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Preface

This compendium emerged from my lecture notes at the Physics Department of the
Johann Wolfgang Goethe University in Frankfurt am Main till 2004 and does not
include recent progresses in the field. It is less than a textbook, but rather more than
a German “Skript”. It does not include a bibliography or comparison with exper-
iments. Mathematical proofs are often only sketched. Nevertheless, it may be useful
to graduate students as a concise presentation of the basics of solid-state theory.

Oberursel, Germany Ladislaus Alexander Bányai
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Chapter 1
Introduction

A short presentation is given about how we conceive theoretically the solid
state of matter, namely about its constituents and their interactions. The
starting point is of course an oversimplified one, which afterwards one tries
to improve and even redefine it. In the opposite sense, one tries later to sim-
plify it in order to allow for theoretical calculations. In spite of all these
problems, one gets predictions, that often may be successfully confronted
with experiments. The different Chapters of this Compendium are however
intended only to introduce the reader into the basic concepts of solid state
theory, without the usual detours about specific materials and without com-
parison with experiments.

Under Solid State we understand a stable macroscopic cluster of atoms. The sta-
bility of this system relies on the interaction between its constituents.We know today,
that molecules and atoms are built up of protons, neutrons and electrons. According
to the modern fundamental concepts of matter at their turn these particles are made
up however of some other more elementary ones we do not need to list here. The sim-
plest starting point of Solid State theory and still the only useful one is, that we have
a quantum mechanical system of ions and valence electrons with Coulomb interac-
tions between these particles. This non-relativistic picture of a system of charged
particles however is valid only up to effects of order 1

c2 (c-being the light velocity in
vacuum). Actually, the charged particles are themselves sources of an electromag-
netic field, which on its turn is quantized (photons). Fields and particles have to be
treated consequently together as a single system. Nevertheless, most of the properties
of solid state are successfully described by a non-relativistic quantum mechanical
Hamiltonian

H = He + Hi + Hee + Hii + Hei .

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Introduction

The electron and ion Hamiltonians He and Hi include also the interaction with
external (given) electromagnetic fields, while the interaction parts (electron-electron
Hee, ion-ion Hii and electron-ion Hei ) are understood as pure Coulomb ones.

Of course, one cannot ignore the spin as a supplementary degree of motion.
Sometimes, it is nevertheless compelling to include other effects of higher order in
the inverse light velocity 1

c . Even more, in the treatment of magnetic properties one
has to redefine the model by including also the localized electrons of atomic cores.
Furthermore, it is plausible, that for the understanding of some important phenomena
one reaches the limitations of today’s solid state theory.

An essential role in the mathematical treatment of this system plays the thermo-
dynamic limit i.e. letting the number of particles and the volume of the system tend
to infinity, while keeping the density of particles constant. The very existence of this
limit for interacting quantummechanical particles is not at all obvious, but necessary
for the stability of matter.

To treat such a still extremely complicated system it is necessary to make further
simplifications. Since most solids are crystals, one admits that only the valence
electrons are allowed to move over the whole crystal, while the ions at most oscillate
around their equilibriumpositions in the given lattice. In afirst step, one starts from the
model of rigid ions (their mass is thousands of times heavier than the electron mass!)
in a given periodical lattice and considers the motion of the electrons in a periodic
field. Actually the characteristics of the lattice should be also determined by the
above Hamiltonian, but one springs over this step. The task is still too complicated,
and one treats not the many electron system, but just one electron in the field of
ions and the self-consistent field of the other electrons. In a first step, one considers
this potential as a given one. This oversimplified picture is already able to describe
qualitatively the fundamental properties of solids. This is the one-electron theory of
solid state,whichwill be described inChap.2 of this compendium.Wemake here also
a first step toward themany-body treatment by consideringmany, but non-interacting
electrons within the second quantization scheme in metals and semiconductors. In
Chap.3 we consider electron-electron interactions and many-body approximation
schemes. Lattice oscillations and their interaction with the electron are discussed
in Chap.4. An important part of traditional solid-state theory concerns transport
and optical properties. These will be presented respectively in Chaps. 5 and 6. We
describe there also some new aspects related to the interaction with strong ultra-
short laser pulses. Phase transformation, however important they are, we shall touch
only in a few simple examples in Chap.7. As a single modern subject we discuss
in Chap.8 some exotic properties of two-dimensional semiconductor structures. The
Compendium ends with two Appendices. In Chap.9 we give an overview of the
concepts of theoretical physics we use. It is only a reminder and it is supposed that
the reader is familiar with all of them. Further, in Chap. 10 some home-works are
proposed for the interested reader.



Chapter 2
Non-interacting Electrons

Most properties of a crystal may be interpreted as the quantum mechanical
motion of a single electron in a given potential. After the simplest cases of
motion in homogeneous electric and magnetic fields with emphasis on the
thermodynamic limit, an extended treatment of the motion in a periodical
potential is given. The Bloch oscillations observed in periodical semiconduc-
tor layers are also included. The ground state occupation of the one-electron
states leads to the understanding of the different classes of materials, as met-
als, insulators and semiconductors. The properties of the latter are strongly
influenced by the presence of impurities. The controlled presence of donors
and acceptors determine the properties of semiconductor contacts discussed
on the example of a p-n contact.

2.1 Free Electrons

In the frame of quantum mechanics, the stationary state (wave function) of a free
electron in the whole space is described by a plane wave

ψ(x) = eıkx

having a continuous energy spectrum (kinetic energy) depending only on k = |k|

ε(k) = �
2

2m
k2 (0 < k < ∞) .
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4 2 Non-interacting Electrons

This state is not normalized ∫
dx|ψ(x)|2 = ∞

i.e. it is not a true eigenfunction.
Since we want to deal with true eigenfunctions and to consider systems with a

definite volume (for simplicity a cube of size L3) we may look for eigenfunctions in
the product formψ(x) = φ1(x1)φ2(x2)φ3(x3)with two possible choices of boundary
conditions in each dimension.

We may impose on the wave function φ(x) either to
(a) vanish at the boundary (Dirichlet): φ(± L

2 ) = 0, then one gets symmetrical
and anti-symmetrical eigenfuntions

φk(x)
s =

√
2

L
cos(kx)

(
k = (2n + 1)

π

L
; n = 0, 1, 2, · · ·

)

φk(x)
a =

√
2

L
sin(kx)

(
k = n

2π

L
; n = 1, 2, 3, · · ·

)

or
(b) to be periodical: φ(x + L) = φ(x), then the eigenfunctions are

φk(x) = 1√
L
eıkx

(
k = n

2π

L
; n = ±1,±2, · · ·

)
.

The energy in both cases is givenby εk = �
2

2m k
2 however,with the abovegivendiscrete

eigenvalues. The wave-functions φk(x) are normalized in the interval [− L
2 , L

2 ].
It is convenient to work with variant (b), since these eigenfunctions are also

eigenfunctions of the momentum operator

−ı�
∂

∂x
φk(x) = �kφk(x) .

One has orthonormality (with the “bra” and “ket” symbols of Dirac)

< k|k ′ > ≡
∫ L

2

−L
2

dxφk(x)
∗φk ′(x)

= 1

L

∫ L
2

−L
2

dxe(k ′−k)x =
∫ 1

2

−1
2

dye2π(n′−n)y = δk,k ′

as well as the completeness of Fourier series.
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The electrons are fermionswith spin 1
2 . The spin projection on the arbitrary chosen

z-axis σ has two eigenstates with eigenvalues ± 1
2 and therefore the electron states

(“kets”) we have to consider are
|k, σ > ,

with the quantum numbers k = (k1, k2, k3), σ = ± 1
2 . However, the energy of the

free electron is spin-independent.
If one wants to consider states with many electrons, then according to the Pauli

principle for fermions one must build up anti-symmetrized products of one-electron
wave functions. It is however advantageous to use the formalism of occupation
numbers characterizing a many electron state by the occupation numbers of the
one-electron states k, σ . Due to the same Pauli principle these occupation numbers
nk,σ may take only the values 0, and 1. This follows automatically from the anti-
symmetry of the wave function in the configuration space. The total energy and total
momentum of such a many electron state are

E =
∑
k,σ

nk,σ εk,σ ; P =
∑
k,σ

nk,σ �k

with the occupation numbers and one-electron energies

nk,σ = 0, 1 ; εk,σ = �
2

2m
k2 ,

while the total number of electrons is

N =
∑
k,σ

nk,σ .

If one wants to study bulk properties of macroscopic matter (independent of the
surface!), one has to perform the thermodynamic limit, that means in this case

L → ∞ , N → ∞ ,

while keeping constant the average density of electrons

〈n〉 = 〈N 〉
L3

.

By this infinite volume limit procedure, the discrete sums go over into Riemann
integrals. With Δki = 2π

L one has

∑
k

Δk →
∫

dk ,



6 2 Non-interacting Electrons

or otherwise stated ∑
k

→ L3

(2π)3

∫
dk .

Since the one-electron energy is monotonously increasing with k ≡ |k|, the ground
state of a many-electron system is obviously the one with the one-electron states
completely occupied up to a certain wave vector kF

nk,σ = θ(kF − |k|) .

The energy of an electron with this wave-vector εF ≡ �
2

2m k
2
F is called the Fermi

energy.
In thermodynamic equilibrium at a given temperature and chemical potential,

described by the macro-canonical distribution the probability of a many electron
state specified by the set of occupation numbers ν ≡ nk1,σ1 , nk2,σ2 , . . . is given by

Pν = e−β(Eν−μNν )∑
ν ′ e−β(Eν′ −μNν′ )

where β = 1
kBT

, kB is the Boltzmann constant, T is the absolute temperature and μ

is the chemical potential. The average occupation number of an one-electron state
k, σ is then

〈nk,σ 〉 =
∑

ν

Pνnk,σ

=
∑

n=0,1 ne
−β( �

2

2m k2−μ)n

∑
n=0,1 e

−β( �2
2m k2−μ)n

= 1

1 + eβ( �2
2m k2−μ)

≡ f (
�
2

2m
k2) ,

where

f (ε) = 1

1 + eβ(ε−μ)

is the Fermi function giving the average number of electrons in a state with energy
ε. The total average number of particles is

∑
σ=± 1

2

∑
k

f (
�
2

2m
k2) = 〈N 〉

and in the thermodynamic limit (after dividing with the volume L3 of the system)
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Z

1

0.5

1.0

1.5

2.0

2 3 4 5

Fig. 2.1 Free one-electron state density z(ε)

2

(2π)3

∫
dk f (

�
2

2m
k2) = 〈n〉 .

This equation determines the chemical potential μ at a given temperature T and
average density 〈n〉. By introducing the one-electron state density

z(ε) ≡ lim
L→∞

1

L3

∑
k,σ

δ(ε − �
2

2m
k2) = 2

(2π)3

∫
dkδ(ε − �

2

2m
k2) = 1

2π2�3
(2m)

3
2 ε

1
2

(shown in Fig. 2.1) it may be rewritten as
∫

dεz(ε) f (ε) = 〈n〉 .

The average electron energy is

〈ε〉 = 1

〈n〉
∫

dεz(ε) f (ε)ε .

One distinguishes two regimes:

(i) degenerate, with a big positive chemical potential βμ 
 1, which in the extreme
case at T = 0 gives rise to a step-like Fermi function

f (ε)|T=0 = θ(εF − ε) ,

the Fermi energy εF being defined by μ|T=0K = εF > 0 and the average one-
electron energy is
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1.0

0.8

0.6

0.4

0.2

5 10 15

β

f

Fig. 2.2 Degenerate with βμ = 8 (magenta) and non-degenerate with βμ = 1 (blue) Fermi func-
tions

〈ε〉|T=0 = 3

5
εF .

(ii) non-degenerate, with βμ � 1, which in the extreme case of a negative chemical
potential with βμ � −1 leads to the Boltzmann distribution

f (ε) ≈ e
μ−ε

kB T

and the average one-electron energy

〈ε〉 ≈ 3kBT

2
.

An illustration of the shape of degenerate and non-degenerate Fermi functions
is given in Fig. 2.2.

2.2 Electron in Electric and Magnetic Fields

The non-relativistic Hamiltonian of an electron in the presence of given (external)
electromagnetic fields is

H = 1

2m

(
p + e

c
A

)2 − eV .
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The scalar and vector-potentialsV, A are related to the electric andmagnetic fields by

E = −∇V − 1

c
Ȧ ; B = ∇ × A .

It is important to remark, that the first term in the Hamiltonian is actually the usual
kinetic energy since ṙ = 1

m

(
p + e

cA
)
.

2.2.1 Homogeneous, Constant Electric Field

A homogeneous, constant electric field may be described by different choices of the
potentials, for example,

V (r) = −rE and A = 0

or
V (r) = 0 and A = −cEt .

In the second choice onegets a time-dependentHamiltonian.Due to gauge invariance,
the physical results are independent of the choice, but it is rather convenient to work
in the first gauge with the time-independent Hamiltonian

H = − �
2

2m
∇2 + erE .

Then, with E = (E, 0, 0) only the motion along the x-axis is affected by the electric
field while the transverse motion is still described by plane waves. The solutions of
the stationary Schroedinger equation with the energy −∞ < ε < ∞

(
− �

2

2m

d2

dx2
+ eEx − ε

)
φε(x) = 0

are the Airy functions (seen in Fig. 2.3)

φε(x) = 1√
π

∫ ∞

0
dq cos

(
1

3
q3 + qξ

)
; ξ ≡

(
x − ε

eE

) (
2mE

�2

) 1
3

.

Although in this gauge we found stationary states it makes no sense to look for
equilibrium since the energy spectrum is unbounded from below and these states are
not eigenfunctions in the usual sense since they are not normalized

∫ ∞

−∞
dx |φε(x)|2 = ∞
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Fig. 2.3 Airy function

and the energy spectrum is continuous. This is related to the fact, that already a clas-
sical electron is accelerated in a homogeneous, constant electric field. This aspect we
may recover also in the quantummechanical theory ifwewrite the aboveHamiltonian
in the momentum representation:

H(p) = p2

2m
− ıe�E

∂

∂p
.

Then the Heisenberg equation of motion for the momentum

ṗ = eE

follows.

2.2.2 Homogeneous, Constant Magnetic Field

Let us choose the homogeneous, constant magnetic field along the z -axis

B = (0, 0, B)

and the vector potential in the Landau gauge A = (0, Bx, 0). Then the Hamiltonian
of the electron looks as
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H = − �
2

2m

∂2

∂x2
+ 1

2m

(
−ı�

∂

∂y
− e

c
Bx

)2

− �
2

2m

∂2

∂z2
.

One looks for the stationary solution of the Schroedinger equation in the form

ψky ,kz (r) = Φ(x)
eı(kz z+ky y)√

LzL y
.

Then Φ(x) has to satisfy the equation

[
− �

2

2m

∂2

∂x2
+ 1

2
mω2

c (x − X)2 − ε + �
2k2z
2m

]
Φ(x) = 0 .

As usual, one chooses periodical boundary conditions along the y and z -axes. There-
fore, kz = 2πnz

Lz
, ky = 2πny

L y
with integer nx, ny . Here

ωc = |e|B
mc

is the frequency of the cyclotron oscillation,

X = sign(e)�2Bky

is the x coordinate of the center of the cyclotron motion, while

�B =
√

�c

|e|B

is the “magnetic length”. As it may be seen, the problem is not completely sepa-
rable, in the sense, that the motion along the x-axis depends also on the quantum
numbers of the motion along the other axes. The normalized (on the whole x-axis!)
eigenfunctions of this Schroedinger equation are given by

Φn,X (x) = 1√
�B

e−x2/2�2B Hn((x − X)/�B)

where Hn(x) are the Hermite polynomials and the corresponding eigenenergies are
quantized (oscillator values), but degenerate with respect to X

εn,X,kz, = �
2k2z
2m

+ �ωc(n + 1

2
) (n = 0, 1, 2, ...) .

The oscillator ground-state eigenfunction Φ0,0(x) with �B taken as unit length is
shown in Fig. 2.4. In the x-direction the boundary is not fixed. One might however
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Fig. 2.4 The ground-state Landau function Φ0,0(x)

restrict the coordinate X to a certain domain −Lx/2 ≤ X ≤ Lx/2 in order to get
approximate boundaries in the sense, that at distances much bigger than the magnetic
length far away the wave function is very small. Typical for these Landau-functions
is, that the energy does not depend either on the quantum number X nor on kx .
However, if one imposes Dirichlet (vanishing) boundary conditions at ±Lx/2, the
first degeneracy is lifted.

Another convenientway to impose a “confinement” along the x axis is to introduce
an oscillator potential barrier

V (x) = m

2
ω2
0x

2 .

The solution is again the usual Landau function, however the cyclotron frequency
gets replaced by

ω̃ =
√

ω2
c + ω2

0

and the cyclotron center coordinate X gets replaced by

X̃ = ω2
c

ω̃2
X .

In this way, the degeneracy with respect to X is lifted and the eigenenergies are
given by

εn,X̃ ,kz
= �

2k2z
2m

+ �ω̃(n + 1

2
) + mω2

0

2
X̃2 (n = 0, 1, 2, ...) .
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Nevertheless, whenever effects at the boundaries do not play an essential role, it is
mostly convenient to work with the Landau functions.

In the presence of the magnetic field it is also very important to take into account
that one has an additional spin-dependent energy −2σμB B where μB = e�

2mc is the
Bohr magneton and the projection of the spin on the z axis may take two values
σ = ± 1

2 .

2.2.2.1 Magnetization

Since in the case of the magnetic field, by restricting the cyclotron center as we men-
tioned before, we may construct normalized eigenfunctions with discrete spectrum
bounded from below and we may look for equilibrium properties. For this sake let
us consider the one-electron state density, where we took into account that the spin
of the electron along the magnetic field may take two possible values σ = ± 1

2 :

z(E) = 1

Lx L yLz

∑
kz ,ky ,n,σ

δ(E − �
2k2z
2m

− �ωc(n + 1

2
) + sz2μB B) .

By performing the thermodynamic limit we have to take into account that by limiting
the range of the center of the cyclotronic motion X implicitly |ky| ≤ Lx

2�2B
. Then we

get in the thermodynamic limit

z(E) = 1

(2π)2�2B

√
2m

�2

∞∑
n,σ

θ(E − �ωc(n + 1
2 ) + σ2μB B)√

E − �ωc(n + 1
2 ) + σ2μB B

.

Obviously, one has a singular behavior at certain discrete periodical values of the
energy E (see Fig. 2.5, where the unit of energy was taken to be �ωc and a red line
shows the state density in the absence of the magnetic field). For sake of simplicity,
the spin is ignored in the figure. Anyway, at very low temperatures all the spins
are oriented along the magnetic field. This gives rise to typical oscillations of the
equilibrium magnetization as function of 1

B (de Haas van Alfven effect).
Let us consider now a many-electron system in equilibrium. The equilibrium

magnetization is defined as the derivative of the free energy F with respect to the
magnetic field

M = − 1

Lx L yLz

∂F

∂B
.

The free energy is related on its turn to the thermodynamic potential F and the
average number of particles 〈N 〉 by

F = F + μ〈N 〉 .
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In the macro-canonical equilibrium, we have

F = −kBT ln
{
Sp

(
e−β(H−μN )

)}
.

With the short-hand notation i for the one-electron Landau state quantum numbers
and ni = 0, 1 for this occupation number we get

F = −kBT ln

{ ∑
n1,n2,...

e−β
∑

i (εi−μ)ni

}

= −kBT ln
{
Πi

[
1 + e−β(εi−μ)

]}
= −kBT

∑
i

ln
[
1 + e−β(εi−μ)

]

= −kBT Lx L yLz

∫
dεz(ε) ln

[
1 + e−β(ε−μ)

]
.

The average electron density 〈n〉 on its turn is defined by the one-electron state density
and the average occupation number of the states given by the Fermi function

f (ε) ≡ 1

1 + eβ(ε−μ)
,

〈n〉 =
∫

dεz(ε) f (ε)

and

F =
∫

dεz(ε)

(
−kBT ln

[
1 + e−β(ε−μ)

] + μ
1

1 + eβ(ε−μ)

)
.

Thus, the magnetic field dependence of the one-particle state density (at a fixed
chemical potential μ) determines the magnetization.



2.2 Electron in Electric and Magnetic Fields 15

2.2.3 Motion in An One-Dimensional Potential Well

Let us consider here a simple one-dimensional problem of quantum-mechanical
motion in a static potential well.We have discussed already, how the energy spectrum
of the free propagating particle can be conveniently discretized byDirichlet boundary
conditions at x = ± L

2 . Actually, this corresponds to the motion in an infinitely high
potential well, that does not allow the penetration inside the potential barrier. The
purpose was, to recuperate later the thermodynamic limit at L → ∞ while keeping
the average particle density constant. Now we shall consider here a potential well
of finite height U0 and in order to avoid confusions with the previous problem we
denote here the finite width of the well with a.

The stationary Schroedinger equation we consider is

{
− �

2

2m

d2

dx2
− eV (x)

}
ψ(x) = Eψ(x) ,

with the potential

−eV (x) =
{

0 f or |x | ≤ a
2

U0 > 0 f or |x | > a
2

shown in Fig. 2.6.
The solutions inside thewell are trigonometric functions sin(kx) and cos(kx)with

k2 = 2m
�2 E, while outside the well, choosing vanishing conditions at x → ±∞ these

are respectively ekx for x < 0 and e−kx for x > 0, with k2 = 2m
�2 |U0 − E |. Imposing

the continuity of the wave function ψ(x) and its derivative ψ ′(x) at x = ± a
2 , as

well as the normalization condition
∫ ∞
−∞ |ψ(x)|2dx = 1 one gets the transcendent

equations for the eigenvalues of the even and odd solutions

tan(ka) =
√
C2 − (ka)2

ka
,

Fig. 2.6 Potential well
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Fig. 2.7 Energy levels in the
well for C2 = 38

respectively

tan(ka) = − ka√
C2 − (ka)2

,

where

C2 = a22m

�2
U0 .

The resulting energy spectrum consists of a finite number of discrete energies below
U0. For C2 = 38 they are illustrated in Fig. 2.7. The shown levels correspond alter-
nately to symmetric and anti-symmetric states.Of course, onehas always a continuum
above the barrier.

2.3 Electrons in a Periodical Potential

Periodical potentials in a crystal play a central role. The main properties of solids
may be understood starting from the peculiarities of the quantum mechanical
electron motion in a periodical potential.

2.3.1 Crystal Lattice

Most of the solid-state devices are made out of crystals and a theoretical treatment
of periodical structures is much easier, than that of disordered structures. In what
follows we shall discuss only such solids with a periodical structure.

A crystal is characterized first of all by a translation symmetry of the (average)
positions R of the atoms. Such a symmetry is defined by a 3D Bravais lattice

R = n1a1 + n2a2 + n3a3; (n1, n2, n3 = 0,±1,±2, . . . ) .
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The three vectors a1, a2, a3 define the elementary cell, whose repetition covers all
the atoms. Its choice is not unique, but should contain the minimal possible number
of atoms. An illustration of a Bravais lattice with a single atom in the elementary cell
is shown in Fig. 2.8, for sake of simplicity in 2D. An example of a more complicated
elementary cell with two atoms is given on Fig. 2.9. One illustrates other possible
choices of the elementary cell (see the arrows!). The volume of the elementary cell
is given by

v = a1 · (a2 × a3)

Fig. 2.8 Illustration of a crystal lattice in 2D, with two different choices of the elementary cell
(indicated by the green, respectively blue arrows)

Fig. 2.9 Illustration of a Bravais lattice with an elementary cell of two atoms in 2D
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and does not depend on the choice of the elementary cell. The elementary cell may
contain different atoms and there are also crystals with elementary cells containing
hundreds of atoms.

The discrete translational symmetry is not the only possible symmetry of a crys-
tal. It may be symmetric also with respect to certain rotations or mirrorings. In what
follows we shall consider only the periodicity, which determines the basic prop-
erties of any crystal. The unit vectors a1, a2, a3 are not orthogonal to each other
(except in a cubic crystal), therefore it is useful to introduce also a dual basis (called
“reciprocal”) by

b1 = 2π

v
a2 × a3

b2 = 2π

v
a3 × a1

b3 = 2π

v
a1 × a2 .

Then we have the orthogonality of the two dual unit vector sets:

bi · a j = 2πδi, j .

Onemay define also a reciprocal lattice created by the new basis vectors. A vector
K of this reciprocal lattice is defined by

K = m1b1 + m2b2 + m3b3; (m1,m2,m3 = 0,±1,±2, . . . ) .

The volume of the elementary cell of this lattice vBZ called Brillouin Zone (BZ) is
related to that of the elementary cell of the original lattice v by

νBZ = b1 · (b2 × b3) = (2π)3

a1 · (a2 × a3)
= (2π)3

v
.

The following relations also hold

R · K = 2π(n1m1 + n2m2 + n3m3)

eıR·K = 1

1

v

∫
v
dreır·K = δK,0 .

Any periodical function f on the lattice ( f (r) = f (r + R)) may be expanded in
Fourier series

f (r) =
∑
K

f̃Ke
ır·K



2.3 Electrons in a Periodical Potential 19

with the Fourier coefficients

f̃K = 1

v

∫
v
dr f (r)e−ır·K .

2.3.2 Bloch Functions

Let us now consider the Hamiltonian of an electron

H = − �
2

2m
∇2 +U (r)

in a periodical potential
U (r) = U (r + R) .

Here we want to exploit just those general features that emerge from the periodicity.
The stationary states are solutions of the equation

Hψ = Eψ .

Since a perfectly periodical crystal has an infinite extension, the stationary solutions
(like the plane waves in free space) cannot be normalized, and in this sense, they are
not true eigenstates. From the periodicity it follows, that the shifted wave function
ψ(r + R) must be a stationary state with the same energy E and (in the absence of
degeneracy) it may differ from the unshifted one only by a phase factor

ψE (r + R) = eıφRψE (r) .

It follows immediately the additivity of the phase

φR1+R2 = φR1 + φR2

and therefore one may write

ψE (r + R) = eıkRψE (r)

with a real vector k. According to the previous definition of the reciprocal lattice, k
and k + K are equivalent, since the scalar product RK is a multiple of 2π . One may
thus write the wave function in the form

ψk(r) = eıkruk(r)
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where uk(r) is periodical
uk(r + R) = uk(r)

and the wave vector k belongs to the elementary cell of the reciprocal lattice. We
choose it as the cell at the origin (BZ) defined as the domain

k2 ≤ (k − K)2

of k-vectors closer to the origin as any non-vanishing vector K of the reciprocal
lattice. Even in the case of degeneracy one may choose the wave functions in this
Bloch form. (This stems from the fact that the translations are an abelian group with
one-dimensional irreducible representations.)

Thus, beside the energy we have the wave vector k for the characterization of the
Bloch states. Of course, other quantum numbers must be considered, which we shall
denote by n. These quantum numbers are discrete and are called–band indices.

2.3.3 Periodical Boundary Conditions

Just like in the case of the free electrons it is comfortable to impose some boundary
conditions to get a discrete spectrum. In the case of a crystal lattice one chooses a
periodical boundary condition compatible with the lattice periodicity

ψ(r + Niai ) = ψ(r).

with some integerNi (i = 1, 2, 3). The parallelepipedwith the edgesNiai is called
basic volume Ω . From the definition, it follows that the condition

Niai · k = 2πm ; (m = 0,±1,±2, . . .)

has to be satisfied in order to recover the same phase factor of the Bloch function
and therefore the wave vector k may take only discrete values

k = n1
N1

b1 + n2
N2

b2 + n3
N3

b3 ; (n1, n2, n3 = 0,±1,±2, . . .) .

Of course, to obtain physically relevant results for a bulk crystal one has to remove
the dependence on these artificial boundary conditions by taking the infinite volume
limit. One sees, that as Ni (i = 1, 2, 3) increases, the elementary step of the wave
vectors k goes to zero, therefore in the limit of infinite basic volume in all directions
one has

1

N1N2N3ν

∑
k∈BZ

−→ 1

(2π)3

∫
BZ

d3k .
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The introduction of the periodical boundary conditions allows the orthonormalization
of the Bloch functions

∫
Ω

drψk,n(r)∗ψk′,n′(r) = δk,k′δn,n′ .

Now, the integration over the basic volume Ω is equivalent to a summation over all
the elementary cells and the integration over each cell. With

ψk,n(r) = 1√
N

eıkruk,n ; N ≡ N1N2N3

the orthonormality may be written also as

1

N

∑
R∈Ω

eı(k−k′)R
∫
v
dreı(k−k′)ruk,n(r)∗uk′,n′(r) = δk,k′

∫
v
druk,n(r)∗uk′,n′(r) ,

where we used the periodicity of the Bloch part and the relation

1

N

∑
R∈Ω

eıkR = δk,0

stemming from the identity

1

M

M −1∑
n=0

xn = 1

M

1 − xM

1 − x
=

{
0 i f m �= 0
1 i f m = 0

,

with x ≡ eı
2πm
M ; (m = 0, . . . ,M − 1). Thus,

∫
v
druk,n(r)∗uk,n′(r) = δn,n′ .

and therefore the Bloch parts uk,n(r) form for each k an orthonormalized set and at
any fixed k one has a discrete spectrum.

