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Preface

The global variational geometry as introduced in this book is a branch of mathe-
matics, devoted to extremal problems on the frontiers of differential geometry,
global analysis, the calculus of variations, and mathematical physics. Its subject is,
generally speaking, a geometric structure consisting of a smooth manifold endowed
with a differential form.

More specifically, by a variational structure, or a Lagrange structure, we mean
in this book a pair (Y,p), where Y is a smooth fibered manifold over an
n-dimensional base manifold X and p a differential n-form, defined on the r-jet
prolongation J'Y of Y. The forms p, satisfying a horizontality condition, are called
the Lagrangians. The variational functional, associated with (Y, p), is the real-
valued function T'g(m) 27y — po(y) = [Jy*p €R, where T'g(n) is the set of
sections of Y over a compact set Q C X, J"y is the r-jet prolongation of a section 7,
and J"y*p is an n-form on X, the pull-back of p by J"y.

Over the past few decades the subject has developed to a self-contained theory of
extremals of integral variational functionals for sections of fibered manifolds,
invariance theory under transformations of underlying geometric structures, and
differential equations related to them. The variational methods for the study of these
functionals extended the corresponding notions of global analysis such as differ-
entiation and integration theory on manifolds. Innovations appeared in the devel-
opments of topological methods needed for a deeper understanding of the global
character of variational concepts such as equations for extremals and conservation
laws. It has also become clear that the higher order variational functionals could
hardly be studied without innovations in the multi-linear algebra, namely in the
decomposition theory of tensors and differential forms by the trace operation.

The resulting theory differs in many aspects from the classical approach to
variational problems: The underlying Euclidean spaces, are replaced by smooth
manifolds and fibered spaces, the classical Lagrange functions and their variations
are replaced by Lagrange differential forms and their Lie derivatives, etc. Within the
classical setting, a (first order) variational structure is a pair (Y,1), where
Y = J'(R" x R™) is the 1-jet prolongation of the product R” x R™ of Euclidean
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spaces, and in the canonical coordinates, 1= LAdx" Ad® A--- AdX", where
L:R"xR" xR"™ — R is a Lagrange function, depending on n independent
variables, m dependent variables, and nm partial derivatives of dependent variables.

Basic geometric ideas allowing us to globalize the classical calculus of variations
come from the concepts of E. Cartan [C] in the calculus of variations of simple
integrals, and especially from the work of Lepage (see e.g. [Le]). Further develop-
ments after Cartan and Lepage have led to a deeper understanding of the structure and
geometric nature of general variational procedures and their compatibility with
manifold structures. Main contributors to the global theory are Dedecker [D] (geo-
metric approach to the calculus of variations, regularity), Garcia [G] (Poincare-Cartan
form, invariant geometric operations, connections), Goldschmidt and Sternberg [GS]
(Cartan form, vector-valued Euler-Lagrange form, Hamilton theory, Hamilton—
Jacobi equation), Krupka [K13], [K1] (Lepage forms, higher order variational
functionals, infinitesimal first variation formula, Euler—Lagrange form, invariance),
and Trautman [Trl, Tr2] (invariance of Lagrange systems, Noether’s theory).

This book covers the subjects that are considered as basic in the classical
monographs on the (local) calculus of variations on Euclidean spaces: variational
functionals and their variations, the (first) variation formula, extremals and the
Euler-Lagrange equations, invariance and conservation laws. We study these topics
within the framework of much broader underlying structures, smooth manifolds.
This requires, in particular, a systematic use of analysis and topology of manifolds.
In addition, new questions appear in this framework such as for instance global
existence of the notions, constructed in charts. We also study global properties
of the Euler—Lagrange mapping; to this purpose two chapters devoted to sheaves
and the variational sequence theory are included. It is however obvious that these
themes do not reflect the foundations of the global variational theory completely.
Further comprehensive expositions including applications, based on modern geo-
metric methods in the calculus of variations on manifolds, can be found in the
monographs Giachetta, Mangiarotti and Sardanashvily [GMS1], [GMS2], De Leon
and Rodrigues [LR], Mangiarotti and Modugno [MM], and Mei Fengxiang and Wu
Huibin [MW]. For orientation in recent research in these fields we refer to Krupka
and Saunders [KS].

The text of the book requires a solid background in topology, multi-linear
algebra, and differential and integral calculus on manifolds; to this purpose we
recommend the monograph Lee [L]. Essentials of the classical and modern calculus
of variations can be found e.g. in Gelfand and Fomin [GF], Jost and Li-Jost [JL],
and in the handbook Krupka and Saunders [KS], where differential forms are
considered. For the theory of jets, natural bundles and applications we refer to
original works of Ehresmann [E] and to the books Kolar, Michor and Slovak
[KMS], Krupka and Janyska [KJ], and Saunders [S]. We also need an elementary
sheaf theory; our exposition extends a chapter of the book Wells [We]. For refer-
ence, some theorems and formulas are collected in the Appendix. We should
especially mention the section devoted to the trace decomposition theory on real
vector spaces, which is needed for the decomposition of differential forms on jet
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manifolds (Krupka [K15]); although the trace decomposition is an elementary topic,
it is difficult to find an adequate reference in classical and contemporary algebraic
literature.

Chapter 1 covers fundamentals of fibered manifolds and their jet prolongations.
The usual topics related to the jet structure, such as the horizontalization morphism,
jet prolongations of sections and morphisms of fibered manifolds, and prolonga-
tions of vector fields are introduced. It should be pointed out that the vector fields
and their jet prolongations represent a geometric, coordinate-free construction,
replacing in the global variational theory the classical “variations of functions”, and
“induced variations” of their derivatives.

Chapter 2 studies differential forms on the jet prolongations of fibered manifolds.
The contact forms are introduced, generating a differential ideal of the exterior
algebra, and the corresponding decompositions of forms are studied. It is also shown
that the trace operation, acting on the components of forms, leads to a decompo-
sition related to the exterior derivative of forms. The meaning of the structure the-
orems for the global variational theory, explained in the subsequent chapters,
consists in their variational interpretation; in different situations the decompositions
lead to the Lagrangian forms, the source forms, the Helmholtz forms, etc.

Chapter 3 is devoted to the formal divergence equations on jet manifolds, a
specific topic that needs independent exposition. It is proved that the integrability
of these equations is equivalent with the vanishing of the Euler—-Lagrange operator.

The objective of Chaps. 4—6 is to study the behaviour of the variational func-
tional To(n) 3y — pa(y) = [J7*p €R with respect to the variable y. But in
general, the domain of definition I'q(n) has no natural algebraic and topological
structures; this fact prevents an immediate application of the methods of the dif-
ferentiation theory in topological vector spaces, based on the concept of the
derivative of a mapping. However, even when no topology on I'q(n) has been
introduced, the geometric, or variational method to investigate the functional pg
can still be used: we can always vary (deform) each section y € I'(7) within the set
I'q(7), and study the induced variations (deformations) of the value pg (7).

The key notions in Chap. 4 are the variational derivative, Lepage form, the first
variation formula, Euler-Lagrange form, trivial Lagrangian, source form,
Vainberg-Tonti Lagrangian, and the inverse problem of the calculus of variations
and the Helmholtz expressions.

The exposition begins with the description of variations of sections of the fibered
manifold Y, considered as vector fields, and the induced variations of the variational
functional [J"y*p. It turns out in this geometric setting that the induced variations
are naturally characterized by the Lie derivative of p. An immediate consequence of
this observation is that one can study the functional pg by means of the differential
calculus of forms and vector fields on the underlying jet manifold.

Next we introduce the fundamental concept of the global variational theory on
fibered manifolds, a Lepage form. We prove that to any variational structure (Y, p)
there always exists an n-form ©, with the following two properties: first, the form
0, defines the same integral variational functional as the form p, that is, the identity
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J p¥p = J"y*0, holds for all sections y of the fibered manifold Y, and second, the
exterior derivative d®,, defines equations for the extremals, thus, y is an extremal if
and only if d®, vanishes along J"y. Any form ©, is called a Lepage equivalent
of the form p.

As a basic consequence of the existence of Lepage equivalents we derive a
geometric, coordinate-free analog of the classical (integral) first variation formula —
the infinitesimal first variation formula, which is essentially the Lie derivative
formula for the form ®, with respect to the vector fields defining the induced
variations. The infinitesimal first variation formula becomes a main tool for further
investigation of extremals and symmetries of the functional. It should also be noted
that the geometric structure of the formula admits immediate extensions to second
and higher variations.

We may say that these two properties defining ®, explain the meaning of the
first and second Lepage congruences, considered by Lepage and Dedecker in their
study of the classical variational calculus for submanifolds (cf. Dedecker [D]).

The exterior derivative d®, splits in two terms, one of them, characterizing
extremals, is a (globally well-defined) differential form, the Euler—Lagrange form;
its components in a fibered chart are the well-known Euler—Lagrange expressions.
The corresponding system of partial differential equations, Euler—Lagrange equa-
tions, are then related to each fibered chart. Solving these equations requires their
analysis in any concrete case from the local and global viewpoints.

Next we study in Chap. 4 the structure of the Euler—Lagrange mapping,
assigning to a Lagrangian its Euler—Lagrange form. Since the Euler—Lagrange
mapping is a morphism of Abelian groups of differential forms on the underlying jet
spaces, its basic characteristics include descriptions of its kernel and its image. We
describe these spaces by their local properties.

The kernel consists of variationally trivial Lagrangians — the Lagrangians whose
Euler—Lagrange forms vanish identically. These Lagrangians are characterized in
terms of the exterior derivative operator d; their local structure corresponds with the
classical divergence expressions. The global structure depends on the topology
of the underlying fibered manifold Y, and is studied in Chap. 8.

The problem of how to characterize the image of the Euler—Lagrange mapping is
known as the inverse problem of the calculus of variations. Its simple coordinate
version for systems of partial differential equations consists in searching for con-
ditions when the given equations coincide with the Euler—Lagrange equations of
some Lagrangian. On a fibered manifold, the inverse problem is formulated for a
source form, defined on J'Y; it is required that the components of the source form
coincide with the Euler-Lagrange expressions of a Lagrangian. We find the
obstructions for variationality of source forms by means of the Lagrangians of
Vainberg—Tonti type, constructed by a fibered homotopy operator, and used for the
first time by Vainberg [V]. The resulting theorem gives the necessary and sufficient
local variationality conditions in terms of the Helmholtz expression (cf. Anderson
and Duchamp [AD] and Krupka [KS8, K11]).
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Chapter 5 is devoted to variational structures whose Lagrangians, or
Euler-Lagrange forms, admit some invariance transformations. The invariance
transformations are defined naturally as the transformations preserving a given
differential form; this immediately leads to criteria for a vector field to be
the generator of these transformations. Then we prove a generalization of the
Noether’s theorem for a given variational structure (Y, p), relating the generators of
invariance transformations of p with the existence of conservation laws for the
solutions of the system of Euler-Lagrange equations. The theory extends the
well-known classical results on invariance and conservation laws originally
formulated for multiple-integral variational problems in FEuclidean spaces
(Noether [N]).

It should be noted that the invariance theorems for variational structures as stated
in this book become comparatively simple (compare with Olver [O1], where a
complete classical approach is given). The reason can be found in the fundamental
concepts of the theory of variational structures — differential forms, for which
invariance theorems are formulated. To explain the basic ideas, consider a manifold
Y of dimension p endowed with a differential n-form p. Then for any vector field &
on Y, the Lie derivative Osp can be expressed by the Cartan’s formula
0¢p = iedp + digp, where ig is the contraction of p by the vector field by ¢ and d is
the exterior derivative. Then for any mapping f : X — Y, where X is a manifold of
dimension n, the Lie derivative satisfies f*0:p = f*icdp + df*izp. Thus, if p is
invariant with respect to &, that is, 0¢p = 0, we have f*izdp + df*izp = 0. If in
addition f satisfies the equation f*i:dp = 0, then f necessarily satisfies the con-
servation law equation df*i:p = 0 (Noether’s theorem). Similar conservation law
theorems for variational structures on jet manifolds are proved along the same lines.

In Chap. 6 we consider a few examples of natural variational structures as
introduced in Krupka [K10] (for natural variational principles on Riemannian
manifolds see Anderson [A1]). Main purpose is to establish basic (global) structures
and find the corresponding Lepage forms. The Hilbert variational functional for the
metric fields on a manifold (Hilbert [H]) and a variational functional for connec-
tions are briefly discussed. The approach should be compared with the standard
formulation of the variational principles of the general relativity and other field
theories. Clearly, these examples as well as many others whose role are variational
principles of physics need a more complex and more detailed study.

As mentioned above, the theory of variational structures gives rise to the
Euler—Lagrange mapping, which assigns to an n-form 1, a Lagrangian, an (n + 1)-
form E;, the Euler-Lagrange form associated with A. Its definition results from the
properties of the exterior derivative operator d, an appropriate canonical decom-
position of underlying spaces of forms, and from the concept of a Lepage form
(cf. Krupka [K1]). On this basis we easily come to the basic observation that the
Euler-Lagrange mapping can be included in a differential sequence of Abelian
sheaves as one of its arrows. We proceed to introduce the sequence and the
associated complex of global sections, and to study on this basis global properties
of the Euler-Lagrange mapping.
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To this purpose we first explain in Chap. 7 elements of the sheaf theory (see e.g.
Wells [We]). Attension is paid to those theorems, which are needed for the vari-
ational structures; complete proofs of these theorems are included. In particular, the
formulation and proof of the abstract De Rham theorem is given.

The variational geometry is devoted to geometric, coordinate-independent
properties of pq. In particular, the geometric problems include the study of critical
points (or extremals) of the variational functionals; their maxima and minima,
where a topology on I'g(n) is needed, are not considered. Many other typical
geometric problems are connected with various kinds of symmetries of the varia-
tional functionals and the corresponding equations for the extremals. The problem
of restricting a given functional defined, say, on a Euclidean space, to a subman-
ifold (the constraint submanifold) is obviously included in this framework.

It should be pointed out that the geometric variational theory completely covers
the problems, related with the variational principles in physical field theory and
geometric mechanics, where concrete underlying geometric structures and varia-
tional functionals are considered.

Chapter 8 is devoted to the variational sequence of order r for a fibered manifold Y.
Its construction has no a priori relations with the theory of variational structures. The
sequence is established on the observation that the De Rham sequence of differential
forms on the r-jet prolongation J"Y has a remarkable subsequence, defined by the
contact forms; the variational sequence is then defined to be the quotient sheaf
sequence of the De Rham sheaf sequence (see Krupka [K19]).

With the obvious definition of the quotient groups, we denote the variational
sequence as 0 — Ry — Q) — Q[/0] — Q}/0) — Q}/@} — ---. Its properties
relevant to the calculus of variations can be divided into two parts:

(a) Local properties, represented by theorems on the structure of the classes of
forms in the quotient sequence and morphisms between these quotient groups:

o the classes [p] of n-forms p€Q, where n is the dimension of the base
X of the fibered manifold Y, can canonically be identified with Lagrangians
for the fibered manifold Y,

e the classes [p] of (n + 1)-forms p € Q) can canonically be identified with
the source forms,

e the quotient morphism E,: Q /0@, —Q /O, , is exactly the
Euler—Lagrange mapping of the calculus of variations,

e the quotient morphism E,.;: Q, /0O,  —Q ,/0, , is exactly the
Helmholtz mapping of the calculus of variations.

All these classes and morphisms are described explicitly in fibered charts; their
expressions coincide with the corresponding expressions given in Chap. 4. Thus,
the variational sequence allows us to rediscover basic variational concepts from
abstract structure constructions on the jet manifolds J'Y.
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(b) Global properties, represented by the theorem on the cohomology of the
complex of global sections of the variational sequence; this implies, on the basis
of the De Rham theorem that:

e there exists an isomorphism between the cohomology groups of the complex
of global sections and the De Rham cohomology groups,

e the obstructions for global variational triviality of Lagrangians lie in the
cohomology group H"Y, where n = dim X,

e the obstructions for global variationality of source forms lie in the coho-
mology group H"*'Y.

We also provide a list of manifolds Y and its cohomology groups, which allows
us to decide whether local variational triviality of a Lagrangian, resp. local varia-
tionality of a source form, necessarily implies its global triviality, resp. global
variationality.

This book originated from my research in global variational geometry and from
numerous courses and lectures at different universities and international summer
schools. Its first five chapters, essentially extending original notes, have been
written during my stay at Beijing Institute of Technology under a key programme of
National Science Foundation of China (grant No. 10932002). I am deeply indebted
to BIT for the excellent conditions and fruitful scientific atmosphere during my
work at the School of Mathematics. Especially I would like to thank Prof. Donghua
Shi for generous collaboration and kind hospitality, and to Prof. Huafei Sun and
Prof. Yong-xin Guo for fruitful discussions and support.

I also highly appreciate research conditions, created for me by Prof. Michal
Lenc, head of the Department or Theoretical Physics and Astrophysics, while
working on the manuscript at my Alma Mater Masaryk University in Brno. Without
his personal support this work could hardly be completed.

It remains for me to acknowledge the help I have received in preparing the
manuscript of this book. I am especially indebted to Zhang Chen Xu and Kong Xin
Lei from BIT who read very carefully a large part of the text, pointed out mistakes
and suggested improvements.

Levoca, May 2014 D. Krupka
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Chapter 1
Jet Prolongations of Fibered Manifolds

This chapter introduces fibered manifolds and their jet prolongations. First, we
recall properties of differentiable mappings of constant rank and introduce, with the
help of rank, the notion of a fibered manifold. Then, we define automorphisms of
fibered manifolds as the mappings preserving their fibered structure. The r-jets of
sections of a fibered manifold Y, with a fixed positive integer r, constitute a new
fibered manifold, the r-jet prolongation J'Y of Y; we describe the structure of J"Y
and a canonical construction of automorphisms of J"Y from automorphisms of the
fibered manifold Y, their r-jet prolongation. The prolongation procedure immedi-
ately extends, via flows, to vector fields. For this background material, we refer to
Krupka [K17], Lee [L], and Saunders [S].

These concepts are prerequisites for the geometric definition of variations of
sections of a fibered manifold, extending the corresponding notion used in the
classical multiple-integral variational theory on Euclidean spaces to smooth fibered
manifolds.

1.1 The Rank Theorem

Recall that the rank of a linear mapping u: E — F of vector spaces is defined to be
the dimension of its image space, rank # = dim Im u. This definition applies to
tangent mappings of differentiable mappings of smooth manifolds. Let f: X — Y be
a C" mapping of smooth manifolds, where r > 1. We define the rank of f at a point
X € X to be the rank of the tangent mapping T, f: Ty X — Ty Y. We denote

rank, f = dimIm 7, f. (1)

The function x — rank, f, defined on X, is the rank function.

Elementary examples of real-valued functions f of one real variable show that the
rank function is not, in general, locally constant. Our main objective in this section
is to study differentiable mappings whose rank function is locally constant.

© Atlantis Press and the author 2015 1
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2 1 Jet Prolongations of Fibered Manifolds

First, we prove a manifold version of the constant rank theorem, a fundamental
tool for a classification of differentiable mappings. The proof is based on the rank
theorem in Euclidean spaces (see Appendix 3) and a standard use of charts on a
smooth manifold.

Theorem 1 (Rank theorem) Let X and Y be two manifolds, n = dim X,m = dim Y,
and let q be a positive integer such that ¢ < min(n, m). Let W C X be an open set, and
letf: W — Y be a C" mapping. The following conditions are equivalent:

(1) f has constant rank on W equal to q.

(2) To every point xo € W, there exists a chart (U, ), ¢ = (x') at xo, an open
rectangle P C R" with center 0 such that ¢(U) =P, ¢(x9) =0, a chart
Vo), ¥ = (), at yo = f(xo), such that f(U) C V, and an open rectangle
QO C R"™ with center 0 such that y(V) = Q, Yy (yo) =0, and

a

- X, e=1,2,...,q,
yOf—{()’ c6=q+1,g+2,...,m. (2)

Proof
1. Suppose that f has constant rank on W equal to g. We choose a chart

(U, ), ® = (x'), at xo, and a chart (V, /), ¥ = (3°), at yo, and set g = Yfp~;
g is a C" mapping from @(U) C R" into (V) C R™. Since for every tangent

vector & € T, X expressed as
(0
SHER ®)

we have

g e= s e (5) @

the rank of fat x is rank T, f = rank D;(7°f%~')(®(x). Consequently, the rank of
f is constant on the open set ¢(U) C R" and is equal to g. Shrinking U to a
neighborhood U of xo and V to a neighborhood V of yy if necessary, we may
suppose that there exists an open rectangle P C R" with center 0, a diffeomor-
phism o: (U) — P, an open rectangle Q C R” with center 0, and a diffeomor-
phism f3: tZ(V) — Q, such that in the canonical coordinates z on P and w° on Q,
Bgo ' (', 22,...,7") = (z4,2%,...,29,0,0,...,0). Weset p = ap, ¢ = (x'),and
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W = B, ¥ = (7). Then, (U, @) and (V, ) are charts on the manifolds X and ¥,
respectively. In these charts, the mapping /fe~' can be expressed as

Yfo' = BUfpta~! = pga!; thus, for every point x € U

Uf(x) = yfo ' o(x) :ﬁgoc’lq)( )
= Bgor ' (x' (x), (%), ..., " (x)) (5)
= (¢ (x),22(x), .. (),0,0,...,0).

In components,

I _ xa(x)v 0= 1727-~~aqa
Y Of(x){o, c=q+1,q+2,...,m, (6)

proving (2).
2. Conversely, suppose that on a neighborhood of xy € W, the mapping f is
expressed by (2). Then, rank T, f = rank D;(y’fo 1) (¢(x)) = g O

Letf: X — Y bea C" mapping, and let xy € X be a point. We say that fis a constant
rank mapping at xy, if there exists a neighborhood W of xq such that the rank function
x — rank, f is constant on W. Then, the charts (U, @) and (V,¥) in which the
mapping f has an expression (2) are said to be adapted to f at x, or just f~adapted. A
C” mapping fthat is a constant rank mapping at every point is called a C" mapping of
locally constant rank.

A C" mapping f: W — Y such that the tangent mapping T,.f is injective is called
an immersion at xy. From the definition of the rank, it is immediate that f is an
immersion at xg if and only if rank,, f = n <m. If fis an immersion at every point
of the set W, we say that fis an immersion.

From the rank theorem, we get the following criterion.

Theorem 2 (Immersions) Let X and Y be two manifolds, n=dimX,
m=dimY >n. Let f: X — Y be a C" mapping, xo € X a point, and let yy = f(x).
The following two conditions are equivalent:

(1) fis an immersion at x.

(2) There exists a chart (U, @), ¢ = (x') at xo, an open rectangle P C R" with
center 0 such that @(U) =P and ¢(x9o) =0, a chart (V, ), ¥ = ()°) at
yo = f(xo), and an open rectangle Q C R™ with center O such that y(V) = Q
and Y(yo) = 0, such that in these charts, f is expressed by

- X%, o=1,2,..,n,
yof_{O, o=n+1,n+2,...,m (7)
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Proof The matrix of the linear operator T,f in some charts (U, ¢), ¢ = (x'), at xo
and (V, ), ¥ = (y), at yo is formed by partial derivatives D;(y’fo~!)(¢(xy)) and
is of dimension n X m. If rank Ty, f = n at xo, then rank 7y f = n on a neighbor-
hood of xg, by continuity of the determinant function. Equivalence of conditions (1)
and (2) is now an immediate consequence of Theorem 1. O

Let f: X — Y be an immersion, let xo € X be a point, and let (U, ¢) and (V, )
be the charts from Theorem 2, (2). Shrinking P and Q if necessary, we may suppose
without loss of generality that the rectangle Q is of the form Q = P x R, where
Ris an open rectangle in R™™". Then, the chart expression yf¢': P — P xR
of the immersion f in these charts is the mapping (x',x%,...,x") —
(x',x%,...,x*,0,0,...,0). The charts (U, ¢), (V,) with these properties are said
to be adapted to the immersion f at x.

Example 1 (Sections) Let s >r, let f: X — Y be a surjective mapping of smooth
manifolds. By a C" section, or simply a section of f, we mean a C" mapping y: ¥ —
X such that

foy=idy. (8)

Every section is an immersion. Indeed, T,(,f o Tyy = idr,y at any point y € Y.
Thus, for any two tangent vectors &,&, € T,Y satisfying the condition
Tyy- & =Tyy - &, we have T,yf o Tyy - & = Typyf o Tyy - &. From this condi-
tion, we conclude that &, = &,.

A C" mapping f: W — Y such that the tangent mapping Ty f is surjective, is
called a submersion at xy. From the definition of the rank, it is immediate that fis a
submersion at xy if and only if rank,, = m <n. A submersion f: W — Y is a C"
mapping that is a submersion at every point x € W.

Theorem 3 (Submersions) Let X and Y be manifolds, let n = dim X, m = dim Y.

Letf: X — Y be a C" mapping, xo a point of X, yo = f(x0). The following conditions

are equivalent:

(1) fis a submersion at x.

(2) There exists a chart (U, ), ¢ = (x'), at xo, an open rectangle P C R" with
center 0 such that ¢(U) =P, ¢(x9) =0, a chart (V,{f), ¥ =(°), at
yo =f(x0), and an open rectangle Q C R" with center 0 such that

Y(V) =0, ¥(v) =0, and
Yof=x", o=12,...,m (9)

(3) There exists aneighborhood V of yo and a C" sectiony: V. — Y such that y(yo) =
X0-
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Proof

1. Suppose that fis a submersion at xq. Then, rank 7, f = m on a neighborhood of
X0, and equivalence of conditions (1) and (2) follows from Theorem 1.

2. Suppose that condition (2) is satisfied. Consider the chart expression yf¢~!
P— Q of the submersion f that is equal to the Cartesian projection
O T e (xl X2, xX"). Yf ! admits a C” section
0. Smce lpf(p 0 = idp, hencef(p o 6 = xp 1. Setting y = ¢~ '8, we have
fyv =fo 1oy =y~ = idy proving that y is a section of f. This proves (3).

3. If fadmits a C” section y defined on a neighborhood V of a point y, then f o y =
idy and T(f o y) = T, f o Tyy = T,idy = idr,y, where x = y(y). Thus, T,f must
be surjective, proving (1). O

Let fbe a C" submersion, xo € X a point, and let (U, ¢) and (V, ) be the charts
from Theorem 3, (2). Shrinking P and Q if necessary, we may suppose that the
rectangle P is of the form P = Q x R, where R is an open rectangle in R"™™. Then,
the chart expression (9) of the submersion f is the mapping
(o2, et et ) — (xhx?, .., xM). The charts (U, o), (V,§)
with these properties are sa.ld to be adapted to the submersion f at xy.

Corollary 1 A submersion is an open mapping.

Proof In adapted charts, a submersion is expressed as a Cartesian projection that is
an open mapping. Corollary 1 now follows from the definition of the manifold
topology in which the charts are homeomorphisms. O

Corollary 2 Let f: X — Y be a submersion, (U, ®) a chart on X and (V,}) a
chart on Y. If (U, @) and (V) are adapted to f at a point xo € X, and V = f(U),
then the chart (V) is uniquely determined by (U, ¢).

Proof This is an immediate consequence of the definition of adapted charts and of
Corollary 1. U

Example 2 (Cartesian projections) Cartesian projections of the Cartesian product of
C* manifolds Xand Y, pr;: X X ¥ — X and pr,: X x ¥ — Y, are C* submersions.
Indeed, let us verify for instance the rank condition for the projection pr,. If (x,y) €
X x Yisapointand (U, @), ¢ = (') (resp. (V,¥), ¥ = (y?)) is a chart at x (resp. y),
we have on the chart neighborhood U xV C X x Y, (x,y) =y "Y(x,y) =
Yy 2y YR Ly and pri(x,y) = x = ¢ lo(x) = o (6], A2, .., x).
Then, for all vectors & € T, X and { € T,Y, expressed as

e=e(5m). =0(3), (10)

equations of the projection pr; yield



6 1 Jet Prolongations of Fibered Manifolds

O(x' o pry)

(xioprl)vki
Tlpr - (6,0) = =g gl 4 S0

o Coe=b

In particular, T, pr, is surjective so pry is a surjective submersion.

Example 3 The tangent bundle projection is a surjective submersion. All tensor
bundle projections are surjective submersions.

With the help of Corollary 1, submersions at a point can be characterized as
follows.

Corollary 3 Let X and Y be manifolds, n = dim X, m = dim Y <n. A C" mapping
f: X — Yisasubmersion at a point xo € X if and only if there exists a neighborhood
U of xo, an open rectangle R C R"™, and a diffeomorphism y: U — f(U) x R*™"
such that pryo y =f.

Proof

1. Suppose f is a submersion at xg, and choose some adapted charts
(U, ), ¢ = (x'), at xo and (V, ), ¥ = (%) at yo. Every point x € U has the
coordinates (x!(x),x?(x),...,x"(x), ¥" "1 (x),¥"*2(x),...,x"(x)). We define a
mapping y: U — Y x R*™™ by

1(x) = (F(), 2" (), "2 (x), . (). (12)

Then, pr, o y = f, and from Corollary 1, f(U) is an open set in Y. It remains to
show that y is a diffeomorphism. We easily find the chart expression of the
mapping y with respect to the chart (U, ) and the chart (V x R"™" p),
n=O4y. .yt 2 ™), on Y x R™™, where t* are the canonical
coordinates on R"™. We have for every x € U, y"y(x) = y°f (x) = x(x),
1 <o <m, and *y(x) = ¥"*(x), 1 <k <n —m, that is,

yiy =, i=1,2,....m,
fy=x" k=1,2,...,n—m, (13)

that is, o y = ¢. Thus, y =y~ ¢ is a diffeomorphism.

2. Conversely, if pr; o y = f, we have T, f = T, pr| o Ty, and since y is by
hypothesis a diffeomorphism, rank 7 f = rank T,,)pr;. But the rank of the
projection pr; is m (Example 2). O

1.2 Fibered Manifolds

By a fibered manifold structure on a C*° manifold ¥, we mean a C*> manifold
X together with a surjective submersion m: ¥ — X of class C*. A manifold
Y endowed with a fibered manifold structure is called a fibered manifold of class C*°,
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or just a fibered manifold. X is the base, and 7 is the projection of the fibered
manifold Y.

According to Sect. 1.1, Theorem 3 and Corollary 2, any manifold, endowed with
a fibered manifold structure, admits the charts with some specific properties. Let Y
be a fibered manifold with base X and projection 7, dim X = n, and dim Y = n + m.
By hypothesis, to every point y € Y, there exists a chart at y, (V, ), ¢ = (u',y°),
where 1 <i<n, 1 <o <m, with the following properties:

(a) There exists a chart (U, ), ¢ = (x'), at x = n(y), where 1 <i<n, in which
the projection 7 is expressed by the equation x' o w = u'.
(b) U=mn(V).

The chart (V, ) with these properties is called a fibered chart on Y. The chart
(U, @) is defined uniquely and is said to be associated with (V). Having in mind
this correspondence, we usually write x* instead of #' and denote a fibered chart as

(V). ¥ = (,)7).
Lemma 1 Every fibered manifold has an atlas consisting of fibered charts.

Proof An immediate consequence of the definition of a submersion. U

A C" section of the fibered manifold Y, defined on an open set W C X, is by
definition a C” section y: W — Y of its projection 7 (cf. Sect. 1.1, Example 1). In
terms of a fibered chart (V,¢), ¥ = (x,)’), and the associated chart
(U, ), ¢ = (x), such that U C W and y(U) C V, y has equations of the form

Xoy=x, yYoyp=f, (14)

where f? are real C” functions, defined on U.

Let Y; (resp. Y>) be a fibered manifold with base X; (resp. X,) and projection 7,
(resp. mp). A C" mapping o: W — Y,, where W is an open set in Yi, is called a C”
morphism of the fibered manifold Y; into Y3, if there exists a C" mapping oy: Wy —
X, where Wy = m; (W), such that

Tp O 0L = 0y © . (15)

Note that W, is always an open set in X; (Sect. 1.1, Corollary 1). If oy exists, it is
unique and is called the projection of o. We also say that o is a morphism over o.
A morphism of fibered manifolds a: ¥; — Y, that is a diffeomorphism is called an
isomorphism; the projection of an isomorphism of fibered manifolds is a diffeo-
morphism of their bases.

If the fibered manifolds Y; and Y, coincide, Y| = Y, =Y, then a morphism
oa: W — Y is also called an automorphism of Y.
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We find the expression of a morphism of fibered manifolds in fibered charts.
Consider a fibered chart (Vy,y,), ¥, = (x},y9), on ¥, and a fibered chart (V3, ¥,),
Y, = (X4,Y5), on Y such that «(V;) C V,. We have the commutative diagram

o
Vi — Vs

| ! (16)

%o

(Vi) — m(Va)

expressing condition (15). In terms of the charts, we can write

-1 -1 -1
AT = Py~ O P00 Py 0(01711% oYy,

1 —1 —1 (17)
U= @, © Pyay; o Yoy oYy,
so the commutativity yields
Pr0007 " 0 iy = om0 oy (18)

But in our fibered charts, ¢, 7y, " is the Cartesian projection (x},y7) — (x}), and
@,may ! is the Cartesian projection (x5, y5) — (). Consequently, writing in
components

P20001 " 0 @1y (4, 37) = @m0y () = (oo (),
Pty o Yoy (3, 7) = @omaty ' (o (6, ), viah () (19)
= (xgwpl_l *,7))s
we see that condition (18) implies X500 (x}) = x5onp; ' (¥}, ¥7). This shows that
the right-hand side expression is independent of the coordinates y{. Therefore, we

conclude that the equations of the morphism o in fibered charts are always of the
form

b =f(), ¥ =F,). (20)

Let Y be a fibered manifold with base X and projection 7. If Z is a tangent vector
to Y at a point y € Y, then the tangent vector ¢ to X at x = n(y) € X, defined by

[1]

Tn-E=¢ 1)

is called the m-projection, or simply the projection of 2. By definition of the
submersion, the tangent mapping of the projection 7 at a point y, Tyn: T,Y —
Ty X, is surjective.
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A tangent vector E at a point y € Y is said to be n-vertical, if

[1]

T,n-Z=0. (22)

The vector subspace of T, Y consisted of n-vertical vectors, is denoted by VT, Y. If =
is expressed in a fibered chart (V, ), ¥ = (x',y°), by

i 6 =0 8
~<(5w), = (@), @

[1]

then by (21)

Thus, E is n-vertical if and only if

(1]
(1]

( ai) (25)

If in particular, dimY = n + m and dim X = n, then dim VI,Y = m.
The subset VTY of the tangent bundle 7Y, defined by

vry = vy, (26)
yey

is a vector subbundle of TY.

The projection m: ¥ — X induces a vector bundle morphism Tn: TY — TX;
from the definition of a fibered manifold, it follows that the image is Im Tn = TX.
The vector subbundle VTY = Ker T of the vector bundle 7Y is called the vertical
subbundle over Y.

Let p be a differential k-form, defined on an open set Win Y. We say that p is 7-
horizontal, or just horizontal, if it vanishes whenever one of its vector arguments is
a m-vertical vector.

We describe the chart expressions of n-horizontal forms.

Lemma 2 The form p is m-horizontal if and only if in any fibered chart
(V,¥), ¥ = (x,y°), it has an expression

1 _ . |
P= Hpilia..ikdx" Adx® A - A dxt. (27)
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Proof Choose a point y € V and express the form p(y) as

p(y) = %pi, b ()X (y) Adx®(y) A= Adx(y) +dy' (y) A pi ()

(28)

+dyP () Apa(y) + o+ dy" () A pu(y),
where the forms p;(y), po(3), ..., p,,(y) do not contain dy'(y), the forms
0:(3), p3(3)s -, pu(y) do not contain dy'(y) and dy?(y), etc. Suppose that p is

n-horizontal. Then contracting the form p(y) by the vertical vector (9/dy"),, we get

i(9/0y1),P(y) = p1(y) = 0. Contracting p(y) by the vertical vector (0/0y%),, we get
i(9/02),P(y) = p2(y) = 0, etc., clearly, this proves formula (27). O

Example 4 The first Cartesian projection pr; of the product of Euclidean spaces
R" x R™ onto R”", restricted to the product of open sets U x V, where U C R" and
V C R", is a fibered manifold over U. The restriction of pr; to any open set
W C R" x R™ is a fibered manifold over pr,; (W) C R".

Example 5 Moebius band is a fibered manifold over the circle.

A form p, defined on an open set W in Y, is said to be m-projectable, or just
projectable, if there exists a form p,, defined on the set (W), such that

p = m*py. (29)

If the form p, exists, it is unique and is called the m-projection, of just the pro-
Jection of p.

Convention Formula (29) shows that a m-projectable form can canonically be
identified with its m-projection. Thus, to simplify the notation, we sometimes denote
a m-projectable form n*p, by its m-projection py.

1.3 The Contact of Differentiable Mappings

Let X and Y be two smooth manifolds, » = dim X, and m = dim Y. Let x € X be a
point, fi: W — Y and f,: W — Y two mappings, defined on a neighborhood W of
x. We say that fi, f> have the contact of order O at x, if

fi(x) = fa(x). (30)

Suppose that f; and f, are of class C", where r is a positive integer. We say that fi, f>
have the contact of order r at x, if they have the contact of order 0, and there exists a
chart (U, ), ¢ = (x'), at x and a chart (V,), = (y°), at fi(x) such that
UcCWw, fi(U), -(U) CV,and
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DE(Yfio ™) (o) = D (™" ) (0 (x)) (31)

for all kK <r. These definitions immediately extend to C*™ mappings fi, f>; in this
case f1, f> are said to have the contact of order oo at x, if they have the contact of
order r for every r.

Writing in components yfip~! = y'fip~!, Yo' =y'He~!, we see at once
that f; and f, have contact of order r if and only if fi(x) = f>(x) and

Di\Dy,....D;, (yfi¢™")(¢(x)) = Dy, Diy...D;, (o9~ ) (0(x)) (32)

for all k=1,2,...,r, all ¢ and all i},is,...,i; such that 1<o<m and
1<i<ip<--- <ip<n.

We claim that if f;, f> have contact of order r at a point x, then for any chart
(U,9), @ = (¥), at x and any chart (V, ), ¥ = (3), at f; (x),

D (Ufio~")(9(x) = Do~ ) (@ (x)) (33)

for all k =1,2,...,7. We can verify this formula by means of the chain rule for
derivatives of mappings of Euclidean spaces. Using the charts (U, ¢), (V, ), we
express the derivative

Di,D;,...D;, (1o~ ") (p(x))

—0./,—1 -1 ——1\/= (34)
=D;D;,...Di,(y°¥ " oyfio™ 0 9o )(9(x))
as a polynomial in the variables D;, ('fi¢ ') (¢(x)), D;;D;, (' fio™ ) (p(x)), ...,
D;D;,...D;,(y"fip~")(@(x)). The derivative D;D,,...D; 5 1) (p(x)) is
expressed by the same polynomial in the variables Dj; (y'f20 ") (¢(x))
Dlejz(yvﬁgo_l)<go<x))7 <v DD, ~~Djk()"f2(/7_l)((/’(x))~ Clearly, equality (33)
now follows from (32).
Fix two points x € X, y € Y and denote by C(’X y) (X, Y) the set of C" mappings

f: W — Y, where W is a neighborhood of x and f(x) = y. The binary relation “f, g
have the contact of order r at X” on C(’ ) (X,Y) is obviously reflexive, transitive,

X,
and symmetric, so is an equivalence relation. Equivalence classes of this equiva-
lence relation are called r-jets with source x and target y. The r-jet whose repre-
sentative is a mapping f € C(X.y) (X,Y) is called the r-jet of f at the point x and is

denoted by Jif. If there is no danger of misunderstanding, we call an r-jet with
source x and target y an r-jet, or just a jet. The set of r-jets with source x € X and
target y € Y is denoted by ](’”) (X,7).

Letf € [, (X,Y) be a mapping, f: W — Y, let U be a neighborhood of x and
V a neighborhood of y. Assigning to f the restriction of f to the set f~1 (V)N U N W,

we get a bijection Juf — J{(f|r-1(y)nurw) of the set J{ (X, Y) onto Ji, (U, V).
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Let X, Y, and Z be three smooth manifolds. Two r-jets A € J(’xm (X,Y),A=Jlf,
and B € J&Z>(Y7Z), B = J{g are said to be composable, if they have representa-
tives which are composable (as mappings), i.e., if u = y; this equality means that
the target of A coincides with the source of B. In this case, the composite g o f of
any representatives of A and B is a mapping of class C" defined on a neighborhood
of x. It is easily seen that the r-jet J/(g o f) is independent of the representatives of
the r-jets A and B. If f and g are such that J'f = J'f and J'g = J'g, then for any
charts (U7 @)7 ¢ = (xi) atx, (V7 lﬂ), Y= (ya), aty :f(x)’ and (W’ 77)’ n= (Zp)7 at
z = g(y), the derivatives D; D;,...D;, ("gf¢~')(¢(x)) are expressible in the form

DilDiz' : 'Dik(ngf¢7l)(90<x)) = DilDiz' . 'Dik(ngl//71 o Wf¢7l)(<ﬂ(x)) (35)

for all k=1,2,...,r. By the chain rule for mappings of Euclidean spaces,
expressions (35) are polynomial in the variables D, D,,...D,, (g ") (Y(y)) and
D;D;,...D; (’fo~")(¢(x)), where m,q <k. The same polynomials in the deriv-
atives Dy, D,,...D, (g ") ((»)), DyDs,...D;,(»'f¢ ') (p(x)) are obtained
when expressing D; D;,...D;, (z’gf@~")(¢(x)) by means of the chain rule. Now
since by definition

Dy Dy,...D;, ("f o~ ") (9(x)) = Dy, Diy....D;, (y'fo 1) (0(x)), (6)
DVID"Z' . 'qu (Zpglﬁ_l)(lﬁ(Y)) = D"ID"'Z' : 'D\"q (Zpglp_l)(lﬁ(y))’
we have
DilDiz' . 'Dik (Zpgf(P_l)((P(x)) = DilDiz' . ‘Dik (Zpgf(P_l)((/’(x))' (37)

This proves that the r-jet J/(g o f) is independent of the choice of A and B.

If X, Y, and Z are three manifolds and A € J&.y)(X, Y), A=Jf, and B €

J(},A’Z)(Y ,Z), B = J;g are composable r-jets, we define

BoA=Ji(gof), (38)
or, explicitly, J7g o Jif = JI(g of). The r-jet B o A is called the composite of A and
B, and the mapping (A,B) = BoA of J . (X,Y)xJ( . (Y,Z) into

J(. (X, Z), where z = g(y), is the composition of r-jets.

A chart on X at the point x and a chart on Y at the point y induce a chart on the set
J(’x_y>(X, Y). Let (U,p), o = (x') (resp. (V,¥), ¥ = (x',y?)), be a chart on
X (resp. Y). We assign to any r-jet Jif € Ji, (X,Y) the numbers

2 U57) = DjiDyy. . D (fo ) (o(x), 1<k<r. (39)
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Then, the collection of functions y" = (x,y7, VoY Y5, i), such that
1<ji<p<--<jrsn, 1<o<m, (40)
is a bijection of the set J(’x ) (X,Y) and the Euclidean space RY of dimension
N=ntm(ltn+ (") + (") 4+ ("T7) @

Thus, the pair (J(x ) (X,Y), ") is a (global) chart on V. (X,Y). This chart is said to

be associated with the charts (U, ¢) and (V).
Lemma 3

(@) The associated charts (J, (X, Y), "), such that the charts (U, ¢) and (V)

belong to smooth structures on X and Y, form a smooth atlas on Jley) X, 7).
With this atlas, V. (X, Y) is a smooth manifold of dimension N.
(b) The composition of jets
It

X,y

>(X, Y) x J(rsz)(Ya Z)>(A,B) > BoAE€ J(X’Z)(X,Z) (42)
is smooth.

Proof

1. It is enough to prove that the transformation equations between the associated
charts are of class C*°. However, this follows from (34).
2. (b) is an immediate consequence of Formula (35). O

1.4 Jet Prolongations of Fibered Manifolds

In this section, we apply the concept of contact of differentiable mappings (Sect. 1.3)
to C” sections of fibered manifolds. We introduce the smooth manifold structure on
the sets of jets of sections and establish the coordinate transformation formulas.

Let Y be a fibered manifold with base X and projection =, let n = dim X and
m = dimY — n. We denote by J'Y, where r > 0 is any integer, the set of r-jets J}y of
C" sections y of Y with source x € X and targety = y(x) € Y;if r = 0, then JOY = Y.
Note that the representatives of an r-jet J1y are C” sections y: W — Y, where Wis an
open set in X; the condition that 7 is a section,

moy =idy (43)
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implies that the target y = y(x) of the r-jet J7y belongs to the fiber 7! (x) C Y over
the source point x. For any s such that 0 <s <r, we have surjective mappings
" J'Y — J°Y and n": J'Y — X, defined by the conditions

n () =T, 7)) =x (44)

These mappings are called the canonical jet projections.

The smooth structure of the fibered manifold ¥ induces a smooth structure on the
set J"Y. This is based on a canonical construction that assigns to any fibered chart
on Y a chart on J'Y. Let (V, ), ¥ = (x/,y), be a fibered chart on Y, and let
(U, ), ¢ = (x'), be the associated chart on X. We set V" = (7"°)"'(V) and
introduce, for all values of the indices, a family of functions x', y°, Vi jr» defined
on V', by

(J)?v) =X (x),

x X
Y () =y (r(x), (45)
y_;?;jz..jk (J;V) = D;,Dj,...Dj, (ydyq)il)((p(x)% 1<k<r.

Then, the collection of functions y" = (x',y%,y7,¥7.,...,¥7, ), where the indi-
ces satisfy

1<i<n, 1<o<m, 1<j;j<p<---<j<n, k=23,...r, (46)

e
is a bijection of the set V" onto an open subset of the Euclidean space R" of
dimension

N:n+m<1+n+(”;1)+(”3+2)+---+(”+:_1)). (47)

The pair (V",y"), y" = (x",y“,yj‘.’l,y;rljz, .. .,yflh'nj’), is a chart on the set J"Y, which
is said to be associated with the fibered chart (V, ), ¥ = (x',)°).

Lemma 4 (Smooth structure on the set J'Y) The set of associated charts
(V") ¥ = (X, 5830 s e« 5 Y5, ) such that the fibered charts (V)
constitute an atlas on Y, is an atlas on J'Y.

Proof Let .o/ be an atlas on Y whose elements are fibered charts (Sect. 1.2,
Lemma 1). One can easily check that .7 defines a topology on J"Y by requiring that
for any fibered chart (V) from ./, the mapping ¥": V" — ¢/ (V") C RV is a
homeomorphism; we consider the set J"Y with this topology.

It is clear that the associated charts with fibered charts from .o/ cover the set JY.
Thus, to prove Lemma 4, it remains to check that the corresponding coordinate
transformations are smooth. O
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Suppose we have two fibered charts on Y, (V,y¥), ¥ = (x',)’), and
(V,¥), ¥ = (¥,5°), such that VNV # . Consider the associated charts
(V' "), (V7,§"), and an element J'y € V" N V", Let the coordinate transforma-
tion Yy ! be expressed by the equations

¥ =fl(x), ¥ =g"(x,y). (48)

Note that the functions f* and g° in formula (48) are defined by the formulas
X(x) =% (¢(x) = f(p(x)) and 37 (v) = ¥Y~ (Y (y)) = &°(Y(y)). We have

() =70 =20 (p(x) = X0~ (1)),
V() =¥ (0) = 0¥ ) (0() =¥ (W),

Vini0) = DDy D (79971 (9(x))
=D;Dj,...D; (yglp71 o '/”’9071 o q)@*l)(@(x))

(49)

From the chain rule, it is now obvious that the left-hand sides, the coordinates of the
r-jet J7y in the chart (V",i"), depend smoothly on the coordinates of J7y in the
chart (V",y/").

From now on, the set J'Y is always considered with the smooth structure,
defined by Lemma 4, and is called the r-jet prolongation of the fibered manifold Y.

Lemma 5 Each of the canonical jet projections (44) is smooth and defines a
fibered manifold structure on the manifold J'Y .

Proof Indeed, in the associated charts, each of the canonical jet projections is
expressed as a Cartesian projection, which is smooth. U

Every C" section y: W — Y, where W is an open set in X, defines a mapping
Wox—Jyx)=Jyely, (50)

called the r-jet prolongation of 7.

Example 6 (Coordinate transformations on J2Y) Consider two fibered charts on a
fibered manifold ¥, (V,¥), ¥ = (x',y°), and (V,V), ¥ = (¥,5%), such that
V NV # . Suppose that the corresponding transformation equations are expressed
as

¥ =%, 3 =3(x,y"). (51)
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Then, the induced coordinate transformation on J?Y is expressed by the equations

X = Xi(xj)a

¥ =50y,

. 9y’ )\ ox

Yin = (W + a_y"yl> Pl (52)
Y 82 g 82 a 82)—]0 82)—)0' vou
Yiva = <8x18x’" + axlay“ ym + axmay yl + ayuayv))l))m

0y’ "\ Ox™ Ox 0y° n oy )\ 0%
By ) o awi | \axd T oyt ) oo

To derive these equations, we use the chain rule for partial derivative operators. Let
J?y € V2N V2. The 2-jet J?y has the coordinates

X (J2y) = ¥ (x),

Y (J2y) =y ((x)),

¥ (123) = Dy 0790 (), 2)
Y (i) = Dy Dy (70 ) (0(x)),

and analogous formulas arise for the chart (V). Then, by the chain rule

- oq)(?f‘)(@(X)

D;, (79~ ") (@(x)) =D;, "% 0¥y )
(w@”(@(x))Dj. o ") (o)

=D ) (¥ (
+Dy (7 Wy
=Di(Y7~ )(l//v(x 31D, (o) (9(x))
+D () Wy )P 9™ (@)D, (o) (@ (x))
= (D" Wy () +Dy 7Y Wy () D70 ) (9(x))
D;, (o7 (9(x)), (54)
which proves the third one of equations (52). To prove the fourth equation, we

differentiate (54) again and apply the chain rule. We can also derive the fourth
equation by differentiating the third one.

Consider a morphism o: W — Y of a fibered manifold Y with projection 7. The
projection oy: (W) — X of the morphism o is a unique morphism of smooth
manifolds such that

OO = dyoOT. (55)
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Suppose that o is a diffeomorphism of the open subsets n(W) and U, =
oo(n(W)) in X. Then, for any section y of ¥, defined on (W), formula y' = ayoy!
defines a section of Y over Uy indeed, since y is a section, then
ny = nopoy! = apmyey! = idy,. In this sense, o transforms sections y of Y into
sections oryor, ! of Y. In particular, setting for every r-jet Joyewr

Ja(Jyy) = T, (56)

we get a mapping J o: W™ — JY. This mapping is differentiable and satisfies, for
all integers s such that 0 <s<r,

7ot a=Jaon™, 7w oJu=uon. (57)

These formulas show that the mapping J"o is a morphisms of the r-jet prolon-
gation J"Y of the fibered manifold Y over J°Y for all s such that 0 <s <r, and over
X. J"o is called the r-jet prolongation of the morphism J"o of Y. Note that J o is not
defined for morphisms « whose projections are not diffeomorphisms.

1.5 The Horizontalization

Let Y be a fibered manifold with base X and projection n, dimX =n and
dimY =n+m. For any open set W C Y, we denote by W" the open set
(%) "' (W) in the r-jet prolongation J'Y of Y. We show that the fibered manifold
structure on Y induces a vector bundle morphism between the tangent bundles
T'*'Y and T"Y and study the decomposition of tangent vectors, associated with this
mapping.

Let J71y be a point of the manifold J”*'Y. We assign to any tangent vector ¢ of
J'1Y at the point J7*!y a tangent vector of J'Y at the point 17 (J7H1y) = J7y by

hé=TJyoTr ™. & (58)
We get a vector bundle morphism /: TJ™+'Y — TJ'Y over the jet projection 7' +17",
called the m-horizontalization, or simply the horizontalization. Sometimes we call
h¢& the horizontal component of & (note, however, that £ and 2¢ do not belong to the
same vector space). Using a complementary construction, one can also assign to
every tangent vector ¢ € TJ" 7Y at the point J7!y € J"t!Y a tangent vector p¢ €
TJ"Y at J7y by the decomposition

Tatlr . & = hé + pé. (59)

pé is called the contact component of the vector €.
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Lemma 6 The horizontal and contact components satisfy

Tn -hé=Tn" . ¢ Ta - pé=0. (60)
Proof The first property follows from (58). Then, however,

Tr" pé =717 - an+1,r . é —Tn" - ]’lé = ’TTCFFl . i —Tn" - ]’lé

61
=Tn™ ¢ —Trn - TJyoTn . ¢=0. (61)

O

Remark 1 If hé =0, then necessarily Tn'*' - & =0 so ¢ is n'*'-vertical. This
observation explains why k¢ is called the horizontal component of £.

One can easily find the chart expressions for the vectors 4¢ and pé. If in a fibered
chart (V, ), ¥ = (x,y°), & has an expression

r+1
0
fé’< ) + & il 55 , (62)
Ox' Ity kZ;thzzS:“-SjA " 8yjlj2~~:il< Ty

\.

then

i a " . a
hi - é (%) ‘]rv+ ZS: y]1j2~~-jki (a o >Jm 5 (63)

yjljzmjk

and

k=0 ji <jr < <ji Ytz

=0 o i 0
pE=3 > (?m‘zm - y.njz..m5> <g ) : (64)
s

Note that the conditions #¢ =0 and pé =0 do not imply ¢ = 0; they are
equivalent to the condition that & be 7/ ! -vertical,

—c 0
Y i (— ) - (65)
Jitly

W <h < <j NV oo

[TAN

The structure of the chart expression (63) can also be characterized by means of
the vector fields d; along the projection 7" +!", defined on V! by

di:<f) +Z Z yﬁj2-~Jki<£> (66)

k=0 ji <j2 < <jik y.ll]2~~]k
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d; is called the i-th formal derivative operator (relative to the fibered chart (V,)).
Note that these vector fields are closely connected with the tangent mapping of the
functions f:J"Y — R, composed with the prolongations J"y of sections y of
Y. Namely, if (V, ), = (x,y7) is a fibered chart, x € n(U) a point and y a section
defined on U, then for every tangent vector &, € T, X, expressed as £y = 56(8 /Ox')

AfoJyoqp!
n o) fo= (ME0D) & (67)

For each i such that 1 <i<n, the formula

Af oJyo w“))

ar = (M (68)

defines a function d;f: V'*! — R, called the i-th formal derivative of the function
f (relative to the given fibered chart). In the chart,

D DD D A (69)

=0 ji <jp< - <jr N} i

Remark 2 Canonically extending the partial derivatives 0/ dy%, ;.to all sequences
J1sJ2, - - - Jk, the formal derivative d; can be expressed as

+ Z y]1]2 il

(70)
8y11]2 Jk
(see Appendix 2).

Remark 3 In general, decomposition (59) of tangent vectors does not hold for
vector fields. However, if & is a 7" -vertical vector field on W'*!, then hé is the
zero vector field on W’ and condition (59) reduces to the n"*!’-projectability
equation

TnH—l,r . (;; _ 50 ° 7_l:r+l$r (71>

for the 1" -projection &, of & Thus, pé(J7y) = & (J7y).
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1.6 Jet Prolongations of Automorphisms of Fibered
Manifolds

Let (V,y), ¥ = (x/,y7), be a chart, and let f: V" — R be a differentiable function.
We set for every i, | <i<n,

3] 3]
dif:afﬁﬂ‘ Z y 'y;j%..jki' (72)

g
0<k<r Yiija.de

In this formula, the function d;f: V'*! — R is the i-th formal derivative of the
function f (Sect. 1.5). A notable formula

diy;u'2~~jk - y;;jZH:iki (73)
says that d; may be treated as a mapping, acting on jet coordinates of the given
chart.

Let r be a positive integer. Consider an open set W in the fibered manifold ¥ and
a C" automorphism a: W — Y with projection ap: Wy — X, defined on an open set
Wo =n(W). In this section, we suppose that the projection oy is a C”
diffeomorphism.

Every section y: Wy — Y defines the mapping opog! = oo ypoayl; it is easily
seen that this mapping is a section of ¥ over the open set oo (W) C X: indeed, using
properties of morphisms and sections of fibered manifolds, we get
nootyotal :aoonoyoaal
section x — opoy!(x) are defined and are elements of the set J'Y. An r-jet
J O’CU( 0 %1% ! can be decomposed as J;'(x)a oJyyol, 0% !, so it is independent of the
choice of the representative y and depends on the r-jet Jy only. We set for every

Ty e W= (20" (W)

=019 0 0t 1 — idw,. Then, however, the r-jets of the

Ja(Jly) = J;O(X>ocyocal. (74)

This formula defines a mapping J'a: W" — J"Y, called the r-jet prolongation, or
just prolongation of the C" automorphism o.

Note an immediate consequence of the definition (74). Given a C” section y: Wy —
Y, then we have J"o 0 J"y = J opag ! o o so the r-jet prolongation J"ayoy ! of the
section oy ! satisfies

Jayogt =T oo yoay! (75)
on the set ao(Wp). In particular, this formula shows that the r-jet prolongations of

automorphisms carry sections of Y into sections of J'Y (over X).
We find the chart expression of the mapping J «.
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Lemma 7 Suppose that in two fibered charts on Y, (V. ), ¥ = (x¥,y°), and
(V,), ¥ = (&,5%), on Y such that o(V) C V, the C" automorphism o is expressed
by equations

Xoa(y) =f((x), 37 ouly)=F(x(x),y' (). (76)
Then for every point J\y € V', the transformed point J'a(Jy) has the coordinates

X oJa(Jyy) = (¥ (x)),

_ N (77)
¥ o J'a(Jiy) = F7 (¥ (x), " (7(x))),
y;jz..jk ° ‘]r(x(J;V) = Dlejz' : 'Djk (ygmp_l o WQD_I © <P0<61<7)_])(<7>(°‘0(x)))a
1<k<r.
Proof We have
X oJa(Jy) =¥ o og(x)
I -1 — il
Ko (o) = (1), 7%

and by definition

j].;?ljz-ujk °© J’a(];y) = j);;.fZH:fk (J;o(x)“yaal)
= D;,Dj,...D; (¥ 0 ayery @) (@ (20(x))) (79)

=D, D;,...D; (?JW_I © WV(P_I © ¢“al(_p_l)(¢(a0(x)))'
O

Formulas (77) contains partial derivatives of the functions ' and F°, and also
partial derivatives of the functions g*, representing the chart expression oy '@ ~! of
the inverse diffeomorphism o !. These functions are defined by

ooyl () =g (@ (). (80)

To obtain explicit dependence of the coordinates y7; . (J"a(J;y)) on the coordi-
nates of the r-jet J.y, we have to use the chain rule k times, which leads to poly-
nomial dependence of the jet coordinates y7, . (J"a(J;y)) on the jet coordinates
i) ¥ ()s - Vi i (J7y). This shows, in particular, that if « is of class
C", then J"u is of class C?; if o is of class C*, where s > r, then J”« is of class C5~".
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Equations (77) can be viewed as the recurrence formulas for the chart expression
of the mapping J"o. Writing

Firder O HI) = (57,5, 0T 00T 0 07 0 0o 971 ) (P(0(x))),  (81)

we have

v 0" HID) = D (55, 5, 0T 20Ty 007 0 0ug o) (9(o0(x)))
= Di(¥, s, oI x0 0 07 ) (@)D (Kag 971 (9 (a0 (x))).
(82)
Thus, if we already have the functions y7, . ~oJ"a, then the functions y7, . o

J"o are determined by (77).
We derive explicit expressions for the second-jet prolongation J2o.

Example 7 (2-jet prolongation of an automorphism) Let » = 2. We have from (76)

¥; 0 Pa(J7y) = D, (o~ o Yyt o oy o) (@ (20 (x)))
= Di(¥oup ™) (Yy(x))D (xk"/qfl)( Dy, (g o~ (@ (20 (x)))
= Di(yo) ") (¥7(x)) 01 D, (Hotg ") (P (a10(x)))
+ D (5 oy ™) (Y (x))y; (Tin)Dy, (Ko ™) (o
= (D3 oy ™) (Yry(x)) + Di (3 onp ™) (W (x))y] (137))
- Dy, (o ' o7 (@(0(x))),

or, in a different notation,

. , N
yjl [¢] JZO((JXV) = le (Jx'))) (8j1) 5 (84)
Y (a0 (x))

where d; denotes the formal derivative operator. Differentiating (83) or (84) again,
we get the following equations for the 2-jet prolongation J?u« of a:

—i i(. 0 —a G i v -0 a agkl
X :f(x)7 VY =F (xl7y )a Vi =dy F .87 »
_x]
8gk' 3gkz 82g"' <85>
Yip = dudi o o T i F7 - O O

We can easily prove the following statements.
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Lemma 8

(a) For any s such that 0 <s<r,

noJla=mon", notu=J0on". (86)

(b) If two C" automorphisms o. and f of the fibered manifold Y are composable,
then J"o and J" B are composable and

JoaoJ B=J(0of). (87)

Proof All these assertions are easy consequences of definitions. U

Formula (86) shows that J"o is an C" automorphism of the r-jet prolongation J"Y
of the fibered manifold Y, and also C" automorphisms of J"Y over J*Y.

1.7 Jet Prolongations of Vector Fields

Let Y be a fibered manifold with base X and projection 7. Our aim in this section is
to extend the theory of jet prolongations of automorphisms of a fibered manifold
Y to local flows of vector fields, defined on Y.

Let 2 be a C” vector field on Y, let yy € Y be a point, and consider a local flow
a=: (—¢,&) x V — Y of E at yy (see Appendix 4). As usual, define the mappings o=
and o by

&3]

= (t,y) = o7 (v) = o5 (1) (88)

Then for any point y € V, the mapping ¢ — ocyE(t) is an integral curve of E passing
through y at t = 0, i.e.,

S =E(5 (), o5(0)=y. (89)

Moreover, shrinking the domain of definition (—é&,&) x V of % to a subset
(—Kr,K) X W C (—¢,¢) x V, where W is a neighborhood of the point yg, we have

o (s +1,y) = o= (5,05 (1,y)), o= (=1,0%(1,y)) =y (90)
for all (s,¢) € (—x,x) and y € W or, which is the same,

S0 =@ (1), wEer () =y (o1)
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Note that the second formula implies
(o) " =oF,. (92)

In the following lemma, we study properties of flows of a w-projectable vector
field.

Lemma 9 Let = be a C" vector field on Y. The following two conditions are equiv-
alent:

(1) The local 1-parameter groups of E consist of C" automorphisms of the fibered
manifold Y.
(2) E is m-projectable.

Proof

1. Choose yo € Y be a point and let xy = m(yp). Choose a local flow o=: (—¢, &) x
V — Y at yg and suppose that the mappings oc,E: V — Y are C" automorphisms
of Y. Then for each ¢, there exists a unique C" mapping o,: U — X, where U =
n(V) is an open set, such that

nodr =o0m (93)

on V. Setting (¢, x) = a,(x), we get a mapping a: (—¢, &) x U — X. It is easily
seen that this mapping is of class C”. Indeed, there exists a C" section y: U — Y
such that y(xg) = yo (Sect. 1.1, Theorem 3); using this section, we can write
a(t,x) = o, (x) = mo o o p(x) = moa=(t,7(x)), so a can be expressed as the
composite of C" mappings. Since « satisfies (0, x) = x, setting

E(x) = Tooty - 1 (94)

we get a C"~! vector field on U.
On the other hand, Formula (93) implies 7o o=(t,y) = a(t,n(y)), that is,
no ocyE = Oly(y). Then from (89), T;(mo ocyE) =Tzpn- E(oZ(1)) = T0n(y) and

<

we have at the point t = 0

Todtr(y) = Tym - E(y). (95)
Combining (94) and (95),

(n(y)) = Tym - E(y). (96)

n-projectability of = (on Y) now follows from the uniqueness of the
T-projection.



