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Foreword 1

This volume contains the contributions to the 2012 les Houches winter school in
mathematical physics, organized with the support of Labex Milyon and ESF ITGP.
A common theme of the courses and talks at this winter school is classical and
quantum field theory. This subject has a long history and has been since its
inception a fertile ground for fruitful interactions between mathematics and physics.
It now is a multifaceted research area attracting the interest of mathematicians and
physicists alike.

The extended lecture notes of five courses of this school form the bulk of this
volume and give an overview of the different points of views and recent results in
field theory. The subject of Klaus Fredenhagen’s lectures is algebraic quantum field
theory, in the sense of Haag and Kastler, where the basic notion is that of local
algebras of observables attached with portions of space-time. This approach was
only recently extended to the case of curved space-times and these lecture notes,
appearing here with material from lectures of Katarzyna Rejzner, offer a compre-
hensive description of the results, including perturbative renormalization, due to the
lecturer and his collaborators. A similar emphasis on local observables, but in a
different framework, is presented in the notes, written by Claudia Scheimbauer,
of the lecture course of Kevin Costello on partially twisted supersymmetric gauge
theories. A mathematical formulation of these theories in terms of factorization
algebras of observables is presented, including perturbative quantization and the
relation to Yangians and quantum enveloping algebras. Factorization algebras, first
introduced by Beilinson and Drinfeld in the context of conformal field theory, have
now a wide field of applications also outside quantum field theory, as illustrated in
the lectures of Grégory Ginot, who gives an introduction to factorization algebras
and factorization homology and presents applications to mapping spaces, higher
Deligne conjectures, and string topology. The lectures of Alberto Cattaneo and
Pavel Mnev give an introduction to semiclassical quantization of field theories with
gauge symmetries. The approach of the lecturers, based on a collaboration
with Nicolai Reshetikhin, is to systematically consider field theory on manifolds
with boundary and study the behaviour when gluing along boundary components.
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The aim, illustrated here in the case of abelian Chern—Simons theory, is to construct
examples of quantum field theories on arbitrary manifolds by gluing them from
simple pieces. This same idea appears in the lectures of Jorgen Andersen and Rinat
Kashaev, who present their work on the construction of a topological quantum field
theory in three-dimensions associated to the quantum Teichmdiller theory. Here, the
theory is constructed on a triangulated manifold combinatorially by gluing building
blocks defined on tetrahedra.

Additionally to the lectures, there were several talks on field theories and their
applications, some of which, along with other related contributions, are presented in
this volume. The result is a collection of research works from researchers with
different backgrounds in mathematics and physics, showing that quantum field
theory has a broad range of applications, and will continue to be a source of
inspiration for mathematics and mathematical physics.

Giovanni Felder
Anton Alekseev
Damien Calaque
Alberto Cattaneo
Maria Podkopaeva
Thomas Strobl
Andras Szenes



Foreword 11

No development of modern science has had a more profound impact on human thinking
than the advent of quantum theory. Wrenched out of centuries-old thought patterns,
physicists of a generation ago found themselves compelled to embrace a new metaphysics.
The distress, which this reorientation caused, continues to the present day. Basically,
physicists have suffered a severe loss: their hold on reality. (Bryce S. DeWitt and Neill
Graham: Resource Letter on the Interpretation of Quantum Mechanics, American Journal of
Physics, July 1971)

In January/February of 2012, a Winter School on the topical subject of “Mathe-
matical Aspects of Field Theories” took place at Les Houches—a wonderful village
made available to the physics community as the location of conferences and schools
by Cécile DeWitt-Morette, the wife of the late Bryce DeWitt, whom I have quoted
above, and one of my favorite places on Earth. Damien Calaque and Thomas Strobl
should be commended for having organized this School. They kindly invited me to
participate in it; but, unfortunately, I had some minor health problems that pre-
vented me from traveling to Les Houches.

Recently, the organizers asked me to write a short foreword for the proceedings
of their School and they sent me various written contributions. Having taken a brief
look at some of these writings, I feel the title of the School should really read
“highly mathematical aspects of field theories”. The material collected in this book
looks fascinating. But I admit that I do not expect I would have understood much of
what was discussed at the School. I imagine the organizers had invited me to
participate in it with the thought that I would discuss some real-world applications
of (quantum) field theory. I regret that I was unable to comply with their wishes. Let
me emphasize, incidentally, that I do not associate any scholarly ambitions with this
preface; it actually results from an experiment in “free association”.

In comparison with classical field theory, Quantum Field Theory (QFT) is a
rather recent endeavor, less than a 100 years old. Implicitly, it had first appeared in
Planck’s law for the spectral energy density of black body radiation and Finstein’s
theory of photons. It made its first explicit appearance (quantization of a harmonic
string) in the famous “Dreiménnerarbeit”, in 1925, and got started in a more

vii



viii Foreword II

concrete sense in the work of Dirac on quantum electrodynamics (QED), soon
afterward. Famous early contributions came from Jordan, Wigner, Heisenberg and
Pauli (relativistic QFT), Kramers, Weisskopf (first attempts toward renormalizing
QED), Wentzel, and others. Before and during World War II, E.C.G. Stiickelberg
de Breidenbach made prescient contributions to a manifestly relativistic formulation
of QFT, the perturbative calculation of causal scattering amplitudes, and the ren-
ormalization of QED. He anticipated very sizable portions of the work of Feynman,
for which the latter received the Nobel Prize, jointly with Schwinger and Tomo-
naga, in 1965.

The triumph of perturbative QED and, in particular, of calculating radiative
corrections after performing suitable renormalizations (Lamb shift, “g — 27, etc.),
convinced the physics community, at least temporarily, that relativistic QFT was a
successful road toward understanding the physics of elementary particles. For QED,
the comparison between theoretical calculations and experimental data was spec-
tacularly successful, as is exceedingly well-known. After various lengthy and
confusing detours, the discovery of the standard model (a U(2) x SU(3)—gauge
theory of electro-weak and strong interactions, from 1967 till the early 1970s)
sealed the triumph of quantum field theory, and in particular of quantum gauge
theory, as the most successful approach toward unifying special relativity with
quantum mechanics, and thereby arriving at a satisfactory theory of elementary
particles and of the fundamental interactions, with the exception of gravitation.

Indeed, relativistic quantum field theory is an attempt to combine the two most
profound new theories of twentieth-century physics, Relativity Theory and Quan-
tum Mechanics, in a mathematically consistent theoretical framework compatible
with “Einstein causality” or “locality”. In this attempt, space-time is most often
chosen to be the Minkowski space of special relativity, i.e., it is viewed as a rigid
screen on which Nature draws its imagery, and which is unaffected by material
processes evolving in it. (Ambitious people, such as Bryce DeWitt, or Klaus Fre-
denhagen, who has a contribution to this book, and others, have formulated
quantum field theory on fairly general Lorentzian manifolds with curvature. But the
fact remains that the recoil of material processes on the structure of space-time is
neglected or treated in a merely approximate, “self-consistent” fashion).

There cannot be any doubt that the use of a rigid classical model of space-time,
such as Minkowski space, in a relativistic local quantum theory of matter is pro-
visional and must ultimately lead to serious conceptual difficulties. Here are some
reasons for this expectation: A relativistic local quantum theory on Minkowski
space or other rigid models of classical Lorentzian space-times is of necessity a
theory of systems with infinitely many degrees of freedom infinitely many of which
can be localized in arbitrarily small cells of space-time—a property that appears to
cause serious trouble as soon as gravity is not neglected anymore (conflict with
General Relativity), besides giving rise to the infamous ultraviolet divergences
well-known. In a more satisfactory, deeper unification of Relativity Theory and
Quantum Theory—sometimes called “quantum gravity”—space is likely to appear
as an emergent structure rather than as a fundamental one. In searches of “quantum
gravity” it will presumably be advantageous to adopt Leibniz’ views of space
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(space as a structure encoding relations between events) rather than Newton’s (a-
priori character of space). A theory of this kind will have to be formulated without
explicit reference to a particular model of space-time, and it is likely to prevent an
infinity of degrees of freedom from accumulating in arbitrarily small cells of space-
time, and hence might be expected to be ultraviolet finite. Many of us are tempted
to believe that string theory will guide the way toward such a framework. Unfor-
tunately, for the time being, we do not know of any conceptually clear, nonper-
turbative and manifestly background-independent formulations of string theory.
However such a formulation will look like, it is likely that QFT—or, at least,
methods of QFT—will be among its ingredients. (One might expect, for example,
that two-dimensional superconformal field theory will be one of its important tools.)
We are thus well advised to pursue studies of QFT and, in particular, of mathe-
matical aspects of QFT—and, by the way, we should not avoid revisiting, from
time to time, some of the puzzling mathematical and physical aspects of quantum
theory. For, without arriving at a clearer understanding of quantum theory, we may
never be able to unravel the mysteries at the root of a unification of the quantum
theory of matter with a relativistic theory of space-time and gravitation!

Another source of some worry that something is not properly understood, yet, is
the prominent role that global properties of rigid space-time play in deriving local
consequences of relativistic QFT that ought to be valid under much more general
assumptions on the nature of space-time. Here is an example: One of the spectacular
predictions of relativistic local quantum theory (QFT) is the existence of anti-
matter. This prediction, first explicitly proposed by Dirac, originally grew out from
his work on a relativistic electron equation, the Dirac equation, and his idea of the
“Dirac sea” as a cure to the problem of negative-energy states, and from an
observation, due to Oppenheimer and Weyl, saying that the holes in Dirac’s sea
must have all the same properties as the electrons, except that their electric charge is
opposite to that of electrons. But a general understanding of the necessary existence
of anti-matter, in the guise of the CPT theorem, only came with Jost’s work in
axiomatic quantum field theory. Now, the strange fact is that Jost’s proof of CPT
makes use of some global properties of Minkowski space. But one would think that
the existence of anti-matter is a local property of relativistic quantum theory, which
will remain true for very general (and even for “dynamical”’) models of space time.
Likewise, the general connection between the spin of quantum fields and their
statistics is intimately connected to the property of the “vacuum state” to satisfy the
Kubo-Martin-Schwinger (KMS) condition with respect to Lorentz boosts (as
derived by Bisognano and Wichmann, using arguments slightly extending those of
Jost), which refers to global symmetries of Minkowski space-time. And again,
results of this type can be expected to remain valid for much more general
“dynamical” models of space-time. So, quite clearly, there are most probably quite
a few things we do not understand properly, yet, and we are well advised to
continue studies of the mathematical aspects of field theory! (One might note, in
passing, that, from today’s perspective, Tomita-Takesaki modular theory—one
of the miraculous developments in the theory of operator algebras—can be viewed
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as the general mathematical structure underlying Jost’s CPT theorem, the Bisognano-
Wichmann theorem, and the general analysis of equilibrium states in quantum
statistical mechanics due to Haag, Hugenholtz and Winnink).

Serious study of mathematical aspects of quantum field theory is not a new
development. After initially unsuccessful attempts of using QFT to construct a
theory of nuclear forces and of mesons and failures to understand QED nonper-
turbatively, axiomatic quantum field theory was developed in the 50s and 60s of the
past century; first in the guise of the Garding-Wightman axioms for theories of local
quantum fields, and then in the form of the Haag-Kastler axioms for nets of local
observables. When the general structure of relativistic local quantum theory had
been clarified, at least to some extent, it was felt to be important to construct models
of quantum field theories satisfying all the Wightman- or the Haag-Kastler axioms.
Thus, constructive quantum field theory was born in the middle of the 1960s.
Axiomatic and constructive QFT gave rise to very fruitful developments in pure
mathematics. In particular, complex analysis, functional analysis, functional inte-
gration and probability theory, “hard analysis”, and group theory all drew inspi-
ration from work on problems encountered in axiomatic and constructive quantum
field theory—as they already had from the advent of quantum mechanics, two or
three decades earlier.

Not only has pure mathematics profited from ideas, methods, and results of
quantum field theory, but also theoretical physics: Various areas in theoretical
physics other than particle physics, notably quantum-mechanical many-body theory
and its applications to condensed matter physics, have been enriched by techniques
first developed for the purposes of understanding relativistic QFT and applying it to
particle physics and by corresponding advances in mathematics. Suffice it to recall,
as a famous example, that Freeman Dyson made very successful applications of
ideas and techniques he had discovered or learned in his work on QED to studies
of the quantum theory of magnetism, etc. I hasten to add that concepts and ideas
that had first appeared in statistical mechanics or condensed matter physics were
subsequently successfully applied to QFT. Among the best examples is the
observation that, in the Euclidian (imaginary-time) region, QFT looks like classical
statistical mechanics and that certain Euclidian field theories can be viewed as gases
of Brownian paths and loops (Symanzik’s representation of scalar QFT’s). This has
made available certain methods developed in statistical mechanics, such as cluster
expansions, lattice approximation, correlation inequalities, the Lee-Yang theorem,
Kramers-Wannier duality, for purposes of quantum field theory. (Another fre-
quently mentioned example is the Anderson-Higgs mechanism. However, one may
argue with good reasons that essential features of this mechanism first appeared in
Stiickelberg’s work on massive gauge fields, which was inspired by problems in
particle physics).

It cannot be the purpose of a foreword like this one to give a detailed account
of the history of the subject treated in the following chapters of a book—although,
frankly, it would be tempting to dive more deeply into the history of (mathematical)
quantum field theory at this point. However, this would require much more space
than this preface can occupy and more time and care than I can afford. Suffice it,
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thus, to refer to some of the more mathematical developments in QFT and some
of their applications in mathematics and physics by merely mentioning appropriate
buzz words: Besides axiomatic and constructive quantum field theory, I would like
to mention the perturbative renormalization group first discovered by Stiickelberg
and Petermann and by Gell-Mann and Low and then extended by Callan and
Symanzik, which has profoundly changed the way we think about QFT, and has
had spectacular applications in particle physics (ultraviolet asymptotic freedom—
Politzer; Gross and Wilczek—as an explanation of Bjorken scaling, to mention one
example) and in the theory of critical phenomena. I also wish to recall the devel-
opment of systematic approaches to perturbative renormalization (BPHZ, analytic
renormalization, Hepp’s “axioms for renormalization”, the Epstein-Glaser approach
to renormalization, dimensional regularization and-renormalization, renormaliza-
tion-group inspired renormalization a la Polchinski and Gallavotti, the use, by
Connes and Kreimer, of the Hopf algebra of rooted trees and of a Riemann-Hilbert
problem to set up perturbative renormalization theory, etc.), the Faddeev-Popov
procedure of gauge fixing in general nonabelian gauge theories (extending ideas of
Feynman and of DeWitt), the discovery of anomalies in gauge theories (Adler—
Bardeen—Bell-Jackiw, etc.). I continue by mentioning Wilson’s form of the ren-
ormalization group and the development of conformal field theory; the discovery of
supersymmetry; the discovery of BRST cohomology for gauge theories and of the
BV formalism. I would like to draw attention to the advent of two-dimensional
conformal field theory and of topological field theories, then to the discovery of
connections between gravity theories on AdS spaces and conformal field theories
on the boundary space-time (Maldacena correspondence), to end by mentioning the
tantalizing role that ideas of integrability (Bethe-ansatz equations) have recently
started to play in the analysis of supersymmetric gauge theories, etc. Most of these
developments have had very interesting consequences in mathematics; but, of
course, also—and, perhaps, more importantly—in physics. I feel it is important that
one should not lose sight of one direction in the light of success in the other. I will
now sketch some examples explaining what I mean.

Techniques that were originally inspired by problems in perturbative renor-
malization theory have recently had some fairly spectacular applications in alge-
braic geometry (e.g., multiple zeta values, polylogarithms, modular forms in QFT—
work by Connes, Kreimer, Bloch, Marcolli, Brown, and others). Ideas and methods
born from the study of gauge theories, of gauge fixing and gauge anomalies and of
supersymmetry have had huge impact on developments in algebraic topology
(moduli spaces of instantons on four-manifolds and Donaldson invariants, Seiberg-
Witten invariants, Chas-Sullivan string topology, etc.). But, of course, for physi-
cists, the work of ’t Hooft and Veltman, Lee and Zinn-Justin, Becchi, Rouet and
Stora, Batalin and Vilkovisky, and many others, demonstrating the renormaliz-
ability of the standard model of particle physics and other theories with infinite-
dimensional local symmetries and leading to many concrete calculations of direct
relevance to experiments at the LHC, is more important.

Another example concerns Wilson’s form of the renormalization group and
conformal field theory: Ideas that have grown out of the work of Wilson, Wegner,
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and others on the renormalization group and of somewhat related (earlier, but more
narrow) work of Glimm and Jaffe on A¢*-theory in three dimensions have had
enormously fruitful applications in the mathematics of functional integration, large-
deviation theory, singular perturbation theory of operators, etc. Powerful new tools
in analysis, such as multiscale analysis, and in probability theory have emerged
therefrom. Conformal field theory has become a fundamental tool in string theory.
Two-dimensional superconformal field theory has had important applications in
algebraic topology (elliptic genera, chiral rings, ...). Ideas and methods from string
theory and superconformal field theory have led to highly nontrivial results in
enumerative geometry.—But let us not forget that Wilson’s main aim had been to
understand critical phenomena in the theory of continuous phase transitions and to
calculate critical exponents, an enterprise that turned out to be extraordinarily
successful, and that his ideas have changed the way we think of the role of quantum
field theories in particle physics (“effective field theories”). And let us not forget
that conformal field theories have played a crucial role in this enterprise as theories
that encode renormalization group fixed points and often enable one to quantita-
tively determine critical exponents by identifying them with scaling dimensions of
various fields of the theory.

It may be appropriate to also draw attention to Jones’ theory of subfactors and of
towers of von Neumann algebras. By studying the abstract problem of finding an
invariant associated with the embedding of a subfactor in a von Neumann factor
(initially for factors of type II;—but extensions to factors of type III, due to Longo,
followed soon), Vaughan Jones unravelled deep and very surprising connections
between the theory of towers of von Neumann algebras, the theory of knots and
links embedded in the three-dimensional sphere, unitary representations of the braid
group, exactly solved models of two-dimensional classical statistical mechanics,
representations of Lie algebras and quantum groups. His discoveries are highly
original and, for me, have a magical touch. They represented the first substantial
progress in knot theory in decades. According to Jones’ own testimony, his
knowledge of quantum theory apparently played an important role in his discov-
eries on subfactor theory; and, of course, the basic tools he used—the theory of
operator algebras (Murray and von Neumann, and followers)—had grown out of
studies of quantum theory. Jones’ work was aimed at solving some deep problems
in mathematics. But it turns out that some of the ideas and mathematical techniques
he used had come up in algebraic quantum field theory, more precisely in the work
of Doplicher, Haag and Roberts on the general theory of superselection sectors.
Their work, which remains a rock of beauty in axiomatic QFT, concerned rela-
tivistic field theories in four-dimensional space-time. Constructive field theorists
found quantum field theories in four dimensions to represent too serious a chal-
lenge, and had therefore constructed models of relativistic quantum fields on two-
and three-dimensional Minkowski space. In the early 1970s, in studies of some
two-dimensional quantum field models, Streater and Wilde and I had encountered
the first very simple examples of the so-called “exchange algebras™ of field oper-
ators, which, at the time, looked quite exotic. It turns out that exchange algebras of
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field operators can be characterized completely by so-called Yang-Baxter matrices,
which determine representations of the braid group. But this was far from under-
stood in the early 1970s. At this point, Jones was to become important for me.
I write about him here not only because of his significance as an outstanding
mathematician, but also because, in times when decency in the scientific commu-
nity is somewhat endangered, he can serve as a role model of an intellectually
honest and exceptionally generous scientist. As Joan Birman emphasized in her
description of Jones’ mathematical work at the 1990 International Congress of
Mathematicians in Kyoto, where he received a Fields Medal, his style of working as
a mathematician is informal and “encourages the free and open interchange of
ideas”. In 1987, during a sabbatical I spent at the IHES, I had the privilege to
interact with Jones, and I greatly profited from his exceptional generosity and from
“free and open interchange of ideas” with him. Thanks to these interactions, I
learned that exchange algebras of field operators determine unitary representations
of the braid group on n strands. This observation triggered the development of a
general theory of braid (group) statistics, a form of quantum statistics only
appearing in local quantum theories in two- and three-dimensional space-time.
(This exotic form of quantum statistics had been missed by the pioneers of quantum
mechanics). In the mid-1980s, my interest in braid statistics had been aroused by
attempts, jointly with Marchetti, to understand Chern—Simons—Higgs theory in
three dimensions and by tentative applications of such theories to the quantum Hall
effect. Jones turned out to be the ideal advisor for understanding the relation
between exchange algebras and braid statistics, and for how to proceed toward
making further progress on all these problems.

I do not engage in a discussion of how fopological Chern-Simons theory entered
the scene. Suffice it to say that, thanks to the work of Witten and others (including
Chr. King and myself), it has come to play a very important role in the theory of
invariants of knots and links and of general three-manifolds. This is undoubtedly an
excellent example of a very successful application of ideas and techniques from
quantum field theory to problems in pure mathematics.—Well, I would like to add
that the observation that a class of three-dimensional topological field theories of
which certain topological Chern-Simons theories are examples turn out to describe
the large-scale physics of two-dimensional electron gases exhibiting the quantum
Hall effect is, to say the least, equally remarkable and important. It has led to a
classification of “universality classes” of such electron gases, To unravel this
insight with some precision has kept me and some of my younger friends busy for
quite a few years. A related, more recent development concerns the theory of
“topological insulators”, which are exciting new states of condensed matter with
exotic gapless surface modes.

I would like to end this preface by mentioning an example of a discovery in pure
mathematics that was arrived at independently by mathematical physicists working
on comparatively concrete problems in algebraic quantum field theory and by a
mathematician pursuing highly abstract mathematical concerns. Motivated by
studies in the theory of superselection sectors in four-dimensional local quantum
field theories, Doplicher and Roberts found a general solution of the Tannaka-Krein
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problem of reconstructing compact topological groups from certain C*-tensor cat-
egories arising in quantum field theory. Motivated by purely mathematical con-
siderations, Deligne independently proved related results. More recently, a partial
duality theory between braided C*-tensor categories and quantum groups has been
developed, which, on one hand, was motivated by studies of quantum field theories
with braid statistics in two- and three-dimensional space-time (Kerler and myself,
Mack and Schomerus, and others) and, on the other hand, by rather abstract
problems in the theory of quantum groups.

I hope these examples make it clear that the study of mathematical aspects of
quantum field theory tends to generously pay off in that it may lead to the discovery
of new mathematics. Even if, often, the new mathematics can also be found coming
from a completely different starting point one cannot doubt the fruitfulness of
exploiting quantum field theory for the purposes of pure mathematics. But, of
course, one should always remember that the original purpose of relativistic
quantum field theory has been to understand processes in particle physics at fairly
high energies, and that applications of quantum field theory to problems from
different areas in Physics have been spectacularly successful.

To conclude, I wish the readers enjoyable and fruitful encounters with the
various essays collected in this book. I apologize for not commenting more spe-
cifically on these writings—but I do not think that this is my task here. Let me
propose the following somewhat provocative variant of the remarks of DeWitt and
Graham quoted at the beginning of this preface:

Few developments of modern science have had a more profound impact on
mathematical thinking than the advent of quantum field theory. Wrenched out of old
thought patterns, mathematicians have found themselves compelled to embrace a
new way of formal reasoning. The distress which this reorientation has caused in
some circles of the mathematical community continues to the present day. Basi-
cally, mathematicians using arguments inspired by quantum field theory have
gained access to wonderful new insights, but suffered a severe loss: their hold on
mathematical rigor.

Perhaps, this book will show that rigor need not be lost.

I dedicate this text to the memory of Edward Nelson, whose understanding of
many “mathematical aspects of quantum field theory” was profound.

ETH Ziirich Jiirg Frohlich



Preface

Despite its long history and its stunning experimental success, the mathematical
foundation of perturbative quantum field theory (pQFT) is still a subject of ongoing
research. This book aims at presenting some of the most recent developments in the
field, and at reflecting the diversity of the approaches and the tools that have been
invented and that are used. Some of the leading experts as well as newcomers in the
field present their latest advances in the attempt for a better understanding of
quantum, but also classical field theories.

