition as unique, from

which it would seem to follow that in some sense it yields “the correct” definition of

atomic charges. Criticisms of the approach have engendered delightful polemics by

Bader and Matta [2].

Outside the QTAIM realm, the main definitions of atomic charges are Mulliken

charge, electrostatic charge, and natural charge [3]. Values can differ considerably

from one method to another, but the trend with a particular method can provide

useful information. None of these three methods of assigning charge claims to be

unique.
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Chapter 4, Harder Questions, Answers

Q7

It has been reported that the extended Hückel method can be parameterized to give

good geometries. Do you think this might be possible for the simple Hückel
method? Why or why not?
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A report of a promising method of inducing the extended Hückel method EHM)

to yield good geometries appeared in 1994 [1]. The method was said to give

geometries as good as or better than the popular AM1 method, and to be 2–4

times as fast. Unfortunately, further results, and the wide application of this

approach, do not seem to have followed (a possibly related approach [2] and

another fast semiempirical method [3] have been reported). Such a method would

be very useful, because the EHM is very fast, due to its very simple way of

calculating energies and molecular orbitals, and the fact that it is not iterative–a

single matrix diagonalization gives the results.

Recall that in the EHM geometric information is present in the Fock matrix by

virtue of the overlap integrals in the off-diagonal elements. For the simple Hückel
method (SHM) the situation is completely different. The SHM does not take any

account of molecular geometry, as distinct from mere connectivity, with one hedge:

one can vary the adjacent i, j interaction terms in an attempt to reflect changes in

overlap integrals. This can be done by allowing the terms to move from �1 toward

0 as a bond is lengthened, and by making terms proportional to the cosine of the

angle of deviation from perfect p-p parallel alignment to account for nonplanarity

[4]. Bond lengths and angles of π systems could be varied to give the lowest π
energy. But the SHMmethod is tied to π systems, severely limiting the applicability

of such refinements, and it is so approximate, that the effort hardly seems

worthwhile.
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2. Tajima S, Katagiri T, Kanada Y, Nagashima U (2000) J Chem Softw 6:67–74 [in Japanese]

3. Dixon SL, Merz KM (1997) J Chem Phys 107:879

4. (a) Streitwieser A Jr (1961) Molecular orbital theory for organic chemists. Wiley, section 4.3;

(b) Roberts JD (1962) Notes on molecular orbital calculations. Benjamin, New York, chapter 7

Chapter 4, Harder Questions, Answers

Q8

8. Give a reference to a journal paper that used the SHM, and one that used the

EHM, since the year 2000. For each paper quote the sentence in the abstract or the

paper that states that the SHM was used..

The SHM:

M. Ernzerhof, M. Zhuang, P. Rocheleau, J. Chem. Phys, 2005, 123, 134704.
“Simple Hückel-type calculations serve to illustrate the described effect.”
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The EHM:

D. Kienle, J. I. Cerda, A. W. Ghosh, J. Applied Physics, 2006, 100, 043714.

“We describe a semiempirical atomic basis extended Hückel theoretical (EHT)
technique that can be used to calculate bulk band structure, surface density of states,

electronic transmission, and interfacial chemistry of various materials within the

same computational platform.”

Chapter 4, Harder Questions, Answers

Q9

The ionization energies usually used to parameterize the EHM are not ordinary

atomic ionization energies, but rather valence-state AO ionization energies, VSAO
[atomic orbital] ionization energies. What does the term “valence state” mean here?

Should the VSAO ionization energies of the orbitals of an atom depend somewhat

on the hybridization of the atom? In what way?

The term was first used by Van Vleck who explained it thus, referring to carbon

in CH4: “. . .the spins of the four electrons belonging to sp3 were assumed paired

with those of the four atoms attached by the carbon. Such a condition of the carbon

atom we may conveniently call its valence state.” He then showed a calculation

which led to the conclusion that “The ‘valence’ state of C has about 7 or 8 more

volts of intra-atomic energy than the normal state. This is the energy required to

make the C atom acquire a chemically active condition. . .” [1]. Mulliken defines it

saying “[it is] a certain hypothetical state of interaction of the electrons of an atomic

electron configuration” and “A ‘valence state’ is an atom state chosen so as to have

as nearly as possible the same condition of interaction of the atom’s electrons with
one another as when the atom is part of a molecule.” [2].

An atom, then, is in a valence state when its electrons occupy orbitals of energies

and shapes that they would occupy if they were subject to the interactions that they

would experience in some molecule; thus one could speak of the valence state of

carbon in CH4 (above). Clearly a valence state is an abstract concept.

We’ll use the convenient term valence state ionization energy, VSIE (valence

state ionization potential is an older term). In a hybridized atom in a molecule

different hybrid orbitals have different VSIEs, increasing with the s-character, as
might be expected since s-electrons are the most tighly bound. However Hoffmann,

who pioneered the popularization of the EHM and demonstrated its wide utility,

used the same parameters for the s and p orbitals of carbon in alkanes (sp3 C) as in
alkenes and aromatics (sp2 C) [3]. See [4].
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Chapter 4, Harder Questions, Answers

Q10

Which should require more empirical parameters: a molecular mechanics force

field (Chap. 3) or an EHM program? Explain.

The EHM will require far fewer parameters. This is easy to see, because each

atom requires just one parameter for each valence atomic orbital. For C, for

example, we need an ionization energy for the 2s, and the three 2p orbitals, just

four parameters (strictly, valence state ionization energies, VSIEs–see Harder

Question 9).3 Each H needs only one parameter, for its 1s orbital. So for an EHM

program that will handle hydrocarbons in general we need only five parameters

(as in Hoffmann’s pioneering paper on hydrocarbons [1]). In contrast, an early but

viable molecular mechanics forcefield limited to alkanes had 26 parameters [2].

The Universal Force Field, which sacrifices accuracy for wide applicability, has

about 800 parameters, and the accurate and quite broadly applicable Merck Molec-

ular Force Field 1994 (MMFF94) has about 9000 parameters [3].
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3Even the usually-ignored refinement (Harder Question 9) of using different VSIEs for sp3, sp2,

and sp carbon would raise the number of C parameters only to 12.
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Chapter 5, Harder Questions, Suggested Answers

Q1

Does the term ab initio imply that such calculations are “exact”? In what sense

might ab initio calculations be said to be semiempirical – or at least not fully

a priori?
The term does not imply that such calculations are exact. This is clear from the

fact that most ab initio calculations use an approximate Hamiltonian, and all use a

finite basis set (with the reservation that sometimes an attempt is made to extrap-

olate, from three or more points, to the complete basis et limit).

The Hamiltonian: In noncorrelated calculations the main error in the Hamilto-

nian is that it does not take electron correlation into account properly, treating it in a

average charge-cloud way. But even in correlated calculations the Hamiltonian can

contain approximations: it is usually nonrelativistic, which introduces significant

errors for heavy atoms, and it routinely ignores spin-orbit coupling (spin-orbit

interaction), which can be important [1a]. There are still other effects, usually

small and rarely taken into account: spin-spin interaction between electrons [1b],

neglect of the finite size of the nuclei [1c], and the use of the Born-Oppenheimer

approximation [2]. The point is not that these effects are necessarily important, but

that their neglect renders the calculation, strictly speaking, inexact.

The basis set: using a finite basis set necessarily leads to an inexact

wavefunction, in much the same way that representing a function by a finite Fourier

series of sine and cosine functions necessarily gives an approximation (albeit

perhaps an excellent one) to the function. Extrapolation to an infinite basis set

should overcome the finite basis et problem, in principle.

None of the above caveats should be taken to imply that excellent results cannot

be obtained from ab initio calculations. However, except perhaps for calculations at

so high a level that they are essentially exact solutions of the Schr€odinger equation,
one should use experiments on related systems as a reality check. It is in this sense

that ab initio calculations are semiempirical (in fact, in the literature they are never

really described as such): not at all in the sense that they are parameterized against

experiment, but in the sense that for justified confidence in their results one should

check representative calculations against reality.

Concerning semiempirical intrusions into ab initio methods: checking ab initio

procedures against experiment, as recommended above, is in the spirit of empiri-

cism, but is not semiempirical in sense of parameterization. More concretely,

empirical parameters in some high-accuracy multistep methods (notablly the Gn

and CBS methods) clearly make these not fully ab initio (except where the

parameters cancel, as in calculations of protonation enthalpies). These parameters

are adjustments to the ab initio procedure, in contrast to parameters in the semiem-

pirical methods of Chap. 6, which are absolutely central to the accuracy of the

methods.
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Chapter 5, Harder Questions, Answers

Q2

Can the Schr€odinger equation be solved exactly for a species with two protons and

one electron? Why or why not?

This is the the simplest possible molecule, the hydrogen molecule ion, H2
+, a

known entity [1]. Strictly speaking, this presents a three-body problem–two protons

and an electron– which cannot be solved exactly [2]. To a good approximation,

however, the protons can be taken as stationary compared to the electron (the Born-

Oppenheimer principle) and this system can be solved exactly [3].
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3. (a) Levine IN (2014) Quantum chemistry, 7th edn. Prentice Hall, Upper Saddle River, NJ;

section 13.4

Chapter 5, Harder Questions, Answers

Q3

The input for an ab initio calculation (or a semiempirical calculation of the type

discussed in Chap. 6, or a DFT calculation–Chap. 7) on a molecule is usually just

the Cartesian coordinates of the atoms (plus the charge and multiplicity). So how

does the program know where the bonds are, i.e. what the structural formula of the

molecule is?

What is a bond? At one level, the answer is simple: it is a connector between two

atoms (we are talking about covalent bonds, not ionic “bonds”, which are a mere
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omnidirectional electrostatic attraction). Some atoms have one connector, some

two, etc. With this simple idea chemists devised what has been said [1] to be

“perhaps the most powerful theory in the whole of science”, the structural theory of

organic chemistry. This simple theory enabled chemists to rationalize the structures

of and, even more impressively, to synthesize many thousands of chemical com-

pounds. At a “higher” (if not more utilitarian!) level a bond can be defined

mathematically in terms of the bond order between two atoms, which in molecular

orbital theory can be calculated from the basis functions on the atoms; in detail

there are several ways to do this. The theory of atoms in molecules (quantum theory

of atoms in molecules, AIM, QTAIM) offers possibly the most sophisticated

definition of a bond, in terms of the variation of electron density in a molecule

[2]. AIM theory has been often used to answer (?) the question whether there is a

bond between two atoms [3].

So how does the program know where the bonds are? There are (at least) three

ways to answer this:

1. At the simplest level, a program may draw on the graphical user interface (GUI)

a bond between atoms that are within a certain distance, the cutoff distance being

determined by stored data of standard bond lengths. For example, with one

popular program cartesians for the water molecule with an O/H internuclear

distance of 1.0 Å or less will result in a depiction with a bond between the O and

each H, but with an internuclear distance of more than 1.0 Å the GUI will show

an oxygen atom and two separate hydrogens. It should be clear that this is only a

formality, arising somewhat arbitrarily from strict adherence to standard bond

lengths. Another popular program uses a different convention to display bond

lengths. Accepting as input for a calculation a structure assembled with a GUI by

clicking together atoms with attached bonds, the program will display all these

original bonds even if after a geometry optimization some of the atoms have

moved so far apart that they are by no sensible criterion still bonded (the result

can be confusing to look at, but may make sense if viewed as a space-filling

model, or if absurdly long bonds are deleted using the GUI). Again, this result is

only a formality, resulting from maintenance of the bonds (really just formal

connectors) that were shown before the geometry optimization.

2. If one wants information on bonding that is based on more than the proximity of

nuclei, this can be extracted from the wavefunction by requesting that after a

calculation of, say, energy or optimized geometry, a bond order calculation be

performed, or the wavefunction can be used for an AIM calculation (possibly by

a specialized program).

3. A few hardy souls may say it doesn’t matter. A molecule is a collection of nuclei

and electrons, with a certain charge and spin multiplicity. One might stop there

and say that this defines the molecule. This austere view was expressed by

Charles Coulson, a pioneer of, of all things, valence: “. . .a bond does not really

exist at all: it is a most convenient fiction. . .” [4]. However, the bond concept

pervades chemistry so thoroughly, and is so useful, that this stark view of a

molecule is unlikely to find many adherents.
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Chapter 5, Harder Questions, Answers

Q4

Why is it that (in the usual treatment) the calculation of the internuclear repulsion

energy term is easy, in contrast to the electronic energy term?

It is easy because we know where the nuclei are. In the usual treatment the nuclei

are fixed and the electrons move in their field of attraction; this is the Born-Oppen-

heimer approximation. Given the coordinates of the nuclei (which along with charge

and multiplicity define the molecule) the internuclear repulsion energy is simply

obtained as the sum of all pairwise repulsion energies. Of course the nuclei are

actually vibrating around average positions, even at 0 K. The zero point energy (zero

point vibrational energy, ZPE or ZPVE) is calculated from the energies of the normal

modes, these energies being obtained from the normal mode frequencies, which are

calculated with the aid of the matrix of second derivatives of energy with respect to

position, the Hessian matrix. The vibrational energy at higher temperatures can be

obtained by the usual thermodynamic device of calculating the vibrational partition

function from the normal mode frequencies [1].
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Chapter 5, Harder Questions, Answers

Q5

In an ab initio calculation on H2 or HHe
+, one kind of interelectronic interaction

does not arise; what is it, and why?
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“Pauli repulsion” does not arise, because there are no electrons of the same spin

present. Of course, this is not a repulsion like that between particles of the same

charge, but just a convenient term for the fact that electrons of the same spin tend to

avoid one another (more so than do electrons of opposite spin). Thus the calculation

of the energy of these molecules does not involve the K integrals.

Chapter 5, Harder Questions, Answers

Q6

Why are basis functions not necessarily the same as atomic orbitals?

Strictly speaking, atomic orbitals are solutions of the Schr€odinger equation for a

one-electron atom (hydrogen, the helium monocation, etc.). They are mathematical

functions, ψ , of the coordinates of an electron, and for one electron the square of ψ is

an electron probability density function. Solving the nonrelativistic Schr€odinger
equation gives a series of orbitals differing by the values of the parameters (quantum

numbers) n, l, and m (s orbitals, p orbitals, etc.) [1]. These are spatial orbitals; the
relativistic Schr€odinger equation (the Dirac equation) gives rise to the spin quantum

number ms ¼ �1
2
and to spin functions α and β, which, multiplied by the spatial

orbitals, give spin orbitals [2]. All this applies rigorously only to one-electron atoms

but has been transferred approximately, by analogy, to all other atoms.