1.7 Jet Prolongations of Vector Fields 25

2. Suppose that = is m-projectable and denote by ¢ its m-projection. Then
Tyn-E(y) = &(n(y)) (97)
at every point y of the fibered manifold Y. The local flow o satisfies Eq. (89)
Ty = (o5 (1)) Applying the tangent mapping 77 to both sides, we get

5 (1) = E(n(ag (1)). (98)

T (mo ocyE) =Tzpm- E(o

This equality means that the curve t — n(ocf(t)) = ocf[(y)(t) is an integral curve

of the vector field ¢. Thus, denoting by o the local flow of ¢ at the point
xo = ©(yo), we have

[

(1,y)) = o« (1, n(y)) (99)

as required. O

(o

Let = be a n-projectable C” vector field on Y, £ its n-projection. Let octE (resp. ocf)
be a local 1-parameter group of E (resp. &). Since the mappings oc,cr are C" diffeo-
morphisms, for each ¢, the C" automorphism octE can be prolonged to the jet pro-

longation J*Y of Y, for any s, 0 < s < r. The prolonged mapping is an automorphism
of the fibered manifold J*Y over X, defined by

JoZ(Jry) = J‘;E(X)oc?yocét, (100)
the s-jet prolongation of OCZE‘.

It is easily seen that there exists a unique C* vector field on J°Y whose integral
curves are exactly the curves ¢ — J*a=(J7y). This vector field is defined by

ra) = (§rE0m) | (101)
dt 0
and is called the r-jet prolongation of the vector field Z. It follows from the
definition that the vector field J*Z is ’-projectable (resp. 7**-projectable for every
k, 0 <k <s) and its m*-projection (resp. m**-projection) is ¢ (resp. JXZ).
The following lemma explains the local structure of the jet prolongations of
projectable vector fields (Krupka [K13]); its proof is based on the chain rule.
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Lemma 10 Letr 2 be a n-projectable vector field on Y, expressed in a fibered chart

(Vogh), ¥ = (x',)y7), by

. 0
E=¢_—+E . 102
¢ ox! yo (102)
Then, J*E is expressed in the associated chart (V*,\*) by
0 = 0]
—6——+” + B A (103)
Ol dy° kz:;jl szzé:msik N ay]ljz J
where the components & J ..j. are determined by the recurrence formula
= - o
:'101]2 ge djk:‘.;jzmjk—l - yﬁj2~~Jk—li@‘ (104)

Proof For all sufficiently small ¢, we can express the local 1-parameter group of =
in one chart only. Equations of the C" automorphism o are expressed as

HooZ(y) =xoi(x), ¥ oul(y) =yt (). (105)

From these equations, we obtain the components of the vector field E in the form
: dxio; (x) dy* o (y)
i(y) = o(y) = | L) 106
<) ( a ). () a ), (106)

To determine the components of J*Z, we use Lemma 9. The 1-parameter group
of J°E has the equations

[1]

X o J7u ()
Yo lJu(y) =
oJ’oc,E(J;y)

f(x),

¥ (y),

D;,Dj,. D;k(y oy oyt o pat o) (p(as (1)),
1<k<

g
Yiijawiis

(107)

so by (106), it is sufficient to determine = By definition,

Jl]2 Jk°

=0 r d a r B r
. U50) = (G 00 0TI (108)
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But
y;;.72~~:fk—l °© Jral:(‘];y)
=D;D;,..D;, (o5 oo o gt 07 ) (0(a (x))) (109)
= Vi 005 0 d ot 07 (0(%5 (),
thus,
y;'lez_,,jk oJ o (J7y)
=D, (5, i, 0 d % 0T 7o @ o g, (e(a (x))) (110)

=D}, 0% 0Ty 0 07 ) (@(0))D; (W07 (9(o; (x))).

To obtain E?

i (Jry) (108), we differentiate the function

(t,0(x) = ¥, 0 2 (0) = O g, 0 0 0T 70 97 )(@(x) - (111)

with respect to 7 and x/. Since the partial derivatives commute, we can first dif-

. . _ : =0 N
ferentiate with respect to ¢ at r=0. We get the expression =7, . (J77). Sub-

sequent differentiation yields

Dl(azh“:ik—l °© er °© goil)(('o(x)) = dlE]('Tl.izmjkfl (J;V)’

(112)

where dj is the formal derivative operator.
We should also differentiate expression Dj, (x'e=, ¢~ 1) (¢ (o (x))) with respect to
1. We have the identity D;(x*a%,¢ ' o ot @) (p(x)) = oF, that is,

D;(x* o= 0™ ") (@ () Di(xo; 0~ ) (@ (x)) = 6. (113)
From this formula,

& D, 107 (05 () DilE ) (0()

D 0 (0 () - D (0(0)

(114)
=0

thus, at = 0,

(SR 0 s () ol +aDE o) =0, (1)
0
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hence,

(%Dmx"aé,w-l><<paf<x>>)0= D (). (116)

Now we can complete the differentiation of Formula (110) at r = 0. We have,
using (112) and (116)

fldl r d o r = r
':'jljz-»Jk (ny) = (E (yjlj2<--jk oJ % )(ny)>
0

d T 2 r -
N (EDl(yqujz‘..jkl oJ % oJyoe l>(g0(x>)> 5jlk
0

o r — d - q
D05, 0970 07 o) (51 0% 07 0G0 )
=g r+1 1
= dlnjlj2-~Jk—l (JX+ y)éjk
=D, 5, 0700 ) (@)D ((x))
=45, 5, U0 =37 iDL E (e(),
(117)

which coincides with (104). U

Example 8 (2-jet prolongation of a vector field) Let a n-projectable vector field =
be expressed by

0 0
—+ = . 118
Ox! + 0y° (118)

Z'fé’
= =

We can calculate the components of the second-jet prolongation J?Z from
Lemma 10. We get

;0 0 0 0
PE=E 4B —+E —+ ) B —, (119)
ox'! ay° 7 0y! = Jk ay;;
we get
_ o - aVi
':;T = d]':' —Ji 8;1,
) . . (120)
Y SIS

T Vige T Yk T Vi poiank

In the following lemma, we study the Lie bracket of r-jet prolongations of
projectable vector fields.
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Lemma 11 For any two m-projectable vector fields E and Z, the Lie bracket [E,Z)
is also m-projectable, and

J[E Z) = [J'E,JZ). (121)

Proof

1. First, we prove (121) for »r = 1. Suppose that in a fibered chart

; 0 0 ¢ 0 , 0
E=¢—4E"— Z=0—+7 . 122
¢ ox o’ ‘ ot dy’ (122)
Then
; 0 0 0 ;0 0 0
lE=¢ _—+E° E? 'Z=0_—+7° z 123
J Wiy 8y“+18y;” J Coi T2 50 T4 5 (123)
where
—_0 —_a o 85! o o o 3(’
and
o, o
JEJZ) = (=¢ !
=] ((‘%clé 8x’c ax’
0z’ ,, 0Z° =7, O027_\ O
Al ¢ Bl o
* (a N ) By
oz7 0z 0zZg =N 8"” =
él J :1 + j, h‘l A J’ Z; 9 .
I o o " oy ') oy
(125)
On the other hand, denoting ® = [E,Z], we have
®:19"i+®” 0 (126)

Oxi oy’
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where
i aCl s aél s
Yot Tt (127)
e = oL’ és + oL’ _=v E° Cs =7 Al
T ox oy~ O oy’
and
0 0 0
O=0—+0° 128
a o O By gy (128)
where
. - 8(9’
O] =d,0° —y/ o (129)

Comparing formulas (121) and (129), we see that to prove our assertion for
r = 1, it is sufficient to show that

oz°  oz° =0 oEr
. s = _ s 7V
9 (axs S E Tt Ty )

L0 (or, 08,
‘%aﬂ(mwf‘aﬂc) (130)
GZ” 0Z°? 0Z? o0=? . 0=? 8—“

gl J =V j =v ]

= = SNy ARy A
St T S Tt T Y Tl

We shall consider the left- and right-hand sides of this formula separately. The
left-hand side can be expressed as

0z’ 0Z° 9& oz° _,  0L°

Goe S Tavan Ty T Ty 4E
pE° . o=Cor  0E°_ 0E
ol g Y gy (131)

&+

. 82{1’ aﬁclaési 8251 siaﬁélaéﬂ
"\ Ol OxS Oxs Ox/ OxIOx* OxsOx/ )
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The right-hand side of (130) is

oz° U N\, 077, 0 . GO
<d4__yA )5 +d oy o <dZ axf)“l

7 oxl " oxlOxI
=, o =, 0 o
—(d=— =7 o T A
<dj axl l a Iaxj>C d] 8 v aylv < j yl 8)(?]) 1
ozZ° *L ozZ° OEN 0Z°
= <dj—l_ Vi ] j>£ +d] v E + (djEv—y; j) v
Ox Ox'Ox. Oy ox/ ) Oy (132)

— 08\ o

- (f’l“ R a_>a_

B Pé O=° O 0E°
—(d=—y —d =7 - (dZ7" —y =

< Ton 8x’8xl>c 7 Oy < ! Vi 8x1> oy

. O 9¢
* (dlz Y o )8xl

In this formula,

o ocoze oz od oz 9f 00z

Az’ =~y = :
o Yo oy~ ad o T oyl ow Y ol Oy (133)
oz
T ox oxi’
and
g0, govoEr | oErol o= o ot oEr
o0 o gy T od o ayv laxf Y o By (134)
27 ¢!
T o o)
thus,
07, 0, 07 =0 N -
l J =Y J = =il J A =i Zv
Ox! 7ot 8 Y oy’ Jy)
oze L PLN, oz, 0z o8l
(d od i ox ,ax,)f T = T T S o
=0 8251 ; :(‘ - = 8? 851
B (d] o 8xl<9xf)C Ay —diZ oy ’8xl ox
Lozrod oEror
Ox Ox/ Ox! OxJ~
(135)

This is, however, exactly expression (130), proving (121) for r = 1.
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In this part of the proof, we consider the r-jet prolongation J"~'Y as a fibered
manifold with base X and projection 7'~': J”~'Y — X, and the 1-jet prolon-
gation of this fibered manifold, J'J"~'Y. J'Y can be embedded in J'J"~'Y by
the canonical injection

JY STy —a(Jly) =J 0y e Sy, (136)

Obviously, 1 is compatible with jet prolongations of automorphisms o of Y in the
sense that

1oJ o= J'T o) o (137)
Indeed, we have for any point J7y from the domain of J o
(Vo) = 150009 ) = Ty (I oo ), (138)
and also
T a((y)) = I (L) = 0 g (U e Iy oag ). (139)
Thus, (138) follows from the definition of the 1-jet prolongation of a fibered
automorphism (Sect. 1.4, (101)).

Then, however, applying (139) to local 1-parameter groups of a m-projectable
vector field Z, we get i-compatibility of J'J""!Z and J'E,

JYUTEo1=T1-JE. (140)

Since for any two 7-projectable vector fields Z and Z the vector fields J'J'~'Z
J'E and J'J"~'Z and J'Z are 1-compatible, the corresponding Lie brackets are
also 1-compatible and we have

e S Z o =T - [J'E,JZ). (141)

Using Part 1 of this proof, we now express the vector field on the left-hand side
of (141) in a different way. First note that

-t stttz = s tg ). (142)

But we may suppose that [J*~'E, J"~!Z] = J*~![E, Z] (induction hypothesis), thus
[JlrtE Jlur-1z) = JU1E, Z]. Restricting both sides by 1 and applying (137),

VU 70z o1 =SB Z) o1 = T1 - JT[E, Z). (143)
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Now from (142) and (144), we conclude that T: - ([J'E,J'Z] — J'[E,Z]) = 0.
This implies, however, [J'E,J'Z] — J'[E,Z] = 0 because T is at every point
injective.

This completes the proof of formula (121). U

Remark 4 (Equations of the canonical injection) We find the chart expression of
the canonical injection 1:J"Y — J'J7'Y (136) in a fibered chart (V,),
Y = (x,y°), on Y and the induced fibered chart on JY. We also have a fibered
chart on J'J77'Y, induced by the fibered chart (V"' ),
Y= (707, s Y ) on J7T'Y. We denote the fibered chart on
JU=1Y by (W, W), where the coordinate functions are denoted as

_ i 0 .0 .0 a g .0 o a
Vo= (Y3 Y Vi Yoo Yk Yo - o Yy ) (144)

Then by definition,

Vo © 1057) = De(v,. i 09 v 0 07 ) (9(x))

G, —1 a r (145)

= DyD; D;,...D;,(y"ye ) (@(x)) =75, ix ()
forall s = 1,2,...,r — 1, so the canonical injection 1 is expressed by the equations
Yor=d, yor=f, Np0r=du 1Ss<r-L

o 1,0 —
Yiijoodik © V= Yijp ko LS8 <r— 1
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Chapter 2

Differential Forms on Jet Prolongations
of Fibered Manifolds

In this chapter, we present a decomposition theory of differential forms on jet
prolongations of fibered manifolds; the tools inducing the decompositions are the
algebraic trace decomposition theory and the canonical jet projections. Of particular
interest is the structure of the contact forms, annihilating integrable sections of the
jet prolongations. We also study decompositions of forms defined by fibered ho-
motopy operators and state the corresponding fibered Poincare-Volterra lemma.

The theory of differential forms explained in this chapter has been developed
along the lines indicated in the approach of Lepage and Dedecker to the calculus
of variations (see Dedecker [D], Goldschmidt and Sternberg [GS] and Krupka
[K13]). The exposition extends the theory explained in the handbook chapter
Krupka [K4].

Throughout, Y is a smooth fibered manifold with base X and projection ,
n=dimX, n4+m=dimY. J'Y is the r-jet prolongation of Y, and n": J'Y — X,
n": J'Y — X are the canonical jet projections. For any open set W C Y, Q;W

denotes the module of g-forms on the open set W™ = (7%) ™' (W) in J’Y, and Q"W
is the exterior algebra of differential forms on the set W”. We say that a form # is
generated by a finite family of forms y,, if # is expressible as = n* A p,. for some
forms #"; note that in this terminology, we do not require p, to be 1-forms, or
k-forms for a fixed integer k.

2.1 The Contact Ideal

We introduced in Sect. 1.5 a vector bundle homomorphism / between the tangent
bundles 7J"+'Y and TJ"Y over the canonical jet projection 7' +1-": J™*1Y — J'Y, the
horizontalization. In this section, the associated dual mapping between the modules
of 1-forms Q)W and QE‘H W is studied. We show, in particular, that this mapping
allows us to associate with any fibered chart (V, ) on Y and any function, defined on
V', its formal (or total) partial derivatives in a geometric way and a specific basis of
1-forms on V’, termed the contact basis. Then, we introduce by means of the contact
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36 2 Differential Forms on Jet Prolongations of Fibered Manifolds

basis a differential ideal in the exterior algebra Q"W, characterizing the structure of
forms on jet prolongations of fibered manifolds, the contact ideal.
Recall that the horizontalization 4 is defined by the formula

hé=TJyoTra ™. ¢ (1)

where ¢ is a tangent vector to the manifold J"*!Y at a point J7"!y. The mapping
h makes the following diagram

iy . 1y
l r+1,r l (2)
Jr+1Y - . JY

commutative and induces a decomposition of the projections of the tangent vectors
an+l,r . é,

Tt & = hé + pé. (3)

hé (resp. p&) is the horizontal (resp. contact) component of the vector £. Note,
however, that the terminology is not standard: The vectors ¢ and A& do not belong
to the same vector space. The horizontal and contact components satisfy

Tn -hé=Tn*' & Tn'-pé=0. (4)

The horizontalization & induces a mapping of modules of linear differential
forms as follows. Let J;“y € J”t'Y. We set for any differential 1-form p on W”
and any vector ¢ from the tangent space TJ ™'Y at J7 ™y

ho(J5hy) - &= p(Jly) - RE. (5)

The mapping QW = p — hp € Q{“W is called the 7-horizontalization or just the
horizontalization (of differential forms).

Clearly, the form hp vanishes on " !-vertical vectors so it is 7" +!-horizontal; hp
is sometimes called the horizontal component of p.

The mapping  is linear over the ring of functions Q)W along the jet projection
7"+ in the sense that

h(py + p2) = hpy +hpy  h(fp) = (for"™ " )hp (6)

for all py, py, p € QW and f € QW.



2.1 The Contact Ideal 37

If in the fibered chart (V,y), ¥ = (x,y7), a 1-form p is expressed by

p=Adx+ Y Y By ™

0<k<rji<jp<-<jk
then we have from (5) at any point J !y € V7!

hp(JLYy) - & = Ai(JLy)dX (J5y) - hé
+ >N BRI, () - hé

05K<rji << (8)
- <A,-<J;~/> + 2. > B <J£v>yﬁjz...jki> ¢
0<k<rji<p<-<ji

thus,
hp = (A,- + > By Jki> dx'. (9)
0<k<rji<p<-<jk
In particular, for any function f: W — R
hdf = dif - dx', (10)

where

0, 0,
dif Y + Z ! ' Yo (11)

:_i =
o W

The function dif: V™' — R is the i-th formal derivative of f with respect to the
fibered chart (V,y). From (10), it follows that d;f are the components of an
invariant object, the horizontal component hdf of the exterior derivative of f. Note
that formal derivatives d;f have already been introduced in Sect. 1.5.

The following lemma summarizes basic rules for computations with the hori-

zontalization and formal derivatives. We denote by d; the formal derivative operator
with respect to a fibered chart (V, ), ¥ = (¥,7°).
Lemma 1 Let (V,\), y = (x,y°), be a fibered chart on Y.
(a) The horizontalization h satisfies
hdy® = yZdx, hdy; = yflidxi, hdy? ;, = y;’]jzl-dxi,

o _ .0 i
e hdyjljz...j,- = yjljz.”j,idx .
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(b) The i-th formal derivative of the coordinate function y;;, . is given by

-Jk

d (13)

vV . v
Vjijaegi = Yjijzodai

©) If (V.y), ¥ = (&,5°), is another chart on Y such that V'V # &, then for
every function f: V' NV — R,

- Ox/
df =dif ——. 14
F=df (14
(d) For any two functions f, g: V" — R,
di(f -8) =g-dif +f-dig. (15)
(e) For every function f: V" — R and every section y: U -V C Y,
Af oJ)
dif oJ "y =" 16
fol ™y o (16)

Remark 1 By (13), ¥, . =d; 57, . - Thus, applying (14) to coordinates, we
obtain the following prolongation formula for coordinate transformations in jet
prolongations of fibered manifolds

Ox'

yqujzmjk = diyjylj2<<Jk—l ﬁ (17)

Remark 2 If two functions f,g: V" — R coincide along a section J'y, that is,
foJ"y=goJ", then their formal derivatives coincide along the (r + 1)-prolon-
gation J™ 1y,

dif oy =digoJ . (18)
This is an immediate consequence of formula (16).

Now, we study properties of 1-forms, belonging to the kernel of the horizon-
talization Q"W > p — hp € QT'W. We say that a 1-form p € QW is contact, if

hp =0. (19)

It is easy to find the chart expression of a contact 1-form. Writing p as in (7),
condition (19) yields

At Y > BN =0, (20)

0<k<rji<p<-<jk



2.1 The Contact Ideal 39
or, equivalently,

B =0, A= -
0

Yoo D> BRI e (21)
k<r—1

< J1<ja < <ji

Thus, setting for all £, 0 <k<r —1,

o _ o 0 J
Djijreis = dyjlj2-»~jk yj1j2~-/k/dx ) (22)

we see that p has the chart expression

p= > S Bkl (23)

0<k<r—=1ji<jp<-<jk

This formula shows that any contact 1-form is expressible as a linear combination

of the forms w?. ..
J1J2-Jk

The following two theorems summarize properties of the forms 7, .

Theorem 1

(@) For any fibered chart (V, ), y = (x,y°), the forms

dxi’ wﬁjz..jk’ dyzlz...l,,|l,7 (24)
such that 1 <i<n, 1<o<m, 1 <k<r—1,1<j;<jp< - <ji<nm, and
1< <L < - <[, <n, constitute a basis of linear forms on the set V'.
) If (V) ¥ = (x',y°), and (V, ), ¥ = (¥,5°), are two fibered charts such
that VNV # &, then

w). _ Z Z 8y;11’2-~l’k ot (25)

P1P2---Pk ayf o Tijaedm”
0<m<kji<jp<-<jk J12-Jm

(©) Let (V,¥), ¥ = (¥,y%), and (V, ), ¥ = (¥,5%), be two fibered charts and o
an automorphism of Y, defined on V and such that (V) C V. Then

T o0 _
Jo wj]jz-»J'k - Z

v
i<ir<—<i, Wiy,

a(y.;?ljz-ujk ° Jro() (26)

i1i2.4.ip :

Proof

(a) Clearly, from formula (22), we conclude that the forms (24) are expressible as
linear combinations of the forms of the canonical basis dx’, dy/(‘fljzmjk’

a
dylllz‘..l,,ll,'
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(b) Consider two charts (V, ), ¥ = (x',y°), and (V, ), ¥ = (¥',5°), such that
V NV # . For any function f, defined on V”,

a
hiby...dy

(" )Edf = hdf + pdf = dif -dx' + ) oo
0<k<riy<b <<t Ohb. i

— af
— . A —T
= dpf a7 + Z v J2edm
0<k<rji <jp < <jp Ptz
D v
_g O N M.
B dpf Ox' ar'+ oy i wjlqu:fm'
0<k<rji<jp < <jely <t <<l OVl s Djijajm

(27)

Setting f =y, _,.» where p; <p, < -+ <py, and using (17), we get (25).
(c) By definition,

J okw?

jtjrede d(yﬁjz-»ﬂ- © ‘Ir(x) - (y;jz..jkl © ]ra)d(jcl ° J’a)' (28)

Denote by o the m-projection of o. Since from Sect. 1.6, (80)
ijswist ©J HI57)

_ OG0 ey 0 ¢ ) oxog'p ") (29)
- oxs b ’

then

— - — .
J ok’ _ a(yjljz~~~jk oJ OC) A’ + Z 8(yjlj2-~~jk oJ O() v’
Baede T P v Vitiy.iy
i< <<l iiy...0p

Oy om0 0 ) A9 0 o ')
Ox’ ox! OxP
= _a(y;;.hu;fk ° J’O() dx’ + Z a(yj{yljz‘ujk °© J’(x) @’

oxP itiy...p

vV
i<ip<--<ip, yiliz..jp
-0 T
Vi ")
* oy, .
i<ip<-<ip Y

R

v
v i1iy...ips
i1iy...0p

g olmo 100
ox*
oF°. . oJa
- ¥ 0. ©) (30)

(i)yv iri..dp"
i<i2<"'<i,) 1.0

These conditions mean that the section J is of the form § = J" (7" 0 §) as
required. O
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The basis of 1-forms (24) on V" is usually called the contact basis.
The following observations show that the contact forms wf; .. defined by a
fibered atlas on Y, define a (global) module of 1-forms and an ideal of the exterior

algebra Q"W (for elementary definitions, see Appendix 7).

Corollary 1 The contact 1-forms ¢ locally generate a submodule of the

J1j2-Jk
module Qi W.

Corollary 2 The contact 1-forms of ;. . locally generate an ideal of the exterior
algebra Q"W. This ideal is not closed under the exterior derivative operator.

Proof Existence of the ideal is ensured by the transformation properties of the

contact 1-forms w7, (Theorem 1, (b)). It remains to show that the ideal contains

a form, which is nor generated by the forms w{

75 I p is a contact 1-form

expressed as

p= Z Z B]Uljz“kaj{jjzmjk’ (31)
0<k<r—1j<jp<-<ji
then
dp = Z Z (dB]“uz“Jk A w;jz-»Jk + ij;hmjkdwj(fljz---jk)' <32)
0<k<r=1j1<jp<-<ji
But in this expression,
a !
Wl = _wjljz---jkl/\dx’l 0<k<r-2, (33)
T2k —dy;,, o aNdx, k=r—1,
thus, dw?; . = and in general the form p are nor generated by the contact forms
Oy =
The ideal of the exterior algebra Q"W, locally generated by the 1-forms OF e

where 0 <k <r — 1, is denoted by ®,W. The 1-forms w;jz.ujk’ where 0 <k <r—1,

and 2-forms dw{ locally generate an ideal ®" W of the exterior algebra Q" W,

J1ja-dr-1
closed under the exterior derivative operator, that is, a differential ideal. This ideal
is called the contact ideal of the exterior algebra Q"W, and its elements are called

contact forms. We denote
OW=QWNO'w. (34)

The set @;W of contact g-forms is a submodule of the module Q;W, called the
contact submodule.
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Since the exterior derivative of a contact form is again a contact form, we have
the sequence

0—ow-Leow-L ... Lerw, (35)

where the arrows denote the exterior derivative operator. If p is a contact form,
p € ©,W, and fis a function on W", f € OyW, then the formula

d(fp) =df Np+fdp (36)

shows that the form d(fp) is again a contact form; however, the exterior derivative
in (36) is not a homomorphism of ®;W-modules. Restricting the multiplication in
(36) to constant functions f, that is, to real numbers, the exterior derivative in (36)
becomes a morphism of vector spaces.

Another consequence of Theorem 1 is concerned with sections of the fibered
manifold J”Y over the base X. We say that a section  of J"Y, defined on an open set
in X, is holonomic, or integrable, if there exists a section y of Y such that

o=J"y. (37)

Obviously, if y exists, then applying the projection 7' to both sides, we get
70068 = y; thus, if y exists, it is unique and is determined by

y=n"04. (38)
Theorem 2 A section 6: U — J'Y is holonomic if and only if for any fibered chart
(Vo) ¥ = (x,¥%), such that the set n(V) lies in the domain of definition of 9,

% g
0 Wiy .y

=0 (39)

for all o, k and iy,ir,....ix such that 1<o<m, 0<k<r—1, and
1<ip<ip <--- < <n.

Proof By definition,

5*‘“?,1‘2...1; = d(y;?]iz...ik 04) — (y?]iz...ikl o 5)dxl

A, 0 (40)
= ((ymg;,k ) = Yoy iyl © 5) dx’.
Thus, condition (39) is equivalent to the conditions
0V, . o0d
Wl e, io9=0 )
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that can also be written as

oy"ed)

% —Y/e0=0,

g 00) P(od)

T—yilloé—m_)’illoé—o, (42)

(7, . 00) F* (7 0 4)

ey e 00 = ety 05 = 0.
axl ylllz.»-lyfll [¢] 8x118x12. . ,6x1r718x’ ylllzu.lrfll o 0

These conditions mean that the section d is of the form & =J (7?0 J) as
required. O

2.2 The Trace Decomposition

Main objective in this section is the application of the trace decomposition theory of
tensor spaces to differential forms defined on the r-jet prolongation J"Y of a fibered
manifold Y. We decompose the components of a form, expressed in a fibered chart,
by the trace operation (see Appendix 9); the resulting decomposition of differential
forms will be referred to as the trace decomposition.

In order to study the structure of the components of a form p € Q;W for general
r, it will be convenient to introduce a multi-index notation. We also need a con-
vention on the alternation and symmetrization of tensor components in a given set
of indices.

Convention 1 (Multi-indices) We introduce a multi-index 7 as an ordered k-
tuple I = (iyiy... i), where k = 1, 2,..., r and the entries are indices such that
1<iy, iy, ..., i <n. The number k is the length of I and is denoted by |I|. If j is any
integer such that 1 <j<n, we denote by Ij the multi-index Ij = (17> . . . igj). In this
notation, the contact basis of 1-forms, introduced in Sect. 2.1, Theorem 1, (a), is
sometimes denoted as (dx', 9, dy7), where the multi-indices satisfy 0< |J| <r—
1 and |I| =r; it is understood, however, that the basis includes only linearly
independent 1-forms 7, where the multi-indices I = (i1ip .. .0x) satisfy
i1<ib < <ip.

Convention 2 (Alternation, symmetrization) We introduce the symbol
Alt(iyiy. . . i) to denote alternation in the indices iy, i,..., 0. If U= U;;, ; is a
collection of real numbers, we denote by U, ;. Alt(iyi,. . .ix) the skew-symmetric
component of U. Analogously, Sym(i;i,. . .iy) denotes symmetrization in the indi-
ces i,iz,..., i, and the symbol U;; ; Sym(ijir...ix) means the symmetric
component of U. The operators Alt and Sym are understood as projectors (the
coefficient 1/k! is included).
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Note that there exists a close relationship between the trace operation on the one
hand and the exterior derivative operator on the other hand. For instance, decom-
posing in a fibered chart the 2-form dyj; A dx* by the trace operation, we get

1 ‘ 1 ‘
dy; A dx* =~ 5§dy5s Adx’ +dy], A dx —— 5]’fdy; Ady, (43)
n n

where the summand, representing the Kronecker component of dyj; N dx*, coin-

cides, up to a constant factor, with the exterior derivative dw§, and is therefore a
contact form:

1 1
;5Jkdy;-s A dxv = —;dw;- (44)

The complementary summand in the decomposition (43), represented by the second
and the third terms, is traceless in the indices j and k. We wish to use this obser-
vation to generalize decomposition (43) to any g-forms on J'Y.

First, we apply the trace decomposition theorem (Appendix 9, Theorem 1) to g-
forms of a specific type, not containing the contact forms ).

Lemma 2 Let (V. ), y = (x',y°), be a fibered chart on Y. Let u be a q-form on
V'such that

uw= A,'I,-z__,,-qa’xil Adx® A A dxie

+ Bfrllizis.uiqdyzl A dxiz AN dxi3 VANEEIVAN dxi‘/

+ Billlrzizi3i4...iqdy(;ll ANdypr A dx Ndx A - A dx (45)
I Iy [ .

+ -+ BJII(ZTZ. . .JquI i,,dy(;ll A dy;fzz A A dquill A dxi

FALE o dyf NdYD A Ay

Gl162" "

where the multi-indices satisfy ||, |L|, ... |I;—1| =r. Then, u has a
decomposition

1= po+ 4, (46)

satisfying the following conditions:

(@) W is generated by the forms dw§, where |J| =r — 1, that is,

Uy = Z doj N D!

g’
I =r—1

(47)

for some (q — 2)-forms @..
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(b) 1’ has an expression

1= Ay, X N dx A A dxe

- Af,'1 iy i, Y N AX A XA A e
F AR o AT N AYE A dX N dxt A d (48)
o AL TN A Ny A e
FALE L dyp AdYD A Ay
where A{rllzzzg Af,‘,’éz,z,z .. .,Af,‘llgz. . .f,";'l i, are traceless components of the
coefficients Ballm {;llézizi%iq LB '2:1 -

Proof Applying the trace decomposition theorem (Appendix 9) to the coefficients

/) I 1 72 Iy
B()’]izigu.iq ’ B()’m'zizig.“iq Bglu'z C -1 mn (45)a we get
YA L 70
Bali2i3,4.i Aal Bi3.. + C(rl iri3..
11 _ ALL 1112
Ba'lo'zi3i4...i Aalaohu C010213z4
(49)
Blllz 11]—2 _ 1112 1{]—2 + 1112 1(1—2
102" " "Og2ig-1lg — 1T0102" " 04 20g-1lg 102" " "Og2lg-1lg)
Bl1 L Iy _ AL Iy + I Iy
g10° " 'G'qul'qfll'q — ooyt 'G’llfziq,liq 010" " ’O'q,ziqfliq’
where the systems A’ hb AbL 1 are traceless and
o1li3.. 010202i3...0q7 * * VG102 TOg1 iy
Iy I I I3 f[ 1 e
Corizis..iy> Corarinis.iyr - CW,2 -, i, are of Kronecker type. Thus, writing the

multl—mdex I; as I; = Jjj;, we have

Cl i ——5“DQMM Alt(iiziy. . .ig)  Sym(Jyjy),
cﬁgﬂy4 5“D§£ﬂu5 Alt(izigis. . i) Sym(Jyj1)  Sym(Jaj),
I, i 1, . . .
C{;llléz- . é,fziq,liq = &;,IDQ%U- . -é,,zziq Alt(iy_1iy) Sym(Jyj1) (50)

Sym(Joj2) ... Sym(Jg-2jy4-2),
b e = iDhEL L Sym(Jyji)  Sym(Jaj2)

0102 " 041l i 010203 41

Sym(Jquiqu) .
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Then
u=Aq i, dx Ndx® A - A dxi
A i LAV A dXE N dxB N A
+ AL LAy Ny A dx® AN dx™ A - A dxi
AL f,q L AYE Ny N ANdy A dxt .
A{T‘11§2 K dy A dyI2 A dqu (51)
+ 5’ D<Jr11 i3igni, dyjm Adx® ANdx® A -+ Adx
+ 3, Dﬁ‘1§2,4,5 AV A YR N d Ndx A A d
+o 3 DR L dygl Ny A Ayt A dx
and now our assertion follows from the formula (44). O

The following theorem generalizes Lemma 2 to arbitrary forms on open sets in
the r-jet prolongation J'Y.

Theorem 3 (The trace decomposition theorem) Let g be any positive integer, and
let p € Q;W be a q-form. Let (V ),y = (x',¥°), be a fibered chart on Y, such that
V C W. Then, p has on V" an expression

p=po+p, (52)

with the following properties:

(@) pg is generated by the 1-forms w§ with 0< |J| <r —1 and 2-forms dwj
where |I| =r— 1.
(b) p’ has an expression

P = Ay, dx" NdxP A N dx
+AL A A dx> AdxB A - A dxi
A{,—lllfrzlzh ,qdy A dy‘72 Adx® Adx™ A - Adxi (53)
e ARE Ay A Y A Ady]T A do
—I—Af;]]f,z . quy,l Ny A A dya"
where |Ii|,|bl,...,|I,-1] =r and all coeficients AL . i f;lllgzizi}miq’
nhLo g

Groat 0y iniy..d, AT€ Traceless.
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Proof To prove Theorem 3, we express p in the contact basis. Then, p = p; + 4,
where p, is generated by contact 1-forms w7, 0< |J| <r—1, and u does not
contain any factor w7. Thus, p has an expression (45) and can be decomposed as in
Lemma 2, (46). Using this decomposition, we get the formula (52). O

Theorem 3 is the trace decomposition theorem for differential forms; formula
(52) is referred to as the trace decomposition formula. The form p, in this
decomposition (43) is contact and is called the contact component of p; the form p’
is the traceless component of p with respect to the fibered chart (V, ).

Lemma 3 Let p € QW be a g-form, and let (V.y), y = (x',y%), and (V, V),
Y = (¥,5°), be two fibered charts such that V NV # &. Suppose that we have the
trace decomposition of the form p with respect to (V) and (V, ), respectively,

p=po+p =no+p. (54)
Then, the traceless components satisfy
pl=p +7, (55)

where 7] is a contact form on the intersection VNV,

Proof Lemma 3 can be easily verified by a direct calculation. Consider for instance
the term A! iy, AYF, dx? Ndx A --- Adx in formula (53), and the transfor-

mation equation is

N7y Oy OX' 0% OX
0y Oxh Ox2 T Oxir

" Sym(/1]2 . ]r) (56)
Yoo

Denote @) ;- dx. Then, we have

gy 5
e d)].il.72<~:ik Yiijaewiid

ADEr s YT N X N dX A A dx
_ Ailizmi,. bosaos 8)(,‘;2 Ox® o O . 8y?;i2wir + ay?liz--«i; y\_/ o hd
o w5y T = v
x> Oz T Ol o 0<k<r—1 Djij.ii P
e, e, .
+ —a{i,”z'"” o+ a{ﬁ,"z""" d?}'}jz,,,j,) AdZ2 N AT A - AR
0<k=<r—1 Djij.cii Yirjzewdr
(57)
Consequently, the last summand in (57) implies
B L ox°2 Ox% Ox*a Oy7.
12 Jr iy iy
AT gy, =AY o (58)

§2583...8¢ 712 [3 AR —]/ — .
ox? Ox x4 Oy},
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Substituting from (56) in this formula, we see that the trace of ijlﬁl:ll vanishes if

and only if the same is true for the trace of A} | . Thus, the decomposition (55)

is valid for the summand (56). The same applies to any other summand. O

Following Theorem 3, we can write the g-form p in the contact basis as
p = p;+py+p, where p; is generated by the forms w7, 0<|J|<r—1, p, is
generated by dwf, |I| = r — 1, and does not contain any factor w9, and the form p’
is traceless. Thus,

pL= Z S ANDL py = Zdw}’/\‘}’ff (59)

0<T<r—1 Ij=r—1
for some forms @’ and V.. Then,
p = A0+ of Nd¥Y! +d(o] NPL) + . (60)
Setting
Pp=oAD. +wf NdYL, Qp=awf ANY, Rp=/p/, (61)

we get the following version of Theorem 3.

Theorem 4 Let g be arbitrary, and let p € QW be a g-form. Let (V,y),

W = (x,y), be afibered chart on Y such that V.C W. Then, p can be expressed on
V" as

p =Pp+dQOp+ Rp. (62)

Proof This is an immediate consequence of definitions and Theorem 3. O

In the following two examples, we discuss the trace decomposition formula and
the transformation equations for the traceless components of some differential
forms on 1-jet prolongation of the fibered manifold Y. The aim is to illustrate the
decomposition methods for lower-degree differential forms.

Example 1 We find the trace decomposition of a 3-form g, written in a fibered chart
(Vo). ¥ = (x,y7), as
= Agedx' Adx! A dx* + B jdy) A dx! A dxt
+ B dy? Ady, Ndx' + ALTdYT A dy) A dy.

q oVt

(63)
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4

Decomposing BY.,, we have B, = AP, + 5f Cox + Dy, where AL is traceless.

ajk? ajk ajk
Then, the condition Bﬁjk = —BY,; yields
B{:Pk = &;Czﬂc + %Dop = nCox + Do (64)
= _B{:‘kp = _5ZCa'p - %Dak = —Cor — nDgy,
and hence, C,y = —Dyg. Thus,
Bl = Ay + 8 Cor — 5 Coj. (65)

Decomposing BYY,, we have Bl = AP? + 8/ C4 + 5{DP . Now, the condition
B, = —B" yields

oV

By, = 00CY, + 69D0, = nCY, + DY,

avp p~av (66)
= _B(\{{;p = _5ZC€O' - 5£Di{a = _Cga - nD‘vlzﬂ
and hence, nC4, + C¢ = —nD?_— D2 . It can be easily verified that this condition
implies
Cgv = _Dlt]'a' (67)

Indeed, symmetrization and alternation yield

nCZL + C\ézla' + nc;]n' + CZV = _nD(\ia' - DZ’V - nDZv - D?o’ (68)
and
nCZv + C‘L]O' - ncgo - CZl = _nD(vI(i - DZ'» + nDZ'» + D?fc” (69)

hence, C4, +C! = —-Di — D4 and Ci — C4 = —DI 4 D1 . These equations

Vo

already imply (47). Thus,
B = Aqy + 0,.CY, — 6,CL,. (70)
Summarizing (65) and (70), we get

= Ayedx' Ndx) N dx + AL, dye Ndx Ndxt + AL dys A dy) A dxt
+ 07 Cordyy N dx! N dx — &, Copdlyy A dx! A dx*
+ 0, Cldys Adyy Ndx* — 51Chdys A dy, A dx*

Vo
+ AT dy) A dy, N dy,

ovT
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= Ajedx' Ndx) N dx* + AL dy? A dx! A dxt

+ AV YT N dy, A dxt + ALILdYT A dy) A dy;

+ Cordyy Ndx? N dx* — Copdy N dx! A dx?

+ Ca,dy, Ndy, Ndx" — C; dy, Ady, N dx? (71)
= Agedx' Ndx! Ndx* + AL dys A dx A dxt

+AVLAYT N dy) A dxt + ADIdYT A dy) A dy;

—2Csdw” A dx* +2C0 do’ Ady),.
Thus, applying formula (51) to any 3-form p on V', we get the decomposition

p=pi+p+p, (72)

where p, is generated by ?, that is, p; = 0’ A @,, p, is generated by the contact
2-forms dw’, p, = dw’ N'¥,, where the 1-forms ¥, do not contain any factor ",
and p’ is traceless.

Example 2 (Transformation properties) Consider a 2-form on the 1-jet prolongation
J'Y, expressed in two fibered charts (V, ), ¥ = (x,y%), and (V, ), ¥ = (¥,5%),
as

p=p+ptp =0 +p+0, (73)
where according to Theorem 3,

p1 =0’ NPs,  py = Qsda’,
p = Aydx' A dx’ + Ai,jdy;’ Adx! + AU dy) A dy;

and

ﬁl =’ A F(ﬂ p2 = @deﬂ, (75)
"= Aydx \dx + A,dy) A dx + AL dy) A dy.

VT

We want to determine transformation formulas for the traceless components A7

i
Alvj, and A;. Transformation equations are of the form

o o 9y 9y’ )\ ox
¥=3), 7 =3, 3= <8)))cl +a§vyl) ﬁ’ (76)
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and imply

(O ! oy! H'ox* | .
dy! = <8xp+8y" p)dxp+a +8 8Xidys'

Then, a direct calculation yields

—il oy e =i (OV] OV dy; Oy}
! T 1 i i [ ] i
Ady; Ndy; = A, <8xl’ + By y;) <_6x‘/ +_8 TV, |dxf A dxf
—i,; (O O oy?
A 1 i i K ldxp A
T A (a P +ayxyp> a ).
—i 0y] (Oy; Oy , o
+A, By (E)xl’ + —a TV |5 A dx1

—i; (Oy] O] Oy Ox/
l i
+A; (6x”+6y’< p> o o dxp/\dy]

—i,; 0y Ox* (Qy] O i; 0y) Oy
+A"'118y’“§(6_§;l’+ayi ;)dys Adxd + ALY

vraxa;
—i, Oy} Oy* Ox/ layaxyav
Al K.' A 1 1 K
ooy o O NV T A g g gy P N
+Zz,8— Ox* Oy* Ox’

K /\d A
VT ayk' ax 8y} 8)_61

Similarly,

— zax 3?" 3y‘
v Jj i
dl/\dx ‘161(8x1’+8" p>dxp/\dx
—i Ox/ 9y! o —i Ox/ Oy" ox* '
Y o Gy Adx + A‘fala o Y A dx

and

Aydx A dx/ —Al,apal

51

(77)

o A o’

(78)

(79)
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To determine the traceless components AW, A’W, and A; from the formulas

(78)—(80), respectively, we need the terms not containing w®; we get

i (O] Oy N\ (O O
At s ) (g + o

—i ayv ay 8}71 8)(
I i i A
JFAW(a L +aykyp) 50 90 O A

—i; 0y Ox* (Oy] Oy}
! [
A”By 8)6 (axp+a 7Y q>dys A dx?
41 0" 0x* 9" o/
" Oy Ox' dy* OF
—i X/ (9y! Oy
+Aw@(8 >t o p)dx” Adx
—; Ox/ oy’ 8x
Y Ol Qy* o
Ox' %
Y ow Ox

dyy A dy; (81)

dy* Adx!
+A; dx’ Adx.

Now, it is immediate that
—i (Oy] Oy] .\ (Oy Oy
_ l i i K Xl A
qu _AVT (a D + ) icyP) (6xq 57 6 7Y Q)

1— (ox/ (Oy! Oy ox/ [0y, Oy
- 14 LK i LK 82
24y (axq (3xp + ayxyp) o <3xq T oy (82)

1 o' Ox/
T o o

and

5 dy" Ox* Oy* Ox/ Dy Ox’ Ay Ox°
AK) = Avr 2 i i (83)
) Oy~ Ox' Oy* 9x1  Oy* OX' Dy* %
The remaining terms should determine A;, as the traceless component of the
expression

(O B T 20 (8, 78
vi\axa Oy 1) By oR T oYK OX \oxd | Oy 4
— Ox/ ay ox’

Wi ay o

(84)



2.2 The Trace Decomposition 53

Recall that the traceless component W} of a general system P}, indexed with one
contravariant and one covariant index, is defined by

1 s

where P = P’ is the trace of Pi. To apply this definition, we first calculate the trace
of (84) in s and q. We get

i (O Oy ¥ Oy Ox | iy 05" Ox' (O3 | Oy ATV
“\ow T ) oo T gy aw o T oy

¢ ooy o

Y Oxs Qy< Ox'

(86)

Now, we can determine the traceless component of (84). Since the resulting

expression must be equal to A}, we get the transformation formula

PO @ 0y Ox*
“q Y Oxd Oy* Ox
0 (0% Oy [\ Oy ox i, Oy Ox (v | Oy
Al i i A i e s W)
”(axq*ay Ya ) oy oxt T ayK 8)? oxt " 9y

ady!  Oy! y© Ox™ 0y Vi
ta 5qA ((6}6’” 6’y’1 m> Ay~ ox' 8y" Ox' <6xm+8yi Ym

as desired. It is straightforward to verify that the expression on the right-hand side is
traceless. This completes Example 2.

(87)

2.3 The Horizontalization

We extend the horizontalization QW > p — hp € Q’I'HW, introduced in Sect. 2.1,
to a morphism h: QW — QW of exterior algebras.

Let p € Q)W be a g-form, where ¢ >1, J{*'y € W' a point. Consider the
pullback (7""1")*p and the value (n"'")*p(J71y) (&), &, ..., &,) on any tangent
vectors &, &, ..., fq of J/T1Y at the point J;“y. Decompose each of these vectors
into the horizontal and contact components,

Tn't' & = hé + pé), (88)
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and set
hp(‘])’gurly)(éla 627 RS éq) = p(‘]:’y)(héhhé% sy hgq) (89)

This formula defines a g-form hp € Q;+1W. This definition can be extended to 0-
forms (functions); we set for any function f: W — R

hf = (2. (90)

It follows from the properties of the decomposition (88) that the value
hp(J71 ) (&1, &, - . ., &,) vanishes whenever at least one of the vectors &, &, ...,
&, is " overtical (cf. Sect. 1.5). Thus, the g-form hp is @"*'-horizontal. In par-
ticular, hp = 0 whenever ¢ >n + 1. Sometimes hp is called the horizontal com-
ponent of p.

Formulas (89) and (90) define a mapping h: QW — Q" "'W of exterior algebras,
called the horizontalization. The mapping h satisfies

h(py+ p1) = hpy +hpy,  h(fp) = (2™7)%f - hp (91)

for all g-forms p;, p;, and p and all functions f. In particular, restricting these
formulas to constant functions f, we see that the horizontalization A is linear over
the field of real numbers.

Theorem 5 The mapping h: QW — Q" "'W is a morphism of exterior algebras.

Proof This assertion is a straightforward consequence of the definition of exterior
product and formula (89) for the horizontal component of a form p. Indeed,

h(ﬂ A ’7)(-’:““/)(61, 527 LR éqa ép+la €p+27 RS ép+q)
= (p A ’1) (J):y) (héla hé% RS hgpa héerla héerZa cey héerq)
= sgnep(J[y) (hey, ey, - s o)
: ”(J;V) (hér(p+l)7 hér(erZ)v cee hér(erq)) (92)
= Z sgnt-hp(J77) (Ee1ys Eo2)s - - s Exip))

: hy](‘];y)(fr(p+l)a ér(p+2)7 R ér(p-&-q))
= (hp(]:+l'y) A h’?(ﬂ“?))(éh éZa cey 5:]7 éerla ép+27 L) éerq)
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(summation through all permutations t of the set {1,2,...,p,p+1,....,p+q}
such that (1) <7(2)< --- <t(p) and 1(p+ 1) <t(p +2)< --- <t(p + q)). This
means, however, that

h(p An) = hp A hn. (93D)

The following theorem shows that the horizontalization is completely deter-
mined by its action on functions and their exterior derivatives.

Theorem 6 Let W be an open set in the fibered manifold Y. Then, the horizon-
talization QW > p — hp € Q"'W is a unique R-linear, exterior-product-pre-
serving mapping such that for any function f: W — R, and any fibered chart
Vo), o = (), with V.C W,

hf =forn™™V  hdf =df -dx, (94)
where
of o
dif = % + ] Yiijawdui® (95)

7.
1 <in < <je D

Proof The proof that i, defined by (89) and (90), has the desired properties (94)
and (99), is standard. To prove uniqueness, note that (94) and (95) imply

hdxi = dxi, hdy;:_,'zujk = yqujzmjkidxi' (96)

It remains to check that any two mappings /4, and h, satisfying the assumptions of
Theorem 6 that agree on functions and their exterior derivatives coincide. O

We determine the kernel and the image of the horizontalization 4. The following
are elementary consequences of the definition.
Lemma 4

(a) A function f satisfies hf = 0 if and only if f = 0.
(b) If g>n+1, then every g-form p € Q;Wsatisﬁes hp = 0.
(¢) Let 1<g<n, andlet p € QZW be a form. Then, hp = 0 if and only if

Jykp =0 (97)

for every C" section y of Y defined on an open subset of W.
(d) If hp = 0, then also the exterior derivative hdp = 0.
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Proof

(a) This is a mere restatement of the definition.

(b) This is an immediate consequence of the definition.

(c) Choose a section y of Y, a point x from the domain of definition of y and any
tangent vectors (,{,,...,{, of X at x. Then,

er*p(x)(éla C27 LS Cq)

r r r r (98)
p(‘]xy)(TxJ Y- Cl? T.Jy - CZa ceo IS Ve é,q)

Since Tn" ! is surjective, there exist tangent vectors &; to J" 1Y at J/ ™1y, such
that {; = Tn"+! - £,. For these tangent vectors,

JVV*P@)(ChCzy--wCﬁ (99)
= pUD)(TI"y - T - & Ty - Tt - &, Ty - TR - &),
But hé = T Jy o T ! - &, and hence,
er*p(x)(Cb CZ} sy Cq) = p(‘];y)(hihhéb cey héq) (100)
= hp(J")(E1, &, 0 &)
This correspondence already proves assertion (a).
(d) This assertion (d) follows from (c). |

We are now in a position to complete the description of the kernel of the
horizontalization & for g-forms such that 1 <g <n.

Theorem 7 Let W C Y be an open set, p € QW a form, and let (V,y),
W = (x,y°), be a fibered chart such that V C W.

(a) Let g = 1. Then, p satisfies hp = 0 if and only if its chart expression is of the
form

p= Y oy (101)

o< <r-1

for some functions ®7: V" — R.

(b) Let 2 <q<n. Then, p satisfies hp = 0 if and only if its chart expression is of
the form

p= > ofADL+ > dof AW, (102)

0<||<r-1 [I|=r—1

where @ (resp. W!) are some (q — 1)-forms (resp. (q — 2)-forms) on V.
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Proof Suppose that we have a contact g-form p on W”, where 1 < g <n. Write as in
Sect. 2.2, Theorem 3, p = p, + p’, where p,, is contact and p’ is traceless. But the
horizontalization h preserves exterior product and hp =0, so we get hp' =0
because pj is generated by the contact forms w7, dw7, which satisfy ho§ =0 and
hdw] = 0. Now, using formula hdy] = y%dx!, we get, expressing p’ as in Sect. 2.2,
(53)

r_ L a1 L1
hp _( i1ia...Iq +A(7112h z,,yllil +A01021314 lqy1111y1217
I, Og-1
+- +AO’|(1‘2 . 0'1, llllyllllylzlz yl,, 1ig—1 (103>
1112 q 3 11 iz i
+Ag e, - .(;qylll-lylziz. . .y,qiq)dx ANdx? A - Ndx',
: 1 LI

where |Ii],|b,...,|[Il,-1| =r and the coefficients Ag ;. ;. Ad i i -

nn I

dros” * -0y i, are traceless. Then,

L. I o1 LI 0| .03
Alllzu-lq +A0'11213 t,,yllil +Aalo'2m4 lqyllilylziz
L1
+ Aalaz o'q 1 lqy1111y1‘>12 yl ]lql (104)
L 7, .
+A%2 . .gqy,lily,zi2 Y, =0 Alt(iz. . ig).

But the expressions on the left-hand sides of these equations are polynomial in the
variables y} with |K| = r + 1, so the corresponding homogeneous components in

(104) must vanish separately. Then, we have A;;, ;, =0, AL%2 .. .ﬁ,"q =0, and
A{r111213 g 511 =0 Alt(llIZ ) Sym(llll)y
Al iy, 0002 =0 Alt(iriz. . ig)  Sym(Lly)  Sym(Db),

(105)
AbL |l ghigh 5‘”:0 Alt(iyi. . .ig)  Sym(Lil,)

0107° O'[] 1lq I Iy

Sym(lzlz) . .Sym(lq_llq_l).

I L1 L I'I 1
However, since the coefficients A;, ; ;. ;A 5, - - - Ad e, - -a, i, ATC traceless,

they must vanish identically (see Appendlx 9, Theorem 4). Thus, we have in (103)

. _ I _ L _
Alllz.. g — 07 Agli2i3_,,iq - 07 Aalazi3i4 qg Oa
Ll Ig1 Ll (106)
f) q- — 1L —
I | N L — ¢

) 102 04-1ig g102" " "oy

and hence, hp' = 0. Thus p = p,, and to close the proof, we just write this result for
g =1 and g > 1 separately. U
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Corollary 1 If 0< g <n, then a g-form belongs to the kernel of the horizontal-
ization h if and only if it is a contact form.

Corollary 2 Let W C Y be an open set, p € Q;W a g-form such that 2 <q<n,

and let (V, ), ¥ = (x,y°), be a fibered chart such that V.C W. Then, the form p
satisfies the condition hp = 0 if and only if its chart expression is of the form

p= > ofADL+ > d(wf AP, (107)

o< <r-1 [1|=r—1

where ® are (q— 1)-forms and V. are (q— 2)-forms) on V', which do not
contain »5, 0<|J|<r—1.

Proof We write (102) as

p= > fADI = D of AdVL+ Y d(wf AL (108)

0<|J<r—1 [T|=r—1 o<l <r—1
O
The image of the horizontalization % is characterized as follows.
Lemma 5 Let p € Q;W be a form.
(@) If g =0, then hp = (" "17)*p.
(b) If1<q<n, then
hp = hp'. (109)

() Ifg>n—+1, then hp = hp' = 0.

Proof This assertion is an immediate consequence of the definition of the hori-
zontalization h. (]

2.4 The Canonical Decomposition

Beside the horizontalization of g-forms Q;W, introduced in Sects. 2.1 and 2.3, the
vector bundle morphism h: TJ' 'Y — TJ'Y also induces a decomposition of the
modules of g-forms Q/W. Let p € QW be a g-form, where ¢ > 1, /[y € W' a
point. Consider the pullback (7""1")*p and the value (" "1")*p(Jrtly)
(¢1,&,...,&,) on any tangent vectors &y, &, ..., &, of J7T'Y at the point J.ty.
Write for each [,

Tt & = hé + pé), (110)
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and substitute these vectors in the pullback (7'*!")*p. We get

() () (6 Gy Ey)

(111)
= ,O(J,:'V)(hél +pélvh62 +p623 <. '7héq +P~fq)

We study in this section, for each k =0,1,2,...,¢q, the summands on the right-
hand side, homogeneous of degree k in the contact components p¢; of the vectors &,
and describe the corresponding decomposition of the form (n"+!'")*p. Using

properties of p, we set

pkp(‘[€+ly)(§17£27 s Vq)

S
e (112)
= E 8"]2“']""'“"']",D(JX“/)(Pfjl 7p§jza < -7p§jk7héjk+]ahéjk+27 RS héjq)a

where the summation is understood through all sequences j; <j, < --- <j; and
Ji1 <Jer2 < -+ <jg- Equivalently, pyp(J7!y) can also be defined by

pkp(‘];cdrly)(éla 527 B éq)

1 L . -
= mdl]z“']k]k“""lqp(fx?)(Pfjl,Péjz; oDy My - RE)

(113)

(summation through all values of the indices ji,j2, - . ., jk;Jk+1s - - -1Jg)-
Note that if £k =0, then pgp coincides with the horizontal component of p,
defined in Sect. 2.1, (5),

Pop = hp. (114)
We also introduce the notation
PP =p1p +p2p + -+ pyp- (115)

These definitions can be extended to O-forms (functions). Since for a function
f: W' — R, hf was defined to be (7" 17)*f, we set

pf = 0. (116)

With this notation, any g-form p € Q;W, where ¢ >0, can be expressed as
(n"7)*p = hp + pp, or

(n’“”)*p:hp+p1p+p2,0+"'+l’q,0- (117)

This formula will be referred to as the canonical decomposition of the form p
(however, the decomposition concerns rather the pullback (7 ™1")*p than p itself).
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Lemma 6 Let q> 1, and let p € YW be a g-form. In any fibered chart (V, W),
W = (x,y7), such that V. C W, pip has a chart expression

_ 12 Ji o O
Pkp = 0102 * Ok gt 1ik+2-- lqw-ll A (1) A Wy,
ETARTARTA R (118)

A dx A dxie? A A dxe

where the components P72 . Ji are real-valued functions on the set

g107°° Jkik+1ik+24..iq
r r
v wh

Proof We express the pullback (n""!")*p in the contact basis on W’ !, Write in a
fibered chart

p=dd AD;+ Y WAL+ dy A0 (119)

0<J]<r-1 |1|=r

for some (g — 1)-forms ®;, ¥/, and ®’. But dyf = »f + ydx', and hence,

( r+1, r) p = i A (7'Er+l’r)*(Di + Zy;;i(nr-&-l‘r)*@{;
1=r (120)
+ Y f ALY wf A ()L

0<J]<r—1 [|=r

Thus, the pullback (7" +1")*p is generated by the form dx’, w?, where 0<|J| <r —
1 and w9, |I| = r. The same decomposition can be applied to the (¢ — 1)-forms @,
‘Pi, and @fr. Consequently, (7"+!")*p has an expression

(n1‘+l,r‘)*p:p0+pl +p2++pq, (121)
where

Po = Ailiz-..iqul1 ANdx? N+ A dx"f’
— J1J2 Ji 0'2 o
Py = Z B o ,qwjl ANOT A N
0 < 1|, |2 seensl i < 7

| | | (122)
ANdX* = Ndx™ N - Ndxe, 1<k<g-—1,

_ WL e
pq - G102 " 04l
0< i,y gl < 7

a3 Oq
CI)J1 /\O)J /\---/\G)jq

Theorem 1, Sect. 2.1, implies that the decomposition (121) is invariant.
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We prove that p, = pip. It is sufficient to determine the chart expression of pyp.
Let £ be a tangent vector,

r+1
0
ff’< ) + i\ o - (%)
Ot ) o, ;jlﬁj;‘ﬁjk RN A Ity

From Sect. 1.5, (62)

i 0 . 0
hé=¢ (@) . +Z Z Vs (6 v ) ' (124)
v Iy

k=0 j; <j» < <jik y]ljz]k

and

k=0 ji <jr < - <jr Vitja-s

—a T i 8
pe= Yo G Vi) (r) : (125)
Ty

If h¢ = 0, then & = 0, and we have

! 0
PC = Z Z Eﬁjz»Jk <607> : (126)
uss

k=0 j1 <jp < <jr Vi

If p¢ =0, then E &, and hence,

g
Jl]2 de = Yjijaedi

. 0 r b
hé=¢ ( i> + y‘f’__;ki([;) . (127)
ox' ) v, Z Z I Qe .

k=0 ji <jo <+ <jk

We substitute from these formulas to expression (112). Consider the expression

pkp(J;+1')))(él, 527 B3] éq) for éla 52; EER3) éq such that hél =0, héZ =0,.., hék =
0and péy =0, pé =0, ..., p¢, = 0. Then, (112) reduces to

pkp( V)(élaf%”wé )

; (128)
= p(Jy)Pé1,psa, . ek hiit hepia, - . HEy).
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Writing

- B
_ e
=y Y ( )Zk
Jiy

g
=0 ji <jr < <jr o

(129)

; 0 s 0
he =0 (—) + Yiieii\ 7 — | |
Oxi . Z Z 12wk 3yfl it ) gy

k=0 ji <j2 <+ <Jk

k+1<I1<q,
with [ indexing the vectors &;, and substituting into (128), we get

pkp(‘,;-’_lq/)(élaéb ceey ék? ék+laék+27 LRRY) éq)a

_ L I 1:012:02 k':ﬂk k+1 gigp1 k+2 zigso q iq
—chl Ll VEpRER kgl dakigin agh,

(130)

But

‘27 = of (M) &, E =adrty) - g (131)

X

Therefore, pyp(J-™'y) must be of the form (118). O

Formula (118) implies that for any k > 1, the form pyp is contact; pyp is called
the k-contact component of the form p.

If (2" "17)*p = pyp or, equivalently, if p;p = Ofor all j # k, then we say that p is
k-contact, and k is the degree of contactness of p. The degree of contactness of the
g-form p = 0 is equal to k for every k = 0, 1,2, ..., g. We say that p is of degree of
contactness >k, if pop =0, p1p =0, ..., pr_1p = 0. If k = 0, then the O-contact
form pop = hp is n""'"-horizontal. The mapping QW 3 p — hp € Q;“W is
called the horizontalization.

The following observation is immediate.

Lemma 7 If g — k > n, then

hp =0,
P (132)
pip=0, pp=0, ..., pgn1=0.
Proof Expression p(J7)(p&,,pE),s - - PSjs heji s hjisyy -, hE;,) in (113) is a
(q — k)-linear function of vectors (;, , =Tn™ - &, (=T & ..., G,
=Tn+. éjq, belonging to the tangent space 7,X. Consequently, if
g—k>n=dimX, then the skew symmetry of the form pp(J !y implies

pkp(‘[£+1y)(617527"'a5q) =0. U
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To complete the local description of the decomposition (117), we express the
components P .. fk it rigsani, (118) of the k-contact components pyp in terms of
the components of p.

Lemma 8 Let W be an open set in Y, q an integer, n € YW a form, and let (V, ),

Y = (x,y7), be a fibered chart on Y such that V.C W. Assume that n has on V" a
chart expression

q
1
:E — = ADE L T AAYR A A dyT
v s!(q — S)! G102° * "0y dstliss2ig V], Y1, Y1, (133)

Adxs N dx 2 N N dx',

with multi-indices I, I, . . ., I; of length r. Then, the k-contact component pyn of 1
has on V"' a chart expression

1111 Ik (] () O
Pl = 011" " " oy atinea-dg O, N N A Wy,
k(g — k)l e (134)
A dx" N dxi A A dx
where
[ I
Bmaz * Oklks1lkt2-dg
q q k
— E - LI e Iy Iy I Ok+1 Ok+2 oy 135
o (q - S)AGWZI ok ot Opre " oy btiss2enig Yl i Ylezic2 Vi ( )
s=k

Alt(igy1igia. - dslgyr- - -iq)'

Proof To derive the formula (134), we pullback the form 5 to V"*! and express the
form (7" ")*W¥ in terms of the contact basis; in the multi-index notation, the
transformation equations are

A =dx', dyf =l +ysdd, |I| =r (136)

(Sect. 2.1, Theorem 1, (a)). Thus, we set in (133) dyg‘ = a)ll + y,l’ldx” and consider
the terms in (133) such that s> 1. Then, the pullback of the form dyj' A dy;’ A

-~ Ady]* by " is equal to

(o' + ¥ dx) A (2 + Y72 dxX) A= A (o] + 37 dx®). (137)

20
Collecting together all terms homogeneous of degree k in the contact 1-forms wy/,
we get (,‘() summands with exactly k entries the contact 1-forms a) . Thus, using

nno
symmetry properties of the components Ag; ... . i, in (133) and
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interchanging multi-indices, we get the terms containing k entries wj', for fixed
sand each k =1,2,...,s,

1 R I I Ok 0, s o
s!(q _ S)! (k)A(fllfzfz' : ‘6viv+li,v+2»<-iqy1kilik+]ylk]:rzzikJrl' ' 'yzivw;l A w;fzz AR ‘”Zk
A dx N dx A N dx A dxT A dXS A - A dx (138)

Writing the factor as

s!(ql—s)! <i) :k!(ql_k)!(z:];)’ (139)

we can express (138) as
1 q—k\ 4n1 I 7 G2 X
kl(q _ k)' (q - S>Af71|(2fz’ o i.\-+1i.s+2~»ithl:r1]ik+1yl:rz“iwz' . 'yzii\ “’Zl A w;jz2
A AT AT A XA N i A dx A XA A
(140)

Formula (138) is valid for each s =1,2,...,q and each k=1,2,...,s and
includes summation through all these terms to get expression (133). The summation
through the pairs (s, k) is given by the table

slt2 3 .0 g-1 q
k|1 12 1,2,3...1,2,3,...,g-1 1,2,3,...q

(141)

It will be convenient to pass to the summation over the same written in the opposite
order. The summation through the pairs (k,s) is expressed by the table

Koo 2 3 .. g-1 ¢
1,2,3,....q 2,3,....q 3,4,....q ... q— 1,9 q

(142)
s

Now, we can substitute from (140) back to (133). We have, with multi-indices of
length r,

1 . . )
n= _|Ai1i2...iqull Adx? N -+ Adx'
q:
q s 1 q— k Alllz I, ksl k42 T
T Z Z kl(q — k)l q— S8 )" 015, " "0 i.\-+1ix+z~~l'qy’k+1ik+1y’k+2ik+2' Vi,
s=1 k=1 " '

CO]P AP A AT A A A XA A dx A dx A A d
(143)
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hence,

1 .
Pl = — 1112 lqull A dx’2 ARRRAYCS
q!

q—k\ 11 I 7 Ors2 o,
+ Z k' q k (Z( )A”ll ‘272 * Oy gy 1lsta. lz/ylk]::rlllkJrlylk]::rzlkJrz 'yl.yi.;>
COfN ANOF A A wft AdX A XA A dx (144)

This proves the formulas (134) and (135). O

Remark 5 Formulas (133) and (134) are not invariant; the transformation properties
of the components are determined in Sect. 2.1, Theorem 1, (b).

