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Foreword I

This volume contains the contributions to the 2012 les Houches winter school in
mathematical physics, organized with the support of Labex Milyon and ESF ITGP.
A common theme of the courses and talks at this winter school is classical and
quantum field theory. This subject has a long history and has been since its
inception a fertile ground for fruitful interactions between mathematics and physics.
It now is a multifaceted research area attracting the interest of mathematicians and
physicists alike.

The extended lecture notes of five courses of this school form the bulk of this
volume and give an overview of the different points of views and recent results in
field theory. The subject of Klaus Fredenhagen’s lectures is algebraic quantum field
theory, in the sense of Haag and Kastler, where the basic notion is that of local
algebras of observables attached with portions of space-time. This approach was
only recently extended to the case of curved space-times and these lecture notes,
appearing here with material from lectures of Katarzyna Rejzner, offer a compre-
hensive description of the results, including perturbative renormalization, due to the
lecturer and his collaborators. A similar emphasis on local observables, but in a
different framework, is presented in the notes, written by Claudia Scheimbauer,
of the lecture course of Kevin Costello on partially twisted supersymmetric gauge
theories. A mathematical formulation of these theories in terms of factorization
algebras of observables is presented, including perturbative quantization and the
relation to Yangians and quantum enveloping algebras. Factorization algebras, first
introduced by Beilinson and Drinfeld in the context of conformal field theory, have
now a wide field of applications also outside quantum field theory, as illustrated in
the lectures of Grégory Ginot, who gives an introduction to factorization algebras
and factorization homology and presents applications to mapping spaces, higher
Deligne conjectures, and string topology. The lectures of Alberto Cattaneo and
Pavel Mnev give an introduction to semiclassical quantization of field theories with
gauge symmetries. The approach of the lecturers, based on a collaboration
with Nicolai Reshetikhin, is to systematically consider field theory on manifolds
with boundary and study the behaviour when gluing along boundary components.
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The aim, illustrated here in the case of abelian Chern–Simons theory, is to construct
examples of quantum field theories on arbitrary manifolds by gluing them from
simple pieces. This same idea appears in the lectures of Jørgen Andersen and Rinat
Kashaev, who present their work on the construction of a topological quantum field
theory in three-dimensions associated to the quantum Teichmüller theory. Here, the
theory is constructed on a triangulated manifold combinatorially by gluing building
blocks defined on tetrahedra.

Additionally to the lectures, there were several talks on field theories and their
applications, some of which, along with other related contributions, are presented in
this volume. The result is a collection of research works from researchers with
different backgrounds in mathematics and physics, showing that quantum field
theory has a broad range of applications, and will continue to be a source of
inspiration for mathematics and mathematical physics.

Giovanni Felder
Anton Alekseev
Damien Calaque
Alberto Cattaneo

Maria Podkopaeva
Thomas Strobl
Andras Szenes
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Foreword II

No development of modern science has had a more profound impact on human thinking
than the advent of quantum theory. Wrenched out of centuries-old thought patterns,
physicists of a generation ago found themselves compelled to embrace a new metaphysics.
The distress, which this reorientation caused, continues to the present day. Basically,
physicists have suffered a severe loss: their hold on reality. (Bryce S. DeWitt and Neill
Graham: Resource Letter on the Interpretation of Quantum Mechanics, American Journal of
Physics, July 1971)

In January/February of 2012, a Winter School on the topical subject of “Mathe-
matical Aspects of Field Theories” took place at Les Houches—a wonderful village
made available to the physics community as the location of conferences and schools
by Cécile DeWitt-Morette, the wife of the late Bryce DeWitt, whom I have quoted
above, and one of my favorite places on Earth. Damien Calaque and Thomas Strobl
should be commended for having organized this School. They kindly invited me to
participate in it; but, unfortunately, I had some minor health problems that pre-
vented me from traveling to Les Houches.

Recently, the organizers asked me to write a short foreword for the proceedings
of their School and they sent me various written contributions. Having taken a brief
look at some of these writings, I feel the title of the School should really read
“highly mathematical aspects of field theories”. The material collected in this book
looks fascinating. But I admit that I do not expect I would have understood much of
what was discussed at the School. I imagine the organizers had invited me to
participate in it with the thought that I would discuss some real-world applications
of (quantum) field theory. I regret that I was unable to comply with their wishes. Let
me emphasize, incidentally, that I do not associate any scholarly ambitions with this
preface; it actually results from an experiment in “free association”.

In comparison with classical field theory, Quantum Field Theory (QFT) is a
rather recent endeavor, less than a 100 years old. Implicitly, it had first appeared in
Planck’s law for the spectral energy density of black body radiation and Einstein’s
theory of photons. It made its first explicit appearance (quantization of a harmonic
string) in the famous “Dreimännerarbeit”, in 1925, and got started in a more
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concrete sense in the work of Dirac on quantum electrodynamics (QED), soon
afterward. Famous early contributions came from Jordan, Wigner, Heisenberg and
Pauli (relativistic QFT), Kramers, Weisskopf (first attempts toward renormalizing
QED), Wentzel, and others. Before and during World War II, E.C.G. Stückelberg
de Breidenbach made prescient contributions to a manifestly relativistic formulation
of QFT, the perturbative calculation of causal scattering amplitudes, and the ren-
ormalization of QED. He anticipated very sizable portions of the work of Feynman,
for which the latter received the Nobel Prize, jointly with Schwinger and Tomo-
naga, in 1965.

The triumph of perturbative QED and, in particular, of calculating radiative
corrections after performing suitable renormalizations (Lamb shift, “g � 2”, etc.),
convinced the physics community, at least temporarily, that relativistic QFT was a
successful road toward understanding the physics of elementary particles. For QED,
the comparison between theoretical calculations and experimental data was spec-
tacularly successful, as is exceedingly well-known. After various lengthy and
confusing detours, the discovery of the standard model (a Uð2Þ � SUð3Þ—gauge
theory of electro-weak and strong interactions, from 1967 till the early 1970s)
sealed the triumph of quantum field theory, and in particular of quantum gauge
theory, as the most successful approach toward unifying special relativity with
quantum mechanics, and thereby arriving at a satisfactory theory of elementary
particles and of the fundamental interactions, with the exception of gravitation.

Indeed, relativistic quantum field theory is an attempt to combine the two most
profound new theories of twentieth-century physics, Relativity Theory and Quan-
tum Mechanics, in a mathematically consistent theoretical framework compatible
with “Einstein causality” or “locality”. In this attempt, space-time is most often
chosen to be the Minkowski space of special relativity, i.e., it is viewed as a rigid
screen on which Nature draws its imagery, and which is unaffected by material
processes evolving in it. (Ambitious people, such as Bryce DeWitt, or Klaus Fre-
denhagen, who has a contribution to this book, and others, have formulated
quantum field theory on fairly general Lorentzian manifolds with curvature. But the
fact remains that the recoil of material processes on the structure of space-time is
neglected or treated in a merely approximate, “self-consistent” fashion).

There cannot be any doubt that the use of a rigid classical model of space-time,
such as Minkowski space, in a relativistic local quantum theory of matter is pro-
visional and must ultimately lead to serious conceptual difficulties. Here are some
reasons for this expectation: A relativistic local quantum theory on Minkowski
space or other rigid models of classical Lorentzian space-times is of necessity a
theory of systems with infinitely many degrees of freedom infinitely many of which
can be localized in arbitrarily small cells of space-time—a property that appears to
cause serious trouble as soon as gravity is not neglected anymore (conflict with
General Relativity), besides giving rise to the infamous ultraviolet divergences
well-known. In a more satisfactory, deeper unification of Relativity Theory and
Quantum Theory—sometimes called “quantum gravity”—space is likely to appear
as an emergent structure rather than as a fundamental one. In searches of “quantum
gravity” it will presumably be advantageous to adopt Leibniz’ views of space
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(space as a structure encoding relations between events) rather than Newton’s (a-
priori character of space). A theory of this kind will have to be formulated without
explicit reference to a particular model of space-time, and it is likely to prevent an
infinity of degrees of freedom from accumulating in arbitrarily small cells of space-
time, and hence might be expected to be ultraviolet finite. Many of us are tempted
to believe that string theory will guide the way toward such a framework. Unfor-
tunately, for the time being, we do not know of any conceptually clear, nonper-
turbative and manifestly background-independent formulations of string theory.
However such a formulation will look like, it is likely that QFT—or, at least,
methods of QFT—will be among its ingredients. (One might expect, for example,
that two-dimensional superconformal field theory will be one of its important tools.)
We are thus well advised to pursue studies of QFT and, in particular, of mathe-
matical aspects of QFT—and, by the way, we should not avoid revisiting, from
time to time, some of the puzzling mathematical and physical aspects of quantum
theory. For, without arriving at a clearer understanding of quantum theory, we may
never be able to unravel the mysteries at the root of a unification of the quantum
theory of matter with a relativistic theory of space-time and gravitation!

Another source of some worry that something is not properly understood, yet, is
the prominent role that global properties of rigid space-time play in deriving local
consequences of relativistic QFT that ought to be valid under much more general
assumptions on the nature of space-time. Here is an example: One of the spectacular
predictions of relativistic local quantum theory (QFT) is the existence of anti-
matter. This prediction, first explicitly proposed by Dirac, originally grew out from
his work on a relativistic electron equation, the Dirac equation, and his idea of the
“Dirac sea” as a cure to the problem of negative-energy states, and from an
observation, due to Oppenheimer and Weyl, saying that the holes in Dirac’s sea
must have all the same properties as the electrons, except that their electric charge is
opposite to that of electrons. But a general understanding of the necessary existence
of anti-matter, in the guise of the CPT theorem, only came with Jost’s work in
axiomatic quantum field theory. Now, the strange fact is that Jost’s proof of CPT
makes use of some global properties of Minkowski space. But one would think that
the existence of anti-matter is a local property of relativistic quantum theory, which
will remain true for very general (and even for “dynamical”) models of space time.
Likewise, the general connection between the spin of quantum fields and their
statistics is intimately connected to the property of the “vacuum state” to satisfy the
Kubo-Martin-Schwinger (KMS) condition with respect to Lorentz boosts (as
derived by Bisognano and Wichmann, using arguments slightly extending those of
Jost), which refers to global symmetries of Minkowski space-time. And again,
results of this type can be expected to remain valid for much more general
“dynamical” models of space-time. So, quite clearly, there are most probably quite
a few things we do not understand properly, yet, and we are well advised to
continue studies of the mathematical aspects of field theory! (One might note, in
passing, that, from today’s perspective, Tomita-Takesaki modular theory—one
of the miraculous developments in the theory of operator algebras—can be viewed
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as the general mathematical structure underlying Jost’s CPT theorem, the Bisognano-
Wichmann theorem, and the general analysis of equilibrium states in quantum
statistical mechanics due to Haag, Hugenholtz and Winnink).

Serious study of mathematical aspects of quantum field theory is not a new
development. After initially unsuccessful attempts of using QFT to construct a
theory of nuclear forces and of mesons and failures to understand QED nonper-
turbatively, axiomatic quantum field theory was developed in the 50s and 60s of the
past century; first in the guise of the Gårding-Wightman axioms for theories of local
quantum fields, and then in the form of the Haag-Kastler axioms for nets of local
observables. When the general structure of relativistic local quantum theory had
been clarified, at least to some extent, it was felt to be important to construct models
of quantum field theories satisfying all the Wightman- or the Haag-Kastler axioms.
Thus, constructive quantum field theory was born in the middle of the 1960s.
Axiomatic and constructive QFT gave rise to very fruitful developments in pure
mathematics. In particular, complex analysis, functional analysis, functional inte-
gration and probability theory, “hard analysis”, and group theory all drew inspi-
ration from work on problems encountered in axiomatic and constructive quantum
field theory—as they already had from the advent of quantum mechanics, two or
three decades earlier.

Not only has pure mathematics profited from ideas, methods, and results of
quantum field theory, but also theoretical physics: Various areas in theoretical
physics other than particle physics, notably quantum-mechanical many-body theory
and its applications to condensed matter physics, have been enriched by techniques
first developed for the purposes of understanding relativistic QFT and applying it to
particle physics and by corresponding advances in mathematics. Suffice it to recall,
as a famous example, that Freeman Dyson made very successful applications of
ideas and techniques he had discovered or learned in his work on QED to studies
of the quantum theory of magnetism, etc. I hasten to add that concepts and ideas
that had first appeared in statistical mechanics or condensed matter physics were
subsequently successfully applied to QFT. Among the best examples is the
observation that, in the Euclidian (imaginary-time) region, QFT looks like classical
statistical mechanics and that certain Euclidian field theories can be viewed as gases
of Brownian paths and loops (Symanzik’s representation of scalar QFT’s). This has
made available certain methods developed in statistical mechanics, such as cluster
expansions, lattice approximation, correlation inequalities, the Lee-Yang theorem,
Kramers-Wannier duality, for purposes of quantum field theory. (Another fre-
quently mentioned example is the Anderson-Higgs mechanism. However, one may
argue with good reasons that essential features of this mechanism first appeared in
Stückelberg’s work on massive gauge fields, which was inspired by problems in
particle physics).

It cannot be the purpose of a foreword like this one to give a detailed account
of the history of the subject treated in the following chapters of a book—although,
frankly, it would be tempting to dive more deeply into the history of (mathematical)
quantum field theory at this point. However, this would require much more space
than this preface can occupy and more time and care than I can afford. Suffice it,
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thus, to refer to some of the more mathematical developments in QFT and some
of their applications in mathematics and physics by merely mentioning appropriate
buzz words: Besides axiomatic and constructive quantum field theory, I would like
to mention the perturbative renormalization group first discovered by Stückelberg
and Petermann and by Gell-Mann and Low and then extended by Callan and
Symanzik, which has profoundly changed the way we think about QFT, and has
had spectacular applications in particle physics (ultraviolet asymptotic freedom—
Politzer; Gross and Wilczek—as an explanation of Bjorken scaling, to mention one
example) and in the theory of critical phenomena. I also wish to recall the devel-
opment of systematic approaches to perturbative renormalization (BPHZ, analytic
renormalization, Hepp’s “axioms for renormalization”, the Epstein-Glaser approach
to renormalization, dimensional regularization and–renormalization, renormaliza-
tion-group inspired renormalization à la Polchinski and Gallavotti, the use, by
Connes and Kreimer, of the Hopf algebra of rooted trees and of a Riemann-Hilbert
problem to set up perturbative renormalization theory, etc.), the Faddeev-Popov
procedure of gauge fixing in general nonabelian gauge theories (extending ideas of
Feynman and of DeWitt), the discovery of anomalies in gauge theories (Adler–-
Bardeen–Bell–Jackiw, etc.). I continue by mentioning Wilson’s form of the ren-
ormalization group and the development of conformal field theory; the discovery of
supersymmetry; the discovery of BRST cohomology for gauge theories and of the
BV formalism. I would like to draw attention to the advent of two-dimensional
conformal field theory and of topological field theories, then to the discovery of
connections between gravity theories on AdS spaces and conformal field theories
on the boundary space-time (Maldacena correspondence), to end by mentioning the
tantalizing role that ideas of integrability (Bethe-ansatz equations) have recently
started to play in the analysis of supersymmetric gauge theories, etc. Most of these
developments have had very interesting consequences in mathematics; but, of
course, also—and, perhaps, more importantly—in physics. I feel it is important that
one should not lose sight of one direction in the light of success in the other. I will
now sketch some examples explaining what I mean.

Techniques that were originally inspired by problems in perturbative renor-
malization theory have recently had some fairly spectacular applications in alge-
braic geometry (e.g., multiple zeta values, polylogarithms, modular forms in QFT—
work by Connes, Kreimer, Bloch, Marcolli, Brown, and others). Ideas and methods
born from the study of gauge theories, of gauge fixing and gauge anomalies and of
supersymmetry have had huge impact on developments in algebraic topology
(moduli spaces of instantons on four-manifolds and Donaldson invariants, Seiberg-
Witten invariants, Chas-Sullivan string topology, etc.). But, of course, for physi-
cists, the work of ’t Hooft and Veltman, Lee and Zinn-Justin, Becchi, Rouet and
Stora, Batalin and Vilkovisky, and many others, demonstrating the renormaliz-
ability of the standard model of particle physics and other theories with infinite-
dimensional local symmetries and leading to many concrete calculations of direct
relevance to experiments at the LHC, is more important.

Another example concerns Wilson’s form of the renormalization group and
conformal field theory: Ideas that have grown out of the work of Wilson, Wegner,
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and others on the renormalization group and of somewhat related (earlier, but more
narrow) work of Glimm and Jaffe on ku4-theory in three dimensions have had
enormously fruitful applications in the mathematics of functional integration, large-
deviation theory, singular perturbation theory of operators, etc. Powerful new tools
in analysis, such as multiscale analysis, and in probability theory have emerged
therefrom. Conformal field theory has become a fundamental tool in string theory.
Two-dimensional superconformal field theory has had important applications in
algebraic topology (elliptic genera, chiral rings, ...). Ideas and methods from string
theory and superconformal field theory have led to highly nontrivial results in
enumerative geometry.—But let us not forget that Wilson’s main aim had been to
understand critical phenomena in the theory of continuous phase transitions and to
calculate critical exponents, an enterprise that turned out to be extraordinarily
successful, and that his ideas have changed the way we think of the role of quantum
field theories in particle physics (“effective field theories”). And let us not forget
that conformal field theories have played a crucial role in this enterprise as theories
that encode renormalization group fixed points and often enable one to quantita-
tively determine critical exponents by identifying them with scaling dimensions of
various fields of the theory.

It may be appropriate to also draw attention to Jones’ theory of subfactors and of
towers of von Neumann algebras. By studying the abstract problem of finding an
invariant associated with the embedding of a subfactor in a von Neumann factor
(initially for factors of type II1—but extensions to factors of type III, due to Longo,
followed soon), Vaughan Jones unravelled deep and very surprising connections
between the theory of towers of von Neumann algebras, the theory of knots and
links embedded in the three-dimensional sphere, unitary representations of the braid
group, exactly solved models of two-dimensional classical statistical mechanics,
representations of Lie algebras and quantum groups. His discoveries are highly
original and, for me, have a magical touch. They represented the first substantial
progress in knot theory in decades. According to Jones’ own testimony, his
knowledge of quantum theory apparently played an important role in his discov-
eries on subfactor theory; and, of course, the basic tools he used—the theory of
operator algebras (Murray and von Neumann, and followers)—had grown out of
studies of quantum theory. Jones’ work was aimed at solving some deep problems
in mathematics. But it turns out that some of the ideas and mathematical techniques
he used had come up in algebraic quantum field theory, more precisely in the work
of Doplicher, Haag and Roberts on the general theory of superselection sectors.
Their work, which remains a rock of beauty in axiomatic QFT, concerned rela-
tivistic field theories in four-dimensional space-time. Constructive field theorists
found quantum field theories in four dimensions to represent too serious a chal-
lenge, and had therefore constructed models of relativistic quantum fields on two-
and three-dimensional Minkowski space. In the early 1970s, in studies of some
two-dimensional quantum field models, Streater and Wilde and I had encountered
the first very simple examples of the so-called “exchange algebras” of field oper-
ators, which, at the time, looked quite exotic. It turns out that exchange algebras of
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field operators can be characterized completely by so-called Yang-Baxter matrices,
which determine representations of the braid group. But this was far from under-
stood in the early 1970s. At this point, Jones was to become important for me.
I write about him here not only because of his significance as an outstanding
mathematician, but also because, in times when decency in the scientific commu-
nity is somewhat endangered, he can serve as a role model of an intellectually
honest and exceptionally generous scientist. As Joan Birman emphasized in her
description of Jones’ mathematical work at the 1990 International Congress of
Mathematicians in Kyoto, where he received a Fields Medal, his style of working as
a mathematician is informal and “encourages the free and open interchange of
ideas”. In 1987, during a sabbatical I spent at the IHES, I had the privilege to
interact with Jones, and I greatly profited from his exceptional generosity and from
“free and open interchange of ideas” with him. Thanks to these interactions, I
learned that exchange algebras of field operators determine unitary representations
of the braid group on n strands. This observation triggered the development of a
general theory of braid (group) statistics, a form of quantum statistics only
appearing in local quantum theories in two- and three-dimensional space-time.
(This exotic form of quantum statistics had been missed by the pioneers of quantum
mechanics). In the mid-1980s, my interest in braid statistics had been aroused by
attempts, jointly with Marchetti, to understand Chern–Simons–Higgs theory in
three dimensions and by tentative applications of such theories to the quantum Hall
effect. Jones turned out to be the ideal advisor for understanding the relation
between exchange algebras and braid statistics, and for how to proceed toward
making further progress on all these problems.

I do not engage in a discussion of how topological Chern-Simons theory entered
the scene. Suffice it to say that, thanks to the work of Witten and others (including
Chr. King and myself), it has come to play a very important role in the theory of
invariants of knots and links and of general three-manifolds. This is undoubtedly an
excellent example of a very successful application of ideas and techniques from
quantum field theory to problems in pure mathematics.—Well, I would like to add
that the observation that a class of three-dimensional topological field theories of
which certain topological Chern-Simons theories are examples turn out to describe
the large-scale physics of two-dimensional electron gases exhibiting the quantum
Hall effect is, to say the least, equally remarkable and important. It has led to a
classification of “universality classes” of such electron gases, To unravel this
insight with some precision has kept me and some of my younger friends busy for
quite a few years. A related, more recent development concerns the theory of
“topological insulators”, which are exciting new states of condensed matter with
exotic gapless surface modes.

I would like to end this preface by mentioning an example of a discovery in pure
mathematics that was arrived at independently by mathematical physicists working
on comparatively concrete problems in algebraic quantum field theory and by a
mathematician pursuing highly abstract mathematical concerns. Motivated by
studies in the theory of superselection sectors in four-dimensional local quantum
field theories, Doplicher and Roberts found a general solution of the Tannaka-Krein

Foreword II xiii



problem of reconstructing compact topological groups from certain C�-tensor cat-
egories arising in quantum field theory. Motivated by purely mathematical con-
siderations, Deligne independently proved related results. More recently, a partial
duality theory between braided C�-tensor categories and quantum groups has been
developed, which, on one hand, was motivated by studies of quantum field theories
with braid statistics in two- and three-dimensional space-time (Kerler and myself,
Mack and Schomerus, and others) and, on the other hand, by rather abstract
problems in the theory of quantum groups.

I hope these examples make it clear that the study of mathematical aspects of
quantum field theory tends to generously pay off in that it may lead to the discovery
of new mathematics. Even if, often, the new mathematics can also be found coming
from a completely different starting point one cannot doubt the fruitfulness of
exploiting quantum field theory for the purposes of pure mathematics. But, of
course, one should always remember that the original purpose of relativistic
quantum field theory has been to understand processes in particle physics at fairly
high energies, and that applications of quantum field theory to problems from
different areas in Physics have been spectacularly successful.

To conclude, I wish the readers enjoyable and fruitful encounters with the
various essays collected in this book. I apologize for not commenting more spe-
cifically on these writings—but I do not think that this is my task here. Let me
propose the following somewhat provocative variant of the remarks of DeWitt and
Graham quoted at the beginning of this preface:

Few developments of modern science have had a more profound impact on
mathematical thinking than the advent of quantum field theory. Wrenched out of old
thought patterns, mathematicians have found themselves compelled to embrace a
new way of formal reasoning. The distress which this reorientation has caused in
some circles of the mathematical community continues to the present day. Basi-
cally, mathematicians using arguments inspired by quantum field theory have
gained access to wonderful new insights, but suffered a severe loss: their hold on
mathematical rigor.

Perhaps, this book will show that rigor need not be lost.
I dedicate this text to the memory of Edward Nelson, whose understanding of

many “mathematical aspects of quantum field theory” was profound.

ETH Zürich Jürg Fröhlich
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Preface

Despite its long history and its stunning experimental success, the mathematical
foundation of perturbative quantum field theory (pQFT) is still a subject of ongoing
research. This book aims at presenting some of the most recent developments in the
field, and at reflecting the diversity of the approaches and the tools that have been
invented and that are used. Some of the leading experts as well as newcomers in the
field present their latest advances in the attempt for a better understanding of
quantum, but also classical field theories.

The chosen material is, however, far from complete. As mentioned in the first
foreword, the idea for this book grew out of a school in Les Houches on the subject,
most lecturers agreeing to write a contribution. This then was complemented by
selecting some of the customary young-participant-presentations to contribute, too,
as well as by two, three additional invited articles. And, as mentioned in the second
foreword, even though the book is aimed both at mathematicians and physicists, it
is more oriented toward the mathematical developments. Here, it is maybe a pity
that for example Nekrasov’s lectures about the path integral on N ¼ 2 super-
symmetric gauge theories did not find entry into the present addition. But there are
many more promising directions, which did not, at least one of which shall be
mentioned below. Maybe this can be a reason to come back to the enterprise at a
later point again, summarizing also those aspects, and possibly updating the ones
which are contained in the present edition.

On this occasion, we use the opportunity to thank Jürg Fröhlich for his valuable
physical insight arising from decades of own original work on the forefront of the
subject and his complementary remarks on the physics that is involved in the
mathematical descriptions, even if it is partially only in terms of some keywords
due to lack of “space-time”. In the winter school, there was in addition an inspiring
opening lecture of another great person in the field, Ludwig Faddeev, who com-
mented on his perspective on the still open one-million dollar Clay problem
“Yang–Mills Existence and Mass Gap”. His lecture had been published already in a
similar form elsewhere, so that we briefly summarize it here only—also since it
suits well to explain the problematic of the subject.
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The task to win the prize may sound deceptively simple: essentially, one is asked
to prove that Yang–Mills theory (for a semi-simple compact structure group G)
exists (in its quantum version) and that there is a minimal mass for the spectrum of
particles. Deceptively simple, since from the physical perspective there is abso-
lutely no doubt that this theory exists (at least for G ¼ SUð2Þ or G ¼ SUð3Þ); it
is one of the corner stones of the standard model of elementary particles, verified
experimentally to an incredible precision, as also emphasized by Fröhlich in his
foreword. However, as pointed out by Faddeev in his lecture (but also indepen-
dently by R. Jackiw), the problematic becomes already more evident if one notices
that the underlying classical Yang–Mills theory is conformal, i.e., scale-invariant in
four space-time dimensions. One way of seeing this is that the overall coupling
constant does not carry any physical units in precisely this dimension. On the other
hand, any mass of a particle to be specified in a physical theory needs to refer to
some standard mass (like 1 kg). The definition of the theory does not carry any such
a mass (or, equally, length) scale on the outset of the problem, i.e., in its classical
formulation in terms of an action functional.

According to Faddeev, the remedy can lie only in the usually so unloved
infinities encountered typically in interacting quantum field theories (QFTs). Those
infinities that plagued the foundators of the theory, subsequently were handled with
increasing success in a more or less well-founded theory of perturbative renor-
malization, but which still cost many contemporary students of theoretical and
mathematical physics a large number of unpleasant hours; the latter fact is the case,
since in particular in standard physics lectures on QFTs, often the experimentally
verified end is used to justify the mathematical means, with a mathematical argu-
mentation that either appears inconsistent or otherwise at least arbitrarily ad-hoc.
On the other hand, the necessary regularization of the theory on the quantum level
will introduce a length-scale, and in this way there can be hope that the resulting
quantum Yang–Mills theory can yield a minimal mass in a well-defined way.

To formulate a mathematically well-defined and conceptually convincing reg-
ularization and renormalization scheme is one of the tasks of a mathematical
approach to quantum field theory (QFT). But it goes even further: one wants the
theory to satisfy a minimal number of axioms that seem to be enforced by com-
patibility with for example special relativity, running in part under the name of
(Einstein) “locality” in this context. More precisely, basic considerations require a
number of properties any “physically acceptable” QFT should satisfy. One version
of such a set of axioms is the one formulated by Wightman. It contains for example
(projective) equivariance of the quantum fields of the theory with respect to the
action of the Poincare group (the isometry group of Minkowski space in four
dimensions). Later, it was permitted also to trade in Euclidean four-space for the
physical Minkowski space; the idea of the so-called Osterwalder–Schrader axioms
being then that mathematically the theory is easier to define and the physical
interpretation results in a second step by an appropriate analytic continuation, called
Wick rotation in physics. The formulation of the Clay prize requires to define 4d
quantum Yang–Mills theory with a rigor of at least such axioms.
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The only problem here is that up to now there is not a single known interacting
quantum field theory in four dimensions satisfying such a typical set of axioms;
there are only examples of such theories in two or three space-time dimensions,
which have, however, no physical significance and are (to be) considered as
so-called “toy-models” only. As Max Kreuzer from the Technical University of
Vienna used to say, torturing herewith some of the more mathematical-conceptually
oriented students (all the more since the statement is true, at least from a physicist
perspective): “The only theories satisfying the Wightman axioms are free theories.”
A free theory is one that physically corresponds essentially to a single particle
travelling alone through empty space not subject to any interactions and thus not
subject to any experimental observations or tests. Clearly, this is highly dissatis-
fying, all the more, since the formulated axioms, in one or the other form, seem
more or less unavoidable from a point of view of principles governing our con-
temporary understanding of quantum field theory.

At this point, we want to mention one of the unfortunate omissions of this volume,
all themore since it contains a glimpse of hope for possiblyfinding an interactingQFT
in four dimensions after all. The omission comes from a recent direction motivated
by String Theory (but not only!) to consider QFTs on so-called noncommutative
space-times. In fact, the idea is already quite old and pursues the goal that the
“fuzzyness” of the underlying space resulting from non-commuting space(-time)
coordinates could cure the problem of the UV-(or “high energy”/“small distance”)
divergencies of QFTs mentioned already above. In the simplest setting, the com-
mutator of the coordinates is a constant matrix H, corresponding to the deformation
quantization of a constant Poisson tensor (in flat space). The resulting product of
functions on space-time can then be described by theMoyal product ofH. In this way,
the classical action functional of the theory under investigation is replaced by one that
is an infinite formal power series inH, reducing to the original functional forH ¼ 0.
It is then this new functional to be used for the “quantization”, i.e., as a starting point of
the construction of a pQFT.

Although first considerations indeed show improvement of the UV-behavior, it
turns out that the problem is not solved in many cases (keyword “UV/IR”-mixing)
and the original hype on the study of such theories seems to have decreased over the
last years again. However, there is one proposal, the so-called Grosse–Wulkenhaar
model, that resists many of the problems of other theories considered in this context
and now even gives some hope to lead to a well-defined interacting QFT in four
dimensions (although it is still too early to make this statement, there are at least
several indications that look promising). One important issue to address at this point
is that certainly the introduction of the tensor H on Minkowski or Eucildean space
spoils its covariance. However, in a simultaneous limit sending H as well as the
volume (made finite for an IR-regularization) to 1, it was shown to lead to a
covariant and local theory on Euclidean fourspace for this model. Reinterpreting
thus this matrix H as another way of regularizing the theory, one is led to an
apparently consistent, non-trivial quantum version of the u4-theory in four
dimensions. The Wick rotation to Minkowski signature is a problem still under
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investigation on the day of this writing, while preliminary computer simulations in
this direction seem promising.

The remarks of the introduction up to here aimed at a complementary argu-
mentation to the one of Fröhlich of why one would wish to have a mathematically
well-founded theory of quantum fields describing known physics at high energies.
Even on the level of perturbation theory, i.e., in terms of formal power series, the
situation concerning physically relevant theories in this context is far from satis-
factory. Theories of physical relevance are in some sense of quite a different nature
than those of relevant mathematical impact: while the first ones are characterized by
so-called “propagating degrees of freedom”, the latter ones are mostly of “topo-
logical” nature. Essentially or at least in a first approximation, the difference lies in
the dimension of the (generic part of the) moduli space of (classical) solutions to the
Euler–Lagrange equations of the theory modulo its gauge symmetries. For physi-
cally relevant theories, this needs to be an infinite-dimensional space, reflecting the
fact that physically observable excitations describing elementary particles can be
generated locally everywhere in space-time, while for topological models this space
is usually finite-dimensional. On the quantum level, the latter type of theories are
then called topological quantum field theories (TQFTs).

One of the most famous examples of a TQFT, if not the most famous one among
mathematicians, is the Chern–Simons theory. The major breakthrough was made by
Witten, who observed that one could recover link and three-manifold invariants via
the path integral quantization of the Chern–Simons classical action functional. The
so-called A- and B-models are other famous examples of TQFTs. They are related
by mirror symmetry to one another, a notion originating from physical intuition,
relating seemingly different, but in the end equivalent quantum string theories.
Mirror symmetry and its relation to enumerative and algebraic geometry became a
major research area of pure mathematics by itself in the mean time.

A generalization of the A- and B-model is the Poisson sigma model (PSM),
celebrating its twentieth anniversary this year. It was discovered in the context of toy
models of coupled gravity and Yang–Mills theories defined on two-dimensional
space-time manifoldsR (Ikeda and Schaller–Strobl). Already at this very beginning it
was realized that the quantization of the PSM is intimately related to the quantization
of the target Poisson manifold—applying a particular non-perturbative quantization
scheme to this theory, the integrality condition of geometric quantization pops up for
the symplectic leaves of the Poisson target (cf also Alekseev–Schaller–Strobl).
However, only in an unparalleld work of Kontsevich it was observed that already the
perturbative quantization of the PSM on a trivial world-sheet topology solves the
by then longstanding problem of deformation quantization of Poisson manifolds,
leading him to his famous formality theorem (several steps of this procedure were
retraced in a series of works by Cattaneo-Felder).

This is a good example of the use of (T)QFTs in mathematics: one trades in the
apparently simpler problem of quantization of a Poisson structure on R

n for the
quantization of a field theory the target of which is this Poisson manifold M ¼ R

n.
This now is an infinite dimensional space, the functional being defined over vector
bundle morphisms from TR to T�M. Moreover, one needs to factor out an infinite-
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dimensional gauge group, the quotient yielding in general a complicated, singular,
but in this case finite-dimensional space. However, it turns out that the application
of standard techniques developed in the context of perturbative QFTs with gauge
symmetries leads to formulas relevant to the finite dimensional target space that
otherwise proved resistant over decades for being invented directly!

The flow is expected to also go into the other direction, however, i.e., one
expects to learn from TQFTs and related mathematics for how to sharpen our
approaches for the construction of physically more relevant QFTs. It is in this spirit
instance that Tamarkin wrote a 100 pages paper only about the renormalization
of the PSM—in a standard physics approach the perturbative renormalization of
such a topological model would be dealt with in at most a few paragraphs. The
functorial approach to TQFTs, as developed also at the examples of topological
strings (like the A- and B-model), led to an axiomatic definition of them in terms
of the Atyah–Segal axioms. In the lectures of Fredenhagen about the formulation of
pQFTs on curved space-times of Lorentzian signature one finds a reformulation of
standard QFT axioms closely related to such a functorial perspective.

For the present, as mentioned rather mathematically oriented volume on QFT
(cf. also the foreword of Fröhlich), this is maybe one of the main perspectives from
our editors’ side to its contributions: the hope that, on the long run, topological
models and mathematics in general can have something to say about (also physi-
cally relevant) QFTs. It is thus not so surprising that one out of in total four parts to
this book is devoted to mathematics around the Chern–Simons theory. Subsequent
to Witten’s work, Reshetikhin and Turaev proposed a rigorous mathematical con-
struction of a (nonperturbative!) quantization of the Chern–Simons theory in terms
of quantum groups and modular tensor categories. And despite this great
achievement, there are many questions that remain open in the context of
Chern–Simons theory, both of computational and theoretical nature.

In the context of the PSM, on the other hand, one seems still quite far from a
nonperturbative quantization. So, this model is not yet really defined as a TQFT—in
the sense of the Atiyah–Segal axioms, although there is no serious doubt that such a
formulation should exist. However, already now the PSM teaches us at least two
more lessons related to the present volume: First, as found by Cattaneo and Felder,
the reduced phase space of the PSM, i.e. its Weinstein symplectic quotient, when
smooth, carries the structure of a symplectic groupoid (cf. also the contribution of I.
Contreras to this volume). And this groupoid is precisely the one that integrates the
Lie algebroid T�M associated to the target Poisson manifold M, a construction
suggesting the one needed for the integration problem of general Lie algebroids to
Lie groupoids, finally solved by Crainic and Fernandes (in the sense of necessary
and sufficient conditions for a smooth integration to exist). This is only one of the
examples for a renewed interest in geometrical questions related to field theories
already on the classical side. Such an understanding of the classical theory is also
important in order to identify the difficulties specific to the quantum side when trying
to provide rigorous constructions of QFTs. One of the four parts to this book is thus
devoted to merely classical or semi-classical investigations of field theories.
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Second, the PSM can be viewed as a Chern–Simons theory for the Lie algebroid
T�M: while the integrand of the Chern–Simons theory for an ordinary Lie algebra
arises as a transgression of the Pontryagin class, “trðF ^ FÞ ¼ dðCSÞ”, likewise
the integrand of the PSM relates to a characteristic 3-form class, “Fi ^ Fi ¼
dðPSMÞ” where here F corresponds to the obstruction of the vector bundle mor-
phism TR ! T�M to be a Lie algebroid morphism—it has a 1-form part Fi (from
the base map) in addition to a standard 2-form part for curvatures. In fact, there is a
topological sigma model that reduces to the PSM in two dimensions and includes
the Chern–Simons theory in three, and this is the so-called AKSZ sigma model
(after Alexandrov–Kontsevich–Schwarz–Zaboronski; cf. the contribution of Bon-
avolontà–Kotov as well as the introduction of one of us to this book); and even the
relation to higher characteristic classes extends to those (Kotov–Strobl, cf. also
Fiorenza–Rogers–Schreiber as well as the contribution of Fiorenza–Sati–Schreiber
to this volume). In general, there is a—to our mind useful—trend to higher structures
in theories of relevance to mathematical physics and this is also reflected partially in
the present book.

One of the, from a mathematical point-of-view, most well-understood classes of
QFTs which are not topological consists of 2-dimensional conformal field theories
(CFTs). In this context the axiomatization of the operator product expansion has led
to the notion of vertex (operator) and chiral algebras, which are now widely used
both in mathematics and physics. There have been several attempts to generalize
these and base the axiomatics of perturbative QFT and the renormalization pro-
cedure on the operator product expansion: Kontsevich (unpublished), Hollands, and
Costello–Gwilliam (see e.g., the contribution of Costello–Scheimbauer to this
volume) in the Euclidean context, Fredenhagen et al in the Lorentzian context
(cf. the contribution of Fredenhager–Rejzner to this volume). All these approaches
share two things: the appearance of a pattern resembling the one of little disk
operads, which axiomatizes the physical concept of “locality,” and the use of
techniques from deformation quantization.

The concept of locality in 2d conformal field theory can also be formulated by
defining a CFT as a functor from a suitable category of cobordisms to vector spaces
(cf. Atiyah–Segal) satisfying certain properties. The foundational work of Beilin-
son–Drinfeld on chiral algebras exhibits a close relation between these two
approaches to the concept of locality: namely, chiral homology associates a CFT à
la Atiyah–Segal with any (conformal) vertex algebra. Recently, Lurie defined a
topological analog of chiral homology, known as factorization homology: it
assigns a TQFT to any algebra over the little n-disk operad, or to any En-algebra
(cf. contributions of Markarian and Tanaka to this volume for an approach to
Chern–Simons theory using factorization homology), which can be proven to be
fully extended (Scheimbauer). Fully extended TQFTs are known, after the cobor-
dism hypothesis (Lurie, Baez–Dolan), to be the “most local” TQFT (cf. also the
contibutions of Fiorenza–Sati–Schreiber and Cattaneo–Mnev–Reshetikhin to this
volume). Factorization/chiral homology can actually be defined for any factorization
algebra (Costello–Gwilliam); a new concept that encompasses the ones of En-,
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vertex and chiral algebras, and whose definition was designed to encode the general
algebraic structure of local observables of an arbitrary field theory. It has
applications that range from conjectures on renormalization of lattice models
(cf. the introduction of one of us to this book) to algebraic topology (cf. Ginot’s
contribution to the last part of this volume).

We now give a very brief overview on the contents of the book, which starts
with an introductory chapter that emphasizes the importance of derived and
homotopical (or higher) structures in the mathematical treatment of TQFTs.

Summary of Part I

The first Part is about local aspects of perturbative quantum field theory, with an
emphasis on the axiomatization of the algebra behind the operator product
expansion and the ideas coming from deformation quantization techniques.

It begins with a Chapter, by Fredenhager–Rejzner, summarizing the approach
that was developed for the Lorentzian signature and applicable to also curved
(globally hyperbolic) space-times, applying a quantization procedure to QFT by
adapting deformation quantization to its setting. It then continues with a contri-
bution, by Costello–Scheimbauer, on partially twisted supersymmetric four-
dimensional gauge theories that are studied using the foundational work of Costello
and Costello–Gwilliam. The last chapter, written by Wendland, is a short review of
Conformal Field Theory, summarizing in particular recent progress made in that
field and its relation to the geometry of K3 surfaces and Mathieu moonshine.

Summary of Part II

The second Part focuses on Chern–Simons (CS) gauge theories.
It begins with a Chapter of Andersen–Kashaev on a construction of SLð2;CÞ

quantum CS theory by means of Teichmüller theory and the quantum dilogarithm
of Faddeev. This is followed by a Chapter of Fiorenza–Sati–Schreiber, exhibiting
higher structures in a systematic way in the context of an extended prequantum
theory of CS-type gauge field theories. The subsequent Chapter consists of two
contributions, one by Markarian and one by Tanaka, and deals with the relation
between three-dimensional CS theory and factorization homology. Part II is com-
pleted by a review of Thuillier about the use of Deligne–Beilinson cohomology for
an alternative or deepened understanding of abelian Uð1Þ CS theory.
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Summary of Part III

The third Part of this book is devoted to a classical or at most semi-classical
analysis of field theories.

It begins with a Chapter of Cattaneo–Mnev–Reshetikhin, introducing some very
recent work on the treatment of constraints and boundary conditions in classical
field theories, with an emphasis on the BV and BFV formalism. The subsequent
contribution, written by Kotov–Bonavolontà, deals with the BV-BRST formalism
in the context of AKSZ sigma models, improving previous local results to a global
level. The following Chapter of Li-Bland–Ševera provides a beautiful treatment
of the (quasi-)Hamiltonian and Poisson geometry of various moduli spaces of flat
connections on quilted surfaces, which are relevant in classical Chern–Simons and
WZW theories. The final Chapter of this Part aims at understanding the construction
of the sympletic groupoid associated to the PSM from the axiomatics of Frobenius
algebras.

Summary of Part IV

The fourth Part consists of a single Chapter written by Ginot. It provides a detailed
account of the mathematical foundations of Factorization Algebras and Factorization
Homology, making extensive use of higher homotopical structures, thus closing the
circle opened in the introductory Chapter.

We would like to conclude this preface with a quotation from the Clay Institute’s
official description of the “Yang–Mills existence and Mass gap” problem as for-
mulated by Arthur Jaffe and Edward Witten:

… one does not yet have a mathematically complete example of a quantum gauge theory in
four-dimensional space-time, nor even a precise definition of quantum gauge theory in four
dimensions. Will this change in the 21st century? We hope so!

Wewholeheartedly share this wish, and hope in turn that some of the mathematical
concepts presented in this book will help to better understand, one day, quantum field
theories in four dimensions.

France Damien Calaque
Thomas Strobl
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A Derived and Homotopical View
on Field Theories

Damien Calaque

Homological technics have beenwidely used in physics for a very long time. It seems
that their first appearance in quantumfield theory goes back to the so-calledFaddaev-
Popov ghosts [16], which have later been mathematically identified as Chevalley
generators. In more geometric terms one would nowadays justify their appearance
as follows: the quotient space of the phase space by symmetries of the Lagrangian
L might be singular and one shall rather deal with the quotient stack instead.

The usefulness of (higher) stacks in quantum field theory is argued in Chap.6.
Let me anyway emphasize that the quotient stack carries some relevant information
(such as finite gauge symmetries) that can’t be encoded by simply adding new fields.

Another crucial step is the introduction of anti-fields and anti-ghosts. A geometric
explanation for anti-fields is that the quantities one wants to compute localize on the
critical points of L, which might be degenerate or non-isolated. A smart idea is to
consider the derived critical locus of L instead, which one defines as the derived
intersection of the graph of dd RL with the zero section inside the cotangent of the
phase space. A derived intersection can be concretely computed by first applying a
(homological) perturbation to one of the two factors and then taking the intersection:
anti-fields then simply appear as Koszul generators.

The derived critical locus inherits a (−1)-shifted symplectic structure (see below)
which is at the heart of the anti-bracket formalism (a.k.a. BV formalism) [5]. The
symmetries of the Lagragian act in a Hamiltonian way on the derived critical locus,
and anti-ghosts appear when one is taking the derived zeroes of the moments.

We refer to [25] for related considerations and a wonderful exposition of the
homological nature of the BV formalism.

All this seems to be nowadays well-known, but we would like to emphasize two
points:

• the usual homological approach to higher structures (see e.g. Chaps. 3 and 10) does
not distinguish clearly the “derived” and “stacky” directions, while the rapidly
emerging field of derived geometry takes care of it.
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2 D. Calaque

• one has to make use of derived geometry in order to get symplectic structures: the
use of non-derived stacks in Chap. 6 systematically destroys the non-degeneracy
of Hamiltonian structures.

The second point is very much related to what happens with symplectic structures on
moduli spaces (which are deeply studied in Chap.11). For instance, the moduli stack
of flatG-bundles (G being a compact Lie group) on a closed oriented surfacedoes not
carry any symplectic structure for very simple degree reasons: its tangent complex
sits in cohomological degrees −1 and 0. It is only when restricted to a specific locus
that the natural pre-sympectic form becomes non-degenerate. But there is a natural
derived stack of flat G-bundles on a closed surface which is symplectic (its tangent
complex sits in degrees −1, 0 and 1).

In this introductory chapter we provide an informal and partial discussion of the
usefulness of derived and homotopical technics in field theories.

We begin with a description of field theories of AKSZ type [2] in the frame-
work of derived (algebraic) geometry. The derived geometric approach makes very
transparent the fact that this class of theories fits into the axiomatic framework of
Atiyah–Segal [3, 26]. We refer to Chap.9 for a detailed discussion of the compati-
bility between the BV formalism and the Atiyah–Segal framework.

We thendiscuss twomathematical formulations of the physical concept of locality:
factorization algebras and fully extended field theories. We put a lot of emphasis on
topological field theories and say a few words about conformal field theories. We
also mention how these two approaches are related.

We finally end this Chapter with the example of 3d Chern–Simons theory with a
finite gauge group and sketch how one could recover the results of [17, Sect. 4] from
this approach.

1 Classical Fields and the AKSZ-PTVV Construction

Classical fields are usually described mathematically as sections of (infinite
dimensional) fiber bundles. A large class of theories, called σ -models, actually
describe fields as maps. In the seminal paper [2] the authors introduce the notion
of Q-manifolds, that allow one to deal with many theories as σ -models. Moreover,
the so-called AKSZ-construction make them fit into the framework of the BV formal-
ism [5] (a.k.a. anti-bracket formalism).

A mathematical treatment of perturbative quantum field theory within the frame-
work of the BV quantization (not only for AKSZ theories) can be found in [13] (see
also Chap.9 for examples).
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A Derived and Homotopical View on Field Theories 3

1.1 Transgression

At the heart of the AKSZ formalism [2] and its modern reformulation in [22] (known
as PTVV formalism, which is formulated in the language of derived geometry1)
one finds the so-called transgression procedure. Let X , Y be generalized spaces
(Q-manifolds in the AKSZ formalism, derived stacks in the PTVV formalism). Let
ω be a symplectic form of cohomological degree n on Y and assume that X carries
an integration theory of cohomological degree d. Then the formula

∫

X

ev∗ω ,

where ev : X × Map(X, Y ) −→ Y is the evaluation map, defines a symplectic form
of cohomological degree n − d on the mapping space Map(X, Y ).

1.1.1 AKSZ versus PTVV: Integration Theory

There are subtle but important differences between the AKSZ and the PTVV for-
malisms.

In the case of the AKSZ formalism, the integration theory one is referring to is
nothing but the Berezin integration [7]. Here are three examples of Q-manifolds
carrying an integration theory of cohomological degree d in this sense:

1. (V [1], 0), where V is vector space of dimension d.
2. Σd R := (

T [1]Σ, dd R
)
, where Σ is a compact oriented differentiable manifold

of dimension d.
3. ΣDol := (

T 0,1[1]Σ, ∂
)
, where Σ is a compact complex manifold of dimension

d equipped with a nowhere vanishing top degree holomorphic form η.

Within the PTVV formalism an integration theory of degree d on a derived stack
X is a chain map [X ] : RΓ (OΣ) −→ k[−d], where RΓ (OΣ) denotes the complex
of derived global functions on Σ , which satisfies a suitable non-degeneracy condi-
tion (the definition of non-degeneracy mimics the abstract formulation of Poincaré
duality). Any integration theory of cohomological degree d on a Q-manifold in
the AKSZ sense induces an integration theory on its associated derived stack in the
PTVV sense. But:

different Q-manifolds might have equivalent associated derived stacks.

This is an important point. Derived stacks are model-independent: it doesn’t matter
how a derived stack is constructed. In the physics language one could view derived
stacks as reduced phase space while Q-manifolds carry some information about

1 We refer to [27] and references therein for an introduction to derived geometry.
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the original phase space (e.g. the moduli stack of flat G-bundles, compared the
Q-manifold of all G-connections).

Note that there is a stack with an integration theory that can’t be described using
Q-manifolds. LetΣ be a Poincaré duality d-space; there is stackΣB classifying local
systems on Σ (it can be explicitely described using a combinatorial presentation of
Σ , such as a triangulation or a cellular structure). Derived global functions on ΣB

are cochains on Σ and thus the fundamental class [Σ] determines an integration
theory of degree d on ΣB .

1.1.2 AKSZ versus PTVV: Symplectic Structures

The model independence of derived stacks forces all definitions to be homotopy
invariant and as such the required properties can’t be strictly satisfied (i.e. they might
only hold up to coherent homotopies). This is particularly visible when it comes
to closed forms. Roughly speaking, the complex of forms on a derived stack (or
a Q-manifold) has two “graduations”: the weight (k-forms have weight k) and the
cohomological degree. Similarly the differential has two components: the internal
differential dint (the Lie derivative with respect to the cohomological vector field Q)
and the de Rham differential dd R . In the PTVV formalism a k-form of degree n is a
weight k dint -cocycle ω0 of cohomological degree n, and

being a closed form is an additional structure.

Namely, a closed k-form of degree n consists in a sequence (ω0, ω1, . . . ) where

• ω0 is a k-form of degree n.
• ωi has weight k + i and cohomological degree n.
• dd R(ωi ) ± dint (ωi+1) = 0.

Somehow we are considering forms which are closed up to homotopy, while the
AKSZ formalism only considers closed forms which are strictly closed.

Something similar happens for the non-degeneracy property when one defines
symplectic structures. An n-symplectic structure is the data of a closed 2-form of
degree n such that its underlying 2-form of degree n is non-degenerate (recall that
in the AKSZ formalism the underlying form coincides with the closed one): non-
degeneratemeans that themorphism it induces between the tangent and the cotangent
complexes is a quasi-isomorphism (while it is required to be an isomorphism in the
AKSZ formalism).

Remark 1 The AKSZ formalism also makes an extensive use of infinite dimensional
differential geometry, while derived geometry is designed so that many derived map-
ping stacks are still locally representable by finite dimensional objects (it is often
the case that the reduced phase space is a finite dimensional object even though the
original phase space is not).
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Example 1 Here are some nice examples of symplectic structures in the derived
setting:

• if G is a compact Lie group then BG = [∗/G] carries a 2-symplectic structure
(see [22]).

• if G is any Lie group then [g∗/G] = T ∗[1](BG) carries a 1-symplectic structure
(see [8]).

• if G is a compact Lie group then [G/G] = Map(S1
B, BG) carries a 1-symplectic

structure (see [8, 23]).
• the derived critical locus of a function carries a (−1)-symplectic structure (see
[22]).

1.2 Transgression with Boundary

In [10, 11] (see also Chap.9) the AKSZ construction is extended to the case when the
source of the σ -model has a boundary and the authors use it to produce field theories
that satisfy the axiomatics of Atiyah–Segal [3, 26]. The analogous construction also
exists for the PTVV formalism (see [8]).

1.2.1 AKSZ versus PTVV: Lagrangian Structures

Let X
f−→ Y be a morphism of generalized spaces and assume we have an n-

symplectic structure ω on Y . As usual in derived geometry (and more generally
in homotopy theory), being Lagrangian is not a property but rather an additional
structure. Namely, a Lagrangian structure on f is a homotopy γ (inside the space of
closed 2-forms of degree n on X ) between f ∗ω and 0 such that the underlying path
γ0 between f ∗ω0 and 0 is non-degenerate. In more explicit terms:

• γ = (γ0, γ1, . . .) is such that f ∗ω0 = dint (γ0) and

f ∗ωi = dint (γi ) ± dd R(γi−1) .

• the identity satisfied by γ0 ensures that the map TX −→ f ∗
LY [n] given by f ∗ω0

lifts to TX −→ L f [n + 1], where L f is the relative cotangent complex. The
non-degeneracy condition says that it is a quasi-isomorphism.

Usual Lagrangian subspaces are Lagrangian in the above sense, but any kind of map
can carry a Lagrangian structure. There are actually Lagrangian structures arising in
a quite surprising way:

Example 2 (See [8, 9, 23]). (a) A Lagrangian structure on the morphism X −→
∗(n+1), where ∗(n+1) is the point equipped with its canonical (n + 1)-symplectic
structure, is the same as an n-symplectic structure on X .

http://dx.doi.org/10.1007/978-3-319-09949-1_9
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(b) A moment map μ : X −→ g∗ induces a Lagrangian structure on the map
[μ] : [X/G] −→ [g∗/G].
(c) A Lie group valued moment map (in the sense of [1]) μ : X −→ G, where G is
a compact Lie group, induces a Lagrangian structure on the map [μ] : [X/G] −→
[G/G].

1.2.2 Relative Integration Theory

A relative integration theory (a.k.a. non-degenerate boundary structure or relative

orientation, see [8]) on a morphism X
f−→ Y is the data of an integration theory [X ]

on X together with a homotopy η between f∗[X ] and 0 that is non-degenerate.2

Example 3 There are two important examples of relative integration theories on a
morphism. Consider a compact oriented (d +1)-manifoldΣ with oriented boundary
∂Σ . Then the morphisms (∂Σ)d R −→ Σd R and (∂Σ)B −→ ΣB both carry a
relative integration theory.

Let X
f−→ Y be a morphism together with a relative integration theory ([X ], η),

and let Z be equipped with an n-symplectic structure ω. It is shown in [8] that

∫
η

ev∗ω

defines a Lagrangian structure on the pull-back morphism Map(Y, Z) −→
Map(X, Z).

1.2.3 Field Theories from Transgression with Boundary

Given a generalized space Y together with an n-symplectic structure, the process
of transgression with boundary allows one to produce a functor Map(−, Y ) from a
category with

• objects being generalized spaces with an integration theory,
• morphisms from X1 to X2 being cospans X1

∐
X2 → X12 equippedwith a relative

integration theory,3

• composition being given by gluing: X12 ◦ X23 := X12
∐
X2

X23.

2 We won’t detail what non-degeneracy means here, but simply say that its definition again mimics
the main abstract feature of relative Poincaré duality.
3 Here an below, ??means thatwe consider the opposite integration theory or the opposite symplectic
structure on ?? (it should be clear from the context).
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to a category with

• objects being generalized spaces with a shifted symplectic structure,
• morphisms from Z1 to Z2 being Lagrangian correspondences Z12 → Z1 × Z2,
• composition being given by fiber products: Z12 ◦ Z23 := Z12 ×

Z2

Z23.

If we restrict objects of the source category to those of the form described in
Example3, then we precisely get a topological field theory taking values in a cat-
egory of Lagrangian correspondences. Note that usually, categories of Lagrangian
correspondences are ill-defined (as some compositions might not be well-behaved),
but working in the homotopy setting and considering derived fiber products resolves
this problem.

Remark 2 The gadget one actually has to work with is called an (∞, 1)-category,
and one shall emphasize that categroids (which appear in the main references for
Chaps. 5 and 12) are often shadows of an underlying (∞, 1)-category (in otherwords,
even though some compositions might seem to be ill-defined, they actually happen
to be well-defined up to homotopy).

1.3 Examples

We now provide examples of classical topological field theories that can be treated
using the above approach, even though some superconformal field theories (as
described in Chap.4) can be obtained as well.

1.3.1 Classical Chern–Simons Theory

Classical Chern–Simons theory can be recovered if one starts with Y = BG for a
compact Lie group G. Details can be found in [23]. One can also include all kinds
of boundary conditions (Lagrangian morphisms) or domain-walls (Lagrangian cor-
respondences), which allow to recover all the symplectic moduli spaces of flat con-
nections over quilted surfaces that are obtained via the quasi-Hamiltonian formalism
in Chap.11.

1.3.2 Moore–Tachikawa Theory

There is a 2d TFT that have been sketched by Moore and Tachikawa [21], of which
the target category is a certain category of holomorphic symplectic varieties. This
category is a particular case of our category of Lagrangian correspondences (see [9])
and it is very likely that their TFT can be obtained from mapping spaces.

1.3.3 Poisson σ -model

Let (X, π) be a Poissonmanifold and consider itsπ -twisted 1-shifted cotangentY :=
TX [−1]π . The derived stack Y , resp. the zero section morphism X −→ Y , can be

http://dx.doi.org/10.1007/978-3-319-09949-1_5
http://dx.doi.org/10.1007/978-3-319-09949-1_12
http://dx.doi.org/10.1007/978-3-319-09949-1_4
http://dx.doi.org/10.1007/978-3-319-09949-1_11


8 D. Calaque

shown to carry a 1-symplectic structure, resp. a Lagrangian structure. One can show

that themapping stack from to Y with boundary condition in X , which happens
to be the derived self-intersection G := X ×h

Y X of X into Y , is 0-symplectic (see [8,
9, 27] for general statements about symplectic structures on relative derivedmapping

stacks). The cobordism with boundary is sent to a Lagrangian correspondence

betweenG×G andG, which turnsG into an algebra object within the (∞, 1)-category
of Lagrangian correspondences. For instance, associativity of composition is given
by the following diffeomorphism:

In [12] Contreras and Scheimbauer show that G is actually a Calabi-Yau algebra
(in the sense of [19]), which clarifies themysterious axioms of a relational symplectic
groupoid of Chap.12.

2 Mathematical Formulations of Locality

TheAKSZ-PTVV theories are expected to be local, in the sense that one can compute
everything from local data that one would later glue. In this section we briefly sketch
two mathematical approaches to the concept of locality.

2.1 Factorization Algebras

A factorization algebra E over a topological space X consists of

• the data of a vector space (or a cochain complex) EU for every open subsetU ⊂ X .
• the data of a linear map (or a chain map)

⊗
i∈I EUi −→ EV for every inclusion∐

i∈I Ui ⊂ V of pairwise disjoint open subsets.

satisfying the following properties:

• associativity, that can more or less be depicted as follows:

U11 U12 U21

U1 U2

V

• gluing (one can reconstruct EU from a nice open cover U of U and EU ).

Remark 3 The gluing property is typically a locality property.

We refer to Chaps. 3 and 13 for precise definitions.

http://dx.doi.org/10.1007/978-3-319-09949-1_12
http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_13
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Example 4 (Topological quantum mechanics, see [14]). Let A be an associative
algebra (e.g. A = End(V )) and let (Φt )t be a 1-parameter group of automorphisms

of A (e.g.Φt = e− i t
�

H is the time evolution).We also give ourselves a right A-module
Mr (e.g. V ∗) and a left A-module M� (e.g. V ), together with initial and final states
vini t ∈ Mr and v f in ∈ M�. From these data one can describe a factorization algebra
E on the closed interval X = [0, 1].
• on open intervals of X we set: E[0,s[ = Mr , E]t,u[ = A and E]v,1] = M�.
• here are examples of the factorization product:

− − − − − − −

〈

〈 〈

• •
⊗ ⊗⎥

⎥ ⎥ ⎥ ⎥

• one can show that E[0,1] = Mr ⊗
A

M� (C in our example).

• we finally interpret
• • 	−→ 〈vini t |ΦsaΦ1−t |v f in〉 as an expectation value.

2.1.1 Factorization Algebras in the BV Formalism

Producing factorization algebras from the local observables in the BV formalism
is the main achievement of Costello–Gwilliam (see [14], and also Chap.3). At the
classical level they consider observables with compact support in order to get fac-
torization algebras. It seems that for topological and conformal AKSZ (or PTVV)
theories one can consider mapping spaces with compact support in order to get a fac-
torization algebra structure on classical local observables. In particular it is expected
that the transgression procedure (both for symplectic and Lagrangian structures) still
makes sense locally and glues well.

The main difficult part in Costello–Gwilliam work is of course the quantization
of these classical theories. One has to consider effective field theories in the sense
of [13] and renormalize (when possible). In the 2d conformal case one gets in the
end a structure which is very similar to the one of a vertex algebra (see Chap.3 for
a precise statement and Chap.4 for the definition of a vertex algebra and its use
in conformal field theory). In the topological case one obtains in the end a locally
constant factorization algebra: onRn this boils down to the datum of an algebra over
the little disks operad.

Renormalization is actually trivial in the topological case, even though it is not
so obvious in Costello’s framework. We propose here a different approach to the
quantization of classical topological BV theories. The first step is to discretize the
theory one is working with, so that one can easily write a factorization algebra of
classical discrete local observables that carries a bracket of degree 1. The main point
is that on a finite region the algebra of local observable is finitely generated, so that
BV quantization can be performed very easily (there is no need to apply any kind of
energy cut-off as we have only finitely many states).

http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_4
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The final and very hard step is to make the mesh of the discretization tend to zero.
There is some magic that happens for topological theories:

there is no need to make the mesh tend to zero.

The reason is that, even though the factorization algebra of local observables is not
locally constant, it becomes locally constant at a sufficiently large scale (the scale
depending on the size of the mesh).

Remark 4 Understanding the renormalization procedure for lattice field theories in
terms of factorization algebras could lead to a non-perturbative alternative to the
constructions of QFTs proposed in [13, 14]. At the moment we4 can only recover
theWeyl algebra from a discrete 1d model. The next step would be to understand the
renormalization of discrete models in 2 dimensions (with an emphasis on conformal
ones).

2.1.2 Locally Constant Factorization Algebras from Discrete Models

One can prove that any factorization algebra that is locally constant above a given
scale gives rise to a locally constant factorization algebra that coincides with the
original one above that scale. The idea is very simple: discard the badly behaved part
(the one below the given scale) and replace it by a rescaled copy of what happens at
large scale... note that implementing this idea actually requires the use of the higher
categorical machinery.

Let us provide a potential application of this quite intuitive idea to lattice models.
We will formulate things in dimension 2 but it works in arbitrary dimension. Let
H, V be vector spaces of states (horizontal and vertical) and let R ∈ GL(H ⊗ V )

be an interaction matrix: R jl
ik = exp

(
− 1

kT ε
jl
ik

)
. Computing a state sum is nothing

but tensor calculus:

ek el

ek el

ei

ej

ei

ej

Rjm
ik Rnl

i mRj l
nkem

en

One can define a factorization algebra FR which associates the space of its
boundary states to a given open region ofR2, and for which the factorization product
can be depicted in the following way:

4 This is a joint project with Giovanni Felder.
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ek el

ek el

ei

ej

ei

A

B

ej

A B Ajm
ik Rnl

i mBj l
jj ll

ii kk
nk

Note that the lattice Z2 acts on global sections FR(R2) of FR .

Conjecture 1 (Kontsevich). C•(
Z
2,FR(R2)

)
has an action of the (chains on the)

little disks operads in dimension 2.

The idea to prove this conjecture is to define a new factorization algebra F̃R , very
similar to FR but carrying an additional discretized de Rham differential,5 such that

• F̃R is locally constant at scale > 2.
• F̃R(R2) = C•(

Z
2,FR(R2)

)
.

This would imply Kontsevich’s conjecture.

2.2 Fully Extended Field Theories

The axiomatics of fully extended field theories is a higher categorical analog of
Atiyah–Segal axiomatics. Roughly speaking, it is a symmetricmonoidal functor from
a symmetricmonoidal higher category of cobordisms to another symmetricmonoidal
higher category. Higher categories of cobordism can be informally described as
follows (we refer to [19] for precise definitions in the topological setting):

• objects are 0 dimensional manifolds of a certain type.
• 1-morphisms are 1-cobordisms between these.
• 2-morphisms are 2-cobordisms,
• . . .

It is only for topological field theories that the above has been formalized in
a mathematically precise way (see [4, 19]). The cobordism hypothesis (which is
now a Theorem thanks to the work of Lurie) states that fully extended topological
field theories are completely determined by their value on the point. One can see
this as a very strong locality property (everything can be reconstructued from the
point!). Objects that are images of the point under fully extended TFTs are called
fully dualizable: being fully dualizable is a very strong finiteness requirement.

We refer to [18] for a very nice review of the cobordism hypothesis (note that the
cobordism hypothesis appears implicitly in Chaps. 6 and 9).

5 Roughly, FR carries a discrete flat connection and F̃R is the factorization algebra of derived flat
sections of FR .

http://dx.doi.org/10.1007/978-3-319-09949-1_6
http://dx.doi.org/10.1007/978-3-319-09949-1_9
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2.2.1 Examples of Fully Extended TFTs

In dimension 1, fully dualizable objects are genuine dualizable objects (e.g. finite
dimensional vector spaces).

Classical field theories of AKSZ-PTVV type are fully extended. This has been
announced (without proof) in [11] and [8, 9]. The target category to work with is a
suitable category of iterated Lagrangian correspondences, that is currently the subject
of ongoing investigations.

It is expected that modular tensor categories are fully dualizable in the 4-category
of braided monoidal categories, leading to a large class of fully extended 4d TFTs.

2.2.2 Chiral and Factorization Homologies

Locality in 2d conformal field theory can be formalized either usingmodular functors
or vertex algebras. Chiral homology, that was invented by Beilinson–Drinfeld [6],
allows one to produce a modular functor out of a (quasi-conformal) vertex algebra.

Factorization homology (a.k.a. topological chiral homology) achieves the same
goal in the topological setting. If A is an algebra over the little disks operad and M is
a framed manifold then factorization homology of M with coefficients in A, denoted

∫

M

A ,

is defined as the “integral”, over all open balls in M , of the value of A on them.
Lurie proved [19, 20] that factorization homology is indeed a TFT, and conjectured
that it is fully extended. Chapter 7 presents perturbative Chern–Simons theory in
dimension 3 as a by-product of factorization homology.

The fact that factorization homology is a fully extended TFT was recently proved
in [24].

2.2.3 Chern–Simons Theory with a Finite Gauge Group

Let G be a finite group.

Remark 5 The cotangent complex of BG reduces to {0}, so that BG is trivially
n-symplectic for any n ∈ Z. Therefore symplectic structures won’t play a significant
rôle for this specific example. But they are essential when one deals with non-discrete
compact Lie groups.

We have a 3d fully extended TFT with values in a higher category of iterated corre-
spondences that is given by Map(−, BG).

It is very unlikely that the category of correspondences can provide numerical
invariants. In order to get that we have to “linearize” our field theory.

Let us sketch how to do this in dimensions 1-2-3:

http://dx.doi.org/10.1007/978-3-319-09949-1_7
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• we replace Map
(
S1

B, BG
) = [G/G] by its category of quasi-coherent sheaves

QCoh([G/G]), which is nothing but the category Rep
(
D(G)

)
of (complexes of)

representation of the Drinfeld double of G.
• the correspondence given by Map(Σ, BG) for a 2-cobordism Σ can be used to
produce a convolution functor QCoh([G/G]k) −→ QCoh([G/G]l).

• mapping spaces from 3d manifolds produce natural transformations of functors.

Remark 6 One can even associate the monoidal category QCoh(BG) = Rep(G)

to the point. It is important to notice that not every object is fully dualizable in the
3-category of monoidal categories. But Rep(G) surely is,6 so that we have a nice
and linear enough fully extended TFT.

It would be interesting to get back this fully extended Chern–Simons TFT with
finite gauge group by means of factorization homology. In order to do so one shall
construct a locally constant factorization algebra on R

3 that is locally constant. We
would suggest to use a discrete model.

Remark 7 Observe that Rep(G) is a fusion category and is thus, after [15], a fully
dualizable object in the symmetric monoidal 3-category of monoidal categories. It
thus produces a fully extended 3d TFT. The fact that the partition function of this
TFT can be computed via a state sum (see [28]) is a strong evidence in favor of our
suggestion.

Onemust say that already for Yang-Mills theory in dimension 2 it is an interesting
task to produce an E2-algebra from the data of a Hopf algebra with an integral, by
means of a discrete model.
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Part I
Locality in Perturbative QFTs

One of the most well-understood class of quantum field theories from a mathematical
point of view consists of two-dimensional conformal field theories (CFT). In this
context the axiomatization of the operator product expansion has led to the notion of
vertex (operator) and chiral algebras, which are nowwidely used both in mathematics
and physics. There have been several attempts to generalize these and base the
axiomatics of perturbative QFT and the renormalization procedure on the operator
product expansion: Kontsevich (unpublished), Hollands, and Costello-Gwilliam in
the Euclidean context, Fredenhagen et al. in the Lorentzian context. All these
approaches share two things: the appearance of a pattern ressembling that of little disk
operads, and the use of techniques from deformation quantization.

Part I begins with “Perturbative Algebraic Quantum Field Theory” (written by
Klaus Fredenhagen and Katarzyna Rejzner) summarizing the approach that was
developped for the Lorentzian signature. It then continues with “Lectures on
Mathematical Aspects of (Twisted) Supersymmetric Gauge Theories” (written by
Kevin Costello and Claudia Scheimbauer) about Costello's approach to super-
symmetric four-dimensional gauge theories, in the Euclidean context, where the
notion of factorization algebra appears to be proeminent.

Part I ends with “Snapshots of Conformal Field Theory” (written by Katrin
Wendland) which reviews some recent developments in (super)conformal field
theory. It reports in particular some very exciting considerations about the geometry
of K3 surfaces and the Mathieu Moonshine.
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http://dx.doi.org/10.1007/978-3-319-09949-1_3
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Perturbative Algebraic Quantum Field Theory

Klaus Fredenhagen and Katarzyna Rejzner

Abstract These notes are based on the course given by Klaus Fredenhagen at the
Les HouchesWinter School inMathematical Physics (January 29–February 3, 2012)
and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for
the Research Training Group 1670 (February 6–11, 2012). Both courses were meant
as an introduction to modern approach to perturbative quantum field theory and are
aimed both at mathematicians and physicists.

1 Introduction

Quantum field theory (QFT) is at present the by far most successful description of
fundamental physics. Elementary physics is to a large extent explained by a specific
quantum field theory, the so-called StandardModel. All the essential structures of the
standard model are nowadays experimentally verified. Outside of particle physics,
quantum field theoretical concepts have been successfully applied also to condensed
matter physics.

In spite of its great achievements, quantum field theory also suffers from sev-
eral longstanding open problems. The most serious problem is the incorporation
of gravity. For some time, many people believed that such an incorporation would
require a radical change in the foundation of the theory, and one favored theories
with rather different structures as e.g. string theory or loop quantum gravity. But
up to now these alternative theories did not really solve the problem; moreover there
are several indications that QFT might be more relevant to quantum gravity than
originally expected.
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Another great problem of QFT is the difficulty of constructing interesting exam-
ples. In nonrelativistic quantum mechanics the construction of a selfadjoint Hamil-
tonian is possible for most cases of interest, in QFT, however the situation is much
worse. Models under mathematical control are

• free theories
• superrenormalizable models in 2 and 3 dimensions
• conformal field theories in 2 dimensions
• topological theories in 3 dimensions
• integrable theories in 2 dimensions

but no single interacting theory in 4 dimensions, in particular neither the standard
model nor any of its subtheories like QCD or QED. Instead one has to evaluate the
theory in uncontrolled approximations,mainly using formal perturbation theory, and,
in the case of QCD, lattice gauge theories.

If one attempts to incorporate gravity, an additional difficulty is the apparent non-
locality of quantum physics which is in conflict with the geometrical interpretation
of gravity in Einstein’s theory. Even worse, the traditional treatment of QFT is based
on several additional nonlocal concepts, including

• vacuum (defined as the state of lowest energy)
• particles (defined as irreducible representations of the Poincaré group)
• S-matrix (relies on the notion of particles)
• path integral (involves nonlocal correlations)
• euclidean space (does not exist for generic Lorentzian spacetime)

There exists, however, a formulation of QFT which is based entirely on local
concepts. This is Algebraic QFT (AQFT), or, synonymously, Local QuantumPhysics
[20]. AQFT relies on the algebraic formulation of quantum theory in the sense of
the original approach by Born, Heisenberg and Jordan and formalized in terms of
C∗-algebras by I. Segal. The step from quantum mechanics to QFT is performed
by incorporating the principle of locality in terms of local algebras of observables.
This is the algebraic approach to field theory proposed by Haag and Kastler [18]. By
the Haag-Ruelle scattering theory the Haag-Kastler framework onMinkowski space,
together with some mild assumptions on the energy momentum spectrum, already
implies the existence of scattering states of particles and of the S-matrix.

It required some time before this framework could be generalized to generic
Lorentzian spacetimes. A direct approach was performed by Dimock [12], but the
framework he proposed did not contain an appropriate notion of covariance. Such
a notion, termed local covariance was introduced more recently in a programmatic
paper by Brunetti, Verch and one of us (K.F.) [9] motivated by the attempt to define
the renormalized perturbation series of QFT on curved backgrounds [7, 21, 22]. It
amounts to an assignment of algebras of observable to generic spacetimes, subject
to a certain coherence condition formulated in the language of category theory. In
Sect. 3 we will describe the framework in detail.

The framework of locally covariant field theory is a plausible system of axioms
for a generally covariant field theory. Before we enter the problem of constructing
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examples of quantum field theory satisfying these axioms we describe the corre-
sponding structure in classical field theory (Sect. 4). Main ingredient is the so-called
Peierls bracket by which the classical algebra of observables becomes a Poisson
algebra.

Quantization can be done in the sense of formal deformation quantization, i.e. in
terms of formal power series in � at least for free field theories, and one obtains an
abstract algebra resembling the algebra ofWick polynomials on Fock space (Sect. 5).
Interactions can then be introduced by the use of a second product in this algebra,
namely the time ordered product. Disregarding for a while the notorious UV diver-
gences of QFT we show how interacting theories can be constructed in terms of the
free theory (Sect. 6).

In the final part of these lectures (Sect. 7) we treat the UV divergences and their
removal by renormalization. Here again the standard methods are nonlocal and loose
their applicability on curved spacetimes. Fortunately, there exists a method which
is intrinsically local, namely causal perturbation theory. Causal perturbation theory
was originally proposed by Stückelberg and Bogoliubov and rigorously elaborated
by Epstein and Glaser [16] for theories onMinkowski space. The method was gener-
alized by Brunetti and one of us (K.F) [7] to globally hyperbolic spacetimes and was
then combined with the principle of local covariance by Hollands andWald [21, 22].
The latter authors were able to show that renormalization can be done in agreement
with the principle of local covariance. The UV divergences show up in ambiguities
in the definition of the time ordered product. These ambiguities are characterized by
a group [10, 13, 23], namely the renormalization group as originally introduced by
Petermann and Stückelberg [38].

2 Algebraic Quantum Mechanics

Quantum mechanics in its original formulation in the Dreimännerarbeit by Born,
Heisenberg and Jordan is based on an identification of observables with elements of
a noncommutative involutive complex algebra with unit.

Definition 1 An involutive complex algebraA is an algebra over the field of complex
numbers, together with a map, ∗ : A → A, called an involution. The image of an
element A of A under the involution is written A∗. Involution is required to have the
following properties:

1. for all A, B ∈ A: (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗,
2. for every λ ∈ C and every A ∈ A: (λA)∗ = λA∗,
3. for all A ∈ A: (A∗)∗ = A.

In quantum mechanics such an abstract algebra is realized as an operator algebra on
some Hilbert space.
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Definition 2 A representation of an involutive unital algebra A is a unital
∗-homomorphism π into the algebra of linear operators on a dense subspace D
of a Hilbert space H.

Let us recall that an operator A on a Hilbert space H is defined as a linear map
from a subspace D ⊂ H into H. In particular, if D = H and A satisfies ||A|| .=
sup||x ||=1{||Ax ||} < ∞, it is called bounded. Bounded operators have many nice
properties, but in physics many important observables are represented by unbounded
ones. The notion of an algebra of bounded operators on a Hilbert space can be
abstractly phrased in the definition of a C∗-algebra.

Definition 3 A C∗-algebra is a Banach involutive algebra (Banach algebra with
involution satisfying ‖A∗‖ = ‖A‖), such that the norm has the C∗-property:

‖A∗A‖ = ‖A‖‖A∗‖, ∀A ∈ A .

One can prove that every C∗-algebra is isomorphic to a norm closed algebra of
bounded operators B(H) on a (not necessarily separable) Hilbert spaceH. A repre-
sentation of a C∗-algebra A is a unital ∗-homomorphism π : A→ B(H).

In the simplest example from quantummechanics the algebra of observables is the
associative involutive complex unital algebra generated by two hermitian1 elements
p and q with the canonical commutation relation

[p, q] = −i�1A . (1)

This algebra can be realized as an operator algebra on some Hilbert space, but the
operators corresponding to p and q cannot both be bounded. Therefore it is conve-
nient, to follow the suggestion of Weyl and to replace the unbounded (hence discon-
tinuous) operators p and q by the unitaries2 (Weyl operators) W (α, β), α, β ∈ R.
Instead of requiring the canonical commutation relation for p and q one requires the
relation (Weyl relation)

W (α, β)W (α′, β ′) = e
i�
2 (αβ ′−α′β)W (α + α′, β, β ′) (2)

The antilinear involution (adjunction)

W (α, β)∗ = W (−α,−β) . (3)

replaces the hermiticity condition on p and q. The Weyl algebra AW is defined as
the unique C∗-algebra generated by unitaries W (α, β) satisfying the relations (2),
with involution defined by (3) and with unit 1A = W (0, 0).

1 An operator A on a Hilbert space H with a dense domain D(A) ⊂ H is called hermitian if
D(A) ⊂ D(A∗) and Ax = A∗x for all x ∈ D(A). It is selfadjoint if in addition D(A∗) ⊂ D(A).
2 An element A of an involutive Banach algebra with unit is called unitary if A∗A = 1U = AA∗.
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One can show that if the Weyl operators are represented by operators on a Hilbert
space such that they depend strongly continuously3 on the parameters α and β, then
p and q can be recovered as selfadjoint generators, i.e.

W (α, β) = ei(αp+βq) ,

satisfying the canonical commutation relation (1). As shown by von Neumann, the
C∗-algebra AW has up to equivalence only one irreducible representation where
the Weyl operators depend strongly continuously on their parameters, namely the
Schrödinger representation (L2(R), π) with

(π(W (α, β))Φ) (x) = e
i�αβ
2 eiβxΦ(x + �α) , (4)

and the reducible representations with the same continuity property are just multiples
of the Schrödinger representation. If one does not require continuity there are many
more representations, and they have found recently some interest in loop quantum
gravity. In quantum field theory the uniqueness results do not apply, and one has to
deal with a huge class of inequivalent representations.

For these reasons it is preferable to define the algebra of observables A indepen-
dently of its representation on a specific Hilbert space as a unital C∗-algebra. The
observables are the selfadjoint elements, and the possible outcomes of measurements
are elements of their spectrum. The spectrum spec(A) of A ∈ A is the set of all λ ∈ C

such that A − λ1A has no inverse in A. One might suspect that the spectrum could
become smaller if the algebra is embedded in a larger one. Fortunately this is not the
case; for physics this mathematical result has the satisfactory effect that the set of
possible measurement results of an observable is not influenced by the inclusion of
additional observables.

Now we know what the possible outcome of an experiment could be, but what
concrete value do we get, if we perform a measurement? In QM this is not the right
question to ask. Instead, we can only determine the probability distribution of getting
particular values from a measurement of an observable A. This probability distrib-
ution can be obtained, if we know the state of our physical system. Conceptually, a
state is a prescription for the preparation of a system. This concept entails in partic-
ular that experiments can be reproduced and is therefore equivalent to the ensemble
interpretation where the statements of the theory apply to the ensemble of equally
prepared systems.

A notion of a state can be also defined abstractly, in the following way:

Definition 4 A state on an involutive algebra A is a linear functional ω : A → C,
such that:

ω(A∗A) ≥ 0 and ω(1A) = 1 .

3 A net {Tα} of operators on a Hilbert space H converges strongly to an operator T if and only if
||Tαx − T x || → 0 for all x ∈ H.
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The first condition can be understood as a positivity condition and the second one is
the normalization. The values ω(A) are interpreted as the expectation values of the
observable A in the given state. Given an observable A and a state ω on a C*-algebra
A we can reconstruct the full probability distribution μA,ω of measured values of A
in the state ω from its moments, i.e. the expectation values of powers of A,

∫
λndμA,ω(λ) = ω(An) .

States on C∗-algebras are closely related to representations on Hilbert spaces. This
is provided by the famous GNS (Gelfand-Naimark-Segal) theorem:

Theorem 1 Let ω be a state on the involutive unital algebra A. Then there exists a
representation π of the algebra by linear operators on a dense subspace D of some
Hilbert space H and a unit vector Ω ∈ D, such that

ω(A) = (Ω, π(A)Ω) ,

and D = {π(A)Ω, A ∈ A}.
Proof The proof is quite simple. First let us introduce a scalar product on the algebra
in terms of the state ω by

〈A, B〉 .= ω(A∗B) .

Linearity for the right and antilinearity for the left factor are obvious, hermiticity
〈A, B〉 = 〈B, A〉 follows from the positivity of ω and the fact that we can write A∗B
and B∗A as linear combinations of positive elements:

2(A∗B + B∗A) = (A + B)∗(A + B)− (A − B)∗(A − B) ,

2(A∗B − B∗A) = −i(A + i B)∗(A + i B)+ i(A − i B)∗(A − i B) .

Furthermore, positivity of ω immediately implies that the scalar product is positive
semidefinite, i.e. 〈A, A〉 ≥ 0 for all A ∈ A. We now study the set

N
.= {A ∈ A|ω(A∗A) = 0} .

We show that N is a left ideal of A. Because of the Cauchy-Schwarz inequality N
is a subspace of A. Moreover, for A ∈ N and B ∈ A we have, again because of the
Cauchy-Schwarz inequality:

ω((B A)∗B A) = ω(A∗B∗B A) = 〈B∗B A, A
〉 ≤ √〈B∗B A, B∗B A〉√〈A, A〉 = 0 ,

hence B A ∈ N. Now we define D to be the quotient A/N. Per constructionem the
scalar product is positive definite on D, thus we can complete it to obtain a Hilbert
space H. The representation π is induced by left multiplication of the algebra,
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π(A)(B +N)
.= AB +N ,

and we set Ω = 1+N. In case that A is a C*-algebra, one can show that the oper-
ators π(A) are bounded, hence admitting unique continuous extensions to bounded
operators on H.

It is also straightforward to see that the construction is unique up to unitary
equivalence. Let (π ′,D′,H′,Ω ′) be another quadruple satisfying the conditions of
the theorem. Then we define an operator U : D → D′ by

Uπ(A)Ω
.= π ′(A)Ω ′.

U is well defined, since π(A)Ω = 0 if and only if ω(A∗A) = 0, but then we have
also π ′(A)Ω ′ = 0. Furthermore U preserves the scalar product and is invertible and
has therefore a unique extension to a unitary operator fromH toH′. This shows that
π and π ′ are unitarily equivalent.

The representation π will not be irreducible, in general, i.e. there may exist a non-
trivial closed invariant subspace. In this case, the state ω is not pure, which means
that it is a convex combination of other states,

ω = λω1 + (1− λ)ω2 , 0 < λ < 1 , ω1 �= ω2 . (5)

To illustrate the concept of the GNS representation, let π1,2 be representations of A
on Hilbert spaces H1,2, respectively. Choose unit vectors Ψ1 ∈ H1, Ψ2 ∈ H2 and
define the states

ωi (A) = 〈Ψi , πi (A)Ψi 〉 , i = 1, 2 . (6)

Let ω be the convex combination

ω(A) = 1

2
ω1(A)+ 1

2
ω2(A) . (7)

ω is a linear functional satisfying the normalization and positivity conditions and
therefore is again a state in the algebraic sense. Now letH = H1⊕H2 be the direct
sum of the two Hilbert spaces and let

π(A) =
(

π1(A) 0
0 π2(A)

)
(8)

Then the vector

Ψ = 1√
2

(
Ψ1
Ψ2

)
(9)

satisfies the required relation
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ω(A) = 〈Ψ,π(A)Ψ 〉 . (10)

For more information on operator algebras see [5, 6, 32].
In classical mechanics one has a similar structure. Here the algebra of observables

is commutative and can be identified with the algebra of continuous functions on
phase space. In addition, there is a second product, the Poisson bracket. This product
is only densely defined. States are probability measures, and pure states correspond
to the evaluation of functions at a given point of phase space.

3 Locally Covariant Field Theory

Field theory involves infinitely many degrees of freedom, associated to the points of
spacetime. Crucial for the success of field theory is a principle which regulates the
way these degrees of freedom influence each other. This is the principle of locality,
more precisely expressed by the German word Nahwirkungsprinzip. It states that
each degree of freedom is influenced only by a relatively small number of other
degrees of freedom. This induces a concept of neighborhoods in the set of degrees
of freedom.

The original motivation for developing QFT was to combine the QMwith special
relativity. In this sense we expect to have in our theory some notion of causality. Let
us briefly describe what it means in mathematical terms. In special relativity space
and time are described together with one object, called Minkowski spacetime . Since
it will be useful later on, we define now a general notion of a spacetime in physics.

Definition 5 A spacetime (M, g) is a smooth (4 dimensional) manifold (Hausdorff,
paracompact, connected) with a smooth pseudo-Riemannian metric4 of Lorentz sig-
nature (we choose the convention (+,−,−,−)).

A spacetime M is said to be orientable if there exists a differential formofmaximal
degree (a volume form), which does not vanish anywhere. We say that M is time-
orientable if there exists a smooth vector field u on M such that for every p ∈ M it
holds g(u, u)p > 0. We will always assume that our spacetimes are orientable and
time-orientable. We fix the orientation and choose the time-orientation by selecting
a specific vector field u with the above property. Let γ : R ⊃ I → M be a smooth
curve in M , for I an interval in R. We say that γ is causal (timelike) if it holds
g(γ̇ , γ̇ ) ≥ 0 (> 0), where γ̇ is the vector tangent to the curve.

Given the global timelike vector field u on M , one calls a causal curve γ future-
directed if g(u, γ̇ ) > 0 all along γ , and analogously one calls γ past-directed if
g(u, γ̇ ) < 0. This induces a notion of time-direction in the spacetime (M, g). For
any point p ∈ M , J±(p) denotes the set of all points in M which can be connected
to x by a future(+)/past(−)-directed causal curve γ : I → M so that x = γ (inf I ).

4 a smooth tensor field g ∈ �(T ∗M⊗T ∗M), s.t. for every p ∈ M , gp is a symmetric non degenerate
bilinear form.
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The set J+(p) is called the causal future and J−(p) the causal past of p. The
boundaries ∂ J±(p) of these regions are called respectively: the future/past lightcone.
Two subsets O1 and O2 in M are called causally separated if they cannot be connected
by a causal curve, i.e. if for all x ∈ O1, J±(x) has empty intersection with O2. By
O⊥ we denote the causal complement of O , i.e. the largest open set in M which is
causally separated from O .

In the context of general relativity we will also make use of following definitions:

Definition 6 A causal curve is future inextendible if there is no p ∈ M such that:

∀U ⊂ Mopen neighborhoods of p, ∃t ′ s.t. γ (t) ∈ U∀t > t ′ .

Definition 7 A Cauchy hypersurface in M is a smooth subspace of M such that
every inextendible causal curve intersects it exactly once.

Definition 8 An oriented and time-oriented spacetime M is called globally hyper-
bolic if there exists a smooth foliation of M by Cauchy hypersurfaces.

For now let us consider a simple case of the Minkowski spacetime M which is just
R
4 with the diagonal metric η = diag(1,−1,−1,−1). A lightcone with apex p is

shown on Fig. 1, together with the future and past of p.
One of themain principles of special relativity tells us that physical systemswhich

are located in causally disjoint regions should in some sense be independent. Here we
come to the important problem: How to implement this principle in quantum theory?
A natural answer to this question is provided by the Haag-Kastler framework [18,
19], which is based on the principle of locality. In the previous section we argued
that operator algebras are a natural framework for quantum physics. Locality can be
realized by identifying the algebras of observables that can be measured in given

Fig. 1 A lightcone in
Minkowski spacetime
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bounded regions of spacetime. In other words we associate to each boundedO ⊂ M
a C∗-algebra A(O). This association has to be compatible with a physical notion of
subsystems. It means that if we have a region O which lies inside O′ we want the
corresponding algebra A(O) to be contained inside A(O′), i.e. in a bigger region we
have more observables. This property can be formulated as the Isotony condition
for the net {A(O)} of local algebras associated to bounded regions of the spacetime.
In the Haag-Kastler framework one specializes to Minkowski space M and imposes
some further, physically motivated, properties:

• Locality (Einstein causality). Algebras associated to spacelike separated regions
commute: O1 spacelike separated from O2, then [A, B] = 0, ∀A ∈ A(O1),
B ∈ A(O2). This expresses the “independence” of physical systems associated to
regions O1 and O2.

• Covariance. The Minkowski spacetime has a large group of isometrics, namely
the Poincaré group. We require that there exists a family of isomorphisms αO

L :
A(O) → A(LO) for Poincaré transformations L , such that for O1 ⊂ O2 the
restriction of α

O2
L to A(O1) coincides with α

O1
L and such that: αLO

L ′ ◦αO
L = αO

L ′L ,• Time slice axiom: the algebra of a neighborhood of a Cauchy surface of a given
region coincides with the algebra of the full region. Physically this correspond to a
well-posedness of an initial value problem. We need to determine our observables
in some small time interval (t0 − ε, t0 + ε) to reconstruct the full algebra.

• Spectrum condition. This condition corresponds physically to the positivity of
energy.One assumes that there exist a compatible family of faithful representations
πO ofA(O) on a fixed Hilbert space (i.e. the restriction of πO2 toA(O1) coincides
with πO1 forO1 ⊂ O2) such that translations are unitarily implemented, i.e. there
is a unitary representation U of the translation group satisfying

U (a)πO(A)U (a)−1 = πO+a(αa(A)), A ∈ A(O),

and such that the joint spectrum of the generators Pμ of translations eia P = U (a),
a P = aμ Pμ, is contained in the forward lightcone: σ(P) ⊂ V+.
We now want to generalize this framework to theories on generic spacetimes. To

start with, we may think of a globally hyperbolic neighborhood U of a spacetime
point x in some spacetime M . Moreover, we assume that any causal curve in M with
end points inU lies entirely inU . Then we require that the structure of the algebra of
observables associated to U should be completely independent of the world outside.
We may formalize this idea by requiring that for any embedding χ : M → N of a
globally hyperbolic manifold M into another one N which preserves the metric, the
orientations and the causal structure5 (these embeddings will be called admissible),
there exist an injective homomorphism

αχ : A(M) → A(N ) (11)

5 The property of causality preserving is defined as follows: let χ : M → N, for any causal curve
γ : [a, b] → N , if γ (a), γ (b) ∈ χ(M) then for all t ∈]a, b[ we have: γ (t) ∈ χ(M).
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of the corresponding algebras of observables, moreover if χ1 : M → N and χ2 :
N → L are embeddings as above then we require the covariance relation

αχ2◦χ1 = αχ2 ◦ αχ1 . (12)

In this way we described a functor A between two categories: the category Loc
of globally hyperbolic spacetimes with admissible embeddings as arrows and the
category Obs of algebras (Poisson algebras for classical physics and C∗-algebras for
quantum physics) with homomorphisms as arrows.

Wemay restrict the category of spacetimes to subregions of a given spacetime and
the arrows to inclusions. In this way we obtain the Haag-Kastler net of local algebras
on a globally hyperbolic spacetime as introduced by Dimock. In case the spacetime
has nontrivial isometries, we obtain additional embeddings, and the covariance con-
dition above provides a representation of the group of isometries by automorphisms
of the Haag-Kastler net.

The causality requirements of theHaag-Kastler framework, i.e. the commutativity
of observables localized in spacelike separated regions, is encoded in the general case
in the tensor structure of the functor A. Namely, the category of globally hyperbolic
manifolds has the disjoint union as a tensor product, with the empty set as unit object
and where admissible embeddings χ : M1 ⊗ M2 → N have the property that the
images χ(M1) and χ(M2) cannot be connected by a causal curve. On the level of
C∗-algebras we may use the minimal tensor product as a tensor structure. See [8] for
details.

The solvability of the initial value problem can be formulated as the requirement
that the algebra A(N ) of any neighborhood N of some Cauchy surface Σ already
coincides withA(M). This is the time slice axiom of axiomatic quantum field theory.
It can be used to describe the evolution between different Cauchy surfaces. As a first
step we associate to each Cauchy surface Σ the inverse limit

A(Σ) = ←
lim

N⊃Σ
A(N ) . (13)

Elements of the inverse limit consist of sequences A = (AN )L A⊃N⊃Σ with
αN⊂K (AN ) = AK , K ⊂ L A, with the equivalence relation

A ∼ B if AN = BN for all N ⊂ L A ∩ L B . (14)

The algebra A(Σ) can be embedded into A(M) by

αΣ⊂M (A) = αN⊂M (AN ) for some (and hence all) Σ ⊂ N ⊂ L A . (15)

If we now adopt the time slice axiom we find that each homomorphism αN⊂M is an
isomorphism. Hence αΣ⊂M is also an isomorphism and we obtain the propagator
between two Cauchy surfaces Σ1 and Σ2 by
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αM
Σ1Σ2

= α−1Σ1⊂M ◦ αΣ2⊂M (16)

This construction resembles constructions in topological field theory for the descrip-
tion of cobordisms. But there one associates Hilbert spaces to components of the
boundary and maps between these Hilbert spaces to the spacetime itself. This con-
struction relies on the fact that for these theories the corresponding Hilbert spaces are
finite dimensional. It was shown [39] that a corresponding construction for the free
field in 3 and more dimensions does not work, since the corresponding Boboliubov
transformation is not unitarily implementable (Shale’s criterion [34] is violated).
Instead one may associate to the Cauchy surfaces the corresponding algebras of
canonical commutation relations and to the cobordism an isomorphism between
these algebras. For the algebra of canonical anticommutation relations for the free
Dirac fields the above isomorphism was explicitly constructed [40]. Our general
argument shows that the association of a cobordism between two Cauchy surfaces
of globally hyperbolic spacetimes to an isomorphism of algebras always exists pro-
vided the time slice axiom is satisfied. As recently shown, the latter axiom is actually
generally valid in perturbative Algebraic Quantum Field Theory [11].

In the Haag-Kastler framework on Minkowski space an essential ingredient was
translation symmetry. This symmetry allowed the comparison of observables in dif-
ferent regions of spacetime and was (besides locality) a crucial input for the analysis
of scattering states.

In the general covariant framework sketched above no comparable structure is
available. Instead one may use fields which are subject to a suitable covariance
condition, termed locally covariant fields. A locally covariant field is a family ϕM of
fields on spacetimes M such that for every embedding χ : M → N as above

αχ(ϕM (x)) = ϕN (χ(x)) . (17)

If we consider fields as distributions with values in the algebras of observables, a
field ϕ may be considered as a natural transformation between the functor D of test
function spaces to the functor A of field theory. The functor D associates to every
spacetime M its space of compactly supported C∞-functions,

D(M) = C∞c (M, R) , (18)

and to every embedding χ : M → N of spacetimes the pushforward of test functions
f ∈ D(M)

Dχ ≡ χ∗ , χ∗ f (x) =
{

f (χ−1(x)) , x ∈ χ(M)

0 , else
(19)

D is a covariant functor. Its target category is the category of locally convex vector
spacesVecwhich contains also the categoryof topological algebraswhich is the target
category forA. A natural transformationϕ : D→ A between covariant functorswith
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the same source and target categories is a family ofmorphismsϕM : D(M) → A(M),
M ∈ Obj(Loc) such that

Aχ ◦ ϕM = ϕN ◦Dχ (20)

with Aχ = αχ .

4 Classical Field Theory

Before we enter the arena of quantum field theory we show that the concept of
local covariance leads to a nice reformulation of classical field theory in which the
relation to QFT becomes clearly visible. Let us consider a scalar field theory. On a
given spacetime M the possible field configurations are the smooth functions on M.
If we embed a spacetime M into another spacetime N, the field configurations on N
can be pulled back to M, and we obtain a functor E from Loc to the category Vec of
locally convex vector spaces

E(M) = C∞(M, R) , Eχ = χ∗ (21)

with the pullback χ∗ϕ = ϕ ◦ χ for ϕ ∈ C∞(M, R). Note that E is contravariant,
whereas the functor D of test function spaces with compact support is covariant.

The classical observables are real valued functions on E(M), i.e. (not necessarily
linear) functionals. An important property of a functional is its spacetime support.
Is is defined as a generalization of the distributional support, namely as the set of
points x ∈ M such that F depends on the field configuration in any neighbourhood
of x .

supp F
.= {x ∈ M |∀ neighbourhoods U of x ∃ϕ,ψ ∈ E(M), suppψ ⊂ U (22)

such that F(ϕ + ψ) �= F(ϕ)} .

Here we will discuss only compactly supported functionals. Next one has to select
a class of functionals which are sufficiently regular such that all mathematical oper-
ations one wants to perform are meaningful and which on the other side is large
enough to cover the interesting cases.

One class one may consider is the class Freg(M) of regular polynomials

F(ϕ) =
∑
finite

∫
dx1 . . . dxn fn(x1, . . . , xn)ϕ(x1) . . . ϕ(xn) (23)

with test functions fn ∈ D(Mn). Another class Floc(M) consists of the local func-
tionals
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F(ϕ) =
∫

dxL(x, ϕ(x), ∂ϕ(x), . . .) (24)

where L depends smoothly on x and on finitely many derivatives of ϕ at x . The local
functionals arise as actions and induce the dynamics. The only regular polynomials
in this class are the linear functionals

F(ϕ) =
∫

dx f (x)ϕ(x) . (25)

It turns out to be convenient to characterize the admissible class of functionals in
terms of their functional derivatives.

Definition 9 (After [30]) Let X and Y be topological vector spaces, U ⊆ X an open
set and f : U → Y a map. The derivative of f at x in the direction of h is defined as

d f (x)(h)
.= lim

t→0

1

t
( f (x + th)− f (x)) (26)

whenever the limit exists. The function f is called differentiable at x if d f (x)(h)
exists for all h ∈ X. It is called continuously differentiable if it is differentiable at all
points of U and d f : U × X → Y, (x, h) �→ d f (x)(h) is a continuous map. It is
called a C1-map if it is continuous and continuously differentiable. Higher derivatives
are defined for Cn-maps by

dn f (x)(h1, . . . , hn)
.= lim

t→0

1

t

(
dn−1 f (x+thn)(h1, . . . , hn−1)−dn−1 f (x)(h1, . . . , hn−1)

)
(27)

In particular it means that if F is a smooth functional onE(M), then its n-th derivative
at the point ϕ ∈ E(M) is a compactly supported distributional density F (n)(ϕ) ∈
E ′(Mn). There is a distinguished volume form on M , namely the one provided by
the metric:

√−det(g)d4x . We can use it to construct densities from functions and to
provide an embedding of D(Mn) into E ′(Mn). For more details on distributions on
manifolds, see Chap.1 of [2]. Using the distinguished volume form we can identify
derivatives F (n)(ϕ) with distributions. We further need some conditions on their
wave front sets.

Let us make a brief excursion to the concept of wave front sets and its use for
the treatment of distributions. Readers less familiar with these topics can find more
details in the appendix 2.7 or refer to [25] or Chap.4 of [1]. Let t ∈ D′(Rn) and
f ∈ D(Rn). The Fourier transform of the product f t is a smooth function. If this
function vanishes fast at infinity for all f ∈ D(Rn), t itself is a smooth function.
Singularities of t show up in the absence of fast decay in some directions. A point
(x, k) ∈ R

n × (Rn \ {0}) is called a regular point of t if there exists a test function
f with f (x) = 1 such that the Fourier transform of f t decays strongly in an open
cone around k. The wave front set of t is now defined as the complement of the set
of regular points of t in R

n × (Rn \ {0}).
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On a manifold M the definition of the Fourier transform depends on the choice
of a chart. But the property of strong decay in some direction (characterized now
by a point (x, k), k �= 0 of the cotangent bundle T ∗M) turns out to be independent
of the chart. Therefore the wave front set WF of a distribution on a manifold M is
a well defined closed conical subset of the cotangent bundle (with the zero section
removed).

Let us illustrate the concept of the wave front set in two examples. The first one
is the δ-function. We find

∫
dx f (x)δ(x)eikx = f (0) , (28)

hence WF(δ) = {(0, k), k �= 0}.
The other one is the function x �→ (x + iε)−1 in the limit ε ↓ 0. We have

lim
ε↓0

∫
dx

f (x)

x + iε
eikx = −i

∞∫

k

dk′ f̂ (k′) . (29)

Since the Fourier transform f̂ of a test function f ∈ D(R) is strongly decaying for
k →∞,

∫∞
k dk′ f̂ (k′) is strongly decaying for k →∞, but for k →−∞ we obtain

lim
k→−∞

∞∫

k

dk′ f̂ (k′) = 2π f (0) , (30)

hence

WF(lim
ε↓0(x + iε)−1) = {(0, k), k < 0} . (31)

The wave front sets provide a simple criterion for the pointwise multiplicability
of distributions. Namely, let t, s be distributions on an n dimensional manifold M
such that the pointwise sum (Whitney sum) of their wave front sets

WF(t)+WF(s) = {(x, k + k′)|(x, k) ∈WF(t), (x, k′) ∈WF(s)} (32)

does not intersect the zero section of T ∗M . Then the pointwise product ts can be
defined by

〈ts, f g〉 = 1

(2π)n

∫
dk t̂ f (k)ŝg(−k) (33)

for test functions f and g with sufficiently small support and where the Fourier trans-
form refers to an arbitrary chart covering the supports of f and g. The convergence
of the integral on the right hand side follows from the fact, that for every k �= 0 either
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t̂ f decays fast in a conical neighborhood around k or ŝg decays fast in a conical
neighborhood around −k whereas the other factor is polynomially bounded.

The other crucial property is the characterization of the propagation of singular-
ities. To understand it in more physical terms it is useful to use an analogy with
Hamiltonian mechanics. Note that the cotangent bundle T ∗M has a natural sym-
plectic structure. The symplectic 2-form is defined as an exterior derivative of the
canonical one-form, given in local coordinates as θ(x,k) =∑n

i=1 ki dxi (ki are coordi-
nates in the fibre). Let P be a partial differential operator with real principal symbol
σP . Note that σP is a function on T ∗M and its differential dσP is a 1-form. On
a symplectic manifold 1-forms can be canonically identified with vector fields by
means of the symplectic form. Therefore every differentiable function H determines
a unique vector field X H , called the Hamiltonian vector field with the Hamiltonian
H . Let X P be the Hamiltonian vector field corresponding to σP . Explicitly it can be
written as:

X P =
n∑

j=1

∂σP

∂k j

∂

∂x j
− ∂σP

∂x j

∂

∂k j

Let us nowconsider the integral curves (Hamiltonianflow)of this vector field.Acurve
(x j (t), k j (t)) is an integral curve of X P if it fulfills the system of equations (Hamil-
ton’s equations):

dx j

dt
= ∂σP

∂k j
,

dk j

dt
= −∂σP

∂x j
.

The set of all such solution curves is called the bicharacteristic flow. Along the
Hamiltonian flow it holds dσP

dt = X P (σP ) = 0 (this is the law of conservation of
energy for autonomous systems in classical mechanics), so σP is constant under the
bicharacteristic flow. If σP ((x j (t), k j (t))) = 0 we call the corresponding flow null.
The set of all such integral curves is called the null bicharacteristics.

Let us now define the characteristics of P as charP = {(x, k) ∈ T ∗M |σ(P)

(x, k) = 0} of P. Then the theorem on the propagation of singularities states that the
wave front set of a solution u of the equation Pu = f with f smooth is a union of
orbits of the Hamiltonian flow X P on the characteristics charP.

In field theory on Lorentzian spacetime we are mainly interested in hyperbolic
differential operators. Their characteristics is the light cone, and the principal symbol
is the metric on the cotangent bundle. The wave front set of solutions therefore is a
union of null geodesics together with their cotangent vectors k = g(γ̇ , ·).

We already have all the kinematical structures we need. Now in order to specify
a concrete physical model we need to introduce the dynamics. This can be done by
means of a generalized Lagrangian . As the name suggests the idea is motivated by
Lagrangian mechanics. Indeed, we can think of this formalism as a way to make
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precise the variational calculus in field theory. Note that since our spacetimes are
globally hyperbolic, they are never compact. Moreover we cannot restrict ourselves
to compactly supported field configurations, since the nontrivial solutions of globally
hyperbolic equations don’t belong to this class. Therefore we cannot identify the
action with a functional on E(M) obtained by integrating the Lagrangian density
over the whole manifold. Instead we follow [10] and define a Lagrangian L as a
natural transformation between the functor of test function spacesD and the functor
Floc such that it satisfies supp(L M ( f )) ⊆ supp( f ) and the additivity rule6

L M ( f + g + h) = L M ( f + g)− L M (g)+ L M (g + h) ,

for f, g, h ∈ D(M) and supp f ∩ supp h = ∅. The action S(L) is now defined as
an equivalence class of Lagrangians [10], where two Lagrangians L1, L2 are called
equivalent L1 ∼ L2 if

supp(L1,M − L2,M )( f ) ⊂ supp d f , (34)

for all spacetimes M and all f ∈ D(M). This equivalence relation allows us to
identify Lagrangians differing by a total divergence. For the free minimally coupled
(i.e. ξ = 0) scalar field the generalized Lagrangian is given by:

L M ( f )(ϕ) = 1

2

∫

M

(∇μϕ∇μϕ − m2ϕ2) f dvolM . (35)

The equations of motion are to be understood in the sense of [10]. Concretely, the
Euler-Lagrange derivative of S is a natural transformation S′ : E→ D′ defined as

〈S′M (ϕ), h〉 = 〈L M ( f )(1)(ϕ), h
〉
, (36)

with f ≡ 1 on supph. The field equation is now a condition on ϕ:

S′M (ϕ) = 0 . (37)

Note that the way we obtained the field equation is analogous to variational calculus
on finite dimensional spaces. We can push this analogy even further and think of
variation of a functional in a direction in configuration space given by an infinite
dimensional vector field. This concept is well understood in mathematics and for
details one can refer for example to [29, 30]. Here we consider only variations in the
directions of compactly supported configurations, so the space of vector fields we
are interested in can be identified with V(M) = {X : E(M) → D(M)|X smooth}.
In more precise terms this is the space of vector fields on E(M), considered as a

6 Wedo not require linearity since in quantumfield theory the renormalization flowdoes not preserve
the linear structure; it respects, however, the additivity rule (see [10]).
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manifold7 modeled over D(M). The set of functionals

ϕ �→ 〈S′M (ϕ), X (ϕ)〉 , X ∈ V(M) (38)

is an ideal IS(M) of F(M) with respect to pointwise multiplication,

(F · G)(ϕ) = F(ϕ)G(ϕ) . (39)

The quotient

FS(M) = F(M)/IS(M) (40)

can be interpreted as the space of solutions of the field equation. The latter can be
identified with the phase space of the classical field theory.

We now want to equip FS(M) with a Poisson bracket. Here we rely on a method
originally introduced by Peierls. Peierls considers the influence of an additional term
in the action. Let F ∈ Floc(M) be a local functional. We are interested in the flow
(Φλ) on E(M) which deforms solutions of the original field equation S′M (ϕ) = ω

with a given source termω to those of the perturbed equation S′M (ϕ)+λF (1)(ϕ) = ω.
Let Φ0(ϕ) = ϕ and

d

dλ

(
S′M (Φλ(ϕ))+ F (1)(Φλ(ϕ))

)∣∣∣
λ=0 = 0 . (41)

Note that the second variational derivative of the unperturbed action induces an
operator S′′M (ϕ) : E(M) → D′(M). We define it in the following way:

〈S′′M (ϕ), h1 ⊗ h2〉 .= 〈L(2)
M ( f )(ϕ), h1 ⊗ h2

〉
,

where f ≡ 1 on the supports of h1 and h2. This defines S′′M (ϕ) as an element of
D′(M2) and by Schwartz’s kernel theorem we can associate to it an operator from
D(M) to D′(M). Actually, since L M ( f ) is local, the second derivative has support
on the diagonal, so S′′M (ϕ) can be evaluated on smooth functions h1, h2, where only
one of them is required to be compactly supported, and it induces an operator (the
so called linearized Euler-Lagrange operator) E ′[SM ](ϕ) : E(M) → D′(M).

From (41) it follows that the vector field ϕ �→ X (ϕ) = d
dλ

Φλ(ϕ)|λ=0 satisfies the
equation

〈S′′M (ϕ), X (ϕ)⊗ ·〉 + 〈F (1)(ϕ), ·〉 = 0 , (42)

which in a different notation can be written as

7 An infinite dimensional manifold is modeled on a locally convex vector space just as a finite
dimensional one is modeled on R

n. For more details see [29, 30].
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〈E ′[SM ](ϕ), X (ϕ)〉 + F (1)(ϕ) = 0 .

We now assume that E ′[SM ](ϕ) is, for all ϕ, a normally hyperbolic differential
operator E(M) → E(M), and let ΔR

S ,ΔA
S be the retarded and advanced Green’s

operators, i.e. linear operators D(M) → E(M) satisfying:

E ′[SM ] ◦Δ
R/A
S = idD(M) ,

Δ
R/A
S ◦ (E ′[SM ]

∣∣
D(M)

) = idD(M) .

Moreover, with the use of Schwartz’s kernel theorem one can identify Δ
R/A
S :

D(M) → E(M) with elements of D′(M2). As such, they are required to satisfy
the following support properties:

supp(ΔR) ⊂ {(x, y) ∈ M2|y ∈ J−(x)} , (43)

supp(ΔA) ⊂ {(x, y) ∈ M2|y ∈ J+(x)} . (44)

Their differenceΔS = ΔA
S −ΔR

S is called the causal propagator of the Klein-Gordon
equation. Coming back to equation (42) we have now two distinguished solutions
for X ,

X R,A(ϕ) = Δ
R,A
S F (1)(ϕ) . (45)

The difference of the associated derivations on F(M) defines a product

{F, G}S(ϕ) = 〈ΔS(ϕ)F (1)(ϕ), G(1)(ϕ)〉 (46)

on Floc(M), the so-called Peierls bracket.
The Peierls bracket satisfies the conditions of a Poisson bracket, in particular the

Jacobi identity (for a simple proof see [26]). Moreover, if one of the entries is in
the ideal IS(M), also the bracket is in the ideal, hence the Peierls bracket induces a
Poisson bracket on the quotient algebra.

In standard cases, the Peierls bracket coincideswith the canonical Poisson bracket.
Namely let

L(ϕ) = 1

2
∂μϕ∂μϕ − m2

2
ϕ2 − λ

4!ϕ
4 . (47)

Then S′M (ϕ) = − (( " + m2)ϕ + λ
3!ϕ

3
)
and S′′M (ϕ) is the linear operator

−
(
 " + m2 + λ

2
ϕ2
)

(48)

(the last term acts as a multiplication operator).
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The Peierls bracket is

{ϕ(x), ϕ(y)}S = ΔS(ϕ)(x, y) (49)

where x �→ ΔS(ϕ)(x, y) is a solution of the (at ϕ) linearized equation of motion
with the initial conditions

ΔS(ϕ)(y0, x; y) = 0 ,
∂

∂x0
ΔS(ϕ)(y0, x; y) = δ(x, y) . (50)

This coincides with the Poisson bracket in the canonical formalism. Namely, let ϕ

be a solution of the field equation. Then

0 = {( " + m2)ϕ(x)+ λ

3!ϕ
3(x), ϕ(y)} = ( " + m2 + λ

2
ϕ(x)2)){ϕ(x), ϕ(y)} (51)

hence the Poisson bracket satisfies the linearized field equation with the same initial
conditions as the Peierls bracket.

Let us now discuss the domain of definition of the Peierls bracket. It turns out that
it is a larger class of functionals than just Floc(M). To identify this class we use the
fact that the WF set of ΔS is given by

WF(ΔS) = {(x, k; x ′,−k′) ∈ Ṫ ∗M2|(x, k) ∼ (x ′, k′)} ,

where the equivalence relation ∼ means that there exists a null geodesic strip such
that both (x, k) and (x ′, k′) belong to it. A null geodesic strip is a curve in T ∗M
of the form (γ (λ), k(λ)), λ ∈ I ⊂ R, where γ (λ) is a null geodesic parametrized
by λ and k(λ) is given by k(λ) = g(γ̇ (λ), ·). This follows from the theorem on the
propagation of singularities together with the initial conditions and the antisymmetry
of ΔS . (See [31] for a detailed argument.)

It is now easy to check, using Hörmander’s criterion on the multiplicability of
distributions [25] that the Peierls bracket (46) is well defined if F and G are such
that the sum of the WF sets of the functional derivatives F (1)(ϕ), G(1)(ϕ) ∈ E ′(M)

and Δ ∈ D′(M2) don’t intersect the 0-section of the cotangent bundle T ∗M2. This
is the case if the functionals fulfill the following criterion:

WF(F (n)(ϕ)) ⊂ Ξn, ∀n ∈ N, ∀ϕ ∈ E(M) , (52)

where Ξn is an open cone defined as

Ξn
.= T ∗Mn\{(x1, . . . , xn; k1, . . . , kn)|(k1, . . . , kn) ∈ (V

n
+∪V

n
−)(x1,...,xn)} , (53)

where (V±)x is the closed future/past lightcone understood as a conic subset of
T ∗

x M . We denote the space of smooth compactly supported functionals, satisfying
(52) by Fμc(M) and call them microcausal functionals. This includes in particular
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local functionals. For them the support of the functional derivatives is on the thin
diagonal, and the wave front sets satisfy

∑
ki = 0.

To see that {., .}S is indeed well defined on Fμc(M), note that WF(Δ) consists
of elements (x, x ′, k, k′), where k, k′ are dual to lightlike vectors in Tx M , Tx ′ M
accordingly. On the other hand, if (x, k1) ∈ WF(F (1)(ϕ)), then k1 is necessarily
dual to a vector which is spacelike, so k1 + k cannot be 0. The same argument is
valid for G(1)(ϕ). Moreover it can be shown that {F, G}S ∈ Fμc(M). The classical
field theory is defined as A(M) = (Fμc(M), {., .}S). One can check that A is indeed
a covariant functor from Loc to Obs, the category of Poisson algebras.

5 Deformation Quantization of Free Field Theories

Starting from the Poisson algebra (Fμc(M), {., .}S) one may try to construct an
associative algebra (Fμc(M)[[�]], �) such that for � → 0

F � G → F · G (54)

and

[F, G]�/ i� → {F, G}S . (55)

For the Poisson algebra of functions on a finite dimensional Poisson manifold the
deformation quantization exists in the sense of formal power series due to a theorem
of Kontsevich [28]. In field theory the formulas of Kontsevich lead to ill defined
terms, and a general solution of the problem is not known. But in case the action is
quadratic in the fields the �-product can be explicitly defined by

(F � G)(ϕ)
.=

∞∑
n=0

�
n

n!
〈
F (n)(ϕ), (ΔS)⊗nG(n)(ϕ)

〉
, (56)

which can be formally written as e
i�
2

〈
ΔS , δ2

δϕδϕ′
〉
F(ϕ)G(ϕ′)|ϕ′=ϕ . This product is well

defined (in the sense of formal power series in �) for regular functionals F, G ∈
Freg(M) and satisfies the conditions above. Let for instance

F(ϕ) = e
∫

dxϕ(x) f (x) , G(ϕ) = e
∫

dxϕ(x)g(x) , (57)

with test functions f, g ∈ D(M). We have

δn

ϕ(x1) . . . ϕ(xn)
F(ϕ) = f (x1) . . . f (xn)F(ϕ) (58)
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and hence

(F � G)(ϕ) (59)

=
∞∑

n=0

1

n!
(∫

dxdy
i�

2
ΔS(x, y) f (x)g(y)

)n

F(ϕ)G(ϕ) (60)

For later purposes we want to extend the product to more singular functionals which
includes in particular the local functionals. We decompose

ΔS = Δ+
S −Δ−

S (61)

such that the wavefront set of ΔS is decomposed into two disjoint parts. The wave
front set of ΔS consists of pairs of points x, x ′ which can be connected by a null
geodesic, and of covectors (k, k′)where k is the cotangent vector of the null geodesic
at x and −k′ is the cotangent vector of the same null geodesic at x ′. The lightcone
with the origin removed consists of two disjoint components, the first one containing
the positive frequencies and the other one the negative frequencies. The WF set of
the positive frequency part of ΔS is therefore:

WF(Δ+) = {(x, k; x ′,−k′) ∈ Ṫ M2|(x, k) ∼ (x ′, k′), k ∈ (V+)x } . (62)

OnMinkowski space one could choose−iΔ+
S as theWightman 2-point-function, i.e.

the vacuum expectation value of the product of two fields. This, however, becomes
meaningless in a more general context, since a generally covariant concept of a
vacuum state does not exist. Nevertheless, such a decomposition always exist, but
is not unique and the difference between two different choices of Δ+

S is always a
smooth symmetric function. Let us writeΔ+

S = ΔS+H . We then consider the linear
functional derivative operator

�H = 〈H,
δ2

δϕ2 〉 (63)

and define a new �-product by

F �′ G = e
i�
2 �H

(
(e

−i�
2 �H F) � (e

−i�
2 �H G)

)
(64)

which differs from the original one in the replacement of i�
2 ΔS by i�Δ+

S . This
�-product can now be defined on a much larger space of functionals, namely the
microcausal ones Fμc(M). The transition between these two �-products correspond
to normal ordering, is just an algebraic version of Wick’s theorem. The map αH

.=
e

i�
2 �H provides the equivalence between � and �′ on the space of regular functionals

Freg(M). Its image can be then completed to a larger space Fμc(M). We can also
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build a corresponding (sequential) completion α−1H (Fμc(M)) of the source space.
This amounts to extending Freg(M) with all elements of the form limn→∞ α−1H (Fn),
where (Fn) is a convergent sequence in Fμc(M) with respect to the Hörmander
topology [10, 25]. We recall now the definition of this topology.

Let us denote the space of compactly supported distributions with WF sets con-
tained in a conical set C ⊂ T ∗Mn by E ′C (Mn). Now let Cn ⊂ Ξn be a closed cone
contained inΞn defined by (53).We introduce (after [1, 10, 25]) the following family
of seminorms on E ′Cn

(Mn):

pn,ϕ,C̃,k(u) = sup
k∈C̃

{(1+ |k|)k |ϕ̂u(k)|} ,

where the index set consists of (n, ϕ, C̃, k) such that k ∈ N0, ϕ ∈ D(M) and C̃ is a
closed cone in R

n with (supp(ϕ)× C̃) ∩ Cn = ∅. These seminorms, together with
the seminorms of the strong topology provide a defining system for a locally convex
topology denoted by τCn. To control the wave front set properties inside open cones,
we take an inductive limit. The resulting topology is denoted by τΞn. One can show
that D(M) is sequentially dense in E ′Ξn

(M) in this topology.

For microcausal functionals it holds that F (n)(ϕ) ∈ E ′Ξn
(M), so we can equip

Fμc(M) with the initial tpopolgy with respect to mappings:

C∞(E(M), R) % F �→ F (n)(ϕ) ∈ (EΞn (M), τΞn ) n ≥ 0 , (65)

The locally convex vector space of local functionalsFloc(M) is dense inFμc(M)with
respect to τΞ . To see these abstract concepts at work let us consider the example of
the Wick square:

Example 1 Consider a sequence Fn(ϕ) = ∫ ϕ(x)ϕ(y)gn(y− x) f (x)with a smooth
function f and a sequence of smooth functions gn which converges to the δ distrib-

ution in the Hörmander topology. By applying α−1H = e
−i�
2 �H we obtain a sequence

α−1H Fn =
∫

(ϕ(x)ϕ(y)gn(y − x) f (x)− H(x, y)gn(y − x) f (x)) ,

The limit of this sequence can be identified with
∫ : ϕ(x)2 : f (x), i.e.:

∫
: ϕ(x)2 : f (x) = lim

n→∞

∫
(ϕ(x)ϕ(y)− H(x, y))gn(y − x) f (x)

We can write it in a short-hand notation as a coinciding point limit:

: ϕ(x)2 : = lim
x→y

(ϕ(x)ϕ(y)− H(x, y)) .
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We can see that transforming with α−1H corresponds formally to a subtraction of
H(x, y). Now, to recognize the Wick’s theorem let us consider a product of two
Wick squares : ϕ(x)2 :: ϕ(y)2 :. With the use of the isomorphism α−1H this can be
written as:
∫

ϕ(x)2 f1(x) �′
∫

ϕ(y)2 f2(y) =
∫

ϕ(x)2ϕ(y)2 f1(x) f2(y)

+ 2i�
∫

ϕ(x)ϕ(y)Δ+
S (x, y) f1(x) f2(y)

− �
2
∫

(Δ+
S (x, y))2 f1(x) f2(y) .

Omitting the test functions and using α−1H we obtain

: ϕ(x)2 :: ϕ(y)2 :=: ϕ(x)2ϕ(y)2 : +4 : ϕ(x)ϕ(y) : i�

2
Δ+

S (x, y)+2
( i�

2
Δ+

S (x, y)
)2

,

which is a familiar form of the Wick’s theorem applied to : ϕ(x)2 :: ϕ(y)2 :.
In the next step we want to define the involution on our algebra. Note that the

complex conjugation satisfies the relation:

F � G = G � F . (66)

Therefore we can use it to define an involution F∗(ϕ)
.= F(ϕ). The resulting struc-

ture is an involutive noncommutative algebra (Fμc(M)[[�]], �′), which provides a
quantization of (Fμc(M), {., .}S). To see that this is equivalent to canonical quan-
tization, let us look at the commutator of two smeared fields Φ( f ), Φ(g), where
Φ( f )(ϕ)

.= ∫ f ϕ dvolM . The commutator reads

[Φ( f ),Φ(g)]�′ = i�〈 f,ΔSg〉 , f, g ∈ D(M) ,

This indeed reproduces the canonical commutation relations. Here we used the fact
that the choice ofΔ+

S is unique up to a symmetric function, which doesn’t contribute
to the commutator (which is antisymmetric). In case Δ+

S is a distribution of positive
type (as in the case of theWightman 2-point-function) the linear functional on F(M)

ω(F) = F(0) (67)

is a state (the vacuum state in the special case above), and the associated GNS
representation is the Fock representation. The kernel of the representation is the
ideal generated by the field equation.
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6 Interacting Theories and the Time Ordered Product

If we have an action for which S′′M still depends on ϕ, we choose a particular ϕ0 and
split

SM (ϕ0 + ψ) = 1

2
〈S′′M (ϕ0), ψ ⊗ ψ〉 + SI (ϕ0, ψ) . (68)

From now on we drop the subscript M of SI , since it’s clear that we work on a fixed
manifold. We now introduce the linear operator

T = e
i�〈ΔD

S , δ2

δψ2 〉 (69)

which acts on Freg(M) as

(T F)(ϕ)
.=

∞∑
n=0

�
n

n!
〈
(iΔD

S )⊗n, F (2n)(ϕ)
〉
,

with the Dirac propagatorΔD
S = 1

2 (Δ
R
S +ΔA

S ) at ϕ0. Formally, T may be understood
as the operator of convolution with the oscillating Gaussian measure with covariance
i�ΔD

S . By

F ·T G = T
(
T −1F · T −1G

)
(70)

we define a new product on Freg(M) which is the time ordered product with respect
to � and which is equivalent to the pointwise product of classical field theory. We
then define a linear map

RSI F =
(

eSI
T

)�−1
�
(

eSI
T ·T F

)
(71)

where eT is the exponential function with respect to the time ordered product,

eF
T = T (eT −1F) . (72)

RSI is invertible with the inverse

R−1
SI

F = e−SI
T ·T

(
eSI

T � F
)

(73)

We now define the �-product for the full action by

F �S G = R−1
SI

(
RSI F � RSI G

)
(74)
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7 Renormalization

Unfortunately, the algebraic structures discussed so far are well defined only if SI is a
regular functional. An easy extension is provided by the operation of normal ordering
as described in the section of deformation quantization. This operation transforms
the time ordering operator T into another one T ′, such that the new time ordered
product is now defined with respect to the Feynman propagator ΔF

S , no longer the
Dirac propagator ΔD

S . Note that the Feynman propagator does depend on the choice
of Δ+

S . Contrary to the �′ product which is everywhere defined due to the wave front
set properties of the positive frequency part of ΔS , the time ordered product is in
general undefined since the wave front set of the Feynman propagator contains the
wave front set of the δ-function. We want, however, to extend to a larger class which
contains in particular all local functionals. As already proposed by Stückelberg [36]
and Bogoliubov [3, 4] and carefully worked out by Epstein and Glaser [16], the
crucial problem is the definition of time ordered products of local functionals. Let
us first consider a special case.

Let F = 1
2

∫
dxϕ(x)2 f (x), G = 1

2

∫
dxϕ(x)2. Then the time ordered product

·T ′ is formally given by

(F ·T ′ G)(ϕ) = F(ϕ)G(ϕ)+ i�
∫

dxdyϕ(x)ϕ(y) f (x)g(y)ΔF
S (x, y)

− �
2

2

∫
dxdyΔF

S (x, y)2 f (x)g(y) . (75)

But the last term contains the pointwise product of a distribution with itself. For
x �= y the covectors (k, k′) in the wave front set satisfy the condition that k and −k′
are cotangent to an (affinely parametrized) null geodesics connecting x and y. k is
future directed if x is in the future of y and past directed otherwise. Hence the sum
of two such covectors cannot vanish. Therefore the theorem on the multiplicability
of distributions applies and yields a distribution on the complement of the diagonal
{(x, x)|x ∈ M}. On the diagonal, however, the only restriction is k = −k′, hence the
sum of the wave front set of ΔF

S with itself meets the zero section of the cotangent
bundle at the diagonal.

In general the time-ordered product Tn(F1, . . . , Fn)
.= F1 ·T . . . ·T Fn of n local

functionals is well defined for local entries as long as supports of F1, . . . , Fn are
pairwise disjoint. The technical problem one now has to solve is the extension of
a distribution which is defined outside of a submanifold to an everywhere defined
distribution. In the case of QFT on Minkowski space one can exploit translation
invariance and reduce the problem in the relative coordinates to the extension problem
of a distribution defined outside of the origin in R

n . The crucial concept for this
extension problem is Steinmann’s scaling degree [37].

Definition 10 LetU ⊂ R
n be a scale invariant open subset (i.e. λU = U for λ > 0),

and let t ∈ D′(U ) be a distribution onU . Let tλ(x) = t (λx) be the scaled distribution.
The scaling degree sd of t is
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sd t = inf{δ ∈ R| lim
λ→0

λδtλ = 0} . (76)

There is one more important concept related to the scaling degree, namely the degree
of divergence. It is defined as:

div(t)
.= sd(t)− n .

Theorem 2 Let t ∈ D(Rn \ {0}) with scaling degree sd t < ∞. Then there exists
an extension of t to an everywhere defined distribution with the same scaling degree.
The extension is unique up to the addition of a derivative P(∂)δ of the delta function,
where P is a polynomial with degree bounded by div(t) (hence vanishes for sd t < n).

A proof may be found in [13]. In the example above the scaling degree of ΔF
S (x)2

is 4 (in 4 dimensions). Hence the extension exists and is unique up to the addition of
a multiple of the delta function.

The theorem above replaces the cumbersome estimates on conditional conver-
gence of Feynman integrals on Minkowski momentum space. Often this conver-
gence is not proven at all, instead the convergence of the corresponding integrals on
momentum space with euclidean signature is shown. The transition to Minkowski
signature is then made after the integration. This amounts not to a computation but
merely to a definition of the originally undefined Minkowski space integral.

The generalization of the theorem on the extension of distributions to the situation
met on curved spacetimes is due toBrunetti and one of us (K.F.) [7]. It uses techniques
of microlocal analysis to reduce the general situation to the case covered by the
theorem above.

The construction of time ordered products is then performed in the following
way (causal perturbation theory). One searches for a family (Tn)n∈N0 of n-linear
symmetric maps from local functionals to microcausal functionals subject to the
following conditions:

T 1. T0 = 1
T 2. T1 = id
T 3. Tn(F1, . . . , Fn) = Tk(F1, . . . , Fk) � Tn−k(Fk+1, . . . , Fn) if the supports
suppFi , i = 1, . . . , k of the first k entries do not intersect the past of the sup-
ports suppFj , j = k + 1, . . . , n of the last n − k entries (causal factorisation
property).

The construction proceeds by induction: when the first n maps Tk , k = 0, . . . , n
have been determined, the map Tn+1 is determined up to an (n+1)-linear map Zn+1
from local functionals to local functionals. This ambiguity corresponds directly to
the freedom of adding finite counterterms in every order in perturbation theory.

The general result can be conveniently formulated in terms of the formal S-matrix,
defined as the generating function of time ordered products,
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S(V ) =
∞∑

n=0

1

n!Tn(V, . . . , V ) . (77)

Then the S-matrix Ŝ with respect to an other sequence of time ordered products is
related to S by

Ŝ = S ◦ Z (78)

where Z maps local functionals to local functionals, is analytic with vanishing zero
order term and with the first order term being the identity. The maps Z form the
renormalization group in the sense of Petermann and Stückelberg. They are formal
diffeomorphisms on the space of local functionals and describe the allowed finite
renormalization.

In order to illustrate the methods described above we work out the combinatorics
in terms of Feynman diagrams (graphs). Let D be the second order functional differ-
ential operator D = i�〈ΔF

S , δ2

δϕ2 〉. The time ordered product of n factors is formally
given by

F1 ·T . . . Fn ≡ Tn(F1, . . . Fn) = e
1
2 D(e−

1
2 D F1 · . . . e−

1
2 D Fn)

Using Leibniz’ rule and the fact that D is of second order we find

(F1 ·T . . . Fn)(ϕ) = e
∑

i< j Di j F1(ϕ1) · · · Fn(ϕn)|ϕ1=...ϕn=ϕ (79)

with Di j = i�〈ΔF
S , δ2

δϕi δϕ j
〉. The expansion of the exponential function of the differ-

ential operator yields

e
∑

i< j Di j =
∏
i< j

∞∑
li j=0

D
li j
i j

li j ! (80)

The right hand side may now be written as a sum over all graphs � with vertices
V (�) = {1, . . . , n} and li j lines e ∈ E(�) connecting the vertices i and j . We set
li j = l j i for i > j and lii = 0 (no tadpoles). If e connects i and j we set ∂e := {i, j}.
Then we obtain

Tn =
∑

�∈Gn

T� (81)

with Gn the set of all graphs with vertices {1, . . . n} and T� = 1
Sym (�)〈S̃�, δ�〉where

S̃� =
∏

e∈E(�)

ΔF
S (xe,i , i ∈ ∂e)
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δ� = δ|E(�)|∏
i∈V (�)

∏
e:i∈∂e δϕi (xe,i )

|ϕ1=···=ϕn

and the symmetry factor is Sym(�) = ∏
i< j li j !. Note that S̃� is a well-defined

distribution in D′((M2\Diag)|E(�)|) (Diag denotes the thin diagonal) that can be
uniquely extended to D′(M2|E(�)|), since the Feynman fundamental solution has a
unique extension with the same scaling degree. More explicitly we can write (81) as:

Tn(F1, . . . , Fn) =
∑

�∈Gn

1

Sym
(�)〈S̃�, δ�(F1, . . . , Fn)〉 (82)

Graphically we represent F with a vertex • and Di j with a dumbbell , so
each empty circle corresponds to a functional derivative. Applying the derivative
on a functional can be pictorially represented as filling the circle with the vertex.
Note that the expansion in graphs is possible due to the fact that the action used as a
starting point is quadratic, so D is a second order differential operator. If it were of
order k > 2, instead of lines we would have had to use k − 1 simplices to represent
it. Let us illustrate the concepts which we introduced here on a simple example.

Example 2 (removing tadpoles) Let us look at the definition of the time ordered
product of F and G in low orders in �. We can write D(F · G) diagramatically as:

1

i�
D (F · G) =

〈
ΔF

S , F (2)
〉

G + F
〈
ΔF

S , G(2)
〉
+ 2

〈
ΔF

S , F (1) ⊗ G(1)
〉

(83)

2

Herewe see that the tadpoles are present. The lowest order contributions to e− 1
2 D F

can be written as:

e
1
2DF F 1

2DF O 2 O 2 .

Now we write the expression for F ·T G up to the first order in �:

1 1
2D 1 1

2D F 1 1
2D G O 2 .

All the loop terms cancel out. We can see that applying e− 1
2 D on G and F reflects

what is called in physics “removing the tadpoles”. In formula (80) it is reflected by
the fact that we set lii = 0.

As long as the formula (79) is applied to regular functionals there is no problem,
since their functional derivatives are by definition test functions. But the relevant
functionals are the interaction Lagrangians which are local functionals and therefore
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have derivatives with support on the thin diagonal, hence all but the first derivative
are singular. As a typical example consider

F(ϕ) =
∫

dz f (z)
ϕ(z)k

k! .

Its derivatives are

F (l)[ϕ](x1, . . . , xl) =
∫

dz f (z)
ϕ(z)k−l

(k − l)!
∏

i

δ(z − xi ) . (84)

In general, the functional derivatives of a local functional have the form

F (l)[ϕ](x1, . . . , xl) =
∫

dz
∑

j

f j [ϕ](z)p j (∂x1, . . . , ∂xl )

l∏
i=1

δ(z − xi )

with polynomials p j and ϕ-dependent test functions f j [ϕ]. The integral represen-
tation above is not unique since one can add total derivatives. This amounts to the
relation
∫

dzq(∂z) f (z)p(∂x1, . . . , ∂xl )
∏

i

δ(z − xi ) =
∫

dz f (z)q(∂x1 + · · · ∂xl ) (85)

p(∂x1, . . . , ∂xl )
∏

i

δ(z − xi ) .

We insert the integral representation (84) into the formula (82) for the time ordered
product and in each term we obtain:

〈S̃�, δ�(F1, . . . , Fn)〉 =
∫

dxdz
∏

v∈V (�)

(∑
jv

f v
jv [ϕ](zv)

p jv (∂xe,v |v ∈ ∂e)
αv∏

e:v∈∂e

δ4(zv − xe,v)
)

S̃� ,

where αv is the number of lines adjacent at vertex v and we use the notation
x = (xe,v|e ∈ E(�), v ∈ ∂e), z = (zv|v ∈ V (�)). We can move the partial
derivatives ∂xe,v by formal partial integration to the distribution S̃� . Next we inte-
grate over the delta distributions, which amounts to the pullback of a derivative of
S̃� with respect to the map ρ� : M

|V (�)| → M
2|E(�)| given by the prescription

(ρ�(z))e,v = zv if v ∈ ∂e .
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Let p be a polynomial in the derivatives with respect to the partial derivatives
∂xe,v , v ∈ ∂e. The pullback ρ∗� of pS̃� is well defined on M

|V (�)|\DIAG, where
DIAG is the large diagonal:

DIAG =
{

z ∈ M
|V (�)|| ∃v,w ∈ V (�), v �= w : zv = zw

}
.

The problem of renormalization now amounts to finding the extensions of ρ∗� pS̃� to
everywhere defined distributions S�,p ∈ D′(M|V (�)|) which depend linearly on p.
These extensions must satisfy the relation

∂zv S�,p = S�,(
∑

e ∂xe,v )p (86)

We present now the inductive procedure of Epstein and Glaser that allows to define
the desired extension of ρ∗� pS̃� . For the simplicity of notation we first consider the
case where no derivative couplings are present.

Let us define an Epstein-Glaser subgraph (EG subgraph) γ ⊆ � to be a subset
of the set of vertices V (γ ) ⊆ V (�) together with all lines in � connecting them,

E(γ ) = {e ∈ E(�) : ∂e ⊂ V (γ )} .

The first step of the Epstein-Glaser induction is to choose extensions for all EG
subgraphs with two vertices, |V (γ )| = 2. In this case we have translation invariant
distributions in D′(M2\Diag), which correspond in relative coordinates to generic
distributions t̃γ in D′(M\ {0}). The scaling degree of these distributions is given
by |E(γ )| (d − 2), and we can choose a (possibly unique) extension according to
Theorem 2. By translation invariance this gives extensions tγ ∈ D′(M2).

Now we come to the induction step. For a generic EG subgraph γ ⊆ � with
n vertices we assume that the extensions of distributions corresponding to all EG
subgraphs of γ with less than n vertices have already been chosen. The causality
condition T3. then gives a translation invariant distribution in D′(M|V (γ )|\Diag)
which corresponds to a generic distribution t̃γ ∈ D′(M|V (γ )|−1\ {0}). The scaling
degree and hence the degree of divergence of this distribution is completely fixed by
the structure of the graph:

div(γ ) = |E(γ )| (d − 2)− (|V (γ )| − 1) d , d = dim(M) . (87)

We call γ superficially convergent if div(γ ) < 0, logarithmically divergent if
div(γ ) = 0 and divergent of degree div(γ ) otherwise. Again by Theorem 2 there is
a choice to be made in the extension of t̃γ in the case div(γ ) ≥ 0.

Let us now come back to the case where derivative couplings are present. The
scaling degree of pS̃� fulfills:

sd(pS̃�) ≤ sd(S̃�)+ |p| ,
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where |p| is the degree of the polynomial p. We can see that p encodes the derivative
couplings appearing in the graph γ . In the framework of Connes-Kreimer Hopf
algebras it is called the external structure of the graph. The presence of derivative
couplings introduces an additional freedom in the choice of the extension in each
step of the Epstein-Glaser induction and one has to use it to fulfill (86). This relation
follows basically from the Action Ward Identity, as discussed in [14, 15]. It can be
also seen as a consistency condition implementing the Leibniz rule, see [24].

Let us now remark on the relation of the Epstein-Glaser induction to a more con-
ventional approach to renormalization. Firstly we show, how the EG renormalization
relates to the regularization procedure.We are given anEG subgraph γ with n vertices
and we assume that all the subgraphs with n − 1 vertices are already renormalized.
Let

Dλ(M
n−1) := { f ∈ D(Mn−1) | (∂α f )(0) = 0 ∀|α| ≤ λ} (88)

be the space of functions with derivatives vanishing up to order λ and letD′
λ(M

n−1)
be the corresponding space of distributions. Theorem 2 tells us that the distribution
t̃γ ∈ D′(Mn−1) associated with the EG subgraph γ has a unique extension to an
element ofD′

div(γ )(M
n−1). An extension to a distribution on the full spaceD(Mn−1)

can be therefore defined by a choice of the projection:

W : D(Mn−1) → Ddiv(γ )(M
n−1) .

There is a result proven in [13], which characterizes all such projections:

Proposition 1 There is a one-to-one correspondence between families of functions

{
wα ∈ D | ∀ |β| ≤ λ : ∂βwα(0) = δβ

α , |α| ≤ λ
}

(89)

and projections W : D → Dλ. The set (89) defines a projection W by

W f := f −
∑
|α|≤λ

f (α)(0) wα . (90)

Conversely a set of functions of the form (89) is given by any basis of ran(1 − W )

dual to the basis
{
δ(α) : |α| ≤ λ

}
of D⊥

λ ⊂ D′.

Let us now define, following [27], what wemean by a regularization of a distribution.

Definition 11 (Regularization) Let t̃ ∈ D′(Rn \{0}) be a distribution with degree of
divergence λ, and let t̄ ∈ D′

λ(R
n) be the unique extension of t̃ with the same degree

of divergence. A family of distributions {tζ }ζ∈Ω\{0}, tζ ∈ D′(Rn), with Ω ⊂ C a
neighborhood of the origin, is called a regularization of t̃ , if

∀g ∈ Dλ(R
n) : lim

ζ→0
〈tζ , g〉 = 〈t̄, g〉 . (91)
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The regularization {tζ } is called analytic, if for all functions f ∈ D(Rn) the map

Ω \ {0} % ζ �→ 〈tζ , f 〉 (92)

is analytic with a pole of finite order at the origin. The regularization {tζ } is called
finite, if the limit limζ→0〈tζ , f 〉 ∈ C exists ∀ f ∈ D(Rn); in this case limζ→0 tζ ∈
D′(Rn) is called an extension or renormalization of t̃ .

For a finite regularization the limit limζ→0 tζ is indeed a solution t of the extension
problem. Given a regularization {tζ } of t , it follows from (91) that for any projection
W : D → Dλ

〈t̄, W f 〉 = lim
ζ→0

〈tζ , W f 〉 ∀ f ∈ D(Rn) . (93)

Any extension t ∈ D′(Rn) of t̃ with the same scaling degree is of the form 〈t, f 〉 =
〈t̄, W f 〉 with some W -projection of the form (90). Since tζ ∈ D′(Rn) we can write
(93) in the form

〈t̄, W f 〉 = lim
ζ→0

⎡
⎣〈tζ , f 〉 −

∑
|α|≤sd(t)−n

〈tζ , wα〉 f (α)(0)

⎤
⎦ . (94)

In general the limit on the right hand side cannot be split, since the limits of the
individual terms might not exist. However, if the regularization {tζ , ζ ∈ Ω \ {0}} is
analytic, each term can be expanded in a Laurent series around ζ = 0, and since the
overall limit is finite, the principal parts (pp) of these Laurent series must coincide.
It follows that the principal part of any analytic regularization {tζ } of a distribution
t ∈ D′(Rn \{0}) is a local distribution of order sd(t)−n.We can now give a definition
of the minimal subtraction in the EG framework.

Corollary 1 (Minimal Subtraction) The regular part (rp = 1− pp) of any analytic
regularization {tζ } of a distribution t̃ ∈ D′(Rn \ {0}) defines by

〈tMS, f 〉 := lim
ζ→0

rp(〈tζ , f 〉) (95)

an extension of t̃ with the same scaling degree, sd(tMS) = sd(t̃). The extension tMS

defined by (95) is called “minimal subtraction”.

To finish this discussion we want to remark on the difference between the Epstein-
Glaser procedure and the BPHZ scheme. It is best seen on the example of the rising
sun diagram of the ϕ4 theory. In the framework of BPHZ, it contains three logarithmi-
cally divergent subdiagrams, which have to be renormalized first. In the perspective
of EG, however, it is a diagram with two vertices and, hence, contains no divergent
subdiagram at all. This way one saves some work computing contributions, which,
as shown by Zimmermann [42] cancel out in the end.
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We have just seen how to define the n-fold time ordered products (i.e. multilinear
maps Tn) by the procedure of Epstein and Glaser. An interesting question is whether
the renormalized time ordered product defined by such a sequence of multilinear
maps can be understood as an iterated binary product on a suitable domain. Recently
we proved in [17] that this is indeed the case. The crucial observation is that multipli-
cation of local functionals is injective. More precisely, let F0(M) be the set of local
functionals vanishing at some distinguished field configuration (say ϕ = 0). Iterated
multiplication m is then a linear map from the symmetric Fock space over F0(M)

onto the algebra of functionals which is generated by F0(M). Then there holds the
following assertion:

Proposition 2 The multiplication m : S•F0(M) → F(M) is bijective (where Sk

denotes the symmetrised tensor product of vector spaces).

Let β = m−1. We now define the renormalized time ordering operator on the space
of multilocal functionals F(M) by

Tr := (
⊕

n

Tn) ◦ β (96)

This operator is a formal power series in � starting with the identity, hence it is
injective. The renormalized time ordered product is now defined on the image of Tr
by

A ·Tr B
.= Tr(T −1

r A · T −1
r B) , (97)

This product is equivalent to the pointwise product and is in particular associative
and commutative. Moreover, the n-fold time ordered product of local functionals
coincides with the n-linear map Tn of causal perturbation theory.

Appendix—Distributions and Wavefront Sets

We recall same basic notions from the theory of distributions on R
n . Let Ω ⊂ R

n

be an open subset and E(Ω)
.= C∞(Ω, R) the space of smooth functions on it. We

equip this space with a Fréchet topology generated by the family of seminorms:

pK ,m(ϕ) = sup
x∈K|α|≤m

|∂αϕ(x)| , (98)

where α ∈ N
N is a multiindex and K ⊂ Ω is a compact set. This is just the topology

of uniform convergence on compact sets, of all the derivatives.
The space of smooth compactly supported functions D(Ω)

.= C∞c (Ω, R) can be
equipped with a locally convex topology in a similar way. The fundamental system
of seminorms is given by [35]:
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p{m},{ε},a(ϕ) = sup
ν

(
sup
|x |≥ν,
|p|≤mν

∣∣D pϕa(x)
∣∣/εν

)
, (99)

where {m} is an increasing sequence of positive numbers going to +∞ and {ε} is a
decreasing one tending to 0.

The space of distributions is defined to be the dual D′(Ω) of D(Ω) with respect
to the topology given by (99). Equivalently, given a linear map L on D(Ω) we can
decide if it is a distribution by checking one of the equivalent conditions given in the
theorem below [25, 33, 41].