2.3.4 The Approximation of Quasi-Free Electrons

Let us write the Schroedinger eigenvalue equation in the periodical potential U (r)
in Fourier components
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uk(r) =
∑
K

ũk,Ke
ıK·r

U (r) =
∑
K

ŨKe
ıK·r ,

where ŨK = Ũ ∗
−K follows from reality of the potential and the wave vector k here is

restricted to the Brillouin zone. After multiplication with e−ıK·r and integration of r
over the elementary cell the equation looks as

[
�
2

2m
(k + K)2 − EK(k)

]
ũk,K +

∑
K′

ŨK−K′ ũk,K′ = 0 .

Let us consider first an empty lattice U (r) = 0. The corresponding states and
eigenenergies are

ψ
(0)
k,K(r) = 1√

N
eıkru(0)

k,K(r), u(0)
k,K(r) = 1√

v
eıKr ,

respectively

E (0)
K (k) = �

2

2m
(k + K)2; k ∈ BZ .

The “bands” indicated by the vectorsK of the reciprocal lattice are shown in Fig. 2.10
for K = −2π, 0, 2π, (with lattice constant a = 1) in the case of an one-dimensional
lattice.
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Fig. 2.10 The first folded free electron bands in 1D
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It is important to remark again, that at fixed k the spectrum is discrete. One
sees the degeneracy of the “bands” at k = ±π and at k = 0. The main role of the
perturbation by a small periodical potentialU (r)will be in lifting these degeneracies.
As we shall see on an exactly soluble one-dimensional example, after the lifting of
the degeneracy the top of the lowest band and the bottom of the upper band get
extrema with vanishing derivative.

2.3.5 The Kronig-Penney Model

We consider here explicitly the solvable one-dimensional periodical potential model
(see Fig. 2.11)

V (x) =
{

0 n(a + b) < x < n(a + b) + a; n = 0,±1,±2, . . .
U0 n(a + b) − b ≤ x ≤ n(a + b) .

Actually onehas to solve the problem in the elementary cell (0 < x < l, ≡ a + b)
and thereafter extend it overall by the Bloch condition. For E < U0 the solution is

Ψ (x) = cI I1 eiκ2x + cI I2 e−iκ2x ; 0 < x < a

Ψ (x) = cI1e
κ1x + cI2e

−κ1x ; a < x < l

κ2
1 = 2m

�2
E, κ2

2 = 2m

�2
|U0 − E | .

At first one must ensure the continuity of the wave function and its derivative at
x = a

Ψ (a − 0) = Ψ (a + 0)

Ψ ′(a − 0) = Ψ ′(a + 0) .

Fig. 2.11 The
Kronig-Penney periodic
potential
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Further one has still to fulfill the Bloch condition

Ψ (0)eıkl = Ψ (l)

Ψ ′(0)eıkl = Ψ ′(l) .

These conditions lead to a system of four linear homogeneous equations for the
four coefficients c

I

1, c
I I
1 , c

I

2, c
I I

2 . The existence of a solution implies a transcendent
equation for the energy as function of the wave vector k (energy bands). For E < U0

it looks as

cosh κ2b cos κ1a + κ2
2 − κ2

1

2κ1κ2
sinh κ2b sin κ1a = cos k(a + b) .

Fig. 2.12 The lowest four

energy bands (here 2ma2

�2 E)
of the Kronig-Penney model
with
b = 0.25a, 2ma2

�2 U0 = 38
for 0 < k(a + b) < π
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Fig. 2.13 The lowest four

energy bands (here 2ma2

�2 E)
of the Kronig-Penney model

with b = a, 2ma2

�2 U0 = 38
for 0 < k(a + b) < π .
(Bands below U0 here in red)

For E > U0 trigonometric functions are the solution and the above discussed
boundary conditions lead then to the transcendent equation

cos κ1b cos κ2a − κ2
1 + κ2

2

2κ1κ2
sin κ1b sin κ2a = cos k(a + b)

where however

κ2
1 = 2m

�2
E, κ2

2 = 2m

�2
|E −U0| .

These equations may be easily solved numerically. The lowest four bands are shown
in Fig. 2.12 by the choice of the parameters U0 = 38, b = 0.25a.

One sees here the scenario described in the previous section. The bands of the
empty lattice are split, and one gets extrema with vanishing derivatives.
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It is instructive to remark here, that as the distance between the wells b increases
the bands under U0 flatten (in our case the lowest two) and get close to the energy
levels of the isolated well, while the upper bands get closer to those of the empty
lattice. This is illustrated in Fig. 2.13 with the increased distance b = a between
the wells. (The range of the wave vector is limited here for sake of convenience to
0 < k(a + b) < π .) This result corresponds to the known fact that far away atoms
have the spectrum of the isolated atoms, however, with a degeneracy equaling the
total number of atoms.

2.3.6 Band Extrema, kp–Perturbation Theory and Effective
Mass

The stationary Schroedinger equation for the Bloch functions describing the energy
bands (indexed by some quantum numbers n)

[
− �

2

2m
∇2 +U (r) − En(k)

]
ψn,k(r) = 0

after inserting
ψn,k(r) = eıkrun,k(r);

gives rise to the Bloch equation

[
− �

2

2m
∇2 +U (r) − ı�2

m
k∇ + �

2

2m
k2 − En(k)

]
uk,n(r) = 0 .

For any fixed k this is a true eigenvalue equation with discrete eigenvalues. The
eigenfunctions uk,n(r) due to the Bloch property

un,k(r + R) = un,k(r)

may be considered just in the elementary cell with periodical boundary conditions.
Therefore, they may form a complete orthonormalized set in the cell

∫
v
drun,k(r)∗un′,k(r) = δn,n′

∑
n

un,k(r)un,k(r′)∗ = δ(r, r′) .

Let us assume, that for a given k0 the eigenfunctions un,k0(r) and eigenenergies
En(k0) are known.
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For a small deviation |k − k0| → 0, one may consider − ı�2

m (k − k0)∇ as a small
perturbation. In the absence of degeneration, standard perturbation theory gives

un,k(r) = un,k0(r) +
∑
n′ �=n

< n′,k0|�
2(k−k0)∇

ım |n,k0 >

En(k0) − En′(k0)
un′,k0(r) + · · ·

and

En(k) − �
2

2m
k2 = En(k0) − �

2

2m
k20+ < n,k0|�(k − k0)

ım
∇|n,k0 >

+
∑
n′ �=n

∣∣∣< n,k0|�
2(k−k0)∇

ım |n′,k0 >

∣∣∣2
En(k0) − En′(k0)

+ · · ·

with the “bra-ket” notation

< n,k0|∇|n′,k0 >≡
∫
v
drun,k0(r)

∗∇un′,k0(r) .

It follows then for the derivative of the energy at k = k0

∂En(k)

∂k
|k=k0 =< n,k0| �

2

ım
∇|n,k0 > .

Since k0 for the time being is arbitrary, the relation holds for any k and we get for
the average velocity

〈v〉 ≡
∫
v
drψn,k(r)∗

�

ım
∇ψn,k(r) = 1

�

∂En(k)

∂k
.

Now let us assume, that the point k0 is a band extremum. Then the linear terms in
the energy vanish and

En(k) = En(k0) + �
2

2

(
1

M

)
μν

(k − k0)μ(k − k0)ν + · · ·

where
(

1

M

)
μν

= 1

m
δμν + 2

m2

∑
n′ �=n

< n, 0|�∇μ|n′, 0 >< n′, 0|�∇ν |n, 0 >

En(0) − En′(0)
+ · · ·

is the inverse effective mass tensor. In the case of the cubic symmetry with the
extremum at k0 = 0 this looks as
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En(k) = En(0) + �
2

2m∗ k
2 + · · ·

and one has an isotropic effective mass m∗. This effective mass may be positive
or negative, depending on the nature of the extremum (maximum or minimum).
Therefore, depending on the sign of the effective mass, the average velocity

〈v〉 = �

m∗ k

may be either in the direction of the wave vector k or opposite to it.
We have seen on the example of the one-dimensional Kronig-Penney model, that

band extrema occur at k = 0,±π
a . Most of the important properties of crystals are

determined by the extrema of some of the energy bands we shall discuss later.

2.3.7 Wannier Functions and Tight-Binding Approximation

A useful concept in the treatment of motion in a periodical potential are the Wannier
functions defined through the Bloch functions of a given band n by

wnR(r) ≡ 1√
N

∑
k∈BZ

ψn,k(r)e−ıkR = 1√
N

∑
k∈BZ

un,k(r)eık(r−R) .

They constitute a a complete orthonormalized system of functions

∫
Ω

drwnR(r)∗wn′R ′(r) = 1

N

∑
k,k ′∈BZ

eı(kR−k ′R ′)
∫
v
drψn,k(r)∗ψn′,k ′(r)

= 1

N

∑
k∈BZ

eık(R−R ′)δn,n′ = δn,n′δR,R ′

and ∑
n,R

wnR(r)∗wnR(r ′) = δ(r, r ′) .

The inverse transformation is

un,k(r) = 1√
N

∑
R

eık(r−R)wn,R(r) .

TheWannier functions however are not eigenfunctions of the Hamiltonian. If un,k(r)
is a smooth function of k, thenwnR(r) vanishes rapidly for |r − R| → ∞. Therefore,
while the Bloch eigenfunctions are delocalized, the Wannier functions are localized
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on the lattice nodes. Since theWannier functions are constructed only from the Bloch
functions of a single band and considering also the discrete translational invariance
on the lattice, the matrix elements of the Hamiltonian between theWannier functions
depend only on the vector R − R ′

< n,R|H |n′,R ′ >= δn,n′ tn(R − R ′) .

Therefore,

< n,R|H |n,k > = 1√
N

∑
R ′

< n,R|H |n,R ′ > e−ıkR ′

= 1√
N

∑
R ′

tn(R − R ′)eıkR
′

= eıkR
1√
N

∑
R ′

tn(R ′)eıkR
′
.

On the other hand

< n,R|H |n,k > = En(k) < n,R|n,k >

= En(k)
1√
N

∑
R ′

< n,R|n,R ′ > eıkR
′
.

= eıkREn(k)
1√
N

and therefore, inverting the relation we get

En(k) =
∑
R

eıkRtn(R) .

As an illustration, let us assume that in a cubic lattice of lattice constant a the
only non-vanishing tn(R) are those to the nearest neighbors

tn(0) = cn, tn(±ax ) = tn(±ay) = tn(±az) = −dn .

Then it follows,

En(k) = cn − 2dn(cos(kxa) + cos(kya) + cos(kza))

and in the vicinity of the origin

En(k) = cn − 6dn + dna
2k2 + . . .

This defines the effective mass by �
2

2m∗ = dna2.
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One approximates often the Wannier functions by the eigenfunctions of the iso-
lated atom φn(r) (“tight-binding approximation”)

wnR(r) ≈ φn(r − R) .

Within this approximation

ψn,k(r) = 1√
N

∑
R

e−ıkRφn(r − R)

or

un,k(r) = 1√
N

∑
R

eık(r−R)φn(r − R) .

It is however important to remark that the orthonormalization of these functions
is not fulfilled since

∫
Ω
drφn(r)∗φn′(r − R), however small, it does not vanish for

R �= 0. By this connection to the atomic wave functions one may speak about a
given band as characterized by a given symmetry of the underlying atomic states.
For example, s or p-like states, with their respective degeneracies.

2.3.8 Bloch Electron in a Homogeneous Electric Field

Let us consider a homogeneous electric field superimposed on the periodical poten-
tial. Thus, we have a supplementary term H ′ = −eEr in the Hamiltonian. The result-
ing potential looks like in Fig. 2.14. Let us choose the normalization of the Bloch
functions as

< k ′, n′|k, n >= v−1
BZδ(k − k ′)δn,n′ .

Since in the infinite volume limit N δk,k ′ → vBZδ(k − k ′), this normalization cor-
responds in the discretized version to < k ′, n′|k, n >= Nδk,k ′δn,n′ . Then

∫
drψk ′,n′(r)∗rψk,n(r) = ∫

dreı(k−k ′)rruk ′,n′(r)∗uk n(r)
= −ı ∂

∂k

∫
drψk ′,n′(r)∗ψk,n(r) + ı

∫
dreı(k−k ′)ruk ′,n′(r)∗ ∂

∂kuk,n(r)

= −ıv−1
BZ

∂
∂k δ(k − k ′)δn,n′ + ı

∑
R eı(k−k ′)R ∫

v dre
ı(k−k ′)ruk ′,n′(r)∗ ∂

∂kuk,n(r)

= −ıv−1
BZ

∂
∂k δ(k − k ′)δn,n′ + ıvBZδ(k − k ′)

∫
v druk,n′(r)∗ ∂

∂kuk,n(r).

If one ignores inter-band matrix elements as well as the intra-band energy correction
we get the approximate expression for the matrix elements of H ′:

< k ′, n′|H ′|k n >≈ −ıv−1
BZeE

∂

∂k
δ(k − k ′)δn.n′ .
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Fig. 2.14 A periodic potential and its modification due to a homogeneous electric field

Consequently, we obtain in the k space an effective one-band Hamiltonian (in each
band)

H ′
e f f ≡ E(k) − ıeE

∂

∂k

and in the same representation the following Heisenberg equation of motion for the
k-vector

�k̇ = eE

results.
Due to the periodicity of the band energy E(k), after a timeT = 2π�

eaE the electron
crosses the whole Brillouin zone and will be reflected at its boundary. Therefore,
unlike the accelerated motion of a free electron, the electron in a crystal performs
Bloch oscillations with the frequency ω = 2π

T . However, these oscillations in a real
crystal are not observable since due to the smallness of the lattice constant the Bloch
period T is much bigger than the relaxation time due to the interaction with other
perturbations of the lattice (phonons, impurities). The Bloch period itself cannot
be shortened by the increase of the field strength due to the here neglected inter-
band transitions, whichmay become important in strong electric fields. Nevertheless,
Bloch oscillation may be observed in artificial periodical semiconductor structures
with large lattice constants.

As in the case of the free electrons in a homogeneous fieldwemay reinterpret these
results in terms of stationary states (Wannier-Ladders). The stationary Schroedinger
equation within our approximations looks as

[
E(k) − ıeE

∂

∂k
− ε

]
ψ̃(k) = 0
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Fig. 2.15 Stationary state of the Wannier ladder

or
E
E

∂ ln ψ̃(k)

∂k
= ı

eE
(ε − E(k)) .

Choosing the field along the x-axis we get

ψ̃(k) = ψ̃(0,k⊥) exp

{
ı

eE

∫ kx

0
dqx (ε − E(qx ,k⊥))

}
.

We must still implement the periodic boundary condition for the wave function in
the k space. Taking into account the periodicity of the band energy E(k) (implying
the vanishing of its integral over the Brillouin zone). This is achieved by fixing the
eigenenergies

εm(k⊥) = eaEm + const. (m = 0,±1,±2, . . .) .

Then the difference between two successive energy levels is

εm+1(k⊥) − εm(k⊥) = eaE .

It corresponds to the energy associated to the Bloch frequency ω = 2π
T .

As an example, let us consider a simple one-dimensional Bloch spectrum E(k) =
Δ(1 − cos(ka)). Then εm = eaEm + Δ and the wave function in real space (illus-
trated in Fig. 2.15 for m = 0) is
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ψm(x) = const.
∫ π

a

− π
a

dk exp

{
−ık(x − ma) − ıΔ

eE
sin(ka)

}
.

2.4 Electronic Occupation of States in a Crystal

The occupation of the one-electron states in the periodical potential by as many
electrons as ions at low temperatures determines the nature of the solid.

2.4.1 Ground State Occupation of Bands. Conductors and
Insulators

We have discussed until now the nature of states of an electron in a crystal. However,
the properties of the material are essentially determined by the occupation of these
states. According to their electric conductance one classifies the crystals as metals
or insulators. On the basis of the discussed one-electron spectra of crystals one may
already understand the basic difference. The ground state of the electrons (T = 0)
in a crystal results from the successive occupation of the lowest one-electron states
in the bands. In this ground state corresponding to zero temperature, the highest
band may be either partially or completely filled. In the first case, a small external
perturbation can excite the electrons, while in the latter case, due to the forbidden
states above them (band gap), only a strong perturbation may excite them. The
partially filled band is called conduction band, while the last completely filled band
is called valence band. The first case defines a conductor (metal), while the second
defines an insulator (dielectric). The two situations are illustrated in the simple case
of a direct band gap, when both the maximum of the valence band and the minimum
of the conduction band lie at k = 0 on Fig. 2.16. The red color indicates the occupied
states in the bands.

Fig. 2.16 Band filling in metals and insulators
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However, there is a very important sort of dielectrics, the semiconductors. They
behave as insulators at very low temperatures, while at higher temperatures they
behave as conductors. In this case the band gap is so small, that at room temperatures
already a lot of electrons are thermally excited into the conduction band. In the
presence of impurity states in the band gap, we shall discuss later, the number of
excited electrons in the conduction band is evenmore important, and the conductivity
may be relevant even at low temperatures.

Beside the above discussed cases, by crystals with indirect gaps, where the maxi-
mum of the valence band and the minimum of the conduction band occur at different
values of k, it may happen, that the later lies higher than the former. This band
occupation at T = 0 of a semi-metal is schematically shown in Fig. 2.17.

2.4.2 Spin–Orbit Coupling and Valence Band Splitting

The discussion of the band-structure of crystals is treated usually within the frame
of the non-relativistic Schroedinger equation. However, there are often important
corrections to be made due to relativistic effects. Most of the so called direct gap
semiconductors, having the maximum of the valence band and the minimum of the
conduction band at k = 0, within this frame get a non-degenerate conduction band
and a threefold degenerate valence band. In a tight-binding approximation these may
be considered asmade up of s, respectively p atomic states. Of course, one has to take
into account also the spin degeneracy. However, actually the valence band states are
split due to relativistic effect of the spin-orbit interaction. This interaction is invariant
against simultaneous rotation of the orbital angular momentum l and of the spin σ .
Therefore, one has to classify the valence -band states according to the states of the
total angular momentum J ≡ l + σ . From them = 0,±1 orbital angular momentum
states and the σz = ± 1

2 spin states one has to construct the eigenstates of the total
angular momentum J = 3

2 , Jz = ± 1
2 ,± 3

2 and J = 1
2 , Jz = ± 1

2

Fig. 2.17 Band filling in a semi-metal



2.4 Electronic Occupation of States in a Crystal 35

Fig. 2.18 Split valence
bands
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The phenomenological effective-mass Luttinger Hamiltonian for the valence
bands used in applications for crystals having the cubic symmetry

H = − �
2

2m0

(
p2 + m1(pJ)2 + ΔJ (J + 1) − 5

4

)

describes three double degenerate valence bands around k = 0. In Fig. 2.18 such a
split valence-band structure is shown schematically.

2.5 Electron States Due to Deviations from Periodicity

2.5.1 Effective Mass Approximation

Let us consider a deviation from the crystalline periodicity due to a non-periodical
potential V (r) that varies slowly on the scale of the lattice constants. It may be due
to a defect in the lattice or a foreign atom. Then we may approximate

< n,R|V |n′,R ′ >=
∫

dxwnR(r)∗V (r)wn′R ′(r) ≈ V (R)δn,n′δR,R ′ .
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We may look for the eigenstates in the presence of both the periodical potentialU (r)
and this potential V (r) in terms of Wannier functions

1√
N

∑
R

χ(R)wnR(r) .

The eigenvalue equation then looks as

∑
R ′

(
Ẽ(R − R ′) + (V (R) − ε)δR,R ′

)
χ(R ′) = 0

with

Ẽn(R) ≡ tn(R) = 1

N

∑
k

En(k)eıkR .

On the other hand, if we introduce the interpolating function

χ(r) ≡
∑
k∈BZ

eıkrχ̃(k)

for all r, then

∑
R ′

Ẽ(R − R ′)χ(R ′) =
∑
k

En(k)χ̃(k)eıkR

=
∑
k

χ̃(k)En(−ı∇)eıkr|r=R = En(−ı∇)χ(r)|r=R .

Assuming that χ̃ (k) vanishes rapidly far away from the band extremum at k0, where
the expansion

En(k) ≈ En(k0) + �
2

2m∗ (k − k0)
2 + . . .

is valid and defining χ(r) = eık0rϕ(r) we get the Schroedinger equation with the
effective mass m∗

{
En(k0) − �

2

2m∗ ∇2 + V (r) − ε

}
ϕ(r) = 0 .

Under the above assumptions we have also

1√
N

∑
R

χ(R)wnR(r) ≈ ϕ(r)
1√
N

∑
R

eık0RwnR(r) = ϕ(r)un,k0(r) .
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2.5.2 Intrinsic Semiconductors at Finite Temperatures

Since the importance of semiconductors in modern technological applications is
overwhelming we devote more space to their discussion. Pure semiconductor mate-
rials, without impurities are called intrinsic. Here the last two relevant bands (valence
and conduction bands) are neither completely filled or empty at ordinary tempera-
tures. The electronic occupation of the Bloch-states with wave vector k and spin σ

in equilibrium at inverse temperature β is described by the Fermi distribution

fn,k,σ ≡ 〈nn,k,σ 〉 = 1

eβ(εn,k,σ −μ) + 1
.

It is meaningful to define the conduction band electrons as “true” electrons

f ek,σ ≡ fc,k,σ = 1

eβ(εc,k,σ −μ) + 1
,

while in the valence band it is useful to define the population by the holes (absence
of valence band electrons). With these definitions at T = 0 we have no holes and
no electrons i.e. an electron-hole vacuum. As we shall see later, this terminology is
extremely useful.

At the band edges of a direct gap semiconductor we have in the effective mass
approximation the electron energy (in the conduction band) as

εek = εc,k,σ = 1

2
Eg + �

2

2m∗
e

k2 (m∗
e > 0) ,

while we may define the energy of a hole (in the valence band) as

εhk = −εv,−k,−σ = 1

2
Eg + �

2

2m∗
h

k2 (m∗
h = −m∗

v > 0) .

This last definition corresponds to the fact that removing an electron of charge e < 0,
spin σ , wave vector k and energy εv,k,σ is equivalent to adding a particle with charge
−e > 0, spin−σ , wave vector−k and energy−εv,−k,−σ . Thus, holes may be looked
at as positively charged particles with positive effective mass. In a homogeneous
electric field, they would be accelerated accordingly.

The average number of conduction electrons and holes is the same i.e. the system
is electrically neutral ∑

k,σ

f ek,σ =
∑
k,σ

f hk,σ .

If the electron-hole occupation of states far away of the band extrema is negligible
one may extrapolate the effective mass approximation overall and we have in the
thermodynamic limit
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1

(2π)3

∫
dk

[
1

eβ( �2k2
2me

+ 1
2 Eg−μ) + 1

− 1

eβ( �2k2
2mh

+ 1
2 Eg+μ) + 1

]
= 0 .

Since the band gap is still much bigger than the thermal energy (βEg � 1) one may
approximate the Fermi distribution through its non-degenerate limit and therefore

1

(2π)3

∫
dk

[
e−β( �

2k2

2me
+ 1

2 Eg−μ) − e−β( �
2k2

2mh
+ 1

2 Eg+μ)

]
= 0 .

These integrals may be solved exactly and give rise to a chemical potential sitting in

the gap at μ = 3
4kBT ln

(
mh
me

)
and the average number of each of the newly defined

particles (carrier density) is

〈n0〉 = √
2π(memh)

3
4 (β�

2)−
3
2 e− 1

2 βEg .

2.5.3 Ionic Impurities

Let us see now what kind of modifications are introduced in the spectrum by putting
an extra positive or negative ion in the crystal. Obviously, a minor modification of
the continuous bands is not relevant. However, extra discrete states in the forbidden
gap may be very important. Therefore, vicinities of band extrema must be looked up.
Let us consider a positive ion in the origin. The stationary Schroedinger equation for
an electron in the effective mass approximation in the neighborhood of a conduction
band minimum is

{
Ec − �

2

2m∗ ∇2 − e2

ε|r| − ε

}
ϕ(r) = 0 (m∗ > 0) ,

where ε is the dielectric constant of the crystal and Ec denotes the energetic position of
the band minimum. The ground state energy of this hydrogen-like Coulomb problem
iswell-known to be given by theRydberg energy, heremodified by the replacement of
the electron mass by his effective massm∗ and the presence of the dielectric constant
ε of the semiconductor. The binding energy here is the distance of the discrete level
from the conduction band

ε − Ec = −ER

(
ER = �

2

2m∗a2B
; aB = ε�

2

m∗e2

)
.

The energy of this localized state therefore lies below the band minimum, also in
the gap.

In the case of a negative ion placed at the origin we may expect analogously a
new state in the band gap near a band maximum described by the equation
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Fig. 2.19 Localized states in the energy gap of a semiconductor

{
EV − �

2

2m∗ ∇2 + e2

ε|r| − ε

}
ϕ(r) = 0 (m∗ < 0) .

with a negative effective mass m∗. This may be rewritten as

{
−EV − �

2

2|m|∗ ∇2 − e2

ε|r| + ε

}
ϕ(r) = 0

giving rise to the ground state energy

ε − EV = +ER

lying in the gap above the band maximum. These states in the forbidden energy zone
as they are illustrated in Fig. 2.19 are extremely important in the case of semicon-
ductors.

In most of the semi-conducting crystals the dielectric constant is much greater
than unity and the effective mass is much smaller than the true electron mass and,
as a consequence, the Bohr Radius aB is much bigger than the lattice constant.
Thus, the assumption about the smoothness of the potential, as well as the use of
the macroscopic dielectric constant ε of the material are justified. On the other hand,
in a semiconductor the Rydberg energy is much smaller than the energy gap and of
course even much smaller than the hydrogenic Rydberg energy.
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2.5.4 Extrinsic Semiconductors at Finite Temperatures.
Acceptors and Donors

As we already discussed, foreign ions in a semiconductor crystal lattice give rise
to localized states in the band gap. On the other hand, one includes not ions, but
neutral atoms. The question is, what happens if the atom gets ionized and losses
or gains an electron in favor of the collectivized band electrons? A foreign atom
may create a localized state just below the conduction band and remain neutral in
the ground state. This would be interpreted as a positive ion state occupied by an
electron. Another possibility is to create a localized state just above the valence band.
Then in the ground state it will lose its electron in favor of the lower lying valence
band continuum. This would be interpreted as a positive unoccupied ion. In the first
case we speak about donors, while in the second about acceptors.

Bloch states with a given wave vector k may be occupied by two electrons of
opposite spin. Double occupation of localized states however, may be forbidden.
Indeed, the average Coulomb repulsion energy for two electrons on the same site is

U ≡ e2

ε

∫
dr

∫
dr ′ |ψ↑(r)|2|ψ↓(r ′)|2

|r − r ′|
In the case of the Coulomb ground state (l = 0, n = 1)

ψ↑(r) = ψ↓(r) = 1√
πa3B

e− r
aB

the integral may be solved analytically giving rise to

U = 5

8

e2

εaB
= 5

4
ER .

Therefore, the energy of the double occupied state may differ essentially from twice
the energy of the single occupation. In this case one may write the energy of the
donor state as in terms of its occupation by electrons as

ED(n↑, n↓) = εD(n↑ + n↓) +Un↑n↓ ; (n↑, n↓ = 0, 1) .

The average occupation at a finite temperature is given by

〈n↑〉 ≡ 〈n↓〉 =
∑

n↑=0,1

∑
n↓=0,1 n↑e−β[ED(n↑,n↓)−μ(n↑+n↓)]

∑
n↑=0,1

∑
n↓=0,1 e

−β[ED(n↑,n↓)−μ(n↑+n↓)]

and

〈n〉 ≡ 〈n↑〉 + 〈n↓〉 = 2
e−β(εD−μ) + e−β[2(εD−μ)+U ]

1 + 2e−β(εD−μ) + e−β[2(εD−μ)+U ] ≡ FD
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Fig. 2.20 The electron occupation FD of a donor state

instead twice of the Fermi function one would have without repulsion. This new
distribution is illustrated in Fig. 2.20

In the extreme case of very low temperatures U
kBT

→ ∞ it gives

〈n〉 = 2
e−β(εD−μ)

1 + 2e−β(εD−μ)
= 1

eβ(εD−μ−kBT ln 2) + 1
,

which looks like a Fermi function with a shifted chemical potential

μ → μ + kBT ln 2 .

