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Preface

The global variational geometry as introduced in this book is a branch of mathe-
matics, devoted to extremal problems on the frontiers of differential geometry,
global analysis, the calculus of variations, and mathematical physics. Its subject is,
generally speaking, a geometric structure consisting of a smooth manifold endowed
with a differential form.

More specifically, by a variational structure, or a Lagrange structure, we mean
in this book a pair ðY ; qÞ, where Y is a smooth fibered manifold over an
n-dimensional base manifold X and q a differential n-form, defined on the r-jet
prolongation JrY of Y. The forms q, satisfying a horizontality condition, are called
the Lagrangians. The variational functional, associated with ðY ; qÞ, is the real-
valued function CXðpÞ 3 c ! qXðcÞ ¼

R
Jrc*q2R, where CXðpÞ is the set of

sections of Y over a compact set X � X, Jrc is the r-jet prolongation of a section c,
and Jrc*q is an n-form on X, the pull-back of q by Jrc.

Over the past few decades the subject has developed to a self-contained theory of
extremals of integral variational functionals for sections of fibered manifolds,
invariance theory under transformations of underlying geometric structures, and
differential equations related to them. The variational methods for the study of these
functionals extended the corresponding notions of global analysis such as differ-
entiation and integration theory on manifolds. Innovations appeared in the devel-
opments of topological methods needed for a deeper understanding of the global
character of variational concepts such as equations for extremals and conservation
laws. It has also become clear that the higher order variational functionals could
hardly be studied without innovations in the multi-linear algebra, namely in the
decomposition theory of tensors and differential forms by the trace operation.

The resulting theory differs in many aspects from the classical approach to
variational problems: The underlying Euclidean spaces, are replaced by smooth
manifolds and fibered spaces, the classical Lagrange functions and their variations
are replaced by Lagrange differential forms and their Lie derivatives, etc. Within the
classical setting, a (first order) variational structure is a pair ðY ; kÞ, where
Y ¼ J1ðRn � RmÞ is the 1-jet prolongation of the product Rn � Rm of Euclidean
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spaces, and in the canonical coordinates, k ¼ Ldx1 ^ dx2 ^ � � � ^ dxn, where
L : Rn � Rm � Rnm ! R is a Lagrange function, depending on n independent
variables, m dependent variables, and nm partial derivatives of dependent variables.

Basic geometric ideas allowing us to globalize the classical calculus of variations
come from the concepts of E. Cartan [C] in the calculus of variations of simple
integrals, and especially from the work of Lepage (see e.g. [Le]). Further develop-
ments after Cartan and Lepage have led to a deeper understanding of the structure and
geometric nature of general variational procedures and their compatibility with
manifold structures. Main contributors to the global theory are Dedecker [D] (geo-
metric approach to the calculus of variations, regularity), Garcia [G] (Poincare-Cartan
form, invariant geometric operations, connections), Goldschmidt and Sternberg [GS]
(Cartan form, vector-valued Euler–Lagrange form, Hamilton theory, Hamilton–
Jacobi equation), Krupka [K13], [K1] (Lepage forms, higher order variational
functionals, infinitesimal first variation formula, Euler–Lagrange form, invariance),
and Trautman [Tr1, Tr2] (invariance of Lagrange systems, Noether’s theory).

This book covers the subjects that are considered as basic in the classical
monographs on the (local) calculus of variations on Euclidean spaces: variational
functionals and their variations, the (first) variation formula, extremals and the
Euler–Lagrange equations, invariance and conservation laws. We study these topics
within the framework of much broader underlying structures, smooth manifolds.
This requires, in particular, a systematic use of analysis and topology of manifolds.
In addition, new questions appear in this framework such as for instance global
existence of the notions, constructed in charts. We also study global properties
of the Euler–Lagrange mapping; to this purpose two chapters devoted to sheaves
and the variational sequence theory are included. It is however obvious that these
themes do not reflect the foundations of the global variational theory completely.
Further comprehensive expositions including applications, based on modern geo-
metric methods in the calculus of variations on manifolds, can be found in the
monographs Giachetta, Mangiarotti and Sardanashvily [GMS1], [GMS2], De Leon
and Rodrigues [LR], Mangiarotti and Modugno [MM], and Mei Fengxiang and Wu
Huibin [MW]. For orientation in recent research in these fields we refer to Krupka
and Saunders [KS].

The text of the book requires a solid background in topology, multi-linear
algebra, and differential and integral calculus on manifolds; to this purpose we
recommend the monograph Lee [L]. Essentials of the classical and modern calculus
of variations can be found e.g. in Gelfand and Fomin [GF], Jost and Li-Jost [JL],
and in the handbook Krupka and Saunders [KS], where differential forms are
considered. For the theory of jets, natural bundles and applications we refer to
original works of Ehresmann [E] and to the books Kolar, Michor and Slovak
[KMS], Krupka and Janyska [KJ], and Saunders [S]. We also need an elementary
sheaf theory; our exposition extends a chapter of the book Wells [We]. For refer-
ence, some theorems and formulas are collected in the Appendix. We should
especially mention the section devoted to the trace decomposition theory on real
vector spaces, which is needed for the decomposition of differential forms on jet
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manifolds (Krupka [K15]); although the trace decomposition is an elementary topic,
it is difficult to find an adequate reference in classical and contemporary algebraic
literature.

Chapter 1 covers fundamentals of fibered manifolds and their jet prolongations.
The usual topics related to the jet structure, such as the horizontalization morphism,
jet prolongations of sections and morphisms of fibered manifolds, and prolonga-
tions of vector fields are introduced. It should be pointed out that the vector fields
and their jet prolongations represent a geometric, coordinate-free construction,
replacing in the global variational theory the classical “variations of functions”, and
“induced variations” of their derivatives.

Chapter 2 studies differential forms on the jet prolongations of fibered manifolds.
The contact forms are introduced, generating a differential ideal of the exterior
algebra, and the corresponding decompositions of forms are studied. It is also shown
that the trace operation, acting on the components of forms, leads to a decompo-
sition related to the exterior derivative of forms. The meaning of the structure the-
orems for the global variational theory, explained in the subsequent chapters,
consists in their variational interpretation; in different situations the decompositions
lead to the Lagrangian forms, the source forms, the Helmholtz forms, etc.

Chapter 3 is devoted to the formal divergence equations on jet manifolds, a
specific topic that needs independent exposition. It is proved that the integrability
of these equations is equivalent with the vanishing of the Euler–Lagrange operator.

The objective of Chaps. 4–6 is to study the behaviour of the variational func-
tional CXðpÞ 3 c ! qXðcÞ ¼

R
Jrc*q2R with respect to the variable c. But in

general, the domain of definition CXðpÞ has no natural algebraic and topological
structures; this fact prevents an immediate application of the methods of the dif-
ferentiation theory in topological vector spaces, based on the concept of the
derivative of a mapping. However, even when no topology on CXðpÞ has been
introduced, the geometric, or variational method to investigate the functional qX
can still be used: we can always vary (deform) each section c2CXðpÞ within the set
CXðpÞ, and study the induced variations (deformations) of the value qXðcÞ.

The key notions in Chap. 4 are the variational derivative, Lepage form, the first
variation formula, Euler–Lagrange form, trivial Lagrangian, source form,
Vainberg–Tonti Lagrangian, and the inverse problem of the calculus of variations
and the Helmholtz expressions.

The exposition begins with the description of variations of sections of the fibered
manifold Y, considered as vector fields, and the induced variations of the variational
functional

R
Jrc*q. It turns out in this geometric setting that the induced variations

are naturally characterized by the Lie derivative of q. An immediate consequence of
this observation is that one can study the functional qX by means of the differential
calculus of forms and vector fields on the underlying jet manifold.

Next we introduce the fundamental concept of the global variational theory on
fibered manifolds, a Lepage form. We prove that to any variational structure ðY ; qÞ
there always exists an n-form Hq with the following two properties: first, the form
Hq defines the same integral variational functional as the form q, that is, the identity
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Jrc*q ¼ Jrc*Hq holds for all sections c of the fibered manifold Y, and second, the
exterior derivative dHq defines equations for the extremals, thus, c is an extremal if
and only if dHq vanishes along Jrc. Any form Hq is called a Lepage equivalent
of the form q.

As a basic consequence of the existence of Lepage equivalents we derive a
geometric, coordinate-free analog of the classical (integral) first variation formula –
the infinitesimal first variation formula, which is essentially the Lie derivative
formula for the form Hq with respect to the vector fields defining the induced
variations. The infinitesimal first variation formula becomes a main tool for further
investigation of extremals and symmetries of the functional. It should also be noted
that the geometric structure of the formula admits immediate extensions to second
and higher variations.

We may say that these two properties defining Hq explain the meaning of the
first and second Lepage congruences, considered by Lepage and Dedecker in their
study of the classical variational calculus for submanifolds (cf. Dedecker [D]).

The exterior derivative dHq splits in two terms, one of them, characterizing
extremals, is a (globally well-defined) differential form, the Euler–Lagrange form;
its components in a fibered chart are the well-known Euler–Lagrange expressions.
The corresponding system of partial differential equations, Euler–Lagrange equa-
tions, are then related to each fibered chart. Solving these equations requires their
analysis in any concrete case from the local and global viewpoints.

Next we study in Chap. 4 the structure of the Euler–Lagrange mapping,
assigning to a Lagrangian its Euler–Lagrange form. Since the Euler–Lagrange
mapping is a morphism of Abelian groups of differential forms on the underlying jet
spaces, its basic characteristics include descriptions of its kernel and its image. We
describe these spaces by their local properties.

The kernel consists of variationally trivial Lagrangians – the Lagrangians whose
Euler–Lagrange forms vanish identically. These Lagrangians are characterized in
terms of the exterior derivative operator d; their local structure corresponds with the
classical divergence expressions. The global structure depends on the topology
of the underlying fibered manifold Y, and is studied in Chap. 8.

The problem of how to characterize the image of the Euler–Lagrange mapping is
known as the inverse problem of the calculus of variations. Its simple coordinate
version for systems of partial differential equations consists in searching for con-
ditions when the given equations coincide with the Euler–Lagrange equations of
some Lagrangian. On a fibered manifold, the inverse problem is formulated for a
source form, defined on JrY ; it is required that the components of the source form
coincide with the Euler–Lagrange expressions of a Lagrangian. We find the
obstructions for variationality of source forms by means of the Lagrangians of
Vainberg–Tonti type, constructed by a fibered homotopy operator, and used for the
first time by Vainberg [V]. The resulting theorem gives the necessary and sufficient
local variationality conditions in terms of the Helmholtz expression (cf. Anderson
and Duchamp [AD] and Krupka [K8, K11]).
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Chapter 5 is devoted to variational structures whose Lagrangians, or
Euler–Lagrange forms, admit some invariance transformations. The invariance
transformations are defined naturally as the transformations preserving a given
differential form; this immediately leads to criteria for a vector field to be
the generator of these transformations. Then we prove a generalization of the
Noether’s theorem for a given variational structure ðY ; qÞ, relating the generators of
invariance transformations of q with the existence of conservation laws for the
solutions of the system of Euler–Lagrange equations. The theory extends the
well-known classical results on invariance and conservation laws originally
formulated for multiple-integral variational problems in Euclidean spaces
(Noether [N]).

It should be noted that the invariance theorems for variational structures as stated
in this book become comparatively simple (compare with Olver [O1], where a
complete classical approach is given). The reason can be found in the fundamental
concepts of the theory of variational structures – differential forms, for which
invariance theorems are formulated. To explain the basic ideas, consider a manifold
Y of dimension p endowed with a differential n-form q. Then for any vector field n
on Y, the Lie derivative onq can be expressed by the Cartan’s formula
onq ¼ indqþ dinq, where in is the contraction of q by the vector field by n and d is
the exterior derivative. Then for any mapping f : X ! Y , where X is a manifold of
dimension n, the Lie derivative satisfies f *onq ¼ f *indqþ df *inq. Thus, if q is
invariant with respect to n, that is, onq ¼ 0, we have f *indqþ df *inq ¼ 0. If in
addition f satisfies the equation f *indq ¼ 0, then f necessarily satisfies the con-
servation law equation df *inq ¼ 0 (Noether’s theorem). Similar conservation law
theorems for variational structures on jet manifolds are proved along the same lines.

In Chap. 6 we consider a few examples of natural variational structures as
introduced in Krupka [K10] (for natural variational principles on Riemannian
manifolds see Anderson [A1]). Main purpose is to establish basic (global) structures
and find the corresponding Lepage forms. The Hilbert variational functional for the
metric fields on a manifold (Hilbert [H]) and a variational functional for connec-
tions are briefly discussed. The approach should be compared with the standard
formulation of the variational principles of the general relativity and other field
theories. Clearly, these examples as well as many others whose role are variational
principles of physics need a more complex and more detailed study.

As mentioned above, the theory of variational structures gives rise to the
Euler–Lagrange mapping, which assigns to an n-form k, a Lagrangian, an ðnþ 1Þ-
form Ek, the Euler–Lagrange form associated with k. Its definition results from the
properties of the exterior derivative operator d, an appropriate canonical decom-
position of underlying spaces of forms, and from the concept of a Lepage form
(cf. Krupka [K1]). On this basis we easily come to the basic observation that the
Euler–Lagrange mapping can be included in a differential sequence of Abelian
sheaves as one of its arrows. We proceed to introduce the sequence and the
associated complex of global sections, and to study on this basis global properties
of the Euler–Lagrange mapping.
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To this purpose we first explain in Chap. 7 elements of the sheaf theory (see e.g.
Wells [We]). Attension is paid to those theorems, which are needed for the vari-
ational structures; complete proofs of these theorems are included. In particular, the
formulation and proof of the abstract De Rham theorem is given.

The variational geometry is devoted to geometric, coordinate-independent
properties of qX. In particular, the geometric problems include the study of critical
points (or extremals) of the variational functionals; their maxima and minima,
where a topology on CXðpÞ is needed, are not considered. Many other typical
geometric problems are connected with various kinds of symmetries of the varia-
tional functionals and the corresponding equations for the extremals. The problem
of restricting a given functional defined, say, on a Euclidean space, to a subman-
ifold (the constraint submanifold) is obviously included in this framework.

It should be pointed out that the geometric variational theory completely covers
the problems, related with the variational principles in physical field theory and
geometric mechanics, where concrete underlying geometric structures and varia-
tional functionals are considered.

Chapter 8 is devoted to the variational sequence of order r for a fiberedmanifold Y.
Its construction has no a priori relations with the theory of variational structures. The
sequence is established on the observation that the De Rham sequence of differential
forms on the r-jet prolongation JrY has a remarkable subsequence, defined by the
contact forms; the variational sequence is then defined to be the quotient sheaf
sequence of the De Rham sheaf sequence (see Krupka [K19]).

With the obvious definition of the quotient groups, we denote the variational
sequence as 0 ! RY ! Xr

0 ! Xr
1=H

r
1 ! Xr

2=H
r
2 ! Xr

3=H
r
3 ! � � �. Its properties

relevant to the calculus of variations can be divided into two parts:

(a) Local properties, represented by theorems on the structure of the classes of
forms in the quotient sequence and morphisms between these quotient groups:

• the classes ½q� of n-forms q2Xr
n, where n is the dimension of the base

X of the fibered manifold Y, can canonically be identified with Lagrangians
for the fibered manifold Y,

• the classes ½q� of ðnþ 1Þ-forms q2Xr
nþ1 can canonically be identified with

the source forms,
• the quotient morphism En : X

r
n=H

r
n ! Xr

nþ1=H
r
nþ1 is exactly the

Euler–Lagrange mapping of the calculus of variations,
• the quotient morphism Enþ1 : X

r
nþ1=H

r
nþ1 ! Xr

nþ2=H
r
nþ2 is exactly the

Helmholtz mapping of the calculus of variations.

All these classes and morphisms are described explicitly in fibered charts; their
expressions coincide with the corresponding expressions given in Chap. 4. Thus,
the variational sequence allows us to rediscover basic variational concepts from
abstract structure constructions on the jet manifolds JrY .
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(b) Global properties, represented by the theorem on the cohomology of the
complex of global sections of the variational sequence; this implies, on the basis
of the De Rham theorem that:

• there exists an isomorphism between the cohomology groups of the complex
of global sections and the De Rham cohomology groups,

• the obstructions for global variational triviality of Lagrangians lie in the
cohomology group HnY , where n ¼ dimX,

• the obstructions for global variationality of source forms lie in the coho-
mology group Hnþ1Y .

We also provide a list of manifolds Y and its cohomology groups, which allows
us to decide whether local variational triviality of a Lagrangian, resp. local varia-
tionality of a source form, necessarily implies its global triviality, resp. global
variationality.

This book originated from my research in global variational geometry and from
numerous courses and lectures at different universities and international summer
schools. Its first five chapters, essentially extending original notes, have been
written during my stay at Beijing Institute of Technology under a key programme of
National Science Foundation of China (grant No. 10932002). I am deeply indebted
to BIT for the excellent conditions and fruitful scientific atmosphere during my
work at the School of Mathematics. Especially I would like to thank Prof. Donghua
Shi for generous collaboration and kind hospitality, and to Prof. Huafei Sun and
Prof. Yong-xin Guo for fruitful discussions and support.

I also highly appreciate research conditions, created for me by Prof. Michal
Lenc, head of the Department or Theoretical Physics and Astrophysics, while
working on the manuscript at my Alma MaterMasaryk University in Brno. Without
his personal support this work could hardly be completed.

It remains for me to acknowledge the help I have received in preparing the
manuscript of this book. I am especially indebted to Zhang Chen Xu and Kong Xin
Lei from BIT who read very carefully a large part of the text, pointed out mistakes
and suggested improvements.

Levoca, May 2014 D. Krupka
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Chapter 1
Jet Prolongations of Fibered Manifolds

This chapter introduces fibered manifolds and their jet prolongations. First, we
recall properties of differentiable mappings of constant rank and introduce, with the
help of rank, the notion of a fibered manifold. Then, we define automorphisms of
fibered manifolds as the mappings preserving their fibered structure. The r-jets of
sections of a fibered manifold Y, with a fixed positive integer r, constitute a new
fibered manifold, the r-jet prolongation JrY of Y; we describe the structure of JrY
and a canonical construction of automorphisms of JrY from automorphisms of the
fibered manifold Y, their r-jet prolongation. The prolongation procedure immedi-
ately extends, via flows, to vector fields. For this background material, we refer to
Krupka [K17], Lee [L], and Saunders [S].

These concepts are prerequisites for the geometric definition of variations of
sections of a fibered manifold, extending the corresponding notion used in the
classical multiple-integral variational theory on Euclidean spaces to smooth fibered
manifolds.

1.1 The Rank Theorem

Recall that the rank of a linear mapping u: E ! F of vector spaces is defined to be
the dimension of its image space, rank u ¼ dim Im u. This definition applies to
tangent mappings of differentiable mappings of smooth manifolds. Let f : X ! Y be
a Cr mapping of smooth manifolds, where r� 1. We define the rank of f at a point
x 2 X to be the rank of the tangent mapping Tx f : Tx X ! Tf ðxÞY . We denote

rankx f ¼ dim Im Tx f : ð1Þ

The function x ! rankx f , defined on X, is the rank function.
Elementary examples of real-valued functions f of one real variable show that the

rank function is not, in general, locally constant. Our main objective in this section
is to study differentiable mappings whose rank function is locally constant.

© Atlantis Press and the author 2015
D. Krupka, Introduction to Global Variational Geometry,
Atlantis Studies in Variational Geometry 1, DOI 10.2991/978-94-6239-073-7_1
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First, we prove a manifold version of the constant rank theorem, a fundamental
tool for a classification of differentiable mappings. The proof is based on the rank
theorem in Euclidean spaces (see Appendix 3) and a standard use of charts on a
smooth manifold.

Theorem 1 (Rank theorem) Let X and Y be twomanifolds, n ¼ dim X,m ¼ dim Y,
and let q be a positive integer such that q�minðn;mÞ. Let W � X be an open set, and
let f : W ! Y be a Cr mapping. The following conditions are equivalent:

(1) f has constant rank on W equal to q.
(2) To every point x0 2 W, there exists a chart ðU;uÞ; u ¼ ðxiÞ at x0, an open

rectangle P � Rn with center 0 such that uðUÞ ¼ P; uðx0Þ ¼ 0, a chart
ðV ;wÞ; w ¼ ðyrÞ, at y0 ¼ f ðx0Þ, such that f ðUÞ � V, and an open rectangle
Q � Rm with center 0 such that wðVÞ ¼ Q; wðy0Þ ¼ 0, and

yr � f ¼ xr; r ¼ 1; 2; . . .; q;
0; r ¼ qþ 1; qþ 2; . . .;m:

�
ð2Þ

Proof

1. Suppose that f has constant rank on W equal to q. We choose a chart
ð�U; �uÞ; �u ¼ ð�xiÞ, at x0, and a chart ð�V ; �wÞ; �w ¼ ð�yrÞ, at y0, and set g ¼ �wf �u�1;
g is a Cr mapping from �uð�UÞ � Rn into �wð�VÞ � Rm. Since for every tangent
vector n 2 TxX expressed as

n ¼ �ni
@

@�xi

� �
x
; ð3Þ

we have

Tx f � n ¼ Dið�yrf �u�1Þð�uðxÞÞ�ni @

@�yr

� �
f ðxÞ

; ð4Þ

the rank of f at x is rank Tx f ¼ rank Dið�yrf �u�1Þð�uðxÞ. Consequently, the rank of
f is constant on the open set �uð�UÞ � Rn and is equal to q. Shrinking �U to a
neighborhood U of x0 and �V to a neighborhood V of y0 if necessary, we may
suppose that there exists an open rectangle P � Rn with center 0, a diffeomor-
phism a: �uðUÞ ! P, an open rectangle Q � Rm with center 0, and a diffeomor-
phism b: �wðVÞ ! Q, such that in the canonical coordinates zi on P and wr on Q,
bga�1ðz1; z2; . . .; znÞ ¼ ðz1; z2; . . .; zq; 0; 0; . . .; 0Þ. We setu ¼ a�u; u ¼ ðxiÞ, and
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w ¼ b�w; w ¼ ðyrÞ. Then, ðU;uÞ and ðV ;wÞ are charts on the manifolds X and Y,
respectively. In these charts, the mapping wfu�1 can be expressed as
wfu�1 ¼ b�wf �u�1a�1 ¼ bga�1; thus, for every point x 2 U

wf ðxÞ ¼ wfu�1uðxÞ ¼ bga�1uðxÞ
¼ bga�1ðx1ðxÞ; x2ðxÞ; . . .; xnðxÞÞ
¼ ðx1ðxÞ; x2ðxÞ; . . .; xqðxÞ; 0; 0; . . .; 0Þ:

ð5Þ

In components,

yr � f ðxÞ ¼ xrðxÞ; r ¼ 1; 2; . . .; q;
0; r ¼ qþ 1; qþ 2; . . .;m;

�
ð6Þ

proving (2).
2. Conversely, suppose that on a neighborhood of x0 2 W , the mapping f is

expressed by (2). Then, rank Tx0 f ¼ rank Diðyrfu�1Þðuðx0ÞÞ ¼ q. h

Let f : X ! Y be aCr mapping, and let x0 2 X be a point.We say that f is a constant
rank mapping at x0, if there exists a neighborhoodW of x0 such that the rank function
x ! rankx f is constant on W. Then, the charts ðU;uÞ and ðV ;wÞ in which the
mapping f has an expression (2) are said to be adapted to f at x0, or just f-adapted. A
Cr mapping f that is a constant rank mapping at every point is called a Cr mapping of
locally constant rank.

A Cr mapping f : W ! Y such that the tangent mapping Tx0 f is injective is called
an immersion at x0. From the definition of the rank, it is immediate that f is an
immersion at x0 if and only if rankx0 f ¼ n�m. If f is an immersion at every point
of the set W, we say that f is an immersion.

From the rank theorem, we get the following criterion.

Theorem 2 (Immersions) Let X and Y be two manifolds, n ¼ dimX,
m ¼ dim Y � n. Let f : X ! Y be a Cr mapping, x0 2 X a point, and let y0 ¼ f ðx0Þ.
The following two conditions are equivalent:

(1) f is an immersion at x0.
(2) There exists a chart ðU;uÞ; u ¼ ðxiÞ at x0, an open rectangle P � Rn with

center 0 such that uðUÞ ¼ P and uðx0Þ ¼ 0, a chart ðV ;wÞ, w ¼ ðyrÞ at
y0 ¼ f ðx0Þ, and an open rectangle Q � Rm with center 0 such that wðVÞ ¼ Q
and wðy0Þ ¼ 0, such that in these charts, f is expressed by

yr � f ¼ xr; r ¼ 1; 2; . . .; n;
0; r ¼ nþ 1; nþ 2; . . .;m:

�
ð7Þ

1.1 The Rank Theorem 3



Proof The matrix of the linear operator Tx0 f in some charts ðU;uÞ, u ¼ ðxiÞ, at x0
and ðV ;wÞ; w ¼ ðyrÞ, at y0 is formed by partial derivatives Diðyrfu�1Þðuðx0ÞÞ and
is of dimension n� m. If rank Tx0 f ¼ n at x0, then rank Tx f ¼ n on a neighbor-
hood of x0, by continuity of the determinant function. Equivalence of conditions (1)
and (2) is now an immediate consequence of Theorem 1. h

Let f : X ! Y be an immersion, let x0 2 X be a point, and let ðU;uÞ and ðV ;wÞ
be the charts from Theorem 2, (2). Shrinking P and Q if necessary, we may suppose
without loss of generality that the rectangle Q is of the form Q ¼ P� R, where
Ris an open rectangle in Rm�n. Then, the chart expression wfu�1: P ! P� R
of the immersion f in these charts is the mapping ðx1; x2; . . .; xnÞ !
ðx1; x2; . . .; xn; 0; 0; . . .; 0Þ. The charts ðU;uÞ; ðV ;wÞ with these properties are said
to be adapted to the immersion f at x0.

Example 1 (Sections) Let s� r, let f : X ! Y be a surjective mapping of smooth
manifolds. By a Cr section, or simply a section of f, we mean a Cr mapping c: Y !
X such that

f � c ¼ idY : ð8Þ

Every section is an immersion. Indeed, TcðyÞf � Tyc ¼ idTyY at any point y 2 Y .
Thus, for any two tangent vectors n1; n2 2 TyY satisfying the condition
Tyc � n1 ¼ Tyc � n2, we have TcðyÞf � Tyc � n1 ¼ TcðyÞf � Tyc � n2. From this condi-
tion, we conclude that n1 ¼ n2.

A Cr mapping f : W ! Y such that the tangent mapping Tx0 f is surjective, is
called a submersion at x0. From the definition of the rank, it is immediate that f is a
submersion at x0 if and only if rankx0 ¼ m� n. A submersion f : W ! Y is a Cr

mapping that is a submersion at every point x 2 W .

Theorem 3 (Submersions) Let X and Y be manifolds, let n ¼ dimX, m ¼ dim Y.
Let f : X ! Y be a Cr mapping, x0 a point of X, y0 ¼ f ðx0Þ. The following conditions
are equivalent:

(1) f is a submersion at x0.
(2) There exists a chart ðU;uÞ; u ¼ ðxiÞ, at x0, an open rectangle P � Rn with

center 0 such that uðUÞ ¼ P; uðx0Þ ¼ 0, a chart ðV ;wÞ, w ¼ ðyrÞ, at
y0 ¼ f ðx0Þ, and an open rectangle Q � Rm with center 0 such that
wðVÞ ¼ Q; wðy0Þ ¼ 0, and

yr � f ¼ xr; r ¼ 1; 2; . . .;m: ð9Þ

(3) There exists a neighborhood V of y0 and aCr section c: V ! Y such that cðy0Þ ¼
x0.
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Proof

1. Suppose that f is a submersion at x0. Then, rank Tx f ¼ m on a neighborhood of
x0, and equivalence of conditions (1) and (2) follows from Theorem 1.

2. Suppose that condition (2) is satisfied. Consider the chart expression wfu�1:
P ! Q of the submersion f that is equal to the Cartesian projection
ðx1; x2; . . .; xm; xmþ1; xmþ1; . . .; xnÞ ! ðx1; x2; . . .; xmÞ. wfu�1 admits a Cr section
d. Since wfu�1 � d ¼ idQ, hence fu�1 � d ¼ w�1. Setting c ¼ u�1dw, we have
f c ¼ fu�1dw ¼ w�1w ¼ idV proving that c is a section of f. This proves (3).

3. If f admits a Cr section c defined on a neighborhood V of a point y, then f � c ¼
idV and Tyðf � cÞ ¼ Tx f � Tyc ¼ TyidV ¼ idTyY , where x ¼ cðyÞ. Thus, Tx0 f must
be surjective, proving (1). h

Let f be a Cr submersion, x0 2 X a point, and let ðU;uÞ and ðV ;wÞ be the charts
from Theorem 3, (2). Shrinking P and Q if necessary, we may suppose that the
rectangle P is of the form P ¼ Q� R, where R is an open rectangle in Rn�m. Then,
the chart expression (9) of the submersion f is the mapping
ðx1; x2; . . .; xm; xmþ1; xmþ1; . . .; xnÞ ! ðx1; x2; . . .; xmÞ. The charts ðU;uÞ, ðV ;wÞ
with these properties are said to be adapted to the submersion f at x0.

Corollary 1 A submersion is an open mapping.

Proof In adapted charts, a submersion is expressed as a Cartesian projection that is
an open mapping. Corollary 1 now follows from the definition of the manifold
topology in which the charts are homeomorphisms. h

Corollary 2 Let f : X ! Y be a submersion, ðU;uÞ a chart on X and ðV ;wÞ a
chart on Y. If ðU;uÞ and ðV ;wÞ are adapted to f at a point x0 2 X, and V ¼ f ðUÞ,
then the chart ðV ;wÞ is uniquely determined by ðU;uÞ.
Proof This is an immediate consequence of the definition of adapted charts and of
Corollary 1. h

Example 2 (Cartesian projections) Cartesian projections of the Cartesian product of
C1 manifolds X and Y, pr1: X � Y ! X and pr2: X � Y ! Y , are C1 submersions.
Indeed, let us verify for instance the rank condition for the projection pr1. If ðx; yÞ 2
X � Y is a point and ðU;uÞ,u ¼ ðxiÞ (resp. ðV ;wÞ; w ¼ ðyrÞ) is a chart at x (resp. y),
we have on the chart neighborhood U � V � X � Y , ðx; yÞ ¼ w�1wðx; yÞ ¼
w�1ðx1; x2; . . .; xn; y1; y2; . . .; ymÞ and pr1ðx; yÞ ¼ x ¼ u�1uðxÞ ¼ u�1ðx1; x2; . . .; xnÞ.
Then, for all vectors n 2 TxX and f 2 TyY , expressed as

n ¼ ni
@

@xi

� �
x
; f ¼ fi

@

@xi

� �
y
; ð10Þ

equations of the projection pr1 yield
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Tðx;yÞpr1 � ðn; fÞ ¼
@ðxi � pr1Þ

@xk
nk

@

@xi
þ @ðxi � pr1Þ

@yr
fr

@

@yr
¼ n: ð11Þ

In particular, Tðx;yÞpr1 is surjective so pr1 is a surjective submersion.

Example 3 The tangent bundle projection is a surjective submersion. All tensor
bundle projections are surjective submersions.

With the help of Corollary 1, submersions at a point can be characterized as
follows.

Corollary 3 Let X and Y be manifolds, n ¼ dim X; m ¼ dim Y � n. A Cr mapping
f : X ! Y is a submersion at a point x0 2 X if and only if there exists a neighborhood
U of x0, an open rectangle R � Rn�m, and a diffeomorphism v: U ! f ðUÞ � Rn�m

such that pr1 � v ¼ f .

Proof

1. Suppose f is a submersion at x0, and choose some adapted charts
ðU;uÞ; u ¼ ðxiÞ, at x0 and ðV ;wÞ; w ¼ ðyrÞ at y0. Every point x 2 U has the
coordinates ðx1ðxÞ; x2ðxÞ; . . .; xmðxÞ; xmþ1ðxÞ; xmþ2ðxÞ; . . .; xnðxÞÞ. We define a
mapping v: U ! Y � Rn�m by

vðxÞ ¼ ðf ðxÞ; xmþ1ðxÞ; xmþ2ðxÞ; . . .; xnðxÞÞ: ð12Þ

Then, pr1 � v ¼ f , and from Corollary 1, f ðUÞ is an open set in Y. It remains to
show that v is a diffeomorphism. We easily find the chart expression of the
mapping v with respect to the chart ðU;uÞ and the chart ðV � Rn�m; gÞ,
g ¼ ðy1; y2; . . .ym; t1; t2; . . .; tn�mÞ, on Y � Rn�m, where tk are the canonical
coordinates on Rn�m. We have for every x 2 U; yrvðxÞ ¼ yrf ðxÞ ¼ xrðxÞ;
1� r�m, and tkvðxÞ ¼ xmþkðxÞ, 1� k� n� m, that is,

yiv ¼ xi; i ¼ 1; 2; . . .;m;
tkv ¼ xmþk; k ¼ 1; 2; . . .; n� m;

ð13Þ

that is, g � v ¼ u. Thus, v ¼ g�1u is a diffeomorphism.

2. Conversely, if pr1 � v ¼ f , we have Tx0 f ¼ Tvðx0Þpr1 � Tx0v, and since v is by
hypothesis a diffeomorphism, rank Tx0 f ¼ rank Tvðx0Þpr1. But the rank of the
projection pr1 is m (Example 2). h

1.2 Fibered Manifolds

By a fibered manifold structure on a C1 manifold Y, we mean a C1 manifold
X together with a surjective submersion p: Y ! X of class C1. A manifold
Y endowed with a fibered manifold structure is called a fibered manifold of class C1,
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or just a fibered manifold. X is the base, and p is the projection of the fibered
manifold Y.

According to Sect. 1.1, Theorem 3 and Corollary 2, any manifold, endowed with
a fibered manifold structure, admits the charts with some specific properties. Let Y
be a fibered manifold with base X and projection p, dimX ¼ n, and dim Y ¼ nþ m.
By hypothesis, to every point y 2 Y , there exists a chart at y, ðV ;wÞ; w ¼ ðui; yrÞ,
where 1� i� n, 1� r�m, with the following properties:

(a) There exists a chart ðU;uÞ; u ¼ ðxiÞ, at x ¼ pðyÞ, where 1� i� n, in which
the projection p is expressed by the equation xi � p ¼ ui.

(b) U ¼ pðVÞ:
The chart ðV ;wÞ with these properties is called a fibered chart on Y. The chart

ðU;uÞ is defined uniquely and is said to be associated with ðV ;wÞ. Having in mind
this correspondence, we usually write xi instead of ui and denote a fibered chart as
ðV ;wÞ; w ¼ ðxi; yrÞ.
Lemma 1 Every fibered manifold has an atlas consisting of fibered charts.

Proof An immediate consequence of the definition of a submersion. h

A Cr section of the fibered manifold Y, defined on an open set W � X, is by
definition a Cr section c: W ! Y of its projection p (cf. Sect. 1.1, Example 1). In
terms of a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, and the associated chart
ðU;uÞ; u ¼ ðxiÞ, such that U � W and cðUÞ � V , c has equations of the form

xi � c ¼ xi; yr � c ¼ f r; ð14Þ

where f r are real Cr functions, defined on U.
Let Y1 (resp. Y2) be a fibered manifold with base X1 (resp. X2) and projection p1

(resp. p2). A Cr mapping a: W ! Y2, where W is an open set in Y1, is called a Cr

morphism of the fibered manifold Y1 into Y2, if there exists a Cr mapping a0: W0 !
X2 where W0 ¼ p1ðW1Þ, such that

p2 � a ¼ a0 � p1: ð15Þ

Note that W0 is always an open set in X1 (Sect. 1.1, Corollary 1). If a0 exists, it is
unique and is called the projection of a. We also say that a is a morphism over a0.
A morphism of fibered manifolds a: Y1 ! Y2 that is a diffeomorphism is called an
isomorphism; the projection of an isomorphism of fibered manifolds is a diffeo-
morphism of their bases.

If the fibered manifolds Y1 and Y2 coincide, Y1 ¼ Y2 ¼ Y , then a morphism
a: W ! Y is also called an automorphism of Y.
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We find the expression of a morphism of fibered manifolds in fibered charts.
Consider a fibered chart ðV1;w1Þ, w1 ¼ ðxi1; yr1Þ, on Y1 and a fibered chart ðV2;w2Þ,
w2 ¼ ðxp2; ys2Þ, on Y2 such that aðV1Þ � V2. We have the commutative diagram

V1 �!a V2

# #
p1ðV1Þ �!a0 p2ðV2Þ

ð16Þ

expressing condition (15). In terms of the charts, we can write

a0p1 ¼ u�1
2 � u2a0u

�1
1 � u1p1w

�1
1 � w1;

p2a ¼ u�1
2 � u2p2w

�1
2 � w2aw

�1
1 � w1;

ð17Þ

so the commutativity yields

u2a0u
�1
1 � u1p1w

�1
1 ¼ u2p2w

�1
2 � w2aw

�1
1 : ð18Þ

But in our fibered charts, u1p1w
�1
1 is the Cartesian projection ðxi1; yr1Þ ! ðxi1Þ, and

u2p2w
�1
2 is the Cartesian projection ðxp2; ys2Þ ! ðxp2Þ. Consequently, writing in

components

u2a0u
�1
1 � u1p1w

�1
1 ðxi1; yr1Þ ¼ u2a0u

�1
1 ðxi1Þ ¼ ðxp2a0u�1

1 ðxi1ÞÞ;
u2p2w

�1
2 � w2aw

�1
1 ðxi1; yr1Þ ¼ u2p2w

�1
2 ðxp2aw�1

1 ðxi1; yr1Þ; ys2aw�1
1 ðxi1; yr1ÞÞ

¼ ðxp2aw�1
1 ðxi1; yr1ÞÞ;

ð19Þ

we see that condition (18) implies xp2a0u
�1
1 ðxi1Þ ¼ xp2aw

�1
1 ðxi1; yr1Þ. This shows that

the right-hand side expression is independent of the coordinates yr1. Therefore, we
conclude that the equations of the morphism a in fibered charts are always of the
form

xp2 ¼ f pðxi1Þ; ys2 ¼ Fsðxi1; yr1Þ: ð20Þ

Let Y be a fibered manifold with base X and projection p. If N is a tangent vector
to Y at a point y 2 Y , then the tangent vector n to X at x ¼ pðyÞ 2 X, defined by

Typ � N ¼ n; ð21Þ

is called the p-projection, or simply the projection of N. By definition of the
submersion, the tangent mapping of the projection p at a point y, Typ: TyY !
TpðxÞX; is surjective.
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A tangent vector N at a point y 2 Y is said to be p-vertical, if

Typ � N ¼ 0: ð22Þ

The vector subspace of TyY consisted of p-vertical vectors, is denoted by VTyY . If N
is expressed in a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, by

N ¼ ni
@

@xi

� �
y
þ Nr @

@yr

� �
y
; ð23Þ

then by (21)

n ¼ ni
@

@xi

� �
x
¼ 0: ð24Þ

Thus, N is p-vertical if and only if

N ¼ Nr @

@yr

� �
y
: ð25Þ

If in particular, dim Y ¼ nþ m and dimX ¼ n, then dimVTyY ¼ m.
The subset VTY of the tangent bundle TY , defined by

VTY ¼
[
y2Y

VTyY ; ð26Þ

is a vector subbundle of TY .
The projection p: Y ! X induces a vector bundle morphism Tp: TY ! TX;

from the definition of a fibered manifold, it follows that the image is Im Tp ¼ TX.
The vector subbundle VTY ¼ Ker Tp of the vector bundle TY is called the vertical
subbundle over Y.

Let q be a differential k-form, defined on an open set W in Y. We say that q is p-
horizontal, or just horizontal, if it vanishes whenever one of its vector arguments is
a p-vertical vector.

We describe the chart expressions of p-horizontal forms.

Lemma 2 The form q is p-horizontal if and only if in any fibered chart
ðV ;wÞ; w ¼ ðxi; yrÞ, it has an expression

q ¼ 1
k!
qi1i2...ik dx

i1 ^ dxi2 ^ � � � ^ dxik : ð27Þ
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Proof Choose a point y 2 V and express the form qðyÞ as

qðyÞ ¼ 1
k!
qi1i2...ik ðyÞdxi1ðyÞ ^ dxi2ðyÞ ^ � � � ^ dxik ðyÞ þ dy1ðyÞ ^ q1ðyÞ

þ dy2ðyÞ ^ q2ðyÞ þ � � � þ dymðyÞ ^ qmðyÞ;
ð28Þ

where the forms q1ðyÞ; q2ðyÞ; . . .; qmðyÞ do not contain dy1ðyÞ, the forms
q2ðyÞ; q3ðyÞ; . . .; qmðyÞ do not contain dy1ðyÞ and dy2ðyÞ, etc. Suppose that q is
p-horizontal. Then contracting the form qðyÞ by the vertical vector ð@=@y1Þy, we get
ið@=@y1ÞyqðyÞ ¼ q1ðyÞ ¼ 0. Contracting qðyÞ by the vertical vector ð@=@y2Þy, we get
ið@=@y2ÞyqðyÞ ¼ q2ðyÞ ¼ 0, etc., clearly, this proves formula (27). h

Example 4 The first Cartesian projection pr1 of the product of Euclidean spaces
Rn � Rm onto Rn, restricted to the product of open sets U � V , where U � Rn and
V � Rm, is a fibered manifold over U. The restriction of pr1 to any open set
W � Rn � Rm is a fibered manifold over pr1ðWÞ � Rn.

Example 5 Moebius band is a fibered manifold over the circle.

A form q, defined on an open set W in Y, is said to be p-projectable, or just
projectable, if there exists a form q0, defined on the set pðWÞ, such that

q ¼ p*q0: ð29Þ

If the form q0 exists, it is unique and is called the p-projection, of just the pro-
jection of q.

Convention Formula (29) shows that a p-projectable form can canonically be
identified with its p-projection. Thus, to simplify the notation, we sometimes denote
a p-projectable form p*q0 by its p-projection q0.

1.3 The Contact of Differentiable Mappings

Let X and Y be two smooth manifolds, n ¼ dimX, and m ¼ dim Y . Let x 2 X be a
point, f1: W ! Y and f2: W ! Y two mappings, defined on a neighborhood W of
x. We say that f1, f2 have the contact of order 0 at x, if

f1ðxÞ ¼ f2ðxÞ: ð30Þ

Suppose that f1 and f2 are of class Cr, where r is a positive integer. We say that f1, f2
have the contact of order r at x, if they have the contact of order 0, and there exists a
chart ðU;uÞ; u ¼ ðxiÞ, at x and a chart ðV ;wÞ; w ¼ ðyrÞ, at f1ðxÞ such that
U � W ; f1ðUÞ; f2ðUÞ � V , and
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Dkðwf1u�1ÞðuðxÞÞ ¼ Dkðwf2u�1ÞðuðxÞÞ ð31Þ

for all k� r. These definitions immediately extend to C1 mappings f1, f2; in this
case f1, f2 are said to have the contact of order 1 at x, if they have the contact of
order r for every r.

Writing in components wf1u�1 ¼ yrf1u�1; wf2u�1 ¼ yrf2u�1, we see at once
that f1 and f2 have contact of order r if and only if f1ðxÞ ¼ f2ðxÞ and

Di1Di2 . . .Dik ðyrf1u�1ÞðuðxÞÞ ¼ Di1Di2 . . .Dik ðyrf2u�1ÞðuðxÞÞ ð32Þ

for all k ¼ 1; 2; . . .; r, all r and all i1; i2; . . .; ik such that 1� r�m and
1� i1 � i2 � � � � � ik � n.

We claim that if f1, f2 have contact of order r at a point x, then for any chart
ð�U; �uÞ; �u ¼ ð�xiÞ, at x and any chart ð�V ; �wÞ; �w ¼ ð�yrÞ, at f1ðxÞ,

Dkð�wf1�u�1Þð�uðxÞÞ ¼ Dkð�wf2�u�1Þð�uðxÞÞ ð33Þ

for all k ¼ 1; 2; . . .; r. We can verify this formula by means of the chain rule for
derivatives of mappings of Euclidean spaces. Using the charts ðU;uÞ, ðV ;wÞ, we
express the derivative

Di1Di2 . . .Dik ð�yrf1�u�1Þð�uðxÞÞ
¼ Di1Di2 . . .Dik ð�yrw�1 � wf1u�1 � u�u�1Þð�uðxÞÞ ð34Þ

as a polynomial in the variables Dj1ðymf1u�1ÞðuðxÞÞ; Dj1Dj2ðymf1u�1ÞðuðxÞÞ; . . .;
Dj1Dj2 . . .Djkðymf1u�1ÞðuðxÞÞ. The derivative Di1Di2 . . .Dikð�yrf2�u�1Þð�uðxÞÞ is
expressed by the same polynomial in the variables Dj1ðymf2u�1ÞðuðxÞÞ
Dj1Dj2ðymf2u�1ÞðuðxÞÞ; . . .; Dj1Dj2 . . .Djk ðymf2u�1ÞðuðxÞÞ. Clearly, equality (33)
now follows from (32).

Fix two points x 2 X; y 2 Y and denote by Cr
ðx;yÞðX; YÞ the set of Cr mappings

f : W ! Y , where W is a neighborhood of x and f ðxÞ ¼ y. The binary relation “f, g
have the contact of order r at x” on Cr

ðx;yÞðX; YÞ is obviously reflexive, transitive,

and symmetric, so is an equivalence relation. Equivalence classes of this equiva-
lence relation are called r-jets with source x and target y. The r-jet whose repre-
sentative is a mapping f 2 Cr

ðx;yÞðX;YÞ is called the r-jet of f at the point x and is

denoted by Jrx f . If there is no danger of misunderstanding, we call an r-jet with
source x and target y an r-jet, or just a jet. The set of r-jets with source x 2 X and
target y 2 Y is denoted by Jrðx;yÞðX; YÞ.

Let f 2 Cr
ðx;yÞðX; YÞ be a mapping, f : W ! Y , let U be a neighborhood of x and

V a neighborhood of y. Assigning to f the restriction of f to the set f�1ðVÞ \ U \W ,
we get a bijection Jrx f ! Jrxðf jf�1ðVÞ\U\W Þ of the set Jrðx;yÞðX; YÞ onto Jrðx;yÞðU;VÞ.
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Let X, Y, and Z be three smooth manifolds. Two r-jets A 2 Jrðx;uÞðX; YÞ, A ¼ Jrx f ,

and B 2 Jrðy;zÞðY ; ZÞ; B ¼ Jryg are said to be composable, if they have representa-

tives which are composable (as mappings), i.e., if u ¼ y; this equality means that
the target of A coincides with the source of B. In this case, the composite g � f of
any representatives of A and B is a mapping of class Cr defined on a neighborhood
of x. It is easily seen that the r-jet Jrxðg � f Þ is independent of the representatives of
the r-jets A and B. If �f and �g are such that Jrx f ¼ Jrx�f and Jrxg ¼ Jrx�g, then for any
charts ðU;uÞ, u ¼ ðxiÞ at x, ðV ;wÞ; w ¼ ðyrÞ, at y ¼ f ðxÞ, and ðW ; gÞ; g ¼ ðzpÞ, at
z ¼ gðyÞ, the derivatives Di1Di2 . . .Dik ðzpgfu�1ÞðuðxÞÞ are expressible in the form

Di1Di2 . . .Dik ðzpgfu�1ÞðuðxÞÞ ¼ Di1Di2 . . .Dik ðzpgw�1 � wfu�1ÞðuðxÞÞ ð35Þ

for all k ¼ 1; 2; . . .; r. By the chain rule for mappings of Euclidean spaces,
expressions (35) are polynomial in the variables Dm1Dm2 . . .Dmqðzpgw�1ÞðwðyÞÞ and
Di1Di2 . . .Dimðymfu�1ÞðuðxÞÞ, where m; q� k. The same polynomials in the deriv-
atives Dm1Dm2 . . .Dmqðzp�gw�1ÞðwðyÞÞ; Di1Di2 . . .Dimðym�fu�1ÞðuðxÞÞ are obtained
when expressing Di1Di2 . . .Dik ðzp�g�fu�1ÞðuðxÞÞ by means of the chain rule. Now
since by definition

Di1Di2 . . .Dimðymfu�1ÞðuðxÞÞ ¼ Di1Di2 . . .Dimðym�fu�1ÞðuðxÞÞ;
Dm1Dm2 . . .Dmqðzpgw�1ÞðwðyÞÞ ¼ Dm1Dm2 . . .Dmqðzp�gw�1ÞðwðyÞÞ; ð36Þ

we have

Di1Di2 . . .Dik ðzpgfu�1ÞðuðxÞÞ ¼ Di1Di2 . . .Dik ðzp�g�fu�1ÞðuðxÞÞ: ð37Þ

This proves that the r-jet Jrxðg � f Þ is independent of the choice of A and B.
If X, Y, and Z are three manifolds and A 2 Jrðx;yÞðX; YÞ; A ¼ Jrx f , and B 2

Jrðy;zÞðY ; ZÞ; B ¼ Jryg are composable r-jets, we define

B � A ¼ Jrxðg � f Þ; ð38Þ

or, explicitly, Jrxg � Jrx f ¼ Jrxðg � f Þ. The r-jet B � A is called the composite of A and
B, and the mapping ðA;BÞ ! B � A of Jrðx;f ðxÞÞðX; YÞ � Jrðy;gðyÞÞðY ; ZÞ into

Jrðx;zÞðX; ZÞ, where z ¼ gðyÞ, is the composition of r-jets.

A chart on X at the point x and a chart on Y at the point y induce a chart on the set
Jrðx;yÞðX; YÞ. Let ðU;uÞ; u ¼ ðxiÞ (resp. ðV ;wÞ; w ¼ ðxi; yrÞ), be a chart on

X (resp. Y). We assign to any r-jet Jrx f 2 Jrðx;yÞðX; YÞ the numbers

zrj1j2...jk ðJrxcÞ ¼ Dj1Dj2 . . .Djk ðyrfu�1ÞðuðxÞÞ; 1� k� r: ð39Þ
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Then, the collection of functions vr ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, such that

1� j1 � j2 � � � � � jk � n; 1� r�m; ð40Þ

is a bijection of the set Jrðx;yÞðX; YÞ and the Euclidean space RN of dimension

N ¼ nþ m 1þ nþ nþ 1
2

� �
þ nþ 2

3

� �
þ � � � þ nþ r � 1

r
� �� �

: ð41Þ

Thus, the pair ðJrðx;yÞðX; YÞ; vrÞ is a (global) chart on Jrðx;yÞðX; YÞ. This chart is said to
be associated with the charts ðU;uÞ and ðV ;wÞ.
Lemma 3

(a) The associated charts ðJrðx;yÞðX; YÞ; vrÞ, such that the charts ðU;uÞ and ðV ;wÞ
belong to smooth structures on X and Y, form a smooth atlas on Jrðx;yÞðX; YÞ.
With this atlas, Jrðx;yÞðX; YÞ is a smooth manifold of dimension N.

(b) The composition of jets

Jrðx;yÞðX; YÞ � Jrðy;zÞðY ; ZÞ 3 ðA;BÞ ! B � A 2 Jrðx;zÞðX; ZÞ ð42Þ

is smooth.

Proof

1. It is enough to prove that the transformation equations between the associated
charts are of class C1. However, this follows from (34).

2. (b) is an immediate consequence of Formula (35). h

1.4 Jet Prolongations of Fibered Manifolds

In this section, we apply the concept of contact of differentiable mappings (Sect. 1.3)
to Cr sections of fibered manifolds. We introduce the smooth manifold structure on
the sets of jets of sections and establish the coordinate transformation formulas.

Let Y be a fibered manifold with base X and projection p, let n ¼ dimX and
m ¼ dim Y � n. We denote by JrY , where r� 0 is any integer, the set of r-jets Jrxc of
Cr sections c of Ywith source x 2 X and target y ¼ cðxÞ 2 Y ; if r ¼ 0, then J0Y ¼ Y .
Note that the representatives of an r-jet Jrxc are C

r sections c: W ! Y , whereW is an
open set in X; the condition that c is a section,

p � c ¼ idW ð43Þ

1.3 The Contact of Differentiable Mappings 13



implies that the target y ¼ cðxÞ of the r-jet Jrxc belongs to the fiber p�1ðxÞ � Y over
the source point x. For any s such that 0� s� r, we have surjective mappings
pr;s: JrY ! JsY and pr: JrY ! X, defined by the conditions

pr;sðJrxcÞ ¼ Jsxc; prðJrxcÞ ¼ x: ð44Þ

These mappings are called the canonical jet projections.
The smooth structure of the fibered manifold Y induces a smooth structure on the

set JrY . This is based on a canonical construction that assigns to any fibered chart
on Y a chart on JrY . Let ðV ;wÞ; w ¼ ðxi; yrÞ, be a fibered chart on Y, and let
ðU;uÞ; u ¼ ðxiÞ, be the associated chart on X. We set Vr ¼ ðpr;0Þ�1ðVÞ and
introduce, for all values of the indices, a family of functions xi; yr; yrj1j2...jk , defined
on Vr, by

xiðJrxcÞ ¼ xiðxÞ;
yrðJrxcÞ ¼ yrðcðxÞÞ;

yrj1j2...jkðJrxcÞ ¼ Dj1Dj2 . . .Djk ðyrcu�1ÞðuðxÞÞ; 1� k� r:

ð45Þ

Then, the collection of functions wr ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, where the indi-
ces satisfy

1� i� n; 1� r�m; 1� j1 � j2 � � � � � jk � n; k ¼ 2; 3; . . .; r; ð46Þ

is a bijection of the set Vr onto an open subset of the Euclidean space RN of
dimension

N ¼ nþ m
�
1þ nþ

� nþ 1
2

�
þ
� nþ 2

3

�
þ � � � þ

� nþ r � 1
r

��
: ð47Þ

The pair ðVr;wrÞ; wr ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, is a chart on the set JrY , which
is said to be associated with the fibered chart ðV ;wÞ; w ¼ ðxi; yrÞ.
Lemma 4 (Smooth structure on the set JrY) The set of associated charts
ðVr;wrÞ; wr ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, such that the fibered charts ðV ;wÞ
constitute an atlas on Y, is an atlas on JrY .

Proof Let A be an atlas on Y whose elements are fibered charts (Sect. 1.2,
Lemma 1). One can easily check thatA defines a topology on JrY by requiring that
for any fibered chart ðV ;wÞ from A, the mapping wr: Vr ! wrðVrÞ � RN is a
homeomorphism; we consider the set JrY with this topology.

It is clear that the associated charts with fibered charts from A cover the set JrY .
Thus, to prove Lemma 4, it remains to check that the corresponding coordinate
transformations are smooth. h
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Suppose we have two fibered charts on Y, ðV ;wÞ; w ¼ ðxi; yrÞ, and
ð�V ; �wÞ; �w ¼ ð�xi;�yrÞ, such that V \ �V 6¼ [. Consider the associated charts
ðVr;wrÞ; ð�Vr; �wrÞ, and an element Jrxc 2 Vr \ �Vr. Let the coordinate transforma-
tion �ww�1 be expressed by the equations

�xi ¼ f iðx jÞ; �yr ¼ grðx j; ymÞ: ð48Þ

Note that the functions f i and gr in formula (48) are defined by the formulas
�xiðxÞ ¼ �xiu�1ðuðxÞÞ ¼ f iðuðxÞÞ and �yrðyÞ ¼ �yrw�1ðwðyÞÞ ¼ grðwðyÞÞ. We have

�xiðJrxcÞ ¼ �xiðxÞ ¼ �xiu�1ðuðxÞÞ ¼ �xiu�1ðuðJrxcÞÞ;
�yrðJrxcÞ ¼ �yrðcðxÞÞ ¼ ð�yrw�1 � wÞðcðxÞÞ ¼ �yrw�1ðwðJrxcÞÞ;

�yrj1j2...jk ðJrxcÞ ¼ Dj1Dj2 . . .Djkð�yrc�u�1Þð�uðxÞÞ
¼ Dj1Dj2 . . .Djkð�yrw�1 � wcu�1 � u�u�1Þð�uðxÞÞ:

ð49Þ

From the chain rule, it is now obvious that the left-hand sides, the coordinates of the
r-jet Jrxc in the chart ð�Vr; �wrÞ, depend smoothly on the coordinates of Jrxc in the
chart ðVr;wrÞ.

From now on, the set JrY is always considered with the smooth structure,
defined by Lemma 4, and is called the r-jet prolongation of the fibered manifold Y.

Lemma 5 Each of the canonical jet projections (44) is smooth and defines a
fibered manifold structure on the manifold JrY .

Proof Indeed, in the associated charts, each of the canonical jet projections is
expressed as a Cartesian projection, which is smooth. h

Every Cr section c: W ! Y , where W is an open set in X, defines a mapping

W 3 x ! JrcðxÞ ¼ Jrxc 2 JrY ; ð50Þ

called the r-jet prolongation of c.

Example 6 (Coordinate transformations on J2Y ) Consider two fibered charts on a
fibered manifold Y, ðV ;wÞ; w ¼ ðxi; yrÞ; and ð�V ; �wÞ; �w ¼ ð�xi;�yrÞ, such that
V \ �V 6¼ [. Suppose that the corresponding transformation equations are expressed
as

�xi ¼ �xiðx jÞ; �yr ¼ �yrðx j; ymÞ: ð51Þ

1.4 Jet Prolongations of Fibered Manifolds 15



Then, the induced coordinate transformation on J2Y is expressed by the equations

�xi ¼ �xiðx jÞ;
�yr ¼ �yrðx j; ymÞ;

�yrj1 ¼
@�yr

@xl
þ @�yr

@ym
yml

� �
@xl

@�xj1
;

�yrj1 j2 ¼
@2�yr

@xl@xm
þ @2�yr

@xl@yl
ylm þ @2�yr

@xm@ym
yml þ

@2�yr

@yl@ym
yml y

l
m

�

þ @�yr

@ym
ymlm

�
@xm

@�xj2
@xl

@�xj1
þ @�yr

@xl
þ @�yr

@ym
yml

� �
@2xl

@�xj1@�xj2
:

ð52Þ

To derive these equations, we use the chain rule for partial derivative operators. Let
J2x c 2 V2 \ �V2. The 2-jet J2x c has the coordinates

xiðJ2x cÞ ¼ xiðxÞ;
yrðJ2x cÞ ¼ yrðcðxÞÞ;
yrj1ðJrxcÞ ¼ Dj1ðyrcu�1ÞðuðxÞÞ;
yrj1j2ðJrxcÞ ¼ Dj1Dj2ðyrcu�1ÞðuðxÞÞ;

ð53Þ

and analogous formulas arise for the chart ð�V ; �wÞ. Then, by the chain rule

Dj1ð�yrc�u�1Þð�uðxÞÞ¼Dj1ð�yrw�1 �wcu�1 �u�u�1Þð�uðxÞÞ
¼Dkð�yrw�1ÞðwcðxÞÞDlðxkcu�1Þðu�u�1ð�uðxÞÞDj1ðxl�u�1Þð�uðxÞÞ
þDmð�yrw�1ðwcðxÞÞDlðymcu�1Þðu�u�1ð�uðxÞÞDj1ðxl�u�1Þð�uðxÞÞ
¼Dkð�yrw�1ÞðwcðxÞÞdkl Dj1ðxl�u�1Þð�uðxÞÞ
þDmð�yrw�1ÞðwcðxÞÞDlðymc�u�1ÞðuðxÞÞDj1ðxl�u�1Þð�uðxÞÞ
¼ðDlð�yrw�1ÞðwcðxÞÞþDmð�yrw�1ÞðwcðxÞÞDlðymc�u�1ÞðuðxÞÞÞ
�Dj1ðxl�u�1Þð�uðxÞÞ; ð54Þ

which proves the third one of equations (52). To prove the fourth equation, we
differentiate (54) again and apply the chain rule. We can also derive the fourth
equation by differentiating the third one.

Consider a morphism a: W ! Y of a fibered manifold Y with projection p. The
projection a0: pðWÞ ! X of the morphism a is a unique morphism of smooth
manifolds such that

p � a ¼ a0 � p: ð55Þ
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Suppose that a0 is a diffeomorphism of the open subsets pðWÞ and U0 ¼
a0ðpðWÞÞ in X. Then, for any section c of Y, defined on pðWÞ, formula c0 ¼ aca�1

0
defines a section of Y over U0: indeed, since c is a section, then
pc0 ¼ paca�1

0 ¼ a0pca�1
0 ¼ idU0 . In this sense, a transforms sections c of Y into

sections aca�1
0 of Y. In particular, setting for every r-jet Jrxc 2 Wr

JraðJrxcÞ ¼ Jra0aca
�1
0 ð56Þ

we get a mapping Jra: Wr ! JrY . This mapping is differentiable and satisfies, for
all integers s such that 0� s� r,

pr;s � Jra ¼ Jsa � pr;s; pr � Jra ¼ a0 � pr: ð57Þ

These formulas show that the mapping Jra is a morphisms of the r-jet prolon-
gation JrY of the fibered manifold Y over JsY for all s such that 0� s� r, and over
X. Jra is called the r-jet prolongation of the morphism Jra of Y. Note that Jra is not
defined for morphisms a whose projections are not diffeomorphisms.

1.5 The Horizontalization

Let Y be a fibered manifold with base X and projection p, dimX ¼ n and
dim Y ¼ nþ m. For any open set W � Y , we denote by Wr the open set
ðpr;0Þ�1ðWÞ in the r-jet prolongation JrY of Y. We show that the fibered manifold
structure on Y induces a vector bundle morphism between the tangent bundles
Trþ1Y and TrY and study the decomposition of tangent vectors, associated with this
mapping.

Let Jrþ1
x c be a point of the manifold Jrþ1Y . We assign to any tangent vector n of

Jrþ1Y at the point Jrþ1
x c a tangent vector of JrY at the point prþ1;rðJrþ1

x cÞ ¼ Jrxc by

hn ¼ TxJ
rc � Tprþ1 � n: ð58Þ

We get a vector bundle morphism h: TJrþ1Y ! TJrY over the jet projection prþ1;r,
called the p-horizontalization, or simply the horizontalization. Sometimes we call
hn the horizontal component of n (note, however, that n and hn do not belong to the
same vector space). Using a complementary construction, one can also assign to
every tangent vector n 2 TJrþ1Y at the point Jrþ1

x c 2 Jrþ1Y a tangent vector pn 2
TJrY at Jrxc by the decomposition

Tprþ1;r � n ¼ hnþ pn: ð59Þ

pn is called the contact component of the vector n.

1.4 Jet Prolongations of Fibered Manifolds 17



Lemma 6 The horizontal and contact components satisfy

Tpr � hn ¼ Tprþ1 � n; Tpr � pn ¼ 0: ð60Þ

Proof The first property follows from (58). Then, however,

Tpr � pn ¼ Tpr � Tprþ1;r � n� Tpr � hn ¼ Tprþ1 � n� Tpr � hn
¼ Tprþ1 � n� Tpr � TxJrc � Tprþ1 � n ¼ 0:

ð61Þ
h

Remark 1 If hn ¼ 0, then necessarily Tprþ1 � n ¼ 0 so n is prþ1-vertical. This
observation explains why hn is called the horizontal component of n.

One can easily find the chart expressions for the vectors hn and pn. If in a fibered
chart ðV ;wÞ; w ¼ ðxi; yrÞ; n has an expression

n ¼ ni
@

@xi

� �
Jrþ1
x c

þ
Xrþ1

k¼0

X
j1 � j2 � ��� � jk

Nr
j1j2...jk

@

@yrj1j2...jk

 !
Jrþ1
x c

; ð62Þ

then

hn ¼ ni
@

@xi

� �
Jrxc
þ
Xr
k¼0

X
j1 � j2 � ��� � jk

yrj1j2...jk i
@

@yrj1j2...jk

 !
Jrxc

0
@

1
A; ð63Þ

and

pn ¼
Xr
k¼0

X
j1 � j2 � ��� � jk

Nr
j1j2...jk � yrj1j2...jk in

i
� � @

@yrj1j2...jk

 !
Jrxc

: ð64Þ

Note that the conditions hn ¼ 0 and pn ¼ 0 do not imply n ¼ 0; they are
equivalent to the condition that n be prþ1;r-vertical,

n ¼
X

j1 � j2 � ��� � jrþ1

Nr
j1j2...jrþ1

@

@yrj1j2...jrþ1

 !
Jrþ1
x c

: ð65Þ

The structure of the chart expression (63) can also be characterized by means of
the vector fields di along the projection prþ1;r, defined on Vrþ1 by

di ¼ @

@xi

� �
Jrxc
þ
Xr
k¼0

X
j1 � j2 � ��� � jk

yrj1j2...jk i
@

@yrj1j2...jk

 !
Jrxc

: ð66Þ
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di is called the i-th formal derivative operator (relative to the fibered chart ðV ;wÞ).
Note that these vector fields are closely connected with the tangent mapping of the
functions f : JrY ! R, composed with the prolongations Jrc of sections c of
Y. Namely, if ðV ;wÞ; w ¼ ðxi; yrÞ is a fibered chart, x 2 pðUÞ a point and c a section
defined on U, then for every tangent vector n0 2 TxX, expressed as n0 ¼ ni0ð@=@xiÞx,

Txðf � JrcÞ � n0 ¼
@ðf � Jrc � u�1Þ

@xk

� �
x
nk: ð67Þ

For each i such that 1� i� n, the formula

dif ðJrþ1
x cÞ ¼ @ðf � Jrc � u�1Þ

@xk

� �
x

ð68Þ

defines a function dif : Vrþ1 ! R, called the i-th formal derivative of the function
f (relative to the given fibered chart). In the chart,

dif ¼ ni
@f
@xi

þ
Xr
k¼0

X
j1 � j2 � ��� � jk

yrj1j2...jk i
@f

@yrj1j2...jk
: ð69Þ

Remark 2 Canonically extending the partial derivatives @=@yrj1j2...jk to all sequences
j1; j2; . . .; jk , the formal derivative di can be expressed as

di ¼ @

@xi
þ
Xr
k¼0

yrj1j2...jk i
@

@yrj1j2...jk
ð70Þ

(see Appendix 2).

Remark 3 In general, decomposition (59) of tangent vectors does not hold for
vector fields. However, if n is a prþ1-vertical vector field on Wrþ1, then hn is the
zero vector field on Wr and condition (59) reduces to the prþ1;r-projectability
equation

Tprþ1;r � n ¼ n0 � prþ1;r ð71Þ

for the prþ1;r-projection n0 of n. Thus, pnðJrþ1
x cÞ ¼ n0ðJrxcÞ.
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1.6 Jet Prolongations of Automorphisms of Fibered
Manifolds

Let ðV ;wÞ; w ¼ ðxi; yrÞ, be a chart, and let f : Vr ! R be a differentiable function.
We set for every i, 1� i� n,

dif ¼ @f
@xi

þ
X

0� k� r

@f
@yrj1j2...jk

yrj1j2...jk i: ð72Þ

In this formula, the function dif : Vrþ1 ! R is the i-th formal derivative of the
function f (Sect. 1.5). A notable formula

diy
r
j1j2...jk ¼ yrj1j2...jk i ð73Þ

says that di may be treated as a mapping, acting on jet coordinates of the given
chart.

Let r be a positive integer. Consider an open set W in the fibered manifold Y and
a Cr automorphism a: W ! Y with projection a0: W0 ! X, defined on an open set
W0 ¼ pðWÞ. In this section, we suppose that the projection a0 is a Cr

diffeomorphism.
Every section c: W0 ! Y defines the mapping aca�1

0 ¼ a � c � a�1
0 ; it is easily

seen that this mapping is a section of Y over the open set a0ðW0Þ � X: indeed, using
properties of morphisms and sections of fibered manifolds, we get
p � aca�1

0 ¼ a0 � p � c � a�1
0 ¼ a0 � a�1

0 ¼ idW0 . Then, however, the r-jets of the
section x ! aca�1

0 ðxÞ are defined and are elements of the set JrY . An r-jet
Jra0ðxÞaca

�1
0 can be decomposed as JrcðxÞa � Jrxc � Jra0ðxÞa�1

0 , so it is independent of the

choice of the representative c and depends on the r-jet Jrxc only. We set for every
Jrxc 2 Wr ¼ ðpr;0Þ�1ðWÞ

JraðJrxcÞ ¼ Jra0ðxÞaca
�1
0 : ð74Þ

This formula defines a mapping Jra: Wr ! JrY , called the r-jet prolongation, or
just prolongation of the Cr automorphism a.

Note an immediate consequence of the definition (74). Given aCr section c: W0 !
Y , then we have Jra � Jrc ¼ Jraca�1

0 � a0 so the r-jet prolongation Jraca�1
0 of the

section aca�1
0 satisfies

Jraca�1
0 ¼ Jra � Jrc � a�1

0 ð75Þ

on the set a0ðW0Þ. In particular, this formula shows that the r-jet prolongations of
automorphisms carry sections of Y into sections of JrY (over X).

We find the chart expression of the mapping Jra.
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Lemma 7 Suppose that in two fibered charts on Y, ðV ;wÞ; w ¼ ðxi; yrÞ, and
ð�V ; �wÞ; �w ¼ ð�xi;�yrÞ, on Y such that aðVÞ � �V, the Cr automorphism a is expressed
by equations

�xi � aðyÞ ¼ f iðx jðxÞÞ; �yr � aðyÞ ¼ Frðx jðxÞ; ymðyÞÞ: ð76Þ

Then for every point Jrxc 2 Vr, the transformed point JraðJrxcÞ has the coordinates

�xi � JraðJrxcÞ ¼ f iðx jðxÞÞ;
�yr � JraðJrxcÞ ¼ Frðx jðxÞ; ymðcðxÞÞÞ; ð77Þ

�yrj1j2...jk � JraðJrxcÞ ¼ Dj1Dj2 . . .Djk ð�yraw�1 � wcu�1 � ua�1
0 �u�1Þð�uða0ðxÞÞÞ;

1� k� r:

Proof We have

�xi � JraðJrxcÞ ¼ �xi � a0ðxÞ
¼ �xia0u

�1ðuðxÞÞ ¼ f iðx jðxÞÞ;
�yr � JraðJrxcÞ ¼ �yr � aðcðxÞÞ ¼ �yraw�1ðwðcðxÞÞÞ

¼ Frðx jðxÞ; ymðcðxÞÞÞ;

ð78Þ

and by definition

�yrj1j2...jk � JraðJsxcÞ ¼ �yrj1j2...jkðJsa0ðxÞaca�1
0 Þ

¼ Dj1Dj2 . . .Djk ð�yr � aca�1
0 �u�1Þð�uða0ðxÞÞÞ

¼ Dj1Dj2 . . .Djk ð�yraw�1 � wcu�1 � ua�1
0 �u�1Þð�uða0ðxÞÞÞ:

ð79Þ

h

Formulas (77) contains partial derivatives of the functions f i and Fr, and also
partial derivatives of the functions gk, representing the chart expression ua�1

0 �u�1 of
the inverse diffeomorphism a�1

0 . These functions are defined by

xk � a�1
0 ðx0Þ ¼ gkð�xlðx0ÞÞ: ð80Þ

To obtain explicit dependence of the coordinates �yrj1j2...jkðJraðJrxcÞÞ on the coordi-
nates of the r-jet Jrxc, we have to use the chain rule k times, which leads to poly-
nomial dependence of the jet coordinates �yrj1j2...jk ðJraðJrxcÞÞ on the jet coordinates
ymi1ðJrxcÞ; ymi1i2ðJrxcÞ; . . .; ymi1i2...ik ðJrxcÞ. This shows, in particular, that if a is of class
Cr, then Jra is of class C0; if a is of class Cs, where s� r, then Jra is of class Cs�r.
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Equations (77) can be viewed as the recurrence formulas for the chart expression
of the mapping Jra. Writing

�yrj1j2...jk�1
� JraðJrxcÞ ¼ ð�yrj1j2...jk�1

� Jra � Jrc � u�1 � ua�1
0 �u�1Þð�uða0ðxÞÞÞ; ð81Þ

we have

�yrj1j2...jk � JraðJrxcÞ ¼ Djk ð�yrj1j2...jk�1
� Jra � Jrc � u�1 � ua�1

0 �u�1Þð�uða0ðxÞÞÞ
¼ Dlð�yrj1j2...jk�1

� Jra � Jrc � u�1ÞðuðxÞÞDjkðxla�1
0 �u�1Þð�uða0ðxÞÞÞ:

ð82Þ

Thus, if we already have the functions �yrj1j2...jk�1
� Jra, then the functions �yrj1j2...jk �

Jra are determined by (77).
We derive explicit expressions for the second-jet prolongation J2a.

Example 7 (2-jet prolongation of an automorphism) Let r ¼ 2. We have from (76)

�yrj1 � J2aðJrxcÞ ¼ Dj1ð�yraw�1 � wcu�1 � ua�1
0 �u�1Þð�uða0ðxÞÞÞ

¼ Dkð�yraw�1ÞðwcðxÞÞDlðxkcu�1ÞðuðxÞÞÞDj1ðxla�1
0 �u�1Þð�uða0ðxÞÞÞ

¼ Dkð�yraw�1ÞðwcðxÞÞdkl Dj1ðxla�1
0 �u�1Þð�uða0ðxÞÞÞ

þ Dkð�yraw�1ÞðwcðxÞÞykl ðJrxcÞDj1ðxla�1
0 �u�1Þð�uða0ðxÞÞÞ

¼ ðDlð�yraw�1ÞðwcðxÞÞ þ Dkð�yraw�1ÞðwcðxÞÞykl ðJsxcÞÞ
� Dj1ðxla�1

0 �u�1Þð�uða0ðxÞÞÞ;
ð83Þ

or, in a different notation,

�yrj1 � J2aðJrxcÞ ¼ dlF
rðJrxcÞ

@gl

@�xj1

� �
�uða0ðxÞÞ

; ð84Þ

where dl denotes the formal derivative operator. Differentiating (83) or (84) again,
we get the following equations for the 2-jet prolongation J2a of a:

�xi ¼ f iðxiÞ; �yr ¼ Frðxi; ymÞ; �yrj1 ¼ dk1F
r � @g

k1

@�xj1
;

�yrj1j2 ¼ dk1dk2F
r � @g

k1

@�xj1
@gk2

@�xj2
þ dk1F

r � @2gk1

@�xj1@�xj2
:

ð85Þ

We can easily prove the following statements.

22 1 Jet Prolongations of Fibered Manifolds



Lemma 8

(a) For any s such that 0� s� r,

pr � Jra ¼ a0 � pr; pr;s � Jra ¼ Jsa � pr;s: ð86Þ

(b) If two Cr automorphisms a and b of the fibered manifold Y are composable,
then Jra and Jrb are composable and

Jra � Jrb ¼ Jrða � bÞ: ð87Þ

Proof All these assertions are easy consequences of definitions. h

Formula (86) shows that Jra is an Cr automorphism of the r-jet prolongation JrY
of the fibered manifold Y, and also Cr automorphisms of JrY over JsY .

1.7 Jet Prolongations of Vector Fields

Let Y be a fibered manifold with base X and projection p. Our aim in this section is
to extend the theory of jet prolongations of automorphisms of a fibered manifold
Y to local flows of vector fields, defined on Y.

Let N be a Cr vector field on Y, let y0 2 Y be a point, and consider a local flow
aN: ð�e; eÞ � V ! Y of N at y0 (see Appendix 4). As usual, define the mappings aNt
and aNy by

aNðt; yÞ ¼ aNt ðyÞ ¼ aNy ðtÞ: ð88Þ

Then for any point y 2 V , the mapping t ! aNy ðtÞ is an integral curve of N passing
through y at t ¼ 0, i.e.,

Tta
N
y ¼ NðaNy ðtÞÞ; aNy ð0Þ ¼ y: ð89Þ

Moreover, shrinking the domain of definition ð�e; eÞ � V of aN to a subset
ð�j; jÞ �W � ð�e; eÞ � V , where W is a neighborhood of the point y0, we have

aNðsþ t; yÞ ¼ aNðs; aNðt; yÞÞ; aNð�t; aNðt; yÞÞ ¼ y ð90Þ

for all ðs; tÞ 2 ð�j; jÞ and y 2 W or, which is the same,

aNsþtðyÞ ¼ aNs ðaNt ðyÞÞ; aN�ta
N
t ðyÞ ¼ y: ð91Þ
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Note that the second formula implies

ðaNt Þ�1 ¼ aN�t: ð92Þ

In the following lemma, we study properties of flows of a p-projectable vector
field.

Lemma 9 Let N be a Cr vector field on Y. The following two conditions are equiv-
alent:

(1) The local 1-parameter groups of N consist of Cr automorphisms of the fibered
manifold Y.

(2) N is p-projectable.

Proof

1. Choose y0 2 Y be a point and let x0 ¼ pðy0Þ. Choose a local flow aN: ð�e; eÞ �
V ! Y at y0 and suppose that the mappings aNt : V ! Y are Cr automorphisms
of Y. Then for each t, there exists a unique Cr mapping at: U ! X, where U ¼
pðVÞ is an open set, such that

p � aNt ¼ at � p ð93Þ

on V. Setting aðt; xÞ ¼ atðxÞ, we get a mapping a: ð�e; eÞ � U ! X. It is easily
seen that this mapping is of class Cr. Indeed, there exists a Cr section c: U ! Y
such that cðx0Þ ¼ y0 (Sect. 1.1, Theorem 3); using this section, we can write
aðt; xÞ ¼ atðxÞ ¼ p � aNt � cðxÞ ¼ p � aNðt; cðxÞÞ, so a can be expressed as the
composite of Cr mappings. Since a satisfies að0; xÞ ¼ x, setting

nðxÞ ¼ T0ax � 1 ð94Þ

we get a Cr�1 vector field on U.
On the other hand, Formula (93) implies p � aNðt; yÞ ¼ aðt; pðyÞÞ, that is,
p � aNy ¼ apðyÞ. Then from (89), Ttðp � aNy Þ ¼ TaNy ðtÞp � NðaNy ðtÞÞ ¼ TtapðyÞ and

we have at the point t ¼ 0

T0apðyÞ ¼ Typ � NðyÞ: ð95Þ

Combining (94) and (95),

nðpðyÞÞ ¼ Typ � NðyÞ: ð96Þ

p-projectability of N (on Y) now follows from the uniqueness of the
p-projection.
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2. Suppose that N is p-projectable and denote by n its p-projection. Then

Typ � NðyÞ ¼ nðpðyÞÞ ð97Þ

at every point y of the fibered manifold Y. The local flow aN satisfies Eq. (89)
TtaNy ¼ NðaNy ðtÞÞ. Applying the tangent mapping Tp to both sides, we get

Ttðp � aNy Þ ¼ TaNy ðtÞp � NðaNy ðtÞÞ ¼ nðpðaNy ðtÞÞÞ: ð98Þ

This equality means that the curve t ! pðaNy ðtÞÞ ¼ anpðyÞðtÞ is an integral curve

of the vector field n. Thus, denoting by an the local flow of n at the point
x0 ¼ pðy0Þ, we have

pðaNðt; yÞÞ ¼ anðt;pðyÞÞ ð99Þ

as required. h

Let N be a p-projectable Cr vector field on Y, n its p-projection. Let aNt (resp. ant )

be a local 1-parameter group of N (resp. n). Since the mappings ant are Cr diffeo-
morphisms, for each t, the Cr automorphism aNt can be prolonged to the jet pro-
longation JsY of Y, for any s, 0� s� r. The prolonged mapping is an automorphism
of the fibered manifold JsY over X, defined by

JsaNt ðJrxcÞ ¼ Js
ant ðxÞ

aNt ca
n
�t; ð100Þ

the s-jet prolongation of aNt .
It is easily seen that there exists a unique Cs vector field on JsY whose integral

curves are exactly the curves t ! JsaNt ðJrxcÞ. This vector field is defined by

JsNðJrxcÞ ¼
d
dt
JsaNt ðJrxcÞ

� �
0
; ð101Þ

and is called the r-jet prolongation of the vector field N. It follows from the
definition that the vector field JsN is ps-projectable (resp. ps;k-projectable for every
k, 0� k� s) and its pk-projection (resp. ps;k-projection) is n (resp. JkN).

The following lemma explains the local structure of the jet prolongations of
projectable vector fields (Krupka [K13]); its proof is based on the chain rule.
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Lemma 10 Let N be a p-projectable vector field on Y, expressed in a fibered chart
ðV ;wÞ; w ¼ ðxi; yrÞ, by

N ¼ ni
@

@xi
þ Nr @

@yr
: ð102Þ

Then, JsN is expressed in the associated chart ðVs;wsÞ by

JsN ¼ ni
@

@xi
þ Nr @

@yr
þ
Xs
k¼1

X
j1 � j2 � ��� � jk

Nr
j1j2...jk

@

@yrj1j2...jk
; ð103Þ

where the components Nr
j1j2...jk are determined by the recurrence formula

Nr
j1j2...jk ¼ djkN

r
j1j2...jk�1

� yrj1j2...jk�1i
@ni

@xjk
: ð104Þ

Proof For all sufficiently small t, we can express the local 1-parameter group of N
in one chart only. Equations of the Cr automorphism aNt are expressed as

xi � aNt ðyÞ ¼ xiant ðxÞ; yr � aNt ðyÞ ¼ yraNt ðyÞ: ð105Þ

From these equations, we obtain the components of the vector field N in the form

niðyÞ ¼ dxiant ðxÞ
dt

 !
0

; NrðyÞ ¼ dyraNt ðyÞ
dt

� �
0
: ð106Þ

To determine the components of JsN, we use Lemma 9. The 1-parameter group
of JsN has the equations

xi � JraNt ðyÞ ¼ xiant ðxÞ;
yr � JraNt ðyÞ ¼ yraNt ðyÞ;

yrj1j2...jk � JraNt ðJrxcÞ ¼ Dj1Dj2 . . .Djk ðyraNt w�1 � wcu�1 � uan�tu
�1Þðuðant ðxÞÞÞ;

1� k� s;

ð107Þ

so by (106), it is sufficient to determine Nr
j1j2...jk . By definition,

Nr
j1j2...jkðJrxcÞ ¼

d
dt
ðyrj1j2...jk � JraNt ÞðJrxcÞ

� �
0
: ð108Þ
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But

yrj1j2...jk�1
� JraNt ðJrxcÞ
¼ Dj1Dj2 . . .Djk�1ðyraNt w�1 � wcu�1 � uan�tu

�1Þðuðant ðxÞÞÞ
¼ yrj1j2...jk�1

� JraNt � Jrc � an�tu
�1ðuðant ðxÞÞÞ;

ð109Þ

thus,

yrj1j2...jk � JraNt ðJrxcÞ
¼ Djk ðyrj1j2...jk�1

� JraNt � Jrc � u�1 � uan�tu
�1Þðuðant ðxÞÞÞ

¼ Dlðyrj1j2...jk�1
� JraNt � Jrc � u�1ÞðuðxÞÞDjk ðxlan�tu

�1Þðuðant ðxÞÞÞ:
ð110Þ

To obtain Nr
j1j2...jk ðJrxcÞ (108), we differentiate the function

ðt;uðxÞÞ ! yrj1j2...jk�1
� JraNt ðJrxcÞ ¼ ðyrj1j2...jk�1

� JraNt � Jrc � u�1ÞðuðxÞÞ ð111Þ

with respect to t and xl. Since the partial derivatives commute, we can first dif-
ferentiate with respect to t at t ¼ 0. We get the expression Nr

j1j2...jk�1
ðJrxcÞ. Sub-

sequent differentiation yields

DlðNr
j1j2...jk�1

� Jrc � u�1ÞðuðxÞÞ ¼ dlN
r
j1j2...jk�1

ðJrxcÞ; ð112Þ

where dl is the formal derivative operator.
We should also differentiate expression Djkðxlan�tu

�1Þðuðant ðxÞÞÞ with respect to

t. We have the identity Dlðxkan�tu
�1 � uant u�1ÞðuðxÞÞ ¼ dkl , that is,

Djðxkan�tu
�1Þðuant ðxÞÞDlðx jant u�1ÞðuðxÞÞ ¼ dkl : ð113Þ

From this formula,

d
dt

Djðxkan�tu
�1Þðuant ðxÞÞ � Dlðx jant u�1ÞðuðxÞÞ

þ Djðxkan�tu
�1Þðuant ðxÞÞ �

d
dt
Dlðx jant u�1ÞðuðxÞÞ

¼ 0

ð114Þ

thus, at t ¼ 0,

d
dt

Djðxkan�tu
�1Þðuant ðxÞÞ

� �
0
� d j

l þ dkj Dln
jðuðxÞÞ ¼ 0; ð115Þ
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hence,

d
dt

Dlðxkan�tu
�1Þðuant ðxÞÞ

� �
0
¼ �Dln

kðuðxÞÞ: ð116Þ

Now we can complete the differentiation of Formula (110) at t ¼ 0. We have,
using (112) and (116)

Nr
j1j2...jk ðJrxcÞ ¼

d
dt

ðyrj1j2...jk � JraNt ÞðJrxcÞ
� �

0

¼ d
dt

Dlðyrj1j2...jk�1
� JraNt � Jrc � u�1ÞðuðxÞÞ

� �
0
dljk

þ Dlðyrj1j2...jk�1
� Jrc � u�1ÞðuðxÞÞ d

dt
Djk ðxlan�tu

�1Þðuðant ðxÞÞÞ
� �

0

¼ dlN
r
j1j2...jk�1

ðJrþ1
x cÞdljk

� Dlðyrj1j2...jk�1
� Jrc � u�1ÞðuðxÞÞDjkn

lðuðxÞÞ
¼ djkN

r
j1j2...jk�1

ðJrxcÞ � yrj1j2...jk�1lðJrxcÞDjkn
lðuðxÞÞ;

ð117Þ

which coincides with (104). h

Example 8 (2-jet prolongation of a vector field) Let a p-projectable vector field N
be expressed by

N ¼ ni
@

@xi
þ Nr @

@yr
: ð118Þ

We can calculate the components of the second-jet prolongation J2N from
Lemma 10. We get

J2N ¼ ni
@

@xi
þ Nr @

@yr
þ Nr

j
@

@yrj
þ
X
j� k

Nr
jk

@

@yrjk
; ð119Þ

we get

Nr
j ¼ djN

r � yri
@ni

@x j
;

Nr
jk ¼ djdkN

r � yrij
@ni

@xk
� yrik

@ni

@x j
� yri

@2ni

@x j@xk
:

ð120Þ

In the following lemma, we study the Lie bracket of r-jet prolongations of
projectable vector fields.
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Lemma 11 For any two p-projectable vector fields N and Z, the Lie bracket N;Z½ 	
is also p-projectable, and

Jr N;Z½ 	 ¼ JrN; JrZ½ 	: ð121Þ

Proof

1. First, we prove (121) for r ¼ 1. Suppose that in a fibered chart

N ¼ ni
@

@xi
þ Nr @

@yr
; Z ¼ fk

@

@xk
þ Zm @

@ym
: ð122Þ

Then

J1N ¼ ni
@

@xi
þ Nr @

@yr
þ Nr

j
@

@yrj
; J1Z ¼ fi

@

@xi
þ Zr @

@yr
þ Zr

j
@

@yrj
; ð123Þ

where

Nr
j ¼ djN

r � yri
@ni

@x j
; Zr

j ¼ djZ
r � yri

@fi

@x j
; ð124Þ

and

½J1N; J1Z	 ¼ @fi

@xl
nl � @ni

@xl
fl

� �
@

@xi

þ @Zr

@xl
nl þ @Zr

@ym
Nm � @Nr

@xl
fl � @Nr

@ym
Zm

� �
@

@yr

þ @Zr
j

@xl
nl þ @Zr

j

@ym
Nm þ @Zr

j

@yml
Nm
l �

@Nr
j

@xl
fl � @Nr

j

@ym
Zm � @Nr

j

@yml
Zm
l

� �
@

@yrj
:

ð125Þ

On the other hand, denoting H ¼ ½N;Z	, we have

H ¼ #i @

@xi
þHr @

@yr
; ð126Þ
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where

#i ¼ @fi

@xs
ns � @ni

@xs
fs;

Hr ¼ @Zr

@xs
ns þ @Zr

@ym
Nm � @Nr

@xs
fs � @Nr

@ym
Zm;

ð127Þ

and

J1H ¼ Hi @

@xi
þHr @

@yr
þHr

j
@

@yrj
; ð128Þ

where

Hr
j ¼ djH

r � yri
@hi

@x j
: ð129Þ

Comparing formulas (121) and (129), we see that to prove our assertion for
r ¼ 1, it is sufficient to show that

dj
@Zr

@xs
ns þ @Zr

@ym
Nm � @Nr

@xs
fs � @Nr

@ym
Zm

� �

� yri
@

@x j
@fi

@xs
ns � @ni

@xs
fs

� �

¼ @Zr
j

@xl
nl þ @Zr

j

@ym
Nm þ @Zr

j

@yml
Nm
l �

@Nr
j

@xl
fl � @Nr

j

@ym
Zm � @Nr

j

@yml
Zm
l :

ð130Þ

We shall consider the left- and right-hand sides of this formula separately. The
left-hand side can be expressed as

dj
@Zr

@xs
ns þ @Zr

@xs
@ns

@x j
þ dj

@Zr

@ym
Nm þ @Zr

@ym
djN

m

� dj
@Nr

@xs
fs � @Nr

@xs
@fs

@x j
� dj

@Nr

@ym
Zm � @Nr

@ym
djZ

m

� yri
@2fi

@x j@xs
ns þ @fi

@xs
@ns

@x j
� @2ni

@x j@xs
fs � @ni

@xs
@fs

@x j

� �
:

ð131Þ
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The right-hand side of (130) is

dj
@Zr

@xl
� yri

@2fi

@xl@x j

� �
nl þ dj

@Zr

@ym
Nm þ @

@yml
djZ

r � yri
@fi

@x j

� �
Nm
l

� dj
@Nr

@xl
� yri

@2ni

@xl@x j

� �
fl � dj

@Nr

@ym
Zm � @

@yml
djN

r � yri
@ni

@x j

� �
Zm
l

¼ dj
@Zr

@xl
� yri

@2fi

@xl@x j

� �
nl þ dj

@Zr

@ym
Nm þ djN

m � ymi
@ni

@x j

� �
@Zr

@ym

� dlN
r � yri

@ni

@xl

� �
@fl

@x j

� dj
@Nr

@xl
� yri

@2ni

@xl@x j

� �
fl � dj

@Nr

@ym
Zm � djZ

m � ymi
@fi

@x j

� �
@Nr

@ym

þ dlZ
r � yri

@fi

@xl

� �
@nl

@x j
:

ð132Þ

In this formula,

dlZ
r @n

l

@x j
� ymi

@ni

@x j
@Zr

@ym
¼ @Zr

@xl
@nl

@x j
þ @Zr

@ym
yml
@nl

@x j
� ymi

@ni

@x j
@Zr

@ym

¼ @Zr

@xl
@nl

@x j
;

ð133Þ

and

�dlN
r @f

l

@x j
þ ymi

@fi

@x j
@Nr

@ym
¼ � @Nr

@xl
@fl

@x j
� @Nr

@ym
yml

@fl

@x j
þ ymi

@fi

@x j
@Nr

@ym

¼ � @Nr

@xl
@fl

@x j
;

ð134Þ

thus,

@Zr
j

@xl
nlþ @Zr

j

@ym
Nm þ @Zr

j

@yml
Nm
l �

@Nr
j

@xl
fl � @Nr

j

@ym
Zm � @Nr

j

@yml
Zm
l

¼ dj
@Zr

@xl
� yri

@2fi

@xl@x j

� �
nl þ dj

@Zr

@ym
Nm þ djN

m @Z
r

@ym
þ yri

@ni

@xl
@fl

@x j

� dj
@Nr

@xl
� yri

@2ni

@xl@x j

� �
fl � dj

@Nr

@ym
Zm � djZ

m @N
r

@ym
� yri

@fi

@xl
@nl

@x j
:

þ @Zr

@xl
@nl

@x j
� @Nr

@xl
@fl

@x j
:

ð135Þ
This is, however, exactly expression (130), proving (121) for r ¼ 1.
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2. In this part of the proof, we consider the r-jet prolongation Jr�1Y as a fibered
manifold with base X and projection pr�1: Jr�1Y ! X, and the 1-jet prolon-
gation of this fibered manifold, J1Jr�1Y . JrY can be embedded in J1Jr�1Y by
the canonical injection

JrY 3 Jrxc ! iðJrxcÞ ¼ J1x J
r�1c 2 J1Jr�1Y : ð136Þ

Obviously, i is compatible with jet prolongations of automorphisms a of Y in the
sense that

i � Jra ¼ ðJ1Jr�1aÞ � i: ð137Þ

Indeed, we have for any point Jrxc from the domain of Jra

iðJraðJrxcÞÞ ¼ iðJra0ðxÞaca�1
0 Þ ¼ J1a0ðxÞðJr�1aca�1

0 Þ; ð138Þ

and also

J1Jr�1aðiðJrxcÞÞ ¼ J1Jr�1aðJ1x Jr�1cÞ ¼ J1a0ðxÞðJr�1a � Jr�1c � a�1
0 Þ: ð139Þ

Thus, (138) follows from the definition of the 1-jet prolongation of a fibered
automorphism (Sect. 1.4, (101)).
Then, however, applying (139) to local 1-parameter groups of a p-projectable
vector field N, we get i-compatibility of J1Jr�1N and JrN,

J1Jr�1N � i ¼ Ti � JrN: ð140Þ

Since for any two p-projectable vector fields N and Z the vector fields J1Jr�1N
JrN and J1Jr�1Z and JrZ are i-compatible, the corresponding Lie brackets are
also i-compatible and we have

½J1Jr�1N; J1Jr�1Z	 � i ¼ Ti � ½JrN; JrZ	: ð141Þ

3. Using Part 1 of this proof, we now express the vector field on the left-hand side
of (141) in a different way. First note that

½J1Jr�1N; J1Jr�1Z	 ¼ J1½Jr�1N; Jr�1Z	: ð142Þ

But we may suppose that ½Jr�1N; Jr�1Z	 ¼ Jr�1½N;Z	 (induction hypothesis), thus
½J1Jr�1N; J1Jr�1Z	 ¼ J1Jr�1½N;Z	. Restricting both sides by i and applying (137),

½J1Jr�1N; J1Jr�1Z	 � i ¼ J1Jr�1½N;Z	 � i ¼ Ti � Jr½N;Z	: ð143Þ
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Now from (142) and (144), we conclude that Ti � ð½JrN; JrZ	 � Jr½N;Z	Þ ¼ 0.
This implies, however, ½JrN; JrZ	 � Jr½N;Z	 ¼ 0 because Ti is at every point
injective.
This completes the proof of formula (121). h

Remark 4 (Equations of the canonical injection) We find the chart expression of
the canonical injection i: JrY ! J1Jr�1Y (136) in a fibered chart ðV ;wÞ,
w ¼ ðxi; yrÞ, on Y and the induced fibered chart on JrY . We also have a fibered
chart on J1Jr�1Y , induced by the fibered chart ðVr�1;wr�1Þ,
w ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jr�1

Þ, on Jr�1Y . We denote the fibered chart on

J1Jr�1Y by ðW ;WÞ, where the coordinate functions are denoted as

W ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jr�1
; yr;k; y

r
j1;k; y

r
j1j2;k; . . .; y

r
j1j2...jr�1;kÞ: ð144Þ

Then by definition,

yrj1j2...js;k � iðJrxcÞ ¼ Dkðyrj1j2...js � Jr�1c � u�1ÞðuðxÞÞ
¼ DkDj1Dj2 . . .Djsðyrcu�1ÞðuðxÞÞ ¼ yrj1j2...jskðJrxcÞ

ð145Þ

for all s ¼ 1; 2; . . .; r � 1, so the canonical injection i is expressed by the equations

xi � i ¼ xi; yr � i ¼ yr; yrj1j2...js � i ¼ yrj1j2...js ; 1� s� r � 1;

yrj1j2...js;k � i ¼ yrj1j2...jsk; 1� s� r � 1:
ð146Þ
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Chapter 2
Differential Forms on Jet Prolongations
of Fibered Manifolds

In this chapter, we present a decomposition theory of differential forms on jet
prolongations of fibered manifolds; the tools inducing the decompositions are the
algebraic trace decomposition theory and the canonical jet projections. Of particular
interest is the structure of the contact forms, annihilating integrable sections of the
jet prolongations. We also study decompositions of forms defined by fibered ho-
motopy operators and state the corresponding fibered Poincare-Volterra lemma.

The theory of differential forms explained in this chapter has been developed
along the lines indicated in the approach of Lepage and Dedecker to the calculus
of variations (see Dedecker [D], Goldschmidt and Sternberg [GS] and Krupka
[K13]). The exposition extends the theory explained in the handbook chapter
Krupka [K4].

Throughout, Y is a smooth fibered manifold with base X and projection p,
n ¼ dimX, nþ m ¼ dim Y . JrY is the r-jet prolongation of Y, and pr: JrY ! X,
pr: JrY ! X are the canonical jet projections. For any open set W � Y , Xr

qW

denotes the module of q-forms on the open set Wr ¼ ðpr;0Þ�1ðWÞ in JrY , and XrW
is the exterior algebra of differential forms on the set Wr. We say that a form g is
generated by a finite family of forms lj, if g is expressible as g ¼ gj ^ lj for some
forms gj; note that in this terminology, we do not require lj to be 1-forms, or
k-forms for a fixed integer k.

2.1 The Contact Ideal

We introduced in Sect. 1.5 a vector bundle homomorphism h between the tangent
bundles TJrþ1Y and TJrY over the canonical jet projection prþ1;r: Jrþ1Y ! JrY , the
horizontalization. In this section, the associated dual mapping between the modules
of 1-forms Xr

1W and Xrþ1
1 W is studied. We show, in particular, that this mapping

allows us to associate with any fibered chart ðV ;wÞ on Y and any function, defined on
Vr, its formal (or total) partial derivatives in a geometric way and a specific basis of
1-forms on Vr, termed the contact basis. Then, we introduce by means of the contact
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D. Krupka, Introduction to Global Variational Geometry,
Atlantis Studies in Variational Geometry 1, DOI 10.2991/978-94-6239-073-7_2

35

http://dx.doi.org/10.2991/978-94-6239-073-7_1


basis a differential ideal in the exterior algebra XrW , characterizing the structure of
forms on jet prolongations of fibered manifolds, the contact ideal.

Recall that the horizontalization h is defined by the formula

hn ¼ TxJ
rc � Tprþ1 � n; ð1Þ

where n is a tangent vector to the manifold Jrþ1Y at a point Jrþ1
x c. The mapping

h makes the following diagram

TJrþ1Y ���!h TJrY
# #

Jrþ1Y �����!prþ1;r

JrY

ð2Þ

commutative and induces a decomposition of the projections of the tangent vectors
Tprþ1;r � n,

Tprþ1;r � n ¼ hnþ pn: ð3Þ

hn (resp. pn) is the horizontal (resp. contact) component of the vector n. Note,
however, that the terminology is not standard: The vectors n and hn do not belong
to the same vector space. The horizontal and contact components satisfy

Tpr � hn ¼ Tprþ1 � n; Tpr � pn ¼ 0: ð4Þ

The horizontalization h induces a mapping of modules of linear differential
forms as follows. Let Jrþ1

x c 2 Jrþ1Y . We set for any differential 1-form q on Wr

and any vector n from the tangent space TJrþ1Y at Jrþ1
x c

hqðJrþ1
x cÞ � n ¼ qðJrxcÞ � hn: ð5Þ

The mapping Xr
1W 3 q ! hq 2 Xrþ1

1 W is called the p-horizontalization or just the
horizontalization (of differential forms).

Clearly, the form hq vanishes on prþ1-vertical vectors so it is prþ1-horizontal; hq
is sometimes called the horizontal component of q.