The chosen material is, however, far from complete. As mentioned in the first
foreword, the idea for this book grew out of a school in Les Houches on the subject,
most lecturers agreeing to write a contribution. This then was complemented by
selecting some of the customary young-participant-presentations to contribute, too,
as well as by two, three additional invited articles. And, as mentioned in the second
foreword, even though the book is aimed both at mathematicians and physicists, it
is more oriented toward the mathematical developments. Here, it is maybe a pity
that for example Nekrasov’s lectures about the path integral on N = 2 super-
symmetric gauge theories did not find entry into the present addition. But there are
many more promising directions, which did not, at least one of which shall be
mentioned below. Maybe this can be a reason to come back to the enterprise at a
later point again, summarizing also those aspects, and possibly updating the ones
which are contained in the present edition.

On this occasion, we use the opportunity to thank Jiirg Frohlich for his valuable
physical insight arising from decades of own original work on the forefront of the
subject and his complementary remarks on the physics that is involved in the
mathematical descriptions, even if it is partially only in terms of some keywords
due to lack of “space-time”. In the winter school, there was in addition an inspiring
opening lecture of another great person in the field, Ludwig Faddeev, who com-
mented on his perspective on the still open one-million dollar Clay problem
“Yang—Mills Existence and Mass Gap”. His lecture had been published already in a
similar form elsewhere, so that we briefly summarize it here only—also since it
suits well to explain the problematic of the subject.

XV
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The task to win the prize may sound deceptively simple: essentially, one is asked
to prove that Yang—Mills theory (for a semi-simple compact structure group G)
exists (in its quantum version) and that there is a minimal mass for the spectrum of
particles. Deceptively simple, since from the physical perspective there is abso-
lutely no doubt that this theory exists (at least for G = SU(2) or G = SU(3)); it
is one of the corner stones of the standard model of elementary particles, verified
experimentally to an incredible precision, as also emphasized by Frohlich in his
foreword. However, as pointed out by Faddeev in his lecture (but also indepen-
dently by R. Jackiw), the problematic becomes already more evident if one notices
that the underlying classical Yang—Mills theory is conformal, i.e., scale-invariant in
four space-time dimensions. One way of seeing this is that the overall coupling
constant does not carry any physical units in precisely this dimension. On the other
hand, any mass of a particle to be specified in a physical theory needs to refer to
some standard mass (like 1 kg). The definition of the theory does not carry any such
a mass (or, equally, length) scale on the outset of the problem, i.e., in its classical
formulation in terms of an action functional.

According to Faddeev, the remedy can lie only in the usually so unloved
infinities encountered typically in interacting quantum field theories (QFTs). Those
infinities that plagued the foundators of the theory, subsequently were handled with
increasing success in a more or less well-founded theory of perturbative renor-
malization, but which still cost many contemporary students of theoretical and
mathematical physics a large number of unpleasant hours; the latter fact is the case,
since in particular in standard physics lectures on QFTs, often the experimentally
verified end is used to justify the mathematical means, with a mathematical argu-
mentation that either appears inconsistent or otherwise at least arbitrarily ad-hoc.
On the other hand, the necessary regularization of the theory on the quantum level
will introduce a length-scale, and in this way there can be hope that the resulting
quantum Yang-Mills theory can yield a minimal mass in a well-defined way.

To formulate a mathematically well-defined and conceptually convincing reg-
ularization and renormalization scheme is one of the tasks of a mathematical
approach to quantum field theory (QFT). But it goes even further: one wants the
theory to satisfy a minimal number of axioms that seem to be enforced by com-
patibility with for example special relativity, running in part under the name of
(Einstein) “locality” in this context. More precisely, basic considerations require a
number of properties any “physically acceptable” QFT should satisfy. One version
of such a set of axioms is the one formulated by Wightman. It contains for example
(projective) equivariance of the quantum fields of the theory with respect to the
action of the Poincare group (the isometry group of Minkowski space in four
dimensions). Later, it was permitted also to trade in Euclidean four-space for the
physical Minkowski space; the idea of the so-called Osterwalder—Schrader axioms
being then that mathematically the theory is easier to define and the physical
interpretation results in a second step by an appropriate analytic continuation, called
Wick rotation in physics. The formulation of the Clay prize requires to define 4d
quantum Yang-Mills theory with a rigor of at least such axioms.
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The only problem here is that up to now there is not a single known interacting
quantum field theory in four dimensions satisfying such a typical set of axioms;
there are only examples of such theories in two or three space-time dimensions,
which have, however, no physical significance and are (to be) considered as
so-called “toy-models” only. As Max Kreuzer from the Technical University of
Vienna used to say, torturing herewith some of the more mathematical-conceptually
oriented students (all the more since the statement is true, at least from a physicist
perspective): “The only theories satisfying the Wightman axioms are free theories.”
A free theory is one that physically corresponds essentially to a single particle
travelling alone through empty space not subject to any interactions and thus not
subject to any experimental observations or tests. Clearly, this is highly dissatis-
fying, all the more, since the formulated axioms, in one or the other form, seem
more or less unavoidable from a point of view of principles governing our con-
temporary understanding of quantum field theory.

At this point, we want to mention one of the unfortunate omissions of this volume,
all the more since it contains a glimpse of hope for possibly finding an interacting QFT
in four dimensions after all. The omission comes from a recent direction motivated
by String Theory (but not only!) to consider QFTs on so-called noncommutative
space-times. In fact, the idea is already quite old and pursues the goal that the
“fuzzyness” of the underlying space resulting from non-commuting space(-time)
coordinates could cure the problem of the UV-(or “high energy”/“small distance”)
divergencies of QFTs mentioned already above. In the simplest setting, the com-
mutator of the coordinates is a constant matrix @, corresponding to the deformation
quantization of a constant Poisson tensor (in flat space). The resulting product of
functions on space-time can then be described by the Moyal product of @. In this way,
the classical action functional of the theory under investigation is replaced by one that
is an infinite formal power series in @, reducing to the original functional for @ = 0.
Itis then this new functional to be used for the “quantization”, i.e., as a starting point of
the construction of a pQFT.

Although first considerations indeed show improvement of the UV-behavior, it
turns out that the problem is not solved in many cases (keyword “UV/IR”-mixing)
and the original hype on the study of such theories seems to have decreased over the
last years again. However, there is one proposal, the so-called Grosse—Wulkenhaar
model, that resists many of the problems of other theories considered in this context
and now even gives some hope to lead to a well-defined interacting QFT in four
dimensions (although it is still too early to make this statement, there are at least
several indications that look promising). One important issue to address at this point
is that certainly the introduction of the tensor & on Minkowski or Eucildean space
spoils its covariance. However, in a simultaneous limit sending @ as well as the
volume (made finite for an IR-regularization) to oo, it was shown to lead to a
covariant and local theory on Euclidean fourspace for this model. Reinterpreting
thus this matrix @ as another way of regularizing the theory, one is led to an
apparently consistent, non-trivial quantum version of the ¢*-theory in four
dimensions. The Wick rotation to Minkowski signature is a problem still under
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investigation on the day of this writing, while preliminary computer simulations in
this direction seem promising.

The remarks of the introduction up to here aimed at a complementary argu-
mentation to the one of Frohlich of why one would wish to have a mathematically
well-founded theory of quantum fields describing known physics at high energies.
Even on the level of perturbation theory, i.e., in terms of formal power series, the
situation concerning physically relevant theories in this context is far from satis-
factory. Theories of physical relevance are in some sense of quite a different nature
than those of relevant mathematical impact: while the first ones are characterized by
so-called “propagating degrees of freedom”, the latter ones are mostly of “topo-
logical” nature. Essentially or at least in a first approximation, the difference lies in
the dimension of the (generic part of the) moduli space of (classical) solutions to the
Euler—Lagrange equations of the theory modulo its gauge symmetries. For physi-
cally relevant theories, this needs to be an infinite-dimensional space, reflecting the
fact that physically observable excitations describing elementary particles can be
generated locally everywhere in space-time, while for topological models this space
is usually finite-dimensional. On the quantum level, the latter type of theories are
then called topological quantum field theories (TQFTs).

One of the most famous examples of a TQFT, if not the most famous one among
mathematicians, is the Chern—Simons theory. The major breakthrough was made by
Witten, who observed that one could recover link and three-manifold invariants via
the path integral quantization of the Chern—Simons classical action functional. The
so-called A- and B-models are other famous examples of TQFTs. They are related
by mirror symmetry to one another, a notion originating from physical intuition,
relating seemingly different, but in the end equivalent quantum string theories.
Mirror symmetry and its relation to enumerative and algebraic geometry became a
major research area of pure mathematics by itself in the mean time.

A generalization of the A- and B-model is the Poisson sigma model (PSM),
celebrating its twentieth anniversary this year. It was discovered in the context of toy
models of coupled gravity and Yang—Mills theories defined on two-dimensional
space-time manifolds 2 (Ikeda and Schaller—Strobl). Already at this very beginning it
was realized that the quantization of the PSM is intimately related to the quantization
of the target Poisson manifold—applying a particular non-perturbative quantization
scheme to this theory, the integrality condition of geometric quantization pops up for
the symplectic leaves of the Poisson target (cf also Alekseev—Schaller—Strobl).
However, only in an unparalleld work of Kontsevich it was observed that already the
perturbative quantization of the PSM on a trivial world-sheet topology solves the
by then longstanding problem of deformation quantization of Poisson manifolds,
leading him to his famous formality theorem (several steps of this procedure were
retraced in a series of works by Cattaneo-Felder).

This is a good example of the use of (T)QFTs in mathematics: one trades in the
apparently simpler problem of quantization of a Poisson structure on R” for the
quantization of a field theory the target of which is this Poisson manifold M = R".
This now is an infinite dimensional space, the functional being defined over vector
bundle morphisms from 72X to 7*M. Moreover, one needs to factor out an infinite-
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dimensional gauge group, the quotient yielding in general a complicated, singular,
but in this case finite-dimensional space. However, it turns out that the application
of standard techniques developed in the context of perturbative QFTs with gauge
symmetries leads to formulas relevant to the finite dimensional target space that
otherwise proved resistant over decades for being invented directly!

The flow is expected to also go into the other direction, however, i.e., one
expects to learn from TQFTs and related mathematics for how to sharpen our
approaches for the construction of physically more relevant QFTs. It is in this spirit
instance that Tamarkin wrote a 100 pages paper only about the renormalization
of the PSM—in a standard physics approach the perturbative renormalization of
such a topological model would be dealt with in at most a few paragraphs. The
functorial approach to TQFTs, as developed also at the examples of topological
strings (like the A- and B-model), led to an axiomatic definition of them in terms
of the Atyah—Segal axioms. In the lectures of Fredenhagen about the formulation of
pQFTs on curved space-times of Lorentzian signature one finds a reformulation of
standard QFT axioms closely related to such a functorial perspective.

For the present, as mentioned rather mathematically oriented volume on QFT
(cf. also the foreword of Frohlich), this is maybe one of the main perspectives from
our editors’ side to its contributions: the hope that, on the long run, topological
models and mathematics in general can have something to say about (also physi-
cally relevant) QFTs. It is thus not so surprising that one out of in total four parts to
this book is devoted to mathematics around the Chern—Simons theory. Subsequent
to Witten’s work, Reshetikhin and Turaev proposed a rigorous mathematical con-
struction of a (nonperturbative!) quantization of the Chern—Simons theory in terms
of quantum groups and modular tensor categories. And despite this great
achievement, there are many questions that remain open in the context of
Chern—Simons theory, both of computational and theoretical nature.

In the context of the PSM, on the other hand, one seems still quite far from a
nonperturbative quantization. So, this model is not yet really defined as a TQFT—in
the sense of the Atiyah—Segal axioms, although there is no serious doubt that such a
formulation should exist. However, already now the PSM teaches us at least two
more lessons related to the present volume: First, as found by Cattaneo and Felder,
the reduced phase space of the PSM, i.e. its Weinstein symplectic quotient, when
smooth, carries the structure of a symplectic groupoid (cf. also the contribution of I.
Contreras to this volume). And this groupoid is precisely the one that integrates the
Lie algebroid T*M associated to the target Poisson manifold M, a construction
suggesting the one needed for the integration problem of general Lie algebroids to
Lie groupoids, finally solved by Crainic and Fernandes (in the sense of necessary
and sufficient conditions for a smooth integration to exist). This is only one of the
examples for a renewed interest in geometrical questions related to field theories
already on the classical side. Such an understanding of the classical theory is also
important in order to identify the difficulties specific to the quantum side when trying
to provide rigorous constructions of QFTs. One of the four parts to this book is thus
devoted to merely classical or semi-classical investigations of field theories.
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Second, the PSM can be viewed as a Chern—Simons theory for the Lie algebroid
T*M: while the integrand of the Chern—Simons theory for an ordinary Lie algebra
arises as a transgression of the Pontryagin class, “tr(F A F) = d(CS)”, likewise
the integrand of the PSM relates to a characteristic 3-form class, “F AN F =
d(PSM)” where here F corresponds to the obstruction of the vector bundle mor-
phism TX — T*M to be a Lie algebroid morphism—it has a 1-form part F' (from
the base map) in addition to a standard 2-form part for curvatures. In fact, there is a
topological sigma model that reduces to the PSM in two dimensions and includes
the Chern—Simons theory in three, and this is the so-called AKSZ sigma model
(after Alexandrov—Kontsevich—Schwarz—Zaboronski; cf. the contribution of Bon-
avolonta—Kotov as well as the introduction of one of us to this book); and even the
relation to higher characteristic classes extends to those (Kotov-Strobl, cf. also
Fiorenza—Rogers—Schreiber as well as the contribution of Fiorenza—Sati—Schreiber
to this volume). In general, there is a—to our mind useful—trend to higher structures
in theories of relevance to mathematical physics and this is also reflected partially in
the present book.

One of the, from a mathematical point-of-view, most well-understood classes of
QFTs which are not topological consists of 2-dimensional conformal field theories
(CFTs). In this context the axiomatization of the operator product expansion has led
to the notion of vertex (operator) and chiral algebras, which are now widely used
both in mathematics and physics. There have been several attempts to generalize
these and base the axiomatics of perturbative QFT and the renormalization pro-
cedure on the operator product expansion: Kontsevich (unpublished), Hollands, and
Costello-Gwilliam (see e.g., the contribution of Costello-Scheimbauer to this
volume) in the Euclidean context, Fredenhagen et al in the Lorentzian context
(cf. the contribution of Fredenhager—Rejzner to this volume). All these approaches
share two things: the appearance of a pattern resembling the one of little disk
operads, which axiomatizes the physical concept of “locality,” and the use of
techniques from deformation quantization.

The concept of locality in 2d conformal field theory can also be formulated by
defining a CFT as a functor from a suitable category of cobordisms to vector spaces
(cf. Atiyah—Segal) satisfying certain properties. The foundational work of Beilin-
son—Drinfeld on chiral algebras exhibits a close relation between these two
approaches to the concept of locality: namely, chiral homology associates a CFT a
la Atiyah—Segal with any (conformal) vertex algebra. Recently, Lurie defined a
topological analog of chiral homology, known as factorization homology: it
assigns a TQFT to any algebra over the little n-disk operad, or to any E,-algebra
(cf. contributions of Markarian and Tanaka to this volume for an approach to
Chern—Simons theory using factorization homology), which can be proven to be
fully extended (Scheimbauer). Fully extended TQFTs are known, after the cobor-
dism hypothesis (Lurie, Baez—Dolan), to be the “most local” TQFT (cf. also the
contibutions of Fiorenza—Sati—Schreiber and Cattaneo—Mnev—Reshetikhin to this
volume). Factorization/chiral homology can actually be defined for any factorization
algebra (Costello-Gwilliam); a new concept that encompasses the ones of E,-,
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vertex and chiral algebras, and whose definition was designed to encode the general
algebraic structure of local observables of an arbitrary field theory. It has
applications that range from conjectures on renormalization of lattice models
(cf. the introduction of one of us to this book) to algebraic topology (cf. Ginot’s
contribution to the last part of this volume).

We now give a very brief overview on the contents of the book, which starts
with an introductory chapter that emphasizes the importance of derived and
homotopical (or higher) structures in the mathematical treatment of TQFTs.

Summary of Part I

The first Part is about local aspects of perturbative quantum field theory, with an
emphasis on the axiomatization of the algebra behind the operator product
expansion and the ideas coming from deformation quantization techniques.

It begins with a Chapter, by Fredenhager—Rejzner, summarizing the approach
that was developed for the Lorentzian signature and applicable to also curved
(globally hyperbolic) space-times, applying a quantization procedure to QFT by
adapting deformation quantization to its setting. It then continues with a contri-
bution, by Costello-Scheimbauer, on partially twisted supersymmetric four-
dimensional gauge theories that are studied using the foundational work of Costello
and Costello-Gwilliam. The last chapter, written by Wendland, is a short review of
Conformal Field Theory, summarizing in particular recent progress made in that
field and its relation to the geometry of K3 surfaces and Mathieu moonshine.

Summary of Part II

The second Part focuses on Chern—Simons (CS) gauge theories.

It begins with a Chapter of Andersen—Kashaev on a construction of SL(2,C)
quantum CS theory by means of Teichmiiller theory and the quantum dilogarithm
of Faddeev. This is followed by a Chapter of Fiorenza—Sati—Schreiber, exhibiting
higher structures in a systematic way in the context of an extended prequantum
theory of CS-type gauge field theories. The subsequent Chapter consists of two
contributions, one by Markarian and one by Tanaka, and deals with the relation
between three-dimensional CS theory and factorization homology. Part II is com-
pleted by a review of Thuillier about the use of Deligne-Beilinson cohomology for
an alternative or deepened understanding of abelian U(1) CS theory.
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Summary of Part II1

The third Part of this book is devoted to a classical or at most semi-classical
analysis of field theories.

It begins with a Chapter of Cattaneo—Mnev—Reshetikhin, introducing some very
recent work on the treatment of constraints and boundary conditions in classical
field theories, with an emphasis on the BV and BFV formalism. The subsequent
contribution, written by Kotov—Bonavolonta, deals with the BV-BRST formalism
in the context of AKSZ sigma models, improving previous local results to a global
level. The following Chapter of Li-Bland—Severa provides a beautiful treatment
of the (quasi-)Hamiltonian and Poisson geometry of various moduli spaces of flat
connections on quilted surfaces, which are relevant in classical Chern—Simons and
WZW theories. The final Chapter of this Part aims at understanding the construction
of the sympletic groupoid associated to the PSM from the axiomatics of Frobenius
algebras.

Summary of Part IV

The fourth Part consists of a single Chapter written by Ginot. It provides a detailed
account of the mathematical foundations of Factorization Algebras and Factorization
Homology, making extensive use of higher homotopical structures, thus closing the
circle opened in the introductory Chapter.

We would like to conclude this preface with a quotation from the Clay Institute’s
official description of the “Yang—Mills existence and Mass gap” problem as for-
mulated by Arthur Jaffe and Edward Witten:

... one does not yet have a mathematically complete example of a quantum gauge theory in
four-dimensional space-time, nor even a precise definition of quantum gauge theory in four
dimensions. Will this change in the 21st century? We hope so!

We wholeheartedly share this wish, and hope in turn that some of the mathematical
concepts presented in this book will help to better understand, one day, quantum field
theories in four dimensions.

France Damien Calaque
Thomas Strobl



Acknowledgments

The idea of this book grew after a Winter School that was held in Les Houches in
the Winter of 2012. We are happy to deeply thank the lecturers for having shared
their insights on such a beautiful topic, as well as all the participants for their
enthusiasm.

The school was a great success, thanks to the kind help of the board of the Ecole
de Physique des Houches, which we acknowledge here. It was supported by Labex
Milyon, ESF ITGP and the Thematic Schools program from the CNRS.

We are also of course greatly indebted to our friends and co-organizers (Anton
Alekseev, Alberto Cattaneo, Giovanni Felder, Maria Podkopaeva and Andras
Szenes), and we ask them to accept our very sincere thanks.

We finally would like to thank very much Aldo Rampioni and Kirsten Theunissen
from Springer, for their patience.

XXiii



Contents

A Derived and Homotopical View on Field Theories. . ............ 1
Damien Calaque
Part I Locality in Perturbative QFTs

Perturbative Algebraic Quantum Field Theory.................. 17
Klaus Fredenhagen and Katarzyna Rejzner

Lectures on Mathematical Aspects of (twisted) Supersymmetric

Gauge Theories . . . . . ... ... ... .. . .. 57
Kevin Costello and Claudia Scheimbauer

Snapshots of Conformal Field Theory. . . . ... ... ... ... ........ 89
Katrin Wendland

Part I Chern-Simons Theory

Faddeev’s Quantum Dilogarithm and State-Integrals

on Shaped Triangulations . ................................ 133

Jorgen Ellegaard Andersen and Rinat Kashaev

A Higher Stacky Perspective on Chern-Simons Theory. . .. ... ... .. 153
Domenico Fiorenza, Hisham Sati and Urs Schreiber

Factorization Homology in 3-Dimensional Topology . ............. 213
Nikita Markarian and Hiro Lee Tanaka

XXV



XXVi Contents

Deligne-Beilinson Cohomology in U(1) Chern-Simons Theories . . . . .. 233
Frank Thuillier

Part III  (Semi-)Classical Field Theories

Semiclassical Quantization of Classical Field Theories. . ........... 275
Alberto S. Cattaneo, Pavel Mnev and Nicolai Reshetikhin

Local BRST Cohomology for AKSZ Field Theories:
A Global Approach . . . ... ... ... ... . ... . . 325
Giuseppe Bonavolonta and Alexei Kotov

Symplectic and Poisson Geometry of the Moduli Spaces
of Flat Connections Over Quilted Surfaces . . . . ... .............. 343
David Li-Bland and Pavol Severa

Groupoids, Frobenius Algebras and Poisson Sigma Models . . . .. . ... 413
Ivan Contreras

Part IV  Algebraic Aspects of Locality

Notes on Factorization Algebras, Factorization Homology

and Applications . . . . ... ... 429
Grégory Ginot



Contributors

Jorgen Ellegaard Andersen Center for Quantum Geometry of Moduli Spaces,
University of Aarhus, Aarhus, Denmark

Giuseppe Bonavolonta University of Luxembourg, Luxembourg City,
Luxembourg

Damien Calaque Université Montpellier 2, Montpellier Cedex 5, France

Alberto S. Cattaneo Institut Fiir Mathematik, Universitit Zirich, Ziirich,
Switzerland

Ivan Contreras Department of Mathematics, University of California, Berkeley,
CA, USA

Kevin Costello Department of Mathematics, Northwestern University, Evanston,
IL, USA

Domenico Fiorenza Universita degli Studi di Roma “La Sapienza”, Roma, Italy

Klaus Fredenhagen II. Institut fiir Theoretische Physik, Universitdit Hamburg,
Hamburg, Germany

Grégory Ginot Institut de Mathématiques de Jussieu - Paris Rive gauche, Uni-
versité Pierre et Marie Curie - Sorbonne Universités, Paris Cedex 05, France

Rinat Kashaev University of Geneva, Genéve 4, Switzerland

Alexei Kotov Department of Mathematics and Statistics, Faculty of Science and
Technology, University of Tromse, Tromse, Norway

David Li-Bland Department of Mathematics, University of California, Berkeley,
USA

Nikita Markarian Department of Mathematics, National Research University
Higher School of Economics, Moscow, Russia

XXVii



XXViii Contributors

Pavel Mnev St. Petersburg Department of V.A. Steklov Institute of Mathematics
of the Russian Academy of Sciences, St. Petersburg, Russia; Chebyshev Labora-
tory, St. Petersburg State University, St. Petersburg, Russia

Katarzyna Rejzner Department of Mathematics, University of York, York, UK

Nicolai Reshetikhin Department of Mathematics, University of California,
Berkeley, CA, USA; KdV Institute for Mathematics, University of Amsterdam,
Amsterdam, The Netherlands; ITMO University, Saint Petersburg, Russia

Hisham Sati University of Pittsburgh, Pittsburgh, PA, USA

Claudia Scheimbauer Department of Mathematics, ETH Ziirich, Ziirich,
Switzerland

Urs Schreiber Radboud University Nijmegen, Nijmegen, The Netherlands

Pavol Severa Department of Mathematics, Universit¢é de Genéve, Geneva,
Switzerland; on leave from Department of Theoretical Physics, FMFI UK,
Bratislava, Slovakia

Hiro Lee Tanaka Department of Mathematics, Harvard University, Cambridge,
MA, USA

Frank Thuillier LAPTh, Université de Savoie, CNRS, Annecy-le-Vieux Cedex,
France

Katrin Wendland Mathematics Institute, Freiburg University, Freiburg im
Breisgau, Germany



A Derived and Homotopical View
on Field Theories

Damien Calaque

Homological technics have been widely used in physics for a very long time. It seems
that their first appearance in quantum field theory goes back to the so-called Faddaev-
Popov ghosts [16], which have later been mathematically identified as Chevalley
generators. In more geometric terms one would nowadays justify their appearance
as follows: the quotient space of the phase space by symmetries of the Lagrangian
L might be singular and one shall rather deal with the quotient stack instead.