Theorem 3 A linear map u on E(Ω) is a distribution if it satisfies the following
equivalent conditions:

1. To every compact subset K of Ω there exists an integer m and a constant C > 0
such that for all ϕ ∈ D with support contained in K it holds:

|u(ϕ)| ≤ C max
p≤k

sup
x∈Ω

|∂ pϕ(x)| .

We call ||u||Ck(Ω)
.= maxp≤k supx∈Ω |∂ pϕ(x)| the Ck-norm and if the same inte-

ger k can be used in all K for a given distribution u, then we say that u is of order
k.

2. If a sequence of test functions {ϕk}, as well as all their derivatives converge
uniformly to 0 and if all the test functions ϕk have their supports contained in a
compact subset K ⊂ Ω independent of the index k, then u(ϕk) → 0.

An important property of a distribution is its support. If U ′ ⊂ U is an open subset
then D(U ′) is a closed subspace of D(U ) and there is a natural restriction map
D′(U ) → D′(U ′). We denote the restriction of a distribution u to an open subset U ′
by u|U ′ .

Definition 12 The support suppu of a distribution u ∈ D′(Ω) is the smallest closed
set O such that u|Ω\O = 0. In other words:

suppu
.= {x ∈ Ω| ∀U openneigh.of x, U ⊂ Ω ∃ϕ ∈ D(Ω), suppϕ ⊂ U, s.t. < u, ϕ >�= 0} .

Distributions with compact support can be characterized by means of a following
theorem:

Theorem 4 The set of distributions in Ω with compact support is identical with the
dual E ′(Ω) of E(Ω) with respect to the topology given by (98).

Now we discuss the singularity structure of distributions. This is mainly based on
[25] and Chap.4 of [1].

Definition 13 The singular support sing supp u of u ∈ D′(Ω) is the smallest closed
subset O such that u|Ω\O ∈ E(Ω\O).

We recall an important theorem giving the criterion for a compactly distribution to
have an empty singular support:
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Theorem 5 A distribution u ∈ E ′(Ω) is smooth if and only if for every N there is a
constant CN such that:

|û(k)| ≤ CN (1+ |k|)−N ,

where û denotes the Fourier transform of u.

We can see that a distribution is smooth if its Fourier transform decays fast at infinity.
If a distribution has a nonempty singular support we can give a further characteri-
zation of its singularity structure by specifying the direction in which it is singular.
This is exactly the purpose of the definition of a wave front set.

Definition 14 For a distribution u ∈ D′(Ω) the wavefront set WF(u) is the com-
plement in Ω × R

n \ {0} of the set of points (x, k) ∈ Ω × R
n \ {0} such that there

exist

• a function f ∈ D(Ω) with f (x) = 1,
• an open conic neighborhood C of k, with

sup
k∈C

(1+ |k|)N | f̂ · u(k)| < ∞ ∀N ∈ N0 .

On a manifold M the definition of the Fourier transform depends on the choice
of a chart, but the property of strong decay in some direction (characterized now by
a point (x, k), k �= 0 of the cotangent bundle T ∗M) turns out to be independent of
this choice. Therefore the wave front set (WF) of a distribution on a manifold M is
a well defined closed conical subset of the cotangent bundle (with the zero section
removed).

The wave front sets provide a simple criterion for the existence of point-wise
products of distributions.Beforewegive it,weprove amore general result concerning
the pullback. Here we follow closely [1, 25]. Let F : X → Y be a smooth map
between X ⊂ R

m and Y ⊂ R
n. We define the normal set NF of the map F as:

NF
.= {(F(x), η) ∈ Y × R

n|(d Fx )
T (η) = 0} ,

where (d Fx )
T is the transposition of the differential of F at x.

Theorem 6 Let � be a closed cone in Y × (Rn{0}) and F : X → Y as above,
such that NF ∩ � = ∅. Then the pullback of functions F∗ : E(X) → E(Y )

has a unique, sequentially continuous extension to a sequentially continuous map
D′

�(Y ) → D′(X), where D′
�(Y ) denotes the space of distributions with WF sets

contained in �.

Proof Here we give only an idea of the proof. Details can be found in [1, 25]. Firstly,
one has to show that the problem can be reduced to a local construction. Let x ∈ X .
We assumed that NF ∩ � = ∅, so we can choose a compact neighborhood K of
F(x) and an open neighborhoodO of x such that F(O) ⊂ int(K ) and the following
condition holds:



Perturbative Algebraic Quantum Field Theory 53

∃ε > 0 s.t. V
.=
⋃
x∈O

{k|(d Fx )T k} satisfies (K × V ) ∩ � = ∅ .

Such neighborhoods define a cover of X and we choose its locally finite refinement
which we denote by {Oα}α∈A, where A is some index set. To this cover we have
the associated family of compact sets Kλ ⊂ Y and we choose a partition of unity∑
α∈A

gα = 1, suppgα ⊂ Oα and a family { fα}α∈A of functions on Y with supp

fα = Kα and fα ≡ 1 on F(suppgα). Then:

F∗(ϕ) =
∑
α∈A

gα F∗( fαϕ) .

This way the problem reduces to finding an extension of F∗
α

.= (F
∣∣Oα

)∗ :
C∞c (Kα, R) → C∞(Oα, R) to a map on D′

�(Kα). Note that for ϕ ∈ C∞c (Kα),
suppχ ⊂ Oα , we can write the pullback as:

〈F∗
α (ϕ), χ〉 =

∫
ϕ(Fα(x))χ(x)dx =

∫
ϕ̂(η)ei〈Fα(x),η〉χ(x)dxdη =

∫
ϕ̂(η)Tχ (η)dη ,

wherewe denoted Tχ (η)
.= ∫ ei〈Fα(x),η〉χ(x)dx .We can use this expression to define

the pullback for u ∈ D′
�(Kα), by setting:

〈F∗
α (u), χ〉 .=

∫
û(η)Tχ (η)dη .

To show that this integral converges, we can divide it into two parts: integration over
Vα and over R

n \ Vα , i.e.:

〈F∗
α (u), χ〉 =

∫

Vα

û(η)Tχ (η)dη +
∫

Rn\Vα

û(η)Tχ (η)dη .

The first integral converges since Kα×Vα∩� = ∅ and therefore û(η) decays rapidly
on Vα , whereas |Tχ (η)| ≤ ∫ |χ(x)|dx . The second integral also converges. To prove
it, first we note that û(η) is polynomially bounded i.e. ϕ̂(η) ≤ C(1+ |η|)N for some
N and appropriately chosen constant C . Secondly, we have a following estimate on
Tχ (η): for ever k ∈ N and a closed conic subset V ⊂ R

n such that (d Fx )
T η �= 0 for

η ∈ V , there exists a constant Ck,V for which it holds8

|Tχ (η)| ≤ Ck,V (1+ |η|)−k ,

8 For the proof of this estimate see [1, 25]
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Since for η ∈ Vα it holds (d Fx )
T η > ε > 0, we can use this estimate to prove the

convergence of the second integral.
We already proved that F∗ : D′

�(Y ) → D′(X) exists. Now it remains to show
its sequential continuity. This can be easily done, with the use of estimates provided
above and the uniform boundedness principle.

Using this theoremwe can define the pointwise product of two distributions t, s on
an n-dimensional manifold M as a pullback by the diagonal map D : M → M × M
if the pointwise sum of their wave front sets

WF(t)+WF(s) = {(x, k + k′)|(x, k) ∈WF(t), (x, k′) ∈WF(s)} ,

does not intersect the zero section of Ṫ ∗M . This is the theorem 8.2.10 of [25]. To
see that this is the right criterion, note that the set of normals of the diagonal map
D : x �→ (x, x) is given by ND = {(x, x, k,−k)|x ∈ M, k ∈ T ∗M}. The product
ts is defined by: ts = D∗(t ⊗ s) and if one of t, s is compactly supported, then so is
ts and we define the contraction by 〈t, s〉 .= t̂ s(0).
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Lectures on Mathematical Aspects of (twisted)
Supersymmetric Gauge Theories

Kevin Costello and Claudia Scheimbauer

Abstract Supersymmetric gauge theories have played a central role in applications
of quantumfield theory tomathematics. Topologically twisted supersymmetric gauge
theories often admit a rigorousmathematical description: for example, theDonaldson
invariants of a 4-manifold can be interpreted as the correlation functions of a topo-
logically twisted N = 2 gauge theory. The aim of these lectures is to describe
a mathematical formulation of partially-twisted supersymmetric gauge theories (in
perturbation theory). These partially twisted theories are intermediate in complexity
between the physical theory and the topologically twisted theories. Moreover, we
will sketch how the operators of such a theory form a two complex dimensional
analog of a vertex algebra. Finally, we will consider a deformation of the N = 1
theory and discuss its relation to the Yangian, as explained in [8, 9].

These are lecture notes of a minicourse given by the first author at the Winter school
in Mathematical Physics 2012 in Les Houches on minimal (or holomorphic) twists
of supersymmetric gauge theories.

Supersymmetric gauge theories in general are very difficult to study, whereas
topologically twisted supersymmetric gauge theories have been well-studied. Our
object of interest lies somewhere in between:

Supersymmetric gauge theories

⊆

Minimal (or holomorphic) twists of supersymmetric gauge theories

⊆

Topologically twisted supersymmetric gauge theories (e.g. Donaldson theory)
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In the first section, we recall basics of supersymmetry. We define and describe
holomorphic twists of N = 1, 2, 4 supersymmetric theories. In the second section,
we discuss the structure of the observables of field theories. In the last section, we
examine the structure of the observables of twistedSUSYgauge theoriesmore closely
and explain a relation to vertex algebras. Moreover, we consider a deformation of the
N = 1 theory and discuss its relation to the Yangian and (conjecturally) to the quan-
tum loop algebra. In a short appendix, we briefly summarize the framework set up in
[7] relating perturbative field theories, moduli problems, and elliptic L∞-algebras.

1 Basics of Supersymmetry

In these lectures, we consider gauge theories on R
4. Everything in this first section

is essentially standard, references for this material are [7, 11, 13].

1.1 Super-Translation Lie Algebra and Supersymmetric Field
Theories

Recall that there is an isomorphism of groups

Spin(4) ∼= SU(2) × SU(2).

Let S+ and S− be the fundamental representations of the twoSU(2)’s.More precisely,
referring to the twocopies ofSU(2) inSpin(4) asSU(2)±, let S+ be the2-dimensional
complex fundamental representation of SU(2)+ endowedwith trivial SU(2)− action.
Thus, S+ is a 2-dimensional complex representation of Spin(4), and similarly, so is
S−.

Let VR = R
4 and VC = VR ⊗ C. Then VR = R

4 is the defining 4-dimensional
real representation of SO(4) and

VC
∼= S+ ⊗ S−

as complex Spin(4) representations.

Definition 1 The super-translation Lie algebra TN=1 is the complex Z/2Z-graded
Lie algebra1

TN=1 = VC ⊕ Π(S+ ⊕ S−),

where the Lie bracket is defined by [Q+, Q−] = Q+ ⊗ Q− ∈ VC for Q+ ∈
S+, Q− ∈ S−, and is zero otherwise.

1 Here ΠC means that the vector space C has odd degree. So T N=1 consists of VC in degree 0 and
S+ ⊕ S− in degree 1.
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To encode more supersymmetry, we extend this definition to the following.

Definition 2 Let W be a complex vector space. Define the super-translation Lie
algebra T W to be the complex Z/2Z-graded Lie algebra

T W = VC ⊕ Π(S+ ⊗ W ⊕ S− ⊗ W ∗),

where the Lie bracket is defined by [Q+⊗w, Q−⊗w∗] = (Q+⊗Q−)〈w,w∗〉 ∈ VC

for Q+ ⊗w ∈ S+ ⊗ W, and Q− ⊗w∗ ∈ S+ ⊗ W ∗. The number of supersymmetries
is the dimension of W . For W = C

k we use the notation

TN=k = T Ck
.

Note that Spin(4) acts on T W .

Definition 3 A supersymmetric (SUSY) field theory2 on R
4 is a field theory on

R
4 = VR, equivariant under the action of Spin(4) � VR on R

4, and where the action
of the Lie algebra VR of translations is extended to an action of the Lie algebra of
super-translations, in a way compatible with the Spin(4)-action.

Observe that GL(W ) acts on T W naturally. If G R ⊆ GL(W ), one can ask that a
SUSY field theory has a compatible action of G R and T W . In physics parlance, G R

is the R-symmetry group of the theory.

1.2 Twisting

The general yoga of deformation theory [18, 22, 23] tells us that symmetries3 of any
mathematical object of cohomological degree 1 correspond to first order deforma-
tions. More generally, symmetries of degree k give first-order deformations over the
base ring C[ε]/ε2, where ε is of degree 1 − k. The idea is the following. Suppose
we are dealing with a differential-graded mathematical object, such as a differential
graded algebra A with differential d. A symmetry of A of degree k is a derivation X of
A of degree k. The corresponding deformation is given by changing the differential
to d + εX , where as above ε has degree 1 − k and we work modulo ε2.

Suppose that we have a supersymmetric field theory, acted on by the supersym-
metry Lie algebra T W . Let us pick an odd element Q ∈ T W . In the supersymmetric
world, things are bi-graded, by Z and Z/2. We have both a cohomological degree
and a “super” degree. The symmetry Q of our theory is of bi-degree (0, 1); i.e. it is
of cohomological degree 0 and super degree 1. Thus, Q will define a deformation of
this theory over the base ring C[t]/t2, where the parameter t is of bi-degree (1, 1)
(and thus even).

2 For simplicity, we omit formal definitions here. See the Appendix or [7] for more details.
3 In order for this relationship to be a bijection, the word “symmetry” needs to be understood
homotopically: e.g. by considering symmetries of a free resolution of an algebraic object.
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Concretely, this deformation of our theory is obtained by adding t Q to the BRST
differential of the theory. For example, if the theory is described by a factoriza-
tion algebra (as we will discuss later), we are adding t Q to the differential of the
factorization algebra.

In general, first order deformations (corresponding to symmetries of degree 1)
extend to all-order deformations if they satisfy the Maurer-Cartan equation. In the
example of a differential graded algebra described above, a derivation X of A of
degree 1 satisfies the Maurer-Cartan equation if

d X + 1
2 [X, X ] = 0.

This equation implies that the differential d + εX has square zero, where we are
working over the base ring C[[ε]].

The Lie algebra T W has zero differential, so that the Maurer-Cartan equation for
an odd element Q ∈ T W is the equation [Q, Q] = 0. Therefore, if Q satisfies this
equation, then it gives rise to a deformation of our theory over the base ring C[[t]],
where again t is of bi-degree (1, 1). The twisted theory will be constructed from this
deformation.

However, now we see that there is a problem: we would like our twisted theory to
be a single Z × Z/2-graded theory, not a family of theories over C[[t]] where t has
bi-degree (1, 1). (The fact that t has this bi-degree means that, even if we could set
t = 1, the resulting theory would not be Z × Z/2-graded.)

To resolve this difficulty, we use a C
× action to change the grading.

Definition 4 Twisting data for a supersymmetric field theory consists of an odd
element Q ∈ T W and a group homomorphism ρ : C

× → G R such that

ρ(λ)(Q) = λQ ∀λ ∈ C
×

and such that [Q, Q] = 0.

Suppose we have such twisting data, and that we have a theory acted on by T W

with R-symmetry group G R . Then we can, as above, form a family of theories over
C[[t]] by adding t Q to the BRST differential. We can now, however, use the action of
C

× on everything to change the grading. Indeed, this C
× action lifts the bi-grading

by Z×Z/2Z to a tri-grading by Z×Z×Z/2Z, where the first Z is the weight under
the C

× action. Since Q has weight 1 under this C
× action, t has weight −1 and so

tri-degree (−1,1,1).
From this tri-grading we construct a new Z × Z/2Z grading, by declaring that an

element with tri-degree (a, b, c) has new bi-degree (b + a, c + a). This change of
grading respects signs.

After this change of grading, we see that we have a family of theories over C[[t]]
where t is now of bi-degree (0, 0) i.e. it is of cohomological degree 0 and super
degree 0. We still have the C

× action, and this acts on t by sending t → λ−1t .
Therefore this family of theories is independent of t , and we can set t = 1.
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Thus, our twisting data defines a twisted field theory with BRST operator d + Q if
d is the original BRST operator. For details on the construction, see in [7, Sect. 13].

Remark 1 Our twisted field theory is a C
×-equivariant family of theories over C

with BRST operator d + t Q. By the Rees construction, this is the same as the data
of a filtration on the twisted field theory, whose associated graded is the untwisted
theory with a shift of grading. It follows that there is a spectral sequence from the
cohomology of the observables of the untwisted theory to that of the twisted theory.

One might think that the cohomology of observables of the twisted theory (in the
sense above) is a subset of the cohomology of observables of the untwisted theory,
because one is looking at the Q-closed modulo Q-exact observables of the original
theory. This is not really true, however, because this fails to take account of the
differential (the BRST operator) on the observables of the untwisted theory. The best
that one can say in general is that there is a spectral sequence relating twisted and
untwisted observables.

There are examples (obtained by applying further twists to theories which are
already partially twisted) where this spectral sequence degenerates, so that the coho-
mology of twisted observables has a filtration whose associated graded is the coho-
mology of untwisted observables. In such cases, twisted and untwisted observables
are the “same size”, and twisted observables are definitely not a subset of untwisted
observables (at the level of cohomology).

1.3 Minimally Twisted N = 1, 2, 4 SUSY Theories
Are Holomorphic

We begin with the case N = 1. Choosing an element Q ∈ S+ is the same as
choosing a complex structure on the linear space R

4, with the property that the
standard Riemannian metric on R

4 is Kähler for this complex structure and that the
induced orientation on R

4 is the standard one. (Elements in S− give rise to such
complex structures which induce the opposite orientation on R

4).
One can see this as follows. Given Q ∈ S+, the stabilizer Stab(Q) ⊆ Spin(4) ∼=

SU(2) × SU(2) is SU(2)−, so Q provides a reduction of the structure group to
SU(2). Concretely, Q ⊗ S− ⊆ VC = C

4 is the (0, 1) part, i.e. the −i eigenspace of
the complex structure, and its complex conjugate is the (1, 0) part.

The complexified R-symmetry group for N = 1 supersymmetry is C
×, which

acts on supercharges in S+ with weight 1 and in S− with weight−1. As we explained
earlier, we will use this R-symmetry action to change gradings, so that supercharges
in S+ have cohomological degree 1 and those in S− have cohomological degree −1.

After we change the grading in this way, the Z-graded version of the super-
translation Lie algebra

TN=1 = S−[1] ⊕ VC ⊕ S+[−1]
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acts on the untwisted theory. If we twist by an element Q ∈ S+, then the dg Lie
algebra (TN=1, [Q,−]) acts on the Q-twisted theory.

Let ∂
∂zi

, ∂
∂ z̄i

denote a basis for VC where we are using the complex structure on
VR induced by Q. Then the map

[Q,−] : S− → VC

has image [Q, S−] = Q ⊗ S− = V (0,1)
C

, which is the subspace generated by the
∂

∂ z̄i
’s. Thus, translations in the ∂

∂ z̄i
directions are homotopically trivial in the twisted

theory.
This means that the twisted theory is holomorphic. Let us briefly explain this idea.

Recall that the energy-momentum tensor of a field theory arises from the action of
the translation group VR on the field theory. One (quite weak) way to say that a field
theory is topological is that the energy-momentum tensor is trivial. This implies,
for instance, that correlation functions are independent of position. Our definition
of holomorphic is that the action of V (0,1)

C
is (homotopically) trivial. This will mean

that correlation functions are holomorphic functions of position.
In fact, for N = 1, 2, 4, any twist by a Q of the form Q+ ⊗ w ∈ S+ ⊗ W (a

decomposable tensor) produces a holomorphic field theory. Twists by such elements
are called minimal twists.

Examples of such a minimally twisted supersymmetric gauge theory can be
obtained by twisting the anti-self-dualN = 1, 2, 4 supersymmetric gauge theories4

on R
4. In fact, these twisted field theories arise as cotangent theories, which means

that the space of solutions to the equations of motion is described as a −1-shifted
cotangent bundle:

N = 1 T ∗[−1](holomorphic G-bundles)
N = 2 T ∗[−1](holomorphic G-bundles + ψ ∈ H0(gP ))
N = 4 T ∗[−1](holomorphic G-bundles + ψ1, ψ2 ∈ H0(gP ) s.t. [ψ1, ψ2] = 0)

If we work perturbatively (as we do for most of this note), we consider solutions to
the equations of motion which lie in a formal neighbourhood of a given solution.
It is possible to glue together the perturbative descriptions over the moduli space
of classical solutions, but we do not consider this point in this note. Here G is a
semi-simple algebraic group. We denote by gP = P ×G g the adjoint bundle of Lie
algebras associated to P .

They admit an explicit description, as derived in [7]. The fields of these theories
can be described in the BV formalism as follows:

N = 1 The fields are

Ω0,∗(C2, g)[1] ⊕ Ω2,∗(C2, g∨),

4 We will refer to these as “theN = 1, 2, 4 twisted SUSY gauge theory” in the rest of these notes.
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and the action on the space of fields is given by

∫

C2

T r(β ∧ (∂̄α + 1

2
[α, α])),

where α ∈ Ω0,∗(C2, g)[1] and β ∈ Ω2,∗(C2, g∨). This theory is a holo-
morphic BF theory, see [8]. It is equivalent to holomorphic Chern-Simons
theory on the supermanifold C

2|1.
N = 2 We get something similar, replacing g by g[ε], where ε is a square-zero

parameter of degree 1. Thus, the field α is an elementΩ0,∗(C2, g[ε])[1] and
the field β is an element of Ω2,∗(C2, (g[ε])∨).

N = 4 Again, we get something similar, replacing g by g[ε1, ε2], where ε1, ε2 are
square-zero parameters of degrees 1 and −1 respectively. This is equivalent
to holomorphic Chern-Simons theory on C

2|3.

This result from [7] allows an explicit calculation (at the classical level) of the spaces
of observables of these supersymmetric gauge theories. (Wewill discuss the structure
on observables using the language of factorization algebras shortly). For instance,
for the N = 4 theory, the space of observables supported at the origin in C

2 is

C∗(g[[z1, z2, ε1, ε2, ε3]])

where the εi are three odd parameters. This result was also derived in [10], using
different methods.

2 Factorization Algebras in Perturbative Quantum Field Theory

In the book [6], a definition of a quantum field theory based on Wilsonian effective
action and the BV formalism is given. The main result is that we can construct, using
renormalization, such perturbative quantum field theories starting from a classical
field theory and working term by term in �, using obstruction theory. Let E be the
space of fields of a classical field theory and let O(E) be the functionals on E . If we
have a quantization modulo �

n , there may be an obstruction On ∈ H1(Oloc(E)) to
quantize to the next order. HereOloc(E) denotes the subcomplex ofO(E) consisting
of local functionals, i.e. functionals which can be written as sums of integrals over
differential operators. If On vanishes, we can quantize to the next order, and the
possible lifts are a torsor for H0(Oloc(E)).

2.1 Factorization Algebras

In [4], Costello and Gwilliam analyze the structure of observables of a quantum field
theory in the language of factorization algebras. The notion of factorization algebra
was introduced in the algebro-geometric context by Beilinson and Drinfeld in [2].
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The approach used by Costello-Gwilliam is very similar to how observables and the
operator product are encoded in Segal’s axioms for quantum field theory [26–28].

Definition 5 Let M be a topological space and let C be a symmetric monoidal
category (in examples fromfield theoryCwill be cochain complexes or somevariant).
A prefactorization algebra F on M (with values in C) consists of the following data.
1. For every open subset U ⊆ M , an object F(U ) ∈ Ob(C).
2. If U1, . . . , Un are pairwise disjoint open subsets of an open set V , we have a

morphism

such that if U1 � · · · � Uni ⊆ Vi and V1 � · · · � Vk ⊆ W , the following diagram
commutes.

A factorization algebra on M is a prefactorization algebra on M which addi-
tionally satisfies a gluing condition saying that given an open cover {Ui } of V
satisfying certain conditions,F(V ) can be recovered from theF(Ui )’s.This glue-
ing condition is analogous to the one for (homotopy) (co-)sheaves.
For the exact gluing condition and more details on the theory of factorization
algebras we refer to [4] and to Grégory Ginot’s contribution [15].

Although the definition makes sense for an arbitrary topological space, we will
only consider factorization algebras on manifolds.

2.2 Associative Algebras are Factorization Algebras

Actually, associative algebras are a special case of factorization algebras with values
in chain complexes. Suppose that we have a factorization algebra F on R with the
property that for any interval (a, b) ⊆ R the map

F((a, b))
�−→ F(R)
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is a quasi-isomorphism, i.e. an isomorphism on cohomology.5 Then F defines
an associative algebra (up to homotopy). Let A = F(R) � F((a, b)) for any
(a, b) ⊆ R. If (a, b) � (c, d) ⊆ (e, f ) with e < a < b < c < d < f , the
factorization algebra structure gives us a map

Conversely, any associative algebra defines a locally constant factorization algebra
on R.

Remark 2 Such factorization algebras really appear in quantum mechanics. Quan-
tum mechanics is the field theory with fields φ ∈ C∞

c (R) and action functional
S(φ) = ∫

φΔφ, φ ∈ C∞
c (R). Then the equations of motion say that φ is harmonic,

i.e. Δφ = 0. Harmonic functions on (a, b) extend uniquely to harmonic functions
on R: this implies that the factorization algebra constructed from this example has
the property that the map F((a, b)) → F(R) is an isomorphism. This example will
be explained in more detail in 2.4.

2.3 The Factorization Algebra of Observables

It is shown in [4] that observables of a (perturbative) quantum field theory in Euclid-
ean signature turn out to have the structure of a factorization algebra with values in
the category of cochain complexes of C[[�]]-modules, flat over C[[�]]. These cochain
complexes are built from spaces of smooth functions and distributions on the space-
time manifold. Technically, these cochain complexes are endowed with a “diffeo-
logical” structure, which is something a little weaker than a topology; this reflects
their analytical origin.

Observables of a classical field theory also form a factorization algebra. Starting
from the quantum observables, the classical observables are

Obscl(V ) := Obsq(V )/� =
{

functions on the “derived” moduli space of
solutions to the Euler-Lagrange equations on V

}
.

Taking the derived space of solutions to the Euler-Lagrange equations amounts to one
version of theBV classical formalism. The antifields of theBV formalism correspond
to taking the Koszul complex associated to the equations of motion and the ghosts

5 Such a factorization algebra is called locally constant.
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correspond to taking the quotient by the gauge group in a homological way. For more
details, see [6].

The factorization algebra of quantumobservables deforms that of classical observ-
ables, in that quantum observables are a factorization algebra over C[[�]] and restrict
to classical observables modulo �. To first order, this deformation is closely related
to the BV antibracket on the classical observables.

We should emphasize that quantumobservables, for a general quantumfield theory
inEuclidean signature,do not formanassociative algebra.6 Associative algebras arise
when one studies factorization algebras on the real line (associated to 1-dimensional
quantum field theories). The associative product is the operator product of observ-
ables in the time direction. For a factorization algebra on a higher-dimensional mani-
fold, there is no specified “time” direction which allows one to define the associative
product, rather there is a kind of “product” for every direction in space-time.

Furthermore, quantum field theories in dimension larger than one rarely satisfy
the locally-constant condition which was satisfied by the observables of quantum
mechanics. The exception to this rule is the observables of a topological field theory.
In this case, however,wefind that observables froman En-algebra (a structure studied
by topologists to encode the product in an n-fold loop space) rather than simply
an associative algebra. This is a result of Lurie [24], who shows that there is an
equivalence between locally-constant factorization algebras on R

n and En-algebras.
Another point to emphasize is that factorization algebras are only the right lan-

guage to capture the structure of observables of a QFT in Euclidean signature. In
Lorentzian signature, the operator product (at least for massless theories) has singu-
larities on the light-cone and not just on the diagonal, so that we would only expect
to be able to define the factorization product for pairs of open subsets which are not
just disjoint, but which can not be connected by a path in the light cone.

2.3.1 More structures on the factorization algebra of observables

Translation invariance: If we additionally have translation invariance on a locally
constant factorization algebra on R, we get an associative algebra endowed with
an infinitesimal automorphism, i.e. a derivation. This derivation encodes the Hamil-
tonian of the field theory.

Poisson bracket:The classical observables Obscl(U ) forma commutative dg algebra.
Moreover,wehave aPoissonbracket of cohomological degree one,7 the “antibracket”
{ , } on Obscl(U ).

6 Note that we work in Euclidean signature. Some axiom systems in Lorentzian signature have an
asssociative structure on observables: see Klaus Fredenhagen’s lectures in the same volume.
7 This means that Obscl has the structure of a P0 factorization algebra, where P0 is the operad
describing commutative dg algebras with a Poisson bracket of degree 1.
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(Weak) Quantization condition: In deformation quantization, the non-commutative
algebra structure tofirst ordermust be related to thePoissonbracket.Wehave a similar
condition8 relating the factorization algebras of quantum and classical observables.

The differential d on Obsq(U ) should satisfy

1. Modulo �, d coincides with the differential d0 on Obscl(U ).
2. Let

d1 : Hi (Obscl(U )) → Hi+1(Obscl(U ))

be the boundary map coming from the exact sequence of complexes

�Obscl(U ) −→ Obsq(U ) mod �
2 −→ Obscl(U ).

d1 lifts to a cochain map of degree 1 Obscl(U ) → Obscl(U ), which we continue
to call d1. Then, if we define a bilinear map on Obscl(U ) by

{a, b}d1 = d1(ab) ∓ ad1b − (d1a)b

we ask that there is a homotopy between {a, b}d1 and the original bracket {a, b}.
(In particular, these two brackets must coincide at the level of cohomology).

2.4 Example: The Free Scalar Field

Let M be a compact Riemannian manifold. We will consider the field theory where
the fields are φ ∈ C∞(M), and the action functional is

S(φ) =
∫

M

φΔφ,

where Δ is the Laplacian on M .

2.4.1 Classical Observables

If U ⊆ M is an open subset, then the space of solutions of the equations of motion
on U is the space of harmonic functions on U ,

{φ ∈ C∞(U )|Δφ = 0}.

8 We present here a weak version of the condition. A stronger version, discussed in [4], is that Obsq

is a B D factorization algebra, where B D is the Beilinson-Drinfeld operad. The B D operad is an
operad over C[[�]] deforming the P0 operad: B D ⊗C[[�]] C � P0.
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As discussed above, we consider the derived space of solutions of the equations
of motion. This is a linear dg manifold, i.e. a cochain complex. For more details
about the derived philosophy, the reader should consult [4]. In this simple situation,
the derived space of solutions to the free field equations, on an open subset U ⊆ M ,
is the two-term complex

E(U ) =
(

C∞(U )
Δ−→ C∞(U )[−1]

)

The classical observables of a field theory on an open subset U ⊆ M should be
functions on the derived space of solutions to the equations of motion on U , and thus
the symmetric algebra of the dual.9 The dual to the two-term complex E(U ) above
is the complex

E∨
c (U ) =

(
Dc(U )[1] Δ−→ Dc(U )

)
,

where Dc(U ) indicates the space of compactly supported distributions on U .
We would like to define Obscl = O(E) = Sym(E∨), but in order to define a

Poisson structure on Obscl , instead we need to use a version of elliptic regularity,
which we call the Atiyah-Bott lemma [1]. Let

E !
c(U ) = (C∞

c (U )[1] −→ C∞
c (U )).

The Atiyah-Bott lemma states that the map of cochain complexes

E !
c(U ) −→ E∨

c (U ),

given by viewing a compactly supported function as a distribution, is a continuous
homotopy equivalence.

Thus, we define our classical observables to be

Obscl(U ) = Sym
(
E !

c(U )
)

= ⊕n Sym
n E !

c(U ).

By Symn E !
c(U ) we mean the Sn-invariants in the complex of compactly supported

sections of the bundle (E !)�n on U n . Equivalently, we can view Symn E !
c(U ) as

the symmetric product of the topological vector space E !
c(U ) using the completed

inductive (or bornological) tensor product.10

9 For free theories, it is enough to consider polynomial functions.
10 These tensor products both have the property that C∞

c (M)⊗̂C∞
c (N ) = C∞

c (M × N ), and simi-
larly for compactly supported smooth sections of a vector bundle on M . Themore familiar projective
tensor product does not (at least not obviously) have this property. See [16] for a discussion of the
inductive tensor product and [20] for the bornological tensor product. The reader with no taste for
functional analysis should just take the fact that Ec(U )⊗n = Γc(U, E�n) as a definition of Ec(U )⊗n .
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It is clear that classical observables form a prefactorization algebra. Indeed,
Obscl(U ) is a differential graded commutative algebra. If U ⊆ V , there is a natural
algebra homomorphism

iU
V : Obscl(U ) → Obscl(V ),

which on generators is just the natural map C∞
c (U ) → C∞

c (V ) given by extending
a continuous compactly supported function on U by zero on V \U .

If U1, . . . , Un ⊆ V are disjoint open subsets, the prefactorization structure map
is the continuous multilinear map

Obscl(U1) × · · · × Obscl(Un) → Obscl(V )

α1 × · · · × αn �→
n∑

i=1

iUi
V αi ∈ Obscl(V ).

In dimension one, this is particularly simple.

Lemma 1 [4] If U = (a, b) ⊂ R is an interval in R, then

1. For any x ∈ (a, b), the complex

E !
c((a, b)) =

(
C∞

c ((a, b))[1] Δ→ C∞
c ((a, b))

)

is quasi-isomorphic to R
2 situated in degree 0, i.e. the cohomology is

H∗ (
E !

c((a, b))
)

= R
2.

2. The algebra of classical observables for the free field has cohomology

H∗ (
Obscl((a, b))

)
= R[p, q],

the free algebra on two variables.

Proof We first show that for any x0 ∈ (a, b), the map

E((a, b)) =
(

C∞((a, b))
Δ→ C∞((a, b))[−1]

)
π−→ R

2

(φ,ψ) �−→ (φ(x0), φ′(x0))

is a quasi-isomorphism. To show this, consider the inclusion

R
2 i

↪→ E((a, b))

(a, b) �−→ (a + b(x − x0), 0).
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Then π ◦ i = id |R2 and i ◦ π : (φ,ψ) �→ (φ(x0) + φ′(x0)(x − x0), 0) ∈ E((a, b)).
Thus, a homotopy between the identity and i ◦ π is given by

(φ,ψ) �−→ S(φ,ψ)(x) =
⎛
⎝

x∫

y=a

y∫

u=a

ψ(u) dudy, 0

⎞
⎠ ,

as id−i ◦ π = [Δ, S].
This implies that the dualE∨((a, b)) also is quasi-isomorphic toR

2 and, by elliptic
regularity, E !

c((a, b)) � E∨((a, b)) � R
2.

The second part follows directly from the first and the exactness of SymR.

Remark 3 The quasi-isomorphism π from the proof induces the desired quasi-
isomorphism π∨ : (R2)∨ → E∨. So,

π∨(1, 0)(φ,ψ) = φ(x0) = δx0(φ) = q(φ,ψ)

π∨(0, 1)(φ,ψ) = φ′(x0) = δ′
x0(φ) = p(φ,ψ),

the position and the momentum observables, respectively. Thus, the cohomology of
E∨((a, b)) is generated by q and p.

Recall that the classical observables are endowedwith a Poisson bracket of degree
1. For α ∈ C∞

c (U ) and β ∈ C∞
c (U )[1], we have

{α, β} =
∫

U

αβ dV ol.

This extends uniquely to a continuous Poisson bracket on Obscl(U ).

2.4.2 Quantizing free field theories

Our philosophy is that we should take a P0 factorization algebra Obscl (e.g. the
observables of a classical field theory) and deform it into a B D factorization algebra
Obsq . This is a strong version of the quantization condition. For a general (interact-
ing) field theory, with the current state of technology we can only construct a weak
quantization as defined in Sect. 2.3. However, in the case of a free field theory, we
can show that the quantization satisfies this strong quantization condition.

Now we will construct such a quantization of the classical observables of our free
field theory, i.e. a factorization algebra Obsq with the property that

Obsq(U ) = Obscl(U )[�]

as C[�]-modules and with a differential d such that

1. Modulo �, d coincides with the differential on Obscl(U ),
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2. d satisfies

d(ab) = (da)b + (−1)|a|a(db) + �{a, b},

where the multiplication arises from that on Obscl(U ).

The construction (see also [17]) starts with a certain graded Heisenberg Lie
algebra. Let

H(U ) =
(

C∞
c (U )

Δ−→ C∞
c (U )[−1]

)
⊕ R�[−1],

where R is situated in degree 1. Let us give H(U ) a Lie bracket by saying that, if
α ∈ C∞

c (U ) and β ∈ C∞
c (U )[−1], then

[α, β] = �

∫

U

αβ.

Let

Obsq(U ) = C−∗(H(U ))

be the Chevalley-Eilenberg Lie algebra chain complex of H(U ) with the grading
reversed. The tensor product that is used to define the Chevalley chain complex is,
as before, the completed inductive (or bornological) tensor product of topological
vector spaces.

Thus,

Obsq(U ) = (Sym∗(H(U )[1]), d)
= (Obscl(U )[�], d)
=

(
⊕nΓc(U

n, (E !)�n)Sn
)

[�]

where, in the last line, E ! is the direct sum of the trivial vector bundles in degrees 0
and −1. The differential d is defined by first extending the Lie bracket by

[α, β ∧ γ ] = [α, β] ∧ γ + (−1)|β|(|α|+1)β ∧ [α, γ ],

and then defining

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ + �[α, β].

Thus, by definition, Obsq(U ) is a B D-algebra and Obsq has the structure of
a factorization algebra in B D-algebras by extending the natural map C∞(U ) →
C∞(V ) by the identity to the central extension.
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Finally, one can prove that our construction of the factorization algebra for a
free field theory, when restricted to dimension one, reconstructs the Weyl algebra
associated to quantum mechanics.

Proposition 1 Let Obsq denote the factorization algebra on R constructed from the
free field theory, as above. Then,

1. The cohomology H∗(Obsq) is locally constant.
2. The corresponding associative algebra is the Weyl algebra, generated by p, q, �

with the relation [p, q] = �. Classically, p is the observable which sends a field
φ ∈ C∞(R) to φ′(0), and q sends φ to φ(0).

3. The fact that this factorization algebra is translation invariant means that the
corresponding associative algebra is equipped with a derivation which we call
H. This derivation is given by the Lie bracket with the Hamiltonian,

H = 1
2�

−1[p2, ].

A proof can be found in the section on quantum mechanics and the Weyl algebra
in [4].

3 Factorization Algebras Associated to SUSY Gauge Theories

In this section, we will mostly consider the N = 1 twisted SUSY gauge theory.

3.1 Replacing C
2 by a Complex Surface

In Sect. 1, we discussed twistings of SUSY gauge theories. They arose as parts of a
theory invariant under some Q ∈ S+ and gave a holomorphic field theory on C

2.
Recall that for N = 1, the fields E of the twisted theory on C

2 are built from a
Lie algebra g with associated elliptic Lie algebra LN=1 = E[−1],

LN=1 = Ω0,∗(C2, g) ⊕ Ω2,∗(C2, g∨)[−1] ∼= Ω0,∗(C2, g ⊕ g∨[−1]), (1)

with differential ∂̄ , and Lie bracket determined by

[β, β ′] = 0, [α, β] = ad∗
α(β) ∈ Ω2,∗(C2, g∨)[−1], [α, α′] ∈ Ω0,∗(C2, g),
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for α, α′ ∈ Ω0,∗(C2, g), β, β ′ ∈ Ω2,∗(C2, g∨)[−1]. The invariant pairing on LN=1
is given by

〈φ ⊗ X, ψ ⊗ Y 〉 =
∫

φ ∧ ψ 〈X, Y 〉g,

where X ∈ g, Y ∈ g∨, and φ,ψ ∈ Ω0,∗(C2).11

Our Chern-Simons action functional is

S(χ) = 1

2
〈χ, ∂̄χ〉 + 1

6
〈χ, [χ, χ ]〉

for a general field χ .
We saw at the end of Sect. 1 that this twisted N = 1 theory is the space of solutions

to the equations of motion for the cotangent theory to the pointed moduli problem
of holomorphic principal G-bundles on C

2. This theory makes sense on a general
complex surface X , and is the cotangent theory to the pointed moduli problem of
holomorphic principal G -bundles on X ,

T ∗[−1]BunG(X).

Similarly to before, we find that the moduli space of solutions to the equations of
motion is

{
(P, φ)|P a principal G-bundle on X, φ ∈ H0

∂̄
(X, K X ⊗ g∨

ad)
}

,

where K X is the canonical bundle on X and g = Lie(G). This problem corresponds
to the elliptic Lie algebra

LN=1(X) = Ω0,∗(X, g) ⊕ Ω0,∗(X, g∨ ⊗ K X )[−1].

This is because the equations of motion for LN=1(X) give

∂̄α + 1

2
[α, α]

for α ∈ Ω0,1(X, g), which is the Maurer-Cartan equation, and for β ∈ Ω2,0(X, g∨),

∂̄αβ := ∂̄β + [α, β] = 0.

11 This is actually only well-defined for compactly supported sections, but this technical difficulty
can be overcome by passing to a quasi-isomorphic chain complex similar to what we did in 2.4.
See [4] for details.
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Thus, the principal bundle corresponds to aMaurer-Cartan element inΩ0,∗(X, g)
and φ to the element β.

Recall that the classical observables are functions on the (derived) space of solu-
tions to the equations of motion. If our theory is given by the elliptic Lie algebra
L, the solutions to the equations of motion are given by Maurer-Cartan elements of
L, i.e. χ ∈ L such that ∂̄χ + 1

2 [χ, χ ] = 0. If U ⊆ C
2 is open, then the classical

observables on U are Lie algebra cochains of L(U ),

Obscl(U ) = C∗(L(U )) = Ŝym
∗
(L(U )∨[−1]).

In our case,L = LN=1(X) is the semi-direct product, i.e. the split-zero extension
h�M of h = Ω0,∗(C2, g)with M = Ω2,∗(C2, g), so ifU is a ball, we essentially get

Obscl(U ) = C∗(h � M) = C∗ (
Hol(U ) ⊗ g, Ŝym

∗ (
(Hol(U ) dz1dz2 ⊗ g)∨

))
,

a fancy (derived) version of functions on {φ ∈ Hol(U ) dz1dz2 ⊗ g}/Gauge.

3.2 Quantization

Recall that by quantization, we mean that we deform the commutative factorization
algebra of classical observables to a quantum one. Essentially the differential is
deformed by using the BV Laplacian and by replacing the classical action of our
field theory by a quantum one which satisfies a renormalized BV quantum master
equation. In our case, we find that there is a quantization, and it even is unique:

Theorem 1 The N = 1 minimally twisted supersymmetric gauge theory on a com-
plex surface X with trivial canonical bundle, perturbing around any holomorphic
G-bundle for a simple algebraic group G, admits a unique quantization compatible
with certain natural symmetries.

The proof of this is given in [8]. It relies on the renormalization theory from [6]
which reduces it to a cohomological calculation. More precisely, [6] tells us that,
order by order in �, the obstruction to quantizing to the next order lies in H1(Oloc),
and the ambiguity in quantizing is given by H0(Oloc). Similar techniques can be
used to show that the twistedN = 2 and 4 theories can be quantized on any complex
surface X .

Remark 4 This theorem is a special case of a very general result. Recall that the
fields of the twistedN = 1 theory are T ∗[−1]BunG(X). Since X has trivial canon-
ical bundle, BunG(X) already has a symplectic form. The general result is that the
cotangent theory to an elliptic moduli problem which is already symplectic has a
natural quantization (the unique quantization compatible with certain symmetries).
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3.3 The Relation to Vertex Algebras

As we saw in the previous section, quantization gives a factorization algebra of
quantum observables, which looks like

Obsq : U �−→ (
C∗(L(U ))[[�]], d) ,

where modulo �, d coincides with the differential dC E on C∗(L(U )), cf. Sect. 2.4.2.
In particular, the factorization algebra structure of ourminimally twistedN = 1, 2, 4
theory on C

2 associates a product to each configuration of k balls inside a larger one
in C

2. Now consider the situation where the big ball is centered at the origin. By
translation invariance of our theory, up to isomorphism Obsq(Br (z)) is independent
of z, and we call this Vr . Thus, for every p = (z1, . . . , zk), a point in the parameter
space

P(r1, . . . , rk |s) = {k disjoint balls of radii r1, . . . , rk inside Vs},

we get a map m p : Vr1 ⊗ · · · ⊗ Vrk −→ Vs .

This map depends smoothly on the parameter, i.e.

Vr1 ⊗ · · · ⊗ Vrk −→ Vs ⊗ C∞(P(r1, . . . , rk |s)).

If the field theory is holomorphic (as in our case), this map lifts to a cochain map of
degree 0 compatible with composition

Vr1 ⊗ · · · ⊗ Vrk −→ Vs ⊗ Ω0,∗(P(r1, . . . , rk |s)),

which leads to a map in cohomology,

H∗(Vr1) ⊗ · · · ⊗ H∗(Vrk ) −→ H∗(Vs) ⊗ H ∗̄
∂

(P(r1, . . . , rk |s)) . (2)

Remark 5 In complex dimension 1, the analogous structure is that of a vertex algebra.
Consider themultiplication arising from the factorization algebra structure for 2 balls
inside a larger one. Assume that one is centered at the origin, Br1(z1) = Br1(0) =:
Br1 . Let P ′(r1, r2 | s) denote the subspace of P(r1, r2 | s) where the first ball is
centered at the origin.
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Assuming Br1 to be centered at the origin, the center of the second disk z = z2 of
radius r2 can be anywhere in the annulus of radii r1+r2 and s−r2. Thus, our parameter
space P ′(r1, r2 | s) consists of this annulus. Let us look at the maps analogous to
(2). The 0th cohomology of P ′(r1, r2|s) consists of holomorphic functions on the
annulus which are just power series in z and z−1 which converge on the annulus. So
we get a map of degree zero

H∗(Vr1) ⊗ H∗(Vr2) −→ H∗(Vs) ⊗ C{z, z−1},

where C{z, z−1} refers to those Laurent series which converge on the appropriate
annulus. Moreover, in one dimension, all higher cohomologies vanish, so this is
all we get. See [17] for the worked out example of the βγ system, and [4] for the
general theorem that holomorphically translation-invariant factorization algebras in
one complex dimension have the structure of a vertex algebra on their cohomology.

Remark 6 For holomorphic theories in complex dimension > 1, it turns out to be
better to use polydiscs instead of discs. Thus, Br ⊂ C

2 should be understood as the
product Dr × Dr of two discs of radius r in C.

In our case of a twisted SUSY gauge theory on C
2, we get a two dimensional

analog of vertex algebras, i.e. for N = 1, 2, 4 and for any semi-simple Lie algebra
we get a two dimensional vertex algebra. The problem is to compute this object.
Recall from (2) that on cohomology, we get a map of degree zero. As in dimension
1, we restrict to the space P ′(r1, r2 | s) where the first polydisc is centered at the
origin. We can identify P ′(r1, r2 | s) with the two complex dimensional analog of
an annulus: the complement of one polydisc in another.

Again, we can compute the Dolbeault cohomology of this space. By Hartogs’ the-
orem, every holomorphic function on P ′ extends to zero, so as the zeroth cohomology
we just get holomorphic functions on the polydisc and therefore a map of degree zero

H∗(Vr1) ⊗ H∗(Vr2) −→ H∗(Vs) ⊗ C{z1, z2}, (4)

where we use the notation C{z1, z2} to refer to series which converge on the appro-
priate polydisc.

This map extends to z1 = z2 = 0; this allows us to construct a commutative
algebra from the spaces H∗(Vr ). Let us assume (as happens in practice) that the map
H∗(Vr ) → H∗(Vs) (with r < s) associated to the inclusion of one disc centered at
the origin into another is injective. Then, let
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V =
⋃

H∗(Vr )

and let FrV = H∗(Vr ). Then, the map (4) gives V the structure of a commutative
algebra with an increasing filtration by R>0.

The vector fields ∂
∂zi

act on H∗(Vr ); they extend to commuting derivations of the
commutative algebra V . The map in equation (4) (or rather its completion where we
use C[[z1, z2]]) is completely encoded by the filtered commutative algebra V with its
commuting derivations.

However, there is more structure. We have the following identification:

H1
∂̄
(P ′) = z−1

1 z−1
2 C{z−1

1 , z−1
2 }.

Thus, the first Dolbeault cohomology of the two complex dimensional annulus con-
sists of series in z−1

i with certain convergence properties. Sowefind that there is amap

μ : H∗(Vr1) ⊗ H∗(Vr2) −→ H∗(Vs) ⊗ z−1
1 z−1

2 C{z−1
1 , z−1

2 }. (5)

Thus, at the level of cohomology, (3), resp. (4) and (5), form an analog of the operator
product expansion of a vertex algebra.

One can check that the structure given by (5) is a kind of Poisson bracket with
respect to the commutative product obtained from (4). To define this we need some
notation. If α, β ∈ H∗(Vr ), then μ(α, β) is a class in H1

∂̄
(P ′) ⊗ V . Recall that

P ′ ⊂ C
2 is an open subset which is the complement of one polydisc in another.

Thus, P ′ retracts onto a 3-sphere S3 ⊂ P ′. Then, for every f ∈ C[z1, z2], one can
define a bracket by

{α, β} f =
∫

S3

μ(α, β) f dz1dz2 ∈ V.

This makes sense, as μ(α, β)dz1dz2 f is a closed 3-form on P ′ with coefficients in
V . The integral only depends on the homology class of the sphere S3 ⊂ P ′, which
we choose to be the fundamental class.

This bracket gives a map

{−,−} f : H∗(Vr1) ⊗ H∗(Vr2) → V

and extends to a map

{−,−} f : V ⊗ V → V.

One can check that {−,−} f is a derivation in the first factor for the commutative
product on V , and satisfies an identity similar to the Jacobi identity. Let us explain
the Jacobi identity we find. If g ∈ C[z1, z2] let us use the notation
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g(z1 + w1, z2 + w2) =
∑

g′(z1, z2)g
′′(w1,w2).

That is, C[z1, z2] is a Hopf algebra, with coproduct coming from addition on the
plane C

2, and we are using the Sweedler notation to write the coproduct δ(g) of an
element g as δ(g) = ∑

g′ ⊗ g′′.
Then, the analog of the Jacobi identity in our situation is the following:

{{α, β} f , γ }g = {{α, γ }g, β} f +
∑

{α, {β, γ }g′ } f g′′ .

Note that in the case f = g = 1, this is the usual Jacobi identity.
All these relations follow from the axioms of a holomorphically translation-

invariant factorization algebra using Stokes’ theorem.
We have not presented all details of the structure of a higher-dimensional

cohomological vertex algebra (i.e. the structure present on the cohomology of a
holomorphically-translation invariant factorization algebra). Hopefully this will be
developed in full elsewhere. The interested reader might consider working out and
writing down the entire structure, including all relations satisfied by the Poisson
brackets described above.

Remark 7 There is a similar story for topological field theories on R
k . There, one

finds that the 2-point operator product is, at the level of cohomology, a map

H∗(V ) ⊗ H∗(V ) → H∗(V ) ⊗ H∗
d R(Rk \ {0}).

Here V is the complex Obsq(D) for any disc D in R
k . On the right hand side of this

expression we find the de Rham cohomology of a thickened sphere in R
k , whereas

in the holomorphic case we found the Dolbeault cohomology of a simliar region.
At the cochain level, this operator product gives the complex V the structure of

an Ek-algebra. If k > 1, then the class in H0(Rk \ {0}) gives H∗(V ) the structure
of a commutative algebra, and the class in Hk−1(Rk \ {0}) gives H∗(V ) a Poisson
bracket of cohomological degree 1 − k.

The holomorphic situation is very analogous: in dimension k > 1, we have a
commutative algebra with an infinite family of compatible Poisson brackets.

Examples of 2-dimensional topological field theories are given by topological
twists of 2-dimensional supersymmetric gauge theories. For example, the B-twist of
the 2-dimensionalN = (2, 2) gauge theory gives the theory described by the elliptic
Lie algebra

(Ω∗(R2, g[ε]), dd R, [ , ]),

where ε is a square-zero parameter of cohomological degree 1. This is entirely
analogous to the fact that the 2-complex dimensional theory arises as a twist of the
N = 1 gauge theory; the only difference is that the Dolbeault complex on C

2 has
been replaced by the de Rham complex on R

2.
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Table 1 Examples of the structure of observables

Space Q Structures on the cohomology of
observables

Examples/References

R dd R Associative product Topological quantum mechanics [14]

R
2 dd R Commutative product and Degree-1

bracket
Poisson-Sigma model [3], topologically
twisted N = (2, 2)-gauge theory, the
B-model

C ∂̄ Holomorphic analog of a vertex algebra Minimal twists of 2d SUSY field theories,
for example [5], [7], βγ system, [17]

C
2 ∂̄ Commutative product, 2 commuting

derivations, and family of Poisson
brackets of degree 1 parametrized by
f ∈ C[z1, z2].

N = 1, 2, 4 minimally twisted SUSY
gauge theories [7, 8]

Further examples arise from topological σ -models, such as topological quantum
mechanics [14], the Poisson σ -model [3, 21], and the B-model. (At the perturbative
level, the factorization algebra associated to the A-model is uninteresting). Summa-
rizing, we get Table1.

One can explicitly compute the map μ in (5) for the simplest case.

Example 1 Consider the abelian N = 1 gauge theory, i.e. g = C. Then

H∗(Vr ) = O(Hol(Br ) ⊕ Hol(Br )[−1]),

where O indicates the algebra of formal power series. We will use φ,ψ to denote
elements of the two copies of Hol(Br ): φ is of degree 0 and ψ is of degree 1. Let
α, β be the observables defined by

α(φ,ψ) = φ(0)

β(φ,ψ) = ψ(0).

Then, one finds that the commutative product does not change, but that the map
μ in (5) is given by the formula

μ(φ,ψ) = z−1
1 z−1

2 �c

for a certain constant c.

3.4 A Deformation of the Theory

Finally, the N = 1 theory has a deformation which is holomorphic in two real
dimensions, and topological in the two other real dimensions. This gives a new
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relation between the N = 1 gauge theory and the Yangian (see [8] for a detailed
discussion of this story).

We deform the action functional on the space of fields Ω0,∗(C2,g[1])⊕Ω2,∗(C2,g∨)

to

Snew(α, β) = Sold(α, β) +
∫

α dz1 ∧ ∂α,

for α ∈ Ω0,∗(C2, g[1]), β ∈ Ω2,∗(C2, g∨). Note that this is not invariant under
SL(2, C) anymore. The moduli space of solutions to the equations of motion of
this deformed theory turns out to be holomorphic G-bundles on C

2 along with a
compatible flat holomorphic connection in the z2 direction.

More generally, such a deformation can be defined on any complex surface with a
closed 1-form; in the previous case, we took the complex surface C

2 with the closed
1-form dz1. As another example, consider the complex surface C

∗ × C with the
closed 1-form dz1

z1
. The deformed theory on this complex surface can be projected

down to R>0 × C, where we find a theory we could call “Chern-Simons theory for
the loop group”.

The quantum observables of the deformed theory on the surface C
2 on a formal

disc are

C∗(g[[z1]])[[�]] = Sym∗(g[[z1]]∨)[[�]].

Wewould like to relate this to theYangian of the Lie algebra g, which is a quantization
of the Hopf algebraU (g[[z]]). Here, we have cochains of g[[z]] instead of the universal
enveloping algebra. These are related by Koszul duality12: For a Lie algebra h,

C ⊗L

C∗(h) C = (U (h))∨.

The deformed field theory is topological in the second complex direction, so, by
fixing a formal disk in the other coordinate, it gives a locally constant factorization
algebra on R

2. Locally constant factorization algebras on R
2 are (by a theorem of

Lurie [24]) the same as E2-algebras. A theorem of Dunn (proved in [24] in the
context we need) says that E2-algebras are the same as E1-algebras in E1-algebras.
The way to view an E2-algebra as an E1-algebra in E1-algebras is by considering
sections of the associated locally constant factorization algebra on an open square (or
a strip). Then, the factorization algebra structure gives us two products, namely by
including two squares into a third (horizontally) next to each other, or by including
them (vertically) above each other. Now we can apply a version of Koszul duality to
turn the second E1-algebra structure of the E2-algebra into that of a co-E1-algebra,
so we get an E1-algebra in co-E1-algebras, i.e. a bialgebra, which, in fact, is a Hopf

12 There are some delicate issues with this Koszul duality statement: to make it work, we need to
treat C∗(g) as a filtered commutative dga. Details are given in [8].
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algebra. This gives us a Hopf algebra deforming U (g[[z]]): in [8] it is shown that this
Hopf algebra is the Yangian.

At least heuristically, the (partial) Koszul duality geometrically amounts to taking
only the fields which vanish on the top and bottom of the strip. Thus, we consider
observables on Dstrip = Dz× where Dz is a (formal) disk with coordinate z.
Note that the observables on Dstrip are Inclusion of strips vertically
and horizontally give us two operations on the (partial) Koszul dual.

1. horizontally: The horizontal inclusion of strips gives an inclusion
map

The factorization algebra structure thus gives an associative product on observ-
ables. Essentially this product is given by restricting fields from the large strip
to the small strips inside, which gives a coalgebra structure on the fields. Then
taking the dual when passing to the observables we get the algebra structure.

2. vertically: Now consider the vertical inclusion of strips

In this case, the condition that the fields vanish on the top and bottom of the strip
give us the (additional) coalgebra structure.We cannot restrict fields to the smaller
strips because of the boundary condition, but instead, we can extend fields by 0 in
between the strips and thus get an algebra structure on fields. Here one has to be
careful about taking the dual to get the coalgebra structure on the observables,
but this can be done in this case.

Moreover, these operations are compatible and give Obsq (Dstrip) = Sym(g[[z]]∨)[[�]]
the structure of a Hopf algebra.

Theorem 2 The Hopf algebra Obsq(Dstrip) obtained in this way is dual to the
Yangian Hopf algebra.

So far we have seen how the operator product in the topological direction is
encoded by the Yangian Hopf algebra. In [8] it is shown that the operator product in
the holomorphic direction gives rise to a monoidal OPE functor

FO P E : Fin(Y (g)) × Fin(Y (g)) → Fin(Y (g))((λ))) (†)

which is encoded by the R-matrix of the Yangian. Here, Fin(Y (g)) refers to the
monoidal category of finite-rank modules over the Yangian (we use the version of
the Yangian which quantizes g[[z]]). This OPE functor should be thought of as a
relative of the OPE in the theory of vertex algebras, except that it takes place in the
world of monoidal categories rather than that of vector spaces.
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As explained in [8, 9] these two results allows one to calculate exactly expectation
values of certain Wilson operators in the twisted, deformed N = 1 supersymmet-
ric gauge theory. The answer is expressed in terms of the integrable lattice model
constructed from the R-matrix of the Yangian.

3.5 Other Riemann Surfaces

The field theory we are considering can be put on Σ × R
2 where Σ is any Riemann

surface equipped with a nowhere-vanishing holomorphic 1-form. This construction
will associate an E2-algebra to any such Riemann surface. In this subsection we will
briefly discuss some conjectures about these E2-algebras and related objects.

If we take our Riemann surface to be C
×, equipped with the holomorphic vol-

ume form dz/z, we find an E2-algebra to which we can apply the Koszul duality
considerations above to produce a Hopf algebra.

Conjecture 1 The Hopf algebra Koszul dual to the E2-algebra Obsq(C× × R
2) is

dual to the quantum loop algebra U�(g{z, z−1}).
Note that there are some subtle issues which we have not addressed which have to
do with which completion of g[z, z−1] one should use to get precisely the Koszul
dual of the E2-algebra associated to the cylinder C

×.
Next, let us discuss the case of an elliptic curve E equipped with a holomor-

phic volume form. Modules for the E2-algebra associated to an elliptic curve form a
monoidal category which deforms the category of sheaves on the formal neighbour-
hood of the trivial bundle in the stack BunG(E) of G-bundles on E . It is natural to
conjecture that this monoidal category should globalize to a monoidal deformation
of the category of quasi-coherent sheaves on BunG(E). (Quantizations of categories
of sheaves like this are considered in [25], where it is shown that the stack BunG(E)

has a 1-shifted symplectic form).
Let us denote this putative quantization by QCq(BunG(E)). We conjecture that

this monoidal category forms part of a kind of categorified two-dimensional field
theory, so that there are analogs of familiar objects such as correlation functions.

More precisely, we conjecture the following.

1. For every collection of distinct points p1, . . . , pn ∈ E , there is a monoidal “cor-
relation functor”

Fin(Y (g)) × · · · × Fin(Y (g)) → QCq(BunG(E)).

Here, Fin(Y (g)) refers to the monoidal category of finite-rank modules over the
Yangian.
If M1, . . . , Mn are modules for the Yangian, we denote by

〈M1(p1), . . . , Mn(pn)〉 ∈ QCq(BunG(E))
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the image of M1 × · · · × Mn under the correlation functor.
2. These correlation functors should quantize the pull-back map on sheaves associ-

ated to the map of stacks

BunG(E) → (BG[[z]])n

obtained by restricting a G-bundle on E to the formal neighbourhood of the
points pi , where each such formal neighbourhood is equipped with its canonical
coordinate arising from the 1-form on E .

3. All this data should vary algebraically with the positions of the points pi as well
as over the moduli of elliptic curves equipped with a non-zero 1-form.

4. The correlation functors should have a compatibility with the OPE-functor (†) in
the same way that ordinary correlation functions of a conformal field theory are
compatible with the OPE. For example, if p, p + λ are two points in E where λ

is a formal parameter, and M, N are two modules for the Yangian, we expect that
there is a monoidal natural isomorphism

〈M(p), N (p + λ)〉 ∼= 〈FO P E (M, N )(p)〉 ∈ QCq(BunG(E))((λ)).

(In the last line, by QCq(BunG(E))((λ)) we mean an appropriate category of C((λ))-
modules in QCq(BunG(E))).

Note that if we replace BunG(E) by its formal completion near the trivial bundle,
all of this follows from the results of [8]. Globalizing is the challenge.

It is natural to speculate that there is some relationship between the desired quan-
tization of BunG(E) and elliptic quantum groups, but this is currently unclear.

In a similar way, for a general surface Σ equipped with a nowhere-vanishing
holomorphic 1-form, one can also speculate the E2-algebra of observables of our
theory onΣ times a disc is related to the quasi-Hopf algebras constructed byEnriquez
and Rubtzov [12].

Kapustin [19] has shown that any four-dimensional N = 2 theory admits such a
twist. We hope that there is a similarly rich, and largely unexplored, mathematical
story describing such theories.
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Appendix

A. Moduli Problems and Field Theories

Throughout this text, field theories are described in terms of elliptic moduli problems
which in turn are encoded as elliptic L∞-algebras. These terms and their relations
are constantly used. However, we only defined SUSY field theories in an informal
way, so we will give some ideas and definitions here. For the full definitions and
detailed explanations, see [7].

Let M be a manifold. The ideal definition of a classical field theory would be to
say that a classical field theory on M is a sheaf of derived stacks (of critical loci,
the derived spaces of solutions to the equations of motion) on M equipped with a
Poisson bracket of degree one (coming from the BV formalism). To simplify things,
we make two observations.

1. If X is a derived stack and x ∈ X , then Tx X [−1] has an L∞ structure, and
this completely describes the formal neighborhood of x [18, 22, 23, 29]. Thus,
near a given section, a sheaf of derived stacks can be described by a sheaf of
L∞-algebras.

2. If X is a derived stack which is n-symplectic in the sense of [25] , then Tx X has
an anti-symmetric pairing (of degree n), so Tx X [−1] has a symmetric pairing
(of degree n − 2). One can show that the L∞-structure on Tx X [−1] can be
chosen so that the pairing is invariant. More precisely, one can prove a formal
Darboux theorem showing that formal symplectic derived stacks are the same as
L∞-algebras with an invariant pairing.

From these observations it makes sense to define a perturbative classical field
theory (perturbing around a given solution to the equations of motion) to be a sheaf
of L∞-algebras with some sort of an invariant pairing, which we will define below.
Moreover, we are interested in the situation where the equations of motion (or equiv-
alently our moduli problem) are described by a system of elliptic partial differential
equations, which lead to the following notion.

Definition 6 An elliptic L∞-algebra L on M consists of

• a graded vector bundle L on M , whose space of sections in L,
• a differential operator d : L → L of cohomological degree 1 and square 0, which
makes L into an elliptic complex,

• a collection of polydifferential operators ln : L⊗n → L which are alternating, of
cohomological degree 2 − n, and which give L the structure of an L∞-algebra.

An invariant pairing of degree k on an elliptic L∞-algebra L is an isomorphism
of L-modules

L ∼= L![−k],

which is symmetric, where L!(U ) = Γ (U, L∨ ⊗ DensM ).
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Remark 8 Note that the sheaf L! is homotopy equivalent to the continuous Verdier
dual, which assigns to U the linear dual of Lc(U ).

Such an invariant pairing yields an invariant pairing on the space Lc(U ) for every
open U in M . The fact that the pairing on Lc(U ) is invariant follows from the fact
that the map L → L![−k] is an isomorphism of L-modules.

From deformation theory, we know that there is an equivalence of (∞, 1)-
categories between the category of differential graded Lie algebras and the category
of formal pointed derived moduli problems (see [18, 22, 23]). Here pointed means
that we are deforming a given solution to the equations ofmotion. Thus, the following
definitions make sense.

Definition 7 A formal pointed elliptic moduli problem with a symplectic form of
cohomological degree k on M is an elliptic L∞-algebra on M with an invariant
pairing of cohomological degree k − 2.

Definition 8 A perturbative classical field theory on M is a formal pointed elliptic
moduli problemon M with a symplectic formof cohomological degree−1.The space
of fields E of a classical field theory arises as a shift of the L∞-algebra encoding the
theory, E = L[1].

The field theories we consider in this text all arise as cotangent theories.

Definition 9 Let L be an elliptic L∞-algebra on M corresponding to a sheaf of
formal moduli problemsML on M . Then the cotangent field theory associated to L
is the classical field theoryL⊕L![−3] (with its obvious pairing). Its moduli problem
is denoted by T ∗[−1]ML.

B. Supersymmetry

In supersymmetry, we have two gradings: one by Z/2Z (= fermionic grading), and
one byZ (= cohomological grading, “ghost number”). So one extends the definitions
from Appendix A to this bi-graded (= super) setting.

In this super-setting, we want all algebraic structures to preserve the fermion
degree and have the same cohomological degree as in the ordinary setting. Thus, the
differential of a super cochain complex is of degree (0, 1) and the structure maps of
a super L∞-algebra L , ln : L⊗n → L , are of bi-degree (0, 2 − n), satisfying the
same relations as in the ordinary case. The other notions from Appendix A carry
over similarly.

Definition 10 A perturbative classical field theory with fermions on M is a super
elliptic L∞-algebra L on M with an invariant pairing of bi-degree (0,−3), i.e. of
cohomological degree −3 and fermionic degree 0.
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Definition 11 A formal pointed super elliptic moduli problem with a symplectic
form of cohomological degree k on M is a super elliptic L∞-algebra on M with an
invariant pairing of bi-degree (0, k − 2).

Now we can encode supersymmetry.

Definition 12 A field theory on R
4 with N = k supersymmetries is a Spin(4)�R

4-
invariant super elliptic moduli problemM defined over C with a symplectic form of
cohomological degree -1; together with an extension of the action of the complexified
EuclideanLie algebra so(4, C)�VC to an action of the complexified super-Euclidean
Lie algebra so(4, C) � TN=k .

Given any complex Lie subgroup G ⊆ GL(k, C), we say that such a supersym-
metric field theory has R-symmetry group G if the group G acts on the theory in a
way covering the trivial action on space-time R

4, and compatible with the action of
G on TN=k .
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Snapshots of Conformal Field Theory

Katrin Wendland

Abstract In snapshots, this exposition introduces conformal field theory, with a
focus on those perspectives that are relevant for interpreting superconformal field
theory by Calabi-Yau geometry. It includes a detailed discussion of the elliptic genus
as an invariant which certain superconformal field theories share with the Calabi-
Yau manifolds. K3 theories are (re)viewed as prime examples of superconformal
field theories where geometric interpretations are known. A final snapshot addresses
the K3-related Mathieu Moonshine phenomena, where a lead role is predicted for
the chiral de Rham complex.

1 Introduction

Conformal quantum field theory (CFT) became popular in physics thanks to the
work by Belavin, Polyakov and Zamolodchikov. In their seminal paper [7], on the
one hand, they lay the mathematical foundations of axiomatic CFT, and on the other
hand, they show the physical significance of CFT for surface phenomena in statistical
physics by describing certain phase transitions of second order through CFT.

Another common source of conformal field theories is string theory, which is
many theoreticians’ favorite candidate for the unification of all interactions, includ-
ing gravity. Here, particles are described by strings that move in some potentially
complicated background geometry. The string dynamics are governed by a so-called
non-linear sigma model, such that conformal invariance yields the string equations
of motion. The quantum field theory living on the worldsheet of the string then is a
CFT. This implies deep relations between CFT and geometry, which have already
led to a number of intriguing insights in geometry, demanding for a more resilient
bridge between mathematics and physics.

For example, in the early 90s mirror symmetry provided a first success story
for the interaction between mathematics and physics in the context of CFT
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[14, 15, 57, 68]. However, a rigorous approach to those types of CFTs that are
relevant for such deep insights in algebraic geometry was not available, at the time.
As a result, the interaction betweenmathematics and physics inmany cases amounted
to a rather imbalanced division of work, where theoretical physicists provided the
most amazing predictions and left them to the mathematicians for a proof, who in
turn successfully detached their theories from their origins in physics.

With the advent of Monstrous Moonshine [9, 20, 42, 49, 88, 89], and with
Borcherds’ Fields Medal in 1998 “for his contributions to algebra, the theory of
automorphic forms, and mathematical physics, including the introduction of vertex
algebras and Borcherds’ Lie algebras, the proof of the Conway-Norton moonshine
conjecture and the discovery of a new class of automorphic infinite products” [71],
the subject of conformal field theory, per se, began to becomemore popular inmathe-
matics. Indeed, the comparatively new notion of vertex algebras provided a rigorous
mathematical foundation to the most basic ingredients of conformal quantum field
theory and thereby offered a viable approach to CFT for mathematicians. Neverthe-
less, the quest to fill the gap between abstract mathematical approaches to CFT and
those types of models that are of interest in physics, and that are relevant for deeper
insights in algebraic and enumerative geometry, has not yet been completed. The
present work attempts to make a contribution to this quest.

Since this exposition can certainly only provide some snapshots of CFT, it has
to follow a subjective selection and presentation of material. The guiding principle
is the conviction that on the one hand, the foundation of the discussion has to be a
mathematically rigorous definition of CFT, which is independent of string theory,
while on the other hand, those predictions from CFT which affect the geometry of
Calabi-Yau manifolds are among the most intriguing ones. To state and understand
the latter, one needs to work with a mathematical formulation of CFT which allows
to make contact with the non-linear sigma models in physics, thus sadly excluding
a number of popular approaches to CFT. Moreover, the discussion is restricted to
so-called two-dimensional Euclidean unitary CFTs.
In more detail, this work is structured as follows:

Section2 provides a definition of some of the ingredients of CFT. The conformal
vertex algebras serve as our point of entry in Sect. 2.1, since this part of CFT is proba-
bly themost natural for mathematicians.We proceed in Sect. 2.2 by listing the crucial
ingredients that underlie a definition of superconformal field theory, along with addi-
tional required properties. The presentation makes no claim for completeness, but
according to our declared conviction, we focus on those aspects that are relevant
for the discussion of geometric interpretations as introduced later. This in particu-
lar restricts our attention to the so-called N = (2, 2) superconformal field theories
with space-time supersymmetry. A useful class of examples, which is well under-
stood, is given by the toroidal N = (2, 2) superconformal field theories presented in
Sect. 2.3. We summarize the definition and properties of the chiral de Rham complex
in Sect. 2.5, as an example of a sheaf of conformal vertex algebras on an arbitrary
smooth algebraic variety, which thus provides a link between standard ingredients of
CFT and geometric quantities. Since this link is not entirely understood to the very
day, for clarification, our discussion rests on the special role of the elliptic genus
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as an invariant that certain superconformal field theories share with the Calabi-Yau
manifolds, as is discussed in some detail in Sect. 2.4.

The elliptic genus is also crucial for our definition of K3 theories in Sect. 3. This
class of CFTs deserves some attention, as it provides the only examples of non-linear
sigmamodels onCalabi-Yaumanifolds other than tori, where at least there are precise
predictions on the global form of the moduli space, implying some very explicit
relations between quantities in geometry and CFT. We motivate the definition of K3
theories in detail, and we summarize some of the known properties of these theories.
In particular, Proposition 2 recalls the dichotomy of N = (2, 2) superconformal field
theories at central charges c = 6, c = 6with space-time supersymmetry and integral
U (1)-charges. Indeed, these theories fall into two classes, namely the toroidal and
the K3 theories. Thus Proposition 2 is the conformal field theoretic counter part of
the classification of Calabi-Yau 2-manifolds into complex two-tori, on the one hand,
and K3 surfaces, on the other. Our proof [92, Sect. 7.1], which is little known, is
summarized in the Appendix.

The final Sect. 4 is devoted to recent developments in the study of K3 theories,
related to the mysterious phenomena known as Mathieu Moonshine. We recall the
route to discovery of these phenomena, which also proceeds via the elliptic genus.We
offer some ideas towards a geometric interpretation, arguing that one should expect
the chiral de Rham complex to be crucial in unraveling the Mathieu Moonshine
mysteries. The section closes with an open conjecture, which is related to Mathieu
Moonshine, which however is formulated neither alluding to moonshine nor to CFT,
and which therefore is hoped to be of independent interest.

2 Ingredients of Conformal Field Theory

The present section collects ingredients of conformal field theory (CFT), more pre-
cisely of two-dimensional Euclidean unitary conformal field theory. These adjectives
translate into the properties of the underlying quantum field theory as follows: First,
all fields are parametrized on a two-dimensional worldsheet, which comes equipped
with a Euclidean metric. Second, the fields transform covariantly under conformal
maps between such worldsheets. Furthermore, the space of states in such a CFT
is equipped with a positive definite metric, with respect to which the infinitesimal
conformal transformations act unitarily.

We begin by describing the simplest fields in our CFTs in terms of the so-called
vertex algebras in Sect. 2.1.Next, Sect. 2.2 summarizes a definition of conformal field
theory, with the toroidal conformal field theories presented as a class of examples in
Sect. 2.3. In Sects. 2.4 and 2.5 the related notions of the elliptic genus and the chiral de
Rham complex are discussed in the context of superconformal field theories. As such,
the present section collects ingredients of CFT, with a focus on those ingredients that
are under investigation to the very day.
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2.1 Conformal and Superconformal Vertex Algebras

We begin by recalling the notion of fields, following [61]. The theory is built on
the earlier results [9, 41, 67], see also [38] for a very readable exposition. This
definition is most convenient, because it naturally implements the representation
theory inherent to CFTs. As we shall see at the end of this section, for the chiral
states of CFTs it also allows a straightforward definition of the n-point functions.

Definition 1 Consider a C-vector space H.

• H[[z±1
1 , . . . , z±1

n ]] denotes the vector space of formal power series

v(z1, . . . , zn) =
∑

i1,...,in∈Z
v̂i1,...,in zi1

1 · · · zin
n , v̂i1,...,in ∈ H.

• For A ∈ EndC(H)[[z±1
1 , . . . , z±1

n ]], and for α ∈ H
∗ := HomC(H, C) and v ∈ H,

we set

〈α, A(z1, . . . , zn)v〉 :=
∑

i1,...,in∈Z
〈α, Âi1,...,in v〉zi1

1 · · · zin
n ∈ C[[z±1

1 , . . . , z±1
n ]],

where on the right hand side, 〈·, ·〉 denotes the natural pairing between H
∗ and H.

• If A(z) ∈ EndC(H)[[z±1]] with A(z) = ∑
n Ânzn , then ∂ A denotes the formal

derivative of A,

∂ A(z) =
∑
n∈Z

n Ânzn−1 ∈ EndC(H)[[z±1]].

• A formal power series A(z) ∈ EndC(H)[[z±1]] is called a field on H if A(z) =∑
n Ânzn obeys

∀v ∈ H : ∃N ∈ Z such that Ânv = 0 ∀n < N .

The endomorphisms Ân are called the modes of the field A.

In other words, if A is a field on H, then for every v ∈ H the expression A(z)v =∑
n( Ânv)zn is a formal Laurent series with coefficients in H and with only finitely

many non-zero contributions ( Ânv)zn with n < 0. In the context of CFTs one can
introduce a completion H of H with respect to an appropriate topology and then
for every z ∈ C

∗ view A(z) as a linear operator from H to H, see for example [38,
Sect. 1.2.1]. Accordingly, we call a field A(z) = ∑

n Ânzn constant if Ân = 0 for
all n �= 0. Similarly, if for v ∈ H we have Ânv = 0 for all n < 0, then we say that
A(z)v is well-defined in z = 0, and A(z)v|z=0 = Â0v. Note that a field A according
to Definition 1 can be viewed as an operator valued distribution, as usual in quantum
field theory. Indeed, by means of the residue, A(z) yields a linear map from complex
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polynomials into H. By definition, the space H carries a representation of the Lie
algebra generated by the modes of every field on H, with the Lie bracket that is
inherited from EndC(H), namely the commutator.

Let us now consider two fields A, B on H. While the expressions A(z)B(w) and
B(w)A(z) make sense as formal power series in EndC(H)[[z±1, w±1]], a priori it is
impossible to interpret them as fields. In general, we expect singular behavior for the
coefficients when we insert w = z, and in fact the form of this singularity captures
the most important aspects of CFT. Here, the notions of locality and normal ordered
products come to aid:

Definition 2

1. Let ∂w denote the formal derivative with respect to w in C[[z±1, w±1]]. On
C[[z, w]][z−1, w−1, (z − w)−1], we define the C[[z, w]][z−1, w−1]-linear oper-
ators ιz>w and ιw>z into C[[z±1, w±1]] with

for k ∈ N : ιz>w

(
k!(z − w)−k−1

)
= ∂k

w

1

z

∞∑
n=0

(
w

z

)n

,

ιw>z

(
k!(z − w)−k−1

)
= −∂k

w

1

w

∞∑
n=0

( z

w

)n
.

2. Fields A, B onH are called local with respect to each other if there exist
a so-called normal ordered product :A(z)B(w): ∈ EndC(H)[[z±1, w±1]]
and fields X0, . . . , X N−1 and : AB: on H, such that for every α ∈ H

∗ and v ∈ H,

• we have 〈α, :A(z)B(w): v〉 ∈ C[[z, w]][z−1, w−1],
• in EndC(H)[[z±1]], we have : AB:(z) = : A(z)B(w):|w=z ,
• in C[[z, w]][z−1, w−1, (z − w)−1], we have

ι−1
z>w (〈α, A(z)B(w)v〉) =

N−1∑
j=0

〈α, X j (w)v〉
(z − w) j+1 + 〈α, : A(z)B(w): v〉

= ι−1
w>z (〈α, B(w)A(z)v〉) .

Asa shorthandnotation onewrites the so-called operator product expansion
(OPE)

A(z)B(w) ∼
N−1∑
j=0

X j (w)

(z − w) j+1 .

For the special fields that feature in CFTs, the formal power series in the above
definition yield convergent functions in complex variables z and w on appropriate
domains in C. Then the operators ιz>w and ιw>z implement the Taylor expansions
about z = w in the domains |z| > |w| and |w| > |z|, respectively. We therefore refer
to these operators as (formal) Taylor expansions. The OPE thus captures the singular
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behavior of the expressions 〈α, A(z)B(w)v〉 when z ∼ w, where locality of the
fields A and B with respect to each other restricts the possible singularities to poles
at z = w. For [A(z), B(w)] := A(z)B(w) − B(w)A(z) ∈ EndC(H)[[z±1, w±1]],
the observation that, in general, 〈α, [A(z), B(w)]v〉 does not vanish, accounts for
the fact that (z − w)−1 and its derivatives have different Taylor expansions in the
domains |z| > |w| and |w| > |z|, respectively. Hence the modes of the fields X j in
the OPE encode the commutators [ Ân, B̂m] of the modes of A and B.

The Definition 2 of the normal ordered product :A(z)B(w): of two fields A, B on
H yields :A(z)B(w):= A+(z)B(w)+ B(w)A−(z) if A(z) = A+(z)+ A−(z), where
A+(z) := ∑

n≥0 Ânzn and A−(z) := ∑
n<0 Ânzn . Hence our definition of normal

ordered product amounts to a choice in decomposing A(z) = A+(z) + A−(z) as
stated, which accrues from the choice of decomposing the formal power series

∞∑
m=−∞

zmw−m−1 = ιz>w

(
(z − w)−1

)
− ιw>z

(
(z − w)−1

)
∈ C[[z±1, w±1]].

In the context of superconformal field theories, these notions are generalized to
include odd fields; if both A and B are odd, then locality amounts to

ι−1
z>w (〈α, A(z)B(w)v〉) =

N−1∑
j=0

〈α, X j (w)v〉
(z − w) j+1 + 〈α, : A(z)B(w): v〉

= −ι−1
w>z (〈α, B(w)A(z)v〉) ,

abbreviated by the same OPE as in Definition 2, and the bracket [·, ·] in the above
argument is replaced by a superbracket with [A(z), B(w)] = A(z)B(w)+ B(w)A(z)
for oddfields A, B. The spaceH, accordingly, furnishes a representation of the super-
Lie algebra generated by the modes of the fields on H.
The following list of examples provides some basic fields in the simplest CFTs:

Example 1 (U(1)-current)
We consider the complex Lie algebra A with C-vector space basis {C; an, n ∈ Z},
where C is a central element and the Lie bracket obeys

∀m, n ∈ Z : [an, am] = mδn+m,0 · C

3
.

Choose some c ∈ R and let H denote the A-module which under the A-action is
generated by a single non-zero vector Ω , with submodule of relations generated by

anΩ = 0 ∀n ≤ 0, CΩ = cΩ.

The space H can be viewed as polynomial ring in the an with n > 0. One then
checks that the so-called U (1)-current
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J (z) :=
∞∑

n=−∞
anzn−1

is a well-defined field on H which obeys the OPE

J (z)J (w) ∼ c/3

(z − w)2
.

In particular, J is local with respect to itself. Here and in the following, a constant
field which acts by multiplication by � ∈ C on H is simply denoted by �.

Example 2 (Virasoro field)
For the U (1)-current J on the vector space H introduced in the previous example,
assume c �= 0 and let T (z) := 3

2c :J J:(z). One checks that with c• = 1 this field on
H obeys the OPE

T (z)T (w) ∼ c•/2
(z − w)4

+ 2T (w)

(z − w)2
+ ∂T (w)

z − w
, (1)

which for the modes of T (z) = ∑
n Lnzn−2 translates into

∀n, m ∈ Z : [Ln, Lm] = (m − n)Lm+n + δn+m,0
c•
12 m(m2 − 1). (2)

The above Eq. (2) defines the Virasoro algebra at central charge c•, whose under-
lying vector space has C-vector space basis {c•; Ln, n ∈ Z}. This Lie algebra is
the central extension by spanC{c•} of the Lie algebra of infinitesimal conformal
transformations of the punctured Euclidean plane C

∗.
Example 3 (bc − βγ -system)
Let D ∈ N, and consider the super-Lie algebra AD with C-vector space basis {C;
ai

n, bi
n, ϕi

n, ψ i
n, n ∈ Z, i ∈ {1, . . . , D}}, where the ai

n, bi
n and the central element

C are even, while the ϕi
n, ψ i

n are odd, and the only non-vanishing basic super-Lie
brackets are

∀m, n ∈ Z, i, j ∈ {1, . . . , D} : [ai
n, b j

m] = δi, jδn+m,0 · C,

{ψ i
n, ϕ

j
m} = δi, jδn+m,0 · C.

(3)

Here, {·, ·} denotes the super-Lie bracket between odd elements of AD , as is
customary in the physics literature. Let H denote the AD-module which under the
AD-action is generated by a single non-zero vector Ω , with submodule of relations
generated by

∀n ≤ 0, m < 0, i, j ∈ {1, . . . , D} : ai
nΩ = 0, b j

mΩ = 0,

ψ i
nΩ = 0, ϕ

j
mΩ = 0; CΩ = Ω.
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Generalizing Examples 1 and 2 above, one checks that

ai (z) :=
∞∑

n=−∞
ai

nzn−1, bi (z) :=
∞∑

m=−∞
bi

m zm,

ψ i (z) :=
∞∑

n=−∞
ψ i

n zn−1, ϕi (z) :=
∞∑

m=−∞
ϕi

m zm, i ∈ {1, . . . , D}

defines pairwise local fields ai , bi , ψ i , ϕi on H. Moreover, one finds the OPEs

ai (z)b j (w) ∼ δi, j

z − w
, ϕi (z)ψ j (w) ∼ δi, j

z − w
∀ i, j ∈ {1, . . . , D},

while all other basic OPEs vanish, and the field

T top(z) :=
D∑

j=1

(
:∂b j a j:(z)+ :∂ϕ jψ j:(z)

)
(4)

is a Virasoro field obeying (1) at central charge c• = 0.

Example 4 (Topological N = 2 superconformal algebra)
With AD , H, and the fields of the bc − βγ -system defined in the above Example 3,
let

J (z) :=
D∑

j=1

:ϕ jψ j:(z), Q(z) :=
D∑

j=1

:a jϕ j:(z), G(z) :=
D∑

j=1

:ψ j∂b j:(z).
(5)

These fields obey the so-called topological N = 2 superconformal algebra at central
charge c = 3D:

T top(z)T top(w) ∼ 2T top(w)

(z − w)2
+ ∂T top(w)

z − w
, (6)

T top(z)J (w) ∼ − c/3

(z − w)3
+ J (w)

(z − w)2
+ ∂ J (w)

z − w
, J (z)J (w) ∼ c/3

(z − w)2
,

T top(z)Q(w) ∼ Q(w)

(z − w)2
+ ∂ Q(w)

z − w
, Q(z)Q(w) ∼ 0, J (z)Q(w) ∼ Q(w)

z − w
,

T top(z)G(w) ∼ 2G(w)

(z − w)2
+ ∂G(w)

z − w
, G(z)G(w) ∼ 0, J (z)G(w) ∼ − G(w)

z − w
,

Q(z)G(w) ∼ c/3

(z − w)3
+ J (w)

(z − w)2
+ T top(w)

z − w
. (7)
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Example 5 (N = 2 superconformal algebra)
Consider a C-vector space H and pairwise local fields T top(z), J (z), Q(z), G(z)
on H which obey the topological N = 2 superconformal algebra (6)–(7) at central
charge c. Now let

T (z) := T top(z) − 1

2
∂ J (z), G+(z) := Q(z), G−(z) := G(z). (8)

Then T (z) is another Virasoro field as in (1), but now with central charge c• = c,
and the fields T (z), J (z), G+(z), G−(z) on H obey the so-called N = 2 supercon-
formal algebra at central charge c,

T (z)T (w) ∼ c/2

(z − w)4
+ 2T (w)

(z − w)2
+ ∂T (w)

z − w
, (9)

T (z)J (w) ∼ J (w)

(z − w)2
+ ∂ J (w)

z − w
, J (z)J (w) ∼ c/3

(z − w)2
,

T (z)G±(w) ∼ 3/2G±(w)

(z − w)2
+ ∂G±(w)

z − w
, J (z)G±(w) ∼ ±G±(w)

z − w
,

G±(z)G∓(w) ∼ c/3

(z − w)3
± J (w)

(z − w)2
+ T (w) ± 1

2∂ J (w)

z − w
, G±(z)G±(w) ∼ 0.

(10)

Equation (8) is referred to by the statement that the fields T top(z), J (z), Q(z), G(z)
are obtained from the fields T (z), J (z), G+(z), G−(z) by a topological A-twist.
Analogously, fields T top(z), −J (z), Q(z), G(z) which obey a topological N = 2
superconformal algebra at central charge c are obtained from fields T (z), J (z),
G+(z), G−(z) which obey an N = 2 superconformal algebra at central charge c by
a topological B-twist iff T top(z) = T (z)− 1

2∂ J (z), Q(z) = G−(z), G = G+(z), see
[35, 98]. On the level of the N = 2 superconformal algebras, the transition between
topological A-twist and topological B-twist is induced by (T, J, G+, G−) �→
(T, −J, G−, G+), an automorphism of the superconformal algebra. This automor-
phism is at the heart of mirror symmetry [68].

We are now ready to define one of the fundamental ingredients of CFT, namely
the notion of conformal vertex algebra. The definition is taken from [38] and follows
[9, 39, 61]:

Definition 3 A conformal vertex algebra at central charge c ∈ C is
given by the following data:

• A Z-graded C-vector space W = ⊕m∈ZWm called the space of states.
• A special vector Ω ∈ W0 called the vacuum.
• A linear operator L : W → W called the translation operator.
• A special vector T ∈ W2 called the conformal vector.
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• A linear map
Y (·, z) : W −→ End(W )[[z±1]],

called the state- field correspondence, which assigns to every A ∈ W a field
A(z) := Y (A, z) on W .

These data obey the following axioms:

• The vacuum axiom: We have Ω(z) = 1, and for every A ∈ W and A(z) =∑
n Ânzn , we obtain A(z)Ω ∈ W [[z]], such that A(z)Ω is well-defined in z = 0

and
A(z)Ω|z=0 = Â0Ω = A ∈ W.

One says: The field A(z) creates the state A from the vacuum.
• The translation axiom:

LΩ = 0 and ∀A ∈ W : [L , A(z)] = ∂ A(z).

• The locality axiom:
All fields A(z) with A ∈ W are local with respect to each other.

The (ungraded) vector space W with Ω , L , and the map Y is called a vertex
algebra. In a conformal vertex algebra, in addition

• The field T (z) = ∑∞
n=−∞ Lnzn−2 associated to the conformal vector T by the

state-field correspondence is a Virasoro field obeying the OPE (1) with central
charge c• = c.

• The translation operator L is given by L = L1 and has degree 1.
• For all m ∈ Z, L0|Wm = m, and for A ∈ Wm , the field A(z) has weight m, i.e.

A(z) = ∑∞
n=−∞ Anzn−m with An ∈ End(W ) of degree n.

In the context of superconformal field theories, the notion of conformal vertex
algebras of Definition 3 is generalized to superconformal vertex algebras. For an
N = 2 superconformal vertex algebra, the vector space W in the above Definition is
graded by 1

2Z instead of Z, one needs to allow odd fields A(z) = Y (A, z), which can
havemode expansions in z1/2 ·End(W )[[z±1]], and one needs to generalize the notion
of locality to such fields, as explained in the discussion of Definition 2. Finally, one
needs to assume that there exist special states J ∈ W1 and G± ∈ W3/2 such that the
associated fields J (z), G±(z) obey the N = 2 superconformal algebra (9)–(10).

An important ingredient of CFT are the so-called n-point functions, which asso-
ciate a function in n complex variables to every n-tuple of states in the CFT.
These n-point functions are naturally related to the notion of vertex algebras, as
we shall illustrate now. Assume that W is the Z-graded vector space which under-
lies a conformal vertex algebra, with notations as in Definition 3. Furthermore,
assume that W comes equipped with a positive definite scalar product 〈·, ·〉, such
that W = ⊕m∈ZWm is an orthogonal direct sum. Let A(z), B(w) denote the
fields associated to A, B ∈ W by the state-field correspondence, which are local
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with respect to each other by the locality axiom. Hence by the very Definition 2
of locality, the formal power series 〈Ω, A(z)B(w)Ω〉 and 〈Ω, B(w)A(z)Ω〉 are
obtained from the same series in C[[z, w]][z−1, w−1, (z − w)−1] by means of the
(formal) Taylor expansions ιz>w and ιw>z , respectively. This series is denoted by
〈A(z)B(w)〉 ∈ C[[z, w]][z−1, w−1, (z − w)−1], such that

ιz>w (〈A(z)B(w)〉) = 〈Ω, A(z)B(w)Ω〉, ιw>z (〈A(z)B(w)〉) = 〈Ω, B(w)A(z)Ω〉.

Then 〈A(z)B(w)〉 is an example of a 2-point function, and for A1, . . . , An ∈ W
one analogously defines the n-point functions 〈A1(z1) · · · An(zn)〉 by successive
OPE. The additional properties of CFTs ensure that these n-point functions define
meromorphic functions in complex variables z1, . . . , zn ∈ C, whose possible poles
are restricted to the partial diagonals zi = z j , i �= j .

2.2 Defining Conformal Field Theories

This section summarizes an axiomatic approach to conformal field theory. Instead
of a full account, the focus lies on those ingredients of CFTs that are relevant for the
remaining sections of this exposition. More details can be found e.g. in [91, 94]. We
list the ingredients and defining properties of a two-dimensional Euclidean unitary
conformal field theory at central charges c, c:

Ingredient I. [The space of states H]
The space H is a C-vector space with positive definite scalar product 〈·, ·〉 and
with a compatible real structure v �→ v∗. Furthermore, there are two Virasoro
fields T (z), T (z) of central charges c, c on H, see Eq. (1), where the OPE
between T and T is trivial:

T (z)T (z) ∼ 0.

The space of states of a CFT must have a number of additional properties:

Property A.The space of statesH furnishes a unitary representation of the two
commuting copies of a Virasoro algebra generated by the modes Ln, Ln, n ∈
Z, of the Virasoro fields T (z) and T (z), which is compatible with the real
structure of H. The central elements c, c act by multiplication with fixed, real
constants, also denoted c, c ∈ R. The operators L0 and L0 are self-adjoint and
positive semidefinite, andHdecomposes into a direct sumof their simultaneous
eigenspaces indexed by R ⊂ R

2,
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H =
⊕

(h,h)∈R

Hh,h, Hh,h := ker (L0 − h · id) ∩ ker
(
L0 − h · id).

By this we mean that R does not have accumulation points, and that every
vector in H is a sum of contributions from finitely many different eigenspaces
Hh,h . Moreover, every Hh,h is finite dimensional.

Property A ensures that the space of states H of every conformal field theory
furnishes a very well-behaved representation of two commuting copies of a Virasoro
algebra. In addition, we need to assume that the character of this representation has
favorable properties:

Property B. For τ ∈ C, �(τ ) > 0, let q := exp(2π iτ); the partition function

Z(τ ) :=
∑

(h,h)∈R

(
dimCHh,h

)
qh−c/24qh−c/24 = TrH

(
q L0−c/24q L0−c/24

)

is well defined for all values of τ in the complex upper halfplane, and it is
invariant under modular transformations

τ �→ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2, Z).

Since by Property B the partition function is modular invariant, it in particular is
invariant under the translation τ �→ τ + 1 of the modular parameter. This implies
that for every pair (h, h) ∈ R of eigenvalues of L0 and L0, we have h − h ∈ Z.
Hence the subspaces W := ker

(
L0

)
and W := ker (L0) are Z-graded by L0 and

L0, respectively. To obtain a CFT, these subspaces are required to carry additional
structure, which we are already familiar with:

Property C. The subspaces W := ker
(
L0

)
and W := ker (L0) of H carry

the structure of conformal vertex algebras, see Definition 3, with T (z) and
T (z) the fields associated to the respective conformal vectors by the state-
field correspondence. Moreover, the vacuum vector Ω of the conformal vertex
algebra W agrees with the vacuum vector of W , and Ω is a real unit vector
yielding a basis of W ∩ W = H0,0.
The vertex algebras with underlying vector spaces W and W are called the
chiral algebras of the CFT, and to simplify the terminology, we also refer to
W and W as the chiral algebras.
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As was discussed at the end of Sect. 2.1, in this setting there is a natural definition
of n-point functions for the fields in the chiral algebras associated to W and W .
This definition, however, is not sufficient to capture the general n-point functions of
conformal field theory. The notion is generalized along the following lines:

Ingredient II. [The system 〈· · · 〉 of n-point functions]
The space of states H is equipped with a system 〈· · · 〉 of n-point functions,
that is, for every n ∈ N we have a map

H
⊗n −→ Maps(Cn \

⋃
i �= j

Di, j , C), Di, j := {
(z1, . . . , zn) ∈ C

n | zi = z j
}
,

which is compatible with complex conjugation, and such that every function
in the image is real analytic and allows an appropriate expansion about every
partial diagonal Di, j .

The following Property D, which along with Property E governs the behavior of
the n-point functions, is immediate on the chiral algebras W and W , by definition:

Property D. The n-point functions are local, that is, for every permutation
σ ∈ Sn and all φi ∈ H,

〈φ1(z1) · · · φn(zn)〉 = 〈φσ(1)(zσ(1)) · · · φσ(n)(zσ(n))〉.

Consider an n-point function 〈φ(z1) · · · φ(zn)〉 with φ = φ1 = · · · = φn ∈ H as
a function of one complex variable z = zk , while all other zl , l �= k, are fixed. The
closure of the domain of definition of this function is the worldsheet on which the
n-point function is defined. Therefore, Ingredient II yields n-point functions whose
worldsheet is the Riemann sphere C. As a basic feature of conformal field theory,
the n-point functions are assumed to transform covariantly under conformal maps
between worldsheets. In particular,

Property E.Then-point functions arePoincaré covariant, that is, for all isome-
tries and all dilations f of the Euclidean plane C, and for all φi ∈ Hhi ,hi

,

〈φ1( f (z1)) · · · φn( f (zn))〉 =
n∏

i=1

[(
f ′(zi )

)−hi f ′(zi )
−hi

]
〈φ1(z1) · · · φn(zn)〉,
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where f ′(z) = ∂z f (z). Moreover, infinitesimal translations αL1 +
αL1, α, α ∈ C, are represented by α∂z + α∂z , i.e. for arbitrary φi ∈ H,

〈φ1(z1) · · · φn−1(zn−1)(L1φn)(zn)〉 = ∂

∂zn
〈φ1(z1) · · · φn−1(zn−1)φn(zn)〉,

〈φ1(z1) · · · φn−1(zn−1)(L1φn)(zn)〉 = ∂

∂zn
〈φ1(z1) · · · φn−1(zn−1)φn(zn)〉.

The remaining requirements on the n-point functions, unfortunately, are rather
more involved. Roughly, they firstly generalize Property E by ensuring that the rep-
resentation of the two commuting copies of the Virasoro algebra on H (see Property
A) induces an action by infinitesimal conformal transformations on the worldsheet.
Furthermore, the operator product expansion of Definition 2 is generalized to induce
the appropriate expansions of the n-point functions about partial diagonals, see Ingre-
dient II. Finally, n-point functions must be defined on worldsheets with arbitrary
genus. Since these additional properties are not needed explicitly in the remaining
sections of the present exposition, here only the relevant keywords are listed in the
final

Property F. The system 〈· · · 〉 of n-point functions is conformally covariant,
and it represents an operator product expansion such that reflection positivity
holds. Moreover, the universality condition holds, and sewing allows to define
n-point functions on worldsheets of arbitrary genus.

As was mentioned at the beginning of this section, the ingredients of CFTs listed
above yield two-dimensional Euclidean unitary conformal field theories. Indeed,
these adjectives have been implemented in Properties A–F: According to the discus-
sion that precedes Property E along with Property F, the worldsheets of our CFTs are
two-dimensional Euclidean manifolds. Conformality is implemented by means of
the two commuting copies of the Virasoro algebra, see the discussion of Eqs. (1) and
(2), which act by infinitesimal conformal transformations on the worldsheets of the
n-point functions by Properties E and F. On the space of statesH, Property A ensures
that the representation of the infinitesimal conformal transformations is unitary.

Our approach to CFT is convenient, since it concretely implements the interplay
between representation theory with the analytic properties of the n-point functions,
which is characteristic of two-dimensional conformal quantum field theories. How-
ever, the relation to more general quantum field theories (QFTs) is not so evident.
Let us briefly comment on this connection.

First, for the relevant QFTswe restrict to Euclidean quantumfield theories accord-
ing to a system of axioms that are based on the Osterwalder-Schrader axioms [78,
79], see [37, 82]. According to [78, 79], these axioms ensure that from such a QFT
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one can construct a Hilbert space H̃ of states φ and associated fields Yφ , where each
field Yφ yields a densely defined linear operator Yφ(h) on H̃ for every test function
h. Moreover, there is a special state Ω which plays the role of the vacuum as in our
Property C.

The Osterwalder-Schrader axioms require the existence of correlation functions
associated to every n-tuple of states in H̃ which resemble the n-point functions
of CFT according to our Ingredient II. To obtain the fields of CFT from those of
the general QFT, one needs to perform a procedure called localization. Within the
Hilbert space H̃ one restricts to the subspace H which is generated by those states
that are created by the localized field operators from the vacuum, generalizing the
vacuum axiom of our Definition 3. The Osterwalder-Schrader axioms then ensure
that locality (Property D), Poincaré covariance under isometries (Property E) and
reflection positivity (Property F) hold for the n-point functions obtained from the
correlation functions of the QFT.

According to [37], conformal covariance can be implemented by means of three
additional axioms, ensuring the covariance of the n-point functions under dilations
(Property E), the existence of the Virasoro fields (Ingredient I) and of an OPE (Prop-
erties C and F) with all the necessary features. See [82, Sect. 9.3] for an excellent
account.

If a CFT is obtained from a conformally covariant QFT by localization, then one
often says that the CFT is the short distance limit of the QFT. For details on this
mathematical procedure see [37, 43, 90]. To the author’s knowledge, it is unknown
whether a CFT in the sense of our approach can always be viewed as a short distance
limit of a full-fledged QFT.

With the above, we do not claim to provide a minimal axiomatic approach to CFT.
For example, the requirement of Property F that n-point functions arewell-defined on
worldsheets of arbitrary genus implies modular invariance of the partition function,
whichwas assumed separately inPropertyB. Indeed, the partition function Z(τ ) is the
0-point function on a worldsheet torus with modulus τ , where conformal invariance
implies that Z(τ ) indeed solely depends on the complex structure represented by
τ ∈ C, �(τ ) > 0. Property B is stated separately for clarity, and because modular
invariance plays a crucial role in the discussion of the elliptic genus in Sect. 2.4 which
is also essential for the remaining sections of this exposition, while we refrain from
a detailed discussion of Property F.

Mathematical implications of modular invariance for CFTs were first pointed out
by Cardy [16]. He observed that for those theories that had been studied by Belavin,
Polyakov and Zamolodchikov in their seminal paper [7], and that describe physi-
cal phenomena in statistical physics, modular invariance of the partition function
poses constraints on the operator content. These constraints can be useful for the
classification of CFTs.

In special cases, modular invariance can be proven from first principles, assuming
only that the n-point functions arewell-defined on theRiemann sphere. In [74],Nahm
argues that the assumption that the n-point functions on the torus define thermal states
of the field algebra, which in turn is of type I, suffices to deduce modular invariance.
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Under an assumption known as Condition C or Condition C2, which amounts to
certain quotients of the chiral algebras being finite dimensional, Zhu proves in [102]
that modular invariance follows, as well. This covers a large class of examples of
CFTs, among them the ones studied by Belavin, Polyakov and Zamolodchikov.

An N = (2, 2) superconformal field theory is a CFT as above, where the notion
of locality is generalized according to what was said in the discussion of Defini-
tion 2, and the representations of the two commuting copies of a Virasoro algebra are
extended to representations of N = 2 superconformal algebras, see Eqs. (9)–(10).
As a first additional ingredient to these theories one therefore needs

Ingredient III. [Compatible Z2-grading of the space of states]
The space of states H carries a Z2-grading H = Hb ⊕ H f into worldsheet
bosons Hb (even) and worldsheet fermions H f (odd), which is compatible
with Properties A–F.
Inmore detail, for compatibilitywith PropertyA, the decompositionH = Hb⊕
H f must be orthogonal and invariant under the action of the two commuting
copies of the Virasoro algebra. In Property B, the trace defining the partition
function is taken over the bosonic subspace Hb, only. The chiral algebras
introduced in Property C must contain N = 2 superconformal vertex algebras
as introduced in the discussion of Definition 3, whose modes act unitarily on
H. The notion of locality in Property D is generalized to semi-locality, meaning
that

〈φ1(z1) · · · φn(zn)〉 = (−1)I 〈φσ(1)(zσ(1)) · · · φσ(n)(zσ(n))〉

if σ ∈ Sn and all φi ∈ H have definite parity. Here, I is the number of
inversions of odd states in σ , that is, the number of pairs (i, j) of indices with
i < j and σ(i) > σ( j) and such that φi , φ j ∈ H f . Properties E and F remain
unchanged.

The fields in the chiral algebras of the CFT that furnish the two commuting copies
of N = 2 superconformal vertex algebras according to Property III are generally
denoted T (z), J (z), G+(z), G−(z) and T (z), J (z), G

+
(z), G

−
(z) with OPEs as

in (9)–(10). The mode expansions for the even fields are denoted as

T (z) =
∑

n

Lnzn−2, J (z) =
∑

n

Jnzn−1, T (z) =
∑

n

Lnzn−2, J (z) =
∑

n

J nzn−1,

(11)
in accord with Definition 3. As mentioned in the discussion after Definition 3, the
odd fields G±(z) can have mode expansions either in EndC(H)[[z±1]] or in z1/2 ·
EndC(H)[[z±1]], and analogously for G

±
(z). This induces another Z2 × Z2 grading

of the space of states H,

H = H
N S,N S ⊕ H

R,R ⊕ H
N S,R ⊕ H

R,N S, (12)
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where

G±(z) ∈ EndC(HN S,•)[[z±1]], G
±
(z) ∈ EndC(H•,N S)[[z±1]]

in the so-called Neveu-Schwarz- or NS-sector, while

G±(z) ∈ z1/2 · EndC(HR,•)[[z±1]], G
±
(z) ∈ z1/2 · EndC(H•,R)[[z±1]]

in the so-called Ramond- or R-sector. That is, on H
S,S the fields G±(z) and G

±
(z)

have mode expansions according to the S and the S sector, respectively, with S, S ∈
{R, N S}.

In what follows, we restrict our attention to so-called non–chiral N = (2, 2)
superconformal field theories with space-time supersymmetry:

Ingredient IV. [Space-time supersymmetry]
The space of states H carries another compatible Z2-grading by means of the
properties of the odd fields G±(z) and G

±
(z) of the N = 2 superconformal

vertex algebra into
H = H

N S ⊕ H
R .

Here, the decomposition (12) reduces to H
N S := H

N S,N S and H
R := H

R,R ,
while the sectors H

N S,R and H
R,N S are trivial.

Moreover, as representations of the two commuting N = 2 superconformal
algebras of Ingredient III, H

N S and H
R are equivalent under an isomorphism

Θ : H → H which interchanges H
N S and H

R and which obeys

[L0,Θ] = c
24Θ − 1

2Θ ◦ J0, [J0,Θ] = − c
6Θ,

[L0,Θ] = c
24Θ − 1

2Θ ◦ J 0, [J 0,Θ] = − c
6Θ,

(13)

where L0, J0, L0, J 0 are the zero-modes of the fields T (z), J (z), T (z), J (z)
obtained from the mode expansions (11). The isomorphism Θ is induced by
a field of the theory called spectral flow, and it is also known as space-time
supersymmetry.

With the above notion of CFT, a number of examples are known, like minimal
models, both the bosonic [7, 55] and the supersymmetric ones [13, 24, 81, 101]. In
string theory, so-called non-linear sigmamodel constructions are believed to provide
a map from certain manifolds to CFTs. While this construction is well understood
for the simplest manifolds, namely for tori, the mathematical details in general are
far from known.
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2.3 Example: Toroidal Conformal Field Theories

For illustration and for later reference, this section very briefly presents the class of
so-called toroidal conformal field theories. These theories are characterized by the
existence of “sufficiently many U (1)-currents” as in Example 1 of Sect. 2.1.

We say that the chiral algebra W = ⊕m Wm of a CFT (see Property C,
Sect. 2.2) contains a u(1)d -current algebra, if W1 contains an orthogonal system(
ak
1Ω, k ∈ {1, . . . , d}) of states, which under the state-field correspondence of

Definition 3 have associated fields j k(z), k ∈ {1, . . . , d}, obeying the OPEs

∀k, l ∈ {1, . . . , d} : j k(z) j l(w) ∼ δk,l

(z − w)2
. (14)

For (bosonic) CFTs we then have

Definition 4 A conformal field theory at central charges c, c is called toroidal,
if c = c = d with d ∈ N, and if the chiral algebras W = ⊕m Wm , W = ⊕m W m of
Property C, Sect. 2.2, each contain a u(1)d -current algebra.

For our purposes, the toroidalN = (2, 2) superconformal field theories are more
relevant. They are characterized by the fact that their bosonic sector with space of
states Hb contains a toroidal CFT at central charges 2D, 2D in the sense of Defi-
nition 4, and in addition, they contain D left- and D right-moving so-called Dirac
fermions with coupled spin structures. By this we mean first of all that the subspace
W1/2 ⊂ W of the vector space underlying the chiral algebra contains an orthogonal
system

(
(ψk±)1/2Ω, k ∈ {1, . . . , D}) of states, which under the state-field corre-

spondence of Definition 3 have associated (odd) fields ψ±
k (z), k ∈ {1, . . . , D},

obeying the OPEs

∀k, l ∈ {1, . . . , D} : ψ+
k (z)ψ−

l (w) ∼ δk,l

z − w
, ψ±

k (z)ψ±
l (w) ∼ 0, (15)

and analogously for the subspace W 1/2 ⊂ W of the vector space underlying the
second chiral algebra in Property C. In addition, allψ±

k (z) are represented by formal
power series in EndC(HN S)[[z±1]] on H

N S , while on H
R , they are represented in

z1/2 ·EndC(HR)[[z±1]], and analogously for theψ
±
k (z). One shows that such a system

of D left- and D right-moving Dirac fermions yields a well-defined CFT at central
charges D, D (see e.g. [53, Sect. 8.2] or [91, Chap.5]).

Definition 5 An N = (2, 2) superconformal field theory at central charges c, c
with space-time supersymmetry is toroidal, if c = c = 3D with D ∈ N, and if this
theory is the tensor product of a toroidal conformal field theory at central charges
2D, 2D according to Definition 4, and a system of D left- and D right-moving Dirac
fermions with coupled spin structures. Moreover, the fields ψ±

k (z), k ∈ {1, . . . , D},
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in (15) are the superpartners of the U (1)-currents j l(z), l ∈ {1, . . . , 2D} in (14),
and analogously for the right-moving fields. By this we mean that for the fields
G±(z), G

±
(z) in the two commuting superconformal vertex algebras (9)–(10), and

with notations as above, we have

∀k ∈ {1, . . . , D} : G±
−1/2ak

1Ω = (ψk±)1/2Ω, G±
−1/2ak+D

1 Ω = ∓i(ψk±)1/2Ω,

G
±
−1/2ak

1Ω = (ψ
k
±)1/2Ω, G

±
−1/2ak+D

1 Ω = ∓i(ψ
k
±)1/2Ω.

The toroidal conformal and superconformal field theories have been very well
understood by string theorists since the mid eighties [17, 76], and these theories
have also been reformulated in terms of the vertex algebras presented in Sect. 2.1
[38, 61, 63]. This includes the interpretation of the toroidal conformal field theories
as non-linear sigma models on tori, their deformations, and thus the structure of the
moduli space of toroidal CFTs:

Theorem 1 ([76]) The moduli space Mtor
D of toroidal N = (2, 2) superconformal

field theories at central charges c = c = 3D with D ∈ N is a quotient of a 4D2-
dimensional Grassmannian by an infinite discrete group,

Mtor
D = O+(2D, 2D; Z)\T 2D,2D,

where T 2D,2D := O+(2D, 2D; R)/SO(2D) × O(2D).

Here, if pq �= 0, then O+(p, q; R) denotes the group of those elements in
O(p, q; R) = O(Rp,q) which preserve the orientation of maximal positive def-
inite oriented subspaces in R

p,q , and if p ≡ q mod 8, then O+(p, q; Z) =
O+(p, q; R) ∩ O(Zp,q) with Z

p,q ⊂ R
p,q the standard even unimodular lattice

of signature (p, q).

2.4 The Elliptic Genus

In this section, the conformal field theoretic elliptic genus is introduced and compared
to the geometric elliptic genus that is known to topologists and geometers. This and
the following section are completely expository with more details and proofs to be
found in the literature as referenced.

Let us first consider an N = (2, 2) superconformal field theory at central charges
c, c with space-time supersymmetry according to the Ingredients I–IV of Sect. 2.2.
For the zero-modes J0, J 0 of the fields J (z), J (z) in the two commuting N = 2
superconformal algebras T (z), J (z), G+(z), G−(z), T (z), J (z), G

+
(z), G

−
(z)

of Ingredient III according to (11) one finds: These linear operators are self-adjoint
and simultaneously diagonalizable on the space of states H = H

N S ⊕ H
R . By

Ingredient IV, the corresponding operator of spectral flow induces an equivalence of
representations H

N S ∼= H
R of the two N = 2 superconformal algebras. This turns
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out to imply that the linear operator J0 − J 0 has only integral eigenvalues, which are
even onHb and odd onH f , see e.g. [92, Sect. 3.1]. Hence (−1)J0−J 0 is an involution
which yields the Z2-grading H = Hb ⊕ H f and an induced Z2-grading on H

R .
Following [30], this allows the definition of a supercharacter of the superconformal
field theory, analogous to the partition function in Property B:

Definition 6 Consider an N = (2, 2) superconformal field theory at central charges
c, c with space-time supersymmetry. Set q := exp(2π iτ) for τ ∈ C, �(τ ) > 0, and
y := exp(2π i z) for z ∈ C. Then

E(τ, z) := StrHR

(
y J0q L0−c/24q L0−c/24

)

= TrHR

(
(−1)J0−J 0 y J0q L0−c/24q L0−c/24

)

is the conformal field theoretic elliptic genus of the theory.

Using known properties of the N = 2 superconformal algebra and of its irre-
ducible unitary representations, one shows (see [23, 30, 100] for the original results
and e.g. [92, Sect. 3.1] for a summary and proofs):

Proposition 1 Consider the conformal field theoretic elliptic genus E(τ, z) of an
N = (2, 2) superconformal field theory at central charges c, c with space-time
supersymmetry.
Then E(τ, z) is holomorphic in τ and bounded when τ → i∞.
It is invariant under smooth deformations of the underlying superconformal field
theory to any other space-time supersymmetric N = (2, 2) superconformal field
theory with the same central charges.
Moreover, E(τ, z) transforms covariantly under modular transformations,

E(τ + 1, z) = E(τ, z), E(−1/τ, z/τ) = e2π i c
6 · z2

τ E(τ, z).

If in addition c = c ∈ 3N, and all eigenvalues of J0 and J 0 in the Ramond sector
lie in c

6 + Z, then

E(τ, z + 1) = (−1)
c
3 E(τ, z), E(τ, z + τ) = q− c

6 y− c
3 E(τ, z).

In other words, E(τ, z) is a weak Jacobi form (with a character, if c/3 is odd) of
weight 0 and index c/6.

Note that the additional assumptions on the central charges and the eigenvalues
of J0 and J 0 in the last statement of Proposition 1 are expected to hold for super-
conformal field theories that are obtained by a non-linear sigma model construction
from some Calabi-Yau D-manifold.

On the other hand, following Hirzebruch’s seminal work on multiplicative
sequences and their genera [59], the elliptic genus is known to topologists as a ring



Snapshots of Conformal Field Theory 109

homomorphism from the cobordism ring of smooth oriented compact manifolds into
a ring of modular functions [60, 66]. For simplicity we assume that our underlying
manifold X is a Calabi-Yau D-manifold. Then its associated geometric elliptic genus
EX (τ, z) can be viewed as a modular function obeying the transformation properties
of Proposition 1 with c = 3D and interpolating between the standard topological
invariants of X , namely its Euler characteristic χ(X), its signature σ(X), and its
topological Euler characteristic χ(OX ).

To understand this in more detail, first recall the definition of the topological
invariants mentioned above: For y ∈ C the Hirzebruch χy-genus [59] is defined by

χy(X) :=
D∑

p,q=0

(−1)q y ph p,q(X),

where the h p,q(X) are the Hodge numbers of X . Then

χ(X) := χ−1(X), σ (X) := χ+1(X), χ(OX ) := χ0(X). (16)

Note that by the usual symmetries among the Hodge numbers h p,q(X) of a com-
plex Kähler manifold X , the signature σ(X) = ∑

p,q(−1)q h p,q(X) vanishes if the
complex dimension D of X is odd; we have thus trivially extended the usual defini-
tion of the signature on oriented compactmanifolds whose real dimension is divisible
by 4 to all compact complex Kähler manifolds.

Tomotivate a standard formula for the specific elliptic genus which is of relevance
to us, see Definition 7, we draw the analogy to the interpretation of the topological
invariants (16) in terms of the Atiyah-Singer Index Theorem [5]. For any complex
vector bundle E on X and a formal variable x , we introduce the shorthand notations

�x E :=
⊕

p

x p�p E, Sx E :=
⊕

p

x p S p E,

where �p E, S p E denote the exterior and the symmetric powers of E , respectively,
along with the Chern character on such formal power series in x whose coefficients
are complex vector bundles Fp:

ch(
⊕

p

x p Fp) :=
∑

p

x pch(Fp).

Then by the Hirzebruch-Riemann-Roch formula [58], which can be viewed as a
special case of the Atiyah-Singer Index Theorem, one finds

χy(X) =
∫

X

Td(X)ch(�y T ∗), (17)
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where Td(X) denotes the Todd genus and T := T 1,0X is the holomorphic tangent
bundle of X . Generalizing the expression in Eq. (17) and following [60, 65, 97] we
now have

Definition 7 Let X denote a compact complex D-manifold with holomorphic tan-
gent bundle T := T 1,0X . Set

Eq,−y := y−D/2
∞⊗

n=1

(
�−yqn−1T ∗ ⊗ �−y−1qn T ⊗ Sqn T ∗ ⊗ Sqn T

)
,

viewed as a formal power series with variables y±1/2, q, whose coefficients are
holomorphic vector bundles on X .

Analogously toDefinition 1, the integral
∫

X is extended linearly to the vector space
of formal power series whose coefficients are characteristic classes on X . Then with
q := exp(2π iτ) and y := exp(2π i z), the holomorphic Euler characteristic ofEq,−y ,

EX (τ, z) :=
∫

X

Td(X)ch(Eq,−y) ∈ y−D/2 · Z[[y±1, q]],

is the (geometric) elliptic genus of X .

By [60, 65, 97], the elliptic genus EX (τ, z) in fact yields a well-defined function
in τ ∈ Cwith�(τ ) > 0 and in z ∈ C. If X is a Calabi-Yau D-manifold, then EX (τ, z)
is a weak Jacobi form (with a character, if D is odd) of weight 0 and index D/2 [11].
In other words, with c := 3D the elliptic genus EX (τ, z) obeys the transformation
properties stated for E(τ, z) in Proposition 1, and it is bounded when τ → i∞.
One checks that by definition, the elliptic genus indeed is a topological invariant
which interpolates between the standard topological invariants of Eq. (16), namely

EX (τ, z)
τ→i∞−→ y−D/2χ−y(X) and

EX (τ, z = 0) = χ(X), EX (τ, z = 1/2) = (−1)D/2σ(X) + O(q),

q D/4EX (τ, z = (τ + 1)/2) = (−1)D/2χ(OX ) + O(q).
(18)

According to Witten [96, 97], the expression for the elliptic genus EX (τ, z) in
Definition 7 can be interpreted as a regularized version of a U (1)-equivariant index
of a Dirac-like operator on the loop space of X , see also [66]. This explains the
notation chosen in Definition 7, and it also motivates why one expects that for CFTs
which are obtained by a non-linear sigma model construction from some Calabi-Yau
D-manifold X , the conformal field theoretic elliptic genus of Definition 6 agrees
with the geometric elliptic genus of X as in Definition 7. Note that the resulting
equation

EX (τ, z) = StrHR

(
y J0q L0−c/24q L0−c/24

)
(19)
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would furnish a natural generalization of the McKean-Singer Formula [72]. While
non-linear sigma model constructions are not understood sufficiently well to even
attempt a general proof of this equation, there is some evidence for its truth. On the
one hand, as was pointed out in Sect. 2.3, N = (2, 2) superconformal field theories
obtained from a non-linear sigmamodel on a complex torus are verywell understood.
One confirms that their conformal field theoretic elliptic genus vanishes, as does the
geometric elliptic genus of a complex torus. Equation (19) is also compatible with the
construction of symmetric powers of the manifold X [25]. Moreover, compatibility
of the elliptic genus with orbifold constructions was proved in [12, 40]. Further
evidence in favor of the expectation (19) arises from a discussion of the chiral de
Rham complex, see Sect. 2.5.

2.5 The Chiral de Rham Complex

As was pointed out above, non-linear sigma model constructions of N = (2, 2)
superconformal field theories are in general not very well understood. Therefore,
a direct proof of the expected equality (19) is out of reach. However, instead of
a full-fledged superconformal field theory, in [70] the authors construct a sheaf of
superconformal vertex algebras, known as the chiral de Rham complex Ωch

X , on any
complex manifold X . The chiral de Rham complex of X is expected to be closely
related to the non-linear sigmamodel on X , as we shall discuss in the present section.

Let us begin by summarizing the construction of the chiral de Rham complex
Ωch

X for a complex D-dimensional manifold X , see [8, 56, 69, 70]. First, to any
coordinate neighborhood U ⊂ X with holomorphic coordinates (z1, . . . , zD) one
associates a bc − βγ system Ωch

X (U ) as in Example 3, see Sect. 2.1. Here, the even
fields a j , b j are interpreted as arising from quantizing the local sections ∂/∂z j , z j

of the sheaf of polyvector fields on X , while the odd fields φ j , ψ j correspond to the
local sections dz j , ∂/∂(dz j ) of the sheaf of differential operators on the de Rham
algebra of differential forms. Indeed, by (3) the map

(∂/∂z j , z j , dz j , ∂/∂(dz j )) �−→ (a j
0 , b j

0 , φ
j
0 , ψ

j
0 )

induces a super-Lie algebra homomorphism.
According to [70], coordinate transforms on X induce corresponding transfor-

mation rules for the fields a j , b j , φ j , ψ j which are compatible with the structure
of the bc − βγ -system as discussed in Example 3. This allows to glue the Ωch

X (U )

accordingly, and by localization, one indeed obtains a well-defined sheaf of vertex
algebras over X , with a (non-associative) action of OX on it.

A key result of [70] is the fact that under appropriate assumptions on X , there
are well-defined global sections of the sheaf EndC(Ωch

X )[[z±1]], which are locally
given by the fields (4), (5) of the topological N = 2 superconformal algebra (6)–(7)
discussed in Example 4 of Sect. 2.1:
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Theorem 2 ([70]) Let X denote a compact complex manifold of dimension D. As
discussed above, there is an associated sheaf Ωch

X of vertex algebras on X. On every
holomorphic coordinate chart U ⊂ X, let T top(z), J (z), Q(z), G(z) denote the
local sections in EndC(Ωch

X (U ))[[z±1]] defined by (4), (5), with mode expansions

T top(z) =
∑

n

L top
n zn−2, J (z) =

∑
n

Jnzn−1,

Q(z) =
∑

n

Qnzn−1, G(z) =
∑

n

Gnzn−2,

respectively. Then the following holds:

1. The linear operators F := J0 and dch
dR := −Q0 are globally well-defined. More-

over, F defines a Z-grading on Ωch
X , while (dch

dR)2 = 0, such that

∀p ∈ Z : Ω
ch,p
X (U ) :=

{
� ∈ Ωch

X (U ) | F� = p�
}

yields a complex (Ω
ch,•
X , dch

dR), which is called the chiral de Rham complex.

2. The map (z j , dz j ) �→ (b j
0 , φ

j
0 ) induces a quasi-isomorphism from the usual de

Rham complex to the chiral de Rham complex of X.
3. The local fields T top(z) given in (4) define a global field on the chiral de Rham

complex, by which we mean a global section of the sheaf EndC(Ωch
X )[[z±1]]. The

chiral de Rham complex therefore is bigraded by F and L top
0 .

4. If X is a Calabi-Yau manifold, then the local fields J (z), Q(z), G(z) given in (5)
also define global fields on the chiral de Rham complex.

As mentioned above, the sheaf Ωch
X is not quasi-coherent. However, it has a

filtration which is compatible with the bigrading of Theorem 2 and such that the
corresponding graded object yields a quasi-coherent sheaf isomorphic to (the sheaf
of sections of) (−y)D/2

Eq,y as in Definition 7. This is used extensively in [10,
11] to study the C̆ech cohomology H∗(X,Ωch

X ). Note that this means classical C̆ech
cohomology, ignoring the differentialdch

dR of the chiral deRhamcomplex.The authors
find:

Theorem 3 ([10, 11]) Consider a Calabi-Yau D-manifold X, and the C̆ech coho-
mology H∗(X,Ωch

X ) of its chiral de Rham complex Ωch
X . Equip it with the induced

bigrading by the operators F = J0 and L top
0 of Theorem 2 and the Z2-grading by

(−1)F+q on Hq(X,Ωch
X ). Then H∗(X,Ωch

X ) carries a natural structure of a topolog-
ical N = 2 superconformal vertex algebra [10, Proposition 3.7 and Definition 4.1].
Moreover [11], the graded Euler characteristic of the chiral de Rham com-

plex, that is, the supertrace of the operator y−D/2 ·(y J0q L top
0 ) on H∗(X,Ωch

X ), yields
the elliptic genus EX (τ, z) of Definition 7.

Thus Theorem 3 indicates a possible relationship between the chiral de Rham
complex Ωch

X of a Calabi-Yau D-manifold X and a non-linear sigma model on X ,
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since it recovers the (geometric!) elliptic genus EX (τ, z) by means of a supertrace
which at least in spirit agrees with the expression on the right hand side of Eq. (19).
Note that L top

0 = L0 − 1
2 J0 by (8) [using Definition 1 and (11)]. Therefore, using

the fact that the elliptic genus is holomorphic, along with the spectral flow (13), the
conformal field theoretic elliptic genus of Definition 6 can be expressed as

E(τ, z) = StrHR

(
y J0q L0−c/24

)

= y−c/6StrHN S

(
(yq−1/2)J0q L0

)
= y−c/6StrHN S

(
y J0q L top

0

)
.

Hence recalling c = 3D for a non-linear sigma model on a Calabi-Yau D-
manifold, one is led to conjecture that one might be able to identify an appropriate
cohomology of H

N S with H∗(X,Ωch
X ).

The details of such an identification are still more subtle, however. Indeed, by
construction, the chiral de Rham complex depends only on the complex structure of
X , while the non-linear sigmamodel, in addition, depends on the complexifiedKähler
structure of X . It is therefore natural to expect the vertex algebra of Theorem3 to yield
a truncated version of the non-linear sigma model by means of the topological twists
mentioned in Example 5 of Sect. 2.1. Since the crucial bundle Eq,−y of Definition
7 resembles an infinite-dimensional Fock space, while the traditional topological
A- and B-twists yield finite dimensional spaces of states, the so-called half-twisted
sigma model according to Witten [99] is the most natural candidate. It still cannot
yield the vertex algebra of Theorem 3, since it depends both on the complex and
on the complexified Kähler structure of X . Moreover, the C̆ech resolution, which is
implicit in H∗(X,Ωch

X ), does not resemble the standard features of non-linear sigma
models on X . According to Kapustin, however, a large volume limit of Witten’s half
twisted sigma model on X yields the cohomology of Ωch

X with respect to yet another
resolution of the complex, the so-called Dolbeault resolution [62] .

3 Conformal Field Theory on K3

As emphasized repeatedly, non-linear sigma model constructions are in general
not well understood, except for the toroidal conformal field theories presented in
Sect. 2.3. Recall however that there are only two topologically distinct types of
Calabi-Yau 2-manifolds, namely the complex 2-tori and the K3 surfaces (see e.g.
[6, Chap.VIII] for an excellent introduction to the geometry of K3 surfaces). By the
Kummer construction, one obtains an example of a K3 surface by means of a Z2-
orbifold procedure from every complex 2-torus. On the other hand, Z2-orbifolds of
the toroidal CFTs are also reasonably well understood. One therefore expects to be
able to construct examples of CFTs which allow a non-linear sigma model interpre-
tation on some K3 surface. Compared to CFTs on higher-dimensional Calabi-Yau
D-manifolds, those on K3 surfaces indeed provide a borderline case, in the sense
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that much more is known about these so-called K3 theories. Most importantly, we
can give a mathematical definition of such theories without ever mentioning non-
linear sigma model constructions. The current section presents this definition and
summarizes some of the known properties of K3 theories.

Tomotivate the mathematical definition of K3 theories, let us recall the conformal
field theoretic elliptic genus of Sect. 2.4. Here we assume that we are given an N =
(2, 2) superconformal field theory that obeys the following conditions, which are
necessary for the CFT to allow a non-linear sigma model interpretation on some
Calabi-Yau 2-manifold: The theory is superconformal at central charges c = 6, c =
6 with space-time supersymmetry, and such that all eigenvalues of J0 and J 0 are
integral. This latter condition is equivalent to the assumption that in addition to the
spectral flow operator of Ingredient IV in Sect. 2.2, the theory possesses a quartet of
two-fold left- and right-handed spectral flow operators Θ±, Θ

±
. By this we mean

that these operators act analogously to Θ±2 on the space of states, with Θ as in (13),
namely

[L0,Θ
±] = c

6Θ
± ∓ Θ± ◦ J0, [J0,Θ±] = ∓ c

3Θ
±,

[L0,Θ
±] = c

6Θ
± ∓ Θ

± ◦ J 0, [J 0,Θ
±] = ∓ c

3Θ
±
,

but with all other commutators vanishing. The fields associated to Θ±Ω, Θ
±
Ω by

the state-field correspondence (Definition 3) are denoted J±(z) and J
±
(z), respec-

tively. By Proposition 1, the conformal field theoretic elliptic genus E(τ, z) of such
a CFT is a weak Jacobi form of weight 0 and index 1. However, the space of such
Jacobi forms is one-dimensional, as follows from the methods introduced in [36]
(see [11] or [92, Theorem. 3.1.12] for direct proofs). According to the discussion
that follows Definition 7, the (geometric) elliptic genus EK3(τ, z) of a K3 surface
is a weak Jacobi form of weight 0 and index 1 as well, which by (18) is non-zero,
since EK3(τ, z = 0) = χ(K3) = 24. The precise form of the function EK3(τ, z) is
well-known, and we obtain

E(τ, z) = a · EK3(τ, z) = a ·
(
2y + 20 + 2y−1 + O(q)

)
(20)

for some constant a. In fact,

Proposition 2 ([92, Sect. 7.1]) Consider an N = (2, 2) superconformal field theory
at central charges c = 6, c = 6 with space-time supersymmetry and such that all
the eigenvalues of J0 and of J 0 are integral.

1. The elliptic genus of this CFT either vanishes, or it agrees with the geometric
elliptic genus EK3(τ, z) of a K3 surface.

2. The conformal field theoretic elliptic genus vanishes if and only if the theory is a
toroidal N = (2, 2) superconformal field theory according to Definition 5.

This result is mentioned in [75] and proved in [92, Sect. 7.1], where the proof
however contains a few typos. The sketch of a corrected proof is banned to the
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Appendix, since it uses a number of properties of superconformal field theories with
space-time supersymmetry which are well-known to the experts, but which we have
not derived in this exposition.

While as mentioned before, the toroidal N = (2, 2) superconformal field theories
are well understood, it is also not hard to find examples of theories whose conformal
field theoretic elliptic genus is EK3(τ, z), see [30]. In particular, the authors of [30]
prove that the standard Z2-orbifold of every toroidal N = (2, 2) superconformal
field theory at central charges c = 6, c = 6 yields such an example. By the above
this is in accord with the expectations based on the Kummer construction, hence our

Definition 8 A superconformal field theory is called a K3 theory, if the following
conditions hold: The CFT is an N = (2, 2) superconformal field theory at central
charges c = 6, c = 6 with space-time supersymmetry, all the eigenvalues of J0 and
of J 0 are integral, and the conformal field theoretic elliptic genus of the theory is

E(τ, z) = EK3(τ, z).

Possibly, every K3 theory allows a non-linear sigmamodel interpretation on some
K3 surface, however a proof is far out of reach. Nevertheless, under standard assump-
tions on the deformation theory of such theories it is possible to determine the form of
every connected component of themoduli space ofK3 theories. Namely, one assumes
that all deformations by so-called marginal operators are integrable for these theo-
ries, an assumption which can be justified in string theory and which is demonstrated
to all orders of perturbation theory in [26]. Then, based on the previous results [18,
83], one obtains

Theorem 4 ([3, 75]) With the notations introduced in Theorem 1, let T 4,20 denote
the Grassmannian of maximal positive definite oriented subspaces of R

4,20,

T 4,20 := O+(4, 20; R)/SO(4) × O(20).

By T 4,20
0 ⊂ T 4,20 we denote the set of all those maximal positive definite oriented

subspaces x ⊂ R
4,20 which have the property that x⊥ does not contain any roots,

that is, all α ∈ x⊥ ∩ Z
4,20 obey 〈α, α〉 �= −2.

If the above-mentioned assumptions on deformations of K3 theories hold, namely
that all deformations by so-called marginal operators are integrable, then each con-
nected component MK3

s of the moduli space of K3 theories has the following form:

MK3
s = O+(4, 20; Z)\T 4,20

0 .

This result reinforces the expectation that one connected componentMK3
σ of the

moduli space of K3 theories can be identified with the space of non-linear sigma
models on K3 surfaces, since in addition, we have

Proposition 3 ([3]) The partial completion T 4,20 of the smooth universal covering
space T 4,20

0 of MK3
s can be isometrically identified with the parameter space of
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non- linear sigma models on K3. Namely, denoting by X the diffeomorphism
type of a K3 surface, T 4,20 is a cover of the space of triples (�, V, B) where �

denotes a hyperkähler structure on X, V ∈ R
+ is interpreted as the volume

of X, and B is the de Rham cohomology class of a real closed two-form on X, a
so-called B- field.

If a K3 theory in MK3
s lifts to a point in T 4,20 which is mapped to the triple

(�, V, B), then (�, V, B) is called a geometric interpretation of the K3
theory.

In [75, 93] it is shown that the expectation that non-linear sigma models on K3
yield K3 theories indeed is compatible with orbifold constructions, more precisely
with every orbifold construction of a K3 surface from a complex two-torus by means
of a discrete subgroup of SU(2). As mentioned above, one might conversely expect
that every K3 theory with geometric interpretation (�, V, B) can be constructed as
a non-linear sigma model on a K3 surface, specified by the data (�, V, B) – at least
the existence of a non-linear sigma model interpretation has not been disproved for
any K3 theory, so far.

The statement of Proposition 3 makes use of the fact that every K3 surface is a
hyperkähler manifold. The analogous statement for K3 theories is the observation
that the two commuting copies of N = 2 superconformal algebras (9)–(10) are
each extended to an N = 4 superconformal algebra in these theories. This is a
direct consequence of our Definition 8 of K3 theories. Indeed, as mentioned at the
beginning of this section, the assumption of space-time supersymmetry together with
the integrality of the eigenvalues of J0 and J 0 imply that the fields J±(z), J

±
(z)

corresponding to two-fold left- and right-handed spectral flow are fields of the CFT.
One checks that at central charges c = 6, c = 6, these fields create states in the
subspaces W1 and W 1 of the vector spaces underlying the chiral algebras of Property
C (see the vacuum axiom in Definition 3), whose J0- (respectively J 0-) eigenvalues
are ±2. Moreover, with the U (1)-currents J (z), J (z) of the two commuting copies
of N = 2 superconformal vertex algebras, the fields J±(z), J

±
(z) generate two

commuting copies of a so-called su(2)1-current algebra, which in turn is known to
extend the N = 2 superconformal algebra to an N = 4 superconformal algebra [1].

The characters of the irreducible unitary representations of the N = 4 super-
conformal algebra at arbitrary central charges have been determined in [31–34, 84].
Their transformation properties under modular transforms in general are not mod-
ular, in contrast to the situation at lower supersymmetry, where an infinite class of
characters of irreducible unitary representations does enjoy modularity. Instead, the
N = 4 characters exhibit a so-called Mock modular behavior, see e.g. [22] for a
recent account. Since in the context of non-linear sigma models, N = 4 supersym-
metry is linked to the geometric concept of hyperkähler manifolds [2], this seems
to point towards a connection between Mock modularity and hyperkähler geometry.
The nature of this connection however, to date, is completely mysterious.
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4 The Elliptic Genus of K3

Recall that the elliptic genus EK3(τ, z) of K3 plays center stage in our Definition 8
of K3 theories. Though this function is explicitly known and well understood, recent
years have uncovered a number of mysteries around it. In the present section, some
of these mysteries are discussed. This involves more open than solved problems,
and as a reminder, the titles of all the following subsections are questions instead of
statements.

4.1 A Non-geometric Decomposition of the Elliptic Genus?

As was mentioned at the end of Sect. 3, our very Definition 8 ensures that every K3
theory enjoys N = (4, 4) supersymmetry. The current section summarizes how this
induces a decomposition of the function EK3(τ, z), which is a priori not motivated
geometrically and which turns out to bear some intriguing surprises.

In what follows, assume that we are given a K3 theory according to Definition
8 with space of states H = H

N S ⊕ H
R. Both H

N S and H
R can be decomposed

into direct sums of irreducible unitary representations with respect to the N = (4, 4)
superconformal symmetry. According to [31, 32], there are three types of irreducible
unitary representations of the N = 4 superconformal algebra at central charge c = 6,
namely the vacuum representation, the massless matter representation, and finally
the massive matter representations which form a one-parameter family indexed by
h ∈ R>0. For later convenience we focus on the Ramond-sector H

R of our theory
and denote the respective irreducible unitary representations by H0,Hmm,Hh (h ∈
R>0). This notation alludes to the properties of the corresponding representations
in the Neveu-Schwarz sector H

N S , which are related to the representations in H
R

by spectral flow Θ according to (13). Indeed, the vacuum representation in the NS-
sector has the vacuum Ω as its ground state. The massive matter representations are
characterized by the spontaneous breaking of supersymmetry at every mass level,
including the ground state [95].

Setting y = exp(2π i z) and q = exp(2π iτ) for z, τ ∈ C with �(τ ) > 0 as
before and using c/24 = 1/4, the characters of the irreducible unitary N = 4
representations that are relevant to our discussion are denoted by

χa(τ, z) := StrHa

(
y J0q L0−1/4

)
= TrHa

(
(−1)J0 y J0q L0−1/4

)
, a ∈ R≥0 ∪{mm}.

These functions have been determined explicitly in [32]. For our purposes, only the
following properties are relevant,
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χ0(τ, z = 0) = −2, χmm(τ, z = 0) = 1,
∀h > 0 : χh(τ, z) = qh χ̂(τ, z) with χ̂ (τ, z) = χ0(τ, z) + 2χmm(τ, z),

hence χh(τ, z = 0) = χ̂ (τ, z = 0) = 0.
(21)

The constant χa(τ, z = 0) yields the so-called Witten index [95] of the respective
representation.

The most general ansatz for a decomposition of H
R into irreducible representa-

tions of the two commuting N = 4 superconformal algebras therefore reads

H
R =

⊕
a, a∈R≥0∪{mm}

ma,aHa ⊗ Ha

with appropriate non-negative integers ma,a . Then

TrHR

(
(−1)J0−J 0 y J0 y J 0q L0−1/4q L0−1/4

)
=

∑
a, a∈R≥0∪{mm}

ma,a ·χa(τ, z)·χa(τ, z),

together with Definition 6 yields the conformal field theoretic elliptic genus of our
CFT as

E(τ, z) =
∑

a, a∈R≥0∪{mm}
ma,a · χa(τ, z) · χa(τ, z = 0). (22)

This expression simplifies dramatically on insertion of (21). In addition, the known
properties of K3 theories impose a number of constraints on the coefficients ma,a .
First, since under spectral flow, H0 is mapped to the irreducible representation
of the N = 4 superconformal algebra whose ground state is the vacuum Ω , the
uniqueness of the vacuum (see Property C) implies m0,0 = 1. Moreover, from the
proof of Proposition 2 (see the Appendix) or from the known explicit form (20)
of E(τ, z), we deduce that in every K3 theory, m0,mm = mmm,0 = 0. Finally,
according to the discussion of Property B in Sect. 2.2, Hh,h ∩ Hb can only be non-

trivial if h − h ∈ Z, which on Hh,h ∩ H f ∩ H
N S generalizes to h − h ∈ 1

2 + Z.
Since the groundstates of H0, Hmm, Hh under spectral flow yield states with L0-
eigenvalues 0, 1

2 , h, and J0-eigenvalues 0, ±1, 0, respectively [32], this implies
that m0,h, mmm,h, mh,0, mh,mm with h, h > 0 can only be non-zero if h, h ∈ N.

In conclusion, we obtain a refined ansatz for the N = (4, 4) decomposition of H
R ,

H
R = H0 ⊗ H0 ⊕ h1,1Hmm ⊗ Hmm ⊕

⊕
h, h∈R>0

kh,hHh ⊗ Hh

⊕
∞⊕

n=1

[
fnHn ⊗ H0 ⊕ fnH0 ⊗ Hn

]

⊕
∞⊕

n=1

[
gnHn ⊗ Hmm ⊕ gnHmm ⊗ Hn

]
.

(23)
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Here, all the coefficients h1,1, kh,h, fn, f n, gn, gn are non-negative integers,whose
precise values depend on the specific K3 theory under inspection.

By (22), and inserting (21) and the refined ansatz (23), we obtain

E(τ, z) = −2χ0(τ, z) + h1,1χmm(τ, z) +
∞∑

n=1

[−2 fn + gn]χn(τ, z)

= −2χ0(τ, z) + h1,1χmm(τ, z) + e(τ ) χ̂(τ, z) with e(τ ) :=
∞∑

n=1

[gn − 2 fn] qn .

Now recall from Definition 8 that E(τ, z) = EK3(τ, z), where by the discussion
preceding (20) we have EK3(τ, z = 0) = 24. Using (21), this implies h1,1 = 20.
Since the geometric elliptic genus EK3(τ, z) is a topological invariant of all K3
surfaces, we conclude

Proposition 4 The elliptic genus EK3(τ, z) of K3 decomposes into the characters
of irreducible unitary representations of the N = 4 superconformal algebra in the
Ramond sector according to

EK3(τ, z) = −2χ0(τ, z) + 20χmm(τ, z) + e(τ ) χ̂(τ, z),

where e(τ ) :=
∞∑

n=1

[gn − 2 fn] qn,

and the coefficients gn, fn give the respective multiplicities of representations in the
decomposition (23). While the values of gn, fn vary within the moduli space of K3
theories, the coefficients gn − 2 fn of e(τ ) are invariant.

A decomposition of EK3(τ, z) in the spirit of Proposition 4 was already given in
[30]. In [77] and independently in [92, Conjecture7.2.2] it was conjectured that all
coefficients of the function e(τ ) are non-negative, for the following reason:Recall that
under spectral flow, the irreducible representationH0 is mapped to the representation
of the N = 4 superconformal algebrawhose ground state is the vacuumΩ . Therefore,
in (23), the coefficients fn determine those contributions to the subspace Wn ⊂ W
of the vector space underlying the chiral algebra of Property C that do not belong to
the vacuum representation under the N = (4, 4) supersymmetry. For any fixed value
of n ∈ N with n > 0, we generically expect no such additional contributions to Wn .
In other words, we expect that generically fn = 0 and thus that the nth coefficient of
e(τ ) agrees with gn ≥ 0. Since these coefficients are invariant on the moduli space
of K3 theories, they should always be non-negative.

The conjectured positivity of the coefficients gn −2 fn is proved in [27, 29] in the
context of an intriguing observation. Namely, in [29], Eguchi, Ooguri and Tachikawa
observe that each of these coefficients seems to give the dimension of a representation
of a certain sporadic group, namely of the Mathieu group M24. For small values of n,
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they find dimensions of irreducible representations, while at higher order, more work
is required to arrive at a well-defined conjecture. The quest for understanding this
observation, which is often referred to as Mathieu Moonshine, has sparked enormous
interest in the mathematical physics community. Building on results of [19, 28, 44,
45], the observation has been recently verified by Gannon in the following form:

Theorem 5 ([50]) There are virtual representations of the Mathieu group M24 on
spaces R0, Rmm, and true representations on spaces Rn, n ∈ N>0, such that

R := H0 ⊗ R0 ⊕ Hmm ⊗ Rmm ⊕
∞⊕

n=1

Hn ⊗ Rn

has the following properties: With the N = 4 superconformal algebra acting non-
trivially only on the first factor in each summand of R, and the Mathieu group M24
acting non-trivially only on the second factor, one obtains functions

∀g ∈ M24 : Eg(τ, z) := TrR
(

gy J0q L0−1/4
)

which under modular transformations generate a collection ofM24-twisted ellip-
tic genera of K3. In particular, Eid(τ, z) = EK3(τ, z).

4.2 A Geometric Mathieu Moonshine Phenomenon?

While Theorem 5 beautifully specifies a well-defined formulation of the Mathieu
Moonshine observation and proves it, the proof does not offer any insight into the
role of the Mathieu group M24 in the context of K3 theories. The present section
summarizes some ideas for a possible interpretation that is based in geometry.