Lemma 8 can now be easily extended to general q- fomls. It is sufficient to
consider the case of g-forms generated by p-forms cu LA o) YAARRERA a);z with fixed
p, 1 <p < g — p. The proof then consists in a formal application of Lemma 8.

Theorem 8 Let W be an open set in Y, q a positive integer, and p € Q;W a g-form,

and let (V, ), Y = (x',y%), be a fibered chart on Y such that V.C W. Assume that
p has on V" a chart expression

i Sl L )
Viva VpG102 O lst1ls+2--lg—p

Vp
wjl /\wh/\ Aoy

ME

Ssllg—p — )
Ady§t NdyfE A AdyP A dx A dxB A A dxe,

(145)

with multi-indices Ji,Ja,...,J, of length v — 1 and multi-indices 1,1, ..., 1, of
length r. Then, the k-contact component pyp of p has on V'*! the chart expression

1
_ W LI Le—p vy v
Dip = (k _p)l(q —p— k)l B\fl"z' T R = ik—p-likfr/Jeriq—pw-/l A Wy,
N o0 . . .
Ao Nof Nopt Nop N Ao AT NdXETR A - A dx
(146)
where
o Sl le—p ) ) ]
Vit '\’1,0'10'1 © Ok—p lk—p+1lk—p+2---lg—p
E N1 Ll L pli—pi1le—pia I
- (q p— S)AVH' T VRGO " Ok pOkp 1 Ok—pi2” " "Osispisi2dg—p (147)
s=k—p

Ok—p+1 Ok—p+2 (o . . .. .
Vi piricopir Yl parivopra VL Alt(lk_ﬁ+llk_P+2' - lslstl- 'lq_p)'
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Proof p can be expressed as

Vv . Vp Ji1Jo J,
p=0wp Ao A Aoy A, (148)
where
q—7p
njljz I’ AJ]Jg JPI]IZ I )
Viva© vy | _ VIVt V0102 " Ol 1igiaedgp
ZY slg—p—s) (149)

A alyl1 A dy,2 ARREWAY dyf: A dxsH A dx' s N A dr

We can apply to #7172, . ‘Jj, formula (134). Replacing g with ¢ — p and k with k — p,

Viva

Dk ,7!112 = 1 JiJr I Ii—p ) ) .
“PHvivat oy, (k _ p)l(q —p— k)l ViV T V0101 " " Ok plk—pt1lk—p+2--lg—p

o . 4 .
Cof" NOTEN - N T N A dx A X
=P

(150)
where
v Lhl e )
Vivp Tt 'v[,cno‘] C N Ok—p lk—p+1lk—pt2---lg—p
= Z (q p— S)A\Ji{; -iﬁglléz- . -3{,';I§Z;x‘5[f,i2~ . 5,5 estiseadgp (151)
s=k—p
Y Vi Vi ALtk i dgp)-
O

The following two corollaries are immediate consequences of Theorem 8 and
Sect. 2.1, Theorem 1. The first one shows that the operators p; behave like projector
operators in linear algebra. The second one is a consequence of the identity
d(n™ 1)k p = (n"*1")*dp for the exterior derivative operator, the canonical
decomposition of forms on jet manifolds, applied to both sides, as well as the formula

dwy = —wj; A\ dx’. (152)
Corollary 1 For any k and |,
_ (nr+27r+l)*pkp7 k= lu
PipIp = {07 k4L (153)

Corollary 2 For every k> 1,

(22 Y prp = prdpi—1p + pidip- (154)
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Remark 6 According to Sect. 2.3, Theorem 5, the horizontalization h: Q"W —
Q"'W is a morphism of exterior algebras. On the other hand, if k is a positive
integer, then the mapping p;: QW — Q 'W satisfies

pelp+n) =pep +pin,  pe(fp) = (Forn ™ pep (155)

for all p, n, and f. However, pi: QW — Q"'W are notr morphisms of exterior
algebras.

2.5 Contact Components and Geometric Operations

In this section, we summarize some properties of the contact components and the
differential-geometric operations acting on forms, such as the wedge product A, the
contraction i, of a form by a vector {, and the Lie derivative O; by a vector field ¢.

Theorem 9 Let W be an open set in Y.

(a) For any two forms p and n on W" C J'Y,

pilp An) =" pip Apan. (156)
i+j=k
(b) For any form p and any n''-vertical, n"t'"-projectable vector field = on
WL with iV -projection &,
i=pkp = Pr-1izp. (157)

(c) For any form p and any automorphism o of Y, defined on W,

pe(J7akp) = T otpep. (158)

(d) For any form p and any m-projectable vector field on Y on W
pr(0yzp) = Op1zpip. (159)

Proof

(a) The exterior product (2" ™1")*(p A i) commutes with the pullback, so we have
(7Y% (p A ) = (A1) %p A (2717 *n. Applying the trace decomposition
formula (Sect. 2.2, Theorem 3) to (7" "!")*p and (n"*!")*y, and comparing the
k-contact components on both sides, we obtain formula (156).
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(b) To prove formula (157), we use the definition of the k-contact component of a
form (Sect. 2.4, (112)) and the identity pE(JI™'y) = £(Jry) (Sect. 1.5,
Remark 2). Set &, = E(J7™y). Then, h¢; = 0 and p&; = E(J7y). By definition,

iEpkp(J;-FlV)(é% 537 ey éq)
= pkp(J;+l)))(E(J;+l’y), 623 533 ceey éq)
= PkP(J;HV)(fh 627 637 D) éq)
= Z Sjljzu'jkjﬂlqup(‘];y) (péjl 7péj2’ o "péjk’ héjkﬂ ’ héjk+27 ct hqu)

(160)

with summation through the sequences j; <j, < -+ <ji, jir1 <jre2 < -+ <Jg
(Sect. 2.4, (112)). On the other hand,

Peariep(T19) (6, &5, Ey)
= Z et dage p(JIy) (p&iy, pliss o DEiy Eiy  hEi s - “hé;,)
= Z g2kt o (JTy) (p&Ey, pliy s Dy - s PEiy hE i hE sy - s hé;,)
(161)

(summation through i <iz < -+ <it, fxq1 <igp2 < -+ <iy). Since hé; =0,
the summation in (161) can be extended to the sequences 1 <ip <iz < --- <ij
and 1 <ipyy <igq2 < --- <ig, and therefore, (161) coincides with (160).

(¢) Formula (158) follows from the commutativity of the r-jet prolongation of
automorphisms of the fibered manifold Y and the canonical jet projections,
(LY g ok p = J o (1) #p, and from the property of the contact 1-

forms ). .
iiy...0p
0%, ;0 J72)
r —0 . J1J2--4J, v
Iow =y —gE—— 0, (162)
i <iy < <ip iriy...0p
(Sect. 2.1, Theorem 1, (c)).
(d) Formula (159) is an immediate consequence of (162). O

Remark 7 If k = 0, (156) reduces to the condition k(p A n) = h(p) A h(n), stating
that % is a homomorphism of exterior algebras (Sect. 2.3, Theorem 5).

2.6 Strongly Contact Forms

Let p € Q;W be a g-form such that n + 1 <g < dimJ"Y. Since hp = 0 and also

p1p =0,p2p=0,...,pg—n—1p = 0 (Sect. 2.4, Theorem 8), p is always contact, and
its canonical decomposition has the form
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(7'Cr+l’r)*p - qunp +Pq7n+l,0 +o +pq,0 (163)

We introduce by induction a class of g-forms, imposing a condition on the contact
component p,_,p. If ¢ = n + 1, then we say that p is strongly contact, if for every
point yo € W there exist a fibered chart (V, ), = (x',y?), at yo and a contact n-
form t, defined on V", such that

pi(p—dr) =0. (164)

If ¢ > n + 1, then we say that p is strongly contact, if for every yo € W there exist
(V ), ¥ = (x',y%), at y and a strongly contact n-form 7, defined on V", such that

Paalp —dz) = 0. (165)

Lemma 9 The following conditions are equivalent:

(a) p is strongly contact.
(b) There exist a g-form i and a (q — 1)-form t such that

p=n+dt, psa=0, pgn171=0. (166)

Proof If p is strongly contact and we have t such that (165) holds, then we set
n = p — dt. The converse is obvious. O

In view of part (b) of Lemma 9, to study the properties of strongly contact forms,
we need the chart expressions of the g-forms p,_,p and p,_,_;7 = 0. We also need,
in particular, the chart expressions of the forms p whose (g — n)-contact component
vanishes,

Pg—np = 0. (167)

To this purpose, we use the contact basis. The formulas as well as the proof the
subsequent theorem are based on the complete trace decomposition theory and are
technically tedious because we cannot avoid extensive index notation. We write

_ § : VNS Y S Iyt vy V2oA L Vp
p A\’l V2 VpOp10pin " TOpys ip+.v-1l'p+x+z-»-iqwll A wlz A A wlp (168)
T 0, a, I 1 )
Ady" " Ndy, "N Nyt N dX N dXr A - A dix
p+1 p+2 p+s I
where summation is taking place through the multi-indices Ji, J2, . . ., J, of length less

or equal to r — 1 and the multi-indices I,,1,1,42,...,I,+, of length equal to r.
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Applying the trace decomposition theorem (Appendix 9, Theorem 1) as many times as
necessary, we can write

p= JiJy  JKaKie o Kiplipyilip liypts ) ) )
VIV2" T VK1 K2 T Kl p Ol p i1 Olip 2 T T Olip sl p st L i p s 2410

PN v L v Kit1 Ki42 . Kitp
oy Aop A Ao Adog” Ndog S A Adog”

Ol+p+1 Ol+p+2 Oltp+s ( 1 69)
/\ dyll+p+1 /\ dy11+p+2 /\ T /\ dy11+p+x
A dxios il A dydters Ao A dxiQ7
where
OS |]1|7 |]2|7 ceey |]1| Sr — 1,
Ki1], Kl - - [Kiip| = 7= 1, (170)

’1[+p+1 |a |Il+p+2|, .oy 1[+p+S’ =r,

and the coefficients are traceless. The number Q in (169) is not the degree of p; it is
related to the degree g by [ +2p+ s+ Q — [ —p — s = g, that is,

p+0=gq. (171)

Theorem 10 Let W CY be an open set, q an integer such that
n+1<g<dimJ'Y, and n € YW a form, and let (V, ), = (x',y%), be a
fibered chart such that V.C W. Then, p,_,n = 0 if and only if

) ) v,
n= E Wil ANoF A ANof Adoy Adog A Ndoy
g-nr1<itp (172)

S, JhL o,
A (Dglaz. AR

J1J2 J[Illz [I’ _ _ _ r 1.1 7
where @2 .. UL 5 are some (q — | — 2p)-forms on V" and the multi-indices

satisfy 0< |Ji|, [, - [l <7 = 1 L], 1Bl |L] = r— 1.

Proof Expression (169) for 5 can be written as V'*!, where

No = E B IKinaKye o Kiplipalipye lip+s

VILV2 ' VKL K2 T K p Ol p i Olip2 T Ol psiiptst Uil pst2-+-10
I+p>q—n
V1 V2 Vi Kit1 K K
cop Ao AN ANof Ndogt Ndol? A - ANdo
1 2 ! 1+1 Ki+2 Kitp

Ny NYTT N Ay N X A A
(173)
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and
0 = B]]Jg JiKi1 K12 Kiipliipriliipa Lispts ) ) )
1 2 : VIEV2 " VKL K2 T K p Ol 1 Olipt2 " Oliptsiptst lipst2---00
IH+p<g—n
v y v K| K. K
co) Ao A Aof Adogt! Adolt? A Adotr
1 2 1 1+1 K142 Kitp

Ny NYT T N Ay TN A A A e
(174)

We want to show that the condition p,_,n = 0 implies #; = 0.
To determine p,_,1,, we need the pullback (7" '")*y,; this can be obtained by
replacing dy] with

dy] = wf +y5dx'. (175)

Then, the corresponding expressions on the right-hand side of the formula (174)
arise by substitution
Ol+p+1 Ol+p+2 Oltp+s
dy11+p+1 A dy11+p+2 ARRRRA dy11+p+.r
Oltp+1 Ol+p+1 Ol4p+2 Ol+p+2

— ) iLipt1 ) iipt2
(wll+p+l + yll+p+l Utp+1 dx ) A (wll+p+2 + yll+p+2 U4p+2 dx ) ( 176)
A A (w‘mpﬂ + ng”“» dxi””“) .

Liipts L pisitipts
Computing the right-hand side, we obtain

Oltp+1 Olp+2 Ol+p+. Oltp+1 Olip+2 Oltp+
dy, ™" Ndy TN Ndyp T = o T AN TN Aap
Ip+1 Ip+2 I+p+s Ip+1 I+p+2 Ip+s

0 3 g g g — I
4 sy I+p+s w I+p+1 A I+p+2 A A L+p+s—1 A dxrts

Dsptsitipes  Dip1 Iiipi2 Diipis—1
S\ . Olpts—1 Oltpts Tl4+p+1 Olp+2
+ (2)ylH#H»xfliH»anrflyll+p+.vil+p+.\' Iiipi1 liipi2
Ao N@irez, Adxret A dxttrs (177)
Ol4p+2 Oltpts—1 Oltp+ts Oltp+1
+ T + Syll+1)+2il+p+2' ) .yll+p+s—lil+p+s—lyll+p+si/+p+x Il+p+l

i 1] _ 1]
A dxl+p+2 A--- A dx l+p+s—1 A dx I4+p+s
Ol+p+1 Ol+p+s—1 Ol+p+s ilpi1 ilyprs—1 ilypts
+ y11+p+1il+p+1 o 'yll+p+a—1il—p+.x—1yll+p+ail+p+x dx A A dx A dx :

Now, consider a fixed summand in expression (174), with given [, p, and s,

J1Jy JiKiiKiy  Kepliapitliprs  lipss

VIV2" T UVIKL K2 K pOlip 1 Olipt2 " Oliptsiitptst il prst2---00
o Nop A Nog Ndaogl Ndogd N Ndaog " 78

o o o ) A .
ANy AN @) TN N TN dX e A dx e A N dxe.
Ip+1 I+p+2 I+pts
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Using (178), we get the terms

sB/12 JKin Ky Kepliapiilipsy  lpts ) ) )
Viva 't VKK T T Kp Olip 1 Olip 42 T T Ol sl p st Udptst2--10

L\ Ohpts Vi ViAo Vi Kit1 Kigp A o Kitp
I sitipes Py ANog A Nay A d(UKHl A dle+z A A dle+p

Olip+1 Olip+2 Ol4pts—1
N g N oy NNy
I+p+1 IHp+2 Hp+s—1

A dxitrrs A dxiFret A dodrete Ao A dxiQ’

(S) J1J2 JiKi1 K2 Kiipligpitlivpr2 Dipts ) ) )

2) 5 vive "t ViK1 K2 T KipOlp 1 Olipy2 " Olpets D pts+ L ilptst2---10
Ol+p+s—1 Ol+p+s

y [l+p+.\‘71il+p+571y L pisitepts

Kit1 Ki42 . Ki+p Ol4p+1 Oltp+2
A dme A dwK1+z A A dwK[+p A wll+p+l A w11+p+z

Vi Vo Vi
W) NOF A A )

. » , , . . .
A A wljl;i;ilz A dx”*”*“" A dxll+[7+v A dxll+p+x+l A dx11+p+x+2 Ao A dle,

12 JiKi K2 Keplispilipr2 Iiipes ] ) )
Vvt VK K2 T T KipOlip 1 Olap 42T T Olpts Ugpts+ 1 Hptst2--10
Ol+p+2 Oltp+s—1 Ol+p+s

Vi V2 Vi
Vhprivepea® VI ; o o Nog AN ANy
I+p+2U+4p+2 I+p+s—1Utp+s—17 Ll4p+slitp+ts 1 2 1

Kit1 Ki42 . Ki+p Ol4p+1
A dme A dwK1+z A A dwK[+p A wll+p+l

il4p+2 ilpts—1 il pts ilptstl il4pts+2 i
Adxie A< A st A ddiess A didirsi A dodteisi A LA dode,

and
J1J2 JIKi K2 Keplipilivpa liipts ) ) )
VIv2 " VK K2 T K pOlp 1 O14pt2 T T Ol ptstipts 1 Udpst2---1Q
Ol+p+1 Olip+s—1 Ol+pts \J1 Vo v
; R ; . wp Ao N No
Diipi1itep+ yll+p+x71 i 4pts—1 y11+p+xlz-p+x Ji J2 Ji ( 1 80)

AdOR™ Adof? A Adod™ Adx™er A A dxTeset A dxes
KI+1 Kl+2 Klﬂ)
A dxil+p+s+l A dxil+,)+s+2 A A dxiQ.

We see that the degrees of contactness of these terms are
l+p+s>l+p+s—1>l+p+s—2>--->1l+p+1>I1+p, (181)

respectively. Clearly, since we consider the terms where [ 4+ p <q — n, (180) does
not contribute to p,_,#;. We claim that among the terms (178), there is one whose
degree of contactness is ¢ — n. Suppose the opposite; then [+ p + s<qg — n, but
this is not possible, because the term satisfying this inequality would contain more
than n factors dx'.

Thus, the condition p;7; = 0 applies to one of the expressions (179) and states
that the coefficient in this expression vanishes. But the components of #; are
traceless, and we have already seen that this is only possible when they also vanish.
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This implies in turn that the forms on the left of (179) all vanish, which proves that
1, = 0. The proof is complete. O

Corollary 1 Let W CY be an open set, q an integer such that
n+1<g<dimJ'Y, and n € QW a form, and let (V, ), = (x',y%), be a
fibered chart such that V.C W. Then, py_,n = 0 if and only if

n=ny+du, (182)

where 1y and p are w-generated, 0<|I|<r—1, such that p, i, =0 and
Pg—n-1t =0.

Proof Write in Theorem 10 n = 5, + 1, where 1, includes all w-generated terms,
defined by the condition /> 1, and

) ) v,
n = E doy Ndwp A--- Ndo, AN®N2 IhE L
1 f) A

0102° " Topvivy© Vp

g—n+l<p

_ E Vi V2oA L. p JiJ»  Jihl I,

= d(a),l N d(l)lz A A\ dco,P A\ (I)O'lo'z' PR 'V,;) (183)
g—n+l<p

+ Y o) Adop A Ado) Ad(@D2 ey,

o102" "oVt T Y,
q—n+1<p

Thus, 1 can also be written as 1 = 3, + du, where 1, is w§-generated, and p is also
w§-generated and contains p contact factors wf and dwj; in particular,

Pg—n-1i=0. U

Remark 8 Note that the summation in Theorem 10 through the pairs (I, p) can also
be defined by the inequality ¢ —n+ 1 — p <1< g — 2p, where the range of p is
given by the conditions p =0,1,2,... and g — 2p > 0.

Lemma 10

(@) If p is a strongly contact form such that g > n + 2, then for any m-vertical
vector field B, the form iy=p is strongly contact.
(b) The exterior derivative of a strongly contact form is strongly contact.

Proof

(a) We have ipzp = ip=n + ipzdt = ipzn + 0yz7 — dipzt. But by Sect. 2.5,
Theorem 9 py—n—1(iyzn + 0pzt) = ijr1zPg—nll + Oyri1zPg—n—17 and py—n—2iy=t
= ipr1gPg-n—1T; however, these expressions vanish because p is strongly
contact. Now, we apply Lemma 9.

(b) Let the form p be strongly contact. Then, from (166), dp = dn, where
Pq—nt1 = 0. We want to show that to any point y, from the domain of definition
of p, there exists a fibered chart (V, ), ¥ = (x,y°), at y, and a g-form T,
defined on V", such that p,.1_,(dp — dt) =0 and p,_,7 = 0. Taking 7 =1,
we get the result.
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Forn + 1 <¢g < dimJ"Y, strongly contact forms constitute an Abelian subgroup
O, W of the Abelian group of g-forms Q) W; they do not form a submodule of ) W.
It follows from Lemma 10, (b) that the subgroups @;W together with the exterior
derivative operator define a sequence

OWwW—-0_ W= —0,W-—0. (184)

n+1

The number M labeling the last nonzero term in this sequence is

M=m(" T ) -1 (185)
0

Remark 9 If n+ 1< g < dimJ"Y, then by Lemma 1, the canonical decomposition
of a contact form p € @ W is

(nrJrl‘r)*p = Pg—ndT + Pg—ns1P + Pg—ni2p + -+ pgp. (186)

Remark 10 1t is easily seen that the definition of a contact g-form p € Q;W for

1 < g <n agrees with (165). Indeed, if 1 <g <n, we have for any contact form
p' €O, W, h(p—dp')=hp as (n"+t1Y*hdp' = hdhp' = 0 (Corollary 2). Thus, if
hp = 0, then h(p —dp') = 0 for any p’ € ©, | W.

2.7 Fibered Homotopy Operators on Jet Prolongations
of Fibered Manifolds

In this section, we introduce the fibered homotopy operators for differential forms
on jet prolongations of fibered manifolds. We study their relations with the
canonical decomposition of forms and the exactness problem for contact and
strongly contact forms. The general theory of fibered homotopy operators is sum-
marized in Appendix 6.

The relevant underlying structure we need is a trivial fibered manifold
W = U x V, where U is an open set in R" and V an open ball in R” with center at
the origin; the projection is the first Cartesian projection of U x V onto U, denoted
by m. The r-jet prolongation J”W is also denoted by W’. By definition

W =UxV xLR"R") xL% (R",R") x ---x L _(R",R"), (187)

sym sym
where Lfym(R”, R™) is the vector space of k-linear symmetric mappings from R” to
R™. The canonical coordinates on W are denoted by (x',y”), and the associated
coordinates on W’ are (xi,y",y]‘i,yzjz, Vi ]) Any Cartesian projections
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% W' — W¥, with 0 <s<r, define in an obvious way a homotopy %" and the
fibered homotopy operator I'* (see Appendix 6, (27)), so the Volterra-Poincare
lemma holds in these cases.
In this section, we consider the fibered homotopy operator I = I". Recall that
the homotopy y = ¥ is a mapping from [0, 1] x W”" to W”, defined by
X(S7 (xi’ya7y]q; ay;jza c ~ayj(‘71j2,4,j,.)) = (xia Sya,s‘y;,sy;;jw N -7Syjf'jj2...j,)' (188)
It is immediately verified that the pullback by y satisfies

prdd =dx',grdyg, =35 s+ sdyf, (189)

*o? =7, . 7.
L7 Djjs i le./Z-“./kds+Sa).ll./2~~]k'

In accordance with the general theory, these formulas lead to explicit description of
the operator 1. For any g-form p on W”, y*p has a unique decomposition

5p = ds A p(s) + p'(s) (190)

such that the (g — 1)-form p(®)(s) and the g-form p/(s) do not contain ds. Then,

1
o= [ /7). (191)
0

where the expression on the right-hand side denotes the integration of the coeffi-

cients in the form p(®)(s) over s from 0 to 1.
The following is a version of a general theorem on fibered homotopy operators
on fibered manifolds. { stands for the zero section of W" over U.

Theorem 11
(a) For every differentiable function f: W~ — R,

f=1df + ()*C¥f. (192)

(b) Let g> 1. Then, for every differential q-form p on W',
p=1Idp+dlp+ (n")*{*p. (193)

Proof Slight modification of Theorem 1, Appendix 6. O
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Theorem 12 Let p be a contact g-form on W’.

(@) The contact components of p satisfy
Thp =0, Ipp =pi_1lp, 1<k<gq. (194)
(b) If p is strongly contact, then Ip is strongly contact.

Proof

(a) Expressing the forms p and (7"!")*p in the basis of 1-forms (dx',dy5),
0< |J| <r, we have

(Tchrl,r)*Ip _ I(Tclﬂrl,r)*p. (195)

The canonical decomposition of the form p yields

(TCrJrl’r)*Ip _ I(?‘Cr+l’r)*/) — ]( Z PlP) = Ipip. (196)
0<i<q

0<I<gq

But by (191), Ip;p is (I — 1)-contact; thus, applying py to both sides of (195)
and comparing k-contact components, we get (194).

(b) Let g>n+ 1 and suppose we have a strongly contact g-form p on W’. Then,
p = n+ dr for some g-form # and (¢ — 1)-form t such that p,_,n = 0 and
Pg-n—1T = 0; hence, Ip=1In+Idt=1In+1—dlt— 19, where 19 is a
(g —1)-form on U. If g >n+ 1, then always 1o =0. If g=n+ 1, then
always dtg = 0, and we may replace t with T — 7¢; then, Ip = In + t — dIx.
The (¢ — 1)-form In + 7 satisfies

Pg—n—1(IN+ 1) = Ipg—nf) + Pg-n—17 = pg-n—17 = 0. (197)

Ifg>n+2,then g —n—2>0 and p;_,—2It = Ip;_,—1T = 0; consequently,
Ip is strongly contact. If ¢ = n + 1, then from (195), it = 0 as required. [J

Corollary 1 (The fibered Volterra—Poincare lemma) If dp = O, then there exists a
(g — 1)-form n such that p = dpy.

The following two theorems extend the fibered Volterra-Poincare lemma to
contact and strongly contact forms. Their proofs are based on the trace decompo-
sition theorem (Sect. 2.2, Theorem 3), Appendix 9, Theorem 4, and on the fibered
Volterra-Poincare lemma.

Theorem 13 Let 1 < g <n and let p be a contact g-form such that dp = 0. Then
p = dn for some contact (q — 1)-form y.
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Proof

1. Let p be a contact 1-form, expressed as

p= > o). (198)
0<<r-1
Then,
dp= Y (dD) Aw)— Dldy); Adx). (199)
0<|<r=1

Condition dp = 0 implies, for |[J| =r — 1, ®/ 5}‘ =0 Sym(Jk), and the trace

v

operation yields, up to the factor (n +r —1)/r,

(D{ =0. (200)
Thus, p must be of the form
p= > Do) (201)
0< [J| <r-2

Repeating the same procedure, we get p = 0.

2. Let 2 < g <n. We show in several steps that if p is a contact g-form such that
dp = 0, then there exist a contact g-form 7 and a contact (¢ — 1)-form x such
that

p=1+drx, pit=0. (202)
First, we find a decomposition
p = po + To0 + dKo, (203)

with the following properties:

(a) py is generated by the forms wf such that 0< |J| <r —1,

po= D> OfADI+ D ] AAL (204)
0<J|<r=2 [J|=r—1

where the (¢ — 1)-forms A? are traceless.

(b) 1o is generated by wjAw] and ofAdw], where |J|=r—1,
o<|I|<r—1,|L|=r— 1L
(c) ko is a contact (g — 1)-form.
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Expressing p as in Sect. 2.3, Corollary 2, we have

p= > OfADI+ > of AP+ dig, (205)
o<|I<r=2 [J|=r—1

where g is a contact (g — 1)-form. Decompose the (¢ — 1)-forms @, indexed
with multi-indices J of length r — 1, by the trace operation. We get a
decomposition

J J 7l
D, =A+7Z, (2006)
where the expression A’ is the traceless and Z/ is the contact component. Then,

p= > OfADL+ D AN+ D @ AZL+dry. (207

0<||<r=2 |J=r—1 [J=r—1

Setting

po= D> OJADL+ D o] AAL

o< <r=2 J|=r—1

(208)
T9 = Z w7 A Z{;»
|J]=r—1
we get (203).
Second, we show that p has a decomposition
p=p +1 +dr (209)

with the following properties:

(a) The form p; is generated by the contact forms ¢, such that
0< |J| <r—2, that is,

P = Z f A DL+ Z af AAL (210)

o< <r-3 |J|=r-2

where the (g — 1)-forms A/ are traceless.

(b) 71 is generated by wjAw; and ojAdw], where |J|=r—1,
o<||<r—1,|L|=r—-1.
(c) ki is a contact (g — 1)-form.
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Indeed, we apply condition dp =0 to expression (203). We have, since
dwf = —dyj Aax/,

> d(wf Al
0< [ <r-2

= > (@ AdxY AN+ of NAAL) + dr = 0.
|J)=r—1

(211)

But the terms dyj; A dx’/ A Aﬁ in this expression do not contain any form w} or
dw} and must vanish separately. Thus,

> dyjndx AN =0. (212)
|J)=r—1

The 1-contact component gives

> ) Ah(dx AA)) =0 (213)
J]=r—1

hence
h(dx) AA) =0 Sym(Jj). (214)

The traceless form A’ can be expressed as

Al = Al dx NdxP A N dx

Vipl3...Ig

+ A dyy; A dx"® Adx* A - A dxi

VO213i4...04

+ AR dyp? AdyP Ndx* NdxS A - A dx' (215)

V020314151

L1 Ig—1 o 14 Gq-1 i
o Al i, AV ANy N Nyt A dx
bl 1 o
+ A .;qdy;’;z Ndyg? N A dy;’
where the multi-indices b, L,...,I, satisfy |b|,|h:],...,|I;] =r and all
. 1, . .
coefficients A2 A'LL L ABL L fel gre traceless in the indices

V02i3i4...i(,7 \'0'263i4i5...iq7 N

i3,14,...,1; and the multi-indices I, I3, .. .,I,—;. Then, Eq. (214) reads

V203" " "0g-1lg

Jh

J 02 Jhi; 02 1,03
(A + Averisisei Vi T Avorosisis..ipVbinY Iy

Viri3...ig
Jh1; Iq—l gy 03 Tg—1
+o A e bV Vi
Jhi3 I, \,02 |03 Oq
+ A\'6203 t ‘qulzi2y13i3 . ‘quiq)

SOk dx" Ndx NdxD A Adxit =0 Sym(Jj).

(216)
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Setting
1 .. .
Bl W= =A 0, Sym(Jl) - Alt(irizis. . .ig),
JiI JI [ . .
Bvaziligia,.“iq - A(722l3l4 lqt(sll Sym(‘”) Alt(lll3l4- . -lq)7
JILI JbI ] .. .
B\'G;O?qi]i4i5...iq - A\’G?zg'qlus 14511 Sym(‘]l) Alt(lll415' . ~lq)a (217)
1y 1 ..
B‘\IZTZ')ICST; ° .Ulq—lliliq = A‘\{{TZZIS'Q Ot]q 111 5 Sym(]l) Alt(lllq))
1 A 1
N Sym(ﬂ),
we get the system
B‘\{fll2l’§ lq = 0
Bl i, 0n =0 Sym(hyjn)  Alt(iriais. . ig),
B 15,513&; =0 Sym(Lj) Sym(Ljs) Alt(irizis. . .iy),
(218)

Bﬂbh ST 5/4 1 =0 Sym(hj,) Sym(l3j3)

VG203 " "0 ity i Vi3t

Sym(q g—1) Alt(zlzm iy),
BJlIzIz Iy 5]2 z 5/q =0 Sym( 2) Sym(13j3)

V203" " toqi Vi Viy”

Sym(I,j,) Alt(zl Ipis. . .ig).

11 JD1I; VYRS
Since the unknown functions, B‘J G itiig.ndy? B oniy iyis.igt By 55 Gy iy

I, . .
Bl L5 . aretraceless, for each fixed multi-index / = Jland each index v, this

system has only the trivial solution (see Appendix 9), and we have from (217)

Al 8 =0 Sym(Jl) Alt(iyiais. . 4,),

H2l3 lq 151

AL 5l =0 Sym(JI)  Alt(iyisiy. . 4,),

VO2iyiy.ig i1

AV s, O =0 Sym(Jl)  Alt(iriais. . .iy),

(219)
I - ..
A“{‘Ifzzlg'z . '0?4, l115,511 =0 Sym( ) Alt(lllq)a
1
AR 45l =0 Sym(Ji).
The solutions of this system are of Kronecker type; we have, denoting the multi-
index J as J = Kk,

k . .
A{y(i];}“lq = Cﬁw l[éh Sym(Kk) Alt(lzl3l4. . .lq),
Kkl KT k PP .
Asostsivei, = Croigis..i, 0, SYm(Kk)  Alt(iziais. . .ig),
KkD I KD I k P .
Amzfr:zus A Cm;o};zys g 514 Sym(Kk) Alt(l4l516' . 'lﬂl)? (220)

Kk1213 lyv KL A sk
Amm gy = Coz. .Jqfléiq Sym(J1),
Kkl lg _
Yoyon -+ 0g = 0.
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Consequently,

> W) AN = 0 A(CK Sk AdxP AL A

Vizig...ig
|J|=r—1

+ CcKE S dyp Adx™ Ndx'* A - A de

vV 02igis...ig i3

+ CKbL 5" 2 A Y] Adxt A dxS A A d

V0203isig...iq 14

k — i
e CRRR L Oy NdYE N Ady A dx)

VG203 " o'q 1l
= dof A (=Cy, . dx" /\dx"‘ A e Adx'
+ kb,

VO2i4is. .y

— CKbLs dy A dy Adx'S Adxie A - A dxie

V0203isig...Iq

dy Adx* NdxS A - A dx'

o (DO Ll dy AdyD A Ay ).
(221)
This expression splits in two terms,
d(f A (=Cyyi, i dX® Ndx* Ao N dats
+ O lqdy AdxX* NdxS A - N dx o)
— ot isioiy YT A dy7? NdxS Ndx'® A - A doie
+o (ZD)TICRED o dy Ady A Adypt)),
and
— f Nd(=Cyi, ; dx® Ndx" Ao A da
+ Ol i, AT A X N dx Ao N dx o)
— Cotisioiy YT Ny Ndx Ndx® A - A doie
+o (- 1),, LCbh oy Ay ~-Adyi,‘:‘)’

which can be distributed to the terms dkg and p, in the decomposition (207).
Therefore, p can be written as

Z O AN+ Z oI ANAL + Z S NZ + di
o< <r=2 J=r-1 [J]=r—1

Z f AL+ Z w§ NZL +diy
o< <r=2 |J| =r—1

S i AR+ YT WS AL+ D wf AZ +di
0<||<r-3 | =r-2 ] =r—1

p
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= Y ofAL+ D o AD+ Y wf AZL+dr

0<ll<r-3 W =r—2 W =r—1
= > of AL+ D WS AN+ D ofAZL (204)
o< <r-3 |J| =r—2 || =r—2
+ ) @ AZL+dr
| =r—1
where we use the trace decomposition ®' = A’ +7/ for |J| =r— 1.

Summarizing and replacing for simplicity of notation CI){‘ with (I)i, we get the
decomposition (209).
Third, we construct as in the second step the decompositions

po= > ofAPI+ S wfAAL
o< <r-2 |J|=r—1
pi= X WfAGL+ Y wjAAl
0<<r-3 V=r-2 (225)

pra=0" AND,+ > wf NAL,
—~
Pr_1 = NAg,
and

0 =py+710+dKg=p, +1+dK =p, + 12+ dK;

(226)
e =P 0+ T2 Fdiro = p + 1o FdE.

Note, however, the different meaning of the symbols (Df; and Ai in the lines of
expressions (225), which are defined in the construction.
Finally, we show that p has a decomposition

0 =Tr—1 +dKr,_1, (227)
where 7,_; is generated by the contact forms o§ A w; and wj Adwy,
[J|=r—1,0<|I|<r—1,|L| =r—1 and k,_; is a contact (¢ — 1)-form.

It is sufficient to show that in the decomposition p = p,_; + 1,1 + di,—; (226),
the form p,_; vanishes. Condition dp = 0 implies
do® NAy; — 0’ NdA; +dt,—; = 0. (228)

The 1-contact component yields —w{ A dx' AN hA, — w° A hdA, = 0; hence,

h(dx' A A,) = 0. (229)
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Writing the traceless form A, as

Ay = Ay, dX” N dX® A -+ A dx'

AL Ay Adx A A N d
+A{'¥2303i4i5...iqdy1022 A dy;? A\ d-xi4 A dxiS JANEERIAN dxi" (230)
I, 5 .
bR AL Ay YT A Ay A dx
+A{,2(,12353. . .fquy}’; Ndyp N A dyZ",
we have
P4} LI ) .03
h(dx' A A)) = <Avi2i3...iq T A i Vi A osiis i ViV

. bl ly-1 oy o3 Og-1 bl I, (02 (03 Jq
e Avazag' ogrigYhiYVnise Vi, iy T Av0203’ <o YhLi YLyt Y1,

cdX ANdXE A dXB A A dx =0,

(231)
which implies, because the coefficients are traceless,
A b _ bl _
A"1213-~lq - 07 AVO'zi3i4,.4iq - 07 A\r'(72(73i4i5..,iq - 07
LI Iy LI I (232)
213 q— J— 213 J—
Awm. gy, = 0, Avam. = 0.

Consequently, p,_; = 0 proving (227).

3. To conclude the proof, we apply the contact homotopy decomposition to the
form 7,_; (Theorem 11). We have 7,_; = Idt,_| +dIt,_;. But d7,_1 = 0, and
thus, 7,_; = dIt,_1, and since the order of contactness of 7,_; is >2, we have

hit,_y = Ihpit,— = 0, so It,_; is contact. Then, however,
p =M, +dIt,_y +drk,—y = d(It,—1 + di,—1). (233)
Setting n = It,_; + dx,_, we complete the proof. O

Theorem 14 If p is strongly contact and dp = 0, then there exists a strongly
contact (q — 1)-form n such that p = dn.

Proof We express p as p = Idp + dlp. But by hypothesis dp = 0, thus setting
n = Ip, we have p = dn; now, our assertion follows from Theorem 12, (b). [

Remark 11 The concept of a strongly contact form, used in Theorem 14, has been
introduced by means of the exterior derivative d and the pullback operation by the
canonical jet projection 71" J™T1Y — J"Y. The decompositions of the forms on
J'Y, related to this concept, represent a basic tool in the higher-order variational
theory on the jet spaces J'Y. A broader concept of a strongly contact form is
considered in Chap. 8.
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Chapter 3
Formal Divergence Equations

In this chapter, we introduce formal divergence equations on Euclidean spaces and
study their basic properties. These partial differential equations naturally appear in
the variational geometry on fibered manifolds, but also have a broader meaning
related to differential equations, conservation laws, and integration of forms on
manifolds with boundary. A formal divergence equation is not always integrable;
we show that the obstructions are connected with the Euler—Lagrange expressions
known from the higher-order variational theory of multiple integrals. If a solution
exists, then it defines a solution of the associated “ordinary” divergence equation
along any section of the underlying fibered manifold. The notable fact is that the
solutions of formal divergence equations of order r are in one—one correspondence
with a class of differential forms on the (r — 1)-st jet prolongation of the underlying
fibered manifold, defined by the exterior derivative operator.
The chapter extends the theory explained in Krupka [K14].

3.1 Formal Divergence Equations

Let U C R" be an open set, let V. C R™ be an open ball with center 0 € R™, and
denote W = U x V. We consider W as a fibered manifold over U with the first
Cartesian projection w: W — U. As before, we denote by W’ the r-jet prolongation
of W. The set W" can explicitly be expressed as the Cartesian product

W =UxVxLR",R") x> _(R",R") x --- x L' (R",R"™), (1)

sym sym
where ngym(R"7 R™) is the vector space of k-linear, symmetric mappings from R" to
R™. The Cartesian coordinates on W, and the associated jet coordinates on W”, are
denoted by (', y”) and (x',y,¥7,¥%, ..., )%, ), respectively.

Let s> 1 and let f: W — R be a function. In this section, we study the dif-
ferential equation

© Atlantis Press and the author 2015 85
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dg =f ()

for a collection g = g’ of differentiable functions g': W" — R, where r > s, and

. Og' Og
dg =354 > > D sV (3)

- i J
O 1 S << Dt

is the formal divergence of the collection g’. Equation (2) is the formal divergence
equation, and g' is its solution of order r. Clearly, a solution of order r is also a
solution of order r + 1. Our aim will be to find all solutions of order s, defined on
the same domain as the function f.

In expression (3), we differentiate with respect to independent variables y7, ..
where j; <j, < --- <ji. However, it will be convenient to find another expression
for the formal divergence with no restriction to the summation indices. According
to Appendix 2,

Og' 0g’
Z Z i y.lt'rljzmjki = ay{f' ] yZi2~-~iki7 (4)
.1

y’.’.
i 1< << TI2edk

where y;, . on the right side stands for the canonical extension of the variables
Viiy i J1 SJ2 < - -+ <y to all values of the subscripts. With this convention, the
formal derivative (3) can be expressed as

i ai (c)i i i
dig' =25+ 55y +

dg' 9% , 9 , g
T gyt ‘

a
by i g Y g s )

From expression (5), we immediately see that every solution g’, defined on the
set W’ such that r > s, satisfies the system of partial differential equations

g’ dg g gi gl
868 +aag] +aag] +"'+augl +aag} =0. (6)
Viveede  Pipjsedr Djiijjaeis Vivizedraiic OVjijadri

Our first aim will be to find solutions of this system.
The proof of the following lemma is based on the Young decomposition theory
of tensor spaces.

Lemma 1
(@) Every solution g = g' of the system (6) is a polynomial function of the vari-
ables y7, .

(b) Ifthe system (6) has a solution g = g' of order r > s, then it also has a solution
of order s.
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Proof

(a) To prove Lemma 1, it is convenient to use multi-indices of the form
J = (j1,j2,- - -,Jjr)- First, we show that condition (6) implies that the expression

)
% ™)
0y} 05 .. .0y
vanishes for all gy, 07,...,0, and Ji,Js,...,J,. This expression is indexed
with nr + 1 indices ¢;, where [ = 1,2, ..., n,n+ 1, n+2,...,nr,nr + 1 and
1 <g; <n (entries of the multi-indices and the index 7). The (unique) cycle
decomposition of the number nr + 1 includes exactly one scheme, namely the
scheme (r+ 1,r,...,r) (one row with r + 1 boxes, n — 1 rows with r boxes).
The corresponding Young diagrams as well as (non-trivial) Young projectors
are then necessarily of the form

The first row represents symmetrization in the entries of the multi-index J; and
the index i. But according to (6), these Young symmetrizers annihilate (7), so
the Young decomposition yields

8ngi

a5 Ao =0 9
Y51 0y5:. . .0yy" ©)

Consequently, g’ is polynomial in the variables y9.

(b) Consider the formal divergence Eq. (2) with the right-hand side
! :f(xi,y“,y;,y;’;h, - .,y;‘ljzmj), and its solution g = g’ of order r>s+ 1.

Then
0g'  0Og Og' 0g’ Og'
g8 o o ¢4 o —f (10
O + oy° yi + ayjq] Yii ayjq]jz Yijpi T 70+ ayjﬁj;..j} Yirdi = (10)

and condition (6) is satisfied. Then by the first part of this proof

d=gh+e+gh+ - +g |, (11)
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where g;, is a homogeneous polynomial of degree p in the variables y7. .
Substituting from (11) into (10), we get, because f does not depend on y}’l Py

gy , 92y o, 08 080 o 0gy
O + Ay i+ e Yii T e Vgt M. Visrgiai =+ (12)
J1

Yiia J1J2--dr—1

Repeating this procedure, we get some functions & = k', defined on V¥,

satisfying
O On Oh' Ol on!
St e e it e Yt e Y =f (13)
ox' 3)7 ayjt_fl J1 o 0’2 Jij2 a jo;jz A J12--Js

K is a solution of order s. O

Remark 1 If g = g' is a solution of order r of the formal divergence Eq. (2), then
Eq. (6) represent restrictions to the coefficients of the polynomials g'.

Remark 2 Every solution of the homogeneous formal divergence equation
dig' =0 (14)

is defined on U. Indeed, according to Lemma 1, if (14) has a solution, then this
solution is defined on V; thus

8g' og'
7 —( 15
axz ayayl ? ( )

hence (9g'/0y’) = 0 and g’ depends on x' only.

Let s> 1 and let f: W® — R be a differentiable function. Sometimes, it is useful
to divide the formal derivative d;f of the function f in two terms; by the ith cur
formal derivative of f, we mean the function dif: W* — R defined by

of f o , of of
d»f 5—’— dy° i+ a a y]ll + 8 a y]uzl +- 3 - y]1j24..jv,]i' (16)
]l]2 Js—
The i-th formal derivative, which is defined on W**!, is then expressed as
o
df = dif + By Vi i (17)
Jl]2 Js

The following assertion is a restatement of the definition of a solution of the
formal divergence equation (17), Sect. 3.1.
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Lemma 2 Let f: W — R and g': W* — R be differentiable functions. The fol-
lowing conditions are equivalent:

(@) The functions g' satisfy the formal divergence equation.
(b) The functions g' satisfy the system

dig' =f (18)
and
dg' g g g
o +aagj +a(,g1 +~~+a%:0. (19)
Vivaeds  Dipjsede Phiijajaeis Yiijzds-1i
Proof Tmmediate. O

3.2 Integrability of Formal Divergence Equations

We introduce the concepts, responsible for integrability of the formal divergence
equation, and prove the integrability theorem.

To any function f: W* — R, we assign an n-form s and an (n + 1)-form Ef on
W*, by

Ay = foo, (20)
and
Ef = Eg(f)wg N g, (21)

where the components E,(f) are defined by

_ o ~ of
E,(f) = angr;( Vd, d,,. . .d, By (22)

We call /s the Lagrange form, or the Lagrangian, and Ef the Euler—Lagrange form,
associated with f. The components E,(f) are called the FEuler—Lagrange
expressions.

In the following lemma, we use the horizontalization morphism h and the
1-contact homomorphism p;, acting on modules of differential forms on the r-jet
prolongation W" = J"W of the fibered manifold W (see Chap. 2).
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Lemma 3 For any function f: W* — R, there exists an n-form Oy, defined on
W=1 such that

(a) ]’l@f = /lf.
(b) The form p,d®y is w’-generated.

Proof We search for O, of the form
®f —wa + (f’w —|—fl/160 +fl/1]2 11]2 fUl/Z Js— ]1}2 i ) /\(Ui; (23)

where the coefficients f7v2-/ are supposed to be symmetric in the superscripts
i,J1,J25 - - -»jk- Then condition (a) is obviously satisfied. Computing p;d®, we have

p1d®; = df A wo + (hdfi A @° —I—fda) + hdf N
+f(?1dwjl —+ hdf’/l/2 AW +fljljzdw

Ji2

+ .- -‘rhdf;jlh“']‘ 1 /\w]uz i +fl]”2 Js— ldwjuz i )/\ w;
<aya “’.il oy e R~ Vo Djijogs | N @0 (24)

+ (difidx* Ao + dif ' dx A o] + dif PR Ao
o df A N 1) A ;
- (flwk ANdxX + 1 of N dd + [Pl A dxt

. +fawjlj2_”ij Adx) A ;.

This expression can also be written as
9 . 9 ) 4
O - VN (A ) TP
Ay ayjl
0 L .
+ (8 {: dif[;]l]Z 7f]211 )w]m A wyg
]1]7 o (25)
8f i1j2-Js—1 Jr—1J1J2- - Js—2 o
Tt \ae —dif P = e og, G N oo
]1}2 Js—1 a
of i -
+ (6}1‘7‘ - )wjljz,‘.j.\-ljj A .
J1J2-Js

But we can choose fi, fir, fivz2 fi2-d1 from the conditions
g'Jo ' Jo k) a
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fieios = ff ,
Viija--is
firiizdi: — Gaf _ dfiiin — . Gaf _d Jaf ’
jija-dst Yijzedsmt jija-ds—tin

. 0 L 0 0 0,
f(]rzll — { _ diféjljz — {: _ dil U_f + dildiz (l_—f
Vi ayjl.iz Ji2i ay./’1]‘21‘11'2 (26)
. )
— 4 (=1) 2cz,-lcz,~2...cz,1‘_72a—f,
Jij2iriz...is—2
o Of - Of of of
fh: gfdifljl: ﬁidiiaeridi7
’ ayjl ’ 8yjl l ayjlil s 8yj1i1i2
_ of
—-~-—|—(—1)S ld,' d,'z...d,-k e
1 1 8yjlili2-»~is—l

and for this choice, the form p,d® is w’-generated, proving (b).
Using formulas (23) and (26), we see that the form ® = ®y, constructed in the
proof, has the expression

O =fwo + i <S
k=0

This form obeys properties (a) and (b) of Lemma 3. We call ®; the principal
Lepage equivalent of the function f or of the Lagrange form A;. Computing p,d®y,
we get the Euler—Lagrange form, associated with f,

—k—1
of .
> (1) dpd,,.. d —)wjm“jk/\wi. (27)

20 ML o
1=0 8y.i1j2-~jkplpz~-l’zi

p1d®f = Ef. (28)
O

Now we are in a position to study integrability of the formal divergence equa-
tion; the proof includes the construction of the solutions.

Theorem 1 Let f: W — R be a function. The following two conditions are
equivalent:

(@) The formal divergence equation dig' = f has a solution defined on the set W*.
(b) The Euler—Lagrange form, associated with f, vanishes,

E =0. (29)
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Proof

3 Formal Divergence Equations

1. Suppose that condition (a) is satisfied and the formal divergence equation has a
solution g = g, defined on W*. Differentiating the function d;g’, we get the

formulas
odig' _ , 0g (30)
oy’ "oy’

and for every k =1,2,...,s,

od;g' B Og'
ay?lizu.ik 8y§‘1i24..ik (1)
1 Ogh Og? Og" gk
+%<80g t ot gt +a+>‘
Viris..ix Vivis..ii Virivig...ix Vinis...ir_1

Using these formulas, we can compute the Euler—Lagrange expressions E,(f) =

E,(d;g') in several steps. First, we have

. dg"  Odig dig' ; dd;g'
Es dil :di dl *1‘didi...di‘
(dig") 1(8 - ay? +di, 9 :ym +(=1) iy s giz...il
Og” 8d,~gi od;g od;g'
=d;d, | — i 1)d;.d;,.. .d; .
e ( 6)’?, * ay;?lzz ’ 8 Zzzz; + +( ) 34 : ay;‘;lizu.iv
(32)
Second, using symmetrization,
; Og” Og' 1 [ogh Og~
E,(d;g") = d; d; d; -
(dig") | 2< aa+ ay;r]i2+2<ay;_fz+ay;rl
dsg* r 0d,g*
—d; - +(-1)dyd,. . .d; 33
' 8 1011213 " +( ) o ’ ay?ﬂg..j,.) ( )
0gh 6dsg r od,g’*
=d, d,d,, 1)d;d;...d; .
(8 gy, T g

We continue this process and obtain after s — 1 steps

Ea(digi) = (71)Sdi1d‘ 'dix—l

ipe -+

didi ——

Og'
6 a

1112 Ay

But since fis defined on W*, the solution g’ necessarily satisfies
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o i ) ip o i3 ) Ist1
0" o8 98 Ly % (35)
ayiziy..ilﬂ ayi1i3i4,<.is+1 0)71‘21‘”‘41‘5.‘.1'3“ ayiziy.ikli,il

proving that E,(d;g') = 0.

2. Suppose that E,(f) = 0. We want to show that there exist functions g': V¥ — R
such that f = d;g’. Let I be the fibered homotopy operator for differential forms
on V%, associated with the projection 7*°: V — U (Sect. 2.7). We have

O = 1dO; 4 dIOf + Oy = Ip1dOf + Iprd®y + dIOf + O, (36)

where ®q is an n-form, projectable on U. In this formula, p;d®; =0 by
hypothesis, Ip,d®y is 1-contact, and since d®, = 0 identically, we have ®y =
ddy for some Yy (on U). Moreover h®; = hd(I®s + ) = fwy. Defining

functions g’ on V?* by the condition
h(]@)f + 19()) = gia),-, (37)

we see we have constructed a solution of the formal divergence equation. Indeed,
from (35), hd(1®y + Vo) = hdh(I1O; + Vo) = dig' - Wy = fwp. Then, however,
we may choose g’ to be defined on W* as required (Sect. 3.1, Lemma 1). [

If the formal divergence equation has a solution, then this solution is unique, up
to a system of functions g’ = g'(x/), such that (9g'/dx') = 0.

Remark 3 If a formal divergence equation d;g’ = f has a solution g/, defined on the
set W, then any other solution is given as g’ + h’, where h' are functions on U such
that Oh'/Ox' = 0 (see Sect. 3.1, Remark 2).

Condition E; =0 (28) is called the integrability condition for the formal

divergence equation. In terms of differential equations, this condition can equiva-
lently be written as

3.3 Projectable Extensions of Differential Forms

Denote
wo =dx' Ndx® A--- Adx", (39)

and o; = iy/py o, that is,
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1

mgﬁﬂﬁ--%d’“j PN A N d (40)

w; =
Consider a 7*-horizontal (n — 1)-form 1 on W*, expressed as

n= g’wi = mhjﬂs--fndxh ANdx? N N dir. (41)

Note that from expression (40), the components of the form # satisfy the trans-
formation formulas

gk — gkiafz-wn hjzl'

(n—1)! v

In the following lemma, we derive a formula for the derivatives of the functions
hjjs..j, and g to this purpose, a straightforward calculation is needed. Denote by
Alt and Sym the alternation and symmetrization in the corresponding indices.

Risis oy = Eijais..in & (42)

Lemma 4 The functions g' and h;,j, j, , satisfy

1 o) i o ki o k> b ks
PR Ug +3 ﬂg +5 g +...+%
r+ Vinkaoks  Pikohs.ky Okyikshy..ky Viesks.des_1i

Oh — 1) 9,
= bl _stn= D) Wl g6 Sym(kiko. . k) Alt(bls. . 1y).
Nikyody ST Wi i,

(43)

Proof Formula (43) is an immediate consequence of equation (42). Differentiating
we get

fgl _ gl ah£y34.J,l 7 @)
Mook, (=1 N ok,
hence

_18,'1213“_1,, NG +8“ +6" +”.+W‘7
s+ Virks.. &, Vikoks..k, Viriksks.. ks Ve i

L T

s+ 1(n— 1)1 5 N o

L. s i

K1j2J3oJn
+ iy 0,E
p
s+ 1(n—1)! OV tots ks
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1 1 o Ohii
Ty bbb, R L
s+1(n—1)! OVE sk ks
+- 4 S |3ilzls...ln€ksm“'j" (9:52,‘3.4.]‘”
s+1(n—1)! OV ko ki

_ b Ol U b (g shss s O, (45)
s+ 104, s+HLn=1I{" hobT OYoks
o  Oh. o Ol
s ahapap.. o Dy o g O
OVE sk ks " OV ko ks i

Alt(ilzl3 .. .ln).

We calculate the alternations Alt(ily/3. . .I,) of the summands in the parentheses in
two steps. Consider the first summand. Alternating in the indices (L/5...J,) and
then in (il,15. . .I,), we get

Ohjjs...,
g
Vikaks.. &,

_1 ( sk Ohyyiy..0, sk Ohipy, .1,
n

SRy .o Alt(iyls. . 1,)

sk Ohyigs., sk 3/11213...1,”1‘)

i o b T Y4 o 1, o
ayikzk}“ks ayikzkg.“kx 6yikzk3.“ks ayikzky.‘k;
_ L[ Ohty g OMitaed, gt Ositts.cdy g Ol
- I b o L o Iy I ’
n 6yklk2k3.4.ky (()Yiiczlq..lcs 8}’1'1(21(3,..1(: 6yl‘1<2k3...ks

(46)

and similarly for the remaining terms. Altogether

1 Oot Hok Hok Doks
Silzl3,..ln< &£ 9% 9% .. 9%

g ag g g
s+1 Vicrks.. ks ayikzkg...kx ayk,ik3k444.kc 8yk1k2...kx,1i

_ 1 8hlzl3..,l,, + ahlzl}..l,, _ 5](1 ahil:;l;;ml,, _ 6k1 ahlzilﬂy..lﬂ
- I a L 7 1] I
STI\N ke Diikoksok ik &, Wik k,

Ohpy, 1, i . Ohyiy.t, sy Ohinyy., sk Ohyyityis..1,
a

o I3 a Y a
ikoks...ks ayklkzlq...lq ayikzky..kx ayikzlq...lq
_sh Ohuyty. i . Ohiy..t, sk Ohigiy.., s Ohpyinyis..q,

1, o a 1) a I3 1
ayikz/q.../gv ay/q/czkg.../gv ayiklky..ks ayikl/@...kv
ko Oty 0, i Ohyyys...,
B e - —
Yk ks . ks Vi koks.. ks

s Ohiniy.t, s Ohivggs.t, s 8hlzl3...ln1i>

k1
— g

Y a I3 a In o
“3)’z‘k21g.uks,lkl 8yik2k3...k§,lk1 ayikzkg...ks,lkl
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_ Ohy,y,..1, 1 <5k1 Ohit,y,..1, 4k Ohyit,is.., bk Ohy, 1, i

o I o I3 o T 1, o
ayklkz s+1 8yik2k3“.1g Vikoks...k; Vikoks ..k,
o Ohini, 1, ok, Ohiitys. ., & Ohty 1, i
+576 3ly.. _’_5132 ;45 _’___._’_5[: ;3 1 (47)
yzk ks ks © OYik ks ks Vil ks . ks

Ohiyy..0, s Ohu,itis.., s Ohyiy..i, i

+o + 5y R B
Viesks.. ks 1k ayzkzky..kl,lkl Yikoks...ky_1ky

and, with the help of alternations and symmetrizations,

1 ( dg  ogt | 9g gk >
llz[; l

g ! g l g me g
s+1 8)’1(11@‘..1%. ayikzk}.,kj 6)’k1ik3k4..,kl ayklkz...kkli

_ Ohy,.g, n—1 1 sk Ohiyy,..1, ‘ 5k1 Ohu,iis..a, | ko Ohily. 0,y
9.0 _ b o e Iy 7
Ninyk, StHIn—1 ook ke Vioks. ke OYtoks ks
n 5k23h11314 b 5k2<9hzzzl415 b gho bbb
&y Iy N
ks ikiks... Vit ..k
6hll3l4n L s _bills ks Onin-1i
+-- +5,28 51;8 > 0 '3
ylkzk'g V 1k1 ) yikgk3..,kx,]k1 ylkzk‘; v ]k[

byt Lo O, n—1 g Ohigy.q, — n—lg Ohy,.,
- g Zz a lz a 12 g

WNiks SHL 2 fpe e s 20V 0 k. s+1 20k ke ik

Alt(lgl3 . -ln)

Oh —1) y, Oh;
ettt Ot 1,1, Symkak. &) (48)
ok, STL 20V

O

Let 7 be a *-horizontal form #, defined on W*. A form pon W*~! is said to be a
7%~ _projectable extension of n, if y is equal to the horizontal components of y,

n = hu. (49)

Our objective now will be to find conditions for # ensuring that u does exist. Let n
be expressed in two bases of (n — 1)-forms by formula (41).

Theorem 2 The following two conditions are equivalent:

(@) n has a n**! pr0]ectable extension.
(b) The components g' satisfy

Og' Oglt Ogh Ogs
aag +a<rg] +aag] ++aai
Viiewds — Dipjsedgs  Dtijajaids Vivjzewdori

=0. (50)
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(¢c) The components h;;, i , satisfy

Ohy..q,  r(n—1) Ohiy,.i, o
ploy Lo =0 Sym(kiko.. k) Alt(bks. . 1,). (51)
Wik r+1 0y, :

Proof

1. To show that (a) implies (b), suppose that we have an (n — 1)-form p, defined
on W*~!, such that y = hu. Then hdn = d;g' - wy, which is a form on W*+!. But
(5 NY*du = d(n*~1)*u hence hdn = hdhu = hdu, so hdn is ©*1*-project-
able (with projection hdy). But

hdn = dig' - wg
dg' 9¢' , 9¢ , ¢ g’ )
= _l+ a'yi+ y'li yll+ -+ y N o,
<3x 3y 8yjl_fl J ayﬁjz J12 ayjljz N Ji2-si
(52)
so m*T1¥-projectability implies (50).
2. (c) follows from (b) by Lemma 4.
3. Now we prove that condition (c) implies (a). Write # as in (3),
1 J3 jn
n= = 1)'hm X N dXE A N (53)

By Lemma 1, Sect. 3.1, and formula (42), the functions %;,;, ; are polynomial in
the variables y7;, where J is a multi-index of length s — 1. Thus,

. . _ . . .]1](1 . ) (o] 11(] Jzkg . . gl ()
hisis...i, = Biyiy...iy , + By itigecin a1 Yy +B{,—, oy itiaein 1Y)k Yiaks
Jlkl Jzkz Jookn 2 a1 02 T2
+ot B 02 " Op2 iniyeint Vit Yoky Vi aky
Jiki Jzkz Jn-2kn—2 Jn-tkn-1 .. a1 \,02 On—2 On—1
+ Bo'l [ ) [ iniyein1 Y1l Yoka* * Vak 2V duthaor® (54)

The coefficients in this expression are supposed to be symmetric in the multi-
indices ’*, /. By hypothesis, the polynomials (54) satisfy condition (51)

g’y

8hi2i3~~in (n - 1) ahllzu iy 5k

=0 Sym(Jk) Alt(izis. . .i,), 55
T ym(JK) Alt(sis. i), (55)

which reduces to some conditions for the coefficients. To find these conditions,
we compute
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Ohii
\-lnmt _ plk Jk Lk, . a2
ay;k 7Bo iy dp—1 +ZB(,— oy i1 Y ok,
Jk .]zkz .],,zk -2 .. . a2 a3 Op—2
+oe (l’l - 2)Bo' g '(7;,2 " lll2-~l»171y‘]2k2y]3k3' . 'yf:fzknfz
_ Jk Loky  Jnokno Juakeor g2 03 On-2 On-1
+ (n l)BG g " ’(7:,72 " UL] " itizein 1Y ko Ysks Y sk 2 YTy ikt
(56)
and
Oy,
2B3-ln—1 _opJl 1 Joky . 02
8}’7] - Bi ligiz.ipey T ZB{; oy liizein 1Y ks
. _ J1 .]2/(2 J, ,zk -2 .. . a2 03 ()
ot (M= 2)By 20 0 i Y Yk - Y ks
_ JU oky  Jnokno Joakeer a2 03 Tn—2 On-1
+ (n l)Ba gy " 'ay,ll,z " J':,,l " 11213--Ju—1y12k2yj3k3' . 'an,zk,,,zan,lk,H’
(57)

from which we have, changing the index notation,

Ohyigiy.i
sigedn sk pll sk L hky . skoo
51‘2 = B; 11314---11151‘2 + 2B{; oy lizig..dy 5i2y12k2

oG

ce. _ L hky  Jyokeo . sky02 (03 G2

+ + (n Z)B(Jr oy t* _0’;72 n lz3l4.“l,,5i2y]2k2yl3k3' . 'y\]n—zkn—z
_ JI hky  Jpokna Juike o sko02 03 On-2 Gn1

+ (n I)BU oy " Op2 (] 11314"'1"5i2y12k2yf3k3' : 'y.]n,zk,,,zy\]n,lkn,l

(58)
Thus, comparing the coefficients in (58) and (56), condition (55) yields
k _s(n—=1) k
BY iy = ﬁBa lisis...in 1 O,
gl s(n — l)Bﬂ T
¢ oy lUl2ep-1 S+1 g 0y D3 In—1Y1
(59)
BJ]( Joky J3ks Jnokn_> L _ S(l’l - 1) Bﬂ Joky J3ks T2k, L. 5k
G 0y 03 " 0,a iedn—1 — s+ 1 G 0y 03 ' Opn liziz...in-1Y)»

Jk Joky Jsky  Ju_ ke _ S (n=1) hky Bks  Ju_tkat k
B S 2 g S
G 0y 03 "G, itiy.ip—1 — s+ 1 G Gy 03 " G, liis...in-1Y4
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On the other hand, any (n — 1)-form u on W*~! can be expressed as

©= o+ o) AP +do) A P!

v

where

Ho = Ailiz,,,in,ldxi' Adx2 A .- A dxint
+A<J711 inis.nin 1 AV N dx2 ANdx® A - A dxint
+A<Jfll izz i354<--i»17|dy;11 A dy;j AdxX3 ANdxX* A A dx (61)

o R AL G DG NN Ny A dx

01 02" " "0y 2

1 Ju— a T Oy

+A; 2. o dyjl‘ A dyh2 AREEWA dyjH‘,

and the coefficients are traceless (Sect. 2.2, Theorem 3). Then, hy = hy, because
h is an exterior algebra homomorphism, annihilating the contact forms ", and

- U N N 01 02
hp = (AZIZZ--Jn—l A iviseinaYatiy T Agyo isiseint Y1 Yioia
JiJ2 ) a1 ,02 On—2
+--+A . in1 Y 1iy Vais YTy ain_s (62)

0102° " "Op2 1
+ A{Tll‘t’fzz' : '@:ly«(;llily;;iz' ! 'y;::llinfl)dxil A dxiZ AN dxi"*I :
Now comparing the coefficients in (62) and (54), we see that the equation
hu = n for 7~ !-projectable extensions of the form # is equivalent with the
system

Bijiy..iy s = Airiyeniy 15
BN iy i = AL iy O Sym(Jikr)  Alt(iria. i),
Bf,‘lk' ]gzzkz igwin s = A2 i3i4...i,,,.5f-? 5{-‘; Sym(Jiki) Sym(J2k2)
Alt(irin. . ipy),
Bl e e i = AN 0000 Sym(Jiky)
Sym(J2kz). . .Sym(Jy—2k,—2)  Alt(iyia. . dp-1),
B Bt B s = Al O
Sym(jik1)Sym(jakz). . .Sym(jn—1kn—1) Alt(iriz. . .in-1)
(63)
for unknown functions A;,, ;, ,, A,J;l iz 1 Aéll{,?z Bigein_1y * 0 A?l{,?z- . ~(J;7;22 i1

and A’1/2 Jn—2 Jn-1

0102" " "Op—2 Op—1°
We can now solve this system with the help of the trace decomposition theory,
namely with the trace decomposition formula of the symmetric-alternating

tensors; in what follows we use the notation of Appendix 8 and Appendix 9.
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We consider each of equations (63) separately. The second equation is

Jk _AJ k
Ba iieip—1 — Aa fzi3---i;1715i1

Sym(]k) A]t(ilig. . .l'nfl). (64)

k . .
,~2i3m,-H(5l-l, this equation can also be

is defined by

Denoting B=BJ* ;; ;  and A =A!
written as B = qA where A = A/

ini3.nin_1

s(n—1) ~
AL i = v—i—ilAi ipigenin 1 * (65)

But B satisfies the first condition (59), which can also be written as B = qtrB.
Consequently, the trace decomposition formula yields A = trqA + qtrA = trB
because A is traceless; thus, we get a solution

s(n—1) 5 s(n—1
A=y se=b) gy (66)
s+1 s+1
Next equation (63) is
B A i = A0 i OO SymOnk) SymUak)

Alt(iyiy. . iy_y).