For the integrations in ab initio calculations we need the actual mathe-

matical form of the spatial functions, and the hydrogenlike expressions are Slater

functions [1]. For atomic and some molecular calculations Slater functions

have been used [3]. These vary with distance from where they are centered as

exp(�constant.r), where r is the radius vector of the location of the electron, but

for molecular calculations certain integrals with Slater functions are very time-

consuming to evaluate, and so Gaussian functions, which vary as exp(�constant.r2)
are almost always used; a basis set is almost always a set of (usually linear

combinations of) Gaussian functions [4]. Very importantly, we are under no

theoretical restraints about their precise form (other than that in the exponent the

electron coordinate occurs as exp(�constant.r2)). Neither are we limited to how

many basis functions we can place on an atom: for example, conventionally carbon

has one 1s atomic orbital, one 2s, and three 2p. But we can place on a carbon atom

an inner and outer 1s basis function, an inner and outer 2s etc., and we can also add

d functions, and even f (and g!) functions. This freedom allows us to devise basis

sets solely with a view to getting from our computations, by “experiment”

(checking calculations against reality), good results. Basis functions are mathemat-

ical functions (usually Gaussian) that work; atomic orbitals are functions,

circumscribed by theory, that arise from solution of the Schr€odinger equation.
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Chapter 5, Harder Questions, Answers

Q7

One desirable feature of a basis set is that it should be “balanced”. How might a

basis set be unbalanced?

Recall from the answer to Q6 that a basis set is a collection of mathematical

functions that “work”. By an unbalanced basis set [1] one usually means a mixed set

in which a big basis has been placed on some atoms and a small basis on others. The

atom with a small basis steals basis functions from the other atoms, leading to

exaggerated basis set superposition error (BSSE) (Chap. 5, Sect. 5.4.3.3) and a

corresponding error in energy. This pilfering of basis functions is aided by moving

the function-deficient atom closer to the function-rich one during geometry opti-

mization, leading to an error in geometry.
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Chapter 5, Harder Questions, Answers

Q8

In a HF [Hartree-Fock] calculation, you can always get a lower energy (a “better”

energy, in the sense that it is closer to the true energy) for a molecule by using a

bigger basis set, as long as the HF limit has not been reached. Yet a bigger basis set

does not necessarily give better geometries and better relative (i.e. activation and

reaction) energies. Why is this so?
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The calculated geometry is a local (sometimes the global) minimum on a Born-

Oppenheimer surface. At that point altering the geometry by a small amount leads

to an increase in energy (the situation is more complicated if the point is a transition

structure). There is no necessary requirement that the energy of the minimum be in

any sense “good”, although in practice, methods that give good geometries do tend

to give reasonably good relative energies (reaction energies, less reliably, activation

energies).

Chapter 5, Harder Questions, Answers

Q9

Why is size-consistency in an ab initio calculation considered more important than

variational behavior (MP2 is size-consistent but not variational)?

Size-consistency in a method enables one to use that method to compare the

energy of a species (a molecule or a complex like the water dimer or a van der

Waals cluster) with its components; for example, one can compute the stability of

the water dimer by comparing its energy with that of two separate water molecules,

allowing for basis set superposition error). Lack of size consistency means we

cannot use the method to compare the energy of a system with that of its compo-

nents, and so limits the versatility of the method. Variational behavior is desirable,

because it assures us that the true energy of a system is less than (in theory the same,

but this is unlikely) our calculated energy, giving a kind of reference point to aim

for in a series of calculations, for example with increasingly bigger basis sets.

However, in practice the lack of variational behavior does not limit much the

usefullness of a method: all the correlated methods including current DFT, except

some CI methods (Chapter 5, Sect. 5.4.3.2; and with certain reservations CASSCF,

a partial CI method) are not variational.

Chapter 5, Harder Questions, Answers

Q10

A common alternative to writing a HF wavefunction as an explicit Slater determi-

nant is to express it using a permutation operator p̂ which permutes (switches)

electrons around in MOs. Examine the Slater determinant for a two-electron closed-

shell molecule, then try to rewrite the wavefunction using p̂
The Slater determinant for a two-electron closed-shell molecule is

ψ ¼ 1ffiffiffiffi
2!

p ψ1 1ð Þα 1ð Þ ψ1 1ð Þβ 1ð Þ
ψ1 2ð Þα 2ð Þ ψ1 2ð Þβ 2ð Þ
���� ���� ð1Þ
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consisting of one spatial MO (ψ1), or two spin MOs (ψ1α and ψ1β), one of which is
populated alternately with electron 1 and with electron 2. When expanded

according to the usual rule this gives

1=
ffiffiffiffi
2!

p
ψ1 1ð Þα 1ð Þ:ψ1 2ð Þβ 2ð Þ � ψ1 1ð Þβ 1ð Þ:ψ1 2ð Þα 2ð Þ½ � ð2Þ

The expansion presents ψ as a sum of products. Realizing that the second term

in (2) can be derived from the first by switching the coordinates of electrons

1 and 2 and replacingþ by� leads to the idea of writing Ψ as a sum of “switched”

or permuted terms:

ψ ¼ 1
ffiffiffiffi
2!

p X
�1ð Þp P̂ ψ1 1ð Þα 1ð Þ:ψ1 2ð Þβ 2ð Þ½ � ð3Þ

where the sum is over all possible permutations (two) of the two spin orbitals which

can be obtained by switching the electron coordinates. The permutation operator p̂
has the effect of switching electron coordinates. As a check on this (ignoring the

1/√2! normalization factor):

Permutation 1 leads to �1ð Þ1 ψ1 2ð Þα 2ð Þ:ψ1 1ð Þβ 1ð Þ½ � ¼ � ψ1 1ð Þβ 1ð Þ:ψ1 2ð Þα 2ð Þ�;
the second term in (2).

Permutation 2 (acting on the result of permutation 1) leads to

�1ð Þ2 ψ1 1ð Þα 1ð Þ:ψ1 2ð Þβ 2ð Þ½ � ¼ ψ1 1ð Þα 1ð Þ:ψ1 2ð Þβ 2ð Þ;

the first term in (2).

Particularly for Ψ with more than two spin orbitals the permutation operator

formulation [1] is less transparent than the determinant one.
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Chapter 6, Harder Questions, Suggested Answers

Q1

Why are even very carefully-parameterized SE methods like AM1 and PM3 not

as accurate and reliable as high-level (e.g. MP2, CI, coupled-cluster) ab initio
calculations?

One reason is that an attempt to get the best fit of program parameters to a

number (say, a training set of 50 molecules) of a variety (like heat of formation,

geometric parameters, dipole moments) of parameters results in a significant

unavoidable error in the accuracy of the fit. Imagine fitting a least-squares line to

a collection of data points (x, y); unless the underlying relationship is genuinely

linear, the fit will be imperfect and predictions of y from x will be subject to error.

Nevertheless, geometries of “normal” molecules from AM1 and PM3 are generally

quite good, although heats of formation and relative energies are less accurate.

A more fundamental reason is that predictions for molecules very different from

those outside the training should be less reliable than those for molecules similar to

the ones used for parameterization. Therefore for investigating exotic species like,

say, planar carbon or nitrogen pentafluoride AM1 and PM3 are considered

unreliable, and even noncorrelated ab initio calculations would be considered

well short of definitive nowadays [1].

Reference

1. Lewars E (2008) Modeling marvels. Computational anticipation of novel molecules. Springer,

Dordrecht

Chapter 6, Harder Questions, Answers

Q2

Molecular mechanics is essentially empirical, while methods like PPP, CNDO, and

AM1 are semiempirical. What are the analogies in PPP etc. to MM procedures of

developing and parameterizing a forcefield? Why are PPP etc. only semiempirical?

The analogies in semiempirical (SE) methods to MM procedures for developing

a forcefield arise from the need to fit experimental values to parameters in equa-

tions. In SE parameterization heats of formation, geometric parameters, etc. are

used to adjust the values of integrals in the Hamiltonian of quantum-mechanical

equations. In MM vibrational frequencies, geometric parameters, etc. are used to

adjust the values of force constants, reference bond lengths, etc. in simple non-

quantum-mechanical equations.
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SE methods like PPP, CNDO, and AM1 are partly empirical and partly quantum-

mechanical: experimental (or nowadays, often high-level ab initio or DFT) param-

eters are used to simplify the evaluation of the integrals in the Fock matrix. In

contrast, there is no quantum-mechanical component to MM; it is not quite true,

however, that MM has no theoretical component, because the force constants and

reference geometric parameters are inserted into an (albeit simple) ball-and springs-

model of a molecule (this model is augmented with energy terms arising from

dihedral angles, nonbonded interactions, and possibly other factors).

Chapter 6, Harder Questions, Answers

Q3

What do you think are the advantages and disadvantages of parameterizing SE

methods with data from ab initio calculations rather than from experiment? Could a

SE method parameterized using ab initio calculations logically be called

semiempirical?
This question is similar to chapter 3, harder Question 3, for MM. For the first part

of the question I’ll just repeat the response to that question, tailored to be appro-

priate to SE methods. Apart from a possible philosophical objection, which from a

utilitarian viewpoint can be dismissed, there is the question of the trustworthiness of

the ab initio or DFT results. For “normal” molecules, that is, species which are not

in some way exotic [1], these calculations deliver quite reliable results. The

advantages they offer over experimental acquisition of the required parameters is

that these quantities (1) can be obtained for a wide variety of compounds without

regard to synthetic difficulties or commercial availability, (2) are offered up

transparently by the output of the calculation, rather than being required to be

extracted, perhaps somewhat tortuously, from experiments, (3) are usually more

quickly calculated than determined in the lab, and (4) can be uniformly secured,

that is, all parameters can be obtained from calculations at the same level, say

MP2/6-311G(df,p), in contrast to experiment, where different methods must be

used to obtain different parameters. This last point may be more of an esthetic than

a utilitarian advantage.

The advantage of parameterizing with experimental quantities is that, if the

experiment is reliable, then we know the values of the parameters; we need not

reflect on the reliability of the calculation. Of course, we might wish to ponder the

accuracy of the experiment.

Could a SE method parameterized using ab initio calculations logically be called

semiempirical? Literally, semiempirical means semiexperimental. If we para-

meterize with calculations we have not resorted to experiment (of course, after-
wards we will likely check the method against some experimental facts). So it

would appear that literally the SE method, parameterized by ab initio or DFT, is not
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really semiempirical; however, it is still in the spirit of SE methods, circumventing

detailed calculation of the Fock matrix elements (using pre-calculated values!).

Reference

1. Lewars E (2008) Modeling marvels. Computational anticipation of novel molecules. Springer,

Dordrecht

Chapter 6, Harder Questions, Answers

Q4

There is a kind of contradiction in the Dewar-type methods (AM1, etc.) in that

overlap integrals are calculated and used to help evaluate the Fock matrix elements,

yet the overlap matrix is taken as a unit matrix as far as diagonalization of the Fock

matrix goes. Discuss.

In the simple Hückel method, which is not a Dewar-type method, the use of

overlap integrals as the sole source of geometric (connectivity) information is

transparent. In AM1 and its relative PM3, which are modified versions of

MNDO, overlap integrals are also calculated, and used in a somewhat more

involved way to evaluate some of the core integrals. Yet after assembling the

Fock matrix this is simply diagonalized to give coefficients and energies (repeat-

edly, in the SCF procedure) without using orthogonalization to alter the original

Fock matrix or to “reset” the coefficients. The sidestepping of orthogonalization in

the SHM is achieved by setting the overlap matrix equal to a unit matrix, i.e. by

simply setting all Sii¼ 1 and all Sij (i 6¼ j)¼ 0. This is a logical inconsistency, but it

works quite well!

Chapter 6, Harder Questions, Answers

Q5

What would be the advantages and disadvantages of using the general MNDO/AM1

parameterization procedure, but employing a minimal basis set instead of a minimal

valence basis set?

A minimal basis set is bigger than a minimal valence basis set by the inclusion of
core atomic orbitals, e.g. a 1s AO for carbon, and 1s, 2s, and three 2p AOs for

silicon. Including these in the electronic calculation probably should not lead to
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much if any improvement over the results now being obtained with a minimal

valence basis, since once the basic MNDO-type method has been chosen, the key to

good results is careful parameterization. There might be some improvement in

properties which depend on a good description of the electron density near the

nucleus, but there are few such of general interest to chemists–even NMR chemical

shifts are affected mainly by (the tails of) valence orbitals [1].

The disadvantage is that the time of calculations would be increased, particularly

for elements beyond the first full row (Na and beyond).

Reference

1. Cramer CJ (2004) Essentials of computational chemistry, 2nd edn. Wiley, Chichester, p 345

Chapter 6, Harder Questions, Answers

Q6

In SCF SE methods major approximations lie in the calculation of the Hrs
core, (rs|

tu), and (ru|ts) integrals of the Fock matrix elements Frs (Eq. (6.1)). Suggest an

alternative approach to approximating one of these integrals.

So much thought and experimentation (checking calculated results against

experimental ones) have gone into devising semiempirical parameters that a sug-

gestion here is unlikely to be much of an improvement. The easiest integral to

modify is probably the core one, because it does not involve electron-electron

repulsion. Hrs
core in the Frs Fock matrix element is:

Hcore
rs 1ð Þ ¼ ϕr 1ð Þ Ĥ core

1ð Þ
��� ���ϕs 1ð Þ

D E
where Ĥ

core
1ð Þ ¼ �1

2
∇2

1 �
X
all μ

Zμ

rμ1

So the integral Hcore
rs can be taken as the energy (kinetic plus potentialof an electron

moving in the ϕr, ϕs overlap region under the attraction of all the charges Zμ. In ab

initio calculations these charges are nuclear, in SE calculations they are the net

charges of nuclei plus non-valence electrons. A crude attempt to capture the

physical meaning of this might be to take Hcore
rs as the average of the valence-state

ionization energies of an electron in ϕr and ϕs plus the energy needed to remove the

electron to infinity against the attraction of the other (non-r and non-s) cores.
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Chapter 6, Harder Questions, Answers

Q7

Read the exchange between Dewar on the one hand and Halgren, Kleier and

Lipscomb on the other [1, 2]. Do you agree that SE methods, even when they

give good results “inevitably obscure the physical bases for success (however

striking) and failure alike, thereby limiting the prospects for learning why the

results are as they are?” Explain your answer.

HKL [1] make the point that calculations are not just alternatives to experiment,

as Dewar thinks, but can also illuminate experiment. In effect, they say that

calculations are not only another way to get numbers, but can provide insight into
physical processes. Their contention that such insight comes from ab initio, not

from semiempirical, methods (which “obscure the physical bases” of their success

and failure) seems to be justified, because in SE methods the fundamental physical

entities have been deliberately subsumed into parameters designed to give the right,

or rather the best, answers.

HKL make the interesting point that the purpose of ab initio calculations is (this

may have been so in 1975, but is not true today for most ab initio studies) “not so

much to predict a given experimental result as to examine what that result can tell

us.” This is the core of the difference between the way HKL on the one hand and

Dewar on the other viewed the ab initio-semiempirical divide.

Dewar [2] in his retort appeared to miss the above core point. He averred that he

was “all in favor of rigorous quantum mechanical calculations–that is, ones that are

accurate in an absolute sense. . .”, and closed his letter with an attack on “vast and

very expensive calculations”, which did not address the contention of HKL that

ab initio calculations (at the time) were done not to get right answers but rather to

probe the physical reasons behind getting right–and wrong–answers.

Ancillary to this conceptual divide was an argument over the relative cost of

Hartree-Fock 4-31G and MINDO/3 calculations for the study of the barriers to

interconversion of benzene valence isomers. In those days computer use was indeed

expensive: a computer was an institutional machine, personal ownership of

such a device being inconceivable, and the privilege of using one cost [1, 2] ca.