Indeed, the relevance of the group M24 for the geometry of K3 surfaces had been
discovered much earlier by Mukai:

Theorem 6 ([73]) Let G denote a finite group of symplectic automorphisms
of a K3 surface X. By this we mean that X denotes a K3 surface whose complex
structure has been fixed, and that G is a finite group of biholomorphic maps on X
whose induced action on the holomorphic volume form is trivial.

Then G is a subgroup of the Mathieu group M24. More precisely, G is a subgroup
of one out of a list of 11 subgroups of M23 ⊂ M24, the largest of which has order
960.

Hence although M24 does play a crucial role in describing symplectic automor-
phisms of K3 surfaces, Theorem 6 cannot immediately explain Mathieu Moonshine.
Indeed, Mathieu Moonshine suggests that there is an action of the entire group M24
on some mathematical object which underlies the elliptic genus of K3, while Theo-
rem 6 implies that no K3 surface allows M24 as its symplectic automorphism group.
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Namely, the theorem states that the maximal order of a symplectic automorphism
group of any K3 surface is 960, which is smaller by orders of magnitude than the
order 244.823.040 of M24.

Since the non-geometric decomposition of EK3(τ, z) by means of N = 4 super-
symmetry presented in Sect. 4.1 led to the discovery ofMathieuMoonshine, onemay
suspect that rather than the properties of K3 surfaces, the properties of K3 theories
should explain the Mathieu Moonshine phenomena. However, symmetry groups of
K3 theories, in general, need not be subgroups of M24, as apparently was first noted
independently by the authors of [29, 85]. Conversely, no K3 theory can have M24 as
its symmetry group, as follows from [46], where Gaberdiel, Hohenegger and Volpato
generalize a very enlightening second proof of Theorem 6 due to Kondo [64] to a
classification result for symmetries of K3 theories.

Because by the above, the symmetries of K3 theories seem not to explainMathieu
Moonshine, in a series of papers [85–87] it has been argued that possibly, the action
of M24 arises as a combined action of all finite symplectic symmetry groups of K3
surfaces. This idea can be motivated by the mathematical properties of the elliptic
genus which were presented in Sects. 2.4 and 2.5:

By Theorem 3, the geometric elliptic genus EK3(τ, z) is recovered from the chiral
de Rham complex Ωch

X of a K3 surface X as its graded Euler characteristic, that is,
as the supertrace of the appropriate operator on the C̆ech cohomology H∗(X,Ωch

X ).
In accord with [56, (2.1.3)], one can expect that every symplectic automorphism of
a K3 surface X induces an action on H∗(X,Ωch

X ). Therefore, the C̆ech cohomology
H∗(K3,Ωch

K3) of the chiral de Rham complex appears to be an excellent candidate for
the desired mathematical object which both underlies the elliptic genus, and which
carries actions of all finite symplectic automorphism groups of K3 surfaces, thus
combining them to the action of a possibly larger group.

Note that according to Theorem 3, there exists a natural structure of a vertex alge-
bra on H∗(K3,Ωch

K3). This additional structure on the mathematical object which
underlies the elliptic genus is in complete accord with the implications of Theorem
5. Indeed, it was already conjectured in [47, 48], thatMathieuMoonshine is governed
by some vertex algebra which carries an M24-action, whose properties would imme-
diately induce the modular transformation properties of the twisted elliptic genera of
Theorem 5. As was argued in the discussion of Theorem 3, H∗(X,Ωch

X ) is moreover
expected to be related to a non-linear sigma model on X , at least in a large volume
limit, providing the desired link to K3 theories. Indeed, the required compatibility
with a large volume limit might also explain the restriction to those symmetries of K3
theories which can be induced by some symplectic automorphism of a K3 surface,
as seems to be the case for the generators of M24 in Mathieu Moonshine.

Unfortunately, despite all its convincing properties promoting it to an excellent
candidate to resolveMathieuMoonshine, the vertex algebra structure of H∗(X,Ωch

X )

is notoriously hard to calculate, as are the precise properties of general non-linear
sigma models on K3, even in a large volume limit. Therefore, these ideas remain
conjectural, so far. Sadly, known alternative constructions for vertex algebras that
underlie the elliptic genus and that are easier to calculate seem not to explainMathieu
Moonshine [21].
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A possible mechanism of combining symplectic automorphism groups of distinct
K3 surfaces to larger groups is presented in [85, 87], and the following result can be
seen as evidence in favor of these ideas:

Proposition 5 ([86]) Consider the “smallest massive” representation of M24 that
occurs in Theorem 5, that is, the representation on R1.

The space R1 is isomorphic to a certain vector space V C FT of states which is
common to all K3 theories that are obtained by a standard Z2-orbifold construction
from a toroidal N = (2, 2) superconformal field theory. Moreover, on V C FT , the
combined action of all finite symplectic automorphism groups of Kummer surfaces
induces a faithful action of the maximal subgroup Z

4
2 � A8 of order 322.560 in M24.

The resulting representation on V C FT is equivalent to the representation of Z
4
2 � A8

on R1 which is induced by restriction from M24 to this subgroup.

This result is the first piece of evidence in the literature for any trace of an M24-
action on a space of states of a K3 theory. It is remarkable that the CFT techniques
produce precisely the representation of a maximal subgroup of M24 which is pre-
dicted by Mathieu Moonshine according to the idea of “combining symplectic auto-
morphism groups”. Note that the group Z

4
2 � A8 is not a subgroup of M23, indicating

that indeed M24 rather than M23 should be expected to be responsible for Mathieu
Moonshine, despite Theorem 6, by which all finite symplectic automorphism groups
of K3 surfaces are subgroups of M23. This preference for M24 to M23 is in accord
with the findings of [50].

Encouraged by Proposition 5, one may hope that in a large volume limit, V C FT

can be identified with a subspace of H∗(K3,Ωch
K3), inducing an equivalence of vertex

algebras. Furthermore, by combining the action of Z
4
2 � A8 with the action of finite

symplectic automorphism groups of K3 surfaces which are not Kummer, one may
hope to generate an action of the entire group M24. Finally, one may hope that this
result generalizes to the remaining representations onRn , n > 1, found in Theorem
5. In conclusion, there is certainly much work left.

4.3 A Geometric Decomposition of the Elliptic Genus?

Even if the ideas presented in Sect. 4.2 prove successful, then so far, they give no
indication for the reason for M24 -of all groups- to arise from the combined action of
finite symplectic automorphism groups of K3 surfaces. Circumventing this intrinsic
problem, the current section presents a simpler conjecture which can be formulated
independently of Mathieu Moonshine. If true, however, it could serve as a step
towards understanding Mathieu Moonshine.

Taking the idea seriously that there should be a purely geometric explanation for
Mathieu Moonshine, one main obstacle to unraveling its mysteries is the lack of
geometric interpretation for the non-geometric decomposition of EK3(τ, z) stated in
Proposition4,which is at the heart of the discoveryofMathieuMoonshine.Recall that
the derivation of Proposition 4 rests on the identification (19) of the geometric elliptic
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genus of a Calabi-Yau D-manifold X with the conformal field theoretic elliptic genus
of a CFT that is obtained from X by a non-linear sigma model construction. We have
incorporated this identification into our Definition 8, and it is the motivation for
decomposing the geometric elliptic genus of K3 into the characters of irreducible
unitary representations of the N = 4 superconformal algebra at central charge c = 6.
While the conformal field theoretic elliptic genus by Definition 6 is obtained as a
trace over the space of states H

R , the geometric elliptic genus by Definition 7 is an
analytic trace over a formal power series Eq,−y whose coefficients are holomorphic
vector bundles on our K3 surface. The decomposition of the space of states H

R of
every K3 theory by N = (4, 4) supersymmetry which was performed in Sect. 4.1
to derive Proposition 4 should accordingly be counterfeited by a decomposition of
Eq,−y . We thus expect

Conjecture 1 Let X denote a K3 surface with holomorphic tangent bundle T :=
T 1,0X, and consider Eq,−y as in Definition 7. Furthermore, let e(τ ) denote the
function defined in Proposition 4. Then there are polynomials pn, n ∈ N>0, such
that

Eq,−y = −OX · χ0(τ, z) + T · χmm(τ, z) +
∞∑

n=1

pn(T ) · qnχ̂(τ, z),

and e(τ ) =
∞∑

n=1

(∫
X

Td(X)pn(T ))

)
· qn,

where pk(T ) =
Nk∑

n=0
anT ⊗n if pk(x) =

Nk∑
n=0

an xn, and where T ⊗0 = OX is under-

stood.

If (19) is interpreted as a generalization of the McKean-Singer Formula, as indi-
cated in the discussion of that equation, then Conjecture 1 can be viewed as a general-
ization of a local index theorem [4, 51, 52, 80]. Note that the conjecture is formulated
without even alluding to Mathieu Moonshine, so it may be of independent interest.
If true, then for each n ∈ N>0, every finite symplectic automorphism group of a K3
surface X naturally acts on pn(T ), and one may hope that this will yield insight into
the descent of this action to the representation of M24 on Rn which was found in
Theorem 5.
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Appendix—Proof of Proposition 2 in Sect. 3

The entire proof of Proposition 2 rests on the study of the +1-eigenspace of the
linear operator J 0 on the subspace W 1/2 of the vector space W underlying the chiral
algebra. First, one shows that this eigenspace is either trivial or two-dimensional,
and from this one deduces claim 1. of the proposition. One direction of claim 2. is
checked by direct calculation, using the defining properties of toroidal N = (2, 2)
superconformal field theories. To obtain the converse, one shows that E(τ, z) ≡ 0
implies that an antiholomorphic counterpart of the conformal field theoretic elliptic
genus must vanish as well, from which claim 2 is shown to follow.

1. Assume that the space W 1/2 contains an eigenvector of J 0 with eigenvalue +1.

We denote the field associated to this state by ψ
+
1 (z). The properties of the

real structure on the space of states H of our CFT imply that there is a com-
plex conjugate state with J 0-eigenvalue −1 whose associated field we denote
by ψ

−
1 (z). The properties of unitary irreducible representations of the Vira-

soro algebra imply that these fields form a Dirac fermion [see the discussion
around (15)], and that therefore J 1(z) := 1

2 :ψ+
1 ψ

−
1 :(z) is a U (1)-current as in

Example 1 in Sect. 2.1. By a procedure known as GKO-construction [54], one
obtains J (z) = J 1(z) + J 2(z) for the field J (z) in the N = 2 superconfor-
mal algebra (9)–(10), and J k(z) = i∂ Hk(z) with ψ

±
1 (z) =: e±i H1 : (z). The

fields of twofold right-handed spectral flow, which by assumption are fields of
the theory, are moreover given by J

±
(z) =: e±i(H1+H2) :(z). Their OPEs with

the ψ
±
1 (z) yield an additional Dirac-fermion, with fields ψ

±
2 (z) :=:e±i H2:(z) in

the CFT. This proves that the ±1-eigenspaces of J 0 on W 1/2 each are precisely
two-dimensional, since by the same argument no further Dirac fermions can be
fields of the theory. Note that by definition, the corresponding states belong to
the sector H f ∩ H

N S ⊂ H of the space of states of our theory.
In summary, the +1-eigenspace of the linear operator J 0 on W 1/2 is either trivial
or two-dimensional.

We now study the leading order contributions in the conformal field theoretic
elliptic genus E(τ, z) of our theory. From (20) and by the very Definition 6 we
deduce that 2ay−1 counts states in the subspace V ⊂ H

R where L0, L0 both take
eigenvalue c

24 = 1
4 = c

24 and J0 takes eigenvalue −1. More precisely,
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2a = TrV
(
(−1)J0−J 0

)
= −TrV

(
(−1)J 0

)
.

As follows from properties of the so-called chiral ring, see e.g. [92, Sect. 3.1.1],
a basis of V is obtained by spectral flow Θ (see Ingredient IV in Sect. 2.2) from
(i) the vacuum Ω , (ii) the state whose corresponding field is J

+
(z), and (iii) a

basis of the +1-eigenspace of the linear operator J 0 on W 1/2. Since according
to (13), the eigenvalues of J 0 after spectral flow to V are (i) −1, (ii) +1, (iii) 0,
the above trace vanishes if the +1-eigenspace of the linear operator J 0 on W 1/2
is two-dimensional, implying 2a = 0, and if this eigenspace is trivial, then we
obtain 2a = 2.
In conclusion, the conformal field theoretic elliptic genus of our theory either
vanishes, in which case the +1-eigenspace of the linear operator J 0 on W 1/2 is
created by two Dirac fermions, or E(τ, z) = EK3(τ, z). ��

2. a. Using the details of toroidal N = (2, 2) superconformal field theories that
are summarized in Sect. 2.3, one checks by a direct calculation that the
conformal field theoretic elliptic genus of all such theories vanishes. ��

b. To show the converse, first observe that in our discussion of N = (2, 2)
superconformal field theories, the two commuting copies of a superconfor-
mal algebra are mostly treated on an equal level. However, the Definition 6
breaks this symmetry, and

E(τ , z) := TrHR

(
(−1)J0−J 0 y J 0q L0−c/24q L0−c/24

)

should define an equally important antiholomorphic counterpart of the con-
formal field theoretic elliptic genus. In our case by the same reasoning as
for E(τ, z), it must yield zero or EK3(τ, z). Note that Proposition 1 implies
that

E(τ, z = 0) = E(τ , z = 0)

is a constant,which in fact is knownas theWitten index [95–97]. In particular,
by (18)wehaveEK3(τ, z = 0) = 24, henceE(τ, z) ≡ 0 impliesE(τ , z) ≡ 0.
It remains to be shown that our theory is a toroidal theory according to
Definition 5 in this case.
But Step 1. of our proof then implies that the +1-eigenspace of the linear
operator J 0 on W 1/2 is created by twoDirac fermions and that the analogous
statement holds for the +1-eigenspace of the linear operator J0 on W1/2.

Hence we have Dirac fermions ψ±
k (z) and ψ

±
k (z), k ∈ {1, 2}, with OPEs

as in (15). Compatibility with supersymmetry then implies that the super-
partners of these fields yield the two u(1)4-current algebras, as is required
in order to identify our theory as a toroidal one. ��
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Part II
Chern–Simons Theory

The foundational work of Witten has led to tremendously fruitful interactions
between topological field theory and low-dimensional topology. After his major
breakthrough (Witten observed that one could recover link and 3-manifold
invariants via the path integral quantization of the Chern–Simons classical action
functional) Reshetikhin and Turaev proposed a rigorous mathematical construction
of (non-perturbative!) quantizations of Chern–Simons theory in terms of quantum
groups and modular tensor categories. Despite this great achievement, there are
many questions that remain open, both of computational and theoretical nature.

Part II begins with “Faddeev’s Quantum Dilogarithm and State-integrals on
Shaped Triangulations” (written by Jørgen Ellegaard Andersen and Rinat Kashaev)
on a construction of SLð2;CÞ quantum Chern–Simons theory by means of Teich-
müller theory and the quantum dilogarithm of Faddeev. Explicit calculations of the
partition function and a variant of the volume conjecture are provided.

It continues with “A Higher Stacky Perspective on Chern–Simons Theory”
(written by Domenico Fiorenza, Hisham Sati and Urs Schreiber) discussing the
appearance of higher gerbes in classical Chern–Simons theories (which do not only
exist in dimension 3). Many important concepts briefly discussed in the introduc-
tory chapter make a first appearance here: fully extended TFTs, higher structures,
and mapping stacks.

“Factorization Homology in 3-Dimensional Topology” consists of two short
contributions (by Nikita Markarian and Hiro Lee Tanaka) on the relation between
Chern–Simons theory and factorization homology. Both seem to rely on the fact
that, at the perturbative level, Chern–Simons theory is a fully extended TFT.

Part II ends with “Deligne-Beilinson Cohomology in U(1) Chern–Simons
Theories” (written by Frank Thuillier) that one could view as a variation on “A
Higher Stacky Perspective on Chern–Simons Theory.” Namely, it reviews in detail
the use of Deligne–Beilinson cohomology in U(1) Chern–Simons theory, and
characteristic classes of higher gerbes with connection precisely take values in
Deligne–Beilinson cohomology.
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Faddeev’s Quantum Dilogarithm
and State-Integrals on Shaped
Triangulations

Jørgen Ellegaard Andersen and Rinat Kashaev

Abstract Using Faddeev’s quantum dilogarithm function, we review our descrip-
tion of a one parameter family of state-integrals on shaped triangulated pseudo 3-
manifolds. This invariant is part of a certain TQFT, which we have constructed
previously in a number of papers on the subject.

1 Introduction

In this article we review few key points of our paper [10, 12] dedicated to the
construction of a certain kind of TQFT which we believe is related to the exact
quantum partition functions of Chern–Simons theory with gauge group PSL(2, C).
See also [11], where we provide a generalisation of the construction reviewed here.

Recall that for a given finite-dimensional simple Lie group G and a 3-manifold
M , the Chern–Simons action functional is defined as follows:

CSM (A) :=
∫

M

Tr(A ∧ d A + 2

3
A ∧ A ∧ A), (1)

where A ∈ A := �1(M, Lie G) is the Lie algebra valued gauge field. This action
functional is gauge invariant with respect to (small) gauge transformations given
by elements of the connected component of the identity G0 in the group G :=
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C∞(M,G) of G-valued smooth functions on M , the action being given by the
formula

A × G0 → A , (A, g) �→ Ag := g−1Ag + g−1dg. (2)

The critical points of the action functional (1) correspond to flat connections, and
together with the invariance under the gauge transformations (2), the phase space
of the field-theoretical model can be identified with the moduli space of flat G-
connections

H1(M,G) := hom(π1(M),G)/G. (3)

Following Witten’s proposal [53], the object of interest in quantum theory is the
quantum partition function defined formally by the following path integral

Z�(M) =
∫

A /G0

e
i
�
CSM (A)D A (4)

which, unfortunately, mathematically is not well defined. In this form, it can only
be used for asymptotical quasi-classical expansions or for writing some other path
integrals by performing formal changes of variables. Using the fact that the phase
space (3) is finite-dimensional, the problem of defining quantum Chern–Simons
theory is eventually much simpler than the quantization problem of any non-linear
field theoretical model with infinite-dimensional phase space. This fact justifies the
hope that one can give an alternative and mathematically rigorous definition for
the partition function (4). In the case of compact Lie groups this hope was indeed
materialized in the works of Reshetikhin and Turaev [20, 51, 54], and the resulting
theory has been a source of numerous new topological invariants of 3-manifolds.
Further more the geometric quantisation of the moduli spaces (3) was performed
first by Axelrod, Della Pietra andWitten [18] and then subsequently by Hitchin [41].
For a purely differential geometric account of the construction of this connection
see [4, 6, 7]. By combining the work of Laszlo [47] with the work of Ueno and
the first author of this paper [13–16], it has now been confirmed that one can use
the geometric quantisation of the moduli space of flat connections as an alternative
construction of the Witten–Reshetikhin–Turaev TQFT. This has been exploited in
the works [1–3, 5, 8, 9, 17].

Nonetheless, the case of non-compact Lie groups still lacks a mathematically
rigorous formulation despite some progress in developing direct field-theoretical
approaches originally done in the works of Witten [55, 56]. For the latest mathe-
matical developments please see [11] and the so called index by Garoufalidis and
Dimofte [27, 35], which should be related to the level k = 0 theory. In the physics
literature, the complex quantum Chern–Simons theory has been discussed from a
path integral point of view in a number of papers [19, 24, 26, 28, 29, 36, 37, 39,
40, 56] and latest by Dimofte [25] using the more advanced 3d-3d correspondence.
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Quantum theory of Teichmüller spaces of [34, 43] can be considered as a part
of quantum Chern–Simons theory with gauge group PSL(2, R). Its main ingredient,
given by the operator realizing the diagonal flip in ideal triangulations of punctured
surfaces, can naturally be interpreted as the partition function of a tetrahedron seen
as a 3-manifold with boundary. Based on this interpretation and the quasi-classical
expansion of the quantumdilogarithm [31, 32], formal quantumpartition functions of
triangulated 3-manifolds in the form of finite-dimensional integrals were suggested
in [22, 23, 29, 39, 40] but without analyzing the convergence or topological invari-
ance. The partition function which we describe in this article also uses the diagonal
flip operator of quantum Teichmüller theory, but unlike the previous attempts, our
definition is mathematically rigorous. In the case of particular examples of knot com-
plements, the quasi-classical behavior reveals the hyperbolic volume which makes
it possible that our partition functions are related with the partition function (4) in
the case of the gauge group G = PSL(2, C), the group of orientation preserving
isometries of the 3-dimensional hyperbolic space.

2 Faddeev’s Quantum Dilogarithm

For � ∈ R>0, Faddeev’s quantum dilogarithm function is defined by the formula [31]

Φ�(z) = (Φ̄�(z))−1 = exp

⎛
⎜⎝

∫

R+i0

e−i2xz

4 sinh(xb) sinh(xb−1)x
dx

⎞
⎟⎠ (5)

in the strip |ℑz| < 1
2
√

�
, where

(b + b−1)2 = �
−1, (6)

and extended to the whole complex plane through the functional equations

Φ�(z − ib±1/2) = (1 + e2πb
±1z)Φ�(z + ib±1/2). (7)

There is an alternative integral formula due to Woronowicz [57]:

Φ�(z) = exp

⎛
⎝ i

2π

∫

R

log
(
1 + eb

2t
) dt

1 + et−2πb−1z

⎞
⎠ . (8)

Among the set of solutions of the Eq. (6) for the parameter b, there is a unique choice
with ℜb > 0 and ℑb ≥ 0. If ℑb > 0 (i.e. � > 1/4), then one can show that
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Φ�(z) = (−qe2πbz; q2)∞
(−q̄e2πb−1z; q̄2)∞

(9)

where q := eiπb
2
, q̄ := e−iπb−2

, and(x; y)∞ := (1 − x)(1 − xy)(1 − xy2) . . .

2.1 Analytical Properties

Faddeev’s quantum dilogarithm is a meromorphic function with the following zeros
and poles

(Φ�(z))±1 = 0 ⇔ z = ∓
(

i

2
√

�
+ mib + nib−1

)
, m, n ∈ Z≥0, (10)

and the essential singularity at infinity. Its precise behavior at infinity depends on the
direction along which one goes:

Φ�(z)

∣∣∣∣|z|→∞
≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 | arg z| > π
2 + argb

ζ−1
inv e

iπ z2 | arg z| < π
2 − argb

(q̄2;q̄2)∞
Θ(ib−1z;−b−2)

| arg z − π
2 | < argb

Θ(ibz;b2)
(q2;q2)∞ | arg z + π

2 | < argb

(11)

where

ζinv := eπ i(2−�−1)/12, (12)

and

Θ(z; τ) :=
∑
n∈Z

eπ iτn2+2π i zn, ℑτ > 0. (13)

It has simple behavior with respect to negation of the argument given by the inversion
relation:

Φ�(z)Φ�(−z) = ζ−1
inv e

iπ z2 . (14)

It also behaves nicely with respect to complex conjugation:

Φ�(z)Φ�(z̄) = 1. (15)
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2.2 Five Term Quantum Identity

In terms of specifically normalized self adjoint Heisenberg’smomentum and position
operators in L2(R) defined by the formulae

p f (x) = 1

2π i
f ′(x), q f (x) = x f (x), (16)

the following five term or pentagon quantum identity for unitary operators is
satisfied [30, 33, 57]

Φ�(p)Φ�(q) = Φ�(q)Φ�(p + q)Φ�(p). (17)

2.3 Fourier Transformation Formulae

The pentagon identity is equivalent to the following Fourier transformation
formula [33]:

∫

R

Φ�(x + u)

Φ�

(
x − i

2
√

�
+ i0

)e−2π iwx dx = ζo

Φ� (u)Φ�

(
i

2
√

�
− w

)

Φ� (u − w)
(18)

where 0 < ℑw < ℑu < 1
2
√

�
, and

ζo := e
π i
12

(
1+ 1

�

)
. (19)

A particular case of this formula is the following Fourier transformation formulae
for Faddeev’s quantum dilogarithm:

∫

R

Φ̄�(x)e−2π iwx dx = ζoe
− πw√

� Φ�

(
i

2
√

�
− w

)
(20)

and
∫

R

Φ�(x)e−2π iwx dx = ζoe
−π iw2

Φ�

(
i

2
√

�
− w

)
. (21)
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2.4 Quasi-Classical Asymptotics

For b → 0 and fixed x , one has the following asymptotic expansion

lnΦ�

( x

2πb

)
=

∞∑
n=0

(
2π ib2

)2n−1 B2n(1/2)

(2n)!
∂2nLi2(−ex )

∂x2n
(22)

where B2n(1/2) are the Bernoulli polynomials evaluated at 1/2. In particular, we
have

Φ�

(
x√
�

)∣∣∣∣
�→0

∼ e
1

2π i� Li2(−e2πx ). (23)

3 The Tetrahedral Operator of Quantum Teichmüller Theory

In this section, we recall the main algebraic ingredients of quantum Teichmüller
theory, following the approach of [43–45]. First, we consider the usual canonical
quantization of T ∗(Rn) with the standard symplectic structure in the position rep-
resentation, i.e. with respect to the vertical real polarization. The Hilbert space we
get is of course just L2(Rn). The specifically normalized position coordinates qi
and momentum coordinates pi on T ∗(Rn) upon quantization become selfadjoint
unbounded operators qi and pi acting on L2(Rn) via the formulae

q j ( f )(t) = t j f (t), p j ( f )(t) = 1

2π i

∂

∂t j
f (t), ∀t ∈ R

n,

satisfying the Heisenberg commutation relations

[p j ,pk] = [q j ,qk] = 0, [p j ,qk] = (2π i)−1δ j,k . (24)

By the spectral theorem, we can define operators

ui = e2πbqi , vi = e2πbpi .

The corresponding commutation relations between ui and v j take the form

[u j ,uk] = [v j , vk] = 0, u jvk = e2π ib
2δ j,kvku j .

Following [43], we consider the operations for w j = (u j , v j ), j ∈ {1, 2},

w1 · w2 := (u1u2,u1v2 + v1) (25)
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w1 ∗ w2 := (v1u2(u1v2 + v1)−1, v2(u1v2 + v1)−1) (26)

Proposition 1 ([43]) Let ψ(z) be some solution of the functional equation

ψ(z + ib/2) = ψ(z − ib/2)(1 + e2πbz), z ∈ C, (27)

bounded along the real axis. Then the operator

T = T12 := e2π ip1q2ψ(q1 + p2 − q2) = ψ(q1 − p1 + p2)e2π ip1q2 (28)

is bounded and satisfies the equations

w1 · w2T = Tw1, w1 ∗ w2T = Tw2. (29)

Proof Boundedness of T follows from the fact that it is a product of unitary and
bounded operators. Equation (29) is equivalent to the following system of equations:

Tq1 = (q1 + q2)T, (30)

T(p1 + p2) = p2T, (31)

T(p1 + q2) = (p1 + q2)T, (32)

Te2πbp1 = (e2πb(q1+p2) + e2πbp1)T. (33)

Under substitution of (28), the first three equations become identities while the forth
becomes the functional equation (27).

One particular solution of (27) is given by the inverse of Faddeev’s quantum dilog-
arithm

ψ(z) = Φ̄�(z) = 1/Φ�(z) (34)

which corresponds to a unitary operator T. The most important property of the
operator (28) with ψ given by (34) is the pentagon identity

T12T13T23 = T23T12 (35)

which follows from the five-term identity (17) satisfied byΦ�(z). The indices in (35)
have the standard meaning, for example, T13 is obtained from T12 by replacing p2
and q2 by p3 and q3 respectively, and so on.
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4 The Pentagon Identity and the 2–3 Pachner Moves

4.1 �-Complexes

Following Hatcher’s book on algebraic topology [38], a�-complex is a cellular com-
plex where all cells are standard simplices, and all characteristic maps are consistent
with the boundary maps, i.e. if

σ : �n → X (36)

is the characteristic map of a n-dimensional cell in a �-complex X , then for any
boundary inclusion

∂i : �n−1 → �n, i ∈ {0, 1, . . . , n}, (37)

σ ◦ ∂i is the characteristic map of a (n − 1)-dimensional cell. A manifold with a
�-complex structure will simply be called triangulated manifold.

4.2 Notation

For any �-complex X , we denote by �i (X) the set of i-dimensional cells of X and

�
j
i (X) := {(a, b)| a ∈ �i (X), b ∈ � j (ā)}. (38)

4.3 2–3 Pachner Moves

Topological applications of the pentagon identity are based on its interpretation in
terms of 2–3 Pachner moves between triangulated 3-manifolds which correspond to
two different tetrahedral decompositions of the suspension of a triangle:

= (39)

where, in the left hand side, we have two tetrahedra glued along one common face,
while in the right hand side we have three tetrahedra glued so that any pair of them
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shares a common interior face and all three share one common interior edge which
connects the two suspension points.

4.4 Branchings

To make a precise correspondence between the pentagon identity (35) and the 2–
3 Pachner moves, we use the branching associated with any �-complex, i.e. the
arrangement of arrows on edges without cycles. Indeed, the integers 0, 1, 2, 3 asso-
ciated with the vertices of the standard tetrahedron induce an arrow on each edge
which points from the smaller to the bigger end-point so that each integer expresses
the number of incoming arrows at the associated vertex.

4.5 Positive and Negative Tetrahedra

In an oriented triangulated 3-manifold there are two possible relative orientations of
each tetrahedron as is seen in these pictures:

0 1

2

3

positive tetrahedron

0 1

3

2

negative tetrahedron

(40)

4.6 Tetrahedral Weights

Let T be a positive tetrahedron seen as an oriented �-complex. To each coloring of
faces of T by real numbers, which corresponds to a map

x : �2(T ) → R, (41)

we associate a tempered distribution valued weight function given by the integral
kernel of the diagonal flip operator T in quantum Teichmüller theory:

〈x0, x2|T|x1, x3〉, xi := x(∂i T ). (42)
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4.7 The Pentagon Identity and the 2–3 Pachner Moves

In order to relate the pentagon identity (35) to the 2–3 Pachner move (39), we choose
the branching corresponding to the order of the five vertices of the suspension of
a triangle given by the arrangement of the integers 0, 1, 2, 3, 4 so that the two odd
integers 1 and 3 get associated with the two suspension points (the south and the
north poles respectively) while the three even integers 0, 2, 4 get associated with the
three vertices at the equator:

20

1

3

4
= 20

1

3

4
(43)

Let xi jk ∈ R be arbitrary real numbers associated with triples of integers 0 ≤ i <

j < k ≤ 4 corresponding to triangular cells of the polyhedra entering the geometric
equality (43).Now, taking the products of tetrahedralweight functions (42) according
to two sides of (43) and integrating over the variables associated with the internal
faces, we obtain the equality

∫

R

〈x124, x014|T|x024, x012〉〈x234, x024|T|x034, x023〉dx024

=
∫

R3

〈x234, x124|T|x134, x123〉〈x134, x014|T|x034, x013〉

× 〈x123, x013|T|x023, x012〉dx134dx123dx013 (44)

which is exactly the pentagon identity (35) written in the form of an integral identity
for operator kernels. It is this realization of the 2–3 Pachner moves in terms of
the pentagon identity of quantum Teichmülcer theory which has been used in the
works [22, 23, 29, 39, 40] for defining formal state-integral partition functions
of triangulated pseudo 3-manifolds. The reason for those partition functions to be
formal is that the problems of convergence, independence of the branching, and (or)
independence of the �-complex structure has not beed verified. As has been shown
in [12], the notion of shape structure in oriented triangulated pseudo 3-manifolds
remarkably permits to handle all these problems simultaneously.
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5 Shapes and States

5.1 Shapes

Let T be a tetrahedron seen as an oriented triangulated 3-manifold. A shape on T is
a map α : �1(T ) →]0, π [ such that

2∑
i=0

α(∂i∂ j T ) = π, ∀ j ∈ {0, 1, 2, 3}. (45)

It is easily verified that

α(e) = α(eop), (46)

where eop is the edge opposite to e, and the sum of three values of α at any vertex
is equal to π . This exactly corresponds to dihedral angles of an ideal hyperbolic
tetrahedron. For this reason, the values of α will be called dihedral angles.

The space of all shapes in an oriented tetrahedron is naturally a symplectic space
with the Neumann–Zagier symplectic structure ωN Z = dα0 ∧ dα2 [50].

More generally, a shape structure on an oriented triangulated pseudo 3-manifold
X is a map

α : �1
3(X) →]0, π [ (47)

such that for any tetrahedron T of X the restriction α|(T,.) is a shape for T . In other
words, a shape structure in X is a choice of shape structure in each tetrahedron of X .

The total dihedral angle function associated with a shape structure α is the map

wα : �1(X) → R>0 (48)

defined by

wα(e) =
∑

(T,e)∈�1
3(X)

α(T, e) (49)

An internal edge is balanced if the total dihedral angle around it is 2π . A shape
structure on a closed oriented pseudo 3-manifold where all edges are balanced is
known as angle structure [21, 46, 52].
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5.2 Shaped 2–3 Pachner Moves

A shaped 2–3 Pachner move corresponds to same combinatorial setting as in (39)
but where all tetrahedra are shaped and the total dihedral angles on all boundary
edges are the same in both sides of the equality. This is possible only if the internal
edge in the right hand side of (39) is balanced.

5.3 Shape Gauge Transformations

There is a gauge group action in the space of shape structures generated by total
dihedral angles around internal edges acting through the Neumann–Zagier Poisson
bracket. The gauge reduced shape structure is the Hamiltonian reduction of a shape
structure over fixed values of the total dihedral angles around internal edges with
respect to this gauge group action. The gauge reduced angle structure is invariant
with respect to shaped 2–3 Pachner moves, see [12] for more details.

5.4 States

A state of a tetrahedron T is amap x : �2(T ) → R. Pictorially, a positive tetrahedron
T with shape α and in state x looks as follows:

x0

x2

x3

x1
α0 α0

α1

α1

α2

α2

α i :=α (∂ i∂0T )
xi := x(∂ iT ) (50)

More generally, a state of a triangulated pseudo 3-manifold X is a map

x : �2(X) → R. (51)
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5.5 Weight Functions

Define a function taking values in the space of tempered distributions

W�(s, t, x, y, u, v) := δ(x + u − y)φs,t (v − u)ei2πx(v−u), (52)

where

φs,t (z) := Φ̄�

(
z + π − s

2π i
√

�

)
etz/

√
�. (53)

Here we assume that (x, y, u, v) ∈ R
4 and (s, t) ∈]0, π [2 with the condition s+ t <

π . To a tetrahedron T with shape α and in state x , we associate the weight function

Z�(T, α, x) = W�(α0, α2, x0, x1, x2, x3) (54)

if T is positive and the complex conjugate weight function otherwise, i.e.

Z�(T, α, x) = W�(α0, α2, x0, x1, x2, x3) (55)

if T is negative.
In the case of a positive flat tetrahedron with dihedral angles α0 = α2 = 0,

α1 = π , the weight function Z�(T, α, x), up to an overall phase factor, is given by
the integral kernel of the operator T in coordinate representation:

Z�(T, α, x) = e
π i
12 (1+�−1)〈x0, x2|T|x1, x3〉. (56)

This fact is consistent with the following fundamental properties of the weight func-
tion Z�(T, α, x): it realizes the projectivized shaped 2–3 Pachner moves, and carries
the complete tetrahedral symmetry group (up to multiplication by overall phase fac-
tors) with respect to all reorderings of the vertices, see [12] for further details.

5.6 Partition Functions

For a closed oriented triangulated pseudo 3-manifold X with shape structure α, we
associate the partition function

Z�(X, α) :=
∫

x∈R�2(X)

∏
T∈�3(X)

Z�(T, α, x)dx . (57)
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Theorem 1 ([12]) If H2(X \ �0(X), Z) = 0, then the quantity |Z�(X, α)| is well
defined in the sense that the integral is absolutely convergent, and it

1. depends on only the gauge reduced class of α;
2. is invariant under shaped 2–3 Pachner moves.

In the particular case of closed 3-manifolds, rather than pseudo 3-maifolds, the total
dihedral angles wα characterize completely the gauge reduced class of α, so that the
dependence of the partition function (57) on α in this case factors through wα .

The definition of the partition function (57) can be easily extended to manifolds
with boundary eventually giving rize to a sort of TQFT, see [12].

5.7 One-Vertex H-Triangulations of Knots in 3-Manifolds

Let K ⊂ M be a knot in an oriented closed compact 3-manifold. Let X be a one
vertex H-triangulation of the pair (M, K ), i.e. a one vertex triangulation of M where
K is represented by an edge e0 of X . Fix another edge e1, and for any small ε > 0,
consider a shape structure αε such that the total dihedral angle is ε around e0, 2π − ε

around e1, and 2π around any other edge. We claim that the following renormalized
partition function

Z̃�(X) :=
∣∣∣∣ limε→0

Z�(X, αε)Φ�

(
π − ε

2π i
√

�

)∣∣∣∣ (58)

is finite and is invariant under shaped 2–3 Pachner moves of triangulated pairs
(M, K ).

6 Examples of Calculation

We use the following graphical notation for a tetrahedron T with totally ordered
vertices:

T =
∂0T ∂1T ∂2T ∂3T

(59)
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6.1 One-Vertex Triangulation of S3

Let X be represented by the diagram

(60)

Choosing an orientation, it consists of one (positive) tetrahedron T with two identi-
fications

∂i T � ∂3−i T, i ∈ {0, 1}, (61)

so that ∂X = ∅, and as a topological space, X is homeomorphic to 3-sphere. Com-
binatorially, we have

�0(X) = {∗}, �1(X) = {e0, e1}, �2(X) = { f0, f1}, �3(X) = {T } (62)

with the boundary maps

fi = ∂i T = ∂3−i T, i ∈ {0, 1}, (63)

∂i f j =
{
e0, if i = j = 1;
e1, otherwise,

(64)

∂i e j = ∗, i, j ∈ {0, 1}. (65)

The set �1
3(X) consists of elements (T, e j,k) for 0 ≤ j < k ≤ 3. We fix a shape

structure

α : �1
3(X) → R>0 (66)

by the formulae

α(T, e0, j ) =: α j , j ∈ {1, 2, 3}, (67)

where
∑3

j=1 α j = π . The total dihedral angle function

wα : �1(X) → R>0 (68)

takes the values

wα(e0) = α3, wα(e1) = 2π − α3, (69)



148 J.E. Andersen and R. Kashaev

so that the gauge equivalence class of α is determined by only one real variable
α3 ∈]0, π [. Geometrically, an interesting case corresponds to the value α3 = 0 with
balanced edge e1 and non-balanced e0 knotted as the trefoil knot. This point, being
singular, can nonetheless be approached arbitrarily closely, and it corresponds to a
one-vertex H -triangulation of the pair (3-sphere, the trefoil knot).

We calculate the absolute value of the partition function:

|Z�(X)| =

∣∣∣∣∣∣∣
∫

R2

W�(α1, α3, x0, x1, x1, x0)dx0dx1

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

R

φα1,α3(x)dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∫

R

Φ̄�

(
x + π − α1

2π i
√

�

)
e

α3x√
� dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫

R

Φ̄� (x) e
α3x√

� dx

∣∣∣∣∣∣
=

∣∣∣∣Φ�

(
α3 − π

2π i
√

�

)∣∣∣∣ . (70)

The latter formula also gives the following result for the renormalized partition
function (58):

Z̃�(X) = lim
α3→0

∣∣∣∣Z�(X, α)Φ�

(
π − α3

2π i
√

�

)∣∣∣∣ = lim
α3→0

1 = 1, (71)

which, as was remarked above, corresponds to the pair (S3, 31).
By using the quasi-classical formula (23), we have

|Z�(X)||�→0 ∼ exp

(
1

2π�
ℑLi2

(
e−iα3

))
= exp

(
− 1

π�
�

(α3

2

))
, (72)

where

�(x) := −
x∫

0

log |2 sin(t)|dt (73)

is π -periodic and anti-symmetric Lobachevsky’s function.
On the other hand, Milnor’s formula [48] for the volume of an ideal hyperbolic

tetrahedron with dihedral angles α j , j ∈ {1, 2, 3}, has the form

V (α1, α2, α3) =
3∑
j=1

�(α j ), (74)

which, when maximized for a fixed value of α3, gives the hyperbolic volume of
the conical 3-sphere (X,wα) where the conical singularities are located along the
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1-skeleton of X and are determined by the total dihedral angles wα , see Eq. (69):

vol(X,wα) = max
α1

V (α1, α2, α3) = V

(
π − α3

2
,
π − α3

2
, α3

)
= 2�

(α3

2

)
,

(75)

where we have used the formula

�(x) = 2�
( x
2

)
− 2�

(
π − x

2

)
, ∀x ∈ R. (76)

Comparing (75) with (72), we come to the following quasi-classical behavior of
geometrical nature:

|Z�(X, α)||�→0 ∼ exp

(
− 1

2π�
vol (X,wα)

)
. (77)

This calculation supports the following conjecture.

Conjecture 1 For any oriented shaped triangulated closed 3-manifold (X, α), the
following formula holds true:

lim
�→0

2π� log |Z�(X, α)| = −vol (X,wα) . (78)

6.2 An H-Triangulation of the Pair (S3, 41) (Figure-Eight Knot)

There exists a one vertex H -triangulation X41 of the pair (S3, 41) composed of three
tetrahedra which in our notation is of the form:

(79)

with the result of calculation of the renormalized partition function

Z̃�(X41) =
∫

R−iε

eiπ z2

Φ�(z)2
dz. (80)



150 J.E. Andersen and R. Kashaev

6.3 An H-Triangulation of the Pair (S3, 52)

There exists a one vertex H -triangulation X52 of the pair (S3, 52) composed of four
tetrahedra:

(81)

with the result of calculation of the renormalized partition function

Z̃�(X52) =

∣∣∣∣∣∣∣
∫

R−iε

eiπ z2

Φ�(z)3
dz

∣∣∣∣∣∣∣
. (82)

6.4 A Version of the Volume Conjecture

We still do not know how to relate our partition function to the colored Jones polyno-
mials, but the following version of the volume conjecture can be a guiding principle
in the search of such relation.

Conjecture 2 (Volume Conjecture for Z̃�) Let X be a one vertex H -triangulation
of a pair (M, K ), where K ⊂ M is a hyperbolic knot in an oriented 3-manifold M .
Then one has

lim
�→0

2π� log Z̃�(X) = −vol(M \ K ) (83)

Unlike the volume conjecture for the colored Jones polynomials [42, 49], the quantity
Z̃� exponentially decays rather than grows.

Theorem 2 ([43]) The volume conjecture for Z̃� holds true in the case of H-
triangulations X41 and X52 , see formulae (80) and (82).
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A Higher Stacky Perspective on Chern–Simons
Theory

Domenico Fiorenza, Hisham Sati and Urs Schreiber

Abstract The first part of this text is a gentle exposition of some basic constructions
and results in the extended prequantum theory of Chern–Simons-type gauge field
theories. We explain in some detail how the action functional of ordinary 3d Chern–
Simons theory is naturally localized (“extended”, “multi-tiered”) to a map on the
universal moduli stack of principal connections, a map that itself modulates a circle-
principal 3-connection on that moduli stack, and how the iterated transgressions of
this extended Lagrangian unify the action functional with its prequantum bundle and
with the WZW-functional. In the second part we provide a brief review and outlook
of the higher prequantum field theory of which this is a first example. This includes a
higher geometric description of supersymmetric Chern–Simons theory, Wilson loops
and other defects, generalized geometry, higher Spin-structures, anomaly cancella-
tion, and various other aspects of quantum field theory.

1 Introduction

One of the fundamental examples of quantum field theory is 3-dimensional Chern–
Simons gauge field theory as introduced in [88]. We give a pedagogical exposition
of this from a new, natural, perspective of higher geometry formulated using higher
stacks in higher toposes along the lines of [30] and references given there. Then
we indicate how this opens the door to a more general understanding of extended
prequantum (topological) field theory, constituting a pre-quantum analog of the
extended quantum field theory as in [60], in the sense of higher geometric
quantization [67].

D. Fiorenza (B)
Università degli Studi di Roma “La Sapienza”, Piazzale Aldo Moro 2, 00185 Rome, Italy
e-mail: fiorenza@mat.uniroma1.it

H. Sati
University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15260, USA
e-mail: hsati@pitt.edu

U. Schreiber
Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
e-mail: urs.schreiber@gmail.com

© Springer International Publishing Switzerland 2015
D. Calaque and T. Strobl (eds.), Mathematical Aspects of Quantum Field Theories,
Mathematical Physics Studies, DOI 10.1007/978-3-319-09949-1_6

153



154 D. Fiorenza et al.

The aim of this text is twofold. On the one hand, we will attempt to dissipate
the false belief that higher toposes are an esoteric discipline whose secret rites are
reserved to initiates. To do this we will present a familiar example from differential
topology, namely Chern–Simons theory, from the perspective of higher stacks, to
show how this is a completely natural and powerful language in differential geometry.
Furthermore, since any language is best appreciated by listening to it rather than
by studying its grammar, in this presentation we will omit most of the rigorous
definitions, leaving the reader the task to imagine and reconstruct them from the
context. Clearly this does not mean that such definitions are not available: we refer
the interested reader to [59] for the general theory of higher toposes and to [79]
for general theory and applications of differential cohesive higher toposes that can
express differential geometry, differential cohomology and prequantum gauge field
theory; the reader interested in the formal mathematical aspects of the theory might
enjoy looking at [81].

On the other hand, the purpose of this note is not purely pedagogical: we show how
the stacky approach unifies in a natural way all the basic constructions in classical
Chern–Simons theory (e.g., the action functional, the Wess-Zumino-Witten bundle
gerbe, the symplectic structure on the moduli space of flat G-bundles as well as its
prequantization), clarifies the relations of these with differential cohomology, and
clearly points towards “higher Chern–Simons theories” and their higher and extended
geometric prequantum theory. A brief survey and outlook of this more encompassing
theory is given in the last sections. This is based on our series of articles including
[28–31] and [74–76]. A set of lecture notes explaining this theory is [80].

We assume the reader has a basic knowledge of characteristic classes and of
Chern–Simons theory. Friendly, complete and detailed introductions to these two
topics can be found in [63] and [20, 32–34], respectively.

In this article we focus on the (extended) geometric quantization of Chern–
Simons theory. Another important approach is the (extended) perturbative quantiza-
tion based on path integrals in the BV-BRST formalism, as discussed notably in [1],
based on the general program of extended perturbative BV-quantization laid out in
[18, 19]. The BV-BRST formalism—a description of phase spaces/critical loci in
higher (“derived”) geometry—is also naturally formulated in terms of the higher
cohesive geometry of higher stacks that we consider here, but further discussion of
this point goes beyond the scope of this article. The interested reader can find more
discussion in Sect. 1.2.15.2 and 3.10.8 of [79].

2 A Toy Example: 1-Dimensional U(n)-Chern–Simons
Theory

Before describing the archetypical 3-dimensional Chern–Simons theory with a com-
pact simply connected gauge group1 from a stacky perspective, here we first look
from this point of view at 1-dimensional Chern–Simons theory with gauge group

1 We are using the term “gauge group” to refer to the structure group of the theory. This is not to
be confused with the group of gauge transformations.
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U (n). Although this is a very simplified version, still it will show in an embryonic
way all the features of the higher dimensional theory.2 Moreover, a slight variant of
this 1-dimensional CS theory shows up as a component of 3d Chern–Simons theory
with Wilson line defects, this we discuss at the end of the exposition part in Sect. 3.4.5.

2.1 The Basic Definition

Let A be a un-valued differential 1-form on the circle S1. Then 1
2π i tr(A) is a real-

valued 1-form, which we can integrate over S1 to get a real number. This construction
can be geometrically interpreted as a map

{trivialized U (n)-bundles with connections on S1}
1

2π i

∫
S1 tr−−−−−→ R.

Since the Lie group U (n) is connected, the classifying space BU (n) of principal
U (n)-bundles is simply connected, and so the set of homotopy classes of maps from
S1 to BU (n) is trivial. By the characterizing property of the classifying space, this
set is the set of isomorphism classes of principal U (n)-bundles on S1, and so every
principal U (n)-bundle over S1 is trivializable. Using a chosen trivialization to pull-
back the connection, we see that an arbitrary U (n)-principal bundle with connection
(P,∇) is (noncanonically) isomorphic to a trivialized bundle with connection, and
so our picture enlarges to

and it is tempting to fill the square by placing a suitable quotient of R in the right
bottom corner. To see that this is indeed possible, we have to check what happens
when we choose two different trivializations for the same bundle, i.e., we have to
compute the quantity

1
2π i

∫

S1

tr(A′) − tr(A),

where A and A′ are two 1-form incarnations of the same connection ∇ under different
trivializations of the underlying bundle. What one finds is that this quantity is always
an integer, thus giving a commutative diagram

2 Even 1-dimensional Chern–Simons theory exhibits a rich structure once we pass to derived higher
gauge groups as in [46]. This goes beyond the present exposition, but see Sect. 5.1 for an outlook
and Sect. 5.7.10 of [79] for more details.
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The bottom line in this diagram is the 1-dimensional Chern–Simons action for
U (n)-gauge theory. An elegant way of proving that 1

2π i

∫
S1 tr(A) − tr(A′) is

always an integer is as follows. Once a trivialization has been chosen, one can extend
a principal U (n)-bundle with connection (P,∇) on S1 to a trivialized principal
U (n)-bundle with connection over the disk D2. Denoting by the same symbol ∇ the
extended connection and by A the 1-form representing it, then by Stokes’ theorem we
have

1
2π i

∫

S1

tr(A) = 1
2π i

∫

∂ D2

tr(A) = 1
2π i

∫

D2

dtr(A) = 1
2π i

∫

D2

tr(F∇),

where F∇ is the curvature of ∇. If we choose two distinct trivializations, what we get
are two trivialized principal U (n)-bundles with connection over D2 together with
an isomorphism of their boundary data. Using this isomorphism to glue together the
two bundles, we get a (generally nontrivial) U (n)-bundle with connection (P̃, ∇̃) on
S2 = D2 ∐

S1 D2, the disjoint union of the upper and lower hemisphere glued along
the equator, and

1
2π i

∫

S1

tr(A′) − tr(A) = 1
2π i

∫

S2

tr(∇̃) = 〈c1(P̃), [S2]〉,

the first Chern number of the bundle P̃ . Note how the generator c1 of the second
integral cohomology group H2(BU (n),Z) ∼= Z has come into play.

Despite its elegance, the argument above has a serious drawback: it relies on
the fact that S1 is a boundary. And, although this is something obvious, still it is
something nontrivial and indicates that generalizing 1-dimensional Chern–Simons
theory to higher dimensional Chern–Simons theory along the above lines will force
limiting the construction to those manifolds which are boundaries. For standard
3-dimensional Chern–Simons theory with a compact simply connected gauge group,
this will actually be no limitation, since the oriented cobordism ring is trivial in
dimension 3, but one sees that this is a much less trivial statement than saying that
S1 is a boundary. However, in any case, that would definitely not be true in general
for higher dimensions, as well as for topological structures on manifolds beyond
orientations.
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2.2 A Lie Algebra Cohomology Approach

A way of avoiding the cobordism argument used in the previous section is to focus
on the fact that

1
2π i tr : un → R

is a Lie algebra morphism, i.e., it is a real-valued 1-cocycle on the Lie algebra un

of the group U (n). A change of trivialization for a principal U (n)-bundle P → S1

is given by a gauge transformation g : S1 → U (n). If A is the un-valued 1-form
corresponding to the connection ∇ in the first trivialization, the gauge-transformed
1-form A′ is given by

A′ = g−1 Ag + g−1dg,

where g−1dg = g∗θU (n) is the pullback of the Maurer–Cartan form θU (n) of U (n)

via g. Since 1
2π i tr is an invariant polynomial (i.e., it is invariant under the adjoint

action of U (n) on un), it follows that

1
2π i

∫

S1

tr(A′) − tr(A) = 1
2π i

∫

S1

g∗tr(θU (n)),

and our task is reduced to showing that the right-hand term is a “quantized” quantity,
i.e., that it always assumes integer values. Since the Maurer–Cartan form satisfies
the Maurer–Cartan equation

dθU (n) + 1
2 [θU (n), θU (n)] = 0,

we see that
dtr(θU (n)) = − 1

2 tr
([θU (n), θU (n)]

) = 0,

i.e., tr(θU (n)) is a closed 1-form on U (n). As an immediate consequence,

1
2π i

∫

S1

g∗tr(θU (n)) = 〈g∗[ 1
2π i tr(θU (n))], [S1]〉

only depends on the homotopy class of g : S1 → U (n), and these homotopy classes
are parametrized by the additive group Z of the integers. Notice how the generator
[ 1

2π i tr(θU (n))] of H1(U (n);Z) has appeared. This shows how this proof is related to
the one in the previous section via the transgression isomorphism H1(U (n);Z) →
H2(BU (n);Z).

It is useful to read the transgression isomorphism in terms of differential forms
by passing to real coefficients and pretending that BU (n) is a finite dimensional
smooth manifold. This can be made completely rigorous in various ways, e.g., by
looking at BU (n) as an inductive limit of finite dimensional Grasmannians. Then
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a connection on the universal U (n)-bundle EU (n) → BU (n) is described à la
Ehresmann by a un-valued U (n)-equivariant 1-form A on EU (n) which gives the
Maurer–Cartan form when restricted to the fibers. The R-valued 1-form 1

2π i tr(A)

restricted to the fibers gives the closed 1-form 1
2π i tr(θU (n)) which is the generator of

H1(U (n),R); the differential d 1
2π i tr(A) = 1

2π i tr(FA) is an exact 2-form on EU (n)

which is U (n)-invariant and so is the pullback of a closed 2-form on BU (n) which,
since it represents the first Chern class, is the generator of H2(U (n),R).

One sees that 1
2π i tr plays a triple role in the above description, which might be

initially confusing. To get a better understanding of what is going on, let us consider
more generally an arbitrary compact connected Lie group G. Then the transgression
isomorphism between H1(G,R) and H2(BG;R) is realized by a Chern–Simons
element CS1 for the Lie algebra g. This element is characterized by the following
property: for A ∈ Ω1(EG; g) the connection 1-form of a principal G-connection on
EG → BG, we have the following transgression diagram

where on the left hand side 〈−〉 is a degree 2 invariant polynomial on g, and on the
right hand side μ1 is 1-cocycle on g. One says that CS1 transgresses μ1 to 〈−〉. Via the
identification of H1(G;R) with the degree one Lie algebra cohomology H1

Lie(g;R)

and of H2(BG;R) with the vector space of degree 2 elements in the graded algebra
inv(g) (with elements of g∗ placed in degree 2), one sees that this indeed realizes the
transgression isomorphism.

2.3 The First Chern Class as a Morphism of Stacks

Note that, by the end of the previous section, the base manifold S1 has completely
disappeared. This suggests that one should be able to describe 1-dimensional Chern–
Simons theory with gauge group U (n) more generally as a map

{U (n)-bundles with connections on X}/iso → ??,

where now X is an arbitrary manifold, and “??” is some natural target to be deter-
mined. To try to figure out what this natural target could be, let us look at something
simpler and forget the connection. Then we know that the first Chern class gives a
morphism of sets

c1 : {U (n)-bundles on X}/iso → H2(X;Z).

Here the right hand side is much closer to the left hand side than it might appear at
first sight. Indeed, the second integral cohomology group of X precisely classifies
principal U (1)-bundles on X up to isomorphism, so that the first Chern class is
actually a map
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c1 : {U (n)-bundles on X}/iso → {U (1)-bundles over X}/iso.

Writing BU (n)(X) and BU (1)(X) for the groupoids of principal U (n)- and U (1)-
bundles over X , respectively,3 one can further rewrite c1 as a function

c1 : π0BU (n)(X) → π0BU (1)(X)

between the connected components of these groupoids. This immediately leads one
to suspect that c1 could actually be π0(c1(X)) for some morphism of groupoids
c1(X) : BU (n)(X) → BU (1)(X). Moreover, naturality of the first Chern class
suggests that, independently of X , there should actually be a morphism of stacks

c1 : BU (n) → BU (1)

over the site of smooth manifolds.4 Since a smooth manifold is built by patching
together, in a smooth way, open balls of Rn for some n, this in turn is equivalent
to saying that c1 : BU (n) → BU (1) is a morphism of stacks over the full sub-site
of Cartesian spaces, where by definition a Cartesian space is a smooth manifold
diffeomorphic to R

n for some n. To see that c1 is indeed induced by a morphism
of stacks, notice that BU (n) can be obtained by stackification from the simplicial
presheaf which to a Cartesian space U associates the nerve of the action groupoid
∗//C∞(U ; U (n)). This is nothing but saying, in a very compact way, that to give
a principal U (n)-bundle on a smooth manifold X one picks a good open cover
U = {Uα} of X and local data given by smooth functions on the double intersections

gαβ : Uαβ → U (n)

such thatgαβgβγ gγα = 1 on the triple intersections Uαβγ . The group homomorphism

det : U (n) → U (1)

maps local data {gαβ} for a principal U (n) bundle to local data {hαβ = det(gαβ)}
for a principal U (1)-bundle and, by the basic properties of the first Chern class, one
sees that

Bdet : BU (n) → BU (1)

induces c1 at the level of isomorphism classes, i.e., one can take c1 = Bdet.
Note that there is a canonical notion of geometric realization of stacks on smooth

manifolds by topological spaces (see Sect. 4.3.4.1 of [79]). Under this realization
the morphism of stacks Bdet becomes a continuous function of classifying spaces
BU (n) → K (Z, 2) which represents the universal first Chern class.

3 That is, for the collections of all such bundles, with gauge transformations as morphisms.
4 The reader unfamiliar with the language of higher stacks and simplicial presheaves in differential
geometry can find an introduction in [31].
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2.4 Adding Connections to the Picture

The above discussion suggests that what should really lie behind 1-dimensional
Chern–Simons theory with gauge group U (n) is a morphism of stacks

ĉ1 : BU (n)conn → BU (1)conn

from the stack of U (n)-principal bundles with connection to the stack of U (1)-
principal bundles with connection, lifting the first Chern class. This morphism is
easily described, as follows. Local data for a U (n)-principal bundle with connection
on a smooth manifold X are

• smooth un-valued 1-forms Aα on Uα;
• smooth functions gαβ : Uαβ → U (n),

such that

• Aβ = g−1
αβ Aαgαβ + g−1

αβ dgαβ on Uαβ ;
• gαβgβγ gγα = 1 on Uαβγ ,

and this is equivalent to saying that BU (n)conn is the stack of simplicial sets5 which
to a Cartesian space U assigns the nerve of the action groupoid

Ω1(U ; un)//C∞(U ; U (n)),

where the action is given by g : A �→ g−1 Ag + g−1dg. To give a morphism
ĉ1 : BU (n)conn → BU (1)conn we therefore just need to give a morphism of simplicial
prestacks

N (Ω1(−; un)//C∞(−; U (n))) −→ N (Ω1(−; u1)//C∞(−; U (1)))

lifting
Bdet : N (∗//C∞(−; U (n))) −→ N (∗//C∞(−; U (1))),

where N is the nerve of the indicated groupoid. In more explicit terms, we have to
give a natural linear morphism

ϕ : Ω1(U ; un) → Ω1(U ; u1),

such that
ϕ(g−1 Ag + g−1dg) = ϕ(A) + det(g)−1d det(g),

and it is immediate to check that the linear map

tr : un → u1

5 It is noteworthy that this indeed is a stack on the site CartSp. On the larger but equivalent site of
all smooth manifolds it is just a prestack that needs to be further stackified.
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does indeed induce such a morphism ϕ. In the end we get a commutative diagram of
stacks

where the vertical arrows forget the connections.

2.5 Degree 2 Differential Cohomology

If we now fix a base manifold X and look at isomorphism classes of principal U (n)-
bundles (with connection) on X , we get a commutative diagram of sets

where Ĥ2(X;Z) is the second differential cohomology group of X . This is defined as
the degree 0 hypercohomology group of X with coefficients in the two-term Deligne
complex, i.e., in the sheaf of complexes

C∞(−; U (1))
1

2π i dlog−−−−→ Ω1(−;R),

with Ω1(−;R) in degree zero [8, 39]. That Ĥ2(X;Z) classifies principal U (1)-
bundles with connection is manifest by this description: via the Dold–Kan correspon-
dence, the sheaf of complexes indicated above precisely gives a simplicial presheaf
which produces BU (1)conn via stackification. Note that we have two natural mor-
phisms of complexes of sheaves

The first one induces the forgetful morphism BU (1)conn → BU (1), while the second
one induces the curvature morphism F(−) : BU (1)conn → Ω2(−;R)cl mapping a
U (1)-bundle with connection to its curvature 2-form. From this one sees that degree
2 differential cohomology implements in a natural geometric way the simple idea of
having an integral cohomology class together with a closed 2-form representing it
in de Rham cohomology.

The last step that we need to recover the 1-dimensional Chern–Simons action
functional from Sect. 2.1 is to give a natural morphism

hol : Ĥ2(S1;Z) → U (1)



162 D. Fiorenza et al.

so as to realize the 1-dimensional Chern–Simons action functional as the composition

SS1 1

As the notation “hol” suggests, this morphism is nothing but the holonomy morphism
mapping a principal U (1)-bundle with connection on S1 to its holonomy.

An enlightening perspective from which to look at this situation is in terms of
fiber integration and moduli stacks of principal U (1)-bundles with connections over
a base manifold X . Namely, for a fixed X we can consider the mapping stack

Maps(X, BU (1)conn),

which is presented by the simplicial presheaf that sends a Cartesian space U to the
nerve of the groupoid of principal U (1)-bundles with connection on U × X . In other
words, Maps(X, BU (1)conn) is the internal hom space between X and BU (1)conn in
the category of simplicial sheaves over the site of smooth manifolds. Then, if X is
an oriented compact manifold of dimension one, the fiber integration formula from
[44, 45] can be naturally interpreted as a morphism of simplicial sheaves

holX : Maps(X, BU (1)conn) → U (1),

where on the right one has the sheaf of smooth functions with values in U (1). Taking
global sections over the point one gets the morphism of simplicial sets

holX : H(X, BU (1)conn) → U (1)discr,

where on the right the Lie group U (1) is seen as a 0-truncated simplicial object
and where H(X, BU (1)conn) is a simplicial model for (the nerve of) the groupoid
of principal U (1)-bundles with connection on X . Finally, passing to isomorphism
classes/connected components one gets the morphism

Ĥ2(X;Z) → U (1).

This morphism can also be described in purely algebraic terms by noticing that for any
1-dimensional oriented compact manifold X the short exact sequence of complexes
of sheaves

induces an isomorphism

Ω1(X)/Ω1
cl,Z(X)

∼−→ Ĥ2(X;Z)
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in hypercohomology, where Ω1(X)/Ω1
cl,Z(X) is the group of differential 1-forms

on X modulo those 1-forms which are closed and have integral periods. In terms of
this isomorphism, the holonomy map is realized as the composition

Ĥ2(X;Z)
∼−→ Ω1(X)/Ω1

cl,Z(X)
exp(2π i

∫
X −)−−−−−−−−→ U (1).

2.6 The Brylinski–McLaughlin 2-Cocycle

It is natural to expect that the lift of the universal first Chern class c1 to a morphism
of stacks c1 : BU (n)conn → BU (1)conn is a particular case of a more general
construction that holds for the generator c of the second integral cohomology group
of an arbitrary compact connected Lie group G with π1(G) ∼= Z. Namely, if 〈−〉 is
the degree 2 invariant polynomial on g[2] corresponding to the characteristic class c,
then for any G-connection ∇ on a principal G-bundle P → X one has that 〈F∇〉 is
a closed 2-form on X representing the integral class c. This precisely suggests that
(P,∇) defines an element in degree 2 differential cohomology, giving a map

{G-bundles with connection on X}/iso → Ĥ2(X;Z).

That this is indeed so can be seen following Brylinski and McLaughlin [12] (see [9]
for an exposition an [10, 11] for related discussion). Let {Aα, gαβ} the local data for
a G-connection on P → X , relative to a trivializing good open cover U of X . Then,
since G is connected and the open sets Uαβ are contractible, we can smoothly extend
the transition functions gαβ : Uαβ → G to functions ĝαβ : [0, 1] × Uαβ → G with
ĝαβ(0) = e, the identity element of G, and ĝαβ(1) = gαβ . Using the functions ĝαβ

one can interpolate from Aα

∣∣
Uαβ

to Aβ |Uαβ by defining the g-valued 1-form

Âαβ = ĝ−1
αβ Aα|Uαβ ĝαβ + ĝ−1

αβ dĝαβ

on Uαβ . Now pick a real-valued 1-cocycle μ1 on the Lie algebra g representing the
cohomology class c and a Chern–Simons element CS1 realizing the transgression
from μ1 to 〈−〉. Then the element

(CS1(Aα),

∫

Δ1

CS1( Âαβ) mod Z)

is a degree 2 cocycle in the Čech–Deligne total complex lifting the cohomology class
c ∈ H2(BG,Z) to a differential cohomology class ĉ. Notice how modding out by
Z in the integral

∫
Δ1 CS1( Âαβ) precisely takes care of G being connected but not

simply connected, with H1(G;Z) ∼= π1(G) ∼= Z. That is, choosing two different
extensions ĝαβ of gαβ will produce two different values for that integral, but their
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difference will lie in the rank 1 lattice of 1-dimensional periods of G, and with the
correct normalization this will be a copy of Z.

A close look at the construction of Brylinski and McLaughlin, see [31], reveals
that it actually provides a refinement of the characteristic class c ∈ H2(BG;Z) to a
commutative diagram of stacks

2.7 The Presymplectic Form on BU(n)conn

In geometric quantization it is customary to call pre-quantization of a symplectic
manifold (M, ω) the datum of a U (1)-principal bundle with connection on M whose
curvature form is ω. 6 Furthermore, it is shown that most of the good features of
symplectic manifolds continue to hold under the weaker hypothesis that the 2-form
ω is only closed; this leads to introducing the term pre-symplectic manifold to denote
a smooth manifold equipped with a closed 2-form ω and to speak of prequantum
line bundles for these. In terms of the morphisms of stacks described in the previous
sections, a prequantization of a presymplectic manifold is a lift of the morphism
ω : M → Ω2(−R)cl to a map ∇ fitting into a commuting diagram

where the vertical arrow is the curvature morphism. From this perspective there is
no reason to restrict M to being a manifold. By taking M to be the universal moduli
stack BU (n)conn, we see that the morphism ĉ1 can be naturally interpreted as giving
a canonical prequantum line bundle over BU (n)conn, whose curvature 2-form

ωBU (n)conn : BU (n)conn
ĉ1−→ BU (1)conn

F−→ Ω2(−;R)cl

is the natural presymplectic 2-form on the stack BU (n)conn: the invariant polyno-
mial 〈−〉 viewed in the context of stacks. The datum of a principal U (n)-bundle
with connection (P,∇) on a manifold X is equivalent to the datum of a morphism
ϕ : X → BU (n)conn, and the pullback ϕ∗ωBU (n)conn of the canonical 2-form on
BU (n)conn is the curvature 2-form 1

2π i tr(F∇) on X . If (P,∇) is a principal U (n)-
bundle with connection over a compact closed oriented 1-dimensional manifold Σ1

6 See for instance [54] for an original reference on geometric quantization and see [67] for further
pointers.
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and the morphism ϕ : Σ1 → BU (n)conn defining it can be extended to a mor-
phism ϕ̃ : Σ2 → BU (n)conn for some 2-dimensional oriented manifold Σ2 with
∂Σ2 = Σ1, then

C S1(∇) = exp
∫

Σ2

ϕ̃∗ωBU (n)conn ,

and the right hand side is independent of the extension ϕ̃. In other words,

C S1(∇) = exp
∫

Σ2

tr(F∇̃),

for any extension (P̃, ∇̃) of (P,∇) to Σ2. This way we recover the definition of
the Chern–Simons action functional for U (n)-principal connections on S1 given in
Sect. 2.1.

More generally, the differential refinement ĉ of a characteristic class c of a com-
pact connected Lie group G with H1(G;Z) ∼= Z, endows the stack BGconn with a
canonical presymplectic structure with a prequantum line bundle given by ĉ itself,
and the same considerations apply.

2.8 The Determinant as a Holonomy Map

We have so far met two natural maps with target the sheaf U (1) of smooth functions
with values in the group U (1). The first one was the determinant

det : U (n) → U (1),

and the second one was the holonomy map

holX : Maps(X; BU (1)conn) → U (1),

defined on the moduli stack of principal U (1)-bundles with connection on a
1-dimensional compact oriented manifold X . To see how these two are related,
take X = S1 and notice that, by definition, a morphism from a smooth manifold
M to the stack Maps(S1; BU (n)conn) is the datum of a principal U (n)-bundle with
connection over the product manifold M × S1. Taking the holonomy of the U (n)-
connection along the fibers of M × S1 → M locally defines a smooth U (n)-valued
function on M which is well defined up to conjugation. In other words, holonomy
along S1 defines a morphism from M to the stack U (n)//AdU (n), where Ad indicates
the adjoint action. Since this construction is natural in M we have defined a natural
U (n)-holonomy morphism
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holU (n) : Maps(S1; BU (n)conn) → U (n)//AdU (n).

For n = 1, due to the fact that U (1) is abelian, we also have a natural morphism
U (1)//AdU (1) → U (1), and the holonomy map holS1 factors as

holS1 : Maps(S1; BU (1)conn)
holU (1)−−−−→ U (1)//AdU (1) → U (1).

Therefore, by naturality of Maps we obtain the following commutative diagram

where the leftmost bottom arrow is the natural quotient projection U (n) → U (n)//Ad
U (n). In the language of [79] (3.9.6.4) one says that the determinant map is the “con-
cretification” of the morphism Maps(S1, ĉ1), we come back to this in Sect. 5.3. This
construction immediately generalizes to the case of an arbitrary compact connected
Lie group G with H1(G;Z) ∼= Z: the Lie group morphismρ : G → U (1) integrating
the Lie algebra cocycle μ1 corresponding to the characteristic class c ∈ H2(BG;Z)

is the concretification of Maps(S1, ĉ).

2.9 Killing the First Chern Class: SU(n)-bundles

Recall from the theory of characteristic classes (see [63]) that the first Chern class is
the obstruction to reducing the structure group of a principal U (n)-bundle to SU (n).
In the stacky perspective that we have been adopting so far this amounts to saying
that the stack BSU (n) of principal SU (n)-bundles is the homotopy fiber of c1, hence
the object fitting into the homotopy pullback diagram of stacks of the form

By the universal property of the homotopy pullback, this says that an SU (n)-principal
bundle over a smooth manifold X is equivalently a U (n)-principal bundle P , together
with a choice of trivialization of the associated determinant U (1)-principal bundle.
Moreover, the whole groupoid of SU (n)-principal bundles on X is equivalent to
the groupoid of U (n)-principal bundles on X equipped with a trivialization of their
associated determinant bundle. To explicitly see this equivalence, let us write the
local data for a morphism from a smooth manifold X to the homotopy pullback
above. In terms of a fixed good open cover U of X , these are:

• smooth functions ρα : Uα → U (1);
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• smooth functions gαβ : Uαβ → U (n),

subject to the constraints

• det(gαβ)ρβ = ρα on Uαβ ;
• gαβgβγ gγα = 1 on Uαβγ .

Morphisms between {ρα, gαβ} and {ρ′
α, g′

αβ} are the gauge transformations locally
given byU (n)-valued functions hα onUα such that hαgαβ = g′

αβhβ andρα det(hα) =
ρ′

α . The classical description of objects in BSU (n) corresponds to the gauge fixing
ρα ≡ 1; at the level of morphisms, imposing this gauge fixing constrains the gauge
transformation hα to satisfy det(hα) = 1, i.e. to take values in SU (n). From a cat-
egorical point of view, this amounts to saying that the embedding of the groupoid
of SU (n)-principal bundles over X into the groupoid of morphisms from X to the
homotopy fiber of c1 given by {gαβ} �→ {1, gαβ} is fully faithful. It is also essentially
surjective: use the embedding U (1) → U (n) given by eit �→ (eit , 1, 1, . . . , 1) to lift
ρ−1

α to a U (n)-valued function hα with det(hα) = ρα
−1; then {hα} is an isomorphism

between {ρα, gαβ} and {1, hαgαβhβ
−1}.

Similarly, the stack of SU (n)-principal bundles with sun-connections is the
homotopy pullback

Details on this homotopy pullback description of BSU (n)conn can be found in [28].

In summary, what we have discussed means that the map ĉ1 between universal
moduli stacks equivalently plays the following different roles:

1. it is a smooth and differential refinement of the universal first Chern class;
2. it induces a 1-dimensional Chern–Simons action functional by transgression to

maps from the circle;
3. it represents the obstruction to lifting a smooth unitary structure to a smooth

special unitary structure.

In the following we will consider higher analogs of ĉ1 and will see these different
but equivalent roles of universal differential characteristic maps amplified further.

3 The Archetypical Example: 3d Chern–Simons Theory

We now pass from the toy example of 1-dimensional Chern–Simons theory to the
archetypical example of 3-dimensional Chern–Simons theory, and in fact to its
extended (or “multi-tiered”) geometric prequantization.
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While this is a big step as far as the content of the theory goes, a pleasant conse-
quence of the higher geometric formulation of the 1d theory above is that concep-
tually essentially nothing new happens when we move from 1-dimensional theory
to 3-dimensional theory (and further). For the 3d theory we only need to restrict our
attention to simply connected compact simple Lie groups, so as to have π3(G) ∼= Z

as the first nontrivial homotopy group, and to move from stacks to higher stacks, or
more precisely, to 3-stacks. (For non-simply connected groups one needs a little bit
more structure, as we briefly indicate in Sect. 4.)

3.1 Higher U(1)-bundles with Connections and Differential
Cohomology

The basic 3-stack naturally appearing in ordinary 3d Chern–Simons theory is the
3-stack B3U (1)conn of principal U (1)-3-bundles with connection (also known as
U (1)-bundle-2-gerbes with connection). It is convenient to introduce in general the
n-stack BnU (1)conn and to describe its relation to differential cohomology.

By definition, BnU (1)conn is the n-stack obtained by stackifying the prestack
on Cartesian spaces which corresponds, via the Dold–Kan correspondence, to the
(n + 1)-term Deligne complex

U (1)[n]∞D =
(

U (1)
1

2π i dlog−−−−→ Ω1(−;R)
d−→ · · · d−→ Ωn(−;R)

)
,

where U (1) is the sheaf of smooth functions with values in U (1), and with Ωn(−;R)

in degree zero. It is immediate from the definition that the equivalence classes
of U (1)-n-bundles with connection on a smooth manifold X are classified by the
(n + 1)-st differential cohomology group of X ,

Ĥn+1(X;Z) ∼= H
0(X; U (1)[n]∞D ) ∼= π0H(X; BnU (1)conn),

where in the middle we have degree zero hypercohomology of X with coefficients in
U (1)[n]∞D . Similarly, the n-stack of U (1)-n-bundles (without connection) BnU (1)

is obtained via Dold–Kan and stackification from the sheaf of chain complexes

U (1)[n] =
(

U (1) → 0 → · · · → 0

)
,

with C∞(−; U (1)) in degree n. Equivalence classes of U (1)-n-bundles on X are in
natural bijection with

Hn+1(X;Z) ∼= Hn(X; U (1)) ∼= H
0(X; U (1)[n]) ∼= π0H(X; BnU (1)).
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The obvious morphism of chain complexes of sheaves U (1)[n]∞D → U (1)[n] induces
the “forget the connection” morphism BnU (1)conn → BnU (1) and, at the level of
equivalence classes, the natural morphism

Ĥn+1(X;Z) → Hn+1(X;Z)

from differential cohomology to integral cohomology. If we denote by Ωn+1(−;R)cl
the sheaf (a 0-stack) of closed n-forms, then the morphism of complexesU (1)[n]∞D →
Ωn+1(−;R)cl given by

induces the morphism of stacks BnU (1)conn
F(−)−−→ Ωn+1(−;R)cl mapping a circle

n-bundle ((n − 1)-bundle gerbe) with connection to the curvature (n + 1)-form of
its connection. At the level of differential cohomology, this is the morphism

Ĥn+1(X;Z) → Ωn+1(X;R)cl.

The last n-stack we need to introduce to complete this sketchy picture of differential
cohomology formulated on universal moduli stacks is the n-stack �Bn+1

R associated
with the chain complex of sheaves

�R[n + 1]∞ =
(

Ω1(−;R)
d−→ · · · d−→ Ωn(−;R)

d−→ Ωn+1(−;R)cl

)
,

with Ωn+1(−;R)cl in degree zero. The obvious morphism of complexes of sheaves
Ωn+1(−;R)cl → �R[n + 1]∞ induces a morphism of stacks Ωn+1(−;R)cl →
�Bn+1

R. Moreover one can show (see, e.g., [31, 79]) that there is a “universal curva-
ture characteristic” morphism curv : BnU (1) → �Bn+1

R and a homotopy pullback
diagram

of higher moduli stacks in H, which induces in cohomology the commutative diagram

This generalizes to any degree n ≥ 1 what we remarked in Sect. 2.5 for the
degree 2 case: differential cohomology encodes in a systematic and geometric way



170 D. Fiorenza et al.

the simple idea of having an integral cohomology class together with a closed
differential form representing it in de Rham cohomology. For n = 0 we have
Ĥ1(X;Z) ≡ H0(X; U (1)) = C∞(X; U (1)) and the map Ĥ1(X;Z) → H1(X;Z)

is the morphism induced in cohomology by the short exact sequence of sheaves

0 → Z → R → U (1) → 1.

At the level of stacks, this corresponds to the morphism

U (1) → BZ

induced by the canonical principal Z-bundle R → U (1).

3.2 Compact Simple and Simply Connected Lie Groups

From a cohomological point of view, a compact simple and simply connected Lie
group G is the degree 3 analogue of the group U (n) considered in our 1-dimensional
toy model. That is, the homotopy (hence the homology) of G is trivial up to degree
3, and π3(G) ∼= H3(G;Z) ∼= Z, by the Hurewicz isomorphism. Passing from G
to its classifying space BG we find H4(BG;Z) ∼= Z, so that the fourth integral
cohomology group of BG is generated by a fundamental characteristic class c ∈
H4(BG;Z). All other elements in H4(BG;Z) are of the form kc for some integer k,
usually called the “level” in the physics literature. For P a G-principal bundle over a
smooth manifold X , we will write c(P) for the cohomology class f ∗c ∈ H4(X,Z),
where f : X → BG is any classifying map for P . This way we realize c as a map

c : {principal G-bundles on X}/iso → H4(X;Z).

Moving to real coefficients, the fundamental characteristic class c is represented, via
the isomorphism H4(BG;R) ∼= H3(G;R) ∼= H3

Lie(g,R) by the canonical 3-cocycle
μ3 on the Lie algebra g of G, i.e., up to normalization, by the 3-cocycle 〈[−,−],−〉,
where 〈−,−〉 is the Killing form of g and [−,−] is the Lie bracket. On the other
hand, via the Chern-Weil isomorphism

H∗(BG;R) ∼= inv(g[2]),

the characteristic class c corresponds to the Killing form, seen as a degree four
invariant polynomial on g (with elements of g∗ placed in degree 2). The transgression
betweenμ3 and 〈−,−〉 is witnessed by the canonical degree 3 Chern–Simons element
CS3 of g. That is, for a g-valued 1-form A on some manifold, let

CS3(A) = 〈A, d A〉 + 1
3 〈A, [A, A]〉.
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Then, for A ∈ Ω1(EG; g) the connection 1-form of a principal G-connection on
EG → BG, we have the following transgression diagram

where θG is the Maurer–Cartan form of G (i.e., the restriction of A to the fibers of
EG → BG) and FA = d A+ 1

2 [A, A] is the curvature 2-form of A. Notice how both
the invariance of the Killing form and the Maurer–Cartan equation dθG+ 1

2 [θG, θG ] =
0 play a rôle in the above transgression diagram.

3.3 The Differential Refinement of Degree 4 Characteristic
Classes

The description of the Brylinski–McLaughlin 2-cocycle from Sect. 2.6 has an ev-
ident generalization to degree four. Indeed, let {Aα, gαβ} be the local data for a
G-connection ∇ on P → X , relative to a trivializing good open cover U of X , with
G a compact simple and simply connected Lie group. Then, since G is connected
and the open sets Uαβ are contractible, we can smoothly extend the transition func-
tions gαβ : Uαβ → G to functions ĝαβ : [0, 1] × Uαβ → G with ĝαβ(0) = e,
the identity element of G, and ĝαβ(1) = gαβ , and using the functions ĝαβ one
can interpolate from Aα

∣∣
Uαβ

to Aβ

∣∣
Uαβ

as in Sect. 2.6, defining a g-valued 1-form

Âαβ = ĝ−1
αβ Aα

∣∣
Uαβ

ĝαβ + ĝ−1
αβ dĝαβ . On the triple intersection Uαβγ we have the paths

in G

Since G is simply connected we can find smooth functions

ĝαβγ : Uαβγ × Δ2 → G

filling these 2-simplices, and we can use these to extend the interpolation between
Âαβ , Âβγ and Âγα over the 2-simplex. Let us denote this interpolation by Âαβγ .
Finally, since G is 2-connected, on the quadruple intersections we can find smooth
functions

ĝαβγ δ : Uαβγ δ × Δ3 → G

cobounding the union of the 2-simplices corresponding to the ĝαβγ ’s on the triple
intersections. We can again use the ĝαβγ δ’s to interpolate between the Âαβγ ’s over
the 3-simplex. Finally, one considers the degree zero Čech–Deligne cochain with
coefficients in U (1)[3]∞D
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⎛
⎜⎝CS3(Aα),

∫

Δ1

CS3( Âαβ),

∫

Δ2

CS3( Âαβγ ),

∫

Δ3

CS3( Âαβγ δ) mod Z

⎞
⎟⎠ . (1)

Brylinski and McLaughlin [12] show (see also [9] for an exposition and [10, 11] for
related discussion) that this is indeed a degree zero Čech–Deligne cocycle, and thus
defines an element in Ĥ4(X;Z). Moreover, they show that this cohomology class
only depends on the isomorphism class of (P,∇), inducing therefore a well-defined
map

ĉ : {G-bundles with connection on X}/iso → Ĥ4(X;Z).

Notice how modding out byZ in the rightmost integral in the above cochain precisely
takes care of π3(G) ∼= H3(G;Z) ∼= Z. Notice also that, by construction,

∫

Δ3

CS3( Âαβγ δ) =
∫

Δ3

ĝαβγ δ
∗ μ3(θG ∧ θG ∧ θG),

where θG is the Maurer–Cartan form of G. Hence the Brylinski–McLaughlin cocycle
lifts the degree 3 cocycle with coefficients in U (1)

∫

Δ3

ĝαβγ δ
∗ μ3(θG ∧ θG ∧ θG) mod Z,

which represents the characteristic class c(P) in H3(X; U (1)) ∼= H4(X;Z). As a
result, the differential characteristic class ĉ lifts the characteristic class c, i.e., we
have a natural commutative diagram

By looking at the Brylinski–McLaughlin construction through the eyes of simplicial
integration of ∞-Lie algebras one sees [31] that the above commutative diagram is
naturally enhanced to a commutative diagram of stacks

As we are going to show, the morphism ĉ : BGconn → B3U (1)conn that refines the
characteristic class c to a morphism of stacks is the morphism secretly governing all
basic features of level 1 three-dimensional Chern–Simons theory with gauge group
G. Similarly, for any k ∈ Z, one has a morphism of stacks
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kĉ : BGconn → B3U (1)conn

governing level k 3d Chern–Simons theory with gauge group G. Indeed, this map
may be regarded as the very Lagrangian of 3d Chern–Simons theory extended
(“localized”, “multi-tiered”) to codimension 3. We discuss this next.

3.4 Prequantum n-bundles on Moduli Stacks of G-connections
on a Fixed Manifold

We discuss now how the differential refinement ĉ of the universal characteristic map
c constructed above serves as the extended Lagrangian for 3d Chern–Simons theory
in that its transgression to mapping stacks out of k-dimensional manifolds yields
all the “geometric prequantum” data of Chern–Simons theory in the corresponding
dimension, in the sense of geometric quantization. For the purpose of this exposition
we use terms such as “prequantum n-bundle” freely without formal definition. We
expect the reader can naturally see at least vaguely the higher prequantum picture
alluded to here. A more formal survey of these notions is in Sect. 5.4.

If X is a compact oriented manifold without boundary, then there is a fiber inte-
gration in differential cohomology lifting fiber integration in integral cohomology
[48]:

In [44] Gomi and Terashima describe an explicit lift of this to the level of Čech–
Deligne cocycles; see also [25]. One observes [30] that such a lift has a natural
interpretation as a morphism of moduli stacks

holX : Maps(X, Bn+dim X U (1)conn) → BnU (1)conn

from the (n +dim X)-stack of moduli of U (1)-(n +dim X)-bundles with connection
over X to the n-stack of U (1)-n-bundles with connection (Sect. 2.4 of [30]). There-
fore, if Σk is a compact oriented manifold of dimension k with 0 ≤ k ≤ 3, we have
a composition

Maps(Σk, BGconn)
Maps(Σk ,ĉ)−−−−−−−→ Maps(Σk, B3U (1)conn)

holΣk−−−→ B3−kU (1)conn.

This is the canonical U (1)-(3 − k)-bundle with connection over the moduli space of
principal G-bundles with connection over Σk induced by ĉ: the transgression of ĉ
to the mapping space. Composing on the right with the curvature morphism we get
the underlying canonical closed (4 − k)-form
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Maps(Σk, BGconn) → Ω4−k(−;R)cl

on this moduli space. In other words, the moduli stack of principal G-bundles with
connection over Σk carries a canonical pre-(3 − k)-plectic structure (the higher
order generalization of a symplectic structure, [67]) and, moreover, this is equipped
with a canonical geometric prequantization: the above U (1)-(3 − k)-bundle with
connection.

Let us now investigate in more detail the cases k = 0, 1, 2, 3.

3.4.1 k = 0: The Universal Chern–Simons 3-Connection ĉ

The connected 0-manifold Σ0 is the point and, by definition of Maps, one has a
canonical identification

Maps(∗, S) ∼= S

for any (higher) stack S. Hence the morphism

Maps(∗, BGconn)
Maps(∗,ĉ)−−−−−−→ Maps(∗, B3U (1)conn)

is nothing but the universal differential characteristic map ĉ : BGconn → B3U (1)conn
that refines the universal characteristic class c. This map modulates a circle 3-bundle
with connection (bundle 2-gerbe) on the universal moduli stack of G-principal con-
nections. For ∇ : X −→ BGconn any given G-principal connection on some X , the
pullback

is a 3-bundle (bundle 2-gerbe) on X which is sometimes in the literature called
the Chern–Simons 2-gerbe of the given connection ∇. Accordingly, ĉ modulates
the universal Chern–Simons bundle 2-gerbe with universal 3-connection. From the
point of view of higher geometric quantization, this is the prequantum 3-bundle of
extended prequantum Chern–Simons theory.

This means that the prequantum U (1)-(3 − k)-bundles associated with
k- dimensional manifolds are all determined by the prequantum U (1)-3-bundle asso-
ciated with the point, in agreement with the formulation of fully extended topological
field theories [36]. We will denote by the symbol ω

(4)
BGconn

the pre-3-plectic 4-form
induced on BGconn by the curvature morphism.

3.4.2 k = 1: The Wess-Zumino-Witten Bundle Gerbe

We now come to the transgression of the extended Chern–Simons Lagrangian to the
closed connected 1-manifold, the circle Σ1 = S1. Here we find a higher analog of
the construction described in Sect. 2.8. Notice that, on the one hand, we can think
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of the mapping stack Maps(Σ1, BGconn) � Maps(S1, BGconn) as a kind of moduli
stack of G-connections on the circle—up to a slight subtlety, which we explain in
more detail below in Sect. 5.3. On the other hand, we can think of that mapping stack
as the free loop space of the universal moduli stack BGconn.

The subtlety here is related to the differential refinement, so it is instructive to first
discard the differential refinement and consider just the smooth characteristic map
c : BG → B3U (1) which underlies the extended Chern–Simons Lagrangian and
which modulates the universal circle 3-bundle on BG (without connection). Now,
for every pointed stack ∗ → S we have the corresponding (categorical) loop space
ΩS := ∗ ×S ∗, which is the homotopy pullback of the point inclusion along itself.
Applied to the moduli stack BG this recovers the Lie group G, identified with the
sheaf (i.e., the 0-stack) of smooth functions with target G: ΩBG � G. This kind of
looping/delooping equivalence is familiar from the homotopy theory of classifying
spaces; but notice that since we are working with smooth (higher) stacks, the loop
space ΩBG also knows the smooth structure of the group G, i.e. it knows G as a Lie
group. Similarly, we have

ΩB3U (1) � B2U (1)

and so forth in higher degrees. Since the looping operation is functorial, we may also
apply it to the characteristic map c itself to obtain a map

Ωc : G → B2U (1)

which modulates a BU (1)-principal 2-bundle on the Lie group G. This is also known
as the WZW-bundle gerbe; see [41, 83]. The reason, as discussed there and as we
will see in a moment, is that this is the 2-bundle that underlies the 2-connection
with surface holonomy over a worldsheet given by the Wess-Zumino-Witten action
functional. However, notice first that there is more structure implied here: for any
pointed stack S there is a natural equivalence ΩS � Maps∗(�(S1), S), between the
loop space object ΩS and the moduli stack of pointed maps from the categorical
circle �(S1) � BZ to S. Here � denotes the path ∞-groupoid of a given (higher)
stack.7 On the other hand, if we do not fix the base point then we obtain the free loop
space object LS � Maps(�(S1), S). Since a map �(Σ) → BG is equivalently a
map Σ → �BG, i.e., a flat G-principal connection on Σ , the free loop space LBG
is equivalently the moduli stack of flat G-principal connections on S1. We will come
back to this perspective in Sect. 5.3. The homotopies that do not fix the base point
act by conjugation on loops, hence we have, for any smooth (higher) group, that

LBG � G//AdG

is the (homotopy) quotient of the adjoint action of G on itself; see [64] for details
on homotopy actions of smooth higher groups. For G a Lie group this is the familiar

7 The existence and functoriality of the path ∞-groupoids is one of the features characterizing the
higher topos of higher smooth stacks as being cohesive, see [79].
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adjoint action quotient stack. But the expression holds fully generally. Notably, we
also have

LB3U (1) � B2U (1)//AdB2U (1)

and so forth in higher degrees. However, in this case, since the smooth 3-group
B2U (1) is abelian (it is a groupal E∞-algebra) the adjoint action splits off in a direct
factor and we have a projection

In summary, this means that the map Ωc modulating the WZW 2-bundle over G
descends to the adjoint quotient to the map

p1 ◦ Lc : G//AdG → B2U (1),

and this means that the WZW 2-bundle is canonically equipped with the structure of
an adG-equivariant bundle gerbe, a crucial feature of the WZW bundle gerbe [41,
42].

We emphasize that the derivation here is fully general and holds for any smooth
(higher) group G and any smooth characteristic map c : BG → BnU (1). Each such
pair induces a WZW-type (n −1)-bundle on the smooth (higher) group G modulated
by Ωc and equipped with G-equivariant structure exhibited by p1 ◦ Lc. We discuss
such higher examples of higher Chern–Simons-type theories with their higher WZW-
type functionals further below in Sect. 4.

We now turn to the differential refinement of this situation. In analogy to the above
construction, but taking care of the connection data in the extended Lagrangian ĉ,
we find a homotopy commutative diagram in H of the form

where the vertical maps are obtained by forming holonomies of (higher) connections
along the circle. The lower horizontal row is the differential refinement of Ωc: it
modulates the Wess-Zumino-Witten U (1)-bundle gerbe with connection

wzw : G → B2U (1)conn.

That wzw is indeed the correct differential refinement can be seen, for instance, by
interpreting the construction by Carey et al. [15] in terms of the above diagram. That
is, choosing a basepoint x0 in S1 one obtains a canonical lift of the leftmost vertical
arrow:
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where (Px0∇x0) is the principal G-bundle with connection on the product G × S1

characterized by the property that the holonomy of ∇x0 along {g} × S1 with starting
point (g, x0) is the element g of G. Correspondingly, we have a homotopy commu-
tative diagram

Then Proposition 3.4 from [15] identifies the upper path (hence also the lower path)
from G to B2U (1)conn with the Wess-Zumino-Witten bundle gerbe.

Passing to equivalence classes of global sections, we see that wzw induces, for
any smooth manifold X , a natural map C∞(X; G) → Ĥ2(X;Z). In particular, if
X = Σ2 is a compact Riemann surface, we can further integrate over X to get

wzw : C∞(Σ2; G) → Ĥ2(X;Z)

∫
Σ2−−→ U (1).

This is the topological term in the Wess-Zumino-Witten model; see [14, 38, 40].
Notice how the fact that wzw factors through G//AdG gives the conjugation invari-
ance of the Wess-Zumino-Witten bundle gerbe, hence of the topological term in the
Wess-Zumino-Witten model.

3.4.3 k = 2: The Symplectic Structure on the Moduli Space of Flat
Connections on Riemann Surfaces

For Σ2 a compact Riemann surface, the transgression of the extended Lagrangian ĉ
yields a map

Maps(Σ2; BGconn)
Maps(Σ2,ĉ)−−−−−−−→ Maps(Σ2; B3U (1)conn)

holΣ2−−−→ BU (1)conn,

modulating a circle-bundle with connection on the moduli space of gauge fields on
Σ2. The underlying curvature of this connection is the map obtained by composing
this with

which gives the canonical presymplectic 2-form

on the moduli stack of principal G-bundles with connection on Σ2. Equivalently,
this is the transgression of the invariant polynomial



178 D. Fiorenza et al.

to the mapping stack out of Σ2. The restriction of this 2-form to the moduli stack
Maps(Σ2; �BGconn) of flat principal G-bundles on Σ2 induces a canonical symplec-
tic structure on the moduli space

Hom(π1(Σ2), G)/AdG

of flat G-bundles on Σ2. Such a symplectic structure seems to have been first made
explicit in [3] and then identified as the phase space structure of Chern–Simons theory
in [88]. Observing that differential forms on the moduli stack, and hence de Rham
cocycles BG → �dRBn+1U (1), may equivalently be expressed by simplicial forms
on the bar complex of G, one recognizes in the above transgression construction a
stacky refinement of the construction of [87].

To see more explicitly what this form ω is, consider any test manifold U ∈ CartSp.
Over this the map of stacks ω is a function which sends a G-principal connection
A ∈ Ω1(U ×Σ2) (using that every G-principal bundle over U ×Σ2 is trivializable)
to the 2-form ∫

Σ2

〈FA ∧ FA〉 ∈ Ω2(U ).

Now if A represents a field in the phase space, hence an element in the concretification
of the mapping stack, then it has no “leg” 8 along U , and so it is a 1-form on Σ2 that
depends smoothly on the parameter U : it is a U -parameterized variation of such a
1-form. Accordingly, its curvature 2-form splits as

FA = FΣ2
A + dU A,

where FΣ2
A := dΣ2 A + 1

2 [A ∧ A] is the U -parameterized collection of curvature
forms on Σ2. The other term is the variational differential of the U -collection of
forms. Since the fiber integration map

∫
Σ2

: Ω4(U × Σ2) → Ω2(U ) picks out the
component of 〈FA ∧ FA〉 with two legs along Σ2 and two along U , integrating over
the former we have that

ω|U =
∫

Σ2

〈FA ∧ FA〉 =
∫

Σ2

〈dU A ∧ dU A〉 ∈ Ω2
cl(U ).

In particular if we consider, without loss of generality, (U = R
2)-parameterized

variations and expand

dU A = (δ1 A)du1 + (δ2 A)du2 ∈ Ω2(Σ2 × U ),

then

8 That is, when written in local coordinates (u, σ ) on U ×Σ2, then A = Ai (u, σ )dui + A j (u, σ )dσ j

reduces to the second summand.
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ω|U =
∫

Σ2

〈δ1 A, δ2 A〉.

In this form the symplectic structure appears, for instance, in prop. 3.17 of [32] (in
[88] this corresponds to (3.2)).

In summary, this means that the circle bundle with connection obtained by trans-
gression of the extended Lagrangian ĉ is a geometric prequantization of the phase
space of 3d Chern–Simons theory. Observe that traditionally prequantization in-
volves an arbitrary choice: the choice of prequantum bundle with connection whose
curvature is the given symplectic form. Here we see that in extended prequantization
this choice is eliminated, or at least reduced: while there may be many differen-
tial cocycles lifting a given curvature form, only few of them arise by transgres-
sion from a higher differential cocycles in top codimension. In other words, the
restrictive choice of the single geometric prequantization of the invariant polynomial
〈−,−〉 : BGconn → Ω4

cl by ĉ : BGconn → B3U (1)conn down in top codimension
induces canonical choices of prequantization over all Σk in all lower codimensions
(n − k).

3.4.4 k = 3: The Chern–Simons Action Functional

Finally, for Σ3 a compact oriented 3-manifold without boundary, transgression of
the extended Lagrangian ĉ produces the morphism

Maps(Σ3; BGconn)
Maps(Σ3,ĉ)−−−−−−−→ Maps(Σ3; B3U (1)conn)

holΣ3−−−→ U (1).

Since the morphisms in Maps(Σ3; BGconn) are gauge transformations between field
configurations, while U (1) has no non-trivial morphisms, this map necessarily gives
a gauge invariant U (1)-valued function on field configurations. Indeed, evaluating
over the point and passing to isomorphism classes (hence to gauge equivalence
classes), this induces the Chern–Simons action functional

Sĉ : {G-bundles with connection on Σ3}/iso → U (1).

It follows from the description of ĉ given in Sect. 3.3 that if the principal G-bundle
P → Σ3 is trivializable then

Sĉ(P,∇) = exp 2π i
∫

Σ3

CS3(A),

where A ∈ Ω1(Σ3, g) is the g-valued 1-form on Σ3 representing the connection ∇
in a chosen trivialization of P . This is actually always the case, but notice two things:
first, in the stacky description one does not need to know a priori that every principal
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G-bundle on a 3-manifold is trivializable; second, the independence of Sĉ(P,∇) on
the trivialization chosen is automatic from the fact that Sĉ is a morphism of stacks
read at the level of equivalence classes.

Furthermore, if (P,∇) can be extended to a principal G-bundle with connection
(P̃, ∇̃) over a compact 4-manifold Σ4 bounding Σ3, one has

Sĉ(P,∇) = exp 2π i
∫

Σ4

ϕ̃∗ω(4)
BGconn

= exp 2π i
∫

Σ4

〈F∇̃ , F∇̃ 〉,

where ϕ̃ : Σ4 → BGconn is the morphism corresponding to the extended bundle
(P̃, ∇̃). Notice that the right hand side is independent of the extension chosen. Again,
this is always the case, so one can actually take the above equation as a definition of
the Chern–Simons action functional, see, e.g., [32, 33]. However, notice how in the
stacky approach we do not need a priori to know that the oriented cobordism ring is
trivial in dimension 3. Even more remarkably, the stacky point of view tells us that
there would be a natural and well-defined 3d Chern–Simons action functional even
if the oriented cobordism ring were nontrivial in dimension 3 or even if not every
G-principal bundle on a 3-manifold were trivializable. An instance of checking that
a nontrivial higher cobordism group vanishes can be found in [57], allowing for the
application of the construction of Hopkins–Singer [48].

3.4.5 The Chern–Simons Action Functional with Wilson Loops

To conclude our exposition of the examples of 1d and 3d Chern–Simons theory
in higher geometry, we now briefly discuss how both unify into the theory of 3d
Chern–Simons gauge fields with Wilson line defects. Namely, for every embedded
knot

ι : S1 ↪→ Σ3

in the closed 3d worldvolume and every complex linear representation R : G →
Aut(V ) one can consider the Wilson loop observable Wι,R mapping a gauge field
A : Σ → BGconn, to the corresponding “Wilson loop holonomy”

Wι,R : A �→ trR(hol(ι∗ A)) ∈ C.

This is the trace, in the given representation, of the parallel transport defined by the
connection A around the loop ι (for any choice of base point). It is an old observation9

that this Wilson loop W (C, A, R) is itself the partition function of a 1-dimensional
topological σ -model quantum field theory that describes the topological sector of a
particle charged under the nonabelian background gauge field A. In Sect. 3.3 of [88] it
was therefore emphasized that Chern–Simons theory with Wilson loops should really

9 This can be traced back to [4]; a nice modern review can be found in Sect. 4 of [6].
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be thought of as given by a single Lagrangian which is the sum of the 3d Chern–
Simons Lagrangian for the gauge field as above, plus that for this topologically
charged particle.

We now briefly indicate how this picture is naturally captured by higher geometry
and refined to a single extended Lagrangian for coupled 1d and 3d Chern–Simons
theory, given by maps on higher moduli stacks. In doing this, we will also see how the
ingredients of Kirillov’s orbit method and the Borel-Weil-Bott theorem find a natural
rephrasing in the context of smooth differential moduli stacks. The key observation
is that for 〈λ,−〉 an integral weight for our simple, connected, simply connected and
compact Lie group G, the contraction of g-valued differential forms with λ extends
to a morphism of smooth moduli stacks of the form

〈λ,−〉 : Ω1(−, g)//T λ → BU (1)conn,

where Tλ ↪→ G is the maximal torus of G which is the stabilizer subgroup of 〈λ,−〉
under the coadjoint action of G on g∗. Indeed, this is just the classical statement that
exponentiation of 〈λ,−〉 induces an isomorphism between the integral weight lattice
�wt(λ) relative to the maximal torus Tλ and the Z-module HomGrp(Tλ, U (1)) and
that under this isomorphism a gauge transformation of a g-valued 1-form A turns
into that of the u(1)-valued 1-form 〈λ, A〉.

Comparison with the discussion in Sect. 2 shows that this is the extended
Lagrangian of a 1-dimensional Chern–Simons theory. In fact it is just a slight variant
of the trace-theory discussed there: if we realize g as a matrix Lie algebra and write
〈α, β〉 = tr(α · β) as the matrix trace, then the above Chern–Simons 1-form is given
by the “λ-shifted trace”

CSλ(A) := tr(λ · A) ∈ Ω1(−;R).

Then, clearly, while the “plain” trace is invariant under the adjoint action of all of G,
the λ-shifted trace is invariant only under the subgroup Tλ of G that fixes λ.

Notice that the domain of 〈λ,−〉 naturally sits inside BGconn by the canonical
map

Ω1(−, g)//T λ → Ω1(−, g)//G � BGconn.

One sees that the homotopy fiber of this map is the coadjoint orbit Oλ ↪→ g∗ of
〈λ,−〉, equipped with the map of stacks

θ : Oλ � G//T λ → Ω1(−, g)//T λ

which over a test manifold U sends g ∈ C∞(U, G) to the pullback g∗θG of the
Maurer–Cartan form. Composing this with the above extended Lagrangian 〈λ,−〉
yields a map
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which modulates a canonical U (1)-principal bundle with connection on the coadjoint
orbit. One finds that this is the canonical prequantum bundle used in the orbit method
[53]. In particular its curvature is the canonical symplectic form on the coadjoint orbit.

So far this shows how the ingredients of the orbit method are incarnated in smooth
moduli stacks. This now immediately induces Chern–Simons theory with Wilson
loops by considering the map Ω1(−, g)//T λ → BGconn itself as the target10 for
a field theory defined on knot inclusions ι : S1 ↪→ Σ3. This means that a field
configuration is a diagram of smooth stacks of the form

i.e., that a field configuration consists of

• a gauge field A in the “bulk” Σ3;
• a G-valued function g on the embedded knot

such that the restriction of the ambient gauge field A to the knot is equivalent, via
the gauge transformation g, to a g-valued connection on S1 whose local g-valued
1-forms are related each other by local gauge transformations taking values in the
torus Tλ. Moreover, a gauge transformation between two such field configurations
(A, g) and (A′, g′) is a pair (tΣ3 , tS1) consisting of a G-gauge transformation tΣ3 on
Σ3 and a Tλ-gauge transformation tS1 on S1, intertwining the gauge transformations
g and g′. In particular if the bulk gauge field on Σ3 is held fixed, i.e., if A = A′, then
tS1 satisfies the equation g′ = g tS1 . This means that the Wilson-line components of
gauge-equivalence classes of field configurations are naturally identified with smooth
functions S1 → G/Tλ, i.e., with smooth functions on the Wilson loop with values
in the coadjoint orbit. This is essentially a rephrasing of the above statement that
G/Tλ is the homotopy fiber of the inclusion of the moduli stack of Wilson line field
configurations into the moduli stack of bulk field configurations.

We may postcompose the two horizontal maps in this square with our two extended
Lagrangians, that for 1d and that for 3d Chern–Simons theory, to get the diagram

Therefore, writing FieldsCS+W

(
S1 ι

↪→ Σ3

)
for the moduli stack of field configura-

tions for Chern–Simons theory with Wilson lines, we find two action functionals as
the composite top and left morphisms in the diagram

10 This means that here we are secretly moving from the topos of (higher) stacks on smooth manifolds
to its arrow topos, see Sect. 5.2.
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in H, where the top left square is the homotopy pullback that characterizes maps in
H(Δ1) in terms of maps in H. The product of these is the action functional

where the rightmost arrow is the multiplication in U (1). Evaluated on a field config-
uration with components (A, g) as just discussed, this is

exp

⎛
⎜⎝2π i

⎛
⎜⎝

∫

Σ3

CS3(A) +
∫

S1

〈λ, (ι∗ A)g〉
⎞
⎟⎠

⎞
⎟⎠ .

This is indeed the action functional for Chern–Simons theory with Wilson loop ι in
the representation R corresponding to the integral weight 〈λ,−〉 by the Borel-Weil-
Bott theorem, as reviewed for instance in Sect. 4 of [6].

Apart from being an elegant and concise repackaging of this well-known action
functional and the quantization conditions that go into it, the above reformulation
in terms of stacks immediately leads to prequantum line bundles in Chern–Simons
theory with Wilson loops. Namely, by considering the codimension 1 case, one finds
the symplectic structure and the canonical prequantization for the moduli stack of
field configurations on surfaces with specified singularities at specified punctures
[88]. Moreover, this is just the first example in a general mechanism of (extended)
action functionals with defect and/or boundary insertions. Another example of the
same mechanism is the gauge coupling action functional of the open string. This we
discuss in Sect. 5.4.2.

4 Extension to More General Examples

The way we presented the two examples of the previous sections indicates that they
are clearly just the beginning of a rather general pattern of extended prequantized
higher gauge theories of Chern–Simons type: for every smooth higher group G with
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universal differential higher moduli stack BGconn (and in fact for any higher moduli
stack at all, as further discussed in Sect. 5.1) every differentially refined universal
characteristic map of stacks

constitutes an extended Lagrangian—hence, by iterated transgression, the action
functional, prequantum theory and WZW-type action functional—of an n-dimensional
Chern–Simons type gauge field theory with (higher) gauge group G. Moreover, just
moving from higher stacks on the site of smooth manifolds to higher stacks on the site
of smooth supermanifolds one has an immediate and natural generalization to super-
Chern–Simons theories. Here we briefly survey some examples of interest, which
were introduced in detail in [76] and [30]. Further examples and further details can
be found in Sect. 5.7 of [79].

4.1 String Connections and Twisted String structures

Notice how we have moved from the 1d Chern–Simons theory of Sect. 2 to the
3d Chern-Simon theory of Sect. 3 by replacing the connected but not 1-connected
compact Lie group U (n) with a compact 2-connected but not 3-connected Lie group
G. The natural further step towards a higher dimensional Chern–Simons theory
would then be to consider a compact Lie group which is (at least) 3-connected.
Unfortunately, there exists no such Lie group: if G is compact and simply connected
then its third homotopy group will be nontrivial, see e.g. [62]. However, a solution
to this problem does exist if we move from compact Lie groups to the more general
context of smooth higher groups, i.e. if we focus on the stacks of principal bundles
rather than on their gauge groups. As a basic example, think of how we obtained the
stacks BSU (n) and BSU (n)conn out of BU (n) and BU (n)conn in Sect. 2.9. There we
first obtained these stacks as homotopy fibers of the morphisms of stacks

c1 : BU (n) → BU (1); ĉ1 : BU (n)conn → BU (1)conn

refining the first Chern class. Then, in a second step, we identified these homotopy
fibers with the stack of principal bundles (with and without connection) for a certain
compact Lie group, which turned out to be SU (n). However, the homotopy fiber
definition would have been meaningful even in case we would have been unable to
show that there was a compact Lie group behind it, or even in case there would have
been no such. This may seem too far a generalization, but actually Milnor’s theorem
[61] would have assured us in any case that there existed a topological group SU (n)

whose classifying space is homotopy equivalent to the topological realization of the
homotopy fiber BSU (n), that is, equivalently, to the homotopy fiber of the topological
realization of the morphism c1. This is nothing but the topological characteristic map

c1 : BU (n) → BU (1) � K (Z, 2)
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defining the first Chern class. In other words, one defines the space BSU (n) as the
homotopy pullback

the based loop space Ω BSU (n) has a natural structure of topological group “up to
homotopy”, and Milnor’s theorem precisely tells us that we can strictify it, i.e. we
can find a topological group SU (n) (unique up to homotopy) such that SU (n) �
Ω BSU (n). Moreover, BSU (n), defined as a homotopy fiber, will be a classifying
space for this “homotopy-SU (n)” group. From this perspective, we see that having
a model for the homotopy-SU (n) which is a compact Lie group is surely something
nice to have, but that we would have nevertheless been able to speak in a rigorous and
well-defined way of the groupoid of smooth SU (n)-bundles over a smooth manifold
X even in case such a compact Lie model did not exist. The same considerations
apply to the stack of principal SU (n)-bundles with connections.

These considerations may look redundant, since one is well aware that there is
indeed a compact Lie group SU (n) with all the required features. However, this
way of reasoning becomes prominent and indeed essential when we move to higher
characteristic classes. The fundamental example is probably the following. For n ≥ 3
the spin group Spin(n) is compact and simply connected with π3(Spin(n)) ∼= Z. The
generator of H4(BSpin(n);Z) is the first factional Pontrjagin class 1

2 p1, which can
be equivalently seen as a characteristic map

1
2 p1 : BSpin(n) → K (Z; 4).

The String group String(n) is then defined as the topological group whose classifying
space is the homotopy fiber of 1

2 p1, i.e., the homotopy pullback

this defines String(n) uniquely up to homotopy. The topological group String(n) is
6-connected with π7(String(n)) ∼= Z. The generator of H8(BString(n);Z) is the
second fractional Pontrjagin class 1

6 p2, see [75]. One can then define the 3-stack of
smooth String(n)-principal bundles as the homotopy pullback

where 1
2 p1 is the morphism of stacks whose topological realization is 1

2 p1. In other
words, a String(n)-principal bundle over a smooth manifold X is the datum of
a Spin(n)-principal bundle over X together with a trivialization of the associated
B2U (1)-principal 3-bundle. The characteristic map
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1
6 p2 : BString(n) → K (Z; 8)

is the topological realization of a morphism of stacks

1
6 p2 : BString(n) → B7U (1),

see [31, 76]. Similarly, one can define the 3-stack of smooth String bundles with
connections as the homotopy pullback

where 1
2 p̂1 is the lift of 1

2 p1 to the stack of Spin(n)-bundles with connections. Again,
this means that a String(n)-bundle with connection over a smooth manifold X is the
datum of a Spin(n)-bundle with connection over X together with a trivialization of the
associated U (1)-3-bundle with connection. The morphism 1

6 p2 lifts to a morphism

1
6 p̂2 : BString(n)conn → B7U (1)conn,

see [31], and this defines a 7d Chern–Simons theory with gauge group the String(n)-
group.

In the physics literature one usually considers also a more flexible notion of
String connection, in which one requires that the underlying U (1)-3-bundle of a
Spin(n)-bundle with connection is trivialized, but does not require the underlying
3-connection to be trivialized. In terms of stacks, this corresponds to considering the
homotopy pullback

see, e.g., [84]. Furthermore, it is customary to consider not only the case where the
underlying U (1)-3-bundle (with or without connection) is trivial, but also the case
when it is equivalent to a fixed background U (1)-3-bundle (again, eventually with
connection). Notably, the connection 3-form of this fixed background is the C-field
of the M-theory literature (cf. [70, 71]). The moduli stacks of Spin(n)-bundles on
a smooth manifold X with possibly nontrivial fixed U (1)-3-bundle background are
called [76] moduli stacks of twisted String bundles on X . A particular interesting
case is when the twist is independent of X , hence is itself given by a universal
characteristic class, hence by a twisting morphism

where S is some (higher moduli) stack. In this case, indeed, one can define the stack
BString(n)c of c-twisted String(n)-structures as the homotopy pullback
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and similarly for the stack of c-twisted String(n)-connections. This is a higher analog
of Spinc-structures, whose universal moduli stack sits in the analogous homotopy
pullback diagram

(For more on higher Spinc-structures see also [72, 73] and Sect. 5.2 of [79].). By
a little abuse of terminology, when the twisting morphism a is the refinement of a
characteristic class for a compact simply connected simple Lie group G to a morphism
of stacks a : BG → B3U (1), one may speak of G-twisted structures rather than of
a-twisted structures.

By the discussion in Sect. 3 the differential twisting maps 1
2 p̂1 and â appearing here

are at the same time extended Lagrangians of Chern–Simons theories. Together with
the nature of homotopy pullback, it follows [31] that a field φ : X → BStringa

conn
consists of a pair of gauge fields and a homotopy between their Chern–Simons data,
namely of

1. a Spin-connection ∇so;
2. a G-connection ∇g;
3. a twisted 2-form connection B whose curvature 3-form H is locally given by

H = d B + CS(∇so) − CS(∇g).

These are the data for (Green–Schwarz-) anomaly-free background gauge fields
(gravity, gauge field, Kalb–Ramond field) for the heterotic string [76]. A further
refinement of this construction yields the universal moduli stack for the supergrav-
ity C-field configurations in terms of E8-twisted String connections [29]. Here the
presence of the differential characteristic maps ĉ induces the Chern–Simons gauge-
coupling piece of the supergravity 2-brane (the M2-brane) action functional.

4.2 Cup-Product Chern–Simons Theories

In Sect. 3 we had restricted attention to 3d Chern–Simons theory with simply con-
nected gauge groups. Another important special case of 3d Chern–Simons theory is
that with gauge group the circle group U (1), which is of course not simply connected.
In this case the universal characteristic map that controls the theory is the differential
refinement of the cup product class c1 ∪c1. Here we briefly indicate this case and the
analogous higher dimensional Chern–Simons theories obtained from cup products
of higher classes and from higher order cup products.
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The cup product ∪ in integral cohomology can be lifted to a cup product ∪̂ in dif-
ferential cohomology, i.e., for any smooth manifold X we have a natural commutative
diagram

for any p, q ≥ 0. Moreover, this cup product is induced by a cup product defined
at the level of Čech–Deligne cocycles, the so called Beilinson-Drinfeld cup product,
see [8]. This, in turn, may be seen [30] to come from a morphism of higher universal
moduli stacks

∪̂ : Bn1U (1)conn × Bn2U (1)conn → Bn1+n2+1U (1)conn.

Moreover, since the Beilinson–Deligne cup product is associative up to homotopy,
this induces a well-defined morphism

Bn1U (1)conn × Bn2U (1)conn × · · · × Bnk+1U (1)conn → Bn1+···+nk+1+kU (1)conn.

In particular, for n1 = · · · = nk+1 = 3, one finds a cup product morphism

(
B3U (1)conn

)k+1 → B4k+3U (1)conn.

Furthermore, one sees from the explicit expression of the Beilinson–Deligne cup
product that, on a local chart Uα , if the 3-form datum of a connection on a U (1)-3-
bundle is the 3-form Cα , then the (4k + 3)-form local datum for the corresponding
connection on the associated U (1)-(4k + 3)-bundle is

Cα ∧ dCα ∧ · · · ∧ dCα︸ ︷︷ ︸
k times

.

Now let G be a compact and simply connected simple Lie group and let ĉ : BGconn →
B3U (1)conn be the morphism of stacks underlying the fundamental characteristic
class c ∈ H4(BG,Z). Then we can consider the (k +1)-fold product of ĉ with itself:

If X is a compact oriented smooth manifold, fiber integration along X gives the
morphism

Maps(X, BGconn) −→ Maps(X, B4k+3U (1)conn)
holX−−→ B4k+3−dim X U (1)conn.

In particular, if dim X = 4k +3, by evaluating over the point and taking equivalence
classes we get a canonical morphism



A Higher Stacky Perspective on Chern–Simons Theory 189

{G-bundles with connections on X}/iso → U (1).

This is the action functional of the (k + 1)-fold cup product Chern–Simons theory
induced by the (k+1)-fold cup product of c with itself [30]. This way one obtains, for
every k ≥ 0, a (4k +3)-dimensional theory starting with a 3d Chern–Simons theory.
Moreover, in the special case that the principal G-bundle on X is topologically trivial,
this action functional has a particularly simple expression: it is given by

exp 2π i
∫

X

CS3(A) ∧ 〈FA, FA〉 ∧ · · · ∧ 〈FA, FA〉,

where A ∈ Ω1(X; g) is the g-valued 1-form on X representing the connection in the
chosen trivialization of the G-bundle. But notice that in this more general situation
now not every gauge field configuration will have an underlying trivializable (higher)
bundle anymore, the way it was true for the 3d Chern–Simons theory of a simply
connected Lie group in Sect. 3.

More generally, one can consider an arbitrary smooth (higher) group G, e.g.
U (n)× Spin(m)× String(l), together with k + 1 characteristic maps ĉi : BGconn →
Bni U (1)conn and one can form the (k + 1)-fold product

ĉ1 ∪̂ · · · ∪̂ ĉk+1 : BGconn → Bn1+···nk+1+kU (1)conn,

inducing a (n1 +· · · nk+1 +k)-dimensional Chern–Simons-type theory. For instance,
if G1 and G2 are two compact simply connected simple Lie groups, then we have
a 7d cup product Chern–Simons theory associated with the cup product ĉ1 ∪̂ ĉ2. If
(P1,∇1) and (P2,∇2) are a pair of topologically trivial principal G1- and G2-bundles
with connections over a 7-dimensional oriented compact manifold without boundary
X , the action functional of this Chern–Simons theory on this pair is given by

exp 2π i
∫

X

CS3(A1) ∧ 〈FA2 , FA2〉 = exp 2π i
∫

X

CS3(A2) ∧ 〈FA1 , FA1〉,

where Ai is the connection 1-forms of ∇i , for i = 1, 2. Notice how in general a
Gi -principal bundle on a 7-dimensional manifold is not topologically trivial, but still
we have a well defined cup-product Chern–Simons action Sĉ1 ∪̂ ĉ2

. In the topologically
nontrivial situation, however, there will not be such a simple global expression for
the action.

Let us briefly mention a few representative important examples from string theory
and M-theory which admit a natural interpretation as cup-product Chern–Simons
theories, the details of which can be found in [30]. For all examples presented below
we write the Chern–Simons action for the topologically trivial sector.

• Abelian higher dimensional CS theory and self-dual higher gauge theory. For
every k ∈ N the differential cup product yields the extended Lagrangian
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for a 4k + 3-dimensional Chern–Simons theory of (2k + 1)-form connections on
higher circle bundles (higher bundle gerbes). Over a 3-dimensional manifold Σ

the corresponding action functional applied to gauge fields A whose underlying
bundle is trivial is given by

exp 2π i
∫

Σ

CS1(A) ∪ dCS1(A) = exp 2π i
∫

Σ

A ∧ FA,

where FA = d A is the curvature of a U (1)-connection A. Similarly, the trans-
gression of L to codimension 1 over a manifold Σ of dimension 4k + 2 yields the
prequantization of a symplectic form on (2k + 1)-form connections which, by a
derivation analogous to that in Sect. 3.4.3, is given by

ω(δA1, δA1) =
∫

Σ

δA1 ∧ δA1.

A complex polarization of this symplectic structure is given by a choice of confor-
mal metric on Σ and the corresponding canonical coordinates are complex Hodge
self-dual forms on Σ . This yields the famous holographic relation between higher
abelian Chern–Simons theory and self-dual higher abelian gauge theory in one
dimension lower.

• The M5-brane self-dual theory. In particular, for k = 1 it was argued in [89] that the
7-dimensional Chern–Simons theory which we refine to an extended prequantum
theory by the extended Lagrangian

describes, in this holographic manner, the quantum theory of the self-dual 2-form
in the 6-dimensional worldvolume theory of a single M5-brane. Since moreover
in [90] it was argued that this abelian 7-dimensional Chern–Simons theory is to
be thought of as the abelian piece in the Chern–Simons term of 11-dimensional
supergravity compactified on a 4-sphere, and since this term in general receives
non-abelian corrections from “flux quantization” (see [29] for a review of these
and for discussion in the present context of higher moduli stacks), we discussed in
[28] the appropriate non-abelian refinement of this 7d Chern–Simons term, which
contains also cup product terms of the form â1 ∪̂ â2 as well we the term 1

6 p̂2 from
Sect. 4.1.

• Five-dimensional and eleven-dimensional supergravity. The topological part of
the five-dimensional supergravity action is exp 2π i

∫
Y 5 A ∧ FA ∧ FA, where A

is a U (1)-connection. Writing the action as exp 2π i
∫

Y 5 CS1(A) ∪ dCS1(A) ∪
dCS1(A), one sees this is a 3-fold Chern–Simons theory. Next, in eleven dimen-
sions, the C-field C3 with can be viewed as a 3-connection on a 2-gerbe with 4-
curvature G4. By identifying the C-field with the Chern–Simons 3-form CS3(A)



A Higher Stacky Perspective on Chern–Simons Theory 191

of a U (1)-3-connection A, the topological action exp 2π i
∫

Y 11 C3 ∧ G4 ∧ G4, is
seen to be of the form exp 2π i

∫
Y 11 CS3(A) ∪ dCS3(A) ∪ dCS3(A). This realizes

the 11d supergravity C-field action as the action for a 3-tier cup-product abelian
Chern–Simons theory induced by a morphism of 3-stacks [29].

4.3 Super-Chern–Simons Theories

The (higher) topos H of (higher) stacks on the smooth site of manifolds which we
have been considering for most of this paper has an important property common
to various similar toposes such as that on supermanifolds: it satisfies a small set of
axioms called (differential) cohesion, see [79]. Moreover, essentially every construc-
tion described in the above sections makes sense in an arbitrary cohesive topos. For
constructions like homotopy pullbacks, mapping spaces, adjoint actions etc., this is
true for every topos, while the differential cohesion in addition guarantees the exis-
tence of differential geometric structures such as de Rham coefficients, connections,
differential cohomology, etc. This setting allows to transport all considerations based
on the cohesion axioms across various kinds of geometries. Notably, one can speak
of higher supergeometry, and hence of fermionic quantum fields, simply by declaring
the site of definition to be that of supermanifolds: indeed, the higher topos of (higher)
stacks on supermanifolds is differentially cohesive ([79], Sect. 4.6). This leads to a
natural notion of super-Chern–Simons theories.

In order to introduce these notions, we need a digression on higher complex line
bundles. Namely, we have been using the n-stacks BnU (1), but without any substan-
tial change in the theory we could also use the n-stacks Bn

C
× with the multiplicative

group U (1) of norm 1 complex numbers replaced by the full multiplicative group of
non-zero complex numbers. Since we have a fiber sequence

R>0 → C
× → U (1)

with topologically contractible fiber, under geometric realization | − | the canonical
map BnU (1) → Bn

C
× becomes an equivalence. Nevertheless, some constructions

are more naturally expressed in terms of U (1)-principal n-bundles, while others are
more naturally expressed in terms of C×-principal n-bundles, and so it is useful to
be able to switch from one description to the other. For n = 1 this is the familiar
fact that the classifying space of principal U (1)-bundles is homotopy equivalent to
the classifying space of complex line bundles. For n = 2 we still have a noteworthy
(higher) linear algebra interpretation: B2

C
× is naturally identified with the 2-stack

2LineC of complex line 2-bundles. Namely, for R a commutative ring (or more
generally an E∞-ring), one considers the 2-category of R-algebras, bimodules and
bimodule homomorphisms (e.g. [22]). We may think of this as the 2-category of
2-vector spaces over R (appendix A of [78], Sect. 4.4 of [82], Sect. 7 of [36]). Notice
that this 2-category is naturally braided monoidal. We then write
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for the full sub-2-groupoid on those objects which are invertible under this tensor
product: the 2-lines over R. This is the Picard 2-groupoid over R, and with the
inherited monoidal structure it is a 3-group, the Brauer 3-group of R. Its homotopy
groups have a familiar algebraic interpretation:

• π0(2LineR) is the Brauer group of R;
• π1(2LineR) is the ordinary Picard group of R (of ordinary R-lines);
• π2(2LineR) � R× is the group of units.

(This is the generalization to n = 2 of the familiar Picard 1-groupoid 1LineR of
invertible R-modules.) Since the construction is natural in R and naturality respects
2-lines, by taking R to be a sheaf of k-algebras, with k a fixed field, one defines the
2-stacks 2Vectk of k-2-vector bundles and 2Linek of 2-line bundles over k. If k is
algebraically closed, then there is, up to equivalence, only a single 2-line and only a
single invertible bimodule, hence 2Linek � B2k×. In particular, we have that

2LineC � B2
C

×.

The background B-field of the bosonic string has a natural interpretation as a section
of the differential refinement B2

C
×
conn of the 2-stack B2

C
×. Hence, by the above

discussion, it is identified with a 2-connection on a complex 2-line bundle. However,
a careful analysis, due to [23] and made more explicit in [35], shows that for the
superstring the background B-field is more refined. Expressed in the language of
higher stacks the statement is that the superstring B-field is a connection on a complex
super-2-line bundle. This means that one has to move from the (higher) topos of
(higher) stacks on the site of smooth manifolds to that of stacks on the site of smooth
supermanifolds (Sect. 4.6 of [79]). The 2-stack of complex 2-line bundles is then
replaced by the 2-stack 2sLineC of super-2-line bundles, whose global points are
complex Azumaya superalgebras. Of these there are, up to equivalence, not just one
but two: the canonical super 2-line and its “superpartner” [85]. Moreover, there are
now, up to equivalence, two different invertible 2-linear maps from each of these
super-lines to itself. In summary, the homotopy sheaves of the super 2-stack of super
line 2-bundles are

• π0(2sLineC) � Z2,
• π1(2sLineC) � Z2,
• π2(2sLineC) � C

×.

Since the homotopy groups of the group C
× are π0(C

×) = 0 and π1(C
×) = Z, it

follows that the geometric realization of this 2-stack has homotopy groups

• π0(|2sLineC|) � Z2,
• π1(|2sLineC|) � Z2,
• π2(|2sLineC|) � 0,
• π3(|2sLineC|) � Z.

These are precisely the correct coefficients for the twists of complex K-theory [24],
witnessing the fact that the B-field background of the superstring twists the Chan-
Paton bundles on the D-branes [23, 35].
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The braided monoidal structure of the 2-category of complex super-vector spaces
induces on 2sLineC the structure of a braided 3-group. Therefore, one has a natu-
rally defined 3-stack B(2sLineC)conn which is the supergeometric refinement of the
coefficient object B3

C
×
conn for the extended Lagrangian of bosonic 3-dimensional

Chern–Simons theory. Therefore, for G a super-Lie group a super-Chern–Simons
theory, inducing a super-WZW action functional on G, is naturally given by an
extended Lagrangian which is a map of higher moduli stacks of the form

L : BGconn → B(2sLineC)conn.

Notice that, by the canonical inclusion B3
C

×
conn → B(2sLineC)conn, every bosonic

extended Lagrangian of 3d Chern–Simons type induces such a supergeometric theory
with trivial super-grading part.

5 Outlook: Higher Prequantum Theory

The discussion in Sects. 2 and 3 of low dimensional Chern–Simons theories and the
survey on higher dimensional Chern–Simons theories in Sect. 4, formulated and ex-
tended in terms of higher stacks, is a first indication of a fairly comprehensive theory
of higher and extended prequantum gauge field theory that is naturally incarnated in
a suitable context of higher stacks. In this last section we give a brief glimpse of some
further aspects. Additional, more comprehensive expositions and further pointers are
collected for instance in [79, 80].

5.1 σ -models

The Chern–Simons theories presented in the previous sections are manifestly special
examples of the following general construction: one has a universal (higher) stack
Fields of field configurations for a certain field theory, equipped with an extended
Lagrangian, namely with a map of higher stacks

L : Fields → BnU (1)conn

to the n-stack of U (1)-principal n-bundles with connections. The Lagrangian L
induces Lagrangian data in arbitrary codimension: for every closed oriented world-
volume Σk of dimension k ≤ n there is a transgressed Lagrangian

defining the (off-shell) prequantum U (1)-(n − k)-bundle of the given field theory.
In particular, the curvature forms of these bundles induce the canonical pre-(n − k)-
plectic structure on the moduli stack of field configurations on Σk .

In codimension 0, i.e., for k = n one has the morphism of stacks
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exp(2π i
∫

Σn

− ) : Maps(Σn; Fields) → U (1)

and so taking global sections over the point and passing to equivalence classes one
finds the action functional

exp(2π i
∫

Σn

− ) : {Field configurations}/equiv → U (1).

Notice how the stacky origin of the action functional automatically implies that its
value only depends on the gauge equivalence class of a given field configuration.
Moreover, the action functional of an extended Lagrangian field theory as above is
manifestly a σ -model action functional: the target “space” is the universal moduli
stack of field configurations itself. Furthermore, the composition

ω : Fields
L−→ BnU (1)conn

F(−)−−→ Ωn+1(−;R)cl

shows that the stack of field configurations is naturally equipped with a pre-n-plectic
structure [67], which means that actions of extended Lagrangian field theories in
the above sense are examples of σ -models with (pre)-n-plectic targets. For binary
dependence of the n-plectic form on the fields this includes the AKSZ σ -models
[2, 16–19, 26, 50, 51, 55, 56, 69]. For instance, from this perspective, the action
functional of classical 3d Chern–Simons theory is the σ -model action functional with
target the stack BGconn equipped with the pre-3-plectic form 〈−,−〉 : BGconn → Ω4

cl
(the Killing form invariant polynomial) as discussed in 3. If we consider binary
invariant polynomials in derived geometry, hence on objects with components also
in negative degree, then also closed bosonic string field theory as in [91] is an example
(see 5.7.10 of [79]) as are constructions such as [21]. Examples of n-plectic structures
of higher arity on moduli stacks of higher gauge fields are in [28, 30].

More generally, we have transgression of the extended Lagrangian over manifolds
Σk with boundary ∂Σk . Again by inspection of the constructions in [44] in terms of
Deligne complexes, one finds that under the Dold–Kan correspondence these induce
the corresponding constructions on higher moduli stacks: the higher parallel trans-
port of L over Σk yields a section of the (n −k +1)-bundle which is modulated over
the boundary by Maps(∂Σk, BGconn) → Bn−k+1U (1)conn. This is the incarnation
at the prequantum level of the propagator of the full extended TQFT in the sense of
[60] over Σk , as indicated in [58]. Further discussion of this full prequantum field
theory obtained this way is well beyond the scope of the present article. However,
below in Sect. 5.4 we indicate how familiar anomaly cancellation constructions in
open string theory naturally arise as examples of such transgression of extended
Lagrangians over worldvolumes with boundary.
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5.2 Fields in Slices: Twisted Differential Structures

Our discussion of σ -model-type actions in the previous section might seem to sug-
gest that all the fields that one encounters in field theory have moduli that form
(higher) stacks on the site of smooth manifolds. However, this is actually not the
case and one need not look too far in order to find a counterexample: the field of
gravity in general relativity is a (pseudo-)Riemannian metric on spacetime, and there
is no such thing as a stack of (pseudo-)Riemannian metrics on the smooth site.
This is nothing but the elementary fact that a (pseudo-)Riemannian metric cannot
be pulled back along an arbitrary smooth morphism between manifolds, but only
along local diffeomorphisms. Translated into the language of stacks, this tells us that
(pseudo-)Riemannian metrics is a stack on the étale site of smooth manifolds, but
not on the smooth site.11 Yet we can still look at (pseudo-)Riemannian metrics on a
smooth n-dimensional manifold X from the perspective of the topos H of stacks over
the smooth site, and indeed this is the more comprehensive point of view. Namely,
working in H also means to work with all its slice toposes (or over-toposes) H/S
over the various objects S in H. For the field of gravity this means working in the
slice H/BGL(n;R) over the stack BGL(n;R). 12

Once again, this seemingly frightening terminology is just a concise and rigorous
way of expressing a familiar fact from Riemannian geometry: endowing a smooth
n-manifold X with a pseudo-Riemannian metric of signature (p, n − p) is equiv-
alent to performing a reduction of the structure group of the tangent bundle of
X to O(p, n − p). Indeed, one can look at the tangent bundle as a morphism
τX : X → BGL(n;R).

Example: Orthogonal Structures.

The above reduction is then the datum of a homotopy lift of τX

(  )

where the vertical arrow

is induced by the inclusion of groups O(n) ↪→ GL(n;R). Such a commutative
diagram is precisely a map

in the slice H/BGL(n;R). The homotopy e appearing in the above diagram is precisely
the vielbein field (frame field) which exhibits the reduction, hence which induces the

11 See [13] for a comprehensive treatment of the étale site of smooth manifolds and of the higher
topos of higher stacks over it.
12 More detailed discussion of how (quantum) fields generally are maps in slices of cohesive toposes
has been given in the lecture notes [80] and in Sects. 1.2.16, 5.4 of [79].
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Riemannian metric. So the moduli stack of Riemannian metrics in n dimensions
is OrthStrucn , not as an object of the ambient cohesive topos H, but of the slice
H/BGL(n). Indeed, a map between manifolds regarded in this slice, namely a map
(φ, η) : τY → τX , is equivalently a smooth map φ : Y → X in H, but equipped with
an equivalence η : φ∗τX → τY . This precisely exhibits φ as a local diffeomorphism.
In this way the slicing formalism automatically knows along which kinds of maps
metrics may be pulled back.

Example: (Exceptional) Generalized Geometry.

If we replace in the above example the map OrthStrucn with inclusions of other
maximal compact subgroups, we similarly obtain the moduli stacks for generalized
geometry (metric and B-field) as appearing in type II superstring backgrounds (see,
e.g., [47]), given by

and of exceptional generalized geometry appearing in compactifications of 11-
dimensional supergravity [49], given by

For instance, a manifold X in type II-geometry is represented by τ
gen
X : X →

BO(n, n) in the slice H/BO(n,n), which is the map modulating what is called the
generalized tangent bundle, and a field of generalized type II gravity is a map
(ogen

X , e) : τ
gen
X → typeII to the moduli stack in the slice. One checks that the

homotopy e is now precisely what is called the generalized vielbein field in type
II geometry. We read off the kind of maps along which such fields may be pulled
back: a map (φ, η) : τ

gen
Y → τ

gen
X is a generalized local diffeomorphism: a smooth

map φ : Y → X equipped with an equivalence of generalized tangent bundles
η : φ∗τ gen

X → τ
gen
Y . A directly analogous discussion applies to the exceptional

generalized geometry.
Furthermore, various topological structures are generalized fields in this sense,

and become fields in the more traditional sense after differential refinement.

Example: Spin Structures.

The map SpinStruc : BSpin → BGL is, when regarded as an object of H/BGL,
the moduli stack of spin structures. Its differential refinement SpinStrucconn :
BSpinconn → BGLconn is such that a domain object τ∇

X ∈ H/GLconn is given by
an affine connection, and a map (∇Spin, e) : τ∇

X → SpinStrucconn is precisely a Spin
connection and a Lorentz frame/vielbein which identifies ∇ with the corresponding
Levi-Civita connection.

This example is the first in a whole tower of higher Spin structure fields [74–76],
each of which is directly related to a corresponding higher Chern–Simons theory.
The next higher example in this tower is the following.

Example: Heterotic Fields.

For n ≥ 3, let Heterotic be the map
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regarded as an object in the slice H/BGL(n;R)×B3U (1). Here p is the morphism induced
by

Spin(n) → O(n) ↪→ GL(n;R)

while 1
2 p1 : BSpin(n) → B3U (1) is the morphism of stacks underlying the first

fractional Pontrjagin class which we met in Sect. 4.1. To regard a smooth manifold
X as an object in the slice H/BGL(n;R)×B3U (1) means to equip it with a U (1)-3-
bundle aX : X → B3U (1) in addition to the tangent bundle τX : X → BGL(n;R).
A Green–Schwarz anomaly-free background field configuration in heterotic string
theory is (the differential refinement of) a map (sX , φ) : (τX , aX ) → Heterotic, i.e.,
a homotopy commutative diagram

The 3-bundle aX serves as a twist: when aX is trivial then we are in presence of a
String structure on X ; so it is customary to refer to (sX , φ) as to an aX -twisted String
structure on X , in the sense of [76, 86]. The Green–Schwarz anomaly cancellation
condition is then imposed by requiring that aX (or rather its differential refinement)
factors as

where c2(E) is the morphism of stacks underlying the second Chern class. Notice
that this says that the extended Lagrangians of Spin- and SU-Chern–Simons theory
in 3-dimensions, as discussed above, at the same time serve as the twists that control
the higher background gauge field structure in heterotic supergravity backgrounds.

Example: Dual Heterotic Fields.

Similarly, the morphism

governs field configurations for the dual heterotic string. These examples, in their
differentially refined version, have been discussed in [76]. The last example above
is governed by the extended Lagrangian of the 7-dimensional Chern–Simons-type
higher gauge field theory of String-2-connections. This has been discussed in [28].

There are many more examples of (quantum) fields modulated by objects in slices
of a cohesive higher topos. To close this brief discussion, notice that the twisted String
structure example has an evident analog in one lower degree: a central extension of
Lie groups A → Ĝ → G induces a long fiber sequence
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in H, where c is the group 2-cocycle that classifies the extension. If we regard this
as a coefficient object in the slice H/B2 A, then regarding a manifold X in this slice
means to equip it with an (BA)-principal 2-bundle (an A-bundle gerbe) modulated
by a map τ A

X : X → B2 A; and a field (φ, η) : τ A
X → c is equivalently a G-principal

bundle P → X equipped with an equivalence η : c(E) � τ A
X with the 2-bundle

which obstructs its lift to a Ĝ-principal bundle (the “lifting gerbe”). The differen-
tial refinement of this setup similarly yields G-gauge fields equipped with such an
equivalence. A concrete example for this is discussed below in Sect. 5.4.

This special case of fields in a slice is called a twisted (differential) Ĝ-structure
in [76] and a relative field in [37]. In more generality, the terminology twisted
(differential) c-structures is used in [76] to denote spaces of fields of the form
H/S(σX , c) for some slice topos H/S and some coefficient object (or “twisting ob-
ject”) c; see also the exposition in [80]. In fact in full generality (quantum) fields in
slice toposes are equivalent to cocycles in (generalized and parameterized and pos-
sibly non-abelian and differential) twisted cohomology. The constructions on which
the above discussion is built is given in some generality in [64].

In many examples of twisted (differential) structures/fields in slices the twist is
constrained to have a certain factorization. For instance the twist of the (differen-
tial) String-structure in a heterotic background is constrained to be the (differential)
second Chern-class of a (differential) E8 × E8-cocycle, as mentioned above; or for
instance the gauging of the 1d Chern–Simons fields on a knot in a 3d Chern–Simons
theory bulk is constrained to be the restriction of the bulk gauge field, as discussed
in Sect. 3.4.5. Another example is the twist of the Chan-Paton bundles on D-branes,
discussed below in Sect. 5.4, which is constrained to be the restriction of the ambient
Kalb–Ramond field to the D-brane. In all these cases the fields may be thought of as
being maps in the slice topos that arise from maps in the arrow topos HΔ1

. A moduli
stack here is a map of moduli stacks

in H; and a domain on which such fields may be defined is an object Σbulk ∈ H
equipped with a map (often, but not necessarily, an inclusion) Σdef → Σbulk, and a
field configuration is a square of the form

in H. If we now fix φbulk then (φbulk)|Σdef serves as the twist, in the above sense,
for φdef . If Fieldsdef is trivial (the point/terminal object), then such a field is a cocy-
cle in relative cohomology: a cocycle φbulk on Σbulk equipped with a trivialization
(φbulk)|Σdef of its restriction to Σdef .

The fields in Chern–Simons theory with Wilson loops displayed in Sect. 3.4.5
clearly constitute an example of this phenomenon. Another example is the field
content of type II string theory on a 10-dimensional spacetime X with D-brane
Q ↪→ X , for which the above diagram reads
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discussed further below in Sect. 5.4. In [29] we discussed how the supergravity C-field
over an 11-dimensional Hořava-Witten background with 10-dimensional boundary
X ↪→ Y is similarly a relative cocyle, with the coefficients controlled, once more,
by the extended Chern–Simons Lagrangian

now regarded in H(Δ1).

5.3 Differential Moduli Stacks

In the exposition in Sects. 2 and 3 above we referred, for ease of discussion, to the
mapping stacks of the form Maps(Σk, BGconn) as moduli stacks of G-gauge fields on
Σk . From a more refined perspective this is not quite true. While certainly the global
points of these mapping stacks are equivalently the G-gauge field configurations
on Σk , for U a parameter space, the U -parameterized collections in the mapping
stack are not quite those of the intended moduli stack: for the former these are gauge
fields and gauge transformations on U × Σk , while for the latter these are genuine
cohesively U -parameterized collections of gauge fields on Σk .

In the exposition above we saw this difference briefly in Sect. 3.4.3, where we
constrained a 1-form A ∈ Ω1(U × Σ, g) (a U -plot of the mapping stack) to vanish
on vector fields tangent to U ; this makes it a smooth function on U with values in
connections on Σ . More precisely, for G a Lie group and Σ a smooth manifold, let

GConn(Σ) ∈ H

be the stack which assigns to any U ∈ CartSp the groupoid of smoothly
U -parameterized collections of smooth G-principal connections on Σ , and of
smoothly U -parameterized collections of smooth gauge transformations between
these connections. This is the actual moduli stack of G-connections. In this form, but
over a different site of definition, it appears for instance in geometric Langlands dual-
ity. In physics this stack is best known in the guise of its infinitesimal approximation:
the corresponding Lie algebroid is dually the (off-shell) BRST-complex of the gauge
theory, and the BRST ghosts are the cotangents to the morphisms in GConn(Σ) at
the identity.

Notice that while the mapping stack is itself not quite the right answer, there is a
canonical map that comes to the rescue
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We call this the concretification map. We secretly already saw an example of this in
Sect. 3.4.2, where this was the map Maps(S1, BGconn) −→ G//AdG.

In more complicated examples, such as for higher groups G and base spaces Σ

which are not plain manifolds, it is in general less evident what GConn(Σ) should be.
But if the ambient higher topos is cohesive, then there is a general abstract procedure
that produces the differential moduli stack. This is discussed in Sects. 3.9.6.4 and
4.4.15.3 of [79] and in [65].

5.4 Prequantum Geometry in Higher Codimension

We had indicated in Sect. 3.4 how a single extended Lagrangian, given by a map of
universal higher moduli stacks L : BGconn → BnU (1)conn, induces, by transgres-
sion, circle (n − k)-bundles with connection

holΣk Maps(Σk, L) : Maps(Σk, BGconn) −→ Bn−kU (1)conn

on moduli stacks of field configurations over each closed k-manifold Σk . In codimen-
sion 1, hence for k = n−1, this reproduces the ordinary prequantum circle bundle of
the n-dimensional Chern–Simons type theory, as discussed in Sect. 3.4.3. The space
of sections of the associated line bundle is the space of prequantum states of the
theory. This becomes the space of genuine quantum states after choosing a polariza-
tion (i.e., a decomposition of the moduli space of fields into canonical coordinates
and canonical momenta) and restricting to polarized sections (i.e., those depend-
ing only on the canonical coordinates). But moreover, for each Σk we may regard
holΣk Maps(Σk, L) as a higher prequantum bundle of the theory in higher codimen-
sion hence consider its prequantum geometry in higher codimension.

We discuss now some generalities of such a higher geometric prequantum theory
and then show how this perspective sheds a useful light on the gauge coupling of the
open string, as part of the transgression of prequantum 2-states of Chern–Simons
theory in codimension 2 to prequantum states in codimension 1.

5.4.1 Higher Prequantum States and Prequantum Operators

We indicate here the basic concepts of higher extended prequantum theory and how
they reproduce traditional prequantum theory.13

Consider a (pre)-n-plectic form, given by a map

ω : X −→ Ωn+1(−;R)cl

13 A discussion of this and the following can be found in Sects. 3.9.13 and 4.4.19 of [79]; see also
[27].
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in H. A n-plectomorphism of (X, ω) is an auto-equivalence of ω regarded as an
object in the slice H

/Ωn+1
cl

, hence a diagram of the form

A prequantization of (X, ω) is a choice of prequantum line bundle, hence a choice

of lift ∇ in

modulating a circle n-bundle with connection on X . We write c(∇) : X
∇−→

BnU (1)conn → BnU (1) for the underlying (Bn−1U (1))-principal n-bundle. An au-
toequivalence

Ô : ∇ �−→ ∇

of the prequantum n-bundle regarded as an object in the slice H/BnU (1)conn , hence a
diagram in H of the form

is an (exponentiated) prequantum operator or quantomorphism or regular contact
transformation of the prequantum geometry (X,∇). These form an ∞-group in H.
The L∞-algebra of this quantomorphism ∞-group is the higher Poisson bracket Lie
algebra of the system. If X is equipped with group structure then the quantomor-
phisms covering the action of X on itself form the Heisenberg ∞-group. The homo-
topy labeled O in the above diagram is the Hamiltonian of the prequantum operator.
The image of the quantomorphisms in the symplectomorphisms (given by composi-
tion the above diagram with the curvature morphism F(−) : BnU (1)conn → Ωn+1

cl )
is the group of Hamiltonian n-plectomorphisms. A lift of an ∞-group action
G → Aut(X) on X from automorphisms of X (diffeomorphism) to quantomor-
phisms is a Hamiltonian action, infinitesimally (and dually) a momentum map.

