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We dedicate this meeting to the memory of
Jakob Bekenstein, a true pioneer in
fundamental physics and a highly respected
colleague, who passed away on August 16,
2015. In addition to this incarnation of the
meeting, Dr. Bekenstein also served on the
advisory board for the 2013 KSM and was an
enthusiastic supporter of our mission,
particularly our focus on the next generation
of gravitational physicists. His contributions
to theoretical physics are groundbreaking
and will undoubtedly mark his legacy.
Although he is gone, he will never be
forgotten.

Frankfurt, Germany Piero Nicolini
July 2015 Jonas Mureika

Matthias Kaminski
Marcus Bleicher



Preface

The 2015 Karl Schwarzschild Meeting on Gravitational Physics (KSM2015), held
at the Frankfurt Institute for Advanced Studies, was a top international event
involving the world’s leading scientific researchers in the field of black hole phy-
sics, general relativity, information theory, and related topics. In 2013, the inaugural
event named after Schwarzschild was a very successful meeting, considered by
many participants as a benchmark for the international community active in the
physics of black holes and their ramifications. This meet had two important goals:
We aimed to consolidate the scientific collaborations that emerged after the
KSM2013 and also create new knowledge in terms of exchange of ideas, publi-
cations, and research projects.

This year marked a milestone in gravitational physics: the 100th anniversary of
Schwarzschild’s derivation of the famous static, spherically symmetric black hole
solution, which was published in February 1916 on Sitzungsberichte der
Königlich-Preussischen Akademie der Wissenschaften. Black holes have since
become a central theme in several areas of physics and over the last decade have
gained a solid reception in the field of observational astronomy due to the improved
technology of modern radio telescopes. They have also emerged as a fundamental
feature of attempts to address the hierarchy problem through the introduction of
extra spatial dimensions. In such frameworks, it has become commonplace in high
energy physics to suppose that microscopic black holes could be produced in
current and future accelerator experiments. This explains why astronomers and
theoretical particle physicists have found in black holes a common discussion topic
supported by international research networks. More importantly, black holes con-
stitute one of the primary testbeds of the ultimate theory of nature: quantum gravity.
This is accompanied by the key role that black holes are playing in the full
understanding of fundamental interactions.

The KSM2015 saw the participation of 86 people from 22 countries. This
included 65 junior and senior scientists and 21 students. A highlight of the meeting
was the Karl Schwarzschild Memorial Lecture given by the 1999 Physics Nobel
Laureate Gerard ’t Hooft. In addition to this keynote address, ’t Hooft also moder-
ated the lively panel discussion, a format that has become a staple of the KSM. In this
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context, this time, the lively debate between Steve Giddings and Carlo Rovelli was
an illuminating presentation of the future prospects of two competing theories—loop
quantum gravity and string theory—which was aptly nicknamed “The Duel”.

Once again, the Karl Schwarzschild Prize competition for best student talk
and best junior talk resulted in a wonderful display of talent from the rising gen-
eration of gravitational physicists. The winner of the best student talk was Antonia
Frassino (Goethe University/FIAS) for her presentation “Lovelock Black Hole
Thermodynamics”. Honorable mentions in this category were awarded to Andrea
Giugno (Bologna), Eugene Kur (UC Berkeley), and Supakchai Ponglertsakul
(University of Sheffield). The Schwarzschild Prize for best junior scientist talk was
awarded to Francesca Vidotto (Radboud University Nijmegen) for her presentation
“Quantum gravity phenomenology with primordial black holes”. Honorable men-
tions included Mirah Gary (TU Wien), Tigran Kalaydzhyan (Stony Brook
University), and Christi Stoica (Horia Hulubei National Institute, Bucharest).

With its focus on top-quality keynote speakers, small participant numbers, and
plenary sessions for juniors and students, the Karl Schwarzschild Meeting is not a
venue for mere exchange of information. It is the place where new ideas are
developed through complementary knowledge and encouraged interactions of the
participants, and the future of gravitational physics is born. This volume represents
the culmination of our efforts to synthesize these activities. We look forward to
carrying on this new tradition for years to come.

Frankfurt, Germany Piero Nicolini
Jonas Mureika

Matthias Kaminski
Marcus Bleicher
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The participants and organizers of the Karl Schwarzschild Meeting 2015 in the FIAS Lecture Hall

Preface ix



x Preface



Acknowledgements

The organizers of the 2015 Karl Schwarzschild Meeting on Gravitational Physics
are grateful for the generosity of the Frankfurt Institute for Advanced Studies for
providing the spectacular venue at which the meeting took place. We thank the
Deutsche Forschungsgemeinschaft (DFG), the Helmholtz International Center for
FAIR, and the Freunde und Förderer der Goethe-Universität Frankfurt for their
financial support, as well as the Physikalischer Verein Frankfurt for hosting a visit
at the Taunus Observatorium on the Kleiner Feldberg. A special thanks goes to
Springer for providing the prizes for Best Student and Best Junior Scientist pre-
sentations, the basis for an integral part of our philosophy.

For their help and support of our efforts, we extend a special acknowledgment to
our International Advisory Board: Jacob Bekenstein (Hebrew University of
Jerusalem), Juan Maldacena (IAS, Princeton), Donald Marolf (University of
California, Santa Barbara),Martin Reuter (JohannesGutenberg University ofMainz),
Carlo Rovelli (CPT/Aix-Marseille University), Dam T. Son (University of Chicago).

Finally, we are indebted to all the participants who helped to make the KSM a
success, and hopefully the first of many such meetings to come.

xi



Contents

1 Singularities, Horizons, Firewalls, and Local Conformal
Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
G. ’t Hooft

2 Panel Discussion, “The Duel”: The Good, the Bad,
and the Ugly of Gravity and Information . . . . . . . . . . . . . . . . . . . . 13
G. ’t Hooft, S. B. Giddings, C. Rovelli, P. Nicolini, J. Mureika,
M. Kaminski and M. Bleicher

Part I Black Holes in Classical General Relativity, Numerical
Relativity, Astrophysics, Cosmology and Alternative Theories
of Gravity

3 A Menagerie of Hairy Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . 39
E. Winstanley

4 Black Holes Sourced by a Massless Scalar . . . . . . . . . . . . . . . . . . . 47
M. Cadoni and E. Franzin

5 Rotating Black Hole Solutions in f ðRÞ-Gravity . . . . . . . . . . . . . . . . 53
M. De Laurentis and R. Farinelli

6 Symplectic Structure of Extremal Black Holes . . . . . . . . . . . . . . . . 61
K. Hajian and A. Seraj

7 Einstein-Charged Scalar Field Theory: Black Hole Solutions
and Their Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
S. Ponglertsakul, S. Dolan and E. Winstanley

8 The Good Properties of Schwarzschild’s Singularity . . . . . . . . . . . . 75
O. C. Stoica

xiii



Part II Black Holes in Quantum Gravity and String Theory

9 Quantum Black Holes as the Link Between Microphysics
and Macrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
B. J. Carr

10 Free Energy of Topologically Massive Gravity and Flat Space
Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
D. Grumiller and W. Merbis

11 Super-Entropic Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
R. B. Mann

12 Aspects of Quantum Chaos Inside Black Holes . . . . . . . . . . . . . . . . 115
A. Addazi

13 Black Hole Entropy in the Presence of Chern–Simons Term
and Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
T. Azeyanagi

14 A Quantum Cosmic Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
R. Casadio and O. Micu

15 Phase Transitions of Regular Schwarzschild-Anti-deSitter
Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
A. M. Frassino

16 Generalized Uncertainty Principle and Extra Dimensions . . . . . . . . 141
S. Köppel, M. Knipfer, M. Isi, J. Mureika and P. Nicolini

17 Perihelion Precession and Generalized Uncertainty Principle . . . . . 149
F. Scardigli and R. Casadio

18 Quantum-Gravity Phenomenology with Primordial
Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
F. Vidotto, A. Barrau, B. Bolliet, M. Schutten and C. Weimer

Part III Other Topics in Contemporary Gravitation

19 Self Sustained Traversable Phantom Wormholes and Gravity’s
Rainbow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
R. Garattini

20 Cosmology via Metric-Independent Volume-Form
Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
E. Guendelman, E. Nissimov and S. Pacheva

xiv Contents



21 Size Scaling of Self Gravitating Polymers and Strings . . . . . . . . . . 183
S. Kawamoto and T. Matsuo

22 The Hot and Dense QCD Equation of State in Heavy Ion
Collisions and Neutron Star Mergers . . . . . . . . . . . . . . . . . . . . . . . 191
J. Steinheimer, A. Mukherjee, N. Wechselberger, M. Hanauske,
S. Schramm and H. Stöcker

Contents xv



Contributors

A. Addazi Dipartimento di Fisica, Università dell’Aquila, L’Aquila, Italy;
Laboratori Nazionali del Gran Sasso, Assergi, Italy

T. Azeyanagi Département de Physique, Ecole Normale Supérieure, CNRS, Paris,
France

A. Barrau Laboratoire de Physique Subatomique et de Cosmologie, Université
Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

M. Bleicher Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany;
Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt am
Main, Frankfurt, Germany

B. Bolliet Laboratoire de Physique Subatomique et de Cosmologie, Université
Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

M. Cadoni Dipartimento di Fisica, Università di Cagliari and INFN, Sezione di
Cagliari, Cittadella Universitaria, Monserrato, Italy

B. J. Carr School of Physics and Astronomy, Queen Mary University of London,
London, UK

R. Casadio Dipartimento di Fisica e Astronomia, Alma Mater Università di
Bologna, Bologna, Italy; I.N.F.N., Sezione di Bologna, Bologna, Italy

M. De Laurentis Institute for Theoretical Physics, Frankfurt, Germany; Frankfurt
Institute for Advanced Studies, Frankfurt, Germany

S. Dolan School of Mathematics and Statistics, The University of Sheffield,
Sheffield, UK

R. Farinelli INAF-Osservatorio Astronomico di Padova, Padova, Italy

E. Franzin Dipartimento di Fisica, Università di Cagliari and INFN, Sezione di
Cagliari, Cittadella Universitaria, Monserrato, Italy; CENTRA, Departamento de
Física, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

xvii



A. M. Frassino Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am
Main, Germany; Johann Wolfgang Goethe-Universität, Frankfurt am Main,
Germany

R. Garattini Università degli Studi di Bergamo, Dipartimento di Ingegneria e
scienze applicate, Dalmine (Bergamo), Italy; I.N.F.N. - sezione di Milano, Milan,
Italy

S. B. Giddings Department of Physics, University of California, Santa Barbara,
CA, USA

D. Grumiller Institute for Theoretical Physics, TU Wien, Vienna, Austria

E. Guendelman Department of Physics, Ben-Gurion University of the Negev,
Beer-Sheva, Israel

K. Hajian Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Hanauske Frankfurt Institute for Advanced Studies, Frankfurt, Germany;
Institut für Theoretische Physik, Frankfurt, Germany

M. Isi LIGO Laboratory, California Institute of Technology, Pasadena, CA, USA

M. Kaminski Department of Physics and Astronomy, University of Alabama,
Tuscaloosa, AL, USA

S. Kawamoto Department of Physics, Chung Yuan Christian University,
Taoyuan, Taiwan

M. Knipfer Frankfurt Institute of Advanced Studies (FIAS) and Institut für
Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany

S. Köppel Frankfurt Institute of Advanced Studies (FIAS) and Institut für
Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany

R. B. Mann Department of Physics and Astronomy, University of Waterloo,
Waterloo, ON, Canada

T. Matsuo National Institute of Technology, Anan College, Tokushima, Japan

W. Merbis Institute for Theoretical Physics, TU Wien, Vienna, Austria

O. Micu Institute of Space Science, Bucharest-Magurele, Romania

A. Mukherjee Frankfurt Institute for Advanced Studies, Frankfurt, Germany

J. Mureika Department of Physics, Loyola Marymount University, Los Angeles,
CA, USA

P. Nicolini Frankfurt Institute for Advanced Studies (FIAS), Frankfurt, Germany;
Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt am
Main, Frankfurt, Germany

xviii Contributors



E. Nissimov Institute for Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Sofia, Bulgaria

S. Pacheva Institute for Nuclear Research and Nuclear Energy, Bulgarian
Academy of Sciences, Sofia, Bulgaria

S. Ponglertsakul School of Mathematics and Statistics, The University of
Sheffield, Sheffield, UK

C. Rovelli Aix Marseille Université, CNRS, CPT, UMR 7332, Marseille, France;
Université de Toulon, CNRS, CPT, UMR 7332, La Garde, France

F. Scardigli Department of Mathematics, College of Engineering, American
University of the Middle East, Dasman, Kuwait

S. Schramm Frankfurt Institute for Advanced Studies, Frankfurt, Germany

M. Schutten Institute for Mathematics, Radboud University, Astrophysics and
Particle Physics, Nijmegen, The Netherlands

A. Seraj Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

J. Steinheimer Frankfurt Institute for Advanced Studies, Frankfurt, Germany

H. Stöcker Frankfurt Institute for Advanced Studies, Frankfurt, Germany; Institut
für Theoretische Physik, Frankfurt, Germany; GSI Helmholtzzentrum für
Schwerionenforschung GmbH, Darmstadt, Germany

O. C. Stoica Horia Hulubei National Institute for Physics and Nuclear
Engineering, Bucharest, Romania

G. ’t Hooft Institute for Theoretical Physics, EMME/, Centre for Extreme Matter
and Emergent Phenomena, Science Faculty, Utrecht University, Utrecht, The
Netherlands

F. Vidotto Institute for Mathematics, Radboud University, Astrophysics and
Particle Physics, Nijmegen, The Netherlands

N. Wechselberger Institut für Theoretische Physik, Frankfurt, Germany

C. Weimer Institute for Mathematics, Radboud University, Astrophysics and
Particle Physics, Nijmegen, The Netherlands

E. Winstanley Consortium for Fundamental Physics and School of Mathematics
and Statistics, The University of Sheffield, Sheffield, UK

Contributors xix



Chapter 1
Singularities, Horizons, Firewalls,
and Local Conformal Symmetry

G. ’t Hooft

Abstract The Einstein–Hilbert theory of gravity can be rephrased by focusing on
local conformal symmetry as an exact, but spontaneously broken symmetry of nature.
The conformal component of themetric field is then treated as a dilaton fieldwith only
renormalizable interactions. This imposes constraints on the theory, which can also
be viewed as demanding regularity of the action as the dilaton field variable tends to
0. In other words, we have constraints on the small distance behaviour. It is not known
whether theories can be constructed that obey these constraints; if so, all interaction
parameters that are normally freely adjustable, would become computable.

1.1 Introduction

The modern representation of Karl Schwarzschild’s spherically symmetric solution
of Einstein’s equations reads1

ds2 = − (
1 − 2M

r

)
dt2 + 1

1 − 2M/r
dr2 + r2(dθ2 + sin2 θ dϕ2). (1.1)

1In Schwarzschild’s original work [1], the coordinate r in (1.1) was called R, while he chose an
other radial coordinate r such that the point R = 2M corresponds to r = 0, since it seemed to be
obvious to expect a singular mass distribution at the origin of the coordinate frame. Today, we
know that this was unnecessary, for two reasons: first, one is free to choose the most convenient
coordinate system anyway, and secondly, the surface r = 2M does not represent a physical
singularity at all, but just a coordinate singularity, much like the north pole of the Earth. It is
the black hole horizon.

G. ’t Hooft (B)
Institute for Theoretical Physics, Utrecht University, Postbox 80.089,
3508 TB Utrecht, The Netherlands
e-mail: g.thooft@uu.nl
URL: http://www.staff.science.uu.nl/hooft101/

© Springer Nature Switzerland AG 2018
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2 G. ’t Hooft

As we now know very well, matter can enter the black hole through the horizon,
defined by the surface r = 2M , while in the standard, unquantised theory, nothing
can emerge out of it. The horizon is a one way door.2 In the coordinates of (1.1), the
point r = 0 is a real physical singularity.

Even though the horizon appears to be a regular region of space-time, we do have a
problem with it. According to Hawking’s well-known result [2], it is due to vacuum
fluctuations that a distant observer will observe particles leaving the black hole:
Hawking radiation. These particles appear to have a thermal spectrum, independent
of the black hole formation process.

Hawking’s original conclusion was that this result must imply that a black hole as
a physical object violates the laws of quantum mechanics: even if it originates from
matter in a single quantum state, it ends up in a thermal, that is, a quantum mechani-
cally mixed state. How could it be that a derivation that uses quantummechanics can
yield a result violating the laws of this theory? Hawking particles are now understood
to be formed at the horizon, not, as was originally thought, somewhere near the r = 0
singularity in its past.

According to the present author’s understanding of quantum mechanics [3], how-
ever, all states in which the Hawking particles fluctuate differently, are different
ontological states of the system, and they should be treated as different quantum
states as well. Thus, the vacuum state, which is a single quantum state, emerges at
the horizon as a collection (superposition) of infinitely many ontological states, and
it should be treated as such. One can then understand how particles entering a black
hole, can affect these ontological states in spite of the fact that their probabilistic
distribution remains unaltered. This effect can actually be calculated [4].

Note added: This paper is the written version of the talk presented by the author at
the 2nd Schwarzschild Meeting on Gravitational Physics, on 23 July 2015. Since
then, the author’s views and insights in the matter of quantized black holes evolved
significantly, see Ref. [5].

1.2 Local Conformal Symmetry

It is to be noted that the main features that went into our description of the back
reaction toHawking radiation only requires knowledge of light-like geodesics. These
depend on all components of the metric tensor gμν(x), except for one overall factor.
This is because the equation for light-like geodesics,

ds2 = gμνdx
μdxν = 0, (1.2)

2On some web pages, these facts are still being disputed, which we can only attribute to ignorance.
Schwarzschild, who wrote his paper in less than two months after Einstein’s discovery, could be
excused for not immediately realising the rather subtle features of black hole horizons, which
required several years to be cleared up, but today’s experts cannot afford to make such mistakes.



1 Singularities, Horizons, Firewalls, and Local Conformal Symmetry 3

is unaltered by the substitution

gμν(x) → �2(x) gμν(x) (1.3)

(take into consideration that this equation alone, without higher derivatives, deter-
mines the shapes of all light cones). Theories invariant under (1.3) are said to be
locally conformally invariant. By adding a dilaton field, as will be explained shortly,
even the Einstein–Hilbert action can bemade invariant under (1.3), because the entire
metric tensor, including its common factor, consists of dynamical variables.

√−g
is not invariant, but covariant. This implies that flat space time, that is, the vacuum
state, breaks the symmetry. Thus we say that conformal symmetry is not explicitly,
but spontaneously broken in Enstein–Hilbert gravity, just as local SU (2) ×U (1)
gauge symmetry is spontaneously broken by the BEH mechanism.

We write the standard Lagrangian for gravity interacting with matter as

L = L EM + L matter; L EM = 1
16πG

√−g (R − 2�), (1.4)

L matter = L YM(A) + L bos(A, φ, gμν) + L ferm(A, ψ, φ, gμν), (1.5)

where φ(x) represents the scalar matter fields, andψ(x) the fermionic ones. A stands
for Aμ(x), the Yang–Mills fields in the matter Lagrangian. Now define

gμν = ω2(x, t) ĝμν ; L = L (ω, ĝμν, Aμ,ψ, φ). (1.6)

This contains the ‘trivial’ conformal symmetry

ĝμν → �2(x, t)ĝμν, ω → �−1ω, Aμ → Aμ,

φ → �−1φ, ψ → �−3/2ψ. (1.7)

We shall refer to the field ω(x, t) as the dilaton field.
Working out the Einstein–Hilbert Lagrangian and the matter Lagrangian a bit

more explicitly gives

L EM =
√

−ĝ
(

1
16πG (ω2 R̂ + 6ĝμν∂μω∂νω) − �

8πG ω4
)

; (1.8)

L matter = − 1
4 FμνFμν +

√
ĝ

(
−1

2
ĝμνDμφDνφ − 1

2
m2ω2φ2 − 1

12 R̂φ2 − λ
8φ

4

)
+ L ferm.

(1.9)

Here, we included the R̂ φ2 term for restoring conformal invariance ofL matter, where
R̂ is the scalar curvature associated to ĝμν .

Now, several remarks are of order:

• surprisingly perhaps, the Einstein–Hilbert action appears to be an entirely renor-
malizable Lagrangian for the dilaton field ω(x).
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• With the cosmological termacting as aquartic coupling term, thematterLagrangian
for the scalar field φ(x) has the same form asL EM, apart from a factor −4πG/3.

• This factor can easily be taken care of by rescaling theω field, but its sign is curious.
Since it so happens that the Standard Model neither contains explicit mass terms
for the fermions, nor cubic couplings among the saclar fields,3 we can include a
factor i in the redefinition of ω without any obvious violation of unitarity.

• Due to the necessary rescaling of ω, all physical constants (including mass terms
and the cosmological term) eventually emerge as dimensionless combinations of
Newton’s constant G and the Standard Model parameters.

Nevertheless, the theory is non renormalizable. This is because a kinetic term for the
ĝμν field is missing. Normally, theories cease to be renormalizable if a kinetic term
is missing. The theory would be ill-defined altogether, but by inspecting the way one
would normally handle the Einstein equations in perturbation expansions, one finds
the following formal prescription for solving the classical equations:

Find the total energy-momentum-stress tensor T tot
μν for the matter fields, including

the ω field. Note that the original, ω-independent Einstein–Hilbert action disap-
peared, so that Einstein’s equation is to be replaced by one where Newton’s constant
is infinite. Therefore, the equations are:

T tot
μν = Tmatter

μν − Tμν(ω) = 0 = Tmatter
μν − 1

8πG Gμν. (1.10)

We kept the minus sign in the contribution of the ω field; it disappears when the
factor i mentioned above is employed. We recognise Einstein’s original equation
of course; however, in the conformally symmetric notation, we should say that the
condition that the total energy-momentum-stress tensor vanishes is a constraint. It has
exactly the right dimension to enforce the equations for the ĝμν field (the conformal
stress-energy momentum tensor is traceless).

If our aim were to restore renormalizability, all we had to do now would be to
collect all divergent diagrams and determine their general form. This should provide
us with terms to be added to the original bare Lagrangian of the theory, as is usually
done. In this case, we find that all divergent expressions unaccounted for, contain
external lines for ĝμν and factors k4 because they are quartically divergent. Since all
calculations should be performed while respecting local conformal invariance, and
all diagrams are polynomials in the fields, one expects that the only terms that should
be added in the Lagrangian are locally conformally invariant expressions with four
derivatives in the metric fields ĝμν . There exists only one such term that is invariant
under local conformal transformations, the Weyl action:

L kin = − λW

2 Cμναβ Cμναβ → − λW

4 (∂2ĝtransverseμν )2. (1.11)

With this term added, the theory indeed becomes renormalizable, as is well-known,
but there appear to be two complications: first, the Weyl term would generate prop-

3Such terms would come with a factor iω, and hence appear to violate unitarity.
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agators for ĝμν that are quartic in the momenta. This is not in accordance with
standard prescriptions in renormalization theory. Propagators ought to be quadratic
in the momenta, in a carefully prescribed way, in order to comply with unitarity,
causality, and positivity of the energy. Does this mean that our theory is not unitary,
or is its energy not bounded from below? Note that the energy momentum tensor
is required to obey (1.10), so that the total energy vanishes strictly, but that was
before we added the Weyl action. What is the unitarity/energy condition in the case
of conformal invariance?

Secondly, there is an other mystery. When the required renormalization counter
term is computed without keeping track of conformal symmetry, one finds [6] that it
does not take the form (1.11), since also

√−g R2 terms appear. Now, if we do use the
conformal notation, this would generate ∂μω/ω and ∂μω2/ω2 terms, which of course
cannot come from symmetric diagrams. This anomaly is the well-known conformal
anomaly. It actually ruines the renormalizability of gravity with Weyl term added
[6]. It is caused by the fact that the system cannot be regularised with scale-invariant
regulators (The author thanks M. Duff for a discussion on this point).

The same remains true for the theory when the terms (1.8) and (1.9) are added
to the Lagrangian. Together, these anomalies generate the renormalization group β

coefficients. In the usual theories, this is not considered to be a flaw of the theory
but just an interesting feature. Here, however, we are dealing with a local gauge
symmetry; the anomalies are a fatal flawof the principle of local conformal invariance
that is required for renormalizability. In our present case, therefore, all conformal
anomaliesmust be demanded to cancel out. Thismeans that all renormalization group
β coefficients must be demanded to vanish. Consequently, all coupling parameters
must be adjusted such that they are at a zero of their β functions. This generates at
least as many constraints as there are coupling parameters of the theory. We are lead
to an exciting speculation: In gravity theories with conformal invariance, all physical
constants, including the masses and even the cosmological constant, are constrained
to values that in principle must be computable.

In short, we propose that conformal symmetry is not just an accident that vaguely
applies to some branches of physics, but that it may play a very important role as
an absolutely exact transformation rule. It will then be an essential instrument that
might lead us towards calculating parameters that otherwise would have been freely
adjustable, and a crucial ingredient of the description of black holes, as we will see.

1.3 Black Holes

In a nut shell, the black hole information problem is the question how information
concerning the state of matter entering the hole, can be seen to be present in the
particles coming out, as was mentioned in the Introduction. One way of phrasing
this difficulty is the question how to avoid that the information entering the hole
disappears into the central singularity, see Fig. (1.1a). A related difficulty arises if
one considers the entanglement of particles entering the hole and others that emerge.
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The contradictions appear to be strong enough to make some researchers [7] believe
that a firewall should emerge at the horizon, prohibiting particles to enter (dotted
lines in Fig. 1.1a and 1.1b).

Conformal symmetry will be of help here: the central singularity disappears,4 and
the horizon will become “fuzzy”, see Fig. (1.1b) and (1.1c). Consider the mass M of
the black hole. An observer A falling in passes the horizon, experiencing the metric
gμν associated to the mass M . An outside observer B, however, may observe the
Hawking radiation that causes the mass to shrink. While the ingoing observer still
hovers over the horizon, seeing a fixed mass M , the outside observer sees the mass
shrink to zero. Who is right?

The answer may be Black hole complementarity [8]: both observers are right, but
they should use the metric ĝμν , and its conformal factor depends on who is looking.
Both observers may describe their metric as

dŝ2 = M2(t̃)

(
−dt2(1 − 2

r ) + dr2

1 − 2/r
+ r2(dθ2 + sin2 θdϕ2)

)
. (1.12)

Here, M(t̃) may depend on the retarded time t̃ , and be different for the different
observers. For the observer A entering the hole, M(t̃) = M is constant, but for the
outside observer B, it goes to zero. It may also depend on the advanced time. Since
the black hole has a finite life time, there is, strictly speaking, no horizon.5

With ‘black hole complementarity’, the distant observer B sees matter going
in and matter going out, The observer A, going in, sees the locally clear horizon,
while she cannot detect the Hawking particles. Observer B sees that the mass M
vanishes during the final explosion. For this observer, the horizon produces matter,
as if the imploding matter contained some sort of dynamite, causing an explosion
at exactly the right moment. This observer sees an almost singular concentration of
Ricci scalar curvature6 at the horizon, see Fig. 1.2. The curvature is strong where
the future event horizon meets the past horizon. One could call this a ‘firewall’,
but the firewall is invisible for the ingoing observer A. The observers use different
ways to fix the ‘conformal gauge’. Hence, they also have different perceptions of
the energy-momentum tensor of the matter present. They do both agree what the
vacuum expectation value of the ω field should be, but they do not agree about what
the vacuum state is. Note that, this disagreement about the vacuum state has always
been a standard concept in the derivation of Hawking radiation [2, 4].

4This happens as follows: near the singularity, we can stretch the coordinates so much, that the
curvature-squared will no longer be singular, but instead, the singularity moves to the infinite
future. In a sense, that is where it belongs anyway. A good exercise is to multiply the metric with an
overall factor such as 1/r4, to see how this makes the singularity move towards the infinite future,
where space-time becomes locally flat.
5But keep in mind that, for most of all practical purposes, there still is a horizon, as its ‘fuzziness’
is almost imperceptible. Only for black holes close to the Planck size, this fussiness becomes
important.
6Note that we now use the metric ĝμν throughout; the dilaton ω is just an ‘ordinary’ renormalizable
field, that happens to hover around its vacuum value.
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Fig. 1.2 The black hole
metric as seen by a distant
observer B, see text
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The outside observer B seesHawking particles emerge from a highly concentrated
‘curtain’ along the past event horizon. If he computes the corresponding metric, he
will disagree with observer A, by finding an extra conformal factor. The Hawking
particles cause a sharp jump in the gradients of this conformal factor. Consequently,
observers A and B disagree about this conformal factor when discussing the interior
region of the black hole, see Fig. 1.3.

The comparison between our spontaneously broken local conformal symmetry
and the Brout-Englert-Higgs mechanism gives striking similarities. For one, this
mechanism improves considerably the convergence features of the theory in the
far ultra-violet. If the Weyl term (1.11) would really be allowed then we would
indeed have a renormalizable theory of gravity, as is well known. The other sim-
ilarity concerns the topologically non trivial soliton solutions: before invoking the
BEH mechanism, Maxwell’s theory cannot allow for a singularity-free description
of magnetic monopoles, while in some versions of the BEH models one can have
regular monopoles; similarly, with local conformal symmetry, black holes can be
made singularity free.

Our demand that all conformal anomalies cancel is a severe constraint on the
theory, but this may actually be a welcome feature; it may imply that constants that
are not normally computable may now be found to obey (interesting) equations.
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A difficulty here is that all couplings may emerge as being large, in which case we
cannot perform perturbative calculations. By carefully choosing the algebra, depend-
ing on a large integer N , one sometimes can search for solutions with couplings
proportional to 1/N or 1/N 2, allowing us to do 1/N expansions. A very preliminary
search was only partially successful, as it did allow for 1/N expansions, but it did
not lead to physically interesting solutions.

1.4 Features and Limitations

We do observe that spontaneously broken local conformal symmetry holds the
promise that the unknown parameters of the matter Lagrangian, today described
by the Standard Model, are not freely adjustable but can be computed. The numbers,
however, will depend on the algebra of the matter theory. For sure, the algebra of the
Standard Model will need considerable extensions in order for it to be applicable all
the way to the Planck scale.

The most fundamental obstacle was found to be the hierarchy problem: ratios
of physical constants in the real world contain very large or small numbers such as
10−122 for the cosmological constant, whereas in principle our models should turn up
numbers of order 1 in Planck units. Our universe owes its complexity to the existence
of exotic large numbers. One might bring this forward as an objection to our theory
but it has to be remembered that the hierarchy problem is the source of headaches for
many other theories as well. Barring the “anthropic principle”, no theory is known
that can account for the complexity of our universe.

An other mystery is the apparent lack of unitarity. This feature was further inves-
tigated. If one chooses the coefficient λW in the Weyl term (1.11) large, the theory
allows for a perturbative analysis. If we add this extra term to the original Einstein
Hilbert action (in the old, non conformal notation), one finds that λW has the dimen-
sionality of an inverse mass squared,

λW ≡ 1/M2, (1.13)

where M locates poles in the complex momentum plane, and it is small compared
to the Planck mass (in a renormalizable theory, a Planck mass large compared to
the mass scale M of the theory indicates small gravitational couplings, hence the
usefulness of perturbative expansions).

We then look at plane waves of the theory, finding that the wave equations indeed
contain new poles. Identifying the quantum numbers of these poles, we found:

• one massless pole, describing the familiar graviton. This was to be expected
because the far infrared region should not be affected by the Weyl term, as it
contains extra derivatives. The graviton has spin 2, but, being massless, has only
two physical helicities, as in the usual theory;
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• poles of the form 1/(k2 + M2 − iε). They all turned out to be at the same mass
value M . One pole has helicities ±2, one has helicities ±1 and one pole has
helicity 0. We recognise this as the five helicities of a single, massive spin 2
particle. The problem with these poles is that they all have the wrong overall sign
in the propagator. The fact that this wrong sign is inevitable can easily be seen
from the far ultraviolet limit. There, only theWeyl term contributes to the graviton
propagator. It was inevitable that we have there:

1/(k2 + λWk4) = 1/k2 − 1/(k2 + M2). (1.14)

• The scalar pole that might be generated by the conformal factor, as usual in
perturbative gravity, is a ghost, so that it can be ignored, it is not a physical particle,
while the others seem to be real.

Thus we have a single, negative metric, spin 2 companion of the graviton, with 5
possible helicity states. We propose the name “gravitello” for that, the mysterious
companion of the graviton. Having such a particle seems to be inevitable.

We do not know how to accommodate for it in a unitary theory, but one could
consider the following notions.

Our fields have oscillation modes with opposite signs. The energies can be written
as

H = |k|(p21 + x21 ) −
√
k2 + m2 (p22 + x22 ), (1.15)

where k is the spacelike momentum of the wave, while xi are the fields and pi
are the canonical momenta of these fields, at wave number k. They obey the usual
commutation rules

[xi , x j ] = [pi , p j ] = 0, [xi , p j ] = i δi j . (1.16)

We can write (1.15) as

H = A a†a − B b†b + C, (1.17)

where a and a† are the annihilation and creation operators of the graviton, and b, b†

those of the gravitello, both having momentum k.
One approach is the following. We could impose a lower bound to the energies of

the modes with the wrong sign, by putting a limit on the occupation numbers of the
b, b† operators. This requires the interchange b ↔ b†, which is possible if we can
rearrange and renormalise the quantum states reached by these operators. Effectively,
this switches the sign of the commutator of b and b†. The associated replacement in
the operators x2 and p2 implies that they commute as purely imaginary fields would:

x2 → i x2, p → i p, (1.18)
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that is, the field of the gravitello should be chosen to be purely imaginary. This is
the same operation as was required in the quantisation of ordinary gravitation; there
also, the overall conformal factor, which would contribute with the wrong sign to the
Einstein Hilbert action, must be replaced by a purely imaginary Lagrange multiplier
field.

The procedure described here is related to the author’s proposals for the inter-
pretation of quantum mechanics [3]. All harmonic oscillators that we encounter in
the physical world, should be associated with processes in an ontological underlying
world that are periodic in time. When harmonic oscillators interact, they cease to be
exactly periodic, and this means that, also in the ontological underlying world, the
associated processes are no longer exactly periodic.

To identify the quantum states of the oscillator with the classical states of the
ontological world [3], we have to discretise them. This is achieved in ‘cogwheel
models’, which are periodic but have only a finite number of states. The annihilation
and creation operators a and a† are then replaced by the operators L− and L+ in
a large � representation of the SU(2) rotation algebra of angular momenta. These
decrease or increase the quantum number m = L3, which has both a lower and an
uper bound: |m| ≤ �.

Regarding the gravitello, we should hasten to add that this approach has not yet
been elaborated in a satisfactory way, since the gravitello would couple with an
imaginary coupling constant to gravitational sources, and we have not succeeded in
showing how this can be squared with unitarity.

1.5 Conclusion

Local conformal symmetry shines a new light on problems where gravity couples
to matter, both in the domain of the Standard Model and in our understanding of
black holes. It is always our intention to make the smallest possible modifications in
our models of physics, because pure Einstein–Hilbert gravity, coupling just with the
Standard Model particles, appears to agree with observations extremely well, and
lessons learned from past experiences suggest that one should not abandon known
facts in the natural world too easily.

It so happens that exact local conformal invariance does play a role already in
Einstein–Hilbert gravity itself, by isolating the dilaton component of the metric, so
the only ‘new’ thing we add to this is the demand that this symmetry should be exact,
rather than having it as an accidental, approximate feature.

It may be noted that our approach is related to the theory of ‘asymptotic safety’ [9].
In this theory, the UV limit of gravity theory tends to a fixed point. At this fixed point,
such models should also enjoy scale invariance, ergo local conformal invariance.
There, however, one is confronted with strong interactions (since the fixed point
values of the coupling parameters are not close to zero). In our models, we offer
perturbative accessability by adding explicit interactions (theWeyl term). This could
be an advantage, but it would also introduce wrong metric states that we have to
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handle, somehow. In fact, whether asymptotically safe models contain states with
the wrong sigm of the metric and/or the energy, is not known.

Our procedure appears to suggest that all freely adjustable parameters, being both
the masses and the coupling parameters of the Standard Model, including eventually
the cosmological constant, must be computable. Our point is that, with the dila-
ton field ω added, the matter component of our particle system should be completely
conformally invariant, so that the physical parameters, all starting out as being dimen-
sionless, must be exactly at the fixed point, that is, the point where all β coefficients
vanish.

The inclusion of the Weyl interaction, which on the one hand seems to be
inevitable, does generate severe problems of negative metric states, or equivalently,
negative energy states. This may simply mean that we have not yet fully understood
what local conformal symmetry really is [10].
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Chapter 2
Panel Discussion, “The Duel”: The Good,
the Bad, and the Ugly of Gravity
and Information
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Two hundred thousand dollars is a lot of money. We’re gonna
have to earn it.

— Blondie, “The Good, the Bad and the Ugly”, 1966

Abstract Various contenders for a complete theory of quantum gravity are at odds
with each other. This is in particular seen in the ways they relate to information and
black holes, and how to effectively treat quantization of the background spacetime.
Modern perspectives on black hole evaporation suggest that quantum gravity effects
in the near-horizon region can perturb the local geometry. The approaches differ,
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however, in the time scale onwhich one can expect these effects to become important.
This panel session presents three points of view on these problems, and considers
the ultimate prospect of observational tests in the near future.

2.1 Introduction

In 1975 Hawking obtained a ground breaking result about the fundamental nature
of black holes [1] that highlighted three crucial characteristics. Firstly, quantum
mechanics allows for particle emission from black holes. Secondly, the spectrum
of such an emission is thermal1 in the sense of black body radiation. Lastly, the
temperature of the emitted particles is proportional to the black hole’s surface grav-
ity. Although relations between horizon area, surface gravity, and black hole mass
resembling the laws of thermodynamics were already known at that time [2], the idea
of black hole thermodynamics was only taken seriously after Hawking’s derivation
of “black hole evaporation”. The thermal nature of black holes has since stimulated
an immense number of investigations, and more importantly, intersected several
research fields, such as particle physics, cosmology, statistical physics, and informa-
tion theory. Since for (asymptotically flat Schwarzschild) black holes2 the tempera-
tures increase as their masses decrease, soon after Hawking’s discovery, it became
clear that a complete description of the evaporation process would ultimately require
a consistent quantum theory of gravity. This is necessary as the semiclassical formu-
lation of the emission process breaks down during the final stages of the evaporation
as characterized by Planckian values of the temperature and spacetime curvature.

1The spectrum at the event horizon is thermal in an extremely accurate approximation according to

Hawking’s argument. Small corrections come from the decreasing black hole mass due to evapora-

tion, as well as finite size and shape effects during the emission. An asymptotic observer measures

deviations from a thermal spectrum induced by the curved geometry outside the horizon, i.e. grey-

body factors.
2This is the system which we consider in this paper if not stated otherwise.
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More than 40 years after Hawking’s discovery the situation remains unclear and
a variety of issues unresolved. A quantum theory of gravity is not only expected to
provide an ultraviolet completion of general relativity, but also to describe consis-
tently the microscopic degrees of freedom at the basis of the statistical interpretation
of black hole thermodynamic variables [3–7]. For instance, both the heat capacity
and the entropy of black holes exhibit anomalous behavior. Black holes have nega-
tive heat capacity throughout the entire evaporation process, while their entropy is
proportional to the area of the event horizon rather than the interior volume, as is
the case in classical thermodynamic systems. As acceptance of the area-entropy law
as a realization of the holographic principle [8–11] is still debated between com-
munities, also black hole thermodynamics still posits important issues related to our
understanding of fundamental physics. At the classical level, the formation of an
event horizon as a result of a gravitational collapse implies information loss of the
star’s initial microstates. Quantum mechanical effects worsen the situation. Thermal
radiation is a mixed quantum mechanical state, and therefore black hole evaporation
challenges one of the basic principles of quantum mechanics, i.e., the impossibility
for pure states to evolve into such mixed states.

Several formulations have been proposed in order to address issues raised by black
hole evaporation, which we term the Good, the Bad, and the Ugly:

• The Good: There exist some model-independent characteristics, or at least an
agreement on how the semiclassical description of black hole thermodynamics
has to be improved. For instance, the nature of the black hole entropy is often
interpreted in terms of entanglement entropy [4, 12, 13]. But ultimately some
modifications are expected in the vicinity of the horizon. It is expected that the
usual notions of locality and causality will be violated when both gravitational
and quantum mechanical effects are simultaneously taken into account. These
violations might allow information to leak out of the horizon (see e.g. [14–20]).
Traditionally, the above issues were approached by maintaining the dogmas of
gravity at the expense of local quantum field theory principles. However, it is also
possible to postulate the breakdown of gravity while maintaining quantum field
theory. In this way, the possibility of a black hole firewall [21]might be considered.

• The Bad: To date, we do not have any experimental/observational data in order
to discriminate among the plethora of possible scenarios, even though there exists
a new generation of facilities, e.g. the Event Horizon Telescope [22], Advanced
LIGO, [23, 24] aswell as future runs at theLargeHadronCollider (LHC, scheduled
until 2035) [25], that have the potential to disclose crucial clues.

• TheUgly:We need to dig deep into a complicatedmess ofmathematical formalism
to understand the relationship between gravity and information and to extrapolate
reliable phenomenological scenarios.

In the following pages, we expand on these topics to show the ways in which they
conflict, but also the ways in which they complement one another.
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2.2 The Loop Quantum Gravity Perspective

Contribution by C. Rovelli

The convergence of ideas we have witnessed in this conference is surprising, and is
good news. I was surprised how Steve and I, coming from different theoretical paths,
have come to similar conclusions.

The first convergence point is the growing conviction that quantum gravitational
phenomena can violate the basic assumptions of standard Local Quantum Field
Theory (LQFT). They can violate the causality dictated by the background geometry.
On the other hand, I understand that Gerard disagrees with this, and does not expect
quantum gravity to violate the LQFT basics.

There is a difference, however, between Steve’s and my views on the violation
of LQFT causality. For Steve, this is a shocking new phenomenon that points to
some mysterious new physics and demands some deep revision of current physics
and some courageous new speculation. For me — in fact for a large community of
people that have been working on quantum gravity for decades — this is the natural
consequence to be expected when general relativity and quantum theory are taken
together.

Let me explain: we have learned from general relativity that spacetime geometry
— therefore the causal structure — are determined by the gravitational field. The
gravitational field is a quantum field, therefore the geometry it determines is not
going to be sharp: it undergoes quantum fluctuations, can be in superpositions, and
entangled. Therefore the causal structure of a single fixed background geometry can
be violated.

To have such violations, one must exit the regime of validity of perturbation the-
ory, because perturbation theory can be formulated over a background configuration
respecting the causality of the background. But of course there are phenomena in
quantum mechanics that escape perturbation theory: quantum tunnelling is a promi-
nent example. Therefore tunnelling phenomena can easily violate the causality of
conventional LQFT, because LQFT does not allow a violation of the causality deter-
mined by the background geometry.