$500 per hour. Geometry optimization of benzene (by the low-level HF/4-31G

method) took 4 h, consuming $2000 [1]. I just repeated this calculation on my now

largely merely clerical personal computer, bought years ago for ca. $4000; it took

22 s, a time ratio of 655.

References

1. Halgren TA, Kleier DA, Lipscomb WN (1975) Science 190:591

2. Dewar MJS (1975) Science 190:591
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Chapter 6, Harder Questions, Answers

Q8

It has been said of SE methods: “They will never outlive their usefulness for

correlating properties across a series of molecules. . .I really doubt their predictive

value for a one-off calculation on a small molecule on the grounds that whatever

one is seeking to predict has probably already been included in with the parame-

ters.” (A. Hinchcliffe, “Ab Initio Determination of Molecular Properties,” Adam

Hilger, Bristol, 1987, p. x). Do you agree with this? Why or why not? Compare the

above quotation with M. J. S. Dewar, A Semiempirical Life”, American Chemical

Society, Washington, DC, 1992, pp. 133–136.

First, a synopsis of Dewar pp. 133–136. Here are representative excerpts:

One of the criticisms commonly levelled at semiempirical methods is that they represent no

more than methods of interpolation and are useful only in areas and for compounds for

which they have been parameterized....The striking thing about ours is that they do not
merely reproduce the properties for which they were parameterized, nor are they confined

to molecules of the kind used in the parameterization. They reproduce all ground-state
properties of molecules of all kinds. . .Thus our procedures provide a very good represen-

tation of the way molecules behave. . .
. . .our work has led to a number of predictions that have been subsequently confirmed

by experiment.

Every procedure performs less well in some cases than in others. How serious each error

is depends on the chemical importance of the molecule in question.

The statements above directly contradict the assertion that “. . .whatever one is

seeking to predict has probably already been included in with the parameters.”, with

the reservation that Hinchcliffe was presumably writing about 5 years before

Dewar. The references given by Dewar, and the experience of the many chemists

who use semiempirical methods (not only the Dewar-type ones) show that these are

not merely “methods of interpolation”. It is however true that for accurate, reliable

information on the properties of a small molecule one would very likely resort to a

high-level ab initio or DFT calculation.

Chapter 6, Harder Questions, Answers

Q9

For a set of common organic molecules Merck Molecular Force Field geometries are

nearly as good as MP2(fc)/6-31G* geometries. For such molecules single point MP2

(fc)/6-31G* calculations, which are quite fast, on the MMFF geometries, should give

energy differences comparable to those from MP2(fc)/6-31G*//MP2(fc)/6-31G*

calculations [energy and geometry optimization at theMP2(fc)/6-31G* level]. Exam-

ple: CH2¼CHOH/CH3CHO, ΔE(MP2 opt, including ZPE)¼ 71.6 kJ mol�1,
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total time 1064 s; ΔE(MP2 single point on MMFF geometries)¼ 70.7 kJ mol�1,

total time¼ 48 s (G98 on a now-obsolescent Pentium 3). What role does this leave

for semiempirical calculations?

If the above approach really has wide applicability then it could be a very useful

way to get relative energies at only modest cost in time. However, it could be used

only for species for which the MMFF gives reliable geometries. This excludes

exotic molecules and transition states. Whatever the deficiencies of SE methods in

these two categories, at least they do permit such calculations.

Chapter 6, Harder Questions, Answers

Q10

Semiempirical methods are untrustworthy for “exotic” molecules of theoretical

interest. Give an example of such a molecule and explain why it can be considered

exotic. Why cannot SE methods be trusted for molecules like yours? For what other

kinds of molecules might these methods fail to give good results?

A simple exotic molecule is pyramidane:

C

CC

CC

HH

HH

1

This is exotic because one of the carbon atoms is forced to have very unusual

pyramidal bonding: tetracoordinate carbon normally has its four bonds directed

toward the corners of a tetrahedron, but the apical carbon of 1 has all four bonds

pointing forward. Without any further investigation of 1 we can thus characterize it

as exotic. Of course without further investigation we cannot assert with confidence

if it can exist, much less what its properties might be. Semiempirical and low-level

ab initio [1,2] and higher-level ab initio [3] studies on pyramidane have been

published, and work on this and related molecules is reviewed [4]. SE methods

cannot be trusted for molecules like pyramidane because they are parameterized

using information, whether experimental or calculated, for normal molecules.

Other kinds of molecules besides 1 (which has unusual bond stereochemistry)

for which these methods might fail to give good results are hypercoordinate

molecules like NF5, molecules with noble gas atoms, particularly those of helium

and neon, molecules with highly twisted C¼C bonds, extraordinarily crowded

molecules like hexaphenylethane, unknown dimers, trimers etc. of small familiar

molecules, like CO2 and N6, and very highly strained molecules. All these cases are

discussed in a book on exotic molecules [4].

Answers 695



References

1. (a) Minkin VI, Minyaev RM, Zakharov II, Avdeev VI (1978) Zh Org Khim 14:3; (b) Minkin

VI, Minyaev RM (1979) Zh Org Khim 15:225; (c) Minkin VI, Minyaev RM, Orlova GA (1984)

J Mol Struct (Theochem) 110:241

2. (a) Minyaev RM, Minkin VI, Zefirov NS, Zhdanov YuA (1979) Zh Org Khim 15:2009;

(b) Minyaev RM, Minkin VI, Zefirov NS, Natanzon VI, Kurbatov SV (1982) Zh Org Khim

18:3

3. (a) Lewars E (2000) J Mol Struct (Theochem) 507:165. (b) Lewars E (1998) J Mol Struct

(Theochem) 423:173

4. Lewars E (2008) Modeling marvels. Computational anticipation of novel molecules. Springer,

Dodrecht

Chapter 7, Harder Questions, Suggested Answers

Q1

It is sometimes said that electron density is physically more real than a

wavefunction. Do you agree? Is something that is more easily grasped intuitively

necessarily more real?

First I will summarize a debate, at the level of polemic in some cases, about the

relative merits of the wavefunction and the electron density function, then close

with a few personal observations. The principal participants in the argument were,

on the wavefunction side, Gernot Frenking, and on the electron density side,

Richard Bader, and Ronald Gillespie and Paul Popelier. The recent history of the

controversy starts in 2003 with a review by Frenking [1] of a book on chemical

bonding by Gillespie and Popelier [2]. In his long review, Frenking commended the

book to readers, but criticized its emphasis on electron density and its virtual

ignoring of the wavefunction: “Like Bader, the authors reject the wavefunction as

a basis for the explanation of molecular geometries because it is not a physical

observable. . .It is hard for human beings to accept that the fundamental principles

of elementary quantities of science are not accessible to their sensory perception.”

Gillespie and Popelier responded to these criticisms, but conceded that “The

question of whether the wave function or the electron density is the more funda-

mental is perhaps open to dispute” but defended electron density as “much more

useful for understanding chemical bonding and molecular geometry” [3]. Frenking

defended his criticisms and reiterated that “The wavefunction Ψ , which is funda-

mental to our science, is a mathematical object which is not accessible to human

senses.” He made the important point that “the important class of pericyclic

reactions could only be explained with MO theoretical arguments using the sym-

metry of Ψ .”, a symmetry not present in the electron density. He chides the two

authors for using ease of understanding as the reason for choosing electron density

over Ψ , and closes by “encouraging interested readers” to study the book and his

review and make up their own minds [4].
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Bader leapt into the fray with a polemic against Frenking’s review that even

aficionados of the wavefunction must concede is amusing and erudite. He defended

earlier work by Schr€odinger and by Slater which argued in effect that the sole use

of the wavefunction is as a mathematical device to determine the electron density

distribution [5]. He countenanced the much-criticised conclusion of the Feynman

force theorem and the virial theorem that the chemical bond is in fact simply the

result of overlap charge density, and bolstered his argument by invoking (to many

chemists no doubt recondite) work by Schwinger and Dirac, and stated clearly that

“chemistry is the interaction of the density with the nuclei; there is nothing else,

at least not in real observable space. . .” The statement “To ascribe an existence to a

wavefunction that controls rather than predicts the evolution of a physical system

introduces an unnecessary and unwelcome element of metaphysics.” is very reveal-

ing, emphasizing Bader’s conviction that the wavefunction is not “real”; indeed,

two sentences earlier reference is made to the abstract Hilbert space, where the

wavefunction frolics.

A long paper by Frenking, Esterhuysen, and Kovacs [6] elicited another polemic

from Bader [7]. Frenking et al. presented an energy partitioning analysis of bonds in

nonpolar molecules, dividing bonding into terms represented by Pauli repulsion,

electrostatic interactions, and orbital interactions. Bader dismissed the concept of

energy partitioning as lying “beyond the boundaries of physics” then turned his

fire on what he considered to be errors within physics engendered by that concept.

He criticised a perceived misunderstanding of the difference between electron

density and the Laplacian (∇2) of electron density (a Bader hallmark) which led

to the assertion by Frenking et al. that covalent bonds do not necessarily exhibit

an accumulation of electronic charge between the nuclei; Bader countered that

bonded atoms experience “no Feynman force, neither attractive nor repulsive,

[acting] on the nuclei because of the balancing of the repulsive and attractive forces

by the accumulation [emphasis in the original] of electron density in the binding

region. . .” In a short final (?) repartee, Frenking, Esterhuysen, and Kovacs

[8] rebuke Bader for his derisive tone and defend their understanding of electron

density and its Laplacian. They argue that acknowledging different types of bond-

ing is fundamentally important to chemists, implying that a rejection of the concept

of energy partitioning would obviate such differentiation. In support of this they

cite Bader’s assertion that there is no difference between the bonding in H2 and that

between the ortho-hydrogens in the transition state for biphenyl rotation, and the

finding that Bader’s atoms-in-molecules (AIM) theory gives similar bonding for

He2 and H2. Since chemists regard bonding in H2 as being qualitatively different

from that in the other two species, “Bader’s orthodox understanding of physics is

unable to address fundamental questions of chemistry!” It is contended that Bader’s
reductionism does not recognize that chemistry needs its own models, and that

“Chemical research begins where the physics of Richard Bader ends.” [emphasis in

the original]. (For polemics concerned with AIM and H-H bonding in biphenyl

and related systems see [9, 10, 11]).

So where does all this leave us in trying to respond to “It is sometimes said that

electron density is physically more real than a wavefunction. Do you agree?
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Is something that is more easily grasped intuitively necessarily more real?” To

argue in detail the relative merits of a wavefunction and an electron density

approach to chemical structure and bonding requires a pretty deep knowledge of

quantum chemistry. There is no question that electron density is a valid and useful

concept in chemistry, and that it is more easily grasped intuitively than the

wavefunction. But logically, there is no basis for thinking that ease of understand-

ing is correlated positively with the likelihood of physical reality. Is electron

density physically more real than a wavefunction? Electron density in molecules

is certainly physically real: it can be measured by X-ray crystallography [12] or

electron scattering [13]. Is the wavefunction real or is it a mathematical abstraction?

This is controversial, and pursuing it would take us well into physics and even

perhaps philosophy. In the orthodox interpretation of quantum mechanics (QM),

from the Copenhagen school of Bohr and Heisenberg, observation of a system

causes “collapse of the wavefunction” [14], implying that it is real. This school was

practically unchallenged for decades, but alternative interpretations of QM are now

being given a hearing [14], and in some there is no wavefunction collapse, such as

with quantum decoherence [15] and (de Broglie and more recently Bohm) the pilot

wave concept [16]. A reaction to all interpretations of QM is an article entitled

“Quantum theory needs no ‘interpretation’” [17].
As chemists we can pose a simple, focussed question: how do the Woodward-

Hoffmann rules (WHR) [18] arise from a purely electron density formulation of

chemistry? The WHR for pericyclic reactions were expressed in terms of orbital

symmetries; particularly transparent is their expression in terms of the symmetries

of frontier orbitals. Since the electron density function lacks the symmetry proper-

ties arising from nodes (it lacks phases), it appears at first sight to be incapable of

accounting for the stereochemistry and allowedness of pericyclic reactions. In fact,

however, Ayers et al. [19] have outlined how the WHR can be reformulated in

terms of a mathematical function they call the “dual descriptor”, which encapsu-

lates the fact that nucleophilic and electrophilc regions of molecules are mutually

friendly. They do concede that with DFT “some processes are harder to describe

than others” and reassure us that “Orbitals certainly have a role to play in the

conceptual analysis of molecules”. The wavefunction formulation of the WHR can

be pictorial and simple, while DFT requires the definition of and calculations with a

nonintuitive (!) density function. But we are still left uncertain whether the suc-

cesses of wavefunctions arises from their physical reality (do they exist “out

there”?) or whether this successes is “merely” because their mathematical form

reflects an underlying reality–are they merely the shadows in Plato’s cave?.
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Chapter 7, Harder Questions, Answers

Q2

A functional is a function of a function. Explore the concept of a function of a

functional.

If a function is a rule that converts a number into a number, and a functional is a

rule that converts a function into a number [1], then a function of a functional (call it

a 2-functional) should be a rule that converts a functional into a number:

function f xð Þ ¼ x3

rule: cube the number x

number ¼ 2 !x3 8

functional F f xð Þ½ � ¼ Ð2
0

f xð Þdx
rule: integrate the function f(x) between zero and 2

Answers 699



function ¼ x3!

Ð2
0

f xð Þdx
x

4

4
����2
0

¼ 4

From the above we see that we supply a number to a function to get a number, and

we supply a function to a functional to get a number. By analogy, we supply a

functional to a “2-functional” to get a number. I leave a specific example as an

exercise for the reader.

Chapter 7, Harder Questions, Answers

Q3

Why is it that the HF Slater determinant is an inexact representation of the

wavefunction, but the DFT determinant for a system of noninteracting electrons

is exact for this particular wavefunction?

The HF (Hartree-Fock) Slater determinant is an inexact representation of the

wavefunction because even with an infinitely big basis set it would not account

fully for electron correlation (it does account exactly for “Pauli repulsion” since if

two electrons had the same spatial and spin coordinates the determinant would

vanish). This is shown by the fact that electron correlation can in principle be

handled fully by expressing the wavefunction as the a linear combination of the HF

determinant plus determinants representing all possible promotions of electrons

into virtual orbitals: full configuration interaction. Physically, this mathematical

construction permits the electrons maximum freedom in avoiding one another.

The DFT determinant for a system of noninteracting electrons is exact for this

particular wavefunction (i.e. for the wavefunction of the hypothetical

noninteracting electrons) because since the electrons are noninteracting there is

no need to allow them to avoid one another by promotion into virtual orbitals.

For an account of DFT that is at once reasonably detailed, clear and concise see

Cramer [1].

Reference

1. Cramer CJ (2004) Essentials of computational chemistry. Wiley, Chichester, England,

chapter 8
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Chapter 7, Harder Questions, Answers

Q4

Why do we expect the “unknown” term in the energy equation (Exc[ρ0], in

Eq. (7.21)) to be small?

Eq. (7.21) is

E0 ¼ �
X

nuclei A

ZA

ð
ρ0 r1ð Þ
r1A

dr1 � 1

2

X2n
i¼1

ψKS
1 1ð Þ��∇2

1

��ψKS
1 1ð Þ	 


þ 1

2

ðð
ρ0 r1ð Þρ0 r2ð Þ

r12
dr1dr2 þ EXC ρ0½ �

Exc[ρ0] is a correction term to the electronic kinetic and potential energy; most

of this energy is (we hope!) treated classically by the other terms [1].