To define higher prequantum states we fix a representation (V, ρ) of the circle
n-group Bn−1U (1). By the general results in [64] this is equivalent to fixing a ho-
motopy fiber sequence of the form
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in H. The vertical morphism here is the universal ρ-associated V -fiber ∞-bundle
and characterizes ρ itself. Given such, a section of the V -fiber bundle which is
ρ-associated to c(∇) is equivalently a map

Ψ : c(∇) −→ ρ

in the slice H/BnU (1). This is a higher prequantum state of the prequantum geom-
etry (X,∇). Since every prequantum operator Ô as above in particular is an auto-

equivalence of the underlying prequantum bundle Ô : c(∇)
�−→ c(∇) it canonically

acts on prequantum states given by maps as above simply by precomposition

Ψ �→ Ô ◦ Ψ.

Notice also that from the perspective of Sect. 5.2 all this has an equivalent interpre-
tation in terms of twisted cohomology: a preqantum state is a cocycle in twisted
V -cohomology, with the twist being the prequantum bundle. And a prequantum op-
erator/quantomorphism is equivalently a twist automorphism (or “generalized local
diffeomorphism”).

For instance if n = 1 then ω is an ordinary (pre)symplectic form and ∇ is the
connection on a circle bundle. In this case the above notions of prequantum operators,
quantomorphism group, Heisenberg group and Poisson bracket Lie algebra reproduce
exactly all the traditional notions if X is a smooth manifold, and generalize them to
the case that X is for instance an orbifold or even itself a higher moduli stack, as
we have seen. The canonical representation of the circle group U (1) on the complex
numbers yields a homotopy fiber sequence

where C//U (1) is the stack corresponding to the ordinary action groupoid of the ac-
tion of U (1) on C, and where the vertical map is the canonical functor forgetting the
data of the local C-valued functions. This is the universal complex line bundle asso-
ciated to the universal U (1)-principal bundle. One readily checks that a prequantum
state Ψ : c(∇) → ρ, hence a diagram of the form

in H is indeed equivalently a section of the complex line bundle canonically associ-
ated to c(∇) and that under this equivalence the pasting composite
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is the result of the traditional formula for the action of the prequantum operator Ô
on Ψ .

Instead of forgetting the connection on the prequantum bundle in the above
composite, one can equivalently equip the prequantum state with a differential
refinement, namely with its covariant derivative and then exhibit the prequan-
tum operator action directly. Explicitly, let C//U (1)conn denote the quotient stack
(C × Ω1(−,R))//U (1), with U (1) acting diagonally. This sits in a homotopy fiber
sequence

which may be thought of as the differential refinement of the above fiber sequence
C → C//U (1) → BU (1). (Compare this to Sect. 3.4.5, where we had similarly seen
the differential refinement of the fiber sequence G/T λ → BTλ → BG, which analo-
gously characterizes the canonical action of G on the coset space G/Tλ.) Prequantum
states are now equivalently maps

�̂ : ∇ −→ ρconn

in H/BU (1)conn . This formulation realizes a section of an associated line bundle equiv-
alently as a connection on what is sometimes called a groupoid bundle. As such, �̂

has not just a 2-form curvature (which is that of the prequantum bundle) but also a
1-form curvature: this is the covariant derivative ∇σ of the section.

Such a relation between sections of higher associated bundles and higher covariant
derivatives holds more generally. In the next degree for n = 2 one finds that the
quantomorphism 2-group is the Lie 2-group which integrates the Poisson bracket
Lie 2-algebra of the underlying 2-plectic geometry as introduced in [67]. In the next
section we look at an example for n = 2 in more detail and show how it interplays
with the above example under transgression.

The above higher prequantum theory becomes a genuine quantum theory after
a suitable higher analog of a choice of polarization. In particular, for L : X →
BnU (1)conn an extended Lagrangian of an n-dimensional quantum field theory as
discussed in all our examples here, and for Σk any closed manifold, the polarized
prequantum states of the transgressed prequantum bundle holΣk Maps(Σk, L) should
form the (n − k)-vector spaces of higher quantum states in codimension k. These
states would be assigned to Σk by the extended quantum field theory, in the sense of
[60], obtained from the extended Lagrangian L by extended geometric quantization.
There is an equivalent reformulation of this last step for n = 1 given simply by the
push-forward of the prequantum line bundle in K-theory (see Sect. 6.8 of [43]) and
so one would expect that accordingly the last step of higher geometric quantization
involves similarly a push-forward of the associated V -fiber ∞-bundles above in some
higher generalized cohomology theory. But this remains to be investigated.
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5.4.2 Example: The Anomaly-Free Gauge Coupling of the Open String

As an example of these general phenomena, we close by briefly indicating how the
higher prequantum states of 3d Chern–Simons theory in codimension 2 reproduce
the twisted Chan-Paton gauge bundles of open string backgrounds, and how their
transgression to codimension 1 reproduces the cancellation of the Freed-Witten-
Kapustin anomaly of the open string.

By the above, the Wess-Zumino-Witten gerbe wzw : G → B2U (1)conn as dis-
cussed in Sect. 3.4.2 may be regarded as the prequantum 2-bundle of Chern–Simons
theory in codimension 2 over the circle. Equivalently, if we consider the WZW
σ -model for the string on G and take the limiting TQFT case obtained by sending
the kinetic term to 0 while keeping only the gauge coupling term in the action, then
it is the extended Lagrangian of the string σ -model: its transgression to the mapping
space out of a closed worldvolume Σ2 of the string is the topological piece of the
exponentiated WZW σ -model action. For Σ2 with boundary the situation is more
interesting, and this we discuss now.

The Heisenberg 2-group of the prequantum geometry (G, wzw) is14 the String
2-group (see the appendix of [28] for a review), the smooth 2-group String(G) which
is, up to equivalence, the loop space object of the homotopy fiber of the smooth
universal class c

The canonical representation of the 2-group BU (1) is on the complex K-theory
spectrum, whose smooth (stacky) refinement is given by BU := lim−→n

BU (n) in H

(see Sect. 5.4.3 of [79] for more details). On any component for fixed n the action of
the smooth 2-group BU (1) is exhibited by the long homotopy fiber sequence

in H, in that ddn is the universal (BU (n))-fiber 2-bundle which is associated by this
action to the universal (BU (1))-2-bundle.15 Using the general higher representation
theory in H as developed in [64], a local section of the (BU (n))-fiber prequantum
2-bundle which is ddn-associated to the prequantum 2-bundle wzw, hence a local
prequantum 2-state, is, equivalently, a map

� : wzw|Q −→ ddn

in the slice H/B2U (1), where ιQ : Q ↪→ G is some subspace. Equivalently (compare
with the general discussion in Sect. 5.2), this is a map

14 This follows for instance as the Lie integration of the result in [5] that the Heisenberg Lie 2-algebra
here is the string(g) Lie 2-algebra; see also [27].
15 The notion of (BU (n))-fiber 2-bundle is equivalently that of nonabelian U (n)-gerbes in the
original sense of Giraud, see [64]. Notice that for n = 1 this is more general than then notion
of U (1)-bundle gerbe: a G-gerbe has structure 2-group Aut(BG), but a U (1)-bundle gerbe has
structure 2-group only in the left inclusion of the fiber sequence BU (1) ↪→ Aut(BU (1)) → Z2.
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(�, wzw) : ιQ −→ ddn

in H(Δ1), hence a diagram in H of the form

One finds (Sect. 5.4.3 of [79]) that this equivalently modulates a unitary bundle on
Q which is twisted by the restriction of wzw to Q as in twisted K-theory (such a
twisted bundle is also called a gerbe module if wzw is thought of in terms of bundle
gerbes [7]). So

ddn ∈ H/B2U (1)

is the moduli stack for twisted rank-n unitary bundles. As with the other moduli
stacks before, one finds a differential refinement of this moduli stack, which we
write

(ddn)conn : (BU (n)//BU (1))conn → B2U (1)conn,

and which modulates twisted unitary bundles with twisted connections (bundle
gerbe modules with connection). Hence a differentially refined state is a map
�̂ : wzw|Q → (ddn)conn in H/B2U (1)conn

; and this is precisely a twisted gauge
field on a D-brane Q on which open strings in G may end. Hence these are the
prequantum 2-states of Chern–Simons theory in codimension 2. Precursors of this
perspective of Chan-Paton bundles over D-branes as extended prequantum 2-states
can be found in [68, 77].

Notice that by the above discussion, together the discussion in Sect. 5.2, an equiv-
alence

in H/B2U (1)conn
has two different, but equivalent, important interpretations:

1. it is an element of the quantomorphism 2-group (i.e. the possibly non-linear
generalization of the Heisenberg 2-group) of 2-prequantum operators;

2. it is a twist automorphism analogous to the generalized diffeomorphisms for the
fields in gravity.

Moreover, such a transformation is locally a structure well familiar from the literature
on D-branes: it is locally (on some cover) given by a transformation of the B-field
of the form B �→ B + ddRa for a local 1-form a (this is the Hamiltonian 1-form
in the interpretation of this transformation in higher prequantum geometry) and its
prequantum operator action on prequantum 2-states, hence on Chan-Paton gauge
fields
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(by precomposition) is given by shifting the connection on a twisted Chan-Paton
bundle (locally) by this local 1-form a. This local gauge transformation data

B �→ B + da, A �→ A + a,

is familiar from string theory and D-brane gauge theory (see e.g. [66]). The
2-prequantum operator action � �→ Ô� which we see here is the fully global-
ized refinement of this transformation.

Surface Transport and the Twisted Bundle Part of Freed-Witten-Kapustin
Anomalies.

The map �̂ : (ιQ, wzw) → (ddn)conn above is the gauge-coupling part of the
extended Lagrangian of the open string on G in the presence of a D-brane Q ↪→ G.
We indicate what this means and how it works. Note that for all of the following
the target space G and background gauge field wzw could be replaced by any target
space with any circle 2-bundle with connection on it.

The object ιQ in H(Δ1) is the target space for the open string. The worldvolume of
that string is a smooth compact manifold Σ with boundary inclusion ι∂Σ : ∂Σ → Σ ,
also regarded as an object in H(Δ1). A field configuration of the string σ -model is
then a map

φ : ιΣ → ιQ

in H(Δ1), hence a diagram

in H, hence a smooth function φ : Σ → G subject to the constraint that the boundary
of Σ lands on the D-brane Q. Postcomposition with the background gauge field �̂

yields the diagram

Comparison with the situation of Chern–Simons theory with Wilson lines in Sect. 3.4.5
shows that the total action functional for the open string should be the product of the
fiber integration of the top composite morphism with that of the bottom composite
morphisms. Hence that functional is the product of the surface parallel transport of
the wzw B-field over Σ with the line holonomy of the twisted Chan-Paton bundle
over ∂Σ .

This is indeed again true, but for more subtle reasons this time, since the fiber
integrations here are twisted. For the surface parallel transport we mentioned this
already at the end of Sect. 5.1: since Σ has a boundary, parallel transport over Σ
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does not yield a function on the mapping space out of Σ , but rather a section of
the line bundle on the mapping space out of ∂Σ , pulled back to this larger mapping
space.

Furthermore, the connection on a twisted unitary bundle does not quite have a
well-defined traced holonomy inC, but rather a well defined traced holonomy up to a
coherent twist. More precisely, the transgression of the WZW 2-connection to maps
out of the circle as in Sect. 3.4 fits into a diagram of moduli stacks in H of the form

This is a transgression-compatibility of the form that we have already seen in
Sect. 3.4.2.

In summary, we obtain the transgression of the extended Lagrangian of the open
string in the background of B-field and Chan-Paton bundles as the following pasting
diagram of moduli stacks in H (all squares are filled with homotopy 2-cells, which
are notationally suppressed for readability)

Here

• the top left square is the homotopy pullback square that computes the mapping
stack Maps(ι∂Σ, ιQ) in H(Δ1), which here is simply the smooth space of string
configurations Σ → G which are such that the string boundary lands on the
D-brane Q;

• the top right square is the twisted fiber integration of the wzw background 2-
bundle with connection: this exhibits the parallel transport of the 2-form connection
over the worldvolume Σ with boundary S1 as a section of the pullback of the
transgression line bundle on loop space to the space of maps out of Σ ;

• the bottom square is the above compatibility between the twisted traced holonomy
of twisted unitary bundles and the transgression of their twisting 2-bundles.

The total diagram obtained this way exhibits a difference between two section of
a single complex line bundle on FieldsOpenString(ι∂Σ) (at least one of them non-
vanishing), hence a map
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exp

⎛
⎝2π i

∫

Σ

[Σ, wzw]
⎞
⎠ · tr holS1([S1, �̂]) : FieldsOpenString(ι∂Σ) −→ C.

This is the well-defined action functional of the open string with endpoints on the
D-brane Q ↪→ G, charged under the background wzw B-field and under the twisted
Chan-Paton gauge bundle Ψ̂ .

Unwinding the definitions, one finds that this phenomenon is precisely the twisted-
bundle-part, due to Kapustin [52], of the Freed-Witten anomaly cancellation for
open strings on D-branes, hence is the Freed-Witten-Kapustin anomaly cancellation
mechanism either for the open bosonic string or else for the open type II superstring
on Spinc-branes. Notice how in the traditional discussion the existence of twisted
bundles on the D-brane is identified just as some construction that happens to cancel
the B-field anomaly. Here, in the perspective of extended quantization, we see that
this choice follows uniquely from the general theory of extended prequantization,
once we recognize that ddn above is (the universal associated 2-bundle induced by)
the canonical representation of the circle 2-group BU (1), just as in one codimension
up C is the canonical representation of the circle 1-group U (1).
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Factorization Homology in 3-Dimensional
Topology

Nikita Markarian and Hiro Lee Tanaka

Abstract This Chapter consists of two contributions about the relevance of factor-
ization homology (a.k.a. manifoldic homology or topological chiral homology) in
three dimensional topology: 1. Manifoldic Homology and Chern-Simons Formal-
ism, by Nikita Markarian; 2. Factorization Homology and Links Invariants, by Hiro
Lee Tanaka.

1 Manifoldic Homology and Chern–Simons Formalism
(by Nikita Markarian)

Abstract The aim of this note is to define for any en-algebra A and a compact
parallelizable n-manifold M without boundary a morphism from the homology of
homotopy Lie algebra A[n − 1] to the topological chiral homology of M with coef-
ficients in A. This map plays a crucial role in the perturbative Chern-Simons theory.

1.1 Introduction

Manifoldic homology (we suggest this term instead of “topological chiral homology
with constant coefficients” from [13]) is a far-reaching generalization of Hochschild
homology. In the theory of Hochschild and cyclic homology the additive Dennis
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trace map (e.g. [12, 8.4.16]) plays an important role. Let A be an associative algebra.
Denote by L(A) the underlying Lie algebra of A. Then the additive Dennis trace
gives a map from H∗(L(A)) to H H∗(A). The aim of the present note is to generalize
this morphism to any en-algebra A.

Let en be the operad of rational chains of the operad of little discs and A be
an algebra over it. The complex A[n − 1] is equipped with homotopy Lie algebra
structure, denote it by L(A). Fix a compact oriented n-manifold M without boundary.
For simplicity we restrict ourselves to parallelizable manifolds, this restriction may
be removed by introducing framed little discs as in [17]. Denote by H M∗(A) the
manifoldic homology of A on M introduced in Definition 2, and by H∗(L(A)) the
Lie algebra homology. In the central Proposition 3we give amorphism H∗(L(A)) →
H M∗(A) explicitly in terms of the Fulton–MacPherson operad.

For n = 1 and M = S1, that is for homotopy associative algebras and Hochschild
homology, the above morphismmay be presented as the composition of natural mor-
phisms H∗(L(A)) → H H∗(U (L(A)) → H H∗(A), where U (−) is the universal
enveloping algebra. For n > 1 the analogous statement holds, with the universal
enveloping algebra replaced by the universal enveloping en-algebra. The definition
of the latter notion naturally appears in the context of Koszul duality for en-algebras,
which is still under construction, see nevertheless e.g. [6] and references therein. We
need even more, than Koszul duality. The description of application of our construc-
tion tomanifold invariants requires the Koszul duality for en-algebras with curvature.
These subjects are briefly discussed in the last section.

Our main construction is exemplary and may be generalized in many ways. For
example, one may take some modules over A and put them into some points of M .
Then one get a map from homology of L(A) with coefficients in an appropriate
module to the manifoldic homology with coefficients in these modules. In particular,
if one take copies of A itself as modules, then manifoldic homology with coefficient
in them equals to the usual manifoldic homology; thus one get a map from homology
of L(A) with coefficients in the tensor product of adjoint modules to H M∗(A). One
needs this generalization to build a working theory of invariants of 3-manifolds, I
hope to treat this subject elsewhere.

Remark 1 The present note is partially initiated by the work of K. Costello and
O. Gwilliam on factorization algebras in perturbative quantum field theory [4],
although it is hard to point at exact relations.

1.2 Trees and L∞

1.2.1 Trees

A tree is an oriented connected graph with three type of vertices: root has one
incoming edge and no outgoing ones, leaves have one outgoing edge and no incoming
ones and internal vertexes have one outgoing edge andmore than one incoming ones.



Factorization Homology in 3-Dimensional Topology 215

Edges incident to leaves will be called inputs, the edge incident to the root will be
called the output and all other edges will be called internal edges. The degenerate
tree has one edge and no internal vertexes. Denote by Tk(S) the set of non-degenerate
trees with k internal edges and leaves labeled by a set S.

For two trees t1 ∈ Tk1(S1) and t2 ∈ Tk2(S2) and an element s ∈ S1 the com-
position of trees t1 ◦s t2 ∈ Tk1+k2+1 is obtained by identification of the input of t1
corresponding to s and the output of t2. Composition of trees is associative and the
degenerate tree is the unit. The set of trees with respect to the composition forms an
operad.

Call the tree with only one internal vertex the star. Any non-degenerate tree with
k internal edges may be uniquely presented as a composition of k + 1 stars.

The operation of edge splitting is the following: take a non-degenerate tree, present
it as a composition of stars and replace one star with a tree that is a product of two
stars and has the same set of inputs . The operation of an edge splitting depends on
a internal vertex and a subset of more than one incoming edges.

1.2.2 L∞

For a non-degenerate tree t denote by Det(t) the one-dimensional Q-vector space
that is the determinant of the vector space generated by internal edges. For s > 1
consider the complex

L(s) :
⊕

t∈T0([s])
Det(t) →

⊕
t∈T1([s])

Det(t) →
⊕

t∈T2([s])
Det(t) → · · · , (1)

where [s] is the set of s elements, the cohomological degree of a tree t ∈ Tk([s])
is 2 − s + k and the differential is given by all possible splitting of an edge (see
e.g. [9]). The composition of trees equips the sequence L(i)⊗ sgn with the structure
of a dg-operad, here sgn is the sign representation of the symmetric group.

This operad is called L∞ operad. Denote by L∞[n] the dg-operad given by the
complex L(s)[n(s − 1)] ⊗ (sgn)n and refer to it as n-shifted L∞ operad.

1.3 Fulton–MacPherson Operad

1.3.1 Fulton–MacPherson Compactification

The Fulton–MacPherson compactification is introduced in [8, 14], see also [1, 17].
We cite here its properties that are essential for our purposes.

For a finite set S denote by (Rn)S the set of ordered S-tuples in R
n . For a finite

set S denote by ΔS : Rn → (Rn)S the diagonal embedding. We will denote by [n]
the set of n elements.
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Let C 0
S (Rn) ⊂ (Rn)S be the space of ordered pairwise distinct points in R

n

labeled by S. The Fulton–MacPherson compactification CS(Rn) is a manifold with
corners with interior C 0

S (Rn). The projection CS(Rn)
π→ (Rn)S is defined, which

is an isomorphism on C 0
S (Rn) ⊂ CS(Rn). Moreover there is a sequence of man-

ifolds with corners Fn(S) labeled by finite sets and maps φS1,...,Sk that fit in the
diagram

where the left arrow is the projection to the point on the first factors and π on the last
one. Restrictions of φS1,...,Sk to Fn(S1)×· · ·× Fn(Sk)×C 0[k](Rn) are isomorphisms

onto the image. It follows that Fn(S) = π−10, where 0 ∈ (Rn)S is S-tuple sitting at
the origin. Being restricted on Fn(S) ⊂ CS(Rn), maps φ equip Fn(S)with an operad
structure:

φ[s1],...,[sk] : Fn([s1]) × · · · × Fn([sk]) × Fn([k]) → Fn([s1 + · · · + sk]).

Manifolds C[k](Rn) and Fn([k]) are equipped with a k-th symmetric group action
consistent with its natural action on C 0[k](Rn) and all maps are compatible with this
action.

Definition 1 [8, 14, 17] The sequence of spaces Fn([k]) with the symmetric group
action and composition morphisms as above is called the Fulton–MacPherson
operad.

1.3.2 Strata, Trees and L∞

There is a map of sets Fn(S)
μ→ T (S) that subdivides Fn(S) into smooth strata. This

map is totally defined by the following properties. Firstly, μ is consistent with the
operad structure in the sense that the preimage of a composition is the composition
of preimages. Secondly, the zero codimension stratum corresponding to a star tree is
the intersection of π−10 and the stratum of CS(Rn) that is the blow-up of the small
diagonal minus pull backs of other diagonals. These latter strata freely generate the
Fulton–MacPherson operad as a set.

Denote by C∗(Fn) the dg-operad of rational chains of the Fulton–MacPherson
operad. For a tree t ∈ T (S) let [μ−1(t)] ∈ C∗(Fn(S)) be the chain presented by its
preimage under μ.

Proposition 1 Map [μ−1(·)] gives a morphism from shifted L∞ operad L(s)
[s(1−n)] to the dg-operad C∗(Fn([s])) of rational chains of the Fulton–MacPherson
operad.

Proof To see that the map commutes with the differential note, that two strata given
byμwithdimensions differingby1 are incident if andonly if oneof the corresponding
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trees is obtained from another by edge splitting. In this way we get a basis in the
conormal bundle to a stratum labeled by the internal edges. It follows the consistency
of the map from the statement with signs.

It follows that there is a morphism of dg-operads

L∞[1 − n] → C∗(Fn) (2)

Let en be the dg-operad of rational chains of the operad of little n-discs.

Proposition 2 Operad C∗(Fn) is weakly homotopy equivalent to en.

Proof See [17, Proposition 3.9].

Thus there is a homotopy morphism of operads L∞[1 − n] → en .

1.4 Manifoldic and Lie Algebra Homology

1.4.1 Manifoldic Homology

Let M be an n-dimensional parallelized compact manifold without boundary. In the
same way as for Rn there is the Fulton-MacPherson compactification CS(M) of
the space C 0

S (M) of ordered pairwise distinct points in M labeled by S; inclusion

C 0
S (M) ↪→ CS(M) is a homotopy equivalence. There is a projection CS(M)

π→ M S

and maps φS1,...,Sk that fit in the diagram

and are isomorphisms on Fn(S1) × · · · × Fn(Sk) ×C 0[k](M), where ΔS : M → M S

are the diagonal maps. It follows that spaces C∗(M) form a right module over the
PROP generated by the Fulton-MacPherson operad

P(Fn)(m, l) =
⋃

∑
mi =m

Fn(m1) × · · · × Fn(ml).

This module as a set is freely generated by C 0∗ (M). The stratification on Fn defines
a stratification on C∗(M).

Denote byC∗(C[k](M)) the complex of rational chains of the Fulton-MacPherson
compactification.

Definition 2 For aC∗(Fn)-algebra A and a compact parallelized n-manifoldwithout
boundary M call the complex C M∗(A) = C∗(C∗(M)) ⊗C∗(P(Fn)) A the manifoldic
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chain complex of A on M . Call the homology of the manifoldic chain complex the
manifoldic homology of A on M .

This definition is based on Definition 4.14 from [17]. By Proposition 2 one may
pass from a C∗(Fn)-algebra to an en-algebra. As it is shown in [13], the manifoldic
homology is the same as the topological chiral homology with constant coefficients
introduced in loc. cit of this en-algebra.

1.4.2 Morphism

Let (g, d) be a L∞-algebra. Let li>1 : �ig[i − 2] → g be its higher brackets,
that is, the operations in complex (1) corresponding to the star trees. The struc-
ture of L∞-algebra may be encoded in a derivation D = D1 + D2 + · · · on the
free super-commutative algebra generated by g∨[1], where D1 is dual to d and Di

is dual to li on generators and are continued on the whole algebra by the Leib-
niz rule. The Chevalley–Eilenberg chain complex C E∗(g) is the super-symmetric
power S∗(g[−1]) with the differential dtot = d + θ2 + θ3 + · · · , where θi is
dual to Di .

Denote by [C 0[k]] ∈ C∗(C[k](M)) the chain given by the submanifold C 0[k](M) in
C[k](M). For a C∗(Fn)-algebra A and a cycle c ∈ C∗(C[k](M)) denote by (a1 ⊗
· · ·⊗ak)⊗�k c ∈ C M∗(A) the chain given by the tensor product over the symmetric
group. Recall that by (2) for any C∗(Fn)-algebra A the complex A[n −1] is equipped
with a L∞ structure. Denote this L∞-algebra by L(A). Denote by Alt(a1⊗· · ·⊗ak)

the sum
∑

σ ±aσ(1) ⊗ · · · ⊗ aσ(k) by all permutations, where signs are sign given by
the sign of the permutation and the Koszul sign rule.

Proposition 3 For a C∗(Fn)-algebra A and a parallelized compact manifold without
boundary M the map T : a1 ∧ · · · ∧ ak �→ Alt(a1 ⊗ · · · ⊗ ak) ⊗�k [C 0[k]] defines a
morphism from Chevalley–Eilenberg complex C E∗(L(A)) to the manifoldic chain
complex C M∗(A).

Proof Denote the total differentials on both complexes C E∗(L(A)) and C M∗(A) by
dtot. One needs to show that dtot ◦ T = T ◦ dtot.

The boundary of [C 0[k]] in C∗(C[k](M)) is the sum of all codimension one strata:

∂[C 0[k]] = ∑
i θi [C 0[k−i+1]]. Here θi is the symmetrization in C∗(P(Fn)) of the

operation in C∗(Fn) that corresponds by Proposition 1 to the star with i inputs. This
means that

dtot ◦ T (a1 ∧ · · · ∧ ak) = (d Alt(a1 ⊗ · · · ⊗ ak)) ⊗
�k

[C 0[k]]

+ Alt(a1 ⊗ · · · ⊗ ak) ⊗
�k

∑
i>1

θi [C 0[k−i+1]]

One may carry θ’s from one factor of ⊗�k to another by the very definition of the
tensor product over C∗(P(Fn)). And the action of θ’s on the alternating sum again
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by definition is given by the higher brackets of the L∞-algebra. After summing
with d it gives the differential on the Chevalley–Eilenberg complex. It follows that
dtot ◦ T = T ◦ dtot.

1.5 Sketch: Invariants of a Parallelized Manifold and Koszul
Duality

1.5.1 Invariant of a Parallelized Manifold

The idea how to apply manifoldic homology to manifolds invariant is the following.
Below (Definition 3) we sketch a construction of a en-algebra Dn(V ) such that for
any n-dimensional parallelized compact manifold without boundary M manifoldic
homology H M∗(Dn(V )) is one-dimensional (Proposition 4). Then,

H∗(L(D
n(V ))) → H M∗(Dn(V )) (3)

given by Proposition 3 supplies us with a cocycle in the Lie algebra cohomology of
L(Dn(V )).

In this way we obtain an invariant that is conjecturally related to the universal
Chern–Simons invariant (see [1, 3]) which takes value in “graph cohomology”, with
the Chevalley–Eilenberg cochain complex of L(Dn(V )) representing the “graph
complex”.

1.5.2 Koszul Duality

Quillen duality [11, 16] gives an equivalence between homotopy categories of Lie
algebras Lie and connected cocommutative coalgebras coCom. Koszul duality [6,
13] is an analogous equivalence between the categories of augmented en- algebras
and coaugmented en-coalgebras satisfying certain conditions analogous to connect-
edness. I hope to elaborate on these conditions elsewhere. Denote the above men-
tioned categories by en − alg and en − coalg. The relationship between Quillen and
Koszul dualities is displayed in the diagram

Here, the functor L is given by (2),U n is the derived universal enveloping en- alge-
bra the functor that is derived left adjoint to L , ı is the embedding of cocommutative
coalgebras in en-coalgebras and Ab is its derived right adjoint.
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The linear dual of a en-coalgebra is a en-algebra. If some en-algebra and
en-coalgebra are related by Koszul duality, then the first one and the linear dual
of the second one are called Koszul dual en-algebras.

The following statement generalizes thewell-known fact thatHochschild homolo-
gies of Koszul dual algebras are dual to each other (see e.g. [18, Appendix D]).

Claim (Poincaré–Koszul duality) For a n-dimensional parallelized compact mani-
fold without boundary M , the manifoldic homologies on M of Koszul dual
en-algebras are linear dual to each other.

1.5.3 n-Weyl Algebra

We say that an element c of a en-algebra A is central, if the product map

en(k + 1) ⊗ c ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k+1

→ A

factors through

en(k + 1) ⊗ c ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k+1

→ c ⊗ en(k) ⊗ A ⊗ · · · ⊗ A︸ ︷︷ ︸
k

.

The latter map is induced by the natural projection from k+1-ary operations to k-ary
ones.

By a en-algebra with curvature we mean a en-algebra with a central element c
of degree n + 1. The condition on c may be relaxed by analogy with [15]. The new
condition may be formulated in terms of the deformation complex of an en-algebra.

Conjecturally, one may define Koszul duality for en-algebras with curvature in
such a way, that for n = 1, one recovers Koszul duality for algebras with curvature,
see [15].

Let V be a graded vector space with a non-degenerate symmetric in the graded
sense bilinear form q of degree−(n+1). Let S∗(V ∨) be the free graded commutative
algebra generated by the vector space dual to V . Denote by S∗(V ∨)∨ the restricted
dual coalgebra. By means of inclusion ı from (4) consider the pair (S∗(V ∨)∨, q) as
a en-coalgebra with curvature.

Definition 3 For a graded vector space V with a non-degenerate symmetric in the
graded sense bilinear form q of degree−(n +1)we denote byDn(V ) the en-algebra
Koszul dual to (S∗(V ∨)∨, q) and refer to it as n-Weyl algebra.

Proposition 4 For a n-dimensional parallelized compact manifold without bound-
ary M, the manifoldic homology H M∗(Dn(V )) is one-dimensional.

Proof By Statement 1.5, H M∗(Dn(V )) is linear dual to the manifoldic homology
of the en-algebra that is Koszul dual to Dn(V ). Thus, one needs to prove that the
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latter homology is one-dimensional. The Koszul dual en-algebra is en-algebra with
curvature (S∗(V ∨), q). The manifoldic homology of S∗(V ∨) is the free commuta-
tive algebra generated by V ∨ ⊗ H∗(M), where H∗(M) is homology of M negatively
graded. The curvature equips the underlying space of this algebra with a differential
given by multiplication by an element of cohomological degree 1 and of homoge-
neous degree 2. This element represents the pairing induced by the tensor product
of q on V and the Poincaré paring on H∗(M). The cohomology of this differential,
that is of the de Rham complex of a graded vector space, is manifoldic homology
of the en-algebra with curvature. As the cohomology of the de Rham complex is
one-dimensional, this implies the proposition.

Example 1 Let n = 1 and V is concentrated in degree 1. Then D1(V ) is the usual
Weyl algebra, that is the symplecticClifford algebra generated by vector spaceV [−1]
with the skew-symmetric form on it. For M = S1 the manifoldic homology is the
Hochschild homology and Proposition 4 matches with the well-known fact about
Weyl algebra:

dim H Hi (D
1(V )) =

{
1, i = dim V,

0, otherwise.

Note that this fact is crucially used in [5] and classes like (3) and (6) below restricted
to the Lie algebra of vector fields are exploited there to present the Todd class.

1.5.4 Concluding Remarks

Finally, let us look at the morphism from Proposition 3 from the Koszul duality
viewpoint.

For a commutative algebra C there is a canonical morphism H H∗(C) → C . It
may be generalized to manifoldic homology as follows.

Claim For a homotopy commutative algebra (= e∞-algebra) C and for a n-
dimensional parallelized compact manifold without boundary M there is a canonical
map from manifoldic chain complex of C to C itself:

π : C M∗(ı(C)) → C. (4)

Morphism π may be constructed by means of manifoldic homology of non-
compact manifolds: every manifold may be embedded R

N and as commutative
algebra may be considered as eN -algebra, the embedding induces a morphism of
manifoldic homologies, and manifoldic homology of C on R

N is C .
Diagram (4) shows that for a Lie algebra g the en-algebras U n(g) and ı(C E∗(g))

are Koszul dual, where C E∗ is the Chevalley–Eilenberg cochain complex. By
Poincaré–Koszul duality (Statement 1.5) for a n-dimensional parallelized compact
manifold without boundary M homologies H M∗(U n(g)) and H M∗(ı(C E∗(g))) are
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dual to each other. Morphism (4) gives π : C M∗(ı(C E∗(g)) → C E∗(g) and com-
posing with Poincaré–Koszul duality we obtain the map

H∗(g) → H M∗(U n(g)). (5)

Functors U n and L from (4) being adjoint, there is as canonical morphism
U n(L(A)) → A for any en-algebra A. It induces a map on manifoldic homologies:

H M∗(U n(L(A))) → H M∗(A). (6)

Claim The effect of the morphism from Proposition 3 on homologies is the compo-
sition of (5) for g = L(A) and (6).

This morphism may be described even simpler in Koszul dual terms. The Koszul
dual morphism is the composition

C M∗(A!) → C M∗(ı(Ab(A!))) → A!, (7)

where the first arrow is induced by the canonical morphism for a pair of adjoint
functors ı and Ab and the second arrow is given by (4).

For our main example A = Dn the Koszul dual en-algebra A! is a en-algebra
with curvature and the formula (7) is not applicable directly. It is not clear, what
the functor Ab means for such algebras. The question is interesting even for n = 1,
where Ab is the derived quotient by the ideal generated by commutators.

Acknowledgments I am grateful to D. Calaque, A. Cattaneo, G. Ginot, A. Khoroshkin and L.

Positselski for helpful discussions. My special thanks to M. Kapranov for the inspiring discussion

and the term “manifoldic homology”. This study supported by The National Research University-

Higher School of Economics’ Academic Fund Program in 2014/2015 (research grant No 14-01-

0034) and by the RFBR grant 12-01-00944.

2 Factorization Homology and Link Invariants (by Hiro Lee
Tanaka)

AbstractWedefine the notions of En-algebras and factorizationhomology, sketching
how one can construct link invariants using a version of factorization homology for
stratified manifolds. The work on factorization homology for stratified manifolds is
joint with David Ayala and John Francis.
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2.1 Overview

Factorization homology is a way to construct invariants of n-manifolds from one
piece of algebraic data. This algebraic data is an En-algebra A, and the invariant
associated to an n-manifold X is called the factorization homology of X with coeffi-
cients in A. We write this as

∫
X A.

En-algebras
A

factorization homology
Invariants of
n-manifolds

A

The idea of using En-algebras to create invariants of n-manifolds has been in
the air for some time, but ongoing work with Ayala and Francis [2] generalizes
factorization homology to define invariants of stratified manifolds. For instance, one
can define invariants for manifolds with boundary, for singular manifolds (such as
graphs or cones), for singular manifolds with decorations (such as colored graphs),
and for manifolds stratified by the image of an embedding. (As in the title, this
includes the case of a link inside S3.)

To define such an invariant we need more algebraic data than just an En-algebra.
Roughly speaking, we need the data of En-algebras and modules over them.

En-algebras
with modules

A,Mi

factorization homology
Invariants of
stratified

n-manifolds
A,Mi

There is also a physical motivation for factorization homology. Factorization
homology is also called topological chiral homology (for instance, by Jacob Lurie
in [13]) and this terminology is no accident. ‘Chiral homology’ is a concept familiar
from conformal field theories—in studying conformal field theories, one inputs a
chiral algebra, and chiral homology (i.e., the space of conformal blocks) is what one
assigns to a Riemann surface.

Topological chiral homology is the topologist’s analogue of this invariant—
instead of a chiral algebra we input an En-algebra, and we produce an invariant
sensitive to the diffeomorphism type of a manifold.1 In other words, topological chi-
ral homology should be the output of a topological field theory, instead of a conformal
one.

More precisely, when one has a classical field theory defined on a space-time
manifold X , the observables of the quantized field theory form a factorization algebra

1 As will be mentioned later, in this talk we create an invariant of manifolds with a framing. If we
are interested in studying manifolds with some structure B (such as an orientation), there is a class
of algebras (such as an EB algebra) which defines invariants for all manifolds with B-structures.
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on X . This is explained in Chap.3. If the field theory is topological, a factorization
algebra on a space-time is locally the same thing as an En-algebra.

Classical
TFTs

quantization
En-algebras

The global observables of the field theory on X is precisely the factorization
homology of X with coefficients in this En-algebra.

Finally, in a theory with surface operators (as in the work of Gukov and Witten in
[10]), or Wilson loops (such as Chern-Simons theory) or ‘t Hooft lines, one expects
the quantization to see the structure of embedded surfaces and embedded curves.
In the case these field theories are topological, one can broadly call such theories
“TQFTSwith surface operators,” andwe expect to produce En algebraswithmodules
from such field theories:

TFTs with
surface operators

quantization En-algebras
with modules

One goal is to understand the E3-algebras with modules that should arise from
Chern-Simons theory.

2.2 En-algebras

In what follows, Dn denotes the open n-disk of unit radius. We first define a category
Disk f r

n , enriched over topological spaces.

Definition 4 An object of Disk f r
n is a (possibly empty) finite set S. The set of

morphisms Disk f r
n (S, T ) is given by embeddings f : (Dn)�S → (Dn)�T such that,

on each connected component, f is of the form

f (x) = λx + C

for some fixed λ > 0, C ∈ Dn . The set Disk f r
n (S, T ) inherits a topology as a

subspace of all continuousmaps,whichwe topologize by the compact-open topology.

Note that Disk f r
n has a symmetric monoidal structure given by disjoint union.

Also, the f r stands for ‘framed’—see the remark after Definition3.1.

Definition 5 (En-algebra) Let Chaink be the category of chain complexes over
some base field k. An En-algebra A is a symmetric monoidal functor

A : Disk f r
n → Chaink.

of categories enriched in topological spaces.

http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_3
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Remark 2 Chaink admits an enrichment over topological spaces in a standard way,
for instance by using the Dold-Kan correspondence on morphisms. Heuristically, the
condition that A be a symmetric monoidal functor of categories enriched in topolog-
ical spaces means:

1. A(∅) = k
2. A sends disjoint unions to tensor products
3. A sends (higher) isotopies of embeddings to (higher) chain homotopies,

where the last condition means A is a continuous map on morphism spaces.

Remark 3 One can obviously define what an En-algebra is for any target category
C whose morphisms sets are spaces, and who has a symmetric monoidal structure.

Remark 4 Throughout, we write A for the functor, and we will write A for A(Dn).

Example 2 (n = 1) As we’ve heard before during the winter school, the n = 1 case
recovers the notion of an associative algebra. Let me explain how.

First, we note that the inclusion of two disjoint intervals into a single interval
gives a map

m : A ⊗ A → A

and the inclusion of the empty set into D1 yields a unit map

1 : k → A.

Composition of embeddings and the tensor product property (2) shows that 1 is
indeed a unit for the multiplication m. Finally, factoring the inclusion

D1 � D1 � D1 → D1

in two different ways yields the associativity condition on m.
However, there is a subtlety—because one can wiggle embeddings by isotopies,

what we really find is that m ought to be an associative multiplication up to higher
homotopies. So the correct statement is that any E1-algebra is in fact an A∞ algebra.
We state this result for the record:

Proposition 5 The category of E1-algebras is equivalent to the category of unital
A∞-algebras in Chaink.

Remark 5 On a first pass, no real intuition is lost by simply thinking of A∞ algebras
as associative algebras. However, as the next example shows, for n > 1 we shouldn’t
be so cavalier.

Example 3 (n = 2) Let A be an E2-algebra. Given a configuration of two disks
inside the unit disk, we get a multiplication
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m : A ⊗ A → A.

However, we see that there is an isotopy of embeddings taking this configuration to
one in which the embedded rectangles have flipped labeles—i.e., there is a homotopy
between

m(x1, x2) and m(x2, x1)

where xi ∈ A are elements of the algebra. This shows that m is in fact a commutative
multiplication if you only remember m up to homotopy. However, as anybody who’s
studied the configuration space of points in R

2 knows, there is a braid group hiding
in this picture—namely, if you have j embedded disks in D2, you can reconfigure
them in ways that are homotopic, but not canonically so. (i.e., the configuration space
of rectangles is connected, but has non-trivial topology.)

So rememberingm only up to homotopywould discard the information of the braid
group. (In fact, if the target category were vector spaces, rather than chain complexes,
an E2-algebra is the same things as a commutative algebra.) The conclusion is that
E2-algebras in fact encode a delicate system of multiplications, and sees the geom-
etry of the configuration space of disks in D2. This is precisely the reason that an
En algebra should be expected to yield invariants of n-manifolds.

2.3 Factorization Homology

Definition 6 Let Mfld f r
n be the topologically enriched category whose objects are

smooth n-manifolds X together with a framing, i.e., a choice of isomorphism φX :
T X ∼= X × R

n . A morphism in Mfld f r
n (X, Y ) is a pair ( f, h) where f : X → Y is

an embedding, and h is a choice of homotopy from f ∗φY to φX .

Note that Disk f r
n can be viewed as the full subcategory of Mfld f r

n consisting of
objects which are diffomeorphic to disjoint copies of Dn . This is because the space of
rectilinear embeddings is homotopy equivalent to the space of framed embeddings.

So given an algebra A, the question is whether we can extend the functor A to the
whole of Mfld:

There is in fact a general way of doing this since Chaink itself is a well-behaved
category:

Definition 7 (Factorization Homology) Let
∫ : Mfld f r

n → Chaink be the left Kan
extension of the functor A along the inclusion Disk f r

n → Mfld f r
n . We call the result-

ing functor factorization homology, and write
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X �→
∫

X

A

for any n-manifold X . We say that
∫

X A is the factorization homology of X with
coefficients in A.

Remark 6 (Left Kan extensions) Intuitively, anyn-manifold is understoodby seeing
how it is glued together from many copies of Rn . So one can express a manifold as a
gigantic diagram of embedded copies ofRn , together with gluingmaps. To define the
left Kan extension, one simplywrites down the same diagram in the category of chain
complexes, and glues along the corresponding maps given by the functorA. (i.e., one
takes the colimit of the corresponding diagram.) Also, the left Kan extension we take
is not a naive left Kan extension, but the ∞-categorical Kan extension. Equivalently,
one takes the homotopy left Kan extension.

Remark 7 If one begins with an En-algebra in a general symmetric monoidal, topo-
logically enriched category C, one can still define factorization homology as left Kan
extension so long as C admits enough colimits.

2.4 The Main Theorem

We first record some properties of factorization homology:

Theorem 1 Factorization homology satisfies the following properties:

1. It sends disjoint unions of manifolds to tensor products of chain complexes.
2. It sends (higher) isotopies of embeddings to (higher) homotopies of chain maps.
3. It satisfies excision. That is, if a manifold X can be written as a union

X = X0 ∪Y×D1 X1

where X0 ∩ X1 ∼= Y × D1 as framed manifolds, then the factorization homology
of X is given by the bar construction

∫

X

A ∼=
∫

X0

A ⊗ ∫
Y×D1

A

∫

X1

A.

Remark 8 (Excision) The difficulty of the theorem is not in (1) and (2), but in the
excision property. As discussed before, any E1 algebra is an A∞ algebra. And we
see that the natural inclusion

{idY } × Emb((D1)�i , D1) ⊂ Emb((Y × D1)�i , Y × D1)

gives the structure of an E1 algebra to
∫

Y×D1 A.
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Moreover, we have a family of natural embeddings

(Y × D1) � X0 → X0, (Y × D1) � X1 → X1

which, by the monoidal property of factorization homology, give rise to maps

(

∫

X0

A) ⊗ (

∫

Y×D1

A) →
∫

X0

A, (

∫

Y×D1

A) ⊗ (

∫

X1

A) →
∫

X1

A.

In other words, the decomposition gives
∫

X0
A and

∫
X1

A the structure of a right-
and left-modules over

∫
Y×D1 A, respectively. Thus the bar construction makes sense

in (3).

Conversely, letH be the category of all functors H : Mfld f r
n → Chaink satisfying

the properties (1)–(3) in the theorem above. There is a clear map

evRn : H → En-alg

given by evaluating H at the manifold R
n . The following recognition principle was

proven by John Francis in [7]:

Theorem 2 (Francis) evRn is an equivalence of categories. An inverse functor is
given by factorization homology.

My joint work with David Ayala and John Francis [2] replaces Mfld f r
n by a

category SMfldn of stratified n-manifolds.2 The point is that, even for a stratified
n-manifold X , we know what the local structure of X looks like. For instance, a
graph locally looks like an interval or an i-valent vertex for some i . And an embedded
submanifold A ⊂ B looks locally like an open neighborhood of B, or like the tubular
neighborhood of an open patch in A. Such local pieces form a category Loc—this
is in analogy with the case of smooth manifolds, where the local pieces form the
category Disk f r

n . Roughly speaking, Loc is a category whose objects are disjoint
unions of local pieces, and whose morphisms are embeddings between them.

Then a functor A : Loc → Chaink is called a Loc-algebra, and these often give
structures that look like modules over an En-algebra, where n is the top dimension
of pieces in Loc. (I will give examples in the next subsection.)

Once more one can define factorization homology, for stratified manifolds, by
taking the left Kan extension

2 The notation is somewhat misleading, since there is not a unique category of stratifiedmanifolds—
one can choose to include or exclude certain kinds of stratifications, but this is irrelevant to the
philosophy of this talk.
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This functor still satisfies excision, and the main result of our joint work is the
following generalization of the previous theorem:

Theorem 3 (Ayala-Francis-T) Let HS be the category of functors H : SMfldn →
Chaink which satisfy excision, are monoidal, and send (higher) isotopies of embed-
dings to (higher) chain homotopies. Then the restriction map to Loc induces an
equivalence of categories

HS ∼= Loc-alg.

The proof of this theorem appears in [2].

2.5 Examples

Example 4 (The circle and Hochschild homology) Recall from Chap.13 that the
basic example is when n = 1 and X = S1. Then the excision axiom tells us that

∫

S1

A ∼= A ⊗A⊗Aop A.

The right-handside of this equivalence is a well-known object—it is the Hochschild
homology of A with coefficients in A, or in short, the Hochschild homology of A. It
is the derived ‘abelianization’ of A, in that H0 of the right-hand-side recovers the
group

A/[A, A].

Geometrically, one can see this as the ability to collide two points from the left, or
from the right, on a circle.

Example 5 (Hochschild homology with coefficients)Nowlet us consider the category
SMfld whose objects are smooth 1-manifolds with marked points. Then Loc is a
category generated by two objects: The open interval, and the open interval with
a single marked point. (Any 1-manifold with marked points can be constructed by
gluing disjoint unions of these ‘local pieces’ together.) Let us suppose we have a
Loc-algebra A : Loc → Chaink. Then to the interval with the marked point, we
associate a chain complex M , and to an open interval with no marked point, we
associate a chain complex A. A is an A∞-algebra as before.

Given an interval (−1, 1) with a marked point at 0, one can include a copy of the
interval (0, 1) on either side of the marked point. These two inclusions induce maps

A ⊗ M → M, M ⊗ A → M

http://dx.doi.org/10.1007/978-3-319-09949-1_13
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and one can check that a Loc-algebra in this case is precisely the data of an
A∞-algebra A, and a pointed bimodule M . Pointed simply means that there is a
map k → M compatible with the A action. (This corresponds to the inclusion of the
empty set into the interval with a marked point.)

Now let X = (S1, t0) be a circle with a marked point t0. Then by excision, we
see that

∫

X

A ∼= M ⊗A⊗Aop A.

The right-hand-side is the chain complex giving rise to Hochschild homology of A
with coefficients in M . In general, a collection of k marked points on the circle will
have factorization homology equal to Hochschild homology of A with coefficients
in M⊗k.

Example 6 (Hochschild homology with more coefficients) More generally, if we let
SMfld contain one-manifoldswith coloredmarked points, each colorwill correspond
to a different bimodule Mi over A, and the circle with various colored, marked points
will yield Hochschild homology of A with coefficients in the appropriate tensor
powers of the Mi .

Example 7 (Link invariants) Now let Loc be the category generated by two objects:
R
3, and a copy ofR1 linearly embedded intoR3.Wewill refer to the latter by the pair

(R3,R1). The stratified manifolds which can be built out of such pieces are precisely
3-manifolds with embedded links. Moreover, one can describe the structure that a
Loc-algebra A has. Let us denote A := A(R3) and M := A((R3,R1)).

Clearly, the stratified embeddings of copies of (R3,R1) into itself give the struc-
ture of an E1 algebra to M , and A as usual has the structure of an E3 algebra.
Moreover, the inclusions

R
3 � (R3,R1) → (R3,R1)

yield maps
A ⊗ M → M

which are compatible with all multiplicationmaps. Hence, M is an E1 algebra receiv-
ing a compatible action from the E3-algebra A.

Remark 9 Though we have not talked about the notion of push-forward, one can
take a generic map from L ⊂ R

3 to R
2 to obtain a link diagram in R

2. This is a
stratified manifold, and its factorization homology is the same as that of the link
itself. One verifies easily that the Reidemeister relations hold for this invariant.

Remark 10 As Witten explained in his seminal paper [19], it was his and Atiyah’s
aim to give a definition of a link invariant which is manifestly three-dimensional;
that is, one that does not crucially rely on the Reidemeister relations, and is closer
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in philosophy to an embedding invariant. One can view this formulation, in terms of
factorization homology, as a continuation of this arc.
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Deligne-Beilinson Cohomology in U(1)
Chern-Simons Theories

Frank Thuillier

1 Introduction

In the early years of the 19th Century, after having studied the trajectories of some
celestial objects as Asteroid Ceres or Comet Biela, Carl Freidrich Gauss set forth his
famous formula for the linking number, thus providing one of the first mathematical
tools allowing a characterization of celestial orbits configurations [1, 2]. One hundred
years later, in 1931, Heinz Hopf indirectly highlighted a relation between Gauss
linking number and homotopy classification of maps ψ : S3 → S2, thanks to the
Hopf fibration and the Hopf invariant H(ψ) [3]. In 1947 John Henry Whitehead
gave an integral formula for the Hopf invariant H(ψ) [4]. In 1958, while dealing
with astrophysical applications of Hydromagnetics, Lodewijk Woltjer exhibited an
integral defining a conserved quantity [6] that Keith Moffat called helicity [5] and
which turned out to be closely related to Whitehead’s integral. Last but not least,
helicity on its turn appears related with the abelian version of the Chern-Simons
characteristic forms introduced by Shiing-Shen Chern and James Simons in 1971
[7]. All these historical references may suggest the existence of an intrinsic relation
between Gauss linking number and the U (1) Chern-Simons theory.

On the other hand, Deligne-Beilinson cohomology goes back to an article of
Pierre Deligne published in 1972 [8] and independently to one by Alexander A.
Beilinson published in 1985 [9]. Along with this, Jeff Cheeger and James Simons,
after a series of lectures at Stanford in 1973, wrote an article where they introduced
the notion of Differential Characters [10], thereby extending Chern and Simons orig-
inal work. More recently, Reese Harvey, Blaine Lawson and John Zweck proposed
an alternative description of Cheeger-Simons Differential Characters, based on de
Rham-Federer currents, that they called Sparks [11]. The work of Michael Jerome
Hopkins and Isadore Manuel Singer on Differential Cohomology [12], which is also
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related to Differential Characters, has also to be mentioned. Recently, James Simons
and Dennis Sullivan have clarified the relation between of all these notions, show-
ing their equivalence [13]. In this review, Deligne-Beilinson point of view will be
preferred.

Although it takes its roots in algebraic geometry and L-functions [14–16],
Deligne-Beilinson cohomology proved extremely effective in the study of flat vec-
tor bundles with connections [17, 18], K-theory [19], or in the classification of
abelian Gerbes with connections [20, 21]. Recently Deligne-Beilinson cohomol-
ogy has extended its scope to that of Theoretical Physics [22–31]. An emblematic
example is provided by the Ehrenberg-Siday-Aharonov-Bohm effect [32, 33] which
can be revisited through Deligne-Beilinson cohomology. And as this effect plays
an important role in Geometric Quantization [34], Deligne-Beilinson cohomology
should enter in the landscape of this geometrical formulation of QuantumMechanics
and even suggest possible generalizations.

It is well-known that in a non-abelian Chern-Simons theory expectation values of
Wilson loops yield link and knot invariants [35–45], at least perturbatively in Quan-
tum Field Theory. In the U (1) Chern-Simons theory, the use of Deligne-Beilinson
cohomology yields the relation between linking numbers and expectation values of
Wilson loops [28–31]. The corresponding relation is much hazier in the non-abelian
case, even though the non-abelian action is a Deligne-Beilinson cohomology class
just as in the abelian case. In this review we would like to exhibit some benefits in
the use of Deligne-Beilinson cohomology in the context of the U (1) Chern-Simons
Quantum Field Theory on a 3-dimensional closed manifold M . As it will appear, all
computations are performed on M itself, without having to resort to Dehn surgery.
Among the results thus obtained, let us point out the quantization of the coupling con-
stant and of charges of the colored knots, the explicit determination of link invariants
from the expectation value of Wilson loops, the triviality of the link invariants for
homologically non trivial links, Reshetikhin-Turaev invariants of 3-manifolds etc.
Note that most—if not all—of the results presented in this review can be generalised
to (4l + 3)-dimensional smooth closed manifolds [30]. We will mention some of
these generalizations.

All manifolds considered in this review will be closed smooth oriented manifolds
endowed with a good cover. Let us recall that a cover of a manifold M is good if
any non-empty intersection of its open sets is contractible, thus allowing to apply
Poincaré lemma in such an intersection. Furthermore, as they play a key role in
this review, the reader will find a brief reminder of Čech-de Rham technics in the
Appendix.

2 A Short Review of Deligne-Beilinson Cohomology

In this section we will present Deligne-Beilinson cohomology with the use of the
Čech-de Rham bi-complex. This approach allows for instance to establish an isomor-
phism between de Rham and Čech real cohomologies as reminded in the Appendix.
Once a truncation in the de Rham complex is introduced this approach gives birth to
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the sought cohomology. The determination of the cohomology groups so generated
then yields two exact sequences into which these groups are embedded. In a second
subsection the most important properties of Deligne-Beilinson cohomology will be
exhibited as well as their relation with Pontryagin duality which naturally arises from
the construction.

The notation
Z= will mean equality modulo integers.

2.1 From the Cech-de Rham Representatives to the Canonical
Exact Sequences

We would like to introduce Deligne-Beilinson cohomology so that, like Monsieur
Jourdain, theoretical physicists realize they often used it without even knowing it.
This cohomology naturally occurs in the mathematical context of U (1) principal
bundles with connections and is physically realized through the Ehrenberg-Siday-
Aharonov-Bohm effect. Indeed, the shift in the interference pattern which reflects
this effect is semi-classically characterized by the quantity exp{i e

�

∮
γ

A}. This sug-
gests that up to some normalization factor the quantity

∮
γ

A is defined modulo inte-
gers. Deligne-Beilinson cohomology gives a mathematical substance to this idea.
This reminds the Stern and Gerlach experiment which exhibited half-valued angular
momentum for the electron thus giving rise to the notion of spin, mathematics then
showing how spin is related to the eigenvalues of the generators of SU (2), itself
naturally generalizing the classical group of rotation in space.

Lemma 1 The Deligne-Beilinson cohomology group H p
D(M,Z) can be defined by

various exact sequences, including the following two:

0 → Ω p(M)

Ω
p
Z
(M)

j1−→ H p
D(M,Z)

ε−→ H p+1(M,Z) → 0

0 → H p(M,R/Z)
j2−→ H p

D(M,Z)
cv−→ Ω

p+1
Z

(M) → 0.

There is a Čech-de Rham realization of the Deligne-Beilinson cohomology groups.

2.1.1 The Čech-de Rham Construction

Let M be a m-dimensional manifold, U = (Uα)α∈I an open cover of M and
P(M, U (1)) a U (1) principal bundle over M . The transition functions gαβ :
Uα ∩ Uβ → U (1) of P can be written

gαβ = e2iπΛαβ , (1)

for some collection of smooth functionΛαβ : Uα∩Uβ → R. On these local functions
the cocycle condition gαβgβγ gγα = 1 that the transition functions have to satisfy in
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the intersection Uα ∩ Uβ ∩ Uγ reads as:

Λαβ + Λβγ + Λγα = nαβγ ∈ Z, (2)

The functions Λαβ are not uniquely determined by Eq. (1), since the collection:

Λ̃αβ = Λαβ + mαβ, (3)

yields the same transition functions for any mαβ ∈ Z. In fact the transition functions
are themselves ambiguous since g̃αβ = h−1

α gαβhβ generate an equivalent principal
bundle over M . The collection of U (1)-valued functions hα can on their turn be
written as:

hα = e2iπξα , (4)

thus inducing the change:

Λαβ → Λαβ + ξβ − ξα. (5)

Finally, the collection of integers nαβγ defined in the intersections Uα ∩Uβ ∩Uγ by
Eq. (2) tautologically satisfies:

nβγρ − nαγρ + nαβρ − nαβγ = 0, (6)

in the intersectionsUα ∩Uβ ∩Uγ ∩Uρ . Equation (6) means that the collection (nαβγ )

is a Čech 2-cocycle for the good cover U of M (see Appendix).
A U (1) connection of M can be defined as a collection of local 1-forms Aα defined
in each Uα and such that:

Aβ − Aα = dΛαβ, (7)

in the intersections Uα ∩ Uβ . The collection of local 1-forms Aα can be obtained by
pulling back a 1-form A on P(M, U (1)) with local sections sα according to:

Aα = s∗
αA, (8)

in eachUα . The collections of local fields and integers thus generated are then collated
into the following triplet:

A = (Aα,Λαβ, nαβγ ), (9)

whose components satisfy:
⎧
⎪⎨

⎪⎩

(δ0A)αβ := Aβ − Aα = d0Λαβ

(δ1Λ)αβγ := Λβγ − Λαγ + Λαβ = d−1nαβγ

(δ2n)αβγρ := nβγρ − nαγρ + nαβρ − nαβγ = 0

, (10)
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in the appropriate intersections.We have specified the degree of the various Čech and
de Rham differential operators appearing in these equations, and we have denoted
by d−1 the extension of the de Rham differential which is nothing but the injection
of numbers into functions (i.e. 0-forms).

As already noticed, a collection like (9) suffers from the following ambiguities:

⎧
⎪⎨

⎪⎩

Aα → Aα + d0ξα

Λαβ → Λαβ + ξβ − ξα − d−1mαβ = Λαβ + (δ0ξ)αβ − d−1mαβ

nαβγ → nαβγ − mβγ + mαγ − mαβ = nαβγ − (δ1m)αβγ

. (11)

From a physicist point of view these ambiguities are nothing but (enlarged) gauge
transformations. Remarkably, Eqs. (10) and (11) can be written in a more compact
way as:

{
D(1,1)A = 0

A → A + D(0,1)Ξ
, (12)

with:
{

D(1,1) := (δ0 + 0) − (δ1 + d0) + (δ2 + d−1)

D(0,1) := (δ0 + d0) − (δ1 + d−1)
. (13)

The alternating signs ensure that:

D(1,1) ◦ D(0,1) = 0. (14)

This provides a cohomological interpretation of the construction. More precisely
A will be refereed as a Deligne-Beilinson (DB) cocycle and D(0,1)Ξ as a DB co-
boundary. To understand the double indexation of the Deligne-Beilinson operators
appearing in Eq. (13) one can look closer at the expression of D(1,1) where the de
Rham operator d1 which should appear in the first parenthesis has been replaced by
the tautological zero operator. However, this “truncation” has not been performed
on D(0,1). In other words, the second index in a DB operator specifies where the
truncation is done in the de Rham complex (here on 1-forms) whereas the first index
refers to the degree of the objects on which this DB operator acts. Accordingly, the
DB degree ofA is made of the Čech and de Rham degrees of the components forming
A, and one should rather write A(1,1) and Ξ (0,1).

Finally, taking the quotient of the set of DB (1, 1)-cocycles with the set of DB
(0, 1)-coboundaries one obtains the space of (1, 1)-DB cohomology classes:

H (1,1)
D (M,Z), (15)
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just like the quotient of the space of closed p-forms with the space of exact p-forms
generates the pth de Rham cohomology group of M .

In fact, as in the more usual case of the Čech-de Rham formalism, what has been
defined is a cohomology group subordinated to the good cover U . In order to get the
corresponding DB cohomology group for M one has to take the inductive limit over
refinements of U [46]. We will either assume that this limit as been taken or that
we deal with DB cohomology spaces subordinate to a given good cover U , knowing
that if one respects the rules of the DB cohomology theory all the procedures and
constructions are eventually independent of U [27] .

It is quite obvious how to generalize the previous construction to obtain DB
cohomology spaces H (p,q)

D (M,Z). Nonetheless, all the DB cohomology spaces we
encounter in the sequel will be such that p = q. Hence, to simplify notations we
replace (p, p) by p in all the DB terminology since no confusion will be possible.
Hence, a DB p-cocycle is a (p + 2)-tuple:

ω = (ω(0,p)
α0

, ω(1,p−1)
α0α1

, . . . , ω(p,0)
α0,...,αp

, n(p+1,−1)
α0,...,αp+1

), (16)

where ω(k,p−k) is a collection of (p − k)-forms defined in the intersections of degree
k of elements of U and n(p+1,−1) is an integral Čech (p + 1)-cocycle, which is
annihilated by the DB differential operator:

Dp := (δ0 + 0) − (δ1 + dp−1) + · · · + (−1)p+1(δp+1 + d−1). (17)

Coboundaries are defined with respect to the standard Čech-de Rham operator∑p
k=0(−1)k(δk + dp−1−k). The DB class of a DB cocycle ω will be denoted ω̄

and the corresponding DB group H p
D(M,Z).

We made an unconventional choice in the degree of the DB classes with respect
to the original literature where the DB cohomology groups are increased by one
degree. In fact, the de Rham complex defining the DB cohomology was originally
truncated at Ω p−1(M) in order to define the pth DB cohomology group, and not at
Ω p(M) as we have chosen here. Hence what we call here a DB class of degree p
is described as a DB class of degree p + 1 in this original formalism. In particular,
with our convention the DB degree 1 coincides with the form degree of the local
representative of a connection, whereas this connection would be an object of DB
degree 2 in the original convention, which is the form degree of the curvature of the
connection.

The next step is to try to determine more precisely the DB cohomology groups.

2.1.2 Canonical Exact Sequences, Affine Structure and Torsion Origins

Let us solve Eqs. (10) and (11) (or equivalently (12)) and then extrapolate to the
general case. Let A be a DB 1-cocycle written as in Eq. (9). Our aim is to identify the
DB 1-cocycles which are not equivalent to A. A first way to do this is to notice that
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the integral Čech 2-cocycle n which defines the last components of A, determines
an integral Čech cohomology class [n] once equivalence (11) is taken into account.
Thus the DB class Ā determines a Čech cohomology class [n], yielding the surjective
mapping:

H1
D(M,Z)

ε−→ H2(M,Z), (18)

where H2(M,Z) denotes the second Čech cohomology group of M .
Let us assume that the cohomology class of n has been fixed, and let A =

(Aα,Λαβ, nαβγ ) and Ã = ( Ãα, Λ̃αβ, nαβγ ) be two inequivalent U (1) connections
on M . Then:

(δ1(Λ̃ − Λ))αβγ = d−1nαβγ − d−1nαβγ = 0, (19)

which implies that Λ̃αβ − Λαβ = (δ0ρ)αβ . This yields:

(δ0( Ã − A))αβ = d0(Λ̃ − Λ)αβ = d(δ0ρ)αβ = (δ0dρ)αβ, (20)

which means that

Ãα − Aα = dρα + (δ−1ω)α (21)

where (δ−1ω)α := ω|α denotes the restriction to Uα of a 1-form ω on M . On the
other hand, for any 1-form ω, the collection ((δ−1ω)α, 0, 0) generates a DB cocycle
since δ0(δ−1ω)αβ = ω|β − ω|α = 0 = d0, δ10 = d−10 = 0 and δ20 = 0. This
defines the mapping:

j1(ω) := (ω|α, 0, 0), (22)

which trivially goes to the DB classes yielding:

Ω1(M)
j1−→ H1

D(M,Z), (23)

where Ω1(M) denotes the space of 1-forms on M . This mapping reflects the well
known fact that for a fixed principal bundle onemoves amongU (1) connections with
1-forms.

When ω is a closed 1-form ω|α = d0ζα in each Uα . The DB cocycle (ω|α =
d0ζα, 0, 0) is equivalent to the DB cocycle (0, (δ0ζ )αβ, 0), and in the intersections
Uα ∩ Uβ one has (δ0ζ )αβ = ζβ − ζα = d−1rαβ since d0(δ0ζ )αβ = (δ0d0ζ )αβ =
(δ0δ−1ω)αβ = 0. Furthermore (δ1r)αβγ = (δ1δ0Λ)αβγ = 0. If the real Čech 1-
cocycle rαβ is not homologous to an integral cocycle, we cannot go any further and
we endwith the non trivialDB cocycle (0, d−1rαβ, 0). However, whenω is closed and
has integral periods it is always possible to find a descent for which rαβ = mαβ where
the mαβ ’s are integers. According to Eq. (11) the cocycle (0, d−1rαβ = d−1mαβ, 0)
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is equivalent to the zero cocycle (0, 0,−(δ1m)αβγ = −(δ1r)αβγ ) = (0, 0, 0) which
trivially defines the zero-connection on M × U (1). This shows that A + ω = (Aα +
(δ−1ω)α,Λαβ, nαβγ ) is aDBcocycle equivalent toAwheneverω belongs toΩ1

Z
(M),

the space of closed 1-form with integral periods on M , while in any other case A+ω

and A are inequivalent. Hence, we have to factorize Ω1
Z
(M) out of Ω1(M) in order

to identify inequivalent DB classes.
To sum up the situation, once the Čech cohomology class [n] has been fixed, a

change of DB cohomology class is ensured by an element of Ω1(M)/Ω1
Z
(M). This

yields the first exact sequence:

0 → Ω1(M)

Ω1
Z
(M)

j1−→ H1
D(M,Z)

ε−→ H2(M,Z) → 0, (24)

into which H1
D(M,Z) is canonically embedded. This sequence plays a crucial role

in the U (1) Chern-Simons Quantum Field Theory.
One can obtain a second exact sequence into which H1

D(M,Z) is canonically
embedded by considering the de Rham derivative of the top component of A, that is
to say:

Fα := d Aα. (25)

Due to the first equation of (10) the local two forms Fα satisfy:

Fβ − Fα := d(Aβ − Aα) = d2Λαβ = 0. (26)

in the intersections Uα ∩ Uβ . Hence, they glue together to form a closed 2-form F
on M : the curvature 2-form of the U (1) connection A. One can check that two U (1)
connections on M which do not have the same curvature are necessarily inequivalent
DB cocycles. Remembering that U (1) curvatures can be normalized in such a way
that they have integral periods,1 we conclude that there is a canonical surjective
mapping:

H1
D(M,Z)

cv−→ Ω2
Z
(M), (27)

where Ω2
Z
(M) denotes the space of closed 2-form with integral periods on M .

Let us assume that the curvature 2-form is fixed. Two U (1) connections A =
(Aα,Λαβ, nαβγ ) and Ã = ( Ãα, Λ̃αβ, ñαβγ ) with the same curvature satisfy:

Ãα − Aα = dμα, (28)

1 The U (1) gauge fields used by physicists are related to the top component of the corresponding
DB 1-cocycles according to Aα = 2π(�c/e)Aα , where e is the charge of the electron, � is the
Planck constant and c is the speed of light; the field strength tensor is then F = 2π(�c/e)F.
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in each Uα . Hence:

(δ0( Ã − A))αβ = d(Λ̃ − Λ)αβ = (δ0dμ)αβ = d(δ0μ)αβ, (29)

and therefore:

Λ̃αβ − Λαβ = (δ0μ)αβ + d−1rαβ, (30)

in the intersections Uα ∩ Uβ . This finally implies that:

(δ1r)αβγ = ñαβγ − nαβγ , (31)

which means that the Čech cochain rαβ is a cocycle inR/Zwhich defines an element
of H1(M,R/Z), the R/Z-valued Čech cohomology group. This leads to the second
exact sequence:

0 → H1(M,R/Z)
j2−→ H1

D(M,Z)
cv−→ Ω2

Z
(M) → 0. (32)

Note that the injection H1(M,R/Z)
j2−→ H1

D(M,Z) is defined, at the level of repre-
sentatives, by:

j2(rαβ) := (0, d−1rαβ, 0), (33)

for any rαβ defining a cohomology class in H1(M,R/Z). We leave to the reader the
task to check in detail that the two sequences (24) and (32) are truly exact.

The generalization to H p
D(M,Z) leads to the exact sequences:

0 → Ω p(M)

Ω
p
Z
(M)

j1−→ H p
D(M,Z)

ε−→ H p+1(M,Z) → 0

0 → H p(M,R/Z)
j2−→ H p

D(M,Z)
cv−→ Ω

p+1
Z

(M) → 0.

(34)

Elements of H p
D(M,Z) will be refereed as p-connections of M , but 1-connections

will be simply called connections, as usual.
One can note that:

Hm
D (M,Z) ∼= Ωm(M)

Ωm
Z

(M)
∼= Hm(M,R/Z) ∼= R/Z � S1. (35)

There is a very useful interpretation of the exact sequences (34): with respect to the
first exact sequence H p

D(M,Z) is a fiber space over H p+1(M,Z) whose (affine)
fibers have Ω p(M)/Ω

p
Z
(M) as translation group, while with respect to the sec-

ond exact sequence H p
D(M,Z) is a fiber space over Ω

p+1
Z

(M) whose fibers have
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Fig. 1 Representation of the Deligne-Beilinson group H1
D(M, Z) as a fiber space over H2(M, Z)

H p(M,R/Z) as translation group. The space Ω
p
Z
(M) corresponds to what physi-

cists call the (enlarged or full) gauge group, while Ω
p+1
Z

(M) defines the space of
generalized field strength tensors (or (p + 1)-curvature) (Fig. 1).

For later convenience, let us have a closer look at the case m = 3 and p = 1.
First, the Universal Coefficient theorem together with Poincaré duality [46] allow
to replace the base space H2(M) := H2(M,Z) of H1

D(M,Z) with the homology
space H1(M) := H1(M,Z) since these two spaces are isomorphic in that case. As
a finite abelian group, this later group can be decomposed as:

H1(M) = F1(M) ⊕ T1(M) (36)

where F1(M) is the free part and T1(M) the torsion (or cyclic) part of H1(M). Finally,
one can apply to H1(M) the universal decomposition theorem of finitely generated
abelian groups [47], thus getting:

H1(M) = Z
q ⊕ Zp1 ⊕ · · · ⊕ ZpN , (37)

where the pi ’s are integers such that pi > 1 and pi divides pi+1, and Z
q means

q-times the direct sum of Z with itself. Let us recall that a cycle z on M is a torsion
cycle if there exist an integer p > 1 such that p.z is a boundary. A typical example
of 3-dimensional manifold with torsion is RP3 � SO(3) � SU (2)/Z2. A larger set
of 3-dimensional manifolds with torsion is provided by lens spaces L(p; r) [35, 43,
48].

At this stage it is important to remark that there is no particular origin on the
fibers of H1

D(M,Z), except for the fiber over 0 ∈ H2(M) on which the DB class
0̄—a representative of which is the zero connection defined by the trivial DB cocycle
(0,0,0)—plays the role of a canonical origin. Accordingly, the translation group
Ω1(M)/Ω1

Z
(M) can be canonically identified with the trivial fiber of H1

D(M,Z),
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i.e. the fiber over 0 ∈ H2(M). This is the reason why the usual Quantum Field
Theory approach only deals with this fiber, missing all the others.

Actually, there are also particular origins on the fibers over the torsion elements
of H2(M) � H1(M). Such a fiber will be refereed as a torsion fiber. Let us assume
decomposition (37) for H1(M). Let κi be a Čech cocycle which generates the com-
ponent Zpi of T 2(M) � T1(M). This means that there exists a Čech 1-cochain ζi

such that pi .κi = δζi and for any 0 ≤ mi ≤ pi − 1 the cocycle mi .κi generates a
non trivial class mi .κ i ∈ Zpi . Then, by seeing κi as a real Čech cochain, one can
write κi = δ(ζi/pi ). The collection A0

pi
= (0, d−1(ζi/p), κi ) is a DB cocycle since

it fulfills (10). As the first component of A0
pi
is zero, the corresponding 2-curvature

is zero and hence A0
pi
is a flat U (1) connection of M . By construction the DB class

Ā0
pi

belongs to the fiber over κ i ∈ T 2(M) and hence can be chosen as origin on
this torsion fiber. We call such an origin a torsion origin. One can wonder whether a
torsion origin is unique on its torsion fiber. All the connections on the fiber of Ā0

pi
are

of the form Ā0
pi

+ ω̄ with ω̄ ∈ Ω1(M)/Ω1
Z
(M). On the other hand any other torsion

origin on this fiber has to correspond to a flat connection. Hence the DB class Ā0
pi

+ω̄

is a torsion origin if and only if ω ∈ Ω1
0 (M), the space of closed 1-forms of M . Con-

sequently, the translation subgroup which allows to move among torsion origins on a
given torsion fiber is the q-dimensional torusΩ1

0 (M)/Ω1
Z
(M) and the torsion origins

are unique on their torsion fiber if and only if F2(M) � F1(M) = 0. The torsion
origin Ā0

pi
+ ω̄ can be represented by (δ−1ω, d−1(ζ/p), κ)with ω ∈ Ω1

0 (M), and as

ω fulfills a Čech-de Rham descent (see Appendix) which generates a real Čech cocy-
cle r , this torsion origin can equivalently be represented by (0, d−1((ζ/p) + r), κ).
When r is an integral cocycle, which happens if an only if ω has integral periods,
then the latter DB cocycle is a representative of the original class Ā0

pi
. Last but not

least, mi .Ā0
pi
is a torsion origin on the torsion fiber over mi .κ i for 0 ≤ mi ≤ pi − 1,

and i = 1, . . . , N .
On the free fibers of H1

D(M,Z), i.e. the fibers over F2(M), not only there is no
canonical origin, but there are also no particular ones unlike the torsion case. Nev-
ertheless, there are free flat connections which are nothing but connections defined
by closed 1-forms of M . The corresponding DB classes necessarily belong to the
trivial fiber. One then deduces that the torus Ω1

0 (M)/Ω1
Z
(M) canonically identifies

with the space of these free flat elements of H1
D(M,Z). Such a class can always

be represented by (δ−1ω, 0, 0) or equivalently—after a Čech-de Rham descent—by
(0, d−1r, 0), where r is a real non integral Čech cocycle.

In the sequel generic origins of H1
D(M,Z) will be denoted by Ā0

n, origins on
free fibers by Ā0

a and origins on torsion fibers by Ā0
κ . We keep the notation Ā0

pi
for

a torsion origin over the torsion class generating Zpi in the decomposition (37) of
H1(M) � H2(M), origins on the other classes being chosen as mi .Ā0

pi
.
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2.2 Fundamental Properties and Pontryagin Duality

The DB cohomology spaces have a great set of properties that we would like to
exhibit now. these properties play a fundamental role in the use of DB cohomology
within the Quantum Field Theory framework.

Lemma 2 1) There is a canonical graded pairing between DB cohomology spaces:

� : H p
D(M,Z) × Hq

D(M,Z) → H p+q+1
D (M,Z), (38)

called the DB product.
2) There is a natural pairing between p-cycles of M and H p

D(M,Z):

∫
: Z p(M) × H p

D(M,Z) → R/Z,

which defines integration of DB classes over cycles.
3) The Pontryagin dual of H p

D(M,Z) is a fiber space over Hm−p(M,Z) that con-

tains Z p(M) and into which Hm−p−1
D (M,Z) is canonically injected (m = dim M).

4) Any cycle z in M can be represented by a unique distributional DB class η̄z

which satisfies:

∫

z

ω̄ =
∫

M

ω̄ � η̄z,

for any ω̄ ∈ H p
D(M,Z).

2.2.1 Deligne-Beilinson Product

Instead of expressing this product in the general case, let us return to themore specific
one of U (1) connections on a 3-dimensional manifold M which is of particular
interest in this review. In that case:

� : H1
D(M,Z) × H1

D(M,Z) → H3
D(M,Z) ∼= R/Z, (39)

where the DB class Ā � B̄ is defined at the level of representatives by:

(Aα ∧ d Bα,Λαβ ∧ d Bβ, nαβγ ∧ Bγ , nαβγ ∧ Πγρ, nαβγ ∧ mγρσ ), (40)

withA = (Aα,Λαβ, nαβγ ) andB = (Bα,Παβ, mαβγ ). The curvature of this product
is the exterior product of the curvatures of A and B, whereas its last component is
the cup product2 of n and m. In the even more particular case where B̄ = Ā, the

2 which in Čech cohomology is the equivalent of the exterior product.
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top component of the DB square Ā � Ā is (up to some normalization) nothing but
the local expression used by theoretical physicists to define the U (1) Chern-Simons
lagrangian. This seems an excellent argument to consider on a general manifold M
the U (1) Chern-Simons lagrangian to be given by Ā � Ā instead of A ∧ d A.

The DB product naturally reduces to Ω1(M)/Ω1
Z
(M), and when ω0 ∈ Ω1

0 (M) it
is clear that Eq. (40) implies that:

ω̄ � ω̄0 = 0 = ω̄0 � ω̄, (41)

for any ω̄ ∈ Ω1(M)/Ω1
Z
(M). Property (41) will lead to the zero-modes prop-

erty of the Chern-Simons functional measure, the space of zero-modes being
Ω1

0 (M)/Ω1
Z
(M).

The generalization to all DB cohomology classes is straightforward.We also leave
to the reader the care to check that:

ω � η = (−1)(p+1)(q+1)η � ω, (42)

for ω ∈ H p
D(M,Z) and η ∈ Hq

D(M,Z). Nonetheless, let us point out that ω � ω =
0 as soon as ω is a connection of even degree. This will imply that the higher
dimensional U (1) Chern-Simons action is non trivial if and only if it deals with
(2l + 1)-connections.

2.2.2 Integration Over Cycles

The second important property fulfilled by DB classes allows to exhibit the relation
between Deligne-Beilinson cohomology and Cheeger-Simons Differential Charac-
ters. It concerns integration of DB classes over cycles of M . As before we are going
to treat the simple case of U (1) connections and extend straightforwardly the result
to H p

D(M,Z).
Let A = (Aα,Λαβ, nαβγ ) be a DB 1-cocycle and let z be a 1-cycle in M . We are

going to assume that this cycle can be endowed with a polyhedral decomposition
subordinate to the good cover U (see Fig. 2). This means that we can decompose
z into 1-chains zα each compactly supported in Uα and such that z = ∑

α zα .
Furthermore, each boundary bzα satisfies bzα = ∑

β(xβα − xαβ) where each 0-
chain, i.e. point) xαβ is contained in Uαβ . Note that for a given good cover, not
every 1-cycle can be decomposed accordingly. However for any 1-cycle z of M there
exists a refinement of this good cover with respect to which z admits a subordinate
polyhedral decomposition.

Then we define the integral of Ā over z as the following R/Z-valued integral:

∫

z

Ā Z=
∑

α

∫

zα

Aα −
∑

α,β

∫

xαβ

Λαβ, (43)
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Fig. 2 Polyhedral decomposition of a cycle

where integration over 0-chains (i.e. points) means (linear) evaluation. One can eas-
ily verify that a change of representative of Ā or of the polyhedral decomposition
of z only produce integral contributions thus ensuring the R/Z-valuedness of the
expression.

A straightforward generalization for a DB p-class ω̄ and a p-cycle z is:

∫

z

ω̄
Z=

∑

α0

∫

z p
α0

ω(0,p)
α0

−
∑

α0,α1

∫

z p−1
α0α1

ω(1,p−1)
α0α1

+ · · · + (−1)p
∑

α0,...,αp

∫

z0α0,...,αp

ω(1,p−1)
α0,...,αp

,

(44)

for a polyhedral decomposition (z p
α0 , z p−1

α0α1 , . . . , z0α0,...,αp
) of z subordinate to the

good cover U of M .
In particular, on a 3-dimensional manifold M and for a U (1) connection A we

obtain:
∫

M

Ā � Ā Z=
∑

α

∫

Mα

Aα ∧ d Aα −
∑

α,β

∫

Sαβ

Λαβ ∧ d Aβ

+
∑

α,β,γ

∫

Lαβγ

nαβγ ∧ Aγ −
∑

α,β,γ,ρ

∫

Xαβγρ

nαβγ ∧ Λγρ, (45)

where a polyhedral decomposition (Mα, Sαβ, Lαβγ , Xαβγρ) of M itself has been
used.

Although one recognizes in the first term of expression (45) the usualU (1)Chern-
Simon action, one also sees that the other terms of this expression are required for∫

M Ā� Ā to be defined inR/Z, what is necessary if one wants the “quantum weight”

e2iπ
∫

M Ā�Ā to be well-defined. In the simple case of S3, since H2(S3) � H1(S3) = 0
the fiber space H1

D(S3,Z) is made of only one fiber on which one can chose the
DB class of the zero connection as origin. This natural choice of origin implies
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that any U (1) connection A on S3 admits a representative of the form (ω|α, 0, 0),
where ω|α denotes the restriction to Uα of the 1-form ω of M . In other words one
can identify H1

D(S3,Z) with Ω1(S3)/dΩ0(S3) and hence write Ā = 0̄ + ω̄ = ω̄,
with ω ∈ Ω1(S3). Up to some normalization factor, expression (40) then reduces to
the standard expression of theU (1)Chern-Simon action on S3 ω∧dω. Nevertheless,
even if one uses such a simple representative, the action is still defined modulo
integers. This is because in the action we have omitted the contributions of 0̄ � 0̄ and
0̄ � ω̄ whose integrals are zero in R/Z, and not in R. Other origins than the zero
connection can be chosen, thus providing other expressions of the action. Definition
(45) ensures that all these expressions differ only by integers.

To simplify notations we now use = instead of
Z= when dealing with integration

of DB classes.

2.2.3 Pontryagin Duality, Dual Exact Sequences and Cycle Map

Pontryagin duality is equivalent to Poincaré duality except that it is takenwith respect
to R/Z instead of R. Under the light of the previous subsections, it seems much
more natural to consider Pontryagin duality than Poincaré ones. Accordingly, one
introduces:

H p
D(M,Z)∗ := Hom(H p

D(M,Z),R/Z). (46)

The spaces H p
D(M,Z)∗ are embedded into exact sequences obtained by taking the

Pontryagin dual of the sequences (34), giving:

0 → Ω
p+1
Z

(M)∗ j̄1−→ H p
D(M,Z)∗ ε̄−→ Hm−p(M,Z) → 0

0 → Hm−p−1(M,R/Z)
j̄2−→ H p

D(M,Z)∗ cv−→
(

Ω p(M)

Ω
p
Z
(M)

)∗
→ 0,

(47)

where Ω
p+1
Z

(M)∗ := Hom(Ω
p+1
Z

(M),R/Z) and (Ω p(M)/Ω
p
Z
(M))∗ := Hom

(
Ω p(M)

Ω
p
Z
(M)

, R/Z). One had to use the fact that Hom(H p(M,R/Z),R/Z) ∼= Hm−p

(M,Z) and similarly that Hom(H p+1(M,Z),R/Z) ∼= Hm−p−1
D (M,Z).

There are some noticeable facts concerning these two exact sequences. First,
they exhibit a fiber space structure of H p

D(M,Z)∗, with the same base space than
H p

D(M,Z) for the first sequence and the same translation space for the second
one. Furthermore with respect to integration modulo integers, one has the canon-
ical “inclusions”:
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Ωm−p−1(M)

Ω
m−p−1
Z

(M)
↪→ Ω

p+1
Z

(M)∗

Ω
m−p
Z

(M) ↪→
(

Ω p(M)

Ω
p
Z
(M)

)∗
.

(48)

This yields the canonical “inclusion”:

Hm−p−1
D (M,Z) ↪→ H p

D(M,Z)∗. (49)

Elements of H p
D(M,Z)∗ are refereed as generalized p-connections, so that injec-

tion (49) means that smooth (m − p − 1)-connections are regular elements of
H1

D(M,Z)∗, in the same way as (m − p)-forms are regular p-currents. In the
case where m = 4l + 3 and p = 2l + 1 this injection takes the noticeable form
H2l+1

D (M,Z) ↪→ H2l+1
D (M,Z)∗, allowing to identify regular (2l + 1)-connections

within generalized (2l +1)-connections. In particular these two fiber spaces have the
same base H2l+2(M) � H2l+1(M) which fulfills the universal decomposition (37).

Similarly, integration along p-cycles yields the canonical inclusion:

Z p(M) ⊂ H p
D(M,Z)∗, (50)

where Z p(M) is the space of p-cycles on M . This inclusionmeans that p-cycles of M
are generalized p-connections. This provide some sort of geometrical interpretation
of generalized connections. Again in the particular case m = 4l + 3 and p = 2l + 1,
since H2l+2(M,Z) � H2l+1(M,Z), inclusion (50) implies that a (2l + 1)-cycle z
of M belongs to the fiber of H p

D(M,Z)∗ which stands over the homology class of z,
whereas injection (49) implies that this fiber contains regular connections. One can
sum up this by writing: Z2l+1(M) ⊕ H2l+1

D (M,Z)⊂ H2l+1
D (M,Z)∗.

One can combine the two previous results in order to construct a cycle map. It is
a well known result that any p-chain on a manifold M defines a de Rham current on
M in such a way that, formally one can write:

∫

z p

ωp :=
∫

M

ωp ∧ jm−p
z p , (51)

for any smooth p-form ω of M . Remarkably, there is an equivalent construction in
DB cohomology. More precisely, one can canonically associate to any p-cycle z of
M a DB (m − p − 1)-class η̄z such that:

∫

z

ω̄ =
∫

M

ω̄ � η̄z, (52)
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for any ω̄ ∈ H p
D(M,Z). This is the cycle map for the DB cohomology. Like the

de Rham current canonically associated with a p-chain is by essence distributional,
the components of the DB class η̄z of the p-cycle z are currents, except for the last
component which is an integral cocycle, which represent the Čech Poincaré dual of
the cycle z. The cycle map will play an important role in the U (1) Chern-Simons
theory. Note that the generalized curvature of the DB class of z is nothing but the de
Rham current of z. In particular, if z is homologically trivial, that is to say if there is
a chain C such that z = bC , then a representative of η̄z is given by (δ−1 jm−p

C , 0, 0),

where jm−p
C is the de Rham current of C .

3 Revisiting the U(1) Chern-Simons Theory on 3-Manifolds

This section will be fully devoted to the applications of the Deligne-Beilinson coho-
mology within the U (1) Chern-Simons theory over a smooth closed manifold M .

Lemma 3 1) The U (1) Chern-Simons action is:

S[Ā] = 2πk
∫

M

Ā � Ā,

where the coupling constant k has to be an integer.
2) The U (1) Chern-Simons action defines on H1

D(M,Z) the quadratic functional
measure:

dμ(Ā) = dĀ × ei S[Ā],

which has zero-mode property.
3) The fundamental observables of the theory identify with Wilson lines which are

also U (1) holonomies:

W (Ā, L) = exp

⎧
⎨

⎩
2iπ

∫

L

Ā

⎫
⎬

⎭
= exp

⎧
⎨

⎩
2iπ

∫

M

Ā � η̄L

⎫
⎬

⎭
,

for any link L. The charges of the knot components of L have to be quantized.
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3.1 The U(1) Chern-Simons Actions, the Coupling Constant
Quantization and the Zero-Mode Property

As already explained, a good candidate for the U (1) Chern-Simons lagrangian on a
generic closed smooth manifold M is provided by Ā � Ā instead of A ∧ d A which is
not properly defined in general, when A is a U (1) gauge field on M . Some important
results directly stem from this choice.3

It is standard to introduce a coupling constant k in the theory so that the U (1)
Chern-Simons action reads:

S[Ā] = 2πk
∫

M

Ā � Ā. (53)

Since Ā � Ā ∈ Hm
D (M,Z) ∼= R/Z, one has to impose that:

k ∈ Z, (54)

for the quantity exp(i SC S[Ā]) to bewell defined. In other words, the DB cohomology
framework leads to the quantization of the coupling constant. Note that even in
the trivial case where M = S3, the coupling constant is quantized if one uses the
DB approach. In the non-abelian (3-dimensional) Chern-Simons theory the quanti-
zation of k is usually granted because non-abelian gauge transformations produce
integers via the famousWess-Zumino term. However, the non-abelian Chern-Simons
lagrangian can also be interpreted as an element of H3

D(M,Z), what also straight-
forwardly leads to the quantization of k. In fact the usual normalization for the U (1)
Chern-Simons theory comes from the non-abelian one. Indeed, the SU (n) Chern-
Simons lagrangian is 1

2T r(A∧d A+ 2
3 A∧ A∧ A) and hence the convention 1

2 A∧d A
is chosen. The 2π factor appearing in (53) is then correct 4 if one wants d A ∧ d A to
be the second Chern form of the curvature defined by A, just as the 1

2 factor in the
non-abelian case is correct for 1

2T r(FA ∧ FA) to be the second Chern form of the
non-abelian curvature FA. From the Quantum Field theoretical point of view, which
is actually standing in R

3 and not even S3, this is an irrelevant convention since k
is not quantized: the action being

∫
S3 ω ∧ dω, gauge transformations produce zero

contributions so that there is no reason to quantize the coupling constant k and then
k or k/2 are allowed coupling constant. This becomes untrue in the DB approach.

In order to define a Quantum Field Theory within the Feynman path integration
framework, we consider the U (1) Chern-Simons functional quadratic measure:

dμ(Ā) = dĀ × ei S[Ā], (55)

3 The Chern-Simons action can be generalized to (4l + 3)-dimensional manifolds as it is the only
dimension where the DB square Ā � Ā is not zero, Ā being a (2l + 1)-connection.
4 Strictly speaking there is also a factor (e/2π�c)2 in front of the abelian and non-abelian lagrangians
for the reason explained in the first footnote.
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where dĀ is the purely formal Lebesgue measure on some infinite dimensional
space of fields, as usual in Quantum Field Theory. We do not want to discuss here
the existence of dĀ or the precise meaning of dμ(Ā). We will only assume that there
exists on H1

D(M,Z), or on its Pontryagin dual H1
D(M,Z)∗, a functional measure

dμ(Ā) such that it satisfies the Cameron-Martin like property:

dμ(Ā + ω̄) = exp

⎛

⎝2 iπk
∫

M

(2Ā � ω̄ + ω̄ � ω̄)

⎞

⎠ × dμ(Ā), (56)

for any ω̄ ∈ Ω1(M)/Ω+1
Z

(M). The Cameron-Martin like property will allow to use
many of the standard technics of quadratic measures.

If one decided to work with “fields” in H1
D(M,Z)∗ one will have to deal with

regularization of DB products since in this case the DB classes are mainely distri-
butional, and in particular ω̄ ∈ Ω2

Z
(M)∗. This is a standard problem occurring in

Quantum Field Theory.
Note that there is no metric in this game, and no need to gauge fix the action

since everything is done at the level of the gauge fixed objects, that is to say the DB
cohomology classes.

Before showing how the DB formalism allows to give a more precise meaning to
the Chern-Simons measure (55), let us exhibit one of its most important properties:
the zero-mode property. Let us consider a closed surfaceΣ in a 3-manifold M which
is not homologically trivial, that is to say which doesn’t bound a volume in M . Note
that such a surface does not exist in S3, but does as soon as F1(M) 
= 0. The de
Rham current of Σ , jΣ , defines a distributional DB class j̄Σ with representative
(δ−1 jΣ, 0, 0). Although j̄Σ = 0 ∈ Ω2

Z
(M)∗ since

∫
M � ∈ Z for any � ∈ Ω2

Z
, the

DB class jΣ/2k associated with (δ−1 jΣ/2k, 0, 0) is not trivial.5 Applying, formally,
Eq. (56) one obtains, for any integer m:

dμ(Ā + m(
jΣ
2k

)) = exp

⎛

⎝2 iπ
∫

M

2mk(Ā �
jΣ
2k

) + m2k(
jΣ
2k

�
jΣ
2k

)

⎞

⎠ × dμ(Ā). (57)

The first integral in the exponential is zero because 2k(jΣ/2k) = j̄Σ = 0̄ as
previously noticed, and by definition of the integral of DB classes:

k
∫

M

jΣ
2k

�
jΣ
2k

= 1

4k

∫

M

jΣ ∧ d jΣ = 0, (58)

since d jΣ = 0. As an example, let us consider S1 × S2 represented as two nested
spheres S2 whose points which face each other are identified, as depicted in Fig. 3.
On this figure γ0 is a 1-cycle generating H1(S1 × S2) ∼= Z and Σ0 is a closed

5 The first component of this DB cocycle defines a closed 1-current which doesn’t have integral
periods, these periods being defined as intersections with Σ/2k.
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Fig. 3 The closed surfaceΣ0 generates H2(S1×S2) ∼= Z and thus defines a zero-mode of theU (1)
Chern-Simons functional measure on S1 × S2. As for the cycle γ0, it generates H1(S1 × S2) ∼= Z

surface which generates H2(S1 × S2) ∼= Z as well as the zero modes of the U (1)
Chern-Simons functional measure of S1 × S2.

One deduces that for any integer m:

dμ(Ā + m
jΣ
2k

) = dμ(Ā). (59)

This is the so-called zero-mode property of the Chern-Simons measure on M [28]. It
means that the Chern-Simonsmeasure on M has a residual gauge invariance based on
the free homology of M , even if the usual gauge invariance represented by Ω1

Z
(M)

has been washed out when we decided to work with DB classes, and not DB cocycles
as theoretical physicists usually do.

Note that we have ignored the problem which may arise when Ā is itself distri-
butional. This is related to the regularisation issue already mentioned when dealing
with H1

D(M,Z)∗ instead of H1
D(M,Z). We leave this question aside for the moment.

The generalization to (4l + 3)-dimensional manifolds is straightforward [30].
In the non-abelian case—let say for SU (n)—the Chern-Simons action on a 3-

dimensional manifold M takes, up to a 2iπ factor, the form k
8π2 T r(A ∧ d A + 2

3 A ∧
A ∧ A) where A is a SU (n) connection on M . The action has such a ”simple”
expression because any SU (n) principal bundle over a 3-dimensional manifold M is
isomorphic to M×SU (n). Hence one can pick a global section up in order to pullback
on M the SU (n) connectionA initially defined on M ×SU (n), thus obtaining a glob-
ally defined 1-form A on M . A gauge transformation on A simply reflects a change in
the global section used to perform the pull-back. The corresponding Chern-Simons
action can also be seen as a 3-form on M whose integral over M is well-defined. This
action changes by theWess-Zumino 3-form k

24π2 T r [(g−1∧dg]3 under a gauge trans-
formation g : M → SU (n). Moreover this 3-form is tautologically closed and has
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integral periods.Therefore the quantummeasure definedby the SU (n)Chern-Simons
action is gauge invariant. This also means that the SU (n) Chern-Simons lagrangian
can be interpreted as an element of Ω3(M)/Ω3

Z
(M) � H3

D(M,Z). Hence, the cou-
pling constant k in the non-abelian Chern-Simons theory is quantized for exactly the
same reason as in the abelian case: the lagrangian is a DB class.

3.2 The U(1) Chern-Simons Observables and the Charges
Quantization

In the Chern-Simons theory (whether it is abelian or non-abelian), observables are
chosen to be Wilson lines, that is to say, in the abelian case discussed in this review,
U (1) holonomies of M . From our previous discussion concerning the fundamental
properties of the DB classes, we know that the holonomy of a connection A defines
the holonomy of the DB class Ā, according to:

W (Ā, z) := exp

⎧
⎨

⎩
2iπ

∫

z

Ā

⎫
⎬

⎭
, (60)

where the integration over 1-cycles has been defined in Eq. (43). Note that no path
ordering is required unlike the non-abelian case. Using the cycle map property
expressed by Eq. (50), one can write this Wilson line as:

W (Ā, z) := exp

⎧
⎨

⎩
2iπ

∫

M

Ā � η̄z

⎫
⎬

⎭
, (61)

where η̄z denotes the canonical DB class associated with z. Since we only deal with
integral cycles, if z can be decomposed has z = q.z0, by linearity of the integral one
deduces that:

W (Ā, q.z0) := exp

⎧
⎨

⎩
2iπq

∫

z0

Ā

⎫
⎬

⎭
, (62)

and that q has to be an integer for this expression to be well-defined. A 1-cycle which
generates one of the component of the decomposition (37) of H1(M)will be called a
fundamental cycle. A link L on M is then a formal (i.e. homological) combination:

L =
N∑

i=1

qi zi , (63)
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where each cycle zi is a fundamental cycle on M . By construction:

qi ∈ Z. (64)

In other words, the charges are quantized. From a physicists point of view the
fundamental charge would be the one of the electron, and since this charge has
been absorbed into the definition of a connection, quantization of charges reduces to
integrality of charges. Note that charges are quantized for exactly the same reason
that the coupling constant is.

3.3 Fine Structure of the Functional Measure

Before looking how to use what we have just done let us see how the fiber structure
of the Deligne-Beilinson cohomology spaces allows to give a more precise meaning
to the U (1) the Chern-Simons functional measure (55). Since the base space of
H1

D(M,Z) is discrete the measure dμ(Ā) actually reads

dμ(Ā) =
∑

n∈H2(M)

dμ(Ān), (65)

where Ān denotes a generic element of the fiber over n ∈ H2(M), and dμ(Ān) is
the Chern-Simons functional measure on this fiber. The fibers being affine, one can
pick an origin up on each of them, Ā0

n, and hence write:

dμ(Ān) = dμ(Ā0
n + ω̄), (66)

with ω̄ a generic element of Ω1(M)/Ω1
Z
(M). Choosing an origin on each fiber of

H1
D(M,Z) is nothing but a way to define a (discrete) section on this fiber space.

Note that there is no canonical origin on the fibers of H1
D(M,Z) except for the fiber

over 0 ∈ H2(M) which canonically contains (the DB class of) the zero connection
as already mentioned.

The Cameron-Martin type property (56) then allows to write:

dμ(Ān) = exp

⎛

⎝2 iπk
∫

M

(2Ā0
n � ω̄ + ω̄ � ω̄)

⎞

⎠ × Dω̄, (67)

with Dω̄ the formal Lebesgue measure on Ω1(M)/Ω1
Z
(M). Putting all this together

one obtains the following finer expression for the U (1) Chern-Simons functional
measure:
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dμ(Ā) =
∑

n∈H2(M)

exp

⎛

⎝2 iπk
∫

M

(2Ā0
n � ω̄ + ω̄ � ω̄)

⎞

⎠ × Dω̄. (68)

At this stageone canuse the universal decomposition (36), thuswriting Ā0
n = Ā0

a+Ā0
κ

and then getting a new expression for the functional measure:

dμ(Ā) =
∑

a∈F2(M)

∑

κ∈T 2(M)

e
2 iπk

∫

M
2(Ā0

a+Ā0
κ )�ω̄ + ω̄�ω̄

× Dω̄, (69)

where F2(M) and T 2(M) can themselves be decomposed according to (37) if nec-
essary.

Thanks to property (41) it seems natural to consider the following decomposition:

Ω1(M)

Ω1
Z
(M)

=
(

Ω1(M)

Ω1
0 (M)

)

×
(

Ω1
0 (M)

Ω1
Z
(M)

)

, (70)

where the space of zero-modesΩ1
0 (M)/Ω1

Z
(M) is a isomorphic to the torus (R/Z)q ,

q = dim(F1(M)). This decomposition is a priori not canonical. Accordingly, the
measure Dω̄ decomposes as:

Dω̄ = Dω̄⊥ × dqθ , (71)

where Dω̄⊥ is the formal Lebesguemeasure onΩ1(M)/Ω1
0 (M), and dqθ the canon-

ical measure on (R/Z)q . This latter measure thus fulfills

∫

(R/Z)q

dqθ = 1. (72)

Finally, choosing the canonical origin 0̄ on the trivial fiber and using property (41)
one concludes that on this fiber the Chern-Simons measure can be written:

dμ(0̄) = ei S[ω̄] Dω̄ =
(

ei S[ω̄⊥] Dω̄0

)
× dqθ . (73)

This holds true on the trivial fiber of H1
D(M,Z) because this fiber is canonically

identified with Ω1(M)/Ω1
Z
(M) through the use of the canonical origin. On non-

trivial fibers, one cannot write dμ(Ān) in a such simple way. This will be discussed
in the next section.

Despite the regularization issues, it is interesting to consider the Chern-Simons
functional measure on the Pontryagin dual H1

D(M,Z)∗ because its contains 1-cycles
of M (cf. inclusion (50)). Then, one can use 1-cycles as origin of the fibers of
H1

D(M,Z)∗. The fiber on which a cycle z has been chosen as origin is necessarily
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the fiber over the homology class of z. But, there is no canonical or even particular
1-cycle on M , except the zero one. Nevertheless, if one considers a fundamental
cycle z which generates one of the free or torsion component of H1(M) then m.z
can be chosen as origin on the fiber over the class of m . z. This can simplify the
computations. On torsion fibers however one always prefers to use torsion origins.

4 Abelian Links Invariants, Manifold Invariants and
Surgery Discussion

This section will be devoted to most of the computations that we can made using
the Deligne-Beilinson formalism. We will first show how to compute the partition
function of a manifold M and then how to compute expectation values of Wilson
lines thus yielding link invariants for M . As we will see everything is performed in
M itself and not with the help of a Dehn surgery of M in S3 as it is usual to proceed.

Lemma 4 1) The only required regularization in the U (1) Chern-Simons theory is
the zero-regularization, a.k.a. regularization by framing:

η̄i � η̄ j = 0,

where η̄i is the DB class of some cycle in M.
2) The partition function of the U (1) Chern-Simons takes the form:

Zk(M) =
p1−1∑

κ1=0

· · ·
pN −1∑

κ N =0

e−2iπk
∑

i, j κ i Qi j κ
j
,

using a universal decomposition of H2(M) for which Q is the linking form of M.
3) The manifold invariant defined by the partition function can be written in the

Reshetikhin-Turaev form:

Zk(M) = (k)−m/2
2k−1∑

q1=0

· · ·
2k−1∑

q |L|=0

exp

⎧
⎨

⎩
−2iπ

4k

|L|∑

i, j=1

qiLi j q j

⎫
⎬

⎭
,

where |L| is the number of fundamental cycles of an algebraic link LM in S3 which
is not necessarily a surgery link of M.

4) The expectation value of a Wilson line on a smooth closed 3-dimensional mani-
fold M can be computed without resorting to a Dehn surgery of M in S3. In particular
the expectation value of the Wilson line of a free and non homologically trivial link
is zero. The expectation value of a link on M can be written in a Reshetikhin-Turaev
form.



Deligne-Beilinson Cohomology in U(1) Chern-Simons Theories 257

4.1 Partition Functions, Zero-Regularization and Manifold
Invariants

One considers the normalized U (1) Chern-Simons partition function for themanifold
M defined as:

Zk(M) :=
∑

n∈H1(M)

∫
Dω̄ ei S[Ān+ω̄]
∫

Dω̄ ei S[ω̄] , (74)

Using decomposition (36) the partition function takes the more specific form:

Zk(M) =
∑

a∈F1(M)

∑

κ∈T1(M)

∫
Dω̄ ei S[Āa+Āκ+ω̄]
∫

Dω̄ ei S[ω̄] . (75)

From now on we furthermore assume that H2(M) � H1(M) and hence F1(M) and
T1(M) fulfill decomposition (37).

Firstly, when H2(M) = 0 � H1(M), the space H1
D(M,Z) reduces to the trivial

fiber and the partition function simplifies to:

Zk(M) =
∫

Dω̄ ei S[ω̄]
∫

Dω̄ ei S[ω̄] = 1. (76)

This is what happens for S3 and more generally for any homology 3-sphere. Note
that in this case one can straightforwardly replace H1

D(M,Z) by H1
D(M,Z)∗.

Let us now assume that H2(M) � H1(M) = Z
q . One considers H1

D(M,Z)∗ as
the quantum configuration space instead of H1

D(M,Z). These two spaces only have
free fibers. As already mentioned, some 1-cycles of M can be chosen as origins of
the fiber: if zi is a cycle generating the i th component Z of H1(M) = F1(M), and if
one denotes η̄i the corresponding DB class, then one chooses the DB class m.η̄i as
origin on the fiber over the class of m.zi . Thus, Zk(M) takes the form:

Zk(M) =
∑

a1∈Z

· · ·
∑

aq∈Z

∫
Dω̄ e2iπk

∫
M

∑
i, j ai a j η̄i � η̄ j +2

∑
i ai η̄i � ω̄+ω̄ � ω̄

∫
Dω̄ei S[ω̄] . (77)

The products η̄i � η̄i are ill-defined since they involve products of distributions. In
order to give these DB products ameaning, one decides to use the zero-regularization
procedure [28–31] defined by:

η̄i � η̄ j = 0, (78)

for the DB class of any 1-cycle of M , whether it is free or torsion. The DB products
η̄i � ω̄ appearing in (77) do not require so much care as we will see.
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Under zero-regularization, Eq. (77) simplifies to:

Zk(M) =
∑

a1∈Z

· · ·
∑

aq∈Z

∫
Dω̄ e2iπk

∫
M 2

∑
i ai η̄i � ω̄+ω̄ � ω̄

∫
Dω̄ ei S[ω̄] . (79)

By injecting decomposition (73) into the denominator of this expression and then
integrating over θ , the denominator of (79) reduces to the integral:

∫
Dω̄⊥ ei S[ω̄⊥], (80)

performed on Ω1(M)/Ω1
0 (M) or its distributional equivalent.

The numerator on its turn can be rewritten according to:

∫
Dω̄

q∏

i=1

⎛

⎝
∑

ai ∈Z

e
2iπ(2kai )

∫

M
η̄i �ω̄

⎞

⎠ e
2iπk

∫

M
ω̄�ω̄

. (81)

According to (70) one can decompose ω̄ as:

ω̄ = ω̄⊥ +
∑

i

θ iρi , (82)

with θ i ∈ R/Z and ρi ∈ Ω1
Z
(M) such that:

∫

zi

ρ j = δi j . (83)

Such normalised 1-forms always exists since F2(M) � F1(M). Using decomposi-
tion (82) into (81) leads to

(∫
Dω̄⊥ e

2iπk
∫

M
(ω̄⊥� ω̄⊥+2

∑
i ai η̄i �ω̄⊥)

)

×
⎛

⎜
⎝

q∏

i=1

∫

R/Z

dθ i e
2iπk(2ai θ j )

∫

zi

ρ j

⎞

⎟
⎠ , (84)

where property (41) has been used. Due to constraint (83), each integral forming the
second factor of this expression vanishes except when ai = 0. When ai = 0 for all
i this factor reduces to 1, and hence expression (84) reduces to:

∫
Dω̄⊥ e

2iπk
∫

M
(ω̄⊥� ω̄⊥+2

∑
i ai η̄i �ω̄⊥)

δa,0, (85)
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with a = (a1, . . . , aq) ∈ Z
q . Taking into account the infinite sums over ai , one

obtains:

Zk(M) =
∑

a1∈Z

· · ·
∑

aq∈Z

∫
Dω̄0 e2iπk

∫
M (ω̄0�ω̄0+2

∑
i ai η̄i �ω̄0)δa,0∫

Dω̄0 ei S[ω̄0]

=
∫

Dω̄0 e2iπk
∫

M ω̄0�ω̄0

∫
Dω̄0 ei S[ω̄0]

= 1.

(86)

In the case where H2(M) � H1(M) = Zp1 ⊕ · · · ⊕ZpN , instead of using cycles as
origins on the fibers of H1

D(M) one can use torsion origins introduced at the end of
Sect. 2.1.2 and whose representatives are:

A0
pi

= (0, d−1
ζ

(i)
αβ

pi
, κ

(i)
αβγ ), (87)

with pi .κ
(i) = δζ (i), κ(i) generating Zpi . Since here F1(M) = 0, the torsion origins

defined by (87) are unique on torsion fibers. Using Eq. (45), one deduces on the one
hand that:

∫

M

A0
pi

� ω̄ = 0. (88)

for any ω̄ ∈ Ω1(M)/Ω1
Z
(M), and on the second hand that:

∫

M

A0
pi

� A0
p j

= −
∑

α,β,γ,ρ

∫

Xαβγρ

d−1(κ
(i)
αβγ .

ζ
( j)
γρ

p j
) = −< κ(i) � ζ ( j), M >

p j
. (89)

Up to the minus sign, the right hand side of this expression is the cohomological
version of the intersection product which itself defines the linking form Q : T1(M)×
T1(M) → Q/Z of M [48]. In other words

Qi j := Q(κ(i), κ( j)) = −
∫

M

A0
pi

� A0
p j

. (90)

Let us point out that this equality as a meaning because integration in H3
D(M) is

R/Z-valued. After using property (88) and (90), the partition function reduces to:

Zk(M) =
p1−1∑

κ1=0

· · ·
pN −1∑

κ N =0

e−2iπk
∑

i, j κ i Qi j κ
j
. (91)
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This expression of Zk(M) also holds when H1(M) = Z
q ⊕ Zp1 · · · ⊕ ZpN and

defines an invariant for M .
One can use Dehn surgery technics to determine Qi j , or more traditional homo-

logical technics like in the case of the Tietze-de Rham representation of the lens space
L(p; r) [31]. We will discuss in Sect. 4.3 the possibility to push the computation of
Zk(M) a little farther in order to obtain an expression based on a computation made
in S3 rather than in M directly. Such an idea is natural when using Dehn surgery
representation of M , since the surgery is performed into S3. However we will see
that the idea of expressing Zk(M) as the expectation value of some link in S3 can be
understood without any reference to Dehn surgery.

4.2 Expectation Values of Wilson Lines, 2k Nilpotency and
Link Invariants

LetX be a physical quantity which defines a quantum observable X : H1
D(M,Z) →

U (1) associated with X . Once a full set of origins has been chosen on the fibers of
H1

D(M,Z), one defines:

〈X (Ā)〉
∣
∣
∣
M

:=
∫

dμ(Ā)X (Ā)
∫

dμ(Ā)
=

∑
n∈H1(M)

∫
Dω̄ ei S[Ān+ω̄] X [Ān + ω̄]

∑
n∈H1(M)

∫
Dω̄ ei S[Ān+ω̄] , (92)

which is the expectation value of the quantum observable X (Ā)with respect to the so-
called “standard” normalization. The normalisation used here takes into account the
whole DB space H1

D(M,Z)whereas the normalization chosen to define the partition
function Zk(M) deals only with the fiber over 0 ∈ H2(M). The quantum observables
we will deal with are the U (1) Wilson lines introduced in Sect. 3.1. Note that they
are defined from integrals of DB classes which are R/Z-valued, and therefore not
classical quantities:

X (Ā) = W (Ā, L) = exp

⎧
⎨

⎩
2iπ

∫

L

Ā

⎫
⎬

⎭
= exp

⎧
⎨

⎩
2iπ

∫

M

Ā � η̄L

⎫
⎬

⎭
, (93)

where L is a link in M and ηL its DB class.
As for the partition function, the quantum configuration space is taken to be

H1
D(M,Z)∗ instead of H1

D(M,Z), deferring regularization considerations. In this
way, one is free to use 1-cycles as origins on the fibers of the configuration space.

Let us exhibit the so-called 2k nilpotency property (or periodicity) of the U (1)
Chern-Simons theory. For a link L , the link 2k.L corresponds to multiply by 2k all
the charges of the fundamental cycles forming L . Then:
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〈W (Ā, 2kL)〉
∣
∣
∣
M

=
∫

dμ(Ā)e2iπ
∫

M Ā�η̄2kL

∫
dμ(Ā)

=
∫

dμ(Ā)e2iπ(2k)
∫

M Ā�η̄L

∫
dμ(Ā)

. (94)

One performs the change of variable Ā → Ā+ η̄L and then use the Cameron-Martin
property, thus yielding:

〈W (Ā, 2kL)〉
∣
∣
∣
M

=
∫

dμ(Ā)
∫

dμ(Ā)
= 1. (95)

This means that taking 2k times a link L turns the expectation value of the Wilson
line along L into the expectation value of the zero knot. The degeneracy property
can be obviously apply to the components of L . Consequently one has to consider
charges as taking values in Z2k instead of Z. We will assume this from now on. This
is some sort of algebraic torsion of the U (1) Chern-Simons theory of M , which has
nothing to do with the torsion of M .

One can redo most of what has been done for the partition function, like decom-
posing the numerator in definition (92) according to (36). This yields:

〈W (Ā, L)〉
∣
∣
∣
M

= Z−1
∑

a∈F1(M)

∑

κ∈T1(M)

∫
Dω̄ ei S[Āa+Āκ+ω̄] W (Āa + Āκ + ω̄, L),(96)

where the denominator of Eq. (92) has been denoted Z .
Let us first consider the case of a homologically trivial 1-cycle z0. There is neces-

sarily a 2-chain Σ0 which is bounded by z0. The restrictions of the de Rham current
ofΣ0 to the open sets of the good cover of M define a representative of the DB class6

η̄0 associated with z0. The expectation value (96) takes the form:

〈W (Ā, z0)〉
∣
∣
∣
M

= Z−1
∫

dμ(Ā) e
2iπ

∫

M
Ā�η̄0

. (97)

One then performs the shift:

Ā → Ā + η̄0

2k
, (98)

and uses Cameron-Martin property of dμ(Ā), thus obtaining:

〈W (Ā, z0)〉
∣
∣
∣
M

= Z−1
(∫

dμ(Ā)

)

× e
−2iπk

∫

M
(η̄0/2k)�(η̄0/2k)

(99)

= e
−2iπk

∫

M
(η̄0/2k)�(η̄0/2k)

,

6 This class rather belongs to the translation group Ω2
Z
(M)∗.
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since 2k(Ā � (η̄0/2k)) = Ā � η̄0. Finally, using Eq. (45) as well as the fact that η̄0 is
defined by the de Rham current of Σ0, one concludes that:

〈W (Ā, z0)〉
∣
∣
∣
M

= exp

⎧
⎨

⎩
−2iπ

4k

∫

M

j0 ∧ d j0

⎫
⎬

⎭
= exp

{

−2iπ

4k
L(z0, z0)

}

. (100)

One has to define the self-linking number L(z0, z0). The usual choice made is to
attach a framing z f

0 to z0 and then set L(z0, z0) := L(z f
0 , z0). This is equivalent

to give a meaning to
∫

M j0 ∧ d j0 which is ill-defined since there is a product of
distributions appearing in this integral. Note that this is in perfect agreement with

the zero-regularization choice since
∫

M η̄0 � η̄0
Z= ∫

M j0 ∧ d j0
Z= 0 when z0

is homologically trivial. However, the zero-regularization appears rougher than the
framing procedure because in the case of homologically trivial cycles linking num-
bers are well-defined integers. For non trivial free cycles the linking number is not a
well-fixed integer.

For a homologically trivial link L fulfilling decomposition (63):

L =
N∑

i=1

qi zi , (101)

one will get:

〈W (Ā, L)〉
∣
∣
∣
M

= exp

{

−2iπ

4k
qi L(zi , z j )q

j
}

= exp

{

−2iπ

4k
qi Li j q

j
}

. (102)

The linking matrix (Li j ) is well-defined outside its diagonal which is made of linking

numbers. The diagonal of (Li j ) is defined using framed cycles z f
i . Note that the

corresponding integrals made of de Rham currents are also well-defined for i 
= j .
Equation (102) coincide with the result obtained within the usual Quantum Field
theoretical framework [30]. It is time to discuss the left aside question concerning
the true nature of the Quantum Fields: are they belonging to H1

D(M,Z) or to its
Pontryagin dual H1

D(M,Z)∗, this last space containing distributional connections,
as well as smooth ones (in a way already explained) and 1-cycles. Since the DB class
of z0 is necessarily in H1

D(M,Z)∗ one immediately sees that the shift (98) has to be
performed into H1

D(M,Z)∗. This seems to imply that the natural space of Quantum
Fields is H1

D(M,Z)∗ (or a suitable subset of it). Nonetheless, instead of workingwith
z0 and its deRhamcurrent, one can consider a Poincaré dual representative of z0 given
by a smooth closed 2-form �0 whose compact support is in a neighbourhood of z0.
The de Rham current of the surface Σ0 bounded by z0 is then replaced by a smooth
1-form ω0 such that �0 = dω0. The corresponding DB class ω̄0 is smooth and
then belongs to H1

D(M,Z), and hence the shift (98) can be made within H1
D(M,Z).

One will obtain (102) once a limit procedure ω0 → j0 is specified. When working
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with H1
D(M,Z)∗ this limit procedure is not required and one directly deals with

geometrical objects like cycles and links. In particular, the linking numbers are well
defined at the level of currents, as long as the involved cycles are not intersecting.
However in both cases one has to define the self-linking terms and the choice we
made is zero-regularization (78).

Let us now consider a homologically non-trivial free cycle z on M . Such a cycle
exists if and only if F1(M) 
= 0. Then F2(M) 
= 0 since F2(M) � F2(M) � F1(M).
Furthermore F2(M) = Z

q , as in decomposition (37). Let Σi be a surface generating
the i th Z component of F2(M), and let jΣi be its de Rham current. Then one can
use the zero-modes property (59) with jΣi as well as the Cameron-Martin property,
thus getting:

〈W (Ā + m
jΣi

2k
, z)〉

∣
∣
∣
M

= 〈W (Ā, L)〉
∣
∣
∣
M
exp

⎧
⎨

⎩
2iπm

∫

L

j̄Σi

2k

⎫
⎬

⎭
(103)

for any integer m. This equation can only hold true if exp

{

2iπm
∫

L
j̄Σi
2k

}

= 1 for

any integer m, which implies that z and Σi must have trivial intersection. Since
the surface Σi generates F2(M) this means that z is trivial, what contradicts our
hypothesis. Accordingly this implies that:

〈W (Ā, L)〉
∣
∣
∣
M

= 0 (104)

for any homologically non trivial free link L of M . This very important result is
naturally derived from the Deligne-Beilinson cohomology approach. The traditional
Quantum Field Theory is performed onR3 where there are no non-trivial free cycles.
In that case one first argues that the expectation values inR3 are the same as in S3 and
then use Dehn surgery theory to establish (104). Here all is done on M . Surprisingly,
we never used the detailed expression for the functional measure in order to obtain
(104). This result can also be obtained by using (73) and (82), in a computation similar
to the one which led us to (86). The 2k nilpotency manifests itself in an interesting
way in this computation whereas it is not involved in the partition function. Note that
2k nilpotency also implies that the expectation value of a link with charges multiple
of 2k is one and not zero, even if the link is not homologically trivial. This also comes
from Eq. (103) where the triviality of the link as to be consider modulo 2k.

The third case to consider is the one of a (non trivial) torsion 1-cycle. Let
κi be a torsion cycle on M generating the component Zpi of T1(M). Let κ i =
(0, . . . , 0, 1, 0, . . . , 0) denotes the class of κi in Zp1 ⊕· · ·⊕ZpN , the collection (κ i )

thus defining a basis of T1(M). Equation (96) now reads:
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〈W (Ā, κi )〉
∣
∣
∣
M

= Z−1
∑

a∈F1(M)

∑

κ∈T1(M)

(∫
Dω̄ei S[Āa+Āκ+ω̄]

× e
2iπ

∫

M
(Āa+Āκ+ω̄)�(Āτi +

ji
pi

)
)

,

(105)

where ji is the de Rham current of a surfaceΣi which is bounded by the trivial cycle

pi .κi . Recall that Āκi + ji
pi

is then the DB class of κi . After some algebraic juggles
one finally obtains

〈W (Ā, κi )〉
∣
∣
∣
M

=
∑

κ∈T1(M)

e−2iπkQ(κ− κi
2k ,κ− κi

2k )

Zk(M)
. (106)

One can combine all the different results to compute the expectation value of a
general link in M . In particular, one will find that for the expectation value to be
non-vanishing the link must not have a free component. A non vanishing expectation
value will then be made of two factors, one similar to (106) with (τ i ) replaced by
a generic vector in Zp1 ⊕ · · · ⊕ ZpN representing the purely torsion contribution to
the link, the other factor being similar to (102) and representing the homologically
trivial contribution of the link [51]. More precisely if the link decomposed according
to:

L =
N∑

i=1

∑

αi

ζ i
αi

κ
αi
i +

F∑

a=1

qaza (107)

where each cycle κ
αi
i is a torsion cycle generatingZpi , and each za is a homologically

trivial cycle. The integers ζ i
αi

and qa are respectively the torsion and trivial charges
of L . The homology class of L is given by κL ∈ Zp1 ⊕· · ·⊕ZpN whose components
are κi = ∑

αi
κ

αi
i . One also introduces qL ∈ Z

F whose components are the trivial
charges qa of L .

〈W (Ā, L)〉
∣
∣
∣
M

=
⎛

⎝
∑

κ∈T1(M)

e−2iπkQ(κ− κL
2k ,κ− κL

2k )

Zk(M)

⎞

⎠ × e− 2iπ
4k L(qL ,qL ), (108)

where Q is the linking form of M and L is the quadratic form associated with the
linking matrix defined by the free cycles za , but also by the mixed linking of the za

with the torsion cycles κ
αi
i and of the linking matrix of the torsion cycles κ

αi
i [51].
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4.3 Some Remarks on Dehn Surgery Results Without Surgery

Let us consider in this last section the case of a 3-dimensional manifold M such that
H2(M) � H1(M) = T1(M) = Zp1 ⊕ · · · ⊕ ZpN . On the one hand we have seen
that the U (1) Chern-Simons partition function of M reads:

Zk(M) =
p1−1∑

κ1=0

· · ·
pN −1∑

κ N =0

e
−2iπk

∫

M
κ i Qi j κ

j

(109)

There is another way to compute Zk(M) based on Dehn surgery of M in S3. Let LM

be a surgery link of M in S3. Each fundamental cycle Zi of LM has a self-linking
number ri named the surgery coefficient of Zi , and the linking matrix Li j of LM is
thus perfectly well-defined. One then defines the partition function of M [43] as:

Zk(M) = (k)−m/2
2k−1∑

q1=0

· · ·
2k−1∑

q |L|=0

exp

⎧
⎨

⎩
−2iπ

4k

|L|∑

i, j=1

qiLi j q j

⎫
⎬

⎭
, (110)

where |L| is the number of fundamental cycles of LM .
One can wonder about the relationship between (109) and (110). A result from

F. Deloup and V. Turaev [49] allows to go from (110) to (109) when F1(M) = 0,
mainly because the linkingmatrix ofLM is then invertible so that H1(M) = T1(M) =
CokerL.

But expression (109) can also be considered as such, without any reference to a
Dehn surgery of M . In this case, by using a theorem of C. T. C. Wall about quadratic
forms on cyclic groups [50], one can recover (up to the normalization factor (k)−m/2)
(110) but with a link LQ in S3 which is not necessarily a surgery link of M . Such an
algebraic link LQ yields the matrix of the linking form Q of M as the Q/Z-valued
inverse of the linking matrix of this algebraic link. In general, the linking form Q of
M does not completely specify the 3-dimensional manifold M . Hence, the algebraic
link LQ contains less information than a Dehn surgery link LM that completely
characterises M . On the other hand, let us recall that for a given 3-dimensional
manifold M there are many different Dehn surgery links of M in S3. Wall algebraic
link is even more degenerate since different 3-dimensional manifolds may have the
same linking form.

This discussion can be extended to expectation values of links in M . Wall theorem
allows to show that an expectation value obtained from a computation done in M
itself and based onDeligne-Beilinson cohomology can be rewritten as the expectation
value of an algebraic link in S3. This new algebraic link is the sum of the previous
algebraic link LQ that defined the partition function of M and represents the linking
form of M , together with a second link which represents in S3 the original link L
in M [51]. Of course, a Dehn surgery description in S3 of L ⊂ M provides such an
algebraic link.
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The advantage of Dehn surgery is that it gives a powerful representation of 3-
manifolds: drawing M is simple and the computation of properties like the homology
groups, the linking form or the homotopy groups of M are also simple. The drawback
is that Dehn surgery is quite specific to 3-dimensional manifolds, whereas we already
noticed that U (1) Chern-Simons theories exist for (4l + 3)-dimensional manifolds.
In theses case, the algebraic approach based on Wall theorem might be particularly
useful.

5 Conclusion

The use of Deligne-Beilinson cohomology in Quantum Field Theory is not yet very
popular even if some authors have done some noticeable effort to shed light on this
mathematical structure within the theoretical physics context [26, 27]. However, the
simple case of U (1) Chern-Simons Quantum field theories show the whole ben-
efit this approach might bring. In particular, the usual Quantum Field theoretical
approach—performing a gauge fixing of the action by the mean of a metric, finding
a propagator, inverting it in order to obtain expectation values—cannot have access
to cohomological property of the theory whereas the DB approach does.

There remains to see if Deligne-Beilinson cohomology is also involved in the non-
abelian Chern-Simons theory apart in the action itself. This is far from clear up to
now even if some indices like the non-abelian Stokes theorem [52], the Localization
procedure [53] or the form of the Reshetikhin-Turaev non-abelian Partition Function
[43] suggest not to give up too quickly the Deligne-Beilinson track.

Appendix: Few Reminders About the Čech-de Rham
“Descent”

Let M be a m-manifold endowed with a good open cover U = (Uα)α∈I . Let ω(−1,p)

be a closed p-form on M (p ≤ m): dpω
(−1,p) = 0. The notation may look strange at

this stage, but its relevancewill appear in the sequel. The restriction (δ−1ω
(−1,p))α :=

ω(−1,p)|α ofω(−1,p) toUα is also closed and sinceUα is contractible Poincaré lemma
can be applied to (δ−1ω

(−1,p))α , which gives:

(δ−1ω
(−1,p))α = dp−1ω

(0,p−1)
α , (111)

for some (p − 1)-form ξα defined in Uα . This can be iterated for all the open sets Uα

of U , thus generating a collection (δ−1ω
(−1,p)) of local p-forms (the restrictions of

ω(−1,p)) and a collection ω(0,p−1) of local (p − 1)-forms, which are not in general
the restriction of a (p − 1)-form on M , in such a way that:
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(δ−1ω
(−1,p)) = dp−1ω

(0,p−1). (112)

This is the first step of the Čech-de Rham procedure.
The Čech derivative associated to the intersections Uα ∩ Uβ is (δ0ω

(0,p−1))αβ :=
ω

(0,p−1)
β −ω

(0,p−1)
α and it clearly satisfies: δ0δ−1 = 0. Applying this to the previous

equation one obtains:

dp−1(δ0ω
(0,p−1)) := δ0dp−1ω

(0,p−1) = δ0δ−1ω
(−1,p) = 0, (113)

sinceω(0,p−1) is globally defined. The commutativity of the Čech derivative with the
de Rham one is trivial since the former is made of linear combinations and the latter
is a linear operation. Since the intersections Uα ∩ Uβ are contractible (the cover U
is good), Poincaré lemma can be again applied, thus leading to:

(δ0ω
(0,p−1)) = dp−2ω

(1,p−2), (114)

in each Uα ∩ Uβ . This generates another collection ω(1,p−2), now made of local
(p − 2)-forms defined in these intersections. The next step is to introduce the Čech
derivative for the intersections Uα ∩ Uβ ∩ Uγ : (δ1ω

(1,p−2))αβγ := ω
(0,p−1)
βγ −

ω
(0,p−1)
αγ +ω

(0,p−1)
αβ which clearly satisfies: δ1δ0 = 0. Applying this derivative to the

previous equation leads to:

(δ1ω
(1,p−2)) = dp−3ω

(2,p−3), (115)

in each Uα ∩ Uβ ∩ Uγ . On then introduce the generic Čech derivative δk associated
with the intersections Uα0 ∩ · · · ∩ Uαk+1 defined by:

(δkω
(k,p−k−1))α0,...,αk+1 :=

k+1∑

j=0

(−1) jω
(k,p−k−1)
α0,...,α̌ j ,...,αk+1

, (116)

where ω
(k,p−k−1)
α0,...,α̌ j ,...,αk+1

means that the index α j has been omitted. These derivatives
satisfy:

δkδk−1 = 0, (117)

and they allows to continue the procedure initiated previously, leading to:

(δkω
(k,p−k−1)) = dp−k−2ω

(k+1,p−k−2). (118)

The before last step is reached when k = p − 2 and gives:

(δp−2ω
(p−2,1)) = d0ω

(p−1,0). (119)
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One now applies δp−1 to this equation, and then Poincaré lemma in the corresponding
contractible intersections, thus obtaining:

d0(δp−1ω
(p−1,0)) = 0. (120)

The collection δp−1ω
(p−1,0) is thereforemadeof real numbers.Onefinally introduces

the following extension of the de Rham derivatives:

d−1 : R → Ω0(M) (121)

which associates to a real number the corresponding constant function, which allows
to write:

δp−1ω
(p−1,0) = d−1ω

(p,−1), (122)

where the collection ω(p,−1) is made of real numbers in the intersections Uα0 ∩
· · · ∩ Uαp . Such an object is a “pure” Čech p-cochain of U . Furthermore, since

δpδp−1 = 0, one conclude that ω(p,−1) is a Čech p-cocycle and that the procedure
we have juste presented defined a relation between closed p-forms on M and Čech
p-cocycle of the good cover U of M . One can check that this procedure goes to
cohomology class because if the closed form is actually exact then the corresponding
Čech cocycle is a coboundary. Hence we have an injection:

H p
d R(M) → Ȟ p(U ,R), (123)

where H p
d R(M) is the pth de Rham cohomology group of M and Ȟ p(M,R) is the

pth Čech cohomology group of U . Using a partition of unity subordinate to U , one
can associate to a Čech p-cocycle of U a closed p-form of M in such a way that
this goes to cohomologies [46], thus yielding the inverse injection, which allows to
conclude that:

H p
d R(M) � Ȟ p(U ,R). (124)

Furthermore, if the closed p-form ω(−1,p) has integral periods, one can show that
the associated Čech cocycle ω(p,−1) is cohomologous to an integral Čech cocycle,
that is to say: ω(p,−1) = n(p,−1) + δp−1ρ

(p−1,−1). This provide an injection:

H p
d R,Z

(M) → Ȟ p(U ,Z), (125)

of the space of integral de Rham classes into the integral Čech cohomology of U .
However it is not possible to reverse this injection in general because integral Čech
cohomology groups, as abelian finite groups, aremade of a free part and a torsion (i.e.
cyclic) part, and the torsion part is not accessible to de Rham cohomology. This can
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be seen as follows. Let us assume that z is a torsion p-cycle on M . This means that
z is not homologically trivial although there exist an integer q such that q.z = bC .
Let ω be a closed p-form on M and let us consider:

∮

z

ω. (126)

Then, by linearity of the integral and Stokes theorem:

q
∮

z

ω =
∮

q.z

ω =
∮

bC

ω =
∮

C

dpω = 0. (127)

This automatically implies that:

∮

z

ω = 0, (128)

which means that torsion cycles are “transparent” to forms, that is to say, torsion
cycles appear as homologically trivial cycles to forms. It is also well-known that
by taking the tensor product with real numbers torsion vanishes. This is what we
actually did when we dealt with real Čech cocycles instead of integral ones in the
beginning, and this is why we “obtained” the isomorphism (124).

Last but not least, all we have done here was related to given good cover U of
M . One has to show that by taking the inductive limit over refinements of U one
obtain the so-called Čech cohomology of M and that this cohomology is actually
isomorphic to the one of U , as long as this cover is good. This is purely technical and
far beyond the scope of this appendix. all such details can be found, for instance, in
[46].
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Part III
(Semi-)Classical Field Theories

Classical field theories appear to be of an independent interest, after the work of
Alexandrov-Kontsevich-Schwarz-Zaboronski (see also D.S. Freed). Moreover,
understanding them is also important in order to identify, when trying to provide
rigorous constructions of QFTs, what are the difficulties specific to the quantum side.

Part III begins with “Semiclassical Quantization of Classical Field Theories”
(written by Alberto Cattaneo, Pavel Mnev and Nicolai Reshetikhin) introducing
some very recent work on the treatment of constraints and boundary conditions in
classical field theories, with emphasis on the BV and BFV formalisms.

It continues with “Local BRST Cohomology for AKSZ Field Theories: A Global
Approach” (written by Giuseppe Bonavolontà and Alexei Kotov) discussing the
BV formalism in the context of AKSZ sigma models, using Vinogradov’s sec-
ondary calculus as a tool.

“Symplectic and Poisson Geometry of the Moduli Spaces of Flat Connections
Over Quilted Surfaces” (written by David Li-Bland and Pavol Ševera) explores the
(quasi-)hamiltonian and Poisson geometry of various moduli spaces that are rele-
vant to 2d and 3d classical TFTs.

Part III ends with “Groupoids, Frobenius Algebras and Poisson Sigma Models”
(written by Ivan Contreras), that is about understanding the construction of the
symplectic groupoid by means of a two-dimensional topological theory from the
axiomatics of Frobenius algebras.
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Abstract These lectures are an introduction to formal semiclassical quantization of
classical field theory. First we develop the Hamiltonian formalism for classical field
theories on space time with boundary. It does not have to be a cylinder as in the usual
Hamiltonian framework. Then we outline formal semiclassical quantization in the
finite dimensional case. Towards the end we give an example of such a quantization
in the case of Abelian Chern-Simons theory.
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1 Introduction

The goal of these lectures is an introduction to the formal semiclassical quantization
of classical gauge theories.

In high energy physics space time is traditionally treated as a flat Minkowski
manifold without boundary. This is consistent with the fact the characteristic scale
in high energy is so much smaller then any characteristic scale of the Universe.

As one of the main paradigms in quantum field theory, quantum fields are usu-
ally assigned to elementary particles. The corresponding classical field theories are
described by relativistically invariant local action functionals. The locality of interac-
tions between elementary particles is one of the key assumptions of a local quantum
field theories and of the Standard Model itself.

The path integral formulation of quantum field theory makes it mathematically
very similar to statistical mechanics. It also suggests that in order to understand the
mathematical nature of local quantum field theory it is natural to extend this notion
from Minkowski space time to a space time with boundary. It is definitely natural to
do it for the corresponding classical field theories.

The concept of topological and conformal field theories on space time manifolds
with boundary was advocated in [3, 28]. The renormalizability of local quantum field
theory on a space time with boundary was studied earlier in [30]. Here we develop
the gauge fixing approach for space time manifolds with boundary by adjusting the
Faddeev-Popov (FP) framework to this setting. This gauge fixing approach is a par-
ticular case of the more general Batalin-Vilkovisky (BV) formalism for quantization
of gauge theories. The classical Hamiltonian part of the BV quantization on space
time manifolds with boundary, the BV-BFV formalism, is developed in [13]. In a
subsequent publication we will extend it to the quantum level.

The goal of these notes is an overview of the FP framework in the context of space
time manifolds with boundary. As a first step we present the Hamiltonian structure
for such theories. We focus on the Hamiltonian formalism for first order theories.
Other theories can be treated similarly, see for example [14] and references therein. In
a subsequent publication we will connect this approach with the BV-BFV program.

In Sect. 2 we recall the concept of local quantum field theory as a functor from
the category of space time cobordisms to the category of vector spaces. The Sect. 3
contains examples: the scalar field theory, Yang-Mills theory, Chern-Simons and
BF theories. The concept of semiclassical quantization of first order quantum field
theories is explained in Sect. 4 where we present a finite dimensional model for the
gauge fixing for space time manifolds with or without boundary. In Sect. 5 we briefly
discuss the example of Abelian Chern-Simons theory. The nonabelian case and the
details of the gluing of partition functions for semiclassical Chern-Simons theories
will be given elsewhere.
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2 First Order Classical Field Theories

2.1 Space Time Categories

In order to define a classical field theory one has to specify a space time category, a
space of fields for each space time and the action functional on the space of fields.

Two space time categorieswhich aremost important for these lectures are the cate-
gory of smooth n-dimensional cobordisms and the category of smooth n-dimensional
Riemannian manifolds.

The d-dimensional smooth category. Objects are smooth, compact, oriented
(d − 1)-dimensional manifolds with smooth d-dimensional collars. A morphism
between Σ1 and Σ2 is a smooth d-dimensional compact oriented manifolds with
∂M = Σ1 � Σ2 and the smooth structure on M agrees with smooth structure on
collars near the boundary. The orientation on M should agree with the orientations
of Σ1 and be opposite to the one on Σ2 in a natural way.

The composition consists of gluing two morphisms along the common boundary
in such a way that collars with smooth structure on them fit.

In this and the subsequent examples of space time categories identity morphisms
have to be adjoined formally. Note also that we are not taking the quotient of cobor-
disms by diffeomorphisms.

The d-dimensional Riemannian category. Objects are (d − 1)-dimensional Rie-
mannian manifolds with d-dimensional collars. Morphisms between two oriented
(d − 1)-dimensional Riemannian manifolds N1 and N2 are oriented d-dimensional
Riemannian manifolds M with collars near the boundary, such that ∂M = N1 � N2.
The orientation on all three manifolds should naturally agree, and the metric on M
agreeswith themetric on N1 and N2 and on collar near the boundary. The composition
is the gluing of such Riemannian cobordisms. For the details see [29].

This category is important formany reasons.One of them is that it is the underlying
structure for statistical quantum field theories.

The d-dimensional pseudo-Riemannian category. The difference between this
category and the Riemannian category is that morphisms are pseudo-Riemannian
with the signature (d −1, 1) while objects remain (d −1)-dimensional Riemannian.
This is the most interesting category for particle physics.

Both objects and morphisms may have an extra structure such as a fiber bundle
(or a sheaf) over it. In this case such structures for objects should agree with the
structures for morphisms.
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2.2 General Structure of First Order Theories

2.2.1 First Order Classical Field Theories

A first order classical field theory1 is defined by the following data:

• A choice of space time category.
• A choice of the space of fields FM for each space time manifold M . This comes
together with the definition of the space of fields F∂M for the boundary of the
space time and the restriction mapping π : FM → F∂M .

• A choice of the action functional on the space FM which is local and first order in
derivatives of fields, i.e.

SM (φ) =
∫

M

L(dφ, φ)

Here L(dφ, φ) is linear in dφ.

These data define:

• The space ELM of solutions of the Euler-Lagrange equations.
• The 1-form α∂M on the space of boundary fields arising as the boundary term of
the variation of the action [14].

• The Cauchy data subspace C∂M of boundary values (at {0} × ∂M) of solutions of
the Euler-Lagrange equations in [0, ε) × ∂M .

• The subspace LM ⊂ C∂M of boundary values of solutions of the Euler-Lagrange
equations in M , LM = π(ELM ).

When C∂M �= F∂M the Cauchy problem is overdetermined and therefore the
action is degenerate. Typically it is degenerate because of the gauge symmetry.

A natural boundary condition for such system is given by a Lagrangian fibration2

on the space of boundary fields such that the form α∂M vanishes at the fibers. The
last conditions guarantees that solutions of Euler-Lagrange equations which are con-
strained to a leaf of such fibration are critical points of the action functional, i.e. not
only the bulk term vanishes but also the boundary terms.

1 It is not essential that we consider here only first order theories. Higher order theories where
L(dφ, φ) is not necessary a linear function in dφ can also be treated in a similar way, see for
example [14] and references therein. In first order theories the space of boundary fields is the
pull-back of fields in the bulk.
2 In our examples, fibrations are actually fiber bundles. By abuse of terminology, terms “fibration”
and “foliation” will be used interchangeably.
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2.2.2 First Order Classical Field Theory as a Functor

First order classical field theory can be regarded as a functor from the category of
space times to the category which we will call Euler-Lagrange category and will
denote EL . Here is an outline of this category:

An object of EL is a symplectic manifold F with a prequantum line bundle, i.e.
a line bundle with a connection αF , such that the symplectic form is the curvature
of this connection. It should also have a Lagrangian foliation which is αF -exact, i.e.
the pull-back of αF to each fiber vanishes.3

A morphism between F1 and F2 is a manifold F together with two surjective
submersions π1 : F → F1 and π2 : F → F2, with a function SF on F and with the
subspace EL ⊂ F such that dSF |EL is the pull-back of −αF1 + αF2 on F1 × F2.
The image of EL in (F1,−ω1)×(F2, ω2) is automatically an isotropic submanifold.
Here ωi = dαFi . We will focus on theories where these subspaces are Lagrangian.

The composition of morphisms (F, SF ) and (F ′, SF ′) is the fiber product of the
morphism spaces F and F ′ over the intermediate object and SF ′◦F = SF + SF ′ . This
category is the gh = 0 part of the BV-BFV category from [13].

A first order classical field theory defines a functor from the space time category
to the Euler-Lagrange category. An object N of the space time category is mapped
to the space of fields FN , a morphism M is mapped to (FM , SM ), etc. Composition
of morphisms is mapped to the fiber product of spaces of fields4 and because of
the assumption of locality of the action functional, it is additive with respect to the
gluing.

This is just an outline of the Euler-Lagrange category and of the functor. For
our purpose of constructing formal semiclassical quantization we will not need the
precise details of this construction. But it is important to have this more general
picture in mind.

2.3 Symmetries in First Order Classical Field Theories

The theory is relativistically invariant if the action is invariant with respect to geo-
metric automorphisms of the space time. These are diffeomorphisms for the smooth
category, isometries for the Riemannian category etc. In such theory the action is
constructed using geometric operations such as de Rham differential and exterior
multiplication of forms for smooth category. In Riemannian category in addition to
these two operations we have Hodge star (or the metric).

If the space time category has an additional structure such as fiber bundle, the
automorphisms of this additional structure give additional symmetries of the theory.
In Yang-Mills, Chern-Simons and BF theories, gauge symmetry, or automorphisms

3 Here we are assuming for simplicity of the exposition that the prequantum line bundle is trivial
and thus we can identify the connection with its 1-form on F .
4 We are not precise at this point. Rather, the value of the functor on a composition is homotopic
(in the appropriate sense) to the fiber product.
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of the corresponding principal G-bundle, are such a symmetry. A theory with such
space time with the gauge invariant action is called gauge invariant. The Yang-Mills
theory is gauge invariant, the Chern-Simons and the BF theories are gauge invariant
only up to boundary terms.

There are more complicated symmetries when a distribution, not necessary inte-
grable, is given on the space of fields and the action is annihilated by corresponding
vector fields. Nonlinear Poisson σ -model is an example of such field theory [18].

3 Examples

3.1 First Order Lagrangian Mechanics

3.1.1 The Action and Boundary Conditions

In Lagrangian mechanics the main component which determines the dynamics is the
Lagrangian function. This is a function on the tangent bundle to the configuration
space L(ξ, x) where ξ ∈ Tx N . In Newtonian mechanics the Lagrangian function is
quadratic in velocity and the quadratic term is positive definite which turns N into a
Riemannian manifold.

Themost general form of first order Lagrangian is L(ξ, x) =< α(x), ξ > −H(x)
where α is a 1-form on N and H is a function on N . The action of a first order
Lagrangian mechanics is the following functional on parameterized paths F[t1,t2] =
C∞([t1, t2], N )

S[t2,t1][γ ] =
t2∫

t1

(〈α(γ (t)), γ̇ (t)〉 − H(γ (t))) dt, (1)

where γ is a parametrized path.
The Euler-Lagrange equations for this action are:

ω(γ̇ (t)) − dH(γ (t)) = 0,

whereω = dα. Naturally, the first order Lagrangian system is called non-degenerate,
if the form ω is non-degenerate. We will focus on non-degenerate theories here.
Denote the space of solutions to Euler-Lagrange equations by EL [t1,t2].

Thus, a non-degenerate first order Lagrangian system defines an exact symplectic
structure ω = dα on a manifold N . The Euler-Lagrange equations for such system
are equations for flow lines of the Hamiltonian on the symplectic manifold (N , ω)

generated by the Hamiltonian H . It is clear that the action of a non-degenerate first
order system is exactly the action for this Hamiltonian system.

The variation of the action on solutions of the Euler-Lagrange equations is given
by the boundary terms:
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δS[t2,t1][γ ] = 〈α(γ (t)), δγ (t)〉 |t2t1 .

If γ (t1) and γ (t2) are constrained to Lagrangian submanifolds in L1,2 ⊂ N with
T L1,2 ⊂ ker(α), these terms vanish.

The restriction to boundary points gives the projection π : F[t1,t2] → N ×N . The
image of the space of solutions of the Euler-Lagrange equations L [t1,t2] ⊂ N × N
for small [t1, t2] is a Lagrangian submanifold with respect to the symplectic form
(dα)1 − (dα)2 on N × N .

Note that solutions of the Euler-Lagrange equation with boundary conditions
in L1 × L2 correspond to the intersections points (L1 × L2) ∩ L [t1,t2] which is
generically a discrete set.