The usefulness of (higher) stacks in quantum field theory is argued in Chap. 6.
Let me anyway emphasize that the quotient stack carries some relevant information
(such as finite gauge symmetries) that can’t be encoded by simply adding new fields.

Another crucial step is the introduction of anti-fields and anti-ghosts. A geometric
explanation for anti-fields is that the quantities one wants to compute localize on the
critical points of £, which might be degenerate or non-isolated. A smart idea is to
consider the derived critical locus of L instead, which one defines as the derived
intersection of the graph of dyg £ with the zero section inside the cotangent of the
phase space. A derived intersection can be concretely computed by first applying a
(homological) perturbation to one of the two factors and then taking the intersection:
anti-fields then simply appear as Koszul generators.

The derived critical locus inherits a (—1)-shifted symplectic structure (see below)
which is at the heart of the anti-bracket formalism (a.k.a. BV formalism) [5]. The
symmetries of the Lagragian act in a Hamiltonian way on the derived critical locus,
and anti-ghosts appear when one is taking the derived zeroes of the moments.

We refer to [25] for related considerations and a wonderful exposition of the
homological nature of the BV formalism.

All this seems to be nowadays well-known, but we would like to emphasize two
points:

e the usual homological approach to higher structures (see e.g. Chaps. 3 and 10) does
not distinguish clearly the “derived” and “stacky” directions, while the rapidly
emerging field of derived geometry takes care of it.

D. Calaque (X))
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e one has to make use of derived geometry in order to get symplectic structures: the
use of non-derived stacks in Chap. 6 systematically destroys the non-degeneracy
of Hamiltonian structures.

The second point is very much related to what happens with symplectic structures on
moduli spaces (which are deeply studied in Chap. 11). For instance, the moduli stack
of flat G-bundles (G being a compact Lie group) on a closed oriented surface does not
carry any symplectic structure for very simple degree reasons: its tangent complex
sits in cohomological degrees —1 and 0. It is only when restricted to a specific locus
that the natural pre-sympectic form becomes non-degenerate. But there is a natural
derived stack of flat G-bundles on a closed surface which is symplectic (its tangent
complex sits in degrees —1, 0 and 1).

In this introductory chapter we provide an informal and partial discussion of the
usefulness of derived and homotopical technics in field theories.

We begin with a description of field theories of AKSZ type [2] in the frame-
work of derived (algebraic) geometry. The derived geometric approach makes very
transparent the fact that this class of theories fits into the axiomatic framework of
Atiyah—Segal [3, 26]. We refer to Chap. 9 for a detailed discussion of the compati-
bility between the BV formalism and the Atiyah—Segal framework.

We then discuss two mathematical formulations of the physical concept of locality:
factorization algebras and fully extended field theories. We put a lot of emphasis on
topological field theories and say a few words about conformal field theories. We
also mention how these two approaches are related.

We finally end this Chapter with the example of 3d Chern—Simons theory with a
finite gauge group and sketch how one could recover the results of [17, Sect.4] from
this approach.

1 Classical Fields and the AKSZ-PTVYV Construction

Classical fields are usually described mathematically as sections of (infinite
dimensional) fiber bundles. A large class of theories, called o-models, actually
describe fields as maps. In the seminal paper [2] the authors introduce the notion
of Q-manifolds, that allow one to deal with many theories as o-models. Moreover,
the so-called AKSZ-construction make them fit into the framework of the BV formal-
ism [5] (a.k.a. anti-bracket formalism).

A mathematical treatment of perturbative quantum field theory within the frame-
work of the BV quantization (not only for AKSZ theories) can be found in [13] (see
also Chap. 9 for examples).
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1.1 Transgression

At the heart of the AKSZ formalism [2] and its modern reformulation in [22] (known
as PTVV formalism, which is formulated in the language of derived geometry")
one finds the so-called transgression procedure. Let X, Y be generalized spaces
(Q-manifolds in the AKSZ formalism, derived stacks in the PTVV formalism). Let
 be a symplectic form of cohomological degree n on Y and assume that X carries
an integration theory of cohomological degree d. Then the formula

/ev*w,

X

where ev : X x Map(X, Y) — Y is the evaluation map, defines a symplectic form
of cohomological degree n — d on the mapping space Map(X, Y).

1.1.1 AKSZ versus PTVYV: Integration Theory

There are subtle but important differences between the AKSZ and the PTVV for-
malisms.

In the case of the AKSZ formalism, the integration theory one is referring to is
nothing but the Berezin integration [7]. Here are three examples of Q-manifolds
carrying an integration theory of cohomological degree d in this sense:

1. (V[1],0), where V is vector space of dimension d.

2. X4R = (T[I]ZJ ,dg R), where X is a compact oriented differentiable manifold
of dimension d.

3. Xpol = (TO’1 (11X, @, where X' is a compact complex manifold of dimension
d equipped with a nowhere vanishing top degree holomorphic form .

Within the PTVV formalism an integration theory of degree d on a derived stack
X isachain map [X] : RI'(Oyx) —> Kk[—d], where RI"(Oyx) denotes the complex
of derived global functions on X', which satisfies a suitable non-degeneracy condi-
tion (the definition of non-degeneracy mimics the abstract formulation of Poincaré
duality). Any integration theory of cohomological degree d on a Q-manifold in
the AKSZ sense induces an integration theory on its associated derived stack in the
PTVYV sense. But:

different Q-manifolds might have equivalent associated derived stacks.

This is an important point. Derived stacks are model-independent: it doesn’t matter
how a derived stack is constructed. In the physics language one could view derived
stacks as reduced phase space while Q-manifolds carry some information about

! We refer to [27] and references therein for an introduction to derived geometry.
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the original phase space (e.g. the moduli stack of flat G-bundles, compared the
Q-manifold of all G-connections).

Note that there is a stack with an integration theory that can’t be described using
Q-manifolds. Let X be a Poincaré duality d-space; there is stack X' classifying local
systems on X (it can be explicitely described using a combinatorial presentation of
X, such as a triangulation or a cellular structure). Derived global functions on X'
are cochains on X' and thus the fundamental class [X'] determines an integration
theory of degree d on X'p.

1.1.2 AKSZ versus PTVV: Symplectic Structures

The model independence of derived stacks forces all definitions to be homotopy
invariant and as such the required properties can’t be strictly satisfied (i.e. they might
only hold up to coherent homotopies). This is particularly visible when it comes
to closed forms. Roughly speaking, the complex of forms on a derived stack (or
a Q-manifold) has two “graduations”: the weight (k-forms have weight k) and the
cohomological degree. Similarly the differential has two components: the internal
differential d;,; (the Lie derivative with respect to the cohomological vector field Q)
and the de Rham differential dyg. In the PTVV formalism a k-form of degree n is a
weight k d;,;-cocycle wg of cohomological degree n, and

being a closed form is an additional structure.

Namely, a closed k-form of degree n consists in a sequence (wq, @1, . ..) where

e o is a k-form of degree n.
e w; has weight k + i and cohomological degree n.
e dgr(wi) £ dint(@i41) = 0.

Somehow we are considering forms which are closed up to homotopy, while the
AKSZ formalism only considers closed forms which are strictly closed.

Something similar happens for the non-degeneracy property when one defines
symplectic structures. An n-symplectic structure is the data of a closed 2-form of
degree n such that its underlying 2-form of degree n is non-degenerate (recall that
in the AKSZ formalism the underlying form coincides with the closed one): non-
degenerate means that the morphism it induces between the tangent and the cotangent
complexes is a quasi-isomorphism (while it is required to be an isomorphism in the
AKSZ formalism).

Remark 1 The AKSZ formalism also makes an extensive use of infinite dimensional
differential geometry, while derived geometry is designed so that many derived map-
ping stacks are still locally representable by finite dimensional objects (it is often
the case that the reduced phase space is a finite dimensional object even though the
original phase space is not).
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Example I Here are some nice examples of symplectic structures in the derived
setting:

e if G is a compact Lie group then BG = [x/G] carries a 2-symplectic structure
(see [22]).

e if G is any Lie group then [g*/G] = T*[1](BG) carries a 1-symplectic structure
(see [8)).

e if G is a compact Lie group then [G/G] = Map(S},, BG) carries a 1-symplectic
structure (see [8, 23]).

e the derived critical locus of a function carries a (—1)-symplectic structure (see
[22]).

1.2 Transgression with Boundary

In[10, 11] (see also Chap.9) the AKSZ construction is extended to the case when the
source of the o-model has a boundary and the authors use it to produce field theories
that satisfy the axiomatics of Atiyah—Segal [3, 26]. The analogous construction also
exists for the PTVV formalism (see [8]).

1.2.1 AKSZ versus PTVV: Lagrangian Structures

Let X i) Y be a morphism of generalized spaces and assume we have an n-
symplectic structure @ on Y. As usual in derived geometry (and more generally
in homotopy theory), being Lagrangian is not a property but rather an additional
structure. Namely, a Lagrangian structure on f is a homotopy y (inside the space of
closed 2-forms of degree n on X) between f*w and O such that the underlying path
yp between f*wg and 0 is non-degenerate. In more explicit terms:

e ¥ = (Y0, 71, ...) is such that f*wo = din (o) and

froj =din(yi) £dar(vi-1) .

o the identity satisfied by yp ensures that the map Ty —> f*Ly[n] given by f*wq
lifts to Tx — Ly[n + 1], where Ly is the relative cotangent complex. The
non-degeneracy condition says that it is a quasi-isomorphism.

Usual Lagrangian subspaces are Lagrangian in the above sense, but any kind of map
can carry a Lagrangian structure. There are actually Lagrangian structures arising in
a quite surprising way:

Example 2 (See [8, 9, 23]). (a) A Lagrangian structure on the morphism X —>
*(u+1), Where *(,11) is the point equipped with its canonical (n + 1)-symplectic
structure, is the same as an n-symplectic structure on X.


http://dx.doi.org/10.1007/978-3-319-09949-1_9

6 D. Calaque

(b) A moment map u : X —> g* induces a Lagrangian structure on the map
(1] : [X/G] — [g"/G].

(c) A Lie group valued moment map (in the sense of [1]) u : X —> G, where G is
a compact Lie group, induces a Lagrangian structure on the map [u] : [X/G] —
[G/G].

1.2.2 Relative Integration Theory

A relative integration theory (a.k.a. non-degenerate boundary structure or relative

orientation, see [8]) on a morphism X —f> Y is the data of an integration theory [X]
on X together with a homotopy 71 between f,[X] and O that is non-degenerate.”

Example 3 There are two important examples of relative integration theories on a
morphism. Consider a compact oriented (d 4 1)-manifold X' with oriented boundary
0X. Then the morphisms (0X)yrg —> Xyg and (0X)p —> Xp both carry a
relative integration theory.

Let X —f> Y be a morphism together with a relative integration theory ([X], 1),
and let Z be equipped with an n-symplectic structure w. It is shown in [8] that

/ev*w
"

defines a Lagrangian structure on the pull-back morphism Map(Y, Z) —
Map(X, Z).

1.2.3 Field Theories from Transgression with Boundary

Given a generalized space Y together with an n-symplectic structure, the process
of transgression with boundary allows one to produce a functor Map(—, Y) from a
category with

e objects being generalized spaces with an integration theory,
e morphisms from X to X, being cospans X [ [ X» — X, equipped with arelative
integration theory,’

e composition being given by gluing: X3 o X23 := X 2] [X23.
X2

2 We won’t detail what non-degeneracy means here, but simply say that its definition again mimics
the main abstract feature of relative Poincaré duality.

3 Here an below, ?? means that we consider the opposite integration theory or the opposite symplectic
structure on ?? (it should be clear from the context).
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to a category with

e objects being generalized spaces with a shifted symplectic structure, o
e morphisms from Z; to Z; being Lagrangian correspondences Z1» — Z1 X Z3,
e composition being given by fiber products: Z13 o Zy3 := Z12 X Z»73.

Z

If we restrict objects of the source category to those of the form described in
Example 3, then we precisely get a topological field theory taking values in a cat-
egory of Lagrangian correspondences. Note that usually, categories of Lagrangian
correspondences are ill-defined (as some compositions might not be well-behaved),
but working in the homotopy setting and considering derived fiber products resolves
this problem.

Remark 2 The gadget one actually has to work with is called an (oo, 1)-category,
and one shall emphasize that categroids (which appear in the main references for
Chaps. 5 and 12) are often shadows of an underlying (oo, 1)-category (in other words,
even though some compositions might seem to be ill-defined, they actually happen
to be well-defined up to homotopy).

1.3 Examples

We now provide examples of classical topological field theories that can be treated
using the above approach, even though some superconformal field theories (as
described in Chap. 4) can be obtained as well.

1.3.1 Classical Chern—Simons Theory

Classical Chern—Simons theory can be recovered if one starts with Y = BG for a
compact Lie group G. Details can be found in [23]. One can also include all kinds
of boundary conditions (Lagrangian morphisms) or domain-walls (Lagrangian cor-
respondences), which allow to recover all the symplectic moduli spaces of flat con-
nections over quilted surfaces that are obtained via the quasi-Hamiltonian formalism
in Chap. 11.

1.3.2 Moore-Tachikawa Theory

There is a 2d TFT that have been sketched by Moore and Tachikawa [21], of which
the target category is a certain category of holomorphic symplectic varieties. This
category is a particular case of our category of Lagrangian correspondences (see [9])
and it is very likely that their TFT can be obtained from mapping spaces.

1.3.3 Poisson o -model

Let (X, ) be a Poisson manifold and consider its 7 -twisted 1-shifted cotangent ¥ :=
Tx[—1],. The derived stack Y, resp. the zero section morphism X — Y, can be


http://dx.doi.org/10.1007/978-3-319-09949-1_5
http://dx.doi.org/10.1007/978-3-319-09949-1_12
http://dx.doi.org/10.1007/978-3-319-09949-1_4
http://dx.doi.org/10.1007/978-3-319-09949-1_11
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shown to carry a 1-symplectic structure, resp. a Lagrangian structure. One can show
that the mapping stack from ( I )pto Y with boundary condition in X, which happens
to be the derived self-intersection G := X xé’, X of X into Y, is O-symplectic (see [8,
9, 27] for general statements about symplectic structures on relative derived mapping
stacks). The cobordism with boundary D is sent to a Lagrangian correspondence

between G x G and G, which turns G into an algebra object within the (co, 1)-category
of Lagrangian correspondences. For instance, associativity of composition is given
by the following diffeomorphism:

S35 s

In [12] Contreras and Scheimbauer show that G is actually a Calabi-Yau algebra
(in the sense of [19]), which clarifies the mysterious axioms of a relational symplectic
groupoid of Chap. 12.

2 Mathematical Formulations of Locality

The AKSZ-PTVYV theories are expected to be local, in the sense that one can compute
everything from local data that one would later glue. In this section we briefly sketch
two mathematical approaches to the concept of locality.

2.1 Factorization Algebras

A factorization algebra E over a topological space X consists of

e the data of a vector space (or a cochain complex) E; for every open subset U C X.
e the data of a linear map (or a chain map) ),;.; Ev; —> Ev for every inclusion
[;c; Ui C V of pairwise disjoint open subsets.

satisfying the following properties:

e associativity, that can more or less be depicted as follows:

bn O O U O U

- OUz

e gluing (one can reconstruct Ey from a nice open cover U of U and Eyy).
Remark 3 The gluing property is typically a locality property.

We refer to Chaps. 3 and 13 for precise definitions.


http://dx.doi.org/10.1007/978-3-319-09949-1_12
http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_13
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Example 4 (Topological quantum mechanics, see [14]). Let A be an associative
algebra (e.g. A = End(V)) and let (®;); be a 1-parameter group of automorphisms
of A(e.g. &, =e” 7 H is the time evolution). We also give ourselves aright A-module
M, (e.g. V*) and a left A-module M, (e.g. V), together with initial and final states
Vinir € M, and vy;, € My. From these data one can describe a factorization algebra
E on the closed interval X = [0, 1].

e on open intervals of X we set: Ejo s = M, Ey; ) = A and Ey}, 1) = M,.
here are examples of the factorization product:

to ty to ts tg 15 0 s t u vos t u
a® b (vl

—i®
o
e

Dy 0Py 1, 0Dy, <'U|‘/’/7,\CL‘/’¢;H| |‘l"‘7\(l‘/’1— u|[',!n/,>

one can show that Ej 11 = M, ® M, (C in our example).
A

. 0s t1 .
we finally interpret a > (Vinit|PsaPi—¢|vyiy) as an expectation value.

2.1.1 Factorization Algebras in the BV Formalism

Producing factorization algebras from the local observables in the BV formalism
is the main achievement of Costello-Gwilliam (see [14], and also Chap.3). At the
classical level they consider observables with compact support in order to get fac-
torization algebras. It seems that for topological and conformal AKSZ (or PTVV)
theories one can consider mapping spaces with compact support in order to get a fac-
torization algebra structure on classical local observables. In particular it is expected
that the transgression procedure (both for symplectic and Lagrangian structures) still
makes sense locally and glues well.

The main difficult part in Costello-Gwilliam work is of course the quantization
of these classical theories. One has to consider effective field theories in the sense
of [13] and renormalize (when possible). In the 2d conformal case one gets in the
end a structure which is very similar to the one of a vertex algebra (see Chap. 3 for
a precise statement and Chap.4 for the definition of a vertex algebra and its use
in conformal field theory). In the topological case one obtains in the end a locally
constant factorization algebra: on R” this boils down to the datum of an algebra over
the little disks operad.

Renormalization is actually trivial in the topological case, even though it is not
so obvious in Costello’s framework. We propose here a different approach to the
quantization of classical topological BV theories. The first step is to discretize the
theory one is working with, so that one can easily write a factorization algebra of
classical discrete local observables that carries a bracket of degree 1. The main point
is that on a finite region the algebra of local observable is finitely generated, so that
BV quantization can be performed very easily (there is no need to apply any kind of
energy cut-off as we have only finitely many states).


http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_3
http://dx.doi.org/10.1007/978-3-319-09949-1_4
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The final and very hard step is to make the mesh of the discretization tend to zero.
There is some magic that happens for topological theories:

there is no need to make the mesh tend to zero.

The reason is that, even though the factorization algebra of local observables is not
locally constant, it becomes locally constant at a sufficiently large scale (the scale
depending on the size of the mesh).

Remark 4 Understanding the renormalization procedure for lattice field theories in
terms of factorization algebras could lead to a non-perturbative alternative to the
constructions of QFTs proposed in [13, 14]. At the moment we* can only recover
the Weyl algebra from a discrete 1d model. The next step would be to understand the
renormalization of discrete models in 2 dimensions (with an emphasis on conformal
ones).

2.1.2 Locally Constant Factorization Algebras from Discrete Models

One can prove that any factorization algebra that is locally constant above a given
scale gives rise to a locally constant factorization algebra that coincides with the
original one above that scale. The idea is very simple: discard the badly behaved part
(the one below the given scale) and replace it by a rescaled copy of what happens at
large scale... note that implementing this idea actually requires the use of the higher
categorical machinery.

Let us provide a potential application of this quite intuitive idea to lattice models.
We will formulate things in dimension 2 but it works in arbitrary dimension. Let
H, V be vector spaces of states (horizontal and vertical) and let R € GL(H ® V)

be an interaction matrix: le,f = exp (—%el]k[ ) Computing a state sum is nothing
but tensor calculus:

eje
€L’ ey

€j

. iy
e —— RIMRnl RI l
e " ik TVi'mT ink!

ek Cm el

€; €

One can define a factorization algebra Fr which associates the space of its
boundary states to a given open region of R2, and for which the factorization product
can be depicted in the following way:

4 This is a joint project with Giovanni Felder.
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. o gglil’
— Jm pnl 3’
A®B = (Av',k: Ri’mBnk')ii,kkJ

Note that the lattice Z?2 acts on global sections Fg (R?) of Fg.

Conjecture 1 (Kontsevich). C*® (Zz, FRr (RZ)) has an action of the (chains on the)
little disks operads in dimension 2.

The idea to prove this conjecture is to define a new factorization algebra Fr, very
similar to Fr but carrying an additional discretized de Rham differential,® such that

° .73" r is locally constant at scale > 2.
o Fr(R?) = C*(Z% Fr(R?)).

This would imply Kontsevich’s conjecture.

2.2 Fully Extended Field Theories

The axiomatics of fully extended field theories is a higher categorical analog of
Atiyah—Segal axiomatics. Roughly speaking, itis a symmetric monoidal functor from
a symmetric monoidal higher category of cobordisms to another symmetric monoidal
higher category. Higher categories of cobordism can be informally described as
follows (we refer to [19] for precise definitions in the topological setting):

e objects are 0 dimensional manifolds of a certain type.
e |-morphisms are 1-cobordisms between these.

e 2-morphisms are 2-cobordisms,

e ...

It is only for topological field theories that the above has been formalized in
a mathematically precise way (see [4, 19]). The cobordism hypothesis (which is
now a Theorem thanks to the work of Lurie) states that fully extended topological
field theories are completely determined by their value on the point. One can see
this as a very strong locality property (everything can be reconstructued from the
point!). Objects that are images of the point under fully extended TFTs are called
fully dualizable: being fully dualizable is a very strong finiteness requirement.

We refer to [18] for a very nice review of the cobordism hypothesis (note that the
cobordism hypothesis appears implicitly in Chaps. 6 and 9).

5 Roughly, F carries a discrete flat connection and Fy is the factorization algebra of derived flat
sections of Fpg.


http://dx.doi.org/10.1007/978-3-319-09949-1_6
http://dx.doi.org/10.1007/978-3-319-09949-1_9

12 D. Calaque

2.2.1 Examples of Fully Extended TFTs

In dimension 1, fully dualizable objects are genuine dualizable objects (e.g. finite
dimensional vector spaces).

Classical field theories of AKSZ-PTVV type are fully extended. This has been
announced (without proof) in [11] and [8, 9]. The target category to work with is a
suitable category of iterated Lagrangian correspondences, that is currently the subject
of ongoing investigations.

It is expected that modular tensor categories are fully dualizable in the 4-category
of braided monoidal categories, leading to a large class of fully extended 4d TFTs.

2.2.2 Chiral and Factorization Homologies

Locality in 2d conformal field theory can be formalized either using modular functors
or vertex algebras. Chiral homology, that was invented by Beilinson—Drinfeld [6],
allows one to produce a modular functor out of a (quasi-conformal) vertex algebra.

Factorization homology (a.k.a. topological chiral homology) achieves the same
goal in the topological setting. If A is an algebra over the little disks operad and M is
a framed manifold then factorization homology of M with coefficients in A, denoted

Iz

M

is defined as the “integral”, over all open balls in M, of the value of A on them.
Lurie proved [19, 20] that factorization homology is indeed a TFT, and conjectured
that it is fully extended. Chapter 7 presents perturbative Chern—Simons theory in
dimension 3 as a by-product of factorization homology.

The fact that factorization homology is a fully extended TFT was recently proved
in [24].

2.2.3 Chern-Simons Theory with a Finite Gauge Group

Let G be a finite group.

Remark 5 The cotangent complex of BG reduces to {0}, so that BG is trivially
n-symplectic for any n € Z. Therefore symplectic structures won’t play a significant
role for this specific example. But they are essential when one deals with non-discrete
compact Lie groups.

We have a 3d fully extended TFT with values in a higher category of iterated corre-
spondences that is given by Map(—, BG).

It is very unlikely that the category of correspondences can provide numerical
invariants. In order to get that we have to “linearize” our field theory.

Let us sketch how to do this in dimensions 1-2-3:


http://dx.doi.org/10.1007/978-3-319-09949-1_7
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e we replace Map(Sllg, BG) = [G/G] by its category of quasi-coherent sheaves
QCoh([G/G]), which is nothing but the category Rep (D(G)) of (complexes of)
representation of the Drinfeld double of G.

e the correspondence given by Map(X, BG) for a 2-cobordism X' can be used to
produce a convolution functor QCoh(IG/GT*) — QCoh(IG/G1).

e mapping spaces from 3d manifolds produce natural transformations of functors.

Remark 6 One can even associate the monoidal category QCoh(BG) = Rep(G)
to the point. It is important to notice that not every object is fully dualizable in the
3-category of monoidal categories. But Rep(G) surely is,® so that we have a nice
and linear enough fully extended TFT.