Reference

1. Cramer CJ (2004) Essentials of computational chemistry. Wiley, Chichester, sections 8.3

and 8.4

Chapter 7, Harder Questions, Answers

Q5

Merrill et al. have said that “while solutions to the [HF equations] may be viewed as

exact solutions to an approximate description, the [KS equations] are approxima-

tions to an exact description!” Explain.

Solutions to the Hartree Fock equations are exact solutions to an approximate

description because:

The HF equations are approximate mainly because they treat electron-electron

repulsion approximately (other approximations are mentioned in the answer

suggested for Chapter 5, Harder Question 1). This repulsion is approximated as

resulting from interaction between two charge clouds rather than correctly, as the

force between each pair of point-charge electrons. The equations become more

exact as one increases the number of determinants representing the wavefunctions

(as well as the size of the basis set), but this takes us into post-Hartree-Fock

equations. Solutions to the HF equations are exact because the mathematics of

the solution method is rigorous: successive iterations (the SCF method) approach an
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exact solution (within the limits of the finite basis set) to the equations, i.e. an exact

value of the (approximate!) wavefunction ΨHF.

The Kohn-Sham equations are approximations because the exact functional

needed to transform the electron density function ρ into the energy is unknown.

They are approximations to an exact description because the equations (as distinct

from methods of solving them) involve no approximations, with the ominous caveat

that the form of the ρ-to-E functional Exc is left unspecified.

Chapter 7, Harder Questions, Answers

Q6

Electronegativity is the ability of an atom or molecule to attract electrons. Why is it

then (from one definition) the average of the ionization energy and the electron

affinity (Eq. (7.32)), rather than simply the electron affinity?

Equation (7.32) is

χ ¼ 1þ A

2

We can call this the Mulliken electronegativity. Why is electronegativity not

defined simply as the electron affinity (A)? First, we saw two derivations of

Eq. (7.32). In the first, electronegativity(χ) was intuitively taken as the negative

of electronic chemical potential (the more electronegative a species, the more its

energy should drop when it acquires electrons). This led to approximating the

derivative of energy with respect to number of electrons at a point corresponding

to a species M as the energy difference of M+ and M� divided by 2. In the second,

Mulliken, derivation, a simple argument equated electron transfer from X to Y to

transfer from Y to X. Both derivations clearly invoke ionization energy (I). It is no
surprise that χ should be connected with A, but the intrusion of I may be puzzling;

however, our surprise diminishes if we note that the more electronegative a species,

the more readily it should gain an electron and the less readily it should part

with one.

But could we alternatively reasonably define electronegativity quantitatively just

as electron affinity? Let’s compare with the popular Pauling electronegativity

scale [1] electronegativities calculated from Eq. (7.32) and calculated simply as A.
(The Pauling scale has been criticised by Murphy et al., [2], and their criticisms were

acknowledged and improvements to the scale suggested, by Smith [3]; Matsunaga

et al., provided a long defence of Pauling’s scale [4]). Below are some electroneg-

ativities (preceded by a table of the calculated needed energies, at the MP2/6-311

+G* level) by these three methods.
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Energies in hartrees

Li Ca Cb F

Neutral �7.43202 �37.61744 �37.74587 �99.55959

Cation �7.23584 �37.16839 �37.33742 �98.79398

Anion �7.44251 �37.78458 �37.78458 �99.67869
aStarting from a neutral quintet 1s2, 2s1, 2px1, 2py1, 2pz1

bStarting from a neutral triplet 1s2, 2s2, 2px1, 2py1, 2pz0

I, A, and Mullikenχ, in eV, Pauling χ in kJ mol�1. Hartrees were converted to eV

by multiplying by 27.212.

I and A were calculated as the energy difference between the neutral and the

cation and anion, respectively.

Li Ca Cb F

I 5.33 12.3 11.1 21.4

A 0.272 4.55 1.05 3.24

Mulliken χ 2.80 8.38 6.08 12.0

Pauling χ 0.98 2.55c 2.55c 3.98
aStarting from a neutral quintet 1s2, 2s1, 2px1, 2py1, 2pz1

bStarting from a neutral triplet 1s2, 2s2, 2px1, 2py1, 2pz0

cBased on experimental bond energies in C-X molecules

We see that the Mulliken and Pauling electronegativities seem to be reasonably

in step, with electronegativity increasing from Li to C to F, in accord with

experience, but with A making quintet C more electronegative than F. Evidently

both I and A act together to determine atomic avidity for electrons.

Electronegativity and other properties from DFT calculations have been

discussed by Zhan et al. [5], and an electronegativity scale based on the energies

of neutrals and cations which correlates well with the Pauling scale has been

proposed by Noorizadeh and Shakerzadeh [6].
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Chapter 7, Harder Questions, Answers

Q7

Given the wavefunction of a molecule, it is possible to calculate the electron density

function. Is it possible in principle to go in the other direction? Why or why not?

From density functional theory, given the electron density function of a mole-

cule (and its charge and multiplicity), and a perfect functional (let’s idealize the

problem; the question does specify “in principle”) we can home in on a unique

molecule. Then we could use ab initio theory to find the wavefunction.

Chapter 7, Harder Questions, Answers

Q8

The multielectron wavefunction Ψ is a function of the spatial and spin coordinates

of all the electrons. Physicists say that Ψ for any system tells us all that can be

known about the system. Do you think the electron density function ρ tells us

everything that can be known about a system? Why or why not?

Although the wavefunction Ψ seems to contain more information than the

electron density function ρ (Question 1), it ought to be possible in principle to

calculate any property of a system from ρ, because different states– different

geometries, different electronic states, etc.–must have different electron distribu-

tions (or they would not be different). The problem is to transform the calculated

ρ to an energy (Question 5).

Extraction of information from ρmay not be as elegant as from Ψ. For example,

the Woodward-Hoffmann rules follow fairly transparently from the symmetries of

molecular orbitals (wavefunctions), but deriving them from ρ requires using a “dual
descriptor” function [1].
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Chapter 7, Harder Questions, Answers

Q9

If the electron density function is mathematically and conceptually simpler than the

wavefunction concept, why did DFT come later than wavefunction theory?
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The wavefunction [1] and electron density [2] concepts came at about the same

time, 1926, but the application of wavefunction theory to chemistry began in the

1920s [3], while DFT was not widely used in chemistry until the 1980s (see below).

Why?

The DFT concept of calculating the energy of a system from its electron density

seems to have arisen in the 1920s with work by Fermi, Dirac, and Thomas.

However, this early work was useless for molecular studies, because it predicted

molecules to be unstable toward dissociation. Much better for chemical work, but

still used mainly for atoms and in solid-state physics, was the Xα method, intro-

duced by Slater in 1951. Nowadays the standard DFT methodology used by

chemists is based on the Hohenberg-Kohn theorems and the Kohn-Sham approach

for implementing them (1964, 1965). It is not far from the truth to say that the use of

DFT in chemistry began, with this method, in the 1960s. The first such calculation

was on atoms (1966) [4], with molecular DFT calculations picking up steam in the

1970s [5], and starting to become routine ca. 1990 [6].

The reason for the delay is that it took the Kohn-Sham approach to initiate

practical DFT calculations on molecules, and time was needed to “experiment”

with techniques for improving the accuracy of calculations [7]. As for why the

Hohenberg-Kohn theorems and the Kohn-Sham insight came not until 40 years

after the wavefunction and electron density concepts, one can only speculate;

perhaps scientists were mesmerized by the peculiarities of the wavefunction [8],

or perhaps it simply took the creativity of specific individuals to usher in the era of

widespread density functional calculations.
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Chapter 7, Harder Questions, Answers

Q10

For a spring or a covalent bond, the concepts of force and force constant can be

expressed in terms of first and second derivatives of energy with respect to

extension. If we let a “charge space” N represent the real space of extension of

the spring or bond, what are the analogous concepts to force and force constant?

Using the SI, derive the units of electronegativity and of hardness.

Force and ‘of energy on extension:

Force ¼ F ¼ �dE=dx ð1Þ
Force constant ¼ k ¼ �dF=dx ¼ d2E=dx2 ð2Þ

(Force is a vector, acting in the opposite direction to the that along which the spring

or bond is extended, hence the minus sign; the force constant is positive). Energy

and charge density are closely connected, E being a functional of ρ for the ground

state:

E0 ¼ F ρ0½ � ð3Þ

We want equations analogous to (1) and (2) with ρ instead of E. Equation (3)

leads us to

Force ¼ F ¼ �dF ρ½ �=dx ð4Þ

and

Force constant ¼ k ¼ �dF=dx ¼ d2F ρ0½ �=dx2 ð5Þ

both for the ground electronic state.

Units of electronegativity and hardness in the international system.
Electronegativity can be defined as

X ¼ �μ ¼ � ∂E
∂N

� �
V

ð6Þ

and hardness can be defined as

η ¼ ∂2
E

∂N2

 !
V

¼ ∂μ
∂N

� �
V

¼ � ∂X
∂N

� �
V

ð7Þ
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Within these definitions, the units of electronegativity must then be

change in energy/change in pure number ¼ J (Joules)

and the units of hardness must be

change in electronegativity/change in pure number

¼ change in J/change in pure number ¼ J

Electronegativity is a measure of how fast energy changes as electrons are

added, and hardness is a measure of how fast electronegativity changes as electrons

are added. In the “classical” Pauling definition, electronegativity is commonly said

to be dimensionless, but should really have the units of square root of energy

(arising from bond energy difference to the power of 1/2), and in the Mulliken

definition the units are those of energy (see Chapter 7, Harder Question 6).

Chapter 8, Harder Questions, Suggested Answers

Solvation

1. In microsolvation, should the solvent molecules be subjected to geometry

optimization?

Ideally, the solvent molecules, as well as the solute molecules, should be

subjected to geometry optimization in microsolvation (implicit solvation): in a

perfect calculation all components of the system, in this case the solution, would

be handled exactly. This is feasible for most quantum mechanical (AM1 or PM3,

ab initio, DFT) microsolvation calculations, since these usually use only a few

solvent molecules (see e.g. Chap. 8, [14]). Forcefield (molecular mechanics)

calculations on biopolymers surround the solute with a large number of mole-

cules when implicit solvation is used, and it may not be practical to optimize

these.

2. Consider the possibility of microsolvation computations with spherical, polar-

izable “pseudomolecules”. What might be the advantages and disadvantages of

this simplified geometry?

The advantages come from geometric simplicity: the orientation of the mole-

cules with respect to the solute does not have to be optimized, nor does the more

ambitious task of solute molecule optimization arise.

The disadvantages stem from the fact that the only solvents that really consist of

spherical molecules are the noble gases. These are used as solvents only in quite

specialized experiments, for example:

1. Rutkowski KS, Melikova SM, Rodziewicz P, Herrebout WA, van der Veken

BJ, Koll A (2008) Solvent effect on the blue shifted weakly H-bound

F3CH. . .FCD3 complex. J Mol Struct 880:64
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2. Andrea RR, Luyten H, Stufkens DJ, Oskam A, Chemisch Magazine (Den

Haag) (1986) Liquid noble gases as ideal transparent solvents. (January)

23, 25. (In Dutch)

3. Blokhin AP, Gelin MF, Kalosha I, Matylitsky VV, Erohin NP, Barashkov

MV, Tolkachev VA (2001) Depolarization of fluorescence of polyatomic

molecules in noble gas solvents. Che Phys 272:69

3. In microsolvation, why might just one solvent layer be inadequate?

The essential reason why one (or probably two or three) solvent layers is not

enough is that with, say, one layer the solvent molecules in contact with a solute

molecule are not “distracted” by an outer layer and so turn their solvating power

on the solute more strongly than if they also had to interact with an outer solvent

layer (see Bachrach SM (2014) Computational organic chemistry, 2nd edn.

Wiley-Interscience, San Antonio, chapter 7). The solute is evidently

oversolvated. Formally, we can say that n layers is sufficient if going to n + 1
layers has no significant effect on the phenomenon we are studying. Unfortu-

nately, it is not yet possible yet to computationally find this limiting value of

n for higher-level quantum mechanical calculations.

4. Why is parameterizing a continuum solvent model with the conventional dielec-

tric constant possibly physically unrealistic?

The conventional dielectric constant is an experimental quantify that refers to

the solvent as a continuous insulating medium. On the molecular scale solute and

solvent are not separated by a smooth medium, but rather by discrete particles

(molecules) with empty interstices.

5. Consider the possibility of parameterizing a continuum solvent model with

dipole moment.

Continuum solvent models are normally parameterized with the solvent dielec-

tric constant (but see the COSMO models, chapter 8). First we note that dielectric

constant and dipole moment are not in general well correlated; from chapter 8:

For 24 solvents encompassing nonpolar (e.g. pentane, μ 0.00, ε 1.8), polar aprotic

(e.g. dimethyl sulfoxide, μ 3.96, ε 46.7), and polar protic (e.g. water, μ 1.85 ε 80)

dispositions, the correlation coefficient r2 of ε with μ was only 0.36 (removing formic

acid and water raised it to 0.75). For nine nonpolar, seven polar aprotic, and 8 polar protic

solvents, considered as separate classes, r2 was 0.90, 0.87, and 0.0009 (sic), respectively .....

If we consider just essentially using dipole moment as a surrogate for dielectric

constant, with minor conceptual adjustments like some changes in the parameter-

ization constants, then from the above, for nonpolar and polar aprotic solvents the

correlation is good enough that it may be possible to parameterize with dipole

moment, but there is no clear indication that this would have any advantage.

Furthermore, water, the most important solvent, belongs to the polar protic class,

for which there is no correlation.
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Less clear is whether a different approach than that used with dielectric constant

might be fruitful with dipole moment. A useful solvation algorithm does not

seem to have emerged from studies of the effect of dipole moment on solvation

energies, e.g.:
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Chapter 8, Harder Questions, Suggested Answers

Singlet Diradicals

1. Is CASSCF size-consistent?

We saw that full CI is size-consistent (Chap. 5, Sect. 5.4.3). Now, CASSCF is

complete CI, within a specified set of molecular orbitals. If done right it is size-

consistent. Done right means that in comparing the energy of two systems one

must utilize corresponding electron promotions (“excitations”). I’ll illustrate this
by comparing the energy of two well-separated beryllium atoms with twice the

energy of one beryllium atom. I choose the beryllium atom because this

4-electron atom is the simplest closed-shell species which gives some choice

(the 1s or the 2s) of occupied orbitals, lending a little resemblance in this respect

to the molecular case.

A CASSCF(2,2)/6-31G* calculation was done on one beryllium atom, using a

simplified version of the procedure in Chap. 8 for molecules: a localization step

is pointless for an atom, and in the energy calculation optimization is meaning-

less. First an STO-3G wavefunction was obtained and the atomic orbitals (AOs)

were visualized; this showed MO1, 2, 3, 4, and 5 to be, respectively, 1s, 2s (both

occupied), and three energetically degenerate unoccupied 2p orbitals. The active

space was chosen to consist of the 2s and a 2p orbital, and a single-point

(no optimization requested) CASSCF(2,2)/6-31G* calculation was done. The

energy was �14.5854725 Hartrees.