The mapping h is linear over the ring of functions Xr
0W along the jet projection

prþ1;r in the sense that

hðq1 þ q2Þ ¼ hq1 þ hq2 hðfqÞ ¼ ðf � prþ1;rÞhq ð6Þ

for all q1; q2; q 2 Xr
1W and f 2 Xr

0W .
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If in the fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, a 1-form q is expressed by

q ¼ Aidx
i þ

X
0� k� r

X
j1 � j2 � ��� � jk

Bj1j2...jk
r dyrj1j2...jk ; ð7Þ

then we have from (5) at any point Jrþ1
x c 2 Vrþ1

hqðJrþ1
x cÞ � n ¼ AiðJrxcÞdxiðJrxcÞ � hn

þ
X

0� k� r

X
j1 � j2 � ��� � jk

Bj1j2...jk
r ðJrxcÞdyrj1j2...jk ðJrxcÞ � hn

¼ AiðJrxcÞ þ
X

0� k� r

X
j1 � j2 � ��� � jk

Bj1j2...jk
r ðJrxcÞyrj1j2...jk i

 !
ni;

ð8Þ

thus,

hq ¼ Ai þ
X

0� k� r

X
j1 � j2 � ��� � jk

Bj1j2...jk
r yrj1j2...jk i

 !
dxi: ð9Þ

In particular, for any function f : Wr ! R

hdf ¼ dif � dxi; ð10Þ

where

dif ¼ @f
@xi

þ
X

j1 � j2 � ��� � jk

@f
@yrj1j2...jk

yrj1j2...jk i: ð11Þ

The function dif : Vrþ1 ! R is the i-th formal derivative of f with respect to the
fibered chart ðV ;wÞ. From (10), it follows that dif are the components of an
invariant object, the horizontal component hdf of the exterior derivative of f. Note
that formal derivatives dif have already been introduced in Sect. 1.5.

The following lemma summarizes basic rules for computations with the hori-
zontalization and formal derivatives. We denote by di the formal derivative operator
with respect to a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ.
Lemma 1 Let ðV ;wÞ, w ¼ ðxi; yrÞ, be a fibered chart on Y.

(a) The horizontalization h satisfies

hdyr ¼ yri dx
i; hdyrj1 ¼ yrj1idx

i; hdyrj1j2 ¼ yrj1j2idx
i;

. . .; hdyrj1j2...jr ¼ yrj1j2...jr idx
i:

ð12Þ
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(b) The i-th formal derivative of the coordinate function ymj1j2...jk is given by

diy
m
j1j2...jk ¼ ymj1j2...jk i: ð13Þ

(c) If ðV ;wÞ, w ¼ ðxi; yrÞ, is another chart on Y such that V \ V 6¼ [, then for
every function f : Vr \ V

r ! R,

dif ¼ djf � @x
j

@xi
: ð14Þ

(d) For any two functions f ; g: Vr ! R,

diðf � gÞ ¼ g � dif þ f � dig: ð15Þ

(e) For every function f : Vr ! R and every section c: U ! V � Y ,

dif � Jrþ1c ¼ @ðf � JrcÞ
@xi

: ð16Þ

Remark 1 By (13), yrj1j2...jk ¼ djk y
r
j1j2...jk�1

. Thus, applying (14) to coordinates, we
obtain the following prolongation formula for coordinate transformations in jet
prolongations of fibered manifolds

yrj1j2...jk ¼ diyrj1j2...jk�1
� @x

i

@xjk
: ð17Þ

Remark 2 If two functions f ; g: Vr ! R coincide along a section Jrc, that is,
f � Jrc ¼ g � Jrc, then their formal derivatives coincide along the ðr þ 1Þ-prolon-
gation Jrþ1c,

dif � Jrþ1c ¼ dig � Jrþ1c: ð18Þ

This is an immediate consequence of formula (16).

Now, we study properties of 1-forms, belonging to the kernel of the horizon-
talization Xr

1W 3 q ! hq 2 Xrþ1
1 W . We say that a 1-form q 2 Xr

1W is contact, if

hq ¼ 0: ð19Þ

It is easy to find the chart expression of a contact 1-form. Writing q as in (7),
condition (19) yields

Ai þ
X

0� k� r

X
j1 � j2 � ��� � jk

Bj1j2...jk
r yrj1j2...jk i ¼ 0; ð20Þ
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or, equivalently,

Bj1j2...jr
r ¼ 0; Ai ¼ �

X
0� k� r�1

X
j1 � j2 � ��� � jk

Bj1j2...jk
r yrj1j2...jk i: ð21Þ

Thus, setting for all k, 0� k� r � 1,

xr
j1j2...jk ¼ dyrj1j2...jk � yrj1j2...jk jdx

j; ð22Þ

we see that q has the chart expression

q ¼
X

0� k� r�1

X
j1 � j2 � ��� � jk

Bj1j2...jk
r xr

j1j2...jk : ð23Þ

This formula shows that any contact 1-form is expressible as a linear combination
of the forms xr

j1j2...jk .
The following two theorems summarize properties of the forms xr

j1j2...jk .

Theorem 1

(a) For any fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, the forms

dxi; xr
j1j2...jk ; dyrl1l2...lr�1lr ; ð24Þ

such that 1� i� n, 1� r�m, 1� k� r � 1, 1� j1 � j2 � � � � � jk � n, and
1� l1 � l2 � � � � � lr � n, constitute a basis of linear forms on the set Vr:

(b) If ðV ;wÞ, w ¼ ðxi; yrÞ, and ðV ;wÞ, w ¼ ðxi; yrÞ, are two fibered charts such
that V \ V 6¼ [, then

xk
p1p2...pk ¼

X
0�m� k

X
j1 � j2 � ��� � jk

@ykp1p2...pk
@ysj1j2...jm

xs
j1j2...jm : ð25Þ

(c) Let ðV ;wÞ, w ¼ ðxi; yrÞ, and ðV ;wÞ, w ¼ ðxi; yrÞ, be two fibered charts and a
an automorphism of Y, defined on V and such that aðVÞ � V. Then

Jra*xr
j1j2...jk ¼

X
i\i2\���\ip

@ðyrj1j2...jk � JraÞ
@ymi1i2...ip

xm
i1i2...ip : ð26Þ

Proof

(a) Clearly, from formula (22), we conclude that the forms (24) are expressible as
linear combinations of the forms of the canonical basis dxi, dyrj1j2...jk ,
dyrl1l2...lr�1lr .
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(b) Consider two charts ðV ;wÞ, w ¼ ðxi; yrÞ, and ðV ;wÞ, w ¼ ðxi; yrÞ, such that
V \ V 6¼ [. For any function f, defined on Vr,

ðprþ1;rÞ*df ¼ hdf þ pdf ¼ dif � dxi þ
X

0� k� r

X
l1 � l2 � ��� � lk

@f
@yml1l2...lk

xm
l1l2...lk

¼ dpf � dxp þ
X

0� k� r

X
j1 � j2 � ��� � jk

@f
@ysj1j2...jm

xs
j1j2...jm

¼ dpf
@xp

@xi
dxi þ

X
0� k� r

X
j1 � j2 � ��� � jk

X
l1 � l2 � ��� � lk

@f
@yml1l2...lk

@yml1l2...lk
@ysj1j2...jm

xs
j1j2...jm :

ð27Þ

Setting f ¼ ykp1p2���pk , where p1 � p2 � � � � � pk , and using (17), we get (25).
(c) By definition,

Jra*xr
j1j2...jk ¼ dðyrj1j2...jk � JraÞ � ðyrj1j2...jk l � JraÞdðxl � JraÞ: ð28Þ

Denote by a0 the p-projection of a. Since from Sect. 1.6, (80)

yrj1j2...jk l � JraðJrxcÞ

¼ @ðyrj1j2...jk � Jra � Jrc � u�1Þ
@xs

@ðxsa�1
0 u�1Þ
@xl

;
ð29Þ

then

Jra*xr
j1j2...jk ¼

@ðyrj1j2...jk � JraÞ
@xp

dxp þ
X

i\i2\���\ip

@ðyrj1j2...jk � JraÞ
@ymi1i2...ip

dymi1i2...ip

� @ðyrj1j2...jk � Jra � Jrc � u�1Þ
@xs

@ðxsa�1
0 u�1Þ
@xl

@ðxl � JraÞ
@xp

dxp

¼ @ðyrj1j2...jk � JraÞ
@xp

dxp þ
X

i\i2\���\ip

@ðyrj1j2...jk � JraÞ
@ymi1i2...ip

xm
i1i2...ip

þ
X

i\i2\���\ip

@ðyrj1j2...jk � JraÞ
@ymi1i2...ip

ymi1i2...ipsdx
s

� @ðyrj1j2...jk � Jra � Jrc � u�1Þ
@xs

dxs

¼
X

i\i2\���\ip

@ðyrj1j2...jk � JraÞ
@ymi1i2...ip

xm
i1i2...ip : ð30Þ

These conditions mean that the section d is of the form d ¼ Jrðpr;0 � dÞ as
required. h
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The basis of 1-forms (24) on Vr is usually called the contact basis.
The following observations show that the contact forms xr

j1j2...jk , defined by a
fibered atlas on Y, define a (global) module of 1-forms and an ideal of the exterior
algebra XrW (for elementary definitions, see Appendix 7).

Corollary 1 The contact 1-forms xr
j1j2...jk locally generate a submodule of the

module Xr
1W .

Corollary 2 The contact 1-forms xr
j1j2...jk locally generate an ideal of the exterior

algebra XrW. This ideal is not closed under the exterior derivative operator.

Proof Existence of the ideal is ensured by the transformation properties of the
contact 1-forms xr

j1j2...jk (Theorem 1, (b)). It remains to show that the ideal contains
a form, which is not generated by the forms xr

j1j2...jk . If q is a contact 1-form
expressed as

q ¼
X

0� k� r�1

X
j1 � j2 � ��� � jk

Bj1j2...jk
r xr

j1j2...jk ; ð31Þ

then

dq ¼
X

0� k� r�1

X
j1 � j2 � ��� � jk

dBj1j2...jk
r ^ xr

j1j2...jk þ Bj1j2...jk
r dxr

j1j2...jk

� �
: ð32Þ

But in this expression,

dxr
j1j2...jk ¼

�xr
j1j2...jk l ^ dxl; 0� k� r � 2;

�dyrj1j2...jr�1l ^ dxl; k ¼ r � 1;

(
ð33Þ

thus, dxr
j1j2...jr�1

and in general the form q are not generated by the contact forms
xr

j1j2...jk . h

The ideal of the exterior algebra XrW , locally generated by the 1-forms xr
j1j2...jk ,

where 0� k� r � 1, is denoted byHr
0W . The 1-forms xr

j1j2...jk , where 0� k� r � 1,
and 2-forms dxr

j1j2...jr�1
locally generate an ideal HrW of the exterior algebra XrW ,

closed under the exterior derivative operator, that is, a differential ideal. This ideal
is called the contact ideal of the exterior algebra XrW , and its elements are called
contact forms. We denote

Hr
qW ¼ Xr

qW \HrW : ð34Þ

The set Hr
qW of contact q-forms is a submodule of the module Xr

qW , called the
contact submodule.
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Since the exterior derivative of a contact form is again a contact form, we have
the sequence

0 ! Hr
1W�!d Hr

2W�!d � � � �!d Hr
nW ; ð35Þ

where the arrows denote the exterior derivative operator. If q is a contact form,
q 2 Hr

qW , and f is a function on Wr, f 2 Hr
0W , then the formula

dðfqÞ ¼ df ^ qþ fdq ð36Þ

shows that the form dðfqÞ is again a contact form; however, the exterior derivative
in (36) is not a homomorphism of Hr

0W-modules. Restricting the multiplication in
(36) to constant functions f, that is, to real numbers, the exterior derivative in (36)
becomes a morphism of vector spaces.

Another consequence of Theorem 1 is concerned with sections of the fibered
manifold JrY over the base X. We say that a section d of JrY , defined on an open set
in X, is holonomic, or integrable, if there exists a section c of Y such that

d ¼ Jrc: ð37Þ

Obviously, if c exists, then applying the projection pr:0 to both sides, we get
pr:0 � d ¼ c; thus, if c exists, it is unique and is determined by

c ¼ pr:0 � d: ð38Þ

Theorem 2 A section d: U ! JrY is holonomic if and only if for any fibered chart
ðV ;wÞ, w ¼ ðxi; yrÞ, such that the set pðVÞ lies in the domain of definition of d,

d*xr
i1i2...ik ¼ 0 ð39Þ

for all r, k, and i1; i2; . . .; ik such that 1� r�m, 0� k� r � 1, and
1� i1 � i2 � � � � � ik � n.

Proof By definition,

d*xr
i1i2...ik ¼ dðyri1i2...ik � dÞ � ðyri1i2...ik l � dÞdxl

¼ @ðyri1i2...ik � dÞ
@xl

� yri1i2...ik l � d
� �

dxl:
ð40Þ

Thus, condition (39) is equivalent to the conditions

@ðyri1i2...ik � dÞ
@xl

� yri1i2...ik l � d ¼ 0 ð41Þ
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that can also be written as

@ðyr � dÞ
@xl

� yrl � d ¼ 0;

@ðyri1 � dÞ
@xl

� yri1l � d ¼ @2ðyr � dÞ
@xi1@xl

� yri1l � d ¼ 0;

. . .

@ðyri1i2...ir�1
� dÞ

@xl
� yri1i2...ir�1l � d ¼ @kþ1ðyr � dÞ

@xi1@xi2 . . .@xir�1@xl
� yri1i2...ir�1l � d ¼ 0:

ð42Þ

These conditions mean that the section d is of the form d ¼ Jrðpr;0 � dÞ as
required. h

2.2 The Trace Decomposition

Main objective in this section is the application of the trace decomposition theory of
tensor spaces to differential forms defined on the r-jet prolongation JrY of a fibered
manifold Y. We decompose the components of a form, expressed in a fibered chart,
by the trace operation (see Appendix 9); the resulting decomposition of differential
forms will be referred to as the trace decomposition.

In order to study the structure of the components of a form q 2 Xr
qW for general

r, it will be convenient to introduce a multi-index notation. We also need a con-
vention on the alternation and symmetrization of tensor components in a given set
of indices.

Convention 1 (Multi-indices) We introduce a multi-index I as an ordered k-
tuple I ¼ ði1i2 . . . ikÞ, where k = 1, 2,…, r and the entries are indices such that
1� i1; i2; . . .; ik � n. The number k is the length of I and is denoted by jIj. If j is any
integer such that 1� j� n, we denote by Ij the multi-index Ij ¼ ði1i2 . . . ikjÞ. In this
notation, the contact basis of 1-forms, introduced in Sect. 2.1, Theorem 1, (a), is
sometimes denoted as ðdxi;xr

J ; dy
r
I Þ, where the multi-indices satisfy 0� jJj � r �

1 and jIj ¼ r; it is understood, however, that the basis includes only linearly
independent 1-forms xr

J , where the multi-indices I ¼ ði1i2 . . . ikÞ satisfy
i1 � i2 � � � � � ik.

Convention 2 (Alternation, symmetrization) We introduce the symbol
Altði1i2. . . ikÞ to denote alternation in the indices i1; i2; . . .; ik . If U ¼ Ui1i2 ... ik is a
collection of real numbers, we denote by Ui1i2...ik Altði1i2. . .ikÞ the skew-symmetric
component of U. Analogously, Symði1i2. . .ikÞ denotes symmetrization in the indi-
ces i1; i2; . . .; ik , and the symbol Ui1i2...ik Symði1i2. . . ikÞ means the symmetric
component of U. The operators Alt and Sym are understood as projectors (the
coefficient 1=k! is included).
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Note that there exists a close relationship between the trace operation on the one
hand and the exterior derivative operator on the other hand. For instance, decom-
posing in a fibered chart the 2-form dyrJj ^ dxk by the trace operation, we get

dyrJj ^ dxk ¼ 1
n
dkj dy

r
Js ^ dxs þ dyrJj ^ dxk � 1

n
dkj dy

r
Js ^ dxs; ð43Þ

where the summand, representing the Kronecker component of dyrJj ^ dxk , coin-
cides, up to a constant factor, with the exterior derivative dxr

J , and is therefore a
contact form:

1
n
dkj dy

r
Js ^ dxs ¼ � 1

n
dxr

J : ð44Þ

The complementary summand in the decomposition (43), represented by the second
and the third terms, is traceless in the indices j and k. We wish to use this obser-
vation to generalize decomposition (43) to any q-forms on JrY .

First, we apply the trace decomposition theorem (Appendix 9, Theorem 1) to q-
forms of a specific type, not containing the contact forms xm

J .

Lemma 2 Let ðV ;wÞ, w ¼ xi; yrð Þ; be a fibered chart on Y. Let l be a q-form on
Vrsuch that

l ¼ Ai1i2...iqdx
i1 ^ dxi2 ^ � � � ^ dxiq

þ BI1
r1i2i3...iqdy

r1
I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxiq

þ BI1I2
r1r2i3i4...iqdy

r1
I1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ � � � þ BI1I2
r1r2

. . .
Iq�1

rq�1 iqdy
r1
I1 ^ dyr2I2 ^ � � � ^ dyrq�1

Iq�1
^ dxiq

þ AI1I2
r1r2

. . .Iqrqdy
r1
I1 ^ dyr2I2 ^ � � � ^ dyrqIq ;

ð45Þ

where the multi-indices satisfy jI1j; jI2j; . . .; jIq�1j ¼ r. Then, l has a
decomposition

l ¼ l0 þ l0; ð46Þ

satisfying the following conditions:

(a) l0 is generated by the forms dxr
J , where jJj ¼ r � 1, that is,

l0 ¼
X

jJj ¼r�1

dxr
J ^ UJ

r; ð47Þ

for some ðq� 2Þ-forms UJ
r.

44 2 Differential Forms on Jet Prolongations of Fibered Manifolds



(b) l0 has an expression

l0 ¼ Ai1i2...iqdx
i1 ^ dxi2 ^ � � � ^ dxiq

þ AI1
r1 i2i3...iqdy

r1
I1 ^ dxi1 ^ dxi2 ^ � � � ^ dxiq

þ AI1I2
r1r2i2i3...iqdy

r1
I1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ � � � þ AI1I2
r1r2

. . .
Iq�1

rq�1 iqdy
r1
I1 ^ dyr2I2 ^ � � � ^ dyrq�1

Iq�1
^ dxiq

þ AI1I2
r1r2

. . .Iqrqdy
r1
I1 ^ dyr2I2 ^ � � � ^ dyrqIq ;

ð48Þ

where AI1
r1i2i3...iq ;A

I1I2
r1r2i2i3...iq ; . . .;A

I1I2
r1r2

. . .
Iq�1
rq�1 iq are traceless components of the

coefficients BI1
r1i2i3...iq ;B

I1I2
r1r2i2i3...iq ; . . .;B

I1I2
r1r2 . . .

Iq�1

rq�1 iq .

Proof Applying the trace decomposition theorem (Appendix 9) to the coefficients

BI1
r1i2i3...iq ;B

I1I2
r1r2i2i3...iq ; . . .;B

I1I2
r1r2 . . .

Iq�1

rq�1 iq in (45), we get

BI1
r1i2i3...iq ¼ AI1

r1 i2i3...iq þ CI1
r1 i2i3...iq ;

BI1I2
r1r2i3i4...iq ¼ AI1I2

r1r2i3i4...iq þ CI1I2
r1r2i3i4...iq ;

. . .

BI1I2
r1r2 . . .

Iq�2

rq�2 iq�1iq ¼ AI1I2
r1r2 . . .

Iq�2

rq�2 iq�1iq þ CI1I2
r1r2 . . .

Iq�2

rq�2iq�1iq ;

BI1I2
r1r2 . . .

Iq�2

rq�2iq�1iq ¼ AI1I2
r1r2 . . .

Iq�2

rq�2iq�1iq þ CI1I2
r1r2 . . .

Iq�2

rq�2iq�1iq ;

ð49Þ

where the systems AI1
r1i2i3...iq ;A

I1I2
r1r2i2i3...iq ; . . .;A

I1I2
r1r2 . . .

Iq�1

rq�1 iq are traceless and

CI1
r1i2i3...iq ;C

I1I2
r1r2i2i3...iq ; . . .;C

I1I2
r1r2 . . .

Iq�1

rq�1 iq are of Kronecker type. Thus, writing the
multi-index Il as Il ¼ Jljl, we have

CI1
r1i2i3...iq ¼ dj1i2D

J1
r1i3i4...iq Altði2i3i4. . .iqÞ SymðJ1j1Þ;

CI1I2
r1r2i3i4...iq ¼ dj1i3D

J1I2
r1r2i4i5...iq Altði3i4i5. . .iqÞ SymðJ1j1Þ SymðJ2j2Þ;

. . .

CI1I2
r1r2

. . .
Iq�2

rq�2iq�1iq ¼ dj1iq�1
DJ1I2I3

r1r2r3
. . .

Iq�2

rq�2iq Altðiq�1iqÞ SymðJ1j1Þ
SymðJ2j2Þ . . . SymðJq�2jq�2Þ;

CI1I2
r1r2

. . .
Iq�1

rq�1iq ¼ dj1iqD
J1I2I3
r1r2r3

. . .Iq�1
rq�1

SymðJ1j1Þ SymðJ2j2Þ
. . . SymðJq�2jq�2Þ:

ð50Þ
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Then

l ¼ Ai1i2...iqdx
i1 ^ dxi2 ^ � � � ^ dxiq

þ AI1
r1i2i3...iqdy

r1
I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxiq

þ AI1I2
r1r2i3i4...iqdy

r1
I1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ � � � þ AI1I2
r1r2

. . .
Iq�1
rq�1 iqdy

r1
I1 ^ dyr2I2 ^ � � � ^ dyrq�1

Iq�1
^ dxiq

þ AI1I2
r1r2

. . .Iqrqdy
r1
I1 ^ dyr2I2 ^ � � � ^ dyrqIq

þ dj1i2D
J1
r1 i3i4...iqdy

r1
J1j1 ^ dxi2 ^ dxi3 ^ � � � ^ dxiq

þ dj1i3D
J1I2
r1r2i4i5...iqdy

r1
J1j1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ � � � þ dj1iqD
J1I2I3
r1r2r3

. . .Iq�1
rq�1

dyr1J1j1 ^ dyr2I2 ^ � � � ^ dyrq�1

Iq�1
^ dxiq ;

ð51Þ

and now our assertion follows from the formula (44). h

The following theorem generalizes Lemma 2 to arbitrary forms on open sets in
the r-jet prolongation JrY .

Theorem 3 (The trace decomposition theorem) Let q be any positive integer, and
let q 2 Xr

qW be a q-form. Let ðV ;wÞ, w ¼ ðxi; yrÞ, be a fibered chart on Y, such that
V � W. Then, q has on Vr an expression

q ¼ q0 þ q0; ð52Þ

with the following properties:

(a) q0 is generated by the 1-forms xr
J with 0� jJj � r � 1 and 2-forms dxr

I
where jIj ¼ r � 1.

(b) q0 has an expression

q0 ¼ Ai1i2...iqdx
i1 ^ dxi2 ^ � � � ^ dxiq

þ AI1
r1 i2i3...iqdy

r1
I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxiq

þ AI1I2
r1r2i2i3...iqdy

r1
I1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ � � � þ AI1I2
r1r2 . . .

Iq�1

rq�1iqdy
r1
I1 ^ dyr2I2 ^ � � � ^ dyrq�1

Iq�1
^ dxiq

þ AI1I2
r1r2 . . .

Iq
rqdy

r1
I1 ^ dyr2I2 ^ � � � ^ dyrqIq ;

ð53Þ

where jI1j; jI2j; . . .; jIq�1j ¼ r and all coefficients AI1
r1 i2i3...iq ;A

I1I2
r1r2i2i3...iq ;

. . .;AI1I2
r1r2

. . .
Iq�1
rq�1 i2i3...iq are traceless.
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Proof To prove Theorem 3, we express q in the contact basis. Then, q ¼ q1 þ l,
where q1 is generated by contact 1-forms xr

J , 0� jJj � r � 1, and l does not
contain any factor xr

J . Thus, l has an expression (45) and can be decomposed as in
Lemma 2, (46). Using this decomposition, we get the formula (52). h

Theorem 3 is the trace decomposition theorem for differential forms; formula
(52) is referred to as the trace decomposition formula. The form q0 in this
decomposition (43) is contact and is called the contact component of q; the form q0

is the traceless component of q with respect to the fibered chart ðV ;wÞ.
Lemma 3 Let q 2 Xr

qW be a q-form, and let ðV ;wÞ, w ¼ ðxi; yrÞ, and ðV ;wÞ,
w ¼ ðxi; yrÞ, be two fibered charts such that V \ V 6¼ [. Suppose that we have the
trace decomposition of the form q with respect to ðV ;wÞ and ðV ;wÞ, respectively,

q ¼ q0 þ q0 ¼ q0 þ q0: ð54Þ

Then, the traceless components satisfy

q0 ¼ q0 þ g; ð55Þ

where g is a contact form on the intersection V \ V .

Proof Lemma 3 can be easily verified by a direct calculation. Consider for instance
the term AI

r i2i3...iqdy
r
I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxiq in formula (53), and the transfor-

mation equation is

@yri1i2...ir
@ymj1j2...jr

¼ @yr

@ym
@xj1

@xi1
@xj2

@xi2
. . .

@xjr

@xir
Symðj1j2. . .jrÞ: ð56Þ

Denote xm
j1j2...jk ¼ dymj1j2...jk � ymj1j2...jk ldx

l. Then, we have

Ai1i2...ir
r s2s3...sqdy

r
i1i2...ir ^ dxs2 ^ dxs3 ^ � � � ^ dxsq

¼ Ai1i2...ir
r s2s3...sq

@xs2

@xl2
@xs3

@xl3
. . .

@xsq

@xlq
� @yri1i2...ir

@xp
þ

X
0� k� r�1

@yri1i2...ir
@ymj1j2...jk

ymj1j2...jkp

 ! 
dxp

þ
X

0� k� r�1

@yri1i2...ir
@ymj1j2...jk

xm
j1j2...jk þ

@yri1i2...ir
@ymj1j2...jr

dymj1j2...jr

!
^ dxl2 ^ dxl3 ^ � � � ^ dxlq :

ð57Þ

Consequently, the last summand in (57) implies

A
j1j2...jr
m l2l3...lq ¼ Ai1i2...ir

r s2s3...sq
@xs2

@xl2
@xs3

@xl3
. . .

@xsq

@xlq
@yri1i2...ir
@ymj1j2...jr

: ð58Þ
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Substituting from (56) in this formula, we see that the trace of A
j1j2...jr
m l2l3...lq vanishes if

and only if the same is true for the trace of Ai1i2...ir
r s2s3...sq . Thus, the decomposition (55)

is valid for the summand (56). The same applies to any other summand. h

Following Theorem 3, we can write the q-form q in the contact basis as
q ¼ q1 þ q2 þ q0, where q1 is generated by the forms xr

J , 0� jJj � r � 1, q2 is
generated by dxr

I , jIj ¼ r � 1, and does not contain any factor xr
J , and the form q0

is traceless. Thus,

q1 ¼
X

0� jJj � r�1

xr
J ^ UJ

r; q2 ¼
X

jIj¼r�1

dxr
I ^WI

r ð59Þ

for some forms UJ
r and WI

r. Then,

q ¼ xr
J ^ UJ

r þ xr
I ^ dWI

r þ dðxr
I ^WI

rÞ þ q0: ð60Þ

Setting

Pq ¼ xr
J ^ UJ

r þ xr
I ^ dWI

r; Qq ¼ xr
I ^WI

r; Rq ¼ q0; ð61Þ

we get the following version of Theorem 3.

Theorem 4 Let q be arbitrary, and let q 2 Xr
qW be a q-form. Let ðV ;wÞ,

w ¼ ðxi; yrÞ, be a fibered chart on Y such that V � W. Then, q can be expressed on
Vr as

q ¼ Pqþ dQqþ Rq: ð62Þ

Proof This is an immediate consequence of definitions and Theorem 3. h

In the following two examples, we discuss the trace decomposition formula and
the transformation equations for the traceless components of some differential
forms on 1-jet prolongation of the fibered manifold Y. The aim is to illustrate the
decomposition methods for lower-degree differential forms.

Example 1 We find the trace decomposition of a 3-form l, written in a fibered chart
ðV ;wÞ, w ¼ ðxi; yrÞ, as

l ¼ Aijkdx
i ^ dx j ^ dxk þ Bp

r jkdy
r
p ^ dx j ^ dxk

þ Bpq
rmkdy

r
p ^ dymq ^ dxk þ Apqr

rvsdy
r
p ^ dymq ^ dysr :

ð63Þ
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Decomposing Bp
rjk, we have Bp

rjk ¼ Ap
rjk þ dpj Crk þ dpkDrj, where Ap

rjk is traceless.
Then, the condition Bp

rjk ¼ �Bp
rkj yields

Bp
rpk ¼ dppCrk þ dpkDrp ¼ nCrk þ Drk

¼ �Bp
rkp ¼ �dpkCrp � dppDrk ¼ �Crk � nDrk;

ð64Þ

and hence, Crk ¼ �Drk. Thus,

Bp
rjk ¼ Ap

rjk þ dpj Crk � dpkCrj: ð65Þ

Decomposing Bpq
rvk, we have Bpq

rvk ¼ Apq
rvk þ dpkC

q
rv þ dqkD

p
rm. Now, the condition

Bpq
rmk ¼ �Bqp

mrk yields

Bpq
rmp ¼ dppC

q
rv þ dqpD

p
rm ¼ nCq

rv þ Dq
rm

¼ �Bqp
mrp ¼ �dqpC

p
mr � dppD

q
mr ¼ �Cq

mr � nDq
mr;

ð66Þ

and hence, nCq
rm þ Cq

mr ¼ �nDq
mr � Dq

rm. It can be easily verified that this condition
implies

Cq
rm ¼ �Dq

mr: ð67Þ

Indeed, symmetrization and alternation yield

nCq
rm þ Cq

mr þ nCq
mr þ Cq

rm ¼ �nDq
mr � Dq

rm � nDq
rm � Dq

mr ð68Þ

and

nCq
rm þ Cq

mr � nCq
mr � Cq

rm ¼ �nDq
mr � Dq

rm þ nDq
rm þ Dq

mr; ð69Þ

hence, Cq
rm þ Cq

mr ¼ �Dq
mr � Dq

rm and Cq
rm � Cq

rm ¼ �Dq
mr þ Dq

rm. These equations
already imply (47). Thus,

Bpq
rvk ¼ Apq

rvk þ dpkC
q
rv � dqkC

p
mr: ð70Þ

Summarizing (65) and (70), we get

l ¼ Aijkdx
i ^ dx j ^ dxk þ Ap

rjkdy
r
p ^ dx j ^ dxk þ Ap

rmkdy
r
p ^ dymq ^ dxk

þ dpj Crkdy
r
p ^ dx j ^ dxk � dpkCrjdy

r
p ^ dx j ^ dxk

þ dpkC
q
rmdy

r
p ^ dymq ^ dxk � dqkC

p
mrdy

r
p ^ dymq ^ dxk

þ Apqr
rvsdy

r
p ^ dymq ^ dysr
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¼ Aijkdx
i ^ dx j ^ dxk þ Ap

rjkdy
r
p ^ dx j ^ dxk

þ Apq
rvkdy

r
p ^ dymq ^ dxk þ Apqr

rmsdy
r
p ^ dymq ^ dysr

þ Crkdy
r
p ^ dxp ^ dxk � Crjdy

r
p ^ dx j ^ dxp

þ Cq
rvdy

r
p ^ dymq ^ dxp � Cp

mrdy
r
p ^ dymq ^ dxq

¼ Aijkdx
i ^ dx j ^ dxk þ Ap

rjkdy
r
p ^ dx j ^ dxk

þ Apq
rvkdy

r
p ^ dymq ^ dxk þ Apqr

rvsdy
r
p ^ dymq ^ dysr

� 2Crkdx
r ^ dxk þ 2Cp

rmdx
r ^ dymp:

ð71Þ

Thus, applying formula (51) to any 3-form q on V1, we get the decomposition

q ¼ q1 þ q2 þ q0; ð72Þ

where q1 is generated by xr, that is, q1 ¼ xr ^ Ur, q2 is generated by the contact
2-forms dxr; q2 ¼ dxr ^Wr, where the 1-forms Wr do not contain any factor xm;
and q0 is traceless.

Example 2 (Transformation properties) Consider a 2-form on the 1-jet prolongation
J1Y , expressed in two fibered charts ðV ;wÞ, w ¼ ðxi; yrÞ, and ðV ;wÞ, w ¼ ðxi; yrÞ,
as

q ¼ q1 þ q2 þ q0 ¼ q1 þ q2 þ q0; ð73Þ

where according to Theorem 3,

q1 ¼ xr ^ Pr; q2 ¼ Qrdxr;

q0 ¼ Aijdx
i ^ dx j þ Ai

mjdy
m
i ^ dx j þ Aij

msdy
m
i ^ dysj ;

ð74Þ

and

q1 ¼ xr ^ Pr; q2 ¼ Qrdx
r;

q0 ¼ Aijdx
i ^ dx j þ A

i
mjdy

m
i ^ dx j þ A

il
msdy

m
i ^ dysl :

ð75Þ

We want to determine transformation formulas for the traceless components Aij
ms,

Ai
mj, and Aij. Transformation equations are of the form

xi ¼ xiðx jÞ; yr ¼ yrðx j; ymÞ; yrj ¼ @yr

@xl
þ @yr

@ym
yml

� �
@xl

@x j
; ð76Þ
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and imply

dymi ¼
@ymi
@xp

þ @ymi
@yj

yjp

� �
dxp þ @ymi

@yj
xj þ @ym

@yj
@xs

@xi
dyjs : ð77Þ

Then, a direct calculation yields

A
i
m
l
sdy

m
i ^ dysl ¼ A

i
m
l
s

@ymi
@xp

þ @ymi
@yj

yjp

� �
@ysl
@xq

þ @ysl
@yk

ykq

� �
dxp ^ dxq

þ A
i
m
l
s

@ymi
@xp

þ @ymi
@yj

yjp

� �
@ysl
@yk

dxp ^ xk

þ A
il
ms
@ymi
@yj

@ysl
@xp

þ @ysl
@yk

ykq

� �
xj ^ dxq

þ A
i
m
l
s

@ymi
@xp

þ @ymi
@yj

yjp

� �
@ys

@yk
@x j

@xl
dxp ^ dykj

þ A
i
m
l
s
@ym

@yj
@xs

@xi
@ysl
@xp

þ @ysl
@yk

ykq

� �
dyjs ^ dxq þ A

i
m
l
s
@ymi
@yj

@ysl
@yk

xj ^ xk

þ A
i
m
l
s
@ymi
@yj

@ys

@yk
@x j

@xl
xj ^ dykj þ A

i
m
l
s
@ym

@yj
@xs

@xi
@ysl
@yk

dyjs ^ xk

þ A
i
m
l
s
@ym

@yj
@xs

@xi
@ys

@yk
@x j

@xl
dyjs ^ dykj :

ð78Þ

Similarly,

A
i
mjdy

m
i ^ dx j ¼ A

i
mj
@x j

@xl
@ymi
@xp

þ @ymi
@yj

yjp

� �
dxp ^ dxl

þ A
i
mj
@x j

@xl
@ymi
@yj

xj ^ dxl þ A
i
mj
@x j

@xl
@ym

@yj
@xs

@xi
dyjs ^ dxl;

ð79Þ

and

Aijdx
i ^ dx j ¼ Aij

@xi

@xp
@x j

@xl
dxp ^ dxl: ð80Þ
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To determine the traceless components Aij
ms, Ai

mj, and Aij from the formulas
(78)–(80), respectively, we need the terms not containing xs; we get

A
i
m
l
s

@ymi
@xp

þ @ymi
@yj

yjp

� �
@ysl
@xq

þ @ysl
@yk

ykq

� �
dxp ^ dxq

þ A
i
m
l
s

@ymi
@xp

þ @ymi
@yj

yjp

� �
@ys

@yk
@x j

@xl
dxp ^ dykj

þ A
i
m
l
s
@ym

@yj
@xs

@xi
@ysl
@xp

þ @ysl
@yk

ykq

� �
dyjs ^ dxq

þ A
i
m
l
s
@ym

@yj
@xs

@xi
@ys

@yk
@x j

@xl
dyjs ^ dykj

þ A
i
mj
@x j

@xl
@ymi
@xp

þ @ymi
@yj

yjp

� �
dxp ^ dxl

þ A
i
mj
@x j

@xl
@ym

@yj
@xs

@xi
dyjs ^ dxl

þ Aij
@xi

@xp
@x j

@xl
dxp ^ dxl:

ð81Þ

Now, it is immediate that

Apq ¼ A
i
m
l
s

@ymi
@xp

þ @ymi
@yj

yjp

� �
@ysl
@xq

þ @ysl
@yk

ykq

� �

þ 1
2
A
i
mj

@x j

@xq
@ymi
@xp

þ @ymi
@yj

yjp

� �
� @x j

@xp
@ymi
@xq

þ @ymi
@yj

yjq

� �� �

þ Aij
@xi

@xp
@x j

@xq

ð82Þ

and

Asj
jk ¼

1
2
A
i
m
l
s

@ym

@yj
@xs

@xi
@ys

@yk
@x j

@xl
� @ym

@yk
@x j

@xi
@ys

@yj
@xs

@xl

� �
: ð83Þ

The remaining terms should determine As
jq as the traceless component of the

expression

� A
i
m
l
s

@ymi
@xq

þ @ymi
@yk

ykq

� �
@ys

@yj
@xs

@xl
þ A

i
m
l
s
@ym

@yj
@xs

@xi
@ysl
@xq

þ @ysl
@yk

ykq

� �

þ A
i
mj
@x j

@xq
@ym

@yj
@xs

@xi
:

ð84Þ
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Recall that the traceless component Wi
k of a general system Pi

k, indexed with one
contravariant and one covariant index, is defined by

Ws
q ¼ Ps

q �
1
n
dsqP; ð85Þ

where P ¼ Pj
j is the trace of P

i
k . To apply this definition, we first calculate the trace

of (84) in s and q. We get

� A
i
m
l
s

@ymi
@xs

þ @ymi
@yk

yks

� �
@ys

@yj
@xs

@xl
þ A

i
m
l
s
@ym

@yj
@xs

@xi
@ysl
@xs

þ @ysl
@yk

yks

� �

þ A
i
mj
@x j

@xs
@ym

@yj
@xs

@xi
:

ð86Þ

Now, we can determine the traceless component of (84). Since the resulting
expression must be equal to As

jq, we get the transformation formula

As
jq ¼ A

i
mj
@x j

@xq
@ym

@yj
@xs

@xi

� A
i
m
l
s

@ymi
@xq

þ @ymi
@yk

ykq

� �
@ys

@yj
@xs

@xl
þ A

i
m
l
s
@ym

@yj
@xs

@xi
@ysl
@xq

þ @ysl
@yk

ykq

� �

þ 1
n
dsqA

i
m
l
s

@ymi
@xm

þ @ymi
@yk

ykm

� �
@ys

@yj
@xm

@xl
� @ym

@yj
@xm

@xi
@ysl
@xm

þ @ysl
@yk

ykm

� �� � ð87Þ

as desired. It is straightforward to verify that the expression on the right-hand side is
traceless. This completes Example 2.

2.3 The Horizontalization

We extend the horizontalization Xr
1W 3 q ! hq 2 Xrþ1

1 W , introduced in Sect. 2.1,
to a morphism h: XrW ! Xrþ1W of exterior algebras.

Let q 2 Xr
qW be a q-form, where q� 1, Jrþ1

x c 2 Wrþ1 a point. Consider the

pullback ðprþ1;rÞ*q and the value ðprþ1;rÞ*qðJrþ1
x cÞðn1; n2; . . .; nqÞ on any tangent

vectors n1, n2, . . ., nq of Jrþ1Y at the point Jrþ1
x c. Decompose each of these vectors

into the horizontal and contact components,

Tprþ1 � nl ¼ hnl þ pnl; ð88Þ
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and set

hqðJrþ1
x cÞðn1; n2; . . .; nqÞ ¼ qðJrxcÞðhn1; hn2; . . .; hnqÞ: ð89Þ

This formula defines a q-form hq 2 Xrþ1
q W . This definition can be extended to 0-

forms (functions); we set for any function f : Wr ! R

hf ¼ ðprþ1;rÞ*f : ð90Þ

It follows from the properties of the decomposition (88) that the value
hqðJrþ1

x cÞðn1; n2; . . .; nqÞ vanishes whenever at least one of the vectors n1, n2, . . .,
nq is prþ1-vertical (cf. Sect. 1.5). Thus, the q-form hq is prþ1-horizontal. In par-
ticular, hq ¼ 0 whenever q� nþ 1. Sometimes hq is called the horizontal com-
ponent of q.

Formulas (89) and (90) define a mapping h: XrW ! Xrþ1W of exterior algebras,
called the horizontalization. The mapping h satisfies

hðq1 þ q1Þ ¼ hq1 þ hq1; hðfqÞ ¼ ðprþ1;rÞ*f � hq ð91Þ

for all q-forms q1, q1, and q and all functions f. In particular, restricting these
formulas to constant functions f, we see that the horizontalization h is linear over
the field of real numbers.

Theorem 5 The mapping h: XrW ! Xrþ1W is a morphism of exterior algebras.

Proof This assertion is a straightforward consequence of the definition of exterior
product and formula (89) for the horizontal component of a form q. Indeed,

hðq ^ gÞðJrþ1
x cÞðn1; n2; . . .; nq; npþ1; npþ2; . . .; npþqÞ

¼ ðq ^ gÞðJrxcÞðhn1; hn2; . . .; hnp; hnpþ1; hnpþ2; . . .; hnpþqÞ
¼
X
s

sgns�qðJrxcÞðhnsð1Þ; hnsð2Þ; . . .; hnsðpÞÞ

� gðJrxcÞðhnsðpþ1Þ; hnsðpþ2Þ; . . .; hnsðpþqÞÞ
¼
X
s

sgns�hqðJrxcÞðnsð1Þ; nsð2Þ; . . .; nsðpÞÞ

� hgðJrxcÞðnsðpþ1Þ; nsðpþ2Þ; . . .; nsðpþqÞÞ
¼ ðhqðJrþ1

x cÞ ^ hgðJrþ1
x cÞÞðn1; n2; . . .; nq; npþ1; npþ2; . . .; npþqÞ

ð92Þ
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(summation through all permutations s of the set f1; 2; . . .; p; pþ 1; . . .; pþ qg
such that sð1Þ\sð2Þ\ � � �\sðpÞ and sðpþ 1Þ\sðpþ 2Þ\ � � �\sðpþ qÞ). This
means, however, that

hðq ^ gÞ ¼ hq ^ hg: ð93Þ
h

The following theorem shows that the horizontalization is completely deter-
mined by its action on functions and their exterior derivatives.

Theorem 6 Let W be an open set in the fibered manifold Y. Then, the horizon-
talization XrW 3 q ! hq 2 Xrþ1W is a unique R-linear, exterior-product-pre-
serving mapping such that for any function f : Wr ! R, and any fibered chart
ðV ;wÞ, w ¼ ðyrÞ, with V � W ,

hf ¼ f � prþ1;r; hdf ¼ dif � dxi; ð94Þ

where

dif ¼ @f
@xi

þ
X

j1 � j2 � ��� � jk

@f
@yrj1j2...jk

yrj1j2...jk i: ð95Þ

Proof The proof that h, defined by (89) and (90), has the desired properties (94)
and (95), is standard. To prove uniqueness, note that (94) and (95) imply

hdxi ¼ dxi; hdyrj1j2...jk ¼ yrj1j2...jk idx
i: ð96Þ

It remains to check that any two mappings h1 and h2 satisfying the assumptions of
Theorem 6 that agree on functions and their exterior derivatives coincide. h

We determine the kernel and the image of the horizontalization h. The following
are elementary consequences of the definition.

Lemma 4

(a) A function f satisfies hf ¼ 0 if and only if f ¼ 0.
(b) If q� nþ 1, then every q-form q 2 Xr

qWsatisfies hq ¼ 0.
(c) Let 1� q� n, and let q 2 Xr

qW be a form. Then, hq ¼ 0 if and only if

Jrc*q ¼ 0 ð97Þ

for every Cr section c of Y defined on an open subset of W.
(d) If hq ¼ 0, then also the exterior derivative hdq ¼ 0.

2.3 The Horizontalization 55



Proof

(a) This is a mere restatement of the definition.
(b) This is an immediate consequence of the definition.
(c) Choose a section c of Y, a point x from the domain of definition of c and any

tangent vectors f1; f2; . . .; fq of X at x. Then,

Jrc*qðxÞðf1; f2; . . .; fqÞ
¼ qðJrxcÞðTxJrc � f1; TxJrc � f2; . . .; TxJrc � fqÞ:

ð98Þ

Since Tprþ1 is surjective, there exist tangent vectors nl to Jrþ1Y at Jrþ1
x c, such

that fl ¼ Tprþ1 � nl. For these tangent vectors,

Jrc*qðxÞðf1; f2; . . .; fqÞ
¼ qðJrxcÞðTxJrc � Tprþ1 � n1;TxJrc � Tprþ1 � n2; . . .;TxJrc � Tprþ1 � nqÞ:

ð99Þ

But hn ¼ TxJrc � Tprþ1 � n, and hence,

Jrc*qðxÞðf1; f2; . . .; fqÞ ¼ qðJrxcÞðhn1; hn2; . . .; hnqÞ
¼ hqðJrþ1

x cÞðn1; n2; . . .; nqÞ:
ð100Þ

This correspondence already proves assertion (a).
(d) This assertion (d) follows from (c). h

We are now in a position to complete the description of the kernel of the
horizontalization h for q-forms such that 1� q� n.

Theorem 7 Let W � Y be an open set, q 2 Xr
qW a form, and let ðV ;wÞ,

w ¼ ðxi; yrÞ, be a fibered chart such that V � W .

(a) Let q ¼ 1. Then, q satisfies hq ¼ 0 if and only if its chart expression is of the
form

q ¼
X

0� jJj � r�1

UJ
rx

r
J ð101Þ

for some functions Ur
J : V

r ! R:

(b) Let 2� q� n. Then, q satisfies hq ¼ 0 if and only if its chart expression is of
the form

q ¼
X

0� jJj � r�1

xr
J ^ UJ

r þ
X

jIj¼r�1

dxr
I ^WI

r; ð102Þ

where UJ
r (resp. WI

r) are some ðq� 1Þ-forms (resp. ðq� 2Þ-forms) on Vr:
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Proof Suppose that we have a contact q-form q onWr, where 1� q� n. Write as in
Sect. 2.2, Theorem 3, q ¼ q0 þ q0, where q0 is contact and q0 is traceless. But the
horizontalization h preserves exterior product and hq ¼ 0, so we get hq0 ¼ 0
because q0 is generated by the contact forms xr

J , dx
r
I , which satisfy hxr

J ¼ 0 and
hdxr

I ¼ 0. Now, using formula hdyrI ¼ yrIidx
i, we get, expressing q0 as in Sect. 2.2,

(53)

hq0 ¼ ðAi1i2...iq þ AI1
r1i2i3...iq y

r1
I1i1 þ AI1I2

r1r2i3i4...iq y
r1
I1i1y

r3
I2i2

þ � � � þ AI1I2
r1r2 . . .

Iq�1

rq�1iq y
r1
I1i1y

r3
I2i2 . . .y

rq�1

Iq�1iq�1

þ AI1I2
r1r2 . . .

Iq
rqy

r1
I1i1y

r3
I2i2 . . .y

rq
IqiqÞdxi1 ^ dxi2 ^ � � � ^ dxiq ;

ð103Þ

where jI1j; jI2j; . . .; jIq�1j ¼ r and the coefficients AI1
r1i2i3...iq ; A

I1I2
r1r2i3i4...iq ; . . .;

AI1I2
r1r2 . . .

Iq�1

rq�1 iq are traceless. Then,

Ai1i2...iq þ AI1
r1i2i3...iq y

r1
I1i1 þ AI1I2

r1r2i3i4...iqy
r1
I1i1y

r3
I2i2

þ � � � þ AI1I2
r1r2 . . .

Iq�1
rq�1 iqy

r1
I1i1y

r3
I2i2 . . .y

rq�1

Iq�1iq�1

þ AI1I2
r1r2 . . .

Iq
rqy

r1
I1i1y

r3
I2i2 . . .y

rq
Iqiq ¼ 0 Altði1i2. . .iqÞ:

ð104Þ

But the expressions on the left-hand sides of these equations are polynomial in the
variables yvK with jKj ¼ r þ 1, so the corresponding homogeneous components in

(104) must vanish separately. Then, we have Ai1i2...iq ¼ 0, AI1I2
r1r2 . . .

Iq
rq ¼ 0, and

AI1
r1i2i3...iqd

l1
i1 ¼ 0 Altði1i2. . .iqÞ SymðI1l1Þ;

AI1I2
r1r2i3i4...iqd

l1
i1d

l2
i2 ¼ 0 Altði1i2. . .iqÞ SymðI1l1Þ SymðI2l2Þ;

. . .

AI1I2
r1r2

. . .
Iq�1

rq�1iqd
l1
i1d

l2
i2 . . .d

lq�1

iq�1
¼ 0 Altði1i2. . .iqÞ SymðI1l1Þ

SymðI2l2Þ . . .SymðIq�1lq�1Þ:

ð105Þ

However, since the coefficients AI1
r1 i2i3...iq ;A

I1I2
r1r2i3i4...iq ; . . .;A

I1I2
r1r2

. . .
Iq�1

rq�1 iq are traceless,
they must vanish identically (see Appendix 9, Theorem 4). Thus, we have in (103)

Ai1i2...iq ¼ 0; AI1
r1i2i3...iq ¼ 0; AI1I2

r1r2i3i4...iq ¼ 0;

. . .; AI1I2
r1r2 . . .

Iq�1

rq�1iq ¼ 0; AI1I2
r1r2 . . .

Iq
rq ¼ 0

ð106Þ

and hence, hq0 ¼ 0. Thus q ¼ q0, and to close the proof, we just write this result for
q ¼ 1 and q[ 1 separately. h
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Corollary 1 If 0� q� n, then a q-form belongs to the kernel of the horizontal-
ization h if and only if it is a contact form.

Corollary 2 Let W � Y be an open set, q 2 Xr
qW a q-form such that 2� q� n,

and let ðV ;wÞ, w ¼ ðxi; yrÞ, be a fibered chart such that V � W. Then, the form q
satisfies the condition hq ¼ 0 if and only if its chart expression is of the form

q ¼
X

0� jJj � r�1

xr
J ^ UJ

r þ
X

jIj¼r�1

dðxr
I ^WI

rÞ; ð107Þ

where UJ
r are ðq� 1Þ-forms and WI

r are ðq� 2Þ-forms) on Vr, which do not
contain xr

J , 0� jJj � r � 1.

Proof We write (102) as

q ¼
X

0� jJj � r�1

xr
J ^ UJ

r �
X

jIj¼r�1

xr
I ^ dWI

r þ
X

0� jIj � r�1

dðxr
I ^WI

rÞ: ð108Þ

h

The image of the horizontalization h is characterized as follows.

Lemma 5 Let q 2 Xr
qW be a form.

(a) If q ¼ 0, then hq ¼ ðprþ1;rÞ*q:
(b) If 1� q� n, then

hq ¼ hq0: ð109Þ

(c) If q� nþ 1, then hq ¼ hq0 ¼ 0:

Proof This assertion is an immediate consequence of the definition of the hori-
zontalization h. h

2.4 The Canonical Decomposition

Beside the horizontalization of q-forms Xr
qW , introduced in Sects. 2.1 and 2.3, the

vector bundle morphism h: TJrþ1Y ! TJrY also induces a decomposition of the
modules of q-forms Xr

qW . Let q 2 Xr
qW be a q-form, where q� 1, Jrþ1

x c 2 Wrþ1 a

point. Consider the pullback ðprþ1;rÞ*q and the value ðprþ1;rÞ*qðJrþ1
x cÞ

ðn1; n2; . . .; nqÞ on any tangent vectors n1, n2, . . ., nq of Jrþ1Y at the point Jrþ1
x c.

Write for each l,

Tprþ1 � nl ¼ hnl þ pnl; ð110Þ
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and substitute these vectors in the pullback ðprþ1;rÞ*q. We get

ðprþ1;rÞ*qðJrþ1
x cÞðn1; n2; . . .; nqÞ

¼ qðJrxcÞðhn1 þ pn1; hn2 þ pn2; . . .; hnq þ pnqÞ:
ð111Þ

We study in this section, for each k ¼ 0; 1; 2; . . .; q, the summands on the right-
hand side, homogeneous of degree k in the contact components pnl of the vectors nl,
and describe the corresponding decomposition of the form ðprþ1;rÞ*q. Using
properties of q, we set

pkqðJrþ1
x cÞðn1; n2; . . .; nqÞ

¼
X

ej1j2...jk jkþ1...jqqðJrxcÞðpnj1 ; pnj2 ; . . .; pnjk ; hnjkþ1
; hnjkþ2

; . . .; hnjqÞ;
ð112Þ

where the summation is understood through all sequences j1\j2\ � � �\jk and
jkþ1\jkþ2\ � � �\jq. Equivalently, pkqðJrþ1

x cÞ can also be defined by

pkqðJrþ1
x cÞðn1; n2; . . .; nqÞ

¼ 1
k!ðq� kÞ! e

j1j2...jk jkþ1...jqqðJrxcÞðpnj1 ; pnj2 ; . . .; pnjk ; hnjkþ1
; . . .; hnjqÞ

ð113Þ

(summation through all values of the indices j1; j2; . . .; jk; jkþ1; . . .; jq).
Note that if k ¼ 0, then p0q coincides with the horizontal component of q,

defined in Sect. 2.1, (5),

p0q ¼ hq: ð114Þ

We also introduce the notation

pq ¼ p1qþ p2qþ � � � þ pqq: ð115Þ

These definitions can be extended to 0-forms (functions). Since for a function
f : Wr ! R, hf was defined to be ðprþ1;rÞ*f , we set

pf ¼ 0: ð116Þ

With this notation, any q-form q 2 Xr
qW , where q� 0, can be expressed as

ðprþ1;rÞ*q ¼ hqþ pq, or

ðprþ1;rÞ*q ¼ hqþ p1qþ p2qþ � � � þ pqq: ð117Þ

This formula will be referred to as the canonical decomposition of the form q
(however, the decomposition concerns rather the pullback ðprþ1;rÞ*q than q itself).
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Lemma 6 Let q� 1, and let q 2 Xr
qW be a q-form. In any fibered chart ðV ;wÞ,

w ¼ ðxi; yrÞ, such that V � W , pkq has a chart expression

pkq ¼
X

0� jJ1j;jJ2j;...;jJk j � r

PJ1J2
r1r2 . . .

Jk
rk ikþ1ikþ2...iqx

r1
J1 ^ xr2

J2 ^ � � � ^ xrk
Jk

^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxiq ;
ð118Þ

where the components PJ1J2
r1r2 . . .

Jk
rk ikþ1ikþ2...iq are real-valued functions on the set

Vr � Wr.

Proof We express the pullback ðprþ1;rÞ*q in the contact basis on Wrþ1. Write in a
fibered chart

q ¼ dxi ^ Ui þ
X

0\jJj\r�1

xr
J ^WJ

r þ
X
jIj¼r

dyrI ^HI
r ð119Þ

for some ðq� 1Þ-forms Ui, WJ
r, and HI

r. But dy
r
I ¼ xr

I þ yrIidx
i, and hence,

ðprþ1;rÞ*q ¼ dxi ^ ðprþ1;rÞ*Ui þ
X
jIj¼r

yrIiðprþ1;rÞ*HI
r

0
@

1
A

þ
X

0\jJj\r�1

xr
J ^ ðprþ1;rÞ*WJ

r þ
X
jIj¼r

xr
I ^ ðprþ1;rÞ*HI

r:

ð120Þ

Thus, the pullback ðprþ1;rÞ*q is generated by the form dxi, xr
I , where 0\jJj\r �

1 and xr
I , jIj ¼ r. The same decomposition can be applied to the ðq� 1Þ-forms Ui,

WJ
r, and HI

r. Consequently, ðprþ1;rÞ*q has an expression

ðprþ1;rÞ*q ¼ q0 þ q1 þ q2 þ � � � þ qq; ð121Þ

where

q0 ¼ Ai1i2...iqdx
i1 ^ dxi2 ^ � � � ^ dxiq ;

qk ¼
X

0� jJ1j;jJ2j;...;jJk j � r

BJ1J2
r1r2

. . .Jkrk ikþ1ikþ2...iqx
r1
J1 ^ xr2

J2 ^ � � � ^ xrk
Jk

^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxiq ; 1� k� q� 1;

qq ¼
X

0� jJ1j;jJ2j;...;jJqj � r

BJ1J2
r1r2

. . .
Jq
rqiqx

r1
J1 ^ xr3

J2 ^ � � � ^ xrq
Jq :

ð122Þ

Theorem 1, Sect. 2.1, implies that the decomposition (121) is invariant.
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We prove that qk ¼ pkq. It is sufficient to determine the chart expression of pkq.
Let n be a tangent vector,

n ¼ ni
@

@xi

� �
Jrþ1
x c

þ
Xrþ1

k¼0

X
j1 � j2 � ��� � jk

Nr
j1j2...jk

@

@yrj1j2...jk

 !
Jrþ1
x c

: ð123Þ

From Sect. 1.5, (62)

hn ¼ ni
@

@xi

� �
Jrxc
þ
Xr
k¼0

X
j1 � j2 � ��� � jk

yrj1j2...jk i
@

@yrj1j2...jk

 !
Jrxc

0
@

1
A; ð124Þ

and

pn ¼
Xr
k¼0

X
j1 � j2 � ��� � jk

ðNr
j1j2...jk � yrj1j2...jk in

iÞ @

@yrj1j2...jk

 !
Jrxc

: ð125Þ

If hn ¼ 0, then ni ¼ 0, and we have

pn ¼
Xr
k¼0

X
j1 � j2 � ��� � jk

Nr
j1j2...jk

@

@yrj1j2...jk

 !
Jrxc

: ð126Þ

If pn ¼ 0, then Nr
j1j2...jk ¼ yrj1j2...jk in

i, and hence,

hn ¼ ni
@

@xi

� �
Jrxc
þ
Xr
k¼0

X
j1 � j2 � ��� � jk

yrj1j2...jk i
@

@yrj1j2...jk

 !
Jrxc

0
@

1
A: ð127Þ

We substitute from these formulas to expression (112). Consider the expression
pkqðJrþ1

x cÞðn1; n2; . . .; nqÞ for n1; n2; . . .; nq such that hn1 ¼ 0; hn2 ¼ 0; . . .; hnk ¼
0 and pnkþ1 ¼ 0; pn2 ¼ 0; . . .; pnq ¼ 0. Then, (112) reduces to

pkqðJrþ1
x cÞðn1; n2; . . .; nqÞ

¼ qðJrxcÞðpn1; pn2; . . .; pnk; hnkþ1; hnkþ2; . . .; hnqÞ:
ð128Þ
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Writing

pnl ¼
Xr
k¼0

X
j1 � j2 � ��� � jk

ðlÞNr
j1j2...jk

@

@yrj1j2...jk

 !
Jrxc

; 1� l� k;

hnl ¼ ðlÞni
@

@xi

� �
Jrxc
þ
Xr
k¼0

X
j1 � j2 � ��� � jk

yrj1j2...jk i
@

@yrj1j2...jk

 !
Jrxc

0
@

1
A;

k þ 1� l� q;

ð129Þ

with l indexing the vectors nl, and substituting into (128), we get

pkqðJrþ1
x cÞðn1; n2; . . .; nk; nkþ1; nkþ2; . . .; nqÞ;

¼ CI1I2
r1r2 . . .

Ik
rk ikþ1ikþ2...iq

1Nr1
I1

2Nr2
I2 . . .

kNrk
Ik

kþ1nikþ1 kþ2nikþ2 . . .qniq :
ð130Þ

But

lNr
I ¼ xr

I ðJrþ1
x cÞ � nl; lni ¼ dxiðJrþ1

x cÞ � nl ð131Þ

Therefore, pkqðJrþ1
x cÞ must be of the form (118). h

Formula (118) implies that for any k� 1, the form pkq is contact; pkq is called
the k-contact component of the form q.

If ðprþ1;rÞ*q ¼ pkq or, equivalently, if pjq ¼ 0 for all j 6¼ k, then we say that q is
k-contact, and k is the degree of contactness of q. The degree of contactness of the
q-form q ¼ 0 is equal to k for every k ¼ 0; 1; 2; . . .; q. We say that q is of degree of
contactness � k, if p0q ¼ 0; p1q ¼ 0; . . .; pk�1q ¼ 0. If k ¼ 0, then the 0-contact
form p0q ¼ hq is prþ1;r-horizontal. The mapping Xr

qW 3 q ! hq 2 Xrþ1
q W is

called the horizontalization.
The following observation is immediate.

Lemma 7 If q� k[ n, then

hq ¼ 0;

p1q ¼ 0; p2q ¼ 0; . . .; pq�n�1 ¼ 0:
ð132Þ

Proof Expression qðJrxcÞðpnj1 ; pnj2 ; . . .; pnjk ; hnjkþ1
; hnjkþ2

; . . .; hnjqÞ in (113) is a
ðq� kÞ-linear function of vectors fjkþ1

¼ Tprþ1 � njkþ1
; fjkþ2

¼ Tprþ1 � njkþ2
; . . .; fjq

¼ Tprþ1 � njq , belonging to the tangent space TxX. Consequently, if
q� k[ n ¼ dimX, then the skew symmetry of the form pkqðJrþ1

x c implies
pkqðJrþ1

x cÞðn1; n2; . . .; nqÞ ¼ 0. h
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To complete the local description of the decomposition (117), we express the
components PJ1J2

r1r2
. . .Jkrk ikþ1ikþ2...iq (118) of the k-contact components pkq in terms of

the components of q.

Lemma 8 Let W be an open set in Y, q an integer, g 2 Xr
qW a form, and let ðV ;wÞ,

w ¼ ðxi; yrÞ, be a fibered chart on Y such that V � W. Assume that g has on Vr a
chart expression

g ¼
Xq
s¼0

1
s!ðq� sÞ!A

I1I2
r1r2 . . .

Is
rs isþ1isþ2...iqdy

r1
I1 ^ dyr2I2 ^ � � � ^ dyrsIs

^ dxisþ1 ^ dxisþ2 ^ � � � ^ dxiq ;

ð133Þ

with multi-indices I1; I2; . . .; Is of length r. Then, the k-contact component pkg of g
has on Vrþ1 a chart expression

pkg ¼ 1
k!ðq� kÞ!B

I1I1
r1r1

. . . Ikrk ikþ1ikþ2...iqx
r1
I1 ^ xr2

I2 ^ � � � ^ xrk
Ik

^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxiq ;
ð134Þ

where

BI1I2
r1r2 . . .

Ik
rk ikþ1ikþ2...iq

¼
Xq
s¼k

q� k
q� s
� �

AI1I2
r1r2 . . .

Ik
rk

Ikþ1
rkþ1

Ikþ2
rkþ2

. . .Isrs isþ1isþ2...iqy
rkþ1
Ikþ1ikþ1

yrkþ2
Ikþ2ikþ2

. . .yrsIsis

Altðikþ1ikþ2. . .isisþ1. . .iqÞ:

ð135Þ

Proof To derive the formula (134), we pullback the form g to Vrþ1 and express the
form ðprþ1;rÞ*W in terms of the contact basis; in the multi-index notation, the
transformation equations are

dxi ¼ dxi; dyrI ¼ xr
I þ yrIidx

i; jIj ¼ r ð136Þ

(Sect. 2.1, Theorem 1, (a)). Thus, we set in (133) dyrlIl ¼ xrl
Il þ yrlIl il dx

il and consider
the terms in (133) such that s� 1. Then, the pullback of the form dyr1I1 ^ dyr2I2 ^
� � � ^ dyrsIs by prþ1;r is equal to

ðxr1
I1 þ yr1I1i1dx

i1Þ ^ ðxr2
I2 þ yr2I2i2dx

i2Þ ^ � � � ^ ðxrs
Is þ yrsIsisdx

isÞ: ð137Þ

Collecting together all terms homogeneous of degree k in the contact 1-forms xrl
Il ,

we get s
k

� �
summands with exactly k entries the contact 1-forms xrl

Il . Thus, using

symmetry properties of the components AI1I1
r1r1 . . .

Is
rsisþ1isþ2...iq in (133) and
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interchanging multi-indices, we get the terms containing k entries xrl
Il , for fixed

s and each k ¼ 1; 2; . . .; s,

1
s!ðq� sÞ!

s
k

� �
AI1I2
r1r2

. . .Isrsisþ1isþ2...iqy
rkþ1
Ikþ1ikþ1

yrkþ2
Ikþ2ikþ2

. . .yrsIsisx
r1
I1 ^ xr2

I2 ^ � � � ^ xrk
Ik

^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxis ^ dxisþ1 ^ dxisþ2 ^ � � � ^ dxiq : ð138Þ

Writing the factor as

1
s!ðq� sÞ!

s
k

� �
¼ 1

k!ðq� kÞ!
q� k
q� s
� �

; ð139Þ

we can express (138) as

1
k!ðq� kÞ!

q� k
q� s
� �

AI1I2
r1r2 . . .

Is
rs isþ1isþ2...iqy

rkþ1
Ikþ1ikþ1

yrkþ2
Ikþ2ikþ2

. . .yrsIsisx
r1
I1 ^ xr2

I2

^ � � � ^ xrk
Ik ^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxis ^ dxisþ1 ^ dxisþ2 ^ � � � ^ dxiq :

ð140Þ

Formula (138) is valid for each s ¼ 1; 2; . . .; q and each k ¼ 1; 2; . . .; s and
includes summation through all these terms to get expression (133). The summation
through the pairs ðs; kÞ is given by the table

ð141Þ

It will be convenient to pass to the summation over the same written in the opposite
order. The summation through the pairs ðk; sÞ is expressed by the table

ð142Þ

Now, we can substitute from (140) back to (133). We have, with multi-indices of
length r,

g ¼ 1
q!
Ai1i2...iqdx

i1 ^ dxi2 ^ � � � ^ dxiq

þ
Xq
s¼1

Xs
k¼1

1
k!ðq� kÞ!

q� k
q� s
� �

AI1I2
r1r2

. . .Isrs isþ1isþ2...iqy
rkþ1
Ikþ1ikþ1

yrkþ2
Ikþ2ikþ2

. . .yrsIsis

� xr1
I1 ^ xr2

I2 ^ � � � ^ xrk
Ik ^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxis ^ dxisþ1 ^ � � � ^ dxiq

ð143Þ
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hence,

pkg ¼ 1
q!
Ai1i2...iqdx

i1 ^ dxi2 ^ � � � ^ dxiq

þ
Xq
k¼1

1
k!ðq� kÞ!

Xq
s¼k

q� k
q� s
� �

AI1I2
r1r2 . . .

Is
rs isþ1isþ2...iq y

rkþ1
Ikþ1ikþ1

yrkþ2
Ikþ2ikþ2

. . .yrsIsis

 !

� xr1
I1 ^ xr2

I2 ^ � � � ^ xrk
Ik ^ dxikþ1 ^ dxikþ2 ^ � � � ^ dxiq : ð144Þ

This proves the formulas (134) and (135). h

Remark 5 Formulas (133) and (134) are not invariant; the transformation properties
of the components are determined in Sect. 2.1, Theorem 1, (b).

Lemma 8 can now be easily extended to general q-forms. It is sufficient to
consider the case of q-forms generated by p-forms xm1

J1 ^ xm2
J2 ^ � � � ^ xmp

Jp with fixed
p, 1� p� q� p. The proof then consists in a formal application of Lemma 8.

Theorem 8 Let W be an open set in Y, q a positive integer, and q 2 Xr
qW a q-form,

and let ðV ;wÞ, w ¼ ðxi; yrÞ, be a fibered chart on Y such that V � W. Assume that
q has on Vr a chart expression

q ¼
Xq�p

s¼0

1
s!ðq� p� sÞ!A

J1J2
m1m2

. . .JpI1I2mpr1r2
. . .Isrs isþ1isþ2...iq�p

xm1
J1 ^ xm2

J2 ^ � � � ^ xmp
Jp

^ dyr1I1 ^ dyr2I2 ^ � � � ^ dyrsIs ^ dxisþ1 ^ dxisþ2 ^ � � � ^ dxiq�p ;

ð145Þ

with multi-indices J1; J2; . . .; Jp of length r � 1 and multi-indices I1; I2; . . .; Is of
length r. Then, the k-contact component pkq of q has on Vrþ1 the chart expression

pkq ¼ 1
ðk � pÞ!ðq� p� kÞ!B

J1J2
m1m2

. . .JpI1I1mpr1r1
. . .

Ik�p

rk�p ik�pþ1ik�pþ2...iq�p
xm1

J1 ^ xm2
J2

^ � � � ^ x
mp
Jp ^ xr1

I1 ^ xr2
I2 ^ � � � ^ x

rk�p

Ik�p
^ dxik�pþ1 ^ dxik�pþ2 ^ � � � ^ dxiq�p ;

ð146Þ

where

BJ1J2
m1m2 . . .

JpI1I1
mpr1r1 . . .

Ik�p

rk�p ik�pþ1ik�pþ2...iq�p

¼
Xq�p

s¼k�p

q� k
q� p� s
� �

AJ1J2
m1m2 . . .

JpI1I2
mpr1r2 . . .

Ik�pIk�pþ1Ik�pþ2
rk�prk�pþ1rk�pþ2

. . .Isrsisþ1isþ2...iq�p

� yrk�pþ1
Ik�pþ1ik�pþ1

yrk�pþ2
Ik�pþ2ik�pþ2

. . .yrsIsis Altðik�pþ1ik�pþ2. . .isisþ1. . .iq�pÞ:

ð147Þ
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Proof q can be expressed as

q ¼ xm1
J1 ^ xm2

J2 ^ � � � ^ xmp
Jp ^ gJ1J2m1m2 . . .

Jp
mp ; ð148Þ

where

gJ1J2m1m2 . . .
Jp
mp ¼

Xq�p

s¼0

1
s!ðq� p� sÞ!A

J1J2
m1m2 . . .

JpI1I2
mpr1r2 . . .

Is
rsisþ1isþ2...iq�p

^ dyr1I1 ^ dyr2I2 ^ � � � ^ dyrsIs ^ dxisþ1 ^ dxisþ2 ^ � � � ^ dxiq�p :

ð149Þ

We can apply to gJ1J2m1m2
. . .

Jp
mp formula (134). Replacing q with q� p and k with k � p,

pk�pg
J1J2
m1m2

. . .Jpmp ¼
1

ðk � pÞ!ðq� p� kÞ!B
J1J2
m1m2

. . .JpI1I1mpr1r1
. . .

Ik�p

rk�pik�pþ1ik�pþ2...iq�p

� xr1
I1 ^ xr2

I2 ^ � � � ^ xrk�p

Ik�p
^ dxik�pþ1 ^ dxik�pþ2 ^ � � � ^ dxiq�p ;

ð150Þ

where

BJ1J2
m1m2

. . .JpI1I1mpr1r1
. . .

Ik�p

rk�p ik�pþ1ik�pþ2...iq�p

¼
Xq�p

s¼k�p

q� k
q� p� s
� �

AJ1J2
m1m2

. . .JpI1I2mpr1r2
. . .Ik�pIk�pþ1Ik�pþ2

rk�prk�pþ1rk�pþ2
. . .Isrs isþ1isþ2...iq�p

� yrk�pþ1

Ik�pþ1ik�pþ1
yrk�pþ2

Ik�pþ2ik�pþ2
. . .yrsIsis Altðik�pþ1ik�pþ2. . .isisþ1. . .iq�pÞ:

ð151Þ

h

The following two corollaries are immediate consequences of Theorem 8 and
Sect. 2.1, Theorem 1. The first one shows that the operators pk behave like projector
operators in linear algebra. The second one is a consequence of the identity
dðprþ1;rÞ*q ¼ ðprþ1;rÞ*dq for the exterior derivative operator, the canonical
decomposition of forms on jet manifolds, applied to both sides, as well as the formula

dxm
J ¼ �xm

Jj ^ dx j: ð152Þ

Corollary 1 For any k and l,

pkplq ¼ ðprþ2;rþ1Þ*pkq; k ¼ l;
0; k 6¼ l:

	
ð153Þ

Corollary 2 For every k� 1,

ðprþ2;rþ1Þ*pkq ¼ pkdpk�1qþ pkdkq: ð154Þ
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Remark 6 According to Sect. 2.3, Theorem 5, the horizontalization h: XrW !
Xrþ1W is a morphism of exterior algebras. On the other hand, if k is a positive
integer, then the mapping pk: X

rW ! Xrþ1W satisfies

pkðqþ gÞ ¼ pkqþ pkg; pkðfqÞ ¼ ðf � prþ1;rÞpkq ð155Þ

for all q, g, and f. However, pk: X
rW ! Xrþ1W are not morphisms of exterior

algebras.

2.5 Contact Components and Geometric Operations

In this section, we summarize some properties of the contact components and the
differential-geometric operations acting on forms, such as the wedge product ^, the
contraction if of a form by a vector f, and the Lie derivative on by a vector field n.

Theorem 9 Let W be an open set in Y.

(a) For any two forms q and g on Wr � JrY ,

pkðq ^ gÞ ¼
X
iþj¼k

pkq ^ pkg: ð156Þ

(b) For any form q and any prþ1-vertical, prþ1;r-projectable vector field N on
Wrþ1, with prþ1;r-projection n,

iNpkq ¼ pk�1inq: ð157Þ

(c) For any form q and any automorphism a of Y, defined on W,

pkðJra*qÞ ¼ Jrþ1a*pkq: ð158Þ

(d) For any form q and any p-projectable vector field on Y on W

pkðoJrNqÞ ¼ oJrþ1Npkq: ð159Þ

Proof

(a) The exterior product ðprþ1;rÞ*ðq ^ gÞ commutes with the pullback, so we have
ðprþ1;rÞ*ðq ^ gÞ ¼ ðprþ1;rÞ*q ^ ðprþ1;rÞ*g. Applying the trace decomposition
formula (Sect. 2.2, Theorem 3) to ðprþ1;rÞ*q and ðprþ1;rÞ*g, and comparing the
k-contact components on both sides, we obtain formula (156).
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(b) To prove formula (157), we use the definition of the k-contact component of a
form (Sect. 2.4, (112)) and the identity pNðJrþ1

x cÞ ¼ nðJrxcÞ (Sect. 1.5,
Remark 2). Set n1 ¼ NðJrþ1

x cÞ. Then, hn1 ¼ 0 and pn1 ¼ nðJrxcÞ. By definition,
iNpkqðJrþ1

x cÞðn2; n3; . . .; nqÞ
¼ pkqðJrþ1

x cÞðNðJrþ1
x cÞ; n2; n3; . . .; nqÞ

¼ pkqðJrþ1
x cÞðn1; n2; n3; . . .; nqÞ

¼
X

ej1j2...jk jkþ1...jqqðJrxcÞðpnj1 ; pnj2 ; . . .; pnjk ; hnjkþ1
; hnjkþ2

; . . .; hnjqÞ

ð160Þ

with summation through the sequences j1\j2\ � � �\jk, jkþ1\jkþ2\ � � �\jq
(Sect. 2.4, (112)). On the other hand,

pk�1inqðJrþ1
x cÞðn2; n3; . . .; nqÞ

¼
X

ei2i3...ik ikþ1...jq inqðJrxcÞðpni2 ; pni3 ; . . .; pnik ; hnikþ1
; hnikþ2

; . . .; hniqÞ
¼
X

ei2i3...ik ikþ1...jqqðJrxcÞðpn1; pni2 ; pni3 ; . . .; pnik ; hnikþ1
; hnikþ2

; . . .; hniqÞ
ð161Þ

(summation through i2\i3\ � � �\ik , ikþ1\ikþ2\ � � �\iq). Since hn1 ¼ 0,
the summation in (161) can be extended to the sequences 1\i2\i3\ � � �\ik
and 1\ikþ1\ikþ2\ � � �\iq, and therefore, (161) coincides with (160).

(c) Formula (158) follows from the commutativity of the r-jet prolongation of
automorphisms of the fibered manifold Y and the canonical jet projections,
ðprþ1;rÞ*Jra*q ¼ Jr�1a*ðprþ1;rÞ*q, and from the property of the contact 1-
forms xm

i1i2...ip

Jra*xr
j1j2...jk ¼

X
i\i2\���\ip

@ðyrj1j2...jk � JraÞ
@ymi1i2...ip

xm
i1i2...ip ð162Þ

(Sect. 2.1, Theorem 1, (c)).
(d) Formula (159) is an immediate consequence of (162). h

Remark 7 If k ¼ 0, (156) reduces to the condition hðq ^ gÞ ¼ hðqÞ ^ hðgÞ, stating
that h is a homomorphism of exterior algebras (Sect. 2.3, Theorem 5).

2.6 Strongly Contact Forms

Let q 2 Xr
qW be a q-form such that nþ 1� q� dim JrY . Since hq ¼ 0 and also

p1q ¼ 0; p2q ¼ 0; . . .; pq�n�1q ¼ 0 (Sect. 2.4, Theorem 8), q is always contact, and
its canonical decomposition has the form
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ðprþ1;rÞ*q ¼ pq�nqþ pq�nþ1qþ � � � þ pqq: ð163Þ

We introduce by induction a class of q-forms, imposing a condition on the contact
component pq�nq. If q ¼ nþ 1, then we say that q is strongly contact, if for every
point y0 2 W there exist a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, at y0 and a contact n-
form s, defined on Vr, such that

p1ðq� dsÞ ¼ 0: ð164Þ

If q[ nþ 1, then we say that q is strongly contact, if for every y0 2 W there exist
ðV ;wÞ, w ¼ ðxi; yrÞ, at y0 and a strongly contact n-form s, defined on Vr, such that

pq�nðq� dsÞ ¼ 0: ð165Þ

Lemma 9 The following conditions are equivalent:

(a) q is strongly contact.
(b) There exist a q-form g and a ðq� 1Þ-form s such that

q ¼ gþ ds; pq�ng ¼ 0; pq�n�1s ¼ 0: ð166Þ

Proof If q is strongly contact and we have s such that (165) holds, then we set
g ¼ q� ds. The converse is obvious. h

In view of part (b) of Lemma 9, to study the properties of strongly contact forms,
we need the chart expressions of the q-forms pq�nq and pq�n�1s ¼ 0. We also need,
in particular, the chart expressions of the forms q whose ðq� nÞ-contact component
vanishes,

pq�nq ¼ 0: ð167Þ

To this purpose, we use the contact basis. The formulas as well as the proof the
subsequent theorem are based on the complete trace decomposition theory and are
technically tedious because we cannot avoid extensive index notation. We write

q ¼
X

AJ1J2
m1m2

. . .JpIpþ1Ipþ2
mprpþ1rpþ2

. . .
Ipþs

rpþs ipþsþ1ipþsþ2...iqx
m1
J1 ^ xm2

J2 ^ � � � ^ xmp
Jp

^ dyrpþ1

Ipþ1
^ dyrpþ2

Ipþ2
^ � � � ^ dyrpþs

Ipþs
^ dxipþsþ1 ^ dxipþsþ2 ^ � � � ^ dxiq ;

ð168Þ

where summation is taking place through the multi-indices J1; J2; . . .; Jp of length less
or equal to r � 1 and the multi-indices Ipþ1; Ipþ2; . . .; Ipþs of length equal to r.
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Applying the trace decomposition theorem (Appendix 9, Theorem 1) as many times as
necessary, we can write

q ¼
X

BJ1J2
m1m2 . . .

JlKlþ1Klþ2
mljlþ1jlþ2

. . .KlþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþsilþpþsþ1ilþpþsþ2...iQ

� xm1
J1 ^ xm2

J2 ^ � � � ^ xml
Jl ^ dxjlþ1

Klþ1
^ dxjlþ2

Klþ2
^ � � � ^ dxjlþp

Klþp

^ dyrlþpþ1
Ilþpþ1

^ dyrlþpþ2
Ilþpþ2

^ � � � ^ dyrlþpþs

Ilþpþs

^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ ;

ð169Þ

where

0� J1j j; J2j j; . . .; Jlj j � r � 1;
Klþ1j j; Klþ2j j; . . .; Klþp



 

 ¼ r � 1;
Ilþpþ1


 

; Ilþpþ2



 

; . . .; Ilþpþs



 

 ¼ r;
ð170Þ

and the coefficients are traceless. The number Q in (169) is not the degree of q; it is
related to the degree q by lþ 2pþ sþ Q� l� p� s ¼ q, that is,

pþ Q ¼ q: ð171Þ

Theorem 10 Let W � Y be an open set, q an integer such that
nþ 1� q� dim JrY, and g 2 Xr

qW a form, and let ðV ;wÞ, w ¼ ðxi; yrÞ, be a
fibered chart such that V � W. Then, pq�ng ¼ 0 if and only if

g ¼
X

q�nþ1� lþp

xr1
J1 ^ xr2

J2 ^ � � � ^ xrl
Jl ^ dxm1

I1 ^ dxm2
I2 ^ � � � ^ dxmp

Ip

^ UJ1J2
r1r2 . . .

JlI1I2
rlm1m2 . . .

Ip
mp ;

ð172Þ

where UJ1J2
r1r2 . . .

JlI1I2
rlm1m2 . . .

Ip
mp are some ðq� l� 2pÞ-forms on Vr and the multi-indices

satisfy 0� jJ1j; jJ2j; . . .; jJlj � r � 1, jI1j; jI2j; . . .; jIpj ¼ r � 1.

Proof Expression (169) for g can be written as Vrþ1, where

g0 ¼
X

lþp� q�n

BJ1J2
m11m2

. . .JlKlþ1Klþ2
mljlþ1jlþ2

. . .KlþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþsilþpþsþ1ilþpþsþ2...iQ

� xm1
J1 ^ xm2

J2 ^ � � � ^ xml
Jl ^ dxjlþ1

Klþ1
^ dxKlþ2

jlþ2
^ � � � ^ dxKlþp

jlþp

^ dyrlþpþ1

Ilþpþ1
^ dyrlþpþ2

Ilþpþ2
^ � � � ^ dyrlþpþs

Ilþpþs
^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ

ð173Þ
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and

g1 ¼
X

lþp\q�n

BJ1J2
m11m2

. . .JlKlþ1Klþ2
mljlþ1jlþ2

. . .KlþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþsilþpþsþ1ilþpþsþ2...iQ

� xm1
J1 ^ xm2

J2 ^ � � � ^ xml
Jl ^ dxjlþ1

Klþ1
^ dxKlþ2

jlþ2
^ � � � ^ dxKlþp

jlþp

^ dyrlþpþ1

Ilþpþ1
^ dyrlþpþ2

Ilþpþ2
^ � � � ^ dyrlþpþs

Ilþpþs
^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ :

ð174Þ

We want to show that the condition pq�ng ¼ 0 implies g1 ¼ 0.
To determine pq�ng1, we need the pullback ðprþ1;rÞ*g1; this can be obtained by

replacing dyrI with

dyrI ¼ xr
I þ yrIidx

i: ð175Þ

Then, the corresponding expressions on the right-hand side of the formula (174)
arise by substitution

dyrlþpþ1

Ilþpþ1
^ dyrlþpþ2

Ilþpþ2
^ � � � ^ dyrlþpþs

Ilþpþs

¼ x
rlþpþ1
Ilþpþ1

þ yrlþpþ1
Ilþpþ1ilþpþ1

dxilþpþ1

� �
^ x

rlþpþ2
Ilþpþ2

þ yrlþpþ2
Ilþpþ2ilþpþ2

dxilþpþ2

� �
^ � � � ^ x

rlþpþs

Ilþpþs
þ yrlþpþs

Ilþpþsilþpþs
dxilþpþs

� �
:

ð176Þ

Computing the right-hand side, we obtain

dyrlþpþ1

Ilþpþ1
^ dyrlþpþ2

Ilþpþ2
^ � � � ^ dyrlþpþs

Ilþpþs
¼ xrlþpþ1

Ilþpþ1
^ xrlþpþ2

Ilþpþ2
^ � � � ^ xrlþpþs

Ilþpþs

þ syrlþpþs

Ilþpþsilþpþs
xrlþpþ1

Ilþpþ1
^ xrlþpþ2

Ilþpþ2
^ � � � ^ xrlþpþs�1

Ilþpþs�1
^ dxilþpþs

þ s
2

� �
yrlþpþs�1

Ilþpþs�1ilþpþs�1
yrlþpþs

Ilþpþsilþpþs
xrlþpþ1

Ilþpþ1
^ xrlþpþ2

Ilþpþ2

^ � � � ^ xrlþpþs�2

lþpþs�2 ^ dxilþpþs�1 ^ dxilþpþs

þ � � � þ syrlþpþ2

Ilþpþ2ilþpþ2
. . .yrlþpþs�1

Ilþpþs�1ilþpþs�1
yrlþpþs

Ilþpþsilþpþs
xrlþpþ1

Ilþpþ1

^ dxilþpþ2 ^ � � � ^ dxilþpþs�1 ^ dxilþpþs

þ yrlþpþ1

Ilþpþ1ilþpþ1
. . .yrlþpþs�1

Ilþpþs�1ilþpþs�1
yrlþpþs

Ilþpþsilþpþs
dxilþpþ1 ^ � � � ^ dxilþpþs�1 ^ dxilþpþs :

ð177Þ

Now, consider a fixed summand in expression (174), with given l, p, and s,

BJ1J2
m11m2 . . .

JlKlþ1Klþ2
mljlþ1jlþ2

. . .KkþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþsilþpþsþ1ilþpþsþ2...iQ

� xm1
J1 ^ xm2

J2 ^ � � � ^ xml
Jl ^ dxjlþ1

Klþ1
^ dxjlþ2

Klþ2
^ � � � ^ dxjlþp

Klþp

^ xrlþpþ1

Ilþpþ1
^ xrlþpþ2

Ilþpþ2
^ � � � ^ xrlþpþs

Ilþpþs
^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ :

ð178Þ
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Using (178), we get the terms

sBJ1J2
m11m2

. . .JlKlþ1Klþ2
mljlþ1jlþ2

. . .KkþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþsilþpþsþ1ilþpþsþ2...iQ

� yrlþpþs

Ilþpþsilþpþs
xm1

J1 ^ xm2
J2 ^ � � � ^ xml

Jl ^ dxjlþ1
Klþ1

^ dxjlþ2
Klþ2

^ � � � ^ dxjlþp

Klþp

^ x
rlþpþ1

Ilþpþ1
^ x

rlþpþ2

Ilþpþ2
^ � � � ^ x

rlþpþs�1

Ilþpþs�1

^ dxilþpþs ^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ ;
s
2

� �
BJ1J2
m11m2 . . .

JlKlþ1Klþ2
mljlþ1jlþ2

. . .KkþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþs ilþpþsþ1ilþpþsþ2...iQ

� yrlþpþs�1

Ilþpþs�1ilþpþs�1
yrlþpþs

Ilþpþsilþpþs
xm1

J1 ^ xm2
J2 ^ � � � ^ xml

Jl

^ dxjlþ1
Klþ1

^ dxjlþ2
Klþ2

^ � � � ^ dxjlþp

Klþp
^ x

rlþpþ1

Ilþpþ1
^ x

rlþpþ2

Ilþpþ2

^ � � � ^ x
rlþpþs�2

lþpþs�2 ^ dxilþpþs�1 ^ dxilþpþs ^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ ;

. . .

sBJ1J2
m11m2 . . .

JlKlþ1Klþ2
mljlþ1jlþ2

. . .KkþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþs ilþpþsþ1ilþpþsþ2...iQ

� yrlþpþ2

Ilþpþ2ilþpþ2
. . .yrlþpþs�1

Ilþpþs�1ilþpþs�1
yrlþpþs

Ilþpþsilþpþs
xm1

J1 ^ xm2
J2 ^ � � � ^ xml

Jl

^ dxjlþ1
Klþ1

^ dxjlþ2
Klþ2

^ � � � ^ dxjlþp

Klþp
^ x

rlþpþ1

Ilþpþ1

^ dxilþpþ2 ^ � � � ^ dxilþpþs�1 ^ dxilþpþs ^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ ;

ð179Þ

and

BJ1J2
m11m2 . . .

JlKlþ1Klþ2
mljlþ1jlþ2

. . .KkþpIlþpþ1Ilþpþ2
jlþprlþpþ1rlþpþ2

. . .
Ilþpþs

rlþpþsilþpþsþ1ilþpþsþ2...iQ

� yrlþpþ1
Ilþpþ1ilþpþ1

. . .yrlþpþs�1
Ilþpþs�1ilþpþs�1

yrlþpþs

Ilþpþsilþpþs
xm1

J1 ^ xm2
J2 ^ � � � ^ xml

Jl

^ dxjlþ1
Klþ1

^ dxjlþ2
Klþ2

^ � � � ^ dxjlþp

Klþp
^ dxilþpþ1 ^ � � � ^ dxilþpþs�1 ^ dxilþpþs

^ dxilþpþsþ1 ^ dxilþpþsþ2 ^ � � � ^ dxiQ :

ð180Þ

We see that the degrees of contactness of these terms are

lþ pþ s[ lþ pþ s� 1[ lþ pþ s� 2[ � � � [ lþ pþ 1[ lþ p; ð181Þ

respectively. Clearly, since we consider the terms where lþ p\q� n, (180) does
not contribute to pq�ng1. We claim that among the terms (178), there is one whose
degree of contactness is q� n. Suppose the opposite; then lþ pþ s\q� n, but
this is not possible, because the term satisfying this inequality would contain more
than n factors dxi.

Thus, the condition p1g1 ¼ 0 applies to one of the expressions (179) and states
that the coefficient in this expression vanishes. But the components of g1 are
traceless, and we have already seen that this is only possible when they also vanish.
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This implies in turn that the forms on the left of (179) all vanish, which proves that
g1 ¼ 0. The proof is complete. h

Corollary 1 Let W � Y be an open set, q an integer such that
nþ 1� q� dim JrY, and g 2 Xr

qW a form, and let ðV ;wÞ, w ¼ ðxi; yrÞ, be a
fibered chart such that V � W. Then, pq�ng ¼ 0 if and only if

g ¼ g0 þ dl; ð182Þ

where g0 and l are xr
J -generated, 0� jIj � r � 1, such that pq�ng0 ¼ 0 and

pq�n�1l ¼ 0.

Proof Write in Theorem 10 g ¼ g0 þ g0, where g0 includes all xr
J -generated terms,

defined by the condition l� 1, and

g0 ¼
X

q�nþ1� p

dxm1
I1 ^ dxm2

I2 ^ � � � ^ dxmp
Ip ^ UJ1J2

r1r2
. . .JlI1I2rlm1m2

. . .Ipmp

¼
X

q�nþ1� p

dðxm1
I1 ^ dxm2

I2 ^ � � � ^ dxmp
Ip ^ UJ1J2

r1r2
. . .JlI1I2rlm1m2

. . .IpmpÞ

þ
X

q�nþ1� p

xm1
I1 ^ dxm2

I2 ^ � � � ^ dxmp
Ip ^ dðUJ1J2

r1r2
. . .JlI1I2rlm1m2

. . .IpmpÞ:

ð183Þ

Thus, g can also be written as g ¼ g0 þ dl, where g0 is x
r
J -generated, and l is also

xr
J -generated and contains p contact factors xr

J and dxm
I ; in particular,

pq�n�1l ¼ 0. h

Remark 8 Note that the summation in Theorem 10 through the pairs ðl; pÞ can also
be defined by the inequality q� nþ 1� p� l� q� 2p, where the range of p is
given by the conditions p ¼ 0; 1; 2; . . . and q� 2p� 0.

Lemma 10

(a) If q is a strongly contact form such that q� nþ 2, then for any p-vertical
vector field N, the form iJrNq is strongly contact.

(b) The exterior derivative of a strongly contact form is strongly contact.

Proof

(a) We have iJrNq ¼ iJrNgþ iJrNds ¼ iJrNgþ oJrNs� diJrNs. But by Sect. 2.5,
Theorem 9 pq�n�1ðiJrNgþ oJrNsÞ ¼ iJrþ1Npq�ngþ oJrþ1Npq�n�1s and pq�n�2iJrNs
¼ iJrþ1Npq�n�1s; however, these expressions vanish because q is strongly
contact. Now, we apply Lemma 9.

(b) Let the form q be strongly contact. Then, from (166), dq ¼ dg, where
pq�ng ¼ 0. We want to show that to any point y0 from the domain of definition
of q, there exists a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, at y0 and a q-form s,
defined on Vr, such that pqþ1�nðdq� dsÞ ¼ 0 and pq�ns ¼ 0. Taking s ¼ g,
we get the result.
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For nþ 1� q� dim JrY , strongly contact forms constitute an Abelian subgroup
Hr

qW of the Abelian group of q-forms Xr
qW ; they do not form a submodule of Xr

qW .
It follows from Lemma 10, (b) that the subgroups Hr

qW together with the exterior
derivative operator define a sequence

Hr
nW ! Hr

nþ1W ! � � � ! Hr
MW ! 0: ð184Þ

The number M labeling the last nonzero term in this sequence is

M ¼ m nþ r � 1
n

� �
þ 2n� 1: ð185Þ

h

Remark 9 If nþ 1� q� dim JrY , then by Lemma 1, the canonical decomposition
of a contact form q 2 Hr

qW is

ðprþ1;rÞ*q ¼ pq�ndsþ pq�nþ1qþ pq�nþ2qþ � � � þ pqq: ð186Þ

Remark 10 It is easily seen that the definition of a contact q-form q 2 Xr
qW for

1� q� n agrees with (165). Indeed, if 1� q� n, we have for any contact form
q0 2 Hr

q�1W , hðq� dq0Þ ¼ hq as ðprþ1Þ*hdq0 ¼ hdhq0 ¼ 0 (Corollary 2). Thus, if
hq ¼ 0, then hðq� dq0Þ ¼ 0 for any q0 2 Hr

q�1W .

2.7 Fibered Homotopy Operators on Jet Prolongations
of Fibered Manifolds

In this section, we introduce the fibered homotopy operators for differential forms
on jet prolongations of fibered manifolds. We study their relations with the
canonical decomposition of forms and the exactness problem for contact and
strongly contact forms. The general theory of fibered homotopy operators is sum-
marized in Appendix 6.

The relevant underlying structure we need is a trivial fibered manifold
W ¼ U � V , where U is an open set in Rn and V an open ball in Rm with center at
the origin; the projection is the first Cartesian projection of U � V onto U, denoted
by p. The r-jet prolongation JrW is also denoted by Wr. By definition

Wr ¼ U � V � LðRn;RmÞ � L2symðRn;RmÞ � � � � � LrsymðRn;RmÞ; ð187Þ

where LksymðRn;RmÞ is the vector space of k-linear symmetric mappings from Rn to

Rm. The canonical coordinates on W are denoted by ðxi; yrÞ, and the associated
coordinates on Wr are ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jr Þ. Any Cartesian projections
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pr;s: Wr ! Ws, with 0� s\r, define in an obvious way a homotopy vr;s and the
fibered homotopy operator Ir;s (see Appendix 6, (27)), so the Volterra-Poincare
lemma holds in these cases.

In this section, we consider the fibered homotopy operator I ¼ Ir;0. Recall that
the homotopy v ¼ vr;s is a mapping from ½0; 1	 �Wr to Wr, defined by

vðs; ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞÞ ¼ ðxi; syr; syrj1 ; syrj1j2 ; . . .; syrj1j2...jr Þ: ð188Þ

It is immediately verified that the pullback by v satisfies

v*dxi ¼ dxi; v*dyrj1j2...jk ¼ yrj1j2...jk dsþ sdyrj1j2...jk ;

v*xr
j1j2...jk ¼ yrj1j2...jk dsþ sxr

j1j2...jk :
ð189Þ

In accordance with the general theory, these formulas lead to explicit description of
the operator I. For any q-form q on Wr, v*q has a unique decomposition

v*q ¼ ds ^ qð0ÞðsÞ þ q0ðsÞ ð190Þ

such that the ðq� 1Þ-form qð0ÞðsÞ and the q-form q0ðsÞ do not contain ds. Then,

Iq ¼
Z1
0

qð0ÞðsÞ; ð191Þ

where the expression on the right-hand side denotes the integration of the coeffi-
cients in the form qð0ÞðsÞ over s from 0 to 1.

The following is a version of a general theorem on fibered homotopy operators
on fibered manifolds. f stands for the zero section of Wr over U.

Theorem 11

(a) For every differentiable function f : Wr ! R,

f ¼ Idf þ ðprÞ*f*f : ð192Þ

(b) Let q� 1. Then, for every differential q-form q on Wr,

q ¼ Idqþ dIqþ ðprÞ*f*q: ð193Þ

Proof Slight modification of Theorem 1, Appendix 6. h
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Theorem 12 Let q be a contact q-form on Wr.

(a) The contact components of q satisfy

Ihq ¼ 0; Ipkq ¼ pk�1Iq; 1� k� q: ð194Þ

(b) If q is strongly contact, then Iq is strongly contact.

Proof

(a) Expressing the forms q and ðprþ1;rÞ*q in the basis of 1-forms ðdxi; dyrJ Þ,
0� jJj � r, we have

ðprþ1;rÞ*Iq ¼ Iðprþ1;rÞ*q: ð195Þ

The canonical decomposition of the form q yields

ðprþ1;rÞ*Iq ¼ Iðprþ1;rÞ*q ¼ I
X

0� l� q

plq

 !
¼
X

0� l� q

Iplq: ð196Þ

But by (191), Iplq is ðl� 1Þ-contact; thus, applying pk to both sides of (195)
and comparing k-contact components, we get (194).

(b) Let q� nþ 1 and suppose we have a strongly contact q-form q on Wr. Then,
q ¼ gþ ds for some q-form g and ðq� 1Þ-form s such that pq�ng ¼ 0 and
pq�n�1s ¼ 0; hence, Iq ¼ Igþ Ids ¼ Igþ s� dIs� s0, where s0 is a
ðq� 1Þ-form on U. If q[ nþ 1, then always s0 ¼ 0. If q ¼ nþ 1, then
always ds0 ¼ 0, and we may replace s with s� s0; then, Iq ¼ Igþ s� dIs.
The ðq� 1Þ-form Igþ s satisfies

pq�n�1ðIgþ sÞ ¼ Ipq�ngþ pq�n�1s ¼ pq�n�1s ¼ 0: ð197Þ

If q� nþ 2, then q� n� 2� 0 and pq�n�2Is ¼ Ipq�n�1s ¼ 0; consequently,
Iq is strongly contact. If q ¼ nþ 1, then from (195), hs ¼ 0 as required. h

Corollary 1 (The fibered Volterra–Poincare lemma) If dq ¼ 0, then there exists a
ðq� 1Þ-form g such that q ¼ dg.

The following two theorems extend the fibered Volterra-Poincare lemma to
contact and strongly contact forms. Their proofs are based on the trace decompo-
sition theorem (Sect. 2.2, Theorem 3), Appendix 9, Theorem 4, and on the fibered
Volterra-Poincare lemma.

Theorem 13 Let 1� q� n and let q be a contact q-form such that dq ¼ 0. Then
q ¼ dg for some contact ðq� 1Þ-form g.
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Proof

1. Let q be a contact 1-form, expressed as

q ¼
X

0� jJj � r�1

UJ
mx

m
J : ð198Þ

Then,

dq ¼
X

0� jJj � r�1

ðdUJ
m ^ xm

J � UJ
mdy

m
Jj ^ dx jÞ: ð199Þ

Condition dq ¼ 0 implies, for jJj ¼ r � 1, UJ
md

k
j ¼ 0 SymðJkÞ, and the trace

operation yields, up to the factor ðnþ r � 1Þ=r,

UJ
m ¼ 0: ð200Þ

Thus, q must be of the form

q ¼
X

0� jJj � r�2

UJ
mx

m
J : ð201Þ

Repeating the same procedure, we get q ¼ 0.