What is the time scale for these violations? There is a simple dimensional argu-
ment that gives an indication. To have quantum gravitational phenomena, you need
something to get to Planckian scale, which is to say to get to order 1 in Planck units.
One well known possibility is to have a very high curvature R ∼ 1: this happens
near the region where classical General Relativity (GR) predicts a singularity, indi-
cating that classical GR fails there. But there is another possibility: small quantum
corrections can pile up and give radical departures from classicality over a long time
T . Therefore in a region of low curvature we might already see quantum phenom-
ena after a time T , as soon as RT ∼ 1. Around a mass m the curvature goes like
R ∼ m/r3, where r is the radius, and in the region outside the horizon of a black
hole r ∼ m. This gives

T ∼ m2 ,
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as a possible time to see quantum gravitational effects. For a macroscopic hole, this
is a huge time: it is the Hubble time for a millimeter-size black hole. But it is still
enormously smaller than the immense Hawking evaporation time, which is T ∼ m3,
meaning that it takes 1035 Hubble times to evaporate the same millimetre size black
hole. This indicates that for a black hole there can be other quantum phenomena than
the Hawking radiation, taking a shorter time than the Hawking time, which are not
seen by LQFT.

There is another way of seeing that quantum gravity allows for surprising vio-
lations of causality. Suppose for a moment that causality could be violated at the
distance of a single Planck length. For instance, suppose information could be fast
transmitted one Planck length away in a spacelike direction. Take an arbitrary point
P in the classical metric of a collapsed star, sufficiently after the collapse. It is a fact
that the distance between P and the singularity is smaller than a Planck length. This
is completely counter-intuitive for a Newtonian intuition, but it is a simple conse-
quence of special relativity: a light ray emitted from a point just before P can reach
the singularity, therefore there are points of the singularity at an arbitrarily small spa-
cial distance from P . If quantum effects can spread information a Planck distance
away, they can move information from the singularity to anywhere in space. No wild
speculation about new physics is required for this: general relativity and quantum
theory suffice. But we must go beyond LQFT.

A simple possibility of a quantum gravitational phenomenon that can happen
as soon as classical causality does not constrain quantum gravity phenomena, is
the following: a macroscopic black hole can “explode”, namely tunnell-out to a
white-hole, while still macroscopic, without having to wait for the end of Hawking’s
evaporation [26–52]. This is akin to standard nuclear decay, which is a prototypical
tunnelling phenomenon. Remarkably, it has been shown in [53] that this is possible
without violating the classical equations of motion outside a compact spacetime
region. A black hole can thus quantum gravitationally tunnel into a white hole and
explode. This is a standard quantum tunneling phenomenon, and therefore there
is no plausible reason for it not to happen. The relevant physical question is how
long it takes. If it takes too long, it is not of astrophysical relevance (but it still
shows that LQFT is going to be violated). If, on the other hand, the dimensional
estimate above (T ∼ m2) is correct, then this phenomenon can have astrophysical
relevance because millimeter size primordial black holes could be exploding today,
leading to observable cosmic rays. A millimeter size black hole has the mass of
a planet. In the sudden explosion triggered by quantum gravitational tunneling the
huge corresponding energy is projected out. It has been conjectured that some Fast
Radio Bursts and high energy gamma rays could have this origin [54, 55].

This is the second remarkable point of convergence between Steve and I: we are
now talking of potentially observable quantum gravity. We even have calculations
trying to compute the distance from the horizon where violations of the classical
could be expected [56, 57]. For a field long in search of observations [58, 59], this
is again good news. Maybe black holes could ‘reveal their inner secrets’ [60] after
all, thanks to quantum theory.
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Of course in order to describe this kind of phenomenon we need a formulation of
quantum general relativity which is not in the form of a LQFT over a fixed geometry.
It is in this sense that we need something radical to understand quantum black holes.
That is, not in the sense that we need mysterious new physics; but in the sense that
we have to accept the idea that combining general relativity and quantum theory
requires us to abandon the framework of LQFT.

Loop quantum gravity [61–65] does provide a formulation of quantum gravity
which is background free, and it does indicate that non-perturbative phenomena
violating the causality of the background geometry are possible. Explicit calculations
are in course to use LQG to compute the lifetime of a black hole under this kind of
decay [66]. In the bounce region, the ‘architecture’ [67] of the quantum geometry is
fully non-classical.

I close with a physical picture of the causality violation. The simplest way to inter-
pret black hole entropy is in terms of quantum field entanglement across the horizon.
The traditional difficulty of this interpretation is the “species problem”, namely the
naive expectation that the amount of entanglement entropy should depend on the
number of existing fields and not have the universal character of the Bekenstein-
Hawking entropy. This difficulty has been brilliantly solved by Bianchi, in [68] by
showing that dS = dA/4 is independent from the ultraviolet cut-off and from the
number of species; it is an infrared phenomenon that follows simply from the Ein-
stein equations and standard QFT.3 Now, the interpretation of black hole entropy as
entanglement entropy may seem to support the solidity of a physical picture where
the background geometry can be considered fixed. But this would be wrong: among
the entangled fields is the gravitational field itself, which means that the geome-
try on the horizon fluctuates, which means that the causal structure on the horizon
fluctuates. This is a physical process allowing information to escape, of course. Pre-
liminary calculations in Loop Quantum Gravity [69] show that the amplitudes for
black hole explosion come precisely from interference between different eigenstates
of the horizon geometry.

Overall, I feel that we are making excellent progress in understanding quantum
gravity and quantum black holes. What restrains understanding is excessive trust
in the validity of LQFT for describing quantum gravitational physics. This is still
widely diffused among theoretical physicists.

3As a side remark: the famous 1/4 factor of the Bekenstein-Hawking entropy S = A/4 is confusing:
if instead of GNewton = 1 we use units where the proper coupling constant of GR is taken to be unit,
namely 8πGNewton = 1, then the coefficient of the Bekenstein-Hawking entropy looks far more
conventional: S = 2π A.
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2.3 Black Holes and Correspondence as Guides to New
Principles

Contribution by S. Giddings

In my talk I outlined arguments for important quantummodifications to a description
of black holes that has historically been based on perturbative local quantum field
theory (LQFT) on a semiclassical background, which for example might be closely
approximated by Schwarzschild’s original solution. Here, I’ll review some of these
arguments and respond to some of the comments made by others in our discus-
sion, and also comment further on the prospects for observation of or observational
constraints on black hole quantum structure. This will summarize more in-depth
discussion from a series of papers I’ve written; references will be given to guide the
reader to more detailed arguments.

2.3.1 Quantum Modifications to Standard Locality

There has been a growing sense in the theoretical community that the only way we
can consistently describe black hole evolution is to accept that there are significant
modifications to the treatment based on perturbative quantization ofmatter andmetric
fluctuations on a background geometry, which can be semiclassically corrected to
account for Hawking flux. In particular, a central issue appears to be the role of
locality in quantum gravity; it is the usual locality of LQFT that forbids transfer of
information (signaling) from the interior of a black hole to its exterior, but transfer of
information from black hole “internal” states to exterior is apparently exactly what
is ultimately needed for a unitary description of evolution. An important point is that
while everyone expects a breakdown of locality at very short (e.g. Planckian) scales,
we have now realized that what is apparently needed is a modification of the LQFT
description of locality at long distance scales – comparable to the horizon radius scale
of even very large black holes. It is hard to see how short-distance modifications to
locality yield this result.

Of course the question of locality in quantum gravity is a tricky one. Indeed, in
gravity there is an obstacle to formulating local gauge (diffeomorphism)-invariant
observables; such local observables are used in non-gravitational LQFT to sharply
characterize locality (see, e.g., [70]). As has been made even more precise recently
[71–73], the “gravitational dressing” required to satisfy the gravitational constraint
equations, or their quantum version, produces an obstacle to this LQFT locality.

There has been a lot of discussion over time whether effects related to this obser-
vation actually save us in the black hole context. For example, the proposal that
black holes carry quantum gravitational hair [18] appears closely related, as do Ger-
ard’s suggestions in the discussion that gravitational backreaction communicates
the needed quantum information from ingoing particles to outgoing Hawking par-
ticles [19]. However, so far it has been very hard for many of us to see that such
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effects can be strong enough to restore unitarity to black hole evaporation; certain
toy models for black hole evaporation, e.g. [74], seem to reinforce the case that grav-
itational dressing or backreaction is not enough.4 I would make the same comment in
response to Carlo’s suggestion that fluctuations in the metric and causal structure are
sufficient – certainly there are perturbative studies of such fluctuations, and while
there have been arguments that these can become important [76] at long times, I
don’t know of clear arguments that their proper treatment can achieve the needed
unitarization of Hawking’s original story by sufficiently delocalizing information or
effectively transferring information from black hole states to the black hole exterior.

So in short, given the profound conflict we have encountered between the princi-
ples of relativity, of quantum mechanics, and of locality in describing black holes,
and the ensuing “unitarity crisis,” I am proposing that we need to consider funda-
mentally new quantum effects that do not respect the locality principle as formulated
in LQFT on a semiclassical geometry, and that do not arise from a naïve quantiza-
tion of general relativity. Such effects seem necessary, in order to save unitarity and
quantum mechanics in the black hole context. I don’t see an easier way out of our
quandary, and this explains the origin of my talk title, “Beyond Schwarzschild.”

In fact, here we encounter the “ugly” of the story: we don’t presently seem to have
a set of foundational principles to describe quantum gravity. Of course many string
theorists believe that AdS/CFT or related dualities provide such fundamental formu-
lation, but many puzzles about how this could work remain, and skepticism [77] has
grown in the community. My own point of view is that we need to think more gener-
ally, but that the “good” includes the statement that at least quantum mechanics, in
a suitably general formulation (see, e.g., [78]), should be an essential element of the
foundation of the theory. Another part of the “good” is the notion of correspondence
for quantum gravity [73, 79, 80] – whatever the more fundamental formulation is, it
should match on to LQFT on semiclassical spacetime in the context of weak gravi-
tational fields. This should be an important guide helping us to infer the necessary
additional mathematical structure that is needed beyond basic quantum postulates
such as the existence of a Hilbert space. Quantum mechanics and correspondence
together appear to be very powerful constraints.

In the absence of the complete fundamental structure, but assuming that it fits
within the framework of quantum mechanics, I have taken the pragmatic viewpoint
that we need to model and parameterize the relevant dynamics; doing so is in turn
hoped to furnish important clues about this fundamental structure. Specifically, since
the perturbative gravitational dressing appears to be a “weak” effect, I’ll begin with
the assumption that at the least we have a localization of information [81] into
quantum subsystems such as “black hole,” “black hole atmosphere,” and “asymptotic
spacetime;” far from a black hole we expect this localization of information to be
described, to a very good approximation, just like in LQFT. Then, we can investigate

4Note for example that there is a cancellation between the interaction of infalling matter with
outgoing Hawking particles and with Hawking “partners” behind the horizon [75], which appears
to eliminate large effects like those proposed by Gerard.
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the kinds of interactions between these subsystems that are needed to provide a
unitary description of evolution.5

In such a subsystem picture, the problem is that the Hawking process builds up
entanglement between the black hole and the exterior, as is easily seen in a descrip-
tion where entangled Hawking particles and their partners are produced, with the
latter residing inside the black hole. It is this growth of entanglement that ultimately
contradicts unitarity, once a black hole evaporates completely; to avoid this, the
entanglement with the black hole states must be transferred out [17, 82, 83] as the
black hole decays. Here is where the novel effects, which do not respect locality of
LQFT, are needed.

I will also make what I consider to be the reasonable assumption that we should
look for the “minimal,” or most conservative, departures from the usual story of
LQFT. So, while transfer of information from the black hole states to the exterior
is needed, we might expect this information transfers to the states in the immediate
vicinity of the black hole, and not, for example, to states at a million times the
Schwarzschild radius RS . Likewise, while we could consider drastic departures from
the semiclassical spacetime geometry near the horizon, I will explore the assumption
that we seek physics that produces minimal such departure, so, for example, an
observer could still sail into a large enough black hole without being harmed at the
point where he or she would expect to be crossing the horizon.

Here, by the way, I have evolved in my thinking. When I first proposed [15] that
transfer of information that is nonlocal with respect to the semiclassical geometry is
the way out of this crisis, this was part of a “violent” picture in which the information
escapes through formation of a new kind of object – a massive remnant, which
provides a sharp interface to the exterior vacuum spacetime. Of course, the most
unorthodox part of this was the nonlocality of the transfer of information from inside
the horizon. – I think many of my colleagues thought I was crazy to propose this,
and I wondered if I indeed was. But, I couldn’t see an easier way. Since then, it has
been gratifying to see a number of other authors have ultimately come around to a
similar viewpoint. In particular, it is nice to see the amount of agreement with Carlo;
as I show in Fig. 2.1, if one redraws his picture it clearly looks like such a massive
remnant scenario. Of course, in saying this, I am assuming that we should declare
victory over the crisis once we see how the massive remnant forms; the puzzling
attachment of the upper half of the picture, where one transitions to something more
like awhite hole, is less clearly necessary. Likewise, proposals such as gravastars [43]
and fuzzballs [84] (at least in certain versions), and firewalls, appear to invoke the
same crazy proposal – information must transfer in a way that appears spacelike
when described with respect to the semiclassical geometry, in order to form a new
quantum “object” with the information at or outside the would-be horizon.

But, perhaps due to advancing age, I’ve become more conservative – now I’m
suggesting that there could be a less-violent, but still “nonlocal” (with respect to
the semiclassical geometry) transfer of information, that can for example save the

5Note that if nonlocality from gravitational dressing indeed is found to play a central role, its effect
might also possibly be parameterizable in such a fashion.
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Fig. 2.1 A spacetime diagram corresponding to the scenario Carlo described in his talk. The
Planckian region crosses the black hole horizon in a spacelike, “nonlocal,” fashion, like in the
massive remnant scenario of [15]. Once this is allowed, in principle we can describe information
transfer from inside the black hole to outside. Carlo also symmetrically adds a white hole piece to
his spacetime

infalling observer from an untimely death. Whatever the correct picture is, and given
our uncertainty about themore fundamental dynamics, we should try to parameterize
and constrain the relevant physics. One relevant parameter is the time scale on which
LQFT and semiclassical spacetime break down and new dynamics manifests itself;
we know that thismust happen by a time∼ R3

S , and should not happen before a time∼
RS log RS . The longer time scale is that on which the black hole appreciably shrinks,
and by which information must start to emerge for a unitary description; the latter
time scale is inferred from gedanken experiments where an outside observer collects
information and then enters the black hole to try to compare with information inside
the black hole. We can also parameterize the range over which the dynamics extends,
and the “hardness” (e.g. characteristicmomentum scales) of the new dynamics. All of
these characteristics are important to describe what happens to an infalling observer,
and also to describe possible observational signatures of such quantummodifications
to black hole structure.

I’ll close this section with a final note about departures from the standard locality
of LQFT. As we know, in LQFT locality and causality are intimately linked; if an
observer can send a signal to a spacelike separated event, we can perform a Lorentz
transformation and find that signal propagates back in time. And, by combining
two such signals, the observer can send a signal into their own backward lightcone,
clearly violating causality – and causing paradoxes. Indeed, in his comments at the
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meeting, Gerard (see Sect. 2.4) indicated there is reluctance in the community to give
up locality and causality, possibly having this argument in mind.

The interesting thing is that if there are departures from standard locality that
only really become relevant in the black hole context, these don’t necessarily lead to
anything that an observer would describe as acausality [85]. Specifically, information
can fall into a black hole, and then be transmitted out at a later time, without any
observer seeing a violation of causality. The loophole in the preceding argument
arises because the background black hole spacetime specifies a definite frame of
reference, so the argument about constructing a signal propagating into your past
light cone can’t bemade.Moreover, with such a delay, with respect to the black hole’s
frame, one can satisfy an alternate macroscopic test of causality, which requires that
in scattering outgoing signals should not precede the corresponding ingoing ones.
Thus, despite such nonlocality, it is still perfectly possible for the S-matrix to have
the expected time delays [80, 86].

2.3.2 Violence Is Not the Answer?

Despite the fact that this session has the underlying theme of a “duel”, I’m going to
seek a nonviolent alternative – for the physics! Specifically, I propose to investigate
interactions that represent a “minimal” departure from the usual LQFT description
of the immediate surroundings of a black hole. This suggests that we work within
an effective field theory framework, but consider adding new interaction terms that
couple the black hole quantum state to the quantum fields in the immediate vicinity
of the black hole [87, 88].

In this spirit ofminimality, I’ll assume that these new interactions only extend over
a range of size ∼ RS outside the black hole horizon. An important question is which
LQFTmodes they couple to. For example, one could model a firewall by introducing
interactions transferring information [89] to very short wavelength (as seen by the
infalling observer) modes that are very near the horizon. A more benign scenario
is, apparently, to transfer information to modes whose wavelength grows with the
size RS of the black hole; a simplest example is to simply take this wavelength to be
∼ RS .

A priori, these interactions could transfer information (and correspondingly
energy) to any of the quantum fields in nature [87, 88]; for example just to fermions
or just to gauge bosons. However, generic such interactions would spoil a particularly
beautiful part of our current account of black holes: black holes would no longer obey
the laws of black hole thermodynamics. It may be that there is no absolute necessity
that they must respect these laws [4], with the entropy formula given by Bekenstein
and Hawking, but it seems desirable to preserve, at least approximately, such a nice
story.

One reason generic interactions spoil black hole thermodynamics is because they
would provide channels for information, and thus energy, to escape a black hole that
are not universal; then, a black hole could not be brought into equilibrium with a
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thermal bath at the Hawking temperature – detailed balance would fail. An obvious
way to achieve such universality is if the couplings to the black hole internal states
are through the stress tensor [90]. Such couplings have another feature – they make
a story of information flow from a black hole more robust to “mining” scenarios,
where one introduces a cosmic string, or other mining apparatus, to increase the
evaporation rate [91–94]. Such interactions through the stress tensor would also
universally couple to the mining apparatus. One might also be concerned that these
stress-tensor couplings would violate the Bekenstein-Hawking formula because they
increase the energy flux from a black hole. But, recall that emission from a black
body is given by the Stefan-Boltzmann law, and in particular is proportional to the
area of the emitting surface; in the black hole context, the new interactions may
effectively be increasing that area [95].

By following such a “conservative” path, we have greatly limited our alternatives.
The new interactions universally couple to soft modes (wavelength ∼ RS) in the
immediate vicinity of the black hole, and the number of such modes that escape the
black hole is limited. And, these interactions have a job to do: to unitarize black hole
decay, they must transfer of order one qubit of information per time RS , so that the
entanglement entropy of the black hole with its surroundings decreases to zero by
the time it has disappeared. This constrains the strength of the new couplings; the
simplest way to achieve such information transfer is if they provide an order one
correction to the Hawking radiation.

Thus, a rather simple and “conservative” set of assumptions has led us to an
interesting conclusion. First, note that black hole state-dependent couplings to the
stress tensor can be though of as a black hole state-dependent modification of the
metric in the vicinity of the black hole. Then, if such a coupling is of order unity, that
corresponds to a metric deviation that is of order unity. So, while the fluctuations
in the “effective metric” can be soft (long wavelength), they are strong. One might
be initially concerned that such fluctuations would greatly alter the experience of
the infalling observer. However, with the softness scale set by RS , typical curvatures
measured by an infalling observer are only of size R ∼ 1/R2

S – the same size such an
observer would see in Schwarzschild/Kerr. So, and this addresses another concern
expressed by Gerard in Sect. 2.4, the infalling observer doesn’t need to see a drastic
near-horizon departure from the experience expected for infall into a classical black
hole.

Before turning to the questionof observation, it isworth reviewing the assumptions
we have made, to emphasize their simplicity and paucity. We need to reconcile black
hole disintegration with quantummechanics. Assuming information can be localized
to begin with, this implies that information must transfer from black hole states to
outgoing radiation, and at a certain rate, of rough size one qubit per time RS . This can
be accomplished with new quantum interactions. To avoid a violent departure from
the semiclassical picture, these interactions should couple to external modes with
large wavelengths; the relevant scale could be Rp

S for some p > 0, but a simplest
assumption is p = 1.We also assume that such new interactions don’t extend beyond
the immediate vicinity of the black hole, that extends to a distance ∼ RS from the
horizon. Next, if wewant to preserve black hole thermodynamics and in particular (at
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least approximately) the Bekenstein-Hawking formula for the entropy, and address
mining, these interactions should couple universally to all modes, through the stress
tensor. Thus, they behave like black hole state-dependent metric fluctuations. Finally,
the size of these perturbations is determined by the statement that they need to provide
anO(1) alteration to the Hawking radiation, imprinting information at the necessary
rate.

2.3.3 Observation via EHT

While it is clearly important to further sharpen the preceding arguments, the prospect
that order one departures from the Schwarzschild (or Kerr) metric in the immediate
vicinity of the horizon are present raises the extremely interesting question of direct
observation.

In short, there has been a growing realization that quantum modifications to
Schwarzschild/Kerr are needed on scales of order the horizon size (not just near
the singularity); we have now entered the era where observations can be made of the
near-horizon geometry, and so we should seek to observe or constrain such quantum
structure.

In particular, as we heard at the meeting [96], the Event Horizon Telescope (EHT)
is nowprobing the structure of SgrA* on the event horizon scale.Whatmightwe look
for, in a story where there is new quantum structure? A preliminary discussion of this
was given in [97]: near-horizon perturbations in the effective metric seen by matter
would lead to deviations from the geodesics predicted for the Schwarzschild/Kerr
solutions. This, in turn, would alter the observed images, and specifically could
alter the shape of the black hole shadow and photon ring that is seen just outside
it. A careful treatment of the possible effects on EHT images involves modeling
the accretion flow – which emits the light that EHT observes – and numerical ray
tracing to see the effects of the perturbations on the collection of light trajectories.
Such a treatment is in progress [98]. But, as I pointed out in the discussion, generic
expectations from such perturbations are a smaller, fuzzier shadow, and distortion
of the photon ring. (Since this meeting and the original version of this writeup, this
analysis has appeared [99].)

2.3.4 Post-LIGO Update

Observation of gravitational radiation from inspiraling black holes also provides a
possible probe of black hole structure, as was pointed out in [97] and preliminarily
explored in [56]. In short, if black holes have quantum structure not described by
Schwarzschild/Kerr, then this is expected to alter their dynamics, particularly in the
plunge/merger phase. No large deviations were seen in the first LIGO detection [23],
which already indicates constraints on such scenarios. Providing sharp constraints
requires modeling the effects on the gravity wave signal due to quantum black hole
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structure, which in particular probably requires treatment via numerical relativity,
given the strong nonlinearities. Improvement of LIGO sensitivity to possible devi-
ations combined with further theoretical work thus offers the exciting possibility
of learning more about such effects. One might expect that ultimately the photon
observations of EHT can more cleanly resolve deviations from general relativity, but
LIGOmay also ultimately offer the advantage of statistics of multiple events, so that
remains to be seen.6

2.4 A Resolution to the Duel: Finding Common Ground
in Quantum Gravity Research

Contribution by G. ’t Hooft

The central question we face is how black holes can be properly incorporated in a
grand scheme of quantum gravity.

It is of tantamount importance to hold on as much as possible to the principles
and symmetries that we are dealing with in today’s theories. Starting from what we
know, black holes will then display quantum features that seem to be physically quite
acceptable: they radiate particles of all sorts, with, on the average, thermal spectra.
These properties appear to obey the usual conditions of causality and locality. An
observer will not see any violations of these principles. Yet, when we try to find good
descriptions of these phenomena, it seems some of us are inclined to throw locality
and causality overboard, replace pure states by mixed states, and so on – sometimes
a bit too easily. A classical observer should still think all (s)he sees agrees with the
classical theories.

On the other hand, could it be that a more ‘primitive’ theory does not have general
invariance – or even quantum mechanics? In this respect it would be interesting to
cite an observation by a computer scientist: as far as we know, all classical solutions
of Einstein’s equations have the property that signals are slowed down, in comparison
with any featureless vacuum solution. The computer scientist commented that this
would be what one should expect if nature would be modelled as a computer: near a
heavy body, this computer must process more information inside a smaller volume,
so this goes slower.

In such a world view [19, 100–105, 127], what we call quantum mechanics
today, may eventually become more like what thermodynamics is now: a description
of some deterministic system in a statistical language. Note: thermodynamics can
still be applied to single atoms, and similarly, quantum mechanics will still be true
for small-mass black holes, but it could be that a deterministic theory will explain
where these laws come from. That theory may turn out to be as deterministic as one’s
laptop.

Ideally, what should come out of an advanced theory is that, in the very end, black
holes act just as heavy radioactive nuclei, or objects like a bucket of water: they

6For a different point of view on this subject, see the footnote at the end of Sect. 2.4.
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absorb and emit particles, and, in practice, one can’t distinguish whether they are in
a pure quantum state or a mixed state. We should be able to describe them accurately.
This means that, just as a bucket of water, one should be able to describe them as
pure quantum states. Twenty years ago, this view, coming from particle physicists,
was not very popular among the traditional practitioners of general relativity.

There will be entangled components in these states. In particle physics, the lowest
energy states are verywell distinguishable. In the early days, the 1960s, complete lists
of all particles and their properties were published yearly: the so-called Rosenfeld
tables. Nowadays, such tables consist of thousands of pages. In principle, we should
be able to repeat this for all black hole states, after which we should be able to
decipher Nature’s book keeping system.

Of particular interest would be black holes whose mass is 10 times to 1000 times
the Planck mass, in the transition region between pure quantum objects and classical
objects Note that, even if the size of such black holes is much smaller than the size
scales in the StandardModel, theymay still be in the classical regime. This is because,
as soon as velocities approach that of light, the momentum p of such a black hole
can easily become much more than the Planck momentum. Therefore, the product
of the uncertainties �p and �x will be much greater than �. Therefore, black holes
considerably heavier and bigger than the Planckian dimensions, may in all respects
be handled as classical objects. For them, Einstein’s equations make perfectly sense.
The most challenging problem of black holes in physics is the regime where black
holes, and the particles they interact with, all reside in, or near, the Planckian domain.
Classical black holes obey a “no-hair” theorem, but the quantum black hole has hair.
One can see this if there is a scalar field present. At the horizon, such a field does not
change under a Lorentz transformation, so its values on the horizon are conserved in
time for the outside observer.

It is not true that a typical black hole horizon can only be defined if one waits
for very long time periods. As soon as a time of the order of m logm has gone by,
in Planck units, one sees the typical horizon features such as Hawking radiation.
That is a robust property of a horizon, and this amount of time is short. In all black
hole theories I am considering, time scales are as short as m logm. We then have the
internal degrees of freedom of the black hole, and those of particles surrounding it.

What one finds, in general, is that the gravitational back reaction of particles
can in principle impart their information onto the out-going Hawking particles. The
starting point is the Aichelburg–Sexl solution of the gravitational field of a fast
moving particle [106, 107]. It is a common misconception that this effect will be
small and unimportant. To the contrary, it diverges exponentially with time delay,
such that, at time scales of the order of, and beyond, m logm this effect becomes
dominant, and can completely explain how information re-emerges fromablack hole.
The price one pays is, that particles at the Planck scale cannot have the quantum
numbers we are used to in the Standard Model: only the geometric properties of
particles should suffice to describe the information they carry. This is because they
return information by the way they interact with gravity. This is indeed as it is in
string theories. Globally conserved quantum numbers such as baryon number will be
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untenable, since we know that a black hole can be formed from much more baryons
than whatever can be returned when they decay.

As a note added in proof: in a recent investigation [20, 108], a clearer picture is
drawn of how all information can reappear, which is by a topological twist in space-
time, a twist that cannot be observed directly by outside observers. It is a necessary
result of the fact that the Penrose diagram of a stationary black hole (a hole that is
much older thanm logm in Planck units) has two asymptotic regions; one must have
a good understanding of what they both mean. As soon as we accept the notion that
particles in the Planck regime only have geometrical properties, the method I have
been advocating for years, does away with the firewalls. This is because it gives a
unitary evolution law just as the Schroedinger equation does, and the solutions of
this law usually consist of entangled states. The gravitational drag effect, the central
engine in this domain, forces us to rephrase these states as soon as the time delays
surpass m logm, which is where the older, more primitive arguments would give us
firewalls. The firewalls are transformed away now, as I’ve tried to explain in mymost
recent papers.

Yet other problems remain. The total set of quantum states available for a black
hole is discrete, all of space and time here seems to be discrete, and therefore we
will have to give up some of our sacred notions that only make sense in a continuum,
such as strict locality. Even the notion of probability will have to be reconsidered.
The problem is not how to imagine crazy scenarios, the problem is how to arrive at
the correct scenario by making only small steps, without having to make outrageous
assumptions. There is no lack of information: we have special and general relativity,
and the entire Standard Model of the elementary particles with some 25 parameters,
coupling strengths that we do not know yet how to derive, but which can bemeasured
accurately.

The StandardModel now, is the prototype of a successful development in science.
It is based on Fock space approaches. In black hole physics, as in gravity in general,
Fock space will not be good enough, so that I think gravity, and black holes, will put
new constraints on the Standard Model. A theory better than Fock space may help
us understand, and calculate, those 25+ parameters.

This information is notoriously difficult to implement, however. All today’s the-
ories are based on real numbers: positions, momenta, energies, as well as constants
of nature. But every single real number carries an infinity of information, and that’s
probably more than can be accommodated for inside volumes as small as the Planck
volume. How do we make a theory without real numbers? Even the set of integers
might be too large. Should we exclusively employ bits and bytes?

Note, that eventually, when working out any theory, real numbers such as π and
e will show up soon enough, but only when you integrate things over larger volumes
and distance scales.
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How exactly to incorporate any most useful version of locality will be a difficult
problem. In particular, locality in the quantum mechanical sense is an issue to which
special meetings are devoted.7

2.5 Summary and Observational Prospects

When brought to a final showdown, the Good, the Bad, and the Ugly of gravity and
information do leave room for non-violent resolution and redemption. We witness
a congregation of representatives from different prominent approaches, converging
in similar ideas. Most notably, theoretical problems with local quantum field the-
ory (LQFT), as well as those concerning current concepts of locality in general,
are acknowledged across various communities. When venturing into the uncharted
territory in the Wild West of our current knowledge, revisions of these concepts are
considered foundational to the construction of quantum gravity. Further consider-
ation is required to demonstrate which technique will lead to a resolution of the
current stand-off: On one side, loop quantum gravity claims that the standard causal
structure of spacetime fluctuates, leading to a necessary revision of how causality
is defined. This is based on the idea that, according to general relativity (GR), the
geometry of spacetime is determined by the gravitational field, which is a quantum
field, undergoing quantum fluctuations and non-perturbative quantum effects. On the
other side, a convincing argument has not been given that short distance fluctuations
in the causal structure leads to the needed long distance modifications to a picture
based on semiclassical spacetime. So, the need for unitary evolution suggests that
new non-local physical effects are needed. This physics may be of a “violent” nature,
such as with massive remnants or firewalls, or of a “non-violent” nature as with soft
quantum structure of black holes. Both sides seem to agree that significant mod-
ifications to mere perturbative quantization of matter and metric fluctuations on a
background geometry are necessary. There is hope that these modifications are non-
violent and could be added systematically as corrections to known physics. Effective
field theory descriptions are proposed as a systematic and also the most conservative
approach in order to capture the leading quantum gravity corrections to our classical
gravity understanding. One obvious example of such an effective description may
be to take into account the backreaction of the Hawking radiation and its interaction
with the infalling matter [19, 109, 110]. Potentially, we could also keep locality,
causality, and the concept of everything being a pure state (even black holes from
their formation until their evaporation) intact. This may require a re-interpretation
of quantum mechanics (and LQFT) as an effective description, similar to statisti-

7Regarding observational prospects and in direct response to Steve (see Sect. 2.3.4), the by far most
likely scenario is that quantum effects will leave no trace in the behavior of kilometer-sized black
holes, since we expect, like everywhere else in quantum mechanics, that all phenomena where
the length scale, the time scale and the mass scale are way beyond the quantum regime, will be
described by classical laws. In this case, these will be Einstein’s equations, so that no deviations
from the standard GR results will be seen to occur.
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cal mechanics. In this analogy, black holes are like buckets of water: we could try
to follow all its constituents through the causal local evolution, but describing the
system in the analog of a statistical ensemble would be much more appropriate. In
such a description, globally conserved quantities (baryon number) seem untenable
and unnecessary, because only the geometric properties (mass, energy-momentum
tensor, topological information) of particles should matter to gravity, dictating the
symmetries for a putative effective field theory description of quantum black holes
and quantum gravity. Taking an entirely different route, AdS/CFT may provide a
fundamental formulation for quantum gravity, mapping a strongly curved regime
of a gravitational theory to a weakly coupled field theory that can be described
perturbatively.

And so, we reach the end of our story detailing the Good, the Bad, and the Ugly
of gravitation and information with good news. Currently, we are standing at the
precipice of the strong gravity regime. Over the next decade wewill open the window
and gaze in. As of February 2016, the LIGO Scientific Collaboration has confirmed
the observation of gravitational waves due to merging black hole binaries, giving a
first real test of general relativity in this limit [23]. In the not too distant future, the
Event Horizon Telescope promises to provide the first image of a black hole’s horizon
at an incredible resolution. On the theorists’ wish list there are also observations of
high curvature effects, long-time pile up of perturbative corrections, or obviously
direct observation of deviations of the near-horizon geometry from Schwarzschild
or Kerr geometry. Also of interest is the possibility that the Event Horizon Telescope
(EHT)may discover altered (non-GR) photon rings, and distorted shadows compared
to GR. LIGO may observe altered dynamics during the plunge or merger phase, or
maybe a quasinormal mode ringdown that deviates from the one predicted by GR.

In parallel to this, there is still a great expectation for the results the LHC will
provide in future runs. In the presence of extra dimensions [111–115] gravitational
collapse of colliding particles to form a microscopic (evaporating) black hole is
possible at LHCworking energies [116–119]. Other particle physics testbeds include
the formation ofmicroscopic black holes in ultra high energy cosmic ray showers that
might be observed at the Pierre Auger Observatory [120] or in AMANDA/IceCube,
ANTARES neutrino telescopes [121, 122]. Interestingly non-classical effects might
drastically change the production rates [123] and the signature in detectors [124–
126]. The above experiments aim to the observation of the evaporation end-point
of a microscopic black hole, a fact that could disclose crucial insights about how
information is ultimately exchanged and preserved beyond what is known on the
ground of standard semiclassical arguments.

The gravitational physics community looks forward to these, and future discover-
ies, with tempered anticipation, as LIGO, EHT and the LHC are staking new claims,
eager to uncover observational gold mines.



2 Panel Discussion, “The Duel”: The Good, the Bad, and the Ugly … 31

References

1. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)
2. J.M. Bardeen, B. Carter, S.W. Hawking, The Four laws of black hole mechanics. Commun.

Math. Phys. 31, 161–170 (1973)
3. G. Chirco, H.M. Haggard, A. Riello, C. Rovelli, Spacetime thermodynamics without hidden

degrees of freedom. Phys. Rev. D 90(4), 044044 (2014). https://doi.org/10.1103/PhysRevD.
90.044044, arXiv:1401.5262 [gr-qc]

4. S.B.Giddings, Statistical physics of black holes as quantum-mechanical systems. Phys.Rev.D
88, 104013 (2013). https://doi.org/10.1103/PhysRevD.88.104013, arXiv:1308.3488 [hep-th]

5. T. Jacobson, Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett.
75, 1260–1263 (1995)

6. T. Padmanabhan,Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005)
7. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73,

046901 (2010)
8. R. Bousso, The holographic principle. Rev. Mod. Phys. 74, 825 (2002)
9. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J.

Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]
10. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377 (1995)
11. G. ’t Hooft, Dimensional reduction in quantum gravity, Salamfest 1993:0284–296
12. E. Bianchi, T. De Lorenzo, M. Smerlak, Entanglement entropy production in gravitational

collapse: covariant regularization and solvable models. JHEP 1506, 180 (2015)
13. L.McGough, H. Verlinde, Bekenstein-Hawking entropy as topological entanglement entropy.

JHEP 1311, 208 (2013)
14. A. Averin, G. Dvali, C. Gomez, D. Lust, Gravitational black hole hair from event horizon

supertranslations, arXiv:1601.03725 [hep-th]
15. S.B. Giddings, Black holes and massive remnants. Phys. Rev. D 46, 1347 (1992). https://doi.

org/10.1103/PhysRevD.46.1347, arXiv:hep-th/9203059
16. S.B. Giddings, Locality in quantum gravity and string theory. Phys. Rev. D 74, 106006 (2006).

https://doi.org/10.1103/PhysRevD.74.106006, arXiv:hep-th/0604072
17. S.B. Giddings, Models for unitary black hole disintegration. Phys. Rev. D 85, 044038 (2012).

https://doi.org/10.1103/PhysRevD.85.044038, arXiv:1108.2015 [hep-th]
18. S.W. Hawking, M.J. Perry, A. Strominger, Soft Hair on Black Holes, arXiv:1601.00921 [hep-

th]
19. G. ’t Hooft, Nucl. Phys. B335, 138 (1990) and Unitarity of the Black Hole S-Matrix, Utrecht

preprint THU-93/04
20. G. ’t Hooft, Black hole unitarity and antipodal entanglement, arXiv:1601.03447 [gr-qc]
21. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: complementarity or firewalls?

JHEP 1302, 62 (2013)
22. Event Horizon Telescope, http://www.eventhorizontelescope.org/
23. B.P. Abbott et al., Observation of gravitational waves from a binary black hole Merger [LIGO

Scientific and Virgo Collaborations]. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/
10.1103/PhysRevLett.116.061102, arXiv:1602.03837 [gr-qc]

24. B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary
black hole coalescence [LIGO Scientific and Virgo Collaborations]. Phys. Rev. Lett. 116(24),
241103 (2016), arXiv:1606.04855 [gr-qc]

25. Longer term LHC schedule, http://lhc-commissioning.web.cern.ch/lhc-commissioning/
schedule/LHC-long-term.htm

26. A. Ashtekar, M. Bojowald, Black hole evaporation: a paradigm. Class. Quantum Gravity 22,
3349–3362 (2005)

27. V. Balasubramanian, D. Marolf, M. Rozali, Information recovery from black holes. Gen.
Relativ. Gravit. 38, 1529–1536 (2006)

28. C. Bambi, D. Malafarina, L. Modesto, Non-singular quantum-inspired gravitational collapse.
Phys. Rev. D 88, 044009 (2013)

https://doi.org/10.1103/PhysRevD.90.044044
https://doi.org/10.1103/PhysRevD.90.044044
http://arxiv.org/abs/1401.5262
https://doi.org/10.1103/PhysRevD.88.104013
http://arxiv.org/abs/1308.3488
http://arxiv.org/abs/1601.03725
https://doi.org/10.1103/PhysRevD.46.1347
https://doi.org/10.1103/PhysRevD.46.1347
http://arxiv.org/abs/hep-th/9203059
https://doi.org/10.1103/PhysRevD.74.106006
http://arxiv.org/abs/hep-th/0604072
https://doi.org/10.1103/PhysRevD.85.044038
http://arxiv.org/abs/1108.2015
http://arxiv.org/abs/1601.00921
http://arxiv.org/abs/1601.03447
http://www.eventhorizontelescope.org/
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/1602.03837
http://arxiv.org/abs/1606.04855
http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm
http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm


32 G. ’t Hooft et al.

29. C. Barceló, R. Carballo-Rubio, L.J. Garay, G. Jannes, The lifetime problem of evaporating
black holes: mutiny or resignation. Class. Quantum Gravity 32, 035012 (2015)

30. J.M. Bardeen, Black hole evaporation without an event horizon
31. B.J. Carr, J. Mureika, P. Nicolini, Sub-Planckian black holes and the generalized

uncertainty principle. JHEP 1507, 052 (2015). https://doi.org/10.1007/JHEP07(2015)052,
arXiv:1504.07637 [gr-qc]

32. V.P. Frolov, Information loss problem and a black hole model with a closed apparent horizon
33. V.P. Frolov, G. Vilkovisky, Quantum gravity removes classical singularities and shortens the

life of black holes, ICTP preprint IC/79/69, Trieste (1979)
34. V. Frolov, G. Vilkovisky, Spherically symmetric collapse in quantum gravity. Phys. Lett. B

106, 307–313 (1981)
35. R. Gambini, J. Pullin, Loop quantization of the Schwarzschild black hole. Phys. Rev. Lett.

110, 211301 (2013)
36. S.B. Giddings, W.M. Nelson, Quantum emission from two-dimensional black holes. Phys.

Rev. D 46, 2486–2496 (1992)
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Chapter 3
A Menagerie of Hairy Black Holes

E. Winstanley

Abstract According to the no-hair conjecture, equilibrium black holes are simple
objects, completely determined by global charges which can be measured at infinity.
This is the case in Einstein-Maxwell theory due to beautiful uniqueness theorems.
However, the no-hair conjecture is not true in general, and there is now a plethora
of matter models possessing hairy black hole solutions. In this note we focus on one
such matter model: Einstein-Yang-Mills (EYM) theory, and restrict our attention to
four-dimensional, static, non-rotating black holes for simplicity. We outline some
of the menagerie of EYM solutions in both asymptotically flat and asymptotically
anti-de Sitter space. We attempt to make sense of this black hole zoo in terms of
Bizon’s modified no-hair conjecture.

3.1 The “No-Hair” Conjecture

Static, spherically symmetric, asymptotically flat, four-dimensional black hole solu-
tions of the Einstein equations in vacuum or coupled to an electromagnetic field are
very simple (see, for example, [1] for a review). The metric must be a member of the
Reissner-Nordström family, determined by just two parameters. These parameters
correspond to the mass and charge of the black hole, which are global conserved
quantities, measurable (at least in principle) far from the black hole. A natural ques-
tion is whether this simplicity remains when some of the assumptions leading to the
electrovac uniqueness theorems are relaxed.We phrase this question as the following
conjecture, known as the “no-hair conjecture” [2]:

A static, spherically symmetric, four-dimensional black hole is uniquely determined by
global charges.

In this note we explore this conjecture when the matter content of the theory is
no longer simply an electromagnetic field. We consider Einstein-Yang-Mills (EYM)
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theory, which has been extensively studied over the past twenty-five years. This
theory is sufficiently complicated to have a rich space of black hole solutions, yet
simple enough that it is possible to analytically prove at least some results concerning
these black holes.