A CASSCF(2,2)/6-31G* calculation was now done on two beryllium atoms

separated by 20 Å, where they should be essentially noninteracting; the coordi-

nates of these two atoms were input treating them as one unit, an 8-electron
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supermolecule. An STO-3G wavefunction was obtained and visualized. This

showed as expected a set of molecular orbitals (MOs), since this species is

formally a molecule. With five AOs from each atom, we have 10 AOs resulting

from plus and minus combinations (bonding and antibonding only in a formal

sense, because of the separation). These were:

MO1, 1s + 1s; MO2, 1s� 1s; same energy. These two account for two pairs of

electrons.

MO3, 2s + 2s; MO4, 2s� 2s; same energy. These two account for two pairs of

electrons.

MO5, 2px + 2px; MO6, 2px� 2px; ...., 2pz� 2pz, All six same energy,

unoccupied.

The critical choice was made of a CASSCF(4,4)/6-31G* calculation; the active

space is thus the degenerate filled 2s + 2s and 2s� 2s pair of MOs, and the

degenerate empty 2pxþ 2px and 2px� 2px pair of MOs. CASSCF(4,4) was

chosen because it corresponds to the CASSCF(2,2) calculation on one beryllium

atom in the sense that we are doubling up the number of electrons and orbitals

in our noninteracting system. This calculation gave an energy of �29.1709451

Hartrees. We can compare this with twice the energy of one beryllium atom,

2 � �14.5854725 Hartrees¼�29.1709450 Hartrees.

Let’s compare these CASSCF results with those for a method that is not

size-consistent, CI with no “complete” aspect. We’ll use CISD (configuration

interaction singles and doubles; Chap. 5, Sect. 5.4.3). Here are the results for

CISD/6-31G*:

One beryllium atom, �14.6134355

Two beryllium atoms separated by 20 Å, �29.2192481.

This is significantly higher than with twice the energy of one beryllium atom:

2 � �14.6134355¼�29.226871; �29.2192481 – (�29.226871)¼ 0.00762

Hartrees or 20.0 kJ mol�1. If unaware that CISD is not size-consistent, one

might have thought that these widely-separated atoms are destabilized by

20 kJ mol�1. By comparison, the hydrogen-bonded (stabilizing) enthalpy of

the water dimer is about 20 kJ mol�1 (Chap. 5, reference [106]).

2. In one-determinant HF (i.e. SCF) theory, each MO has a unique energy (eigen-

value), but this is not so for the active MOs of a CASSCF calculation. Why?

The MOs used for the active space are normally localized MOs, derived from the

canonical MOs (Chap. 5, Sect. 5.2.3.1) by taking linear combinations of the

original MOs of the Slater determinant. Localization has no physical conse-

quences: Ψ expressed as the “localized determinant” is in effect the same as Ψ
expressed as the canonical determinant, and properties calculated from the two

are identical. However, the canonical MOs and the localized MOs are not the
same: in the two sets of MOs the coefficients of the basis functions are different,

which is why canonical and localized MOs look different. Each canonical MO

has an eigenvalue which is approximately the negative of its ionization energy
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(Koopmans’ theorem); MO coefficients and eigenvalues are corresponding

columns and diagonal elements of the C and ε matrices in Chap. 4, Eq. (4.60)

and Chap. 5, Eq. (5.1). Since the localized MOs differ mathematically from the

canonical, there is no reason why they should have physically meaningful

eigenvalues.

3. In doubtful cases, the orbitals really needed for a CASSCF calculation can

sometimes be ascertained by examining the occupation numbers of the active

MOs. Look up this term for a CASSCF orbital.

In its most general physical use, occupation number is an integer denoting the

number of particles that can occupy a well-defined physical state. For fermions it

is 0 or 1, and for bosons it is any integer. This is because only zero or one

fermion(s), such as an electron, can be in the state defined by a specified set of

quantum numbers, while a boson, such as a photon, is not so constrained (the

Pauli exclusion principle applies to fermions, but not to bosons). In chemistry

the occupation number of an orbital is, in general, the number of electrons in

it. In MO theory this can be fractional.

In CASSCF the occupation number of the active space MO number i (ψ i) is

defined as (e.g. C. J. Cramer, “Essentials of Computational Chemistry”, Second

Edition, Wiley, Chichester, UK, 2004; p. 206):

occ numb of MOi ¼
XCSF
n

occ numbð Þi,na2n

i.e. it is the sum, over all n configuration state functions (CSFs) containing MOi,
of the product of the occupation number of a CSF and the fractional contribution

(a2) of the CSF to the total wavefunction Ψ. A CSF is the same as a determinant

for straightforward closed-shell species, and is a linear combination of a few

determinants for open-shell species.

If you don’t understand the above equation and its exegesis, recall Chap. 5,

Eq. (5.168) (there c was used for a, the weighting, when squared, of the

CSF/determinant in the total wavefunction). That equation shows how in con-

figuration interaction theory (CASSCF is a version of CI) each electronic state,

ground, first excited, etc., has a total wavefunction Ψ which is a linear combi-

nation of determinants (or CSFs, for open-shell species). Within each D, for

example the determinant of Chap. 5, Eq. (5.167), we have a number of MOs ψ .
4. Why does an occupation number (see question 3 above) close to 0 or 2 (more

than ca. 1.98 and less than ca. 0.02) indicate that an orbital does not belong in

the active space?

We want to shuffle electrons around in the active space, i.e. promote (“excite”)

them from formally occupied to formally unoccupied MOs. An MO that is

essentially full or empty has not participated in this shuffling, an incomplete

transfer process.
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5. It has been said that there is no rigorous way to separate static and dynamic

electron correlation. Discuss.

First let us review static and dynamic electron correlation. Dynamic (dynamical)

electron correlation is easy to grasp, if not so easy to treat exhaustively. It is simply

the adjustment by each electron at each moment of its motion in accordance with its

interaction with each other electron in the system. Dynamic correlation and its

treatment with perturbation (Møller-Plesset), configuration interaction, and coupled

cluster methods was covered in Chap. 5, Sect. 5.4.

Static (nondynamical) electron correlation refers to phenomena arising from the

presence in a molecule of two (or more) orbitals of the same or similar energy, each

formally half-filled. Chapter 5, Sect. 5.4: “Static correlation energy is the energy a

calculation (Hartree-Fock or otherwise) may not account for because it uses a single

determinant, or starts from a single determinant (is based on a single-determinant

reference–section 5.4.3); this problem arises with singlet diradicals, for example,

where a closed-shell description of the electronic structure is qualitatively wrong”.

This phenomenon is “static” because it has no clear connection with motion, but it

is not clear why it should be regarded as a correlation effect; possibly just because

like dynamic correlation it is not properly handled by the Hartree-Fock method. The

treatment of static correlation by complete active space SCF is shown in some detail

in Chap. 8, section 8.2.

Is there no rigorous way to separate static and dynamic electron correlation?

Dynamic correlation is present in any system with two or more electrons, but static

correlation requires degenerate or near-degenerate orbitals, a feature absent in

normal closed-shell molecules. So in this sense they are separate phenomena. In

another sense they are intertwined: methods that go beyond the Hartree-Fock in

invoking more than one determinant, namely CI and its coupled cluster variant,

improve the handling of both phenomena.

Chapter 8, Harder Questions, Suggested Answers

Heavy atoms and transition metals

1. Is the result of the calculation in question 5 above trustworthy? Why or why not?

The calculation in question 5 referred to is:

Use the simple semiclassical Bohr equation for the velocity v of an electron in

an atom (Chap. 4, Eq. (4.12) to calculate a value of v for Z¼ 100 and energy

level n¼ 1:

v ¼ Ze2

2ε0nh
ð4:12Þ

e¼ 1.602� 10�19 C, ε0¼ 8.854� 10�12 C2N�1m�2, h¼ 6.626� 10�34 J.s
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What fraction of the speed of light c¼ 3.0 � 108 ms�1) is this value of v?
Using the “Einstein factor” √(1-v2/c2), calculate the mass increase factor that this

corresponds to.

The calculation yields v¼ 2.19� 108 ms�1. The value of v is correct for

hydrogenlike atoms (one electron), because for these the Bohr atom is a correct

model, at least mathematically if not conceptually. It should be approximately

right for atoms with more than one electron, because we are considering n¼ 1,

an s electron, and the effect of outer-shell electrons on the first shell is not large.

This velocity is 2.19� 108/3.00� 108¼ 0.73 of the speed of light.

As v approaches c, the mass increase factor approaches infinity. Thus the factor

we seek is 1/√(1� v2/c2)¼ 1/√(1� 0.732)¼ 1.47. The mass increases by 47%.

2. Should relativistic effects be stronger for d or for f electrons?

For d electrons. This may seem like a trick question because of the quirky filling

of d and f shells, but there is no reason to doubt that the effect of the nuclear

potential on electron shells increases in the order f, d, p, s. Thus the speed at

which the “orbiting” electrons move increases in that order.

3. Why are the transition elements all metals?

First, note that by the point in the periodic table where the transition elements are

reached (i.e. by Z¼ 22, titanium), there still lie several nonmetals beyond:

germanium-krypton (Z¼ 32� 36), tellurium-xenon (Z¼ 52� 54), and astatine

and radon (Z¼ 85 and 86), thus ten at least (there are a few elements of

ambiguous metallicity which could be included here or omitted; this has no

effect on the argument). So it is not simply that with the first transition element

we have reached the end of the nonmetals, noting that beyond radon all the

elements are essentially metallic. The reasons for this lie more in the realm of

solid-state physics than in conventional “single-atom/single/molecule” chemis-

try, for metallicity is a bulk property: characteristics like electrical conductivity,

lustrousness and malleability are not properties of single atoms or molecules.

Without going into solid-state physics, we content ourselves with the suggestion

that beyond about Z¼ 86, the outer electrons of the atoms in the bulk solid are

not held strongly enough to abstain from merging into a common pool. The

“free-electron” sea confers on the substance typical metallic properties

(F. A. Cotton, G. Wilkinson, P. L. Gaus, “Basic Inorganic Chemistry” Third

Ed, Wiley, New York, 1995; pp. 249–251 and chapter 32).

So why are the transition elements all metals? A detailed answer would require a

discussion of concepts like band gaps and Fermi levels (F. A. Cotton,

G. Wilkinson, P. L. Gaus, “Basic Inorganic Chemistry” Third Ed, Wiley,

New York, 1995; chapter 32), but the beginning of an explanation emerges

from considering, say, calcium, scandium and titanium (Z¼ 20, 21, 22). Calcium

is a metal because its nuclear charge is not high enough to prevent the two outer,

4s electrons from merging into a common pool. The electrons that take us to

scandium and titanium get tucked into the 3d shell, still leaving, in the isolated

atom, the outermost 4s pair which in the bulk metal are pooled. Slight splitting
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of the d levels by ligands confers typical transition metal properties, as touched

on in Chap. 8, section 8.3.

4. The simple crystal field analysis of the effect of ligands on transition metal

d-electron energies accords well with the “deeper” molecular orbital analysis

(see e.g. [99]). In what way(s), however, is the crystal field method unrealistic?

The crystal field method is a formalism. It perturbs the metal d orbitals with

point charges (F. A. Cotton, G. Wilkinson, P. L. Gaus, “Basic Inorganic Chem-

istry” Third Ed, Wiley, New York, 1995; pp. 503–509). It does not allow for the

role of other orbitals on the metal, nor does it invoke orbitals on the perturbing

charges. Thus it does not permit ligand electron donation to and electron

acceptance from the metal (Lewis basicity and Lewis acidity by the ligand; the

former is said to be essential, the latter desirable (chapter 8, [104]).

5. Suggest reasons why parameterizing molecular mechanics and PM3-type pro-

grams for transition metals presents special problems compared with parame-

terizing for standard organic compounds.

There are many more geometric structural possibilities with transition metal

compounds that with standard organic compounds. Carbon is normally tetrahedral

and tetracoordinate, trigonal and tricoordinate, or digonal and dicoordinate. This

holds for nitrogen too and the normal possibilities are even more restricted for other

common organic-compound atoms like hydrogen, oxygen and halogens. In con-

trast, a transition metal atom may have more stereochemical possibilities: square

planar, square pyramidal, tetrahedral, trigonal bipyramidal, and octahedral are the

common ones. The geometry of many transition metal molecules also poses a

problem for parameterization: consider ferrocene, for example, where iron(II) is

coordinated to two cyclopentadienyl anions. Should iron be parameterized to allow

for 10 C-C bonds, or for two Fe-ring center bonds? This kind of conundrum arises

more for molecular mechanics parameterization, where bonds are taken literally,

than for PM3- or AM1-type parameterization, where the objective is to simplify the

ab initio molecular orbital method, which does not explicitly use bonds (although

the concept can be recovered from the wavefunction after a calculation). The

parameterization of molecular mechanics for transition metals is discussed in, in

connection with the Momec3 program (Chap. 8, reference [109]).
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A
Abietic acid, 22

Ab initio

applications, 303–399

calculations

details, 228–232

illustrated with protonated helium,

179–181

ACES (software), 635

Acetaldehyde (ethenol isomerization), 323,

351, 535

Acetone, radical cation, 26

Acetonitrile (methyl isocyanide isomerization),

351

ACM. See Adiabatic connection method

(ACM)

Actinides (actinoids), 599, 601–603

Activated complex, 18

Activation barrier, 15, 555

Activation energy, 40, 53, 70, 87, 219,

314, 315, 318–320, 322, 353,

431, 439, 442, 458–460, 473,

519–521, 524, 526, 527, 568,

574, 575, 620, 632

Active orbitals, 295, 595

Active space, 587–596, 604

Active space perturbation theory, 637

Adiabatic connection method (ACM), 499,

504, 516, 523

AIM. See Atoms-in-molecules (AIM)

Allene (cyclopropylidene isomerization), 44,

525

Allinger, N.L., 53, 68

Allyl (propenyl) cation, radical, anion, 152

AM1*, 440

AM1, 15, 16, 19, 27, 28, 72, 76, 182, 183, 424,

430–431, 433, 436–450, 452–455,

457–476, 519, 529, 531, 533, 535,

536, 538, 539, 555, 578, 600, 603,

624, 635, 636, 639

AM1/d, 439, 440

AM1 semiempirical, 15

AMBER (molecular mechanics forcefield), 78,

85, 472, 636

Amino acid, 566, 625

AMPAC (software), 439, 441, 443, 444, 635

Anharmonicity, 11, 359

Anharmonicity corrections, 11

Antiaromaticity, 616

Antisymmetric wavefunction, 199, 206

Aromaticity

and Hückel’s (4n + 2) rule, 185

and isodesmic equations, 330–332

and nucleus-independent chemical shift

(NICS), 388, 629, 630

and simple Hückel method, 150, 156, 185

Aromatic stabilization energy (ASE), 328,

330–332

Arrhenius, S., 110

Arrhenius activation energy, 314, 315,

318–320, 322, 353

Artistic value, 5

ATB. See Atom-type-based (ATB)