This equation can be understood as a condition for the trace decomposition of

the tensor B = BJi*t 2%, . (Appendix 9). According to conditions (59)
BJ]k] Jzkz L . _ S(n - 1)B./]l Jzkz L . 5]{1 S m(] k )
g, oy i1 T s+ 1 o oy liiz.dn1Y) y 11 (68)
Alt(iliz. . .infl).
Analogously
s(n—1 T,
Bcjrllkl cjrzzk2 iyiyedno1 — (s +1 )Bcjfllkl cjrzzl li2i3~~i11715f12 Sym(.lzkz) Alt(lllz' : 'ln_l)'

(69)

These conditions mean that B is a Kronecker tensor whose summands contain
exactly one factor of the form 67, where o runs through J,k; and i through the set
{i1,12,...,in—1}, and exactly one factor 5?, where f runs through Jk, and
i through {iy, i, .. ., i,—1 }; thus, B must be a linear combination of the terms of the
form o' 5?, ! 52, o 552, 588} From the complete trace decomposition theorem,
it now follows that the coefficients at these Kronecker tensors can be chosen

traceless. This shows, however, that equation (67) has a solution A{,ll g iniaoin -
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To complete the construction of the 7**~!-projectable extension y of the form 7,
we proceed in the same way. O

A remarkable property of solutions of the formal divergence equation is obtained
when we combine Theorem 1 and Theorem 2: We show that the solutions can also
be described as projectable extensions of forms on W*.

Theorem 3 Let f: W* — R be a function, let g = g' be a system of functions,
defined on W*, and let § = g'w;. Then, the following conditions are equivalent:

(@) The system g' is a solution of the formal divergence equation
dig' =f. (70)

(b) There exists a projectable extension u of the form n such that
hdu = fwy. (71)

Proof

1. If the functions g’ solve the formal divergence equation d;g’ = f, then condition
(50) is satisfied and # has a projectable extension u (Theorem 2). Then n = Ay,
hence

(n*")*hdp = hdhp = hdn = dig' - wo = foo, (72)
proving (71).

2. Conversely, suppose that giw; = hu. Then, a direct calculation yields
hdu = hdhy = di g' - wo, hence (70) follows from (71). O

Reference

[K14] D. Krupka, The total divergence equation, Lobachevskii Journal of Mathematics 23
(2006) 71-93



Chapter 4
Variational Structures

In this chapter, a complete treatment of the foundations of the calculus of variations
on fibered manifolds is presented. The aim is to study higher-order integral vari-
ational functionals of the form y — [J"y*p, depending on sections y of a fibered
manifold Y, where p is a general differential form on the jet manifold J"Y and J"y is
the r-jet prolongation y. The horizontal forms p are the Lagrangians.

In Sects. 4.1-4.7 we consider variations (deformations) of sections of Y as vector
fields, permuting the set of sections, and the prolongations of these vector fields to
the jet manifolds J"Y. The variations are applied to the functionals in a geometric
way by means of the Lepage forms (Krupka [K13, K1]). The main idea can be
introduced by means of the Cartan’s formula for the Lie derivative of a differential
form # on a manifold Z, 0: = izdy + dizn, where i is the contraction by a vector
field £ and d is the exterior derivative operator. For any manifold X and any mapping
f:X — Z, the Lie derivative satisfies f*0:1 = f*izdn + df*izn. Replacing Z with
the r-jet prolongation J"Y and 7 with p, we prove that the form p in the variational
functional y — [J"y*p may be chosen in such a way that the Cartan’s formula for p
becomes a geometric version of the classical first variation formula. These forms are
the Lepage forms; a structure theorem we prove implies that for different underlying
manifold structures and order of their jet prolongations, this concept generalizes the
well-known Cartan form in classical mechanics (Carton [C]), the Poincaré-Cartan
forms in the first-order field theory (Garcia [G]), the so-called fundamental forms
(Betounes, Krupka [B, K2, K13]) and [K5], the second-order generalization of the
Poincaré-Cartan form [K13], the Carathéodory form (Crampin, Saunders [CS]),
and the Hilbert form in Finsler geometry (Crampin, Saunders, Krupka [CS, K7]).
For survey research, we refer to Krupka et al. [KKS1, KKS2] and [K5].

The first variation formula, expressed by means of a Lepage form p, leads to the
concept of the Euler—Lagrange form, a global differential form, defined by means of
the exterior derivative dp (cf. Krupka [K13] and also Goldschmidt and Sternberg [GS],
where the Euler-Lagrange form is interpreted as a vector-valued form). The coordi-
nate components of the Euler-Lagrange form coincide with the Euler—Lagrange
expressions of the classical variational calculus, and its classical analogue is simply the
collection of the Euler-Lagrange expression. The corresponding Euler—Lagrange
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equations for extremals of a variational functional are then related to each fibered chart
and should be analyzed in any concrete case from local and global viewpoints.

The first variation formula also gives rise to the Euler—Lagrange mapping,
assigning to a Lagrangian its Euler-Lagrange form. The domain and image of this
mapping are some Abelian groups of differential forms. A complete treatment of the
local theory is presented in Sects. 4.9—4.11, using the fibered homotopy operator as the
basic tool. First the Vainberg—Tonti formula, allowing us to assign a Lagrangian to
any source form, is considered (Tonti, Vainberg [To, V]) and is extended to the higher-
order variational theory (Krupka [KS8, K16]). The theorem on the Euler-Lagrange
equations of the Vainberg—Tonti Lagrangian, proved in Sect. 4.9, determining the
image of the Euler—Lagrange mapping in terms of the (local variationality) Helmholtz
conditions, is a basic instrument for the local inverse variational problem, treated in
Sects. 4.10 and 4.11 (Anderson, Duchamp, Krupka [AD, K11]).

Specific research directions in the variational geometry have been developed for
several decades. Different aspects of the local inverse problem are given extensive
investigation in Anderson and Thompson [AT], Zenkov (Ed.) [Z], Bucataru [Bu],
Crampin [Cr], Krupka and Saunders [KS], Krupkova and Prince [KrP], Olver [O2],
Sarlet et al. [SCM], Urban and Krupka [UK2], and many others. Remarks on the
history of the inverse problem can be found in Havas [H]; original sources are
Helmholtz [He] (the inverse problem for systems of second-order ordinary differential
equations), Sonin [So] and Douglas [Do] (for variational integrating factors).

The theorem on the kernel of the Euler—Lagrange mapping is proved in
Sect. 4.10 on the basis of the formal divergence equations (Chap. 3) and the
approach initiated in Krupka [K12], Krupka and Musilovd [KM].

Our basic notation in this chapter follows Chaps. 2 and 3: Y is a fixed fibered
manifold with orientable base manifold X and projection z, and dimX = n,
dimY =n+m. J'Y is the r-jet prolongation of Y, n"* and n" are the canonical jet
projections. For any set W C Y, we denote W’ = (n70) ' (W). QW is the module
of g-forms defined on W”. Sometimes, when no misunderstanding may possibly
arise, to simplify formulas we do not distinguish between the differential forms p,
defined on the base manifold X of a fibered manifold n*: J°Y — X and its canonical
lifting (7*)*p to the jet manifold J°Y. Similarly, the Lie derivative 0;zp and
contraction i;zp are sometimes denoted simply by Ozp and izp.

Since the subject of this chapter is the higher-order calculus of variations, some
proofs of our statements include extensive coordinate calculations; in order not to
make difficult the understanding, we prefer to present them as complete as possible.

4.1 Variational Structures on Fibered Manifolds

By a variational structure, we shall mean a pair (Y, p), where Y is a fibered
manifold over an n-dimensional manifold X with projection z and p is an n-form on
the r-jet prolongation J'Y.
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Suppose that we have a variational structure (Y, p). Let Q be a compact,
n-dimensional submanifold of X with boundary (a piece of X). Denote by I'q(7) the
set of differentiable sections of & over Q (of a fixed order of differentiability). Then
for any section y € I'q(m) of Y, the pullback J"y*p by the r-jet prolongation J"y is
an n-form on a neighborhood of the piece Q. Integrating the n-form J"y*p on Q, we
get a function T'o(7) 2 7 — pg(y) € R, defined by

pa(y) = /J’V*p- (1)

Q

pq is called the variational functional, associated with (Y, p) (over Q). The vari-
ational functional of the form (1) is referred to as the integral variational functional,
associated with p.

If W is an open set in Y, considered as a fibered manifold with projection 7|,
then restricting the n-form p to W C J"Y we get a variational structure (W, p). The
corresponding variational functional is the restriction of the variational functional
(1) to the set I'q(n|y,) C T'a(x). Elements of this set are sections whose values lie
in W.

On the other hand, any n-form p on the set W” defines a variational structure (W, p).
The corresponding variational functional is given by

Ta(ly) 37 — paly) = / Iy R, @)
Q

If W=7, then I'q(n|y,) = I'a(n) and formula (2) reduces to (1).

Let W be an open set in Y. For every r, we denote by & W the submodule of
the module of g-forms Q, W, consisting of n"-horizontal forms. Elements of the set
Q, xW are called Lagrangians (of order r) for the fibered manifold Y.

Let pc Q;W. There exists a unique Lagrangian /,¢€ Q;fxl W such that
Jr+l"/*/1p - Jr,y*p (3)

for all sections y of Y. The n-form A, can alternatively be defined by the first
canonical decomposition the form p (Sect. 2.4)

(@) p = hp+p1p+p2p+ -+ pap (4)

as the horizontal component of p,
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/p is a Lagrangian, said to be associated with p. Property (3) says that the varia-
tional functional pq, can also be expressed as

paly) = / Iy, (6)

Q

We give the chart expressions of p and /p in a fibered chart (V, ), = (x',y°),
on Y (or, more exactly, in the associated charts on J"Y and J'T1Y). Recall that in
multi-index notation, the contact basis of 1-forms on V” (and analogously on V" *1)
is defined to be the basis (dx, w9,dy]), where the multi-indices satisfy
0< |J| <r—1,]I] =r, and

) =dyj — yjjdxj. (7)
We also associate with the given chart the n-form
wo =dx" Ndx* A - A dx" (8)

(considered on U = n(V) C X, and also on V"), sometimes called the local volume
form, associated with (V, y).

According to the trace decomposition theorem (Sect. 2.2, Theorem 3), p has an
expression

p= > OfAQL+ D dof A+ po, 9)

o< <r-1 J=r—1
where

0o = Ailiz,,,indxi‘ Adx? A - A dxi
+ AL i, Y5 A dX® NdxB A A dx

F AN dYT AN YT AN XS Adxt A A dx (10)
o R AN R dyS NYRE A AdYT A d
Wb g
+AL 2 rdygt NdyR A ANdyT
and the coefficients A7 2.5, ; are traceless. Then, hp = hp, because h is

an exterior algebra homomorphism, annihilating the contact forms w$ and dw$.
Thus,

— Jioo 01 Ji Lo 01,02
2o = (Aiir i, + A7 iV, T AG 5 iV Y,
v e 0102 On—1 v L2 Ty 01 02 On
+ + Aal PRRIRVSIRT W) o S AL ) A JFAal 02 oy i Yyt 'ani,,) (11)

X A dX A - A dxin,
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Using the local volume form (8), we also write

)y = L, (12)
where

__ 12 L Jioo 01 Ji oo, (02
‘g =¢ ”(Alll2»~ln +Aa'1 1213---lnyjli1 +A(71 2 l3l4'><lnyjli]yjzi2
Ji o T 01,02 On—1 Jv o Ty 01 02 On
+ + AL G o WY Ynb Vi TAR o oY IiyYajy - 'yJ,,i,l)'
(13)

Z is a function on V" *! called the Lagrange function, associated with p (or with the
Lagrangian 4,).

Remark I Sometimes, the integration domain Q in the variational functional pq is
not fixed, but is arbitrary. Then, formula (2) defines a family of variational func-
tionals labeled by €. This situation usually appears in variational principles in
physics.

Remark 2 Orientability of the base X of the fibered manifold Y is not an essential
assumption; replacing differential forms by twisted base differential forms, one can
also develop the variational theory for non-orientable bases X [K10]. Variational
functionals, defined on fibered manifolds over non-orientable bases, may appear in
the general relativity theory and field theory, and in the variational theory for
submanifolds.

Remark 3 (The structure of Lagrange functions) Formulas (12) and (13) describe
the general structure of the Lagrangians, associated with the class of variational
functionals (2). The Lagrange functions % that appear in chart descriptions of the
Lagrangians are multilinear, symmetric functions of the variables y7, where
] =r+1.

Remark 4 (Lagrangians) Let p be an n-form belonging to the submodule Q) , W C
Q' W of n"-horizontal forms, expressed as

1

p =~ A i, X" Ndx® A N d (14)
n:

12w
Then, since dx’* Adx A --- Adxi» = g'2iney,, one can equivalently write

p = Ly, (15)
where the Lagrange function % is given by

1
P =—A

1 it

8i1i2~-in. (16)
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The following lemma describes all n-forms p € Q W, whose associated

Lagrangians belong to the module € W, that is, are of order r.

Lemma 1 For a form p € Q,W, the following two conditions are equivalent:

1. The Lagrangian A, is defined on W'.

2. In any fibered chart (V, ),y = (x',y%), on Y, p has an expression

p=Loo+ Y OfADI+ D dof AP (17)

o< <r-1 J=r—1
for some function & and some forms (Di and ‘I’(JT.

Proof This follows from (5) and (13). U

4.2 Variational Derivatives

Let U be an open subset of X, y: U — Y a section, and let Z be a z-projectable vector
field on an open set W C Y such that y(U) C W. If & is the local 1-parameter group
of &, and o), its #-projection, then

Ve = QY (18)

is a 1-parameter family of sections of Y, depending differentiably on the parameter #:
Indeed, since o, = og), 7, we have

1y, (x) = ooy, (x) = o0y 7y}, (X) = o0y, (x) = x (19)

on the domain of y,, so ), is a section for each r. The family ), is called the
variation, or deformation, of the section y, induced by the vector field E.

Recall that a vector field along y is a mapping Z: U — TY such that E(x) €
T, Y for every point x € U. Given E, formula

E=Tn-=Z2 (20)

then defines a vector field & on U, called the n-projection of E.

The following theorem says that every vector field along a section y can be
extended to a z-projectable vector field, defined on a neighborhood of the image of
y in Y. Moreover, the r-jet prolongation of the extended vector field, considered
along J"y, is independent of the extension.
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Theorem 1 Let y be a section of Y defined on an open set U C X, let E be a vector
field along y.

(a)

(b)

There exists a m-projectable vector field E, defined on a neighborhood of the
set y(U), such that for each x € U

(2(x)) = E((x))- (21)

Any two m-projectable vector fields Z,Z,, defined on a neighborhood of
p(U), such that Z(p(x)) = Ex(p(x)) for all x € U, satisfy

[1]:

JE(y) = T Ea (). (22)

Proof

(@

Choose xp € U and a fibered chart (Vo,¥,), ¥, = (xf)7 ¥§), at the point
7(x9) € Y, such that n(Vy) C U and y(n(Vy)) C Vo. 2 has in this chart an
expression

=00 =200 (5) +=0(55) 23)

on 7(Vp). Set for any y € Vo, E(y) = &(n(y)), 2
vector field E on V, by

Q
—
NS
=
|
[1]
Q
—
—
<
~
~—
o
=
[oN
(=N
[¢]
j==p}
=
[¢)
o

[I]z

w0 2
=¢ a— o (24)
The vector field Z satisfies Z(y(x)) = Z(y(x)) on 7(Vp).

Applying this construction to every point of the domain of definition U of =,
we may suppose that we have families of fibered charts (V,,¥,), ¥, = (x},)%),
and vector fields él, where  runs through an index set I, such that n(V,) C
U,y(n(V,)) C V, for every 1 € I,Z, is defined on V,, and Z,(y(x)) = Z(y(x))
for all n(V,).

Let {y,},o; be a partition of unity, subordinate to the covering {V,},, of the
set y(U) C Y. Setting

‘é:ZXléH (25)

we get a vector field on the open set V = UV,. For any x € U, the point y(x)
belongs to some of the sets V,; thus, 7(U) C V. The value of Z(y(x)) is
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[1]:

((0) =Y 1L O)EE) = (Z % ("/(X))) E(r(x))

el el (26)
=E(y(x))
because {y,},; is a partition of unity.
(b) It is sufficient to verify equality (22) in a chart. Suppose that
;0 s 0 ;0 0
E = l—. E ) E = 1—4 Z<7 27
1= 8x’+ 0y°® : C@x’+ 0y° (27)
and
=0, Eoy=Z oy (28)
Then from the formulas,
—_a —_a a 66[
W djkdjljz--»jk—l - yjljz---jk—li@’
o (29)
Zfl/'z---jk = dijJijz-»ka] _yj('fljz--»jk—li@

for the components of J"E; and J'E, (Sect. 1.7, Lemma 10), and from the
formal derivative formula (28), Sect. 2.1, we observe that the left-hand sides in
(29) are polynomials in the variables y]f’l oo 1 <s <r. Therefore, condition
(28) applies to the coefficients of these polynomials, and we get

=7 . Ty =79 . Ty
=12k oJ% Z]l]l---]k oJ". O]

A m-projectable vector field Z, satisfying condition (a) of Theorem 1, is called a

m-projectable extension of Z. Using (b) and any m-projectable extension Z, we may
define, for the given section 7,

JEJLy) = JEJLy). (30)

Then, J"E is a vector field along the r-jet prolongation J"y of y; we call this vector
field the r-jet prolongation of the vector field (along y) Z.

Variations (“deformations”) of sections induce the corresponding variations
(“deformations™) of the variational functionals. Let p € Q' W be a form, Q C (W)
a piece of X. Choose a section y € I'q(7|y,) and a z-projectable vector field E on W,
and consider the variation (1) of y, induced by E. Since the domain of 7, contains Q
for all sufficiently small f, the value of the variational functional I'q(z|,) >y —
po(y) ER at v, is defined, and we get a real-valued function, defined on a
neighborhood (—¢, ¢) of the point 0 € R,


http://dx.doi.org/10.2991/978-94-6239-073-7_1
http://dx.doi.org/10.2991/978-94-6239-073-7_2

4.2 Variational Derivatives 111

(-6) 31— pyend) = [ TEmg)eer ()

o0 (Q)

It is easily seen that this function is differentiable. Since
T (oupo), ) p = (o0), ) *(Ip)* (I o) *p, (32)

where J"a, is the local 1-parameter group of the r-jet prolongation J"=E of the vector
field E, we have, using properties of the pullback operation and the theorem on
transformation of the integration domain,

[ vy = [ v (33)

d(o),(g) Q

Thus, since the piece Q is compact, differentiability of the function (31) follows
from the theorem on differentiation of an integral, depending upon a parameter.

Differentiating (31) at # = 0 one obtains, using (33) and the definition of the Lie
derivative,

d — r
(Gratoaniy) = [z, (34)
0 Q

Note that this expression can be written, in the notation introduced by formula (19),
Sect. 4.1, as

(Drzp)alr) = / Iz, (35)
Q

The number (35) is called the variation of the integral variational functional pq, at
the point v, induced by the vector field 2.

This formula shows that the function I'q(7n|y) 39y — (0,24)q(y) € R is the
variational functional (over Q), defined by the form 0;zp. We call this functional
the variational derivative, or the first variation of the variational functional pg by
the vector field =.

Formula (35) admits a direct generalization. If Z is another z-projectable vector
field on W, then the second variational derivative, or the second variation, of the
variational functional pg by the vector fields E and Z, is the mapping
LCa(nly) 27 — (0rz0rzp)q(7) € R, defined by

(0rz0r=p)a(y) = /Jr”/*@ﬁzaﬂap- (36)
o
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It is now obvious how higher-order variational derivatives are defined: one should
simply apply the Lie derivative (with respect to different vector fields) several
times.

A section y € I'q(n|y,) is called a stable point of the variational functional Aq
with respect to its variation E, if

(@rzp)a(7) = 0. (37)

In practice, one usually requires that a section be a stable point with respect to a
family of its variations, defined by the problem considered.

Formula (35) can also be expressed in terms of the Lagrangian /, = hp, the
horizontal component of p. Since for any z-projectable vector field E, the Lie
derivative by its r-jet prolongation J"= commutes with the horizontalization,

ha]rEp = 8jr5hp (38)

(see Sect. 2.5, Theorem 9, (d)), the first variation of the integral variational func-
tional pg at a point y € I'q(x|y, ), induced by the vector field Z, can be written as

(0yrzp)o(y) = /J’Hy*ajr+laip. (39)
Q

4.3 Lepage Forms

In this section, we introduce a class of n-forms p on the r-jet prolongation J"Y of the
fibered manifold Y, defining variational structures (W, p) by imposing certain
conditions on the exterior derivative dp. Properties of these forms determine the
structure of the Lie derivatives 0,zp, where E is a z-projectable vector field on Y,
and of the integrands of the variational functionals y — (0,:2p)q(y) (35). Roughly
speaking, we study those forms p for which the well-known Cartan’s formula
Oyzp = ip=dp + dip=p of the calculus of forms becomes an infinitesimal analogue
of the integral first variation formula, known from the classical calculus of varia-
tions on Euclidean spaces.

First, we summarize some useful notation related with a chart (U, ), ¢ = (x),
on an n-dimensional manifold X. Denote

1 . ) .
Wy = Egiliz.,.i,,dxll Adx* N A dx’",
1 i i i
Wpy = mgklizlﬁwindx“ ANdx® N« ANdx s (40)

1

T 2l(n-2)! Bhrkainis..i, X7 A AXS N N X
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The inverse transformation formulas are

dxll /\dxlz A /\dxln — Sl'lz”'l"wo,
A Ndx* Ao Adxt = bbby m
dxls A\ dxl4 A A dxin — 8k|k213l4...l,,wklk

2

(cf. Appendix 10). Also note that wj can be written as

Wjie = Lg/oxilaoxk D0

. 4 . 42
= (=1 AdP A AdYT N A AT A A 42)

whenever j < k. Then,
dx' A Wi = 5jwk — 52(1)]', (43)

which is an immediate consequence of definitions: since we have the identity
o = (=) ad Adxt Ado@ A Adod T AdXF YA - A dx, then

[ - l
5kla/axjw0 = 5ka)j,

44
511»(1)/( —dx' A i@/axfwk = 5;wk —dxd' A Wik - ( )

ia/axj (dxl A Cl)k) = {

We prove three lemmas characterizing the structure of n-forms on the r-jet
prolongation J"Y.

Lemma 2 An n-form p on W™ C J'Y has in a fibered chart (V, ),y = (x',y°), an
expression

p=po+p+dn (45)

with the following properties:

(a) The n-form p, is generated by the contact forms 5, where 0< |J| <r—1,

that is,
po= Y wjAD, (46)
0<|<r-1
where
D) = @) ) + DL () + DL, (47)

the forms (Df, (1) are generated by the contact forms 7,0 < |[J| <r—1, CD(J,(Z)
are generated by dw] with |I| =r— 1, and
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(D (I){7 i AXT N dX N - A dx
+ (D{,, Ql ,2i3m,~n71a'y,”1l Adx® Adx® A - A dxin
@)Dl Y] ANAYE A X Ndx A A dx (48)

bk @D L e dY] NN Ay A dx

G 0] 02" " "Op—n In—1

+(DJ L L . I 1dy[1 /\dylz /\dy;:n:ll7

G 0| 02" "Op

where the multi-indices are of length |L\|,|L|,...,|l,-1| =r and all the
L J I I /L b Ly .
coefficients @’ 1 o bis. iy, @ o & isigin s Qg g e g i, are traceless.

(b) 75 is a contact (n — 1)-form such that

> of AL (49)

[I|=r—1
where the forms ‘I’ff do not contain any exterior factor $ such that
0< Il <r—1.

(c) p has an expression

P =Aii. i, dx Adx® A - A dxn

+ AL i dYT N dX® NdxB A A dx
+ AL L dy] N YR NdxS Ndx A A dx (50)
R AL B A A A Ny A
+A{Tll f772 andyll A dylzu A dyln ’
where |IL|,|L|, ..., |I,| = rand all the coefficients Al ;. AL 2 i v
Ah Lo b are traceless.
1 02 n—1 "

Proof From the trace decomposition theorem (Sect. 2.2, Theorem 3), p can be
written as

p=pu tretp (51)

where p(;) includes all w§-generated terms, where 0 < |[J| <r —1, P(2) includes all
dwf-generated terms with |J| = r — 1 (and does not contain any exterior factor %),
and p is expressed by (50). Then,

S dof AV =d| Y of AL = > wf AdYL,  (52)

|[T|=r—1 [|=r—1 [l|=r—1
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so we get
p=pm— Y, of Ad¥L+d| > o] AVL| +p
[|=r—1 [l|=r—1
(53)
=potd| Y o A¥L] 4P,
[I|=r—1
proving Lemma 2. O

Our next aim will be to find the chart expression for the horizontal and 1-contact
components of the n-form

t=po+ 7 (54)

from Lemma 2.
Lemma 3 Suppose that T has an expression (46) and (50).

(a) The horizontal component ht is given by

_ L. 0 L L 01,02
ht = (Aiiy iy +Ag, iy i V15 AL & bin i V15V

I I, Loy 01 ,,02 On—1
+o A e WY Yhh Y (55)
L I L, \,01 .02 Ty il i A ... i
+Ag o e Vi Vi - Vi )dXT A dx? N Ndx

(b) The 1-contact component p;t is given by

_ E T .. L. 02 T L L . .02 03
pP1T = ((DJ n13...ly + (I)J [ 1314~~~1ny12i2 + (Do' Gy 03 1415~~-1ny12i2y13i3

o< <r=1

. ® LB L 02 03 On1
+ + (I)O' 0y 03" “Op—| llxy12i2y13i3' . 'yln,lin,l

T/ [2 13 1,1 () a3 (o a iz i3 i,,
+ @ -~a,,y12i2)’13i3~"yln"i”)wj/\dx Adx® A - Ndx

g oy 03°

r I L 02 I L L 02 03
+ E (Ao' iiz.in T 2A<71 0y BisinY iy + 3Ao‘ 03 o3 iaisinYhiyYLis
[T|=r

(56)

On—1

_ I'L Lici |02 |03
to (= DAL G Y VL
+nAL L by vy Yof Adx® Adx® A Adx

g oy’ hiy in

Proof

(a) Clearly, ht = hp and (55) follows.
(b) The form p;7 is given by
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pr= Y. o AL+ pip. (57)
0<|<r-1

Then,

H — (& .. Lo . a1 W L Lo a1 02
h(DG - ((Do 112--In—1 + q)a a1 1213“~1n—1yllil + (Dg o] 02 Z3l4~~1n—1y11i1y’2i2

T I b Lo . g| |02 On—2
+ + q)ﬂ' gy 02" ° "0p—2 ’n—lyllilylzl'z' . 'yl,,,zi,,,z
7 L L -1 01 02 On—1 i N in—1
;A Y Y )dXt Adx A N (58)
_(&)J”'_'_&)JIZH'JZ _~_("I')Jl2l3_"o'2 3
= Wo iriz.iy o 0y BisinYhi o 0y o3 iisinYLinYhis
e ® B b 02,03 On1
B SRR A S5 AR A
7 L I 1, .02 03 o i i3 I}
O, o ViV - Y )X N dxXS A A dx
and

5— (Al ... L L |02 L b o 02 03
pPip = (Aol 13...1p + 2A0'1 [ 1314---lny12i2 + 3A0'1 gy 03 l4lS<<-lnngi2y13i3
On—1

- _ L L L 02,03
+ + (I’l 1)A0'1 gyt .at’n—l inYbiy Vit Vi, iy
L L I 02 03 On 01 iy B /
+ nA e VD Vi Vs Jopt Adx? Ndx A - A dx

Gl 02" "

_E: I I L . 0 I L L . .02 .03
- (Aa 131, + 2Azrl [} 1314---lny12i2 + 3Azr 0y 03 1415-»»luy12i2y13i3
[Ij=r

(59)

On—1

_ 15 Iy |02 |03
+ o+ (n I)AO' ay " 'Jn,,fl inYhiaYiis V1, iy
11 I, .02 .03 T, a i i3 i
+ nA e VYV Y )@ Adx? Ndx® A A dx

G oyt

(56) now follows from (58) and (59). O

Now we find the chart expression for the pullback (n"*!")*p. According to
Lemma 2,

(7Y% p = hp + pi(py + ) + dnp + 1, (60)

where hp = ht and p,p, + p1p are given by Lemma 3, and the order of contactness
of u is 22 . We define fy and f/ ' by the formulas

hp = fowo, pi(po+p) = Z 1]l Ao (61)

0<||<r
Explicitly,

_ pithaedn (AL Lo 0 L L 01 02
ﬁ) =é& n(Al]lz...l,, +Ao-1 1213“.1,,)71],'1 +A0_1 [ 1314...1,,)’11[,)’12[2
L. L L Lisi | \,01 02 On—1 L L I 01,02 Tn
+ + Aal o2 oy WYL Yhin VI yiny T Aal o2t oY Liy Yhis - 'yl,,i,,)a
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and, since 25 @; = dx> Adx® A --- A dxin,

faj f= gl ((i){; sy T (i)ﬁ 1622 i3i4---iny;22iz + (i)é {722 <1733 i4i5--»iny;rz2izy23i3
+ot &){7 {722 5733 ' 2,;:1 iny;rzzizyf’?if . 'yz':li,ﬂ (63)
I A RO R SRR A
and

Di_ iy gd L ;o IL L o0
fol=¢ "(Ag iiy..iy T 24, o tisin Yy T 386 0y 6y isiseinY i Vot
I'L Liy 02 ,,03 On—1
Fo (= DAL e Y Y (64)
1L I, ,,02 |03 On

A Gy g Vi Vi Vi)

where 0< |J] <r—1and |I| =r.
We further decompose the forms f/ ‘w5 A w;.

Lemma 4 For k> 1, the forms ! A w; can be decomposed as

J12-Jk
o AW = ;( 7 A W
Oy N0 = k+1 Oy N Di
+ o Aoy + of; Aoy + -+ of A\ )
ilyls...Ix I Lilsly..Ix o3 Liy.. i yi I
1
g g g g
+ k+1 ((wlllz.“lk Ny — @y g N wy,) + (wzlzzmlk Ny =g, g N w,)
a a
R (wlllzu.l;( N =y, g N wy,))-

(65)

a a
The forms of;, ; Nw;—of;, Ay, are closed and can be expressed

dpyilyg 1k
as

o, g Noi—op ANay, =d(wf, . A g, ). (66)

.l,,,]il[,“ i1l .ll,,]l[,“ -1l

Proof Indeed, from (43)

g
daoy, . A @i

dp—rlpyr el

= 7 Adx! A Wy,

TOUG by b
— 0 J .
= -y, Adx! Ny, (67)

Drbyor il
o j J o
= Oty ity N (0701, = 07 )

AN -

_ .0 ) 13
= - B, NOit O

iyedy ybysy ol 1l
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Now we are in a position to prove the following theorem on the structure of n-
forms on W’.

Theorem 2 Let p € Q' W. For every fibered chart (V,y),y = (x',y°), the pull-
back (n"*1")*p has an expression

(nr+1,r)*p :waO + Z P{T iwj N w; + di’] + u, (68)

o<l<r

where the components P ' are symmetric in the superscripts, n is a 1-contact form,
and w is a contact form whose order of contactness is 22. The functions PL ! such
that |I| = r satisfy

o

Pli=—"".
Y

(69)

The forms fowo, > P ‘w9 A w; and p in this decomposition are unique.
Proof We use formulas (60) and (61) and apply Lemma 4 to the forms f/ '@ A w;.
Write with explicit index notation f/ © = Pi¥2-/t I, We have the decomposition

f(jr'ljz---jk i P];jz--»jk iy QI;jz--»jk i7 (70)

where P{,‘jz"'jk P= fhi-de 0 Sym(jyja. . jxi) is the symmetric component, and
Q2+Jk 1 is the complementary component of the system f7/2-/+ {. We have, for each
k1<k<r,

f[{:ljzu-jk iwj(?;jzmjk A = P];jz..Jk iwj(‘rljz...jk A w; — k—’__lQ/uz kg ( ol A ;i
+ wjum ge N Opi e wjm g N wjki)
— P](;}jz..Jk iwjg;j[--jk A w; _md(sz -k l( jﬂm i A wj,;
+ w]l]3]4 Jk A Wji el wjljz i1 A wjki))
+ pan ldQlljz Ji 1 (w]am Ji A wji + (l)juw it N @),
+oeet (U.ZjZ-njk—l A wjki)' (71)

The exterior derivative dQ/¥>/ i, when lifted to the set V"2, can be decomposed as

r+2,74+ 1Y 3
(7‘E +2,r+ )de/alJz /S — th]om Jk 1 _|_de101.12 Ji 1

— dprljz---jk idxP +de/1j2-»Jk i (72)
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Substituting from (72) back to (71), we get 1-contact and a 2-contact summands.
The 1-contact summands are equal to

hdQI 3 TN (07, A+ @f o Nopit ol A wg)
= —dy QI (f N Nt of o N A o
+otf, o AdXE A )
=—d QIUZ N A (5f1 w; — &/ w;,)
+of i i N oi—Fop) +-tof AN (Ko F ) (73)
o 7(d ijJ3.-Jk i 102/3 @ er Q11P1314 -k lw]?‘ljm i
+---+d Q/1]2 Jk-1P lw]uz Qe l)wz +d Qll]z Jk P(w]m Ji A wj,
+ comw AN N w]m A wj,)
— —kdp(Qf;J‘h“']" i Qljzl3 -k P)w]_h ) N ;.

Note that from the definition of the functions Q%3+ " and from formula (63), we
easily see that this form is 7'+>"*+!-projectable. Thus, returning to (71), we have on
Vr+1

fjlqu-jk i
a

. — Pl i 0
Jij2--Jk A= PIU D joix

(QP]zlz el t]zis---jk p)wj{fmmjk A ;

N w;

k+1"

_ Jo-edk 1 a
k+ 1d<Q]12 ‘ ( Djojscis A @ji +w]1m4 Jk

to Tt w/l]z Jk—1 A wjki))

N Oji

1
+ ]<—|——1de]”2 e (w;zi3--Jk A @ji + w]l]m Jk

+---+ w;j2~»jk—l A CUjki)- (74)

A\ (,szi

This sum replaces f7 ‘w5 A w;, where |J| =k, with the symmetrized term
Pl @f A w;, aterm d,(QUFsk T — QUIs-Ik P)f . A @; containing wf A e; with
|/| =k —1, a closed form, and a 2-contact term.

Using these expressions in (60), written as

(nrJrl,r)*p = fowo + Z faj iw‘f A w; +dn + u, (75)

0<J|<r
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we can redefine the coefficients and get

(n" )k p = fowo + Z oS Anw+ Z Pliof Ao +dn+ . (76)

o< <r-1 M <r

After r steps, we get (68).

To prove (69), we differentiate (62) and compare the result with (64).

It remains to prove uniqueness of the decomposition (68). Supposing that
(n" 1Y% p = 0, we immediately obtain fywo = 0 and u = 0; hence,

> PliwfAwi+dn=0. (77)

o<||<r

Differentiating (77) and taking into account the l-contact component of the
resulting (n + 1)-form,

Z pi(dPL Ao A w; — PLIwfS A o)

0<|J|<r

. , (78)
Y P A PR An =0,
0<l<r
which is only possible when P/?=0 because P/’ are symmetric in the
superscripts. O

In the following lemma, we consider vector fields on any fibered manifold
Y with base X and projection 7.

Lemma S Let & be a vector field on X. There exists a n-projectable vector field Eon
Y whose m-projection is &.

Proof We can construct E by means of an atlas on Y, consisting of fibered charts,
and a subordinate partition of unity (cf. Theorem 1, Sect. 4.2). O

Now we study properties of differential n-forms p, defined on W C J'Y, which
play a key role in global variational geometry. To this purpose, we write the
decomposition formula (68) as

,
(nr+l,r)*p = fowo + P, w7 A w; + ZP](‘TIjzl.-jk iwjﬁ]jz..Jk A @i+ dn + p, (79)
k=1

where

o
N jo. i

Piljz-»Jr i

ag
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Lemma 6 Ler p € QW. The following three conditions are equivalent:

(@)
(b)

©

pidp is a 7 Chorizontal (n + 1)-form.
For each n™%-vertical vector field & on W',

hizdp = 0. (81)

The pullback (n"'")*p has the chart expression (79), such that the coeffi-
cients satisfy

o

S — diPIP PRt e =0 k=1,2,.. ., (82)
Virja-ii
(d) pidp belongs to the ideal on the exterior algebra on W'+, locally generated
by the forms °.
Proof
1. Let = be a vector field on W, = a vector field on W*! such that Tn' 7 - & =

Eon "1 (Lemma 5). Then, iz(7*™¥)*dp = (n*71%)*izdp, and the forms on
both sides can canonically be decomposed into their contact components. We
have

izp1dp +izpadp + - - - + igpu1dp = hizdp + prizdp + - - - + puizdp.  (83)
Comparing the horizontal components on both sides, we get
hizpidp = (2" ) *hizdp. (84)

r+1,0 r+1,0

Let pidp be -horizontal. Then if Z is 7"-9-vertical, Eisw -vertical, and
we get hizp1dp = (a2 1) *hizdp = 0, which implies, by injectivity of the
mapping (72" 1)* that hizdp = 0.

Conversely, let hizdp = 0 for each n'°-vertical vector field & Then by (84),

r+1,r r+1,0

hizpidp = izp1dp = 0 for all © -vertical vector fields Z.

If in a fibered chart,

-projectable, 7

<

- A (35)

J1j2-Jk r;
=1 Wi

[1]:

and

r

pidp =y Aol Ao, (86)
k=0
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then we get
AP =0, 1<k<r, (87)
proving 7"+ horizontality of p;dp. This proves that conditions (a) and (b) are

equivalent.
2. Express (7" "'")*p in a fibered chart by (79). Then,

P .
pidp = ( fo —d;P, ’)w” A @g

Jy°
2 o S L
+> ye AP I P o, Moo (88)
k=1 J1J2-Jk
o T
- vy ]2 Jr Jr+ a
! <3y‘.’. . P]‘Tl ’ l D jojiirir A o
Juj2drit

Formula (88) proves equivalence of conditions (a) and (c).
3. Conditions (a) and (d) are obviously equivalent. O

Any form p € Q'W such that the 1-contact form p;dp is 7" -horizontal, is
called a Lepage form. Lepage forms may equivalently be defined by any of the
equivalent conditions of Lemma 6.

Remark 5 (Existence of Lepage forms) It is easily seen that the system (82) has
always a solution, and the solution is unique. Indeed,

o oy o
V2 Jk—1 Jk — — /. J2--Jk 1
Pl = d;, Pl

g

Yiija--idt
afo —d: ( afo — d,. P2kt iz)
g "\ oy, hha
y./1]2-~]k J1J2--Jkl1
= afo _ dil afo + dil diZlej2~~~jk—lil i
N} o -kt
= af() — dil af() + dildh ¢ _ di3Pj1j2”'j"’]ili2 i
ay./'ljzn-jk 8yj1jz-~./'1<i1 i 8yj1,/'zmjk71i1iz
r+1—k
0
==Y (-1dyd,..d L, (89)

i( o
= ayjljzmjkilizu.i,
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so the coefficients P!, P2-Ji-1 Jt are completely determined by the function fy. In
particular, Lepage forms always exist over fibered coordinate neighborhoods. One
can also interpret this result in such a way that to any form p € QW and any
fibered chart (V, ), = (x',y°), on W, one can always assign a Lepage form,
belonging to the module Q;“V. Note that we have already considered conditions
(82) in connection with the integrability condition for formal differential equations
(cf. Sect. 3.2, Lemma 3).

Theorem 3 A form p € QW is a Lepage form if and only if for every fibered chart
(V) = (x',y°), on Y such that V.C W, (n"1")*p has an expression

(7")*p = © +dn + p, (90)

where

r r—k

I

I 0

@:fba)0+z < (—1) dpldPdelaycT7> (,O;lezh /\(l)l', (91)
k=0 \ =0 J1J2--JkP1P2---Pil

fo is a function, defined by the chart expression hp = fowo,n is a 1-contact form,

and u is a contact form whose order of contactness is 2.

Proof Suppose we have a Lepage form p expressed by (79) where conditions (82)
are satisfied, and consider conditions (59). Then repeating (89), we get formula
(91). The converse follows from (88) and (79). |

The n-form ® defined by (91) is sometimes called the principal component of
the Lepage form p with respect to the fibered chart (V). Note that ® depends
only on the Lagrangian hp = /, associated with p; the forms © constructed this
way are defined only locally, but their horizontal components define a global form.

Remark 6 Equation (82) include conditions ensuring that the order of the functions
Pii2-dk T does not exceed the order of fy. We obtained these conditions using
polynomiality of the expression on the left-hand side in the jet variables
k > r+ 1. Similarly, when © is expressed by (91), the order restrictions
A w; should be of order <r+ 1.

g
Yiiawiie?

. . .
apply to fo since the coefficients at o],

4.4 Euler-Lagrange Forms

We defined in Sect. 4.3 a Lepage form p € ' W by a condition on the exterior
derivative p € Q;W, derived from the fibered manifold structure on Y. Namely, we
required that the 1-contact component pidp should belong to the ideal of forms,
defined on W1, generated in any fibered chart (V, ),y = (x,y7), by the contact
1-forms w’?. Now we study properties of the exterior derivative dp. We express a
Lepage form p as in formula (89), Sect. 4.3.
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Theorem 4 If p € Q'W is a Lepage form, then the form (n"™'")*dp has an
expression

(nr-H,r)*dp — E_|_ F7 (92)

where E is a 1-contact, (n""10)-horizontal (n + 1)-form, and F is a form whose

order of contactness is 22. E is unique and has the chart expression

ofy _ d,
E = ( fo -S> = ld,,,d,,z...d,,laafo>a)“/\wo. (93)

9
ay =1 pPip2---p1

Proof For any p,E =pdp and F = prdp +p3dp+ ---+ pur1dp. But for a
Lepage form p,

o A
E =pd® = <ﬁ - d,»P;> o A wy, (94)
0y°
where by Sect. 4.3, (89),
, K afO
Pe = (=) dydy,. . dyy . (95)
=0 Ypip2...pii
This proves formula (93). U

Note that similarly as the form ®, E depends only on the Lagrangian 4, = fywo,
associated with ®. The (n + 1)-form E is called the Euler—Lagrange form, associated
with the Lepage form p, or with the Lagrangian 4, = fywo. The components of E

o _ 9
Ezr(f()) :a_f:,-_Z(_l)l ldpldpz...dp,ayai (96)
=1 P1p2---p1

are called the Euler—Lagrange expressions of the function f, or of the Lagrangian
J, (in the given fibered chart).

4.5 Lepage Equivalents and the Euler—-Lagrange Mapping

Our aim now will be to study Lepage forms with fixed horizontal components — the
Lagrangians. As before, denote by ) y W the submodule of the module (), W, formed
by n"-horizontal n-forms (Lagrangians of order r for Y). Clearly, the set thXW
contains the Lagrangians 4,, associated with the n-forms € Q" ~'W, defined on W .

The following is an existence theorem of Lepage forms whose horizontal
component is given.
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Theorem S To any Lagrangian J. € , xW, there exists an integer s <2r — 1 and
a Lepage form p € QO W of order of contactness <1 such that

hp = J. (97)

Proof We show that the theorem is true for s = 2r — 1. Choose an atlas {(V,,¥,)}
on Y, consisting of fibered charts (V,,,), ¢, = (x/,y?), and a partition of unity
{7}, subordinate to the covering {V,} of the fibered manifold Y. The functions y,
define (global) Lagrangians y,4 € Q) ,W. We have in the chart (V,,,)

L= L wg,, (98)
where g, = dx! Adx? A -+ Adx". Then, we set for each 1

®1:X1$1w0,1
r—=1 [r=1-k
oy, & 99

P1¥p2 YD1 i
ay(l) J1j2--JkP1P2---pii

where w7, . =dyi, . — yﬁjzujk“dle. Thus, ©, is the principal Lepage equiv-
alent of the Lagrangian 1 = %, wy,. Since the family {y,} is locally finite, the
family {61} is also locally finite; thus, the sum p = > @, is defined. Then, we
have pidp = > p1d®,; thus, p is a Lepage form, because each of the forms 0, is
Lepage. It remains to show that ip = 4. We have hp = h®, = > 5, %, 0,. To
compute this expression, choose a fibered chart (V, ), = (x,y°), such that the
intersection V N V, is non-void for only finitely many indices 1. Using this chart, we
have 1 = % ,wp, = Lwy on VNV, and, since

Ox!
COO,I = det <8x;> - o, (100)
then,
Ox!
&L, det L] =2. 101
ee(50) (101)
Consequently,

Ox!
hp = 1 ZLwo, =Y 1%, det(ﬁ) oo = (O 1) Lwo = Lo (102)

because >y, = 1.
Let 4 € Q) yW be a Lagrangian. A Lepage form p € ;W such that hp = 7

(possibly up to a canonical jet projection) is called a Lepage equivalent of A.
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If 4 is expressed in a fibered chart (V, ),y = (x,y%), as
A= ZLwy, (103)

then the form

r—=1 [r=1-k
0 .
Oy =Lwo+ Y < S (~1dydy,. . dy, 867> ol Ao (104)
=0

k=0 I J1j2--JkP1P2---pil

is called the principal Lepage equivalent of / for the fibered chart (V). This form
is in general defined on the set V¥~ c w1, O

Remark 7 The Lepage equivalent constructed in the proof of Theorem 5 is

72— Lr=L_horizontal, and its order of contactness is <I.

Remark 8 Theorem 5 says that the class of variational functionals, associated with
the variational structures (W, p), introduced in Sect. 4.1, remains the same when we
restrict ourselves to Lepage forms p. Thus, from now on, we may suppose without
loss of generality that the variational functionals

Ta(rly) 37— par) = [ /770 < R (105)
Q

are defined by Lepage forms.

We give two basic examples of Lepage equivalents of Lagrangians.

Example 1 (Lepage forms of order 1) If 1 = Py is a Lagrangian of order 1, then
its principal Lepage equivalent is given by

0¥
@izgwo—i—ww“/\w,-. (106)
The form (106) is called, due to Garcia [G], the Poincare-Cartan form. Its

invariance with respect to transformations of fibered charts can be proved by a
direct calculation (see Example 2).

Example 2 (Lepage forms of order 2) The principal Lepage equivalent of a second-
order Lagrangian A = L is given by

0%
o’ Ao+ ol \o; (107)

0% 0¥
8y§§

Oy =ZLwy+ 70—(1‘ p
(ayi ]8ygj
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(Krupka [K13]). We show that in this case, ® ¢ is invariant with respect to all
transformations of fibered coordinates. It is sufficient to show that ® ¢ can be
introduced in a unique way by invariant conditions. We define a form ® on W? by
the following three conditions:

(a) O is a Lepage form, that is, p;d® is n*°-horizontal.
(b) The horizontal component of ® coincides with the given Lagrangian ; this
condition reads h® = 4.

To state the third condition, we assign to any fibered chart (V, ), = (x,y°),
the contact forms wf A ;. One can easily derive the transformation properties of

these forms. For any other fibered chart (V,y),y = (¥,5%), the local volume
elements satisfy on the intersection VNV

X\ _
wo = det <$> . (108)
Using this formula, we get
. ox! o\ | B ox! o\ _
W; = 19/9xi W0 = @det (a—xq) " 1g/ox (D0 = Edet <8_x4> - . (109)

On the other hand, we know that

8yj” ayj‘? (9yj’-’ Oy’ Ox!
0= g o = —L a7 & 110
"oy Toy i T oy Ty o™ (110)

(Sect. 2.1, Theorem 1, Sect. 1.4, Example 5). These formulas imply

. o\ O ox . _
a)j/\w,-:det— —— " A @y

x4 ) Oy* Ox'
eret(axp) oy” oxl oxk

B—Sﬂ%%wk .

(111)

Ox4

In particular, the forms w7 A w; + @] A w; locally generate a submodule of the

module Qi(W3). For the purpose of this example, we denote this submodule by
@3

il (W3). Now we require, in addition to conditions (a) and (b),

© ©co, (W)

Conditions (a), (b), and (c) uniquely define an n-form on W3, and this n-form is
obviously the form ® ¢ (107). Consequently, the principal Lepage equivalent © ¢
of a second-order Lagrangian 1 is globally well-defined. We usually write ®;
instead of © .
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Choosing for any Lagrangian 1 € QZ,XW a Lepage equivalent p of 4, we can
construct the Euler-Lagrange form E associated with p (93); this (n + 1)-form
depends on 4 only. We denote this form by E; and call it the Euler—Lagrange form,
associated with 1. Clearly, E; may be defined by (local) principal Lepage equiv-

alents © . Denoting by Q."1', W the module of 7" ~'0-horizontal (n + 1)-forms on

W21 we get the mapping
QxW3L—-E,€Q W (112)

called the Euler—Lagrange mapping.

Remark 9 We can summarize basic motivations and properties of the Lepage forms
by means of their relationship to the Euler-Lagrange forms. Denote by Lep, W the
vector subspace of the real vector space Q' W, whose elements are Lepage forms.
Taking into account properties of the exterior derivative of a Lepage form, we see
that the Euler—Lagrange mapping makes the following diagram commutative:

Lep, W —" Qiw
la lE (113)

QW —Fo QW
Basic motivation for the notion of a Lepage form is the construction of this dia-
gram. Its commutativity demonstrates the relationship of the Euler-Lagrange
mapping and the exterior derivative of differential forms, just in the spirit of the
work of Lepage [Le]. Equation (113) shows that the Euler—Lagrange form has its
origin in the exterior derivative operator.

The following theorem describes the behavior of the Euler—Lagrange mapping
under automorphisms of the underlying fibered manifold; it says that transformed
Lagrangians have transformed Euler-Lagrange forms.

Theorem 6 For each Lagrangian A € Q;,XW and each automorphism a of Y

J4¥E; = Ejorys,. (114)

Proof To prove (114), we apply Theorem 4 of Sect. 4.4 to Lepage equivalents. Let
p; € Q W be any Lepage equivalent of A. Then,

(n")*dp = E; + F;. (115)

It is easily seen that the pullback J°z*p is a Lepage form whose Lagrangian is
hJotp = JHa*hp = J* ot ). Then from standard commutativity of the pullback
and the exterior derivative, we have
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(nSw‘»l,s)*dJSa*p — (nS+1,S)*JSO(*dp — JS+la*(nS+l‘S)*dp’ (116)

from which we conclude that J*T'o*E; + J*\oa*F; = Ejs,x; + Fysy+;. Theorem 6
now follows from the uniqueness of the 1-contact component of these forms. [

4.6 The First Variation Formula

Suppose that we have a variational structure (W, p), where W is an open set in a
fibered manifold Y with n-dimensional base X, and p is a Lepage form on the set
W’ C J'Y. Recall that for any piece Q of X, and any open set W C Y, the Lepage
form p defines the variational functional I'y(7|,) 3 7 — po(y) € R by

pa(y) = /J"V*p (117)
Q

(Equation 2). The first variation of pg by a m-projectable vector field = is the
variational functional T'q(n|y) 2 y — (0rzp)q(y) € R, where

@r=plals) = [ I70r2p (118)
Q

(Equation 31). As before, denote by 4, the horizontal component of the n-form p,
that is the Lagrangian, associated with p. For Lepage forms, the following theorem
on the structure of the integrand in the first variation (118) is just a restatement of
definitions.

Theorem 7 Let p € QW be a Lepage form, E a n-projectable vector field on W.

(a) The Lie derivative O;=p can be expressed as
Opzp = ip=dp + diyzp. (119)
(b) If E is m-vertical, then
Oyrrighp = ipngk;, + hdipzp. (120)
(c) For any section y of Y with values in W,

Jy*dpzp = I y¥ipazE; 4 dl y¥ipzp (121)
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(d) For every piece Q of X and every section y of Y defined on Q,

/J’y*a,,ap:/J’“y*i,,-HEEﬁ / J % zp. (122)
Q Q oQ

Proof

(a) This is a standard Lie derivative formula.

(b) If E m-vertical, then since hdpzp = dy=zhp, we have from (119)
hdyzp = iy=p1dp + hdip=zp, but prdp = E; because p is a Lepage form.

(¢) Formula (120) can be proved by a straightforward calculation:

Jy*0p=p = I y*ipedp + J y*dip=p
= J"y*hipzdp + I y*dipzp
= Iy ¥iazprdp + 7 ipepadp + Ty dipp
=T y¥ipnzE;, + I ydip=p.

(123)

(d) Integrating (121) and using the Stokes’ theorem on integration of closed
(n — 1)-forms on pieces of n-dimensional manifolds, we get (122). O

Any of the formulas (119-121) is called, in the context of the variational theory
on fibered manifolds, the infinitesimal first variation formula; (122) is the integral
first variation formula.

Remark 10 Note that the infinitesimal first variation formulas in Theorem 7 have no
analogue in the classical formulation of the calculus of variations. These formulas
are based on the concept of a (global) Lepage form as well as on the use of
(invariant) geometric operations such as the Lie derivative, exterior derivative, and
contraction of a form by a vector field, describing the variation procedure.

Remark 11 Theorem 7 can be used to obtain the corresponding formulas for higher
variational derivatives (see Sect. 4.2).

4.7 Extremals

Let U C X be an open set, y: U — W a section, and let Z: U — TY be a vector field
along the section y; in our standard notation, y is an element of the set I'q(7|y, ). The
support of the vector field E is defined to be the set supp=E = cl{x € U|Z(x) # 0}
(cl means closure). We know that each differentiable vector field Z along y can be
differentiably prolonged to a z-projectable vector field Z defined on a neighborhood
of the set y(U) in W (Sect. 4.2, Theorem 1). = satisfies
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[1]:
[

oy = (124)
This property of vector fields along sections will be used in the definition of
extremal sections, which can be introduced as follows.

Consider a Lepage form p € Q' W, and fix a piece Q of X. We shall say that a
section y € I'q(x|;;) is an extremal of the variational functional T'g(7|y) 3>y —
Pa() € Ron Q, if for all z-projectable vector fields Z, such that supp(E o y) C Q,

/J’y*éjrgp =0. (125)
o)

Condition (125) can also be expressed as (0,,zp)q(y) = 0. y is called an extremal of
the Lagrange structure (W, p), or simply an extremal, if it is an extremal of the
variational functional pg for every Q in the domain of definition of y.

In this sense, the extremals can also be defined as those sections y for which the
values pg(y) of the variational functional pq are not sensitive to small compact
deformations of .

In the following necessary and sufficient conditions for a section to be an ex-
tremal, we use the Euler-Lagrange form E, , associated with the Lagrangian
/p = hp, written in a fibered chart as

E;, = E;(L)a’ A o, (126)

where the components E, (%) are the Euler—-Lagrange expressions (Sect. 4.4).
Explicitly, if hp = Lwy, then

oy . 0%
EJL)=7-=> (-1)"dpdy,..dy . (127)
8y =1 e " 8yP1P2~~P1

Theorem 8 Let p € QW be a Lepage form. Let y: U — W a section, and Q C U
be a piece of X. The following conditions are equivalent:

(a) yis an extremal on Q.
(b) For every m-vertical vector field = defined on a neighborhood of y(U), such
that supp(Eoy) C Q,

Jy*ip=dp = 0. (128)

(c) The Euler-Lagrange form associated with the Lagrangian 2, = hp vanishes
along J' 1y, ie.,

E; oJ ™y =0. (129)
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(d) For every fibered chart (V) = (x',y°), such that n(V) C U and
p(n(V)) C V,7 satisfies the system of partial differential equations

E, (L))ol Ty =0, 1<o<m. (130)

Proof

1. We show that (a) implies (b). By Theorem 7, (d), for any piece Q of X and any
m-vertical vector field E such that supp(Eoy) C Q,

/J’y*ﬁjrgp = /J"y*ijygdp, (131)
Q Q
because the vector field J"E vanishes along the boundary 9Q. Then,
/ T y*ipzdp = / Ty (R ) *ipzdp = / I y¥iagpidp,  (132)
Q Q Q

where p1dp = Ej, is the Euler-Lagrange form.

If Q is contained in a coordinate neighborhood, the support supp(Eoy) C Q
lies in the same coordinate neighborhood. Writing = = Z° - 9/9y° and pdp =
Es(Z,)w” A wg then ijrmgprdp = E;(¥%,)E°wp and

Iytinzdp = (E(Z,) 0 J19) - (E° 09) - wo. (133)

Now supposing that J"y*ip=dp # 0 for some z-vertical vector field E, the first
variation formula

/er*ijrgdp = / (E,(Z,)0d™y) - (E70y) - ay (134)
Q Q
would give us a contradiction

/ Jy*0pzp # 0. (135)

Q

Thus, (a) implies (b).

2. (c¢) is an immediate consequence of condition (b). Indeed, we can write for 2
m-vertical
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Ty¥ipzdp = (24 o ) sinzdp = Iy (a1 )%z dp
= J kg (n ) Rdp = Iy Riagpidp = I Rz,
(136)
3. (d) is just a restatement of (b) for the components of the form £, .
4. We apply Theorem 7, (d). O

Equation (130) are called the Euler—Lagrange equations; these equations are
indeed related to the chosen fibered chart (V,), = (x',y?). However, since
the Euler—Lagrange expressions are components of a (global) differential form, the
Euler—Lagrange form, the solutions are independent of fibered charts.

If a Lagrangian A € QZ,XW is given and p is a Lepage equivalent of 1 of order
s = 2r — 1 (Sect. 4.5, Theorem 5), then the Euler-Lagrange equations are of order <2r.

Remark 12 For a fixed fibered chart (V,y), = (x,y°), the Euler-Lagrange
equations represent a system of partial differential equations of order » + 1 for
unknown functions (x') — y?(x’), where 1 <i<nand 1 < ¢ <m. This fact is due to
the origin of the Lagrange function % that comes from a Lepage form, which is of
order r. If we start with a given Lagrangian of order r, then the Euler-Lagrange
equations are of order 2r. To get an extremal y on a piece Q C X, we have to solve
this system for every fibered chart (V,,¥,), = (xi,y?), from a collection of fibered
charts, such that the sets (V,) cover Q; then, the solutions (x}) — 7?(x!) should be
used to find a section y such that 97 = y7ye, ! for all indices 1.

Remark 13 Properties of nonlinear equations (130) depend on the form p; their
global structure can also be understood by means of condition (128). This condition
says that a section y is an extremal if and only if its r-jet prolongation is an integral
mapping of an ideal of forms generated by the family of n-forms i;3zdp. Using fibered
chart formulas, one can find explicit expressions for local generators of the ideal.

4.8 Trivial Lagrangians

Consider the Fuler—Lagrange mapping, assigning to a Lagrangian its Euler—
Lagrange form (112)

QWi E QW (137)
The domain and the range of this mapping have the structure of Abelian groups
(and real vector spaces), and the Euler—Lagrange mapping is a homomorphism of
these Abelian groups. The purpose of this section is to describe the kernel of the
Euler-Lagrange mapping. Elements of the kernel are the Lagrangians 4 € Q) W
such that
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E, =0. (138)

These Lagrangians are called (variationally) trivial, or null.
Trivial Lagrangians can locally be characterized as formal divergences or some
closed forms.

Theorem 9 Let A€ Q;ﬁXW be a Lagrangian. The following conditions are
equivalent:

(a) A is variationally trivial.
(b) For any fibered chart (V, ),y = (x',y°), there exist functions g': V" — R,
such that on V", . = Lwq, where

L =dg'. (139)

(c) For every fibered chart (V, ), = (x',¥°), such that V. C W, there exists an
(n — D-form p € Q."\V such that on V"

)= hdp. (140)

Proof

1. We show that (a) is equivalent with (b). Suppose that we have a variationally
trivial Lagrangian 4 € Q' W. Write for any fibered chart (V, ),y = (x',y7),
A = Zwy. Since by hypothesis, the Euler-Lagrange expressions E,(.#) vanish,
consequently, by Sect. 3.2, Theorem 1, & = d;g' for some functions g’ on V.
The converse follows from the same Theorem.

2. Equivalence of (a) and (c) follows from Sect. 3.3, Theorem 3. U

In general, Theorem 9 does not ensure existence of a globally defined form u or
du. However, for first-order Lagrangians local triviality already induces global
variationality.