3.2 su(N) Einstein-Yang-Mills Theory

We consider the following action for four-dimensional Einstein gravity, with a cos-
mological constant �, coupled to an su(N ) nonabelian gauge field:

S = 1

2

∫
d4x

√−g
[
R − 2� − Tr FαβF

αβ
]
, (3.1)

where R is the Ricci scalar, Fαβ is the Yang-Mills (YM) gauge field strength and we
have set the gauge coupling equal to unity. Varying the action (3.1) gives the field
equations

Rαβ − 1

2
Rgαβ + �gαβ = Tαβ,

DαF
α

β = ∇αF
α

β + [
Aα, Fα

β

] = 0, (3.2)

where Aα is the YM gauge field potential and the stress-energy tensor of the YM
field is

Tαβ = Tr FαλF
λ
β − 1

4
gαβTr Fλσ F

λσ . (3.3)

We consider static, spherically symmetric, black holes with line element

ds2 = −ν(r)S(r)2 dt2 + [ν(r)]−1 dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (3.4)

where the metric functions ν(r) and S(r) depend on the radial co-ordinate r only
and ν(r) has the following form, in terms of an alternative metric function m(r),

ν(r) = 1 − 2m(r)

r
− �r2

3
. (3.5)

With a suitable choice of gauge, an appropriate static, spherically symmetric ansatz
for the su(N ) YM gauge potential is [3]

Aα dx
α = A dt + 1

2

(
C − CH

)
dθ − i

2

[(
C + CH

)
sin θ + D cos θ

]
dφ, (3.6)

where A , C and D are N × N matrices. The matrix A depends on N − 1 electric
gauge field functions h j (r); the matrix C depends on N − 1 magnetic gauge field
functions ω j (r) and the matrix D is constant.
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There is now an extensive literature on the EYM system and this short note cannot
do justice to all aspects, nor make reference to all relevant articles. Instead we focus
on work of the author and collaborators and a few selected other papers. We refer
the reader to the reviews [4, 5] for wider coverage of the field and more complete
bibliographies.

Let us for the moment restrict attention to purely magnetic configurations for
which all electric gauge field functions h j (r) vanish identically. We will return to
solutions with nontrivial h j (r) in Sect. 3.3.2. The first EYM black holes to be found
were asymptotically flat, with vanishing cosmological constant � = 0 and gauge
group su(2), and are known as “coloured black holes” [6]. With this gauge group,
the purely magnetic YM field is described by a single function ω1(r), which has at
least one zero. The requirement that the space-time is asymptotically flat constrains
ω1(r) to tend to±1 as r → ∞. As a result, the “coloured” black holes have no global
magnetic charge (seeSect. 3.3.1). They are therefore indistinguishable at infinity from
a Schwarzschild black hole, although the metric exterior to the event horizon is not
the same. Thus the “coloured” black holes are counter-examples to the “no-hair”
conjecture as stated above. However, there is a very general result that all purely
magnetic, spherically symmetric, asymptotically flat, su(N ) EYM black holes are
unstable [7]. Physically, it is natural to focus on stable equilibrium configurations,
so we consider the following modification of the “no-hair” conjecture [8]:

For a fixed matter model, a stable static, spherically symmetric, four-dimensional black hole
is uniquely determined by global charges.

The “coloured” black holes do not contradict this conjecture due to their instability.
If we include a positive cosmological constant � > 0 in the action (3.1), then

“cosmic coloured black holes” exist [9] when the gauge group is su(2). Like their
asymptotically flat counterparts, these too are unstable, and so themodified “no-hair”
conjecture holds, at least for the EYM model with � ≥ 0.

3.3 Asymptotically adS su(N) EYM Black Holes

In this section we consider whether the modified “no-hair” conjecture also holds for
EYM black holes when the cosmological constant � is negative, and the space-time
is asymptotically anti-de Sitter (adS).

3.3.1 Purely Magnetic Black Holes

Static, spherically symmetric, asymptotically adS black hole solutions of su(2)EYM
with a purelymagnetic gauge field have been found numerically [10–12]. In addition,
a very rich phase space of asymptotically adS black hole solutions has been found
when the larger su(N ) gauge group is considered [13, 14].
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These asymptotically adS solutions differ significantly from those in asymptoti-
cally flat space. Notably, there exist black hole solutions for which all the magnetic
gauge field functions ω j (r) have no zeros, provided |�| is sufficiently large [15],
which have no counterpart in asymptotically flat space. These nodeless solutions are
of particular interest because it can be proven that at least some of them are lin-
early stable under spherically symmetric perturbations [16]. When the gauge group
is su(N ), the gauge field is described by N − 1 independent functions ω j (r), cor-
responding to N − 1 matter degrees of freedom. Since there are stable solutions for
any N , there is therefore no limit on the amount of stable gauge field “hair” with
which a black hole in adS can be dressed.

The question is then whether these stable EYM black holes satisfy the modified
“no-hair” conjecture, in other words, are stable, asymptotically adS, su(N ) EYM
black holes uniquely determined by global charges? To answer this question, we first
define magnetic YM charges as follows [17]

Q(X) = 1

4π
K

(
X,

∫
S∞

F

)
, (3.7)

where F is the YM field strength, S∞ the two-sphere at space-like infinity, X is
an element of the Cartan subalgebra of the YM Lie algebra, and K is the Lie
algebra Killing form. Since su(N ) has rank N − 1, the definition (3.7) gives N − 1
independent magnetic charges Q j . The charges Q j depend on the values of the
magnetic gauge field functions ω j (r) as r → ∞. For example, for su(2), the single
charge Q1 is given by

Q1 = 1 − ω2
1(∞), (3.8)

and for su(3), the two charges are

Q1 = 1 − ω2
1(∞) + 1

2
ω2
2(∞), Q2 = √

3

[
1 − 1

2
ω2
2(∞)

]
. (3.9)

The asymptotically flat “coloured” black holes in su(2) EYM must have ω1 → ±1
as r → ∞ in order that the space-time is asymptotically Minkowskian, leading to
vanishingmagnetic charge.However, in asymptotically adS space-time, the boundary
conditions as r → ∞ imply that each magnetic gauge field functionω j (r)must tend
towards a constant, but do not constrain the values of these constants. In general,
asymptotically adS EYMblack holes have nonzero magnetic charges Q j . In [18], we
presented numerical evidence and an analytic argument that at least a subset of the
su(N )EYMblack hole solutions which are linearly stable are uniquely characterized
by the cosmological constant �, black hole mass M (which is the finite limit as r →
∞ of the function m(r) in the metric (3.5)) and the set of N − 1 global nonabelian
magnetic charges Q j .

Therefore stable black holes in su(N ) EYM in adS, while possessing potentially
unlimited amounts of stable gaugefield hair, satisfy themodified “no-hair” conjecture
as they are uniquely determined by global charges.
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3.3.2 Dyonic Black Holes

So far we have considered only purelymagnetic gauge field configurations. For su(2)
EYM in asymptotically flat space-time, nontrivial black holes must have a purely
magnetic gauge field [19, 20]; the only black hole solution having a nontrivial electric
gauge field component being the embedded abelian Reissner-Nordström solution.
This is no longer the case when the space-time is asymptotically adS.

Dyonic (that is, having nontrivial electric and magnetic gauge field components)
black hole solutions of su(2) EYM in adS were found numerically soon after the
corresponding purely magnetic black holes [10, 11]. These black holes have a single
electric gauge field function h1(r) and a single magnetic gauge field function ω1(r).
The electric gauge field function h1(r) is always nodeless, and there exist solutions
for which the magnetic gauge field function ω1(r) also has no zeros [10, 11, 21]. As
in the purely magnetic case, at least a subset of these nodeless solutions are stable
under linear, spherically symmetric perturbations when |�| is sufficiently large [22].

Enlarging the gauge group to su(N ), a rich phase space of dyonic black hole
solutions is found [23]. As with the su(2) solutions, the electric gauge field functions
h j (r) always have no zeros, and, for sufficiently large |�|, there are solutions for
which the magnetic gauge field functions ω j (r) are all nodeless [24]. The stability
of dyonic black holes with the larger gauge group remains an open question, but
one might conjecture the existence of stable dyonic black holes for sufficiently large
|�|. The question of whether these dyonic black holes are uniquely characterized by
global charges also remains uninvestigated at the time of writing.

3.4 Topological Black Holes

In four-dimensional adS, black hole event horizons do not necessarily have spherical
topology, which is the only possibility in asymptotically flat space-time.We now con-
sider static su(N ) EYM black holes in adS having event horizons with nonspherical
topology. In this case the metric takes the form

ds2 = −ν(r)S(r)2 dt2 + [ν(r)]−1 dr2 + r2
(
dθ2 + f 2k (θ) dφ2) , (3.10)

and the metric function ν(r) is modified to be

ν(r) = k − 2m(r)

r
− �r2

3
. (3.11)

In (3.10), the form of the function fk(θ) depends on the constant k as follows:

fk(θ) =
⎧⎨
⎩
sin θ, k = 1,
θ, k = 0,
sinh θ, k = −1,

(3.12)
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where k = 1denotes spherical event horizon topology; k = 0 for planar event horizon
topology, and for k = −1 the event horizon is a surface of constant negative curvature.
For topological black holes with k �= 1 the gauge potential ansatz (3.6) is generalized
to [25, 26]

Aα dx
α = A dt + 1

2

(
C − CH

)
dθ − i

2

[(
C + CH

)
fk(θ) + D

d fk(θ)

dθ

]
dφ.

(3.13)
Purely magnetic topological black holes with gauge group su(2) were found in

[26]. All the solutions are such that the single magnetic gauge field function ω1(r)
has no zeros if k �= 1. This is in contrast to the situation when k = 1 and the black
hole is spherically symmetric, when, as described in Sect. 3.3.1, there exist solutions
for which ω1(r) is nodeless, but there are also black holes for which ω1(r) has zeros.

Enlarging the gauge group to su(N ), it is no longer the case that all the magnetic
gauge field functions ω j (r) are nodeless for purely magnetic configurations [27],
although it can be shown for any N that there are purely magnetic black holes for
which all the ω j (r) have no zeros [25], if |�| is sufficiently large.

Dyonic topological black holes also exist. Those with planar event horizons
(k = 0) have attracted great attention in the recent literature as models of p-wave
holographic superconductors (see [28] for a review and references). Planar black
holes with su(2) gauge group have been found numerically [29], as have their coun-
terparts with the larger su(N ) gauge group [30]. For both k = 0 and k = −1, there
exist topological dyonic black hole solutions for which the magnetic gauge field
functions ω j (r) have no zeros, for any value of N and |�| sufficiently large [24].

The stability of topological EYMblack holes has been investigated thus far only in
the purely magnetic case. As might be anticipated from the discussion in Sect. 3.3.1,
there exist nodeless purely magnetic topological black holes in su(N ) EYM in adS
are which stable under linear perturbations [26, 31]. Whether or not it is possible
to uniquely characterize these stable topological black holes by global charges at
infinity has yet to be investigated.

3.5 Understanding the EYM adS Black Hole Menagerie

In this note we have briefly reviewed some aspects of the veritable zoo of hairy black
hole solutions of su(N ) EYM in adS, restricting our attention to four-dimensional,
static, spherically symmetric and topological black holes. We have considered solu-
tions with a purely magnetic gauge field, and also dyonic black holes whose gauge
field has nontrivial electric and magnetic components. In the literature, the existence
of nontrivial black hole solutions has been proven for all N , with the rich solution
space explored numerically for smaller values of N . Given the abundance of solu-
tions, we have explored whether these black holes satisfy the modified “no-hair”
conjecture, namely whether stable black holes in this model are uniquely determined
by global charges.
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Table 3.1 Summary of the su(N ) EYM adS black hole menagerie

Existence of stable solutions? Characterization by global
charges?

Spherically symmetric, Purely
magnetic

Yes [16] Yes [18]

Spherically symmetric, Dyonic Yesa [22] ?

Topological, Purely magnetic Yes [31] ?

Topological, Dyonic ? ?
aResults only for su(2)

In Table3.1, we have listed the different types of solutions considered in this note,
and summarized what is known about their stability and characterization by global
charges. A question mark ? means that this aspect has yet to be investigated in the
literature. Most is known about spherically symmetric, purely magnetic black holes,
for which there is analytic and numerical evidence that at least a subset of stable hairy
black holes are characterized by global charges, for any N and |�| sufficiently large
[18]. Recently the existence of stable topological black holes with purely magnetic
su(N ) gauge field has been proven [31], but it is not known whether these can be
characterized by global charges. For dyonic black holes with nontrivial electric and
magnetic gauge field components, rather less is known, with the existence of stable
spherically symmetric dyonic black holes with su(2) gauge group only recently
proven [22]. Characterization by global charges in the dyonic case remains an open
question.

To conclude, stable black hole solutions of su(N ) EYM theory in adS can be
arbitrarily complicated, in the sense that they are dressed with gauge field hair with
unbounded numbers of degrees of freedom. However, work to date indicates that
despite their complexity, these black holes can be uniquely characterized by global
charges defined at infinity. Hence the modified “no-hair” conjecture [8] seems to be
valid for black holes in su(N ) EYM in adS.
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Chapter 4
Black Holes Sourced by a Massless Scalar

M. Cadoni and E. Franzin

Abstract We construct asymptotically flat black hole solutions of Einstein-scalar
gravity sourced by a nontrivial scalar field with 1/r asymptotic behaviour. Near the
singularity the black hole behaves as the Janis-Newmann-Winicour-Wyman solution.
The hairy black hole solutions allow for consistent thermodynamical description. At
large mass they have the same thermodynamical behaviour of the Schwarzschild
black hole, whereas for small masses they differ substantially from the latter.

4.1 Introduction and Motivations

Static, spherically symmetric solutions of Einstein gravity sourced by scalar fields
have played an important role for the development of black hole physics. The simplest
solution of this kind, describing a asymptotically flat (AF) spherically symmetric
solution with no horizon, sourced by a scalar with vanishing potential are known
since a long time [1, 2]. They are called the Janis-Newmann-Winicour or Wyman
(JNWW) solutions. Initially, the search for AF black holes (BHs) with scalar hair
was motivated by the issue of the uniqueness of the Schwarzschild solution and
related “old” no-hair theorems [3, 4], which forbid the existence of BHs if the scalar
potential V is convex or semipositive definite.

In the early nineties it was discovered that low-energy stringmodels may allow for
black hole solutions with scalar hair [5–8]. But, in this case non-minimal couplings
between the scalar field and the electromagnetic field.

In recent times, the quest for hairy black hole and black brane solutions has been
motivated by the application of the AdS/CFT correspondence to condensed matter
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systems [9–17]. In holographic applications the scalar field has a nice interpretation
as an order parameter triggering symmetry breaking/phase transitions in the dual
field theory.

Several numerical and analytical, black hole and black brane with AdS asymp-
totics solutions with scalar hair have been found in this context [9–13, 16, 18, 19].

Shifting fromAF to anti de Sitter (AdS) black holes allows to circumvent standard
no-hair theorems because in AdS the scalar field may have tachyonic excitations
without destabilizing the vacuum [20]. This led to the formulation of “new” no-hair
theorems [21]. The violation of the positivity energy theorem (PET) [22]. being
identified as a necessary condition for the existence of BH with scalar hair.

In this note, which is based on [23], we will show as the expertise achieved in the
holographic context can be successfully used to find AF BH solutions with scalar
hair. Extension to asymptotically flat BF is an important issue because we know that
scalar fields play a crucial role in gravitational and particle physics. Experimental
discovery of the Higgs particle at LHC has confirmed that there is a fundamental
scalar particle [24]. Observation of the Plank 2013–2015 satellite gives striking con-
firmation of cosmological inflation driven by scalar field coupled to gravity [25].
Moreover, scalar field give a way to describe dark energy.

Themain result presented here is that the solution generating techniques developed
in the holographic context in [16] can be also successfully used to construct AF BH
solutions sourced by a scalar behaving at r = ∞ as an harmonic function, φ = 1/r .

The structure of the paper is as follows. In Sect. 4.2 we present the review the
solution-generating technique of [16]. In Sect. 4.3 we rederive the JNWW solutions
and discuss their main features. The boundary conditions on the scalar field and the
corresponding asymptotic behavior for V (φ) are discussed in Sect. 4.4. In Sect. 4.5
we present our hairy BH solutions. The thermodynamical behaviour of our solutions
is discussed in Sect. 4.6. Finally, in Sect. 4.7 we present our conclusions.

4.2 The Solution-Generating Technique

We consider Einstein gravity in four spacetime dimensions minimally coupled to a
scalar φ (R is the scalar curvature),

A =
∫

d4x
√−g

(
R − 2(∂φ)2 − V (φ)

)
(4.1)

and static, spherically symmetric solutions of the field equations,

ds2 = −U (r)dt2 +U−1(r)dr2 + R2(r)d�2, (4.2)

where d�2 is the metric element of the two-sphere S2.
Finding exact solutions of the field equations stemming from the action (4.1) is

a very difficult task even for simple forms of the potential V . To solve the fields
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equation (FE) we use the solution generating technique developed in [16] to find
asymptotically AdS solutions once the scalar field profile φ = φ(r) is given. Using
the variables introduced in [16]

R = e
∫
Y , u = UR2, (4.3)

the field equations take the simple form.

Y ′ + Y 2 = −(φ′)2, (4.4)

(uφ′)′ = 1

4

∂V

∂φ
e2

∫
Y , (4.5)

u′′ − 4(uY )′ = −2, (4.6)

u′′ = 2 − 2Ve2
∫
Y . (4.7)

Equations (4.4) for Y (Riccati equation) and (4.6) for u are universal, they do not
depend on the potential. One starts from a given scalar field profile φ(r) and solves
the Riccati equation for Y . Once Y is known can easily integrate the linear equation
for u, (4.6) to obtain

u = R4

[
−

∫
dr

(
2r + C1

R4

)
+ C2

]
, (4.8)

where C1,2 are integration constants.
The last step is to determinate the potential using (4.7)

V = 1

R2

(
1 − u′′

2

)
. (4.9)

This is a very efficient solving method, very useful in the holographic context,
allowing to find exact solutions of Einstein-scalar gravity in which the potential is
not an input but an output of the theory.

4.3 The JNWW Solutions

The parametrization (4.3), allows a simple (re)derivation of solutions for V = 0 (the
JNWW solutions). Equation (4.7) gives u as a quadratic function of r , (4.5) and (4.6)
give φ(r) and R(r), whereas the Riccati equation simply constrains the parameters,

U =
(
1 − r0

r

)2w−1
, R2 = r2

(
1 − r0

r

)2(1−w)

, φ = −γ ln
(
1 − r0

r

)
+ φ0, w − w2 = γ 2.

(4.10)
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According to old no-hair theorems, for 0 < w < 1 the solution is not a BH (V=0) but
interpolates between Minkowski space at r = ∞ and a naked singularity at r = r0
(or r = 0). Nevertheless the solution is of interest for several reasons. The BH mass
is M = 8π(2w − 1)r0. We can have a solution with zero or positive mass even in
the presence of a naked singularity. In particular for w = 1/2 we have M = 0, a
degeneracy of the Minkowski vacuum. The JNWW appears as the zero charge limit
of charged dilatonic black holes. Near to the singularity the solution has a scaling
behavior typical of hyperscaling violation [17].

4.4 Asymptotic Behavior of the Scalar Field
and of the Potential

We are looking for AF BH solutions sourced by scalar field, which decays as 1/r .
We also assume that the Minkowki vacuum is at φ = 0 and that it is an extremum of
the potential with zero mass: V (0) = V ′(0) = V ′′(0) = 0. These conditions imply
that near φ = 0 the potential behaves as V (φ) = μφn with n ≥ 3. The corresponding
asymptotic behavior for the scalar is determined by using the boundary conditions
at r = ∞ u = r2, R = r in the FE. For n = 5 we get φ = β

r + O(1/r2). Hence, an
harmonic decay of the scalar field requires a quintic behavior for the potential V .

4.5 Black Hole Solutions

Let us now use the solution-generating method of Sect. 4.2. We need an ansatz for
the scalar. We use the JNWW scalar profile (also previously used to in the literature
to derive AdS BHs): φ = −γ ln (1 − r0/r) . The Riccati equation gives the form
of the metric function R: R2 = r2 (1 − r0/r)

2(1−w) , w − w2 = γ 2, 1/2 ≤ w < 1.
We get three different class of solutions (X = 1 − r0/r ),

U (r) = X2w−1
[
1 − � (r2 + (4w − 3)rr0 + (2w − 1)(4w − 3)r20 )

]
+ �r2

X2(w−1)
(4.11)

U (r) = r2

r20
X

[(
1 + r20�

)
X − 2r20� ln X +

(
1 − r20�

)
X−1 − 2

]
, (4.12)

U (r) = r2

r20
X1/2

[(
1 + r20�

2

)
X2 − 2

(
1 + r20�

)
X + r20� ln X + 1 + 3r20�

2

]
(4.13)

respectively for 1/2 < w < 1, (w �= 3/4), w = 1/2 and w = 3/4. The correspond-
ing potentials are given by,
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V (φ) = 4�

[
w(4w − 1) sinh

(2w − 2)φ

γ
+ 8γ 2 sinh

(2w − 1)φ

γ
+

+(1 − w)(3 − 4w) sinh
2wφ

γ

]
, (4.14)

V (φ) = 4� [3 sinh 2φ − 2φ (cosh 2φ + 2)] , (4.15)

V (φ) = �

(
8
√
3φ cosh

2φ√
3

− 9 sinh
2φ√
3

− sinh 2
√
3φ

)
(4.16)

The previous solutions describe a one parameter family of AF black holes sourced
by a scalar field behaving asymptotically as 1/r and with a curvature singularity at
r = r0 (or r = 0) and a regular event horizon at r = rh . The scalar charge is not
independent. Near to the singularity the solution have the same scaling behavior of
the JNWW solutions. As expected near φ = 0 the potential has always a quintic
behavior. The existence of these BH solution represent a way to circumvent old
and new no-hair theorems. In fact the potential V is not semipositive definite, it has
an inflection point at φ = 0 and is unlimited from below. The ADM mass is not
semipositive definite (the PET is violated).

4.6 Black Hole Thermodynamics

Scalar charge σ is not independent from the mass but determined by the BHmass M ,
implying the absence of an associate thermodynamical potential. The First principle
has therefore the form dM = TdS, where the temperature T and the entropy S are

given by the usual forms T = U ′
4π

∣∣∣∣
r=rh

, S = 16π2R2|r=rh . For w = 1/2 we have

T (ω) =
√

�

4π
√
l

[
2

(
1 − 2

ω

)
ln(1 − ω) − 4

]
, S(ω) = 16π2

�l

(
1

ω2
− 1

ω

)

(4.17)

where l is a function of ω defined implicitly by 2(1 − ω) ln(1 − ω) − ω2(1 + l) +
2ω = 0. We have an extremal low-mass state with non vanishing mass Mmin, zero
entropy and infinite temperature. In the large mass (small temperature) limit we
get the Schwarzschild behavior for the thermodynamical potentials: M = 2/T, S =
1/T 2, F = M − T S = 1/T . Forw = 3/4we have for T and S a different behaviour
(see [23]). Both the low and large mass regimes have the Schwarzschild behavior.
The extremal state has M = S = 0 and T = ∞. The thermodynamical behaviour of
the solutions with 1/2 < w < 3/4 and 3/4 < w < 1 are similar respectively to the
cases w = 1/2 and w = 3/4.
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4.7 Concluding Remarks

AF BH solution sourced by a scalar field with 1/r fall-off do exist but require a
potential unlimited from below. Because φ = 0 is an inflection point for V , the
φ = 0 Schwarzschild black hole is unstable. For 3/4 ≤ w < 1 BH thermodynamics
is similar to Schwarzschild. For 1/2 ≤ w < 3/4 the low-mass regime drastically
different. Near to the φ = 0 Minkowski vacuum V has a quintic behaviour. The
corresponding Field theory is not renormalizable. It cannot be fundamental. However
it could represent an effective description arising from renormalization group flow.
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Chapter 5
Rotating Black Hole Solutions
in f (R)-Gravity

M. De Laurentis and R. Farinelli

Abstract Wepresent a strategy to get axially symmetric solutions in f (R) gravity by
starting from spherically symmetric space-times. To do so, we assume the validity of
a complex coordinate transformation, which acts on the spherically symmetricmetric
and permits one to infer the corresponding f (R) modification. The consequences
of this recipe are here described, giving particular emphasis to define a class of
compatible axially symmetric solutions, which fairly well describes the motion in
cylindrical geometries in the field of f (R), in two different classes of coordinates.
We demonstrate that our approach is general and may be applied for several cases of
interest. We also show that our treatment is compatible with the standard approach
of general relativity, evaluating the motion of a freely falling particle in the context
of our metric.

5.1 Introduction

Alternative theories of gravity pose the problem to recover or extend the well-
established results ofGeneralRelativity (GR) as the initial value problem, the stability
of solutions and, in particular, the issue of finding out new solutions [1]. As it is well
known, beside cosmological solutions, spherically and axially symmetric solutions
play a fundamental role in several astrophysical problems ranging from black holes
to active galactic nuclei. Alternative gravities, to be consistent with results of GR,
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should comprise solutions like Schwarzschild and Kerr ones but present, in general,
new solutions that could be physically interesting. Due to this reason, methods to
find out exact and approximate solutions are particularly relevant in order to check
if observations can be framed in Extended Theories of Gravity [2].

Recently, the interest in spherically and axially symmetric solutions of f (R)-
gravity is growing up [3–6].

In this paper, we want to seek for a general method to find out axially symmetric
solutions by performing a complex coordinate transformation. Newman and Janis
showed that it is possible to obtain an axially symmetric solution (like theKerrmetric)
by making an elementary complex transformation on the Schwarzschild solution [7].
This same method has been used to obtain a new stationary and axially symmetric
solution known as the Kerr-Newman metric [8]. The Kerr-Newman space-time is
associated to the exterior geometry of a rotating massive and charged black-hole. For
a review on the Newman-Janis method to obtain both the Kerr and Kerr-Newman
metrics see [9].

By means of very elegant mathematical arguments, Schiffer et al. [10] have given
a rigorous proof to show how the Kerr metric can be derived starting from a complex
transformation on the Schwarzschild solution. We will not go into the details of
this demonstration, but point out that the proof relies on two main assumptions.
The first is that the metric belongs to the same algebraic class of the Kerr-Newman
solution, namely the Kerr-Schild class [11]. The second assumption is that the metric
corresponds to an empty solution of the Einstein field equations. Gürses and Gürsey,
in 1975 [12], showed that if a metric can be written in the Kerr-Schild form, then
a complex transformation “is allowed in General Relativity.” In this paper, we will
show that such a transformation can be extended to f (R)-gravity.

The paper is structured as follows. In Sect. 5.2, we describe the method and we
highlight its fundamental properties. To do so, we consider the general treatment and
we specialize it to the case of pure spherically symmetric solutions. We therefore
obtain the corresponding modifications to the standard Kerr metric in the context of
f (R) gravity and we describe some dynamical properties of this solution, by means
of circular orbits in the framework of the Hamiltonian formalism. We therefore
demonstrate that our strategy is general and may be extended to the case of fourth
order gravities without stability problems. In Sect. 5.3, we summarize our results and
we propose possible perspectives of our method.

5.2 From Spherical Symmetry to Axially Symmetric
Solutions in f (R) Gravity

In the framework of f (R) gravity, the action takes the simple form

S =
∫

d4x
√−g

[
f (R) + X Lm

]
.



5 Rotating Black Hole Solutions in f (R)-Gravity 55

Byvarying it, in termsof themetric gμν , one argues the correspondingfield equations:

f ′(R)Rμν − 1

2
f (R)gμν − f ′(R);μν + gμν� f ′(R) = X Tμν ,

3� f ′(R) + f ′(R)R − 2 f (R) = X T , (5.1)

where Tμν represents the standard energy-momentum tensor for dust-like matter,

which can be expressed in the form: Tμν = −2√−g

δ(
√−gLm)

δgμν
. The constant X

contains the gravitational constant G, sinceX = 8πG

c4
, while g is the metric deter-

minant.
Our formalism involves the use of spherically symmetric space-time as starting

point. In fact, we set up our treatment by assuming the most general spherically
symmetric space-time below:

ds2 = gtt(t, r)dt
2 − grr (t, r)dr

2 − r2d�, (5.2)

inwhich d� represents the solid angle. The basic demands consists in employing on it
a transformation thatmaps (5.2), providing that the off-diagonal terms vanish. Hence,
the spherically symmetric space-timemaybe obtained by assuming that (5.2) satisfies
particular cosmic symmetries. Here, we consider the Noether symmetries and so,
after several calculations, we can write down the simplest spherically symmetric
space-time as:

ds2 = (α + βr)dt2 − 1

2

βr

α + βr
dr2 − r2d�, (5.3)

where we assumed α as a combination of auxiliary constants, e.g. �0 and k and
β = k1 [4].

Here, we demonstrate how it is possible to get an axially symmetric solution
adopting the Newman-Janis procedure, extending their treatment in the context of
f (R) gravities and going beyond the standard usage of using the Newman-Janis
procedure in general relativity only. To this end, as we already stressed before, we
employ the existence of Noether symmetries which make the f (R)model consistent
with the corresponding field equations. For our purposes, let us recast the spherically
symmetricmetric as ds2 = e2φ(r)dt2 − e2λ(r)dr2 − r2d�, with gtt (t, r) = e2φ(r) and
grr (t, r) = e2λ(r). Hereafter, our convention is to refer to time-like components as
t t or 00, whereas space-like as rr or i i , with i running from i = 0–3.

Considering the suitable Eddington–Finkelstein coordinates, i.e. (u, r, θ, φ),
which represent a viable choice for our coordinate representation, after simple alge-
bra, we definitively get ds2 = e2φ(r)du2 ± 2eλ(r)+φ(r)dudr − r2d�. Thus, the matrix
associated to the metric is rewritable in terms of a null tetrad as:

gμν = lμnν + lνnμ − mμm̄ν − mνm̄μ , (5.4)
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where lμ, nμ, mμ and m̄μ should satisfy

lμl
μ = mμm

μ = nμn
μ = 0 , (5.5)

lμn
μ = −mμm̄

μ = 1 , (5.6)

lμm
μ = nμm

μ = 0 , (5.7)

where we assumed the bars as indication of the complex conjugation.
In our case, a generic space-time event becomes

xμ → x̃μ = xμ + iyμ(xσ ) , (5.8)

in which we notice that yμ(xσ ) are functions of the real coordinates xσ . Analogously,
the null tetrad vectors Zμ

a = (lμ, nμ,mμ, m̄μ), with a = 1, 2, 3, 4, should satisfy

Zμ
a → Z̃μ

a (x̃σ , ¯̃xσ ) = Zρ
a

∂ x̃μ

∂xρ
. (5.9)

All this procedure provides a net effect which consists in generating a newmetric.
The component of such a space-time are real and depend upon complex variables.
We have:

gμν → g̃μν : x̃ × x̃ �→ R , (5.10)

where we consider:
Z̃μ
a (x̃σ , ¯̃xσ )|x=x̃ = Zμ

a (xσ ) . (5.11)

From the transformed null tetrad vectors, a new metric is therefore obtained. So,
assuming the covariant form, we can list the corresponding metric components as:

g00 = e2φ(r̃ ,θ) ,

g01 = eλ(r̃ ,θ)+φ(r̃ ,θ) ,

g03 = aeφ(r̃ ,θ)[eλ(r̃ ,θ) − eφ(r̃ ,θ)] sin2 θ ,

g13 = −aeφ(r̃ ,θ)+λ(r̃ ,θ) sin2 θ ,

g22 = −�2 ,

g33 = −[�2 + a2 sin2 θeφ(r̃ ,θ)(2eλ(r̃ ,θ) − eφ(r̃ ,θ))] sin2 θ.

where we assumed that all the other components, i.e. the components that we did not
report above, are zero.

This procedure is circumscribed to the use of the particular choice of coordinates.
However, one can also perform theNewman-Janis algorithm on any static spherically
symmetric solutions, by means of the more practically Boyer-Lindquist coordinates.
So, evaluating the same steps performed above and the analogous strategy to get the
tetrad null vectors in the case of axially symmetric space-time, we simply obtain:
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ds2 = r(α + βr) + a2β cos2 θ

�
dt2 + 2

a(−2αr − 2β�2 + √
2β�3/2) sin2 θ

2�
dtdφ+

− β�2

2αr + β(a2 + r2 + �2)
dr2

− �2dθ2 −
[
�2 − a2(αr + β�2 − √

2β�3/2) sin2 θ

�

]
sin2 θdφ2

As in standard general relativity, our treatment should be compatible with the motion
of a freely falling particle. Hence, we can treat a physical example which accounts
for a freely falling particle moving in our so-obtained metric. To do so, we make
extensive use of the Hamiltonian formalism, which has the advantage not to show
any sign ambiguity which may come from turning points in the orbits [13]. The
reduced Hamiltonian, linearly reported in terms of momenta, is:

H ==
⎡
⎣ pi g0i

g00
+

[(
pi g0i

g00

)2

− m2 + pi p j gi j

g00

]1/2
⎤
⎦ , (5.12)

providing H = −p0 and even satisfying the following motion equations:

dxi

dt
= ∂H

∂pi
,

dpi
dt

= −∂H

∂xi
, (5.13)

which permit to numerically obtain the requested orbits. In particular, in the equato-
rial plane, which corresponds to the case θ = π

2 , θ̇ = 0, we conventionally employ
α = 10 and β = 5, without losing generality and we consider the dependence on φ

and on the conjugatemomentum pφ , which represents an integral ofmotion.As a con-
sequence, we find out that the coupled equations for {r, θ, φ, pr , pθ }may be numeri-
cally integrated, giving compatible trajectories with respect to the ones inferred from
the standard Kerr space-time. To better clarify this statement, we explicitly report
below the geodesic equations:

dxμ

dλ
= ∂H

∂pμ

= gμν pν = pμ , (5.14)

dpμ

dλ
= −∂H

∂xμ
= −1

2

∂gαβ

∂xμ
pα pβ = gγβ�α

μγ pα pβ , (5.15)

In Fig. 5.1, the relative trajectories are sketched.
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Fig. 5.1 Example of massive particle equatorial trajectories in a Kerr and axially-simmetric f (R)

metric, obtained from the solution of the Hamilton-Jacboy equations (5.13). In both cases the BH
spin is a = 0.5, and for f (R) we employed α = 10 and β = 5 for representative purposes. The test
mass at the beginning has a pure tangential velocity component dφ/dt = 0.03 and is placed at 9Rg

5.3 Final Outlooks and Perspectives

In this paper, we considered the framework of f (R) gravity to describe a technique
able to get axially symmetric solutions from spherical ones. This treatment has been
extensively described by Newman-Janis in a precise algorithm, which takes into
account complex transformations. In particular, assuming a spherically symmetric
expression for the space-time, we demonstrated that it is possible to extend the
complex transformations in the context of f (R) gravity. To do so, we evaluated the
null tetrad associated to this method in two different classes of coordinates and we
found out the corresponding axially symmetric metrics. In order to understand if the
thus obtained space-time works well in the field of particle motion, we considered a
freely falling particle and we showed that its motion is perfectly compatible with the
expected standard Kerr metric, which corresponds to the simplest axially symmetric
solution in general relativity. Further investigationswill be carried forward in order to
describe different symmetries by means of the Newman-Janis strategy. In particular,
measuring possible corrections due to f (R) around compact objects, e.g. evaluating
possible discrepancies from the standard cases of accretiondisks, onewould constrain
the f (R) functions at astrophysical regimes. This would open new challenges for
the problem of f (R) reconstructions.
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Chapter 6
Symplectic Structure of Extremal Black
Holes

K. Hajian and A. Seraj

Abstract We review the construction of phase space for the near horizon extremal
geometries (NHEG) as solutions to Einstein gravity. We study the symplectic sym-
metries of this phase space and compute their corresponding conserved charges. We
show that the symmetry algebra is an interesting generalization of Virasoro algebra.
The analysis is based on covariant phase space method.

6.1 Introduction

Black holes (BHs) are solutions to theories of gravity, specified by having an event
horizon in their geometry. They also usually have a singularity behind the horizon.
Although these solutionswere known from the early stages of development of general
relativity by Karl Schwarzschild, their thermodynamic behaviors were unraveled in
early 70s by seminal works of Bekenstein and Hawking [1, 2] in which entropy and
temperaturewere associated toBHs. InEinstein-Hilbert theoryof gravity,BHentropy
is related to the area of the horizon S = A

4G , while Hawking temperature can be read
from the surface gravity of the black hole κ , through the relation TH = κ

2π . Also for
stationary BHs in d-dimensions, with a number of commuting and compact U (1)
axial isometries, labelled by index i , one can associate conserved angular momenta
Ji as well asmassM (due to time translation symmetry). Thermodynamic conjugates
to the angular momenta are angular velocities of the horizon, denoted by�i

H
(indexH

forHorizon). In addition, dynamics of BHs satisfy laws which are analogous to usual
laws of thermodynamic [3]. Specifically, thefirst lawofBH thermodynamics is δM =
THδS + �i

H
δ Ji [3, 4]. During the past four decades, an active line of research aims

at describing microstates underlying these thermodynamic behaviors. The present
work would also be in the same line.
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Motivated by the microstate counting for usual thermodynamic systems (e.g. an
ideal gas) which is based on their phase spaces, here we try to build the classical
symplectic structure for the set of extremal (vanishing temperature) BHs. Interested
reader can refer to the original papers [5, 6] for detailed analysis, or to [7] as a
pedagogical text. In this analysis, we keep the spacetime dimension to be arbitrary d
and the theory to be given by the Einstein-Hilbert Lagrangian L = 1

16πG R, where
R is the Ricci scalar. In order to make the analysis simpler, we will concentrate on
extremal BHs with d − 3 number of commuting U (1) axial isometries, denoted by
U (1)d−3.

Significantly, thermodynamic properties of the BHs are encoded in their near
horizon region. The temperature and other chemical potentials, in addition to BHs
conserved charges can be read directly from that region. Interestingly, Iyer andWald
have shown that BH entropy is the conserved charge associated to the Killing vector
of the horizon, which is calculated on the horizon [4, 8]. Hence, one expects to find
themicrostates of black holes by focusing on their near horizon region. Therefore, we
study the phase space of near horizon geometries of extremal black holes (NHEG).
These solutions share some interesting features:

• Taking the near horizon limit of an extremal BH as a solution to a given theory
leads to a near horizon extremal geometry (NHEG) which is a solution to the same
theory [9] (because they are found by a limiting process instead of approximation
process [7]).

• Stationarity of BH is enhanced to SL(2, R) in NHEG, therefore the symmetries
of NHEG with the above mentioned properties is SL(2, R) ×U (1)d−3.

• NHEGs are uniquely identified by d − 3 number of angular momenta Ji [10].
• Under appropriate isometry and boundary conditions, perturbations on NHEGs
are restricted (upto infinitesimal diffeomophisms) to parametric variations, i.e.
infinitesimal variations of the solution identified by Ji to an adjacent solution
identified by Ji + δ Ji [11].

The metric of the considered NHEGs can be written in a suitable coordinate system
as [12, 13]:

ds2 = �(θ)

[
− r2dt2 + dr2

r2
+ dθ2 + γi j (θ)(dϕi + kir dt)(dϕ j + k jr dt)

]
.

(6.1)

�(θ) and γi j (θ) might be determined by imposing the equation of motion over the
above ansatz, or by taking the near horizon limit of a given BH. In the coordinate
which the metric is represented, the Killing vectors of SL(2, R) ×U (1)d−3 isometry
are explicitly as

ξ− =∂t , ξ0= t∂t−r∂r , ξ+ = 1

2

(
t2+ 1

r2

)
∂t−tr∂r − ki

r
∂ϕi , mi =∂ϕi .
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Their commutation relation is

[ξ0, ξ−] = −ξ−, [ξ0, ξ+] = ξ+, [ξ−, ξ+] = ξ0 , [ξa,mi ] = 0, (6.2)

in which a ∈ {−, 0,+} and i ∈ {1, . . . , d − 3}.
A significant property of NHEG geometry is that any surface of constant (t, r)

is the bifurcation point of a Killing horizon [5, 6], which we denote by H . Explic-
itly, the d − 2 surface H determined by t = tH , r = rH , is the intersection of the
following d − 1-dimensional null hypersurfaces

NH + : t + 1

r
= tH + 1

rH
, NH − : t − 1

r
= tH − 1

rH
. (6.3)

The magical Killing vector generating the above null two hypersurfaces is

ζH = na
H

ξa − kimi , (6.4)

in which

n−
H

= − t2
H
r2
H

− 1

2rH
, n0

H
= tH rH , n+

H
= −rH . (6.5)

ThereforeN = {NH + ∪ NH −} is a Killing horizon and their intersectionH is the
bifurcation surface. It is shown [14] that entropy of the NHEG (which is equal to the
entropy of original BH) is conserved charge associated to the ζH , calculated onH .

6.2 A Review on Covariant Phase Space Method

Bydefinition, a phase space is amanifold consisting of a set of allowed configurations
of a system equippedwith a symplectic form�ab (i.e a nondegenerate closed 2 form).
For a given gauge theory like Einstein gravity, and a given collection of geometries
viewed as an abstract manifold, there is a well established method for defining the
symplectic structure over this manifold, and thereby obtain a phase space [15]. This
is known as covariant phase spacemethod, since the construction of phase space does
not involve with breaking of covariance of the theory (unlike what happens in ADM
construction). Here we give the general method for construction of the symplectic
structure. In next section, we specify exactly what is the set of geometries relevant
for the construction of NHEG phase space (Fig. 6.1).

In covariant phase space method, the manifold M is built up of a set of metric
configurations gμν(xα). Therefore vectors tangent to the phase space are indeed
perturbations of the metric. For Einstein gravity, the symplectic 2-form acting on
two vectors δ1g, δ2g is given by
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Fig. 6.1 A schematic of
NHEG phase space, in terms
of angular momenta J. The
manifold M is comprised of
some metric configurations
gμν(xα). The point ḡμν is
the known NHEG solution.
Symplectic 2-form �, is the
Lee-Wald form, upto Y
ambiguities

�(δ1g, δ2g, g) =
∫

�

ω(δ1g, δ2g, g) (6.6)

where the symplectic current ω is

ω(δ1g, δ2g, g) ≡ δ1�(δ2g, g) − δ2�(δ1g, g) . (6.7)

The integration surface � in (6.6) is a d − 1-dim hypersurface. The d − 1-form �

is defined through the variation of the Lagrangian (as a top form) after using the
equations of motion, i.e δL ≈ d� (In this paper ≈ means on shell equality). For the
Einstein gravity [8]

�(δgμν, gμν) =
√−g

(d − 1)! εμμ1···μd−1

1

16πG
(∇αh

μα − ∇μh) dxμ1 ∧ · · · ∧ dxμd−1

(6.8)
where hμν ≡ gμσ gντ δgστ and h ≡ hα

α and εμ1···μd is the Levi-Civita symbol. If the
variation δg satisfies the linearized equation of motion, then it can be shown that the
symplectic current is closed on-shell, i.e. dω(δ1g, δ2g, g) ≈ 0.

Nowwe turn to the definition of symmetries of the covariant phase space and their
corresponding conserved charges. An infinitesimal symmetry of a phase space, is an
infinitesimal coordinate transformation x → x − ξ such that any metric configura-
tion in the phase space is sent to another configuration in the phase space. In other
words, although the configurations are transformed under the symmetry action, but
the whole phase space is closed under the symmetry action. Now the correspond-
ing conserved charge Hξ which is the generator of the symmetry transformation is
defined through the contraction of Lξg with the symplectic form

δHξ ≡ �(δg, δξg, g) =
∫

�

δ�(Lξg, g) − Lξ�(δg, g). (6.9)

It can be shown (e.g. see AppendixC.2 in [7]) that the integrand is on-shell an exact
form dkξ (δg, g). Therefore the charges can alternatively be defined (using Stoke’s
theorem) through the integration of kξ over ∂� which is a codimension 2 closed
surface. The latter is even more fundamental for geometries with more than one
boundaries. In Einstein gravity kξ is [16]
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kξ (δgμν, gμν) =
√−g

(d − 2)! 2! εμνμ1···μd−2 k
μν
ξ dxμ1 ∧ · · · ∧ dxμd−2 (6.10)

where

kμν
ξ = 1

16πG

([
ξν∇μh − ξν∇σ h

μσ + ξσ ∇νhμσ + 1

2
h∇νξμ − hρν∇ρξμ

]
− [μ ↔ ν]

)
.