2. Let 2� q� n. We show in several steps that if q is a contact q-form such that
dq ¼ 0, then there exist a contact q-form s and a contact ðq� 1Þ-form j such
that

q ¼ sþ dj; p1s ¼ 0: ð202Þ

First, we find a decomposition

q ¼ q0 þ s0 þ dj0; ð203Þ

with the following properties:

(a) q0 is generated by the forms xr
J such that 0� jJj � r � 1,

q0 ¼
X

0� jJj � r�2

xr
J ^ UJ

r þ
X

jJj¼r�1

xr
J ^ DJ

r; ð204Þ

where the ðq� 1Þ-forms DJ
r are traceless.

(b) s0 is generated by xr
J ^ xm

I and xr
J ^ dxm

L, where jJj ¼ r � 1,
0� jIj � r � 1, jLj ¼ r � 1.

(c) j0 is a contact ðq� 1Þ-form.
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Expressing q as in Sect. 2.3, Corollary 2, we have

q ¼
X

0� jJj � r�2

xr
J ^ UJ

r þ
X

jJj¼r�1

xr
J ^ UJ

r þ dj0; ð205Þ

where j0 is a contact ðq� 1Þ-form. Decompose the ðq� 1Þ-forms UJ
m , indexed

with multi-indices J of length r � 1, by the trace operation. We get a
decomposition

UJ
m ¼ DJ

m þ ZJ
m ; ð206Þ

where the expression DJ
m is the traceless and ZJ

m is the contact component. Then,

q ¼
X

0� jJj � r�2

xr
J ^ UJ

r þ
X

jJj¼r�1

xr
J ^ DJ

r þ
X

jJj¼r�1

xr
J ^ ZJ

r þ dj0: ð207Þ

Setting

q0 ¼
X

0� jJj � r�2

xr
J ^ UJ

r þ
X

jJj¼r�1

xr
J ^ DJ

r;

s0 ¼
X

jJj¼r�1

xr
J ^ ZJ

r;
ð208Þ

we get (203).
Second, we show that q has a decomposition

q ¼ q1 þ s1 þ dj1 ð209Þ

with the following properties:

(a) The form q1 is generated by the contact forms xr
J , such that

0� jJj � r � 2, that is,

q1 ¼
X

0� jJj � r�3

xr
J ^ UJ

r þ
X

jJj¼r�2

xr
J ^ DJ

r; ð210Þ

where the ðq� 1Þ-forms DJ
r are traceless.

(b) s1 is generated by xr
J ^ xm

I and xr
J ^ dxm

L, where jJj ¼ r � 1,
0� jIj � r � 1, jLj ¼ r � 1.

(c) j1 is a contact ðq� 1Þ-form.
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Indeed, we apply condition dq ¼ 0 to expression (203). We have, since
dxr

J ¼ �dyrJj ^ dx j,X
0� jJj � r�2

dðxr
J ^ UJ

rÞ

�
X

jJj¼r�1

ðdyrJj ^ dx j ^ DJ
r þ xr

J ^ dDJ
rÞ þ ds0 ¼ 0:

ð211Þ

But the terms dymJj ^ dx j ^ DJ
m in this expression do not contain any form xm

J or
dxm

J and must vanish separately. Thus,X
jJj¼r�1

dymJj ^ dx j ^ DJ
m ¼ 0: ð212Þ

The 1-contact component givesX
jJj¼r�1

xm
Jj ^ hðdx j ^ DJ

mÞ ¼ 0 ð213Þ

hence

hðdx j ^ DJ
mÞ ¼ 0 SymðJjÞ: ð214Þ

The traceless form DJ
m can be expressed as

DJ
m ¼ AJ

mi2i3...iqdx
i2 ^ dxi3 ^ � � � ^ dxiq

þ AJI2
mr2i3i4...iqdy

r2
I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ AJI2I3
mr2r3i4i5...iqdy

r2
I2 ^ dyr3I3 ^ dxi4 ^ dxi5 ^ � � � ^ dxiq

þ � � � þ AJI2I3
mr2r3 . . .

Iq�1

rq�1iqdy
r2
I2 ^ dyr3I3 ^ � � � ^ dyrq�1

Iq�1
^ dxiq

þ AJI2I3
mr2r3 . . .

Iq
rqdy

r2
I2 ^ dyr3I3 ^ � � � ^ dyrqIq ;

ð215Þ

where the multi-indices I2; I3; . . .; Iq satisfy jI2j; jI3j; . . .; jIqj ¼ r and all

coefficients AJI2
mr2i3i4...iq ;A

JI2I3
mr2r3i4i5...iq ; . . .;A

JI2I3
mr2r3 . . .

Iq�1

rq�1iq are traceless in the indices
i3; i4; . . .; iq and the multi-indices I2; I3; . . .; Iq�1. Then, Eq. (214) reads

ðAJ
mi2i3...iq þ AJI2

mr2i3i4...iqy
r2
I2i2 þ AJI2I3

mr2r3i4i5...iqy
r2
I2i2y

r3
I3i3

þ � � � þ AJI2I3
mr2r3 . . .

Iq�1

rq�1iqy
r2
I2i2y

r3
I3i3 . . .y

rq�1

Iq�1iq�1

þ AJI2I3
mr2r3 . . .

Iq
rqy

r2
I2i2y

r3
I3i3 . . .y

rq
IqiqÞ

� dli1dxi1 ^ dxi2 ^ dxi3 ^ � � � ^ dxiq ¼ 0 SymðJjÞ:

ð216Þ
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Setting

BJl
mi1i2i3...iq ¼ AJ

mi2i3...iqd
l
i1 SymðJlÞ Altði1i2i3. . .iqÞ;

BJlI2
mr2i1i3i4...iq ¼ AJI2

r2i3i4...iqmd
l
i1 SymðJlÞ Altði1i3i4. . .iqÞ;

BJlI2I3
mr2r3i1i4i5...iq ¼ AJI2I3

mr2r3i4i5...iqd
l
i1 SymðJlÞ Altði1i4i5. . .iqÞ;

. . .
BJI2I3
mr2r3

. . .
Iq�1
rq�1i1iq ¼ AJI2I3

mr2r3
. . .

Iq�1
rq�1iqd

l
i1 SymðJlÞ Altði1iqÞ;

BJlI2I3
mr2r3

. . .
Iq
rqi1 ¼ AJI2I3

mr2r3
. . .

Iq
rqd

l
i1 SymðJlÞ;

ð217Þ

we get the system

BJl
mi1i2i3...iq ¼ 0;

BJlI2
mr2i1i3i4...iqd

j2
i2 ¼ 0 SymðI2j2Þ Altði1i2i3. . .iqÞ;

BJlI2I3
mr2r3i1i4i5...iqd

j2
i2d

j3
i3 ¼ 0 SymðI2j2Þ SymðI3j3Þ Altði1i2i3. . .iqÞ;

. . .
BJlI2I3
mr2r3 . . .

Iq�1

rq�1i1iqd
j2
i2d

j3
i3 . . .d

jq�1

iq�1
¼ 0 SymðI2j2Þ SymðI3j3Þ

. . . SymðIq�1jq�1Þ Altði1i2i3. . .iqÞ;
BJlI2I3
mr2r3

. . .
Iq
rqi1d

j2
i2d

j3
i3 . . .d

jq
iq ¼ 0 SymðI2j2Þ SymðI3j3Þ

. . . SymðIqjqÞ Altði1i2i3. . .iqÞ:

ð218Þ

Since the unknown functions, BJl I2
m r2 i1i3i4...iq , B

JI2lI3
mr2r3i1i4i5...iq , . . ., B

Jl I2 I3
m r2 r3 . . .

Iq�1

rq�1 i1iq ,

BJl I2 I3
m r2 r3

. . .
Iq
rq i1 , are traceless, for each fixedmulti-index I ¼ Jl and each index m, this

system has only the trivial solution (see Appendix 9), and we have from (217)

AJ
mi2i3...iqd

l
i1 ¼ 0 SymðJlÞ Altði1i2i3. . .iqÞ;

AJI2
mr2i3 i4 ...iq

dli1 ¼ 0 SymðJlÞ Altði1i3i4. . .iqÞ;
AJI2I3
mr2r3i4i5...iqd

l
i1 ¼ 0 SymðJlÞ Altði1i4i5. . .iqÞ;

. . .
AJI2I3
mr2r3

. . .
Iq�1
rq�1iqd

l
i1 ¼ 0 SymðJlÞ Altði1iqÞ;

AJI2I3
r2mr3

. . .
Iq
rqd

l
i1 ¼ 0 SymðJlÞ:

ð219Þ

The solutions of this system are of Kronecker type; we have, denoting the multi-
index J as J ¼ Kk,

AKk
mi2i3...iq ¼ CK

mi3i4...iqd
k
i2 SymðKkÞ Altði2i3i4. . .iqÞ;

AKkI2
mr2i3i4...iq ¼ CKI2

mr2i4i5...iqd
k
i3 SymðKkÞ Altði3i4i5. . .iqÞ;

AKkI2I3
mr2r3i4i5...iq ¼ CKI2I3

mr2r3i5i6...iqd
k
i4 SymðKkÞ Altði4i5i6. . .iqÞ;

. . .
AKkI2I3
mr2r3

. . .
Iq�1

rq�1iq ¼ CKI2I3
mr2r3

. . .
Iq�1
rq�1d

k
iq SymðJlÞ;

AKkI2I3
mr2r3

. . .
Iq
rq ¼ 0:

ð220Þ
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Consequently,X
jJj¼r�1

xr
J ^ DJ

m ¼ xr
Kk ^ ðCK

mi3i4...iqd
k
i2dx

i2 ^ dxi3 ^ . . . ^ dxiq

þ CK I2
m r2i4i5...iqd

k
i3dy

r2
I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ CKI2I3
mr2r3i5i6...iqd

k
i4dy

r2
I2 ^ dyr3I3 ^ dxi4 ^ dxi5 ^ � � � ^ dxiq

þ � � � þ CKI2I3
mr2r3

. . .Iq�1
rq�1

dkiqdy
r2
I2 ^ dyr3I3 ^ � � � ^ dyrq�1

Iq�1
^ dxiqÞ

¼ dxr
K ^ ð�CK

mi3i4...iqdx
i3 ^ dxi4 ^ � � � ^ dxiq

þ CKI2
mr2i4i5...iqdy

r2
I2 ^ dxi4 ^ dxi5 ^ � � � ^ dxiq

� CKI2I3
mr2r3i5i6...iqdy

r2
I2 ^ dyr3I3 ^ dxi5 ^ dxi6 ^ � � � ^ dxiq

þ � � � þ ð�1Þq�1CKI2I3
mr2r3 . . .

Iq�1
rq�1

dyr2I2 ^ dyr3I3 ^ � � � ^ dyrq�1

Iq�1
Þ:
ð221Þ

This expression splits in two terms,

dðxr
K ^ ð�CK

mi3i4...iqdx
i3 ^ dxi4 ^ � � � ^ dxiq

þ CKI2
mr2i4i5...iqdy

r2
I2 ^ dxi4 ^ dxi5 ^ � � � ^ dxiq

� CKI2I3
mr2r3i5i6...iqdy

r2
I2 ^ dyr3I3 ^ dxi5 ^ dxi6 ^ � � � ^ dxiq

þ � � � þ ð�1Þq�1CKI2I3
mr2r3 . . .

Iq�1
rq�1

dyr2I2 ^ dyr3I3 ^ � � � ^ dyrq�1

Iq�1
ÞÞ;

ð222Þ

and

� xr
K ^ dð�CK

mi3i4...iqdx
i3 ^ dxi4 ^ � � � ^ dxiq

þ CKI2
mr2i4i5...iqdy

r2
I2 ^ dxi4 ^ dxi5 ^ � � � ^ dxiq

� CKI2I3
mr2r3i5i6...iqdy

r2
I2 ^ dyr3I3 ^ dxi5 ^ dxi6 ^ � � � ^ dxiq

þ � � � þ ð�1Þq�1CKI2I3
mr2r3 . . .

Iq�1
rq�1

dyr2I2 ^ dyr3I3 ^ � � � ^ dyrq�1

Iq�1
Þ;

ð223Þ

which can be distributed to the terms dj0 and q0 in the decomposition (207).
Therefore, q can be written as

q ¼
X

0� jJj � r�2

xr
J ^ UJ

r þ
X

jJj¼r�1

xr
J ^ DJ

r þ
X

jJj¼r�1

xr
J ^ ZJ

r þ dj0

¼
X

0� jJj � r�2

xr
J ^ ~UJ

r þ
X

jJj ¼r�1

xr
J ^ ZJ

r þ dj1

¼
X

0� jJj � r�3

xr
J ^ ~UJ

r þ
X

jJj ¼r�2

xr
J ^ ~UJ

r þ
X

jJj ¼r�1

xr
J ^ ZJ

r þ dj1
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¼
X

0� jJj � r�3

xr
J ^ ~UJ

r þ
X

jJj ¼r�2

xr
J ^ ~UJ

r þ
X

jJj ¼r�1

xr
J ^ ZJ

r þ dj1

¼
X

0� jJj � r�3

xr
J ^ ~UJ

r þ
X

jJj ¼r�2

xr
J ^ DJ

r þ
X

jJj ¼r�2

xr
J ^ ZJ

r

þ
X

jJj ¼r�1

xr
J ^ ZJ

r þ dj1

ð224Þ

where we use the trace decomposition ~UJ
r ¼ DJ

r þ ZJ
r for jJj ¼ r � 1.

Summarizing and replacing for simplicity of notation ~UJ
r with UJ

r, we get the
decomposition (209).
Third, we construct as in the second step the decompositions

q0 ¼
P

0� jJj � r�2
xr

J ^ UJ
r þ

P
jJj¼r�1

xr
J ^ DJ

r;

q1 ¼
P

0� jJj � r�3
xr

J ^ UJ
r þ

P
jJj¼r�2

xr
J ^ DJ

r;

. . .
qr�2 ¼ xr ^ Ur þ

P
j
xr

j ^ D j
r;

qr�1 ¼ xr ^ Dr;

ð225Þ

and

q ¼ q0 þ s0 þ dj0 ¼ q1 þ s1 þ dj1 ¼ q2 þ s2 þ dj2
. . . ¼ qr�2 þ sr�2 þ djr�2 ¼ qr�1 þ sr�1 þ djr�1:

ð226Þ

Note, however, the different meaning of the symbols UJ
r and DJ

r in the lines of
expressions (225), which are defined in the construction.
Finally, we show that q has a decomposition

q ¼ sr�1 þ djr�1; ð227Þ

where sr�1 is generated by the contact forms xr
J ^ xm

I and xr
J ^ dxm

L,
jJj ¼ r � 1, 0� jIj � r � 1, jLj ¼ r � 1 and jr�1 is a contact ðq� 1Þ-form.
It is sufficient to show that in the decomposition q ¼ qr�1 þ sr�1 þ djr�1 (226),
the form qr�1 vanishes. Condition dq ¼ 0 implies

dxr ^ Dr � xr ^ dDr þ dsr�1 ¼ 0: ð228Þ

The 1-contact component yields �xr
l ^ dxl ^ hDr � xr ^ hdDr ¼ 0; hence,

hðdxl ^ DrÞ ¼ 0: ð229Þ
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Writing the traceless form Dm as

Dm ¼ Ami2i3...iqdx
i2 ^ dxi3 ^ � � � ^ dxiq

þ AI2
mr2i3i4...iqdy

r2
I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxiq

þ AI2I3
mr2r3i4i5...iqdy

r2
I2 ^ dyr3I3 ^ dxi4 ^ dxi5 ^ � � � ^ dxiq

þ � � � þ AI2I3
mr2r3

. . .
Iq�1
rq�1 iqdy

r2
I2 ^ dyr3I3 ^ � � � ^ dyrq�1

Iq�1
^ dxiq

þ AI2I3
mr2r3

. . .Iqrqdy
r2
I2 ^ dyr3I3 ^ � � � ^ dyrqIq ;

ð230Þ

we have

hðdxl ^ DmÞ ¼ Ami2i3...iq þ AI2
mr2i3i4...iq y

r2
I2i2 þ AI2I3

mr2r3i4i5...iqy
r2
I2i2y

r3
I3i3

�
þ � � � þ AI2I3

mr2r3 . . .
Iq�1
rq�1iq y

r2
I2i2y

r3
I3i3 . . .y

rq�1
Iq�1iq�1

þ AI2I3
mr2r3 . . .

Iq
rq y

r2
I2i2y

r3
I3i3 . . .y

rq
Iqiq

�
� dxl ^ dxi2 ^ dxi3 ^ � � � ^ dxiq ¼ 0;

ð231Þ

which implies, because the coefficients are traceless,

Ami2i3...iq ¼ 0; AI2
mr2i3i4...iq ¼ 0; AI2I3

mr2r3i4i5...iq ¼ 0;

. . . AI2I3
mr2r3

. . .
Iq�1
rq�1iq ¼ 0; AI2I3

mr2r3
. . .Iqrq ¼ 0:

ð232Þ

Consequently, qr�1 ¼ 0 proving (227).
3. To conclude the proof, we apply the contact homotopy decomposition to the

form sr�1 (Theorem 11). We have sr�1 ¼ Idsr�1 þ dIsr�1. But dsr�1 ¼ 0, and
thus, sr�1 ¼ dIsr�1, and since the order of contactness of sr�1 is � 2, we have
hIsr�1 ¼ Ihp1sr�1 ¼ 0, so Isr�1 is contact. Then, however,

q ¼ Idsr�1 þ dIsr�1 þ djr�1 ¼ dðIsr�1 þ djr�1Þ: ð233Þ

Setting g ¼ Isr�1 þ djr�1, we complete the proof. h

Theorem 14 If q is strongly contact and dq ¼ 0, then there exists a strongly
contact ðq� 1Þ-form g such that q ¼ dg.

Proof We express q as q ¼ Idqþ dIq. But by hypothesis dq ¼ 0, thus setting
g ¼ Iq, we have q ¼ dg; now, our assertion follows from Theorem 12, (b). h

Remark 11 The concept of a strongly contact form, used in Theorem 14, has been
introduced by means of the exterior derivative d and the pullback operation by the
canonical jet projection prþ1;r: Jrþ1Y ! JrY . The decompositions of the forms on
JrY , related to this concept, represent a basic tool in the higher-order variational
theory on the jet spaces JrY . A broader concept of a strongly contact form is
considered in Chap. 8.
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Chapter 3
Formal Divergence Equations

In this chapter, we introduce formal divergence equations on Euclidean spaces and
study their basic properties. These partial differential equations naturally appear in
the variational geometry on fibered manifolds, but also have a broader meaning
related to differential equations, conservation laws, and integration of forms on
manifolds with boundary. A formal divergence equation is not always integrable;
we show that the obstructions are connected with the Euler–Lagrange expressions
known from the higher-order variational theory of multiple integrals. If a solution
exists, then it defines a solution of the associated “ordinary” divergence equation
along any section of the underlying fibered manifold. The notable fact is that the
solutions of formal divergence equations of order r are in one–one correspondence
with a class of differential forms on the ðr � 1Þ-st jet prolongation of the underlying
fibered manifold, defined by the exterior derivative operator.

The chapter extends the theory explained in Krupka [K14].

3.1 Formal Divergence Equations

Let U � Rn be an open set, let V � Rm be an open ball with center 0 2 Rm, and
denote W ¼ U � V . We consider W as a fibered manifold over U with the first
Cartesian projection p: W ! U. As before, we denote by Wr the r-jet prolongation
of W. The set Wr can explicitly be expressed as the Cartesian product

Wr ¼ U � V � LðRn;RmÞ � L2symðRn;RmÞ � � � � � LrsymðRn;RmÞ; ð1Þ

where LksymðRn;RmÞ is the vector space of k-linear, symmetric mappings from Rn to
Rm. The Cartesian coordinates on W, and the associated jet coordinates on Wr, are
denoted by ðxi; yrÞ and ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jr Þ, respectively.

Let s� 1 and let f : Ws ! R be a function. In this section, we study the dif-
ferential equation

© Atlantis Press and the author 2015
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dig
i ¼ f ð2Þ

for a collection g ¼ gi of differentiable functions gi: Wr ! R, where r� s, and

dig
i ¼ @gi

@xi
þ
X

0� k� s

X
1� i� n

X
j1 � j2 � ��� � jk

@gi

@yrj1j2...jk
yrj1j2...jk i ð3Þ

is the formal divergence of the collection gi. Equation (2) is the formal divergence
equation, and gi is its solution of order r. Clearly, a solution of order r is also a
solution of order r þ 1. Our aim will be to find all solutions of order s, defined on
the same domain as the function f.

In expression (3), we differentiate with respect to independent variables yrj1j2...jk ,
where j1 � j2 � � � � � jk . However, it will be convenient to find another expression
for the formal divergence with no restriction to the summation indices. According
to Appendix 2,

X
i

X
j1 � j2 � ��� � jk

@gi

@yrj1j2...jk
yrj1j2...jk i ¼

@gi

@yri1i2...ik
yri1i2...ik i; ð4Þ

where yri1i2...ik on the right side stands for the canonical extension of the variables
yri1i2...ik , j1 � j2 � � � � � jk to all values of the subscripts. With this convention, the
formal derivative (3) can be expressed as

dig
i ¼ @gi

@xi
þ @gi

@yr
yri þ

@gi

@yrj1
yrj1i þ

@gi

@yrj1j2
yrj1j2i þ � � � þ @gi

@yrj1j2...js
yrj1j2...jsi: ð5Þ

From expression (5), we immediately see that every solution gi, defined on the
set Wr such that r� s, satisfies the system of partial differential equations

@gi

@yrj1j2...jr
þ @gj1

@yrij2j3...jr
þ @gj2

@yrj1ij3j4...jr
þ � � � þ @gjr�1

@yrj1j2...jr�2ijr

þ @gjr

@yrj1j2...jr�1i
¼ 0: ð6Þ

Our first aim will be to find solutions of this system.
The proof of the following lemma is based on the Young decomposition theory

of tensor spaces.

Lemma 1

(a) Every solution g ¼ gi of the system (6) is a polynomial function of the vari-
ables yrj1j2...js .

(b) If the system (6) has a solution g ¼ gi of order r� s, then it also has a solution
of order s.
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Proof

(a) To prove Lemma 1, it is convenient to use multi-indices of the form
J ¼ ðj1; j2; . . .; jrÞ. First, we show that condition (6) implies that the expression

@ngi

@yr1J1 @y
r2
J2 . . .@y

rn
Jn

ð7Þ

vanishes for all r1; r2; . . .; rn and J1; J2; . . .; Jn. This expression is indexed
with nr þ 1 indices ql, where l ¼ 1; 2; . . .; n; nþ 1; nþ 2; . . .; nr; nr þ 1 and
1� ql � n (entries of the multi-indices and the index i). The (unique) cycle
decomposition of the number nr þ 1 includes exactly one scheme, namely the
scheme ðr þ 1; r; . . .; rÞ (one row with r þ 1 boxes, n� 1 rows with r boxes).
The corresponding Young diagrams as well as (non-trivial) Young projectors
are then necessarily of the form

J1 i

J2

J3

…
Jn

ð8Þ

The first row represents symmetrization in the entries of the multi-index J1 and
the index i. But according to (6), these Young symmetrizers annihilate (7), so
the Young decomposition yields

@ngi

@yr1J1 @y
r2
J2 . . .@y

rn
Jn

¼ 0: ð9Þ

Consequently, gi is polynomial in the variables yrJ .

(b) Consider the formal divergence Eq. (2) with the right-hand side

f ¼ f xi; yr; yrj1 ; y
r
j1j2 ; . . .; y

r
j1j2...js

� �
, and its solution g ¼ gi of order r� sþ 1.

Then

@gi

@xi
þ @gi

@yr
yri þ

@gi

@yrj1
yrj1i þ

@gi

@yrj1j2
yrj1j2i þ � � � þ @gi

@yrj1j2...jr
yrj1j2...jr i ¼ f ; ð10Þ

and condition (6) is satisfied. Then by the first part of this proof

gi ¼ gi0 þ gi1 þ gi2 þ � � � þ gin�1; ð11Þ
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where gip is a homogeneous polynomial of degree p in the variables yrj1j2...jr .
Substituting from (11) into (10), we get, because f does not depend on yrj1j2...jr ,

@gi0
@xi

þ @gi0
@yr

yri þ
@gi0
@yrj1

yrj1i þ
@gi0
@yrj1j2

yrj1j2i þ � � � þ @gi0
@yrj1j2...jr�1

yrj1j2...jr�1i ¼ f : ð12Þ

Repeating this procedure, we get some functions h ¼ hi, defined on Vs,
satisfying

@hi

@xi
þ @hi

@yr
yri þ

@hi

@yrj1
yrj1i þ

@hi

@yrj1j2
yrj1j2i þ � � � þ @hi

@yrj1j2...js
yrj1j2...jsi ¼ f : ð13Þ

hi is a solution of order s. h

Remark 1 If g ¼ gi is a solution of order r of the formal divergence Eq. (2), then
Eq. (6) represent restrictions to the coefficients of the polynomials gi.

Remark 2 Every solution of the homogeneous formal divergence equation

dig
i ¼ 0 ð14Þ

is defined on U. Indeed, according to Lemma 1, if (14) has a solution, then this
solution is defined on V; thus

@gi

@xi
þ @gi

@yr
yri ¼ 0; ð15Þ

hence ð@gi=@yrÞ ¼ 0 and gi depends on xi only.

Let s� 1 and let f : Ws ! R be a differentiable function. Sometimes, it is useful
to divide the formal derivative dif of the function f in two terms; by the ith cut
formal derivative of f, we mean the function d0i f : W

s ! R defined by

d0i f ¼
@f
@xi

þ @f
@yr

yri þ
@f
@yrj1

yrj1i þ
@f

@yrj1j2
yrj1j2i þ � � � þ @f

@yrj1j2...js�1

yrj1j2...js�1i: ð16Þ

The i-th formal derivative, which is defined on Wsþ1, is then expressed as

dif ¼ d0i f þ
@f

@yrj1j2...js
yrj1j2...jsi: ð17Þ

The following assertion is a restatement of the definition of a solution of the
formal divergence equation (17), Sect. 3.1.
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Lemma 2 Let f : Ws ! R and gi: Ws ! R be differentiable functions. The fol-
lowing conditions are equivalent:

(a) The functions gi satisfy the formal divergence equation.
(b) The functions gi satisfy the system

d0ig
i ¼ f ð18Þ

and

@gi

@yrj1j2...js
þ @gj1

@yrij2j3...js
þ @gj2

@yrj1ij3j4...js
þ � � � þ @gjs

@yrj1j2...js�1i
¼ 0: ð19Þ

Proof Immediate. h

3.2 Integrability of Formal Divergence Equations

We introduce the concepts, responsible for integrability of the formal divergence
equation, and prove the integrability theorem.

To any function f : Ws ! R, we assign an n-form kf and an ðnþ 1Þ-form Ef on
Ws, by

kf ¼ fx0; ð20Þ

and

Ef ¼ Erðf Þxr ^ x0; ð21Þ

where the components Erðf Þ are defined by

Erðf Þ ¼ @f
@yr

þ
Xs
k¼1

ð�1Þkdp1dp2 . . .dpk
@f

@yrp1p2...pk
: ð22Þ

We call kf the Lagrange form, or the Lagrangian, and Ef the Euler–Lagrange form,
associated with f. The components Erðf Þ are called the Euler–Lagrange
expressions.

In the following lemma, we use the horizontalization morphism h and the
1-contact homomorphism p1, acting on modules of differential forms on the r-jet
prolongation Wr ¼ JrW of the fibered manifold W (see Chap. 2).
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Lemma 3 For any function f : Ws ! R, there exists an n-form Hf , defined on
W2s�1, such that

(a) hHf ¼ kf .
(b) The form p1dHf is xr-generated.

Proof We search for Hf of the form

Hf ¼ fx0 þ f irx
r þ f ij1r xr

j1 þ f ij1j2r xr
j1j2 þ � � � þ f ij1j2...js�1

r xr
j1j2...js�1

� �
^ xi; ð23Þ

where the coefficients f ij1j2...jkr are supposed to be symmetric in the superscripts
i; j1; j2; . . .; jk. Then condition (a) is obviously satisfied. Computing p1dH, we have

p1dHf ¼ df ^ x0 þ ðhdf ir ^ xr þ f irdx
r þ hdf ij1r ^ xr

j1

þ f ij1r dxr
j1 þ hdf ij1j2r ^ xr

j1j2 þ f ij1j2r dxr
j1j2

þ � � � þ hdf ij1j2...js�1
r ^ xr

j1j2...js�1
þ f ij1j2...js�1

r dxr
j1j2...js�1

Þ ^ xi

¼ @f
@yr

xr þ @f
@yrj1

xr
j1 þ

@f
@yrj1j2

xr
j1j2 þ � � � þ @f

@yrj1j2...js
xr

j1j2...js

 !
^ x0

þ ðdkf irdxk ^ xr þ dkf
ij1
r dxk ^ xr

j1 þ dkf
ij1j2
r dxk ^ xr

j1j2

þ � � � þ dkf
ij1j2...js�1
r dxk ^ xr

j1j2...js�1
Þ ^ xi

� ðf irxr
k ^ dxk þ f ij1r xr

j1k ^ dxk þ f ij1j2r xr
j1j2k ^ dxk

þ � � � þ f irx
r
j1j2...js�1k ^ dxkÞ ^ xi:

ð24Þ

This expression can also be written as

p1dHf ¼ @f
@yr

� dif
i
r

� �
xr ^ x0 þ @f

@yrj1
� dif

ij1
r � f j1r

 !
xr

j1 ^ x0

þ @f
@yrj1j2

� dif
ij1j2
r � f j2j1

r

 !
xr

j1j2 ^ x0

þ � � � þ @f
@yrj1j2...js�1

� dif
ij1j2...js�1
r � f jr�1j1j2...js�2

r

 !
xr

j1j2...js�1
^ x0

þ @f
@yrj1j2...js

� f jr j1j2...js�1
r

 !
xr

j1j2...js�1js ^ x0:

ð25Þ

But we can choose f ir; f
ij1
r ; f ij1j2r ; . . . f ij1j2...js�1

r from the conditions
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f jsj1j2...js�1
r ¼ @f

@yrj1j2...js
;

f jr�1j1j2...js�2
r ¼ @f

@yrj1j2...js�1

� dif
ij1j2...js�1
r ¼ @f

@yrj1j2...js�1

� di1
@f

@yrj1j2...js�1i1

;

. . .

f j2j1r ¼ @f
@yrj1j2

� dif
ij1j2
r ¼ @f

@yrj1j2
� di1

@f
@yrj1j2i1

þ di1di2
@f

@yrj1j2i1i2

� � � � þ ð�1Þr�2di1di2 . . .dis�2

@f
@yrj1j2i1i2...is�2

;

f j1r ¼ @f
@yrj1

� dif
ij1
r ¼ @f

@yrj1
� di1

@f
@yrj1i1

þ di1di2
@f

@yrj1i1i2

� � � � þ ð�1Þs�1di1di2 . . .dis�1

@f
@yrj1i1i2...is�1

;

ð26Þ

and for this choice, the form p1dH is xr-generated, proving (b).
Using formulas (23) and (26), we see that the form H ¼ Hf , constructed in the

proof, has the expression

Hf ¼ fx0 þ
Xs
k¼0

Xs�k�1

l¼0

ð�1Þldp1dp2 . . .dpl
@f

@yrj1j2...jkp1p2...pli

 !
xr

j1j2...jk ^ xi: ð27Þ

This form obeys properties (a) and (b) of Lemma 3. We call Hf the principal
Lepage equivalent of the function f or of the Lagrange form kf . Computing p1dHf ,
we get the Euler–Lagrange form, associated with f,

p1dHf ¼ Ef : ð28Þ
h

Now we are in a position to study integrability of the formal divergence equa-
tion; the proof includes the construction of the solutions.

Theorem 1 Let f : Ws ! R be a function. The following two conditions are
equivalent:

(a) The formal divergence equation digi ¼ f has a solution defined on the set Ws.
(b) The Euler–Lagrange form, associated with f, vanishes,

Ef ¼ 0: ð29Þ
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Proof

1. Suppose that condition (a) is satisfied and the formal divergence equation has a
solution g ¼ gi, defined on Ws. Differentiating the function digi, we get the
formulas

@digi

@yr
¼ di

@gi

@yr
; ð30Þ

and for every k ¼ 1; 2; . . .; s,

@digi

@yri1i2...ik
¼ di

@gi

@yri1i2...ik

þ 1
k

@gi1

@yri2i3...ik
þ @gi2

@yri1i3...ik
þ @gi3

@yri2i1i4...ik
þ � � � þ @gik

@yri2i3...ik�1

 !
:

ð31Þ

Using these formulas, we can compute the Euler–Lagrange expressions Erðf Þ ¼
ErðdigiÞ in several steps. First, we have

ErðdigiÞ ¼ di1
@gi1

@yr
� @digi

@yri1
þ di2

@digi

@yri1i2
� � � � þ ð�1Þsdi2di3 . . .dis

@digi

@yri1i2...is

 !

¼ di1di2 � @gi2

@yri1
þ @digi

@yri1i2
� di3

@digi

@yri1i2i3

 
þ � � � þð�1Þsdi3di4 . . .dis

@digi

@yri1i2...is

!
:

ð32Þ

Second, using symmetrization,

ErðdigiÞ ¼ di1di2 � @gi2

@yri1
þ di

@gi

@yri1i2
þ 1
2

@gi1

@yri2
þ @gi2

@yri1

 ! 

� di3
@dsgs

@yri1i2i3
þ � � � þð�1Þrdi3di4 . . .dir

@dsgs

@yri1i2...ir

!

¼ di1di2di3
@gi3

@yri1i2
� @dsgs

@yri1i2i3
þ � � �

 
þð�1Þrdi4di5 . . .dir

@dsgs

@yri1i2...is

!
:

ð33Þ

We continue this process and obtain after s� 1 steps

ErðdigiÞ ¼ ð�1Þsdi1di2 . . .dis�1disdi
@gi

@yri1i2...is
: ð34Þ

But since f is defined on Ws, the solution gi necessarily satisfies
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@gi1

@yri2i3...isþ1

þ @gi2

@yri1i3i4...isþ1

þ @gi3

@yri2i1i4i5...isþ1

þ � � � þ @gisþ1

@yri2i3...is�1ir i1

¼ 0; ð35Þ

proving that ErðdigiÞ ¼ 0.

2. Suppose that Erðf Þ ¼ 0. We want to show that there exist functions gi: Vs ! R

such that f ¼ digi. Let I be the fibered homotopy operator for differential forms
on V2s, associated with the projection p2s: V ! U (Sect. 2.7). We have

Hf ¼ IdHf þ dIHf þH0 ¼ Ip1dHf þ Ip2dHf þ dIHf þH0; ð36Þ

where H0 is an n-form, projectable on U. In this formula, p1dHf ¼ 0 by
hypothesis, Ip2dHf is 1-contact, and since dH0 ¼ 0 identically, we have H0 ¼
d#0 for some #0 (on U). Moreover hHf ¼ hdðIHf þ #0Þ ¼ fx0. Defining
functions gi on V2s by the condition

hðIHf þ #0Þ ¼ gixi; ð37Þ

we see we have constructed a solution of the formal divergence equation. Indeed,
from (35), hdðIHf þ #0Þ ¼ hdhðIHf þ #0Þ ¼ digi � x0 ¼ fx0. Then, however,
we may choose gi to be defined on Ws as required (Sect. 3.1, Lemma 1). h

If the formal divergence equation has a solution, then this solution is unique, up
to a system of functions gi ¼ giðx jÞ, such that ð@gi=@xiÞ ¼ 0.

Remark 3 If a formal divergence equation digi ¼ f has a solution gi, defined on the
set Ws, then any other solution is given as gi þ hi, where hi are functions on U such
that @hi=@xi ¼ 0 (see Sect. 3.1, Remark 2).

Condition Ek ¼ 0 (28) is called the integrability condition for the formal
divergence equation. In terms of differential equations, this condition can equiva-
lently be written as

Erðf Þ ¼ 0: ð38Þ

3.3 Projectable Extensions of Differential Forms

Denote

x0 ¼ dx1 ^ dx2 ^ � � � ^ dxn; ð39Þ

and xi ¼ i@=@xix0, that is,
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xi ¼ 1
ðn� 1Þ! eij2j3...jndx

j2 ^ dxj3 ^ � � � ^ dxjn : ð40Þ

Consider a ps-horizontal ðn� 1Þ-form g on Ws, expressed as

g ¼ gixi ¼ 1
ðn� 1Þ! hj2j3...jndx

j2 ^ dxj3 ^ � � � ^ dxjn : ð41Þ

Note that from expression (40), the components of the form g satisfy the trans-
formation formulas

hj2j3...jn ¼ eij2j3...jng
i; gk ¼ 1

ðn� 1Þ! e
kj2j3...jnhj2j3...jn : ð42Þ

In the following lemma, we derive a formula for the derivatives of the functions
hj2j3...jn and gk; to this purpose, a straightforward calculation is needed. Denote by
Alt and Sym the alternation and symmetrization in the corresponding indices.

Lemma 4 The functions gi and hj1j2...jn�1 satisfy

1
r þ 1

eil2l3...ln
@gi

@yrk1k2...ks
þ @gk1

@yrik2k3...ks
þ @gk2

@yrk1ik3k4...ks
þ � � � þ @gks

@yrk1k2...ks�1i

 !

¼ @hl2l3...ln
@yrk1k2...ks

� sðn� 1Þ
sþ 1

@hil3l4...ln
@yrik2k3...ks

dk1l2 Symðk1k2. . .ksÞ Altðl2l3. . .lnÞ:

ð43Þ

Proof Formula (43) is an immediate consequence of equation (42). Differentiating
we get

@gi

@yrk1k2...ks
¼ 1

ðn� 1Þ! e
ij2j3...jn @hj2j3...jn

@yrk1k2...ks
; ð44Þ

hence

1
sþ 1

eil2l3...ln
@gi

@yrk1k2...ks
þ @gk1

@yrik2k3...ks
þ @gk2

@yrk1ik3k4...ks
þ � � � þ @gks

@yrk1k2...ks�1i

 !

¼ 1
sþ 1

1
ðn� 1Þ! eil2l3...lne

ij2j3...jn @hj2j3...jn
@yrk1k2...ks

þ 1
sþ 1

1
ðn� 1Þ! eil2l3...lne

k1j2j3...jn @hj2j3...jn
@yrik2k3...ks
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þ 1
sþ 1

1
ðn� 1Þ! eil2l3...lne

k2j2j3...jn @hj2j3...jn
@yrk1ik3k4...ks

þ � � � þ 1
sþ 1

1
ðn� 1Þ! eil2l3...lne

ksj2j3...jn @hj2j3...jn
@yrk1k2...ks�1i

¼ 1
sþ 1

@hl2l3...ln
@yrk1k2...ks

þ 1
sþ 1

n!
ðn� 1Þ! dk1i d

j2
l2d

j3
l3 . . .d

jn
ln

@hj2j3...jn
@yrik2k3...ks

 

þ dk2i d
j2
l2d

j3
l3 . . .d

jn
ln

@hj2j3...jn
@yrk1ik3k4...ks

þ � � � þ dksi d
j2
l2d

j3
l3 . . .d

jn
ln

@hj2j3...jn
@yrk1k2...ks�1i

!

Altðil2l3. . .lnÞ:

ð45Þ

We calculate the alternations Altðil2l3. . .lnÞ of the summands in the parentheses in
two steps. Consider the first summand. Alternating in the indices ðl2l3. . .lnÞ and
then in ðil2l3. . .lnÞ, we get

dk1i d
j2
l2d

j3
l3 . . .d

jn
ln

@hj2j3...jn
@yrik2k3...ks

Altðil2l3. . .lnÞ

¼ 1
n

dk1i
@hl2l3...ln
@yrik2k3...ks

� dk1l2
@hil3l4...ln
@yrik2k3...ks

� dk1l3
@hl2il4l5...ln
@yrik2k3...ks

� � � � � dk1ln
@hl2l3...ln�1i

@yrik2k3...ks

 !

¼ 1
n

@hl2l3...ln
@yrk1k2k3...ks

� dk1l2
@hil3l4...ln
@yrik2k3...ks

� dk1l3
@hl2il4l5...ln
@yrik2k3...ks

� � � � � dk1ln
@hl2l3...ln�1i

@yrik2k3...ks

 !
;

ð46Þ

and similarly for the remaining terms. Altogether

1
sþ 1

eil2l3...ln
@gi

@yrk1k2...ks
þ @gk1

@yrik2k3...ks
þ @gk2

@yrk1ik3k4...ks
þ � � � þ @gks

@yrk1k2...ks�1i

 !

¼ 1
sþ 1

@hl2l3...ln
@yrk1k2...ks

 
þ @hl2l3...ln
@yrk1k2k3...ks

� dk1l2
@hil3l4...ln
@yrik2k3...ks

� dk1l3
@hl2il4l5...ln
@yrik2k3...ks

� � � � � dk1ln
@hl2l3...ln�1i

@yrik2k3...ks
þ @hl2l3...ln
@yrk1k2k3...ks

� dk1l2
@hil3l4...ln
@yrik2k3...ks

� dk1l3
@hl2il4l5...ln
@yrik2k3...ks

� � � � � dk1ln
@hl2l3...ln�1i

@yrik2k3...ks
þ @hl2l3...ln
@yrk1k2k3...ks

� dk2l2
@hil3l4...ln
@yrik1k3...ks

� dk2l3
@hl2il4l5...ln
@yrik1k3...ks

� � � � � dk2ln
@hl2l3...ln�1i

@yrik1k3...ks
þ � � � þ @hl2l3...ln

@yrk1k2k3...ks

�dksl2
@hil3l4...ln

@yrik2k3...ks�1k1

� dksl3
@hl2il4l5...ln
@yrik2k3...ks�1k1

� � � � � dksln
@hl2l3...ln�1i

@yrik2k3...ks�1k1

!
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¼ @hl2l3...ln
@yrk1k2...ks

� 1
sþ 1

dk1l2
@hil3l4...ln
@yrik2k3...ks

þ dk1l3
@hl2il4l5...ln
@yrik2k3...ks

þ � � � þ dk1ln
@hl2l3...ln�1i

@yrik2k3...ks

 

þ dk2l2
@hil3l4...ln
@yrik1k3...ks

þ dk2l3
@hl2il4l5...ln
@yrik1k3...ks

þ � � � þ dk2ln
@hl2l3...ln�1i

@yrik1k3...ks

þ � � � þ dksl2
@hil3l4...ln

@yrik2k3...ks�1k1

þ dksl3
@hl2il4l5...ln
@yrik2k3...ks�1k1

þ � � � þ dksln
@hl2l3...ln�1i

@yrik2k3...ks�1k1

!
;

ð47Þ

and, with the help of alternations and symmetrizations,

1
sþ1

eil2l3...ln
@gi

@yrk1k2...ks
þ @gk1

@yrik2k3...ks
þ @gk2

@yrk1ik3k4...ks
þ���þ @gks

@yrk1k2...ks�1i

 !

¼@hl2l3...ln
@yrk1k2...ks

�n�1
sþ1

1
n�1

dk1l2
@hil3l4...ln
r
ik2k3...ks

þdk1l3
@hl2il4l5...ln
@yrik2k3...ks

 
þ���þdk1ln

@hl2l3...ln�1i

@yrik2k3...ks

þdk2l2
@hil3l4...ln
r
ik1k3...ks

þdk2l3
@hl2il4l5...ln
@yrik1k3...ks

þ���þdk2ln
l2l3...ln�1i

@yrik1k3...ks

þ���þdksl2
@hil3l4n

@yrik2k3...ks�1k1

þdksl3
l2il4l5...ln

@yrik2k3...ks�1k1

þ���þdksln
@hl2l3n�1i

@yrik2k3...ks�1k1

!

¼ l2l3...ln

@yrk1k2s
�n�1
sþ1

dk1l2
@hil3l4...ln
r
ik2k3...ks

�n�1
sþ1

dk2l2
@hil3l4...ln
@yrik1k3...ks

�����n�1
sþ1

dksl2
@hil3l4...ln

@yrik2k3...ks�1k1

Altðl2l3...lnÞ

¼@hl2l3...ln
r
k1k2...ks

�sðn�1Þ
sþ1

dk1l2
@hil3l4...ln
@yrik2k3...ks

Altðl2l3...lnÞSymðk1k2...ksÞ: ð48Þ
h

Let g be a ps-horizontal form g, defined on Ws. A form l on Ws�1 is said to be a
ps;s�1-projectable extension of g, if g is equal to the horizontal components of l,

g ¼ hl: ð49Þ

Our objective now will be to find conditions for g ensuring that l does exist. Let g
be expressed in two bases of ðn� 1Þ-forms by formula (41).

Theorem 2 The following two conditions are equivalent:

(a) g has a ps;s�1-projectable extension.
(b) The components gi satisfy

@gi

@yrj1j2...js
þ @gj1

@yrij2j3...js
þ @gj2

@yrj1ij3j4...js
þ � � � þ @gjs

@yrj1j2...js�1i
¼ 0: ð50Þ
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(c) The components hi1i2...in�1 satisfy

@hl2l3...ln
@yrk1k2...ks

� rðn� 1Þ
r þ 1

@hil3l4...ln
@yrik2k3...ks

dk1l2 ¼ 0 Symðk1k2. . .ksÞ Altðl2l3. . .lnÞ: ð51Þ

Proof

1. To show that (a) implies (b), suppose that we have an ðn� 1Þ-form l, defined
on Ws�1, such that g ¼ hl. Then hdg ¼ digi � x0, which is a form on Wsþ1. But
ðps;s�1Þ*dl ¼ dðps;s�1Þ*l hence hdg ¼ hdhl ¼ hdl, so hdg is psþ1;s-project-
able (with projection hdl). But

hdg ¼ dig
i � x0

¼ @gi

@xi
þ @gi

@yr
yri þ

@gi

@yrj1
yrj1i þ

@gi

@yrj1j2
yrj1j2i þ � � � þ @gi

@yrj1j2...js
yrj1j2...jsi

 !
x0;

ð52Þ

so psþ1;s-projectability implies (50).
2. (c) follows from (b) by Lemma 4.
3. Now we prove that condition (c) implies (a). Write g as in (3),

g ¼ 1
ðn� 1Þ! hj2j3...jndx

j2 ^ dxj3 ^ � � � ^ dxjn : ð53Þ

By Lemma 1, Sect. 3.1, and formula (42), the functions hj2j3...jn are polynomial in
the variables yrJj, where J is a multi-index of length s� 1. Thus,

hi1i2...in�1 ¼ Bi1i2...in�1 þ BJ1k1
r1 i1i2...in�1y

r1
J1k1 þ BJ1k1

r1
J2k2
r2 i1i2...in�1y

r1
J1k1y

r2
J2k2

þ � � � þ BJ1k1
r1

J2k2
r2 . . .Jn�2kn�2

rn�2 i1i2...in�1y
r1
J1k1y

r2
J2k2 . . .y

rn�2
Jn�2kn�2

þ BJ1k1
r1

J2k2
r2 . . .Jn�2kn�2

rn�2

Jn�1kn�1
rn�1 i1i2...in�1y

r1
J1k1y

r2
J2k2 . . .y

rn�2
Jn�2kn�2

yrn�1
Jn�1kn�1

: ð54Þ

The coefficients in this expression are supposed to be symmetric in the multi-
indices Jk

r ,
Lj
m . By hypothesis, the polynomials (54) satisfy condition (51)

@hi2i3...in
@yrJk

� rðn� 1Þ
r þ 1

@hli3i4...in
@yrJl

dki2 ¼ 0 SymðJkÞ Altði2i3. . .inÞ; ð55Þ

which reduces to some conditions for the coefficients. To find these conditions,
we compute
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@hi1i2...in�1

@yrJk
¼ BJk

r i1i2...in�1 þ 2BJk
r

J2k2
r2 i1i2...in�1y

r2
J2k2

þ � � � þ ðn� 2ÞBJk
r

J2k2
r2 . . .Jn�2kn�2

rn�2 i1i2...in�1y
r2
J2k2y

r3
J3k3 . . .y

rn�2
Jn�2kn�2

þ ðn� 1ÞBJk
r

J2k2
r2

. . .Jn�2kn�2
rn�2

Jn�1kn�1
rn�1 i1i2...in�1y

r2
J2k2

yr3J3k3 . . .y
rn�2
Jn�2kn�2

yrn�1
Jn�1kn�1

;

ð56Þ

and

@hli2i3...in�1

@yrJl
¼ BJl

r li2i3...in�1 þ 2BJl
r

J2k2
r2 li2i3...in�1y

r2
J2k2

þ � � � þ ðn� 2ÞBJl
r

J2k2
r2

. . .Jn�2kn�2
rn�2 li2i3...in�1y

r2
J2k2

yr3J3k3 . . .y
rn�2
Jn�2kn�2

þ ðn� 1ÞBJl
r

J2k2
r2 . . .Jn�2kn�2

rn�2

Jn�1kn�1
rn�1 li2i3...in�1y

r2
J2k2y

r3
J3k3 . . .y

rn�2
Jn�2kn�2

yrn�1
Jn�1kn�1

;

ð57Þ

from which we have, changing the index notation,

@hli3i4...in
@yrJl

dki2 ¼ BJl
r li3i4...ind

k
i2 þ 2BJl

r
J2k2
r2 li3i4...ind

k
i2y

r2
J2k2

þ � � � þ ðn� 2ÞBJl
r

J2k2
r2

. . .Jn�2kn�2
rn�2 li3i4...ind

k
i2y

r2
J2k2y

r3
J3k3 . . .y

rn�2
Jn�2kn�2

þ ðn� 1ÞBJl
r

J2k2
r2 . . .Jn�2kn�2

rn�2

Jn�1kn�1
rn�1 li3i4...ind

k
i2y

r2
J2k2y

r3
J3k3 . . .y

rn�2
Jn�2kn�2

yrn�1
Jn�1kn�1

SymðJkÞ Altði2i3. . .inÞ:
ð58Þ

Thus, comparing the coefficients in (58) and (56), condition (55) yields

BJk
r i1i2...in�1 ¼

sðn� 1Þ
sþ 1

BJl
r li2i3...in�1d

k
i1

BJk
r

J2k2
r2 i1i2...in�1 ¼

sðn� 1Þ
sþ 1

BJl
r

J2k2
r2 li2i3...in�1d

k
i1

. . .

BJk
r

J2k2
r2

J3k3
r3

. . .Jn�2kn�2
rn�2 i1i2...in�1 ¼

sðn� 1Þ
sþ 1

BJl
r

J2k2
r2

J3k3
r3

. . .Jn�2kn�2
rn�2 li2i3...in�1d

k
i1 ;

BJk
r

J2k2
r2

J3k3
r3

. . .Jn�1kn�1
rn�1 i1i2...in�1 ¼

sðn� 1Þ
sþ 1

BJl
r

J2k2
r2

J3k3
r3

. . . Jn�1kn�1
rn�1 li2i3...in�1d

k
i1 ;

SymðJkÞ Altði1i2. . .in�1Þ:

ð59Þ
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On the other hand, any ðn� 1Þ-form l on Ws�1 can be expressed as

l ¼ l0 þ xm
I ^ UI

m þ dxm
I ^WI

m; ð60Þ

where

l0 ¼ Ai1i2...in�1dx
i1 ^ dxi2 ^ � � � ^ dxin�1

þ AJ1
r1 i2i3...in�1dy

r1
J1 ^ dxi2 ^ dxi3 ^ � � � ^ dxin�1

þ AJ1
r1

J2
r2 i3i4...in�1dy

r1
J1 ^ dyr2J2 ^ dxi3 ^ dxi4 ^ � � � ^ dxin�1

þ � � � þ AJ1
r1

J2
r2
. . .jn�2

rn�2 in�1dy
r1
J1 ^ dyr2J2 ^ � � � ^ dyrn�2

Jn�2
^ dxin�1

þ AJ1
r1

J2
r2 . . .

Jn�1
rn�1

dyr1J1 ^ dyr2J2 ^ � � � ^ dyrn�1
Jn�1

;

ð61Þ

and the coefficients are traceless (Sect. 2.2, Theorem 3). Then, hl ¼ hl0 because
h is an exterior algebra homomorphism, annihilating the contact forms xm, and

hl ¼ Ai1i2...in�1 þ AJ1
r1 i2i3...in�1y

r1
J1i1 þ AJ1J2

r1r2 i3i4...in�1y
r1
J1i1y

r2
J2i2

�
þ � � � þ AJ1J2

r1r2
. . .Jn�2

rn�2 in�1y
r1
J1i1y

r2
J2i2 . . .y

rn�2
Jn�2in�2

þ AJ1J2
r1r2

. . .jn�1
rn�1

yr1J1i1y
r2
J2j2 . . .y

rn�1
Jn�1in�1

�
dxi1 ^ dxi2 ^ � � � ^ dxin�1 :

ð62Þ

Now comparing the coefficients in (62) and (54), we see that the equation
hl ¼ g for ps;s�1-projectable extensions of the form g is equivalent with the
system

Bi1i2...in�1 ¼ Ai1i2...in�1 ;

BJ1k1
r1 i1i2...in�1 ¼ AJ1

r1 i2i3...in�1d
k1
i1 SymðJ1k1Þ Altði1i2. . .in�1Þ;

BJ1k1
r1

j2k2
r2 i1i2...in�1 ¼ AJ1j2

r1r2 i3i4...in�1d
k1
i1 d

k2
i2 SymðJ1k1Þ SymðJ2k2Þ

Altði1i2. . .in�1Þ;
. . .

BJ1k1
r1

J2k2
r2 . . .Jn�2kn�2

rn�2 i1i2...in�1 ¼ AJ1J2
r1r2 . . .

Jn�2
rn�2 in�1d

k1
i1 d

k2
i2 . . .d

kn�2
in�2

SymðJ1k1Þ
SymðJ2k2Þ. . .SymðJn�2kn�2Þ Altði1i2. . .in�1Þ;

BJ1k1
r1

J2k2
r2 . . .Jn�2kn�2

rn�2

Jn�1kn�1
rn�1 i1i2...in�1 ¼ AJ1J2

r1r2 . . .
Jn�2
rn�2

jn�1
rn�1

dk1i1 d
k2
i2 . . .d

kn�2
in�2

dkn�1
in�1

Symðj1k1ÞSymðj2k2Þ. . .Symðjn�1kn�1Þ Altði1i2. . .in�1Þ
ð63Þ

for unknown functions Ai1i2...in�1 ; A
J1
r1 i2i3...in�1 ; A

J1J2
r1r2 i3i4...in�1 ; . . .; A

J1J2
r1r2 . . .

Jn�2
rn�2 in�1 ;

and AJ1J2
r1r2

. . .Jn�2
rn�2

Jn�1
rn�1

.
We can now solve this system with the help of the trace decomposition theory,
namely with the trace decomposition formula of the symmetric-alternating
tensors; in what follows we use the notation of Appendix 8 and Appendix 9.
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We consider each of equations (63) separately. The second equation is

BJk
r i1i2...in�1 ¼ AJ

r i2i3...in�1d
k
i1 SymðJkÞ Altði1i2. . .in�1Þ: ð64Þ

Denoting B ¼ BJ1k1
r1 i1i2...in�1 and A ¼ AJ

r i2i3...in�1d
k
i1 , this equation can also be

written as B ¼ q~A where ~A ¼ ~AJ
r i2i3...in�1 is defined by

AJ
r i2i3...in�1 ¼

sðn� 1Þ
sþ 1

~AJ
r i2i3...in�1 : ð65Þ

But B satisfies the first condition (59), which can also be written as B ¼ qtrB.
Consequently, the trace decomposition formula yields ~A ¼ trq~Aþ qtr~A ¼ trB
because ~A is traceless; thus, we get a solution

A ¼ sðn� 1Þ
sþ 1

~A ¼ sðn� 1Þ
sþ 1

trB: ð66Þ

Next equation (63) is

BJ1k1
r1

J2k2
r2 i1i2...in�1 ¼ AJ1J2

r1r2 i3i4...in�1d
k1
i1 d

k2
i2 SymðJ1k1Þ SymðJ2k2Þ

Altði1i2. . .in�1Þ:
ð67Þ

This equation can be understood as a condition for the trace decomposition of
the tensor B ¼ BJ1k1

r1
J2k2
r2 i1i2...in�1 (Appendix 9). According to conditions (59)

BJ1k1
r1

J2k2
r2 i1i2...in�1 ¼

sðn� 1Þ
sþ 1

BJ1l
r1

J2k2
r2 li2i3...in�1d

k1
i1 SymðJ1k1Þ

Altði1i2. . .in�1Þ:
ð68Þ

Analogously

BJ1k1
r1

J2k2
r2 i1i2...in�1 ¼

sðn� 1Þ
sþ 1

BJ1k1
r1

J2l
r2 li2i3...in�1d

k2
i1 SymðJ2k2Þ Altði1i2. . .in�1Þ:

ð69Þ

These conditions mean that B is a Kronecker tensor whose summands contain
exactly one factor of the form dai , where a runs through J1k1 and i through the set

fi1; i2; . . .; in�1g, and exactly one factor dbi , where b runs through J2k2 and
i through fi1; i2; . . .; in�1g; thus, Bmust be a linear combination of the terms of the
form dj1i d

j2
l , d

j1
i d

k2
l , d

k1
i d

j2
l , d

k1
i d

k2
l . From the complete trace decomposition theorem,

it now follows that the coefficients at these Kronecker tensors can be chosen
traceless. This shows, however, that equation (67) has a solution AJ1

r1
J2
r2 i3i4...in�1 .
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To complete the construction of the ps;s�1-projectable extension l of the form g,
we proceed in the same way. h

A remarkable property of solutions of the formal divergence equation is obtained
when we combine Theorem 1 and Theorem 2: We show that the solutions can also
be described as projectable extensions of forms on Ws.

Theorem 3 Let f : Ws ! R be a function, let g ¼ gi be a system of functions,
defined on Ws, and let g ¼ gixi. Then, the following conditions are equivalent:

(a) The system gi is a solution of the formal divergence equation

dig
i ¼ f : ð70Þ

(b) There exists a projectable extension l of the form g such that

hdl ¼ fx0: ð71Þ

Proof

1. If the functions gi solve the formal divergence equation digi ¼ f , then condition
(50) is satisfied and g has a projectable extension l (Theorem 2). Then g ¼ hl,
hence

ðpsþ1;sÞ*hdl ¼ hdhl ¼ hdg ¼ dig
i � x0 ¼ fx0; ð72Þ

proving (71).

2. Conversely, suppose that gixi ¼ hl. Then, a direct calculation yields
hdl ¼ hdhl ¼ d1gi � x0, hence (70) follows from (71). h

Reference

[K14] D. Krupka, The total divergence equation, Lobachevskii Journal of Mathematics 23
(2006) 71-93
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Chapter 4
Variational Structures

In this chapter, a complete treatment of the foundations of the calculus of variations
on fibered manifolds is presented. The aim is to study higher-order integral vari-
ational functionals of the form c ! R

Jrc*q, depending on sections γ of a fibered
manifold Y, where ρ is a general differential form on the jet manifold JrY and Jrc is
the r-jet prolongation γ. The horizontal forms ρ are the Lagrangians.

In Sects. 4.1–4.7 we consider variations (deformations) of sections of Y as vector
fields, permuting the set of sections, and the prolongations of these vector fields to
the jet manifolds JrY . The variations are applied to the functionals in a geometric
way by means of the Lepage forms (Krupka [K13, K1]). The main idea can be
introduced by means of the Cartan’s formula for the Lie derivative of a differential
form η on a manifold Z, ong ¼ indgþ ding, where in is the contraction by a vector
field ξ and d is the exterior derivative operator. For any manifold X and any mapping
f : X ! Z, the Lie derivative satisfies f *ong ¼ f *indgþ df *ing. Replacing Z with
the r-jet prolongation JrY and η with ρ, we prove that the form ρ in the variational
functional c ! R

Jrc*q may be chosen in such a way that the Cartan’s formula for ρ
becomes a geometric version of the classical first variation formula. These forms are
the Lepage forms; a structure theorem we prove implies that for different underlying
manifold structures and order of their jet prolongations, this concept generalizes the
well-known Cartan form in classical mechanics (Carton [C]), the Poincaré-Cartan
forms in the first-order field theory (Garcia [G]), the so-called fundamental forms
(Betounes, Krupka [B, K2, K13]) and [K5], the second-order generalization of the
Poincaré-Cartan form [K13], the Carathéodory form (Crampin, Saunders [CS]),
and the Hilbert form in Finsler geometry (Crampin, Saunders, Krupka [CS, K7]).
For survey research, we refer to Krupka et al. [KKS1, KKS2] and [K5].

The first variation formula, expressed by means of a Lepage form ρ, leads to the
concept of the Euler–Lagrange form, a global differential form, defined by means of
the exterior derivative dρ (cf.Krupka [K13] and alsoGoldschmidt andSternberg [GS],
where the Euler–Lagrange form is interpreted as a vector-valued form). The coordi-
nate components of the Euler–Lagrange form coincide with the Euler–Lagrange
expressionsof the classical variational calculus, and its classical analogue is simply the
collection of the Euler–Lagrange expression. The corresponding Euler–Lagrange
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equations for extremals of a variational functional are then related to eachfibered chart
and should be analyzed in any concrete case from local and global viewpoints.

The first variation formula also gives rise to the Euler–Lagrange mapping,
assigning to a Lagrangian its Euler–Lagrange form. The domain and image of this
mapping are some Abelian groups of differential forms. A complete treatment of the
local theory is presented in Sects. 4.9–4.11, using thefibered homotopy operator as the
basic tool. First the Vainberg–Tonti formula, allowing us to assign a Lagrangian to
any source form, is considered (Tonti, Vainberg [To,V]) and is extended to the higher-
order variational theory (Krupka [K8, K16]). The theorem on the Euler–Lagrange
equations of the Vainberg–Tonti Lagrangian, proved in Sect. 4.9, determining the
image of the Euler–Lagrange mapping in terms of the (local variationality)Helmholtz
conditions, is a basic instrument for the local inverse variational problem, treated in
Sects. 4.10 and 4.11 (Anderson, Duchamp, Krupka [AD, K11]).

Specific research directions in the variational geometry have been developed for
several decades. Different aspects of the local inverse problem are given extensive
investigation in Anderson and Thompson [AT], Zenkov (Ed.) [Z], Bucataru [Bu],
Crampin [Cr], Krupka and Saunders [KS], Krupková and Prince [KrP], Olver [O2],
Sarlet et al. [SCM], Urban and Krupka [UK2], and many others. Remarks on the
history of the inverse problem can be found in Havas [H]; original sources are
Helmholtz [He] (the inverse problem for systems of second-order ordinary differential
equations), Sonin [So] and Douglas [Do] (for variational integrating factors).

The theorem on the kernel of the Euler–Lagrange mapping is proved in
Sect. 4.10 on the basis of the formal divergence equations (Chap. 3) and the
approach initiated in Krupka [K12], Krupka and Musilová [KM].

Our basic notation in this chapter follows Chaps. 2 and 3: Y is a fixed fibered
manifold with orientable base manifold X and projection π, and dimX ¼ n;
dim Y ¼ nþ m. JrY is the r-jet prolongation of Y, pr;s and pr are the canonical jet
projections. For any set W � Y , we denote Wr ¼ ðpr;0Þ�1ðWÞ. Xr

qW is the module
of q-forms defined on Wr. Sometimes, when no misunderstanding may possibly
arise, to simplify formulas we do not distinguish between the differential forms ρ,
defined on the base manifold X of a fibered manifold ps: JsY ! X and its canonical
lifting ðpsÞ*q to the jet manifold JsY . Similarly, the Lie derivative oJrNq and
contraction iJrNq are sometimes denoted simply by oNq and iNq.

Since the subject of this chapter is the higher-order calculus of variations, some
proofs of our statements include extensive coordinate calculations; in order not to
make difficult the understanding, we prefer to present them as complete as possible.

4.1 Variational Structures on Fibered Manifolds

By a variational structure, we shall mean a pair (Y, ρ), where Y is a fibered
manifold over an n-dimensional manifold X with projection π and ρ is an n-form on
the r-jet prolongation JrY .
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Suppose that we have a variational structure (Y, ρ). Let Ω be a compact,
n-dimensional submanifold of X with boundary (a piece of X). Denote by CXðpÞ the
set of differentiable sections of π over Ω (of a fixed order of differentiability). Then
for any section c 2 CXðpÞ of Y, the pullback Jrc*q by the r-jet prolongation Jrc is
an n-form on a neighborhood of the piece Ω. Integrating the n-form Jrc*q on Ω, we
get a function CXðpÞ 3 c ! qXðcÞ 2 R, defined by

qXðcÞ ¼
Z
X

Jrc*q: ð1Þ

qX is called the variational functional, associated with (Y, ρ) (over Ω). The vari-
ational functional of the form (1) is referred to as the integral variational functional,
associated with ρ.

If W is an open set in Y, considered as a fibered manifold with projection pjW ,
then restricting the n-form ρ to Wr � JrY we get a variational structure (W, ρ). The
corresponding variational functional is the restriction of the variational functional
(1) to the set CXðpjW Þ � CXðpÞ. Elements of this set are sections whose values lie
in W.

On the other hand, any n-form ρ on the setWr defines a variational structure (W, ρ).
The corresponding variational functional is given by

CXðpjWÞ 3 c ! qXðcÞ ¼
Z
X

Jrc*q 2 R: ð2Þ

If W = Y, then CXðpjW Þ ¼ CXðpÞ and formula (2) reduces to (1).
Let W be an open set in Y. For every r, we denote by Xr

n;XW the submodule of
the module of q-forms Xr

nW , consisting of pr-horizontal forms. Elements of the set
Xr

n;XW are called Lagrangians (of order r) for the fibered manifold Y.

Let q2 Xr
nW . There exists a unique Lagrangian kq2 Xrþ1

n;X W such that

Jrþ1c*kq = Jrc*q ð3Þ

for all sections γ of Y. The n-form kq can alternatively be defined by the first
canonical decomposition the form ρ (Sect. 2.4)

ðprþ1;rÞ*q ¼ hqþ p1qþ p2qþ � � � þ pnq ð4Þ

as the horizontal component of ρ,

kq = hq: ð5Þ
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kq is a Lagrangian, said to be associated with ρ. Property (3) says that the varia-
tional functional qX can also be expressed as

qXðcÞ ¼
Z
X

Jrþ1c*kq: ð6Þ

We give the chart expressions of ρ and hρ in a fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ,
on Y (or, more exactly, in the associated charts on JrY and Jrþ1Y). Recall that in
multi-index notation, the contact basis of 1-forms on Vr (and analogously on Vrþ1)
is defined to be the basis ðdxi;xr

J ; dy
r
I Þ, where the multi-indices satisfy

0� jJj � r � 1; jIj ¼ r, and

xr
J ¼ dyrJ � yrJjdx

j: ð7Þ

We also associate with the given chart the n-form

x0 ¼ dx1 ^ dx2 ^ � � � ^ dxn ð8Þ

(considered on U ¼ pðVÞ � X, and also on Vr), sometimes called the local volume
form, associated with (V, ψ).

According to the trace decomposition theorem (Sect. 2.2, Theorem 3), ρ has an
expression

q ¼
X

0� jJj � r�1

xr
J ^ UJ

r þ
X

jJj¼r�1

dxr
J ^WJ

r þ q0; ð9Þ

where

q0 ¼ Ai1i2...indx
i1 ^ dxi2 ^ � � � ^ dxin

þ AJ1
r1 i2i3...indy

r1
J1 ^ dxi2 ^ dxi3 ^ � � � ^ dxin

þ AJ1
r1

J2
r2 i3i4...indy

r1
J1 ^ dyr2J2 ^ dxi3 ^ dxi4 ^ � � � ^ dxin

þ � � � þ AJ1
r1

J2
r2 . . .

Jn�1
rn�1 indy

r1
J1 ^ dyr2J2 ^ � � � ^ dyrn�1

Jn�1
^ dxin

þ AJ1
r1

J2
r2 . . .

Jn
rndy

r1
J1 ^ dyr2J2 ^ � � � ^ dyrnJn ;

ð10Þ

and the coefficients AJ1
r1

J2
r2
. . .Jsrs isþ1isþ2...in are traceless. Then, hq ¼ hq0 because h is

an exterior algebra homomorphism, annihilating the contact forms xr
J and dxr

J .
Thus,

kq ¼ ðAi1i2...in þ AJ1
r1 i2i3...in y

r1
J1i1 þ AJ1

r1
J2
r2 i3i4...iny

r1
J1i1y

r2
J2i2

þ � � � þ AJ1
r1

J2
r2
. . .Jn�1

rn�1in y
r1
J1i1y

r2
J2i2 . . .y

rn�1
Jn�1in�1

þ AJ1
r1

J2
r2
. . .Jnrny

r1
J1i1y

r2
J2j2 . . .y

rn
JninÞ

� dxi1 ^ dxi2 ^ � � � ^ dxin :

ð11Þ
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Using the local volume form (8), we also write

kq ¼ Lx0; ð12Þ

where

L ¼ ei1i2...inðAi1i2...in þ AJ1
r1 i2i3...iny

r1
J1i1 þ AJ1

r1
J2
r2 i3i4...iny

r1
J1i1y

r2
J2i2

þ � � � þ AJ1
r1

J2
r2 . . .

Jn�1
rn�1 in y

r1
J1i1y

r2
J2i2 . . .y

rn�1
Jn�1in�1

þ AJ1
r1

J2
r2 . . .

Jn
rny

r1
J1i1y

r2
J2j2 . . .y

rn
JninÞ:

ð13Þ

L is a function on Vrþ1 called the Lagrange function, associated with ρ (or with the
Lagrangian kq).

Remark 1 Sometimes, the integration domain Ω in the variational functional qX is
not fixed, but is arbitrary. Then, formula (2) defines a family of variational func-
tionals labeled by Ω. This situation usually appears in variational principles in
physics.

Remark 2 Orientability of the base X of the fibered manifold Y is not an essential
assumption; replacing differential forms by twisted base differential forms, one can
also develop the variational theory for non-orientable bases X [K10]. Variational
functionals, defined on fibered manifolds over non-orientable bases, may appear in
the general relativity theory and field theory, and in the variational theory for
submanifolds.

Remark 3 (The structure of Lagrange functions) Formulas (12) and (13) describe
the general structure of the Lagrangians, associated with the class of variational
functionals (2). The Lagrange functions L that appear in chart descriptions of the
Lagrangians are multilinear, symmetric functions of the variables yrI , where
jIj ¼ r þ 1.

Remark 4 (Lagrangians) Let ρ be an n-form belonging to the submodule Xr
n;XW �

Xr
nW of pr-horizontal forms, expressed as

q ¼ 1
n!
Ai1i2...indx

i1 ^ dxi2 ^ � � � ^ dxin : ð14Þ

Then, since dxi1 ^ dxi2 ^ � � � ^ dxin ¼ ei1i2...inx0, one can equivalently write

q ¼ Lx0; ð15Þ

where the Lagrange function L is given by

L ¼ 1
n!
Ai1i2...ine

i1i2...in : ð16Þ
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The following lemma describes all n-forms q 2 Xr
nW , whose associated

Lagrangians belong to the module Xr
nW , that is, are of order r.

Lemma 1 For a form q 2 Xr
nW, the following two conditions are equivalent:

1. The Lagrangian kq is defined on Wr.
2. In any fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, on Y, ρ has an expression

q ¼ Lx0 þ
X

0� jJj � r�1

xr
J ^ UJ

r þ
X

jJj¼r�1

dxr
J ^WJ

r ð17Þ

for some function L and some forms UJ
r and WJ

r.

Proof This follows from (5) and (13). h

4.2 Variational Derivatives

Let U be an open subset of X, c: U ! Y a section, and let N be a π-projectable vector
field on an open setW � Y such that cðUÞ � W . If at is the local 1-parameter group
of N, and að0Þt its π-projection, then

ct ¼ atca
�1
ð0Þt ð18Þ

is a 1-parameter family of sections of Y, depending differentiably on the parameter t:
Indeed, since pat ¼ að0Þtp, we have

pctðxÞ ¼ patca
�1
ð0ÞtðxÞ ¼ að0Þtpca�1

ð0ÞtðxÞ ¼ að0Þta�1
ð0ÞtðxÞ ¼ x ð19Þ

on the domain of ct, so ct is a section for each t. The family ct is called the
variation, or deformation, of the section γ, induced by the vector field N.

Recall that a vector field along γ is a mapping N: U ! TY such that NðxÞ 2
TcðxÞY for every point x 2 U. Given N, formula

n ¼ Tp � N ð20Þ

then defines a vector field ξ on U, called the π-projection of N.
The following theorem says that every vector field along a section γ can be

extended to a π-projectable vector field, defined on a neighborhood of the image of
γ in Y. Moreover, the r-jet prolongation of the extended vector field, considered
along Jrc, is independent of the extension.
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Theorem 1 Let γ be a section of Y defined on an open set U � X, let N be a vector
field along γ.

(a) There exists a p-projectable vector field ~N, defined on a neighborhood of the
set cðUÞ, such that for each x 2 U

~NðcðxÞÞ ¼ NðcðxÞÞ: ð21Þ

(b) Any two p-projectable vector fields N1;N2, defined on a neighborhood of
cðUÞ, such that N1ðcðxÞÞ ¼ N2ðcðxÞÞ for all x 2 U, satisfy

JrN1ðJrxcÞ ¼ JrN2ðJrxcÞ: ð22Þ

Proof

(a) Choose x0 2 U and a fibered chart ðV0;w0Þ;w0 ¼ ðxi0; yr0Þ, at the point
cðx0Þ 2 Y , such that pðV0Þ � U and cðpðV0ÞÞ � V0. N has in this chart an
expression

NðcðxÞÞ ¼ niðxÞ @

@xi

� �
cðxÞ

þ NrðxÞ @

@yr

� �
cðxÞ

ð23Þ

on pðV0Þ. Set for any y 2 V0; ~n
iðyÞ ¼ niðpðyÞÞ; ~NrðyÞ ¼ NrðpðyÞÞ and define a

vector field ~N on V0 by

~N ¼ ~ni
@

@xi
þ ~Nr @

@yr
: ð24Þ

The vector field ~N satisfies ~NðcðxÞÞ ¼ NðcðxÞÞ on pðV0Þ.
Applying this construction to every point of the domain of definition U of N,
we may suppose that we have families of fibered charts ðVi;wiÞ;wi ¼ ðxii; yri Þ,
and vector fields ~Ni, where ι runs through an index set I, such that pðViÞ �
U; cðpðViÞÞ � Vi for every i 2 I; ~Ni is defined on Vi, and ~NiðcðxÞÞ ¼ ~NðcðxÞÞ
for all pðViÞ.
Let fvigi2I be a partition of unity, subordinate to the covering fVigi2I of the
set cðUÞ � Y . Setting

~N ¼
X
i2I

vi~Ni; ð25Þ

we get a vector field on the open set V ¼ [Vi. For any x 2 U, the point cðxÞ
belongs to some of the sets Vi; thus, cðUÞ � V . The value of ~NðcðxÞÞ is
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~NðcðxÞÞ ¼
X
i2I

viðcðxÞÞ~NiðcðxÞÞ ¼
X
i2I

viðcðxÞÞ
 !

NðcðxÞÞ

¼ NðcðxÞÞ
ð26Þ

because fvigi2I is a partition of unity.
(b) It is sufficient to verify equality (22) in a chart. Suppose that

N1 ¼ ni
@

@xi
þ Nr @

@yr
; N2 ¼ fi

@

@xi
þ Zr @

@yr
ð27Þ

and

ni ¼ fi; Nr � c ¼ Zr � c: ð28Þ

Then from the formulas,

Nr
j1j2...jk ¼ djkN

r
j1j2...jk�1

� yrj1j2...jk�1i
@ni

@xjk
;

Zr
j1j2...jk ¼ djkZ

r
j1j2...jk�1

� yrj1j2...jk�1i
@fi

@xjk

ð29Þ

for the components of JrN1 and JrN2 (Sect. 1.7, Lemma 10), and from the
formal derivative formula (28), Sect. 2.1, we observe that the left-hand sides in
(29) are polynomials in the variables yrj1j2...js ; 1� s� r. Therefore, condition
(28) applies to the coefficients of these polynomials, and we get
Nr
j1j2...jk � Jrc ¼ Zr

j1j2...jk � Jrc. h

A π-projectable vector field ~N, satisfying condition (a) of Theorem 1, is called a
π-projectable extension of N. Using (b) and any π-projectable extension ~N, we may
define, for the given section γ,

JrNðJrxcÞ ¼ Jr ~NðJrxcÞ: ð30Þ

Then, JrN is a vector field along the r-jet prolongation Jrc of γ; we call this vector
field the r-jet prolongation of the vector field (along γ) N.

Variations (“deformations”) of sections induce the corresponding variations
(“deformations”) of the variational functionals. Let q 2 Xr

nW be a form, X � pðWÞ
a piece of X. Choose a section c 2 CXðpjWÞ and a π-projectable vector field N onW,
and consider the variation (1) of γ, induced by N. Since the domain of ct contains Ω
for all sufficiently small t, the value of the variational functional CXðpjWÞ 3 c !
qXðcÞ 2 R at ct is defined, and we get a real-valued function, defined on a
neighborhood ð�e; eÞ of the point 0 2 R,
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ð�e; eÞ 3 t ! qað0ÞtðXÞðatca�1
ð0ÞtÞ ¼

Z
að0ÞtðXÞ

Jrðatca�1
ð0ÞtÞ*q 2 R: ð31Þ

It is easily seen that this function is differentiable. Since

Jrðatca�1
ð0ÞtÞ*q ¼ ða�1

ð0ÞtÞ*ðJrcÞ*ðJratÞ*q; ð32Þ

where Jrat is the local 1-parameter group of the r-jet prolongation JrN of the vector
field Ξ, we have, using properties of the pullback operation and the theorem on
transformation of the integration domain,Z

að0ÞtðXÞ

ðJrðatca�1
ð0ÞtÞÞ*q ¼

Z
X

Jrc*ðJratÞ*q: ð33Þ

Thus, since the piece Ω is compact, differentiability of the function (31) follows
from the theorem on differentiation of an integral, depending upon a parameter.

Differentiating (31) at t = 0 one obtains, using (33) and the definition of the Lie
derivative,

d
dt

qXðatca�1
ð0ÞtÞ

� �
0
¼
Z
X

Jrc*oJrNq: ð34Þ

Note that this expression can be written, in the notation introduced by formula (19),
Sect. 4.1, as

ð@JrNqÞXðcÞ ¼
Z
X

Jrc*oJrNq: ð35Þ

The number (35) is called the variation of the integral variational functional qX at
the point c, induced by the vector field Ξ.

This formula shows that the function CXðpjWÞ 3 c ! ðoJrNkÞXðcÞ 2 R is the
variational functional (over Ω), defined by the form oJrNq. We call this functional
the variational derivative, or the first variation of the variational functional qX by
the vector field Ξ.

Formula (35) admits a direct generalization. If Z is another π-projectable vector
field on W, then the second variational derivative, or the second variation, of the
variational functional qX by the vector fields Ξ and Z, is the mapping
CXðpjWÞ 3 c ! ðoJrZoJrNqÞXðcÞ 2 R, defined by

ð@JrZoJrNqÞXðcÞ ¼
Z
X

Jrc*oJrZ@JrNq: ð36Þ
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It is now obvious how higher-order variational derivatives are defined: one should
simply apply the Lie derivative (with respect to different vector fields) several
times.

A section c 2 CXðpjW Þ is called a stable point of the variational functional kX
with respect to its variation Ξ, if

ðoJrNqÞXðcÞ ¼ 0: ð37Þ

In practice, one usually requires that a section be a stable point with respect to a
family of its variations, defined by the problem considered.

Formula (35) can also be expressed in terms of the Lagrangian kq ¼ hq, the
horizontal component of ρ. Since for any π-projectable vector field Ξ, the Lie
derivative by its r-jet prolongation JrN commutes with the horizontalization,

h@JrNq ¼ @JrNhq ð38Þ

(see Sect. 2.5, Theorem 9, (d)), the first variation of the integral variational func-
tional qX at a point c 2 CXðpjW Þ, induced by the vector field Ξ, can be written as

ðoJrNqÞXðcÞ ¼
Z
X

Jrþ1c*oJrþ1Nkq: ð39Þ

4.3 Lepage Forms

In this section, we introduce a class of n-forms ρ on the r-jet prolongation JrY of the
fibered manifold Y, defining variational structures (W, ρ) by imposing certain
conditions on the exterior derivative dρ. Properties of these forms determine the
structure of the Lie derivatives oJrNq, where Ξ is a π-projectable vector field on Y,
and of the integrands of the variational functionals c ! ðoJrNqÞXðcÞ (35). Roughly
speaking, we study those forms ρ for which the well-known Cartan’s formula
oJrNq ¼ iJrNdqþ diJrNq of the calculus of forms becomes an infinitesimal analogue
of the integral first variation formula, known from the classical calculus of varia-
tions on Euclidean spaces.

First, we summarize some useful notation related with a chart ðU;uÞ;u ¼ ðxiÞ,
on an n-dimensional manifold X. Denote

x0 ¼ 1
n!
ei1i2...indx

i1 ^ dxi2 ^ � � � ^ dxin ;

xk1 ¼
1

1!ðn� 1Þ! ek1i2i3...indx
i2 ^ dxi3 ^ � � � ^ dxin ;

xk1k2 ¼
1

2!ðn� 2Þ! ek1k2i3i4...indx
i3 ^ dxi4 ^ � � � ^ dxin :

ð40Þ
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The inverse transformation formulas are

dxl1 ^ dxl2 ^ � � � ^ dxln ¼ el1l2...lnx0;

dxl2 ^ dxl3 ^ � � � ^ dxln ¼ ek1l2l3...lnxk1 ;

dxl3 ^ dxl4 ^ � � � ^ dxin ¼ ek1k2l3l4...lnxk1k2

ð41Þ

(cf. Appendix 10). Also note that xjk can be written as

xjk ¼ i@=@x j i@=@xkx0

¼ ð�1Þjþkdx1 ^ dx2 ^ � � � ^ dxj�1 ^ dxjþ1 ^ � � � ^ dxk�1 ^ � � � ^ dxn;
ð42Þ

whenever j < k. Then,

dxl ^ xjk ¼ dljxk � dlkxj; ð43Þ

which is an immediate consequence of definitions: since we have the identity
xk ¼ ð�1Þk�1dxl ^ dx1 ^ dx2 ^ � � � ^ dxk�1 ^ dxkþ1 ^ � � � ^ dx, then

i@=@x jðdxl ^ xkÞ ¼ dlki@=@x jx0 ¼ dlkxj;

dljxk � dxl ^ i@=@x jxk ¼ dljxk � dxl ^ xjk:

(
ð44Þ

We prove three lemmas characterizing the structure of n-forms on the r-jet
prolongation JrY .

Lemma 2 An n-form ρ on Wr � JrY has in a fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, an
expression

q ¼ q0 þ ~qþ dg ð45Þ

with the following properties:

(a) The n-form q0 is generated by the contact forms xr
J , where 0� jJj � r � 1,

that is,

q0 ¼
X

0� jJj � r�1

xr
J ^ UJ

r; ð46Þ

where

UJ
r ¼ UJ

r ð1Þ þ UJ
r ð2Þ þ ~UJ

r; ð47Þ

the forms UJ
r ð1Þ are generated by the contact forms xr

J ; 0� jJj � r � 1;UJ
rð2Þ

are generated by dxr
I with jIj ¼ r � 1, and
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~UJ
r ¼ ~UJ

r i1i2...in�1dx
i1 ^ dxi2 ^ � � � ^ dxin�1

þ ~UJ
r

I1
r1 i2i3...in�1dy

r1
I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxin�1

þ ~UJ
r

I1
r1

I2
r2 i3i4...in�1dy

r1
I1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxin�1

þ � � � þ ~UJ
r

I1
r1

I2
r2 . . .

In�2
rn�2 in�1dy

r1
I1 ^ dyr2I2 ^ � � � ^ dyrn�2

In�2
^ dxin�1

þ ~UJ
r

I1
r1

I2
r2 . . .

In�1
rn�1

dyr1I1 ^ dyr2I2 ^ � � � ^ dyrn�1
In�1

;

ð48Þ

where the multi-indices are of length jI1j; jI2j; . . .; jIn�1j ¼ r and all the
coefficients ~UJ

r
I1
r1 i2i3...in�1 ;

~UJ
r

I1
r1

I2
r2 i3i4...in�1 ; . . .;

~UJ
r

I1
r1

I2
r2 . . .

In�2
rn�2 in�1 are traceless.

(b) η is a contact (n − 1)-form such that

g ¼
X

jIj¼r�1

xr
I ^WI

r; ð49Þ

where the forms WI
r do not contain any exterior factor xr

J such that
0� jJj � r � 1.

(c) ~q has an expression

~q ¼ Ai1i2...indx
i1 ^ dxi2 ^ � � � ^ dxin

þ AI1
r1 i2i3...indy

r1
I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxin

þ AI1
r1

I2
r2 i3i4...indy

r1
I1 ^ dyr2I2 ^ dxi3 ^ dxi4 ^ � � � ^ dxin

þ � � � þ AI1
r1

I2
r2 . . .

In�1
rn�1 indy

r1
I1 ^ dyr2I2 ^ � � � ^ dyrn�1

In�1
^ dxin

þ AI1
r1

I2
r2 . . .

In
rndy

r1
I1 ^ dyr2I2 ^ � � � ^ dyrnIn ;

ð50Þ

where jI1j; jI2j; . . .; jInj ¼ r and all the coefficients AI1
r1 i2i3...in ;A

I1
r1

I2
r2 i3i4...in ; . . .;

AI1
r1

I2
r2
. . .In�1

rn�1 in are traceless.

Proof From the trace decomposition theorem (Sect. 2.2, Theorem 3), ρ can be
written as

q ¼ qð1Þ þ qð2Þ þ ~q; ð51Þ

where qð1Þ includes all xr
J -generated terms, where 0� jJj � r � 1; qð2Þ includes all

dxr
I -generated terms with jJj ¼ r � 1 (and does not contain any exterior factor xr

J ),
and ~q is expressed by (50). Then,

qð2Þ ¼
X

jIj¼r�1

dxr
I ^WI

r ¼ d
X

jIj¼r�1

xr
I ^WI

r

0
@

1
A�

X
jIj¼r�1

xr
I ^ dWI

r; ð52Þ
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so we get

q ¼ qð1Þ �
X

jIj¼r�1

xr
I ^ dWI

r þ d
X

jIj¼r�1

xr
I ^WI

r

0
@

1
Aþ ~q

¼ q0 þ d
X

jIj¼r�1

xr
I ^WI

r

0
@

1
Aþ ~q;

ð53Þ

proving Lemma 2. h

Our next aim will be to find the chart expression for the horizontal and 1-contact
components of the n-form

s ¼ q0 þ ~q ð54Þ

from Lemma 2.

Lemma 3 Suppose that s has an expression (46) and (50).

(a) The horizontal component hs is given by

hs ¼ ðAi1i2...in þ AI1
r1 i2i3...in y

r1
I1i1 þ AI1

r1
I2
r2 i3i4...iny

r1
I1i1y

r2
I2i2

þ � � � þ AI1
r1

I2
r2
. . .In�1

rn�1 iny
r1
I1i1y

r2
I2i2 . . .y

rn�1
In�1in�1

þ AI1
r1

I2
r2 . . .

In
rny

r1
I1i1y

r2
I2i2 . . .y

rn
IninÞdxi1 ^ dxi2 ^ � � � ^ dxin :

ð55Þ

(b) The 1-contact component p1s is given by

p1s ¼
X

0� jJj � r�1

ð~UJ
r i2i3...in þ ~UJ

r
I2
r2 i3i4...iny

r2
I2i2 þ ~UJ

r
I2
r2

I3
r3 i4i5...in y

r2
I2i2y

r3
I3i3

þ � � � þ ~UJ
r

I2
r2

I3
r3 . . .

In�1
rn�1 in y

r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ ~UJ
r

I2
r2

I3
r3 . . .

In
rny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞxr

J ^ dxi2 ^ dxi3 ^ � � � ^ dxin

þ
X
jIj¼r

ðAI
r i2i3...in þ 2AI

r1
I2
r2 i3i4...in y

r2
I2i2 þ 3AI

r
I2
r2

I3
r3 i4i5...iny

r2
I2i2y

r3
I3i3

þ � � � þ ðn� 1ÞAI
r

I2
r2
. . .In�1

rn�1 in y
r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ nAI
r

I2
r2 . . .

In
rny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞxr

I ^ dxi2 ^ dxi3 ^ � � � ^ dxin :

ð56Þ

Proof

(a) Clearly, hs ¼ h~q and (55) follows.
(b) The form p1s is given by
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p1s ¼
X

0� jJj � r�1

xr
J ^ hUJ

r þ p1~q: ð57Þ

Then,

h~UJ
r ¼ ð~UJ

r i1i2...in�1 þ ~UJ
r

I1
r1 i2i3...in�1y

r1
I1i1 þ ~UJ

r
I1
r1

I2
r2 i3i4...in�1y

r1
I1i1y

r2
I2i2

þ � � � þ ~UJ
r

I1
r1

I2
r2 . . .

In�2
rn�2 in�1y

r1
I1i1y

r2
I2i2 . . .y

rn�2
In�2in�2

þ ~UJ
r

I1
r1

I2
r2 . . .

In�1
rn�1

yr1I1i1y
r2
I2i2 . . .y

rn�1
In�1in�1

Þdxi1 ^ dxi2 ^ � � � ^ dxin�1

¼ ð~UJ
r i2i3...in þ ~UJ

r
I2
r2 i3i4...in y

r2
I2i2 þ ~UJ

r
I2
r2

I3
r3 i4i5...in y

r2
I2i2y

r3
I3i3

þ � � � þ ~UJ
r

I2
r2

I3
r3 . . .

In�1
rn�1 in y

r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ ~UJ
r

I2
r2

I3
r3
. . .Inrny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞdxi2 ^ dxi3 ^ � � � ^ dxin ;

ð58Þ

and

p1~q ¼ ðAI1
r1 i2i3...in þ 2AI1

r1
I2
r2 i3i4...in y

r2
I2i2 þ 3AI1

r1
I2
r2

I3
r3 i4i5...in y

r2
I2i2y

r3
I3i3

þ � � � þ ðn� 1ÞAI1
r1

I2
r2
. . .In�1

rn�1 iny
r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ nAI1
r1

I2
r2 . . .

In
rny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞxr1

I1 ^ dxi2 ^ dxi3 ^ � � � ^ dxin

¼
X
jIj¼r

ðAI
r i2i3...in þ 2AI

r1
I2
r2 i3i4...iny

r2
I2i2 þ 3AI

r
I2
r2

I3
r3 i4i5...iny

r2
I2i2y

r3
I3i3

þ � � � þ ðn� 1ÞAI
r

I2
r2 . . .

In�1
rn�1 in y

r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ nAI
r

I2
r2
. . .Inrny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞxr

I ^ dxi2 ^ dxi3 ^ � � � ^ dxin

ð59Þ

(56) now follows from (58) and (59). h

Now we find the chart expression for the pullback ðprþ1;rÞ*q. According to
Lemma 2,

ðprþ1;rÞ*q ¼ h~qþ p1ðq0 þ ~qÞ þ dgþ l; ð60Þ

where h~q ¼ hs and p1q0 þ p1~q are given by Lemma 3, and the order of contactness
of μ is ≥2 . We define f0 and f Jr

i by the formulas

h~q ¼ f0x0; p1ðq0 þ ~qÞ ¼
X

0� jJj � r

f Jr
ixr

J ^ xi: ð61Þ

Explicitly,

f0 ¼ ei1i2...inðAi1i2...in þ AI1
r1 i2i3...in y

r1
I1i1 þ AI1

r1
I2
r2 i3i4...in y

r1
I1i1y

r2
I2i2

þ � � � þ AI1
r1

I2
r2 . . .

In�1
rn�1 in y

r1
I1i1y

r2
I2i2 . . .y

rn�1
In�1in�1

þ AI1
r1

I2
r2 . . .

In
rny

r1
I1i1y

r2
I2i2 . . .y

rn
IninÞ;

ð62Þ
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and, since eii2i3...inxi ¼ dxi2 ^ dxi3 ^ � � � ^ dxin ;

f Jr
i ¼ eii2i3...inð~UJ

r i2i3...in þ ~UJ
r

I2
r2 i3i4...in y

r2
I2i2 þ ~UJ

r
I2
r2

I3
r3 i4i5...in y

r2
I2i2y

r3
I3i3

þ � � � þ ~UJ
r

I2
r2

I3
r3 . . .

In�1
rn�1 in y

r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ ~UJ
r

I2
r2

I3
r3 . . .

In
rny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞ;

ð63Þ

and

f Ir
i ¼ eii2i3...inðAI

r i2i3...in þ 2AI
r

I2
r2 i3i4...in y

r2
I2i2 þ 3AI

r
I2
r2

I3
r3 i4i5...in y

r2
I2i2y

r3
I3i3

þ � � � þ ðn� 1ÞAI
r

I2
r2 . . .

In�1
rn�1 in y

r2
I2i2y

r3
I3i3 . . .y

rn�1
In�1in�1

þ nAI
r

I2
r2 . . .

In
rny

r2
I2i2y

r3
I3i3 . . .y

rn
IninÞ;

ð64Þ

where 0� jJj � r � 1 and jIj ¼ r.

We further decompose the forms f Jr
ixr

J ^ xi.

Lemma 4 For k� 1, the forms xr
j1j2...jk ^ xi can be decomposed as

xr
l1l2...lk ^ xi ¼ 1

k þ 1
ðxr

l1l2...lk ^ xi

þ xr
il2l3...lk ^ xl1 þ xr

l1il3l4...lk ^ xl2 þ � � � þ xr
l1l2...lk�1i ^ xlk Þ

þ 1
k þ 1

ððxr
l1l2...lk ^ xi � xr

il2l3...lk ^ xl1Þ þ ðxr
l1l2...lk ^ xi � xr

l1il3l4...lk ^ xl2Þ
þ � � � þ ðxr

l1l2...lk ^ xi � xr
l1l2...lk�1i ^ xlk ÞÞ:

ð65Þ

The forms xr
l1l2...lk ^ xi � xr

l1l2...lp�1ilpþ1...lk�1lk ^ xlp are closed and can be expressed

as

xr
l1l2...lk ^ xi � xr

l1l2...lp�1ilpþ1...lk�1lk ^ xlp ¼ dðxr
l1l2...lp�1lpþ1...lk�1lk ^ xilpÞ: ð66Þ

Proof Indeed, from (43)

dxr
l1l2...lp�1lpþ1...lk�1lk ^ xlpi

¼ �xr
l1l2...lp�1lpþ1...lk�1lk j ^ dx j ^ xlpi

¼ �xr
l1l2...lp�1lpþ1...lk�1lk j ^ dx j ^ xlpi

¼ xr
l1l2...lp�1lpþ1...lk�1lk j ^ ðd j

ixlp � d j
lpxiÞ

¼ �xr
l1l2...lp�1lpþ1...lk�1lk lp ^ xi þ xr

l1l2...lp�1lpþ1...lk�1lk i ^ xlp :

ð67Þ

h
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Now we are in a position to prove the following theorem on the structure of n-
forms on Wr.

Theorem 2 Let q 2 Xr
nW. For every fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, the pull-

back ðprþ1;rÞ*q has an expression

ðprþ1;rÞ*q ¼ f0x0 þ
X

0� jJj � r

PJ
r

ixr
J ^ xi þ dgþ l; ð68Þ

where the components PJ
r

i are symmetric in the superscripts, η is a 1-contact form,
and μ is a contact form whose order of contactness is ≥2. The functions PI

r
i such

that jIj ¼ r satisfy

PI
r

i ¼ @f0
@yrIi

: ð69Þ

The forms f0x0;
P

PJ
r

ixr
J ^ xi and μ in this decomposition are unique.

Proof We use formulas (60) and (61) and apply Lemma 4 to the forms f Jr
ixr

J ^ xi.
Write with explicit index notation f Jr

i ¼ Pj1j2...jk
r

i. We have the decomposition

f j1j2...jkr
i ¼ Pj1j2...jk

r
i þ Qj1j2...jk

r
i; ð70Þ

where Pj1j2...jk
r

i ¼ f j1j2...jkr
i Symðj1j2. . .jkiÞ is the symmetric component, and

Qj1j2...jk
r

i is the complementary component of the system f j1j2...jkr
i. We have, for each

k, 1� k� r,

f j1j2...jkr
ixr

j1j2...jk ^ xi ¼ Pj1j2...jk
r

ixr
j1j2...jk ^ xi � 1

k þ 1
Qj1j2...jk

r
idðxr

j2j3...jk ^ xj1i

þ xr
j1j3j4...jk ^ xj2i þ � � � þ xr

j1j2...jk�1
^ xjk iÞ

¼ Pj1j2...jk
r

ixr
j1j2...jk ^ xi � 1

k þ 1
dðQj1j2...jk

r
iðxr

j2j3...jk ^ xj1i

þ xr
j1j3j4...jk ^ xj2i þ � � � þ xr

j1j2...jk�1
^ xjk iÞÞ

þ 1
k þ 1

dQj1j2...jk
r

i ^ ðxr
j2j3...jk ^ xj1i þ xr

j1j3j4...jk ^ xj2i

þ � � � þ xr
j1j2...jk�1

^ xjk iÞ: ð71Þ

The exterior derivative dQj1j2...jk
r

i, when lifted to the set Vrþ2, can be decomposed as

ðprþ2;rþ1Þ*dQj1j2...jk
r

i ¼ hdQj1j2...jk
r

i þ pdQj1j2...jk
r

i

¼ dpQ
j1j2...jk
r

idxp þ pdQj1j2...jk
r

i:
ð72Þ
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Substituting from (72) back to (71), we get 1-contact and a 2-contact summands.
The 1-contact summands are equal to

hdQj1j2...jk
r

i ^ ðxr
j2j3...jk ^ xj1i þ xr

j1j3j4...jk ^ xj2i þ � � � þ xr
j1j2...jk�1

^ xjk iÞ
¼ �dpQ

j1j2...jk
r

iðxr
j2j3...jk ^ dxp ^ xj1i þ xr

j1j3j4...jk ^ dxp ^ xj2i

þ � � � þ xr
j1j2...jk�1

^ dxp ^ xjk iÞ
¼ �dpQ

j1j2...jk
r

iðxr
j2j3...jk ^ ðdpj1xi � dpi xj1Þ

þ xr
j1j3j4...jk ^ ðdpj2xi � dpi xj2Þ þ � � � þ xr

j1j2...jk�1
^ ðdpjkxi � dpixjk ÞÞ

¼ �ðdpQpj2j3...jk
r

ixr
j2j3...jk þ dpQ

j1pj3j4...jk
r

ixr
j1j3j4...jk

þ � � � þ dpQ
j1j2...jk�1p
r

ixr
j1j2...jk�1

Þxi þ dpQ
j1j2...jk
r

pðxr
j2j3...jk ^ xj1

þ xr
j1j3j4...jk ^ xj2 þ � � � þ xr

j1j2...jk�1
^ xjk Þ

¼ �kdpðQpj2j3...jk
r

i � Qij2j3...jk
r

pÞxr
j2j3...jk ^ xi:

ð73Þ

Note that from the definition of the functions Qpj2j3...jk
r

i and from formula (63), we
easily see that this form is prþ2;rþ1-projectable. Thus, returning to (71), we have on
Vrþ1

f j1j2...jkr
ixr

j1j2...jk ^ xi ¼ Pj1j2...jk
r

ixr
j1j2...jk ^ xi

� k
k þ 1

dpðQpj2j3...jk
r

i � Qij2j3...jk
r

pÞxr
j2j3...jk ^ xi

� 1
k þ 1

dðQj1j2...jk
r

iðxr
j2j3...jk ^ xj1i þ xr

j1j3j4...jk ^ xj2i

þ � � � þ xr
j1j2...jk�1

^ xjk iÞÞ

þ 1
k þ 1

pdQj1j2...jk
r

i ^ ðxr
j2j3...jk ^ xj1i þ xr

j1j3j4...jk ^ xj2i

þ � � � þ xr
j1j2...jk�1

^ xjk iÞ: ð74Þ

This sum replaces f Jr
ixr

J ^ xi, where jJj ¼ k, with the symmetrized term
PJ
r

ixr
J ^ xi, a term dpðQpj2j3...jk

r
i � Qij2j3...jk

r
pÞxr

j2j3...jk ^ xi containing xr
J ^ xi with

jJj ¼ k � 1, a closed form, and a 2-contact term.
Using these expressions in (60), written as

ðprþ1;rÞ*q ¼ f0x0 þ
X

0� jJj � r

f Jr
ixr

J ^ xi þ dgþ l; ð75Þ
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we can redefine the coefficients and get

ðprþ1;rÞ*q ¼ f0x0 þ
X

0� jJj � r�1

f Jr
ixr

J ^ xi þ
X
jJj � r

PJ
r

ixr
J ^ xi þ dgþ l: ð76Þ

After r steps, we get (68).
To prove (69), we differentiate (62) and compare the result with (64).
It remains to prove uniqueness of the decomposition (68). Supposing that

ðprþ1;rÞ*q ¼ 0, we immediately obtain f0x0 ¼ 0 and μ = 0; hence,X
0� jJj � r

PJ
r

ixr
J ^ xi þ dg ¼ 0: ð77Þ

Differentiating (77) and taking into account the 1-contact component of the
resulting (n + 1)-form,X

0� jJj � r

p1ðdPJ
r

i ^ xr
J ^ xi � PJ

r
ixr

Ji ^ x0Þ

¼ �
X

0� jJj � r

ðdiPJ
r

i ^ xr
J � PJ

r
ixr

JiÞ ^ x0 ¼ 0;
ð78Þ

which is only possible when PJ
r

i ¼ 0 because PJ
r

i are symmetric in the
superscripts. h

In the following lemma, we consider vector fields on any fibered manifold
Y with base X and projection π.