Atomic orbitals, 119–122, 137, 138, 142, 171,

197, 209, 213, 215, 216, 233, 243,

253, 260, 425, 428–430, 503, 536,

584, 589, 601

Atomic theory, 108, 109

Atomic units, 41, 179, 195, 196, 243, 328, 381,

432, 519, 551, 671
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Atomization energy, 431, 432, 502

Atomization enthalpy, 339, 340, 343

Atoms, existence of, 8, 108

Atoms-in-molecules (AIM), 380–386, 466,

484, 485, 503, 534, 548, 549, 570,

626, 677, 683, 697

Atom-type based (ATB), 40, 232

Atom-type-based (method for estimating ZPE),

232

Average field, 198, 223, 229

B
B1B95 functional, 500, 527

B1LYP functional, 527

B2PLYP functional, 505

B3LYP functional, 498, 499, 504, 506, 509,

510, 512–539, 547, 549, 553, 555,

573–575, 585, 586, 588, 596

B3LYP-gCP-D3/6-31G* (dispersion

calculation), 507

B3PW91 functional, 504

B88 functional, 503

B88LYP (B88-LYP) functional, 503

B98 functional, 500, 503

Barriers

activation, 15, 555

calculating reaction rates, 348–355

Basis function

Gaussian, 196, 232, 233, 253–258, 425,

430, 438, 441, 442, 444, 445, 469,

500, 503, 507, 514, 519, 521, 524,

535, 549, 551, 579, 594, 598, 634,

636, 637, 639

Slater, 174, 179, 199–204, 206, 208, 213,

215, 217, 219, 221, 232, 233, 251,

253–256, 258, 259, 425, 429, 435,

438, 443, 444, 485, 493

Basis set

ab initio, 258–276

ab initio calculations, 217, 232, 253–276

and density functional calculations, 485,

495, 503, 508, 509, 514, 516–519,

522, 524–529, 532, 535, 548, 553,

554

DFT, 500, 503, 509, 514, 553

effect of size on energy, 521–527

effect of size on geometry, 517–519

extended Hückel, 171–179
meaning, 137, 217

pseudopotential, 565, 600, 601, 604

simple Hückel, 185
website, 634

Basis set superposition error (BSSE), 253,

300–303, 506, 507

BBB1K functional, 527

Benzene, aromaticity, 156, 330–332

Benzene (fulvene relative energy), 158, 160,

428, 436, 444, 462, 528, 530, 537,

597, 602, 616, 619, 627, 628, 630

Benzoquinone (1,4- and 1,2-), 624

BH&H-LYP functional, 526

Bifurcating bifurcated (PES), 22, 350

Blackbody radiation, 102–105, 107, 184

Bohr, N., 102, 111, 113, 114, 117, 118, 196

Bohr atom, 102, 110–112, 118, 184

Boltzmann, Maxwell, 80, 81, 86, 94, 109, 569

Boltzmann (Ludwig, and atoms), 109

Bond

display in graphical user interfaces, 53

importance of concept in molecular

mechanics, 52

order, 63, 150, 160–161

ab initio, 427, 466–468, 532–534

simple Hückel, 185, 370–378
Bond dissociation energy, 617

Bond electron matrix (for exploring a potential

energy surface), 34, 35

Bond energy, 63, 79, 81, 280, 300, 301, 316,

317, 322, 323, 332, 429, 521, 593,

595, 604, 632

Bond enthalpy, 521

Bond integral (resonance integral), 144, 145,

184

Born, M., 23

Born interpretation of the wavefunction, 118,

121, 485

Born-Oppenheimer approximation, 22–25, 46,

52, 102, 139, 178, 197, 204, 231,

315, 321

Born-Oppenheimer surface, 24, 89

Bosons, 199

Boys localization, 590, 593, 595

Boys, use of Gaussians, 256

Broken symmetry, 587, 596–598, 603

BSSE. See Basis set superposition error

(BSSE)

C
C2H5F, 567, 583

Camphor (reactivity and visualization), 398

Canonical (molecular orbital(s), MOs, orbital

(s)), 123, 202, 378, 392, 446, 590

Canonical Slater determinants, 297

CASPT2, 593, 637
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CASPT2N, 593, 595, 637

calculation, 589–593, 596, 597

modification CASCI, complete active space

configuration interaction, 401

Catalysts, 1

Catastrophic failure, occasional, from

semiempirical methods, 474, 508

Cavitation, 569, 570

Cayley, A., 125

CBS-APNO, 288, 289, 335–337, 345, 453,

455, 513, 518, 520–522, 580–582

CBS-4M, 335–337, 581

CBS-Q, 524

CBS-QB3, 335–337, 345–347, 351, 352, 354,

520, 522, 524–527, 581

CCSD(T)-F1, 507

CH2FCOOH, pKa, 581

CH3NC to CH3CN, 455, 520

Charge, on atoms

ab initio, 369–378

AIM, 385

simple Hückel method, 161–162

Charge density function (ρ electron probability

function, electron density function)

interpretation, 117

in AIM, 308–385

equation, 381

in DFT, 484–486, 491

CHARMM, CHARMm (molecular mechanics

forcefields), 77, 472

Chemical accuracy, 332, 334, 431, 581

Chemical potential, 21, 542–544, 546, 547, 555

Chloromethane

continuum salvation, 567–569, 578, 604

microsolvation, 566–569, 573, 579, 583

Cholesterol, 2, 6, 425

Classical physics, 101, 102, 104, 106,

109, 111

Closed-shell, 154, 200, 202, 206, 217, 227,

241, 251, 485, 490, 493, 523, 538

Cloud computing, 2, 640

Clusters (computer), 640

Combinatorial chemistry, 1–5

Complete active space SCF (CASSCF), 279,

295, 296, 401, 565, 587–597, 604,

616, 625, 639

Complete basis set methods (CBS methods),

271, 281, 333, 335, 345

Complete neglect of differential overlap

(CNDO), 424, 427–430, 434, 435,

439, 474–476, 632, 636

CNDO/, 1, 428, 429, 434

CNDO/, 2, 428, 429, 434, 435, 444

Computer cluster, 640

Computer power, 95, 422

Concepts (fundamental, of computational

chemistry), 1–5

Condensed Fukui functions, 547, 549, 550

Conductor-like PCM (CPCM), 569, 572, 580,

581

Conductor-like screening model, 572

Conductor-like screening solvation model

(COSMO), 571, 572, 579, 635

COSMOlogic, 572, 635

COSMO-RS, 571, 572, 579, 583, 635

COSMOtherm, 572, 635, 636, 638, 639

Configuration function, 293

Configuration interaction (CI), 252, 427, 437,

486, 489, 553, 554, 588, 590, 633

Configuration interaction singles (CIS), 387

Configuration state function, 293

Conjugate gradient method (for geometry

optimization), 68

Consumption of energy, 5

Contamination, spin, 251, 252

Continuum solvation, 567–569, 578, 604, 636

Contracted Gaussian, 255, 256, 259, 442

Core (electron and nuclear core, operator), 204,

214, 225, 227, 235

Correction factors for vibrational frequencies

for anharmonicity, 359

for vibrational frequencies

ab initio, 360–362

DFT, 527–530

semiempirical, 460

Correlation-consistent basis sets, 271–272

Correlation energy, 492–495, 498, 502–504

Cost-effectiveness of PCs, 2

Coulomb integral, 144, 145

Coulson, C.A., 137, 422

Counterpoise method/correction, 301, 302

Coupled cluster (CC), 295–297, 303, 314, 334,

401, 505, 553, 638

Coupled cluster doubles (CCD), 296

Coupled cluster singles and doubles (CCSD),

614, 616–618

Coupled cluster singles, doubles and triples

(CCSDT), 442, 524, 553, 576, 602,

604, 614, 615, 621, 635

Curtin-Hammett principle (regarding major

conformer), 94

Curvature

and hardness, 542, 544–546

and nitrogen cages, 60

of potential energy surface, 32, 38, 88, 287,

311, 349, 356, 358

Cycloadditions, 70, 546, 553

Cyclobutadiene, antiaromaticity, 119, 156, 159

dianion, 154

dication, 154, 156, 159
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Cycloheptatrienyl cation, 157

Cyclopentane, 81–83, 593–595, 628

bond energy, 593, 595

and CASSCF, 593–595

-methyl, 81–83

and molecular mechanics, 81–83

and triquinacene, 628

Cyclopropane

and CASSCF, 585–588

in molecular mechanics, 63

NMR, 537

Cyclopropene (propene relative energy),

162, 274, 331, 387, 469, 535,

536, 618

Cyclopropenyl (cation), 156, 162

Cyclopropylamine, 395, 396

Cyclopropylidene to allene

ab initio, 290, 351–354

DFT, 516, 520, 522, 525, 526

semiempirical, 455–457

D
Dalton, J., 108

DCOSMO-RS (software), 572

de Broglie, L., 114, 115, 118, 184

d electrons, 601

Delta function, 200

Democritus, 108

Density functional calculations, 483–563

Density functional calculations and choice of,

553

basis set, 485, 495–497, 500, 503, 506–509,

512–514, 516–519, 521–529, 532,

535, 536, 548, 551, 553, 554

Density functional theory (DFT), applications,

3, 4, 89, 182, 462, 474, 487, 489,

496, 497, 502, 508–553, 572, 584,

600–602, 604, 605

Density matrix, 223, 225, 228, 230, 236, 240,

244, 246, 247, 250, 368, 374, 423,

424

Destabilization energy, 327

Determinants

method for simple Hückel calculations,
165–170

Slater (determinant(s)), 199–203, 206, 208,

213, 215, 217, 219, 221, 251, 276,

279, 281, 285, 290–297, 299, 314,

368, 401, 425, 443, 485, 493, 494,

539, 554, 588–590, 597

theory of, 134–135

Dewar, M.J.S., 206, 421–477

Dielectric constant, 63, 571, 572

Diels-Alder, 70, 71, 73, 431, 523, 616,

624–625

Differential overlap, 426–430, 469, 474

Difluorodiazomethane, 288

Dihedral angle, 19–21, 27–29, 54–57, 61, 64,

73, 76, 77, 95, 446, 450, 509, 512,

515, 516

Dimethyl ether

ethanol relative energy, 356, 357

times and symmetry, 45

Dipole moment, 64, 89, 93, 95, 163, 433, 436,

439, 440, 443, 460, 461, 465–466,

508, 528–552, 555, 571, 577, 590

Dirac, P.A.M., 108, 487

Dirac equation, 117

Dirac-Fock calculations, 600

Dirac-Fock equation, 599, 600

Dirac notation for integrals, 203, 492

Diradicals, singlet

methods, 583–598

MOLCAS program, 637

Direction vectors, 38, 46

Direct SCF, 249, 250, 253–258

Dispersion, 62, 73, 303, 443–444, 486,

505–507, 554, 569–571

Disposal of machines, 5

Divide-expand-consolidate DEC-CCSD(T),

298

Divine functional, 499

DLPNO-CCSD(T) domain-based local pair

natural orbital coupled cluster

method with single, double and

perturbative triple excitations, 297

DN* basis set, 514, 517, 524

DN** basis set, 517

Docking, 4, 6, 95, 566

Double bond, hybridization versions, 119,

123–125

Double-well potential, 576

DSD-PBEP86-D2, 507

d shell, 601

Dunning basis sets, 271, 272, 362, 500, 509,

524, 527

Dynamical informatiom, 22

Dynamic correlation, 279, 295, 296, 302, 592,

593, 595, 598

E
E2 reaction, microsolvation/explicit solvation,

567, 569, 583

Effective core potentials (ECP,

pseudopotentials), 108, 272, 273,

599, 600
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Eigen (prefix, meaning), 38, 133

Eigenvalues, 38, 71, 133, 136, 147–150, 164,

172, 175–177, 181, 182, 184, 185,

194, 200, 208, 210, 212, 213, 243,

252, 426, 496, 528, 539

Eigenvector, 38, 133, 147–150, 176, 177, 181,

182, 184, 185, 194, 210, 243, 248

Einstein, A., 106–109

Electrolytes (and atomic structure), 110

Electron affinities, 388–391, 427, 429, 468,

540, 543, 547, 551, 556

Electron correlation

dynamic, 279, 295, 296, 302, 592, 593, 595,

598

static, 279, 592, 637

Electron density, 23, 53, 118, 121–124, 126,

160, 230, 233, 240, 484–494, 496,

498, 501–503, 534, 539–541, 545,

547, 548, 552–555, 570, 574

Electron density function (D). See Charge
density function

Electron density reactivity, 540–552

Electron diffraction (for determining

geometries), 60, 304, 305, 396, 484,

512

Electronegativity, 540–556

Electron population, 548, 549, 551

Electrophile, electrophilic, electrophilicity, 1,

2, 4, 52, 70, 540, 547, 548, 550–552,

602

Electrostatic potential (ESP), 63, 206,

378–380, 396, 397, 464, 467, 468,

471, 532–534, 549, 551, 552, 571,

600, 639

Energies, calculated

by ab initio methods, 203–207

by density functional methods, 460

by the extended Hückel method, 178

kinetic, 106, 107, 111, 112, 196, 204, 205,

213, 228–230, 235, 239, 240, 424,

490–493, 498, 503

by molecular mechanics methods, 6, 52

by semiempirical methods, 432, 452–460

by the simple Hückel method, 157–160

in thermodynamics, 527

various kinds, 1

Energy density, 501, 619, 620

Energy-levels matrix, 142

Energy relationships, mnemonic, 319

Enol isomer of propanone (acetone), 26

Enol tautomers. See Keto-enol tautomers

(of pyridones)

Entanglement, 35

Enthalpy (heat) of formation

of formation, from ab initio calculations,

337–347

of formation, from DFT calculations, 509,

524

of formation, from molecular mechanics,

78–85

of formation, from semiempirical

calculations, 454–460

meaning, significance, 317

Entropy

errors in calculated, 347, 458,

580, 623

significance, calculation, errors in

calculated, 18, 94, 109, 315, 316,

318, 319, 321, 323–324

errors in calculated, 623

Enzyme, 2–4, 6, 77

Ethanol (dimethyl ether relative energy), 356,

357

Ethene (and radical anion, bond order), 161

Ethene (ethylene, cation, neutral, anion), 151,

157, 551

Ethene (ethylene, neutral, for calculating

reference energy), 157, 158

Ethene, rotation barrier, 42, 43, 45

Ethenol, 455–457, 466, 520, 521, 524

Ethenol (acetaldehyde isomerization), 535

Exchange-correlation energy functional, 493,

495, 498–508

Exchange integral, 206, 215

Explicit solvation, 566, 567, 604

Extended Hückel method (EHM), 171–183,

185, 186, 193, 194, 232, 253,

422–424, 428, 443, 444, 474, 483,

539, 603, 618, 634, 636

applications, 182

illustrated with protonated helium,

179–181

Eyring, H., 18, 21

Eyring equation, 319, 353

Eyring’s transition-state theory, 18

F
F12 (electron correlation method), 272, 282

Fast multipole method, 251

Feedback (interactive, of molecular forces, 22

f electrons, 599, 601, 602

Fermi, E., 199

Fermi-Dirac statistics, 487

Fermions, 199, 277, 504, 711

Fluoroethane, microsolvattion, 567
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Fock matrix, 144, 145, 163, 164, 167, 171–178,