(6.11)

6.3 The NHEG Phase Space

Now in order to construct the NHEG phase space, we need to specify the set of
relevant geometrie. The rough idea is that phase space configurations can serve as
the microstates of extremal black hole. According to the uniqueness of dynamical
perturbations, the set of relevant geometries are obtained by coordinate transforma-
tions of the background NHEG geometry. These transformations are infinitesimally
obtained by a vector field χ through x → x − χ . We refer the interested reader to
the original papers for the arguments for determination of χ , and state the result here.
The vector field χ is given by

χ [ε(ϕ)] = −k · ∂ϕε

(
1

r
∂t + r∂r

)
+ εk · ∂ϕ , (6.12)

where ε can be any periodic smooth function of the coordinates ϕi . Hence, χ gener-
ates the infinitesimal perturbations tangent to the phase space around the background
by δg[ε(ϕ)] = Lχ ḡ. Exponentiation of this infinitesimal transformation produces the
finite coordinate transformations which transfer ḡμν to arbitrary configurations gμν

of the phase space M . The finite coordinate transformation is

t̄ = t − 1

r
(e� − 1), r̄ = re−�, θ̄ = θ , ϕ̄i = ϕi + ki F . (6.13)

We call F(ϕ) thewiggle functionwhich is periodic in all its arguments and� is given
by e� = 1 + k · ∂ϕF. Therefore, corresponding to any function F , a configuration
over M with the following metric is identified

ds2 = �(θ)

[
− (σ − d�)2 +

(dr
r

− d�
)2 + dθ2 + γi j (dϕ̃

i + kiσ )(dϕ̃ j + k jσ )

]
,

(6.14)
in which σ = e−�r d(t + 1

r ) + dr
r and ϕ̃i = ϕi + ki (F − �).

By construction, the infinitesimal transformations generated by χ are symmetries
of the NHEG phase space. However, χ has also another important significance, i.e
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thatχ is the symplectic symmety of theNHEGphase space.1 The notion of symplectic
symmetry is defined as

Definition 6.1 The vector field χ is the generator of a symplectic symmetry gener-
ators iff [5]

1. ω(δg, δχg, g) ≈ 0 ∀g ∈ M and δg ∈ TM ,
2. δHχ be integrable, and Hχ be finite over theM ,

Thanks to the properties of diffeomorphisms, any point of the phase space has com-
plete SL(2, R) ×U (1)d−3 isometry. It can be checked that any configuration has the
same angular momenta J and entropy S as the NHEG metric ḡμν background.

The symplectic symmetries form a closed algebra. To see this we expand χ in its
Fourier modes

χn = −e−i(n·ϕ)

(
i(n · k)

(
1

r
∂t + r∂r

)
+ k · ∂ϕ

)
. (6.15)

Then, the commutator of these vectors is

[χn , χm ] = i k · (n − m) χn+m (6.16)

which is a nice generalization ofWitt algebra. It can be shown that the corresponding
Hamiltonian generators are [5, 6]

Hn =
∮
H

εH T [�]e−in·ϕ, (6.17)

where

T [�] = 1

16πG

(
(� ′)2 − 2� ′′ + 2e2�

)
(6.18)

and primes are directional derivatives along the vector k. The function T [�] trans-
forms under infinitesimal phase space transformations as

δεT = εT ′ + 2ε′T − 1

8πG
ε′′′. (6.19)

Therefore the function T [�] resembles a Liouville type stress tensor.
The Poisson bracket of conserved charges have the same commutation relations

as (6.16) up to a central extension. Significantly, the central extension turns out to
be the entropy of the NHEG. Explicitly [5, 6]

{Hm, Hn} = −ik · (m − n)Hm+n − i(k · m)3
S

2π
δm+n,0. (6.20)

1The definition of a consistent symplectic form on NHEG phase space, however involves a suitable
fixing of ambiguities in the symplectic current. For details, see [5, 6].
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Using the Dirac quantization rules { } → 1
i [ ] and Hn → Ln, the symmetry alge-

bra promotes to an operator algebra, the NHEG algebra V̂k,S

[Lm, Ln] = k · (m − n)Lm+n + S

2π
(k · m)3δm+n,0 . (6.21)

The Ji and Hξa commute with Ln, and are therefore central elements of the NHEG

algebra V̂k,S . Also by Definition6.1, they are symplectic symmetry generators.
Hence, the full symplectic symmetry of the phase space is

NHEG Symplectic Symmetry Algebra = V̂k,S ⊕ sl(2, R) ⊕ u(1)︸ ︷︷ ︸
(d−3 times)

. (6.22)

We stress again that all geometries in the phase space have vanishing SL(2, R)

charges, and U (1) charges equal to Ji .
Yet many different mathematical and physical aspects of the NHEG phase space

and its algebra are yet to be understood and analyzed.
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Chapter 7
Einstein-Charged Scalar Field Theory:
Black Hole Solutions and Their Stability

S. Ponglertsakul, S. Dolan and E. Winstanley

Abstract A complex scalar field on a charged black hole in a cavity is known
to experience a superradiant instability. We investigate possible final states of this
instability. We find hairy black hole solutions of a fully coupled system of Einstein
gravity and a charged scalar field. The black holes are surrounded by a reflecting
mirror. We also investigate the stability of these black holes.

7.1 Introduction

In black hole physics, there is amechanismwhere rotational (electromagnetic) energy
can be extracted from a rotating (charged) black hole. This is called superradiant
scattering. More specifically, the amplitude of a scalar field around a black hole will
be amplified if the frequency σ of the field satisfies [1] σ < mΩH + qΦH, where
m, q,ΩH and ΦH are the azimuthal quantum number, scalar field charge, angular
velocity and electric potential at the outer horizon respectively. By setting ΩH = 0,
the charged version of the superradiant condition is obtained.

One can create an instability of the spacetime background via a superradiant
scattering process, if there is some mechanism to confine the bosonic field within the
vicinity of the black hole. Then wavemodes will be repeatedly scattered off the black
hole and their amplitude will be intensified. The back-reaction of the field modes on
the background will eventually become significant. In the charged case, the trapping
mechanism can be induced by either (i) a reflecting mirror [2] or (ii) anti-de Sitter
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boundary condition [4]. By having either of these with a charged black hole, the
superradiant instability can be triggered.

An interesting question that onemight ask is, what is the end-point of this charged-
scalar superradiant instability? To tackle this problem, a fully non-linear analysis is
required. Hence in this talk, we investigate possible end-points of the superradiant
instability for charged black holes with a reflecting mirror. More specifically, a cou-
pled system of gravity and a massless complex scalar field with a mirror-like bound-
ary condition is studied. Numerical black hole solutions with a non-trivial scalar
field are obtained. By considering linearised perturbations of these black holes, a
numerical analysis of the black hole’s stability is undertaken. Here we present a
selection of plots to illustrate our numerical results. More details of this work can be
found in [3].

7.2 Linear Perturbations in Electrovacuum

In this section, a massless complex scalar field φ on the Reissner–Nordström (RN)
background in a cavity is considered. In the test-field limit, the dynamics of a scalar
field on RN spacetime is described by the Klein–Gordon (KG) equation. By substi-
tuting the ansatz φ ∼ e−iσ t R(r), where σ and R(r) are respectively the frequency
and the radial part of the scalar field, into the KG equation, we obtain a second order
differential equation in terms of the radial part. To solve this equation, we apply the
following boundary conditions: (i) an ingoing wave near the horizon r → rh and (ii)
at the mirror the scalar field vanishes, so R(rm) = 0, where rm is the location of the
mirror. Then a numerical technique called the shooting method is implemented. We
scan for corresponding frequencies σ such that the perturbations satisfy the boundary
conditions.

With the black hole mass fixed to be M = 1, the example plot below (Fig. 7.1)
illustrates the frequency as a function of the location of mirror. It is clear from
Fig. 7.1a, b that this system experiences a superradiant instability as there are regions
where Im(σ ) > 0, indicating an unstable mode. One can learn the following from
these plots: when the location of mirror rm is small (close to black hole), the field
mode decays exponentially in time; instability occurs when rm reaches a certain
value.

We find that a massless charged scalar field on the RN background in a cavity
experiences a superradiant instability. These results are in agreement with previous
work done by Herdeiro et al. [2], where they studied a massive complex scalar field
on a charged black hole with a mirror. To fully understand what could happen at the
end-point of this instability, a non-linear system of gravity and a charged scalar field
must be investigated. In the next section, a fully coupled Einstein-charged scalar
system will be considered.
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(a) (b)

Fig. 7.1 The imaginary part of σ is plotted as a function of the location of the mirror rm, a for
fixed scalar charge q = 0.5 and different values of the black hole charge Q, b for fixed Q = 0.9
and different values of q. Taken from [3]

7.3 Static Black Holes

The self-gravitating system of a charged scalar field is described by the following
action

S =
∫

d4x
√−g

[
R

16πG
− 1

4
FabF

ab − 1

2
gabD∗

(aφ
∗Db)φ

]
. (7.1)

In (7.1) the Faraday tensor is defined by Fab = ∇a Ab − ∇b Aa , where Aa is the
electromagnetic potential, Da = ∇a − iq Aa , q is the scalar field charge and X(ab) =
1
2 (Xab + Xba). Varying (7.1), we obtain three equations of motion

Gab = 8πG
(
T F
ab + T φ

ab

)
, (7.2)

∇a F
ab = iq

2

(
φ∗Dbφ − φ(Dbφ)∗

)
, (7.3)

DaD
aφ = 0. (7.4)

We consider a static spherically symmetry black hole spacetime with line element

ds2 = − f (r)h(r)dt2 + f (r)−1dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (7.5)

In addition, the electromagnetic vector potential is Aa ≡ [A0(r), 0, 0, 0] and the
scalar field depends on r only φ = φ(r). By inserting these ansatzes into (7.2)–(7.4),
we obtain three coupled ordinary differential equations. By imposing appropriate
boundary conditions at the event horizon and at the mirror, these coupled equations
can be solved numerically. We also require that the scalar field must vanish at the
location of the mirror.

To obtain static solutions, three parameters must be specified: φh, the value of
the scalar field on the horizon; Eh ≡ A′

0(rh), the electric field on the horizon; and
q. In Fig. 7.2, we show some example solutions where the black hole radius is fixed
at rh = 1. The nontrivial structure of the scalar field can be seen. Because these
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(a) (b)

Fig. 7.2 The scalar field φ(r) is plotted as a function of radius a for fixed φh = 0.3, Eh = 0.6 and
different values of q, b for fixed q = 0.1 and different values of Eh. Taken from [3]

scalar fields oscillate around zero therefore, one can put the mirror at any zero of φ,
however, in this work, we only consider the case where the mirror is located at the
first zero, since these solutions are expected to be stable.

By varying the three parameters φh, Eh and q, we obtain different hairy black
hole solutions. In Fig. 7.2a, three distinct black hole solutions with three different
scalar charges are displayed. Note that these solutions possess three different mirror
radii. However, it is possible that different static solutions can share the same mirror
location as illustrated in Fig. 7.2b.

7.4 Stability of the Hairy Black Holes

In the previous section, we have shown that Einstein-charged scalar field theory in
a cavity allows the existence of hairy black holes. Our next important question is,
are these solutions stable or unstable? If they are shown to be stable, they could
represent a possible end-point of the superradiant instability for a massless charged
scalar perturbation on the RN background with a mirror.

We consider linear spherically symmetric perturbations, where the four field vari-
ables ( f, h, A0, φ) are rewritten as follows, f = f̄ (r) + δ f (t, r) and similarly for
the other three quantities. In this notation, f̄ is the equilibrium quantity and δ f is
the perturbed part. By linearising the field equations, we arrive at three coupled per-
turbation equations in terms of δA0 and the real and imaginary parts of δφ. These
perturbation equations are very complicated and lengthy, full details of these equa-
tions can be found in [3]. The three perturbation equations consist of two dynamical
equations describing the real and imaginary parts of the scalar field respectively,
the other one is a constraint equation. By substituting the ansatz δφ ∼ e−iσ t φ̃(r)
(and similarly for the other perturbations) into the equations, we can integrate the
perturbation equations numerically. The perturbation modes are required to satisfy
the boundary conditions that φ̃(r) and other perturbation modes have an ingoing
wave-like condition near the horizon, and at the mirror the scalar field perturbations
must vanish (φ̃(rm) = 0).
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(a) (b)

Fig. 7.3 The real a and imaginary parts b of the perturbation frequency σ are plotted against the
location of the mirror rm with the scalar charge fixed to be q = 0.2, φh varying from 0.1 to 1.3 and
different values of Eh. We find that Im(σ ) < 0. Taken from [3]

(a) (b)

Fig. 7.4 The real a and imaginary parts b of the perturbation frequency σ are plotted against the
scalar charge q with a selection of various values of φh and Eh. Taken from [3]

The numerical scheme is as follows. Firstly, static background parameters are
specified, q, φh and Eh, then the equilibrium field equations are integrated. From
the solution, we locate the first zero of the equilibrium scalar field, setting this to be
the location of the mirror rm. Then the coupled perturbation equations are solved by
scanning for frequencies σ such that the perturbations satisfy the required boundary
conditions.

In Fig. 7.3, the real and imaginary parts of σ are plotted as functions of the mirror
radius rm for scalar field charge q = 0.2. In each plot, the parameter describing
static solution varies between φh = 0.1 − 1.3. Thus each point in this plot refers to
the perturbation frequency for one distinct hairy black hole. With the mirror at the
first zero of the static scalar field φ, we find one value of σ for which the perturbations
satisfy the boundary conditions. Figure7.3b shows that the perturbationmodes decay
exponentially in time sincewefind that Im(σ ) < 0. In addition, the real and imaginary
parts of the perturbation frequency σ are plotted as functions of the scalar charge q
are displayed in Fig. 7.4. Here in this example, for each curve, a selection of values
of static black hole parameters φh and Eh are fixed. Figure7.4b illustrates that the
perturbation modes are exponentially decaying in time. We refer the reader to [3]
where we find Im(σ ) < 0 for all black hole solutions investigated.
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7.5 Summary

We have studied a coupled system involving Einstein gravity and a complex charged
scalar field in the presence of a mirror-like boundary condition. Numerical hairy
black hole solutions were obtained by the shooting method. By putting a mirror at
the first node of the equilibrium scalar field, we showed these black hole solutions
are stable under spherically symmetric linear perturbations. Therefore, we conclude
that these black holes could represent an end-point of the superradiant instability of
Reissner–Nordstörm black holes to charged scalar field perturbations.
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Chapter 8
The Good Properties of Schwarzschild’s
Singularity

O. C. Stoica

Abstract The most notable problems of General Relativity (GR), such as the
occurrence of singularities and the information paradox, were initially found on the
background provided by Schwarzschild’s solution. The reason is that this solution
has singularities, widely regarded as a big problem of GR. While the event horizon
singularity can be removed by moving to non-singular coordinates, not the same is
true about the r = 0 singularity. However, I will present coordinates which make the
metric finite and analytic at the singularity r = 0. The metric becomes degenerate at
r = 0, so the singularity still exists, but it is of a type that can be described geometri-
cally by referring to finite quantities only. Also, the topology of the causal structure
is shown to remain intact, and the solution is globally hyperbolic. This suggests a
possible solution to the black hole information paradox, in the framework of GR. As
a side effect, the Schwarzschild singularity belongs to a class of singularities accom-
panied by dimensional reduction effects, which are hoped to cure the infinities in
perturbative Quantum Gravity.

8.1 Extending the Schwarzschild Solution Beyond the
Singularity

As it is well known, the Schwarzschild solution of Einstein’s equation is

ds2 = −
(
1 − 2m

r

)
dt2 +

(
1 − 2m

r

)−1

dr2 + r2dσ 2, (8.1)

where
dσ 2 = dθ2 + sin2 θdφ2 (8.2)
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is the metric of the unit sphere S2, m the mass of the body, and the units are chosen
such that c = 1 and G = 1 (see for example [1], p. 149). It represents a spherically
symmetric static and electrically neutral black hole. Themetric (8.1) has singularities
at r = 0 and r = 2m, which puzzled Schwarzschild, who decided to replace the
coordinate r with R = r − 2m, so that the only singularity is in the new origin
R = 0.

However, there are other coordinates for the Schwarzschild black hole, which
remove the singularity r = 2m, for example the Eddington–Finkelstein coordinates
[2, 3]. This shows that the event horizon singularity is due to the coordinates, which
themselves are singular.

Unfortunately, changing the coordinates cannot be used to remove the singularity
r = 0, as can be seen from the fact that the Kretschmann scalar Rabcd Rabcd is infinite
at r = 0 in any coordinates.

Fortunately, coordinate transformations can remove “half” of the singularity, so
that the metric gab is made finite and extends analytically beyond the singularity [4].

Theorem 8.1 The Schwarzschild metric can be extended analytically at r = 0.

Proof To see this, let us apply the coordinate transformation

{
r = τ 2

t = ξτ T (8.3)

where T ≥ 2 is an integer. Then, the components of the Jacobian matrix are

∂r

∂τ
= 2τ,

∂r

∂ξ
= 0,

∂t

∂τ
= T ξτ T−1,

∂t

∂ξ
= τ T . (8.4)

In the new coordinates, the components of the metric metric become

gττ = − 4τ 4

2m − τ 2
+ T 2ξ 2(2m − τ 2)τ 2T−4 (8.5)

gτξ = T ξ(2m − τ 2)τ 2T−3 (8.6)

gξξ = (2m − τ 2)τ 2T−2 (8.7)

and its determinant
det g = −4τ 2T+2. (8.8)

Then, the four-metric becomes

ds2 = − 4τ 4

2m − τ 2
dτ 2 + (2m − τ 2)τ 2T−4(T ξdτ + τdξ)2 + τ 4dσ 2, (8.9)

which remains finite and is in fact analytic at r = 0. �
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Given that T can be any integer T ≥ 2, we have obtained an infinite number of
solutions. However, a unique solution among them has special properties, as I will
explain in the following.

8.2 The Most Regular Extension

From geometric point of view, the problem with singular metrics is the following. In
semi-Riemannian geometry (where the metric is regular), one can define in a natural
way a unique connection which preserves the metric and is torsionless. Then, we can
define covariant derivatives for tensor fields, which enable us to write field equations.
Also, the curvature tensor, needed for the Einstein equation, can be defined and is
unique. But if the metric becomes singular, there is no way to define a covariant
derivative and curvature tensor by usual means. The reason is that both the metric
tensor gab and its reciprocal gab are used in the construction of these objects. When
gab has infinite components–as it happens in the Schwarzschild metric (8.1), the
connection and curvature can no longer be defined. Even if all of the components
of gab are finite, but it is degenerate (its determinant vanishes), gab is not defined
or is singular, and one cannot define the connection and curvature. If the metric is
degeneratewith constant signature,Kupeli showedone can define a sort of connection
and curvature, but his construction is not invariant andnot unique, relying on choosing
at each point a subspace of the tangent space complementary to the isotropic subspace
[5, 6]. But in [7, 8] it was shown that we can do this in an invariant way, and it also
works for a large class of metrics with variable signature (which are the ones needed
in GR). For this kind of metrics (named semi-regular in [7]) the covariant derivatives
can be defined for a large class of differential forms. Also, a differential operator
which plays the same role as the covariant derivative can be defined for vector fields.
It turns out that for semi-regular metrics we can also define the Riemann curvature
tensor Rabcd (although Ra

bcd usually is still singular).Moreover, theEinstein equation
can be cast in a form which has the same content outside the singularities, but also
works at semi-regular singularities [7, 9].

If the spacetime events where the metric is regular form a dense subset of the
spacetime, the metric is semi-regular if the contractions gst�abs�cdt are smooth [7],
where �abc = 1

2 (∂agbc + ∂bgca − ∂cgab) are Christoffel’s symbols of the first kind.
The reciprocal metric gst becomes infinite at the singularity, but gst�abs�cdt remains
smooth. For a general and invariant definition of semi-regular metrics see [7].

Among the solutions (8.9), there is only one with semi-regular metric [4].

Theorem 8.2 The solution (8.9) can be extended analytically so that the singularity
at r = 0 is semi-regular, if and only if T = 4.

Proof In the coordinate system (8.3), Christoffel’s symbols of the first kind �abc are
also smooth. Since at r = 0 the determinant of the metric vanishes, gst is singular.
But we can find T so that �abs�cdt compensates this singularity and the contractions
gst�abs�cdt are smooth.
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The reciprocal metric has the components

gττ = −1

4
(2m − τ 2)τ−4 (8.10)

gτξ = 1

4
T ξ(2m − τ 2)τ−5 (8.11)

gξξ = τ−2T+2

2m − τ 2
− 1

4
T 2ξ 2(2m − τ 2)τ−6 (8.12)

The partial derivatives of the coefficients of the metric are

∂τ gττ = 8
τ 5 − 4mτ 3

(2m − τ 2)2
+ 2T 2(2T − 4)mξ2τ 2T−5 − T 2(2T − 2)ξ2τ 2T−3, (8.13)

∂τ gτξ = 2T (2T − 3)mξτ 2T−4 − T (2T − 1)ξτ 2T−2, (8.14)
∂τ gξξ = 2m(2T − 2)τ 2T−3 − 2T τ 2T−1, (8.15)

∂ξ gττ = 2T 2ξ(2m − τ 2)τ 2T−4, (8.16)
∂ξ gτξ = T (2m − τ 2)τ 2T−3, (8.17)

∂ξ gξξ = 0. (8.18)

From (8.13)–(8.18) we find that the least power of τ in the partial derivatives of
the metric is min(3, 2T − 5). From the (8.10)–(8.12), the least power of τ in the
reciprocal metric is min(−6,−2T + 2). Hence, the least power of τ in gst�abs�cdt

is non-negative only if

− 1 − 2T + 3min(3, 2T − 5) ≥ 0. (8.19)

Therefore gst�abs�cdt are smooth only for T = 4, and the metric in two dimen-
sions (τ, ξ) is semi-regular. The metric in all four dimensions is the warped product
between the two-dimensional space (τ, ξ) and the sphere S2, with warping function
τ 2, which according to [10], is semi-regular. �

The geodesics of the extended solution are given by

dξ

dτ
= −4ξ

τ
± 2

(2m − τ 2)τ
, (8.20)

which become tangent to the hypersurface τ = 0. The causal structure is represented
in Fig. 8.1. We can see that, although the lightcones at events from the singularity
are flattened, they have the same topology as those outside the singularity [11].
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Fig. 8.1 The causal
structure of the extended
Schwarzschild solution. The
lightcones at the singularity
are flattened, but they have
the same topology as the
lightcones outside the
singularity

8.3 Globally Hyperbolic Spacetimes with Black Holes

The analytic extension of the Schwarzschild metric from (8.9) is symmetric at the
time reversal τ �→ −τ , which means that it extends beyond the singularity as a
white hole. If we modify the Schwarzschild solution to describe a black hole which
forms by gravitational collapse, for example as in the Oppenheimer–Snyder model
[12], then the solution extends beyond the singularity as an evaporating black hole
(Fig. 8.2b). It is interesting that, while one would normally expect that spacetime
ends at the singularity (Fig. 8.2a), solution (8.9) does not behave like this, and is
compatible with globally hyperbolic spacetimes like that in Fig. 8.2b [13].

In order for information to be preserved, this is not enough. The field equations
normally involve covariant derivatives, which are not defined in general when the
metric is degenerate. But the solution (8.9) with T = 4 allows us to define covariant
derivatives and even to rewrite the Einstein equation without infinities [7, 9]. What
about other fields? In [14] it is shown howwe can write theMaxwell and Yang–Mills
equations when themetric is semi-regular. There are still some open problems related
to this, in particular how to formulate the Dirac equation for semi-regular metrics.

8.4 Implications of Singularities to Quantum Gravity

The dimension of Newton’s constant is 2 − D = −2 in mass units, where D is the
dimension of spacetime. This makes Quantum Gravity (QG) perturbatively non-
renormalizable even without matter, at two loops [15, 16], by requiring an infinite
number of higher derivative counterterms, with their coupling constants. Various
approaches to make QG perturbatively renormalizable indicate that in the UV limit a
dimensional reduction to two dimensions takes place (for a review, see [17]), either
as a consequence of other hypotheses, or by being directly postulated to obtain the
desired result.
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Fig. 8.2 a Standard
evaporating black hole,
whose singularity destroys
the information. b
Evaporating black hole
extended through the
singularity preserves
information

(a)

(b)

At a semi-regular singularity, the metric becomes degenerate, behaving like a
lower-dimension metric. Moreover, the Weyl curvature tensor also becomes lower-
dimensional, and for this reason it vanishes [18]. Such effects happen at the singu-
larities of the Schwarzschild, but also of the charged and rotating black holes [8].
In particular they accompany pointlike particles. Some of the dimensional reduction
effects postulated in several approaches to QG follow naturally at singularities [19].
This suggests that when we use perturbative methods, by taking into consideration
the corrections introduced by the singularities, the desired dimensional reduction
occurs naturally.
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Chapter 9
Quantum Black Holes as the Link
Between Microphysics and Macrophysics

B. J. Carr

Abstract There appears to be a duality between elementary particles,which span the
mass range below the Planck scale, and black holes, which span themass range range
above it. In particular, the Black Hole Uncertainty Principle correspondence posits
a smooth transition between the Compton and Schwarzschild scales as a function of
mass. This suggests that all black holes are in some sense quantum, that elementary
particles can be interpreted as sub-Planckian black holes, and that there is a subtle
connection between quantum and classical physics.

9.1 Classical Versus Quantum Black Holes

At the previous Karl Schwarzschild meeting, I spoke about some quantum aspects
of primordial black holes [1] and what I term the Black Hole Uncertainty Principle
correspondence [2]. My contribution this year will involve an amalgamation of these
two ideas and is therefore a natural follow-up. It will also allow me to discuss some
recent work with two of the organisers of this meeting.

Black holes could exist over a wide range of mass scales. Those larger than
several solar masses would form at the endpoint of evolution of ordinary stars and
there should be billions of these even in the disc of our own galaxy. “Intermediate
Mass Black Holes” (IMBHs) would derive from stars bigger than 100 M�, which
are radiation-dominated and collapse due to an instability during oxygen-burning,
and the first primordial stars may have been in this range. “Supermassive Black
Holes” (SMBHs), with masses from 106 M� to 1010 M�, are thought to reside in
galactic nuclei, with our own galaxy harbouring one of 4 × 106 M� and quasars
being powered by ones of around 108 M�. All these black holes might be described
as “macroscopic” since they are larger than a kilometre in radius.
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Black holes smaller than a solar mass could have formed in the early universe,
the density being ρ ∼ 1/(Gt2) at a time t after the Big Bang. Since a region of
mass M requires a density ρ ∼ c6/(G3M2) to form an event horizon, such “Pri-
mordial Black Holes” (PBHs) would initially have of order the horizon mass,
MH ∼ c3t/G, so those forming at the Planck time (tP ∼ 10−43 s) would have the
Planck mass (MP ∼ 10−5 g), while those forming at t ∼ 1s would have a mass of
105M�. Therefore PBHs could span an enormous mass range. Those initially lighter
than M∗ ∼ 1015 g would be smaller than a proton and have evaporated by now due
to Hawking radiation, the temperature and evaporation time of a black hole of mass
M being T ∼ 1012(M/1015g)−1 K and τ ∼ 1010(M/1015g)3y, respectively [3]. I will
classify black holes smaller than M∗ as “quantum”, although I will argue later that
all black holes are in a sense quantum. Those smaller than a lunar mass, 1024 g, will
be classified as “microscopic”, since their size is less than a micron. Coincidentally,
this is also the mass above which T falls below the CMB temperature.

A theory of quantum gravity would be required to understand the evaporation
process as the black hole mass falls to MP and this might even allow stable Planck-
mass relics. The existence of extra spatial dimensions, beyond the three macroscopic
ones, may also come into play. These dimensions are usually assumed to be com-
pactified on the Planck length (RP ∼ 10−33 cm) but they can be much larger than
this in some models. This would imply that gravity grows more strongly at short
distances than implied by the inverse-square law[4], leading to the possibility of
TeV quantum gravity and black hole production at accelerators. Such holes are not
themselves primordial but this would have crucial implications for PBH formation.

The wide range of masses of black holes and their crucial role in linking macro-
physics andmicrophysics is summarized in Fig. 9.1. This shows theCosmicUroborus
(the snake eating its own tail), with the various scales of structure in the universe
indicated along the side. It can be regarded as a sort of “clock” in which the scale
changes by a factor of 10 for each minute – from the Planck scale at the top left to
the scale of the observable universe at the top right. The head meets the tail at the
Big Bang because at the horizon distance one is peering back to an epoch when the
universe was very small, so the very large meets the very small there. The various
types of black holes discussed above are indicated on the outside of the Urobrous.
They are labelled by their mass, this being proportional to their size if there are three
spatial dimensions. On the right are the well established astrophysical black holes.
On the left – and possibly extending somewhat to the right – are the more specu-
lative PBHs. The vertical line between the bottom of the Uroborus (planetary mass
black holes) and the top (Planck mass black holes and extra dimensions) provides a
convenient division between the microphysical and macrophysical domains.

Although the length-scale λ decreases as one approaches the top of the Uroborus
from the left, the mass of the associated particle m ∼ �/(λc) increases. So Fig. 9.1
can also be used to represent elementary particles. On the inside of the Uroborus are
indicated the positions of the Higgs boson (250GeV) and proton (1GeV) on the left,
the dark energy mass-scale (10−4 eV) at the bottom, and the (possible) mass of the
graviton (10−32 eV) at the top. Note that the inner scale also gives the temperature
of a black hole with mass indicated by the outer scale.
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Fig. 9.1 The Cosmic Uroboros is used to indicate that mass the various types of black holes
and elementary particles, the division between the micro and macro domains being indicated by the
vertical line.QSO stands for “Quasi-StellarObject”,MWfor “MilkyWay”, IMBH for “Intermediate
Mass Black Hole”, LHC for “Large Hadron Collider”, and “DE” for “Dark Energy”

9.2 The Black Hole Uncertainty Principle Correspondence

A key feature of the microscopic domain is the (reduced) Compton wavelength
for a particle of rest mass M , which is RC = �/(Mc). In the (M, R) diagram of
Fig. 9.2, the region corresponding to R < RC might be regarded as the “quantum
domain”, in the sense that the classical description breaks down there. A key feature
of the macroscopic domain is the Schwarzschild radius for a body of mass M , RS =
2GM/c2, which corresponds to the size of the event horizon. The region R < RS

might be regarded as the “relativistic domain”, in the sense that there is no stable
classical configuration in this part of Fig. 9.2.

TheCompton and Schwarzschild lines intersect at around the Planck scales, RP =√
�G/c3 ∼ 10−33 cm, MP = √

�c/G ∼ 10−5g, and divide the (M, R) diagram in
Fig. 9.2 into three regimes, which we label quantum, relativistic and classical. There
are several other interesting lines in the figure. The vertical line M = MP marks the
division between elementary particles (M < MP ) and black holes (M > MP ), since
the size of a black hole is usually required to be larger than the Compton wavelength
associated with its mass. The horizontal line R = RP is significant because quantum
fluctuations in the metric should become important below this [5]. Quantum gravity
effects should also be important whenever the density exceeds the Planck value,
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Fig. 9.2 The division of the
(M, R) diagram into the
classical, quantum,
relativistic and quantum
gravity domains. The
boundaries are specified by
the Planck density, the
Compton wavelength and the
Schwarzschild radius

ρP = c5/(G2
�) ∼ 1094 g cm−3, corresponding to the sorts of curvature singularities

associated with the big bang or the centres of black holes [6]. This implies R <

RP(M/MP)1/3, which is well above the R = RP line in Fig. 9.2 for M � MP , so
one might regard the shaded region as specifying the ‘quantum gravity’ domain.
This point has recently been invoked to support the notion of Planck stars [7] and
could have important implications for the detection of evaporating black holes [8].
Note that the Compton and Schwarzschild lines transform into one another under the
T-duality transformation M → M2

P/M . This interchanges sub-Planckian and super-
Planckianmass scales and corresponds to a reflection in the lineM = MP in Fig. 9.2.
T-dualities arise naturally in string theory and are known tomapmomentum-carrying
string states to winding states and vice-versa [9].

Although the Compton and Schwarzschild boundaries correspond to straight lines
in the logarithmic plot of Fig. 9.2, this form presumably breaks down near the Planck
point due to quantum gravity effects. One might envisage two possibilities: either
there is a smooth minimum, as indicated by the broken line in Fig. 9.2, so that the
Compton and Schwarzschild lines in some sense merge, or there is some form of
phase transition or critical point at the Planck scale, so that the separation between
particles and black holes is maintained. Which alternative applies has important
implications for the relationship between elementary particles and black holes [10].
This may also relate to the issue of T-duality since this purports to play some role in
linking point particles and black holes. Such a link is also suggested by Fig. 9.1.

One way of smoothing the transition between the Compton and Schwarzschild
lines is to invoke some connection between the Uncertainty Principle onmicroscopic
scales and black holes on macroscopic scales. This is termed the Black Hole Uncer-
tainty Principle (BHUP) correspondence [1] and also the Compton-Schwarzschild
correspondence when discussing an interpretation in terms of extended de Broglie
relations [11]. It is manifested in a unified expression for the Compton wavelength
and Schwarzschild radius. The simplest expression of this kind would be

RCS = β�

Mc
+ 2GM

c2
, (9.1)
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where β is the (somewhat arbitrary) constant appearing in the Compton wavelength
expression. In the sub-Planckian regime, this can be written as

R′
C = β�

Mc

[

1 + 2

β

(
M

MP

)2
]

(M 	 MP) , (9.2)

with the second term corresponding to a small correction of the kind invoked by the
Generalised Uncertainty Principle [12]. In the super-Planckian regime, it becomes

R′
S = 2GM

c2

[

1 + β

2

(
MP

M

)2
]

(M � MP) . (9.3)

This is termed theGeneralisedEventHorizon [1],with the second termcorresponding
to a small correction to the usual Schwarzschild expression. More generally, the
BHUP correspondence might allow any unified expression R′

C(M) ≡ R′
S(M)which

has the asymptotic behaviour β�/(Mc) for M 	 MP and 2GM/c2 for M � MP .
One could envisage many such expressions but we are particularly interested in those
which – like (9.1) – exhibit T-duality.

At the last meeting, I discussed some of the consequences of the BHUP corre-
spondence, with particular emphasis on the implied black hole temperature, the link
with Loop Quantum Gravity [6] and the effect of extra dimensions [13, 14]. The
implication is that in some sense elementary particles are sub-Planckian black holes.
Next I discuss some developments arising out of recent work with my collaborators.

9.3 Carr–Mureika–Nicolini work

The results of [10] are now summarised. In the standard picture, the mass in the
Schwarzschild solution is obtained by matching the metric coefficients with the
Newtonian potential and this gives the Komar integral

M ≡ 1

4πG

∫

∂�

d2x
√

γ (2) nμσν∇μK ν , (9.4)

where K ν is a timelike vector, � is a spacelike surface with unit normal nμ, and ∂�

is the boundary of � (typically a 2-sphere at spatial infinity) with metric γ (2)i j and
outward normal σμ. For M � MP, quantum effects are negligible and one finds the
usual Schwarzschildmass. ForM < MP, however, the expression can simultaneously
refer to a particle and a black hole. One usually considers the particle case and writes
(9.4) as

M ≡
∫

�

d3x
√

γ nμKνT
μν ≈ −4π

∫ RC

0
dr r2T 0

0 , (9.5)
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whereγ is the determinant of the spatially inducedmetricγ i j , T μν is the stress-energy
tensor and T 0

0 accounts for the particle distribution on a scale of order RC. This
corresponds to the mass appearing in the expression for the Compton wavelength.
When the black hole reaches the final stages of evaporation, the major contribution
to integral (9.4) becomes

M = −4π
∫ RP

0
dr r2T 0

0 , (9.6)

where T 0
0 accounts for an unspecified quantum-mechanical distribution of matter

and energy. Integral (9.6) is then unknown and might lead to a completely different
definition of the Komar energy.

Inspired by the dual role ofM in theBHUPcorrespondencewe explore a variant of
the last scenario, based on the existence of sub-Planckian black holes, i.e. quantum
mechanical objects that are simultaneously black holes and elementary particles.
In this context, we suggest that the Arnowitt–Deser–Misner (ADM) mass, which
coincides with the Komar mass in the stationary case, should be

MADM = M

(
1 + β

2

M2
P

M2

)
, (9.7)

which is equivalent to (9.3).We thus posit a quantum-correctedSchwarzschildmetric,
like the usual one but with M replaced by MADM.We note a possible connection with
the energy-dependent metric proposed in the framework of “gravity’s rainbow” [15].
It may also relate to the distinction between the bare and renormalized mass in QFT
in the presence of stochastic metric fluctuations [16].

The horizon size for the modified metric is given by

R′
S = 2MADM

M2
P

≈
⎧
⎨

⎩

2M/M2
P (M � MP)

(2 + β)/MP (M ≈ MP)

β/M (M 	 MP) ,

(9.8)

where we use unitswith� = c = 1.Thefirst expression is the standardSchwarzschild
radius. The intermediate expression gives aminimumof order RP, so the Planck scale
is never actually reached for β > 0 and the singularity remains inaccessible. The last
expression resembles the Compton wavelength. If the temperature is determined by
the black hole’s surface gravity [3], one has

T = M2
P

8πMADM
≈

⎧
⎨

⎩

M2
P/(8πM) (M � MP)

MP/(8π(1 + β/2)) (M ≈ MP)

M/(4πβ) (M 	 MP) .

(9.9)

This temperature is plotted in Fig. 9.3. The large M limit is the usual Hawking
temperature with a small correction. However, as the black hole evaporates, the
temperature reaches a maximum at around TP and then decreases to zero as M → 0.



9 Quantum Black Holes as the Link Between Microphysics and Macrophysics 91

Fig. 9.3 Hawking
temperature (9.9) implied by
the surface gravity argument
as a function of M/MP for
β = 1 (bottom), β = 0.5
(middle) and β = 0.1 (top).
As M decreases, T reaches a
maximum below TP and
then falls to zero

A possible explanation for the M 	 MPl behaviour is that a decaying black hole
makes a temporary transition to a (1+1)-D dilaton black hole when approaching the
Planck scale, since this naturally encodes a 1/M term in its gravitational radius. For
according to ’t Hooft [17], gravity might experience a (1+1)-D phase at the Planck
scale due to spontaneous dimensional reduction, such a conjecture being further
supported by studies of the fractal properties of a quantum spacetime at the Planck
scale. At this point the Komar mass can be defined as for dilaton black holes by [18]

M ∼
∫

dx
√
g(1) n(2)

i T i
0 , (9.10)

where g(1) is the determinant of the spatial section of gi j , the effective 2D quantum
spacetime metric, and (2)T i

0 is the dimensionally reduced energy-momentum tensor.
The black hole luminosity in this model is L = γ −1M−2

ADM where γ ∼ tP/M3
P.

Although the black hole loses mass on a timescale τ ∼ M/L ∼ γ M3(1 + βM2
P/

2M2)2, it never evaporates entirely because themass loss rate decreases whenM falls
below MP . There are two values of M for which τ is comparable to the age of the
Universe (t0 ∼ 1017 s). One is super-Planckian, M∗ ∼ (t0/γ )1/3 ∼ (t0/tP)1/3MP ∼
1015g, this being the standard expression for the mass of a PBH evaporating at the
present epoch, and the other is sub-Planckian, M∗∗ ∼ β2(tP/to)MP ∼ 10−65 g. The
usual Hawking lifetime (τ ∝ M3) gives the time for this mass to decrease to MP,
after which it quickly falls to the value M∗∗. Although this mass-scale is very tiny,
it arises naturally in some estimates for the photon or graviton mass [19]. Note that
the PBHmass cannot actually reach M∗∗ at the present epoch because the black hole
temperature is less than the CMB temperature below MCMB ∼ 10−36 g, leading to
effectively stable relics of this mass which might provide the dark matter.
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To summarise the advantages of our proposal: it encodes the BHUP duality in
the expression for the mass; it smooths the M(R) curve, so that there is no critical
point; it cures the thermodynamic instability of evaporating black holes; it exhibits
dimensional reduction in the sub-Planckian regime; and it gives a consistent theory of
gravity in different spacetime dimensions without needing two regimes governed by
different theories (GR and QM). Indeed, in some sense, the BHUP correspondence
implies that all black holes are quantum and that the Uncertainty Principle has a
gravitational explanation.

9.4 Lake–Carr Work

Canonical (non-gravitational) quantum mechanics is based on the concept of wave-
particle duality, encapsulated in the de Broglie relations E = �ω and p = �k. When
combined with the energy-momentum relation for a non-relativistic point particle,
these lead to the dispersion relation ω = (�/2m)k2. However, these relations break
down near the Planck scale, since they correspond to wavelengths λ 	 RP or peri-
ods t 	 tP . Reference [11] therefore proposes modified forms for the de Broglie
relations which may be applied even for E � MPc2, with the additional terms being
interpreted as representing the self-gravitation of the wave packet.

The simplest such relations are E = � and p = �κ with

 =
{

ω2
P

(
ω + ω2

P/ω
)−1

(m < MP)

β
(
ω + ω2

P/ω
)

(m > MP)
, κ =

{
k2P

(
k + k2P/k

)−1
(m < MP)

β
(
k + k2P/k

)
(m > MP).

(9.11)
Continuity of E , p, dE/dω and dp/dk at ω = ωP and k = kP is ensured by set-
ting β = 1/4. The relation  = (�/2m)κ2 then leads to new dispersion relations,
quadratic in ω, which can be solved for both E 	 Mpc2 and E � Mpc2. The two
solution branches, ω±(k,m), are shown as functions of k for three values of m
in Fig. 9.4a. The solutions are dual under the transformation m → M ′2

P /m where
M ′

P ≡ (π/2)MP . Canonical non-relativistic quantum mechanics is recovered in the
bottom left region, where ω− ≈ (�/2m)k2. The branches meet at ω±(kP) = ωP for
the critical casem = M ′

P but there is a gap in the allowedvalues of k form �= M ′
P . The

limiting values for a given mass, k±(m), are shown in Fig. 9.4b and these also exhibit
duality. These values correspond to the Schwarzschild formula for E � MPc2 and
the Compton formula for E 	 MPc2. So this is another way of interpreting the
BHUP correspondence.