Corollary 1 A first-order Lagrange form 4 € Q,lth is variationally trivial if and
only if there exists an n-form n € QSW such that

A= hny (141)
and

dn = 0. (142)

Proof By Theorem 9, for any two points y;,y, € W there exist two (n — 1)-forms
Ui,y € Y, defined on a neighborhood of y; and y,, such that hdy; = 4 and
hdp, = A, respectively. Then, hd(p; — ;) =0 on the intersection of the
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corresponding neighborhoods in W'. But the horizontalization &, considered on
forms on J°Y =Y, is injective. Consequently, condition hd(p; — pt,) = O implies
d(u1; — ) =0, so there exists an n-form y € QSW whose restriction agrees with
duy and du,. Clearly, dn = 0. U

4.9 Source Forms and the Vainberg-Tonti Lagrangians

A 1-contact (n + 1)-form ¢ € Qf,H’YW, where s is a nonnegative integer, is called a
source form (Takens [T]). From this definition it follows that ¢ has in a fibered chart
(Vo) = (x',y7), an expression

e =¢g,0° N\ wy, (143)

where the components ¢, depend on the jet coordinates x’, YoV Y s Yive
Clearly, every Euler—Lagrange form E; is a source form; thus, the set of source
forms contains the Euler—Lagrange forms as a subset.

We assign to any source form & a family of Lagrangians as follows. Let & be
defined on W*, and let (V, ),y = (x',y?), be a fibered chart on Y, such that
V C W, and the set (V) is star-shaped. Denote by [ the fibered homotopy operator
on V¥ (Sect. 2.7). Then, I¢ is a ©’-horizontal form, that is, a Lagrangian for Y,
defined on V?®. This Lagrangian, denoted

Je = Ie, (144)

is called the Vainberg—Tonti Lagrangian, associated with the source form & (and the
fibered chart (V,)) (cf. [To, V]).

Recall that I¢ is defined by the fibered homotopy ,: [0,1] X V¥ — V*, where
st (Y 7YY ) = (7 gy 7 ). Sinee g satisfies
1o = (&5 0 1,)(tw? 4+ y°dt) A g, we have, integrating the coefficient in this
expression at dz,

)»3 = gs&)O, (145)

where

1
gs:ya/soox‘v'dl‘a (146)
0
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or, which is the same,

1
gs(xivyavyfla'"7y](‘71j2,_,j¢) :yo/Sa(xiﬂtyvvty]“yﬁ~”7ly]"']j2...jr)dt‘ (147)
0

We can find the chart expression for the Euler-Lagrange form E; of the Vain-
berg—Tonti Lagrangian A.; recall that

E;, = E;(ZL:)0° A wy, (148)
where
u 0%,
EJ (%) =) (-1)d,d,...d, S (149)
=0 yPle-»J)z

To this purpose, we derive two formulas for the formal derivative operator d;. The
formulas are completely parallel with the well-known classical Leibniz rules for
partial derivatives of the product of functions.

Lemma 7

(a) For every function f on VP
di(foXp) :difOXerl' (150)

(b) For every function f on V* and a collection of functions gl'P*-Px on V¥,
symmetric in the superscripts,

dydy,. .y (f - PP 7)

- k D1D2.-PiDi+1Pi+2--P (151)
= (i)dmdpz~ cdpf - dp\ Ay, dp g PP,
i=0

Proof

(a) Formula (150) is an easy consequence of definitions.
(b) The proof is standard. We have
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dp, (f - &) =dpf - 8" +f-dp 8"

1 1
= <O)dl71f'gp‘ + (1>f'd[)1gp‘7

dPlsz(f : gplpz) = dpz (dplf : gplpz +f . dplgplpz)
= dpzdpl.f ) gplm —+ dplf . dngplpz 4 dpzf . dplgpllrz +f . dp,dp.gp'pz

2 2 2
:(0)%%J~¢“+(1>@jw%#w+(2>x%4ﬁwﬂ
(152)

Then, supposing that
k-1
dmdl’z' . 'de—l (f : gplmmm*‘) = ( )dpldpz‘ . ‘dpf : dpmdprf:‘ . dpk?lgPll’z---17,17,7117,,:...pk,| s
(153)

we have (150)

dPldpz' . 'dpk—ldpk(f . gplm"'pk?lpk) =f- dpldpz. . .dpkildpkgmm'“pk*lpk

k—1 k—1
+ 0 + ( 1 >>dp1f - dp,dp,. . ‘dmglllllz---[)kflm
k B l k - l ~ P1P2
+ 1 + 2 dl’ldﬂzf . dﬂsdl’r . ‘dpkgl P2k
k—1 k—1
A ((k — 2> * <k -1 >>d["d1’2' ol - dmgmm”'pk"m

k—1
+ (k 4 )dm dyd,,...dy, Pl S

(154)

(o0 ()-Gh) e

k
dp dp,. . dp,_ dp,(f - g7 ) = <O>f <y dp, . . Ay, dp g5
+

and

thus,

k
( 1 )dmf . dpzdm . _dpkgplplu-Pk—lpk
k ~
+ 5 R A R e (156)
k 2
+ e+ E—1 dpldpz- . 'dpx—l . dpkgmp_--»mfmk

k
- (k ) dpdp - - dp,_, - 77T

which is formula (150). l



138 4 Variational Structures

The Vainberg-Tonti Lagrangian A, = %@, allows us to assign to any source
form ¢ = ¢;w? A wy a variational functional and the corresponding Euler—Lagrange
form of this functional, with the Euler-Lagrange expressions E,(.%). We shall
determine the functions E,(.%,) and compare them with the components &, of the
source form.

Theorem 10 The Euler—Lagrange expressions of the Vainberg—Tonti Lagrangian
A of a source form & = e;° N\ @y are

1
E, (%) =¢; — v H, 1'% (g) o y, - tdt (157)
9 € a yqlqgmqk gy AL2s )
k=0
0

where for every k =0,1,2,...,s

Oeg Os,
HE o (e) = 5o = (1)
y41112~~~11k yqlqz~~~t1k
S 2 (158)
1 v
- Z (_1) Gc)dﬁk+1d['k4' "dpza -
I=k+1 ythqz--ﬂkpkﬂpkﬂ-npz

Proof We find a formula for the difference ¢, — E;(.Z,). To simplify the formulas,
we denote the homotopy y, ., ; simply by y. Calculating the derivatives, we have

1

1

0L, / v/aa
= [ egoy-dt+y

ay(r ) aya'

0

oy - tdt, (159)

and, by Lemma 7, (150) and (151), for every [, 1 <I<s,

0%,
dpy- A dp) ———

a
Ypip2e.pi

1
e,
:@W@%ly/af‘o%m
0 y[’l[’2~~~Pl

1 1 (160)
l : Dey )
:Z(i)dmd,,z...dp,y My @y Ay | ooyt
i=0 0 yplpz,,Ap,-p,-ﬂp,urz,,,p,
I ! P
AN £y
- (i)y[‘)1172444p, /dﬁi+1dP1A2' -y, dye ——o o - tdt.
i=0 P1P2---PiDi+1Pi+2---Pl

0
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Then by (159) and (160),

1
:/soydtJr"
0

—_

0
K [ [ ! e
v
+ Z ( P1p7 /d[’z+ld[71+z e a— oy tdt.
=1 i=0 0 yplpz -PiPi+1Pit2---Pl
(161)
On the other hand,
1 d
&g = /a (80 ox t)dt
0
1 d 1
&5 O
:/%-tdt-ﬁ-/egox-dt (162)
0 0
s 1 a 1
&
= ) /T’V 7 o 1 y;mz...p,- - tdt + / &s 0 y - dt,
i=0 0 Pip2---Di s
hence,
€ v
t — Eo(L) = /5’)7" oy y;npz-npi -rdt —
i=0 pip2---pi
0 0
J 1 ! / 06“
- (71) Z yPlPZ Di /dpx+ldpz+2 a— © X . tdt
=1 i=0 0 yPle PiDit+1Pi+2--Pl
1 l
/88“ “tdt —
= o
By’ xy
0 0
s ! 8
1 ! Ey
“S7 (1) (6))}‘ -/dpldpz...dplaai‘ox.tdt
=1 0 pip2---pi
s 1 8
o .
+ / - O L Yy p, 1L
i=1 8}’;1”__1,, pipeep
K ] I ! e
- (71)l Z i y[\;lpzmp, Ay, dp,,s - - -, J—‘ oy - tdt.
0
=1 i=1 0 y[’1132<-»I’zp,+117i+2~»171

(163)
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We change summation in the double sum, replacing the summation through the
pairs (I, i) with the summation through (i, /). Summation through (I, i) can be
expressed by the scheme

(1,1)
(2,1),(2,2)

(3,1),(3,2),(3,3) (164)
.(‘;7.1)7(&2)’(3’3)7'"a(s_173)7(5"9)

Then, it is easily seen that the same summation, but represented by the pairs, (i, [), is
expressed by the scheme

(1,1),(1,2),(L,3),...,(L,s — 1),(L,s)
(2,2),(2,3),...,(2,s = 1),(2,s)

(s— Ls—1),(s—1,s)
(5,9)

Consider the double sum in (163). The summation through (i, /) now becomes,

(165)

Y
~

1
Z IZ()yplpz px/dp d LO}('ICU
0

i+1 7 Pi+2 Pl
=1 i=1 8y[’1p2 DiDi+1Pis2---Dl

1
Og,

s
= ( 1) yPle Pi/dpmdpwz' 'dpla ox: wdt
i=1 I=i 0 yP1P2~~~PiPi+1!’i+2~--P1
s ! a
&y
- ( )yp1p2~-f71/aya' oy - udt
i=1 0 P1p2---pI
s ! a
e,
+ (_1 )yplpz Di /dl)i+ldl’i+2' . 'dpl ayo—— ox- tdt.
i=1 I=i+1 0 P1P2---PiDi+1Pi+2---Pl

(166)

Returning to (163), we get,

1
O, :
:/Wox-y‘-tdlf
0

1
, e,
,1)’y‘»/dmdp e — oyt

0 Ple -PI

0

-
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—

iy 88,
_Z(_l)yL1P2~-»Pf /a a OX'tdt
Ple Pl

i=1
i=1 I=i+1 PiPi+1Pi+2---Pl

1
, Oe; Oty J . Oe,
=y" — —E -1)d,d,...d, — - tdt
y / <ayv aya ( ) P12 1z 8y;1p2mp[> ox

0 =1

1
Oe
_Z Z ()yplpz pl/dp derZ I’Ia—vo}('tdt
0 y[’ll’z

1

0ty . Oey
+yp][7') p,Z/( _(_1) P
0

ayplpz pi 8yp1pz»~pz
{1 Os,
_ Z <l) . d[’/+1d[’x+2' . .dp, ao_) oy- tdt.
I=i+1 yplp2~-pipi+lpi+2-~Pl
(167)
This formula proves Theorem 10. O

The functions H2%2% (&) (158) are called the Helmholtz expressions, associated
with the source form &.

It will be instructive to write up the Helmholtz expressions for lower-order
source forms.

Remark 14 The Helmholtz expressions for the source forms of order s = 3 with
components &, are

i oe e,
Hajf(g) = p) \:T 3
Vijk y,jk
3sg 88‘, agv
gv(s) = N _8 g+3dk8767
Vi OV Yijk (168)
: O¢x Oty Oe, ey
! = — 2d;— + 3d;d,
0'1'(8) ay:r + aylg J a 0’ + ka5 a :jfk’
Oey  Ogy st oe, Jg,
Hgy(e) = — +d;i o~ — did U+ddd —6.
) =3y oy ay; oy “aye,
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Remark 15 Theorem 10 describes the difference between the given source form and
the Euler—Lagrange form of the Vainberg—Tonti Lagrangian; we see, in particular,
that responsibility for the difference lies on the properties of the source form and is
characterized by the Helmholtz expressions.

Lemma 8 Let . = Lwy be a Lagrangian, and let ©, be its principal Lepage
equivalent. Then the Vainberg—Tonti Lagrangian of the Euler—Lagrange form
E, = Eg(f)w" AL

Ag, = IE;, (169)
satisfies

dg, = A —hd(10; + ). (170)

Proof Using the fibered homotopy operator I, we can express the principal Lepage
equivalent @, of Las ®; = Id®, + dIO®, + ©y. Then, the horizontal component is

h®; = hld®; + hdI®; + h®¢ = hip;d®; + hd(1®, + )

(171)
=1IE;, + hd(19; + 1)

for some (n — 1)-form y, on X such that ® = dy,, where 2 = h®,, and IE, is the
Vainberg—Tonti Lagrangian. U

Note that, in particular, formula (170) shows that the Vainberg—Tonti
Lagrangian differs from the given Lagrangian A by the term hd(I®; + ) that
belongs to the kernel of the Euler—Lagrange mapping. This demonstrates that the
Euler-Lagrange forms of 4 and the Vainberg—Tonti Lagrangian Az, coincide.

Remark 16 (Euler-Lagrange source forms) Using homotopies and properties of
formal divergence expressions (Chap. 3), we can give an elementary proof of
Lemma 8, based on direct calculations. Namely, we prove that the Vainberg—Tonti
Lagrangian of a source form ¢ = E;(%)w’ A wy, which is the Euler-Lagrange
form of a Lagrangian A = Ly, is given by

1
yo/Ea(g) oy-dt =% +d¥ (172)
0

First note that for any family of functions g’ on V¥, the formal divergence d;g’
satisfies the integral homotopy formula

1 1
/digiox~dl‘=di/giox-dt. (173)
0 0
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Indeed, we have

i (g oy)  ~~0(goy)
di(g' o) = =5 Y B ik

1
O =0 yP1p2-~~P1

5
vy %
<(:)xz Zaypmo ” Pip2-- P1k>

and formula (173) arises by integration.
Consider the Euler-Lagrange expressions E,(%) of a Lagrangian of order
r expressed as A = ZLwy,

(174)

0 L -1 0
E(L) =%~ (1) dpdy,. . dpy i
ay ; ne l ayl’ll’ZwPl
0¥ 0¥ 0¥ 0¥
:_O'_dp] —O'+dp dp a9 + (_1)rd171d17 "'dpr—’
8}2 aypl o a Ple ’ ayplpz-npr
(175)
and set
0¥ 0 0%
O =0 dy ot dydy
’ aytl ? a zlpz we (9 11172173
0¥
r—1
7”'+(71) dpzdz Prao ’
Yiipaps...pr
. 0% 0¥ 0¥
)7 = — dpy 75— — dp,dy,
ayi1h ’ a Yiyizps o i1i2p3pa
. Y
-+ (=) 1dpsdm Pra(r;?
lllzp‘4]74 -Pr
176
izl — o0& 0% d, .d 02 ( )
= P+l .0 Y Yp G
’ ayilizmlk ‘ 6 1112 Dk ‘ o 8 lllz AkPrt1Pk+2
0¥
_+( )r 1dp>dp dpr o )
e 6yi1i2--»ikpk+mk+2~-»Pr
L &z &
(1)212..41,,1 _ [(? . dpr 08 ’
ayilig.“i,,l iineiy 1Py
(Di1i2~~~i,- _ 07
¢

- .
ayiligu.i,
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It is immediately seen that these functions, entering the Euler—Lagrange expression
E; (&) (175), satisfy the recurrence formula

S 0% S
(I)l(;lz.,.lk — = _ dkar] (I)lo}lz...lkpwrl . (177)
Vijiy...iy
Using properties of the homotopy y,
dLoy 0% 0¥
- = 7y’ ———oy-y . 178
ar oy YT ;8 S PP 17

Hence, denoting go(xi,y“,y;‘;,y;’ljz, ¥ )= Z(x,0,0,0,...,0), we get for
the Vainberg—Tonti Lagrangian

1 1

1
y”/Eg(g)ox-dt /— y”/di(l);ox-dt
ay”
0 0 0
1
- [ (4
0

1 1
s 0¥ ;
:ngofZy;lpzmpl/aaiox-dlfy”di/q)ijox-dl
=1 0 y[’lpl Pl 0

1

. 0¥ :
- e oL y;f,pz.“mk) dr —y* / di®y oy - di
yplpz Pl 0

A 07
=L -%o- Zyzupzmpx / Dye oy -dt
=1 0 pPip2---pi

1 1
+y;~7/(l)froX.dt—di<y“/q);ox-dl)
0

0
1

. 0%
za([’—a(l’0+y?/<®;—aa>ox~dt
Vi
0

1

.
o0&
a
_Zypmz b a o oy-dt
=2 171[’2 -1

(179)

The symbol %, replacing the equality sign =, means that we have omitted a formal
divergence expression, annihilating the Euler—Lagrange expressions of the Vain-
berg—Tonti Lagrangian.
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In formula (179),

1
/( __)O/(d_ypmz/aa oy-dt
0 Ple

1
o 1 el 33
:7yi/dpq)§ox.dt7yplp2/ao' Oth
0

Plpz

|

; 0%
:—yl-aa',,/(l)ifo;(-a't—y(T /—ox-dl
bz ay;ll’z
0 0
1

1 1
i ; 0¥
- yf/(DZ’o;g-dt +yg’/q)?oX'dl_yglpz/aTOX'dl

0 0 0 yl’lpz

0%
(@ﬁlm - > oy -dt (180)

ayPle

~ 10
~ yl’lpz

o _

thus,

1

1
)’J/Eo(g)ox.dtz.f—fo-i-y;’/(cpfr_g;?;>ox_dt
0 1

0
. XY h . Y A
R (9y‘7 O)C'dt_zyplpzmpz aygio/('dt
0 pPip2 =3 0 pip2---p1

1
, Y7
%$_$O+yplpz/ <‘D‘§'p“—ayg> oy dt
pip2

0

1
0¥
_Zyplpz DI Ox'dt'
0

Pll’z Pl

(181)
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Repeating these decompositions, we finally get the terms

1

0
Yoisepe / (d)f’rlpz"'p’l _W) oy dt =Yy /a a oy-dt

yPle---Prfl

0 P1P2 -Pr
1
0¥
0 1P2---Pr . I IR
yplpz---prfldl’r/(bﬁ °x dt ympz---pr aya o dr
pip2---pr

= dp, yPle ” ]/(I)PIPZ -Pr oy -dt +yp|p2 ” /(I)PIPZ -Pr oy -dt (182)

1

ympz Pr / oy -dt
P1P2 -Pr

_ \D2Dr o
- dp’ yPle-uprfl/(I){; °x dt
0

Since % is always, as a function of x’ only, of the formal divergence type, this
proves that

1
y”/Eg(g)ox-dtmg, (183)
0

proving formula (172). O

4.10 The Inverse Problem of the Calculus of Variations

Our objective in this section is to study the image of the Euler—Lagrange mapping
Q’ W>3L—E; € Qn +1.yW, considered as a subset of the set of source forms
¢e Qf, +1.¥W (Sect. 4.9). The problem is to find a criterion for a source form to
belong to the subset of the Euler—Lagrange forms.

First we show that the image of the Euler—Lagrange mapping is closed under the
Lie derivative with respect to projectable vector fields.

Theorem 11 (Invariance of the image) Let A € Q; \W. Then for any m-projectable
vector field Z on W the Lie derivative 0jrz /. belongs to the module ), W and

ajz,-EE;L = E@WE/{. (184)
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Proof Since /. € Q, (W, then 8=/ € Q yW.If p, is a Lepage equivalent of 4, and
Pa,-=; 1s a Lepage equivalent of the Lagrangian 0,z4, both defined on the set W?,
then, with the notation of Sect. 4.3, Theorem 3, p,=0;+dn+
Poyzi = Ody=s +dn’ + 1/, and

Opzp; = 0ps2®; + dOyszn + Opzp. (185)

The form Oyszp; has the horizontal component h0szp; = 0p+1zhp, = Oz and is
a Lepage form, because p1d0yzp; = p1d0;=®; = p10;=d®; and the Lie deriv-
ative Oz preserves contact forms (Sect. 2.5, Theorem 9). Thus, the forms p,,_;
and Oy:zp; are both Lepage forms and have the same Lagrangians. Consequently,
their Euler—Lagrange forms agree, 0,0zE; = Ep, .. O

Rephrasing formula (184), we see that the Lie derivative of an Euler—Lagrange
form by a vector field J>"E, where Z is a z-projectable vector field, permutes the set
of Euler—Lagrange forms; the corresponding Lagrangians are also related by the Lie
derivative operation.

Consider a source form ¢ € Q¢

w1y W. We say that ¢ is variational, if

¢=E, (186)

for some Lagrangian 1 € Q) ,W. ¢ is said to be locally variational, if there exists an

atlas on Y, consisting of fibered charts, such that for each chart (V, ), = (x',y7),
from this atlas, the restriction of ¢ to V* is variational.

The inverse problem of the calculus of variations, or the variationality problem
for source forms, consists in finding conditions under which there exists a
Lagrangian 4, satisfying equation (186); if these conditions are satisfied, then the
problem is to find all Lagrangians for the source form ¢. The local inverse problem,
or local variationality problem, for a source form ¢ consists in finding existence
(integrability) conditions and solutions ¥ of the system of partial differential
equations

0L & ! 0¥
o= g T ;( V), d,,...d, - (187)
with given functions &, = &, (x',y7, 37,37, .- ) on the left-hand side (cf.
Sect. 4.4, Theorem 4).

Let r be a fixed positive integer. We shall characterize the subspace of the vector
space of source forms, which is in general larger than the image of the Euler—
Lagrange mapping, namely the subspace of locally variational forms [K11]. Our
next theorem states the relationship between the exterior derivative operator and the
concept of variationality. It also indicates the meaning of Lepage forms for the
inverse problem.

a
3 Vjijads
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Theorem 12 (Local variationality of source forms) Let ¢ € Q, ., W be a source
form. The following two conditions are equivalent:

(a) ¢ is locally variational.

(b) For every point y € W there exist an integer 1, a fibered chart
(Vo) ¥ = (x,y%), aty and a form F € Q| V of order of contactness 2 such
that on V"

d(e+F) =0. (188)

Proof

1. Suppose that & is locally variational, and choose a fibered chart
(V,), ¢ = (x',y7), such that ¢ is variational on V; then ¢ = E; for some
Lagrangian 4 € Q) yV. Let ©; denote the principal Lepage equivalent of / and
set F = p,d®;. Then, d(¢ + F) = dd®, = 0.

2. Conversely, if for some fibered chart (V, /), = (x',y?), condition d(¢ + F) =
0 holds on V¥, then ¢ + F = dp for some p. p is obviously a Lepage form;
hence, ¢ = p1dp, so ¢ is a locally variational form whose Lagrangian is hip. [J

Remark 17 Theorem 12 indicates possible geometric interpretation of the exterior
derivative de. Namely, formula (188) says that the variationality condition means that
the class of de modulo (n + 2)-forms whose order of contactness is greater than 1
vanishes if and only if ¢ is locally variational. Developing this point of view to g-forms
of any degree ¢ leads to an idea to characterize the Euler-Lagrange mapping as a
morphism in a suitable sheaf sequence of classes of forms (a “variational sequence”).

Properties of the form F in Theorem 1 can be further specified. Namely, for a given
Lagrangian A of order r, F can be determined from the exterior derivative of the
principal Lepage equivalent ®; (104) and is 7>~ !*~!-horizontal.

The following lemma is needed in the proof of another theorem on the local
inverse problem of the calculus of variations.

Lemma 9 Let U be an open set in R" such that for each point xo = (x},x3, ..., x3)
the segment {(tx}, 3, ..., x|t € [0, 1]} belongs to U. Let f: U — R be a function
such that

1
/F(tx}),txg, cont)dt =0 (189)
0

for all points (x},x3,...,x4) € U. Then, F = 0.
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Proof Tf (189) is true, then for any s € [0, 1], (sxo,sx%,. .,8x3) € U, thus,
1
/F(tsx(l), 15X3, . . ., tsxp)dt = 0. (190)
0

Differentiating with respect to s

1
/(W) tsxidt = 0, (191)
0 18X()

soats=1

0/1 < axk) = 0. (192)

On the other hand,

d d
E([F(txé,tx(z), con ) = F(tx, 0, .. 00) + taF(Ix(l),txé, 1)
o oF (193)
:F(txo,txo,,t)(]lo)+ (W) th
X0

Integrating we have

OF
F(xo,xO, C LX) (@) txo)/‘Otdt (194)

O

1
F(txh, 13, . . .,txg)dH-/
0

ool

Consider now the local inverse problem of the calculus of variations. We wish to
find integrability conditions for the system of partial differential equations (187) and
describe all solutions . of this system in an explicit form. To characterize locally
variational forms, we need the Helmholtz expressions H, 9% (g) (Sect. 4.9, (158)
and Remark 14). Recall that

0 Og,
Hgtqz.,.qk (8) _ o € (_l)ka ‘ &
yqu]z -Gk quzu-fh (195)
e,
o Z ( )dpk+1dm 2 -dp, 0o )
I=k+1 yqlq2~~qkpk+1pk+2~~Pz

where k =0,1,2,...,s, and s is the order or &.
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Theorem 13 Let V be an open star-shaped set in the Euclidean space R, and let
&0 V' — R be differentiable functions. The following two conditions are
equivalent:

(a) Equation

0% : ! 0¥
to=a—t > (=1)dydy,...dy (196)
ay =1 e " ay[’ll’zmﬁl

has a solution &: V¥ — R.
(b) Forall k=0,1,2,...,s, the function &, satisfies

HB®-% (g) = 0 (197)

Proof

1. Suppose that the system (196) has a solution .Z, defined on the set V". Then, ¢ is the
Euler-Lagrange form E,(%)w° A wg of the Lagrangian 1 = % wy; we may sup-
pose without loss of generality that the Helmholtz expressions (195) are of order
s = 2r. Since the Lagrangian / and the Vainberg—Tonti Lagrangian have the same
Euler—Lagrange form (Sect. 4.9, Lemma 8), the Helmholtz expressions satisfy

k=0

1
2r

/ Z (yz}lqu..quZiqz"'Qk(8)) oy-dt=0 (198)

0

(Sect. 4.9, Theorem 10); hence, from Lemma 9,

2r
Zy;ﬂ/zmquzi'qzmqk (6) =0. (199)
k=0

Since by hypothesis ¢ is variational, that is, ¢ = E; for some Lagrangian 4, then
for any z-projectable vector field E, dpze = OprzE; = Ep,,,_; (Theorem 11);
hence, the form Oj»gé¢ is also variational. Thus, the Helmholtz expressions
satisfy for all projectable vector fields Z,

2r
Z yl‘;lqz-»»ZIng\l/qzmqk (812,-58) =0 (200>
k=0

We shall show that this condition implies HZ\%% (&) = 0.

Consider condition (200) for different choices of the vector field E. It is suffi-
cient to consider z-vertical vector fields, whose components do not depend on
y*, that is,
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s 0
T (201)

(1]

(1]

?(x*). Then, the components of the r-jet prolongation J'Z are

akEa
=0 —
Tk O Ox2 L Oxk (202)

Writing ¢ = ¢,w° A wp and using properties of the vector field E, the Lie
derivative Jyzé¢, standing in (200), is given by

2r
Oprze = Opgés - 0° Ao = oy e Ejg @7 A oo (203)
Jljz Jk

We denote

y Juz J* (204)
Jij2-jk
Choose the vector field = in the form
2= , 205
o (205)
where 7 is any fixed integer. In components
— _J1, o=1
Then, the r-jet prolongation J'E has the components E7; . =0, and the
expression
0
JE=—. 207
e (207)
The Lie derivative (203) yields
Oe Oe
/ CE 0" Awg = —— 0’ A 208
oy* o oy 0 (208)

Thus, for the vector field (205),
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0y
g ==, 209
= o (209)

The Helmholtz expression H, 7'929(¢') for the source form ¢’ can be written as

0 O
ay;ﬂ]z -Gk 8yr

_Z ()dl’kudpuz Ay, =~ ‘0 % (210)

1 T
I=k+1 8y111q2-<-lIkPk+1Pk+2---Pl ay
_ OH (o)
= 8y7 ,

0  Osg

— (-
ayglqz---‘Ik ayT

Hig () =

because the differential operators 9/0y* and d; commute. Condition (200) now
implies

,
thqz %(8)
v q192---9k —
Zylhqz--quﬂ 812'"? Zymlh Gk Iyt
k=0

—Z W alB20) 1D

= me(g) =0.

Consequently, (200) reduces to

qulqz -Gk quz k(g):()' (212)

Then by Theorem 11,

Y Voga HAE " (0ze) = 0. (213)
k=1

Now consider equation (200) for the vector field

0
=g (214)

[1]

where i and 7 are fixed integers. In components,

—_ .Xi, g =71,
E {o, ot (215)
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Then, the r-jet prolongation J"E has the components

1, o=1, j=I,

B =dE ={0, o=1, j#i, Ej, =0, k>2, (216)
0, o#r1,
hence,
0 0
JE=X . 217
Yoyt Iy (217)

Otq 0¢, Og; ;  Oeg
8/< bomr 4 OF E’»‘)@"/\wo ( k x’Jri)w“/\wo. (218)
Yj Vi

Consequently, using the vector field (214),

Ocs ’+% (219)

/

&, = By

The Helmholtz expressions for &/ become

0 Oty 0ty X 0 Oe, . Oe,
) - er )L (B, 2
( ) ay‘II‘I”‘ qk <8yr i ( ) 8yglq2~-qk ayr aylt

o Z( 1) ( ) i1 Apya - - -G #(agt’d g;)

Pi
I=k+1 6y111(12<-»(1kl71<+1p1<+2-~P1

71 ¢ 0ty _(_1)k e,
ayT ay;m qk aygllhm%

_ Z( ' (3) o dw( 68—8»

I=k+1 111!]2 GkDk+1Pk+2 Pl
_ 0 0% (_1)k _ 9 0o
ay;w]z -Gk ayIT ayglqzmw ay:
- Z ( l ( ) Pi+1 Pk+2 P # o, .
I=k+1 6}]6111124-»41(10“117“2-»-171 ayl?

(220)
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In this expression,

O,

i
-dp, X 3‘7—
yqlq2~~~quk+1Pk+2-~-Pl
e,

d

Pi+1

d

Pik+2" *

)

Pt T
aleqzmqﬂpkﬂPkH--»PI

; Oe,
'dPI (}C dl’k+l P

=d,

DPk+2

d

Pi+3° *

d

Pi+2

d

Pi+3* *

+

g

q4192---9kPk+1Pk+2---P1
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(221)

).

Note that for any function f, the formal derivative satisfies

o _ods o
Toyp oy oy

Applying this rule, we find

0
e
_9

Oyt

d Oe,

Pik19Prs2

a
4192---GkPk+1Pk+2---Dl

dy, Ay, - dpdy, 4,

Pr+3 " Pk+4* P17 Pk+2 " Pk+1 8}10

0

(222)

Os,

(223)

q192---9kPk+1Pk+2---P1

Og,

dy, ,d

Pr+2""Pk+3 " *

d

— (- k)

ay*
Returning to (220)

B i p (o
ayT ay}lqusz]k

2r

(s

+xd, d

Pk+1"Pk42* *

HE (o) - (-1

de,
6yglqzmﬂh

d

Pk+3° *

d d

Pk+2

d e,

P P
ay‘h‘h<-ﬂk/’k+l[’k+2mﬂl

Oeg v Ogy
oD 7)
(ay%qzmqk ayqlqzmqk
2r
i 0
- z (_l)l(k) <a_ﬂdpk+ldpk+2 Pit3 "

I=k+1
d,, .,d

Pk+2""Pk+3 " *

)

d

L0
y;

0
oy?

—(1—k) Dy

2t o
ayqlthméh iPik42Pk+3 Pl

My 7= .
ayth42--»Qkil’k+2[7k+3~-l71

e,

2 o
8yf11f]z»uqﬂpuz[’kuu-w

(224)

e,

v G
aqu]z»--qwk\ 1Pk+2---P1

).
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Therefore,

. aHZLllz»»m (8) N 3Hg‘|’q2~-4k (8)

HN 2k (Y = 225
ot (€) o o7 (225)
Now (200) is expressed as
quqz -Gk (8) aHglqz...qk(g)
Zyﬂhqz -qk ( ayr + v&y}
=x oy Zyl}lqz..lquZL”"”k (¢) (226)

+Za T y‘hqz -Gk Ziqz qk( )) Hl () —H(in(g):()_

The proof can be completed by induction. To this purpose, one should assume
that H,, =0,H% = 0,H%% =0,...,Hh" " =0 for some p (induction
hypothesis). Then, conditions (212) and (213) are replaced with

Z Yargs..qHR" 4 () = 0 (227)
k=p+1
and
Z yl]lqv Zirqzmqk(aﬁ’is) = 05 (228)
k=p+1

where the vector fields Z are of the form

o _ xklx{‘ka", 0o=T,

0, g # .
. We prove that (b) implies (a). Suppose that a system of functions ¢, satisfies
conditions (197) and denotes by ¢ = ;@ A wy the corresponding source form.
Then, the Euler-Lagrange expressions of the Vainberg-Tonti Lagrangian
Ay = Lo,

[1]

(229)

E(2)=6-% / (0 s HIE(6)) 0 7 -, (230)
k=0

reduce to ¢, (Sect. 4.9, Theorem 10). Thus, /1, = Z.wy. O
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Remark 18 One can easily prove condition
Hm'(g) =0 (231)

in Theorem 13 by means of the integrability criterion for formal divergence
equations (Sect. 3.2, Theorem 1). Consider the inverse problem equation

o 0¥ 0¥ rdd 0%
o 9y PLgye PO g
ay l 6yP1 o 8yP1P2
- 0¥ 0¥
— e (=1) ld,,ld,, vy, ——+(-1)d, d, oy, ————
2 ayglm'"[’f*l ’ 8yp1[72-»~17r
(232)
and suppose it has a solution .#. Denoting
0¥ 0¥ — 0¥
= 8—“+ e +(-1) ldmdm. cdy -
yPl yPle yPlPZmPr—l
(233)
- 0%
+ (_1) dpzdps' : 'dpz o )
yPle---Pr
we get the formal divergence equation
A
o~ e =~ VL (234)

Since by hypothesis there exists a solution, the integrability condition for this

equation is satisfied, that is,
0%
E. (sg - —) =0. (235)
0y°

Explicitly, since the derivative d; and the partial derivative 9/0y" commute,

@
Er(sgaj> :% 4 Oty +dyd Oty

o) oy Moy " O,
. O¢q
— (=1 ldpldpz-"dpmari (236)
yPlI’zu-Pr—l
. de O
+ (=1)"dp,dp,. . ‘dprria - 3_; =0
yp1P2~~Pr Y

Comparing this formula with (195), we get exactly H, .(¢) = 0.

We end this section with two remarks on the inverse problem for systems of
differential equations.
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Remark 19 (Variationality of differential equations) The concept of local varia-
tionality can be applied to the systems of partial differential equations. Fixing the
functions ¢,, we sometimes say, without aspiration to rigor, that the system of
partial differential equations

Sg(xi’yf’yj?l’yj?ljz’ e "y]‘F1j24-J.¢) =0 (237)

is variational and its left-hand sides coincide with the Euler—Lagrange equations of
some Lagrangian. It is clear, however, that this concept is not well-defined; indeed,
setting &, = @’ ¢, with any functions @), such that det @] # 0, we get two equivalent
systems &, = 0 and &, = 0, but it may happen that the first one is variational and the
second one is not. If (188) is not variational and there exists @ such that the
equivalent system @’ ¢, = 0 is variational, we say that @ are variational integrators
for the system (188). It should be noted, however, that this terminology is also used
in a different context of differential equations, expressed in a contravariant form.

Remark 20 (Sonin, Helmholtz, and Douglas) The inverse problem of the calculus of
variations was first considered in 1886 for one second-order ordinary differential
equation by Sonin (see Sonin [So]; for this reference, the author is indebted to
V.D. Skarzhinski). He proved that every second-order equation has a Lagrangian. It
should be pointed out that in this paper the variational multiplier, in contemporary
terminology, was used as a natural factor ensuring covariance of the considered
equation. The variationality of systems of second-order ordinary differential equa-
tions, expressed in the covariant form, was studied by Helmholtz in 1887 and
subsequently by many followers (Helmholtz [He]; see also Havas [H], where further
references can be found). The systems of second-order ordinary differential equa-
tions, solved with respect to the second derivatives, were considered by Douglas in
1940 with the techniques of variational multipliers (see Douglas [Do], and e.g.,
Anderson and Thompson [AT], Bucataru [Bu], Crampin [Cr], Sarlet et al. [SCM]).

4.11 Local Variationality of Second-Order Source Forms

In this section, we shall primarily be concerned with the second-order source forms
and second-order systems of partial differential equations. The aim is to present a
solution of the inverse problem of the calculus of variations for this class of source
forms entirely by means of the theory of Lepage forms (Sect. 4.10, Theorem 12)
and elementary integration theory of exterior differential systems.

Suppose we are given a second-order source form ¢ on W? C J?Y, expressed in a
fibered chart (V, ),y = (x',y%), as

&= g,0° N ay. (238)
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Consider the system of partial differential equations

0¥ 0¥ 0¥

aiya_ pai));)r"'dpdq = &g (239)

EYa

Pq
for an unknown Lagrangian ¥ of order 2. Clearly the left-hand sides of these
equations are exactly the Euler-Lagrange expressions E, (%) of the Lagrangian .
The problem we consider is twofold: (a) to find the variationality (integrability)
conditions for &, ensuring existence of a solution ¥, and (b) to find all solutions
provided the integrability conditions are satisfied.

The following theorem, following from the theory of the Vainberg—Tonti
Lagrangians, states that a second-order variational source form always admits a firs?-
order Lagrangian; it seems that this extension of the well-known statement of the
calculus of variations of simple integrals to the general multiple-integral problems is
new. Note that the result restricts the class of locally variational forms to the source
forms, depending on the second derivative variables linearly.

Theorem 14 If a second-order source form ¢, defined on W? C J?Y, is locally
variational, then for every point y € W there exists a fibered chart
(V,¥), ¢ = (x',¥%), at y and a first-order Lagrangian lo = Lowy, defined on V',
such that

Eo(Z0) = to. (240)

Proof If ¢ is variational, then by hypothesis the form e;’ A w; has a second-order
Lagrangian 4 = £y (the Vainberg—Tonti Lagrangian). The Euler—Lagrange form
associated with 4 is then given by

E, = E;,(ZL)0’ Aoy, (241)
where
0¥ 0% 0¥
e =FE(¥)=—"—d—+did —. 242

One can find an explicit formula for the Euler-Lagrange expression (242); this
expression does not depend on y7, and y7,. Introducing the cut formal derivative of

a function f = f(x',y%,y7,y%) as the function

o  of of
"= 7 i
dff_axj+5yayj +5y;ryu

(243)
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(see Sect. 3.1), we easily find

Ea' = U ! gl ) ,
(g) 6)/ d;a(r dda(; dlaga»ykl]
re 22 P
! : u / paiYkij 244
(8}7} 5‘yk, ayj aykl> yklj aygay;day;q ypq yk[j ( )
P
8y 8yklykzl,

However, this function does not depend on y,‘c’lj and y,ﬁlii. Hence, ¥ must satisfy,
among others,

r*rL

=55 =0 Sym(klij). 245
o (ki) (245)

But this condition implies

»rYL o0y rr

T N + T O + 7 T (246)
Oyj Oy~ Oy Oyh Oy Oy
Then, for any two fixed indices i, j,
Py Py A iy
7 AR A v N e W (247)
yzj yzz yzj yn yzj yzj Vii y]]
hence, differentiating,
Py Py
(248)

= -0, — =
Dy50y50y; OGOy Oy

In particular, % must be a polynomial function of y7, quadratic in each of the
variables y%. We can write

2=20+Y. 2, (249)

p=>1

where %y = fo(xk,y“,y]‘?) is a function independent of y; and &), is a homoge-
neous polynomial of degree p,

ij1 i2j2 tpjp
L, =P .. yllhyw2

gy 02

(250)

-y ipj N

Substituting from this formula into (244),
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0%, ’*rZL,
( 180+dd/80+2dl/808vyk1j

g 82 y‘ + ? r yv + 82$P yv
9y} 0y, iiv”fivk W g é?ykz€9 TPk Gy K |
(251)

But the left-hand side does not depend on yj; and yj,, so setting y;, =0 and
y}},d =0, we get

0%y 0%,

E, 1920,
(g) ("?0) ayo- i ay;r

(252)

Replacing the cut formal derivative d; with d;, this formula shows that the
Euler-Lagrange expressions E, (%) of the first-order Lagrangian Ay = Loy
coincide with the components ¢, of the source form ¢. This proves Theorem 14.[]

Corollary 1 Suppose that a second-order source form ¢ = ¢,° N\ w; is varia-
tional. Then, the components ¢, depend linearly on the second derivative variables
y;} that is,

&s = As + BLy}, (253)
where the functions Bi, do not depend on the variables Vi

Now we wish to find a criterion for a second-order source form ¢ (1) to be locally
variational. As a main tool in the proof, we use the concept of a Lepage form and
the basic theorem on locally variational source forms (Sect. 4.10, Theorem 12).

Theorem 15 (Local variationality of source forms) Let ¢ € Q2. W be a source

n+1,Y
form. The following two conditions are equivalent:

(a) ¢ is locally variational.
(b) For every point y € W there exist an integer r and a fibered chart
(V) = (x,y°), at y, such that ¢ = e;° N\ wy, and the components &, satisfy

Oey  Ogy 0 Oe, n Oe, (880 n 8.%) o,

dyy oyg oy oy \dvy 0y

860— aﬁv aba agv
————fd =0
dy"  dy’ <3V aw)

lJ

(254)




4.11 Local Variationality of Second-Order Source Forms 161

(c) For every point y € W there exist an integer r and a fibered chart
(VoY) = (x',y7), at y and a form F € Q. |V of order of contacmess <2
such that on V"

d(e+F) =0. (255)

Proof

1. If (a) holds, then (b) is obtained by a direct calculation. Indeed, suppose that
¢ = E;(&) are the Euler-Lagrange expressions of a first-order Lagrangian
A= Pwy; then

0¥ P& *Y *Z
E;,(Y)=———— — T — i 256
) =% “avay oya oy (256)
Differentiating we have
deg 1 Oty . o*y
o, 2\ Oyrdyg  Oyidys )
2 2 2
O 0L 0L 0L (257)
dyy Oy, Oy, 0y;  Oy'Oyg
Oes P B *Y
Ay Oy'Oy" Oy Oy’
from which we get
Des Doy _1< vy | DY
ayr. Oys 2\ 0y0yT  Oy'oye
Pq Pq "7 q“7p (258)

fer  pe\_ |
2\ ygayy - Oygoyy ’

and
O Oes o) 00 DL OPLPL | PY
dyy Oy T Oy, Oy dyy T Oyy0yi  Oy'Oy;  Oy'Oy;
rr P ( Prr  PY )
P

)

- ds T X + d N +
dygdy; Oy Oy, dysdyy ~ Oyg0yy,
(259)
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and
eg Oy e, De,
Zte % 2 dd =
oy oy Toyy "oy,
s ;e e P
Fy'dy° <3‘y“5yv S Oyay 9y dy!
82 323 623 (260)

d, 2= _ 44, —d
- Ty ays T oygoyr T 9yodyy

1 Py A
SPAE A

(‘3y; 8y; 8y;’ 8y[‘,

Suppose that the components ¢, = E, (%) of the Euler-Lagrange expressions of
A= Py satisfy condition (b). Setting

1 /0e; Oe, Oey
F=—|- - — ' A0 A w;, 261
(4 (55 3) oy ) (261)

we get by a straightforward calculation, using the canonical decomposition of
forms into their horizontal and contact components and the identities

do’ = —o] Ndx,dw) = o} Ndx', and dx' A w; = S,
1 [(Oe, Oe, v ;
dF = __d<8y," _8y§;> Ao’ Ao’ A\ w;
0¢y
do’ N N w;
(8y, 8y,> e
8 O ,
/\w Ao’ N\ w; — dw Ao A\ w;
o7 o
1 (0e; Oe, Oty
- v Ado’ A w;
+<4( 3y,) +8y,‘»,- ) orhe
886 e, »’ (262)
= — Ao’ A wy
3¢ oy oyf
Oe, 880 _ g9 0¢, O A6 Ao
2 \0y¢ ‘ 7oy ’
3 880
a) Aw® N wy — "
9jj

- 860 Dy Ao’ Ao’ A w;
4 Oy} ﬁy“ ' 8y

ij
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Consequently, since

B¢ B¢ e
de = ( b0 b0 +iw1> A a® A ao, (263)

o'+ —o! ,
ay” Iy ' Oy

the exterior derivative d(¢ + F) is expressed as

1 860- 88 v 1 680' 88 v v a

n 1 [0e, n Oe, d Ots \ Aot A
= — dj - w (@]
2\oyr " ovr) Tayy) ’

1 {Oes  Oe, ' Ao Ao
2 8yl‘»}- ay;.; J i 0
1 Oe,  Og, Oegy ,
—~pd - AD' A’ Aw; —pd—2 Ao’ Ao A o;.
2P (Byf 8y§’) " AN’ Aw; —p o, o] N’ A
(264)
Thus, by hypothesis (b),
1 Og; Oty :
de+F)=—-p i(’,——s Ao’ Ao’ A o;
47 \0y o7
9% (265)
—pda “T,/\w}'Aw"/\wi.
Yij ’

3. Suppose that the functions &, satisfy condition (b). Substituting from (254) to de,

we have
1 Oey  Og, R | Oy Ogy '
de=|-d| =—— Vi —d| — v
‘° (4 ’(@r ay;’)(” "2 ’(@s*ay:;)“’l
+1 &%_88‘, (u"+l 830_’_881, o' | Ao’ Ao
2\oy ayg) T T2 \awy T o) Y ’
' (266)

— ld. %_88" w"_;,.l d: %_’_88" +%_88‘, o’
@\ ay oy 2\7\oyy o) oy avr)

n 1 { O¢q n Ogy\ Ao’ A
— w’; w’ A wy.
2 8yfj (“)ylf]’- v 0

On the other hand, we can recognize in formula (266) some terms in the form of

an exterior derivative. Observe that
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d 88" Oe, ol Ao’ A w;
P2 8 a /j
( 88‘) \ (4
w; Nw” Ny
le Yij
yl

8& Ogs  Ogy\ "
do] No’ Nw; — | 7=+ w; Ndw’ N\ w;

i O i O
88 , ,
= o] A’ Awg
yl] 6y1]

a 8 v ! 8 6 )
Sg € o’ ’ _8‘:+ 8; U); Ao’ A wy,

(267)
and
pad Oes _ Oty "N’ ANw; | = | d; 9% _ 06 "
dy; Oy} dy; Oy} (268)
2 Oe; _ Oty )N’ Ao
o i) v
Thus, de is expressible as
1 Oty Oty "
de pzd((F_ay;»’)w A /\w,-)
269
Jr1 d 886+88v w! Ao’ A w; 2
2[72 a v ; i 7]

Setting

1 (1[0 Os ey Oey\ .
F=——|=- _ v | Yoo v - ' 5
2 (2 (c'?y}' 8y§’) @ (3),;} + 8})5) a),> AN’ N w; (270)

and p = ¢ + F we get assertion (c).

To show that condition (c) implies (a), we can repeat the proof of Theorem 12
for source forms of order 2. Suppose that for some fibered chart
(V) = (x,y), on the fibered manifold Y condition d(¢ + F) = 0 holds on
V2. Integrating we get ¢ + F = dn for some n-form #. But since ¢ = p,dy, the
form # is a Lepage form, therefore, so ¢ must be a locally variational form whose
Lagrangian is h#. O
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Remark 21 In the proof of Theorem 15, we have assigned to a second-order source
form ¢ = ¢;? A wg the form p = ¢ + F, defined by the requirement dp = 0. The
solution

0 = ;0% N\ iy
1 (1 (0 Oe o — Oty n Og, o' | Ao’ Ao (271)
22\ "oy av; " ayg )" g

extends the source form by a form of order of contactness >=2. This construction,
involving the exterior derivative operator, is closely related to the variationality of the
form & and can be considered as a motivation for possible generalizations of the
geometric theory of Lepage differential n-forms to (n + 1)-forms and differential forms
of higher degree (cf. [KKS2]). This notable construction also indicates the possibility
to interpret a source forms as a class of forms modulo contact forms; this idea has been
developed by the theory of variational sequences (cf. [K19] and Chap. 8).

Theorem 16 (First-order Lepage forms) Let p € Q},V be an n-form. The following
two conditions are equivalent:

(@ pc Q,l?V is a Lepage form.
(b) There exists a first-order Lagrangian 1 € Q}@xv: an n-form x of order of
contactness 22 and a contact (n — 1)-form t, such that

p=0,+x+dr (272)

Proof

1. Let (V, ),y = (x',y) be a fibered chart on Y, and let p be a first-order Lepage
form, defined on the set V!. Then, the form &= pidp is a second-order
Euler-Lagrange form, defined on V2, associated with the second-order
Lagrangian hp — the horizontal component of p. On the other hand, it follows
from Theorem 14 that & has a first-order Lagrangian A; denoting by ©, the
principal Lepage equivalent of 4, we have ¢ = p;d®;; hence,

pldp :p1d®;h. (273)

Consequently, p1d(p —®;) =0 and by the theorem on the kernel of the
Euler-Lagrange mapping (Sect. 4.8, Theorem 9, (c)), there exists an (n — 1)-
form y, defined on V!, such that h(p — ©;) = hdy; hence,

p—0,=n+du (274)
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for some contact form # such that p;dn = 0. Therefore, 7 satisfies two conditions
hm =0, pdn=0. (275)

The first one implies that # = ©° A ®; 4+ dw® A ¥, for some forms @, and ¥,
(Sect. 2.3, Theorem 7, (b)). We can also write

n=w’A (D@, +d¥,) +d(o° N¥,) (276)

for some forms @, and ¥,. Setting 7, = @, + d'¥,, the second condition (275)
implies

pidn = —of NdxX' A ht, — o° Ahdt, = 0. (277)

We want to show that this condition implies 47, = 0. Indeed, for any n%°-

vertical vector field

(278)

condition (278) yields E;’dxl Aht, = 0. Writing ht, = Aiawi, this condition
implies E;’Agdxl N w; = El“Afywo = 0; hence, Ag = 0. Thus, hty; = 0. Substi-
tuting from this result to (277) and (275), we see that assertion (a) implies (b).

2. The converse is obvious. 0
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Chapter 5
Invariant Variational Structures

Let X be any manifold, W an open set in X, and let a: W — X be a smooth mapping.
A differential form 7, defined on the set a(W) in X, is said to be invariant with
respect to a, if the transformed form o*# coincides with 7, that is, if «*n = # on the
set WNa(W); in this case, we also say that a is an invariance transformation of .
A vector field, whose local one-parameter group consists of invariance transfor-
mations of 7, is called the generator of invariance transformations.

These definitions can naturally be extended to variational structures (Y, p) and to
the integral variational functionals associated with them. Our objective in this
chapter is to study invariance properties of the form p and other differential forms,
associated with p, the Lagrangian A, and the Euler-Lagrange form E;. The class of
transformations we consider is formed by automorphisms of fibered manifolds and
their jet prolongations. This part of the variational theory represents a notable
extension of the classical coordinate concepts and methods to topologically non-
trivial fibered manifolds that cannot be covered by a single chart. The geometric
coordinate-free structure of the infinitesimal first variation formula leads in several
consequences, such as the geometric invariance criteria of the Lagrangians and the
Euler—Lagrange forms, a global theorem on the conservation law equations, and the
relationship between extremals and conservation laws. Resuming that we can say
that these results as a whole represent an extension of the classical Noether’s theory
to higher-order variational functionals on fibered manifolds (Noether [N]).

In this chapter, we basically follow Trautman’s formulation of the invariance
theory based on the geometric understanding of the topic (Trautman [Tr1, Tr2]). The
concept of the jet prolongation of a vector field and its meaning for the geometric
notion of a variation for invariance theory was discussed in Krupka [K6, K1].
The fundamentals of the invariance theory for differential equations and the calculus
of variations in Euclidean spaces developed along the classical lines can be found
in Olver [O1]; however, in this work, the Trautman’s approach using geometric
characteristics of the underlying transformations, such as the Lie derivatives, is
not included. A complete treatment of the work of Noether on invariant variational
principles is presented, also within the classical local framework, by Kosmann-
Schwarzbach [K-S].
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In this chapter, we follow our previous notations. Throughout, Y is a fixed
fibered manifold with base X and projection 7. We set dim X = n,
dim Y = n + m. J'Y denotes the r-jet prolongation of Y, and 7"** and 7" are the
canonical jet projections. For any set W C Y, the set (@"°)"}(W) is denoted by W'
QW denotes the module of g-forms defined on W", Q;, ,W is the submodule of 7"*-
horizontal forms, and Q"W is the exterior algebra of differential forms on W". We
use the horizontalization morphism of exterior algebras h: Q"W — Q"*'W. The r-jet
prolongation of a morphism a of the fibered manifold Y is denoted by J'a. Anal-
ogously, the r-jet prolongation of a z-projectable vector field is denoted by J'E.

5.1 Invariant Differential Forms

We present in this section some elementary remarks on the invariance of differential
forms on smooth manifolds under diffeomorphisms. We prove two standard lem-
mas that are permanently used in the theory of invariant variational structures.

Let X be a smooth manifold, W an open set in X and a: W — X a diffeomor-
phism. Let p be a p-form on X. We say that p is invariant with respect to a, if its
pull-back o*p coincides with a,

wtp = p. (1)

A diffeomorphism o, satisfying condition (1), is called the invariance transfor-
mation of p.

These definitions immediately transfer to vector fields. Let £ be a vector field on
X, o its flow, and of its local 1-parameter groups, defined by the condition
af(x) = ag(t, x), where the points (¢, x) belong to the domain of definition of o
We say that ¢ is the generator of invariance transformations of p, if its local
1-parameter groups are invariance transformations of p, that is,

() *p(x) = p(x) (2)
for all points (¢, x) from the domain of o

Lemma 1 For every point (¢, x) from the domain of definition of the flow of the
vector field ¢,

& )0() = ()00 (x). ()

Proof Let (t, x) be a point from the domain of of. Choose tangent vectors

&, &6y, .., &, € T, X and consider the value of the form ocf *p(xp) on these tangent
p 0 g

vectors. This gives rise to a real-valued function 7 — ((o)*p)(x0) (&1, &2, - - s &)
Differentiating this function at a point 7y, we have



5.1 [Invariant Differential Forms 171

(G EramE b))
. ' @
= (%((“tgo+s)*p)(x0)(él7 625 ey ép))o-

<

& SO we have

But the flow satisfies the condition ocfn =000

(G e 5)

d . .
— (D D Gt
. ) . . (5)
= (%((af)*p)(afﬂ(xo))(Ta; . él,Toch &y Toyp - f,,))
0

= agp(af;(xo)(Totf; : élaTO(;i : 527 ey Tatc; : ép)

= ((a§)*a§p)(x0)(flv éZ; cey ép)
This is formula (3). U

Lemma 2 (Invariance lemma) Let & be a vector field on X, and let p be a p-form on
X. The following two conditions are equivalent:

(a) ¢ generates invariance transformations of p.
(b) The Lie derivative of p by & vanishes,

6,;*,0 =0. (6)

Proof

1. If £ generates invariance transformations of p, then we differentiate both sides of
equation (2) with respect to ¢ at t = 0 and obtain formula (6).
2. If condition (6) is satisfied, then by Lemma 1,

d

S (@)*p)(x) =0 (7)

on the domain of the flow a°. Thus, the curve t — ((o)*p)(x) is independent of 7,

and since its domain is connected, its value is constant and must be equal to
((25)*p)(x) = p(x). This proves condition (2). O
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5.2 Invariant Lagrangians and Conservation Equations

Let W be an open set in Y, let 1 be a Lagrangian of order r for Y, defined on
W' C J'Y. Consider an automorphism a: W — Y of Y, and its r-jet prolongation
J'a: W' — J'Y. We say that a is an invariance transformation of 1 if J'a*1 = A.
The generator of invariance transformations of 4 is a z-projectable vector field on
Y whose local one-parameter group consists of invariance transformations of A.

In the following lemma, we use fibered charts (V, y), v = (xi, y°), and our
standard multi-index notation. Recall that the contact 1-forms w7, locally gener-
ating the contact ideal, are the 1-forms, defined by the formula w7 = dy7 — )7 dx’
(Sect. 2.1, Theorem 1).

Lemma 3 Suppose we have a vector field Z on J'Y. The following two conditions
are equivalent:

(@) For every fibered chart (V, w), w = (X', y°), on Y, every &, and every multi-index
J such that 0 < |J| < r — 1, the form 0,057 is a contact form.
(b) There exists a m-projectable vector field E such that Z = J'E.

Proof Write @} = dyj — y§jdxj and

0
oy’

)
Z = l—. Zt7
¢ ox! 2
Then
070 = izdwj + dizw) = —iz(dyj; A dx’) + diz(dy; — yjdx')
= —Zjdx + Udy}; +d(Z) — Vil

= —Zydx + Udy}; + dZj — dyj, — y5dl’ ©)
= —Zydx + dZ} — yyd!

T T T j 0Z; A
= (—ij +d;Z; —yﬂdjél)dxf + 3 A’w,(,
Yk

and our assertion follows from Sect. 1.7, Lemma 8. O
Lemma 4 Let A be a Lagrangian of order r for Y.

(a) A m-projectable vector field E on Y generates invariance transformations of 1
if and only if

(91@/1 == 0 (10)

(b) Generators of invariance transformations of A constitute a subalgebra of the
algebra of vector fields on J'Y.
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Proof

(a) This is a trivial consequence of definitions.
(b) Any two generators satisfy [J'E,, J'E,] = J'[E;, E,] (Sect. 1.7, Lemma 11).
Then, however,

6J,[31’32]/l - @VE“WEZ]X == a‘]rEla‘]rEZ/qv - a‘]rEza‘]rEl/’{ - 0 (11)
g

We keep terminology used by Trautman [Trl, Tr2] and call Eq. (10), the
Noether equation. This equation represents a relation between the Lagrangian 4 and
the generator E of invariance transformation. Given A, we can use the Noether
equation to determine the generators =. On the other hand, given a Lie algebra of

n-projectable vector fields =, one can use the corresponding Noether equations
to determine invariant Lagrangians .

Theorem 1 Suppose that a Lagrangian A is invariant with respect to a w-
projectable vector field . Then for any Lepage equivalent p of A

hiJrEdp + hdijrap = 07 (12)
or, which is the same,
J y*ipedp + dJ yFip=p = 0 (13)

for every section y of Y.
Proof From Sect. 4.6, Theorem 7,

hOyrzp = Oprnighp = Opraigh = hipadp + hdip=p (14)
which implies (12). O
Remark 1 According to Sect. 4.3, Theorem 3, condition (12) reduces locally to
hipzd®; + hdiy=0, =0, (15)
where ®; is the principal Lepage equivalent of the Lagrangian form /.

By a conserved current for a section y € I'g(n), we mean any (n — 1)-form
n € QW such that

dJ*y*n = 0. (16)

We call formula (16) the conservation law equation; it is also called a conservation
law for the section y.
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The following assertion says that extremals of invariant Lagrangians satisfy, in
addition to the Euler-Lagrange equations, also some other conditions, expressed by
the conservation law equations.

Theorem 2 (First theorem of Emmy Noether) Let / € Q) xW be a Lagrangian, p a

Lepage equivalent of A defined on JY, and let y be an extremal. Then for every
generator E of invariance transformations of A

dJly*ipzp = 0. (17)

Proof The proof is based on the first variation formula (Sect. 4.6, Theorem 7, (c)),
and is trivial. Indeed, we have

Jy¥opelt = Pytipedp + dJ y¥ipzp, (18)

and since the left-hand side vanishes, by invariance, and the first summand on the
right-hand side also vanishes, because y is an extremal, we get formula (17) as
required. O

Note that (global) condition (17) can also be written in a different way, by means
of locally defined principal Lepage equivalents ®, of the Lagrangian 4. From the
structure theorem on Lepage forms, we know that, locally, p = ®, + dv + x, where v
is a contact form, and x is a contact form of order of contactness >2. Then
dIy*ipzp = dJ*y*(ipz®; + ipzdv + ipzu). But the form ipszu is contact; more-
over, ip=dv = Opzv — dipzv, from which we deduce that

Py*ipeu =0, dIfy*ipedv = dFPy*0szv — dJ y*diszy = 0. (19)
Consequently, under the hypothesis of Theorem 1, condition
d.]s'}/*l._].\-g(a;L =0 (20)

holds over coordinate neighborhoods of fibered charts on Y.

One can also use invariance of variational functionals in a different way.
Namely, the infinitesimal first variation formula shows that the property of a
Lagrangian to be invariant reduces the number of the Euler—Lagrange equations.

Theorem 3 If 1 is invariant, p is a Lepage equivalent of 1, and y a section satisfying
the conservation law equation

dJ" y*ipzp = 0, (21)

then for any fibered chart (V, y), w = (x', %), the associated Euler—Lagrange
expressions are linearly dependent along y.
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Proof The infinitesimal first variation formula gives
Jy*ipzdp = Jy*ipzpidp = J y¥ipE,, = 0. (22)

Consequently, in the chart (V, y), v = (xi, y7), for the given vector field =, the
Euler-Lagrange expressions of the Lagrangian 4 = hp satisfy (22) and are linearly
dependent along 7. U

Example (Conservation law equations) In the following example, we consider the
product fibered manifold ¥ = X x R™. Denote by y” the canonical coordinates on
R™, and by x', y” some coordinates on Y. Consider the translation vector fields

0

[1]

One can easily determine the r-jet prolongations of these vertical vector fields. We
get

JE =—. (24)

Invariance conditions for a Lagrangian A = L wq are Opz A = iyz.dA = 0, that is,

0¥
=0. 2
ay* 0 (25)

In classical variational calculus, condition (25) is sometimes called the Routh
condition. The principal Lepage equivalent is

r—=1 [r—1-k ; 0%
Oy =Lwn+» (—1)'dypdy,. . dp 7 |, Aoy, (26)

! a
=0 Yirja-wdsprp2---pii

rh—t

and its contraction by J'E; is

r—1
. 0L
inz0;, =Y (—1)dy,dy,.. .d, e (27)
1=0 Ypipa..pii

Therefore, the invariance condition J™*'y*E (1)wg + dJ ' y*i;120; = 0 redu-
ces to

‘
|

1

0L
E() =Y (=1)did,d,,...d, 5=——=0. (28)
[ piD2---pii

I
=}
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In particular, if y satisfies the conservation law equation

—_

< A
(—D)'didp,dp,. . .dp = 0, (29)
=0 Pip2---pii
it also solves the Euler—Lagrange equation
E.(A)oJ Ty =0. (30)

In particular, if A is invariant with respect to all translation vector fields =, then
the system of the Euler—Lagrange equations is equivalent with the system of the
conservation law equations.

Remark 2 It should be pointed out that in general, the principal Lepage equivalent
®;,, considered as a form depending on the Lagrangian A, does not satisfy the
invariance condition 0,20, = Oj,,.,.

Remark 3 The geometric structure of the first Noether’s theorem may be explained
as follows. Let Y be any manifold, p a differential form on Y. If £is a vector field on Y.
such that the Lie derivative Oz vanishes, Oz = 0, then by the Cartan’s formula, p
and ¢ satisfy i-dp + dizp = 0. Then for any mapping /i X — Y satisfying the
“Euler-Lagrange equation” f*i:dp = 0, the identity f*izdp + df *izp = 0 yields the
“conservation law equation” df*i¢p = 0.

Remark 4 (Invariance with respect to a Lie group action) The first theorem of
Emmy Noether (Theorem 2) is concerned with variational integrals, invariant with
respect to l-parameter groups of automorphisms of underlying manifolds Y.
Clearly, the same theorem applies to invariance with respect to group actions of
(finite-dimensional) Lie groups G on Y. The corresponding conservation law
equations dJ*y*ipzp = 0 (21) represent a system, in which the vector fields = are
fundamental vector fields, defined by the Lie algebra of G. Thus, we get the system
of k equations on J°Y, where k is the dimension of G.