Analogously we have for the positively charged holes on an acceptor level

EA(m↑,m↓) = εA(m↑ + m↓) +Um↑m↓ ; (m↑,m↓ = 0, 1)

with m↑, m↓ being the hole occupations. On has still to take into account that the
chemical potential for the holes is −μ is and εA = 1

2 Eg − ER .

The equation for the electro-neutrality in an extrinsic semiconductor looks there-
fore as

2
∑
k

f ek +
∑
D

FD − ND = 2
∑
k

f hk +
∑
A

FA − NA .

This equation may be solved for the chemical potential only numerically. As illus-
tration, we show on Fig. 2.21 the one electron state density and its occupation in an
n-type semiconductor with more donors (D) as acceptors (A) at T = 0. The green
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Fig. 2.21 State density in a compensated n-type semiconductor at T = 0

filling shows the (simple or double) occupation of the states. The donor states lying
higher in energy lose some of their electrons in favor of the acceptor sates.

2.6 Semiconductor Contacts

Until now we discussed only bulk properties of solids, however phenomena at the
interfaces play an overwhelming role in all solid-state devices. We describe in the
following two such simple cases: the penetration of a static electric field in a semi-
conductor and the contact between an n-type extrinsic semiconductor and a p-type
extrinsic semiconductor of the same crystal. In both cases thermal equilibrium is
assumed.

A consequent quantum-mechanical discussion of these problems would be
extremely difficult. A finite semiconductor is not a periodical crystal and the eigen-
states and eigenenergies differ from that of the infinite one. A simplified quasi-
classical approach however has proved to be very successful. We need to describe a
situation in which the quantum-mechanical nature of the crystals, as well as macro-
scopic inhomogeneities must be reconciled. The basic object here to consider is the
Wigner function depending on the momentum p and coordinate x. It is defined as

f (p, x, t) =
∫

dye
ıpy
� 〈ψ(x + 1

2
y, t)+ψ(x − 1

2
y, t)〉 ,

whereψ(x, t) is the second quantized wave function and 〈. . .〉means averaging over
a given ensemble. This implies the normalization

∫
dx

∫
dp

(2π�)3
f (p, x, t) = 〈N 〉 ,

where N is the operator of the total number of particles. It may be shown, that all the
averages of operators which are a sum of two operators O(x, �

ı ∇) ≡ A(x) + B(�

ı ∇)
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depending on the coordinate respectively on the momentum, may be expressed as
the integrals

〈O(x,
�

ı
∇)〉 =

∫
dx

∫
dp

(2π�)3
f (p, x, t)O(x,p) .

However, generally speaking f (p, x) is neither real, nor positive. Nevertheless, in
the quasi-classical limit (� → 0) it may be shown, that it will be real and positive.
The Hamiltonian of a particle in the presence of a potential U (x)

H = −�
2∇2

2m
+U (x)

has the above described structure.
One assumes tacitly, that the correspondingWigner function in this quasi-classical

limit, in thermal equilibrium is given again by the Fermi distribution

f (p, x) = 1

e
β
(

p2

2m +U (x)−μ
)
+ 1

.

in the phase space (x, p).

2.6.1 Electric Field Penetration into a Semiconductor

In a previous discussion we have admitted implicitly, that a homogeneous constant
electric field may be created in an infinite crystal. This is an extreme idealization. It
is well-known, that metals screen out static electric fields, while in a semiconductor
it may still penetrate at a finite macroscopic depth. We shall discuss here this last
case within the quasi-classical approach. Let us consider the surface of an intrinsic
semiconductor characterized by a dielectric constant ε and an equal number N of
electrons and holes in the macroscopic volume Ω . Their density in equilibrium n0
is determined by the band gap Eg and the temperature T and for Eg 
 kBT it is

n0 ≡ N/Ω ∼ e− Eg
2kB T .

Let us consider, that the semiconductor occupies the half space x > 0. The static
electric potential V(x) satisfies he Poisson equation outside

∇2V (x) = 0 (x < 0)

respectively inside the semiconductor

ε∇2V (x) = −4πρ(x) (x > 0) .
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where ρ(r) is the charge density of carriers (electrons and holes). In the presence of
an external electric field E the potential outside the semiconductor is

V (x) = −E x + const. (x < 0) .

While in the absence of the field the charge density vanishes, in the presence of the
field in equilibrium at a finite temperature it is determined self-consistently by the
potential itself. In a quasi-classical approach (at high temperatures) the Maxwell-
Boltzmann distribution gives the probability density of a state r, v in the phase space

f (v, x) = e−β( mv2

2 +eV (x))

∫
dv′ ∫ dx ′e−β( mv′2

2 +eV (x ′))
.

This defines the equilibrium charge density of electrons and holes as

ρe,h(x) = ±eN
e∓ eV (x)

kB T

∫
dr ′e∓ eV (x ′)

kB T

.

Under the assumption, that the potential vanishes deep in the semiconductor, the
integral in the denominator is proportional to the volume Ω and for a macroscopic
volume we get approximately

ρe,h(x) = ±en0e
∓ eV (x)

kB T

and for eV � kBT we have the charge density

ρ(x) = ρe(x) + ρh(x) = −2en0
eV (x)
kBT

.

Therefore, we get the self-consistent equation

ε∇2V (x) = 8πe2n0
kBT

V (x)

for the determination of the potential inside the semiconductor. By introducing the
Debye length

LD ≡
√

kBT ε

8πe2n0

the equation looks as
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Fig. 2.22 Penetration of the potential into the semiconductor

∇2V (x) − 1

L2
D

V (x) = 0

Now we must still consider the electromagnetic boundary condition

∂V (x)

∂x
|x=−0 = ε

∂V (x)

∂x
|x=+0 .

to connect the solutions inside and outside. This gives rise to

V (x) = E
LD

ε
e− x

LD

for x > 0 and it is illustrated in Fig. 2.22.
To conclude: Due to the screening by the carriers, the field penetrates at a depth

LD into the semiconductor. At room temperatures, this Debye length may be of order
of centimeters and therefore our macroscopic treatment, as well as the existence of
a more or less homogeneous electric field inside a semiconductor gets justified.

2.6.2 p-n Contact

Let us now consider the contact of two semiconductors of the same material, but one
of them is p-doped (i.e. with acceptors), while the other one is n-doped (i.e. with
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donors). Again, we consider the contact surface to be a plane transverse to the x-axis
at x = 0. On the left side is the p -type semiconductor, while on the right side the n
-type.

Since we want to discuss here both non-degenerate as well as degenerate cases,
we must use the quasi-classical Fermi distribution for fermions defined above.

So long the two semiconductors are kept apart, we have for the bulk materials a
homogeneous situation with the electro-neutrality condition for the electrons, holes
in the bands and the negative, respectively positive ionized acceptors and donors.

∫
dp

(2π�)3
( fe(p) − fh(p)) + n f A− = 0

in the p-material and

∫
dp

(2π�)3
( fe(p) − fh(p)) − nD f D+ = 0

in the n-material. (Here fe, fh and f A− , f D+ are the Fermi distributions of electrons
and holes in the bands, respectively on the donors and acceptors.) The chemical
potentials in these two equations μp and μn are of course different and μp < μn .

Now let us consider the simplest case of zero temperature (see Fig. 2.23). In the
ground state of the p-type semiconductor the valence band (edge - red line) is full
occupied, while the acceptor level (dotted blue line) and the conduction band (edge -
blue line) are empty, the chemical potential (green line) lies somewhere between the
valence band and the acceptor level. In the ground state of the n-type semiconductor

Fig. 2.23 Separated p and n semiconductors at T = 0
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Fig. 2.24 p and n semiconductors in contact at T = 0

the valence band (red) and the donor level (dotted red line) are occupied and the
chemical potential (green line) lies between the donor level and the conduction band.

When the contact between the semiconductors is established in thermal equilib-
rium at T = 0 one has a single system where the chemical potential μ must be the
same overall (green line). This is possible only if at the contact surface a potential
jump occurs as it is shown on Fig. 2.24.

Assuming the contact is defined by a plane transverse to the x -axis at x = 0, at
any finite temperature T one has an in-homogeneous charge density of electrons and
holes:

ρ(x) = e
∫

dp
(2π�)3

. ( fe(p,x) − fh(p,x)) − enDθ(x) f D+ (x) + enAθ(−x) f A− (x)

with

fe(p, x) = 1

e
β
(

p2

2me
+eV (x)+ 1

2 Eg−μ
)
+ 1

fh(p, x) = 1

e
β
(

p2

2mh
−eV (x)+ 1

2 Eg+μ
)
+ 1

and

f A− (x) = 1

eβ(EA+eV (x)−μ) + 1

f D+ (x) = 1 − 1

eβ(ED+eV (x)−μ) + 1
= 1

eβ(−ED−eV (x)+μ) + 1
.
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Here the reference energy choice was the middle of the gap and therefore EA and
ED are the distances to the center of the gap.

The potential V (x) has to be determined self-consistently from the Poisson equa-
tion

ε
d2

dx2
V (x) = −4πρ(x)

with the condition of continuity of the derivative of the potential at x = ±0:

d

dx
V (x)|x=−0 = d

dx
V (x)|x=+0

(since the dielectric constants of the twomaterials were assumed to be the same). The
potential energy has to be assumed also to be continuous and therefore V (−0) =
V (+0). To solve the Poisson equation (a second order differential equation) one
still needs two initial conditions. Usually one gives the initial value of the function
and its derivative in the initial point. Here the peculiarity of the physics defines two
different conditions to impose, namely the values at ±∞, that should correspond to
the situation in the separated semiconductors. These two conditions define uniquely
the solution, however these equations are not solvable analytically and the numerical
method to solve it must be correspondingly adapted.

We have seen before the solution for T = 0. For higher temperatures (in the
physically relevant situations this is just the room temperature) one may consider the
non-degenerate case, that simplifies essentially the equations.

Indeed in the non-degenerate case the charge density is given by

ρ(x) = e
∫

dp
(2π�)3

(
e
−β

(
p2

2me
+eV (x)+ 1

2 Eg−μ
)
− e

−β
(

p2

2mh
−eV (x)+ 1

2 Eg+μ
))

+ θ(x)enDe
β(ED+eV (x)−μ) − θ(−x)enAe

−β(EA+eV (x)−μ) .

The integrals over the momenta may be performed and we get

ρ(x) = en0ee
−β(eV (x)−μ) − en0he

β(eV (x)−μ)

− θ(x)en0De
β(eV (x)−μ) + θ(−x)en0Ae

−β(eV (x)−μ)

wheren0e =
(

2π�
2

kBTme

) 3
2
e−β 1

2 Eg , n0h =
(

2π�
2

kBTme

) 3
2
e−β 1

2 Eg andn0D = nDeβED ,n0A =
nAe−βEA . (Actually, only the non-degeneracy of the distribution in the bands is essen-
tial for this step!)
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Fig. 2.25 βeV (x) in the non-degenerate case (with c = 3)

We may require a total charge neutrality on both sides (no macroscopic polariza-
tion!). Taking into account that the potential differs from constants V (±∞) only in
a finite domain in the vicinity of the contact, we may write

e
(
n0ee−β(eV (−∞)−μ) − en0heβ(eV (−∞)−μ) + n0Ae

−β(eV (−∞)−μ)
) = 0

e
(
n0ee−β(eV (+∞)−μ) − eneβ(eV (+∞)−μ)

h − n0De
−β(eV (+∞)−μ)

)
= 0

So long the semiconductors were separated both equations were satisfied with
V (±∞) = 0 and the chemical potentials μp, respectively μn of the two materials
respectively.

After the contact has been established one may still choose V (−∞) = 0 and
therefore, since far away from the contact the position of the chemical potential
relative to the bands has to be the same as before, one must take μ ≡ μn . On the
other hand, the same must be true at x → ∞ for the other semiconductor. It follows,
that simultaneously μ ≡ μn + eV (∞). Therefore eV (∞) = μp − μn . Then, not
only the electro-neutrality is overall satisfied, but the charge density vanishes at
x → ±∞ and all the parameters are well defined.

The non-degenerate solution, obtained numerically for the simplified symmetrical
case of nA = nD shows, on a convenient length scale a smoothing of the potential
drop at the contact as in Fig. 2.25 with the choice c ≡ 1

2β(μn − μp) = 3.
To conclude, the p-n contact in equilibrium creates a potential barrier for the

carriers. An application of an external electric potential either lowers or increases
this barrier and therefore the current flow depends on the applied polarity. The p-n
contact acts as a rectifier.



Chapter 3
Electron-Electron Interaction

The potential a valence electron feels in a crystal is not a predetermined
one. The electrons interact with each other by Coulomb forces and the one-
electron theory is to be understood at most in the sense of a self-consistent
approximation.Diagrammatic perturbation theorymay lead to highermany-
body corrections. In a semiconductor an electron in the conduction band
may move “freely”, while in the valence band the same is true for the holes
(absent electrons). This leads to the picture of an electron-hole plasma. A
single electron-hole pair by Coulomb attraction may be bound to an exciton
with hydrogen-like spectrum.

3.1 The Exciton

3.1.1 Wannier Exciton

Until now we discussed the electron states and their occupation in a periodical lat-
tice under the assumption of no interaction between the electrons. We nevertheless
made an exception to correct the double occupation of the localized states. In this
chapter, we shall discuss other many-electron aspects. The next simplest problem is
the Coulomb attraction between a conduction band electron and a valence band hole
in a semiconductor. Obviously these two may form a bound state, called exciton. As
in the description of the impurity states we use the effective mass approximation in
the neighborhood of the band extrema. By separating the center of mass motion

Ψ (re, rh) = φ(rCM)χ(rrel)
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rCM ≡ m∗
ere + m∗

hrh
m∗

e + m∗
h

; rrel ≡ re − rh

φ(rCM) = 1√
V
eıkCMrCM ,

the relative motion is described by the Wannier equation

{
− �

2

2μ
∇2 − e2

ε|r| + Eg − E

}
χ(r) = 0

where the reduced mass is given by 1
μ

= 1
m∗

e
+ 1

m∗
h
. As it is well known from the

hydrogen atom problem, the eigenstates are characterized by the quantum numbers
n = 1, 2, . . . , l = 0, 1 . . . ,m = 0 ± 1, . . ., while the eigenenergies depend only on
the main quantum number n. The ground state wave function is

ψ1,0 = 1
√

πa
3
2
B

e− r
aB

with the ground state energy
Ex
n = Eg − ER ,

where the Bohr radius and the Rydberg energy are

aB = �
2ε

e2μ
, ER = e2

2εaB
= �

4

2μa2B
.

However, as we already discussed by the ionic impurity states, the scales of
energy and radius are essentially different from that of the hydrogen atom due to
the difference in the masses and the dielectric constant.

This state may not be represented in the one particle state density (it does not
belong to the one-electron states), but may be seen in the absorption spectrum. For
higher lying states of the pair the above described approximation is however not
appropriate.

3.1.2 Exciton Beyond the Effective Mass Approximation

We shall describe here an alternative way to treat the exciton states without using the
effectivemass approximation. TheHamiltonian of the conduction band electrons and
valence band holes of spin σ in the second quantization formalism may be defined
either through the creation/annihilation operators of the Bloch or of the Wannier
states
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H0 =
∑

σ=±1

∑
α=e,h

∑
k∈BZ

εα(k)a+
α,σ,kaα,σ,k

=
∑

σ=±1

∑
α=e,h

∑
R,R′

tα(R − R′)a+
α,σ,Raα,σ,R′ ; (α = e, h) .

Here εα(k) (α = e, h) are the band energies of electrons respectively, holes. The
Hamiltonian of the Coulomb attraction between the electrons and holes, while being
defined through the charge densities, is easily expressed in terms of the second
quantized wave functions

Heh = −
∑
σ,σ ′

∫
dx

∫
dx ′ψe,σ (x)+ψe,σ (x)

e2

|x − x′|ψ
+
h,σ ′(x′)ψh,σ ′(x′) .

The second quantized wave functions of conduction band electrons or valence band
holes of spin σ may be again defined through the annihilation/creation operators
either of Bloch states or Wannier states

ψα,σ (x) =
∑
k

eıkxuαk(x)aα,σ,k =
∑
R

wα(x,R)aα,σ,R ; (α = e, h).

In the Wannier version one may use the fact, that the Wannier functions are strongly
localized on the lattice nodes in order to introduce a simplifying approximation.
Namely, to retain in the charge density operator only the terms corresponding to the
local densities on the nodes i.e.

Heh ≈−
∑
σ,σ ′

∑
R,R′

∫
dx

∫
dx ′|we(x,R)|2 e2

|x − x′| |wh(x,R′)|2a+
e,σ,Rae,σ,Ra

+
h,σ,R′ah,σ,R′ .

Furthermore, since theCoulombpotential varies slowly on the scale of the elementary
cell we may even write

Heh ≈ −
∑

σ=±1

∑
σ ′=±1

∑
R 	=R′

e2

|R − R′|a
+
e,σ,Rae,σ,R′a+

h,σ ′,R′ah,σ ′,R

−
∑

σ=±1

∑
σ ′=±1

ceh
∑
R

a+
e,σ,Rae,σ,Ra

+
h,σ ′,Rah,σ ′,R .

Here we have separated the on-site terms R = R′ since in that case one has still to
compute the finite integral

ceh =
∫

dx
∫

dx ′|we(x,R)|2 e2

|x − x′| |wh(x,R)|2 .

One may encounter two extreme cases:
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(i) either the on-site term ceh dominates, and one may ignore the inter-site terms
(Frenkel exciton) with the lattice Hamiltonian

HFrenkel =
∑

σ=±1

∑
α=e,h

∑
R,R′

tα(R − R′)a+
α,σ,Raα,σ,R′

−
∑

σ=±1

∑
σ ′=±1

ceh
∑
R

a+
e,σ,Rae,σ,Ra

+
h,σ ′,Rah,σ ′,R ,

(ii) or the inter-site term dominates and we get the Wannier Hamiltonian

HWannier =
∑

σ=±1

∑
α=e,h

∑
R,R′

tα(R − R′)a+
α,σ,Raα,σ,R′

−
∑

σ=±1

∑
σ ′=±1

∑
R 	=R′

e2

|R − R′|a
+
e,σ,Rae,σ,R′a+

h,σ ′,R′ah,σ ′,R

Accordingly, in the Wannier case we get for the energy of a single electron hole
pair the Hamiltonian matrix

hR,R′ = te(R − R′) + th(R − R′) − e2

|R − R′| (1 − δR,R′)

or after a discrete Fourier transformation (implying that the wave vectors belong
to the Brillouin Zone)

hk,k′ = (εe(k) + εh(k))δk,k′ − V (k − k′)

with

V (q) =
∑
R 	=0

e2

|R|e
ıqR .

What we have gained is that now we included all the band states and therefore,
we may compute also, higher lying pair states influenced by the Coulomb attraction.
This is illustrated for theWannier case in Fig. 3.1 showing the calculated exciton state
density (electron-hole pair states) with and without Coulomb interaction in a cubic
crystal, within the simplified tight binding model with nearest neighbor coupling
(see Sect. 2.3.7). In the absence of Coulomb forces, one may remark in the middle
of the spectrum the sharp flat top (Van Hove singularity), which is a consequence of
the discontinuous jumps of the Brillouin zone.
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Fig. 3.1 Exciton state density in the whole band calculated within the Wannier model. (black—
without Coulomb interaction, blue-with Coulomb interaction)

3.2 Many-Body Approach to the Solid State

3.2.1 Self-consistent Approximations

Until nowwe have tried to describe the properties of crystals only within the frame of
one particle (or at most two-) particle states in the presence of a periodical potential.
This potential however may not be identified with the potential created by the lattice
of the bare ions, since the electrons at their turn screen the ions. Each electron sees
not only the ions, but also the other electrons. To apply the one-particle treatment
we need a way to define the periodical potential to be used for the calculation of the
band structure.

Themost important schemes for the treatment of quantummechanical many-body
systems are the self-consistent approximations we describe here. Within this frame it
is possible also to precise the definition of the periodic potential. (In what follows, for
the simplicity of notations, we include the coordinate r as well as the spin σ = ± 1

2
in the generalized coordinate x , whenever it is meaningful.)

We consider here a system of electrons interacting through repulsive Coulomb
forces in the presence of an external potential U (x). The later one includes the
attractive Coulomb potential of the positive ions, supposed to stay on a periodical
lattice. The dynamics of the ions will be treated later in the chapter about phonons.
Within the second quantized formalism (see Chap.9) the Hamilton operator of this
system is
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H =
∫

dxψ(x)+
[
− �

2

2m
∇2 +U (x)

]
ψ(x)

+ 1

2

∫
dx

∫
dx ′ψ(x)+ψ(x ′)+

e2

|x − x ′|ψ(x ′)ψ(x) .

The purpose is to reduce the problem in a first approximation to an effective one-
particle one (consisting only of products of two creation-annihilation operators) in
order to be tractable and close to the previous discussion of the quantum-mechanical
motion one-particle in a periodical potential.

The simplest scheme consists in “developing” the product of two operators A and
B around their averages. Let us consider the identity

AB = A〈B〉 + 〈A〉B − 〈A〉〈B〉 + (A − 〈A〉)(B − 〈B〉) .

Or, ignoring the “fluctuation” around the average values

(A − 〈A〉)(B − 〈B〉)

we have
AB ≈ A〈B〉 + 〈A〉B − 〈A〉〈B〉

Using this approximation for the choice A ≡ ψ(x)+ψ(x) and B ≡ ψ(x ′)+ψ(x ′) in
the interaction term we get the one-electron type Hartree Hamiltonian

HH ≡
∫

dxψ(x)

{
− �

2

2m
∇2 +UH

ef f (x)

}
ψ(x) + constH

with the effective Hartree potential

UH
e f f (x) ≡ U (x) +

∑
σ ′

∫
dx ′ e2

|x − x ′| 〈ψσ ′(x ′)+ψσ ′(x ′)〉

and the Hartree constant

constH = −1

2

∫
dx

∫
dx ′ e2

|x − x ′| 〈ψσ (x)+ψσ (x)〉〈ψσ ′(x ′)+ψσ ′(x ′)〉 .

This constant ensures that 〈HH 〉 = 〈H〉.
Until now we did not specify the meaning of the averages themselves. They may

be defined by their equilibrium values i.e.

〈ψ(x)+ψ(x)〉0 ≡ 1

Tr
{
e−β(HH −μN )

}Tr {
e−β(HH −μN )ψ(x)+ψ(x)

}



3.2 Many-Body Approach to the Solid State 57

and computed from this definition self-consistently. The result is a temperature depen-
dent effective one-particle spectrum with Hartree eigenfunctions and eigenvalues

{
− �

2

2m
∇2 +UH

e f f (x)

}
φ(x) = εφ(x) .

The resulting effective Bloch spectrum in the presence of only a periodical poten-
tial due to the fixed ions is therefore relevant for a given temperature. The potential
to be used in calculations of the Bloch functions and band spectrum in a real crystal
is this self-consistent one. One uses mostly the zero temperature (ground state) as
reference state.

However, on may tackle also a time dependent problem within a s.c. approx-
imation, with time dependent averages 〈ψ(x)+ψ(x)〉t with initial conditions and
additional non-periodical external potentials. In this case the Hartree Hamiltonian
is implicitly time dependent. Nevertheless, if the external potential does not depend
on time, the average energy is conserved (again due to the special role of the time-
dependent Hartree constant!)

∂

∂t
〈HH (t)〉t = 0 .

The choice of the operators A and B in our former reasoning was arbitrary.
The proper argument is, that as it may be shown, the Hartree choice gives the best
one-particle approximation for the grand canonical distribution conserving the total
number of fermions and being diagonal in the coordinates and spin.

An ever better one particle approximation for the grand canonical distribution is
the Hartree-Fock one, allowing also for terms non-diagonal in the coordinates and
spins. The former simple arguing however cannot provide for it, The Hartree-Fock
approximation implies a non-diagonal effective potential

HH F ≡ −
∫

dxψ(x)
�
2

2m
∇2ψσ (x) +

∫
dx

∫
dx ′ψ(x)+UH F

ef f (x, x ′)ψ(x ′) + constH F

defined as

UH F
ef f (x, x ′) ≡ δ(x − x ′)

∫
dy

(
e2

|x − y| 〈ψ(y)+ψ(y)〉
)

− e2

|x − x ′| 〈ψ(x ′)+ψ(x)〉

with the Hartree Fock constant

constH F ≡ 1

2

∫
dx

∫
dx ′ e2

|x − x ′| ×
[〈ψ(x)+ψ(x)〉〈ψ(x ′)+ψ(x ′)〉 − 〈ψ(x)+ψ(x ′)〉〈ψ(x ′)+ψ(x)〉]
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Again, itmaybe shown, that 〈HH F 〉 = 〈H〉 and its time-dependent variant conserves
the average energy in the absence of time dependent external potential. The new
Coulomb term containing the non-local average 〈ψ(x ′)+ψ(x)〉 is called Coulomb
exchange energy.

In both schemes, one has reduced the many-body problem to a self-consistent
one particle problem. However, for the treatment of some phase transitions with
spontaneous symmetry breaking of the particle number conservation (like in the
case of Bose condensation or superconductivity we shall discuss in Chap. 7) one
needs generalizations of the Hartree-Fock scheme in keeping also particle number
non-conserving averages as 〈ψ(x ′)ψ(x)〉.

3.2.2 Electron Gas with Coulomb Interactions

As a simple illustration of the Hartree-Fock approximation we consider here a gas of
electrons that interact through Coulomb forces, without any periodical potential at
zero temperature (ground state). To stabilize the system without losing translational
invariance one needs however to consider a uniform positive background to replace
the positive ions. In the absence of a magnetic field we have spin independence and
therefore,

〈ψσ (r)+ψσ ′(r ′)〉 = δσ,σ ′η(r r ′)

while from the homogeneity it follows

η(r, r ′) ≡ η(|r − r ′|).

Then the Hartree-Fock Hamiltonian is

HH F =
∑
σ,σ ′

∫
dr

∫
dr ′ψσ (r)hH F

σσ ′ (r, r ′)ψσ ′(r ′)

hH F
σσ ′ (r, r ′) = δσσ ′

{
h0(r, r ′) + δ(r − r ′)

∫
dr ′′ 〈n〉e2

|r − r ′′| − e2

|r − r ′|η(r − r ′)
}

with

h0(r, r ′) ≡ δ(r − r ′)
(

− �
2

2m
∇2 + V+

)
.

The term

V+ = −〈n〉e2
∫

dr ′ 1

|r ′|
represents the Coulomb potential energy due to the uniform positive background
charge and 〈n〉 is the average density of electrons (〈n〉 = 2η(0)).
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Of course, all the homogeneity assumptions are true only in an infinite system and
this constant potential energyV+ is divergent.However,we keep for awile the volume
finite and as we shall see, this diverging entity will compensate other inherently
diverging entities. Without the positive background contribution, the positive energy
the Coulomb repulsion between the electrons would push them far away, without
reaching a stable state.

Due to the homogeneity, the Hartree-Fock eigenfunctions have to be plane waves

φk(r) = 1√
Ω

e−ıkr

and therefore with the step-like Fermi function θ(kF − |k|) at T = 0 the average
density is

〈ψσ (r)+ψσ ′(r ′)〉 ≡ δσ,σ ′
1

Ω

∑
|k|<kF

eık(r−r ′) .

Then the Hartree-Fock eigenvalue equation
⎧⎨
⎩− �

2

2m
∇2 − V+ + 1

Ω

∑
|k ′|<kF

∫
dr ′ e2

|r − r ′|
[
2 − eı(k−k ′)(r−r ′)

]⎫⎬
⎭ e−ıkr = Eke

−ıkr

just defines the energy eigenvalues Ek as

Ek = �
2k2

2m
− e2

Ω

∑
|k ′|<kF

∫
dr ′eı(k

′−k)(r−r ′) 1

|r − r ′| .

Using the (improper) definition of the Fourier transform of the Coulomb potential
by the limit procedure

lim
κ→0

∫
dr

e2e−κr

r
eıqr = 4πe2

q2

one gets finally

Ek = �
2k2

2m
− e2kF

4π

(
2 + k2F − k2

kkF
ln

∣∣∣∣k + kF
k − kF

∣∣∣∣
)

.

The total average energy of an electron of the Coulomb electron gas (per spin)
differs from that of the free electron gas in the ground state 3

5 EF

〈E〉 ≡
∑

|k|<kF
Ek∑

|k|<kF
1

= 3

5
EF − 3e2kF

8π

by the “exchange energy” − 3e2kF
8π .
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Fig. 3.2 Exchange correlation function

The “exchange correlation function” given by

1

n
η(r)= 1

n

∑
σ

< ψσ (0)+ψσ ′ (r) >= 1

Ω

∑
|k|<kF

e−ıkr =− 3

2(kFr)3
(kFr cos kFr − sin kFr)

defines the probability amplitude to find an electron at the distance r ≡ |r| as function
of the variable kFr and it looks as in Fig. 3.2.