It would be interesting to get back this fully extended Chern—Simons TFT with
finite gauge group by means of factorization homology. In order to do so one shall
construct a locally constant factorization algebra on R3 that is locally constant. We
would suggest to use a discrete model.

Remark 7 Observe that Rep(G) is a fusion category and is thus, after [15], a fully
dualizable object in the symmetric monoidal 3-category of monoidal categories. It
thus produces a fully extended 3d TFT. The fact that the partition function of this
TFT can be computed via a state sum (see [28]) is a strong evidence in favor of our
suggestion.

One must say that already for Yang-Mills theory in dimension 2 it is an interesting
task to produce an Ej-algebra from the data of a Hopf algebra with an integral, by
means of a discrete model.
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Part 1
Locality in Perturbative QFT's

One of the most well-understood class of quantum field theories from a mathematical
point of view consists of two-dimensional conformal field theories (CFT). In this
context the axiomatization of the operator product expansion has led to the notion of
vertex (operator) and chiral algebras, which are now widely used both in mathematics
and physics. There have been several attempts to generalize these and base the
axiomatics of perturbative QFT and the renormalization procedure on the operator
product expansion: Kontsevich (unpublished), Hollands, and Costello-Gwilliam in
the Euclidean context, Fredenhagen et al. in the Lorentzian context. All these
approaches share two things: the appearance of a pattern ressembling that of little disk
operads, and the use of techniques from deformation quantization.

Part I begins with “Perturbative Algebraic Quantum Field Theory” (written by
Klaus Fredenhagen and Katarzyna Rejzner) summarizing the approach that was
developped for the Lorentzian signature. It then continues with “Lectures on
Mathematical Aspects of (Twisted) Supersymmetric Gauge Theories” (written by
Kevin Costello and Claudia Scheimbauer) about Costello's approach to super-
symmetric four-dimensional gauge theories, in the Euclidean context, where the
notion of factorization algebra appears to be proeminent.

Part I ends with “Snapshots of Conformal Field Theory” (written by Katrin
Wendland) which reviews some recent developments in (super)conformal field
theory. It reports in particular some very exciting considerations about the geometry
of K3 surfaces and the Mathieu Moonshine.
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Perturbative Algebraic Quantum Field Theory

Klaus Fredenhagen and Katarzyna Rejzner

Abstract These notes are based on the course given by Klaus Fredenhagen at the
Les Houches Winter School in Mathematical Physics (January 29-February 3,2012)
and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for
the Research Training Group 1670 (February 6—11, 2012). Both courses were meant
as an introduction to modern approach to perturbative quantum field theory and are
aimed both at mathematicians and physicists.

1 Introduction

Quantum field theory (QFT) is at present the by far most successful description of
fundamental physics. Elementary physics is to a large extent explained by a specific
quantum field theory, the so-called Standard Model. All the essential structures of the
standard model are nowadays experimentally verified. Outside of particle physics,
quantum field theoretical concepts have been successfully applied also to condensed
matter physics.

In spite of its great achievements, quantum field theory also suffers from sev-
eral longstanding open problems. The most serious problem is the incorporation
of gravity. For some time, many people believed that such an incorporation would
require a radical change in the foundation of the theory, and one favored theories
with rather different structures as e.g. string theory or loop quantum gravity. But
up to now these alternative theories did not really solve the problem; moreover there
are several indications that QFT might be more relevant to quantum gravity than
originally expected.
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Another great problem of QFT is the difficulty of constructing interesting exam-
ples. In nonrelativistic quantum mechanics the construction of a selfadjoint Hamil-
tonian is possible for most cases of interest, in QFT, however the situation is much
worse. Models under mathematical control are

free theories

superrenormalizable models in 2 and 3 dimensions
conformal field theories in 2 dimensions
topological theories in 3 dimensions

integrable theories in 2 dimensions

but no single interacting theory in 4 dimensions, in particular neither the standard
model nor any of its subtheories like QCD or QED. Instead one has to evaluate the
theory in uncontrolled approximations, mainly using formal perturbation theory, and,
in the case of QCD, lattice gauge theories.

If one attempts to incorporate gravity, an additional difficulty is the apparent non-
locality of quantum physics which is in conflict with the geometrical interpretation
of gravity in Einstein’s theory. Even worse, the traditional treatment of QFT is based
on several additional nonlocal concepts, including

vacuum (defined as the state of lowest energy)

particles (defined as irreducible representations of the Poincaré group)
S-matrix (relies on the notion of particles)

path integral (involves nonlocal correlations)

euclidean space (does not exist for generic Lorentzian spacetime)

There exists, however, a formulation of QFT which is based entirely on local
concepts. This is Algebraic QFT (AQFT), or, synonymously, Local Quantum Physics
[20]. AQFT relies on the algebraic formulation of quantum theory in the sense of
the original approach by Born, Heisenberg and Jordan and formalized in terms of
C*-algebras by 1. Segal. The step from quantum mechanics to QFT is performed
by incorporating the principle of locality in terms of local algebras of observables.
This is the algebraic approach to field theory proposed by Haag and Kastler [18]. By
the Haag-Ruelle scattering theory the Haag-Kastler framework on Minkowski space,
together with some mild assumptions on the energy momentum spectrum, already
implies the existence of scattering states of particles and of the S-matrix.

It required some time before this framework could be generalized to generic
Lorentzian spacetimes. A direct approach was performed by Dimock [12], but the
framework he proposed did not contain an appropriate notion of covariance. Such
a notion, termed local covariance was introduced more recently in a programmatic
paper by Brunetti, Verch and one of us (K.F.) [9] motivated by the attempt to define
the renormalized perturbation series of QFT on curved backgrounds [7, 21, 22]. It
amounts to an assignment of algebras of observable to generic spacetimes, subject
to a certain coherence condition formulated in the language of category theory. In
Sect.3 we will describe the framework in detail.

The framework of locally covariant field theory is a plausible system of axioms
for a generally covariant field theory. Before we enter the problem of constructing
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examples of quantum field theory satisfying these axioms we describe the corre-
sponding structure in classical field theory (Sect.4). Main ingredient is the so-called
Peierls bracket by which the classical algebra of observables becomes a Poisson
algebra.

Quantization can be done in the sense of formal deformation quantization, i.e. in
terms of formal power series in 7 at least for free field theories, and one obtains an
abstract algebra resembling the algebra of Wick polynomials on Fock space (Sect.5).
Interactions can then be introduced by the use of a second product in this algebra,
namely the time ordered product. Disregarding for a while the notorious UV diver-
gences of QFT we show how interacting theories can be constructed in terms of the
free theory (Sect.6).

In the final part of these lectures (Sect.7) we treat the UV divergences and their
removal by renormalization. Here again the standard methods are nonlocal and loose
their applicability on curved spacetimes. Fortunately, there exists a method which
is intrinsically local, namely causal perturbation theory. Causal perturbation theory
was originally proposed by Stiickelberg and Bogoliubov and rigorously elaborated
by Epstein and Glaser [16] for theories on Minkowski space. The method was gener-
alized by Brunetti and one of us (K.F) [7] to globally hyperbolic spacetimes and was
then combined with the principle of local covariance by Hollands and Wald [21, 22].
The latter authors were able to show that renormalization can be done in agreement
with the principle of local covariance. The UV divergences show up in ambiguities
in the definition of the time ordered product. These ambiguities are characterized by
a group [10, 13, 23], namely the renormalization group as originally introduced by
Petermann and Stiickelberg [38].

2 Algebraic Quantum Mechanics

Quantum mechanics in its original formulation in the Dreiménnerarbeit by Born,
Heisenberg and Jordan is based on an identification of observables with elements of
a noncommutative involutive complex algebra with unit.

Definition 1 Aninvolutive complex algebra 2l is an algebra over the field of complex
numbers, together with a map, * : 2 — 2, called an involution. The image of an
element A of 2 under the involution is written A*. Involution is required to have the
following properties:

1. forall A, B € %: (A + B)* = A* + B*, (AB)* = B*A*,
2. forevery A € C and every A € 2: (AA)* = LA¥,
3. forall A € A: (A*)* = A.

In quantum mechanics such an abstract algebra is realized as an operator algebra on
some Hilbert space.
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Definition 2 A representation of an involutive unital algebra 2 is a unital
*-homomorphism 7 into the algebra of linear operators on a dense subspace D
of a Hilbert space H.

Let us recall that an operator A on a Hilbert space H is defined as a linear map
from a subspace D C ‘H into H. In particular, if D = H and A satisfies ||A]| =
supy =1 {llAx[|} < oo, it is called bounded. Bounded operators have many nice
properties, but in physics many important observables are represented by unbounded
ones. The notion of an algebra of bounded operators on a Hilbert space can be
abstractly phrased in the definition of a C*-algebra.

Definition 3 A C*-algebra is a Banach involutive algebra (Banach algebra with
involution satisfying || A*|| = ||A|]), such that the norm has the C*-property:

[A®All = [AIA™]. VA €.

One can prove that every C*-algebra is isomorphic to a norm closed algebra of
bounded operators B(H) on a (not necessarily separable) Hilbert space H. A repre-
sentation of a C*-algebra 2 is a unital *-homomorphism 7 : 2 — B(H).

In the simplest example from quantum mechanics the algebra of observables is the
associative involutive complex unital algebra generated by two hermitian! elements
p and g with the canonical commutation relation

[p, q] = —ihlg[ . (1)

This algebra can be realized as an operator algebra on some Hilbert space, but the
operators corresponding to p and g cannot both be bounded. Therefore it is conve-
nient, to follow the suggestion of Weyl and to replace the unbounded (hence discon-
tinuous) operators p and ¢ by the unitaries> (Weyl operators) W (a, B), a, € R.
Instead of requiring the canonical commutation relation for p and g one requires the
relation (Weyl relation)

Wi W@ . ) =T F DWW +a'. p. ) )

The antilinear involution (adjunction)
W(a, ) = W(-a, —B) . 3)
replaces the hermiticity condition on p and g. The Weyl algebra 2y is defined as

the unique C*-algebra generated by unitaries W («, B) satisfying the relations (2),
with involution defined by (3) and with unit 19 = W (0, 0).

' An operator A on a Hilbert space H with a dense domain D(A) C M is called hermitian if
D(A) C D(A*) and Ax = A*x for all x € D(A). Itis selfadjoint if in addition D(A*) C D(A).
2 An element A of an involutive Banach algebra with unit is called unitary if A*A = 14 = AA*,
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One can show that if the Weyl operators are represented by operators on a Hilbert
space such that they depend strongly continuously> on the parameters « and 8, then
p and g can be recovered as selfadjoint generators, i.e.

W(a, ) = &' @PHha),

satisfying the canonical commutation relation (1). As shown by von Neumann, the
C*-algebra 2y has up to equivalence only one irreducible representation where
the Weyl operators depend strongly continuously on their parameters, namely the
Schrodinger representation (L2(R), ) with

(T (W(e, B)®) (x) = ¢ 2 P P (x + har) | “4)

and the reducible representations with the same continuity property are just multiples
of the Schrodinger representation. If one does not require continuity there are many
more representations, and they have found recently some interest in loop quantum
gravity. In quantum field theory the uniqueness results do not apply, and one has to
deal with a huge class of inequivalent representations.

For these reasons it is preferable to define the algebra of observables 2l indepen-
dently of its representation on a specific Hilbert space as a unital C*-algebra. The
observables are the selfadjoint elements, and the possible outcomes of measurements
are elements of their spectrum. The spectrum spec(A) of A € Aisthesetofalll € C
such that A — Alg has no inverse in 2. One might suspect that the spectrum could
become smaller if the algebra is embedded in a larger one. Fortunately this is not the
case; for physics this mathematical result has the satisfactory effect that the set of
possible measurement results of an observable is not influenced by the inclusion of
additional observables.

Now we know what the possible outcome of an experiment could be, but what
concrete value do we get, if we perform a measurement? In QM this is not the right
question to ask. Instead, we can only determine the probability distribution of getting
particular values from a measurement of an observable A. This probability distrib-
ution can be obtained, if we know the state of our physical system. Conceptually, a
state is a prescription for the preparation of a system. This concept entails in partic-
ular that experiments can be reproduced and is therefore equivalent to the ensemble
interpretation where the statements of the theory apply to the ensemble of equally
prepared systems.

A notion of a state can be also defined abstractly, in the following way:

Definition 4 A state on an involutive algebra 2l is a linear functional w : A — C,
such that:

w(A*A) >0 and ow(lg)=1.

3 A net {T,,} of operators on a Hilbert space H converges strongly to an operator 7T if and only if
||Tqx — Tx|| — O forall x € H.
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The first condition can be understood as a positivity condition and the second one is
the normalization. The values @ (A) are interpreted as the expectation values of the
observable A in the given state. Given an observable A and a state @ on a C*-algebra
2 we can reconstruct the full probability distribution (4 ., of measured values of A
in the state @ from its moments, i.e. the expectation values of powers of A,

/ Mdpa () = w(A").

States on C*-algebras are closely related to representations on Hilbert spaces. This
is provided by the famous GNS (Gelfand-Naimark-Segal) theorem:

Theorem 1 Let w be a state on the involutive unital algebra A. Then there exists a
representation 7 of the algebra by linear operators on a dense subspace D of some
Hilbert space 'H and a unit vector §2 € D, such that

w(A) = (82, 71(A)2),

and D = {n(A)$2, A € A}.

Proof The proof is quite simple. First let us introduce a scalar product on the algebra
in terms of the state w by

(A, B) = w(A*B).

Linearity for the right and antilinearity for the left factor are obvious, hermiticity

(A, B) = (B, A) follows from the positivity of @ and the fact that we can write A* B
and B* A as linear combinations of positive elements:

2(A*B+ B*A)=(A+B)*(A+B)—(A—B)*(A—-B),
2(A*B — B*A) = —i(A+iB)*(A+iB)+i(A—iB)*(A—iB).

Furthermore, positivity of « immediately implies that the scalar product is positive
semidefinite, i.e. (A, A) > 0 for all A € 2. We now study the set

MN={A eAw(A*A) =0}.
We show that 91 is a left ideal of 2A. Because of the Cauchy-Schwarz inequality Ot

is a subspace of . Moreover, for A € 9t and B € 2 we have, again because of the
Cauchy-Schwarz inequality:

w((BA)*BA) = w(A*B*BA) = (B*BA, A) < /(B*BA, B*BA)\/(A, A) =0,

hence BA € 91. Now we define D to be the quotient 2(/91. Per constructionem the
scalar product is positive definite on D, thus we can complete it to obtain a Hilbert
space H. The representation 7 is induced by left multiplication of the algebra,
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w(A)(B+N) = AB+ M,

and we set £2 = 1 + 91. In case that 2 is a C*-algebra, one can show that the oper-
ators  (A) are bounded, hence admitting unique continuous extensions to bounded
operators on H.

It is also straightforward to see that the construction is unique up to unitary
equivalence. Let (', D', H', 2’) be another quadruple satisfying the conditions of
the theorem. Then we define an operator U : D — D’ by

Un(A)R = 7'(A)2'.

U is well defined, since 7 (A)$2 = 0 if and only if w(A*A) = 0, but then we have
also /(A)$2" = 0. Furthermore U preserves the scalar product and is invertible and
has therefore a unique extension to a unitary operator from H to H’. This shows that
7 and 7’ are unitarily equivalent.

The representation 7 will not be irreducible, in general, i.e. there may exist a non-
trivial closed invariant subspace. In this case, the state w is not pure, which means
that it is a convex combination of other states,

o=+ 1 —-MNwr, 0<Ai<l, w1 #Fwy. 5)
To illustrate the concept of the GNS representation, let 71 2 be representations of 2
on Hilbert spaces H 2, respectively. Choose unit vectors ¥ € Hj, ¥ € Hp and
define the states

wi(A) = (¥, mi(A)Y;) , i=1,2. (6)

Let w be the convex combination
1 1
w(A) = 71 (A) + sz(A) . @)

w is a linear functional satisfying the normalization and positivity conditions and
therefore is again a state in the algebraic sense. Now let H = H @ H> be the direct
sum of the two Hilbert spaces and let

_(m(A) O
yr(A)_( ¢ HZ(A)) ®)
Then the vector
_ 1 (w
v=7 () ®

satisfies the required relation
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w(A) = (W, n(A)VY) . (10)

For more information on operator algebras see [5, 6, 32].

In classical mechanics one has a similar structure. Here the algebra of observables
is commutative and can be identified with the algebra of continuous functions on
phase space. In addition, there is a second product, the Poisson bracket. This product
is only densely defined. States are probability measures, and pure states correspond
to the evaluation of functions at a given point of phase space.

3 Locally Covariant Field Theory

Field theory involves infinitely many degrees of freedom, associated to the points of
spacetime. Crucial for the success of field theory is a principle which regulates the
way these degrees of freedom influence each other. This is the principle of locality,
more precisely expressed by the German word Nahwirkungsprinzip. It states that
each degree of freedom is influenced only by a relatively small number of other
degrees of freedom. This induces a concept of neighborhoods in the set of degrees
of freedom.

The original motivation for developing QFT was to combine the QM with special
relativity. In this sense we expect to have in our theory some notion of causality. Let
us briefly describe what it means in mathematical terms. In special relativity space
and time are described together with one object, called Minkowski spacetime . Since
it will be useful later on, we define now a general notion of a spacetime in physics.

Definition 5 A spacetime (M, g) is a smooth (4 dimensional) manifold (Hausdorff,
paracompact, connected) with a smooth pseudo-Riemannian metric* of Lorentz sig-
nature (we choose the convention (4, —, —, —)).

A spacetime M is said to be orientable if there exists a differential form of maximal
degree (a volume form), which does not vanish anywhere. We say that M is time-
orientable if there exists a smooth vector field # on M such that for every p € M it
holds g(u, u), > 0. We will always assume that our spacetimes are orientable and
time-orientable. We fix the orientation and choose the time-orientation by selecting
a specific vector field u with the above property. Let y : R D I — M be a smooth
curve in M, for I an interval in R. We say that y is causal (timelike) if it holds
g(y,y) = 0 (> 0), where y is the vector tangent to the curve.

Given the global timelike vector field # on M, one calls a causal curve y future-
directed if g(u, y) > 0 all along y, and analogously one calls y past-directed if
g(u, y) < 0. This induces a notion of time-direction in the spacetime (M, g). For
any point p € M, J*(p) denotes the set of all points in M which can be connected
to x by a future(+)/past(—)-directed causal curve y : I — M so that x = y (inf I).

4 asmooth tensor field g € T(T*M QT*M),s.t. forevery p € M, gp is a symmetric non degenerate

bilinear form.
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The set JT(p) is called the causal future and J~(p) the causal past of p. The
boundaries 3.J % (p) of these regions are called respectively: the future/past lightcone.
Two subsets O1 and O, in M are called causally separated if they cannot be connected
by a causal curve, i.e. if for all x € Oy, J¥(x) has empty intersection with O,. By
O+ we denote the causal complement of O, i.e. the largest open set in M which is
causally separated from O.

In the context of general relativity we will also make use of following definitions:

Definition 6 A causal curve is future inextendible if there is no p € M such that:
YU C Mopen neighborhoods of p, 3t's.t. y(t) € UVt > 1.

Definition 7 A Cauchy hypersurface in M is a smooth subspace of M such that
every inextendible causal curve intersects it exactly once.

Definition 8 An oriented and time-oriented spacetime M is called globally hyper-
bolic if there exists a smooth foliation of M by Cauchy hypersurfaces.

For now let us consider a simple case of the Minkowski spacetime M which is just
R* with the diagonal metric n = diag(l, —1, —1, —1). A lightcone with apex p is
shown on Fig. 1, together with the future and past of p.

One of the main principles of special relativity tells us that physical systems which
are located in causally disjoint regions should in some sense be independent. Here we
come to the important problem: How fo implement this principle in quantum theory?
A natural answer to this question is provided by the Haag-Kastler framework [18,
19], which is based on the principle of locality. In the previous section we argued
that operator algebras are a natural framework for quantum physics. Locality can be
realized by identifying the algebras of observables that can be measured in given

Fig.1 A lightcone in
Minkowski spacetime

Future

Spacelike region

Past
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bounded regions of spacetime. In other words we associate to each bounded O C M
a C*-algebra 20(O). This association has to be compatible with a physical notion of
subsystems. It means that if we have a region O which lies inside O’ we want the
corresponding algebra 2((O) to be contained inside 2A(O"), i.e. in a bigger region we
have more observables. This property can be formulated as the Isotony condition
for the net {A(O)} of local algebras associated to bounded regions of the spacetime.
In the Haag-Kastler framework one specializes to Minkowski space M and imposes
some further, physically motivated, properties:

e Locality (Einstein causality). Algebras associated to spacelike separated regions
commute: O; spacelike separated from O,, then [A, B] = 0, VA € A(O),
B € A(O3). This expresses the “independence” of physical systems associated to
regions O and O;.

e Covariance. The Minkowski spacetime has a large group of isometrics, namely
the Poincaré group. We require that there exists a family of isomorphisms a? :
2A(0) — A(LO) for Poincaré transformations L, such that for O; C O, the
restriction of oeg)z to A(O1) coincides with oe?‘ and such that: ozf,o ) a? = a?,L,

e Time slice axiom: the algebra of a neighborhood of a Cauchy surface of a given
region coincides with the algebra of the full region. Physically this correspond to a
well-posedness of an initial value problem. We need to determine our observables
in some small time interval (fy — €, fo + €) to reconstruct the full algebra.

e Spectrum condition. This condition corresponds physically to the positivity of
energy. One assumes that there exist a compatible family of faithful representations
o of A(O) on a fixed Hilbert space (i.e. the restriction of 7, to A(O1) coincides
with o, for O C O») such that translations are unitarily implemented, i.e. there
is a unitary representation U of the translation group satisfying

U@)ro(A)U@) " = 1014(aq(A)), A € A(0),

and such that the joint spectrum of the generators P,, of translations P = U(a),
aP = a" Py, is contained in the forward lightcone: o (P) C V4.

We now want to generalize this framework to theories on generic spacetimes. To
start with, we may think of a globally hyperbolic neighborhood U of a spacetime
point x in some spacetime M. Moreover, we assume that any causal curve in M with
end points in U lies entirely in U. Then we require that the structure of the algebra of
observables associated to U should be completely independent of the world outside.
We may formalize this idea by requiring that for any embedding x : M — N of a
globally hyperbolic manifold M into another one N which preserves the metric, the
orientations and the causal structure® (these embeddings will be called admissible),
there exist an injective homomorphism

oy A(M) — A(N) (11

5 The property of causality preserving is defined as follows: let x : M — N, for any causal curve
y :la,b] - N,if y(a), y(b) € x (M) then for all r €]a, b[ we have: y(t) € x(M).
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of the corresponding algebras of observables, moreover if x; : M — N and x» :
N — L are embeddings as above then we require the covariance relation

Uyrox) = Uy, O Uy, - (12)

In this way we described a functor 2 between two categories: the category Loc
of globally hyperbolic spacetimes with admissible embeddings as arrows and the
category Obs of algebras (Poisson algebras for classical physics and C*-algebras for
quantum physics) with homomorphisms as arrows.

‘We may restrict the category of spacetimes to subregions of a given spacetime and
the arrows to inclusions. In this way we obtain the Haag-Kastler net of local algebras
on a globally hyperbolic spacetime as introduced by Dimock. In case the spacetime
has nontrivial isometries, we obtain additional embeddings, and the covariance con-
dition above provides a representation of the group of isometries by automorphisms
of the Haag-Kastler net.

The causality requirements of the Haag-Kastler framework, i.e. the commutativity
of observables localized in spacelike separated regions, is encoded in the general case
in the tensor structure of the functor . Namely, the category of globally hyperbolic
manifolds has the disjoint union as a tensor product, with the empty set as unit object
and where admissible embeddings x : M| ® M> — N have the property that the
images x (M1) and x (M>) cannot be connected by a causal curve. On the level of
C*-algebras we may use the minimal tensor product as a tensor structure. See [8] for
details.