In our second paper [20] we discuss the preservation of T-duality in higher dimen-
sions. In three spatial dimensions, theComptonwavelength andSchwarzschild radius
are dual under the transformation M → M2

P/M . In the presence of n extra dimen-
sions, compactified on some scale RE , it is usually assumed that RS ∝ M1/(1+n) [21]
and RC ∝ M−1 (as in three domensions) for R < RE , which breaks the duality. This
situation is illustrated in Fig. 9.5a and gives the standard scenario in which the effec-
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(a) (b)

Fig. 9.4 Illustrating how a the dispersion relationsω±(m, k) for three values ofm and b the limiting
wavenumbers k±(m) are changed in the proposed model

log R

log M
New Planck scale

RC 
/

M-1 M

M1/(1+n)M-1/(1+n)

RS 
/

|
MP

RC
_

RP 
/ _

(a) (b)

Fig. 9.5 Showing change in Planck scales for large extra dimensions if a only the Schwarzschild
radius is modified and b the Compotn wavelength is also modified, preserving T-duality

tive Planck length is increased and the Planck mass reduced, allowing the possibility
of black hole production at the LHC.

Currently there is no evidence for such production. However, the effective Comp-
tonwavelength depends on the form of the (3 + n)-dimensional wavefunction. If this
is spherically symmetric, then one indeed has RC ∝ M−1. But if the wave function is
pancaked in the extra dimensions and maximally asymmetric, then RC ∝ M−1/(1+n),
so that the duality between RC and RS is preserved. This situation is illustrated in
Fig. 9.5b, which shows that the effective Planck length is reduced even more but
the Planck mass is unchanged. So TeV quantum gravity is precluded in this case
and black holes cannot be generated in collider experiments. Nevertheless, the extra
dimensions could still have consequences for the detectability of black hole evap-
orations and the enhancement of pair-production at accelerators on scales below
RE .

Acknowledgements I thank my collaborators in the work reported here: Matthew Lake, Jonas
Mureika and Piero Nicolini.
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Chapter 10
Free Energy of Topologically Massive
Gravity and Flat Space Holography

D. Grumiller and W. Merbis

Abstract We calculate the free energy from the on-shell action for topologically
massive gravity with negative and vanishing cosmological constant, thereby provid-
ing a first principles derivation of the free energy of Bañados–Teitelboim–Zanelli
black holes and flat space cosmologies. We summarize related recent checks of flat
space holography.

10.1 Introduction

The Schwarzschild solution was found a fewweeks after Einstein’s theory of general
relativity was finished and has engendered a century worth of interesting research
results. One indirect outcome of Schwarzschild’s remarkable discovery is black hole
holography [1], which is at the core of numerous current research avenues, not just in
classical and quantum gravity, but even in neighboring fields such as quantum field
theory or condensed matter physics (specifically at strong coupling).

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence [2] provides
a concrete realization of holography. A specific set of applications and checks is the
determination of correlation functions on the gravity side [3]. The 0-point function,
or on-shell action, gives the free energy and should therefore capture all features of
the free energy of the dual CFT [4]. The 1-point functions, or vacuum expectation
values, allow to determine conserved charges like mass or angular momentum [5–7].
The 2- and 3-point functions are highly constrained by symmetries and allow basic
checks of the correspondence, while the higher n-point functions provide further
applications and consistency checks, see [8] and references therein.
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If holography is a true aspect of Nature it must also work beyond AdS/CFT,
particularly in flat space. After some early progress on extracting features of the
S-matrix as a limit from AdS/CFT correlators [9–11] it took a while to come up
with the first precise proposal for a holographic correspondence between a specific
quantum theory of gravity in flat space, dubbed flat space chiral gravity [12], and
a specific quantum field theory. This proposal is based on a scaling limit of topo-
logically massive gravity (TMG) [13], which is a three-dimensional gravity theory
that consists of the Einstein–Hilbert action and a gravitational Chern–Simons term.
In the limit of interest only the gravitational Chern–Simons term remains and the
ensuing theory, known as conformal Chern–Simons gravity (CSG), has interesting
holographic properties [12, 14, 15].

One particular check of the flat space chiral gravity proposal and more generally
of flat space holography is themicroscopic derivation of the entropy [16] of flat space
cosmology solutions using properties of the dual Galilean CFT [17]. For flat space
Einstein gravity the microscopic result matches the expected Bekenstein–Hawking
law, which can be derived from first principles using the Euclidean path integral
formulation [18] to determine the free energy and extract from it the entropy using
standard thermodynamical relations.

Naively applying the same methods to TMG, including its limiting case CSG,
appears to fail. Indeed, inserting for instance the BTZ line-element into the bulk-
plus-boundary action constructed in [19] and used in [14] yields the correct 1-, 2- and
3-point functions, but not the correct 0-point function or free energy. One can avoid
this issue by directly calculating the entropy [20], e.g. using Solodukhin’s method
of conical deficits [21] or Tachikawa’s generalization of the Wald entropy [22]. If
one then postulates the first law and integrates it (essentially Legendre transforming
entropy) one can extract free energy.However, this indirect derivationof free energy is
not completely satisfactory since it uses the first law as an input rather than providing
it as a result.

It is of interest to directly calculate free energy for TMG from first principles,
since this provides a check of the validity of the first law. In this work we achieve
this goal for TMG and its CSG limit, both in AdS and in flat space.

This proceedings contribution is organized as follows. In Sect. 10.2 we display
the bulk action in a Chern–Simons like formulation and clarify our notation. In
Sect. 10.3 we review the Euclidean BTZ solution. In Sect. 10.4 we determine the
BTZ free energy from the on-shell action. In Sect. 10.5 we apply our results to flat
space cosmology solutions. In Sect. 10.6 we comment on correlation functions in
flat space holography. In Sect. 10.7 we conclude with mentioning a further possible
check of the flat space chiral gravity proposal, namely holographic entanglement
entropy.
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10.2 Action and Notation

It turns out to be useful to employ the Chern–Simons-like formulation of TMG,
whose bulk action is given by (see [23] and references therein)

ITMG = 1

4πG

∫
tr
[

− σe ∧ R + �0
3 e ∧ e ∧ e + f ∧ T − 1

2μω ∧ (
dω + 2

3ω ∧ ω
)]

.

(10.1)

Here e is the dreibein,ω the (dualized) spin-connection and f is an auxiliary so(2, 1)
valued one-formfield. R denotes theRiemann curvature two-formand T is the torsion
two-form. In addition, σ = ±1 is a sign parameter and the cosmological parameter
�0 is related to the cosmological constant as �0 = σ�. In this work we assume
that the cosmological constant is either negative (AdS) or vanishes (flat space). The
quantity G is Newton’s constant.

10.3 Bañados–Teitelboim–Zanelli Solution

The Euclidean BTZ black hole [24] has the topology of a solid torus, which we
coordinatize by a radial coordinate ρ ∈ [0,∞), a contractible cycle coordinate t ∼
t + 1 and a non-contractible cycle coordinate φ ∼ φ + 2π . Since we work with
fixed coordinate ranges the chemical potentials, essentially temperature and angular
velocity, appear explicitly in the solutions.

The BTZ solution (in the basis of sl(2,R) generators L+, L0, L−) can be
parametrized by the dreibein e = eρdρ + eφdφ + etdt as

eρ = �L0 eφ = �

2

(
eρ(L+ − L−) − 8πG

�
e−ρ(L +L− − L −L+)

)
(10.2)

et = �

2

(
eρ(μ+L+ + μ−L−) − 8πG

�
e−ρ(μ+L +L− + μ−L −L+)

)
. (10.3)

Regularity of the solution requires a relation between charges L ± and chemical
potentials μ±

L ± = π�

8G(μ±)2
(10.4)

where μ± are related to the inverse temperature β and the angular velocity 
 as

β = �

2
(μ+ + μ−) β
 = −1

2
(μ+ − μ−) . (10.5)
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In addition, the chargesL ± are related to the mass M and angular momentum J as
L ± = 1

4π (M� ∓ J ) and to the loci of the BTZ Killing horizons r± as

r± = √
8πG�L − ± √

8πG�L + . (10.6)

The solution for ω follows from the constraint of vanishing torsion, which is one of
the TMG equations of motion (EOM).

ωρ = 0 ωφ = 1

2

(
eρ(L+ + L−) − 8πG

�
e−ρ(L +L− + L −L+)

)
(10.7)

ωt = 1

2

(
eρ(μ+L+ − μ−L−) − 8πG

�
e−ρ(μ+L +L− − μ−L −L+)

)
(10.8)

The auxiliary one-form f also follows from the TMG EOM and is simply related to
the dreibein e by

f = − 1

2�2μ
e . (10.9)

10.4 On-Shell Action

Following Bañados andMendez [25] we compute the on-shell action using so-called
‘angular quantization’. The essence is to slice the solid torus into constant φ slices.
Then on the constant φ slice we can use (any) regular coordinate system, while close
to the boundary we use the ρ, t, φ Schwarzschild-like coordinates. The full action
�TMG = ITMG + B consists of the bulk action (10.1) and a boundary term B. In the
angular decomposition for one-forms, a = aαdxα + aφdφ where a = e, ω, f and
xα are the coordinates on the disks of constant φ, the full action is given by

�TMG = 1

4πG

∫
dφd2x εαβ tr

[ ∑
a

aφ(EOM)αβ − σeβ∂φωα + fβ∂φeα − 1

2μ
ωβ∂φωα

]

+ 1

4πG

∫
ρ→∞

dtdφ tr

[
−σetωφ + ft eφ − 1

2μ
ωtωφ

]
+ B . (10.10)

The boundary term B that gives a well-defined variational principle is one-half [18,
26, 27] the Gibbons–Hawking–York boundary term.

B = σ

8πG

∫
ρ→∞
dtdφ tr(ωφet − ωt eφ) (10.11)

The bulk part of the action (10.10) vanishes on-shell for spherically symmetric
(φ-independent) fields and we are left with the boundary terms in the second line of
(10.10). Due to the compensating contribution from the boundary term B the result
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is finite on the solutions given in the last section and it equals to βFBTZ, where FBTZ

is the BTZ free energy. Expressing everything in terms of temperature T = β−1 and
angular velocity 
 through (10.5) gives the free energy of the BTZ black hole in
TMG.

FBTZ = 1

β
(I EOMTMG + B) = − π2�2T 2

2G(1 − 
2�2)

(
σ + μ−1


)
(10.12)

This result agrees with the free energy obtained by Legendre transforming entropy1

[20–22]

SBTZ = −∂FBTZ

∂T

∣∣∣



= σ
2πr+
4G

+ 2πr−
4Gμ�

(10.13)

using the first law. We have thus succeeded in a first principles derivation of the BTZ
free energy for TMG.

Our derivation of the BTZ free energy (10.12) from evaluating on-shell the full
action (10.10) readily generalizes to other cases. In the next section we focus par-
ticularly on asymptotically flat space, � = 0, by considering the free energy of flat
space cosmology solutions.

10.5 Flat-Space Solutions

Consider locally flat line-elements with constant chemical potentials μM , μL [28].

ds2 = (
r2μ2

L + M (1 + μM)2 + 2N (1 + μM)μL
)
du2

+ (
r2μL + N (1 + μM)

)
2dudφ − (1 + μM)2drdu + r2dφ2 (10.14)

Analogously to the BTZ case discussed in the previous two sections, regularity of
the flat space cosmology solutions (10.14) relates the chargesM ,N to the chemical
potentials μM , μL and to the temperature T and angular velocity 
. We find

M = 4π2

μ2
L

N = −M
1 + μM

μL
T = 1

2π

M 3/2

|N | 
 = M

N
. (10.15)

The easiest way to compute the free energy of these solutions in TMG is to write the
dreibein which squares to (10.14) in the sl(2,R) basis of the previous section and
compute the corresponding spin-connection and auxiliary field from the TMGEOM.
Then we can plug these solutions into the angularly decomposed action (10.10) and
eventually find the free energy.

1We stress that for finite μ entropy (10.13) does not obey the Bekenstein–Hawking area law.
Nevertheless, it is compatible with the Cardy formula in the presence of a gravitational anomaly,
i.e., the left- and right-moving central charges are not equal, c − c̄ = 3/(μG) [20].



100 D. Grumiller and W. Merbis

Such a dreibein can be written as e = erdr + eφdφ + eudu with

er = 1

2
L− eφ = −N

2
L− + r L0 (10.16)

eu = (1 + μM)L+ −
(1
4
M (1 + μM) + 1

2
N μL

)
L− + rμL L0 . (10.17)

By solving the TMG EOM with this dreibein one finds that f = 0 and

ωr = 0 ωφ = L+ − M

4
L− ωu = μL

(
L+ − M

4
L−

)
. (10.18)

After plugging this into the full action (10.10) and using (10.15) to write everything
in terms of temperature and angular velocity we obtain the free energy.

FFSC = 1

β
(I EOMTMG + B) = − π2T 2

2G
2

(
σ + 


μ

)
(10.19)

This result agrees with the one derived in [29] by Legendre transforming the entropy
of TMG with asymptotically flat boundary conditions. In particular, for flat space
chiral gravity we obtain the entropy

S = −∂FFSC(σ = 0)

∂T

∣∣∣



= π2T

Gμ

= 2π

√
ch

6
(10.20)

with k = 1/(8Gμ) > 0, c = 24k and h = kM [12]. The last equality in (10.20)
shows consistencywith the chiral Cardy formula, as observed first in [29], compatible
with the flat space chiral gravity conjecture [12].

10.6 Correlation Functions

Let us now move on from 0- to 1-point functions. They provide the first entries in
the flat space holographic dictionary by identifying sources and vacuum expectation
values as non-normalizable and normalizable solutions of the linearized EOM on
the gravity side, respectively. The second order formulation [18, 30, 31] reproduces
the canonical results for the conserved charges in flat space Einstein gravity [32]. It
is slightly easier to obtain these results in the first order formulation [33]. It would
be interesting to generalize them to TMG in order to provide another check of the
flat space chiral gravity conjecture. This would require either an extension from our
calculations in the Chern–Simons formulation to Chern–Simons-like theories such
as TMG or an application of the Horne–Witten formulation of CSG [34].

If the 1-point functions match, as we expect them to do, one can actually go
much further and check n-point correlation functions of the flat space holographic
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stress tensor in flat space chiral gravity. The procedure would follow the steps of the
recent derivation of all n-point correlation functions in flat space Einstein gravity
[33], which we now summarize briefly:

• Instead of directly calculating the n-th variation of the full action and inserting non-
normalizable solutions to the linearized EOM we calculate the 1-point function
on an arbitrary background, deformed by a chemical potential. On the field theory
side this corresponds to a deformation of the original action �0 to a deformed
action �μ with

�μ = �0 −
∫

d2z μ(z, z̄)O(z, z̄) (10.21)

where the chemical potential for the operator O is localized at n − 1 points, μ =∑n
i=2 εiδ(z − zi , z̄ − z̄i ); the coefficients εi are a convenient book keeping device

and z, z̄ are some coordinates used in the 2-dimensional field theory.
• The 1-point function on the deformed background then yields the n-point function
for the original background, e.g. for n = 2 we get

〈O(z1, z̄1)〉μ = 〈O(z1, z̄1)〉0 + ε2〈O(z1, z̄1)O(z2, z̄2)〉0 + · · · (10.22)

The term to linear order in ε2 yields the 2-point correlator, both on gravity and
field theory sides. The same procedure works for arbitrary n-point correlators.

• In order to show the equivalence of all correlations functions on gravity and field
theory sides one canuse complete inductionbyproving recursion relations between
n- and (n − 1)-point correlation functions, analogous to the BPZ-recursion rela-
tions for the stress tensor in a CFT [35]. For flat space Einstein gravity andGalilean
CFTs these recursion relations were established recently [33], thus showing the
equivalence of all flat space holographic stress tensor correlation functions with
corresponding Galilean CFT correlation functions.

This procedure provides a fairly non-trivial check of flat space holography in three
dimensions. It would be great to generalize it to flat space chiral gravity.

10.7 Flat Space Holographic Entanglement Entropy

As concluding part of this proceedings contributionwe focus on a further check of flat
space holography. One particularly interesting part of the AdS/CFT developments
was the insight by Ryu and Takayanagi a decade ago that entanglement entropy
can be calculated by elementary methods on the gravity side, through minimizing
the area of certain hypersurfaces, depending on the entangling region for which
entanglement entropy is calculated [36].With methods similar to the ones used in the
CFT derivation [37–39] one can also derive entanglement entropy for 2-dimensional
Galilean CFTs [40] and, following the holographic computation of entanglement
entropy in the presence of a gravitational Chern–Simons term [41], we expect that
this result should match with the flat space chiral gravity prediction
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SEE = c

6
ln

L

a
(10.23)

where c = 24k, L is the length of the entangling region and a is an ultraviolet cutoff.
Also this prediction of flat space chiral gravity was confirmed recently [42].

Acknowledgements We thank Arjun Bagchi for collaboration on n-point correlation functions in
flat space holography. DG additionally thanks Arjun Bagchi, Stephane Detournay, Max Riegler,
Jan Rosseel and Joan Simon for a wonderful long-term collaboration on numerous aspects of flat
space holography.

DG was supported by projects of the Austrian Science Fund (FWF) Y 435-N16, I 952-N16 and
I 1030-N27, and by the program Science without Borders, project CNPq-401180/2014-0. WMwas
supported by the FWF project P 27182-N27.

References

1. G. ’t Hooft, Dimensional reduction in quantum gravity, in Salamfestschrift (World Scientific,
1993), arXiv:gr-qc/9310026; L. Susskind, The world as a hologram, J. Math. Phys. 36, 6377–
6396 (1995), arXiv:hep-th/9409089

2. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2, 231–252 (1998), arXiv:hep-th/9711200

3. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory correlators from non-critical string
theory, Phys. Lett. B428, 105–114 (1998), arXiv:hep-th/9802109. E. Witten, Anti-de Sitter
space and holography, Adv. Theor. Math. Phys. 2, 253–291 (1998), arXiv:hep-th/9802150

4. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,
Adv. Theor. Math. Phys. 2, 505–532 (1998), arXiv:hep-th/9803131

5. V. Balasubramanian, P. Kraus, A stress tensor for anti-de Sitter gravity, Commun. Math. Phys.
208, 413–428 (1999), arXiv:hep-th/9902121

6. M. Henningson, K. Skenderis, The holographic Weyl anomaly, JHEP 07, 023 (1998),
arXiv:hep-th/9806087

7. S. de Haro, S.N. Solodukhin, K. Skenderis, Holographic reconstruction of spacetime and renor-
malization in the AdS/CFT correspondence, Commun. Math. Phys. 217, 595–622 (2001),
arXiv:hep-th/0002230

8. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Large N field theories, string
theory and gravity, Phys. Rep. 323, 183–386 (2000), arXiv:hep-th/9905111

9. J. Polchinski, S matrices from AdS space-time, arXiv:hep-th/9901076
10. L. Susskind, Holography in the flat space limit, arXiv:hep-th/9901079
11. S.B. Giddings, Flat space scattering and bulk locality in the AdS / CFT correspondence,

Phys.Rev. D61, 106008 (2000), arXiv:hep-th/9907129
12. A. Bagchi, S. Detournay, D. Grumiller, Flat-space chiral gravity, Phys. Rev. Lett. 109, 151301

(2012), arXiv:1208.1658
13. S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive gauge theories. Phys. Rev. Lett.

48, 975–978 (1982)
14. H. Afshar, B. Cvetkovic, S. Ertl, D. Grumiller, N. Johansson, Conformal Chern-Simons holog-

raphy - lock, stock and barrel, Phys.Rev. D85, 064033 (2012), arXiv:1110.5644
15. M. Bertin, S. Ertl, H. Ghorbani, D. Grumiller, N. Johansson, D. Vassilevich, Lobachevsky

holography in conformal Chern-Simons gravity, JHEP 1306, 015 (2013), arXiv:1212.3335
16. G. Barnich, Entropy of three-dimensional asymptotically flat cosmological solutions, JHEP

1210, 095 (2012), arXiv:1208.4371; A. Bagchi, S. Detournay, R. Fareghbal, J. Simon, Holog-
raphy of 3d flat cosmological horizons, Phys. Rev. Lett. 110, 141302 (2013), arXiv:1208.4372

http://arxiv.org/abs/gr-qc/9310026
http://arxiv.org/abs/hep-th/9409089
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://arxiv.org/abs/hep-th/9803131
http://arxiv.org/abs/hep-th/9902121
http://arxiv.org/abs/hep-th/9806087
http://arxiv.org/abs/hep-th/0002230
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/hep-th/9901076
http://arxiv.org/abs/hep-th/9901079
http://arxiv.org/abs/hep-th/9907129
http://arxiv.org/abs/1208.1658
http://arxiv.org/abs/1110.5644
http://arxiv.org/abs/1212.3335
http://arxiv.org/abs/1208.4371
http://arxiv.org/abs/1208.4372


10 Free Energy of Topologically Massive Gravity and Flat Space Holography 103

17. A. Bagchi, Correspondence between asymptotically flat spacetimes and nonrelativistic confor-
mal field theories, Phys. Rev. Lett. 105, 171601 (2010), arXiv:1006.3354

18. S. Detournay, D. Grumiller, F. Schöller, J. Simon, Variational principle and 1-point functions
in 3-dimensional flat space Einstein gravity, Phys. Rev. D89, 084061 (2014), arXiv:1402.3687

19. M. Guica, K. Skenderis, M. Taylor, B.C. van Rees, Holography for Schrodinger backgrounds,
JHEP 1102, 056 (2011), arXiv:1008.1991

20. P. Kraus, F. Larsen, Holographic gravitational anomalies, JHEP 01, 022 (2006),
arXiv:hep-th/0508218

21. S.N. Solodukhin, Holography with gravitational Chern-Simons term, Phys. Rev. D74, 024015
(2006), arXiv:hep-th/0509148

22. Y. Tachikawa, Black hole entropy in the presence of Chern-Simons terms, Class. Quantum
Gravity 24, 737–744 (2007), arXiv:hep-th/0611141

23. W. Merbis, Chern-Simons-like theories of gravity, Ph.D. thesis, Groningen University, 2014,
arXiv:1411.6888

24. M. Banados, C. Teitelboim, J. Zanelli, The Black hole in three-dimensional space-time, Phys.
Rev. Lett. 69, 1849 (1992), arXiv:hep-th/9204099; M. Banados, M. Henneaux, C. Teitelboim,
J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev. D48, 1506 (1993) Erratum: [Phys.
Rev. D88, 069902 (2013)], arXiv:gr-qc/9302012

25. M. Banados, F. Mendez, A note on covariant action integrals in three-dimensions, Phys. Rev.
D58, 104014 (1998), arXiv:hep-th/9806065

26. P.Mora, R. Olea, R. Troncoso, J. Zanelli, Finite action principle for Chern-Simons AdS gravity,
JHEP 06, 036 (2004), arXiv:hep-th/0405267

27. O. Miskovic, R. Olea, On boundary conditions in three-dimensional AdS gravity, Phys. Lett.
B640, 101–107 (2006), arXiv:hep-th/0603092

28. M. Gary, D. Grumiller, M. Riegler, J. Rosseel, Flat space (higher spin) gravity with chemical
potentials, JHEP 1501, 152 (2015), arXiv:1411.3728

29. A. Bagchi, S. Detournay, D. Grumiller, J. Simon, Cosmic evolution from phase transition of
3-dimensional flat space, Phys. Rev. Lett. 111, 181301 (2013), arXiv:1305.2919

30. R. Caldeira Costa, Aspects of the zero � limit in the AdS/CFT correspondence, Phys. Rev.
D90(10), 104018 (2014), arXiv:1311.7339

31. R. Fareghbal,A.Naseh, Flat-space energy-momentum tensor fromBMS/GCAcorrespondence,
JHEP 1403, 005 (2014), arXiv:1312.2109

32. G. Barnich, G. Compere, Classical central extension for asymptotic symmetries at null
infinity in three spacetime dimensions, Class. Quantum Gravity 24, F15–F23 (2007),
arXiv:gr-qc/0610130

33. A. Bagchi, D. Grumiller, W. Merbis, Stress tensor correlators in three-dimensional gravity,
arXiv:1507.05620

34. J.H. Horne, E. Witten, Conformal gravity in three-dimensions as a gauge theory. Phys. Rev.
Lett. 62, 501–504 (1989)

35. A. Belavin, A.M. Polyakov, A. Zamolodchikov, Infinite conformal symmetry in two-
dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

36. S. Ryu, T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys.
Rev. Lett. 96, 181602 (2006), arXiv:hep-th/0603001

37. C. Holzhey, F. Larsen, F. Wilczek, Geometric and renormalized entropy in conformal field
theory, Nucl. Phys. B424, 443–467 (1994), arXiv:hep-th/9403108

38. G. Vidal, J. Latorre, E. Rico, A. Kitaev, Entanglement in quantum critical phenomena, Phys.
Rev. Lett. 90, 227902 (2003), arXiv:quant-ph/0211074

39. P. Calabrese, J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406,
P06002 (2004), arXiv:hep-th/0405152

40. A. Bagchi, R. Basu, D. Grumiller, M. Riegler, Entanglement entropy in Galilean conformal
field theories and flat holography, Phys. Rev. Lett. 114(11), 111602 (2015), arXiv:1410.4089

41. A. Castro, S. Detournay, N. Iqbal, E. Perlmutter, Holographic entanglement entropy and grav-
itational anomalies, JHEP 1407, 114 (2014), arXiv:1405.2792

42. S.M. Hosseini, A. Veliz-Osorio, Gravitational anomalies, entanglement entropy, and flat-space
holography, arXiv:1507.06625

http://arxiv.org/abs/1006.3354
http://arxiv.org/abs/1402.3687
http://arxiv.org/abs/1008.1991
http://arxiv.org/abs/hep-th/0508218
http://arxiv.org/abs/hep-th/0509148
http://arxiv.org/abs/hep-th/0611141
http://arxiv.org/abs/1411.6888
http://arxiv.org/abs/hep-th/9204099
http://arxiv.org/abs/gr-qc/9302012
http://arxiv.org/abs/hep-th/9806065
http://arxiv.org/abs/hep-th/0405267
http://arxiv.org/abs/hep-th/0603092
http://arxiv.org/abs/1411.3728
http://arxiv.org/abs/1305.2919
http://arxiv.org/abs/1311.7339
http://arxiv.org/abs/1312.2109
http://arxiv.org/abs/gr-qc/0610130
http://arxiv.org/abs/1507.05620
http://arxiv.org/abs/hep-th/0603001
http://arxiv.org/abs/hep-th/9403108
http://arxiv.org/abs/quant-ph/0211074
http://arxiv.org/abs/hep-th/0405152
http://arxiv.org/abs/1410.4089
http://arxiv.org/abs/1405.2792
http://arxiv.org/abs/1507.06625


Chapter 11
Super-Entropic Black Holes

R. B. Mann

Abstract Super-entropic black holes form a new class of exact solutions to the
Einstein–Maxwell–AdS equations. They are obtained from taking a new ultraspin-
ning limit to the class of Kerr-AdS metrics, and have a number of intriguing proper-
ties. Their event horizons are not compact but have finite area, they have no closed
timelike curves, and their entropy is larger than expected from general considerations
of their thermodynamic volume. Here a brief overview of the construction and basic
physical properties of these metrics is presented.

11.1 Introduction

One of the early fundamental results in the study of black holes concerns the topology
of their horizons. Four-dimensional asymptotically flat stationary black holes neces-
sarily have horizons of topology S2 provided the dominant energy condition is satis-
fied [1]. A preponderance of black hole solutions with differing horizon topologies
can be obtained by relaxing the assumptions underlying this theorem. For example,
if the black hole is asymptotically anti de Sitter then the asymptotic topology in the
domain of outer communication can be something other than S2 and a whole class
of black holes with a variety of horizon topologies can result [2–7] .

A new class of black holes has recently entered the scene. Known as super-
entropic black holes [8], they were first constructed in [9] and further elucidated in
bothN = 2 gauged supergravity coupled to vector multiplets [10] and in Einstein–
Maxwell-� theory [8]. Their event horizons are not compact yet have finite area
(and therefore finite entropy). Topologically, the event horizon is a sphere with two
punctures, and this class of solutions can be obtained from a certain limit of the
Kerr-solution [11].
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Apart from the fact that this demonstrates an even richer landscape for event
horizon topologies than was previously known, these black holes have another inter-
esting feature from the perspective of extended phase space thermodynamics [12,
13]: they provided the first counterexample [8] to the conjectured ‘Reverse Isoperi-
metric Inequality’ [14], which asserted that for a black hole of given thermodynamic
volume the entropywill bemaximal for the (charged) Schwarzschild AdS black hole.
In this sense they exceed their expected maximal entropy and so have been called
‘super-entropic’ [8].

11.2 Construction

The basic procedure for constructing super-entropic black holes is to take a rotating
asymptotically AdS black hole and set its rotation parameter a equal to its AdS
length l. The basic steps are as follows.

1. Eliminate any possible terms that would result in divergences in the a → l limit
of a given rotating AdS black hole.

2. Recast the metric in a coordinate system that allows rescaling of the azimuthal
coordinate in this limit.

3. Take the a → l limit; this effectively ‘boosts’ the asymptotic rotation to the speed
of light.

4. Compactify the corresponding azimuthal direction. This qualitatively changes the
structure of the spacetime since it is no longer possible to return to a frame that
does not rotate at infinity.

The resulting structure is a black hole that has a non-compact horizonwhose topology
is that of a sphere with two punctures.

The simplest example is obtained from the Kerr–Newman-AdS black hole in four
dimensions [15], whose metric and electromagnetic gauge potential are

ds2 = −�a

�a

[
dt − a sin2θ

�
dφ

]2

+ �a

�a
dr2 + �a

S
dθ2 + S sin2θ

�a

[
adt − r2 + a2

�
dφ

]2

A = − qr

�a

(
dt − a sin2θ

�
dφ

)
(11.1)

in standard Boyer–Lindquist form, where

�a = r2 + a2 cos2θ , � = 1 − a2

l2
, S = 1 − a2

l2
cos2θ ,

�a = (r2 + a2)
(
1 + r2

l2

)
− 2mr + q2 , (11.2)
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with the horizon rh defined by �a(rh) = 0. This coordinate system rotates at infinity
with an angular velocity �∞ = −a/ l2.

To carry out step 1, define ψ = φ/�. Rewriting the metric using this new coor-
dinate (step 2), a conical singularity is avoided by identifying ψ with period 2π/�,
and the a → l limit (step 3) yields

ds2 = −�

�

[
dt − l sin2θdψ

]2 + �

�
dr2 + �

sin2θ
dθ2 + sin4θ

�

[
ldt − (r2 + l2)dψ

]2
A = −qr

�

(
dt − l sin2θdψ

)
(11.3)

where

� = r2 + l2 cos2θ , � =
(
l + r2

l

)2 − 2mr + q2 (11.4)

and ψ is now a noncompact azimuthal coordinate; by requiring that ψ ∼ ψ + μ

it is compactified (step 4) and the procedure is complete. The metric (11.3) is a
four-dimensional charged super-entropic black hole.

11.3 Basic Properties

The black hole described by the metric and gauge potential (11.3) has a number of
interesting properties.

Minimal mass Examining the roots of � in (11.4) it is easy to see that

m ≥ m0 ≡ 2r0
(r20
l2

+ 1
)

, r20 ≡ l2

3

[
−1 +

(
4 + 3q2

l2

) 1
2
]

(11.5)

and so there is a minimum value m > m0 of the mass required for horizons to exist.
When m = m0 the two roots of � coincide and the black hole is extremal. For
m < m0 there is a naked singularity.

No Closed Timelike Curves It is straightforward to see that

gψψ = l4 sin4 θ

l2 cos2 θ + r2
(
2mr − q2

)
> 0 (11.6)

providedm > m0 and r+ > r0. The spacetime (11.3) is free of closed timelike curves.
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Non-compact Horizon There is an infinite amount of proper distance from any
point to the θ = 0, π axis, and so this axis is removed from the spacetime. The
topology of the horizon is that of a sphere with two punctures (i.e. a cylinder).
Setting κ = l(1 − cos θ) in (11.3) yields

ds2 = (r2 + l2)

[
dκ2

4κ2
+ 4(2mr − q2)

(r2 + l2)2
κ2dψ2

]
, (11.7)

for small κ . The metric (11.7) is a metric of constant negative curvature on a quo-
tient of the hyperbolic space H2. Any fixed (r, t) sections have the same topology,
approaching a Lobachevsky space near the axis.

Ergosphere The region for which the Killing vector ∂t is no longer timelike is

� − l2 sin4θ < 0 (11.8)

and forms the ergosphere of the black hole. The outer boundary of this region is
where � = l2 sin4θ .

Horizon Shape The geometry of the horizon can be visualized by embedding it in
Euclidean 3-space [9]

ds23 = dz2 + rmdR2 + R2dφ2 = gψψ(r = r+)dψ2 + gθθ (r = r+)dθ2
∣∣∣
r=r+
(11.9)

where the latter equality holds provided

R2(θ) =
( μ

2π

)
gψψ(r = r+)

(
dz(θ)

dθ

)2

= gθθ (r = r+) −
(
dR(θ)

dθ

)2

(11.10)
These equations can be integrated numerically for various values of r+, l and q; a
typical result is depicted in Fig. 11.1. Note that the fact that z(θ) extends to ±∞ at
the poles does not imply that the horizon extends to spatial infinity; rather the horizon
should be understood as a Lobachevsky space of spherical shape, with any point on
the sphere an infinite proper distance from either pole.

Asymptotic Structure Taking r → ∞ and rescaling the metric by the conformal
factor l2/r2 yields

ds2bdry = −dt2 − 2l sin2θdtdψ + l2

sin2θ
dθ2 (11.11)

which is the metric of the conformal boundary of (11.3). The ψ coordinate becomes
null here; essentially the spacetime is rotating at the speed of light at infinity.
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Fig. 11.1 Horizon
embedding. The horizon
geometry of a 4d
super-entropic black hole
embedded in E3 for the
following choice of
parameters: q = 0, l = 1,
r+ = √

10 and μ = 2π

11.4 Thermodynamics

In the framework of extended phase space thermodynamics, a subject that has come
to be known asBlack Hole Chemistry [13]. The thermodynamic quantities associated
with the metric (11.3) are [8, 10]

M = μm

2π
J = Ml � = l

r2+ + l2
, A = 2μ(l2 + r2+)

S = A

4
T = 1

4πr+

(
3
r2+
l2

− 1 − q2

l2 + r2+

)

Q = μq

2π
 = qr+

r2+ + l2
V = r+A

3
P = − �

8π
= 3

8πl2
(11.12)

where M is the black hole enthalpy, J its angular momentum, � its horizon angu-
lar velocity, T its temperature, S its entropy, Q its charge,  its conjugate gauge
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potential, V its thermodynamic volume, and P its conjugate pressure. Note that the
(negative) cosmological constant is identified with pressure – the basic postulate of
black hole chemistry [12]. Both � and  are measured with respect to infinity. The
thermodynamic quantities in (11.12) cannot be obtained by taking the a → l limit of
their Kerr–Newman-AdS counterparts due to the singular nature of the ultraspinning
limit.

It is straightforward to show that the first law of black hole thermodynamics

dM = T dS + V dP + �dJ + dQ + Kdμ. (11.13)

is satisfied for the quantities in (11.12) where

K = (l2 − r2+)
[
(r2+ + l2)2 + q2l2

]
8πl2r+(r2+ + l2)

(11.14)

is the thermodynamic conjugate toμ, which can be interpreted as a chemical potential
analogous to that done in asymptotically Schrödinger geometries [16]. The conserved
charge M is no longer interpreted the energy (or mass) of the black hole but rather
as its chemical enthalpy [17].

Shortly after the introduction of the quantities P and V into blackhole thermody-
namics the d-dimensional quantity

R ≡
(

(d − 1)V

ωd−2

) 1
d−1 (ωd−2

A

) 1
d−2

(11.15)

was noted to satisfyR ≥ 1 for all black holes known at that time [14]. The quantity
A is the horizon area and ωd is the unit area of the space orthogonal to constant
(t, r) surfaces. The relation R ≥ 1 was conjectured to hold for all black holes [14]
and is referred to as the reverse isoperimetric inequality: in physical terms it is the
statement that for a black hole of a given thermodynamic volume, the entropy will
be maximal for the (charged) Schwarzschild-AdS black hole.

Due to the compactification of ψ we have from (11.3) ω2 = μπ
1
2 /�

(
3
2

) = 2μ,
and so (11.15) becomes

R =
(
r+A

2μ

)1/3 (
2μ

A

)1/2

=
(

r2+
r2+ + l2

)1/6

< 1 (11.16)

in violation of the conjecture. For a given thermodynamic volume the entropy of the
black hole (11.3) exceeds that of the Schwarzschild-AdS black hole; this is why they
are called ‘super-entropic’ [8].
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11.5 Multispinning Super-Entropic Black Holes

In dimensions larger than four more possibilities emerge for constructing super-
entropic black holes. It is straightforward to construct higher-dimensional versions of
themetric (11.3) from the singly-spinning d-dimensional version of (11.1). However
it is also possible to have black holes with rotations about more than one axis, and
these lead to interesting new black hole spacetimes [11].

An interesting case with 2 rotations is the d = 5 solution of minimal gauged
supergravity [18], whose metric and gauge potential A are

ds2 = dγ 2 − 2qνω

�
+ f ω2

�2
+ �dr2

�
+ �dθ2

S
A =

√
3qω

�
(11.17)

where

dγ 2 = − Sρ2dt2

�a�bl2
+ r2+a2

�a
sin2θdφ2 + r2+b2

�b
cos2θdψ2

ν = b sin2 θdφ + a cos2 θdψ ω = Sdt

�a�b
− a sin2θ

dφ

�a
− b cos2θ

dψ

�b

(11.18)

and

S = �a cos
2 θ + �b sin

2 θ f = 2m� − q2 + 2abq

l2
�

� = (r2 + a2)(r2 + b2)ρ2/ l2 + q2 + 2abq

r2
− 2m ρ2 = r2 + l2

� = r2 + a2 cos2 θ + b2 sin2 θ �a = 1 − a2

l2
�b = 1 − b2

l2
(11.19)

with a and b the two rotation parameters and q proportional to the black hole charge.
To obtain a super-entropic black hole, we can write

φ = φR + a

l2
t ψ = ψR + b

l2
t (11.20)

and then set ϕ = φR/�a . Taking the limit a → l yields the doubly-spinning charged
super-entropic black hole metric and gauge potential

ds2 = dγ 2
s − 2qνsωs

�
+ f ω2

s

�2
+ �dr2

�
+ �dθ2

�b sin2θ
A =

√
3qωs

�
(11.21)
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where

� = ρ4(r2 + b2)/ l2 + q2 + 2lbq

r2
− 2m ωs = dt − l sin2θdϕ − b cos2θdψR

�b

νs = b

l
dt + l cos2θdψR � = r2 + l2 cos2 θ + b2 sin2 θ f = 2m� − q2 + 2bq

l
�

dγ 2
s = − sin2θ

l2

[
(ρ2 + l2)dt2 − 2lρ2dtdϕ

]

+ cos2θ

�b

[
(r2 + b2)dψ2

R + 2b

l2
(r2 + b2)dtdψR − dt2

l2

(
ρ2 − (r2 + b2)

b2

l2

)]
(11.22)

and the coordinate ϕ is identifiedwith periodμ: ϕ ∼ ϕ + μ. Themetric (11.22) satis-
fies the Einstein–Maxwell-AdS equations and horizons exist provided
�′(r+) > 0.

Many other multiply-rotating cases can be constructed [11]. However once the
super-entropic limit in one azimuthal direction is taken it is no longer possible to
perform an additional super-entropic limit. This is easily seen in the metric (11.22):
the 1/�b factor will diverge as b → l and this divergence cannot be absorbed into
a new azimuthal coordinate. It is also not possible to set several rotation parameters
equal and then perform simultaneously the super-entropic limit in all such directions.
However it is possible to combine the super-entropic limit in one direction with the
hyperboloid membrane limit in another direction [11].

11.6 Summary

Super-entropic black holes result from taking a new ultraspinning limit from the class
of Kerr-AdSmetrics. Topologically, the event horizons are doubly-punctured spheres
(i.e. cylinders), and so can be considered as the AdS generalization of asymptotically
flat black cylinders [19, 20], despite the lack of a flat-space limit. They form the first
known examples of black holes that violate the conjectured Reverse Isoperimetric
Inequality [14], suggesting that this conjecture may apply only to black holes with
compact horizons under (perhaps) other restrictions.While recentworkhas suggested
a connection with an upper bound of butterfly velocities for AdS black holes [21],
the proof of this (restricted) conjecture remains an interesting open problem.
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Chapter 12
Aspects of Quantum Chaos Inside Black
Holes

A. Addazi

12.1 Introduction and Conclusions

Theoretical physicists are all agreed that Semiclassical Black holes are paradoxical
objects (as nicely reconfirmed by several discussions during the Karl Schwarzschild
meeting 2015). However, a clear strategy in order to solve this problem is still
unknown.

In this paper,wewould like to suggest that infalling information could be chaotized
inside a black hole. Our claim is related to a different picture about quantum black
holes’ nature: we retained unmotivated to think seriously about a quantum black hole
as a conformal Penrose’s diagram, i.e as a smoothed semiclassical geometry with a
singularity in its center (eventually cutoff at the planck scale). In particular, one could
expect that, in a “window” of length scales among the Schwarzschild radius and the
Planck scale, there is a non-topologically trivial region of space-time rather than a
smoothed one. A realistic black hole could be a superposition of different horizonless
solutions, perhaps associated GR gravitational instantons or “exotic” gravitational
instantons.1 In this picture, a black hole’ horizon is an approximated Chauchy null-
like surface (for energy scales closed to an inverse Schwarzschild radius). However,
for lenght scalesL in the range lPl << L << R, geometrical deviations and asperities
with respect to semiclassical smoothed geometries are reasonable expected. In this
regime, gravitational interactions among horizonless geometries can be neglected as
well as microscopical exchanges of matter and gauge fields among their surfaces. In

1In string theory, the class of instantons is much larger than in field theories. Applications of a
particular class of these solutions in particle physics were recently studied in [1–10].
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this sense, a black hole cannot be described by a single Penrose’s diagram at all the
lenght scales. In particular, in the “middle region” a black hole would be described
by a superposition of a large number of Penrose’s diagrams.

Such a black hole can be rigorously defined in an euclidean path integral formu-
lation. It emits a thermal radiation like a semiclassical BH, with small corrections
on Bekenstein–Hawking entropy [1].