Lemma 5 Let ξ be a vector field on X. There exists a π-projectable vector field ~n on
Y whose p-projection is n.

Proof We can construct ~n by means of an atlas on Y, consisting of fibered charts,
and a subordinate partition of unity (cf. Theorem 1, Sect. 4.2). h

Now we study properties of differential n-forms ρ, defined on Wr � JrY , which
play a key role in global variational geometry. To this purpose, we write the
decomposition formula (68) as

ðprþ1;rÞ*q ¼ f0x0 þ Pr
ixr ^ xi þ

Xr
k¼1

Pj1j2...jk
r

ixr
j1j2...jk ^ xi þ dgþ l; ð79Þ

where

Pj1j2...jr
r

i ¼ @f0
@yrj1j2...jr i

: ð80Þ
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Lemma 6 Let q 2 Xr
nW. The following three conditions are equivalent:

(a) p1dq is a prþ1;0-horizontal (n + 1)-form.
(b) For each pr;0-vertical vector field n on Wr,

hindq ¼ 0: ð81Þ

(c) The pullback ðprþ1;rÞ*q has the chart expression (79), such that the coeffi-
cients satisfy

@f0
@yrj1j2...jk

� diPj1j2...jk
r

i � Pj1j2...jk�1
r

jk ¼ 0; k ¼ 1; 2; . . .; r: ð82Þ

(d) p1dq belongs to the ideal on the exterior algebra on Wrþ1, locally generated
by the forms xr.

Proof

1. Let Ξ be a vector field on Wr, ~N a vector field on Wrþ1 such that Tprþ1;r � ~N ¼
N � prþ1;r (Lemma 5). Then, i~Nðpsþ1;sÞ*dq ¼ ðpsþ1;sÞ*iNdq, and the forms on
both sides can canonically be decomposed into their contact components. We
have

i~Np1dqþ i~Np2dqþ � � � þ i~Npnþ1dq ¼ hiNdqþ p1iNdqþ � � � þ pniNdq: ð83Þ

Comparing the horizontal components on both sides, we get

hi~Np1dq ¼ ðprþ2;rþ1Þ*hiNdq: ð84Þ

Let p1dq be prþ1;0-horizontal. Then if Ξ is pr;0-vertical, ~N is prþ1;0-vertical, and
we get hi~Np1dq ¼ ðprþ2;rþ1Þ*hiNdq ¼ 0, which implies, by injectivity of the
mapping ðprþ2;rþ1Þ* that hiNdq ¼ 0.
Conversely, let hiNdq ¼ 0 for each pr;0-vertical vector field ξ. Then by (84),
hi~Np1dq ¼ i~Np1dq ¼ 0 for all prþ1;r-projectable, prþ1;0-vertical vector fields ~N.
If in a fibered chart,

~N ¼
Xr
k¼1

Nr
j1j2...jk

@

@yrj1j2...jk
ð85Þ

and

p1dq ¼
Xr
k¼0

Aj1j2...jk
r xr

j1j2...jk ^ x0; ð86Þ
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then we get

Aj1j2...jk
r ¼ 0; 1� k� r; ð87Þ

proving prþ1;0-horizontality of p1dq. This proves that conditions (a) and (b) are
equivalent.

2. Express ðprþ1;rÞ*q in a fibered chart by (79). Then,

p1dq ¼ @f0
@yr

� diPr
i

� �
xr ^ x0

þ
Xr
k¼1

@f0
@yrj1j2...jk

� diP
j1j2...jk
r

i � Pj1j2...jk�1
r

jk

 !
xr

j1j2...jk ^ x0

þ @f0
@yrj1j2...jrþ1

� Pj1j2...jr
r

jrþ1

 !
xr

j1j2...jr jrþ1
^ x0

ð88Þ

Formula (88) proves equivalence of conditions (a) and (c).
3. Conditions (a) and (d) are obviously equivalent. h

Any form q 2 Xr
nW such that the 1-contact form p1dq is prþ1;0-horizontal, is

called a Lepage form. Lepage forms may equivalently be defined by any of the
equivalent conditions of Lemma 6.

Remark 5 (Existence of Lepage forms) It is easily seen that the system (82) has
always a solution, and the solution is unique. Indeed,

Pj1j2...jk�1
r

jk ¼ @f0
@yrj1j2...jk

� di1P
j1j2...jk
r

i1

¼ @f0
@yrj1j2...jk

� di1
@f0

@yrj1j2...jk i1
� di2P

j1j2...jk i1
r

i2

 !

¼ @f0
@yrj1j2...jk

� di1
@f0

@yrj1j2...jk i1
þ di1di2P

j1j2...jk�1i1
r

i2

¼ @f0
@yrj1j2...jk

� di1
@f0

@yrj1j2...jk i1
þ di1di2

@f0
@yrj1j2...jk�1i1i2

� di3P
j1j2...jk�1i1i2
r

i3

 !

¼ . . . ¼
Xrþ1�k

l¼0

ð�1Þldi1di2 . . .dil
@f0

@yrj1j2...jk i1i2...il
; ð89Þ
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so the coefficients Pj1
r ;P

j1j2...jk�1
r

jk are completely determined by the function f0. In
particular, Lepage forms always exist over fibered coordinate neighborhoods. One
can also interpret this result in such a way that to any form q 2 Xr

nW and any
fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, on W, one can always assign a Lepage form,
belonging to the module Xrþ1

n V . Note that we have already considered conditions
(82) in connection with the integrability condition for formal differential equations
(cf. Sect. 3.2, Lemma 3).

Theorem 3 A form q 2 Xr
nW is a Lepage form if and only if for every fibered chart

ðV ;wÞ;w ¼ ðxi; yrÞ, on Y such that V � W ; ðprþ1;rÞ*q has an expression

ðprþ1;rÞ*q ¼ Hþ dgþ l; ð90Þ

where

H ¼ f0x0 þ
Xr
k¼0

Xr�k

l¼0

ð�1Þldp1dp2 . . .dpl
@f0

@yrj1j2...jkp1p2...pli

 !
xr

j1j2...jk ^ xi; ð91Þ

f0 is a function, defined by the chart expression hq ¼ f0x0; g is a 1-contact form,
and μ is a contact form whose order of contactness is ≥2.

Proof Suppose we have a Lepage form ρ expressed by (79) where conditions (82)
are satisfied, and consider conditions (59). Then repeating (89), we get formula
(91). The converse follows from (88) and (79). h

The n-form H defined by (91) is sometimes called the principal component of
the Lepage form ρ with respect to the fibered chart ðV ;wÞ. Note that H depends
only on the Lagrangian hq ¼ kq associated with ρ; the forms H constructed this
way are defined only locally, but their horizontal components define a global form.

Remark 6 Equation (82) include conditions ensuring that the order of the functions
Pj1j2...jk
r

i does not exceed the order of f0. We obtained these conditions using
polynomiality of the expression on the left-hand side in the jet variables
yrj1j2...jk ; k[ r þ 1. Similarly, when H is expressed by (91), the order restrictions
apply to f0 since the coefficients at xr

j1j2...jk ^ xi should be of order � r þ 1.

4.4 Euler–Lagrange Forms

We defined in Sect. 4.3 a Lepage form q 2 Xr
nW by a condition on the exterior

derivative q 2 Xr
nW , derived from the fibered manifold structure on Y. Namely, we

required that the 1-contact component p1dq should belong to the ideal of forms,
defined on Wrþ1, generated in any fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, by the contact
1-forms xr. Now we study properties of the exterior derivative dρ. We express a
Lepage form ρ as in formula (89), Sect. 4.3.
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Theorem 4 If q 2 Xr
nW is a Lepage form, then the form ðprþ1;rÞ*dq has an

expression

ðprþ1;rÞ*dq ¼ E þ F; ð92Þ

where E is a 1-contact, ðprþ1;0Þ-horizontal (n + 1)-form, and F is a form whose
order of contactness is ≥2. E is unique and has the chart expression

E ¼ @f0
@yr

�
Xrþ1

l¼1

ð�1Þl�1dp1dp2 . . .dpl
@f0

@yrp1p2...pl

 !
xr ^ x0: ð93Þ

Proof For any q;E ¼ p1dq and F ¼ p2dqþ p3dqþ � � � þ pnþ1dq. But for a
Lepage form ρ,

E ¼ p1dH ¼ @f0
@yr

� diP
i
r

� �
xr ^ x0; ð94Þ

where by Sect. 4.3, (89),

Pr
i ¼

Xs
l¼0

ð�1Þldp1dp2 . . .dpl
@f0

@yrp1p2...pli
: ð95Þ

This proves formula (93). h

Note that similarly as the form H, E depends only on the Lagrangian kq ¼ f0x0,
associated withH. The (n + 1)-form E is called the Euler–Lagrange form, associated
with the Lepage form ρ, or with the Lagrangian kq ¼ f0x0. The components of E

Erðf0Þ ¼ @f0
@yr

�
Xrþ1

l¼1

ð�1Þl�1dp1dp2 . . .dpl
@f0

@yrp1p2...pl
ð96Þ

are called the Euler–Lagrange expressions of the function f0, or of the Lagrangian
kq (in the given fibered chart).

4.5 Lepage Equivalents and the Euler–Lagrange Mapping

Our aim now will be to study Lepage forms with fixed horizontal components – the
Lagrangians. As before, denote byXr

n;XW the submodule of the moduleXr
nW , formed

by pr-horizontal n-forms (Lagrangians of order r for Y). Clearly, the set Xr
n;XW

contains the Lagrangians kg, associatedwith the n-forms g 2 Xr�1
n W , defined onWr�1.

The following is an existence theorem of Lepage forms whose horizontal
component is given.
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Theorem 5 To any Lagrangian k 2 Xr
n;XW, there exists an integer s� 2r � 1 and

a Lepage form q 2 Xs
nW of order of contactness ≤1 such that

hq ¼ k: ð97Þ

Proof We show that the theorem is true for s ¼ 2r � 1. Choose an atlas fðVi;wiÞg
on Y, consisting of fibered charts ðVi;wiÞ;wi ¼ ðxii; yri Þ, and a partition of unity
fvig, subordinate to the covering fVig of the fibered manifold Y. The functions vi
define (global) Lagrangians vik 2 Xr

n;XW . We have in the chart ðVi;wiÞ

k ¼ Lix0;i; ð98Þ

where x0;i ¼ dx1i ^ dx2i ^ � � � ^ dxni . Then, we set for each ι

Hi ¼ viLix 0;i

þ
Xr�1

k¼0

Xr�1�k

l¼0

ð�1Þldp1dp2 . . .dpl
@ðviLiÞ

@yðiÞ r
j1j2...jkp1p2...pli

 !
xr

j1j2...jk ;i ^ x0;i;
ð99Þ

where xr
j1j2...jk ;i ¼ dyrj1j2...jk ;i � yrj1j2...jk l;idx

l
i. Thus, Hi is the principal Lepage equiv-

alent of the Lagrangian k ¼ Lix0;i. Since the family fvig is locally finite, the
family fHig is also locally finite; thus, the sum q ¼PHi is defined. Then, we
have p1dq ¼P p1dHi; thus, ρ is a Lepage form, because each of the forms Hi is
Lepage. It remains to show that hq ¼ k. We have hq ¼P hHi ¼

P
viLix0;i. To

compute this expression, choose a fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, such that the
intersection V \ Vi is non-void for only finitely many indices ι. Using this chart, we
have k ¼ Lix0;i ¼ Lx0 on V \ Vi and, since

x0;i ¼ det
@xii
@x j

� �
� x0; ð100Þ

then,

Li det
@xii
@x j

� �
¼ L: ð101Þ

Consequently,

hq ¼
X

viLix0;i ¼
X

viLi det
@xii
@x j

� �
� x0 ¼ ð

X
viÞLx0 ¼ Lx0 ð102Þ

because
P

vi ¼ 1:
Let k 2 Xr

n;XW be a Lagrangian. A Lepage form q 2 Xs
nW such that hq ¼ k

(possibly up to a canonical jet projection) is called a Lepage equivalent of λ.
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If λ is expressed in a fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, as

k ¼ Lx0; ð103Þ

then the form

HL ¼ Lx0 þ
Xr�1

k¼0

Xr�1�k

l¼0

ð�1Þldp1dp2 . . .dpl
@L

@yrj1j2...jkp1p2...pli

 !
xr

j1j2...jk ^ xi ð104Þ

is called the principal Lepage equivalent of λ for the fibered chart ðV ;wÞ. This form
is in general defined on the set V2r�1 � W2r�1. h

Remark 7 The Lepage equivalent constructed in the proof of Theorem 5 is
p2r�1;r�1-horizontal, and its order of contactness is ≤1.

Remark 8 Theorem 5 says that the class of variational functionals, associated with
the variational structures (W, ρ), introduced in Sect. 4.1, remains the same when we
restrict ourselves to Lepage forms ρ. Thus, from now on, we may suppose without
loss of generality that the variational functionals

CXðpjWÞ 3 c ! qXðcÞ ¼
Z
X

Jrc*q 2 R ð105Þ

are defined by Lepage forms.

We give two basic examples of Lepage equivalents of Lagrangians.

Example 1 (Lepage forms of order 1) If k ¼ Lx0 is a Lagrangian of order 1, then
its principal Lepage equivalent is given by

Hk ¼ Lx0 þ @L

@yri
xr ^ xi: ð106Þ

The form (106) is called, due to Garcia [G], the Poincare-Cartan form. Its
invariance with respect to transformations of fibered charts can be proved by a
direct calculation (see Example 2).

Example 2 (Lepage forms of order 2) The principal Lepage equivalent of a second-
order Lagrangian k ¼ Lx0 is given by

HL ¼ Lx0 þ @L

@yri
� dj

@L

@yrij

 !
xr ^ xi þ @L

@yrij
xr

j ^ xi ð107Þ
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(Krupka [K13]). We show that in this case, HL is invariant with respect to all
transformations of fibered coordinates. It is sufficient to show that HL can be
introduced in a unique way by invariant conditions. We define a form H on W3 by
the following three conditions:

(a) H is a Lepage form, that is, p1dH is p3;0-horizontal.
(b) The horizontal component of H coincides with the given Lagrangian λ; this

condition reads hH ¼ k.

To state the third condition, we assign to any fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ,
the contact forms xr

j ^ xi. One can easily derive the transformation properties of

these forms. For any other fibered chart ð�V ; �wÞ; �w ¼ ð�xi;�yrÞ, the local volume
elements satisfy on the intersection V \ �V

x0 ¼ det
@xp

@�xp

� �
�x0: ð108Þ

Using this formula, we get

xi ¼ i@=@xix0 ¼ @�xl

@xi
det

@xp

@�xq

� �
� i@=@�xl �x0 ¼ @�xl

@xi
det

@xp

@�xq

� �
� �xl: ð109Þ

On the other hand, we know that

xr
j ¼

@yrj
@�ys

�xs þ @yrj
@�ysj

�xs
j ¼

@yrj
@�ys

�xs þ @yr

@�ys
@�xl

@x j
�xs
l ð110Þ

(Sect. 2.1, Theorem 1, Sect. 1.4, Example 5). These formulas imply

xr
j ^ xi ¼ det

@xp

@�xq

� �
@yrj
@�ys

@�xl

@xi
�xs ^ �xl

þ det
@xp

@�xq

� �
@yr

@�ys
@�xl

@xi
@�xk

@x j
�xs
k ^ �xl:

ð111Þ

In particular, the forms xr
i ^ xj þ xr

j ^ xi locally generate a submodule of the

module X3
nðW3Þ. For the purpose of this example, we denote this submodule by

H3
n;1ðW3Þ. Now we require, in addition to conditions (a) and (b),

(c) H 2 H3
n;1ðW3Þ.

Conditions (a), (b), and (c) uniquely define an n-form on W3, and this n-form is
obviously the form HL (107). Consequently, the principal Lepage equivalent HL

of a second-order Lagrangian λ is globally well-defined. We usually write Hk

instead of HL.
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Choosing for any Lagrangian k 2 Xr
n;XW a Lepage equivalent ρ of λ, we can

construct the Euler–Lagrange form E associated with ρ (93); this (n + 1)-form
depends on λ only. We denote this form by Ek and call it the Euler–Lagrange form,
associated with λ. Clearly, Ek may be defined by (local) principal Lepage equiv-
alents HL. Denoting by X2r�1

nþ1;YW the module of p2r�1;0-horizontal (n + 1)-forms on

W2r�1, we get the mapping

Xr
n;XW 3 k ! Ek 2 Xr

nþ1;YW ð112Þ

called the Euler–Lagrange mapping.

Remark 9 We can summarize basic motivations and properties of the Lepage forms
by means of their relationship to the Euler–Lagrange forms. Denote by LeprnW the
vector subspace of the real vector space Xr

nW , whose elements are Lepage forms.
Taking into account properties of the exterior derivative of a Lepage form, we see
that the Euler–Lagrange mapping makes the following diagram commutative:

Lepn
r W

h
n,X
r+1W

d E

n+1
r+1W

p1
n,Y
2(r+1)W

ð113Þ

Basic motivation for the notion of a Lepage form is the construction of this dia-
gram. Its commutativity demonstrates the relationship of the Euler–Lagrange
mapping and the exterior derivative of differential forms, just in the spirit of the
work of Lepage [Le]. Equation (113) shows that the Euler–Lagrange form has its
origin in the exterior derivative operator.

The following theorem describes the behavior of the Euler–Lagrange mapping
under automorphisms of the underlying fibered manifold; it says that transformed
Lagrangians have transformed Euler–Lagrange forms.

Theorem 6 For each Lagrangian k 2 Xr
n;XW and each automorphism α of Y

J2ra*Ek ¼ EJ2ra*k: ð114Þ

Proof To prove (114), we apply Theorem 4 of Sect. 4.4 to Lepage equivalents. Let
qk 2 Xs

nW be any Lepage equivalent of λ. Then,

ðpsþ1;sÞ*dq ¼ Ek þ Fk: ð115Þ

It is easily seen that the pullback Jsa*q is a Lepage form whose Lagrangian is
hJsa*q ¼ Jsþ1a*hq ¼ Jsþ1a*k. Then from standard commutativity of the pullback
and the exterior derivative, we have
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ðpsþ1;sÞ*dJsa*q ¼ ðpsþ1;sÞ*Jsa*dq ¼ Jsþ1a*ðpsþ1;sÞ*dq; ð116Þ

from which we conclude that Jsþ1a*Ek þ Jsþ1a*Fk ¼ EJsa*k þ FJsa*k. Theorem 6
now follows from the uniqueness of the 1-contact component of these forms. h

4.6 The First Variation Formula

Suppose that we have a variational structure (W, ρ), where W is an open set in a
fibered manifold Y with n-dimensional base X, and ρ is a Lepage form on the set
Wr � JrY . Recall that for any piece Ω of X, and any open set W � Y , the Lepage
form ρ defines the variational functional CW ðpjWÞ 3 c ! qXðcÞ 2 R by

qXðcÞ ¼
Z
X

Jrc*q ð117Þ

(Equation 2). The first variation of qX by a π-projectable vector field Ξ is the
variational functional CXðpjWÞ 3 c ! ðoJrNqÞXðcÞ 2 R, where

ðoJrNqÞXðcÞ ¼
Z
X

Jrc*oJrNq ð118Þ

(Equation 31). As before, denote by kq the horizontal component of the n-form ρ,
that is the Lagrangian, associated with ρ. For Lepage forms, the following theorem
on the structure of the integrand in the first variation (118) is just a restatement of
definitions.

Theorem 7 Let q 2 Xr
nW be a Lepage form, Ξ a π-projectable vector field on W.

(a) The Lie derivative oJrNq can be expressed as

oJrNq ¼ iJrNdqþ diJrNq: ð119Þ

(b) If Ξ is π-vertical, then

oJrþ1Nkq ¼ iJrþ1NEkq þ hdiJrNq: ð120Þ

(c) For any section γ of Y with values in W,

Jrc*oJrNq ¼ Jrþ1c*iJrþ1NEkq þ dJrc*iJrNq ð121Þ
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(d) For every piece Ω of X and every section γ of Y defined on Ω,Z
X

Jrc*@JrNq ¼
Z
X

Jrþ1c*iJrþ1NEk þ
Z
@X

Jrþ1c*iJrþ1Nq: ð122Þ

Proof

(a) This is a standard Lie derivative formula.
(b) If Ξ π-vertical, then since h@JrNq ¼ @JrNhq, we have from (119)

h@JrNq ¼ iJrNp1dqþ hdiJrNq, but p1dq ¼ Ekq because ρ is a Lepage form.
(c) Formula (120) can be proved by a straightforward calculation:

Jrc*@JrNq ¼ Jrc*iJrNdqþ Jrc*diJrNq

¼ Jrþ1c*hiJrNdqþ Jrc*diJrNq

¼ Jrþ1c*iJrþ1Np1dqþ Jrþ1c*iJrNp2dqþ Jrc*diJrNq

¼ Jrþ1c*iJrþ1NEkq þ Jrc*diJrNq:

ð123Þ

(d) Integrating (121) and using the Stokes’ theorem on integration of closed
(n − 1)-forms on pieces of n-dimensional manifolds, we get (122). h

Any of the formulas (119–121) is called, in the context of the variational theory
on fibered manifolds, the infinitesimal first variation formula; (122) is the integral
first variation formula.

Remark 10 Note that the infinitesimal first variation formulas in Theorem 7 have no
analogue in the classical formulation of the calculus of variations. These formulas
are based on the concept of a (global) Lepage form as well as on the use of
(invariant) geometric operations such as the Lie derivative, exterior derivative, and
contraction of a form by a vector field, describing the variation procedure.

Remark 11 Theorem 7 can be used to obtain the corresponding formulas for higher
variational derivatives (see Sect. 4.2).

4.7 Extremals

Let U � X be an open set, c: U ! W a section, and let N: U ! TY be a vector field
along the section γ; in our standard notation, γ is an element of the set CXðpjWÞ. The
support of the vector field Ξ is defined to be the set suppN ¼ clfx 2 UjNðxÞ 6¼ 0g
(cl means closure). We know that each differentiable vector field Ξ along γ can be
differentiably prolonged to a π-projectable vector field ~N defined on a neighborhood
of the set cðUÞ in W (Sect. 4.2, Theorem 1). ~N satisfies
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~N � c ¼ N: ð124Þ

This property of vector fields along sections will be used in the definition of
extremal sections, which can be introduced as follows.

Consider a Lepage form q 2 Xr
nW , and fix a piece Ω of X. We shall say that a

section c 2 CXðpjUÞ is an extremal of the variational functional CXðpjWÞ 3 c !
qXðcÞ 2 R on Ω, if for all π-projectable vector fields Ξ, such that suppðN � cÞ � X,Z

X

Jrc*oJrNq ¼ 0: ð125Þ

Condition (125) can also be expressed as ðoJrNqÞXðcÞ ¼ 0. γ is called an extremal of
the Lagrange structure (W, ρ), or simply an extremal, if it is an extremal of the
variational functional qX for every Ω in the domain of definition of γ.

In this sense, the extremals can also be defined as those sections γ for which the
values qXðcÞ of the variational functional qX are not sensitive to small compact
deformations of γ.

In the following necessary and sufficient conditions for a section to be an ex-
tremal, we use the Euler–Lagrange form Ekq , associated with the Lagrangian
kq ¼ hq, written in a fibered chart as

Ekq ¼ ErðLÞxr ^ x0; ð126Þ

where the components ErðLÞ are the Euler–Lagrange expressions (Sect. 4.4).
Explicitly, if hq ¼ Lx0, then

ErðLÞ ¼ @L

@yr
�
Xrþ1

l¼1

ð�1Þl�1dp1dp2 . . .dpl
@L

@yrp1p2...pl
: ð127Þ

Theorem 8 Let q 2 Xr
nW be a Lepage form. Let c: U ! W a section, and X � U

be a piece of X. The following conditions are equivalent:

(a) γ is an extremal on Ω.
(b) For every π-vertical vector field Ξ defined on a neighborhood of cðUÞ, such

that suppðN � cÞ � X,

Jrc*iJrNdq ¼ 0: ð128Þ

(c) The Euler–Lagrange form associated with the Lagrangian kq ¼ hq vanishes
along Jrþ1c, i.e.,

Ekq � Jrþ1c ¼ 0: ð129Þ
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(d) For every fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, such that pðVÞ � U and
cðpðVÞÞ � V ; c satisfies the system of partial differential equations

ErðLqÞ � Jrþ1c ¼ 0; 1� r�m: ð130Þ

Proof

1. We show that (a) implies (b). By Theorem 7, (d), for any piece Ω of X and any
π-vertical vector field Ξ such that suppðN � cÞ � X,Z

X

Jrc*@JrNq ¼
Z
X

Jrc*iJrNdq; ð131Þ

because the vector field JrN vanishes along the boundary ∂Ω. Then,Z
X

Jrc*iJrNdq ¼
Z
X

Jrþ1c*ðprþ1;rÞ*iJrNdq ¼
Z
X

Jrþ1c*iJrþ1Np1dq; ð132Þ

where p1dq ¼ Ehq is the Euler–Lagrange form.

If Ω is contained in a coordinate neighborhood, the support suppðN � cÞ � X
lies in the same coordinate neighborhood. Writing N ¼ Nr � @=@yr and p1dq ¼
ErðLqÞxr ^ x0 then iJrþ1Np1dq ¼ ErðLqÞNrx0 and

Jrc*iJrNdq ¼ ðErðLqÞ � Jrþ1cÞ � ðNr � cÞ � x0: ð133Þ

Now supposing that Jrc*iJrNdq 6¼ 0 for some π-vertical vector field Ξ, the first
variation formulaZ

X

Jrc*iJrNdq ¼
Z
X

ðErðLqÞ � Jrþ1cÞ � ðNr � cÞ � x0 ð134Þ

would give us a contradictionZ
X

J3c*@JrNq 6¼ 0: ð135Þ

Thus, (a) implies (b).

2. (c) is an immediate consequence of condition (b). Indeed, we can write for Ξ
π-vertical
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Jrc*iJrNdq ¼ ðprþ1;r � Jrþ1cÞ*iJrNdq ¼ Jrþ1c*ðprþ1;rÞ*iJrNdq
¼ Jrþ1c*iJrþ1Nðprþ1;rÞ*dq ¼ Jrþ1c*iJrþ1Np1dq ¼ Jrþ1c*iJrþ1NEkq :

ð136Þ
3. (d) is just a restatement of (b) for the components of the form Ekq .
4. We apply Theorem 7, (d). h

Equation (130) are called the Euler–Lagrange equations; these equations are
indeed related to the chosen fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ. However, since
the Euler–Lagrange expressions are components of a (global) differential form, the
Euler–Lagrange form, the solutions are independent of fibered charts.

If a Lagrangian k 2 Xr
n;XW is given and ρ is a Lepage equivalent of λ of order

s ¼ 2r � 1 (Sect. 4.5, Theorem5), then the Euler–Lagrange equations are of order≤2r.

Remark 12 For a fixed fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, the Euler–Lagrange
equations represent a system of partial differential equations of order r + 1 for
unknown functions ðxiÞ ! crðxiÞ, where 1� i� n and 1� r�m. This fact is due to
the origin of the Lagrange function L that comes from a Lepage form, which is of
order r. If we start with a given Lagrangian of order r, then the Euler–Lagrange
equations are of order 2r. To get an extremal γ on a piece X � X, we have to solve
this system for every fibered chart ðVi;wiÞ;w ¼ ðxii; yri Þ, from a collection of fibered
charts, such that the sets pðViÞ cover Ω; then, the solutions ðxiiÞ ! cri ðxiiÞ should be
used to find a section γ such that cri ¼ yri cu

�1
i for all indices ι.

Remark 13 Properties of nonlinear equations (130) depend on the form ρ; their
global structure can also be understood by means of condition (128). This condition
says that a section γ is an extremal if and only if its r-jet prolongation is an integral
mapping of an ideal of forms generated by the family of n-forms iJ3Ndq. Using fibered
chart formulas, one can find explicit expressions for local generators of the ideal.

4.8 Trivial Lagrangians

Consider the Euler–Lagrange mapping, assigning to a Lagrangian its Euler–
Lagrange form (112)

Xr
n;XW 3 k ! Ek 2 X2r

nþ1;YW : ð137Þ

The domain and the range of this mapping have the structure of Abelian groups
(and real vector spaces), and the Euler–Lagrange mapping is a homomorphism of
these Abelian groups. The purpose of this section is to describe the kernel of the
Euler–Lagrange mapping. Elements of the kernel are the Lagrangians k 2 Xr

n;XW
such that
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Ek ¼ 0: ð138Þ

These Lagrangians are called (variationally) trivial, or null.
Trivial Lagrangians can locally be characterized as formal divergences or some

closed forms.

Theorem 9 Let k 2 Xr
n;XW be a Lagrangian. The following conditions are

equivalent:

(a) λ is variationally trivial.
(b) For any fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, there exist functions gi: Vr ! R,

such that on Vr; k ¼ Lx0, where

L ¼ dig
i: ð139Þ

(c) For every fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, such that V � W, there exists an
(n − 1)-form l 2 Xr�1

n�1V such that on Vr

k ¼ hdl: ð140Þ

Proof

1. We show that (a) is equivalent with (b). Suppose that we have a variationally
trivial Lagrangian k 2 Xr

nW . Write for any fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ;
k ¼ Lx0. Since by hypothesis, the Euler–Lagrange expressions ErðLÞ vanish,
consequently, by Sect. 3.2, Theorem 1, L ¼ digi for some functions gi on Vr.
The converse follows from the same Theorem.

2. Equivalence of (a) and (c) follows from Sect. 3.3, Theorem 3. h

In general, Theorem 9 does not ensure existence of a globally defined form μ or
dμ. However, for first-order Lagrangians local triviality already induces global
variationality.

Corollary 1 A first-order Lagrange form k 2 X1
n;XW is variationally trivial if and

only if there exists an n-form g 2 X0
nW such that

k ¼ hg ð141Þ

and

dg ¼ 0: ð142Þ

Proof By Theorem 9, for any two points y1; y2 2 W there exist two (n − 1)-forms
l1; l2 2 Y , defined on a neighborhood of y1 and y2, such that hdl1 ¼ k and
hdl2 ¼ k, respectively. Then, hdðl1 � l2Þ ¼ 0 on the intersection of the
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corresponding neighborhoods in W1. But the horizontalization h, considered on
forms on J0Y ¼ Y , is injective. Consequently, condition hdðl1 � l2Þ ¼ 0 implies
dðl1 � l2Þ ¼ 0, so there exists an n-form g 2 X0

nW whose restriction agrees with
dl1 and dl2. Clearly, dg ¼ 0. h

4.9 Source Forms and the Vainberg–Tonti Lagrangians

A 1-contact (n + 1)-form e 2 Xs
nþ1;YW , where s is a nonnegative integer, is called a

source form (Takens [T]). From this definition it follows that ε has in a fibered chart
ðV ;wÞ;w ¼ ðxi; yrÞ, an expression

e ¼ erx
r ^ x0; ð143Þ

where the components er depend on the jet coordinates xi; yr; yrj1 ; y
r
j1j2 ; . . .; y

r
j1j2...js .

Clearly, every Euler–Lagrange form Ek is a source form; thus, the set of source
forms contains the Euler–Lagrange forms as a subset.

We assign to any source form ε a family of Lagrangians as follows. Let ε be
defined on Ws, and let ðV ;wÞ;w ¼ ðxi; yrÞ, be a fibered chart on Y, such that
V � W , and the set wðVÞ is star-shaped. Denote by I the fibered homotopy operator
on Vs (Sect. 2.7). Then, Iε is a ps-horizontal form, that is, a Lagrangian for Y,
defined on Vs. This Lagrangian, denoted

ke ¼ Ie; ð144Þ

is called the Vainberg–Tonti Lagrangian, associated with the source form ε (and the
fibered chart ðV ;wÞ) (cf. [To, V]).

Recall that Iε is defined by the fibered homotopy vs: ½0; 1� 	 Vs ! Vs, where
vsðt; ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jsÞÞ ¼ ðxi; tyr; tyrj1 ; tyrj1j2 ; . . .; tyrj1j2...jsÞ. Since vs satisfies

v*s e ¼ ðer � vsÞðtxr þ yrdtÞ ^ x0, we have, integrating the coefficient in this
expression at dt,

ke ¼ Lex0; ð145Þ

where

Le ¼ yr
Z1
0

er � vs � dt; ð146Þ
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or, which is the same,

Leðxi; yr; yrj1 ; . . .; yrj1j2...jsÞ ¼ yr
Z1
0

erðxi; tym; tymj1 ; . . .; tymj1j2...jsÞdt: ð147Þ

We can find the chart expression for the Euler–Lagrange form Eke of the Vain-
berg–Tonti Lagrangian ke; recall that

Eke ¼ ErðLeÞxr ^ x0; ð148Þ

where

ErðLeÞ ¼
Xs
l¼0

ð�1Þldp1dp2 . . .dpl
@Le

@yrp1p2...pl
: ð149Þ

To this purpose, we derive two formulas for the formal derivative operator di. The
formulas are completely parallel with the well-known classical Leibniz rules for
partial derivatives of the product of functions.

Lemma 7

(a) For every function f on Vp

diðf � vpÞ ¼ dif � vpþ1: ð150Þ

(b) For every function f on Vs and a collection of functions gp1p2...pk on Vs,
symmetric in the superscripts,

dp1dp2 . . .dpk ðf � gp1p2...pk Þ

¼
Xk
i¼0

k
i

� �
dp1dp2 . . .dpi f � dpiþ1dpiþ2 . . .dpkg

p1p2...pipiþ1piþ2...pk :
ð151Þ

Proof

(a) Formula (150) is an easy consequence of definitions.
(b) The proof is standard. We have
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dp1ðf � gp1Þ ¼ dp1 f � gp1 þ f � dp1gp1

¼ 1

0

� �
dp1 f � gp1 þ

1

1

� �
f � dp1gp1 ;

dp1dp2ðf � gp1p2Þ ¼ dp2ðdp1 f � gp1p2 þ f � dp1gp1p2Þ
¼ dp2dp1 f � gp1p2 þ dp1 f � dp2gp1p2 þ dp2 f � dp1gp1p2 þ f � dp1dp1gp1p2

¼ 2

0

� �
dp2dp1 f � gp1p2 þ

2

1

� �
dp1 f � dp2gp1p2 þ

2

2

� �
f � dp1dp1gp1p2 :

ð152Þ

Then, supposing that

dp1dp2 . . .dpk�1ðf � gp1p2...pk�1Þ ¼
Xk�1

i¼0

k � 1

i

� �
dp1dp2 . . .dpi f � dpiþ1dpiþ2 . . .dpk�1g

p1p2...pipiþ1piþ2...pk�1 ;

ð153Þ

we have (150)

dp1dp2 . . .dpk�1dpk ðf � gp1p2...pk�1pk Þ ¼ f � dp1dp2 . . .dpk�1dpkg
p1p2...pk�1pk

þ k � 1

0

� �
þ k � 1

1

� �� �
dp1 f � dp2dp3 . . .dpkgp1p2...pk�1pk

þ k � 1

1

� �
þ k � 1

2

� �� �
dp1dp2 f � dp3dp4 . . .dpkgp1p2...pk�1pk

þ � � � þ k � 1

k � 2

� �
þ k � 1

k � 1

� �� �
dp1dp2 . . .dpk�1 � dpkgp1p2...pk�1pk

þ k � 1

k � 1

� �
dpkdp1dp2 . . .dpk�1 � gp1p2...pk�1pk

ð154Þ

and

k � 1
p

� �
þ k � 1

pþ 1

� �
¼ k

pþ 1

� �
; ð155Þ

thus,

dp1dp2 . . .dpk�1dpkðf � gp1p2...pk�1pk Þ ¼ k

0

� �
f � dp1dp2 . . .dpk�1dpkg

p1p2...pk�1pk

þ k

1

� �
dp1 f � dp2dp3 . . .dpkgp1p2...pk�1pk

þ k

2

� �
dp1dp2 f � dp3dp4 . . .dpkgp1p2...pk�1pk

þ � � � þ k

k � 1

� �
dp1dp2 . . .dpk�1 � dpkgp1p2...pk�1pk

þ k

k

� �
dpkdp1dp2 . . .dpk�1 � gp1p2...pk�1pk :

ð156Þ

which is formula (150). h
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The Vainberg–Tonti Lagrangian ke ¼ Lex0 allows us to assign to any source
form e ¼ erxr ^ x0 a variational functional and the corresponding Euler–Lagrange
form of this functional, with the Euler–Lagrange expressions ErðLeÞ. We shall
determine the functions ErðLeÞ and compare them with the components er of the
source form.

Theorem 10 The Euler–Lagrange expressions of the Vainberg–Tonti Lagrangian
ke of a source form e ¼ erxr ^ x0 are

ErðLeÞ ¼ er �
Xs
k¼0

ymq1q2...qk

Z1
0

Hr
q1q2...qk
m ðeÞ � v2s � tdt; ð157Þ

where for every k ¼ 0; 1; 2; . . .; s

Hq1q2...qk
rm ðeÞ ¼ @er

@ymq1q2...qk
� ð�1Þk @em

@yrq1q2...qk

�
Xs
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@em
@yrq1q2...qkpkþ1pkþ2...pl

:

ð158Þ

Proof We find a formula for the difference er � ErðLeÞ. To simplify the formulas,
we denote the homotopy vsþl�i simply by χ. Calculating the derivatives, we have

@Le

@yr
¼
Z1
0

er � v � dt þ ym
Z1
0

@em
@yr

� v � tdt; ð159Þ

and, by Lemma 7, (150) and (151), for every l, 1� l� s,

dpl . . .dp2dp1
@Le

@yrp1p2...pl

¼ dpl . . .dp2dp1 ym
Z1
0

@em
@yrp1p2...pl

� v � tdt
0
@

1
A

¼
Xl
i¼0

l
i

� �
dp1dp2 . . .dpiy

m � dpiþ1dpiþ2 . . .dpl

Z1
0

@em
@yrp1p2...pipiþ1piþ2...pl

� v � tdt

¼
Xl
i¼0

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt:

ð160Þ
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Then by (159) and (160),

ErðLeÞ ¼
Z1
0

er � v � dt þ ym
Z1
0

@em
@yr

� v � tdt

þ
Xs
l¼1

ð�1Þl
Xl
i¼0

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt:

ð161Þ

On the other hand,

er ¼
Z1
0

d
dt

ðer � v � tÞdt

¼
Z1
0

dðer � vÞ
dt

� tdt þ
Z1
0

er � v � dt

¼
Xs
i¼0

Z1
0

@er
@ymp1p2...pi

� v � ymp1p2...pi � tdt þ
Z1
0

er � v � dt;

ð162Þ

hence,

er � ErðLeÞ ¼
Xs
i¼0

Z1
0

@er
@ymp1p2...pi

� v � ymp1p2...pi � tdt � ym
Z1
0

@em
@yr

� v � tdt

�
Xs
l¼1

ð�1Þl
Xl
i¼0

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt

¼
Z1
0

@er
@ym

� v � ym � tdt � ym
Z1
0

@em
@yr

� v � tdt

�
Xs
l¼1

ð�1Þl l
0

� �
ym �
Z1
0

dp1dp2 . . .dpl
@em

@yrp1p2...pl
� v � tdt

þ
Xs
i¼1

Z1
0

@er
@ymp1p2...pi

� v � ymp1p2...pi � tdt

�
Xs
l¼1

ð�1Þl
Xl
i¼1

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt:

ð163Þ
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We change summation in the double sum, replacing the summation through the
pairs (l, i) with the summation through (i, l). Summation through (l, i) can be
expressed by the scheme

ð1; 1Þ
ð2; 1Þ; ð2; 2Þ
ð3; 1Þ; ð3; 2Þ; ð3; 3Þ
. . .
ðs; 1Þ; ðs; 2Þ; ðs; 3Þ; . . .; ðs� 1; sÞ; ðs; sÞ

ð164Þ

Then, it is easily seen that the same summation, but represented by the pairs, (i, l), is
expressed by the scheme

ð1; 1Þ; ð1; 2Þ; ð1; 3Þ; . . .; ð1; s� 1Þ; ð1; sÞ
ð2; 2Þ; ð2; 3Þ; . . .; ð2; s� 1Þ; ð2; sÞ
. . .
ðs� 1; s� 1Þ; ðs� 1; sÞ
ðs; sÞ

ð165Þ

Consider the double sum in (163). The summation through (i, l) now becomes,

Xs
l¼1

ð�1Þl
Xl
i¼1

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt

¼
Xs
i¼1

ð�1Þl
Xs
l¼i

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt

¼
Xs
i¼1

ð�1Þiymp1p2...pi
Z1
0

@em
@yrp1p2...pl

� v � tdt

þ
Xs
i¼1

ð�1Þl
Xs
l¼iþ1

l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt:

ð166Þ

Returning to (163), we get,

er � ErðLeÞ ¼
Z1
0

@er
@ym

� v � ym � tdt � ym
Z1
0

@em
@yr

� v � tdt

�
Xs
l¼1

ð�1Þlym �
Z1
0

dp1dp2 . . .dpl
@em

@yrp1p2...pl
� v � tdt
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þ
Xs
i¼1

Z1
0

@er
@ymp1p2...pi

� v � ymp1p2...pi � tdt

�
Xs
i¼1

ð�1Þiymp1p2...pi �
Z1
0

@em
@yrp1p2...pl

� v � tdt

�
Xs
i¼1

Xs
l¼iþ1

ð�1Þl l
i

� �
ymp1p2...pi

Z1
0

dpiþ1dpiþ2 . . .dpl
@em

@yrp1p2...pipiþ1piþ2...pl

� v � tdt

¼ ym
Z1
0

@er
@ym

� @em
@yr

�
Xs
l¼1

ð�1Þldp1dp2 . . .dpl
@em

@yrp1p2...pl

 !
� v � tdt

þ ymp1p2...pi
Xs
i¼1

Z1
0

@er
@ymp1p2...pi

� ð�1Þi @em
@yrp1p2...pl

 

�
Xs
l¼iþ1

ð�1Þl l
i

� �
� dpiþ1dpiþ2 . . .dpl

@em
@yrp1p2...pipiþ1piþ2...pl

!
� v � tdt:

ð167Þ

This formula proves Theorem 10. h

The functions Hq1q2...qk
rm ðeÞ (158) are called the Helmholtz expressions, associated

with the source form ε.
It will be instructive to write up the Helmholtz expressions for lower-order

source forms.

Remark 14 The Helmholtz expressions for the source forms of order s = 3 with
components er are

Hijk
rm ðeÞ ¼

@er
@ymijk

þ @em
@yrijk

;

Hij
rmðeÞ ¼

@er
@ymij

� @em
@yrij

þ 3dk
@em
@yrijk

;

Hi
rmðeÞ ¼

@er
@ymi

þ @em
@yri

� 2dj
@em
@yrij

þ 3djdk
@em
@yrijk

;

HrmðeÞ ¼ @er
@ym

� @em
@yr

þ di
@em
@yri

� didj
@em
@yrij

þ didjdk
@em
@yrijk

:

ð168Þ
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Remark 15 Theorem 10 describes the difference between the given source form and
the Euler–Lagrange form of the Vainberg–Tonti Lagrangian; we see, in particular,
that responsibility for the difference lies on the properties of the source form and is
characterized by the Helmholtz expressions.

Lemma 8 Let k ¼ Lx0 be a Lagrangian, and let Hk be its principal Lepage
equivalent. Then the Vainberg–Tonti Lagrangian of the Euler–Lagrange form
Ek ¼ ErðLÞxr ^ x0,

kEk ¼ IEk; ð169Þ

satisfies

kEk ¼ k� hdðIHk þ l0Þ: ð170Þ

Proof Using the fibered homotopy operator I, we can express the principal Lepage
equivalent Hk of λ as Hk ¼ IdHk þ dIHk þH0. Then, the horizontal component is

hHk ¼ hIdHk þ hdIHk þ hH0 ¼ hIp1dHk þ hdðIHk þ l0Þ
¼ IEk þ hdðIHk þ l0Þ

ð171Þ

for some (n − 1)-form l0 on X such that H ¼ dl0, where k ¼ hHk, and IEk is the
Vainberg–Tonti Lagrangian. h

Note that, in particular, formula (170) shows that the Vainberg–Tonti
Lagrangian differs from the given Lagrangian λ by the term hdðIHk þ l0Þ that
belongs to the kernel of the Euler–Lagrange mapping. This demonstrates that the
Euler–Lagrange forms of λ and the Vainberg–Tonti Lagrangian kEk coincide.

Remark 16 (Euler–Lagrange source forms) Using homotopies and properties of
formal divergence expressions (Chap. 3), we can give an elementary proof of
Lemma 8, based on direct calculations. Namely, we prove that the Vainberg–Tonti
Lagrangian of a source form e ¼ ErðLÞxr ^ x0, which is the Euler–Lagrange
form of a Lagrangian k ¼ Lx0, is given by

yr
Z1
0

ErðLÞ � v � dt ¼ Lþ diW
i: ð172Þ

First note that for any family of functions gi on Vs, the formal divergence digi

satisfies the integral homotopy formula

Z1
0

dig
i � v � dt ¼ di

Z1
0

gi � v � dt: ð173Þ
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Indeed, we have

diðgi � vÞ ¼ @ðgi � vÞ
@xi

þ
Xs
l¼0

@ðgi � vÞ
@yrp1p2...pl

yrp1p2...plk

¼ @gi

@xi
þ
Xs
l¼0

@gi

@yrp1p2...pl
yrp1p2...plk

 !
� v;

ð174Þ

and formula (173) arises by integration.
Consider the Euler–Lagrange expressions ErðLÞ of a Lagrangian of order

r expressed as k ¼ Lx0,

ErðLÞ ¼ @L

@yr
�
Xr
l¼1

ð�1Þl�1dp1dp2 . . .dpl
@L

@yrp1p2...pl

¼ @L

@yr
� dp1

@L

@yrp1
þ dp1dp2

@L

@yrp1p2
� � � � þ ð�1Þrdp1dp2 . . .dpr

@L

@yrp1p2...pr
;

ð175Þ

and set

Ui1
r ¼ @L

@yri1
� dp2

@L

@yri1p2
þ dp2dp3

@L

@yri1p2p3

� � � � þ ð�1Þr�1dp2dp3 . . .dpr
@L

@yri1p2p3...pr
;

Ui1i2
r ¼ @L

@yri1i2
� dp3

@L

@yri1i2p3
� dp3dp4

@L

@yri1i2p3p4

� � � � þ ð�1Þr�1dp3dp4 . . .dpr
@L

@yri1i2p3p4...pr
;

. . .

Ui1i2...ik
r ¼ @L

@yri1i2...ik
� dpkþ1

@L

@yri1i2...ikpkþ1

� dpkþ1dpkþ2

@L

@yri1i2...ikpkþ1pkþ2

� � � � þ ð�1Þr�1dpkþ1dpkþ2 . . .dpr
@L

@yri1i2...ikpkþ1pkþ2...pr

;

. . .

Ui1i2...ir�1
r ¼ @L

@yri1i2...ir�1

� dpr
@L

@yri1i2...ir�1pr

;

Ui1i2...ir
r ¼ @L

@yri1i2...ir
:

ð176Þ
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It is immediately seen that these functions, entering the Euler–Lagrange expression
ErðLÞ (175), satisfy the recurrence formula

Ui1i2...ik
r ¼ @L

@yri1i2...ik
� dpkþ1U

i1i2...ikpkþ1
r : ð177Þ

Using properties of the homotopy χ,

dL � v
dt

¼ @L

@yr
� v � yr þ

Xr
l¼1

@L

@yrp1p2...pl
� v � yrp1p2...plk: ð178Þ

Hence, denoting L0ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ ¼ Lðxi; 0; 0; 0; . . .; 0Þ, we get for
the Vainberg–Tonti Lagrangian

yr
Z1
0

ErðLÞ � v � dt ¼ yr
Z1
0

@L

@yr
� v � dt � yr

Z1
0

diU
i
r � v � dt

¼
Z1
0

dL � v
dt

�
Xr
l¼1

@L

@yrp1p2...pl
� v � yrp1p2...plk

 !
dt � yr

Z1
0

diU
i
r � v � dt

¼ L�L0 �
Xr
l¼1

yrp1p2...pl

Z1
0

@L

@yrp1p2...pl
� v � dt � yrdi

Z1
0

Ui
r � v � dt

¼ L�L0 �
Xr
l¼1

yrp1p2...pl

Z1
0

@L

@yrp1p2...pl
� v � dt

þ yri

Z1
0

Ui
r � v � dt � di yr

Z1
0

Ui
r � v � dt

0
@

1
A


 L�L0 þ yri

Z1
0

Ui
r �

@L

@yri

� �
� v � dt

�
Xr
l¼2

yrp1p2...pl

Z1
0

@L

@yrp1p2...pl
� v � dt:

ð179Þ

The symbol ≈, replacing the equality sign =, means that we have omitted a formal
divergence expression, annihilating the Euler–Lagrange expressions of the Vain-
berg–Tonti Lagrangian.
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In formula (179),

yri

Z1
0

Ui
r �

@L

@yri

� �
� v � dt � yrp1p2

Z1
0

@L

@yrp1p2
� v � dt

¼ �yri

Z1
0

dpUip
r � v � dt � yrp1p2

Z1
0

@L

@yrp1p2
� v � dt

¼ �yri dp

Z1
0

Uip
r � v � dt � yrp1p2

Z1
0

@L

@yrp1p2
� v � dt

¼ �dp yri

Z1
0

Uip
r � v � dt

0
@

1
Aþ yrip

Z1
0

Uip
r � v � dt � yrp1p2

Z1
0

@L

@yrp1p2
� v � dt


 yrp1p2

Z1
0

Up1p2
r � @L

@yrp1p2

 !
� v � dt ð180Þ

thus,

yr
Z1
0

ErðLÞ � v � dt 
 L�L0 þ yri

Z1
0

Ui
r �

@L

@yri

� �
� v � dt

� yrp1p2

Z1
0

@L

@yrp1p2
� v � dt �

Xr
l¼3

yrp1p2...pl

Z1
0

@L

@yrp1p2...pl
� v � dt


 L�L0 þ yrp1p2

Z1
0

Up1p2
r � @L

@yrp1p2

 !
� v � dt

�
Xr
l¼3

yrp1p2...pl

Z1
0

@L

@yrp1p2...pl
� v � dt:

ð181Þ
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Repeating these decompositions, we finally get the terms

yrp1p2...pr�1

Z1
0

Up1p2...pr�1
r � @L

@yrp1p2...pr�1

 !
� v � dt � yrp1p2...pr

Z1
0

@L

@yrp1p2...pr
� v � dt

¼ �yrp1p2...pr�1
dpr

Z1
0

Up1p2...pr
r � v � dt � yrp1p2...pr

Z1
0

@L

@yrp1p2...pr
� v � dt

¼ �dpr yrp1p2...pr�1

Z1
0

Up1p2...pr
r � v � dt

0
@

1
Aþ yrp1p2...pr

Z1
0

Up1p2...pr
r � v � dt

� yrp1p2...pr

Z1
0

@L

@yrp1p2...pr
� v � dt

¼ �dpr yrp1p2...pr�1

Z1
0

Up1p2...pr
r � v � dt

0
@

1
A:

ð182Þ

Since L0 is always, as a function of xi only, of the formal divergence type, this
proves that

yr
Z1
0

ErðLÞ � v � dt 
 L; ð183Þ

proving formula (172). h

4.10 The Inverse Problem of the Calculus of Variations

Our objective in this section is to study the image of the Euler–Lagrange mapping
Xr

n;XW 3 k ! Ek 2 Xr
nþ1;YW , considered as a subset of the set of source forms

e 2 Xs
nþ1;YW (Sect. 4.9). The problem is to find a criterion for a source form to

belong to the subset of the Euler–Lagrange forms.
First we show that the image of the Euler–Lagrange mapping is closed under the

Lie derivative with respect to projectable vector fields.

Theorem 11 (Invariance of the image) Let k 2 Xr
n;XW. Then for any π-projectable

vector field Ξ on W the Lie derivative oJrNk belongs to the module Xr
n;XW and

oJ2rNEk ¼ E@JrNk: ð184Þ
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Proof Since k 2 Xr
n;XW , then oJrNk 2 Xr

n;XW . If qk is a Lepage equivalent of k, and
q@JrNk is a Lepage equivalent of the Lagrangian @JrNk, both defined on the set Ws,
then, with the notation of Sect. 4.3, Theorem 3, qk ¼ Hk þ dgþ l;
qoJrNk ¼ HoJrNk þ dg0 þ l0, and

oJsNqk ¼ oJsNHk þ doJsNgþ oJsNl: ð185Þ

The form oJsNqk has the horizontal component hoJsNqk ¼ oJsþ1Nhqk ¼ oJrNk and is
a Lepage form, because p1doJsNqk ¼ p1doJsNHk ¼ p1oJsNdHk and the Lie deriv-
ative oJsN preserves contact forms (Sect. 2.5, Theorem 9). Thus, the forms qoJrNk
and oJsNqk are both Lepage forms and have the same Lagrangians. Consequently,
their Euler–Lagrange forms agree, oJ2rNEk ¼ EoJrNk. h

Rephrasing formula (184), we see that the Lie derivative of an Euler–Lagrange
form by a vector field J2rN, where Ξ is a π-projectable vector field, permutes the set
of Euler–Lagrange forms; the corresponding Lagrangians are also related by the Lie
derivative operation.

Consider a source form e 2 Xs
nþ1;YW . We say that ε is variational, if

e ¼ Ek ð186Þ

for some Lagrangian k 2 Xr
n;XW . ε is said to be locally variational, if there exists an

atlas on Y, consisting of fibered charts, such that for each chart ðV ;wÞ;w ¼ ðxi; yrÞ,
from this atlas, the restriction of ε to Vs is variational.

The inverse problem of the calculus of variations, or the variationality problem
for source forms, consists in finding conditions under which there exists a
Lagrangian λ, satisfying equation (186); if these conditions are satisfied, then the
problem is to find all Lagrangians for the source form ε. The local inverse problem,
or local variationality problem, for a source form ε consists in finding existence
(integrability) conditions and solutions L of the system of partial differential
equations

er ¼ @L

@yr
þ
Xr
l¼1

ð�1Þldp1dp2 . . .dpl
@L

@yrp1p2...pl
ð187Þ

with given functions er ¼ erðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jsÞ on the left-hand side (cf.
Sect. 4.4, Theorem 4).

Let r be a fixed positive integer. We shall characterize the subspace of the vector
space of source forms, which is in general larger than the image of the Euler–
Lagrange mapping, namely the subspace of locally variational forms [K11]. Our
next theorem states the relationship between the exterior derivative operator and the
concept of variationality. It also indicates the meaning of Lepage forms for the
inverse problem.
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Theorem 12 (Local variationality of source forms) Let e 2 Xs
nþ1;YW be a source

form. The following two conditions are equivalent:

(a) ε is locally variational.
(b) For every point y 2 W there exist an integer r, a fibered chart

ðV ;wÞ;w ¼ ðxi; yrÞ, at y and a form F 2 Xr
nþ1V of order of contactness 2 such

that on Vr

dðeþ FÞ ¼ 0: ð188Þ

Proof

1. Suppose that ε is locally variational, and choose a fibered chart
ðV ;wÞ;w ¼ ðxi; yrÞ, such that ε is variational on V; then e ¼ Ek for some
Lagrangian k 2 Xr

n;XV . Let Hk denote the principal Lepage equivalent of λ and
set F ¼ p2dHk. Then, dðeþ FÞ ¼ ddHk ¼ 0.

2. Conversely, if for some fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, condition dðeþ FÞ ¼
0 holds on Vs, then eþ F ¼ dq for some ρ. ρ is obviously a Lepage form;
hence, e ¼ p1dq, so ε is a locally variational form whose Lagrangian is hρ. h

Remark 17 Theorem 12 indicates possible geometric interpretation of the exterior
derivative dε. Namely, formula (188) says that the variationality condition means that
the class of dε modulo (n + 2)-forms whose order of contactness is greater than 1
vanishes if and only if ε is locally variational. Developing this point of view to q-forms
of any degree q leads to an idea to characterize the Euler–Lagrange mapping as a
morphism in a suitable sheaf sequence of classes of forms (a “variational sequence”).

Properties of the form F in Theorem 1 can be further specified. Namely, for a given
Lagrangian λ of order r, F can be determined from the exterior derivative of the
principal Lepage equivalent Hk (104) and is p2r�1;s�1-horizontal.

The following lemma is needed in the proof of another theorem on the local
inverse problem of the calculus of variations.

Lemma 9 Let U be an open set in Rn such that for each point x0 ¼ ðx10; x20; . . .; xn0Þ
the segment fðtx10; tx20; . . .; txn0Þjt 2 ½0; 1�g belongs to U. Let f : U ! R be a function
such that

Z1
0

Fðtx10; tx20; . . .; txn0Þdt ¼ 0 ð189Þ

for all points ðx10; x20; . . .; xn0Þ 2 U. Then, F = 0.
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Proof If (189) is true, then for any s 2 ½0; 1�; ðsx10; sx20; . . .; sxn0Þ 2 U, thus,

Z1
0

Fðtsx10; tsx20; . . .; tsxn0Þdt ¼ 0: ð190Þ

Differentiating with respect to s

Z1
0

@F
@xk

� �
tsx0

tsxk0dt ¼ 0; ð191Þ

so at s = 1

Z1
0

@F
@xk

� �
tx0

xk0tdt ¼ 0: ð192Þ

On the other hand,

d
dt
ðtFðtx10; tx20; . . .; txn0ÞÞ ¼ Fðtx10; tx20; . . .; txn0Þ þ t

d
dt

Fðtx10; tx20; . . .; txn0Þ

¼ Fðtx10; tx20; . . .; txn0Þ þ
@F
@xk

� �
tx0

xk0t:
ð193Þ

Integrating we have

Fðx10; x20; . . .; xn0Þ ¼
Z1
0

Fðtx10; tx20; . . .; txn0Þdt þ
Z1
0

@F
@xk

� �
tx0

xk0tdt

¼ 0:

ð194Þ

h

Consider now the local inverse problem of the calculus of variations. We wish to
find integrability conditions for the system of partial differential equations (187) and
describe all solutions L of this system in an explicit form. To characterize locally
variational forms, we need the Helmholtz expressions Hr

q1q2...qk
m ðeÞ (Sect. 4.9, (158)

and Remark 14). Recall that

Hq1q2...qk
rm ðeÞ ¼ @er

@ymq1q2...qk
� ð�1Þk @em

@yrq1q2...qk

�
Xs
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@em
@yrq1q2...qkpkþ1pkþ2...pl

;

ð195Þ

where k ¼ 0; 1; 2; . . .; s, and s is the order or ε.
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Theorem 13 Let V be an open star-shaped set in the Euclidean space Rm, and let
er: Vs ! R be differentiable functions. The following two conditions are
equivalent:

(a) Equation

er ¼ @L

@yr
þ
Xs
l¼1

ð�1Þldp1dp2 . . .dpl
@L

@yrp1p2...pl
ð196Þ

has a solution L: Vs ! R.
(b) For all k ¼ 0; 1; 2; . . .; s, the function er satisfies

Hq1q2...qk
rm ðeÞ ¼ 0 ð197Þ

Proof

1. Suppose that the system (196) has a solutionL, defined on the set Vr. Then, ε is the
Euler–Lagrange form ErðLÞxr ^ x0 of the Lagrangian k ¼ Lx0; we may sup-
pose without loss of generality that the Helmholtz expressions (195) are of order
s ¼ 2r. Since the Lagrangian λ and the Vainberg–Tonti Lagrangian have the same
Euler–Lagrange form (Sect. 4.9, Lemma 8), the Helmholtz expressions satisfy

Z1
0

X2r
k¼0

ðymq1q2...qkHq1q2...qk
rm ðeÞÞ � v � dt ¼ 0 ð198Þ

(Sect. 4.9, Theorem 10); hence, from Lemma 9,

X2r
k¼0

ymq1q2...qkH
q1q2...qk
rm ðeÞ ¼ 0: ð199Þ

Since by hypothesis ε is variational, that is, e ¼ Ek for some Lagrangian λ, then
for any π-projectable vector field Ξ, @J2rNe ¼ @J2rNEk ¼ E@J2rNk

(Theorem 11);
hence, the form @J2rNe is also variational. Thus, the Helmholtz expressions
satisfy for all projectable vector fields Ξ,

X2r
k¼0

ymq1q2...qkH
q1q2...qk
rm ð@J2rNeÞ ¼ 0 ð200Þ

We shall show that this condition implies Hq1q2...qk
rm ðeÞ ¼ 0.

Consider condition (200) for different choices of the vector field Ξ. It is suffi-
cient to consider π-vertical vector fields, whose components do not depend on
ys, that is,
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N ¼ Nr @

@yr
; ð201Þ

where Nr ¼ NrðxkÞ. Then, the components of the r-jet prolongation JrN are

Nr
j1j2...jk ¼

@kNr

@xj1@xj2 . . .@xjk
: ð202Þ

Writing e ¼ erxr ^ x0 and using properties of the vector field Ξ, the Lie
derivative @J2rNe, standing in (200), is given by

@J2rNe ¼ @J2sNer � xr ^ x0 ¼
X2r
k¼0

@er
@yjj1j2...jk

Nj
j1j2...jk � xr ^ x0: ð203Þ

We denote

e0 ¼ @J2rNe; e0r ¼
X2r
k¼0

@er
@yjj1j2...jk

Nj
j1j2...jk : ð204Þ

Choose the vector field Ξ in the form

N ¼ @

@ys
; ð205Þ

where τ is any fixed integer. In components,

Nr ¼ 1; r ¼ s;
0; r 6¼ s:

�
ð206Þ

Then, the r-jet prolongation JrN has the components Nr
j1j2...jr ¼ 0, and the

expression

JrN ¼ @

@ys
: ð207Þ

The Lie derivative (203) yields

e0 ¼ @er
@yj

Njxr ^ x0 ¼ @er
@ys

xr ^ x0: ð208Þ

Thus, for the vector field (205),
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e0r ¼
@er
@ys

: ð209Þ

The Helmholtz expression Hr
q1q2...qk
m ðe0Þ for the source form e0 can be written as

Hq1q2...qk
rm ðe0Þ ¼ @

@ymq1q2...qk

@er
@ys

� ð�1Þk @

@yrq1q2...qk

@em
@ys

�
X2r
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@

@yrq1q2...qkpkþ1pkþ2...pl

@em
@ys

¼ @Hq1q2...qk
rm ðeÞ
@ys

;

ð210Þ

because the differential operators @/@ys and dk commute. Condition (200) now
implies

X2r
k¼0

ymq1q2...qkH
q1q2...qk
rm ð@J2rNeÞ ¼

X2r
k¼0

ymq1q2...qk
@Hq1q2...qk

rm ðeÞ
@ys

¼
X2r
k¼0

@ðymq1q2...qkHq1q2...qk
rm ðeÞÞ

@ys
� HrsðeÞ

¼ �HrsðeÞ ¼ 0:

ð211Þ

Consequently, (200) reduces to

X2r
k¼1

ymq1q2...qkH
q1q2...qk
rm ðeÞ ¼ 0: ð212Þ

Then by Theorem 11,

X2r
k¼1

ymq1q2...qkH
q1q2...qk
rm ð@J2rNeÞ ¼ 0: ð213Þ

Now consider equation (200) for the vector field

N ¼ xi
@

@ys
; ð214Þ

where i and τ are fixed integers. In components,

Nr ¼ xi; r ¼ s;
0; r 6¼ s:

�
ð215Þ
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Then, the r-jet prolongation JrN has the components

Nr
j ¼ djN

r ¼
1; r ¼ s; j ¼ i;
0; r ¼ s; j 6¼ i;
0; r 6¼ s;

8<
: Nr

j1j2...jk ¼ 0; k� 2; ð216Þ

hence,

JrN ¼ xi
@

@ys
þ @

@ysi
: ð217Þ

The Lie derivative (203) yields

e0 ¼ @er
@yj

Nj þ @er
@yjj

Nj
jk

 !
xr ^ x0 ¼ @er

@ys
xi þ @er

@ysi

� �
xr ^ x0: ð218Þ

Consequently, using the vector field (214),

e0r ¼ @er
@ys

xi þ @er
@ysi

: ð219Þ

The Helmholtz expressions for e0r become

Hq1q2...qk
rm ðe0Þ ¼ @

@ymq1q2...qk

@er
@ys

xi þ @er
@ysi

� �
� ð�1Þk @

@yrq1q2...qk

@em
@ys

xi þ @em
@ysi

� �

�
X2r
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@

@yrq1q2...qkpkþ1pkþ2...pl

@em
@ys

xi þ @em
@ysi

� �

¼ @

@ys
xi

@er
@ymq1q2...qk

� ð�1Þk @em
@yrq1q2...qk

 ! 

�
X2r
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl xi

@em
@yrq1q2...qkpkþ1pkþ2...pl

 !!

þ @

@ymq1q2...qk

@er
@ysi

� ð�1Þk @

@yrq1q2...qk

@em
@ysi

�
X2r
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@

@yrq1q2...qkpkþ1pkþ2...pl

@em
@ysi

:

ð220Þ
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In this expression,

dpkþ1dpkþ2 . . .dpl xi
@em

@yrq1q2...qkpkþ1pkþ2...pl

 !

¼ dpkþ2dpkþ3 . . .dpl
@em

@yrq1q2...qkipkþ2pkþ3...pl

þ dpkþ2dpkþ3 . . .dpl xidpkþ1

@em
@yrq1q2...qkpkþ1pkþ2...pl

 !
:

ð221Þ

Note that for any function f, the formal derivative satisfies

dp
@f
@ysi

¼ @dpf
@ysi

� @f
@ys

dip: ð222Þ

Applying this rule, we find

dpkþ1dpkþ2 . . .dpl
@

@ysi

@em
@yrq1q2...qkpkþ1pkþ2...pl

¼ � � � ¼ @

@ysi
dpkþ3dpkþ4 . . .dpldpkþ2dpkþ1

@em
@yrq1q2...qkpkþ1pkþ2...pl

� ðl� kÞ @

@ys
dpkþ2dpkþ3 . . .dpl

@em
@yrq1q2...qkipkþ2pkþ3...pl

:

ð223Þ

Returning to (220)

Hq1q2...qk
rm ðe0Þ ¼ @

@ys
xi

@er
@ymq1q2...qk

� ð�1Þk @em
@yrq1q2...qk

 ! 

�
X2r
l¼kþ1

ð�1Þl l
k

� �
ðl� kÞdpkþ2dpkþ3 . . .dpl

@em
@yrq1q2...qkipkþ2pkþ3...pl

 

þ xidpkþ1dpkþ2 . . .dpl
@em

@yrq1q2...qkpkþ1pkþ2...pl

!!

þ @

@ysi

@er
@ymq1q2...qk

� ð�1Þk @em
@yrq1q2...qk

 !

�
X2r
l¼kþ1

ð�1Þl l
k

� � @

@ysi
dpkþ1dpkþ2dpkþ3 . . .dpl

@em
@yrq1q2...qkpkþ1pkþ2...pl

 

�ðl� kÞ @

@ys
dpkþ2dpkþ3 . . .dpl

@em
@yrq1q2...qkipkþ2pkþ3...pl

!
:

ð224Þ
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Therefore,

Hq1q2...qk
rm ðe0Þ ¼ xi

@Hq1q2...qk
rm ðeÞ
@ys

þ @Hq1q2...qk
rm ðeÞ
@ysi

: ð225Þ

Now (200) is expressed as

X2r
k¼1

ymq1q2...qk xi
@Hq1q2...qk

rm ðeÞ
@ys

þ @Hq1q2...qk
rm ðeÞ
@ysi

� �

¼ xi
@

@ys
X2r
k¼1

ymq1q2...qkH
q1q2...qk
rm ðeÞ

þ
X2r
k¼1

@

@ysi
ðymq1q2...qkHq1q2...qk

rm ðeÞÞ � Hi
rsðeÞ ¼ �Hi

rsðeÞ ¼ 0:

ð226Þ

The proof can be completed by induction. To this purpose, one should assume
that Hrm ¼ 0;Hq1

rm ¼ 0;Hq1q2
rm ¼ 0; . . .;Hq1q2...qp

rm ¼ 0 for some p (induction
hypothesis). Then, conditions (212) and (213) are replaced with

X2r
k¼pþ1

ymq1q2...qkH
q1q2...qk
rm ðeÞ ¼ 0 ð227Þ

and

X2r
k¼pþ1

ymq1q2...qkH
q1q2...qk
rm ð@J2rNeÞ ¼ 0; ð228Þ

where the vector fields Ξ are of the form

Nr ¼ xk1xk2...x
kp ; r ¼ s;

0; r 6¼ s:

�
ð229Þ

2. We prove that (b) implies (a). Suppose that a system of functions er satisfies
conditions (197) and denotes by e ¼ erxr ^ x0 the corresponding source form.
Then, the Euler–Lagrange expressions of the Vainberg–Tonti Lagrangian
ke ¼ Lex0,

ErðLeÞ ¼ er �
Xs
k¼0

Z
ðymq1q2...qkHq1q2...qk

rm ðeÞÞ � v � dt; ð230Þ

reduce to er (Sect. 4.9, Theorem 10). Thus, ke ¼ Lex0. h
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Remark 18 One can easily prove condition

HrmðeÞ ¼ 0 ð231Þ

in Theorem 13 by means of the integrability criterion for formal divergence
equations (Sect. 3.2, Theorem 1). Consider the inverse problem equation

er ¼ @L

@yr
� dp1

@L

@yrp1
þ dp1dp2

@L

@yrp1p2

� � � � þ ð�1Þr�1dp1dp2 . . .dpr�1

@L

@yrp1p2...pr�1

þ ð�1Þrdp1dp2 . . .dpr
@L

@yrp1p2...pr
ð232Þ

and suppose it has a solution L. Denoting

Up1
r ¼ @L

@yrp1
þ dp2

@L

@yrp1p2
� � � � þ ð�1Þr�1dp2dp3 . . .dpr�1

@L

@yrp1p2...pr�1

þ ð�1Þrdp2dp3 . . .dpr
@L

@yrp1p2...pr
;

ð233Þ

we get the formal divergence equation

er � @L

@yr
¼ �dp1U

p1
r : ð234Þ

Since by hypothesis there exists a solution, the integrability condition for this
equation is satisfied, that is,

Es er � @L

@yr

� �
¼ 0: ð235Þ

Explicitly, since the derivative di and the partial derivative @=@ys commute,

Es er � @L

@yr

� �
¼ @er

@ys
� dp1

@er
@ysp1

þ dp1dp2
@er
@ysp1p2

� � � � þ ð�1Þr�1dp1dp2 . . .dpr�1

@er
@ysp1p2...pr�1

þ ð�1Þrdp1dp2 . . .dpr
@er

@ysp1p2...pr
� @es
@yr

¼ 0:

ð236Þ

Comparing this formula with (195), we get exactly Hr sðeÞ ¼ 0.

We end this section with two remarks on the inverse problem for systems of
differential equations.

156 4 Variational Structures

http://dx.doi.org/10.2991/978-94-6239-073-7_3


Remark 19 (Variationality of differential equations) The concept of local varia-
tionality can be applied to the systems of partial differential equations. Fixing the
functions er, we sometimes say, without aspiration to rigor, that the system of
partial differential equations

erðxi; ys; ysj1 ; ysj1j2 ; . . .; ysj1j2...jsÞ ¼ 0 ð237Þ

is variational and its left-hand sides coincide with the Euler–Lagrange equations of
some Lagrangian. It is clear, however, that this concept is not well-defined; indeed,
setting e0m ¼ Um

rem with any functions U
m
r such that detU

m
r 6¼ 0, we get two equivalent

systems er ¼ 0 and e0m ¼ 0, but it may happen that the first one is variational and the
second one is not. If (188) is not variational and there exists Um

r such that the
equivalent system Um

rem ¼ 0 is variational, we say that Um
r are variational integrators

for the system (188). It should be noted, however, that this terminology is also used
in a different context of differential equations, expressed in a contravariant form.

Remark 20 (Sonin, Helmholtz, and Douglas) The inverse problem of the calculus of
variations was first considered in 1886 for one second-order ordinary differential
equation by Sonin (see Sonin [So]; for this reference, the author is indebted to
V.D. Skarzhinski). He proved that every second-order equation has a Lagrangian. It
should be pointed out that in this paper the variational multiplier, in contemporary
terminology, was used as a natural factor ensuring covariance of the considered
equation. The variationality of systems of second-order ordinary differential equa-
tions, expressed in the covariant form, was studied by Helmholtz in 1887 and
subsequently by many followers (Helmholtz [He]; see also Havas [H], where further
references can be found). The systems of second-order ordinary differential equa-
tions, solved with respect to the second derivatives, were considered by Douglas in
1940 with the techniques of variational multipliers (see Douglas [Do], and e.g.,
Anderson and Thompson [AT], Bucataru [Bu], Crampin [Cr], Sarlet et al. [SCM]).

4.11 Local Variationality of Second-Order Source Forms

In this section, we shall primarily be concerned with the second-order source forms
and second-order systems of partial differential equations. The aim is to present a
solution of the inverse problem of the calculus of variations for this class of source
forms entirely by means of the theory of Lepage forms (Sect. 4.10, Theorem 12)
and elementary integration theory of exterior differential systems.

Suppose we are given a second-order source form ε onW2 � J2Y , expressed in a
fibered chart ðV ;wÞ;w ¼ ðxi; yrÞ, as

e ¼ erx
r ^ x0: ð238Þ
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Consider the system of partial differential equations

@L

@yr
� dp

@L

@yrp
þ dpdq

@L

@yrpq
¼ er ð239Þ

for an unknown Lagrangian L of order 2. Clearly the left-hand sides of these
equations are exactly the Euler–Lagrange expressions ErðLÞ of the Lagrangian L.
The problem we consider is twofold: (a) to find the variationality (integrability)
conditions for ε, ensuring existence of a solution L; and (b) to find all solutions
provided the integrability conditions are satisfied.

The following theorem, following from the theory of the Vainberg–Tonti
Lagrangians, states that a second-order variational source form always admits a first-
order Lagrangian; it seems that this extension of the well-known statement of the
calculus of variations of simple integrals to the general multiple-integral problems is
new. Note that the result restricts the class of locally variational forms to the source
forms, depending on the second derivative variables linearly.

Theorem 14 If a second-order source form ε, defined on W2 � J2Y, is locally
variational, then for every point y 2 W there exists a fibered chart
ðV ;wÞ;w ¼ ðxi; yrÞ, at y and a first-order Lagrangian k0 ¼ L0x0, defined on V1,
such that

ErðL0Þ ¼ er: ð240Þ

Proof If ε is variational, then by hypothesis the form erxr ^ xi has a second-order
Lagrangian k ¼ Lx0 (the Vainberg–Tonti Lagrangian). The Euler–Lagrange form
associated with λ is then given by

Ek ¼ ErðLÞxr^x0; ð241Þ

where

er ¼ ErðLÞ ¼ @L

@yr
� di

@L

@yri
þ didj

@L

@yrij
: ð242Þ

One can find an explicit formula for the Euler–Lagrange expression (242); this
expression does not depend on yrijk and yrijkl. Introducing the cut formal derivative of
a function f ¼ f ðxi; yr; yrj ; yrjkÞ as the function

d0j f ¼
@f
@x j

þ @f
@yr

yrj þ
@f
@yri

yrij ð243Þ
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(see Sect. 3.1), we easily find

ErðLÞ ¼ @L

@yr
� d0i

@L

@yri
þ d0id

0
j
@L

@yrij
þ 2d0i

@2L

@yrij@y
m
kl
ymklj

þ @2L

@ymj @y
r
kl
� @2L

@yrj @y
m
kl

 !
ymklj þ

@3L

@yrij@y
m
kl@y

s
pq
yspqiy

m
klj

þ @2L

@yrij@y
m
kl
ymklij:

ð244Þ

However, this function does not depend on ymklj and ymklij. Hence, L must satisfy,
among others,

@2L

@yrij @y
m
kl
¼ 0 SymðklijÞ: ð245Þ

But this condition implies

@2L

@yrij @y
r
kl
þ @2L

@yril @y
r
jk
þ @2L

@yrik @y
r
jl
¼ 0: ð246Þ

Then, for any two fixed indices i, j,

@2L

@yrij@y
r
ii
¼ 0;

@2L

@yrij@y
r
ii
¼ 0;

@2L

@yrij@y
r
ij
þ 2

@2L

@yrii@y
r
jj
¼ 0; ð247Þ

hence, differentiating,

@3L

@yrij@y
r
ij@y

r
ij
¼ 0;

@3L

@yrij@y
r
ii@y

r
jj
¼ 0: ð248Þ

In particular, L must be a polynomial function of yrjj, quadratic in each of the
variables yrjj. We can write

L ¼ L0 þ
X
p� 1

Lp; ð249Þ

where L0 ¼ L0ðxk; yr; yrj Þ is a function independent of ymij and Lp is a homoge-
neous polynomial of degree p,

Lp ¼ Pi1j1
r1

i2j2
r2 . . .

ipjp
rp y

r1
i1j1y

r2
i2j2 . . .y

rp
ipjp : ð250Þ

Substituting from this formula into (244),
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ErðLÞ ¼ @L0

@yr
� d0i

@L0

@yri

þ
X
p� 1

@Lp

@yr
� d0i

@Lp

@yri
þ d0id

0
j
@Lp

@yrij
þ 2d0i

@2Lp

@yrij@y
m
kl
ymklj

 

þ @2Lp

@ymj @y
r
kl
� @2Lp

@yrj @y
m
kl

 !
ymklj þ

@3Lp

@yrij@y
m
kl@y

s
pq
yspqiy

m
klj þ

@2Lp

@yrij@y
m
kl
ymklij

!
:

ð251Þ

But the left-hand side does not depend on ymijk and ymijkl, so setting ymijk ¼ 0 and
ymijkl ¼ 0, we get

ErðLÞ ¼ ErðL0Þ ¼ @L0

@yr
� d0i

@L0

@yri
: ð252Þ

Replacing the cut formal derivative d0i with di, this formula shows that the
Euler–Lagrange expressions ErðL0Þ of the first-order Lagrangian k0 ¼ L0x0

coincide with the components er of the source form ε. This proves Theorem 14.h

Corollary 1 Suppose that a second-order source form e ¼ erxr ^ xi is varia-
tional. Then, the components er depend linearly on the second derivative variables
ymij, that is,

er ¼ Ar þ Bij
rmy

m
ij; ð253Þ

where the functions Bij
rm do not depend on the variables ymij.

Now we wish to find a criterion for a second-order source form ε (1) to be locally
variational. As a main tool in the proof, we use the concept of a Lepage form and
the basic theorem on locally variational source forms (Sect. 4.10, Theorem 12).

Theorem 15 (Local variationality of source forms) Let e 2 X2
nþ1;YW be a source

form. The following two conditions are equivalent:

(a) ε is locally variational.
(b) For every point y 2 W there exist an integer r and a fibered chart

ðV ;wÞ;w ¼ ðxi; yrÞ, at y, such that e ¼ erxr ^ x0, and the components er satisfy

@er
@ymij

� @em
@yrij

¼ 0;
@er
@ymj

þ @em
@yrj

� di
@er
@ymij

þ @em
@yrij

 !
¼ 0;

@er
@ym

� @em
@yr

� 1
2
dj

@er
@ymj

� @em
@yrj

 !
¼ 0:

ð254Þ
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(c) For every point y 2 W there exist an integer r and a fibered chart
ðV ;wÞ;w ¼ ðxi; yrÞ, at y and a form F 2 Xr

nþ1V of order of contactness ≤2
such that on Vr

dðeþ FÞ ¼ 0: ð255Þ

Proof

1. If (a) holds, then (b) is obtained by a direct calculation. Indeed, suppose that
er ¼ ErðLÞ are the Euler–Lagrange expressions of a first-order Lagrangian
k ¼ Lx0; then

ErðLÞ ¼ @L

@yr
� @2L

@xi@yri
� @2L

@ys@yri
ysi �

@2L

@ysi @y
r
j
ysij: ð256Þ

Differentiating we have

@er
@ympq

¼ � 1
2

@2L

@ysp@y
r
q
þ @2L

@ysq@y
r
p

 !
;

@er
@ymq

¼ @2L

@yr@ymq
� ds

@2L

@ymq@y
r
s
� @2L

@ym@yrq
;

@er
@ym

¼ @2L

@ym@yr
� ds

@2L

@ym@yrs
;

ð257Þ

from which we get

@er
@ympq

� @em
@yrpq

¼ � 1
2

@2L

@ymp@y
r
q
þ @2L

@ymq@y
r
p

 !

þ 1
2

@2L

@yrp@y
m
q
þ @2L

@yrq@y
m
p

 !
¼ 0;

ð258Þ

and

@er
@ymq

þ @em
@yrq

� 2dp
@em
@yrqp

¼ @2L

@yr@ymq
� ds

@2L

@ymq@y
r
s
� @2L

@ym@yrq
þ @2L

@ym@yrq

� ds
@2L

@yrq@y
m
s
� @2L

@yr@ymq
þ dp

@2L

@yrp@y
m
q
þ @2L

@yrq@y
m
p

 !
¼ 0;

ð259Þ
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and

@er
@ym

� @em
@yr

þ dp
@em
@yrp

� dpdq
@em
@yrpq

¼ @2L

@ym@yr
� ds

@2L

@ym@yrs
� @2L

@ym@yr
þ ds

@2L

@yr@yms

þ dq
@2L

@ym@yrq
� dqds

@2L

@yrq@y
m
s
� dq

@2L

@yr@ymq

þ 1
2
dpdq

@2L

@yrp@y
m
q
þ @2L

@yrq@y
m
p

 !
¼ 0:

ð260Þ

2. Suppose that the components er ¼ ErðLÞ of the Euler–Lagrange expressions of
k ¼ Lx0 satisfy condition (b). Setting

F ¼ � 1
4

@er
@ymi

� @em
@yri

� �
xm þ @er

@ymij
xm

j

 !
^ xr ^ xi; ð261Þ

we get by a straightforward calculation, using the canonical decomposition of
forms into their horizontal and contact components and the identities
dxm ¼ �xm

l ^ dxl; dxm
j ¼ �xm

jl ^ dxl, and dxl ^ xi ¼ dlix0,

dF ¼ � 1
4
d

@er
@ymi

� @em
@yri

� �
^ xm ^ xr ^ xi

� 1
4

@er
@ymi

� @em
@yri

� �
dxm ^ xr ^ xi

� d
@er
@ymij

^ xm
j ^ xr ^ xi � @er

@ymij
dxm

j ^ xr ^ xi

þ 1
4

@er
@ymi

� @em
@yri

� �
xm þ @er

@ymij
xm

j

 !
^ dxr ^ xi

¼ � 1
4
di

@er
@ymi

� @em
@yri

� �
xm ^ xr ^ x0

þ 1
2

@em
@yri

� @er
@ymi

� �
� dj

@er
@ymij

 !
xm

i ^ xr ^ x0

� @er
@ymij

xm
ij ^ xr ^ x0 � @er

@ymij
xm

j ^ xr
i ^ x0

� 1
4
pd

@er
@ymi

� @em
@yri

� �
^ xm ^ xr ^ xi � pd

@er
@ymij

^ xm
j ^ xr ^ xi:

ð262Þ
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Consequently, since

de ¼ @er
@ym

xm þ @er
@ymi

xm
i þ

@er
@ymij

xm
ij

 !
^ xr ^ x0; ð263Þ

the exterior derivative d(ε + F) is expressed as

dðeþ FÞ ¼ 1
4

@er
@ym

� @em
@yr

� 1
2
di

@er
@ymi

� @em
@yri

� �� �
xm ^ xr ^ x0

þ 1
2

@er
@ymi

þ @em
@yri

� �
� dj

@er
@ymij

 !
xm

i ^ xr ^ x0

� 1
2

@er
@ymij

� @em
@yrij

 !
xm

j ^ xr
i ^ x0

� 1
4
pd

@er
@ymi

� @em
@yri

� �
^ xm ^ xr ^ xi � pd

@er
@ymij

^ xm
j ^ xr ^ xi:

ð264Þ

Thus, by hypothesis (b),

dðeþ FÞ ¼ � 1
4
pd

@er
@ymi

� @em
@yri

� �
^ xm ^ xr ^ xi

� pd
@er
@ymij

^ xm
j ^ xr ^ xi:

ð265Þ

3. Suppose that the functions er satisfy condition (b). Substituting from (254) to dε,
we have

de ¼ 1
4
dj

@er
@ymj

� @em
@yrj

 !
xm þ 1

2
dj

@er
@ymij

þ @em
@yrij

 !
xm

i

 

þ 1
2

@er
@ymi

� @em
@yri

� �
xm

i þ
1
2

@er
@ymij

þ @em
@yrij

 !
xm

ij

!
^ xr ^ x0

¼ 1
4
dj

@er
@ymj

� @em
@yrj

 !
xm þ 1

2
dj

@er
@ymij

þ @em
@yrij

 !
þ @er

@ymi
� @em
@yri

 !
xm

i

 

þ 1
2

@er
@ymij

þ @em
@yrij

 !
xm

ij

!
^ xr ^ x0:

ð266Þ

On the other hand, we can recognize in formula (266) some terms in the form of
an exterior derivative. Observe that
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p2d
@er
@ymij

þ @em
@yrij

 !
xm

i ^ xr ^ xj

 !

¼ dj
@er
@ymij

þ @em
@yrij

 !
xm

i ^ xr ^ x0

þ @er
@ymij

þ @em
@yrij

 !
dxm

i ^ xr ^ xj � @er
@ymij

þ @em
@yrij

 !
xm

i ^ dxr ^ xj

¼ dj
@er
@ymij

þ @em
@yrij

 !
xm

i ^ xr ^ x0

¼ dj
@er
@ymij

þ @em
@yrij

 !
xm

i þ
@er
@ymij

þ @em
@yrij

 !
xm

ij

 !
^ xr ^ x0;

ð267Þ

and

p2d
@er
@ymi

� @em
@yri

� �
xm ^ xr ^ xi

� �
¼ di

@er
@ymi

� @em
@yri

� �
xm

�

þ2
@er
@ymi

� @em
@yri

� �
xm

i Þ ^ xr ^ x0:

ð268Þ

Thus, dε is expressible as

de ¼ 1
4
p2d

@er
@ymi

� @em
@yri

� �
xm ^ xr ^ xi

� �

þ 1
2
p2d

@er
@ymij

þ @em
@yrij

 !
xm

i ^ xr ^ xj

 !
:

ð269Þ

Setting

F ¼ � 1
2

1
2

@er
@ymi

� @em
@yri

� �
xm � @er

@ymij
þ @em
@yrij

 !
xm

i

 !
^ xr ^ xj ð270Þ

and q ¼ eþ F we get assertion (c).
4. To show that condition (c) implies (a), we can repeat the proof of Theorem 12

for source forms of order 2. Suppose that for some fibered chart
ðV ;wÞ;w ¼ ðxi; yrÞ, on the fibered manifold Y condition dðeþ FÞ ¼ 0 holds on
V2. Integrating we get eþ F ¼ dg for some n-form η. But since e ¼ p1dg, the
form η is a Lepage form, therefore, so ε must be a locally variational form whose
Lagrangian is hη. h
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Remark 21 In the proof of Theorem 15, we have assigned to a second-order source
form e ¼ erxr ^ x0 the form q ¼ eþ F, defined by the requirement dρ = 0. The
solution

q ¼ erx
r ^ x0

� 1
2

1
2

@er
@ymi

� @em
@yri

� �
xm � @er

@ymij
þ @em
@yrij

 !
xm

i

 !
^ xr ^ xj

ð271Þ

extends the source form by a form of order of contactness ≥2. This construction,
involving the exterior derivative operator, is closely related to the variationality of the
form ε and can be considered as a motivation for possible generalizations of the
geometric theory of Lepage differential n-forms to (n+ 1)-forms and differential forms
of higher degree (cf. [KKS2]). This notable construction also indicates the possibility
to interpret a source forms as a class of formsmodulo contact forms; this idea has been
developed by the theory of variational sequences (cf. [K19] and Chap. 8).

Theorem 16 (First-order Lepage forms) Let q 2 X1
nV be an n-form. The following

two conditions are equivalent:

(a) q 2 X1
nV is a Lepage form.

(b) There exists a first-order Lagrangian k 2 X1
n;XV, an n-form j of order of

contactness ≥2 and a contact (n − 1)-form τ, such that

q ¼ Hk þ jþ ds: ð272Þ

Proof

1. Let ðV ;wÞ;w ¼ ðxi; yrÞ be a fibered chart on Y, and let ρ be a first-order Lepage
form, defined on the set V1. Then, the form e ¼ p1dq is a second-order
Euler–Lagrange form, defined on V2, associated with the second-order
Lagrangian hρ – the horizontal component of ρ. On the other hand, it follows
from Theorem 14 that ε has a first-order Lagrangian λ; denoting by Hk the
principal Lepage equivalent of λ, we have e ¼ p1dHk; hence,

p1dq ¼ p1dHk: ð273Þ

Consequently, p1dðq�HkÞ ¼ 0 and by the theorem on the kernel of the
Euler–Lagrange mapping (Sect. 4.8, Theorem 9, (c)), there exists an (n − 1)-
form μ, defined on V1, such that hðq�HkÞ ¼ hdl; hence,

q�Hk ¼ gþ dl ð274Þ
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for some contact form η such that p1dg ¼ 0. Therefore, η satisfies two conditions

hg ¼ 0; p1dg ¼ 0: ð275Þ

The first one implies that g ¼ xr ^ Ur þ dxr ^Wr for some forms Ur and Wr

(Sect. 2.3, Theorem 7, (b)). We can also write

g ¼ xr ^ ðUr þ dWrÞ þ dðxr ^WrÞ ð276Þ

for some forms Ur and Wr. Setting sr ¼ Ur þ dWr, the second condition (275)
implies

p1dg ¼ �xr
l ^ dxl ^ hsr � xr ^ hdsr ¼ 0: ð277Þ

We want to show that this condition implies hsr ¼ 0. Indeed, for any p2;0-
vertical vector field

N ¼ Nr
i

@

@yri
þ Nr

ij
@

@yrij
ð278Þ

condition (278) yields Nr
l dx

l ^ hsr ¼ 0. Writing hsr ¼ Ai
rxi, this condition

implies Nr
l A

i
rdx

l ^ xi ¼ Nr
l A

l
rx0 ¼ 0; hence, Al

r ¼ 0. Thus, hsr ¼ 0. Substi-
tuting from this result to (277) and (275), we see that assertion (a) implies (b).

2. The converse is obvious. h
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Chapter 5
Invariant Variational Structures

Let X be any manifold, W an open set in X, and let α: W→ X be a smooth mapping.
A differential form η, defined on the set α(W) in X, is said to be invariant with
respect to α, if the transformed form a*g coincides with η, that is, if a*g ¼ g on the
set W\aðWÞ; in this case, we also say that α is an invariance transformation of η.
A vector field, whose local one-parameter group consists of invariance transfor-
mations of η, is called the generator of invariance transformations.

These definitions can naturally be extended to variational structures (Y, ρ) and to
the integral variational functionals associated with them. Our objective in this
chapter is to study invariance properties of the form ρ and other differential forms,
associated with ρ, the Lagrangian λ, and the Euler–Lagrange form Eλ. The class of
transformations we consider is formed by automorphisms of fibered manifolds and
their jet prolongations. This part of the variational theory represents a notable
extension of the classical coordinate concepts and methods to topologically non-
trivial fibered manifolds that cannot be covered by a single chart. The geometric
coordinate-free structure of the infinitesimal first variation formula leads in several
consequences, such as the geometric invariance criteria of the Lagrangians and the
Euler–Lagrange forms, a global theorem on the conservation law equations, and the
relationship between extremals and conservation laws. Resuming that we can say
that these results as a whole represent an extension of the classical Noether’s theory
to higher-order variational functionals on fibered manifolds (Noether [N]).

In this chapter, we basically follow Trautman’s formulation of the invariance
theory based on the geometric understanding of the topic (Trautman [Tr1, Tr2]). The
concept of the jet prolongation of a vector field and its meaning for the geometric
notion of a variation for invariance theory was discussed in Krupka [K6, K1].
The fundamentals of the invariance theory for differential equations and the calculus
of variations in Euclidean spaces developed along the classical lines can be found
in Olver [O1]; however, in this work, the Trautman’s approach using geometric
characteristics of the underlying transformations, such as the Lie derivatives, is
not included. A complete treatment of the work of Noether on invariant variational
principles is presented, also within the classical local framework, by Kosmann-
Schwarzbach [K-S].

© Atlantis Press and the author 2015
D. Krupka, Introduction to Global Variational Geometry,
Atlantis Studies in Variational Geometry 1, DOI 10.2991/978-94-6239-073-7_5
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In this chapter, we follow our previous notations. Throughout, Y is a fixed
fibered manifold with base X and projection π. We set dim X = n,
dim Y = n + m. JrY denotes the r-jet prolongation of Y, and πr,s and πr are the
canonical jet projections. For any set W � Y , the set (πr,0)−1(W) is denoted by Wr.
Xq
rW denotes the module of q-forms defined on Wr, Xq,Y

r W is the submodule of πr,0-
horizontal forms, and XrW is the exterior algebra of differential forms on Wr. We
use the horizontalization morphism of exterior algebras h: XrW → Xr+1W. The r-jet
prolongation of a morphism α of the fibered manifold Y is denoted by Jrα. Anal-
ogously, the r-jet prolongation of a π-projectable vector field is denoted by JrΞ.

5.1 Invariant Differential Forms

We present in this section some elementary remarks on the invariance of differential
forms on smooth manifolds under diffeomorphisms. We prove two standard lem-
mas that are permanently used in the theory of invariant variational structures.

Let X be a smooth manifold, W an open set in X and α: W → X a diffeomor-
phism. Let ρ be a p-form on X. We say that ρ is invariant with respect to α, if its
pull-back a*q coincides with α,

a*q ¼ q: ð1Þ

A diffeomorphism α, satisfying condition (1), is called the invariance transfor-
mation of ρ.

These definitions immediately transfer to vector fields. Let ξ be a vector field on
X, αξ its flow, and αt

ξ its local 1-parameter groups, defined by the condition
αt
ξ(x) = αξ(t, x), where the points (t, x) belong to the domain of definition of αξ.

We say that ξ is the generator of invariance transformations of ρ, if its local
1-parameter groups are invariance transformations of ρ, that is,

ðant Þ*qðxÞ ¼ qðxÞ ð2Þ

for all points (t, x) from the domain of αξ.

Lemma 1 For every point (t, x) from the domain of definition of the flow of the
vector field ξ,

d
dt

ðant Þ*qðxÞ ¼ ððant Þ*onqÞðxÞ: ð3Þ

Proof Let (t, x0) be a point from the domain of αξ. Choose tangent vectors
n1; n2; . . .; np 2 Tx0X and consider the value of the form ðant Þ*pðx0Þ on these tangent
vectors. This gives rise to a real-valued function t ! ððant Þ*qÞðx0Þðn1; n2; . . .; npÞ:
Differentiating this function at a point t0, we have
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d
dt

ððant Þ*qÞðx0Þðn1; n2; . . .; npÞ
� �

t0

¼ d
ds

ððant0þsÞ*qÞðx0Þðn1; n2; . . .; npÞ
� �

0
:

ð4Þ

But the flow satisfies the condition ant0þs ¼ ans � ant0 so we have

d
dt

ððant Þ*qÞðx0Þðn1; n2; . . .; npÞ
� �

t0

¼ d
ds

ððant0Þ*ðans Þ*qÞðx0Þðn1; n2; . . .; npÞ
� �

0

¼ d
ds

ððans Þ*qÞðant0ðx0ÞÞðTant0 � n1; Tant0 � n2; . . .; Tant0 � npÞ
� �

0

¼ onqðant0ðx0ÞðTant0 � n1; Tant0 � n2; . . .; Tant0 � npÞ
¼ ððans Þ*onqÞðx0Þðn1; n2; . . .; npÞ:

ð5Þ

This is formula (3). h

Lemma 2 (Invariance lemma) Let ξ be a vector field on X, and let ρ be a p-form on
X. The following two conditions are equivalent:

(a) ξ generates invariance transformations of ρ.
(b) The Lie derivative of ρ by ξ vanishes,

onq ¼ 0: ð6Þ

Proof

1. If ξ generates invariance transformations of ρ, then we differentiate both sides of
equation (2) with respect to t at t = 0 and obtain formula (6).

2. If condition (6) is satisfied, then by Lemma 1,

d
dt
ððant Þ*qÞðxÞ ¼ 0 ð7Þ

on the domain of the flow αξ. Thus, the curve t ! ððant Þ*qÞðxÞ is independent of t,
and since its domain is connected, its value is constant and must be equal to
ððan0Þ*qÞðxÞ ¼ qðxÞ: This proves condition (2). h
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5.2 Invariant Lagrangians and Conservation Equations

Let W be an open set in Y, let λ be a Lagrangian of order r for Y, defined on
Wr � JrY . Consider an automorphism α: W → Y of Y, and its r-jet prolongation
Jrα: Wr → JrY. We say that α is an invariance transformation of λ if Jra*k ¼ k.
The generator of invariance transformations of λ is a π-projectable vector field on
Y whose local one-parameter group consists of invariance transformations of λ.

In the following lemma, we use fibered charts (V, ψ), ψ = (xi, yσ), and our
standard multi-index notation. Recall that the contact 1-forms ωJ

σ, locally gener-
ating the contact ideal, are the 1-forms, defined by the formula ωJ

σ = dyJ
σ
– yJj

σ dxj

(Sect. 2.1, Theorem 1).

Lemma 3 Suppose we have a vector field Z on JrY. The following two conditions
are equivalent:

(a) For every fibered chart (V, ψ), ψ = (xi, yσ), on Y, every σ, and every multi-index
J such that 0 ≤ |J| ≤ r – 1, the form oZωJ

σ is a contact form.
(b) There exists a π-projectable vector field Ξ such that Z = JrΞ.