3.1.2 More on Boundary Conditions

The evolution of the system from time t1 to t2 and then to t3 can be regarded as
gluing of space times [t1, t2] × [t2, t3] → [t1, t2] ∪ [t2, t3] = [t1, t3]. If we impose
boundary conditions L1, L2, L3 at times t1, t2, t3 respectively there may be no con-
tinuous solutions of equations of motion for intervals [t1, t2] and [t2, t3]which would
compose into a continuous solution for the interval [t1, t3]. This is why boundary
conditions should come in families of Lagrangian submanifolds, so that by varying
the boundary condition at t2 we could choose L2 in such a way that solutions for
[t1, t2] and [t2, t3] would compose to a continuous solution.

This is why we will say that a boundary condition for a first order theory is a
Lagrangian fibration on the space of boundary values of classical fields. In case
of first order classical mechanics this is a Lagrangian fibration on N , boundary
condition is a Lagrangian fibration of (N , ω) × (N ,−ω). It is natural to choose
boundary conditions independently for each connected component of the boundary
of the space time. In case of classical mechanics this means a choice of Lagrangian
fibration p : N → B for each endpoint of [t1, t2]. The form α should vanish on
fibers of this fibration.

Remark 1 For semiclassical quantization we will need only classical solutions and
infinitesimal neighborhood of classical solutions. This means that we need in this
case a Lagrangian fibration on the space of boundary fields defined only locally, not
necessary globally.

Let N be a configuration space (such asR
n) and T ∗(N )be the corresponding phase

space. Let γ be a parameterized path in T ∗(N ) such that, writing γ (t) = (p(t), q(t))
(where p is momenta and q is position), we have q(ti ) = qi for two fixed points
q1, q2. If γcl is a solution to the Euler-Lagrange equations, then

dSγcl
t1,t2(q1, q2) = π∗(p1 dq1 − p2 dq2) (2)

where p1 = p(t1), p2 = p(t2) are determined by t1, t2, q1, q2. The function Sγcl
t1,t2 is

the Hamilton-Jacobi function.



282 A.S. Cattaneo et al.

3.2 Scalar Field Theory in an n-dimensional Space Time

The space time in this case is a smooth oriented compact Riemannian manifold M
with dim M = n. The space of fields is

FM = Ω0(M) ⊕ Ωn−1(M). (3)

where we write ϕ for an element of Ω0(M) and p for an element of Ωn−1(M). The
action functional is

SM (p, ϕ) =
∫

M

p ∧ dϕ − 1

2

∫

M

p ∧ ∗p −
∫

M

V (ϕ) dx . (4)

with V ∈ C∞(R) a fixed potential; dx stands for the metric volume form.
The first term is topological and analogous to

∫
γ

α in (1). The second and third
terms use the metric and together yield an analog of the integral of the Hamiltonian
in (1).

The variation of the action is

∫

M

δp∧(dϕ−∗p)−(−1)n−1
∫

M

dp∧δϕ+(−1)n−1
∫

∂M

p δϕ−
∫

M

V ′(ϕ) δϕ dx . (5)

The Euler-Lagrange equations are therefore

dϕ − ∗p = 0, (−1)n−1dp + V ′(ϕ) dx = 0. (6)

The first equation gives p = (−1)n−1 ∗ dϕ, and substituting this into the second
equation gives

Δϕ + V ′(ϕ) = 0. (7)

where Δ = ∗d ∗ d is the Laplacian acting of functions.
Thus the space of all solutions of Euler-Lagrange equations is

ELM = {(p, ϕ)|p = (−1)n−1 ∗ dϕ, Δϕ + V ′(ϕ) = 0}

Remark 2 To recover the second-order Lagrangian compute the action at the critical
point in p, i.e. substitute p = (−1)n−1 ∗ dϕ into the action functional:
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SM ((−1)n−1 ∗ dϕ, ϕ) =
∫

M

(−1)n−1 ∗ dϕ ∧ dϕ − 1

2

∫
∗dϕ ∧ ∗ ∗ dϕ

−
∫

M

V (ϕ) dx = 1

2

∫

M

dϕ ∧ ∗dϕ −
∫

M

V (ϕ) dx

=
∫

M

(
1

2
(dϕ, dϕ) − V (ϕ)

)
dx .

The boundary term in the variation gives the 1-form on boundary fields

α∂M =
∫

∂M

p δϕ ∈ Ω1(F∂M ). (8)

Here δ is the de Rham differential on Ω•(F∂M ). The differential of this 1-form gives
the symplectic form ω∂M = δα∂M on F∂M .

Note that we can think of the space F∂M of boundary fields as T ∗(Ω0(∂M)) in
the following manner: if δϕ ∈ Tϕ(Ω0(∂M)) ∼= Ω0(∂M) is a tangent vector, then
the value of the cotangent vector A ∈ Ωn−1(∂M) is

A(δϕ) =
∫

∂M

A ∧ δϕ. (9)

The symplectic form ω∂M is the natural symplectic form on T ∗Ω0(∂M).
The image of the space ELM of all solutions to the Euler-Lagrange equations with

respect to the restriction map π : FM → F∂M gives a subspace LM = π(ELM ) ⊂
F∂M .

Proposition 1 Suppose there is a unique solution5 to Δϕ + V ′(ϕ) = 0 for any
Dirichlet boundary conditionϕ|∂M = η. Thenπ(ELM ) is a Lagrangian submanifold
of F∂M.

Indeed, in this case LM is the graph of a map Ω0(∂M) → F∂M given by η �→
(p∂ = π((−1)n−1 ∗ dϕ), η) where ϕ is the unique solution to the Dirichlet problem
with boundary conditions η.

The space of boundary fields has a natural Lagrangian fibration π∂ :
T ∗(Ω0(∂M)) → Ω0(∂M). This fibration corresponds to Dirichlet boundary condi-
tions: we fix the value ϕ|∂M = η and impose no conditions on p|∂M , i.e. we impose
boundary condition (p, ϕ)|∂M ∈ π−1

∂ (η).
Another natural family of boundary conditions, Neumann boundary conditions,

correspond to the Larganian fibration of T ∗(Ω0(∂M)) � Ωn−1(∂M) ⊕ Ω0(∂M)

where the base is Ωn−1(∂M). In the case we fix ∗∂ i∗(p) = η ∈ Ω0(∂M). The

5 It is unique if −V (ϕ) is convex.
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intersection of LM and the fiber over η is the set of pairs (∗∂η, ξ) ∈ Ωn−1(∂M) ⊕
Ω0(∂M) where ξ = i∗(φ) and φ is a solution to the Neumann problem

Δφ + V ′(φ) = 0, ∂nφ|∂M = η

where ∂n is the normal derivative of φ at the boundary.

3.3 Classical Yang-Mills Theory

Space time is again a smooth compact oriented Riemannian manifold M . Let G be
a compact semisimple, connected, simply-connected Lie group with Lie algebra g.
We assume that it is a matrix group, i.e. we fix an embedding of G into Aut(V ), and
hence an embedding of g into End(V ) such that the Killing form on g is < a, b >=
tr(ab). The space of fields in the first order Yang-Mills theory is

FM = Ω1(M, g) ⊕ Ωn−2(M, g) (10)

where we think of Ω1(M, g) as the space of connections on a trivial G-bundle over
M . If we use a nontrivial G-bundle over M then the first term should be replaced by
the corresponding space of connections. We denote an element of FM by an ordered
pair (A, B), A ∈ Ω1(M, g) and B ∈ Ωn−2(M, g). The action functional is

SM (A, B) =
∫

M

tr(B ∧ F(A)) − 1

2

∫

M

tr(B ∧ ∗B) (11)

where F(A) = d A + A ∧ A is the curvature of A as a connection.6

After integrating by part we can write the variation of the action as the sum of
bulk and boundary parts:

δSM (A, B) =
∫

M

tr(δB ∧ (F(A) − ∗B) + δA ∧ dAB) −
∫

∂M

tr(δA ∧ B) (12)

The space ELM of all solution to Euler-Lagrange equations is the space of pairs
(A, B) which satisfy

B = ∗F(A), dAB = 0

6 We will use notations A ∧ B = ∑
{i}{ j} A{i}B{ j}dx {i} ∧ dx { j} for matrix-valued forms A and B.

Here {i} is a multiindex {i1, . . . , ik} and xi are local coordinates on M . We will also write [A ∧ B]
for

∑
{i}{ j}[A{i}, B{ j}]dx {i} ∧ dx { j}.
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3.3.1 Boundary structure

The boundary term of the variation defines the one-form on the space boundary fields
F∂M = Ω1(∂M, g) ⊕ Ωn−2(∂M, g).

α∂M = −tr
∫

∂M

δA ∧ B ∈ Ω1(F∂M ). (13)

Its differential defines the symplectic form ω∂M = ∫
∂M

tr(δA ∧ δB).

Note that, similarly to the scalar field theory, boundary fields can be regarded
as T ∗Ω1(∂M, g) where we identify cotangent spaces with Ωn−2(∂M, g), tangent
spaces with Ω1(∂M, g) with the natural pairing

β(α) = tr
∫

∂M

α ∧ β

The projection map π : FM → F∂M which is the restriction (pull-back) of forms
to the boundary defines the subspace LM = π(ELM ) of the space of boundary
values of solutions to the Euler-Lagrange equations on M .

3.3.2 On Lagrange property of LM

Let us show that this subspace is Lagrangian for Maxwell’s electrodynamics, i.e. for
the Abelian Yang-Mills with G = R. In this case Euler-Lagrange equations are

B = ∗d A, d ∗ d A = 0

Fix Dirichlet boundary condition i∗(A) = a. Let A0 be a solution to this equation
satisfying Laurenz gauge condition d∗A0 = 0. Such solution is a harmonic 1-form,
(dd∗ + d∗d)A0 = 0 with boundary condition i∗(A0) = a. If A′

0 is another such
form, then A0 − A′

0 is a harmonic 1-form with boundary condition i∗(A0 − A′
0) = 0.

The space of such forms is naturally isomorphic to H1(M, ∂M). Each of these
solutions gives the same value for B = ∗d A = ∗d A0 and therefore its boundary
value b = i∗(B) is uniquely determined by a. Therefore the projection of ELM to
the boundary is a graph of the map a → b and thus LM is a Lagrangian submanifold.

The Dirichlet and Neumann boundary value problems for Yang-Mills theory were
studied in [25].

Conjecture 1 The submanifold LM is Lagrangian for non-Abelian Yang-Mills
theory.

It is clear that this is true for small connections, when we can rely on perturbation
theory starting from an Abelian connection. It is also easy to prove that LM is
isotropic.
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3.3.3 The Cauchy subspace

Define the Cauchy subspace

C∂M = πε(EL∂Mε ) (14)

where ∂Mε = [0, ε) × ∂M and πε : F∂Mε → F∂M is the restriction of fields
to {0} × ∂M . In other words C∂M is the space of boundary values of solution to
Euler-Lagrange equations in ∂Mε = [0, ε) × ∂M . It is easy to see that7

C∂M = {(A, B)|dAB = 0}

We have natural inclusions

LM ⊂ C∂M ⊂ F∂M

3.3.4 Gauge transformations

The automorphism group of the trivial principal G-bundle over M can be naturally
identified with C∞(M,G). Bundle automorphisms act on the space of Yang-Mills
fields. Thinking of a connection A as an element A ∈ Ω1(M, g) we have the fol-
lowing formulae for the action of the bundle automorphism (gauge transformation)
g on fields:

g : A �→ Ag = g−1Ag + g−1dg, B �→ Bg = g−1Bg. (15)

Note that the curvature F(A) is a 2-form and it transforms as F(Ag) = g−1F(A)g.
Also, if we have two connections A1 and A2, their difference is a 1-form and Ag

1 −
Ag
2 = g−1(A1 − A2)g.
The Yang-Mills functional is invariant under this symmetry:

SM (Ag, Bg) = SM (A, B) (16)

which is just the consequence of the cyclic property of the trace.
The restriction to the boundary gives the projection map of gauge groups π̃ :

GM → G∂M which is a group homomorphism. This map is surjective, so we obtain
an exact sequence

0 → Ker(π̃) → GM → G∂M → 0 (17)

7 The subspaceC∂M also makes sense also in scalar field theory, where explicitly it consists of pairs
(p, ϕ) ∈ Ωn−1(∂M) ⊕ Ω0(∂M) where p is the pullback of p0 = ∗dϕ0 and ϕ is the boundary
value of ϕ0 which solves the Euler-Lagrange equation Δϕ0 − V ′(ϕ0) = 0. Since Cauchy problem
has unique solution in a small neighborhood of the boundary, C∂M = F∂M for the scalar field.
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where Ker(π̃) is the group of gauge transformations acting trivially at the boundary.
It is easy to check that boundary gauge transformations G∂M preserve the sym-

plectic form ω∂M . The action of GM induces an infinitesimal action of the Lie
algebra gM = C∞(M, g) of GM by vector fields on FM . For λ ∈ gM we denote by
(δλA, δλB) the tangent vector to FM at the point (A, B) corresponding to the action
of λ:

δλA = −[λ, A] + dλ = dAλ, δλB = −[λ, B] (18)

where the bracket is the pointwise commutator (we assume that g is a matrix Lie
algebra).Recall that the action of aLie groupon a symplecticmanifold isHamiltonian
if vector fields describing the action of the Lie algebra Lie(G) are Hamiltonian.

We have the following

Theorem 1 The action of G∂M on F∂M is Hamiltonian.

Indeed, let f be a function on F∂M and let λ ∈ g∂M . Let δλ f denote the Lie
derivative of the corresponding infinitesimal gauge transformation. Then

δλ f (A, B) =
∫

∂M

tr

(
δ f

δA
∧ dAλ + δ f

δB
∧ [λ, B]

)
. (19)

Let us show that this is the Poisson bracket {Hλ, f } where

Hλ =
∫

∂M

tr(λdAB). (20)

The Poisson bracket on functions on F∂M is given by

{ f, g} =
∫

∂M

tr

(
δ f

δA
∧ δg

δB
− δg

δA
∧ δ f

δB

)
. (21)

We have

δHλ

δA
= δ

δA

⎛
⎝

∫

∂M

tr(λ dB + λ[A ∧ b])
⎞
⎠ = [λ, B] (22)

and, using integration by parts:

δHλ

δB
= dAB = dB + [A ∧ B]. (23)

This proves the statement.
An important corollary of this fact is that the Hamiltonian action of GM induces

a moment map μ : F∂M → g∗
∂M , and it is clear that
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C∂M = μ−1(0)

This implies that C∂M ⊂ F∂M is a coisotropic submanifold.

Remark 3 Let us show directly that C∂M ⊂ F∂M is a coisotropic subspace of the
symplectic space F∂M when g = R. We need to show that C⊥

∂M ⊂ C∂M where C⊥
is the symplectic orthogonal to C .

The subspace C⊥
∂M consists of all (α, β) ∈ Ω1(∂M) ⊕ Ωn−2(∂M) such that

∫

∂M

a ∧ β +
∫

∂M

α ∧ b = 0 (24)

for all (a, b) ∈ C∂M ⊂ Ω1(∂M) ⊕ Ωn−2(∂M). This condition for all a gives
that β = 0 and requiring this condition for all b gives that α is exact, so we have
C⊥

∂M = Ω1
ex(∂M) ⊂ C∂M as desired.

3.3.5 Reduction by gauge symmetry

The differential δSM of the action functional is the sum of the bulk term defining the
Euler-Lagrange equations and of the boundary term defining the 1-form α∂M on the
space of boundary fields. The bulk term vanishes on solutions of the Euler-Lagrange
equations, so we have

δSM |ELM = π∗(α∂M |LM ) (25)

where π : FM → F∂M is the restriction to the boundary and LM = π(ELM ). This
is analogous to the property of the Hamilton-Jacobi action in classical mechanics.

Because SM is gauge invariant, it defines the functional on gauge classes of fields
and thus, on gauge classes of solutions to Euler-Lagrange equations. Passing to
gauge classes we now replace the chain of inclusions of gauge invariant subspaces
LM ⊂ C∂M ⊂ F∂M with the chain of inclusions of corresponding gauge classes

LM/G∂M ⊂ C∂M/G∂M ⊂ F∂M/G∂M . (26)

The rightmost space is a Poissonmanifold since the action ofG∂M is Hamiltonian.
The middle space is the Hamiltonian reduction ofC∂M and is a symplectic leaf in the
rightmost space. The leftmost space is still Lagrangian by the standard arguments
from symplectic geometry.
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3.3.6 Gauge invariant Lagrangian fibrations on the boundary

A natural Lagrangian fibration p∂ : Ωn−2(∂M, g) ⊕ Ω1(∂M, g) → Ω1(∂M, g)
corresponds to the Dirichlet boundary conditions when we fix the pull-back of A
to the boundary: a = i∗(A). Such boundary conditions are compatible with the
gauge action. Another example of the family of gauge invariant boundary conditions
corresponds to Neumann boundary conditions and is given by the Lagrangian fibra-
tion p∂ : Ωn−2(∂M, g) ⊕ Ω1(∂M, g) → Ωn−2(∂M, g).

3.4 Classical Chern–Simons Theory

3.4.1 Classical theory with boundary

Spacetimes for classical Chern-Simons field theory are smooth, compact, oriented
3-manifolds. Let M be such manifold fields FM on M are connections on the trivial
G-bundle over M with G being compact, semisimple, connected, simply connected
Lie group. We will identify the space of connections with the space of 1-forms
Ω1(M, g). The action functional is

S(A) =
∫

M

tr

(
1

2
A ∧ d A + 1

3
A ∧ A ∧ A

)
(27)

where A is a connection.
The variation is

δSM (A) =
∫

M

tr(F(A) ∧ δA) + 1

2

∫

∂M

tr(A ∧ δA) (28)

so the space of solutions ELM to the Euler-Lagrange equations is the space of flat
connections:

ELM = {A|F(A) = 0}

The boundary term defines the 1-form on boundary fields (connections on the trivial
G-bundle over the boundary which we will identify with Ω1(∂M)):

α∂M = −1

2

∫

∂M

tr(A ∧ δA). (29)

This 1-form on boundary fields defines the symplectic structure on the space of
boundary fields:
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ω∂M = δα∂M = −1

2
tr

∫

∂M

δA ∧ δA (30)

3.4.2 Gauge symmetry and the boundary cocycle

The gauge groupGM is the group of bundle automorphisms of of the trivial principal
G-bundle over M . It can be naturally be identified with the space of smooth maps
M → G which transform connections as in (15) and we have:

SM (Ag) = SM (A) + 1

2
tr

∫

∂M

(g−1Ag ∧ g−1 dg) − 1

6
tr

∫

M

g−1 dg ∧ g−1 dg ∧ g−1 dg.

(31)
Assume the integrality of the Maurer-Cartan form on G:

θ = −1

6
tr(dg g−1 ∧ dg g−1 ∧ dg g−1)

i.e. we assume that the normalization of the Killing form is chosen in such a way
that [θ ] ∈ H3(M, Z). Then for a closed manifold M the expression

WM (g) = −1

6
tr

∫

M

dg g−1 ∧ dg g−1 ∧ dg g−1

is an integer and therefore SM mod Z is gauge invariant (for details see for example
[20]).

Proposition 2 When themanifold M has a boundary, the functionalWM (g) mod Z

depends only on the restriction of g to ∂M.

Indeed, let M ′ be another manifold with the boundary ∂M ′ which differs from
∂M only by reversing the orientation, so that the result of the gluing M ∪ M ′ along
the common boundary is smooth. Then

WM (g) − WM ′(g′) = −1

6
tr

∫

M∪M ′

∫

M

d g̃g̃−1 ∧ d g̃g̃−1 ∧ d g̃g̃−1 ∈ Z

Here g̃ is the result of gluing maps g and g′ into a map M ∪ M ′ → G. Therefore,
modulo integers, it does not depend on g and g′.

For a a connection on the trivial principalG-bundle over a 2-dimensionalmanifold
Σ and for g ∈ C∞(Σ,G) define

cΣ(a, g) = exp

⎛
⎝2π i

⎛
⎝1

2

∫

∂M

tr(g−1ag ∧ g−1dg) + WΣ(g)

⎞
⎠

⎞
⎠
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Here we wrote WΣ(g) because WM (g) mod Z depends only on the value of g on
∂M .

The transformation property (31) of the Chern-Simons action implies that the
functional

exp(2π i SM (A))

transforms as

exp(2π i SM (Ag)) = exp(2π i SM (A))c∂M (i∗(A), i∗(g))

where i∗ is the restriction to the boundary (pull-back). For further details on gauge
aspects of Chern-Simons theory see [20, 21].

Now we can define the gauge invariant version of the Chern-Simons action. Con-
sider the trivial circle bundleLM = S1×FM with the natural projectionLM → FM .
Define the action of GM on LM as

g : (λ, A) �→ (λc∂M (i∗(A), i∗(g)), Ag)

The functional exp(2π i SM (A)) is aGM -invariant section of this bundle. The restric-
tion ofLM to the boundary gives the trivial S1-bundle over F∂M with theG∂M -action

g : (λ, A) �→ (λc∂M (A, g), Ag)

The 1-form α∂M is a G∂M -invariant connection of L∂M . The curvature of this con-
nection is the G∂M -invariant symplectic form ω∂ .

By definition of α∂M we have the Hamilton-Jacobi property of the action:

δSM |ELM = π∗(α∂M |LM ). (32)

3.4.3 Reduction

Now,when the gauge symmetry of the Chern-Simons theory is clarified, let us pass to
gauge classes. The action of boundary gauge transformations on F∂M is Hamiltonian
with respect to the symplectic form (30). It is easy to check (and it is well known) that
the vector field on F∂M generating infinitesimal gauge transformation A → A+dAλ

is Hamiltonian with the generating function

Hλ(A) =
∫

∂M

tr(F(A)λ). (33)

This induces the moment map μ : F∂M → g∗
∂M given by μ(A)(λ) = Hλ(A).
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Let C∂M be the space of Cauchy data, i.e. boundary values of connections which
are flat in a small neighborhood of the boundary. It can be naturally identified with
the space of flat G-connections on ∂M and thus, C∂M = μ−1(0). Hence C∂M is a
coisotropic submanifold of F∂M . We have a chain of inclusions

LM = π(ELM ) ⊂ C∂M ⊂ F∂M (34)

where LM is the space of flat connections on ∂M which extend to flat connections
on M . Using Poincaré-Lefschetz duality for de Rham cohomology with coefficients
in a local system, one can easily show that LM is Lagrangian.

We have following inclusions of the spaces of gauge classes

LM/G∂M ⊂ C∂M/G∂M ⊂ F∂M/G∂M (35)

where the middle term is the Hamiltonian reduction μ−1(0)/G∂M ∼= C∂M , which
is symplectic. The left term is Lagrangian, and the right term is Poisson. Note that
the middle term is a finite dimensional symplectic leaf of the infinite dimensional
Poisson manifold F∂M/G∂M .

The middle term C∂M/G∂M is the moduli space MG
∂M of flat G-connections on

∂M . It is naturally isomorphic to the representation variety:

MG
∂M

∼= Hom(π1(∂M),G)/G

where G acts on Hom(π1(M),G) by conjugation. We will denote the symplectic
structure on this space by ω∂M .

Similarly, we have ELM/GM = MG
M

∼= Hom(π1(M),G)/G, which is the
moduli space of flat G-connections on M . Unlike in Yang-Mills case, these spaces
are finite-dimensional.

The image of the natural projection π : MG
M → MG

∂M is the reduction of LM

which we will denote by LM = LM/GM .
Reduction of LM and of L∂M gives line bundles LM = LM/GM and L∂M =

L∂M/G∂M overMG
M andMG

∂M respectively. The 1-form α∂M which is also a G∂M -
invariant connection onL∂M becomes a connection onL∂M with the curvature ω∂M .

The Chern-Simons action yields a section cs of the pull-back of the line bundle
L∂M over MG

∂M . Because LM is a Lagrangian submanifold, the symplectic form
ω∂M vanishes on it and the restriction of the connection α∂M to LM results in a flat
connection over L∂M |LM

. The section cs is horizontal with respect to the pull-back
of the connection α∂M . It can be written as

(d − π∗(α∂M |LM ))cs = 0. (36)

This collection of data is the reduced Hamiltonian structure of the Chern-Simons
theory.
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3.4.4 Complex polarization

There are no natural non-singular Lagrangian fibrations on the space of connections
on the boundary which are compatible with the gauge action. However, for formal
semiclassical quantizationweneed suchfibration only to exist locally near a preferred
point in the space of connections. Now we will describe another structure on the
space of boundary fields for the Chern-Simons theory which is used in geometric
quantization [4].

Instead of looking for a real Lagrangian fibration, let us choose a complex polar-
ization of Ω1(M, g)C. Fixing a complex structure on the boundary, gives us the
natural decomposition

Ω1(∂M, g)C = Ω1,0(∂M, g)C ⊕ Ω0,1(∂M, g)C

and we can define boundary fibration as the natural projection to Ω1,0(∂M, g)C.
Here elements of Ω1,0(∂M, g)C are gC-valued forms which locally can be written
as a(z, z) dz and elements ofΩ0,1(∂M, g)C can be written as b(z, z) dz. The decom-
position above locally works as follows:

A = A + A

where A = a(z, z) dz.
In terms of this decomposition the symplectic form is

ω =
∫

∂M

tr δA ∧ δA

It is clear that subspaces A + Ω0,1(∂M) are Lagrangian in the complexification of
Ω(M, g). Thus, we have a Lagrangian fibration Ω(M, g)C → Ω0,1(M, g)C. The
action of the gauge group preserves the fibers.

However, the form α∂M does not vanish of these fibers. To make it vanish we
should modify the action as

S̃M = SM + 1

2

∫

∂M

tr (A ∧ A)

After this modification, the boundary term in the variation of the action gives the
form

α̃∂M = −
∫

∂M

tr (A ∧ δA)

This form vanishes on fibers. It is not gauge invariant as well as the modified action.
The modified action transforms under gauge transformations as
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S̃M (Ag) = S̃M (A) + 1

2
tr

∫

∂M

(g−1Ag ∧ g−1∂g) + WM (g)

This gives the following cocycle on the boundary gauge group

c̃Σ(A, g) = exp(2π i(
1

2

∫

Σ

tr(g−1Ag ∧ g−1∂g) + WΣ(g)))

Thismodification of the action and this complex polarization of the space of boundary
fields is important for geometric quantization in Chern-Simons theory [4] and is
important for understanding the relation between the Chern-Simons theory and the
WZW theory, see for example [1, 16]. We will not expand this direction here, since
we are interested in formal semiclassical quantization where real polarizations are
needed.

3.5 BF-Theory

Space time M is smooth, oriented8 and compact and is equipped with a trivial
G-bundle where G is connected, simple or abelian compact Lie group. Fields are

FM = Ω1(M, g) ⊕ Ωn−2(M, g) (37)

where Ω1(M, g) describes connections on the trivial G-bundle.
The action functional of the BF theory is the topological term of Yang-Mills

action:

SM (A, B) =
∫

M

tr(B ∧ F(A)). (38)

For the variation of SM we have:

δSM = tr
∫

M

δB ∧ F(A) + (−1)n−1tr
∫

M

dAB ∧ δA + (−1)n−1tr
∫

∂M

B ∧ δA. (39)

The bulk term gives Euler-Lagrange equations:

ELM = {(A, B) : F(A) = 0, dAB = 0}. (40)

The boundary term gives a 1-form on the space of boundary fields F∂M =
Ω1(∂M, g) ⊕ Ωn−2(∂M, g):

8 The orientability assumption can be dropped, see [15].
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α∂M =
∫

∂M

tr(B ∧ δA). (41)

The corresponding exact symplectic form is

ω∂M = δα∂M =
∫

∂M

tr(δB ∧ δA). (42)

The space of Cauchy data is

C∂M = {(A, B)|FA = 0, dAB = 0}

Boundary values of solutions of the Euler-Lagrange equations on M define the sub-
manifold LM = π(ELM ) ⊂ F∂M . This submanifold is Lagrangian. Thus we have
the embedding:

LM ⊂ C∂M ⊂ F∂M

where F∂M is exact symplectic, C∂M is co-isotropic, and LM is Lagrangian.

3.5.1 Gauge symmetry and reduction

The space of bundle automorphisms GM is the space of smooth maps M → G.
They act on A ∈ Ω1(M, g) by A �→ g−1Ag + g−1dg and on B ∈ Ωn−2(M, g) by
B �→ g−1Bg. As in Yang-Mills theory the action is invariant with respect to these
transformations.

In addition, it is almost invariant with respect to transformations A �→ A, B �→
B + dAβ where β ∈ Ωn−3(M, g):

SM (A, B + dAβ) = SM (A, B) +
∫

M

tr(dAβ ∧ F(A)). (43)

After integration by parts in the second term we write it as

∫

M

tr(β ∧ dAF(A)) +
∫

∂M

tr(β ∧ F(A)). (44)

The bulk term here vanishes because of the Bianchi identity and the only additional
contribution is a boundary term, thus:
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SM (A, B + dAβ) = SM (A, B) + tr
∫

∂M

(β ∧ F(A))

The additional gauge symmetry B �→ B + dAβ gives us a larger gauge group

GBF
M = GM × Ωn−3

M . (45)

Its restriction to the boundary gives the boundary gauge group

GBF
∂M = G∂M × Ωn−3

∂M . (46)

The action is invariant up to a boundary term. This means that the 1-form α∂M is
not gauge invariant. Indeed, it is invariant with respect to GM -transformations, but
when (A, B) �→ (A, B + dAβ) the forms α∂M transforms as

α∂M �→ α∂M +
∫

∂M

tr dAβ ∧ δA

However, it is clear that the symplectic form ω∂M = δα∂M is gauge invariant. More-
over, we have the following.

Theorem 2 The action of GBF
∂M is Hamiltonian.

Indeed, if α ∈ Ω0(∂M, g) is an element of the Lie algebra of boundary gauge
transformations and β ∈ Ωn−3(∂M, g), then we can take

Hα(A, B) =
∫

∂M

tr(B ∧ dAα) (47)

Hβ(A, B) =
∫

∂M

tr(A ∧ dAβ) (48)

as Hamiltonians generating the action of corresponding infinite dimensional Lie
algebra.

This defines a moment map μ : F∂M → Ω0(∂M, g) ⊕ Ωn−3(∂M, g). It is clear
that Cauchy submanifold is also C∂M = μ−1(0). This proves that it is a co-isotropic
submanifold.

Note also, that the restriction of α∂M toC∂M isGBF
∂M -invariant. Indeed tr

∫
∂M

dAβ∧
δA = −tr

∫
∂M

β∧dAδA, and this expression vanishes when the form is pulled-back to

the space of flat connections where dAδA = 0. Therefore the Hamiltonian reduction
of F∂M which is F∂M = C∂M/GBF

∂M is an exact symplectic manifold.
It is easy to see that the reduced space of fields on the boundary F∂M can be

naturally identified, as a symplectic manifold, with T ∗MG
∂M , the cotangent bundle to
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the moduli space of flat connections MG
∂M = Hom(π1(∂M),G)/G. The canonical

1-form on this cotangent bundle corresponds to the form α∂M restricted to C∂M .
The Lagrangian subspace LM ⊂ F∂M is gauge invariant. It defines the Lagrangian
submanifold

LM/GBF
∂M ⊂ T ∗MG

∂M

The restriction of the action functional to ELM is gauge invariant and defines the
the function SM on ELM/GBF

∂M . The formula for the variation of the action gives
the analog of the Hamilton-Jacobi formula:

dSM = π∗(θ |LM ) (49)

where θ is the canonical 1-form on the cotangent bundle T ∗MG
∂M restricted to

LM/GBF
∂M .

3.5.2 A gauge invariant Lagrangian fibration

One of the natural choices of boundary conditions is the Dirichlet boundary con-
ditions. This is the Lagrangian fibration Ω1(M, g) ⊕ Ωn−2(M, g) → Ω1(M, g).
This fibration is gauge invariant. After the reduction it gives the standard Lagrangian
fibration T ∗MG

∂M → MG
∂M .

4 Semiclassical Quantization of First Order Field Theories

In this section, after reminding briefly the general framework of local quantum field
theory, we will concentrate on a finite-dimensional toy model for the path integral.
In this model partition functions satisfy the gluing axiom by general properties of
measure theoretic integrals (the Fubini theorem). One can also model the gauge
symmetry in this setting, treated by a version of the Faddeev-Popov trick. We will
see that the arising integrals can be evaluated, in the asymptotics h → 0, by the
stationary phase formula. The result of such an evaluation we call a “formal integral”
(alluding to integration over a formal neighborhood of a critical point, as well as the
fact that we forget the measure-theoretic definition of the integral we started with).
We will obtain the gluing formula for such formal integrals which is satisfied a
priori, since the construction comes from measure integrals. In the usual setting of
local quantum field theory, partition functions are the path integrals where a measure
theoretic definition is not accessible, while the “formal integral” can be defined as a
formal power series in h where coefficients are the Feynman diagrams. In this setting
the gluing formulae are not automatic and have to be proven, cf. e.g. [22].
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4.1 The Framework of Local Quantum Field Theory

We will follow the framework of local quantum field theory which was outlined by
Atiyah and Segal for topological and conformal field theories. In a nutshell it is a
functor from an appropriate category of cobordisms to the category of vector spaces
(or, more generally, to some category).

In this sense, a quantum field theory is the assignment of a vector space to the
boundary N = ∂M of a space time manifold M and a vector in this vector space to
the manifold M :

N �→ H(N ), M �→ ZM ∈ H(∂M).

The identification of such assignments with linear maps is natural assuming that the
vector space assigned to the boundary is the tensor product of vector spaces assigned
to connected components of the boundary and that changing the orientation replaces
the corresponding vector space by its dual.

The vector space assigned to the boundary is the space of boundary states. It may
depend on the extra structure at the boundary. In this case it is a vector bundle over
the space of admissible geometric data and ZM is a section of this vector bundle.
The vector ZM is called the partition function or the amplitude.

These data should satisfy natural axioms, which can by summarized as follows:

1. The locality properties of boundary states:

H(∅) = C , H(N1 � N2) = H(N1) ⊗ H(N2),

2. The locality property of the partition function

ZM1�M2 = ZM1 ⊗ ZM2 ∈ H(∂M1) ⊗ H(∂M2).

3. For each space N (an object of the space time category) there is a non-degenerate
pairing

〈., .〉N : H(N ) ⊗ H(N ) → C

such that 〈., .〉N1�N2 = 〈., .〉N1 ⊗ 〈., .〉N2 .
4. The canonical orientation reversing isomorphism σ : N → N induces a

C-antilinear mapping σ̂N : H(N ) → H(N ) which agrees with locality of N
and σ̂N σ̂N = idN . Together with the pairing 〈., .〉N the orientation reversing
mapping induces the Hilbert space structure on H(N ).

5. An orientation preserving isomorphism9 f : N1 → N2 induces a linear isomor-
phism

9 By an isomorphism here we mean a mapping preserving the corresponding geometric structure.
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T f : H(N1) → H(N2).

which is compatible with the pairing and T f �g = T f ⊗ Tg , T f ◦g = T f Tg
(possibly twisted by a cocycle of the group of automorphisms of the boundary).

6. The gluing axiom. This pairing should agree with partition functions in the fol-
lowing sense. Let ∂M = N � N � N ′, then

(〈., .〉 ⊗ id)ZM = ZM̃ ∈ H(N ′) (50)

where M̃ is the result of gluing of N with N . The operation is known as the gluing
axiom. For more details see [8].

7. The quantum field theory is (projectively) invariant with respect to transforma-
tions of the space time (diffeomorphisms, gauge transformations etc.) if for such
transformation f : M1 → M2,

T f∂ ZM1 = cM1( f )ZM2

Here cM ( f ) is a cocycle cM ( f g) = cgM ( f )cM (g). When the theory is invariant,
not only projectively invariant, cM ( f ) = 1.

Remark 4 The gluing axiom in particular implies the functoriality of Z :

ZM1◦M2 = ZM1 ◦ ZM2 .

Here M1 ◦ M2 is the composition of cobordisms in the category of space time mani-
folds. In case of cylinders this is the semigroup property of propagators in the operator
formulation of QFT.

Remark 5 This framework is very natural in models of statistical mechanics on cell
complexes with open boundary conditions, also known as lattice models.

Remark 6 The main physical concept behind this framework is the locality of the
interaction. Indeed, we can cut our space timemanifold in small pieces and the result-
ing partition function ZM in such framework is expected to be the composition of
partition functions of small pieces. Thus, the theory is determined by its structure on
‘small’ space time manifolds, or at ‘short distances’. This is the concept of locality.
To fully implement this concept one should consider the field theory on manifolds
with corners where we can glue along parts of the boundary. In the case of topo-
logical theories, a particular realization of the concept of locality is the formalism
of extended/fully extended topological quantum field theories of Baez-Dolan [7] and
Lurie [23].
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4.2 Path Integral and Its Finite Dimensional Model

4.2.1 Quantum Field Theory via Path Integrals

Given afirst order classical field theorywith boundary conditions givenbyLagrangian
fibrations, one can try to construct a quantum field theory by the path integral quanti-
zation. In this framework the space of boundary states H(∂M) is taken as the space of
functionals on the base B∂M of the Lagrangian fibration on boundary fields F∂M . The
vector ZM is the Feynman integral over the fields on the bulk with given boundary
conditions

ZM (b) =
∫

f ∈π−1 p−1
∂ (b)

e
i
h SM ( f )Df (51)

where Df is the integration measure, π : FM → F∂M is the restriction map and
p∂ : F∂M → B∂M is the boundary fibration.

The integral above is difficult to define when the space of fields is infinite dimen-
sional. To clarify the functorial structure of this construction and to define the formal
semiclassical path integral let us start with a model case when the space of fields
is finite dimensional, when the integrals are defined and absolutely convergent. A
“lattice approximation” of a continuous theory is a good example of such a finite
dimensional model.

4.2.2 Finite Dimensional Classical Model

A finite dimensional model of a first order classical field theory on a space time
manifold with boundary consists of the following data. Three finite dimensional
manifolds F, F∂ , B∂ should be complemented by the following structures.

• The manifold F∂ is endowed with an exact symplectic form ω∂ = dα∂ .
• A surjective submersion π : F → F∂ .
• A function S on F , such that the submanifold EL ⊂ F , on which the form
dS − π∗(α∂) vanishes, projects to a Lagrangian submanifold in F∂ .

• A Lagrangian fibration of F∂ given by p∂ : F∂ → B∂ such that α∂ vanishes on
fibers. We also assume that fibers are transversal to L = π(EL) ⊂ F∂ .

We will say that this is a finite dimensional model of a non-degenerate theory if
S has finitely many simple critical points on each fiber π−1 p−1

∂ (b).
Themodel is gauge invariant with the bulk gauge groupG and the boundary gauge

group G∂ if the following holds.

• The group G acts on F , and G∂ acts on F∂ .
• There is a group homomorphism π̃ : G → G∂ such that the restriction map
satisfies π(gx) = π̃(g)π(x).
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• The function S is invariant under the G-action up to boundary terms:

S(gx) = S(x) + c∂ (π(x), π̃(g))

where c∂ (x, g) is a cocycle for G∂ acting on F∂ :

c∂ (x, gh) = c∂ (hx, g) + c∂ (x, h)

• The action of G∂ is compatible with the fibration p∂ , i.e. it maps fibers to fibers.
Assuming that the stabilizer subgroups Stabb ⊂ G∂ coincide for different fibers
π−1

∂ (b), one can introduce a quotient group Γ∂ = G∂/Stabb acting on B∂ . One
has then the quotient homomorphism p̃∂ : G∂ → Γ∂ . We require that the cocycle
c(g, x) is constant on fibers of p∂ , i.e. is a pullback of a cocycle c̃ of Γ∂ acting on
B∂ : c(x, g) = c̃(p∂ (x), p̃∂ (g)).

We will say that the theory with gauge invariance is non-degenerate if critical
points of S form finitely many G-orbits and if the corresponding points on F(b)/G
are simple (i.e. isolated) on each fiber F(b) of p∂π .

4.2.3 Finite Dimensional Quantum Model

To define quantum theory assume that F and B∂ are defined together with measures
dx and db respectively. Assume also that there is a measure dx

db on each fiber F(b) =
π−1 p−1

∂ (b) such that dx = dx
db db.

Define the vector space H∂ together with the Hilbert space structure on it as
follows:

H∂ = L2(B∂ )

When the function S is only projectively invariant with respect to the gauge group,
the space of boundary states is the space of L2-sections of the corresponding line
bundle.

Remark 7 It is better to consider the space of half-forms on B∂ which are square
integrable but we will not do it here. For details see for example [9].

The partition function ZF is defined as an element of H∂ given by the integral
over the fiber F(b):

ZF (b) =
∫

F(b)

exp(
i

h
S(x))

dx

db
(52)

When there is a gauge group the partition function transforms as
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ZF (γ b) = ZF (b) exp(
i

h
c∂ (b, γ ))

In such a finite dimensional model the gluing property follows from Fubini’s
theorem allowing to change the order of integration. Suppose we have two spaces F1
and F2 fibered over B∂ and two functions S1 and S2 defined on F1 and F2 respectively
such that integrals ZF1(b) and ZF2(b) converge absolutely for generic b. For example,
we can assume that all spaces F , F∂ and B∂ are compact. Then changing the order
of integration we have

∫

B∂

ZF1(b)ZF2(b) db = ZF1×B∂
F2 (53)

where

ZF1×B∂
F2 =

∫

F1×B∂
F2

exp(
i

h
(S1(x1) + S2(x2)))

dx1
db

dx2
db

db

Here F1 ×B∂
F2 = {(x, x ′) ∈ F1 × F2|π1(x) = π2(x ′)} is the fiber product of F1

and F2 over B∂ . The measure dx
db

dx ′
db db is induced by measures on F1(b), F2(b) and

on B∂ .

Remark 8 The quantization is not functorial. We need to make a choice of measure
of integration.

Remark 9 We will not discuss here quantum statistical mechanics where instead of
oscillatory integrals we have integrals of probabilistic type representing Boltzmann
measure. Wiener integral is among the examples of such integrals.

Remark 10 When the gauge group is non-trivial, the important subgroup in the total
gauge group is the bulk gauge group, i.e. the symmetry of the integrand in the formula
for ZF (b). If Γ∂ is the gauge group acting on the base of the boundary Lagrangian
fibration, then the bulk gauge group GB is the kernel in the exact sequence of groups
1 → GB → G → Γ∂ → 1.

An example of such construction is the discrete time quantum mechanics which
is described in AppendixA.

4.2.4 The Semiclassical Limit, Non-degenerate Case

The asymptotical expansion of the integral (52) can be computed by the method of
stationary phase (see for example [19, 26] and references therein).

Here we assume that the function S has finitely many simple critical points on
the fiber F(b) for each b ∈ B∂ . Denote the set of such critical points by C(b).
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Using the stationary phase approximation we obtain the following expression for the
asymptotical expansion of the partition function as h → 0:

Z(b) �
∑

c∈C(b)

Zc (54)

where Zc is the contribution to the asymptotical expansion from the critical point c.
To describe Zc let us choose local coordinates xi on F(b) near c, then

Zc = (2πh)
N
2

1√| det(Bc)|e
iS(c)
h + iπ

4 sign(Bc)(v(c) +
∑
Γ

(ih)−χ(Γ )Fc(Γ )

|Aut(Γ )| ) (55)

Here N = dim F(b) and (Bc)i j = ∂2S(c)
∂xi ∂x j , v(x) is the volume density in local coordi-

nates {xi }Ni=1 on F(b), dxdb = v(x) dx1, . . . , dxN , χ(Γ ) is the Euler characteristic of
the graph Γ , |Aut(Γ )| is the number of automorphisms of the graph and the summa-
tion is taken over finite graphs where each vertex has valency at least 3. The weight
of a graph Fc(Γ ) is given by the “state sum” which is described in the AppendixB.
Note that this formula by the construction is invariant with respect to changes of
local coordinates. This is particularly clear at the level of determinants. Indeed, let
J be the Jacobian of the coordinate change xi �→ f i (x). Then v �→ v| det(J )| and
| det(Bc)| �→ | det(Bc)| det(J )2 and the Jacobians cancel. For higher level contribu-
tions, see [22].

4.2.5 Gluing Formal Semiclassical Partition Functions
in the Non-degenerate Case

The image L = π(EL), according to our assumptions is transversal to generic fibers
of p∂ : F∂ → B∂ . By varying the classical background c we can span the subspace
Tπ(c)L ⊂ Tπ(c)F∂ which is, according to the assumption of transversality, isomorphic
to Tp∂π(c)B∂ .

We will call the partition function Zc the formal semiclassical partition function
on the classical background c. We will also say that it is given by the formal integral
of exp( i Sh ) over the formal neighborhood of c:

Zc =
f ormal∫

TcF(b)

exp(
i S

h
)
dx

db

with b = p∂π(c). The formal integral on the right hand side here is defined to be the
right hand side of (55).
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Passing to the limit h → 0 in (53) we obtain the gluing formula for formal
semiclassical partition functions (under the assumption of non-degeneracy of critical
points):

f ormal∫

Tb0 B∂

Zc1(b)Zc2(b)db = Zc (56)

Here c is a simple critical point of S on F1 ×B∂
F2, b0 = p∂π1π(c) = p∂π2π

′(c)
where π : F1 ×B∂

F2 → F1 and π ′ : F1 ×B∂
F2 → F2 are natural projections and

c1(b) and c2(b) are critical points of S1 and S2 on fibers F1(b) and F2(b) respectively
which are formal deformations of c1(b0) = π1(c) and of c2(b0) = π2(c). The left
hand side of (56) stands for the stationary phase evaluation of the integral (note that
the integrand has the appropriate asymptotics at h → 0). In [22] this formula was
used to prove that formal semiclassical propagator satisfies the composition property.

4.3 Gauge Fixing

4.3.1 Gauge Fixing in the Integral

Here we will outline a version of the Faddeev-Popov trick for gauge fixing in the
finite dimensional model in the presence of boundary. We assume that the action
function S, the choice of boundary conditions, and group action on F satisfy all
properties described in Sect. 4.2.2.

The goal here is to calculate the asymptotics of the partition function

ZF (b) =
∫

F(b)

e
i
h S(x) dx

db
(57)

when h → 0. Here, as in the previous section F(b) = π−1 p−1
∂ (b) but now a Lie

groupG acts on F and the function S and the integrationmeasure dx areG-invariant.
As in Sect. 4.2.2 we assume that there is an exact sequence 1 → GB → G → Γ∂ →
1, where Γ∂ acts on B∂ in such a way that db is Γ∂ -invariant and the subgroup GB

acts fiberwise so that the measure dx
db is GB-invariant. We will denote the Lie algebra

of GB by gB .
Assume that the function S has finitely many isolated GB-orbits of critical points

on F(b) and that the measure of integration is supported on a neighborhood of
these points.10 We denote by v(x) the density of the measure in local coordinates,
dx
db = v(x) dx1, . . . , dxN with {xi } the local coordinates on Fb.

10 In the asymptotics h → 0, one can replace any invariant GB -invariant measure by one with this
property, since we are working with oscillatory integrals.
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Let O ⊂ F(b) be a critical GB-orbit of the action S. Denote UO ⊂ F(b) the
connected component11 of the support of the density v containing O . The integral
(57) is a sum of contributions of individual critical orbits:

∫

F(b)

e
i
h S(x) dx

db
=

∑
O

∫

UO

e
i
h S(x) dx

db

For a fixed critical orbit O , let ϕ : UO → gB be some function with zero a regular
value. Denote �ϕ = ϕ−1(0) ⊂ UO – the “gauge-fixing surface”. Assume that �ϕ

intersects O transversally. Note that we do not assume that �ϕ is a section of the
GB-action (i.e. of the projection UO → UO/GB).

Let c be one of the intersection points of the orbit O with�ϕ . Denote VO,c ⊂ UO

the connected component of c in the intersection UO ∩ �ϕ and let UO,c ⊂ UO be
an open tubular neighborhood of VO,c inUO (thin enough not to contain zeroes of ϕ

lying outside VO,c). Using Faddeev-Popov construction, the contribution of UO to
the integral (57) can be written as follows:

∫

UO

e
i
h S(x) dx

db
= |GB |

∫

UO,c

e
i
h S(x) det(Lϕ(x))δ(ϕ(x))

dx

db
(58)

We have a natural isomorphism UO � VO,c × GB given by the action of GB on
points of VO,c, hence VO,c � UO/GB and therefore the integral on the right hand
side of (58) can be thought of as an integral supported on the quotient UO/GB . To
describe Lϕ(x) choose a basis ea in the Lie algebra gB . The action of ea on Fb is
given by the vector field

∑
i l

i
a(x)∂i . Matrix elements of Lϕ(x) are

∑
i l

i
a(x)∂iϕ

b(x).
The factor |GB | in (58) stands for the volume of the group GB (with respect to the
Haar measure compatible with the basis {ea} in gB).

It is convenient to write (58) as a Grassmann integral:

|GB |
(2π i)dimGB

∫

Fc(b)

exp
i

h

(
S(x) +

∑
a

λaϕ
a(x) +

∑
a

ca Lϕ(x)abc
b

)
dx

db
dλ dc dc

(59)
whereFc(b) = UO,c⊕gBodd⊕(gBodd)

∗⊕(gBeven)
∗ andc andc are oddvariables. See for

example [19] for details on Grassman integration. The asymptotical stationary phase
expansion of (58) as h → 0 can be understood12 as a formal integral over the (formal)
neighborhood of c in the supermanifold Fc(b). The functions S(x), ϕa(x), Lϕ(x)ab
should be understood as the Taylor expansions in parameter x−c√

h
, just as in the pre-

vious section. The result is the asymptotical expression given by Feynman diagrams
where two types of edges correspond to the even and odd Gaussian terms in the

11 In the case when the group GB is disconnected, we define UO to be the union of connected
components of Ok in supp(v), where Ok are the connected components of O .
12 The logic is that the formal integral is defined to be stationary phase asymptotics of (58).
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i j

i b

a j

a b

a b

Fig. 1 Bosonic (left) and fermionic (right) edges for Feynman diagrams in (60) with states at their
endpoints

a i i i i i a b i i i i in2 1 2 n 3 n 1 2 n

Fig. 2 Vertices for Feynman diagrams in (60) with states on their stars

integral :

Zc =
f ormal∫

TcF(b)

e
i
h S(x) dx

db
= |GB |(2πh)

dim F(b)−dimGB

2

× 1√| det(B(c))| det(Lϕ(c)) · exp
(
i

h
S(c) + iπ

4
sign(B(c))

)

×
⎛
⎝v(c) +

∑
Γ �=∅

(ih)−χ(Γ )(−1)c(D(Γ ))Fc(D(Γ ))

|Aut(Γ )|

⎞
⎠ , (60)

Here D(Γ ) is the planar projection of Γ , a Feynman diagram. Feynman diagrams
in this formula have bosonic edges and fermionic oriented edges, c(D(Γ )) is the
number of crossings of fermionic edges.13 The structure of Feynman diagrams is the
same as in (55). The propagators corresponding to Bose and Fermi edges are shown
in Fig. 1. The weights of vertices are shown on Fig. 2.

The weight of the fermionic edge on Fig. 1 is (Lϕ(c)−1)ab. Weights of the bosonic
edges from Fig. 1 correspond to matrix elements of B(c)−1 where

13 The sign rule is equivalent to the usual (−1)#fermionic loops which is used in physics literature.
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B(c) =
( ∂2S(c)

∂xi ∂x j
∂ϕa(c)

∂xi
∂ϕb(c)
∂x j 0

)

The weights of vertices with states on their stars from Fig. 2 are (from left to right):

∂n−1ϕa(c)

∂xi2 , . . . , ∂xin
,

∂n S(c)

∂xi1 , . . . , ∂xin
,

∂n−2Lϕ(c)ab
∂xi3 , . . . , ∂xin

,
∂nv(c)

∂xi1 , . . . , ∂xin

The last vertex should appear exactly once in each diagram.
This formula, by construction, does not depend on the choice of local coordinates.

It is easy to see this explicitly at the level of determinants. Indeed, when we change
local coordinates, we have

B(c) �→
( J T 0

0 1

)
B(c)

( J 0
0 1

)
, v �→ | det(J )|v

where J is the Jacbian of the coordinate transformation. It is clear that the ratio
v/| det(B(c))| is invariant with respect to such transformations.

Note that because we defined the formal integral (60) as the contribution to the
asymptotical expansion of the integral (58) from the critical orbit of S passing through
c, the coefficients in (60) do not depend on the choice of gauge constraint ϕ and

Zc = Z[c]

where [c] = O is the orbit of GB passing through c.

4.3.2 Gluing Formal Integrals for Gauge Theories

Assume that as in Sect. 4.2.3 we have two spaces F1 and F2 fibered over B∂ and
two functions S1 and S2 defined on F1 and F2 respectively such that the integrals
ZF1(b) and ZF2(b) converge absolutely for generic b. For example, we can assume
that spaces F1, F2 and B∂ are compact. Denote by F the fiber product F1×B∂

F2 and
set Ni = dim Fi , N∂ = dim B∂ . Let Lie groups G1, G2 and Γ∂ act as Gi : Fi → Fi
and Γ∂ : B∂ → B∂ and assume that functions Si are Gi -invariant and Γ∂ appears in
exact sequences:

1 → GB
1 → G1 → Γ∂ → 1, 1 → GB

2 → G2 → Γ∂ → 1

where kernels GB
1 and GB

2 are bulk gauge groups for F1 and F2.
Changing the order of integration we obtain (53). As h → 0 the gluing identity

(53) becomes the identity between formal integrals just as in the non-degenerate case
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f ormal∫

Tb0 B∂

Z[c1(b)]Z[c2(b)]db = Z[c]

which should be regarded as the contribution of the critical point c to ZF written
as an iterated integral.14 After a gauge fixing in the integral over b we arrive to the
following formula for the left side:

Z[c] = |GB
1 ||GB

2 ||Γ∂ |(2πh)
N−n
2

det(Lϕ1(c1)) det(Lϕ2 (c2)) det(Lϕ∂ (c∂ ))√| det(B1(c1))| | det(B2(c2))| | det(B∂ (c∂ ))|
× exp

(
i

h
(S1(c1) + S2(c2)) + iπ

4
(sign(B1(c1)) + sign(B2(c2)) + sign(B∂ (c∂ )))

)

×
⎛
⎝v1(c1)v2(c2)v∂ (c∂ ) +

∑
Γ �=∅

composite Feynman diagrams

⎞
⎠ , (61)

Here N = N1 + N2 − N∂ = dim F and n = n1 + n2 − n∂ were ni = dimGi and
n∂ = dim Γ∂ . Composite Feynman diagrams consist of Feynman diagrams for F1,
Feynman diagrams for F2 and Feynman diagrams connecting themwhich come from
formal integration over boundary fields in the formal neighborhood of b0. Factors
v1(c1), v2(c2), v∂(c∂ ) are densities of corresponding measures in local coordinates
which we used in (61).

Comparing this expression with (60) besides the obvious identity S(c) = S(c1)+
S(c2) we obtain identities

det(Lϕ1(c1)) det(Lϕ2(c2)) det(Lϕ∂
(c∂ ))√| det(B1(c1))| | det(B2(c2))| | det(B∂ (c∂ ))|

· exp
(
iπ

4
(sign(B1(c1)) + sign(B2(c2)) + sign(B∂ (c∂ )))

)

= det(Lϕ(c))√| det(B(c))| exp

(
iπ

4
sign(B(c))

)
(62)

In addition to this, in each order hm with m > 0 we will have the following
identity: the sum of all composite Feynman diagrams of order m for F1, F2, B∂

equals the sum of all Feynman diagrams of order m for F .

5 Abelian Chern-Simons Theory

In TQFT’s there are no ultraviolet divergencies but there is a gauge symmetry to
deal with. Perhaps the simplest non-trivial example of TQFT is the Abelian Chern-
Simons theory with the Lie group R. Fields in such theory are connections on the

14 Recall that db is a Γ∂ -invariant measure on B∂ such that dx
db db is a G-invariant measure on F .
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trivial R-bundle over a compact, smooth, oriented 3-dimensional manifold M . We
will identify fields with 1-forms on M . The action is

S(A) = 1

2

∫

M

A ∧ d A

Solutions of the Euler-Lagrange equations are closed 1-forms on M . The variation
of this action induces the exact symplectic form on Ω1(∂M) (see Sect. 3.4).

5.1 The Classical Action and Boundary Conditions

A choice of metric on M induces a metric on ∂M and the Hodge decomposition:

Ω(∂M) = dΩ(∂M) ⊕ H(∂M) ⊕ d∗Ω(∂M)

TheLagrangian subspace of boundary values of solutions toEuler-Lagrange equa-
tions is

LM = H1
M (∂M) ⊕ dΩ0(∂M)

where HM (∂M) is the space of harmonic representatives of cohomology classes on
the boundary coming from cohomology classes H1(M) of the bulk by pull-back with
respect to inclusion of the boundary.

Choose a decomposition of H(∂M) into a direct sum of two Lagrangian sub-
spaces:

H(∂M) = H+(∂M) ⊕ H−(∂M)

This induces a decomposition of forms Ω(∂M) = Ω+(∂M) ⊕ Ω−(∂M) where

Ω+(∂M) = H+(∂M) ⊕ dΩ(∂M), Ω−(∂M) = H−(∂M) ⊕ d∗Ω(∂M)

Choose the boundary Lagrangian fibration as

p∂ : Ω(∂M) → B(∂M) = Ω+(∂M)

with fibers
p−1
∂ (b) = b + Ω−(∂M) � H−(∂M) ⊕ d∗Ω(∂M).

This fibration is not α∂M -exact, i.e. the restriction of α∂M to fibers is zero. Let us
modify the action, by adding a boundary term such that the form α∂M will vanish on
fibers of p. Define the new action as
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S̃(A) = S(A) + 1

2

∫

∂M

A+ ∧ A−

where A± are Ω±-components of i∗(A).
The new form on boundary connections is

α̃∂M (a) = α∂M (a) + 1

2
δ

∫

∂M

a+ ∧ a− = −
∫

∂M

a− ∧ δa+

and it vanishes on the fibers of p∂ because on each fiber δa+ = 0.
Note that themodified action is gauge invariant. Indeed, on components A± gauge

transformations act as A+ �→ A+ + dθ and A− �→ A−, i.e. gauge transformations
act trivially on fibers.

5.2 Formal Semiclassical Partition Function

5.2.1 More on Boundary Conditions

For this choice of Lagrangian fibration the bulk gauge group GB is Ω0(M, ∂M).
The boundary gauge group acts trivially on fibers. Indeed, the boundary gauge group
Ω0(∂M) acts naturally on the base B(∂M) = H1(∂M)+⊕dΩ0(∂M), α �→ α+dλ.
It acts on the base shifting the fibers: p(β + dλ) = p(β) + dλ.

According to the general scheme outlined in Sect. 4.3, in order to define the formal
semiclassical partition function we have to fix a background flat connection a and
“integrate” over the fluctuations

√
hα with boundary condition i∗(α)+ = 0.We have

S̃(a + α) = S̃(α) + 1

2

∫

∂M

a+ ∧ a−

Note that da = 0 which means that a restricted to the boundary is a closed form
which we can write as i∗(a) = [a]+ +[a]− +dθ where [a]± ∈ H±(∂M). Therefore,
for the action we have:

S̃(a + α) = S̃(α) + 1

2
< [a]+, [a]− >∂M

where 〈., .〉 is the symplectic pairing in H(∂M).
For semiclassical quantization we should choose the gauge fixing submanifold

� ⊂ Ω(M), such that (TaFM )+ = TaEL ⊕ Ta�. Here (TaFM )+ is the space of
1-forms (α-fields)with boundary condition i∗(α)+ = 0.As it is shown inAppendixD
the action functional restricted to fieldswith boundary values in an isotropic subspace
I ⊂ Ω1(∂M) is non-degenerate on
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Ta�I = d∗Ω2
N (M, I⊥) ∩ Ω1

D(M, I )

For our choice of boundary conditions I = Ω1−(∂M).

5.2.2 Closed Space Time

First, assume the space time has no boundary. Then the formal semiclassical partition
function is defined as the product of determinants which arise from gauge fixing and
from the Gaussian integration as in (60). In the case of Abelian Chern-Simons the
gauge condition is d∗A = 0 and the action of the gauge Lie algebra Ω0(M) on
the space of fields Ω1(M) is given by the map d : Ω0(M) → Ω1(M) (here we
identified Ω1(M) with its tangent space at any point). Thus, the FP action (59) in
our case is

S(A, c, c, λ) = 1

2

∫

M

A ∧ d A +
∫

M

c Δc d3x +
∫

M

λ d∗A d3x

where c, c are ghost fermion fields, and λ is the Lagrangemultiplier for the constraint
d∗A = 0.

By definition the corresponding Gaussian integral is

Za = C
|det′(Δ0)|√
|det′(∗̂d )|

exp(
iπ

4
(2sign(Δ0) + sign(∗̂d)))

Here det′ is a regularized determinant and sign(A) is the signature of the differential
operator A. The constant depends of the choice of regularization. The usual choice
is the ζ -regularization. The signature is up to a normalization the eta invariant [31].
The operator ∗̂d acts on Ω1(M) ⊕ Ω0(M) as

(∗d d
d∗ 0

)
(63)

Its square is the direct sum of Laplacians:

∗̂d2 =
(
d∗d + dd∗ 0

0 d∗d

)

Thus the regularized determinant of ∗̂d is the product of determinants acting on
1-forms and on 0-forms:

|det′(∗̂d)|2 = |det′(Δ1)||det′(Δ0)|
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This gives the following formula for the determinant contribution to the partition
function:

|det′(Δ0)|√
|det′(∗̂d)|

= |det′(Δ0)| 34
|det′(Δ1)| 14

(64)

Taking into account that ∗Ω i (M) = Ω3−i (M) we can write this as

T 1/2 = |det′(Δ1)| 14 |det′(Δ2)| 24 |det′(Δ3)| 34

where T is the Ray-Singer torsion. This gives well-known formula for the absolute
value of the partition function of the Abelian Chern-Simons theory on a closed
manifold.

|Z | = CT 1/2 (65)

We will not discuss here the η-invariant part.

Remark 11 The operator ∗̂d is easy to identify with L− = ∗d + d∗, acting on
Ω1(M) ⊕ Ω3(M) from [31]. Indeed, using Hodge star we can identify Ω0(M) and
Ω3(M). After this the operators are related as

L− =
(
1 0
0 ∗

)
∗̂d

(
1 0
0 ∗

)−1

Remark 12 There is onemore formula in the literature for gauge fixing. Assume that
a Lie group G has an invariant inner product, the space of fields F is a Riemannian
manifold and G acts by isometries on F . In this case there is a natural gauge fixing
which leads to the following formula for an integral of a G-invariant function [27]:

∫

F

h(x)dx = |G|
∫

F/G

h(x)(det′(τ ∗
x τx ))

1
2 [dx]

Here we assume that the G-action does not have stabilizers. The linear mapping
τx : g → Tx F is given by the G-action, the Hermitian conjugate is taken with
respect to the metric structure on F and on G, dx is the Riemannian volume on F
and [dx] is the Riemannian volume on F/G with respect to the natural Riemannian
structure on the quotient space.

For theAbelianChern-Simons a choice ofmetric on the space time inducesmetrics
on G = Ω0(M) and on F = Ω1(M). The gauge group G acts on F by isometries
and τx = d, the de Rham differential. This gives another expression for the absolute
value of the partition function

|Z | = C
|det′(Δ0)| 12
|det′(∗d)| 12

(66)
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Here ∗d : � → �, and � = d∗Ω2(M) is the submanifold on which the action
functional is non-degenerate. It is clear that this formula coincides with (65).

5.2.3 Space Time with Boundary

Now let us consider the casewhen ∂M is non-empty. In this case the bulk gauge group
GB is ΩD(M, {0}) which we will denote just ΩD(M). The space of fluctuations is
Ω1

D(M,Ω−(∂M)). The bilinear from in the Faddeev-Popov action is

1

2

∫

M

α ∧ dα +
∫

M

λ d∗α d3x − i
∫

M

c Δc d3x

The even part of this form is symmetric if we impose the boundary condition i∗(λ) =
0. Similarly to the case of closed space time we can define the partition function as

Za,M = C |det′(∗̂d)|−1/2|det′(ΔD,{0}
0 )| exp( iπ

4
(2 sign(Δ0) + sign(∗̂d)))

exp(
i

h
< [a]+, [a]− >∂M ) (67)

Here Δ
D,{0}
0 is the Laplace operator action on ΩD(M, {0}) and [a]± are the ± com-

ponents of the cohomology class of the boundary value i∗(a) of a. The operator ∗̂d
acts onΩ1

D(M,Ω−(∂M))⊕Ω0
D(M, {0}) and is given by (63). This ratio of determi-

nants is expected to give a version of the Ray-Singer torsion for appropriate boundary
conditions. The signature contributions are expected to be the η-invariant with the
appropriate boundary conditions. For the usual choices of boundary conditions, such
as tangent, absolute, or APS boundary conditions at least some of these relations are
known, for more general boundary conditions it is a work in progress.

5.2.4 Gluing

According to thefinite dimensional gluing formulaweexpect a similar gluing formula
for the partition function. A consequence of this formula is the multiplicativity of
the version of the Ray-Singer torsion with boundary conditions described above. To
illustrate this, let us take a closer look at the exponential part of (67).

Recall that LM ⊂ Ω1(∂M) is the space of closed 1-formswhich are boundary val-
ues of closed 1-forms on M . To fix boundary conditions we fixed the decomposition
Ω1(∂M) = Ω1(∂M)+ ⊕ Ω1(∂M)− (see above).

Let β be a tangent vector to LM at the point i∗(a) ∈ LM . We have natural
identifications

Ti∗(a)Ω
1(∂M)− = H1(∂M)− ⊕d∗Ω2(∂M), Ti∗(a)Ω

1(∂M)+ = H1(∂M)+ ⊕dΩ0(∂M)
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Denote by β± the components of β in Ti∗(a)L± respectively. Since dβ = 0 we
have β+ = [β]+ + dθ , and β− = [β]−, where [β]± are components of the coho-
mology [β]± in H1(∂M)±. If the reduced tangent spaces [Ti∗(a)LM ] = H1±(∂M)

and [Ti∗(a)Ω
1(∂M)±] = H1

M (∂M) are transversal, which is what we assume here,

projections to [Ti∗(a)Ω
1(∂M)±] give linear isomorphisms A(±)

M : H1
M (∂M) →

H1±(∂M). This defines the linear isomorphism

BM = A(−)
M (A(+)

M )−1 : H1(∂M)+ → H1(∂M)−

acting as BM ([β]+) = [β]− for each [β] ∈ H1
M (∂M). This is the analog of the

Dirichlet-to-Neumann operator.
Now considering small variations around a have

Z[a+√
hβ] = Z[a] exp(

i√
h

(< [i∗(a)]+, BM ([i∗(β)]+) >∂M

+ < [i∗(β)]+, [i∗(a)]− >∂M ) + i < [i∗(β)]+, BM ([i∗(β)]+) >∂M )

(68)

The gluing formula for this semiclassical partition function at the level of
exponents gives the gluing formula for Hamilton-Jacobi actions. At the level of
pre-exponents it also gives the gluing formula for torsions and for the η-invariant for
appropriate boundary conditions. Changing boundary conditions results in a bound-
ary contribution to the partition function and to the gluing identity. One should also
expect the gluing formula for correlation functions. The details of these statements
require longer discussion and substantial analysis and will be done elsewhere.

There are many papers on Abelian Chern-Simons theory. The appearance of tor-
sions and η-invariants in the semiclassical asymptotics of the path integral for the
Chern-Simons action was first pointed out in [31]. For a geometric approach to com-
pact Abelian Chern-Simons theory and a discussion of gauge fixing and the appear-
ance of torsions in the semiclassical analysis see [24]. For the geometric quantization
approach to the Chern-Simons theory with compact Abelian Lie groups see [2].
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Appendix

A Discrete Time Quantum Mechanics

An example of a finite dimensional version of a classical field theory is a discrete
time approximation to the Hamiltonian classical mechanics of a free particle on R.
We denote coordinates on this space (p, q) where p represents the momentum and
q represents the coordinate of the system.

In this case the space time is an ordered collection of n points which represent
the discrete time interval. If we enumerate these points {1, . . . , n} the points 1, n
represent the boundary of the space time. The space of fields is R

n−1 × R
n with

coordinates pi where i = 1, . . . , n−1 represents the “time interval” between points
i and i+1 and qi where i = 1, . . . , n. The coordinates p1, pn−1, q1, qn are boundary
fields.15 The action is

S =
n−1∑
i=1

pi (qi+1 − qi ) −
n−1∑
i=1

p2i
2

We have

dS =
n−2∑
i=1

(qi+1 − qi − pi ) dpi +
n−1∑
i=2

(pi−1 − pi ) dqi + pn−1dqn − p1dq1

From here we derive the Euler-Lagrange equations

qi+1 − qi = pi , i = 1, . . . n − 1,

pi−1 − pi = 0, i = 2, . . . , n − 1

and the boundary 1-form
α = pn−1dqn − p1dq1

This gives the symplectic structure on the space of boundary fields with

ω∂ = dpn−1 ∧ dqn − dp1 ∧ dq1

Theboundaryvalues of solutions of theEuler-Lagrange equations define the subspace

L = π(EL) = {(p1, q1, pn−1, qn)|p1 = pn−1, qn = q1 + (n − 1)p1}

15 In other words the space time is a 1-dimensional cell complex. Fields assign coordinate function
qi to the vertex i and pi to the edge [i, i + 1].
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It is clear that this a Lagrangian subspace.

B Feynman Diagrams

Let Γ be a graph with vertices of valency ≥3 with one special vertex which may
also have valency 0, 1, 2. We define the weight Fc(Γ ) as follows.

A state on Γ is a map from the set of half-edges of Γ to the set 1, . . . , n, for an
example see Fig. 3. The weight of Γ is defined as

Fc(Γ ) =
∑
states

⎛
⎝ ∂ lv

∂x j1 , . . . , ∂x jl
(c)

∏
vertices

∂k S

∂xi1 , . . . , ∂xik
(c)

∏
edges

(B−1
c )i j

⎞
⎠

Here the sum is taken over all states on Γ , and i1, . . . , ik are states on the half-edges
incident to a vertex. The first factor is the weight of the special vertex where v is the
density of the integrationmeasure in local coordinates dx

db = v(x)dx1, . . . , dxN . The
pair (i, j) is the pair of states at the half-edges comprising an edge. Note that weights
of vertices and the matrix Bc are symmetric. This makes the definition meaningful.

C Gauge Fixing in Maxwell’s Electromagnetism

In the special case of electromagnetism (G = R, g = R), the space of fields is
FM = Ω1(M)⊕Ωn−2(M) and similarly for the boundary. IfM has no boundary, the
gauge groupGM = Ω0(M) acts on fields as follows: A �→ A+dα, B �→ B. We can
construct a global section of the corresponding quotient using Hodge decomposition:
we know that

Ω•(M) ∼= Ω•
exact(M) ⊕ H•(M) ⊕ Ω•

coexact(M) (69)

where the middle term consists of harmonic forms. In particular,

a

b

c

a’

b’

c’

Fig. 3 The “theta” diagram
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Ω1(M) = dΩ0(M) ⊕ H1(M) ⊕ d∗Ω2(M) (70)

where the last two terms give a global section. In physics, choosing a global section
is called gauge fixing, and this particular choice of gauge is called the Lorentz gauge,
where d∗A = 0.

DHodge Decomposition for Riemannian Manifolds With Boundary

D.1 Hodge Decomposition With Dirichlet and Neumann Boundary Conditions

Let M be a smooth oriented Riemannian manifold with boundary ∂M . Recall some
basic facts about the Hodge decomposition of differential forms on M . Choose local
coordinates near the boundary in which the metric has the product structure with t
being the coordinate in the normal direction. Near the boundary any smooth form
can be written as

ω = ωtan + ωnorm ∧ dt

whereωtan is the tangent component ofω near the boundary andωnorm is the normal
component.

We will denote by ΩD(M) the space of forms satisfying the Dirichlet boundary
conditions ι∗(ω) = 0 where ι∗ is the pull-back of the form ω to the boundary. This
condition can be also written as ωtan = 0.

We will denote by ΩN (M) the space of forms satisfying the Neumann boundary
conditions ι∗(∗ω) = 0. Here ∗ : Ω i (M) → Ωn−i (M) is the Hodge star operation,
recall that ∗2 = (−1)i(n−i)id on Ω i (M). Because ωnorm = ∗′ι∗(∗ω) the Neumann
boundary condition can be written as ωnorm = 0.

Denote by d∗ = (−1)i∗−1d∗ the formal adjoint of d, and by Δ = dd∗ + d∗d
the Laplacian on M . Denote by Ωcl(M) closed forms on M , Ωex (M) exact forms
on, Ωcocl(M) the space of coclosed forms, i.e. closed with respect to d∗ and by
Ωcoex (M) the space of coexact forms.

Define subspaces:

Ωcl,cocl(M) = Ωcl(M) ∩ Ωcocl(M), Ωcl,coex (M) = Ωcl(M) ∩ Ωcoex (M)

and similarly Ωex,cocl(M), Ωcl,cocl,N (M) and Ωcl,cocl,D(M).

Theorem 3 (1) The space of forms decomposes as

Ω(M) = d∗ΩN (M) ⊕ Ωcl,cocl(M) ⊕ dΩD(M)

(2) The space of closed, coclosed forms decomposes as
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Ωcl,cocl(M) = Ωcl,cocl,N (M) ⊕ Ωex,cocl(M)

Ωcl,cocl(M) = Ωcl,cocl,D(M) ⊕ Ωcl,coex (M)

Wewill only outline the proof of this theorem. For more details and references on
the Hodge decomposition for manifolds with boundary and Dirichlet and Neumann
boundary conditions see [17]. Riemannian structure on M induces the scalar product
on forms

(ω, ω′) =
∫

M

ω ∧ ∗ω′ (71)

For two forms of the same degree we have ω(x)∧∗ω′(x) = 〈ω(x), ω′(x)〉 dx where
dx is the Riemannian volume form and 〈., .〉 is the scalar product on∧kT ∗

x M induced
by the metric. This is why (71) is positive definite.

Lemma 1 With respect to the scalar product (71)

(dΩD(M))⊥ = Ωcocl

Proof By the Stokes theorem for any form θ ∈ Ω i−1
D (M) we have

(ω, dθ) =
∫

M

ω ∧ ∗dθ = (−1)(i+1)(n−i)(

∫

∂M

ι∗(∗ω) ∧ ι∗(θ) +
∫

M

d ∗ ω ∧ θ)

The boundary integral is zero because θ ∈ ΩD(M). Thus (ω, dθ) = 0 for all θ if
and only if d ∗ ω = 0 which is equivalent to ω ∈ Ωcocl(M).

Corollary 1 Because dΩD(M) ⊂ Ωcl(M), we have Ωcl(M) = Ωcl(M) ∩
(dΩD(M))⊥ ⊕ dΩD(M). i.e.

Ωcl(M) = Ωcl,cocl(M) ⊕ dΩD(M)

Here we are sketchy on the analytical side of the story. If U ⊂ V is a subspace
in an inner product space, in the infinite dimensional setting more analysis might be
required to prove that V = U ⊕ U⊥. Here and below we just assume that this does
not create problems. Similarly to Lemma 1 we obtain

(d∗ΩN (M))⊥ = Ωcl(M)

This completes the sketch of the proof of the first part. The proof of the second part
is similar.

Note that the spaces in the second part of the theorem are harmonic forms repre-
senting cohomology classes:
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Ωcl,cocl,N (M) = H(M), Ωcl,cocl,D(M) = H(M, ∂M)

D.2 More General Boundary Conditions

D.2.1 General setup

Assume thatM is a smooth compact Riemannianmanifold, possibly with non-empty
boundary ∂M . Let π : Ω i (M) → Ω i (∂M), i = 0, . . . , n − 1 be the restriction map
(the pull-back of a form to the boundary) and π(Ωn(M)) = 0.

TheRiemannian structure onM induces themetric on ∂M . Denote by ∗ theHodge
star forM , and by∗∂ theHodge star for the boundary∗∂ : Ω i (∂M) → Ωn−1−i (∂M).
Define the map π̃ : Ω(M) → Ω(∂M), i = 1, . . . , n as the composition π̃(α) =
∗∂π(∗α). Note that π̃(Ω0(M)) = 0.

Denote by ΩD(M, L) and ΩN (M, L) the following subspaces:

ΩD(M, L) = π−1(L), ΩN (M, L) = π̃−1(L)

where L ⊂ Ω(∂M) is a subspace.
Denote by L⊥ the orthogonal complement to L with respect to the Hodge inner

product on the boundary. The following is clear:

Lemma 2
(∗L(i))⊥ = ∗(L(i))⊥, ∗(L⊥) = Lsort

Here Lsort is the space which is symplectic orthogonal to L.

Proposition 3 (d∗ΩN (M, L))⊥ = ΩD(M, L⊥)cl

Proof Let ω be an i-form on M such that

∫

M

ω ∧ d ∗ α = 0

for any α. Applying Stocks theorem we obtain

∫

M

ω ∧ d ∗ α = (−1)i
∫

∂M

π(ω) ∧ ∗∂ π̃(α) + (−1)i+1
∫

M

dω ∧ ∗α

The boundary integral is zero for any α if and only ifπ(ω) ∈ L⊥ and the bulk integral
is zero for any α if and only if dω = 0.

As a corollary of this we have the orthogonal decomposition

Ω(M) = ΩD(M, L⊥)cl ⊕ d∗ΩN (M, L)
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Similarly, for each subspace L ⊂ Ω(∂M) we have the decomposition

Ω(M) = ΩN (M, L⊥)cocl ⊕ dΩD(M, L)

Now, assume that we have two subspaces L , L1 ⊂ Ω(∂M) such that

d∂ (L
⊥
1 ) ⊂ L⊥, (72)

Note that this implies d∗
∂ L ⊂ L1. Indeed, fix α ∈ L , then (72) implies that for any

β ∈ L⊥
1 we have

∫

∂M

α ∧ ∗d∂β = 0

This is possible if and only if

∫

∂M

∗d∂ ∗ α ∧ ∗β = 0

Thus, d∗
∂ α ∈ L1. Here we assumed that (L⊥

1 )⊥ = L1.
Because πd = d∂π and π̃d∗ = d∗

∂ π̃ we also have

dΩD(M, L⊥
1 ) ⊂ ΩD(M, L⊥)cl , d∗ΩN (M, L) ⊂ ΩN (M, L1)cocl

Theorem 4 Under assumption (72) we have

Ω(M) = d∗ΩN (M, L) ⊕ ΩD(M, L⊥)cl ∩ ΩN (M, L1)cocl ⊕ dΩD(M, L⊥
1 ) (73)

Indeed, if V,W ⊂ Ω are liner subspaces in the scalar product space Ω such that
W ⊂ V⊥ and V ⊂ W⊥ then Ω = V ⊕ V⊥ = W ⊕ W⊥ and

Ω = V ⊕ W⊥ ∩ V⊥ ⊕ W

Wewill call the identity (73) the Hodge decomposition with boundary conditions.
The following is clear:

Theorem 5 The decomposition (73) agrees with the Hodge star operation if and
only if

∗L⊥
1 = L

Remark 13 In the particular case L = {0} and L⊥
1 = {0} we obtain the decomposi-

tion from the previous section:

Ω(M) = d∗ΩN (M) ⊕ Ωcl,cocl(M) ⊕ dΩD(M)
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Lemma 3 If L ⊂ Ω(∂M) is an isotropic subspace then ∗L ⊂ Ω(∂M) is also an
isotropic subspace.

Indeed, if L is isotropic then for any α, β ∈ L we have
∫

∂M
α ∧ ∗β = 0, but

∫

∂M

∗α ∧ ∗2β = ±
∫

∂M

α ∧ ∗β

therefore ∗L is also isotropic.

Remark 14 We have

∗ΩN (M) = ΩD(M), ∗H(M) = H(M, ∂M)

In the second formula H(M) is the space of closed-coclosed forms with Neu-
mann boundary conditions and H(M, ∂M) is the space of closed-coclosed forms
with Dirichlet boundary conditions. They are naturally isomorphic to correspond-
ing cohomology spaces. Note that as a consequence of the first identity we have
∗d∗ΩN (M) = dΩD(M). We also have more general identity

∗ΩN (M, L) = ΩD(M, ∗∂ L)

and consequently ∗ΩD(M, L) = ΩN (M, ∗∂ L).

Letπ and π̃ bemaps defined at the beginning of this section. Becauseπ commutes
with deRhamdifferential and π̃ commuteswith itsHodgedual,wehave the following
proposition

Proposition 4 Let HM (∂M) be the space of harmonic forms on ∂M extendable to
closed forms on M, then

π(Ωcl(M)) = HM (∂M) ⊕ dΩ(∂M), π̃(Ωcocl(M)) = HM (∂M)⊥ ⊕ d∗Ω(∂M)

Here is an outline of the proof. Indeed, let θ ∈ Ωcl(M) and σ ∈ Ωcocl(M). Then

∫

∂M

π(θ) ∧ ∗∂ π̃(σ ) =
∫

∂M

π(θ) ∧ π(∗σ) =
∫

M

d(θ ∧ ∗σ)

The last expression is zero because by the assumption θ and ∗σ are closed. The
proposition follows now from the Hodge decomposition for forms on the boundary
and from π(Ωcl(M)) ⊂ Ωcl(∂M), π̃(Ωcocl(M)) ⊂ Ωcocl(∂M).

D.2.2 dim M = 3

Let us look in details at the 3-dimensional case. In order to have the Hodge
decomposition with boundary conditions we required
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dL⊥
1 ⊂ L⊥

If we want it to be invariant with respect to the Hodge star we should also have
∗L⊥

1 = L . Together these two conditions imply that L should satisfy d ∗ L ⊂ L⊥ or

∫

∂M

d ∗ α ∧ ∗β = 0

for any α, β ∈ L . This condition is equivalent to

∫

∂M

d∗α ∧ β = 0

for any α ∈ L(1) and any β ∈ L(2).
Note that if L(2) = {0} we have no conditions on the subspace L(1). In this case

for any choice of L(0) and L(1) the ∗-invariant Hodge decomposition is:

Ω0(M) = d∗Ω1
N (M, L(0)) ⊕ Ω0

D(M, L(0)⊥)cl

Ω1(M) = d∗Ω2
N (M, L(1)) ⊕ Ω1

D(M, L(1)⊥)cl ∩ Ω1
N (M, L(0))cocl ⊕ dΩ0

D(M)

HereweusedΩ i
N (M, L1) = Ω i

N (M, L(i−1)
1 ) = Ω i

N (M, (∗L(3−i))⊥). The condition
L(2) = {0} implies that Ω1

N (M, (∗L(2))⊥) = Ω1(M). We also used Ω0
D(M, L⊥

1 ) =
Ω0(M, ∗L(2)) = Ω0

D(M).
The decomposition of 2- and 3-forms is the result of application of Hodge star to

these formulae.

D.2.3 The gauge-fixing subspace

Consider the bilinear form

B(α, β) =
∫

M

β ∧ dα (74)

on the space Ω•(M).
Let I ⊂ Ω•(∂M) be an isotropic subspace.

Proposition 5 The form B is symmetric on the space ΩD(M, I ).

Indeed
∫

M

(β ∧ dα) = (−1)|β|+1
∫

∂M

π(β) ∧ π(α) +
∫

M

dβ ∧ α = (−1)(|α|+1)(|β|+1)B(α, β)
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The boundary term vanishes because boundary values of α and β are in an isotropic
subspace I .

Proposition 6 Let I ⊂ Ω(∂M) be an isotropic subspace, then B is nondegenerate
on d∗ΩN (M, I⊥) ∩ ΩD(M, I ).

Proof If I is isotropic, β ∈ ΩD(M, I ) and B(β, α) = 0 for any α ∈ ΩD(M, I ), we
have:

B(β, α) = B(α, β) =
∫

M

α ∧ dβ

and therefore dβ = 0. Therefore ΩD(M, I )cl is the kernel of the form B on
ΩD(M, I ). But we have the decomposition

Ω(M) = ΩD(M, I )cl ⊕ d∗ΩN (M, I⊥)

This implies

ΩD(M, I ) = ΩD(M, I )cl ⊕ d∗ΩN (M, I⊥) ∩ ΩD(M, I )

This proves the statement.

In particular, the restriction of the bilinear form B is nondegenerate on �I =
d∗Ω2

N (M, I (1)⊥) ∩ Ω1
D(M, I (1)). For the space of all 1-forms with boundary values

in I (1) we have:

Ω1
D(M, I (1)) = Ω1

D(M, I (1))cl ⊕ d∗Ω2
N (M, I (1)⊥) ∩ Ω1

D(M, I (1))

The first part is the space of solutions to the Euler-Lagrange equations with boundary
values in I (1).
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Local BRST Cohomology for AKSZ Field
Theories: A Global Approach

Giuseppe Bonavolontà and Alexei Kotov

Abstract We study the Lagrangian antifield BRST formalism, formulated in terms
of exterior horizontal forms on the infinite order jet space of graded fields for topo-
logical field theories associated to Q-bundles. In the case of a trivial Q-bundle with
a flat fiber and arbitrary base, we prove that the BRST cohomology are isomorphic
to the cohomology of the target space differential “twisted” by the de Rham coho-
mology of the base manifold. This generalizes the local result of G. Barnich and
M. Grigoriev, computed for a flat base manifold.

1 Introduction

Horizontal forms constitute a bicomplex with respect to the BRST operator s and
the horizontal (or total) differential dh . We are interested in the study of the iterated
s-cohomology H∗,∗(s|dh) of the dh-cohomology groups of this bicomplex. Other-
wise stated we are interested in the term E∗|∗

2 of its spectral sequence. Particularly
relevant for the applications are the terms H∗,n(s|dh) of top horizontal forms (n being
the dimension of the base manifold) known as “local BRST cohomology”, i.e. the
cohomology groups of s in the space of local functionals. These groups control the
deformation theory for gauge theories and encode classical observables, generalized
symmetries and conservations laws (e.g. see [2–4]).

Here we will adapt the formalism of local BRST cohomology to the specific
setting of (topological) gauge field theories associated to flat Q-bundles [1, 14, 15].
Recall that a Q-bundle is a fiber bundle in the category of Q-manifolds. In particular,
a trivial Q-bundle over T [1]X is a trivial bundle of graded manifolds
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η : T [1]X × M → T [1]X,

where the cohomological vector field on the total space, Q, is η-related to the de
Rham operator of the base. The space of graded sections Γ (η) is identified with the
space of graded maps Hom(T [1]X,M) [11]. In this case the BRST differential s
consists of the evolutionary vector field induced byQ on the space of infinite jets of
Γ (η) (see [5]). The aforementioned BRST formalism has been studied in [5] in the
case of coordinate neighborhoods for both (graded)manifolds, the base X and the
target M. In these hypotheses the iterated cohomologies are the following

(i) H g,n(s|dh) is isomorphic to the cohomology H g+n(s + dh) of the total BRST
operator s̃ = s + dh on horizontal forms of total degree g + n;

(ii) as a consequence of the hypothesis about the contractibility of the base space,
the local BRST cohomology is isomorphic to the Q-cohomology of the target
space functions.

These results are obtained by constructing (local) descent equations (in view of the
contractibility assumption for the base X ). The local BRST cohomology in the case
of an arbitrary connected basemanifold X and flat target space is given byTheorem1.

Assume that the target (M,QM) := (L = ⊕i∈ZLi ,QL) is a Z-graded R-
vector space of finite type, i.e. with dimRLi < ∞ for all i . More precisely we will
assumeM to be a formal pointed Q-manifold. In this case the space of graded maps
Hom(T [1]X, L) is naturally identified with the module of differential forms on X
twisted by L; this identification suggests the following generalization: we replace
the de Rham operator of the base with QDR, a (linear) homological vector field given
by the L-twisted de Rham operator. We prove that

Main result [Theorem 10.1] The iterated BRST complex for AKSZ field theories
with arbitrary connected base manifold X and target space (L = ⊕i∈ZLi ,QL) has
the following form:

H g|n(s|dh) � (
H•
DR(X) ⊗ H•

Q(L)
)g+n

. (1)

In other words, the local BRST cohomology are isomorphic to the Q-cohomology of
the target space functions “twisted” by the de Rham cohomology of X .

An immediate interpretation for this result is the following: the s-cohomology in
the space of local functionals contains a very restrictive information. More general
functionals are needed in order to incorporate TFT (and especially those of AKSZ-
type) in the frame of variational calculus for Classical Field Theory [6, 7]. We shall
continue investigating this subject in [10] by the use of different tools as “multivalued
Lagrangians” and the theory of coverings for non linear PDE-s.

The paper has the following content. In Sect. 2 we recall basic notions about jet
spaces as the Cartan distribution, evolutionary vector fields, D-modules, variational
bicomplex and the horizontal complex. Particularly relevant for the rest of the paper
will be the choice of a specific subcomplex of the horizontal complex denoted with
Ω̄•

poly(π) (see Proposition6).
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In Sect. 3 we construct the proof of Theorem 1 in two steps: first we prove that
the local BRST cohomology H g,n(s|dh) are still isomorphic to the total cohomology
H g+n(s+dh) and then we calculate the latter cohomology by the use of an argument
based on the formal integrability for a compatibility complex (see [16, 17, 20]).

Here we introduce some of the notations employed in the paper. If M is a sheaf on a
manifold X then M(U ) is the space of its sections over an open setU ⊂ X ; in the case
of canonical sheaves, X will appear as a subscript e.g.:ΩX is the sheaf of differential
forms, TX—the sheaf of vector fields,DX—the sheaf of differential operators. With
Ω(X) we mean the space of sections over X , that is, all forms; T (X)—all vector
fields, D(X)—all differential operators. Analogously for the bundle of forms we
write ΛX .

2 Jet Bundles, D-modules, and Local Functionals

In this section we review basic facts about jet spaces. Let π : E → X be a vector
bundle over an n-dimensional smooth manifold. Let Jk(π) be the space of k-jets of
its sections:

Jk(π) = {[s]k
x | x ∈ X, s ∈ Γ (π)}. (2)

It is obvious that πk : Jk(π) → X inherits a vector bundle structure for all k ≥ 0,
where πk([s]k

x ) = x . Furthermore, there exists a canonical surjective vector bundle
morphism πk,l : Jk(π) → Jl(π) for all k ≥ l, so that πk,l([s]k

x ) = [s]lx . The collection
of vector bundles πk together with projections πk,l constitutes an inverse system,
which allows to define the projective limit π∞ : J∞(π) → X , called the infinite jet
space, along with projections π∞,k : J∞(π) → Jk(π), k ≥ 0. The algebra of smooth
functions on J∞(π), F(π), is defined to be the direct limit of Fk(π) = C∞(Jk(π)),

F(π) : =
⋃

k

Fk(π). (3)

Each element of Fk(π) is regarded as a nonlinear scalar differential operator of
order k acting on sections of π; this correspondence is established by the following
formula:

s �→ f [s] = jk(s)
∗( f ) ∈ C∞(X), s ∈ Γ (π) , f ∈ Fk(π), (4)

where jk(s) is the k-jet of s, regarded as a section of πk , so that jk(s)(x) = [s]k
x .

Let π′ : E ′ → X be another bundle over the same manifold. We denote by
Fk(π,π′) andF(π,π′) the space of smooth sections of the pull-back bundles π∗

k (π′)
and π∗

∞(π′), respectively. Similarly to scalar functions on the space of jets,Fk(π,π′)
is canonically identified with nonlinear PDEs of maximal order k acting from Γ (π)

to Γ (π′).
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The tangent space to jk−1(s) at xk−1 = [s]k−1
x is uniquely determined by xk = [s]k

x ;
this allows to define a vector bundle τk : Lk → Jk(π), the fiber Lxk of which is the
tangent space to jk−1(s) at xk−1.

Proposition 1 It is easy to verify that following properties hold.

1. dπk−1,k−2(Lxk ) = Lxk−1 for all k ≥ 2 and dπk−1(Lxk ) = Tx X for all k ≥ 1.1

2. Therefore τk � π∗
k (τ ), where τ : T X → X is the tangent bundle.

3. Sections of τk can be viewed as derivations of Fk−1(π) with values in Fk(π)

and sections of τ∞ = π∗
∞ (τ )—as derivations of F(π) with values in F(π),

respectively.
4. There exists a canonical bracket on Γ (τk) with values in Γ (τk+1), which gives rise

to a Lie bracket on Γ (τ∞). The latter coincides with the commutator of the cor-
responding derivations of F(π), hence τ∞ determines an involutive distribution
C(π) on J∞m (π), called the infinite Cartan distribution.

5. Sections of π∞, which are integral leaves of C(π), are of the form j∞(s) for some
s ∈ Γ (π).

Taking into account the above isomorphism C(π) � π∗
∞(τ ), we can canonically

lift any vector field on X to a vector field on J∞(π), tangent to the Cartan distribution.
Moreover, this lifting respects the Lie bracket, thus it can be viewed as a (non-linear)
flat connection in π∞. The canonical lift of a vector field v is called the total deriv-
ative along v. More concretely, let U ⊂ X be a coordinate chart together with local
coordinates {xi } and let {ua}, a = 1, . . . , rk(π), be the linear fiber coordinates corre-

sponding to some trivialization of πU , the restriction of π to U . Let v =
n∑

i=1
hi (x)∂xi

be a vector field in U . Then for any f ∈ F(π),

v̄( f ) =
n∑

i=1

hi (x)Dxi f, where Dxi = ∂xi +
rk(π)∑
a=1

∑
(σ)

ua
(σ +1i )

∂ua
(σ)

. (5)

Here (σ) = (σ1, . . . ,σn) is a multi-index, (σ + 1i ) = (σ1, . . . ,σi + 1, . . . ,σn),
and {ua

(σ)} are the fiber linear coordinates on the trivialization of J∞(πU ), such
that the infinite jet of a section ua = ua(x), a = 1, . . . , rk(π) is represented by
the formula ua

(σ)(x) = ∂(σ)u
a(x). Henceforth we shall use the notation ∂(σ) for(

∂x1
)σ1 . . . (∂xn )σn and D(σ) for

(
Dx1

)σ1 . . . (Dxn )σn , respectively.

Proposition 2 Given any v ∈ T (X), s ∈ Γ (π), and f ∈ F(π), one has

v̄( f )[s] = v ( f [s]) . (6)

TheCartan distribution on J∞(π) allows to define anF-module of horizontal (tan-
gent to the Cartan distribution) vector fields as well as anF-module of C-differential

1 Hereafter one has xl = πk,l(xk) for all k ≥ l and x = πk(xk) for all k ≥ 0, unless the contrary is
expressed.
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operators CD(π), generated by CT (π). Apparently, CT (π), as anF-module, admits
a canonical (involutive) complement, consisting of π∞-vertical vector fields.

Remark 1 The Lie subalgebra of horizontal vector fields lifted from X generates
CT (π) over F . Along with vector fields on X , we can canonically lift differential
operators on X ,D(X), to C-differential operators. Furthermore, CD(π) = F⊗C∞(X)

D(X).

Let us consider the Lie subalgebra vector fields on J∞(π), which preserve C, denoted
by TC(π). Apparently, CT (π) is an ideal in TC(π). Let us define

T sym(π) = TC(π)/CT (π). (7)

Elements of T sym(π) are uniquely represented by π∞-vertical vector fields which
preserve C, called evolutionary vector fields; they can be identified with sections of
κ(π) = π∗

∞,0(π) as follows:

T sym(π) 
 v �→ φv = v|F0 .

Remark 2 Taking into account that every total derivative is a π∞-projectable vector
field on J∞(π), and thus it preserves the subspace of π∞-vertical vector fields, we
immediately conclude that evolutionary vector fields are those and only those which
commute with all total derivatives. In other words, an evolutionary vector field is a
derivation of F(π) over D(X). All sections of π∞ which are integral leaves of the
Cartan distribution, are in one-to-one correspondence with infinite jets of sections of
π; therefore any infinitesimal bundlemorphism ofπ∞ preserving C(π), determines an
infinitesimal flow on Γ (π). Hence an evolutionary vector field is a “good candidate”
for being a vector field on the space of sections. Indeed, evolutionary vector fields
induce derivations of local functionals (see the later Remark3). However, almost all
evolutionary vector fields, except those which come from infinitesimal morphisms of
π, will not generate a flow.What concerns bundlemorphisms of π, they obviously act
on Γ (π), so that the corresponding infinitesimal generators, which are π-projectible
vector fields on the total space of π, can be thought of as “honest” vector fields on
Γ (π). In other words, any π-projectible vector field v admits the unique lift ṽ, which
preserves the Cartan distribution, that is, ṽ ∈ TC(π). In coordinates as in (5), if

v =
n∑

i=1

hi (x)∂xi +
rk(π)∑
a=1

ga(x,u)∂ua ,

then

ṽ =
n∑

i=1

hi (x)Dxi +
rk(π)∑
a=1

∑
(σ)

D(σ)

(
−

n∑
i=1

hiua
i + ga(x,u)

)
∂ua

(σ)
. (8)
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One can easily check that, in contrast to total derivatives, ṽ preserves Fk(π) for all
k. The π∞-vertical part of (8) is the evolutionary vector field corresponding to v.

Define the module Ω i (π) of differential i-forms on J∞(π) by setting2

Ω i (π) : =
⋃

k

Ω i (πk),

where Ω i (πk) is the module of i-forms on Jk(π). Let us set Ω∗(π) = ⊕∞
i=0Ω

i (π).
The decomposition of vector fields on the infinite jets space into the sum of horizontal
and vertical parts gives rise to a bicomplex structure onΩ∗(π), called the variational
bicomplex:

Ω• =
⊕

p,q≥0

Ω p,q(π), d = dh + dv, (9)

where

Ω p,q(π)

dh

������������
dv

������������

Ω p+1,q(π) Ω p,q+1(π)

such that Ω0,1(π) is the annihilator of the Cartan distribution and Ω1,0(π) is the
space of π∞-horizontal 1-forms. In local coordinates as in (5), one has

dh =
n∑

i=1

dxi Dxi , dv =
rk(π)∑
a=1

∑
(σ)

ϑa
(σ)∂ua

(σ)
(10)

where ϑa
(σ) are the (local) Cartan 1-forms defined as follows:

ϑa
(σ) = dua

(σ) −
n∑

i=1

ua
(σ +1i )

dxi . (11)

Hereafter we use the notation Λ̄p(π) for the bundle Λp,0(π) of horizontal p-
forms and

(
Ω̄•(π), dh

)
for the horizontal part of the variational bicomplex (9),(

Ω•,0(π), dh
)
, respectively. Similarly to scalar functions, any p-form ω ∈ Ω̄ p(π)

can be regarded as a nonlinear differential operator with values in p-forms on X ,
acting on sections of π by the following formula:

s �→ ω[s] = jk(s)
∗(ω) ∈ Ω p(X), s ∈ Γ (π). (12)

2 Direct limit of differential forms and embeddings induced by the projections π and πk+1,k .
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The next property is immediate from (6) and (10):

(dhω)[s] = d (ω[s]) . (13)

By (12) we conclude that, if X is oriented, then any horizontal top-form ω ∈
Ω̄n(π) determines a local (that is, a jet depending) functional on Γ (π),

s �→
∫

X

ω[s], (14)

so that, if X is a compact oriented manifold without boundary then the above func-
tional is determined by the cohomology class of ω in Hn(Ω̄•(π), dh). We denote
the space of local functionals by Loc(π) and summarize the above considerations as
follows.

Proposition 3 Let X be a compact oriented manifold without boundary, then

Loc(π) � Hn(Ω̄•(π), dh).

Remark 3 From the Remark2 we conclude that any evolutionary vector field pre-
serves the bicomplex structure (9). In particular, this implies that, if X is compact
without boundary, then, by Proposition 3, evolutionary vector fields are acting in
Loc(π).

For a generic fiber bundle (E,π, X) we recall some standard results about hori-
zontal cohomologies, see [7, 12, 21]. Note that all the aforementioned results about
jet spaces (e.g. Cartan distribution, variational bicomplex, etc.) can be generalized
to the case of an arbitrary smooth fiber bundle. The exterior algebra Ω•(π) provides
the (infinite order) de Rham complex

0 �� R �� Ω0(π)
d �� Ω1(π)

d �� . . . .

First we remind the following3

Proposition 4 The cohomology H∗(Ω•(π)) of the previous de Rham complex is
equal to the de Rham cohomology H∗(E) of the total space E.

Recall that there is a canonical homomorphism between the de Rham cohomologies
of the base and the total space

π∗ : H∗(X) → H∗(E);

if s ∈ Γ (π) is a global section we denote with s∗ the corresponding epimorphism
s∗ : H∗(E) → H∗(X). Whenever this epimorphism is defined, π∗ becomes a mono

3 It is based on the fact that jet bundles Jk+1(π) → Jk(π) are affine.
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morphism. In this hypothesis we extend the monomorphism from the de Rham coho-
mology groups of the base X to those for the infinite jets space

π∗ : H∗(X) ↪→ H∗(Ω•(π)).

In the previous paragraph we have already introduced the splitting of Ω•(π) into
horizontal and vertical parts; we denote with

π•,0 : Ω•(π) → Ω̄•(π) := Ω•,0(π)

the horizontal projection. It is obvious that this projection is a chain map

d ◦ π•,0 = π•,0 ◦ dh

and it defines a homomorphisms of groups

(π•,0)∗ : H∗(Ω•(π)) → H∗(Ω̄•(π)).

The composition of the previous two cohomology maps

(π•,0)∗ ◦ π∗ : H∗(X) → H∗(Ω̄•(π)), (15)

in the case (E,π, X) admits a global section, is still a monomorphism. It is again
a well-known result (loc.cit.) the fact that H∗(Ω̄•(π)) for ∗ < n is equal to the de
Rham cohomology of the total space H∗(E).

We shall adapt these results to our specific setting, i.e. (E,π, X) is in particu-
lar a vector bundle. In this case the canonical choice for the aforementioned global
section is the zero section and the cohomology H∗(E) coincides with the de Rham
cohomology of the base H∗(X). Apparently, in our hypothesis, the horizontal coho-
mologies (of degree less than n) are provided by the image of the de Rham complex
of the base, lifted by the pullback of the projection map. In the next paragraph we
will restrict our attention to the subcomplex of horizontal forms which vanish on the
infinite jet of the zero section; this subcomplex is complementary to the image of the
forms from the base.

Among all functions on the space of k-jets of a (possibly graded super) vec-
tor bundle, there are two distinguished Z-graded subalgebras: of fiber-wise poly-
nomial functions, S•

k (π), and fiber-wise polynomial functions, vanishing on the
zero section of π, S+

k (π), which can be identified with sections of4 Sym•(π∗
k ) and

Sym+(π∗
k ) = ⊕ j>0Sym j (π∗

k ), respectively. In the case of a graded super vector
bundle, the symmetric powers should be understood in the super sense. Given that
π∗

∞ is a direct limit of π∗
k , and thus Sym

p(π∗
∞) is a direct limit of Sym p(π∗

k ), a section
of Sym p(π∗

∞) is always a section of Sym p(π∗
k ) for some k. We denote by S•(π) and

S+(π) the direct limit of the corresponding algebras.

4 Symmetric powers of the dual bundle.
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Remark 4 According to (4), an element of S p
k (π) can be viewed as a symmetric

p-linear differential operator of maximal order k acting from sections of π to smooth
functions on X : in order to verify this statement, we use the usual correspondence
between polynomial and symmetric multi-linear maps.

From (5) one can see that the subspaces S p(π) are preserved by total derivatives
for all p, thus we obtain an action of D(X) on S p(π), and finally on S•(π) and
S+(π). In order to determine the precise form of this action, we shall first give a
very brief survey of the properties of modules over DX , the sheaf of differential
operators on X , called D-modules; nowadays it is a convenient language for talking
about linear PDEs and their solutions. The structure sheaf of smooth functions on
X will be denoted with OX (its sections over U is just C∞(U )); the choice for this
convention is so motivated: many properties stated hereafter can be generalized to
the analytic and algebraic case.

Denote by Mod(X) and Mod(X)r—the categories of left and right D-modules,
respectively. E.g. the structure sheafOX is a leftD-module,whileΩn

X , the sheaf of top
degree forms on X , is a rightD-module, where the right action onΩn

X is generated by

ωv = −Lv(ω) ∀ω ∈ Ωn
X , v ∈ TX .

Here TX is the sheaf of vector fields on X . Recall that:

• if M and N belong to Mod(X), then so do Hom(M,N), M⊗N, and Sym p(M) for all
p; the symmetrization is to respect the sign rule in the super case.5

• if M ∈ Mod(X) and N ∈ Mod(X)r, then N⊗ M ∈ Mod(X)r, where

(n ⊗ m)v = nv ⊗ m − n ⊗ vm , ∀ m ∈ M , n ∈ N , v ∈ TX .

• if N1,N2 ∈ Mod(X)r then Hom(N1,N2) ∈ Mod(X), where

vψ(n) = ψ(nv) − ψ(n)v , ∀ n ∈ N1 ,ψ ∈ Hom(N1,N2) , v ∈ TX .

The tensor product ⊗ determines a symmetric monoidal structure in Mod(X) with
OX as unit.

Definition 1 AcommutativeD-algebra is an algebra in the symmetricmonoidal cat-
egory (Mod(X),⊗,OX ), i.e. a commutative monoid in the category of D-modules.

More explicitly, a commutative D-algebra is a D-module A together with two DX -
linear maps, (product)

μ : A ⊗ A → A

and (unit)

i : OX → A,

5 The bifunctors Hom and ⊗ are defined over OX .
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which respect the usual associativity, unitality and commutativity constraints. Note
that the action of a vector field on M on a product μ(a ⊗ a′) verifies the Leibniz’
rule for any a, a′ ∈ A.

Example 1 Given any vector bundle π, F(π) is a D-algebra, where the D-module
structure is defined by total derivatives. Another example is the algebra of functions
on an infinitely prolonged system of nonlinear partial differential equations, regarded
as a “submanifold” in J∞(π).

Definition 2 An evolutionary vector field for a D-algebra A is a derivation of A
commuting with the action DX .

Denote by D(α,β) the space of linear differential operators acting between sec-
tions of vector bundles α and β on X , and by 1k the trivial vector bundle of rank k.
Then D(α, 1) is a left D-module, which is isomorphic to S1(π) = Γ (π∗

∞) (see the
Remark4); here D(X) is acting from the left by composition. Likewise, D(α,Λn

X )

is right D-module, where Λ
p
X is the bundle differential p-forms on X .

Definition 3 Letα be a vector bundle. Denote the conjugated vector bundle Hom(α,

Λn
X ) by α̂.

Proposition 5 There exists a canonical isomorphism of OX -bimodules D(α,β) �
D(β̂, α̂), determined by formal conjugation. In particular, D(α,Λn

X ) � D(1, α̂).
The latter is also an isomorphism of right D-modules.

Consider the following complex of right OX -modules
(
SymlD(π,Λ•

X ), dDR
)
,

where SymlD(α,β) is, by definition, the space the q-linear symmetric differential
operators acting from sections of a vector bundle α to sections of another vector
bundle β, and the differential dDR is induced by the left composition with the de
Rham operator. The statement from Remark4 about polynomial functions on the
space of jets can be easily extended to polynomial horizontal differential forms.

Proposition 6 The following complexes are canonically isomorphic:

(
Ω̄

•,l
poly(π), dh

)
�

(
SymlD(π,Λ•

X ), dDR
)

(16)

where Ω̄
•,l
poly(π) is a subcomplex of the horizontal complex (Ω̄•(π), dh) consisting

of horizontal differential forms which depend on jet variables as polynomials of the
degree l.

3 BRST Cohomology in the Space of Local Functionals

Let η be a Q-bundle over T [1]X , that is, a bundle in the category of Q-manifolds
(cf. [14], [15]), so that the Q-structure on the base is determined by the de Rham
operator, regarded as a homological vector field. Apparently, not every section of η in
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the graded sense is a section in the category of Q-manifolds, that is, not necessarily a
Q-morphism; sections of η, which are Q-morphisms at the same time,6 are solutions
to a certain system of PDEs. This system admits gauge symmetries (cf. [13]). The
Q-stucture on the total space generates a homological vector field on the super space
of sections Γ (η), denoted as QBRST;

(
Γ (η), QBRST

)
is the BV-BRST type model for

the above system of PDEs. QBRST induces a nilpotent derivational of a (suitable)
space of functionals F (Γ (η)); the problem is to compute the cohomology of the
obtained complex.

In the case of a trivial bundle, the fiber of which is a PQmanifold, that is, a graded
super symplectic manifold with a symplectic form of degree dim X − 1, so that the
corresponding Q-field is Hamiltonian, we come to the classical BV theory for AKSZ
type topological sigma models [1, 8]. In usual differential geometry, sections of a
trivial bundle are in one-to-one correspondence with maps from the base to the fiber.
Likewise, in the super case

Γ (η) � Hom(T [1]X,M), (17)

whereM is the fiber andHom is the super space ofmaps. In general, the construction
of Hom in (17) is rather complicated (cf. [11] for the categorical approach; in [9],
Hom is explicitly represented by an infinite-dimensional supermanifold), unless the
target is flat.

The choice of an appropriate space of functionalsF is not canonical. Furthermore,
there is a tendency (even in non-super cases) to avoid possible troubles with an
infinite-dimensional analysis by considering local (“jet depending”) functionals in
the sense of Sect. 2. It seems to be at least equally useful for those theories which
involve super maps. However, in TFTs the space of local functionals contains a very
restrictive information, and we shall explicitly show that in the particular case ofM
being a Z-graded super vector space L of finite type, i.e.

L• =
⊕
i∈Z

Li

with dimLi < ∞ for all i , endowed with a structure of a Lie∞-algebra.

Definition 4 A Lie∞-algebra is a formal Q-manifold with the homological vector
field vanishing at the origin.

Example 2 In the particular case of a Lie algebra the corresponding Q-manifold is
L := g[1], where g is the Lie agebra considered as a pure odd manifold, with Q-field
given by the Chevalley–Eilenberg differential.

6 Geometrically it means that those sections are tangent to the Q-stucture on the total space.
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Remark 5 In general, formal pointed (i.e. vanishing at the origin) Q-structures on
L are in one-to-one correspondence with nilpotent degree 1 coderivations of the
coalgebra Sym+

c (L), determined by an infinite sequence of maps Symi
c(L) → L[1],

i ≥ 1. By use of the natural isomorphism Symi (g[1]) � Λi (g)[i], we obtain a
sequence of super skew-symmetric operations

li : Λi (g) → g[2 − i] , ∀i ≥ 1, (18)

where g = L[−1]; the latterwas introduced under the name “homotopyLie algebras”
[19].

Denote with α j,i the bundle of differential j-forms on X twisted by Li , α j,i =
Λ

j
X ⊗ Li .

Lemma 1

1. The super space of maps is given by Γ (α•), where

α• =
⊕
q∈Z

αq , αq =
dim X⊕

j=0

α j,q− j

is regarded as a Z-graded super vector bundle with the total Z-grading induced
by the degree of forms and the grading in L.

2. QBRST = QDR+QL, where QDR is a (linear) homological vector field, given by the
L-twisted de Rham operator, while QL is a pointed formal Q-field, determined
by the super multi-linear over Ω•(X) extension of the coderivation of Sym+

c (L).

As it was previously mentioned, the choice ofF , the space of functionals, is not
canonical. On the other hand, the super space of maps is now represented by sections
of graded super vector bundle over an even (“bosonic”) base X . One may address
the naturally looking question of computing the cohomology in the space of local
functionals, which are polynomials in jet variables, with respect to the differential s,
where s is the evolutionary vector field corresponding to QBRST. In other words, we
are interested in H•,n(s | dh), where

H•,n(s | dh) : =
⊕
g∈Z

H g (
Hn (

Ω̄
•,•
poly(π), dh

)
, s

)

(ωn,g ∈ Ω
n,g
poly (π) is a n-horizontal form of g ∈ Z degree).

Proposition 7 One has H g,n(s | dh) � H g+n(s + dh).

Proof We apply the canonical isomorphism (16). Let us consider the corresponding
bicomplex
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...
...

0 �� [Sym+D(α•, 1)
]g+1 dDR ��

s

��

. . .
dDR �� [Sym+D(α•,Λn

X )
]g+1

s

��

�� 0

0 �� [Sym+D(α•, 1)
]g dDR ��

s

��

. . .
dDR �� [Sym+D(α•,Λn

X )
]g

s

��

�� 0.

...

s

��

...

s

��

(19)

We examine the spectral sequence determined by (19), where the filtration is chosen
such that the cohomology of the rows are to be taken at first. The E1-term of the
above spectral sequence can be computed by use of the following Lemma.

Lemma 2 Let α be a vector bundle. Then one has for all l > 0

Hi
(
SymlD(α,Λ•

X ), dDR
)

=
{
Syml−1

self D(α, α̂), i = n
0, i < n

(20)

where Syml−1
self D(α, α̂) is the space the (q − 1)-linear symmetric differential opera-

tors, (formally) self-adjoint with respect to each argument. In particular, for q = 1
one has

Hi (D(α,Λ•
X ), dDR

) =
{

α̂, i = n
0, i < n.

The proof is rather standard; we notice that the differential in the above com-
plex commutes with the right OX -action coming from the OX -module structure on
Γ (α), thus one has a complex of locally trivialOX -modules or, equivalently, a com-
plex of vector bundle morphisms. This implies that formula (20) can be derived
in any local coordinates, using the symbolic filtration. A similar result, involving
C-differential operators instead of DX , is obtained in the case of the Vinogradov’s
C-spectral sequence (cf. [7, 16]). Taking into account that the E1-term is concentrated
in degree n only, we immediately obtain that the above spectral sequence converges
in the second term, thus the second term of the spectral sequence is isomorphic to the
cohomology of the total complex with the differential s + dh . Given that the second
term of the spectral sequence is nothing but H g,n(s | dh), we complete the proof of
Proposition7.

Theorem 1 One has H g,n(s | dh) �
(

H•
DR(X) ⊗ H•

Q(L)
)g+n

.

Proof The differential, given by the evolutionary vector field s, splits into the two
parts s = QL + δDR, which come from QL and QDR, respectively. In particular
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δDR is the derivation of Sym+D(α•,Λp
X ) induced by the right composition of QDR

with differential operatorsD(α•,Λp
X ). The two independent gradings allow to define

another bicomplex

0 0

. . .
QL �� [Sym+D(α•,Λp

X )
]0,i

��

QL ��QL �� [Sym+D(α•,Λp
X )

]0,i+1

��

QL �� . . .

...

δDR

��

...

δDR

��

. . .
QL �� [Sym+D(α•,Λp

X )
]− j+1,i

δDR

��

QL ��QL �� [Sym+D(α•,Λp
X )

]− j+1,i+1

δDR

��

QL �� . . .

. . .
QL �� [Sym+D(α•,Λp

X )
]− j,i

δDR

��

QL ��QL �� [Sym+D(α•,Λp
X )

]− j,i+1

δDR

��

QL �� . . . .

...

δDR

��

...

δDR

��

(21)

Here Sym+D(α•,Λp
X ) is a canonically bi-graded vector space, such that, in partic-

ular, the first degree, corresponding to the one in α, is always non-positive. Further-
more, we are finally interested in the calculation of the total cohomology dDR+s (due
to Proposition7) which is made up by three differentials dDR,QL , and δDR with three
independent gradings. We combine the fist two of them and construct a filtration for
the bicomplex (Sym+D(α•,Λ•

X ),QL + dDR, δDR), such that the cohomology with
respect to δDR are to be computed at first. Thus we need to calculate the cohomology
of the columns in (21). We notice that the following complex is formally exact (in
the sense of [17, 20])

α0,i
QDR �� α1,i

QDR �� . . . QDR �� αn,i �� 0.

In particular this means that applying to this complex the jet infinity functor, J∞, we
get an exact sequence of OX -modules

J∞(α0,i ) �� J∞(α1,i ) �� . . . �� J∞(αn,i ) �� 0;

we extend it to the following exact sequence of OX -modules
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Λ
n−p
X ⊗ J∞(α0,i ) �� Λn−p

X ⊗ J∞(α1,i ) �� . . . �� Λn−p
X ⊗ J∞(αn,i ) �� 0

(for 0 ≤ p ≤ n), where the horizontal arrows are still induced by the operator
QDR. Dualizing the previous sequence, by the use of the left-exact contravariant
Hom(−,Λn

X ) functor, we get a sequence of rightOX -modules which is exact every-
where except at the zero spot (i.e. it is a resolution of a cokernel)

0 → D(αn,i , Λ
p
X )

δDR �� D(αn−1,i , Λ
p
X )

δDR �� . . .D(α0,i , Λ
p
X )

δDR ���� coker → 0.

(22)

More precisely, it means that

H j
(
D(α•,i ,Λ

p
X ), δDR

)
=

{
Hom(Li ,Λ

p
X ), j = 0

0, j < 0.

Now we take the symmetric powers of (22) and we get

H j
([
Sym+D(α•,Λp

X )
]•,i

, δDR

)
=

{[
Sym+(L∗)

]i ⊗ Ω p(X), j = 0
0, j < 0.

(23)

This completes the calculation of the term E1. The second term of the above spec-
tral sequence coincides with the total cohomology of the bicomplex (Ω•(X) ⊗[
Sym+(L∗)

]•
, dDR,QL), which is simply the tensor product of (Ω•(X), dDR) and

(
[
Sym+(L∗)

]•
,QL). Thus we have the following Künneth type formula (see [18])

H p
(
Ω•(X) ⊗ [

Sym+(L∗)
]•

, dDR + QL

)
=

⊕
i+ j=p

Hi
DR(X) ⊗ H j

Q(L). (24)

We observe that the bicomplex associated to the couple (dDR + QL , δDR) verifies
the hypothesis of Remark6 below, in view of Lemma 2 and Eq. (23). Therefore, the
E2-term of the associated spectral sequence coincides with the total cohomology
with the differential dDR + QL + δDR and thus, using (24), we accomplish the proof
of Theorem 1.

The previous proof contains a result which can be stated in all generality in the
following way.

Lemma 3 Letβ be a vector bundle andγ be another vector space endowed with a flat
connection. Consider the following complex of left OX -modules

(D(Λ•
X ⊗ γ,β) ,

δDR), where the differential δDR is induced by the right composition with the de Rham
operator twisted by the flat connection in γ. Then one has

Hi (
Sym+D(Λ•

X ⊗ γ,β), δDR
) =

{
Γ

(
Sym+(γ∗) ⊗ β

)
, i = 0

0, i < 0.
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Remark 6 Let K • be the total complex of a bicomplex K •,• with linear maps

d1 : K p,q → K p+1,q , d2 : K p,q → K p,q+1,

such that (d1)2 = 0, (d2)2 = 0 and d2d1 + d1d2 = 0. There are two filtrations

K i
p(1) =

⊕
j+q=i, j≥p

K j,p , K i
q(2) =

⊕
p+ j=i, j≥q

K p, j .

These two filtrations yield two spectral sequences, denoted respectively by
E p,q

r (1) and E p,q
r (2); in particular recall that E p,q

2 (1) = H p
1

(
Hq
2 (K •,•)

)
and

E p,q
2 (2) = H p

2

(
Hq
1 (K •,•)

)
. Now assume that both filtrations are regular. In this

case both spectral sequences converge to the common limit H•(K •).
Suppose that in the following diagram

0 K 2,0��

d1
��

K 2,1
d2

��

d1
��

K 2,2
d2

��

d1
��

��

0 K 1,0��

d1
��

K 1,1
d2

��

d1
��

K 2,2
d2

��

d1
��

��

0 K 0,0��

��

K 0,1
d2

��

��

K 0,2
d2

��

��

��

0 0 0

all the sequences are exact except for the terms in the left column and bottom row.We
have two complexes Q•

1 and Q•
2, where Qi

1 = H0(K i,•, d2) and Qi
2 = H0(K •,i , d1)

and the differentials are induced by d1 and d2 respectively. It follows that E p,q
2 (1) =

E p,q
3 (1) = . . . = E p,q∞ (1) is equal to H p(Q•

1) (if q = 0 and zero otherwise) and
E p,q
2 (2) = E p,q

3 (2) = . . . = E p,q∞ (2) is equal to Hq(Q•
2) (if p = 0 and zero

otherwise). Since both spectral sequences converge to a common limit, we conclude
that Hi (Q•

1) = Hi (Q•
2).

References

1. M. Alexandrov, M. Kontsevich, A. Schwartz, O. Zaboronsky, The geometry of the master
equation and topological quantum field theory. Int. J. Mod. Phys. A12, 1405–1430 (1997)

2. G. Barnich, Classical and quantum aspects of the extended antifield formalism, These
d’agregation ULB (June 2000), in Proceedings of the Spring School “QFT and Hamiltonian
Systems”, Calimanesti, Romania, 2–7 May 2000

3. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in the antifield formalism.
I. General theorems. Comm. Math. Phys. 174(1), 57–91 (1995)



Local BRST Cohomology for AKSZ Field Theories: A Global Approach 341

4. G. Barnich, F. Brandt, M. Henneaux, Local BRST cohomology in gauge theories. Phys. Rep.
338(5), 439–569 (2000)

5. G. Barnich, M. Grigoriev, Poincaré lemma for sigma models of AKSZ type. J. Geom. Phys.
61(3), 663–674 (2011)

6. A. Beilinson, V. Drinfeld, Chiral Algebras. Amer. Math. Society, (2004)
7. A.V. Bocharov, V.N. Chetverikov, S.V. Duzhin, N.G. Khor’kova, I.S. Krasil’shchik, A.V.

Samokhin, Y.N. Torkhov, A.M. Verbovetsky, A.M. Vinogradov. Symmetries and conserva-
tion laws for differential equations of mathematical physics. Translations of Mathematical
Monographs, Amer. Math. Soc., 182, Providence (1999)

8. M. Bojowald, A. Kotov, T. Strobl, Lie algebroid morphisms, Poisson Sigma Models, and off-
shell closed gauge symmetries. J. Geom. Phys. 54, 400–426 (2004)

9. G. Bonavolontà, A. Kotov, On the space of super maps between smooth super manifolds. http://
arxiv.org/pdf/1304.0394.pdf

10. G. Bonavolontà, A. Kotov, Local BV cohomology for AKSZ field theories: a global approach
II, (In preparation)

11. P. Deligne, J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein). Quantum
fields and strings: a course for mathematicians. Vol. 1. Amer. Math. Soc., Providence (1999)

12. G. Giacchetta, L. Mangiarotti, G. Sardanashvily, Global calculus in local BRST cohomology.
http://arxiv.org/pdf/hep-th/0005023.pdf

13. M. Henneaux, C. Teitelboim, Quantization of Gauge Systems (University of Princeton, Prince-
ton, 1992)

14. A. Kotov, T. Srobl, Characteristic classes associated to Q-bundles, to appear in Int. J. Geom.
Methods Mod. Phys. http://arxiv.org/pdf/0711.4106

15. A.Kotov, T. Srobl, Generalizing geometry–algebroids and sigmamodels.Handbook of pseudo-
Riemannian geometry and supersymmetry, 16 (IRMA Lect. Math. Theor. Phys., Eur. Math.
Soc., Zürich, 2010), pp. 209–262

16. J. Krasil’shchik, A. Verbovetsky, Homological methods in equations of mathematical physics.
http://arxiv.org/pdf/math/9808130

17. D. Quillen, Formal properties of over-determined systems of linear partial differential equa-
tions. Ph.D. thesis, Harvard University (1964)

18. J. Rotman, An Introduction to Homological Algebra (Springer, New York, 2009)
19. M. Schlessinger, J. Stasheff, Deformation theory and rational homotopy type (1979). http://

arxiv.org/abs/1211.1647
20. D.C. Spencer, Overdetermined systems of linear partial differential equations. Bull. Amer.

Math. Soc. 75, 179–239 (1969)
21. F. Takens, A global version of the inverse problem of the calculus of variations. J. Differential

Geometry 14, 543–562 (1979)

http://arxiv.org/pdf/1304.0394.pdf
http://arxiv.org/pdf/1304.0394.pdf
http://arxiv.org/pdf/hep-th/0005023.pdf
http://arxiv.org/pdf/0711.4106
http://arxiv.org/pdf/math/9808130
http://arxiv.org/abs/1211.1647
http://arxiv.org/abs/1211.1647


Symplectic and Poisson Geometry
of the Moduli Spaces of Flat Connections
Over Quilted Surfaces

David Li-Bland and Pavol Ševera

Abstract In this paper we study the symplectic and Poisson geometry of moduli
spaces of flat connections over quilted surfaces. These are surfaces where the struc-
ture group varies from region to region in the surface, and where a reduction (or
relation) of structure occurs along the boundaries of the regions. Our main theoret-
ical tool is a new form moment-map reduction in the context of Dirac geometry.
This reduction framework allows us to extend the results of [30, 40] to allow more
general relations of structure groups, and to investigate both the symplectic and Pois-
son geometry of the resulting moduli spaces from a unified perspective. The moduli
spaces we construct in this way include a number of important examples, including
Poisson Lie groups and their Homogeneous spaces, moduli spaces for meromorphic
connections over Riemann surfaces (following the work of Philip Boalch), and var-
ious symplectic groupoids. Realizing these examples as moduli spaces for quilted
surfaces provides new insights into their geometry.

1 Introduction and Summary of Results

Suppose that G is a Lie group whose Lie algebra, g, is endowed with a G-invariant
inner product, 〈·, ·〉. Suppose that Σ is a closed oriented surface, and P → Σ is a
principal G-bundle. Let Aflat(P → Σ) denote the space of flat connections on P.
Atiyah and Bott [6] showed that the moduli space
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M(P → Σ) := Aflat(P → Σ)/Aut(P)

of flat connections on P carries a symplectic structure. Their construction involves
infinite dimensional symplectic reduction. Somewhat later, Alekseev, Malkin, and
Meinrenken introduced quasi-Hamiltonian geometry [4], equipping it with a toolkit
of fusion and reduction operations, in order to provide a finite dimensional construc-
tion of this moduli space. Boalch [11] enlarged the quasi-Hamiltonian toolkit, intro-
ducing the fission operation, which enables a finite dimensional construction of the
moduli space of flat connections with prescribed irregular singularities. Interestingly,
this new fission operation also allowed Boalch to associate Poisson/sympletic/quasi-
Hamiltonian spaces of connections to surfaces with different structure groups in
different regions. Moreover, these techniques enabled Boalch to interpret additional
Poisson spaces, including examples of Poisson Lie groups [8–12] and Lu-Weinstein
double symplectic groupoids [10–12], as moduli spaces for connections.

In this paper we expand the quasi-Hamiltonian toolkit further. First we introduce
a slight generalization of group-valued moment maps, so that the moduli space on a
surface with several marked points on every boundary component is equipped with
such a moment map.

Next, we subsume the quasi-Hamiltonian toolkit, consisting of reduction, fusion,
and fission, into a single broad generalization of reduction. In particular, the moduli
space for a triangulated surface is obtained via reduction from the moduli spaces for
the triangles.

Consequently, we are able to construct symplectic structures on moduli spaces
for:

• surfaceswith boundary,where segments of the boundary are labelledby coisotropic
subalgebras of g (generalizing some results found in [40]),

• surfaces with domains labelled by distinct structure groups and domain walls
labelled by coisotropic relations between the structure groups—also called quilted
surfaces (generalizing some results found in [10–12]),

• branched surfaces, where the branch locus is labelled by a coisotropic interaction
between the branches (generalizing some results found in [10–12]).

Even more generally, our techniques may be used to produce Poisson structures, and
a natural generalization of quasi-Hamiltonian and quasi-Poisson structures.

As a result, we are able to construct of a number of well known spaces including:
Lu’s symplectic double groupoid integrating a Poisson Lie group [32], Boalch’s
Fission spaces [11, 12], Poisson Lie groups [17, 36], and Poisson homogeneous
spaces [34], among others. Our approach builds upon the results and ideas of various
authors including Fock and Rosly, Boalch, and the second author [7–12, 20, 38–40].

Some of these results appeared in [30], where the (quasi-) Poisson structures on
moduli spaces are constructed in terms of an intersection pairing. Here we present
the reduction theorems in full generality (unifying both the twists and reductions
found in (quasi-) Poisson geometry) and with an emphasis on symplectic structures.
We also formulate the results in more natural way, as morphisms of Manin pairs.
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Among the morphisms of Manin pairs, we introduce the class of exact morphisms,
corresponding to (quasi-) symplectic structures.

1.1 Notation and Terminology

At this point, wewould like to introduce some notation. Suppose Vi is a family of vec-
tor spaces (ormanifolds) indexedby a set I and f : J → I is amap.Weuse the notation

f ! :
∏

i∈I

Vi →
∏

j∈J

Vf (j)

{vi}i∈I �→ {vf (j)}j∈J

for the induced pull-back map.
For any oriented graph Γ , we let EΓ denote the set of edges, VΓ the set of vertices

and in, out : EΓ → VΓ the incidence maps. Γ is called a permutation graph1 if
both in and out are bijections.

Aquadratic Lie algebra is aLie algebra endowedwith an invariant non-degenerate
symmetric pairing.

To simplify our presentation, we will assume that the Lie group G is con-
nected throughout this paper. The generalization to disconnected Lie groups is
straightforward.

1.2 The Construction

1.2.1 Motivating Example: The Symplectic Form from a Triangulation

Let Σ be a closed oriented surface and let

MΣ(G) = Hom(π1(Σ), G)/Ad(G)

be the moduli space of flat connections. Let us recall how to compute the Atiyah-Bott
symplectic form ω on MΣ(G) in terms of a triangulation of Σ .

Let T be a triangulation of Σ . Let T0 denote the set of its vertices, T1 the set of
(unoriented) edges and T2 the set of triangles. We let T̃1 denote the set of oriented
edges (we thus have a 2–1 map T̃1 → T1) we let

(e → ē) : T̃1 → T̃1

denote the map which reverses the orientation of the edges.

1 Such graphs are also called directed cycle graphs in the literature.
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Fig. 1 In the figure, t ∈ T2
is a triangle, e1, e2, e3 ∈ T̃1
are oriented edges, and
v1, v2, v3 ∈ T0 are vertices.
We have ∂t = {e1, e2, e3},
and v2 = in (e1) and
v1 = out (e1)

v2

e2 e
1

e3

v3

v1

t

Let Aflat(T ) be the space of “combinatorial flat connections” on Σ :

Aflat(T ) = {g ∈ GT̃1 | gē = g−1
e for all e ∈ T̃1, and

∏

e∈∂t

ge = 1 for all t ∈ T2},

here ∂t ⊂ T̃1 denotes the oriented boundary and the product is taken in the nat-
ural (cyclic) order (cf. Fig. 1). We have an action of GT 0

on Aflat(T ) by “gauge
transformations”

(g′ · g)e = g′
in(e)ge(g

′
out(e))

−1, g′ ∈ GT0, g ∈ GT̃1 (1)

and
MΣ(G) = Aflat(T )/GT 0

.

If t is an oriented triangle with edges e1, e2, e3 (in their cyclic order), let

Mt(G) = {(ge1, ge2 , ge3) ∈ G × G × G | ge1ge2ge3 = 1}. (2)

We have an inclusion
i : Aflat(T ) ⊂

∏

t∈T2
Mt(G),

where the subset Aflat(T ) is given by the condition ge = g−1
ē .

Let

ωt = 1

2
〈g−1

e2 dge2 , dge1 g−1
e1 〉 ∈ Ω2(Mt(G)).

The 2-form ωt is invariant under cyclic permutations of the edges.
The symplectic form ω onMΣ(G) is given by

p∗ω = i∗
∑

t∈T2
ωt, (3)

where p : Aflat(T ) → MΣ(G) is the projection [45].
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We shall interpret Eq. (3) in the following way: MΣ(G) is obtained from∏
t∈T2 Mt(G) by a variant of Hamiltonian reduction. The subset Aflat(T ) ⊂∏
t∈T2 Mt(G) is given by a moment map condition, and then we need to take the

quotient by the residual group GT 0
to get a symplectic manifold. To do it, we need

to explain this (quasi-) Hamiltonian reduction and the (quasi-) Hamiltonian structure
onMt(G).

1.2.2 Quasi-Hamiltonian Reduction

Let d be a quadratic Lie algebra and h ⊂ d a Lagrangian subalgebra (i.e. h⊥ = h).
In other words, (d, h) is a Manin pair.

Suppose that d acts on a manifold N so that all the stabilizers are coisotropic
Lie subalgebras of d. We shall recall below the following notions (introduced by
Alekseev, Malkin and Meinrenken in [4] and by Alekseev, Kosmann-Schwarzbach
and Meinrenken in [3], slightly generalized in this paper):

• A quasi-Hamiltonian (d, h) × N-manifold (or quasi-Hamiltonian h-manifold, if
d and N are clear from the context) is a manifold M with an action of h, an h-
equivariantmapµ : M → N (moment map), and a bivector fieldπ onM, satisfying
certain conditions.2

• Among the moment maps there are exact moment maps. In this case the bivector
field π can be replaced by a 2-form (M is “quasi-symplectic”).

One of our main results is the following reduction theorem:

Theorem 1 Let M be a quasi-Hamiltonian (d, h)×N-manifold, l ⊂ d a Lagrangian
Lie subalgebra, and S ⊂ N an l-invariant submanifold.

1. There is a natural Poisson bracket on the algebra C∞(M)l∩h ⊂ C∞(M) of
l∩ h-invariant functions. In particular, if M/(l∩ h) is a manifold, it is a Poisson
manifold.

2. The ideal I ⊂ C∞(M)l∩h of functions vanishing on µ−1(S) is a Poisson ideal.
In particular, µ−1(S)/(l ∩ h) is a Poisson manifold, provided it is a manifold.

3. If the moment map µ is exact and S is an l-orbit then the Poisson manifold
µ−1(S)/(l ∩ h) is symplectic.

More generally, if in place of the Lagrangian subalgebra lwe use a coisotropic subal-
gebra,we have a similar result,where the reducedmanifold is still quasi-Hamiltonian.
This result is contained in Theorems 5 and 6, expressed in the more appropriate lan-
guage of morphisms of Manin pairs.

2 Strictly speaking the bivector field π depends in an inessential way on a choice of a vector space
complement k ⊂ d to h, as in [2]. Similarly, in the exact case, the 2-form depends in an inessential
way on some other choice. These choices can be made canonically in our cases of interest, and so
we will ignore this subtlety until Sect. 2.3.
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1.2.3 The Quasi-Hamiltonian Structure on Moduli Spaces

Let e be an (abstract) oriented edge, let Ne = G and de = ḡ ⊕ g, where ḡ is g with
the inner product negated. The corresponding group De = G × G acts on Ne = G
via

(g1, g2) · g = g1 g g−1
2 . (4)

Ne = G should be imagined as the space of possible holonomies along e, and the
action of De = G × G as gauge transformations at the endpoints of e.

Let Σ be a compact oriented surface and V ⊂ ∂Σ a finite subset such that every
component of both Σ and ∂Σ intersects V non-trivially. We shall call (Σ, V ) a
marked surface. The boundary circles of Σ are cut into a sequence of oriented edges
with endpoints in V . Together these edges and vertices form a permutation graph Γ ,
the boundary graph of (Σ, V ) (cf. Fig. 2). Let Π1(Σ, V ) denote the fundamental
groupoid of Σ with the base set V . Let

MΣ,V (G) = Hom(Π1(Σ, V ), G)

be the moduli space of flat connections on G-bundles over Σ trivialized at V . We
now describe the quasi-Hamiltonian on this moduli space.

We have an action of the group H = GV on MΣ,V (G) by (residual) gauge
transformations,

(h · f )(e) = hin(e)f (e)h
−1
out(e),

for h ∈ GV , f ∈ MΣ,V (G), and e ∈ Π1(Σ, V ). We also have a map

µ : MΣ,V (G) → N :=
∏

e∈EΓ

Ne.

v2
v3

v1Σ

e1
e2

e

=

3

Fig. 2 The marked surface (Σ, V ), with V = {v1, v2, v3}. The boundary graph Γ has edges
EΓ = {e1, e2, e3} and vertices VΓ = V
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where the components of µ are given by

µ(f )e = f (e)

(in other words, µ is the list of holonomies along the boundary arcs). Notice that the
map µ is H-equivariant, where H = GV embeds as a subgroup

GV ⊆ D :=
∏

e∈EΓ

De =
∏

e∈EΓ

(G × G).

Here g ∈ GV is included as the element
∏

e∈EΓ
(gin(e), gout(e)). Letting d and h denote

the Lie algebras of D and H, we have:

Theorem 2 There is a natural (d, h)×N-quasi-Hamiltonian structure onMΣ,V (G)

with the moment map µ. The moment map is exact and the quasi-symplectic form ω
on MΣ,V (G) is given by the formula (3), where T is any triangulation of Σ such
that T0 ∩ ∂Σ = V .

We prove this theorem in Sect. 4.

Remark 1 In the case where every boundary component of Σ contains exactly one
element of V , the theorem (except for the triangulation part) was proved byAlekseev,
Malkin and Meinrenken in [4], and became the motivation for quasi-Hamiltonian
structures.

1.2.4 Reduction Applied to Moduli Spaces

We can combine Theorems 1 and 2 to produce Poisson and symplectic manifolds:
we choose a collection (Σi, Vi) of marked surfaces with boundary graphs Γi, and a
collection Gi of Lie groups with quadratic Lie algebras. The manifold

M :=
∏

i

MΣi,Vi(Gi)

is quasi-Hamiltonian, with the moment map µ : M → N = ∏
i Ni. We choose a

Lagrangian Lie subalgebra l ⊂ d and a l-invariant submanifold S ⊂ N . Then by
Theorem 1, if the transversality conditions are satisfied, the manifold

Mred = µ−1(S)/(l ∩ h)

is symplectic or Poisson.
The reduced manifold Mred can be again seen as a moduli space of flat connec-

tions, with certain boundary (or sewing) conditions. Below we shall give various
examples for simple choices of l and S.
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Example 1 As the first example, letΣ be a closed surface with a triangulation T . Let
(Σ ′, V ′)be thedisjoint unionof the triangles,withV ′ consistingof thevertices, and let

M = MΣ ′,V ′(G) =
∏

t∈T2
Mt(G).

in the notation of Eq. (2).
Let us now identify our data on a picture (showing just two triangles, with the

parallel edges identified in Σ):

The Lie algebra d is the direct sum of all the g’s and ḡ’s, situated at the half-edges
of the triangles. N is the product of all G’s. The Lie algebra h ⊂ d is the direct sum of
all the diagonal Lie subalgebras, g� ⊂ g⊕ ḡ, situated at the vertices of the triangles.
Let the Lie algebra l ⊂ d be the direct sum of all the diagonals g� ⊂ g ⊕ ḡ situated
at the pairs of half-edges that are identified in Σ . Notice that h ∩ l = gT0 .

For the l-orbit S ⊂ N we take the subset given by the conditions gē = g−1
e for

any pair of edges e, ē that are identified in Σ . We have

MΣ(G) = Mred := µ−1(S)/(h ∩ l).

Thus we are able to obtainMΣ(G) by quasi-Hamiltonian reduction from triangles.
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So far we have not explicitly described the symplectic or Poisson structure
onMred . In a special case it is very simple. Let

µi : MΣi,Vi(Gi) → Ni

denote the (exact) moment map, and let ωi be the quasi-symplectic 2-form on
MΣi,Vi(Gi) (given explicitly in Theorem 2). For every boundary arc e of Σi we
have the involution of de = ḡi ⊕ gi given by

(ξ, η) �→ (η, ξ).

If we apply the involution simultaneously at all the boundary arcs, we get an involu-
tion of

d =
⊕

i

⊕

e⊂∂Σi

ḡi ⊕ gi.

We shall say that a subalgebra l ⊂ d is symmetric if it is invariant with respect to this
involution.

Theorem 3 If l ⊂ d is a symmetric Lagrangian subalgebra and S ⊂ N is the l-orbit
through the identity element

1 ∈ N =
∏

i

G
EΓi
i ,

then the symplectic form ωred on

Mred = µ−1(S)/l ∩ h

is given by

p∗ωred =
∑

i

ωi

∣
∣
∣
µ−1(S)

where p : µ−1(S) → Mred is the projection.

As explained in Remark 18, Theorem 3 will follow as a corollary to Proposition 2.

1.3 Colouring Edges

Suppose that c ⊆ g is a coisotropic subalgebra (i.e. c⊥ ⊆ c). Then the subalgebra

lc := {(ξ, η) ∈ (g ⊕ g) | ξ, η ∈ c and ξ − η ∈ c⊥}
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is both Lagrangian and symmetric. The orbit of lc through the identity of G, with
respect to the action Eq. (4), can be identified with the simply connected Lie group
C⊥ integrating the Lie algebra c⊥.

Let (Σ, V ) be a marked surface. For every boundary arc e (i.e. for every edge
of the permutation graph ΓΣ,V with the vertex set V ), let ce ∈ g be a coisotropic
subalgebra, and consider the Lie subalgebra

l :=
⊕

e

lce ⊂
⊕

e

ḡ ⊕ g = d.

It is clear that l is both Lagrangian and symmetric. Let S ⊂ N = ∏
e G be the l-orbit

passing through 1 ∈ ∏
e G. Theorem 3 implies that if the quotient space

Mred = µ−1(S)/l ∩ gV

is a manifold, it is symplectic.
Concretely,

Mred = {f : Π1(Σ, V ) → G | f (e) ∈ C⊥
e for every e}/l ∩ gV , (5)

and l ∩ gV ⊂ gV is given by the conditions

ξv ∈ ce1 ∩ ce2 where v = in(e1) = out(e2) (6a)

ξin(e) − ξout(e) ∈ c⊥e . (6b)

Notice that if ce’s are Lagrangian then the first condition implies the second one. If,
moreover, ce1 ∩ ce2 = 0 for any pair of consecutive boundary arcs then l ∩ gV = 0.
Under these conditions the moduli spaceMred was considered in [40].

Example 2 ([10–12, 39, 40]) Suppose that e, f ⊆ g are transverse Lagrangian
subalgebras, and let E, F ⊂ G denote the corresponding connected Lie groups.
We may colour alternate edges of a rectangle with e and f, as in Fig. 3. From (Eq.5)
we see that

Mred = {(e1, e2, f1, f2) ∈ E2 × F2 | e1f1e2f2 = 1}.

Fig. 3 The symplectic
double groupoid integrating
the Lie-Poisson structures on
E and F

f1

f2

e2e1
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By Theorem 3 the moduli space Mred carries the symplectic form

ω = 1

2
〈e−1

1 de1, df1 f −1
1 〉 + 1

2
〈e−1

2 de2, df2 f −1
2 〉.

Here, the upper-left triangle in Fig. 3 contributed the term 1
2 〈e−1

1 de1, df1f −1
1 〉 to this

expression while the bottom-right triangle in Fig. 3 contributed the term 1
2 〈e−1

2 de2,

df2f −1
2 〉.
As explained in [39, 40], the symplectic manifold (M,ω) is the Lu-Weinstein

symplectic double groupoid integrating the Lie-Poisson structures on E and F [33].

Example 3 ([38, 40]) Let e, f ⊆ g be as above. Divide each boundary component of
the annulus into two segments and colour alternate edges with e and f, as in Fig. 4.
From Eq. (5) we see that

Mred = {(e1, e2, f1, f2, g) ∈ E2 × F2 × G | ge1f1g
−1f2e2 = 1}.

The moduli space Mred carries the symplectic form

ω = 1

2
〈e−1

2 de2, dg g−1〉 + 1

2
〈(e2g)−1d(e2g), de1 e−1

1 〉

+ 1

2
〈gf −1

1 d(f1g
−1), gf2 f −1

2 〉 − 1

2
〈dg g−1, df1 f −1

1 〉,

which can be computed from the triangulation pictured in Fig. 4.
As explained in [38, 40], the symplecticmanifold (M,ω) is the symplectic double

groupoid integrating the Lie-Poisson structure on G.

Example 4 Suppose that e, f ⊆ g are transverse Lagrangian subalgebras and c ⊆ g is
a coisotropic subalgebra. Let E, F, C, C⊥ ⊂ G denote the corresponding connected
Lie subgroups, and suppose that C ⊂ G is closed. Consider the annulus whose
outer boundary is divided into two segments. Colour the outer boundary by the two
Lie subalgebras e and f and the inner boundary by the inner boundary by the Lie
subalgebra c, as in Fig. 5. We have

µ−1(S) = {(e, f , g, c) ∈ E × F × G × C⊥ | ef gcg−1 = 1}.

f1

e2

e1

g
f2

gg

f1

f2

e2 g
f
1 g

1

e1

e2

Fig. 4 The symplectic double groupoid integrating the Lie-Poisson structure on G
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e

f

g c

e f

c

gg
g
1 e

v0v0

Fig. 5 The symplectic groupoid integrating the Lu-Yakimov Poisson on G/C

Meanwhile, Eq. (6a) yields

l ∩ gV = {ξ ∈ gV | ξv0 ∈ c and ξv = 0 for all v �= v0},

where v0 is the vertex labelled in Fig. 5. Thus the Lie group of residual gauge trans-
formations is C, acting as

c′ · (e, f , g, c) = (e, f , gc′−1, c′cc′−1), c′ ∈ C, (e, f , g, c) ∈ E × F × G × C⊥.

Since, by assumption this acts freely and properly on µ−1(N), Theorem 3 implies
that the moduli space

Mred = {(e, f , g, c) ∈ E × F × G × C⊥ | ef gcg−1 = 1}/C

carries the symplectic form

ω = −1

2
〈dg g−1, de e−1〉 + 1

2
〈c−1dc, d(g−1e) e−1g〉 + 1

2
〈f −1df , dg g−1〉.