The solvability of the initial value problem can be formulated as the requirement
that the algebra 2((NV) of any neighborhood N of some Cauchy surface X' already
coincides with 2(M). This is the time slice axiom of axiomatic quantum field theory.
It can be used to describe the evolution between different Cauchy surfaces. As a first
step we associate to each Cauchy surface X' the inverse limit

A(X) = lim A(N) . (13)
NDX
Elements of the inverse limit consist of sequences A = (Ay)r,onox With

anck (An) = Ak, K C L4, with the equivalence relation
A~BifAy=Byforal NCLsNLp. (14)
The algebra 2(X) can be embedded into 2A(M) by
aycm(A) = anycp(Ay) for some (and hence all) ¥ C N C Ly . (15)
If we now adopt the time slice axiom we find that each homomorphism «yps is an

isomorphism. Hence «x s is also an isomorphism and we obtain the propagator
between two Cauchy surfaces X'| and X» by
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M _ -1
0521)_72 —(lecMoagsz (16)

This construction resembles constructions in topological field theory for the descrip-
tion of cobordisms. But there one associates Hilbert spaces to components of the
boundary and maps between these Hilbert spaces to the spacetime itself. This con-
struction relies on the fact that for these theories the corresponding Hilbert spaces are
finite dimensional. It was shown [39] that a corresponding construction for the free
field in 3 and more dimensions does not work, since the corresponding Boboliubov
transformation is not unitarily implementable (Shale’s criterion [34] is violated).
Instead one may associate to the Cauchy surfaces the corresponding algebras of
canonical commutation relations and to the cobordism an isomorphism between
these algebras. For the algebra of canonical anticommutation relations for the free
Dirac fields the above isomorphism was explicitly constructed [40]. Our general
argument shows that the association of a cobordism between two Cauchy surfaces
of globally hyperbolic spacetimes to an isomorphism of algebras always exists pro-
vided the time slice axiom is satisfied. As recently shown, the latter axiom is actually
generally valid in perturbative Algebraic Quantum Field Theory [11].

In the Haag-Kastler framework on Minkowski space an essential ingredient was
translation symmetry. This symmetry allowed the comparison of observables in dif-
ferent regions of spacetime and was (besides locality) a crucial input for the analysis
of scattering states.

In the general covariant framework sketched above no comparable structure is
available. Instead one may use fields which are subject to a suitable covariance
condition, termed locally covariant fields. A locally covariant field is a family ¢, of
fields on spacetimes M such that for every embedding x : M — N as above

ay (o (x)) = on(x (x)) . (17)

If we consider fields as distributions with values in the algebras of observables, a
field ¢ may be considered as a natural transformation between the functor ® of test
function spaces to the functor 2l of field theory. The functor © associates to every
spacetime M its space of compactly supported C°°-functions,

D(M)=C(M,R), (18)

and to every embedding x : M — N of spacetimes the pushforward of test functions
S edWM)

Fx@) , x e x(M)

® is a covariant functor. Its target category is the category of locally convex vector
spaces Vec which contains also the category of topological algebras which is the target
category for 2. A natural transformation ¢ : ©® — 2 between covariant functors with
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the same source and target categories is a family of morphisms ¢y : ©(M) — A(M),
M e Obj(Loc) such that

Ax ooy = oy 0Dy (20

with 2y = «ay.

4 Classical Field Theory

Before we enter the arena of quantum field theory we show that the concept of
local covariance leads to a nice reformulation of classical field theory in which the
relation to QFT becomes clearly visible. Let us consider a scalar field theory. On a
given spacetime M the possible field configurations are the smooth functions on M.
If we embed a spacetime M into another spacetime N, the field configurations on N
can be pulled back to M, and we obtain a functor ¢ from Loc to the category Vec of
locally convex vector spaces

EM)=C*(M,R), €x = x~ @h

with the pullback x*¢ = ¢ o x for ¢ € C®°(M, R). Note that € is contravariant,
whereas the functor © of test function spaces with compact support is covariant.

The classical observables are real valued functions on (M), i.e. (not necessarily
linear) functionals. An important property of a functional is its spacetime support.
Is is defined as a generalization of the distributional support, namely as the set of
points x € M such that F depends on the field configuration in any neighbourhood
of x.

supp F = {x € M|V neighbourhoods U of x ¢, ¥ € E(M),suppy C U (22)
such that F(¢ + ¥) # F(p)} .

Here we will discuss only compactly supported functionals. Next one has to select
a class of functionals which are sufficiently regular such that all mathematical oper-
ations one wants to perform are meaningful and which on the other side is large
enough to cover the interesting cases.

One class one may consider is the class Freg (M) of regular polynomials

F(p) = Z/dm coedXn fu (X1, X)) @(x1) L () (23)
finite

with test functions f, € ®(M"). Another class 1o (M) consists of the local func-
tionals
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F(p) = /dxﬁ(x, e(x), dp(x),...) (24)

where £ depends smoothly on x and on finitely many derivatives of ¢ at x. The local
functionals arise as actions and induce the dynamics. The only regular polynomials
in this class are the linear functionals

F(g) = / dxf (D)) 25)

It turns out to be convenient to characterize the admissible class of functionals in
terms of their functional derivatives.

Definition 9 (After [30]) Let X and Y be topological vector spaces, U € X an open
setand f : U — Y amap. The derivative of f at x in the direction of 4 is defined as

1
df(e)(h) = im = (f (x +th) = f(x)) (26)

whenever the limit exists. The function f is called differentiable at x if df (x)(h)
exists for all 4 € X. It is called continuously differentiable if it is differentiable at all
points of U and df : U x X — Y, (x, h) — df(x)(h) is a continuous map. It is
called a C'-map if it is continuous and continuously differentiable. Higher derivatives
are defined for C"-maps by

1
d" fx)(hy, ..., hn) = }E);(d"_lf(ﬁ-thn)(hl ----- hnD)=d" ' f )Ry, hn-1))
(27

In particular it means that if F is a smooth functional on &(M), then its n-th derivative
at the point ¢ € (M) is a compactly supported distributional density F™ (¢)
E'(M"). There is a distinguished volume form on M, namely the one provided by
the metric: «/—det(g)d*x. We can use it to construct densities from functions and to
provide an embedding of D(M™) into £'(M™). For more details on distributions on
manifolds, see Chap. 1 of [2]. Using the distinguished volume form we can identify
derivatives F (")(<p) with distributions. We further need some conditions on their
wave front sets.

Let us make a brief excursion to the concept of wave front sets and its use for
the treatment of distributions. Readers less familiar with these topics can find more
details in the appendix 2.7 or refer to [25] or Chap.4 of [1]. Let t € D'(R") and
f € D(R™). The Fourier transform of the product ft is a smooth function. If this
function vanishes fast at infinity for all f € D(R"), ¢ itself is a smooth function.
Singularities of ¢ show up in the absence of fast decay in some directions. A point
(x,k) e R" x (R™\ {0}) is called a regular point of 7 if there exists a test function
f with f(x) = 1 such that the Fourier transform of f7 decays strongly in an open
cone around k. The wave front set of ¢ is now defined as the complement of the set
of regular points of # in R” x (R" \ {0}).
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On a manifold M the definition of the Fourier transform depends on the choice
of a chart. But the property of strong decay in some direction (characterized now
by a point (x, k), k # 0 of the cotangent bundle 7*M) turns out to be independent
of the chart. Therefore the wave front set WF of a distribution on a manifold M is
a well defined closed conical subset of the cotangent bundle (with the zero section
removed).

Let us illustrate the concept of the wave front set in two examples. The first one
is the §-function. We find

/ dxf(x)8(x)e™ = f(0), (28)

hence WF(5) = {(0, k), k # 0}.
The other one is the function x — (x 4+ i€)~! in the limit € | 0. We have

oo
13{3 arxx]:(:‘i)6 e = —j / dK' f k') . (29)
k

Since the Fourier transform f of a test function f € D(R) is strongly decaying for
k — oo, [*°dk' f(K') is strongly decaying for k — oo, but for k — —oo we obtain

Jim / dk' f(K') = 27 £(0) (30)
k
hence
WF(liFg(x +ie)™ Y ={0,k),k <0} . (31)

The wave front sets provide a simple criterion for the pointwise multiplicability
of distributions. Namely, let ¢, s be distributions on an » dimensional manifold M
such that the pointwise sum (Whitney sum) of their wave front sets

WE(1) + WF(s) = {(x, k + k)| (x, k) € WE(1), (x, k') € WF(s)} (32)

does not intersect the zero section of 7*M. Then the pointwise product ¢s can be
defined by

(15, fg) = / dk 7T ()53 (—k) (33)

Qm)"

for test functions f and g with sufficiently small support and where the Fourier trans-
form refers to an arbitrary chart covering the supports of f and g. The convergence
of the integral on the right hand side follows from the fact, that for every k # 0 either
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t/f decays fast in a conical neighborhood around k or sg decays fast in a conical
neighborhood around —k whereas the other factor is polynomially bounded.

The other crucial property is the characterization of the propagation of singular-
ities. To understand it in more physical terms it is useful to use an analogy with
Hamiltonian mechanics. Note that the cotangent bundle 7*M has a natural sym-
plectic structure. The symplectic 2-form is defined as an exterior derivative of the
canonical one-form, given in local coordinates as 0 x) = Z’Ll k,-dxi (k; are coordi-
nates in the fibre). Let P be a partial differential operator with real principal symbol
op. Note that op is a function on 7*M and its differential dop is a 1-form. On
a symplectic manifold 1-forms can be canonically identified with vector fields by
means of the symplectic form. Therefore every differentiable function H determines
a unique vector field Xy, called the Hamiltonian vector field with the Hamiltonian
H.Let X p be the Hamiltonian vector field corresponding to o p. Explicitly it can be
written as:

" dop 0 dop 0

p = -

1 3kj 3)6]' 3)Cj akj

j =
Letus now consider the integral curves (Hamiltonian flow) of this vector field. A curve
(xj(t), k(1)) is an integral curve of X p if it fulfills the system of equations (Hamil-
ton’s equations):

de 301)

IR ITR

dkj 80'p

T
The set of all such solution curves is called the bicharacteristic flow. Along the
Hamiltonian flow it holds ‘%” = Xp(op) = 0 (this is the law of conservation of

energy for autonomous systems in classical mechanics), so op is constant under the
bicharacteristic flow. If op ((x; (1), k;())) = 0 we call the corresponding flow null.
The set of all such integral curves is called the null bicharacteristics.

Let us now define the characteristics of P as charP = {(x,k) € T*M|o(P)
(x, k) = 0} of P. Then the theorem on the propagation of singularities states that the
wave front set of a solution u of the equation Pu = f with f smooth is a union of
orbits of the Hamiltonian flow X p on the characteristics char P.

In field theory on Lorentzian spacetime we are mainly interested in hyperbolic
differential operators. Their characteristics is the light cone, and the principal symbol
is the metric on the cotangent bundle. The wave front set of solutions therefore is a
union of null geodesics together with their cotangent vectors k = g(y, -).

We already have all the kinematical structures we need. Now in order to specify
a concrete physical model we need to introduce the dynamics. This can be done by
means of a generalized Lagrangian . As the name suggests the idea is motivated by
Lagrangian mechanics. Indeed, we can think of this formalism as a way to make
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precise the variational calculus in field theory. Note that since our spacetimes are
globally hyperbolic, they are never compact. Moreover we cannot restrict ourselves
to compactly supported field configurations, since the nontrivial solutions of globally
hyperbolic equations don’t belong to this class. Therefore we cannot identify the
action with a functional on (M) obtained by integrating the Lagrangian density
over the whole manifold. Instead we follow [10] and define a Lagrangian L as a
natural transformation between the functor of test function spaces ® and the functor
Floc such that it satisfies supp(Ly(f)) € supp(f) and the additivity rule®

Ly(f+g+h)=Ly(f+g —Lu(g+Lug+h),

for f, g, h € ©(M) and supp f N supph = &. The action S(L) is now defined as
an equivalence class of Lagrangians [10], where two Lagrangians L, Ly are called
equivalent L1 ~ L, if

supp(L1,m — L2,m)(f) C suppdf , (34)

for all spacetimes M and all f € ©(M). This equivalence relation allows us to
identify Lagrangians differing by a total divergence. For the free minimally coupled
(i.e. £ = 0) scalar field the generalized Lagrangian is given by:

_1 Wy 2 2
Lu(H) = 5 / (Vo Vie — m2g?) f dvol,, 35)
M

The equations of motion are to be understood in the sense of [10]. Concretely, the
Euler-Lagrange derivative of S is a natural transformation S’ : ¢ — ©’ defined as

(S (@), h) = {Lu(HV (@), h), (36)
with f = 1 on supph. The field equation is now a condition on ¢:
Sy(p) =0. (37)

Note that the way we obtained the field equation is analogous to variational calculus
on finite dimensional spaces. We can push this analogy even further and think of
variation of a functional in a direction in configuration space given by an infinite
dimensional vector field. This concept is well understood in mathematics and for
details one can refer for example to [29, 30]. Here we consider only variations in the
directions of compactly supported configurations, so the space of vector fields we
are interested in can be identified with U(M) = {X : EM) — D(M)|X smooth}.
In more precise terms this is the space of vector fields on (M), considered as a

6 We do not require linearity since in quantum field theory the renormalization flow does not preserve
the linear structure; it respects, however, the additivity rule (see [10]).
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manifold” modeled over © (M). The set of functionals

¢ = (Sy (@), X (@), X € B(M) (38)
is an ideal Jg(M) of F(M) with respect to pointwise multiplication,

(F-G)(p) = F(p)G(e) . (39)

The quotient
Ss(M) =§(M)/Ts(M) (40)

can be interpreted as the space of solutions of the field equation. The latter can be
identified with the phase space of the classical field theory.

We now want to equip §s(M) with a Poisson bracket. Here we rely on a method
originally introduced by Peierls. Peierls considers the influence of an additional term
in the action. Let F € Foc(M) be a local functional. We are interested in the flow
(®;) on E(M) which deforms solutions of the original field equation S;\/I () =w
with a given source term w to those of the perturbed equation S}, (¢) +AF D) = w.
Let @o(¢) = ¢ and

d

= (Su@i@) + FO@n)| _ =0. (41)

=0
Note that the second variational derivative of the unperturbed action induces an
operator S, (¢) : €(M) — ©'(M). We define it in the following way:

(Si (@), h1 @ ha) = (LD (£)(9), h1 ® ha),

where f = 1 on the supports of /| and h. This defines S},(¢) as an element of
©’(M?) and by Schwartz’s kernel theorem we can associate to it an operator from
D(M) to D'(M). Actually, since L (f) is local, the second derivative has support
on the diagonal, so S;{,I(gp) can be evaluated on smooth functions A1, i, where only
one of them is required to be compactly supported, and it induces an operator (the
so called linearized Euler-Lagrange operator) E'[Sy](¢) : €(M) — D' (M).

From (41) it follows that the vector field ¢ — X (¢) = %05 2 (@) ]5.=0 satisfies the
equation

(Sh (@), X(@) ®-) +(FV(p), ) =0, (42)

which in a different notation can be written as

7 An infinite dimensional manifold is modeled on a locally convex vector space just as a finite
dimensional one is modeled on R”". For more details see [29, 30].
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(E'1Sm1(9), X (9)) + FD(p) = 0.

We now assume that E'[Sy](¢) is, for all ¢, a normally hyperbolic differential
operator (M) — (M), and let AR, A? be the retarded and advanced Green’s
operators, i.e. linear operators D (M) — &(M) satisfying:

E'[Sulo AN =idow) ,

R/A
A

° (E/[SM]|©(M)) = idp) -

Moreover, with the use of Schwartz’s kernel theorem one can identify Af/ A
D(M) — E(M) with elements of D’'(M?). As such, they are required to satisfy
the following support properties:

supp(AR) € {(x,y) € M*|y € J~ (1)}, (43)
supp(A™) C {(x,y) € M?|y € JT(x)}. (44)

Their difference Ag = A? — Alé is called the causal propagator of the Klein-Gordon
equation. Coming back to equation (42) we have now two distinguished solutions
for X,

xBAp) = a8 FD (). (45)
The difference of the associated derivations on §(M) defines a product

{F, Gls(p) = (As(@)FV(g), GV (p)) (46)

on Floc (M), the so-called Peierls bracket.

The Peierls bracket satisfies the conditions of a Poisson bracket, in particular the
Jacobi identity (for a simple proof see [26]). Moreover, if one of the entries is in
the ideal Jg(M), also the bracket is in the ideal, hence the Peierls bracket induces a
Poisson bracket on the quotient algebra.

In standard cases, the Peierls bracket coincides with the canonical Poisson bracket.
Namely let

1 m? A
L(0) = —0"0d,0 — —@? — Zo* . 47
(@) 70 P0up — 9T = e 47)

Then S}, (¢) = — ((D +m?)p + %(,03) and S, (¢) is the linear operator

- (I:I +m? + %q)z) (48)

(the last term acts as a multiplication operator).
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The Peierls bracket is

{p(x), o(¥)}s = As(@)(x, y) (49)

where x > Ag(¢)(x, y) is a solution of the (at ¢) linearized equation of motion
with the initial conditions

0
As@)(°,x;y) =0, mAs«p)(yo,x; y) =8(x,y) . (50)

This coincides with the Poisson bracket in the canonical formalism. Namely, let ¢
be a solution of the field equation. Then

2 A3 2 A
0={@+m)e(x)+ 3¢ X)), e(M}=@O+m" + Efﬂ(x) Nex), (y)} (1)

hence the Poisson bracket satisfies the linearized field equation with the same initial
conditions as the Peierls bracket.

Let us now discuss the domain of definition of the Peierls bracket. It turns out that
it is a larger class of functionals than just §joc (M). To identify this class we use the
fact that the WF set of Ag is given by

WE(Ag) = {(x, k; x', =k') € T*M?|(x, k) ~ (x', k')},

where the equivalence relation ~ means that there exists a null geodesic strip such
that both (x, k) and (x’, k") belong to it. A null geodesic strip is a curve in T*M
of the form (y(X), k(1)), L € I C R, where y(A) is a null geodesic parametrized
by A and k() is given by k(1) = g(y (A), -). This follows from the theorem on the
propagation of singularities together with the initial conditions and the antisymmetry
of Ag. (See [31] for a detailed argument.)

It is now easy to check, using Hormander’s criterion on the multiplicability of
distributions [25] that the Peierls bracket (46) is well defined if F and G are such
that the sum of the WF sets of the functional derivatives F( (), GV (¢) € £ (M)
and A € D' (M?) don’t intersect the O-section of the cotangent bundle T*M 2 This
is the case if the functionals fulfill the following criterion:

WE(F™(¢)) C B,, VneN, VYo € €M), (52)

where Z, is an open cone defined as

.....

where (V1), is the closed future/past lightcone understood as a conic subset of
T} M. We denote the space of smooth compactly supported functionals, satisfying
(52) by §puc(M) and call them microcausal functionals. This includes in particular
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local functionals. For them the support of the functional derivatives is on the thin
diagonal, and the wave front sets satisfy >_k; = 0.

To see that {., .}s is indeed well defined on §,c(M), note that WF(A) consists
of elements (x, x’, k, k"), where k, k" are dual to lightlike vectors in TyM, Ty M
accordingly. On the other hand, if (x, k1) € WF(F m((p)), then k; is necessarily
dual to a vector which is spacelike, so k| 4+ k cannot be 0. The same argument is
valid for G(l)(q)). Moreover it can be shown that {F, G}s € §,,c(M). The classical
field theory is defined as A(M) = (Fuc(M), {., .}s). One can check that 2l is indeed
a covariant functor from Loc to Obs, the category of Poisson algebras.

5 Deformation Quantization of Free Field Theories

Starting from the Poisson algebra (§,c(M), {.,.}s) one may try to construct an
associative algebra (§,c(M)[[R]], ) such that for A — 0

FxG—>F-G (54)
and
[F,Gl./ih — {F,G}s . (55)

For the Poisson algebra of functions on a finite dimensional Poisson manifold the
deformation quantization exists in the sense of formal power series due to a theorem
of Kontsevich [28]. In field theory the formulas of Kontsevich lead to ill defined
terms, and a general solution of the problem is not known. But in case the action is
quadratic in the fields the »-product can be explicitly defined by

X n
(F*G)(g) = %(F(")(w), (A9)®"G" (), (56)
n=0 "

. . m<A5,i,> . .
which can be formally written as e > 505¢' | F (9) G (¢")|'=¢- This product is well
defined (in the sense of formal power series in /) for regular functionals F, G €
Sreg(M) and satisfies the conditions above. Let for instance

F(p) = efdw(x)f(X) , G(p) = efdxrﬂ(X)g(X) , (57)

with test functions f, g € ©(M). We have

n

———F(p) = f(x1) ... f(xn) F(p) (58)
o(x1) ... o(xn)



38 K. Fredenhagen and K. Rejzner

and hence

(F % G)(p) (59)

© i n
=> - ( / dxdy . As(x, y)f(x)g(y)) F(@)G(@) (60)
n=0

For later purposes we want to extend the product to more singular functionals which
includes in particular the local functionals. We decompose

Asg = A — Ag (61)

such that the wavefront set of Ag is decomposed into two disjoint parts. The wave
front set of Ag consists of pairs of points x, x’ which can be connected by a null
geodesic, and of covectors (k, k') where k is the cotangent vector of the null geodesic
at x and —k’ is the cotangent vector of the same null geodesic at x". The lightcone
with the origin removed consists of two disjoint components, the first one containing
the positive frequencies and the other one the negative frequencies. The WF set of
the positive frequency part of Ag is therefore:

WE(AL) = {(x, k; x', —k') € TM?|(x, k) ~ (x', k'), k € (V1)i). (62)

On Minkowski space one could choose —i A;‘ as the Wightman 2-point-function, i.e.
the vacuum expectation value of the product of two fields. This, however, becomes
meaningless in a more general context, since a generally covariant concept of a
vacuum state does not exist. Nevertheless, such a decomposition always exist, but
is not unique and the difference between two different choices of A‘S" is always a
smooth symmetric function. Let us write AT = Ag+ H. We then consider the linear
functional derivative operator

52
I'n =(H, W> (63)
and define a new *-product by
F¥ G = et (@ HTnp) (37 G)) (64)

which differs from the original one in the replacement of %A s by ihA;r. This
*-product can now be defined on a much larger space of functionals, namely the
microcausal ones §,¢(M). The transition between these two x-products correspond
to normal ordering, is just an algebraic version of Wick’s theorem. The map oy =

e2TH provides the equivalence between x and +’ on the space of regular functionals
Sreg(M). Its image can be then completed to a larger space §,c(M). We can also
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build a corresponding (sequential) completion oz;{] (§uc(M)) of the source space.
This amounts to extending §reg (M) with all elements of the form lim,, ag,l (Fy,),
where (Fy) is a convergent sequence in §,c(M) with respect to the Hormander
topology [10, 25]. We recall now the definition of this topology.

Let us denote the space of compactly supported distributions with WF sets con-
tained in a conical set C C T*M" by E/C (M"™). Now let C,, C &), be a closed cone
contained in &, defined by (53). We introduce (after [1, 10, 25]) the following family
of seminorms on S’Cn (M™y:

Prp.éi @) = sup{(1 + kD [gu (o)1},
keC

where the index set consists of (n, ¢, C‘, k) such that k € Ny, ¢ € D(M) and Cisa
closed cone in R” with (supp(¢) x C ) N C,, = &. These seminorms, together with
the seminorms of the strong topology provide a defining system for a locally convex
topology denoted by 7¢,. To control the wave front set properties inside open cones,
we take an inductive limit. The resulting topology is denoted by 7z,. One can show
that D(M) is sequentially dense in £ /En (M) in this topology.

For microcausal functionals it holds that F' (”)((p) € E/En(M), SO we can equip
Suc(M) with the initial tpopolgy with respect to mappings:

C®(E(M),R) > F > F"(p) € (£5,(M),15,) n=>0, (65)

“n

The locally convex vector space of local functionals Fioc (M) is dense in § e (M) with
respect to Tz . To see these abstract concepts at work let us consider the example of
the Wick square:

Example 1 Consider a sequence F, (p) = f exX)p(¥)gn(y —x) f (x) with a smooth
function f and a sequence of smooth functions g, which converges to the § distrib-

ution in the Hormander topology. By applying o Hl =e2 T we obtain a sequence

' Fu = [ @020 =0 (1)~ H )ty =000,
The limit of this sequence can be identified with f Ce(x)?: f(x), e
/ L) f(x) = nlilgo/(w(x)w(y) — H(x,y)gn(y — x) f(x)

We can write it in a short-hand notation as a coinciding point limit:

L) 1= lim (p(x)p(y) — H(x.y)) .
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We can see that transforming with a;ll corresponds formally to a subtraction of
H(x,y). Now, to recognize the Wick’s theorem let us consider a product of two
Wick squares : ©(x)? i p(y)? :. With the use of the isomorphism a;ll this can be
written as:

/ o) f1 () # / 02 fo(y) = / o202 f1(0) ()
120k / eOO AL (X 1) 1) o)

— / (AL (x, ) filx) fo(y) -

Omitting the test functions and using a;] we obtain

ih 'h
PP 9O 1= 00 1 pl0p () 1 5 A +2( S AT )

2
which is a familiar form of the Wick’s theorem applied to : (@)% o(y)? .