Proof Write ωJ
τ = dyJ

τ
– yJj

τ dxj and

Z ¼ fi
@

@xi
þ Zr

I
@

@yrI
: ð8Þ

Then

oZxs
J ¼ iZdx

s
J þ diZx

s
J ¼ �iZðdysJj ^ dx jÞ þ diZðdysJ � ysJldx

lÞ
¼ �Zs

Jjdx
j þ f jdysJj þ dðZs

J � ysJlf
lÞ

¼ �Zs
Jjdx

j þ f jdysJj þ dZs
J � fldysJl � ysJldf

l

¼ �Zs
Jjdx

j þ dZs
J � ysJldf

l

¼ ð�Zs
Jj þ djZ

s
J � ysJldjf

lÞdx j þ @Zs
J

@ykK
xk

K ;

ð9Þ

and our assertion follows from Sect. 1.7, Lemma 8. h

Lemma 4 Let λ be a Lagrangian of order r for Y.

(a) A π-projectable vector field Ξ on Y generates invariance transformations of λ
if and only if

@JrNk ¼ 0: ð10Þ

(b) Generators of invariance transformations of λ constitute a subalgebra of the
algebra of vector fields on JrY.
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Proof

(a) This is a trivial consequence of definitions.
(b) Any two generators satisfy [JrΞ1, J

rΞ2] = Jr[Ξ1, Ξ2] (Sect. 1.7, Lemma 11).
Then, however,

oJr ½N1;N2�k ¼ o½JrN1;JrN2�k ¼ oJrN1oJrN2k� oJrN2oJrN1k ¼ 0: ð11Þ
h

We keep terminology used by Trautman [Tr1, Tr2] and call Eq. (10), the
Noether equation. This equation represents a relation between the Lagrangian λ and
the generator Ξ of invariance transformation. Given λ, we can use the Noether
equation to determine the generators Ξ. On the other hand, given a Lie algebra of
π-projectable vector fields Ξ, one can use the corresponding Noether equations
to determine invariant Lagrangians λ.

Theorem 1 Suppose that a Lagrangian λ is invariant with respect to a π-
projectable vector field Ξ. Then for any Lepage equivalent ρ of λ

hiJrNdqþ hdiJrNq ¼ 0; ð12Þ

or, which is the same,

Jrc*iJrNdqþ dJrc*iJrNq ¼ 0 ð13Þ

for every section γ of Y.

Proof From Sect. 4.6, Theorem 7,

hoJrNq ¼ oJrþ1Nhq ¼ oJrþ1Nk ¼ hiJrNdqþ hdiJrNq ð14Þ

which implies (12). h

Remark 1 According to Sect. 4.3, Theorem 3, condition (12) reduces locally to

hiJrNdHk þ hdiJrNHk ¼ 0; ð15Þ

where Θλ is the principal Lepage equivalent of the Lagrangian form λ.

By a conserved current for a section c 2 CXðpÞ, we mean any (n – 1)-form
g 2 Xr

nW such that

dJsc*g ¼ 0: ð16Þ

We call formula (16) the conservation law equation; it is also called a conservation
law for the section γ.
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The following assertion says that extremals of invariant Lagrangians satisfy, in
addition to the Euler–Lagrange equations, also some other conditions, expressed by
the conservation law equations.

Theorem 2 (First theorem of Emmy Noether) Let k 2 Xr
n;XW be a Lagrangian, ρ a

Lepage equivalent of λ defined on JsY, and let γ be an extremal. Then for every
generator Ξ of invariance transformations of λ

dJsc*iJsNq ¼ 0: ð17Þ

Proof The proof is based on the first variation formula (Sect. 4.6, Theorem 7, (c)),
and is trivial. Indeed, we have

Jrc*oJrNk ¼ Jsc*iJsNdqþ dJsc*iJsNq; ð18Þ

and since the left-hand side vanishes, by invariance, and the first summand on the
right-hand side also vanishes, because γ is an extremal, we get formula (17) as
required. h

Note that (global) condition (17) can also be written in a different way, by means
of locally defined principal Lepage equivalents Θλ of the Lagrangian λ. From the
structure theorem on Lepage forms, we know that, locally, ρ = Θλ + dν + μ, where ν
is a contact form, and μ is a contact form of order of contactness ≥2. Then
dJsc*iJsNq ¼ dJsc*ðiJsNHk þ iJsNdmþ iJsNlÞ. But the form iJsNl is contact; more-
over, iJsNdm ¼ @JsNm� diJsNm, from which we deduce that

Jsc*iJsNl ¼ 0; dJsc*iJsNdm ¼ dJsc*@JsNm� dJsc*diJsNm ¼ 0: ð19Þ

Consequently, under the hypothesis of Theorem 1, condition

dJsc*iJsNHk ¼ 0 ð20Þ

holds over coordinate neighborhoods of fibered charts on Y.
One can also use invariance of variational functionals in a different way.

Namely, the infinitesimal first variation formula shows that the property of a
Lagrangian to be invariant reduces the number of the Euler–Lagrange equations.

Theorem 3 If λ is invariant, ρ is a Lepage equivalent of λ, and γ a section satisfying
the conservation law equation

dJrc*iJrNq ¼ 0; ð21Þ

then for any fibered chart (V, ψ), ψ = (xi, yσ), the associated Euler–Lagrange
expressions are linearly dependent along γ.
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Proof The infinitesimal first variation formula gives

Jrc*iJrNdq ¼ Jrc*iJrNp1dq ¼ Jrc*iJrNEhq ¼ 0: ð22Þ

Consequently, in the chart (V, ψ), ψ = (xi, yσ), for the given vector field Ξ, the
Euler–Lagrange expressions of the Lagrangian λ = hρ satisfy (22) and are linearly
dependent along γ. h

Example (Conservation law equations) In the following example, we consider the
product fibered manifold Y ¼ X � Rm. Denote by yσ the canonical coordinates on
Rm, and by xi, yσ some coordinates on Y. Consider the translation vector fields

Ns ¼ @

@ys
: ð23Þ

One can easily determine the r-jet prolongations of these vertical vector fields. We
get

JrNs ¼ @

@ys
: ð24Þ

Invariance conditions for a Lagrangian k ¼ Lx0 are oJrNsk ¼ iJrNsdk ¼ 0, that is,

@L

@ys
¼ 0: ð25Þ

In classical variational calculus, condition (25) is sometimes called the Routh
condition. The principal Lepage equivalent is

HL ¼ Lx0 þ
Xr�1

k¼0

Xr�1�k

l¼0

ð�1Þldp1dp2 . . .dpl
@L

@yrj1j2...jkp1p2...pli

 !
xr

j1j2...jk ^ xi; ð26Þ

and its contraction by JrΞτ is

iJrþ1NHkq ¼
Xr�1

l¼0

ð�1Þldp1dp2 . . .dpl
@L

@ysp1p2...pli
xi: ð27Þ

Therefore, the invariance condition Jrþ1c*EsðkÞx0 þ dJrþ1c*iJrþ1NHkq ¼ 0 redu-
ces to

EsðkÞ �
Xr�1

l¼0

ð�1Þldidp1dp2 . . .dpl
@L

@ysp1p2...pli
¼ 0: ð28Þ
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In particular, if γ satisfies the conservation law equation

Xr�1

l¼0

ð�1Þldidp1dp2 . . .dpl
@L

@ysp1p2...pli
¼ 0; ð29Þ

it also solves the Euler–Lagrange equation

EsðkÞ � Jrþ1c ¼ 0: ð30Þ

In particular, if λ is invariant with respect to all translation vector fields Ξτ, then
the system of the Euler–Lagrange equations is equivalent with the system of the
conservation law equations.

Remark 2 It should be pointed out that in general, the principal Lepage equivalent
Θλ, considered as a form depending on the Lagrangian λ, does not satisfy the
invariance condition oJrNHk ¼ HoJrNk.

Remark 3 The geometric structure of the first Noether’s theorem may be explained
as follows. Let Y be any manifold, ρ a differential form on Y. If ξ is a vector field on Y.
such that the Lie derivative oξρ vanishes, oξρ = 0, then by the Cartan’s formula, ρ
and ξ satisfy iξdρ + diξρ = 0. Then for any mapping f: X → Y satisfying the
“Euler–Lagrange equation” f *indq ¼ 0, the identity f *indqþ df *inq ¼ 0 yields the
“conservation law equation” df *inq ¼ 0.

Remark 4 (Invariance with respect to a Lie group action) The first theorem of
Emmy Noether (Theorem 2) is concerned with variational integrals, invariant with
respect to 1-parameter groups of automorphisms of underlying manifolds Y.
Clearly, the same theorem applies to invariance with respect to group actions of
(finite-dimensional) Lie groups G on Y. The corresponding conservation law
equations dJsc*iJsNq ¼ 0 (21) represent a system, in which the vector fields Ξ are
fundamental vector fields, defined by the Lie algebra of G. Thus, we get the system
of k equations on JsY, where k is the dimension of G.

Remark 5 (Second theorem of Emmy Noether) Some variational functionals admit
broad classes of invariance transformations that cannot be characterized as Lie
group actions. These transformations depend rather on arbitrary functions than on
finite number of real parameters. Consequences of invariance of this kind are
known as the second Noether’s theorem (cf. Olver [O1], where the systems pos-
sessing the second Noether’s theorem are characterized as abnormal). However,
also this type of invariance can sometimes be understood as invariance with respect
to a (finite-dimensional) Lie group; namely, this situation arises when the given
Lagrangian is a differential invariant (Krupka and Trautman [KT], Krupka [K10];
see also Chap. 6 of this book).
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5.3 Invariant Euler–Lagrange Forms

Let α: W → Y be an automorphism of Y, and let ɛ be a source form on JsY. We say
that α is an invariance transformation of ɛ, if Jsa*e ¼ e. The generator of
invariance transformations of ɛ is a π-projectable vector field on Y whose local one-
parameter group consists of invariance transformations of ɛ.

Lemma 5 (Noether–Bessel–Hagen equation) Let ɛ be a source form of order s for Y.

(a) A π-projectable vector field Ξ on Y is the generator of invariance transfor-
mations of ɛ if and only if

oJrNe ¼ 0: ð31Þ

(b) Generators of invariance transformations of ɛ constitute a subalgebra of the
algebra of vector fields on JrY.

Proof The same as the proof of Lemma 4, Sect. 5.2. h

Equation (31) is a geometric version of what is known in the classical calculus of
variations as the Noether–Bessel–Hagen equation.

Let λ be a Lagrangian of order r for Y, let α be any automorphism of Y, and let Eλ

be the Euler–Lagrange form of λ. Using the identity

J2ra*Ek ¼ EJra*k ð32Þ

(Section 4.5, Theorem 6), we easily obtain the following statement.

Lemma 6

(a) Every invariance transformation of λ is an invariance transformation of the
Euler–Lagrange form Eλ.

(b) For every invariance transformation α of Eλ, the Lagrangian k� Jra*k is
variationally trivial.

Proof

(a) This follows from (32): if Jra*k ¼ 0; then J2ra*Ek ¼ 0.
(b) This is again an immediate consequence of (32): if J2ra*Ek ¼ 0 then

EJra*k ¼ 0. h

We can generalize the Noether’s theorem to invariance transformations of the
Euler–Lagrange form. However, since the proof is based on the theorem on the
kernel of the Euler–Lagrange mapping, the assertion we obtain is of local character.
We denote by Θλ the principal Lepage equivalent of λ.
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Theorem 4 Let λ be a Lagrangian of order r, let γ be an extremal, and let Ξ be a
generator of invariance transformations of the Euler–Lagrange form Eλ. Then for
every point y0 2 Y there exists a fibered chart (V, ψ) at y0 and an (n – 1)-form η,
defined on Vr−1, such that on π(V)

dJ2rc*ðiJsNHk þ gÞ ¼ 0: ð33Þ

Proof Under the hypothesis of Theorem 4, from Sect. 4.10, Theorem 1, from
formula oJ2rNEk ¼ EoJrNk we obtain EoJrNk ¼ 0. Thus, the Lagrangian oJrNk belongs
to the kernel of the Euler–Lagrange mapping, so it must be of the form oJrNk ¼ hdg
over sufficiently small open sets V in Y such that (V, ψ) is a fibered chart (Sect. 4.8,
Theorem 9). Then, however, from the infinitesimal first variation formula over V,
expression

Jrc*oJrNk ¼ J2r�1c*iJsNdHk þ dJ2r�1c*iJsNHk; ð34Þ

reduces to

Jrc*hdg ¼ dJsc*iJsNHk: ð35Þ

Since Jrc*hdg ¼ Jrc*dg ¼ dJrc*g; this proves formula (33). h

Remark 6 If r = 1, then the principal Lepage equivalent Θλ is globally well defined.
Moreover, it follows from the properties of the Euler–Lagrange mapping that the
form η may be taken as a globally defined form on Y.

5.4 Symmetries of Extremals and Jacobi Vector Fields

Let λ be a Lagrangian of order r for a fibered manifold Y, and let γ be an extremal of
λ; thus, we suppose that γ satisfies the Euler–Lagrange equation

Ek � J2rc ¼ 0: ð36Þ

Consider an automorphism α: W → Y of Y with projection α0, and its r-jet pro-
longation Jrα: Wr → JrY. We say that α is a symmetry of γ, if the section αγα0

−1 is
also a solution of the Euler–Lagrange equations, that is,

Ek � J2rðaca�1
0 Þ ¼ 0: ð37Þ

We say that a π-projectable vector field Ξ is the generator of symmetries of γ, or
generates symmetries of γ, if its local one-parameter group consists of symmetries
of γ.
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We need a lemma on pushforward vector fields. Consider a vector field ξ and a
diffeomorphism α: W → X, defined on an open set W � X. By the pushforward
vector field of ξ with respect to α, we mean the vector field ξ(α) defined on W by

nðaÞðxÞ ¼ Ta�1ðxÞa � nða�1ðxÞÞ: ð38Þ

Lemma 7 Let X be a manifold, W an open set in X, Z a vector field on X, α:W→ X
a diffeomorphism, and ρ a p-form. Then

ina*q ¼ a*inðaÞq: ð39Þ

Proof We have, with standard notation,

ðina*qÞðxÞðn1; n2; . . .; npÞ
¼ qðaðxÞÞðTxa � nðxÞ; Txa � n1; Txa � n2; . . .; Txa � npÞ
¼ qðaðxÞÞðnðaÞðaðxÞÞ; Txa � n1;Txa � n2; . . .; Txa � npÞ
¼ inðaÞðaðxÞÞqðaðxÞÞðTxa � n1; Txa � n2; . . .; Txa � npÞ
¼ a*ðinðaÞqÞðxÞðn1; n2; . . .; npÞ:

ð40Þ

This is exactly formula (39). h

The following theorem says that invariance transformations of the Euler–
Lagrange form Eλ permute extremals of the variational structure (λ, Y) and give us
examples of symmetries.

Theorem 5 An invariance transformation of the Euler–Lagrange form Eλ is the
symmetry of every extremal γ.

Proof

1. Let α: W → Y be any automorphism of Y with projection α0: π(W) → X. Let
Z be any π-projectable vector field with projection Z0. We show that the
pushforward vector field ZðaÞ ¼ Ta � Z � a�1 is π-projectable, with projection

Zða0Þ
0 ¼ Ta0 � Z0 � a�1

0 . Indeed, for every y 2 aðWÞ

Typ � ZðaÞðyÞ ¼ Typ � Ta�1ðyÞa � Zða�1ðyÞÞ ¼ Ta�1ðyÞðpaÞ � Zða�1ðyÞÞ
¼ Tpða�1ðyÞÞa0 � Ta�1ðyÞp � Zða�1ðyÞÞ ¼ Ta�1

0 pðyÞa0 � Z0ðpa�1ðyÞÞ
¼ Ta�1

0 pðyÞa0 � Z0ða�1
0 pðyÞÞ ¼ Zða0ÞðpðyÞÞ; ð41Þ

proving that Z(α) is projectable and its projection is Zða0Þ
0 .
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Let βt denote the local 1-parameter group of Z, and let β0,t be its projection. Then
since

d
dt

abta
�1ðyÞ

� �
0
¼ Ta�1ðyÞa �

d
dt

bta
�1ðyÞ

� �
0

¼ Ta�1ðyÞa � Zða�1ðyÞÞ ¼ ZðaÞðyÞ;
ð42Þ

αβtα
−1 is the 1-parameter group of Z(α). The 1-parameter group of the projection

Zða0Þ
0 is defined by παβtα

−1 = απβtα
−1 = αβ0,tπα

−1 = αβ0,tα0
−1π and is equal to

αβ0,tα0
−1.

Since Z(α) is projectable, its s-jet prolongation JsZ(α) is defined. Since we know
the 1-parameter groups of Z(α), then JsZ(α) at a point Jx

sγ is given by differen-
tiation of the curve t ! Js

a0b0;ta
�1
0

ðxÞ ðabta�1Þcða0b�1
0;t a

�1
0 Þ at t = 0,

JsZðaÞðJsxcÞ ¼
d
dt

Jsa0b0;ta�1
0

ðxÞ ðabta�1Þcða0b�1
0;t a

�1
0 Þ

� �
0
: ð43Þ

It can be easily seen that the vector field JsZ(α) can be determined by

JsZðaÞ ¼ TJsa � JsZ � Jsa�1: ð44Þ

We determine the right-hand side at a point Jsxc 2 JsaðWsÞ. Using standard
differentiations, we have

TJsa�1ðJrxcÞJ
sa � JsZðJsa�1ðJrxcÞÞ ¼

d
dt

JsaðJsbtðJsa�1ðJrxcÞÞÞ
� �

0
: ð45Þ

The curve t → Jsα(Jsβt(J
sα−1(Jx

rγ))) can be expressed from the definition of s-jet
prolongation of a fibered automorphism (see Sect. 1.4). We have

JsaðJsbtðJsa�1ðJrxcÞÞÞ ¼ JsaðJsbtðJsa�1
0

ðxÞa
�1ca0ÞÞ

¼ JsaðJsb0;ta�1
0

ðxÞbta
�1ca0b

�1
0;t ÞÞ

¼ Jsa0b0;ta�1
0

ðxÞ ðabta�1Þcða0b�1
0;t a

�1
0 Þ:

ð46Þ

Differentiating this curve, we get the vector field JsZ(α) (44).
2. Let W be the domain of α. We have by definition for every point Jsxc 2 Wr,

JsaðJsxcÞ ¼ Jsa0ðxÞaca
�1
0 . Then (Jsα ° Jsγ)(x) = (Jsαγα0

−1 ° α0)(x), and we can write

on the domain α0(π(W)) of the section αγα0
−1

Jsa � Jsc � a�1
0 ¼ Jsaca�1

0 : ð47Þ
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Consider the Euler–Lagrange form Eλ, the n-form iJsZEk that appears in the first
variation formula and its values along the section Jsαγα0

−1. We have

ðJsaca�1
0 Þ*iJsZEk ¼ ða�1

0 Þ*ðJscÞ*ðJsaÞ*iJsZEk ð48Þ

on the domain α0(π(W)) of the section αγα0
−1. We can easily find an expression

for the form ðJsaÞ*iJsZEk onW
r. Choose any tangent vectors Ξ1, Ξ2,…, Ξn at the

point Jsxc 2 Wr. Then

ððJsaÞ*iJsZEkÞðJsxcÞðN1;N2; . . .NnÞ
¼ EkðJsaðJsxcÞÞðJsZðJsaðJsxcÞÞ; TJsa � N1; TJsa � N2; . . .; TJsa � NnÞ:

ð49Þ

Writing JsZ(Jsα(Jx
sγ)) = TJsα · TJsα−1 · JsZ(Jsα(Jx

sγ)), we get from (44)

TJsaðJsxcÞJ
sa�1 � JsZðJsaðJsxcÞÞ ¼ JsZða�1ÞðJsxcÞ ð50Þ

and

ððJsaÞ*iJsZEkÞðJsxcÞðN1;N2; . . .NnÞ
¼ EkðJsaðJsxcÞÞðTJsa � JsZða�1ÞðJsxcÞ; TJsa � N1; . . .; TJ

sa � NnÞ
¼ ðJsaÞ*EkðJsxcÞðJsZða�1ÞðJsxcÞ;N1;N2; . . .;NnÞ
¼ iJsZða�1ÞðJsxcÞðJ

saÞ*EkðJsxcÞðN1;N2; . . .;NnÞ
¼ ðiJsZða�1Þ ðJsaÞ*EkðJsxcÞÞðN1;N2; . . .;NnÞ;

ð51Þ

or, which is the same,

Jsa*iJsZEk ¼ iJsZða�1ÞJsa*Ek: ð52Þ

3. Now we can show that if γ is an extremal, and α is an invariance transformation
of Eλ, then for any Z

ðJsaca�1
0 Þ*iJsZEk ¼ 0: ð53Þ

Since by hypothesis, (Jsα) * Eλ = Eλ, (52) implies Jsa*iJsZEk ¼ iJsZða�1ÞEk, thus,
along Jsγ,

Jsc*Jsa*iJsZEk ¼ 0: ð54Þ
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But the left-hand side is, from (47)

Jsc*Jsa*iJsZEk ¼ ðJsa � JscÞ*iJsZEk

¼ ðJsaca�1
0 � a0Þ*iJsZEk

¼ a*0J
saca�1

0 *iJsZEk;

ð55aÞ

proving (53) as well as Theorem 5. h

The following theorem describes properties of individual extremals.

Theorem 6 Let λ be a Lagrangian of order r, let s be the order of the Euler–
Lagrange form Eλ, and let γ be an extremal. Then a π-projectable vector field Ξ
generates symmetries of γ if and only if

E@JrNk � Jsc ¼ 0: ð55bÞ

Proof

1. Suppose we have an extremal γ and a vector field Ξ generating symmetries of γ;
we prove that condition (37) is satisfied. We proceed in several steps.
Denote by αt and α0,t, the 1-parameter group of Ξ and its projection, respec-
tively. Using formulas (48) and (52) and invariance of the Euler–Lagrange
mapping (Sect. 4.5, Theorem 6), we get

ðJsatca�1
0;t Þ*iJsZEk ¼ ða�1

0;t Þ*ðJscÞ*iJsZða�t Þ ðJsa*t EkÞ
¼ ða�1

0;t Þ*Jsc*iJsZða�t ÞEJsa*t k
:

ð56Þ

Since the left-hand side vanishes by hypothesis, the right-hand side yields

Jsc*iJsZðat ÞEJra*t k
¼ 0: ð57Þ

We want to differentiate the form iJsZða�t ÞEJsa*t k
with respect to t at t = 0 and then

consider the resulting form along the prolongation Jsγ of the extremal γ. To
perform differentiation, note that the derivative of iJsZða�t ÞEJsa*t k

at t = 0 is the Lie
derivative of the form iJsZEk by the vector field JsZ. Indeed, for every point Jx

rδ
belonging to the domain of Jsαt for sufficiently small t, and any tangent vectors
Ξ1, Ξ2,…, Ξn at Jx

rδ,

ðJsa*t iJsZEkÞðJrxdÞðN1;N2; . . .;NnÞ
¼ EkðJsatðJrxdÞÞðJsZðJsatðJrxdÞÞ; TJsat � N1; . . .; TJ

sat � NnÞ:
ð58Þ
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Substituting

JsZðJsatðJrxdÞÞ ¼ TJsat � TJsa�1
t � JsZðJsatðJrxdÞÞ

¼ TJsat � JsZða�tÞðJrxdÞ
ð59Þ

from (22), we have

ðJsa*t iJsZEkÞðJrxdÞðN1;N2; . . .;NnÞ
¼ Jsa*t EkðJrxdÞðJsZða�tÞðJrxdÞÞ; ðN1;N2; . . .;NnÞ
¼ iJsZða�t ÞðJrxdÞEJra*t k

ðJrxdÞðN1;N2; . . .;NnÞ
ð60Þ

hence

Jsa*t iJsZEk ¼ iJsZða�t ÞEJra*t k
: ð61Þ

This formula proves that the derivative with respect to t at t = 0 of the right-hand
side is exactly the Lie derivative of the form iJsZEk with respect to the vector
field JrΞ.
Then, however, since

d
dt

Jsa*t iJsZEk ¼ Jsa*t oNiJsZEk ¼ d
dt

iJsZða�t ÞEJra*t k
ð62Þ

(Lemma 1), so we have along the extremal γ, from (57),

Jrc*Jsa*t oNiJsZEk ¼ Jrc*
d
dt

Jsa*t iJsZEk

¼ Jrc*
d
dt

iJsZða�t ÞEJra*t k

¼ 0:

ð63Þ

On the other hand, using the Cartan’s formula for the Lie derivative of a dif-
ferential form (see Appendix 5, (44)), we have

oJsNiJsZEk ¼ iJsNdiJsZEk þ diJsNiJsZEk

¼ iJsNðoJsZEk � iJsZdEkÞ � diJsZ iJsNEk

¼ iJsNoJsZEk � iJsNiJsZdEk � oJsZ iJsNEk þ iJsZdiJsNEk

¼ iJsNoJsZEk � iJsNiJsZdEk � oJsZ iJsNEk þ iJsZðEoJrNk � iJsNdEkÞ
¼ iJsNoJsZEk � oJsZ iJsNEk þ iJsZEoJrNk;

ð64Þ
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and from the Lie bracket formula

i½JsZ;JsN�Ek ¼ oJsZ iJsNEk � iJsNoJsZEk ð65Þ

we get

oJsNiJsZEk ¼ �i½JsZ;JsN�Ek þ iJsZEoJrNk: ð66Þ

Now, since γ is an extremal and Ξ generates symmetries of γ, we have
Jsc*i½JsZ;JsN�Ek ¼ 0 and from equation (63), Jsc*oJsNiJsZEk ¼ 0, thus,
Jsc*iJsZEoJrNk ¼ 0 as required.

2. Conversely, suppose that we have an extremal γ and a vector field Ξ such that
condition EoJrNk � Jsc ¼ 0 (27) holds. We want to show that Ξ generates sym-
metries of γ, that is,

a*0;tJ
sðatca�1

0;t Þ*iJsZEk ¼ 0; ð67Þ

where αt is the local 1-parameter group of Ξ and Z is any π-projectable vector
field.
According to Sect. 4.10, Theorem 11, condition (37) implies

Jsc*iJsZEoJrNk ¼ Jsc*iJsZoJsNEk ¼ 0 ð68Þ

for all π-projectable vector fields Z. Thus, at any point Jx
rγ

iJsZðJrxcÞoJsNEkðJrxcÞ ¼ 0 ð69Þ

therefore, oJsNEkðJrxcÞ ¼ 0 because the Euler–Lagrange form is 1-contact. Thus
by Sect. 5.1, Lemma 2,

ðJsatÞ*EkðJsxcÞ ¼ EkðJsxcÞ: ð70Þ

Contracting the left-hand side by JsZ(Jx
rγ) and using Lemma 7,

Jrc*iJsZðJsatÞ*Ek ¼ Jrc*ðJsatÞ*iJsZða�t ÞEk

¼ ðJsat � JrcÞ*iJsZða�t ÞEk ¼ ðJsatca�1
0;t � a0;tÞ*iJsZða�t ÞEk

¼ ða0;tÞ*ðJsatca�1
0;t Þ*iJsZða�t ÞEk ¼ a*0;tJ

sðatca�1
0;t Þ*iJsZEk:

ð71Þ

Since the contraction of the right-hand side vanishes, because γ is an extremal,
we have a*0;tJ

sðatca�1
0;t Þ*iJsZEk ¼ 0, proving (67). h
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Remark 7 Properties of the systems of partial differential equations, described in
this section, strongly rely on the variational origin of these systems. The structure of
these equations, esp. their invariance properties, indicates possibilities of applying
specific methods of solving these equations. Clearly, these specific topics need
further research.

References

[K-S] Y. Kosmann-Schwarzbach, The Noether Theorems, Springer, 2011
[K1] D. Krupka, A geometric theory of ordinary first order variational problems in fibered

manifolds, I. Critical sections, II. Invariance, J. Math. Anal. Appl. 49 (1975) 180-206, 469-
476

[K6] D. Krupka, Lagrange theory in fibered manifolds, Rep. Math. Phys. 2 (1971) 121-133
[KT] D. Krupka, A. Trautman, General invariance of Lagrangian structures, Bull. Acad. Polon.

Sci., Ser. Sci. Math. Astronom. Phys. 22 (1974) 207-211
[K10] D. Krupka, Natural Lagrange structures, in: Semester on Differential Geometry, 1979,

Banach Center, Warsaw, Banach Center Publications 12, 1984, 185-210
[N] E. Noether, Invariante Variationsprobleme, Nachrichten von der Gesellschaft der

Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1918) 235-257
[O1] P.J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New

York, 1998
[Tr1] A. Trautman, Invariance of Lagrangian systems, in: General Relativity, Papers in Honour

of J.L. Synge, Oxford, Clarendon Press, 1972, 85-99
[Tr2] A. Trautman, Noether equations and conservation laws, Commun. Math. Phys. 6 (1967)

248-261

5.4 Symmetries of Extremals and Jacobi Vector Fields 185



Chapter 6
Examples: Natural Lagrange Structures

Examples presented in this chapter include typical variational functionals that
appear as variational principles in the theory of geometric and physical fields. We
begin by the discussion of the well-known Hilbert variational functional for the
metric fields, first considered in Hilbert [H] in 1915, whose Euler–Lagrange
equations are the Einstein vacuum equations. We give a manifold interpretation of
this functional and show that its second-order Lagrangian, the formal scalar cur-
vature, possesses a global first-order Lepage equivalent. The Lagrangian used by
Hilbert is an example of a differential invariant of a metric field (and its first and
second derivatives). It should be pointed out, however, that the variational con-
siderations as well as the resulting extremal equations are independent of the sig-
nature of underlying metric fields.

Our approach to the subject closely follows the preprint Krupka and Lenc [KL].
The theory of jets and differential invariants including applications is explained in
Krupka and Janyska [KJ] (see also a general treatment by Kolar, Michor, Slovak
[KMS]). Variational principles with similar invariance properties were studied by
Anderson [A1] in connection with the inverse variational problem. More general
classes of natural bundles and natural Lagrangians that are differential invariants
of any collection of tensor fields, or any geometric object fields, were introduced in
Krupka and Trautman [KT] and Krupka [K3, K10]. The claims in this chapter are
not routine; the reader should provide a proof of them or consult the corresponding
references.

For contemporary research in the theory of natural Lagrange structures, we refer
to Ferraris et al. [FFPW], Patak and Krupka [PK], Palese and Winterroth [PW] and
the references therein. Extensive literature on the classical invariant theory, related
with the subject, can be found in Kolar et al. [KMS] and Krupka and Janyska [KJ];
however, this topic is outside the scope of this book. The variational functionals for
submanifolds, whose underlying structures differ from jet prolongation of fibered
manifolds, are not considered in this book (cf. Urban and Krupka [UK3]).

© Atlantis Press and the author 2015
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6.1 The Hilbert Variational Functional

The modern geometric interpretation of variational principles in physics requires
the knowledge of the structure of underlying fibered spaces as well as adequate
(intrinsic and also coordinate) methods of the calculus of variations on these spaces.
In this example, we briefly consider the Hilbert variational functional for metric
fields on a general n-dimensional manifold X, a well-known functional providing,
for n ¼ 4, the variational principle for the Einstein vacuum equations in the general
relativity theory (Hilbert [H]). Note that the Hilbert variational principle does not
restrict the topology of the underlying (spacetime) manifold X. If we require that the
topology of spacetime should have its origin in matter and physical fields, then this
principle should be completed with some other one.

In this example, we follow the preprint Krupka and Lenc [KL]; the topic cer-
tainly needs further investigations. Our assertions are formulated without proof,
which can however be easily reconstructed by means of the general theory. Basic
knowledge of the concepts of Riemannian (and pseudo-Riemannian) geometry is
supposed.

Let X be an n-dimensional smooth manifold, T0
2X the vector bundle of tensors of

type (0,2) over X, and let s: T0
2X ! X be the tensor bundle projection. T0

2X contains
the open set MetX of symmetric, regular bilinear forms on the tangent spaces at the
points of X. Then, the restriction of the tensor bundle projection s defines a fibered
manifold structure on the set MetX over the manifold X; we call this fibered
manifold the bundle of metrics over X. Its sections are metric fields on the manifold
X. Integral variational functionals for the metric fields are defined by n-forms on the
r-jet prolongations JrMetX of the fibered manifold MetX.

Any chart ðU;uÞ, u ¼ ðxiÞ, on X induces a chart ðV ;wÞ, w ¼ ðxi; gijÞ, on MetX,
where V ¼ s�1ðUÞ and gij are functions on V defined by the decomposition g ¼
gijdxi � dx j of the bilinear forms; the coordinate functions gij entering the chart
ðV ;wÞ satisfy 1� i� j� n. The associated fibered charts on the r-jet prolongations
JrMetX are then defined in a standard way. In particular, if r ¼ 2, then the asso-
ciated chart is denoted by ðV2;w2Þ, w2 ¼ ðxi; gij; gij;k; gij;klÞ, where i� j, k� l, and
gij;k ¼ dkgij, gij;kl ¼ dkdlgij; dk is the formal derivative operator. We denote

x0 ¼ dx1 ^ dx2 ^ � � � ^ dxn;

xk ¼ ð�1Þk�1dx1 ^ dx2 ^ � � � ^ dxk�1 ^ dxkþ1 ^ � � � ^ dxn;

xij ¼ dgij � gij;pdx
p;

xij;k ¼ dgij;k � gij;kpdx
p:

ð1Þ
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Then, the forms dxi;xij;xij;k; dgij;kl constitute the contact basis on the set V2. We
need some systems of functions on V2. The functions

Ci
jk ¼

1
2
gimðgmk;j þ gjm;k � gjk;mÞ; ð2Þ

where gim are elements of the inverse matrix of the matrix gij, which are called the
formal Christoffel symbols; note that the derivative gpj;k can be reconstructed from
Ci
jk by the formula gpj;k ¼ gpiCi

jk þ gjiCi
pk. The expressions

Rik ¼ Cl
ik;l þ Cl

ikC
m
lm � Cl

il;k � Cm
ilC

l
km; R ¼ gikRik; ð3Þ

where Cl
ik;j are the formal derivatives djCl

ik, define the formal Ricci tensor with

components Rik, and a function R: J2MetX ! R, the formal scalar curvature.
Every metric field U 3 x ! gðxÞ 2 MetX, defined on an open set in X, can be
prolonged to the section U 3 x ! J2gðxÞ 2 J2MetX of the second jet prolongation
J2MetX. Composing the second jet prolongation J2g with the formal scalar cur-
vature, we get a real-valued function on U, x ! ðR � J2gÞðxÞ ¼ RðJrxgÞ, the scalar
curvature of the metric g, and a second-order Lagrangian

k ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gijj

q
� x0: ð4Þ

k is called the Hilbert Lagrangian. The variational functional

CXðsÞ 3 g ! kXðcÞ ¼
Z
X

J2g*k 2 R; ð5Þ

where X is any compact set in the domain of definition of the section c, which is the
Hilbert variational functional for the metric fields on X.

We shall restate basic general theorems of the variational theory on fibered
manifolds for this special case. It should be pointed out, however, that all these
statements could also be proved directly, without reference to the general theory.
Our first statement rephrases the existence theorem for Lepage equivalents of a
given Lagrangian; we claim in addition that the (second-order) Hilbert Lagrangian
possesses a first-order Lepage equivalent.

Recall that s2;0 is the canonical jet projection of J2MetX onto MetX, expressed
as the mapping ðxi; gij; gij;k; gij;klÞ ! ðxi; gijÞ, and denote

R ¼ R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det gijj

q
: ð6Þ

R is the component of the Hilbert Lagrangian with respect to the chart on J2MetX,
associated with the chart ðU;uÞ, u ¼ ðxiÞ.
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Theorem 1 (Existence of Lepage equivalents) There exists an n-form HH on the
first jet prolongation J1MetX with the following properties:

(a) hHH ¼ k.
(b) p1dHH is s2;0-horizontal.

To prove Theorem 1, we can use the principal Lepage equivalent of a second-
order Lagrangian (Sect. 4.5, Example 2), which is now given by

HH ¼ Rx0 þ @R

@gij;k
� dl

@R

@gij;kl

� �
xij þ @R

@gij;kl
xij;l

� �
^ xk: ð7Þ

Substituting from (6), we get the principal Lepage equivalent of the Hilbert
Lagrangian

HH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
gipðC j

ipC
k
jk � C j

ikC
k
jpÞx0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
ðgjpgiq � gpqgijÞðdgpq;j þ Ck

pqdgjkÞ ^ xi:
ð8Þ

One can also prove Theorem 1 by searching for HH in the form

HH ¼ Rx0 þ ðf ijkxij þ f ijklxij;lÞ ^ xk; ð9Þ

with an invariant condition f ijkl ¼ f ijlk . The following is another expression for HH .

Theorem 2 The form HH satisfying conditions (a) and (b) of Theorem 1 has an
expression

HH ¼ �Hx0 þPij;kdgij ^ xk þ dg; ð10Þ

where

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
� gijðCk

ikC
r
jr � Ck

ijC
r
krÞ;

Pij;k ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
ð�gkigsjCq

qs � gkjgsiCq
qs þ gksgijCq

qs

þ gpigsjCk
ps þ gpjgsiCk

ps � gijgpsCk
psÞ;

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
ðgjlCk

jl � gklCr
rlÞxk:

ð11Þ

These explicit formulas show that the Lepage form HH is of the first order. Since
hHH ¼ k, the Hilbert variational functional (1) can also be treated as a first-order
functional
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CXðsÞ 3 g ! kHðcÞ ¼
Z
X

J1g*HH 2 R: ð12Þ

Existence of the Lepage equivalent HH has a few immediate consequences. The
most important one is the form of the first variation formula (Sect. 4.6). Recall this
formula for any s-projectable vector field N on the fibered manifold MetX,
expressed by

N ¼ ni
@

@xi
þ Nij

@

@gij
: ð13Þ

Then for every metric field g, defined on an open set in X, the Lie derivative oJ1NHH

is along J1g expressed as

J1g*oJ1NHH ¼ J1g*iJ1NdHH þ dJ1g*iJ1NHH : ð14Þ

This is the basic (global) infinitesimal first variation formula for the Hilbert
Lagrangian, allowing us to study its extremals and conservation law equations. The
horizontal components hiJ1NdHH and hdJ1g*iJ1NHH corresponding with formula
(14) are

hiJ1NdHH ¼ @R

@gij
� dk

@R

@gij;k
þ dkdl

@R

@gij;kl

� �
ðNij � gij;pn

pÞx0; ð15Þ

and

hdiJ1NHH ¼ diw
i � x0; ð16Þ

where

wi ¼ Rni þ @R

@gkl;i
þ dj

@R

@gkl;ij

� �
ðNkl � gkl;pn

pÞ þ @R

@gkl;ij
ðNklj � gkl;jpn

pÞ: ð17Þ

Note that the horizontalization h in (15) and (16) characterizes the forms iJ1NdHH

and diJ1NHH along the 1-jet prolongations J1g of sections of the fibered manifold
MetX. Expression (15) represents the Euler–Lagrange term, and (16) is the
boundary term. Since from the definition of the r-jet prolongation of a vector field,
the expression Nklj � gkl;jpn

p can be expressed as

djðNkl � gkl;pn
pÞ ¼ djNkl � gkl;pjn

p � gkl;p
@np

@x j

¼ Nklj � gkl;pjn
p

ð18Þ
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(see Sect. 1.7), we can also write formula (17) as

wi ¼ Rni þ @R

@gkl;i
þ dj

@R

@gkl;ij

� �
ðNkl � gkl;pn

pÞ þ @R

@gkl;ij
djðNkl � gkl;pn

pÞ

¼ Rni þ @R

@gkl;i
ðNkl � gkl;pn

pÞ þ dj
@R

@gkl;ij
ðNkl � gkl;pn

pÞ
� �

:

ð19Þ

The Lapage equivalent HH determines the Euler–Lagrange equations:

Theorem 3 (Euler–Lagrange expressions, Noether currents)

(a) The Euler–Lagrange term in the first variation formula (14) has an expression

hiJ1NdHH ¼ 1
2
gijR� Rij

� �
girgjsðNrs � grs;pn

pÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
x0: ð20Þ

(b) The boundary term is given by the expression

wi ¼ Rni þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
ðgjlgpi � gpjgliÞCk

pjðNkl � gkl;mn
mÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
ðgkjgil � gijgklÞðNklj � gkl;jmn

mÞ:
ð21Þ

The ðnþ 1Þ-form defined by expression (20), characterizing extremals of the
Hilbert variational functionals, is the Euler–Lagrange form

EðkÞ ¼ p1dHH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
Eijg

irgjsxrs ^ x0; ð22Þ

where Eij is the formal Einstein tensor,

Eij ¼ 1
2
gijR� Rij: ð23Þ

The corresponding Euler–Lagrange equations are the Einstein equations

Eij � J2g ¼ 0: ð24Þ

The ðn� 1Þ-form iJ1NHH in (16) is the Noether current associated with the vector
field N.

A specific property of the Hilbert Lagrangian consists in its invariance under all
diffeomorphisms of the fibered manifold MetX, induced by diffeomorphisms of the
underlying manifold X. Recall briefly the corresponding definitions (Krupka [K3]).
Suppose we are given a diffeomorphism a: U ! �U, where U and �U are open
subsets of X. First, we wish to show that a lifts to a diffeomorphism aMet of the set
s�1ðUÞ into s�1ð�UÞ and find equations of aMet. If U and �U are domains of definition
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of two charts, ðU;uÞ, u ¼ ðxiÞ, and ð�U; �uÞ, �u ¼ ð�xrÞ, then for any point x 2 U, a
metric �g at the point aðxÞ 2 �U is expressed as

�g ¼ �grm � dyrðaðxÞÞ � dymðaðxÞÞ; ð25Þ

where �grm are real numbers. Then setting

T0
2a � �g ¼ �grmða*dyrÞðxÞ � ða*dymÞðxÞ

¼ �grmdðyr � aÞðxÞ � ðym � aÞðxÞ

¼ �grm
@ðyrau�1Þ

@xi

� �
uðxÞ

@ðymau�1Þ
@x j

� �
uðxÞ

dxiðxÞ � dx jðxÞ;
ð26Þ

we get a metric g ¼ T0
2a � �g at the point x. Thus, replacing a with a�1, we get a

diffeomorphism Met a: s�1ðUÞ ! s�1ð�UÞ, defined in components as the
correspondence

xi ! xiau�1ðuðxÞÞ;

gij ! �grm ¼ gij
@ðxia�1�u�1Þ

@�xr

� �
uðaðxÞÞ

@ðx ja�1�u�1Þ
@�xm

� �
uðaðxÞÞ

:
ð27Þ

This construction can be adapted to the local 1-parameter group at of a vector
field n on X. To this purpose, we may choose, for all sufficiently small t,
ð�U; �uÞ ¼ ðU;uÞ. Express n as

n ¼ ni
@

@xi
: ð28Þ

Then, the mapping Met a (27) is replaced with the mapping expressed as

ðt; xiÞ ! xiatu
�1ðuðxÞÞ ¼ xiatðxÞ;

ðt; gijÞ ! �grs ¼ gij
@ðxia�1

t u�1Þ
@xr

� �
uðatðxÞÞ

@ðx ja�1
t �u�1Þ
@xs

� �
uðatðxÞÞ

;
ð29Þ

representing the canonical lift Met at of the flow at to the fibered manifold MetX.
The corresponding lift of the vector field n to the fibered manifold MetX, denoted
Met n, is obtained by differentiating of the functions (29) at t ¼ 0. Differentiating
the mapping ðt; xiÞ ! xiatðxÞ yields the component ni of n. Since a�1

t ¼ a�t and
a0 ¼ id, the second row in (29) yields the expression
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gij
@

@xr
dðxia�tu�1Þ

dt

� �
0

� �
uðxÞ

d j
s þ gijd

i
r

@

@xs
dðx ja�t �u�1Þ

dt

� �
0

� �
uðxÞ

¼ �gis
@ni

@xr0

� �
uðxÞ

�grj
@n j

@xs0

� �
uðxÞ

:

ð30Þ

Thus, since the vector field Met n is determined by its flow, we have

Met n ¼ ni
@

@xi
� gis

@ni

@xr
þ gri

@ni

@xs

� �
@

@grs
: ð31Þ

The Hilbert Lagrangian k is easily seen to be diffeomorphism invariant or, which
is the same, a differential invariant (cf. Krupka and Janyska [KJ]; Kolar et al.
[KMS]). This property can also be expressed in terms of Lie derivatives.

Theorem 4 For every vector field n, defined on an open set in X,

oJ2Metnk ¼ 0: ð32Þ

Combining Theorem 4 and the first variation formula (14), where N ¼ Met n we
obtain the identity

J1g*iJ1Met ndHH þ dJ1g*iJ1Met nHH ¼ 0 ð33Þ

holding for all n and all c. The meaning of this condition requires further analysis,
given, for more general variational functionals, in subsequent sections.

6.2 Natural Lagrange Structures

The class of natural Lagrange structures represents a far-going generalization of the
Hilbert variational principle, discussed in the previous example. The Lagrangians for
these Lagrange structures are defined on natural bundles by an invariance condition
with respect to diffeomorphisms of the underlying manifold, analogous to property
oJ2Metnk ¼ 0, of the Hilbert Lagrangian k (see Sect. 6.1, (32)). Conditions of this kind
can be rephrased by saying that the Lagrangians should be differential invariants
(Krupka and Janyska [KJ]); a specific feature of such a Lagrangian consists in its
property to define a variational principle not only for one specific fiberedmanifold but
rather for the category of locally isomorphic fibered manifolds. For the natural bun-
dles and their generalizations – gauge natural bundles –we refer toKolar et al. [KMS].

Our brief exposition follows the general theory explained in Chap. 4 and two
papers on natural Lagrange structures (Krupka [K3, K10]). The relationship
between natural Lagrangians and the inverse problem of the calculus of variations
was studied by Anderson [A1].
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By the rth differential group of the Euclidean space Rn, we mean the group Lrn of
invertible r-jets with source and target at the origin 0 2 Rn. An element of the group
Lrn is an r-jet Jr0a, whose representative is a diffeomorphisms a: U ! V , where
U and V are neighborhoods of the origin and að0Þ ¼ 0. The group operation Lrn �
Lrn 3 ðJr0a; Jr0bÞ ! Jr0ða � bÞ 2 Lrn is defined by the composition of jets. The
canonical (global) coordinates aij1j2...jk on Lrn are defined by the condition

aij1j2...jk ðJr0aÞ ¼ Dj1Dj2 . . .Djka
ið0Þ, where 1� k� r, 1� j1 � j2 � � � � � jk � n, and ai

are components of the diffeomorphism a. Since the group operation is polynomial,
the differential group is a Lie group. Clearly, L1n can be canonically identified with
the general linear group GLnðRÞ.

Let X be a smooth manifold of dimension n. By an r-frame at a point x 2 X, we
mean an invertible r-jet Jr0f with source 0 2 Rn and target x. The set of r-frames,
denoted FrX, has a natural smooth structure and is endowed with the canonical jet
projection pr: FrX ! X: Every chart ðU;uÞ, u ¼ ðxiÞ, on X induces a chart
ððprÞ�1ðUÞ;urÞ, ur ¼ ðxi; fij1j2...jkÞ, on FrX by fij1j2...jk ðJr0fÞ ¼ Dj1Dj2 . . .Djkf

ið0Þ,
where 1� k� r, 1� j1 � j2 � � � � � jk � n, and fi are the components of f in the
chart ðU;uÞ. The mapping FrX � Lrn 3 ðJr0f; Jr0aÞ ! Jr0ðf � aÞ2 FrX defines on
FrX the structure of a (right) principal fiber bundle with structure group Lrn. F

rX
is called the bundle of r-frames over X. If r ¼ 1, then F1X can be canonically
identified with the bundle of linear frames FX.

As an example, one can easily derive the equations, describing the structure of
the principal L2n-bundle of 2-frames. The group multiplication in the differential
group L2n is given by

aijðA � BÞ ¼ aikðAÞakj ðBÞ;
aij1j2ðA � BÞ ¼ aik1k2ðAÞak1j1 ðBÞak2j2 ðBÞ þ aikðAÞakj1j2ðBÞ;

ð34Þ

where A ¼ J20a, B ¼ J20b. The right action of L2n on F2X is expressed by the
formulas

fijðf � AÞ ¼ fikðfÞakj ðAÞ;
fij1j2ðf � AÞ ¼ fik1k2ðfÞak1j1 ðAÞak2j2 ðAÞ þ fikðfÞakj1j2ðAÞ:

ð35Þ

We need some categories:

(a) Dn – the category of diffeomorphisms of smooth, n-dimensional manifolds,
(b) PBnðGÞ – the category of homomorphisms of principal fiber bundles with

structure group G, whose projections are morphisms of Dn,
(c) FBnðGÞ – the category of homomorphisms of fiber bundles, associated with

principal fiber bundles from PBnðGÞ.
Let s: Dn ! PBnðGÞ be a lifting, that is, a covariant functor, assigning to an

object X of the category Dn an object sX of PBnðGÞ and to a morphism f : U ! V
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of Dn a morphism sf : sU ! sV of PBnðGÞ. Let Q be a manifold, endowed with a
left action of the Lie group G. For any manifold X belonging to Dn, Q defines a
fiber bundle sQX with type fiber Q, associated with sX. f : U ! V also defines a
morphism sQf : sQU ! sQV of the category FBnðGÞ. The correspondence
X ! sQX, f ! sQf is a covariant functor from Dn to FBnðGÞ, called the Q-lifting
associated with the lifting s. This lifting is denoted by sQ.

In many applications, Q is a space of tensors on the vector space Rn. Then, Q is
endowed with the tensor action GLnðRÞ � Q 3 ðg; pÞ ! g � p 2 Q. In this case, the
Q-lifting sQ assigns to a smooth n-dimensional manifold X the tensor bundle sQX of
tensors of type Q over X and to a morphism f : U ! V of Dn the corresponding
morphism sQf : sQU ! sQV of the category FBnðGLnðRÞÞ.

In the calculus of variations, we need the jet prolongations of these fiber bun-
dles. Denote by Tr

nQ the set of r-jets with source 0 2 Rn and target in Q. Tr
nQ is

endowed with the action of the differential group Lrþ1
n ,

Lrþ1
n � Tr

nQ 3 ðJrþ1
0 a; Jr0fÞ ! Jr0ððDa � fÞ � a�1Þ 2 Tr

nQ ð36Þ

(Krupka [K3]). Calculating this mapping in a chart, we easily find that formally, this
jet formula represents transformation properties of the derivatives of a tensor field
of type Q. The following interpretation is important for applications; namely, it
possesses a tool how to construct natural Lagrangians for collections of tensor
fields of a given type Q.

Lemma 1 Let X be a smooth n-dimensional manifold.

(a) Formula (36) defines the structure of a fiber bundle with type fiber Tr
nQ,

associated with the principal Lrþ1
n -bundle Frþ1X.

(b) The correspondence X ! JrsQX, f ! JrfQX is a covariant functor from the
category Dn to the category FBnðLrþ1

n Þ.
The lifting JrsQ is called the r-jet prolongation of the lifting sQ.
The notion of the r-jet prolongation can naturally be extended to any manifolds

Q endowed with a left action of the general linear group GLnðRÞ.
These notions represent the underlying general concepts of the theory of natural

variational structures. Namely let X be an n-dimensional manifold (an object of the
category Dn), Q a manifold endowed with a left action of the general linear group
L1n ¼ GLnðRÞ, sQX the fiber bundle with base X and type fiber Q, associated with
the bundle of framesFX (an object of the categoryFBnðL1nÞ), and let JrsQX be the
r-jet prolongation of sQX (an object of the category FBnðLrþ1

n Þ). Let JrsQn be the
lift of a vector field n, defined on X, to the bundle JrsQX (an object of FBnðLrþ1

n Þ).
We say that a Lagrangian k defined on JrsQX is natural, if for all vector fields n,

oJrsQnk ¼ 0: ð37Þ
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Now let ðY ; kÞ be a variational structure of order r, let X be the base of the
fibered manifold Y, and suppose without loss of generality that the form k is a
Lagrangian. We shall say that the variational structure ðY ; kÞ is natural, if there
exists a left L1n-manifold Q such that Y ¼ sQX, and k is a natural Lagrangian for
this natural bundle.

Examples

1. The variational structure ðMetX; kÞ, where k is the Hilbert Lagrangian
(Sect. 6.1).

2. The Lagrangian for a covector field and a metric field in the general relativity
theory, representing interaction of the electromagnetic and gravitational fields in
the general relativity theory. The corresponding natural Lagrange structure is the
pair ðY ; kÞ, where the fibered manifold Y is the fiber product MetX � T*X over a
manifold X; its sections are the pairs of tensor fields ðg;AÞ, locally expressible as

g ¼ gijdx
i � dx j; A ¼ Aidx

i: ð38Þ

The Lagrangian is of the form k ¼ kH þ k0, where kH is the Hilbert Lagrangian
and the term k0, describing the interaction of the gravitational and electro-
magnetic field, is defined by the interaction Lagrangian

k0 ¼ gijgklðAi;k � Ak;iÞðAj;l � Al;jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j det grsj

p
x0: ð39Þ

In this formula Ai;k ¼ dkAi are formal derivatives. The Euler–Lagrange equa-
tions consist of two systems, the Maxwell equations and the Einstein equations
whose left-hand side is the Einstein tensor Eij (23) and the right-hand side is the
variational energy-momentum tensor of the electromagnetic field.

3. An example of a gauge natural variational structure is provided by the Hil-
bert–Young–Mills Lagrangian (see e.g., Patak and Krupka [PK]).

6.3 Connections

We give in this section an example of a first-order natural Lagrange structure
ðCX; kCÞ, whose underlying fibered manifold is not a tensor bundle.

Consider the vector space Q ¼ Rn � ðRnÞ*� ðRnÞ* of tensors of type ð1; 2Þ on
the vector space Rn, with the canonical coordinates Ci

jk. We shall refer to Ci
jk as the

formal Christoffel symbols. Q is endowed with a nonlinear left action of the dif-
ferential group L2n, defined in charts by

�Ci
jk ¼ aipðbqj brkCp

qr þ bpjkÞ; ð40Þ
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where aij; a
i
jk are the canonical coordinates on L2n, and bij, b

i
jk are functions on L2n

defined by the formulas aipb
p
j ¼ dij, a

i
pqb

p
j þ aipa

s
qb

p
js ¼ 0. Note that this action is

defined by the transformation equations for the components of a connection. For
any n-dimensional manifold X, the left action (40) defines in a standard way a fiber
bundle over X with type fiber Q, associated with the principal L2n-bundle of 2 frames
F2X, denoted CX ¼ F2

QX. We call this fiber bundle the connection bundle. Its
sections are connection fields, or connections on the underlying manifold X. One
can also assign to any diffeomorphism a of n-dimensional manifolds its liftingF2a,
an isomorphism of the corresponding bundles of 2 frames, and the associated lifting
F2

Qa, an isomorphism of the corresponding fiber bundles with type fiber
Ca ¼ T1

nQ. Then, the correspondence X ! CX, a ! Ca is a Q-lifting, associated
with the 2 frame lifting F2 from the category Dn to FBnðL2nÞ.

The notion of the connection bundle was introduced in this way for the sym-
metric tensor product Q ¼ Rn � ððRnÞ*	 ðRnÞ*Þ in the paper Krupka [K9], with
the aim to study differential invariants of symmetric linear connections. The formal
Christoffel symbols entering formula (40) are in general not symmetric.

Now the q-lifting X ! CX, a ! Ca induces in a standard way its r-jet pro-
longation liftings X ! JrCX, a ! JrCa from Dn to FBnðLrþ2

n Þ. In this example,
we need the case r ¼ 1. If X is a fixed n-dimensional manifold with some local
coordinates ðxiÞ are some local coordinates on X, then the associated fibered
coordinates on CX are ðxi;Ci

jkÞ, and the associated coordinates on J1CX are

ðxi;Ci
jk;C

i
jk;lÞ, where the coordinate functions Ci

jk;l are defined by the formal

derivative operator as Ci
jk;l ¼ dlCi

jk.
Using these coordinates, we set

Rik ¼ Cs
ik;s � Cs

is;k þ Cs
ikC

m
sm � Cm

isC
s
km ð41Þ

and

kC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detRijj

q
� x0: ð42Þ

The system of functions Rik is called the formal Ricci tensor, and kC is a global
horizontal n-form, defined on the fibered manifold J1CX. Formula (42) concludes
the construction of a natural Lagrange structure ðCX; kCÞ.

We show that the principal Lepage equivalent of the Lagrangian kC is given by

HC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detRijj

q
x0 þ 1

2
ðRjkdli � Rjldki Þxi

jk ^ xl

� �
; ð43Þ
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where

x0 ¼ dx1 ^ dx2 ^ � � � ^ dxn;

xl ¼ dx1 ^ dx2 ^ � � � ^ dxl�1 ^ dxlþ1 ^ � � � ^ dxn;

xi
jk ¼ dCi

jk � Ci
jk;sdx

s:

ð44Þ

Denote for further calculations t ¼ detRrs and C ¼ ffiffiffiffiffijtjp
: We shall consider the

open set in the fibered manifold J1CX defined by the condition t 6¼ 0. Differenti-
ating we have

@C

@Ci
jk

¼ 1

2
ffiffiffiffiffijtjp sgnt

@t
@Rpq

@Rpq

@Ci
jk

¼ 1

2
ffiffiffiffiffijtjp sgnt � t � Rpq @Rpq

@Ci
jk

¼
ffiffiffiffiffijtjp
2

Rpq � ðdsid j
pd

k
qC

m
sm þ dmi d

j
sd

k
mC

s
pq � Cs

qmd
m
i d

j
pd

k
s � Cm

psd
s
id

j
qd

k
mÞ

¼
ffiffiffiffiffijtjp
2

ðRjkCm
im þ dki R

pqC j
pq � RjqCk

qi � RpjCk
piÞ;

ð45Þ

and

@C

@Ci
jk;l

¼
ffiffiffiffiffijtjp
2

Rpq @Rpq

@Ci
jk;l

¼
ffiffiffiffiffijtjp
2

Rpqðdsid j
pd

k
qd

l
s � dsid

j
pd

k
sd

l
qÞ

¼
ffiffiffiffiffijtjp
2

ðRjkdli � Rjldki Þ:
ð46Þ

Hence, the principal Lepage equivalent is

HC ¼ Cx0 þ @C

@Ci
jk;l

xi
jk ^ xl ¼

ffiffiffiffiffiffi
jqj

p
x0 þ 1

2
ðRjkdli � Rjldki Þxi

jk ^ xl

� �
ð47Þ

as required.
Formula (43) can be used for explicit description of the properties of the vari-

ational functional

CXðsXÞ 3 C !
Z
X

J1C*kC ¼
Z
X

J1C*HC 2 R; ð48Þ

for connections C on an n-dimensional manifold X; in this formula, sX is the
projection of the fibered manifold CX onto X. In particular, we can determine the
Euler–Lagrange form p1dHC for extremal connections and the corresponding
Noether currents. We do not analyze the resulting formulas here.
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Remark A fundamental notion of the differential geometry of connections on a
manifold X is the curvature tensor. From the point of view of the variational
geometry, this notion can be represented by the formal curvature tensor

Rl
ikj ¼ Cl

ik;j � Cl
ij;k þ Cl

ikC
m
jm � Cm

ijC
l
km; ð49Þ

defined on the 1-jet prolongation J1CX of the bundle of connections CX. Note that
the formal Ricci tensor (41) represents the trace of the formal curvature tensor (49)
in the indices l and j; one can also consider a different variational functional for
connection fields whose Lagrangian is based on the trace of Rl

ikj in the indices l and

i, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detRs

skjj
q

x0.
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Chapter 7
Elementary Sheaf Theory

The purpose of this chapter is to explain selected topics of the sheaf theory over
paracompact, Hausdorff topological spaces. The choice of questions we consider
are predetermined by the global variational theory over (topologically nontrivial)
fibered manifolds, namely by the problem how to characterize differences between
the local and global properties of the Euler–Lagrange mapping, between locally and
globally trivial Lagrangians, and locally and globally variational source forms.
To this purpose, the central topic we follow is the abstract De Rham theorem and
its consequences. In particular, in the context of this book, the cohomology of
abstract sheaves should be compared with the cohomology of the associated
complexes of global sections, and the cohomology of underlying smooth manifolds.

This chapter requires basic knowledge of the point-set topology; to help the
reader some parts of the topology of local homeomorphisms have been included.
Our treatment, intended for larger audience of readers who are not specialists in
algebraic topology and sheaf theory, includes all proofs and also their technical
details, and from this point of view is wider than similar advanced texts in spe-
cialized monograph literature.

The main reference covering the choice of material needed in this book is Wells
[We]; for different aspects of the sheaf theory, especially the cohomology, we also
refer to Bott and Tu [BT], Bredon [Br], Godement [Go], Lee [L], and Warner [W].

7.1 Sheaf Spaces

Recall that a continuous mapping r: S ! X of a topological space S into a topo-
logical space X is called a local homeomorphism, if every point s 2 S has a
neighborhood V such that the set rðVÞ is open set in X and the restricted mapping
rjV is a homeomorphism of V onto rðVÞ.

By a sheaf space structure on a topological space S, we mean a topological
space X together with a surjective local homeomorphism r: S ! X. The topological
space S endowed with a sheaf space structure is called a sheaf space or an étalé

© Atlantis Press and the author 2015
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space. X is the base space, and r is the projection of the sheaf space S. For every
point x 2 X, the set Sx ¼ r�1ðxÞ is called the fiber over x. We denote a sheaf space
by r: S ! X or just by S when no misunderstanding may possibly arise.

A mapping c: Y ! S, where Y is a subset of X, is called a section of the
topological space S over Y (or more precisely, a section of the projection r), if
cðxÞ 2 Sx for all points x 2 Y . Obviously, c is a section if and only if

r � c ¼ idY : ð1Þ

If Y ¼ X, c is a global section. The set of sections (resp. continuous sections),
defined on a set U, is denoted by ðSec SÞU (resp. ðSecðcÞ SÞU, and also CðU; SÞ).
The union of the sets ðSec SÞU (resp. ðSecðcÞ SÞU) through U � X is denoted by
Sec S (resp. SecðcÞ S).

Lemma 1

(a) A local homeomorphism is an open mapping.
(b) The restriction of a local homeomorphism to a topological subspace is a local

homeomorphism.
(c) The composition of two local homeomorphisms is a local homeomorphism.

Proof

(a) Let r: S ! X be a local homeomorphism. Any open subset V of S is
expressible as tue union [Vi, where Vi is an open set such that rjVi

is a
homeomorphism. Then, the set rðVÞ ¼ [rðViÞ must be open as the union of
open sets.

(b) Let T � S be a subspace and V � S an open set such that rjV is a homeo-
morphism. Then, V \ T ¼ V \ ðrjVÞ�1ðrðTÞÞ ¼ ðrjV Þ�1ðrðVÞ \ rðTÞÞ, and
rðV \ TÞ ¼ rðVÞ \ rðTÞ. Thus, the image of the open set rðV \ TÞ � T by
rjT is open in rðTÞ. Since rjT jV\T ¼ rjV\T is a continuous bijection and is an
open mapping hence a homeomorphism, rjT jV\T is a homeomorphism.

(c) The proof is immediate. h

Lemma 2 Let S be a sheaf space with base X and projection r.

(a) To every point s 2 S, there exists a neighborhood U of the point x ¼ rðsÞ in X
and a continuous section c: U ! S such that γ(x) = s.

(b) Let c be a continuous section of S, defined on an open subset of X. Then, to
every point x from the domain of c and every neighborhood V of cðxÞ such that
rjV is a homeomorphism, there exists a neighborhood U of X such that

cðUÞ � V and cjU ¼ ðrjVÞ�1jU .
(c) If U and V are open sets in X and c: U ! S and d: V ! S are continuous

sections, then the set fx 2 U \ V jcðxÞ ¼ dðxÞg is open.
(d) Every continuous section of S, defined on an open set in X, is an open

mapping.

202 7 Elementary Sheaf Theory



Proof

(a) We choose a neighborhood V of s such that rjV is a homeomorphism and set
U ¼ rðVÞ, c ¼ ðrjV Þ�1.

(b) By continuity of c, we choose a neighborhood U of x such that cðUÞ � V , and
apply the mapping c ¼ ðrjV Þ�1 to both sides of the identity rjV � cjU ¼ idU .
We get cjU ¼ ðrjV Þ�1.

(c) We may suppose that fx 2 U \ V jcðxÞ ¼ dðxÞg 6¼ [. Choose a point
x0 2 U \ V , and a neighborhood W of the point cðxÞ ¼ dðxÞ such that rðWÞ is
open and rjW is a homeomorphism. By condition (b), x0 has a neighborhood
U0 such that cðU0Þ � V and cjU0

� ðrjV Þ�1jU0
. Analogously x0 has a neigh-

borhood of V0 such that dðV0Þ � W and djV0
� ðrjWÞ�1jV0

. Thus, cjU0\V0
�

ðrjWÞ�1jU0\V0
¼ djU0\V0

proving (c).
(d) Let U be an open set in X, c: U ! S a continuous section. It is sufficient to

show that the set cðUÞ � S is open. To every point x 2 U, we assign a
neighborhood VcðxÞ of the point cðxÞ such that rðVcðxÞÞ is open and the map-
ping rjVcðxÞ is a homeomorphism, and a neighborhood Ux of the point x such

that Ux � U, cðUxÞ � VcðxÞ, and cjUx
¼ ðrcðxÞÞ�1jUx

(see Part (b) of this

lemma). Then since ðrcðxÞÞ�1: rðVcðxÞÞ ! VcðxÞ � S is a homeomorphism,
cðUxÞ is open in S, and we have cðUÞ ¼ cð[UxÞ ¼ [cðUxÞ, which is an open
set. h

Remark 1 Suppose that S is a Hausdorff space. Let c: U ! S and d: V ! S be two
continuous sections, defined on open sets U and V in X, such that U \ V 6¼ [ and
cðx0Þ ¼ dðx0Þ at a point x0 2 U \ V . Then, c ¼ d on the connected component of
U \ V containing x0. Indeed, since S is Hausdorff, the set U0 ¼ fx 2 U \ V jcðxÞ ¼
dðxÞg is closed. Since by Lemma 2, (c) the set U0 is open, it must be equal to the
connected component of the point x0. This remark shows that if a sheaf space S is
Hausdorff, it satisfies the principle of analytic continuation. On the other hand, if
the principle of analytic continuation is not valid, S cannot be Hausdorff.

Suppose that we have a set S, a topological space X, and a mapping r: S ! X.
Then, there exists at most one topology on S for which r is a local homeomor-
phism. Indeed, if s1 and s2 are two such topologies, s 2 S a point, V 2 s1 and
W 2 s2 its neighborhood: such that rjV and rjW are homeomorphisms, then U ¼
rðVÞ \ rðWÞ is a neighborhood of the point, x ¼ rðsÞ and r�1ðUÞ is a neighbor-
hood of the point s both in s1 and s2. This implies, in particular, that the identity
mapping idS is a homeomorphism.

Let S be a sheaf space with base X and projection r. Beside its own topology, the
set S may be endowed with the final topology, associated with the family of con-
tinuous sections, defined on open subsets of X.
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Lemma 3 Let S be a sheaf space with base X and projection r.

(a) The open sets V � S such that rjV is a homeomorphism form a basis of the
topology of S.

(b) The topology of S coincides with the final topology, associated with the set
SecðcÞ S of continuous sections of S.

(c) The topology induced on fibers of S is the discrete topology.

Proof

(a) This is an immediate consequence of the definition of a local homeomorphism.
(b) If a subset W of S is an open set in the topology of S, then for every continuous

section c of S, c�1ðWÞ is an open subset of X hence by definition, W is open in
the final topology. Conversely, let W be open in the final topology. For any
section c: U ! S, cðc�1ðWÞÞ � W \ cðUÞ � W . If the section c is continu-
ous, then by the definition of the final topology, c�1ðWÞ is an open set;
moreover, since c is open in the topology of S (Lemma 2, (d)), the set
cðc�1ðWÞÞ is open in the topology of S. But by Lemma 2, (a), the sets
cðc�1ðWÞÞ cover W which implies that W is open in the topological space S.

(c) This assertion is evident.

Let r: S ! X and s: T ! Y be two sheaf spaces. Recall that a mapping f : S !
T is said to be projectable, if

s � f ¼ f0 � r ð2Þ

for some mapping f0: X ! Y . Obviously, the same can be expressed by saying that
there exists f0 such that the diagram

S �!f T
# r # s

X �!f0 Y

ð3Þ

commutes. If f0 exists, it follows from condition (2) that it is unique. If f is con-
tinuous, then the mapping f0 is also continuous since it is always expressible
on open sets as f0 ¼ s � f � c for some continuous sections c of the topological
space S. h

A continuous projectable mapping f : S ! T is called a morphism of the sheaf
space S into the sheaf space T, or just a sheaf space morphism.

Lemma 4 Let r: S ! X and s: T ! Y be sheaf spaces, f : S ! T a surjective
mapping and f0: X ! Y its projection. Then, f is a local homeomorphism if and
only if f0 is a local homeomorphism.
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Proof Let x 2 X be a point, c a continuous section of S defined on a neighborhood
of x. Choose a neighborhood W of the point f ðcðxÞÞ such that sjW is a homeo-
morphism, a neighborhood V of cðxÞ such that f ðVÞ � W , and a neighborhood U of
x such that U � rðVÞ and cjU is a homeomorphism. Then sjW � f jV � cjU ¼
ðs � f � cÞjU , and from condition (2), ðs � f � cÞjU ¼ ðf0 � r � cÞjU ¼ f0jU proving
Lemma 4. h

Denote by fx the restriction of a mapping f : S ! T to the fiber Sx over a point
x 2 X. If X ¼ Y , we have the following assertion.

Corollary 1 Let r: S ! X and s: T ! X be two sheaf spaces, and let f : S ! T be
a projectable mapping whose projection is the identity mapping idX .

(a) f is a local homeomorphism.
(b) f is injective (resp. surjective) if and only if fx is injective (resp. surjective) for

each x 2 X.

Proof

(a) This follows from Lemma 4.
(b) These assertions follow immediately from the definitions. h

Let r: S ! X and s: T ! Y be two sheaf spaces. The Cartesian product S� T
together with the mapping r� s: S� T ! X � Y defined by the formula
ðr� sÞðs; tÞ ¼ ðrðsÞ; sðtÞÞ is a sheaf space, called the product of S and T. If X ¼ Y ,
then we define a subset of the Cartesian product S� T by S�X T ¼ fðs; tÞ 2 S�
T jrðtÞ ¼ sðsÞg, and amapping r�X s: S�X T ! X by ðr�X sÞðs; tÞ ¼rðsÞ ¼ sðtÞ.
If we consider the set S�X T with the induced topology, the mapping r�X s defines
on S�X T the structure of a sheaf space, called the fiber product of the sheaf spaces
S and T.

Let r: S ! X, r0: S0 ! X and s: T ! Y , s0: T 0 ! Y be sheaf spaces. Let f : S !
T and f 0: S0 ! T 0 be two projectable mappings over the same projection f0: X ! Y .
For every point ðs; s0Þ we define a mapping f �X f 0: S� S0 ! T � T 0 by
ðf �X f 0Þðs; s0Þ ¼ ðf ðsÞ; f 0ðs0ÞÞ. This gives rise to the following commutative
diagram

S�X S0 �!i S� S0

# f �X f 0 # f � f 0

T �Y T 0 �!j T � T 0
ð4Þ

where the horizontal arrows denote the canonical inclusions. The mapping f �X f 0

is called the fiber product of f and f 0. It is easily seen that if f and f 0 are continuous,
then the fiber product f �X f 0 is also continuous: indeed, for any open set U in
T �Y T 0, there exists an open set V in T � T 0 such that U ¼ j�1ðVÞ; since
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ðf �X f 0Þ�1ðUÞ ¼ ðf �X f 0Þ�1ðj�1ðVÞÞ
¼ ðj � ðf �X f 0ÞÞ�1ðVÞ ¼ ððf � f 0Þ � iÞ�1ðVÞ

ð5Þ

is an open set in S�X S0, the mapping f �X f 0 must be continuous.
We give some examples of sheaf spaces; using these examples we also discuss

properties of the topology of sheaf spaces.

Examples

1. Continuous global sections of a sheaf space need not necessarily exist. Consider
for example the real line R ¼ R1 and the unit circle S1 ¼ fðx; yÞ
2 R2jx2 þ y2 ¼ 1g. The mapping r: R ! S1, defined by the formula rðsÞ ¼
ðcos 2ps; sin 2psÞ is a surjective local homeomorphism. It is easily seen that r
has no continuous global section. Suppose the opposite. Then, if c is a con-
tinuous global section, cðS1Þ � R is a non-void compact and open set in R
hence coincides with R. However, this is a contradiction since R is non-
compact.

2. Let S2 ¼ fðx; yÞ 2 R3jx2 þ y2 þ z2 ¼ 1g be the unit sphere in R3, and consider
an equivalence relation � on S2 “ðx; y; zÞ� ðx0; y0; z0Þ if either ðx; y; zÞ ¼
ðx0; y0; z0Þ or ðx; y; zÞ� �ðx0; y0; z0Þ.” The quotient space S2=� is called the real
projective plane and is denoted by RP2. The quotient projection r: S2 ! RP2 is
a sheaf space. The set RP2 can be identified with the set of straight lines in R3

passing through the origin.
3. A local homeomorphism admitting a global continuous section is not neces-

sarily a homeomorphism: Define a subspace S ¼ fðx; rÞ 2 R2jr ¼ 0; 1g of R2

and a mapping r: S ! R by the condition rðx; rÞ ¼ x. Then, the mapping
c: R ! S defined by cðx; 0Þ ¼ x is a global continuous section of S but r is not a
homeomorphism.

4. Consider the subspace S ¼ fðx; rÞ 2 R2jr ¼ �1; 1g of R2, two points a; b 2 R
such that a\b, and a partitions of S defined by the subsets fðx;�1Þg, fðx; 1Þg if
x� a, x� b, and fðx;�1Þ; ðx; 1Þg if a\x\b (one- and two-element subsets).
Let � be an equivalence relation on S defined by this partition and denote
X ¼ X=� . The quotient mapping of S onto X is a surjective local homeo-
morphism; the quotient space X is not Hausdorff. Further, assigning to each of
the sets fðx;�1Þg, fðx; 1Þg, ffx;�1g; fx;�1gg the point x 2 R, we obtain a
local homeomorphim of X onto the real line R.

5. The topological subspace S of R3, defined in a parametric form as S ¼
fðx; y; zÞ 2 R3jx ¼ cos t; y ¼ sin t; z ¼ t; t 2 Rg (the helix), together with the
restriction of the Cartesian projection p: R3 ! R2 to S is a local homeomor-
phism of S onto the circle S1 (Example 1). This example shows that for a general
local homeomorphism r: S ! X the topology of S does not necessarily coincide
with the initial topology of the topology of X by the mapping r.
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6. If r: S ! X is a sheaf space and Y is an open subset of X, then the restriction
rjr�1ðYÞ: r

�1ðYÞ ! Y is a sheaf space.
7. The Cartesian projection p: X � Q ! X, where X is a topological space and Q is

a non-void set endowed with the discrete topology, is a sheaf space.
8. Using the notation of Example 1, we obtain a surjective local homeomorphism

r� r of the real plane R2 onto the torus S1 � S1:

7.2 Abelian Sheaf Spaces

An Abelian sheaf space structure on a topological space S consists of a sheaf space
structure with base X and projection r such that for every point x 2 X the fiber Sx
over x is an Abelian group and the subtraction mapping S�X S 3 ðs; tÞ ! s� t 2 S
is continuous. A topological space S, endowed with an Abelian sheaf space
structure is called an Abelian sheaf space. We usually denote an Abelian sheaf
space r: S ! X, or simply by S. Sometimes, when no misunderstanding may arise,
we call an Abelian sheaf space just a sheaf space.

A sheaf subspace of the Abelian sheaf space S is an open set T � S such that for
every point x 2 X, the intersection T \ Sx is a subgroup of the Abelian group Sx.

The Abelian sheaf space structure on a topological space S induces the Abelian
group structure on sections of S. The zero section is the mapping h: X ! S,
assigning to a point x 2 X the neutral element of the Abelian group Sx. Clearly, h is
a global continuous section of S: If x0 2 X is a point and c is any continuous section
over a neighborhood U of x0, then hðxÞ ¼ cðxÞ � cðxÞ on U, which implies that h is
expressible as the composition of two continuous mappings U 3 x ! ðcðxÞ; cðxÞÞ 2
S�X S and S�X S 3 ðs; tÞ ! s� t 2 S. The open set hðXÞ is called the zero sheaf
subspace of S. For any two sections c and d, defined on the same set in X, one can
naturally define the sum cþ d and the opposite �c of the section c. Thus, the set of
sections over an open subset of X has an Abelian group structure. If the sections c
and d are continuous, then cþ d and �c are also continuous.

For any subspace Y of the base space X, the restriction of the projection r to the
set r�1ðYÞ is a sheaf subspace of the Abelian sheaf space S with base Y, called the
restriction of S to Y.

Remark 2 If a local homeomorphism admits an Abelian sheaf space structure, then
it necessarily admits a continuous global section (the zero section). Conversely,
local homeomorphisms, which do not admit a global continuous section, do not
admit an Abelian sheaf space structure.

Examples

9. In this example we construct a sheaf space of Abelian groups, the skyscraper
sheaf space, whose topology is not Hausdorff. Denote by Z the set of integers
in the set of real numbers R. Let X be a Hausdorff space, x0 a point of X, and let

7.1 Sheaf Spaces 207



S be a subset of the Cartesian product X � Z, defined as S ¼ ðXnfx0gÞ�
f0gÞ [ ðfx0g � ZÞ. The subsets of S of the form U � fx0g, where U is an open
set in X and fx0g 62 U, and ððVnfx0g � f0gÞ [ fðx0; zÞg, where V is open in X,
x0 2 V and z 2 Z, is a basis for a topology on S. In this topology, the restriction
of the first Cartesian projection is a local homeomorphism of S onto X. For any
two different points z1; z2 2 Z, every neighborhood of the point ðx0; z1Þ 2 S
(resp. ðx0; z2Þ 2 S) contains a neighborhood ððV1nfx0g � f0gÞ [ fðx0; z1Þg of
the point ðx0; z1Þ 2 S (resp. ððV2nfx0g � f0gÞ [ fðx0; z2Þg of ðx0; z2Þ 2 S),
whose intersection is ððV1 \ V2Þnfx0gÞ � f0g. Assuming ðV1 \ V2Þnfx0g ¼ [,
we get a neighborhood V1 \ V2 of fx0g equal to fx0g. Thus, if fx0g is not an
isolated point, S is not Hausdorff.

10. The restriction of the Cartesian projection p: R3 ! R2 to the helix (Sect. 7.1,
Example 5) is a surjective local homeomorphism of S onto the unit circle S1.
This local homeomorphism cannot be endowed with a sheaf structure because it
does not admit a continuous global section.

11. Consider a topological space X and an Abelian group G with discrete topology.
The Cartesian product X � G, endowed with the product topology, and the first
Cartesian projection is a sheaf space, called the constant sheaf space over
X with fiber G. We usually denote this sheaf by GX . If U is an open set in X and
c: U ! GX a continuous section, then the restriction of c to any connected open
subset V of U is constant, that is, of the form V 3 x ! cðxÞ ¼ ðx; gÞ 2 GX for
some g 2 G. Since the continuous image of a connected subspace is connected,
the second Cartesian projection pr2 � cðVÞ 2 G consists of a single point. In
particular, every continuous section of a constant sheaf space is constant on
connected components of the base, that is, locally constant.

12. The trivial sheaf space of Abelian groups over a topological space X is defined
as X together with the identity homeomorphism idX : X ! X, and trivial Abe-
lian group structure on every fiber fxg ¼ idX

�1ðxÞ. Thus, the trivial sheaf space
is the sheaf space 0X .

13. Let T be a sheaf space of Abelian groups with base X and projection s, and let
R and S be two sheaf subspaces of T. For every point x 2 X, Rx þ Sx is a
subgroup of the Abelian group Tx. We set

Rþ S ¼
[
x2X

ðRx þ SxÞ: ð6Þ

Rþ S is an open subset of T: if t 2 Rþ S, then t ¼ r þ s, where r 2 R and
s 2 S, and because R (resp. S) is a sheaf subspace of T, r (resp. s) has a
neighborhood U (resp. V) in R (resp. S) such that s restricted to U (resp. V) is a
homeomorphism. But both R and S are open in T. Thus, U þ V is open in T,
proving that Rþ S is open in T. Therefore, Rþ S is a sheaf subspace of T. We
call this subspace the sum of R and S.
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Let S and T be two Abelian sheaf spaces over a topological space X, r and s the
corresponding projections. A projectable continuous mapping f : S ! T over the
identity mapping idX is called a morphism of Abelian sheaf spaces, if for every
point x 2 X the restriction fx ¼ f jr�1ðxÞ to the fiber over x is a morphism of Abelian

groups. A morphism f : S ! T of Abelian sheaf spaces such that both f and f�1 are
bijections, is called an isomorphism of Abelian sheaf spaces. The mapping idS is the
identity morphism of S. To simplify terminology, we sometimes call morphisms of
Abelian sheaf spaces just morphisms of sheaf spaces, of sheaf space morphisms.

The composite f � g of two morphisms of Abelian sheaf spaces is again a
morphism of Abelian sheaf spaces.

Consider a sheaf space morphism f : S ! T and set

Ker f ¼ fs 2 Sjf ðsÞ ¼ 0g; Im f ¼ f ðSÞ: ð7Þ

Obviously, these sets can be expressed as

Ker f ¼
[
x2X

Ker fx; Im f ¼
[
x2X

Im fx: ð8Þ

Lemma 5 Let S and T be two Abelian sheaf spaces over a topological space X with
projections r and s, f : S ! T a sheaf space morphism.

(a) Ker f is a sheaf subspace of S.
(b) Im f ¼ f ðSÞ is a sheaf subspace of T.

Proof

(a) Since Ker f ¼ f�1ð0ðXÞÞ, where 0ðXÞ is the zero sheaf subspace of T, which is
an open set in T, the set Ker f is open in S. Since rðKer f Þ ¼ X and for each
x 2 X, Ker f \ Sx is a subgroup of Sx, Ker f is a sheaf subspace of S.

(b) By Lemma 1, (b), the restriction of the projection s to f ðSÞ is a local
homeomorphism. The image of sjf ðSÞ is given by sðf ðSÞÞ ¼ rÞSÞ ¼ X. For
each point x 2 X, the set f ðSÞ \ Tx is a subgroup of Tx. The commutative
diagram

f ðSÞ �X f ðSÞ �! T �X T
# #
f ðSÞ �! T

ð9Þ

in which the horizontal arrows are inclusions and the vertical arrows are
subtractions (in fibers), shows that the subtractions f ðSÞ �X f ðSÞ ! f ðSÞ are
continuous. h

The sheaf subspace Ker f (resp. Im f ) is called the kernel (resp. image) of the
morphism of Abelian sheaf spaces f : S ! T .
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Let r: S ! X be a sheaf space, T a sheaf subspace of S. Consider an equivalence
relation on S “s1 � s2 if rðs1Þ ¼ rðs2Þ and s1 � s2 2 T .” Let S=T be the quotient
space (endowed with the quotient topology), and let q denote the quotient pro-
jection; if ½s	 is the class of an element s 2 S, then qðsÞ ¼ ½s	. Define a mapping
s: S=T ! X by sð½s	Þ ¼ rðsÞ. Since q is surjective, s is a unique mapping such that

s � q ¼ r: ð10Þ

Since the composite s � q ¼ r is continuous, s is also continuous.
Note that for every point x 2 X the fiber s�1ðxÞ ¼ ðS=TÞx ¼ Sx=Tx has the

structure of an Abelian group. We wish to show that the quotient S=T has the
structure of a sheaf space over X with projection s, and q is a morphism of Abelian
sheaf spaces.

It is easily seen that the quotient mapping is open. Let V � S be an open set. To
show that qðVÞ is open in the quotient topology means to show that V 0 ¼
q�1ðqðVÞÞ is open in the topology of S. But V 0 ¼ V þ ðrjTÞ�1ðrðVÞÞ. Since
through every point of T passes a continuous section, defined on an open subset of
rðVÞ, the set V 0 is expressible as a union of open sets arising as images of con-
tinuous sections (Lemma 2, (d)). Thus, q is open.

We show that q is a local homeomorphism. Clearly, if s 2 S is a point and V is
its neighborhood such that rjV is a bijection, then rjV ¼ sjW � qjV , where
W ¼ qðVÞ; since qjV : V ! W is surjective, both sjW and qjV must be bijective.
Hence, ðrjVÞ�1 � sjW � qjV ¼ idV . Thus, we have the identity ðrjV Þ�1 ¼ ðqjV Þ�1 �
ðsjWÞ�1 and qjV � ðrjV Þ�1 � sjW ¼ idW . But W is open since the quotient mapping
q is open and ðqjVÞ�1 ¼ ðrjVÞ�1 � sjW , which is a continuous mapping. This proves
that qjV is a homeomorphism. Now it is easy to conclude that the mapping s is a
local homeomorphism: We take the sets W and V as above and write
sjW ¼ rjV � ðqjV Þ�1.

It remains to check that the subtraction in S=T is continuous. We have a com-
mutative diagram

S�X S �!u S
# q�X q # q

ðS=TÞ �X ðS=TÞ �!w S=T

ð11Þ

in which u denotes the mapping ðs1; s2Þ ! s1 � s2 and w is the mapping
ð½s1	; ½s2	Þ ! ½s1 � s2	), and q�X q is the fiber product. But q, u and q�X q are
local homeomorphisms, so from Lemma 4 we conclude that w is also a local
homeomorphism.

The Abelian sheaf space S=T is called the quotient sheaf space of the sheaf space
S by T. The morphism of Abelian sheaf spaces q: S ! S=T is the quotient
projection.
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7.3 Sections of Abelian Sheaf Spaces

Suppose that we have an Abelian sheaf space S with base X and projection r.
Consider the correspondence U ! SecðcÞ U, denoted by SecðcÞ, assigning to every
non-empty open set U in X the Abelian group SecðcÞ U of continuous sections over
U. We extend this correspondence to the whole topology of X by assigning to the
empty set [ the trivial one-point Abelian group 0. To any open sets U, V in X such
that U � V we assign a group morphism sVU : ðSecðcÞ SÞV ! ðSecðcÞ SÞU defined by

sVU � c ¼ cjU ð12Þ

(the restriction of the continuous section c to the set U). We get a family
fðSecðcÞSÞUg, labeled by the set U, and a family fsVUg, labeled by the sets U and
V. sVU are called restriction mappings, or restrictions of the Abelian sheaf space S.

We say that two continuous sections c; d 2 ðSecðcÞ SÞU coincide locally, if there
exists an open covering fUigi2I of U such that sUUiðcÞ ¼ sUUiðdÞ for each i from
the indexing set I. A family fcigi2I of continuous sections ci 2 ðSecðcÞ SÞUi is said
to be compatible, if sUi;Ui\UjðciÞ ¼ sUj;Ui\UjðcjÞ for all indices i; j 2 I. We say that
the family of sections fcigi2I locally generates a section c 2 ðSecðcÞ SÞU, where
U ¼ [Ui, if sUUiðcÞ ¼ ci for all i 2 I; we also say that c is locally generated by the
family fcigi2I . A family of continuous sections, locally generating a continuous
section, is compatible.

The following are basic properties of the restriction mappings sVU and the
Abelian groups ðSecðcÞ SÞU.

Lemma 6 The correspondence SecðcÞ S has the following properties:

(1) ðSecðcÞ SÞ[ ¼ 0:
(2) sUU ¼ idU for every open set U in X.
(3) sWU ¼ sVU � sWV for all open sets U, V, W such that U � V � W .
(4) If two continuous sections c and d coincide locally, then c ¼ d.
(5) Every compatible family of continuous sections of S locally generates a

continuous section of S.

Proof (1) holds by definition, and assertions (2) and (3) are immediate. We prove
condition (4). Let fUigi2I be a family of open sets in X, U ¼ [Ui, c1; c2 2
ðSecðcÞ SÞU two sections such that the restrictions satisfy c1jUi

¼ c2jUi
for all i. Let

x 2 U. Then by hypothesis, there exists an index i such that x 2 Ui; consequently,
c1ðxÞ ¼ c1jUi

ðxÞ ¼ c2jUi
ðxÞ ¼ c2ðxÞ, and since the point x is arbitrary, we have

c1 ¼ c2 proving (4). Now we prove condition (5). Let fcigi2I be a family such that
ci 2 ðSecðcÞ SÞUi and cijUi\Uj

¼ cjjUi\Uj
for all indices i; j 2 I. Let x 2 U be a

point. Then, there exists an index i such that x 2 Ui; we choose i and set
cðxÞ ¼ ciðxÞ. If also x 2 Uj, then cijUi\Uj

ðxÞ ¼ cjjUi\Uj
ðxÞ hence cðxÞ ¼ cjðxÞ, so
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the value cðxÞ is defined independently of the choice of the index i. It follows from
the definition that c, defined in this way, is continuous on Ui for every i hence on U,
thus, c 2 ðSecðcÞ SÞU proving (5). h

The correspondence SecðcÞ S, assigning to an open set U � X the Abelian group
ðSecðcÞ SÞU, is called the sheaf of continuous sections of the Abelian sheaf space S,
or just the Abelian sheaf, associated with S.

Let r: S ! X and s: T ! X be two Abelian sheaf spaces over the same base
space X, f : S ! T a sheaf space morphism. Consider the associated Abelian
sheaves SecðcÞ S and SecðcÞ T , and denote by sVUf g and ftVUg the corresponding
families of restrictions in these sheaves. If c is a continuous section of S,
c 2 ðSecðcÞ SÞU, then f � c 2 ðSecðcÞ TÞU. Setting

fUðcÞ ¼ f � c; ð13Þ

we obtain an Abelian group morphism f U : ðSecðcÞ SÞU ! ðSecðcÞ TÞU. Obviously,
for every pair of open sets U;V � X such that U � V , the diagram

ðSecðcÞ SÞV �!f V S
# sVU # tVU

ðSecðcÞ SÞU �!fU S=T

ð14Þ

commutes. The family f ¼ ffUg, labeled by U, is called the Abelian sheaf mor-
phism of the sheaf SecðcÞ S into the sheaf SecðcÞ T , associated with the Abelian
sheaf space morphism f : S ! T . We usually denote the associated Abelian sheaf
morphism by f : SecðcÞ S ! SecðcÞ T .

Now we study the sheaves associated with a sheaf subspace of an Abelian sheaf
space, and the sheaves associated with the kernel and the image of an Abelian sheaf
space morphism. Recall that the kernel Ker f and the image Im f of a sheaf space
morphism f : S ! T is a sheaf subspace of S and T, respectively.

Lemma 7

(a) S is a sheaf subspace of an Abelian sheaf space T if and only if the Abelian
group ðSecðcÞ SÞU is a subgroup of ðSecðcÞ TÞU for every open set U in X.

(b) Let r: S ! X and s: T ! X be two Abelian sheaf spaces, f : S ! T an Abe-
lian sheaf space morphism, and let c 2 ðSecðcÞ SÞU. Then c 2 ðSecðcÞKer f ÞU
if and only if fUðcÞ ¼ 0.

(c) Let r: S ! X and s: T ! X be two Abelian sheaf spaces, let f : S ! T be a
sheaf space morphism, and let d 2 ðSecðcÞ TÞU be a continuous section. Then
d 2 ðSecðcÞIm f ÞU if and only if it is locally generated by a family of con-
tinuous sections ffUiðciÞgi2I , where ci 2 ðSecðcÞ SÞUi, and the family fUigi2I
is an open covering of U.
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Proof

(a) If S is a sheaf subspace of T, then S is open in the sheaf space T, and
Sx ¼ S \ Tx � Tx is a subgroup for every x 2 X. If c 2 ðSecðcÞ SÞU, then c is
continuous in T because S is open. Thus, c 2 ðSecðcÞ TÞU, and ðSecðcÞ SÞU
must be a subgroup of ðSecðcÞ TÞU. Conversely, let x 2 X, s1; s2 2 Sx, and let
c1; c2 2 ðSecðcÞ SÞUx be continuous sections defined on a neighborhood Ux of
x such that c1ðxÞ ¼ s1, c2ðxÞ ¼ s2 (Lemma 2, (a)). The union of the sets Ux

coincides with U which implies that U is open. Moreover since c1 þ c2 2
ðSecðcÞ SÞU then s1 þ s2 ¼ c1ðxÞ þ c2ðxÞ ¼ ðc1 þ c2ÞðxÞ 2 Sx.

(b) This is a trivial consequence of (13).
(c) Let d 2 ðSecðcÞIm f ÞU, and let x 2 X. Then dðxÞ ¼ f ðcxðxÞÞ for some con-

tinuous section cx, defined on a neighborhood Ux of x such that Ux � U
(Lemma 2, (b)). We may assume, shrinking Ux if necessary, that both d and cx
are homeomorphisms on Ux. Then sUUxðdÞ ¼ f � cx ¼ fUxðcxÞ, so the family
ffUxðcxÞgx2U locally generates d. The converse is obvious. h

Remark 3 Lemma 7, assertion (c) does not assure that for a continuous section
d 2 ðSecðcÞIm f ÞU, there always exists a continuous section c 2 ðSecðcÞ SÞU such
that d ¼ fUðcÞ.

In accordance with Lemma 7, (a), given a sheaf subspace S of an Abelian sheaf T,
we define a subsheaf of the sheaf SecðcÞ T as the correspondence U ! ðSecðcÞ SÞU,
and write SecðcÞ S � SecðcÞ T . If f : S ! T is a sheaf space morphism, then the kernel
(resp. the image) of the sheaf morphism f : SecðcÞ S ! SecðcÞ T is defined to be the
Abelian sheaf, associated with the sheaf space Ker f (resp. Im f ); that is, we set

Ker f ¼ SecðcÞKer f ; Im f ¼ SecðcÞIm f : ð15Þ

7.4 Abelian Presheaves

We can use properties (1), (2), and (3) of the sets of sections of an Abelian sheaf
space (Sect. 7.3, Lemma 6) to introduce the concept of an Abelian presheaf. Dia-
gram (14) will then be used to define Abelian presheaf morphisms. Properties (4)
and (5) will be required to define complete presheaves, that is, (abstract) sheaves.

Let X be a topological space, S a correspondence assigning to an open set
U � X an Abelian group SU and to every pair of open sets U, V such that V � U
an Abelian group morphism sVU : SV ! SU. S is said to be an Abelian presheaf,
or just a presheaf, if the following conditions are satisfied:

(1) S[ ¼ 0.
(2) sUU ¼ idU for every open set U � X.
(3) sWU ¼ sVU � sWV for all open sets U;V ;W � X such that U � V � W .
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The topological space X is called the base of the Abelian presheaf S. Elements
of the Abelian groups SU are called sections of S over U, and the Abelian group
morphisms sVU are restriction morphisms, or just restrictions of S. If c 2 SV and
U � V , then the section sVUðcÞ is called the restriction of the section c to U.

Let S be an Abelian presheaf with base X and restrictions fsVUg. Let U be an
open subset of X. We say that two sections c; d 2 SU coincide locally, if there
exists an open covering fUigi2I of U such that for every i 2 I

sUUiðcÞ ¼ sUUiðdÞ: ð16Þ

A family fcigi2I of sections of S, where ci 2 SUi, is said to be compatible, if the
condition

sUi;Ui\UjðciÞ ¼ sUj;Ui\UjðcjÞ ð17Þ

holds for all i; j 2 I. We say that a family fcigi2I locally generates a section
c 2 SU, where U ¼ [Ui, if

sUUiðcÞ ¼ ci ð18Þ

for all i 2 I. A family of sections, locally generating a section, is always
compatible.

A complete Abelian presheaf, or an Abelian sheaf, is a presheaf S satisfying, in
addition to conditions (1), (2) and (3) from the definition of an Abelian presheaf, the
following two conditions:

(4) Any two sections of S which coincide locally, coincide.
(5) Every compatible family of sections of S locally generates a section of S.

If an Abelian presheaf S is complete, then any section, locally generated by a
compatible family of sections, is unique. Indeed, if c1, c2 are two sections locally
generated by a compatible family fcigi2I , then according to (5), sUUiðc1Þ ¼ ci
¼ sUUiðc2Þ, and property (4) implies c1 ¼ c2.

Let S (resp. T ) be an Abelian presheaf over X, fsUVg (resp. ftUVg) the family of
restrictions of S (resp. T ). Let f ¼ ffUg be a family of Abelian group morphisms
fU : SU ! TU. f is said to be a morphism of Abelian presheaves, or simply a
presheaf morphism, if for every pair of open sets U and V in X such that U � V , the
diagram

SV �!f V TV
# sVU # tVU

SU �!fU TU

ð19Þ

commutes. We also denote this presheaf morphism by f : S ! T .
A subpresheafS of anAbelian presheafT is a presheaf such thatSU is a subgroup

of TU for every open set U in X. If iU are the corresponding inclusions, then the
presheaf morphism i: S ! T , is called the inclusion of the subpresheaf S into T .
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The composition of presheaf morphisms is defined in an obvious way. If g: R !
S and f : S ! T are two presheaf morphism, where g ¼ fgUg and f ¼ ffUg, then
we define g � f : R ! T to be the family fgU � fUg.

If S is an Abelian presheaf, then the family idS ¼ fidSUg is a presheaf mor-
phism, called the identity morphism of idS. If f : S ! T and g: T ! S
(resp. h: T ! S) are two Abelian presheaf morphisms and g � f ¼ idS
(resp. f � h ¼ idT ), we call g (resp. h) a left inverse (resp. right inverse) for f . If f
has a left inverse g and a right inverse h, then h ¼ ðg � f Þ � h ¼ g � ðf � hÞ ¼ g
hence the presheaf morphism h ¼ g is unique. It is called the inverse of f and is
denoted f�1. f is called a presheaf isomorphism, if it has the inverse.

An Abelian presheaf morphism f ¼ ffUg is called injective (resp. surjective), if
the group morphisms fU are injective (resp. surjective).

Let f : S ! T be an Abelian presheaf morphism, f ¼ ffUg. We define a presheaf
Ker f (resp. Im f ) as the correspondence, assigning to every open set U � X the
Abelian group Ker fU � SU (resp. Im f U � TU), and to every two open sets
U;V � X, where U � V , the restriction sVU jKer fV : Ker f V ! SU (resp. tVU jIm fV

:

Im f V ! TU). Ker f (resp. Im f ) is a subpresheaf of S (resp. T) called the kernel
(resp. image) of f .

Remark 4 If the family fUigi2I consists of two disjoint sets U1, U2, then condition
(2) sU1;[ðciÞ ¼ sU2;[ðcjÞ reduces to the identity 0 ¼ 0. Thus, property (5), used for
the definition of a complete presheaf, implies that there should always exist an
extension of c1 and c2 to U1 [ U2. This observation can sometimes be used to easily
check that a presheaf is not complete: It is sufficient to verify that in the considered
Abelian presheaf such an extension does not exist.

Examples

14. By definition, the sheaf of continuous sections of an Abelian sheaf space,
introduced in Sect. 7.3, is a sheaf.

15. Let S and T be Abelian sheaves with base X and let f : S ! T be an Abelian
presheaf morphism. It is easily seen that Ker f is a complete presheaf of S.
Indeed, Ker f satisfies condition (4) from the definition of a sheaf. To inves-
tigate condition (5), denote by fsVUg (resp. ftVUg) the family of restrictions of
S (resp. T ). Let fUigi2I be a family of open sets in X, U ¼ [Ui. Let fcigi2I be
a family of sections such that ci 2 ðKer f ÞUi and sUi;Ui\UjðciÞ ¼ sUj;Ui\UjðcjÞ
for all i; j 2 I. Then by condition (5), there exists c 2 SU such that
sUUiðcÞ ¼ ci. Using this condition and the commutative diagram (19), we get
tUUiðfUðcÞÞ ¼ fUiðsUUiðcÞÞ ¼ fUiðciÞ ¼ 0. Since T is complete, condition (5)
implies fUðcÞ ¼ 0.