The symplectic manifold (Mred,ω) is the symplectic groupoid integrating the
Lu-Yakimov Poisson structure on the homogeneous space G/C [34]. The source
and target maps are

s(e, f , g, c) = g, t(e, f , g, c) = f g,

and the multiplication is

(e′, f ′, g′, c′) · (e, f , g, c) = (ee′, f ′f , g, c′c), g′ = f g.

1.4 Domain Walls and Branched Surfaces

Let (Σi, Vi) be a finite collection of marked surfaces with boundary graphs Γi, and
Gi a collection of Lie groups with quadratic Lie algebras gi. As we observed above,
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the space

M =
∏

i

MΣi,Vi(Gi)

is a (d, h) × N-quasi-Hamiltonian for appropriate (d, h, N), and if we choose a
Lagrangian Lie subalgebra l ⊂ d and a l-orbit S ⊂ N , then

Mred = µ−1(S)/l ∩ h

is symplectic. If the subalgebra l ⊂ d is symmetric then Theorem 3 gives us a simple
formula for the symplectic form on Mred .

Let us now choose a symmetric l ⊂ d in the following way. We first glue the
boundary arcs of (Σi, Vi) in an arbitrary way. More precisely, let W be a finite
collection of (disjoint) unit intervals called domain walls, let

κ : �iEΓi → W

be a surjective map assigning to every edge of every boundary graph Γi a domain
wall, and let

φe : e → κ(e)

be a homeomorphism for every boundary edge e (not required to preserve the ori-
entation). Let Σ be the topological space obtained from Σi’s and the domain walls
after we identify every boundary arc e with κ(e) via the map φe.

For every boundary arc e ∈ EΓi let i(e) = i, and

sign(e) =
{

+1 if φe is orientation-preserving

−1 otherwise.

For every domain wall w ∈ W, let

gw =
⊕

e ∈κ−1(w)
sign(e) =+1

gi(e) ⊕
⊕

e ∈κ−1(w)
sign(e) =−1

ḡi(e)

and

dw = ḡw ⊕ gw.

Notice that

d :=
⊕

w ∈ W

ḡw ⊕ gw =
⊕

i

(ḡi ⊕ gi)
EΓi .
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For every domain wall w ∈ W we now choose a coisotropic Lie subalgebra

cw ⊂ gw.

Using cw we construct the symmetric Lagrangian Lie subalgebra lw ⊂ dw,

lw := {(ξ, η) ∈ ḡw ⊕ gw | ξ, η ∈ cw, ξ − η ∈ c⊥w }.

Finally we set

l =
⊕

w ∈ W

lw.

For every domain wall w ∈ W, let C⊥
w ⊂ Gw denote the connected Lie subgroup

with Lie algebra c⊥w , and

C⊥ =
∏

w ∈ W

C⊥
w ⊆

∏

i

G
EΓi
i .

Then S := C⊥ ⊂ N is the l-orbit passing through 1 ∈ ∏
i G

EΓi
i = N . As before, we

have

µ−1(S) = {{fi : Π1(Σi, Vi) → Gi}i |
∏

i

{fi(e)sign(e)}e ∈ EΓi
∈ C⊥}

(7)

and

Mred = µ−1(S)/l ∩
⊕

i

g
Vi
i .

Example 5 (Oriented surfaces with coloured boundaries) Ifwe have just one domain
and the gluing map κ is injective, then we are in the case described in Sect. 1.3.

1.4.1 Domain Walls

Suppose that the glued topological spaceΣ is still a (not necessarily oriented) surface.
Equivalently, every domain wall w ∈ W borders either one or two domains (i.e. the
preimage κ−1(w) has cardinality one or two). The resulting surface Σ was called a
quilted surface in [30] (following [44]) (Fig. 6).

Remark 2 Quantizations of these moduli spaces have been studied in the physics
community [21, 24, 25] for abelian structure groups and Lagrangian relations on the
domain walls.
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Fig. 6 Our surface is divided into domains with distinct structure groups, and the domain walls
are coloured by coisotropic relations between the structure groups. As before, coisotropic boundary
conditions are also chosen

Example 6 (Boalch [12]) Suppose that g = u+ ⊕ h ⊕ u− as a vector space (but not
as a Lie algebra), where p± := h ⊕ u± ⊆ g are coisotropic subalgebras satisfying
p⊥± = u±. Suppose further that the Lie subalgebras u±, p±, h all integrate to closed
subgroups U±, P±, H ⊆ G such that H = P+ ∩ P−. The metric on g descends to a
non-degenerate invariant metric on h ⊆ g, and

c± := {(ξ; ξ + µ) ∈ h ⊕ g | ξ ∈ h and µ ∈ u±} (8)

is a coisotropic subalgebra (in fact, it is Lagrangian).
As in Fig. 7, let Σ denote the annulus, and let γ ⊂ (Σ \∂Σ) be a simple closed

curve representing the generator of the fundamental group. CuttingΣ along γ yields
two annuli, ΣG ,ΣH ⊂ Σ , which we label with the structure groups G and H,
respectively. We divide γ into 2r segments with endpoints labelled v1, . . . v2r , and
colour alternating segments with the coisotropic Lie subalgebras c+ and c−. Finally,
we mark the respective components of ∂Σ with points xG and xH .

C
0

C
1

C 2

hC2r
C2r

1
C2r

2h C
0

A
d
h
h
0

hh0 h2r
1

h2r
2

h
2

h
1

A
d
h
h
0

h

− −

− −

v6

v1

v2

v3

v4

v5

xG

xH

xG

xH

Fig. 7 On the surface pictured above, the structure group in the yellow domain is G while the
structure group in the blue domain is H . Along the boundary of the two domains, blue edges are
coloured with c+ while the red edges are coloured with c−. Cutting along the dotted line in the first
picture yields yields the second picture. Acting by H at the vertices v1, . . . , v2r allows us to set the
holonomies h0, . . . , h2r−1 to the identity
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The points xG , XH , v1, . . . , v2r form the vertices of a triangulation of Σ , as pic-
tured in Fig. 7. Now the orbit of l± through the identity is P±. Thus, from (7), we
see that

µ−1S = {(h, h0, . . . , h2r−1; C0, C1, . . . , C2r) ∈ H2r+1 × G2r+1

| h−1
2i+1C2i+1C−1

2i h2i ∈ U+ and h−1
2i C2iC

−1
2i−1h2i−1 ∈ U−, },

where the elements h, h0, . . . , h2r−1 ∈ H and C0, C1, . . . , C2r ∈ G denote the
appropriately labelled holonomies in Fig. 7.

On the other hand,

l ∩
⊕

i

g
Vi
i

∼=
∏

v1,...,v2r

h,

acting at the appropriate vertices. Thus, up to a gauge transformation, wemay assume
that h0 = h1 = · · · = h2r−1 = 1. Setting Si = CiC

−1
i−1, we see that that the quotient

space, hol−1(l · 1)/(l ∩ ∏
t∈T2(gt)ΓP3

)
, can be identified with

GAr
H := {(h; S2r, . . . , S1; C0) ∈ H × (U− × U+)r × G}.

We compute the two form to be

ω = −1

2

(〈d(hC2r) (hC2r)
−1, dC0 C−1

0 〉 + 〈(hC2r)
−1d(hC2r), C−1

2r−1dC2r−1〉

+
2r−1∑

i=1

〈C−1
i dCi, C−1

i−1dC2i−1〉
)
.

Substituting bC0 = hC2r in the first term and simplifying yields

ω = 1

2

(〈dC0 C−1
0 , AdbdC0 C−1

0 〉 + 〈dC0 C−1
0 , db b−1〉 + 〈dC2r C−1

2r , h−1dh〉

+
2r∑

i=1

〈C−1
i dCi, C−1

i−1dC2i−1〉
)
,

(here we have used the fact that 〈dS2r S−1
2r , h−1dh〉 = 0). Now, we haven’t coloured

the boundary of ∂Σ , so Theorem 3 does not imply thatω is symplectic. Nevertheless,
as we shall see later, Theorem 6 implies that ω defines a quasi-Hamiltonian G × H
structure on GAr

H , where the moment map GAr
H → G ×H is given by the holonomy

along the (oriented) boundary components:

(h; S2r, . . . , S1; C0) → (C−1
0 hS2r · · · S1C0, h−1),
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and the G and H actions on GAr
H are precisely the residual gauge transformations.

These act by G at xG and by H at xH :

(g, k) · (h; S2r, . . . , S1; C0) = (khk−1, kS2rk−1, . . . ,kS1k−1, kC0g
−1),

g ∈ G, k ∈ H.

Remark 3 This quasi-Hamiltonian G × H-space was first discovered by Boalch
[10–12], who used it to study meromorphic connections on Riemann surfaces.

1.4.2 Branched Surfaces

We can now consider examples where Σ is not a topological surface, i.e. where the
domain walls may border more than two domains (Fig. 8).

Remark 4 Since our gauge fields (connections on Σ) are constrained to lie in cw ⊆⊕
e∈κ−1(w) ge along the domain wall w ∈ W, one may interpret cw as a “conservation

law” for an interaction between the structure groups of the various domains glued to
the domain wall w.

Example 7 ([10–12]) Let V = ⊕n
i=1Vi be a direct sum decomposition of a finite

dimensional vector space, G = Gl(V ), and P+ ⊆ G the stabilizer for the flag

F1 ⊂ F2 ⊂ · · · ⊂ Fn = V,

where Fk = ⊕k
i=1Vi. Similarly, let P− ⊆ G be the stabilizer for the flag

F̃n ⊂ · · · ⊂ F̃2 ⊂ F̃1 = V,

where F̃k = ⊕n
i=k Vi. Finally, let Hi = Gl(Vi) so that

∏n
i=1 Hi = P+ ∩ P−. Let

H = ∏n
i=1 Hi, let U± denote the unipotent radicals of P±, and let g, p±, u±, h, hi

denote the Lie algebras corresponding to the various Lie groups.
Now consider the moduli space

GAr
H := (

n∏

i=1

Hi) × (U− × U+)r × G

Fig. 8 Pictured above are three domains with structure Lie algebras g1, g2 and g3. The three
domains intersect at a branch locus, which we must colour by a coisotropic subalgebra c ⊆ ⊕3

i=1gi
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Fig. 9 A branched surface
which arises in the work of
Philip Boalch (see [11,
p. 2675] and [12, Fig. 2])

G

H1

H2

Hn

described in Example 6. The coisotropic Lie algebra

c± := {(
n∑

i=1

ξi;
n∑

i=1

ξi + µ) | ξi ∈ hi and µ ∈ u±} ⊂ (⊕n
i=1hi) ⊕ g

defined in Eq. (8) can be used to colour the branch locus of n + 1 domains with the
structure groups H1, . . . , Hn and G. Thus wemay interpret GAr

H as the moduli space
of flat connections for the branched surface pictured in Fig. 9.

Remark 5 The quasi-Hamiltonian space GAr
H first appeared in the work of Philip

Boalch [10–12].

Example 8 (Quasi-triangular structures) Let g be a quasi-triangular Lie quasi-
bialgebra, i.e. g is a Lie algebra with a chosen element s ∈ (S2g)g. Let d be the
Drinfel’d double of g. This means that d is a quadratic Lie algebra, g ⊂ d is a
Lagrangian subalgebra, and p ⊂ d is an ideal such that d = g ⊕ p as a vector space.
Additionally, the restriction of the quadratic form on d to p ∼= g∗ is s.3

There is a natural groupoid structure on d, where g is the space of objects and
composition is defined by

(ξ + α)(ξ + β) = ξ + α + β ∀ξ ∈ g,α ∈ p,β ∈ p⊥,

and the source and target maps are

s(ξ + α) = ξ, t(ξ + α) = ξ + s(α, ·), ξ ∈ g,α ∈ p

3 These properties uniquely define d. In particular, the Lie bracket is given by

[ξ + α, η + β] = [ξ, η] + ad∗
ξα − ad∗

ηβ, ξ, η ∈ g, α ∈ p,β ∈ p⊥

where ad∗ denotes the contragredient representation of g.
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Fig. 10 Each of the edges above are coloured by cn, where n is the number of domains branching
off the given edge. As we cross a branch locus, the orientation of the domains reverses. As depicted,
we may move branch loci past each other

The graph of multiplication,

gr(Mult) = {(ξη, ξ, η) | ξ, η ∈ d are composable} ⊆ d ⊕ d̄ ⊕ d̄, (9)

is a Lagrangian Lie subalgebra. See [18] and [28] for more details.
Similarly, the graph of iterated multiplication

cn := {(ξ1, . . . , ξn) | ξ1ξ2 · · · ξn ∈ g} ⊆ dn

is also a Lagrangian Lie subalgebra. As such it can be used to colour the branch
locus of n domains each with structure group D (a connected Lie group with the
Lie algebra d). Note that crossing such a branch locus reverses the orientation of the
domain.

The associativity of multiplication on d plays out as follows: paying attention to
the orientations, if (as in Fig. 10) we

• move two branch loci past each other, or
• break a cm+n−2-coloured branch locus into two separate cm and cn coloured branch
loci (or vice-versa),

the resulting moduli spaces are canonically symplectomorphic.
In fact, there is a clear interpretation of the moduli spaces constructed by sewing

domains together using the Lagrangian relations cn. One may identify them with
certain traditional moduli spaces in the following way: Suppose that ∪Σd → Σ is
our cn-coloured surface with domains Σd . First we form a two sheeted (branched
cover) Σ̃ ofΣ as follows: double each domainΣd to two sheetsΣ+

d ∪Σ−
d , where the

sheet Σ+
d is canonically identified with Σd , while the sheet Σ−

d is also canonically
identified with Σd but with the opposite orientation. At each cn-coloured domain
wall with incident domains Σd1 , . . . , Σdn , cyclically glue the sheets Σ±

d1
, . . . , Σ±

dn
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+

+

+

+

+

+

−

−

−
−

−

−

Fig. 11 We replace each domain in our branched surface by two copies, one with the same orien-
tation (labelled +), and one with the opposite orientation (labelled −). Each cn-coloured domain
wall is replaced by cyclically gluing the incident sheets together, respecting the orientations. In this
way we obtain an oriented surface from our cn-coloured (branched) surface

together along their corresponding boundary segment, respecting the orientations,
as in Fig. 11. In this way, one constructs the oriented surface Σ̃ .

The groupoid inversion Inv : d ��� d̄, being amorphismofLie algebras, integrates
to an involution of the Lie group D. This involution in turn lifts to an involution

AΣ̃ (D) → AΣ̃ (D)

of the connections on Σ̃ , mapping the fibre of the principal bundle over the +-sheet
to the fibre over the −-sheet via Inv : D → D. The involution is a symplectomor-
phism which is compatible with the gauge transformations, and thus descends to a
symplectomorphic involution on the moduli space,MΣ̃ (D). The fixed points of this
involution are naturally identified with the moduli spaceMΣ(D) of flat connections
on the original cn-coloured surface.

Example 9 ([10–12, 20]) Suppose that g is a quasi-triangular Lie-bialgebra, where
the s ∈ (S2g)g is non-degenerate, i.e. g is a quadratic Lie algebra. Equivalently, the
double is d = g⊕ ḡ, and the Manin triple is (d; g�, h) where g� ⊂ g⊕ ḡ = d is the
diagonal, and h ⊂ g⊕ ḡ is a complementary Lagrangian subalgebra. Notice that we
may view h as either a Lagrangian subalgebra of d, or a Lagrangian relation from
g to itself. We let G and H ⊂ G × G denote the simply connected (respectively
connected) Lie groups corresponding to g and h.

Of courseG andH are PoissonLie groups, andwemay construct theLu-Weinstein
double symplectic groupoid integrating the Lie-Poisson structures on G and H as a
moduli space M, as in Example 2. Specifically, M is a moduli space of d-valued
connections over a square, where alternating edges of the square are coloured with
g and h as in the leftmost quilted surface pictured in Fig. 12.
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Fig. 12 The moduli spaces for the quilted surfaces pictured above may each be identified with
the Lu-Weinstein double symplectic groupoid integrating the Lie-Poisson structures on G and H .
In the leftmost quilted surface, a single domain carries the structure Lie algebra d, while each
of the domains in the other quilted surfaces carry the structure Lie algebra g. The double-ended
arrows between edges in the middle two quilted surfaces signify that those pairs of edges have been
coloured by the corresponding Lagrangian relations. The rightmost quilted surface depicts a sphere
containing two domain walls each coloured by h

However, since d = g ⊕ ḡ, we may equally well view M as a moduli space of g
connections on two squares, where alternating edges of the first square are sewn to the
corresponding edges of the second square using the Lagrangian relations g� ⊂ g⊕ ḡ
and h ⊂ g ⊕ ḡ, respectively (see the middle two quilted surfaces in Fig. 12).

Now g� ⊆ g ⊕ ḡ is just the graph of the identity map, so a g�-coloured domain
wall relates the (identical) structure groups in the incident domains by identifying
them. Effectively, a g�-coloured domain wall can be erased. ThusMmay be viewed
as a moduli space of g-connections on the cylinder, where either boundary of the
cylinder has been broken into two segments which are then sewn to each other using
the Lagrangian relation h ⊂ g ⊕ ḡ.

That is to say, M is a moduli space of g-connections over the sphere S2, where
two (contractible, non-intersecting) domain walls γ1, γ2 ⊂ S2 have been coloured
with h (see the rightmost quilted surface in Fig. 12).

Thus, in this (quasi-triangular) case, theLu-Weinstein double symplectic groupoid
can be identified with a certain moduli space of connections on the sphere. This fact
was first discovered by Fock and Rosly [20] (in terms of graph connections) and
Boalch [10, 11] (in the case where g is reductive and endowed with the standard
quasi-triangular Lie bialgebra structure). Moreover, Boalch’s perspective shows that
placing these contractible domain walls on the sphere has the much deeper interpre-
tation of prescribing certain irregular singularities for the connection.

Remark 6 In fact, Boalch [10–12] also provides an interpretation of these h-coloured
domainwall in terms of quasi-Hamiltonian geometry (in the casewhere g is reductive
and endowed with the standard quasi-triangular Lie-bialgebra structure). Indeed, in
this case, a neighborhood of each domain wall may be identified with the quilted
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surface described in Example 6 (for r = 1), for which the corresponding moduli
space is Boalch’s fission space.

1.5 Poisson Structures

In this section, we will describe some Poisson structures which may be constructed
using our approach. Later, in Sect. 5 wewill generalize these results to the case where
g is a quasi-triangular Lie quasi-bialgebra rather than a quadratic Lie algebra.

Let (Σ, V ) be a marked surface with boundary graph Γ . First, recall from The-
orem 2 that the moduli space MΣ,V (G) for a marked surface (Σ, V ) carries a
(dVΓ, gVΓ, GEΓ )-quasi-Hamiltonian structure, where d = g⊕ g, the Lagrangian Lie
subalgebra gVΓ = g

VΓ

� ⊂ dVΓ is embedded as the diagonal, and dVΓ acts on the
e ∈ EΓ th factor of GEΓ via the vector field

ξL
out(e) − ηR

in(e), (ξ, η) ∈ gVΓ ⊕ gVΓ = dVΓ. (10)

Here the superscripts L ,R denote left, right invariant vector fields. The bivector field
on MΣ,V (G) is computed in Sect. 5.2 and leads to the result of [30, Theorem 3],
which we summarize briefly.4

If a, b ∈ Π1(Σ, V ), let us represent them by transverse smooth paths α,β. For
any point A in their intersection, let

λ(A) =
{
1 if A ∈ ∂Σ

2 otherwise

sign(A) := sign(α,β; A) =
{
1 if (β′|A,α′|A) is positively oriented

−1 otherwise.

as in Fig. 13.
Let αA denote the portion of α parametrized from the beginning up to the point

A. Finally, let

(a, b) :=
∑

A

λ(A)sign(A)[α−1
A βA] ∈ ZΠ1(Σ, V ).

4 In fact, the computation in Sect. 5.2 results in minus the bivector field described in [30], due to us
orienting ∂Σ in the opposite way.

Strictly speaking, the bivector field on MΣ,V (G) depends on the choice of a complement
k ⊂ dVΓ to h = gVΓ . In this case, k can be chosen canonically as k := g

VΓ

�̄
, where

g�̄ := {(ξ,−ξ) ∈ (g⊕ g)}.
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Fig. 13 sign(A) = ±1 is
determined by comparing the
orientation of α and β with
that of Σ . The path [α−1

A βA]
is shown to the right

A

αβ

A

βα

A

βα

α 1
A[

[

βA

+ −

Fig. 14 The cyclic product
of holonomies, ge2ge1 , is
trivial, so ge2 = g−1

e1
ge1ge2

(When V contains only one point, this is a skew symmetrized version of the inter-
section form described in [42]).

Then for any a, b ∈ Π1(Σ, V ),

π
(
ev∗

a(g
−1dg), ev∗

b(g
−1dg)

) = 1

2
(Adev(a,b)

⊗ 1) s, (11)

where eva, evb : MΣ,V (G) = Hom(Π1(Σ, V ), G) → G denotes evaluation,
s ∈ g ⊗ g is the inverse of the quadratic form, and g−1dg denotes the left invariant
Maurer-Cartan form on G.

Example 10 (The two sided polygon, P2) Suppose (Σ, V ) = P2 is the disk with two
marked points and EΓ = {e1, e2}, as in Fig. 14. Then we may identifyMP2(G) with
G via ge1 (since ge2 = g−1

e1 ). Under this identification, the bivector field is trivial,
πP2 = 0 (cf. [30]).

1.5.1 Colouring Edges

Suppose now that we colour eachmarked point v ∈ VΓ with a Lagrangian subalgebra
lv ⊆ d, and each edge e ∈ EΓ with a submanifold Se ⊆ G in a compatible way:
Specifically, we require that

S :=
∏

e∈EΓ

Se ⊆ GEΓ
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be l-invariant, where

l :=
⊕

v∈VΓ

lv ⊆ dVΓ ,

and the action is given in (10). Then Theorem 1 implies that

Mred := µ−1(S)/(l ∩ gVΓ )

is a Poisson manifold (provided it is a manifold).
It is not difficult to describe the bivector field on µ−1(S)/(l ∩ gVΓ ). First, let

g� ⊆ d denote the diagonal and g�̄ ⊆ d the off-diagonal:

g�̄ := {(ξ,−ξ) ∈ (g ⊕ g)}.

Each Lagrangian Lie subalgebra lv ⊆ dVΓ defines an element τv ∈ ∧2
(
h/(l∩ h)

)
by

the equation

lv = {(α + τ �
vα) | α ∈ g�̄, 〈α, lv ∩ g�〉 = 0} + lv ∩ g�.

Here τ
�
vα ∈ g�/(lv ∩ g�) is defined by

τ �
vα := 1

2

∑

i,j

τ ij
v 〈α, ξi〉ξj − 1

2

∑

i,j

τ ij
v 〈α, ξj〉ξi

when we represent τv as τv = 1
2

∑
i,j τ

ij
v ξi ∧ ξj.

We have the following theorem:

Theorem 4 If the intersection, µ−1(S), of S × MΣ,V (G) with the graph of µ is
clean, and the l ∩ gVΓ-orbits of µ−1(S) form a regular foliation, then the bivector
field

π +
∑

v∈VΓ

ρv(τv) ∈ Γ
( ∧2 T(µ−1(S))/ρ(l ∩ gVΓ )

)

is l ∩ gVΓ invariant and descends to define the Poisson structure on µ−1(S)/(l ∩
gVΓ ). Here ρ : gVΓ → X(MΣ,V (G)) denotes the action by infinitesimal gauge
transformations at the marked points, and ρv is the restriction of ρ to the v ∈ VΓ th
factor.

Moreover, for any l-orbit O ⊆ S, the image of µ−1(O) in µ−1(S)/(l ∩ gVΓ ) will
be a symplectic leaf.

Proof Thiswill follow fromTheorem7,while the statement for the symplectic leaves
will follow from Theorem 6.
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Fig. 15 The double Poisson
Lie group. The holonomies
gi ∈ G satisfy g1g2 = 1

Remark 7 As in Sect. 1.4, one may also sew domains together to obtain Poisson
structures on themoduli spaces of branched surfaces. The general reduction statement
is Theorem 7.

Example 11 (Double Poisson Lie group [30]) Suppose that g = e ⊕ f as a vector
space, where e, f ⊆ g are Lagrangian Lie subalgebras, and that e, f ⊆ g integrate to
Lie subgroups E, F ⊆ G such that E ∩ F = 1. Let Σ be a disk with two marked
points labelled as in Fig. 15. We colour the edges with the full group G,

Se1 = G, Se2 = G,

and the vertices as

lv1 = e ⊕ f, lv2 = f ⊕ e.

Therefore,

µ−1(S) = MP2 = {(g1, g2) ∈ G × G | g1g2 = 1}.

Meanwhile the residual gauge transformations,

⊕

v∈VΓ

lv ∩ g� = 0

(since e ∩ f = 0). Thus we may identify the moduli space Mred
∼= G, via the map

(g1, g2) → g1.
Next, we compute the bivector field, π = πP2 + ρv1(τv1) + ρv2(τv2). Now, as

explained in Example 10, πP2 = 0 so only the term
∑

i ρvi(τvi) contributes. Now,

τv1 = 1

2

∑

i

(ζ i, ζ i) ∧ (ηi, ηi), τv2 = 1

2

∑

i

(ηi, ηi) ∧ (ζi, ζi),

where {ηi} ⊂ e and {ζ i} ⊂ f are basis in duality. Therefore,

π = 1

2

∑

i

(ζ i)L ∧ (ηi)
L + (ηi)

R ∧ (ζ i)R.

In fact, π defines the Poisson Lie group structure on G corresponding the double
Lie bialgebra structure on g resulting from the Manin triple (g, e, f) [30, 32]. The
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Fig. 16 The Poisson Lie
group. The holonomies
g ∈ G and e ∈ E satisfy
eg = 1

symplectic leaves are computed as the restriction of the l-orbits, which in this case
can be seen to correspond to the orbits of the dressing action on G.5

Remark 8 In the case where g is a quasi-triangular Lie-bialgebra, the double Poisson
Lie group was constructed as a moduli space of graph connections in the work of
Fock and Rosly [20].

Example 12 (Poisson Lie group [30]) Suppose the Lie groups G, E, F and their Lie
algebras are as in Example 11, and let Σ be a disk with two marked points, as in
Fig. 16. We colour the vertices as in Example 11, but we colour the edges as

Se1 = E, Se2 = G.

Therefore,

µ−1(S) = {(e, g) ∈ E × G | eg = 1},

while the residual gauge transformations are trivial, as before. Thus we may identify
the moduli space Mred

∼= E, via the map (e, g) → e.
The bivector field, π, on E is computed to be the restriction of the bivector field

1

2

∑

i

(ζ i)L ∧ (ηi)
L + (ηi)

R ∧ (ζ i)R.

on G to E ⊆ G. Thus, π defines the Poisson Lie group structure on E corresponding
the Manin triple (g, e, f) [30, 32]. As before, the symplectic leaves are computed as
the restriction of the l-orbits. Once again, they are precisely the orbits of the dressing
action on E.

Example 13 (Poisson homogenous spaces)Suppose the Lie groupsG, E, F and their
Lie algebras are as in Example 11, and let Σ be a disk with two marked points, as in
Fig. 17. Suppose further that h ⊆ g is a Lagrangian subalgebra such that k := h ∩ e
integrates to a closed Lie subgroup K ⊆ E. We colour the edges as in Example 12,
but we colour the vertices as

lv1 = e ⊕ h, lv2 = f ⊕ e.

5 In fact computing the symplectic leaves via Theorem 4 is precisely the computation found in [27].
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Fig. 17 The Poisson homogeneous space corresponding to the Lagrangian Lie subalgebra h ⊆ g.
The holonomies g ∈ G and e ∈ E satisfy eg = 1

Fig. 18 The affine Poisson structure on G. The holonomies gi ∈ G satisfy g1g2 = 1

Therefore,

µ−1(S) = {(e, g) ∈ E × G | eg = 1},

while the residual gauge transformations are G × K acting as

(g, k) · (e, g) = (ek−1, kg).

We may identify the moduli space Mred
∼= E/K , via the map (e, g) → [e]. The

Poisson structure on Mred is the Poisson homogenous structure corresponding to
the Lagrangian Lie subalgebra h ⊆ g in Drinfel’d’s classification [19]. We leave it to
the reader to compute the bivector field and symplectic leaves on E/K via Theorem4.

Example 14 (Affine Poisson structure on G [32]) Generalizing the setup found in
Example 11, we suppose that h ⊆ g is a Lagrangian subalgebra which is also com-
plementary (as a vector space) to e ⊆ g. As in Example 11, we colour the edges with
the full group G, but the vertices as

lv1 = e ⊕ h, lv2 = f ⊕ e,

(cf. Fig. 18). As before, we have µ−1(S) = MP2 , and the residual gauge transfor-
mations are trivial. Thus, we may identify the moduli spaceMred

∼= G, via the map
(g1, g2) → g1.

Meanwhile the bivector field, π, is

π = 1

2

∑

i

(ζ i
f)

L ∧ (ηi)
L + (ηi)

R ∧ (ζ i
h)

R,
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Fig. 19 Lu-Yakimov
Poisson homogenous spaces.
The holonomies gi ∈ G
satisfy g1g2 = 1

where the bases {ζ i
f} ⊆ f and {ζ i

h} ⊆ h are both dual to {ηi} ⊆ g. In fact, π defines the
affine Poisson structure on G corresponding to theManin triples (g, e, f) and (g, e, h)
(as described by Lu [32]). The symplectic leaves are computed as the restriction of
the l-orbits.

Example 15 (Lu Yakimov Poisson homogenous spaces [30]) Suppose the Lie groups
G, E, F and their Lie algebras are as in Example 11, and that C ⊆ G is a closed Lie
subgroup whose Lie algebra c ⊆ g is coisotropic. Let Σ be a disk with two marked
points and edges and vertices labelled as in Fig. 19. We colour the edges with the full
group G,

Se1 = G, Se2 = G,

and the vertices as

lv1 = lc = {(ξ, ξ′) ∈ c ⊕ c | ξ − ξ′ ∈ c⊥}, lv2 = f ⊕ e

(cf. Fig. 19). Therefore,

µ−1(S) = MP2 = {(g1, g2) ∈ G × G | g1g2 = 1}.

Meanwhile the residual gauge transformations,

⊕

v∈VΓ

lv ∩ g� = cv0 ,

where cv0 = {(ξ, ξ) ∈ c ⊕ c} ⊆ lv0 . Thus, up to a gauge transformation, (g1, g2) ∼
(g1c−1, cg2) (for any c ∈ C), and we may identify the moduli space Mred

∼= G/C,
via the map (g1, g2) → [g1].

The bivector field, π, on G/C can be computed to be the projection of the bivector
field

1

2

∑

i

(ηi)
R ∧ (ζ i)R.

onG toG/C. Thus,π defines theLu-YakimovPoisson structure onG/C corresponding
the Manin triple (g, e, f) [30, 34].
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Fig. 20 The dual Poisson Lie group, H . The holonomies h1, d2 ∈ D = G × G along the edges e1
and e2 (respectively) satisfy h1d2 = 1, with h1 ∈ H; while the holonomies g3, g4 ∈ G along the
edges e3 and e4 satisfy (g−1

3 , g4) ∈ H

Example 16 (Quasi-Triangular Poisson Lie groups [7–12]) As in Example 9, sup-
pose that (d; g�, h) is the Manin triple corresponding to a (non-degenerate) quasi-
triangular Lie-bialgebra where g� ⊂ g ⊕ ḡ = d is the diagonal, and h ⊂ g ⊕ ḡ
is a complementary Lagrangian subalgebra. As before we may view h as either a
Lagrangian subalgebra of d, or a Lagrangian relation from g to itself. We let G and
H ⊂ G × G = D denote the simply connected (respectively connected) Lie groups
corresponding to g, h and d.

We may construct the Lie-Poisson structure on H by identifying it with a moduli
space H ∼= M, as in Example 12. More specifically let Σ be a disk with two marked
points, with edges and vertices labelled as in Fig. 20. As pictured in Fig. 20, we color
the edges as

Se1 = H, Se2 = D,

and the vertices as

lv1 = h ⊕ g�, lv2 = g� ⊕ h.

Therefore,

µ−1(S) = {(h1, d2) ∈ H × D | h1d2 = 1}.

Meanwhile the residual gauge transformations are trivial (since h and g� are comple-
ments). Thus we may identify the moduli spaceM ∼= H, via the map (h1, d2) → h1.

As in Example 9, since d = g ⊕ ḡ, we may also view M as a moduli space of
g connections on two stacked copies of Σ , where their left edges are sewn using
the Lagrangian relation h ⊆ g ⊕ ḡ, while their top and bottom right half-edges are
sewn using the relation g� ⊆ g⊕ ḡ. In the same fashion as one opens a pita-pocket,
we may imagine pulling the two copies of Σ apart starting from the middle of their
right edges (leaving the left edges incident to each other), in which case the resulting
quilted surface is pictured in the middle of Fig. 20.

Since g� ⊆ g⊕ ḡ is just the graph of the identity map, a g�-coloured domain wall
relates the (identical) structure groups in the incident domains by identifying them.
Effectively, a g�-coloured domain wall can be erased. Thus M may be viewed as
a moduli space of g-connections on the annulus, Σ ′, where the inner boundary has
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been broken into two segments which are then sewn together using the Lagrangian
relation h ⊆ g ⊕ ḡ.

More explicitly, the inner boundary of the annulus Σ ′ has two marked points, v3
and v4, dividing it into two segments e3 and e4, while the outer boundary has no
marked points. As pictured in the right two quilted surfaces of Fig. 20, we colour the
edges as

S = Se3 × Se4 = {(g3, g4) ∈ G × G | (g−1
3 , g4) ∈ H} ∼= H

and the vertices as

lv3 = h−1 ⊆ g ⊕ ḡ, lv4 = h ⊆ g ⊕ ḡ,

where h−1 = {(ξ, η) ∈ g ⊕ ḡ | (η, ξ) ∈ h} (the inverse refers to the pair-groupoid
structure).

Since µ is a diffeomorphism, µ−1(S) ∼= S ∼= H. The residual gauge transforma-
tions are trivial, since h and g� are complements. As before, we may identify the
moduli space M ∼= H.

That is to say, the (dual) Poisson Lie group H ∼= M is naturally a moduli space
of flat g-connections over the disk containing a (contractible) h-coloured domain
wall. Thus, in this (quasi-triangular) case, the Poisson Lie group H can be iden-
tified with a certain moduli space of flat g-connections on the disk. This fact was
first observed by Fock and Rosly [20] (in terms of graph connections) and Boalch
[7–12] (in the case where g is reductive and endowed with the standard quasi-
triangular Lie-bialgebra structure). Moreover, Boalch’s perspective shows that plac-
ing this contractible domain wall on the disk has the much deeper interpretation of
prescribing a certain irregular singularity for the connection.

Remark 9 In fact, Boalch [10–12] also provides an interpretation of this h-coloured
domainwall in terms of quasi-Hamiltonian geometry (in the casewhere g is reductive
and endowed with the standard quasi-triangular Lie-bialgebra structure). Indeed, in
this case, a neighborhood of the domain wall may be identified with the quilted
surface described in Example 6 (for r = 1), for which the corresponding moduli
space is Boalch’s fission space.

2 Background

2.1 Courant Algebroids

Courant algebroids andDirac structures are the basic tools in the theory of generalized
moment maps.
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Definition 1 (Liu [31]) A Courant algebroid is a vector bundle E → M endowed
with a non-degenerate symmetric bilinear form 〈·, ·〉 on the fibres, a bundle map
a : E → TM called the anchor and a bracket [[·, ·]] : (E) × (E) → (E) called the
Courant bracket satisfying the following axioms for sections e1, e2, e3 ∈ (E) and
functions f ∈ C∞(M):

(c1) [[e1, [[e2, e3]]]] = [[[[e1, e2]], e3]] + [[e2, [[e1, e3]]]],
(c2) a(e1)〈e2, e3〉 = 〈[[e1, e2]], e3〉 + 〈e2, [[e1, e3]]〉,
(c3) [[e1, e2]] + [[e2, e1]] = a∗d〈e1, e2〉.
Here a∗ : T∗M → E

∗ ∼= E is the map dual to the anchor.
A subbundle E ⊆ E|S along a submanifold S ⊆ M is called a Dirac structure

with support on S if

e1|S, e2|S ∈ (E) ⇒ [[e1, e2]]|S ∈ (E),

(it is involutive) and E⊥ = E (it is Lagrangian). If S = M, then E is simply called a
Dirac structure.

Remark 10 As shown in [35, 43], onemay also derive the following useful identities
from the Courant axioms:

(c4) [[e1, fe2]] = f [[e1, e2]] + (a(e1)f )e2
(c5) [[fe1, e2]] = f [[e1, e2]] − (a(e2)f )e1 + 〈e1, e2〉a∗df
(c6) a[[e1, e2]] = [a(e1), a(e2)]
For any Courant algebroid E, we denote by E the Courant algebroid with the same
bracket and anchor, but with the metric negated.6

Example 17 A Courant algebroid over a point is a quadratic Lie algebra. Dirac
structures are Lagrangian Lie subalgebras.

Example 18 (Standard Courant algebroid [15, 16])The vector bundleTM := TM⊕
T∗M is a Courant algebroid with metric

〈v1 + µ1, v2 + µ2〉 = µ1(v2) + µ2(v1), v1, v2 ∈ TM, µ1,µ2 ∈ T∗M

and bracket

[[X + α, Y + β]] = [X, Y ] + LXβ − ιY dα, X, Y ∈ X(M),α,β ∈ Ω1(M).

The standard Courant algebroid is an example of an important class of Courant
algebroids called exact Courant algebroids.

Definition 2 (Exact Courant algebroids [37, 41]) A Courant algebroid E → M is
called exact if the sequence

6 Note that this also negates the map a∗ : T∗M → E
∗ ∼= E, so axiom c3) still holds.
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0 → T∗M
a∗−→ E

a−→ TM → 0 (12)

is exact.

If a Dirac structure E ⊆ E is supported on S ⊆ M, then a(E) ⊆ TS, and
a∗(ann(TS)

) ⊆ E.

Definition 3 (Exact Dirac structures) Suppose E → M is a Courant algebroid (not
necessarily exact), and E ⊆ E is a Dirac structure with support on S ⊆ M. We say
that E is an exact Dirac structure if the sequence

0 → ann(TS)
a∗−→ E

a−→ TS → 0 (13)

is exact.

Lemma 1 Suppose E → M is a Courant algebroid, and E ⊆ E is a Dirac structure
with support on S ⊆ M. Then the following two statements are equivalent:

1. E is an exact Dirac structure.
2. The Courant algebroid E is exact along S (that is, the sequence (12) is exact at

every x ∈ S), and a : E → TS is surjective.

Proof Let x ∈ S, and consider the commutative diagram

Note that the vertical sequences are exact.
Suppose that E is an exact Dirac structure. Then the top horizontal sequence is

exact, by assumption. The lower horizontal sequence is dual to the top sequence,
and hence also exact. The five lemma then implies that all terms in the long exact
sequence vanish. In particular, the central horizontal sequence is exact.

Conversely, suppose that the Courant algebroid E is exact along S and a : Ex →
TxS is surjective (and hence T∗

x M/ann(TxS) → E∗
x is injective). Once again, the five

lemma implies that all terms in the long exact sequence vanish. We conclude that E
is an exact Dirac structure.

Example 19 (Action Courant algebroids [27]) Suppose d is a Lie algebra equipped
with an invariant metric. Given a Lie algebra action ρ : d → X(M) on a manifold
M, let E = d × M with anchor map a(ξ, m) = ρ(ξ)m, and with the bundle metric
coming from the metric on d. As shown in [27], the Lie bracket on constant sections
d ⊆ C∞(M, d) = (E) extends to a Courant bracket if and only if the stabilizers
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dm ⊆ d are coisotropic, i.e. dm ⊇ d⊥
m . Explicitly, for ξ1, ξ2 ∈ (E) = C∞(M, d) the

Courant bracket reads (see [27, ß4])

[[ξ1, ξ2]] = [ξ1, ξ2] + Lρ(ξ1)ξ2 − Lρ(ξ2)ξ1 + ρ∗〈dξ1, ξ2〉. (14)

Here ρ∗ : T∗M → d× M is the dual map to the action map ρ : d× M → TM, using
the metric to identify d∗ ∼= d. We refer to d × M with bracket (14) as an action
Courant algebroid.

Example 20 (Cartan Courant algebroid [41]) Suppose g is a Lie group endowed
with an invariant metric, 〈·, ·〉. We let g denote the Lie algebra g with the metric
negated, −〈·, ·〉. Suppose G is a Lie group with Lie algebra g and which preserves
the metric. The Lie algebra g ⊕ g acts on G by ρ : (g ⊕ g) × G → T G,

ρ(ξ, η) = −ξR + ηL, ξ, η ∈ g,

where ξL, ξR ∈ X(G) denotes the left/right-invariant vector field on G which is equal
to ξ ∈ g at the identity element.

The stabilizer at the identity element is the diagonal subalgebra, g� ⊆ g⊕gwhich
is Lagrangian. Now ρ is equivariant with respect to the G-action on (g ⊕ g) × G
given by

g′ : (ξ, η; g) → (Adg′ξ, η, g′ · g), g′ ∈ G, (ξ, η; g) ∈ (g ⊕ g) × G,

and the left action of G on T G. Since this action is transitive on the base of the
vector bundles and G preserves the metric on g, it follows that all stabilizers are
Lagrangian. Thus (g ⊕ g) × G is an action Courant algebroid, called the Cartan
Courant algebroid.

The diagonal subalgebra g� ⊆ (g ⊕ g) defines a Dirac structure

g� × G ⊆ (g ⊕ g) × G

called the Cartan-Dirac structure.

Remark 11 The Cartan Courant algebroid was first introduced in [41], and later
simplified to the above description in [1]. The Cartan-Dirac structure was discovered
independently by Alekseev, Ševera and Strobl [3, 26, 41]. The description given
above was found in [1]

The Dirac structure of central focus in this paper is the following generalization
of the Cartan-Dirac structure.

Example 21 (Γ-twisted Cartan-Dirac structure) Suppose Γ is a permutation graph,
with edge set EΓ , vertex set VΓ , and (bijective) incidence maps

in, out : EΓ → VΓ .
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The diagonal subalgebra g
VΓ

� ⊆ (g ⊕ g)VΓ is Lagrangian, and hence so is its
image

gΓ := (in ⊕ out)!
(
g

VΓ

�

) ⊆ (g ⊕ g)EΓ

under the isomorphism (in ⊕ out)! : (g ⊕ g)VΓ → (g ⊕ g)EΓ . Thus

gΓ × GEΓ ⊆ (
(g ⊕ g) × G

)EΓ

is a Dirac structure, called the Γ-twisted Cartan-Dirac structure.

The following picture can be helpful. We associate a copy of the Courant algebroid
(g ⊕ g) × G to each edge, as in Fig. 21a. The Dirac structure gΓ acts diagonally at
each vertex, as pictured in Fig. 21b.

Remark 12 Γ-twisted Cartan-Dirac structures were discovered independently by
Alejandro Cabrera, who provides their construction in terms of Dirac reduction of
the Lie-Poisson structure on the dual of the loop Lie algebra, Ω1(S1, g).

Remark 13 The following was explained to the authors by Eckhard Meinrenken.
Suppose σΓ : VΓ → VΓ is the permutation induced by Γ (by the discrete flow
along the edges of Γ ), and consider the group Gbig := GVΓ � Z,

(g, i) · (g′, i′) = (g(σi
Γ )!(g′), i + i′),

where
(
(σi

Γ )!(g′)
)
v

= (g′)σi
Γ (v) for any v ∈ VΓ . Consider the embedding of mani-

folds (
(in−1)!,−1

) : GEΓ → GVΓ � Z = Gbig.

The Lie algebra of Gbig is gVΓ , and for every ξ ∈ gVΓ , the left and right invariant
vector fields ξL, ξR ∈ X(Gbig) restrict to the e ∈ EΓ ’th factor of

(
(in−1)!,−1

)
(GEΓ )

as ξR
in(e) and ξL

out(e), (respectively). Thus, the Γ -twisted Cartan-Dirac structure on

GEΓ may be canonically identified with the restriction of the Cartan-Dirac structure
on Gbig to

(
(in−1)!,−1

)
(GEΓ ).
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2.2 Courant Relations and Morphisms of Manin Pairs

2.2.1 Relations

A smooth relation S : M1 ��� M2 between manifolds is an immersed submanifold
S ⊆ M2 × M1. We will write m1 ∼S m2 if (m2, m1) ∈ S. Given smooth relations
S : M1 ��� M2 and S′ : M2 ��� M3, the set-theoretic composition S′ ◦ S is the image
of

S′ � S = (S′ × S) ∩ (M3 × (M2)� × M1) (15)

under projection to M3 × M1, where (M2)� ⊆ M2 × M2 denotes the diagonal.
We say that the two relations compose cleanly if (15) is a clean intersection in

the sense of Bott (i.e. it is smooth, and the intersection of the tangent bundles is the
tangent bundle of the intersection), and the map from S′ � S to M2 × M1 has constant
rank. In this case, the composition S′ ◦ S : M1 ��� M3 is a well-defined smooth
relation. See [28, AppendixA] for more information on the composition of smooth
relations. For background on clean intersections of manifolds, see e.g. [22, p. 490].

For any relation S : M1 ��� M2, we let S� : M2 ��� M1 denote the transpose
relation,

S� = {(m1, m2) ∈ M1 × M2 | (m2, m1) ∈ S}.

2.2.2 Courant Relations

As popularized by the second author [37, 39], Dirac structures can be interpreted as
the ‘canonical relations’ between Courant algebroids:

Definition 4 (Courant relations and morphisms [5, 14, 39]) Suppose E1 → M1
and E2 → M2 are two Courant algebroids. A relation

R : E1 ��� E2

is called a Courant relation if R ⊆ E2 × E1 is a Dirac structure supported on a
submanifold S ⊆ M2 × M1. A Courant relation is called exact if the underlying
Dirac structure is exact.

When S = gr(µ) is the graph of a smooth map µ : M1 → M2, R is called a
Courant morphism.

We define the range ran(R) ⊆ E2|S and the kernel ker(R) ⊆ E2|S of R by

ran(R) := {e ∈ E2|S | e′ ∼R e for some e′ ∈ E1}
ker(R) := {e ∈ E1|S | e ∼R 0}.
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As an example, any Dirac structure E ⊆ E defines a Courant morphism

E : E ��� ∗

to the trivial Courant algebroid (or a Courant relation from the trivial Courant alge-
broid). Similarly, the diagonal E� ⊆ E × E defines the Courant morphism

E� : E ��� E

corresponding to the identity map.
The key property of Courant relations is the ability to compose them:

Proposition 1 ([28, Proposition 1.4]) Suppose R : E1 ��� E2 and R′ : E2 ��� E3
are two Courant relations which compose cleanly, then their composition,

R′ ◦ R : E1 ��� E3,

is a Courant relation.

Example 22 (Standard lift) Suppose S : M1 → M2 is a relation, then the standard
lift of S,

RS := TS ⊕ ann(TS) ⊆ TM2 × TM1,

defines a Courant relation

RS : TM1 ��� TM2.

Example 23 (Coisotropic subalgebras) Suppose d is a Lie algebra equipped with an
invariant metric. A subalgebra c ⊆ d is said to be coisotropic if c⊥ ⊆ c. In this case,
c⊥ ⊆ c is an ideal, and the metric on d descends to define a metric on

dc := c/c⊥.

The natural relation

Rc : d ��� dc, ξ ∼Rc ξ + c⊥ for ξ ∈ c,

is a Courant relation, where (ξ + c⊥) ∈ c/c⊥ denotes the equivalence class of ξ ∈ c.
For any Lagrangian subalgebra h ⊆ d, Proposition 1 implies that

hc := Rc ◦ h = (h ∩ c)/(h ∩ c⊥)

is a Lagrangian subalgebra of dc.
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2.2.3 Morphisms of Manin Pairs

A pair (E, E) consisting of a Courant algebroid, E, together with a Dirac structure
E ⊆ E is known as a Manin pair [2, 14].

Definition 5 (Bursztyn et al. [14]) Suppose E1 → M1 and E2 → M2 are two
Courant algebroids. A Courant morphism

R : E1 ��� E2,

supported on the graph of a map µ : M1 → M2, defines a morphism of Manin pairs,

R : (E1, E1) ��� (E2, E2) (16)

if

(m1) R ◦ E1 ⊆ E2, and
(m2) ker(R) ∩ E1 = 0

Here ker(R) := (0 × E1) ∩ R.
The morphism of Manin pairs, (16), is said to be exact if the underlying Dirac

structure is exact.
Suppose

R′ : (E2, E2) ��� (E3, E3) (17)

is a second morphism of Manin pairs. Conditions (m1) and (m2) imply that the com-
position of relations R′ ◦ R is clean. Moreover, the composition defines a morphism
of Manin pairs

R′ ◦ R : (E1, E1) ��� (E3, E3), (18)

(cf. [14]).

Remark 14 In [29], a morphism of Manin pairs, (16) was said to be full if the map

a|R : R → Tgr(µ)

was a surjection. The concept of exact morphisms of Manin pairs is a stronger, but
more natural, condition.

If Eq. (16) is a morphism of Manin pairs, then there exists map ρR : µ∗E2 → E1
uniquely determined by the condition

ρR(e) ∼R e, e ∈ E2. (19)

The induced map of section ρR : (E2) → (E1) is a morphism of Lie algebras. Thus
Eq. (16) defines an action of E2 on M1 which factors through the action of E1.
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2.3 Quasi-Hamiltonian Manifolds

If (E, E) is a Manin pair, a quasi-Hamiltonian (E, E)-manifold in the sense of [14]
is a manifold M together with a morphism of Manin pairs

(TM, TM) ��� (E, E).

We shall say that the quasi-Hamiltonian space is exact (or quasi-symplectic) if the
morphism of Manin pairs is exact. To simplify notation (when M is a complicated
expression), wewill often denote theManin pair on the left as (TM, TM) = (T, T)M.

Example 24 (Poisson and symplectic structures) Let 0 denote the trivial Courant
algebroid over a point. Consider a morphism of Manin pairs

R : (T, T)M ��� (0, 0). (20)

In this case, R ⊆ TM is just a Dirac structure with support on all of M. Condition
(m1) is vacuous, while condition (m2) is equivalent to R ∩ TM = 0. As explained in
[15, 16], it follows that

R = gr(π�) := {(π(α, ·) + α) | α ∈ Ω1(M)} ⊆ TM

is the graph of a Poisson bivector field π ∈ X2(M). In this way, there is a one-to-one
correspondence between morphisms of Manin pairs of the form (20) and Poisson
structures on M [14].

Equation (20) is an exact morphism of Manin pairs if a|R : gr(π�) → TM is a
surjection. Equivalently,

π� : T∗M → TM

is an isomorphism, or the Poisson structure on M is symplectic. In this way, there is a
one-to-one correspondence between exactmorphisms ofManin pairs of the form (20)
and symplectic structures on M [29].

The Poisson and symplectic structures that appear in this paper will all arise in
this way.

Example 25 (E-invariant submanifolds) Let (E, E) be a Manin pair over a manifold
N , and suppose M ⊆ N is an E-invariant submanifold, i.e. a(E|M) ⊆ TM. Then

a∗|M : T∗N |M → E

descends to a map

a∗|M : T∗M ∼= T∗N/ann(TM) → E.
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As in [28, Example 1.6], define the Courant relation RE,M : TM ��� E by

a(e) + i∗α ∼RE,M e + a∗α, e ∈ E, α ∈ T∗N,

where i : M → N denotes the inclusion. Then

RE,M : (T, T)M ��� (E, E) (21)

is a morphism of Manin pairs.
Moreover, Eq. (21) is an exact morphism of Manin pairs if and only if a(E|M) =

TM and the Courant algebroid E → N is exact along M.

Remark 15 In fact, Eq. (21) is the unique morphism of Manin pairs supported on
gr(i). To see why, suppose

R : (T, T)M ��� (E, E)

is such a morphism of Manin pairs. Since R is supported on gr(i), we must have

i∗α ∼R a∗α,

for any α ∈ T∗N . On the other hand, as explained in [14, Proposition 3.3], for any
e ∈ E|M there exists a unique X ∈ TM such that

X ∼R e.

Since R is supported on gr(i), we have i∗X = a(e), or X = a(e). Thus R = RE,M .

3 Quasi-Hamiltonian Reduction

3.1 Reduction Theorems

Let d be a quadratic Lie algebra acting on a manifold N so that all the stabilizers are
coisotropic, and let h ⊂ d be a Lagrangian Lie subalgebra. We shall consider the
following special case of general quasi-Hamiltonian (E, E)-manifolds.

Definition 6 A quasi-Hamiltonian (d, h) × N-manifold is a manifold M together
with a morphism of Manin pairs

(T, T)M ��� (d, h) × N .

It is exact (or quasi-symplectic) if the morphism is exact.
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Example 26 If d = 0 and N is a point then (as we saw in Example 24) a quasi-
Hamiltonian structure is the same as a Poisson or (in the exact case) symplectic
structure.Moregenerally, a quasi-Hamiltonian (0, 0)×N-structure onM is equivalent
to a Poisson structure on M and to a map µ : M → N such that µ∗(C∞(N)) ⊂
C∞(M) is in the Poisson centre.

If g is a quadratic Lie algebra then an exact quasi-Hamiltonian (g⊕ ḡ, g�) × G-
structure on M is equivalent to a quasi-Hamiltonian G-structure in the sense of
Alekseev, Malkin and Meinrenken. If h is a Lie algebra then a quasi-Hamiltonian
(h�h∗)×h∗-structure on M is equivalent to a Poisson structure on M together with
a moment map M → h∗ generating an action of h. In the exact case the Poisson
structure is symplectic.

In this subsection we present a reduction procedure, which will be the main tool used
in our study of the moduli spaces of flat connections.

Definition 7 Let M be a quasi-Hamiltonian (d, h) × N-manifold. Reductive data
(c, S) consists of a coisotropic Lie subalgebra c ⊆ d together with a c-invariant
submanifold S ⊆ N such that

(r1) the c⊥-orbits in S form a regular foliation7 with quotient qN : S → Nc,S ,
(r2) the graph gr(µ), where µ is the underlying map M → N , intersects S × M

cleanly, and the h ∩ c⊥-orbits in µ−1(S) form a regular foliation with quotient
qM : µ−1(S) → Nc,S .

Theorem 5 (Quasi-Hamiltonian reduction) Suppose (c, S) is reductive data for a
morphism of Manin pairs

R : (T, T)M ��� (d, h) × N . (22)

Then

Rc,S : (T, T)Mc,S ��� (dc, hc) × Nc,S (23)

is a morphism of Manin pairs, where

Mc,S = µ−1(S)/h ∩ c⊥

Rc,S := R2 ◦ R ◦ R�
1 ,

R2 := Rc × (gr(qN ) ◦ gr(iN )�),

R1 := RqM ◦ R�
iM ,

iN : S → N and iM : µ−1(S) → M are the canonical inclusions, and Rc : d ��� dc
and hc are as in Example 23.

7 By a regular foliation, we mean that the leaf space carries the structure of a smooth manifold for
which the quotient map is a surjective submersion.
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The first two statements in Theorem 1 follow as consequences of Theorem 5.

Theorem 6 (Quasi-Hamiltonian reduction in the exact case) If, in the setup of The-
orem 5, the following additional assumptions hold:

• c acts transitively on S,
• Eq. (22) is an exact morphism of Manin pairs,

then Eq. (23) is an exact morphism of Manin pairs.

The third statement in Theorem 1 follows as a consequence of Theorem 6.
We delay the proof of both these theorems to Appendix A.
Notice that if c ⊂ d is Lagrangian then the reduced manifold is Poisson or (in the

exact case) symplectic, as dc = 0.

3.2 Bivector Fields and Quasi-Poisson Structures

In this section we shall explain Theorem 5 in more traditional terms, using bivector
fields.

Suppose that

R : (T, T)M ��� (d, h) × N

is a morphism of Manin pairs over µ : M → N , and the subspace k ⊆ d is
a Lagrangian complement to h ⊆ d: that is, d = h ⊕ k. Then axiom (m1) of
Definition 5 implies thatR composes transverselywith k, while property (m2) implies
that k◦R ⊆ TM is a Lagrangian complement to TM. Thus there exists a unique bivec-
tor field πk ∈ X2(M) such that

k ◦ R = gr(π�) := {(πk(α, ·) + α
) | α ∈ T∗M}.

The triple (d, h; k) is called a quasi-Manin triple, and (M,πk, ρR) is called a Hamil-
tonian quasi-Poisson (d, h; k)-space with moment map µ : M → N (cf. [14, 23]).
The bivector field πk is called a quasi-Poisson structure.

Suppose that (c, S) is reductive data for the morphism of Manin pairs R. We want
to reinterpret Theorem 5 using the language of quasi-Poisson geometry. Thus we
will be interested in Lagrangian complements to the reduced Lie algebra hc.

Lemma 2 Each Lagrangian complement k′c ⊆ dc to hc defines an element

τ ∈ ∧2(h/(h ∩ c⊥)
)
.

Proof Suppose k′c ⊆ dc := c/c⊥ is a Lagrangian complement to hc. LetRc : d ��� dc
be the relation described in Example 23, and define k′ := k′c ◦ Rc ⊆ c. Now k′ can be
seen as the graph
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k′ = {(ξ + τ �(ξ) + η) | ξ ∈ k, 〈ξ, ·〉|h∩k′ = 0, and η ∈ h ∩ k′}

of a map

τ � : ann(h ∩ k′) ∼= (
h/(h ∩ k′)

)∗ → h/(h ∩ k′),

where ann(h ∩ k′) := (h ∩ k′)⊥ ∩ k. Let τ ∈ h/(h ∩ k′) ⊗ h/(h ∩ k′) be the element
defined by τ �(ξ) = τ (ξ, ·), then the fact that k′ is Lagrangian forces τ to be skew-
symmetric. Finally, since k′c+hc = c/c⊥ wehave h+k′ = h+c. Hence h∩k′ = h∩c⊥.
Thus τ ∈ ∧2

(
h/(h ∩ c⊥)

)
.

Theorem 7 Suppose that (c, S) is reductive data for the morphism of Manin pairs

R : (T, T)M ��� (d, h) × N, (24)

and (M,πk, ρR) is the Hamiltonian quasi-Poisson (d, h; k)-space corresponding to
the Lagrangian complement k ⊆ d to h. Let

Rc,S : (T, T)Mc,S ��� (dc, hc) × Nc,S

denote the reduced morphism of Manin pairs described in Theorem 5, and let
(Mc,S,πk′c , ρRc,S ) be the Hamiltonian (dc, hc; k′c)-quasi-Poisson manifold corre-
sponding to a chosen Lagrangian complement k′c to hc.

As in Lemma 2, let τ ∈ ∧2
(
h/(h∩ c⊥)

)
be the element corresponding to k′c. Then

(πk + ρR(τ ))|µ−1(S)

is an h∩ c⊥-invariant section of ∧2
(
T(µ−1(S))/ρR(h∩ c⊥)

)
which is mapped to πk′c

under the surjective submersion µ−1(S) → Mc,S.

Proof Let Rc : d ��� dc be the relation described in Example 23. Let µ : M → N
denote the map supporting R, and let

RiM : Tµ−1(S) ��� TM, RqM : Tµ−1(S) ��� TMc,S

denote the standard lifts of the inclusion and projection, respectively. Then

gr(π�

k′c
) = k′c ◦ Rc ◦ R ◦ RiM ◦ R�

qM
.

Now, as explained in Lemma 2,

k′c ◦ Rc = k′ := {(ξ + τ �(ξ) + η) | ξ ∈ k, 〈ξ, ·〉|h∩c⊥ = 0, and η ∈ h ∩ c⊥}. (25a)

Meanwhile, since gr(π�

k) = k ◦ R, it follows that
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X + α ∼R ξ + η, ξ ∈ k, η ∈ h ⇔ X = ρR(η) + π
�

kα, and ξ = j ◦ ρ∗
Rα, (25b)

where j : h∗ → k inverts the isomorphism k → d/h ∼= h∗.
Using (25a) and (25b) we compute

k′c◦Rc◦R = {(
ρR(η)+(πk+ρ(τ )

)�
(α)+α

)|η ∈ h∩c⊥ and α ∈ ann
(
ρR(h∩c⊥)

)}
.

This shows that πk+ρ(τ ) is h∩c⊥-invariant. Moreover, k′c◦Rc ⊆ c and thus elements
of k′c ◦ Rc act to preserve S. In turn, this implies that

(πk + ρ(τ ))|µ−1(S) ∈ Γ

(

∧2 (
TM|µ−1(S)/ρR(h ∩ c⊥)

)
)

is in fact a section of ∧2(Tµ−1(S)/ρR(h ∩ c⊥)).
Now, gr(π�

k′c
) = k′c ◦ Rc ◦ R ◦ RiM ◦ R�

qM
, i.e.

(qM)∗
(
πk + ρ(τ )

)|µ−1(S) = πk′c .

3.3 Exact Morphisms of Manin Pairs and 2-Forms

In this section, we will examine exact morphisms of Manin pairs in more detail.
We recall from [14, 29] that once isotropic splittings are chosen, these are uniquely
determined by a map between the underlying spaces, and a 2-form on the domain.
This description in terms of 2-forms can be useful for simplifying calculations.

Suppose E is an exact Courant algebroid over N . That is, the sequence

0 → T∗N
a∗−→ E

a−→ TN → 0 (26)

is exact. Let s : TN → E be a splitting of 26 such that s(TN) ⊆ E is isotropic (such
splittings are called isotropic splittings). Then, as explained in [41], the formula

ιX ιY ιZγ := 〈[[s(X), s(Y)]], s(Z)〉, X, Y , Z ∈ X(N)

defines a closed 3-form, γ ∈ Ω3(N), called the curvature 3-form of the splitting s.

The isomorphism s ⊕ a∗ : TN ⊕ T∗N
∼=−→ E identifies the metric on E with

〈X + α, Y + β〉 = α(Y) + β(X), X, Y ∈ TN, α,β ∈ T∗N,

and the bracket with

[[X + α, Y + β]] = [X, Y ] + LXβ − ιY dα + ιX ιY γ, X, Y ∈ X(N), α,β. (27)
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The Courant algebroid with underlying bundle TN ⊕ T∗N , and bracket given by 27
is called the γ-twisted exact Courant algebroid over N , and denoted by TγN .

Example 27 (The Cartan Courant algebroid [41]) The Cartan Courant algebroid

(g ⊕ g) × G

reviewed in Example 20 is exact. In [1] it is shown that themap s : T G → (g⊕g)×G
defined as

s : X → 1

2

( − ιX(dg g−1), ιX(g−1dg)
)
, X ∈ T G

is a (g ⊕ g)-invariant isotropic splitting of the Cartan Courant algebroid.
The corresponding curvature 3-form is computed asγ = 1

24 〈[g−1dg, g−1dg], g−1dg〉
(note that the normalization differs from that in [1]).

Suppose L ⊆ E is a Lagrangian subbundle with support on S ⊆ N , such that
a(L) = TS, then there is a 2-form ω ∈ Ω2(S) uniquely determined by the formula

ιX ιY ω = 〈s(X), e〉, X, Y ∈ TS, e ∈ L and a(e) = Y .

Thus, we may identify L with

L = gr(ω�) := {(s(X) + a∗(ιXω + α)
) | X ∈ TS,α ∈ ann(TS)} ⊆ E.

A quick calculation using (27) shows that L is a Dirac structure with support on
S if and only if dω = i∗γ, where i : S → N is the inclusion (cf. [41] and [14,
Proposition 2.8]).

Suppose

R : TM ��� E

is a Courant morphism supported on the graph of a map µ : M → N . Since E is an
exact Courant algebroid, R is exact if a(R) = Tgr(µ) (cf. Lemma 1), in which case
the considerations above show that

R = gr(ω�) ⊆ E × TM,

where ω ∈ Ω2(M) ∼= Ω2(gr(µ)) satisfies dω = µ∗γ [14, 29]. That is, R = Rµ,ω ,
where Rµ,ω is defined by

X − ιXω + µ∗α ∼Rµ,ω s(µ∗X) + a∗α, X ∈ TM, α ∈ T∗N . (28)

In particular, if E ⊆ E is a Dirac structure, once an isotropic splitting s : TN → E

is chosen, a morphism of Manin pairs
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R : (T, T)M ��� (E, E)

is entirely determined by the underlying map µ : M → N between the spaces, and
a 2-form ω ∈ Ω2(M) (satisfying certain conditions).

Remark 16 (Twisted quasi-Hamiltonian structures) Recall the Γ -twisted Cartan-
Dirac structure described in Example 21,

(
(ḡ ⊕ g)EΓ , gΓ

) × GEΓ.

Suppose we use the splitting T GEΓ → (
(ḡ ⊕ g) × G

)EΓ described in Example 27
to identify

(
(ḡ ⊕ g) × G

)EΓ ∼= TγGEΓ,

where γ = 1
24 〈[g−1dg, g−1dg], g−1dg〉. Then exact morphisms of Manin pairs

R : (T, T)M ���
(
(ḡ ⊕ g)EΓ , gΓ

) × GEΓ

are in one-to-one correspondence with quadruples (M,µ, ρ,ω), where

• µ : M → GEΓ is a smooth map,
• ρ : gVΓ → X(M) is a Lie algebra action, and
• ω ∈ Ω2(M) is a 2-form,

such that

1. dω = µ∗γ,
2. µ : M → GEΓ is gVΓ -equivariant with respect to the gVΓ action on GEΓ given

on the e ∈ EΓ th factor by

ξ → −ξR
in(e) + ξL

out(e), ξ ∈ gVΓ ,

3. ker(dµ)x ∩ ker(ω�)x = 0, for every x ∈ M, and
4.

ιρ(ξ)ω = 1

2
µ∗ ∑

e∈EΓ

〈g−1
e dge, ξout(e)〉 + 〈dge g−1

e , ξin(e)〉.

(Note that conditions (2),(3) and (4) determine ρ uniquely in terms of µ and ω). The
quadruple (M,µ, ρ,ω) corresponds to the morphism of Manin pairs (28), supported
on the graph of µ.

The quadruples (M,µ, ρ,ω) generalize quasi-Hamiltonian GEΓ -structures in the
sense that they incorporate an automorphism of GEΓ into their definition. Here the
automorphism is simply the permutation of factors described by the permutation
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graph, Γ. Allowing arbitrary automorphisms leads to a definition of twisted quasi-
Hamiltonian spaces along the lines of the one given in [30] for twisted quasi-Poisson
structures (cf. [30, Definition3]).

Let Gbig := GVΓ � Z, where Z acts by permuting the factors according to the
graph Γ (cf. Remark 13). As explained to the authors by Eckhard Meinrenken,
quasi-Hamiltonian

(
(ḡ ⊕ g)EΓ , gΓ

) × GEΓ -structures are quasi-Hamiltonian Gbig-
structures in the (original) sense of Alekseev-Malkin-Meinrenken [4] for which the
moment map takes values in GVΓ × {−1} ⊂ Gbig (cf. Remark 13).

We now examine the behaviour of twisted exact Courant algebroids under the
partial reduction procedure described in Theorem 5. Suppose that d × N is an exact
Courant algebroid, and a d-invariant isotropic splitting s : TN → d × N is chosen,
defining an isomorphism

d × N ∼= TγN,

We let E ⊆ TγN denote the Dirac structure corresponding to h× N ⊆ d× N under
this isomorphism. Suppose

Rµ,ω : (T, T)M ��� (TγN, E) ∼= (d, h) × N

is a exact morphism of Manin pairs, and S ⊆ N is an orbit of the coisotropic
subalgebra c ⊆ d, and the assumptions of both Theorems 5 and 6 hold for the
reductive data (c, S). Let iN : S → N and iM : µ−1(S) → M denote the inclusions,
and qN : S → Nc,S and qM : µ−1(S) → Mc,S the quotients (by c⊥ and h ∩ c⊥,
respectively).

Wewould like to define a splitting of the reduced Courant algebroid dc⊥ ×Nc,S . As
explained in [13, Proposition 3.6], unless s(TS) ⊆ c, this will depend on a choice of
a c⊥-invariant connection 1-form θ ∈ Ω1(S, c⊥) for the bundle qN : S → Nc,S . For
any X ∈ X(Nc,S), let Xh ∈ X(S) denote its horizontal lift with respect to the chosen
connection. The map X → s(Xh) ∈ Γ (d × S) may not take values in Γ (c × S), but

sθ : X → s(Xh) + a∗(ιXh〈θ,ϑs〉)

does, where ϑs ∈ Ω1
(
S, (c⊥)∗

)
is defined by 〈ξ,ϑs〉 := s∗ξ, for ξ ∈ c⊥. Note also

that sθ(X) is c⊥-invariant, and hence descends to a unique section of Γ (c × Nc,S).
Thus, the composition

X(Nc,S)
sθ−→ Γ (c × S) → Γ (c/c⊥ × Nc,S) = Γ (dc × Nc,S)

defines an isotropic splitting s̃θ : TNc,S → dc × Nc,S . We define γ̃θ ∈ Ω3(Nc,S) to
be the associated curvature 3-form. Let Ec,S ⊆ Tγ̃θ

Nc,S denote the Dirac structure
corresponding to hc,S under the isomorphism defined by s̃θ.

Proposition 2 (Partial reduction for split exact Courant algebroids) Suppose that
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Rµ,ω : (T, T)M ��� (TγN, E) ∼= (d, h) × N (29)

is an exact morphism of Manin pairs, that the assumptions of both Theorems 5 and
6 hold for the reductive data (c, S). Let θ ∈ Ω1(S, c⊥) be a c⊥-invariant connection
1-form for the bundle qN : S → Nc,S.

Then, under the isomorphism dc×Nc,S ∼= Tγ̃θ
Nc,S defined by the isotropic splitting

s̃θ, the reduced morphism of Manin pairs (23), described in Theorem 5, is identified
with

Rµ̃,ω̃θ
: (T, T)Mc,S ��� (Tγ̃θ

Nc,S, Ec,S), (30)

where ω̃θ ∈ Ω2(Mc,S) is defined by the equation

q∗
M ω̃θ = i∗Mω − µ∗〈θ,ϑs − 1

2
s ◦ a(θ)〉, (31)

and µ̃ : Mc,S → Nc,S is the unique map such that

commutes.
Moreover, the 2-form ω̃θ is independent of θ if s(TS) ⊆ c, more precisely, the term

µ∗〈θ,ϑs − 1
2 s ◦ a(θ)〉 in (31) vanishes.

We refer the proof of Proposition 2 to Appendix A.

Remark 17 In the special case where c = c⊥ is Lagrangian, then c⊥ acts transitively
on S, so (31) simplifies to

q∗
M ω̃θ = i∗Mω − 1

2
µ∗〈θ, s ◦ a(θ)〉.

Remark 18 Consider the Γ -twisted Cartan-Dirac structure
(
(g⊕ g)EΓ , gΓ ) × GEΓ .

The conditions that c ⊆ (g ⊕ g)EΓ be symmetric and that S ⊆ GEΓ be the c-orbit
through the identity imply that

s(TS) ⊆ c. (32)

Indeed, Eq. (32) is easily checked at the identity of GEΓ , and the invariance of s
implies that it holds at every other point in the c-orbit, S.

Thus, Eq. (31) simplifies to

q∗
M ω̃θ = i∗Mω,
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and Theorem 3 follows as a corollary to Proposition 2.

Example 28 (Conjugacy clases and quasi-Hamiltonian geometry) Recall the split-
ting s : T G → (g⊕g)×G of the Cartan Courant algebroid described in Example 27.
Suppose c = g� ⊆ (g ⊕ g) is the diagonal subalgebra, and S ⊆ G is a conjugacy
class. Then,

s ◦ a(ξ, ξ) = (ξ − Adgξ,−Adg−1ξ + ξ), ξ ∈ g, g ∈ G.

So

ιa(η,η)ιa(ξ,ξ)
1

2
µ∗〈θ, s ◦ a(θ)〉 = 〈η, Adgξ〉 − 〈Adgη, ξ〉.

Thus 1
2 〈θ, s◦a(θ)〉 is proportional to the quasi-Hamiltonian 2-form on the conjugacy

class, S, described in [4, Proposition 3.1].
Suppose now that M is a quasi-Hamiltonian G space with moment map µ :

M → G, and 2-form ω. It follows that partial reduction of the morphism of Manin
pairs

Rµ,ω : (T, T)M ��� (g ⊕ g, g�) × G

by (c, S), yields the same symplectic structure as the quasi-Hamiltonian reduction

M � S//1G,

where M � S denotes the fusion of M with S, as described in [4].

3.4 Commutativity of Reductions

Suppose that S1, S2 ⊆ N intersect cleanly, and that (c1, S1) and (c2, S2) are both
reductive data for a morphism of Manin pairs

R : (T, T)M ��� (d, h) × N . (33)

Notice that the Lie algebra c2,1 := Rc1 ◦ c2 ⊆ dc1 is coisotropic. Let S2,1 denote
the image of S2 ∩ S1 under the quotient map S1 → Nc1,S1 . In practise, (c2,1, S2,1)
will often form reductive data for

Rc1,S1 : (T, T)Mc1,S1 ��� (dc1, hc1) × Nc1,S1 .

Similarly, with c1,2 := Rc2 ◦ c1 ⊆ dc2 and S1,2 the image of S1 ∩ S2 under the
quotient map S2 → Nc2,S2 , the pair (c1,2, S1,2) will often form reductive data for

Rc2,S2 : (T, T)Mc2,S2 ��� (dc2 , hc2) × Nc2,S2 .
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Proposition 3 (Commutativity of reductions) Suppose that S1, S2 ⊆ N intersect
cleanly, that (c1, S1), (c2, S2) and (c1 ∩ c2, S1 ∩ S2) all form reductive data for the
morphism of Manin pairs

R : (T, T)M ��� (d, h) × N,

while (c2,1, S2,1) and (c1,2, S1,2) form reductive data for

Rc1,S1 : (T, T)Mc1,S1 ��� (dc1, hc1) × Nc1,S1

and

Rc2,S2 : (T, T)Mc2,S2 ��� (dc2 , hc2) × Nc2,S2 ,

respectively. Then

(Rc1,S1)c2,1,S2,1 = Rc1∩c2,S1∩S2 = (Rc2,S2)c1,2,S1,2 . (34)

The proof of this proposition is deferred to Appendix 5.2.1.
In this paper, Proposition 3 will always be applied as the following corollary:

Corollary 1 (Reductions of distinct factors commute) Suppose d× N, d′ × N ′, and
d′′ ×N ′′ are all action Courant algebroids, S ⊆ N and S′ ⊆ N ′ are submanifolds and
(c⊕d′ ⊕d′′, S ×N ′ ×N ′′), (d⊕ c′ ⊕d′′, N ×S′ ×N ′′) and (c⊕ c′ ⊕d′′, S ×S′ ×N ′′)
each form reductive data for a morphism of Manin pairs

R : (T, T)M ��� (d ⊕ d′ ⊕ d′′, h) × (N × N ′ × N ′′).

Then

(Rc⊕d′⊕d′′,S×N ′×N ′′)(dc⊕c′⊕d′′,Nc,S×S′×N ′′)

= Rc⊕c′⊕d′′,S×S′×N ′′

= (Rd⊕c′⊕d′′,N×S′×N ′′)(c⊕d′
c′⊕d′′,S×N ′

c′,S′×N ′′).

4 Quasi-Hamiltonian Structures on Moduli Spaces
of Flat Connections

Suppose that (Σ, V ) is a marked surface, i.e. Σ is a compact oriented surface and
V ⊂ ∂Σ a finite set which intersects each component of Σ and ∂Σ non-trivially.
Let Γ be the boundary graph of Σ with the vertex set V (see Sect. 1.2.3 for details).
In this section we shall prove Theorem 2 using quasi-Hamiltonian reduction. In other
words, we want to construct an exact morphism of Manin pairs
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RΣ,V : (T, T)MΣ,V ���
(
(g ⊕ g)EΓ, gΓ

) × GEΓ (35)

over the map

µ : MΣ,V → GEΓ

given by the boundary holonomies.
Let us start with a simple case:

Proposition 4 (Union of polygons) Let Σ be a disjoint union of discs and V ⊂ ∂Σ
a finite subset meeting every boundary circle. Then there is a unique exact morphism

(T, T)MΣ,V ���
(
(g ⊕ g)EΓ, gΓ

) × GEΓ

over µ.

Proof The map µ is in this case an embedding. As explained in Example 25, this
implies that there exists a unique exact morphism of Manin pairs

4.1 Sewing Construction

Suppose Σ is a (possibly disconnected) marked surface, and e1, e2 ∈ Γ are two
distinct edges from the boundary graph, we may ‘sew’ the surface together along e1
and e2 to form a new surface

Σ ′ := Σ

e1 ∼ e2
,

as pictured in Fig. 21. In this section, we describe the analogous procedure for the
corresponding morphisms of Manin pairs, (35).

First, note that

lsew := {((ξ, η); (η, ξ)
) | ξ, η ∈ g} ⊆ (g ⊕ g)

⊕
(g ⊕ g)

is a Lagrangian subalgebra. Since G is connected, the lsew-orbit through the identity
of G × G is

G	
� := {(g, g−1) | g ∈ G}.

Definition 8 Suppose that

(
(g ⊕ g)

⊕
(g ⊕ g)

⊕
d′) × (

G × G × N
)

is the product of two Cartan Courant algebroids with an action Courant algebroid,
d′ × N , and that h ⊆ (g ⊕ g)

⊕
(g ⊕ g)

⊕
d′ is a Lagrangian subalgebra. Further
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The initial surface. Sewing. The resulting surface.

Fig. 21 Sewing two edges from Σ . The two edges must have opposite orientation to ensure that
the resulting surface is orientable

suppose that

R : (T, T)M ���
(
(g ⊕ g)

⊕
(g ⊕ g)

⊕
d′, h

) × (
G × G × N

)
(36)

is a morphism of Manin pairs.
Let csew = lsew ⊕ d′ and let

Ssew = G	
� × N ⊆ G × G × N .

If (csew, Ssew) is reduction data for (36), then the reduction,

Rcsew,Ssew : (T, T)Mcsew,Ssew ��� (d′, hcsew,Ssew) × N

is called the sewing of (36).

(a) (b) (c)

In a typical example of sewing, Γ ′ will be a permutation graph, e1, e2 ⊆ EΓ ′ will
be two (distinct) edges, and

R : (T, T)M ���
(
(g ⊕ g)EΓ ′ , gΓ ′

) × GEΓ ′
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will be a morphism of Manin pairs.
We let Γ denote the graph with edge set EΓ := EΓ ′ \{e1, e2} and vertex set

VΓ := out(EΓ )

in(e1) ∼ out(e2) and in(e2) ∼ out(e1)
,

as pictured in figure c above.
Let

ce1,e2
sew := {(ξ, η) ∈ (g ⊕ g)EΓ ′ | (ξ, η){e1,e2} ∈ lsew}

Se1,e2
sew := {g ∈ GEΓ ′ | g{e1,e2} ∈ G	

�}

as in Definition 8. Here we are using the notation (ξ, η){e1,e2} := (
(ξe1, ηe1);

(ξe2 , ηe2)
)
, as described in Sect. 1.1. The morphism of Manin pairs

Rc
e1,e2
sew ,S

e1,e2
sew

: (T, T)Mc
e1,e2
sew ,S

e1,e2
sew

��� ((g ⊕ g)EΓ , gΓ ) × GEΓ

is called the result of sewing edges e1 and e2 together.Herewehaveused the following
lemma to simplify the right hand side:

Lemma 3 The Lie subalgebras gΓ ⊆ (g ⊕ g)EΓ and (gΓ ′)ce1,e2
sew

⊆ (g ⊕ g)EΓ ′ are
equal.

Proof Let us recall that

gΓ ′ = (in ⊕ out)!gVΓ ′
�

∼= gVΓ ′

and

(gΓ ′)ce1,e2
sew

= gΓ ′ ∩ ce1,e2
sew /gΓ ′ ∩ (ce1,e2

sew )⊥.

By definition of ce1,e2
sew , gVΓ ′ ∩ c

e1,e2
sew is the subalgebra of gVΓ ′ where the components

corresponding to identified vertices are equal. After we divide by gΓ ′ ∩ (c
e1,e2
sew )⊥ we

obtain the Lie algebra gΓ = gVΓ .

The morphism of Manin pairs (35) which we assign to the surface Σ will satisfy
the following sewing property:

Sewing property. Let (Σ, V ) be obtained out of (Σ ′, V ′) by sewing edges e1
and e2. There is a canonical isomorphism

MΣ,V
∼=−→ (MΣ ′,V ′)ce1,e2

sew ,S
e1,e2
sew

, (37)

which identifies the following two morphisms of Manin pairs:

RΣ,V : (T, T)MΣ,V ��� ((g ⊕ g)EΓ , gΓ ) × GEΓ,
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and

(RΣ ′,V ′)ce1,e2
sew ,S

e1,e2
sew

: (T, T)MΣ,V ��� ((g ⊕ g)EΓ , gΓ ) × GEΓ.

Notice that

µ−1(Se1,e2
sew ) = {f ∈ MΣ ′,V ′(G) | f (e1)f (e2) = 1}

and that

µ−1(Se1,e2
sew )/gV ′ ∩ (ce1,e2

sew )⊥ = MΣ,V (G).

Thus, the isomorphism (37) is clear. The non-trivial part of the statement is the
behaviour of the RΣ,V ’s

4.1.1 Commutativity of Sewing

Suppose {e1, e2}, {e′
1, e′

2} ⊆ EΓ are two distinct pairs of distinct edges (i.e. {e1, e2}∩
{e′

1, e′
2} = ∅), and let i : {e1, e2} → EΓ and i′ : {e′

1, e′
2} → EΓ denote the inclusions.

We may form the graph Γ ′′, with edge set EΓ ′′ := EΓ \ {e1, e2, e′
1, e′

2} and vertex set

VΓ ′′ := out(EΓ ′′)

in(e1) ∼ out(e2), in(e2) ∼ out(e1), and in(e′
1) ∼ out(e′

2), in(e′
2) ∼ out(e′

1)
.

It is the graph obtained from Γ by identifying the oppositely directed edges e1 ∼ e2
and e′

1 ∼ e′
2, and then deleting these newly identified edges and any isolated vertices.

Let

c1 := c
e1,e2
sew = i(lsew) ⊕ (g ⊕ g){e′

1,e
′
2} ⊕ (g ⊕ g)EΓ ′′,

c2 := c
e′
1,e

′
2

sew = (g ⊕ g){e1,e2} ⊕ i′(lsew) ⊕ (g ⊕ g)EΓ ′′,
c1,2 := c1 ∩ c2 = i(lsew) ⊕ i′(lsew) ⊕ (g ⊕ g)EΓ ′′,

and

S1 := Se1,e2
sew = i(G	

�) × G{e′
1,e

′
2} × GEΓ ′′,

S2 := S
e′
1,e

′
2

sew = G{e1,e2} × i′(G	
�) × GEΓ ′′,

S1,2 := S1 ∩ S2 = i(G	
�) × i′(G	

�) × GEΓ ′′,

If the pairs (c
e1,e2
sew , Se1,e2

sew ), (c
e′
1,e

′
2

sew , S
e′
1,e

′
2

sew ) and (c1 ∩ c2, S1 ∩ S2) all form reductive
data for R, then the assumptions of Corollary 1 are satisfied. Therefore,

(
Rc

e1,e2
sew ,S

e1,e2
sew

)

c
e′1,e′2
sew ,S

e′1,e′2
sew

= Rc1,2,S1,2 = (
R
c

e′1,e′2
sew ,S

e′1,e′2
sew

)
c

e1,e2
sew ,S

e1,e2
sew
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A triangulation of the 3-gon. A Triangulation of the 4-gon.

Fig. 22 Triangulations of 3 and 4-gons. The dashed lines indicate internal edges of the triangulation
along which we sew

as morphisms of Manin pairs

(T, T)M ′′ ��� ((g ⊕ g)EΓ ′′ , gΓ ′′) × GEΓ ′′ ,

where M ′′ = Mc1,2,S1,2 . That is to say, it makes no difference in which order we sew
pairs of edges: the results are all naturally isomorphic.

4.2 The Quasi-Hamiltonian Structure on MΣ,V (G)

Theorem 8 There is a unique way to assign to every marked surface (Σ, V ) an
exact morphism of Manin pairs

RΣ : (T, T)MΣ,V ���
(
(g ⊕ g)EΓ , gΓ

) × GEΓ

supported on the graph of µ : MΣ,V → GEΓ such that the assignment satisfies the
sewing property.

Proof IfΣ ′ is a disjoint union of disks thenRΣ ′ exists and is unique by Proposition4.
Suppose that Σ is triangulated and V = T 0 ∩ ∂Σ . Let Σ ′ be the disjoint union

of the triangles and V ′ the set of its vertices. Then, by sewing the respective edges
of MΣ ′,V ′(G) according to the triangulation, we get an exact morphism of Manin
pairs

RT : (T, T)MΣ,V ���
(
(g ⊕ g)EΓ , gΓ

) × GEΓ.

By commutativity of sewing these morphisms satisfy the sewing property. It remains
to show that they are independent of the triangulation T .

Thus, we need to prove that RT is invariant under Pachner moves applied to T .
Pachner moves are, however, simply changes of triangulations of a polygon (either a
triangle or a square, see Fig. 22). The independence thus follows from Proposition4.
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5 Poisson Structures on the Moduli Space of Flat
Connections

Suppose G is a (connected) Lie group with Lie algebra g and s ∈ S2(g)G is a
G-invariant symmetric 2-tensor. We let d denote the Drinfel’d double of g, as in
Remark 8. Suppose now that Γ is a permutation graph. Then dVΓ acts on GEΓ with
coisotropic stabilizers, as follows: dVΓ acts on the e ∈ EΓ th factor GEΓ via the vector
field

ρ(ξ)e = −s(ξin(e))
R + t(ξout(e))

L, ξ ∈ dVΓ ,

(cf. figure b below). Thus

gVΓ × GEΓ ⊆ dVΓ × GEΓ

is a Dirac structure.

(a) (b)

Suppose (Σ, V ) is a marked surface (where we now allow components of ∂Σ to
intersect V trivially), with boundary graph Γ . In this section, we prove there exists a
natural quasi-Hamiltonian (d, g)VΓ × GEΓ structure on MΣ,V (G), i.e a morphism
of Manin pairs

RΣ,V : (T, T)MΣ,V (G) ��� (d, g)VΓ × GEΓ

over the map

µ : MΣ,V (G) → GEΓ

given by the boundary holonomies.
As before, for disjoint unions of polygons the quasi-Hamiltonian structure is

uniquely defined.

Proposition 5 (Union of polygons) Let Σ be a disjoint union of discs and V ⊂ ∂Σ

a finite subset. Then there is a unique exact morphism of Manin pairs

(T, T)MΣ,V ���
(
(g ⊕ g)EΓ, gΓ

) × GEΓ

over µ.

Proof As in Proposition 4, µ is an embedding, so this follows from Example 25.
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ξP ξQ
ξQ ξP

ΓΓ

g
Q

e
P

g
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Q
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*

Fig. 23 The graphΓ ∗ is the permutation graph obtained fromΓ by deleting the edge, ←
Q

e←
P
, passing

from P to Q, and identifying the vertices P and Q. (The graphs are isomorphic outside the pictured
regions.) Heuristically, we have obtained the graph Γ ∗ by gluing short sections from both ends of
←
Q

e←
P
together (effectively divorcing it from the graph). Meanwhile, the Courant morphism, R(P,Q),

is defined by composing the corresponding elements labelling the vertices and by forgetting the
element which labelled the deleted edge

ξP ξQ
ξQ ξP

ΓΓ

ge
P

g
Q

e

ge
P

g
Q

e

g
P

e ge
Q

g
P

e ge
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*

Fig. 24 The graph Γ ∗ is the permutation graph obtained from Γ by identifying the vertices P and
Q and composing the edge entering Q with the edge leaving P. (The graphs are isomorphic outside
the pictured regions.) Heuristically, we have obtained the graph Γ ∗ by gluing a short section of the
edges e←

P
and ←

Q
e together. Meanwhile, the Courant morphism, R(P,Q), is defined by composing the

corresponding elements labelling the edges and vertices

5.1 Fusion

Suppose that P, Q ∈ VΓ are two distinct vertices. The operation of fusion at the
ordered pair of vertices (P, Q) described in [30] (following [3, 4]), can be understood
in terms of a morphism of Manin pairs

R(P,Q) : (d, g)VΓ × GEΓ ��� (d, g)VΓ ∗ × GEΓ ∗

where the graph Γ ∗ is a permutation graph constructed from Γ , as we shall now
explain:

Let ←−
P

e = in−1(P) and e←−
P

:= out−1(P) denote the edges entering and exiting P.

Similarly, let ←−
Q

e = in−1(Q) and e←−
Q

:= out−1(Q) denote the edges entering and
exiting Q.
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Case 1: ←−
Q

e = e←−
P
In this case, Γ ∗ is obtained by discarding the edge ←−

Q
e = e←−

P
and identifying the vertices P and Q (cf. Fig. 23).
Meanwhile for (ξ, g) ∈ dVΓ × GEΓ and (ξ∗, g∗) ∈ dVΓ ∗ × GEΓ ∗

(ξ, g) ∼R(P,Q)
(ξ∗, g∗)

if and only if g∗
e = ge for every e ∈ EΓ ∗ and

ξ∗
v =

{
ξQ ◦ ξP if v is the vertex obtained by identifying P and Q

ξv otherwise,
(38)

(in particular, we assume that ξQ and ξP are composable elements of the
Lie groupoid d).

Case 2: ←−
Q

e �= e←−
P
In this case, Γ ∗ is obtained by identifying the vertices P and Q

and composing the edges e←−
P
and ←−

Q
e to form a new edge eP̂Q (cf. Fig. 24).

Meanwhile for (ξ, g) ∈ dVΓ × GEΓ and (ξ∗, g∗) ∈ dVΓ ∗ × GEΓ ∗

(ξ, g) ∼R(P,Q)
(ξ∗, g∗)

if and only if

g∗
e =

{
ge←−

P
g←−

Q
e if e = eP̂Q

ge otherwise,

while ξ∗ and ξ satisfy (38), as before.

Now suppose that M is a quasi-Hamiltonian (d, g)VΓ × GEΓ -space defined by the
morphism of Manin pairs

R : (T, T)M ��� (d, g)VΓ × GEΓ .

Then the morphism of Manin pairs

R∗ := R(P,Q) ◦ R : (T, T)M ��� (d, g)VΓ ∗ × GEΓ ∗

defines a quasi-Hamiltonian (d, g)VΓ ∗ × GEΓ ∗ -structure on M which we call the
fusion of R at the ordered pair (P, Q) of vertices.

Remark 19 (Associativity of Fusion) Since the Courant morphismR(P,Q) is defined
in terms of the groupoid structure on d and the group structure on G, it follows that
fusion is an associative operation.
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5.2 The Quasi-Hamiltonian Structure for Quasi-Triangular
Structure Lie Algebras

Let (Σ, V ) be a marked surface. If we choose an ordered pair (P, Q) of marked
points (P �= Q ∈ V ) then the corresponding fused surface Σ∗ is obtained by gluing
a short piece of the arc starting at P with a short piece of the arc ending at Q (so that
P and Q get identified). The subset V ∗ ⊂ ∂Σ∗ is obtained from V by identifying P
and Q. The map

MΣ∗,V ∗(G) → MΣ,V (G),

coming from the map (Σ, V ) → (Σ∗, V ∗), is a diffeomorphism.

Theorem 9 There is unique way to assign to every marked surface (Σ, V ) a mor-
phism of Manin pairs

RΣ,V : (T, T)MΣ,V (G) ��� (d, g)VΓ × GEΓ

supported on the graph of µ : MΣ,V (G) → GEΓ such that if (Σ∗, V ∗) is obtained
from (Σ, V ) by fusion, then RΣ∗,V ∗ is obtained from RΣ,V by the corresponding
fusion.

We defer the proof until the next section.

Remark 20 When s ∈ S2(g)G is non-degenerate (i.e. g is quadratic), then d = g⊕ ḡ
is the pair groupoid and

(in ⊕ out)!(s ⊕ t) : dVΓ → (ḡ ⊕ g)EΓ

is an isomorphism. In this case, it is not difficult to convince oneself that the mor-
phisms of Manin pairs

RΣ,V : (T, T)MΣ,V (G) ��� ((ḡ ⊕ g)EΓ , g
VΓ

� ) × GEΓ

described in Theorem 9 satisfy the sewing property. That is they are precisely the
ones described in Theorem 8.

5.2.1 Quasi-Hamiltonian (d,g)VΓ × GEΓ-Manifolds and Quasi-Poisson
Geometry

Using the material in Sect. 3.2, we intend to relate quasi-Hamiltonian (d, g)VΓ

× GEΓ-spaces to the quasi-Poisson spaces studied in [3, 30]. A canonical choice
of complement to g ⊆ d is g∗̄

�
:= (s + t)∗(g∗) ⊆ d, explicitly
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g∗̄
�

= {(
α − 1

2
s(α, ·)) | α ∈ p ⊆ d

}
.

Similarly, k = (g∗̄
�
)VΓ is a canonical choice of complement to gVΓ ⊆ dVΓ .

Let σΓ : VΓ → VΓ be the permutation given by walking along the graph Γ

against the direction of each edge. Suppose that (M, ρ,π) is a quasi-Poisson GVΓ-
manifold, in the sense of [3, 30] and µ : M → GVΓ is a σΓ

!-twisted moment map
in the sense of [30]. Let µ̃ : M → GEΓ be defined by

µ̃(m)e = (
µ(m)in(e)

)−1
, m ∈ M, e ∈ EΓ .

Proposition 6 There exists a unique morphism of Manin pairs

R : (T, T)M ��� (dVΓ , gVΓ ) × GEΓ

over the map µ̃ which is compatible with the gVΓ action on M and such that k ◦ R =
gr(π�).

Moreover, the converse holds whenever the action of gVΓ on M integrates to an
action of GVΓ .

Proof This follows from a direct application of [14, Proposition 3.5]. (cf. Sect. 3.2).

In this sense there is a one-to-one correspondence between quasi-Poisson GVΓ -
manifoldswithσΓ

!-twistedmomentmaps and quasi-Hamiltonian (dVΓ , gVΓ )×GEΓ -
manifolds.

Proposition 7 Suppose (M, ρ,π) is a quasi-Poisson GVΓ -manifold withσΓ
!-twisted

moment map, and let

R : (T, T)M ��� (dVΓ , gVΓ ) × GEΓ

be the corresponding quasi-Hamiltonian (dVΓ , gVΓ ) × GEΓ -structure on M. Let R∗
denote the fusion of R at the ordered pair of vertices (P, Q) ⊂ VΓ . Then the bivector
field for the quasi-Poisson GVΓ ∗ -structure corresponding to R∗ is

π∗ := π + ρ(τ ),

where τ ∈ ∧2(gVΓ ) is the insertion of ψ ∈ ∧2
(gP ⊕ gQ),

ψ = 1

2

∑

i,j

sij (ξi, 0) ∧ (0, ξj)

at the P, Qth factors. Here s = ∑
i,j sij ξi ⊗ ξj in some basis ξi of g.

Thus, (up to a sign difference) fusion in the sense of Sect. 5.1 is precisely the same
as fusion in the sense of [3, 30].
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Proof Let k∗ = (g∗̄
�
)VΓ ∗ . A straightforward computation shows that

k∗ ◦ R(P,Q) = {(ξ + τ �(ξ)) | ξ ∈ k}.

By definition, gr
(
(π∗)�

) = k∗ ◦ R∗. Thus, we see from

k∗ ◦ R(P,Q) ◦ R = gr(π) + gr(ρ(τ ))

that π∗ = π + ρ(τ ).

Remark 21 (Sign differences) In [30], the bivector field resulting from fusing the
ordered pair (P, Q) is defined to be π∗ = π −ρ(τ ). This difference is essentially due
to the fact that we orient our boundary graph to agree with the orientation of ∂Σ ,
whereas the opposite convention is used in [30].

Proof (Proof of Theorem 9) Propositions 6 and 7 show that it suffices to prove the
equivalent statement for quasi-Poisson GVΓ-structures. However, [30, Theorem 2]
and [30, Theorem 4] shows there exists a unique quasi-Poisson GVΓ-structure on
MΣ,V (G) with σΓ

!-twisted moment map which is compatible with fusion (notice
that Proposition 5 implies the first twoproperties of [30, Theorem2] are automatically
satisfied).

Corollary 2 The proof of Theorem 9 also shows that the bivector field on MΣ,V is
given by (11).

Appendix

A Proofs of Reduction Theorems

Before proving Theorems 5 and 6 and Proposition 2, we first establish some lemmas.

Lemma 4 Suppose that (η; Z) ∈ Rc,S, where η ∈ dc, Z ∈ TMc,S and Rc,S is as in
Theorem 5. Then

1. η ∈ hc, and
2. η = 0 only if Z = 0.

Proof Let ξ ∈ d, X ∈ TM and α ∈ T∗M be chosen so that (ξ; X + α) ∈ R and

(ξ; X + α) ∼(R2×R1) (η; Z).

Since R1 = RqM ◦ R�
iM
, it follows that α ∈ ann(Tµ−1S). Consequently, there exists

α̃ ∈ ann(TS) such that α = µ∗α̃. Since S is c invariant,
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ζα := a∗α̃ ∈ c⊥.

Moreover, since R is supported on the graph of µ, (ζα,α) = a∗(−α̃,µ∗α̃) ∈ R.
Thus

(ξ − ζα; X) ∈ R (39)

and

(ξ − ζα; X) ∼(R2×R1) (η; Z). (40)

Since (22) is a morphism of Manin pairs, axiom (m1) of Definition 5 implies that

ξ − ζα ∈ h. (41)

Thus (40) implies that η ∈ hc, establishing the first claim.
Next, suppose η = 0, then (40) implies that ξ − ζα ∈ c⊥ in addition to (41). That

is ξ −ζα ∈ c⊥ ∩h, and hence Eqs. (19) and (39) imply that X is tangent to the c⊥ ∩h.
Therefore Z = qM(X) = 0, establishing the second claim.

Lemma 5 Under the assumptions of Theorem 5, the Courant relation

R2 × R1 : (d × N) × TM ��� (dc × Nc,S) × TMc,S

composes cleanly with the Dirac structure R ⊆ (d × N) × TM.
Moreover, the composition

Rc,S := R2 ◦ R ◦ R�
1

is a well defined subbundle of (dc × Nc,S) × TMc,S.

Proof We begin by proving that the composition (R2 × R1) ◦ R is clean. For this, it
is sufficient to show that

1. the rank of the intersections ker(R2×R1)
⊥∩R and ker(R2×R1)∩R are constant,

and
2. the composition of the underlying relation of vector bundle bases,

(
gr(qN × qM) ◦ gr(iN × iM)�

) ◦ gr(µ)

is clean.

We now show that the rank of ker(R2 × R1) ∩ R is constant. We claim that the
sequence

0 → h ∩ c⊥ ξ→(ξ,ρR(ξ))−−−−−−−→ ker(R2 × R1) ∩ R
(ξ,X+α)→α−−−−−−−→ ann(Tµ−1S) → 0 (42)
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is exact, where ρR is defined in (19).
First, the second map is surjective: for any α ∈ ann(Tµ−1S), let α̃ ∈ ann(TS)

be chosen so that µ∗α̃ = α. Since S is c invariant,

ζα := a∗α̃ ∈ c⊥.

Moreover, since R is supported on the graph of µ,

(ζα,α) = a∗(−α̃,µ∗α̃) ∈ ker(R2 × R1) ∩ R.

Next, we prove exactness at ker(R2×R1)∩R. Suppose (ξ, X) ∈ ker(R2×R1)∩R.
Since (22) is a morphism of Manin pairs, ξ ∈ h and X = ρR(ξ − ζα). Since ξ ∈
ker(R2) = c⊥, we conclude that ξ ∈ h ∩ c⊥.

This shows that the sequence (42) is exact. Since h ∩ c⊥ and ann(Tµ−1S) are
both of constant rank, so is ker(R2 × R1)∩ R. Consequently

(
ker(R2 × R1)∩ R

)⊥ =
ker(R2 × R1)

⊥ + R is also of constant rank, and thus so is ker(R2 × R1)
⊥ ∩ R.

Next, we need to show that the following composition of relations is clean:

where, for brevity, we have introduced the notation S̃ := µ−1(S). Since gr(µ)

intersects S × M cleanly, the composition gr(µ|S̃) = gr(iN )� ◦ gr(µ ◦ iM) is clean

Next,

gr(qN ◦ µ|S̃) × gr(qM)� ⊆ Nc,S × S̃ × S̃ × Mc,S

intersects Nc,S × S̃� × Mc,S transversely, since qM and qN ◦ µ|S̃ are both maps.

Moreover, since Mc,S is the set of h∩ c⊥ orbits in S̃, while Nc,S is the set of c⊥ orbits
in S, the projection

(

gr(qN ◦ µ|S̃) × gr(qM)�
)

∩
(

Nc,S × S̃� × Mc,S

)

→ gr(µ̃)
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is a surjective submersion. Thus, by definition, gr(qN ◦µ|S̃) composes cleanly with
gr(qM)�.

It follows that R2 × R1 composes cleanly with R.
Finally, since {(ξ; ρR(ξ)) | ξ ∈ h ∩ c⊥} ⊆ R, it follows that R is h ∩ c⊥ invariant.

Hence Rc,S := R2 ◦ R ◦ R�
1 is a well defined subbundle of

(
dc × Dc/Gc

) × TQ.

We are now ready to prove Theorems5 and 6.

Proof (Proof of 5) Since Nc,S is the space of c⊥-orbits of S, while Mc,S is the space
of c⊥ ∩ h orbits of µ−1(S), the h-equivariant map

µ : µ−1(S) → S

descends to a define a unique map

µ̃ : Mc,S → Nc,S.

The composition Rc,S := R2 ◦ R ◦ R�
1 is supported on the graph of µ̃. Thus

Lemma5 and Proposition 1 shows that

Rc,S : TMc,S ��� dc × Nc,S

is a Courant morphism.
Finally, Lemma 4 proves that (23) satisfies the defining conditions for a morphism

of Manin pairs.

Proof (Proof of 6) We need to show that (23) is a exact morphism of Manin pairs.
We do this by first showing that dc × Nc,S is an exact Courant algebroid along the
image of µ(M)∩ S, and next by showing that the anchor maps Rc,S surjectively onto
Tgr(µc,S : Mc,S → Nc,S).

The fact that dc× Nc,S is exact follows from [13, Theorem 3.3], but we include a
proof here anyways. We must show that

0 → T∗Nc,S
a∗−→ dc × Nc,S

a−→ TNc,S → 0 (43)

is an exact sequence. By assumption, c acts transitively on S. Thus dc := c/c⊥ acts
transitively on Nc,S := S/c⊥. It follows that the sequence (43) is exact at TNc,S , and
hence, by duality, also at T∗Nc,S .

Next, (43) is exact at dc × Nc,S if and only if ker(a) is isotropic. This, in turn,
holds if and only if c∩ (ker(ad)+ c⊥) is isotropic, where ad denotes the anchor map
for d × N . But

(
c ∩ (ker(ad) + c⊥)

)⊥ = c⊥ + Im(a∗
d) ∩ c⊥ = c ∩ (Im(a∗

d) + c⊥).
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Therefore, (43) is exact at TNc,S if Im(a∗
d) = ker(ad), which holds whenever d× N

is exact (as it is along µ(M)).
Next we need to show that the anchor maps Rc,S surjectively onto Tgr(µc,S :

Mc,S → Nc,S). More precisely, for any Z ∈ TMc,S , we must show there exists η ∈ dc
and γ ∈ T∗Mc,S such that

(η, Z + γ) ∈ Rc,S.

Let X ∈ Tµ−1(S) be chosen so that it maps to Z under the quotient map qM :
µ−1(S) → Mc,S . Since (22) is exact, there exists α ∈ T∗M and ξ ∈ d such that
(ξ, X + α) ∈ R. Now R is supported on the graph of µ, so ad(ξ) = dµ(X) ∈ TS.
Since c acts transitively on S, we must have ξ ∈ c + ker(ad). Since d × N is exact,
ker(ad) = Im(a∗

d). Thus there exists ξ′ ∈ c and β ∈ T∗N such that ξ = ξ′ + a∗
dβ.

Since R is supported on the graph of µ, (a∗
dβ,µ∗β) ∈ R, and thus

(ξ′, X + α − µ∗β) ∈ R.

Since R is Lagrangian, pairing this element with (ζ, ρR(ζ)) ∈ R, where ζ ∈ h ∩ c⊥,
we see that

0 = 〈ξ′, ζ〉 = 〈α − µ∗β, ρR(ζ)〉.

Since ζ ∈ h∩c⊥ was arbitrary, this shows thatα−µ∗β = q∗
Mγ for some γ ∈ T∗Mc,S .

Thus, we have shown that

(ξ′ + c⊥, Z + γ) ∈ Rc,S,

where ξ′ + c⊥ is the image of ξ′ under the quotient map c → c/c⊥. Since Z ∈ TMc,S

was arbitrary, we may conclude that (23) is exact.

Proof (Proof of 2) First we show that the 2-form ωθ := i∗Mω − µ∗〈θ,ϑs − 1
2 s ◦

a(θ)〉 ∈ Ω2
(
µ−1(S)

)
is h ∩ c⊥-invariant and basic. To show invariance, note that

(by definition) (ξ, ρR(ξ)) ∈ R for any ξ ∈ h, and thus R is h-invariant. Since s :
TN → d × N is an d-invariant splitting, it follows that Rµ,ω and hence ω ∈ Ω2(M)

is h-invariant. Additionally, s, a and ϑs are d-equivariant, while θ is c⊥-equivariant.
Hence 〈θ,ϑs− 1

2 s◦a(θ)〉 is c⊥-invariant. It follows that the sum,ωθ is h∩c⊥-invariant.
The isomorphism d × N → TγN is given by ξ → a(ξ) + s∗(ξ), for all ξ ∈ d.

Thus, for ξ, η ∈ d, we have

〈ξ, η〉 = 〈a(ξ) + s∗(ξ), a(η) + s∗(η)〉 = 〈s ◦ a(ξ), η〉 + 〈ξ, s ◦ a(η)〉.

Thus, since c⊥ is coisotropic, the assignment ξ, η → 〈ξ, s ◦ aη〉 defines a skew-
symmetric form on c⊥.

Now suppose ξ ∈ c⊥, then
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ιa(ξ)〈θ,ϑs − 1

2
s ◦ a(θ)〉 = 〈ξ,ϑs − 1

2
s ◦ a(θ)〉 − 〈θ, s ◦ a(ξ) − 1

2
s ◦ a(ξ)〉

= s∗ξ − 1

2
〈ξ, s ◦ a(θ)〉 − 〈θ, s ◦ a(ξ) − 1

2
s ◦ a(ξ)〉

= s∗ξ, (44)

where the last line follows from the skew-symmetry of the assignment ξ, η → 〈ξ, s◦
a(η)〉. Now, for ξ ∈ h, we have µ∗ρR(ξ) = a(ξ), and thus (28) implies that

ρR(ξ)−ιρR(ξ)ω+ιρR(ξ)µ
∗〈θ,ϑs − 1

2
s◦a(θ)〉 ∼Rµ,ω a(ξ)+s∗(ξ), ξ ∈ h∩c⊥. (45)

Since (29) is a morphism of Manin pairs, and since a(ξ) + s∗(ξ) ∈ E for any ξ ∈ h,
it follows that the left hand side of (45) lies in TM. That is, ιρR(ξ)ωθ = 0 for any
ξ ∈ h ∩ c⊥. We conclude that there is a unique 2-form ω̃θ ∈ Ω2(Mc,S) such that
q∗

M ω̃θ = ωθ.
We define the Courant relation

Rc,s,θ := gr(a ⊕ s̃∗
θ) ◦ Rc ◦ gr(a ⊕ s∗)� : TγN ��� Tγθ Nc,S,

so that

gr(a ⊕ s̃∗
θ) ◦ Rc,S = Rc,s,θ ◦ Rµ,ω ◦ gr(iM) ◦ gr(qM)�.

Now the definition of sθ shows that for any X ∈ X(Nc,S), we have

Xh + ιXh〈θ,ϑs〉 ∼Rc,s,θ X.

Since Xh is horizontal with respect to θ and X = (qN )∗Xh, we also have

Xh + ιXh〈θ,ϑs − 1

2
s ◦ a(θ)〉 ∼Rc,s,θ (qN )∗Xh.

On the other hand, for ξ ∈ c⊥, we have a(ξ) + s∗(ξ) ∼Rc,s,θ 0, so (44) shows that

a(ξ) + ιa(ξ)〈θ,ϑs − 1

2
s ◦ a(θ)〉 ∼Rc,s,θ (qN )∗a(ξ).

Therefore, for any X ∈ TS,

X + ιX〈θ,ϑs − 1

2
s ◦ a(θ)〉 ∼Rc,s,θ (qN )∗X,

since this relation holds for both horizontal and vertical vector fields on the bundle
qN : S → Nc,S . This impliesRc,s,θ◦Rµ,ω◦gr(iM) = Rµ,ωθ . Finally, sinceωθ = q∗

M ω̃θ,
we conclude that
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Rc,s,θ ◦ Rµ,ω ◦ gr(iM) ◦ gr(qM)� = Rµ̃,ω̃θ
,

which proves the first part of the proposition.
Now suppose that s(TS) ⊆ c, then s∗(c⊥) ⊆ ann(TS), so ϑs = 0 and s∗θ = 0.

Thus 〈θ,ϑs − 1
2 s ◦ a(θ)〉 = 0, and ω̃θ is independent of θ. This concludes the proof

of the proposition.

Proof of the Commutativity of Partial Reduction

Proof (Proof of Theorem 3) By symmetry, it is sufficient to prove the first equality
in (34). The key fact is that when (c1 ∩ c2, S1 ∩ S2) is reductive data then c1 ∩ c2 is
coisotropic. As a result,

c⊥1 ⊆ (c1 ∩ c2)
⊥ ⊆ c1 ∩ c2 ⊆ c2. (46)

Thus,

c2,1 = (c1 ∩ c2)/(c
⊥
1 ∩ c2) = (c1 ∩ c2)/c

⊥
1 ,

and

c⊥2,1 = (c⊥1 + c⊥2 )/c⊥1 .

Hence ξ ∈ d, ξ′ ∈ dc1 and ξ′′ ∈ (dc1)c2,1 satisfy

ξ ∼Rc1
ξ′ ∼Rc2,1

ξ′′

if and only if

ξ ∈ c1, ξ′ = ξ + c⊥1 , ξ′ ∈ (c1 ∩ c2) + c⊥1 , and ξ′′ = ξ′ + c⊥1 + c⊥2 .

Equivalently,

ξ ∈ c1 ∩ c2, ξ′′ = ξ + (c1 ∩ c2)
⊥, and ξ′ = ξ + c1.

So

Rc2,1 ◦ Rc1 = Rc1∩c2 . (47)

Before continuing, we introduce some notation. Let µc1,S1 : Mc1,S1 → Nc1,S1 be
the function whose graph is the support of Rc1,S1 , let
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iN1 : S1 → N, iM1 : µ−1(S1) → M,

iN : S1 ∩ S2 → N, iM : µ−1(S1 ∩ S2) → M,

iN2,1 : S2,1 → Nc1,S1 , iM2,1 : µ−1
c1,S1

(S2,1) → Mc1,S1

denote the inclusions, and

qN1 : S1 → Nc1,S1, qM1 : µ−1(S1) → Mc1,S1 ,

qN : S1 ∩ S2 → Nc1∩c2,S1∩S2 , qM : µ−1(S1 ∩ S2) → Mc1∩c2,S1∩S2 ,

qN2 1 : S2,1 → (Nc1,S1)c2 1,S2 1 , qM2 1 : µ−1
c1,S1

(S2,1) → (Mc1,S1)c2 1,S2 1

denote the quotient maps.
Now

(Rc1,S1)c2 1,S2 1 =
(

(
Rc2,1 ◦ Rc1

) × gr(qN2 1) ◦ gr(iN2 1)
� ◦ gr(qN1) ◦ gr(iN1)

�
)

◦ R ◦ (
RqN2 1

◦ R�
iN2 1

◦ RqN1
◦ R�

iN1

)�

Now

x ∼gr(qN1 )◦gr(iN1 )� y ∼gr(qN2,1 )◦gr(iN2,1 )� z (48)

if and only if

x ∈ S1, y = qN1(x), y ∈ S2,1, and z = qN2,1(y).

Eq. (46) implies that the c1 ∩ c2 invariant manifold S1 ∩ S2 is also c⊥1 invariant. Since
S2,1 is the set of c⊥1 orbits in S1∩S2, it follows that y ∈ S2,1 if and only if x ∈ S1∩S2.
Thus, (48) holds if and only if

x ∈ S1 ∩ S2, z = qN2,1 ◦ qN1(x), and y = qN1(x).

But

qN2,1 ◦ qN1 |S1∩S2 : S1 ∩ S2 → Nc1∩c2,S1∩S2

is the quotient map for the c⊥1 + c⊥2 action, i.e. qN2,1 ◦ qN1 |S1∩S2 = qN . Therefore

gr(qN2,1) ◦ gr(iN2,1)
� ◦ gr(qN1) ◦ gr(iN1)

� = gr(qN ) ◦ gr(iN )�. (49)

A similar calculation shows that

gr(qM2,1) ◦ gr(iM2,1)
� ◦ gr(qM1) ◦ gr(iM1)

� = gr(qM) ◦ gr(iM)�,
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and since the composition is clean we also have

RqN2,1
◦ R�

iN2,1
◦ RqN1

◦ R�
iN1

= RqM ◦ R�
iM (50)

Combining Eqs. (47), (49) and (50) shows that

(Rc1,S1)c2,1,S2,1 = (
Rc1∩c2 × (gr(qN ) ◦ gr(iN )�)

) ◦ R ◦ (RqM ◦ R�
iM )� = Rc1∩c2,S1∩S2 .
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Groupoids, Frobenius Algebras
and Poisson Sigma Models

Ivan Contreras

Abstract This note is devoted to report some results proven in [5, 8] and some work
in progress [6] concerning the relation between groupoids and Frobenius algebras
specialized in the case of Poisson sigma models with boundary. We prove a corre-
spondence between groupoids in Set and relative Frobenius algebras in Rel, as well
as an adjunction between a special type of semigroupoids and relative H*-algebras.
The connection between groupoids and Frobenius algebras is made explicit by intro-
ducing what we called weak monoids and relational symplectic groupoids, in the
context of Poisson sigma models with boundary and in particular, describing such
structures in the extended symplectic category and the category of Hilbert spaces.
This is part of a joint work with Alberto Cattaneo and Chris Heunen.

1 Introduction

As we know, groupoid structures appear in several scenarios: Lie theory as gen-
eralization of Lie groups, in noncommutative geometry, foliation theory, Poisson
geometry, the study of stacks, among others. On the other hand, Frobenius algebras
appear, for example, as an equivalent way to understand two dimensional topological
quantum field theories (2-TQFT) and it is possible to define them in more generality
in monoidal dagger categories.

In [8], the connection between groupoids and Frobenius algebras is made precise.
Namely, there is a way to understand groupoids in the category Set as what we
called Relative Frobenius algebras, a special type of dagger Frobenius algebra in the
category Rel, where the objects are sets and the morphisms are relations.

In addition, there exists an adjunction between a special type of semigroupoids
(a more relaxed version of groupoids where the identities or inverses do not neces-
sarily exist) and H∗—algebras, a structure similar to Frobenius algebras but without
unitality conditions and a more relaxed Frobenius relation.
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In particular, this correspondence between groupoids and relative Frobenius alge-
bras can be studied in the context of Poisson sigma models (PSM), a particular
2-dimensional topological field theory, where the reduced phase space, for an inte-
grable Poisson manifold M as target space, has the structure of a symplectic groupoid
integrating M . In [5], we study the non reduced phase space of PSM with bound-
ary and we construct what we call a relational symplectic groupoid, that is, roughly
speaking, a symplectic groupoid up to algebroid homotopy, where the space of mor-
phisms is allowed to be an infinite dimensional weak symplectic manifold and the
structure maps of the groupoid are replaced by immersed canonical relations, which
are morphisms in the extended symplectic “category”, denoted by Sympext .1

The study of the non reduced phase space is relevant for the description of general
Lagrangian field theories with boundary, following the work of Cattaneo, Mnëv and
Reshetikhin in [4]. The interesting features of the relational symplectic groupoids
could be useful to describe similar constructions in other types of gauge theories.

In addition, it turns out that relational symplectic groupoids in the category Hilb
of Hilbert spaces correspond to a special type of Frobenius algebras, whereas usual
symplectic groupoids in Hilb are in correspondence with relative Frobenius alge-
bras. This would correspond to the quantized version of the relational symplectic
groupoid associated to the classical PSM with boundary, assuming that the quanti-
zation procedure is functorial.

2 Groupoids and Relative Frobenius Algebras

In this section, we consider a groupoid in Set as a category internal to the category Set
of sets as objects and functions as morphisms. Now, consider the category Rel with
sets and relations. In addition, this category carries an involution † : Relop → Rel
given by the transpose of relations; this is a contravariant involution and is the identity
on objects, therefore, Rel is a dagger symmetric monoidal category that contains Set
as a subcategory. For details on dagger monoidal categories, see e.g. [1, 2]. In Rel we
define what we call relative Frobenius algebra, a special dagger Frobenius algebra.2

Definition 1 A morphism m : X × X � X in Rel3 is called a special dagger
Frobenius algebra or shortly, relative Frobenius algebra, if it satisfies the following
axioms (see also Fig. 1)

• (F) (1X × m) ◦ (m† × 1X ) = m† ◦ m = (m × 1X ) ◦ (1X × m†),

1 Sympext is not properly speaking a category, since the composition of canonical relations is not
in general a smooth manifold; some transversality conditions are required. For our purposes, the
smoothness of the composition of canonical relations will be guaranteed from the defining axioms
of the relational symplectic groupoid.
2 A dagger Frobenius algebra on the category Hilb of finite dimensional Hilbert spaces corresponds
to the usual notion of Frobenius algebra.
3 The symbol � denotes that we are considering relations instead of maps as morphisms.
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m   u

(F)

= =

(M)

=

(A)

=

(U)

= =

Fig. 1 Relative Frobenius algebra: diagrammatics

• (M) m ◦ m† = 1X ,

• (A) m ◦ (1X × m) = m ◦ (m × 1X ),

• (U) ∃u : 1 � X |m ◦ (u × 1X ) = 1 = m ◦ (1X × u).

Remark 1 If such u exists, it is unique.

2.1 From Relative Frobenius Algebras to Groupoids

Here, from a given relative Frobenius algebra we construct a groupoid, but first of
all, we give precise meaning of the axioms defined above. We will use the notation
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f = hg when ((h, g), f ) ∈ m and we say that g and h are composable. First of all,
observe that axiom (M) implies that m is single valued and that

∀ f ∈ X ∃g, h ∈ X | f = hg.

The axiom (F) means that for all a, b, c, d ∈ X

ab = cd ⇐⇒ ∃ e ∈ X |b = ed, c = ae ⇐⇒ ∃e ∈ X |d = eb, a = ce.

The axiom (A) is associativity, i.e. ( f g)h = f (gh). For the last axiom, after
identifying the morphism u : 1 � X with a subset U ⊆ X , we get that (U) is
equivalent to the following assertions

∀ f ∈ X∃ u ∈ U | f u = f

∀ f ∈ X∃ u ∈ U |u f = f

∀ f ∈ X∀ u ∈ U | f and u are composable =⇒ f u = f

∀ f ∈ X∀ u ∈ U |u and f are composable =⇒ u f = f.

From this data, we are able to give explicitly a groupoid in Set.

Definition 2 Given a relative Frobenius algebra (X, m), we define the following
objects and morphisms in Rel:

G1 = X,

G2 = {(g, f ) ∈ X2|g and f are composable},
G0 = U,

ε = U × U : G0 � G1,

s = {( f, x) ∈ G1 × G0| f and x are composable} : G1 � G0

t = {( f, y) ∈ G1 × G0|y and f are composable} : G1 � G0

ι = {(g, f ) ∈ G2|g f ∈ G0, f g ∈ G0} : G1 � G1.

Using this description of the axioms, it is possible to prove the following

Proposition 1 The data

G2
m �� G1

ι �� G
t ��

s
��
G0

ε��

correspond to a groupoid in Set.
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2.2 From Groupoids to Relative Frobenius Algebras

Here we fix a groupoid

G2
m �� G1

ι �� G
t ��

s
��
G0

ε��

in Set.

Definition 3 For a groupoid G1, define X = G1, and let m : G1 × G1 � G1 be the
graph of the function m.

We can prove

Proposition 2 (X, m) is a relative Frobenius algebra.

Furthermore, under an appropriate choice for morphisms in the corresponding
categories, it is possible to prove.

Theorem 1 There is an isomorphism of categories Frob(Rel)ext ∼= Gpdext .

The category Gpdext has groupoids as objects. Morphisms G → H are subgroupoids
of G × H. The category Frob(Rel)ext has relative Frobenius algebras as objects and
the choice of the morphisms is natural with respect to the choice of morphisms for
Gpdext, for details see [8].

3 Relative H*-Algebras and Semigroupoids

Definition 4 A relative H*-algebra is a morphism m : X × X � X in Rel satisfying
(M), (A), and

there is an involution ∗: Rel(1, X) → Rel(1, X) such that
m ◦ (1 × x∗) = (1 × x) ◦ m† and m ◦ (x∗ × 1) = (x × 1) ◦ m†

for all x : 1 � X.

(H)

On the other hand, we have a more relaxed version of groupoids in Set. A semi-
groupoid consists of a diagram

G0 G1
s��
t�� G1 ×G0 G1m��

(in the category Set of sets and functions) such that

m(m × 1) = m(1 × m).
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A pseudoinverse of f ∈ G1 is an element f ∗ ∈ G1 satisfying (s( f ) = t ( f ∗) and
t ( f ) = s( f ∗) and) f = f f ∗ f and f ∗ = f ∗ f f ∗. A semigroupoid is regular when
every f ∈ G1 has a pseudoinverse. Finally, a semigroupoid is locally cancellative
when f hh∗ = gh∗ implies f h = g, and h∗h f = h∗g implies h f = g, for any
f, g, h ∈ G1 and any pseudoinverse H* of h.

3.1 From Semigroupoids to Relative H*-Algebras

Definition 5 Given a locally cancellative regular semigroupoid G, define

X = G1,

m = {(g, f, g f ) | s(g) = t ( f )} : G1 × G1 � G1,

A∗ = {a∗ ∈ X | a∗aa∗ = a∗ and aa∗a = a for all a ∈ A}.

Theorem 2 If G is a locally cancellative regular semigroupoid, then m is a relative
H*-algebra.

3.2 From H*-Algebras to Semigroupoids

Definition 6 Given a relative H*-algebra m : X × X � X , define G by

G0 = { f ∈ X | m( f, f ) = f },
G1 = X,

s = {( f, f ∗ f ) | f ∗ is a pseudoinverse of f } : G1 � G0

t = {( f, f f ∗) | f ∗ is a pseudoinverse of f } : G1 � G0.

Theorem 3 If m is a relative H*-algebra, then G is a locally cancellative regular
semigroupoid.

The category LRSgpdext has locally cancellative regular semigroupoids as objects.
Morphisms G → H are locally cancellative regular subsemigroupoids of G × H. In
the other hand, the category Hstar(Rel)ext has relative H*-algebras as objects and
a morphism (X, m X ) → (Y, mY ) is a morphism r : X � Y in Rel, natural with
respect to the choice of morphisms in LRSgpdext [8]. In a similar way as before it
can be proven that

Theorem 4 There is an adjunction between LRSgpdext and Hstar(Rel)ext.
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4 Groupoids and Poisson Sigma Models

In this section, we describe briefly the construction of groupoids as a way to integrate
Poisson manifolds, through the phase space of a 2-dimensional topological field the-
ory, the Poisson sigma model (PSM). This model was first introduced by Ikeda [9]
and independently by Schaller and Strobl [12], while understanding the connection
between 2-dimensional gravity and Yang-Mills theories. The geometric interpreta-
tion of the reduced phase space of the PSM was introduced by Cattaneo and Felder
in [3] and gives explicitly a Lie groupoid G ⇒ M (for which Gi and G are smooth
finite dimensional manifolds and the structure maps of the groupoid are smooth), if
M is an integrable Poisson manifold. In addition, there is a symplectic structure ω

in G that is compatible with the multiplication map m; such compatibility turns G
into a symplectic groupoid integrating the manifold M . More precisely,

Definition 7 A groupoid is called symplectic if there is a symplectic structure ω on
G1 such that the graph of m is Lagrangian in (G1, ω) × (G1, ω) × (G1,−ω).

The second part of the section is devoted to describe a generalization of such
construction, defining what we call a relational symplectic groupoid, which lives in
the extended symplectic category Sympext , where the objects are (possibly weak)
symplectic manifolds and the morphisms are immersed canonical relations.4

This construction turns out to be a way to integrate any Poisson manifold.

Definition 8 A Poisson sigma model (PSM) corresponds to the following data:

1. A compact surface Σ , possibly with boundary, called the source.
2. A finite dimensional Poisson manifold (M,Π), called the target.

The space of fields for this theory is denoted with Φ and corresponds to the space of
vector bundle morphisms between T Σ and T ∗M . This space can be parametrized
by a pair (X, η), where X ∈ Ck+1(Σ, M) and η ∈ Γ k(Σ, T ∗Σ ⊗ X∗T ∗M), and
k ∈ {0, 1, . . .} denotes the regularity type of the map, that we choose to work with.

On Φ, the following first order action is defined:

S(X, η) :=
∫

Σ

〈η, d X〉 + 1

2
〈η, (Π# ◦ X)η〉,

where,

Π# : T ∗M → T M (1)

ψ �→ Π(ψ, ·). (2)

4 More precisely, in Sympext , by a morphism between two symplectic manifolds (M, ωM ) and
(N , ωN ) we mean a pair (X, p) where X is a smooth manifold, p is a smooth map from X to
M × N , such that dp is surjective and Tx (Im(p)) is a Lagrangian subspace of T (p(x))((M, ωM )×
(N ,−ωN )),∀x ∈ X .
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Here, d X and η are regarded as elements in Ω1(Σ, X∗(T M)), Ω1(Σ, X∗(T ∗M)),
respectively and 〈 , 〉 is the pairing between Ω1(Σ, X∗(T M)) and Ω1(Σ, X∗(T ∗M))

induced by the natural pairing between Tx M and T ∗
x M , for all x ∈ M .

The integrand, called the Lagrangian, will be denoted by L. Associated to this
action, the corresponding variational problem δS = 0 induces the following space

EL = {Solutions of the Euler-Lagrange equations} ⊂ Φ,

which is the space of (X, η) satisfying the following equations (up to boundary
contributions).

δL
δX

= d X + (Π# ◦ X)η = 0 (3)

δL
δη

= dη + 1

2
〈(∂Π# ◦ X)η, η〉 = 0. (4)

Now, if we restrict to the boundary, the general space of boundary fields corresponds
to

Φ∂ := {vector bundle morphisms between T (∂Σ) and T ∗M}.

Following the program of classical Lagrangian field theories with boundary [4],
Φ∂ is endowed with a symplectic form and a surjective submersion p : Φ → Φ∂ .
We can define

LΣ := p(E L)

and also CΠ as the set of fields in Φ∂ which can be completed to a field in L
Σ

′ , with

Σ
′ := ∂Σ × [0, ε], for some ε.
It turns out that Φ∂ can be identified with T ∗(P M), the cotangent bundle of the

path space on M and that

CΠ := {(X, η)|d X = π#(X)η, X : ∂Σ → M, η ∈ Γ (T ∗ I ⊗ X∗(T ∗M))}.

It can be proven that CΠ is a coisotropic submanifold of finite codimension of
Φ∂ .The proof of the fact that it is coisotropic can be found in [13], and an additional
discussion on the manifold structure can be found in [3].

4.1 Geometric Interpretation of EL and Symplectic Reduction

There is a geometric meaning for the equations of motions of PSM in terms of
Lie algebroids that will be useful to understand the reduced phase space in terms
of Poisson geometry. In order to do that, we recall some basic notions about Lie
algebroids.
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Definition 9 A Lie algebroid is a triple (A, [, ]A, ρ), where π : A → M is a vector
bundle over M , [, ]A is a Lie bracket on Γ (A) and ρ (called the anchor map) is a
vector bundle morphism from A to T M satisfying the following property
Leibniz property:

[X, f Y ]A = f [X, Y ] + ρ∗(X)( f )Y, ∀ X, Y ∈ Γ (A), f ∈ C∞(M).

In our case, a basic example of a Lie algebroid is the cotangent bundle of a Poisson
manifold T ∗M , where [, ]T ∗ M is the Koszul bracket for 1-forms, that is defined by

[d f, dg] := d{ f, g}, ∀ f, g ∈ C∞(M),

in the case of exact forms and is extended for general 1-forms by Leibniz. The anchor
map in this example is given by Π# : T ∗M → T M .

Definition 10 To define a morphism of Lie algebroids we consider the complex
Λ• A∗, where A∗ is the dual bundle and a differential δA is defined by

δA f : = ρ∗d f, ∀ f ∈ C∞(M).

〈δAα, X ∧ Y 〉 : = −〈α, [X, Y ]A〉 + 〈δA〈α, X〉, Y 〉
−〈δA〈α, Y 〉, X〉, ∀X, Y ∈ Γ (A), α ∈ Γ (A∗),

where 〈 , 〉 is the natural pairing between Γ (A) and Γ (A∗).
A vector bundle morphism ϕ : A → B is a Lie algebroid morphism if

δAϕ∗ = ϕ∗δB .

This condition gives rise to some PDE’s that the anchor maps and the structure
functions for Γ (A) and Γ (B) should satisfy. For the case of PSM, regarding T ∗M
as a Lie algebroid, we can prove that

CΠ := {Lie algebroid morphisms between T (∂Σ) and T ∗M},

where the Lie algebroid structure on the left is given by the Lie bracket of vector
fields on T (∂Σ) with identity anchor map.

Since CΠ is a coisotropic submanifold, it is possible to perform symplectic reduc-
tion, that is, when it is smooth, a symplectic finite dimensional manifold. In the case
of Σ being a rectangle and with vanishing boundary conditions for η (see [3]), fol-
lowing the notation in [7, 11], we could also redefine the reduced phase space CΠ

as

CΠ :=
{

T ∗M-paths

T ∗M-homotopy

}
.

In the smooth case, it was proven in [3] that
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Theorem 5 The following data

G0 = M

G1 = CΠ

G2 = {[X1, η1], [X2, η2]|X1(1) = X2(0)}
m : G2 → G := ([X1, η1], [X2, η2]) �→ [(X1 ∗ X2, η1 ∗ η2)]
ε : G0 → G1 := x �→ [X ≡ x, η ≡ 0]
s : G1 → G0 := [X, η] �→ X (0)

t : G1 → G0 := [X, η] �→ X (1)

ι : G1 → G1 := [X, η] → [i∗ ◦ X, i∗ ◦ η]
i : [0, 1] → [0, 1] := t → 1 − t,

correspond to a symplectic groupoid that integrates the Lie algebroid T ∗M.5

4.2 Categorical Extensions

The objective in this section is to introduce several constructions for more general cat-
egories (not just Sympext ), which resemble the construction of symplectic groupoids
and relative Frobenius algebras. More precisely, in the case of Poisson manifolds,
the study of the phase space before reduction yields to the construction of what we
will denote as relational symplectic groupoids. In the sequel we consider a category
C which admits products and with a special object pt .

Definition 11 A weak monoid in C corresponds to the following data:

1. An object X .
2. A morphism L1 : pt → X
3. A morphism L3 : X × X → X,

satisfying the following axioms

• (Associativity).
L3 ◦ (L3 × I d) = L3 ◦ (I d × L3)

• (Weak unitality).

L3 ◦ (L1 × I d) = L3 ◦ (I d × L1) =: L2

and L2 ◦ L2 = L2.

We call L1 a weak unit and L2 a projector.

5 Here ∗ denotes path concatenation.
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Example 1 Any monoid object in C is a weak monoid with L1 being the unit and
L2 being the identity morphism.

Example 2 Any relative Frobenius algebra X in Rel is by definition a weak monoid.

Example 3 A commutative monoid (X, m, 1) equipped with a projector p, that
means, p2 = 1, can be made into a weak monoid. In this case, L3 = m, L1 = p and
L2 : x �→ m(p, x). Since in general L2 is not the identity morphism, this is not an
example of an usual monoid, but for a commutative monoid in Set it can be checked
that the quotient X/L2 is a monoid.

Remark 2 The last example does not yield in general to a monoid if we start with
a commutative monoid in a category different from Set. For instance, if we take the
monoid R, ·, 1 and the projector p = −1, the quotient space X = [0,∞) is a monoid
object in Set but it is not an object in Man, the category of smooth manifolds and
smooth maps.

Example 4 It follows from the definition that when X is a vector space, a weak
monoid yields into an associative algebra with a preferred central element that induces
a projection. This could be called a prounital associative algebra [6].

Definition 12 Let C be a dagger category with products and adjoints. A weak
*-monoid in C consists of the following data:

1. An object X
2. A morphism ψ : X → X†

3. A morphism L3 : X × X → X

such that the following axioms hold

• (Associativity).
L3 ◦ (L3 × I d) = L3 ◦ (I d × L3)

• (Involutivity). ψ†ψ = I d
• Defining ψR the (unique) induced morphism ψR : pt → X × X , then

L1 := L3 ◦ ψR

determines a weak monoid (X, L1, L3).

Example 5 Consider C the category VectExt of vector spaces (possibly infinite
dimensional) whose morphisms are linear subspaces. The dagger structure is the
identity in objects and the relational converse for morphisms. Let φ be a involutive
diffeomorphism of M . If X = C∞(M), then (X,+, φ∗) is a weak *-monoid. To
check this, first observe that

L1 = { f + φ∗( f ), f ∈ X}
L2 = {(g, g + h + φ∗h), g, h ∈ X}

L2 ◦ L2 = {(g, g + h + h
′ + φ∗h + φ∗h

′′
), g, h, h

′ ∈ X}.
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Setting h
′ ≡ 0 we get that L2 ⊂ L2 ◦ L2 and by linearity of φ L2 ◦ L2 ⊂ L2.

Associativity and unitality follow from the additive structure of X .

Example 6 (Deformation quantization) Let C = VectExt and consider a Poisson
manifold M . Let X = C∞(M, C) be the algebra of smooth complex valued functions
on M . By deformation quantization for Poisson manifolds (see, for example, [10]),
given a Poisson structure Π on M , there exists an associative C[ε]]-linear product
in X [[ε]],6 denoted by �, such that

1. 1 � f = f � 1 = f,∀ f ∈ X [[ε]]
2.

f � g = f g + εB1( f, g) + ε2 B2( f, g) + · · · ,

with f, g ∈ X ⊂ X [[ε]] and Bi are bidifferential operators, where

Π(d f, dg) = f � g − g � f

ε
.

It can be checked [6] that (X [[ε]], �, ·) is a weak-* monoid, where · denotes
complex conjugation.

Definition 13 Let C be a dagger category with products and adjoints. A cyclic weak
*-monoid in C consists of the following data:

1. An object X
2. A morphism ψ : X → X†

3. A morphism L : X × X → X†

such that

• (Cyclicity). For the associated morphism L R : pt → X3

L R = σ ◦ L R = σ ◦ σ ◦ L R

where

σ : X3 → X3 (5)

(a, b, c) �→ (c, a, b) (6)

• If L3 := ψ† ◦ L , then (X, ψ, L3) is a weak *-monoid.

Example 7 (Frobenius algebras) Consider (X, 〈 , 〉) a Hilbert space over C. We set

ψ : X → X†

v �→ 〈v̄, ·〉.

6 In this case that we are considering complex valued functions we set ε = i�/2.
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Let m : X × X → X be a commutative and associative C-bilinear map. It can be
checked that the cyclicity condition for

L := ψ ◦ m

is equivalent to saying that
(X, m, (· , ·))

is a Frobenius algebra, where

(v,w) := 〈v̄, w〉.

In this case, if we fix a basis {ei }i∈I for X , L1 corresponds to a central element

L1 : e =
∑
i∈I

m(ei , ēi ),

L2 : X → X

v �→ m(e, v)

and L3 = m.

Remark 3 For the case of a unimodular Poisson manifold (M,Π), it can be proven,
following Example 6 that deformation quantization gives rise to a cyclic weak
*-monoid, where ψ = φ∗, with φ being a Π -invariant diffeomorphism (see [6]).

Example 8 (Relational symplectic groupoids) Following [5], we consider C =
Sympext and M an arbitrary Poisson manifold.

Proposition 3 The following data

X := T ∗(P M)

ψ : (x, η) �→ (i∗ ◦ x, i∗ ◦ η)

i : t �→ 1 − t

L := {(x1, η1), (x1, η1), (x3, η3)|(x1 ∗ x2, η1 ∗ η2) ∼ ψ((x3, η3))},

where ∼ denotes the equivalence relation by T ∗M-homotopy of T ∗M-paths, corre-
sponds to a cyclic weak ∗-monoid. In this case,

L1 = {(x, η) ∈ X |(x, η) ∼ (x ≡ x0, η ≡ 0), x0 ∈ M}
L2 = {(x1, η1), (x2, η2) ∈ X × X |(x1, η1) ∼ (x2, η2)}.
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Notes on Factorization Algebras, Factorization
Homology and Applications

Grégory Ginot

Abstract These notes are an expanded version of two series of lectures given at
the winter school in mathematical physics at les Houches and at the Vietnamese
Institute for Mathematical Sciences. They are an introduction to factorization alge-
bras, factorization homology and some of their applications, notably for studying
En-algebras. We give an account of homology theory for manifolds (and spaces),
which give invariant of manifolds but also invariant of En-algebras. We particularly
emphasize the point of view of factorization algebras (a structure originating from
quantum field theory) which plays, with respect to homology theory for manifolds,
the role of sheaves with respect to singular cohomology. We mention some applica-
tions to the study ofmapping spaces, in particular in string topology and for (iterated)
Bar constructions and study several examples.

1 Introduction and Motivations

These notes are an introduction to factorization algebras and factorization homology
in the context of topological spaces and manifolds. The origin of factorization alge-
bras and factorizationhomology, as definedbyLurie [71] andCostello-Gwilliam [24],
are to be found in topological quantum field theories and conformal field theo-
ries. Indeed, they were largely motivated and influenced by the pioneering work
of Beilinson–Drinfeld [7] and also of Segal [85, 86]. Factorization homology is a
catchword to describe homology theories specific to say oriented manifolds of a
fixed dimension n. There are also variant specific to many other classes of structured
manifold of fixed dimension. Typically the structure in question would be a framing1

or a spin structure or simply no structure at all.

1 that is a trivialization of the tangent bundle.
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Factorization algebras are algebraic structures which shed many similarities with
(co)sheaves and were introduced to describe Quantum Field Theories much in the
same way as the structure of a manifold or scheme is described by its sheaf of
functions [7, 24]. They are related to factorization homology in the same way as
singular cohomology is related to sheaf cohomology.

Unlike classical singular homology for which any abelian group can be used
as coefficient of the theory, in order to define factorization homology, one needs a
more complicated piece of algebraic data: that of an En-algebra.2 These algebras
have been heavily studied in algebraic topology ever since the seventies where they
were introduced to study iterated loop spaces and configuration spaces [12, 76, 84].
They have been proved to also have deep significance in mathematical physics
[24, 64], string topology [17, 20] and (derived) algebraic geometry [7, 33, 72, 77].
E1-algebras are essentially the same thing as A∞-algebras, that is homotopy associa-
tive algebras. On the other hand, E∞-algebras are homotopy commutative algebras.
In general the En-structures form a hierarchy of more and more homotopy commu-
tative algebra structures. In fact, an En-algebra is an homotopy associative algebra
whose multiplication μ0 is commutative up to an homotopy operator μ1. This opera-
tor is itself commutative up to an homotopy operator μ2 and so on up to μn−1 which
is no longer required to be homotopy commutative.

Since factorization homology depends on (some class of) both manifold and
En-algebra, they also give rise to invariants of En-algebras. These invariants have
proven useful as we illustrate in Sect. 7. For instance, in dimension n = 1, factoriza-
tion homology evaluated on a circle is the usual Hochschild homology of algebras
(together with its circle action inducing cyclic homology as well). For n = ∞, factor-
ization homology gives rise to an invariant of topological spaces3 (sometimes called
higher Hochschild homology [79]) which we recall in Sect. 2. It is easier to study
and interesting in its own since it is closely related to mapping spaces, their derived
analogues and observables of classical topological field theories.

We give the precise axioms of homology theory of manifolds in Sect. 3. Factor-
ization homology can be computed using Čech complexes of factorization algebras,
which, as previously alluded to, are a kind of “multiplicative, non-commutative”
analogue of cosheaves. Definitions, properties and many examples of factorization
algebras are discussed in Sect. 4. Factorization algebras were introduced to describe
observables of Quantum Field Theories [7, 24] but they also are a very convenient
way to encode and study many algebraic structures which arose in algebraic topol-
ogy and mathematical physics as we illustrate in Sect. 4. In particular, in Sect. 6 we
study in depth locally constant factorization algebras on stratified spaces and their
link with various categories of modules over En-algebras, giving many examples.
We also give a detail account of various operations and properties of factorization
algebras in Sect. 5. We then (Sect. 7) review several applications of the formalism of

2 More accurately, En-algebras are the piece of data needed in the case of framed manifolds. For
other structured manifolds, one needs En-algebras equipped with additional structure; for instance
an invariance under their natural SO(n)-action in the oriented manifold case.
3 And not just manifolds of a fix dimension.
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factorization algebras and homology. Notably to cohomology and deformations of
En-algebras, (higher) Deligne conjecture and also in (higher) string topology and for
Bar constructions of iterated loop spaces (and more generally to obtain models for
iterated Bar constructions with their algebraic structure). In Sect. 8, we consider the
case of commutative factorization algebras and prove their theory reduces to the one
of cosheaves. In particular, we cover the pedagogical example of classical homology
(with twisted coefficient) viewed as factorization homology.

1.1 Eilenberg-Steenrod Axioms for Homology Theory of
Spaces

Factorization homology and factorization algebras generalize ideas from the
axiomatic approach to classical homology of spaces (and (co)sheaf theory) which we
now recall. We then explain how they can be generalized. The usual (co)homology
groups of topological spaces are uniquely determined by a set of axioms. These are
the Eilenberg-Steenrod axioms which were formulated in the 40s [29].

Classically they express that an homology theory for spaces is uniquely deter-
mined by (ordinary) functors from the category of pairs (X, A) (A ⊂ X ) of spaces
to the category of (N)-graded abelian groups satisfying some axioms. Such a func-
tor splits as the direct sum H∗(X, A) = ⊕

i≥0 Hi (X, A) where Hi (X, A) is the
degree i homology groups of the pair. This homology group can in fact be defined
as the homology of the mapping cone cone(A ↪→ X) of the inclusion of the pair.
Further, the long exact sequence in homology relating the homology of the pair to
the homology of A and X is induced by a short exact sequence of chain complexes
C∗(A) ↪→ C∗(X) � C∗(X, A) (where C∗ is the singular chain complex). Similarly,
the Mayer-Vietoris exact sequence is induced by a short exact sequence of chain
complexes.

This suggests that the classical Eilenberg-Steenrod axioms can be lifted at the
chain complex level. That is, we can characterize classical homology as a functor
from the category of spaces (up to homotopy) to the category of chain complexes
(up to quasi-isomorphism).

Let us formalize a bit this idea. A homology theory H for spaces is a functor
H : Top → Chain(Z) from the category Top of topological spaces4 to the category
Chain(Z) of chain complexes over Z (in other words differential graded abelian
groups). This functor has to satisfy the following three axioms.

1. (homotopy invariance) The functor H shall send homotopies between maps of
topological spaces to homotopies between maps of chain complexes.

2. (monoidal) The functor H shall be defined by its value on the connected compo-
nents of a space. Hence we require it sends disjoint unions of topological spaces

4 For simplicity we assume that we consider only spaces homotopy equivalent to CW-complexes.
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to direct sum, that is the canonical map ⊕α∈I H(Xα) → H(
∐

α∈I Xα) is an
homotopy equivalence5 (here I is any set).

3. (excision)There is another additional property encoding (given the other ones) the
classical excision property as well as theMayer-Vietoris principle. The additional
property essentially stipulates the effect of gluing together two CW-complexes
along a sub-complex. Let us formulate it this way: assume i : Z ↪→ X and
j : Z ↪→ Y are inclusions of closed sub CW-complex of X and Y . Let X ∪Z Y ∼=
X
∐

Y/(i(z) = j (z), z ∈ Z) be the pushout of X , Y along Z . The functoriality

of H gives maps H(Z)
i∗→ H(X) and H(Z)

j∗→ H(Y ); hence a chain complex

morphism H(Z)
i∗− j∗→ H(X) ⊕ H(Y ) . Functoriality also yields a natural map

H(X) ⊕H(Y ) → H(X ∪Z Y ) whose composition with i∗ − j∗ is null.
The excision axioms requires that the canonical map

cone
(
H(Z)

i∗− j∗→ H(X)⊕ H(Y )
)
−→ H(X ∪Z Y )

is an homotopy equivalence. Here cone( f ) is the mapping cone6 (in Chain(Z))
of the map f of chain complexes.