At this point, a further question is the following: what happen to infalling informa-
tions in such a “scale variant” system? Let us consider the usual thought experiment
of a infalling radiation in a quantum pure state, with a very small initial frequency
ω � R−1. Such a radiation will start to probe a smoothed semiclassical geometry
of a black hole, near the horizon. However, radiation will be inevitably blueshifted
inside the gravitational potential of a black hole, i.e its De Broglie wave length starts
to be smaller than the Schwarzschild’s radius. So that, infalling radiation will start
to probe the middle region before than the full quantum quantum regime. In the
middle region, radiation is scattered back and forth among asperities that usually are
not present at all in semiclassical BH solutions. As a consequence, radiation will be
chaotically diffracted inside this system. At that middle scales, a black hole is a sort
of space-temporal chaotic Sinai billiard rather than a smoothed manifold. Usually,
in simpler classical chaotic billiards than our one, chaotic zones of unstable orbits
trapped forever in the system are formed. Simple examples of such a trapped paths:
(i) an orbit trapped in back and forth scatterings among the asperity A and the asper-
ity B (AB segments); (ii) one trapped among A,B,C asperities (triangular orbits);
and so on. Considering quantum fields rather than classical trajectories, one has
also to consider quantum transitions induced by inelastic scatterings on gravitational
backgrounds < g, . . . , g > (thought as a vacuum expectation value of gravitons).
φ + < g, . . . , g > → X + < g, . . . , g > where φ is a generic gauge/matter field,
and X is a collection of N fields. For example a process like a photon-background
scattering

γ + < g, . . . , g > → qq̄ + < g, . . . , g > → hadronization + < g, . . . , g >

will lead to a complicated hadronic cascade of entangled fields. As a consequence,
such a system is even more chaotic than classical one. So that, a part of the initial
infalling information is effectively fractioned in a “forever” (black hole lifetime
or so) trapped part and another one, so that

|IN〉 = a|OUT〉 + b|TRAPPED〉

where a, b parametrize our ignorance about the space-time billiard, |OUT〉 is
emitted as Bekestein–Hawking radiation. As a consequence, the in-going informa-
tion is a linear combination of outgoing informations and trapped informations dur-
ing 0 << t << tEvaporation. In this picture, information paradoxes are understood
as an apparent losing of unitarity. In fact, |IN〉 → |OUT〉 is not allowed by quan-
tum mechanics: |IN〉 is a pure state, while |OUT〉 is a mixed one. However, also
|TRAPPED〉 is a mixed state, and a linear combination of two mixed states can
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be a pure one. In this approach, a |IN〉 → |OUT〉 transition can be effectively
described in a density matrix approach, with an effective non-unitary evolution.
However, unitarity is not lost at fundamental level because of the real transition
|IN〉 → a|OUT〉 + b|TRAPPED〉 is not contradicting unitarity. Let us consider, for
example, a (famous) Bekenstein–Hawking particle-antiparticle pair created nearby
the black hole horizon. As usual, one of the two is captured inside the black hole
space-like interior, while the second one can tunnel outside the horizon. As well
known, the two particles are entangled, and this will lead to the undesired fire-
wall paradox. However, in a frizzy black hole, the infalling particle will start to be
blueshifted so that it will start to scatter back and forth inside the system, giving rise
to an exponentially growing cascade of N particles continuing to scatter and to scatter
in the billiard. The process will be even more chaotic in a realistic case in which a
large number of infalling partners from a large number of Bekenstein–Hawking pairs
have to be considered. As a consequence, P outgoing pairs will be entangled with a
total number N >> P of particles inside the system. This practically disentangles
theP outgoing pairs from the original ones, as a quantum decoherence effect induced
by the non-trivial space-time topology. In other words, the space-time topology is
collapsing the entangled wave function as a quantum decoherence phenomena, as
well as two entangled pairs are disentangled by a an experimental apparatus. The
entanglement entropy is linearly growing with the number of back and forth scat-
terings n of a particle, because of the density matrix of the internal black states are
exponentially growing with n:

Sinterior = −TrρinteriorlogSinterior ∼ n

so that is growing with time. On the other hand, for P Bekenstein–Hawking particles
Sint ∼ n logP. Our model predicts SB.H . ∼P from entanglement entropy definition.

However, if a frizzy black hole emits a Bekenstein–Hawking radiation with small
deviations from thermality, it cannot have an infinite life-time. On the other hand, the
non-trivial topological space-time configuration of a frizzy black hole is sourced by
the black holemass. The final configuration after the complete black hole evaporation
is a Minkowski space-time with a dilute residual radiation. As a consequence, a
space-time phase transition from the “frizzy” topology to the Minkowski space-time
is expected at the Page time or so. As a consequence, chaotic saddles of trapped
information will be emitted in the environment as a final information burst. For this
motivation, the S-matrix describing BH evolution from the initial collapse/formation
to its complete evaporation is unitary:

〈COLLAPSE|S|EVAPORATION〉

= 〈TOTAL INFALLING| S| (a|TRAPPED〉 + b|OUT〉)

The trapped probability density ρ(T ) is approximately described by
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dρ(T )

dT
∼ − 1

T 2
e−�T

In fact, ρ(T ) is dependent by the number of asperities Ns as ρ ∼ Nse−�T , where
� is proportional to effective average deepness of asperities (trapping ρ). But the
number of asperities is depending by the Black hole mass. In turn, the black hole
mass decreases with the temperature as dM /dT = −1/8πT 2.

To conclude, chaotic aspects of quantum black holes could be relevantly con-
nected to the information paradoxes. In particular, a semiclassical black hole could
be reinterpreted as a superposition of horizonless geometries, chaotizing infalling
informations. Such an approach could have surprising connectionswith recent results
in contest of AdS/CFT correspondence [11–13].
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Chapter 13
Black Hole Entropy in the Presence
of Chern–Simons Term and Holography

T. Azeyanagi

Abstract We propose a manifestly covariant formulation of the differential Noether
charge for higher-dimensional Chern–Simons terms. With our differential Noether
charge, we provide a covariant proof of the black hole entropy formula for gravita-
tional and mixed U (1)-gravitational Chern–Simons terms. By evaluating the charge
on the rotating charged AdS black hole background constructed by the fluid/gravity
derivative expansion, we show that the Chern–Simons contribution to black hole
entropy agrees with the anomaly-induced entropy current in the dual conformal field
theory at the leading order of the derivative expansion.

13.1 Chern–Simons Term and Anomaly Polynomial

The setup we are interested in here is (2n + 1)-dimensional Einstein–Maxwell–
Chern–Simons theory with a negative cosmological constant. We consider gravita-
tional and/or mixed U (1)-gravitational Chern–Simons terms which, as will be seen
later, contribute nontrivially to black hole entropy. For example, the five-dimensional
mixedU (1)-gravitational Chern–Simons term and seven-dimensional (double trace)
gravitational Chern–Simons term are given respectively by

A ∧ tr (R ∧ R) , tr

(
� ∧ R − 1

3
� ∧ � ∧ �

)
∧ tr (R ∧ R) . (13.1)

Here A = Aadxa is the U (1) gauge potential one-form, �a
b = �a

bcdxc is the
Christoffel connection one-form and Ra

b = (1/2)Ra
bcddxc ∧ dxd is the Riemann

curvature two-form (Aa : U (1) gauge potential, �a
bc: Christoffel connection, Ra

bcd :
Riemann curvature). In general, the Chern–Simons term ICS depends on covariant
quantities, F and Ra

b, as well as non-covariant quantities, A and �a
b (F = dA:
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field strength two-form for A). In addition to this, the Chern–Simons term has the
following three important properties:

1. Non-Covariance of Chern–Simons Term
Under gauge transformation/diffeomorphism labeled by χ = {�, ξ}, the Chern–
Simons term transforms covariantly up to a total derivative term:

δχ ICS = Lξ ICS + d(. . .) , (13.2)

where Lξ is the Lie derivative generated by ξ .
2. Anomaly Polynomial

For each Chern–Simons term, one can define a formal (2n + 2)-form called the
anomaly polynomial. The anomaly polynomial is defined by taking the derivative
of ICS: Panom = dICS . The anomaly polynomial depends only on covariant quan-
tities, F and Ra

b, and thus is covariant. For example, the anomaly polynomials
corresponding to the Chern–Simons terms in (13.1) are

F ∧ tr(R ∧ R) , tr(R ∧ R) ∧ tr(R ∧ R) . (13.3)

3. Covariance of Equation of Motion
Although the Chern–Simons term is not covariant under gauge transforma-
tion/diffeomorphism, Chern–Simons contribution to the equation of motion is
written in terms of (a covariant derivative of) a derivative of the anomaly polyno-
mial. Therefore, the equation of motion is covariant even in the presence of the
Chern–Simons term in the Lagrangian.

13.2 Noether Charge Formalism for Chern–Simons Term

In general, a black hole entropy formula depends on gravitational theory one is con-
sidering. Entropy of a black hole in Einstein gravity is given by the well-known
Bekenstein-Hawking formula. For a general gravitational theory with a covariant
Lagrangian Lcov, the Wald formalism provides a covariant way to derive the cor-
responding black hole entropy formula [1–4]. In this formalism, variation of black
hole entropy is given as a differential Noether charge evaluated at the bifurcation
horizon of the black hole. More precisely, for a stationary rotating black hole with
the Killing vector ξ = (∂t + �H∂φ)/TH (Here ∂t and ∂φ respectively are the Killing
vectors corresponding to time translation and a rotation,�H is the associated angular
velocity at the bifurcation horizon and TH is the Hawking temperature), variation of
black hole entropy is given by

δSWald =
∫
Bi f

δQχ . (13.4)
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Here the differential Noether charge δQχ associated with χ is defined by

dδQχ = −δδχ�PS − iξ δE − δ(
 Nχ ) . (13.5)

(δδ�PS: pre-symplectic current, δE : equation of motion, Nχ : Noether current asso-
ciated with χ , iξ : interior product with ξ , 
: Hodge dual. For more details of the
definitions, please refer to [5], for example.) From (13.4), the celebrated Wald for-
mula is obtained:

SWald = 2π
∫
Bif

√
h

δLcov

δRabcd
εabεcd , (13.6)

where
√
h and εab respectively are the area element and binormal at the bifurcation

horizon. We note that the right hand side of equation (13.6) evaluated at a general
horizon slice also gives the correct black hole entropy [4].

The original Wald formalism is not directly applicable to the Chern–Simons
term because of its non-covariant transformation property under gauge transforma-
tion/diffeomorphism. In [6], this point is taken into account and a generalization of
theWald formalism to the Chern–Simons term is proposed. By using this formalism,
the black hole entropy formula for the Chern–Simons term is derived (See also [7,
8]):

SCS = (4π)

∫
Bif

∞∑
k=1

(2k)�N ∧ R2k−2
N ∧ ∂Panom

∂tr(R2k)
. (13.7)

Here �N = (−1/2)εab�b
a is the normal bundle connection one-form at the bifurca-

tion horizon and RN = d�N is the curvature two-form associated with it. However,
[9] pointed out recently that, for gravitational and mixed gravitational-U (1) Chern–
Simons terms in more than three-dimensions, this black hole entropy formula can
be obtained from the generalization of the Wald formalism in [6] only when gauge
and coordinates are chosen appropriately. This implies that Tachikawa’s formalism
seems to break covariance somewhere.

In [5], we pointed out that the formalism breaks covariance at the level of the pre-
symplectic current. This non-covariance is then inherited to the differential Noether
charge, ending up with the subtle result pointed out in [9]. To overcome this subtlety
and to realize amanifestly covariant formulation of the differentialNoether charge for
the Chern–Simons term, we provided a covariant way to construct a pre-symplectic
current for the Chern–Simons term. First of all, let us recall the defining equation of
the pre-symplectic current δδ�PS based on equation of motion δE :

d(δ1δ2�PS) = δ1δ2E − δ2δ1E . (13.8)

We note that, by definition, the pre-symplectic current has an ambiguity to add total
derivative terms. One of the key points of theWald formalism is that, by starting with
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the Lagrangian description and variation of the Lagrangian δLcov = δE + dδ, this
defining equation can be rewritten as d(δ1δ2�PS) = −d(δ1δ2 − δ2δ1). Then the
total derivative ambiguity of the pre-symplectic current can be fixed as �Wald

PS =
−δ1δ2 + δ2δ1. This is the definition of the pre-symplectic current for the Wald
formalism. The same definition of the pre-symplectic current is used in [6]. For
the Chern–Simons terms, however, the pre-symplectic current defined in this way
breaks covariance. Essentially, this breakdown originates in the non-covariance of
the boundary term δ for the Chern–Simons term [5].

For the Chern–Simons term, in fact, we can construct a covariant pre-symplectic
current in a much easier way. As mentioned above, the equation of motion for the
Chern–Simons term is written in terms of (a covariant derivative of) a derivative
of the anomaly polynomial. Thus, by starting from the equation of motion and the
defining equation (13.8), one can directly carry out integration by part to rewrite the
right hand side of equation (13.8) into a total derivative form. It is straightforward
to keep track of covariance in the intermediate steps because of covariance of the
equation of motion. We can then construct a manifestly covariant pre-symplectic
current. Once this covariant pre-symplectic current is constructed, we can follow
the same step as [6] to obtain a manifestly covariant differential Noether charge.
By evaluating this manifestly covariant differential Noether charge for the Killing
vector ξ = (∂t + �H∂φ)/TH at the bifurcation horizon, the entropy formula (13.7)
is proved covariantly [5].

13.3 Application: Replacement Rule from Fluid/Gravity
Correspondence

One of themotivations to investigate higher-dimensional Chern–Simons terms is that
these terms are needed to setup AdS/CFT duality for even-dimensional CFTs with
some class of quantum anomalies. More precisely, to induce gravitational/mixed
anomaly on the CFT side, the gravitational/mixed Chern–Simons term needs to be
added on the dual gravity side.With deep connections toAdS/CFT, even-dimensional
CFT at finite temperature with these anomalies has been investigated intensively
in the hydrodynamic limit. As a consequence of these continuous anomalies in the
underlyingmicroscopic theory, hydrodynamic currents and stress tensor acquire extra
terms called anomaly-induced transports [10–12]. Recently, it is proved by using
an argument based on Euclidean thermal partition function in the hydrodynamic
limit that the leading order anomaly-induced transport coefficients are completely
determined from the corresponding anomaly polynomial through what-is-called the
replacement rule [13–18]. In particular, the anomaly-induced entropy current is given
by

sμ
anom = −∂F

∂T
V μ + · · · , with F = Panom[F → μ, tr(R2k) = 2(2πT )2k] ,

(13.9)
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where V μ = εμα1α2...α2n−1uα1ωα2α3ωα4α5 . . . ωα2n−2α2n−1 (uα: fluid velocity, ωαβ : vortic-
ity).

Now a natural question is whether we can reproduce the replacement rule for the
anomaly-induced transport systematically from the dual gravity side. (Please refer
to [19–23] for some analysis of anomaly-induced transports in the 4d CFT with
mixed anomaly and its 5d gravity dual.) In [24], we started with Einstein-Maxwell-
Chern–Simons theory with a negative cosmological constant as the simplest setup
and carried out systematic analysis of anomaly-induced entropy current in even-
dimensional CFTs from the dual gravity side. For Einstein-Maxwell theory with a
negative cosmological constant, rotating charged AdS black hole can be constructed
in the fluid/gravity derivative expansion and back reaction from the Chern–Simons
terms is also taken into account [25]. By evaluating the differential Noether charge
δQχ = δQEM

χ + δQCS
χ for the full theory at the horizon r = rH of this background,

we have shown that the replacement rule for the anomaly-induced entropy current can
be reproduced from the dual gravity side for any gravitational/mixed Chern–Simons
term in any odd-dimensions [24]:

∫
r=rH

δQχ |V μ−linear =
∫
r=rH

δQEM
χ |V μ−linear +

∫
r=rH

δQCS
χ |V μ−linear , (13.10)

with
∫
H

δQEM
χ |V μ−linear = 0 ,

∫
r=rH

δQCS
χ |V μ−linear = −δ

∫
∂F

∂T
Vμ .

Our result has a significant meaning for black hole microstate counting. Tra-
ditionally, black hole microstate counting based on AdS/CFT relies heavily on the
Cardy(-like) formula in 2d CFT. One therefore needs to stick to some setups to which
AdS3/CFT2 (or something similar) is applicable. Our result shows that, even for non-
extremal black holes approaching asymptotically to higher-dimensional AdS, so far
as we restrict ourselves to the Chern–Simons contribution, black hole entropy can
be reproduced from the dual CFT side through the replacement rule. This is a new
direction for black hole microstate counting business. We expect that our result is
meaningful for the investigation of Cardy-like formulas in higher-dimensional CFTs
and their application to black hole microstate counting.
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Chapter 14
A Quantum Cosmic Conjecture

R. Casadio and O. Micu

Abstract For a quantum mechanically Gaussian shaped, electrically charged,
massive particle, we compute the Horizon Wave-function(s) in order to study (a) the
existence of the inner Cauchy horizon of the corresponding Reissner–Nordström
space-time when the charge-to-mass ratio 0 < α < 1 and (b) the survival of a naked
singularity when the charge-to-mass ratio α > 1. Our results suggest that any semi-
classical instability one expects near the inner horizon may not occur in quantum
black holes, with a mass around the Planck scale, and that no states with charge-to-
mass ratio greater than a critical value (of the order of

√
2) should exist.

14.1 Introduction

There is a general consensus that black holes might play the same role in quantum
gravity as the hydrogen atom does in the quantum theory of ordinary matter. In fact,
a black hole realises the strongest non-perturbative effect that gravity can have,
namely a total causal confinement. In order to investigate this feature in a quantum
context, the HorizonWave Function (HWF) formalism was proposed and developed
in [1, 2], which is built on the quantised Einstein equation relating the size of the
gravitational radius to the (quantum) state of matter.

The construction of the HWF starts from the spectral decomposition of the quan-
tum mechanical state for a spherically symmetric matter source which is localised
in space and static in time. By expressing the energy in terms of the gravitational
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(Schwarzschild) radius, the spectral decomposition then directly yields the (unnor-
malised) HWF. The normalised HWF supplies the probability for an observer to
detect a gravitational radius of a certain size (areal radius) around the source in the
quantum state that was used in the first place. The gravitational radius can then be
interpreted as a horizon if the probability of finding the particle inside of it is rea-
sonably high. According to this quantum picture, the horizon appears necessarily a
fuzzy location in space, precisely for the same reason the position of the particle that
sources the geometry is intrinsically uncertain. This formalism has been applied to
several case studies [3, 4], yielding sensible results in agreement with (semi)classical
expectations, and there is therefore hope that it will help our understanding of the
quantum nature of black holes.

In this talk, we will in particular summarise the results obtained for charged
sources in [5, 6].

14.2 Electrically Charged Spherical Source

We start from the Reissner–Nordström metric,

ds2 = − f dt2 + f −1 dr2 + r2
(
dθ2 + sin2 θ dφ2

)
, (14.1)

with f = 1 − 2 �p M
mp r

+ Q2

r2 , where M and Q respectively represent the ADM mass
and charge of the source. It is convenient to introduce the specific charge α =
|Q|mp/�p M . The case α = 0 then reduces to the neutral Schwarzschild metric with
one horizon of radius RH = 2 �p M/mp. For 0 < α ≤ 1, the space-time contains two
horizons, namely

R± = �p
M

mp

(
1 ±

√
1 − α2

)
, (14.2)

which overlap for the extremal case α = 1. Finally, for α > 1 no horizon exists and
the central singularity is therefore “naked”, or accessible to outer observers.

We next consider a spherically symmetric Gaussian source

ψS(r) = e− r2

2 �2

�3/2 π3/4
, (14.3)

whose width � is assumed to be the minimum compatible with the Heisenberg uncer-
tainty principle,

� = λm � �p
mp

m
, (14.4)



14 A Quantum Cosmic Conjecture 127

where λm is the Compton length of the particle of rest mass m [2]. The spectral
decomposition of (14.3) is easily obtained from assuming the relativistic mass-shell
relation in flat space, M2 = p2 + m2, and by going to momentum space,

ψS(p) = e− p2

2Δ2

Δ3/2 π3/4
, (14.5)

where p2 = p · p is the square modulus of the spatial momentum, and the width
Δ = mp �p/� � m.

14.2.1 Inner Horizon and Mass Inflation

For 0 < α < 1, one can write a HWF for each of the two horizons (14.2), namely [5]

ψH(R±) = N± 
(R± − Rmin±) exp

{

− m2
p R

2±
2Δ2 �2p (1 ± √

1 − α2)2

}

, (14.6)

where the step function accounts for the minimum energy M = m, corresponding

to Rmin± = �p
m
mp

(
1 ± √

1 − α2
)
, and the normalisationsN± are fixed by using the

Schrödinger scalar product.
The probability density that the particle lies inside its own gravitational radius of

size r = R± can now be calculated starting from the wave-functions (14.6) as

P<±(r < R±) = PS(r < R±)PH(R±) , (14.7)

where PS(r < R±) = 4π
∫ R±
0 |ψS(r)|2 r2 dr is the probability that the particle is

inside the sphere r = R±, andPH(R±) = 4π R2± |ψH(R±)|2 is the probability den-
sity that the sphere r = R± is the gravitational radius. Finally, one can integrate (14.7)
over all possible values of R+ to find the probability that the particle is a BH, namely

PBH+ =
∫ ∞

Rmin+
P<+(r < R+) dR+ . (14.8)

The analogous quantity for R−,

PBH− =
∫ ∞

Rmin−
P<−(r < R−) dR− , (14.9)

will instead be viewed as the probability that the particle lies further inside its inner
horizon. It is obvious that PBH− < PBH+, and that only when PBH− � 1 we can say
that both horizons are physically realised at 〈 R̂− 〉 and 〈 R̂+ 〉.
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Fig. 14.1 Probabilities PBH+ (thick lines) and PBH− (thin lines) as functions of α for m = 2mp
(continuous line), m = mp (dotted line) and m = 0.5mp (dashed line)

The plot in Fig. 14.1 shows the probabilities PBH± as functions of α for values of
the particle mass above, equal to and below the Planck mass. One can notice that
PBH+ stays very close to one for masses larger than the Planck scale, whereas, for
m < mp, it clearly decreases as the specific charge increases to one. For instance, if
m = 0.5mp (� = 2 �p), PBH+ � 0.2 for a sizable range of α, and it only decreases
below 0.1 when α → 1 and the source is nearly maximally charged. The situation is
however different for the inner horizon. The probability PBH− starts out negligible
for small values of the charge-to-mass ratio and increases with α – the larger m,
the smaller the value of α for which the probability becomes significant. There is
a considerable range of α for which the probability for the inner horizon to exist is
approximately zero, while PBH+ � 1 and the object is a black hole. Figure14.2 shows
the probabilities PBH± as functions of the mass m for α = 0.3, 0.8 and 1. It is clear
that for smaller values of α, the probability PBH+ starts to increase from zero to one at
smaller values ofm, but the opposite occurs for PBH−. For α = 0.3, it is only around
a particle mass m � 6mp that PBH− � 1, while PBH+ � 1 already around mp. This
means that for mp ≤ m ≤ 6mp, the probability PBH+ � 1 while PBH− 	 1. This
mass range broadens up even more for smaller values of α, but decreases to zero in
the maximally charged limit α = 1. Our main finding is therefore that there exists a
considerable parameter space for m (around the Planck scale) and α < 1 in which

PBH+ � 1 and PBH− � 0 . (14.10)

In this range the particle is (most likely) a black hole, but the inner horizon at
r = 〈 R̂− 〉 is suppressed by quantum mechanical fluctuations. This conclusion is
important in light of the instability usually referred to as the “mass inflation” [7].

Let us conclude this part by deriving a generalised uncertainty relation analogous
to the neutral case [1]. We first note that the expectation value
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Fig. 14.2 Probabilities PBH+ (thick lines) and PBH− (thin lines) as functions of the mass for
α = 0.3 (continuous line), α = 0.8 (dotted line) and α = 1 (dashed line)

〈 R̂+ 〉 = 4π

∫ ∞

Rmin+
|ψH(R+)|2 R3

+ dR+ = R+(M̄) , (14.11)

reproduces exactly the classical expression of R+ in (14.2) for � = λm ∼ m−1 and
M̄ = 4m/[2 + e

√
π erfc(1)] � 1.45m (in agreement with the wave-function ψS

containing energy contributions from momenta p > 0). From 〈 R̂2+ 〉 � R2+(M̄) one
can then calculate the uncertainty

ΔR+ =
√

〈 R̂2+ 〉 − 〈 R̂+ 〉2 � R+ ∼ m , (14.12)

which, like in the neutral Schwarzschild case, grows linearly with the mass m of the
source.1 If we now combine the horizon uncertainty (14.12) with the usual Heisen-
berg uncertainty in the radial size of the source, Δr2 � �2, we finally obtain a total
uncertainty

Δr =
√

〈Δr2 〉 + γ

√
〈ΔR2+ 〉 � �p

mp

Δp
+ γ �p

Δp

mp
, (14.13)

where γ is a coefficient of order one.We can therefore conclude that the outer horizon
behaves qualitatively like the neutral Schwarzschild radius.

1Such objects would remain quantum mechanical even in astrophysical regimes, where we expect
the horizon has a sharp location. This result therefore supports alternative models of black holes as
extended quantum objects, like the ones in [4, 8].
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14.2.2 Naked Singularity and Cosmic Censorship

We next move on to overcharged sources, represented by α > 1 [6]. The Cosmic
Censorship Conjecture [9] was formulated in order to forbid the existence of such
naked singularities in the classical theory of gravity, so it is interesting to investigate
whether quantum physics leads to any predictions therein. Our guiding principle will
be to assume that the quantum states for α > 1 can be obtained by extending con-
tinuously the HWF obtained for α < 1. Of course, this is by no means a compelling
choice, but we hope that it leads to consistent predictions for charges not too much
larger than the classical limiting value of α = 1.

The classical expressions of R± are complex for α > 1, hence we lift only the real
parts of R± to quantum observables. The modulus squared of the two HWFs (14.6),
for R± > Rmin±, then merge into

|ψH(R)|2 = N 2 exp

{

−2 − α2

α4

m2
pR

2

Δ2�2p

}

, (14.14)

where R has replaced R±. This HWF is still normalizable if R is real and

1 < α2 < 2 . (14.15)

We deduce that no normalisable quantum state with α2 > 2 is allowed. We must
also consider what happens to the Heaviside function in (14.6) in the superextremal
regime. First we note that the real parts of the minimum values of R+ and R− are
again the same for α > 1, and our continuity principle requires

R ≥ Rmin = Re

[
�p

m

mp

(
1 ±

√
1 − α2

)]
= �p

m

mp
. (14.16)

The expectation value for R̂ then matches exactly the corresponding expressions for
α < 1 [5],

lim
α↘1

〈 R̂ 〉 = 4 �2p/�

2 + e
√

π erfc(1)
= lim

α↗1
〈 R̂± 〉 , (14.17)

like the uncertainty ΔR(�, α > 1) matches the uncertainties ΔR±(�, α < 1) at α =
1.We remark that, forα = 1, thewidth � > 〈 R̂ 〉 form <

√
2 + e

√
π erfc(1)mp/2 �

0.8mp, and quantum fluctuations of the source will dominate for masses m 	 mp

(like in the neutral case [1, 2]). It is important to further note that the ratio

〈 R̂ 〉
�

� 25/4 �2p√
π

(√
2 − α

) (14.18)
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Fig. 14.3 PBH as a function of α for m = 2mp (solid line), m = mp (dotted line) and m = 0.5mp
(dashed line). Cases with m � mp are not plotted since they behave the same as m = 2mp, i.e. an
object with 1 < α2 < 2 must be a BH

blows up for all values of the mass m ∼ 1/� in the limit α2 → 2, and so does its
uncertainty, since ΔR � √

3π/8 − 1 〈 R̂ 〉 � 0.4 〈 R̂ 〉.
Using (14.8), one can calculate the probability PBH that the particle is a black hole

for α in the range (14.15). Figure14.3 shows that, for a mass above the Planck scale,
PBH � 1 throughout the entire range of α (extending the similar result for α < 1).
Moreover, even for m significantly less than mp, PBH approaches one in the limit
α2 → 2. We recall that PBH 	 1 for small m is related to � � 〈 R̂ 〉, and quantum
fluctuations in the source’s size dominate. On the other end, since both 〈 R̂ 〉 and ΔR
blow up at α2 = 2, the superextremal configurations with a significant probability of
being black holes display strong quantum fluctuations in the horizon’s size.

14.3 Conclusions and Outlook

We extended the HWF formalism from neutral to electrically charged sources and
considered separately the analogues of the classical Reissner–Nordström space-times
with two horizons or a naked singularity. In the former case, with 0 < α ≤ 1, we have
shown that quantum fluctuations can cover the inner horizon, thus helping to avoid
the instability known as mass inflation, at least for black holes not much heavier than
the Planck scale. In the latter, we have found that quantum black holes extend into
the range of classical naked singularities α > 1, but a quantum obstruction occurs at
α2 = 2.

Future developments involve extending the HWF to spinning sources and black
hole formation by colliding particles with a non-vanishing impact parameter.
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Chapter 15
Phase Transitions of Regular
Schwarzschild-Anti-deSitter Black Holes

A. M. Frassino

Abstract We study a solution of the Einstein’s equations generated by a
self-gravitating, anisotropic, static, non-singular matter fluid. The resulting
Schwarzschild-like solution is regular and accounts for smearing effects of noncom-
mutative fluctuations of the geometry. We call this solution regular Schwarzschild
spacetime. In the presence of an Anti-deSitter cosmological term, the regularized
metric offers an extension of the Hawking–Page transition into a van der Waals-
like phase diagram. Specifically, the regular Schwarzschild-Anti-deSitter geometry
undergoes a first order small/large black hole transition similar to the liquid/gas tran-
sition of a real fluid. In the present analysis, we have considered the cosmological
constant as a dynamical quantity, and its variation is included in the first law of black
hole thermodynamics.

15.1 Regular Schwarzschild-Anti-deSitter Spacetime

The regular Schwarzschild anti-deSitter (AdS) metric is a static, spherically sym-
metric solution of the Einstein’s equations with negative cosmological constant
� = −3/b2 and a Gaussian matter source [1–4]. To obtain this metric we replace
the vacuum with a Gaussian distribution having variance equivalent to the parameter√

θ

ρ (r) ≡ M

(4πθ)3/2
e−r2/4θ . (15.1)

This type of matter distribution emulates non-commutativity of space-time through
the parameter θ that corresponds to the area of the elementary quantum cell, account-
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ing for a natural ultraviolet spacetime cut-off (see [2] and references therein). The
resulting energy momentum tensor describes an anisotropic fluid, whose compo-
nents, fixed by ∇μT μν = 0 and the condition g00 = −g−1

rr , read

T 0
0 = T r

r = −ρ (r) T φ
φ = T θ

θ = −ρ (r) − r

2

∂ρ (r)

∂r
. (15.2)

The spherically symmetric solution of the Einstein’s equations with this energy
momentum tensor and the cosmological constant � is given by the line element

ds2 = −V (r) dt2 + dr2

V (r)
+ r2d	2 (15.3)

where d	2 = dϑ2 + sin2 ϑdϕ2 and

V (r) = 1 + r2

b2
− ωM

r
γ

(
3

2
,
r2

4θ

)
. (15.4)

Here ω = 2GN/� (3/2), GN is the four-dimensional Newton’s constant and b is the

curvature radius of the AdS space. The function γ
(
3
2 ,

r2

4θ

)
is the incomplete gamma

function defined as γ (n, x) ≡ ∫ x
0 dt tn−1e−t . The line element (15.3) has an event

horizon at r = r+, where r+ is solution of the horizon equation V (r) = 0. The event
horizon radius coincides with the Schwarzschild radius in the limit

√
θ/r+ → 0. The

metric (15.3) admits an inner horizon r− < r+, that coalesces with r+ in the extremal
black hole configuration at r0 = r+ = r−. Such a degenerate horizon occurs even
without charge or angular momentum.

15.2 Thermodynamics and Equation of State

The temperature associated to the event horizon r+ can be computed through the
formula T = 1

4π V ′ (r)
∣∣
r=r+

and reads

T = 1

4πr+

{
1 + r2+

b2

(
3 − r+

γ ′ (r+)

γ (r+)

)
− r+

γ ′ (r+)

γ (r+)

}
, (15.5)

where γ (r+) ≡ γ
(
3
2 ,

r2+
4θ

)
, γ ′ (r+) = r2+

4θ3/2 e−r2+/4θ is its derivative with respect to r+.
In contrast to the standard Schwarzschild-anti-deSitter case, extremal solution exists
with vanishing Hawking temperature (15.5).

Recently, the idea of including the variation of the cosmological constant in the
first law of black hole thermodynamics has been considered [5–7] with interesting
consequences: If the cosmological constant � behaves like a pressure, we have that
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Fig. 15.1 The inverse temperature as function of r+ (with θ = 1). When P < Pc, there are three
branches. The middle branch is unstable, while the branch with the smaller radii and the one
with bigger radii are stable. This graph reproduces the pressure-volume diagram of the van der
Waals theory, provided one identifies the black hole thermodynamic variables β ≡ 1/T , r+ and P
respectively with pressure pressure, volume and temperature of the van der Waals gas

for negative cosmological constant the pressure turns to be positive [6, 8], i.e.,

1

b2
= −�

3
≡ 8π P

3
, (15.6)

giving rise to several effects (see for example [9–11]). In such a case the equation of
state P (V, T ) for the regular AdS black hole becomes

P = 3γ (r+)

(3γ (r+) − r+γ ′ (r+))

{
T

2r+
− 1

8πr2+
+ γ ′ (r+)

8πr+γ (r+)

}
. (15.7)

Here T is the Hawking temperature of the black hole, i.e. (15.5). Using the equation
of state (15.7) it is possible to plot the isotherm functions in a P − V diagram for
a regular black hole that resembles the van der Waals pressure-volume diagram
(Fig. 15.1).
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15.2.1 Gibbs Free Energy

In order to complete the analogy between the regular black hole and a van der Waals
gas, we proceed by calculating the Gibbs free energy [6, 7]. This can be done by
calculating the action of the Euclidean metric (see for example [13]). Such action
provides the Gibbs free energy via G = I/β where β is the period of the imaginary
timeβ ≡ 1/T . Then, theGibbs free energy can be expressed as a function of pressure
and temperature. The Hawking–Page transition [14] for the standard Schwarzschild-
AdS black hole is first order phase transition between a large black hole phase and
the purely thermal AdS spacetime. Such a transition takes place when the Gibbs
energy changes its sign from positive to negative. In the regular black hole case and
considering the cosmological constant as a pressure we find

G = r+
12GN

[
3 − 8Pπr2+ + r+

(
3 + 8Pπr2+

)
γ ′ (r+)

γ (r+)

]
(15.8)

and the Gibbs free energy (15.8) exhibits a characteristic swallowtail behavior (see
Fig. 15.2). This usually corresponds to a small black hole/large black hole first-order
phase transition [7, 15]. By performing the classical limit for r � θ we get the usual
result for a classical uncharged Schwarzschild-AdS black hole that is G (T, P) =
(1/4GN )

(
r+ − 8π

3 P r3+
)
[7]. Remarkably, in the regular Schwarzschild-AdS black

hole case, as in the Reissner–Nordström-AdS (RN-AdS) black hole spacetime, there
is a phase transition that occurs at positive Gibbs energy. This fact is visible from
the presence of the swallowtail in Fig. 15.2. To investigate this aspect, we need to
study the sign of the heat capacity. As underlined in [6], the specific heat related to
the black hole is calculated at constant pressure

Cp =
(

∂H

∂T

)
P

=
(

∂H

∂r+

)
P

(
∂r+
∂T

)
P

, (15.9)

where the enthalpy H is identifiedwith the black holemassM [6]. Nowone can study
the phase transitions from the change of the sign of the specific heat: the stability
requires that the specific heat at fixed pressure isCp ≥ 0 and the specific heat at fixed
volume is Cv ≥ 0. In the case under investigation Cv is always equal to zero because
the entropy is only volume dependent. This means that the heat capacity Cv does not
diverge at the critical point and its critical exponent is α = 0. By studying the sign of
the function Cp, we can see that for P > Pc the quantity Cp is always positive, and
the black hole is stable. In the limit P → Pc there is a critical value for r+ for which
Cp diverges. For P < Pc there are two discontinuities of the specific heat and the
situation is the same as in the Reissner–Nordström-AdS black holes [12]. Thus, in the
regular Schwarzschild-AdS case for P < Pc it seems that a different phase transition
is allowed because the heat capacity changes again from positive values to negative
values. For large r+ we have the Hawking–Page behavior in which the branch with
negative specific heat has lower mass and thus falls in an unstable phase, while the
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Fig. 15.2 Gibbs free energy as function of the black hole pressure and temperature. The Gibbs free
energy G changes its sign at a specific T and P (intersection of the function with the T − P-plane).
As in the van der Waals case, the phases are controlled by the universal ‘cusp’, typical of the theory
of discontinuous transitions [15]. The Gibbs free energy shows the “swallowtail” shape, a region
where G(T, P) is a multivalued function. This region ends in a point (Tc, Pc). In the region with
P < Pc and T < Tc we can see a transition between small black hole/large black hole. Note that
r+ is a function of temperature and pressure via the equation of state (15.7). For large value of P
(or T ) there is only one branch allowed

branch with larger mass is locally stable and corresponds to a positive specific heat.
Thus, the resulting phase diagram presents a critical point at a critical cosmological
constant value in Plank units and a smooth crossover thereafter.

15.2.2 Critical Exponent

We already determined α = 0 in the previous section. Now, by defining the variable
t ≡ (T − Tc) /Tc, we can compute the critical exponent of Cp by evaluating the
ratio ln

(
Cp (t)

)
/ ln (t) in the limit t → 0. We find that the limit exists and the

critical exponent is γ = 1. This result implies that the heat capacity diverges near
the critical point like Cp ∝ |t |−1. Then using the scaling relations

α + 2β + γ = 2 (15.10)

α + β (1 + δ) = 2 (15.11)

is possible to calculate the other two exponents, i.e., δ that determines the behaviour
of the isothermal compressibility of aVdWsystem andβ that describes the behaviour
of the difference between of the volume of the gas phase and the liquid phase. For
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the regular black hole, the scaling relations give δ = 3 and β = 1/2, result that
coincides with the case of charged black holes [7]. These critical exponents are
consistent with the Ising mean field values (α, β, γ, δ) = (0, 1/2, 1, 3) allowing for
an efficient mean field theory description. Since it is believed that the determination
of critical exponents define universality classes, i.e., they do not depend on the details
of the physical system (except the number of dimensions), we can say that the phase
transitions in the regular Schwarzschild-AdS black holes and the RN-AdS black
holes in four-dimensional spacetime have the same nature.

15.3 Final Remarks

After almost hundred years since the Karl Schwarzschild’s exact solution of
Einstein’s equation, black hole physics is nowadays at the forefront of current
research in several branches of theoretical physics. Specific interest has been devel-
oped in the thermodynamics of charged black holes in asymptoticallyAdS spacetime,
largely because they admit a gauge duality description via a dual thermal field the-
ory [13]. In recent studies, it has been shown that charged Reissner-Nordström AdS
black holes exhibit critical behavior similar to a van der Waals liquid–gas phase
transition [7]. This analogy becomes “complete” if the cosmological constant � is
considered as a dynamical quantity and its variation is included in the first law of
black hole thermodynamics [7, 9]. This extended phase space shows new insights
with respect to the conventional phase space of a four-dimensional black hole in
AdS background consisting only of two variables: entropy and temperature. In this
work, the cosmological constant has been considered as a thermodynamical pressure
and its conjugate quantity as a thermodynamical volume. The black hole equation of
state (15.7) obtained by considering the regular Schwarzschild-AdS solution shows
an analogy with the van der Waals liquid-gas system where the parameter θ plays an
analog role of the charge. Note that a detailed description of the not-extended phase
space has been presented in [3].
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Chapter 16
Generalized Uncertainty Principle
and Extra Dimensions

S. Köppel, M. Knipfer, M. Isi, J. Mureika
and P. Nicolini

Abstract The generalized uncertainty principle (GUP) is a modification of standard
quantum mechanics due to Planck scale effects. The GUP has recently been used to
improve the short distance behaviour of classical black hole spacetimes by invoking
nonlocal modifications of the gravity action. We present the problem of extending
such a GUP scenario to higher dimensional spacetimes and we critically review the
existing literature on the topic.

16.1 Generalized Uncertainty Principle and Black Holes

Gravitation plays no conventional role in quantum mechanical systems. Atoms are
dominated by electromagnetic forces, with nuclear forces becoming relevant at the
smaller sub-atomic scales. It is, however, interesting to ask how quantum mechanics
deviates from its standard formulation if the above systems were subject to gravita-
tional interactions. A full answer to this question would require a quantum theory
of gravity, whose formulation is probably one of the biggest problems in funda-
mental physics. There is nevertheless a “side effect” of quantum gravity that one
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can estimate in a semiclassical way. For instance, one can consider a non-vanishing
Newtonian gravitational interaction between the photon and the electron in Heisen-
berg’s microscope Gedankenexperiment [1]. As a result one finds a modification of
standard commutation relations [2–6]

[xi , p j ] = i � δij (1 + f (p2)), (16.1)

where the function f is customarily assumed as f (p2) � βp2 + . . . to first order.
Interestingly, the parameter β turns out to be a natural ultraviolet cutoff, since the
corresponding uncertainty relations prevent better spatial resolution than

√
β,

�x�p ≥ �

2
(1 + β(�p)2). (16.2)

The above relation is the Generalized Uncertainty Principle (GUP), represented in
Fig. 16.1.

The GUP has been studied in a variety of physical systems (for reviews see
[7–9]), and applied most notably to black holes and their evaporation [5, 10–12].
By assuming the emitted particles have momenta uncertainty proportional to the
black hole temperature, �p ∼ T , and position uncertainty proportional to the black
hole size, �x ∼ GM , one ends up with a non-divergent increase of the black hole
temperature and vanishing heat capacity at the Planck scale. Such a scenario for the
final stage of the evaporation would suggest the formation of a black hole remnant –
a Planckian size, neutral object that might be considered as a dark matter candidate
[11, 13]. Unfortunately this particular GUP temperature profile cannot be associated
to a surface gravity of any known black hole metric. In addition such remnants would
turn to be hot, since their temperature is of the order of the Planck temperature
TP ∼ 1032 K.

Against this background, it has recently been noted that GUP effects can be
implemented at the level of the spacetime metric by a non-local deformation of the
gravitational action [14]. This approach allows for calculating corrections to black
hole thermodynamics by a genuine modification of the surface gravity. In the case of
a spherically symmetric, static, and neutral black hole, one can solve the non-local
equations and obtain the metric

ds2 = −
(
1 − 2GM (r)

r

)
dt2 +

(
1 − 2GM (r)

r

)−1

dr2 + r2d�2. (16.3)

HereM (r) takes into account the spread of matter that is no longer concentrated in
a point, as conventionally occurs in the Schwarzschild case [15–19]. For a specific
profile of the nonlocal action, the mass distributionM (r) reproduces the ultraviolet
smearing predicted by the GUP. The final result then reads

M (r) = M γ (2, r/
√

β) = M
(
1 − e−r/

√
β − (r/

√
β)e−r/

√
β
)

, (16.4)
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Fig. 16.1 Length versusmass in the Planck region: The black line shows the Schwarzschild horizon
length scale L ∼ M , the red line the Compton wavelength L ∼ 1/M in Planck units. The GUP
green curve interpolates the two curves and predicts a minimal length but does not resolve the
phase ambiguity (black spot). The GUP-inspired black holes [14] modify the intersection of the
Compton/horizon curves due the introduction of a cold remnant (blue spot). In the resulting diagram,
the two phases (particles and black holes) are unambiguously separated

with M the ADM mass and γ (s, x) the lower incomplete gamma function. A com-
pelling feature of the GUP is that it implies a tail of the mass distribution trespassing
the event horizon, in close analogy with the leakage of quantum mechanical effects
that has been recently invoked to overcome the black hole information paradox
[20]. The above metric features a two-horizon structure and an extremal configura-
tion. The latter is a zero temperature state that nicely fits into the cold dark matter
paradigm. Interestingly, the presence of the remnantmakes themetric consistent with
the expected self-complete character of gravity [21–32]. Rather than a complete
evaporation, the black hole asymptotically approaches the remnant configuration,
preventing the exposure of length scales smaller of

√
β (see Fig. 16.1).