180–182, 184, 185, 194, 222–225,

227, 228, 234–236, 238, 239, 242,

244, 245, 248, 250, 253, 256, 257,

421–424, 426–428, 434, 443, 444,

474, 476, 495–497, 539, 571, 590

Fock operator, 199, 210–213, 495, 496, 600

FOOF, 77, 309, 311–314, 450, 512

Force constant, 11, 32, 37–39, 46, 54, 55, 59,

63, 70, 93, 435, 601

Force constant matrix (Hessian), 33, 37, 39, 40,

46, 68, 72, 274, 383, 460, 472, 582,

592

Forcefield

developing, 54–59

meaning, 424

parameterizing, 59–64, 95, 96, 476

Frequencies

from ab initio calculations, 356–366

calculation of, and significance for the

potential energy surface, 35–40

from DFT calculations, 527–530

imaginary, 18, 26, 39, 45, 46, 88, 274, 311,

348, 349, 354, 356, 358, 394, 395,

574, 585, 586, 592, 596, 614, 615

from molecular mechanics calculations,

88–92

and nature of a species on the potential

energy surface, 394–396

from semiempirical calculations, 460–464

Frontier function (Fukui function), 534–552,

556

Frozen-nuclei, 88, 89, 204, 231, 490, 528

Fukui, K., 534–552, 556

Fukui function (frontier function), 534–552,

556

Full CI, 588, 589

Fully nonlocal, 499, 505

Fulvene (benzene relative energy), 356, 357

Functional (for DFT, mathematical

explanation), 487–488

derivative, 494, 497, 498, 547

G
G1, G2, G3, G4 etc. See Gaussian methods

GAMESS (software), 631, 634, 636, 637

Gaussian functions, 232, 233, 253–258, 425,

438

Gaussian methods (G1, G2, G3, G4 etc.),

332–334

Gaussian, primitive, 255, 256

Gaussian (software), 503, 636

General Atomic and Molecular Electronic

Structure System, 636

Generalized gradient approximation (GGA),

499, 503, 504, 537

Generalized valence bond (GVB), 587, 588,

595, 596

Geometries, calculated

from ab initio calculations, 303–314

accurate, 92, 263, 311, 314

from DFT calculations, 509–519

from semiempirical calculations, 445–452

optimization, 2, 3, 26–35, 40, 46, 67–69,

72, 92, 93, 178, 183, 185, 186,

214, 231, 232, 247, 249, 436,

473, 548, 569, 572, 574,

584–586, 592

problems in defining/experimental,

303–305

Ghost atoms, 253

Gibbs free energy

definition, explanation, 317–318

and electron density, 541–546

Global minimum, 15, 27, 28, 46, 214

Gradient, of potential energy surface, 32

Graphical processing units (GPUs),

400, 401

H
Halflife, 325, 353–355

Hamiltonian, 22, 25, 136, 184, 195, 196, 204,

207, 211, 221, 425, 571

Hammond postulate, 70

Hamprecht, Cohen, Tozer, Handy (τHCTH)
functional, 503

Hardness, 540–552, 556

Hard-soft-acid-base concept (HSAB), 541, 552

Hardware for computational chemistry,

639–640

Harmonic approximation, 460

Harmonic frequencies, 231

Hartree, D., 195

Hartree, energy unit, 196

Hartree-Fock equations/method

analogy to DFT Kohn-Sham equations,

489, 494, 555

comparison with DFT, 553

derivation, 199–228

difference from density-functional

approach, 495

detailed calculation, 232–250

using the Roothaan-Hall version,

explanation, 228–232

Hartree SCF method, 195–199

Hazardous waste, 6

Heat (enthalpy) of formation. See Enthalpy
(heat) of formation
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Heavy atoms, 173, 256, 257, 423, 463, 581,

598–605

in computational chemistry, meaning, 72,

256

Heisenberg, W., 102, 114, 118

Helium potential energy matrix, 240

Helium, protonated, detailed calculations

extended Hückel, 179–181
ab initio, 232–250

Helmholtz free energy, 542

Hermitian matrix, 131, 133

Hermitian operators, 208

Hertz, H., 106

Hesse, L.O., 33

Hessian. See Force constant matrix (Hessian)

Heuristics-guided method (for exploring a

potential energy surface), 35

Hexaphenylethane, 507

Hidden variables, 35

Hilbert space, 132

Hilltops, 19, 26

HNC to HCN, 232, 455, 520

Hoffmann, R., 151, 171, 178, 180, 182, 193,

539, 602, 603, 639

Hohenberg-Kohn theorem, 488, 554

Homoaromaticity, 626–630

Homogeneous electron gas, 487, 501

Homolytic (cleavage, dissociation, of bonds),

437, 523, 524, 620, 621

Homolytic (cleavage and bond strength in

molecular mechanics), 63

Hückel, E., 102, 119–170, 184, 193
Hückel molecular orbital method

extended, applications, 182

extended (EHM), 146, 171–188, 232

simple, applications, 150–163

simple, determinant method, 165–170

simple (SHM), 135–164

Hückel’s rule (4n + 2) rule, 156, 157, 159

Hughes, E.D., 53

Hund, F., 137

Hybrid functional, 507, 523, 527, 528, 539, 555

Hybrid GGA (HGGA), 499, 504, 505

Hybridization, 63, 119–125, 184, 332, 427

Hybrid meta-GGA (HMGGA), 499, 504–505,

514

Hybrid solvation, 583

Hydrogen bond/bonding, 63, 160, 268, 299,

301, 385, 439, 441, 442, 474, 475,

506, 509, 554, 567, 574, 583

Hydrogen potential energy matrix, 239

HyperChem, 636

Hypersurfaces, 12, 13, 32, 35, 214, 315, 349,

436, 501

Hypervalent compounds, 437, 452, 458

Hypofluorous acid, 11

I
Imaginary frequency. See Frequencies,

imaginary

Implicit solvation (continuum solvations), 567,

568, 579, 583

INDO-spectroscopic (INDO/S), 427, 430, 475

INDO ZDO, 429

Inductive effects, vs. resonance, 626–627
Infrared (IR) spectra, calculated

from ab initio, 356–366

from DFT, 527–532

from molecular mechanics, 88–92

from semiempirical methods, 460–464

Ingold, C.K., 53

Initial guess, 33, 197, 214, 215, 223, 224, 227,

241, 242, 244, 248, 250, 424, 489,

490, 496, 497, 598

Input structure, 26–32, 34, 45, 46, 69, 71, 72,

88, 92, 177, 179, 460, 586, 595, 602,

639

Integral

bond, 144, 145

Dirac notation, 203

energy, 144, 235

four-center, 254, 442

Gaussian, 256

J (Coulomb), 205, 206, 215, 223

K (exchange), 206, 215, 223

kinetic energy, 235

number of, 256, 257, 422, 474

one-electron, 229, 485

overlap, 142, 163, 164, 171, 172, 174, 175,

177, 179–182, 185, 186, 234, 249,

425–427, 429, 434, 474

potential energy, 235

primitive, 256

recalculate, 258

resonance, 144, 185, 434

Slater, 256

storing, 258

two-center, 254, 426, 427, 429, 435, 442

two-electron, 226, 236, 250, 251, 256,

425–427, 429, 430, 434, 435, 442,

443

two-electron repulsion, 226, 234, 424–426,

428, 429, 442
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Intensities (strengths) of IR bands, 89, 90, 358,

361, 362, 378, 460, 461, 528, 555

Interactive, 30, 45, 69, 177

Intermediate neglect of diatomic differential

overlap (INDO), 427, 429, 430, 433,

439, 444, 469, 474, 475, 598, 632

Internal coordinates (Z-matrix), 30, 32

Internal energy, 23, 79, 80, 231, 247, 277, 315,

320, 323, 432, 490, 519, 542

meaning, significance, 316–317

Internuclear repulsion, 23, 78, 178, 183, 186,

230, 231, 247, 248, 490, 519

Internuclear repulsion energy, 78

Intrinsic reaction coordinate (IRC), 15, 16, 39,

46, 348–350, 383

Ion-dipole complex, 575, 576

Ionization energy, 112, 142, 144, 145, 163,

172, 174, 177, 180, 182, 186, 194,

195, 223, 402, 433, 435, 440, 468,

470, 474, 509, 534–553, 555, 556,

617, 634

from ab initio, 388–392

from DFT, 538, 540

from semiempirical methods, 469–470

Isodensity PCM (IPCM), 572

Isodesmic reactions, 523, 626

Isoozone, 14–16

J
Jacobi rotation method (for matrix

diagonalization), 145

Jacob’s ladder, 499–501, 505
JAGUAR (software), 636

Jahn-Teller effect, 154, 156

J (Coulomb integral), 205, 206, 215

Joystick, 4

K
KCIS functional, 503

Keto-enol, 577, 578, 580

Keto-enol tautomers (of pyridones), 576, 580

K (exchange integral), 206, 215, 223

Kinetic energy, 10, 106, 107, 111, 112, 178,

196, 204, 205, 213, 228–230, 235,

239, 240, 424, 435, 491–493, 571

meaning, significance, 316

Kinetic energy density, 504

Kinetics, calculating reaction rates, 348–355

Kohn, W., 259, 430, 484

Kohn-Sham, 487–508, 535, 538–540, 547, 552

approach, 487–508, 554

DFT, levels, 498–508, 598

energy, 489–495

equations, 489, 494–495, 535, 547, 552,

555

operator, 494, 495

orbital, 494, 497, 502, 539, 540,

544, 555

Koopmans’ theorem, 390, 391, 436, 469, 470,

538, 539, 555

Kronecker delta, 143, 175, 427

L
Lagrangian multipliers, 208, 212

Lanthanides (lanthanoids), 599, 601, 602

Laplacian, 225, 503

Laplacian of electron density, 383, 386, 503

Laplacian operator, 116

Lenard, P., 106

Lennard-Jones, J.E., 57, 137

Linear combination of atomic orbitals (LCAO),

137, 138, 169, 175, 184, 185, 217,

221, 225–228, 230, 242, 249, 253,

443

Literature, of computational chemistry, 25

LMP2, 290

Local density approximation (LDA), 499, 501,

502, 505, 514, 555

Localized molecular orbitals, 123, 202, 203,

590, 591

Local pair natural orbital (LPNO), 297, 638

Local spin density approximation (LSDA),

499–502, 505, 514, 537, 540, 555

L€owdin (population analysis), 378–380,

466–468, 532–534

LYP functional, 498, 503

M
M06 functional, 499

M06-HF, 514, 536

M06-L, 502, 514, 537

M06-2X, 499, 507, 509, 510, 512–517,

520–522, 525–527, 529

M08, 500

M08-HX, 500

M08-SO, 500

M011, 500

M11-L, 500

M012, 500

M012-L, 500

Mach, E., 109

Many-body problem, 197, 484

Marcelin, R., 21

Marcus, R., 21

Mass-weighting of force constants, 38, 39, 46

Materials (materials science), 2, 4, 6
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Matrix/matrices

coefficient, 129, 133, 140, 142, 143, 147,

175, 176, 225, 227, 228, 234, 242,

243, 245, 246, 250, 443, 497

diagonalization, 37, 38, 132, 133, 143, 145,

147–150, 165, 168, 170, 176, 181,

182, 184, 185, 194, 210, 220, 223,

228, 232, 423, 476, 496

energy levels, 144, 147, 150, 168, 171, 172,

175, 176, 178, 194, 212, 228, 242,

245, 247, 250, 423, 497

Fock, 142, 144, 145, 150, 163, 164, 167,

171–178, 180–182, 194, 222–225,

227, 228, 234–236, 238, 239, 242,

244, 245, 248, 250, 253, 256, 257,

421–424, 426, 428, 434, 443, 444,

474, 476

mechanics (of Heisenberg), 102

methods, 35, 140, 555

orthogonalizing, 175–178, 180, 183, 185,

194, 222, 234, 239, 242, 243, 249,

426, 444, 497

overlap, 142, 171, 172, 175, 177, 179, 181,

184, 185, 208, 222, 223, 234, 238,

424–427, 429, 434, 476

properties, 114, 177

theory of, 125–133

Maximum, 15, 18, 34, 36, 81–83, 93, 154, 200,

257, 435, 454, 456–458, 473

hardness, 546

Mayer (population analysis), 466

Melting point, 2

Memory (of atomic motions), 22. See also
Bifurcating, bifurcated (PES)

Merck Molecular Force Field (MMFF), 72–74,

76, 77, 81, 84, 88–92, 94, 476

Meta-Generalized Gradient Approximation

Functionals (MGGA), 499, 503, 504

Methylenecyclopropene, 162, 469, 535, 536

Microsolvation, 567, 569

Microwave spectra (for geometry

optimization), 34

Microwave spectroscopy (for determining

geometries), 60, 512

MINDO, 433, 438

MINDO/, 1, 433

MINDO/, 3, 433, 440, 444, 636

Minimum, 13, 15, 17, 21, 22, 26, 27, 29–32, 34,

39, 45, 46, 58, 59, 67, 69, 70, 88, 93,

137, 139, 208, 209, 214, 231, 262,

436, 456, 460, 500, 506, 528, 586,

614–617

active space, 589, 590

hardness, 546

Minimum-energy path (MEP), 349

MM1 (molecular mechanics forcefields), 53

MM2 (molecular mechanics forcefields), 53

MM3 (molecular mechanics forcefields), 53,

67, 72

MM4 (molecular mechanics forcefields), 53,

72, 78, 85, 94

MM-series of programs, 53

MN12-SX, 500

MNDO, 182, 430–431, 433–442, 444, 445,

450, 458, 459, 463, 470, 476, 636,

639

MNDO/d, 433, 437–439, 442, 444, 445, 458

MNDOC, 433, 437, 438, 444, 445, 450, 459,

460

Model chemistry, 345, 584–598

Molecular Complete active space (MOLCAS),

637

Molecular dynamics, 3, 4, 22, 69, 85–86, 95,

567, 569, 579, 583, 616, 635, 636,

638

activation energies, 574

Molecular mechanics (MM), 2–4, 6, 33–35, 45,

51–96, 101, 161, 422, 435, 438, 444,

445, 452, 472, 475, 476, 483, 506,

508, 509, 524, 528, 567, 602, 632,

634, 638

examples of use, 68–88

Molecular modelling, 1, 566

Molecular models of plastic or metal, 51

Molecular models, real, traditional, visual-

tactile link, 393

Molecular orbital, 34, 63, 93, 119, 121,

122, 132, 133, 135, 137, 143,

148, 154, 165, 171, 175, 177,

184, 194, 197, 198, 200, 202,

208–210, 212, 213, 224, 253,

421, 430, 436, 443–444, 469,

471, 493, 494, 497, 534, 538,

539, 555, 584, 589, 594, 597,

604, 637

Molecular orbital approach (in contrast to

valence bond), 119

Molecules, 566

Møller-Plesset method, 282–286

Møller-Plesset (MP), (MP2, MP3, MP4, MP5)

calculations, 285, 286

MOLPRO (software), 637

Momec, 3, 73, 602

Momentum, relation to wavelength, 114, 115

Monte Carlo methods, 86

MOPAC, 438, 439, 441, 445, 446, 637

MOPAC, 439, 2000

MOPAC, 440, 2002
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MOPAC, 439, 441, 2009