3.2.3 The Electron-Hole Plasma

While the previously described model is used with reference to metals, the model
of a Coulomb interacting electron-hole plasma we describe here tries to catch the
main many-body aspects in a semiconductor. We have seen, that unoccupied elec-
tron states in a valence band with negative effective mass act as positively charged
particles (holes) with positive effective mass. The negatively charged electrons in the
conduction band (from now on just called—electrons, if not otherwise specified) and
the positively charged holes interact by Coulomb forces. The Hamiltonian of such a
plasma in terms of the second quantized wave functions of elections and holes

ψe,σ (r) =
∑
k

1√
Ω

eıkraekσ ; ψh,σ (r) =
∑
k

1√
Ω

eıkrahkσ
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is given by

H =
∑
k,σ

(
�
2

2me
k2 + 1

2
Eg)a

+
e,k,σae,k,σ +

∑
k,σ

(
�
2

2mh
k2 + 1

2
Eg)a

+
h,k,σah,k,σ + E0

+ 1

2

∑
σ,σ ′

∫
dr

∫
dr ′ e2

|r − r ′|
{
ψe,σ (r)+ψeσ ′(r ′)+ψeσ ′(r ′)ψeσ (r)

+ ψh,σ (r)+ψhσ ′(r ′)+ψhσ ′(r ′)ψhσ (r)

− 2ψe,σ (r)+ψeσ (r)ψ+
hσ ′(r ′)ψhσ ′(r ′)

}
.

Here one ignores the Bloch character of the wave functions. The electrons and holes
are considered just as free propagating particles. This Hamiltonian conserves the
number of electrons Ne as well as of the holes Nh , while the original Coulomb
interaction of the conduction and valence band electrons

1

2

∫
dx

∫
dx ′ψ(r)+ψ(r ′)+

e2

|r − r ′|ψ(r ′)ψ(r)

conserves the total number of electrons in both bands, or otherwise stated it only con-
serves the difference between the number of electrons and holes Ne − Nh . Indeed, the
second quantized wave function of conduction and valence band electrons is by def-
inition ψσ (x) = ψe,σ (x) + ψh,−σ (x)+ and therefore, the Coulomb interaction term
contains not only conduction band electron and valence band hole charge densities,
but also mixed (“exchange”) terms.

However, since the Coulomb potential varies slowly within the elementary cell,
these terms are small. The matrix element of a function F(r) between Bloch states
may be written as a sum of integrals over the elementary cell v

∫
druα

k(r)
∗uβ

k ′(r)F(r) =
∑
R

∫
v

druα
k(r)

∗uβ

k ′(r)F(r)

If the function F(r) varies slowly within the elementary cell, then we may replace
it by its value in the cell (v) i.e. we get

≈
∑
R

F(R)

∫
v

druα
k(r)

∗uβ

k ′(r)

and further at small wave vectors

≈
∑
R

F(R)

∫
v

druα
0 (r)

∗uβ

0 (r) = δα,β

∑
R

F(R) .

In the electron-hole plasma model ignored “exchange” terms contain such integrals
with α 	= β and therefore may be neglected.
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Nevertheless, as we shall see later, the interaction with electromagnetic fields
(photons) may create or annihilate electron-hole pairs and this is the basic process
in the optics of semiconductors.

3.2.4 Many-Body Perturbation Theory of Solid State

Beyond the Hartree-Fock approximation one has at disposal just the diagrammatic
perturbation theory to improve it. Of course, within this frame one has developed
sophisticated methods, but the first question is how to start. In solid state theory, it
seems not too clever to consider themotion of the electrons in the field of the rigid ions
as the unperturbed problem and to treat the Coulomb interaction as a perturbation. A
better way is to start from the Hartree-Fock approximation and treat the difference
to the true Hamiltonian as perturbation. According Sect. 3.2.1

H ′ = H − HH F = 1

2

∫
dx

∫
dx ′ e2

|x − x ′|
{
ψ(x)+ψ(x ′)+ψ(x ′)ψ(x)

− 2〈ψ+(x ′)ψ(x ′)〉ψ+(x)ψ(x) + 2〈ψ+(x ′)ψ(x)〉ψ+(x)ψ(x ′)
+ 〈ψ+(x)ψ(x)〉〈ψ+(x ′)ψ(x ′)〉 − 〈ψ+(x ′)ψ(x)〉〈ψ+(x)ψ(x ′)〉}

In terms of the Hartree-Fock one-electron eigenstates φν(x) the second quantized
wave function of the electron in the crystal is

ψ(x) =
∑

ν

Aνφν(x)

with Aν being the annihilation operator of the electron state with quantum number
ν. This quantum number may be the band index and wave vector of a Bloch state,
but we do not need to specify it here. In terms of these operators the Hartree-Fock
Hamiltonian is

HH F =
∑

σ

∑
ν

εν A
+
ν,σ Aν,σ + const.H F

We choose the Hartree-Fock ground state (T = 0) for the averages. also all the states
with energy below the Fermi energy εν < εF being occupied, while above it are all
empty. The averages themselves are then

〈ψ+(x)ψ(x ′)〉 =
∑

ν

φ∗
ν (x)φν(x

′)θ(εF − εν)

Now it is useful to introduce new electron-hole annihilation (and creation) oper-
ators ae,ν (for εν > εF ) and ah,ν (for εν < εF ) by
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Aν =
{
ae,ν (εν > εF )

a+
h,ν̃

(εν < εF )

For theBloch indices, ifν =n,k, σ the conjugate quantumnumber is ν̃ = n,−k,−σ .
Within the new description themany-body ground state |0 > is the electron-hole vac-
uum

ae,ν |0 >= 0; ah,ν |0 >= 0 .

If one expresses the perturbation H ′ in terms of the electron-hole creation-
annihilation operators and performs all the necessary commutations such, that all
the electron-hole annihilation operators aν are on the right side, while the creation
operators a+

ν are on the left side, then one may see that all the supplementary terms
disappear. In other words, the Coulomb terms are equivalent to the “normal ordered”
Coulomb interaction

H ′ = 1

2

∫
dx

∫
dx ′ e2

|x − x ′|N
[
ψ(x)+ψ(x ′)+ψ(x ′)ψ(x)

]
.

Besides the simplicity of the formulation, the normal ordering helps within the
many body perturbation theory to simplify the Feynman diagram technique bor-
rowed from the relativistic quantum field theory. We do not develop here this rather
sophisticated technique, although it has broad and successful applications.

However, we have to stress that the similarity of the two theories is rather lim-
ited and from the strict mathematical point of view both stay on a shaky ground.
Besides the questions about convergence, both are plagued by diverging integrals at
high momenta (“ultraviolet divergences”) as well as at very low momenta (“infrared
divergences”).

The ultraviolet problems are tackled in quite a different way. In the non-relativistic
many body theories one restricts the integration domains by physically relevant
momenta appropriate for the system one is modeling. In the case of the electrons in a
crystal this is the Brillouin zone. Such kind of theories are called “cut-off” theories.
Here the “bare” (unrenormalized i.e. in the absence of the interaction) electron and
hole masses me, mh , as well as the electron charge e are the experimental ones.
On the contrary, in the quantum electrodynamics the divergences are eliminated by
the so-called renormalization procedure admitting that actually the “bare” (input)
parameters are infinite and the renormalized ones are fixed to give the finite physical
electron charge and mass.

In what concerns the infrared divergences the problem has no simple solution due
to the fact that in quantum electrodynamics one cannot differentiate the case without
photon emission from the case of emission of several photons of zero momentum.
Anyway, in the non-relativistic theory one has to take into account, that the Coulomb
potential has no true Fourier transform, but only in the sense of the κ → 0 limit of
a Yukawa potential 1

r e
−κr .



Chapter 4
Phonons

The ions forming the attractively acting lattice are not rigid. At least their
oscillations around the rigid lattice positions have to be taken into account.
These oscillation may be quantized and interpreted as bosonic particles
called acoustical or optical phonons with typical spectra. Even a classi-
cal description of the phonons gives rise to important predictions as the
Lyddane-Sachs-Teller formula. In a quantum mechanical approach to opti-
cal transitions assisted by phonons one may understand the Franck-Condon
effect.

4.1 Lattice Oscillations

Until nowweconsidered the ions as fixed positive point-like charges, positioned at the
sites R + ξ s (s = 1 . . . S), where R is a vector of the Bravais lattice, while ξ s shows
the position of a given ion within the elementary cell containing S ions. Actually, the
ions are free to move away from their equilibrium positions with deviations u(R, s)
(here still classical !). For small deviations one may develop the potential energy
U of the lattice in a power series of these deviations. Up to a constant defining
the ground state energy, the lowest term in this series must be quadratic, since the
equilibrium corresponds to a stable minimum. Thus

U = 1

2

∑

R,s

∑

R ′,s ′
Φ

μν

ss ′ (R − R ′)uμ(R, s)uν(R ′ s ′) + . . .

where Φ
μν

ss ′ (R − R ′) is a real symmetric

Φ
μν

ss ′ (R) = Φ
νμ

s ′s (−R)
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positive defined matrix (Φ ≥ 0 means non-negative eigenvalues).
Since a constant shift does not change the energy

∑

R,s

Φ
μν

ss ′ (R) =
∑

R,s

Φ
μν

s ′s (R) = 0 .

One gets the classical Lagrange function L = T −U of the lattice by considering
also the kinetic energy of the lattice

T = 1

2

∑

R,s

ms u̇(R, s)2 ,

where ms is the mass of the ion designed with the index s.
In terms of discrete Fourier transforms

u(R, s) = v

(2π)3

∫

BZ
dqeıqRũs(q); Φ̃

μν

ss ′ (q) = v

(2π)3

∫

BZ
dqeıqRΦ

μν

ss ′ (R)

retaining only the quadratic terms of the potential energy we have

L = v

2(2π)3

∫

BZ
dq

{
S∑

s=1

∑

μ

ms
˙̃uμ
s (q)∗ ˙̃uμ

s (q) −
S∑

s,s ′=1

∑

μ,ν

ũμ
s (q)∗Φ̃(q)

μν

ss ′ ũν
s ′(q)

}

with
Φ̃(q)

μν∗
ss ′ = Φ̃(q)

νμ

s ′s ; Φ̃(q)
μν∗
ss ′ = Φ̃(−q)

μν

ss ′ ; Φ̃(q) ≥ 0 .

Absorbing the mass factor by

η̃μ
s (q) ≡ √

msũ
μ
s (q) ; M̃(q)

μν

ss ′ ≡ 1√
msms ′

Φ̃(q)
μν

ss ′

we get

L = v

2(2π)3

∫

BZ
dq

{
S∑

s=1

∑

μ

˙̃ημ
s (q)∗ ˙̃ημ

s (q) −
S∑

s,s ′=1

∑

μ,ν

η̃μ
s (q)∗M̃(q)

μν

ss ′ η̃
ν
s ′(q)

}
,

where the new matrix M̃ has the same properties of symmetry, realness and posi-
tiveness as Φ̃.

This whole quadratic form may be brought to a diagonal one with the transfor-
mation, that diagonalizes the potential energy, with positive eigenvalues ωλ(q)2 and
one may see that the Lagrangian describes a sum of oscillators of unit mass with
eigenfrequencies ωλ(q) = ωλ(−q).

The quantization of the lattice corresponds therefore to the quantization of these
oscillators. As it is well known, this leads to a quantum mechanical Hamiltonian
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that may be formulated in terms of the creation and annihilation operators b†λq, bλq

and the respective oscillator frequencies ωλ(q). It is convenient to impose cyclical
boundary conditions in order to deal with a discrete spectrum having the proper
number of degrees of freedom. Then the quantized lattice Hamiltonian is

H =
∑

q∈BZ

∑

λ

�ωλqb
†
λqbλq

with the bosonic commutation relations

[
bλq, bλ′q′

] = 0
[
bλq, b

†
λ′q′

]
= δλ,λ′δq,q′ .

The quantized deviations from the equilibrium positions at their turn are

u(R, s) =
∑

q

∑

λ

eıqR
√

�

2msωλ,q
χ (λ)
s (q)

(
bλ,q + b†λ,−q

)
,

where χ (λ)
s (q) are the orthonormalized eigenfunctions of the Matrix M̃

∑

ν,s ′
M̃(q)s,s ′χ

ν(λ)
s ′ (q) = ω2

λ,qχ
μ(λ)
s (q); (λ = 1, . . . 3S) .

Due to the invariance against a common translation discussed before it follows,
that

S∑

s ′=1

M̃(0)μν

s,s ′
√
ms ′ = 0

and
S∑

s=1

√
ms M̃(0)μν

ss ′ = 0 .

While the first equation shows that there are at least 3 eigenfrequencies that vanish
at q = 0, called acoustical modes, the second equation shows, that if an eigenvalue
does not vanish in the origin, then the eigenstate must fulfill he relation

S∑

s=1

√
msχ

(λ)
s (0) = 0; (λ = 4, . . . 3S − 3)
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or
S∑

s=1

msu(λ)
s (0) = 0; (λ = 4, . . . 3S − 3).

This means that the center of mass by these oscillations, called optical modes,
remains unchanged.

4.2 Classical Continuum Phonon-Model

In applications, it is useful to use a simplified continuum-model for phonons with a
simple phonon spectrum. The local deviations u(r) are defined then in every space
point r.

The prototype classical Lagrange function for acoustical phonons is

Lacc = 1

2v

∫
drm

3∑

μ=1

{
u̇μ(r)2 + c2

3∑

ν=1

(∂νuμ(r))2
}

or in Fourier transforms

Lacc = 1

2

∫
dqm

3∑

μ=1

{ ˙̃uμ(q)∗ ˙̃uμ(q) + c2q2ũμ(q)∗ũμ(q)
}

.

Obviously, here a linear acoustical phonon spectrum ωac(q) = cq was assumed
(with c being here the sound velocity in the medium).

To model optical phonons, one considers the classical Lagrange function

Lopt = 1

2v

∫
drm

3∑

μ=1

{ ˙̃uμ(r)2 − ω2
0ũμ(r))2

}

or in Fourier transforms

Lopt = 1

2

∫
dqm

3∑

μ=1

{ ˙̃uμ(q)∗ ˙̃uμ(q) − ω2
0ũμ(q)∗ũμ(q)

}
.

Here the optical phonon spectrum was taken just to be constant ωopt (q) = ω0. In
both cases one must take into account, that the total number of degrees of freedom
(per volume!) should corresponds to that of the crystal and therefore one cuts of the
wave vectors by the Debye wave vector (q < qDebye) defined by
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4π

3
q3
Debye ≡ 1

v

with v being the volume of the elementary cell.

4.2.1 Optical Phonons in Polar Semiconductors

The optical lattice deviations lead to local electric dipoles. This local polarization in
the classical continuum model is given by

P(r) = κe

v
u(r) ,

where κ is the polarisability of the elementary cell. The corresponding polarization
charge density is

ρpol(r) = −∇ · P(r) = −κe

v
∇ · u(r)

and the Poisson equation in the presence of a stationary external charge density
ρext (r) looks as

ε∞∇2V (r) = −4π
(
ρpol(r) + ρext (r)

)

with ε∞ being the dielectric constant due to the electronic background.
Alternatively, for low frequencies it shall look as

ε0∇2V (r) = −4πρext (r)

where ε0 is the total dielectric constant. The notation stems from the assumption,
that at high frequencies only the light electrons contribute to the dielectric properties,
while for low frequencies both the electrons and ions contribute. As we shall see,
relating the polarization charge density to the potential allows for the identification
of the total dielectric constant.

In the inhomogeneous situation due to the presence of an external charge density
the Lagrange function contains supplementary Coulomb terms

L = 1

2v

∫
drm

3∑

μ=1

{
u̇μ(r)2 − ω2

0u
μ(r))2

}

− 1

ε ∞

∫
dr

∫
dr ′ 1

|r − r ′|
(
1

2
∇P(r)∇′P(r ′) − ∇P(r)ρext (r ′)

)
.

Now let us split the local deviations u(r) into longitudinal and transverse modes

u(r) = ul(r) + ut (r)
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ul(r) = −∇
∫

dr ′ ∇′u(r ′)
4π |r − r ′| ; ∇ut = 0; ∇ul = ∇u .

One gets the equations of motion for these modes through the Euler-Lagrange
equations by using the identity

∇2 1

|r| = −4πδ(r)

and they look as
∂2

∂t2
ut = −ω2

T Out

∂2

∂t2
ul = −ω2

LOul + κe

m
Eext

with

ω2
T O ≡ ω2

0; ω2
LO = ω2

0 + 4πκ2e2

ε∞vm
.

In a stationary regime (thermal equilibrium) in the presence of a stationary external
charge density it follows

ul = κe

mω2
LO

Eext

and

ρpol = − κ2e2

vmω2
LO

∇Eext = − 4πκ2e2

vmω2
LOε∞

ρext ; (ε∞∇Eext = 4πρext ) .

If one inserts this result into the Poisson equation one may identify

ε∞
ε0

= 1 − 4πκ2e2

vmω2
LOε∞

= 1

ω2
LO

(
ω2
LO − 4πκ2e2

ε∞vm

)

and one gets the Lyddane-Sachs-Teller relationship

ωLO

ωT O
=

√
ε0

ε∞
.

Now let us introduce an arbitrary external time dependent electromagnetic field
Eext(t). Then the equation of motion looks as

∂2

∂t2
u(t) = −ω2

0u(t) + κe

m
E(t) ,
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whereby the electric field E(t) includes also the longitudinal field produced by the
dipoles

E(x, t) = Eext (x, t) + ∇
∫

dx′ ∇′P(x′, t)
|x − x′| .

Abovewe took into account that the interaction energy of our dipoleswith the total
electric field may be brought to the form− κe

v

∫
dxu(x)E(x, t). After a Fourier trans-

formation in the time variable t it follows for the frequency dependent susceptibility
for both modes

χT,L(k, ω) = α2e2

vm

1

ω2
0 − ω2

,

or for the frequency dependent dielectric function

ε(ω)L ,T = ε∞
(
1 + 4πα2e2

ε∞vm

1

ω2
0 − ω2

)
= ε∞

ω2
LO − ω2

ω2
T O − ω2

.

4.2.2 Optical Eigenmodes

Starting from the above dielectric function we look now for possible electromagnetic
eigenoscillations in such a medium. Since the system is homogeneous and isotropic,
by using Fourier transforms it is useful to split the electromagnetic fields in their
longitudinal, respectively transverse parts. The Maxwell equations for the magnetic
B, respectively electric field E and the polarization P look in their components as

B(k, ω)L = 0

B(k, ω)T = ck

ω
E(k, ω)T

ıkε∞E(k, ω)L = −4π ık P(k, ω)L + 4πρext (k, ω)

(k2 − ε∞
ω2

c2
)E(k, ω)T = 4πω2

c2
P(k, ω)T − ı4πω

c2
j ext (k, ω)T .

With

P(k, ω) = 1

4π
(ε(k, ω) − ε∞)E(k, ω)

and the previously deduced dielectric function it follows, that in the absence of exter-
nal sources the homogeneous Maxwell equations still have non-vanishing solutions.
For ω = ωLO there is a non-trivial longitudinal solution for any k = |k|, while non-
trivial transverse solutions exist only for ω, k pairs that are solutions of the equation
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Fig. 4.1 Optical eigenmodes
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k2 − ε∞
ω2

c2
ω2
LO − ω2

ω2
T O − ω2

= 0

shown in Fig. 4.1. Such transverse fields are propagating mixed photon and LO-
phonon modes.

4.2.3 The Electron-Phonon Interaction

4.2.3.1 The Franck-Condon Effect

Let us suppose, that one has two localized electronic states of energies ε1 and ε2 on
the same site and one of them is electrically neutral while the other one is electrically
charged. In a polar semiconductor, this local charge density is coupled to the optical
phonons. The energy of the system of electron and phonons (seen as a classical
oscillator with coordinate Q) may be characterized schematically by the potential
energies of the two states

E1(Q) = ε1 + 1

2
m(Q̇2 + ω2

LO Q
2)

E2(Q) = ε2 + 1

2
m(Q̇2 + ω2

LO Q
2) − gQ .

The energy of the second state may be rewritten as

E2(Q) = ε2 + 1

2
m

(
Q̇2 + ω2

LO(Q − Q0)
2 + ω2

LO Q
2
0

)
,

where mω2
LO Q0 = g. This means that the potential energy of the phonons gets

shifted.
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Fig. 4.2 Stokes shift
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Nowby photon absorption the systemmay undergo a transition from theminimum
of the lower lying state on the higher branch outside the minimum of that branch.
(The photon momentum may be neglected by these optical transitions!) Thereafter,
follows a thermal relaxation (by emission of acoustical phonons) into the minimum
of the upper branch and only later may follow a slower photon emission onto the
lower branch again outside the minimum. This is the essence of the Franck-Condon
effect showing a difference between the absorption and emission spectra (Stokes
shift). It is illustrated in Fig. 4.2.

4.2.3.2 The Quantized Interaction of Electrons with Phonons

The interaction Hamiltonian of the electrons with the phonons is considered to be
linear in the quantized lattice deviations, conserving the number of electrons and in
the continuum model conserving also the momenta

Hint = 1√
Ω

∑

q

gqa
+
k ak−q(bq + b+

−q).

Here Ω is the volume and the discretized wave vector q is assumed to be smaller
than the Debye wave vector q < qD .

In the case of the optical phonons, analogously to the discussion in the frame of
the classical continuum model one starts from the Coulomb interaction between the
electron (or hole) charge density

ρ(x) ≡ ±eψ+(x)ψ(x)

and the polarization charge density due to the optical deformation

−1

ε ∞

∫
dx

∫
dx′ ∇P(x)ρ(x′)

|x − x′| .
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Inserting the expression of the polarization in terms of the quantized lattice devi-
ations one gets

g2q = α
4π� (�ω0)

3/2

(2me)
1/2 q2

,

where instead the coefficient 4πe2κ2

vmω2
LOε∞

one has introduced the dimensionless constant

α = e2

�

(
me

2�ω0

)1/2 (
1

ε∞
− 1

ε0

)
.

The presence of the electronmass here is spurious. The coupling constant gq itself
does not depend on the electron mass.

In the case of the acoustic phonons one considersmostly the deformation potential
model. This starts from the assumption, that a slowly varying deformation in an
isotropic medium causes a local variation of the band gap

δEg(x) ∼ ∇u(x) .

This leads to
gq = G

√
�ωq ,

where ωq = c|q| and G is a constant specific for the considered crystal. Of course,
both models are highly idealized, but nevertheless, quite successful in predicting
experimental phenomena.



Chapter 5
Transport Theory

The understanding of transport phenomena transcends the quantum-
mechanical treatment of isolated systems. Irreversibility and dissipation due
to the interaction with another macroscopic system (bath) play here a cen-
tral role. For their understanding a simple classical, but exactly solvable
polaron model is helpful. On the other hand, for all practical purposes an
intuitive, however mathematically less sound treatment serves by introduc-
ing irreversibility “by hand” in the Boltzmann, Master or rate equations.
In this frame the conductivity of electrons scattered on a thermal bath is
discussed. Two basic arts of conduction are discussed. That of scattering of
freely moving band electrons, typical for metals and semiconductors, as well
as that of localized electrons hopping from site to site, typical for disordered
systems, like impurity states or amorphous semiconductors. The transverse
magneto-resistance in ultra-high magnetic fields also may be understood
within this last model.

5.1 Non-equilibrium Phenomena

Most experiments on solid materials concern their electrical, optical, thermal and
mechanical properties. Here we shall discuss only the first two topics, that imply
interaction with external electromagnetic fields. Under such an external influence the
solid system is brought into a non-equilibrium state. This may be a stationary state
or a transitory time dependent evolution towards equilibrium. Classical or quantum
mechanics of finite closed systems being time-reversal invariant cannot properly
describe such irreversible processes. The origin of the irreversibility of real physical
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systems lies in the fact, that they are actually open systems connected with some
thermostat to which they transfer (dissipate) energy. In other words, they are parts of
a bigger system.The reversibility even of isolated systemsmaybe however pushed far
away in timedue to themacroscopic size of the system.Therefore, the thermodynamic
limit plays an essential role in the treatment of non-equilibrium phenomena.

The traditional theoretical treatment of non-equilibrium phenomena starts how-
ever directly by assuming some simple, intuitive assumptions leaving their proof apart.
In the classical non-quantum-mechanical treatment such a useful tool is the Boltz-
mann equation for the statistical evolution of classical particles having a given veloc-
ity andposition.Wehave alreadydiscussed, that electrons in aperiodical latticemaybe
also assimilated with free electrons having an effective mass. In this sense, one may
use this model. On the other hand, onemay encounter situations, where the quantum-
mechanical properties are essential. In that caseMaster and rate equations are used to
describe the evolution due to transitions between quantum mechanical states.

5.2 Classical Polaron in Electric Field

For a better understanding of the origin of irreversibility we describe here a classi-
cal solvable model of an electron interacting with classical continuum LO-phonons
(polaron). The Froehlich coupling of a classical electron to a continuum of LO-
phonons

− e

ε∞

∫
dx

∇P(x)
| x − r(t) |

is just the ordinary Coulomb interaction between the electron of coordinate r(t) and
the polarization charge caused by the lattice deviation field u(x). This polarization
is proportional to u(x) (see Chap.4)

P(x) = κe

v
u(x) .

However, before further proceeding, one is compelled to regularize the continuum
phonon model in such a way as to accommodate its degrees of freedom with those of
a discrete lattice, as we discussed earlier. Otherwise the model is mathematically not
well-defined (contains diverging entities). This may be achieved also by choosing
instead the Coulomb potential e

r another one V (r), whose Fourier transform Ṽ (q)

vanishes above the Debye wave vector qD .
The coupled Euler-Lagrange equations for the electron coordinate r(t) in the pres-

ence of a longitudinal, homogeneous, constant electric field E (for sake of simplicity
acting only on the electron) and the longitudinal phononmode d(x, t) ≡ ∇u(x, t) are



5.2 Classical Polaron in Electric Field 77

meṙ(t) = eE − κe2

ε∞

∫
dxd(x, t)∇V (x − r(t))

d̈(x, t) + ω2
LOd(x, t) = − κ

mε∞
∇2V (x − r(t)) .

These equations are describing a classicalmechanical systemand are perfectly invari-
ant against time reversal. We shall study the motion of this entire system, but looking
in detail only on what happens to the electron.

Let us consider that at some initial time instant t = 0 the phonons and the electron
were in rest

d(x, 0) = 0; ḋ(x, 0) = 0; ṙ = 0

and under the influence of the applied electric field they both start to move.
The phonon equation may be solved formally

d(x, t) = − κe2

mε∞

∫ t

0
dt ′ sinωLO(t − t ′)∇2V (x − r(t ′))

and inserting it in the equation motion of the electron we get a non-linear, non-local
in time and coordinate, but closed equation for the electron coordinate

ṙ(t) = e

me
E + C

∫ t

0
dt ′ sinωLO(t − t ′)

∂

∂r(t)
V (r(t) − r(t ′)) ,

where the kernel V (r) is defined by

V (r) ≡ − 1

4π

∫
dxV (r − x)∇2V (x)

and the constant is

C ≡ 4πκ2e4

mmeε2∞
.

It is convenient to consider a simple Debye regularization of the potential by the
choice

V (r) = 1 − e−qDr

r

having the Fourier transform Ṽ (q) = 4πq2
D

q2(q2+q2
D)
. This implies a smooth vanishing at

q � qD , but other possible choices do not modify qualitatively the results. With this
choice the kernel looks explicitly as
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V (r) = qD

(
1 − e−qDr

qDr
− 1

2
e−qDr

)
.

In order to further simplify the problem, we consider just a co-linear motion of the
electron ṙ(0) ‖ E. Then we have a scalar equation

d2x(t)

dt2
= E + C

∫ t

0
dt ′ sin(t − t ′)

∂

∂x(t)
V (| x(t) − x(t ′) |)

to solve. Here we have chosen q−1
D as length unit and ω−1

LO as time unit, while
E ≡ eqD

me
E .

As simple as this equation may look, one must use a computer to solve it numeri-
cally. Nevertheless, we may see analytically the asymptotic behavior of the solution.

Let us find out whether an expected asymptotic uniform motion in the field
(according to Ohm’s law for weak fields)

x(t) ≈ vt (t → ∞)

may result. Obviously, for this sake one has to fulfill the condition

0 = E − C
∫ ∞

0
dt sin t

∂

∂vt
V (vt)

or explicitly the transcendent equation

E

C
= K (v)

with

K (v) ≡ 1

2v2

{
ln

(
1 + v2

) − 1

1 + v−2

}
.