Remark 5 (Second theorem of Emmy Noether) Some variational functionals admit
broad classes of invariance transformations that cannot be characterized as Lie
group actions. These transformations depend rather on arbitrary functions than on
finite number of real parameters. Consequences of invariance of this kind are
known as the second Noether’s theorem (cf. Olver [O1], where the systems pos-
sessing the second Noether’s theorem are characterized as abnormal). However,
also this type of invariance can sometimes be understood as invariance with respect
to a (finite-dimensional) Lie group; namely, this situation arises when the given
Lagrangian is a differential invariant (Krupka and Trautman [KT], Krupka [K10];
see also Chap. 6 of this book).
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5.3 Invariant Euler-Lagrange Forms

Let a: W — Y be an automorphism of Y, and let ¢ be a source form on J°Y. We say
that o is an invariance transformation of e, if Joa*e¢ =¢. The generator of
invariance transformations of ¢ is a z-projectable vector field on Y whose local one-
parameter group consists of invariance transformations of e.

Lemma 5 (Noether—Bessel-Hagen equation) Let € be a source form of order s for Y.

(a) A m-projectable vector field Z on Y is the generator of invariance transfor-
mations of € if and only if

6,@8 =0. (3])

(b) Generators of invariance transformations of € constitute a subalgebra of the
algebra of vector fields on J'Y.

Proof The same as the proof of Lemma 4, Sect. 5.2. U

Equation (31) is a geometric version of what is known in the classical calculus of
variations as the Noether—Bessel-Hagen equation.

Let A be a Lagrangian of order r for Y, let o be any automorphism of Y, and let E;
be the Euler—Lagrange form of A. Using the identity

J*E; = Ejrye; (32)

(Section 4.5, Theorem 6), we easily obtain the following statement.
Lemma 6

(a) Every invariance transformation of A is an invariance transformation of the
Euler—Lagrange form E;.

(b) For every invariance transformation a of E,, the Lagrangian 1 — J 0¥ is
variationally trivial.

Proof

(a) This follows from (32): if J"a* A = 0, then J¥ o*E; = 0.
(b) This is again an immediate consequence of (32): if J¥a*E; =0 then
E‘]ra*,‘~ - O I:‘

We can generalize the Noether’s theorem to invariance transformations of the
Euler-Lagrange form. However, since the proof is based on the theorem on the
kernel of the Euler—Lagrange mapping, the assertion we obtain is of local character.
We denote by ®; the principal Lepage equivalent of A.
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Theorem 4 Let A be a Lagrangian of order r, let y be an extremal, and let = be a
generator of invariance transformations of the Euler—Lagrange form E;. Then for
every point yo € Y there exists a fibered chart (V, y) at yo and an (n — 1)-form n,
defined on V', such that on m(V)

I y*(ipz®; +1n) = 0. (33)

Proof Under the hypothesis of Theorem 4, from Sect. 4.10, Theorem 1, from
formula 02zE; = Ejp,,.; we obtain Ep,_; = 0. Thus, the Lagrangian 0,-z4 belongs
to the kernel of the Euler-Lagrange mapping, so it must be of the form 024 = hdy
over sufficiently small open sets V in Y such that (V, ) is a fibered chart (Sect. 4.8,
Theorem 9). Then, however, from the infinitesimal first variation formula over V,
expression

Jy*0pzh = I ¥ipzd®; + dJ¥ ¥z 0, (34)

reduces to
Jy*hdn = dJ*y*ip=0);. (35)
Since Jy*hdn = J y*dn = dJ"y*n, this proves formula (33). O

Remark 6 If r = 1, then the principal Lepage equivalent ®, is globally well defined.
Moreover, it follows from the properties of the Euler-Lagrange mapping that the
form # may be taken as a globally defined form on Y.

5.4 Symmetries of Extremals and Jacobi Vector Fields

Let 1 be a Lagrangian of order r for a fibered manifold Y, and let y be an extremal of
A; thus, we suppose that y satisfies the Euler-Lagrange equation

E;oJ*y=0. (36)

Consider an automorphism a: W — Y of Y with projection ¢, and its r-jet pro-
longation J'a: W~ — J'Y. We say that a is a symmetry of y, if the section ayag' is
also a solution of the Euler—Lagrange equations, that is,

E; 0 J* (apoy ) = 0. (37)
We say that a z-projectable vector field E is the generator of symmetries of y, or

generates symmetries of y, if its local one-parameter group consists of symmetries
of y.
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We need a lemma on pushforward vector fields. Consider a vector field £ and a
diffeomorphism a: W — X, defined on an open set W C X. By the pushforward
vector field of & with respect to a, we mean the vector field & defined on W by

ED(x) = Ty - E(@ (1) (38)

Lemma 7 Let X be a manifold, W an open set in X, Z a vector field on X, o: W — X
a diffeomorphism, and p a p-form. Then

igoc*p = Ot*ié(x)p. (39)

Proof We have, with standard notation,

(iia* )(x)(élﬂéﬁ”'vé)

p(fx(x))(TxO‘ (x) Teoo- &y, Tho- &gy ~7Tx“'5p)

p(0)) (€7 (), T - &, Tt - &y Toot - &) (40)
= 4(1) p(ot(x))( X0 éla X 627"'7Tx(x'§p)

= ( )(x)(élvgb---afp)'

This is exactly formula (39). O

The following theorem says that invariance transformations of the Euler—
Lagrange form E; permute extremals of the variational structure (4, ¥) and give us
examples of symmetries.

Theorem 5 An invariance transformation of the Euler—Lagrange form E; is the
symmetry of every extremal .

Proof

1. Let a: W — Y be any automorphism of Y with projection ay: 7(W) — X. Let
Z be any m-projectable vector field with projection Z,. We show that the

pushforward vector field Z(*) = To.- Zo o~ ! is m-projectable, with projection
Z(()“") = Toyg - Zp 0 oy ' Indeed, for every y € a(W)
Ty Z9(y) = T - Ty Z(o7' (1) = Ty (m) - Z(o' (v)

= Taa )% - Ty - Z(o7 ' (y) = T, 1ny) %0 - Zo(ma 1 (v))

= T, i) % - Zo(% ' () = 2 (n(y)), (41)

proving that Z“ is projectable and its projection is Z(()“O).



180 5 Invariant Variational Structures

Let §, denote the local 1-parameter group of Z, and let f, , be its projection. Then
since

d . B dno 1
(E o ()’))0 =Tmpa (5 brx (y)>0 (42)
= Tafl(y)oc . Z(a’l(y)) = Z(l) (y)7

apa”" is the 1-parameter group of Z*. The 1-parameter group of the projection

2y is defined by nafa" = anfa”" = afoma" = afo.00'n and is equal to
aﬂO,ta(_)l-

Since Z“ is projectable, its s-jet prolongation J*Z® is defined. Since we know
the 1-parameter groups of Z“, then J*Z“ at a point Jiy is given by differen-

tiation of the curve r — Jfoﬁo_r“alm(aﬂ,a’l)y(aoﬁa}agl) att =0,

s o S d ) — — —
2L = (S OB el @)
0

It can be easily seen that the vector field J*Z* can be determined by
PZ% = TFo-JZ o Fa'. (44)

We determine the right-hand side at a point Jiy € JSo(W*). Using standard
differentiations, we have

g 3 g — r ds s S — r
o2 P20 0) = (G be ) ) . 69
0

The curve t — JSa(J*f(S o '(Jip))) can be expressed from the definition of s-jet
prolongation of a fibered automorphism (see Sect. 1.4). We have

Lo B, (o (7)) = T oalI By (1,0 a0))
= Lo(J}, o B y0By,) (46)
= Jfoﬁny,«al(x) (“ﬁzail)y(aoﬂ&} 0‘61)~
Differentiating this curve, we get the vector field J*Z“ (44).
2. Let W be the domain of a. We have by definition for every point Jiy € W’,
Jo(JSy) = J;O@ ayoy . Then (Fa © Jy)(x) = (Sayay Lo g0)(x), and we can write

on the domain an((W)) of the section ayaqy !

JoaoJyoauy' = ooy (47)
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Consider the Euler—Lagrange form E), the n-form i;szE; that appears in the first
i ayay'. We have

variation formula and its values along the section J'aya,
o VFI)* (I o) *ipZE; (48)

= (%
We can easily find an expression

(oo V) ¥ipzE;
., &, at the

on the domain an(z(W)) of the section ayoy .
for the form (J*a)*izE; on W'. Choose any tangent vectors Z, Z,,.

point Jiy € W”. Then
(49)

((‘PO()*ZJ:ZEA)(J;W» (E], Ez, .. En)
=E)(Pa(y))PZ(Pa(lyy)), Tl o - By, Tl B, ..., Tl a- Ey).
we get from (44)

Writing J'Z(Pa(l5y) = TP - TFa™ - PZFa(J3y)),
Ty e - PZ(Pa(J3y)) = P2 (73) (50)
and
((Fa)*iyszE) (Jip) (B, Ea, . . En)
= E;(J () (TFPo - 2% ) (J12)), TPa - By, ..., T/’ - E,)
= (J'a)*E;(J) (2" (J3y), B1,Bs, -, B) (51)
=i, sy >(JSO()*E;L(JiV)(El,52, NG
= ( 1)(JVOC)*E;L(J£V))(515527'"7E‘n)7
or, which is the same,
71)J‘YO(*E,1. (52)

JXO(*iJ-‘ZE). = inZ(a(

. Now we can show that if y is an extremal, and « is an invariance transformation
of E;, then for any Z

(Payag ) ¥ipzE; = 0. (53)

JZ(" l)E,{, thuS,

Since by hypothesis, (J*a) * E; = E,, (52) implies JSo*izE; = i
(54)

along J%,
Js'))*J‘Yf)(*l.‘[sz‘)~ =0.
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But the left-hand side is, from (47)

SR okipzE; = (Sl o J%y)¥ipzE;
= (Jayag ' o o) *ipzE; (55a)

= ocgJSocyocgl*isz;v,
proving (53) as well as Theorem 5. O

The following theorem describes properties of individual extremals.

Theorem 6 Let 1 be a Lagrangian of order r, let s be the order of the Euler—
Lagrange form E;, and let y be an extremal. Then a m-projectable vector field 2
generates symmetries of y if and only if

Ey,.,0J'y =0. (55b)

Proof

1. Suppose we have an extremal y and a vector field = generating symmetries of y;
we prove that condition (37) is satisfied. We proceed in several steps.
Denote by a, and ag,, the 1-parameter group of E and its projection, respec-
tively. Using formulas (48) and (52) and invariance of the Euler—Lagrange
mapping (Sect. 4.5, Theorem 6), we get

(Poryorg, V¥ipzEr = (95, )* () %y g (ot E)

= (O‘oﬁz) Yoz Esyr ;-

Since the left-hand side vanishes by hypothesis, the right-hand side yields
sz*iJ"Z(“f)EJ’xfi. =0. (57)

We want to differentiate the form ., Ejs,;; With respect to £ at £ = 0 and then
consider the resulting form along the prolongation J°y of the extremal y. To
perform differentiation, note that the derivative of i, ;- Ejs,; at £ =0 is the Lie
derivative of the form isszE; by the vector field J°Z. Indeed, for every point J5:5
belonging to the domain of J°a, for sufficiently small 7, and any tangent vectors

—_ = o r
g, ..., &, at Ji0,

(o ipzE;) (J0)(Ey, Bay v ., By)

58
= E, (o, (J70)) (S Z(P o (J75)), TS0y - By, ..., TS0 - Ey). (58)
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Substituting
S Z(Poy(J8)) = Tloy - T o, - I Z(J 0 (J75)) (59)
= TS - J*Z*) (J79)
from (22), we have
(o ipzE;)(J50)(Br, Bay o oy Ba)
= JSo E;(J70)(JZ%)(J76)), (E1,Zs, .., By) (60)
= i‘]»‘Z(“*l)(J;(S)E]'ggfi(lzé)(El7 Ez, ey En)
hence
T izE; = iggon Epye- (61)

This formula proves that the derivative with respect to ¢ at = O of the right-hand
side is exactly the Lie derivative of the form i;zE; with respect to the vector
field J'E.

Then, however, since

d . «. . d.
E‘Isdt l]“'ZEi = JSOCt GEZJ.VZE;» = Elljz(z,,)Ejrar/: (62)

(Lemma 1), so we have along the extremal y, from (57),

x d . ..
J’y*]sal 631'].\-ZE1 = Jr"/* EJSOCZ lJ.sz;l

.. d . 63
=J V*EZJ“Z(’*”EJ'@{TA (63)

=0.

On the other hand, using the Cartan’s formula for the Lie derivative of a dif-
ferential form (see Appendix 5, (44)), we have

OpzipzE; = ipedipzE; + dipzipzE;
= ipz(0pzE; — ipzdE;) — dipzipzE;
= ipg0pzE; — ipzipzdE; — Opzipsk; + ipzdipsE;
= ipz0pzE; — ipzipzdE; — OpzipzE; + ipz(Eoyzs — ipzdE;)
= ipz0pzE; — OpzipzE; + ipzEo,2,
(64)
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and from the Lie bracket formula

ipzagEr = OpzipsE, — ip=0p2E; (65)
we get

OpzipzE;, = =iz g E) + ipzEs- (66)

Now, since y is an extremal and E generates symmetries of y, we have
Sy ¥z gk, =0 and from equation (63), J'y*OpzipzE; =0, thus,
Jy¥ipzE,., = 0 as required.

2. Conversely, suppose that we have an extremal y and a vector field Z such that
condition Ep,,; o J*y = 0 (27) holds. We want to show that = generates sym-
metries of y, that is,

O‘(*)‘t]& (O‘rW(I,l V¥ipzE; = 0, (67)

where a; is the local 1-parameter group of E and Z is any z-projectable vector
field.
According to Sect. 4.10, Theorem 11, condition (37) implies

JS"/*llj.szaJ,.E;L = sz*i].vza_].\EE/{ =0 (68)
for all z-projectable vector fields Z. Thus, at any point Jyy
iz 0rzE;(Jry) =0 (69)

therefore, 0=E ;V(J;y) = 0 because the Euler—Lagrange form is 1-contact. Thus
by Sect. 5.1, Lemma 2,

(J'ou)*E; (1) = Ei(Jy)- (70)
Contracting the left-hand side by J*Z(J%y) and using Lemma 7,
Jy¥ipg (Po)¥E; = Jy*(FPoy)*ij6-0E)
= (o 0 J ) i)y Er = (Jayory, © 00,)*iyp0 0 E;

= (ocoﬁ,)*(Jsoc,yoc(Itl)*irz(a,,)Ei = oc;’tJ’(oc,yocg‘t')*iJszi.

(71)

Since the contraction of the right-hand side vanishes, because y is an extremal,
we have oy J* (o470, ) *ipszE; = 0, proving (67). O
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Remark 7 Properties of the systems of partial differential equations, described in
this section, strongly rely on the variational origin of these systems. The structure of
these equations, esp. their invariance properties, indicates possibilities of applying
specific methods of solving these equations. Clearly, these specific topics need
further research.
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Chapter 6
Examples: Natural Lagrange Structures

Examples presented in this chapter include typical variational functionals that
appear as variational principles in the theory of geometric and physical fields. We
begin by the discussion of the well-known Hilbert variational functional for the
metric fields, first considered in Hilbert [H] in 1915, whose Euler-Lagrange
equations are the Einstein vacuum equations. We give a manifold interpretation of
this functional and show that its second-order Lagrangian, the formal scalar cur-
vature, possesses a global first-order Lepage equivalent. The Lagrangian used by
Hilbert is an example of a differential invariant of a metric field (and its first and
second derivatives). It should be pointed out, however, that the variational con-
siderations as well as the resulting extremal equations are independent of the sig-
nature of underlying metric fields.

Our approach to the subject closely follows the preprint Krupka and Lenc [KL].
The theory of jets and differential invariants including applications is explained in
Krupka and Janyska [KJ] (see also a general treatment by Kolar, Michor, Slovak
[KMS]). Variational principles with similar invariance properties were studied by
Anderson [Al] in connection with the inverse variational problem. More general
classes of natural bundles and natural Lagrangians that are differential invariants
of any collection of tensor fields, or any geometric object fields, were introduced in
Krupka and Trautman [KT] and Krupka [K3, K10]. The claims in this chapter are
not routine; the reader should provide a proof of them or consult the corresponding
references.

For contemporary research in the theory of natural Lagrange structures, we refer
to Ferraris et al. [FFPW], Patak and Krupka [PK], Palese and Winterroth [PW] and
the references therein. Extensive literature on the classical invariant theory, related
with the subject, can be found in Kolar et al. [KMS] and Krupka and Janyska [KJ];
however, this topic is outside the scope of this book. The variational functionals for
submanifolds, whose underlying structures differ from jet prolongation of fibered
manifolds, are not considered in this book (cf. Urban and Krupka [UK3]).
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6.1 The Hilbert Variational Functional

The modern geometric interpretation of variational principles in physics requires
the knowledge of the structure of underlying fibered spaces as well as adequate
(intrinsic and also coordinate) methods of the calculus of variations on these spaces.
In this example, we briefly consider the Hilbert variational functional for metric
fields on a general n-dimensional manifold X, a well-known functional providing,
for n = 4, the variational principle for the Einstein vacuum equations in the general
relativity theory (Hilbert [H]). Note that the Hilbert variational principle does not
restrict the topology of the underlying (spacetime) manifold X. If we require that the
topology of spacetime should have its origin in matter and physical fields, then this
principle should be completed with some other one.

In this example, we follow the preprint Krupka and Lenc [KL]; the topic cer-
tainly needs further investigations. Our assertions are formulated without proof,
which can however be easily reconstructed by means of the general theory. Basic
knowledge of the concepts of Riemannian (and pseudo-Riemannian) geometry is
supposed.

Let X be an n-dimensional smooth manifold, TSX the vector bundle of tensors of
type (0,2) over X, and let ©: T9X — X be the tensor bundle projection. 79X contains
the open set Met X of symmetric, regular bilinear forms on the tangent spaces at the
points of X. Then, the restriction of the tensor bundle projection t defines a fibered
manifold structure on the set MetX over the manifold X; we call this fibered
manifold the bundle of metrics over X. Its sections are metric fields on the manifold
X. Integral variational functionals for the metric fields are defined by n-forms on the
r-jet prolongations J"Met X of the fibered manifold Met X.

Any chart (U, ¢), ¢ = (x'), on X induces a chart (V, ), ¥ = (x', g;), on Met X,
where V = t7!(U) and g; are functions on V defined by the decomposition g =
gijdx' @ dx’ of the bilinear forms; the coordinate functions g;; entering the chart
(V, ) satisfy 1 <i<j<n. The associated fibered charts on the r-jet prolongations
J"™Met X are then defined in a standard way. In particular, if » = 2, then the asso-
ciated chart is denoted by (V2,?), ¥* = (x', g, &ijx, Sijx)> Where i <j, k<[, and
ik = digij» &ijx = drdigy; dy is the formal derivative operator. We denote

wo =dx' Ndx* A+ NdX",

o = (=D Tax AdE A AdET AT A A d
(1)
COij :dg,-j—gij’pdxp,

Wk = dgijx — &ijpdx’ .
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Then, the forms dx’, w;, w;;x, dg;i« constitute the contact basis on the set V2. We
need some systems of functions on V2. The functions

o1
ri =

3 8" (gmkj + &mk — Giktm) (2)

where g™ are elements of the inverse matrix of the matrix g;;, which are called the
formal Christoffel symbols; note that the derivative g,;x can be reconstructed from
I, by the formula g,;x = gyl + gil;- The expressions

Ry =Ty, + Iyl — Fﬁl,k — Iy, R=g"Ru, (3)
where I, ; are the formal derivatives d;I" I, define the formal Ricci tensor with

components Ry, and a function R: J*MetX — R, the formal scalar curvature.
Every metric field U 5 x — g(x) € MetX, defined on an open set in X, can be
prolonged to the section U > x — J?g(x) € J?Met X of the second jet prolongation
J*Met X. Composing the second jet prolongation J?g with the formal scalar cur-
vature, we get a real-valued function on U, x — (R 0 J?g)(x) = R(J'g), the scalar
curvature of the metric g, and a second-order Lagrangian

A =R,/|detg;| - wo. (4)

A is called the Hilbert Lagrangian. The variational functional

Fa() 3¢~ 7a(n) = [ g R (5)
Q

where Q is any compact set in the domain of definition of the section ), which is the
Hilbert variational functional for the metric fields on X.

We shall restate basic general theorems of the variational theory on fibered
manifolds for this special case. It should be pointed out, however, that all these
statements could also be proved directly, without reference to the general theory.
Our first statement rephrases the existence theorem for Lepage equivalents of a
given Lagrangian; we claim in addition that the (second-order) Hilbert Lagrangian
possesses a first-order Lepage equivalent.

Recall that t2¥ is the canonical jet projection of J°Met X onto Met X, expressed
as the mapping (', g;, &iix, Six) — (¥, &;), and denote

%:R1/|detg,~j|. (6)

A is the component of the Hilbert Lagrangian with respect to the chart on J?Met X,
associated with the chart (U, ¢), ¢ = (x/).
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Theorem 1 (Existence of Lepage equivalents) There exists an n-form ®y on the
first jet prolongation J'MetX with the following properties:

(a) h@y = A
(b) p1dO®Oy is 1*°-horizontal.

To prove Theorem 1, we can use the principal Lepage equivalent of a second-
order Lagrangian (Sect. 4.5, Example 2), which is now given by

OR OR OR
Oy = Zw +<<—d ) i+ — w,)/\w. 7
. ‘ 0gijk lagz] K 0giju ! g @

Substituting from (6), we get the principal Lepage equivalent of the Hilbert
Lagrangian

O = /[ det g ¢ (I, =TI}, )wo

ip” jk (8)
| det g,| (878 — 8"98")(dgpq; + I'y,dgix) A ;.

One can also prove Theorem 1 by searching for ®p in the form
Oy = Rwy + (fijk(i),'j -‘v-fiik[wij,l) N W, (9)

with an invariant condition ¥ = ik The following is another expression for ®y.

Theorem 2 The form ®y satisfying conditions (a) and (b) of Theorem 1 has an
expression

Oy = —Hwy + P*dg; A wy + dn, (10)
where
H = /| detgy| - &' (I T}, — TiIy,),
P =2 L /Tdetgal(—gg T, — T, + ghgir,
+ ¢ + 878" Ty — gV¢" Ty,

V |detgrs|( Ilrk klr:l)wk

These explicit formulas show that the Lepage form @y is of the first order. Since
h®y = 4, the Hilbert variational functional (1) can also be treated as a first-order
functional
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Io(t) 3¢ — du(y) = /J‘g*@H c€R. (12)
Q

Existence of the Lepage equivalent @ has a few immediate consequences. The
most important one is the form of the first variation formula (Sect. 4.6). Recall this
formula for any t-projectable vector field E on the fibered manifold MetX,
expressed by

0
dgij’

[x]

i 02
—‘f%—lﬂ—ij

(13)
Then for every metric field g, defined on an open set in X, the Lie derivative 0,1z @
is along J'g expressed as

Jg*0,20y = J'g*inzdO®y + dJ ' g*ip=0p. (14)

This is the basic (global) infinitesimal first variation formula for the Hilbert
Lagrangian, allowing us to study its extremals and conservation law equations. The
horizontal components hi;zd®y and hdJ'g*i; =@y corresponding with formula
(14) are

OR OR OR
hipnzdO®y = | =— —dy—— + dydj—— | (Eij — gii , &) w0, 15
inzd®g (5gij kagij‘k—i_ k lﬁgij‘,kl)( i — &iipS’)wo (15)
and
hdinz®y = diw' - oy, (16)
where
- - OR oR OR
= R —+di— | (B — P = . EPY 17
w &+ <3gkl,i ]agkl,ij)( 0 — 8upl )+5gk1,ij( i — &ujpl’) (17)

Note that the horizontalization 4 in (15) and (16) characterizes the forms i;i=d®g
and dij=@y along the 1-jet prolongations J'g of sections of the fibered manifold
Met X. Expression (15) represents the Euler—Lagrange term, and (16) is the
boundary term. Since from the definition of the r-jet prolongation of a vector field,
the expression Ey; — gu Jpé” can be expressed as

oer
= P\ — 4.5, — &P — -
(B — gupl") = diZu — 8upi€” — 8uip OxJ (18)

= Zgij — gkz,pjép
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(see Sect. 1.7), we can also write formula (17) as

o OR \ - 02, (=
w = RE + <— j—) (Bu — gupc”) + 4(Eu = gupc’)
Ogui ' Ogu 08t (19)
PE % - P 07 ’
= RE Jr@gkz.i (B — gupl’) + d; D8ty (Eu — gupc”)

The Lapage equivalent @y determines the Euler—Lagrange equations:
Theorem 3 (Euler-Lagrange expressions, Noether currents)
(@) The Euler—Lagrange term in the first variation formula (14) has an expression

. 1 ir js(m—=
hip=d®g = <2g,-jR — R,-j>g &5 (B — grsp&) /| det gr| o (20)

(b) The boundary term is given by the expression

Wi = %él + |detgm|(gﬂgpi - gpjgli)rl];j(Ekl - gkl.mém)

R (21)
+ /| det g,,|(g¥8" — 87¢") (Bay — grijmE™).-

The (n + 1)-form defined by expression (20), characterizing extremals of the
Hilbert variational functionals, is the Euler—Lagrange form

E(/L) = p1d®H = | detg,_v|Eijgi’g"sw,S N o, (22)
where Ej; is the formal Einstein tensor,

1

The corresponding Euler—Lagrange equations are the Einstein equations
E;oJ?g=0. (24)

The (n — 1)-form i;z®y in (16) is the Noether current associated with the vector
field =.

A specific property of the Hilbert Lagrangian consists in its invariance under all
diffeomorphisms of the fibered manifold Met X, induced by diffeomorphisms of the
underlying manifold X. Recall briefly the corresponding definitions (Krupka [K3]).
Suppose we are given a diffeomorphism o: U — U, where U and U are open
subsets of X. First, we wish to show that o lifts to a diffeomorphism oy of the set
=1(U) into t~!(U) and find equations of ay. If U and U are domains of definition
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of two charts, (U, @), ¢ = (x), and (U, @), ¢ = (x°), then for any point x € U, a

metric g at the point a(x) € U is expressed as

8 = &ov - dy’(a(x)) ® dy" (a(x)), (25)
where g,, are real numbers. Then setting
T30 - g = go(0%dy”)(x) @ (a*dy") ()
= Zavd(y” 0 2)(x) ® (" 0 ) (x)

o ap™") o' ap™) (26)
= 0 y B . i j
Eov ( ox! ) p(x) < ox/ )(p(x)dx (X) o (X)7

we get a metric g = Tgoc - g at the point x. Thus, replacing « with o', we get a
diffeomorphism Meto: t=!(U) — t7!(U), defined in components as the
correspondence

X = xdap™ (o(x)),
] a7 ol 1g7) (27)
8ij — 8ov = &ij o o .
o(a(x)) o(a(x))

This construction can be adapted to the local 1-parameter group o, of a vector
field ¢ on X. To this purpose, we may choose, for all sufficiently small ¢,
(U,p) = (U, ¢). Express ¢ as

; 0
e liA . 28
E=¢g5 (28)
Then, the mapping Met o (27) is replaced with the mapping expressed as
(1,x) = Xy~ ((x)) = K'on(x),

(g5) — & g.A<8<x"oe‘wl>) (&xfaﬂgol)) (29)
1 8ij rs = 8jj - 5 )
Ox 004 () Ox o(04()

representing the canonical lift Met o, of the flow «, to the fibered manifold Met X.
The corresponding lift of the vector field & to the fibered manifold Met X, denoted
Met ¢, is obtained by differentiating of the functions (29) at # = 0. Differentiating
the mapping (7,x') — x'o,(x) yields the component & of &. Since o, ' = o, and
oy = id, the second row in (29) yields the expression
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0 (d(xu_p7h) ; O (dxo_,p7")
8 (3x"< dt 0 @(x)55+gl]5’ ox’ dt 0/ o)

. . (30)
--u(5,),, 7 (5m)
= —8is\ 5 =&l 55 .
Ox'0/ o)~ \OX'0/ g
Thus, since the vector field Met & is determined by its flow, we have
9 g oEN\ 0
Met ¢ = 17' — is A . 1
= (gé o T8 6)0“) D (31)

The Hilbert Lagrangian A is easily seen to be diffeomorphism invariant or, which
is the same, a differential invariant (cf. Krupka and Janyska [KJ]; Kolar et al.
[KMS]). This property can also be expressed in terms of Lie derivatives.

Theorem 4 For every vector field &, defined on an open set in X,

3 pmech = 0. (32)

Combining Theorem 4 and the first variation formula (14), where 2 = Met ¢ we
obtain the identity

J' &*i)1Mer :dOn + dJ' g¥ijinge : O = 0 (33)

holding for all £ and all y. The meaning of this condition requires further analysis,
given, for more general variational functionals, in subsequent sections.

6.2 Natural Lagrange Structures

The class of natural Lagrange structures represents a far-going generalization of the
Hilbert variational principle, discussed in the previous example. The Lagrangians for
these Lagrange structures are defined on natural bundles by an invariance condition
with respect to diffeomorphisms of the underlying manifold, analogous to property
02mere /4 = 0, of the Hilbert Lagrangian /A (see Sect. 6.1, (32)). Conditions of this kind
can be rephrased by saying that the Lagrangians should be differential invariants
(Krupka and Janyska [KJ]); a specific feature of such a Lagrangian consists in its
property to define a variational principle not only for one specific fibered manifold but
rather for the category of locally isomorphic fibered manifolds. For the natural bun-
dles and their generalizations — gauge natural bundles — we refer to Kolar et al. [KMS].

Our brief exposition follows the general theory explained in Chap. 4 and two
papers on natural Lagrange structures (Krupka [K3, K10]). The relationship
between natural Lagrangians and the inverse problem of the calculus of variations
was studied by Anderson [A1].
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By the rth differential group of the Euclidean space R", we mean the group L] of
invertible r-jets with source and target at the origin 0 € R". An element of the group
L;, is an rjet Jyo, whose representative is a diffeomorphisms a: U — V, where
U and V are neighborhoods of the origin and «(0) = 0. The group operation L] X
L > (Jjo, J§p) — Jj(oo f) € Ll is defined by the composition of jets. The
canonical (global) coordinates a]‘:l p.jo on L are defined by the condition
aj’:ljz_"jk(.léoc) = D;Dj,...D;a'(0), where 1 <k<r, 1<j; <ja< -+ <jp<n, and of
are components of the diffeomorphism o. Since the group operation is polynomial,
the differential group is a Lie group. Clearly, L:; can be canonically identified with
the general linear group GL,(R).

Let X be a smooth manifold of dimension n. By an r-frame at a point x € X, we
mean an invertible r-jet J;{ with source 0 € R" and target x. The set of r-frames,
denoted # "X, has a natural smooth structure and is endowed with the canonical jet
projection 7": #'X — X: Every chart (U,¢), ¢ = (x'), on X induces a chart
(@) (0), 9" " = (¢, ) o0 F'X by Gy (D) = Dy, Dy, D, L'(0),
where 1 <k<r, 1<j;<j»<--- <jix<n, and (' are the components of { in the
chart (U, ¢). The mapping #'X x L, > (J§{,Jjo) — J5({ o a)e F'X defines on
F'"X the structure of a (right) principal fiber bundle with structure group L. #'X
is called the bundle of r-frames over X. If r = 1, then #'X can be canonically
identified with the bundle of linear frames # X.

As an example, one can easily derive the equations, describing the structure of
the principal L2-bundle of 2-frames. The group multiplication in the differential
group L? is given by

(34)

a,;, (Ao B) = dj,;, (A)aj! (B)aj? (B) + aj(A)aj;, (B),

v iy Gj

where A = Jgoc, B= Jgﬂ. The right action of Lﬁ on 72X is expressed by the
formulas

(Lo A) = G (0 (A),
{5, (LoA) =0, (O (A)a2 (A) + (G (0)d) , (A).

(35)

We need some categories:

(a) 9, — the category of diffeomorphisms of smooth, n-dimensional manifolds,

(b) 2%,(G) — the category of homomorphisms of principal fiber bundles with
structure group G, whose projections are morphisms of &,,,

() Z %B,(G) — the category of homomorphisms of fiber bundles, associated with
principal fiber bundles from 24%,(G).

Let ©: 9, — 2%,(G) be a lifting, that is, a covariant functor, assigning to an
object X of the category Z,, an object X of #4,(G) and to a morphism f: U — V
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of Z,, a morphism tf: tU — tV of 24,(G). Let Q be a manifold, endowed with a
left action of the Lie group G. For any manifold X belonging to &,,, O defines a
fiber bundle toX with type fiber Q, associated with tX. f: U — V also defines a
morphism 1of: 1oU — 19V of the category # %,(G). The correspondence
X — 10X, f — 1¢f is a covariant functor from Z,, to # %,(G), called the Q-lifting
associated with the lifting 7. This lifting is denoted by 7(.

In many applications, Q is a space of tensors on the vector space R". Then, Q is
endowed with the tensor action GL,(R) x O 3 (g,p) — g -p € Q. In this case, the
Q-lifting 7, assigns to a smooth n-dimensional manifold X the tensor bundle 7oX of
tensors of type Q over X and to a morphism f: U — V of &, the corresponding
morphism t¢f: 19U — 14V of the category & %,(GL,(R)).

In the calculus of variations, we need the jet prolongations of these fiber bun-
dles. Denote by T, Q the set of r-jets with source 0 € R" and target in Q. T, Q is
endowed with the action of the differential group L/,

L x 1703 (J5 e, J5l) — Jo((Da- ) oa™ ) € TQ (36)

(Krupka [K3]). Calculating this mapping in a chart, we easily find that formally, this
jet formula represents transformation properties of the derivatives of a tensor field
of type Q. The following interpretation is important for applications; namely, it
possesses a tool how to construct natural Lagrangians for collections of tensor
fields of a given type Q.

Lemma 1 Let X be a smooth n-dimensional manifold.

(a) Formula (36) defines the structure of a fiber bundle with type fiber T,Q,
associated with the principal L'*'-bundle 7"+'X.

(b) The correspondence X — J't1pX, f — J'fpX is a covariant functor from the
category 9, to the category F B,(L;*).

The lifting J"7¢ is called the r-jet prolongation of the lifting 7¢.

The notion of the r-jet prolongation can naturally be extended to any manifolds
0 endowed with a left action of the general linear group GL,(R).

These notions represent the underlying general concepts of the theory of natural
variational structures. Namely let X be an n-dimensional manifold (an object of the
category Z,), Q a manifold endowed with a left action of the general linear group
L,'l = GL,(R), 70X the fiber bundle with base X and type fiber O, associated with
the bundle of frames # X (an object of the category # 4, (L})), and let J'toX be the
r-jet prolongation of tpX (an object of the category # %, (LI ™). Let J'to¢ be the
lift of a vector field &, defined on X, to the bundle J"toX (an object of # %, (L )).
We say that a Lagrangian A defined on J'tpX is natural, if for all vector fields ¢,

Qyregeh = 0. (37)
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Now let (¥, 1) be a variational structure of order r, let X be the base of the
fibered manifold Y, and suppose without loss of generality that the form 1 is a
Lagrangian. We shall say that the variational structure (Y, 1) is natural, if there
exists a left L'-manifold Q such that Y = 19X, and Z is a natural Lagrangian for
this natural bundle.

Examples

1. The variational structure (MetX, 1), where A is the Hilbert Lagrangian
(Sect. 6.1).

2. The Lagrangian for a covector field and a metric field in the general relativity
theory, representing interaction of the electromagnetic and gravitational fields in
the general relativity theory. The corresponding natural Lagrange structure is the
pair (Y, 1), where the fibered manifold Y is the fiber product MetX & T*X over a
manifold X; its sections are the pairs of tensor fields (g, A), locally expressible as

g=gydx ®dx/, A=Adyx. (38)

The Lagrangian is of the form A = Ay + A', where Ay is the Hilbert Lagrangian
and the term A/, describing the interaction of the gravitational and electro-
magnetic field, is defined by the interaction Lagrangian

2 =gl (A — Aw)(Aj — Ary) /| det g wp. (39)

In this formula A;x = diA; are formal derivatives. The Euler-Lagrange equa-
tions consist of two systems, the Maxwell equations and the Einstein equations
whose left-hand side is the Einstein tensor Ej; (23) and the right-hand side is the
variational energy-momentum tensor of the electromagnetic field.

3. An example of a gauge natural variational structure is provided by the Hil-
bert—Young—Mills Lagrangian (see e.g., Patak and Krupka [PK]).

6.3 Connections

We give in this section an example of a first-order natural Lagrange structure
(6X, ), whose underlying fibered manifold is not a tensor bundle.

Consider the vector space Q = R" ® (R")* ® (R")* of tensors of type (1,2) on
the vector space R", with the canonical coordinates I" j’k We shall refer to I ;k as the
formal Christoffel symbols. Q is endowed with a nonlinear left action of the dif-
ferential group L2, defined in charts by

T, = BT, + 1), (40)
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o
defined by the formulas a;bf = 5;, aéqbf —&—a;af]bfs = 0. Note that this action is
defined by the transformation equations for the components of a connection. For
any n-dimensional manifold X, the left action (40) defines in a standard way a fiber
bundle over X with type fiber Q, associated with the principal L2-bundle of 2 frames
F°X, denoted X = F,X. We call this fiber bundle the connection bundle. Its
sections are connection fields, or connections on the underlying manifold X. One
can also assign to any diffeomorphism o of n-dimensional manifolds its lifting 7 o,
an isomorphism of the corresponding bundles of 2 frames, and the associated lifting

F onc, an isomorphism of the corresponding fiber bundles with type fiber

where a;, l, are the canonical coordinates on L;, and b}, b}, are functions on L;

Co = T; Q. Then, the correspondence X — ¢X, oo — %o is a Q-lifting, associated
with the 2 frame lifting % from the category 7, to # %, (L?).

The notion of the connection bundle was introduced in this way for the sym-
metric tensor product Q = R" @ ((R")* @ (R")*) in the paper Krupka [K9], with
the aim to study differential invariants of symmetric linear connections. The formal
Christoffel symbols entering formula (40) are in general not symmetric.

Now the g-lifting X — éX, o — %o induces in a standard way its r-jet pro-
longation liftings X — J'%X, o — J %o from Z,, to F %,(L."?). In this example,
we need the case r = 1. If X is a fixed n-dimensional manifold with some local
coordinates (x') are some local coordinates on X, then the associated fibered
coordinates on X are (x/,I" jk), and the associated coordinates on J'@X are

(x', I ;k, r ;:kj), where the coordinate functions I ]’:k , are defined by the formal
derivative operator as I’ ]l:kA,z =dr ]’k
Using these coordinates, we set

Rik:rfk 7Flssk+rlsk[':nmirfs1rim (41)

W5

and

Ag =1/ |detRij| O (42)

The system of functions Ry is called the formal Ricci tensor, and Ay is a global
horizontal n-form, defined on the fibered manifold J'#X. Formula (42) concludes
the construction of a natural Lagrange structure (X, A¢).

We show that the principal Lepage equivalent of the Lagrangian Ay is given by

1 . . .
Oy = /| detRy| (coo +3 (R*5, — R'S}) ool A w1> , (43)
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where

wo=dx' Ndx* \--- Ndx",

=d' NdP A ANdET AN AT A A dX (44)
oy = dly — T dx'.

Denote for further calculations v = detR,; and C = 4/|v|. We shall consider the
open set in the fibered manifold J'%X defined by the condition v # 0. Differenti-
ating we have

oc 1 Ov OR,, 1 ORyq
ory 2\/|U| 8RM 8F]lk 2+/Ivl 2

|l)| 5 k rm m k s X m k m s k 45
= SR (810]04 T, + 70101, — T, 070}0% — I7161675,) (45)
VAL p— k j iq Tk j rk
=~ (R*I' + 8R™T), — R'Tq; — R'T,),

and

OC _ V10l gy ORog _ V10| o551 — st516%5!)

Ty, 2 o, T 2 %t T o000

—V2|U| (R*SE— RI'SY).

Hence, the principal Lepage equivalent is

ocC 1, . : ;
Oy = Cwy + aFkla)]k Ao =+/|p| <w0 + 3 (leéﬁ — R/’(Sf)a)jk A w;) (47)
Jk,

as required.
Formula (43) can be used for explicit description of the properties of the vari-
ational functional

FQ(Tx)BFH/JIF*;L%:/]IF*G%ER, (48)
Q

for connections I' on an n-dimensional manifold X; in this formula, tx is the
projection of the fibered manifold ¥X onto X. In particular, we can determine the
Euler—Lagrange form p;d®¢ for extremal connections and the corresponding
Noether currents. We do not analyze the resulting formulas here.
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Remark A fundamental notion of the differential geometry of connections on a
manifold X is the curvature tensor. From the point of view of the variational
geometry, this notion can be represented by the formal curvature tensor

-r

[ _ i
Rikj_F' ij.k

[ m m ol
ik +Fiijm—FijF (49)

km>

defined on the 1-jet prolongation J!%X of the bundle of connections ¥X. Note that
the formal Ricci tensor (41) represents the trace of the formal curvature tensor (49)
in the indices [ and j; one can also consider a different variational functional for
connection fields whose Lagrangian is based on the trace of Rfkj in the indices / and

i, 2= /| detRy;|o.
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Chapter 7
Elementary Sheaf Theory

The purpose of this chapter is to explain selected topics of the sheaf theory over
paracompact, Hausdorff topological spaces. The choice of questions we consider
are predetermined by the global variational theory over (topologically nontrivial)
fibered manifolds, namely by the problem how to characterize differences between
the local and global properties of the Euler—Lagrange mapping, between locally and
globally trivial Lagrangians, and locally and globally variational source forms.
To this purpose, the central topic we follow is the abstract De Rham theorem and
its consequences. In particular, in the context of this book, the cohomology of
abstract sheaves should be compared with the cohomology of the associated
complexes of global sections, and the cohomology of underlying smooth manifolds.

This chapter requires basic knowledge of the point-set topology; to help the
reader some parts of the topology of local homeomorphisms have been included.
Our treatment, intended for larger audience of readers who are not specialists in
algebraic topology and sheaf theory, includes all proofs and also their technical
details, and from this point of view is wider than similar advanced texts in spe-
cialized monograph literature.

The main reference covering the choice of material needed in this book is Wells
[We]; for different aspects of the sheaf theory, especially the cohomology, we also
refer to Bott and Tu [BT], Bredon [Br], Godement [Go], Lee [L], and Warner [W].

7.1 Sheaf Spaces

Recall that a continuous mapping ¢: § — X of a topological space S into a topo-
logical space X is called a local homeomorphism, if every point s € S has a
neighborhood V such that the set ¢(V) is open set in X and the restricted mapping
|, is a homeomorphism of V onto (V).

By a sheaf space structure on a topological space S, we mean a topological
space X together with a surjective local homeomorphism ¢: § — X. The topological
space S endowed with a sheaf space structure is called a sheaf space or an étalé
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space. X is the base space, and ¢ is the projection of the sheaf space S. For every
point x € X, the set S, = o~ !(x) is called the fiber over x. We denote a sheaf space
by : S — X or just by S when no misunderstanding may possibly arise.

A mapping y: Y — S, where Y is a subset of X, is called a section of the
topological space S over Y (or more precisely, a section of the projection ), if
p(x) € S, for all points x € Y. Obviously, 7 is a section if and only if

ooy =idy. (1)

If Y =X, yis a global section. The set of sections (resp. continuous sections),
defined on a set U, is denoted by (Sec S)U (resp. (Sec') §)U, and also T'(U, S)).
The union of the sets (Sec S)U (resp. (Sec'®) S)U) through U C X is denoted by
Sec S (resp. Secl@) ).

Lemma 1

(@) A local homeomorphism is an open mapping.

(b) The restriction of a local homeomorphism to a topological subspace is a local
homeomorphism.

(¢c) The composition of two local homeomorphisms is a local homeomorphism.

Proof

(a) Let 0: S — X be a local homeomorphism. Any open subset V of § is
expressible as tue union UV,, where V, is an open set such that O’|V’ is a
homeomorphism. Then, the set ¢(V) = Uag(V,) must be open as the union of
open sets.

(b) Let T C S be a subspace and V C S an open set such that o], is a homeo-
morphism. Then, VNT =V N (a],) " (a(T)) = (a]y) ' (¢(V) N a(T)), and
a(VNT)=0(V)No(T). Thus, the image of the open set a(VNT) C T by
ol is open in ¢(T). Since o|;|,~r = 0]y IS @ continuous bijection and is an
open mapping hence a homeomorphism, a|;|;,~7 is @ homeomorphism.

(c) The proof is immediate. O

Lemma 2 Let S be a sheaf space with base X and projection o.

(a) To every point s € S, there exists a neighborhood U of the point x = o(s) in X
and a continuous section y: U — S such that y(x) = s.

(b) Let y be a continuous section of S, defined on an open subset of X. Then, to
every point x from the domain of y and every neighborhood V of y(x) such that
oly is a homeomorphism, there exists a neighborhood U of X such that
Y(U) C V and 3]y = (aly) ™[y

(¢) If U and V are open sets in X and y: U — S and 6: V — S are continuous
sections, then the set {x € UNV|p(x) = 6(x)} is open.

(d) Every continuous section of S, defined on an open set in X, is an open

mapping.
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Proof

(a) We choose a neighborhood V of s such that ¢|,, is a homeomorphism and set
U=a(V),7=(aly) "

(b) By continuity of y, we choose a neighborhood U of x such that y(U) C V, and
apply the mapping y = (a\v)fl to both sides of the identity gl o y|, = idy.
We get 7y = (a]y) ™.

(c) We may suppose that {x € UNV|p(x) =d(x)} #J. Choose a point
X0 € UNV, and a neighborhood W of the point y(x) = (x) such that (W) is
open and ¢|y, is a homeomorphism. By condition (b), xy has a neighborhood

Uy such that y(Up) C V and 7, C (0|V)71|U0. Analogously xy has a neigh-
borhood of Vj such that 6(Vy) C W and 6|, C (0|W)_1|V0' Thus, 9|y,v, €

(6|W)71|UUOVU = 0|y, proving (c).

(d) Let U be an open set in X, y: U — S a continuous section. It is sufficient to
show that the set y(U) C S is open. To every point x € U, we assign a
neighborhood V() of the point y(x) such that o(V,) is open and the map-
ping O“VT(X) is a homeomorphism, and a neighborhood Uy of the point x such

that U, C U, y(Ux) C V), and [y = (ay(x))71|UX (see Part (b) of this
lemma). Then since (a},(x))_l: (V) = Vo) € S is a homeomorphism,

7(Uy) is open in S, and we have y(U) = y(UU,) = Uy(Uy), which is an open
set. O

Remark 1 Suppose that S is a Hausdor{f space. Let y: U — S and J: V — S be two
continuous sections, defined on open sets U and V in X, such that U NV # J and
y(x0) = 6(xp) at a point xo € U N V. Then, y =  on the connected component of
U NV containing xo. Indeed, since S is Hausdorff, the set Uy = {x € UN V|y(x) =
0(x)} is closed. Since by Lemma 2, (c) the set Uy is open, it must be equal to the
connected component of the point xy. This remark shows that if a sheaf space § is
Hausdorff, it satisfies the principle of analytic continuation. On the other hand, if
the principle of analytic continuation is not valid, S cannot be Hausdorff.

Suppose that we have a ser S, a topological space X, and a mapping o: § — X.
Then, there exists at most one topology on S for which ¢ is a local homeomor-
phism. Indeed, if 7; and 7, are two such topologies, s € S a point, V € 1; and
W € 1, its neighborhood: such that |, and o|,, are homeomorphisms, then U =
a(V) Na(W) is a neighborhood of the point, x = ¢(s) and ¢~ !(U) is a neighbor-
hood of the point s both in 7y and 7. This implies, in particular, that the identity
mapping idg is a homeomorphism.

Let S be a sheaf space with base X and projection . Beside its own topology, the
set S may be endowed with the final topology, associated with the family of con-
tinuous sections, defined on open subsets of X.
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Lemma 3 Let S be a sheaf space with base X and projection o.

(a) The open sets V C S such that o|,, is a homeomorphism form a basis of the
topology of S.

(b) The topology of S coincides with the final topology, associated with the set
Sec®) S of continuous sections of S.

(¢c) The topology induced on fibers of S is the discrete topology.

Proof

(a) This is an immediate consequence of the definition of a local homeomorphism.

(b) If asubset Wof S is an open set in the topology of S, then for every continuous
section y of S, y~! (W) is an open subset of X hence by definition, W is open in
the final topology. Conversely, let W be open in the final topology. For any
section y: U — S, y(y"1(W)) € WnNy(U) C W. If the section 7 is continu-
ous, then by the definition of the final topology, y~!(W) is an open set;
moreover, since j is open in the topology of S (Lemma 2, (d)), the set
7(y"1(W)) is open in the topology of S. But by Lemma 2, (a), the sets
7(y~1(W)) cover W which implies that W is open in the topological space S.

(c) This assertion is evident.

Let 0: S — X and ©: T — Y be two sheaf spaces. Recall that a mapping f: S —
T is said to be projectable, if

tof =fyoo 2)

for some mapping fy: X — Y. Obviously, the same can be expressed by saying that
there exists fp such that the diagram

P

S — T
lo It 3)
X L Y

commutes. If f; exists, it follows from condition (2) that it is unique. If f is con-
tinuous, then the mapping f; is also continuous since it is always expressible
on open sets as fy = tof oy for some continuous sections 7y of the topological
space S. O

A continuous projectable mapping f: S — T is called a morphism of the sheaf
space S into the sheaf space T, or just a sheaf space morphism.

Lemma 4 Let 6: S — X and ©: T — Y be sheaf spaces, f: S — T a surjective
mapping and fy: X — Y its projection. Then, f is a local homeomorphism if and
only if fy is a local homeomorphism.
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Proof Let x € X be a point, y a continuous section of S defined on a neighborhood
of x. Choose a neighborhood W of the point f(y(x)) such that t|,, is a homeo-
morphism, a neighborhood V of y(x) such that f(V) C W, and a neighborhood U of
x such that U C ¢(V) and y|, is a homeomorphism. Then 1|y, ofl, 07|, =
(tofoy)|y. and from condition (2), (tof ov)|, = (fooo0y)|, =/foly proving
Lemma 4. O

Denote by f, the restriction of a mapping f: S — T to the fiber S, over a point
x € X. If X =Y, we have the following assertion.

Corollary 1 Let 0: S — X and ©: T — X be two sheaf spaces, and let f: S — T be
a projectable mapping whose projection is the identity mapping idy.

(@) fis a local homeomorphism.
(b) fis injective (resp. surjective) if and only if f, is injective (resp. surjective) for
each x € X.

Proof

(a) This follows from Lemma 4.
(b) These assertions follow immediately from the definitions. U

Let 0: S — X and t: T — Y be two sheaf spaces. The Cartesian product S x T
together with the mapping ¢ X 1: S X T — X x Y defined by the formula
(o x 1)(s,1) = (a(s),t(z)) is a sheaf space, called the product of Sand T. If X = Y,
then we define a subset of the Cartesian product S x T by S xx T = {(s,1) € Sx
T|o(¢) = 1(s)},andamapping o xx 7: S xx T — X by (6 Xx 1)(s,7) =a(s) = 1(¢).
If we consider the set S xx T with the induced topology, the mapping o X t defines
on S xx T the structure of a sheaf space, called the fiber product of the sheaf spaces
SandT.

Leto: S — X,0:8 - Xand: T — Y, v: T" — Y be sheaf spaces. Let f: S —
T and f: S — T’ be two projectable mappings over the same projection fy: X — Y.
For every point (s,s') we define a mapping f Xyf:SxS —TxT by
(f xxf")(s,s") = (f(s),f'(s")). This gives rise to the following commutative
diagram

SxyxS L SxS
Lfxxf LExSf (4)
Txy T L TxT

where the horizontal arrows denote the canonical inclusions. The mapping f Xx f”
is called the fiber product of f and f. It is easily seen that if f and f” are continuous,
then the fiber product f xx f’ is also continuous: indeed, for any open set U in
T xy T', there exists an open set Vin T x T’ such that U = k! (V); since
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(Fxxf)HO) = (F xx f) 7 (71 (V))
= (ko (f xx )T (V) = ((F x ) o)™ (V)
is an open set in § xy §’, the mapping f X x f' must be continuous.

We give some examples of sheaf spaces; using these examples we also discuss
properties of the topology of sheaf spaces.

(5)

Examples

1. Continuous global sections of a sheaf space need not necessarily exist. Consider
for example the real line R=R! and the unit circle S'={(x,y)
€ R?|x?> + y?> = 1}. The mapping ¢: R — S!, defined by the formula o(s) =
(cos 27s, sin 27s) is a surjective local homeomorphism. It is easily seen that o
has no continuous global section. Suppose the opposite. Then, if y is a con-
tinuous global section, y(S') C R is a non-void compact and open set in R
hence coincides with R. However, this is a contradiction since R is non-
compact.

2. Let 8% = {(x,y) € R}x> +y* + 7> = 1} be the unit sphere in R?, and consider
an equivalence relation ~ on S “(x,y,z) ~ (¥,y,2) if either (x,y,z) =
(X,y,7) or (x,y,z) ~ —(¥,¥,7').” The quotient space S?/ ~ is called the real
projective plane and is denoted by RP?. The quotient projection a: §> — RP? is
a sheaf space. The set RP? can be identified with the set of straight lines in R?
passing through the origin.

3. A local homeomorphism admitting a global continuous section is not neces-
sarily a homeomorphism: Define a subspace S = {(x,r) € R*|r = 0,1} of R?
and a mapping ¢: S — R by the condition ¢(x,r) = x. Then, the mapping
y: R — S defined by y(x,0) = x is a global continuous section of S but ¢ is not a
homeomorphism.

4. Consider the subspace S = {(x,r) € R?|r = —1, 1} of R?, two points a,b € R
such that a < b, and a partitions of S defined by the subsets {(x, —1)}, {(x, 1)} if
x<a, x>b, and {(x,—1),(x,1)} if a<x<b (one- and two-element subsets).
Let ~ be an equivalence relation on S defined by this partition and denote
X =X/ ~. The quotient mapping of S onto X is a surjective local homeo-
morphism; the quotient space X is not Hausdorff. Further, assigning to each of
the sets {(x,—1)}, {(x, 1)}, {{x, —1},{x,—1}} the point x € R, we obtain a
local homeomorphim of X onto the real line R.

5. The topological subspace S of R®, defined in a parametric form as § =
{(x,y,2) € R®|x = cost,y = sint,z = t,t € R} (the helix), together with the
restriction of the Cartesian projection m: R* — R? to S is a local homeomor-
phism of S onto the circle S* (Example 1). This example shows that for a general
local homeomorphism ¢: S — X the topology of S does not necessarily coincide
with the initial topology of the topology of X by the mapping .
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6. If 6: § — X is a sheaf space and Y is an open subset of X, then the restriction
0l,-1(vy: 61 (Y) — Y is a sheaf space.

7. The Cartesian projection m: X X Q — X, where X is a topological space and Q is
a non-void set endowed with the discrete topology, is a sheaf space.

8. Using the notation of Example 1, we obtain a surjective local homeomorphism
o % ¢ of the real plane R? onto the rorus S' x S'.

7.2 Abelian Sheaf Spaces

An Abelian sheaf space structure on a topological space S consists of a sheaf space
structure with base X and projection ¢ such that for every point x € X the fiber S,
over x is an Abelian group and the subtraction mapping S xx S > (s,1) > s—t € S
is continuous. A topological space S, endowed with an Abelian sheaf space
structure is called an Abelian sheaf space. We usually denote an Abelian sheaf
space o: S — X, or simply by S. Sometimes, when no misunderstanding may arise,
we call an Abelian sheaf space just a sheaf space.

A sheaf subspace of the Abelian sheaf space S is an open set T C S such that for
every point x € X, the intersection TN S, is a subgroup of the Abelian group S,.

The Abelian sheaf space structure on a topological space S induces the Abelian
group structure on sections of S. The zero section is the mapping 0: X — S,
assigning to a point x € X the neutral element of the Abelian group S,. Clearly, 0 is
a global continuous section of S: If xy € X is a point and 7 is any continuous section
over a neighborhood U of xo, then 0(x) = y(x) — y(x) on U, which implies that 0 is
expressible as the composition of two continuous mappings U > x — (y(x), y(x)) €
SxxSand S xxS > (s,r) = s—t€S. The open set (X) is called the zero sheaf
subspace of S. For any two sections y and ¢, defined on the same set in X, one can
naturally define the sum y + 6 and the opposite —y of the section y. Thus, the set of
sections over an open subset of X has an Abelian group structure. If the sections y
and J are continuous, then y 4+ ¢ and —y are also continuous.

For any subspace Y of the base space X, the restriction of the projection ¢ to the
set 6~ 1(Y) is a sheaf subspace of the Abelian sheaf space S with base Y, called the
restriction of S to Y.

Remark 2 If a local homeomorphism admits an Abelian sheaf space structure, then
it necessarily admits a continuous global section (the zero section). Conversely,
local homeomorphisms, which do not admit a global continuous section, do not
admit an Abelian sheaf space structure.

Examples

9. In this example we construct a sheaf space of Abelian groups, the skyscraper
sheaf space, whose topology is not Hausdorff. Denote by Z the set of integers
in the set of real numbers R. Let X be a Hausdorff space, xy a point of X, and let
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10.

11.

12.

13.
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S be a subset of the Cartesian product X x Z, defined as S = (X\{xo})x
{0}) U ({x0} x Z). The subsets of S of the form U x {x}, where U is an open
setin X and {xo} ¢ U, and ((V\{xo} x {0}) U {(x0,2)}, where V is open in X,
xo € V and z € Z, is a basis for a topology on S. In this topology, the restriction
of the first Cartesian projection is a local homeomorphism of S onto X. For any
two different points z1,z, € Z, every neighborhood of the point (xg,z1) € S
(resp. (x0,22) € S) contains a neighborhood ((Vi\{xo} x {0}) U {(x0,z1)} of
the point (xp,z;) € S (resp. ((Va\{xo} x {0}) U{(x0,22)} of (x0,22) € S),
whose intersection is ((V; N V2)\{x0}) x {0}. Assuming (V; N Vu)\{xo} = &,
we get a neighborhood Vi NV, of {xy} equal to {xo}. Thus, if {xo} is not an
isolated point, S is not Hausdorff.

The restriction of the Cartesian projection 7: R* — R? to the helix (Sect. 7.1,
Example 5) is a surjective local homeomorphism of S onto the unit circle S'.
This local homeomorphism cannot be endowed with a sheaf structure because it
does not admit a continuous global section.

Consider a topological space X and an Abelian group G with discrete topology.
The Cartesian product X x G, endowed with the product topology, and the first
Cartesian projection is a sheaf space, called the constant sheaf space over
X with fiber G. We usually denote this sheaf by Gy. If U is an open set in X and
y: U — Gy a continuous section, then the restriction of y to any connected open
subset V of U is constant, that is, of the form V 5 x — y(x) = (x,g) € Gy for
some g € G. Since the continuous image of a connected subspace is connected,
the second Cartesian projection pr, o (V) € G consists of a single point. In
particular, every continuous section of a constant sheaf space is constant on
connected components of the base, that is, locally constant.

The trivial sheaf space of Abelian groups over a topological space X is defined
as X together with the identity homeomorphism idy: X — X, and trivial Abe-
lian group structure on every fiber {x} = idy ' (x). Thus, the trivial sheaf space
is the sheaf space Oy.

Let T be a sheaf space of Abelian groups with base X and projection 7, and let
R and S be two sheaf subspaces of T. For every point x € X, R, + S, is a
subgroup of the Abelian group T,. We set

R+S=J R +5y. (6)

xeX

R+ S is an open subset of T: if t € R+ S, then t = r + s, where r € R and
s € S, and because R (resp. S) is a sheaf subspace of T, r (resp. s) has a
neighborhood U (resp. V) in R (resp. S) such that 7 restricted to U (resp. V) is a
homeomorphism. But both R and S are open in 7. Thus, U + V is open in 7,
proving that R + S is open in 7. Therefore, R 4 S is a sheaf subspace of 7. We
call this subspace the sum of R and S.
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Let S and T be two Abelian sheaf spaces over a topological space X, ¢ and 7 the
corresponding projections. A projectable continuous mapping f: § — T over the
identity mapping idy is called a morphism of Abelian sheaf spaces, if for every
point x € X the restriction f, = f|,-1(,) to the fiber over x is a morphism of Abelian

groups. A morphism f: § — T of Abelian sheaf spaces such that both fand f~! are
bijections, is called an isomorphism of Abelian sheaf spaces. The mapping idy is the
identity morphism of S. To simplify terminology, we sometimes call morphisms of
Abelian sheaf spaces just morphisms of sheaf spaces, of sheaf space morphisms.
The composite f o g of two morphisms of Abelian sheaf spaces is again a
morphism of Abelian sheaf spaces.
Consider a sheaf space morphism f: § — T and set

Ker f = {s € S|f(s) =0}, Imjf =f(S). (7)

Obviously, these sets can be expressed as

Kerf:UKerfx, Imf:UImfx. (8)

xeX xeX

Lemma S Let S and T be two Abelian sheaf spaces over a topological space X with
projections ¢ and 7, f: S — T a sheaf space morphism.

(a) Ker f is a sheaf subspace of S.
(b) Imf = f(S) is a sheaf subspace of T.

Proof

(a) Since Ker f = f~1(0(X)), where 0(X) is the zero sheaf subspace of 7, which is
an open set in T, the set Ker f is open in S. Since o(Kerf) = X and for each
x € X, Kerf NS, is a subgroup of Sy, Ker f is a sheaf subspace of S.

(b) By Lemma 1, (b), the restriction of the projection 7 to f(S) is a local
homeomorphism. The image of 1| is given by 7(f(S)) = 0)S) = X. For
each point x € X, the set f(S) N T, is a subgroup of T,. The commutative
diagram

f(8) xxf(8) — TxxT

l | )
7(S) — T

in which the horizontal arrows are inclusions and the vertical arrows are
subtractions (in fibers), shows that the subtractions f(S) xx f(S) — f(S) are
continuous. O

The sheaf subspace Ker f (resp. Im f) is called the kernel (resp. image) of the
morphism of Abelian sheaf spaces f: S — T.
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Let o: § — X be a sheaf space, T a sheaf subspace of S. Consider an equivalence
relation on S “s; ~ sy if 6(s1) = a(s2) and sy — s, € T.” Let S/T be the quotient
space (endowed with the quotient topology), and let p denote the quotient pro-
jection; if [s] is the class of an element s € S, then p(s) = [s]. Define a mapping
7: §/T — X by t([s]) = a(s). Since p is surjective, T is a unique mapping such that

Top=o. (10)

Since the composite T o p = ¢ is continuous, 7 is also continuous.

Note that for every point x € X the fiber t!(x) = (S/T), = S,/T, has the
structure of an Abelian group. We wish to show that the quotient S/T has the
structure of a sheaf space over X with projection 7, and p is a morphism of Abelian
sheaf spaces.

It is easily seen that the quotient mapping is open. Let V C S be an open set. To
show that p(V) is open in the quotient topology means to show that V' =
p~'(p(V)) is open in the topology of S. But V' =V + (a|,) ' (¢(V)). Since
through every point of T passes a continuous section, defined on an open subset of
a(V), the set V' is expressible as a union of open sets arising as images of con-
tinuous sections (Lemma 2, (d)). Thus, p is open.

We show that p is a local homeomorphism. Clearly, if s € S is a point and V is
its neighborhood such that ¢|, is a bijection, then o, = 1|y o p|y, where
W = p(V); since p|y,: V — W is surjective, both 1|, and p|, must be bijective.
Hence, (a]y,) " o 7|y o p|y = idy. Thus, we have the identity (a],)”" = (p|,) "' ©
(7:|W)7l and ply o (<7|V)7l o 1|y = idw. But W is open since the quotient mapping
pisopenand (p|,)”" = (a],)"" o1y which is a continuous mapping. This proves
that p|, is a homeomorphism. Now it is easy to conclude that the mapping 7 is a
local homeomorphism: We take the sets W and V as above and write
tly =oly o (P|v)71~

It remains to check that the subtraction in S/T is continuous. We have a com-
mutative diagram

S xx S s
Lpxxp Lp (11)
(8/T) xx (S/T) > §/T

in which ¢ denotes the mapping (s1,52) — sy —s; and V is the mapping
([s1], [s2]) — [s1 — s2]), and p Xy p is the fiber product. But p, ¢ and p Xy p are
local homeomorphisms, so from Lemma 4 we conclude that y is also a local
homeomorphism.