In the next step we want to define the involution on our algebra. Note that the
complex conjugation satisfies the relation:

FxG=G«F. (66)

Therefore we can use it to define an involution F*(¢) = F(¢). The resulting struc-
ture is an involutive noncommutative algebra (§,c(M)[[A]], *'), which provides a
quantization of (§uc(M), {., .}s). To see that this is equivalent to canonical quan-
tization, let us look at the commutator of two smeared fields @(f), @(g), where
D(f)p) = f fe dvoly,. The commutator reads

[¢(f)v@(g)]*’:lh<fs ASg) s f,ge@(M),

This indeed reproduces the canonical commutation relations. Here we used the fact
that the choice of A‘; is unique up to a symmetric function, which doesn’t contribute
to the commutator (which is antisymmetric). In case A;r is a distribution of positive
type (as in the case of the Wightman 2-point-function) the linear functional on §(M)

w(F) = F(0) (67)
is a state (the vacuum state in the special case above), and the associated GNS

representation is the Fock representation. The kernel of the representation is the
ideal generated by the field equation.
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6 Interacting Theories and the Time Ordered Product

If we have an action for which S, still depends on ¢, we choose a particular ¢y and
split

1
Sulpo +¥) = 5(5&(¢0),¢®1ﬂ>+51(¢0,1//)~ (68)

From now on we drop the subscript M of Sy, since it’s clear that we work on a fixed
manifold. We now introduce the linear operator

inaR, 2
T =455 (69)
which acts on Freg (M) as
o h”
(TF)g) =D {89, FE (@),
n=0 "

with the Dirac propagator A? = %(Ag + Ag‘) at ¢g. Formally, 7 may be understood
as the operator of convolution with the oscillating Gaussian measure with covariance
ihAD. By

For G:T(T—lp.rlc) (70)
we define a new product on Free (M) which is the time ordered product with respect

to » and which is equivalent to the pointwise product of classical field theory. We
then define a linear map

Rs, F = (eif)H * (eif T F) 71)
where e+ is the exponential function with respect to the time ordered product,
eg = T(eTﬁlF) . (72)
Rg, is invertible with the inverse
R5'F =ep® or (e + F) (73)
We now define the -product for the full action by

FxsG = Rgll (Rs, F * Rs, G) (74)
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7 Renormalization

Unfortunately, the algebraic structures discussed so far are well defined only if Sy isa
regular functional. An easy extension is provided by the operation of normal ordering
as described in the section of deformation quantization. This operation transforms
the time ordering operator 7 into another one 77, such that the new time ordered
product is now defined with respect to the Feynman propagator AL, no longer the
Dirac propagator A? . Note that the Feynman propagator does depend on the choice
of A}'. Contrary to the *” product which is everywhere defined due to the wave front
set properties of the positive frequency part of Ag, the time ordered product is in
general undefined since the wave front set of the Feynman propagator contains the
wave front set of the §-function. We want, however, to extend to a larger class which
contains in particular all local functionals. As already proposed by Stiickelberg [36]
and Bogoliubov [3, 4] and carefully worked out by Epstein and Glaser [16], the
crucial problem is the definition of time ordered products of local functionals. Let
us first consider a special case.

Let F = %fdxq)(x)zf(x), G = %fdxtp(x)z. Then the time ordered product
-7+ 1s formally given by

(F -7 G)(p) = F(9)G(p) +ih/dxdyw(x)w(y)f(x)g(y)Ag(x,y)
h2
- / dxdy AL (x, v F ()80 (75)

But the last term contains the pointwise product of a distribution with itself. For
x # y the covectors (k, k") in the wave front set satisfy the condition that k and —k’
are cotangent to an (affinely parametrized) null geodesics connecting x and y. k is
future directed if x is in the future of y and past directed otherwise. Hence the sum
of two such covectors cannot vanish. Therefore the theorem on the multiplicability
of distributions applies and yields a distribution on the complement of the diagonal
{(x, x)|x € M}. On the diagonal, however, the only restriction is k = —k’, hence the
sum of the wave front set of Ag with itself meets the zero section of the cotangent
bundle at the diagonal.

In general the time-ordered product 7,,(Fy, ..., F,) = F| -7 ... F, of n local
functionals is well defined for local entries as long as supports of Fi, ..., F, are
pairwise disjoint. The technical problem one now has to solve is the extension of
a distribution which is defined outside of a submanifold to an everywhere defined
distribution. In the case of QFT on Minkowski space one can exploit translation
invariance and reduce the problem in the relative coordinates to the extension problem
of a distribution defined outside of the origin in R”. The crucial concept for this
extension problem is Steinmann’s scaling degree [37].

Definition 10 Let U C R” be a scale invariant open subset (i.e. AU = U for A > 0),
andlett € D' (U)beadistributionon U. Let t, (x) = ¢ (Ax) be the scaled distribution.
The scaling degree sd of t is
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sdt = inf{8 € R| lim A°r,, = 0} . (76)
r—0

There is one more important concept related to the scaling degree, namely the degree
of divergence. It is defined as:

div(r) = sd(t) —n.

Theorem 2 Let t € D(R" \ {0}) with scaling degree sdt < oo. Then there exists
an extension of t to an everywhere defined distribution with the same scaling degree.
The extension is unique up to the addition of a derivative P(9)d of the delta function,
where P is a polynomial with degree bounded by div(t) (hence vanishes forsdt < n).

A proof may be found in [13]. In the example above the scaling degree of Ag (x)?
is 4 (in 4 dimensions). Hence the extension exists and is unique up to the addition of
a multiple of the delta function.

The theorem above replaces the cumbersome estimates on conditional conver-
gence of Feynman integrals on Minkowski momentum space. Often this conver-
gence is not proven at all, instead the convergence of the corresponding integrals on
momentum space with euclidean signature is shown. The transition to Minkowski
signature is then made after the integration. This amounts not to a computation but
merely to a definition of the originally undefined Minkowski space integral.

The generalization of the theorem on the extension of distributions to the situation
met on curved spacetimes is due to Brunetti and one of us (K.F.) [7]. It uses techniques
of microlocal analysis to reduce the general situation to the case covered by the
theorem above.

The construction of time ordered products is then performed in the following
way (causal perturbation theory). One searches for a family (7,),en, of n-linear
symmetric maps from local functionals to microcausal functionals subject to the
following conditions:

T1.7)=1
T2 7 =id
T 3. T,(F1,...., Fy) = T (Fy, ..., Fr) x Ty (Fgy1, ..., Fy) if the supports
suppFi, i = 1,...,k of the first k entries do not intersect the past of the sup-
ports suppFj, j = k+ 1,...,n of the last n — k entries (causal factorisation
property).

The construction proceeds by induction: when the first » maps 7z, k = 0,...,n

have been determined, the map 7,11 is determined up to an (n + 1)-linear map Z,,
from local functionals to local functionals. This ambiguity corresponds directly to
the freedom of adding finite counterterms in every order in perturbation theory.

The general result can be conveniently formulated in terms of the formal S-matrix,
defined as the generating function of time ordered products,
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1
s<v>=§a%(v,...,V>. (77)
n=

Then the S-matrix S with respect to an other sequence of time ordered products is
related to S by

~

S=80Z (78)

where Z maps local functionals to local functionals, is analytic with vanishing zero
order term and with the first order term being the identity. The maps Z form the
renormalization group in the sense of Petermann and Stiickelberg. They are formal
diffeomorphisms on the space of local functionals and describe the allowed finite
renormalization.

In order to illustrate the methods described above we work out the combinatorics
in terms of Feynman diagrams (graphs). Let D be the second order functional differ-
ential operator D = ih(A g , %). The time ordered product of n factors is formally
given by

Fiop...Fy=T/(Fi....F) =eP@ PF ... e 2PF,)

Using Leibniz’ rule and the fact that D is of second order we find
(Fi 7 ... F)(@) = eZi<i PUF1(1) -+ Fu@n)lgr=_gumg (79)

with D;; =i h(Ag , 59'?_2%'>' The expansion of the exponential function of the differ-
ential operator yields

[ij
Dij

Iij!

eZi<j D — H i

i<j l,‘j:()

(80)

The right hand side may now be written as a sum over all graphs I" with vertices
V(') ={1,...,n} and [;; lines e € E(I") connecting the vertices i and j. We set
lij =1lji fori > jandl; = 0 (no tadpoles). If e connects i and j we set de := {i, j}.
Then we obtain

T, = Z T 81)
reG,
with G, the set of all graphs with vertices {1, ...n}and 7p = SyLm(I‘)(gr, or) where

Se= ] AfCei.icde)
ecE()
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SIEM)I
|<01:--~:<p
HieV(F) [e:icoe 89i (xe.i) "

or =

and the symmetry factor is Sym(I") = Hi<j l;j!. Note that St is a well-defined
distribution in D’ ((Mz\Diag)‘E(r ) (Diag denotes the thin diagonal) that can be
uniquely extended to D' (M £ since the Feynman fundamental solution has a

unique extension with the same scaling degree. More explicitly we can write (81) as:

1 ~
Tu(F1y ... Fy) = Z S—m(F)(Sr,Sr(Fl,-.-,Fn» (82)
reGg,

Graphically we represent F* with a vertex e and D;; with a dumbbell o—o, s0
each empty circle corresponds to a functional derivative. Applying the derivative
on a functional can be pictorially represented as filling the circle with the vertex.
Note that the expansion in graphs is possible due to the fact that the action used as a
starting point is quadratic, so D is a second order differential operator. If it were of
order k > 2, instead of lines we would have had to use k — 1 simplices to represent
it. Let us illustrate the concepts which we introduced here on a simple example.

Example 2 (removing tadpoles) Let us look at the definition of the time ordered
product of F and G in low orders in A. We can write D(F - G) diagramatically as:

1
—D(F-G) = <A§, F<2>> G+ F<A§, G<2>> + 2<A§, FO G(”> (83)
1

=Oo +-O—20—¢

o _1
Here we see that the tadpoles are present. The lowest order contributions toe 2P F
can be written as:

e PP =F-IDF+0(*)= o —h (O +OM?).

Now we write the expression for F -7 G up to the first order in h:

(1+3D)[(1-4D)F-(1-4D)G]= o e +h e—e +O(K).

All the loop terms cancel out. We can see that applying ¢=2P on G and F reflects
what is called in physics “removing the tadpoles”. In formula (80) it is reflected by
the fact that we set [;; = 0.

As long as the formula (79) is applied to regular functionals there is no problem,
since their functional derivatives are by definition test functions. But the relevant
functionals are the interaction Lagrangians which are local functionals and therefore
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have derivatives with support on the thin diagonal, hence all but the first derivative
are singular. As a typical example consider

k
Fip) = [ dzfc oo
Its derivatives are
k—I
FOlolGxr, ... x) =/d f(z)(p(Z) Y l_[8<Z (84)

In general, the functional derivatives of a local functional have the form

l
FOlgla. o) = [ de 3 101@p @80 [[56 — 30
j i=1

with polynomials p; and ¢-dependent test functions f;[¢]. The integral represen-
tation above is not unique since one can add total derivatives. This amounts to the
relation

/dZQ(az)f(Z)p(axl»~--a3x1)H5(Z_xi) =/a’zf(z)q(8xl + 1 0y)  (85)

xly-- 8XI)H8(Z_-XI

We insert the integral representation (84) into the formula (82) for the time ordered
product and in each term we obtain:

(§1~,81~(F1,...,Fn)):/dxdz I1 (Zf 1(z)

veV(I) v

Qy
Pi, @l de) T 6% — %))t

e:vede

where «, is the number of lines adjacent at vertex v and we use the notation
X = (x.ple € E(I'),v € de), z = (zy|lv € V(I')). We can move the partial
derivatives dy,, by formal partial integration to the distribution Sr. Next we inte-
grate over the delta distributions, which amounts to the pullback of a derivative of
Sr with respect to the map pr : MV — MZEMI given by the prescription

(or(2))ey =zv ifv € de.
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Let p be a polynomial in the derivatives with respect to the partial derivatives
dx,,. v € de. The pullback pjt of pSr is well defined on MY ™\DIAG, where
DIAG is the large diagonal:

DIAG = {z eMVD 3, weV(T),vEw: z, = zw} .

The problem of renormalization now amounts to finding the extensions of py: pSr to
everywhere defined distributions St , € D'(M!V ™!y which depend linearly on p.
These extensions must satisfy the relation

azv Sr)F = Srs(ze 8«"6,11)17 (86)

We present now the inductive procedure of Epstein and Glaser that allows to define
the desired extension of pf pSr. For the simplicity of notation we first consider the
case where no derivative couplings are present.

Let us define an Epstein-Glaser subgraph (EG subgraph) y C T to be a subset
of the set of vertices V (y) € V(I') together with all lines in I" connecting them,

E(y)={ec E():de C V(y)}.

The first step of the Epstein-Glaser induction is to choose extensions for all EG
subgraphs with two vertices, |V (y)| = 2. In this case we have translation invariant
distributions in D’ (M?\Diag), which correspond in relative coordinates to generic
distributions 7, in D'(M)\ {0}). The scaling degree of these distributions is given
by |E(y)|(d — 2), and we can choose a (possibly unique) extension according to
Theorem 2. By translation invariance this gives extensions t,, € D' (M3).

Now we come to the induction step. For a generic EG subgraph y C T" with
n vertices we assume that the extensions of distributions corresponding to all EG
subgraphs of y with less than n vertices have already been chosen. The causality
condition T3. then gives a translation invariant distribution in D’(M!V®)\ Diag)
which corresponds to a generic distribution 7], e D'MIVWI=1\ {0}). The scaling
degree and hence the degree of divergence of this distribution is completely fixed by
the structure of the graph:

div(y) = [E(W)Id -2) = (VI —-Dd, d=dm®). 87)

We call y superficially convergent if div(y) < 0, logarithmically divergent if
div(y) = 0 and divergent of degree div(y) otherwise. Again by Theorem 2 there is
a choice to be made in the extension of t~y in the case div(y) > 0.

Let us now come back to the case where derivative couplings are present. The
scaling degree of p§p fulfills:

sd(pSr) < sd(Sr) + |pl,
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where | p| is the degree of the polynomial p. We can see that p encodes the derivative
couplings appearing in the graph y. In the framework of Connes-Kreimer Hopf
algebras it is called the external structure of the graph. The presence of derivative
couplings introduces an additional freedom in the choice of the extension in each
step of the Epstein-Glaser induction and one has to use it to fulfill (86). This relation
follows basically from the Action Ward Identity, as discussed in [14, 15]. It can be
also seen as a consistency condition implementing the Leibniz rule, see [24].

Let us now remark on the relation of the Epstein-Glaser induction to a more con-
ventional approach to renormalization. Firstly we show, how the EG renormalization
relates to the regularization procedure. We are given an EG subgraph y with n vertices
and we assume that all the subgraphs with n — 1 vertices are already renormalized.
Let

DM == {f e D" | (39 /)(0) =0 Via| < A} (88)

be the space of functions with derivatives vanishing up to order A and let D) Y ot
be the corresponding space of distributions. Theorem 2 tells us that the distribution
t~,, e D'(M"~!) associated with the EG subgraph y has a unique extension to an

element of ’D(/ﬁv( ) (M"~1). An extension to a distribution on the full space D(M"~!)

can be therefore defined by a choice of the projection:
W i DOM"™") — Dyiyeyy (M1

There is a result proven in [13], which characterizes all such projections:

Proposition 1 There is a one-to-one correspondence between families of functions
{we € DI VIBI <22 9% we(0) =8, el <2} (89)

and projections W : D — D,. The set (89) defines a projection W by

Wfi=f—> f0) w,. (90)

o] <A

Conversely a set of functions of the form (89) is given by any basis of ran(1 — W)
dual to the basis {8 : |a| <A} of Di- C D'

Let us now define, following [27], what we mean by a regularization of a distribution.

Definition 11 (Regularization) Letf € D'(R" \ {0}) be a distribution with degree of
divergence A, and let 7 € D) (R") be the unique extension of 7 with the same degree
of divergence. A family of distributions {r¢};co\j0}, 1° € D'(R"), with 2 C C a
neighborhood of the origin, is called a regularization of 7, if

Vg e D, (RY) :  lim (%, g) = (7, g) . 91)

—0
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The regularization {¢¢} is called analytic, if for all functions f € D(R") the map
2\ {0} 3¢~ (t*, f) 92)

is analytic with a pole of finite order at the origin. The regularization {t¢} is called
finite, if the limit limgﬁo(tf, f) e Cexists Vf € D(R"); in this case lim; o 5 e
D’ (R") is called an extension or renormalization of 7.

For a finite regularization the limit lim; _, ¢ #* is indeed a solution 7 of the extension
problem. Given a regularization {¢°} of ¢, it follows from (91) that for any projection
W:.:D— D)L

(T, Wf)= }imo(tf, Wf) YfeDR". (93)

Any extension ¢ € D'(IR") of 7 with the same scaling degree is of the form (¢, f) =
(f, Wf) with some W-projection of the form (90). Since 16 € D’(R") we can write
(93) in the form

= — 1 ¢ _ ¢ ()
WS =lm | (€)= > @ wa) FO0) ] (94)

lo|<sd(1)—n

In general the limit on the right hand side cannot be split, since the limits of the
individual terms might not exist. However, if the regularization {¢t°, ¢ € 2 \ {0}} is
analytic, each term can be expanded in a Laurent series around ¢ = 0, and since the
overall limit is finite, the principal parts (pp) of these Laurent series must coincide.
It follows that the principal part of any analytic regularization {°} of a distribution
t € D'(R"\{0}) is alocal distribution of order sd(¢) —n. We can now give a definition
of the minimal subtraction in the EG framework.

Corollary 1 (Minimal Subtraction) The regular part (rp = 1 — pp) of any analytic
regularization {t°} of a distribution € D'(R" \ {0}) defines by

(M3, f) = g]i_r>I})rp(<t{, m (95)

an extension of t with the same scaling degree, sd(tMS) = sd (7). The extension ™S
defined by (95) is called “minimal subtraction”.

To finish this discussion we want to remark on the difference between the Epstein-
Glaser procedure and the BPHZ scheme. It is best seen on the example of the rising
sun diagram of the ¢* theory. In the framework of BPHZ, it contains three logarithmi-
cally divergent subdiagrams, which have to be renormalized first. In the perspective
of EG, however, it is a diagram with two vertices and, hence, contains no divergent
subdiagram at all. This way one saves some work computing contributions, which,
as shown by Zimmermann [42] cancel out in the end.
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We have just seen how to define the n-fold time ordered products (i.e. multilinear
maps 7,,) by the procedure of Epstein and Glaser. An interesting question is whether
the renormalized time ordered product defined by such a sequence of multilinear
maps can be understood as an iterated binary product on a suitable domain. Recently
we proved in [17] that this is indeed the case. The crucial observation is that multipli-
cation of local functionals is injective. More precisely, let $o(M) be the set of local
functionals vanishing at some distinguished field configuration (say ¢ = 0). Iterated
multiplication m is then a linear map from the symmetric Fock space over §o(M)
onto the algebra of functionals which is generated by §o(M). Then there holds the
following assertion:

Proposition 2 The multiplication m : S*§o(M) — F(M) is bijective (where Sk
denotes the symmetrised tensor product of vector spaces).

Let 8 = m~!. We now define the renormalized time ordering operator on the space
of multilocal functionals F(M) by

T=P7T)op (96)

This operator is a formal power series in & starting with the identity, hence it is
injective. The renormalized time ordered product is now defined on the image of 7;
by

AnB=T(T,'A-T7'B), 97)

This product is equivalent to the pointwise product and is in particular associative
and commutative. Moreover, the n-fold time ordered product of local functionals
coincides with the n-linear map 7, of causal perturbation theory.

Appendix—Distributions and Wavefront Sets

We recall same basic notions from the theory of distributions on R”. Let 2 C R”
be an open subset and £(£2) = C*(£2, R) the space of smooth functions on it. We
equip this space with a Fréchet topology generated by the family of seminorms:

Pr.m(@) = sup [3%p(x)], (98)
xekK
lee|<m

where @ € NV is a multiindex and K C 2 is a compact set. This is just the topology
of uniform convergence on compact sets, of all the derivatives.

The space of smooth compactly supported functions D(£2) = C°(§2, R) can be
equipped with a locally convex topology in a similar way. The fundamental system
of seminorms is given by [35]:
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Pimiera(@) =sup ( sup |DPp(x)|/ey), (99)
v [x[>v,
|P|va

where {m} is an increasing sequence of positive numbers going to 400 and {¢} is a
decreasing one tending to 0.

The space of distributions is defined to be the dual D’ (§2) of D(§2) with respect
to the topology given by (99). Equivalently, given a linear map L on D(£2) we can
decide if it is a distribution by checking one of the equivalent conditions given in the
theorem below [25, 33, 41].

Theorem 3 A linear map u on E£(82) is a distribution if it satisfies the following
equivalent conditions:

1. To every compact subset K of §2 there exists an integer m and a constant C > 0
such that for all ¢ € D with support contained in K it holds:

lu(p)| < C max sup |37 ¢(x)].
Pk xeQ

We call ||ul|cr (o) = max p<k sup,cp [07¢(x)| the C*-norm and if the same inte-
gerk can be usedin all K for a given distribution u, then we say that u is of order
k.

2. If a sequence of test functions {¢r}, as well as all their derivatives converge
uniformly to 0 and if all the test functions @y have their supports contained in a
compact subset K C 2 independent of the index k, then u(¢r) — O.

An important property of a distribution is its support. If U” C U is an open subset
then D(U’) is a closed subspace of D(U) and there is a natural restriction map
D' (U) — D'(U’). We denote the restriction of a distribution u to an open subset U’
by M|U/.

Definition 12 The support suppu of a distribution u € D’(£2) is the smallest closed
set O such that u|o\@ = 0. In other words:

suppu = {x € £2| YU openneigh.of x, U C 2 3¢ € D(§2),suppp C U, s.t. < u, ¢ ># 0}.
Distributions with compact support can be characterized by means of a following

theorem:

Theorem 4 The set of distributions in §2 with compact support is identical with the
dual £'(2) of £(£2) with respect to the topology given by (98).

Now we discuss the singularity structure of distributions. This is mainly based on
[25] and Chap. 4 of [1].

Definition 13 The singular support sing supp u# of u € D’(£2) is the smallest closed
subset O such that u| o\ € £(£2\0).

We recall an important theorem giving the criterion for a compactly distribution to
have an empty singular support:
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Theorem 5 A distribution u € £'(§2) is smooth if and only if for every N there is a
constant Cy such that:

la(k)] < Cy(1+ k)N,

where i denotes the Fourier transform of u.

We can see that a distribution is smooth if its Fourier transform decays fast at infinity.
If a distribution has a nonempty singular support we can give a further characteri-
zation of its singularity structure by specifying the direction in which it is singular.
This is exactly the purpose of the definition of a wave front set.

Definition 14 For a distribution u € D’(£2) the wavefront set WF(x) is the com-
plement in £2 x R" \ {0} of the set of points (x, k) € £2 x R" \ {0} such that there
exist

e afunction f € D(£2) with f(x) =1,
e an open conic neighborhood C of k, with

sup(1 + kDN |7 -u(k)| <00 VN e Ny.
keC

On a manifold M the definition of the Fourier transform depends on the choice
of a chart, but the property of strong decay in some direction (characterized now by
a point (x, k), k # 0 of the cotangent bundle 7*M) turns out to be independent of
this choice. Therefore the wave front set (WF) of a distribution on a manifold M is
a well defined closed conical subset of the cotangent bundle (with the zero section
removed).

The wave front sets provide a simple criterion for the existence of point-wise
products of distributions. Before we give it, we prove a more general result concerning
the pullback. Here we follow closely [1, 25]. Let F : X — Y be a smooth map
between X C R” and Y C R". We define the normal set Ny of the map F as:

N = {(F(x),n) € Y x R"|(dF)" () = 0},

where (dF,)T is the transposition of the differential of F at x.