Since the function K (v) is positive, but bounded from above

0 ≤ K (v) ≤ 1.08108,

steady asymptotical motion may occur only below the critical field strength

Ec = 1.08108 × C.

A numerical solution of the equation of motion shows in Fig. 5.1 the velocity v(t)
for two field strengths, one below and another above the critical one. In the first case,
a steady motion sets in (Ohm’s law), while in the second case the motion gets accel-
erated (break-through). The accelerated motion in the presence of the electric field
agrees with the requirement of time-reversal for the electron-field system (ignoring
the phonons), but the steady one is not. It may result only due to “non-mechanical”
friction (damping).
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Fig. 5.1 The velocity v(t) for E < Ec (red) and Ec > Ec (green)

Unfortunately, besides this simple classical model, even by numerical methods,
no solutions may be found for realistic classical or quantum mechanical evolution of
electrons coupled to another macroscopic system (“thermal bath”). Therefore, one
uses instead certain assumptions about irreversible terms in the equations describing
the evolution. While no consistent mathematical proof of those assumptions is avail-
able, they proved themselves by very good qualitative and quantitative predictions.
In what follows we shall describe these approaches.

5.3 The Boltzmann Equation

In the frame of the classical statistical mechanics a system of point-like particles
(inside a Volume Ω) is characterized by the probability density p(v, x,t) to find at
time instant t a particle with velocity v at the space-point x, normalized as

∫
dv

∫
Ω

dxp(v, x, t) = 1 .

The classical Liouville equation for the motion in the presence of electric E(x, t)
and magnetic fields B(x, t) is

(
∂

∂t
+ v

∂

∂x
+ 1

m
F(x, t)

∂

∂v

)
p(k, x, t) = 0 ,

where F = e(E + 1
cv × B) is the Lorenz force. The meaning of this equation is that

along the trajectory the probability density is conserved. Since the charged particles
themselves are sources of fields, one must include their contribution. If the velocity
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of the particles is very low one may ignore their contribution to the magnetic field
and for sake of simplicity we ignore for instant any magnetic field. For the electric
field, in a self-consistent manner, one considers the Poisson equation

ε0∇E(x, t) = 4π (ρ(x, t) + ρext (x, t)) ,

where the particle charge density is

ρ(x, t) ≡ eN

(∫
dvp(v, x, t) − 1

Ω

)

and ρext is the external charge density. Here we have included also the contribution
of a compensating uniform positive charge in the volume Ω , that keeps the system
stable.

Up to this point we are still in the frame of a reversible mechanical description,
however, we may introduce a term describing collisions either on some disordered
potential, on phonons in equilibrium, or between the particles themselves, which
gives rise to irreversibility.

(
∂

∂t
+ v

∂

∂x
+ 1

m
F(x, t)

∂

∂v

)
p(v, x, t) = ∂p(v, x, t)

∂t
|coll

In solids, at relatively low particle densities (semiconductors) one considers mostly
the scattering on external disturbances (disorder, phonons) and the collision term is
obtained from statistical loss-gain considerations

∂p(v, x, t)
∂t

|coll = −
∫

dv′ [w(v, v′)p(v, x, t) − w(v′, v)p(v′, x, t)
]

with transition rates w(v, v′) characterizing the abrupt velocity changes due to col-
lisions. In solid-state theory, these transition rates are borrowed from the “golden
rule” of quantum-mechanics and therefore, we can speak about it as a quasi-classical
description. The transition rates are supposed to satisfy the detailed balance relation
(its justification will be discussed later)

w(v, v′) = eβ(e(v)−e(v′))w(v′, v)

implying the kinetic energy e(v) = mv2

2 before and after the collision. In the peculiar
case of elastic scattering, of course, the energy is conserved, while by scattering on
phonons it changes due to phonon absorption or emission.

The phonon system at the inverse temperature β acts as a thermal reservoir and (if
the external sources are not time dependent andwith vanishing boundary conditions!)
obviously the stable stationary solution is the Maxwell equilibrium distribution
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p0(v, x, t) = 1

ΩZ
e−β( mv2

2 +U (x)) ,

with U (x) being the s.c. equilibrium potential.
These equations conserve the total number of particles i.e. the normalization

∂

∂t

∫
dv

∫
Ω

dxdxp(v, x, t) = 0 .

In the elastic case, also the total average energy is conserved.

∂

∂t

[
N

∫
dvdxp(v, x, t) (e(v) +Uext (x)) + 1

2

∫
dx

∫
dx′ ρ(x, t)ρ(x′, t)

ε0|x − x′|
]

= 0 .

However, one may conceive also flow situations by considering appropriate
boundary conditions.

5.3.1 Classical Conductivity

Let us now consider a simple choice of the transition rates (“instant relaxation”) by

w(v′, v) = 1

τ
f0(e(v))

where τ is a constant “relaxation time” and

f0(e) ≡ 1

Z
e−βe; e(v) = mv2

2
; Z ≡

∫
dve−β mv2

2 ,

which obviously satisfies the balance relation.We shall look now for a spacial homo-
geneous flow situation in an infinite medium with a constant, homogeneous mag-
netic field B and an alternating homogeneous electric field Eeıωt . (Since the uniform
charge density of the particles is supposed to be compensated by a background posi-
tive charge, in this configuration the external field coincides with the real field in the
system!)

In this case for the velocity distribution

f (v, t) =
∫

dxp(v, x, t)

the Boltzmann equation takes a simplified form

(
∂

∂t
+ e

m

(
Eeıωt + 1

c
v × B

)
∂

∂v

)
f (v, t) = − f (v, t) − f0(e(v))

τ
.
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The right hand side is just an ideal relaxation term with the relaxation time τ . In the
stationary flow state, the deviation of the solution from equilibrium one

f (v,t) = f0(e(v)) + g1(v)eıωt + . . .

should be at least of first order in the electric field. Retaining only terms of first order
in the field we get

(
ıω + 1

τ
+ e

mc
(v × B)

∂

∂v

)
g1(v) = −eEv

∂ f0(e(v))

∂e(v)
.

To solve this equation, we have to inverse the operator

Â ≡ ıω + 1

τ
+ e

mc
(v × B)

∂

∂v
.

This may be easily done by knowing its eigenfunctions and eigenvalues. Let us
choose the magnetic field along the z axisB = (B, 0, 0). Then we have the following
eigenstates:

(exv) with eigenvalue ıω + 1
τ

+ ωcvy

(eyv) with eigenvalue ıω + 1
τ

− ωcvx
(ezv) with eigenvalue ıω + 1

τ

whereωc = eB
mc is the cyclotron frequency.Nowonemay compute the average electric

current density

〈j〉 ≡ e〈n〉
∫

dvv f (v)

(here 〈n〉 = 〈N 〉
Ω

is the average particle density) to get the conductivity tensor σμν(ω)

(defined by 〈 jμ〉 = σμνEν):

σzz(ω, ωc) = 〈n〉e2
m

1

ıω + 1
τ

σxx (ω, ωc) = σxx (ω, ωc) = 〈n〉e2
2m

(
1

ı(ω − ωc) + 1
τ

+ 1

ı(ω + ωc) + 1
τ

)

σxy(ω, ωc) = −σyx (ω, ωc) = 〈n〉e2
2m

(
1

ı(ω − ωc) + 1
τ

− 1

ı(ω + ωc) + 1
τ

)

σxz(ω, ωc) = σzx (ω, ωc) = σyz(ω, ωc) = σzy(ω, ωc) = 0

Of course, this is an oversimplified model, but nevertheless it shows the role of the
relaxation time τ , the phenomenon of cyclotron resonance at ω ⇒ ωc, as well as the
vanishing of some components of the conductivity tensor.
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5.4 Master and Rate Equations

5.4.1 Master Equations

Obviously, a quasi-classical description as in the previous subsection is of very
limited validity. From a quantum-mechanical point of view, simultaneous coordinate
and momentum are not the proper characterization of a particle. Actually, some
quantum numbers characterize the state. Therefore within the same statistical gain-
loss philosophy one uses the so called Master and rate equations.
The statistical state (“mixed state”) of a quantum mechanical system may be defined
by the probability Pn(t) to find the system at instant t in the eigenstate |n > of an
“unperturbed” Hamilton operator H0. The time evolution of this statistical system is
due to some interaction H ′ causing transitions between the unperturbed states |n >

and one assumes, that the transition rates Wnn′ are given by the “golden rule” of
adiabatic perturbation theory:

Wnn′ ≡ lim
Δt→∞

1

Δt

∣∣< n′|U (Δt)|n >
∣∣2

with U (Δt) being the unitary evolution operator during the time interval Δt .
The Master equation looks then as

∂

∂t
Pn(t) = −

∑
n′

(Pn(t)Wnn′ − Pn′(t)Wn′n) ≡ −
∑
n′

Ann′ Pn′(t) .

The general properties of the transitions rates emerge from the “golden rule” def-
inition. The transition rates are obviously non-negative and satisfy the generalized
balance property emerging from the unitarity of U :

Wnn′ ≥ 0;
∑
n′

(Wnn′ − Wn′n) = 0 .

In virtue of these properties for the solution of the Master equation it follows that:
(i) normalization is conserved ∂

∂t

∑
n′ Pn′(t) = 0,

(ii) positivity is conserved i.e. Pn(t) ≥ 0 for any t > 0 if it Pn(0) ≥ 0. (it emerges
from the fact that Pn(t) = 0 implies ∂

∂t Pn(t) ≥ 0 ).
(iii) the energy is conserved due to the admitted adiabatic coupling-decoupling of

the interaction,
(iv) the evolution leads to a stable equilibrium state (irreversibility).

The formal solution is
P(t) = e−At P(0)

and the operator A has non-negative eigenvalues.
Indeed, if ξn = xn + ı yn is a complex number, then
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�
{∑

n,n′
ξ ∗
n Ann′ξn′

}
= �

{∑
n,n′

Wnn′ξ ∗
n (ξn − ξn′)

}

= 1

2

∑
n,n′

Wn′n
[
(xn − xn′)2 + (yn − yn′)2

] ≥ 0 ,

where we used also the balance property. If a general connectivity occurs, i.e. any
state may be achieved from any state through successive transitions, then there is a
single eigenstate withe eigenvalue 0 and its components are all equal (ξ 0

n = const.).
It follows therefore

lim
t→∞ P(t) = P0

where P0
n = const. and

P(t) = e−At (P(0) − P0) + P0 .

Such an evolution is called a Markowian process.
Let us now assume, that we have a system in contact with a macroscopic ther-

mostat, whose state may be admitted remaining unchanged in thermal equilibrium
Then the probability of the total state (system plus thermostat) may be admitted to
be

Pnα(t) = Pn(t)P
0
α; P0

α = e−βEα∑
α′ e−βEα′ ,

where the quantum numbers α characterize the states of the thermostat.
From the Master equation for Pnα(t) it follows

∂

∂t
P(t) = −AP(t); Ann′ = δnn′

∑
n′′

Wnn′ − Wn′n

From the energy conservation (En + Eα = En′ + Eα′ ) and the balance property of
the total system follows the balance property of the averaged transition rates Wnn′

Wnn′ ≡
∑
αα′

P0
αWnα,n′α′

∑
n′

(
Wnn′ − eβ(En−En′ )Wn′n

) = 0 .

The operator A again hat (under a similar connectivity condition) only eigenvalues
with non-negative real part, whereas the only eigenstate corresponding to the zero
eigenvalue is

P0
n = e−βEn∑

n′ e−βEn′ .
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5.4.2 Rate Equations

Let us consider the case, where the index n ≡ {n1, n2, . . .) corresponds to the set of
occupation numbers of some one-electron states |i >, (i = 1, 2, . . .). The energy
(without any interaction between the electrons!) is

En =
∑
i

ei ni

and let us consider that through interaction with some thermal bath (for example,
phonons) transitions occur. In lowest order of adiabatic perturbation theory the tran-
sition rate Wnn′ is the sum of one-electron transition rates

Wnn′ =
∑
i, j

wi j ni (1 − n′
j )�l �=i, jδnl ,n′

l
.

Within this lowest order perturbation approximation even a “detailed balance rela-
tion”

wi j = wji e
β(ei−e j )

occurs. Then the evolution of the average occupation number 〈ni (t)〉 of a state i

〈ni (t)〉 ≡
∑
n

ni Pn(t)

looks as

∂

∂t
〈ni (t)〉 = −

∑
n,n′

Wnn′ (ni − n′
i )Pn(t) = −

∑
i, j

[
wi j 〈ni (1 − n j )〉 − wji 〈n j (1 − ni 〉)

]

As we see the equation is not closed, it includes the next average 〈nin j 〉. However,
if one admits the approximation

〈nin j 〉 ≈ 〈ni 〉〈n j 〉

one gets a closed non-linear rate equation for the fermions

∂

∂t
〈ni (t)〉 = −

∑
i, j

[
wi j 〈ni (t)〉

(
1 − 〈n j (t)〉

) − wji 〈n j (t)〉 (1 − 〈ni (t)〉)
]

.

Here obviously the Pauli principle is respected only on average. The average occu-
pation numbers remain in the interval [0, 1] if they were in this interval and under
the previously discussed connectivity condition the stable asymptotic solution is the
Fermi function
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f (εi ) = 1

eβ(εi−μ) + 1
.

The new constant μ here is the chemical potential fixed by the average total number
of the fermions, which is conserved by the transitions.

5.4.3 Hopping Transport

Apeculiar transportmechanismmayoccur in solids,when conduction occurs through
jumping between localized states. This is a typical situation in disordered semicon-
ductors or, as we shall see later, even in crystalline semiconductors under ultra-strong
magnetic fields.

Let us consider here a systemof neutral fermions on localized states on an arbitrary
disordered or ordered lattice points ri . The state of the fermion system is therefore
described by the set of occupation numbers ni = 0, 1 of the localized states having
the one-particle energies εi . The total energy is

En =
∑
i

εi ni .

We shall describe the time-evolution of this system again by a rate equation
The transition rateswi j are assumed to obey the balance property of the preceding

Subsection. The only global observable we may consider beside the total energy, is
the average particle density

〈n(x, t)〉 =
∑
i

〈ni (t)〉δ(x − xi ) .

In the case of charged particles (electrons) the particle density would define also the
electric potential created by them.

Let us assume, that we want to describe the evolution of a state which is not far
away from equilibrium described by the Fermi function fi ≡ f (εi ) i.e.

〈ni (t)〉 = fi + δ〈ni (t)〉

with δ〈ni (t)〉 very small. Then we may linearize the rate equation as

∂

∂t
δ〈n(t)〉 = −Γ δ〈n(t)〉
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with

Γi j ≡
(

δi j
∑
l

Wil − Wi j

)
1

fi (1 − fi )

and
Wi j = fi (1 − f j )wi j = W j i .

The real matrix Γ is hermitian in the scalar product

(ψ, φ) ≡
∑
i

ψ∗
i φi

1

fi (1 − fi )

and non-negative since

(ψ, Γ ψ) = 1

2

∑
i, j

∣∣∣∣ ψi

fi (1 − fi )
− ψ j

f j (1 − f j )

∣∣∣∣
2

Wi j ≥ 0 .

Assuming connectivity of the lattice, there is just one null-eigenvector

ξi = fi (1 − fi )∑
j

√
f j (1 − f j )

.

Therefore, the deviation from the equilibrium solution

δ〈n(t)〉 = e−Γ tδ〈n(0)〉

always vanishes asymptotically, δ〈n(t)〉 → 0 as t → ∞. The null-eigenvector plays
no role here, since the total particle number conservation implies

∑
i

δ〈n(t)〉 = 0

i.e. δ〈n(t)〉 has no components in the direction of ξ

(ξ, δ〈n(t)〉) = 0 .

5.4.4 Hopping Diffusion on a Periodic Cubic Lattice

One can find a simple explicit solution for the hopping on a periodical cubic Bravais
lattice of states of equal energieswith translation invariant transition ratesw(R,R′) ≡
w(R − R′) > 0 of finite range. The detailed balance here looks as
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w(R − R′) = w(R′ − R).

The discrete Fourier transformation δñ(k) ≡ ∑
R δ〈nR〉eıkR is helpful here and we

get the simple scalar equation

∂

∂t
δñ(k, t) = −Γ̃ (k)δñ(k, t)

with
Γ̃ (k) = w̃(0) − w̃(k) .

From the reality of Γ it follows Γ̃ (k) = Γ̃ (−k)∗,while from the detailed balance
follows that Γ̃ (k) is real. On the other hand, the inequality

∑
R

w(R)eıkR ≤
∑
R

|w(R)eıkR|

implies Γ̃ (k) > 0 for k �= 0. The total particle number conservation in Fourier trans-
forms looks as δñ(0) = 0. The assumed finite range of the transition rates implies,
that one may develop Γ̃ (k) around k = 0 and the lowest term is a quadratic one
Γ̃ (k) ≈ Dk2, with

D = 1

6

∑
R

w(R)R2 > 0.

Asymptotically for t → ∞ the behavior of the particle density is dominated by the
small k values of the Fourier transform for which

δñ(k, t) ≈ e−Dk2tδñ(k, 0)

and this corresponds exactly to the behavior predicted by the diffusion equation

∂

∂t
n(x, t) = −D∇2n(x,t).

Therefore, wemay identify the constant Dwith the diffusion constant of this hopping
model.

5.4.5 Transverse Magneto-Resistance in Ultra-Strong
Magnetic Field

As we have earlier discussed in Sect. 2.2.2, the Landau states of an electron in a
constant magnetic field are characterized by a discrete quantum number n, a wave
vector kz in the field direction and the coordinate X of the center of cyclotron motion
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in the plane perpendicular to the magnetic field. The extension of the wave-function

in the x direction is determined by the magnetic length �B =
√

�c
|e|B , therefore in

a very strong magnetic field B one might expect, that at least along the x axis the
state is strongly localized, and the rapidly, with the frequency ωc = |e|B

mc , oscillating
relative coordinate is irrelevant for transport phenomena. In this sense, one might
conceive the transport in the x direction as a hopping problem in continuum from
one X to another one X ′ due to the interaction with phonons or lattice defects.

In the presence of an electric field E = (E, 0, 0) in the x direction the degeneracy
of theLandau state is lifted. Intuitively onemay expect a potential energy contribution

εn,X,kz, = �
2k2z
2m

+ �ωc(n + 1

2
) + eEX (n = 0, 1, 2, ...) .

(More precisely, one may show that there is also a constant non-relevant energy shift
− e2E2

mωc
, that we may ignore.)

However, if hopping between states of different coordinates X is is allowed,
the contribution of the field produced by the non-homogeneous distribution of the
electron chargemodifies in time the effective on-site field and finally a self-consistent
in-homogeneous equilibriumdistribution ariseswhich screens the electric field inside
far away from the surface. We shall not discuss here this kind of evolution, but
consider another situation in which we admit that a steady flow state with constant
electric field is achieved by attaching some external electron sources at the ends of
the system along the x axis.

The average X coordinate is

〈X〉 ≡
∑

ν

X〈nν〉

with the simplifying notation ν ≡ n, kz, X .
The average velocity by hopping (omitting the contribution of the contacts on the

boundaries!) is

〈Ẋ〉 =
∑

ν

X
d

dt
〈nν〉 = −

∑
ν,ν ′

X {Wνν ′ 〈nν〉(1 − 〈nν ′ 〉) − Wν ′ν〈nν ′ 〉(1 − 〈nν〉)} ,

where the transition rates due to phonons or random potentials (impurities) satisfy
the detailed balance

Wνν ′ = Wν ′νe
β(εν−εν′ ) .

We assume now, that a steady flow state occurs in which the charge density is
unchanged i.e. the average occupation numbers are the same as in equilibrium in the
absence of the electric field
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〈nn,kz ,X 〉 = f (ε0n,kz ); ε0n,kz = �
2k2z
2m

+ �ωc(n + 1

2
)

with f (ε) being the Fermi function. (Later we shall check the consistency of this
assumption.)

Introducing a symmetrical matrix W̃νν ′ by

Wνν ′ = W̃νν ′e
β

2 (Eν−Eν′ ); W̃νν ′ = W̃ν ′ν

we may then write

〈Ẋ〉 = −
∑
ν,ν ′

XW̃νν ′
{
e

β

2 (Eν−Eν′ ) f (ε0n,kz )
(
1 − f (ε0n′,k ′

z
)
)

−e− β

2 (Eν−Eν′ ) f (ε0n′,kz′ )
(
1 − f (ε0n,kz )

)}
.

Now, if one is interested only in the electric conductivity one may retain only the first
order terms in the electric field. Since the terms inside the big bracket are vanishing
in the absence of the field we may replace W̃νν ′ by its equilibrium value wα,X;α′,X ′ in
the absence of the electric field (here we introduced the notation α for the subset of
quantum numbers n, kz) and retain only the term of first order in the field from the
exponentials in the big bracket

〈Ẋ〉 ≈ −eβE
∑

α,X

∑
α′,X ′ X (X − X ′)wα,X;α′,X ′ f (ε0n,kz

)
(
1 − f (ε0n′,k ′

z
)
)

= − 1
2eβE

∑
α,X

∑
α′,X ′(X − X ′)2wα,X;α′,X ′ f (ε0α)

(
1 − f (ε0α′)

)
.

Then we get the current density along the x axis as

jx ≡ e

Ω
〈Ẋ〉 = − 1

2Ω
e2βE

∑
α,X

∑
α′,X ′

(X − X ′)2wα,X;α′,X ′ f (ε0α)
(
1 − f (ε0α′)

)

and we may identify the transverse conductivity (Titeica formula)

σxx = 1

2Ω
e2βE

∑
α,X

∑
α′,X ′

(X − X ′)2wα,X;α′,X ′ f (ε0α)
(
1 − f (ε0α′)

)

where Ω is the volume of the system. Of course, as usual the thermodynamic limit
has still to be performed.

Let us now check the validity of our assumption about the stationary flow solution.
That means f (ε0α) should be a stationary solution of the rate equation, at least to first
order in the electric field. Under the same kind of expansion, we get the requirement
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∑
α′,X ′

(X − X ′)wα,X;α′,X ′ f (ε0α)
(
1 − f (ε0α′)

) = 0

If the transition rates depend only on the distance |X − X ′| and fall rapidly with
it, then far away from the boundaries this condition is obviously satisfied. At the
boundaries one might suppose the presence of some external sources to feed the
current flow.



Chapter 6
Optical Properties

The linear response to a time dependent adiabatic external perturbation
as well as the equilibrium linear response are presented. The specific rela-
tionships of the longitudinal dielectric response of an electron-hole plasma
to the density-density correlation function depending on the explicit inclu-
sion of the Coulomb interaction between the charged particles is explained.
The dielectric function is explicitly calculated within the Hartree approx-
imation. The response to a transverse (propagating) electric field within a
simple model of a semiconductor with s-type conduction and p-type valence
bands including the Coulomb attraction between the created electron-hole
pair leads to the Elliot-formula containing the exciton peak, as well as the
Coulomb-enhancement. Some discussion is devoted also to amodern branch
of optical experiments with ultra-short and intense laser beams. The so-
called semiconductor Bloch equations are derived and a third order non-
linear approach to differential transmission (DTS) and four wave mixing
(FWM) is developed.

6.1 Linear Response to a Time Dependent External
Perturbation

In this Chapter we shall discuss the interaction of quantum mechanical charged
particle systems with external electromagnetic fields in optical domain (light). The
treatment first will be restricted to phenomena in the linear domain and we shall
develop the conventional formalism for this purpose. Later we shall treat also some
topics of nonlinear optics related to the interaction ofmatter with intense laser pulses.
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Let us consider a quantum-mechanical system defined by the Hamilton operator
H .Wewant to look for the response of this system to aweak time-dependent external
perturbation H ′(t). The total Hamiltonian we consider is

Htot (t) = H + H ′(t) .

The state of a quantum mechanical statistical ensemble is described by the density
operator R(t) and the average 〈A〉 of an observable A is given by Tr{R(t)A}. The
density operator is hermitian, positive definite R(t) ≥ 0 (its eigenvalues are non-
negative) and is normalized Tr {R(t)} = 1. The time evolution is governed by the
Liouville equation

ı�
∂R(t)

∂t
= [Htot (t), R(t)] .

In the interaction picture defined by the transformation

R̄(t) = e
ıH(t−t0)

� R(t)e− ı H(t−t0)

�

the Liouville equation looks as

ı�
∂ R̄

∂t
= [

H̄ ′(t), R̄
] ; H̄ ′(t) = e

ıH(t−t0)

� H ′(t)e− ı H(t−t0)

� .

Let us consider that at some time t0 before the introduction of the perturbation the
system was in thermal equilibrium

R(t0) = R0 ≡ e−β(H−μN )

Tr
{
e−β(H−μN )

} .

Then for the deviation from the equilibrium

R̄ = R0 + δ R̄

we have

ı�
∂δ R̄(t)

∂t
= [

H̄ ′(t), R0
] + . . . .

where the unspecified terms must be of higher order in the perturbation. The formal
solution with the initial condition

δ R̄(t0) = 0

is.

δρ̄(t) = 1

ı�

∫ t

t0

dt ′
[
H̄ ′(t ′), ρ0

] + . . .
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or

R(t) = R0 + 1

ı�

∫ t

t0

dt ′e
ıH(t ′−t)

�

[
H ′(t ′), R0

]
e

−ı H(t ′−t)
� + . . .

We are interested here only in terms linear in the perturbation and consequently, omit
all higher order terms. Then the average of an observable A is given by

〈A(t)〉 − 〈A〉0 = 1

ı�

∫ t

t0

dt ′Tr
{
e

ıH(t ′−t)
�

[
H ′(t ′), R0

]
e

−ı H(t ′−t)
� A

}

= 1

ı�

∫ t

t0

dt ′〈[AH (t − t ′), H ′(t ′)
]〉0

where we used cyclical permutability under the trace and 〈. . .〉0 denotes the equi-
librium average. This defines the linear response of the system to a time dependent
perturbation.

6.2 Equilibrium Linear Response

There is another kind of linear response problem, that we describe now. Let us
suppose, that the system is in equilibrium in the presence of a time-independent
external perturbation. An example of such a situation we considered earlier was
the penetration of a static electric field into a semiconductor. Here we treat the
general case in order to underline the difference to the previous time-dependent
non-equilibrium problem.

Thus, we consider a system described by a time-independent Hamiltonian, con-
taining a small perturbation H ′

Htot = H + H ′

in a state described by the macro-canonical equilibrium density operator

R = e−β(Htot−μN )

Tr
{
e−β(Htot−μN )

} .

Wewant to find out the deviation of the equilibrium average of a certain observable
A in the presence of the perturbation from its equilibrium average in the absence of
the perturbation

δ〈A〉 = 〈A〉 − 〈A〉0 = Tr {RA} − Tr {R0A} ,
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where

R = e−β(Htot−μN )

Tr
{
e−β(Htot−μN )

} ; R0 = e−β(H−μN )

Tr
{
e−β(H−μN )

} .

We develop the exponential operator in powers of the perturbation H ′ using

e−β(H+H ′−μN ) = e−β(H−μN )

{
1 −

∫ β

0
dλeλ(H−μN )H ′e−λ(H−μN ) + . . .

}

to get the equilibrium linear response

δ〈A〉 =
∫ β

0
dλ〈[H ′(−ı�λ) − 〈H ′〉0

]
(A − 〈A〉0)〉0

There are two important remarks to be made here:

(i) We admitted implicitly that the chemical potential μ and the inverse tempera-
ture β remain unchanged by the introduction of the perturbation, however this
implies, that the average energy and the average number of particles is not the
same. Alternatively, we could have fixed the average particle and energy den-
sities and include the corresponding variation of the chemical potential and
temperature.

(ii) It is not at all obvious, that the zero-frequency limit of the adiabatic time depen-
dent linear response coincides with the equilibrium linear response result.

The origin of this discrepancy lies in the delicate problem of irreversibility. Only
irreversible processes can bring a system to equilibrium and these are not included
in the quantum-mechanical evolution. See the previous discussion of irreversibility
in Chap.5.

6.3 Dielectric Response of a Coulomb Interacting
Electron Plasma

Let us nowconsider the perturbation of aCoulomb interacting electron plasma (with a
uniform compensating positive background) by an external longitudinal electric field
defined by an external potential V ext (x, t). In equilibrium the average charge density
< ρ(x) >0 is supposed to be vanishing everywhere, while due to the perturbation

H ′(t) =
∫

dxρ(x)V ext (x, t)

it will be different from zero. By pushing t0 → −∞, the linear response to this
perturbation is
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〈ρ(x, t)〉 =
∫ ∞

−∞
dt ′

∫
dx ′κ(x, x ′; t − t ′)V ext (x ′, t ′)

with the kernel being the charge density correlation function

κ(x, x ′; t) ≡ θ(t)

ı�
〈[ρ(x, t)H , ρ(x ′, 0)H

]〉0 .