We can state the following theorem (which follows from Corollary 20 and is the
(pre-)dual of a result of Mandell [74] for cochains).

Theorem 1 (Eilenberg-Steenrod) Let G be an abelian group. Up to natural homo-
topy equivalence, there is a unique homology theory for spaces, that is functor
H : Top → Chain(Z) satisfying axioms 1, 2 and 3 and further the dimension
axiom:

H(pt)
�→ G.

The functor in Theorem 1 is of course given by the usual singular chain complex
with value in G. We can even assume in the theorem that G is any chain complex,
in which case we recover extraordinary homology theories.7

Theorem 1 implies that the category of functors satisfying axioms 1, 2, 3 is
(homotopy) equivalent to the category of chain complexes; the equivalence being
given by the evaluation of a functor at the point. To assign to a chain complex V∗ an
homology theory, one consider the functor X �→ C∗(X, Z) ⊗ V∗.

For a CW-complex X , the singular cohomology H∗(X, G) can be computed as
sheaf cohomology of X with value in the constant sheaf G X of locally constant func-
tions on X with values in G. In particular, the singular cochain complex is naturally
quasi-isomorphic to the derived functor RΓ (G X ) of sections of G X . Replacing G X

5 Sometimes this map is required to be an actual isomorphism but this is not needed.
6 If we know that f : C∗ → D∗ is injective, then cone( f ) is quasi-isomorphic to the quotient chain
complex D∗/C∗. See for instance [101] for mapping cones of general chain maps.
7 In this case, the uniqueness is not necessarily true if one works at the homology level instead of
chain complexes.
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by a locally constant sheaf (with germs G) yields cohomology with local coefficient
in G. 8 This point of view realizes singular cohomology (with local coefficient) as a
special case of the theory of sheaf/Čech cohomology which also has other signifi-
cance and applications in geometry when allowing more general sheaves.

Note that the homotopy invariance axiom can be reinterpreted as saying that the
functorH is continuous. Indeed, there are natural topologies on the morphism sets of
both categories. For instance, one can consider the compact-open topology on the set
ofmapsHomTop(X, Y ) (seeExample 61 forChain(Z)).Any continuous functor, that
is a functor H such that the maps HomTop(X, Y ) → HomChain(Z)(H(X),H(Y )) are
continuous, sends homotopies to homotopies (and homotopies between homotopies
to homotopies between homotopies and so on).

Note also that excision axiom really identifies H(X ∪Z Y ) with a homotopy col-

imit. It is precisely the homotopy coequalizer hocoeq
(
H(Z)

i∗
⇒
j∗

H(X) ⊕ H(Y )
)

which is computed by the mapping cone cone(i∗ − j∗). Further, in this axiom, we do
not need H to be precisely the cone but any natural chain complex quasi-isomorphic
to it will do the job. This suggests to actually use amore flexible model than topologi-
cal categories. A convenient way to deal simultaneously with topological categories,
homotopy colimits (in particular homotopy quotients) and identification of chain
complexes up to quasi-isomorphism is to consider the ∞-categories associated to
topological spaces and chain complexes and∞-functors between them (see Appen-
dixA,Examples 60 and61). The passage from topological categories to∞-categories
essentially allows towork in categories inwhich (weak) homotopy equivalences have
been somehow “inverted” but which still retain enough information of the topology
of the initial categories.

Furthermore, in the monoidal axiom, we can replace the direct sum of chain
complexes by any symmetric monoidal structure, for instance by the tensor product
⊗ of chain complexes. This yields the notion of homology theory for spaces with
values in (Chain(Z),⊗) see Sect. 2.1.1. The latter are not determined by a mere
chain complex but by a (homotopy) commutative algebra A. This theory is called
factorization homology for spaces and commutative algebras and its main properties
are detailled in Sect. 2. In fact, already at this level, we see that one needs to replace
the cone construction in the excision axiom by an appropriate derived functor.

To produce invariant of manifolds which are not invariant of spaces, one needs
to replace Top by another topological category of manifolds. For instance, fixing
n ∈ N, one can consider the category Mfld f r

n whose objects are framed manifolds of
dimension n and whose morphisms are framed embeddings. In that case, an homol-
ogy theory is completely determined by an En-algebra. The precise definitions and
variants of homology theories for various classes of structured manifolds (including
the local coefficient ones) and the appropriate notion of coefficient is the content of
Sect. 3.

8 If G is a linear representation of a group H and X is the classifying space of H , then one recovers
this way the group (co)homology of H with value in G.
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The (variants of) En-algebras which arise as coefficient of homology theory for
manifolds can be seen as a special case of factorization algebras, and more precisely
as locally constant factorization algebras, which are to factorization algebras what
(acyclic resolutions of) locally constant sheaves are to sheaves. This point of view
is detailed in Sect. 4.2 and extended to stratified spaces in Sect. 6. The latter case
gives simple9 description of several categories of modules over En-algebras as well
as categories of En-algebras acting on Em-algebras, which is used in the many
applications of Sect. 7.

1.2 Notation and Conventions

1. Let k be a commutative unital ring. The ∞-category of differential graded k-
modules (i.e. chain complexes) will be denoted Chain(k). The (derived) tensor
product over k will be denoted ⊗. The k-linear dual of M ∈ Chain(k) will be
denoted M∨.

2. All manifolds are assumed to be Hausdorff, second countable, paracompact and
thus metrizable.

3. We write Top for the ∞-category of topological spaces (up to homotopy) and
Top f for its ∞-subcategory spanned by the (spaces with the homotopy type
of) finite CW-complexes. We also denote Top∗, resp. sSet∗, the ∞-categories
of pointed topological spaces and simplicial sets. We write C∗(X) and C∗(X)

for the singular chain and cochain complex of a space X . We write sSet for the
∞-category of simplicial sets (up to homotopy) which is equivalent to Top.

4. The ∞-categories of unital commutative differential graded algebras (up tho
homotopy) will be denoted by CDGA. We simply refer to unital commutative
differential graded algebras as CDGAs.

5. Let n ∈ N ∪ {∞}. By an En-algebra we mean an algebra over an En-operad.
We write En-Alg for the∞-category of (unital) En-algebras (in Chain(k)). See
Appendix 10.2. We also write En-ModA, resp. E1-LModA, resp. E1-RModA

the∞-categories of En-A-modules, resp. left A-modules, resp. right A-modules.
6. The∞-category of (small)∞-categories will be denoted∞-Cat.
7. We work with a cohomological grading (unless otherwise stated) for all our

(co)homology groups and graded spaces, even when we use subscripts to denote
the grading (so that our chain complexes have a funny grading). In particular,
all differentials are of degree+1, of the form d : Ai → Ai+1 and the homology
groups Hi (X) of a space X are concentrated in non-positive degree. If (C∗, dC ) ∈
Chain(k), we denote C∗[n] the chain complex given by (C∗[n])i := Ci+n with
differential (−1)ndC .

9 In the sense that the cosheaf condition satisfied by factorization algebras encodes some topology
which, from the classical En-operad point of view necessitates an heavier homotopical machinery.
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8. We will denote PFacX , resp. FacX , resp. Faclc
X the ∞-categories of prefactor-

ization algebras, resp. factorization algebras, resp. locally constant factorization
algebras over X . See Definition 15.

9. Usually, if C a (topological or simplicial or model) category, we will use the
boldface letter C to denote the∞-category associated to C (see Sect. 10). This is
for instance the case for the categories of topological spaces or chain complexes
or CDGAs mentionned above.

10. Despite their names, the values of Hochschild or factorization (co)homology
will be (co)chain complexes (up to equivalences), i.e. objects of Chain(k), or
objects of another∞-category such as E∞-Alg.

These notes deal mainly with applications of factorization algebras in algebraic
topology and homotopical algebra. However, there are very interesting applications
to mathematical physics as described in the work of Costello et al. [22–24, 52, 54]
and also beautiful applications in algebraic geometry and geometric representation
theory, for instance see [7, 33, 41, 42].

We almost always refer to the existing literature for proofs; though there are
some exceptions to this rule, mainly in Sects. 5, 6 and 8, where we treat several
new (or not detailed in the literature) examples and results related to factorization
algebras. To help the reader browsing through the examples in Sects. 5 and 6, the
longer proofs are postponed to a dedicated appendix, namely Sect. 9. Some other
references concerning factorization algebras and factorization homology include
[3, 5, 14, 34, 35, 47, 48, 70, 71, 91].

1.2.1 About ∞-Categories

We use ∞-categories as a convenient framework for homotopical algebra and in
particular as higher categorical derived categories. In our context, they will typically
arise when one considers a topological category or a category M with a notion of
(weak homotopy) equivalence. The∞-category associated to that case will be a lift-
ing of the homotopy category Ho(M) (the category obtained by formally inverting
the equivalences). It has spaces of morphisms and composition and associativity
laws are defined up to coherent homotopies. We recall some basic examples and
definitions in Appendix10.1.

Topological categories and continuous functors between them are actually a
model for ∞-categories and (∞-) functors between them. By a topological category
we mean a category C endowed with a space of morphisms MapC(x, y) between
objects such that the composition MapC(x, y) × MapC(y, z) → MapC(x, z) is
continuous. A continuous functor F : C → D between topological categories
is a functor (of the underlying categories) such that for all objects x , y, the map

MapC(x, y)
F→ MapD(F(x), F(y)) is continuous. In fact, every∞-category admits

a strict model, in other word is equivalent to a topological category (though finding a
strict model can be hard in practice). One can also replace, in the previous paragraph,
topological categories by simplicially enriched categories, which are the same thing
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as topological categories where spaces are replaced by simplicial sets (and contin-
uous maps by maps of simplicial sets). In practice many topological categories we
consider are geometric realization of simplicially enriched categories.

The reader can thus substitute topological category to ∞-category in every
statement of these notes (or also simplicially enriched or even differential graded10),
but modulo the fact that one may have to replace the topological or ∞-category in
question by another equivalent topological one. The same remark applies to func-
tors between∞-categories. Furthermore, many constructions involving factorization
algebras are actually carried out in (topological) categories (which provide concrete
models to homotopy equivalent (derived)∞-category of some algebraic structures).

If C is an ∞-category, we will denote MapC(x, y) its space of morphisms from
x to y while we will simply write HomD(x, y) for the morphism set of an ordinary
category D (that is a topological category whose space of morphisms are discrete).

Many derived functors of homological algebra have natural extensions to the
setting of ∞-categories. In that case we will use the usual derived functor notation
to denote their canonical lifting to ∞-category and to emphasize that they can be
computed using the usual resolutions of homological algebra. For instance, we will
denote (M, N ) �→ M ⊗L

A N for the functor E1-RModA×E1-LModA → Chain(k)

lifting the usual tensor product of left and right modules to their∞-categories.
There is a slight exception to this notational rule. We denote M ⊗ N the derived

tensor products of complexes in Chain(k). We do not use a derived tensor product
notation since it will be too cumbersome and since in practice it will often be applied
in the case where k is a field or M , N are projective over k.

2 Factorization Homology for Commutative Algebras
and Spaces and Derived Higher Hochschild Homology

Factorization homology restricted to commutative algebras is also known as higher
Hochschild homology and has been studied (in various guise) since at least the end of
the 90s (see the approachof [30, 73] to topologicalHochschild homology, or, thework
of Pirashvili [79] which is closely related to Γ -homology). Though its axiomatic
description is an easy corollary of the description of Top as a symmetric monoidal
category with pushouts, it has a lot of nice properties and appealing combinatorial
description in characteristic zero (related to rational homotopy theory à la Sullivan).
We review some of its main properties in this Section.

10 In this case, we refer to [93] for the needed homotopy categorical framework on dg-categories.
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2.1 Homology Theory for Spaces and Derived Hochschild
Homology

2.1.1 Axiomatic Presentation

Let us first start by defining the axioms of an homology theory for spaces with values
in the symmetric monoidal∞-category (Chain(k),⊗) (instead of (Chain(Z),⊕)).
The (homotopy) commutative monoids in (Chain(k),⊗) are the E∞-algebras
(Definition 34). In characteristic zero, one can restrict to differential graded com-
mutative algebras since the natural functor CDGA → E∞-Alg is an (homotopy)
equivalence.

The∞-category Top has a symmetric monoidal structure given by disjoint union
of spaces X

∐
Y , which is also the coproduct of X and Y in Top. The identity map

idX : X → X yields a canonical map X
∐

X
∐

idX−→ X which is associative and
commutative in the ordinary category of topological spaces. Hence X is canonically
a commutative algebra object in (Top,

∐
). And so is its image by a symmetric

monoidal functor. We thus have:

Lemma 1 Let (C,⊗) be a symmetric monoidal ∞-category. Any symmetric
monoidal functor F : Top → C has a canonical lift F̃ : Top → E∞-Alg(C).

In particular, any homology theory Top → Chain(k) shall have a canonical factor-
ization Top → E∞-Alg. This motivates the following definition.

Definition 1 An homology theory for spaces with values in the symmetric monoidal
∞-category (Chain(k),⊗) is an ∞-functor CH : Top × E∞-Alg → E∞-Alg
(denoted (X, A) �→ C H X (A) on the objects), satisfying the following axioms:

(i) (value on a point) there is a natural equivalence C H pt (A)
�→ A in E∞-Alg;

(ii) (monoidal) the canonical maps (induced by universal property of coproducts)

⊗

i∈I

C H Xi (A)
�−→ C H∐

i∈I Xi (A)

are equivalences (for any set I );
(iii) (excision)The functor CH commuteswith homotopy pushout of spaces, i.e., the

canonical maps (induced by the universal property of derived tensor product)

C H X (A)
L⊗

C H Z (A)
C H Y (A)

�−→ C H X∪h
Z Y (A)

are natural equivalences.

Remark 1 If one replace Top by Top f then axiom (ii) is equivalent to saying that,
the functors X �→ C HX (A) are symmetric monoidal.
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Remark 2 (Homology theory for spaces in an arbitrary symmetric monoidal
∞-category) If (C,⊗) is a symmetric monoidal∞-category, we define an homology
theory with values in (C,⊗) in the same way, simply replacing Chain(k) by C (and
thus E∞-Alg by E∞-Alg(C)).

All results (in particular the existence and uniqueness Theorem 2) in Sects. 2.1,
2.2 and 2.3 still hold by just replacing the monoidal structure of Chain(k) by the
one of C, provided that C has colimits and that its monoidal structure commutes with
geometric realization.

Theorem 2

1. There is an unique11 homology theory for spaces (in the sense of Definition1).
2. This homology theory is given by derivedHochschild chains, i.e., there are natural

equivalences

A � X ∼= C H X (A) (1)

where A�X is the tensor of the E∞-algebra A with the space X (see Remark 37).
In particular,

MapTop
(
X,MapE∞-Alg(A, B)

) ∼= MapE∞-Alg(C HX (A), B). (2)

3. (generalized uniqueness) Let F : E∞-Alg → E∞-Alg be a functor. There is an
unique functor Top× E∞-Alg → E∞-Alg satisfying axioms ii), iii) in Definition
1 and whose value on a point is F(A). This functor is (X, A) �→ C H X (F(A)).

Remark 3 Theorem 2 still holds with Top f instead of Top (and where in axiom (ii)
one restricts to finite sets I ). In that case, it can be rephrased as follows:

Proposition 1 The functor F �→ F(pt) from the category of symmetric monoidal
functors Top f → Chain(k) satisfying excision12 to the category of E∞-algebras is
a natural equivalence.

Similarly, Theorem 2 can be rephrased in the following way:

The functor F �→ F(pt) from the category of functors Top → Chain(k) preserving arbi-
trary coproducts and satisfying excision to the category of E∞-algebras is an natural equiv-
alence.

An immediate consequence of A�X ∼= C H X (A) and the identity (2) is the following
natural equivalence

C HX×Y (A) ∼= C HX
(
C HY (A)

)
(3)

in E∞-Alg. This is the “exponential law” for derived Hochschild homology.

11 Up to contractible choices.
12 By Lemma 1, the excision axiom makes sense for any such functor.
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Another interesting consequence of (2) is that, for any spaces K and X and
E∞-algebra A, the identity map in MapE∞-Alg(C HX×K (A), C HX×K (A)) yields
a canonical element in MapTop

(
K ,MapE∞-Alg(C HX (A), C HX×K (A))

)
hence a

canonical map of chain complexes

tens : C∗
(
K
)⊗ C HX (A) −→ C HK×X (A). (4)

Similarly, let f : K × X → Y be a map of topological spaces, then we get a
canonical continuous map K −→ MapE∞-Alg(C HX (A), C HY (A)) or equivalently
a chain map f∗ : C∗(K ) ⊗ C HX (A) −→ C HY (A) in Chain(k) which is just the
composition

C∗(K )⊗ C HX (A)
tens−→ C HK×X (A)

f∗−→ C HY (A)

where the last map is by functoriality of CH with respect to maps of topological
spaces.

Remark 4 (Group actions on derived Hochschild homology) Since CH is a func-
tor of both variables, C HX (A) has a natural action of the topological monoid
MapTop(X, X) (and thus of the group Homeo(X)), i.e., there is a monoid13 map
MapTop(X, X) → MapE∞-Alg(C HX (A), C HX (A)). By adjunction, we get a chain
map14 C∗

(
MapTop(X, X)

) ⊗ C HX (A) → C HX (A) which exhibits C HX (A) as a
module over MapTop(X, X) in E∞-Alg.

2.1.2 Derived Functor Interpretation

We now explain a derived functor interpretation of derived Hochschild homology.
Recall (Example 65) that the singular chain functor of a space X has a natural structure
of E∞-coalgebras. In other words, it is an object (abusively denoted C∗(X)) of
Fun⊗(Finop, Chain(k)) the category of contravariant symmetric monoidal functor
from finite sets to chain complexes.

We can identify an E∞-coalgebra C , resp. an E∞-algebra A, respectively, with
a right module, resp. left module over the (∞-)operad E∞; or equivalently with
contravariant, resp. covariant, symmetric monoidal functors from Fin to Chain(k)).
We can thus form their (derived) tensor products C ⊗L

E∞ A ∈ Chain(k) which is
computed as a (homotopy) coequalizer:

C
L⊗
E
⊗∞

A ∼= hocoeq
( ∐

f :{1,...,q}→{1,...,p}
C⊗p ⊗E∞(q, p)⊗ A⊗q ⇒

∐

n

C⊗n ⊗ A⊗n
)

13 Here, monoid means an homotopy monoid, that is an E1-algebra in the symmetric monoidal
category (Top,×.)
14 And higher homotopy coherences.
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where the maps f : {1, . . . , q} → {1, . . . , p} are maps of sets. The upper map in
the coequalizer is induced by the maps f ∗ : C⊗p ⊗ E∞(q, p) ⊗ A⊗q → C⊗q ⊗
A⊗q obtained from the coalgebra structure of C and the lower map is induced by
the maps f∗ : C⊗p ⊗ E

⊗∞(q, p) ⊗ A⊗q → C⊗p ⊗ A⊗p induced by the algebra

structure. One can define similarly C
L⊗

Fin
A the derived tensor product of a covariant

and contravariant Fin-modules.

Proposition 2 Let X be a space and A be an E∞-algebra. There is a natural equiv-
alence (in Chain(k))

C HX (A) ∼= C∗(X)
L⊗
E∞

A.

If A has a structure of CDGA, then we further have C HX (A) ∼= C∗(X)
L⊗

Fin
A

Proof Note that the E∞-coalgebra structure on C∗(X) is given by the functor
Finop → Chain(k) defined by I �→ k

[
Hom Fin(I, X•)

]
. The rest of the proof

is the same as in [47, Proposition 4]. ��
Remark 5 (Factorization homology of commutative algebras as derived mapping
stacks) There is another nice interpretation of derivedHochschild homology in terms
of derived (or homotopical) algebraic geometry. Let dStk be the ∞-category of
derived stacks over the ground ring k described in details in [95, Section2.2]. This
category admits internal Hom’s that we denote by R Map(F, G) following [95, 96]
and further is also an enrichment of the homotopy category of spaces. Indeed, any
simplicial set X, yields a constant simplicial presheaf E∞-Alg → sSet defined
by R �→ X, which, in turn, can be stackified. We denote X the associated stack,
i.e. the stackification of R �→ X,, which depends only on the (weak) homotopy
type of X•. For a (derived) stack Y ∈ dStk , we denote OY its functions, i.e.,
OY := RHom(Y, A

1), (see [95]). A direct application of Theorem 2 is:

Corollary 1 ([47]) Let R = R Spec(R) be an affine derived stack (for instance an
affine stack) [95] and X be the stack associated to a space X. Then the Hochschild
chains over X with coefficients in R represent the mapping stack R Map(X,R). That
is, there are canonical equivalences

OR Map(X,R)
∼= C HX (R), R Map(X,R) ∼= R Spec

(
C HX (R)

)

If a group G acts on X , the natural action of G on C HX (A) (Remark 4) identifies
with the natural one on R Map(X,R) under the equivalence given by Corollary 1.
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2.2 Pointed Spaces and Higher Hochschild Cohomology

In order to have a dual and relative versions of the construction of Sect. 2.1, we
consider the (∞-)category Top∗ of pointed spaces. Let τ : pt → X be a base point

of X ∈ Top∗. The map τ yields a map of E∞-algebras A ∼= C Hpt (A)
τ∗−→ C HX (A)

and thusmakesC HX (A) an A-module. Let M be an E∞-module over A; for instance,
take M to be a module over a CDGA A. Note that M has induced left and right
modules structures15 over A.

Definition 2 Let A be an E∞-algebra and M be an E∞-module over A.

• The (derived) Hochschild cochains of A with values in M over (a pointed topo-
logical space) X is given by

C H X (A, M) := RHomle f t
A (C HX (A), M),

the (derived) chain complex of homomorphisms of underlying left E1-modules
over A (Definition 36).

• The (derived) Hochschild homology of A with values in M over (a pointed space)
X is defined as

C HX (A, M) := M
L⊗
A

C HX•(A) (5)

the relative tensor product of (a left and a right) E1-modules over A.

The two definitions above depend on the choice of the base point even though we do
not write it explicitly in the definition.

Remark 6 One can also use the relative tensor products of E∞-modules over A (as
defined, for instance, in [66, 71]) for defining theHochschild homologyC HX (A, M).
This does not change the computation (and makes Lemma 2 below trivial) according
to Proposition 40 (or [66, 71]). The same remark applies to the definition of derived
Hochschild cohomology.

Since the based point map τ∗ : A → C HX (A) is a map of E∞-algebras, the
canonical module structure of C HX (A) over itself induces a C HX (A)-module struc-
ture on C HX (A, M) after tensoring by A (see [66, PartV], [71]):

Lemma 2 Let M be in E∞-ModA, that is, M is an E∞-A-module. Then C HX (A, M)

is canonically a E∞-module over C HX (A).

The Lemma is obvious when A is a CDGA.
We have the ∞-category E∞-Mod of pairs (A, M) with A an E∞-algebra and

M an A-module (Definition 35). Let πE∞ : E∞-Mod → E∞-Alg be the canonical
functor.

15 Note also that there is an equivalence of ∞-categories E1-LModA ∼= E1-RModA if A ∈
E∞-Alg.
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Proposition 3 ([47, 48])

• The derived Hochschild chains (Definition 2) induces a functor of ∞-categories
C H : (X, M) �→ C HX (πE∞(M), M) from Top∗ × E∞-Mod to E∞-Mod which
fits into a commutative diagram

Here f or : Top∗ → Top forget the base point.
• The derived Hochschild cochains (Definition 2) induces a functor of∞-categories

(X, M) �→ C H X•(A, M) from (Top∗)op × E∞-ModA to E∞-ModA, which is
further contravariant with respect to A.

In particular, if M = A, thenwehave annatural equivalenceC HX (A, A) ∼= C HX (A)

in E∞-Mod. 16

Remark 7 (Functor homology point of view) There is also a derived functor inter-
pretation of the above functors as in Sect. 2.1.2. Let Fin∗ be the ∞-category asso-
ciated to the category of pointed finite sets (Example 57). If X is pointed, then we
have a functor C̃∗(X) : Fin∗op → Chain(k) which sends a finite pointed set I to
C∗(Mappointed(I, X)) the singular chain on the space of pointed maps from I to
X . Further, let M be an E∞-module. Similarly to Sect. 2.1.2 we find a symmetric
monoidal functor M̃ : Fin∗ → Chain(k). When M is a module over a CDGA
A, denoting ∗ the base point, this is simply the functor M̃({∗}∐ J ) = M ⊗ A⊗J ,
see [45]. This functor actually factors through E1-LModA.

We have a dual version of M̃ , that we denote H(A, M) : Fin∗op → Chain(k),
defined as H(A, M)(J ) := HomA( Ã(J ), M) (where J �→ Ã(J ) is the functor
Fin∗ → E1-LModA defined by the canonical E∞-module structure of A). See [45]
for an explicit construction when A is a CDGA and M a module.

A proof similar to the one of Proposition 2 yields:

Proposition 4 There are natural equivalences

C HX (A, M) ∼= C̃∗(X)
L⊗

Fin∗
M̃, C H X (A, M) ∼= RHomFin∗(C̃∗(X),H(A, M)).

16 Here we implicitly use the canonical functor E∞-Alg → E∞-Mod which sees an A-algebra as
a module over itself.
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2.3 Explicit Model for Derived Hochschild Chains

Following Pirashvili [79], one can construct rather simple explicit chain complexes
computing derived Hochschild chains when the input is a CDGA. We mainly deal
with the unpointed case, the pointed one being similar and left to the reader.

In this section, we consider only CDGAs. Note that, if we assume k is of char-
acteristic zero, E∞-algebras are always homotopy equivalent to a CDGA so that
we do not loose much generality. This construction, using simplicial sets as models
for topological spaces, provides explicit semi-free resolutions for C HX (A) which
makes them combinatorially appealing.

Let (A =⊕
i∈Z Ai , d,μ) be a differential graded, associative, commutative alge-

bra and let n+ be the set n+ := {0, . . . , n}. We define C Hn+(A) := A⊗n+1 ∼= A⊗n+ .
Let f : k+ → �+ be any set map, we denote by f∗ : A⊗k+ → A⊗�+ , the linear map
given by

f∗(a0 ⊗ a1 ⊗ · · · ⊗ ak) = (−1)ε · b0 ⊗ b1 ⊗ · · · ⊗ b�, (6)

where b j =∏
i∈ f −1( j) ai (or b j = 1 if f −1( j) = ∅) for j = 0, . . . , �. The sign ε in

Eq. (4) is determined by the usual Koszul sign rule of (−1)|x |·|y| whenever x moves
across y. In particular, n+ �→ C Hn+(A) is functorial. Extending the construction by
colimit we obtain a well-defined functor

Y �→ C HY (A) := lim−→
Fin�K→Y

C HK (A) (7)

from sets to differential graded commutative algebras (since the tensor products of
CDGAs is a CDGA). Now, if Y• is a simplicial set, we get a simplicial CDGA
C HY•(A) and by the Dold-Kan construction a CDGA whose product is induced by
the shuffle product which is defined (in simplicial degree p, q) as the composition

sh : C HYp (A) ⊗ C HYq (A)
sh×−→ C HYp+q (A) ⊗ C HYp+q (A) ∼= C HYp+q (A ⊗ A)

μ∗−→ C HYp+q (A).

(8)

Here μ : A ⊗ A → A denotes the multiplication in A (which is a map of algebras)
and, denoting si the degeneracies of the simplicial structure in C HY•(A),

sh×(v ⊗ w) =
∑

(μ,ν)

sgn(μ, ν)(sνq · · · sν1(v) ⊗ sμp · · · sμ1(w)),

where (μ, ν)denotes a (p, q)-shuffle, i.e. a permutation of {0, . . . , p+q−1}mapping
0 ≤ j ≤ p− 1 to μ j+1 and p ≤ j ≤ p+ q − 1 to ν j−p+1, such that μ1 < · · · < μp

and ν1 < · · · < νq . The differential D : C HY•(A) → C HY•(A)[1] is given as
follows. The tensor products of chain complexes A⊗Yi have an internal differential
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which we abusively denote as d since it is induced by the differential d : A → A[1].
Then, the differential on C HY•(A) is given by the formula:

D
(⊗

i∈Yi

ai
) := (−1)i d

(⊗

i∈Yi

ai
)+

i∑

r=0

(−1)r (dr )∗
(⊗

i∈Yi

ai
)
,

where the (dr )∗ : C HYi (A) → C HYi−1(A) are induced by the corresponding faces
dr : Yi → Yi−1 of the simplicial set Y•.

Definition 3 Let Y• be a simplicial set. The Hochschild chains over Y• of A is the
commutative differential graded algebra (C HY•(A), D, sh).

The rule (Y•, A) �→ (C HY•(A), D, sh) is a bifunctor from the ordinary discrete
categories of simplicial sets and CDGA to the ordinary discrete category of CDGA.

If Y• is a pointed simplicial set, we have a canonical CDGA map A
∼→

C Hpt•(A) → C HY•(A). This allows to mimick Definition 2:

Definition 4 Let Y• be a simplicial set, A a CDGA and M an A-module (viewed as
a symmetric bimodule).

• The Hochschild chains of A with values in M over Y• are:

C HX•(A, M) := M ⊗
A

C HX•(A).

• The Hochschild cochains of A with values in M over Y• are:

C H X•(A, M) = Hom A(C HX•(A), M).

The above definition computes the derived Hochschild homology of Theorem 2.

Indeed, we have the adjunction | − | : sSet
∼
�
∼

Top : Δ•(−) given by the geometric

realization |Y•| of a simplicial set and the singular set functor: n �→ Δn(X) :=
HomTop(Δ

n, X) (where Δn ∈ Top is the standard n-simplex). This adjunction is a
Quillen adjunction hence induces an equivalence of∞-categories. Further (by unicity
Theorem 2) we have a commutative diagram (in Fun(sSet × CDGA, E∞-Alg))

(9)

see [47, 48] for more details. From there, we get
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Proposition 5 One has natural equivalences C HX•(A) ∼= C H|X•|(A) of
E∞-algebras as well as equivalences

C HX•(A, M) ∼= C H|X•|(A, M), C H X•(A, M) ∼= C H |X•|(A, M)

of C H|X•|(A)-modules.

We now demonstrate the above combinatorial definitions in a few examples (in
which we assume, for simplicity, that A has a trivial differential).

Example 1 (The point and the interval) The point has a trivial simplicialmodel given
by the constant simplicial set ptn = {pt}. Hence

(C Hpt•(A), D) := A
0← A

id← A
0← A

id← A · · ·

which is a deformation retract of A (as a CDGA). A (pointed) simplicial model for
the interval I = [0, 1] is given by In = {0, 1 . . . , n + 1}, hence in simplicial degree
n, C HIn (A, M) = M ⊗ A⊗n+1 and the simplicial face maps are

di (a0 ⊗ · · · an+1) = a0 ⊗ · · · ⊗ (ai ai+1)⊗ · · · ⊗ an+1.

An easy computation shows that C HI•(A, M) = Bar(M, A, A) is the standard Bar
construction17 which is quasi-isomorphic to M .

Example 2 (The circle) The circle S1 ∼= I/(0 ∼ 1) has (by Example 1) a simplicial
model S1• which is the quotient S1

n = In/(0 ∼ n + 1) ∼= {0, . . . , n}. One computes
that the face maps di : S1

n → S1
n−1, for 0 ≤ i ≤ n−1 are given by di ( j) is equal to j

or j − 1 depending on j = 0, . . . , i or j = i + 1, . . . , n and dn( j) is equal to j or 0
depending on j = 0, . . . , n−1 or j = n. For i = 0, . . . , n, the degeneracies si ( j) is
equal to j or j+1 depending on j = 0, . . . , i or j = i+1, . . . , n. This is the standard
simplicial model of S1 cf. [67, 6.4.2]. Thus, C HS1• (A) = ⊕

n≥0 A ⊗ A⊗n and the
differential agrees with the usual one on the Hochschild chain complex C•(A) of A
(see [67]).

It can be proved that the S1 action on C HS1(A) given by Remark 4 agrees with
the canonical mixed complex structure of C HS1• (A) (see [97]).

Example 3 (The torus) The torus T is the product S1 × S1. Thus, by Example 2, it
has a simplicial model given by (S1 × S1)• the diagonal simplicial set associated
to the bisimplicial set S1• × S1• , i.e. (S1 × S1)k = S1

k × S1
k = {0, . . . , k}2. We

may write (S1 × S1)k = {(p, q) | p, q = 0, . . . , k} which we equipped with the
lexicographical ordering. The face maps di : (S1 × S1)k → (S1 × S1)k−1 and
degeneracies si : (S1 × S1)k → (S1 × S1)k+1, for i = 0, . . . , k, are given as the
products of the differentials and degeneracies of S1• , i.e. di (p, q) = (di (p), di (q))

and si (p, q) = (si (p), si (q)).

17 The two-sided one, with values in the two A-modules A and M .
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We obtain C H(S1×S1)•(A, A) =⊕
k≥0 A ⊗ A⊗(k2+2k). The face maps di can be

described more explicitly, when placing the tensor a(0,0)⊗· · ·⊗a(k,k) in a (k +1)×
(k + 1)matrix. For i = 0, . . . , k−1,we obtain di (a(0,0)⊗· · ·⊗a(k,k)) bymultiplying
the i th and (i + 1)th rows and the i th and (i + 1)th columns simultaneously, i.e.,
di (a(0,0) ⊗ · · · ⊗ a(k,k)) is equal to:

a(0,0) . . . (a(0,i)a(0,i+1)) . . . a(0,k)

...
...

...

a(i−1,0) . . . (a(i−1,i)a(i−1,i+1)) . . . ⊗a(i−1,k)

(a(i,0)a(i+1,0)) . . . (a(i,i)a(i,i+1)a(i+1,i)a(i+1,i+1)) . . . (a(i,k)a(i+1,k))

a(i+2,0) . . . (a(i+2,i)a(i+2,i+1)) . . . a(i+2,k)

...
...

...

a(k,0) . . . (a(k,i)a(k,i+1)) . . . a(k,k)

The differential dk is obtained by multiplying the kth and 0th rows and the kth
and 0th columns simultaneously, i.e., dk(a(0,0) ⊗ · · · ⊗ a(k,k)) equals

(a(0,0)a(0,k)a(k,0)a(k,k)) (a(0,1)a(k,1)) . . . (a(0,k−1)a(k,k−1))

(a(1,0)a(1,k)) a(1,1) . . . a(1,k−1)
...

...
...

(a(k−1,0)a(k−1,k)) a(k−1,1) . . . a(k−1,k−1)

Example 4 (The Riemann sphere S2) The sphere S2 has a simplicial model S2• =
I 2• /∂ I 2• i.e. S2

n = {(0, 0)}∐{1 · · · n}2. Thus C HS2• (A) =⊕
n≥0 A ⊗ A⊗n2 .

Here the face and degeneracies maps are the diagonal ones as for (S1 × S1)•
in Example 3. In particular, the i th differential is also obtained from the previous

examples by setting d
S2•
i (p, q) = (0, 0) in the case that di (p) = 0 or di (q) = 0

(where di is the i th-face map of S1• ), or setting otherwise di (p, q) = (di (p), di (q)).
For i ≤ n − 1, we obtain di (a(0,0) ⊗ · · · ⊗ a(k,k)) is equal to:

a(0,0)
(a(i−1,i)a(i−1,i+1)) . . . a(i−1,n)

(a(i,i)a(i,i+1)a(i+1,i)a(i+1,i+1)) . . . (a(i,n)a(i+1,n))

(a(i+2,i)a(i+2,i+1)) . . . a(i+2,n)

...
...

(a(n,i)a(n,i+1)) . . . a(n,n)

which is similar to the one of Example 3 without the “boldface” tensors.

Example 5 (Higher spheres) Similarly to S2, we have the standard model Sd• :=
(I•)d/∂(I•)d ∼= S1• ∧ · · · ∧ S1• (d-factors) for the sphere Sd . Hence Sd

n
∼= {0}∐{1

· · · n}d and C HSd• (A) =⊕
n≥0 A⊗ A⊗nd

. The face operators are similar to those of
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Example 4 (except that, instead of a matrix, we have a dimension d-lattice) and face
maps are obtained by simultaneouslymultiplying each i th-hyperplane with (i+1)th-
hyperplane in each dimension. The last face dn is obtained by multiplying all tensors
of all nth-hyperplanes with a0.

Wealso have the small model Sd
sm•which is the simplicial setwith exactly twonon-

degenerate simplices, one in degree 0 and one in degree d. Then Sd
sm n

∼= {1, . . . , (n
d

)}.
Using this model, it is straightforward to check the following computation of the first
homology groups of C HSd (A):

Hn(C HSd (A)) ∼= Hn(C HSd
sm•(A)) =

⎧
⎨

⎩

= A if n = 0
= 0 if 0 < n < d
= Ω1

A if n = d

where Ω1
A is the A-module of Kähler differentials (see [67, 101]).

Example 6 (Hochschild-Kostant-Rosenberg) Let A be a smooth commutative
algebra. The classical Hochschild-Kostant-Rosenberg Theorem states that its (stan-
dard) Hochschild homology is given by the algebra of Kähler forms ∧•

A(Ω1
A) ∼=

S•A(Ω1
A[1]), where Ω1

A is the A-module of Kähler differentials; here a i-form is
viewed as having cohomological degree −i and S•A is the free graded commuta-
tive algebra functor (in the category of graded A-modules). This theorem extends to
Hochschild homology over all spheres:

Theorem 3 (Generalized HKR) Let A be a smooth algebra and X be an affine
smooth scheme or a smooth manifold. Let n ≥ 1 and Σg be a genus g surface.

1. (Pirashvili [79]) There is a quasi-isomorphism of CDGAs: C HSn (A)
∼= S•A

(
Ω1

A[n]
)
.

2. ([46]) There is an equivalence C HΣg (A) ∼= S•A
(
Ω1

A[2]⊕(Ω1
A[1])⊕2g

)
of CDGAs.

3. There are equivalences C HSn (OX ) ∼= S•OX

(
Ω1

X [n]
)

and

C HΣg (OX ) ∼= S•OX

(
Ω1

X [2] ⊕ (Ω1
X [1])⊕2g)

of sheaves of CDGAs.18

The third assertion in Theorem 3 follows from 1 and 2 after sheafifying in an appro-
priate way the derived Hochschild chains.

2.4 Relationship with Mapping Spaces

We have seen the relationship between derived Hochschild chains and derived map-
ping spaces (Remark 5). It is also classical that the usual Hochschild homology of de

18 Here the differentials on the right hand sides are zero; they are not the de Rham differential.
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Rham forms of a simply connected manifold M is a model for the de Rham forms on
the free loop space L M := Map(S1, M) of M (see [18]). There is a generalization
of this result for spaces where the forms are replaced by the singular cochains with
their E∞-algebra structure ([62]). These two results extend to derived Hochschild
chains in general to provide algebraic models of mapping spaces.

First, we sketch a generalization of Chen iterated integrals (studied in [46]). Let
M be a compact, oriented manifold, denote by Ω•

d R(M) the differential graded
algebra of differential forms on M , and let Y• be a simplicial set with geometric
realization Y := |Y•|. Denote MY := Mapsm(Y, M) the space of continuous maps
from Y to M , which are smooth on the interior of each simplex in Y . Recall from
Chen [18, Definition1.2.1], that a differentiable structure on MY is specified by the
set of plots φ : U → MY , where U ⊂ R

n for some n, which are those maps whose
adjoint φ� : U × Y → M is continuous on U × Y , and smooth on the restriction to
the interior of each simplex of Y , i.e. φ�|U×(simplex of Y )◦ is smooth. Following [18,
Definition1.2.2], a p-formω ∈ Ω

p
d R(MY ) on MY is given by a p-formωφ ∈ Ω

p
d R(U )

for each plotφ : U → MY , which is invariant with respect to smooth transformations
of the domain.

We nowdefine the space of Chen (generalized) iterated integrals Chen(MY ) of the
mapping space MY . Let η : Y• → Δ•|Y•| be the canonical simplicial map (induced
by adjunction) which is given for i ∈ Yk by maps η(i) : Δk → Y in the following
way,

η(i)(t1 ≤ · · · ≤ tk) := [(t1 ≤ · · · ≤ tk) × {i}] ∈
(∐

Δ• × Y•/ ∼
)
= Y. (10)

The map η allows to define, for any plot φ : U → MY , a map ρφ := ev ◦ (φ × id),

ρφ : U × Δk φ×id−→ MY × Δk ev−→ MYk , (11)

where ev is defined as the evaluation map,

ev(γ : Y → M, t)(i) = γ
(
η(i)(t)

)
. (12)

Now, if we are given a form
⊗

y∈Yk
ay ∈ (

Ωd R(M)
)⊗Yk (with only finitely many

ai �= 1), the pullback (ρφ)∗
(⊗

y∈Yk
ay
) ∈ Ω•(U × Δk), may be integrated along

the fiber Δk , and is denoted by

⎛

⎝
∫

C

⊗

y∈Yk

ay

⎞

⎠

φ

:=
∫

Δk

(ρφ)∗
( ⊗

y∈Yk

ay
) ∈ Ω•

d R(U ).

The resulting p = (
∑

i deg(ai )− k)-form
∫
C
(
⊗y∈Yk ay

)
∈ Ω

p
d R(MY is called the

(generalized) iterated integral of a0, . . . , ayk . The subspace of the space of De Rham
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formsΩ•(MY ) generated by all iterated integrals is denoted by Chen(MY ). In short,
we may picture an iterated integral as the pullback composed with the integration
along the fiber Δk of a form in MYk ,

Definition 5 Wedefine ItY• : C HY•(Ω
•
d R(M)) ∼= (Ω•

d R(M))⊗Y• → Chen(MY ) by

ItY•

⎛

⎝
⊗

y∈Yk

ay

⎞

⎠ :=
∫

C

(
⊗

y∈Yk

ay

)
. (13)

Interesting applications of iterated integrals to study gerbes and higher holonomy
are given in [1, 99].

Theorem 4 ([46]) The iterated integral map ItY• : C HY•(Ω
•
d R(M)) → Ω•

d R(MY )

is a (natural) map of CDGAs.
Further, assume that Y = |Y•| is n-dimensional, i.e. the highest degree of any

non-degenerate simplex is n, and assume that M is n-connected. Then, ItY• is a
quasi-isomorphism.

There is also a purely topological and characteristic free analogue of this result
using singular cochains instead of forms.

Theorem 5 ([35, 48]) Let X, Y be topological spaces. There is a natural map of
E∞-algebras

C HY (C∗(X)) −→ C∗(Map(Y, X))

which is an equivalence when Y = |Y•| is n-dimensional and X is connected, nilpo-
tent with finite homotopy groups in degree less or equal to n (for instance when X is
n-connected).

Example 7 We compute the iterated integral map (13) in the case of S1• (Example 2)
and T (Example 3). Since S1 is the interval I = [0, 1] where the endpoints 0 and 1
are identified, the map η(i) : S1

k = {0, 1 . . . , k} → Δk(S1) = Map(Δk, S1) defined
via (10) is given by η(i)(0 ≤ t1 ≤ · · · ≤ tk ≤ 1) = ti , where we have set t0 = 0.
Thus, the evaluation map (12) becomes

ev(γ : S1 → M, t1 ≤ · · · ≤ tk) = (γ(0), γ(t1), . . . , γ(tk)) ∈ Mk+1.

Furthermore, this recovers the classical Chen iterated integrals I t S1• : C H•(A, A) →
Ω•(M S1) as follows. For a plot φ : U → M S1 we have,
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I t S1• (a0 ⊗ · · · ⊗ ak)φ =
⎛

⎝
∫

C
a0 · · · ak

⎞

⎠

φ

=
∫

Δk

(ρφ)∗(a0 ⊗ · · · ⊗ ak)

= (π0)
∗(a0) ∧

∫

Δk

(ρ̃φ)∗(a1 ⊗ · · · ⊗ ak)

= (π0)
∗(a0) ∧

∫
a1 · · · ak,

where ρ̃φ : U ×Δk φ×id−→ M S1 ×Δk ẽv→ Mk is the classical Chen integral
∫

a1 · · · ak

from [18] and π0 : M S1 → M is the evaluation at the base point π0 : γ �→ γ(0).

In the case of the torus T = S1 × S1, the map η(p, q) : (S1 × S1)k →
Map(Δk, S1× S1) is given by η(p, q)(0 ≤ t1 ≤ · · · ≤ tk ≤ 1) = (tp, tq) ∈ S1× S1,
for p, q = 0, . . . , k and t0 = 0. Thus, the evaluation map (12) becomes

ev(γ : T → M, t1 ≤ · · · ≤ tk) =

⎛

⎜
⎜
⎝

γ(0, 0), γ(0, t1), . . . , γ(0, tk),
γ(t1, 0), γ(t1, t1), . . . , γ(t1, tk),

...

γ(tk , 0), γ(tk , t1), . . . , γ(tk , tk)

⎞

⎟
⎟
⎠ ∈ M (k+1)2

According to Definition 5, the iterated integral I t S1×S1(a(0,0)⊗· · ·⊗a(k,k)) is given

by a pullback under the above map M S1×S1 × Δk ev−→ M (k+1)2 , and integration
along the fiber Δk .

2.5 The wedge Product of higher Hochschild cohomology

Let A
f→ B be a map of CDGAs. Note that it makes B into an A-algebra as well as

an A ⊗ A-algebra (since the multiplication A ⊗ A → A is an algebra morphism).
The excision axiom (Theorem 2) implies

Lemma 3 Let M be an A-module and X, Y be pointed topological spaces. There is
a natural equivalence

μ : Hom A⊗A (C HX (A) ⊗ C HY (A), M)
�−→ C H X∨Y (A, M)

We use Lemma 3 to obtain

Definition 6 ([45]) Thewedge product of (derived)Hochschild cochains is the linear
map
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μ∨ : C H X (A, B)⊗ C HY (A, B) −→ Hom A⊗A

(
C HX (A)⊗ C HY (A), B ⊗ B

)

(m B )∗−→ Hom A⊗A

(
C HX (A)⊗ C HY (A), B

) ∼= C H X∨Y (A, B)

(14)

where the first map is the obvious one: f ⊗ g �→ (
x ⊗ y �→ f (x) ⊗ g(y)

)
.

Example 8 If X•, Y• are finite simplicial sets models of X, Y , the map μ∨ can be
combinatorially described as the composition of the linear map μ̃ given, for any f ∈
C H Xn (A, B) ∼= Hom A(A⊗#Xn , B), g ∈ C H Xn (A, B) ∼= Hom A(A⊗#Yn , B)) by

μ̃( f, g)(a0, a2, . . . a#Xn , b2, . . . , b#Yn ) = a0. f (1, a2, . . . a#Xn ).g(1, b2, . . . , b#Yn )

(where a0 corresponds to the element indexed by the base point of Xn ∨ Yn)
with the Eilenberg-Zilber quasi-isomorphism from C H X•(A, B) ⊗ C HY•(A, B)

to the chain complex associated to the diagonal cosimplicial space
(
C H Xn (A, B)⊗

C HYn (A, B)
)

n∈N.

Proposition 6 The wedge product (of Definition 6) is associative.19 In particular,

if there is a diagonal X
δ→ X ∨ X making X an E1-coalgebra (in (Top∗,∨)), then

(C H X (A, B), δ∗ ◦ μ∨) is an E1-algebra.

Example 9 Astandard example of spacewith a diagonal is a sphere Sd . Ford = 1,we
obtain a cup product on the usual Hochschild cochain complex which is (homotopy)
equivalent to the standard cup-product for Hochschild cochains from [44].

The little d-dimensional little cubes operad Cubed acts continuously on Sd by the
pinching map

pinch : Cubed(r)× Sd −→
∨

i=1···r
Sd . (15)

given, for any c ∈ Cubed(r), by the map pinchc : Sd → ∨
Sd collapsing the

complement of the interiors of the r rectangles to the base point. We thus get a map

˜pinch : Cubed(r) −→ MapCDGA(C HSd (A, B), C H∨ Sd (A, B)) (16)

Applying the contravariance of Hochschild cochains and the wedge product (Def-
inition 6), we get, for all d ≥ 1, a morphism

pinch∗Sd ,r : C∗
(
Cubed(r)

)⊗
(

C H Sd
(A, B)

)⊗r

(μ∨)(d−1)

−→ C∗
(
Cubed(r)

)⊗ C H
∨r

i=1 Sd (
A, B

) ˜pinch
∗

−→ C H Sd
(A, B).

(17)

19 Precisely, it means that μ∨ makes X �→ C H X (A, B) into a lax monoidal functor
((Top∗)op,∨) → (Chain(k),⊗).
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The map (17) has a canonical extension to the case of E∞-algebras. We find

Proposition 7 ([45, 48]) Let A
f→ B be a CDGA (or E∞-algebra) map. The col-

lection of maps (pinchSd ,k)k≥1 makes C H Sd
(A, B) an Ed-algebra.

The algebra structure is natural with respect to CDGA maps, meaning that given a
commutative diagram the canonical map h′ �→ ϕ◦h′ ◦ψ is an Ed -algebrasmorphism
C H Sd

(A′, B ′) → C H Sd
(A, B).

A
f

B

ϕ

A

ψ

f
B

CHSd

A ,B CHSd

A,B .

Remark 8 If f : A → B is a CDGA map, it is possible to describe this Ed -algebra
structure by giving an explicit action of the filtration FdBE of the Barrat-Eccles
operad on C H Sd• (A, B) using the standard simplicial model of Sd (Example 5).

Example 10 If A = k, C H Sn
(k, B) ∼= B (viewed as En-algebras). If B = k, then

the En-algebra structure of C H Sn
(A, k) is the dual of the En-coalgebra structure

given by the n-times iterated Bar construction Bar (n)(A), see Sect. 7.4.

3 Homology Theory for Manifolds

3.1 Categories of Structured Manifolds and Variations
on En-Algebras

In order to specify what is a homology theory for manifolds, we need to specify an
interesting category of manifolds.

Definition 7 Let Mfldn be the∞-category associated20 to the topological category
with objects topological manifolds of dimension n and with morphism space

MapMfldn
(M, N ) := Emb(M, N )

20 By Example 58.



Notes on Factorization Algebras, Factorization Homology and Applications 453

the space of all embeddings of M into N (viewed as a subspace of the space
Map(M, N ) of all continuous maps from M to N endowed with the compact-open
topology).

In the above definition, the manifolds can be closed or open, but have no boundary.21

Remark 9 It is important to consider embeddings instead of smooth maps. Indeed,
the category of all manifolds and all (smooth) maps is weakly homotopy equivalent
to Top so that, in that case, one would obtain a homology theory which extends to
spaces.

Remark 10 (Smooth manifolds) One can also restrict to smooth manifolds in which
case it makes sense to equip Emb(M, N ) with the weak Whitney C∞-topology; this
gives us the∞-category Mfldun

n of smooth manifolds of dimension n. This latter cate-
gory embeds inMfldn and this embedding is an equivalence onto the full subcategory
of Mfldn spanned by the smooth manifolds.

One can also consider categories of more structured manifolds, such as oriented,
spin or framed manifolds, as follows. Let E → X be a topological n-dimensional
vector bundle, which is the same as a space X together with a (homotopy class of)
map e : X → BHomeo(Rn) from X to the classifying space of the group of
homeomorphisms of R

n . An (X, e) -structure on a manifold M ∈ Mfldn is a map
f : M → X such that T M is the pullback f ∗(E)which is the same as a factorization

M
f→ X

e→ BHomeo(Rn) of the map M
eM−→ BHomeo(Rn) classifying the tangent

(micro-)bundle of M .

Definition 8 Let Mfld(X,e)
n be the (homotopy) pullback (in∞-Cat)

Mfld(X,e)
n := Mfldn ×h

Top/BHomeo(Rn )
Top/X .

In other words Mfld(X,e)
n is the ∞-category with objects n-dimensional topological

manifolds with an (X, e)-structure and with morphism the embeddings preserving
the (X, e)-structure. The latter morphisms are made into a topological space by
identifying them with the homotopy pullback space

Map
Mfld(X,e)

n
(M, N ) :=Emb(X,e)(M, N )

∼=Emb(M, N ) ×h
Map/BHomeo(Rn )(M,N ) Map/X (M, N ).

Example 11 We list our main examples of study.

• Let X = pt , then E is trivial (here e is induced by the canonical base point of
BHomeo(Rn)) and an (X, e)-structure on M is a framing, that is, a trivialization
of the tangent (micro-)bundle of M . In that case, we denote Mfld f r

n := Mfld(pt,e)
n

21 Though homology theory for manifolds can be extended to stratified manifolds, see [5].
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the ∞-category of framed manifolds. Note that this ∞-category is equivalent to
the one associated to the topological category with objects the framed manifolds
of dimension n and morphism spaces from M to N the framed embeddings, that
is the pairs ( f, h) where f ∈ Emb(M, N ) and h is an homotopy between the two
trivialisation of T M induced by the framing of M and the framing of N pulled-back
along f .

• Let X = B O(n) and B O(n)
e→ BHomeo(Rn) be the canonical map. Then

Mfld(BO(n),e)
n is (equivalent to) the ∞-category of smooth n-manifolds of

Remark10. This essentially follows because the map O(n) → Diffeo(Rn) is a
deformation retract and the characterization of smooth manifolds in terms of their
micro-bundle structure [63].

• Let X = BSO(n) and BSO(n)
e→ BHomeo(Rn) be the canonical map induced

by the inclusion of SO(n) ↪→ Homeo(Rn). Then a (BSO(n), e)-structure on M
is an orientation of M . We denote Mfldor

n := Mfld(BSO(n),e)
n the ∞-category of

oriented smooth n-manifolds. Similarly to the framed case, it has a straightforward
description as the∞-category associated a topological category with morphisms
the space of oriented embeddings.

• If X is a n-dimensional manifold, we can take eX : X → BHomeo(Rn) to be
the map corresponding to the tangent bundle T X → X of X . We simply denote
Mfld(X,T X)

n the associated ∞-category of manifolds. Every open subset of X is
canonically an object of Mfld(X,T X)

n .

The (topological) coproduct M
∐

N (that is disjoint union) of two (X, e)-

manifolds M, N has a canonical structure of (X, e)-manifold (given by M
∐

N
f
∐

g→
X where M

f→ X and N
g→ X define the (X, e)-structures). Note that in general

there are no embeddings M
∐

M → M so that the disjoint union of manifolds is not
a coproduct (in the sense of category theory) in Mfld(X,e)

n . Nevertheless

Lemma 4 (Mfld(X,e)
n ,

∐
) is a symmetric monoidal ∞-category.

There is a canonical choice of framing of R
n which induces a canonical (X, e)-

structure onR
n for any pointed space X . Unlike other manifolds, there are interesting

framed embeddings
∐

R
i → R

i for any integer i . Indeed, in view of Example 11
and Definition 51 the space of embeddings Emb f r (

∐
{1,...,r} R

n, R
n) = Disk f r

n (r, 1)
is homotopy equivalent to Cuben(r) the arity r space of the little cube operad and
thus is homotopy equivalent to the configuration space of r unordered points in R

n .
This motivates the following (X, e)-structured version of En-algebras.

Definition 9 Let Disk(X,e)
n be the full subcategory of Mfld(X,e)

n spanned by disjoints
union of standard euclidean disks R

n . The∞-category of Disk(X,e)
n -algebras22 is the

category

Fun⊗(Disk(X,e)
n , Chain(k)) (18)

22 Which we also referred to as the category of (X, e)-structured En-algebras.
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of symmetric monoidal (∞-)functors from (Disk(X,e)
n ,

∐
) to (Chain(k),⊗).

The underlying object of a Disk(X,e)
n -algebra A is its value A(Rn) on a single disk

R
n . We will often abusively denote in the same way the Disk(X,e)

n -algebra and its
underlying object.

WedenoteDisk(X,e)-Alg the∞-category of Disk(X,e)
n -algebras andDisk(X,e)-Alg(C)

the one ofDisk(X,e)
n -algebraswith values in a symmetricmonoidal category C (whose

definition are the same as Definition 9 with (Chain(k),⊗) replaced by (C,⊗)). The
underlying object induces a functor

Disk(X,e)-Alg(C) −→ C (19)

Example 12 • For X = pt , the category of Disk(X,e)
n -algebras will be denoted

Disk f r
n -Alg. It is equivalent to the usual category of En-algebras and corresponds

to the case of framed manifolds.
• The category of Disk(BSO(n),e)

n -algebras is equivalent to the category of alge-
bras over the operad

(
Cuben(r) � SO(n)r

)
r≥1 introduced in [82] (and called the

framed little disk operad). Since these algebras corresponds to the case of oriented
manifolds, we call them oriented En-algebras and we simply write Diskor

n for

Disk(BSO(n),e)
n . It can be shown that Diskor

n -algebras are homotopy fixed points of

the En-algebras with respect to the action of SO(n) on the operad Disk f r
n .

• Similarly, the category of Disk(BO(n),e)
n -algebras is equivalent to the category of

algebras over the operad
(
Cuben(r) � O(n)r

)
r≥1. We also call them unoriented

En-algebras and simply write Diskun
n for Disk(BO(n),e)

n .
• Let U ∼= R

n be a disk in X . By restriction to sub-disks of U , we have a canonical
functor Disk(X,T X)

n -Alg → Disk(Rn ,TRn)
n -Alg ∼= En-Alg (see Theorem 9). It

follows that a Disk(X,T X)
n -algebra is simply a family of En-algebras over X .

Example 13 (Commutative algebras as Disk(X,e)
n -algebras) The canonical func-

tor Disk(X,e)
n → Fin (where Fin is the ∞-category associated to the category of

finite sets) shows that any E∞-algebra (Definition 34) has a canonical structure of
Disk(X,e)

n -algebras. Thus we have canonical functors

CDGA −→ E∞-Alg −→ Disk(X,e)
n -Alg.

For A a differential graded commutative algebra, this structure is the symmetric
monoidal functor defined by A(

∐
i∈I R

n) := A⊗I and, for an (X, e)-preserving
embedding

∐
I R

n ↪→ R
n , by the (iterated) multiplication A⊗I → A.

Example 14 (Opposite of an En-algebra) There is a canonical Z/2Z-action on
En-Alg induced by the antipodal map τ : R

n → R
n , x �→ −x acting on the source

of Fun⊗(Disk f r
n , Chain(k)). If A is an En-algebra, then the result of this action

Aop := τ∗(A) is its opposite algebra. If n = ∞, the antipodal map is homotopical
to the identity so that Aop is equivalent to A as an E∞-algebra.
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3.2 Factorization Homology of Manifolds

We now explain what is a Homology Theory for Manifolds (Definition 10) in a
way parallel to the presentation of the Eilenberg-Steenrod axioms. We first need an
analogue of Lemma 1 for monoidal functors out of manifolds (instead of spaces) in
order to formulate the correct excision axiom.

Observe thatRn is canonically an En-algebra object inMfldn . Let N be an (n−s)-
dimensional manifold such that N × R

s has an (X, e)-structure. Then, similarly,
N ×R

s is also an Es-algebra object in Mfld(X,e)
n . Let us describe more precisily this

structure: for finite sets I, J , we have continuous maps

γN
I,J : Emb f r

(∐

I

R
s,
∐

J

R
s
)
→ Emb(X,e)

(∐

I

(N × R
s),
∐

J

(N × R
s)
)

induced by the composition

∐

I

(N × R
s) ∼= N ×

(∐

I

R
s
)

idN× f→ N ×
(∐

J

R
s
) ∼=

∐

J

(N × R
s)

for any f ∈ Emb f r
(∐

I R
s,
∐

J R
s
)
. In particular, taking s = n, N = pt , the above

maps induce a canonical map of operads

γ : Disk f r
n → Disk(X,e)

n

and thus we have an underlying functor γ∗ : Disk(X,e)
n -Alg −→ En-Alg. And more

generally we obtain functors: (γN )∗ : Disk(N×Rs ,T (N×Rs))
n -Alg −→ Es-Alg.

The main consequence is that any symmetric monoidal functor (from Mfld(X,e)
n )

maps N × R
s to an Es-algebra object of the target category. More precisely:

Lemma 5 Let
(
Mfld(X,e)

n ,
∐) F−→ (Chain(k),⊗)be a symmetric monoidal functor.

1. For any manifold N × R
s with an (X, e)-structure, F(N × R

s) has a canonical
Es-algebra structure.

2. Let M be an (X, e)-structured manifold with an end23 trivialized as N × R

(where N is of codimension 1 and the open part of M lies in the neighborhood
of N × {−∞}, see Fig.1). Then F(M) has a canonical left24 module structure
over the E1-algebra F(N × R).

3. F(Rn) has a natural structure of Disk(X,e)
n -algebra.

23 i.e. open boundary component.
24 If N × R is trivialized so that the open part of M is in the neighborhood of N × {+∞}, then
F(M) has a canonical right module structure.
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Proof Endow R
n with its canonical framing. It automatically inherits an (X, e)-

structure for every connected component25 of X (since every vector bundle is locally
trivial). Now, since F is symmetric monoidal, then F(Rn) also has an induced
structure of Disk(X,e)

n -algebra. Let us describe the structure mentioned in 1. and 2.

1. For any manifold N × R
s with an (X, e)-structure, the Es-algebra structure on

F(N × R
i ) is given by the structure maps

Emb f r
(∐

I

R
s ,Rs

)
× (F(N × R

s )
)I

γN
I,pt−→ Emb(X,e)

(∐

I

(N × R
i ), N × R

s
)
× (F(N × R

s )
)I

−→ Emb(X,e)
(∐

I

(N × R
s ), N × R

s
)
×F

(∐

I

(N × R
s )
) F(Emb(X,e)(−,−))−→ F(N × R

s ).

The fact that F is monoidal ensures it defines an Es-algebra structure.
From the definition, it is clear that γ∗(F(Rn)) ∼= F(Rn) as an En-algebra (where
the two structures are given by 1. and 3.).

2. Now, let M be an (X, e)-structured manifold with an end trivialized as N × R;
F(N ×R) is an E1-algebra by 1. The left module structure of F(M) is given by
the maps

Emb f r
(
(
∐

I

R)
∐

(0, 1], (0, 1]
)
×
(
F(N × R)

)I × F(M)

γN
I
∐{∗},pt−→ Emb(X,e)

((∐

I

N × R
)∐

M, M
)
× (F(N × R

i )
)I × F(M)

−→ Emb(X,e)
(∐

I

(N × R)
∐

M, M
)
× F

((∐

I

(N × R)
)∐

M
)

F(Emb(X,e)(−,−))−→ F(N × R
i ).

The above lemma is crucial in order to formulate the excision property.

N × R

M

−∞

Fig. 1 A manifold M with a trivialization N × R of its open boundary

25 In practice, X will almost always be connex so that the structure will be canonical.
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Definition 10 An homology theory for (X, e)-manifolds (with values in the sym-
metric monoidal∞-category (Chain(k),⊗)) is a functor

F : Mfld(X,e)
n × Disk(X,e)

n -Alg → Chain(k)

(denoted (M, A) �→ FM (A)) satisfying the following axioms:

(i) (dimension) there is a natural equivalence FRn (A) ∼= A in Chain(k);
(ii) (monoidal) the functor M �→ FM (A) is symmetric lax-monoidal and, for any

set I , the following induced maps are equivalences (naturally in A)

⊗

i∈I

FMi (A)
�−→ F∐

i∈I Mi (A). (20)

(iii) (excision) Let M be an (X, e)-manifold. Assume there is a codimension 1
submanifold N of M with a trivialization N ×R of its neighborhood such that
M is decomposable as M = R ∪N×R L where R, L are submanifolds of M
glued along N × R. By Lemma 5, FN×R(A) is an E1-algebra and FR(A),
FL(A) are respectively right and left modules. The excision axiom26 is that the
canonical map

FL(A)
L⊗

FN×R(A)
FR(A)

�−→ FM (A)

(induced by the universal property of the right hand side) is an equivalence.

Remark 11 The symmetric lax-monoidal condition in axiom (ii) means that there
are natural (in A, M) transformations like (20) compatible with composition for any
finite I and invariant under the action of permutations. The axiom (ii) thus implies
that M �→ FM (A) is symmetric monoidal. When I is not finite, the right hand side
in (20) is the colimit lim−→

F→I

⊗
j∈F FM j (A) over all finite sets F and themap is induced

by the universal property of the colimit and the lax monoidal property.

Theorem 6 (Francis [35]) There is an unique27 homology theory for (X, e)-mani-
folds (in the sense of Definition 10), which is called factorization homology.28

Factorization homology is defined in [71] and its value on a (X, e)-manifold M and
Disk(X,e)

n -algebra A is denoted
∫

M A.

Remark 12 (Other coefficients) InDefinition 10 andTheorem6, one can replace the
symmetric monoidal category (Chain(k),⊗) by any symmetric monoidal
∞-category (C,⊗) which has all colimits and whose monoidal structure commutes
with geometric realization and filtered colimits, see [5, 34, 35].

26 Or Mayer-Vietoris principle.
27 Up to contractible choices.
28 The name comes from the fact that it satisfies the factorization property (Remark 20). Another
name is topological chiral homology.
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Remark 13 (Finite variant) If one restricts to the full subcategory of Mfld(X,e)
n

spanned by the manifolds which have finitely many connected components which
are the interior of closed manifolds, then axiom (ii) becomes equivalent to asking F
to be naturally symmetric monoidal and Theorem 6 stills holds in this context.

Note that factorization homology depends on the (X, e)-structure not the under-
lying topological manifold structure of M in general. For instance, if M = R is
equipped with its standard framing and A is an associative algebra (hence E1), then∫
R

A ∼= A as an E1-algebra. However, if N = R is equipped with the opposite
framing (pointing toward −∞), then

∫
N A ∼= Aop (where Aop is the algebra with

opposite multiplication) as an E1-algebra (see [34, 71] for more general statements).

Remark 14 In particular, Theorem 6 implies that the functor F �→ FRn from, the
category of symmetric monoidal functors Mfld(X,e)

n → Chain(k) satisfying exci-
sion,29 to the category of Disk(X,e)

n -algebras (which is a well defined functor by
Lemma 5) is a natural equivalence.

Definition 11 Let A ∈ Disk(X,e)
n -Alg. The homology theory for (X, e)-manifolds

defined30 by A will be called factorization homology (or homology theory) with
coefficient in A.

Example 15 (Hochschild homology) Let A be a differential graded associative
algebra (or even an A∞-algebra) and choose a framing of S1 = SO(2) induced by
its Lie group structure. We can use excision to evaluate the factorization homology
with value in A on the framed manifold S1. Here, we see the circle as being obtained
by gluing two intervals: S1 = R ∪{1,−1}×R R, see Fig. 2

Note that the induced framing on {1,−1}×R correspond to the standard framing
ofR on the component {1}×R and the opposite framing on the component {−1}×R

so that
∫
{−1}×R A = Aop (see Example 27). Thus, by excision we find that

∫

S1

A ∼=
∫

R

A
L⊗∫

{1,−1}×R

A

∫

R

A ∼= A
L⊗

A⊗Aop
A ∼= H H(A) (21)

where H H(A) is the usual Hochschild homology31 of A with value in itself.

Example 16 Let Freen be the free En-algebra on k, which is naturally a Diskun
n -

algebra (Example 12). It can thus be evaluated on any manifold.

29 i.e. axiom (iii) in Definition 10.
30 In the sense of Remark 14.
31 At least if A is projective over k; if A is not projective over k, there are several variants of
Hochschild homology, the one we are considering is the derived version and correspond to what is
sometimes called shukla homology [80, 87].
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R

L

1−1

Fig. 2 The decomposition of the circle S1 into 2 intervals (pictured in blue just across the circle)
L ∼= R and R ∼= R along a trivialization {1,−1} × R (pictured in red). The arrows are indicating
the orientations/framing of the circle and other various pieces of the decomposition

Proposition 8 ([5]) Let M be a manifold. Then
∫

M Freen ∼= C∗
(∐

n∈N Confn(M)
)

where Confn(M) is the space of configurations of n -unordered points in M.

In particular, factorization homology is not an homotopy invariant of manifolds
(since configurations spaces of unordered points are not, see [68]). By consider-
ing configuration spaces of points with labels, one has a similar result for the free
En-algebra Freen(V ) associated to V ∈ Chain(k), see [5].

Example 17 (Non-abelian Poincaré duality) Let us now mention another important
example of computation of factorization homology. Let (Y, y0) be a pointed space
and Ωn(Y ) := { f : [0, 1]n → Y, f (∂[0, 1]n) = y0} be its n-fold based loop space.
Then the singular chainsC∗(Ωn(Y )) has a natural structure of unoriented En-algebra.

Theorem 7 (Non-abelian Poincaré duality, Lurie [71]) If M is a manifold of dimen-
sion n and Y an n − 1-connective pointed space, then

∫

M

C∗(Ωn(Y )) ∼= C∗(Mapc(M, Y ))

where Mapc(M, Y ) is the space of compactly supported maps from M to Y .

If n = 1 and Y is connected, Theorem 7 reduces to Goodwillie’s quasi-isomorphism
[50] H H(C∗(Ω(Y ))) ∼= C∗(LY ) where LY = Map(S1, Y ) is the free loop space
of Y .

Remark 15 (Derived functor definition) One possible way for defining factoriza-
tion homology is similar to the one of Sect. 2.1.2. Indeed, let A be aDisk(X,e)

n -algebra.
Then A defines a covariant functor Disk(X,e)

n → Chain(k). Similarly, if M is in
Mfld(X,e)

n , then it defines a contravariant functor E (X,e)
M : (Disk(X,e)

n
)op → Top,

given by the formula

E (X,e)
M

(∐

i∈I

R
n
)
:= Emb(X,e)

(∐

i∈I

R
n, M

)
.
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The data of A and M thus gave a functor

E (X,e)
M ⊗ A : (Disk(X,e)

n

)op × Disk(X,e)
n

E (X,e)
M ×A−→ Top× Chain(k)

⊗−→ Chain(k).

Here Top×Chain(k)
⊗→ Chain(k)means the tensor of a space with a chain complex

which is equivalent to (X, D∗) �→ C∗(X) ⊗ D∗ where C∗(X) is the singular chain
functor of X (with value in k).

Proposition 9 ([35]) The factorization homology
∫

M A is the (homotopy) coend of

E (X,e)
M ⊗ A. In other words:

∫

M

A ∼= E (X,e)
M

L⊗
Disk(X,e)

n

A

∼= hocolim

⎛

⎝
∐

f :{1,...,q}→{1,...,p}
C∗
(
E (X,e)

M (Rn)
)⊗p ⊗ Disk(X,e)

n (q, p) ⊗ A⊗q

⇒
∐

m

C∗
(
E (X,e)

M (Rn)
)⊗m ⊗ A⊗m

)

The Proposition remains true with (Chain(k),⊗) replaced by any symmetric
monoidal∞-category satisfying the assumptions of Remark 12.

4 Factorizations Algebras

In this section we will give a Čech type construction of Factorization homology
which plays for Factorization homology the same role as sheaf cohomology plays
for singular cohomology.32 This analogue of cosheaf theory is given by factorization
algebras which we describe in length here.

4.1 The Category of Factorization Algebras

We start by describing various categories of (pre)factorization algebras (including
the locally constant ones).

Following Costello Gwilliam [24], given a topological space X , a prefactorization
algebra over X is an algebra over the colored operad whose objects are open subsets

32 Singular cohomology of a paracompact space X can be computed as the cohomology of the
constant sheaf ZX on X while singular cohomology with twisted coefficient is computed by sheaf
cohomology with value in a locally constant sheaf.
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of X and whose morphisms from {U1, . . . , Un} to V are empty unless when Ui ’s
are mutually disjoint subsets of U , in which case they are singletons. Unfolding the
definition, we find

Definition 12 A prefactorization algebra on X (with value in chain complexes) is a
rule that assigns to any open set U a chain complex F(U ) and, to any finite family
of pairwise disjoint open sets U1, . . . , Un ⊂ V included in an open V , a chain map

ρU1,...,Un ,V : F(U1) ⊗ · · · ⊗ F(Un) −→ F(V ).

These structure maps are required to satisfy obvious associativity and symmetry
conditions (see [24]): the map ρU1,...,Un ,V is invariant with respect to the action
of the symmetric group Sn by permutations of the factors on its domain (in other
words, the map ρU1,...,Un ,V depends only of the collection U1, . . . , Un, V not on the
particular choice of ordering of the open sets) and ρU,U is the identity33 of F(U ).
Further, the associativity condition is that: for any finite collection of pairwise disjoint
open subsets (Vj ) j∈J lying in an open subset W together with, for all j ∈ J , a finite
collections (Ui, j )i∈I j of pairwise disjoint open subset lying in Vj , the following
diagram

i,j r Ir

F Uij

j
ρ Uij i Ij

,Vj

ρ Uij ,W F W

j J

F Vj

ρ Vj j J ,W

(22)

is commutative.
If U is an open cover of X , we define a prefactorization algebra on U , also

denoted a U -prefactorization algebra, to be the same thing as a prefactorization
algebra except that F(U ) is defined only for U ∈ U .

Remark 16 One can define a prefactorization algebra with value in any symmetric
monoidal category (C,⊗) by replacing chain complexes by objects of C.
Remark 17 Prefactorization algebras are pointed since the inclusion ∅ ↪→ U of the
empty set in any open induces a canonical mapF(∅) → F(U ). Further, the structure
maps of a prefactorization algebra exhibit F(∅) as a commutative algebra in (C,⊗)

(non necessarily unital) and F(U ) as a F(∅)-module.

33 We could weaken this condition to be only a weak-equivalence or actually just a chain map. In the
latter case, wewill obtain a (homotopy) strictlyweaker notion of prefactorization algebras; however,
this will not change the notion of factorization algebras since the condition of being a factorization
algebra (Definition 13) will imply that ρU,U is an equivalence as U is always a factorizing cover
of itself; since it is idempotent by associativity, we will get that it is homotopy equivalent to the
identity.
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There is a Čech-complex associated to a cover U of an open set U . Denoting PU
the set of finite pairwise disjoint open subsets {U1, . . . , Un |Ui ∈ U} (n is not fixed),
it is, by definition the realization of the simplicial chain complex

Č•(U ,F) =
⊕

α∈PU

(
⊗

U∈α

F(U )

)

⇔
⊕

(α,β)∈PU×PU

⎛

⎝
⊗

(U,V )∈α×β

F(U ∩ V )

⎞

⎠←←← · · ·

where the horizontal arrows are induced by the natural inclusions as for the usual
Čech complex of a cosheaf (see [24]).

Let us describe the simplicial structure more precisely. In simplicial degree i , we
get the chain complex Či (U ,F) :=⊕

α∈PU i+1 F(α)where, forα = (α0, . . . ,αi ) ∈
PU i , we denote F(α) the tensor product of chain complexes (with its natural differ-
ential) :

F(α) =
⊗

U j∈α j

F
( i⋂

j=0

U j

)
. (23)

We write din : ⊕α∈PU i+1 F(α) → ⊕
α∈PU i+1 F(α) the induced differential. The

face maps ∂s : ⊕α∈PUn+1 F(α) −→ ⊕
β∈PUn F(β) (s = 0 · · · n) are the direct

sum of maps ρ̂s
α : F(α) → F(α̂s) where α̂s = (α0, . . . ,αs−1,αs+1, . . . ,αn) is

obtained by discarding the sth-collection of opens in PUn+1. Precisely ρ̂s
α is the

tensor product

⊗

U j∈α j

F
( n⋂

j=0

U j

)
−→

⊗

Uk ∈ αk ,

k �= s

F
( n⋂

k = 0
k �= s

Uk

)
(24)

of the structure maps associated to the inclusion of opens
⋂

j=0...n U j into⋂
j �=s U j . The degeneracies are similarly given by operations (α0, . . . ,αn) �→

(α0, . . . ,α j ,α j , . . . ,αn) doubling a set α j .

The simplicial chain-complex Č•(U ,F) can bemade into a chain complex (which
is the total complex of a bicomplex):

Č(U ,F) =
⊕

α∈PU
F(α) ←

⊕

β∈PU×PU
F(β)[1] ← · · ·

where the horizontal arrows are induced by the alternating sum of the faces ∂ j in

the standard way. In other words, Č(U ,F) = ⊕
i≥0

(⊕
α∈PU i+1 F(α)[i]

)
with

differential the sum of F(α)[i] (−1)i din−→ F(α)[i] and
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n∑

j=0

(−1) j∂ j :
⊕

α∈PUn+1

F(α)[n] →
⊕

β∈PUn

F(β)[n − 1].

Remark 18 If a cover U is stable under finite intersections, we only need F to be a
prefactorization algebra on U , to define the Čech-complex Č(U ,F).

If U is a cover of an open set U , then the structure maps of F yield canonical
maps F(α) → F(U ) which commute with the simplicial maps. Thus, we get a
natural map of simplicial chain complexes

(
Či (U ,F) → F(U )

)
i≥0 to the constant

simplicial chain complex
(F(U )

)
i≥0. Passing to geometric realization, we obtain a

canonical chain complex homomorphism:

Č(U ,F) −→ F(U ). (25)

Remark 19 (Čech complexes in (C,⊗)) If (C,⊗) is a symmetricmonoidal category
with coproducts,wedefine the Čech complexof a prefactorization algebrawith values
in C in the same way, replacing the direct sum by the coproduct in order to get a
simplicial object Č•(U ,F) in C. If further, C has a geometric realization, then we
obtain the Čech complex Č(U ,F) ∈ C exactly as for chain complexes above and the
canonical map (25) is also well defined.

Definition 13 Anopencover ofU is factorizing if, for all finite collections x1, . . . , xn

of distinct points inU , there are pairwise disjoint open subsetsU1, . . . , Uk in U such
that {x1, . . . , xn} ⊂⋃k

i=1 Ui .
A prefactorization algebraF on X is said to be a homotopy34 factorization algebra

if, for all open subsets U ∈ Op(X) and for every factorizing cover U of U , the
canonical map Č(U ,F) → F(U ) is a quasi-isomorphism (see [22, 24]).

Remark 20 (Factorization property) IfF is a factorization algebra andU1, . . . , Ui

are disjoint open subsets of X , the factorization condition implies that the struc-
ture map

F(U1) ⊗ · · · ⊗ F(Ui ) −→ F(U1 ∪ · · · ∪ Ui ) (26)

is a quasi-isomorphism.
In particular F(∅) ∼= k (or, more generally, is the unit of the symmetric monoidal

category C if F has values in C).
The fact that the map (26) is an equivalence is called the factorization property

in the terminology of Beilinson–Drinfeld [7], in the sense that the value of F on
disjoint opens factors through its value on each connected component.

34 We can also say derived factorization algebra. Unless otherwise specified, the word factorization
algebra will always mean a homotopy factorization algebra in these notes.
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Example 18 (The trivial factorization algebra) The trivial prefactorization algebra
k is the constant prefactorization algebra given by the rule U �→ k(U ) := k, with
structure maps given by multiplication. It is a (homotopy) factorization algebra. It is
in particular locally constant over any stratified space X (Definitions 14 and 21).

One defines similarly the trivial factorization algebra over X with values in a
symmetric monoidal ∞-category (C,⊗) by the rule U �→ 1C where 1C is the unit
of the monoidal structure.

Remark 21 (Genuine factorization algebras) The notion of homotopy (or derived)
factorization algebra in Definition 13 is a homotopy version of a more naive, un-
derived, version of factorization algebra. This version is a prefactorization algebra
such that the following sequence

( ⊕

α∈PU2

F(α)
) ∂0

⇒
∂1

( ⊕

β∈PU
F(β)

)
→ F(U )

is (right) exact for any factorizing cover U of U . In other words we ask for a similar
condition as in Definition 13 but with the truncated Čech complex. We refer to
prefactorization algebras satisfying this condition as genuine factorization algebras
(they are also called strict in [24]). Note that a genuine factorization algebra is not
a (homotopy) factorization algebra in general. Homotopy factorization algebras are
to genuine factorization algebras what homotopy cosheaves are to cosheaves; that is
they are obtained by replacing the naive version by an acyclic resolution.

When X is a manifold we have the notion of locally constant factorization algebra
which roughly means that the structure maps do not depend on the size of the open
subsets but only their relative shapes:

Definition 14 Let X be a topological manifold of dimension n. We say that an open
subset U of X is a disk if U is homeomorphic to a standard euclidean disk R

n . A
(pre-)factorization algebra over X is locally constant if for any inclusion of open
disks U ↪→ V in X , the structure map F(U ) → F(V ) is a quasi-isomorphism.

Let us mention that a locally constant prefactorization algebra is automatically a
(homotopy) factorization algebra, see Remark 24.

Definition 15 A morphism F → G of (pre)factorization algebras over X is the data
of chain complexes morphisms φU : F(U ) → G(U ) for every open set U ⊂ X
which commute with the structures maps; that is the following diagram

F U1 F Ui

φj Uj

ρU1,...,Ui,V F V

φV

G U1 G Ui

ρU1,...,Ui,V G V
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is commutative for any pairwise disjoint finite family U1, . . . , Ui of open subsets
of an open set V . Morphisms of (pre)factorization algebras are naturally enriched
over topological space. Indeed, we have mapping spaces Map(F ,G) defined as the
geometric realization of the simplicial set

n �→ Map(F ,G)n := {prefactorization algebras morphisms from F to C∗(Δn)⊗G}

where C∗(Δn) ⊗ G is the prefactorization algebra whose value on an open set U is
C∗(Δn)⊗ G(U ). We obtain in this way∞-categories of (pre)factorization algebras
(as in Appendix 10.2, Example 58).

The∞-category of prefactorization algebras over X is denoted PFacX and sim-
ilarly we write FacX for the ∞ -categories of factorization algebras over X and
Faclc

X for the locally constant ones (which is a full subcategory). Also if (C,⊗) is a
symmetric monoidal (∞-)category (with coproducts and geometric realization), we
will denote FacX (C), Faclc

X (C) the∞-categories of factorization algebras in C.
Note that the embedding FacX → PFacX is a fully faithful embedding.

The underlying tensor product35 of chain complexes induces a tensor product of
factorization algebras which is computed pointwise: for F ,G ∈ PFacX and an open
set U , we have

(F ⊗ G)(U ) := F(U )⊗ G(U ) (27)

and the structure maps are just the tensor product of the structure maps. If (C,⊗)

is symmetric monoidal, the same construction yields a monoidal structure on
PFacX (C). Its unit is the trivial factorization algebra with values in C (Example 18).

Proposition 10 (Costello-Gwilliam [24]) The (∞-)categories PFacX (C), FacX (C),
Faclc

X (C) 36 are symmetric monoidal with tensor product given by (27).

Remark 22 (Restrictions) If Y ⊂ X is an open subspace, then we have natural
restriction functors PFacX (C) → PFacY (C), FacX (C) → FacY (C). When X is a
manifold, the same holds for locally constant factorization algebras.

Definition 16 IfU is an open subset of X andA ∈ PFac(X), wewriteA|U ∈ PFacU

for the restriction of A to U and similarly for (possibly locally constant) factorization
algebras.

A homeomorphism f : X
�→ Y induces isomorphisms PFacX ∼= PFacY and

FacX ∼= FacY (or Faclc
X
∼= Faclc

Y when X is a manifold) realized by the functor
f∗ see Sect. 5.1.

35 recall our convention that if k is not a field, the tensor product reallymeans derived tensor product.
36 The latter is defined when X is a manifold.
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4.2 Factorization Homology and Locally Constant
Factorization Algebras

Wenowexplain the relationship between the Čech complexof a factorization algebras
and factorization homology. We first start to express Disk(X,T X)

n -algebras in terms
of factorization algebras. For simplicity, we assume in Sect. 4.2 that manifolds are
smooth. For topological manifolds one obtains the same result as below by replacing
geodesic convex neighborhoods by families of embeddingsR

n → M wich preserves
the (M, T M)-structure and whose images form a basis of open of M .

Let M be a manifold with an (X, e)-structure. Every open subset U of M inher-

its a canonical (X, e)-structure given by the factorization U ↪→ M
f→ X

e→
BHomeo(Rn) of the map eU : U → BHomeo(Rn) classifying the tangent bun-
dle of U . This construction extends canonically into a functor

f∗ : Disk(M,T M)
n −→ Disk(X,e)

n

and (by Definition 9) we have

Lemma 6 An (X, e)-structure M
f→ X

e→ BHomeo(Rn) on a manifold M induces
a functor f ∗ : Disk(X,e)

n -Alg → Disk(M,T M)
n -Alg.

Now let A be a Disk(X,e)
n -algebra and choose a metric on M . A family of pair-

wise disjoint open convex geodesic neighborhoods U1, . . . , Ui which lies in a con-
vex geodesic neighborhood37 V , defines an (X, e)-structure preserving embedding
iU1,...,Ui ,V ∈ Emb(X,e)

(∐
{1,...,i} R

n, R
n
)
so that the Disk(X,e)

n -algebra structure of
A yields a structure map

μU1,...,Ui ,V : A⊗i
iU1,...,Ui ,V−→ Emb(X,e)

( ∐

{1,...,i}
R

n, R
n
)
⊗ A⊗i → A.

This allows us to define a prefactorization algebra FA on open convex geodesic
subsets by the formula FA(V ) := A. Since, the convex geodesic neighborhoods
form a basis of open which is stable by intersection, for any open set U ⊂ M , we
have the Čech complex38

Č(CV(U ),FA) (28)

where CV(U ) is the factorizing cover ofU given by the geodesic convex open subsets
ofU . The following result shows thatFA is actually (the restriction of) a factorization
algebra and computes factorization homology.

37 Which is thus canonically homeomorphic to an euclidean disk.
38 The construction is actually the extension of a factorization algebra on CV(U ) as in Sect. 5.
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Theorem 8 ([47]) Let A be a Disk(X,e)
n -algebra.

• The rule M �→ Č(CV(M),FA) is a homology theory for (X, e)-manifolds. In par-
ticular the Čech complex is independent of the choice of the metric and computes
factorization homology of M:

Č(CV(M),FA) �
∫

M

A.

• The functor (U, A) �→ Č(CV(U ),FA) induces an equivalence of ∞-categories

Disk(M,T M)
n -Alg

�−→ Faclc
M .

Since we have a preferred choice of framing for R
n , the projection map R

n →
pt induces an equivalence of ∞-categories Disk(Rn ,TRn)

n
�→ Disk(pt,e)

n and thus
equivalences Disk(X,T X)

n -Alg ∼= Disk f r
n -Alg ∼= En-Alg (see Example 12). Hence

Theorem 8 is a slight generalization of the following beautiful result.

Theorem 9 (Lurie [71]) There is a natural equivalence of ∞-categories

En-Alg ∼= Faclc
Rn .

The functor Faclc
Rn → En-Alg is given by the global section (i.e. the pushforward

p∗ where p : R
n → pt, see Sect.5.1) and the inverse functor is precisely given by

factorization homology.

Locally constant factorization algebras onR
n are thus a model for En-algebras.More

generally, locally constant factorization algebras are amodel forDisk(X,T X)
n -algebras

in which the cosheaf property replaces39 some of the higher homotopy machinery
needed for studying these algebras (at the price of working with “lax” algebras).

Remark 23 Theorem 9 is the key example of the relationship between factorization
algebras and factorization homology so we now explain the equivalence in more
depth. Recall that En-Alg is the ∞-category of algebras over the operad Cuben

of little cubes. It is equivalent to the ∞-category Disk f r
n -Alg since we have an

equivalence of operads Cuben
�−→ Disk f r

n induced by a choice of diffeomorphism
θ : (0, 1)n ∼= R

n . Consider the open cover D of R
n consisting of all open disks

and denote PFaclc
D

40 the category of D-prefactorization algebras which satisfy the

locally constant condition (Definitions 14 and 12). Evaluation of a Disk f r
n -algebra

on an open disk yields a functor Disk f r
n -Alg → PFaclc

D which is an equivalence
by [71, Sect. 5.2.4].

39 Note that factorization algebras are described by operads in discrete space together with the Čech
condition, see Remark 24.
40 Note that the category ofD-prefactorization algebras is the category of algebras over the colored
operad N (Disk(Rn)), see Remark 24.



Notes on Factorization Algebras, Factorization Homology and Applications 469

Similarly, let R be the cover of (0, 1)n by open rectangles and PFaclc
R be the

category of locally constant R-prefactorization algebras. Evaluation of a Cuben-
algebra on rectangles yields a functor En-Alg = Cuben-Alg → PFaclc

R. Denote
Faclc

D,Faclc
R the category of locally constant factorization algebras over the coversD,

R respectively (see Sect. 5.2).We have two commutative diagram and an equivalence
between them induced by the diffeomorphism θ:

Diskfr
n -Alg PFaclc

D Faclc
Rn

Faclc
D

(29)

En-Alg PFaclc
R Faclc

0,1 n

Faclc
R

(30)

where the dotted arrows exists by Theorem 8 and the diagonal right equivalences
are given by Proposition 17. Since the embedding of factorization algebras in pref-
actorization algebras (over any cover or space) is fully faithful, we obtain that all
maps in Diagrams (29) and (30) are equivalences so that we recover the equivalence
En-Alg ∼= Faclc

Rn
∼= Faclc

(0,1)n of Theorem 9, also see [14].

Example 19 (Constant factorization algebra on framed manifolds) Let M be a
framed manifold of dimension n. By Theorem 8 or [47, 71], any En-algebra A
yields a locally constant factorization algebra A on M which is defined by assigning
to any geodesic disk D the chain complex A(D) ∼= A. We call such a factorization
algebra the constant factorization algebra on M associated to A since it satisfies
the property that there is a (globally defined) En-algebra A together with natural
(with respect to the structure map of the factorization algebra) quasi-isomorphism

A(D)
�→ A for every disk D.

In particular, for n = 0, 1, 3, 7, there is a faithful embedding of En-algebras into
constant factorization algebras over the n-sphere Sn .

If a manifold X is not framable, we can obtain constant factorization algebras on
X by using (un)oriented En-algebras instead of plain En-algebras:
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Example 20 (Constant factorization algebra on (oriented) smooth manifolds) Let
A be an unoriented En-algebra (i.e. a Diskun

n -algebra, Example 12). Then A yields
a (locally) constant factorization A algebra on any smooth manifold of dimension n
which is defined by assigning to any geodesic disk D the chain complex A(D) ∼= A.

Similarly, an oriented En-algebra (i.e. aDiskor
n -algebra) yields a (locally) constant

factorization algebra on any oriented dimension n manifold.

Example 21 (Commutative factorization algebras)The canonical functor E∞-Alg→
Disk(X,e)

n -Alg (see Example 13) shows that any E∞-algebras induces a canonical
structure of (locally) constant factorization algebra on any (topological) manifold M .
In that case, the factorization homology reduces to the derived Hochschild chains
according to Theorems 8 and 10 below. See Sect. 8.2 for more details.

Theorem 10 If A is an E∞-algebra41, then, for every topological manifold M, there
is an natural equivalence C H M (A) ∼= ∫

M A. In particular, factorization homology
of E∞-algebras extends uniquely as an homology theory for spaces (see Definition
1).

Proof This is proved in [47], also see [34]. The result essentially follows by unique-
ness of the homology theories (Theorem 6). Namely, if HA is an homology theory
for spaces whose value on a point is A, then HA(Rn) = A (Rn is contractible) and
further HA satisfies the monoidal and excision axioms of a homology theory for
manifolds. ��
Example 22 (Pre-cosheaves) Let P be a pre-cosheaf on X (with values in vector
spaces or chain complexes). For any open U ⊂ X , set F(U ) := S•(P(U )) =⊕

n≥0(P(U )⊗n)Sn where S• is the free (differential graded) commutative algebra
functor. ThenF is a prefactorization algebra with structuremaps given by the algebra
structure of S•(P(V )):

F(U1)⊗ · · · ⊗F(Ui ) ∼=S•(P(U1)) ⊗ · · · ⊗ S•(P(Ui ))

⊗S•(P(Ui→V ))−→ S•(P(V )) ⊗ · · · ⊗ S•(P(V )) −→ S•(P(V )) = F(V ).

Proposition 11 (cf. [24]) If F is a homotopy cosheaf, then F is a factorization
algebra (not necessarily locally constant).

In characteristic zero, if P is a homotopy cosheaf, then F is a factorization
algebra.

Example 23 (Observables) Several examples of (pre-)factorization algebras arising
from theoretical physics (more precisely from perturbative quantum field theories)
are described in the beautiful work [22, 24]. They arose as deformations of those
obtained as in the previous Example 22. For instance, let E → X be a (possibly
graded) vector bundle over a smooth manifold X . Let E be the sheaf of smooth sec-
tions of E (whichmay be endowedwith a differential which is a differential operator)
and E ′

be its associated distributions. The above construction yields a (homotopy)

41 For instance a (differential graded) commutative algebra.
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factorization algebra U �→ S(E ′
(U )) = ⊕

n≥0 HomOX (U )(E(U )⊗n, R). In [24],
Costello-Gwilliam have been refining this example to equip the classical observables
of a classical field theory with the structure of a factorization algebra (with values
in P0-algebras, Example 64). Their construction is a variant of the classicalAKSZ
formalism [2]. Related constructions are studied in [78].

Further, the quantum observables of a quantization of the classical field theory,
when they exist, also form a factorization algebra (not necessarily locally constant).
A very nice example of this procedure arises when X is an elliptic curve, see [22].

These factorization algebras (with values in lax P0-algebras) encode the algebraic
structure governing observables of the field theories (in the same way as the observ-
ables of classical mechanics are described by the algebra of smooth functions on a
manifold together with its Poisson bracket). Very roughly speaking, the locally con-
stant factorization algebras correspond to observables of topological field theories.

Example 24 (Enveloping factorization algebra of a dg-Lie algebra) LetLbe ahomo-
topy cosheaf of differential graded Lie algebras on a Hausdorff space X , over a char-
acteristic zero ring. For instance,L can be the cosheaf of compactly supported forms
Ω

•,c
d R,M ⊗ g with value in g where g is a differential graded Lie algebra and Ω•

d R,M
is the (complex of) sheaf on a manifold M given by the de Rham complex. If M
is a complex manifold, another interesting example is obtained by substituting the
Dolbeaut complex to the de Rham complex.

For any open U ⊂ X , we can form the Chevalley-Eilenberg chain complex
CC E•

(L(U )
)
of the (dg-)Lie algebra L(U ). Its underlying k-module (see [101]) is

given by
CC E•

(L(U )
) := S•

(L(U )[1])

and its differential is induced by the Lie bracket and inner differential of L. The
structure maps of Example 22 (applied to F = L[1]) are maps of chain complexes
(since L is a precosheaf of dg-Lie algebras), hence make CC E•

(L(−)
)
a prefactor-

ization algebra over X , which we denote CC E (L) (note that this construction only
requires L to be a precoheaf of dg-Lie algebras). As a corollary of Proposition 11,
one obtains

Corollary 2 (Theorem 4.5.3, [54]) If L is a homotopy cosheaf of dg-Lie algebras,
the prefactorization algebra CC E (L) is a (homotopy) factorization algebra.

The above corollary extends to homotopy cohseaves of L∞-algebras as well.
This construction actually generalizes the construction of the universal enveloping

algebra of a Lie algebra which corresponds to the case L = Ω
•,c
d R,R

⊗ g ([54]).
More generally the observables of Free Field Theories can be obtained this way,

see [54] for many examples.

Remark 24 (Algebras over disks in X) Assume X has a cover by euclidean neigh-
borhoods. One can define a colored operad whose objects are open subsets of X that
are homeomorphic to R

n and whose morphisms from {U1, . . . , Un} to V are empty
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except when theUi ’s aremutually disjoint subsets of V , inwhich case they are single-
tons. We can take the monoidal envelope of this operad (as in Appendix10.2 or [71,
Sect. 2.4]) to get a symmetric monoidal∞-category Disk(X) (also see [71], Remark
5.2.4.7). For any symmetric monoidal ∞-category C, we thus get the ∞-category
Disk(X)-Alg := Fun⊗(Disk(X), C) of Disk(X)-algebras.

Unfolding the definition we find that a Disk(X)-algebra is precisely a Disk-
prefactorization algebra over X where Disk is the set of all open disks in X .

A Disk(X)-algebra is locally constant if for any inclusion of open disks U ↪→
V in X , the structure map F(U ) → F(V ) is a quasi-isomorphism (see [71]).
By Theorem 8 and [71, Sect. 5.2.4], locally constant N (Disk(M))-algebras are the
same as locally constant factorization algebras. Hence we have

Proposition 12 A locally constant Disk-prefactorization algebra has an unique
extension as a locally constant homotopy factorization algebra. In fact, the func-
tor Faclc

X → PFaclc
Disk

∼= Disk(X)-Alglc is an equivalence.

In particular, a locally constant prefactorization algebra F has an unique extension
as a locally constant factorization algebra F◦ taking the same values as F on any
disk.

Example 25 The unique extension F◦ of F as a factorization algebra can have
different values than F and two different prefactorization algebras on X can have
the same values on the open cover Disk. As a trivial example, let X = {x, y} be a
two points discrete set. Then a Disk-prefactorization algebra is given by two pointed
chain complexesF({x}) = Vx ,F({y}) = Vy . It is locally constant and the associated
factorization algebra is given by F◦({x, y}) ∼= Vx ⊗ Vy . However, if W is any chain
complex with pointed maps Vx → W , Vy → W then we have a prefactorization
algebras G defined by G(X) = W and is otherwise the same as F◦. In particular, G
is a prefactorization algebra on X with the same values as F◦ on the disks of X but
is different from F◦.

The notion of being locally constant for a factorization algebra is indeed a local
property (though its definition is about all disks) as proved by the following result.

Proposition 13 Let M be a topological manifold and F be a factorization algebra
on M. Assume that there is an open cover U of M such that for any U ∈ U the
restriction F|U is locally constant. Then F is locally constant on M.

See Sect. 9.1 for a proof.

Remark 25 (Ran space) Factorization algebras on X can be seen as a certain kind of
cosheaf on the Ran space of X . This definition is actually the correct one to deal with
factorization algebras in the algebraic geometry context (see [7, 33]). The Ran space
Ran(X) of a manifold X is the space of finite non-empty subsets of X . Its topology42

is the coarsest topology on Ran(X) for which the sets Ran({Ui }i∈I ) are open for

42 This topology is closely related (but different) to the final topology on Ran(X) making the
canonical applications Xn → Ran(X) (n > 0) continuous.
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every non-empty finite collection of pairwise disjoint opens subsets Ui (i ∈ I ) of X .
Here, the set Ran({Ui }i∈I ) is the collection of all finite subsets {x j } j∈J ⊂ X such
that {x j } j∈J ∩ Ui is non empty for every i ∈ I .

Two subsets U , V of Ran(X) are said to be independent if the two subsets(⋃
S∈U S

) ⊂ X and
(⋃

T∈V T
) ⊂ X are disjoint (as subsets of X ). If U , V are

subsets of Ran(X), one denotes U 	 V the subset {S ∪ T, S ∈ U, T ∈ V } of
Ran(X).

It is proved in [71] that a factorization algebra on X is the same thing as a con-
structible cosheaf F on Ran(X) which satisfies in addition the factorizing condition,
that is, that satisfies that, for every family of pairwise independent open subsets, the
canonical map

F(U1) ⊗ · · · ⊗ F(Un) −→ F(U1 	 · · · 	 Un)

is an equivalence (the condition is similar to Remark 20).
This characterization explain why there is a similarity between cosheaves and

factorization algebras. However, the factorization condition is not a purely cosheaf
condition and is not compatible with every operations on cosheaves.

5 Operations for Factorization Algebras

In this section we review many properties and operations available for factorization
algebras.

5.1 Pushforward

If F is a prefactorization algebra on X , and f : X → Y is a continuous map, one
can define the pushforward f∗(F) by the formula f∗(F)(V ) = F( f −1(V )). If F is
an (homotopy) factorization algebra then so is f∗(F), see [24].

Proposition 14 The pushforward is a symmetric monoidal functor f∗ : FacX →
FacY and further ( f ◦ g)∗ = f∗ ◦ g∗.

Let us abusively denote G for the global section G(pt) of a factorization algebra
over the point pt . Let p : X → pt be the canonical map. By Theorem 8, when
X is a manifold and FA is a locally constant factorization algebra associated to a
Disk(X,T X)

n -algebra, then the factorization homology of M is

∫

X

A ∼= FA(A) ∼= p∗(FA). (31)
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This analogy legitimates to call p∗(F), that is the (derived) global sections of F , its
factorization homology:

Definition 17 The factorization homology43 of a factorization algebra F ∈ FacX

is p∗(F) and is also denoted
∫

X F .

Proposition 15 Let f : X → Y be a locally trivial fibration between smooth
manifolds. If F ∈ FacX is locally constant, then f∗(F) ∈ FacY is locally constant.

Proof Let U ↪→ V be an inclusion of an open sub-disk U inside an open
disk V ⊂ Y . Since V is contractible, it can be trivialized so we can assume
f −1(V ) = V × F with F a smooth manifold. Taking a stable by finite intersec-
tion and factorizing cover V of F by open disks, we have a factorizing cover {V }×V
of f −1(V ) consisting of open disks in X . Similarly {U } × V is a factorizing cover
of f −1(U ) consisting of open disks. In particular for any D ∈ V , the structure map
F(U × D) → F(V × D) is a quasi-isomorphism since F is locally constant. Thus
the induced map Č({U } ×V,F) → Č({V } ×V,F) is a quasi-isomorphism as well
which implies that f∗(F)(U ) → f∗(F)(V ) is a quasi-isomorphism. ��
Example 26 (Locally constant factorization algebras induced on a submanifold) Let
i : X ↪→ R

n be an embedding of a manifold X into R
n and N X be an open tubular

neighborhood of X in R
n . We write q : N X → X for the bundle map. If A is an

En-algebra, then it defines a factorisation algebra FA on R
n . Then the pushforward

q∗(FA|N X ) is a locally constant (by Proposition 15) factorization algebra on X ,
which is not constant in general if the normal bundle N X is not trivialized.

Since a continuous map f : X → Y yields a factorization X
f→ Y → pt of

X → pt , Proposition 14 and the equivalence (31) imply the following pushforward
formula of factorization homology.

Proposition 16 (Pushforward formula) Let X
f→ Y be continuous and F be in

FacX . The factorization homology of F over X is the same as the factorization
homology of f∗(F) over Y :

∫

X

F ∼= p∗(F) ∼= p∗
(

f∗(F)
) ∼=

∫

Y

f∗(F). (32)

5.2 Extension from a Basis

Let U be a basis stable by finite intersections for the topology of a space X and which
is also a factorizing cover. Let F be a (homotopy) U -factorization algebra, that is a

43 Recall thatwe are considering homotopy factorization algebras,which are already derived objects.
If G is a genuine factorization algebra (Remark 21), then its factorization homology would be
Lp∗(G) := p∗(G̃) where G̃ is an acyclic resolution of G (as genuine factorization algebra).
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U-prefactorization algebra (Definition 12) such that, for any U ∈ U and factorizing
cover V of U consisting of open sets in U , the canonical map Č(V,F) → F(U ) is
a quasi-isomorphism.

Proposition 17 (Costello-Gwilliam [24]) There is an unique44 (homotopy) factor-
ization algebra iU∗ (F) on X extending F (that is equipped with a quasi-isomorphism
of U-factorization algebras iU∗ (F) → F).

Precisely, for any open set V ⊂ X, one has

iU∗ (F)(V ) := Č(UV ,F)

where UV is the open cover of V consisting of all open subsets of V which are in U .

Note that the uniqueness is immediate since, if G is a factorization algebra on X ,
then for any open V the canonical map Č(UV ,G) → G(V ) is a quasi-isomorphism
and, further, the Čech complex Č(UV ,G) is computed using only open subset in U .

Proposition 17 gives a way to construct (locally constant) factorization algebras
as we now demonstrate.

Example 27 By Example 19, we know that an associative unital algebra (possibly
differential graded) gives a locally constant factorization algebra on the interval R.
It can be explicitly given by using extension along a basis. Indeed, the collection
I of intervals (a, b) (a < b) is a factorizing basis of opens, which is stable by
finite intersections. Then one can set a I-prefactorization algebra FA by setting
FA((a, b)) := A. For pairwise disjoints open interval I1, . . . , In ⊂ I , where the
indices are chosen so that sup(Ii ) ≤ inf(Ii+1), the structure maps are given by

A⊗n = FA(I1) ⊗ · · · ⊗ FA(In) −→ FA(I ) = A (33)

a1 ⊗ · · · ⊗ an �−→ a1 · · · an . (34)

To extend this construction to a full homotopy factorization algebra on R, one needs
to check that FA is a I-factorization algebra which is the content of Proposition 27.

In the construction, we have chosen an implicit orientation of R; namely, in the
structure map (33), we have decided to multiply the elements (ai ) by choosing to
order the intervals in increasing order from left to right.

Let τ : R → R be the antipodal map x �→ −x reversing the orientation. One
can check that τ∗(FA) = FAop where Aop is the algebra A with opposite multipli-
cation (a, b) �→ b · a. In other words, choosing the opposite orientation (that is the
decreasing one) of R amounts to replacing the algebra by its opposite algebra.

Example 28 (Back to the circle) The circle S1 also has a (factorizing) basis given
by the open (embedded) intervals (of length less than half of the perimeter of the
circle in order to be stable by intersection). Choosing an orientation on the circle,
one can define a (homotopy) factorization algebra SA on the circle using again the

44 Up to contractible choices.
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structure maps (33). This gives an explicit construction of the factorization algebra
associated to a framing of S1 from Example 19 (since they agree on a stable by finite
intersection basis of open sets). The global section of SA are thus the Hochschild
chains of A by the computation (21).

Similarly to Example 27, choosing the opposite framing on the circle amounts
to considering the factorization algebra SAop . However, unlike on R, there is an
equivalence SA ∼= SAop induced by the fact that there is an orientation preserving
diffeomorphism between the two possible orientations of the circle and that further,
the value of SA on any interval is constant.

5.3 Exponential Law: Factorization Algebras on a Product

Let π1 : X × Y → X be the canonical projection. By Proposition 15, we have the
pushforward functor π1∗ : Faclc

X×Y → Faclc
X . This functor has an natural lift into

Faclc(Y ). Indeed, if U is open in X and V is open in Y , we have a chain complex:

π1∗(F)(U, V ): = F(π1
−1
|X×V (U )) = F(U × V ).

Let V1, . . . , Vi be pairwise disjoint open subsets in an open set W ⊂ Y and consider

π1∗(F)(U, V1)⊗ · · · ⊗ π1∗(F)(U, Vi ) ∼= F(U × V1)⊗ · · · ⊗ F(U × Vi )

ρU×V1,...,U×Vi ,U×W−→ F(U × W ) = π1∗(F)(U, W ).

(35)

The map (35) makes π1∗(F)(U ) a prefactorization algebra on Y . If U1, . . . , U j
are pairwise disjoint open inside an open O ⊂ X , the collection of structure maps

π1∗(F)(U1, V )⊗ · · · ⊗ π1∗(F)(U j , V ) ∼= F(U1 × V )⊗ · · · ⊗ F(U j × V )

ρU1×V,...,U j×V,O×V−→ F(O × V ) = π1∗(F)(O, V )

(36)

indexed by opens V ⊂ Y is a map π1∗(F)(U1)⊗· · ·⊗π1∗(F)(U j ) −→ π1∗(F)(O)

of prefactorization algebras over Y .
Combining the two constructions, we find that the structure maps (35) and (36)

make π1∗(F) a prefactorization algebra over X with values in the category of pref-
actorization algebras over Y . In other words we have just defined a functor:

π1∗ : PFacX×Y −→ PFacX (PFacY ) (37)

fitting into a commutative diagram
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PFacX Y

π1

π1

PFacX PFacY

PFacX p

PFacX

where p∗ is given by Definition 17.

Proposition 18 Let π1 : X × Y → X be the canonical projection. The pushfor-
ward (37) by π1 induces a functor

π1∗ : FacX×Y −→ FacX (FacY )

and, if X, Y are smooth manifolds, an equivalence π1∗ : Faclc
X×Y

�−→ Faclc
X (Faclc

Y )

of ∞-categories .

See Sect. 9.1.2 for a proof.
The above Proposition is a slight generalization of (and relies on) the following

∞-category version of the beautiful Dunn Theorem [27] proved under the following
form by Lurie [71] (see [47] for the pushforward interpretation):

Theorem 11 (Dunn Theorem) There is an equivalence of ∞-categories

Em+n-Alg
�−→ Em-Alg(En-Alg).

Under the equivalence En-Alg ∼= Faclc
Rn (Theorem 9), the above equivalence is

realized by the pushforward π∗ : Faclc
Rm×Rn → Faclc

Rm (Faclc
Rn ) associated to the

canonical projection π : R
m × R

n → R
m.

Example 29 (PTVV construction) There is a derived geometry variant of the AKSZ
formalism introduced recently in [77] which leads to factorization algebras similarly
to Example 23. We briefly sketch it. The main input is a (derived Artin) stack X
(over a characteristic zero field) which is assumed to be compact and equipped with
an orientation (write dX for the dimension of X ) and a stack Y with an n-shifted
symplectic structure ω (for instance take Y to be the shifted cotangent complex
Y = T ∗[n]Z of a scheme Z ). The natural evaluation map ev : X × R Map(X, Y )

allows to pullback the symplectic structure on the space of fields R Map(X, Y ).
Precisely, R Map(X, Y ) carries an natural (n − dX )-shifted symplectic structure
roughly given by the integration

∫
[X ] ev∗(ω) of the pullback of ω on the fundamental

class of X . It is expected that the observables OR Map(X,Y ) carries a structure of
P1+n−dX -algebra. Assume further that X is a Betti stack, that is in the essential
image of Top → dStk . It will then follow from Corollary 1 and Example 21 that
OR Map(X,Y ) belongs to Faclc

X (P1+n−dX -Alg). Using the formality of the little disks
operads in dimension ≥ 2, Proposition 18 then will give OR Map(X,Y ) the structure
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of a locally constant factorization algebra on X × R
1+n−dX when n > dX . It is

also expected that the quantization of such shifted symplectic stacks shall carries
canonical locally constant factorization algebras structures.

Note that the Pantev-Toën-Vaquié-Vezzosi construction was recently extended by
Calaque [13] to add boundary conditions. The global observables of such relative
mapping stacks shall be naturally endowed with the structure of locally constant
factorization algebra on stratified spaces (as defined in Sect. 6).

Proposition 18 and Theorem 8 have the following consequence

Corollary 3 (Fubini formula [47]) Let M, N be manifolds of respective dimen-
sion m, n and let A be a Disk(M×N ,T (M×N ))

n+m -algebra. Then,
∫

N A has a canonical

structure of Disk(M,T M)
m -algebra and further,

∫

M×N

A ∼=
∫

M

( ∫

N

A
)
.

Example 30 Let A be a smooth commutative algebra. By Hochschild-Kostant-

Rosenberg theorem (see Example 6), C HS1(A)
�→ S•A(Ω1(A)[1]); this algebra is

also smooth. Since A is commutative it defines a factorization algebra on the torus
S1 × S1. By Corollary 3, we find that

∫

S1×S1

A ∼=
∫

S1

(
S•A(Ω1(A)[1])) ∼= S•A

(
Ω1(A)[1] ⊕ Ω1(A)[1] ⊕ Ω1(A)[2]

)
.

5.4 Pullback Along Open Immersions and Equivariant
Factorization Algebras

Let f : X → Y be an open immersion and let G be a factorization algebra on Y .
Since f : X → Y is an open immersion, the set

U f := {U open in X such that f|U : U → Y is an homeomorphism}

is an open cover of X as well as a factorizing basis. For U ∈ U f , we define
f ∗(G)(U ) := G( f (U )). The structure maps of G make f ∗(G) a U f -factorization

algebra in a canonical way. Thus by Proposition 17, i
U f∗ ( f ∗(G)) is the factorization

algebra on X extending f ∗(G) . We (abusively) denote f ∗(G) := i
U f∗ ( f ∗(G)) and

call it the pullback along f of the factorization algebra G.
Proposition 19 ([24])The pullback along open immersion is a functor f ∗ : FacY →
FacX . If f : X → Y and g : Y → Z are open immersions, then (g ◦ f )∗ = f ∗ ◦ g∗.
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If U ∈ U f , then U is an open subset of the open set f −1( f (U )). Thus if F is a
factorization algebra on X , we have the natural map

F(U )
ρU, f −1( f (U ))−→ F( f −1( f (U ))) ∼= f ∗( f∗(F))(U ) (38)

which is amapofU f -factorization algebras. SinceF and f ∗( f∗(F)) are factorization
algebras on X , the above map extends uniquely into a map of factorization algebras
on X . We have proved:

Proposition 20 Let f : X → Y be an open immersion. There is an natural trans-
formation IdFacX → f ∗ f∗ induced by the maps (38).

Example 31 Let X = {c, d} be a discrete space with two elements and consider
the projection f : X → pt . A factorization algebra G on pt is just the data of
a chain complex G with a distinguished cycle g0 while a factorization algebra F
on X is given by two chain complexes C , D (with distinguished cycles c0, d0) and

the rule F({c}) = C , F({d}) = D, F({c}) = C
id⊗{d0}−→ C ⊗ D = F(X) and

F({d}) = C
{c0}⊗id−→ C ⊗ D = F(X). In that case we have that

f ∗( f∗(F)({x}) = C ⊗ D = f ∗( f∗(F)({y}) = f ∗( f∗(F)(X)

while f∗( f ∗(G))(pt) = F ⊗ F . Note that there are no natural transformation of
chain complexes F ⊗ F → F in general; in particular f ∗ and f∗ are not adjoint.

In fact f∗ does not have any adjoint in general; indeed as the above example of
F : {c, d} → pt demonstrates, f∗ does not commute with coproducts nor products.

We now turn on to a descent property of factorization algebras. Let G be a discrete
group acting on a space X . For g ∈ G, we write g : X → X the homeomorphism
x �→ g · x induced by the action.

Definition 18 A G-equivariant factorization algebra on X is a factorization alge-
bra G ∈ FacX together with, for all g ∈ G, (quasi-)isomorphisms of factorization
algebras

θg : g∗(G)
�→ G

such that θ1 = id and

θgh = θh ◦ h∗(θg) : h∗(g∗(G)) → G.

We write FacG
X for the category of G-equivariant factorization algebras over X .

Assume G acts properly discontinuously and X is Hausdorff so that the quotient
map q : X → X/G is an open immersion. If F is a factorization algebra over
X/G, then q∗(F) is G-equivariant (since q(g · x) = q(x)). We thus have a functor
q∗ : FacX/G −→ FacG

X .
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Proposition 21 (Costello-Gwilliam [24]) If the discrete group G acts properly dis-
continuously on X, then the functor q∗ : FacX/G −→ FacG

X is an equivalence of
categories.

The proof essentially relies on considering the factorization basis given by trivial-
ization of the principal G-bundle X → X/G to define an inverse to q∗.
Proposition 22 If the discrete group G acts properly discontinuously on a smooth
manifold X, then the equivalence q∗ : FacX/G −→ FacG

X factors as an equiva-
lence q∗ : Faclc

X/G −→ (Faclc
X )G between the subcategories of locally constant

factorization algebras.

Proof Let U be an open set such that q|U : U → X/G is an homeomorphism onto
its image. Then, for every open subset V of U , q∗(F)(V ) = F(q(V )). Thus, if
F satisfies the condition of being locally constant for disks included in U , then so
does q∗(F) for disks included in q(U ). Hence, by Proposition 13, q∗(F) is locally
constant if F is locally constant.

Now, assume G ∈ FacG
X is locally constant. Then (q∗)−1(G) is the factorization

algebra defined on every section X/G ⊃ U → σ(U ) ⊂ X of q (with U open) by
(q∗)−1(G)(U ) = G(σ(U )). Since every disk D is contractible, we always have a
section D → X of q|D . Thus, if G is locally constant, then so is (q∗)−1(G). ��
Remark 26 (General definition of equivariant factorization algebras) Definition
18 can be easily generalized to topological groups as follows. Indeed, if G acts
continuously on X , then the rule (g,F) �→ g∗(F) induces a right action of G on
FacX . 45

The ∞-category of G-equivariant factorization algebras is the ∞-category of
homotopy G-fixed points of FacX :

FacG
X := (FacX )hG .

This ∞-category is equivalent to the one of Definition 18 for discrete groups. It is
the ∞-category consisting of a factorization algebra G on X together with quasi-
isomorphisms of factorization algebras θg : g∗(G) → G (inducing a ∞-functor
BG → FacX , where BG is the ∞-category associated to the topological category
with a single object and mapping space of morphisms given by G) and equivalences
θgh ∼ θh ◦ h∗(θg) satisfying some higher coherences.

5.5 Example: Locally Constant Factorization Algebras over
the Circle

Let q : R → S1 = R/Z be the universal cover of S1 and let F be a locally constant
factorization algebra on S1. By Proposition 22, F is equivalent to the data of a Z-
equivariant locally constant factorization algebra on R which is the same as a locally

45 That is a map of E1-algebras (in Top) from Gop to Fun(FacX , FacX ).
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constant factorization algebra over R together with an equivalence of factorization

algebras, the equivalence being given by θ1 : 1∗(q∗(F))
�→ q∗(F). By Theorem 9,

the category of locally constant factorization algebras onR is the same as the category
of E1-algebras, and thus is equivalent to its full subcategory of constant factorization
algebras. It follows that we have a canonical equivalence 1∗(G) ∼= G forG ∈ Faclc

R
(in

particular, for any open interval I , the structure map 1∗ (G(I )) = G(1+ I ) → G(R)

is a quasi-isomorphism).

Definition 19 Wedenotemon : q∗(F) ∼= 1∗(q∗(F))
θ1→ q∗(F) the self-equivalence

of q∗(F) induced by θ1 and call it the monodromy of F .

We thus get the following result

Corollary 4 The category Faclc
S1

of locally constant factorization algebras on the
circle is equivalent to the ∞-category Aut(E1-Alg) of E1-algebras equipped with a
self-equivalence.

Remark 27 Using Proposition 18, it is easy to prove similarly thatFaclc
S1×S1

is equiv-
alent to the category of E2-algebras equipped with two commuting monodromies
(i.e. self-equivalences).

It seems harder to describe the categories of locally constant factorization algebras
over the spheres S3, S7 in terms of E3 and E7-algebras (due to the complicated
homotopy groups of the spheres). However, for n = 3, 7, there shall be an embedding
of the categories of En-algebras equipped with an n-gerbe46 into Faclc

Sn .

LetF be a locally constant factorization algebra on S1 (identifiedwith the unit sphere
in C). We wish to compute the global section of F (i.e. its factorization homology∫

S1 F). Let B ∼= F(S1 \ {1}) be its underlying E1-algebra (with monodromy mon :
B �→ B).We use the orthogonal projection π : S1 → [−1, 1] from S1 to the real axis.
The equivalence (32) yields F(S1) ∼= π∗(F)([−1, 1]) and by Propositions 15 and
27, we are left to compute the E1-algebra π∗(F)

(
(−1, 1)

)
and left and right modules

π∗(F
(
(−1, 1]), π∗(F)

([−1, 1)
)
. From Example 27, we get π∗(F)

(
(−1, 1)

) ∼= B⊗
Bop. Further,

π∗(F)
([−1, 1)

) ∼= F(S1 \ {1}) = B (as aB ⊗ Bop-module).

Similarly π∗(F)
(
(−1, 1]) ∼= Bmon , that is B viewed as a B ⊗ Bop-module through

the monodromy. When B is actually a differential graded algebra, then the bimodule
stucture of Bmon boils down to a · x · b = mon(b) ·m · a. This proves the following
which is also asserted in [71, Sect. 5.3.3].

Corollary 5 Let B be a locally constant factorization algebra on S1. Let B be a

differential graded algebra and mon : B
�→ B be a quasi-isomorphism of algebras

so that (B, mon) is a model for the underlying E1-algebra of B and its monodromy.
Then the factorization homology

46 By an n-gerbe over A ∈ En-Alg, we mean a monoid map Z → Ωn−1MapEn -Alg(A, A).
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∫

S1

B ∼= B
L⊗

B⊗Bop
Bmon ∼= H H(B, Bmon)

is computed by the (standard) Hochschild homology47 H H(B) of B with value in B
twisted by the monodromy.

Example 32 (The circle again) Let p : R → S1 be the universal cover of S1. By
Example 27, an unital associative algebra A defines a locally constant factorization
algebra, denoted A, on R. By Proposition 15, the pushforward p∗(A) is a locally
constant factorization algebra on S1, which, on any interval I ⊂ S1 is given by
p∗(A)(I ) = A(I × Z) = A⊗Z. It is however not a constant factorization algebra
since the global section of p∗(A) is different from the Hochschild homology of A:

p∗(A)(S1) = A(R) ∼= A �� H H(A⊗Z)

(for instance if A is commutative the Hochschild homology of A⊗Z is A⊗Z in
degree 0.) Indeed, the monodromy of A is given by the automorphism σ of A which
sends the element ai in the tensor index by an integer i into the tensor factor indexed
by i + 1, that is σ

(⊗
i∈Z ai

) =⊗
i∈Z ai−1.

However, by Corollary 5, we have that, for any E1-algebra A,

H H
(

A⊗Z,
(

A⊗Z
)mon) ∼= A.

5.6 Descent

There is a way to glue together factorization algebras provided they satisfy some
descent conditions which we now explain.

Let U be an open cover of a space X (which we assume to be equipped with a fac-
torizing basis).We also assume that all intersections of infinitelymanydifferent opens
in U are empty. For every finite subset {Ui }i∈I of U , let FI be a factorization algebra
on
⋂

i∈I Ui . For any i ∈ I , we have an inclusion si :⋂i∈I Ui ↪→⋂
j∈I\{i} U j .

Definition 20 A gluing data is a collection, for all finite subset {Ui }i∈I ⊂ U and
i ∈ I , of quasi-isomorphisms rI,i : FI −→

(FI\{i}
)
|UI

such that, for all I , i, j ∈ I ,
the following diagram commutes:

47 In particular by the standard Hochschild complex (see [67]) C∗(B, Bmon) when B is flat over k.
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FI

rI,i

rI,j FI j UI

rI j ,i

FI i UI

rI i ,j FI i,j UI
.

Given a gluing data, one can define a factorizing basis VU given by the family of all
opens which lies in some U ∈ U . For any V ∈ VU , set F(V ) = FIV (V ) where IV

is the largest subset of I such that V ∈⋂ j∈IV
U j . The maps RI,i induce a structure

of VU -prefactorization algebra.

Proposition 23 ([24]) Given a gluing data, the VU -prefactorization F extends
uniquely into a factorization algebra F on X whose restriction F|UI on each UI

is canonically equivalent to FI .

Note that if the FI are the restrictions to UI of a factorization algebra F , then the
collection of the FI satisfy the condition of a gluing data.

6 Locally Constant Factorization Algebras on Stratified
Spaces and Categories of Modules

There is an interesting variant of locally constant factorization algebras over (topo-
logically) stratified spaces which can be used to encode categories of En-algebras
and their modules for instance. Note that by Remark 20, all our categories of mod-
ules will be pointed, that is coming with a preferred element. We gave the definition
and several examples in this Section. An analogue of Theorem 8 for stratified spaces
shall provide the link between the result in this section and results of [5].

6.1 Stratified Locally Constant Factorization Algebras

In this paper, by a stratified space of dimension n, we mean a Hausdorff paracompact
topological space X , which is filtered as the union of a sequence of closed subspaces
∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn = X such that any point x ∈ Xi \ Xi−1 has a

neighborhood Ux
φ� R

i × C(L) in X where C(L) is the (open) cone on a stratified
space of dimension n − i − 1 and the homeomorphism preserves the filtration.48

We further require that X \ Xn−1 is dense in X . In particular, a stratified space of

48 That is φ(Ux ∩ Xi+ j+1) = R
i × C(L j ) for 0 ≤ j ≤ n − i − 1.
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dimension 0 is simply a topological manifold of dimension 0 and Xi \ Xi−1 is a
topological manifold of dimension i (possibly empty or non-connected).

The connected components of Xi \ Xi−1 are called the dimension i-strata of X .
We always assume that X has at most countable strata.

Definition 21 An open subset D of X is called a (stratified) disk if it is homeomor-
phic to R

i × C(L) with L stratified of dimension n − i − 1, the homeomorphism
preserves the filtration and further D ∩ Xi �= ∅ and D ⊂ X \ Xi−1. We call i the
index of the (stratified disk) D. It is the smallest integer j such that D ∩ X j �= ∅

We say that a (stratified) disk D is a good neighborhood at Xi if i is the index of
D and D intersects only one connected component of Xi \ Xi−1.

A factorization algebra F over a stratified space X is called locally constant if
for any inclusion of (stratified) disks U ↪→ V such that both U and V are good
neighborhoods at Xi (for the same i ∈ {0, . . . , n}), 49 the structure map F(U ) →
F(V ) is a quasi-isomorphism.

The underlying space of almost all examples of stratified spaces X arising in these
notes will be a manifold (with boundary or corners). In that cases, all (stratified) disk
are homeomorphic to to a standard euclidean (half-)disk R

n− j × [0,+∞) j .
Let X be a manifold (without boundary) and let Xstr be the same manifold

endowed with some stratification. A locally constant factorization algebra on X is
also locally constant with respect to the stratification. Thus, we have a fully faithful
embedding

Faclc
X −→ Faclc

Xstr . (39)

Several general results on locally constant factorization algebras from Sect. 4 have
analogues in the stratified case. We now list three useful ones.

Proposition 24 Let X be a stratified manifold and F be a factorization algebra on
X such that there is an open cover U of X such that for any U ∈ U the restriction
F|U is locally constant. Then F is locally constant on X.

The functor (39) generalizes to inclusion of any stratified subspace.

Proposition 25 Let i : X ↪→ Y be a stratified (that is filtration preserving) embed-
ding of stratified spaces in such a way that i(X) is a reunion of strata of Y . Then the
pushforward along i preserves locally constantness, that is lift as a functor

Faclc
X → Faclc

Y .

Proof Let F be in Faclc
X and U ⊂ D be good disks of index j at a neigborhood of a

strata in i(X). The preimage i−1(U ) ∼= i(X)∩U is a good disk of index j in X and so
is i−1(D). Hence i∗(F(U )) → i∗(F(D)) is a quasi-isomorphism.On the other hand,
if V ⊂ Y \ i(X) is a good disk, then i∗(F(V )) ∼= k. Since the constant factorization
algebra with values k (Example 18) is locally constant on every stratified space, the
result follows.

49 In other words are good neighborhoods of same index.
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Let f : X → Y be a locally trivial fibration between stratified spaces. We say
that f is adequatly stratified if Y has an open cover by trivializing (stratified) disks
V which are good neighborhoods satisfying that:

• f −1(V )
ψ� V × F has a cover by (stratified) disks of the form ψ−1(V × D) which

are good neighborhoods in X ;
• for sub-disks T ⊂ U which are good neighborhoods (in V ) with the same index,
then ψ−1(T × D) is a good neighborhood of X of same index as ψ−1(U × D).

Obvious examples of adequatly stratified maps are given by locally trivial stratified
fibrations; in particular by proper stratified submersions according to Thom first
isotopy lemma [51, 92].

Proposition 26 Let f : X → Y be adequatly stratified. If F ∈ FacX is locally
constant, then f∗(F) ∈ FacY is locally constant.

Proof LetU ↪→ V be an inclusion of open diskswhich are both good neighborhoods
at Yi ; by Proposition 24, we may assume V lies in one of the good trivializing
disk in the definition of an adequatly stratified map so that we have a cover by
opens homeomorphic to (ψ−1(V × D j )) j∈J which are good neigborhood such that
(ψ−1(U × D j )) j∈J is also a good neighborhood of same index. This reduces the
proof to the same argument as the one of Proposition 15.

If X ,Y are stratified spaceswith finitelymany strata, there is a natural stratification
on the product X ×Y , given by (X ×Y )k :=⋃

i+ j=k Xi ×Y j ⊂ X ×Y . The natural
projections on X and Y are adequatly stratified.

Corollary 6 Let X, Y be stratified spaces with finitely many strata. The push-
forward π1∗ : FacX×Y −→ FacX (FacY ) (see Proposition 18) induces a functor

π1∗ : Faclc
X×Y −→ Faclc

X (Faclc
Y ).

We conjecture that π1∗ is an equivalence under rather weak conditions on X and Y .
We will give a couple of examples.

Proof Since the projections are adequatly stratified, the result follows from Propo-
sition 18 together with Proposition 26 applied to both projections (on X and Y ).

Remark 28 Let F be a stratified locally constant factorization algebra on X . Let
U ⊂ V be stratified disks of same index i , but not necessarily good neighborhoods at
Xi . Assume all connected component of V ∩Xi contains exactly one connected com-
ponent of U ∩ Xi . Then the structure maps F(U ) → F(V ) is a quasi-isomorphism.
Indeed, we can take a factorizing cover V of V by good neighborhoods D such that
D ∩ U are good neigborhoods. Then, F(D ∩ U ) → F(D) is a quasi-isomorphism

and thus we get a quasi-isomorphism Č(F ,V ∩ U )
�→ Č(F ,V).
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6.2 Factorization Algebras on the Interval and (bi)modules

Let us consider an important example: the closed interval I = [0, 1] viewed as a
stratified space50 with two dimension 0-strata given by I0 = {0, 1}.

The disks at I0 are the half-closed intervals [0, s) (s < 1) and (t, 1] (0 < t) and
the disks at I1 are the open intervals (t, u) (0 < t < u < 1). The disks of (the
stratified space) I form a (stable by finite intersection) factorizing basis denoted I.

An example of stratified locally constant factorization algebra on I is obtained
as follows. Let A be a differential graded associative unital algebra, Mr a pointed
differential graded right A-module (with distinguished element denoted mr ∈ Mr )
and M� a pointed differential graded left A-module (with distinguished element
m� ∈ M�). We define a I-prefactorization algebra by setting, for any interval J ∈ I

F(J ) :=

⎧
⎪⎨

⎪⎩

Mr if 0 ∈ J

M� if 1 ∈ J

A else.

We define its structure maps to be given by the following51:

• F(∅) → F([0, s)) is given by k � 1 �→ mr , F(∅) → F((t, s)) is given by
1 �→ 1A and F(∅) → F((t, 1])) is given by k � 1 �→ m�;

• For 0 < s < t1 < u1 < · · · < ti < ui < v < 1 one sets

Mr ⊗ A⊗i = F([0, s)) ⊗ F((t1, u1)) ⊗ · · · ⊗ F((ti , ui )) −→ F([0, v)) = Mr

m ⊗ a1 ⊗ · · · ⊗ ai �−→ m · a1 · · · ai ;

A⊗i ⊗ M� = F((t1, u1))⊗ · · · ⊗ F((ti , ui ))⊗ F((v, 1]) −→ F((s, 1]) = M�

a1 ⊗ · · · ⊗ ai ⊗ n �−→ a1 · · · ai · n ;

and also

A⊗i = F((t1, u1)) ⊗ · · · ⊗ F((ti , ui )) −→ F((s, v)) = A

a1 ⊗ · · · ⊗ ai �−→ a1 · · · ai .

It is straightforward to check thatF is a I-prefactorization algebra and, by definition,
it satisfies the locally constant condition.

Proposition 27 shows that F is indeed a locally constant factorization algebra
on the closed interval I . Further, any locally constant factorization algebra on I is
(homotopy) equivalent to such a factorization algebra.

50 Note that this stratification is just given by looking at [0, 1] as a manifold with boundary.
51 As in Example 27, we use the implicit orientation of I given by increasing numbers.
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Also note that the I-prefactorization algebra induced by F on the open interval
(0, 1) is precisely the I-prefactorization algebra constructed in Example 27 (up to
an identification of (0, 1) with R). We denote it FA.

Proposition 27 Let F , FA be defined as above.

1. The I- prefactorization algebra F is an I-factorization algebra hence extends
uniquely into a factorization algebra (still denoted) F on the stratified closed
interval I = [0, 1];

2. in particular, FA also extends uniquely into a factorization algebra (still denoted)
FA on (0, 1).

3. There is an equivalence
∫
[0,1] F = F([0, 1]) ∼= Mr

L⊗
A

M� in Chain(k).

4. Moreover, any locally constant factorization algebra G on I = [0, 1] is equiv-
alent52 to F for some A, M�, Mr , that is, it is uniquely determined by an E1-
algebra A and pointed left module M� and pointed right module Mr satisfying

G([0, 1)) ∼= Mr , G((0, 1]) ∼= M�, G((0, 1)) ∼= A

with structure maps given by the E1-structure similarly to those of F .

For a proof, see Sect. 9.2.1. The last statement restricted to the open interval (0, 1)
is just Theorem 9 (in the case n = 1).

Example 33 We consider the closed half-line [0,+∞) as a stratified manifold, with
strata {0} ⊂ [0,+∞) given by its boundary. Namely, it has a 0-dimensional strata
given by {0} and thus one dimension 1 strata (0,+∞). Similarly, there is a stratified
closed half-line (−∞, 0]. From Proposition 27 (and its proof) we also deduce

Proposition 28 There is an equivalence of ∞-categories between locally constant
factorization algebra on the closed half-line [0,+∞) and the category E1-RMod of
(pointed) right modules over E1-algebras.53 This equivalence sits in a commutative
diagram

52 More precisely, taking A, M�, Mr be strictification of A, M� and Mr , there is a quasi-
isomorphism of factorization algebras from F (associated to A, M�, Mr ) to G.
53 Which, informally, is the category of pairs (A, Mr )where A is an E1-algebra and Mr a (pointed)
right A-module.
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where the left vertical functor is given by restriction to the open line and the lower
horizontal functor is given by Theorem 9.

There is a similar equivalence (and diagram) of ∞-categories between locally
constant factorization algebra on the closed half-line (−∞, 0] and the category
E1-LMod of (pointed) left modules over E1-algebras.

Let X be a manifold and consider the stratified manifold X × [0,+∞), with a
dim(X) open strata X × {0}. Using Corollary 6 and Proposition 28 one can get

Corollary 7 The pushforward along the projection X × [0,+∞) → [0,+∞)

induces an equivalence

Faclc
X×[0,+∞)

�−→ E1-RMod(Faclc
X ).

6.3 Factorization Algebras on Pointed Disk and En-modules

In this section we relate En-modules54 and factorization algebras over the pointed
disk.

Let R
n∗ denote the pointed disk which we see as a stratified manifold with one

0-dimensional strata given by the point 0 ∈ R
n and n-dimensional strata given by

the complement R
n \ {0}.

Definition 22 We denote Faclc
R

n∗ the ∞-category of locally constant factorization
algebras on the pointed disk R

n∗ (in the sense of Definition 21).

Recall the functor (39) giving the obvious embedding Faclc
Rn −→ Faclc

R
n∗ .

Locally constant factorization algebras on R
n∗ are related to those on the closed

half-line (Sect. 6.2) as follows: let N : R
n → [0,+∞) be the euclidean norm map

x �→ ‖x‖. We have the pushforwards N∗ : FacRn∗ → Fac[0,+∞) and (−N )∗ :
FacRn∗ → Fac(−∞,0].

Lemma 7 If F ∈ Faclc
R

n∗ , then N∗(F) ∈ Faclc
[0,+∞) and (−N )∗(F) ∈ Faclc

(−∞,0].

Proof For 0 < ε < η, the structure map N∗(F)
([0, ε)) ∼= F(N−1([0, ε))) →

F(N−1([0, η))
) ∼= N∗(F)

([0, η)
)
is an equivalence since F is locally constant and

N−1([0,α) is a euclidean disk centered at 0. Further, by Proposition 15, N∗(F|Rn\{0})
is locally constant from which we deduce that N∗(F) is locally constant on the
stratified half-line [0,+∞). The case of (−N )∗ is the same. ��

Our next task is to define a functor En-Mod → Faclc
R

n∗ from (pointed) En-modules
(see Appendix10.2) to (locally constant) factorization algebras on the pointed disk.
It is enough to associate (functorially), to any M ∈ En-Mod, a CV(Rn)-factorization
algebra FM where CV(Rn) is the (stable by finite intersection) factorizing basis of

54 According to our convention in Appendix 10.2, all En-modules are pointed by definition.
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R
n of convex open subsets. It turns out to be easy: since any convex subset C is

canonically an embedded framed disk, we can setFM (C) := M(C). In other words,
we assign the module to a convex neighborhood of 0 and the algebra to a convex
neigborhood which does not contain the origin.

Then set the structuremapsFM (C1)⊗· · ·⊗FM (Ci ) → FM (D), for any pairwise
disjoint convex subsets Ck of D, to be given by the map M(C1) ⊗ · · · ⊗ M(Ci ) →
M(D) associated to the framed embedding

∐
k=1···i R

n ∼=⋃
k=1···i Ck ↪→ D ↪→ R

n .

Theorem 12 The rule M �→ FM induces a fully faithful functor ψ : En-Mod →
Faclc

R
n∗ which fits in a commutative diagram

En

can

lc
Rn

En
ψ lc

R
n .

Here can : En-Alg → En-Mod is given by the canonical module structure of an
algebra over itself.

Wewill now identify En-modules in terms of factorization algebras onR
n∗; that is the

essential image of the functor ψ : En-Mod → Faclc
R

n∗ given by Theorem 12. Recall

the functor πEn : En-Mod → En-Alg ∼= Faclc
Rn which, to a module M ∈ En-ModA,

associates πEn (M) = A.
By restriction to the open setRn \{0}we get that the two compositions of functors

En-Mod
ψ−→ Faclc

R
n∗ → Faclc

Rn\{0} and En-Mod
πEn−→ En-Alg ∼= Faclc

Rn → Faclc
Rn\{0}

are equivalent. Hence, we get a factorization of (ψ,πEn ) to the pullback

(ψ,πEn ) : En-Mod −→ Faclc
R

n∗ ×h
Faclc

Rn\{0}
Faclc

Rn .

Informally, Faclc
R

n∗ ×h
Faclc

Rn\{0}
Faclc

Rn is simply the (∞-)category of pairs (A,M) ∈
Faclc

Rn × Faclc
R

n∗ together with a quasi-isomorphism f : A|Rn\{0} → M|Rn\{0} of
factorization algebras.

Corollary 8 The functor En-Mod
(ψ,πEn )−→ Faclc

R
n∗ ×h

Faclc
Rn\{0}

Faclc
Rn is an equivalence.

Now, if A is an En-algebra, we can see it as a factorization algebra on R
n (Theorem

9) and taking the (homotopy) fiber at {A} of the right hand side of the equivalence
in Corollary 8, we get
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Corollary 9 The functor En-ModA
ψ−→ Faclc

R
n∗ ×h

Faclc
Rn\{0}

{A} is an equivalence.

Example 34 (Locally constant factorization algebra on the pointed line R∗) The case
of the pointed line R∗ is slightly special since it has two (and not one) strata of max-
imal dimension. The two embeddings j+ : (0,+∞) ↪→ R and j− : (−∞, 0) ↪→ R

yields two restrictions functors: j∗± : Faclc
R∗ → Faclc

R
. HenceF ∈ Faclc

R∗ determines

two E1-algebras R ∼= F((0,+∞)
)
and L ∼= F((−∞, 0)

)
.

By Lemma 7, the pushforward (−N )∗ : Faclc
R∗ → Faclc

(−∞,0] along −N : x �→
−|x | is well defined. Then Proposition 28 implies that (−N )∗(F) is determined by
a left module M over the E1-algebra A ∼= (−N )∗(F)

(
(0,+∞)

) ∼= L ⊗ Rop, i.e. by
a (L , R)-bimodule.

We thus have a functor ( j∗±, (−N )∗) : Faclc
R∗ → BiMod where BiMod is the

∞-category of bimodules (inChain(k)) defined in [71, Sect. 4.3] (i.e. the∞-category
of triples (L , R, M) where L , R are E1-algebras and M is a (L , R)-bimodule).

Proposition 29 The functor ( j∗±, (−N )∗) : Faclc
R∗

∼= BiMod is an equivalence.

Example 35 (From pointed disk to the n-dimensional annulus Sn−1×R) LetM be a
locally constant factorization algebra on the pointed disk R

n∗. By the previous results
in this Section (specifically Lemma 7 and Proposition 28), for any A ∈ Faclc

Sn−1×R,
the pushforward along the euclidean norm N : R

n → [0,+∞) factors as a functor

N∗ : Faclc
R

n∗ ×Faclc
Rn\{0}

{A} −→ E1-RModA(Sn−1×R)

from the category of locally constant factorization algebras on the pointed diskwhose
restriction to R

n \ {0} is (quasi-isomorphic to) A to the category of right modules
over the E1-algebra55 A(Sn−1 × R) ∼= ∫

Sn−1×R A. Similarly, we have the functor

(−N )∗ : Faclc
R

n∗ ×Faclc
Rn\{0}

{A} −→ E1-LModA(Sn−1×R).

Proposition 30 Let A be in Faclc
Sn−1×R.

• The functor N∗ : Faclc
R

n∗ ×Faclc
Rn\{0}

{A} −→ E1-RModA(Sn−1×R) is an equivalence

of ∞-categories.
• (−N )∗ : Faclc

R
n∗ ×Faclc

Rn\{0}
{A} −→ E1-LModA(Sn−1×R) is an equivalence.

See Sect. 9.3 for a Proof.
The Proposition allows to reduce a category of “modules” over A to a category

of modules over an (homotopy) dg-associative algebra.
We will see in Sect. 7.1 that it essentially gives a concrete description of the

enveloping algebra of an En-algebra.

55 The E1-structure is given by Lemma 5.
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6.4 More Examples

We now give, without going into any details, a fewmore examples of locally constant
factorization algebras on stratified spaces which can be studied along the same way
as we did previously.

Example 36 (Towards quantum mechanics) One can make the following variant of
the interval example of Proposition 27 (see [24] for details). Fix a one parameter
group (αt )t∈[0,1] of invertible elements in an associative (topological) algebra A.
Now, we define a factorization algebra on the basis I of open disks of [0, 1] in the
same way as in Proposition 27 except that we add the element αd to any hole of
length d between two intervals (corresponding to the inclusion of the empty set:
F(∅) → F(I ) into any open interval). Precisely, we set:

• the structure map k = F(∅) → F(s, t)
) = A is given by the element αt−s ,

the structure map k = F(∅) → F[0, t)
) = Mr mr · αt and the structure map

k = F(∅) → F(u, 1]) = M� α1−u · m�.
• For 0 < s < t1 < u1 < · · · < ti < ui < v < 1 one sets the map

Mr ⊗ A⊗i = F([0, s))⊗ F((t1, u1)) ⊗ · · ·F((ti , ui )) −→ F([0, v)) = Mr

to be given by

m ⊗ a1 ⊗ · · · ⊗ ai �−→ m · αt1−sa1αt2−u1a2 · · ·αti−ui−1aiαv−ui ,

the map

A⊗i ⊗ M� = F((t1, u1)) ⊗ · · ·F((ti , ui )) ⊗ F((v, 1]) −→ F((s, 1]) = M�

to be given by a1 ⊗ · · · ⊗ ai ⊗ n �−→ αt1−sa1αt2−u1a2 · · ·αti−ui−1aiαv−ui n, and
also the map A⊗i = F((t1, u1)) ⊗ · · · ⊗ F((ti , ui )) −→ F((s, v)) = A to be
given by

a1 ⊗ · · · ⊗ ai �−→ αt1−sa1αt2−u1a2 · · ·αti−ui−1aiαv−ui .

One can check that these structure maps define a I-factorization algebra and thus a
factorization algebra on I .

One can replace chain complexeswith topologicalC-vector spaces (withmonoidal
structure the completed tensor product) and take V to be an Hilbert space. Then one
can choose A = (

Endcont (V )
)op and Mr = V = M� where the left A-module

structure on M� is given by the action of adjoint operators. Let αt := eitϕ where
ϕ ∈ Endcont (V ). One has F([0, 1]) = C. One can think of A as the algebra of
observables where V is the space of states and eitϕ is the time evolution operator.
Now, given two consecutives measures O1, O2 made during the time intervals ]s, t[
and ]u, v[ (0 < s < t < u < v < 1), the probability amplitude that the system goes
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from an initial state vr to a final state v� is the image of O1⊗ O2 under the structure
map

A ⊗ A = F(]s, t[)⊗ F(]u, v[) −→ F([0, 1]) = C ,

and is usually denoted 〈v�|ei(1−v)ϕO2ei(u−t)ϕO1eisϕ|vr 〉.
Example 37 (The upper half-plane) Let H = {z = x+ iy ∈ C, y ≥ 0} be the closed
upper half-plane, viewed as a stratified space with H0 = ∅, H1 = R the real line as
dimension 1 strata and H2 = H . The orthogonal projection π : H → R onto the
imaginary axis Ri ⊂ C induces, by Propositions 6 and 28), an equivalence

Faclc
H

�−→ Faclc
[0,+∞)(Faclc

R
) ∼= E1-RMod(E1-Alg).

Using Dunn Theorem 11, we have (sketched a proof of the fact) that

Proposition 31 The ∞-category of stratified locally constant factorization algebra
on H is equivalent to the ∞-category of algebras over the swiss cheese operad, that
is the ∞-category consisting of triples (A, B, ρ) where A is an E2-algebra, B an
E1-algebra and ρ : A → RHomE1

B (B, B) is an action of A on B compatible with
all the multiplications.56

One can also consider another stratification H̃ on R × [0,+∞) given by adding
a 0-dimensional strata to H , given by the point 0 ∈ C. There is now 4 kinds of
(stratified) disks in H̃ : the half-disk containing 0, the half disk with a connected
boundary component lying on (−∞, 0), the half-disk containing 0, the half disk
with a connected boundary component lying on (0,+∞) and the open disks in the
interior {x + iy, y > 0} of H .