16. The trivial sheaf over a topological space X is a complete presheaf, assigning to
each open set U � X the Abelian group idU , with the restrictions
sUV ðidUÞ ¼ idV . The trivial sheaf over X is denoted by 0X .

17. Assume that we have an Abelian sheaf space S with base X and projection r.
Consider the correspondence Sec S, assigning to an open set U � X the Abelian
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group ðSec SÞU of all, not necessarily continuous, sections of the local homeo-
morphism r, defined onU. To any open setsU;V � X such thatU � V we assign
the restriction mapping sVU in a standard way; we get Abelian group morphisms
sVU : ðSec SÞV ! ðSec SÞU. In this way,we get anAbelian sheaf Sec S, called the
sheaf of (discontinuous) sections, associated with the sheaf space S.

18. Let X be a topological space. Assign to every open set U � X the Abelian
group CX;RU of continuous real-valued functions, defined on U, and to any
open sets U;V � X such that U � V , the restriction mapping defined as
CX;RV 3 f ! sVUðf Þ ¼ f jU 2 CX;RU. This correspondence obviously satisfies
the axioms (1)–(5) of a complete Abelian presheaf (Abelian sheaf). Indeed,
axioms (1), (2), and (3) are satisfied trivially. To formally verify (4), suppose
we have two continuous functions f ; g 2 CX;RU such that

sUUiðf Þ ¼ f jUi
¼ sUUiðgÞ ¼ gjUi

ð20Þ

for some open covering fUigi2I of U. Clearly, then for every point x 2 U,
f ðxÞ ¼ gðxÞ, so f and g coincide on U. To verify axiom (5), consider a
compatible family of continuous functions ffigi2I , where fi is defined on Ui.
Setting f ðxÞ ¼ fiðxÞ whenever x 2 Ui, we get a continuous function f, defined
on U ¼ [Ui. Thus, the presheaf CX;R, defined in this way, is complete. This
complete Abelian presheaf is referred to as the sheaf of continuous functions on
the topological space X.

19. Let X be a smooth manifold. Assign to every open set U � X the Abelian group
Cr
X;RU of real-valued functions of class Cr, defined on U, where

r ¼ 0; 1; 2; . . .;1, and to any open sets U;V � X such that U � V , the
restriction mapping Cr

X;RV 3 f ! sVUðf Þ ¼ f jU 2 Cr
X;RU. This correspondence

obviously satisfies the axioms (1)–(5) of a complete presheaf; we get a com-
plete Abelian presheaf called the sheaf of functions of class Cr on X.

20. Let E be a smooth vector bundle over a manifold X with projection p. For any
r ¼ 0; 1; 2; . . .;1, assign to every open set U � X the Abelian group Cr

UðpÞ of
Cr-sections of E, defined on U, and to any open sets U;V � X, where U � V ,
the restrictions CV ðpÞ 3 c ! sVUðcÞ ¼ cjU 2 CUðpÞ. This correspondence
obviously satisfies the axioms (1)–(5) of a complete Abelian presheaf, the sheaf
of sections of class Cr of the vector bundle E.

21. We show in this example that the image of a complete Abelian presheaf by an
Abelian presheaf morphism into a complete presheaf is not necessarily a
complete subpresheaf. Consider the Abelian sheaf C1

X;R ¼ X0
X of smooth

functions (0-forms) and the sheaf T ¼ X1
X of smooth 1-forms over the smooth

manifold X ¼ R2nfð0; 0Þg. The exterior derivative d: X0
X ! X1

X defines, for
every open set U � X, a morphism of Abelian groups d: X0

XU ! X1
XU, and a

presheaf morphism d: X0
X ! X1

X . We show that the image presheaf Im d � X1
X
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does not satisfy condition (5) of a complete presheaf, so consequently, it is not
complete. Consider in the canonical coordinates x, y in R2, the 1-form

x ¼ xdy� ydx
x2 þ y2

: ð21Þ

Let fUigi2I be a covering of X by open balls. Then by the Volterra–Poincare
lemma, x ¼ dui on Ui, where ui 2 X0

XUi, but there is no function u 2 X0
X

satisfying x ¼ du (see e.g., Schwartz [Sc]). Thus x is locally expressible as the
exterior derivative, but there is no global function u such that x ¼ du.

7.5 Sheaf Spaces Associated with Abelian Presheaves

We introduce in this section a correspondence, assigning to an Abelian presheaf an
Abelian sheaf space, and to an Abelian presheaf morphism an Abelian sheaf space
morphism, and study basic properties of this correspondence.

Let S be an Abelian presheaf with base X, fsVUg the family of its restriction
mappings. For any point x 2 X, consider the set of all pairs ðU; cÞ, where U is a
neighborhood of x and c a section of S, belonging to the Abelian group SU. There
is an equivalence relation on this set “c� d, if there exists a neighborhood W of x
such that the restrictions of c and d to W coincide.” Indeed, the binary relation � is
obviously symmetric and reflexive. To show that it is transitive, consider three
sections c1 2 SU1, c2 2 SU2, and c3 2 SU3, such that c1 � c2 and c2 � c3. Then by
definition, there exist two neighborhoods V and W of the point x such that
V � U1 \ U2, W � U2 \ U3 and sU1Vðc1Þ ¼ sU2V ðc2Þ and sU2W ðc2Þ ¼ sU2W ðc3Þ.
Then on V \W

sU1;V\W ðc1Þ ¼ sV ;V\W � sU1;V ðc1Þ ¼ sV ;V\W � sU2;Vðc2Þ ¼ sU2;V\Wðc2Þ
¼ sW ;V\W � sU2Wðc2Þ ¼ sW ;V\W � sU3W ðc3Þ ¼ sU3;V\Wðc3Þ:

ð22Þ

The equivalence class of a section c is called the germ of c at the point x and is
denoted by ½c	x. Denote by Sx the quotient set and consider the set

GermS ¼
[
x2X

Sx ð23Þ

Define a mapping r: GermS ! X by the equation

rð½c	xÞ ¼ x: ð24Þ

We need a topology on the set GermS and an Abelian group structure on each
of the sets Sx defining on GermS the structure of a sheaf space of Abelian groups
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with base X and projection r. Let U be an open set in X, c 2 SU a section. We
define a mapping ~c: U ! GermS by

~cðxÞ ¼ ½c	x: ð25Þ

The set GermS will be considered with the final topology, associated with the
family f~cg, where c runs through the set of sections of the presheaf S; this is the
strongest topology on the set GermS in which all the mappings ~c are continuous.

Note that if c 2 SU is a section then the set ~cðUÞ is open in GermS. Clearly, if
d 2 SV is another section, we have

~d�1~cðUÞ ¼ fx 2 V j~dðxÞ ¼ ~cðxÞg ¼ fx 2 U \ V j~dðxÞ ¼ ~cðxÞg; ð26Þ

which is an open subset of U \ V formed by all points x such that d ¼ c on a
neighborhood of x. Now we apply the definition of the final topology to observe
that ~cðUÞ is open.

It is easy to see that the mapping r: GermS ! X defined by (25) is a local
homeomorphism. If y 2 GermS is any germ at x 2 X and c 2 SU any represen-
tative of y, then W ¼ ~cðUÞ is a neighborhood of y and

rjW � ~c ¼ idU ; ~c � rjW ¼ idW : ð27Þ

Every fiber Sx of r has the structure of an Abelian group defined by

½c	x þ ½d	x ¼ ½sUW ðcÞ þ sVW ðdÞ	x; ð28Þ

where c 2 SU, d 2 SV , andW ¼ U \ V . Clearly, this definition is correct, because
the germ on the right-hand side is independent of the choice of the representatives c
and d. Indeed, with obvious notation

½sU0W 0 ðc0Þ þ sU0W 0 ðd0Þ	x ¼ ½sW 0W 00 ðsU0V 0 ðc0Þ þ sU0V 0 ðd0ÞÞ	x
¼ ½sU0W 00 ðc0Þ þ sU0W 00 ðd0Þ	x;

½sUW ðcÞ þ sVW ðdÞ	x ¼ ½sUW 00 ðcÞ þ sVW 00 ðdÞ	x;
ð29Þ

where W 0 ¼ U0 \ V 0. Since one may choose the set W 00 in such a way that
sUW 00 ðcÞ ¼ sU0W 00 ðcÞ and sVW 00 ðdÞ ¼ sV 0W 00 ðd0Þ, we have

½sUW ðcÞ þ sVW ðdÞ	x ¼ ½sU0W 00 ðc0Þ þ sV 0W 00 ðd0Þ	x: ð30Þ

It remains to check that the mapping ðp; qÞ ! ðp� qÞ of the fiber product
GermS �X GermS into GermS is continuous. Let ðp0; q0Þ be an arbitrary point of
the set GermS �X GermS, where p0 ¼ ½c	x, q0 ¼ ½d	x. We may assume without
loss of generality that c; d 2 SW , where W is a neighborhood of x. Then
p0 � q0 ¼ ½c� d	x. If g ¼ c� d, then ~gðWÞ is a neighborhood of the point p0 � q0.
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The set ~cðWÞ þ ~dðWÞ � GermS � GermS is open, and the set ð~cðWÞ þ ~dðWÞÞ \
ðGermS �S GermSÞ is open in the set GermS �S GermS. Since the image of
ð~cðWÞ þ ~dðWÞÞ \ ðGermS �S GermSÞ under the mapping ðp; qÞ ! ðp� qÞ
coincides with ~gðWÞ, this mapping is continuous at ðp0; q0Þ. This completes the
construction of the Abelian sheaf space GermS from a given presheaf S.

We call GermS the Abelian sheaf space, associated with the Abelian presheaf
S. The continuous section ~c: U ! GermS is said to be associated with the section
c 2 SU.

Let S (resp. T ) be an Abelian presheaf over a topological space X, fsUVg
(resp. ftUVg) the family of restrictions of S (resp. T ). Let f ¼ ffUg be a presheaf
morphism of the presheaf S into T . Denote by r: GermS ! X and s: GermT !
X the corresponding sheaf spaces. We define a mapping f : GermS ! GermT by
the equation

f ð½c	xÞ ¼ ½fUðcÞ	x; ð31Þ

where ½c	x 2 GermS and c 2 SU is any representative of the germ ½c	x. It can be
readily verified that the germ ½fUðcÞ	x is defined independently of the choice of the
representative c. Indeed, let d 2 SV be such that ½d	x ¼ ½c	x. Then sUW ðcÞ ¼ sVW ðdÞ
for some neighborhood W of the point x. Applying the definition of the presheaf
morphism, we obtain

tUW � fUðcÞ ¼ fW � sUW ðcÞ ¼ fW � sVW ðdÞ ¼ tVW � f VðdÞ; ð32Þ

hence ½fUðcÞ	x ¼ ½f V ðdÞ	x.
We assert that the mapping f, defined by (31), is a sheaf space morphism.

f obviously satisfies s � f ¼ r. Note that if c 2 SU, then f UðcÞ is a section of T ; in
particular, the mapping x ! f ð½c	xÞ ¼ f � ~cðxÞ ¼ ½fUðcÞ	x of U into the set germT

is continuous (with respect to the final topology on GermT ). This means, however,
that f � ~c is continuous, and using the properties of the topology of the set GermS,
we conclude that the mapping f is continuous. Finally, the restriction fx of f to each
fiber ðGermSÞx is an Abelian group morphism. Summarizing, we see that all
conditions for f to be an Abelian sheaf space morphism hold. f is said to be
associated with the Abelian presheaf morphism f .

Consider a sheaf space of Abelian groups S with base X and projection r, the
associated sheaf of Abelian groups SecðcÞ S, and the sheaf space Germ SecðcÞ S,
associated with the sheaf SecðcÞ S. Let r0: Germ SecðcÞ S ! X be the sheaf space
projection. Let s 2 S be a point and V a neighborhood if s such that rjV is a
homeomorphism. Put x ¼ rðsÞ, cs ¼ ðrjV Þ�1, and

mSðsÞ ¼ ½csðxÞ	: ð33Þ

This defines a mapping mS: S ! Germ SecðcÞ S such that r0 � mS ¼ r.
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Lemma 8

(a) Let S and T be two Abelian presheaves with base X, f : S ! T an Abelian
presheaf morphism, and let f : Germ S ! Germ T be the sheaf space mor-
phism associated with f . Then for every point x 2 X

ðGerm Ker f Þx ¼ Ker fx; ðGerm Im f Þx ¼ Im fx: ð34Þ

(b) Let f : Germ R ! Germ S (resp. g: GermS ! Germ T ) be the Abelian sheaf
space morphism associated with an Abelian presheaf morphism f : R ! S
(resp. g: S ! T ), and h: Germ R ! Germ T the Abelian sheaf space mor-
phism associated with the Abelian presheaf morphism h ¼ g � f . Then
h ¼ g � f .

(c) The mapping mS: S ! Germ SecðcÞ S is an Abelian sheaf space isomorphism.

Proof

(a) Let ½c	x 2 Germ Ker f . Then c 2 ðKer f ÞU, where U is a neighborhood of
x. Thus, the representative c satisfies fUðcÞ ¼ 0 hence by (31), f ð½c	xÞ ¼ 0 and
½c	x 2 Ker f . Conversely, assume that ½c	x 2 Ker f . Then by (31)
f ð½c	xÞ ¼ ½f V ðcÞ	x ¼ 0. In particular, f V ðcÞ is equivalent to the zero section,
tVUðf VðcÞÞ ¼ f V ðsVUðcÞÞ ¼ 0 for a neighborhood U of x such that U � V .
Thus ½c	x ¼ ½sVUðcÞ	x, where sVUðcÞ 2 Ker fU .
Let ½d	x 2 Germ Im f . Then for some neighborhood V of x, d ¼ f V ðcÞ, where
c 2 SU. Thus by (31), f ð½c	xÞ ¼ ½fUðcÞ	x ¼ ½d	x which means that ½d	x 2 Im fx.
Conversely, let ½d	x 2 Im fx. Then there exists ½c	x such that fxð½c	xÞ ¼ ½d	x.
Assume that c 2 SV , d 2 TV . Then on a neighborhood U of x, fUðsVUðcÞÞ ¼
tVUðdÞ which implies ½d	x ¼ ½tVUðdÞ	x ¼ ½fUsVUðcÞ	x, which is an element of
the set Germ Im fx.

(b) The proof is straightforward.
(c) We shall show that mS is an Abelian sheaf space isomorphism. Let ½c	x 2

Germ SecðcÞ S be a germ represented by a section c 2 ðSecðcÞ SÞU. Write
sSð½c	xÞ ¼ cðxÞ. Clearly, the point cðxÞ 2 S is defined independently of the

choice of the representative c. We have sSð½c	xÞ ¼ ðrVÞ�1ðxÞ, where V is a
neighborhood of the point cðxÞ 2 S such that the restriction rjU is a homeo-
morphism. Since mS � sSð½c	xÞ ¼ mSððrVÞ�1ðxÞÞ ¼ ½ðrV Þ�1	x ¼ ½c	x and

sS � mSðsÞ ¼ sSð½c	xÞ ¼ cSðxÞ ¼ s; ð35Þ

sS is the inverse of mS.
We shall verify that mS is continuous. Let s 2 S be a point, x ¼ rðsÞ, V a
neighborhood of the point mSðsÞ 2 Germ SecðcÞ S. The point mSðsÞ has a
neighborhood ~csðUÞ, where cs: U ! S is a section, defined on a neighborhood
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U of x, and ~csðyÞ ¼ ½cs	y. Since ~cs is continuous, we may suppose that
~csðUÞ � V . But the set csðUÞ is a neighborhood of the point s, and
mSðcsðUÞÞ ¼ ~csðUÞ � V , hence mS is continuous at s.
Now we shall show that for every point x 2 X and any two points s1; s2 2 Sx,
mSðs1 þ s2Þ ¼ mSðs1Þ þ mSðs2Þ. Let V1 (resp. V2) be a neighborhood of s1
(resp. s2) such that rjV1

(resp. rjV2
) is a homeomorphism. One may suppose

that rðV1Þ ¼ rðV2Þ ¼ U. Then cs1 ; cs2 ; cs1þs2 2 ðSecðcÞ SÞU and by definition
½cs1 	x þ ½cs2 	x ¼ ½cs1 þ cs2 	x, that is, mSðs1Þ þ mSðs2Þ ¼ mSðs1 þ s2Þ. This proves
that the mapping mS is an Abelian sheaf space morphism.
The mapping mS is obviously injective and surjective hence bijective. The
inverse mapping ðmSÞ�1: Germ SecðcÞ S ! S is continuous by the properties of
the final topology, since for every section c 2 SecðcÞ S the composite ðmSÞ�1 �
~c ¼ c is continuous. Summarizing, this proves that mS is an Abelian sheaf
space isomorphism. h

We call the Abelian sheaf space isomorphism mS: S ! Germ SecðcÞ S the
canonical isomorphism.

7.6 Sheaves Associated with Abelian Presheaves

The concepts of an Abelian sheaf associated with an Abelian sheaf space and the
Abelian sheaf space associated with an Abelian presheaf allow to assign to any
Abelian presheaf S the sheaf SecðcÞGermS, which is said to be associated with S.
We study properties of this correspondence.

Let S be an Abelian presheaf over a topological space X, fsVUg the family of its
restrictions. For every open set U � X define a morphism of Abelian groups
#U : SU ! ðSecðcÞGermSÞU by

#UðcÞ ¼ ~c; ð36Þ

where ~c is a section of the sheaf GermS, associated with c (Sect. 7.5, (4)). The
Abelian presheaf morphism #S ¼ f#Ug of S into SecðcÞGermS is said to be
canonical. Since for every open sets U;V � X such that U � V , and every point
x 2 U, #UðsVUðcÞÞðxÞ ¼ ½sVUðcÞ	x ¼ ½c	x ¼ ~cðxÞ ¼ #V ðcÞjUðxÞ, #S commutes with
the restrictions,

#U � sVUðcÞ ¼ #UðcÞjU : ð37Þ

Note that any section d of the sheaf SecðcÞGermS is locally generated by a
family of sections, generated by sections of S. To prove it, consider a continuous
section d 2 ðSecðcÞGermSÞU and any point x 2 U. By definition dðxÞ is the germ
of a section cx 2 SUx, where Ux is a neighborhood of the point x in U. That is,
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dðxÞ ¼ ½cx	x ¼ ~cxðxÞ. The projection r: GermS ! X of the sheaf space GermS is a
local homeomorphism and r � d ¼ idU . On the other hand, r � ~cx ¼ idUx , and since
the inverse mapping is unique,

djUx
¼ ~cx ¼ #UxðcxÞ: ð38Þ

Obviously, U ¼ [Ux and for any two points x; y 2 U, djUx
¼ ~cx hence

djUx\Uy
¼ ~cxjUx\Uy

¼ ~cyjUx\Uy
: ð39Þ

Thus ½cx	z ¼ ½cy	z for every z 2 Ux \ Uy. Therefore, every point z 2 Ux \ Uy has a
neighborhood Wz such that

sUxWzðcxÞ ¼ sUyWzðcyÞ: ð40Þ

In view of (38), we say that the continuous section d 2 ðSecðcÞGermSÞU is
locally generated by the family of sections fcxgx2U of S.

Our aim now will be to find conditions ensuring that the canonical morphism
#S : S ! SecðcÞGermS is a presheaf isomorphism.

Theorem 1 Let S be an Abelian presheaf. The following conditions are
equivalent:

(1) S is complete.
(2) The canonical presheaf morphism #S : S ! SecðcÞGermS is a presheaf

isomorphism.

Proof

1. Suppose that #S ¼ f#Ug is a presheaf isomorphism. Let fsUVg be the restric-
tions of the presheaf S, ftUVg the restrictions of the sheaf SecðcÞGermS. Let
fUigi2I be a family of open sets in X, U ¼ [Ui, and γ, δ two sections from SU
such that sUUiðcÞ ¼ sUUiðdÞ. Then by the definition of the presheaf morphism,
#Ui � sUUiðcÞ ¼ tUUi � #UðcÞ ¼ tUUi � #UðdÞ. Hence #UðcÞ ¼ #UðdÞ and, since
#U is a group isomorphism, c ¼ d. This means that the presheaf S satisfies
condition (4) of the definition of a complete presheaf. Now suppose that a family
fcigi2I , where ci 2 SUi, satisfies the condition sUi;Ui\UjðciÞ ¼ sUi;Ui\UjðcjÞ for
all i; j 2 I. Then

#Ui\Uj � sUi;Ui\UjðciÞ ¼ tUi;Ui\UjðciÞ � #UiðciÞ
¼ tUj;Ui\UjðcjÞ � #UjðcjÞ;

ð41Þ

so there must exist a section d 2 ðSecðcÞGermSÞU, where U ¼ [Ui, such that
tUUiðdÞ ¼ #UiðciÞ for all indices i 2 I. If c 2 SU is such that d ¼ #UðcÞ, we
have tUUi � #UðcÞ ¼ #Ui � sUUiðcÞ ¼ #UiðciÞ, hence sUUiðcÞ ¼ ci. Thus, condi-
tion (5) is also satisfied. This means, however, that S must be complete.
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2. Conversely, suppose that the presheaf S is complete. We wish to show that there
exists a presheaf morphism f : SecðcÞGermS ! S, f ¼ ffUg, such that #S � f ¼
idSecðcÞGermS and f � #S ¼ idS , that is,

#U � fU ¼ idðSecðcÞGermSÞU; fU � #U ¼ idSU ð42Þ

for all open sets U � X. Obviously, these equations have a solution fU if and
only if the mapping #U is bijective. Since we have already shown that #U is
injective, it is sufficient to prove that it is surjective.
Let d 2 ðSecðcÞGermSÞU be a section, and let x 2 U be a point. Applying the
definition of a presheaf (condition (3), Sect. 7.4) of to Eq. (38),

sUx\Uy;Wz � sUx;Ux\UyðcxÞ ¼ sUx\Uy;Wz � sUx;Ux\UyðcyÞ: ð43Þ

Covering Ux \ Uy by the sets Wz we get from condition (4) of the definition of a
presheaf

sUx;Ux\UyðcxÞ ¼ sUx;Ux\UyðcyÞ: ð44Þ

Condition (5) now implies that there exists a section c 2 SU such that

sUUxðcÞ ¼ cx ð45Þ

for all x 2 U. Therefore, the sections c and cx belong to the same germ at every
point of the set Ux. This means that ~cjUx

Þ ¼ ~cx and

djUx
¼ ~cx ¼ ~cjUx

: ð46Þ

Since the presheaf of sections of the sheaf space GermS is a sheaf (Lemma 6),
we get d ¼ ~c proving that the mapping #U is surjective.
Consequently, the mapping fU exists and is given by the formula fU ¼ ð#UÞ�1.
It remains to show that tVU � f V ¼ fU � sVU for any two open sets U;V � X
such that U � V , where tVU are restrictions of the presheaf SecðcÞGermS. Let
d 2 ðSecðcÞGermSÞU be a section; then d ¼ ~c ¼ #V ðcÞ for some section
c 2 SV . We have

sVU � f V ð~cÞ ¼ sVU � f V � #VðcÞ ¼ sVUðcÞ; ð47Þ

and

fU � tVUð~cÞ ¼ fU � tVU � #VðcÞ ¼ fU � #U � sVUðcÞ ¼ sVUðcÞ; ð48Þ

proving the desired identity tVU � f V ¼ fU � sVU . Now the proof is
complete. h
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Theorem 2 Let S (resp. T ) be an Abelian presheaf with restrictions fsUVg (resp.
ftUVg), let f : S ! T be an Abelian presheaf morphism. There exists a unique
Abelian presheafmorphismg: SecðcÞGermS ! SecðcÞGermT such that the diagram

S �!f T
# #S # #T

SecðcÞGermS �!g SecðcÞGermT

ð49Þ

commutes.

Proof f generates a sheaf space morphism f : GermS ! GermT by the formula
f ð½c	xÞ ¼ ½fUðcÞ	x, where U is a neighborhood of x and c 2 SU is a representative
of the germ ½c	x. f defines a sheaf morphism g: SecðcÞGermS ! SecðcÞGermT ,
g ¼ fgUg by

gUðdÞ ¼ f � d; ð50Þ

where d 2 ðSecðcÞGermSÞU. Note that condition (45), Sect. 7.5 can be expressed in
the form f ð#S;UðcÞðxÞÞ ¼ #T ;UðfUðcÞÞðxÞÞ or, equivalently, f � #S;UðcÞ ¼
#T ;U � fUðcÞ, which implies

gUð#S;UðcÞÞ ¼ f � #S;UðcÞ ¼ #T ;U � fUðcÞ: ð51Þ
h

This proves existence and uniqueness of g. h

To describe the morphism g: SecðcÞGermS ! SecðcÞGermT explicitly, choose a
continuous section d 2 ðSecðcÞGermSÞU. We have already seen that there exists a
family fcxgx2U of sections cx 2 TUx, whereUx is a neighborhood of x inU, such that

djUx
¼ #S;UxðcxÞ: ð52Þ

If z 2 Ux \ Uy, then sUxWzðcxÞ ¼ sUxWzðcyÞ on some neighborhood Wz of the point
z in Ux \ Uy. Obviously, on Ux

gUðdÞjUx
¼ #T ;UxðfUxðcxÞÞ; ð53Þ

because for every y 2 Ux

gUðdÞjUx
ðyÞ ¼ f ðdðyÞÞ ¼ f ð#S;UxðcxÞðyÞÞ ¼ f ð½cx	yÞ

¼ ½f UxðcxÞ	y ¼ #T ;Uxðf UxðcxÞÞðyÞ:
ð54Þ

Thus, if d is locally generated by the family fcxgx2U , then gUðdÞ is locally gen-
erated by the family ffUxðcxÞgx2U .
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Note that if in diagram (49), T is a complete Abelian presheaf, then by Theorem
1, #T is an Abelian presheaf isomorphism, so we have, with obvious conventions,

f ¼ #�1
T � g � #S : ð55Þ

If S is a complete presheaf, then

g ¼#T � f � #�1
S : ð56Þ

Corollary 2 If S is a subpresheaf of an Abelian presheaf T , then the sheaf
SecðcÞGermS is a subsheaf of SecðcÞGermT .

Corollary 3

(a) Every complete Abelian presheaf is isomorphic with an Abelian sheaf, asso-
ciated with an Abelian sheaf space.

(b) Every presheaf morphism of complete Abelian presheaves is expressible as a
sheaf morphism, associated with a sheaf space morphism.

Proof

(a) This follows from Theorem 1.
(b) If both S and T in Theorem 2 are complete presheaves, then formulas (55) and

(56) establish a one-to-one correspondence between presheaf morphisms f of
complete presheaves and sheaf morphisms g associated with sheaf space
morphisms. h

Let f : S ! T be an Abelian presheaf morphism, and suppose that the Abelian
presheaf T is complete. Let f : GermS ! GermT be the associated morphism of
sheaf spaces. Note that we have defined the image Im f as a subpresheaf of T . On
the other hand, we have also defined the image of the sheaf SecðcÞGermS by the
sheaf morphism induced by f, which is equal to the subsheaf SecðcÞIm f of the
Abelian sheaf SecðcÞGermT . Obviously, we have Im f � #�1

T ðSecðcÞIm f Þ, and
#�1
T ðSecðcÞIm f Þ is a complete subpresheaf of T . To distinguish between Im f and

#�1
T ðSecðcÞIm f Þ, we sometimes call #�1

T ðSecðcÞIm f Þ the complete image of S by
the presheaf morphism f , or the complete subpresheaf, generated by S.

If S is a subpresheaf of the presheaf T , then the canonical inclusion iS : S ! T

defines the image Im iS and the complete image #�1
T ðSecðcÞIm iSÞ. If the presheaf

S is complete, then the following three subpresheaves S, Im iS and
#�1
T ðSecðcÞIm iSÞ coincide.

Examples

22. Let X be a topological space, G a group. We set for each non-void open set
U � X, GU ¼ G, and G[ ¼ 0 (the neutral element of G). For any two open
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sets U;V � X such that U � V , we set sUV : GU ! GV to be the restriction of
the identity mapping idG. Then the family G ¼fGUg is a presheaf over X,
called the constant presheaf. G is not complete, because it does not satisfy
condition (5), Sect. 7.4 of the definition of a complete presheaf. Indeed, if
U and V are disjoint open sets in X, and g 2 GU ¼ G, h 2 GV ¼ G are two
different points, then there is no element in G equal to both g and h (cf.
Sect. 7.4, Remark 4). It is easily seen that the sheaf space, associated with the
presheaf G, GermG, coincides with the constant sheaf space GX (Sect. 7.2,
Example 11).

Remark 5 One can define sheaves with different algebraic structures on the fibers
than the Abelian group structure. Let r: S ! X be a local homeomorphism of
topological spaces. Assume that for every point x 2 X the fiber Sx is a commutative
ring with unity such that the subtraction S�X S 3 ðs1; s2Þ ! s1 � s2 2 S and
multiplication S�X S 3 ðs1; s2Þ ! s1 
 s2 2 S are continuous. Then, S is called the
sheaf space of commutative rings with unity. If s: T ! X is another local homeo-
morphism, such that the fibers Tx are modules over Sx and the mappings T �X T 3
ðt1; t2Þ ! t1 � t2 2 T and S�X T 3 ðs; tÞ ! s 
 t 2 S are continuous, then T is
called a sheaf space of S-modules.

7.7 Sequences of Abelian Groups, Complexes

We summarize in this section elementary notions of the homological algebra of
sequences of Abelian groups such as the complex, the connecting homorphism, and
the long exact sequence.

A family A* ¼ fAi; digi2Z , of Abelian groups and their morphisms
di: Ai ! Aiþ1, indexed with the integers i 2 Z, is called a sequence of Abelian
groups. The family of the group morphisms in this sequence is denoted by fdigi2Z .
We usually write A* in the form


 
 
 �!Ai�1 �!d
i�1

Ai �!d
i

Aiþ1 �!d
iþ1


 
 
 ð57Þ

Note that the asterisk in the symbol A* of the sequence refers to the position of
indices in the sequence.

A sequence of Abelian groups may begin or end with an infinite string of trivial,
one-element Abelian groups 0, and their trivial group morphisms. If Ai ¼ 0 for all
i\0, then the sequence A* is said to be nonnegative, and is written as
A* ¼ fAi; digi2N , with indexing set the nonnegative integers, or

0�!A0 �!d
0

A1 �!d
1

A2 �!d
2

A2 �!d
3


 
 
 ð58Þ

226 7 Elementary Sheaf Theory



In this notation, the mapping 0 ! A0 is the trivial group morphism. If there exist
the smallest and greatest integer r and s) such that Ar 6¼ 0 and As 6¼ 0, then the
sequence A* is said to be finite, and Ar (resp. As) is called its first (resp. last)
element. In this case, we write A* as

0�!Ar �!d
r

Arþ1 �!d
rþ1


 
 
 �!d
s�1

As �!d
s

0 ð59Þ

with trivial group morphisms 0 ! Ar and As ! 0: To simplify notation, we
sometimes omit the indexing set and write just A* ¼ fAi; dig, or A* ¼ fAi; dg for
the sequence (59) when no misunderstanding may arise.

A sequence of Abelian groups A* ¼ fAi; dig is said to be exact at the term Aq, if
Ker dq ¼ Im dq�1. A* is an exact sequence, if it is exact in every term. Exact
sequence of the form

0�!A�!f B�!g C�! 0 ð60Þ

is called a short exact sequence.
The following are elementary properties of short exact sequences.

Lemma 9

(a) The sequence (60) is exact at C if and only if the group morphism g is
surjective.

(b) The sequence (60) is exact at A if and only if the f is injective.
(c) A sequence of Abelian groups

0�!A�!i B�!p B=A�! 0 ð61Þ

in which A � B, i: A ! B is inclusion and p: B ! B=A is the quotient pro-
jection, is a short exact sequence.

(d) Suppose we have a diagram

0 �! A0 �!f
0

A1 �!f
1

A2 �! 0
# u0 # u1

0 �! B0 �!g
0

B1 �!g
1

B2 �! 0

ð62Þ

where the horizontal sequences are short exact sequences of Abelian groups,
u0 and u1 are morphisms of Abelian groups, and the first square commutes,

g0 � u0 ¼ u1 � g1: ð63Þ

Then, there exists a unique morphism of Abelian groups u2: A2 ! B2 such
that the second square of the diagram
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0 �! A0 �!f
0

A1 �!f
1

A2 �! 0
# u0 # u1 # u2

0 �! B0 �!g
0

B1 �!g
1

B2 �! 0

ð64Þ

commutes.
(e) Consider the exact sequence of Abelian groups (60) and the quotient pro-

jection p: B ! B=f ðAÞ. There exists a unique group isomorphism u: C !
B=f ðAÞ such that the diagram

0 �! A �!f B �!g C �! 0
# idA # idB # u

0 �! A �!f B �!p B=f ðAÞ �! 0

ð65Þ

commutes.

Proof

1. Assertions (a), (b), and (c) are immediate consequences of definitions.
2. Consider the diagram (62). We first construct a morphism of Abelian groups

u2: A2 ! B2 and then prove its uniqueness. Let a00 2 A2 be a point. We set

u2ða00Þ ¼ g1u1ða0Þ; ð66Þ

where a0 2 A1 is any element such that f 1ða0Þ ¼ a00. We shall show that this
equation defines a point u2ða00Þ 2 B2 independently of the choice of a0. Let
a01; a

0
2 2 A1 be any two points such that f 1ða01Þ ¼ a00 and f 1ða02Þ ¼ a00. Then

f 1ða01 � a02Þ ¼ 0 hence a01 � a02 ¼ f 0ðaÞ for some a 2 A1 (exactness of the first
row). Then, however, g1ðu1ða01ÞÞ ¼ g1ðu1ða02ÞÞ þ g1ðu1ðf 0ðaÞÞÞ ¼ g1ðu1ða02ÞÞ
because g1ðu1ðf 0ðaÞÞÞ ¼ g1ðg0ðu0ðaÞÞÞ ¼ 0 (exactness of the second row).
Therefore, formula (66) defines a mapping u2: A2 ! B2, and the same formula
immediately implies that u2 satisfies the condition u2 � f 1 ¼ g1 � u1. This
means that the second square of the diagram (62) commutes.
To show that the mapping u2 is a group morphism, take a001; a

00
2 2 A2 and

a01; a
0
2 2 A1 such that f 1ða01Þ ¼ a001 and f 1ða02Þ ¼ a002. Then, we have

f 1ða01 þ a02Þ ¼ a001 þ a002, therefore

u2ða001 þ a002Þ ¼ g1ðu1ða01 þ a02ÞÞ ¼ u2ða001Þ þ u2ða002Þ ð67Þ

since both g1 and u1 are group morphisms. This proves existence of the group
morphism u2. Its uniqueness follows from the surjectivity of f 1:

3. To prove (e) we combine (c) and (d). h
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A sequence of Abelian groups A* ¼ fAi; dig is called a complex of Abelian
groups, or just a complex, if

diþ1 � di ¼ 0 ð68Þ

for all i. The family of group morphisms d* ¼ fdig is called the differential of the
complex A*. Condition (68) is equivalent to saying that the kernel Ker diþ1 and the
image Im di satisfy Im di � Ker diþ1. To simplify notation, we usually denote the
Abelian group morphisms di by the same letter, d; condition (68) then reads
d � d ¼ 0.

Let A* ¼ fAi; dg be a complex. For every index i, the complex A* defines an
Abelian group HiA*, the ith cohomology group of A*, by

HiA* ¼ Ker diþ1=Im di: ð69Þ

Elements of this group are called ith cohomology classes of the complex A*. Note
that the complex is exact in the ith term if and only if the ith cohomology group
HiA* is trivial.

If A is an Abelian group, then any exact sequence Abelian groups of the form

0�!A�!e B0 �!d B1 �!d B2 �!d 
 
 
 ð70Þ

is called a resolution of A. A resolution (70) defines a nonnegative complex B* ¼
fBi; dg as

0�!B0 �!d B1 �!d B2 �!d B3 �!d 
 
 
 ð71Þ

such that

H0B* ¼ A; HiB* ¼ 0; i� 1: ð72Þ

Using this complex, the resolution can also be expressed in a shortened form

0�!A�!e B* ð73Þ

Let A* ¼ fAi; dg and B* ¼ fBi; d0g be two complexes, and let U ¼ fuig be a
family of Abelian group morphisms ui: Ai ! Bi. These complexes and group
morphisms can be expressed by the diagram

… Ai−1 d
Ai d

Ai+1 …

i−1 i i+1

… Bi−1 d
Bi d

Bi+1 …

ð74Þ
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If all squares in this diagram commute, that is,

uiþ1 � d ¼ d0 � ui; ð75Þ

then we say that U is a morphism of the complex A* into B*. Property (75) can also
be expressed by writing U : A* ! B*. The composition of two morphisms U and
W, defined in an obvious way, and is denoted by W � U.

As before, the asterisk in the following lemma denotes position of indices,
labeling different elements of Abelian groups belonging to a complex.

Lemma 10 Let A* ¼ fAi
j; d

i
jg and A* ¼ fAj

i ; d
j
i g be two families of nonnegative

complexes. Suppose that we have a commutative diagram

0 0 0 0
# # # #

0 �! A0
0 �!d

0
0 A1

0 �!d
1
0 A2

0 �!d
2
0 A3

0 �! 
 
 

# d00 # d10 # d20 # d30

0 �! A0
1 �!d

0
1 A1

1 �!d
1
1 A2

1 �!d
2
1 A3

1 �! 
 
 

# d01 # d11 # d21 # d31

0 �! A0
2 �!d

0
2 A1

2 �!d
1
2 A2

2 �!d
2
2 A3

2 �! 
 
 

# d02 # d12 # d22 # d32

0 �! A0
3 �!d

0
3 A1

3 �!d
1
3 A2

3 �!d
2
3 A3

3 �! 
 
 

# # # #

ð76Þ

such that all its rows (resp. columns) except possibly the first row (resp. column)
are exact sequences of Abelian groups. Then for each q� 0, the cohomology
groups HqA0* and HqA0

* are isomorphic.

Proof Let q ¼ 0 and let ½a	 2 H0A0
* ¼ Ker d00. Then ½a	 ¼ a, d00ðaÞ ¼ 0 hence

d10d
0
0ðaÞ ¼ d01d

0
0ðaÞ ¼ 0 and injectivity of d10 implies d00ðaÞ ¼ 0, that is,

a 2 Ker d00 ¼ H0A0*. Thus, H0A0
* � H0A0*. The opposite inclusion is obtained in

the same way.
Consider the case q� 1. Let ½a	 2 HqA0

* ¼ Ker d0q=Im d0q�1, and let a be a rep-

resentative of ½a	. Then d0qðaÞ ¼ 0 hence d1qd
0
qðaÞ ¼ d0q�1d

0
qðaÞ ¼ 0, that is,

d0qðaÞ 2 Ker d1q ¼ Im d1q�1, and for some b1 2 A1
q�1,

d0qðaÞ ¼ d1q�1ðb1Þ: ð77Þ

But d2q�1d
1
q�1ðb1Þ ¼ d1qd

1
q�1ðb1Þ ¼ d1qd

0
qðaÞ ¼ 0 and d1q�1ðb1Þ 2 Ker d2q�1 ¼

Im d2q�2. Thus, for some b2 ¼ A1
q�1 we have d1q�1ðb1Þ ¼ d2q�2ðb2Þ.
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Suppose that for some k, 1� k� q� 2, and Ak
q�k, there exists bk 2 Ak

q�k such

that dkq�1ðbkÞ ¼ dkþ1
q�k�1ðbkþ1Þ. Then

dkþ2
q�k�1d

kþ1
q�k�1ðbkþ1Þ ¼ dkþ1

q�kd
kþ1
q�k�1ðbkþ1Þ ¼ dkþ1

q�kd
k
q�kðbkÞ ¼ 0 ð78Þ

hence dkþ1
q�k�1ðbkþ1Þ 2 Ker dkþ2

q�k�1 ¼ Im dkþ2
q�k�2. Thus for some bkþ2 2 Akþ1

q�k�2,

dkþ1
q�k�1ðbkþ1Þ ¼ dkþ2

q�k�2ðbkþ2Þ: ð79Þ

The construction is described by the following part of diagram (76):

bkþ2 Akþ2
q�k�2

# dkþ2
q�k�2

bkþ1 Akþ1
q�k�1 �!

dkþ1
q�k�1

Akþ2
q�k�1

# dkþ1
q�k�1 # dkþ2

q�k�1

bk Ak
q�k �!

dkq�k
Akþ1
q�k �!

dkþ1
q�k

Akþ2
q�k

# dkq�k # dkþ1
q�k

Ak
q�kþ1 �!

dkq�kþ1
Akþ1
q�kþ1

ð80Þ

For k ¼ q� 2, formula (79) gives dq�1
1 ðbq�1Þ ¼ dq0ðbqÞ hence

dqþ1
0 dq0ðbqÞ ¼ dq1d

q
0ðbqÞ ¼ dq1d

q�1
1 ðbq�1Þ ¼ 0; ð81Þ

and injectivity of dqþ1
0 implies dq0ðbqÞ ¼ 0 hence bq 2 Ker dq0 : Thus, to a repre-

sentative a of a class ½a	 2 HqA0
* we have constructed a sequence ðb1; b2; . . .; bqÞ

such that bi 2 Ai
q�1 for each i, bq 2 Ker dq0 , and

d0qðaÞ ¼ d1q�1ðb1Þ; dkq�kðbkÞ ¼ dkþ1
q�k�1ðbkþ1Þ: ð82Þ

Let a0 be another representative of the class ½a	, and let ðb01; b02; . . .; b0qÞ be another
sequence satisfying condition (82),

d0qða0Þ ¼ d1q�1ðb01Þ; dkq�kðb0kÞ ¼ dkþ1
q�k�1ðb0kþ1Þ: ð83Þ

We set a00 ¼ a� a0, b00i ¼ bi � b0i. We wish to show that ½b00q 	 ¼ 0 hence
b00q 2 Im dq�1

0 . By definition ½a00	 ¼ 0 hence a00 2 Im d0q�1 and a00 ¼ d0q�1ðc1Þ for
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some c1 2 A0
q�1. But by (82) and (83), d1q�1ðb001Þ ¼ d0qðd0q�1ðc1ÞÞ ¼ d1q�1d

0
q�1ðc1Þ,

which implies b001 � d0q�1ðc1Þ 2 Ker d1q�1 ¼ Im d1q�2, hence for some c2 2 A1
q�2,

b001 � d0q�1ðc1Þ ¼ d1q�2ðc2Þ: ð84Þ

Now suppose that for some k� 1 and some ck 2 Ak�1
q�k there exists ckþ1 2 Ak�1

q�k�1

such that b00k � dk�1
q�kðckÞ ¼ dkq�k�1ðckþ1Þ. Using (82), (83) and (84),

dkþ1
q�k�1ðb00kþ1Þ ¼ dkq�kðb00k Þ ¼ dkq�kðdkq�k�1ðckþ1Þ þ dk�1

q�kðckÞÞ
¼ dkq�kd

k
q�k�1ðckþ1Þ ¼ dkþ1

q�k�1d
k
q�k�1ðckþ1Þ;

ð85Þ

so that b00kþ1 � dkq�k�1ðckþ1Þ 2 Ker dkþ1
q�k�1 ¼ Im dkþ1

q�k�2. Thus, for some element

ckþ2 2 Akþ1
q�k�2

b00kþ1 � dkq�k�1ðckþ1Þ ¼ dkþ1
q�k�2ðckþ2Þ: ð86Þ

The derivation of this formula includes the following part of diagram (76) of
Lemma 10:

ckþ2 Akþ1
q�k�2

# dkþ1
q�k�2

ckþ1 Ak
q�k�1 �!

dkq�k
Akþ1
q�k�1

# dkq�k�1 # dkþ1
q�k�1

ckþ1 Ak�1
q�k �!

dk�1
q�k

Ak
q�k �!

dkq�k
Akþ1
q�k

# dk�1
q�k # dkq�k

Ak�1
q�kþ1 �!

dk�1
q�kþ1

Ak
q�k�1

ð87Þ

If k ¼ q� 2, formula (86) gives for some cq 2 Aq�1
0

b00q�1 � dk1ðcq�1Þ ¼ dq�1
0 ðcqÞ: ð88Þ

Then by (82), (83) and (88)

dq0ðb00qÞ ¼ dq�1
1 ðb00q�1Þ ¼ dq�1

1 ðdq�1
0 ðcqÞ þ dq�2

1 ðcq�1ÞÞ
¼ dq�1

1 dq�1
0 ðcqÞ ¼ dq0d

q�1
0 ðcqÞ;

ð89Þ

that is, b00q � dq�1
0 ðcqÞ ¼ 0 because dq0 is injective. Therefore, b00q 2 Im dq�1

0 .
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Consequently, equation

f qð½a	Þ ¼ ½bq	 ð90Þ

defines a mapping f q: HqA0
* ! HqA0* which is a morphism of Abelian groups. In

the same way, we define a morphism of Abelian groups fq: HqA0* ! HqA0
*, and it

remains to verify that the morphism fq is the inverse of f q.
Let ½b	 2 HqA0* be a class, represented by an element b. There exists a sequence

ða1; a2; . . .; aqÞ, where ai 2 Aq�1
i , such that

dq0ðbÞ ¼ dq�1
1 ða1Þ; dq�k

k ðakÞ ¼ dq�k�1
kþ1 ðakþ1Þ; ð91Þ

where k ¼ 1; 2; . . .; q� 1. By definition,

fqð½b	Þ ¼ ½aq	: ð92Þ

Let ½b	 ¼ ½bq	, where ½bq	 is determined by (90). Taking a1 ¼ bq�1, a2 ¼ bq�2, . . .,
aq�1 ¼ b1, aq ¼ a we get from (77) and (79) that (91) is satisfied. Consequently,
½aq	 ¼ ½a	 proving that fq is the inverse of f q.

This completes the proof of Lemma 10. h

Now we consider three complexes A* ¼ fAi; dig, B* ¼ fBi; dig and C* ¼
fCi;Dig and two morphisms of complexes U: A* ! B*, U ¼ fuig, and
W: B* ! C*, W ¼ fwig between them. The composition of these morphisms
yields a morphism of complexes W � U: A* ! C*, defined by

ðW � UÞq ¼ wq � uq: ð93Þ

We show that under some exactness hypothesis these morphisms induce an exact
sequence of Abelian groups, formed by cohomology groups of these complexes.
Note that the morphism U induces the diagrams

0 �! Im di�1 �! Ker di �! HiA* �! 0
# ui # ui # ui

0 �! Im di�1 �! Ker di �! HiB* �! 0
ð94Þ

where the first two vertical arrows are the restrictions of the morphism ui to the
subgroups of Ai, the mappings Im di�1 ! Ker di and Im di�1 ! Ker di are the
canonical inclusions, and ui is the unique morphism of Abelian groups for which
the second square in the diagram (94) commutes (Lemma 10, (e)).

The following statement is sometimes referred to as the zig-zag lemma. Its proof
is based on the technique known as the diagram chasing.
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Lemma 11 Let A* ¼ fAi; dig, B* ¼ fBi; dig and C* ¼ fCi;Dig be three non-
negative complexes, U: A* ! B*, U ¼ fuig, and W: B* ! C*, W ¼ fwig mor-
phisms of complexes. Suppose that we have a commutative diagram

0 0 0
# # #

0 �! A0 �!d
0

A1 �!d
1

A2 �!d
2


 
 

# u0 # u1 # u2

0 �! B0 �!d
0

B1 �!d
1

B2 �!d
2


 
 

# w0 # w1 # w2

0 �! C0 �!D
0

C1 �!D
1

C2 �!D
2


 
 

# # #
0 0 0

ð95Þ

with exact columns. Then for every q� 0, there exists a morphism of sequences of
Abelian groups o ¼ foqg, oq: HqC* ! Hqþ1A* such that the sequence of Abelian
groups

0 �! H0A* �!u
0

H0B* �!w
0

H0C* �!o
0

H1A*

�!u1 H1B* �!w1 H1C* �!o
1

H2A* �!u
2

ð96Þ

is exact.

Proof

1. First, we construct the group morphisms oq: HqC* ! Hqþ1A*. Consider the
following commutative diagram

0 0 0 0
# # # #
Aq�1 �!d

q�1

Aq �!d
q

Aqþ1 �!d
qþ1

Aqþ2

# uq�1 # uq # uqþ1 # uqþ2

Bq�1 �!d
q�1

Bq �!d
q

Bqþ1 �!d
qþ1

Bqþ2

# wq�1 # wq # wqþ1

Cq�1 �!D
q�1

Cq �!D
q

Cqþ1

# # #
0 0 0

ð97Þ

Let ½c	 2 HqC* ¼ KerDq=Im Dq be a class, represented by an element
c 2 KerDq. Since wq is surjective, there exists an element b 2 Bq such that
wqðbÞ ¼ c. But wqþ1dqðbÞ ¼ DqwqðbÞ ¼ 0 so that dqðbÞ 2 Kerwqþ1 and by
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exactness of the third column, there exists an element a 2 Aqþ1 such that
dqðbÞ ¼ uqþ1ðaÞ. Since uqþ2dqþ1ðaÞ ¼ dqþ1uqþ1ðaÞ ¼ dqþ1dqðaÞ ¼ 0, and
since uqþ2 is injective, dqþ1ðaÞ ¼ 0 and a 2 Ker dqþ1. Thus, given
c 2 KerDq, there exists b 2 Bq and a 2 Ker dqþ1 such that

c ¼ wqðbÞ; dqðbÞ ¼ uqþ1ðaÞ: ð98Þ

If c0 is some other representative of the class ½c	, then there exist b0 2 Bq,
a0 2 Ker dqþ1 and d 2 Cq�1 such that

c0 ¼ wqðb0Þ; dqðb0Þ ¼ uqþ1ða0Þ; c0 ¼ c� Dq�1ðdÞ: ð99Þ

We show that ½a	 ¼ ½a0	. We have d ¼ wq�1ðb0Þ for some b0 2 Bq�1 (by sur-
jectivity of wq�1). Thus, wqdq�1ðb0Þ ¼ Dq�1wq�1ðb0Þ ¼ Dq�1ðdÞ, and the third
formula (97) gives wqðb0 � bþ dq�1ðb0ÞÞ ¼ 0, that is, by exactness of the col-
umn, b0 � bþ dq�1ðb0Þ 2 Im uq. Thus, b0 � bþ dq�1ðb0Þ ¼ uqða0Þ for some
a0 2 Aq. But dqðb0 � bþ dq�1ðb0ÞÞ ¼ dquqða0Þ ¼ uqþ1dqða0Þ by commutativ-
ity of the diagram (97). Applying (98) and (99) and the property dqþ1dq ¼ 0 of
the complex B* one obtains uqþ1ða0Þ � uqþ1ðaÞ ¼ uqþ1dqða0Þ. Finally, injec-
tivity of uqþ1 yields a0 � a ¼ dqða0Þ. This proves that ½a	 ¼ ½a0	.
Now since the class ½a	 is defined independently of the choice of the representative
c of the class ½c	, wemay define amapping oq ofHqC* intoHqþ1A* by the formula

oqð½c	Þ ¼ ½a	: ð100Þ

It is easily verified that this mapping is an Abelian group morphism. Let c1 be a
representative of a class ½c1	 in HqC*. There exists b1 2 Bq and a1 2 Ker dqþ1

such that c1 ¼ wqðb1Þ, dqðb1Þ ¼ uqþ1ða1Þ. Similarly, let c2 be a representative
of a class ½c2	 in HqC*. There exist elements b2 2 Bq and a2 2 Ker dqþ1 such
that c2 ¼ wqðb2Þ, dqðb2Þ ¼ uqþ1ða2Þ. Then

c1 þ c2 ¼ wqðb1 þ b2Þ; dqðb1 þ b2Þ ¼ uqþ1ða1 þ a2Þ; ð101Þ

proving that oq is a group morphism.
2. Now we prove exactness of the sequence of Abelian groups (96). We proceed in

several steps.

(a) Exactness at H0A* ¼ Ker d0 is obvious: Since H0B* ¼ Ker d0 and the
commutativity of the left upper square in the diagram (95) implies
u0ðKer d0Þ � Ker d0, exactness at H0A* follows from injectivity of u0.

(b) We verify exactness at the term H0B*. Let b 2 H0B* ¼ Ker d0 and
b 2 Kerw0. Then b ¼ u0ðaÞ for some a 2 A0 ¼ H0A*, and we want to
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show that a 2 Ker d0. But u1d0ðaÞ ¼ d0u0ðaÞ ¼ d0ðbÞ ¼ 0 hence d0ðaÞ ¼
0 (injectivity of u1) and a 2 Ker d0 ¼ H0A*. Thus Kerw0 ¼ Im u0.

(c) We prove exactness at H0C*. Consider an element c 2 H0C* such that
c 2 KerD0, that is, o0c ¼ 0. We want to show that c ¼ w0ðbÞ for some
b 2 H0B* ¼ Ker d0. By definition, o0c ¼ ½a	, where a 2 Ker d1 is an arbi-
trary point such that for some b0 2 B0, c ¼ w0ðb0Þ and d0ðb0Þ ¼ u1ðaÞ (98).
But ½a	 ¼ 0 hence a 2 Im d0 and a ¼ d0ða0Þ for some a0 2 A0. Conse-
quently, d0ðb0Þ ¼ u1d0ða0Þ ¼ d0u0ða0Þ. We set b ¼ b0 � u0ða0Þ. Then

d0ðbÞ ¼ d0ðb0Þ � d0u0ða0Þ ¼ 0; ð102Þ

that is, b 2 Ker d0. Moreover,

w0ðbÞ ¼ w0ðb0Þ � w0u0ða0Þ ¼ w0ðb0Þ ¼ c; ð103Þ

thus Ker d0 � Im w0.
Conversely, if c 2 Im w0, then c ¼ w0ðbÞ for some b 2 H0B* ¼ Ker d0,
and o0ðcÞ ¼ ½a	, where c ¼ w0ðb0Þ and d0ðb0Þ ¼ u1ðaÞ for some b0 2 B0,
a 2 Ker d1(98). But w0ðb� b0Þ ¼ 0 hence b� b0 ¼ u0ða0Þ, where a0 2 A0.
Now u1d0ða0Þ ¼ d0u0ða0Þ ¼ d0ðb� b0Þ ¼ �d0ðb0Þ ¼ �u1ðaÞ that is, by
injectivity, d0ða0Þ ¼ �a. Hence ½a	 ¼ �½d0ða0Þ	 ¼ 0 and we get
Im w0 � Ker o0.
Summarizing, Im w0 ¼ Ker o0 as required.

(d) We check exactness atHqA*, where q[ 0. Let ½a	 2 HqA* anduqð½a	Þ ¼ 0.

Since uqð½a	Þ ¼ ½uqðaÞ	 ¼ 0, we have uqðaÞ 2 Im dq�1. Thus, there exists

b 2 Bq�1 such that dq�1ðbÞ ¼ uqðaÞ. We set c ¼ wq�1ðbÞ. Then by defini-
tion, oð½c	Þ ¼ ½a	, therefore Keruq � Im oq�1.

Conversely, consider a class ½c	 2 Hq�1C*. Then uqd
q�1ð½c	Þ ¼ uqð½a	Þ,

where c ¼ wq�1ðbÞ, dq�1ðbÞ ¼ uqðaÞ for some b 2 Bq�1, a 2 Ker dq. But
thenuqd

q�1ð½c	Þ ¼ ½uqðaÞ	 ¼ ½dq�1ðbÞ	 ¼ 0 sinceHqB* ¼ Ker dq=Im dq�1.
(e) We prove exactness at HqB*, q[ 0. Let ½b	 2 HqB* be a class such that

wqð½b	Þ ¼ ½wqðbÞ	 ¼ 0. Then wqðbÞ 2 Im Dq�1 hence there exists c 2 Cq�1

such that wqðbÞ ¼ Dq�1ðcÞ. But c ¼ wq�1ðb0Þ for some b0 2 Bq�1; applying
Dq�1 we have Dq�1wq�1ðb0Þ ¼ wqdq�1ðb0Þ, that is, wqðbÞ ¼ wqdq�1ðb0Þ
hence wqðb� dq�1ðb0ÞÞ ¼ 0 and b� dq�1ðb0Þ ¼ uqðaÞ for some a 2 Aq.
Now uqþ1dqðaÞ ¼ dquqðaÞ ¼ dqðb� wqdq�1ðb0ÞÞ ¼ 0 because dqðaÞ ¼ 0,
dqdq�1 ¼ 0. Hence dqðaÞ ¼ 0 and a 2 Ker dq. Now
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uqð½a	Þ ¼ ½uqðaÞ	 ¼ ½b� dq�1ðb0Þ	 ¼ ½b	; ð104Þ

so we get the inclusion Kerwq � Im uq.
The inverse inclusion follows from the equality wq � uq ¼ 0 and from the
diagram (94), which implies

0 �! Im dq�1 �! Ker dq �! HqA* �! 0
# uq # uq # uq

0 �! Im dq�1 �! Ker dq �! HqB* �! 0
# wq # wq # wq

0 �! Im Dq�1 �! Ker dq �! HqC* �! 0

ð105Þ

in which the group morphisms uq and wq are unique, and the composition
law ðW � UÞq ¼ wq � uq (93) holds.

(f) We prove exactness at HqC*, where q[ 0. Let ½c	 2 HqC* be a class such
that oqð½c	Þ ¼ 0. We want to show that there exists ½b	 2 HqB* such that
½c	 ¼ wqð½b	Þ. Let c be a representative of ½c	. By (98), there exist an
element b 2 Bq and a 2 Ker dqþ1 such that c ¼ wqðbÞ, dqðbÞ ¼ uqþ1ðaÞ.
From the condition oqð½c	Þ ¼ 0, it follows that ½a	 ¼ 0 hence a 2 Im dq and
a ¼ dqða0Þ for some a0 2 Aq. Then dqðbÞ ¼ uqþ1dqða0Þ ¼ dquqða0Þ hence
b� uqða0Þ 2 Ker dq. Setting b0 ¼ b� uqða0Þ we have dqðb0Þ ¼ 0,
b0 2 Ker dq. Moreover, wqðb0Þ ¼ wqðb� uqða0ÞÞ ¼ wqðbÞ ¼ c, therefore

wqð½b0	Þ ¼ ½wqðb0Þ	 ¼ ½c	: ð106Þ

This implies that Ker oq � Im wq.
Conversely, let ½c	 2 Im wq. Then ½c	 ¼ wqð½b	Þ ¼ ½wqðbÞ	 for some element
½b	 2 HqB*. Thus oqð½c	Þ ¼ ½a	, where c ¼ wqðb0Þ, dqðb0Þ ¼ uqþ1ðaÞ for some
b0 2 Bq. But wqðb� b0Þ ¼ 0 so that b� b0 ¼ uqða0Þ, where a0 2 Aq. Now

uqþ1dqða0Þ ¼ dquqða0Þ ¼ dqðb� b0Þ ¼ �dqðb0Þ ð107Þ

hence uqþ1ðaÞ ¼ �uqþ1dqða0Þ, uqþ1ðaþ dqða0ÞÞ ¼ 0, and aþ dqða0Þ ¼ 0.
Hence ½a	 ¼ �½dqða0Þ	 ¼ 0, therefore Im wq � Ker oq. This completes the
proof. h

The exact sequence of Abelian groups (96) is referred to as the long exact
sequence, associated with the morphisms of complexes U: A* ! B* and
W: B* ! C*. The family of Abelian group morphisms o ¼ foqg, where
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oq: HqC* ! Hqþ1A*, is called the connecting morphism, associated to the mor-
phisms U and W.

The following two corollaries follow from the long exact sequence (96).

Corollary 4 Suppose that in the commutative diagram of morphisms of Abelian
groups

0 0 0
# # #

0 �! A0 �! A1 �! A2 �! 0
# # #

0 �! B0 �! B1 �! B2 �! 0
# # #

0 �! C0 �! C1 �! C2 �! 0
# # #
0 0 0

ð108Þ

all columns are exact. Then if two rows are exact, the third row is also exact.

Corollary 5 Let A*, B* and C* be three nonnegative complexes, U: A* ! B* and
W: B* ! C* morphisms of complexes. Suppose that the diagram (95) commutes
and all its columns are exact. Then if any two of the complexes A*, B*, and C* are
exact, the third is also exact.

Proof This follows from the long exact sequence (96). h

7.8 Exact Sequences of Abelian Sheaves

The concepts we have introduced for sequences of Abelian groups apply to
sequences of Abelian sheaves. First, we briefly formulate the definitions and
describe basic properties of exact sequences. Then, we study the canonical reso-
lution of an Abelian sheaf, an exact sequence, relating properties of a sheaf with
topological properties of its base space.

A family S* ¼ fS i; f igi2Z of Abelian sheaves S i over the same base, and their
morphisms f i: S i ! S iþ1, indexed with the integers i 2 Z, is called a sequence of
Abelian sheaves. The family of sheaf morphisms in this sequence is denoted by
ff igi2Z. The sequence S* is called a nonnegative, if S i ¼ 0 for all i\0. Then, the
sequence S* is usually written as S* ¼ fS i; f igi2N , with indexing set the non-
negative integers N, or just as

0�!S0 �!f
0

S1 �!f
1

S2 �!f
2


 
 
 ð109Þ
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In this notation, the mapping 0 ! S0 is the trivial sheaf morphism. If there exist the
smallest and greatest integers r and s such that Sr 6¼ 0 and Ss 6¼ 0, then the
sequence S* is said to be finite, and Sr (resp. Ss) is called its first (resp. last)
element. In this case, we write S* as

0�!Sr �!f
r

Srþ1 �!f
rþ1


 
 
 �!f
s�1

Ss �! 0 ð110Þ

with trivial sheaf morphisms 0 ! Sr and Ss ! 0. To further simplify notation, we
sometimes omit the indexing set and write just S* ¼ fS i; f ig, or S* ¼ fS i; f ig
instead of S* ¼ fS i; f igi2N .

Let S* ¼ fS i; f ig be a family of sheaves of Abelian groups over a topological
space X, x 2 X a point. Denote by Sp

x ¼ ðGermSpÞx the fiber of the sheaf space
GermSp over x, and by f px : S

p
x ! Spþ1

x the restriction to the fiber of the morphism
f i: S i ! S iþ1. Restricting all the sheaf morphisms to the fibers Sp

x we get a
sequence of Abelian groups

0�!S0
x �!

f 0x
S1

x �!
f 1x

S2
x �!

f 2x 
 
 
 ð111Þ

This sequence is called the restriction of the sequence (109) to the point x.
The sequence S* (109) is said to be exact at the term Sq over x, if the restricted

sequence (111) is exact as the sequence of Abelian groups, that is, if
Ker f qx ¼ Im f q�1

x . S* is said to be exact at the term Sq if it is exact at x for every
x 2 X. We say that S* is an exact sequence, if it is exact in every term Sq.

Let S be an Abelian sheaf. A sequence of Abelian sheaves S* ¼ fS i; f ig, such
that

f qþ1 � f q ¼ 0 ð112Þ

for all q is called a differential sequence. An exact sequence is a differential
sequence.

An exact sequence of the form

0�!S�!e T 0 �!f
0

T 1 �!f
1

T 2 �!f
2


 
 
 ð113Þ

is called a resolution of S. The resolution defines a nonnegative differential
sequence T* ¼ fT i; f ig. To shorten notation, we sometimes write the sequence
(113) as

0�!S �!f T*; ð114Þ

the mappings being understood.
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An exact sequence of the form

0�!R �!f S�!g T �! 0 ð115Þ

where 0 ! R and T ! 0 are trivial sheaf morphisms, is called a short exact
sequence.

Let Y be a subspace of the topological space X. Denote by SY the restriction of
the Abelian sheaf S to Y and by f iY the restriction of the sheaf morphism f i: S i !
S iþ1 to Y. We obtain a sequence of sheaves

0�!S0
Y �!

f 0Y
S1

Y �!
f 1Y

S2
Y �!

f 2Y 
 
 
 ð116Þ

called the restriction of the sequence S* ¼ fS i; f ig to the subspace Y.
The following are elementary properties of exact sequences.

Lemma 12

(a) A sequence of Abelian sheaves S* ¼ fS i; f ig is exact at Sq if and only if
Ker f q ¼ Im f q�1.

(b) If a sequence of Abelian sheaves S* ¼ fS i; f ig over a topological space X is
exact at the term Sq, then its restriction to a subspace Y � X is exact at Sq

Y .
(c) A sequence of sheaves of the form (115) is exact at T if and only if the sheaf

morphism g is surjective.
(d) A sequence of sheaves of the form (115) is exact at R if and only if the sheaf

morphism f is injective.
(e) A sequence of Abelian sheaves

0�!R �!i S �!p S=iðRÞ�! 0 ð117Þ

where R � S is a subsheaf, i: R ! S its inclusion, S=iðRÞ the quotient
sheaf and p: S ! S=iðRÞ the quotient projection, is a short exact sequence.

(f) Suppose we have a diagram

0 �! R0 �!f
0

R1 �!f
1

R2 �! 0
# u0 # u1

0 �! S0 �!g
0

S1 �!g
0

S2 �! 0

ð118Þ

such that the horizontal sequences are short exact sequences of sheaves, u0
and u1 are sheaf morphisms and

g0 � u0 ¼ u1 � f 0: ð119Þ
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Then there exists a unique Abelian sheaf morphism u2: R
2 ! S2 such that

the second square of the diagram

0 �! R0 �!f
0

R1 �!f
1

R2 �! 0
# u0 # u1 # u2

0 �! S0 �!g
0

S1 �!g
1

S2 �! 0

ð120Þ

commutes.
(g) Consider the exact sequence of Abelian sheaves (115), the quotient sheaf

S=f ðRÞ and the quotient projection p: S ! S=f ðRÞ. There exists a unique
sheaf isomorphism u: T ! S=f ðRÞ such that

0 �! R �!f
0

S �!f
1

T �! 0
# idR # idS # u

0 �! R �!g
0

S �!p S=f ðRÞ �! 0

ð121Þ

commutes.

Proof

1. We prove assertion (a). Suppose that S* is exact at Sq. Then by definition
Ker f qx ¼ Im f q�1

x for every x, where f qx is the restriction of the sheaf space
morphism f q: Germ Sq ! Germ Sqþ1 , associated with f q, to x. Thus

Ker f q ¼
[
x2X

Ker f qx ¼
[
x2X

Im f q�1
x ¼ Im f q: ð122Þ

Then Ker f q ¼ SecðcÞKer f q ¼ SecðcÞIm f q�1 ¼ Im f q�1 as required. The con-
verse is obvious.

2. Assertions (b), (c), (d), and (e) of Lemma 12 are immediate consequences of
definitions.

3. To prove (f) we apply (b) and Lemma 9, (d).
4. To prove (g) we apply (b) and Lemma 9, (e). h

A sequence of Abelian sheaves (109) over a topological space X induces, for
every open set U in X, the Abelian groups S iU of continuous sections and their
morphisms fU

i: S iU ! S iþ1U. We usually denote these morphisms by the same
letters, f i. The sequence of Abelian groups is then denoted by

0�!S0U�!f
0

S1U�!f
1

S2U�!f
2


 
 
 ð123Þ
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and is said to be induced by the sequence of sheaves (109). In particular, if U ¼ X,
the sequence of Abelian groups

0�!S0X �!f
0

S1X �!f
1

S2X �!f
2


 
 
 ð124Þ

is referred to as the sequence of global sections, associated with the sequence of
Abelian sheaves (109).

Exactness of the sequence (109) does not imply exactness of (123). This is
demonstrated by the following example.

7.9 Cohomology Groups of a Sheaf

In this section, we construct a resolution of an Abelian sheaf, known as the
canonical, or Godement resolution (Godement [G]). We also introduce canonical
morphisms of the canonical resolutions, and study properties of the corresponding
diagrams.

Consider the sheaf space GermS, associated with S and the sheaf of (not
necessarily continuous) sections of the sheaf space GermS, denoted by

C0S ¼ SecGermS ð125Þ

(cf. Sect. 7.4, Example 17). We have the canonical injective sheaf morphism
i: SecðcÞGermS ! C0S. Since SecðcÞGermS is canonically isomorphic with the
Abelian sheaf S, setting

D1S ¼ C0S=Imi ð126Þ

we get an exact sequence of sheaves

0 ! S !i C0S ! D1S ! 0: ð127Þ

The same construction can be repeated for the sheaf D1S. Replacing S with D1S,
we have the Abelian sheaf of (discontinuous) sections of the sheaf space
GermD1S, C0D1S ¼ SecGermD1S, the Abelian sheaf of continuous sections
SecðcÞGermD1S, canonically isomorphic with the sheaf D1S, and the canonical
sheaf morphism of continuous sections into discontinuous sections,
i1: SecðcÞGermD1S ! SecGermD1S. Setting D1ðD1SÞ ¼ C0ðD1SÞ=Im i1 we
get an exact sequence
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0�!D1S�!i
1

C0D1S�!D1D1S�! 0: ð128Þ

Combining these two constructions

0
#
S
#

0 �! S �! C0S �! D1S �! 0
#

0 �! D1S �! C1S �! D1D1S �! 0
#
0

ð129Þ

Similarly we get, with obvious notation, the commutative diagram

0 �! S �! C0S
#

0 �! D1S �! C1S
# #
0 �! D2S �! C2S

# #
0 �! D3S �! C2S

ð130Þ

etc. This diagram gives rise to the sheaf morphisms cp: CpS ! Cpþ1S, for every
p� 0. We get a sequence of sheaves of Abelian groups

0�!S �!i C0S �!c
0

C1S�!c
1

C2S�!c
2


 
 
 ð131Þ

Lemma 13 The sequence of sheaves of Abelian group (131) is a resolution of the
sheaf S.

Proof We want to verify exactness. Since i is injective, the sequence is exact at S.
To check exactness at the term C0S, we use the diagram (131), where the sheaf
morphism g: C0S ! D1S is the quotient morphism and h: D1S ! C1S is an
inclusion. Let a 2 Im i. Evidently a 2 Ker c0 since c0 ¼ h � g and a 2 Ker g.
Conversely, let a 2 Ker c0. Then hðgðaÞÞ ¼ 0 and since h is injective, gðaÞ ¼ 0
and a 2 Ker h hence a 2 Im i. Exactness at CqS can be proved in the
same way. h

The resolution (131) of the Abelian sheaf S is called the canonical resolution.
Setting C*S ¼ fC iS; c ig, we can write the sequence (131) as
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0�!S�!i C*S: ð132Þ

The Abelian sheaves CpS, where p� 0, in the sequence (132), have some
specific properties, namely, they belong to the class of soft sheaves. A sheaf of
Abelian groups S over a topological space X is said to be soft if any section of the
associated sheaf space GermS, defined on a closed subset Y � X, can be prolonged
to a global section of S.

Lemma 14 The sheaves CpS, where p� 0, are soft.

Proof It is sufficient to show that the sheaf C0S ¼ SecGermS: is soft; the same
proof applies to CpS, where p[ 0. Let Y � X be a closed subset, d 2 C0S any
section of GermS, defined on Y. By definition, dðxÞ, where x is a point of Y, is the
germ of a (not necessarily continuous) section c 2 SU, where U is a neighborhood
of x in X; thus dðxÞ ¼ ½c	x. Consider a family of (not necessarily continuous)
sections cx 2 SUx such that dðxÞ ¼ ½cx	x for all points x 2 Y , and set

~dðxÞ ¼ ½cx	x; x 2 Y ;
0; x 62 Y :

�
ð133Þ

h

Then ~d is a global section of the sheaf space GermS. Here, 0 is the germ of the zero
section, defined on the open set XnY � X.

Let m: S ! T be a morphism of Abelian sheaves over a topological space X. We
shall construct a family of sheaf morphisms mp: CpS ! CpT , p� 0, between the
canonical resolutions 0 ! S ! C*S and 0 ! T ! C*T of these sheaves, such
that the diagram

0 �! S �!iS C0S �! C1S �! C2S �!
# m # m0 # m1 # m2

0 �! T �!iT C0T �! C1T �! C2T �!
ð134Þ

commutes.
Let S ¼ GermS and T ¼ GermT be the associated sheaf spaces, r and s the

corresponding sheaf space projections, and let ~m: S ! T be the associated sheaf
space morphism. Recall that ~m is defined as the mapping S 3 ½c	x ! ~mð½c	xÞ ¼
½mUðcÞ	x 2 T , where c 2 SU is a representative of the germ ½c	x (Sect. 7.5, (31)). We
shall consider the Abelian sheaves S and T as the sheaves of continuous sections of
the sheaf spaces S and T. Then C0S and C0T are the corresponding Abelian
sheaves of discontinuous sections. We set for any section d: U ! S

m0ðdÞ ¼ ~m � d: ð135Þ
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This formula defines the first square in the diagram (134). If d is a continuous
section of C0S, we have m0ðiSðcÞÞ ¼ ~m � iSðcÞ

ðm0iSðcÞÞðxÞ ¼ ~mðiSðcÞðxÞÞ ¼ ~mðcðxÞÞ ¼ ~mð½c	xÞ
¼ ½mUðcÞ	x ¼ m � cðxÞ ¼ iT ðm � cÞðxÞ;

ð136Þ

proving the commutativity.
Consider the next squares in the diagram (134)

0 �! S �! C0S �! D1S �! 0
# m # m0 # �m1

0 �! T �! C0T �! D1T �! 0
ð137Þ

defining �m1 (Lemma 12, (f)). If we replace S (resp. T ) with D iS (resp. D iT ), where
i� 1, we get the diagram

0 �! D iS �! C iS �! D iþ1S �! 0
# �mi # mi # �miþ1

0 �! D iT �! C iT �! D iþ1T �! 0
ð138Þ

We show that the ith square also commutes. Combining (130) and (138) and using a
suitable temporary notation, we get the commutative diagrams

C i�1S �!a D iS
# mi�1 # �mi

C i�1T �!b D iT

C i�1S �!g C iS
# mi�1 # �mi

C i�1T �!h C iT

D iS �!b C iS
# �mi�1 # mi

D iT �!d C iT

ð139Þ

Combining these diagrams with (126), we obtain

g ¼ b � a; d � �mi ¼ mi � b; �mi � a ¼ c � mi�1; h ¼ d � c; ð140Þ

which implies mi � g ¼ mi � b � a ¼ d � �mi � a ¼ d � c � mi�1 ¼ h � mi�1. Since i� 1,
this proves commutativity of all squares in the diagram (134). h

The family of sheaf morphisms fm; m0; m1; m2; . . .g is called the canonical mor-
phism of the canonical resolutions 0 ! S ! C*S and 0 ! T ! C*T , associated
with the Abelian sheaf morphism m: S ! T .

Elementary properties of the canonical resolutions are formulated in the fol-
lowing lemma.
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Lemma 15

(a) The canonical resolution of a trivial Abelian sheaf 0X over a topological space
X consists of the trivial sheaves Cp0X ¼ 0X .

(b) The canonical resolution associated with the identity sheaf morphism idS is
the identity morphism fidS ; idC0S ; idC1S ; idC2S ; . . .g.

(c) If the Abelian sheaf morphism m: S ! T is injective (resp. surjective), then
each mp: Sp ! T p is injective (resp. surjective).

(d) Let R , S, and T be three Abelian sheaves with base X, l: R ! S, m: S ! T
two Abelian sheaf morphisms, and g ¼ m � l. Then, the diagram

0 �! R �! C0R �! C1R �! C2R �!
# l # l0 # l1 # l2

0 �! S �! C0S �! C1S �! C2S �!
# m # m0 # m1 # m2

0 �! T �! C0T �! C1T �! C2T �!

ð141Þ

satisfies, for every p� 0,

gp ¼ mp � lp: ð142Þ

(e) Suppose that the first column of the diagram

0 0 0 0
# # # #

0 �! S �! C0S �! C1S �! C2S �!
# # # #

0 �! S0 �! C0S0 �! C1S0 �! C2S0 �!
# # # #

0 �! S1 �! C0S1 �! C1S1 �! C2S1 �!
# # # #

0 �! S2 �! C0S2 �! C1S2 �! C2S2 �!
# # # #

ð143Þ

consists of the resolution

0�!S�!e S0 �!f
0

S1 �!f
1

S2 �!f
2

ð144Þ

of the sheaf S, the rows are formed by the canonical resolutions, and the
columns are the canonical morphisms of the canonical resolutions. Then this
diagram commutes, and all its columns are exact.

Proof

(a) This follows from formulas (126)–(128).
(b) We set in (134) S ¼ T , m ¼ idS . Then, m0: C

0S ! C0S satisfies
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m0 ¼ idC0S ð145Þ

and (137) implies

�m1 ¼ idD1S ð146Þ

hence m1 ¼ idC1S and by induction mi ¼ idC iS for all i� 1:

(c) This follows from (135).
(d) Denote by ~l (~m, resp. ~g) the sheaf space morphism associated with l (m,

resp. g). Since g ¼ m � l, we have ~g ¼ ~m � ~l (Sect. 7.7, Lemma 9, (b)). Thus,
using (135) we get for every section d: U ! GermS, g0ðdÞ ¼ ~g � d ¼
~m � ~l � d ¼ ~m � l0ðdÞ ¼ m0ðl0ðdÞÞ proving (d) for p ¼ 0. Repeating this pro-
cedure, we get gi ¼ mi � li for all i� 1.

(e) Commutativity is ensured by diagram (134). We want to prove exactness of
the pth column of the diagram (143). Consider the second column

0 �! C0S �!e
0

C0S0 �!f
00

C0S1 �!f
10

C0S2 �!f
20 ð147Þ

Exactness at the term C0S follows from the injectivity of e0 (see (c)). Now let
d: U ! GermC0S0 be a section such that f 00ðdÞ ¼ ~f 0 � d ¼ 0. Then if dðxÞ ¼
½cx	x for some continuous section cx: Ux ! GermC0S0, we have ~f 0ð½cx	xÞ ¼ 0

and ½cx	x 2 Ker ~f 0 ¼ Im ~ex. Therefore, d is a section of Im e, proving exactness
at C0S0. Continuing in the same way, we get exactness of the first column.
Exactness in the next columns can be proved by induction. h

Corollary 6 Suppose that we have a commutative diagram

0 �! R �! S �! T �! 0
# # #

0 �! R 0 �! S 0 �! T 0 �! 0
ð148Þ

with exact rows. Then for every i� 0, the diagram

0 �! C iR �! C iS �! C iT �! 0
# # #

0 �! C iR 0 �! C iS 0 �! C iT 0 �! 0
ð149Þ

commutes and has exact rows.
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Proof To prove commutativity of the diagram (149), we use commutativity of the
square

R �!h S
# l # m

R 0 �!k S 0
ð150Þ

in (148) and formulas (126–128). Exactness of the rows follows from
Lemma 15, (e). h

Corollary 7 For any isomorphism of Abelian sheaves f : R ! S the sheaf mor-
phisms f p: CpR ! CpS are isomorphisms.

Proof This follows from Lemma 15, (b) and (d). h

Let S be an Abelian sheaf over a topological space X. Consider the canonical
resolution of S

0�!S�!i C0S�!c
0

C1S�!c
1

C2S �!c
2

ð151Þ

Taking global sections of every term we obtain a complex of Abelian groups

0�!SX�!i ðC0SÞX�!c
0

ðC1SÞX
�!c

1

ðC2SÞX �!c
2


 
 

ð152Þ

where the induced Abelian group morphisms in this diagram are denoted by the
same letters as in the sequence (151). Denote by ðC*SÞX the nonnegative complex

0�!C0S �!c
0

C1S �!c
1

C2S�!c
2


 
 
 ð153Þ

Then (152) can also be written as

0�!SX�!i ðC*SÞX: ð154Þ

We set for every p� 0

HpðX;SÞ ¼ HpððC*SÞXÞ: ð155Þ

The Abelian group HpðX;SÞ ¼ HpððC*SÞXÞ is called the pth cohomology group
of the topological space X with coefficients in the sheaf S.
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Lemma 16 Let S be an Abelian sheaf over a topological space X. The complex of
Abelian groups (152) is exact at the terms SX and ðC0SÞX.
Proof Let c 2 SX and let iðcÞ ¼ 0. Then by definition iðcðxÞÞ ¼ 0 for all x 2 X.
Since the canonical resolution (151) is exact at S we have cðxÞ ¼ 0 for every
x hence c ¼ 0. Thus, the complex (152) is exact at SX.

We prove exactness at ðC0SÞX. Only inclusion Ker c0 � Im i needs proof. Let
c 2 ðC0SÞX and let c0ðcÞ ¼ 0. Then c0ðcÞðxÞ ¼ 0 for every point x 2 X. But (151)
is exact at the term C0S hence to each x 2 X there exists a unique germ sx 2 Sx

such that iðsxÞ ¼ cðxÞ ¼ 0, and we have a mapping X 3 x ! dðxÞ ¼ sx 2 S sat-
isfying i � d ¼ c. We want to show that this mapping is continuous. Let x0 2 X be a
point. There exists a neighborhood V (resp. W, resp. U) of the point dðx0Þ
(resp. iðdðx0ÞÞ, resp. x0) such that ijV : V ! W (resp. cjU : U ! W) is a homeo-
morphism. Then the composition ðijVÞ�1 � cjU : U ! V satisfies, for each x 2 U,

iððijV Þ�1 � cjUðxÞÞ ¼ cðxÞ ¼ iðdðxÞÞ: ð156Þ

Since dðxÞ; ðijVÞ�1 � cjUðxÞ 2 Sx and the restriction of i to the fiber Sx is injective,
we have dðxÞ ¼ ðijVÞ�1 � cjUðxÞ, which shows that the mapping d is continuous at
x0. Consequently, Ker c0 � Im i. h

Corollary 8 For any Abelian sheaf S with base X, H0ðX;SÞ ¼ SX.

Let S and T be Abelian sheaves over a topological space X, m: S ! T a
morphism of Abelian sheaves, and let fm; m0; m1; m2; . . .g be the canonical morphism
of the canonical resolutions of these sheaves. This morphism induces a comutative
diagram of Abelian groups of global sections

0 �! SX �!iS ðC0SÞX �! ðC1SÞX �! ðC2SÞX �!
# m # m0 # m1 # m2

0 �! TX �!iT ðC0T ÞX �! ðC1T ÞX �! ðC2T ÞX �!
ð157Þ

and a commutative diagram of nonnegative complexes of global sections

0 �! ðC0SÞX �! ðC1SÞX �! ðC2SÞX �! 
 
 

# m0 # m1 # m2

0 �! ðC0T ÞX �! ðC1T ÞX �! ðC2T ÞX �! 
 
 

ð158Þ

with obvious notation for the morphisms. Applying standard definitions we obtain,
passing to the quotients, the induced group morphisms of cohomology groups
mq: HqðX;SÞ ! HqðX;T Þ, q� 0.

If l: T ! P is some other Abelian sheaf morphism and the family
fl; l0; l1; l2; . . .g is the morphism of the corresponding canonical resolutions,
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lq: H
qðX;T Þ ! HqðX;PÞ, we have for every q� 0, an Abelian group morphism

ðl � mÞq: HqðX;SÞ ! HqðX;PÞ. Using Lemma 12, (f) and Lemma 15, (d)

lq � mq ¼ ðl � mÞq: ð159Þ

Corollary 9 If m: S ! T is an isomorphism of Abelian sheaves, then
mq: HqðX;SÞ ! HqðX;T Þ is an Abelian group isomorphism for every q� 0.

7.10 Sheaves over Paracompact Hausdorff Spaces

All sheaves considered in this section are Abelian sheaves over topological spaces
whose topology is Hausdorff and paracompact.

Recall that an Abelian sheaf S with base X can be considered as the sheaf of
continuous sections of the corresponding Abelian sheaf space S ¼ GermS, defined
on open subsets of X. Every morphism f : S ! T of Abelian sheaves can be
considered as a morphism of Abelian sheaf spaces f : S ! T .

A soft sheaf is by definition a sheaf S with base X such that every continuous
section of S, defined on a closed subset of X can be prolonged to a global section.
The proof of the following theorem on short exact sequences of soft sheaves is
based on the Zorn’s lemma.

Theorem 3 Let X be a paracompact Hausdorff space, and let

0�!R �!f S�!g T �! 0 ð160Þ

be a short exact sequence of sheaves over X. If R is a soft sheaf, then the sequence
of Abelian groups of global sections

0�!RX�!f X SX �!gX
TX �! 0 ð161Þ

is exact.

Proof

1. We prove exactness at RX. If c 2 RX and f XðcÞ ¼ 0, then f ð~cðxÞÞ ¼ 0, then for
every point x 2 X we get, by injectivity of f, ~cðxÞ ¼ 0. Thus, the germ ~cðxÞ can
be represented at every point by the zero section hence c ¼ 0.

2. We prove exactness of the sequence (161) at SX. Let c 2 Ker gX . Then
Ker gXðcÞ ¼ 0 hence g � ~cðxÞ ¼ 0 for all x 2 X. Since the sequence (160) is
exact at S, to every point x 2 X there exists an element dðxÞ 2 R such that
f ðdðxÞÞ ¼ cðxÞ and, since the morphism f is injective, this point is unique. Since
r � f ¼ q, where r (resp. r) is the projection of S (resp. T), we have q � d ¼
r � f � d ¼ r � c ¼ idX showing that d is a global section of R . To show that d
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is continuous, observe that f � d ¼ c is continuous; then the continuity of d
follows from the property of f to be a local homeomorphism.

3. We show that the mapping gX is surjective. Let c 2 TX be a global section of
T . Since the sequence of Abelian sheaves (160) is exact at T , to each point
x 2 X there exists a neighborhood Ux and a continuous section bx 2 SUx such
that gUx

ðbxÞ ¼ cjUx
. Thus, in a different notation, there exists an open covering

fUigi2I of X, such that for each i 2 I there exists bi 2 SUi with the property

gUi
ðbiÞ ¼ cjUi

: ð162Þ

Since X is paracompact and Hausdorff, there exists a locally finite open covering
fVigi2I of X such that ClVi � Ui (Cl denotes the closure). The sets Ki ¼ ClVi

are closed and form a closed covering fKigi2I of X. Thus, to every i 2 I we have
assigned a pair ðKi; biÞ, where bi 2 SUi. Consider the non-empty set K of pairs
ðK; bÞ, where K ¼ [Kj is the union of some sets belonging to the family
fKigi2I , and b is a section of S defined on the open set U ¼ [Uj. K becomes a
partially ordered set, defined by the order relation “ðK; bÞ� ðK 0; b0Þ if K � K 0

and b0jU ¼ b.”
We show that any linearly ordered family of subsets of the set K has an upper
bound. Let fðKk; bkÞgk2L be a linearly ordered family of subsets of K , Kk � Uk.
Denote K ¼ [Kk; then K � U ¼ [Uk. The family fbkgk2L is a compatible
family of sections of the sheaf S. But every compatible family of sections of S
locally generates a section of S (Sect. 7.4, condition (5)); thus, there exists a
section b 2 SU such that bjUk

¼ b for each k 2 L. Then, the pair ðK; bÞ is the
upper bound of the linearly ordered family fðKk; bkÞgk2L.
This shows that the set K satisfies the assumptions of the Zorn’s lemma,
therefore, it has a maximal element ðK0; b0Þ. It remains to show that K0 ¼ X.
Suppose the opposite; then there exists a point x 2 X such that x 62 K0, and since
K ¼ [Ki ¼ X, there must exist an index i 2 I such that Ki 6� K0. On Ki \ K0,
g � ðb0 � biÞ ¼ c0 � ci ¼ 0. But the sequence (161) is exact at SX hence
f ðdÞ ¼ b0 � bi for some d 2 RðKi \ K0Þ. Since R is soft, d can be prolonged to
a section �d over X; then d ¼ �djKi\K0

. We define a section �b over Ki [ K0 by the
conditions

�bjK0
¼ b0; �bjKi

¼ bi þ f ðdÞ: ð163Þ

Clearly, the �b is defined correctly since on Ki \ K0

b0jKi\K0
¼ ðbi þ f ðdÞÞjKi\K0

¼ ðbi þ b0 � biÞjKi\K0
: ð164Þ

Consequently, the pair ðKi [ K0; �bÞ belongs to the set K . But this pair satisfies
ðK0; b0Þ� ðKi [ K0; �bÞ, which contradicts maximality of the pair ðK0; b0Þ unless
K0 ¼ X. h
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Corollary 10 If the Abelian sheaves R and S in the short exact sequence (160) are
soft, then also the Abelian sheaf T is soft.

Proof Let K be a closed set in the base X, and consider the restriction of the exact
sequence (160) to K. The restricted sequence is also exact. Then by Theorem 3, the
corresponding sequence of Abelian group (161) over K is exact. Choose a section
c 2 TK. There exists d 2 SK such that gKðdÞ ¼ c. If ~d is an extension of d to X,
then gXð~dÞ ¼ g � ~d is the extension of c to X. h

Corollary 11 Let X be a paracompact Hausdorff space and let

0�!S0 �!f 0 S1 �!f 1 S2 �!f 2 
 
 
 ð165Þ

be an exact sequence of Abelian sheaves over X. If each of the sheaves S0, S1, S2,
. . . is soft, then the induced sequence of Abelian groups

0�!S0X �!S1X �!S2X �! 
 
 
 ð166Þ

is exact.

Proof The sequence (165) is exact if and only if for each i ¼ 1; 2; 3; . . . the
sequence

0�!Ker f i �!S i �!f i Ker f iþ1 �! 0 ð167Þ

is exact. Since by hypothesis Ker f 1 ¼ S0 and S1 are soft sheaves, the sheaf Ker f 2
is also soft (Corollary 10). Since the sheaf S1 is soft, the sheaf Ker f 3 must also be
soft, according to Corollary 10, etc. Therefore, for all i, the sequence of global
sections

0�!ðKer f iÞX �!S iX �!f i ðKer f iþ1ÞX�! 0 ð168Þ

is exact, by Theorem 3. Now it is immediate that the sequence (166) must
be exact. h

Corollary 12 If S is a soft sheaf over a paracompact Hausdorff space X, then
HqðX;SÞ ¼ 0 for all q� 1.

Proof Consider the canonical resolution of S,

0�!S�!i C0S�!c
0

C1S�!c
1

C2S �!c
2

ð169Þ

Since all the sheaves C iS are soft (Sect. 7.8, Lemma 14), the associated sequence
of global sections

0�!ðC9SÞX �!c
0

ðC1SÞX�!c
1

ðC2SÞX�!c
2


 
 
 ð170Þ
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is exact (Corollary 11). Now, Corollary 12 follows from the definition of a coho-
mology group. h

Examples

22. Let G be an Abelian group, X connected Hausdorff space, and S ¼ X � G the
constant sheaf space (Sect. 7.2, Example 11). We show that the constant sheaf
SecðcÞS is not soft. Let x and y be two different points of the base X. Consider
the closed subset Y ¼ fxg [ fyg of X and the section c of S defined on Y by
cðxÞ ¼ g, cðyÞ ¼ h, where g and h are two distinct point of G. If U is a
neighborhood of x and V is a neighborhood of y such that U \ V ¼ [, then we
have a section ~c: U [ V ! S, equal to g on U and h on V. The restriction of ~c to
Y is equal to c; in particular, ~c is continuous. But since X is connected, ~c cannot
be prolonged to a global continuous section of S.

23. If X is a normal space, then every continuous, real-valued function defined on a
closed subspace of X, can be prolonged to a globally defined continuous
function (Tietze theorem). Consequently, the sheaf CX;R is soft (cf. Sect. 7.4,
Example 18).

24. We shall show that the sheaf of modules S over a soft sheaf of commutative
rings with unity R is soft. Let X be the base of R (and S), K a closed subset of
X, and let c 2 SecðcÞS be a continuous section, defined on K. Then by definition
c can be prolonged to a continuous section, also denoted by c, defined on a
neighborhood U of K. Define a continuous section q 2 SecðcÞðK [ ðXnUÞÞÞ by

qðxÞ ¼ 1; x 2 K;
0; x 2 XnU:

�
ð171Þ

Since R is soft, there exists a section ~q 2 SecðcÞX prolonging q to X. We define
~cðxÞ ¼ ~qðxÞ 
 cðxÞ; ~c is the desired prolongation of c.

25. The sum of two soft subsheaves of a sheaf is a soft subsheaf (cf. Sect. 7.2,
Example 13).

Let S be an Abelian sheaf over a topological space X, g: S ! S a sheaf mor-
phism. We define the support of g to be a closed subspace of X

supp g ¼ clfx 2 XjgðxÞ 6¼ 0g: ð172Þ

Let fUigi2I be a locally finite open covering of the paracompact Hausdorff space
X, S an Abelian sheaf with base X. By a sheaf partition of unity for S, subordinate
to fUigi2I we mean any family fvigi2I of sheaf morphisms vi: S ! S over X with
the following two properties:
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(1) supp vi � Ui for every i 2 I.
(2) For every point x 2 X X

i2I
viðxÞ ¼ x: ð173Þ

Note that the sum on the left-hand side of formula (173) is well defined, because
for every fixed point x the summation is taking place through only a finitely many
indices i from the indexing set I.

An Abelian sheaf S is said to be fine, if to every locally finite open covering
fUigi2I of X there exists a sheaf partition of unity fvigi2I subordinate to fUigi2I .
Theorem 4 Every fine Abelian sheaf over a paracompact Hausdorff space is soft.

Proof Let S be an Abelian sheaf over a paracompact Hausdorff space X,
S ¼ GermS, and let r be the projection of S. Let Y be a closed subspace of X, c a
continuous section, defined on Y. To every point x 2 Y , there exists a neighborhood
Ux of x and a continuous section cx: Ux ! S such that cðxÞ ¼ cx. Shrinking cx to
Ux \ Y we get a continuous section of the restriction of S to Ux \ Y . Shrinking Ux if
necessary we may assume without loss of generality that cxjUx\Y ¼ cjUx\Y . The sets
Ux together with the set XnY cover X. Since X is paracompact, there exists a locally
finite refinement fVigi2I of this covering. If for some i 2 I, Vi \ Y 6¼ [, then there
exists a continuous section ci: Vi ! S such that cijVi\Y ¼ cjVi\Y ; if Vi \ Y ¼ [, we
set ci ¼ 0. In this way, we assign to each of the sets Vi a continuous section
ci: Vi ! S.

Let fgigi2I be a partition of unity subordinate to the covering fVigi2I . Set for all
i 2 I

diðxÞ ¼ giðciðxÞÞ; x 2 Vi;
0; x 2 XnVi;

�
ð174Þ

where 0 denotes the neutral element of the Abelian group Sx: We get a mapping
di: X ! S satisfying the condition r � di ¼ idX : This mapping is obviously con-
tinuous on the set Vi; and also on a neighborhood Xnsuppgi of the closed set XnVi:
We set d ¼P di: Then, d is a global continuous section of the sheaf space S. Then
for every point x 2 X;

dðxÞ ¼
X
Vj3x

gjðcjðxÞÞ ¼
X
j

gjcðxÞ ¼
X
j

gj

 !
cðxÞ ¼ cðxÞ: ð175Þ

Therefore, djY ¼ c:
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Examples

26. The Abelian sheaf CX;R of continuous real-valued functions on a paracompact
Hausdorff space X is fine. Indeed, any locally finite open covering fUigi2I of
X, and any subordinate partition of unity fvigi2I , define a sheaf partition of
unity as the family of sheaf morphisms f ! vif . The Abelian sheaf CX;R can
also be considered as a sheaf of commutative rings with unity.

27. Let S be a sheaf of CX;R-modules over a paracompact Hausdorff space X, let
S be the associated sheaf space, with projection r: S ! X. Every continuous
function f : X ! R defines an Abelian sheaf morphism of the sheaf space S by

fSðsÞ ¼ f ðrðsÞÞ 
 s: ð176Þ

If fUigi2I is an open covering of X, and fvigi2I a partition of unity on X,
subordinate to fUigi2I , then formula (176) applies to the functions from the
family of functions fvigi2I ; the corresponding family of sheaf morphisms
fvi;Sgi2I is then a sheaf partition of unity on S. Consequently, the Abelian
sheaf S is fine.

28. The Abelian sheaves Cr
X;R of r times continuously differentiable functions on a

smooth manifold X, where r ¼ 0; 1; 2; . . .;1, are fine (cf. Example 26), and
can also be considered as sheaves of commutative rings with unity.

29. Every sheaf of modules over a fine sheaf of commutative rings with unity is
fine.

Let us consider a short exact sequence of Abelian sheaves over a paracompact
Hausdorff manifold X

0�!R �!f S�!g T �! 0; ð177Þ

and the commutative diagram of the canonical resolutions

0 0 0 0
# # # #

0 �! R �! C0R �! C1R �! C2R �!
# f # # #

0 �! S �! C0S �! C1S �! C2S �!
# g # # #

0 �! T �! C0T �! C1T �! C2T �!
# # # #
0 0 0 0

ð178Þ
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This diagram induces the commutative diagram of global sections

0 0 0 0
# # # #

0 �! RX �! ðC0RÞX �! ðC1RÞX �! ðC2RÞX �!
# f # # #

0 �! SX �! ðC0SÞX �! ðC1SÞX �! ðC2SÞX �!
# g # # #

0 �! TX �! ðC0T ÞX �! ðC1T ÞX �! ðC2T ÞX �!
# # # #
0 0 0 0

ð179Þ

All the sheaves C iR , C iS, and C iT in (178) are soft (Sect. 7.9, Lemma 14).
Applying Corollary 11, we see that the columns are exact. Therefore, by Lemma
11, we get the long exact sequence

0�!H0ðX;RÞ�!f H0ðX;SÞ�!g H0ðX;T Þ�!o
0

H1ðX;RÞ�!H1ðX;SÞ�!H1ðX;T Þ�!o
1

H2ðX;RÞ�! :::;

ð180Þ

where the family ðo0; o1; o2; . . .Þ is the connected morphism. h

The long exact sequence can be applied to commutative diagrams of short exact
sequences.

Lemma 17 Let X be a paracompact Hausdorff space. Suppose that we have a
commutative diagram of Abelian sheaves over X

0 �! R �!f S �!g T �! 0
# h # k # j

0 �! �R �!�f �S �!�g �T �! 0

ð181Þ

whose rows are exact. Then the diagram

0 �! H0ðX;RÞ �!f H0ðX;SÞ �!g H0ðX;T Þ �!o
0

# # #
0 �! H0ðX; �RÞ �!�f H0ðX; �SÞ �!�g H0ðX; �T Þ �!o

0

H1ðX;RÞ �! H1ðX;SÞ �! H1ðX;T Þ �!o
1

H2ðX;RÞ
# # # #

H1ðX; �RÞ �! H1ðX; �SÞ �! H1ðX; �T Þ �!o
1

H2ðX; �RÞ

ð182Þ
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where the first (resp. the second) row is the long exact sequence associated with the
first (resp. the second) row in (181), commutes.

Proof It is enough to prove commutativity of the squares in (182) containing the
group morphisms oi. Commutativity of the other squares is an immediate conse-
quence of the diagrams (181) and Sect. 7.9, (151).

Consider the square

H0ðX;T Þ �!o
0

H1ðX;RÞ
# #

H0ðX; �T Þ �!o
0

H1ðX; �RÞ
ð183Þ

For the purpose of this proof denote by eR : R ! C0R and ciR: C
iR ! Ciþ1R the

corresponding sheaf morphisms in the canonical resolution of the sheaf R ,
0 ! R ! C0R ! C1R ! C2R ! 
 