In our homogeneous system, this function may depend only on the difference of the
coordinates κ(x, x ′; t) ≡ κ(x − x ′; t). While extending the integration in time to
−∞, one has to consider the introduction of the perturbation in an adiabatic manner

V ext (x, t) = eı(ω+ı0)t V ext (x) ,

in order to have well defined Fourier transforms. The symbol +ı0 here means, that
one considers a small positive adiabatic parameter that after the performed integration
goes to zero.

After a Fourier transformation in the time and space variables we get

〈ρ̃(k, ω)〉 = κ̃(k, ω)Ṽ ext (k, ω)

with

κ̃(k, ω) =
∫ ∞

0
dt

∫
dxe−ıkxeı(ω+ı0)tκ(x, t).

Now, it is very important to realize, that in a Coulomb system the local charge
density at its turn is the source of an internal potential. We are interested in the
relation between the internal charge density and the total potential V = V ext + V int

that is defined by the Poisson equation (here in Fourier transforms)

k2Ṽ (k, ω) = 4π〈ρ̃(k, ω)〉 + 4πρext (k, ω)

while
k2Ṽ ext (k, ω) = 4πρext (k, ω).

From these equations and the linear response of the charge density to the external
potential we get

ε(k, ω)k2Ṽ (k, ω) = 4πρext (k, ω)

with the dielectric function

ε(k, ω) ≡ 1

1 + 4π
k2 κ̃(k, ω)

.

The situation is quite different if one treats the Coulomb interacting electron
plasma in the s.c. Hartree approximation. Then the perturbation is the self-consistent
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potential itself and not the external one. Therefore, from the Poisson equation one
gets

ε(k, ω)sc ≡ 1 − 4π

k2
κ̃sc(k, ω) .

However, the two density correlation functions would be quite different!

6.4 Dielectric Function of an Electron Plasma
in the Hartree Approximation

As we have seen before, in the self-consistent Hartree approximation one has free
electrons with modified s.c. one-particle energies. In what follows we ignore this
modification and therefore our electrons in the absence of the electric field are treated
just to be free. The charge density operator in terms of the second quantized wave
functions is

ρ(x) = eψ(x)+ψ(x) .

Here we ignored the positive uniform compensating charge, that plays no role in
the following discussion. In terms of the creation annihilation operators of the one-
particle states of wave-vector k, in the Heisenberg picture

ρ(r, t)H = e

Ω

∑

k

∑

k ′
c+
k ck ′eı(k

′−k)re
ı
�

(ek−ek ′ )t

with the kinetic energies ek = �
2k2

2m . The density correlation function is

κsc(r, t) = e2

ı�Ω2

∑

k

∑

k ′

∑

p

∑

p ′
e

ı
�

(ek−ek ′ )t eı(k
′−k)r〈[c+

k ck ′ , c+
p cp ′

]〉0

The average 〈[c+
k ck ′ , c+

p cp ′
]〉0 may be easily performed by knowing the commutator

[
c+
k ck ′ , c+

p cp ′
] = δk ′ p c

+
k cp ′ − δp ′ k c

+
p ck ′

and retaining the only surviving average

〈c+
k cp ′ 〉0 = δk p ′ fk ,

with fk ≡< c+
k ck >0 being the Fermi function. One gets finally

εL(q, ω) = 1 − 4πe2

Ωq2

∑

k

fk+q − fk
ek+q − ek − �ω − ı0

.
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In the evaluation of this formula one has to take into account the identity

1

x − ı0
= P

(
1

x

)
+ ıπδ(x)

with the first term being the principal value, while the second one contains Dirac’s
delta function. Then

	εL(q, ω) = 1 − 4πe2

Ωq2

∑

k

2 fk(ek − ek+q)

(ek − ek+q)2 + (�ω)2

and


εL(q, ω) = 4π2e2

Ωq2

∑

k

(
fk − fk+q

)
δ(�ω + ek − ek+q)

= 4π2e2

Ωq2

∑

k

( f (ek) − f (ek + �ω)) δ(�ω + ek − ek+q)

= e2m2

�4q3

∫ ∞

0
de ( f (e) − f (e + �ω)) θ

⎛

⎝1 −
∣
∣∣�ω − �

2q2

2m

∣
∣∣

2
√
e �2q2

2m

⎞

⎠

At T = 00K we get


εL(q, ω) = e2m2

�4q3

∫ EF

EF−�ω

deθ

⎛

⎝1 −
∣∣∣�ω − �

2q2

2m

∣∣∣

2
√
e �2q2

2m

⎞

⎠ .

and the imaginary part of the dielectric function vanishes for

(
�ω − �

2q2

2m

)2

>
2�

2q2

m
EF .

At any temperature asymptotically for ω → ∞


εL(q, ω) ≈ 0

and

	εL(q, ω) ≈ 1 − 4πe2〈n〉
mω2

= 1 −
(ωpl

ω

)2

and

ωpl =
√
4πe2〈n〉

m
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is the plasma frequency. Since the dielectric constant vanishes for big ω = ωpl (pro-
vided ωpl is also big !), eigenoscillations of the plasma may occur in the absence of
an external field at this frequency.

Peculiar properties has also the static longitudinal dielectric function

εL(q, 0) = 1 − 4πe2

Ωq2

∑

k

P

(
fk+q − fk
ek+q − ek

)
.

For q → 0

εL(q, 0) ≈ 1 − 4πe2

Ωq2

∑

k

∂ f (ek)

∂ek
= 1 − 4πe2

q2

∫
dez(e)

∂ f (e)

∂e
= 1 + κ2

q2

with

κ2 ≡ 4πe2
∫

dez(e)
∂ f (e)

∂e
≈

{
4π
kBT

〈n〉 (T → ∞)
6πe2

EF
〈n〉 (T → 0)

This last result shows, that if one puts an external point-like charge q inside the
plasma (V ext (r) = q

r i.e. Ṽ ext (q) = 4π
q2 ), then the resulting potential Ṽ (q) for small

q looks as

Ṽ (q) = Ṽ ext (q)

εL(q, 0)
≈ 4πe2

q2 + κ2

and in real space at big distances in the real space it will look as a Yukawa potential

V (r) ≈ e2

|r|e
−κr .

It is important to remark, that in the whole discussion here no interaction with
any thermal bath was considered and therefore there were no irreversible effects
incorporated.

6.5 The Transverse, Inter-band Dielectric Response
of an Electron-Hole Plasma

A transverse propagating electric field E(x, t) (photon) may be defined by the
choice of a vanishing scalar potential (V (x, t) = 0) and a transverse vector potential
(∇A(x, t) = 0). The interaction of charged particles with this electromagnetic field
(ignoring the A2 term ) is given by

−
∫

dxj(x)A(x, t) .
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In a direct gap semiconductor, due to its vector character, this interaction may couple
mainly s-like states of the conduction bandwith p-like states of the degenerate valence
band.

In an electron-hole plasmamodel therefore one describes such an electromagnetic
interaction with a dipole Hamiltonian

Hem(t) = d
3∑

μ=1

∑

σ=± 1
2

∫
dxψe,−σ (x)+ψh,μ,σ (x)+Eμ(x, t) + h.c. .

The second quantized wave functions of the holes ψh,μ,σ (x) correspond to the three
p-type valence bands of spin σ . Here d is a phenomenological dipole constant and the
spin is σ = ± 1

2 . The above Hamiltonian containing pairs of creation and annihilation
operators indicates, that a photon having an energy �ω above the band gapmay create
an electron-hole pair.

Wewant to take into account here, that the newly created electron and hole interact
throughCoulomb forces.Aswe shall see, this fact has important consequences for the
absorption spectrum. The Coulomb interaction we shall treat within the intra-band
s.c. Fock approximation by retaining the non-local average (at instant t)

〈ψe,σ (x)ψh,μ,−σ (x ′)〉t .

Such an average vanishes in the absence of the electric field, but appears after the
introduction of the field.

Within this approximation one has an s.c. Coulomb energy

3∑

μ=1

∑

σ=± 1
2

∫
dx

∫
dx ′ e2

|x − x ′|
(
ψe,σ (x)ψh,μ,−σ (x ′)〈ψe,σ (x)ψh,μ,−σ (x ′)〉∗t + h.c.

)
.

Obviously, this term has the same operator structure as Hem(t) and is at least of first
order in the field. Therefore, the effective perturbation consists of Hem(t) plus an
induced perturbation of the same structure

H ′(t) = d
3∑

μ=1

∫
dxPμ(x, x)Eμ(x, t)

+
3∑

μ=1

∫
dx

∫
dx ′ e2

|x − x ′|Pμ(x, x ′)〈Pμ(x, x ′)〉∗t + h.c.

where the notation

Pμ(x, x ′) ≡
∑

σ=± 1
2

ψe,σ (x)ψh,μ,−σ (x ′)

was introduced.
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Let us consider now the Heisenberg equations of motion for the operator
Pμ(x, x ′). Using the commutation relation

[
ψe,σ (x)ψhμ,−σ (x ′), ψhν ,−σ (y′)+ψe,σ (y)+

] = δμνδ(x − y)δ(x ′ − y′)
−δ(x − y)ψh,−σ (y′)+ψh,−σ (x ′) − δ(x ′ − y′)δμνψe,σ (y)+ψe,σ (x)

we get

{
ı�

∂

∂t
+ �

2

2me
∇2

e + �
2

2mh
∇2

h + e2

|xe − xh |
}
Pμ(xe, xh) =

d
3∑

ν=1

∑

σ

∫
dyEν(y, t)

(
δμνδ(xe − y)δ(xh − y)

−δμνδ(xh − y)ψe,σ (xh)+ψe,σ (xe) − δ(xe − y)ψhμ,−σ (xe)+ψhν ,−σ (xh)
)

−
3∑

ν=1

∑

σ

∫
dx

∫
dx ′ e2

|x − x ′| 〈Pν(x, x ′)〉t
(
δμνδ(x − xe)δ(x ′ − xh) =

−δμνδ(xh − x ′)ψe,σ (x)+ψe,σ (xe) − δ(xe − x)ψhμ,−σ (x ′)+ψhν ,−σ (xh)
)

.

Now, we perform the average 〈. . .〉t by taking into account, that in the absence of the
field there were no electrons and holes. The initial state is the electron-hole vacuum
and even thereafter the population appears only in second order in the field. Therefore
we may consider

〈ψα,σ (x)+ψα,σ (x ′)〉t ≈ 0; (α = e, h)

In the linear approximation in the external field we get therefore the equation of
motion

{
ı�

∂

∂t
+ �

2

2me
∇2
e + �

2

2mh
∇2
h + e2

|xe − xh | + Eg

}
〈Pμ(xe, xh)〉t =dEμ(xe, t)δ(xe − xh)

where Eg is the band gap energy.
The solution of this non-homogeneous equation one gets by using the Green

function
G(xe, xh; x ′

e, x
′
h; t)

of the electron-hole Schroedinger equation

{
ı�

∂

∂t
+ �

2

2me
∇2

e + �
2

2mh
∇2

h + e2

|xe − xh |
}
G(xe, xh; x ′

e, x
′
h; t)=

δ(xe − x ′
e)δ(xh − x ′

h)δ(t) .
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On his turn it may be built up from the eigenfunctions Φα(xe, xh) of the Coulomb
interacting electron-hole Schroedinger equation

{
− �

2

2me
∇2

e − �
2

2mh
∇2

h − e2

|xe − xh |
}

Φα(xe, xh) = εαΦα(xe, xh)

as

Gr (xe, xh; x ′
e, x

′
h; t) = 1

ı�
θ(t)

∑

α

Φα(xe, xh)αΦα(x ′
e, x

′
h)

∗eı
εα
�
t .

Here we considered the retarded Green function relevant for our physical problem.
One may separate the center of mass motion

X ≡ mexe + mhxh
me + m

from the relative motion and

Φq,l,m,ε(xe, xh) = 1√
Ω

e−ıqXφl,m,ε(x) ,

where φl,m,ε(x) are the well-known Coulomb wave functions characterized by their
angular momentum l,m and energy ε while Ω is the volume of the system. These
states may belong to the discrete spectrum or to the continuum.

Using the Green function G(xe, xh; x ′
e, x

′
h; t) one finds

〈Pμ(xe, xh)〉t =
∫ t

−∞
dt ′

∫
dx ′

e

∫
dx ′

he
ı
�
Eg(t−t ′)G(xe, xh; x ′

e, x
′
h; t − t ′)dEμ(x ′

e, t
′)δ(x ′

e − x ′
h)

or

〈Pμ(x,X)〉t = d

ı�Ω

∑

q,l,m,ε

∫ t

−∞
dt ′e

ı
�

(ε+Eg+ �
2q2

2(me+mh )
)(t−t ′)

×
∫

dX′e−ıq(X−X′)φl,m,ε(x)φl,m,ε(0)
∗Eμ(X′, t ′) .

The transverse, inter-band dielectric function is defined by the relation of the
inter-band polarization P(x, t) = d〈P(0, x)〉t to the electric field

P(q, ω) = 1

4π
(εT (q, ω) − 1)Et (q, ω)

and we get
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εT (q, ω) = 1 − 4πd2
∑

ε

|φ0,0,ε(0)|2

×
(

1

�ω − Eg − ε − �2q2

2(me+mh)
+ ı0

− 1

�ω + Eg + ε + �2q2

2(me+mh)
+ ı0

)

.

Here we took into account that in x = 0 only the s-wave functions contribute.
The imaginary part, that describes the absorption spectrum is given then explicitly

by the Elliott -formula


εT (q, ω) = 4d2

a3B ER

[ ∞∑

n=1

1

n3
δ(Δ + 1

n2
) + 1

2
θ(Δ)

1

1 − e− 2π√
Δ

]

with

Δ ≡ �ω − Eg − �
2q2

2(me+mh)

ER
,

where ER is the excitonic Rydberg energy.
In the absence of the Coulomb interaction (e = 0) we have had the simple inter-

band absorption spectrum


εT (q, ω)0 = d2

πa3B ER
θ(Δ)

√
Δ .

Fig. 6.1 Absorption spectra as function of the detuning Δ at the band edge (Δ = 0) with Coulomb
(blue) and without Coulomb effects (red)
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In order to represent graphically in Fig. 6.1 the expected absorption spectrum we
had to introduce by hand an element of irreversibility through an arbitrary line-width
for the discrete exciton lines of which we retained only the two lowest states, but only
the ground state may be actually seen. The Coulomb interaction between the electron
and the hole created by photon absorption introduces the exciton resonance as well
as a Coulomb enhancement of the continuum at the threshold as to be compared with
the red line of absorption without Coulomb effects. See also the comparison with the
exciton state density Fig. 3.1 calculated within the tight binding Wannier scheme.

6.6 Ultra-Short-Time Spectroscopy of Semiconductors

In the last decades interesting experiments were performed with very intense and
ultra-short (on femtosecond scale!), laser beams on semiconductors. Their purpose
is to obtain information about ultra-short time processes. These experiments are
theoretically treated by the extension of the linear response including higher order
terms in the development. However, drastic simplifications are needed. First of all,
we shall ignore the coordinate dependence of the electric field E (negligible photon
momentum!) and consider

E(t) = E (t) cos(ω0t) ,

whereω0 is the carrier frequency in the optical domain andE (t) is the pulse envelope.
This may be justified by the fact, that for photon energy in the neighborhood of the
energy gap the photon wave length λ in the most interesting semiconductors is much
bigger than the exciton radius aB .

The system we consider is again an electron-hole plasma as in Sect. 6.5 with an
s-like conduction band and a p-like valence band. The phenomenological coupling to
the transverse electromagnetic field one uses is that of an electric dipole in analogy
to the similar atomic coupling. We chose the quantization direction of the valence
band states so, that only one of the p bands couples to the field and therefore we may
ignore the vector notation.

Hem(t) = �ωR(t) cos(ω0t)
∑

σ

∫
dx

(
ψe,σ (x)+ψh,−σ (x)+ + h.c.

)

= �ωR(t) cos(ω0t)
∑

σ,k

(
ae,σ,kah,−σ,−k + h.c.

)
,

where ωR(t) = 1
�
dE (t) is the so called (here, time dependent!) Rabi frequency.

Obviously, higher order terms in the development of the system response would
produce also oscillations with multiples of the frequency ω0. Such terms may be less
important if already 2�ω0 is far away from the band gap, and we are eager to discard
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them. An elegant way to do this is to ignore some of the terms in the perturbation
and consider the “rotating wave” Hamiltonian

H (rw)
em = 1

2
�ωR(t)eıω0t

∑

k,σ

ae,σ,kah,−σ,−k + h.c. �

The total Hamiltonian we start with will be

H(t) = HHF
eh (t) + H (rw)

em ,

where the electron-hole part is taken in the Hartree Fock approximation

HHF
eh (t) =

∑

σ

∑

k

(
(
�
2k2

2me
+ 1

2
Eg)a

+
e,σ,kae,σ,k + (

�
2k2

2mh
+ 1

2
Eg)a

+
h,σ,kah,σ,k

)

+
∑

σ,σ ′

∑

k,k′,q

4πe2

q2V

[
a+
e,σ,k+qae,σ,k〈a+

e,σ ′,k ′−qae,σ ′,k ′ 〉t

− a+
e,σ,k+qae,σ ′k ′ 〈a+

e,σ ′,k ′−qae,σ,k〉t
+ a+

h,σ,k+qah,σk〈a+
h,σ ′,k ′−qah,σ ′,k ′ 〉t

− a+
h,σ,k+qah,σ ′k ′ 〈a+

h,σ ′,k ′−qah,σ,k〉t
− a+

e,σ,k+qae,σk〈a+
h,σ ′,k ′−qah,σ ′,k ′ 〉t

− a+
h,σ,k+qah,σk〈a+

e,σ ′,k ′−qae,σ ′,k ′ 〉
− a+

e,σ,k+qa
+
h,σ ′,k ′−q〈ah,σ ′,k ′ae,σ,k〉t

− ah,σ,k ′ae,σ ′,k〈a+
e,σ ′,k+qa

+
h,σ,k ′−q〉t

]
.

Here we took into account all the anomalous averages that will be induced only by
the electromagnetic field.

We may take into account also momentum conservation, spin independence as
well as the charge neutrality of the total system. Then

〈a+
e,σ ′,k ′ae,σ,k〉t = δk,k ′δσ,σ ′ fe,k(t)

〈a+
h,σ ′,k ′ah,σ,k〉t = δk,k ′δσ,σ ′ fh,k(t)

〈ae,σ ′,k ′ah,σ,k〉t = δk,−k ′δσ,−σ ′ pk(t)∑

k

fe,k(t) =
∑

k

fh.k(t)

and the Hartree terms disappear. Then the following equations of motion emerge for
the electron-hole populations fe,k(t), fh,k(t) and the “inter-band polarization” pk
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∂

∂t
fe,k(t) = 
 {

Ω∗
k(t) pk(t)e

ıω0t
}

∂

∂t
fh,k(t) = 
 {

Ω∗
k(t) pk(t)e

ıω0t
}

∂

∂t
pk(t) + ı

�

(
εe,k(t) + εh,k(t)

)
pk(t) = ı

2
Ωk(t)e

−ıω0t
(
1 − fe,k(t) − fh,k(t)

)
.

Here εe,k(t) and εh,k(t) are the"renormalized" electron and hole energies

εe,k(t) ≡ �
2k2

2me
+ 1

2
Eg + 1

V

∑

k′ �=k

V|k−k′| fe,k′(t)

εh,k(t) ≡ �
2k2

2mh
+ 1

2
Eg + 1

V

∑

k′ �=k

V|k−k′| fh,k′(t)

while Ωk(t) is the generalized Rabi-frequency

Ωk(t) ≡ ωR(t) + 2

�

1

V

∑

k′ �=k

V|k−k′| pk′(t)eıω0t ; Vq ≡ 4πe2

q2
.

The rapidly oscillating factor e−ıω0t may be eliminated from the equation by a redef-
inition of the inter-band polarization

pk(t) ≡ p̄k(t)e
−ıω0t

and we obtain the “Semiconductor Bloch Equations” for the slowly varying entities
fe,k, fh,k, p̄k

∂

∂t
fe,k = 
 {

Ω∗
k p̄k

}

∂

∂t
fh,k = −
 {

Ω∗
k p̄k

}

(
∂

∂t
+ ı

�
Δk

)
p̄k = ı

2
Ωk

(
1 − fe,k − fh,k

) − p̄k
T2

.

with the detuning
Δk ≡ εe,k + εh,k − �ω0 .

We have introduced here by hand also a phenomenological term with a “relaxation
time” T2 in order to take into account symbolically other interactions. This is a
standard approach in the treatment of the non-linear optics of two level atoms in the
frame of the Bloch Equations on a quite different time scale. In semiconductors, the
chosen time scale is such, that the here ignored processes are still coherent and only
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on a longer time scale they destroy the coherence. The ultra-short-time experiments
are performed precisely to study the kinetics of the electron-hole plasma on this
time scale, where coherent quantum-mechanical features play still an essential role.
The many-body treatment, of these rapid processes, taking into account Coulomb
interactions as well as the interaction with LO-phonons is called “quantum kinetics”.
This theory is rather complicated and we do not touch it.

Since the populations of electrons and holes in the absence of scattering are equal
fe = fh ≡ f , one of these equations is superfluous. The above equations may be
solved either numerically or by a systematic development of the solution in powers
of the field i.e. of ωR(t).

6.7 Third Order Non-linear Response

We outline here the scheme of the third order nonlinear response. Since different k
values in the Semiconductor Bloch Equations are not coupled we may omit the k
index. Further, we simplify the discussion by omitting here the Hartree-Fock terms.
The solution we look for is a systematic development in the powers of the electro-
magnetic perturbation

f (t) = f (1)(t) + f (2)(t) + f (3)(t) . . .

p̄(t) = p̄(1)(t) + p̄(2)(t) + p̄(3)(t) + . . . .

To first order we have

f (1)(t) = 0

p̄(1)(t) = ı

2

∫ t

−∞
dt ′ e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωR(t ′) ,

while to third order

f (3)(t) = 0

p̄(3)(t) = −ı
∫ t

−∞
dt ′ e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωR(t ′) f (2)(t ′) .

Inserting in the last step, the result of the previous approximation we get the only
non-vanishing terms

f (2)(t) = 1

2

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′ 	

(
ω∗

R(t ′) ωR(t ′′) e−( ı
�

Δ+ 1
T2

)(t ′−t ′′)
)
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and

p̄(3)(t) = − ı

2

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωR(t ′)

× 	
(

ω∗
R(t ′′) ωR(t ′′′) e−( ı

�
Δ+ 1

T2
)(t ′′−t ′′′)

)
.

In what follows we shall consider that the optical field (laser) consists of a stronger
pump pulse and a weaker, much shorter test-pulse, both having the same carrier
frequency ω0, also

ωR(t) = ωP
R (t) + ωT

R(t) .

Since the test-pulse is assumed to be very weak, we will retain only terms of first
order in ωT

R(t). (This restriction is however not compulsory in the analysis of the
four-wave-mixing.) Then

p̄(3)(t) ≈ − ı

2

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′ e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωT
R(t ′)

× 	
(

ωP∗
R (t ′′) ωP

R (t ′′′) e−( ı
�

Δ+ 1
T2

)(t ′′−t ′′′)
)

− ı

2

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′ e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωP
R (t ′)

× 	
[(

ωP∗
R (t ′′) ωT

R(t ′′′) + ωT∗
R (t ′′) ωP

R (t ′′′)
)
e−( ı

�
Δ+ 1

T2
)(t ′′−t ′′′)

]
.

As one may see, there are two different structures, either

p̄ ∝ ωT
R · |ωP

R |2

or
p̄ ∝ ωT∗

R · (ωP
R )2 .

To interpret the significance of these structures we must return to the ignored prop-
agation properties of the laser beams given by the phase factors eıkT r respectively
eıkPr.While by the interactionwithin the semiconductor, thesemaybe neglected, now
their importance is very important in analyzing non-linear experiments. Since the
excited inter-band polarization is itself a source of emerging electromagnetic waves,
we expect that the first structure will cause an emerging beam in the kT -direction,
while the second in the (2kP − kT )-direction. The first is responsible for the dif-
ferential transmission (DTS), while the second for the four wave mixing (FWM).
The configuration of a DTS experiment is shown in Fig. 6.2, while that of an FWM
experiment in Fig. 6.3. Here the pink arrows show the test and pump propagation.
The pulses themselves are shown in violet, while the new signal in the (2kP − kT )

direction is shown with a red arrow.
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Fig. 6.2 Differential transmission experiment

Fig. 6.3 Four-wave-mixing experiment

6.8 Differential Transmission

In this experiment, one uses two laser pulses of different widths with a retardation
time τ between them. By the stronger pump pulse electron hole pairs are excited, and
the test pulse sees a prepared state, different from that in the absence of the pump.
To identify the transmitted test pulse from the pump pulse one chooses a small angle
between the pulses. By varying the retardation time τ one may obtain informations
about the evolution of the interacting electron-hole pairs created by the pump pulse.

Within the χ3 theory outlined before we have
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p̄(3)DT S
k (t) = − ı

4

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′ e−( ı

�
Δk+ 1

T2
)(t−t ′)

ωT
R(t ′)

×
(

ωP∗
R (t ′′) ωP

R (t ′′′) e(− ı
�

Δk− 1
T2

)(t ′′−t ′′′)

+ ωP
R (t ′′) ωP∗

R (t ′′′) e( ı
�

Δk− 1
T2

)(t ′′−t ′′′)
)

− ı

4

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′ e−( ı

�
Δk+ 1

T2
)(t−t ′)

ωP(t ′)

×
[
ωP∗

R (t ′′) ωT
R(t ′′′) e−( ı

�
Δk+ 1

T2
)(t ′′−t ′′′)

]
.

If the pulses do not overlap one may retain only the term

p̄(3)DT S(t) ≈ − ı

8

∫ t

−∞
dt ′ e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωT
R(t ′)

∣∣∣∣
∣

∫ t ′

−∞
dt ′′ωP

R (t ′′)e
ı
�

Δt ′′
∣∣∣∣
∣

2

.

If the test pulse is very short, one gets further

p̄(3)DT S(t) ≈ − ı

8
e−( ı

�
Δk+ 1

T2
)(t−τ)

θ(t − τ)

∫ ∞

−∞
dt ′ωT

R(t ′)
∣∣∣∣

∫ τ

−∞
dt ′′ωP

R (t ′′)e
ı
�

Δkt ′′
∣∣∣∣

2

or
p̄(3)DT S(t) ≈ − ı

8
θ(t − τ)e−( ı

�
Δ+ 1

T2
)(t−τ)

ω̃T
R(0)|ω̃P

R (Δ)|2 ,

where ω̃P
R (Δ) and ω̃T

R(0) are the Fourier transformed pulse and test Rabi frequencies
at the detuning Δ, respectively at t = 0.

The total DTS polarization P (3)DT S(t) results after summation over all the wave
vectors and re-multiplication with e−ıω0t . The Fourier analysis of the resulting time
dependent signal shows the modification of the test pulse absorption due to the
presence of the pump pulse. This DTS signal (differential transmission) is defined as
the difference between the absorption of the test pulse in the presence of the pump-
pulse and that in the absence of the pump. Now, it may be shown further that this
difference reaches its maximal negative value again at the carrier frequency ω0, if
the test pump retardation time τ is much bigger than the width of the pulses. The
meaning of this result is, that one cannot excite electron-hole pairs in a domain,
that already was emptied by the pump. This phenomenon is called “hole burning”.
However, during the time τ the electron-hole system, due to the Coulomb interaction
as well as the interaction with phonons, the electron-hole system changes its state.
By measuring the DTS signal at different retardations τ one may get information
about this evolution and compare it with theoretical predictions. Since in this simple
description we did not include such an evolution, we do not follow further the explicit
calculus.



112 6 Optical Properties

6.9 Four Wave Mixing

The FWM signal within the χ3 theory is contained in the terms proportional to
ωT∗

R (ωP
R )2

p̄(3)VWM(t) = − ı

4

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′ e−( ı

�
Δ+ 1

T2
)(t−t ′)

ωP
R (t ′)

×
(

ωT∗
R (t ′′) ωP

R (t ′′′) e−( ı
�

Δ+ 1
T2

)(t ′′−t ′′′)

+ ωP
R (t ′′) ωT∗

R (t ′′′) e( ı
�

Δ− 1
T2

)(t ′′−t ′′′)
)

.

Unlike in the case of the DTS experiment, one chooses here two pulses with a large
retardation time τ . Under this condition only the second term of the previous equation
contributes

p̄(3)VWM(t) = − ı

4

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫ t ′′

−∞
dt ′′′

× e
ı
�

Δ(t ′−t+t ′′−t ′′′)e− (t−t ′+t ′′−t ′′′)
T2 ωP

R (t ′)ωP
R (t ′′)ωT

R(t ′′′) .