One proves similarly

Proposition 32 Locally constant factorization algebras on the stratified space H̃
are the same as the category given by quadruples (M, A, B, ρA, ρB , E) where E is
an E2-algebra, (A, ρA), (B, ρB) are E1-algebras together with a compatible action
of E and (M, ρM ) is a (A, B)-bimodule together with a compatible action57 of E.

Examples of such factorization algebras occur in deformation quantization in the
presence of two branes, see [15].

Note that the norm is again adequatly stratified so that, if F ∈ Faclc
H̃
, then

(−N )∗(F) ∈ Faclc
(
(−∞, 0]) ∼= E1-LMod. Using the argument of Proposition 30

and Proposition 27,we see that ifF is given by a tuple (M, A, B, ρA, ρB , E), then the
underlying E1-algebra of (−N )∗(F) is (the two-sided Bar construction) A⊗L

E Bop.

56 That is the map ρ is a map of E2-algebras where RHom
E1
B (B, B) is the E2-algebra given by the

(derived) center of B. In particular, ρ induces a map ρ(1B) : A → B.
57 Precisely, this means the choice of a factorization A ⊗ Bop −→ A

L⊗
E

Bop ρM−→ RHom(M, M)

(in E1-Alg) of the (A, B)-bimodule structure of M .
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Example 38 (The unit disk in C) Let D = {z ∈ C, |z| ≤ 1} be the closed unit disk
(with dimension 1 strata given by its boundary). By Lemma 7, the norm gives us a
pushforward functor N∗ : Faclc

D → Faclc[0,1]. A proof similar to the one of Corollary
7 and Theorem 12 shows that the two restrictions of N∗ to D \ ∂D and D \ {0}
induces an equivalence

Faclc
D

�−→ Faclc
D\∂D ×h

Faclc
(0,1)

E1-RMod
(
Faclc

S1
)
.

By Corollary 4 and Theorem 9, one obtains:

Proposition 33 The ∞-category of locally constant factorization algebra on the
(stratified) closed unit disk D is equivalent to the ∞-category consisting of quadru-
ples (A, B, ρ, f ) where A is an E2-algebra, B an E1-algebra, ρ : A : RHomE1-Alg
(B, B) is an action of A on B compatible with all the multiplications and f : B → B
is a monodromy compatible with ρ.

One can also consider a variant of this construction with dimension 0 strata given
by the center of the disk. In that case, one has to add a E2-A-module to the data in
Proposition 33.

Example 39 (The closed unit disk R
n) Let Dn be the closed unit disk of R

n which is
stratified with a single strata of dimension n−1 given by its boundary ∂Dn = Sn−1.
We have restriction functors Faclc

Dn −→ Faclc
Dn\∂Dn

∼= En-Alg (Theorem 9),

En-Alg ∼= Faclc
Dn\∂Dn → Faclc

Sn−1×(0,1)
∼= E1-Alg(Faclc

Sn−1) (by Proposition 18)

and Faclc
Dn −→ Faclc

Dn\{0}. From Corollary 7, we deduce

Proposition 34 The above restriction functors induce an equivalence

Faclc
Dn

�−→ En-Alg ×
E1-Alg

(
Faclc

Sn−1

) E1-LMod
(
Faclc

Sn−1

)
.

Let f : A → B be an En-algebra map. Since Sn−1 × R has a canonical framing,
both A and B carries a structure of locally constant factorization algebra on Sn−1,
which is induced by pushforward along the projection q : Sn−1 × R → Sn−1 (see
Example 26). Further, B inherits an En-module structure over A induced by f and, by
restriction, q∗(B|Sn−1×R) is an E1-module over q∗(A|Sn−1×R). Thus, Proposition 34

yields a factorization algebra ωDn (A
f→ B) ∈ Faclc

Dn .

Proposition 35 The map ωDn induces a faithful functor ωDn : HomEn -Alg −→
Faclc

Dn where HomEn -Alg is the ∞-groupoid of En-algebras maps.

By the relative higher Deligne conjecture (Theorem 16), we also have the
En-algebra H HEn (A, B f ) and an En-algebra map H HEn (A, B f ) → B given as
the composition
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Fig. 3 The stratification of
the square. The (oriented)
edges and vertices are
decorated with their
associated algebras and
modules. Also 4 rectangles
which are good
neighborhoods at
respectively 1, [4, 1], [1, 2]
and the dimension 2-strata
are depicted in blue. The
band D13 is delimited by the
dotted lines while the
annulus T is the complement
of the interior blue square

M1 M2

M3
M4

A[4,1]

A[1,2]

A[2,3]

A[3,4]

A

H HEn (A, B f ) ∼= z( f )
id⊗1A−→ z( f )⊗ z(k

1A→ A) −→ z(k
1B→ B) ∼= B.

Thus by Proposition 35, the pair (H HEn (A, B f ), B) also defines a factorization
algebra on Dn .

Let τ : Dn → R
n ∪ {∞} be the map collapsing ∂Dn to the point ∞. It is an

adequatly stratified map if we see R
n ∪ {∞} as being stratified with one dimension

0 strata given by∞. Denote R̂n this stratified manifold. The composition of τ∗ with
ωDn gives us:

Corollary 10 There is a faithful functor ω̂ : HomEn -Alg −→ Faclc
R̂n .

Example 40 (The square) Consider the square I 2 := [0, 1]2, the product of the
interval (with its natural stratification of Sect. 6.2) with itself. This stratification
agrees with the one given by seeing I 2 as a manifold with corners. Thus, there are
four 0-dimensional strata corresponding to the vertices of I 2 and four 1-dimensional
strata corresponding to the edges. Let us denote {1, 2, 3, 4} the set of vertices and
[i, i+1] the corresponding edge linking the vertices i and i+1 (ordered cyclically58).
See Fig. 3.

We can construct a factorization algebra on I 2 as follows. For every edge [i, j]
of I 2, let A[i, j] be an E1-algebra; also let A be an E2-algebra. For every vertex i ,
let Mi be a (A[i−1,i], A[i,i+1])-bimodule. Finally, assume that A acts on each A[i, j]
and Mk in a compatible way with algebras and module structures. Compatible, here,
means that for every vertex i , the data (Mi , A[i−1,i], A[i,i+1], A) (together with the
various module structures) define a locally constant stratified factorization algebra
on a neighborhood59 of the vertex i as given by Proposition 32.

58 In other words we have the 4 edges [1, 2], [2, 3], [3, 4] and [4, 1].
59 For instance, take the complement of the closed sub-triangle of I 2 given by the three other
vertices, which is isomorphic as a stratified space to the pointed half plane H̃ of Example 37.
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Using Propositions 27 and 29 (and their proofs) and Remark 23, we see that
we obtain a locally constant factorization algebra I on I 2 whose value on an open
rectangle R ⊂ I 2 is given by

I(R) :=
⎧
⎨

⎩

Mi if R is a good neighborhood at the vertex i;
A[i,i+1] if R is a good neighborhood at the edge [i, i + 1];
A if R lies in I 2 \ ∂ I 2.

(40)

The structure maps being given by the various module and algebras structure.60

By Corollary 6, we get the functor π1∗ : Faclc
[0,1]2 → Faclc[0,1](Faclc[0,1]). Combin-

ing the proof of Propositions 18 and 27 (similarly to the proof of Corollary 7), we
get:

Proposition 36 The functor π1∗ : Faclc
[0,1]2 → Faclc[0,1](Faclc[0,1]) is an equiva-

lence of ∞-categories. Moreover, any stratified locally constant factorization alge-
bra on I 2 is quasi-isomorphic to a factorization algebra associated to a tuple
(A, A[i,i+1], Mi , i = 1 . . . 4) as in the rule (40) above.

Let us give some examples of computations of the global sections of I on various
opens.

• The band I 2 \([4, 1]∪[2, 3]) is isomorphic (as a stratified space) to (0, 1)×[0, 1].
Then from the definition of factorization homology and Proposition 27(3), we get

I(I 2 \ ([4, 1] ∪ [2, 3])) ∼= p∗
(I|I 2\([4,1]∪[2,3])

) ∼= p∗(π1∗(I|I 2\([4,1]∪[2,3]))

=
∫

[0,1]
π1∗(I|I 2\([4,1]∪[2,3]) ∼= A[1,2]

L⊗
A

(A[3,4])op.

In view of Corollary 7 in the case X = R (and Theorem 9); this is an equivalence
of E1-algebras.

• Consider a tubular neighborhood of the boundary, namely the complement61 T :=
I 2\[1/4, 3/4]2 (see Fig. 3). The argument of Proposition 27 andExample 15 shows
(by projecting the square on [0, 1] × {1/2}) that

I(T ) ∼=
(

M4
L⊗

A[4,1]
M1

) L⊗

A[1,2]⊗(A[3,4])op

(
M2

L⊗
A[2,3]

M3

)
.

• Now, consider a diagonal band, say a tubular neigborhood D13 of the diagonal
linking the vertex 1 to the vertex 3 (see Fig. 3). Then projecting onto the diagonal
[1, 3] and using again Proposition 27, we find,

60 Note that we orient the edges accordingly to the ordering of the edges.
61 Note that the obvious radial projection T → ∂ I 2 is not adequatly stratified.
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I(D13) ∼= M1
L⊗
A

M3.

Iterating the above constructions to higher dimensional cubes, one finds

Proposition 37 Let [0, 1]n be the stratified cube. The pushforward along the canon-

ical projections is an equivalence Faclc[0,1]n
�→ Faclc[0,1]

( · · · (Faclc[0,1]) · · ·
)
.

In other words, Faclc[0,1]n is a tractable model for an ∞-category consisting of the
data of an En-algebra An together with En−1-algebras An−1,in−1 (in−1 = 1 . . . 2n)
equipped with an action of An , En−2-algebras An2,in−2 (in−2 = 1 . . . 2n(n − 1))
each equipped with a structure of bimodule over 2 of the An−1, j compatible with
the A actions, …, Ek-algebras Ak,ik (ik = 1 . . . 2n−k

(n
k

)
) equipped with structure of

n − k-fold modules over (n − k many of) the Ak+1, j algebras, compatible with the
previous actions, and so on ….

Similarly to the previous Example 39, we also have a faithful functor

En-Alg ∼= Faclc
Rn −→ Faclc[0,1]n .

Example 41 (Iterated categories of (bi)modules) We consider the n-fold product
(R∗)n of the pointed line (see Example 34) with its induced stratification. It has one
0-dimensional strata given by the origins, 2n many 1-dimensional strata given by
half of the coordinate axis, …, and 2n open strata.

Locally constant (stratified) factorization algebras on (R∗)n are a model for iter-
ated categories of bimodules objects. Indeed, by Corollary 6, the iterated first pro-

jections on R∗ yields a functor π∗ : Faclc
(R∗)n −→ Faclc

R∗

(
Faclc

R∗
(
. . . (Faclc

R∗) . . .
))

.

From Proposition 29 (and its proof) combined with the arguments of the proofs of
Corollary 7 and Proposition 30, we get

Corollary 11 The functor

π∗ : Faclc
(R∗)n −→ Faclc

R∗

(
Faclc

R∗
(
. . . (Faclc

R∗) . . .
))

∼= BiMod
(

BiMod
(
. . . (BiMod) . . .

))

is an equivalence.

An interesting consequence arise if we assume that the restriction to R
n \ {0} of

F ∈ Faclc
(R∗)n is constant, that is in the essential image of the functor Faclc

Rn →
Faclc

(R∗)n . In that case, F belongs to the essential image of Faclc
R

n∗ → Faclc
(R∗)n . Thus

Corollaries 9 and 11 imply

Corollary 12 There is a natural equivalence

En-Mod ∼= E1-Mod
(

E1-Mod
(
. . . (E1-Mod) . . .

))
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inducing an equivalence

En-ModA ∼= E1-ModA

(
E1-ModA

(
. . . (E1-ModA) . . .

))

between the relevant ∞-subcategories.62

Let us describe now informally Faclc
(R∗)2 . A basis of (stratified) disks is given by

the convex open subsets. Such a subset is a good disk of index 0 if it is a neigborhood
of the origin, of index 1 if it is in R

2 \ {0} and intersects one and only one half
open coordinate axis. It is a good disk of index 2 if it lies in the complement of the
coordinate axis.We can construct a factorization algebra on (R∗)2 as follows. Let Ei ,
i = 1 . . . 4 be four E2-algebras (labelled by the cyclically ordered four quadrants of
R
2). Let A1,2, A2,3, A3,4 and A4,1 be four E1-algebras endowed, for each i ∈ Z/4Z,

with a compatible (Ei , Ei+1)-bimodule structure63 on Ai,i+1. Also let M be a E2-
module over each Ei in a compatible way. Precisely, this means that M is endowed

with a right action64 of the E1-algebra
(

A4,1
L⊗
E1

A1,2
) L⊗

E2⊗(E4)op

(
A2,3

L⊗
E3

A3,4
)
.

Similarly to previous examples (in particular Example 40), we see that we obtain a
locally constant factorization algebraM on (R∗)2 whose value on an open rectangle
is given by

M(R) :=

⎧
⎪⎪⎨

⎪⎪⎩

M if R is a good neighborhood of the origin;
Ai,i+1 if R is a good neighborhood of index 1

intersecting the quadrant labelled iand i + 1;
Ei if R lies in the interior of the i th-quadrant.

(41)

The structure maps are given by the various module and algebras structures. As in
Example 40, we get

Proposition 38 Any stratified locally constant factorization algebra on (R∗)2 is
quasi-isomorphic to a factorization algebra associated to a tuple (M, Ai,i+1, Ei ,

i = 1 . . . 4) as in the rule (41) above.

Example 42 (Butterfly) Let us give one of the most simple singular stratified exam-
ple. Consider the “(semi-open) butterfly” that is the subspace B := {(x, y) ∈
R
2| |y| < |x |} ∪ {(0, 0)} of R

2 . B has a dimension 0 strata given by the origin
and two open strata B+, B− of dimension 2 given respectively by restricting to those
points (x, y) ∈ B such that x > 0, resp. x < 0.

62 The A-E1-module structure on the right hand side are taken along the various underlying
E1-structures of A obtained by projecting on the various component R of Rn .
63 That is a map of E2-algebras Ei ⊗ (Ei+1)

op → RHomE1
Ai,i+1

(Ai,i+1, Ai,i+1).
64 In particular, it implies that the tuple (M, Ai−1,i , Ai,i+1, Ei ) defines a stratified locally constant
factorization algebra on H̃ by Proposition 32.
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The restriction to B+ of a stratified locally constant factorization algebra on B is
locally constant factorization over B+ ∼= R

2 (hence is determined by an E2-algebra).
This way, we get the restriction functor res∗ : Faclc

B → Faclc
R2 × Faclc

R2 .

Let π : R
2 → R be the projection (x, y) �→ x on the first coordinate. Then,

by Corollary 6, we get a functor π∗ : Faclc
B → Faclc

R∗ where R∗ is the pointed line

(Example 34). The restriction of π∗ to B+ ∪ B− thus yields a the functor Faclc
R2 ×

Faclc
R2 → Faclc

R\{0}.
A proof similar (and slightly easier) to the one of Proposition 45 shows that the

induced functor

(π∗, res∗) : Faclc
B −→ Faclc

R∗ ×h
Faclc

R\{0}
(Faclc

R2 × Faclc
R2)

is an equivalence. From Proposition 29, we then deduce

Proposition 39 There is an equivalence

Faclc
B
∼= BiMod ×h

(E1-Alg×E1-Alg)

(
E2-Alg × E2-Alg

)
.

In other words, locally constant factorization algebras on the (semi-open) butterfly
are equivalent to the ∞-category of triples (A, B, M) where A, B are E2-algebras
and M is a left A ⊗ Bop-module (for the underlying E1-algebras structures of A
and B).

Let B = {(x, y) ∈ R
2| |y| ≤ |x |} be the closure of the butterfly. It has four additional

dimension 1 strata, given by the boundary of B+ and B−. The above argument yields
an equivalence

Faclc
B

�−→ Faclc
R∗ ×h

Faclc
R\{0}

(
Faclc

H̃
× Faclc

H̃

)

where H̃ is the pointed half-plane, see Example 37. From Propositions 27, 29 and
32 we see that a locally constant factorization algebra on the closed butterfly B is
equivalent to the data of two E2-algebras E+, E−, four E1-algebras A+, B+, A−,
B−, equipped respectively with left or right modules structures over E+ or E−, and
a left

(
A+ ⊗L

E+ B+
)⊗ (

A− ⊗L

E− B−
)op-module M .

Example 43 (Homotopy calculus) The canonical action of S1 = SO(2) on R
2 has

the origin for fixed point. It follows that S1 acts canonically onFacR2∗ , the category of

factorization algebras over the pointed disk. If F ∈ Faclc
R2∗
, its restriction to R

2 \ {0}
determines an E2-algebra A with monodromy by Corollary 4, Proposition 18 and
Theorem 11. If F is S1-equivariant, then its monodromy is trivial and it follows
that the global section F(R2) is an E2-module over A. The S1-action yields an
S1-action on F(R2) which, algebraically, boils down to an additional differential
of homological degree 1 on F(R2). We believe that the techniques in this section
suitably extended to the case of compact group actions on factorization algebras
allow to prove
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Claim The category
(
Faclc

R2∗

)S1 of S1-equivariant locally constant factorization alge-

bras on the pointed disk R
2∗ is equivalent to the category of homotopy calculus of

Tamarkin-Tsygan [90] describing homotopy Gerstenhaber algebras acting on a BV-
module.

There are nice examples of homotopy calculus arising in algebraic geometry [6].

Example 44 Let K : S1 → R
3 be a knot, that is a smooth embedding of S1 inside

R
3. Then we can consider the stratified manifold R

3
K with a 1 dimensional open

strata given by the image of K , and another 3-dimensional open strata given by the
knot complement R

3 \ K (S1). Then the category of locally constant factorization
algebra on R

3
K is equivalent to the category of quadruples (A, B, f, ρ) where A is an

E3-algebras, B is an E1-algebra, f : B → B is a monodromy and ρ : A ⊗ B → B
is an action of A onto B (compatible with all the structures (that is making B an
object of E2-ModA(E1-Alg). We refer to [5] and [91] for details on the invariant of
knots produced this way.

7 Applications of Factorization Algebras and Homology

7.1 Enveloping Algebras of En-algebras and Hochschild
Cohomology of En-algebras

In this sectionwe describe the universal enveloping algebra of an En-algebra in terms
of factorization algebras, and apply it to describe En-Hochschild cohomology.

Given an En-algebra A, we get a factorization algebra on R
n and thus on its

submanifold Sn−1 × R (equipped with the induced framing); see Example 19. We
can use the results of Sect. 6 to study the category of En-modules over A.

In particular, fromCorollary 8, and Proposition 30, we obtain the following corol-
lary which was first proved by Francis [34].

Corollary 13 Let A be an En-algebra. The functor N∗ : En-ModA → E1
-RMod∫

Sn−1×R
A is an equivalence.

Similarly, the functor (−N )∗ : En-ModA → E1-LMod∫
Sn−1×R

A is an equiva-
lence.

We call
∫

Sn−1×R A the universal (E1-)enveloping algebra of the En -algebra A.
A virtue of Corollary 13 is that it reduces the homological algebra aspects in the

category of En-modules to standard homological algebra in the category of modules
over a differential graded algebra (given by any strict model of

∫
Sn−1×R A).

Remark 29 Corollary 8 remains true for n = ∞ (and follows from the above study,
see [48]), in which case, since S∞ is contractible, it boils down to the following
result:
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Proposition 40 ([71], [66]) Let A be an E∞-algebra. There is an natural equiva-
lence of ∞-categories E∞-ModA ∼= E1-RModA (where in the right hand side, A is
identified with its underlying E1-algebra).

Example 45 Let A be a smooth commutative algebra (or the sheaf of functions of
a smooth scheme or manifold) viewed as an En-algebra. Then, by Theorems 3 and
10, we have

Proposition 41 For n ≥ 2, there is an equivalence

En-ModA ∼= E1-RModS•A(Ω1
A[n−1]).

The right hand side is just a category of modules over a graded commutative algebra.
If A = OX , then one thus has an equivalence between En-ModOX and right graded
modules over OTX [1−n], the functions on the graded tangent space of X .

Example 46 Let A be an En-algebra. It is canonically a En-module over itself; thus
by Corollary 13 it has a structure of right module over

∫
Sn−1×R A. The later has

an easy geometrict description. Indeed, by the dimension axiom, A ∼= ∫
Rn A. The

euclidean norm gives the trivialization Sn−1 × (0,+∞) of the end(s) of R
n so that,

by Lemma 5,
∫
Rn A has a canonical structure of right module over

∫
Sn−1×(0,+∞)

A.

Let us consider the example of an n-fold loop space. Let Y be an n-connective
pointed space (n ≥ 0) and let A = C∗(Ωn(Y )) be the associated En-algebra. By
non-abelian Poincaré duality (Theorem 7) we have an equivalence

∫

Sn−1×R
A ∼= C∗

(
Mapc(Sn−1 × R, Y )

) ∼= C∗
(
Ω
(

Y Sn−1
))

.

By Corollary 13 we get

Corollary 14 The category of En-modules over C∗(Ωn(Y )) is equivalent to the

category of right modules over C∗
(
Ω
(

Y Sn−1
))

.

The algebra C∗
(
Ω
(

Y Sn−1
))

in Corollary 14 is computed by the cobar construction

of the differential graded coalgebra C∗
(
Map(Sn−1, Y )

)
. If Y is of finite type, n − 1-

connected and the ground ring k is a field of characteristic zero, the latter is the
linear dual of the commutative differential graded algebra C HSn−1(Ω∗

d R(Y )) where
Ω∗

d R(Y ) is (by Theorem 5) the differential graded algebra of Sullivan polynomial
forms on Y . In that case, the structure can be computed using rational homotopy
techniques.

Example 47 Assume Y = S2m+1, with 2m ≥ n. Then, Y has a Sullivan model given
by theCDGA S(y),with |y| = 2m+1.ByTheorems3 and5,C∗(Map(Sn−1, S2m+1))

is equivalent to the cofree cocommutative coalgebra S(u, v)with |u| = −1−2m and
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|v| = n − 2m − 2. By Corollarys 14 and 19 we find that the category of En-modules
over C∗(Ωn(S2m+1) is equivalent to the category of right modules over the graded
commutative algebra S(a, b) where |u| = −2m − 2 and |v| = n − 2m − 3.

There is an natural notion of cohomology for En-algebras which generalizes
Hochschild cohomology of associative algebras. It plays the same role with respect
to deformations of En-algebras as Hochschild cohomology plays with respect to
deformations of associatives algebras.

Definition 23 Let M be an En-module over an En-algebra A. The En-Hochschild
cohomology65 of A with values in M , denoted by H HEn (A, M), is by definition
(see [34]) RHomEn

A (A, M) (Definition 35).

Corollary 15 Let A be an En-algebra, and M, N be En-modules over A.

1. There is a canonical equivalence

RHomEn
A (M, N ) ∼= RHomleft∫

Sn−1×R

A
(M, N )

where the right hand side are homomorphisms of left modules (Definition 36).
2. In particular H HEn (A, M) ∼= RHomleft∫

Sn−1×R
A
(A, M).

3. If A is a CDGA (or E∞-algebra) and M is a left module over A, then

H HEn (A, M) ∼= RHomEn
A (A, M) ∼= C H Sn

(A, M).

Proof The first two points follows from from Corollary 13. The last one follows
from Theorem 10 which yields equivalences

RHomleft∫
Sn−1×R

A(A, M) ∼= RHomle f t
C HSn−1 (A) (C HRn (A), M)

∼= RHomle f t
A

(
C HRn (A) ⊗L

C HSn−1 (A) A, M
)

∼= RHomle f t
A (C HSn (A), M) ∼= C H Sn

(A, M) (42)

when A is an E∞-algebra. ��
Example 48 Let A be a smooth commutative algebra and M a symmetric
A-bimodule.By theHKRTheorem(seeTheorem3), onehasC HSd (A) ∼= S•A(Ω1

A[d])
which is a projective A-module since A is smooth. Thus, Corollary 15 implies

H HEd (A, M) ∼= S•A(Der(A, M)[−d]).

We now explain the relationship in between En-Hochschild cohomology and defor-
mation of En-algebras. Denote En-Alg|A the ∞-category of En-algebras over A.

65 Which is an object of Chain(k).
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The bifunctor of En-derivations Der : (En-Alg|A)op × En-ModA → Chain(k) is
defined as

Der(R, N ) := MapEn -Alg|A (R, A ⊕ N ).

The (absolute) cotangent complex of A (as an En-algebra) is the value on A of the
left adjoint of the split square zero extension functor En-ModA � M �→ A ⊕ M ∈
En-Alg|A. In other words, there is an natural equivalence

MapEn -ModA
(L A,−)

�−→ Der(A,−)

of functors. The (absolute) tangent complex of A (as an En-algebra) is the dual of
L A (as an En-module):

TA := RHomEn
A (L A, A) ∼= RHomleft∫

Sn−1×R
A(L A, A).

The tangent complex has a structure of an (homotopy) Lie algebra which controls
the deformation of A as an En-algebra (that is, its deformations are precisely given
by the solutions of Maurer-Cartan equations in TA). Indeed, Francis [34] has proved
the following beautiful result which solve (and generalize) a conjecture of Kontse-
vich [64]. His proof relies heavily on factorization homology and in particular on
the excision property to identify En-ModA with the En−1-Hochschild homology of
E1-LModA which is a En−1-monoidal category.

Theorem 13 ([34]) Let A be an En-algebra and TA be its tangent complex. There
is a fiber sequence of non-unital En+1-algebras

A[−1] −→ TA[−n] −→ H HEn (A)

inducing a fiber sequence of (homotopy) Lie algebras

A[n − 1] −→ TA −→ H HEn (A)[n]

after suspension.

7.2 Centralizers and (Higher) Deligne Conjectures

We will here sketch applications of factorization algebras to study centralizers and
solve the (relative and higher) Deligne conjecture.

The following definition is due to Lurie [71] (and generalize the notion of center
of a category due to Drinfeld).

Definition 24 The (derived) centralizer of an En-algebramap f : A → B is the uni-
versal En-algebra zn( f ) equippedwith amapof En-algebras ezn( f ) : A⊗zn( f ) → B
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making the following diagram

(43)

commutative in En-Alg. The (derived) center of an En-algebra A is the centralizer

zn(A) := zn(A
id→ A) of the identity map.

The existence of the derived centralizer zn( f ) of an En-algebra map f : A → B is

a non-trivial result of Lurie [71]. The universal property means that if C
ϕ→ B is an

En-algebra map fitting inside a commutative diagram

(44)

then there is a unique66 factorization ϕ : A ⊗ C
id⊗κ��� A ⊗ zn( f )

ezn ( f )−→ B of ϕ by an
En-algebra map κ : C → zn( f ). In particular, the commutative diagram

induces natural maps of En-algebras

zn(◦) : zn( f ) ⊗ zn(g) −→ zn(g ◦ f ). (45)

66 Up to a contractible space of choices.
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Example 49 Let M be a monoid (for instance a group). That is an E1-algebra in
the (discrete) category of sets with cartesian product for monoidal structure. Then
z1(M) = Z(M) is the usual center {m ∈ M,∀n ∈ M, n · m = m · n} of M . Let
f : H ↪→ G be the inclusion of a subgroup in a group G. Then z1( f ) is the usual
centralizer of the subgroup H in G. This examples explain the name centralizer.

Similarly, let k-Mod be the (discrete) category of k-vector spaces over a field k.
Then an E1-algebra in k-Mod is an associative algebra and z1(A) = Z(A) is its usual
(non-derived) center. However, if one sees A as an E1-algebra in the ∞-category
Chain(k) of chain complexes, then z1(A) ∼= RHomA⊗Aop (A, A) is (computed by)
the usual Hochschild cochain complex ([67]) in which the usual center embeds
naturally, but is different from it even when A is commutative.

Let A
f→ B be an En-algebra map. Then B inherits a canonical structure of

En-A -module, denoted B f , which is the pullback along f of the tautological
En-B-module structure on B.

The relative Deligne conjecture claims that the centralizer is computed by En-
Hochschild cohomology.

Theorem 14 (Relative Deligne conjecture) Let A
f→ B and B

g→ C be maps of
En-algebras.

1. There is an En-algebra structure on H HEn (A, B f ) ∼= RHomEn
A (A, B f ) which

makes H HEn (A, B f ) the centralizer zn( f ) of f (in particular, z( f ) exists);
2. the diagram

is commutative in En-Alg (where the lower arrow is induced by composition of
maps in En-Mod).

3. If A
f→ B is a map of E∞-algebras, then there is an equivalence of En-algebras

zn ∼= C H Sn
(A, B f ) where C H Sn

(A, B) is endowed with the structure given by
Proposition 7.

Sketch of proof This result is proved in [48] (the techniques of [34] shall also give
an independent proof) and we only briefly sketch the main point of the argument.
We first define an En-algebra structure on RHomEn

A (A, B f ). By Corollary 8 and
Theorem 9, we can assume that A, B are factorization algebras on R

n and that a
morphism of modules is a map of the underlying (stratified) factorization algebras.
We are left to prove that there is a locally constant factorization algebra structure
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on R
n whose global sections are H HEn (A, B f ) ∼= RHomEn

A (A, B f ). It is enough
to define it on the basis of convex open subsets CV of R

n (by Proposition 17). To
any convex open set U (with central point xU ), we associate the chain complex
RHomFacU

A|U (A|U , B f |U ) of factorization algebras morphisms from the restrictions
A|U to B|U which, on the restriction to U \ {xU } are given by f . Note that since U
is convex, there is a quasi-isomorphism

RHomFacU
A|U (A|U , B f |U ) ∼= RHomEn

A (A, B f ) = RHomFacRn

A|Rn (A|Rn , B f |Rn ). (46)

Now, given convex setsU1, . . . , Ur which are pairwise disjoint inside a bigger convex
V , we define a map

ρU1,...,Ur ,V :
⊗

i=1...r

RHom
FacUi
A|Ui

(A|Ui , B f |Ui
) −→ RHomFacV

A|V (A|V , B f |V )

as follows.TodefineρU1,...,Ur ,V (g1, . . . , gr ),weneed todefine a factorization algebra
map on V and for this, it is enough to do it on the open set consisting of convex subsets
of V which either are included in one of the Ui and contains xUi or else does not
contains any xUi . To each open set xUi ∈ Di ⊂ Ui of the first kind, we define

ρU1,...,Ur ,V (g1, . . . , gr )(Di ) : A(Di )
gi−→ B f (Di )

to be given by gi , while for any open set D ⊂ V \ {xU1 , . . . , x|Ur }, we define

ρU1,...,Ur ,V (g1, . . . , gr )(D) : A(D)
f−→ B f (D)

to be given by f . The conditions that g1, . . . , gr are maps of En-modules over A(Ui )

ensures that ρU1,...,Ur ,V define the structure maps of a factorization algebra which is
further locally constant since ρU,Rn is the equivalence (46).

The construction is roughly described in Fig. 4.
One can check that the natural evaluation map eval : A⊗RHomEn

A (A, B f ) → B
is a map of En-algebras.

Now let C be an En-algebra fitting in the commutative diagram (44), which
we again identify with a factorization algebra map (over R

n). By adjunction (in
Chain(k)), themapϕ : A⊗C → B has a (derived) adjoint θϕ : C → RHom(A, B).
Sinceϕ is amapof factorization algebras and diagram (43) is commutative, one check
that θϕ factors through a map

θ̃ϕ : C −→ RHom En
A (A, B) ∼= C H Sn

(A, B). (47)

which can be proved to be a map of factorization algebras. Further, by definition
of θϕ, the identity

eval ◦(idA ⊗ θϕ

) = ϕ
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Fig. 4 The factorization
algebra map A|V → B|V
obtained by applying the
relevant maps of modules
g1, g2, g3 (viewed as maps
of factorizations algebras)
and the En-algebra map
f : A → B on the respective
regions

f

g2

g3g1

V U2

U3
U1

holds. The uniqueness of the map θ̃ϕ follows from the fact that the composition

RHom En
A (A, B)

1
RHom En

A (A,A)
⊗id

−→ RHom En
A

(
A, A ⊗ RHom En

A (A, B)
)

ev∗−→ RHom En
A (A, B)

is the identity map.
Finally the equivalence between zn( f ) and C H Sn

(A, B f ) in the commutative
case follows from the string of equivalences (42) which can be checked to be an
equivalence of En-algebras using diagram (30) connecting algebras over the operads
of little rectangles of dimension n and factorization algebras. ��

Example 50 Let A
f→ B be a map of CDGAs. then by Proposition 15 we

have an equivalence H HEn (A, B) ∼= RHomle f t
C H∂ I n (A)(C HI n (A), C HI n (B)) where

I = [0, 1] and ∂ I n ∼= Sn−1 is the boundary of the unit cube I n . We have a simplicial
model I n• of I n where I• is the standard model of Example 1; its boundary ∂ I n• is a
simplicial model for Sn−1. Then Theorem 14 identifies the derived composition (45)
as the usual composition (of left dg-modules)

Homle f t
C H∂ I n• (A)

(
C HI n• (A), C HI n• (B)

)
⊗ Homle f t

C H∂ I n• (B)

(
C HI n• (B), C HI n• (C)

)

◦−→ Homle f t
C H∂ I n• (A)

(
C HI n• (A), C HI n• (C)

)
.

The relative Deligne conjecture implies easily the standard one and also the Swiss
cheese conjecture. Indeed, Theorem 14 implies that the multiplication zn(A) ⊗
zn(A)

zn(◦)−→ zn(A) makes zn(A) into an E1-algebra in the ∞-category En-Alg.
The ∞-category version of Dunn Theorem (Theorem 11) gives an equivalence
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E1-Alg
(
En-Alg

) ∼= En+1-Alg. This yields the following solution to the higher
Deligne conjecture, see [48, 71].

Corollary 16 (Higher Deligne Conjecture) Let A be an En-algebra. The En-
Hochschild cohomology H HEn (A, A) has an En+1-algebra structure lifting the
Yoneda product which further lifts the En-algebra structure of the centralizer

z(A
id→ A).

In particular, if A is commutative, there is a natural En+1-algebra structure on
C H Sn

(A, A) ∼= H HEn (A, A) whose underlying En-algebra structure is the one
given by Theorem 7. Hence the underlying E1-algebra structure is given by the
cup-product (Example 9).

Example 51 Let C be a monoidal (ordinary) category. Then the center z1(C) is in
E2-Alg(Cat), that is a braidedmonoidal category.One can prove that z1(C) is actually
the Drinfeld center of C, see [71].
Remark 30 Presumably, the En+1-structure on H HEn (A) given by Corollary 16
shall be closely related to the one given by Theorem 13.

Example 52 Let 1A : k → A be the unit of an En-algebra A. Then zn(1A) ∼= A as
an En-algebra. The derived composition (45) yields canonical map67 of En-algebras
zn(A) ⊗ zn(1A) −→ zn(1A) which exhibits A ∼= zn(1A) as a right E1-module over
zn(A) ∼= H HEn (A, A) in the category of En-algebras (by Theorem 16). Hence, in
view of Example 37, we obtain, as an immediate corollary (see [14]), a proof of the
Swiss-Cheese version of Deligne conjecture68:

Corollary 17 (Deligne conjecture with action) Let A be an En-algebra. Then the
pair (H HEn (A, A), A) is canonically an object of E1-RMod(En-Alg), that is A has
an natural action of the En+1-algebra H HEn (A, A).

Example 53 ((Higher homotopy) calculus again [14]) Let A be an En-algebra.
Assume n = 0, 1, 3, 7, so that A defines canonically a (locally constant) factor-
ization algebra ASn on the framed manifold Sn (see Example 19). Similarly the
En+1-algebra given by the higher Hochschild cohomology H HEn (A, A) defines
canonically a (locally constant) factorization algebra on the manifold Sn × (0,∞)

endowed with the product framing.
The Deligne conjecture with action (Corollary 17) shows that A is also a left mod-

ule over H HEn (A, A). Thus, according to Proposition 30, the pair (H HEn (A, A), A)

yields a stratified locally constant factorization algebra H on Dn+1 \ {0}, the closed
disk in which we have removed the origin.

By Theorem 8, we have that (ASn )(∂Dn+1) ∼= ∫
Sn A. Collapsing the boundary

∂Dn+1 to a point yields an adequatly stratified map τ : Dn+1 \ {0} → R
n+1∗ so

that A := τ∗(H) is stratified locally constant on R
n+1∗ . It is further SO(n + 1)-

equivariant. Together with Example 43, the above paragraph thus sketches a proof
of the following fact:

67 Which is equivalent to ez(1A).
68 Originally proved, for a slightly different variant of the swiss cheese operad, in [25, 100].
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Corollary 18 Let A be an En-algebra and n = 0, 1, 3, 7. Then A gives rise to
an SO(n + 1)-equivariant stratified locally constant factorization algebra A on the
pointed disk R

n+1∗ such that A(Rn+1) ∼= ∫
Sn A and for any sub-disk D ⊂ R

n+1 \{0},
there is an natural (with respect to disk inclusions) equivalence of En+1-algebras

A(D)
�→ H HEn (A, A).

In particular, for n = 1, we recover that the pair (H HE1(A, A), C HS1(A)),
given by Hochschild cohomology and Hochschild homology of an associative or
A∞-algebra A, defines an homotopy calculus (see [65, 90] or Example 43).

This corollary is proved in details (using indeed factorization homology techniques)
in the interesting paper [59] along with many other examples in which Dn is replaced
by other framed manifold.

7.3 Higher String Topology

The formalism of factorization homology for CDGAs and higher Deligne conjecture
was applied in [45, 48] to higher string topology which we now explain briefly. We
also refer to the work [57, 58] for a related approach.

Let M be a closed oriented manifold, equipped with a Riemannian metric. String
topology is about the algebraic structure of the chains and homology of the free loop
space L M := Map(S1, M) and its higher free sphere spaces M Sn := Map(Sn, M).
These spaces have Fréchet manifold structures and there is a submersion ev :
M Sn → M given by evaluating at a chosen base point in Sn . The canonical embed-

ding Map(Sn ∨ Sn, M)
ρin−→ Map(Sn, M) × Map(Sn, M) has an oriented nor-

mal bundle.69 It follows that there is a Gysin map (ρin)! : H∗
(

M Sn ∐ Sn
)
−→

H∗−dim(M)

(
M Sn∨Sn

)
. The pinching map δSn : Sn → Sn ∨ Sn (obtained by collaps-

ing the equator to a point) yields the map δ∗Sn : Map(Sn ∨ Sn, M) −→ M Sn
. The

sphere product is the composition

	Sn : H∗+dim(M)

(
M Sn

)⊗2 →H∗+2 dim(M)

(
M Sn ∐ Sn

)

(ρin)!−→ H∗+dim(M)

(
M Sn∨Sn

) (δ∗Sn )∗−→ H∗+dim(M)

(
M Sn

)
.

(48)

The circle action on itself induces an action γ : L M × S1 → L M .

69 Which can be obtained as a pullback along ev of the normal bundle of the diagonal M → M×M .



Notes on Factorization Algebras, Factorization Homology and Applications 509

Theorem 15

1. (Chas-Sullivan [17]) Let Δ : H∗(L M)
×[S1]−→ H∗+1 (L M × S1)

γ∗−→ H∗+1 (L M)

be induced by the S1-action. Then (H∗+dim(M)(L M), 	S1 ,Δ) is a Batalin
Vilkoviski-algebra and in particular a P2-algebra.

2. (Sullivan-Voronov [20]) (H∗+dim(M)(L M), 	Sn ) is a graded commutative alge-
bra.

3. (Costello [21], Lurie [70]) If M is simply connected, the chains C∗(L M)

[dim(M)] have a structure of E2-algebra (and actually ofDiskor
2 -algebra) which,

in characteristic 0, induces Chas-Sullivan P2-structure in homology (by [32]).

In [20], Sullivan-Voronov also sketched a proof of the fact that H•+dim(M)(M Sn
)

is an algebra over the homology H∗(Diskor
n+1) of the operadDisk

or
n+1 and in particular

has a Pn+1-algebra structure (see Example 64). Their work and the aforementioned
work for n = 1 (Theorem 15(3)) rise the following

Question 1 Is there a natural En+1-algebra (or even Diskor
n+1-algebra) on the chains

C∗
(

M Sn
)
[dim(M)] which induces Sullivan-Voronov product in homology?

Using the solution to the higher Deligne conjecture and the relationship between
factorization homology and mapping spaces, one obtains a positive solution to the
above question for sufficiently connected manifolds.

Theorem 16 ([48]) Let M be an n-connected70 Poincaré duality space. The shifted
chain complex C•+dim(X)(X Sn

) has a natural71 En+1-algebra structure which
induces the sphere product 	Sn (given by the map (48)) of Sullivan-Voronov [20]

Hp
(
X Sn )⊗ Hq

(
X Sn )→ Hp+q−dim(X)

(
X Sn )

in homology when X is an oriented closed manifold.

Sketch of proof We only gives the key steps of the proof following [45, 48].

• Let [M] be the fundamental class of M . The Poincaré duality map χM : x �→ x ∩
[M] is amap of leftmodules and thus, by Proposition 40 (and since, by assumption,
the biduality homomorphism C∗(X) → (C∗(X))∨ is a quasi-isomorphism),

χM : C∗(X) → C∗(X)[dim(X)] ∼= (
C∗(X)

)∨[dim(X)]

has an natural lift as an E∞-module. And thus as an En-module as well.
• From the previous point we deduce that there is an equivalence

70 It is actually sufficient to assume that M is nilpotent, connected and has finite homotopy groups
πi (M, m0) for 1 ≤ i ≤ n.
71 With respect to maps of Poincaré duality spaces.
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H HEn (C
∗(X), C∗(X)) ∼= RHomEn

C∗(X)

(
C∗(X), C∗(X)

)

(χM )∗−→ RHomEn
C∗(X)

(
C∗(X),

(
C∗(X)

)∨)[dim(M)]
∼= RHomle f t∫

Sn−1×R
C∗(X)

(
C∗(X),

(
C∗(X)

)∨)[dim(M)]
∼= RHomle f t

C∗(X)

(
C∗(X) ⊗L∫

Sn−1×R
C∗(X)

C∗(X), k
)[dim(M)]

∼= RHomle f t
C∗(X)

(
C HSn (C∗(X)), k

)[dim(M)]. (49)

where the last equivalence follows from Theorem 10.
• By Theorem 5 relating Factorization homology of singular cochains with mapping
spaces, the above equivalence (49) induces an equivalence

C∗
(

M Sn
)
[dim(M)] �−→ H HEn (C

∗(X), C∗(X)). (50)

• Now, one uses the higher Deligne conjecture (Corollary 16) and the latter equiv-

alence (50) to get an En+1-algebra structure on C∗
(

M Sn
)
[dim(M)]. The explicit

definition of the cup-product given by Proposition 7 (and Theorem 14) allows to

describe explicitly the E1-algebra structure at the level of the cochains C∗
(

M Sn
)

through the equivalence (50), which, in turn allows to check it induces the product
	Sn .

��
Example 54 Let M = G be a Lie group and A = S(V )

�→ Ωd R(G) be its min-
imal model. The graded space V is concentrated in positive odd degrees. If G is
n-connected, by the generalized HKR Theorem 3, there is an equivalence

S(V ⊕ V ∗[−n]) ∼= C H Sn
(A, A) ∼= C∗

(
GSn

)
[dim(G)] (51)

in Chain(k). The higher formality conjecture shows that the equivalence (51) is
an equivalence of En+1-algebras. Here the left hand side is viewed as an En+1-
algebra obtained by the formality of the En+1-operad from the Pn+1-structure on
S(V ⊕ V ∗[−n]) whose multiplicative structure is the one given by the symmetric
algebra and the bracket is given by the pairing between V and V ∗.

7.4 Iterated Loop Spaces and Bar Constructions

In this section we apply the formalism of factorization homology to describe iter-
ated Bar constructions equipped with their algebraic structure and relate them to the
En-algebra structure of nth-iterated loop spaces. We follow the approach of
[4, 34, 48].
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Bar constructions have been introduced in topology as a model for the coalge-
bra structure of the cochains on Ω(X), the based loop space of a pointed space X .
Similarly the cobar construction of coaugmented coalgebra has been studied orig-
inally as a model for the (E1-)algebra structure of the chains on Ω(X). The Bar
and coBar constructions also induce equivalences between algebras and coalgebras
under sufficient nilpotence and degree assumptions [31, 33, 61].

Let (A, d) be a differential graded unital associative algebra which is augmented,
that is equipped with an algebra homomorphism ε : A → k.

Definition 25 The standard Bar functor of the augmented algebra (A, d, ε) is

Bar(A) := k
L⊗
A

k.

If A is flat over k, it is computed by the standard chain complex Barstd(A) =
⊕

n≥0 A
⊗n

(where A = ker(A
ε→ k) is the augmentation ideal of A) endowed with

the differential

b(a1 ⊗ · · · an) =
n∑

i=1

±a1 ⊗ · · · ⊗ d(ai ) ⊗ · · · ⊗ an

+
n−1∑

i=1

±a1 ⊗ · · · ⊗ (ai · ai+1) ⊗ · · · ⊗ an

see [31, 37] for details (and signs).

The Bar construction has a standard coalgebra structure. It is well-known that if A
is a commutative differential graded algebra, then the shuffle product makes the Bar
construction Barstd(A) aCDGAand a bialgebra aswell. It was proved byFresse [37]
that Bar constructions of E∞-algebras have an (augmented) E∞-structure, allowing
to consider iterated Bar constructions and further that there is a canonical nth-iterated
Bar construction functor for augmented En-algebras as well [38].

Let us now describe the factorization homology/algebra point of view on Bar
constructions.

An augmented En-algebra is an En-algebra A equipped with an En-algebra map
ε : A → k, called the augmentation. We denote En-Algaug the ∞-category of
augmented En-algebras (see Definition 31). The augmentation makes k an En-
module over A.

By Proposition 35, an augmented En-algebra defines naturally a locally constant
factorization algebra on the closed unit disk (with its stratification given by its bound-
ary) of dimension less than n. Indeed, we obtain functors

ωDi : En-Algaug −→ Ei -Algaug(En−i -Algaug) −→ Faclc
Di (En−i -Algaug). (52)
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Definition 26 Let A be an augmented En-algebra. Its Bar construction is

Bar(A) :=
∫

I×Rn−1

A
L⊗∫

S0×Rn−1 A
k.

This definition agrees with Definition 25 for differential graded associative algebras
and further we have equivalences

Bar(A) :=
∫

I×Rn−1

A
L⊗∫

S0×Rn−1 A
k ∼= k

L⊗
A

k ∼= p∗(ωD1(A)) (53)

where I is the closed interval [0, 1] and p : I → pt is the unique map; in partic-
ular the right hand side of (53) is just the factorization homology of the associated
factorization algebra on D1.

The functor (52) shows that Bar(A) ∼= p∗(ωD1(A)) has an natural structure of
augmented En−1-algebra (which can also be deduced from Lemma 5(2)).

We can thus iterate (up to n-times) the Bar constructions of an augmented
En-algebra.

Definition 27 Let 0 ≤ i ≤ n. The i th-iterated Bar construction of an augmented
En-algebra A is the augmented En−i -algebra

Bar (i)(A) := Bar(· · · (Bar(A)) · · · ).

Using the excision axiom of factorization homology, one finds

Lemma 8 (Francis [34, 48]) Let A be an En-algebra and 0 ≤ i ≤ n. There is a
natural equivalence of En−i -algebras

Bar (i)(A) ∼=
∫

Di×Rn−i

A
L⊗∫

Si−1×Rn−i+1 A
k ∼= p∗(ωDi (A))

In particular, taking n = ∞, we recover an E∞-structure on the iterated Bar con-
struction Bar (i)(A) of an augmented E∞-algebra.

We now describes the expected coalgebras structures. We start with the E∞-case,
for which we can use the derived Hochschild chains from Sect. 2. Then, Lemma 8,
Theorem 10 and the excision axiom give natural equivalences of E∞-algebras ([48]):

C HSi (A, k) ∼= Bar (i)(A). (54)

Recall the continuous map (15) pinch : Cubed(r) × Sd −→ ∨
i=1...r Sd . Simi-

larly to the definition of themap (17), applying the singular set functor to themap (15)
we get a morphism
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pinchSn ,r∗ : C∗
(
Cubed(r)

)⊗ C HSd (A)
L⊗
A

k

pinch∗⊗L

Aid−→ C H∨r
i=1 Sd (A)

L⊗
A

k ∼=
(

C H∐r
i=1 Sd (A)

L⊗
A⊗r

A
)

L⊗
A

k

∼=
(

C H∐r
i=1 Sd (A)

)
L⊗

A⊗r
k ∼=

(
C HSd (A, k)

)⊗r

(55)

Proposition 42 ([48])Let A be an augmented E∞-algebra. The maps (55) pinchSd ,r∗
makes the iterated Bar construction Bar (d)(A) ∼= C HSd (A, k) a natural En-
coalgebra in the ∞-category of E∞-algebras.

If Y is a pointed space, its E∞-algebra of cochains C∗(Y ) has a canonical aug-
mentation C∗(Y ) → C∗(pt) ∼= k induced by the base point pt → Y . By Theorem4,
we have an E∞-algebra morphism

ItΩ
n : Bar (n)(C∗(Y )) ∼= C HSn (C∗(Y ), k)

It⊗L

C∗(Y )
k

−→ C∗(Y Sn )⊗L

C∗(Y ) k −→ C∗(Ωn(Y )
)
.

(56)

We now have a nice application of factorization homology in algebraic topology.

Corollary 19 1. The map (56) ItΩ
n : Bar (n)(C∗(Y )) → C∗(Ωn(Y )

)
is an

En-coalgebra morphism in the category of E∞-algebras. It is further an equiva-
lence if Y is connected, nilpotent and has finite homotopy groups πi (Y ) in degree
i ≤ n.

2. The dual of (56) C∗
(
Ωn(Y )

) −→ (
C∗
(
Ωn(Y )

))∨∨ ItΩn−→
(

Bar (n)(C∗(Y ))
)∨

is

a morphism in En-Alg. If Y is n-connected, it is an equivalence.

We now sketch the construction of the Ei -coalgebra structure of the i th-iterated
Bar construction of an En-algebra. To do so, we only need to define a locally constant
cofactorization algebra structure72 whose global section is Bar (i)(A). By (the dual
of) Proposition 17, it is enough to define such a structure on the basis of convex open
disks of R

i . Let A ∈ Faclc
Ri (En−i -Algaug) be the factorization algebra associated to

A (by Theorems 9 and 11).
Let V be a convex open subset. By Corollary 10 (and Theorem 9), the aug-

mentation gives us a stratified locally constant factorization algebra ω̂(A|V ) on
V̂ = V ∪ {∞} (with values in En−i -Algaug).

IfU ⊂ V is a convex open subset, we have a continuous map πU : V̂ → Û which
maps the complement of U to a single point. Further, the augmentation defines maps
of factorization algebras (on Û )

72 That is a locally constant coalgebra over the∞-operad Disk(Ri ) see Remark 24.
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εU : πU ∗(ω̂(A|V )) −→ ω̂(A|U )

which, on every open convex subset of U is the identity, and, on every open convex
neighborhood of∞ is given by the augmentation.

Define

Bar (i)(A)(U ) :=
∫

V

ω̂(A|V ) ∼=
∫

U

πU ∗(ω̂(A|V ))

to be the factorization homology of ω̂(A|V ). We finally get, for U1, . . . , Us pairwise
disjoint convex subsets of a convex open subset V , a structure map

∇U1,...,Us ,V : Bar (i)(A)(V ) =
∫

V

(ω̂(A|V )

⊗ ∫

Ui

εUi

−→
⊗

i=1···s

∫

Ui

ω̂(A|Ui )
�−→ Bar (i)(A)(U1)⊗ · · · ⊗ Bar (i)(A)(Us).

(57)

The maps ∇U1,...,Us ,V are the structure maps of a locally constant factorization
coalgebras (see [48]) hence they make Bar (i)(A) into an Ei -coalgebra (with values
in the category of En−i -algebras), naturally in A:

Theorem 17 ([4, 34, 48]) The iterated Bar construction lifts into an ∞-functor

Bar (i) : En-Algaug −→ Ei -coAlg
(

En−i -Algaug
)
.

One has an natural equivalence73 Bar (i)(A) ∼= k
L⊗
A

k in En−i -Alg.

Further this functor is equivalent to the one given by Proposition 42 when
restricted to augmented E∞-algebras.

Example 55 Let Freen be the free En-algebra on k as in Example 16. By Definition
26, we have equivalences of En−1-algebras.

Bar(Freen) =
∫

D1×Rn−1

Freen
L⊗∫

S0×Rn−1
Freen

k

∼=
∫

S1×Rn−1
Freen

L⊗∫
Rn−1 Freen

k

∼=
(
Freen ⊗ Freen−1(k[1])

)
L⊗∫

Rn−1 Freen

k (by Proposition 8)

∼= Freen−1(k[1]).

73 The relative tensor product being the tensor product of Ei -modules over A.
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The result also holds for Freen(V ) instead of Freen , see [35]. Iterating, one finds

Proposition 43 ([35]) There is a natural equivalence of En−i -algebras

Bar (i)(Freen(V )) ∼= Freen−i (V [i]).

If one works in Top∗ instead of Chain(k), then Freen(X) = ΩnΣn X and the

above proposition boils down to Bar (i)(ΩnΣn X) ∼= BiΩ i (Ωn−iΣn X)
�← Ωn−i

Σn−i (Σ i X).

7.5 En-Koszul Duality and Lie Algebras Homology

Let A
ε→ k be an augmented En-algebra. The linear dual RHom(Bar (n)(A), k) of

the nth-iterated Bar construction inherits an En-algebra structure (Theorem 17).

Definition 28 ([34, 71]) The En-algebra A(n)! := RHom(Bar (n)(A), k) dual to the
iterated Bar construction is called the (derived) En -Koszul dual of A.

The terminology is chosen because it agrees with the usual notion of Koszul duality
for quadratic associative algebras but it is really more like a En-Bar-duality.

Direct inspection of the En-algebra structures show that the dual of the iterated
Bar construction is equivalent to the centralizer of the augmentation. (see Sect. 7.2):

Lemma 9 ([48, 71]) Let A
ε→ k be an augmented En-algebra. There is an natural

equivalence of En-algebras A(n)! ∼= zn(A
ε→ k).

Let M be a dimension m manifold endowed with a framing of M × R
n . By

Proposition 35, Theorem 11 and Proposition 18, we have the functor

ωM×Dn : En+m -Algaug → En-Algaug(Em -Alg)

ωDn−→ Faclc
Dn (Em -Alg) ∼= Faclc

Rm×Dn −→ Faclc
M×Dn

where the last map is induced by the framing of M ×R
n as in Example 19. Let p be

themap p : M×Dn → pt .We can compute the factorization homology p∗(ωM×Dn )

by first pushing forward along the projection on Dn and then applying p∗ or first
pushing forward on M and then pushing forward to the point. By Theorem 17, we
thus obtain an equivalence

p∗(ωM×Dn ) ∼= Bar (n)
( ∫

M×Rn

A
) ∼=

∫

M

(
Bar (n)(A)

)
(58)

where the right equivalence is an equivalence of En-coalgebras. When M is further
closed, this result can be extended to obtain :
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Proposition 44 (Francis [4, 35]) Let A be an augmented En+m-algebra, M × R
n

be a framed closed manifold. There is an natural equivalence of En-algebras

∫

M×Rn
A(n+m)! ∼=

( ∫

M×Rn
A
)(n)!

if Bar (n)
( ∫

M×Rn A
)

has projective finite type homology groups in each degree.

In particular,
∫

M
A(m)! ∼= ( ∫

M
A
)∨

when M is framed (and the above condition is

satisfied).

In plain english, we can say that the factorization homology over a closed framed
manifold of an algebra and its En-Koszul dual are the same (up to finiteness issues).

Example 56 (Lie algebras and their En-enveloping algebras) Let Lie-Alg be the
∞-category of Lie algebras.74 The forgetful functor En-Alg → Lie-Alg, induced
by A �→ A[n − 1], has a left adjoint U (n) : Lie-Alg → En-Alg, the En-enveloping
algebra functor (see [33, 39] for a construction). For n = 1, this functor agrees with
the standard universal enveloping algebra.

Proposition 45 (Francis [35]) Let g be a (differential graded) Lie algebra. There is
an natural equivalence of En-coalgebras

(U (n)(g))(n)! ∼= C•
Lie(g)

where C•
Lie(g) is the usual Chevalley-Eilenberg cochain complex (endowed with its

differential graded commutative algebra structure).

Then using Propositions 44 and 45, we obtain for n = 1, 3, 7 that

∫

Sn

U (n)(g) ∼=
⎛

⎝
∫

Sn

C•
Lie(g)

⎞

⎠

∨

which for n = 1 gives the following standard result computing the Hochschild
homology groups of an universal enveloping algebra: H H∗(U (g)) ∼= H H∗(C•

Lie
(g))∨. Applying the Fubini formula, we also find

∫

S1×S1

U (2)(g) ∼= C H∗
(
C H∗(C•

Lie(g))
(1)!).

74 Which is equivalent to the category of L∞-algebras.
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7.6 Extended Topological Quantum Field Theories

In [70], Lurie introduced factorization homology as a (generalization of) an invariant
of an extended topological field theory and offshoot of the cobordism hypothesis.
We wish now to reverse this construction and explain very roughly how factorization
homology can be used to produce an extended topological field theory.

Following [70], there is an ∞-category75 of extended topological field theories
with values in a symmetric monoidal (∞, n)-category with duals (C,⊗). It is the cat-
egory of symmetric monoidal functors Fun⊗

(
(Bord f r

n ,
∐

), (C,⊗)
)
where Bord f r

n
is the (∞, n)-category of bordisms of framed manifolds with monoidal structure
given by disjoint union. In [70], Bord f r

n is defined as an n-fold Segal space which
precisely models the following intuitive notion of an (∞, n)-category whose objects
are framed compact 0-dimensional manifolds. The morphisms between objects are
framed 1-bordism, that is Hom

Bord f r
n

(X, Y ) consists of 1-dimensional framed man-

ifolds T with boundary ∂T = Y
∐

Xop (where Xop has the opposite framing to the
one of the object X ). The 2-morphisms in Bord f r

n are framed 2-bordisms between
1-dimensional framed manifolds (with corners) and so on. The n-morphisms are
n-framed bordisms between n − 1-dimensional framed manifolds with corners, its
n+1-morphisms diffeomorphisms and the higher morphisms are isotopies. Note that
in the precisemodel ofBord f r

n , the boundary component N1, . . . , Nr of amanifold M
are represented by an openmanifold with boundary components N1×R, . . . , Nr ×R

(in other words are replaced by open collars).
There is an (∞, n + 1)-category E≤n-Alg whose construction is only sketched

in [70] and detailled in [16] using a model based on factorization algebras. The
category E≤n-Alg can be described informally as the ∞-category with objects the
En-algebras, 1-morphisms HomE≤n -Alg(A, B) is the space of all (A, B)-bimodules
in En−1-Alg and so on. The (∞-)category n-HomE≤n -Alg(P, Q)) of n-morphisms is
the ∞-category of (P, Q)-bimodules where P, Q are E1-algebras (with additional
structure). In other words we have

n-HomE≤n-Alg(P, Q)) ∼= {P} ×
Faclc

(−∞,0)

Faclc
R∗ ×

Faclc
(0,+∞)

{R}
∼= {P} ×

E1-Alg
BiMod ×

E1-Alg
{R}

see Example 34. The composition

n-HomE≤n -Alg(P, Q)) × n-HomE≤n -Alg(Q, R)) −→ n-HomE≤n -Alg(P, R))

is given by tensor products of bimodules: P MQ ⊗L

Q Q NR which in terms of factor-
ization algebras is induced by the pushforward along the map q : R∗ ×R R∗ → R∗

75 The cobordism hypothesis actually ensures that it is an∞-groupoid.
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where R∗ ×R R∗ is identified with R stratified in two points −1 and 1 and q is the
quotient map identifying the interval [−1, 1] with the stratified point 0 ∈ R∗.

Let E≤n-Alg(0) be the (∞, n)-category obtained from E≤n-Algbydiscarding non-
invertible n + 1-morphisms, that is E≤n-Alg(0) = Gr (n)(E≤n-Alg) where Gr (n) is
the right adjoint of the forgetful functor (∞, n + 1)-Cat → (∞, n)-Cat.

The (∞, n)-category E≤n-Alg(0) is fully dualizable (the dual of an algebra is
its opposite algebra) hence every En-algebra determines in an unique way a fully
extended topological field theory by the cobordism hypothesis.

In fact, this extended field theory can be constructed by factorization homology.
Let M be a m-dimensional manifold. We say that M is stably n-framed if M ×R

n−m

is framed. Assume that M has two ends which are trivialized as L × R
op ⊂ M and

R×R ⊂ M , where L , R are stably framed codimension 1 closed sub-manifolds; here
R

op meansR endowedwith the opposite framing to the standard one. For instance, M
can be the interior of compact manifold M with two boundary component L , R and
trivializations L × [0,∞) ↪→ M and R × (−∞, 0] ↪→ M where the trivialization
on L × [0,∞) has the opposite orientation as the one induced by M .

In that case, Lemma 5 (and Proposition 29) imply that the factorization homol-
ogy

∫
M A is an En−m-algebra which is also a bimodule over the En−m+1-algebras( ∫

L×Rn−m+1 A,
∫

R×Rn−m+1 A
)
:

∫

M×Rn−m

A ∈
{ ∫

L×Rn−m+1

A
}

×
E1−-Alg

BiMod
(
En−m-Alg

) ×
E1−-Alg

{ ∫

R×Rn−m+1

A
}
.

Thus
∫

M A is a m-morphism in E≤n-Alg(0) from R to L . In fact, one can prove

Theorem 18 ([16]) Let A be an En-algebra. The rule which, to a stably n-framed
manifold M of dimension m, associates

Z A(M) :=
∫

M×Rn−m

A

extends as an extended field theory Z A ∈ Fun⊗
(
Bord f r

n , E≤n-Alg(0)
)
.

8 Commutative Factorization Algebras

In this Section, we explain in details the relationship in between classical homol-
ogy theory à la Eilenberg-Steenrod with factorization homology and more gener-
ally between (co)sheaves and factorization algebras. The main point is that when
C is endowed with the monoidal structure given by the coproduct, then Factoriza-
tion algebras boils down to the usual theory of cosheaves. This is in particular the
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case of factorization algebras with values in a category of commutative algebras
E∞-Alg(C,⊗) in (C,⊗).

8.1 Classical Homology as Factorization Homology

In this section we explain the relationship between factorization homology and sin-
gular homology (as well as generalized (co)homology theories for spaces).

LetChain(Z) be the (∞-)category of differential graded abelian groups (i.e. chain
complexes of Z-modules). It has a symmetric monoidal structure given by the direct
sum of chain complexes, which is the coproduct in Chain(Z). We can thus define
homology theory for manifolds with values in (Chain(Z),⊕). These are precisely
(restrictions of) the (generalized) cohomology theories for spaces and nothing more.
Recall that Mfldor

n is the (∞-)category of oriented manifolds, Example 11.

Corollary 20 Let G be an abelian group.76 There is an unique homology theory for
oriented manifolds with coefficient in G (Definition 11), that is (continuous) functor
HG : Mfldor

n → Chain(Z) satisfying the axioms

• (dimension) HG(Rn) ∼= G ;

• (monoidal) the canonical map
⊕

i∈I
HG(Mi )

�−→ HG(
∐

i∈I
Mi ) is a quasi-

isomorphism;
• (excision) If M is an oriented manifold obtained as the gluing M = R ∪N×R L

of two submanifolds along a a codimension 1 submanifold N of M with a trivial-
ization N × R of its tubular neighborhood in M, there is an natural equivalence

HG(M)
�←− cone

(
HG(N × R)

iL−iN−→ HG(L)⊕ HG(R)
)
.

Here HG(N × R)
iL−→ HG(L) and HG(N × R)

iR−→ HG(R) are the maps
induced by functoriality by the inclusions of N × R in L and R.

Then, this homology theory is singular homology77 with coefficient in G. In particular,
it extends as an homology theory for spaces.

The uniqueness means of course up to a contractible choice, meaning that any two
homology theory with coefficient in G will be naturally equivalent and any two
choices of equivalences will also be naturally equivalent and so on.

Proof This is a consequence of Proposition 46 below applied to C = Chain(Z) and
the fact that the homotopy colimit is precisely computed by the cone78 of the map
iL − iR . ��

76 Or even a graded abelian group or chain complex of abelian groups.
77 Or generalized exceptional homology when G is graded or a chain complex.
78 Note that in this case, we know a posteriori that we can chooseHG to be singular chains, so that
HG(iL )⊕HG(iR) is injective and the cone is equivalent to a quotient of chain complexes.
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Remark 31 Let H be a topological group, f : H → Homeo(Rn) a map of topolog-
ical groups and B f : B H → BHomeo(Rn) the induced map, so that we have the
category Mfld(B H,B f )

n of manifolds with H -structure, see Example 11. As shown by
its proof, Corollary 20 also holds with oriented manifolds replaced by manifold with
a H -structure; in particular for all manifolds or a contrario for framed manifolds.

Remark 32 Corollary 20 and Theorem 10 implies that HG(M) is computed by
(derived) Hochschild homology C HM (G) (in (Chain(Z),⊕)). If M• is a simplicial
set model of M , then HG(M) ∼= C HM•(G) which is exactly (by Sect. 2.3) the chain
complex of the simplicial abelian group G[M•]. In particular, for
M• = Δ•(M) = Hom(Δ•, M), one recovers exactly the singular chain complex
C∗(M) of M .

Corollary 20 is a particular case of a more general result which we now describe.
Let C be a category with coproducts. Then (C,

∐
) is symmetric monoidal, with

unit given by its initial object ∅. As we have seen in Sect. 2.1, any object X of C
carries a canonical (thus natural in X ) structure of commutative algebra in (C,

∐
)

which is given by the “multiplication” X
∐

X
∐

idX−→ X induced by the identity map
idX : X → X on each component. This algebra structure is further unital, with unit
given by the unique map ∅ → X . This defines a functor triv : C → E∞-Alg(C)

which to an object associates its trivial commutative algebra structure. In fact, the
latter algebras are the only only possible commutative and even associative ones in
(C,

∐
).

Lemma 10 (Eckman-Hilton principle) Let C be a category with coproducts and

(C,
∐

) the associated symmetric monoidal category. Let H
f→ Homeo(Rn) be a

topological group morphism and ι : Disk(B H,B f )
n -Alg(C) → C be the underlying

object functor (19) (Definition 9). We have a commutative diagram of equivalences

where the horizontal arrow is the canonical functor of Example 13.
In particular, any En-algebra (n ≥ 1) in (C,

∐
) is a (trivial) commutative algebra.

Proof Let I = {1, . . . , n} be a finite set and m I : ∐i∈I C → C be any map. The
universal property of the coproduct yields a commutative diagram
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where σI is the permutation induced by the bijection (1, n + 1)(2, n + 2) · · · (n, 2n)

of I
∐

I = {1, . . . , 2n} on itself. Hence, if C is an En-algebra, it is naturally an
object of En-Alg(E∞-Alg)where the commutative algebra structure is the trivial one

C
∐

C
∐

idC→ C . By Dunn Theorem 11 (or Eckman-Hilton principle), the forgetful
map (induced by the pushforward of factorization algebras) En-Alg((E∞-Alg)) −→
E0-Alg(E∞-Alg) is an equivalence. It follows that the En-algebra C is an E∞-
algebra whose structure is equivalent to triv(C).

The group map {1} → H induces a canonical functor Disk(B H,B f )
n -Alg →

En-Alg so that the above result implies that such a Disk(B H,B f )-algebra with under-
lying object C is necessarily of the form triv(C). ��
Proposition 46 Let (C,

∐
) be a ∞-category whose monoidal structure is given by

the coproduct and f : H → Homeo(Rn) be a topological group morphism .

• Any homology theory for (B H, B f )-structured manifolds (Definition 10) extends
uniquely into an homology theory for spaces (Definition 1).

• Any object C ∈ C determines a unique homology theory for (B H, B f )-manifolds
with values in C (Definition 11); further the evaluation map H �→ H(Rn) is an
equivalence between the category of homology theories for (B H, B f )-manifolds
in (C,

∐
) and C.

Proof By Theorem 6, homology theories for (B H, B f )-structured manifolds are
equivalent to Disk(B H,B f )

n -algebras which, by Lemma 10, are equivalent to C. In
particular, any Disk(B H,B f )

n -algebra is given by the commutative algebra associated
to an object of C so that by Theorem 10, it extends to an homology theory for spaces.

8.2 Cosheaves as Factorization Algebras

In this Section we identify (pre-)cosheaves and (pre-)factorization algebras when the
monoidal structure is given by the coproduct.

Let (C,⊗) be symmetric monoidal and let F be in PFacX (C). Then the struc-
ture maps F(U ) → F(V ) for any open U inside an open V induces a functor
γC : PFacX (C) −→ PcoShvX (C) where PcoShvX (C) := Fun(Open(X), C) is the
∞-category of precosheaves on X with values in C.
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Lemma 11 Let (C,
∐

) be an∞-category with coproducts whose monoidal structure
is given by the coproduct and X be a topological space.

1. The functor γC : PFacX (C) −→ PcoShvX (C) is an equivalence.
2. If X has a factorizing basis of opens,79 then the functor γC : PFacX (C) −→

PcoShvX (C) restricts to an equivalence

FacX (C)
�−→ coShvX (C)

between factorization algebras on X and the ∞-category coShvX (C) of (homo-
topy) cosheaves on X with values in C.

3. If X is a manifold, then the above equivalence also induces an equivalence

Faclc
X (C)

�−→ coShvlc
X (C) between locally constant factorization algebras and

locally constant cosheaves.

Proof Let F be in PFacX and U1, . . . , Ur be open subsets of V ∈ Open(X),
which are pairwise disjoint. Let ρU1,...,Ui ,V : F(U1)

∐ · · ·∐F(Ui ) → F(V ) be
the structure map ofF . The associativity of the structure maps (diagram (22)) shows
that the structure map ρU j ,V : F(U j ) → F(V ) factors as

The universal property of the coproduct implies that the following diagram

(59)

is commutative. It follows that the structure maps are completely determined by the
precosheaf structure. Conversely, any precosheaf on C gives rise functorially to a
prefactorization algebra with structure maps given by the composition

F(U1)
∐

· · ·
∐

F(Ui ) −→ F(V )
∐

· · ·
∐

F(V )

∐
idF(V )−→ F(V )

79 For instance when X is Hausdorff.
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yielding a functor θC : PcoShvX (C) → PFacX (C). The commutativity of dia-
gram (59) implies that this functor θC is inverse to γC : PFacX (C) → PcoShvX (C).

Note that both the cosheaf condition and the factorization algebra conditions
implies that the canonical map F(U1)

∐ · · ·∐F(Ui ) → F(U1
∐ · · ·∐Ui ) is an

equivalence (of constant simplicial objects). Now, we can identify the two gluing
conditions. Since U is a (factorizing) cover of V , then

P(U ) := {{U1, . . . , Uk}, which are pairwise disjoint}

is a cover of V . Further, if F ∈ FacX , the Čech complex Č(U ,F) is precisely the
(standard) Čech complex Čcosheaf(PU , γC(F)) of the cosheaf γC(F) computed on
the cover PU so that the map Č(U ,F) → F(V ) is an equivalence if and only if
Čcosheaf(PU , γC(F)) → F(V ) is an equivalence.

Assume X has a factorizing basis of opens.Both factorization algebras and cosheaf
are determined by their restriction on a basis of opens. It follows that γC sends
factorization algebras to cosheaves and θC sends cosheaves to factorization algebras.

It remains to consider the locally constant condition when X is a manifold, thus
has a basis of euclidean neighborhood. On each euclidean neighborhood D, by
Theorem 9, the restriction of F ∈ Faclc

X to D is the factorization algebra given by an
En-algebra A ∈ En-Alg((C,

∐
)) in C. Lemma 10 implies that A is given by the

trivial commutative algebra triv(C) associated to an objectC ∈ C. It follows from the
identification of Čech complexes above, that F|D is thus equivalent to the constant
cosheaf on D associated to the object C . The converse follows from the fact if
G ∈ coShvlc

X (C), then for any point x ∈ X , there is an euclidean neighborhood
Dx ∼= R

n on which G|Dx is constant. The identification of the Čech complexes
above implies that θC(G|Dx ) is locally constant on Dx . Proposition 13 implies that
the factorization algebra θC(G) is locally constant on X , hence finishes the proof. ��

From the identification between cosheaves and factorization algebras, we deduce
that factorization homology in (C,

∐
) agrees with homology with local coefficient:

Proposition 47 Let (C,
∐

) be a ∞-category whose monoidal structure is given by
the coproduct and X a manifold.

• There is an equivalence between homology theories for (X, T X)-structured
manifolds (Definition 10) and coShvlc

X (C), the (∞-)category of locally constant
cosheaves on X with values in C.

• The above equivalence is given, for any (X, T X)-structured manifold M and
(homotopy) cosheaf G ∈ coShvlc

X (C), by

∫

M

G := RΓ (M,G)

the cosheaf homology of M with values in the cosheaf p∗(G) where p : M → X
is the map defining the (X, T X)-structure.
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Proof The first claim is an immediate application of Lemma 11(3) and Theorem
8. The latter result implies that factorization homology is computed by the Čech
complex of the locally constant factorization algebra associated to a Disk(M,T M)

n -
algebra given by the pullback along p : M → X of some A ∈ Disk(X,T X)

n -Alg. Now
the second claims follows from Lemma 11(2). ��
Remark 33 Factorizationhomologyona (X, e)-structuredmanifold M dependsonly
on its value on open sub sets of M . Thus Proposition 47 implies that, for anymanifold
M and A ∈ Disk(X,e)

n -Alg(C), factorization homology
∫

M A is given by cosheaf
homology of the locally constant cosheaf G given by the image of A under the
functor Disk(X,e)

n -Alg → Disk(M,T M)
n -Alg (of Example 12) and the equivalence

Faclc
X (C)

�−→ coShvlc
X (C) of Lemma 11.

Let (C,⊗) be a symmetric monoidal (∞-)category. We say that a factorization
algebraF on X is commutative if eachF(U ) is given a structure of differential graded
commutative (or E∞-) algebra and the structure maps are maps of algebras. In other
words, the category of commutative factorization algebras is FacX (E∞-Alg).

A peculiar property of (differential graded) commutative algebras is that their
coproduct is given by their tensor product (that is the underlying tensor product in
C endowed with its canonical algebra structure). From Lemma 11, we obtain the
following:

Proposition 48 Let (C,⊗) be a symmetric monoidal (∞-)category. The functor

γE∞-Alg(C) : FacX (E∞-Alg(C)) −→ coShvX (E∞-Alg(C))

is an equivalence.

In other words, commutative factorization algebras are cosheaves (in E∞-Alg).

Remark 34 In view of Proposition 48, one can think general factorization algebras
as non-commutative cosheaves.

Combining Propositions 47 and48 and Theorem 10, we obtain:

Corollary 21 Let F ∈ Faclc
X (E∞-Alg) be a locally constant commutative factor-

ization algebra on X. Then ∫

X

A ∼= CHX (F)

where CHX (F) is the (derived) global section of the cosheaf which to any open
U included in an euclidean Disk D associates the derived Hochschild homology
C HU (F(D)).
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9 Complements on Factorization Algebras

In this Section, we give several proofs of results, some of them probably known by
the experts, about factorization algebras that we have postponed and for which we
do not know any reference in the literature.

9.1 Some Proofs Related to the Locally Constant Condition
and the Pushforward

9.1.1 Proof of Propositions 13.13 and 13.24

Let U ⊂ D ⊂ M be an inclusion of open disks; we need to prove that F(U ) →
F(D) is a quasi-isomorphism. We can assume D = R

n (by composing with a
homeomorphism); the proof in the stratified case is similar to the non-stratified one
by replacing R

n with R
i × [0,+∞)n−i . We first consider the case where F|U is

locally constant and further, that U is an euclidean disk (with center x and radius
r0). Denote D(y, r) an euclidean open disk of center y and radius r > 0 and let

T+ := sup(t ∈ R, such that∀ r0
2
≤ s < t,F(D(x,

r0
2

) → F(D(x, s))is an equivalence).

By assumption T+ ≥ r0. We claim that T = +∞. Indeed, let T be finite and such
that , F(D(x, r0

2 ) → F(D(x, s)) is an equivalence for all s < T . We will prove
that T can not be equal to T+. Every point y on the sphere of center x and radius T
has a neighborhood in which F is locally constant. In particular, there is a number
εy > 0, an open angular sector S[0,T+εy) of length T + εy and angle θy containing y
such that F|S(T−εy ,T+εy )

is locally constant. Here, S(τ ,γ) denotes the restriction of the
angular sector to the band containing numbers of radius lying in (τ , γ).

We first note that S[0,T+εy) has a factorizing cover Ay consisting of open angular
sectors of the form S(T−τ ,T+εy) (0 < τ ≤ εy) and S[0,κ) (0 < κ < T ); there is
an induced similar cover Ay ∩ U of S[0,T ) given by the angular sectors of the form
S(T−τ ,T ) (0 < τ ≤ εy) and S[0,κ) (0 < κ < T ). The structure maps F(S(T−τ ,T )) →
F(S(T−τ ,T+εy)) induce a map of Čech complex ψy : Č(Ay ∩ U,F) → Č(Ay,F)

so that the following diagram is commutative:

(60)
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Since the map S(T−τ ,T+εy) → S(T−τ ,T+εy) is the inclusion of a sub-disk inside
a disk in S(T−εy ,T+εy), it is a quasi-isomorphism and, thus, so is the map ψy :
Č(Ay ∩ U,F) → Č(Ay,F). It follows from diagram (60) that the structure map
F(S[0,T )) → F(S[0,T+εy)) is a quasi-isomorphism. In the above proof, we could
also have taken any angle θ ≤ θy or replaced εy by any ε ≤ εy without changing the
result.

By compactness of the sphere of radius T , we can thus find an ε > 0 and a θ > 0
such that the structure map F(S ∩ U ) → F(S) is a quasi-isomorphism for any
angular sector S around x of radius r = T + ε′ < T + ε and arc length φS < θ.
The collection of such angular sectors S is a (stable by intersection) factorizing
basis of the disk D(x, T + ε′) while the collection of sectors S ∩ U is a (stable by
intersection) factorizing basis of the disk D(x, T ). Further, we have proved that the
structure maps F(S∩U ) → F(S) is a quasi-isomorphism for any such S. It follows
that the map F(D(x, T )) → F(D(x, T + ε′) is a quasi-isomorphism (since again
the induced map in between the Čech complexes associated to this two covers is
a quasi-isomorphism). It follows that T+ > T for any finite T hence is infinite as
claimed above. In particular, the canonical map F(D(x, T )) → F(D(x, T + r)) is
a quasi-isomorphism for any r ≥ 0.

Now, since the collection of disks of radius T > 0 centered at x is a factorizing
cover of R

n , we deduce thatF(D(x, T )) → F(Rn) is a quasi-isomorphism. Indeed,
fix some R > 0 and let jR : x + y �→ x + R/(R − |y|)y be the homothety
centered at x mapping D(x, R) homeomorphically ontoR

n . Themap jR is a bijection
between the set DR of (euclidean) sub-disks of D(x, R) centered at x and the set
D of all (euclidean) disks of R

n centered at x . For any disk centered at x , the
inclusion D(x, T ) ↪→ D(x, jR(T )) yields a quasi-isomorphism F(D(x, T )) →
F(D(x, jR(T )). If α = {D(x, r0), . . . , D(x, ri )} ∈ (PDR)i+1, we thus get a quasi-
isomorphism

F(α) ∼= F
(

D
(
x,min(r j , j = 0 . . . i)

))

�−→ F
(

D
(
x,min( jR(r j ), j = 0 . . . i)

)) ∼= F( jR(α)).

Assembling those for all α’s yields a quasi-isomorphism Č(DR,F)
�−→ Č(D,F)

which fit into a commutative diagram

whose vertical arrows are quasi-isomorphisms since F is a factorization algebra. It
follows that the lower horizontal arrow is a quasi-isomorphism as claimed.
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We are left to prove the result for U ↪→ D = R
n when U is not necessarily an

euclidean disk. Choose an euclidean open disk D̃ inside U small enough so that F|D̃
is locally constant. Let h : D̃ ∼= R

n be an homothety (with the same center as D̃)
identifying D̃ and R

n . Then Ũ := h−1(U ) ⊂ D ⊂ U is an open disk homothetic to
U . So that by the above reasoning (after using an homeomorphism between U and
an euclidean disk R

n) we have that the structure map F(Ũ ) → F(U ) is a quasi-
isomorphismaswell. SinceF|D̃ is locally constant, the structuremapF(Ũ ) → F(D̃)

is a quasi-isomorphism. Now, Proposition 13 follows from the commutative diagram

which implies that the structure map F(U ) → F(D) is a quasi-isomorphism.

9.1.2 Proof of Proposition 18

First we check that if F is a factorization algebra on X × Y and U ⊂ X is open,
then π1∗(F(U )) is a factorization algebra over Y . If V is a factorizing cover of
an open set V ⊂ Y , then {U } × V is a factorizing cover of U × V and the
Čech complex Č

(V,π1∗F(U )
)
is equal to Č({U } × V,F). Hence the natural map

Č
(V,π1∗F(U )

)→ π1∗(F)(U, V ) factors as

Č
(V,π1∗F(U )

) = Č({U } × V,F) → F(U × V ) = π1∗(F)(U, V ).

It is a quasi-isomorphism since F is a factorization algebra. We have proved that
π1∗(F) ∈ PFacX (FacY ). To show that π1∗(F) ∈ FacX (FacY ), we only need to
check that for every open V ⊂ Y , and any factorizing cover U of U , the natural map
Č
(U ,π1∗(F)(−, V )

) → π1∗(F)(U, V ) is a quasi-isomorphism, which follows by
the same argument. Hence π1∗ factors as a functor π1∗ : FacX×Y −→ FacX (FacY ).

When F is locally constant, Proposition 15 applied to the first and second pro-
jection implies that π1∗(F) ∈ Faclc

X (Faclc
Y ).

Now we build an inverse of π1∗ in the locally constant case. Let B be in
FacX (FacY ). A (stable by finite intersection) basis of neighborhood of X×Y is given
by the products U × V , with (U, V ) ∈ CV(X) × CV(Y ) where CV(X), CV(Y ) are
bounded geodesically convex neighborhoods (for some choice of Riemannianmetric
on X andY ). Thus bySect. 5.2, in order to extendB to a factorization algebra on X×Y ,
it is enough to prove that the rule (U × V ) �→ B(U )(V ) (where U ⊂ X , V ⊂ Y )
defines anCV(X)×CV(Y )-factorization algebra. IfU×V ∈ CV(X)×CV(Y ), thenU
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and V are canonically homeomorphic toR
n andR

m respectively. Now, the construc-
tion of the structure maps for opens in CV(U )×CV(V ) restricts to proving the result
for B|U×V ∈ Faclc

Rn (Faclc
Rm ). By Theorem 9, FacRd ∼= Ed -Alg, hence by Dunn

Theorem 11 below, we have that Faclc
Rn+m

π1∗−→ Faclc
Rn (Faclc

Rm ) is an equivalence
which allows to define a CV(X)× CV(Y )-factorization algebra structure associated
to B. We denote j (B) ∈ FacX×Y the induced factorization algebra on X × Y . Note
that j (B) is locally constant, since, again, the question reduces to Dunn Theorem.

It remains to prove that j : Faclc
X (Faclc

Y ) → FacX×Y is a natural inverse to π1∗.
This follows by uniqueness of the factorization algebra extending a factorization
algebra on a factorizing basis, that is, Proposition 17.

9.2 Complements on Subsection 6.2

Here we collect the proofs of statements relating factorization algebras and intervals.

9.2.1 Proof of Proposition 27

The (sketch of) proof is extracted from the excision property for factorization algebras
in [47]. By definition of a Disk f r

1 -algebra, a factorization algebra G on R carries a

structure ofDisk f r
1 -algebra (by simply restricting the value ofG to open sub-intervals,

just as in Remark 23).
Similarly, if G is a factorization algebra on [0,+∞), it carries a structure of a

Disk f r
1 -algebra and a (pointed) right module over it, while a factorization algebra on

(−∞, 0] carries the structure of a left (pointed) module over a Disk f r
1 -algebra (see

Definition 36). It follows that a factorization algebra over the closed interval [0, 1]
determines an E1-algebra A and pointed left module M� and pointed right module
Mr over A.

By strictificationwecan replace the E1-algebra andmodules bydifferential graded
associative ones so that we are left to the case of a factorization algebraF on [−1, 1]
which, on the factorizing basis I of [0, 1], is precisely the I-prefactorization algebra
F defined before the Proposition 27.

Now, we are left to prove that, for any A, M�, Mr , mr , m�, F is a I-factorization
algebra, and then to compute its global sectionF([0, 1]). Theorem 9 implies that the
restriction FA of F to (0, 1) is a factorization algebra. In order to conclude we only
need to prove that the canonical maps

Č
(U[0,1),F)

) −→ F([0, 1)) = Mr , Č
(U(0,1],F)

) −→ F((0, 1]) = M�

and Č
(U[0,1],F)

) −→ F([0, 1]) ∼= Mr L⊗
A

M�
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are quasi-isomorphisms. Here, U[0,1] is the factorizing covers given by all opens
Ut := [0, 1]\ {t}where t ∈ [0, 1] (in other words by the complement of a singleton).
Similarly, U[0,1), U(0,1] are respectively covers given by all opens U �

t := ([0, 1) \ {t}
where t ∈ [0, 1) and all opens Ur

t := (0, 1] \ {t} where t ∈ (0, 1].
The proof in the 3 cases are essentially the same so we only consider the case of

the opensUt . Since Mr
L⊗
A

M� ∼= Mr ⊗
A

B(A, A, A)⊗A M� where B(A, A, A) is the

two-sided Bar construction of A, it is enough to prove the result for Mr = M� = A
in which case we are left to prove that the canonical map

Č
(U[0,1],F)

) −→ A
L⊗
A

A ∼= B(A, A, A)
�−→ A

is an equivalence.
Any two open sets inU[0,1] intersect non-trivially so that the set PU are singletons.

We have F(Ut ) ∼= F([−1, t)) ⊗ F((t, 1]) which is A ⊗ A if t �= ±1 and is A ⊗ k
or k ⊗ A if t = 1 or t = −1. More generally,

F(Ut0 , . . . , Utn , U±1) ∼= F(Ut0 , . . . , Utn ) ⊗ k.

Further, if 0 < t0 < · · · < tn < 1, then F(Ut0 , . . . , Utn )
∼= A ⊗ A⊗n ⊗ A and the

structure map F(Ut0 , . . . , Utn ) → F(Ut0 , . . . , Ûti , . . . , Utn ) is given by the multi-
plication

a0 ⊗ · · · ⊗ an+1 �→ a0 ⊗ · · · (ai ai+1)⊗ · · · ⊗ an+1.

This identifies the Čech complex Č
(U ,F) with a kind of parametrized analogue of

the standard two sided Bar construction with coefficients in A. We have canonical
maps

φt : F(Ut ) ∼= F([−1, t))⊗F((t, 1]) → F([−1, 1))⊗F((−1, 1]) ∼= A ⊗ A → A

induced by the multiplication in A. The composition
⊕

Ur ,Us∈PU
F(Ur , Us)[1] →

⊕

Ut∈PU
F(Ut )[0] → A is the zero map so that we have a map of (total) chain com-

plexes: η : Č
(U ,F)→ A. In order to prove that η is an equivalence, we consider the

retractκ : A ∼= F(U1) ↪→ ⊕

Ut∈PU
F(Ut )[0] ↪→ Č

(U ,F)which satisfiesη◦κ = idA.

Let h be the homotopy operator on Č
(U ,F) defined, on F(Ut0 , . . . , Utn )[n], by

n∑

i=0

(−1)i st0,...,tn
i : F(Ut0 , . . . , Utn )[n] −→

⊕

Ur0 ,...Urn+1∈PU
F(Ur0 , . . . , Urn+1 )[n + 1]

where, for 0 ≤ i ≤ n − 1, st0,...,tn
i is defined as the suspension of the identity map
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F(Ut0 , . . . , Utn )[n] → F(Ut0 , . . . , Utn )[n + 1] ∼= F(Ut0 , . . . , Uti , Uti , . . . , Utn )[n + 1]

followed by the inclusion in the Čech complex.
Similarly, the map st0,...,tn

n is defined as the suspension of the identity map
F(Ut0 , . . . , Utn )[n] → F(Ut0 , . . . , Utn )[n + 1] ∼= F(Ut0 , . . . , Utn , U1)[n + 1]
(followed by the inclusion in the Čech complex). Note that dh + hd = id − κ ◦ η
where d is the total differential on Č

(U ,F). It follows that η : Č
(U ,F)→ A is an

equivalence.

9.2.2 Proof of Corollary 7

The functor π1∗ : Faclc
X×[0,+∞) → E1-RMod(Faclc

X ) is well-defined by Corollary 6
andProposition 28. In order to check it is an equivalence, as in the proof of Proposition
18, we only need to prove it when X = R

n , that is that, if F ∈ Faclc
[0,+∞)(Faclc

X ),
then it is in the essential image of π1∗. By Proposition 18, we can also assume that

the restriction F|(0,+∞) is in π1∗(Faclc
Rn×(0,+∞)

).
Let Iε be the factorizing cover of [0,+∞) consisting of all intervals with the

restriction that intervals containing 0 are included in [0, ε) note that Iτ ⊂ Iε if ε > τ .
We can replace F by its Čech complex on Iε (for any ε) and thus by its limit over
all ε > 0, which we still denote F . As in the proof of Proposition 18, we only need
to prove that (U, V ) �→ (F(V )

)
(U ) extends as a factorization algebra relative to

the factorizing basis of R
n × [0,+∞) consisting of cubes (with sides parallel to

the axes). The only difficulty is to define the prefactorization algebra structure on
this basis (since we already know it is locally constant, and thus will extend into a
factorization algebra). As noticed above, we already have such structure when no
cubes intersect R

n × {0}. Given a finite family of pairwise disjoint cubes lying in a
bigger cube K × [0, R) intersecting {0}, we can find ε > 0 such that no cubes of the
family lying in R

n × (0,+∞) lies in the band R
n × [0, ε). The value of F on each

square containing R
n × {0} can be computed using the Čech complex associated

to Iε. This left us, in every such cube, with one term containing a summand [0, τ )

(τ ≤ ε) and cubes in the complement. Now choosing the maximum of the possible τ
allows to first maps (F(c))(d) to

(F(τ , R)
)
(K ) for every cube c× d in R

n × (τ , R)

(since we already have a factorization algebra on R
n × (0,+∞)). Then to maps all

other summands to terms of the form F([0, τ ))(d), then all of them in F([0, τ ))(K )

and finally to evaluate the last two remaining summand in F([0, R))(K ) using the
prefactorization algebra structure of F with respect to intervals in [0,∞). This is
essentially the same argument as in the proof of Corollary 8.

9.3 Complements on Subsection 6.3

Here we collect proofs of statements relating factorization algebras and En-modules.
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9.3.1 Proof of Theorem 12

The functoriality is immediate from the construction. Let Fin∗ be the ∞-category
associated to the category Fin∗ of pointed finite sets. If O is an operad, the
∞-category O-ModA of O-modules80 over an O-algebra A is the category of
O-linear functors O-ModA := MapO(O∗, Chain(k)). Here, following the nota-
tions of Appendix10.2, O is the ∞-categorical enveloppe of O as in [71] and
O∗ := O ×Fin Fin∗. There is an natural fibration πO : O-Mod −→ O-Alg whose
fiber at A ∈ O-Alg is O-ModA.

Let Disk be the set of all open disks in R
n . Recall from Remark 24 that Disk-

prefactorization algebras are exactly algebras over the operad Disk(Rn) and that
locally constant Disk-prefactorization algebras are the same as locally constant fac-
torization algebras on R

n (Proposition 12). The map of operad Disk(Rn) → ERn

of [71, Sect. 5.2.4] induces a fully faithful functor En-Alg → Disk(Rn)-Alg and
thus a functor

ψ̃ : En-Mod −→ Disk(Rn)-Mod −→ Disk(Rn)-Alg.

The map ψ̃ satisfies that, for every convex subset C ⊂ R
n , one has

ψ̃(M)(C) = M(C) = FM (C).

By definition, ψ̃ ◦ can : En-Alg → Disk(Rn)-Alg is the composition

En-Alg −→ Faclc
Rn −→ Disk(Rn)-Alg.

Hence, the commutativity of the diagram in the Theorem will follow automatically
once we have proved that ψ̃ factors as a composition of functors

ψ̃ : En-Mod
ψ−→ Faclc

R
n∗ −→ Disk(Rn)-Alg. (61)

Assuming for the moment that we have proved that ψ̃ factors through Faclc
R

n∗ , let
us show that ψ is fully faithful. By definition of categories of modules, we have a
commutative diagram

80 In Chain(k).
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whose bottom arrow is a fully faithful embedding by [71, Sect. 5.2.4]. Since the
mapping spaces of F ∈ Faclc

X are the mapping spaces of the underlying prefactor-
ization algebra, the map Faclc

R
n∗ → Disk(Rn)-Alg is fully faithful, and we are left to

prove that

ψ̃ : MapEn -Mod(M, N ) → MapDisk(Rn)-Alg(ψ̃(M), ψ̃(N ))

is an equivalence for all M ∈ En-ModA and N ∈ En-ModB . The fiber at (the image
of) an En-algebra A of Disk(Rn)-Mod → Disk(Rn)-Alg is the (homotopy) pullback

Disk(Rn)-ModA := Disk(Rn)-Alg/A ×h
Disk(Rn\{0})-Alg/A IsoDisk(Rn\{0})-Alg(A).

Here we write Disk(Rn)-Alg/A for the ∞-category of Disk(Rn)-algebras under A

and IsoDisk(Rn)-Alg(A) its subcategory of objects A
f→ B such that f is an equiva-

lence. In plain english, Disk(Rn)-ModA is the∞-category of maps A
f→ B (where

B runs through Disk(Rn)-Alg) whose restriction to R
n \ {0} is an equivalence.

It is now sufficient to prove, given En-algebras A and B (identified with objects of
Faclc

Rn ) and two locally constant factorization algebras ψ̃(M), ψ̃(N ) on R
n∗ together

with two maps of factorizations algebras f : A → ψ̃(M), g : B → ψ̃(N ) whose
restrictions to R

n \ {0} are quasi-isomorphisms, that the canonical map

MapDisk(Rn)-Alg(A, B)×h
MapDisk(Rn )-Alg(A,ψ̃(N ))

MapDisk(Rn)-Alg(ψ̃(M), ψ̃(N ))

−→ MapDisk(Rn)-Alg(ψ̃(M), ψ̃(N )) (62)

is an equivalence.This pullback is themapping spaceMapDisk(Rn)-Mod(ψ̃(M), ψ̃(N ))

and the maps to MapDisk(Rn)-Alg(A, ψ̃(N )) are induced by post-composition by g
and precomposition by f .

The fiber of the map (62) at 
 : ψ̃(M) → ψ̃(N )) is the mapping space of
Disk(Rn)-algebras A

τ→ B such that, for any disk U ⊂ R
n \ {0}, which is a sub-disk

of a disk D containing 0, the following diagram is commutative:

(63)
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Here ρA
U,D and ρB

U,D are the structure maps of the factorization algebras associated to
A and B. The right hand square of Diagram (63) shows that τ is uniquely determined
by 
 on every open disk in R

n \ {0}.
Since A and B are locally constant factorization algebras on R

n , the maps ρA
U,D

and ρB
U,D are natural quasi-isomorphisms. It follows from the left hand square in

Diagram (63) that the restriction of τ to R
n \ {0} also determines the map τ on

R
n . Hence the map (62) is an equivalence which concludes the proof that ψ is fully

faithful.
It remains to prove that ψ̃ factors through a functor ψ, that is that we have a

composition as written in (61). This amounts to prove that for any M ∈ En-ModA

(that is M is an En-module over A), ψ̃(M) is a locally constant factorization algebra
on the stratified manifold given by the pointed disk R

n∗. Since the convex subsets are
a factorizing basis stable by finite intersection, we only have to prove this result on
the cover CV(Rn) (by Propositions 13 and 17).

Note that if V ∈ CV(Rn) is a subset of R
n \ {0}, then ψ(M)|V lies in the essential

image of ψ ◦ can(M)|V where ψ ◦ can(M) is the functor inducing the equivalence
between En-algebras and locally constant factorization algebras on R

n (Theorem 9).
WedenoteFA := ψ◦can(A) the locally constant factorization algebra onR

n induced
by A. In particular, the canonical map

Č(CV(V ),FM ) = Č(CV(V ),FA) → FA(V ) ∼= FM (V )

is a quasi-isomorphism and further, if U ⊂ V is a sub-disk, then FM (U ) → FM (V )

is a quasi-isomorphism.
We are left to consider the case where V is a convex set containing 0. Let UV be

the cover of V consisting of all open sets which contains 0 and are a finite union of
disjoint convex subsets of V . It is a factorizing cover, and, by construction, two open
sets in UV intersects non-trivially since they contain 0. Hence PUV = UV . Since
UV ⊂ PCV(V ), we have a diagram of short exact sequences of chain complexes

where the vertical equivalence follows from the fact that FM (U ) ∼= FA(U ) if U is a
convex set not containing 0. Moreover, since UV is a factorizing cover of V andFA a
factorization algebra, i A is a quasi-isomorphism, hence Č(CV(V ),FA)/Č(UV ,FA)

is acyclic. It follows that iM : Č(UV ,FM ) → Č(CV(V ),FM ) is a quasi-isomorphism
as well.

We are left to prove that the canonical map Č(UV ,FM ) → F(M) ∼= M is a
quasi-isomorphism. Note that for any U ∈ UV , we have FM (U ) ∼= M ⊗L

A FA(U ).
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We deduce that Č(UV ,FM ) ∼= M ⊗L

A Č(UV ,FA) as well. The chain map

M ⊗L

A Č(UV ,FA) ∼= Č(UV ,FM ) −→ F(M) ∼= M ⊗L

A A

is an equivalence since it is obtained by tensoring (by M over A) the quasi-
isomorphism Č(UV ,FA) → FA(V ) ∼= A (which follows from the fact that FA

is a factorization algebra).
It remains to prove that FM (U ) → FM (V ) is a quasi-isomorphism if both U ,

V are convex subsets containing 0. This is immediate since M(U ) → M(V ) is an
equivalence by definition of an En-module over A.

9.3.2 Proof of Corollary 8

By Theorem 12, we have a commutative diagram

with fully faithful horizontal arrows. Since En-Alg → Faclc
Rn is an equivalence, we

only need to prove that, for any En-algebra A, the induced fully faithful functor
En-ModA −→ Faclc

R
n∗ ×Faclc

Rn\{0}
{A} between the fibers is essentially surjective.81

Let M be a locally constant factorization algebra on R
n∗ such that M|R\{0} is

equal to A|Rn\{0} where A is the factorization algebra associated to A (by Theorem
9). Recall that N : R

n → [0,+∞) is the euclidean normmap. Lemma 7 implies that
N∗(M) is is locally constant on the stratified half-line [0,+∞) and thus equivalent
to a rightmodule over the E1-algebra N∗(M)(Rn\{0}) ∼= A(Rn\{0}) ∼= ∫

Sn−1×R A.
Byhomeomorphism invariance of (locally constant) factorization algebras,we can

replace R
n by the unit open disk Dn of R

n in the above analysis. We also denote Dn∗
the disk Dn viewed as a pointed space with base point 0.We now use this observation
to define a structure of En-module over A on M := M(Dn) = N∗(M)

([0, 1)). It
amount to define, for any finite set I , continuous maps (compatible with the structure
of the operad of little disks of dimension n)

81 That is we are left to prove Corollary 9.
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Rect∗
(

Dn∗
∐(∐

i∈I

Dn
)
, Dn∗

)
−→ MapChain(k)

(
M ⊗ A⊗I , M

)

�−→ MapChain(k)

(
M ⊗

( ∫

Dn
A
)⊗I

, M
)

where Rect∗ is the space of rectilinear embeddings which maps the center of the first
copy Dn∗ to the center of Dn∗ (i.e. preserves the base point of Dn). Let IN be the map
that sends an element f ∈ Rect∗

(
Dn ∐(∐

i∈I Dn
)
, Dn

)
to the smallest open sub-

interval IN ( f ) ⊂ (0, 1)which contains N
(

f
(∐

i∈I Dn
))
, that is the smallest interval

that contains the image of the non-pointed disks. By definition IN is continuous
(meaning the lower and the upper bound of IN ( f ) depends continuously of f ) and
its image is disjoint from the image N (Dn∗) of the pointed copy of Dn . Similarly we
define r( f ) to be the radius of f (Dn∗). We have a continuous map

Ñ : Rect∗
(

Dn∗
∐(∐

i∈I

Dn), Dn∗
)
−→ Rect

(
[0, 1)

∐
(0, 1), [0, 1)

)

given by Ñ ( f )
(
(0, 1)

) = IN ( f ) and Ñ ( f )
([0, 1)) = [0, r( f )). Since f (

∐
i∈I Dn)

⊂ Sn−1 × (0, 1) , we have the composition

ϒ : Rect∗
(

Dn∗
∐(∐

i∈I

Dn), Dn∗
)
−→ Rect

(∐

i∈I

Dn, Sn−1 × (0, 1)
)

−→ MapChain(k)

((∫

Dn
A
)⊗I

,

∫

Sn−1×(0,1)
A

)

where the first map is induced by the restriction to
∐

i∈I Dn and the last one by
functoriality of factorization homologywith respect to embeddings.Wefinally define

μ : Rect∗
(

Dn∗
∐(∐

i∈I

Dn), Dn∗
)

Ñ×ϒ−→

Rect
(
[0, 1)

∐
(0, 1), [0, 1)

)
×MapChain(k)

((∫

Dn
A
)⊗I

,

∫

Sn−1×(0,1)
A

)

−→

MapChain(k)

(

M ⊗
∫

Sn−1×(0,1)
A, M

)

×MapChain(k)

((∫

Dn
A
)⊗I

,

∫

Sn−1×(0,1)
A

)

idM⊗◦−→ MapChain(k)

(

M ⊗
( ∫

Dn
A
)⊗I

, M

)

where the secondmap is induced by the E1-module structure of M = N∗(M)([0, 1))
over

∫
Sn−1×(0,1) A and the last one by composition. That μ is compatible with the

action of the little disks operad follows from the fact that ϒ is induced by the En-
algebra structure of A and M is an E1-module over

∫
Sn−1×(0,1) A. Hence, M is in

En-ModA.
We now prove that the factorization algebra ψ(M) is M. For all euclidean disks

D centered at 0, one has ψ(M)(D) = μ({D ↪→ Dn})(M) = M(D) and further
ψ(M)(U ) = A(U ) if U is a disk that does not contain 0. The D-prefactorization
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algebra structure of ψ(M) (where D is the basis of opens consisting of all euclidean
disks centered at 0 and all those who do not contain 0) is precisely given by μ
according to the construction of ψ (see Theorem 12). Hence, by Proposition 17,
ψ(M) ∼= M and the essential surjectivity follows.

9.3.3 Proof of Proposition 29

By [71, Sect. 4.3], we have two functors i± : BiMod → E1-Alg and the (homo-

topy) fiber of BiMod
(i−,i+)−→ E1-Alg × E1-Alg at a point (L , R) is the category of

(L , R)-bimodules which is equivalent to the category E1-LModL⊗Rop . We have a
factorization

(64)

We can assume that L , R are strict and consider the fiber

(
Faclc

R∗
)

L ,R := {FL ,FR} ×Faclc
(−∞,0)×Faclc

(0,+∞)
Faclc

R∗

of ( j∗−, j∗+) at the pair of factorization algebras (FL ,FR) on (−∞, 0), (0,+∞)

corresponding to L , R respectively (using Proposition 27). The pushforward along
the opposite of the euclidean norm map gives the functor (−N )∗ :

(
Faclc

R∗
)

L ,R →
E1-LModL⊗Rop .

We further have a locally constant factorization algebra GL ,R
M on R∗ which is

defined on the basis of disks by the same rule as for the open interval (for disks
included in a component R \ {0}) together with GL ,R

M (α,β) = M for α < 0 < β.
For r < t1 < u1 · · · < tn < un < α < 0 < β < x1 < y1 < · · · < xm < ym < s,
the structure maps

( ⊗

i=1...n

GL ,R
M

(
(ui , ti )

))⊗ GL ,R
M

(
(α, β)

)⊗
( ⊗

i=1...n

GL ,R
M

(
(ui , ti )

))

∼= L⊗n ⊗ M ⊗ R⊗m −→ M ∼= GL ,R
M

(
(r, s)

)

are given by �1 ⊗ · · · ⊗ �n ⊗ a ⊗ r1 ⊗ · · · ⊗ rn �→ (�1 · · · �n) · a · (r1 · · · rn).
One checks as in Proposition 27 that GL ,R

M is a locally constant factorization
algebra on R∗. The induced functor E1-LModL⊗Rop → Faclc

R∗ is an inverse of

(−N )∗. Thus the fiber
(
Faclc

R∗
)

L ,R of ( j∗−, j∗+) is equivalent to E1-LModL⊗Rop . It
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now follows from diagram (64) that the functor ( j∗±, (−N )∗) : Faclc
R∗

∼= BiMod is
an equivalence.

9.3.4 Proof of Proposition 30

We define a functor G : E1-RModA(Sn−1×R) → Faclc
R

n∗ ×Faclc
Rn\{0}

{A} (which will

be an inverse of N∗) as follows. By Proposition 28 we have an equivalence

E1-RModA(Sn−1×R)
∼= Faclc

[0,+∞) ×Faclc
(0,+∞)

{N∗(A)}.

It is enough to define G as a functor from Faclc
[0,+∞) ×Faclc

(0,+∞)
{N∗(A)} to locally

constant U-factorization algebras, where U is a (stable by finite intersections) fac-
torizing basis of R

n (by Proposition 17). We choose U to be the basis consisting
of all euclidean disks centered at 0 and all convex open subsets not containing 0.
Let R ∈ Faclc

[0,+∞) ×Faclc
(0,+∞)

{N∗(A)}. If U ∈ U does not contains 0, then we set

G(R)(U ) = A(U ) and structure maps on open sets in U not containing 0 to be the
one of A; this defines a locally constant factorization algebra on R

n \ {0} since A
does.

We denote D(0, r) the euclidean disk of radius r > 0 and set G(R)(D(0, r)) =
R([0, ε)). Let D(0, r), U1, . . . , Ui be pairwise subsets of U which are sub-sets of an
euclidean disk D(0, s). Then,U1, . . . , Ui lies in Sn−1×(r, s). Denoting respectively
ρA, ρR the structure maps of the factorization algebras A ∈ Faclc

Sn−1×(0,+∞)
and

R ∈ Faclc
[0,+∞), we have the following composition

G(R)
(
D(0, r)

)⊗ G(R)(U1)⊗ · · · ⊗ G(R)(Ui ) ∼= R([0, r)
)⊗A(U1)⊗ · · · ⊗A(Ui )

id⊗ρA
U1,...,Ui ,S

n−1×(r,s)−→ R([0, r)
)⊗A(Sn−1 × (r, s)

) ∼= R([0, r)
)⊗ N∗(A)

(
(r, s)

)

ρR[0,r),(r,s),[0,s)−→ R([0, s)
) = G(R)

(
D(0, s)

)
. (65)

The maps (65) together with the structure maps of A|Rn\{0} ∼= R|Rn\{0} define the
structure of a U-factorization algebra since R and A are factorization algebras.

The maps G(R)
(
D(0, r)

) → G(R)
(
D(0, s)

)
are quasi-isomorphisms since R

is locally constant. Since the maps (65) only depend on the structure maps of R and
A, the rule R �→ G(R) extends into a functor

G : E1-RModA(Sn−1×R)
∼= Faclc

[0,+∞)×Faclc
(0,+∞)

{N∗(A)} → Faclc
R

n∗ ×Faclc
Rn\{0}

{A}.

In order to check that N∗ ◦ G is equivalent to the identity functor of E1
-RModA(Sn−1×R) it is sufficient to check it on the basis of opens of [0,+∞) given
by the open intervals and the half-closed intervals [0, s) for which the result fol-
lows from the definition of the maps (65). Similarly, one can check that G ◦ N∗ is
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equivalent to the identity of Faclc
R

n∗ ×Faclc
Rn\{0}

{A} by checking it on the open cover

U .
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10 Appendix

In this appendix, we briefly collect several notions and results about ∞-categories
and (∞-)operads and in particular the En-operad and its algebras and their modules.

10.1 A ∞-category Overview

There are several equivalent (see [9]) notions of (symmetric monoidal)∞-categories
and the reader shall feel free to use its favorite ones in these notes though we choose

Definition 29 In this paper, an∞-category means a complete Segal spaces [70, 81].

Other appropriate models82 are given by Segal category [56, 94] or Joyal quasi-
categories [69]. Almost all∞-categories in these notes arise as some (derived) topo-
logical (or simplicial or dg) categories or localization of a category with weak equiv-
alences. They carry along derived functors (such as derived homomorphisms) lifting
the usual derived functors of usual derived categories. We recall below (Examples 59
and 58) how to go from a model or topological category to an∞-category.

Following [70, 81], a Segal space is a functor X• : Δop → Top, that is a simplicial
space,83 which is Reedy fibrant (see [60]) and satisfies the condition that for every
integers n ≥ 0, the natural map (induced by the face maps)

Xn −→ X1 ×X0 ×X1 ×X0 · · · ×X0 X1 (66)

(where there is n copies of X1) is a weak homotopy equivalence. 84

82 Depending on the context some models are more natural to use than others.
83 Here a space can alsomean a simplicial set and it is often technically easier to work in this setting.
84 Alternatively, one can work out an equivalent notion fo Segal spaces which forget about the
Reedy fibrancy condition and replace condition (66) by the condition that the following natural
map is a weak homotopy equivalence:
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Associated to a Segal space X• is a (discrete) category ho(X•) with objects the
points of X0 and morphisms ho(X•)(a, b) = π0

({a} ×X0 X1 ×X0 {b}
)
. We call

ho(X•) the homotopy category of X•.
A Segal space X• is complete if the canonical map X0 → Iso(X1) is a weak

equivalence, where Iso(X1) is the subspace of X1 consisting of maps f whose class
[ f ] ∈ ho(X•) is invertible.

There is a simplicial closed model category structure, denoted SeS p on the cat-
egory of simplicial spaces such that a fibrant object in SeS p is precisely a Segal
space. The category of simplicial spaces has another simplicial closed model struc-
ture, denoted CSeS p, whose fibrant objects are precisely complete Segal spaces
[81, Theorem 7.2]. Let R : SeS p → SeS p be a fibrant replacement functor and
·̂ : SeSp → CSeS p be the completion functor that assigns to a Segal space X• an
equivalent complete Segal space X̂•. The composition X• �→ R̂(X•) gives a fibrant
replacement functor LCSeS p from simplicial spaces to complete Segal spaces.

Example 57 (Discrete categories) Let C be an ordinary category (which we also
referred to as a discrete category since its Hom-spaces are discrete). Its nerve is a
Segal space which is not complete in general. However, one can form its classifying
diagram, abusively denoted N (C) which is a complete Segal space [81]. This is the
∞-category associated to C.

By definition, the classifying diagram is the simplicial space n �→ (
N (C)

)
n :=

N•(Iso(C[n])) given by the ordinary nerves (or classifying spaces) of Iso(C[n]) the
subcategories of isomorphisms of the categories of n-composables arrows in C.
Example 58 (Topological category) Let T be a topological (or simplicial) category.
Its nerve N•(T ) is a simplicial space.Applying the complete Segal Space replacement
functor we get the∞-category T∞ := LCSeS p(N•(T )) associated to T .

Note that there is a model category structure on topological category which is
Quillen equivalent85 toCSeS p, ([9]). The functor T �→ T∞ realizes this equivalence.
If T is a discrete topological category (in other words an usual category viewed as
a topological category), then T∞ is equivalent to the ∞-category N (T ) associated
to T in Example 57 ([10]). It is worth mentioning that the functor T �→ T∞ is
the analogue for complete Segal spaces of the homotopy coherent nerve ([69]) for
quasi-categories, see [11] for a comparison.

Example 59 (The ∞-category of a model category) LetM be a model category and
W be its subcategory of weak-equivalences. We denote L H (M,W) its hammock
localization, see [28]. One of themain property of L H (M,W) is that it is a simplicial
category and that the (usual) category π0(L H (M,W)) is the homotopy category of

(Footnote 84 continued)

Xn −→ holim
(
X1

d0−→ X0
d1←− X1

d0−→ · · · d1←− X1
d0−→ X0

d1←− X1
)
.

85 More precisely there is a zigzag of Quillen equivalences in between them; zigzag which goes
through the model category structure of Segal categories.
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M. Further, every weak equivalence has a (weak) inverse in L H (M,W). If M is
a simplicial model category, then for every pair (x, y) of objects the simplicial set
of morphisms HomL H (M,W)(x, y) is naturally homotopy equivalent to the function
complex MapM(x, y).

By construction, the nerve N•(L H (M,W)) is a simplicial space. Applying the
complete Segal Space replacement functor we get

Proposition 49 ([9]) The simplicial space L∞(M) := LCSeS p(N•(L H (M,W)))

is a complete Segal space, which is the ∞-category associated to M.

Note that the above construction extends to any category with weak equivalences.
Also, the limit and colimit in the∞-category L∞(M) associated to a closedmodel

categoryM can be computed by the homotopy limit and homotopy colimit inM, that
is by using fibrant and cofibrant resolutions. The same is true for derived functors. For
instance a right Quillen functor f : M → N has a lift L f : L∞(M) → L∞(N ).

Remark 35 There are other functors that yields a complete Segal space out of a
model category. For instance, one can generalize the construction of Example 57.
For M a model category and any integer n, let M[n] be the (model) category of
n-composables morphisms, that is the category of functors from the poset [n] to
M. The classification diagram of M is the simplicial space n �→ N•(We(M[n]))
where We(M[n]) is the subcategory of weak equivalences of M[n]. Then taking
a Reedy fibrant replacement yields another complete Segal space N•(We(M[n])) f

([10, Theorem 6.2], [81, Theorem 8.3]). It is known that the Segal space
N•(We(M[n])) f is equivalent to L∞(M) = LCSeS p(N•(L H (M,W))) ([10]).

Definition 30 The objects of an∞-category C are the points of C0. By definition,
an∞-category has a space (and not just a set) of morphisms

MapC(x, y) := {x} ×h
C0

C1 ×h
C0

{y}

between two objects x and y. A morphism f ∈ MapC(x, y) is called an equivalence
if its image [ f ] ∈ Mapho(C)(x, y) is an isomorphism.

From Example 59, we get an∞-category of ∞-categories, denoted∞-Cat, whose
morphisms are called ∞-functors (or just functors for short). An equivalence of
∞-categories is an equivalence in∞-Cat in the sense of Definition 30.

The model category of complete Segal spaces is cartesian closed [81] hence so
is the ∞-category ∞-Cat. In particular, given two ∞-categories C, D we have an
∞-category Fun(C,D) of functors86 from C to D. There is an natural weak equiva-
lence of spaces:

Map∞-Cat
(B, Fun(C,D) �→ Map∞-Cat

(B × C,D). (67)

86 Computed from the Hom-space in the category of simplicial spaces using the fibrant replacement
functor LCSeS p .
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Remark 36 (The case of simplicial model categories) When M is a simplicial
closed model category, there are natural equivalences ([81]) of spaces

MapL∞(M)(x, y) ∼= Map(
L H (M,W)

)
∞

(x, y) ∼= MapL H (M,W)(x, y) ∼= MapM(x, y)

where the right hand side is the function complex of M and x, y two objects. The
first two equivalences also hold for general model categories ([9]). In particular,
the two constructions of an ∞-category associated to a simplicial model category,
either viewed as topological category as in Example 58, or as a model category as in
Example 59, are equivalent:

Proposition 50 Let M be a simplicial model category. Then M∞ ∼= L∞(M).

Let I be the∞-category associated to the trivial categoryΔ1 = {0} → {1}which has
two objects and only one non-trivial morphism. We have two maps i0, i1 : {pt} → I
from the trivial category to I which respectively maps the object pt to 0 and 1.

Definition 31 Let A be an object of an∞-category C. The∞-category CA of objects
over A is the pullback

The∞-category AC of objects under A is the pullback

Informally, the ∞-category CA is just the category of objects B ∈ C equipped with
a map f : B → A in C.

There is a notion of symmetric monoidal ∞-category generalizing the classical
notion for discrete categories. There are several equivalent way to define this notion,
see [69, 71, 98] for details. LetΓ be the skeleton of the categoryFin∗ of finite pointed
sets, that is the subcategory spanned by the objects n+ := {0, . . . , n}, n ∈ N. For
i = 1 . . . n, let si : n+ → 1+ be the map sending i to 1 and everything else to 0.

Definition 32 A symmetricmonoidal∞-category is a functor T ∈ Fun(Γ,∞-Cat)

such that the canonical map T (n+)

∏n
i=0 si−→ (

T (1+)
)n is an equivalence. The full
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subcategory of Fun(Γ,∞-Cat) spanned by the symmetric monoidal categories is
denoted ∞-Cat⊗. Its morphisms are called symmetric monoidal functors. Further
∞-Cat⊗ is enriched over∞-Cat.

A symmetric monoidal category T : Γ → ∞-Cat will usually be denoted as
(T ,⊗) where T := T (1). If C : Γ →∞-Cat and D : Γ →∞-Cat are symmetric
monoidal categories, we will denote Fun⊗(C,D) the ∞-categories of symmetric
monoidal functors.

Equivalently, a symmetric monoidal category is an E∞-algebra object in the
∞-category∞-Cat. An (∞-)category with finite coproducts has a canonical struc-
ture of symmetric monoidal∞-category and so does a category with finite products.

Example 60 (The ∞-category Top) Applying the above procedure (Example 59)
to the model category of simplicial sets, we obtain the ∞-category sSet. Similarly,
the model category of topological spaces yields the∞-category Top of topological
spaces. By Remark 36, we can also apply Example 58 to the standard enrichment of
these categories into topological (or simplicial) categories to construct (equivalent)
models of sSet and Top.

Since the model categories sSet and Top are Quillen equivalent [49, 60], their

associated∞-categories are equivalent. The left and right equivalences |−| : sSet
∼
�
∼

Top : Δ•(−) are respectively induced by the singular set and geometric realization
functors. The disjoint union of simplicial sets and topological spaces make sSet and
Top into symmetric monoidal ∞-categories.

The above analysis also holds for the pointed versions sSet∗ and Top∗ of the
above∞-categories (using the model categories of these pointed versions [60]).

Example 61 (Chain complexes) The model category of (unbounded) chain com-
plexes over k (say with the projective model structure) [60] yields the ∞-category
of chain complexes Chain(k) (Example 59). The mapping space between two chain
complex P∗, Q∗ is equivalent to the geometric realization of the simplicial set
n �→ HomChain(k)(P∗ ⊗ C∗(Δn), Q∗) where HomChain(k) stands for morphisms of
chain complexes. It follows from Proposition 50, that one can also use Example 58
applied to the category of chain complexes endowedwith the above topological space
of morphisms to define Chain(k). In particular a chain homotopy between two chain
maps f, g ∈ MapChain(k)(P∗, Q∗) is a path in MapChain(k)(P∗, Q∗).

In fact, ho(Chain(k)) ∼= D(k) is the usual derived category of k-modules. The
(derived) tensor product over k yields a symmetric monoidal structure to Chain(k)

which will usually simply denote by ⊗. Note that Chain(k) is enriched over itself,
that is, for any P∗, Q∗ ∈ Chain(k), there is an object RHomk(P∗, Q∗) ∈ Chain(k)

together with an adjunction

MapChain(k)

(
P∗ ⊗ Q∗, R∗

) ∼= MapChain(k)

(
P∗, RHomk(Q∗, R∗)

)
.

The interested reader can refer to [43, 71] for details of∞-categories enriched over
∞-categories and to [26, 53] formodel categories enriched over symmetricmonoidal
closed model categories (which is the case of the category of chain complexes).
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Example 62 In characteristic zero, there is a standard closed model category struc-
ture on the category of commutative differential graded algebras (CDGA for short),
see [55, Theorem 4.1.1]. Its fibrations are epimorphisms and (weak) equivalences are
quasi-isomorphisms (of CDGAs). We thus get the ∞-category CDGA of CDGAs.
The category CDGA also has a monoidal structure given by the (derived) ten-
sor product (over k) of differential graded commutative algebras, which makes
C DG A a symmetric monoidal model category. Given A, B ∈ C DG A, the map-
ping space MapCDGA(A, B) is the (geometric realization of the) simplicial set of
maps [n] �→ Homdg-Algebras(A, B ⊗ Ω∗(Δn)) (where Ω∗(Δn) is the CDGA of
forms on the n-dimensional standard simplex and Homdg-Algebras is the module of
differential graded algebras maps). It has thus a canonical enrichment over chain
complexes.

The model categories of left modules and commutative algebras over a CDGA A
yield the ∞-categories E1-LModA and CDGAA . The base change functor lifts to
a functor of∞-categories. Further, if f : A → B is a weak equivalence, the natural
functor f∗ : E1-LModB →: E1-LModA induces an equivalence E1-LModB

∼→
E1-LModA of∞-categories since it is induced by a Quillen equivalence.

Moreover, if f : A → B is a morphism of CDGAs, we get a natural functor
f ∗ : E1-LModA → E1-LModB, M �→ M ⊗L

A B, which is an equivalence of ∞-
categories when f is a quasi-isomorphism, and is a (weak) inverse of f∗ (see [95]
or [66]). The same results applies to monoids in E1-LModA that is to the categories
of commutative differential graded A-algebras.

10.2 En-Algebras and En-Modules

The classical definition of an En-algebra (in chain complexes) is an algebra over any
En-operad in chain complexes, that is an operad weakly homotopy equivalent to the
chains on the little (n-dimensional) cubes operad (Cuben(r))r≥0 [76]. Here

Cuben(r) := Rect
( r∐

i=1

(0, 1)n, (0, 1)n
)

is the space of rectilinear embeddings of r -many disjoint copies of the unit open cube
in itself. It is topologized as the subspace of the space of all continuous maps. By a
rectilinear embedding, we mean a composition of a translation and dilatations in the
direction given by a vector of the canonical basis of R

n . In other words, Cuben(r)

is the configuration space of r -many disjoint open rectangles87 parallel to the axes
lying in the unit open cube. The operad structure Cuben(r) × Cuben(k1) × · · · ×
Cuben(kr ) → Cuben(k1+ · · ·+ kr ) is simply given by composition of embeddings.

87 More precisely rectangular parallelepiped in dimension bigger than 2.
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An En-algebra in chain complexes is thus a chain complex A together with chain
maps γr : C∗(Cuben(r)) ⊗ A⊗r −→ A compatible with the composition of oper-
ads [12, 40, 76]. By definition of the operad Cuben , we are only considering (weakly)
unital versions of En-algebras.

The model category of En-algebras gives rises to the ∞-category En-Alg of En-
algebras in the symmetric monoidal ∞-category of differential graded k-modules.
The symmetric structure of Chain(k) lifts to a a symmetric monoidal structure on
(En-Alg,⊗) given by the tensor product of the underlying chain complexes.88

One can extend the above notion to define En-algebras with coefficient in any
symmetric monoidal ∞-category following [71]. One way is to rewrite it in terms
of symmetric monoidal functor as follows. Any topological (resp. simplicial) operad
O defines a symmetric monoidal category, denoted O, fibered over the category
of pointed finite sets Fin∗. This category O has the finite sets for objects. For any
sets n+ := {0, . . . n}, m+ := {0, . . . , m} (with base point 0), its morphism space
O(n+, m+) (from n+ to m+) is the disjoint union

∐
f :n+→m+

∏
i∈m+ O(( f −1(i))+)

and the composition is induced by the operadic structure. The rule n+ ⊗ m+ =
(n + m)+ makes canonically O into a symmetric monoidal topological (resp. sim-
plicial) category. We abusively denote O its associated ∞-category. Note that this
construction extends to colored operad and is a special case of an∞-operad. 89

Then, if (C,⊗) is a symmetric monoidal ∞-category, a O-algebra in C is a
symmetric monoidal functor A ∈ Fun⊗(O, C).We call A(1+) the underlying algebra
object of A and we usually denote it simply by A.

Definition 33 [34, 71] Let (C,⊗) be symmetric monoidal (∞-)category. The
∞-category of En-algebras with values in C is

En-Alg(C) := Fun⊗(Cuben, C).

Similarly En-coAlg(C) := Fun⊗(Cuben, Cop) is the category of En-coalgebras in
C. We denote MapEn -Alg(A, B) the mapping space of En-algebras maps from A to
B.

Note that Definition 33 is a definition of categories of (weakly) (co)unital
En-coalgebra objects.

One has an equivalence En-Alg ∼= En-Alg(Chain(k)) of symmetric monoidal
∞-categories (see [35, 71]) where En-Alg is the ∞-category associated to alge-
bras over the operad Cuben considered above. It is clear from the above definition
that any (∞-)operad En weakly homotopy equivalent (as an operad) to Cuben gives
rise to an equivalent ∞-category of algebra. In particular, the inclusion of rectilin-
ear embeddings into all framed embeddings gives us an alternative definition for
En-algebras:

88 Other possible models for the symmetric monoidal∞-category (En-Alg,⊗) are given by alge-
braic Hopf operads such as those arising from the filtration of the Barratt-Eccles operad in [8].
89 An ∞-operad O⊗ is a ∞-category together with a functor O⊗ → N (Fin∗) satisfying a list
of axioms, see [71]. It is to colored topological operads what ∞-categories are to topological
categories.
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Proposition 51 ([71])Let Disk f r
n be the category with objects the integers and mor-

phism the spaces Disk f r
n (k, �) := Emb f r (

∐
k R

n,
∐

� R
n) of framed embeddings

of k disjoint copies of a disk R
n into � such copies (see Example 12). The natural

map Fun⊗(Disk f r
n , Chain(k))

�−→ En-Alg is an equivalence.

Example 63 (Iterated loop spaces) The standard examples90 of En-algebras are
given by iterated loop spaces. If X is a pointed space, we denote Ωn(X) :=
Map∗(Sn, X) the set of all pointed maps from Sn ∼= I n/∂ I n to X , equipped with
the compact-open topology. The pinching map (15) pinch : Cuben(r) × Sn −→∨

i=1...r Sn induces an En-algebra structure (in (Top,×)) given by

Cuben(r)× (
Ωn(X))

)r ∼= Cuben(r)×Map∗(
∨

i=1...r

Sn, X)
pinch∗−→ Ωn(X).

Since the construction is functorial in X , the singular chain complex C∗(Ωn(X))

is also an En-algebra in chain complexes, and further this structure is compatible
with the E∞-coalgebra structure of C∗(Ωn(X)) (from Example 65). Similarly, the
singular cochain complex C∗(Ωn(X)) is an En-coalgebra in a way compatible with
its E∞-algebra structure; that is an object of En-coAlg(E∞-Alg).

Example 64 (Pn-algebras) A standard result of Cohen [19] shows that, for n ≥ 2,
the homology of an En-algebra is a Pn-algebra (also see [40, 88]). A Pn-algebra is a
graded vector space A endowedwith a degree 0multiplicationwith unit whichmakes
A a graded commutative algebra, and a (cohomological) degree 1-n operation [−,−]
which makes A[1 − n] a graded Lie algebra. These operations are also required to
satisfy the Leibniz rule [a · b, c] = a[b, c] + (−1)|b|(|c|+1−n)[a, c] · b.

For n = 1, Pn-algebras are just usual Poisson algebras while for n = 2, they are
Gerstenhaber algebras.

In characteristic 0, the operad Cuben is formal, thus equivalent as an operad to
the operad governing Pn-algebras (for n ≥ 2). It follows that Pn-algebras gives rise
to En-algebras in that case, that is there is a functor91 Pn-Alg → En-Alg.

There are natural maps (sometimes called the stabilization functors)

Cube0 −→ Cube1 −→ Cube2 −→ · · · (68)

(induced by taking products of cubes with the interval (0, 1)). It is a fact ([71, 76])
that the colimit of this diagram, denoted by E∞ is equivalent to the commutative
operad Com (whose associated symmetric monoidal∞-category is Fin∗).
Definition 34 The(∞-) category of E∞-algebras with value in C is E∞-Alg(C) :=
Fun⊗(Cube∞, C). It is simply denoted E∞-Alg if (C,⊗) = (Chain(k),⊗). Simi-
larly, the category of E∞-coalgebras. is E∞-coAlg := Fun⊗(Cube∞, Cop).

90 May’s recognition principle [76] actually asserts that any En-algebra in (Top,×)which is group-
like is homotopy equivalent to such an iterated loop space.
91 Which is not canonical, see [89].
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Note that Definition 34 is a definition of (weakly) unital E∞-algebras.
The category E∞-Alg is (equivalent to) the∞-category associated to the model

category of E∞-algebras for any E∞-operad E∞.
The natural map Fun⊗(Fin∗, C) −→ Fun⊗(Cube∞, C) = E∞-Alg is also an

equivalence.
For any n ∈ N − {0} ∪ {+∞}, the map Cube1 → Cuben (from the nested

sequence (68)) induces a functor En-Alg −→ E1-Alg which associates to an En-
algebra its underlying E1-algebra structure.

Example 65 (Singular (co)chains) Let X be a topological space. Its singular cochain
complex C∗(X) has a natural structure of E∞-algebra, whose underlying E1-
structure is givenby theusual (strictly associative) cup-product (for instance see [75]).
The singular chains C∗(X) have a natural structure of E∞-coalgebra which is the
predual of (C∗(X),∪). There are similar constructions for simplicial sets X, instead
of spaces, see [8]. We recall that C∗(X) is the linear dual of the singular chain
complex C∗(X) with coefficient in k which is the geometric realization (in the ordi-
nary category of chain complexes) of the simplicial k-module k[Δ•(X)] spanned
by the singular set Δ•(X) := {Δ• f→ X, f continuous}. Here Δn is the standard
n-dimensional simplex.

Remark 37 The mapping space MapE∞-Alg(A, B) of two E∞-algebras A, B (in the
model category of E∞-algebras) is the (geometric realization of the) simplicial set
[n] �→ Hom E∞-Alg

(
A, B ⊗ C∗(Δn)

)
.

The∞-category E∞-Alg is enriched over sSet (henceTop aswell byExample 60)
and has all (∞-)colimits. In particular, it is tensored over sSet, see [69, 71] for details
on tensored∞-categories or [30, 73] in the context of topologically enriched model
categories.We recall that it means that there is a functor E∞-Alg×sSet → E∞-Alg,
denoted (A, X•) �→ A � X•, together with natural equivalences

MapE∞-Alg
(

A � X•, B
) ∼= MapsSet

(
X,, MapE∞-Alg

(
A, B

))
.

To compute explicitly this tensor, it is useful to know the following proposition.

Proposition 52 Let (C,⊗) be a symmetric monoidal ∞-category. In the symmetric
monoidal ∞-category E∞-Alg(C), the tensor product is a coproduct.

For a proof see Proposition 3.2.4.7 of [71] (or [66, Corollary 3.4]); for C = Chain(k),
this essentially follows from the observation that an E∞-algebra is a commutative
monoid in (Chain(k),⊗), see [71] or [66, Section5.3]. In particular, Proposition 52
implies that, for any finite set I , A⊗I has a natural structure of E∞-algebra.

10.2.1 Modules over En-algebras

In this paragraph, we give a brief account of various categories of modules over
En-algebras. Note that by definition (see below), the categories we considered are
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categories of pointed modules. Roughly, an A-modules M being pointed means it is
equipped with a map A → M .

Let Fin, (resp. Fin∗) be the category of (resp. pointed) finite sets. There is a
forgetful functor Fin∗ → Fin forgetting which point is the base point. There is also
a functor Fin → Fin∗ which adds an extra point called the base point.WewriteFin,
Fin∗ for the associated∞-categories (see Example 57). Following [34, 71], ifO is a
(coherent) operad, the ∞-category O-ModA of O-modules 92 over an O-algebra A
is the category of O-linear functors O-ModA := MapO(O∗, Chain(k)) where O is
the (∞-)category associated93 to the operadO and O∗ := O×Fin Fin∗ (also see [36]
for similar constructions in the model category setting of topological operads).

The categoriesO-ModA for A ∈ O-Alg assemble to form an∞-categoryO-Mod
describing pairs consisting of an O-algebra and a module over it. More precisely,
there is an natural fibration πO : O-Mod −→ O-Alg whose fiber at A ∈ O-Alg
is O-ModA. When O is an En-operad (that is an operad equivalent to Cuben), we
simply write En instead of O:

Definition 35 Let A be an En-algebra (in Chain(k)). We denote En-ModA the
∞-category of (pointed) En-modules over A. Since Chain(k) is bicomplete and
enriched over itself, En-ModA is naturally enriched over Chain(k) as well.

We denote 94
RHom En

A (M, N ) ∈ Chain(k) the enriched mapping space of mor-
phisms of En-modules over A. Note that if En is a cofibrant En-operad and fur-
ther M , N are modules over an En-algebra A, then RHom En

A (M, N ) is computed
by HomModEn

A
(Q(M), R(N )). Here Q(M) is a cofibrant replacement of M and

R(N ) a fibrant replacement of N in the model category ModEn
A of modules over the

En-algebra A. In particular, RHom En
A (M, N ) ∼= Hom En -ModA(M, N ). This follows

from the fact that En-ModA is equivalent to the∞-category associated to the model
category ModEn

A .

If (C,⊗) is a symmetric monoidal (∞-)category and A ∈ En-Alg, then we denote
En-ModA(C) the ∞-category of En-modules over A (in C).

We denote respectively En-Mod the∞-category of all En-modules in Chain(k)

and En-Mod(C) the∞-category of all En-modules in (C,⊗).

By definition, the canonical functor95 πEn : En-Mod(C) → En-Alg(C) gives rise,
for any En-algebra A, to a (homotopy) pullback square:

92 In Chain(k). Of course, similar construction hold with Chain(k) replaced by a symmetric
monoidal∞-category
93 In the paragraph above Definition 33
94 The R in the notation is here to recall that this corresponds to a functor that can be computed as
a derived functor associated to ordinary model categories using standard techniques of homologi-
cal/homotopical algebras
95 Which essentially forget the module in the pair (A, M)
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(69)

Note that the functor πEn is monoidal.
We also have a canonical functor can : En-Alg → En-Mod induced by the

tautological module structure that any algebra has over itself.

Example 66 If A is a differential graded algebra, E1-ModA is equivalent to the
∞-category of (pointed) A-bimodules. If A is a CDGA, E∞-ModA is equivalent to
the∞-category of (pointed) left A-modules.

Example 67 (Left and right modules) If n = 1, we also have naturally defined
∞-categories of left and rightmodules over an E1-algebra A (aswell as∞-categories
of all right modules and left modules). They are the immediate generalization of the
(∞-categories associated to themodel) categories of pointed left and right differential
graded modules over a differential graded associative unital algebra. We refer to [71]
for details.

Definition 36 Wewrite respectively E1-LModA(C), E1-RModA(C), E1-LMod(C)

and E1-RMod(C) for the∞-categories of left modules over a fixed A, right modules
over A, and all left modules and all right modules (with values in (C,⊗)).

If C = Chain(k), we simply write E1-LModA, E1-RModA, E1-LMod,
E1-RMod. Further, we will denote RHomle f t

A (M, N ) ∈ Chain(k) the enriched
mapping space of morphisms of left modules over A (induced by the enrichment of
Chain(k)). In particular RHomle f t

A (M, N ) ∼= Hom E1-LModA (M, N ).

There are standard models for these categories. For instance, the category of right
modules over an E1-algebra can be obtained by considering a colored operad
Cuberight

1 obtained from the little interval operad Cube1 as follows. Denote c, i the

two colors. We define Cuberight
1 ({X j }rj=1, i) := Cube1(r) if all X j = i . If X1 = c

and all others X j = i ,we setCuberight
1 ({X j }rj=1, c) := Rect

([0, 1)∐(∐r
i=1(0, 1)

)
,

[0, 1)) where Rect is the space of rectilinear embeddings (mapping 0 to itself). All
other spaces of maps are empty. Then the∞-category associated to the category of
Cuberight

1 -algebras is equivalent to E1-RMod.
Let A be an E1-algebra, then the usual tensor product of right and left A-modules

has a canonical lift

− L⊗
A
− : E1-RModA × E1-LModA −→ Chain(k)

which, for a differential graded associative algebra over a field k is computed by
the two-sided Bar construction. There is a similar derived functor E1-RModA(C)×
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E1-LModA(C) −→ C, still denoted (R, L) �→ R ⊗L

A L , whenever (C,⊗) is a sym-
metric monoidal ∞-category with geometric realization and such that ⊗ preserves
geometric realization in both variables, see [71]. There are (derived) adjunction

MapE1-LModA

(
P∗ ⊗ L , N

) ∼= MapChain(k)

(
P∗, RHomle f t

A (L , N )
)
,

MapChain(k)

(
R

L⊗
A

L , N
) ∼= MapE1-LModA

(
L , RHomk(R, N )

)

which relates the tensor product with the enriched mapping spaces of modules.
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Index

A
A-model, 79
AKSZ

field theory, 2, 326, , 471
formalism, 3, 4, 471, 477

Antibracket formalism, see BV

B
B-model, 79
Boundary condition

Dirichlet, 283, 285, 289, 297, 317, 318
Neumann, 283, 289, 317, 318, 321

BV, 1, 2, 9, 10, 62, 63, 66, 74, 154, 276, 335,
see also BV quantization

BV bracket (a.k.a. antibracket), 66
BV formalism, 9

C
C∗-algebra, 18, 27
(∞, 1)-category (or ∞-category), 7, 434–

436, 453, 468, 538
Cauchy hypersurface, 25
Central charge, 91, 95–97, 106, 115
Characteristic class, 110, 154, 163, 164, 166,

171
Chern–Simons

1d CS theory, 154
1d theory, 155
3d CS theory, 234, 252
3d theory, 12, 168
7d CS theory, 190, 197
7d theory, 186
action functional, 179
classical CS theory, 287
classical theory, 7, 289

CS action functional, 73, 161, 162, 165,
179, 180

CS super theories, 184, 191
CS theory with finite group, 12
CS universal invariant, 174
cup-product CS theory, 187
cup-product theory, 189
super theories, 191
theory with finite gauge group, 12
U (1) CS theory, 249, 250
U (1) theory, 249
universal invariant, 219

Chiral de Rham complex, 90, 91, 111, 112
Classical field theory, 2, 19, 223, 277, 279,

300, 315, 471 see also Field theory
Cobordism category, 11, 277, 298
Cobordism hypothesis, 11, 517, 518
Conformal field theory (CFT), 99, see also

Field theory
Euclidean unitary CFTs, 90
K3 CFT, 113, 115
N=(2,2) superconformal CFT, 90, 104
toroidal CFT, 106, 107, 113

Correlation function, 62, 103, 314
Courant algebroid, 372, 373, 379

D
Deligne-Beilinson cohomology, 233–235
Derivative

Euler-Lagrange, 33, 34, 65, 315
on a locally convex vector space, 30

Differential cohomology, 168
Ĥ2(X,Z), 161, 163, 168
cup product, 188
cup product on diff. coho., 451

Dirac structure, 373
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exact, 374
exact Dirac structure, 374

Distribution, 51
order (of a distr.), 42, 48, 49
singular support, 51
singular support (of a distr.), 52
support, 51
support (o a distr.), 28, 29, 68
wavefront set, 52
wavefront set (of a distr.), 38

Domain walls (or domain-walls), 344

E
Elliptic genus

conformal field theoretic, 108
conformal field theoretic elliptic genus,
107, 113, 123

geometric, 109
geometric elliptic genus, 107, 110, 114,
122

Epstein-Glaser, 47–49
Euclidean

disk, 465, 488, 524, 525, 527, 537
Lie algebra, 66, 523
signature, 43, 65, 66
unitary conformal field theories, 99, see

also CFT
Euler Lagrange equations, 278, 280–283,

286, 288, 315

F
Factorization algebra, 8, 64, 223, 464

locally constant, 9, 465
locally constant factorization algebra, 80,
430, 467, 471, 473, 475, 481, 483, 486

prefactorization algebra, 69, 435, 462,
464–466, 469, 472, 473, 475, 476, 486,
487, 522, 530, 532

Factorization homology, 12, 226, 458
a.k.a. manifoldic homology, 218
a.k.a. topological chiral homology, 213,
218, 223, 458

Feynman diagram, 44, 297, 305, 306, 308,
316

Field theory
AKSZ, 2, 194, 325, 326
classical, 2, 7, 9, 276–279, 281, 289, 293,
297

covariant, 24, 28, 203, 460
Euclidean, 86, 91, 102
free, 70, 72
gauge, 57, 58, 62, 78, 82

holomorphic, 58, 62, 72, 73, 125
local, 18, 24, 159, 166, 182, 188, 202
Lorentzian, 66
quantum, 58, 63, 65, 66, 74
superconformal, 90, 98, 106, 107, 111,
114, 115, 124

topological, 97, 123
topological quantum, 123

First order Lagrangian system, 280
Free field theory, 70
Frobenius algebra, 424

relative, 414
relative Frobenius algebra, 422

Frobenius algebra
relative Frobenius algebra, 414, 415

G
Gauge

field, 177, 187, 199, 240
field theory, 2, 89–91, 101, 106, 108, 114,
276, 287, 288, 297, 325

fixing, 266, 276, 304, 311, 317
supersymmetric gauge theory (or SUSY
gauge theory), 74

symmetry, 58, 90
theory, 74, 80

Generalized Lagrangian, 32
Geometric quantization, 164

higher, 174, 203
Gerbe, 190

U (1)-bundle-2-gerbe, 168
Chern–Simons 2-gerbe, 174

Groupoid, 414
semigroupoid, 417
symplectic double groupoid (or double
symplectic groupoid), 352, 353

symplectic groupoid, 8, 353, 354, 419

H
Hilbert space, 20–22, 28, 103, 301, 414, 424,

491
Holomorphic field theory, 62, 72, see also

Field theory

K
K3 surface, 113, 114, 116, 119–123

L
L∞-algebra, 58, 335

elliptic L∞–algebra, 84
Lie algebroid, 420, 421
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Lightcone, 25, 26
Little disks operad, 9, 214

a.k.a. little cubes operad, 543
Locality, 8, 18, 24–26, 93, 298
Loop quantum gravity, 17
Lorentzian

signature, 24, 311

M
3-manifold, 134, 135, 140, 141, 149, 150,

179, 180, 214, 230, 249, 251, 289
pseudo 3-manifold, 133, 142–146

M–theory, 189
Manin pair, 347
Mathieu moonshine, 120
Model, 3, 5, 10, 13, 276, 280, 297, 300, 302,

see also AKSZ
Moment map

(Lie), 344
(Lie) groupd valued moment map, 347

N
Normal ordering, 38, 93

O
Observable, 18–22, 25, 26, 28, 430, 471
Operator product expansion (OPE), 77, 93
Order of a distribution, 51

P
Partition function, 100, 103, 104, 276, 301,

312
Path integral, 276, 300
Poisson algebra, 19, 37, 545
Poisson bracket, 35, 66, 67, 77, 79, 203, 347,

471
Poisson manifold, 7, 347, 419, 421, 424
Poisson structure, 344, 351, 354, 363, 364,

366, 370, 380, 424
Poisson algebra, 37
Poisson bracket, 35
quasi-Poisson structure, 383

Propagator, 27, 42, 194

Q
Q-manifold, 2–4, 325, 334, 335
Quantization

BV quantization, 9, 276

deformation quantization, 19, 37, 42,
422, 492

geometric quantization, 293, 294
higher geometric quantization, 153

Quantum dilogarithm, 135
Quantum mechanics

topological quantum mechanics, 9, 79
Quasi-Hamiltonian manifold, 347, 380
Quasi-Poisson manifold, 384
Quasi-Poisson structure, 344, 383, 388

R
Regularization, 48, 251, 256, 258, 262, 311
Renormalization, 9, 42

renormalization group, 19
Renormalization group, 44
Riemann surface, 82, 359

S
Sigma model, 2, 193

AKSZ σ model, 194, see also AKSZ
non-linear, 105
non-linear sigma model, 89, 107, 111,
113–116, 121, 123

Poisson sigma model, 7, 414, 419
WZW sigma model, 175, 176, 184, 204,
206, see also WZW

Space-time, 65, 86, 195, 223, 289
10-dimensional, 198
curved, 43
curved spacetime, 19
globally hyperbolic, 27
globally hyperbolic spacetime, 19, 27
Lorentzian, 32
Lorentzian spacetime, 18
Minkowski, 24
Minkowski spacetime, 24, 26
supersymmetry, 105
spacetime supersymmetry, 91, 107, 108,
114, 115

Stack
2-stack, 191
3-stack, 168
derived stack, 2, 3, 84, 440
higher stack, 153, 154, 159, 168, 192,
193, 195

State, 97
vaccum state, 97

String structure, 184, 197
String theory, 17, 89, 189, 198, 206
Superconformal algebra, 96–98, 107, 111,

118–120, 124
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SUSY gauge theory, 62, 76, see also Gauge

T
Time ordered product, 19, 41–45, 50
Topological field theory (TFT), 7, 11, 12, 28,

66, 224, 326, 335, 414, 419see also
Field theory

fully extended, 12, 28, 174, 299, 517
TQFT, 123, 204, 224
transgression isomorphism, 157
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