16.2 Extra Dimensions and the Heisenberg Microscope

Terascale quantum gravity is a formulation proposed to address the weak hierarchy
problemof theStandardModel by assuming the existence of additional spatial dimen-
sions [33–44]. According to the Arkani–Hamed/Dimopoulos/Dvali (ADD) model,
the spacetime is endowed with N − 3 extra dimensions which are compactified at a
length scale R ∼ 1mmor smaller. Gravity is the only fundamental interaction able to
“see” the additional dimensions, which would become relevant only for high energy
events (i.e., at the TeV or higher). If this is the case, GUP effects should be expected
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to set in at these energy scales rather than at the usual Planck scale. It is therefore
natural to consider the higher dimensional extension of the non-local action proposed
in [14] and derive the related black hole solution. To reach this goal, however, one
has to face a potential ambiguity that we illustrate below.

According to the Kempf–Mangano–Mann (KMM) model [6], the Hilbert space
representation of the identity reads

1 =
∫

dN p

1 + βp2
| p〉〈p |, (16.5)

with p an N -dimensional spatial vector. This can be interpreted as saying that, while
momentum operators preserve their standard character, position operators do not
have physical eigenstates, as one expects in the presence of a minimal length

√
β.

Accordingly the integration measure in momentum space is squeezed in the ultravi-
olet regime as follows

dVp ≡ dN p

1 + βp2
≈

βp2
1
pN−3 dp. (16.6)

We note the GUP correction becomes less and less important with increasing N .
The above profile of GUP corrections can be used to improve the higher dimen-

sional Newtonian potential. This can offer a first taste of the repercussions of GUP,
even before extending the action proposed in [14] to the higher dimensional case. To
reach this goal one has to consider the exchange of virtual massless scalars between
two static bodies at distance r = |x|. The static gravitational potential is the Fourier
transform of the massless scalar propagator,

�(r) = −G(N )M

(2π)N

∫
dVp D (p) |p0=0 exp (ip · x) , (16.7)

where the integration measure has been deformed as in (16.6). The net result reads

�(r)

G(N )M
= π1− N

2 	

(
N

2
− 1

) (
1

r

)N−2

︸ ︷︷ ︸
classical potential

− 2

(2π r
√

β)
N
2 −1

K N−2
2

(
r√
β

)
︸ ︷︷ ︸

GUP corrections

(16.8)

for r < R. The short distance behaviour of the above potential is regular at the
origin only for N = 3, i.e., � = 1/

√
β as r → 0. For N > 3 GUP corrections are

suppressed and cannot improve the potential.
There are, however, other proposals. As stated in the introduction, the GUP arises

from the inclusion of gravitational effects in quantum mechanics. This is the case of
Heisenberg’s microscope. Additional dimensions should not disrupt the reasoning
that leads to the GUP [1, 28]. As for N = 3 we identify two terms for the spa-
tial uncertainty �x ∼ �xC + �xg, one coming from the Compton wavelength of
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a particle �xC ∼ λ ∼ 1/�p < R and one due to the gravitational potential in the
compact higher dimensional space. Specifically, the photon not only illuminates the
electron but also exerts a gravitational force on it. The resulting acceleration causes
the electron to be displaced by

�xg ∼ G(N )

Meff

r N−1

(
r2

c2

)
∼ G(N )

�p

r N−3
� �xN−2

g ∼ LN−1
(N ) �p, (16.9)

where Meff = h/(λc) is the photon effective mass, G(N ) is the higher dimensional
Newtonian constant, and L(N ) is the new fundamental length scale that replaces
the Planck length. In the above derivation we assumed the interaction distance r ∼
�xg < R. The above Gedankenexperiment motivates amodified higher dimensional
GUP

�x�p ≥ �

2

(
1 +

(√
β �p

) N−1
N−2

)
, (16.10)

where we assumed
√

β ∼ L(N ). Equation (16.10) is consistent with what proposed
in [28, 45–49] and cleanly reproduces the higher dimensional Schwarzschild radii
for energies above the terascale. On the other hand, such a proposal fails to improve
the Newtonian potential and predicts GUP corrections even milder than those of the
KMM model for N > 3.

Alternatively, one can revise the basic reasoning behind Heisenberg’s microscope
in higher dimensional space. Following Fig. 16.1, one can approach the quantum
gravity scale from the left. In such a sub-Planckian regime, the gravitational cor-
rections are still sub-leading, i.e., �xg < �xC. Accordingly, one can assume that
at the leading order, the typical interaction distance is controlled by the Compton
wavelength r ∼ �xC ∼ λ < R. As a result, one finds a spatial uncertainty

�xg ∼ G(N )

Meff

r N−1

(
r2

c2

)
∼ G(N )

�p

r N−3
∼ LN−1

(N ) �pN−2 (16.11)

that is consistent with that proposed in [50–52]. Interestingly enough, the above
relation can also improve the asymptotic behaviour of the momentum integration
(16.6), as follows

dVp ≡ dN p

1 + (βp2)
N−1
2

≈
βp2
1

dp. (16.12)

The repercussions of the GUP are no longer dependent on N , and the suppression
of higher momenta is consistent with the original derivation for N = 3. The above
integration measure (16.12) relaxes the condition of reproducing the Schwarzschild
radius in the trans-Planckian regime, even if the condition remains valid for distances
r > R. Such a deviation of the curve from the Schwarzschild radius for r < R is
fully legitimate, since the quadratic correction in (16.6) is known to be the lowest
energy correction to standard quantum mechanics and makes sense only for the four
dimensional spacetime at scales r > R.
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It is natural to expect that at scales r < R where gravity becomes so strong as to
probe additional dimensions, the GUP effects also become stronger as in (16.10). In
otherwords, the picture based onmatching a length scale dictated bygeneral relativity
[28, 45–49] loses its meaning at an energy regime characterized by string/p-brane
effects [53], noncommutative geometry [54, 55] or a variety of non-classical effects
[56]. Such a vision is also consistent with a recent proposal aiming to interpret
black holes in terms of a pre-geometric, purely quantum mechanical formulation
[19, 57, 58].

16.3 Conclusions

In this paper, we have reviewed the basic properties of the GUP in three or more
dimensions. We have presented a black hole metric derived by a nonlocal action
able to reproduce GUP effects [14]. Such a metric overcomes the usual limitations
one encounters when considering GUP effects in Hawking radiation [11]. Specif-
ically, the new metric allows for the presence of cold remnants and the derivation
of the black hole temperature in terms of surface gravity. In the second part of the
paper, we provided an analysis of the GUP in higher dimensional spacetime. We
showed there is a potential ambiguity in the deformation of the measure in momen-
tum space.We highlighted that current proposals are unable to reproduce a consistent
cutoff to improve the bad short distance behaviour of gravity in higher dimensional
spacetimes [28, 45–49]. As a possible resolution to such a issue, we revised the rea-
soning of Heisenberg’s microscope in higher dimensional spacetimes. We proposed
an improved version of the GUP valid at length scales below the extra-dimensional
compactification radius. Our findings are consistent with previous approaches in the
literature [50–52]. We plan to study the repercussions of such a proposal on black
hole physics in a future investigation.
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Chapter 17
Perihelion Precession and Generalized
Uncertainty Principle

F. Scardigli and R. Casadio

Abstract We compute the corrections to the Schwarzschild metric necessary to
reproduce the Hawking temperature derived from a Generalized Uncertainty Princi-
ple (GUP), so that the GUP deformation parameter is directly linked to the deforma-
tion of themetric. Using thismodified Schwarzschildmetric, we compute corrections
to the standardGeneral Relativistic predictions for the perihelion precession for plan-
ets in the solar system. This analysis allows us to set bounds for the GUP deformation
parameter from well-known astronomical measurements.

17.1 Introduction

Research on generalizations of the uncertainty principle of quantum mechanics has
nowadays a long history [1]. One of the main lines of investigation focuses on under-
standing how the Heisenberg Uncertainty Principle (HUP) should be modified once
gravity is taken into account. Given the pivotal rôle played by gravitation in these
arguments, it is not surprising that the most relevant modifications to the HUP have
been proposed in string theory, loop quantum gravity, deformed special relativity,
and studies of black hole physics [2–7], just to mention some of the most notable
frameworks.

Studies that aim at putting bounds on the dimensionless deforming parameter of
the GUP, heretofore denoted by β, date back at least to Brau [8], and can be roughly
divided into three different categories (actually, only two, as we will see). In the first
group one finds papers such as those of Brau [8], Vagenas [9], Nozari [10], which
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use a specific (in general, non linear) representation of the operators in the deformed

fundamental commutator1
[
X̂ , P̂

]
= i �(1 + β P̂2/m2

p) in order to compute correc-

tions to quantummechanical predictions, such as energy shifts in the spectrum of the
hydrogen atom, or to the Lamb shift, the Landau levels, Scanning Tunneling Micro-
scope, charmonium levels, etc. The bounds so obtained on β are quite stringent, but
the drawback of this approach is a potentially strong dependence of the expected
shifts on the specific (non linear) representation chosen for the operators X̂ and P̂ in
the fundamental commutator.

In the second group, we can find the works of, e.g., Chang [11], Nozari and
Pedram [12], where a deformation of classical Newtonian mechanics is introduced
by modifying the standard Poisson brackets in a way that resembles the quantum
commutator,

[
x̂, p̂

] = i �
(
1 + β0 p̂2

) ⇒ {X, P} = (
1 + β0 P2

)
, where β0 =

β/m2
p. In particular, Chang in [11] computes the precession of the perihelion of

Mercury directly from this GUP-deformed Newtonian mechanics, and interprets it
as an extra contribution to the well known precession of 43”/century due to General
Relativity (GR). He then compares this global result with the observational data,
and the very accurate agreement between the GR prediction and observations leaves
Chang not much room for possible extra contributions to the precession. In fact, he
obtains the tremendously small bound β � 10−66. A problem with this approach
is that a GUP-deformed Newtonian mechanics is simply superposed linearly to the
usual GR theory. Onemay argue that a modification of GR at order β should likewise
be considered, but this is however omitted in [11]. In other words, it is not clear why
the two structures, GR and GUP-modified Newtonian mechanics, should coexist
independently, and why the two different precession errors add into a final single
precession angle.Most important, as amatter of fact, in the limitβ → 0, [11] recovers
only the Newtonian mechanics but not GR, and GR corrections must be added as an
extra structure. Clearly, the physical relevance of this approach and the bound that
follows for β, remain therefore questionable.

Finally, a third group of works on the evaluation of β contains, for example,
papers by Ghosh [13] and Pramanik [14]. They use a covariant formalism, first
defined in Minkowski space, with the metric ημν = diag(1,−1,−1,−1), which
can be easily generalized to curved space-times via the standard procedure ημν →
gμν . These papers should however be considered as belonging to the second group.
In fact, a closer look reveals that they also start from a deformation of classical
Poisson brackets, although posited in covariant form. From the deformed covariant
Poisson brackets, they obtain interesting consequences, like a β-deformed geodesic
equation, which leads to a violation of the Equivalence Principle. They do not deform
the field equations or the metric. In [15], however, we show that this violation of
the Equivalence Principle is completely due to the postulate of deformed Poisson
brackets, and has nothing to do with the covariant formalism, or with a deformation
of the GR field equations or solutions, or of the geodesic equation. Nonetheless, the

1We shallworkwith c = kB = 1, but explicitly show theNewton constantGN andPlanck constant�.
We also recall that the Planck length is defined as �2p = GN �/c3, the Planck energy as Ep �p = � c/2,

and the Planck mass as mp = Ep/c2, so that GN = �p/2mp and � = 2 �p mp.
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Ghosh–Pramanik formalism remains covariantwhenβ → 0 and reproduces standard
GR results in the limit β → 0 (this differs, in general, from the results obtained by
papers in the second group).

The novelties of our approach, when compared with the previous ones, are many
and various. The main point is to start directly from a quantum mechanical effect,
the Hawking evaporation, for which the GUP is necessarily relevant, rather than
postulating specific representations of canonical operators or modifications of the
classical equations of motion. We connect the deformation of the Schwarzschild
metric directly to the uncertainty relation, without relying on a specific representation
of commutators. We leave the Poisson brackets and classical Newtonian mechanics
untouched, and recover GR, and standard quantum mechanics, in the limit β → 0.
In particular, we preserve the Equivalence Principle, and the equation of motion of
a test particle is still given by the standard geodesic equation. In the present work,
this is obtained by deforming a specific solution of the standard GR field equations,
namely the Schwarzschild metric.

17.2 Deforming the Schwarzschild Metric

In this section, we start from a known way of deriving the Hawking temperature
directly from the metric of a black hole, and then show how the GUP modifies the
Hawking temperature. These two steps will pave the road to a deformation of the
Schwarzschild metric, constructed so as to reproduce the GUP-modified Hawking
temperature. We consider here a space-time with a metric that locally has the form

ds2 = gμνdx
μdxν = F(r) dt2 − F(r)−1 dr2 − r2 d�2, (17.1)

where d�2 = dθ2 + sin2 θ dφ2. The horizons (if any), are located at the positive
zeros of the function F(r) (see, for example, [16]).

We loosely follow a standard derivation, as for example that in [17]. Suppose
r = rH is an horizon, so that F(rH) = 0, and consider r ≥ rH. Then, a quantized
scalar field outside the horizon lives in a heat bath with temperature

T = �
F ′(rH)

4π
. (17.2)

Therefore the temperature of the black hole horizon as seen by a distant observer is
in general given by formula (17.2). In particular, for a Schwarzschild black hole the
function F(r) is given by (1 − 2GNM/r), the horizon is at rH = 2GN M , and we
get TH = �/(8π GN M) , which is the well-known Hawking temperature.

We now give here a derivation of the mass-temperature relation starting directly
from the uncertainty relations. Themost common form of deformation of the Heisen-
berg uncertainty relation (and the form of GUP that we are going to study in this
paper) is without doubt the following
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x 
p ≥ �

2

(
1 + β

4 �2p

�2

p 2

)
= �

2

[
1 + β

(

p

mp

)2
]

. (17.3)

The dimensionless parameter β is usually assumed to be of order one, in the most
common quantum gravity formulations. Following the arguments of [18–23], we
promptly arrive to translate relation (17.3) into a mass-temperature relation for a
Schwarzschild black hole

M = �

8π GN T
+ β

T

2π
. (17.4)

To zero order in β, we recover the usual Hawking formula. Let us note that in this
work we assume that the correction induced by the GUP has a thermal character,
and therefore it can be cast in the form of a shift of the Hawking temperature. Of
course, there are also different approaches (see e.g. [24]), where the corrections do
not respect the exact thermality of the spectrum, and thus need not be reducible to a
simple shift of the temperature.

We can legitimately wonder what kind of (deformed) metric would predict a
Hawking temperature like the one inferred from the GUP relation (17.4), for a given
β. Since we are interested only in small corrections to the Hawking formula, we can
consider a deformation of the Schwarzschild metric of the kind

F(r) = 1 − 2GN M

r
+ ε

G2
N M2

r2
, (17.5)

and we shall look for the lowest order correction in ε. We see that (17.5) is actually
the simplest mathematical form, if one supposes that the metric can be expanded
in powers of 1/r . This is nothing else than the well known Eddington–Robertson
expansion of a spherically symmetric metric. Note however that, since RH/r ∼ 10−5

on the surface of the Sun, the term proportional to ε can still be considered small even
if ε is relatively large. The temperature predicted by this deformed Schwarzschild
metric is

T (ε) = �
F ′(rH)

4π
= �

2π GN M

√
1 − ε(

1 + √
1 − ε

)2 , (17.6)

which must coincides with the temperature T (β) predicted by (17.4), for any given
β. This yields a relation between β and ε,

β(ε) = −π2 GN M2

�

ε2

1 − ε
. (17.7)

For |ε| � 1, to the lowest order in ε, we thus get β = −π2M2ε2/(4m2
p) where we

notice that both β and ε are dimensionless. It is now of great interest to observe
that (17.7) forces us to admit that β < 0, since ε ≤ 1. Although quite unexpected,
this might be a suggestion of fundamental importance. It seems that a metric is
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able to reproduce the GUP-deformed Hawking temperature only if the deforming
parameter β is negative.We already encountered a situation like this whenwe studied
the uncertainty relation formulated on a crystal lattice [25]. This could be a further
hint that the physical space-time has actually a lattice or granular structure at the
level of the Planck scale.

17.3 Perihelion Precession by Deformed Schwarzschild
Metric

Having established a connection between the GUP parameter β and the deformation
ε of the Schwarzschild metric, we are now in a position to compute the physical
(possible observable) consequences of such a deformed metric. Here, we consider a
particle bound in a orbit around a massive body, typically a planet around the Sun.
Again, we roughly follow the treatment of [26]. The relevant geometrical parameters
for an elliptic orbit in a polar coordinates system,with the radial coordinate r which at
aphelia and perihelia takes, respectively, the maximum value r+ and minimum value
r−, are the eccentricity e, the semi-major axis a, and the semilatus rectum L . These
geometrical parameters are related by r± = (1 ± e) a, L = (1 − e2) a, 2

L = 1
r+ + 1

r− .

The angle swept out by the position vector when it increases from r− to r is then
given by the integral

φ(r) − φ(r−) =
∫ r

r−

⎡
⎣r2−

(
1

F(r) − 1
F(r−)

)
− r2+

(
1

F(r) − 1
F(r+)

)

r2−r2+
(

1
F(r+)

− 1
F(r−)

) − 1

r2

⎤
⎦

−1/2

dr

r2
√
F(r)

.

(17.8)
The total change in φ at every lap is just twice the change as r increases from
r− to r+. This would equal 2π if the orbit were a closed ellipse, so the total orbital
precession in each revolution is given by
φ = 2 |φ(r+) − φ(r−)| − 2π .Weexpand
the integrand before integrating, and the small parameter is given by RH/r−, or better
RH/L . Finally the total precession after a single lap, to first order in RH/L , is given
by


φ 
 6π GN M

L

(
1 − ε

6

)
, (17.9)

which, of course, reproduces the usual GRprediction in the limit ε → 0. This relation
should now be compared with known observational data.

The perihelion precession for Mercury is by far the best known and measured
GR precession in the Solar system. Referring to [27] for the latest most accurate and
comprehensive data, we can report the relation

〈ω̇〉 = 6π GN M

L

[
1

3
(2 + 2γ − β̄) + 3 · 10−4 J2

10−7

]
, (17.10)
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where 〈ω̇〉 is the measured perihelion shift, J2 a dimensionless measure of the
quadrupole moment of the Sun, and γ and β̄ are the usual Eddington–Robertson
expansion parameters. The latest data from helioseismology give J2 = (2.2 ± 0.1) ·
10−7. The measured perihelion shift of Mercury is known to about 0.1% from radar
observations of Mercury between 1966 and 1990 [28]. The solar oblateness effect
due to the quadrupole moment is then smaller than the observational error, so it
can be neglected. Substituting standard orbital elements and physical constants for
Mercury and the Sun, we obtain

〈ω̇〉 =
(
1 + 2γ − β̄ − 1

3

)
42.98”/century , (17.11)

where we can place a bound of |2 γ − β̄ − 1| � 3 · 10−3. Comparing with 
φ from
(17.9), we get |ε| � 6 · 10−3 which, replaced in (17.7), yields the lower bound

|β| = M2

4m2
p

π2 ε2

1 − ε
� 3 · 1072 . (17.12)

We can also consider the most recent data from theMessenger spacecraft [29], which
orbited Mercury in 2011–2013, and improved very much the knowledge of its orbit.
Then we can push this bound even lower, to |2γ − β̄ − 1| � 7.8 · 10−5, although
the knowledge of J2 would have to improve simultaneously. If just the error in
|2γ − β̄ − 1| were taken into account, this would imply |ε| = 2

∣∣2γ − β̄ − 1
∣∣ �

1.56 · 10−4 and therefore
|β| � 2 · 1069 . (17.13)

But of course this limit should not be considered completely reliable in this contest,
since the less accurate bound on J2 cannot be brutally neglected, at least in principle.
Once again the perihelion shift appears to be one of the most precise tests of GR, a
true GR effect not present at all in Newtonian gravity (as it is well known).

17.4 Conclusions

We have shown that a suitable deformation of the Schwarz-schild metric can repro-
duce the Hawking temperature for a black hole, when this is computed from a Gener-
alized Uncertainty Principle. We have found in this way an analytic relation between
the deformation parameter of the metric ε and the usual GUP deformation parame-
ter β. In particular, when β → 0, we correctly recover GR, and standard quantum
mechanics. Neither the geodesic equation, nor the equivalence principle are violated,
for any value of β or ε. Well-known astronomical measurements, in the Solar system
as well as in binary pulsar systems, allowed us to put constraints on the parame-
ter β. This direction seems to point towards promising research: at present we just
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deformed the Schwarzschild solution, but a future possibility is to deform the full
field equations of GR, in order to get, among other things, a more stringent bound on
the GUP parameter β. We would like to conclude by emphasizing once again that,
although in the existing literature one can find bounds on β much tighter than those
obtained in this paper, they seem to depend, at least partially, either on a specific (non
linear) representation of the deformed commutator, or on the hypothesis of a defor-
mation of Poisson brackets, which implies a violation of the equivalence principle.
The line of reasoning presented in this paper avoids these possible difficulties.
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Chapter 18
Quantum-Gravity Phenomenology
with Primordial Black Holes

F. Vidotto, A. Barrau, B. Bolliet, M. Schutten and C. Weimer

Abstract Quantum gravity may allow black holes to tunnel into white holes. If
so, the lifetime of a black hole could be shorter than the one given by Hawking
evaporation, solving the information paradox. More interestingly, this could open to
a newwindow for quantum-gravity phenomenology, in connectionwith the existence
of primordial black holes (PBH).We discuss in particular the power of the associated
explosion and the possibility to observe an astrophysical signal in the radio and in
the gamma wavelengths.

18.1 A New Theoretical Framework for Quantum Black
Holes

The idea that black holes may explode dates back to Hawking’s original paper [1].
But Hawking evaporationmay not be the primary cause of for black holes to explode.
In fact, since then various mechanisms have been proposed that disrupts the horizon
so that matter can be released, possibly in an explosive event [2, 3]. The framework
is generic and relies on the possibility that quantum gravity effects would forbid
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curvature singularity to develop. Theworks on resolution of cosmological singularity
in the context of Loop Quantum Gravity [4, 5] have motivated a recent model for
regular black holes [6]. The model imports the main ideas of loop cosmology, in
particular that quantum effects can be described at an effective level as a repulsive
force. The threshold of the quantum gravitational regime is governed by the energy
density rather than by a length, implying that theminimal size that a collapsing object
can reach is typically many order of magnitude greater than the Planck length [6].

These quantum gravity effects are expected to dominate over Hawking radiation,
which can be disregarded in a first order approximation. In such an approximation the
equation of General Relativity are invariant under time reversal. Therefore the black-
hole evolution is then described by gluing together a collapsing and an expanding
solution of the Einstein equations via a quantum region,where those equations are not
satisfied as quantum effect modifies the classical geometry. The process of passing
trough a classically forbidden region can be thought as a tunneling process. In other
words, quantum gravity may allow black holes to “decay” in a white holes [7–9].

18.2 How Long Does a Black Hole Live?

For an observer comoving with the collapse, the process is very short: it is just the
time light takes to travel in a distance equal to the black holes size. For a solar mass
black holes, this is of the order of themilliseconds. On the other hand, for an observer
sitting out of the black hole, the process appears redshifted: this redshift, that in the
classical theory is infinite, is finite here.1 The value of such a redshift is governed by
quantum gravity effects, and can be given in terms of a probability distribution rather
than as an exact value. The phenomenological properties of this process depends
on this time, the black holes lifetime, that can be expressed as a function of the
black-hole total mass.

The lifetime τ of the black hole can be constrained by the following heuristic
arguments. On the one hand, the “firewall” argument [12] provides a time upper
bound. This can be see as a no-go theorem involving the following hypothesis: the
unitarity of the quantum evolution, the equivalence principle at the base of general
relativity and the validity of quantum field theory on a (fixed) curved background.
At the Page time (that can be roughly identified with the time after which the mass
of the black hole has half evaporated, and is therefore of the order ∼m3 in natural
units) the three hypothesis cannot hold together: a signal that the approximation of a
fixed background should be abandoned for a fully dynamical theory of the quantum
gravitational field. Therefore quantum gravity should manifest, in the form of the
decay of the black hole into a white hole, no later than a time τmax∼m3.

1The relation between the time inside the horizon and the time outside is coded in the metric. There
exist a one-parameter family of metrics modeling the black-to-white process. The extreme case for
which the time inside is equal to the time inside has been studied in [10, 11].
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On the other hand, quantum gravity effects require a minimal time to manifest. In
particular, we want the time to be long enough for quantum effect to manifest outside
the horizon in order to modify its classical behaviour. The fact that quantum gravity
effects can manifest outside of the horizon may sound surprising: we usually identify
the quantum gravity regime with a regime of Planckian curvature (R ∼ �−2

Planck) but
at the horizon the curvature may be small. Consider instead the combination of the
curvature and a time: Rτ ∼ �−1

Planck. If now we substitute the value of the curvature
near the horizon R = (2m)−2 we find that the hole lifetime τ must be longer or of
the order of τmin ∼ m2.

Notice that to determine the black hole lifetime it is required a fully non-
perturbative quantum gravity computation. Preliminary results have being obtained
in the context of the covariant formalism of Loop Quantum Gravity (spinfoam) [13]
and they seems to indicate that the probability for the black hole decay should be
peaked on its shortest permitted value, i.e. τ = m2, as expected for other known
decaying phenomena.

For the following analysis of the phenomenology associated to black-to-white hole
decays, we have considered the full window of possible lifetimes m2 � τ � m3. We
parametrize this interval by introducing a parameter k such that τ = 4kM2.

18.3 Primordial Black Holes and Their Signature

The framework of the black-to-white transition is expected to apply to any kind of
black hole, irrespectively of the mass or the way it formed. As the lifetime depends
on the mass, stellar black hole will explode in the future. To observe an explosion
today, we need black holes that are sufficiently small and sufficiently old. PBH satisfy
these conditions. The formations of black holes in the early universe can be achieved
by a variety of models (see [14] for a review). Here we consider in particular the
case of overdense regions collapsing at the time of reheating, but our picture will
not qualitatively change for other models of formation, as for instance during the
contracting phase in the pre-big-bang epoch [15], as the long cosmological times
dominate over short differences in the exact time of formation.

But if PBH explode, how can they be distinguished from all the other astrophysical
sources? Remarkably, their signal carries a characteristic signature. The wavelength
of the signal depends on the mass of the exploding black hole.2 Smaller PBH should
have exploded earlier: smaller black holes produce a signal of shorter wavelength,
but this get redshifted as we can observe them as an earlier (and therefore distant)
explosion. It is possible to compute how the wavelength scales with the distance
(in terms of the redshift). Standard astrophysical objects scale with a simple linear
law. Instead, we find a peculiar flat curve [16] where the shorter wavelengths get

2Notice that this differs from the case of black holes exploding via Hawking evaporation, as in that
case they would all explodes when they reach the Planck size irrespectively of their initial mass.
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Fig. 18.1 The expected wavelength (unspecified units) of the signal from black hole explosions as
a function of the redshift z. The curve flattens at large distance: the shorter wavelength from smaller
black holes exploding earlier get compensated by the redshift

compensated by the amount of redshirt (Fig. 18.1). Ideally, we would like to detect
very energetic burst for which the distance of the source can be known, in order to
fit this curve.

18.3.1 Description of the Expected Signals

Themodel of black-to-white tunneling provides a concrete mechanism for the explo-
sion, but lacks of any detail of the precise astrophysical process. Heuristic arguments
lead us to consider two possible signal channels, that may concur together to the total
emission. Both depend on the initial mass of the black hole, but for different reasons.

The first one, that we call the high energy channel, is given by matter (mainly
photons) that is re-emitted at the same temperature it had at the time it collapsed
forming the black hole, as its co-moving bouncing time is very short. In the simplest
model, PBH form at different sizes corresponding to the Hubble horizon as the
universe expands and cools. This happens typically at the reheating, therefore at a
temperature of the order of T eV . This suggests a high energy component of the
signal in the order of T eV . This is a very interesting observational window, as T eV
astronomy is expected to develop in the forthcoming year [17]. On the other hand,
our observational horizon is limited: cosmic rays at such an high energy interact
with the cosmic background radiation. Therefore the high energy channel would be
observable only for events happening in our galaxy or nearby.

The second one, denoted as low energy channel, assumes that the signal will
carry a mode that corresponds to the size (i.e. the Schwarzschild radius, that is just
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R = 2m) of the exploding object. Knowing the PBH lifetime τ , we can estimate the
mass of black holes exploding today. For τ ≈ m3, the emitted signal would be in the
GeV , but a detailed analysis [19] of such a signal have shown that MeV photons will
have higher density and are more likely to be detected. Transient signals in this range
are Short Gamma Ray Bursts [20], whose origin is still unclear. As their energy
is so high, the dispersion due to the cosmic background limits our observational
horizon . For τ ≈ m2, the estimated signal is expected in the millimeter range of the
radio spectrum. Interesting, very energetic transients (Fast Radio Bursts [21]) have
recently being discovered in the radio frequency; these may candidate as detection
of PBH explosions. Given the approximations taken in the present model, the energy
of the Fast Radio Bursts are intriguingly close to those predicted by this model. The
radio window allows for observational depth, giving virtually access to events in
the entire observable universe. Large antenna available on earth would detect even
faint signals in the longer radio wavelength. On the other hand, the (sub)millimetrer
wavelengths are shielded by the atmosphere: for them we relay on space telescope,
whose detection technology is not sensitive to transients. A more promising strategy
seems to be to study the integrated emission, i.e. the relic radiation from all the
detectable past explosions.

18.3.2 Diffuse Emission

A detailed study of the diffuse emission from PBH has been carried in [22] con-
sidering the full range of possible PBH lifetime, for both the proposed channels of
emission. The resulting spectrum carries a distortion from the expected black-body
spectrumdue to the characteristic redshift-wavelength relation of Fig. 18.1.We report
here (Fig. 18.2) a sample of our results. Units in the ordinate axis are not better speci-
fied as the normalization of the spectrum depends on the amount of PBH contributing
to dark matter.

Fig. 18.2 The diffuse emission of the low energy channel plotted for the minimal k, i.e. for the
shortest lifetime (left), and for the maximal k, i.e. for the longest lifetime (right). The plots have
being obtained using the PYTHIA code [18], that gives the particle production for a process at a
given initial energy
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Fig. 18.3 Spectral energy density (ε2dN/dε) fitting the Fermi-LAT data by exploding PBH. The
agreement with data is good, with a χ2 per degree of freedom of 1.05. The bump on the left is
given by the secondary gamma-rays, whose spectral energy density is much lower than the one of
primary photons and remains below the background (dash line)

The study of the diffuse emission provides a promising tool to constrain themodel
andmay lead to some unexpected surprises. Onemay askwhether themeasured value
of the background radiation can be explained by considering a contribution from
exploding PBH.We have tested this possibility for the excess of gamma rays coming
from the galactic center measured by the Large Area Telescope (LAT) installed in
the Fermi satellite [23]. We found [24] a remarkable good fit for the case of PBH
with a lifetime close to the maximal allowed by the model (Fig. 18.3).

The phenomenology of PBH exploding via a quantum gravity black-to-white
transition has just started to be explored. It presents peculiar new features that have
consequences for PBH dark matter models. They differs from the ones given by
explosions via Hawking evaporations and they provide a new windows for quantum
gravity phenomenology.
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Chapter 19
Self Sustained Traversable Phantom
Wormholes and Gravity’s Rainbow

R. Garattini

Abstract A Self Sustained Traversable Wormhole is a wormhole which is powered
by their own gravitational quantum fluctuations. We consider the effects of introduc-
ing Gravity’s Rainbow on such a configuration to determine the form of the shape
function. This last one can be obtained by imposing the equation of state pr = ωρ.
We investigate the size of the wormhole as a function of the parameter ω in the
phantom region. We show that a wormhole which is traversable in principle, but not
in practice, can be produced.

19.1 Introduction

In these last years, modifications of gravity at Planckian or Transplanckian energy
captured the attention of the scientific community of theoretical physics. The purpose
of such amodification is to include quantum gravitational effects in the description of
physical phenomena keeping under control the usual Ultraviolet (UV) divergences.
This could avoid the application of a standard regularization/renormalization scheme.
To this aim, Noncommutative geometry, Gravity’s Rainbow and Generalized Uncer-
taintyPrinciple (GUP) represent somepossibilities to cure the divergences that appear
in general relativity [1, 2]. In particular, inGravity’s Rainbow, two arbitrary functions
g1 (E/EP) and g2 (E/EP) having the following properties

lim
E/EP→0

g1 (E/EP) = 1 and lim
E/EP→0

g2 (E/EP) = 1 (19.1)

are introduced. g1 (E/EP) and g2 (E/EP) appear into the solutions of the modified
Einstein’s Field Equations [3]
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Gμν (E/EP) = 8πG (E/EP) Tμν (E/EP) + gμν� (E/EP) , (19.2)

where G (E/EP) is an energy dependent Newton’s constant, defined so that G (0)
is the low-energy Newton’s constant and �(E/EP) is an energy dependent cosmo-
logical constant. E is usually interpreted as the energy of a particle deforming the
spacetime geometry. However this deformation begins at the Planck scale where we
expect that even spacetime begins to show quantum fluctuations realizing a Zero
Point Energy (ZPE). When matter fields are absent, we can invoke only one par-
ticle compatible with the deformation of the Einstein’s gravity: the graviton. The
ZPE calculation is strictly connected with the Casimir effect. One of the features
of the Casimir effect is represented by its negative energy density, which allows it
to candidate as a source for a traversable wormhole. A wormhole is often termed
Einstein-Rosen bridge because a “bridge” connecting two “sheets” was the result
obtained by A. Einstein and N. Rosen in attempting to build a geometrical model of
a physical elementary “particle” that was everywhere finite and singularity free [4].
It was J.A. Wheeler who introduced the term wormhole [5], although his wormholes
were at the Planck scale. We have to wait for M. S. Morris and K. S. Thorne [6] to see
the subject of wormholes seriously considered by the scientific community. The vio-
lation of the null energy conditions is fundamental for the existence of a traversable
wormholes. This means that the matter threading the wormhole’s throat has to be
“exotic”. Classical matter satisfies the usual energy conditions, while Casimir energy
on a fixed background has the correct properties to substitute the exotic matter.
Usually one considers some matter or gauge fields which contribute to the Casimir
energy necessary to the traversability of the wormholes, nevertheless nothing forbids
to use the Casimir energy of the graviton on a background of a traversable wormhole.
In this way, one can think that the quantum fluctuations of the gravitational field of a
traversable wormhole are the same ones which are responsible to sustain traversabil-
ity. Note that in [7], the ZPE was used as an indicator for a topology change without
a Gravity’s Rainbow scheme, while in [8], it has been shown that a topology change
is a ZPE consequence induced by Gravity’s Rainbow. In this contribution we would
like to probe ZPE with the help of Gravity’s Rainbow and an equation of state.

19.2 Gravity’s Rainbow and the Equation of State

In Schwarzschild coordinates, the traversable wormhole metric can be cast into the
form

ds2 = − exp (−2φ (r)) dt2 + dr2

1 − b(r)
r

+ r2d�2. (19.3)

where φ (r) is called the redshift function, while b (r) is called the shape function
and where d�2 = dθ2 + sin2 θdφ2 is the line element of the unit sphere. Using the
Einstein field equation

Gμν = 8πGTμν, (19.4)
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in an orthonormal reference frame, we obtain the following set of equations

ρ (r) = 1

8πG

b′

r2
, (19.5)

pr (r) = 1

8πG

[
2

r

(
1 − b (r)

r

)
φ′ − b

r3

]
, (19.6)

pt (r) = 1

8πG

(
1 − b (r)

r

) [
φ′′ + φ′

(
φ′ + 1

r

)]
− b′r − b

2r2

(
φ′ + 1

r

)
, (19.7)

in which ρ (r) is the energy density, pr (r) is the radial pressure, and pt (r) is the
lateral pressure. Using the conservation of the stress-energy tensor, in the same
orthonormal reference frame, we get

p′
r = 2

r
(pt − pr ) − (ρ + pr ) φ′. (19.8)

When Gravity’s Rainbow comes into play, the line element (19.3) becomes [3]

ds2 = − exp (−2φ (r)) dt2g21 (E/EP) + dr2(
1 − b(r)

r

)
g22 (E/EP)

+ r2

g22 (E/EP)
d�2

(19.9)
and the Einstein’s Field Equations (19.5), (19.6) and (19.7) can be rearranged to give

b′ = 8πGρ (r) r2

g22 (E/EP)
, (19.10)

φ′ = b + 8πGprr3/g22 (E/EP)

2r2
(
1 − b(r)

r

) . (19.11)

Now,we introduce the equation of state pr = ωρ, and using (19.10), (19.11) becomes

φ′ = b + 8πG
(
ωg22 (E/EP) b′ (r) /

(
8πGr2

))
r3/g22 (E/EP)

2r2
(
1 − b(r)

r

)

= b + ωb′r

2r2
(
1 − b(r)

r

) . (19.12)

It is immediate to see that the equation related the redshift is unchanged and can be
set to a constant with respect to the radial distance if

b + ωb′r = 0. (19.13)
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The integration of this simple equation leads to

b (r) = r0
(r0
r

) 1
ω

, (19.14)

where we have used the condition b (rt ) = rt . In this situation, the line element (19.9)
becomes

ds2 = − A

g21 (E/EP)
dt2 + dr2

1 − ( r0
r

)1+ 1
ω g22 (E/EP)

+ r2

g22 (E/EP)
d�2, (19.15)

where A is a constant coming from φ′ = 0 which can be set to one without loss of
generality. The parameter ω is restricted by the following conditions

b′ (r0) < 1; b (r)

r
→ 0
r→+∞ =⇒

{
ω > 0

ω < −1
. (19.16)

19.3 Self-sustained Traversable Wormholes, Gravity’s
Rainbow and Phantom Energy

In this section we shall consider the formalism outlined in detail in [9, 10], where
the graviton one loop contribution to a classical energy in a wormhole background
is used. A traversable wormhole is said to be “self sustained” if

H (0)

 = −ETT , (19.17)

where ETT is the total regularized graviton one loop energy and H (0)

 is the classical

term. When we deal with spherically symmetric line element, the classical Hamilto-
nian reduces to

H (0)

 =

∫



d3x

[
(16πG)Gi jklπ

i jπ kl −
√
g

16πG
R

]

= − 1

16πG

∫



d3x
√
g R = − 1

2G

∫ ∞

r0

dr r2√
1 − b(r)/r

b′(r)
r2g2 (E/EP)

,

(19.18)

where we have used the explicit expression of the scalar curvature in three dimen-
sions in terms of the shape function. Gi jkl is the super-metric and π i j is the super-
momentum. Note that, in this context, the kinetic term disappears. Note also that
boundary terms become important when one compares different configurations like
Wormholes and Dark Stars [7] or Wormholes and Gravastars [11]. With the help of
(19.13), the classical energy becomes



19 Self Sustained Traversable Phantom Wormholes and Gravity’s Rainbow 171

H (0)

 = 1

2G

∫ ∞

r0

dr r2√
1 − b(r)/r

b(r)

r3g2 (E/EP) ω
(19.19)

and following [12], the self-sustained equation (19.17) becomes

− b(r)

2Gr3g2 (E/EP) ω
= 2

3π2
(I1 + I2) , (19.20)

where the r.h.s. of (19.20) is represented by

I1 =
∫ ∞

E∗
E
g1 (E/EP)

g22 (E/EP)

d

dE

(
E2

g22 (E/EP)
− m2

1 (r)

) 3
2

dE (19.21)

and

I2 =
∫ ∞

E∗
E
g1 (E/EP)

g22 (E/EP)

d

dE

(
E2

g22 (E/EP)
− m2

2 (r)

) 3
2

dE , (19.22)

respectively. E∗ is the value which annihilates the argument of the root while m2
1 (r)

and m2
2 (r) are two r-dependent effective masses. Of course, I1 and I2 are finite for

appropriate choices of the Rainbow’s functions g1 (E/EP) and g2 (E/EP). With the
help of the EoS, one finds

⎧⎪⎪⎨
⎪⎪⎩

m2
1 (r) = 6

r2

(
1 − b(r)

r

)
+ 3

2r3ωb (r) (ω + 1)

m2
2 (r) = 6

r2

(
1 − b(r)

r

)
+ 3

2r3ωb (r)
(
1
3 − ω

) (19.23)

and on the throat, the effective masses reduce to

m2
1 (r0) = 3

2r20ω
(ω + 1)

{
> 0 when ω > 0 or ω < −1
< 0 when − 1 < ω < 0

m2
2 (r0) = 3

2r20ω

(
1
3 − ω

) {
> 0 when 1/3 > ω > 0
< 0 when ω > 1/3 or ω < 0

.

(19.24)
However, to have values of ω compatible with the traversability condition, only the
cases with ω > 0 and ω < −1 are allowed. It is easy to see that if we assume

g1 (E/EP) = 1 g2 (E/EP) =
{

1 when E < EP

E/EP when E > EP
, (19.25)
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(19.20) becomes, close to the throat,

− 1

2Gr20ω
= 2

π2

(∫ EP√
m2
1(r)

E2
√
E2 − m2

1 (r0)dE +
∫ EP√

m2
2(r)

E2
√
E2 − m2

2 (r0)dE

)
,

(19.26)
where m2

1 (r0) and m2
2 (r0) have been defined in (19.24). Since the r.h.s. is certainly

positive, in order to have real solutions compatible with asymptotic flatness, we need
to imposeω < −1, that it means that we are in the Phantom regime.With this choice,
the effective masses (19.24) become, on the throat

m2
1 (r0) = 3

2r20ω
(ω + 1) m2

2 (r0) = − 3

2r20ω

(
1

3
− ω

)
(19.27)

and (19.26) simplifies into

1 = − 4r20ω

π2E2
P

(∫ EP

√
m2
1(r0)

E2

√
E2 − 3

2r20ω
(ω + 1)dE +

∫ EP

0
E2

√
E2 + 3

2r20

∣∣∣∣ 1

3ω
− 1

∣∣∣∣dE
)

(19.28)
The solution can be easily computed numerically and we find

−1 ≥ ω ≥ −4.5

2.038 ≥ x ≥ 1.083. (19.29)

Therefore we can conclude that a wormhole which is traversable in principle, but
not in practice, can be produced joining Gravity’s Rainbow and phantom energy. Of
course, the result is strongly dependent on the rainbow’s functionswhich, nonetheless
must be chosen in such a way to give finite results for the one loop integrals (19.21)
and (19.22).
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Chapter 20
Cosmology via Metric-Independent
Volume-Form Dynamics

E. Guendelman, E. Nissimov and S. Pacheva

Abstract The method of non-Riemannian volume-forms (metric-independent
covariant integration measure densities on the spacetime manifold) is applied to con-
struct a unifiedmodel of dynamical dark energy plus darkmatter as a dust fluid result-
ing from a hidden Noether symmetry of the pertinent scalar field Lagrangian. Canon-
ical Hamiltonian treatment and Wheeler-DeWitt quantization of the latter model are
briefly discussed.