If one considers, that the two pulses do not overlap at all, one gets

P (3)VWM(t) = − ı

8
e− t

T2 ω̃P
R (0)2ω̃T

R(0)
∫

dke
ı
�

Δk(t−2τ) .

The integral over k diverges and one must restrict it to the Brillouin zone. Due to
the oscillating factor, the integral reaches its maximum at t = 2τ and therefore one
may observe a “photon echo” in the 2kP − kT -direction after a delay time 2τ , its

height decreasing as e− 2τ
T2 .

The outlined theory of these experiments is oversimplified, illustrating only the
essential idea. The deviations from the simple one-particle treatment due to the
Coulomb interaction and phonon emission/absorption are the main informations
one follows, and the height of the photon echo is not given by the above simple
exponential decay. Actually, this kind of optical experiments (due to the retardation
time parameter) deliver a sort of motion picture of the evolution of the electron-hole
plasma.



Chapter 7
Phase Transitions

A few examples of phase transitions allow an insight into the fine aspects of
the thermodynamic limit. Spontaneous symmetry breaking at critical tem-
peratures or densities leads to unexpected stable states characterized by order
parameters.Wedescribe at the beginning the ferromagnetic transitionwithin
the frame of theHeisenbergmodel of localized spins. Themathematical sub-
tlety of the Bose-Einstein condensation is discussed in somemore details.We
devote more place to superconductivity by describing first the phenomeno-
logical theory of London, followed by a quantum-mechanical treatment in
real space, within the frame of a simple model of an effective interaction
between the electrons suggested by the BCS theory.

An important aspect of the physics of condensed matter is the possibility of phase
transitions. Their theoretical treatment is essentially based on the thermodynamic
limit. We do not intend to describe the multitude of the phase transitions, but just
want to take a glimpse at the basic ideas within some specific models. Some of the
most spectacular new phenomena although subject of abundant literature are still not
ripe for a simple presentation.

7.1 The Heisenberg Model of Ferro-Magnetism

Ferro-magnetism is thought to originate from the spin-dependent exchange interac-
tion of the core electrons of neighboring ions. A simple model is due to Heisenberg
that considers N interacting spins S on a periodic lattice R. The Hamiltonian in the
presence of a magnetic field B = (0, 0, B) oriented along the z axis is
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H = −1

2

∑

RR ′
J (R − R ′)SRSR ′ − 2μ0B

∑

R

SzR ,

where μ0 is the magneton and the spin-operators S obey the commutation rules

[
S+
R , S−

R

] = 2SzR[
SzR, S±

R

] = ±SzR

with S±
R = Sx

R ± Sy
R. The commutators of spin-operators on different sites vanish.

The coupling J (R) ≥ 0 is supposed to vanish rapidly with the distance R. One
may write the Hamiltonian also in the form

H = −1

2

∑

R,R ′
J (R − R ′)

(
SzRS

z
R ′ + S+

R S
−
R ′ + S−

R S
+
R ′

2

)
− 2μ0B

∑

R

SzR

to realize, that the total spin Stot in the z-direction

Sztot ≡
∑

R

SzR

is conserved [
Sztot , H

] = 0.

Therefore, the energy eigenstates are also eigenstates of Sztot , as well as of Stot
2 due

to rotation invariance. A simple basis in the spin space may be built up from products
of eigenstates of each spin |S,m > with m being its projection on the z axis.

The state with the maximum of total spin is the one with all the spins aligned in
the z-direction

|Φ0 >= |S, S >R1 |S, S >R2 . . . |S, S >RN

This state is an eigenstate of H

H |Φ0 >=
(

−1

2
S2

∑

R,R ′
J (R − R ′) − 2μ0BNS

)
|Φ >

since
S+
R |S, S >R= 0 .

Consider now the average of the Hamiltonian over an arbitrary state |Φ > of our
basis

|Φ >= |S,m1 >1 |S,m2 >2 . . . |S,mN >N .

Since the terms non-commuting with SzR vanish in the average, one gets
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< Φ|H |Φ >= −1

2

∑

R,R ′
J (R − R ′)mRmR ′ − 2μ0B

∑

R

mR

and this is obviously greater than the eigenenergy of the state |Φ0 >. Therefore,
|Φ0 > is the ground state of the system with the ground state energy

E0 = −1

2
S2

∑

R,R ′
J (R − R ′) − 2μ0BNS .

In this state the total spin in the z direction is NS and the per node magnetic moment
(magnetization) is

M = 2μ0S .

In the absence of the magnetic field B the choice of the quantization axis is arbitrary,
and this state would have had a 2NS + 1 fold degeneracy. The average over all these
states of the same energy would give rise to no magnetization. Thus, with a finite
number of spins the Heisenberg model would not lead to a stable ferromagnetic state
in the absence of an external magnetic field. However, the situation changes drasti-
cally if one considers the thermodynamic limit. Indeed, one sees that by N ,Ω → ∞
by N

Ω
= n (constant spin density) even an infinitesimal magnetic field may determine

the direction of the magnetization, while its magnitude is the same M = 2μ0S. This
is the spontaneous symmetry breaking.

Let us treat the thermodynamics of this model in the absence of a magnetic fieldB
in the mean field (self-consistent) approximation in which one of the spin operators
we replace by its average

Hmf = −
∑

R

2μ0〈B〉SR

with the effective (s.c.) magnetic field being

〈B〉 = 1

2μ0

∑

R

J (R)〈SR〉

andwe look for a solutionwith the average on site spin 〈SR〉 as being site independent
and oriented along the z direction. Then

Hmf = −
∑

R

2μ0BSzR; B = 1

2μ0
〈Sz〉

∑

R

J (R) .

The statistical sum is

Z = Spe−βHmf =
(

∑

Sz

e−2βμ0B Sz

)N

,
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while the free energy and the equilibrium magnetization are given by

F ≡ 1

N
ln

(
∑

Sz

e−2βμ0B Sz

)

and

M ≡ − ∂F

∂B
= 2βμ0〈Sz〉

For spin S = 1
2 one gets

M = βμ0 tanh(βμ0B)

that has to be considered together with the self-consistency equation

B = 1

4μ0
tanh(βμ0B)

∑

R 	=0

J (R) .

Since tanh(x)
x < 1, over the critical temperature

Tc = 1

4kB

∑

R 	=0

J (R)

one has only a vanishing solution for the effective magnetic field B.
However for T < Tc there is a non-vanishing solution and consequently, a finite

magnetization in the absence of any external magnetic field. At T = Tc a ferromag-
netic phase transition occurs.

7.2 Bose Condensation

Another good example of a phase transition is the Bose condensation. In condensed
matter, such a transition may occur for the excitons as massive bosons. Let us con-
sider a system of free massive bosons in a finite volume (with periodical boundary
conditions) described by the second quantized Hamiltonian

H =
∑

k

eka
+
k ak

having the one-particle energies

ek = �
2k2

2m
.
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The macro-canonical statistical distribution gives the average number of bosons in
the state of wave-vector k to be the Bose distribution

1

eβ(ek−μ) − 1
.

Obviously, the chemical potential must be negative μ < 0, otherwise the expression
is negative below k = 0. The average total number of bosons fixes μ

〈n〉 = 〈N 〉
Ω

= 1

Ω

∑

k

1

eβ(ek−μ) − 1
,

or in the thermodynamic limit

〈n〉 =
∫

d3k

(2π)3

1

eβ(ek−μ) − 1
.

This integral however reaches its possible maximum value at a critical density nc for
μ = 0

nc =
∫

d3k

(2π)3

1

eβek − 1
= 1√

2π2
Γ (

3

2
)ζ(

3

2
)

(
m

β�2

) 3
2

.

Seemingly the system cannot accommodate any higher average density! As one may
see, the problem lies by the application of the often used rule

1

Ω

∑

k ′
→

∫
d3k

(2π)3
.

Indeed, one may show, that at the critical density nc, as the volume Ω increases the
chemical potential goes to zero from negative values as 1

Ω

μ ≈ −const.

Ω

and therefore, the contribution of the k = 0 state to the sum is not infinitesimal

1

Ω

1

e−βμ − 1
≈ βconst.

This contribution has to be added independently. Therefore, the correct equation for
n ≥ nc is

ncond +
∫

d3k

(2π)3

1

eβek − 1
= n .
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Above the critical density the chemical potential remains zero but the condensate
density ncond increases.

The critical situation may be achieved either by increasing the density at a fixed
temperature (n → nc, at fixed β), or by lowering the temperature at a fixed density
(β → βc at fixed density n).

Like the ferromagnetic phase transition, the Bose condensation shows a sponta-
neous symmetry breaking. This may be seen within the Bogolyubov approach. In
this approach, one introduces an infinitesimal symmetry breaking term in the Hamil-
tonian before the thermodynamic limit and let it vanish after the limit is already
performed.

Bogolyubov introduces terms that break invariance against a multiplication of the
creation/annihilation operators by a phase factor, therefore particle number conser-
vation is violated. In the macro-canonical statistical sum

Z = Tr{e−β(H−μN )}

one considers

H − μN =
∑

k

(ek − μ)a+
k ak + λ∗√Ωa0 + λ

√
Ωa+

0

with a small parameter λ. A simple c-number shift

A0 = a0 − λ
√

Ω

μ

defines the new bosonic annihilation operators for the state k = 0 and helps to bring
the expression again to a quadratic form

H − μN =
∑

k 	=0

(ek − μ)a+
k ak − μA+

0 A0 + |λ|2Ω
μ

.

The free energy is then

F = 1

βΩ

∑

k

ln {1 − e−β(ek−μ)} + |λ|2
μ

leading to the average boson density

〈n〉 = 〈N 〉
Ω

= 1

Ω

∑

k

1

eβ(ek−μ) − 1
+ |λ|2

μ2
.
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Now we may apply without hesitating the limit rule for getting integrals out of sums,
since the chemical potential remains always negative and get

〈n〉 = |λ|2
μ2

+
∫

d3k

(2π)3

1

eβ(ek−μ) − 1
.

At the critical density nc the chemical potential vanishes in the |λ| → 0 limit as

μ → |λ|√
ncond

and we get the former result.
A new aspect of this approach is that herewe explicitly recognize an order parame-

ter λ that is the analog of the magnetization with the surviving phase of the symmetry
breaking parameter (λ = |λ|eıφ) and the average value 〈a0〉 of the original annihi-
lation operator of the k = 0 state becomes macroscopic (proportional to the square
root of the total number of condensate bosons Ncond = ncondΩ)

〈a0〉 = eıφ
√
Ncond .

A characteristic property of the condensed state is the existence of long range space
correlations. The Riemann sum in the correlation function

〈ψ(x)ψ+(y)〉 ≡ 1

Ω

∑

k

eık(x−y)〈a+
k ak〉 = 1

Ω

∑

k

eık(x−y) 1

eβ(ek−μ) − 1

above the critical temperature Tc goes over into the integral

∫
d3k

(2π)3

eık(x−y)

eβek − 1

that vanishes as a power law for |x − y| → ∞, while below the critical temperature
one gets

〈ψ(x)ψ+(y)〉 = ncond +
∫

d3k

(2π)3

eık(x−y)

eβek − 1

and there is a term surviving over infinite distances.

7.3 Superconductivity

Aphase transitionof special art is superconductivity of somematerials belowacertain
critical temperature. Its peculiarity is, that it reveals not only spectacular equilibrium
properties like the Meissner effect (ideal diamagnetism expelling magnetic fields),



120 7 Phase Transitions

but also non-usual non-equilibrium properties as the flow of electric current without
resistance. Besides, connectivity properties of the material, by allowing circulating
permanent currents also play a decisive role. We shall describe in what follows the
phenomenological theory of London which succeeds in a simple mathematical for-
mulation to reflect the essentials of the phenomena. Thereafter we discuss a quantum
mechanical model in real space, suggested by the BCS (Bardeen, Cooper, Schrieffer)
theory of an effective electron-electron attraction mediated by phonons.

7.3.1 The Phenomenological Theory of London

The macroscopic Maxwell equations for the electric and magnetic fields and their
sources (charge and current densities) are

∇B = 0

∇ × E = −1

c

∂

∂t
B

∇ × B = 4π

c
j + 1

c

∂

∂t
E

∇E = 4πρ

The charges and currents obviously have to satisfy the conservation rule

∇j + ∂

∂t
ρ = 0 .

These equations alone do not determine themacroscopic electromagnetic fields. They
have to be supplemented by “matter relations” for the current- and charge- densities
characteristic for the given material, which relates these entities again to the fields.

The simplest examples are:

• normal conductors (metals), with no charge density inside and Ohms law for the
current density

jOhm = σE, ρ = 0 .

• insulators (dielectrics), with polarization charges and polarization currents char-
acterized by a dielectric constant

jpol = 1

4π
(ε − 1)

∂

∂t
E , ρ = − 1

4π
(ε − 1)∇E .

• semiconductors, which beside the ohmic and polarization currents also have a
diffusion current induced by the “free” charge density ρ f ree

jdi f f = −D∇ρ f ree.
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The diffusion constant D is related to the conductivity by the Einstein relation
defined by the carrier density n and the temperature

σ = ne2kBT D .

• magnetic materials with the specific magnetization current density we do not
mention explicitly here.

To describe the basic aspects of a superconductor, London proposed two simple
phenomenological “matter relations”, that indeed successfully describe the main
properties of these materials.

The stipulated equations that relate the current density to the electromagnetic field
are characterized by a phenomenological constant Λ

E = Λ
∂

∂t
j

Λ∇ × j = −1

c
B.

The first London equation was suggested by the behavior of free electrons, that are
accelerated by an electric field. If one takes the curl of this equation and uses the
Maxwell equations, one gets

∂

∂t

(
Λ∇ × j + 1

c
B

)
= 0 .

Therefore, the second London equation states only, that not just the time derivative
of the expression under the bracket is vanishing, but the expression itself.

Now, taking the curl of the third Maxwell equation

∇ × ∇ × B = 4π

c
∇ × j + 1

c

∂

∂t
∇ × E

and using this second London equation, as well as the identity

∇ × ∇ × B = ∇(∇B) − ∇2B

one gets

∇2B − 4π

c2Λ
B − 1

c2
∂2

∂t2
B = 0 .

In a stationary regime with constant fields it looks as

∇2B − 4π

c2Λ
B = 0 .
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The length: � = c
√

Λ
4π obviously defines the penetration depth of a magnetic field

inside a superconductor in equilibrium (Meissner effect). (Compare with the pene-
tration of a static electric field into a semiconductor.)

After integrating the second London equation on a surface S

∫

S
ds∇ × j = − 1

Λc

∫

S
dsB

and using (Stokes theorem) we get

∮
dl j = − 1

Λc
Φ

also, a circulation of the current around a loop may be sustained by a magnetic flux
inside the loop. Since in equilibrium there is no magnetic field inside the super-
conductor only the multi-connectivity of the sample allows for permanent circular
currents.

These two main properties characterize the equilibrium properties of a super-
conductor. In what concerns the first London equation it concerns non-equilibrium
phenomena. These are much difficult to treat. The microscopical theories of super-
conductivity concentrate mostly on the equilibrium properties: the existence of a
phase transition and the Meissner effect.

7.4 Superconducting Phase Transition in a Simple Model
of Electron-Electron Interaction

The fundamental idea for a microscopical explanation of superconductivity stems
from Bardeen-Cooper-Schrieffer (BCS) about the effective interaction between the
electrons of opposite spins that might become attractive, at least in a limited range
of momenta (in the neighborhood of the Fermi energy), due to exchange of opti-
cal phonons. This attraction produces no bound states, but a correlation between
electrons of opposite spins and momenta, with anomalous electron number non-
conserving averages analogously to the former description of the Bose condensation.
This BCS-theory offers a correct interpretation of the properties of the superconduct-
ing phase transition.

On the other hand, the theory of the electromagnetic propertiesmust be formulated
in the real space. Here we want to explore the possibilities to implement the BCS
model into a model based on an electron-electron interaction by a fictitious potential
without any claim for a realistic theory of superconductivity. We shall treat within
this approach also the explanation of the Meissner effect.
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We consider instead of the Hamilton operator H , the operator H ≡H − μN ,
which is more appropriate in tackling problems where only the average number of
electrons 〈N 〉 is fixed

H ≡ H − μN

=
∑

σ=± 1
2

∫
dxψ+

σ (x)
{

1

2m

(
−ı�∇ − e

c
A(x)

)2 − μ

}
ψσ (x)

+ 1

2

∫
dx

∫
dx′V (x − x′){ψ+

1
2
(x)ψ+

− 1
2
(x′)ψ 1

2
(x′)ψ− 1

2
(x) + h.c.}

with some “attractive” potential V (x) in the presence of a constant magnetic field
described by the vector potentialA(x) in the Coulomb gauge∇A(x) = 0. The chosen
interaction does not lead to bound states, like an attractive Coulomb potential would
do, but, as we shall see, it gives rise to BCS—type correlations.

We approximate the problem within the Hartree-Fock-Bogolyubov scheme by
retaining only the anomalous (electron number non-conserving) averages with oppo-
site spins

HHFB =
∑

σ

∫
dxψ+

σ (x)
{

1

2m

(
−ı�∇ − e

c
A(x)

)2 − μ

}
ψσ (x)

+
∫

dx
∫

dx′V (x − x′)
{
〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉ψ− 1

2
(x′)ψ 1

2
(x)

+ 〈ψ− 1
2
(x′)ψ 1

2
(x)〉ψ+

1
2
(x)ψ+

− 1
2
(x′) − 〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉〈ψ− 1

2
(x′)ψ 1

2
(x)〉

}
.

Here the average is defined over the macro-canonical distribution

〈. . .〉 ≡ Tr
{
e−βH HFB . . .

}

Tr
{
e−βH HFB

} .

In the absence of the magnetic field (A = 0), in a finite volume Ω with discrete
wave vectors we get the unperturbed “Hamiltonian” in terms of the creation and
annihilation operators of the k, σ states

H 0
HFB =

∑

k

{
εk

(
a+
k, 12

ak, 12 + a+
−k,− 1

2
a−k,− 1

2

)

+Δka−k,− 1
2
ak, 12

+ Δ∗
ka

+
k, 12

a+
−k,− 1

2
+ C (k)

}
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with

ε(k) = �
2k2

2m
− μ ,

Δk ≡ 1

Ω

∑

k′
V (k − k′)〈a+

k′, 12
a+

−k′,− 1
2
〉

and

Ṽ (k) =
∫

Ω

dxeıkxV (x) .

This “Hamiltonian” may be diagonalized with the Bogolyubov-Valatin canonical
transformation (

ak, 12

a+
−k,− 1

2

)
=

(
uk vk

−v∗
k u∗

k

) (
ck, 12

c+
−k,− 1

2

)
,

where the coefficients must satisfy the relation

|uk |2 + |vk |2 = 1 .

In terms of the new creation annihilation operators, we get

H
0

HFB =
∑

k

{
Ek

(
c+
k, 12

ck, 12
+ c+

k,− 1
2
ck,− 1

2

)
+ C (k)

}
,

where
E(k) =

√
ε(k)2 + |Δ(k)|2 ,

and (in the infinite volume limit)

Δ(k) = − 1

(2π)3

∫
dkṼ (k − k′)

Δ(k′)
2E(k′)

[
1 − 2 f

(
E(k′)

)]

with the Fermi function

f (E) = 1

eβE + 1
.

The HFB constant is

C (k) = εk − Ek + |Δk|
2Ek

2 [
1 − 2 f

(
E(k′)

)]
.
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The chemical potential μ has to be determined from the equation for the average
density of electrons, that in the new variables looks as

1

(2π)3

∫
dk

[
1 − ε(k)

E(k)
[1 − 2 f (E(k))]

]
= 〈n〉 .

The grand-canonical potential is

F = − 1

Ωβ
ln

{
Tr

[
e−βH

0
HFB

]}
= 1

(2π)3

∫
dk

{
2

β
ln [1 − f (E(k)] + C (k)

}

and the solution of the gap equation ensures also the extremum condition

δF

δΔ(k)
= 0 ,

while the stability of the phase transition depends on the sign of its second derivative.
The gap equation obviously has a vanishing solution Δ(k) = 0 and possibly

another one with Δ(k) 	= 0. If the solution with Δ(k) 	= 0 gives rise to a smaller
grand-canonical potential, the anomalous solution is preferred, and we have a phase
transition. In this case the new ground state is the new vacuum, with energy C (k),
while the next excited state with a quasi-particle of wave-vector k has the energy
C (k) + E(k). The minimal distance between the two states may be finite and we
have an energy gap for excitations. (Due to the rotational invariance, not only the
unperturbed energies ε but also the new ones E , as well as Δ are functions only of
k ≡ |k| and we may omit the vector notation.)

We have avoided to define the potential V (x) itself and it is not at all clear if the
BCS theory may be formulated explicitly as an attraction through a local potential
in real space. Therefore, the above discussion serves only as a sketch of a possible
scenario for a phase transition with a BCS-type electron correlation. For any given
potential one may check (numerically) the expected properties.

Whether the above described theory or any similar one describes indeed a super-
conductor may be checked only by understanding its electromagnetic properties. A
theory of the resistance-less flow of currents is beyond any hope. Indeed, transport
theory introduces elements of irreversibility (mostly by hand!) in order to get a finite
conductivity. If one omits this step, then any model allows free flow of electric cur-
rent. Then remains the question, what would impede dissipation? A vague idea about
is the hope, that the existence of a gap above the Fermi energy might offer stability
against weak perturbations. The only well defined possibility remains to look at least
at magnetic properties in equilibrium.
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7.4.1 Meissner Effect Within Equilibrium Linear Response

The simplest test of superconducting features in the above described model is to see
whether it gives rise to the Meissner effect i.e. to expulsion of magnetic fields from
the bulk? Since theMeissner effect occurs in equilibrium, onemy use the equilibrium
linear response theory (see Sect. 6.2).

The basic hamiltonian used in solid state theory omits terms of order 1
c2 and this

means not only omitting relativistic corrections, but also ignoring velocity-velocity
couplings between the electrons dictated by electrodynamics. Thus, the magnetic
field produced by the electrons is completely absent. Therefore, we are compelled to
interpret here themagnetic field as the “true” one being the sumof the external and the
average internal magnetic fields in analogy to the treatment of longitudinal electric
fields in a system of electrons without explicit Coulomb interaction. Nevertheless it
was possible to compute the average s.c. longitudinal field produced by the electrons.
An analogous possibility for the average electron current also is available.

We treat an infinite system and therefore the source of the magnetic field has to be
a fictitious external current placed in the bulk. Let us consider a weak magnetic field
that may be considered as a small perturbation. The peculiarity of the self-consistent
approach here is, that the vector potential A(x) contained explicitly in the kinetic
energy is not the only perturbation due to themagnetic field. The anomalous averages
in the s.c. “Hamiltonian”HHFB are also modified by the magnetic field. Therefore,
the perturbation to consider for the linear response is

H ′ = −1

c

∫
dxj(x)A(x) +

∫
dx

∫
dx′V (x − x′)

[
η(x, x′)ψ− 1

2
(x′)ψ 1

2
(x) + h.c.

]
,

where
η(x, x′) ≡ 〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉 − 〈ψ+

1
2
(x)ψ+

− 1
2
(x′)〉0

is (the first order in the magnetic field) deviation of the averages from their unper-
turbed values. These must be simultaneously calculated self-consistently. We still
must take into account also, that in then presence of a magnetic field the current
density contains also a diamagnetic term

j(x) ≡ e

2m
ψ+(x)

(
−ı�∇ + e

c
A(x)

)
ψ(x) + h.c. .

Onemay use the equilibrium linear response formula of Sect. 6.2with the previous
results for the chosen model of attracting electrons to get the linear relationship
between the average current and the vector potential.

From the current conservation it follows, that

〈 j̃μ(k)〉 =
(

δμν − kμkν

k

)
κ(k) Ãν(k) .
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Due to the transversality of the vector potential in the Coulomb gauge this is equiv-
alent to

〈 j̃μ(k)〉 = κ(k) Ãμ(k).

The coefficient κ(k) given by the equilibrium linear response theory has a rather
complicated expression in terms of the previously defined parameters and we omit
it. Actually, we are interested in this relationship only for small wave vectors (slowly
varying behavior in the coordinate space!). In the anomalous stable superconducting
phase having a non-vanishing gap Δ(k) at k = 0 we get

κ(0) = − 1

cΛ

with
1

cΛ
= e2

m

[
〈n〉 + 4

3

1

(2π)3

∫
dp (ε(p) + μ)

∂ f (E(p))

∂E(p)

]
.

Itmay be shown, that under the condition of the stability of the superconducting phase
Λ is indeed positive and the contribution produced by consideration of η(x, x′) to this
result vanishes. Therefore, the above described model seems to produce a Meissner
effect, since in the Coulomb gauge the second London equation reads as

j = − 1

cΛ
A .

However, aword of caution is compulsory. The prospect of a correct understanding
of the Meissner effect in the frame of any hamiltonian theory of electrons is still
not convincing. Such a theory, as we already mentioned, ignores the magnetic field
produced by the electrons themselves. This approximation is not dangerouswhenever
this magnetic field is negligible as compared to the external field. However, this is
not the case by the Meissner effect. Since in equilibrium, with a stationary average
current the retardation dictated by electromagnetic theory may be omitted, we have
an internal vector potential produced by the average internal transverse current

Aint (x) =
∫

dx′ 〈jint⊥ (x′)〉
c|x − x′| .

However we cannot compare this field to the external one (absent in this formulation)
in order to check that indeed the diamagnetic currents screen the external magnetic
field. Here we might be confronted with the limits of today’s solid state theory.



Chapter 8
Low Dimensional Semiconductors

Quasi two-dimensional semiconductor layers offer a lot of spectacular prop-
erties of which the most famous is the Quantum Hall Effect. We limit
ourselves, however only to the presentation of the simplest, well under-
stood, but nevertheless surprising peculiarities of the classical and quantum-
mechanical two-dimensional motion of Coulomb interacting electrons in the
presence of a strong transverse magnetic field.

In the last decades progresses in semiconductor technology produced ultra-thin
semiconductor layer systems in which by a suitable choice of the layers, the elec-
trons and holes are restricted to a two dimensional motion. An ultra-thin layer of a
semiconductor is inserted between two thick layers of another semiconductor with
a larger band-gap and therefore, both the electrons and holes in the ultra-thin layer
are in a quantum well and their lowest states are discrete as it is shown in Fig. 8.1.

At sufficiently low temperatures the electrons and holes sit on their lowest levels
(shown here in red and green). It means, the transverse motion at low temperatures is
“frozen” in its lowest lying state φ0(z) in the potential well created by the adjoining
layers and the wave function of an electron, in a good approximation is given by

Ψ (x, y, z) = ψ(x, y)φ0(z) ,

with the coordinates x, y lying in the plane and z being the transverse coordinate.
This is the experimental realization of a two dimensional (2D) electron-hole system,
which has a lot of very interesting properties.

Already the free motion in 2D has a peculiarity, namely the one-electron state
density is constant above ε = 0

z(ε) = 1

(2π)2

∫
dkδ(ε − �

2k2

2m
) = m

2π�2
θ(ε) .

© Springer International Publishing AG, part of Springer Nature 2018
L. A. Bányai, A Compendium of Solid State Theory,
https://doi.org/10.1007/978-3-319-78613-1_8

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78613-1_8&domain=pdf


130 8 Low Dimensional Semiconductors

Fig. 8.1 A semiconductor
quantum well

Such systems show above all spectacular properties in the presence of a strong
magnetic field transverse to the plane. The most famous one is the Quantum Hall
Effect.Wewill not try to describe here the different, sometimes contradicting theories
of this effect. Nevertheless, we want to bring the attention to the kind of strange
physics we encounter in two dimensions (2D).

8.1 Exciton in 2D

Let us consider an electron-hole pair with Coulomb attraction in a 2D semiconductor.
In the effective mass approximation, the relative motion in cylindrical coordinates is
described by the Hamiltonian

H = − �
2

2m

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− 1

ρ2

∂2

∂φ2
+ e2

ερ
,

where m is the reduced mass of the pair and ε is the dielectric constant (supposed
here as being the same in the 2D layer as in the surrounding semiconductor). The
eigenstates of this Hamiltonian are characterized by two quantum numbers n =
0, 1, 2 . . . and μ = ±0,±1,±2, . . .. The lowest eigenstate (n = 0, μ = 0) is

ψ0,0 = 4√
2πa

e− 2ρ
aB ,

while the ground state energy is

E0,0 = −4ER .
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where we used as parameter the Bohr radius aB and the Rydberg energy ER of the
3D exciton. A comparison with the ground state exciton wave function in 3D (see
Sect. 3.1.1) shows that the exciton radius in 2D is twice larger than in 3D and its
binding energy is four times bigger. Contrary to any expectations, the transversely
compressed exciton shrinks also in the still allowed two dimensions.