Morita-Baylis-Hillman reaction (need for

caution with regard to mechanism),

622–624

MOZYME (software), 445, 446

MP2 and fluoro- and difluorodiazomethane,

288

MP2, localized (LMP2), 290

MP2, resolution of identity (RI-MP2), 290

MP2 virtual orbitals (MP2[V]), 291

MP2.5, 291

Mulliken, R., 118, 137, 466, 468, 532–534,

540, 543, 544

Mulliken population analysis (charges, bond

orders), 378, 379, 467, 468, 533, 534

detailed calculation, 376–377

explanation, 371–375

Mulliken’s view of, 466

Multiconfigurational SCF (MCSF), 588, 637

Multidimensional potential energy surfaces, 32

Multiplicity, 24, 52, 154, 234, 249, 251, 252,

497, 598

Multipole method, 251

Multireference, 499, 637, 638

N
N5 anion, 619, 620

N5 cation, 619, 620

N6, 619

n-body problem, 484

NDDO as “one of the most successful and least

appreciated [approximations] in

modern theoretical chemistry”, 472

Neglect of diatomic differential overlap

(NDDO), 427, 429–445, 461,

472–475

Neutron diffraction (for determining

geometries), 304, 305, 604, 634

New quantum theory, 118

Newton–Raphson, 34, 68

NF5, 616, 617

NICS. See Nucleus-independent chemical shift

(NICS)

Nitrogen, pentacoordinated, 616

Nitrogen pentafluoride, 613, 617, 622

Nitrogen polymers/polynitrogens, 613,

618–622

NMR, 1, 122, 123, 468, 534–552, 555, 617,

619, 629, 630

Nodes in molecular orbitals, 138, 150–151

Nonlocal, 495, 501, 502, 505, 555

Nonlocal functional, 505

Nonplanar geometries for benzene, 274

Norbornyl cation, 398

Norcamphor (reactivity and visualization), 398

Normalized, 131, 132, 143, 169, 179, 181, 201,

203, 207, 208, 213, 243, 371, 427

Normal-mode frequency, 36–38

Normal-mode vibration, 35–40, 46, 89, 231,

490

Not even wrong (Pauli), 5, 623

Nuclear atom, 102, 108–110, 184

Nuclear repulsion energy, 46, 78, 231, 247, 248

Nucleophile, 2, 547, 550, 552, 622, 623

Nucleophilic, 1, 4, 52, 70, 548, 550

Nucleophilicity, 549

Nucleus-independent chemical shift (NICS),

388, 629, 630

Numerical basis function, 503

O
OH radical, and amino acids, 625

Old quantum theory, 118

OM1, 444

OM2, 444

OM3, 444

OMx (orthogonalization methods for

semiempirical), 426, 427, 444

OPBE, 536

Open shell, 251, 252, 584, 596

Operator, 116, 127, 129, 136, 139, 142, 174,

184, 199, 200, 202, 204, 206–208,

211–215, 221, 223, 225, 230, 238,

252, 490–492, 494–496, 498

Oppenheimer, R., 23

Optimization, geometry, 214, 231, 232, 246,

247, 249, 431, 436, 445, 472, 473

Optimizing “with no constraints” (error), 45

OPTX functional, 537

OPW91 functional, 536

Orbital

molecular, 34, 63, 93, 119, 121, 122, 132,

133, 135, 137, 143, 154, 165, 171,

175, 177, 184, 194, 197, 198, 200,

202, 208–210, 212, 213, 224, 253,

421, 430, 436, 443–444, 469, 471,

493, 494, 497, 534, 538, 539, 541,

555, 584, 589, 594, 597, 604, 637

molecular, localized, 123, 202, 203, 290,

297, 378, 446, 470, 590, 591,

593–595

spatial, 199–202, 204–206, 211, 213, 215,

217, 251

spin, 200, 202, 203, 206, 213, 251

ORCA (software), 572, 638

Orthogonal, 130–133, 143, 175, 178, 181, 185,

208, 243, 244, 429

Orthogonal diagonalizability, 133
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Orthogonalization of the Fock matrix, 427, 444

Orthogonalized, 496

Orthogonalizing matrix, 175–178, 180, 183,

185, 194, 222, 234, 239, 242, 243,

249, 426, 444, 497

Orthogonene, 596

Orthonormal, 143, 150, 170, 175, 181, 208,

243, 494

Ostwald, W., 109

Overlap integral, 238, 425

Overlap matrix, 142, 171, 172, 175, 177, 179,

181, 184, 185, 208, 222, 223, 234,

238, 424–427, 429, 434, 476

Oxirene, 437, 438, 613–617, 622

Ozone, 14–16, 28, 32

P
PacMan, 509

Paradigms, 5

Parameterization, 3, 4, 6, 59, 62–64, 71, 78–82,

85, 93–95, 182, 183, 194, 422, 425,

429, 433, 436–443, 459, 473, 476,

504

Pariser-Parr-Pople (PPP) method, 63, 163, 422,

424, 426–429, 435, 474

Partial derivatives, 15, 136

Partial NDDO (PNDDO), 433

Pauli correction, 215

Pauli exclusion principle, 117, 198, 202, 206,

213, 277, 291, 585

Pauli “exclusion zone”, 277

Pauli repulsion, 206, 251, 504, 505, 507

Pauling, L., 119, 137, 199

PBE functional, 500, 514, 537

PBE0 functional, 615, 616

oxirene, 615, 616

PBE1, 537

pBP/DN*, 514, 517, 524

PCModel, 638

PDDG/MNDO, 442

PDDG/PM3, 442, 444, 453–455, 457, 458

Pentafluoride, 616–617

1,5-Pentanediyl (pentamethylene), 593, 594

Perhydrofullerene, 88

Perrin, J., 109

P86 functional, 503

Perturbation theory, 282, 286, 296, 637. See
also Møller-Plesset method

PES. See Potential energy surface (PES)

Pessimism, regarding ab initio approach, 422

Pharmaceutical industry, 6, 95

Pharmacologically active molecules, 77

Philosophy of computational chemistry, 5

Photoelectric effect, 102, 103, 105–107, 184

Physical properties, 2

pKa

absolute calculation, 579

relative calculation, 579

PKZP functional, 503

Planck, Max, 102, 104–107, 111, 112, 114,

118, 638

Planck’s constant (h), 105, 107, 111, 112, 117,
184, 194, 195, 422, 507

Plateau-shaped region on potential energy

surface, 22, 350

PM3, 76, 77, 182, 183, 430–431, 433, 436–450,

452–458, 460, 461, 463–468,

470–476, 519, 533, 600, 603, 636,

639

PM3(tm), 440–442, 603, 604

PM4, 440, 441

PM5, 430, 439–442

PM6, 430, 437, 439–445, 453–455, 457–459,

474, 475

PM7, 433, 440–442, 444, 445, 475

Point groups (symmetry), 41, 43–45

Poisson equation, 571

Polanyi, M., 21

Polarity, 571

Polarizable continuum method (PCM), 569,

572

Polarization, 258, 425, 468, 517, 545, 571, 626

Polarized molecular orbital (PMO) method,

443–444

Polynitrogens, 618–622

POLYRATE (kinetics code), 319, 350

Pople, J., 203, 214, 259, 424, 430, 450, 484,

500, 509, 512, 524, 527, 584

Population analysis, 466. See also Mulliken

population analysis

AIM, 380–385

Mayer, L€owdin, Weinhold, 378

Post-Hartree-Fock calculations, 205, 208, 215,

509

Potential energy, 11, 31, 52, 54, 56, 57, 61, 63,

64, 67–69, 85–86, 95, 111, 112, 116,

117, 178, 195, 196, 204–206, 214,

229–231, 235, 240, 424, 428, 436,

456, 490–492, 507, 519, 546, 548,

573, 586, 587, 589, 593, 594

Potential energy surface (PES), 9–48, 52, 67,

71, 101, 139, 178, 460, 472, 573,

615–617, 619, 633

Probabilistic methods of locating

conformations, 35
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Probability density. See Charge density
function

Propane, conformation, 19

1,3-Propanediyl (trimethylene), 584, 585

Propanone (acetone), radical cation, 26, 538

Propene (cyclopropene relative energy), 76

Propenyl (allyl) cation, radical anion, 538

Protonated helium. See Helium, protonated,

detailed calculations

Pseudoeigenvalue, 213, 223

Pseudopotentials (effective-core potentials,

ECP), 599–601, 603–605

Pseudospectral method, 251

Pyramidane, 42, 566, 613, 617–618, 622

Pyramidane potential energy, 618

Pyridones, 576

Q
Q-Chem, 638

QM/MM approach, 77, 567

Quadratic CI (QCI), 296, 334, 335

Quadratic configuration interaction, 296

Quadratic correction to frequencies, 280

Quantitative structure-activity relationships

(QSAR), 77, 473, 635

Quantum mechanics, introduction to in

computational chemistry, 101–187

Quasi-atomic orbitals (for analyzing electron

distribution), 378

R
R12 (electron correlation method), 272, 407

Radioactivity, 102, 103, 107, 110, 184

Raman spectra, 361

Reaction coordinate, 15–18, 29, 38, 39, 46, 88,

468, 534, 629

Reaction energy, 521, 525

Reaction matrix (for exploring a potential

energy surface), 35

Reactivity, 1, 4, 21, 27, 35, 163, 541, 547, 548,

552, 553, 635

Reference interaction site model (RISM), 567,

583

Relativistic effects in calculations, 599

Relativity, 25, 102, 103, 106–108, 114, 142,

184, 196, 599, 600

Relaxed PES, 14, 19, 21

Resonance energy, 157–160, 164, 185, 328,

330–332, 627

Resonance (vs. inductive effects), 626–627
Resonance integral (bond integral), 434

Restricted Hartree-Fock (RHF), 214, 251, 459

Restricted open-shell HF (ROHF), 251, 252

Rigid PES, 14, 21

RI-MP2, 290

RM1, 439, 444, 445, 453–455, 458, 459, 475

Roothaan-Hall equations, 215–252, 426, 427,

429, 434

Rotational constants (for geometry

optimization), 34

RRKM (kinetics theory), 319, 350

Rutherford, E., 110

S
Sackur-Tetrode equation, 580

Saddle point, 17–19, 22, 26, 69, 71, 88, 214,

460, 592

SAM1, 430–431, 442–444, 460, 465, 475

Scan (of potential energy surface), 21, 26–28

Schleyer, P.V.R., 53, 512, 601

Schoenflies point groups, 41

Schr€odinger, E., 102, 114
Schr€odinger equation, 2, 3, 5, 6, 23, 102–170,

184, 193, 195–198, 203, 212, 215,

221, 231, 253, 421, 422, 474, 483,

485, 534, 554, 589, 600, 631

origin of, 103, 116

SCRF. See Self-consistent reaction field

(SCRF)

SEAM method (for transition state in

molecular mechanics), 71

Second-order saddle point, 19

Secular determinants, viii, 167

Secular equations, 140, 164–167, 169, 172,

184, 185, 209, 421

Self-consistent-charge density functional tight

binding (SCC-DFTB), 442–444, 452

Self-consistent reaction field (SCRF), 572, 578

Self-interaction, 492, 500

Self-repulsion, 498

Semiempirical, 3, 4, 6, 52, 53, 68–73, 77, 86,

90, 92, 93, 101, 119, 163, 174, 182,

183, 186, 194, 216, 224, 241, 253,

260, 421–477, 483, 485, 500, 506,

507, 509, 516, 519, 526, 528, 533,

535, 536, 538, 539, 541, 552–555,

572, 584, 592, 598, 600, 602–604,

619, 625, 631, 632, 635–639

Semilocal, 505

Shape, and Born-Oppenheimer approximation,

23, 46, 363, 364

SHM. See Simple Hückel method (SHM)

SIESTA program for large systems, 603
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Simple harmonic oscillator, 11

Simple Hückel method (SHM), 171–172

application, 102, 119–170

derivation, 135, 136

software, 638–639

Single-point calculation, 93, 231, 247, 472,

551, 584, 590, 617

Single-point Hartree-Fock (SCF), 182, 198,

199, 214, 215, 221–225, 230, 234,

242–246, 248–251, 422–446, 452,

458, 474, 475, 483, 571, 589, 590,

592, 604, 614

Singlet diradical, 583–598, 604

Size-consistency, 298–299

Slater

determinant, 199–204, 206, 208, 213, 215,

217, 219, 221, 251, 443, 493, 554,

588, 590

function, 425, 429, 438

SM5.x (solvation software), 608

SM6 (solvation software), 579

SM8 (solvation software), 572–574, 576, 581

SM12s (solvation software), 570

SMD (solvation software), 570, 572, 573, 576,

578

SMx series (solvation methods), 570

SN2 reaction

continuum solvation, 568–569

microsolvation/explicit solvation, 567–568

Softness, 534–552, 556

Software, for computational chemistry,

635–639

Solvation, 567

explicit, 567

explicit (micro-), 567–568

Solvent, 86, 93, 95, 163, 536, 537, 566–574,

576–580, 583, 604, 622, 623, 636

Solvent-accessible surface area (SASA), 569

Solvent dielectric constant, 572

Solvent-solvent, 569

SPARTAN (software), 72, 182, 258, 438, 439,

441, 445, 467, 471, 524, 573–575,

603, 604, 639

Spatial orbitals, 199–202, 204–206, 211, 213,

215, 217, 251, 494, 555

Spectra, 4, 5, 32, 88–90, 93, 113, 137, 142, 163,

427, 460–463, 528, 590, 599

Spectra, calculated

Infrared (IR) spectra, calculated (see
Infrared (IR) spectra, calculated)

NMR spectra, calculated

by ab initio, 387–389

by semiempirical, 468

by density functional theory (DFT),

536–538

Ultraviolet (UV) spectra, calculated

by ab initio, 386–387

by semiempirical, 427, 430, 461, 468,

469, 475

by density functional theory (DFT),

534–536

Speeding up calculations (ab initio), 251

Spin orbital, 199, 200, 202, 203, 206, 213, 251,

485, 493, 494

Spin, electron, 113, 117, 118, 164, 183,

185, 186, 206, 234, 251,

497, 597

Spin-orbit coupling, 196, 599, 600

Stabilization energy, 157–160, 627

Static correlation, 279, 592, 637, 712

Stationary point, 14–22, 26, 27, 29, 33, 35–40,

46, 69, 70, 89, 93, 95, 139, 231, 431,

438, 519, 528, 543, 548, 568, 583,

585–589, 593

Statistical mechanics, 583

Stereomutation, 587

Steric energy, 68, 78, 93–95

Steroid, 2–4, 42, 423

Stewart, J.J.P., 436, 438, 440, 441, 445, 470,

475

Stochastic methods of locating conformations,

35

Strain/strained, 68, 79, 327–331, 384, 385, 473,

616, 617, 628, 695

Structural formulas (and existence of atoms), 5,

52, 119

Surface, 231, 456

SVWN functional, 502, 517, 523, 534

Sybyl (molecular mechanics forcefield), 53, 72,

639

Symmetry, 11, 40–45, 56, 69–73, 117, 123,

151, 152, 170, 171, 179, 250, 257,

434, 471, 515, 539, 574, 575, 585,

586, 597, 598, 614, 615, 622, 627,

630

T
Techniques (fundamental, of computational
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