20.1 Introduction

Alternative spacetime volume-forms (generally-covariant integrationmeasure densi-
ties) independent on theRiemannianmetric on the pertinent spacetimemanifold have
profound impact in any field theory models with general coordinate reparametriza-
tion invariance, such as general relativity and its extensions, strings and (higher-
dimensional) membranes [10, 11, 13, 14].

The principal idea is to replace or employ alongside the standard Riemannian
integration density given by

√−g (square root of the determinant g = det ‖gμν‖
of the Riemannian metric gμν) one or more non-Riemannian (metric-independent)
covariant integration measure densities defined in terms of dual field-strengths�(B)

of auxiliary maximal rank antisymmetric tensor gauge fields Bμνλ:

�(B) = 1

3!ε
μνκλ∂μBνκλ , (20.1)
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The corresponding non-Riemannian-modified-measure gravity-matter models were
called “two-measure (gravity) theories” and the associated auxiliary tensor gauge
fields Bμνλ – “measure gauge fields”.

The auxiliary “measure” gauge fields trigger a number of physically interesting
phenomena:

• The equations of motion w.r.t. Bμνλ produce dynamical constraints involving arbi-
trary integration constants, where one of the latter always acquires the meaning
of a dynamically generated cosmological constant.

• Employing the canonical Hamiltonian formalism for Dirac-constrained systems
we find that Bμνλ are in fact almost pure gauge degrees of freedom except for
the above mentioned arbitrary integration constants which are identified with the
conserved Dirac-constrained canonical momenta conjugated to the “magnetic”
components (Bi jk) of the “measure” gauge fields.

• Upon applying the non-Riemannian volume-form formalism to minimal N = 1
supergravity the dynamically generated cosmological constant triggers sponta-
neous supersymmetry breaking and mass generation for the gravitino (supersym-
metric Brout–Englert–Higgs effect) [16]. Applying the same formalism to anti-de
Sitter supergravity allows to produce simultaneously a very large physical grav-
itino mass and a very small positive observable cosmological constant [16] in
accordance with modern cosmological scenarios for slowly expanding universe of
the present epoch [19–21].

• Employing two independent non-Riemannian volume-forms like (20.1) in gener-
alized gravity-gauge+scalar-field models [12], thanks to the appearance of several
arbitrary integration constants through the equations ofmotionw.r.t. the “measure”
gauge fields, we obtain in the physical“Einstein-frame” a remarkable effective
scalar potential with two infinitely large flat regions (for large negative and large
positive values of the scalar field ϕ) with vastly different scales appropriate for a
unified description of both the early and late universe’ evolution. Another remark-
able feature is the existence of a stable initial phase of non-singular universe
creation preceding the inflationary phase – stable “emergent universe” without
“Big-Bang” [12].

As a specific illustration of the usefulness of the non-Riemannian volume-form
method and extending the study in [1, 17] we discuss a modified gravity+single-
scalar-field model where the scalar Lagrangian couples symmetrically both to the
standard Riemannian volume-form given by

√−g as well as to another non-
Riemannian volume-form (20.1). The pertinent scalar field dynamics provides a
unified description of both dark energy via dynamical generation of a cosmological
constant, and dark matter as a “dust” fluid with geodesic flow as a result of a hidden
Noether symmetry. Further, we briefly consider the canonical Hamiltonian treatment
and theWheeler–DeWitt quantization of the above unified dark energy plus dust fluid
dark matter model.
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20.2 Dark Energy and Dust Fluid Dark Matter
Via Non-riemannian Volume-Form Dynamics

We will consider the following non-conventional gravity+scalar-field action – a
particular case of the general class of the “two-measure” gravity-matter theories
[10, 11, 13] (for simplicity we use units with the Newton constant GN = 1/16π ):

S =
∫

d4x
√−g R +

∫
d4x

(√−g + �(B)
)
L(ϕ, X) . (20.2)

Here �(B) is as in (20.1) and L(ϕ, X) is general-coordinate invariant Lagrangian
of a single scalar field ϕ(x) of a generic “k-essence” form [2, 8] (i.e., a nonlinear
(in general) function of the scalar kinetic term X ): L(ϕ, X) = ∑N

n=1 An(ϕ)Xn −
V (ϕ) , X ≡ − 1

2g
μν∂μϕ∂νϕ. The energy-monentum tensor corresponding to (20.2)

reads:

Tμν = gμν L(ϕ, X) +
(
1 + �(B)√−g

) ∂L

∂X
∂μϕ ∂νϕ . (20.3)

The essential new feature is the dynamical constraint on the scalar Lagrangian, which
results from the equation of motion w.r.t. “measure” gauge field Bμνλ:

∂μL(ϕ, X) = 0 −→ L(ϕ, X) = −2M = const , (20.4)

where M is an arbitrary integration constant. We will take M > 0 in view of its
interpretation as a dynamically generated cosmological constant (see (20.7) below).

A remarkable property of the scalar field action in (20.2) is the presence of a
hidden Noether symmetry of the latter under the nonlinear transformations:

δεϕ = ε
√
X , δεgμν = 0, δεBμνλ = −ε

1

2
√
X

εμνλκg
κρ∂ρ ϕ

(
�(B) + √−g

)
.

(20.5)
The standard Noether procedure yields the conserved current:

∇μ J
μ = 0, Jμ ≡

(
1 + �(B)√−g

)√
2Xgμν∂νϕ

∂L

∂X
. (20.6)

Let us stress that the existence of the hidden symmetry (20.5) of the action (20.2)
does not depend on the specific form of the scalar field Lagrangian.

Now, Tμν (20.3) and Jμ (20.6) can be rewritten in a relativistic hydrodynamical
form (taking into account (20.4)):

Tμν = ρ0uμuν − 2Mgμν, Jμ = ρ0u
μ, (20.7)
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where:

ρ0 ≡
(
1 + �(B)√−g

)
2X

∂L

∂X
, uμ ≡ ∂μϕ√

2X
(uμuμ = −1) . (20.8)

For the pressure p and energy density ρ we obtain:

p = −2M = const, ρ = ρ0 − p = 2M +
(
1 + �(B)√−g

)
2X

∂L

∂X
, (20.9)

wherefrom indeed the integration constant M appears as dynamically generated
cosmological constant. Moreover the covariant energy-momentum conservation
∇νTμν = 0, due to the constancy of the pressure (first (20.9)), actually implies both
the conservation of the Noether current Jμ (20.6) as well as the geodesic flow equa-
tion: uν∇νuμ = 0.

The above results lead to the following interpretation in accordance with the
standard�-CDMmodel (see e.g. [9]). The energy-momentum tensor (20.7) consists
of two parts:

• Dark energy part given by the second cosmological constant term in Tμν (20.7),
which arises due to the dynamical constraint on the scalar field Lagrangian (20.4)
with pDE = −2M , ρDE = 2M (cf. (20.9)).

• Dark matter part given by the first term in (20.7) (cf. also (20.9)) with pDM =
0 , ρDM = ρ0 (ρ0 as in (20.8)). The latter describe a dust fluid with dust “particle
number” conservation (20.6) and flowing along geodesics.

The idea of unified description of dark energy and dark matter is the subject of
numerous earlier papers exploiting a variety of different approaches. Among them
are generalized Chaplygin gas models [5, 22], “mimetic” dark matter models [6, 7],
constant pressure ansatz models [3] etc.

20.3 Canonical Hamiltonian Formalism
and Wheller-DeWitt Equation

For a systematic canonical Hamiltonian treatment of gravity-matter models based
on metric-independent volume-forms we refer to [15] and specifically to the second
reference therein for the full Hamiltonian treatment of the presentmodel (20.2). Here,
for simplicity, we will consider a reduction of (20.2) where the spacetime metric is
taken of the Friedmann–Lemaitre–Robinson–Walker (FLRW) class:

ds2 = −N 2(t)dt2 + a2(t)
[ dr2

1 − Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (20.10)

and where ϕ and the “measure” gauge field B are taken to depend only on t . The
reduced action resulting from (20.2) reads (taking the standard form of the scalar
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Lagrangian):

S = 6
∫

dt Na3
[
− 1

N2

( .
a

a

)2 + K

a2

]
+

∫
dt

(
∂t B + Na3

)( 1

2N2

.
ϕ
2 −V (ϕ)

)
. (20.11)

The equation of motion w.r.t. B produces the dynamical constraint (reduced form of
(20.4)) with explicit solution for ϕ(t):

.
ϕ
2= 2

(
V (ϕ) − 2M

) −→
∫ ϕ(t)

ϕ(0)

dϕ√
2
(
V (ϕ) − 2M

) = ±t. (20.12)

The hidden “dust” Noether symmetry (cf. (20.5) and (20.6)) of the reduced action
(20.11) now takes the form:

δεϕ = ε

.
ϕ

N
, δεB = ε

1

N

(
∂t B + Na3

)
, δεa = 0 ,

d

dt

[(
Na3 + ∂t B

) .
ϕ
2

N3

]
= 0 .

(20.13)
The canonical Hamiltonian treatment a’la Dirac of the reduced action (20.11) yields
the following Dirac-constrained Hamiltonian (N appearing as a Lagrange multiplier
of the first class constraint in the brackets):

Htotal = N
[
− p2a
24a

− 6Ka − πBa
3 +

√
2
(
V (ϕ) + πB

)
pϕ

]
, (20.14)

where pa and πB are the canonically conjugated momenta of a and B, respectively.
The quantum Wheeler-DeWitt equation corresponding to (20.14) is significantly

simplified upon changing variables as:

a → ã = 4√
3
a3/2, ϕ → ϕ̃ =

∫
dϕ√

2
(
V (ϕ) − 2M

) , (20.15)

where from (20.12) we find that the new scalar field coordinate ϕ̃ will have the mean-
ingof a (cosmic) time. Since B turns out to be a cyclic variable in (20.14) the quantized
canonicalmomentum π̂B = −iδ/δB is immediately diagonalizedwhose eigenvalues
are denoted byπB = −2M , so thatM will have themeaning of a dynamically gener-
ated cosmological constant. Further, we notice that the quantized formof the last term
in (20.14), which is the Hamiltonian expression for the conserved “dust” Noether

symmetry charge (20.13), will simplify to
√
2
(
V (ϕ) + πB

) (−i d
dϕ

) = −id/dϕ̃

and is straightforwardly diagonalized with eigenvalues E . Accordingly, the total
Wheeler-DeWitt wave functionwill have the formψ(a, ϕ, B) = ψgrav(̃a) eiE ϕ̃−i 2MB
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(with ã and ϕ̃ as in (20.15)), and the Wheeler-DeWitt equation reduces to “energy”
eigenvalue Schrödinger equation for the gravitational part of the total wave function:

[
−1

2

∂2

∂ ã2
− 3

8
Mã2 + 6K

(√
3

4
ã

)2/3

− E
]
ψgrav(̃a) = 0 (20.16)

In the special case of zero spacial curvature K = 0 in the FLRW metric (20.10),
(20.16) reduces to the energy eigenvalue Schrödinger equation for the inverted har-
monic oscillator [4] with negative frequency squared ω2 ≡ − 3

4 M (the dynamically
generated cosmological constant M must be positive).

In particular, the inverted oscillator was applied in [18] to study the quantum
mechanical dynamics of the scalar field in the so called “new inflationary” scenario.
Since the energy eigenvalue spectrum of the inverted harmonic oscillator is continu-
ous (E ∈ (−∞,+∞)) and the corresponding energy eigenfunctions are not square-
integrable, its application in the context of cosmology [18] requires employment of
wave-packets instead of energy eigenfunctions.
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Chapter 21
Size Scaling of Self Gravitating Polymers
and Strings

S. Kawamoto and T. Matsuo

Abstract A typical configuration of a long free fundamental string is described as a
free randomwalk.With self-gravitational interaction, the configuration contracts and
eventually the size becomes comparable to the Schwarzschild radius of a black hole of
the same energy, where the string configuration is identified with the corresponding
black hole. We consider the size change of a long string at a fixed large excited
level by use of tools developed in polymer physics. We introduce a contact self-
repulsive interaction as well as Newtonian gravitational interaction and find that the
size exhibits interesting scaling behaviors, which are summarized in diagrams.

21.1 Introduction

A century ago, the first exact (nontrivial) solution of general theory of relativity (GR)
was found by K. Schwarzschild just after GRwas presented [1]. Since then, the solu-
tion and its siblings, black hole geometries, have been stimulating physicists and
mathematicians, and have also attracted interests of general public for its mysterious
description as “a space of no return” from which even light cannot escape. Black
holes are not of merely theoretical interest as there have been accumulating observa-
tional supports for existence. It has turned out that black holes have thermodynamic
properties; they have temperature and emit radiation. A black hole also possesses
entropy that is proportional to its surface area, which implies that the degrees of free-
dom are distributed on a lower dimensional space than the black hole occupies; the
reason behind this dimensional reduction is not clear yet, but it serves a key behind
the holographic principle. On the other hand, the evaporation process of a black hole
presents a puzzle; if an object of a pure state collapses into a black hole, it may evolve
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into a mixed state of Hawking radiation in later time, which contradicts to unitarity
quantum mechanics. There is another possibility that the final state may be a pure
state, a massive remnant or highly entangled and unitarity remains intact. However,
a consistent model of remnants appears difficult. If the final state is entangled pure
radiation, it may enable us to duplicate the initial pure state that is contradict to
linearity of quantum mechanics, or such entanglement would lead to highly excited
degrees of freedom at the horizon, known as a “firewall,” with which equivalence
principle may be questioned.

These issues may be resolved through further understanding of quantummechan-
ics and GR, but it is also possible that final resolution calls for quantum gravity.
Since string theory is expected to be a consistent quantum gravity, it is interesting
to analyze the black hole formation and evaporation in terms of string dynamics.
The profile of a highly excited free string is described by a random walk model
[2, 3]. It thus occupies a large volume, but may be folded into a compact volume
due to self-interaction to form a microscopic massive object. Susskind has argued
that at a critical value of string coupling the description of the system of a folded
stringmay be replaced by a corresponding black hole, and vice versa [4, 5]. Horowitz
and Polchinski analyzed the profile of interacting strings by use of thermal scalar
model to clarify how the size changes [6]. There are also some related works [7–12].
We revisit this problem by use of another physical system that is also described by
interacting random walks — a polymer. Realistic polymers are described by self-
avoiding, not free, walks, since monomers cannot not occupy the same location. This
excluded volume effect can also be implemented as a contact repulsive interaction in
free walks. We introduce this repulsive interaction since it has been also speculated
that there emerges such interaction in a high density regime near a black hole [13].
In this article, we give a brief description of the size scaling of long strings at the
presence of Newtonian self-gravitational and contract repulsive interactions, based
on [14].

21.2 The Size Scaling of Self-Interacting Long Strings

In this section, we introduce an effective Hamiltonian that describes an interacting
random walk, called Edwards Hamiltonian [15–17]. The size is evaluated with the
help of two different approximation schemes and is found to exhibit interesting
scaling behavior. We also observe that at certain critical couplings the configuration
is enclosed by Schwarzschild radius and may collapse into a black hole. This size
scaling is summarized in a “phase diagrams” in Fig. 21.1, which are parametrized by
the magnitudes of two interaction.
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Fig. 21.1 The size scaling in 2 < d < 4 (left) and d = 4 (right). The horizontal and the vertical
axes denote logN g and logN u respectively. Namely, the numbers shown here represent the power
of N . On the right, the size of the corresponding black hole for fixed u is also shown

21.2.1 Edwards Hamiltonian and the Evaluation of the Size

We consider the following Edwards Hamiltonian in d(> 2) dimensions,

βH = d

2�2

∫ N

0
dσ

(
∂R
∂σ

)2

+ V . (21.1)

The potential term V consists of long-rangeNewton interaction aswell as a point-like
repelling force expressed by the delta function,

V =
∫ N

0
dσ

∫ N

0
dσ ′

[
− g2�d−2

|R(σ ) − R(σ ′)|d−2
+ u�dδ(d)(R(σ ) − R(σ ′))

]
. (21.2)

g2 and u are dimensionless coupling constants, and are assumed to be positive;
namely they correspond to attractive and repulsive interactions respectively. N is the
number of monomers and � is the (Kuhn) length of the bond between monomers,
which will be identified with the string scale �s . With V = 0, the size is given by the
free random walk as R0 = �

√
N and by comparing this with the size of a free string

[2] the excited level of the string is identified with N 2. The effective temperature β−1

is the order of the string scale 1/�s , but its explicit value is not important; it just sets
the scale of the analysis with which the coupling constants are measured.

The purpose of this article is to summarize the size scaling of a long string with
respect to a large number of monomers N in accordance with the changes of N
dependence in the coupling constants g and u. The size here stands for the root mean
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square of the end-to-end distance, which is evaluated by use of Edwards Hamiltonian
as

R(g, u)2 = 〈(R(N ) − R(0))2〉 = 1

Z

∫
DR(N ) (R(N ) − R(0))2e−βH , (21.3)

where the partition function Z = ∫
DR(N ) e−βH and we can fix, and will fix from

now on, the position of the one end R(0) at the origin by use of translational invari-
ance. We are not capable of evaluating this path-integral analytically and then intro-
duce two approximation methods; variational principle and a uniform expansion
model. These two methods turn out to be valid in the complementary situations.

In the variational principle, we consider the following harmonic Hamiltonian with
a variational parameter q,

βHq = d

2�2

∫ N

0
dσ

(
∂R
∂σ

)2

+ dq2

2�2

∫ N

0
dσ R(σ )2 , (21.4)

and rewrite (21.1) as βH = βHq + Vq where Vq = V − dq2

2�2
∫ N
0 dσ R(σ )2, and treat

Vq as perturbation. The approximated size is calculated as R(q) = √〈R(N )2〉q where
the subscript for the bracket indicates that the expectation value is taken with respect
to βHq . Since the harmonic Hamiltonian is quadratic, the expectation value is imme-
diately evaluated,

R(q) = �√
q

√
tanh qN �

{
�
√
N qN � 1

�q−1/2 qN ≥ O(1)
. (21.5)

The free energy βF = − ln Z satisfies the inequality βF ≤ βFq + 〈Vq〉q thanks to
convexity of logarithm. Fq is the free energy of the harmonic Hamiltonian Hq . This
inequality is spelled out as

βF ≤qN − N 2
(
g2q

d−2
2 − uq

d
2

)
, (21.6)

where we have dropped O(1) positive numerical coefficients since we are only
interested in N dependence of R. The optimal value of q, denoted as q0, is chosen
so that it minimizes the right hand side. We then obtain the approximated size R(q0)
which becomes a function of g and u through q0. As seen in (21.5), the approximated
size is bounded from above by the free walk size R0 = �

√
N for small values of q0,

and decreases like q−1/2
0 as q0 increases from q0 � N−1. Hence, this approximation

is viable if the attractive interactions are dominant and the configuration gets smaller
compared to the free size.

The other approximation we employ is called the uniform expansion model
(UEM), in which the change of the size is encoded in the change of the length
of the bond, �′ = a�, but the configuration is assumed to remain to be free one.
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In this case the size rescaling factor a is a parameter of the approximation, and we
use the following free Edwards Hamiltonian with the bond length �′ = a�,

βH ′ = d

2a2�2

∫ N

0
dσ

(
∂R
∂σ

)2

, (21.7)

to evaluate the size R as

R2 =
∫ (

R(N )
)2
e−βH∫

e−βH
= 〈(R(N )

)2
e−β(H−H ′)〉′

〈e−β(H−H ′)〉′
� 〈(R(N ))2〉′(1 + 〈β(H − H ′)〉′) − 〈(R(N ))2β(H − H ′)〉′ , (21.8)

where 〈· · · 〉′ denotes the expectation value with respect βH ′ and we have taken the
first order in H − H ′. It is straightforward to evaluate the expectation values as βH ′
is Gaussian, and we find R2 � N�′2 + N�2a2−d f (g, u; a) where

f (g, u; a) = ad − ad+2 + uN
4−d
2 − g2a2N

6−d
2 , (21.9)

and O(1) positive numerical coefficients are omitted again. The requirement of UEM
is that the size is given by the free walk size of the bond length �′, namely R = �′√N .
Then the consistency condition of UEM is f (g, u; a) = 0. This condition fixes a,
and the approximated size is obtained by use of this value as R = �′√N = a�

√
N .

Note that again R becomes a function of g and u through a. Detailed analysis shows
that UEM provides consistent size scaling if the repulsive interaction is important.
This turns out to cover the complementary regions in coupling space to the previous
variational calculation.

21.2.2 The Results and the Phase Diagram

Wenowdetermine theparametersq anda from the conditions (21.6) and f (g, u; a) =
0 with (21.9). As we are only interested in N -dependence of R, we assume the N
dependence of the couplings, g ∼ N ξ and u ∼ N ζ , and solve the conditions. Both in
(21.6) and (21.9), the terms independent of g and u correspond to the entropic force;
diffusion and elasticity. The solutions will depend on which term is dominant in
large N . For example, in (21.6), if u term is dominant over g term, the only possible
solution is q0 = 0 and we have a free configuration (recall that g and u are assumed
positive). In this manner, we can determine the following four regions in which the
different pair of interactions are dominant and balance. In the dimension 2 < d < 4,
the results are summarized in the following list;

• Free polymer region: Here, entropic diffusion and elasticity balance, and grav-
ity and repulsive interactions are negligible. This configuration is that of a free
polymer, and the size scales as R0 � �

√
N .
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• Puff-up region: Entropic elasticity and repulsive force balance. Newton gravity
is a subleading effect, and the repulsive force is somehow strong, u ≥ N

d−4
2 . The

size scales as R � �(uN 3)
1

d+2 , which is larger than R0.
• “E–G” region: Entropic diffusion and gravity balance. The gravitational coupling
is required to be larger than a critical value, g ∼ N

d−6
4 . The configuration shrinks

and the size is R � �(g2N )
1

d−4 .
• “R–G” region: Repulsive force and gravity balance. This region is realized if both
interactions are rather strong, and the size is given by R � �

√
u/g.

• Black hole region: For large g, the Schwarzschild radius of the configuration,
Rs � �(g2N )

1
d−2 , eventually exceeds the size R and we come into a “black hole”

region.

The more details of analysis are presented in [14]. These behaviors are summarized
in a “phase diagram” which is given by the left diagram in Fig. 21.1. The two axes
are given by logN g and logN u, and the boundaries of different regions turn out to be
straight lines in this log–log plot. If u is fixed and g increases, the size R decreases and
eventually coincides with the Schwarzschild radius Rs ; the size at this corresponding
point Rc is also shown in the figure. We observe that if the repulsive force is stronger
than a critical value, u ≥ N−1, the corresponding black hole size Rc is no longer
microscopic; it scales as N with a positive power. In 2 < d < 4, one can check that
the size changes smoothly (in N dependence) as it goes across the borders.

As d approaches to 4, the “R–G” region eventually disappears and we obtain the
right figure of Fig. 21.1. The size dependence on the couplings remains unchanged
(apply d = 4 in the above relations). However, in this case, the size of the configu-
ration may jump when it crosses the borderline on the right of the “free polymer”
region (denoted as a slightly thick line).

21.3 Conclusion

In this article, we have summarized the size behavior of a long string under the effect
of two interactions, Newton gravity and a contract repulsive interaction, by use the
technique of polymer physics and two different approximation schemes.We find that
the configuration exhibits a rather rich scaling behaviors with respect to the strength
of the interactions, and the scaling behaviors are summarized in phase diagrams in
Fig. 21.1. It is intriguing to see that the long string may collapse into a black hole
of a macroscopic size if it exhibits sufficiently strong repulsive nature. Though the
origin of such repulsive nature of strings is not clear yet, it would emerge in high
density regime nonperturbatively [13], and it may enable us to study macroscopic
black holes by using fundamental strings.



21 Size Scaling of Self Gravitating Polymers and Strings 189

References

1. K. Schwarzschild, Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen
Theorie. Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin,
1916), pp. 189–196 (English translation is at physics/9905030v1.)

2. D.Mitchell, N. Turok, Statisticalmechanics of cosmic strings, Phys. Rev. Lett. 58, 1577 (1987),
D. Mitchell, N. Turok, Statistical properties of cosmic strings. Nucl. Phys. B 294, 1138 (1987)

3. J.L.Manes, String form-factors. JHEP 0401, 033 (2004). [hep-th/0312035], J.L.Manes, Portrait
of the string as a random walk, JHEP 0503, 070 (2005). [hep-th/0412104]

4. L. Susskind, Some speculations about black hole entropy in string theory, in The Black Hole,
ed. by C. Teitelboim, pp. 118–131. [hep-th/9309145]

5. G.T. Horowitz, J. Polchinski, A correspondence principle for black holes and strings. Phys.
Rev. D 55, 6189 (1997). [hep-th/9612146]

6. G.T.Horowitz, J. Polchinski, Selfgravitating fundamental strings. Phys.Rev.D57, 2557 (1998).
[hep-th/9707170]

7. T. Damour, G. Veneziano, Selfgravitating fundamental strings and black holes. Nucl. Phys. B
568, 93 (2000). [hep-th/9907030]

8. D. Amati, J.G. Russo, Fundamental strings as black bodies. Phys. Lett. B 454, 207 (1999).
[arXiv:hep-th/9901092]

9. S. Kawamoto, T. Matsuo, Emission spectrum of soft massless states from heavy superstring.
Phys. Rev. D 87(12), 124001 (2013). arXiv:1304.7488 [hep-th]

10. S.K. Rama, Size of black holes through polymer scaling. Phys. Lett. B 424, 39 (1998). [hep-
th/9710035]

11. R.R. Khuri, Selfgravitating strings and string/black hole correspondence. Phys. Lett. B 470,
73 (1999). [hep-th/9910122]

12. R.R. Khuri, Black holes and strings: the polymer link. Mod. Phys. Lett. A 13, 1407 (1998).
[gr-qc/9803095]

13. L. Susskind, The World as a hologram. J. Math. Phys. 36, 6377 (1995). [hep-th/9409089];
L. Susskind, J. Lindesay, An Introduction to Black Holes, Information and the String Theory
Revolution: The Holographic Universe (World Scientific Publishing Company, 2004)

14. S. Kawamoto, T. Matsuo, Size scaling of self gravitating polymers and strings,
arXiv:1506.01160 [hep-th]

15. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986),
S.F. Edwards, M. Muthukumar, The size of a polymer in random media, J. Chem. Phys. 89(4),
2435–2441 (1988)

16. P.J. Flory, The configuration of real polymer chains. The Journal of Chemical Physics 17.3,
303–310 (1949), P.J. Flory, Principles of Polymer Chemistry, Cornell University Press (1953)

17. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell university press, 1979)

http://arxiv.org/abs/hep-th/9901092
http://arxiv.org/abs/1304.7488
http://arxiv.org/abs/1506.01160


Chapter 22
The Hot and Dense QCD Equation
of State in Heavy Ion Collisions
and Neutron Star Mergers

J. Steinheimer, A. Mukherjee, N. Wechselberger,
M. Hanauske, S. Schramm and H. Stöcker

Abstract The underlying open questions in the fields of general relativistic
astrophysics and elementary particle and nuclear physics are strongly connected
and their results are interdependent. Although the physical systems are quite differ-
ent, the properties of a merged binary system of two neutron stars and the properties
of the hot and dense matter created in high energy heavy ion collisions, strongly
depend on the equation of state of fundamental elementary matter. Neutron star
mergers represent optimal astrophysical laboratories to investigate the QCD phase
structure using a spectrogram of the post-merger phase of the emitted gravitational
waves. These studies can be supplemented by observations from heavy ion collisions
to possibly reach a conclusive picture on the QCD phase structure at high density
and temperature.
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22.1 Introduction

Gravitational waves (GWs) have been recently observed from a pair ofmerging black
holes (BHs) by the LIGO detectors [1] and GWs emitted from merging neutron star
(NS) binaries are on the verge of their first detection. The main difference between
GWs originating from a merger of two BHs or NSs is the possibility of the existence
of a post-merger phase after the collisions of the two objects. The GWs produced
by a merger of NSs are by far more interesting, as the equation of state (EOS) of
elementary matter might be deduced by a frequency analysis of the GW [2–4]. This
is insofar interesting, as the EOS of quantum chromo dynamics (QCD) until now is
mainly investigated by high energy heavy ion collisions and only coarse constraints
are coming from astrophysical observations, like the observed maximum mass in
neutron stars, i.e., 2.01 ± 0.04M� [5]. We will discuss how one can create a similar
state of hot and dense nuclear matter in two seemingly different ‘experimental’
setups, namely the mergers of two neutron stars and relativistic heavy ion collisions.
Similarities and differences in the composition of the matter created are discussed.
By studying the properties of this QCDmatter in a single consistent approachwemay
finally address one of the most relevant challenges of high-energy nuclear theory.
This is to determine the properties and phase structure of QCD at large densities and
temperature.

22.2 Numerical General Relativity of Neutron Star Mergers

The basic equations which are used to describe the dynamics of neutron star mergers,

Rμν − 1

2
gμνR = 8π Tμν , ∇μT

μν = 0 , ∇μ (ρ uμ) = 0 , (22.1)

include the equations of relativistic fluid dynamics, where the ideal-fluid energy-
momentum tensor Tμν = (e + p) uμuν + p gμν introduces the pressure through
the EOS of the underlying neutron star matter, uμ = dxμ/dτ describes the four
velocity of the star’s fluid which is defined as the derivative of the coordinates xμ =
(t, x, y, z) by the proper time τ . Here∇μ is the covariant derivative. These equations
are complemented byEinsteins’ equations of general relativitywhere Rμν is theRicci
tensor, which contains first and second derivatives of the space-time metric gμν . The
Einstein equation (first equation in (22.1)), a highly non-linear differential equation,
describes howmatter moves in a curved space-time and formulates in which way the
amount of energy-momentum curves the space-time structure.

In a similar way the dynamics of relativistic collisions of heavy ions can also
be described by the equations of relativistic fluid dynamics, with the difference
that gravitation does not play a role for the small systems created here. A common
advantage for the description of both systems, NS mergers and heavy ion collisions,
is that the EOS of dense and hot nuclear matter can be readily introduced in the
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equations of fluid dynamics. Therefore the EOS plays an integral part in both the
description of neutron star mergers and heavy ion collisions.

The results of 3+1-dimensional numerical simulations of merging neutron star
binaries in full general relativity [6] show that the emitted GWs of the merger and
post-merger phase are strongly determined by the high density region of the equa-
tion of state. The underlying general-relativistic hydrodynamical evolution of the
produced hypermassive neutron star depends on the hadronic and quark matter prop-
erties, i.e. the EOS, which also enters in the description of heavy ion collisions.

An even higher compression and heating of the neutron starmatter can be achieved
in a head on merger of two NS. Due to the considerable radial acceleration of the
matter at the shock fronts of the colliding neutron starmatter slabs, densities of several
times the central density of the separated NS may be achieved. These velocities are
close to the velocities and densities reached in relativistic heavy ion collisions at the
GSI and FAIR accelerators, but below those at RHIC and the LHC.

The EOS used within most NS merger frameworks is usually composed of a cold
nuclear-physics part and a thermal component (for examples see [3, 6, 7]). Within
such a model, the hadronic phase is connected to deconfined quark matter above a
certain transition rest-mass density ρtrans. Alternatively an EOS of purely hadronic
temperature dependent matter is used (see e.g. [8]). Such models are well established
for the T = 0 (zero temperature) properties of dense nuclear matter. However, it is
expected that QCD thermodynamics at finite temperature will quickly be dominated
by additional degrees of freedom not present at vanishing temperature, i.e. mesons
and/or gluons. In the description of neutron star mergers and relativistic heavy ion
collisions a new class of EOS models is therefore necessary which also consistently
describes QCD thermodynamics at finite temperature.

In the following we will introduce an EOS that can be used to describe symmetric
and asymmetric nuclear matter at high densities and temperatures and explain how
it is used to connect NS mergers and heavy ion collisions.

22.3 The Hot and Dense QCD Equation of State for Heavy
Ion Collisions and Neutron Star Mergers

In heavy ion experiments at particle colliders, heavy nuclei are accelerated to rela-
tivistic velocities. As they collide, they create a small system (of several fm in size
and a lifetime of approximately 20 fm/c) which is expected to have a Temperature of
T ≥ 80MeV and densities several times the nuclear ground state density. It is there-
fore very intriguing to study QCDmatter at similar temperatures and densities in two
rather different ‘experimental’ setups, in neutron star mergers and heavy ion colli-
sions. By combining the findings from both observations one may be able to deduce
information on the properties of the QCD matter at high densities and finally on the
phase structure of QCD. The properties of the equation of state of QCD are the link
connecting the neutron star mergers and relativistic nuclear collisions. Consequently
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the goal of such studies has to be to find a description for the EOS that is able to
describe neutron star merger and nuclear collision observables and therefore estab-
lish the connection. From this description we can understand common features and
differences of the systems created in heavy ion collisions and neutron star mergers.

First one has to establish common features and differences of the systems cre-
ated. For that we estimated the expected maximal compression reached in nuclear
collisions at different colliding beam energies. Since the very early stage of a nuclear
collision is a very rapid and violent process, expected to take place out of thermal
equilibrium, estimating the maximal compression is no unambiguous task. We com-
pare the energy and net baryon densities reached, as function of the colliding beam
energy per nucleon pair

√
sNN in Fig. 22.1. Different methods, not depending on the

EOS, to estimate these densities are used, but give results of similar magnitude. The
dashed lines follow from a simple geometric overlap model where one assumes that
the total energy and baryon number of the colliding nuclei is completely stopped in
a volume which is equal to the Lorentz contracted volume of a singe nucleus. The
expected densities then can be written as:

ρini = 2 γc.m. ρ0 and εini = 2 mN ρ0 γ 2
c.m. (22.2)

where ρ is the net-baryon density, ε is the energy density, γc.m. is the Lorentz gamma
of the nuclei in the center of mass (c.m.) frame of the collision andmN is the nucleon
mass. The densities from the geometric overlap model serve as a lower bound of
the expected densities since this simple approach does not take into account the
additional compression which occurs as the two nuclei penetrate each other.
To get a more realistic estimate for the initial compression we also show results
where a microscopic transport model is used to simulate the initial non-equilibrium
compression stage (grey band in Fig. 22.1). The Ultrarelativistic QuantumMolecular
DynamicsModel (UrQMD) is used in its cascademode aswell as a setup that includes
nuclear interactions via potentials [9, 10]. To obtain a smooth density distribution
from the microscopic model we run a large number of events and average densities
over this event-ensemble. The so obtained values of the densities are generally larger,
by up to a factor of 2, than the values of the overlap model. We find that is we want
to study systems that have densities of approximately 4 times the nuclear ground
state density ρ ≈ 0.6 f m3 we have to study systems created at beam energies of√
sNN ≈ 2.5 − 3.0GeV. This is the energy region of the current SIS18 accelerator at

GSI, as can be seen in Fig. 22.1.
As in the case of neutron star mergers the spatial density distribution in nuclear

collisions is far from uniform. While in the center of the collision zone very high
densities and temperatures can be obtained, steep spatial gradient of the densities are
observed. To illustrate this Fig. 22.2 show contour plots of the net-baryon density
and the corresponding temperatures for collisions of Au+Au nuclei at a fixed target
beam energy of 1.5A GeV, as expected for the SIS18 accelerator. This snap-shot of
the densities as taken at a time t = 15 f m/c, a time where one expects the system
to be at least partially in local equilibrium. Again the bulk of the system reaches
densities ranging from 1–4 time nuclear ground state density and temperatures from
50–100MeV.
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Fig. 22.1 Left: Largest net-baryon densities achieved in central collisions of Au+Au nuclei at
different colliding beam energies. Right: Largest energy density achieved in central collisions of
Au+Au nuclei at different colliding beam energies. For both figures we compare results from an
overlap model (dashed black line) with results where we used the UrQMD model to estimate the
initial compression. The green lines with crosses indicate the beam energies where we expect the
maximal temperature to exceed 100 or 175MeV. The temperatures are calculated using the QχP
model described in the text

Fig. 22.2 Left: Net baryon density contour in the reaction plane of a non-central (b= 5 fm) nuclear
collision of Au+Au nuclei at a beam energy of Elab = 1.5A GeV. The contour where the density
exceeds two times nuclear ground state density is highlighted (black dashed line). The densities
where calculated using the UrQMD transport model. Right: Same as left but for the temperature.
The temperature has been calculated from the density and energy density using the QχP model for
the equation of state

In order to determine for example the temperature of the system at given densities,
one requires knowledge on the effective degrees of freedom of the system, encoded
in the equation of state. Depending on the EOS used, the Temperatures reached in
these relativistic collisions and neutron star mergers may vary significantly. It is
consequently most important to employ an EOS that entails a realistic set of degrees
of freedom as well as interactions. In the following we will present a model for
such an EOS which can be employed to describe the matter produced in neutron
star mergers as well as heavy ion collisions, thus an EOS which is able to link the
properties of collision events in drastically different environments.
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22.3.1 The QχP Model

The model we employed is the so called Quark-Hadron Chiral Parity Doublet Model
(QχP) [11, 12]. In this approach, an explicit mass term for baryons in the Lagrangian
is possible, which preserves chiral symmetry. Here, the signature for chiral symmetry
restoration is the degeneracy of the usual baryons and their respective negative-parity
partner states. In themodel approach, positive and negative parity states of the SU(3) f
baryons are grouped in doublets N = (N+, N−) as discussed in [13, 14].

Taking into account the scalar and vector condensates in mean-field approxi-
mation, the resulting Lagrangian includes the scalar meson interaction, driving the
spontaneous breaking of the chiral symmetry, is expressed in terms of SU(3) invari-
ants I2 = (σ 2 + ζ 2), I4 = −(σ 4/2 + ζ 4) and I6 = (σ 6 + 4ζ 6) as:

V = V0 + 1

2
k0 I2 − k1 I

2
2 − k2 I4 + k6 I6 , (22.3)

where V0 is fixed by demanding a vanishing potential in the vacuum. The quark and
gluonic degrees of freedom are introduced as done in the PNJL approach [15, 16].
This model uses the Polyakov loop � as the order parameter for de-confinement.
To suppress hadrons in the deconfined phase we also introduced a simple excluded
volume for the hadrons. The various parameters of this model are fixed by demand-
ing a reasonable description of nuclear ground state properties like the saturation
density, binding energy and symmetry energy. Furthermore if this model is extended
to finite temperature and vanishing chemical potentials it gives a reasonable qualita-
tive description of lattice QCD thermodynamics. A more detailed description of this
model, can be found in [11, 12].

This model is highly qualified to study the properties of matter at high densities
and intermediate temperatures, as expected in nuclear collisions as well as neutron
star mergers. A straight forward way of consistently connecting the features of the
EOS with the maximally achievable compression of a relativistic collision is by
employing the so called Rankine–Hugoniot–Taub-Adiabat [17]. The Taub-Adiabat
is essentially a shock wave solution of two colliding infinite slaps of matter. If the
EoS, i.e. the connection between pressure, energy density and baryon density is
know (as p(ε,ρ)), then one can calculate the maximum compression in a collision by
solving the following Taub-equation:

(ρ0 X0)
2 − (ρ X)2 − (p0 − p)(X0 + X) = 0 (22.4)

with X = (ε + p)/ρ2, the generalized volume. For simplicity we assume p0 = 0.
One can furthermore connect the center of mass gamma factor γc.m. of the collid-

ing slabs to the densities created using γ 2
c.m. =

(
ε ρ0

ρ ε0

)2
. The resulting beam energy

dependence of the net-baryon density and temperatures reached is shown in Fig. 22.3
(left) for two different scenarios:
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Fig. 22.3 Left: Largest net-baryon density (solid lines) and Temperatures (dashed lines) achieved
in collisions of heavy ions and compact stars at a given center of mass beam energy

√
sNN =

2 · γc.m. · mN . To calculate the densities and temperatures we used the Taub adiabat (see text) with
the QχP EoS. Due to the different properties of the EoS as function of iso-spin the temperatures in
heavy ion collisions are larger and densities slightly smaller, at the same relative velocities. Right:
Number densities of different hadronic and free quark species (rescaled for visibility) as function
of the iso-spin per baryon at a fixed temperature T = 80MeV and net-baryon density ρ = 3ρ0.
The lines correspond to matter with conserved net strangeness, as expected for heavy ion collisions
while the symbols represent results where the matter is on β-equilibrium (as expected for neutron
star matter

1. The EOS for heavy ion collisions, i.e. with conserved strangeness and no beta-
equilibrium

2. The EOS for compact stars, i.e. in beta-equilibrium

Figure22.3 therefore presents, for different accelerator energies, the compressions
achieved, using the relativistic one dimensional hydrodynamic Rankine–Hugoniot–
Taub-Adiabat with a realistic EOS for hot and dense nuclear matter. This figure
highlights the difference in the compression in collisions of projectiles with iso-spin
symmetric matter (heavy ion collisions) and asymmetric matter (NS mergers).

To point out similarities and differences in the chemical composition of the sys-
tems created in these collisions we show in Fig. 22.3 (right) the number densities of
different hadronic species at a fixed temperature and net-baryon density, as function
of the iso-spin per baryon of the system. The composition of the systems created in
collisions of Au+Au nuclei (where the iso-spin per baryon is −0.1) and of neutron
star matter is quite different, as expected. The matter in neutron stars not only has a
an iso-spin per baryon of −0.38 but also, according to beta equilibrated strangeness,
a significantly different composition of strange particles.

22.4 Conclusions

In this article we show that the properties of elementary matter at high temperatures
(T ≈ 100MeV) and densities (ρ ≈ 3 ρ0) can be studied in two different physical
scenarios [18]. High energy heavy ion collision experiments try do determine the
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phase structure of the iso-spin symmetric QCD equation of state, and the knowledge
of the iso-spin asymmetric QCD EOS is needed in a general relativistic computer
simulation of binary neutron star mergers. These two different fields of physics,
namely elementary particle physics and astrophysics, combine when two neutron
stars collide. It is therefore possible to study the properties of dense QCD for systems
of different size, time-scales and chemical composition, which will eventually lead
to an understanding of the properties of this elementary form of matter.
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