8.2 Motion of a 2D Electron in a Strong Magnetic Field

According to the discussed 3D motion of an electron in a homogeneous magnetic
field (see Sect. 2.2.2) the stationary states in the Landau gauge are given by a plane-
wave in the field direction (along the z axis) and in the transverse plane by the Landau
states of discrete energies. If one restricts the motion to the plane x,y, then the energy
of such a Landau state is just

εn,X, = �ωc(n + 1

2
) (n = 0, 1, 2, ...) .

Since these energies do not depend on the quantum number X (the x-coordinate of
the center of the cyclotron motion), they are (in the absence of boundary conditions!)
infinitely degenerate.

In what follows we consider very strong magnetic fields at very low temperatures
and therefore we may consider, that all the spins are aligned along the magnetic
field. We shall consider the motion of such a 2D electron in a strong magnetic field
perpendicular to the plane of motion in the presence of an external potential U (r).

The simplest approach to consider is to ignore the higher lying Landau levels and,
if the potential is weak, to consider its projection on the lowest lying Landau state
(n = 0) within first order perturbation for the energy

E(X) = 1

2
�ω0 + 〈0, X |U (x, y)|0, X〉 .

Kubo’smore profound approach considers the limit of ultra-strongmagnetic fields
for arbitrary potentials and an arbitrary kinetic energy T . The 2D Hamilton operator
is

H = T (π) +U (r) ,

where the generalized momenta π in the presence of the vector potential A are

π ≡ p + e

c
A(r) ; p ≡ ı�∇ .
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Within the set of operators (π , r) the only non-vanishing commutators are

[πx , πy] = �e

ıc
B; [πx , x] = [πy, y] = �

ı

Defining new operators

ξ = c

eB
πy, η = c

eB
πx

and
X = x − ξ, Y = y − η

it results, that

[ξ, η] = �c

ıeB
≡ l2B

ı
,

[X,Y ] = − �c

ıeB
≡ − l2B

ı
,

while the other commutators of the new operators vanish. The kinetic energy T
depends only on the new operators ξ and η. Also, in the absence of the potential
U the operators X and Y do not change in time. They are assimilated with the
coordinates of the cyclotron motion, while the operators ξ and η are the relative
coordinates.

In the presence of the external potential, either in the frame ofQuantumMechanics
or within classical mechanics, the center of the cyclotron motion moves according
to

Ẋ = c

eB

∂U

∂y
, Ẏ = − c

eB

∂U

∂x

According to the above canonical commutation rules one has the uncertainty relations

�X�Y = 2πl2B

and since ultra-strong magnetic fields imply lB → 0, a classical description with
classical coordinates X , Y is appropriate. On the other hand, if the potential is slowly
varying on the scale of the magnetic length, one may ignore the relative motion and
to a very good approximation one could use the classical equations of motion

Ẋ = c

eB

∂U (X,Y )

∂Y
, Ẏ = − c

eB

∂U (X,Y )

∂X
.

It follows, that
∂Y

∂X
= Ẏ

Ẋ
= −

∂U (X,Y )

∂X
∂U (X,Y )

∂Y

.
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However, this corresponds to the motion on a curve defined by U (x, y) = U0.
Indeed, by using the definition of the implicit derivative one gets

∂y

∂x
= −

∂U (x,y)
∂x

∂U (x,y)
∂y

.

To conclude, in the limit of ultra-strong magnetic fields the motion of the cyclotron
center of electrons in 2D with arbitrary kinetic energy in the presence of an external
potential is just a classical one along the equipotential curves of the potential.

8.3 Coulomb Interaction in 2D in a Strong Magnetic Field

8.3.1 Classical Motion

A stranger aspect of the 2Dmotion in a strong magnetic field is how Coulomb forces
act. Let us consider first the classical problem of the motion of two particles of
opposite charges (electron and hole). We are interested only in the relative motion,
therefore one of the particles we may keep fixed in the origin. A numerical solution
of the corresponding Newton equations shows the trajectory in Fig. 8.2. This is a
somewhat complicated picture, but the particles, as expected seem to attract each
other and stick together.

To big surprise, even two identically charged particles in 2D, having repulsive
Coulomb forces, stick together, showing an effective attraction, as it is illustrated on
Fig. 8.3. Of course, the Coulomb force tries to accelerate the electrons in the repulsive
manner, but the accelerated electron is returned by the bending in the magnetic field.
The only escape would have been in the now forbidden transverse direction.

If one considers awhole cluster of electrons these are sticking together in a cluster,
as it is shown in Fig. 8.4.

8.3.2 Quantum Mechanical States

The quantum-mechanical analysis of the motion of two Coulomb repulsive particles
confirms also the existence of bound electron-electron states in 2D.

The quantum-mechanical Hamiltonian for the 3D relative motion of two electrons
in the presence of a magnetic field B is

H 3D = − �
2

2m
∇2 − e�

mc
ı

(
A(r) � ∇ + 1

2
∇A(r)

)
+ e2

2mc2
A(r)2 + e2

r
.
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Fig. 8.2 Classical relativemotion of opposite charged particles in 2D in the presence of a transverse
magnetic field

If one chooses the divergence-less vector potential (with the magnetic field in the
z-direction)

A(r) ≡
(

−1

2
By,

1

2
Bx, 0

)

one may write the 2D Hamiltonian describing the in-plane motion in cylinder coor-
dinates ρ, φ as

H 2D = − �
2

2m

1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
− 1

ρ2

∂2

∂φ2
− ı

e�B

2mc

∂

∂φ
+ e2B2

8mc2
ρ2 + e2

ρ
.

One looks, as usual, for the eigenfunctions as

ψ(ρ, φ) = u(ρ)eıμφ (μ = 0, 1, 2, . . .) .

Then the eigenvalue problem for the radial part is:

− �
2

2m

1

ρ

∂

∂ρ

(
ρ

∂u

∂ρ

)
+

(
�
2

2m

μ2

ρ2
+ e�B

2mc
μ + e2B2

8mc2
ρ2 + e2

ρ

)
u = Eμu .
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Fig. 8.3 Classical relative motion of identically charged particles in 2D electron in the presence of
a transverse magnetic field

This Schroedinger equation differs (up to a shift in the energy with e�B
2mcμ) from

that of a radial 2D oscillator just due to the Coulomb term e2

ρ
. Since in a very strong

magnetic field the spins are supposed to be aligned along the magnetic field and the
wave functions must be anti-symmetrical for fermions, only odd angular momenta
μ are of interest. In terms of the dimensionless parameter

ξ = eB

2c�

(
�
2

2me2

)2

an ultra-strong magnetic field corresponds to ξ 	 1. The radial wave function of the
lowest μ = 1 state of the 2D oscillator is

R1,0(ρ) = ξ√
π

ρe− 1
2 ξρ2; 2π

∫ ∞

0
ρ|R(ρ)|2dρ = 1 ,

where for convenience the radius ρ is measured in units of the length λ = �
2

2me2 .
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Fig. 8.4 Classical motion of 4 electrons (one is kept fixed in the origin) in 2D in the presence of
the magnetic field

A numerical solution of the lowest eigenfunction including Coulomb repulsion
for μ = 1 and ξ = 10 is shown red in Fig. 8.5, while the corresponding oscillator
function is shown in blue.

Fig. 8.5 The lowest μ = 1 eigenfunction with and without Coulomb repulsion



8.3 Coulomb Interaction in 2D in a Strong Magnetic Field 137

The two wave functions are surprisingly close to each other. The contribution of
the Coulomb potential to the energy may be approximated by first order perturbation
theory as its average over the oscillator function. The result again lies surprisingly
close to the exact value (in our example, up to four digits).

On the other hand, without the Coulomb potential the wave function would have
been centered at any arbitrary position in the plane. The existence of the repulsive
center however fixes its position ! This suggested the construction of the so called
Laughlin-wave functions for many electrons out of oscillator wave functions.

It is worth to remark also, that the lowest s-wave (μ = 0) state shows in concor-
dance with the formerly discussed theory of Kubo a motion concentrated on a circle
(equipotential line for the Coulomb potential).



Chapter 9
Shortcut of Theoretical Physics

Here we offer a list of definitions and formulas, that may help the reader to
refresh his knowledge of theoretical physics.

9.1 Classical Mechanics

Lagrange function of a point-like particle in the presence of a potential U (x, t):

L(x, ẋ) = m

2
ẋ2 −U (x, t))

Euler equations:
∂

∂t

∂L

∂ ẋ
− ∂L

∂x
= 0

Hamilton function:

q = x; p = ∂L

∂ ẋ

H(p,q) = −L + pq̇

Poisson brackets:

{ f, g} = ∂ f

∂q
∂g

∂p
− ∂g

∂q
∂ f

∂p
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Equations of motion:
q̇ = {H, q}; ṗ = {H, p}

The Hamiltonian formulation may be extended to include the interaction with
a magnetic field, leading to the velocity dependent Lorentz force! In this case the
velocity is related to the canonical momentum by

mẋ = p + e

c
A(x, t) .

9.2 One-Particle Quantum Mechanics

State of the particle (wave function):

ψ(x, t)

Time evolution by the Schroedinger equation:

ı�
∂

∂t
ψ = H(t)ψ

Hamilton operator in a classical electromagnetic field described by the scalar and
vector potentials V (x, t), A(x.t):

H(t) = 1

2m

(
−ı�∇ + e

c
A(x, t)

)2 + eV (x, t)

Scalar product:

(ψ1, ψ2) ≡
∫

dxψ1(x)
∗ψ2(x)

Matrix elements of an operator A are defined by

(ψ1,A ψ2) ≡
∫

dxψ1(x)
∗A ψ2(x) =

∫
dx(A +ψ1(x))

∗ψ2(x)

Here A + is the adjoint of A . Observables are self-adjoint:

A = A +

Averages:

〈A 〉 ≡
∫

dxψ(x)∗A ψ(x)
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Stationary problem in the presence of a potential:

H = − �
2

2m
∇2 + eU (x)

Eigenvalue problem:
Hφi = Eiφi

Orthonormalization and completeness:

(φi , φ j ) = δi j∑
i

φi (x)φi (x
′)∗ = δ(x, x ′)

9.2.1 Dirac’s “bra/ket” Formalism

States are represented by

bra:
< ψ |

ket:
|ψ >

Scalar product (bracket):
< ψ1|ψ2 >

Eigenstates and eigenvalues:
H |i >= Ei |i >

Projectors on an eigenstate:
|i >< i |

∑
i

|i >< i | = 1

H =
∑
i

Ei |i >< i |
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9.3 Perturbation Theory

9.3.1 Stationary Perturbation

Perturbation proportional to a small λ:

H = H0 + λH ′

Expansion in λ:

H0φ
(0)
n = E (0)

n φ(0)
n ; Hφn = Enφn

φn = φ(0)
n + λφ(1)

n + λ2φ(2)
n . . .

En = E (0)
n + λE (1)

n + λ2E (2)
n + . . .

H ′
mn ≡ (φ(0)

m , H ′φ(0)
n )

Without degeneracy:

φ(1)
n =

∑
m(�=n)

H ′
mn

E (0)
n − E (0)

m

E (1)
n = H ′

nn

E (2)
n =

∑
m(�=n)

|H ′
mn|2

E (0)
n − E (0)

m

With degeneracy:
E (0)
n,s = E (0)

n ; (s = 1, . . . S)

to zeroth order for the eigenstate and first order in the eigenenergy

S∑
s ′=1

H ′
ns,ns ′φ

(0)
n,s ′ = E (1)φ(0)

n,s

9.3.2 Time Dependent Adiabatic Perturbation

H(t) = H0 + λH ′(t)

Schroedinger equation

ı�
∂

∂t
|ψ(t) >= H(t)|ψ(t) >
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Interaction picture
|ψ(t) >I≡ e

ı
�
H0t |ψ(t) >

ı�
∂

∂t
|ψ(t) >I= λe

ı
�
H0t H ′(t)e− ı

�
H0t |ψ(t) >I= λH ′(t)I |ψ(t) >I

Unitary evolution in the interaction picture

U (t, t0) = T

{
e

− ı
�

λ
∫ t
t0

H ′(t ′)I dt ′
}

T {. . .} indicates that the operators H ′(t)I in the expansion of the exponential should
be ordered according to chronology.

S-Matrix
S = lim

t→∞ lim
t0→−∞U (t, t0)

Asymptotic transition rate between the unperturbed eigenstates |n >and |m > of H0

Wnm ≡ lim
t→∞ lim

t0→−∞
d

dt
| < n|U (t, t0)|m > |2

The “golden rule” to second order in λ, with an adiabatic, but oscillating in time
perturbation (light absorption)

H ′(t) = (H ′eıωt + h.c.)e−0|t |

Wnm = 2π

�
λ2|H ′

nm |2δ(E (0)
n − E (0)

m ± �ω)

9.4 Many-Body Quantum Mechanics

9.4.1 Configuration Space

Hamilton operator and wave function of Coulomb interacting particles in configura-
tion space:

H (N ) =
N∑
i=1

(
− �

2

2m
∇2
i +U (xi )

)
+ 1

2

N∑
i �=i ′

e2

|xi − xi ′ |

H (N )Φ(x1, · · · xN ) = ENΦ(x1, · · · xN )

Φ(x1, · · · xN ) antysymmetrical for fermions and symmetrical for bosons!
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9.4.2 Fock Space (Second Quantization)

9.4.2.1 Fermions

Vacuum state:
|0 >

Creation and annihilation operators:

c+|0 >= |1 > c+|1 >= 0

c|1 >= |0 > c|0 >= 0

Occupation number operator:

c+c|0 >= 0; c+c|1 >= |1 >

To every one-particle state |k > corresponds a creation operator: c+
k .

Anti-commutation: [
ck ′ , c+

k

]
+ = δk,k ′

Many fermion state:
|Φ >= c+

1 c
+
2 · · · c+

N |0 >

c+
k | · · · nk · · · > = (−1)νk

√
1 − nk | · · · nk + 1 · · · >,

ck | · · · nk · · · > = (−1)νk
√
nk | · · · nk − 1 · · · >

νk =
∑
i<k

ni

Second quantized wave function:

ψ(x) =
∑
k

φk(x)ck

[
ψ(x), ψ(x ′)+

]
+ = δ(x − x ′)[

ψ(x), ψ(x ′)
]
+ = 0

Vacuum state (ground state):
|0 >
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Basis:
|xN , · · · , x1 >≡ ψ(x1)

+ · · · ψ(xN )+|0 >

< x1, · · · , xN |x ′
1, · · · , x ′

N >= det
∣∣δ(xi − x ′

j )
∣∣

Hamilton operator and state of Coulomb interacting fermions in Fock space:

H =
∫
dxψ(x)+

[
− �

2

2m
∇2 +U (x)

]
ψ(x) + 1

2

∫
dx

∫
dx ′ψ(x)+ψ(x ′)+ e2

|x − x ′|ψ(x ′)ψ(x)

The relationship to the configuration space description:

H |ΦN >= EN |ΦN >

|ΦN >≡
∫

dx1 · · ·
∫

dxN
1√
N !Φ(x1, · · · xN )|x1, · · · , xN >

Particle density:
n(x) = ψ(x)+ψ(x

Current density:

j(x) = − ı�

2m
ψ(x)+∇ψ(x) + h.c.

Continuity equation.
∂n(x)

∂t
+ ∇j(x) = 0

9.4.2.2 Bosons

Creation and annihilation operators:

a|0 >= 0

a+|n >= √
n + 1|n + 1 >

a|n >= √
n|n − 1 >

a+|n >= √
n + 1|n + 1 >

a|n >= √
n|n − 1 >

Occupation number operator:

a+a|n >= n|n >
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Commutation: [
ak ′ , a+

k

] = δk,k ′

Many boson state:

Φ = 1√
n1! . . . nN ! (a

+
1 )n1 . . . (a+

N )nN | >
∑
i

ni = N

Second quantized wave function:

ψ(x) =
∑
k

φk(x)ak

[
ψ(x), ψ(x ′)+

] = δ(x − x ′)[
ψ(x), ψ(x ′)

] = 0

|xN , · · · , x1 >≡ ψ(x1)
+ · · · ψ(xN )+|0 >

< x1, . . . , xN |x ′
1, . . . , x

′
N >=

∑
P

δ(x1 − x ′
j1) . . . δ(xN − x ′

jN )

9.5 Density Matrix (Statistical Operator)

Pure quantum mechanical ensemble defined by the state Φ.

〈A 〉 =< Φ|A |Φ >

Mixed ensemble:

|Φα > with probability pα (0 ≤ pα ≤ 1;
∑

α

pα = 1)

〈A 〉 =
∑

α

pα < Φα|A |Φα >

Density matrix (Statistical operator):

R ≡
∑

α

pα|Φα >< Φα|

Tr {R} = 1 ; R > 0
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ı�
∂R

∂t
= [H, R]

〈A 〉 = Tr {A R}

Micro-canonical equilibrium:

R0 = δ(H (N ) − EN )

Grand-canonical equilibrium.

R0 = e−β(H−μN )

Tr
(
e−β(H−μN )

)

Grand-canonical potential:

F (V, T, μ) ≡= −kBT ln Z ; Z ≡ Tr
{
e−β(H−μN )

}

free fermions:

〈a+
k ak〉 = 1

eβ(ek−μ) + 1

free bosons:

〈a+
k ak〉 = 1

eβ(ek−μ) − 1

9.6 Charged Particles and Electromagnetic Fields

Classical Maxwell-Lorenz equations

∇ × b = 4π

c
j + 1

c

∂

∂t
e

∇ × e = −1

c

∂

∂t
b

∇b = 0

∇e = 4πρ

Continuity equation:

∇j + ∂

∂t
ρ = 0
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Sources (including external ones without dynamics):

ρ(r, t) =
∑
i

eiδ(r − ri (t)) + ρext (r, t)

j(r, t) =
∑
i

eivi (t)δ(r − ri (t)) + jext (r, t)

∇jext + ∂ρext

∂t
= 0

Electromagnetic potentials:

b = ∇ × a

e = −∇v − 1

c

∂

∂t
a

Gauge invariance:

v → v + 1

c

∂

∂t
Λ

a → a − ∇Λ

Equations of the potentials:

−∇2a + ∇(∇a) + 1

c2
∂2

∂t2
a = 4π

c
j − 1

c
∇ ∂

∂t
v

−∇2v − 1

c2
∇ ∂

∂t
a = 4πρ

Coulomb gauge:

∇a = 0

−∇2v = 4πρ

−∇2a + 1

c2
∂2

∂t2
a = 4π

c
j − 1

c
∇ ∂

∂t
v ≡ 4π

c
j⊥

Transverse current:
∇j⊥ = 0

j⊥(r, t) ≡ j(r, t) + 1

4π
∇

∫
dr′ ∇′j(r′, t)

|r − r′|
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Solution (with ∇aext = 0):

v(r, t) =
∫

dr′ ρ
int (r′, t)
|r − r′| + V ext (r, t)

a(r, t) =
∫

dr′ j
int
⊥ (r′, t − 1

c |r − r′|)
c|r − r′| + aext (r, t)

Newton’s equation of motion with Lorentz forces:

mi
d

dt
vi = ei

(
e′(ri , t) + 1

c
vi × b′(ri , t)

)

Here e′ and b′ are the fields without self-action!
For v

c → 0, one ignores the magnetic field created by the particles themselves aint

and the particle motion may be separated:

H =
∑
i

(
1

2mi
(pi + ei

c
aext (ri , t))2 + ei V

ext (ri , t)
)

+ 1

2

∑
i �= j

ei e j
|ri − r j | .

In this standard approximation used in solid state theory, the magnetic field created
by the charged particles is ignored!

Macroscopic fields as averages:

E = 〈e〉; B = 〈b〉

Macroscopic Maxwell equations.

∇ × B = 4π

c
(〈j〉 + jext + 1

c

∂

∂t
E

∇ × E = −1

c

∂

∂t
B

∇B = 0

∇E = 4π(〈ρ〉 + ρext )

The classical macroscopic theory of electromagnetism relates the average sources
(〈ρ〉, 〈j〉) to the fields (E ,B) by certain phenomenological relationships and leaves
the foundation of these relationships to the microscopical theories.

The non-relativistic quantum-mechanical Hamiltonian of charged particles in
external electric and magnetic fields:
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H =
∑
σ,σ ′

∑
α

∫
drΨα,σ (r)+

{
1

2mα

(
−ı�∇ + +eα

c
Aext (r, t)

)2
δσ,σ ′

+eαV
ext (r, t)δσ,σ ′ + μBσ σσ ′B(r, t)Ψα,σ ′(r)

}

+1

2

∑
σσ ′

∑
α,α′

∫
dr

∫
dr′Ψα,σ (r)+Ψα′,σ ′(r′)+

eαeα′

|r − r′|Ψα′,σ ′(r′)Ψα,σ (r) .

Here the index α runs over the different sorts of charged particles, while σ runs over
the spin projections (preferentially on the magnetic field direction).

The charge and current density operators:

ρ(x) =
∑

σ

∑
eαΨα,σ (r)+Ψα,σ (r)

j(x) =
∑

σ

∑
α

eα

2
Ψα,σ (r)+

(
−ı�∇ + eα

c
Aext (r, t)

)
Ψα,σ (r) + h.c. .

The magnetic moment of the spins has to be included separately! It is sometimes
useful to consider the quantum mechanical nature of the electromagnetic field (pho-
tons), while leaving the description of the charged particles in the former described
quantum-mechanical, but non-relativistic description.

However, a consistent relativistic and quantum-mechanical formulation of the
electrodynamics of particles and fields may be formulated only in the frame of the
quantum electrodynamics. That is much beyond the frame of today’s solid state
theory.



Chapter 10
Home-Work

For all readers it is a useful exercise to perform the omitted details of the
proofs. Them interested reader I recommend some lengthy but useful home-
works an ambitious graduate student should nevertheless be able to perform
successfully. I would like to encourage the reader also to write their own
programs and play through different funny scenarios around the examples
given in the Sects.2.6.2, 5.2 and 8.3.1.

10.1 The Kubo Formula

Start from the linear response formula of Sect. 6.1 with the perturbation caused by
coupling to (time dependent) electromagnetic potentials

H ′(t) =
∫

dx {ρ(x)V (x, t) − j(x)A(x, t)} ,

where the A2 term of the non-relativistic theory was ignored, since it is of second
order in the field. Prove the Kubo formula for the induced average current density

〈 jμ(x, t)〉 =
3∑

ν=1

∫ t

−∞
dt ′

∫ β

0
dλ

∫
dx′〈 jν(x′,−ı�λ) jμ(x, t − t ′)〉0Eν(x′, t ′) .

© Springer International Publishing AG, part of Springer Nature 2018
L. A. Bányai, A Compendium of Solid State Theory,
https://doi.org/10.1007/978-3-319-78613-1_10

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78613-1_10&domain=pdf


152 10 Home-Work

using the Kubo identity

[
A, e−βH

] = e−βH
∫ β

0
dλeλH [H, A] e−λH .

(Check it by taking its matrix element between eigenstates of the Hamiltonian H .)
Consider the case of a homogeneous field in a homogeneous system introduced
adiabatically at t = −∞ as est with s → +0 to get the conductivity tensor

σμν(ω) = lim
s→+0

lim
Ω→∞ Ω

∫ 0

−∞
dteıωt est

∫ β

0
dλ〈 jν(t − ı�λ) jμ(0)〉0 , (10.1)

where jμ ≡ 1
Ω

∫
dx jμ(x) and the infinite volume limit is to be understood in the

thermodynamic sense, i.e. at a fixed average carrier density. (It is understood, that
the Kubo formula is valid only for Coulomb non-interacting electrons i.e. the electric
field is the total one.)

10.2 Ideal Relaxation

Remake the above derivation by adding an ideal relaxation term

−ı�
R − R0

τ

to the Liouville equation. However, now starting in equilibrium at time t = 0 and
measuring at t = ∞ without any adiabaticity. You shall see, that you get the same
formula, with the adiabatic parameter s replaced by 1

τ
.

Now, consider that the unperturbed Hamiltonian H is just the one describing the
motion in a constant magnetic field in the Landau gauge i.e. compute the matrix
elements with the Landau states and perform all the integrals. Do not forget, that the
velocity in the presence of the magnetic field is ẋ ≡ 1

m (p − e
cA(x))!

You shall obtain the same expression for the conductivity tensor as we derived in
Sect. 5.3 from the Boltzmann equation under an analogous ideal relaxation assump-
tion.

10.3 Rate Equation for Bosons

Derive the transition rates for massive bosons interacting with acoustic phonons
using the many-body “golden rule”. Show the detailed balance relation. Within the
approximation

〈nin j 〉 ≈ 〈ni 〉〈n j 〉
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formulate the corresponding rate equation with discrete wave vectors k. Analyze
its properties. Perform the thermodynamic limit and remark the problem with the
particle conservation if the concentration of bosons exceeds the critical one.

10.4 Bose Condensation in Time

Try to repair the above derived rate equation for massive bosons by implementing
the idea of a macroscopic number of bosons in the k = 0 state we discussed in
the equilibrium theory of Bose condensation Sect. 7.2. Also consider an indepen-
dent macroscopic degree of freedom 〈n0〉 proportional to the volume and separate
from the discrete sums this contribution. Admit that only the rest converges to a
Riemann integral in the thermodynamic limit. Analyze the properties of the new
system of equations. Show, that it has an equilibrium attractor for t → ∞ with or
without condensate, depending on the total density. Remark the need for an arbitrary
small condensate at t = 0 (“condensation kernel”) to get a solution above the critical
density.

10.5 Bose Condensation in a Finite Potential Well

The standard theory of Bose condensation implies the thermodynamic limit and
describes an infinite homogeneous system. On the other hand, experimental evidence
occurs in finite (confined) systems. One may try a quasi-classical approach to bosons
in a finite (but not quantizing !) potential well to understand this aspect.

Consider the motion in the presence of a finite in depth and width, spherically
symmetric, attractive (v > 0) potential well

U0(r) = −v

(
1 −

( r

R

)2
)

θ(R − r)

(r ≡ |x|) embedded in an infinite volume.
The corresponding equilibrium distribution is

f (p, x) = 1

eβ(
p2

2m +U (x)−μ) − 1
.

with the chemical potential determined by the total number of bosons

∫
dx

∫
dp

(2π�)3
f (p, x) = 〈N 〉 .
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However, since one expects, that at low temperatures many bosons drop in the
well, one has to take into consideration, that being close to each other they will
interact. Usually this interaction is repulsive. Consider just a contact interaction
potential v(x) = wδ(x) (w > 0), that one may treat in a self-consistent manner by
the effective potential

U (x) = U0(x) +
∫

dx′v(x − x′)
∫

dp
(2π�)3

f (p, x′) .

This potential is just a constant outside the well

U (x) = w〈n〉 ( f or r > R)

where 〈n〉 is the average density of bosons

〈n〉 =
∫

dp
(2π�)3

1

eβ(
p2

2m +wn̄−μ) − 1
.

(A finite number of bosons in the well do not contribute to this equation.) A solution
exists only for μ < wnc, where nc is the critical density

nc =
∫

dp
(2π�)3

1

eβ
p2

2m − 1
.

Above this density an overall condensate should appear.
Now, it is most interesting to follow the scenario before this overall condensation

occurs. For r < R one gets a radius dependent density and the self-consistency
equation

U (r) = U0(r) + w
∫

dp
(2π�)3

1

eβ(
p2

2m +U (r)−μ) − 1
; (r < R)

So long U (r) − μ > 0, this equation has a solution, but afterwards, obviously not.
Therefore, it is reasonable to correct this equation by admitting the possibility of a
local condensate density n0(r) not included in the Bose distribution

U (r) = U0(r) + w

(
n0(r) +

∫
dp

(2π�)3

1

eβ(
p2

2m +U (r)−μ) − 1

)
( f or r < R) .

The potential U (r) varies monotonously and coming down from the top of the
potential one might reach a radius r0 < R, by which indeed

U (r0) = μ
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and the integral over theBose function reaches itsmaximal value.Due to the condition
U (r) − μ ≥ 0 also for the points r < r0, it must belong to the minimum ofU (r) and
a condensate n0(r) must emerge

n0(r) = 1

w
(U (r0) −U0(r)) ( f or 0 < r < r0) .

Solve numerically the self-consistency equation for r0 < r < R (before the
apparition of the condensate) to confirm this scenario. Since the transcendental self-
consistency equation is local, for a numerical solution it is convenient to solve it in
favor of U0 at a given U, thus performing a simple integration over the momenta p.
The association to a certain radius r is given then by the explicit definition ofU0(r).
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