Theorem 6 Let I' be a closed cone in' Y x (R"{0}) and F : X — Y as above,
such that Np N T = @&. Then the pullback of functions F* : £(X) — E(Y)
has a unique, sequentially continuous extension to a sequentially continuous map
D}(Y) — D' (X), where Dia(Y ) denotes the space of distributions with WF sets
contained in T.

Proof Here we give only an idea of the proof. Details can be found in [1, 25]. Firstly,
one has to show that the problem can be reduced to a local construction. Let x € X.
We assumed that Np N I" = &, so we can choose a compact neighborhood K of
F(x) and an open neighborhood O of x such that F(O) C int(K) and the following
condition holds:
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de > 0s.t. V = U {k|(dF)Tk} satisfies (K x V)N = @.
xeO

Such neighborhoods define a cover of X and we choose its locally finite refinement
which we denote by {Oy}qca, Where A is some index set. To this cover we have
the associated family of compact sets K; C Y and we choose a partition of unity

> 8o = 1, suppgy C O, and a family {fy}eea of functions on Y with supp
acA

fo = Ky and f, = 1 on F(suppgy). Then:

F*(@) = D" gaF*(fup).

a€A

This way the problem reduces to finding an extension of F) = (F | o)

CX(Ky,R) — C®(Oy,R) to a map on D(Ky). Note that for ¢ € CX(Kg),
suppx C Oy, we can write the pullback as:

(Fi(p), x) = / @(Fy(x)x (x)dx = / PO Ty (xydxdn = / ¢ Ty (m)dn

where we denoted Ty (1) = f e Fa()n) v (x)dx. We can use this expression to define
the pullback for u € D[.(K), by setting:

(FEW), x) ﬁ/ﬁ(n)Tx(n)dn-

To show that this integral converges, we can divide it into two parts: integration over
Vi and over R" \ V,,, i.e.:

(FXw), x) = / ()T, (dy + / )T, (.

Va R\ V,

The first integral converges since K, x V, NI" = & and therefore it (n) decays rapidly
on Vy, whereas |T) ()| < f |x (x)|dx. The second integral also converges. To prove
it, first we note that 7i() is polynomially bounded i.e. ¢(17) < C (1 + |n|)" for some
N and appropriately chosen constant C. Secondly, we have a following estimate on
T, (n): for ever k € N and a closed conic subset V C R" such that (d Fo)Tn # 0 for
n € V, there exists a constant Cy y for which it holds®

T, (M| < Crv(1+ 07,

8 For the proof of this estimate see [1, 25]
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Since for € V, it holds (dF,)"n > € > 0, we can use this estimate to prove the
convergence of the second integral.

We already proved that F* : D.(Y) — D'(X) exists. Now it remains to show
its sequential continuity. This can be easily done, with the use of estimates provided
above and the uniform boundedness principle.

Using this theorem we can define the pointwise product of two distributions ¢, s on
an n-dimensional manifold M as a pullback by the diagonalmap D : M — M x M
if the pointwise sum of their wave front sets

WF(t) + WF(s) = {(x, k + k')|(x, k) € WF(¢), (x, k") € WF(s)},

does not intersect the zero section of 7*M. This is the theorem 8.2.10 of [25]. To
see that this is the right criterion, note that the set of normals of the diagonal map
D : x — (x,x)is given by Np = {(x, x, k, —k)|x € M,k € T*M}. The product
ts is defined by: ts = D*(r ® 5) and if one of ¢, s is compactly supported, then so is
ts and we define the contraction by (¢, s) = 75(0).
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Lectures on Mathematical Aspects of (twisted)
Supersymmetric Gauge Theories

Kevin Costello and Claudia Scheimbauer

Abstract Supersymmetric gauge theories have played a central role in applications
of quantum field theory to mathematics. Topologically twisted supersymmetric gauge
theories often admit a rigorous mathematical description: for example, the Donaldson
invariants of a 4-manifold can be interpreted as the correlation functions of a topo-
logically twisted A/ = 2 gauge theory. The aim of these lectures is to describe
a mathematical formulation of partially-twisted supersymmetric gauge theories (in
perturbation theory). These partially twisted theories are intermediate in complexity
between the physical theory and the topologically twisted theories. Moreover, we
will sketch how the operators of such a theory form a two complex dimensional
analog of a vertex algebra. Finally, we will consider a deformation of the ' = 1
theory and discuss its relation to the Yangian, as explained in [8, 9].

These are lecture notes of a minicourse given by the first author at the Winter school
in Mathematical Physics 2012 in Les Houches on minimal (or holomorphic) twists
of supersymmetric gauge theories.

Supersymmetric gauge theories in general are very difficult to study, whereas
topologically twisted supersymmetric gauge theories have been well-studied. Our
object of interest lies somewhere in between:
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In the first section, we recall basics of supersymmetry. We define and describe
holomorphic twists of N' = 1, 2, 4 supersymmetric theories. In the second section,
we discuss the structure of the observables of field theories. In the last section, we
examine the structure of the observables of twisted SUSY gauge theories more closely
and explain a relation to vertex algebras. Moreover, we consider a deformation of the
N = 1 theory and discuss its relation to the Yangian and (conjecturally) to the quan-
tum loop algebra. In a short appendix, we briefly summarize the framework set up in
[7] relating perturbative field theories, moduli problems, and elliptic L,-algebras.

1 Basics of Supersymmetry

In these lectures, we consider gauge theories on R*. Everything in this first section
is essentially standard, references for this material are [7, 11, 13].

1.1 Super-Translation Lie Algebra and Supersymmetric Field
Theories

Recall that there is an isomorphism of groups
Spin(4) = SU(2) x SU(2).

Let ST and S~ be the fundamental representations of the two SU(2)’s. More precisely,
referring to the two copies of SU(2) in Spin(4) as SU(2)+, let ST be the 2-dimensional
complex fundamental representation of SU(2)+ endowed with trivial SU(2) _ action.
Thus, ST is a 2-dimensional complex representation of Spin(4), and similarly, so is
S~

Let Vg = R*and V¢ = Vg ® C. Then Vg = R* is the defining 4-dimensional
real representation of SO(4) and

Ve=Stes™

as complex Spin(4) representations.

Definition 1 The super-translation Lie algebra TN=1is the complex Z/27Z-graded
Lie algebra!

™=l —veonstes),

where the Lie bracket is defined by [QT,07] = 0T ® O~ € V¢ for OV €
ST, 0~ e S, and is zero otherwise.

! Here ITC means that the vector space C has odd degree. So TN=! consists of V¢ in degree 0 and
ST @ S~ in degree 1.
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To encode more supersymmetry, we extend this definition to the following.

Definition 2 Let W be a complex vector space. Define the super-transilation Lie
algebra TV to be the complex Z/27Z-graded Lie algebra

TV = Ve DS TWe S QWh,

where the Lie bracket is defined by [T @w, O~ ®@uw*] = (0T ® Q™) (w, w*) € V¢
for 0T @w e ST W, and 0~ @ w* € ST ® W*. The number of supersymmetries
is the dimension of W. For W = C* we use the notation

TN=k = 7"

Note that Spin(4) acts on TV,

Definition 3 A supersymmetric (SUSY) field theory* on R* is a field theory on
R* = Vp, equivariant under the action of Spin(4) x Vg on R*, and where the action
of the Lie algebra Vp of translations is extended to an action of the Lie algebra of
super-translations, in a way compatible with the Spin(4)-action.

Observe that GL(W) acts on 7" naturally. If Gg € GL(W), one can ask that a
SUSY field theory has a compatible action of G and 7" . In physics parlance, G g
is the R-symmetry group of the theory.

1.2 Twisting

The general yoga of deformation theory [18, 22, 23] tells us that symmetries> of any
mathematical object of cohomological degree 1 correspond to first order deforma-
tions. More generally, symmetries of degree k give first-order deformations over the
base ring C[e]/e?, where ¢ is of degree 1 — k. The idea is the following. Suppose
we are dealing with a differential-graded mathematical object, such as a differential
graded algebra A with differential d. A symmetry of A of degree k is a derivation X of
A of degree k. The corresponding deformation is given by changing the differential
to d + X, where as above ¢ has degree 1 — k and we work modulo &°.

Suppose that we have a supersymmetric field theory, acted on by the supersym-
metry Lie algebra T". Let us pick an odd element Q € 7" In the supersymmetric
world, things are bi-graded, by Z and Z/2. We have both a cohomological degree
and a “super” degree. The symmetry Q of our theory is of bi-degree (0, 1); i.e. itis
of cohomological degree 0 and super degree 1. Thus, Q will define a deformation of
this theory over the base ring C[¢]/1%, where the parameter 7 is of bi-degree (1, 1)
(and thus even).

2 For simplicity, we omit formal definitions here. See the Appendix or [7] for more details.

3 In order for this relationship to be a bijection, the word “symmetry” needs to be understood
homotopically: e.g. by considering symmetries of a free resolution of an algebraic object.
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Concretely, this deformation of our theory is obtained by adding 7 Q to the BRST
differential of the theory. For example, if the theory is described by a factoriza-
tion algebra (as we will discuss later), we are adding ¢ Q to the differential of the
factorization algebra.

In general, first order deformations (corresponding to symmetries of degree 1)
extend to all-order deformations if they satisfy the Maurer-Cartan equation. In the
example of a differential graded algebra described above, a derivation X of A of
degree 1 satisfies the Maurer-Cartan equation if

dX + 3[X. X1 =0.

This equation implies that the differential d + £X has square zero, where we are
working over the base ring C[[¢]].

The Lie algebra 7% has zero differential, so that the Maurer-Cartan equation for
an odd element Q € TY is the equation [Q, Q] = 0. Therefore, if Q satisfies this
equation, then it gives rise to a deformation of our theory over the base ring C[[7]],
where again ¢ is of bi-degree (1, 1). The twisted theory will be constructed from this
deformation.

However, now we see that there is a problem: we would like our twisted theory to
be a single Z x Z/2-graded theory, not a family of theories over C[[#]] where ¢ has
bi-degree (1, 1). (The fact that ¢ has this bi-degree means that, even if we could set
t = 1, the resulting theory would not be Z x Z/2-graded.)

To resolve this difficulty, we use a C* action to change the grading.

Definition 4 Twisting data for a supersymmetric field theory consists of an odd
element Q € T" and a group homomorphism p : C* — G such that

p(M)(Q) =40 VreC”

and such that [Q, O] = 0.

Suppose we have such twisting data, and that we have a theory acted on by 7%
with R-symmetry group G r. Then we can, as above, form a family of theories over
Cl¢1 by adding ¢ Q to the BRST differential. We can now, however, use the action of
C* on everything to change the grading. Indeed, this C* action lifts the bi-grading
by Z x Z /27 to a tri-grading by Z x Z x 7 /27, where the first Z is the weight under
the C* action. Since Q has weight 1 under this C* action, ¢ has weight —1 and so
tri-degree (—1,1,1).

From this tri-grading we construct a new Z x Z /27, grading, by declaring that an
element with tri-degree (a, b, ¢) has new bi-degree (b + a, ¢ + a). This change of
grading respects signs.

After this change of grading, we see that we have a family of theories over C[[¢]]
where ¢ is now of bi-degree (0, 0) i.e. it is of cohomological degree 0 and super
degree 0. We still have the C* action, and this acts on ¢ by sending r — A ™'z,
Therefore this family of theories is independent of 7, and we can set r = 1.
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Thus, our twisting data defines a twisted field theory with BRST operator d + Q if
d is the original BRST operator. For details on the construction, see in [7, Sect. 13].

Remark 1 Our twisted field theory is a C*-equivariant family of theories over C
with BRST operator d 4 ¢ Q. By the Rees construction, this is the same as the data
of a filtration on the twisted field theory, whose associated graded is the untwisted
theory with a shift of grading. It follows that there is a spectral sequence from the
cohomology of the observables of the untwisted theory to that of the twisted theory.

One might think that the cohomology of observables of the twisted theory (in the
sense above) is a subset of the cohomology of observables of the untwisted theory,
because one is looking at the Q-closed modulo Q-exact observables of the original
theory. This is not really true, however, because this fails to take account of the
differential (the BRST operator) on the observables of the untwisted theory. The best
that one can say in general is that there is a spectral sequence relating twisted and
untwisted observables.

There are examples (obtained by applying further twists to theories which are
already partially twisted) where this spectral sequence degenerates, so that the coho-
mology of twisted observables has a filtration whose associated graded is the coho-
mology of untwisted observables. In such cases, twisted and untwisted observables
are the “same size”, and twisted observables are definitely not a subset of untwisted
observables (at the level of cohomology).

1.3 Minimally Twisted N' = 1, 2, 4 SUSY Theories
Are Holomorphic

We begin with the case N/ = 1. Choosing an element Q € S is the same as
choosing a complex structure on the linear space R*, with the property that the
standard Riemannian metric on R* is Kihler for this complex structure and that the
induced orientation on R* is the standard one. (Elements in S~ give rise to such
complex structures which induce the opposite orientation on R*).

One can see this as follows. Given Q € ST, the stabilizer Stab(Q) C Spin(4) =
SU2) x SU(2) is SU(2)_, so Q provides a reduction of the structure group to
SU(2). Concretely, 0 ® S~ C V¢ = C* is the (0, 1) part, i.e. the —i eigenspace of
the complex structure, and its complex conjugate is the (1, 0) part.

The complexified R-symmetry group for A" = 1 supersymmetry is C*, which
acts on supercharges in ST with weight 1 and in S~ with weight —1. As we explained
earlier, we will use this R-symmetry action to change gradings, so that supercharges
in S have cohomological degree 1 and those in S~ have cohomological degree —1.

After we change the grading in this way, the Z-graded version of the super-
translation Lie algebra

T™N=l—s[11® Ve ® ST[-1]
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acts on the untwisted theory. If we twist by an element Q € S™, then the dg Lie
algebra (TN =1 [Q, —]) acts on the Q-twisted theory.

Let 3‘%, 637’, denote a basis for V¢ where we are using the complex structure on
VR induced by Q. Then the map

[0,—]1:S" = V¢
has image [Q,S7] = 0 ® S~ = V((:O’l), which is the subspace generated by the
3%’3. Thus, translations in the % directions are homotopically trivial in the twisted
theory.

This means that the twisted theory is holomorphic. Let us briefly explain this idea.
Recall that the energy-momentum tensor of a field theory arises from the action of
the translation group VR on the field theory. One (quite weak) way to say that a field
theory is topological is that the energy-momentum tensor is trivial. This implies,
for instance, that correlation functions are independent of position. Our definition
of holomorphic is that the action of V(éo’ Dis (homotopically) trivial. This will mean
that correlation functions are holomorphic functions of position.

In fact, for N' = 1,2, 4, any twist by a Q of the form QT @ w € ST ® W (a
decomposable tensor) produces a holomorphic field theory. Twists by such elements
are called minimal twists.

Examples of such a minimally twisted supersymmetric gauge theory can be
obtained by twisting the anti-self-dual A" = 1, 2, 4 supersymmetric gauge theories*
on R*. In fact, these twisted field theories arise as cotangent theories, which means
that the space of solutions to the equations of motion is described as a —1-shifted
cotangent bundle:

N =1 T*[—1](holomorphic G-bundles)
N =2  T*[—1](holomorphic G-bundles + ¥ € Ho(gp))
N =4  T*[—1](holomorphic G-bundles + V1, V2 € HO%gp) s.t. [V1, Y] = 0)

If we work perturbatively (as we do for most of this note), we consider solutions to
the equations of motion which lie in a formal neighbourhood of a given solution.
It is possible to glue together the perturbative descriptions over the moduli space
of classical solutions, but we do not consider this point in this note. Here G is a
semi-simple algebraic group. We denote by gp = P X g the adjoint bundle of Lie
algebras associated to P.

They admit an explicit description, as derived in [7]. The fields of these theories
can be described in the BV formalism as follows:

N =1 The fields are

Q0% g)[1] ® 22*(C2, g¥),

4 We will refer to these as “the A" = 1, 2, 4 twisted SUSY gauge theory” in the rest of these notes.
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and the action on the space of fields is given by

/ Tr(B A (3o + %[a, al),
(CZ

where o € 2%*(C?, g)[1] and B € £2%*(C?, g¥). This theory is a holo-
morphic BF theory, see [8]. It is equivalent to holomorphic Chern-Simons
theory on the supermanifold C?/!,

2 We get something similar, replacing g by g[e], where ¢ is a square-zero
parameter of degree 1. Thus, the field « is an element £20*(C2, gleD[1] and
the field B is an element of 2%*(C?, (g[e])V).

N =4 Again, we get something similar, replacing g by gle1, €2], where €1, &3 are

square-zero parameters of degrees 1 and —1 respectively. This is equivalent
to holomorphic Chern-Simons theory on C23.

=
Il

This result from [7] allows an explicit calculation (at the classical level) of the spaces
of observables of these supersymmetric gauge theories. (We will discuss the structure
on observables using the language of factorization algebras shortly). For instance,
for the N/ = 4 theory, the space of observables supported at the origin in C is

C*(gllz1, 22, €1, €2, €31

where the ¢; are three odd parameters. This result was also derived in [10], using
different methods.

2 Factorization Algebras in Perturbative Quantum Field Theory

In the book [6], a definition of a quantum field theory based on Wilsonian effective
action and the BV formalism is given. The main result is that we can construct, using
renormalization, such perturbative quantum field theories starting from a classical
field theory and working term by term in £, using obstruction theory. Let £ be the
space of fields of a classical field theory and let O (&) be the functionals on . If we
have a quantization modulo A", there may be an obstruction O, € H'(O},c(E)) to
quantize to the next order. Here O;,.(€) denotes the subcomplex of O () consisting
of local functionals, i.e. functionals which can be written as sums of integrals over
differential operators. If O,, vanishes, we can quantize to the next order, and the
possible lifts are a torsor for H%(Ojoc(E)).

2.1 Factorization Algebras
In [4], Costello and Gwilliam analyze the structure of observables of a quantum field

theory in the language of factorization algebras. The notion of factorization algebra
was introduced in the algebro-geometric context by Beilinson and Drinfeld in [2].
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The approach used by Costello-Gwilliam is very similar to how observables and the
operator product are encoded in Segal’s axioms for quantum field theory [26-28].

Definition 5 Let M be a topological space and let C be a symmetric monoidal
category (in examples from field theory C will be cochain complexes or some variant).
A prefactorization algebra F on M (with values in C) consists of the following data.

1. For every open subset U C M, an object F(U) € Ob(C).
2. If Uy, ..., U, are pairwise disjoint open subsets of an open set V, we have a
morphism

\%4
(gg@ R FU)® - @F(U,) — F(V),

suchthatif Uy I --- U U, € V;and Vi LI --- 1V € W, the following diagram
commutes.

(for k = np = ng = 2)

A factorization algebra on M is a prefactorization algebra on M which addi-
tionally satisfies a gluing condition saying that given an open cover {U;} of V
satisfying certain conditions, F (V') can be recovered from the F(U;)’s.This glue-
ing condition is analogous to the one for (homotopy) (co-)sheaves.

For the exact gluing condition and more details on the theory of factorization
algebras we refer to [4] and to Grégory Ginot’s contribution [15].

Although the definition makes sense for an arbitrary topological space, we will
only consider factorization algebras on manifolds.

2.2 Associative Algebras are Factorization Algebras

Actually, associative algebras are a special case of factorization algebras with values
in chain complexes. Suppose that we have a factorization algebra F on R with the
property that for any interval (a, b) € R the map

F(a, b)) — F(R)
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is a quasi-isomorphism, i.e. an isomorphism on cohomology.’ Then F defines
an associative algebra (up to homotopy). Let A = F(R) ~ F((a, b)) for any
(a,b) CR. If (a,b) U (¢,d) C (e, f) withe <a < b < c¢c <d < f, the
factorization algebra structure gives us a map

F((a,b)) — F(R)

F((a,b)) ® F((c,d)) — F((e, f))
l: 14 14 ] [0
e f A ® A 5 A

Conversely, any associative algebra defines alocally constant factorization algebra
on R.

Remark 2 Such factorization algebras really appear in quantum mechanics. Quan-
tum mechanics is the field theory with fields ¢ € C2°(R) and action functional
S(p) = f PAP, ¢ € C°(R). Then the equations of motion say that ¢ is harmonic,
i.e. A¢p = 0. Harmonic functions on (a, b) extend uniquely to harmonic functions
on R: this implies that the factorization algebra constructed from this example has
the property that the map F((a, b)) — F(R) is an isomorphism. This example will
be explained in more detail in 2.4.

2.3 The Factorization Algebra of Observables

It is shown in [4] that observables of a (perturbative) quantum field theory in Euclid-
ean signature turn out to have the structure of a factorization algebra with values in
the category of cochain complexes of C[[/]l-modules, flat over C[[2]]. These cochain
complexes are built from spaces of smooth functions and distributions on the space-
time manifold. Technically, these cochain complexes are endowed with a “diffeo-
logical” structure, which is something a little weaker than a topology; this reflects
their analytical origin.

Observables of a classical field theory also form a factorization algebra. Starting
from the quantum observables, the classical observables are

functions on the “derived” moduli space of

cl e q — p

Obs™(V) := Obs™(V)/h = [ solutions to the Euler-Lagrange equationson V |
Taking the derived space of solutions to the Euler-Lagrange equations amounts to one
version of the BV classical formalism. The antifields of the BV formalism correspond
to taking the Koszul complex associated to the equations of motion and the ghosts

3 Such a factorization algebra is called locally constant.
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correspond to taking the quotient by the gauge group in a homological way. For more
details, see [6].

The factorization algebra of quantum observables deforms that of classical observ-
ables, in that quantum observables are a factorization algebra over C[[/]] and restrict
to classical observables modulo &. To first order, this deformation is closely related
to the BV antibracket on the classical observables.

We should emphasize that quantum observables, for a general quantum field theory
in Euclidean signature, do not form an associative algebra.® Associative algebras arise
when one studies factorization algebras on the real line (associated to 1-dimensional
quantum field theories). The associative product is the operator product of observ-
ables in the time direction. For a factorization algebra on a higher-dimensional mani-
fold, there is no specified “time” direction which allows one to define the associative
product, rather there is a kind of “product” for every direction in space-time.

Furthermore, quantum field theories in dimension larger than one rarely satisfy
the locally-constant condition which was satisfied by the observables of quantum
mechanics. The exception to this rule is the observables of a topological field theory.
In this case, however, we find that observables from an E,,-algebra (a structure studied
by topologists to encode the product in an n-fold loop space) rather than simply
an associative algebra. This is a result of Lurie [24], who shows that there is an
equivalence between locally-constant factorization algebras on R"” and E,-algebras.

Another point to emphasize is that factorization algebras are only the right lan-
guage to capture the structure of observables of a QFT in Euclidean signature. In
Lorentzian signature, the operator product (at least for massless theories) has singu-
larities on the light-cone and not just on the diagonal, so that we would only expect
to be able to define the factorization product for pairs of open subsets which are not
just disjoint, but which can not be connected by a path in the light cone.

2.3.1 More structures on the factorization algebra of observables

Translation invariance: If we additionally have translation invariance on a locally
constant factorization algebra on R, we get an associative algebra endowed with
an infinitesimal automorphism, i.e. a derivation. This derivation encodes the Hamil-
tonian of the field theory.

Poisson bracket: The classical observables Obs¢! (U) form acommutative dg algebra.
Moreover, we have a Poisson bracket of cohomological degree one,’ the “antibracket”
{,}on Obs°.(U).

6 Note that we work in Euclidean signature. Some axiom systems in Lorentzian signature have an
asssociative structure on observables: see Klaus Fredenhagen’s lectures in the same volume.

7 This means that Obs! has the structure of a Py factorization algebra, where Py is the operad
describing commutative dg algebras with a Poisson bracket of degree 1.
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(Weak) Quantization condition: In deformation quantization, the non-commutative
algebra structure to first order must be related to the Poisson bracket. We have a similar

condition® relating the factorization algebras of quantum and classical observables.
The differential d on Obs?(U) should satisfy

1. Modulo £, d coincides with the differential dy on Obs (U).
2. Let

d, : H(0bs"(U)) — H'T'(0bs (U))
be the boundary map coming from the exact sequence of complexes
hObs (U)y — Obs?(U) mod K> —> Obs (U).

d; lifts to a cochain map of degree 1 Obs (U) — Obs(U), which we continue
to call d;. Then, if we define a bilinear map on Obs< (U) by

{a, Y = d;(ab) F ad\b — (d1a)b

we ask that there is a homotopy between {a, b}4 and the original bracket {a, b}.
(In particular, these two brackets must coincide at the level of cohomology).