The Abelian sheaf space S/T is called the quotient sheaf space of the sheaf space
S by T. The morphism of Abelian sheaf spaces p: S — S/T is the quotient
projection.
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7.3 Sections of Abelian Sheaf Spaces

Suppose that we have an Abelian sheaf space S with base X and projection .
Consider the correspondence U — Sec® U, denoted by Secl®), assigning to every
non-empty open set U in X the Abelian group Sec®) U of continuous sections over
U. We extend this correspondence to the whole topology of X by assigning to the
empty set (J the trivial one-point Abelian group 0. To any open sets U, V in X such

that U C V we assign a group morphism sy: (Sec® §)V — (Sec'® S)U defined by
svu oy =7ly (12)

(the restriction of the continuous section y to the set U). We get a family
{(Sec®)$)U}, labeled by the set U, and a family {syy}, labeled by the sets U and
V. syy are called restriction mappings, or restrictions of the Abelian sheaf space S.

We say that two continuous sections y, § € (Sec("> S)U coincide locally, if there
exists an open covering {U, },., of U such that syy,(y) = syy,(9) for each 1 from
the indexing set I. A family {7, },.; of continuous sections 7, € (Sec'”) S)U, is said
to be compatible, if sy, y,nu. (7)) = su,,v.nv, (V) for all indices 1, x € I. We say that
the family of sections {y,},., locally generates a section y € (Sec'® $)U, where
U = UU, if syy,(y) =y, for all 1 € I, we also say that y is locally generated by the
family {y,},,. A family of continuous sections, locally generating a continuous
section, is compatible.

The following are basic properties of the restriction mappings syy and the
Abelian groups (Sec' $)U.

Lemma 6 The correspondence Sec') S has the following properties:

(1) (Sec” $)F =0.

(2) syy = idy for every open set U in X.

3) swy = syu o swy for all open sets U, V, W such that U C'V C W.

@) If two continuous sections y and § coincide locally, then y = 0.

(5) Every compatible family of continuous sections of S locally generates a
continuous section of S.

Proof (1) holds by definition, and assertions (2) and (3) are immediate. We prove
condition (4). Let {U,},; be a family of open sets in X, U =UU,, y,7, €
(Sec® S)U two sections such that the restrictions satisfy 7, ly, = 72|y, forall 1. Let
x € U. Then by hypothesis, there exists an index 1 such that x € U,; consequently,
71(x) = 71ly (x) = 121y (x) = y2(x), and since the point x is arbitrary, we have
71 = 72 proving (4). Now we prove condition (5). Let {y,},., be a family such that
7, € (Sec'® S)U, and Vlunu, = Vely,no, for all indices 1,k € I. Let x € U be a
point. Then, there exists an index 1 such that x € U,; we choose 1 and set
7(6) = 7,(x)- If also x € Uy, then ,|y,y, (¥) = Vily,qp, (x) hence p(x) = 7,(x), so
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the value y(x) is defined independently of the choice of the index 1. It follows from
the definition that y, defined in this way, is continuous on U, for every 1 hence on U,

thus, 7 € (Sec' $)U proving (5). O

The correspondence Sec® §, assigning to an open set U C X the Abelian group

(Sec(c) S)U, is called the sheaf of continuous sections of the Abelian sheaf space S,
or just the Abelian sheaf, associated with S.

Let 0: S — X and 7: T — X be two Abelian sheaf spaces over the same base
space X, f: S — T a sheaf space morphism. Consider the associated Abelian

sheaves Sec® S and Sec® T, and denote by {syy} and {tyy} the corresponding
families of restrictions in these sheaves. If y is a continuous section of S,

y € (Sec'® S)U, then f oy € (Sec'® T)U. Setting
fu(y) =rov, (13)

we obtain an Abelian group morphism f: (Sec® S)U — (Sec'® T)U. Obviously,
for every pair of open sets U,V C X such that U C V, the diagram
(Sec §)V I
Lsw L vy (14)
f
(Sec) s\yu % S/T

commutes. The family f = {fy}, labeled by U, is called the Abelian sheaf mor-
phism of the sheaf Sec®) S into the sheaf Sec® T, associated with the Abelian
sheaf space morphism f : § — 7. We usually denote the associated Abelian sheaf
morphism by f: Sec® § — Sec® T.

Now we study the sheaves associated with a sheaf subspace of an Abelian sheaf
space, and the sheaves associated with the kernel and the image of an Abelian sheaf
space morphism. Recall that the kernel Ker f and the image Im f of a sheaf space
morphism f: S — T is a sheaf subspace of S and 7, respectively.

Lemma 7

(a) S is a sheaf subspace of an Abelian sheaf space T if and only if the Abelian
group (Sec'®) S)U is a subgroup of (Sec') T)U for every open set U in X.

(b) Let6:S — X and t: T — X be two Abelian sheaf spaces, f: S — T an Abe-
lian sheaf space morphism, and let y € (Sec'®) S)U. Then y € (Sec'“Ker f)U
if and only if fy(y) = 0.

(¢c) Let 6: S — X and ©: T — X be two Abelian sheaf spaces, let f: S — T be a

sheaf space morphism, and let § € (Sec(c) T)U be a continuous section. Then
J€ (Sec(”)Imf)U if and only if it is locally generated by a family of con-
tinuous sections {fy,(7,)},c; where 7, € (Sec'®) S)U,, and the family {U,} .,
is an open covering of U.
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Proof

(a) If S is a sheaf subspace of 7, then S is open in the sheaf space T, and
Sy =SNT, CT,is asubgroup for every x € X. If y € (Sec(c) S)U, then 7y is
continuous in T because S is open. Thus, y € (Sec® T)U, and (Sec'® S)U
must be a subgroup of (Sec(c) T)U. Conversely, let x € X, 51,52 € S, and let
VisV2 € (Sec(") S)U, be continuous sections defined on a neighborhood U, of
x such that y,(x) = 51, y,(x) = s (Lemma 2, (a)). The union of the sets U,
coincides with U which implies that U is open. Moreover since y, + 7, €
(Sec'® $)U then s; + 55 = 7,(x) + 1o(x) = (31 + 72)(x) € S,

(b) This is a trivial consequence of (13).

(c) Let 0 € (Sec!Im f)U, and let x € X. Then 6(x) = f(y,(x)) for some con-
tinuous section 7y,, defined on a neighborhood U, of x such that U, C U
(Lemma 2, (b)). We may assume, shrinking U, if necessary, that both é and 7,
are homeomorphisms on U,. Then syy, (0) =f o7y, = fy.(y,), so the family
{fu.(7¢) },er locally generates 6. The converse is obvious. d

Remark 3 Lemma 7, assertion (c) does not assure that for a continuous section

d € (SecIm f)U, there always exists a continuous section y € (Sec') §)U such
that 6 = fy(y).

In accordance with Lemma 7, (a), given a sheaf subspace S of an Abelian sheaf 7,
we define a subsheaf of the sheaf Sec®) T as the correspondence U — (Sec(c) S)U,
and write Sec® S C Sec'® T.Iff: § — T is a sheaf space morphism, then the kernel

(resp. the image) of the sheaf morphism f: Sec(®) § — Sec® T is defined to be the
Abelian sheaf, associated with the sheaf space Ker f (resp. Im f); that is, we set

Ker f = Sec“Kerf, Im f = SecImf. (15)

7.4 Abelian Presheaves

We can use properties (1), (2), and (3) of the sets of sections of an Abelian sheaf
space (Sect. 7.3, Lemma 6) to introduce the concept of an Abelian presheaf. Dia-
gram (14) will then be used to define Abelian presheaf morphisms. Properties (4)
and (5) will be required to define complete presheaves, that is, (abstract) sheaves.

Let X be a topological space, S a correspondence assigning to an open set
U C X an Abelian group SU and to every pair of open sets U, V such that V C U
an Abelian group morphism syy: SV — SU. S is said to be an Abelian presheaf,
or just a presheaf, if the following conditions are satisfied:

(1 Sg=0.
(2) syy = idy for every open set U C X.
(3) swy = syy o swy for all open sets U, V,W C X such that U C V C W.
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The topological space X is called the base of the Abelian presheaf S. Elements
of the Abelian groups SU are called sections of S over U, and the Abelian group
morphisms syy are restriction morphisms, or just restrictions of S. If y € SV and
U C V, then the section syy(y) is called the restriction of the section y to U.

Let S be an Abelian presheaf with base X and restrictions {syy}. Let U be an
open subset of X. We say that two sections y,d € SU coincide locally, if there
exists an open covering {U,},.; of U such that for every 1 € I

Syu, (/) = Suv, (5) (16)

A family {y,},., of sections of S, where y, € SU,, is said to be compatible, if the
condition

sv,unu, (7)) = sv,vnu, (V) (17)

holds for all 1,x € I. We say that a family {y,},, locally generates a section
y € SU, where U = UU,, if

SUU,(?) =" (18)

for all 1 €1. A family of sections, locally generating a section, is always
compatible.

A complete Abelian presheaf, or an Abelian sheaf, is a presheaf S satisfying, in
addition to conditions (1), (2) and (3) from the definition of an Abelian presheaf, the
following two conditions:

(4) Any two sections of S which coincide locally, coincide.
(5) Every compatible family of sections of S locally generates a section of S.

If an Abelian presheaf S is complete, then any section, locally generated by a
compatible family of sections, is unique. Indeed, if 7, y, are two sections locally
generated by a compatible family {y,},,, then according to (5), sy, (y,) =7,
= syu,(7,), and property (4) implies y; = 7,.

Let S (resp. T) be an Abelian presheaf over X, {syv} (resp. {fyy}) the family of
restrictions of S (resp. T). Let f = {fy} be a family of Abelian group morphisms
fy: SU — TU. f is said to be a morphism of Abelian presheaves, or simply a
presheaf morphism, if for every pair of open sets U and V in X such that U C V, the
diagram

sv norv
L sw L tvy (19)
su “ TtU

commutes. We also denote this presheaf morphism by f: S — T.

A subpresheaf S of an Abelian presheaf T is a presheaf such that SU is a subgroup
of TU for every open set U in X. If 1 are the corresponding inclusions, then the
presheaf morphism 1: S — T, is called the inclusion of the subpresheaf S into T.
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The composition of presheaf morphisms is defined in an obvious way. If g: R —
Sand f: S — T are two presheaf morphism, where g = {g, } and f = {f,}, then
we define go f: R — T to be the family {g, o fy}.

If S is an Abelian presheaf, then the family ids = {idsy} is a presheaf mor-
phism, called the identity morphism of ids. If :S— T and g: T — S
(resp. h: T — 8) are two Abelian presheaf morphisms and gof =idg
(resp. f o h =idt), we call g (resp. h) a left inverse (resp. right inverse) for f. If f
has a left inverse g and a right inverse h, then h = (gof)oh=go(foh)=g
hence the presheaf morphism h = g is unique. It is called the inverse of f and is
denoted f'. f is called a presheaf isomorphism, if it has the inverse.

An Abelian presheaf morphism f = {f,} is called injective (resp. surjective), if
the group morphisms fy are injective (resp. surjective).

Let f: S — T be an Abelian presheaf morphism, f = {f; }. We define a presheaf
Ker f (resp. Im f) as the correspondence, assigning to every open set U C X the
Abelian group Kerfy C SU (resp. Im fyy C TU), and to every two open sets
U,V C X, where U C V, the restriction syylg,, s, : Ker fy — SU (resp. tyyl|y, 1, :
Im fy — TU). Ker f (resp. Im f) is a subpresheaf of S (resp. T) called the kernel
(resp. image) of f.

Remark 4 If the family {U, ,}le ; consists of two disjoint sets Uy, Us, then condition
@) sy, (7,) = su,z(7,) reduces to the identity 0 = 0. Thus, property (5), used for
the definition of a complete presheaf, implies that there should always exist an
extension of y; and y, to U; U U,. This observation can sometimes be used to easily
check that a presheaf is not complete: It is sufficient to verify that in the considered
Abelian presheaf such an extension does not exist.

Examples

14. By definition, the sheaf of continuous sections of an Abelian sheaf space,
introduced in Sect. 7.3, is a sheaf.

15. Let S and T be Abelian sheaves with base X and let f: S — T be an Abelian
presheaf morphism. It is easily seen that Ker f is a complete presheaf of S.
Indeed, Ker f satisfies condition (4) from the definition of a sheaf. To inves-
tigate condition (5), denote by {syy} (resp. {zyy}) the family of restrictions of
S (resp. T). Let {U,},., be a family of open sets in X, U = UU,. Let {7, },, be
a family of sections such that y, € (Ker f)U, and sy, v,nv, (7,) = Su,.v.nv, (V)
for all 1,k € I. Then by condition (5), there exists y € SU such that
syu, () = 7,. Using this condition and the commutative diagram (19), we get
tu,(fu(y)) = fu,(suy, (7)) = fu,(y,) = 0. Since T is complete, condition (5)
implies fy(y) = 0.

16. The trivial sheaf over a topological space X is a complete presheaf, assigning to
each open set U C X the Abelian group idy, with the restrictions
spy(idy) = idy. The trivial sheaf over X is denoted by Oy.

17. Assume that we have an Abelian sheaf space S with base X and projection o.
Consider the correspondence Sec S, assigning to an open set U C X the Abelian
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18.

19.

20.

21.
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group (Sec S)U of all, not necessarily continuous, sections of the local homeo-
morphism ¢, defined on U. To any open sets U, V C X suchthat U C V we assign
the restriction mapping syy in a standard way; we get Abelian group morphisms
syy: (Sec S)V — (Sec S)U. In this way, we get an Abelian sheaf Sec S, called the
sheaf of (discontinuous) sections, associated with the sheaf space S.

Let X be a topological space. Assign to every open set U C X the Abelian
group CyrU of continuous real-valued functions, defined on U, and to any
open sets U,V C X such that U C V, the restriction mapping defined as
CxrV 3 f — sw(f) =fly € CxrU. This correspondence obviously satisfies
the axioms (1)—(5) of a complete Abelian presheaf (Abelian sheaf). Indeed,
axioms (1), (2), and (3) are satisfied trivially. To formally verify (4), suppose
we have two continuous functions f, g € Cx rU such that

Syu, (f) =f|U, = Syu, (8) = 8|U, (20)

for some open covering {U,},., of U. Clearly, then for every point x € U,
f(x) =g(x), so f and g coincide on U. To verify axiom (5), consider a
compatible family of continuous functions {f;},.,, where f; is defined on U,.
Setting f(x) = f,(x) whenever x € U,, we get a continuous function f, defined
on U = UU,. Thus, the presheaf Cx g, defined in this way, is complete. This
complete Abelian presheaf is referred to as the sheaf of continuous functions on
the topological space X.

Let X be a smooth manifold. Assign to every open set U C X the Abelian group
CyrU of real-valued functions of class C’, defined on U, where
r=0,1,2,...,00, and to any open sets U,V C X such that U C V, the
restriction mapping Cx gV 3 f — syu(f) = f|, € Cx gU. This correspondence
obviously satisfies the axioms (1)—(5) of a complete presheaf; we get a com-
plete Abelian presheaf called the sheaf of functions of class C" on X.

Let E be a smooth vector bundle over a manifold X with projection n. For any
r=0,1,2,..., 00, assign to every open set U C X the Abelian group I'},(n) of
C’-sections of E, defined on U, and to any open sets U,V C X, where U C V,
the restrictions T'y(%) 3y — syu(y) = y|y € T'y(n). This correspondence
obviously satisfies the axioms (1)—(5) of a complete Abelian presheaf, the sheaf
of sections of class C" of the vector bundle E.

We show in this example that the image of a complete Abelian presheaf by an
Abelian presheaf morphism into a complete presheaf is not necessarily a

complete subpresheaf. Consider the Abelian sheaf Cyg = QY% of smooth
functions (0-forms) and the sheaf T = Q)l( of smooth 1-forms over the smooth
manifold X = R?\{(0,0)}. The exterior derivative d: Q) — Q defines, for
every open set U C X, a morphism of Abelian groups d: Q?(U — Q)l( U, and a
presheaf morphism d: Q?( — Q)l( We show that the image presheaf Im d C Q)l(
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does not satisfy condition (5) of a complete presheaf, so consequently, it is not
complete. Consider in the canonical coordinates x, y in R2, the 1-form

= Lﬁ yfx (21)
XxXc+y

Let {U,},., be a covering of X by open balls. Then by the Volterra-Poincare
lemma, w =d¢, on U,, where ¢, € Q?(U,, but there is no function ¢ € Qg)(
satisfying w = d¢ (see e.g., Schwartz [Sc]). Thus w is locally expressible as the
exterior derivative, but there is no global function ¢ such that w = do.

7.5 Sheaf Spaces Associated with Abelian Presheaves

We introduce in this section a correspondence, assigning to an Abelian presheaf an
Abelian sheaf space, and to an Abelian presheaf morphism an Abelian sheaf space
morphism, and study basic properties of this correspondence.

Let S be an Abelian presheaf with base X, {syy} the family of its restriction
mappings. For any point x € X, consider the set of all pairs (U,7), where U is a
neighborhood of x and y a section of S, belonging to the Abelian group SU. There
is an equivalence relation on this set “y ~ 0, if there exists a neighborhood W of x
such that the restrictions of y and d to W coincide.” Indeed, the binary relation ~ is
obviously symmetric and reflexive. To show that it is transitive, consider three
sections y; € SU\, y, € SU», and y; € SUs, such that y; ~ y, and y, ~ 3. Then by
definition, there exist two neighborhoods V and W of the point x such that
VU NU, WCUNU; and sy,v(y;) = su,v(y2) and sp,w(y2) = svw(y3)-
Thenon VNW

sUl,VﬁW(Vl) = Sy,vnw © Sul,v(%) = Sy,vnw © SUZA,V(Vz) = Suz,vmw(“/z) (22)
= Sw,vnw © SUZW(“/z) = Sw,vnw © SU3W(“/3) = SU37V0W(V3)'

The equivalence class of a section y is called the germ of y at the point x and is
denoted by [y],. Denote by S, the quotient set and consider the set

Germ S = U S, (23)

xeX
Define a mapping ¢: Germ S — X by the equation
a([y],) = x. (24)

We need a topology on the set Germ S and an Abelian group structure on each
of the sets S, defining on Germ S the structure of a sheaf space of Abelian groups
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with base X and projection ¢. Let U be an open set in X, y € SU a section. We
define a mapping y: U — Germ S by

7(x) = [l (25)

The set Germ S will be considered with the final topology, associated with the
family {7}, where 7 runs through the set of sections of the presheaf S; this is the
strongest topology on the set Germ S in which all the mappings } are continuous.

Note that if y € SU is a section then the set J(U) is open in Germ S. Clearly, if
0 € SV is another section, we have

59(U) = {x € V(W) = I} = {x € UNVIS() =3}, (26)

which is an open subset of U NV formed by all points x such that 6 =y on a
neighborhood of x. Now we apply the definition of the final topology to observe
that 3(U) is open.

It is easy to see that the mapping o: Germ S — X defined by (25) is a local
homeomorphism. If y € Germ S is any germ at x € X and y € SU any represen-
tative of y, then W = 3(U) is a neighborhood of y and

olyo ¥=idy, Joaly =idy. (27)
Every fiber S, of ¢ has the structure of an Abelian group defined by

], + 0], = [sow () + syw(0)],, (28)

where y € SU, 6 € SV, and W = U N V. Clearly, this definition is correct, because
the germ on the right-hand side is independent of the choice of the representatives y
and ¢. Indeed, with obvious notation

[sowe (') + surw (8], = [swown (s (7) + surve(0))]
= [suwr (y) + suwn (8')],, (29)
[suw (7) + svw (0)], = [suwr (y) + svwr (9)],,

where W = U’ NV'. Since one may choose the set W’ in such a way that
SUW//('})) = SU/W//(V) and SVW”((S) = SV/W//(é/), we have

[SUW(V) + SVW(a)]x = [SU’W”(V’) + SV’W”(él)]x' (30)

It remains to check that the mapping (p,q) — (p — ¢) of the fiber product
Germ S Xy Germ S into Germ S is continuous. Let (pg, go) be an arbitrary point of
the set Germ S xx Germ S, where py = [y],, go = [J],. We may assume without
loss of generality that y,0 € SW, where W is a neighborhood of x. Then
Po—qo = [y —0],. If n =y — 0, then (W) is a neighborhood of the point py — go.
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The set 5(W) + (W) C Germ S x Germ S is open, and the set (7(W) 4 6(W)) N
(Germ S x5 Germ S) is open in the set Germ S x5 Germ S. Since the image of
(5(W) +6(W)) N (Germ S x5 Germ S) under the mapping (p,q) — (p — q)
coincides with 77(W), this mapping is continuous at (po, qo). This completes the
construction of the Abelian sheaf space Germ S from a given presheaf S.

We call Germ S the Abelian sheaf space, associated with the Abelian presheaf
S. The continuous section 7: U — Germ S is said to be associated with the section
y € SU.

Let S (resp. T) be an Abelian presheaf over a topological space X, {syv}
(resp. {tyv}) the family of restrictions of S (resp. T). Let f = {f,} be a presheaf
morphism of the presheaf S into T. Denote by ¢: Germ S — X and 7: Germ T —
X the corresponding sheaf spaces. We define a mapping f: Germ S — Germ T by
the equation

W) = el (31)

where [y], € Germ S and y € SU is any representative of the germ [y] . It can be
readily verified that the germ [fy(y)], is defined independently of the choice of the
representative . Indeed, let 6 € SV be such that [6], = [y],. Then syw(y) = syw(J)
for some neighborhood W of the point x. Applying the definition of the presheaf
morphism, we obtain

tuw o fy(y) = fw o suw(y) = fw o syw(0) = tyw o fy(6), (32)

hence [fu(y)], = [fv(5)],.

We assert that the mapping f, defined by (31), is a sheaf space morphism.
S obviously satisfies 7 o f = . Note that if y € SU, then fy(y) is a section of T; in
particular, the mapping x — f([y],) =f o ¥(x) = [fu(y)], of U into the set germ T
is continuous (with respect to the final topology on Germ T). This means, however,
that f o 7 is continuous, and using the properties of the topology of the set Germ S,
we conclude that the mapping fis continuous. Finally, the restriction f; of f to each
fiber (Germ S), is an Abelian group morphism. Summarizing, we see that all
conditions for f to be an Abelian sheaf space morphism hold. f is said to be
associated with the Abelian presheaf morphism f.

Consider a sheaf space of Abelian groups S with base X and projection o, the
associated sheaf of Abelian groups Sec® S, and the sheaf space Germ Sec'®) S,
associated with the sheaf Sec®) S. Let ¢’: Germ Sec'®) § — X be the sheaf space
projection. Let s € S be a point and V a neighborhood if s such that g, is a

homeomorphism. Put x = a(s), 7, = (a],) ', and

vs(s) = [rs(x)]- (33)

This defines a mapping vs: S — Germ Sec'®) S such that ¢’ o vg = 0.
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Lemma 8

(a)

(b)

(©)

Let S and T be two Abelian presheaves with base X, f: S — T an Abelian
presheaf morphism, and let f: Germ S — Germ T be the sheaf space mor-
phism associated with f. Then for every point x € X

(Germ Ker f) = Kerf,, (GermIm f) =Imf,. (34)

Letf: Germ R — Germ S (resp. g: Germ S — Germ T ) be the Abelian sheaf
space morphism associated with an Abelian presheaf morphism f: R — S
(resp. g: S — T), and h: Germ R — Germ T the Abelian sheaf space mor-
phism associated with the Abelian presheaf morphism h = gof. Then
h=gof.

The mapping vs: S — Germ Sec(®) S is an Abelian sheaf space isomorphism.

Proof

(a)

(b)
(©

Let [y], € Germ Kerf. Then y € (Kerf)U, where U is a neighborhood of
x. Thus, the representative y satisfies fi;(y) = 0 hence by (31), f([y],) = 0 and
[7], € Ker f. Conversely, assume that [y], € Kerf. Then by (31)
f(,) = [fv(y)], = 0. In particular, fy(y) is equivalent to the zero section,
tvu(Fv(y)) = fv(svu(y)) = 0 for a neighborhood U of x such that U C V.
Thus [y], = [svu(y)],. where syy(y) € Ker fy.

Let [0], € Germ Im f. Then for some neighborhood V of x, 6 = fy(y), where
y € SU. Thus by (31), f([y],) = [fu(y)], = [0], which means that [0], € Im f,.
Conversely, let [0], € Im f;. Then there exists [y], such that f.([y],) = [0],-
Assume that y € SV, § € TV. Then on a neighborhood U of x, fy(syy(y)) =
tyy(9) which implies [0], = [tyy ()], = [fusvu(y)],, which is an element of
the set Germ Im f,.

The proof is straightforward.

We shall show that vg is an Abelian sheaf space isomorphism. Let [y] €
Germ Sec') S be a germ represented by a section y € (Sec(C> S)U. Write
75([y],) = 7(x). Clearly, the point y(x) € S is defined independently of the
choice of the representative y. We have t5([y],) = (av) ' (x), where V is a
neighborhood of the point y(x) € S such that the restriction o|, is a homeo-

morphism. Since vs o t5([y],) = vs((av) ™ (x)) = [(UV)il]x = [7], and

ts o vs(s) = ts([7,) = vs(x) =5, (35)

Tg 18 the inverse of vg.

We shall verify that vg is continuous. Let s € S be a point, x = a(s), V a
neighborhood of the point vs(s) € Germ Sec' S. The point vs(s) has a
neighborhood 7,(U), where y,: U — S is a section, defined on a neighborhood
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U of x, and j(y) = [y],- Since 7, is continuous, we may suppose that
7,(U) C V. But the set y,(U) is a neighborhood of the point s, and
vs(7,(U)) = 9,(U) C V, hence vs is continuous at s.

Now we shall show that for every point x € X and any two points sy, s, € Sy,
vs(s1 4+ 82) = vs(s1) + vs(s2). Let Vi (resp. V,) be a neighborhood of s;
(resp. s2) such that 0'|Vl (resp. (7|V2) is a homeomorphism. One may suppose
that 6(Vy) = a(V2) = U. Then y,,,7,,, 7, +s5, € (Sec!® $)U and by definition
s ]x T sly = s, + Vs,)ye that is, vs(s1) 4 vs(s2) = vs(s1 + s2). This proves
that the mapping vs is an Abelian sheaf space morphism.

The mapping vs is obviously injective and surjective hence bijective. The
inverse mapping (vs)_l: Germ Sec'®) § — § is continuous by the properties of
the final topology, since for every section y € Sec'®) § the composite (vS)*1 o
y =7 is continuous. Summarizing, this proves that vg is an Abelian sheaf
space isomorphism. U

We call the Abelian sheaf space isomorphism vg: S — Germ Sec® § the
canonical isomorphism.

7.6 Sheaves Associated with Abelian Presheaves

The concepts of an Abelian sheaf associated with an Abelian sheaf space and the
Abelian sheaf space associated with an Abelian presheaf allow to assign to any
Abelian presheaf S the sheaf Sec()Germ S, which is said to be associated with S.
We study properties of this correspondence.

Let S be an Abelian presheaf over a topological space X, {syy} the family of its
restrictions. For every open set U C X define a morphism of Abelian groups

Vy: SU — (Sec)Germ S)U by
o) =7, (36)

where 7 is a section of the sheaf Germ S, associated with 7 (Sect. 7.5, (4)). The
Abelian presheaf morphism 9¥s = {9y} of S into SecGerm S is said to be
canonical. Since for every open sets U,V C X such that U C V, and every point
x € U, 9y(svw() () = Isvu()], = bl, = 3(x) = 9y ()] (x). ¥ commutes with
the restrictions,

Yy osvu(y) =Iv(y)ly- (37)

Note that any section ¢ of the sheaf Sec)Germ S is locally generated by a
family of sections, generated by sections of S. To prove it, consider a continuous
section 0 € (Sec)Germ S)U and any point x € U. By definition §(x) is the germ
of a section y, € SU,, where U, is a neighborhood of the point x in U. That is,
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0(x) = [y, = 7.(x). The projection o: Germ S — X of the sheaf space Germ S is a
local homeomorphism and ¢ o § = idy. On the other hand, ¢ o 7, = idy,, and since
the inverse mapping is unique,

5|UX = ?x = ﬂUx(yx)' (38)
Obviously, U = UU, and for any two points x,y € U, d|,, = 7, hence

v.nuy- (39)

0 UinUy = T UinUy = Ty
Thus [y,], = [y,], for every z € U, N U,. Therefore, every point z € U, N U, has a
neighborhood W, such that

suw.(7:) = su,w.(7,)- (40)

In view of (38), we say that the continuous section & € (Sec)Germ S)U is
locally generated by the family of sections {y,},., of S.
Our aim now will be to find conditions ensuring that the canonical morphism

¥s: S — SecGerm S is a presheaf isomorphism.

Theorem 1 Let S be an Abelian presheaf. The following conditions are
equivalent:

(1) S is complete.
(2) The canonical presheaf morphism ¥g: S — Sec'“Germ S is a presheaf
isomorphism.

Proof

1. Suppose that g = {Jy} is a presheaf isomorphism. Let {syv} be the restric-
tions of the presheaf S, {ryv} the restrictions of the sheaf SecGerm S. Let
{U,},; be a family of open sets in X, U = UU,, and y, J two sections from SU
such that sy, (y) = sy, (0). Then by the definition of the presheaf morphism,
Yy, o spy,(y) = tyy, © Yu(y) = tyy, o Yy(d). Hence dy(y) = ¥y(d) and, since
Yy is a group isomorphism, y = ¢. This means that the presheaf S satisfies
condition (4) of the definition of a complete presheaf. Now suppose that a family
{y.},e;» Where y, € SU,, satisfies the condition sy, y,v, (,) = su,.u,nu, (V) for
all 1,k € 1. Then

Yu,nv, © sv,unv, (1) = tu,vnu () © Do, (7,) (a1)

= t,.v,00, (V) © Vo, (1),
so there must exist a section d € (Sec)Germ S)U, where U = UU,, such that
tyy,(0) = Iy, (y,) for all indices 1 € I. If y € SU is such that 0 = Jy(y), we
have tyy, 0 Yy(y) = Yy, o syy,(v) = Iy, (7,), hence syy,(y) = y,. Thus, condi-
tion (5) is also satisfied. This means, however, that S must be complete.
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2. Conversely, suppose that the presheaf S is complete. We wish to show that there
exists a presheaf morphism f: SecGermS — S, f = {fu},such that g o f =
idg..©)Germ g and fo g = idg, that is,

7.9[] o fU = id(Sec(c)Germ S)u» fU o 7-9U = idSU (42)

for all open sets U C X. Obviously, these equations have a solution fy if and
only if the mapping 9y is bijective. Since we have already shown that 9y is
injective, it is sufficient to prove that it is surjective.

Let & € (Sec)Germ S)U be a section, and let x € U be a point. Applying the
definition of a presheaf (condition (3), Sect. 7.4) of to Eq. (38),

SU,NU,W. © SU, U, (Vx) = Sunu,.w. © Su, unu, (Vy)- (43)

Covering U, N Uy by the sets W, we get from condition (4) of the definition of a
presheaf

su v, (7)) = su.unu, (y)- (44)
Condition (5) now implies that there exists a section y € SU such that

suu, (V) = Vs (45)

for all x € U. Therefore, the sections y and 7, belong to the same germ at every
point of the set U,. This means that |, ) = J, and

dly, = 7 =y, (40)

Since the presheaf of sections of the sheaf space Germ S is a sheaf (Lemma 6),
we get 0 = 7 proving that the mapping Jy is surjective.

Consequently, the mapping fy exists and is given by the formula fy; = (19U)_l.
It remains to show that #yy o fy = fy o syy for any two open sets U,V C X
such that U C V, where tyy are restrictions of the presheaf Sec“Germ S. Let

d € (Sec)Germ S)U be a section; then & =7 =¥y (y) for some section
y € SV. We have

svu o fy(7) = syu o fy o Yy(y) = svu(y), (47)
and
fuotyy(y) = fuotyyody(y) = fuodyosvy(y) =swu(y),  (48)

proving the desired identity fyyofy =fyosyy. Now the proof is
complete. U
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Theorem 2 Let S (resp. T) be an Abelian presheaf with restrictions {syv} (resp.
{tuv}), let £: S — T be an Abelian presheaf morphism. There exists a unique

Abelian presheaf morphism g: Sec')Germ S — Sec'“)Germ T such that the diagram

S LA

1 Vs 197 (49)
Sec)Germ S -%»  Sec©Germ T

commutes.

Proof f generates a sheaf space morphism f: Germ S — Germ T by the formula
F(v],) = [fu()],, where U is a neighborhood of x and y € SU is a representative

of the germ [y],. f defines a sheaf morphism g: Sec!Germ S — Sec(“)Germ T,
g={gy} by

gu(d) =f o9, (50)

where 6 € (Sec)Germ S)U. Note that condition (45), Sect. 7.5 can be expressed in

the form f(dsy(y)(x)) =I7u(fu(y))(x)) or, equivalently, fodsy(y) =
d1p o fy(y), which implies

Gu(Wsu(?)) =fodsu(y) =Vruofuy) (51)

This proves existence and uniqueness of g. O

To describe the morphism g: SecGerm S — Sec©Germ T explicitly, choose a

continuous section ¢ € (Sec(C>Germ S)U. We have already seen that there exists a
family {7, } o of sections y, € TUy, where Uy is a neighborhood of x in U, such that

Oy, = Isu,(7x)- (52)

If z € U, N Uy, then sy,w,(7,) = su,w,(7,) on some neighborhood W; of the point
zin U, N U,. Obviously, on Uy

v )ly, = I1.u.(fu.(2:)), (53)

because for every y € U,

9u ()|, () =7 (0(y)) =F(Vs.0, (1)) =f([2:],)

(54)
= [fu. (2], = I7.0.(Fu, (7)) (¥)-

Thus, if ¢ is locally generated by the family {7,},.,, then g, (d) is locally gen-
erated by the family {fy (y,)}.cy-
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Note that if in diagram (49), T is a complete Abelian presheaf, then by Theorem
1, Y7 is an Abelian presheaf isomorphism, so we have, with obvious conventions,

f=497"ogods. (55)
If S is a complete presheaf, then

g =070 fodgl. 56
S

Corollary 2 If S is a subpresheaf of an Abelian presheaf T, then the sheaf
Sec)Germ S is a subsheaf of Sec)Germ T.

Corollary 3

(a) Every complete Abelian presheaf is isomorphic with an Abelian sheaf, asso-
ciated with an Abelian sheaf space.

(b) Every presheaf morphism of complete Abelian presheaves is expressible as a
sheaf morphism, associated with a sheaf space morphism.

Proof

(a) This follows from Theorem 1.

(b) Ifboth Sand T in Theorem 2 are complete presheaves, then formulas (55) and
(56) establish a one-to-one correspondence between presheaf morphisms f of
complete presheaves and sheaf morphisms g associated with sheaf space
morphisms. O

Let f: S — T be an Abelian presheaf morphism, and suppose that the Abelian
presheaf T is complete. Let f: Germ S — Germ T be the associated morphism of
sheaf spaces. Note that we have defined the image Im f as a subpresheaf of T. On

the other hand, we have also defined the image of the sheaf Sec)Germ S by the
sheaf morphism induced by f, which is equal to the subsheaf Sec“Im f of the
Abelian sheaf Sec’Germ T. Obviously, we have Imf C ﬂ}l(Sec(C)Im f), and
7! (Sec(">Im f) is a complete subpresheaf of T. To distinguish between Im f and
97! (Sec“Im f), we sometimes call 97! (Sec'“'Im f) the complete image of S by

the presheaf morphism f, or the complete subpresheaf, generated by S.
If S is a subpresheaf of the presheaf T, then the canonical inclusion ig: S — T

defines the image Im 15 and the complete image ﬁ}l(SeC(")Im 1g). If the presheaf
S is complete, then the following three subpresheaves S, Imig and

97" (Sec¥Im 15) coincide.
Examples

22. Let X be a topological space, G a group. We set for each non-void open set
U C X, GU =G, and GO = 0 (the neutral element of G). For any two open
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sets U,V C X such that U C V, we set syy: GU — GV to be the restriction of
the identity mapping idg. Then the family G ={GU} is a presheaf over X,
called the constant presheaf. G is not complete, because it does not satisfy
condition (5), Sect. 7.4 of the definition of a complete presheaf. Indeed, if
U and V are disjoint open sets in X, and g € GU = G, h € GV = G are two
different points, then there is no element in G equal to both g and & (cf.
Sect. 7.4, Remark 4). It is easily seen that the sheaf space, associated with the
presheaf G, Germ G, coincides with the constant sheaf space Gy (Sect. 7.2,
Example 11).

Remark 5 One can define sheaves with different algebraic structures on the fibers
than the Abelian group structure. Let o: S — X be a local homeomorphism of
topological spaces. Assume that for every point x € X the fiber S, is a commutative
ring with unity such that the subtraction S xx S 3 (s1,s2) — 8§51 —s2 € S and
multiplication S Xx S 3 (s1,52) — s1 - 52 € S are continuous. Then, S is called the
sheaf space of commutative rings with unity. If ©: T — X is another local homeo-
morphism, such that the fibers T, are modules over S, and the mappings 7 xx T 3
(1) >ty —th €T and Sxy T > (s,t) = s-t €S are continuous, then T is
called a sheaf space of S-modules.

7.7 Sequences of Abelian Groups, Complexes

We summarize in this section elementary notions of the homological algebra of
sequences of Abelian groups such as the complex, the connecting homorphism, and
the long exact sequence.

A family A* ={A',d'},_,, of Abelian groups and their morphisms
d': Al — A™!, indexed with the integers i € Z, is called a sequence of Abelian
groups. The family of the group morphisms in this sequence is denoted by {d'} iz
We usually write A* in the form

...HAiflﬂAiij)AiHﬂ... (57)

Note that the asterisk in the symbol A* of the sequence refers to the position of
indices in the sequence.

A sequence of Abelian groups may begin or end with an infinite string of trivial,
one-element Abelian groups 0, and their trivial group morphisms. If A" = 0 for all
i<0, then the sequence A* is said to be nomnnegative, and is written as
A* = {Al,d'},_y, with indexing set the nonnegative integers, or

0—at Dogr 2 & o & (58)
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In this notation, the mapping 0 — A° is the trivial group morphism. If there exist
the smallest and greatest integer r and s) such that A" # 0 and A® # 0, then the
sequence A* is said to be finite, and A" (resp. A®) is called its first (resp. last)
element. In this case, we write A* as

r r+1 s—1 s
0—a Lo o L (59)

with trivial group morphisms 0 — A" and A® — 0. To simplify notation, we
sometimes omit the indexing set and write just A* = {A d'}, or A* = {A’ d} for
the sequence (59) when no misunderstanding may arise.

A sequence of Abelian groups A* = {A’ d'} is said to be exact at the term A9, if
Kerd? =Im d?'. A* is an exact sequence, if it is exact in every term. Exact
sequence of the form

0—AalB2tc—o0 (60)

is called a short exact sequence.
The following are elementary properties of short exact sequences.
Lemma 9

(@) The sequence (60) is exact at C if and only if the group morphism g is
surjective.

(b) The sequence (60) is exact at A if and only if the f is injective.

(c) A sequence of Abelian groups

0—A—B-B/A—0 (61)
in which A C B, 1: A — B is inclusion and ©: B— B/A is the quotient pro-
Jection, is a short exact sequence.

(d) Suppose we have a diagram

fO

0 — A — Al = A2 — 0
L ¢° o o' | (62)
0o — B £, B L, B _. 0

where the horizontal sequences are short exact sequences of Abelian groups,
¢° and @' are morphisms of Abelian groups, and the first square commutes,

gop’=¢'og. (63)

Then, there exists a unique morphism of Abelian groups @*: A> — B? such
that the second square of the diagram
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0 — a0 a2 oy
| ¢° | ¢! | ¢* (64)
0 1
0o — B* £, g L. g 0

commutes.

(e) Consider the exact sequence of Abelian groups (60) and the quotient pro-
jection : B — B/f(A). There exists a unique group isomorphism ¢: C —
B/f(A) such that the diagram

0O — A — B — C — 0

1 ida | idg Lo (65)
o — A LB T B/f(A) — 0

commutes.

Proof

1. Assertions (a), (b), and (c) are immediate consequences of definitions.
2. Consider the diagram (62). We first construct a morphism of Abelian groups
@*: A> — B? and then prove its uniqueness. Let a” € A” be a point. We set

@*(d") =g'o'(d), (66)

where @’ € A! is any element such that f'(d’) = a”. We shall show that this
equation defines a point ¢?(a”) € B> independently of the choice of a'. Let
dy,d, € A be any two points such that f!(d}) = a” and f!(a}) = d”. Then
(@) — d,) = 0 hence | — d, = f°(a) for some a € A' (exactness of the first
row). Then, however, g'(¢'(a})) = g'(¢'(43)) + &' (¢' (F*(a))) = ' (¢' (1))
because g'('(f'(a))) = g'(g°(¢(a))) = 0 (exactness of the second row).
Therefore, formula (66) defines a mapping ¢?: A> — B?, and the same formula
immediately implies that ¢ satisfies the condition ¢?of! = g' o @'. This
means that the second square of the diagram (62) commutes.
To show that the mapping ¢> is a group morphism, take dl,dj € A? and
dy,dy, € A' such that f'(a))=a] and f!(a})=dy. Then, we have
fl(d, + &) = a] + d, therefore
P*(d +ay) = g' (0" (a) + @) = ¢*(d)) + ¢*(a5) (67)

since both g! and ¢! are group morphisms. This proves existence of the group
morphism @?. Its uniqueness follows from the surjectivity of f!.

3. To prove (e) we combine (c) and (d). Ul
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A sequence of Abelian groups A* = {A! d'} is called a complex of Abelian
groups, or just a complex, if

dod =0 (68)

for all i. The family of group morphisms d* = {d'} is called the differential of the
complex A*. Condition (68) is equivalent to saying that the kernel Ker d"*! and the
image Im d' satisfy Im d’ C Kerd'™'. To simplify notation, we usually denote the
Abelian group morphisms d’ by the same letter, d; condition (68) then reads
dod=0.

Let A* = {A’ d} be a complex. For every index i, the complex A* defines an
Abelian group H'A*, the ith cohomology group of A*, by

H'A* = Kerd' /Im d'. (69)

Elements of this group are called ith cohomology classes of the complex A*. Note
that the complex is exact in the ith term if and only if the ith cohomology group
HA* is trivial.

If A is an Abelian group, then any exact sequence Abelian groups of the form

0—A-p Lpt g (70)
is called a resolution of A. A resolution (70) defines a nonnegative complex B* =
{B',d} as

0—B" Lp g gl (71)
such that

H°B*=A, HB*=0, i>I. (72)
Using this complex, the resolution can also be expressed in a shortened form
0—A-B* (73)

Let A* = {A',d} and B* = {B',d’'} be two complexes, and let ® = {¢'} be a
family of Abelian group morphisms ¢': A’ — B. These complexes and group
morphisms can be expressed by the diagram

A A A pm
J/goi—l \L(pi \Lq)z#l (74)

g L g L g
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If all squares in this diagram commute, that is,
ot od=doq (75)

then we say that @ is a morphism of the complex A* into B*. Property (75) can also
be expressed by writing @ : A* — B*. The composition of two morphisms ® and
Y, defined in an obvious way, and is denoted by ¥ o ®.

As before, the asterisk in the following lemma denotes position of indices,
labeling different elements of Abelian groups belonging to a complex.
Lemma 10 Let A* = {A},d}} and A+ = {A! 87} be two families of nonnegative

complexes. Suppose that we have a commutative diagram

0 0 0 0
! ! ! !
0 dl ) d 5 & 3
0 — Ay — Ag —  Aj — Aj —
10 16 135 L&
0 4 1 a 2 4 3
0 — A10 — A11 — A12 — A13 — (76)
1 0} 10 1 o} 10y
0 B 1 4 2 4 3
0 — A20 — A21 — A22 — A23 —
1 0, 1 0, 1 6 16
4 d; 43
0o — Ay — Al = A2 = A —
! ! ! !

such that all its rows (resp. columns) except possibly the first row (resp. column)
are exact sequences of Abelian groups. Then for each q >0, the cohomology
groups H1Ay* and HIA" are isomorphic.

Proof Let ¢ =0 and let [a] € H°A? = Kerd). Then [a] = a, J)(a) =0 hence
dody(a) = d%5(a) =0 and injectivity of Jy implies di(a)=0, that is,
a € Kerd) = H°Ao*. Thus, H°AY C H°A¢*. The opposite inclusion is obtained in
the same way.

Consider the case ¢ > 1. Let [a] € HIA? = Ker 52 /Im 5271, and let a be a rep-
resentative of [a]. Then 0)(a) =0 hence 0,d5(a) =d) 5)(a) =0, that is,

0 1_ 1
d,(a) € Keré, =Im o

1
-1 and for some b; € Aqq’

d)(a) = 6, ,(by). (77)

But &, ,dl_\(by) =dls, (b)) =d}dd(a)=0 and d} (b)) €Kers, | =

q7q—1
Im 55_2. Thus, for some b, = A(I,—l we have d;_l (by) = 55_2 (b2).
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Suppose that for some &, 1 <k<g— 2, and Asz’ there exists by € Agfk such
that d*_, (b) = 05 (bis1). Then

Syt it (bur) = dy i3y 0 (brr) = dithdy (br) = 0 (78)
hence d’;f,ifl(bkﬂ) € Ker 5’:_’2_1 =1Im 5Zfi_2. Thus for some by, € A’;f}(fz,
Aty (ber) = 05175 (Biya)- (79)

The construction is described by the following part of diagram (76):

k+2
bk+2 Aq_k_z
k+2
l 5q7k72
dk+l
k+1 k-1 k+2
by Aqfkfl — Aqfkfl
1
Skt k+2
L0yl Lok, (80)
dk k+1
k ak k+1 ak k+2
by Ay — Aqfk — Aqfk
k k+1
! 5,},,{ ! 5q_k
dk k+1
k 4kt k+1
Aq*k+1 q—k+1

For k = q — 2, formula (79) gives d? "' (b,_1) = 54(b,) hence
54 dg(by) = dl5(by) = dldl ™ (by1) =0, (81)
and injectivity of 6¢"" implies d¢(b,) = 0 hence b, € Kerd{. Thus, to a repre-

sentative a of a class [a] € HIA? we have constructed a sequence (by, b, ..., b,)
such that b; € A;_l for each i, b, € Kerd(, and

d9(a) = 8y (b),  dEy(B) = 5L, (bu). (82)

Let @' be another representative of the class [a], and let (b}, b5, . . ., b;) be another
sequence satisfying condition (82),

df;(a’) = 5(1;71(”1)7 dlz;—k(b;c) = 5I;tllcfl(b;c+l)' (83)

We set a"=a—d, b =b;—Db;. We wish to show that [bj] =0 hence

by € Im dd™'. By definition [a"] = 0 hence @’ € Im 5271 and a” = 5271((:1) for
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some ¢; € AD_,. But by (82) and (83), &, _,(b]) = d2(5,_,(c1)) = 6, _,d>_(c1).

which implies b} — d271 (c1) € Ker 8! Im &'

- 1
1= q4—2» hence for some c; € A _,,

B~ d)_ () = 3, (ca). (84)

Now suppose that for some k£ > 1 and some ¢ € Ag:}( there exists ¢y € A’;:}c_l
such that b} — d’q‘:,i(ck) = 5;7,{71(@(“). Using (82), (83) and (84),

5§t11(—1(b;</+1) = d];—k(bZ) = ds—k(5§—k—1(ck+1) + d’;:ll(ck))

(85)
ko sk k1 gk
= dq—k(sq—k—l(ck+1) = 5qtk—ldq—k—l(ck+1)a
so that b} | — d][;ikil(Ck+1) € Ker 5’;31(71 =1Im 51;:,1{72. Thus, for some element
2 €AV,
) dk _ 5k+1 %6
k+1 qfkfl(ck+1) q7k72(0k+2)~ (86)

The derivation of this formula includes the following part of diagram (76) of
Lemma 10:

Ck+2 A';f;lcfz
k+1
l 6qtk—2
k d;*k k+1
Gl Ay - Aqikq
k k+1
R 1 5;1(71 (87)
c Ak—l ﬁ Ak ﬁ Ak+l
k1 Ag_k q—k q—k
Lok Loy,
k-1 Aok k
Aq—k-H - Aq—k—l
If k = g — 2, formula (86) gives for some ¢, € AJ~'
-1
by —di(cq1) =54 (cq). (88)

Then by (82), (83) and (88)

53(17;/) = dtllil(b/q,q) = di]il(égil(cq) + di]iz(cq—l))

e - (89)
:dil 153 l(cq) :5gdg 1("(1)»

that is, bj — dd'(c,) = 0 because &7 is injective. Therefore, by € Im di',
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Consequently, equation
f([a]) = [by] (90)

defines a mapping f9: HIAY — H9A* which is a morphism of Abelian groups. In
the same way, we define a morphism of Abelian groups f;: H1A¢* — HIAY, and it
remains to verify that the morphism f, is the inverse of f9.

Let [b] € H7A* be a class, represented by an element b. There exists a sequence
(a1,as,...,a,), where a; € Af’_l, such that

65(b) =di~M(ar), &M a) = di (@), (1)
where k = 1,2,...,q — 1. By definition,
fo(1b]) = lag]- (92)

Let [b] = [b,], where [b,] is determined by (90). Taking a; = by—1, a» = by, ...,
aq—1 = by, a; = a we get from (77) and (79) that (91) is satisfied. Consequently,
lag] = [a] proving that f; is the inverse of f9.

This completes the proof of Lemma 10. O

Now we consider three complexes A* = {A’ d'}, B* = {B,§'} and C* =
{C',)A'} and two morphisms of complexes ®:A* — B*, ® = {¢'}, and
W¥: B* — C*, W = {y'} between them. The composition of these morphisms
yields a morphism of complexes ¥ o ®@: A* — C*, defined by

(¥ 0 @) =y o g". (93)

We show that under some exactness hypothesis these morphisms induce an exact
sequence of Abelian groups, formed by cohomology groups of these complexes.
Note that the morphism @ induces the diagrams

0 — Imd™! — Kerdd — HA* — 0

L ¢ L¢ Lo (94)
0 — Imdé' — Kerdé — HB* — 0

where the first two vertical arrows are the restrictions of the morphism ¢’ to the
subgroups of A, the mappings Im d"~! — Kerd’ and Im 6" ' — Ker ¢’ are the
canonical inclusions, and ¢; is the unique morphism of Abelian groups for which
the second square in the diagram (94) commutes (Lemma 10, (e)).

The following statement is sometimes referred to as the zig-zag lemma. Its proof
is based on the technique known as the diagram chasing.
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Lemma 11 Let A* = {A' d'}, B¥* = {B', '} and C* = {C,A"} be three non-
negative complexes, ®: A* — B*, ® = {¢'}, and V: B* — C*, ¥ = {1//1} mor-
phisms of complexes. Suppose that we have a commutative diagram

0 0 0
! ! 1 ! i
0 — 4 L4 Lop 4
Lo° L o' Lo
0 & 1 3 2 s
0 — B 2, B 2, B 2, ... (95)
T
0o — ¢ Lo LA e 4
! ! !
0 0 0

with exact columns. Then for every q > 0, there exists a morphism of sequences of
Abelian groups 0 = {07}, 09: HIC* — HY'A* such that the sequence of Abelian
groups

0 0 Voo T
0 — H'A* — H'B* — H'C* — H A% (96)
2 glps L HlC* a_l> H2A* i
is exact.
Proof

1. First, we construct the group morphisms 07: HIC* — H49*'A*. Consider the
following commutative diagram

0 0 0 0

l " l y l " l

Aqfl T, Al i Aq+1 N Aq+2

Lor=h L Y

Ba-1 " pa O gatt i Bat+2 (97)
Ly Ly Ly

ca1 ﬂ ca & catl

l l l

0 0 0

Let [c] € HIC* = KerA’/Im A7 be a class, represented by an element
¢ € Ker A, Since 7 is surjective, there exists an element b € B? such that

Yi(b) = c. But y4™59(b) = A%(b) = 0 so that §7(h) € Keryy?™ and by
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exactness of the third column, there exists an element a € A9t such that
3(b) = ¢t (a). Since @1T2dM (a) = 61 @1 (a) = 6771 0%(a) = 0, and
since 9% is injective, d?"'(a) =0 and a € Kerd?"'. Thus, given
¢ € Ker AY, there exists b € B? and a € Kerd?t! such that

c=y(b), ¥(b) = 9" (a). (98)

If ¢’ is some other representative of the class [c], then there exist b’ € BY,
a € Kerd’™! and d € C97! such that

=y, Fb)=¢" (), =c—ATd). (99)

We show that [a] = [d/]. We have d = "' (b) for some by € B~ (by sur-
jectivity of Y47"). Thus, 707" (by) = A7 '~ (by) = A?™"(d), and the third
formula (97) gives Y4 (b’ — b+ 67 ' (by)) = 0, that is, by exactness of the col-
umn, b’ — b+ 87" (by) € Im 9. Thus, b’ — b+ 697" (by) = @9(ap) for some
ap € A9, But 34(b' — b+ 67" (b)) = 7¢%(ag) = @7'd?(ay) by commutativ-
ity of the diagram (97). Applying (98) and (99) and the property 07197 = 0 of
the complex B* one obtains ¢?"!(a') — ¢ (a) = ¢?'d%(ay). Finally, injec-
tivity of 4! yields @’ — a = d%(ap). This proves that [a] = [d/].

Now since the class [a] is defined independently of the choice of the representative
c of the class [c], we may define a mapping 0? of HYC* into HY*!A* by the formula

0([c]) = lal. (100)

It is easily verified that this mapping is an Abelian group morphism. Let ¢; be a
representative of a class [c;] in HYC*. There exists b; € BY and a; € Ker d?*!
such that ¢; = y?(by), 7(b;) = @47 (ay). Similarly, let ¢, be a representative
of a class [¢;] in HYC*. There exist elements b, € B? and a, € Ker d?! such
that ¢; = Y9(b,), 6%(by) = ¢! (az). Then

cr+er =iy +by), (b +by) = 0" (a1 + a2), (101)

proving that 87 is a group morphism.
2. Now we prove exactness of the sequence of Abelian groups (96). We proceed in
several steps.

(a) Exactness at H°A* = Kerd® is obvious: Since H°B* = Ker&” and the
commutativity of the left upper square in the diagram (95) implies
¢°(Kerd®) C Ker 8°, exactness at HYA* follows from injectivity of .

(b) We verify exactness at the term H'B*. Let b € H'B* = Kerd" and
b € Keryy". Then b = ¢°(a) for some a € Ay = H°A*, and we want to
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show that @ € Kerd®. But ¢'d’(a) = 8°¢°(a) = 6°(b) = 0 hence d°(a) =
0 (injectivity of ¢') and a € Kerd® = H°A*. Thus Ker 1#0 =Im ¢°.

We prove exactness at H'C*. Consider an element ¢ € H’C* such that
¢ € Ker A, that is, 0°c = 0. We want to show that ¢ = zpo(b) for some
b € H'B* = Ker 6°. By definition, 8°c = [a], where a € Kerd" is an arbi-
trary point such that for some &’ € B, ¢ = y°(b') and 8° (V') = ¢'(a) (98).
But [a] =0 hence a € Imd° and a = d°(a’) for some ' € A. Conse-
quently, 3°(b') = ¢'d*(d') = 8°¢°(a'). We set b = b' — ¢°(d’). Then

5(b) = () = 8°6°(d) = 0, (102)
that is, b € Ker 8°. Moreover,
YOb) =y () — e’ (d) =y () =<, (103)

thus Ker 6° € Im y°.

Conversely, if ¢ € Im y/°, then ¢ = y°(b) for some b € H'B* = Ker ¢°,
and 0°(c) = [a], where ¢ = y°(b’) and 0°(b') = ¢'(a) for some b’ € B,
a € Kerd'(98). But (b — b') = O hence b — b' = ¢°(a'), where d’ € A,
Now ¢'d’(d') = 8°¢°(a') = 8°(b — b') = —0°(b') = —¢'(a) that is, by
injectivity, d’(a’) = —a. Hence [a]=—[d°(d')]=0 and we get
Im ° C Kerd".

Summarizing, Im ° = Ker &° as required.

We check exactness at H/A*, where ¢ > 0. Let [a] € H?A* and ¢, ([a]) = 0.
Since ¢, ([a]) = [¢?(a)] = 0, we have ¢?(a) € Im 07!, Thus, there exists
b € B9~ such that 67" (b) = ¢%(a). We set c = 4~ (b). Then by defini-
tion, 0([c]) = [a], therefore Ker ¢, C Im o1t

Conversely, consider a class [c] € H9~!C*. Then (pqé"_l([c}) = ¢,([d]),
where ¢ = Y7 (b), 677" (b) = ¢9(a) for some b € BI~', a € Kerd?. But
then 0,67 ([c]) = [@?(a)] = [07""(b)] = Osince HYB* = Ker 6 /Im 5.
We prove exactness at H1B*, g > 0. Let [b] € HYB* be a class such that
¥, ([6]) = [*(b)] = 0. Then *(b) € Tm A9™" hence there exists ¢ € C9~!
such that 4(b) = A7 (c). But ¢ = y*~ ' (b') for some b’ € B4~'; applying
A" we have ATT'WITH(B) = Y1671 (B'), that is, Y9 (b) = Y157 (1)
hence y4(b — 07" (b')) = 0 and b — 67 (b') = @%(a) for some a € A4,
Now @9+1d%(a) = 87¢(a) = 6(b — Y197 (b)) = 0 because 6%(a) = 0,
97977 = 0. Hence d?(a) = 0 and a € Kerd?. Now
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¢4(la]) = [¢7(a)] = [ — 3 (¥)] = [o], (104)

so we get the inclusion Keryy, C Im ¢,.
The inverse inclusion follows from the equality i, o ¢ = 0 and from the
diagram (94), which implies

0 — Imdi! — Kerd? — HIA* — 0
L o? L o? L @

0 — Imé*™' — Kerd? — HIB¥ — 0  (105)
Ly Ly Ly,

0 — ImA!" — Kerd! — HIC* — 0

in which the group morphisms Pq and tﬁq are unique, and the composition
law (¥ o ®)7 =/ o ¢ (93) holds.

(f) We prove exactness at H1C*, where g > 0. Let [c] € HIC* be a class such
that 07([c]) = 0. We want to show that there exists [b] € HYB* such that
[c] =, ([b]). Let c be a representative of [c]. By (98), there exist an
element b € B? and a € Kerd?™! such that ¢ = y4(b), 67(b) = ¢4*!(a).
From the condition 87([c]) = 0, it follows that [a] = 0 hence a € Im d? and
a = di(a’) for some d’ € A4. Then §(b) = ¢4™'d%(a’) = 67¢4(d’) hence
b— @i(d) € Kero?. Setting b =b— ¢?(d’) we have 06/(b') =0,
b' € Ker ¢?. Moreover, yI(b') = Yy (b — ¢?(d’)) = y?(b) = c, therefore

U ([b]) = W(¥)] = [c]. (106)

This implies that Ker 0/ C Im .
Conversely, let [c] € Im . Then [c] =, ([b]) = [()*(b)] for some element
[b] € H1B*. Thus d!([c]) = [a], where ¢ = y4(b'), 61(b') = ¢?"'(a) for some
b € Bi. But y?(b —b') =0 so that b — b’ = ¢?(d’), where a’ € A?. Now

P di(d) = $99(d) = (b — ) = —5"(¥) (107)
hence @7t (a) = —@?™di(d"), @7 (a+di(d)) =0, and a+d’(d) =0.
Hence [a] = —[d/(a')] =0, therefore Im y, C Kerd?. This completes the
proof. O

The exact sequence of Abelian groups (96) is referred to as the long exact
sequence, associated with the morphisms of complexes ®:A* — B* and
W: B* — C*. The family of Abelian group morphisms 0 = {07}, where
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o7 HI1C* — HIM1A*, is called the connecting morphism, associated to the mor-
phisms ® and Y.
The following two corollaries follow from the long exact sequence (96).

Corollary 4 Suppose that in the commutative diagram of morphisms of Abelian
groups

0 0 0
! ! !
0 — A — Al — A2 — 0
! ) !
0 — B — B' — B> — 0 (108)
! ! !
0o — ¢ — ¢ — ¢ — 0
! ! !
0 0 0

all columns are exact. Then if two rows are exact, the third row is also exact.

Corollary 5 Let A*, B* and C* be three nonnegative complexes, ®: A* — B* and
WY: B* — C* morphisms of complexes. Suppose that the diagram (95) commutes
and all its columns are exact. Then if any two of the complexes A*, B¥, and C* are
exact, the third is also exact.

Proof This follows from the long exact sequence (96). O

7.8 Exact Sequences of Abelian Sheaves

The concepts we have introduced for sequences of Abelian groups apply to
sequences of Abelian sheaves. First, we briefly formulate the definitions and
describe basic properties of exact sequences. Then, we study the canonical reso-
lution of an Abelian sheaf, an exact sequence, relating properties of a sheaf with
topological properties of its base space.

A family S* = {S',f'},_, of Abelian sheaves S' over the same base, and their
morphisms f': 8" — 8!, indexed with the integers i € Z, is called a sequence of
Abelian sheaves. The family of sheaf morphisms in this sequence is denoted by
{fi}iez. The sequence S* is called a nonnegative, if S = 0 for all i<0. Then, the
sequence S* is usually written as S* = {S', f'},_y, with indexing set the non-
negative integers N, or just as

0 1 2
0—s e lgr (109)
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In this notation, the mapping 0 — S is the trivial sheaf morphism. If there exist the
smallest and greatest integers r and s such that 8" # 0 and S® # 0, then the
sequence S* is said to be finite, and S" (resp. S°) is called its first (resp. last)
element. In this case, we write S* as

r r+1 s—1
0—s et T g o (110)

with trivial sheaf morphisms 0 — S" and S° — 0. To further simplify notation, we
sometimes omit the indexing set and write just S* = {S', f'}, or S* = {S', f'}
instead of S* = {S', f'},_y-

Let S* = {S', '} be a family of sheaves of Abelian groups over a topological
space X, x € X a point. Denote by S = (Germ S”), the fiber of the sheaf space
Germ & over x, and by 2: 8” — S the restriction to the fiber of the morphism
fi: 8" — S™!. Restricting all the sheaf morphisms to the fibers S we get a
sequence of Abelian groups

f fl f?
0—8- s g .. (111)

X P

This sequence is called the restriction of the sequence (109) to the point x.

The sequence S* (109) is said to be exact at the term S? over x, if the restricted
sequence (111) is exact as the sequence of Abelian groups, that is, if
Ker f = Im f9~'. S* is said to be exac at the term S if it is exact at x for every
x € X. We say that S* is an exact sequence, if it is exact in every term S7.

Let S be an Abelian sheaf. A sequence of Abelian sheaves S* = {S', f'}, such
that

fl o f1 =0 (112)
for all g is called a differential sequence. An exact sequence is a differential

sequence.
An exact sequence of the form

3 I ! I
0o—Ss- 7m0 Lt L L, (113)
is called a resolution of S. The resolution defines a nonnegative differential
sequence T* = {T' f'}. To shorten notation, we sometimes write the sequence

(113) as

0—8-1 T, (114)

the mappings being understood.
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An exact sequence of the form

0—R-8%T 0 (115)

where 0 — R and T — O are trivial sheaf morphisms, is called a short exact
sequence.

Let Y be a subspace of the topological space X. Denote by Sy the restriction of
the Abelian sheaf S to ¥ and by f ’y the restriction of the sheaf morphism f L8 -
S to Y. We obtain a sequence of sheaves

0N ot v o B
O—>Sy—>SY—>SY—>--- (116)

called the restriction of the sequence S* = {S', f'} to the subspace Y.
The following are elementary properties of exact sequences.

Lemma 12

(a) A sequence of Abelian sheaves S* = {S' f'} is exact at S? if and only if
Ker f¢ = Im 4",

(b) If a sequence of Abelian sheaves S* = {S', f'} over a topological space X is
exact at the term S, then its restriction to a subspace Y C X is exact at Sg,.