 
, and introduce analogous notation for the
sheaves S and T . Let c 2 H0ðX;T Þ ¼ Ker c0T . There exist an element b 2 ðC0SÞX
and a 2 Ker c1R such that c 2 g0ðbÞ, c0SðbÞ ¼ f 1ðaÞ, and by definition

o0ðcÞ ¼ ½a	;
h1o0ðcÞ ¼ h1ð½a	Þ ¼ ½h1ðaÞ	: ð184Þ

We set

�b ¼ k0ðbÞ; �a ¼ h1ðaÞ: ð185Þ

Then, we get by immediate calculations �g0ðb0Þ ¼ �g0k 0ðbÞ ¼ j0g0ðbÞ ¼ j0ðcÞ,
�f 1ð�aÞ ¼ �f 1ðh1ðaÞÞ ¼ k1f 1ðaÞ, and c0S 0 ð�bÞ ¼ c0S0k

0ðbÞ ¼ k0c0SðbÞ ¼ k 1f 1ðaÞ. Hence
�b and �a satisfy

j0ðcÞ ¼ �gð�bÞ; c0�Sð�bÞ ¼ �f 1ð�aÞ: ð186Þ

Consequently,

o0�j0ðcÞ ¼ a0 ¼ h1o0ðcÞ ð187Þ

proving commutativity of (183).
Commutativity of the square

HqðX;T Þ �!o
q

Hqþ1ðX;RÞ
# #

HqðX; �T Þ �!o
q

Hqþ1ðX; �RÞ
ð188Þ
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can be proved in the same way. Let ½c	 2 HqðX;T Þ ¼ Ker cqT =Im cq�1
T . There exist

elements b 2 ðCqSÞX and a 2 Ker cqþ1
R such that

c ¼ gqðbÞ; cqSðbÞ ¼ f qþ1ðaÞ; ð189Þ

and by definition

oqð½c	Þ ¼ ½a	;
hqþ1oqð½c	Þ ¼ hqþ1ð½a	Þ ¼ ½hqþ1ðaÞ	: ð190Þ

We denote

�b ¼ k kðbÞ; �a ¼ hqþ1ðaÞ: ð191Þ

Then

�gqð�bÞ ¼ �gqkqðbÞ ¼ jqgqðbÞ ¼ jqðcÞ;
�f qþ1ð�aÞ ¼ �f qþ1hqþ1ðaÞ ¼ kqþ1f qþ1ðaÞ;
cq�Sð�bÞ ¼ cq�Sk

qðbÞ ¼ kqþ1cqSðbÞ ¼ kqþ1f qþ1ðaÞ;
ð192Þ

so that

cq�Sð�bÞ ¼ �f qþ1ð�aÞ: ð193Þ

Now using the definition of oq we get

oqjqð½c	Þ ¼ oqð½jqðcÞ	Þ ¼ ½a0	
¼ ½hqþ1ðaÞ	 ¼ hqþ1oqð½c	Þ; ð194Þ

which proves commutativity of the square (188). h

An Abelian sheaf S over a topological space X is said to be acyclic, if
HqðX;SÞ ¼ 0 for all q� 1. A resolution of S

0�!S�!S0 �!S1 �!S2 �! 
 
 
 ð195Þ

is said to be acyclic, if each of the sheaves S i, where i� 1, is acyclic.

Lemma 18 Let S be an Abelian sheaf over a paracompact Hausdorff space X.

(a) If S is soft, it is acyclic.
(b) The canonical resolution of S is acyclic.
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Proof

(a) This follows from Corollary 12.
(c) We want to show that each of the sheaves CpS, where p� 0, is acyclic. But

we have already shown that these sheaves are soft (Sect. 7.9, Lemma 14));
since by hypothesis the base X of S is paracompact and Hausdorff, they are
acyclic by part (a) of this lemma. h

Denote by T*X the complex 0 ! T 0X ! T 1X ! T 2X ! 
 
 
, and let
HqðT*XÞ be the qth cohomology group of this complex.

Theorem 5 (Abstract De Rham theorem) Let S be an Abelian sheaf over a
paracompact Hausdorff manifold X, let

0�!S�!T 0 �!T 1 �!T 2 �! 
 
 
 ð196Þ

be a resolution of S. If this resolution is acyclic, then for every q� 0 the coho-
mology groups HqðX;SÞ and HqðT*XÞ are isomorphic.

Proof Let us consider the following commutative diagram of Abelian sheaves

0 0 0 0
# # # #

0 �! S �! C0S �! C1S �! C2S �! 
 
 

# # # #

0 �! T 0 �! C0T 0 �! C1T 0 �! C2T 0 �! 
 
 

# # # #

0 �! T 1 �! C0T 1 �! C1T 1 �! C2T 1 �! 
 
 

# # # #

0 �! T 2 �! C0T 1 �! C1T 1 �! C2T 1 �! 
 
 

# # # #

ð197Þ

with exact rows and columns, and the associated diagram of global sections

0 0 0 0
# # # #

0 �! SX �! ðC0SÞX �! ðC1SÞX �! ðC2SÞX �!
# # # #

0 �! T 0X �! ðC0T 0ÞX �! ðC1T 0ÞX �! ðC2T 0ÞX �!
# # # #

0 �! T 1X �! ðC0T 1ÞX �! ðC1T 1ÞX �! ðC2T 1ÞX �!
# # # #

0 �! T 2X �! ðC0T 1ÞX �! ðC1T 1ÞX �! ðC2T 1ÞX �!
# # # #

ð198Þ
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By Sect. 7.9, Corollary 6 and Corollary 7, every column in this diagram except
possibly the first one, are exact. We shall show that each row, except possibly the
first row, is exact.

Consider the k-th row

0�!T kX �!ðC0T kÞX�!ðC1T kÞX �!ðC2T kÞX�! ð199Þ

This sequence is exact at the first and the second terms (Sect. 7.9, Lemma 16).
Since the sheaf T k is acyclic, we have for each q� 1,

HqðX;T kÞ ¼ 0; ð200Þ

which means that the sequence (199) is exact everywhere. In particular, the diagram
(199) is exact everywhere except possibly the first column and the first row. Now,
we apply (Sect. 7.7, Lemma 10). h

Corollary 13 For any two acyclic resolutions of an Abelian sheaf S over a
paracompact Hausdorff space X, expressed by the diagram

R0 �! R1 �! R2 �! 
 
 

%

0 �! S
&

T 0 �! T 1 �! T 2 �! 
 
 


ð201Þ

the cohomology groups of the complexes of global sections HqðR*XÞ and
HqðT*XÞ are isomorphic.

Proof Indeed, according to Theorem 5, HqðR*XÞ and HqðT*XÞ are isomorphic
with the cohomology group HqðX;SÞ. h

Examples

30. Any sheafS ofCr-sections of a smooth vector bundle over a smooth paracompact
Hausdorff manifold X admits multiplication by functions of class Cr and is
therefore fine. Consequently, S is soft (Theorem 4) and acyclic (Lemma 18).

Remark 6 Consider an n-dimensional smooth manifold X, the constant sheaf R and
the sheaves of p-forms Xp of class C1 on X. The exterior derivative of differential
forms d: Xp ! Xpþ1 defines a differential sequence

0�!R�!X0 �!d X1 �!d X2 �! ð202Þ

where the mapping R ! X0 is the canonical inclusion. It follows from the
Volterra–Poincare lemma that this sequence is exact, therefore, it is a resolution of
the constant sheaf R. Since the sheaves Xp are fine they are soft (Example 29,
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Example 30) and acyclic (Lemma 18). Thus, the resolution (202) is acyclic; in
particular, according to the abstract De Rham theorem, the cohomology groups
HqðX*XÞ of the complex of global sections

0�!X0X�!
d

X1X�!
d

X2X�!
d


 
 
 ð203Þ

coincide with the cohomology groups HqðX;RÞ. The sequence (202) is called the
De Rham sequence (of sheaves); (203) is the De Rham sequence of differential
forms on X, and the groups HqðX*XÞ, usually denoted just by HqX, are the De
Rham cohomology groups of X. Note that according to Corollary 13, for any acyclic
resolution of the constant sheaf R on X,

0 �! R �! S*; ð204Þ

the cohomology groups HqðS*XÞ coincide (that is, are isomorphic) with the De
Rham cohomology groups HqX,

HqðS*XÞ ¼ HqX: ð205Þ
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Chapter 8
Variational Sequences

We introduced in Chap. 4 the Euler–Lagrange mapping of the calculus of varia-
tions as an R-linear mapping, assigning to a Lagrangian k, defined on the r-jet
prolongation JrY of a fibered manifold Y, its Euler–Lagrange form Ek. Local
properties of this mapping are determined by the components of the Euler–
Lagrange form, the Euler–Lagrange expressions of the Lagrangian k. In this
chapter, we construct an exact sequence of Abelian sheaves, the variational
sequence, such that one of its sheaf morphisms coincides with the Euler–Lagrange
mapping. Existence of the sequence provides a possibility to study basic global
characteristics of the Euler–Lagrange mapping in terms of the cohomology groups
of the corresponding complex of global sections and the underlying manifold Y. In
particular, for variational purposes, the structure of the kernel and the image of the
Euler–Lagrange mapping k! Ek is considered.

The variational sequence is defined by means of the exterior derivative operator,
acting on differential forms on jet spaces. Recall that for any smooth, paracompact,
Hausdorff manifold X the following facts have already been stated in Chap. 7:

(a) The set of real-valued functions, defined on open subsets of X, with standard
restrictions, is a sheaf; the sets of continuous, Ck-differentiable and smooth
functions are also sheaves.

(b) More generally, the set of differentiable k-forms on open subsets of X, with
standard restrictions, is a sheaf.

(c) The set of closed differentiable k-forms, defined on open subsets of X, with
standard restrictions, is a sheaf.

(d) An exact form q on an open set U � X is a form such that there exists a form
g, defined on U, such that q ¼ dg; the exact forms constitute a presheaf but not
a sheaf: if fUigi2I is an open covering of an open set U � X, such that
qjUi
¼ dgi for each i 2 I, then in general, there is no g such that q ¼ dg.

This chapter treats the foundations of the variational sequence theory. The
approach, which we have followed, is due to the original papers Krupka [K18, K19].
Main innovations consist in the use of variational projectors (also called the interior
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Euler–Lagrange operators, see Anderson [A2], Krupka and Sedenková – Volná
[KSe], Volná and Urban [VU]). The idea to apply sheaves comes from Takens [T].

A number of important topics have not been included. For recent research in the
structure of the variational sequence, its relations with topology, symmetries and
differential equations, and possible extensions to Grassmann fibrations and sub-
manifold theory, we refer to Zenkov [Z], Brajercik and Krupka [BK], Francaviglia
et al. [FPW], Grigore [Gr], Krupka [K16, K17], Krbek and Musilova [KM],
Pommaret [Po], Urban and Krupka [UK1], Vitolo [Vit] and Zenkov [Z] (see also
the handbook Krupka and Saunders [KS], where further references can be found).

Note that the variational sequence theory does not follow the approach to the
“formal calculus of variations” based on a variational bicomplex theory on infinite
jet prolongations of fibered manifolds, although some technical aspects of these two
theories appear to be parallel (Anderson [A2]; Anderson and Duchamp [AD];
Dedecker and Tulczyjew [DT]; Olver [O1]; Saunders [S]; Takens [T]; Urban and
Krupka [UK1]; Vinogradov et al. [VKL] and others). In particular, the finite-order
sequence can never be considered as a “subsequence” of the bicomplex. The results,
however, and require a deeper comparison. It seems for instance that the infinite jet
structure of the bicomplex theory is a serious obstacle for obtaining local and global
characteristics of the “variational” morphisms within this theory; although a main
motivation was to study these morphisms, no explicit (or at least effective) formulas
say for the inverse problem of the calculus of variations and Helmholtz morphism
have been derived yet.

As before, Y denotes in this chapter a smooth fibered manifold with n-dimen-
sional base X and projection p, and nþ m ¼ dim Y . JrY is its r-jet prolongation and
pr: JrY ! X, pr;s: JrY ! JsY are the canonical jet projections. For any open set
W � Y , Xr

qW is the module of q-forms on the set Wr ¼ ðpr;0Þ�1ðWÞ, and XrW is
the exterior algebra of forms on Wr. The horizontalization morphism of the exterior
algebra XrW into Xrþ1W is denoted by h. If N is a p-projectable vector field and
JrN its r-jet prolongation, then to simplify notation, we sometimes denote the
contraction iJrNq, and the Lie derivative oJrNq of a form q, just by iNq, or oNq.

8.1 The Contact Sequence

We saw in Sect. 7.10, Remark 6, that the exterior differential forms on a finite-
dimensional smooth manifold X together with the exterior derivative morphism
constitute a resolution of the constant sheaf R over X, the De Rham resolution. In
this section, we provide analogous construction for differential forms on the r-jet
prolongation JrY of a fibered manifold Y over X. We use the fibered structure of
Y to construct a slightly modified version of the De Rham resolution, in which the
underlying topological space is the manifold Y itself instead of JrY .

Following our previous notation (Chaps. 4 and 7), consider a smooth fibered
manifold Y with base X and projection p. For any open set W in Y, denote by Xr

0W
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the Abelian group of real-valued functions of class Cr (0-forms), defined on the
open set Wr � JrY ; one can also consider Xr

0W with its algebraic structure of a
commutative ring with unity. Next, let q� 1, and denote by Xr

qW the Abelian group
of q-forms of class Cr, defined on Wr � JrY . This way we get, for every non-
negative integer q, a correspondence W ! Xr

qW , assigning to an open set W � Y
the Abelian group of q-forms on Wr. One can easily verify that this correspondence
defines a sheaf structure on the family fXr

qWg, labeled by the open sets W. Indeed,
to any two open sets W1 and W2 in Y such that W2 � W1, and any q 2 Xr

qW1, the
restrictions Xr

qW1 3 q! qjW2
2 Xr

qW2 define an Abelian presheaf structure on
fXr

qWg. Since this presheaf is obviously complete, it has the Abelian sheaf struc-
ture (Sect. 7.4); with this structure, the family fXr

qWg will be referred to as the
sheaf of q-forms of order r over Y, and will be denoted by Xr

q.
The exterior derivative operator d defines, for each W � Y , a sequence of

Abelian groups

0�!R�!Xr
0W�!

d
Xr

1W�!
d
Xr

2W�!
d � � � �!d Xr

nW

�!d Xr
nþ1W�!

d � � � �!d Xr
MW ! 0;

ð1Þ

and an exact sequence of Abelian sheaves

0�!R�!Xr
0�!

d
Xr

1�!
d
Xr

2�!
d � � � �!d Xr

n

�!d Xr
nþ1�!

d � � � �!d Xr
M ! 0:

ð2Þ

We call this sequence the De Rham (sheaf) sequence over JrY . We now construct a
subsequence of the De Rham sequence. First, recall the notion of a contact form and
introduce the notion of a strongly contact form, a (higher-order) analogy of a similar
concept introduced in Sect. 8.2.

Let W be an open set in the fibered manifold Y. Recall that the horizontalisation
h: XrW ! Xrþ1W is a morphism of exterior algebras, which assigns to a q-form
q 2 Xr

qW , q� 1, a prþ1-horizontal q-form hq 2 Xrþ1
q W by the formula

hqðJrþ1x cÞðn1; n2; . . .; nqÞ ¼ qðJrxcÞðhn1; hn2; . . .; hnqÞ; ð3Þ

where Jrþ1x c 2 Wrþ1 is any point and n1, n2, . . ., nq are any tangent vectors of Jrþ1Y
at this point. If f is a function, then

hf ¼ ðprþ1;rÞ*f : ð4Þ

One can equivalently introduce h as a morphism, defined in a fibered chart ðV ;wÞ,
w ¼ ðxi; yrÞ, by the equations
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hf ¼ f � prþ1;r; hdxi ¼ dxi; hdyrj1j2...jk ¼ yrj1j2...jk idx
i; ð5Þ

where f is any function on Vr and 0� k� r. A form q 2 Xr
qW such that

hq ¼ 0 ð6Þ

is said to be contact. Clearly, every q-form q such that q� nþ 1 is contact, and the
1-forms

xr
j1j2...jl ¼ dyrj1j2...jl � yrj1j2...jl idx

i; 0� l� r � 1; ð7Þ

defined on the open set Vr � JrY are examples of contact 1-forms. The collection
of 1-forms fdxi;xr

j1j2...jk ; dy
r
l1l2...lr�1lrg, where 1� i� n, 1� r�m, 1� k� r � 1,

1� j1� j2� � � � � jk � n, and 1� l1� l2� � � � � lr � n, constitutes a basis of linear
forms on the set Vr, called the contact basis (Sect. 2.1, Theorem 1). The exterior
derivative df , or more precisely, ðprþ1;rÞ*df , can be decomposed as
ðprþ1;rÞ*df ¼ hdf þ pdf , where pdf is a contact 1-form, called the contact com-
ponent of f. Any form q 2 Xr

qW , of more precisely ðprþ1;rÞ*q, has the canonical

decomposition ðprþ1;rÞ*q ¼ hqþ p1qþ p2qþ � � � þ pqq, where hq is prþ1-hori-
zontal and pkq is k-contact; this condition can equivalently be expressed by saying
that the chart expression of pkq is generated by the product of k exterior factors
xr

j1j2...jp , where 0� p� r.

The 1-forms xr
j1j2...jk and 2-forms dxr

j1j2...jr�1 locally generate the contact ideal
HrW of the exterior algebra XrW , which is closed under the exterior derivative
operator d; its elements are called contact forms. The contact q-forms are elements
of the contact submodules Xr

qW \HrW . We need these submodules for q� n;
denote

Hr
qW ¼ Xr

qW \HrW ; q� n: ð8Þ

The 1-forms xr
j1j2...jk , where 0� k� r � 1, determined by a fibered atlas on Y,

locally generate a (global) module of 1-forms, and an ideal Hr
0W of the exterior

algebra XrW (for definitions see Appendix 7). Clearly, the contact ideal contains
Hr

0W as a subset.
Since the contact ideal is closed under the exterior derivative, we have the

sequence of Abelian groups

0�!Hr
1W�!

d
Hr

2W�!
d � � � �!d Hr

nW : ð9Þ

If q 2 Hr
qW is a contact form and f is a function on Wr, then the formula
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dðfqÞ ¼ df ^ qþ fdq ð10Þ

shows that the form dðfqÞ is again a contact form. Thus, the mapping q! dðfqÞ is
a morphism of Abelian groups; however, the exterior derivative in the sequence (9)
is not a homomorphism of modules. Restricting the multiplication to constant
functions f, that is, to real numbers, (9) can be considered as a sequence of real
vector spaces.

Consider now the sets of q-forms Xr
qW such that nþ 1� q� dim JrY . Denote

q ¼ nþ k. If q 2 Xr
nþkW , then hq ¼ 0, and also p1q ¼ 0, p2q ¼ 0, . . ., pk�1q ¼ 0

identically (cf. Sect. 2.4, Theorem 8), thus q is always contact, and its canonical
decomposition has the form

ðprþ1;rÞ*q ¼ pkqþ pkþ1qþ � � � þ pkþnq: ð11Þ

To introduce the notion of a strongly contact form, it is convenient to proceed in
two steps. First, we slightly modify the definition given in Sect. 2.6 and introduce
the class of strongly contact forms as follows. We say that an ðnþ 1Þ-form q 2
Xr

nþ1W is strongly contact, if for every point Jrxc 2 Vr, there exists an integer s� r,
a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, at cðxÞ 2 V and a contact n-form g 2 Hs

nV such
that

p1ððps;rÞ*q� dgÞ ¼ 0: ð12Þ

Second, if q 2 Xr
nþkW where k� 2, we say that q is strongly contact, if for every

point Jrxc 2 Vr, there exists s� r, a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, at cðxÞ 2 V
and a strongly contact ðnþ k � 1Þ-form g 2 Xs

nþkV such that

pkððps;rÞ*q� dgÞ ¼ 0: ð13Þ

Lemma 1 Let q 2 Xr
nþkW. The following conditions are equivalent:

(a) q is strongly contact.
(b) There exists an integer s� r and an ðnþ k � 1Þ-form g 2 Xs

nþkV such that

ðps;rÞ*q ¼ lþ dg; pkl ¼ 0; pk�1g ¼ 0: ð14Þ

Proof If q is strongly contact, then ðps;rÞ*q� dg ¼ l for some form l on Vs such
that pkl ¼ 0. Then ðps;rÞ*q ¼ lþ dg proving (14). The converse is obvious. h

Lemma 2

(a) Every form q 2 Xr
nþkW such that pkq ¼ 0, is strongly contact.
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(b) Exterior derivative of a contact n-form is strongly contact. Exterior derivative
of a strongly contact form is strongly contact.

(c) Let N be a p-vertical vector field, q 2 Xr
nþkW a strongly contact form. If k� 2,

then the ðnþ k � 1Þ-form iNq is strongly contact.

Proof

(a) Obvious.
(b) We use the identity pkþ1ðdq� dqÞ ¼ 0.
(c) This follows from Lemma 9 and Sect. 2.5, Theorem 9. Indeed, for every p-

vertical vector field N

iNpkððps;rÞ*q� dgÞ
¼ pk�1ðiNðps;rÞ*q� iNdgÞ
¼ pk�1ðiNðps;rÞ*q� @NgÞ
¼ pk�1ðiNðps;rÞ*qþ diNgÞ ¼ 0:

ð15Þ

But pk�2iNg ¼ iNpk�1g ¼ 0 proving (c). h

Remark 1 It follows from Lemma 1 that the canonical decomposition of a strongly
contact form q 2 Hr

nþkW is

ðps;rÞ*q ¼ pkdsþ pkþ1qþ pkþ2qþ � � � þ pnþkq
¼ dsþ pkþ1ðq� dsÞ þ pkþ2ðq� dsÞ þ � � � þ pnþkðq� dsÞ; ð16Þ

where the forms on the right-hand side are considered as canonically lifted to the set
Vs � JsY .

Remark 2 One can formally extend the definition of a strongly contact form to the
q-forms q 2 Xr

qW such that 1� q� n. Indeed, we have for any contact form
q0 2 Hr

q�1W , hðq� dq0Þ ¼ hq; thus, if hq ¼ 0, then we have hðq� dq0Þ ¼ 0 for
any q0 2 Hr

q�1W .

Remark 3 The definition of a strongly contact form, given above, has its natural
origin in the theory of systems of partial differential equations for mappings of
n independent variables, defined by differential forms of degree nþ k[ n: Such
differential equations can equivalently be described by systems of n-forms arising
by contraction of ðnþ kÞ-forms with k vector fields. For an ad hoc construction in
this context, similar to the concept of a strongly contact form, see the differential
systems with independence condition in Bryant et al. [Bry].

Remark 4 The definition of a strongly contact form is closely related to the concept
of a Lepage form (Sect. 4.3).
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Strongly contact ðnþ kÞ-forms onWr constitute a subgroupHr
qW of the Abelian

group Xr
qW ; they do not form a submodule of Xr

qW . The Abelian groups Hr
qW

together with the exterior derivative d form a sequence

Hr
nW�!

d
Hr

nþ1W�!
d � � � �!d Hr

MW �! 0: ð17Þ

The index M of the last nonzero term in this sequence is

M ¼ m
nþ r � 1

n

� �
þ 2n� 1: ð18Þ

If g is a contact n-form, then g is automatically a strongly contact form. Thus,
sequences (9) and (17) can be glued together. We get a sequence

0�!Hr
1W�!

d
Hr

2W�!
d � � � �!d Hr

nW

�!d Hr
nþ1W�!

d � � � �!d Hr
MW �! 0:

ð19Þ

The families of Abelian groups fHr
qWg, where W runs through open subsets of

the fibered manifold Y, induce Abelian sheaves, and the sequences (19) induce a
sequence of Abelian sheaves. Indeed, consider for any integer q such that 1� q�M
the family of Abelian groups Hr

q ¼ fHr
qWg. Any two open sets W1;W2 � Y such

thatW2 � W1 define a morphism of Abelian groupsHr
qW1 3 q! qjW2

2 Hr
qW2, the

restriction of a form, defined on the open set Wr
1 � JrY , to the open set Wr

2 � Wr
1.

Clearly,Hr
q with these restriction morphisms forms an Abelian presheaf over Y. The

restriction morphisms obviously satisfy the axioms of an Abelian sheaf (Sect. 7.4).
Thus, the presheaf Hr

q has the structure of an Abelian sheaf.
If 1� q� n (resp. nþ 1� q�M), this sheaf is called the sheaf of contact

(resp. strongly contact) q-forms of order r on Y.

Remark 5 The sheaf Hr
q, defined over the fibered manifold Y, differs from the sheaf

of q-forms over the r-jet prolongation JrY of Y; Hr
q can be characterized as the

direct image of the sheaf of q-forms of order r over JrY by the jet projection
pr;0: JrY ! Y . Our construction, for the forms of degree q� n, is the same as an
analogous construction in Anderson and Duchamp [AD].

The sequences (19) induce the sequence of Abelian sheaves

0�!Hr
1�!

d
Hr

2�!
d � � � �!d Hr

n�!
d
Hr

nþ1

�!d � � � �!d Hr
M �! 0:

ð20Þ

The following basic observation shows that the De Rham sequence can be factored
through the sequence (20).
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Lemma 3 The sequence of Abelian sheaves (20) is an exact subsequence of the
De Rham sequence (2).

Proof

1. To prove exactness of the sequence (20) at the term Hr
q, where 1� q� n, it is

sufficient to consider differential forms defined on the chart neighborhood of a
fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, on Y. However, for these differential forms,
the statement already follows from Sect. 2.7, Theorem 13.

2. Exactness at the terms Hr
q, where nþ 1� q�M, follows from Sect. 2.7,

Theorem 14. h

The sequence (19) will be referred to as the contact sequence, or the contact
subsequence of the De Rham sequence.

We show that the sheaves Hr
q in the contact subsequence are all soft. To describe

the structure of these sheaves Hr
q such that nþ 1� q�M, note that any q-form q

on the r-jet prolongation JrY identically satisfies

hq ¼ 0; p1q ¼ 0; p2q ¼ 0 ; . . .; pq�n�1q ¼ 0 ð21Þ

(Sect. 2.4, Theorem 8). We denote by Xr
qðcÞW the submodule of the module of

q-form Xr
qW defined by the condition

pq�nq ¼ 0: ð22Þ

This condition states that the submodule Xr
qðcÞW consists of the forms whose order

of contactness is � q� nþ 1. The family of the modules Xr
qðcÞW defines the sheaf

of modules

Xr
qðcÞ ¼ fXr

qðcÞWg: ð23Þ

Clearly, Xr
qðcÞ is a soft sheaf.

Lemma 4 For every integer q such that 1� q�M the sheaf Hr
q is soft.

Proof

1. If 1� q� n, then the sheaf Hr
q admits multiplication by functions so it is fine;

then, however, according to Sect. 7.1, Theorem 4, the sheaf Hr
q is soft.

2. Consider the contact subsequence (20) and the short exact sequence

0�!Hr
1�!

d
Hr

2�!
d
dHr

2�! 0; ð24Þ
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where dHr
2 denotes the image sheaf, dHr

2 ¼ Im d. Since the sheaves Hr
1 and Hr

2
are soft, the sheaf dHr

2 is also soft (Sect. 7.10, Corollary 1). Similarly, assign to
the sequence

0�!Hr
1�!

d
Hr

2�!
d
Hr

3�!
d
dHr

3�! 0 ð25Þ

the short exact sequence

0�!Ker d�!Hr
3�!

d
dHr

3�! 0: ð26Þ

Using exactness of (25) at Hr
3, we have Ker d ¼ dHr

2, so the sheaf Ker d in (26)
is soft. Consequently, the sheaf dHr

3 is also soft. Continuing this way, we assign
to the sequence

0�!Hr
1�!

d
Hr

2�!
d � � � �!d Hr

n�!
d
dHr

n�! 0 ð27Þ

the short exact sequence

0�!Ker d�!Hr
n�!

d
dHr

n�! 0 ð28Þ

and since Ker d ¼ dHr
n�1 and this sheaf is soft, the sheaf dHr

n is also soft.
Now consider the sheaf Hr

nþ1. Note that by definition, we have a sheaf mor-
phism, expressed (by means of representatives of the germs) as

Hr
n �Y Xr

nþ1ðcÞ 3 ðs; lÞ ! lþ ds 2 Xr
nþ2; ð29Þ

where Hr
n �Y Xr

nþ1ðcÞ is the fiber product of the sheaves Hr
n and Xr

nþ1ðcÞ. The
sheaf Hr

nþ1 can be regarded as the image sheaf of this morphism; its kernel
consists of the pairs ðs;�dsÞ 2 Hr

n �Y dHr
n. We get a short exact sequence

0�!Hr
n �Y dHr

n�!Hr
n �X Xr

nþ1ðcÞ�!
d
Hr

nþ1�! 0: ð30Þ

The sheaves Hr
n �Y dHr

n and Hr
n �X Xr

nþ1ðcÞ in this sequence are fiber products
of soft sheaves Hr

n, dH
r
n, and Xr

nþ1ðcÞ, and are therefore soft; hence, the sheaf
Hr

nþ1 is also soft.
Extending this construction to any of the sheaves Hr

q in the variational sequence
(20), where q� nþ 1, we complete the proof. h

8.1 The Contact Sequence 271

http://dx.doi.org/10.2991/978-94-6239-073-7_7


8.2 The Variational Sequence

Consider the De Rham sequence (32), and its contact subsequence (19), Sect. 8.1.
Using Sect. 8.1, Lemma 3, we get a commutative diagram

0 0 0
# # #

0 �! Hr
1 �!d Hr

2 �!d Hr
3 �!d . . .

# # # #
0 �! RY �! Xr

0 �!d Xr
1 �!d Xr

2 �!d Xr
3 �!d . . .

ð31Þ

in which RY ! Xr
0 is the canonical inclusion and the vertical arrows represent

canonical inclusions of subsheaves. Passing to the quotient sheaves and quotient sheaf
morphisms, this diagram induces a commutative diagram, written in two parts as

0 0
# #

0 �! Hr
1 �!d Hr

2 �!d � � �
# # #

0 �! RY �! Xr
0 �!d Xr

1 �!d Xr
2 �!d � � �

& # #
Xr

1=H
r
1 �! Xr

2=H
r
2 �! � � �

# #
0 0

ð32Þ

0
#

� � � �! Hr
M �! 0
# #

� � � �!d Xr
M �!d Xr

M �!d � � � �!d Xr
N �! 0

# %
� � � �! Xr

M=H
r
M

#
0

The quotient sequence of Abelian sheaves, defined by this diagram,

0�!RY �!Xr
0�!Xr

1=H
r
1�!Xr

2=H
r
2�!Xr

3=H
r
3�! ð33Þ

is called the (rth order) variational sequence over the fibered manifold Y. Since the
De Rham sequence and its contact subsequence are exact, it can be easily verified
that the quotient sequence is also exact (see also Sect. 7.7, Corollary 2). Thus, the
variational sequence is a resolution of the constant sheaf RY over Y. We call the
Abelian group morphisms in (33) the Euler–Lagrange morphisms and denote them
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by Ej: X
r
j =H

r
j �!Xr

jþ1=H
r
jþ1, or just by E. The variational sequence is also denoted

by

0�!RY �!VarrY : ð34Þ

Consider the complex of global sections

0�!Xr
0Y �!ðXr

1=H
r
1ÞY �!ðXr

2=H
r
2ÞY �!ðXr

3=H
r
3ÞY �! ð35Þ

associated with the variational sequence (34), its cohomology groups HkðVarrYYÞ,
and the cohomology groups of the fibered manifold Y with coefficients in the
constant sheaf RY ; by the De Rham theorem, we identify these cohomology groups
with the De Rham cohomology groups; thus, HkY ¼ HkðY ;RYÞ (Sect. 7.10,
Remark 6). We are now going to establish two theorems, representing central
results of this chapter, namely the tools for the study of the global variational
functionals, considered in Chaps. 4 and 5 of this book.

Theorem 1 The variational sequence 0! RY ! VarrY is an acyclic resolution of
the constant sheaf RY .

Proof Since the sheaves Xr
k and Hr

k are soft (Sect. 8.1, Lemma 4), the quotient
sheaves Xr

k=H
r
k are also soft (Sect. 7.9, Corollary 1). Then, however, the sheaves

Xr
k=H

r
k are acyclic, so the resolution 0! RY ! VarrY is acyclic (Sect. 7.10,

Lemma 18). h

Theorem 2 The cohomology groups HkðVarrYYÞ of the complex of global sections
and the De Rham cohomology groups HkY of the manifold Y are isomorphic.

Proof This follows from Sect. 7.10, Theorem 5 (see also Corollary 13 and
Remark 6). h

Remark 6 The cohomology groups HkðY ;RYÞ have been constructed by means of
the topology of the underlying fibered manifold Y. On the other hand, it follows
from Theorem 2 that the same cohomology groups characterize properties of the
complex of global sections associated with the variational sequence. In this sense,
Theorem 2 clarifies the relationship between existence of global sections of the
quotient Abelian groups and topological properties of Y.

8.3 Variational Projectors

In this section, we consider the columns of the diagram (33), Sect. 8.2, defining the
variational sequence of order r over the fibered manifold Y. The main goal is to
show that the classes of forms – elements of the quotient groups Xr

k=H
r
k – can be

represented as global differential forms, defined on the s-jet prolongation JsY for
some s. Basic idea for constructing this representation leans on the definition of the
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quotient space, which is defined up to a canonical isomorphism. We shall construct
an Abelian group of forms Ur

k and a group morphism Ir
k: X

r
k ! Ur

k such that
KerIr

k ¼ Hr
k; then, the quotient sheaf X

r
k=H

r
k becomes canonically isomorphic with

the image ImIr
k � Ur

k , according to the diagram

Hr
k
#

Xr
k

. &
Xr

k=H
r
k  ! Im Ir

k

ð36Þ

Let k� 1, let W be an open set in Y, and let g be a k-contact ðnþ kÞ-form g,
defined on the open set Wrþ1 in JrY . In a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, on Y, g
has an expression

g ¼
X

0� k� r

Uj1j2...jk
r ^ xr

j1j2...jk ^ x0; ð37Þ

where Uj1j2...jk
r are some ðk � 1Þ-contact ðk � 1Þ-forms. In this section, we construct

a decomposition of the canonical lift ðp2rþ1;rþ1Þ*g of g to W2rþ1; to this purpose,
we use the property

xr
j1j2...jk ^ x0 ¼ �dðxr

j1j2...jk�1 ^ xjk Þ ð38Þ

of the contact 1-forms xr
j1j2...jk . Although the decomposition will be constructed by

means of fibered charts, it will be independent of the chosen charts.
First, consider the decomposition of ðnþ 1Þ-forms, defined on the set Wrþ1; the

idea will be to identify in a form a summand, which is an exact form. The proof of
the following theorem is based on the algebraic trace decomposition theory
explained in Appendix 9.

Theorem 3 Let g be a 1-contact prþ1;r-horizontal ðnþ 1Þ-form on Wrþ1,
expressed in a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, by

g ¼
X

0� jJj � r

AJ
rx

r
J ^ x0: ð39Þ

(a) There exist a 1-contact xr-generated ðnþ 1Þ-form I1g on V2rþ1, a 1-contact
n-form J1g and a 2-contact ðnþ 1Þ-form K1g, defined on V2rþ1, such that

ðp2rþ1;rþ1Þ*g ¼ I1g� dJ1gþ K1g; ð40Þ
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where

I1g ¼ Ar þ
X

1� s� r

ð�1Þsdj1dj2 . . .djsAj1j2...js
r

 !
xr ^ x0;

J1g ¼
X

1� s� r

X
0� k� r�1

ð�1Þkdjs�kþ1djs�kþ2 . . .djsAi1i2...is�k js�kþ1js�kþ2...js
r xr

i1i2...is�k�1 ^ xis�k ;

K1g ¼
X

1� s� r

X
0� k� s�1

ð�1Þkþ1pdðdjs�kþ1djs�kþ2 . . .djsAi1i2...is�k js�kþ1js�kþ2...js
r Þ

^ xr
i1i2...is�k�1 ^ xis�k :

ð41Þ

(b) Suppose that we have a decomposition

ðp2rþ1;rþ1Þ*g ¼ g0 � dg1 þ g2 ð42Þ

such that g0 is 1-contact and xr-generated, g1 is 1-contact, and g2 is a 2-
contact form. Then

g0 ¼ I1g; dg1 ¼ dJ1g; g2 ¼ K1g: ð43Þ

Proof

(a) Write expression (39) as

g ¼
X

0� jJj � r

AJ
rx

r
J ^ x0

¼ Arx
r ^ x0 þ

X
1� jJj � r

AJ
rx

r
J ^ x0;

ð44Þ

and consider a summand AJ
rx

r
J ^ x0, where jJj ¼ s� 1. Then, in the standard

index notation

AJ
rx

r
J ^ x0 ¼ �dðAi1i2...is

r xr
i1i2...is�1 ^ xisÞ þ dAi1i2...is

r xr
i1i2...is�1 ^ xis

¼ hdAi1i2...is
r ^ xr

i1i2...is�1 ^ xis þ pdAi1i2...is
r ^ xr

i1i2...is�1 ^ xis

� dðAi1i2...is
r xr

i1i2...is�1 ^ xisÞ
¼ dðdjsAi1i2...is�1js

r xr
i1i2...is�2 ^ xis�1Þ þ djs�1djsA

i1i2...is�2js�1js
r ^ xr

i1i2...is�2 ^ x0

� pdðdjsAi1i2...is�1js
r Þxr

i1i2...is�2 ^ xis�1

þ pdAi1i2...is
r ^ xr

i1i2...is�1 ^ xis � dðAi1i2...is
r xr

i1i2...is�1 ^ xisÞ
¼ djs�1djsA

i1i2...is�2js�1js
r ^ xr

i1i2...is�2 ^ x0

� pdðdjsAi1i2...is�1js
r Þxr

i1i2...is�2 ^ xis�1 þ pdAi1i2...is
r ^ xr

i1i2...is�1 ^ xis

þ dðAi1i2...is�1js
r xr

i1i2...is�2 ^ xis�1 � Ai1i2...is
r xr

i1i2...is�1 ^ xisÞ:
ð45Þ
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Further calculations yield

Ai1i2...is
r xr

i1i2...is ^ x0 ¼ ð�1Þsdj1dj2 . . .djsAj1j2...js
r xr ^ x0

�
X

0� k� s�1
ð�1Þkpdðdjs�kþ1djs�kþ2 . . .djsAi1i2...is�k js�kþ1js�kþ2...js

r Þ ^ xr
i1i2...is�k�1 ^ xis�k

� d
X

0� k� s�1
ð�1Þkdjs�kþ1djs�kþ2 . . .djsAi1i2...is�k js�kþ1js�kþ2...js

r xr
i1i2...is�k�1 ^ xis�k

 !
:

ð46Þ

These formulas prove statement (a).

(b) To prove (b), suppose that g0 � dg1 þ g2 ¼ 0, where g0 is 1-contact and xr-
generated, g1 is 1-contact, and g2 is a 2-contact form; we want to show that
this condition implies g0 ¼ 0, g2 ¼ 0; indeed, these conditions will also prove
that dg1 ¼ 0. The forms g0 and g1 can be expressed in the form

g0 ¼ Arx
r ^ x0; g1 ¼ Br

ixr ^ xi þ
X

1� k� 2r

Bj1j2...jk i
r xr

j1j2...jk ^ xi: ð47Þ

If k� 1, then Bj1j2...jk i
r can be decomposed as

Bj1j2...jk
r

i ¼ ~Bj1j2...jk
r

i

þ 1
k þ 1

ðBj1j2...jk
r

i � Bij2j3...jk
r

j1Þ þ 1
k þ 1

ðBj1j2...jk
r

i � Bj1ij3j4...jk
r

j2Þ

þ � � � þ 1
k þ 1

ðBj1j2...jk
r

i. . .Bj1j2...jk�1i
r

jk Þ;
ð48Þ

where ~Bj1j2...jk i
r is the symmetric component,

~Bj1j2...jk i
r ¼ 1

k þ 1
ðBj1j2...jk i

r þ Bij2j3...jk j1
r þ Bj1ij3j4...jk j2

r þ � � � þ Bj1j2...jk�1 ijk
r Þ: ð49Þ

Now calculating p1dg1, we have

p1dg1 ¼ �diBr
ixr ^ x0 � Br

ixr
i ^ x0

�
X

1� k� 2r

diB
j1j2...jk
r

ixr
j1j2...jk ^ x0 �

X
1� k� 2r

Bj1j2...jk
r

ixr
j1j2...jki

^ x0

¼ �diBr
ixr ^ x0 � ðBr

j1 þ diB
j1
r

iÞxr
j1 ^ x0

�
X

2� k� 2r

ðdiBj1j2...jk i þ Bj1j2...jk�1 jk
r Þxr

j1j2...jk�1 ^ x0

� Bj1j2...j2r
r

ixr
j1j2...j2r i ^ x0:

ð50Þ
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Equation g0 � dg1 þ g2 ¼ 0 implies g0 � p1dg1 ¼ 0 hence

ðAr � dj1B
j1
r Þxr ^ x0 � ðdiBj1i

r þ Bj1
r Þxr

j1 ^ x0

� ðdiBj1j2i
r þ Bj1j2

r Þxr
j1j2 ^ x0 � ðdiBj1j2i

r þ Bj1j2
r Þxr

j1j2 ^ x0

� � � � � ðdiBj1j2...j2r�1 i
r þ Bj1j2...j2r�2 j2r�1

r Þxr
j1j2...j2r�1 ^ x0

� ðdiBj1j2...j2r i
r þ Bj1j2...j2r�1 j2r

r Þxr
j1j2...j2r ^ x0

� Bj1j2...j2r j2rþ1
r xr

j1j2...j2r j2rþ1 ^ x0 ¼ 0;

ð51Þ

therefore, the components Bj1j2...jk i
r satisfy

~Bj1j2...j2r j2rþ1
r ¼ 0;

~Bj1j2...j2r�1 j2r
r ¼ �diBj1j2...j2r i

r ;

. . .

Bj1
r ¼ �diBj1i

r ;

Bj1
r ¼ �diBj1i

r ;

ð52Þ

and Ar ¼ dj1B
j1
r . Consequently,

Ar ¼ dj1B
j1
r ¼ �dj1dj2Bj1j2

r ¼ �dj1dj2 ~Bj1j2
r ¼ dj1dj2dj3B

j1j2j3
r

¼ dj1dj2dj3 ~B
j1j2j3
r ¼ � � � ¼ ð�1Þk�1dj1dj2 . . .djk�1djkBj1j2...jk�1 jk

r

¼ ð�1Þk�1dj1dj2 . . .djk�1 djk ~Bj1j2...jk�1 jk
r

¼ � � � ¼ ð�1Þ2r�1dj1dj2 . . .dj2r�1dj2rBj1j2...j2r�1 j2r
r

¼ ð�1Þ2r�1dj1dj2 . . .dj2r�1 dj2r ~Bj1j2...j2r�1 j2r
r

¼ ð�1Þ2rdj1dj2 . . .dj2r dj2rþ1Bj1j2...j2r j2rþ1
r

¼ ð�1Þ2rdj1dj2 . . .dj2r dj2rþ1 ~Bj1j2...j2r j2rþ1
r

¼ 0;

ð53Þ

proving that Ar ¼ 0; hence, g0 ¼ 0.
Substituting from this identity to Eq. (52),

~Bj1j2...j2r j2rþ1
r ¼ 0; diB

j1j2...j2r i
r ¼ �~Bj1j2...j2r�1 j2r

r ;

diB
j1j2...j2r�1 i
r ¼ �~Bj1j2...j2r�2 j2r�1

r ; . . .; diB
j1j2 i
r ¼ �~Bj1j2

r ;

diB
j1i
r ¼ �Bj1

r ; dj1B
j1
r ¼ 0:

ð54Þ

Then, by Sect. 3.1, Remark 2 and Sect. 3.2, Theorem 1, the functions
Bj1
r ;B

j1i
r ;Bj1j2i

r ; . . .;Bj1j2...j2r�1 i
r ;Bj1j2...j2r i

r depend on the variable xi only. Then,
formula (47) implies p2dg1 ¼ 0; hence, from equation g0 � dg1 þ g2 ¼ 0,
g2 ¼ 0. This proves (b). h
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Note that for any n-form q on Wr, the 1-contact component p1q is an n-form on
the set Wrþ1, and since p1dq ¼ p1dhqþ p1dp1q ¼ dhqþ p1dp1q, the 1-contact
ðnþ 1Þ-form p1dp1q is also defined on Wrþ1. Therefore, the form I1p1dp1q is
defined and is an ðnþ 1Þ-form on W2rþ1.

Corollary 1 The form I1p1dp1q vanishes identically,

I1p1dp1q ¼ 0: ð55Þ

Proof We have the identity

ðp2rþ1;rþ1Þ*p1dp1q
¼ ðp2rþ1;rþ1Þ*ðdp1q� p2dp1q� p3dp1q� � � � � pnþ1dp1qÞ
¼ dðp2rþ1;rþ1Þ*p1q� p2ðp2r;rþ1Þ*dp1q

ð56Þ

because p3dp1q ¼ 0, p4dp1q ¼ 0, . . ., pnþ1dp1q ¼ 0. Comparing this formula
with decomposition (5) and using the uniqueness of the component I1p1dp1q
(Theorem 3, (b)), we get identity (55). h

Remark 7 If p2dg1 is x
r-generated, then p2dg1 ¼ 0 (see the proof of Theorem 3).

Remark 8 Part (b) of Theorem 3 can alternatively be proved by means of the
properties of Lepage forms. Note that the uniqueness condition g0 � dg1 þ g2 ¼ 0
implies that g0 ¼ p1dg1; this means, however, that g1 is a Lepage form whose
Lagrangian hg1 ¼ 0 is the zero Lagrangian. Using Sect. 4.3, Theorem 3, we get
g1 ¼ djþ l, where the form j is 1-contact and the form l is of order of con-
tactness � 2. Then, however, dg1 ¼ dl, which is a form of order or contactness
� 2. Equation g0 � dg1 þ g2 ¼ 0 now implies that g0 ¼ 0 because g0 is 1-contact
(and �dlþ g2 is of order of contactness � 2).

Next, consider ðnþ kÞ-forms on Wrþ1 for arbitrary k� 1. The following result
generalizes Theorem 3.

Theorem 4 Let k� 1, let g be a k-contact, prþ1;r-horizontal ðnþ kÞ-form on Wrþ1,
expressed in a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, by

g ¼
X

0� k� r

Uj1j2...jk
r ^ xr

j1j2...jk ^ x0: ð57Þ

There exist k-contact xr-generated k-form Ikg on V2rþ1, a ðk � 1Þ-contact
ðnþ k � 1Þ-form Jkg and an ðk þ 1Þ-contact ðnþ kÞ-form Kkg, defined on V2rþ1,
such that

ðp2rþ1;rþ1Þ*g ¼ Ikg� dJkgþ Kkg: ð58Þ
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(b) Suppose that we have a decomposition

ðp2rþ1;rþ1Þ*g ¼ g0 � dg1 þ g2 ð59Þ

such that g0 is 1-contact and xr-generated, g1 is 1-contact, and g2 is a 2-
contact form. Then,

g0 ¼ Ikg: ð60Þ

Proof

(a) Let k� 1, let W be an open set in Y, and let g be a k-contact, ðnþ kÞ-form,
defined on some open set Wrþ1. In a fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, on Y, g
has a unique decomposition

g ¼ g0 þ g1 þ g2 þ � � � þ gr; ð61Þ

where g0 is the x
r-generated component, g1 includes all x

r
j1 -generated terms,

which do not contain any factor xr, g2 includes all xr
j1j2 -generated terms,

which do not contain any factors xr, xr
j1 , etc.; finally, gr consists of x

r
j1j2...jr -

generated terms which do not include any factors xr, xr
j1 , x

r
j1j2 , . . ., x

r
j1j2...jr�1 .

gr has an expression

gr ¼ Wj1j2...jr
r ^ xr

j1j2...jr ^ x0 ð62Þ

for some ðk � 1Þ-contact ðk � 1Þ-forms Wj1j2...jr
r , which do not include any

factors xr, xr
j1 , x

r
j1j2 , . . ., x

r
j1j2...jr�1 . Then, by (38),

gr ¼ �Wj1j2...jr
r ^ dðxr

j1j2...jr�1 ^ xjrÞ
¼ ð�1ÞkdðWj1j2...jr

r ^ xr
j1j2...jr�1 ^ xjrÞ � ð�1ÞkdWj1j2...jr

r ^ xr
j1j2...jr�1 ^ xjr

¼ �ð�1Þkpk�1dWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjr

þ ð�1ÞkdðWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjr Þ
� ð�1ÞkpkdWj1j2...jr

r ^ xr
j1j2...jr�1 ^ xjr :

ð63Þ

The term pk�1dWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjr in this expression is k-contact (and

therefore contains the factor dx1 ^ dx2 ^ � � � ^ dxn) and is generated by the
forms xr

j1j2...jr�1 . Thus, from the definition of the ðk � 1Þ-component

pk�1dWj1j2...jr
r , it follows that the form pk�1dWj1j2...jr

r ^ xr
j1j2...jr�1 ^ xjr contains

the exterior factors xm
l1l2...lr�1 , x

m
l1l2...lr and xm

l1l2...lr i1 only. Decomposition (61)
now reads
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ðp2rþ1;rþ1Þ*g ¼ g0 þ g1 þ g2 þ � � � þ gr�2 þ ~gr�1
þ ð�1ÞkdðWj1j2...jr

r ^ xr
j1j2...jr�1 ^ xjrÞ

� ð�1ÞkpkdWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjr ;

ð64Þ

where ~gr�1 can be written as

~gr�1 ¼ gr�1 � ð�1Þkpk�1dWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjr

¼ Wj1j2...jr�1
r ^ xr

j1j2...jr�1 ^ x0:
ð65Þ

Then, however,

~gr�1 ¼ Wj1j2...jr�1
r ^ dðxr

j1j2...jr�2 ^ xjr�1Þ
¼ �ð�1Þkpk�1dWj1j2...jr�1

r ^ xr
j1j2...jr�2 ^ xjr�1

þ ð�1ÞkdðWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1Þ
� ð�1ÞkpkdWj1j2...jr�1

r ^ xr
j1j2...jr�2 ^ xjr�1 :

ð66Þ

The term pk�1dWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1 in this expression is k-contact,
contains the factor x0, and is generated by the forms xr

j1j2...jr�1 . From the

definition of the ðk � 1Þ-component pk�1dWj1j2...jr
r , it follows that this term

contains the exterior factors xm
l1l2...lr�2 , x

m
l1l2...lr�1 , x

m
l1l2...lr , x

m
l1l2...lr i1i2 only. The

decomposition (61) (or (64)) now reads

ðp2rþ1;rþ1Þ*g ¼ g0 þ g2 þ g3 þ � � � þ gr�3 þ ~gr�2
þ ð�1ÞkdðWj1j2...jr�1

r ^ xr
j1j2...jr�2 ^ xjr�1Þ

� ð�1ÞkpkdWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1

þ ð�1ÞkðdðWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjrÞ
� pkdW

j1j2...jr
r ^ xr

j1j2...jr�1 ^ xjrÞ;

ð67Þ

where

~gr�2 ¼ gr�2 � ð�1Þkpk�1dWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1

¼ Wj1j2...j2
r ^ xr

j1j2...jr�2 ^ x0:
ð68Þ
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Continuing in the same way, we get after r � 1 steps

ðp2rþ1;rþ1Þ*g ¼ g0 þ ~g1 þ ð�1ÞkdðWj1j2
r ^ xr

j1 ^ xj2Þ
� ð�1ÞkpkdWj1j2

r ^ xr
j1j2 ^ xj2

þ � � � þ ð�1ÞkdðWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1Þ
� ð�1ÞkpkdWj1j2...jr�1

r ^ xr
j1j2...jr�2 ^ xjr�1

þ ð�1ÞkdðWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjrÞ
� ð�1ÞkpkdWj1j2...jr

r ^ xr
j1j2...jr�1 ^ xjr ;

ð69Þ

where

~g1 ¼ g1 � ð�1Þkpk�1dWj1j2
r ^ xr

j1 ^ xj2

¼ Wj1
r ^ xr

j1 ^ x0:
ð70Þ

The form ~g1 contains x
r
j1 , x

r
j1j2 , . . ., x

r
j1j2...jr , x

r
j1j2...jr i1 , . . ., x

r
j1j2...jr i1i2...ir�1 but no

factor xr. Then,

~g1 ¼ �Wj1
r ^ dðxr ^ xj1Þ

¼ ð�1ÞkdðWj1
r ^ xr ^ xj1Þ � ð�1ÞkdWj1

r ^ xr ^ xj1

¼ �ð�1Þkpk�1dWj1
r ^ xr ^ xj1

þ ð�1ÞkdðWj1
r ^ xr ^ xj1Þ � ð�1ÞkpkdWj1

r ^ xr ^ xj1 ;

ð71Þ

and

ðp2rþ1;rþ1Þ*g
¼ g0 � ð�1Þkpk�1dWj1

r ^ xr ^ xj1

� ð�1Þk�1dðWj1
r ^ xr ^ xj1 þWj1j2

r ^ xr
j1 ^ xj2

þ � � � þWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1 þWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjrÞ
� ð�1ÞkðpkdWj1

r ^ xr ^ xj1 þ pkdW
j1j2
r ^ xr

j1j2 ^ xj2

þ � � � þ pkdW
j1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1

þ pkdW
j1j2...jr
r ^ xr

j1j2...jr�1 ^ xjr Þ:

ð72Þ

Summarizing

ðp2rþ1;rþ1Þ*g ¼ Ikg� dJkgþ Kkg; ð73Þ
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where

Ikg ¼ g0 � ð�1Þkpk�1dWj1
r ^ xr ^ xj1 ;

Jkg ¼ ð�1Þk�1ðWj1
r ^ xr ^ xj1 þWj1j2

r ^ xr
j1 ^ xj2

þ � � � þWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1

þWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjrÞ;
Kkg ¼ ð�1Þk�1pkþ1ðdWj1

r ^ xr ^ xj1 þ dWj1j2
r ^ xr

j1j2 ^ xj2

þ � � � þ dWj1j2...jr�1
r ^ xr

j1j2...jr�2 ^ xjr�1

þ dWj1j2...jr
r ^ xr

j1j2...jr�1 ^ xjrÞ:

ð74Þ

(b) To prove uniqueness of the component Ikg, we adapt to the decomposition
(73) a classical integration approach. It is sufficient to consider the case when

Ikg� dJkgþ Kkg ¼ 0; ð75Þ

and to prove that Ikg ¼ 0. Choose p-vertical vector fields N1, N2, . . ., Nk on
Y and consider the pullback of this n-form by the r-jet prolongation of a
section c of Y, J2rþ1c*iNk . . .iN2 iN1 Ikg. Clearly, the pullback J2rþ1c* annihilates
contact n-forms. Since the Lie derivative of a contact form by a p-vertical
vector field is a contact form (Sect. 2.5, Theorem 9, (d)), hence

J2rþ1c*iNk . . .iN2 iN1 Ikg

¼ J2rþ1c*iNk . . .iN2 iN1dJkgþ J2rþ1c*iNk . . .iN2 iN1Kkg

¼ J2rþ1c*iNk . . .iN2 iN2ð@N1Jkg� diN1JkgÞ þ J2rþ1c*iNk . . .iN2 iN1Kkg

¼ �J2rþ1c*iNk . . .iN3 iN2diN1Jkg

ð76Þ

because the forms iNk . . .iN2 iN2@N1Jkg and iNk . . .iN2 iN1Kkg are contact. Repeat-
ing this step,

J2rþ1c*iNk . . .iN2 iN1 Ikg

¼ �J2rþ1c*iNk . . .iN4 iN3@N2 iN1Jkgþ J2rþ1c*iNk . . .iN4 iN3diN2 iN1Jkg

¼ J2rþ1c*iNk . . .iN4 iN3diN2 iN1Jkg

¼ � � � ¼ ð�1ÞpJ2rþ1c*iNk . . .iNpþ2 iNpþ1diNp iNp�1 . . .iN2 iN1Jkg

¼ � � � ¼ ð�1ÞkJ2rþ1c*diNk iNk�1 . . .iN2 iN1Jkg

¼ ð�1ÞkdJ2rþ1c*iNk iNk�1 . . .iN2 iN1Jkg:

ð77Þ
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Thus, integrating over an arbitrary piece X � X with boundary @X,Z
X

J2rþ1c*iNk . . .iN2 iN1 Ikg ¼ ð�1Þk
Z
X

dJ2rþ1c*iNk iNk�1 . . .iN2 iN1Jkg

¼ ð�1Þk
Z
@X

J2rþ1c*iNk iNk�1 . . .iN2 iN1Jkg:
ð78Þ

This identity holds for all p-vertical vector fields N1, N2, . . ., Nk, but on the
other hand, the right-hand side depends on their values along the boundary @X
only. Replace the vector field N1 with fN1, where f is a function, defined on a
neighborhood of X, vanishing along @X. Then, we getZ

X

J2rþ1c*iNk . . .iN2 ifN1 Ikg ¼ ð�1Þk
Z
X

fJ2rþ1c*iNk . . .iN2 iN1 Ikg ¼ 0: ð79Þ

Since the function f is arbitrary in the interior of the piece X, this is only
possible when the integrand satisfies J2rþ1c*iNk . . .iN2 iN1 Ikg ¼ 0. Finally, the
section c is also arbitrary; since through every point of the domain of
definition of the form iNk . . .iN2 iN1 Ikg passes the ð2r þ 1Þ-jet prolongation
J2rþ1c of c; therefore,

Ikg ¼ 0: ð80Þ

This proves that the form Ikg in formula (73) is defined uniquely by the
assumptions of Theorem 4. h

Corollary 1 Extends to arbitrary forms as follows.

Corollary 2 For any integer k� 1 and any ðnþ k � 1Þ-form q on Wr the form
Ikpkdpkq vanishes,

Ikpkdpkq ¼ 0: ð81Þ

Proof Using the canonical decomposition of the form dp1q, we get the identity

ðp2rþ1;rþ1Þ*pkdpkq
¼ ðp2rþ1;rþ1Þ*ðdpkq� pkþ1dpkq� pkþ2dpkq� � � � � pkþndpkqÞ
¼ dðp2rþ1;rþ1Þ*pkq� pkþ1ðp2r;rþ1Þ*dpkq

ð82Þ

because the components satisfy the conditions pkþ1dpkq ¼ 0, pkþ2dpkq ¼ 0, . . .,
pkþndpkq ¼ 0. Comparing this formula with decomposition (58) and using the
uniqueness of the component I1p1dp1q (Theorem 4, (b)), we get identity (81). h
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Our next aim is to determine an explicit formula for the component Ikg of a form
g by a geometric construction; the result will be proved on a successive application
of Theorem 3.

Theorem 5

(a) Let g be a 2-contact, prþ1;r-horizontal ðnþ 2Þ-form on the set Wrþ1. Then for
any p-vertical vector fields N1 and N2

iN2 iN1 I2g ¼
1
2
ðiN2 I1iN1g� iN1 I1iN2gÞ: ð83Þ

(b) Let k� 2 and let g be a k-contact, prþ1;r-horizontal ðnþ kÞ-form defined on
Wrþ1. Then for any p-vertical vector fields N1, N2. . . ., Nk

iNk . . .iN2 iN1 Ikg ¼
1
k
ðiNk iNk�1 . . .iN2 Ik�1iN1g� iNk iNk�1 . . .iN3 iN1 Ik�1iN2g

� iNk iNk�1 . . .iN4 iN2 iN1 Ik�1iN3g� � � � � iNk�1 . . .iN2 iN1 Ik�1iNkgÞ:
ð84Þ

Proof

(a) From the decompositions

ðp2rþ1;rþ1Þ*iN1g ¼ iN1 I2g� iN1dJ2gþ iN1K2g
I1iN1g� dJ1iN1gþ K1iN1g

�
ð85Þ

it follows that

iN2 iN1 I2g�
1
2
ðiN2 I1iN1g� iN1 I1iN2gÞ ¼ iN2 iN1dJ2g� iN2 iN1K2g

þ 1
2
ð�iN2dJ1iN1gþ iN2K1iN1g� iN1dJ2iN1gþ iN1K1iN2gÞ:

ð86Þ

Using the properties of the Lie derivative operator (see Appendix 5), we can
write

iN2 iN1dJ2gþ
1
2
ð�iN2dJ1iN1g� iN1dJ2iN1gÞ

¼ iN2@N1J2g� iN2diN1J2g

þ 1
2
ð�@N2J1iN1gþ diN2J1iN1g� @N1J2iN1gþ diN1J2iN1gÞ

¼ iN2@N1J2g� @N2 iN1J2g� diN2 iN1J2g

þ 1
2
ð�@N2J1iN1gþ diN2J1iN1g� @N1J2iN1gþ diN1J2iN1gÞ;

ð87Þ
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thus

iN2 iN1 I2g�
1
2
ðiN2 I1iN1g� iN1 I1iN2gÞ

¼ iN2@N1J2g� @N2 iN1J2g� diN2 iN1J2g

þ 1
2
ð�@N2J1iN1gþ diN2J1iN1g� @N1J2iN1gþ diN1J2iN1gÞ

� iN2 iN1K2gþ 1
2
ðiN2K1iN1gþ iN1K1iN2gÞ:

ð88Þ

Now integrating

Z
X

J2rþ1c* iN2 iN1 I2g�
1
2
ðiN2 I1iN1g� iN1 I1iN2gÞ

� �

¼
Z
@X

J2rþ1c* �iN2 iN1J2gþ
1
2
ðiN2J1iN1gþ iN1J2iN1gÞ

� �
:

ð89Þ

To conclude that this condition implies

iN2 iN1 I2g�
1
2
ðiN2 I1iN1g� iN1 I1iN2gÞ ¼ 0 ð90Þ

we proceed as in the proof of Theorem 4.
(b) To complete the proof, we apply elementary induction. h

According to Theorem 5, formula (59) defines a mapping Ik from the Abelian
group of k-contact ðnþ kÞ-forms on Wrþ1 to p2rþ1;0-horizontal ðnþ kÞ-forms on
Wrþ1. Ik is clearly a morphism of Abelian groups.

Theorem 6

(a) Condition Ikg ¼ 0 is satisfied if and only if g is a strongly contact form.
(b) The mapping Ik satisfies

Ik � Ik ¼ Ik ð91Þ

Proof

(a) This follows from Theorem 4, (b).
(b) To prove (b), write ðp2rþ1;rþ1Þ*g ¼ Ikg� dJkgþ Kkg. Then

ðp2ð2rþ1þ;2rþ2Þ*ðp2rþ1;rþ1Þ*g
¼ Ikðp2rþ1;rþ1Þ*g� dJkðp2rþ1;rþ1Þ*gþ Kkðp2rþ1;rþ1Þ*g

ð92Þ
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and from the properties of the pullback operation

ðp2ð2rþ1þ;2rþ2Þ*ðp2rþ1;rþ1Þ*g
¼ ðp2ð2rþ1þ;2rþ2Þ*ðIkg� dJkgþ KkgÞ
¼ ðp2ð2rþ1þ;2rþ2Þ*Ikg� dðp2ð2rþ1þ;2rþ2Þ*Jkg
þ ðp2ð2rþ1þ;2rþ2Þ*Kkg

¼ IkIkg� dJkIkgþ KkIkg

� dðp2ð2rþ1þ;2rþ2Þ*Jkgþ ðp2ð2rþ1þ;2rþ2Þ*Kkg:

ð93Þ

Comparing (92) with (93) and using the uniqueness of these decompositions
(Theorem 4 (b)), we get formula (91). h

Remark 9 Property (a) characterizes the kernel of the mapping Ik. Its image consists
of the k-contact, xr-generated ðnþ kÞ-forms e on W2rþ1 for which the equation

e ¼ Ikg ð94Þ

has a solution g. The corresponding integrability conditions, which should be
satisfied by e, are determined by the structure of the mapping Ik and can be studied
by means of the formal divergence equations (Chap. 3).

Remark 10 The uniqueness of the component Ikg in the decomposition (59) means
that the pullback of the vector space of k-contact ðnþ kÞ-forms on Wrþ1 is iso-
morphic with the direct sum of two subspaces of the vector space of k-contact
ðnþ kÞ-forms on W2rþ1, one of which is the subspace of strongly contact forms.

We conclude this section by extending the decomposition (59), defined for k-
contact ðnþ kÞ-forms on Wrþ1, to any forms q 2 Xr

nþkW . Substituting in formula
(56) g ¼ pkq, we get

ðp2rþ1;rÞ*q
¼ ðp2rþ1;rþ1Þ*pkqþ ðp2rþ1;rþ1Þ*ðpkþ1qþ pkþ2qþ � � � þ pkþnqÞ
¼ ðp2rþ1;rþ1Þ*ðIkpkq� dJkpkqþ KkpkqÞ
þ ðp2rþ1;rþ1Þ*ðpkþ1qþ pkþ2qþ � � � þ pkþnqÞ
¼ ðp2rþ1;rþ1Þ*Ikpkq� dðp2rþ1;rþ1Þ*Jkpkq
þ ðp2rþ1;rþ1Þ*Kkpkqþ ðp2rþ1;rþ1Þ*ðpkþ1qþ pkþ2qþ � � � þ pkþnqÞ:

ð95Þ
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Therefore, setting

Ikq ¼ ðp2rþ1;rþ1Þ*Ikpkq;
Jkq ¼ ðp2rþ1;rþ1Þ*Jkpkq;
Kkq ¼ ðp2rþ1;rþ1Þ*Kkpkqþ ðp2rþ1;rþ1Þ*ðpkþ1qþ pkþ2qþ � � � þ pkþnqÞ

ð96Þ

we get the decomposition

ðp2rþ1;rÞ*q ¼ Ikq� dJkqþKkq: ð97Þ

According to Theorem 4, this formula defines a mapping q! Ikq of the Abelian
group of Xr

nþkW of ðnþ kÞ-forms, defined on Wr, into the Abelian group X2rþ1
nþk W

of ðnþ kÞ-forms on W2rþ1.
The following theorem summarizes elementary properties of the mapping

Xr
nþkW 3 q! Ikq 2 X2rþ1

nþk W . As before, to simplify notation, we omit obvious
pullback operations on differential forms with respect to the canonical jet projec-
tions pr;s: JrY ! JsY .

Theorem 7

(a) The mapping q! Ikq of the Abelian group Xr
nþkW into X2rþ1

nþk W is a mor-
phism of Abelian groups.

(b) The kernel of the mapping I is the Abelian group of strongly contact forms
Hr

nþkW, and its image is isomorphic with the quotient group Xr
nþkW=Hr

nþkW .
(c) For every q 2 Xr

nþkW the mapping I satisfies

IkIkq ¼ Ikq: ð98Þ

Proof

(a) Obvious.
(b) If Ikq ¼ 0, then by Lemma 3, q is strongly contact, thus q belongs to the

Abelian group Hr
nþkW .

(c) Applying the pullback operation to both sides of formula (97) and using the
properties JkIkq ¼ 0 and KkIkq ¼ 0 of the mappings Ik, Jk and Kk ,

ðp2ð2rþ1Þþ1;2rþ1Þ*ðp2rþ1;rÞ*q
¼ Ikðp2rþ1;rÞ*q� dJkðp2rþ1;rÞ*qþKkðp2rþ1;rÞ*q;

ð99Þ
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and

ðp2ð2rþ1Þþ1;2rþ1Þ*ðp2rþ1;rÞ*q
¼ ðp2ð2rþ1Þþ1;2rþ1Þ*Ikq� dðp2ð2rþ1Þþ1;2rþ1Þ*Jkq

þ ðp2ð2rþ1Þþ1;2rþ1Þ*Kkq

¼ IkIkq� dJkIkqþKkIkq� dðp2ð2rþ1Þþ1;2rþ1Þ*Jkq

þ ðp2ð2rþ1Þþ1;2rþ1Þ*Kkq

¼ IkIkq� dðp2ð2rþ1Þþ1;2rþ1Þ*Jkqþ ðp2ð2rþ1Þþ1;2rþ1Þ*Kkq:

ð100Þ

Comparing these formulas and using the uniqueness of the decompositions,
we get assertion (c). h

We call the Abelian group morphism Xr
nþkW 3 q! Ikq 2 X2rþ1

nþk W the kth
variational projector. To simplify notation, we sometimes write justI instead ofIk.

8.4 The Euler–Lagrange Morphisms

Consider the variational sequence (33), Sect. 8.2

0�!RY �!Xr
0�!Xr

1=H
r
1�!Xr

2=H
r
2�!Xr

3=H
r
3�! ð101Þ

Note that by definition of the horizontalization morphism h: Xr
pW ! Xrþ1

p W , the
equivalence relation on the Abelian group Xr

pW associated with the subgroup of
contact forms Hr

pW � Xr
pW coincides with the equivalence relation defined by

h. Similarly, Part Theorem 7, Sect. 8.3, shows that for each k� 1, the equivalence
relation on the Abelian group Xr

nþkW , associated with the subgroup Hr
nþkW �

Xr
nþkW of strongly contact forms, coincides with the equivalence relation induced

by the variational projectors Ik . Thus, the diagram, defining the variational
sequence, can be expressed as

0 0 0
# # #

0 �! Hr
1 �!d Hr

2 �!d � � � �!d Hr
n

# # # #
0 �! RY �! Xr

0 �!d Xr
1 �!d Xr

2 �!d � � � �!d Xr
n

& # h # h # h
hr1 �! hr2 �! � � � �! hrn
# # #
0 0 0

ð102Þ
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0 0 0
# # #

�! Hr
nþ1 �! Hr

nþ2 �! � � � �! Hr
M �! 0

# # # #
�! Xr

nþ1 �!d Xr
nþ2 �!d � � � �!d Xr

M �!d Xr
Mþ1 �!d

# h # h # h %
�! Ir

nþ1 �! Ir
nþ2 �! � � � �! Ir

M
# # #
0 0 0

The corresponding representation of the variational sequence (101) is

0�!RY �!Xr
0�!

E0 hr1�!
E1 hr2�!

E2 � � � �!En�1hrn

�!En
Ir

1�!
Enþ1

Ir
2�!
Enþ2 � � �

ð103Þ

The Abelian group morphisms Ek in this sequence will be called the Euler–
Lagrange morphisms. Our task in this section will be to determine the structure of
the morphisms Ek. The formulas we derive establish explicit correspondence
between the morphisms Ek and basic concepts of the calculus of variations on
fibered manifolds such as the Euler–Lagrange mapping and the Helmholtz map-
pings. The following two theorems give us a way to calculate the chart expressions
of these morphisms Ek .

Theorem 8 The Euler–Lagrange morphisms in the variational sequence (103) can
be expressed as

Ekhq ¼ hdq; q 2 Xr
kW ; 0� k� n� 1;

I1dhq; q 2 Xr
nW ; k ¼ n;

�
ð104Þ

and

EnþkIkq ¼ Ikþ1dpkq; q 2 Xr
nþkW ; k� 1: ð105Þ

Proof If q 2 Xr
nW , then Enhq ¼ I1dq ¼ I1p1dq ¼ I1p1dhqþ I1p1dp1q. Thus, by

Sect. 8.3, Corollary 1,

Enhq ¼ I1dhq: ð106Þ

If q 2 Xr
nþkW , where k� 1, then

EnþkIkq ¼ Ikþ1dq ¼ Ikþ1pkþ1dq
¼ Ikþ1pkþ1dpkqþ Ikþ1pkþ1dpkþ1q

ð107Þ
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hence, by Corollary 2, (81)

EnþkIkq ¼ Ikþ1dpkq: ð108Þ
h

Theorem 9 Let ðV ;wÞ, w ¼ ðxi; yrÞ, be a fibered chart on Y.

(a) If f 2 Xr
0V, then

E0f ¼ dif � dxi: ð109Þ

(b) Let 1� k� n� 1 and let hq2 Ir
j V be a class. Then if hq is expressed by

hq ¼ qi1i2...ik dx
i1 ^ dxi2 ^ � � � ^ dxik ; ð110Þ

then the image Ekhq is given by

Ekhq ¼ di0qi1i2...ik ^ dxi0 ^ dxi1 ^ dxi2 ^ � � � ^ dxik : ð111Þ

Proof We prove assertion (b). According to the trace decomposition theorem
(Sect. 2.2, Theorem 3), a form q 2 Xr

kV has an expression

q ¼
X

0� jJ j � r�1
xr

J^UJ
r þ

X
jI j¼r�1

dðxr
J^WJ

rÞ þ q0; ð112Þ

where q0 is the traceless component of q and UJ
r, W

J
r are some forms. Since the

morphism h annihilates the contact forms xr
J and dxr

I , q0 has an expression

q0 ¼ Ai1i2...ik dx
i1 ^ dxi2 ^ � � � ^ dxik

þ AJ1
r1 i2i3...ik dy

r1
J1 ^ dxi2 ^ dxi3 ^ � � � ^ dxik

þ AJ1J2
r1r2 i3i4...ik dy

r1
J1 ^ dyr2J2 ^ dxi3 ^ dxi4 ^ � � � ^ dxik

þ � � � þ AJ1 J2
r1 r2 . . .

Jk�1
rk�1ik dy

r1
J1 ^ dyr2J2 ^ � � � ^ dyrj�1Jj�1 ^ dxik

þ AJ1 J2
r1 r2 . . .

Jk
rk dy

r1
J1 ^ dyr2J2 ^ � � � ^ dyrkJk ;

ð113Þ

where the coefficients AJ1J2
r1r2 . . .

Js
rsisþ1isþ2...ik are traceless. Thus, any class hq is

expressed as the k-form

hq ¼ qi1i2...ik dx
i1 ^ dxi2 ^ � � � ^ dxik ; ð114Þ
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where

qi1i2...ik ¼ ðAi1i2...ik þ AJ1
r1 i2i3...ik y

r1
J1i1 þ AJ1J2

r1r2 i3i4...ik y
r1
J1i1y

r2
J2i2

þ � � � þ AJ1J2
r1r2 . . .

Jk�1
rk�1 ik

yr1J1i1y
r2
J2i2 � � � yrk�1Jk�1ik�1 þ AJ1J2

r1r2 � � �Jkrk yr1J1i1yr2J2j2 � � � yrkJk ik Þ
Altði1i2. . .ikÞ:

ð115Þ

The class hdq of dq is then given by

hdq ¼ di0qi1i2...ik ^ dxi0 ^ dxi1 ^ dxi2 ^ � � � ^ dxik : ð116Þ

Clearly, hdq is defined on Vrþ1: h

Remark 11 If k ¼ n� 1, then since eli1i2...in�1xl ¼ dxi1 ^ dxi2 ^ � � � ^ dxin�1 , the
class hq ¼ qi1i2...in�1dx

i1 ^ dxi2 ^ � � � ^ dxin�1 (110) can be written as hq ¼ qlxl.
Then, the image En�1hq is expressed as

En�1hq ¼ di0qi1i2...in�1 ^ dxi0 ^ dxi1 ^ dxi2 ^ � � � ^ dxin�1

¼ di0qi1i2...in�1e
i0i1i2...in�1 ^ x0 ¼ diq

i � x0

¼ hdhq;

ð117Þ

where diqi is the formal divergence of the family ql. Thus, the Euler–Lagrange
morphism En�1 can also be expressed in short as En�1 ¼ hd.

Now, we study the Euler–Lagrange morphisms Enþk for k� 0. We derive
explicit formulas for k ¼ 0; 1; in subsequent sections, these formulas will be
compared with basic variational concepts, which appeared already in the previous
sections devoted to the calculus of variations.

In order to study the morphism En, we find the chart expression of the class hq of
a form q 2 Xr

nV . According to the trace decomposition theorem (Sect. 2.2, Theo-
rem 3), q has an expression

q ¼
X

0� jJj � r�1
xr

J^UJ
r þ

X
jIj¼r�1

dxr
I ^WI

r þ q0; ð118Þ

where q0 is the traceless component of q. Clearly, hq ¼ hq0. But q0 has an
expression
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q0 ¼ Ai1i2...indx
i1 ^ dxi2 ^ � � � ^ dxin

þ AJ1
r1i2 i3 ...in

dyr1J1 ^ dxi2 ^ dxi3 ^ � � � ^ dxin

þ AJ1J2
r1r2i3 i4 ...in

dyr1J1 ^ dyr2J2 ^ dxi3 ^ dxi4 ^ � � � ^ dxin

þ � � � þ AJ1J2
r1r2 . . .

Jn�1
rn�1 indy

r1
J1 ^ dyr2J2 ^ � � � ^ dyrn�1Jn�1 ^ dxin

þ AJ1J2
r1r2 . . .

Jn
rndy

r1
J1 ^ dyr2J2 ^ � � � ^ dyrnJn ;

ð119Þ

where the summation indices satisfy J1j j ¼ J2j j ¼ � � � ¼ Jnþ1j j ¼ r, and the coef-
ficients AJ1J2

r1r2 . . .
Js
rs isþ1isþ2...in are traceless. Thus, any class hq can be expressed as the

n-form

hq ¼ qi1i2...indx
i1 ^ dxi2 ^ � � � ^ dxin ; ð120Þ

where

qi1i2...in ¼ Ai1i2...in þ AJ1
r1 i2i3...iny

r1
J1i1 þ AJ1J2

r1r2 i3i4...iny
r1
J1i1y

r2
J2i2

þ � � � þ AJ1J2
r1r2 . . .

Jn�1
rn�1iny

r1
J1i1y

r2
J2i2 . . .y

rn�1
Jn�1in�1 þ AJ1J2

r1r2 . . .
Jn
rny

r1
J1i1y

r2
J2j2 . . .y

rn
Jnin

Altði1i2. . .inÞ:
ð121Þ

Thus, hq can also be characterized as

hq ¼Lx0; ð122Þ

where L ¼ ei1i2...inqi1i2...in (Sect. 4.1, (112)).

Remark 12 In variational terminology, the class k ¼ hq is the Lagrangian, asso-
ciated with the n-form q, that is, an element of the module Xrþ1

n;X V of prþ1-horizontal
forms, defined on Vrþ1 � Jrþ1Y . The function L, characterizing the class hq
locally, is the Lagrange function, associated with hq (and with the given fibered
chart, cf. Sect. 4.1).

We can now prove the following theorem.

Theorem 10 If the class hq of an n-form q 2 Xr
nV is expressed as

hq ¼Lx0; ð123Þ

then

Enhq ¼ @L

@yr
þ
X

1� s� r

ð�1Þsdj1dj2 . . .djs
@L

@yrj1j2...js

 !
xr ^ x0: ð124Þ
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Proof The class Enhq is defined to be Enhq ¼ I1dq ¼ I1dhq (Theorem 8, (104)).
Since

dhq ¼ dL^x0 ¼
X

0� jJj � rþ1

@L

@ymJ
xm

J ^ x0; ð125Þ

we have

I1dhq ¼ @L

@yr
þ
X

1� s� r

ð�1Þsdj1dj2 . . .djs
@L

@yrj1j2...js

 !
xr ^ x0 ð126Þ

(Sect. 8.3, Theorem 3). h

Now we find the chart expression of the classI1q of a form q 2 Xr
nþ1V . Writing

p1q as

p1q ¼
X

0� s� r

Aj1j2...js
r xr

j1j2...js ^ x0; ð127Þ

we get, according to Sect. 8.3, Theorem 3,

I1q ¼ I1p1q ¼ erx
r ^ x0; ð128Þ

where

er ¼ Ar þ
X

1� s� r

ð�1Þsdj1dj2 . . .djsAj1j2...js
r : ð129Þ

Remark 13 According to formula (128), the class e ¼ I1q of a form q 2 Xr
nþ1V is

an element of the Abelian group X2rþ1
nþ1;YV of p2rþ1;0-horizontal forms, defined on the

set V2rþ1 � J2rþ1Y ; in the variational theory, elements of the Abelian groups
X2rþ1

nþ1;YV are the source forms on the fibered manifold Y (cf. Sect. 4.9).

Theorem 11 If the class I1q of an ðnþ 1Þ-form q 2 Xr
nþ1V is expressed as

I1q ¼ erx
r ^ x0; ð130Þ

then

Enþ1I1q ¼ 1
2

X
0� k� r

H j1j2...jk
r m ðeÞxm

j1j2...jk ^ xr ^ x0; ð131Þ
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where

Hj1j2...jk
rm ðeÞ ¼ @er

@ymj1j2...jk
� ð�1Þk @em

@yrj1j2...jk

�
Xs
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@em
@yrj1j2...jkpkþ1pkþ2...pl

:

ð132Þ

Proof The image Enþ1I1q is defined by the equation Enþ1I1q ¼ I2dq. However,
if I1q is defined on Vs, then I1I1q ¼ ðp2sþ1;sÞ*I1q (Sect. 8.3, Theorem 7); thus,
the image can also be calculated from the equation

Enþ1I1I1q ¼ Enþ1ðp2sþ1;sÞ*I1q ¼ ðp2sþ1;sÞ*Enþ1I1q

¼ ðp2sþ1;sÞ*I2dq:
ð133Þ

h

We apply this formula to the representation (130) of the class of q. SettingI1q ¼ e,
we have

Enþ1I1e ¼ I2de ¼ I2p2de ¼ I2de: ð134Þ

This expression can be easily determined by means of the mapping I2, defined by

iN2 iN1 I2de ¼
1
2
ðiN2 I1iN1de� iN1 I1iN2deÞ; ð135Þ

where N1 and N2 are any p-vertical vector fields (Sect. 8.3, Theorem 5). From this
expression, we conclude that

I2de ¼ 1
2

X
0� k� r

H j1j2...jk
r m ðeÞxm

j1j2...jk ^ xr ^ x0; ð136Þ

where the components Hj1j2...jk
r m ðeÞ are given by (132).

Consider the variational sequence (103). Theorem 10 shows that the morphism
En in this Abelian sheaf sequence is exactly the Euler–Lagrange mapping of the
calculus of variations (cf. Sect. 4.5). The mappings En�1 and Enþ1 also admit a
direct variational interpretation (Remark 11, Theorem 11). In the subsequent sec-
tions, we consider the part of the variational sequence VarrY including En,

� � � �! hrn�1�!
En�1hrn�!

En
Ir

1�!
Enþ1

Ir
2 �! � � � ð137Þ

and the corresponding part of the associated complex of global sections VarrYY
(Sect. 8.2, (35)),
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� � � �! hrn�1Y�!
En�1hrnY�!

En
Ir

1Y�!
Enþ1

Ir
2Y �! � � � ð138Þ

Since by Sect. 8.2, Theorem 2, the cohomology groups HkðVarrYYÞ of (138) and the
cohomology groups HkðY ;RY Þ are isomorphic, this fact allows us to complete the
properties of the kernel and the image of the Euler–Lagrange mapping by their
global characteristics. The results bind together properties of the variationally
trivial Lagrangians, and variational source forms with the topology of the under-
lying fibered manifold Y in terms of its (De Rham) cohomology groups.

Remark 14 In general, to determine the De Rham cohomology groups of a smooth
manifold of a smooth fibered manifold is a hard problem; for basic theory of the
DeRham cohomology, we refer to Lee [L] and Warner [W]; in simple cases, one
can apply the Künneth theorem (Bott and Tu [BT]).

The following are well-known standard examples of manifolds and their
cohomology groups:

(a) Euclidean spaces Rn: HkRn ¼ 0 for all k� 1.
(b) Spheres Sn:

HkSn ¼ R; k ¼ 0; n;
0; 0\k\n:

�
ð139Þ

(c) Punctured Euclidean spaces (complements of one-point sets fxg in Rn),
complements of closed balls B � Rn:

HkðRnnfxgÞ ¼ HkðRnnBÞ ¼ HkSn�1: ð140Þ

(d) Tori Tk ¼ S1 � S1 � � � � � S1 (k factors S1):

HkTn ¼ R
n
kð Þ: ð141Þ

(e) Möbius band:

HkM ¼ HkS1: ð142Þ

(f) H0ðX � YÞ ¼ R
(g) Cartesian products (Künneth theorem), k� 0:

HkðX � YÞ ¼ 	
rþs¼k

HrX 
 HsY ð143Þ
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(h) Disjoint unions (M1, M2 disjoint):

HkðM1 [M2Þ ¼ HkM1 	 HkM2: ð144Þ

8.5 Variationally Trivial Lagrangians

Let W be an open set in Y. Recall that a Lagrangian k 2 hrnW is called variationally
trivial, if its Euler–Lagrange form vanishes,

Enk ¼ 0: ð145Þ

This condition can be considered as an equation for the unknown n-form k. Our
main objective in this section is to summarize previous local results on the solutions
of this equation and to complete these results by a theorem on global solutions.

The mapping En is the Euler–Lagrange morphism in the complex of global
sections

� � � �! hrn�1W �!
En�1 hrnW �!

En
Ir

1W �!
Enþ1

Ir
2W �! � � � ð146Þ

and equation (145) has the meaning of the integrability condition for the corre-
sponding equation for an unknown ðn� 1Þ-form g,

k ¼ En�1g: ð147Þ

Thus, since En�1g is defined to be hdg, equation (147) can also be written as

k ¼ hdg: ð148Þ

Integrability condition (145), representing exactness of the sheaf variational
sequence, ensures existence of local solutions, defined on chart neighborhoods in
the set W. According to Theorem 9, Sect. 4.8, the following conditions are
equivalent:

(a) k is variationally trivial.
(b) For any fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, such that V � W , there exist

functions gi:Vr ! R, such that on Vr, k is expressible as k ¼Lx0, where

L ¼ dig
i: ð149Þ
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(c) For every fibered chart ðV ;wÞ, w ¼ ðxi; yrÞ, such that V � W , there exists an
ðn� 1Þ-form l 2 Xr�1

n�1V such that on Vr

k ¼ hdl: ð150Þ

A question still remains open, namely, under what conditions there exists a
solution l, defined globally over W or, in other words, when a given Lagrangian,
locally expressible as “divergence,” can be expressed as a “divergence” globally.
The following theorem is an immediate consequence of the properties of the
complex of global sections ((138), Sect. 8.4).

Theorem 12 Let Y be a fibered manifold over an n-dimensional manifold X, such
that HnY ¼ 0. Let k be a pr-horizontal Lagrangian. Then the following conditions
are equivalent:

(a) k is variationally trivial.
(b) There exists an ðn� 1Þ-form l 2 Xr�1

n�1Y such that on JrY

k ¼ hdl: ð151Þ

Proof

1. We show that (a) implies (b). In view of Sect. 4.8, Theorem 9, only existence of
l, defined globally on JrY , needs proof. But by Sect. 8.2, Theorem 2, the
cohomology groups HkðVarrYYÞ are isomorphic with the De Rham cohomology
groups HkðY ;RY Þ; thus, condition HnY ¼ 0 implies HnðVarrYYÞ ¼ 0 proving
existence of l.

2. The converse is obvious. h

On analogy with the De Rham sequence, a variationally trivial Lagrangian can
also be called variationally closed. A variationally closed Lagrangian k 2 hrnW is
called variationally exact, if k ¼ hdl for some l 2 hrn�1W . Theorem 12 then says
that if HnY ¼ 0, then every variationally closed Lagrangian is variationally exact.

In the following examples, we refer to the cohomology groups given in Sect. 8.4,
Remark 13.

Examples (Obstructions for variational triviality)

1. If the fibered manifold Y is the Cartesian product Rn � Rm, endowed with the
first canonical projection, then every variationally trivial Lagrangian on Y is
variationally exact.
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2. Let Y ¼ S3, and consider S3 as a fibered manifold over S2 (the Hopf fibration).
Then, H3S3 ¼ R 6¼ 0; therefore, a variationally trivial Lagrangian on JrS3 need
not be closed.

3. If Y ¼ Rn � Q; then, the Künneth theorem yields HnðRn � QÞ ¼ HnQ. Thus, if
HnQ ¼ 0, then variational triviality always implies variational exactness. If for
example Q is an n-sphere Sn, punctured Euclidean space Rnþ1nf0g, or the k-
torus Tk, then variational triviality does not imply variational exactness.

8.6 Global Inverse Problem of the Calculus of Variations

Let W be an open set in Y. Recall that a source form e 2 Ir
1W is said to be

variational, if there exists a Lagrangian k 2 hrnW such that its Euler–Lagrange form
Enk coincides with e,

e ¼ Enk: ð152Þ

e is said to be locally variational, if there exists an atlas on Y, consisting of fibered
charts, such that for each chart ðV ;wÞ, w ¼ ðxi; yrÞ, from this atlas, the restriction of
e to Vs is variational.

The mapping En in formula (152) is the Euler–Lagrange morphism in the
complex of global sections

� � � �! hrn�1W �!
En�1 hrnW �!

En
Ir

1W �!
Enþ1

Ir
2W �! � � � ð153Þ

which determines the integrability condition for equation (152),

Enþ1e ¼ 0: ð154Þ

The problem to determine conditions ensuring existence of the Lagrangian k, and to
determine k as a function of the source form e, is the inverse problem of the calculus
of variations.

If the source form e is expressed in the form

e ¼ erx
r ^ x0; ð155Þ

then equation (152) is expressed as a system of partial differential equations

er ¼ @L

@yr
þ
X

1� s� r

ð�1Þsdj1dj2 . . .djs
@L

@yrj1j2...js
; 1� r�m; ð156Þ
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for an unknown function L ¼Lðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ. Integrability condi-
tion (154) is then of the form

Enþ1e ¼ 1
2

X
0� k� r

H j1j2...jk
r m ðeÞxm

j1j2...jk ^ xr ^ x0 ¼ 0; ð157Þ

where Hr m
j1j2...jk ðeÞ are the Helmholtz expressions (Sect. 8.4, Theorem 11); thus, if

s is the order of the functions er, the integrability condition reads

@er
@ymj1j2...jk

� ð�1Þk @em
@yrj1j2...jk

�
Xs
l¼kþ1

ð�1Þl l
k

� �
dpkþ1dpkþ2 . . .dpl

@em
@yrj1j2...jkpkþ1pkþ2...pl

¼ 0;

1� r; m�m; 0� k� s; 1� j1; j2; . . .; jk � n:

ð158Þ

Integrability condition (158) ensures existence of local solutions k of equation
(152), or which is the same solutions L of the system (5); solutions are given
explicitly by the Vainberg–Tonti Lagrangians

ke ¼Lex0; ð159Þ

where

Leðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jsÞ

¼ yr
Z1
0

erðxi; tym; tymj1 ; tymj1j2 ; . . .; tymj1j2...jsÞdt
ð160Þ

(Sect. 4.9, (3), Sect. 4.10, Theorem 12 and Theorem 13, Sect. 8.4, Theorem 11).
In this section, we complete these results by a theorem ensuring existence of

global solutions of equation (152), where the open set W � Y coincides with the
fibered manifold Y. The following result completes properties of the source forms
by establishing a topological condition ensuring that local variationality implies
(global) variationality.

Theorem 13 Let Y be a fibered manifold with n-dimensional base X, such that
Hnþ1Y ¼ 0. Let e2 Ir

1W be a source form. Then the following conditions are
equivalent:

(a) e is locally variational.
(b) e is variational.

Proof This assertion is an immediate consequence of the existence of an isomor-
phism between the cohomology groups HkðVarrYYÞ and the De Rham cohomology
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groups HkðY ;RYÞ (Sect. 8.2, Theorem 2); thus, condition Hnþ1Y ¼ 0 implies
Hnþ1ðVarrYYÞ ¼ 0 as required. h

Remark 14 The meaning of Theorem 13 can be rephrased as follows. First, it states
that in order to ensure that a given source form e is locally variational, one should
verify that its components satisfy the Helmholtz conditions (158), and second, if in
addition the ðnþ 1Þ-st cohomology group Hnþ1Y of the underlying fibered mani-
fold vanishes, then e is automatically variational.

Examples (Obstructions for global variationality)

4. If Y ¼ R�M, where M is the Möbius band, then H2Y ¼ 0; hence, local
variationality always implies variationality.

5. If Y ¼ S1 �M, where S1 is the circle and M is the Möbius band, then
H2Y ¼ H2ðS1 �MÞ ¼ H1S1 	 H1M ¼ R	 R ¼ R2. Thus, in general, local
variationality does not imply variationality.

6. If the 3-sphere S3 is considered as a fibered manifold over S2 (Hopf fibration),
then since H3S3 ¼ R 6¼ 0, local variationality does not necessarily imply global
variationality.

7. If k� l, then the k-torus Tk can be fibered over the l-torus Tl by means of the
Cartesian projection. Since Hlþ1Tk 6¼ 0, we have obstructions against global
variationality.
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Appendix
Analysis on Euclidean Spaces and Smooth
Manifolds

In this appendix, we summarize for the reference essential notions and theorems of
differentiation and integration theory on Euclidean spaces as needed in this book.
Main coordinate formulas of the calculus of vector fields and differential forms on
smooth manifolds are also given. We also included elementary concepts from
multilinear algebra and the trace decomposition theory over a real vector space.

A.1 Jets of Mappings of Euclidean Spaces

Let LðRn;RmÞ be the vector space of linear mappings of Rn into Rm, LkðRn;RmÞ
the vector space of k-linear mappings of the Cartesian product Rn � Rn � � � � � Rn

(k factors) into Rm, and let LksymðRn;RmÞ be the vector space of k-linear symmetric
mappings from of Rn � Rn � � � � � Rn (k factors) into Rm. Let U � Rn and V �
Rm be open sets, and denote

JrðU;VÞ ¼ U � V � LðRn;RmÞ � L2symðRn;RmÞ � � � � � LrsymðRn;RmÞ: ð1Þ
JrðU;VÞ is an open set in the Euclidean vector space

Rn � Rm � LðRn;RmÞ � L2symðRn;RmÞ � � � � � LrsymðRn;RmÞ: ð2Þ
Using the canonical bases of the vector spaces Rn and Rm, this vector space can be
identified with the Euclidean vector space RN of dimension

N ¼ nþ m 1þ nþ nþ 1
2

� �
þ nþ 2

3

� �
þ � � � þ nþ r � 1

r
� �� �

: ð3Þ

The set JrðU;VÞ can be identified with collections of real numbers
P ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, 1� i; j1; j2; . . .; jr � n, 1� r�m, such that the
systems yrj1j2���jk are symmetric in the subscripts. We call P an r-jet; the point x 2 U,

x ¼ xi is called the source of P and the point y 2 V , y ¼ yr, is called the target of P.
We set for every point P 2 JrðU;VÞ, P ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jr Þ,

xi ¼ xiðPÞ; yr ¼ yrðPÞ; yrj1j2���jk ¼ yrj1j2���jk ðPÞ; 1� k� r: ð4Þ
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Then, by abuse of language, xi, yr, and yrj1j2���jk , denote both the components of
P and also real-valued functions on JrðU;VÞ. Restricting ourselves to independent
functions, we get a global chart, the canonical chart ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ,
j1 � j2 � � � � � jk, defining the canonical smooth manifold structure on JrðU;VÞ;
elements of this chart are the canonical coordinates on JrðU;VÞ. The set JrðU;VÞ,
endowed with its canonical smooth manifold structure, is called the manifold of r-
jets (with source in U and target in V).

We sometimes express without notice an element P 2 JrðU;VÞ as a collection of
real numbers P ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, subject to the condition
j1 � j2 � � � � � jk.

We show that the r-jets can be viewed as classes of mappings, transferring the
source of an r-jet to its target. Given an r-jet P ¼ JrðU;VÞ,
P ¼ ðxi; yr; yrj1 ; yrj1j2 ; . . .; yrj1j2...jrÞ, one can always find a mapping f ¼ f r, defined
on a neighborhood of the source x 2 U, such that f ðxÞ ¼ y, whose derivatives satisfy

Di1 f
rðxiðPÞÞ ¼ yri1ðPÞ; Di1Di2 f

rðxiðPÞÞ ¼ yri1i2ðPÞ;
. . .; Di1Di2 . . .Dir f

rðxiðPÞÞ ¼ yrj1j2���jrðPÞ:
ð5Þ

Indeed, one can choose for the components of f the polynomials

f rðt jÞ ¼ yr þ 1
1!
yrj1ðtj1 � xj1Þ þ 1

2!
yrj1j2ðtj1 � xj1Þðtj2 � xj2Þ

þ � � � þ 1
r!
yrj1j2���jr ðtj1 � xj1Þðtj2 � xj2Þ � � � ðtjr � xjrÞ:

ð6Þ

Any mapping f, satisfying conditions (5), is called a representative of the r-jet
P. Using representatives, we usually denote P ¼ Jrx f .

A.2 Summation Conventions

This section contains some remarks to the summation conventions used in this
book. We distinguish essentially three different cases:

(a) Summations through pairs of indices, one in contravariant and one in covariant
position (the Einstein summation convention). In this case, the summation
symbol is not explicitly designated.

(b) Summations through more indices or multi-indices. In this case, we usually
omit the summation symbols for summations, which are evident.

(c) Summations of expressions through variables, labeled with non-decreasing
sequences of integers. In this Appendix, we discuss the corresponding
conventions in more detail.

Let k be a positive integer, let LkRn be the vector space of collections of real
numbers u ¼ ui1i2...ik , where 1� i1; i2; . . .; ik � n, and JkRn the vector space of
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collections of real numbers v ¼ vi1i2...ik , where 1� i1 � i2 � � � � � ik � n. We
introduce two mappings i: JkRn ! LkRn and j: LkRn ! JkRn as follows.
Choose a vector v 2 JkRn, v ¼ vi1i2...ik , where 1� i1 � i2 � � � � � ik � n, and set
for any sequence of the indices j1; j2; . . .; jk , not necessarily a non-decreasing one,

vj1j2...jk ¼ vjsð1Þjsð2Þ...jsðkÞ ; ð7Þ
where s is any permutation of the set f1; 2; . . .; kg, such that the subscripts satisfy
jsð1Þ � jsð2Þ � � � � � jsðkÞ. Then set

iðvÞ ¼ vj1j2...jk : ð8Þ
The vector iðvÞ is symmetric in all subscripts and is called the canonical extension
of v to LkRn; the mapping i is the canonical extension (by symmetry). If u 2 LkRn,
u ¼ ui1i2...ik , set

jðuÞ ¼ vj1j2...jk ¼
1
k!

X
m

ujmð1Þjmð2Þ...jmðkÞ ; ð9Þ

whenever j1 � j2 � � � � � jk; j is called the symmetrization. For any function
f : JkRn ! R, the function f � j: LkRn ! R is called the canonical extension of
f. When no misunderstanding may possibly arise, we write just f instead of f � j.
Clearly, definitions (8) and (9) imply

j � i ¼ idJkRn : ð10Þ
Note that in the finite-dimensional Euclidean vector space RN , the points of RN

are canonically identified with the canonical coordinates of these point. In what
follows we shall consider the symbols ui1i2...ik and vi1i2...ik both as the points of R

N as
well as the canonical coordinates on the vector spaces LkRn and JkRn, respectively.

Denote

Nðj1j2. . .jkÞ ¼ N1!N2!. . .Nn!

k!
; ð11Þ

where Nl is the number of occurrences of the index l ¼ 1; 2; . . .; n in the k-tuple
ðj1; j2; . . .; jkÞ. The following lemma states two formulas how to express a linear
form, whose variables are indexed with non-decreasing sequences; these formulas
are based on simple algebraic relations.

Let

U ¼
X

i1 � i2 � ��� � ik

Ai1i2...ik vi1i2...ik ð12Þ

be a linear form on JkRn.

Lemma 1 A linear form U (12) on JkRn can be expressed as

U ¼ Bj1j2...jk vj1j2...jk ; ð13Þ
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where

Bj1j2...jk ¼ 1
Nðj1j2. . .jkÞA

i1i2...ik : ð14Þ

Proof Supposing that Bj1j2...jk and vj1j2...jk are symmetric, we have

Bj1j2...jk vj1j2...jk ¼
X

j1;j2;...;jk

X
j

1
k!
Bjjð1Þjjð2Þ...jjðkÞvjjð1Þjjð2Þ...jjðkÞ

¼
X

j1 � j2 � ��� � jk

1
k!
N1!N2!. . .Nn!B

j1j2...jk vj1j2...jk

¼
X

j1 � j2 � ��� � jk

Nði1i2. . .ikÞBj1j2...jk vj1j2...jk :

ð15Þ

If this expression equals U, we get (14). h

Lemma 1 can be applied to linear forms df , where f : JkRn ! R is a function. df
is defined by

df ðvÞ � N ¼
X

i1 � i2 � ��� � ik

@f
@vi1i2...ik

� �
v
Ni1i2...ik ; ð16Þ

where

N ¼
X

i1 � i2 � ��� � ik

Ni1i2...ik
@

@vi1i2...ik
ð17Þ

is a tangent vector. But the chain rule yields Tvf � N ¼ TiðvÞðf � jÞ � Tvi � N, so we
have the following assertion.