2.4 Example: The Free Scalar Field

Let M be a compact Riemannian manifold. We will consider the field theory where
the fields are ¢ € C°°(M), and the action functional is

s = [ 620,
M
where A is the Laplacian on M.

2.4.1 Classical Observables

If U € M is an open subset, then the space of solutions of the equations of motion
on U is the space of harmonic functions on U,

{¢p € C(U)|A¢ = 0}.

8 We present here a weak version of the condition. A stronger version, discussed in [4], is that Obs?
is a BD factorization algebra, where B D is the Beilinson-Drinfeld operad. The B D operad is an
operad over C[[ /] deforming the Py operad: BD ®cyny C =~ Pp.
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As discussed above, we consider the derived space of solutions of the equations
of motion. This is a linear dg manifold, i.e. a cochain complex. For more details
about the derived philosophy, the reader should consult [4]. In this simple situation,
the derived space of solutions to the free field equations, on an open subset U € M,
is the two-term complex

EU) = (COO(U) N C°°(U)[—1])

The classical observables of a field theory on an open subset U € M should be
functions on the derived space of solutions to the equations of motion on U, and thus
the symmetric algebra of the dual.® The dual to the two-term complex £(U) above
is the complex

& W) = (P11 = D)),

where D, (U) indicates the space of compactly supported distributions on U'.

We would like to define Obs! = O(E) = Sym(EY), but in order to define a
Poisson structure on Obs®!, instead we need to use a version of elliptic regularity,
which we call the Atiyah-Bott lemma [1]. Let

E(U) = (CXW)H[1] — CX(U)).
The Atiyah-Bott lemma states that the map of cochain complexes
EU) — £,
given by viewing a compactly supported function as a distribution, is a continuous

homotopy equivalence.
Thus, we define our classical observables to be

0bs!(U) = Sym (EL()) = @, Sym” (V).

By Sym” Sé(U ) we mean the S,-invariants in the complex of compactly supported
sections of the bundle (E !)g” on U". Equivalently, we can view Sym” £é(U ) as
the symmetric product of the topological vector space 86!(U ) using the completed
inductive (or bornological) tensor product.'?

9 For free theories, it is enough to consider polynomial functions.

10 These tensor products both have the property that C2° (M )RC °(N) = CX(M x N), and simi-
larly for compactly supported smooth sections of a vector bundle on M. The more familiar projective
tensor product does not (at least not obviously) have this property. See [16] for a discussion of the
inductive tensor product and [20] for the bornological tensor product. The reader with no taste for
functional analysis should just take the fact that £.(U)®" = I'.(U, E Wy a5 a definition of £, (U)®".
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It is clear that classical observables form a prefactorization algebra. Indeed,
Obs!(U) is a differential graded commutative algebra. If U C V/, there is a natural
algebra homomorphism

il 0bs(U) — 0bs (V),
which on generators is just the natural map C°(U) — CS°(V) given by extending
a continuous compactly supported function on U by zero on V\U.
IfUy,...,U, C V are disjoint open subsets, the prefactorization structure map
is the continuous multilinear map

Obs (Uy) x - x Obs (U,) — Obs (V)

n
o X - X oy > Zi:,/"ai € 0bs (V).

i=1
In dimension one, this is particularly simple.
Lemmal [4]IfU = (a,b) C Ris an interval in R, then

1. Forany x € (a, b), the complex
! oo A o]
EL(a, b)) = (C2 (@, by > CZ((a. b))
is quasi-isomorphic to R? situated in degree 0, i.e. the cohomology is
H* (€l((@, b)) = R2,
2. The algebra of classical observables for the free field has cohomology
H* (0bs (@, b)) = RIp.q),

the free algebra on two variables.

Proof We first show that for any xg € (a, b), the map

E((@, b)) = (C=((@.b) = C*((@. b[-11) 7> B2
@) — ($(x0). ¢/ (x0)

is a quasi-isomorphism. To show this, consider the inclusion

R2 <5 £((a. b))
(a,b) —> (a + b(x — xp), 0).
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Then 7w oi =id|g2 andi o7 : (¢, ¥) > (¢(x0) + ¢’ (x0)(x — x0), 0) € E((a, b)).
Thus, a homotopy between the identity and i o 77 is given by

x Yy
(@, V) — S(@, ¥)(x) = / /WM)dudy,O ,

y=a u=a

asid—iom =[A, S].

This implies that the dual £V ((a, b)) also is quasi-isomorphic to R? and, by elliptic
regularity, £.((a, b)) ~ £V ((a, b)) ~ R2.

The second part follows directly from the first and the exactness of Symp.
Remark 3 The quasi-isomorphism 7 from the proof induces the desired quasi-

isomorphism 7V : (R?)Y — £V. So,

7/(1,0)(, ¥) = ¢ (x0) = 8x(d) = q (¢, V)
770, (9, ¥) = ¢'(x0) = 8, ($) = p($. V),

the position and the momentum observables, respectively. Thus, the cohomology of
&Y ((a, b)) is generated by g and p.

Recall that the classical observables are endowed with a Poisson bracket of degree
l.Fora € C°(U) and B € CX°(U)[1], we have

{a, B} = /oz,B dVol.

U

This extends uniquely to a continuous Poisson bracket on Obs< (U).

2.4.2 Quantizing free field theories

Our philosophy is that we should take a Py factorization algebra Obs®! (e.g. the
observables of a classical field theory) and deform it into a B D factorization algebra
Obs1. This is a strong version of the quantization condition. For a general (interact-
ing) field theory, with the current state of technology we can only construct a weak
quantization as defined in Sect.2.3. However, in the case of a free field theory, we
can show that the quantization satisfies this strong quantization condition.

Now we will construct such a quantization of the classical observables of our free
field theory, i.e. a factorization algebra Obs? with the property that

0bs?(U) = Obs° (U)[h]

as C[Ah]-modules and with a differential d such that
1. Modulo A, d coincides with the differential on Obs® (U),
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2. d satisfies
d(ab) = (da)b + (—=1)a(db) + h{a, b},

where the multiplication arises from that on Obs°L(U).

The construction (see also [17]) starts with a certain graded Heisenberg Lie
algebra. Let

HW) = (C2W) 2 CEW)I-11) @ RA(-1],

where R is situated in degree 1. Let us give H(U) a Lie bracket by saying that, if
a e CPU)and B € CX(U)[—1], then

[a, B] = h/aﬂ.

U

Let
Obs?(U) = C_(H(U))

be the Chevalley-Eilenberg Lie algebra chain complex of H(U) with the grading
reversed. The tensor product that is used to define the Chevalley chain complex is,
as before, the completed inductive (or bornological) tensor product of topological
vector spaces.
Thus,
0bs?(U) = (Sym™(H(U)[1]), d)
= (0bs(U)[N], d)

= (@1, BYES) [h)

where, in the last line, E' is the direct sum of the trivial vector bundles in degrees 0
and —1. The differential d is defined by first extending the Lie bracket by

[, B A Y] = o, Bl Ay + (=D A, y],
and then defining
dla A B)=da A B+ (=D%a AdB + hla, B].
Thus, by definition, Obs?(U) is a B D-algebra and Obs? has the structure of

a factorization algebra in B D-algebras by extending the natural map C*°(U) —
C°°(V) by the identity to the central extension.
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Finally, one can prove that our construction of the factorization algebra for a
free field theory, when restricted to dimension one, reconstructs the Weyl algebra
associated to quantum mechanics.

Proposition 1 Let Obs9 denote the factorization algebra on R constructed from the
free field theory, as above. Then,

1. The cohomology H*(Obs?) is locally constant.

2. The corresponding associative algebra is the Weyl algebra, generated by p, q, h
with the relation [p, q] = h. Classically, p is the observable which sends a field
¢ € C®(R) to ¢'(0), and q sends ¢ to ¢ (0).

3. The fact that this factorization algebra is translation invariant means that the
corresponding associative algebra is equipped with a derivation which we call
H. This derivation is given by the Lie bracket with the Hamiltonian,

H=1in"1p? 1

A proof can be found in the section on quantum mechanics and the Weyl algebra
in [4].

3 Factorization Algebras Associated to SUSY Gauge Theories

In this section, we will mostly consider the AV = 1 twisted SUSY gauge theory.

3.1 Replacing C? by a Complex Surface

In Sect. 1, we discussed twistings of SUSY gauge theories. They arose as parts of a
theory invariant under some Q € S* and gave a holomorphic field theory on C2.

Recall that for A = 1, the fields £ of the twisted theory on C? are built from a
Lie algebra g with associated elliptic Lie algebra Lnr—; = E[—1],

L= =2%(C g @22 (C g)[-11= 2% C gog"[-1), (1)
with differential 9, and Lie bracket determined by

[8,81=0, [a,B]=adi(B) e 2%*(C% g")[-11, [a &]eR2%%C? g),
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fora, o' € 29%(C?, g), B, B’ € 2%*(C?, g¥)[—1]. The invariant pairing on £r—;
is given by

(¢®X1¢®Y)=/¢AW(X,Y>9,

where X € g, Y € gV, and ¢, ¥ € 2%*(C?).!!
Our Chern-Simons action functional is

1 -

1
S(x) = E(X’ ax)+ g(x, [x, x1)

for a general field .

We saw at the end of Sect. 1 that this twisted N = 1 theory is the space of solutions
to the equations of motion for the cotangent theory to the pointed moduli problem
of holomorphic principal G-bundles on C2. This theory makes sense on a general
complex surface X, and is the cotangent theory to the pointed moduli problem of
holomorphic principal G -bundles on X,

T*[—1]Bung(X).

Similarly to before, we find that the moduli space of solutions to the equations of
motion is

{(P, ¢)| P a principal G-bundle on X, ¢ € Hg(X, Kx ® gz\l/d)} )

where K is the canonical bundle on X and g = Lie(G). This problem corresponds
to the elliptic Lie algebra

Ly=1(X) = 2% (X, 9) & (X, g ® Kx)[-1].
This is because the equations of motion for £Lxr—; (X) give
da + l[ot, o]
2
fora € 29! (X, g), which is the Maurer-Cartan equation, and for 8 € 92'0(X, g),

3B = 03B +[a, B1 = 0.

' This is actually only well-defined for compactly supported sections, but this technical difficulty
can be overcome by passing to a quasi-isomorphic chain complex similar to what we did in 2.4.
See [4] for details.
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Thus, the principal bundle corresponds to a Maurer-Cartan element in 2%* (X, g)
and ¢ to the element 8.

Recall that the classical observables are functions on the (derived) space of solu-
tions to the equations of motion. If our theory is given by the elliptic Lie algebra
L, the solutions to the equations of motion are given by Maurer-Cartan elements of
L,ie. x € £ such that 9x + %[X, x]1 = 0.If U € C? is open, then the classical
observables on U are Lie algebra cochains of L(U),

Obs(U) = CHLW)) = Sym (LWV)"[~1]).

In our case, £ = L -1 (X) is the semi-direct product, i.e. the split-zero extension
hx Mofh = .QO'*((CZ, g) with M = .(22’*(((32, 9),soif U is aball, we essentially get

0bs!(U) = C*(h x M) = C* (Hol(U) @ g, Sym ((Hol(1) dz1dz2 @ 9)Y))

a fancy (derived) version of functions on {¢p € Hol(U) dz;dz; ® g}/Gauge.

3.2 Quantization

Recall that by quantization, we mean that we deform the commutative factorization
algebra of classical observables to a quantum one. Essentially the differential is
deformed by using the BV Laplacian and by replacing the classical action of our
field theory by a quantum one which satisfies a renormalized BV quantum master
equation. In our case, we find that there is a quantization, and it even is unique:

Theorem 1 The N = 1 minimally twisted supersymmetric gauge theory on a com-
plex surface X with trivial canonical bundle, perturbing around any holomorphic
G-bundle for a simple algebraic group G, admits a unique quantization compatible
with certain natural symmetries.

The proof of this is given in [8]. It relies on the renormalization theory from [6]
which reduces it to a cohomological calculation. More precisely, [6] tells us that,
order by order in £, the obstruction to quantizing to the next order lies in H L O0),
and the ambiguity in quantizing is given by H°(O},). Similar techniques can be
used to show that the twisted N’ = 2 and 4 theories can be quantized on any complex
surface X.

Remark 4 This theorem is a special case of a very general result. Recall that the
fields of the twisted A" = 1 theory are T*[—1] Bung (X). Since X has trivial canon-
ical bundle, Bung (X) already has a symplectic form. The general result is that the
cotangent theory to an elliptic moduli problem which is already symplectic has a
natural quantization (the unique quantization compatible with certain symmetries).
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3.3 The Relation to Vertex Algebras

As we saw in the previous section, quantization gives a factorization algebra of
quantum observables, which looks like

Obs? : U — (C*(LWU))IA], d),

where modulo £, d coincides with the differential dcg on C*(L(U)), cf. Sect.2.4.2.
In particular, the factorization algebra structure of our minimally twisted V" = 1, 2, 4
theory on C? associates a product to each configuration of k balls inside a larger one
in C%. Now consider the situation where the big ball is centered at the origin. By
translation invariance of our theory, up to isomorphism Obs?(B,(z)) is independent
of z, and we call this V,.. Thus, for every p = (z1, ..., zk), a point in the parameter
space

P(r1, ..., r¢ls) = {k disjoint balls of radii rq, . .., ri inside V},

wegetamapmy :V, ®@---Q V, — V.

o o my Ve ®- @V, — Vg

This map depends smoothly on the parameter, i.e.
Vrl ®®Vrk — VS®COO(P(r11"'7rk|S))'

If the field theory is holomorphic (as in our case), this map lifts to a cochain map of
degree 0 compatible with composition

Vi @ ® Vi —> Vs ® QU5(P(r1, ..., rils)),
which leads to a map in cohomology,
H*(Vrl) ® ttt ® H*(Vrk) — H*(VS‘) ® Hg (P(r17 R} rk|S)) . (2)
Remark 5 Incomplex dimension 1, the analogous structure is that of a vertex algebra.
Consider the multiplication arising from the factorization algebra structure for 2 balls
inside a larger one. Assume that one is centered at the origin, B, (z1) = B, (0) =:

B,,. Let P'(r1,r2 | ) denote the subspace of P(ry, rp | s) where the first ball is
centered at the origin.
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- Vi, ®Viy — Ve ® 2% (P(r1,m2]s))  (3)

Assuming B,, to be centered at the origin, the center of the second disk z = z» of
radius r; can be anywhere in the annulus of radii 71 4+, and s —r>. Thus, our parameter
space P’(r1,ry | s) consists of this annulus. Let us look at the maps analogous to
(2). The Oth cohomology of P’(ry, r2|s) consists of holomorphic functions on the
annulus which are just power series in z and z~! which converge on the annulus. So
we get a map of degree zero

H*(Vy) ® H*(V,,) — H*(Vy) ® C{z, 271},

where C{z, z~!} refers to those Laurent series which converge on the appropriate
annulus. Moreover, in one dimension, all higher cohomologies vanish, so this is
all we get. See [17] for the worked out example of the By system, and [4] for the
general theorem that holomorphically translation-invariant factorization algebras in
one complex dimension have the structure of a vertex algebra on their cohomology.

Remark 6 For holomorphic theories in complex dimension > 1, it turns out to be
better to use polydiscs instead of discs. Thus, B, C C? should be understood as the
product D, x D, of two discs of radius r in C.

In our case of a twisted SUSY gauge theory on C2, we get a two dimensional
analog of vertex algebras, i.e. for NV = 1, 2, 4 and for any semi-simple Lie algebra
we get a two dimensional vertex algebra. The problem is to compute this object.
Recall from (2) that on cohomology, we get a map of degree zero. As in dimension
1, we restrict to the space P’(ry, ro | s) where the first polydisc is centered at the
origin. We can identify P’(r1, rp | s) with the two complex dimensional analog of
an annulus: the complement of one polydisc in another.

Again, we can compute the Dolbeault cohomology of this space. By Hartogs’ the-
orem, every holomorphic function on P’ extends to zero, so as the zeroth cohomology
we just get holomorphic functions on the polydisc and therefore a map of degree zero

H*(Vy) ® H*(V,,) — H*(Vy) ® C{z1, 22}, “4)

where we use the notation C{zj, z»} to refer to series which converge on the appro-
priate polydisc.

This map extends to z; = zp = 0; this allows us to construct a commutative
algebra from the spaces H*(V,). Let us assume (as happens in practice) that the map
H*(V,) — H*(Vy) (with r < s) associated to the inclusion of one disc centered at
the origin into another is injective. Then, let
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v=U#W)

and let F"V = H*(V,). Then, the map (4) gives V the structure of a commutative
algebra with an increasing filtration by R. .

The vector fields a% act on H*(V,); they extend to commuting derivations of the
commutative algebra V. The map in equation (4) (or rather its completion where we
use C[[z1, z2])) is completely encoded by the filtered commutative algebra ) with its
commuting derivations.

However, there is more structure. We have the following identification:

HI(P) =272 'Cley ! 25 ')

Thus, the first Dolbeault cohomology of the two complex dimensional annulus con-
sists of seriesin z;~ ! with certain convergence properties. So we find that there is a map

w: H* (V) @ H*(Vr) — H*(Vy) @ 2725 ' Clzy ' 25 ') (5)

Thus, at the level of cohomology, (3), resp. (4) and (5), form an analog of the operator
product expansion of a vertex algebra.

One can check that the structure given by (5) is a kind of Poisson bracket with
respect to the commutative product obtained from (4). To define this we need some
notation. If o, 8 € H™(V,), then u(wx, B) is a class in Hél(P’) ® V. Recall that

P’ C C? is an open subset which is the complement of one polydisc in another.
Thus, P’ retracts onto a 3-sphere $3 C P’. Then, for every f € Cl[zy, z2], one can
define a bracket by

{a, B} = /M(Ol, B) fdzidzy € V.
S3

This makes sense, as u(c, 8)dz1dz; f is a closed 3-form on P’ with coefficients in
V. The integral only depends on the homology class of the sphere S° C P’, which
we choose to be the fundamental class.

This bracket gives a map

(= =Yt H* V)@ H* (Vi) > V
and extends to a map
(==l VeV—=V.
One can check that {—, —} y is a derivation in the first factor for the commutative

product on V, and satisfies an identity similar to the Jacobi identity. Let us explain
the Jacobi identity we find. If g € C[z1, z»] let us use the notation



78 K. Costello and C. Scheimbauer

91+ w2 +w) =D g1, 22)9" Wi, w).

That is, C[zy, z2] is a Hopf algebra, with coproduct coming from addition on the
plane C2, and we are using the Sweedler notation to write the coproduct §(g) of an
elementgas §(g) =>. g ®g".

Then, the analog of the Jacobi identity in our situation is the following:

o, BYro v)g = ot vhg. BYp + D (e 1B ¥y} g

Note that in the case f = g = 1, this is the usual Jacobi identity.

All these relations follow from the axioms of a holomorphically translation-
invariant factorization algebra using Stokes’ theorem.

We have not presented all details of the structure of a higher-dimensional
cohomological vertex algebra (i.e. the structure present on the cohomology of a
holomorphically-translation invariant factorization algebra). Hopefully this will be
developed in full elsewhere. The interested reader might consider working out and
writing down the entire structure, including all relations satisfied by the Poisson
brackets described above.

Remark 7 There is a similar story for topological field theories on R¥. There, one
finds that the 2-point operator product is, at the level of cohomology, a map

H*(V) ® H*(V) — H*(V) ® Hjz(R" \ {0}).

Here V is the complex Obs? (D) for any disc D in R¥. On the right hand side of this
expression we find the de Rham cohomology of a thickened sphere in R¥, whereas
in the holomorphic case we found the Dolbeault cohomology of a simliar region.

At the cochain level, this operator product gives the complex V the structure of
an Ej-algebra. If k > 1, then the class in HO(RF \ {0}) gives H*(V) the structure
of a commutative algebra, and the class in H k-1 (Rk \ {0}) gives H*(V) a Poisson
bracket of cohomological degree 1 — k.

The holomorphic situation is very analogous: in dimension k& > 1, we have a
commutative algebra with an infinite family of compatible Poisson brackets.

Examples of 2-dimensional topological field theories are given by topological
twists of 2-dimensional supersymmetric gauge theories. For example, the B-twist of
the 2-dimensional A" = (2, 2) gauge theory gives the theory described by the elliptic
Lie algebra

(2*(R?, glel), dar, [, D),

where ¢ is a square-zero parameter of cohomological degree 1. This is entirely
analogous to the fact that the 2-complex dimensional theory arises as a twist of the
N = 1 gauge theory; the only difference is that the Dolbeault complex on C? has
been replaced by the de Rham complex on R?,
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Table 1 Examples of the structure of observables
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Space| Q | Structures on the cohomology of Examples/References
observables
R dgr| Associative product Topological quantum mechanics [14]
R? | dggr| Commutative product and Degree-1 Poisson-Sigma model [3], topologically
bracket twisted N = (2, 2)-gauge theory, the
B-model
C d | Holomorphic analog of a vertex algebra | Minimal twists of 2d SUSY field theories,
for example [5], [7], By system, [17]
C? 9 | Commutative product, 2 commuting N = 1,2, 4 minimally twisted SUSY
derivations, and family of Poisson gauge theories [7, 8]
brackets of degree 1 parametrized by
f € Clzi, 22

Further examples arise from topological o-models, such as topological quantum
mechanics [14], the Poisson o-model [3, 21], and the B-model. (At the perturbative
level, the factorization algebra associated to the A-model is uninteresting). Summa-
rizing, we get Table 1.

One can explicitly compute the map u in (5) for the simplest case.

Example 1 Consider the abelian A/ = 1 gauge theory, i.e. g = C. Then
H*(V;) = O(Hol(B,) ® Hol(B,)[-1]),
where ¢ indicates the algebra of formal power series. We will use ¢, i to denote

elements of the two copies of Hol(B,): ¢ is of degree 0 and i is of degree 1. Let
a, B be the observables defined by

a(p, ) = ¢(0)
B¢, v) =¥ (0).

Then, one finds that the commutative product does not change, but that the map
W in (5) is given by the formula

1w, ¥) =zy 'z, the

for a certain constant c.

3.4 A Deformation of the Theory

Finally, the A/ = 1 theory has a deformation which is holomorphic in two real
dimensions, and topological in the two other real dimensions. This gives a new
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relation between the N = 1 gauge theory and the Yangian (see [8] for a detailed
discussion of this story).

We deform the action functional on the space of fields £2%*(C?, g[1]) @ 22*(C?, gV)
to

" (e, ) = S (e, ) + / wdz) A da,

for @ € 20%(C?, g[1]), B € £2%*(C?, g¥). Note that this is not invariant under
SL(2, C) anymore. The moduli space of solutions to the equations of motion of
this deformed theory turns out to be holomorphic G-bundles on C? along with a
compatible flat holomorphic connection in the z» direction.

More generally, such a deformation can be defined on any complex surface with a
closed 1-form; in the previous case, we took the complex surface C? with the closed
1-form dz;. As another example, consider the complex surface C* x C with the
closed 1-form dz—zl’. The deformed theory on this complex surface can be projected
down to R.¢ x C, where we find a theory we could call “Chern-Simons theory for
the loop group”.

The quantum observables of the deformed theory on the surface C> on a formal
disc are

C*(glz1 DIRD = Sym™ (gllzi 1) [71].

We would like to relate this to the Yangian of the Lie algebra g, which is a quantization
of the Hopf algebra U (g[[z]]). Here, we have cochains of g[[z]] instead of the universal
enveloping algebra. These are related by Koszul duality'?: For a Lie algebra b,

C®¢. C=U®H)".

The deformed field theory is topological in the second complex direction, so, by
fixing a formal disk in the other coordinate, it gives a locally constant factorization
algebra on R2. Locally constant factorization algebras on R? are (by a theorem of
Lurie [24]) the same as Ej-algebras. A theorem of Dunn (proved in [24] in the
context we need) says that E»-algebras are the same as Ep-algebras in Ej-algebras.
The way to view an E»-algebra as an Ep-algebra in Ep-algebras is by considering
sections of the associated locally constant factorization algebra on an open square (or
a strip). Then, the factorization algebra structure gives us two products, namely by
including two squares into a third (horizontally) next to each other, or by including
them (vertically) above each other. Now we can apply a version of Koszul duality to
turn the second E-algebra structure of the E;-algebra into that of a co-E-algebra,
so we get an E-algebra in co-E-algebras, i.e. a bialgebra, which, in fact, is a Hopf

12 There are some delicate issues