Lemma 2 The linear form df (16) can be expressed as

df ðvÞ � N ¼ @ðf � jÞ
@uj1j2...jk

� �
iðvÞ

Nj1j2...jk : ð18Þ

Proof Using formula (10), we get from (16)

df ðvÞ � N ¼
X

i1 � i2 � ��� � ik

@ðf � j � iÞ
@vi1i2...ik

� �
v
Ni1i2...ik

¼
X

i1 � i2 � ��� � ik

X
j1;j2;...;jk

@ðf � jÞ
@uj1j2...jk

� �
iðvÞ

@ðuj1j2...jk � iÞ
@vi1i2...ik

� �
v
Ni1i2...ik

¼
X

j1;j2;...;jk

@ðf � jÞ
@uj1j2...jk

� �
iðvÞ

X
i1 � i2 � ��� � ik

@ðuj1j2...jk � iÞ
@vi1i2...ik

� �
v
Ni1i2...ik :

ð19Þ
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But writing

Tvi � N ¼ Nj1j2...jk
@

@uj1j2...jk
; ð20Þ

we see that Tvi extends the components Ni1i2...ik , i1 � i2 � � � � � ik by the index
symmetry,

Nj1j2...jk ¼
X

i1 � i2 � ��� � ik

@ðuj1j2...jk � iÞ
@vi1i2...ik

� �
v
Ni1i2...ik : ð21Þ

Thus, using the symmetric components (21), one can also express the exterior
derivative df (19) as in (18). h

Corollary 1 Let f : JkRn ! R be a function, v 2 JkRn a point, and let
N ¼ Nj1j2...jk , where 1� j1 � j2 � � � � � jk � n, be the components of a tangent
vector of JkRn at the point v. Then the derivatives of the functions f and f � j satisfy

X
j1 � j2 � ��� � jk

@f
@vj1j2...jk

� �
v

Nj1j2...jk ¼
@ðf � jÞ
@ui1i2...ik

� �
iðvÞ

Ni1i2...ik : ð22Þ

Proof (22) follows from (16) and (18). h

Corollary 2

(a) Partial derivatives of the functions f and f � j satisfy the condition

@ðf � jÞ
@uj1j2...jk

¼ Nðj1j2. . .jkÞ @f
@vjkð1Þjkð2Þ...jkðkÞ

� j; ð23Þ

where k is any permutation of the index set f1; 2; . . .; kg, such that
jkð1Þ � jkð2Þ � � � � � jkðkÞ, and

@f
@vi1i2...ik

¼ 1
Nði1i2. . .ikÞ

@ðf � jÞ
@uisð1Þisð2Þ...isðkÞ

� i ð24Þ

for any permutation s:
(b) For any permutation lsð1Þ; lsð2Þ; . . .; lsðkÞ of the indices l1; l2; . . .; lk, the

derivatives of the function f � j satisfy

@ðf � jÞ
@ulsð1Þlsð2Þ...lsðkÞ

¼ @ðf � jÞ
@ul1l2...lk

: ð25Þ
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Proof

(a) From the chain rule, we have for any ðj1; j2; . . .; jkÞ
@ðf � jÞ
@uj1j2...jk

¼
X

i1 � i2 � ��� � ik

@f
@vi1i2...ik

� j
� �

@ðvi1i2...ik � jÞ
@uj1j2...jk

: ð26Þ

But from Eq. (9), there is exactly one nonzero term on the right-hand side,
namely the term in which ði1i2. . .ikÞ ¼ ðjkð1Þjkð2Þ. . .jkðkÞÞ, such that
jkð1Þ � jkð2Þ � � � � � jkðkÞ for some permutation k. Then

@ðf � jÞ
@uj1j2...jk

¼ @f
@vjkð1Þjkð2Þ...jkðkÞ

� j � @ðvjkð1Þjkð2Þ...jkðkÞ � jÞ
@uj1j2...jk

; ð27Þ

where by (9)

vjkð1Þjkð2Þ...jkðkÞ � j ¼ 1
k!

X
s

ujsð1Þjsð2Þ...jsðkÞ : ð28Þ

Differentiating (24), we get

@ðvjkð1Þjkð2Þ...jkðkÞ � jÞ
@uj1j2...jk

¼ 1
k!

X
s

@ujsð1Þjsð2Þ...jsðkÞ
@uj1j2...jk

¼ N1!N2!. . .Nn!

k!
:

ð29Þ

Substituting from (29) back to (27), we have

@ðf � jÞ
@uj1j2...jk

¼ Nðj1j2. . .jkÞ @f
@vjkð1Þjkð2Þ...jkðkÞ

� j: ð30Þ

Conversely, given a k-tuple of indices ði1; i2; . . .; ikÞ such that
1� i1 � i2 � � � � � ik � n, we get from (30) and (10)

@f
@vi1i2...ik

¼ 1
Nði1i2. . .ikÞ

@ðf � jÞ
@uisð1Þisð2Þ...isðkÞ

� i ð31Þ

for any permutation s. Formulas (30) and (31) prove Corollary 2.
(b) Formula (25) follows from (23). h

Remark Formula (22) can also be used, with obvious simplification, in the form

X
j1 � j2 � ��� � jk

@f
@uj1j2...jk

Nj1j2...jk ¼
@f

@ui1i2...ik
Ni1i2...ik : ð32Þ
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A.3 The Rank Theorem

In the following two basic theorems of analysis of real-valued functions on finite-
dimensional Euclidean spaces, we denote by xi and yr the canonical coordinates on
the Euclidean spaces Rn and Rm, respectively.

Theorem 1 (The Rank theorem) Let W be an open set in Rn, and let f : W ! Rm be
a Cr-mapping. Let q�minðm; nÞ be a positive integer. The following conditions are
equivalent:

(1) The mapping f has constant rank rank Df ðxÞ ¼ q on W.
(2) For every point x0 2 W there exist a neighborhoodU of x0 inW, an open rectangle

P � Rn with center 0, a Cr diffeomorphism u: U ! P such that uðx0Þ ¼ 0, a
neighborhood V of f ðx0Þ such that f ðUÞ � V, an open rectangle Q � Rm with
center 0, and a Cr diffeomorphism w: V ! Q such that wðf ðx0ÞÞ ¼ 0, and on P,

wfu�1ðx1; x2; . . .; xq; xqþ1; xqþ2; . . .; xnÞ ¼ ðx1; x2; . . .; xq; 0; 0; . . .; 0Þ: ð33Þ

Formula (33) can be expressed in terms of equations of the mapping wfu�1,
which are of the form

yr � f ¼ xr; 1� r� q;
0; qþ 1� r�m:

�
ð34Þ

In particular, if q ¼ n�m, then wfu�1 is the restriction of the canonical injection
ðx1; x2; . . .; xnÞ ! ðx1; x2; . . .; xn; 0; 0; . . .; 0Þ of Euclidean spaces; if q ¼ n ¼ m,
wfu�1 is the restriction of the identity mapping of Rn; if the dimensions n and
m satisfy n[m, then wfu�1 is the restriction of the Cartesian projection
ðx1; x2; . . .; xm; xmþ1; xmþ2; . . .; xnÞ ! ðx1; x2; . . .; xmÞ of Euclidean spaces.

The following is an immediate consequence of Theorem 1.

Theorem 2 (The Inverse function theorem) Let W � Rn be an open set, and let
f : W ! Rn be a Cr-mapping. Suppose that detDf ðx0Þ 6¼ 0 at a point x0 2 W. Then
there exists a neighborhood U of x0 in W and a neighborhood V of f ðx0Þ in Rn such
that f ðUÞ ¼ V and the restriction f jU : U ! V is a Cr-diffeomorphism.

A.4 Local Flows of Vector Fields

In this book, the symbol Txf denotes the tangent mapping of a mapping f at a point
x. Sometimes, we also use another notation, which may simplify calculations and
resulting formulas. If t ! fðtÞ is a curve in a manifold, then its tangent vector at a
point t0 is denoted by either of the symbols
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Tt0f � 1;
df
dt

� �
t0

: ð35Þ

The tangent vector field is denoted by

Ttf � 1 ¼ df
dt

: ð36Þ

Note, however, that sometimes the symbol df=dt may cause notational problems
when using the chain rule.

The following is a well-known result of the theory of integral curves of vector
fields on smooth manifolds.

Theorem (The local flow theorem) Let r� 1 and let n be a Cr vector field on a
smooth manifold X.

(a) For every point x0 2 X there exists an open interval J containing the point
0 2 R, a neighborhood V of x0, and a unique Cr mapping a: J � V ! X such
that for every point x 2 V , að0; xÞ ¼ x and the mapping J 3 t ! axðtÞ ¼
aðt; xÞ 2 X satisfies

Ttax ¼ nðaxðtÞÞ: ð37Þ
(b) There exist a subinterval K of J with center 0 and a neighborhood W of x0 in V

such that

aðsþ t; xÞ ¼ aðs; aðt; xÞÞ; að�t; aðt; xÞÞ ¼ x ð38Þ
for all points ðs; tÞ 2 K and x 2 W. For every t 2 K, the mapping W 3 x !
aðt; xÞ 2 X is a Ck diffeomorphism.

Condition (37) means that t ! axðtÞ is an integral curve of the vector field n,
and the mapping ðt; xÞ ! axðtÞ ¼ aðt; xÞ is a local flow of n at the point x0; we also
say that a is a local flow of n on the set V. Equation (37) can also be written as

dax
dt

¼ nðaxðtÞÞ: ð39Þ

A.5 Calculus on Manifolds

In this Appendix, we give a list of basic rules and coordinate formulas of the
calculus of differential forms and vector fields on smooth manifolds.

We use the following notation:

Tf tangent mapping of a differentiable mapping f
f *g pull-back of a differential form g by f
n; f½ 	 Lie bracket of vector fields n and f
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d exterior derivative of a differential form
ing contraction of a differential form g by a vector field n
ong Lie derivative of a differential form g by a vector field n

Theorem 1 (The pull-back of a differential form) Let X, Y and Z be smooth
manifolds.

(a) For any differentiable mapping f : X ! Y, any p-form g and any q-form q on Y

f *ðg ^ qÞ ¼ f *g ^ f *q: ð40Þ
(b) Let f : X ! Y and g: Y ! Z be differentiable mappings. Then for any p-form

l on Z

f *g*l ¼ ðg � f Þ*l: ð41Þ

Theorem 2 (Exterior derivative) Let X and Y be smooth manifolds.

(a) For any p-form g and q-form q on X

dðg ^ qÞ ¼ dg ^ qþ ð�1Þpg ^ dq: ð42Þ
(b) For every p-form g on X

dðdgÞ ¼ 0: ð43Þ
(c) For any differentiable mapping f : X ! Y and any p-form g on Y

df *g ¼ f *dg: ð44Þ

Theorem 3 (Contraction of forms by a vector field) Let X and Y be smooth
manifolds.

(a) Let g be a p-form on X, and let n and f be two vector fields on X. Then

ifing ¼ �inifg: ð45Þ
(b) Let g be a p-form, q a q-form, and let f be a vector field on X. Then

ifðg ^ qÞ ¼ ifg ^ qþ ð�1Þpg ^ ifq: ð46Þ
(c) Let f : X ! Y be a differentiable mapping, g a p-form on Y, and let n be a

vector field on X, f a vector field on Y. Suppose that n and fare f-related.
Then

f *ifg ¼ inf *g: ð47Þ

Appendix: Analysis on Euclidean Spaces and Smooth Manifolds 311



Theorem 4 (Lie derivative)

(a) Let X be a smooth manifold, g a p-form, q a q-form, and let n and f be vector
fields on X. Then

ong ¼ indgþ ding; ð48Þ
ondg ¼ dong; ð49Þ

onðg ^ qÞ ¼ ong ^ qþ g ^ onq; ð50Þ
i½n;f	g ¼ onifg� ifong; ð51Þ
o½n;f	g ¼ onofg� ofong: ð52Þ

(b) Let f : X ! Y be a differentiable mapping of smooth manifolds, let n be a
vector field on X, and f be a vector field on Y. Suppose that n and f are f-
compatible. Then for any p-form g on Y

f *ofg ¼ onf *g: ð53Þ

Theorem 5 Let X and Y be smooth manifolds, f : X ! Y a C1 mapping. Let ðU;uÞ,
u ¼ ðxiÞ, be a chart on X, and ðV ;wÞ, w ¼ ðyrÞ, a chart on Y, such that f ðUÞ � V .

(a) For any point x 2 U and any tangent vector n 2 TxX at the point x, expressed
as

n ¼ nk
@

@xk

� �
x
; ð54Þ

the image Tf � n is

Tf � n ¼ @ðyrfu�1Þ
@xi

� �
uðxÞ

ni
@

@yr

� �
f ðxÞ

: ð55Þ

(b) The pull-back f *g of a differential p-form g on Y, expressed as

g ¼ 1
p!
gi1i2...ipdx

i1 ^ dxi2 ^ � � � ^ dxip ; ð56Þ

is given by

f *g ¼ 1
p!
@ðyr1 fu�1Þ

@xi1
@ðyr2 fu�1Þ

@xi2
� � � @ðy

rp fu�1Þ
@xip

� ðgr1r2...rp � f Þ � dxi1 ^ dxi2 ^ � � � ^ dxip :
ð57Þ

312 Appendix: Analysis on Euclidean Spaces and Smooth Manifolds



Theorem 6 Let ðU;uÞ, u ¼ ðxiÞ, be a chart on X.

(a) For any two vector fields n and f on X, expressed by

n ¼ ni
@

@xi
; f ¼ fi

@

@xi
; ð58Þ

the Lie bracket n; f½ 	 is expressed by

n; f½ 	 ¼ @fi

@xl
nl � @ni

@xl
fl

� �
@

@xi
: ð59Þ

(b) The exterior derivative df of a function f : X ! R is expressed by

df ¼ @f
@xk

dxk: ð60Þ

The exterior derivative dg of a p-form g (56) has the chart expression

dg ¼ 1
p!
dgi1i2...ip ^ dxi1 ^ dxi2 ^ � � � ^ dxip ; ð61Þ

where the exterior derivative dgi1i2...ip is determined by formula (60).
(c) The contraction ing of the form g (56) by a vector field n (58) has the chart

expression

ing ¼ 1
ðk � 1Þ! gsi1i2...ik�1

nsdxi1 ^ dxi2 ^ � � � ^ dxik�1 : ð62Þ

(d) The Lie derivative ong of the form g (56) by a vector field n (58) has the chart
expression

ong ¼ 1
p!

@ns

@xi1
gsi2i3...ip �

@ns

@xi2
gsi1i3i4...ip þ

@ns

@xi3
gsi1i2i4i5...ip

�

� � � � þ ð�1Þp�1 @n
s

@xip
gsi1i2...ip�1

þ @gi1i2...ip
@xk

nk
�
dxi1 ^ dxi2 ^ � � � ^ dxip :

ð63Þ

A.6 Fibered Homotopy Operators

In this section, we study differential forms, defined on open star-shaped sets U in an
Euclidean space Rn and on trivial fibered manifolds U � V , where V is an open
star-shaped set in Rm. Our aim will be to investigate properties of the exterior
derivative operator d on U and on U � V .

First, we consider a differential k-form q, where k� 1, defined on an open star-
shaped set U � Rn with center at the origin 0 2 Rn. We shall study the equation

dg ¼ q ð64Þ
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for an unknown ðk � 1Þ-form g on V. Denote by xi the canonical coordinates on
U. Define a mapping v : 0; 1½ 	 � V ! V as the restriction of the image of the
mapping ðs; x1; x2; . . .; xnÞ ¼ ðsx1; sx2; . . .; sxnÞ from R� Rn to Rn to the open set
V; thus, in short

vðs; xiÞ ¼ ðsxiÞ: ð65Þ
Then

v*dxi ¼ xidsþ sdxi: ð66Þ
The pull-back v*q is a k-form on a neighborhood of the set 0;1½ 	 � V . Obviously,
there exists a unique decomposition

v*q ¼ ds ^ qð0ÞðsÞ þ q0ðsÞ; ð67Þ
such that the k-forms qð0ÞðsÞ and q0ðsÞ do not contain ds. Note that by formula (66),
q0ðsÞ arises from q by replacing each factor dxi with sdxi, and by replacing each
coefficient f with f � v. Thus, q0ðsÞ obeys

q0ð1Þ ¼ q; q0ð0Þ ¼ 0: ð68Þ
We set

Iq ¼
Z1

0

qð0ÞðsÞ; ð69Þ

where the expression on the right-hand side means integration of the coefficients in
the form qð0ÞðsÞ over s from 0 to 1.

Lemma 1 Let U be an open ball in Rn with center 0.

(a) For every differentiable function f : U ! R;

f ¼ Idf þ f ð0Þ: ð70Þ
(b) Suppose that k� 1. Then for any differential k-form q on U,

q ¼ Idqþ dIq: ð71Þ

Proof

1. If f is a function, then df ¼ ð@f =@xiÞdxi, and we have by (66) v*df ¼
ðð@f =@xiÞ � vÞ � ðxidsþ sdxiÞ. Consequently,

Idf ¼ xi
Z1

0

@f
@xi

� v
� �

ds: ð72Þ
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Now (70) follows from the identity

f � f ð0Þ ¼ ðf � vÞjs¼1 � ðf � vÞjs¼0 ¼
Z1

0

dðf � vÞ
ds

ds

¼ xi
Z1

0

@f
@xi

� v
� �

ds:

ð73Þ

2. Let k ¼ 1. Then q has an expression q ¼ Bidxi, and the pull-back v*q is given
by v*q ¼ xiðBi � vÞdsþ ðBi � vÞsdxi. Differentiating we get

v*dq ¼ dv*q ¼ ds ^ �dðxiðBi � vÞ þ @ððBi � vÞsÞ
@s

dyi
� �

þ s
@ðBi � vÞ

@x j
dx j ^ dxi;

ð74Þ

hence

Iq ¼ xi
Z1

0

Bi � v � ds: ð75Þ

Thus,

Idq ¼
Z1

0

@ððBi � vÞsÞ
@s

� @ðx j � Bj � vÞ
@xi

� �
ds � dxi; ð76Þ

and

dIq ¼
Z1

0

@ðx j � Bj � vÞ
@xi

ds � dxi: ð77Þ

Consequently,

Idqþ dIq ¼
Z1

0

@ððBi � vÞsÞ
@s

� �
ds � dxi

¼ ððBi � v � sÞjs¼1 � ðBi � v � sÞjs¼0Þdxi ¼ q:

ð78Þ

3. Let k� 2. Write q in the form

q ¼ dxi ^Wi; ð79Þ
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and define differential forms Wð0Þ
i ðsÞ and W0

iðsÞ by

v*Wi ¼ ds ^Wð0Þ
i ðsÞ þW0

iðsÞ: ð80Þ

Then

v*q ¼ ðsdxi þ xidsÞ ^ ðds ^Wð0Þ
i ðsÞ þW0

iðsÞÞ
¼ ds ^ ð�sdxi ^Wð0Þ

i ðsÞ þ yrW0
iðsÞÞ þ sdyi ^W0

iðsÞ:
ð81Þ

Thus,

Iq ¼
Z1

0

ð�sdxi ^Wð0Þ
i ðsÞ þ xiW0

iðsÞÞ: ð82Þ

To determine Idq, we compute v*dq. Property v*dq ¼ dv*q of the pull-back
yields

v*dq ¼ �ds ^ ðsdxi ^ dWð0Þ
i ðsÞ þ dxi ^W0

iðsÞ
þ xidW0

iðsÞÞ � dxi ^ dðsW0
iðsÞÞÞ

¼ ds ^ �sdxi ^ dWð0Þ
i ðsÞ � dxi ^W0

iðsÞ
�

�xidW0
iðsÞ þ dxi ^ @ðsW0

iðsÞÞ
@s

�
� dxi ^ dx j ^ @ðsW0

iðsÞÞ
@x j

;

ð83Þ

where @gðsÞ=@s denotes the form, arising from gðsÞ by differentiation with
respect to s, followed by multiplication by ds. Now by (83) and (69),

Idq ¼ �dxi ^
Z1

0

sdWð0Þ
i ðsÞ � dxi ^

Z1

0

W0
iðsÞ

� xi
Z1

0

dW0
iðsÞ þ dxi ^

Z1

0

@ðsW0
iðsÞÞ

@s
:

ð84Þ

It is important to notice that the exterior derivatives dWð0Þ
r ðsÞ, and dW0

rðsÞ have
the meaning of the derivatives with respect to xi (the terms containing ds are
canceled; see the definition of I (67), (69)).
Now, we easily get

Idqþ dIq ¼ dxi ^
Z1

0

@ðsW0
iðsÞÞ

@s
: ð85Þ
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Remembering that the integral symbol denotes integration of coefficients in the
corresponding forms with respect to the parameter s from 0 to 1, and using (68),
one obtains

Idqþ dIq ¼ dxi ^ ð1 �W0
ið1Þ � 0 �W0

ið0ÞÞ
¼ dxi ^W0

ið1Þ ¼ dxi ^Wi ¼ q;
ð86Þ

as desired. h

As an immediate consequence, we get the following statement.

Lemma 2 (The Volterra–Poincare lemma) Let U be an open ball in Rn with center
0, q a differential k-form on U, where k� 1. The following two conditions are
equivalent:

(a) There exists a form g on U such that

dg ¼ q: ð87Þ
(b) q satisfies

dq ¼ 0: ð88Þ

Proof If dg ¼ q for some g, we have dq ¼ ddg ¼ 0. Conversely, if dq ¼ 0, we
take g ¼ Iq in Lemma 1. h

Condition (88) is sometimes called integrability condition for the differential
equation (87).

Now we consider a different kind of differential equations, reducing to (64) for
differential forms of sufficiently high degree. Let U be an open set U in Rn, and V an
open ball V in Rm with center at the origin. Denote by k the first Cartesian
projection of U � V onto U. Suppose we are given q on U � V , where k is a
positive integer. Our objective will be to study the equation

dgþ p*g0 ¼ q ð89Þ
for the unknowns a ðk � 1Þ-form g on U � V , and a k-form g0 on U.

Let ðxi; yrÞ, where 1� i� n, 1� r�m, be the canonical coordinates on U � V ,
and f: U ! U � V be the zero section of U � V . Consider the mapping
ðs; ðx1; x2; . . .; xn; y1; y2; . . .; ymÞÞ ! ðx1; x2; . . .; xn; sy1; sy2; . . .; symÞ of R� Rn �
Rm with values in Rn � Rm. Restricting the range of this mapping to U � V , we
define a mapping v: ½0;1	 � U � V ! U � V by

vðs; ðxi; yrÞÞ ¼ ðxi; syrÞ: ð90Þ
Then

v*dxi ¼ dxi; v*dyr ¼ yrdsþ sdyr: ð91Þ
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Consider the pull-back v*q, which is a k-form on a neighborhood of the set
½0; 1	 � U � V . There exists a unique decomposition

v*q ¼ ds ^ qð0ÞðsÞ þ q0ðsÞ ð92Þ
such that the k-forms qð0ÞðsÞ and q0ðsÞ do not contain ds. Note that by (91), q0ðsÞ
arises from q by replacing each factor dyr with sdyr, and by replacing each
coefficient f with f � v; the factors dxi remain unchanged. Thus, q0ðsÞ obeys

q0ð1Þ ¼ q; q0ð0Þ ¼ p*f*q: ð93Þ
We define

Iq ¼
Z1

0

qð0ÞðsÞ; ð94Þ

where the expression on the right-hand side means integration of the coefficients in
the form qð0ÞðsÞ over s from 0 to 1.

Theorem 1 Let U � Rn be an open set, and let V � Rm be an open ball with
center 0.

(a) For every differentiable function f : U � V ! R,

f ¼ Idf þ p*f*f : ð95Þ
(b) Let k� 1. Then for every differential k-form q on the Cartesian product

U � V ,

q ¼ Idqþ dIqþ p*f*q: ð96Þ

Proof

1. We have

df ¼ @f
@xi

dxi þ @f
@yr

dyr; ð97Þ

and by (91)

v*f ¼ @f
@xi

� v
� �

dxi þ @f
@yr

� v
� �

ðyrdsþ sdyrÞ: ð98Þ
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Now the identity

f � p*f*f ¼ f � vjs¼1 � f � vjs¼0

¼
Z1

0

dðf � vÞ
ds

ds ¼ yr
Z1

0

@f
@yr

� v
� �

ds ¼ Idf ;
ð99Þ

which follows from (94), gives the result.
2. Let k ¼ 1. Then q has an expression q ¼ Aidxi þ Brdyr, thus

v*q ¼ ðAi � vÞdxi þ ðBr � vÞðsdyr þ yrdsÞ
¼ yrðBr � vÞdsþ ðAi � vÞdxi þ ðBr � vÞsdyr;

ð100Þ

and

v*dq ¼ dv*q

¼ ds ^ �dðyrðBr � vÞÞ þ @ðAi � vÞ
@s

dxi þ @ððBr � vÞsÞ
@s

dyr
� �

þ @ðAi � vÞ
@x j

dx j þ @ðAi � vÞ
@ym

dym
� �

^ dxi

þ s
@ðBr � vÞ

@x j
dx j þ @ðBr � vÞ

@ym
dym

� �
^ dyr;

ð101Þ

hence

Iq ¼ yr
Z1

0

Br � v � ds; ð102Þ

and

Idq ¼
Z1

0

@ðAi � vÞ
@s

� @ðym � Bm � vÞ
@xi

� �
ds � dxi

þ
Z1

0

@ððBr � vÞsÞ
@s

� @ðym � Bm � vÞ
@yr

� �
ds � dyr:

ð103Þ

We also get

dIq ¼ yr
Z1

0

@ðBr � vÞ
@xi

ds � dxi þ
Z1

0

@ðym � Bm � vÞ
@yr

ds � dyr; ð104Þ
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consequently,

Idqþ dIq ¼ Ai � vjs¼1 � Ai � vjs¼0 þ ðBr � v � sÞjs¼1 � ðBr � v � sÞjs¼0

¼ q� p*f*q:
ð105Þ

Let k� 2. Write q in the form q ¼ dxi ^ Ui þ dyr ^Wr, and define differential

forms Uð0Þ
i ðsÞ, U0

iðsÞ, Wð0Þ
r ðsÞ by

v*Ui ¼ ds ^ Uð0Þ
i ðsÞ þ U0

iðsÞ;
v*Wr ¼ ds ^Wð0Þ

r ðsÞ þW0
rðsÞ:

ð106Þ

Then

v*q ¼ ds ^ ð�dxi ^ Uð0Þ
i ðsÞ � sdyrWð0Þ

r ðsÞ þ yrW0
rðsÞÞ

þ dxi ^ U0
iðsÞ þ sdyr þ syrW0

rðsÞÞ:
ð107Þ

Thus,

Iq ¼ �dxi ^
Z1

0

Uð0Þ
i ðsÞ � dyr ^

Z1

0

ðsWð0Þ
r ðsÞ þ yrW0

rðsÞÞds: ð108Þ

To determine Idq, we compute v*dq. We get

v*dq ¼ dv*q

¼ �ds ^ ðdxi ^ dUð0Þ
i ðsÞÞ þ sdyr ^ dWð0Þ

r ðsÞ þ dyr ^W0
rðsÞ

þ yrdW0
rðsÞ � dxi ^ dU0

iðsÞ � dyr ^ dðsW0
rðsÞÞ

¼ ds ^ �dxi ^ dUð0Þ
i ðsÞ þ dxi ^ @U0

iðsÞ
@s

�
� sdyr ^ dWð0Þ

r ðsÞ

� dyr ^W0
rðsÞ � yrdW0

rðsÞ þ dyr ^ @ðsW0
rðsÞÞ

@s

�

� dxi ^ dx j ^ @U0
iðsÞ

@x j
þ dym ^ @U0

iðsÞ
@ym

� �

� dyr ^ dx j ^ @ðsW0
rðsÞÞ

@x j
þ dym ^ @ðsW0

rðsÞÞ
@ym

� �
;

ð109Þ
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where @gðsÞ=@s denotes the form, arising by differentiation of gðsÞ with respect
to s, followed by multiplication by ds. Now by (108) and (93),

Idq ¼ �dxi ^
Z1

0

dUð0Þ
i ðsÞ � dyr ^

Z1

0

sdWð0Þ
r ðsÞ � dyr ^

Z1

0

W0
rðsÞ

� yr
Z1

0

dW0
rðsÞ þ dxi ^

Z1

0

@U0
iðsÞ
@s

þ dyr ^
Z1

0

@ðsW0
rðsÞÞ

@s
:

ð110Þ

Note that the expressions dUð0Þ
i ðsÞ, dWð0Þ

r ðsÞ, and dW0
rðsÞ have the meaning of

the exterior derivatives with respect to xi, yr (the terms containing ds are
canceled; see the definition of I (93), (94)).
Now

Idqþ dIq ¼ dxi ^
Z1

0

@U0
iðsÞ
@s

þ dyr ^
Z1

0

@ðsW0
rðsÞÞ

@s
; ð111Þ

and using formula (93),

Idqþ dIq ¼ dxi ^ ðU0
ið1Þ � U0

ið0ÞÞ þ dyr ^ ð1 �W0
rð1Þ � 0 �W0

rð0ÞÞ
¼ dxi ^ U0

ið1Þ þ dyr ^W0
rð1Þ � dxi ^ U0

ið0Þ
¼ dxi ^ Ui þ dyr ^Wr � dxi ^ p*f*Ui

¼ q� p*f*q:

ð112Þ

h

As a consequence, we have the following statement.

Theorem 2 (The fibered Volterra–Poincare lemma) Let U � Rn be an open set,
V � Rm an open ball with center 0. Let k� 1 and let q be a differential k-form on
U � V. The following two conditions are equivalent:

(a) There exist a ðk � 1Þ-form g on U � V and a k-form g0 on U such that

dgþ p*g0 ¼ q: ð113Þ
(b) The form dq is p-projectable and its p-projection is dg0.

Proof Suppose we have some forms g and g0 satisfying condition (a). Then dq ¼
dp*g0 ¼ p*dg0 proving (b). h

Conversely, if dq is p-projectable, then by the definition of I, Idq ¼ 0, and then
by Theorem 1, q ¼ Idqþ dIqþ p*f*q ¼ dgþ p*g0 proving (a).

We also get two assertions on projectability of forms, and non-uniqueness of
solutions of equation (89).
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Corollary 1 Let U � Rn be an open set, V � Rm an open ball with center the
origin 0, q a differential form on U � V. The following two conditions are
equivalent:

1. There exists a form g on U such that q ¼ p*g.
2. Idqþ dIq ¼ 0.

Proof This follows from Theorem 1. h

Corollary 2 Suppose that the form dq is p-projectable. Let ðg; g0Þ and ð~g; ~g0Þ be
two solutions of equation (89). Then there exist a ðp� 1Þ-form s on U � V and a
ðp� 1Þ-form v on U such that

~g ¼ gþ p*vþ ds; ~g0 ¼ g0 � dv: ð114Þ

Proof By hypothesis,

dgþ p*g0 ¼ q; d~gþ p*~g0 ¼ q: ð115Þ
These equations imply dgþ p*g0 ¼ d~gþ p*~g0 hence p*dg0 ¼ p*d~g0. But for any
section d of the projection p,

d*p*dg0 ¼ dg0 ¼ d*p*d~g0 ¼ d~g0: ð116Þ
Thus, by the Volterra–Poincaré lemma, ~g0 � g0 ¼ dv for some v. Then, however,
dgþ p*g0 ¼ d~gþ p*ðg0 þ dvÞ and

dðg� ~g� p*vÞ ¼ 0: ð117Þ
Applying the Volterra–Poincaré lemma again, we get (114). h

Remark 1 (The Volterra–Poincare lemma on manifolds) Let X be an n-dimensional
manifold. Every point x 2 X has a neighborhood U such that the decomposition of
forms, given in Theorem 1, is defined on U. Indeed, if ðU;uÞ is a chart at x such
that uðUÞ is an open ball with center 0 2 Rn, then formulas q ¼ u*l and
ðu�1Þ*q ¼ l establish a bijective correspondence between forms on U and uðUÞ,
commuting with the exterior derivative d. In general, this correspondence does not
provide a construction of solutions of differential equations (64) and (89), defined
globally on X.

Remark 2 For k-forms q such that k ¼ n, always dg0 ¼ 0 hence g0 ¼ ds and
equation dgþ p*g0 ¼ q (89) reduces to dg ¼ q (64). The same is true for k[ n
because in this case g0 ¼ 0.

Turning back to the definition of the fibered homotopy operator I (94), we have
the following explicit assertion.

Lemma 3 Let q be a differential k-form on the product of open sets U � V,
considered as a fibered manifold over U, expressed in the canonical coordinates
ðxi; yrÞ on U � V as
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q ¼ 1
p!
Ar1r2...rp i1i2...iqdy

r1 ^ dyr2 ^ � � � ^ dyrp ^ dxi1 ^ dxi2 ^ � � � ^ dxip ; ð118Þ

where k ¼ pþ q. Then the fibered homotopy operator I is given by

Iq ¼ yr
Z1

0

Arr1r2...rp�1 i1i2...iqðx j; symÞsp�1ds � dyr1 ^ dyr2 ^ � � � ^ dyrp�1

^ dxi1 ^ dxi2 ^ � � � ^ dxip :

ð119Þ

I satisfies

I2q ¼ 0: ð120Þ

Proof The homotopy ðxi; yrÞ ! vðs; ðxi; yrÞÞ ¼ ðxi; syrÞ yields

v*q ¼ 1
p!
ðpyrðArr1r2...rp�1 i1i2...iq � vÞsp�1ds ^ dyr1 ^ dyr2 ^ � � � ^ dyrp�1

þ ðAr1r2...rp i1i2...iq � vÞspdyr1 ^ dyr2 ^ � � � ^ dyrpÞ
^ dxi1 ^ dxi2 ^ � � � ^ dxip

ð121Þ

which implies that

Iq ¼ ðAr1r2...rp i1i2...iq � vÞv*ðdyr1 ^ dyr2 ^ � � � ^ dyrpÞ

¼ yr
Z1

0

ðArr1r2...rp�1 i1i2...iq � vÞsp�1ds � dyr1 ^ dyr2 ^ � � � ^ dyrp�1

^ dxi1 ^ dxi2 ^ � � � ^ dxip :

ð122Þ

Identity (120) is now an immediate consequence of formula (119). h

A.7 Differential Ideals

For basic concepts of the theory of differential ideals and related topics, we refer to
Bryant et al. [Br].

Let X be an n-dimensional smooth manifold. We denote by KpTX the bundle of
alternating p-forms over X; in this notation, K1TX ¼ T*X is the cotangent bundle
of X. Sections of the bundle KpTX, differential p-forms on X, form a module over
the ring of functions, denoted by XpX. The direct sum

XX ¼ X0X 
 X1X 
 X2X 
 � � � 
 XnX ð123Þ
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together with the exteriormultiplication offorms is the exterior algebra ofX.Weusually
consider elements ofXpX as elements ofXX. The multiplication^ inXX is associative
and distributive, but not commutative; instead we have for any g 2 XpX and q 2 XqX,

g ^ q ¼ ð�1Þpqq ^ g: ð124Þ
A subset H � XX is called an ideal, if the following two conditions are satisfied:

(a) H is a subgroup of the additive group of XX.
(b) If g 2 H and q 2 XX then g ^ q 2 H.

An ideal H � XX is called a differential ideal, if for any g 2 H also dg 2 H;
thus, a differential ideal is an ideal closed under exterior derivative operation.

Any non-empty set h � XX generates a subgroup Hh of the additive group of
XX, formed by (finite) sums

l ¼
X

gk ^ qk; ð125Þ

where gk 2 h and qk 2 XX.Hh is an ideal, which is a subset of any ideal containing
h; it is said to be generated by the set h (or by the generators g 2 h). If the set h is
finite, we say that Hh is finitely generated.

Let VX denote the module of vector fields on X. We denote

AðHÞ ¼ fn 2 VXjing � H; g 2 Hg: ð126Þ
This set, the Cauchy characteristic space of H, has the structure of a subgroup of
the additive group of VX. The annihilator

CðHÞ ¼ fl 2 XXjinl ¼ 0; n 2 AðHÞg ð127Þ
is the retracting subspace of H.

A.8 The Levi-Civita Symbol

We introduce in this appendix a real-valued function, defined on the symmetric
group s 2 Sn, the Levi-Civita symbol, playing an essential role in algebraic
computations with skew-symmetric expressions. We also derive basic computation
formulas for the Levi-Civita symbol, needed in this book.

Any permutation s 2 Sn can be written as the composition of transpositions sk,
that is s ¼ sM � sM�1 � � � � � s2 � s1. This decomposition of s is not unique, but the
number sgn s ¼ ð�1ÞM , the sign of the permutation s, is independent of the choice
of the decomposition. If sgn s ¼ 1 (resp. sgn s ¼ �1), the permutation s is called
even (resp. odd). The function Sk 3 s ! sgn s 2 f1;�1g is sometimes called the
sign function. As an immediate consequence of the definition, we have

sgnðm � sÞ ¼ sgn m � sgn s ð128Þ
for all permutations m; s 2 Sr.
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The sign function s ! sgn s can be considered as a function on the set of distinct
n-tuples ði1; i2; . . .; inÞ of integers, such that 1� i1; i2; . . .; in � n. We define the Levi-
Civita, or permutation symbol ei1i2...in setting ei1i2...in ¼ 1 if the n-tuple ði1; i2; . . .; inÞ
is an even permutation of ð1; 2; . . .; nÞ, ei1i2...in ¼ �1 if ði1; i2; . . .; inÞ is an odd
permutation of ð1; 2; . . .; nÞ, and ei1i2...in ¼ 0 whenever at least two of the indices
coincide. Clearly,

ei1i2...in ¼
X
s2Sn

sgn s � d1isð1Þd2isð2Þ . . .dnisðnÞ : ð129Þ

Sometimes it is convenient to express this formula in a different form, without
explicit mentioning the permutations s. To this purpose, we introduce the
alternation operation in the indices ði1; i2; . . .; inÞ, denoted Altði1i2. . .inÞ, by

1
n!

X
s2Sn

sgn s � d1isð1Þd2isð2Þ . . .dnisðnÞ ¼ d1i1d
2
i2 . . .d

n
in Altði1i2. . .inÞ: ð130Þ

It is understood in this formula that the operator Altði1i2. . .inÞ is applied to the right-
hand side expression, and represents explicit expression on the left-hand side. From
(130) we get, in particular,

ei1i2...in ¼ n!d1isð1Þd
2
isð2Þ . . .d

n
isðnÞ Altði1i2. . .inÞ: ð131Þ

Formula (131) indicates that the Levi-Civita symbols ei1i2...in and ei1i2...in can be
expressed by means of determinants. We have

ei1i2...in ¼
d1i1 d2i1 . . . dni1
d1i2 d2i2 . . . dni2
. . .
d1in d2in . . . dnin

��������

��������
; ei1i2...in ¼

di11 di21 . . . din1
di12 di22 . . . din2
. . .
di1n di2n . . . dinn

��������

��������
: ð132Þ

Clearly, multiplying these determinants, we get

ei1i2...ine
j1j2...jn ¼

d1i1 d2i1 . . . dni1
d1i2 d2i2 . . . dni2
. . .

d1in d2in . . . dnin

����������

����������

dj11 dj21 . . . djn1
dj12 dj22 . . . djn2
. . .

dj1n dj2n . . . djnn

����������

����������

¼

dj1i1 dj2i1 . . . djni1
dj1i2 dj2i2 . . . djni2
. . .

dj1in dj2in . . . djnin

����������

����������
¼ n!dj1i1d

j2
i2 . . .d

jn
in Altði1i2. . .inÞ:

ð133Þ
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Lemma 1

(a) For every k such that 1� k� n,

ei1i2...ikskþ1skþ2...sne
j1j2...jkskþ1skþ2...sn ¼ k!ðn� kÞ!dj1i1dj2i2 . . .djkik Altði1i2. . .ikÞ: ð134Þ

(b) For every k such that 0� k� s� n,

1
s!

n� k
n� s

� �
ej1j2...jk jkþ1jkþ2...jsisþ1isþ2...ind

lkþ1
ikþ1

dlkþ2
ikþ2

. . .dlsis Altðikþ1ikþ2. . .isisþ1isþ2. . .inÞ

¼ 1
k!ðs� kÞ! d

lkþ1
jkþ1

dlkþ2
jkþ2

. . .dlsjsej1j2...jk ikþ1ikþ2...isisþ1isþ2...in

Altðj1j2. . .jkjkþ1jkþ2. . .jsÞ:
ð135Þ

Proof

1. Setting

Dj1j2...jl
i1i2...il ¼ dj1i1d

j2
i2 . . .d

jl
il Altði1i2. . .ilÞ; ð136Þ

we have

Dj1j2...jl
i1i2...il ¼ dj1i1d

j2
i2 . . .d

jl�1
il�1

djlil Altði1i2. . .il�1Þ Altði1i2. . .ilÞ
¼ Dj1j2...jl�1

i1i2...il�1
djlil Altði1i2. . .ilÞ

¼ 1
l

Dj1j2...jl�1
i1i2...il�1

djlil � Dj1j2...jl�1
il i2i3...il�1

djli1 � Dj1j2...jl�1
i1ili3i4...il�1

djli2
�

� � � � � Dj1j2...jl�1
i1i2...il�3il il�1

djlil�2
� Dj1j2...jl�1

i1i2...il�3il�2ild
jl
il�1

	
:

ð137Þ

Note that contracting this expression, we obtain

Di1i2...il�1s
i1i2...il�1s ¼

n� lþ 1
l

Di1i2...il�1
i1i2...il�1

: ð138Þ

Now formula (133) can be written in the form

ei1i2...ine
j1j2...jn ¼ n!Dj1j2...jn

i1i2...in : ð139Þ

Contracting (139) in one pair of indices, we get

ei1i2...in�1se
j1j2...jn�1s ¼ n!Dj1j2...jn�1s

i1i2...in�1s ¼ ðn� 1Þ!1!Dj1j2...jn�1
i1i2...in�1

; ð140Þ

326 Appendix: Analysis on Euclidean Spaces and Smooth Manifolds



proving (134) for k ¼ 1. After n� k contractions, we obtain

Dj1j2...jkskþ1skþ2...sn
i1i2...ikskþ1skþ2...sn ¼

1
ðn� nþ kÞ!D

j1j2...jk
i1i2...ik ¼

1
k!
Dj1j2...jk
i1i2...ik ; ð141Þ

which leads to (134).
2. To prove formula (135), consider the tensors

n� k
n� s

� � 1
s!
ej1j2...jk jkþ1jkþ2...jsisþ1isþ2...ind

lkþ1
ikþ1

dlkþ2
ikþ2

. . .dlsis

Altðikþ1ikþ2. . .isisþ1isþ2. . .inÞ
ð142Þ

and

1
k!ðs� kÞ! ej1j2...jk ikþ1ikþ2...isisþ1isþ2...ind

lkþ1
jkþ1

dlkþ2
jkþ2

. . .dlsjs

Altðj1j2. . .jkjkþ1jkþ2. . .jsÞ:
ð143Þ

Suppose that the component (142) is different from 0. Then

(a) the set fikþ1; ikþ2; . . .; is; isþ1; isþ2; . . .; ing consists of distinct elements,
(b) the set fj1; j2; . . .; jk; jkþ1; jkþ2; . . .; jsg consists of distinct elements,
(c) the set flkþ1; lkþ2; . . .; lsg satisfies

fikþ1; ikþ2;. . .; is; isþ1; isþ2; . . .; ing \ fj1; j2; . . .; jk; jkþ1; jkþ2; . . .; jsg
¼ flkþ1; lkþ2; . . .; lsg:

ð144Þ

Take jkþ1 ¼ lkþ1, jkþ2 ¼ lkþ2, . . ., js ¼ ls. Then (142) reduces to

n� k
n� s

� � 1
s!
ej1j2...jk lkþ1lkþ2...sisþ1isþ2...ind

lkþ1
ikþ1

dlkþ2
ikþ2

. . .dlsis

Altðikþ1ikþ2. . .isisþ1isþ2. . .inÞ:
ð145Þ

There exist exactly one ðs� kÞ-tuple in the set ikþ1; ikþ2; . . .; is; isþ1; isþ2; . . .; in,
say ikþ1; ikþ2; . . .; is such that dlkþ1

ikþ1
dlkþ2
ikþ2

. . . dlsis ¼ 1. Then

ikþ1 ¼ jkþ1 ¼ lkþ1; ikþ2 ¼ jkþ2 ¼ lkþ2; . . .; is ¼ js ¼ ls; ð146Þ
and (146) gives the expression

ðn� sÞ!
ðn� kÞ!

n� k
n� s

� � 1
s!
ej1j2...jk lkþ1lkþ2...sisþ1isþ2...in ¼

1
s!ðs� kÞ! ej1j2...jk lkþ1lkþ2...sisþ1isþ2...in :

ð147Þ
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Compute now (143) for the same indices, satisfying conditions (147). We get
1

k!ðs� kÞ!
k!
s!
dlkþ1
jkþ1

dlkþ2
jkþ2

. . .dlsjsej1j2...jk lkþ1lkþ2...lsisþ1isþ2...in

¼ 1
s!ðs� kÞ! ej1j2...jk lkþ1lkþ2...lsisþ1isþ2...in :

ð148Þ

This shows that if the component (142) is different from 0, then also the
component (143) is different from 0, and is equal to (142).
Conversely, if (143) is different from 0, then

1
k!ðs� kÞ! d

lkþ1
jkþ1

dlkþ2
jkþ2

. . .dlsjsej1j2...jk ikþ1ikþ2...isisþ1isþ2...in

Altðj1j2. . .jkjkþ1jkþ2. . .jsÞ;
ð149Þ

we obtain again conditions (a), (b), and (c). h

Corollary 1 If k ¼ n, (134) coincides with (133). If k ¼ 0, we have

es1s2...sne
s1s2...sn ¼ n!: ð150Þ

Corollary 2 (Bases of forms) Let X be an n-dimensional smooth manifold, and let
ðU;uÞ, u ¼ ðxiÞ, be a chart on X. Then the forms

x0 ¼ 1
n!
ei1i2...indx

i1 ^ dxi2 ^ � � � ^ dxin ;

xk1k2...kp ¼
1

ðn� pÞ! ek1k2...kp�1kpipþ1ipþ2...indx
ipþ1 ^ dxipþ2 ^ � � � ^ dxin ;

1� p� n� 1;

ð151Þ

define bases of n-forms, ðn� 1Þ-forms, …, 2-forms, and 1-forms, respectively. The
inverse transformation formulas are

el1l2...lnx0 ¼ dxl1 ^ dxl2 ^ � � � ^ dxln ;

ek1k2...kplpþ1lpþ2...lnxk1k2...kp ¼ dxlpþ1 ^ dxlpþ2 ^ � � � ^ dxln ;

1� p� n

ð152Þ

Proof Immediate: The forms (151) are defined by

x0 ¼ dx1 ^ dx2 ^ � � � ^ dxn; xk1 ¼ i@=@xk1x0; xk1k2 ¼ i@=@xk2xk1 ;

. . .; xk1k2...kp ¼ i@=@xkpxk1k2...kp�1 ; . . .; xk1k2...kn�1 ¼ i@=@xkn�1xk1k2...kn�2 ;

ð153Þ
and are linearly independent. h
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A.9 The Trace Decomposition

This appendix is devoted to specific algebraic methods, used in the decomposition
theory of differential forms on jet manifolds. To this purpose we present elementary
trace decomposition formulas and their proofs (Krupka [K15]).

Beside the usual index notation, we also use multi-indices of the form
I ¼ ði1i2. . .ikÞ, where r and n are positive integers, k ¼ 0; 1; 2; . . .; r, and
1� i1; i2; . . .; ik � n. The number k is called the length of I and is denoted by jIj.
For any index j, such that 1� j� n, we denote by Ij the multi-index ði1i2. . .ikjÞ. The
symbol Altði1i2. . .ikÞ (respectively, Symði1i2. . .ikÞ) denotes alternation
(respectively, symmetrisation) in the indices i1, i2, . . ., ik .

Let E be an n-dimensional vector space, E* its dual vector space, and let r and
s be two non-negative integers; suppose that at least one of these integers is non-
zero. Then by a tensor of type ðr; sÞ over E, we mean a multilinear mapping
U: E*� E*� � � � � E*� E � E � � � � � E ! R (r factors E*, s factors E);
r (respectively, s) is called the contravariant (respectively, covariant) degree of
U. A tensor of type ðr; 0Þ (respectively, ð0; sÞ) is called contravariant (covariant) of
degree r (respectively, s). The set of tensors of type ðr; sÞ considered with its natural
real vector space structure is called the tensor space of type ðr; sÞ over E, and is
denoted by Tr

s E.
Let ei be a basis of the vector space E, ei the dual basis of E*. The tensors

ej1 � ej2 � � � � � ejr � ei1 � ei2 � � � � � eis , 1� j1; j2; . . .; jr; i1; i2; . . .; is � n, form a
basis of the vector space Tr

s E. Each tensor U 2 Tr
s E has a unique expression

U ¼ Uj1j2...jr
i1i2...isej1 � ej2 � � � � � ejr � ei1 � ei2 � � � � � eis ; ð154Þ

where the numbers Ui1i2...ir
i1i2...is are the components of U in the basis ei.

Remark 1 If a basis of the vector space E is fixed, it is sometimes convenient to
denote the tensors simply by their components; in this case, a tensor U of type ðr; sÞ
over E is usually written as

U ¼ Uj1j2...jr
i1i2...is : ð155Þ

Remark 2 The canonical basis of the vector space E ¼ Rn consists of the vectors
e1 ¼ ð1; 0; 0; . . .; 0Þ, e2 ¼ ð0; 1; 0; 0; . . .; 0Þ, . . ., en ¼ ð0; 0; . . .; 0; 1Þ. The basis of
the tensor space Tr

sR
n associated with ðe1; e2; . . .; enÞ is also called canonical. A

tensor U 2 Tr
sR

n can be expressed either by formula (154) or by (155); these
formulas define the canonical identification of the vector space Tr

sR
n with the

vector space RN of the collections U ¼ Uj1j2...jr
i1i2...is , where N ¼ dim Tr

sR
n ¼ nrs.

Remark 3 The transformation equations for the associated bases in Tr
s E are easily

derived from the transformation equations for bases of the vector space E. Suppose,
we have two bases ei and ei of E. Let �ei ¼ Ap

i ep and �e
i ¼ Bi

pe
p be the corresponding

transformation equations. Then
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Aq
i B

i
p ¼ dqp; ð156Þ

where dpq is the Kronecker symbol, dpp ¼ 1 and dpq ¼ 0 if p 6¼ q, and

�ej1 � �ej2 � � � � � �ejr � �ei1 � �ei2 � � � � � �eis

¼ Ap1
j1 A

p2
j2 . . .A

pr
jr B

i1
q1B

i2
q2 . . .B

is
qsep1 � ep2 � � � � � epr � eq1 � eq2 � � � � � eqs :

ð157Þ
Expressing a tensor U 2 Tr

s E as in (154), we have

U ¼ �Uj1j2...jr
i1i2...is�ej1 � �ej2 � � � � � �ejr � �ei1 � �ei2 � � � � � �eis

¼ Up1p2...pr
q1q2...qsep1 � ep2 � � � � � epr � eq1 � eq2 � � � � � eqs :

ð158Þ

Clearly, then

Up1p2...pr
q1q2...qs ¼ Ap1

j1 A
p2
j2 . . .A

pr
jr B

i1
q1B

i2
q2 . . .B

is
qs
�Uj1j2...jr

i1i2...is : ð159Þ
The Kronecker tensor over E is a ð1; 1Þ-tensor d, defined in any basis of E as

d ¼ ei � ei: ð160Þ
It is immediately seen that the tensor d does not depend on the choice of the basis ei.
We can also write d ¼ dijei � e j, where dij is the Kronecker symbol (Remark 3).

This definition can be extended to tensors of type ðr; sÞ for any positive integers
r and s. Let a and b be integers such that 1� a� r, 1� b� s, and let ei be a basis of
E. We introduce a linear mapping iab : T

r�1
s�1E ! Tr

s E as follows. For every

V 2 Tr�1
s�1E,

V ¼ Vj1j2...jr�1
i1i2...is�1ej1 � ej2 � � � � � ejr�1 � ei1 � ei2 � � � � � eis�1 ; ð161Þ

define a tensor iabV 2 Tr
s E by

iabV ¼ Wj1j2...jr
i1i2...isej1 � ej2 � � � � � ejr � ei1 � ei2 � � � � � eis ; ð162Þ

where

Wj1j2...ja�1jajaþ1...jr
i1i2...ib�1ibibþ1...is ¼ djaibV

j1j2...ja�1jaþ1...jr
i1i2...ib�1ibþ1...is : ð163Þ

Thus,

iabV ¼ Vj1j2...jr�1
i1i2...is�1ej1 � ej2 � � � � � eja�1 � es � ejaþ1 � � � � � ejr

� ei1 � ei2 � � � � � eib�1 � es � eibþ1 � � � � � eis
ð164Þ

(summation through s on the right-hand side). It is easily verified that this tensor is
independent of the choice of ei.

The mapping iab defined by formulas (152), (163) is the ða; bÞ-canonical
injection. A tensor U 2 Tr

s E, belonging to the vector subspace generated by the
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subspaces iabðTr�1
s�1EÞ � Tr

s E, where 1� a� r and 1� b� s, is called a Kronecker
tensor, or a tensor of Kronecker type.

A tensor V 2 Tr
s E, V ¼ Vk1k2...kr

l1l2...ls is a Kronecker tensor if and only if there

exist some tensors V ðpÞ
ðqÞ 2 Tr�1

s�1E, V ðpÞ
ðqÞ ¼ V ðpÞk1k2...kr�1

ðqÞ l1l2...ls�1 , where the indices

satisfy 1� p� r, 1� q� s, such that Vk1k2...kr
l1l2...ls can be expressed in the form

Vj1j2...jr
l1l2...ls ¼ dj1l1V

ð1Þj2j3...jr
ð1Þ l2l3...ls þ dj1l2V

ð1Þj2j3...jr
ð2Þ l1l3...ls þ � � � þ dj1ls V

ð1Þj2j3...jr
ðsÞ l1l2...ls�1

þ dj2l1V
ð2Þj1j3...jr
ð1Þ l2l3...ls þ dj2l2V

ð2Þj1j3...jr
ð2Þ l1l3...ls þ � � � þ dj2ls V

ð2Þj1j3...jr
ðsÞ l1l2...ls�1

þ . . .

þ djrl1V
ðrÞj1j2...jr�1

ð1Þ l2l3...ls þ djrl2V
ðrÞj1j2...jr�1

ð2Þ l1l3...ls þ � � � þ djrls V
ðrÞj1j2...jr�1

ðsÞ l1l2...ls�1 :

ð165Þ
A tensor U 2 Tr

s E expressed as in (154), is said to be traceless, if its traces are
all zero,

Usl1l2...lr�1
sj1j2...js�1 ¼ 0; Ul1sl2...lr�1

sj1j2...js�1 ¼ 0; . . .; Ul1l2...lr�1s
sj1j2...js�1 ¼ 0;

Usl1l2...lr�1
j1sj2...js�1 ¼ 0; Ul1sl2...lr�1

j1sj2...js�1 ¼ 0; . . .; Ul1l2...lr�1s
j1sj2...js�1 ¼ 0;

. . .

Usl1l2...lr�1
j1j2...js�1s ¼ 0; Ul1sl2...lr�1

j1j2...js�1s ¼ 0; . . .; Ul1l2...lr�1s
j1j2...js�1s ¼ 0:

ð166Þ
To prove a theorem of the decomposition of the tensor space Tr

s E by the trace
operation, recall that every scalar product g on the vector space E induces a scalar
product on Tr

s E as follows. Let g be expressed in a basis as

gðn; fÞ ¼ gijn
if j; ð167Þ

where n ¼ ni, f ¼ fi are any vectors from E. Let U;V 2 Tr
s E be any tensors,

U ¼ Uj1j2...jr
i1i2...is , V ¼ Vi1i2...ir

j1j2...js . We define a bilinear form on Tr
s E, denoted by

the same letter, g, by

gðU;VÞ ¼ gj1k1gj2k2 . . .gjrkr g
i1l1gi2l2 . . .gislsUj1j2...jr

i1i2...isV
k1k2...kr

l1l2...lsl1l2...ls : ð168Þ

Lemma 1 Formula (168) defines a scalar product on the tensor space Tr
s E.

Proof Only positive definiteness of the bilinear form (168) needs proof. If we
choose a basis of E such that gjk ¼ djk, then gðU;VÞ(168) has an expression

gðU;VÞ ¼
X

k1;k2;...;kr

X
l1;l2;...;ls

Uj1j2...jr
l1l2...lsV

j1j2...jr
l1l2...ls : ð169Þ

Obviously, this is the Euclidean scalar product, which is positive definite. h
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Theorem 1 (The trace decomposition theorem) The vector space Tr
s E is the direct

sum of its vector subspaces of traceless and Kronecker tensors.

Proof We want to show that any tensor W 2 Tr
s E has a unique decomposition of

the form W ¼ U þ V , where U is traceless and V is of Kronecker type. To prove
existence of the decomposition, consider a scalar product g (169) on Tr

s E. It is
immediately seen that the orthogonal complement of the subspace of Kronecker
tensors coincides with the subspace of traceless tensors. Indeed, if U 2 Tr

s E,
U ¼ Ui1i2...ir

j1j2...js , then calculating the scalar product gðU;VÞ for any tensor
V 2 Tr

s E, V ¼ Vk1k2...kr
l1l2...ls , satisfying condition (165), the condition

gðU;VÞ ¼ 0 ð170Þ
implies that U must be traceless. The uniqueness of the direct sum follows from the
orthogonality of subspaces of traceless and Kronecker tensors in Tr

s E with respect
to the scalar product g. h

Theorem 1 states that every tensor W 2 Tr
s E, W ¼ Wi1i2...ir

l1l2...ls is expressible in
the form

Wi1i2...ir
l1l2...ls ¼ Ui1i2...ir

l1l2...ls

þ di1l1V
ð1Þi2i3...ir
ð1Þ l2l3...ls þ di1l2V

ð1Þi2i3...ir
ð2Þ l1l3...ls þ � � � þ di1ls V

ð1Þi2i3...ir
ðsÞ l1l2...ls�1

þ di2l1V
ð2Þi1i3...ir
ð1Þ l2l3...ls þ di2l2V

ð2Þi1i3...ir
ð2Þ l1l3...ls þ � � � þ di2ls V

ð2Þi1i3...ir
ðsÞ l1l2...ls�1

þ . . .

þ dirl1V
ðrÞi1i2...ir�1

ð1Þ l2l3...ls þ dirl2V
ðrÞi1i2...ir�1

ð2Þ l1l3...ls þ � � � þ dkrls V
ðrÞi1i2...ir�1

ðsÞ l1l2...ls�1 ;

ð171Þ
where U ¼ Ui1i2...ir

l1l2...ls is a uniquely defined traceless tensor, and for every p and

q such that 1� p� r, 1� q� s, the tensor V ðpÞ
ðqÞ ¼ V ðpÞi1i2...ir�1

ðqÞ l1l2...ls�1 belongs to the

tensor space Tr�1
s�1E.

Remark 4 The traceless component Ui1i2...ir
l1l2...ls and the complementary Kronecker

component of the tensor W in (171) are determined uniquely. However, this does

not imply, in general, that the tensors V ðpÞ
ðqÞ are unique. If the contravariant and

covariant degrees satisfy r þ s� nþ 1, then the tensors V ðpÞ
ðqÞ may not be unique.

Formula (171) is called the trace decomposition formula.
Denote by Er

s the vector subspace of tensors U ¼ Uj1j2...jr
i1i2...is in the tensor

space Tr
s E, symmetric in the superscripts and skew-symmetric in the subscripts;

sometimes these tensors are called symmetric-skew-symmetric. We wish to find the
trace decomposition formula for the tensors, belonging to the tensor space Er

s . Set

trU ¼ Ukj1j2...jr�1
ki1i2...is�1 ; ð172Þ
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and

qU ¼ ðr þ 1Þðsþ 1Þ
nþ r � s

dj1i1U
j2j3...jrþ1

i2i3...isþ1 Altði1i2. . .isþ1Þ
Symðj1j2. . .jrþ1Þ:

ð173Þ

These formulas define two linear mappings tr: Er
s ! Er�1

s�1 and q: Er
s ! Erþ1

sþ1 .

Theorem 2

(a) Any tensor U 2 Er
s has a decomposition

U ¼ trqU þ qtrU: ð174Þ
(b) The mappings tr and q satisfy

trtrU ¼ 0; qqU ¼ 0: ð175Þ

Proof

(a) Using (173) we have, with obvious notation,

q U ¼ r þ 1
nþ r � s

ðdj1i1Uj2j3...jrþ1
i2i3...isþ1 � dj1i2U

j2j3...jrþ1
i1i3i4...isþ1

� dj1i3U
j2j3...jrþ1

i2i1i4i5...isþ1 � � � � � dj1isþ1
Uj2j3...jrþ1

i2i3...isi1Þ
Symðj1j2. . .jrþ1Þ:

ð176Þ

Thus,

trqU ¼ 1
nþ r � s

ðdkkUj2j3...jrþ1
i2i3...isþ1 � dki2U

j2j3...jrþ1
ki3i4...isþ1

� dki3U
j2j3...jrþ1

i2ki4i5...isþ1 � � � � � dkisþ1
Uj2j3...jrþ1

i2i3...isk

þ dj2k U
kj3j4...jrþ1

i2i3...isþ1 � dj2i2U
kj3j4...jrþ1

ki3i4...isþ1

� dj2i3U
kj3j4...jrþ1

i2ki4i5...isþ1 � � � � � dj2isþ1
Ukj3j4...jrþ1

i2i3...isk

þ dj3k U
j2kj4j5...jrþ1

i2i3...isþ1 � dj3i2U
j2kj4j5...jrþ1

ki3i4...isþ1

� dj3i3U
j2kj4j5...jrþ1

i2ki4i5...isþ1 � � � � � dj3isþ1
Uj2kj4j5...jrþ1

i2i3...isk

þ � � � þ djrþ1
k Uj2j3...jrk

i2i3...isþ1 � djrþ1
i2 Uj2j3...jrk

ki3i4...isþ1

� djrþ1
i3 Uj2j3...jrk

i2ki4i5...isþ1 � � � � � djrþ1
isþ1

Uj2j3...jrk
i2i3...iskÞ:

ð177Þ
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Computing the traces, we get

trqU ¼ 1
nþ r � s

ðnUj2j3...jrþ1
i2i3...isþ1 � Uj2j3...jrþ1

i2i3i4...isþ1 � Uj2j3...jrþ1
i2i3i4i5...isþ1

� � � � � Uj2j3...jrþ1
i2i3...isisþ1 þ Uj2j3j4...jrþ1

i2i3...isþ1 � dj2i2U
kj3j4...jrþ1

ki3i4...isþ1

� dj2i3U
kj3j4...jrþ1

i2ki4i5...isþ1 � � � � � dj2isþ1
Ukj3j4...jrþ1

i2i3...isk

þ Uj2j3j4j5...jrþ1
i2i3...isþ1 � dj3i2U

j2kj4j5...jrþ1
ki3i4...isþ1

� dj3i3U
j2kj4j5...jrþ1

i2ki4i5...isþ1 � � � � � dj3isþ1
Uj2kj4j5...jrþ1

i2i3...isk

þ � � � þ Uj2j3...jr jrþ1
i2i3...isþ1 � djrþ1

i2 Uj2j3...jrk
ki3i4...isþ1

� djrþ1
i3 Uj2j3...jrk

i2ki4i5...isþ1 � � � � � djrþ1
isþ1

Uj2j3...jrk
i2i3...iskÞ: ð178Þ

Further straightforward calculations yield

trqU ¼ Uj2j3...jrþ1
i2i3...isþ1 �

rs
nþ r � s

dj2i2U
kj3j4...jrþ1

ki3i4...isþ1

Symðj2j3. . .jrþ1Þ Altði2i3. . .isþ1Þ:
ð179Þ

But by (172), the second term is exactly qtru, proving (174).

(b) Formulas (175) are immediate. h

Formula (174) is the trace decomposition formula for tensors U 2 Er
s . h

The following assertion is a consequence of Theorem 2. It states, in particular,
that the decomposition (174) of a tensor U 2 Er

s is unique.

Theorem 3 Let U 2 Er
s .

(a) Equation qV þ trW ¼ U for unknown tensors V 2 Er�1
s�1 and W 2 Erþ1

sþ1 has a
unique solution such that trV ¼ 0, qW ¼ 0. This solution is given by V ¼ trU,
W ¼ qU.

(b) Equation qX ¼ U has a solution X 2 Er�1
s�1 if and only if q U ¼ 0. If this

condition is satisfied, then X ¼ trU is a solution. Any other solution is of the
form X 0 ¼ X þ qY for some tensor Y 2 Er�1

s�2 .

Proof

(a) If qV þ trW ¼ U, trV ¼ 0 then V ¼ trqV ¼ trU because tr trW ¼ 0; if
qW ¼ 0, then W ¼ qtrW ¼ qðU � qVÞ ¼ qU.

(b) If equation qX ¼ U has a solution U, then necessarily qU ¼ 0. Conversely, if
qU ¼ 0, then U ¼ qtrU and X ¼ trU solves equation qX ¼ U. Clearly, the
tensors X 0 ¼ X þ qY , where Y 2 Er�1

s�2 also solve this equation. h

Example 1 We find the trace decomposition formula (174) for r ¼ 1. Writing
U ¼ Uj1

i1i2...is , we have trU ¼ Uk
ki1i2...is�1

and
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qtrU ¼ 1
nþ 1� s

ðdj1i1Uk
ki2i3...is þ dj1i2U

k
i1ki3i4...is þ � � � þ dj1is U

k
i1i2...is�1kÞ: ð180Þ

Analogously

qU ¼ 2ðsþ 1Þ
nþ 1� s

dj1i1U
j2
i2i3...isþ1 Altði1i2. . .isþ1Þ Symðj1j2Þ

¼ 1
nþ 1� s

ðdj1i1Uj2
i2i3...isþ1 � dj1i2U

j2
i1i3i4...isþ1 � � � � � dj1isþ1

Uj2
i2i3...isi1

þ dj2i1U
j1
i2i3...isþ1 � dj2i2U

j1
i1i3i4...isþ1 � � � � � dj2isþ1

Uj1
i2i3...isi1Þ

ð181Þ

hence

trqU ¼ 1
nþ 1� s

ðnUj2
i2i3...isþ1 � ðs� 1ÞUj2

i2i3i4...isþ1

� 1
nþ 1� s

ðdj2i2Uk
ki3i4...isþ1 þ dj2i3U

k
i2ki4i5...isþ1 þ � � � þ dj2isþ1

Uk
i2i3...iskÞ

¼ Uj2
i2i3...isþ1 � qtrU:

ð182Þ

Formulas (181) and (183) yield U ¼ trqU þ qtrU. In particular, if r ¼ 1 and s ¼ n,
then U ¼ U j

i1i2...in , trU ¼ Us
si1i2...in�1

and qU ¼ 0. Thus,

U ¼ nd j
i1U

s
si2i3...in Altði1i2. . .inÞ

¼ d j
i1U

s
si2i3...in þ d j

i2U
s
i1si3i4...in þ � � � þ d j

inU
s
i1i2...in�1s:

ð183Þ

Example 2 We determine decomposition (174) for r ¼ 2 and s ¼ n� 1, and find
explicit expressions for the traceless and Kronecker components trq U and q trU of
the tensor U. Writing U ¼ Uj1j2

i1i2...in�1 and using the proof of Theorem 2, we have

trqU ¼ Uj2j3
i2i3...in �

1
3
ðdj2i2Ukj3

ki3i4...in þ dj2i3U
kj3

i2ki4i5...in þ � � � þ dj2inU
kj3

i2i3...in�1k

þ dj3i2U
j2k

ki3i4i5...in þ dj3i3U
j2k

i2ki4i5...in þ � � � þ dj3inU
j2k

i2i3...in�1kÞ
ð184Þ

and

qtrU ¼ 1
3
ðdj2i2Ukj3

ki3i4...in þ dj2i3U
kj3

i2ki4i5...in þ � � � þ dj2inU
kj3

i2i3...in�1k

þ dj3i2U
j2k

ki3i4i5...in þ dj3i3U
j2k

i2ki4i5...in þ � � � þ dj3inU
j2k

i2i3...in�1kÞ
¼ 1

3
ðdj2i2Ukj3

ki3i4...in � dj2i3U
kj3

ki2i4i5...in � � � � � dj2inU
kj3

ki3...in�1i2

þ dj3i2U
kj2

ki3i4i5...in � dj3i3U
kj2

ki2i4i5...in � � � � � dj3inU
kj2

ki3...in�1i2Þ

¼ 2ðn� 1Þ
3

dj2i2U
kj3

ki3i4...in Symðj2j3Þ Altði2i3. . .inÞ:

ð185Þ
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Let s and j be positive integers such that j� s� n. Consider the vector space of
tensors X ¼ XI1I2...Ij

ijþ1ijþ2...is , indexed with multi-indices I1, I2, . . ., Ij of length r and
indices ijþ1; ijþ2; . . .; is; such that 1� ijþ1; ijþ2; . . .is; � n, symmetric in the
superscripts entering each of the multi-indices, and skew-symmetric in the
subscripts. Our objective will be to solve the system of homogeneous equations

dp1p1d
p2
p2 . . .d

pj
pjX

I1I2...Ij
ijþ1ijþ2...is ¼ 0 Altðp1p2. . .pjijþ1ijþ2. . .isÞ

SymðI1p1Þ SymðI2p2Þ . . . SymðIjpjÞ
ð186Þ

for an unknown tensor X. In this formula, the alternation operation is applied to the
subscripts, and the symmetrizations to the superscripts, and then the summations
through double indices are provided.

In the proof of the following theorem, we want to distinguish between two
groups of indices in the expression dp1i1 d

p2
i2 . . .d

pj
ij X

I1I2...Ij
ijþ1ijþ2...is ; the indices labeling

the tensor XI1I2...Ij
ijþ1ijþ2...is will be called interior (the complementary indices,

labeling the Kronecker tensors, are called exterior).

Theorem 4 Let q and j be positive integers such that 1� j� s� n. Let X ¼
XI1I2...Ij

ijþ1ijþ2...iq be a tensor, indexed with multi-indices I1, I2, . . ., Ij of length r and
indices ijþ1, ijþ2, . . ., is, such that 1� ijþ1; ijþ2; . . .; is � n, symmetric in the
superscripts entering each of the multi-indices, and skew-symmetric in the sub-
scripts. Then X satisfies equation (186) if and only if it is a Kronecker tensor.

Proof Suppose we have a tensor XI1I2...Ij
ijþ1ijþ2...is , satisfying equation (187). We

want to show that X is a Kronecker tensor. Consider a fixed component
XI1I2...Ij

ijþ1ijþ2...is . Choose p1, p2, . . ., pj and i1, i2, . . ., ij such that the s-tuples
ðp1; p2; . . .; pj; ijþ1; ijþ2; . . .; isÞ and ði1; i2; . . .; ij; ijþ1; ijþ2; . . .; isÞ consist of mutually
different indices, and consider expression

dp1i1 d
p2
i2 . . .d

pj
ij X

I1I2...Ij
ijþ1ijþ2...is Altði1i2. . .ijijþ1. . .isÞ

SymðI1p1Þ SymðI2p2Þ . . . SymðIjpjÞ:
ð187Þ

The summations in (187) are defined by the alternation Altði1i2. . .ijijþ1. . .isÞ and the
symmetrizations SymðI1p1Þ, SymðI2p2Þ; . . .; SymðIjpjÞ:We divide the summands in
four groups according to the positions of the indices p1, p2, . . ., pj and i1, i2, . . ., ij.

(a) None of the indices p1, p2, . . ., pj and i1, i2, . . ., ij is interior.
(b) None of the indices p1, p2, . . ., pj is interior, at least one of the indices i1, i2,

. . ., ij is interior.
(c) At least one of the indices p1, p2, . . ., pj is interior, none of the indices i1, i2,

. . ., ij is interior.
(d) At least one of the indices p1, p2, . . ., pj is interior, and at least one of the

indices i1, i2, . . ., ij is interior.
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Equation (187) involves expressions (187) such that i1 ¼ p1, i2 ¼ p2, . . .,
iq ¼ pq. For this choice of indices, the terms (a) become

dp1p1d
p2
p2 . . .d

pq
pqX

I1I2...Iq
iqþ1iqþ2...is Altðp1p2. . .pqiqþ1iqþ2. . .isÞ

SymðI1p1Þ SymðI2p2Þ . . . SymðIqpqÞ
ð188Þ

(no summation through p1, p2, . . ., pq). Expressions (b) and (c) vanish identically
because the indices ði1; i2; . . .; iq; iqþ1; iqþ2; . . .; isÞ are mutually different and
XI1I2...Iq

iqþ1iqþ2...is is skew-symmetric in the subscripts. The terms in (d) are of
Kronecker type, each summand is a multiple of the Kronecker symbol dab, where
a 62 fp1; p2; . . .; pqg and b 2 fiqþ1iqþ2. . .isg.

Thus, (187) is the sum of the terms (a) and (d). But the left-hand side of
Eq. (186) is determined from (187) by the trace operation in i1 ¼ p1, i2 ¼ p2, . . .,
iq ¼ pq. The terms entering (a) lead to an expression of the form cX, where c is a
non-zero constant, namely to the expression

j!
s!ððr þ 1Þ!Þq d

p1
p1d

p2
p2 . . .d

pj
pjX

I1I2...Ij
ijþ1ijþ2...is Altðp1p2. . .pjÞ

¼ 1

s!ððr þ 1Þ!Þ j det d
pi
pl � XI1I2...Ij

ijþ1ijþ2...is :

ð189Þ

Since the contraction of the terms (d) in i1 ¼ p1, i2 ¼ p2, . . ., iq ¼ pq does not
influence the factors dab, (d) leads to a Kronecker tensor.

Corollary 1 Assume that in addition to the assumptions of Theorem 4, the tensor
X ¼ XI1I2...Ij

ijþ1ijþ2...is is traceless. Then

XI1I2...Ij
ijþ1ijþ2...is ¼ 0: ð190Þ

Proof This follows from Theorem 4, and from the orthogonality of traceless and
Kronecker tensors. h

Example 3 For tensors of lower degrees equations (186) can be solved directly by
means of the decomposition of the unknown tensor X. Consider for example the
system

dp1p1d
p2
p2X

i1i2
i3 ¼ 0 Altðp1p2i3Þ Symði1p1Þ Symði2p2Þ ð191Þ

for a traceless tensor X ¼ Xi1i2
k . The decomposition of the left-hand side is
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dp1p1d
p2
p2X

i1i2
i3 þ di1p1d

p2
p2X

p1i2
i3 þ dp1p1d

i2
p2X

i1p2
i3 þ di1p1d

i2
p2X

p1p2
i3

� dp1p2d
p2
p1X

i1i2
i3 � di1p2d

p2
p1X

p1i2
i3 � dp1p2d

i2
p1X

i1p2
i3 � di1p2d

i2
p1X

p1p2
i3

� dp1i3 d
p2
p2X

i1i2
p1 � di1i3d

p2
p2X

p1i2
p1 � dp1i3 d

i2
p2X

i1p2
p1 � di1i3d

i2
p2X

p1p2
p1

þ dp1p2d
p2
i3 X

i1i2
p1 þ di1p2d

p2
i3 X

p1i2
p1 þ dp1p2d

i2
i3X

i1p2
p1 þ di1p2d

i2
i3X

p1p2
p1

� dp1p1d
p2
i3 X

i1i2
p2 � di1p1d

p2
i3 X

p1i2
p2 � dp1p1d

i2
i3X

i1p2
p2 � di1p1d

i2
i3X

p1p2
p2

þ dp1i3 d
p2
p1X

i1i2
p2 þ di1i3d

p2
p1X

p1i2
p2 þ dp1i3 d

i2
p1X

i1p2
p2 þ di1i3d

i2
p1X

p1p2
p2 :

ð192Þ

Contraction in p1 and p2 gives the expression

n2Xi1i2
i3 þ nXi1i2

i3 þ nXi1i2
i3 þ Xi1i2

i3 � nXi1i2
i3

� Xi1i2
i3 � Xi1i2

i3 � Xi2i1
i3 � Xi1i2

i3 � Xi1i2
i3

þ Xi1i2
i3 � nXi1i2

i3 � Xi1i2
i3 þ Xi1i2

i3

¼ ðn2 � 2ÞXi1i2
i3 � Xi2i1

i3 :

ð193Þ

Since this expression should vanish, we get ðn2 � 2ÞXi1i2
i3 � Xi2i1

i3 ¼ 0 which is
only possible when Xi1i2

i3 ¼ 0.

A.10 Bases of Forms

We summarize for reference some useful formulas for the bases of differential
forms on an n-dimensional manifold X.

Lemma 1 (Bases of forms) Let X be an n-dimensional smooth manifold, and let
ðU;uÞ, u ¼ ðxiÞ, be a chart on X. Then the forms

x0 ¼ 1
n!
ei1i2...indx

i1 ^ dxi2 ^ � � � ^ dxin ð194Þ

and

xk1k2...kp ¼
1

ðn� pÞ! ek1k2...kpipþ1ipþ2...indx
ipþ1 ^ dxipþ2 ^ � � � ^ dxin ;

1� p� n� 1;
ð195Þ

define bases of n-forms and ðn� pÞ-forms on U. The transformation formulas to
the canonical bases are

ek1k2...kplpþ1lpþ2...lnxk1k2...kp ¼ dxlpþ1 ^ dxlpþ2 ^ � � � ^ dxln : ð196Þ

Proof See Appendix A.8. h
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The Jacobian determinant of a transformation �xp ¼ �xpðx1; x2; . . .; xnÞ,
detð@�xp=@xpÞ, has the following basic properties: h

Lemma 2 (Jacobians)

(a) The local volume forms on X are on intersections of the charts are related by
the formula

�x0 ¼ det
@�xp

@xp

� �
x0: ð197Þ

(b) The derivative of the Jacobian satisfies

@

@�xm
det

@xr

@�xs

� �
¼ det

@xr

@�xs

� �
� @2xp

@�xm@�xq
@�xq

@xp
: ð198Þ

(c) The ðn� 1Þ-forms xk and �xi obey the transformation formulas

�xi ¼ @xk

@�xi
det

o�xr

oxs
� xk: ð199Þ

Proof (b) To verify formula (198), consider any regular matrix a and its inverse
a�1,

a ¼

a11 a12 a1n

a21 a22 a2n

an1 an2 ann

0
BBBB@

1
CCCCA; a�1 ¼

b11 b12 b1n

b21 b22 b2n

bn1 bn2 bn2

0
BBBB@

1
CCCCA; ð200Þ

and compute the derivative @ det a=@apq. Multilinearity and the Laplace
decomposition with respect to the s-th row of the determinant of a yields
det a ¼ as1A

s
1 þ as2A

s
2 þ � � � þ asnA

s
n, with algebraic complements As

k. Thus

@ det a
@apq

¼ Ap
q: ð201Þ

But a is regular, so the inverse matrix satisfies

b11 b12 . . . b1n
b21 b22 . . . b2n
. . .
bn1 bn2 . . . bnn

0
BB@

1
CCA ¼ 1

ðdet aÞn
A1
1 A2

1 . . . An
1

A1
2 A2

2 . . . An
2

. . .
A1
n A2

n . . . An
n

0
BB@

1
CCA; ð202Þ

hence Ap
q ¼ det a � bqp and we conclude that

@ det a
@apq

¼ det a � bqp: ð203Þ
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Now substituting

ars ¼
@xr

@�xs
; brs ¼

@�xr

@xs
; ð204Þ

we get

@

@�xm
det

@xr

@�xs

� �
¼

X
p;q

@ det a
@apq

@apq
@�xm

¼ det
@xr

@�xs

� �
� @2xp

@�xm@�xq
@�xq

@xp
: ð205Þ

(c) Using the transformation properties of the forms x0 and �x0 (formula (197)),

�xi ¼ i@=@�xi �x0 ¼ @xk

@�xi
det

@�x
@x

� i@=@xkx0 ¼ @xk

@�xi
det

@�x
@x

� xk: ð206Þ

h

Remark (Different bases) Sometimes it is convenient to consider bases of forms,
differing from the forms (195) by a constant factor. If we set

xk1k2...kp ¼
1

p!ðn� pÞ! ek1k2...kpipþ1ipþ2...indx
ipþ1 ^ dxipþ2 ^ � � � ^ dxin : ð207Þ

then for example

dxl ^ xk1k2 ¼
1

2!ðn� 2Þ! ek1k2i3i4...indx
l ^ dxi3 ^ dxi4 ^ � � � ^ dxin ;

¼ 1
2!ðn� 2Þ! ek1k2i3i4...ine

pli3i4...inxp

¼ 2!ðn� 2Þ!
2!ðn� 2Þ!

1
2
ðdp1k1dlk2 � dp1k2d

l
k1Þxp1

¼ 1
2
ðdlk2xk1 � dlk1xk2Þ;

ð208Þ

etc. (cf. Appendix A.8).
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A
Abelian group, 74

subgroup, 74
Abelian presheaf, 213

associated with a sheaf, 221
complete, 216
isomorphism, 215
morphism, 213

image, 216
injective, 215
surjective, 215

Abelian sheaf (sheaf), 212, 215
acyclic, 258
associated with S, 212
associated with the sheaf space Ker f, 213
fine, 254
morphism, 212

injective, 246
surjective, 246
canonical, 242

of discontinuous sections, 216
of commutative rings, 255
of functions of class Cr , 216
of sections of class Cr , 216
over paracompact Hausdorff space, 250
soft, 250
structure, 207
trivial, 246

Abelian sheaf space, 207
associated with Abelian sheaf, 217
associated with S, 219
isomorphism, 209
morphism, 209
structure, 207

Action
of a Lie group, 176, 195, 196
of the differential group, 196
of the general linear group, 196, 197
tensor action, 196

Acyclic sheaf, 259
Adapted

chart, 3
f-adapted, 3
to immersion, 4
to submersion, 5

Algebra
exterior, 35
homological, 226
Lie algebra of a Lie group, 176
multilinear, 305
of vector fields, 172
of p-projectable vector fields, 173

Alternation, 43, 94, 327, 331
Associated chart, 13
Atlas, 7, 13, 14, 125
Automorphism, 7

B
Base

of Abelian presheaf, 214
fibered manifold, 7

non-orientable, 107
space of sheaf space, 202

Basis
canonical, 39, 331
of differential forms, 340

Bilinear forms, 188
symmetric, 188
regular, 188

Boundary, 105, 132
term of the Hilbert Lagrangian, 191

Bundle
associated with bundle of frames, 196

principal fibre bundle, 195
principal L2n-bundle, 198

cotangent, 325
gauge natural, 194
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Bundle (cont.)
natural, 187, 197
of alternating p-forms, 325

linear frames, 195, 196
metrics, 188
r-frames, 195
2-frames, 195
tensors of type Q, 196

tangent, 9, 17
with structure group, 195

type fiber Q, 196
type fiber Tr

nQ, 196

C
Chain rule, 11
Canonical

basis, 39, 331
of tensor space Tr

sR
n, 331

chart, 306
construction of automorphisms of JrY , 1

of coordinates on JrY , 14
coordinates, 2, 6, 74, 307

Ci
jk , 197

on L2n, 198
on U � V , 324
on JrðU;VÞ, 306
on LkRn, JkRn, 307
on Rn, 311

decomposition, 58, 59
of a contact form, 74

extension, 307
of f, 307
of variables, 86

(global) coordinates on Lrn, 195
identification, 331
inclusion, 205, 225, 260
injection, 32, 333

of Euclidean spaces, 311
injective sheaf morphism, 242
isomorphism, 221, 274
jet projections, 14
lift, 193, 274
lifting, 104
morphism of canonical resolutions, 242,

246
presheaf morphism, 221
resolution, 238, 242, 243
smooth manifold structure, 306

Canonically
identified, 195, 307
isomorphic, 242, 274
lifted, 268

Category, 195
of locally isomorphic fibered manifolds,

194
Chart

adapted, 3–6, 193
associated, 7, 13, 14

on J1MetX, 188
at a point, 2
expression of

a contact 1-form, 38
a contact form, 60, 266
a form, 58, 115
a p-horizontal form, 9
a submersion, 5
an immersion, 4
the canonical injection

i : JrY ! J1Jr�1Y , 33
the class I1q, 293
the contraction of a form by vector field,

315
the Euler–Lagrange form, 124, 136
the exterior derivative, 315
the inverse diffeomorphism, 21
the Lie derivative of a form by vector

field, 315
the mapping Jra, 20, 22
the morphisms Ek , 289
the pull-back, 116, 121
vectors hn, pn, 18

global, 13, 306
neighbourhood in U � V

of a fibered chart, 270
on MetX, 188
on a smooth manifold, 2, 3

Cartan’s formula, 1, 110, 112, 176, 183
Cartesian projection, 5
Category

of diffeomorphisms, 195
of fiber bundles associated with principal

bundles, 195
of locally isomorphic fibred manifolds, 194
of morphisms of principal fiber bundles,

195
Circle, 10, 206, 208, 300
Closure, 130
Cohomology

class, 229
De Rham, 273
group

HkðVarYYÞ, 295
HkRn, HkSn, HkðRnnfxgÞ, HkTk , HkM,

H0ðX � YÞ ¼ R, 295
of a complex, 229, 259
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of a sheaf, 242, 248
of a complex, 229
of complex of global sections, 261, 273
with coefficients in a sheaf, 248

Coincide locally, 211, 214
Compatible family of sections, 211, 214

f-compatible vector field, 314
Complete

Abelian presheaf, 214
image of a sheaf, 225
presheaf, 213
subpresheaf, 225
trace decomposition theorem, 100

Complex, 226, 229
exact, 249
of Abelian groups, 229
of global sections, 201, 260, 261, 273, 295
nonnegative, 229

Component(s)
complementary, 118
Erðf Þ, 131
homogeneous, 57
Kronecker, 44
of a connection, 198
of a π-vertical vector field, 150
of a source form, 135
of a tensor of type ðr; sÞ, 331
of a vector horizontal contact, 37
of the Euler–Lagrange form, 124, 133
of the Hilbert Lagrangian, 189
of the jet prolongation JrN, 28, 110, 150
of the Ricci tensor, 189
skew-symmetric, 43
symmetric, 118
tensor, 43
traceless, 44, 47

Composable r-jets, 12
Composite of r-jets, 12
Composition

of presheaf morphisms, 215
of morphism of complexes, 230

Connected component, 203, 208
Connection, 198

bundle, 198
field, 198
transformation equations, 198

Connecting morphism, 226, 238
Conservation

equations, 169, 173, 174
law, 169, 173

Conserved current, 173
Constant presheaf, 226

sheaf space, 226
Constant rank mapping at x0, 3

Contact
basis, 41, 43, 106, 189
component, 47

of a vector, 17, 36
of a vector field, 18
of differentiable mappings, 10
of a form, 38, 47
k-contact component of a form, 62

ideal, 41, 172
of order 0, r, 1, 10
sequence, 270
submodule, 41
subsequence, 270

Contraction of a differential form, 67, 175, 313
Coordinate(s)

associated, 74
canonical, 2, 6, 74

Ci
jk , 197

on L2n, 198
on U � V , 324
on JrðU;VÞ, 306
on LkRn, JkRn, 307
on Rn, 311

functions gij, 188
functions yrj1 j2 ...jk , 38
neighbourhood, 123, 174
of r-jet Jrxc, 15, 16
transformation formulas, 13, 15, 16, 21, 38

Cotangent bundle, 325
Covariant index, 53

functor, 195, 196
position, 306
degree, 331, 334

Contravariant degree, 331
Curvature

formal scalar, 189
tensor, 199, 200

Cut formal derivative, 88
Cr-mapping, 1

D
Deformation of a section, 108
Degree, 59, 63, 319

of contactness, 62
of homogeneous polynomial, 88, 159
contravariant, covariant, 331, 334

De Rham, 201
cohomology group, 261
resolution, 264
sequence of sheaves, 261, 266, 270
theorem, 259, 261, 273
resolution, 264
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sheaf sequence over JrY , 265, 265
Derivative

exterior, 44
formal, 19

with respect to a fiber chart, 37
of a coordinate function, 38

of a tensor field of type Q, 199
mappings of Euclidean spaces, 11
the Jacobian, 341

partial, 4, 19, 309
of the product, 136

Diagram chasing, 234
Diffeomorphism, 2, 6, 20

inverse, 21
Cr , 25

Differentiable mapping, 1
function, 75
mapping, 313
section, 105
vector field along c, 130

Differential
equation, 85, 93, 104

in contravariant form, 157
in covariant form, 157

form, 9, 74, 93, 263, 265, 325
invariant, 170
trace decomposition theorem, 47

-geometric operations, 67
group, 195

L2n, 195, 197
Lrþ1
n , 196

ideal, 36, 41, 44, 326
generators, 326

invariant, 176, 187, 194
of a symmetric linear connection, 187
of a collection of tensor fields, 187
of a metric field, 187

of the complex A*, 229
1-form on jet prolongation, 48
sequence, 239
systems with independence condition, 268

Discrete topology, 204, 207, 208
Divergence, 297

formal, 85, 86, 104, 134, 142
Domain, 23, 42

of Jra, 32
the Euler–Lagrange mapping, 134
the flow, 171

E
Einstein vacuum equations, 174
Electromagnetic field, 197
Étale space, 201
Euler–Lagrange form, 89, 124, 128, 131

equations, 133
expressions, 89, 124, 131
form of second-order, 166
morphisms, 272
of the Hilbert Lagrangian, 191

Euler–Lagrange mapping, 294
Exact sequence of Abelian sheaves, 240
Exterior derivative, 37, 41, 44, 85, 103, 313

of a contact form, 41, 268
of a strongly contact form, 73, 268
of a Lepage form, 128
of the principal Lepage equivalent, 148
morphism, 264

Exterior differential system, 157
Extremal, 131, 174

F
Family of variational functionals, 107
Fiber of a sheaf space over a point x, 202
Fibered chart, 7

expression
of Euler–Lagrange form, 131
of Lagrangian, 126
of Lepage form of order, 2, 126
of Poincare-Cartan form, 126
of principal Lepage equivalent, 126
of source form, 157
of the pull-back form, 122, 123
of Vainberg-Tonti Lagrangian, 135

on JrY , 14
on J1Jr�1Y , 33

Fibered manifold, 6
structure, 6
on MetX, 188
homotopy operator, 75
Volterra-Poincaré lemma, 323

Final topology, 203, 218
Fine sheaf, 254
Finite sequence of Abelian sheaves, 239
First

canonical projection, 297
element of a sequence, 227, 239
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variation, 130
theorem of E. Noether, 174

Formal
curvature tensor, 199
Christoffel symbols, 189, 197
divergence equation, 86
divergence expression, 142, 291
Ricci tensor, 189, 198
scalar curvature, 189

Formal derivative operator, 19, 22, 188, 198
differential equation, 123, 319
partial, 132, 133, 147, 156, 157, 185, 268

Frame, 195

G
Generator of invariance transformation, 170
Generator of invariance transformation of a

Lagrangian, 172
Generator of invariance transformation of an

Euler–Lagrange form, 177
Generator of symmetries of an extremal, 178
Germ, 217
Global continuous section of a sheaf space,

202, 206
Globally defined form, 134
Global variational geometry, 120
Godement resolution, 242
Gravitational field, 197

H
Hausdorff space, 203
Helix, 206, 208
Helmholtz expressions, 141, 149, 299
Higher-order variational derivative, 112, 130

for the Hilbert Lagrangian, 191
Hilbert Lagrangian, 189

component, 189
variational functional, 188, 189
-Yang-Mills Lagrangian, 198

Holonomic section, 42
Horizontal component

of a form, 36, 54, 59, 129
of a vector, 17, 36
of a vector field, 17
of exterior derivative, 37
of hdf, 37

Horizontal form, 9
Horizontalization, 17, 36, 62

I
Ideal closed under exterior derivative, 41
Identity morphism, 215
Image of

a presheaf morphism, 215
a morphism of Abelian sheaves, 209
the Euler–Lagrange mapping, 146, 295
the horizontalization, 58

Immersion, 3
at x0, 3

Infinitesimal analogue of the first variation
formula, 112

first variation formula, 130
for the Hilbert Lagrangian, 191

Initial topology, 206
Injective, 2
Integrability

condition, 93, 296, 319
criterion for formal divergence equations,

155
Integration domain, 107
i-th formal derivative

operator, 19
of a function, 19, 37

Integral
first variation formula, 130
mapping of an ideal, 133
variational functional, 105

Invariance transformation, 170
of a Lagrangian, 172
of an Euler–Lagrange form, 177

Invariant form, 170
Inverse, 215

function theorem, 311
matrix, 189
problem of the calculus of variations,

147
Isomorphism, 7

J
Jacobian determinant, 341

K
Kernel of

a morphism of Abelian sheaves, 209
a presheaf morphism, 215
the Euler–Lagrange mapping, 133

k-contact component of a form, 62
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Kronecker component, 44
symbol, 44

Künneth theorem, 295

L
Last element of a sequence, 227, 239
Lagrange form, 89
Lagrange function, 107
Lagrangian, 89
Lagrangian of order r, 105, 124

associated with an n-form, 292
associated with q, 106

Left inverse, 215
Length of a multi-index, 43
Lepage form, 122, 147

of order, 2, 126
principal component, 123

Lepage equivalent of
a Lagrangian, 126
the Hilbert Lagrangian, 190

Levi-Civita symbol, 326
Lie algebra of a Lie group, 176
Lie bracket, 28, 29, 312

formula, 184
of vector fields, 312

Lie derivative, 67, 103, 129, 313
formula, 130
with respect to projectable vector field, 146
of the Lepage equivalent, 191

Linear mapping, 1
Local homeomorphism, 201

inverse problem, 147
1-parameter group, 24
volume form, 106

Locally generated, 211, 214
Locally variational source form, 147
Long exact sequence, 257

M
Manifold of r-jets, 306
Mapping

adapted to a submersion at x0, 5
differentiable, 1
open, 5
tangent, 1

Matter, 188
Maxwell equations, 197
Metric fields, 188

Morphism of complexes, 230
Morphism of sheaf spaces, 204, 209

isomorphism of sheaf spaces, 209
Multi-index notation, 43

length, 43

N
Natural

bundle, 197
Lagrange structure, 194
Lagrangian, 196, 197

Noether’s
current, 192
equation, 173
theorem, 174

Noether-Bessel Hagen equation, 173
Non-orientable base, 107
Normal topological space, 254
Null Lagrangian, 134, 278

O
Obstructions for global variationality, 300
Open mapping, 2

rectangle, 5

P
Partition of unity, 110
Physical fields, 188
Poincaré-Cartan form, 126
Presheaf morphism, 215

injective, 215
surjective, 215

Presheaf isomorphism, 215
Principal component of a Lepage form, 123

fiber bundle, 195
Lrþ1
n -bundle, 196

Lepage equivalent, 91
of the Hilbert Lagrangian, 190

Principle of analytic continuation, 203
Product of sheaves, 205
Projectable mapping of sheaf spaces, 204
Projection of

a fibered manifold, 7
a morphism, 7
a vector field, 8

Projector operator, 66
Projection of a sheaf space, 202
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Projectors, 43
Prolongation of connection bundle, 200

of Cr-automorphism, 20
Prolongation formula, 38
Pull-back of a differential form, 312
Pushforward vector field, 179
p-horizontal form, 9
p-horizontalization, 17, 36
p-projection, 8, 108
p-projectable extension, 110
p-vertical vector, 9
prþ1-horizontal, 54
prþ1;r-horizontal, 62
prþ1-horizontal component, 54
ps;s�1-projectable extension, 91

Q
Q-lifting, 196
Quotient sheaf space, 210
Quotient projection, 210

R
Rank function, 1, 311

function locally constant, 1
of f at a point, 1
rank theorem, 2

Real projective space, 207
Rectangle, 2
Reflexive binary relation, 11
r-jet

with source x and target y, 11, 305
prolongation of a section, 15

of aNt , 25
of Cr-automorphism, 20

Representative of an r-jet, 306
Resolution, 239

canonical, 243
Restriction

mappings of a sheaf, 201
morphisms of a space, 214

of a section, 214
of a sequence, 240
of a sheaf, 207, 214, 239
of a space, 211

Right inverse, 215
Routh condition, 175

S
Scalar curvature of the metric tensor, 189
Second derivative variables, 160

-order Euler–Lagrange form, 166
variation, 111

Section, 4
holonomic, 42
integrable, 42
of a sheaf, 214
of a sheaf space, 202

Sequence of
Abelian groups, 226

exact, 227
finite, 227
non-negative, 226

global sections, 242
Sheaf

acyclic, 259
fine, 254
morphism associated, 219
of

commutative rings with unity, 255
continuous sections, 212, 215,

216, 242
discontinuous sections, 216, 242
q-forms of order r, 265
sections of vector bundle, 216

partition of unity, 253
soft, 244, 270
space, 201, 207

morphism, 204, 209
of commutative rings with unity, 226
of S-modules, 216, 242
structure, 201

trivial, 215
Short exact sequence, 227

of sheaves, 240
Skyscraper sheaf space, 207
Solution of the formal divergence

equation, 86
Source, 11, 305

form, 146, 293
Spacetime, 188
Stable point, 111
Strongly contact form, 69, 265
Submersion, 4

at x0, 4
Subsheaf, 213
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Sum of sheaves, 208
Support of a vector field, 130
Symmetric binary relation, 11
Symmetriztion, 43, 94, 331
System of Kronecker type, 83

symmetric in the subscripts, 305, 83
Symmetry of an extremal, 178
Symmetric tensor product, 198
Support, 253

T
Tangent

mapping, 1, 312
bundle projection, 6

Target, 11, 305
Tensor action, 196

bundle projection, 7
bundle of type Q, 196
space of type ðr; sÞ, 331

Tietze theorem, 253
Topology

discrete, 207
final, 203
initial, 206
of spacetime, 188

Torus, 207
Total derivative operator, 35
Trace decomposition, 43
Traceless

in the indices, 44
component, 45, 47, 48

Trace decomposition
formula, 47
theorem, 47, 336

Transformation properties of
derivatives, 196

equations for tensor
components, 331

Transitive equivalence relation, 11
Trivial

group morphism, 227
sheaf, 215
sheaf morphism, 239

Twisted base differential form, 107

V
Vainberg-Tonti Lagrangian, 136, 299
Variation

of a section, 108
a variational functional, 108
induced by vector field, 198

Variational
derivative, 108, 111
functional, 105
higher-order, 112
integrators, 156
multiplier, 157
projector, 288
sequence, 272
source form, 147, 295, 298
structure, 104

Variationality
(integrability) conditions, 157
local, global, 299
of differential equations, 156

Variationally
closed Lagrangian, 297
exact Lagrangian, 297
trivial Lagrangian, 134, 295

Vector
bundle morphism, 17

of tensors of type ð0; 2Þ, 188
field along a section, 108
space of k-linear symmetric mappings, 305
space of linear mappings, 305

Vertical subbundle, 9
Volterra-Poincaré lemma, 76, 319

fibered, 323

Y
Young decomposition, 86

Z
Zero

section, 75
of an Abelian sheaf, 207

sheaf subspace, 250
Zorn’s lemma, 250
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