(c) A sequence of sheaves of the form (115) is exact at T if and only if the sheaf
morphism g is surjective.

(d) A sequence of sheaves of the form (115) is exact at R if and only if the sheaf
morphism f is injective.

(e) A sequence of Abelian sheaves

0—R-—S-5/i(R)—0 (117)

where R C S is a subsheaf, 1: R — S its inclusion, S/1(R) the quotient
sheaf and n: S — S/1(R) the quotient projection, is a short exact sequence.
(f) Suppose we have a diagram
f[) fl
0O — Ry — R — R — 0

L g 1 o (118)
g°

0 — Sy i31—>32—>0

such that the horizontal sequences are short exact sequences of sheaves, @
and ¢, are sheaf morphisms and

o’ =¢'of (119)
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Then there exists a unique Abelian sheaf morphism @,: R? — S? such that

the second square of the diagram

f()

0 — Ry —
Lo°

gU

0o — Sy —

commautes.

fl

H] — Hz — 0
Lo | ¢? (120)
S] i) 82 — 0

(g) Consider the exact sequence of Abelian sheaves (115), the quotient sheaf
S/f(R) and the quotient projection n: S — S/f(R). There exists a unique
sheaf isomorphism ¢: T — S/f(R) such that

f()

fl

0O — R — S — T — 0
lidg lids Lo (121)
o — R L s I S/R — 0
commutes.

Proof

1. We prove assertion (a). Suppose that S* is exact at S?. Then by definition

Ker f¢ =TIm ¢! for every x, where f? is the restriction of the sheaf space

morphism f9: Germ S — Germ S | associated with 9, to x. Thus

Kerf? = UKerjﬂcq = LJImf;f’1 = Im f7.

xeX

(122)

xeX

Then Ker f¢ = Sec“Ker f¢ = Sec“Im 4! =1Im 9! as required. The con-

verse is obvious.

2. Assertions (b), (c¢), (d), and (e) of Lemma 12 are immediate consequences of

definitions.

3. To prove (f) we apply (b) and Lemma 9, (d).
4. To prove (g) we apply (b) and Lemma 9, (e). O

A sequence of Abelian sheaves (109) over a topological space X induces, for
every open set U in X, the Abelian groups S'U of continuous sections and their

morphisms f v 8'U— S§TU. We usually denote these morphisms by the same

letters, f'. The sequence of Abelian groups is then denoted by

O—>SOUf—0>

1 2
svisu ..

(123)
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and is said to be induced by the sequence of sheaves (109). In particular, if U = X,
the sequence of Abelian groups

0 1 2
0—8xsxgx . (124)

is referred to as the sequence of global sections, associated with the sequence of
Abelian sheaves (109).

Exactness of the sequence (109) does not imply exactness of (123). This is
demonstrated by the following example.

7.9 Cohomology Groups of a Sheaf

In this section, we construct a resolution of an Abelian sheaf, known as the
canonical, or Godement resolution (Godement [G]). We also introduce canonical
morphisms of the canonical resolutions, and study properties of the corresponding
diagrams.

Consider the sheaf space Germ S, associated with S and the sheaf of (not
necessarily continuous) sections of the sheaf space Germ S, denoted by

C’S = SecGerm S (125)

(cf. Sect. 7.4, Example 17). We have the canonical injective sheaf morphism

1: SecGerm S — C°S. Since Sec?Germ S is canonically isomorphic with the
Abelian sheaf S, setting

D'S = C"S/Im (126)
we get an exact sequence of sheaves
0—-8 -5 C's—D'sS—o. (127)

The same construction can be repeated for the sheaf D'S. Replacing S with D'S,
we have the Abelian sheaf of (discontinuous) sections of the sheaf space
Germ D'S, C°D'S = SecGerm D'S, the Abelian sheaf of continuous sections
Sec“)Germ D' S, canonically isomorphic with the sheaf D'S, and the canonical
sheaf morphism of continuous sections into discontinuous sections,
i': Sec?Germ D'S — SecGerm D'S. Setting D'(D'S) = C°(D'S)/Im1' we
get an exact sequence
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0—D'S-¢c°D'S—D'D'S —0. (128)

Combining these two constructions

0
|
S

«—

0 — S — (S — D'sS — o (129)
!
0o — D's — c¢c's — D'D'S — 0
!
0

Similarly we get, with obvious notation, the commutative diagram

0o — S — (°s

!

0o — D'sS — c('s
! ! (130)
0 — DS — (%S

! !
0 — DS — (C*’S

etc. This diagram gives rise to the sheaf morphisms ¢?: C'S — C”''S, for every
p>0. We get a sequence of sheaves of Abelian groups

0—s-c'scls st (131)

Lemma 13 The sequence of sheaves of Abelian group (131) is a resolution of the

sheaf S.

Proof We want to verify exactness. Since 1 is injective, the sequence is exact at S.
To check exactness at the term COS, we use the diagram (131), where the sheaf
morphism g: C°S — D'S is the quotient morphism and h: D'S — C'S is an
inclusion. Let a € Im 1. Evidently a € Kerc? since ¢’ = ho g and a € Kerg.
Conversely, let a € Ker ¢°. Then h(g(a)) = 0 and since h is injective, g(a) =0
and a € Kerh hence a € Imi. Exactness at C?S can be proved in the
same way. U

The resolution (131) of the Abelian sheaf S is called the canonical resolution.
Setting C*S = {C'S, ¢}, we can write the sequence (131) as
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0— S— C*S. (132)

The Abelian sheaves C”S, where p >0, in the sequence (132), have some
specific properties, namely, they belong to the class of soft sheaves. A sheaf of
Abelian groups S over a topological space X is said to be soft if any section of the
associated sheaf space Germ S, defined on a closed subset Y C X, can be prolonged
to a global section of S.

Lemma 14 The sheaves C'S, where p >0, are soft.

Proof 1t is sufficient to show that the sheaf C’S = SecGerm S. is soft; the same
proof applies to C’'S, where p > 0. Let ¥ C X be a closed subset, € C°S any
section of Germ S, defined on Y. By definition, d(x), where x is a point of Y, is the
germ of a (not necessarily continuous) section y € SU, where U is a neighborhood
of x in X; thus 6(x) = [y],. Consider a family of (not necessarily continuous)
sections y, € SU, such that é(x) = [y,], for all points x € ¥, and set

o(x) = {[O’] oY (133)

Then d is a global section of the sheaf space Germ S. Here, 0 is the germ of the zero
section, defined on the open set X\Y C X.

Let v: S — T be a morphism of Abelian sheaves over a topological space X. We
shall construct a family of sheaf morphisms v: C’S — C”T, p >0, between the
canonical resolutions 0 — S — C*S and 0 — T — C*T of these sheaves, such
that the diagram

o — 8§ % ¢'s — c¢'s — ¢*s —
Ly W ! 1V (134)
o — 17 L T — C'T — CT —

commutes.

Let S=Germ S and T = Germ T be the associated sheaf spaces, ¢ and 7 the
corresponding sheaf space projections, and let v: S — T be the associated sheaf
space morphism. Recall that v is defined as the mapping S > [y], — V([7],) =
[vu(y)l, € T, where y € SU is a representative of the germ [y], (Sect. 7.5, (31)). We
shall consider the Abelian sheaves S and T as the sheaves of continuous sections of
the sheaf spaces S and T. Then C°S and C°T are the corresponding Abelian
sheaves of discontinuous sections. We set for any section 6: U — §

W(5) =7vo04. (135)
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This formula defines the first square in the diagram (134). If § is a continuous
section of C°S, we have v*(15(7)) = ¥ 0 15(7)

(V1s(2)(x) = ¥(1s (1) (x)) = () = ¥([31,) (136)

proving the commutativity.
Consider the next squares in the diagram (134)

0o — S — ¢S — D'sSs — o0
Ly 10 vt (137)
0 — T — CT — D'T — 0

defining v! (Lemma 12, (f)). If we replace S (resp. T) with D'S (resp. D'T), where
i>1, we get the diagram

0 — D'S - C's - D''s — 0
1 1y 1y (138)
0 — DT — CT — D¥'T — o0

We show that the ith square also commutes. Combining (130) and (138) and using a
suitable temporary notation, we get the commutative diagrams

c's ~ ps c's L c¢s ps L Cs
l vzfl , l P l vl*l l Vi l T)i—l l vi
c't X pr ¢t X ot DT < oT

(139)
Combining these diagrams with (126), we obtain
g=boa, dovV =vob, Voa=cov! h=doc, (140)

which implies vV og =vioboa=dovVoa=docov ! =hov! Sincei>1,
this proves commutativity of all squares in the diagram (134). O

The family of sheaf morphisms {v,v,v! v ...} is called the canonical mor-

phism of the canonical resolutions 0 — S — C*Sand 0 — T — C*T, associated
with the Abelian sheaf morphism v: S — T.

Elementary properties of the canonical resolutions are formulated in the fol-
lowing lemma.
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Lemma 15
(a) The canonical resolution of a trivial Abelian sheaf Ox over a topological space

(b)
©
(d

(e)

X consists of the trivial sheaves C’0x = Q.

The canonical resolution associated with the identity sheaf morphism idg is
the identity morphism {ids,idg,idg1g,id2g, - . .}

If the Abelian sheaf morphism v: S — T is injective (resp. surjective), then
each v': 8" — T? is injective (resp. surjective).

Let R, S, and T be three Abelian sheaves with base X, i: R — S, v: S — T
two Abelian sheaf morphisms, and y = v o u. Then, the diagram

0o —» R — CR — CR — CR —

L u | I |2
0o — S — S — C's — (s — (141
L IR ! v

0O — T — C'T — Cc'T — CT —
satisfies, for every p >0,
W =vou. (142)

Suppose that the first column of the diagram

0 0 0 0
! ! ! !
o — S — ¢s — c's — s —
0 — éo — c:Ols0 — c‘ls0 — czls0 —
! ! ! | (143)
o — 8 — ¢’ — clst — c¢rst
! ! l !
o — & — '8 — c's* — st —
1 ! ! !
consists of the resolution
0—s-gt g gl (144)

of the sheaf S, the rows are formed by the canonical resolutions, and the
columns are the canonical morphisms of the canonical resolutions. Then this
diagram commutes, and all its columns are exact.

Proof

(@)

This follows from formulas (126)—(128).

(b) We setin (134) S = T, v = idg. Then, v*: C°S — C°S satisfies



7.9 Cohomology Groups of a Sheaf 247

W =idgog (145)
and (137) implies
V' =idpig (146)

hence v! = id,ig and by induction v/ = idig for all i > 1.

(¢) This follows from (135).

(d) Denote by ft (v, resp. 77) the sheaf space morphism associated with p (v,
resp. #). Since § = v o u, we have 17 = v o it (Sect. 7.7, Lemma 9, (b)). Thus,
using (135) we get for every section J: U — Germ S, 1y(d) =#o0d =
Vojiod="ouy(d) =vo(ty(d)) proving (d) for p = 0. Repeating this pro-
cedure, we get i = v oy forall i>1.

() Commutativity is ensured by diagram (134). We want to prove exactness of
the pth column of the diagram (143). Consider the second column

fOO

&0

10 20
0 — 'S c's’ c'st L oc'sr L (147)
Exactness at the term C°S follows from the injectivity of & (see (c)). Now let
d: U — Germ C"S” be a section such that f°°(3) = 7 0 & = 0. Then if d(x) =
[,], for some continuous section y,: U, — Germ C°S°, we have ;‘()([yx]x) =0
and [y,], € Ker f° = Im &,. Therefore, 0 is a section of Im &, proving exactness

at C°S°. Continuing in the same way, we get exactness of the first column.
Exactness in the next columns can be proved by induction. U

Corollary 6 Suppose that we have a commutative diagram

0O — AR — S§ — T — 0
l l | (148)

0O — R — &8 — T — 0

with exact rows. Then for every i >0, the diagram

0 — CR — CS — CT — 0
1 1 1 (149)
0 — CR — CS — CT — 0

commutes and has exact rows.
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Proof To prove commutativity of the diagram (149), we use commutativity of the
square

h

R — S
Lu Ly (150)
R L s

in (148) and formulas (126-128). Exactness of the rows follows from
Lemma 15, (e). O

Corollary 7 For any isomorphism of Abelian sheaves f: R — S the sheaf mor-
phisms f’: C°R — CPS are isomorphisms.

Proof This follows from Lemma 15, (b) and (d). O

Let S be an Abelian sheaf over a topological space X. Consider the canonical
resolution of S

1 0 1 2
0—S--c'sSce'ls S ets S (151)
Taking global sections of every term we obtain a complex of Abelian groups

0— SX - (C*S)x -2 (C'8)X
. (152)

L cs)x

where the induced Abelian group morphisms in this diagram are denoted by the
same letters as in the sequence (151). Denote by (C*S)X the nonnegative complex

0—c's L cls ots S (153)
Then (152) can also be written as
0— SX — (C*S)X. (154)
We set for every p >0
H?(X,S) = H?((C*S)X). (155)

The Abelian group H? (X, S) = HP((C*S)X) is called the pth cohomology group
of the topological space X with coefficients in the sheaf S.
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Lemma 16 Let S be an Abelian sheaf over a topological space X. The complex of
Abelian groups (152) is exact at the terms SX and (C°S)X.

Proof Let y € SX and let 1(y) = 0. Then by definition 1(y(x)) = 0 for all x € X.
Since the canonical resolution (151) is exact at S we have y(x) = 0 for every
x hence y = 0. Thus, the complex (152) is exact at SX.

We prove exactness at (C”S)X. Only inclusion Ker ¢® C Im 1 needs proof. Let
7 € (C°8)X and let ¢°(y) = 0. Then c°(y)(x) = 0 for every point x € X. But (151)
is exact at the term C°S hence to each x € X there exists a unique germ s, € Sy
such that 1(sy) = y(x) = 0, and we have a mapping X > x — d(x) = s, € S sat-
isfying 1 0 6 = y. We want to show that this mapping is continuous. Let xy € X be a
point. There exists a neighborhood V (resp. W, resp. U) of the point d(xo)
(resp. 1(0(xo)), resp. xo) such that 1],: V. — W (resp. y|,: U — W) is a homeo-
morphism. Then the composition (1],)”" oy

v U — V satisfies, for each x € U,

W((ily) " oy

v(x)) = 7(x) = 1(6(x)). (156)

Since d(x), (1) " 09|, (x) € Sy and the restriction of 1 to the fiber S, is injective,
we have (x) = (1],,) " o |, (x), which shows that the mapping d is continuous at

Xo. Consequently, Ker ¢® C Im 1. O

Corollary 8 For any Abelian sheaf S with base X, H°(X,S) = SX.

Let S and T be Abelian sheaves over a topological space X, v: S — T a
morphism of Abelian sheaves, and let {v,v?,v!,v?,...} be the canonical morphism
of the canonical resolutions of these sheaves. This morphism induces a comutative
diagram of Abelian groups of global sections

0 — Sx =% (¢'s)x — (C'S)x — (C*8X —
Ly 1 ! NG (157)
0o — Tx L ("Thx — (C'T)x — ((C*x —

and a commutative diagram of nonnegative complexes of global sections

0 — (C°8x — (C'S)x — (C*9x — ---
10 R 1 v? (158)
0 — (C'Tx — (C'THx — (C°T)x —

with obvious notation for the morphisms. Applying standard definitions we obtain,
passing to the quotients, the induced group morphisms of cohomology groups
v H1(X,S) - HY(X, T), ¢>0.

If ww T — P is some other Abelian sheaf morphism and the family
{u, 1, put, i, ...} is the morphism of the corresponding canonical resolutions,
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g HY(X, T) — H?(X, P), we have for every ¢ >0, an Abelian group morphism
(pov), HY(X,S) — HI(X, P). Using Lemma 12, (f) and Lemma 15, (d)

wovl = (uov)l. (159)

Corollary 9 If v:S— T is an isomorphism of Abelian sheaves, then
ve: H1(X,S) — HY(X, T) is an Abelian group isomorphism for every q > 0.

7.10 Sheaves over Paracompact Hausdorff Spaces

All sheaves considered in this section are Abelian sheaves over topological spaces
whose topology is Hausdorff and paracompact.

Recall that an Abelian sheaf S with base X can be considered as the sheaf of
continuous sections of the corresponding Abelian sheaf space § = Germ S, defined
on open subsets of X. Every morphism f: S — T of Abelian sheaves can be
considered as a morphism of Abelian sheaf spaces f: S — T.

A soft sheaf is by definition a sheaf S with base X such that every continuous
section of S, defined on a closed subset of X can be prolonged to a global section.
The proof of the following theorem on short exact sequences of soft sheaves is
based on the Zorn’s lemma.

Theorem 3 Let X be a paracompact Hausdorff space, and let

0—R1Ls%T 0 (160)

be a short exact sequence of sheaves over X. If R is a soft sheaf, then the sequence
of Abelian groups of global sections

0—Rx M sx & Tx —o0 (161)

is exact.
Proof

1. We prove exactness at RX. If y € RX and fx(y) = 0, then f(7(x)) = 0, then for
every point x € X we get, by injectivity of f, (x) = 0. Thus, the germ J(x) can
be represented at every point by the zero section hence y = 0.

2. We prove exactness of the sequence (161) at SX. Let y € Kergy. Then
Ker gy(y) = 0 hence g o j(x) =0 for all x € X. Since the sequence (160) is
exact at S, to every point x € X there exists an element d(x) € R such that
f(0(x)) = y(x) and, since the morphism fis injective, this point is unique. Since
g of = p, where ¢ (resp. o) is the projection of S (resp. T), we have pod =
gofod = 0oy =idy showing that 0 is a global section of R. To show that ¢
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is continuous, observe that f o 0 =y is continuous; then the continuity of o
follows from the property of f to be a local homeomorphism.

3. We show that the mapping gy is surjective. Let y € TX be a global section of
T. Since the sequence of Abelian sheaves (160) is exact at T, to each point
x € X there exists a neighborhood U, and a continuous section f§, € SU, such
that gy (B,) = 7|y, Thus, in a different notation, there exists an open covering
{U,},o; of X, such that for each 1 € I there exists §, € SU, with the property

9u,(B) = ly,- (162)

Since X is paracompact and Hausdorff, there exists a locally finite open covering
{Vi},; of X such that C1V, C U, (Cl denotes the closure). The sets K, = CIV,
are closed and form a closed covering {K, },., of X. Thus, to every 1 € [ we have
assigned a pair (K, 8,), where 8, € SU,. Consider the non-empty set K of pairs
(K, p), where K = UK, is the union of some sets belonging to the family
{K.} ;- and f is a section of S defined on the open set U = UU,.. K becomes a
partially ordered set, defined by the order relation “(K, ) < (K', ') if K C K’
and |, = B>

We show that any linearly ordered family of subsets of the set K has an upper
bound. Let {(K;, ;) },c, be alinearly ordered family of subsets of K, K; C U,.
Denote K = UK;; then K C U = UU;. The family {f,;},., is a compatible
family of sections of the sheaf S. But every compatible family of sections of S
locally generates a section of S (Sect. 7.4, condition (5)); thus, there exists a
section f € SU such that |, = f for each 4 € L. Then, the pair (K, §) is the
upper bound of the linearly ordered family {(K;, f;)},c;-

This shows that the set K satisfies the assumptions of the Zorn's lemma,
therefore, it has a maximal element (K, ). It remains to show that Ky = X.
Suppose the opposite; then there exists a point x € X such that x ¢ Ky, and since
K = UK, = X, there must exist an index 1 € I such that K, ¢ Ky. On K, N Ky,
go(fo—P,) =7 —7, =0. But the sequence (161) is exact at SX hence
f(0) = By — P, for some § € R(K, N Ky). Since R is soft, ¢ can be prolonged to
a section 0 over X; then 6 = 5|K,0K0. We define a section 8 over K, U K by the
conditions

Blk, = Bo.  Blx, = B +1(0). (163)
Clearly, the f is defined correctly since on K, N Ky

Bolg,nx, = (B +F (0O lk, ok, = (B + Bo — Bl k- (164)
Consequently, the pair (K, U Ko, B) belongs to the set K. But this pair satisfies
(Ko, By) < (K, UKy, B), which contradicts maximality of the pair (Ky, f,) unless
Ky = X. O
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Corollary 10 If the Abelian sheaves R and S in the short exact sequence (160) are
soft, then also the Abelian sheaf T is sofft.

Proof Let K be a closed set in the base X, and consider the restriction of the exact
sequence (160) to K. The restricted sequence is also exact. Then by Theorem 3, the
corresponding sequence of Abelian group (161) over K is exact. Choose a section

7y € TK. There exists & € SK such that g, (6) = 7. If  is an extension of d to X,
then gy (6) = g o 0 is the extension of y to X. O

Corollary 11 Let X be a paracompact Hausdorff space and let
f(] fy fa
0—S)—S —8 — --- (165)

be an exact sequence of Abelian sheaves over X. If each of the sheaves Sy, S1, S,
. is soft, then the induced sequence of Abelian groups

0—SX—SX—5X— - (166)

is exact.
Proof The sequence (165) is exact if and only if for each i =1,2,3,... the
sequence

0—Kerf;— S~ Ker iy — 0 (167)

is exact. Since by hypothesis Ker f; = Sy and S| are soft sheaves, the sheaf Ker f,
is also soft (Corollary 10). Since the sheaf S is soft, the sheaf Ker f3 must also be
soft, according to Corollary 10, etc. Therefore, for all i, the sequence of global
sections

fi
0— (Ker f)X — S;X — (Ker ;1) X —0 (168)
is exact, by Theorem 3. Now it is immediate that the sequence (166) must
be exact. O

Corollary 12 If S is a soft sheaf over a paracompact Hausdorff space X, then
HY(X,8) =0 for all g> 1.

Proof Consider the canonical resolution of S,
1 0 1 2
0—S-c'ssc's S cts S (169)

Since all the sheaves C'S are soft (Sect. 7.8, Lemma 14), the associated sequence
of global sections

c2

0—(C°S)X Z(C'8)X L (C8)x = ... (170)
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is exact (Corollary 11). Now, Corollary 12 follows from the definition of a coho-
mology group. O

Examples

22. Let G be an Abelian group, X connected Hausdorff space, and S = X x G the
constant sheaf space (Sect. 7.2, Example 11). We show that the constant sheaf
Secl)S is not soft. Let x and y be two different points of the base X. Consider
the closed subset ¥ = {x} U {y} of X and the section y of S defined on Y by
p(x) =g, y(y) =h, where g and h are two distinct point of G. If U is a
neighborhood of x and V is a neighborhood of y such that U N V = (J, then we
have a section y: U UV — S, equal to g on U and % on V. The restriction of j to
Yis equal to y; in particular, } is continuous. But since X is connected, 7 cannot
be prolonged to a global continuous section of S.

23. If X is a normal space, then every continuous, real-valued function defined on a
closed subspace of X, can be prolonged to a globally defined continuous
function (Tietze theorem). Consequently, the sheaf Cy g is soft (cf. Sect. 7.4,
Example 18).

24. We shall show that the sheaf of modules S over a soft sheaf of commutative
rings with unity R is soft. Let X be the base of R (and S), K a closed subset of
X,and lety € Sec“)S be a continuous section, defined on K. Then by definition
y can be prolonged to a continuous section, also denoted by y, defined on a

neighborhood U of K. Define a continuous section p € Sec®) (K U (X\U))) by

o= (b 15K o

)

Since R is soft, there exists a section p € Sec®)X prolonging p to X. We define
7(x) = p(x) - p(x); 7 is the desired prolongation of y.

25. The sum of two soft subsheaves of a sheaf is a soft subsheaf (cf. Sect. 7.2,
Example 13).

Let S be an Abelian sheaf over a topological space X, n: S — S a sheaf mor-
phism. We define the support of n to be a closed subspace of X

supp 1 = cl{x € X|n(x) # 0}. (172)

Let {U,},., be alocally finite open covering of the paracompact Hausdorff space
X, S an Abelian sheaf with base X. By a sheaf partition of unity for S, subordinate
to {U,},.; we mean any family {y,},, of sheaf morphisms y,: S — S over X with
the following two properties:
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(1) supp g, C U, for every 1 € I.
(2) For every point x € X

S ) =x. (173)

1€]

Note that the sum on the left-hand side of formula (173) is well defined, because
for every fixed point x the summation is taking place through only a finitely many
indices 1 from the indexing set I.

An Abelian sheaf S is said to be fine, if to every locally finite open covering
{U,},o; of X there exists a sheaf partition of unity {y,},, subordinate to {U,},,.

Theorem 4 Every fine Abelian sheaf over a paracompact Hausdorff space is soft.

Proof Let S be an Abelian sheaf over a paracompact Hausdorff space X,
S = Germ S, and let ¢ be the projection of S. Let Y be a closed subspace of X, 7 a
continuous section, defined on Y. To every point x € Y, there exists a neighborhood
U, of x and a continuous section y,: U, — S such that y(x) = y,. Shrinking v, to
U, N'Y we get a continuous section of the restriction of S to U, N Y. Shrinking U if
necessary we may assume without loss of generality that y,[;; y = |y ~y- The sets
U, together with the set X\ Y cover X. Since X is paracompact, there exists a locally
finite refinement {V, },; of this covering. If for some 1 € I, V, N Y # &, then there
exists a continuous section y,: V, — S such that y,|,, o, = 7|y (s if ViNY =, we

set y, = 0. In this way, we assign to each of the sets V, a continuous section
YV, —=S.

Let {#,},.; be a partition of unity subordinate to the covering {V,},.,. Set for all
1el

5,(x) = {g:(%ix?}(\\?,e Y (174)

where 0 denotes the neutral element of the Abelian group S,. We get a mapping
J,: X — § satisfying the condition ¢ o §, = idy. This mapping is obviously con-
tinuous on the set V,, and also on a neighborhood X\suppy, of the closed set X\ V.
We set 6 = > 0,. Then, J is a global continuous section of the sheaf space S. Then
for every point x € X,

5(x) =D me(pe®) =D mep(x) = (Z m)v(X) = (). (175)

Viox

Therefore, d|, = 7.
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Examples

26. The Abelian sheaf Cy g of continuous real-valued functions on a paracompact
Hausdorff space X is fine. Indeed, any locally finite open covering {U, },, of
X, and any subordinate partition of unity {y,},.;, define a sheaf partition of
unity as the family of sheaf morphisms f — y,f. The Abelian sheaf Cy g can
also be considered as a sheaf of commutative rings with unity.

27. Let S be a sheaf of Cx g-modules over a paracompact Hausdorff space X, let
S be the associated sheaf space, with projection ¢: S — X. Every continuous
function f: X — R defines an Abelian sheaf morphism of the sheaf space S by

fs(s) = f(o(s)) -s. (176)

If {U,},, is an open covering of X, and {y,},, a partition of unity on X,
subordinate to {U,}lel, then formula (176) applies to the functions from the
family of functions {,},.,; the corresponding family of sheaf morphisms
{X.s}.c1 18 then a sheaf partition of unity on S. Consequently, the Abelian
sheaf S is fine.

28. The Abelian sheaves Cy g of r times continuously differentiable functions on a
smooth manifold X, where »r =0, 1,2, ..., 00, are fine (cf. Example 26), and
can also be considered as sheaves of commutative rings with unity.

29. Every sheaf of modules over a fine sheaf of commutative rings with unity is
fine.

Let us consider a short exact sequence of Abelian sheaves over a paracompact
Hausdorff manifold X

0—RL8 95T o0, (177)

and the commutative diagram of the canonical resolutions

0 0 0 0
1 | ! |
0 — R — CR — C'R — CR —
Lf ! | |
0o —— S — s — C¢'s — s — (178)
lg 1 l 1
0O — T — C'T — C'T — Cc'T —
1 1 l !
0 0 0 0
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This diagram induces the commutative diagram of global sections

All the sheaves C'R, C'S, and C'T in (178) are soft (Sect. 7.9, Lemma 14).
Applying Corollary 11, we see that the columns are exact. Therefore, by Lemma
11, we get the long exact sequence
0 f 0 g 0 °
0—H(X,R)—H(X,S5) —H'(X,T)— (180)
1
H'(X,R) —H'(X,8) —H'(X,T) > H*(X,R) — ...,

where the family (3°,9',0?,...) is the connected morphism.

The long exact sequence can be applied to commutative diagrams of short exact
sequences.

Lemma 17 Let X be a paracompact Hausdorff space. Suppose that we have a
commutative diagram of Abelian sheaves over X

0 — R —I‘» S 3, T — 0
Lh Lk (181)
o — R L s LT — o
whose rows are exact. Then the diagram
0 f 0 9 0 &
0 — H°X,R) — H°X,S) — H'X,T) —
1 1 l
g o

— 0 = —?> 0 S — 0 T —
0 — WA LS S D -
H'(X,R) — H'(X,S) — H'(X,T) - HX,R)

! ! ! !
H'(X,R) — H'(X,S) — H'(X,T) 2 H*(X,R)
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where the first (resp. the second) row is the long exact sequence associated with the
first (resp. the second) row in (181), commutes.

Proof 1t is enough to prove commutativity of the squares in (182) containing the
group morphisms 0'. Commutativity of the other squares is an immediate conse-
quence of the diagrams (181) and Sect. 7.9, (151).
Consider the square
aO
H'X,T) — H'(X,R)
! ! (183)

HO(X, T) = H'(X,R)
For the purpose of this proof denote by eg: R — C°R and ck: C'R — C'*!R the
corresponding sheaf morphisms in the canonical resolution of the sheaf R,
0—R—CR— C'R— C*R — -, and introduce analogous notation for the
sheaves Sand T. Let ¢ € H(X, T) = Ker ¢} There exist an element b € (C°S)X
and a € Kerck such that ¢ € g°(b), }(b) = f'(a), and by definition

aO(C) = [a]’ (184)
h'e(c) = h'(a]) = (' (a)]
We set
b=ko(b), a=h'(a). (185)

Then, we get by immediate calculations g°(b') = g°k°(b) = j°g°(b) = j°(c).
7_‘1 (@) = f'(h'(a)) = k'f'(a), and ¢% (b) = % k°(b) = k°c%(b) = k'f'(a). Hence
b and a satisfy

fle)=g(b), &) =1 (a). (186)
Consequently,
°(c) =d = h'd°(c) (187)

proving commutativity of (183).
Commutativity of the square

HIX,T) — H7'(X,R)
L (188)
HIX,T) = HI'(X,R)
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can be proved in the same way. Let [c] € HY(X, T) = Kerc%/Im c‘?l. There exist

elements b € (C?S)X and a € Kerc%™" such that

c=g'(b), c§(b)=1""(a), (189)
and by definition
01([c]) = la],
haiHi = Evj“([a]) = [h""!(a)] 1)
We denote
b=Kk®b), a=h""(a) (191)
Then
g'(b) = g'Kk"(b) = J'g"(b) = j*(0),
fitl(@) = F1H AT (a) = KT (a), (192)
c4(b) = cxk(b) = k"G (b) = KT 1 (a),
so that

cl(b) = f""!(a). (193)
Now using the definition of 07 we get

0l ([e]) = & ([f*(c)]) = [@]

_ [ (@) = K7 ((c]), (194

which proves commutativity of the square (188). O

An Abelian sheaf S over a topological space X is said to be acyclic, if
H%(X,S) =0 for all g > 1. A resolution of S

0—8—8"—8 -8 — ... (195)

is said to be acyclic, if each of the sheaves S', where i > 1, is acyclic.
Lemma 18 Let S be an Abelian sheaf over a paracompact Hausdorff space X.

(a) If S is soft, it is acyclic.
(b) The canonical resolution of S is acyclic.
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Proof

(a) This follows from Corollary 12.

(c) We want to show that each of the sheaves C?S, where p >0, is acyclic. But
we have already shown that these sheaves are soft (Sect. 7.9, Lemma 14));
since by hypothesis the base X of S is paracompact and Hausdorff, they are
acyclic by part (a) of this lemma. O

Denote by T*X the complex 0 — T°X — T'X — T°X — ..., and let
H4(T*X) be the gth cohomology group of this complex.

Theorem 5 (Abstract De Rham theorem) Let S be an Abelian sheaf over a
paracompact Hausdorff manifold X, let

0—S—T —-T' —-T*— ... (196)

be a resolution of S. If this resolution is acyclic, then for every q >0 the coho-
mology groups H1(X, S) and HY(T*X) are isomorphic.

Proof Let us consider the following commutative diagram of Abelian sheaves

0 0 0 0
l ! | |
o — S — (s — (s — ¢S —
| 1 1 |
0 070 1470 210
0 T cC'T CcT cCT (197)
| ! 1 |
o — 717 — T — Cc'1T" — 1" —
| ! | |
o — 7 — ' — 't — ¢t —
| ! l |
with exact rows and columns, and the associated diagram of global sections
0 0 0 0
| | ! 1
0 — Sx — (C'S%x — (C'§)x — (C*'S)x —
| | ! l
0 — T — (T — (C'T% — (C°TX — (198)
| | 1 1
0 — TXx — (CThx — (C'THx — (C’THx —
| | 1 1

0 — T°x — (C°THhx — (C'THx — (C°THx —
| | | |
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By Sect. 7.9, Corollary 6 and Corollary 7, every column in this diagram except
possibly the first one, are exact. We shall show that each row, except possibly the
first row, is exact.

Consider the &-th row

0— T'X — (C°THx — (C'THXx — (C*THX — (199)

This sequence is exact at the first and the second terms (Sect. 7.9, Lemma 16).
Since the sheaf T* is acyclic, we have for each ¢ > 1,

HIY(X, T =0, (200)

which means that the sequence (199) is exact everywhere. In particular, the diagram
(199) is exact everywhere except possibly the first column and the first row. Now,
we apply (Sect. 7.7, Lemma 10). O

Corollary 13 For any two acyclic resolutions of an Abelian sheaf S over a
paracompact Hausdorff space X, expressed by the diagram

R — R' — R* —
/!
0O — S (201)

N

A N N
the cohomology groups of the complexes of global sections HI(R*X) and
H?(T*X) are isomorphic.

Proof Indeed, according to Theorem 5, HY(R*X) and H?(T*X) are isomorphic
with the cohomology group H?(X, S). O

Examples

30. Any sheaf S of C"-sections of a smooth vector bundle over a smooth paracompact
Hausdorff manifold X admits multiplication by functions of class C" and is
therefore fine. Consequently, S is soft (Theorem 4) and acyclic (Lemma 18).

Remark 6 Consider an n-dimensional smooth manifold X, the constant sheaf R and
the sheaves of p-forms Q” of class C* on X. The exterior derivative of differential
forms d: " — QP! defines a differential sequence

0—R—0 Lo Lo (202)
where the mapping R — Q° is the canonical inclusion. It follows from the

Volterra—Poincare lemma that this sequence is exact, therefore, it is a resolution of
the constant sheaf R. Since the sheaves QO are fine they are soft (Example 29,
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Example 30) and acyclic (Lemma 18). Thus, the resolution (202) is acyclic; in
particular, according to the abstract De Rham theorem, the cohomology groups
H4(Q*X) of the complex of global sections

d d d
0—QX—Q'X—Q*X— - - (203)

coincide with the cohomology groups H?(X,R). The sequence (202) is called the
De Rham sequence (of sheaves); (203) is the De Rham sequence of differential
forms on X, and the groups H?(Q*X), usually denoted just by H?X, are the De
Rham cohomology groups of X. Note that according to Corollary 13, for any acyclic
resolution of the constant sheaf R on X,

0 — R — S% (204)

the cohomology groups HY(S*X) coincide (that is, are isomorphic) with the De
Rham cohomology groups H7X,

HY(S*X) = HX. (205)
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Chapter 8
Variational Sequences

We introduced in Chap. 4 the Euler—Lagrange mapping of the calculus of varia-
tions as an R-linear mapping, assigning to a Lagrangian /, defined on the r-jet
prolongation J"Y of a fibered manifold Y, its Euler-Lagrange form E;. Local
properties of this mapping are determined by the components of the Euler—
Lagrange form, the Euler-Lagrange expressions of the Lagrangian A. In this
chapter, we construct an exact sequence of Abelian sheaves, the variational
sequence, such that one of its sheaf morphisms coincides with the Euler—Lagrange
mapping. Existence of the sequence provides a possibility to study basic global
characteristics of the Euler—Lagrange mapping in terms of the cohomology groups
of the corresponding complex of global sections and the underlying manifold Y. In
particular, for variational purposes, the structure of the kernel and the image of the
Euler—Lagrange mapping A — E; is considered.

The variational sequence is defined by means of the exterior derivative operator,
acting on differential forms on jet spaces. Recall that for any smooth, paracompact,
Hausdorff manifold X the following facts have already been stated in Chap. 7:

(a) The set of real-valued functions, defined on open subsets of X, with standard
restrictions, is a sheaf; the sets of continuous, Ck-diﬁ”erentiable and smooth
functions are also sheaves.

(b) More generally, the set of differentiable k-forms on open subsets of X, with
standard restrictions, is a sheaf.

(c) The set of closed differentiable k-forms, defined on open subsets of X, with
standard restrictions, is a sheaf.

(d) An exact form p on an open set U C X is a form such that there exists a form
n, defined on U, such that p = dp; the exact forms constitute a presheaf but not
a sheaf: if {U,},, is an open covering of an open set U C X, such that
P|U, = dn, for each 1 € I, then in general, there is no # such that p = dp.

This chapter treats the foundations of the variational sequence theory. The
approach, which we have followed, is due to the original papers Krupka [K18, K19].
Main innovations consist in the use of variational projectors (also called the interior
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Euler—Lagrange operators, see Anderson [A2], Krupka and Sedenkova — Volna
[KSe], Volna and Urban [VU]). The idea to apply sheaves comes from Takens [T].

A number of important topics have not been included. For recent research in the
structure of the variational sequence, its relations with topology, symmetries and
differential equations, and possible extensions to Grassmann fibrations and sub-
manifold theory, we refer to Zenkov [Z], Brajercik and Krupka [BK], Francaviglia
et al. [FPW], Grigore [Gr], Krupka [K16, K17], Krbek and Musilova [KM],
Pommaret [Po], Urban and Krupka [UK1], Vitolo [Vit] and Zenkov [Z] (see also
the handbook Krupka and Saunders [KS], where further references can be found).

Note that the variational sequence theory does not follow the approach to the
“formal calculus of variations” based on a variational bicomplex theory on infinite
jet prolongations of fibered manifolds, although some technical aspects of these two
theories appear to be parallel (Anderson [A2]; Anderson and Duchamp [AD];
Dedecker and Tulczyjew [DT]; Olver [O1]; Saunders [S]; Takens [T]; Urban and
Krupka [UK1]; Vinogradov et al. [VKL] and others). In particular, the finite-order
sequence can never be considered as a “subsequence” of the bicomplex. The results,
however, and require a deeper comparison. It seems for instance that the infinite jet
structure of the bicomplex theory is a serious obstacle for obtaining local and global
characteristics of the “variational” morphisms within this theory; although a main
motivation was to study these morphisms, no explicit (or at least effective) formulas
say for the inverse problem of the calculus of variations and Helmholtz morphism
have been derived yet.

As before, Y denotes in this chapter a smooth fibered manifold with n-dimen-
sional base X and projection n, and n + m = dim Y. J"Y is its r-jet prolongation and
n"J'Y — X, n'°: J'Y — J°Y are the canonical jet projections. For any open set
W CY, QW is the module of g-forms on the set W' = (20" (W), and Q"W is
the exterior algebra of forms on W”. The horizontalization morphism of the exterior
algebra Q"W into Q" 'W is denoted by h. If Z is a n-projectable vector field and
J'E its r-jet prolongation, then to simplify notation, we sometimes denote the
contraction i;rzp, and the Lie derivative 0;-gp of a form p, just by izp, or Ozp.

8.1 The Contact Sequence

We saw in Sect. 7.10, Remark 6, that the exterior differential forms on a finite-
dimensional smooth manifold X together with the exterior derivative morphism
constitute a resolution of the constant sheaf R over X, the De Rham resolution. In
this section, we provide analogous construction for differential forms on the r-jet
prolongation J'Y of a fibered manifold Y over X. We use the fibered structure of
Y to construct a slightly modified version of the De Rham resolution, in which the
underlying topological space is the manifold Y itself instead of J'Y.

Following our previous notation (Chaps. 4 and 7), consider a smooth fibered
manifold Y with base X and projection 7. For any open set W in Y, denote by QW
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the Abelian group of real-valued functions of class C" (0-forms), defined on the
open set W C J'Y; one can also consider ;W with its algebraic structure of a
commutative ring with unity. Next, let ¢ > 1, and denote by Q;W the Abelian group
of g-forms of class C’, defined on W" C J"Y. This way we get, for every non-
negative integer g, a correspondence W — Q;W, assigning to an open set W C Y
the Abelian group of g-forms on W”. One can easily verify that this correspondence
defines a sheaf structure on the family {Q; W1, labeled by the open sets W. Indeed,
to any two open sets W, and W, in Y such that W, C W), and any p € Q;Wl, the
restrictions Wi 3 p — ply, € QW define an Abelian presheaf structure on
{Q;W}. Since this presheaf is obviously complete, it has the Abelian sheaf struc-
ture (Sect. 7.4); with this structure, the family {Q;W} will be referred to as the
sheaf of g-forms of order r over Y, and will be denoted by Q;.

The exterior derivative operator d defines, for each W C ¥, a sequence of
Abelian groups

0—R—AW-Low-Low-L ... Laow 0
d

_>Q;+1Wi> . LQ;WW -0,

and an exact sequence of Abelian sheaves

0—R—-Lo-Lo-t .. Lo )
Lo L Lo o

We call this sequence the De Rham (sheaf) sequence over J”Y. We now construct a
subsequence of the De Rham sequence. First, recall the notion of a contact form and
introduce the notion of a strongly contact form, a (higher-order) analogy of a similar
concept introduced in Sect. 8.2.

Let W be an open set in the fibered manifold Y. Recall that the horizontalisation
h: QW — Q""'W is a morphism of exterior algebras, which assigns to a g-form
p €W, g>1,an " -horizontal g-form hp € Q;“W by the formula

hp(J:+1y)(élv 527 LT fq) = P(J;V)(hilahfb .- '7héq)7 (3)

where J. "1y € W is any point and &, &5, .. ., &, are any tangent vectors of J”'Y
at this point. If f is a function, then

hf = (2. 4)

One can equivalently introduce % as a morphism, defined in a fibered chart (V, ),
Y = (x,y7), by the equations


http://dx.doi.org/10.2991/978-94-6239-073-7_7

266 8 Variational Sequences

hf =fo TCH—”? hdx' = dxi’ hdyjaljzu-jk = yj{iljz--Jk idxi’ (5)
where fis any function on V" and 0 <k <r. A form p € Q;W such that
hp =0 (6)

is said to be contact. Clearly, every g-form p such that ¢ > n + 1 is contact, and the
1-forms

@;jZ~~~jl = dyqujzmjl - yJ(:jzu-jz idxl’ 0<i<r—1, (7)
defined on the open set V" C J'Y are examples of contact 1-forms. The collection
of 1-forms {dx!, wj?;jz-ujk7dylgllzmlrfllr}’ where 1<i<n, 1<o<m, 1<k<r—1,
1<ji<pp< - <jr<n,and 1 <[} <, < --- <1, <n, constitutes a basis of linear
forms on the set V’, called the contact basis (Sect. 2.1, Theorem 1). The exterior
derivative df, or more precisely, (n’“"’)*df , can be decomposed as
(1) *df = hdf + pdf, where pdf is a contact 1-form, called the contact com-
ponent of f. Any form p € W, of more precisely (n"+1")*p, has the canonical
decomposition (A 1")%p = hp + p1p +pap + - - + pgp, Where hp is n""!-hori-
zontal and pyp is k-contact; this condition can equivalently be expressed by saying
that the chart expression of p;p is generated by the product of k exterior factors

@7, Where 0<p<r.
The 1-forms w7, . and 2-forms dw?; . locally generate the contact ideal
1J2--Jk JUJ2-Jr—1

®'W of the exterior algebra Q"W, which is closed under the exterior derivative
operator d; its elements are called contact forms. The contact g-forms are elements
of the contact submodules Q;W N O®"W. We need these submodules for g <n;

denote
OW=QWNO'W, g<n (8)
The 1-forms w?

iy where 0 <k <r — 1, determined by a fibered atlas on Y,
1J2--Jk

locally generate a (global) module of 1-forms, and an ideal ®,W of the exterior
algebra Q"W (for definitions see Appendix 7). Clearly, the contact ideal contains
Oy W as a subset.

Since the contact ideal is closed under the exterior derivative, we have the
sequence of Abelian groups

0—ow-Lew-L.. . Lew. (9)

If pe @;W is a contact form and fis a function on W’, then the formula
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d(fp) =df Np+fdp (10)

shows that the form d(fp) is again a contact form. Thus, the mapping p — d(fp) is
a morphism of Abelian groups; however, the exterior derivative in the sequence (9)
is not a homomorphism of modules. Restricting the multiplication to constant
functions f, that is, to real numbers, (9) can be considered as a sequence of real
vector spaces.

Consider now the sets of g-forms Q;W such that n + 1 < g < dimJ"Y. Denote
g=n+kIfpecQ W, then hp =0, and also pjp =0,pp =0, ...,ps_1p=0
identically (cf. Sect. 2.4, Theorem 8), thus p is always contact, and its canonical
decomposition has the form

(050 = prp + pryip + -+ + Prinp- (11)

To introduce the notion of a strongly contact form, it is convenient to proceed in
two steps. First, we slightly modify the definition given in Sect. 2.6 and introduce
the class of strongly contact forms as follows. We say that an (n + 1)-form p €
Q, | W is strongly contact, if for every point J{y € V", there exists an integer s > r,
a fibered chart (V,¥), ¥ = (x',y7), at y(x) € V and a contact n-form 7 € ®}V such
that

pi((m*")*p —dn) = 0. (12)

Second, if p € QW where k > 2, we say that p is strongly contact, if for every
point JIy € V', there exists s > r, a fibered chart (V, ), Y = (x',)7), at yp(x) € V
and a strongly contact (n + k — 1)-form n € Q; ,, V such that

pi((")*p —dn) = 0. (13)

Lemma 1 Let p € Q,  W. The following conditions are equivalent:

(a) p is strongly contact.

(b) There exists an integer s >r and an (n+k — 1)-form n € Q, .,V such that

(") p=pu+dn, pp=0, pean=0. (14)

Proof If p is strongly contact, then (7*")*p — dn = p for some form p on V* such
that pypt = 0. Then (7n*")*p = pu + dn proving (14). The converse is obvious. [

Lemma 2

(@) Every form p € Q) W such that prp = 0, is strongly contact.
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(b) Exterior derivative of a contact n-form is strongly contact. Exterior derivative
of a strongly contact form is strongly contact.

(c) Let E be a m-vertical vector field, p € Q, W a strongly contact form. If k > 2,

then the (n+k — 1)-form i=p is strongly contact.

Proof

(a) Obvious.

(b) We use the identity py+1(dp — dp) = 0.

(c) This follows from Lemma 9 and Sect. 2.5, Theorem 9. Indeed, for every n-
vertical vector field =

izpi((0")*p — dn)

— _ '_: S, sk _ ":'d
o 1(1-_‘(72 r) ? = n) (15)
= pr1 (i=(7*")*p — dzn)
= pr—1(i=(7*")*p + dizn) = 0.
But pk—ziai’] = iEPk—l’] =0 proving (C) O

Remark 1 1t follows from Lemma 1 that the canonical decomposition of a strongly
contact form p € @, W is

(") *p = prdT + prs1p + Pks2p + - - + Pngkp

(16)

=dt+ pry1(p — dt) + prs2(p — dv) + - + pusi(p — d),
where the forms on the right-hand side are considered as canonically lifted to the set
Ve CJY.

Remark 2 One can formally extend the definition of a strongly contact form to the
g-forms p € Q;W such that 1 <g<n. Indeed, we have for any contact form
p' € O, W, h(p —dp') = hp; thus, if hp =0, then we have h(p —dp’) = 0 for
any p' € @, | W.

Remark 3 The definition of a strongly contact form, given above, has its natural
origin in the theory of systems of partial differential equations for mappings of
n independent variables, defined by differential forms of degree n + k > n: Such
differential equations can equivalently be described by systems of n-forms arising
by contraction of (n + k)-forms with k vector fields. For an ad hoc construction in
this context, similar to the concept of a strongly contact form, see the differential
systems with independence condition in Bryant et al. [Bry].

Remark 4 The definition of a strongly contact form is closely related to the concept
of a Lepage form (Sect. 4.3).
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Strongly contact (n + k)-forms on W” constitute a subgroup ®, W of the Abelian
group QW they do not form a submodule of & W. The Abelian groups @, W
together with the exterior derivative d form a sequence

ow-Leor, w-L...-Le,w—o. (17)

The index M of the last nonzero term in this sequence is
M:m<n+;_1)+2n—l. (18)

If 1 is a contact n-form, then # is automatically a strongly contact form. Thus,
sequences (9) and (17) can be glued together. We get a sequence

0—ow-Lew-L ... Lew
. (19)
—0

row-S o Lenw—o.

The families of Abelian groups {@;W}, where W runs through open subsets of
the fibered manifold Y, induce Abelian sheaves, and the sequences (19) induce a
sequence of Abelian sheaves. Indeed, consider for any integer g such that 1 <g <M
the family of Abelian groups @, = {®; W}. Any two open sets Wi, W, C ¥ such
that W, C W, define a morphism of Abelian groups ®, Wi > p — ply, € O, W,, the
restriction of a form, defined on the open set W| C JY, to the open set W; C Wy.
Clearly, G); with these restriction morphisms forms an Abelian presheaf over Y. The
restriction morphisms obviously satisfy the axioms of an Abelian sheaf (Sect. 7.4).
Thus, the presheaf ®; has the structure of an Abelian sheaf.

If 1<g<n (resp. n+ 1<qg<M), this sheaf is called the sheaf of contact
(resp. strongly contact) g-forms of order r on Y.

Remark 5 The sheaf @;, defined over the fibered manifold Y, differs from the sheaf
of g-forms over the r-jet prolongation J'Y of Y; G); can be characterized as the
direct image of the sheaf of g-forms of order r over J'Y by the jet projection
70 J'Y — Y. Our construction, for the forms of degree g <n, is the same as an
analogous construction in Anderson and Duchamp [AD].

The sequences (19) induce the sequence of Abelian sheaves

0—o-Le-L... Lo Lo,
PR (20)
—_— e _)®M —_ 0

The following basic observation shows that the De Rham sequence can be factored
through the sequence (20).
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Lemma 3 The sequence of Abelian sheaves (20) is an exact subsequence of the
De Rham sequence (2).

Proof

1. To prove exactness of the sequence (20) at the term ©’, where 1 < g <n, it is
sufficient to consider differential forms defined on the chart neighborhood of a
fibered chart (V,), Y = (x,)°), on Y. However, for these differential forms,
the statement already follows from Sect. 2.7, Theorem 13.

2. Exactness at the terms ®;, where n+ 1<qg<M, follows from Sect. 2.7,

Theorem 14. O

The sequence (19) will be referred to as the contact sequence, or the contact
subsequence of the De Rham sequence.
We show that the sheaves @2 in the contact subsequence are all soft. To describe

the structure of these sheaves @; such that n + 1 < g <M, note that any g-form p
on the r-jet prolongation J"Y identically satisfies

hp:07 plpzoﬂ p2p:05"'7 pq—n—lp:O (21)

(Sect. 2.4, Theorem 8). We denote by Q;(C>W the submodule of the module of
g-form QW defined by the condition

Pg—np = 0. (22)

This condition states that the submodule Q;(C)W consists of the forms whose order
of contactness is > g — n + 1. The family of the modules Qf](C)W defines the sheaf
of modules

Clearly, Q;(C) is a soft sheaf.
Lemma 4 For every integer q such that 1 < q <M the sheaf G); is soft.

Proof

1. If 1 < g <n, then the sheaf @2 admits multiplication by functions so it is fine;
then, however, according to Sect. 7.1, Theorem 4, the sheaf @; is soft.
2. Consider the contact subsequence (20) and the short exact sequence

0— 0 -L0;-L40; —0, (24)
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where d®} denotes the image sheaf, d®} = Im d. Since the sheaves @] and ©;
are soft, the sheaf d®; is also soft (Sect. 7.10, Corollary 1). Similarly, assign to
the sequence

0— 0 -L0;-L0;-L40; —0 (25)
the short exact sequence

0 — Kerd — ©}-5d0; — 0. (26)

Using exactness of (25) at @3, we have Kerd = d@®j, so the sheaf Kerd in (26)
is soft. Consequently, the sheaf d®f is also soft. Continuing this way, we assign
to the sequence

0—o Lot Leor-Lae —0 (27)
the short exact sequence

0 — Kerd — @/ -5d@" —0 (28)

and since Kerd = d®;71 and this sheaf is soft, the sheaf d@; is also soft.
Now consider the sheaf @ . Note that by definition, we have a sheaf mor-
phism, expressed (by means of representatives of the germs) as

Oy Yy 3 (€.40) = ptdre . (29)
where ©) Xy Q, . is the fiber product of the sheaves ©, and &, ;). The
sheaf @, | can be regarded as the image sheaf of this morphism; its kernel
consists of the pairs (7, —dt) € @, xy d®,. We get a short exact sequence

d

—0 ,—0. (30)

0— ®rrz Xy d®:l - ®:l XX Q;Jrl(c) n+l

The sheaves O, xy d®; and ©, xx £, in this sequence are fiber products

of soft sheaves @;, dO;, and Q;

" i 1(c)> and are therefore soft; hence, the sheaf

@), is also soft.
Extending this construction to any of the sheaves @; in the variational sequence
(20), where ¢ >n + 1, we complete the proof. O
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8.2 The Variational Sequence

Consider the De Rham sequence (32), and its contact subsequence (19), Sect. 8.1.
Using Sect. 8.1, Lemma 3, we get a commutative diagram

0 0 0

! ! !
0o — o L e L e L . 31
! l ! !

0o — R — o L o L o L o

|=

in which Ry — € is the canonical inclusion and the vertical arrows represent
canonical inclusions of subsheaves. Passing to the quotient sheaves and quotient sheaf
morphisms, this diagram induces a commutative diagram, written in two parts as

0

0
!

o — o L e 4
!

! !
0o — R — @ 4% o L o L ... (32
N ! !
Qe — 0, —
! !
0 0

0
!

— O}y — 0
!

!
< e Lo L Lo, — 0
! /!
— /0,
!
0

The quotient sequence of Abelian sheaves, defined by this diagram,
0—Ry —Q;—Q|/0] —Q,/0) — QO /0] — (33)

is called the (rth order) variational sequence over the fibered manifold Y. Since the
De Rham sequence and its contact subsequence are exact, it can be easily verified
that the quotient sequence is also exact (see also Sect. 7.7, Corollary 2). Thus, the
variational sequence is a resolution of the constant sheaf Ry over Y. We call the
Abelian group morphisms in (33) the Euler—Lagrange morphisms and denote them
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by Ej: Q7/©; — Q.| /©;,, or just by E. The variational sequence is also denoted

j+1e
by
0 — Ry — Vary. (34)
Consider the complex of global sections
0— QY — (Q/0)Y — (Q/0;)Y — (Q;/03)Y — (35)

associated with the variational sequence (34), its cohomology groups H* (Var}Y),
and the cohomology groups of the fibered manifold Y with coefficients in the
constant sheaf Ry; by the De Rham theorem, we identify these cohomology groups
with the De Rham cohomology groups; thus, H*Y = H*(Y,Ry) (Sect. 7.10,
Remark 6). We are now going to establish two theorems, representing central
results of this chapter, namely the tools for the study of the global variational
functionals, considered in Chaps. 4 and 5 of this book.

Theorem 1 The variational sequence 0 — Ry — Var}, is an acyclic resolution of
the constant sheaf Ry.

Proof Since the sheaves Q; and ©; are soft (Sect. 8.1, Lemma 4), the quotient
sheaves € / O, are also soft (Sect. 7.9, Corollary 1). Then, however, the sheaves
Q;/0O; are acyclic, so the resolution 0 — Ry — Var}, is acyclic (Sect. 7.10,
Lemma 18). U

Theorem 2 The cohomology groups H k(Var; Y) of the complex of global sections
and the De Rham cohomology groups H*Y of the manifold Y are isomorphic.

Proof This follows from Sect. 7.10, Theorem 5 (see also Corollary 13 and
Remark 6). O

Remark 6 The cohomology groups H*(Y,Ry) have been constructed by means of
the topology of the underlying fibered manifold Y. On the other hand, it follows
from Theorem 2 that the same cohomology groups characterize properties of the
complex of global sections associated with the variational sequence. In this sense,
Theorem 2 clarifies the relationship between existence of global sections of the
quotient Abelian groups and topological properties of Y.

8.3 Variational Projectors

In this section, we consider the columns of the diagram (33), Sect. 8.2, defining the
variational sequence of order r over the fibered manifold Y. The main goal is to
show that the classes of forms — elements of the quotient groups Q;/®; — can be
represented as global differential forms, defined on the s-jet prolongation J°Y for
some s. Basic idea for constructing this representation leans on the definition of the
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quotient space, which is defined up to a canonical isomorphism. We shall construct
an Abelian group of forms ®; and a group morphism .#;: Q; — @} such that
Ker.#] = Oy; then, the quotient sheaf Q; /®; becomes canonically isomorphic with
the image Im.#; C ®;, according to the diagram

O,
!
o (36)
7 N\
O /0; — Im .7},

Let k> 1, let W be an open set in Y, and let n be a k-contact (n + k)-form #,
defined on the open set W'*! in J"Y. In a fibered chart (V, /), = (x',y°), on ¥, 5
has an expression

n= Z (I)’;jz“‘f"‘ A w;jz..Jk A wy, (37)

0<k<r

where @2 are some (k — 1)-contact (k — 1)-forms. In this section, we construct
a decomposition of the canonical lift (71" +1)#y of  to W**!; to this purpose,
we use the property

wO'

_ o
Jij2--Jk Ao = d(w

Ji2--dk—1 A wjk)

(38)

of the contact I1-forms w7, .
means of fibered charts, it will be independent of the chosen charts.

First, consider the decomposition of (1 + 1)-forms, defined on the set W' !; the
idea will be to identify in a form a summand, which is an exact form. The proof of
the following theorem is based on the algebraic trace decomposition theory

explained in Appendix 9.

. Although the decomposition will be constructed by

Theorem 3 Let 1 be a l-contact n"*'"-horizontal (n+ 1)-form on W'*!,
expressed in a fibered chart (V ), Y = (x',y%), by

n= Z AL A ay. (39)

o<l <r

(@) There exist a 1-contact w°-generated (n + 1)-form Iy on V1, a 1-contact
n-form Jin and a 2-contact (n + 1)-form Kin, defined on V*" 1, such that

(RN ey = I — dJin + Ky, (40)
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where

I = <A<, + Y (~1)dyd,,. -dj.‘Asz"'j"> @’ A o,

1<s<r

k S—KJS5—i 51 s
Jin = Z Z (_1) dj,v—k+1dj,v7k+2 d Alllz s kfs—k+1s—k+2- mez i A i,
1<s<r0<k<r-1
k+1 102 s skt L5t 2owofs
Kin = Z Z pd(dj\-fmdj\-fwz' . 'dj‘Ang iy kfs— ket Lis—k+2 J)
1<s<r0<k<s—1
A wlﬂllz k-1 A Dy -
(41)
(b) Suppose that we have a decomposition
2r+1,r+1 _
(=) =g — dny + (42)

such that n is 1-contact and w°-generated, n, is 1-contact, and 1, is a 2-
contact form. Then

no=nhn, dn, =dlhn, n,=Kmn. (43)

Proof
(a) Write expression (39) as
Z A(chu; A g
o<|<r
(44)
=A,0° N wgy + Z A{‘w; A wy,

1<|<r

and consider a summand Aéwj A @g, where |J| = s > 1. Then, in the standard

index notation

Al Ny = —d(A)> ol o ANoy)+dAT ol Aoy
= ha’A’”2 A of i N pdA“” A of i AN
d(A"” "com2 i 1/\%)

=d(d, Al "Awmz i, Noi ) +di d; Al Nof o N
_pd(d Alllz i ]]v)wzltz dgn /\(,l),'\ 1
erdA”’2 & A o i N — d(A’“2 ’*wmz i N ;,)

=d; d; A”’2 s=2s-1is f i, Ao
— pd(d; A ‘f‘)a)m2 i, N, + pdAlRi A of i N
—|—d(A’”2 s U‘wmz i, NOi —A“’2 "wmz i A w;).

(45)
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Further calculations yield

Abizligy? ANy = (—1 )’Yd,-ld,-Z A AV 0% A oy

iyiy...d
E AN ks ke Uk 2 s a .
pd sk |d/ k+2® 'dJ,\Aa )/\ wilig.,.ix,k,l /\(U,\ k
<k<s—
ka. ) i1 b5k sk .
—d (71) d].a—kﬂd.h—k 2° d A o ’ ‘(Uutz g1 /\(UI.\—A .
0<k<s—1

(40)

These formulas prove statement (a).

(b) To prove (b), suppose that , — dn, + 1, = 0, where 5, is 1-contact and ®°-
generated, #; is 1-contact, and 7, is a 2-contact form; we want to show that
this condition implies 1, = 0, #, = 0; indeed, these conditions will also prove
that dn; = 0. The forms #, and 7, can be expressed in the form

Mo = A’ Nwo, 1y = Baiwa A wi+ Z B“h o leuo Jk Awj. (47)
1<k<2r

If k> 1, then B/V2J+ ' can be decomposed as
Blgl]zmjk P — B]gl]lm]k l

(Blujz i b gk jl) + (BiljZ»»J'k i _ phijsjs- e jz)
k +1 ¢ k+1°° 4
1

. B/ljz St i1l i
ot it ),
(48)

where B/V2+Jc ' is the symmetric component,

. 1 S
Blaljz---Jkl — k_|_ (B]l]z Jkl+BUJ3 i1 +B/1U%J4 JkJ2 4+ ... JrBlglJ_-»-Jk—l Uk). (49)

Now calculating p;dn,, we have

p1dn, = —diB,'@’ A wy — B iwf A g
_ Z dBIlJ2 k)0 A @y — Z B}uz ko A o

]1/2 Jk Jljz i
1<k<2r 1<k<2r
= —diB;/ 0’ N wy — (B/* + d;B!! ’)wf; A wo
_ 12k 12 i1 Jk
Z ( BI +B )wh]z k= 1/\600
2<k<2r
_ pi2-Jori 0
B]O' wjlj2»~jz;~i A .
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Equation yy — dn; + 1, = 0 implies 1, — p1dn; = 0 hence

(A —d;, B )0 A wo — (d;B) + B’(})wj"1 A @y
— (diBM' + B, A wy— (diB + B w?, A wy

Jij2 Jij2
. — (diBI;jzu-sz i + B/L‘lez--»jzrfzjzrfl)wj{flhmjzril A o (51)
_ (diBI;jzu-jz,- i + B/;jzu-jz,q jzr)wjt_lezmjzr N
o BQJ’Z”JZYJZHIw.;jzmjzrjzl-ﬂ ANy =0,

therefore, the components BjV2+ i satisfy
E{;jZH-ererJrl =0,

B];jZ-"er—l Jor — _diB}('/_ljzmjzr i’

Bl = —dB},
Bl = —d,BY,

and A, = d;, B. Consequently,

A; = d;B} = ~d;,d;,B}” = —d;,d},B}" = d; d;,d;, B}
=d;d,d, B = ... = (=1)"'d; dj,.. d;,_ d; B>
= (_l)kildjldjr : 'djk—l djkB/z‘rljzmjkiljk
= (=17 dy,. .y, B (53)
= (-1)*"'dd,.. .d;, , dj, B>

)
= (=1)¥d;d,,.. d;,d;,, BV
)

J2r+17 0

d d,,. . d;,d;

RJ1j2--J2r Jor1
J2r ¥ J2r+1 B 4

proving that A, = 0; hence, 1, = 0.
Substituting from this identity to Eq. (52),

B{leznjzrjbﬂ =0, diB];jz“'jz’i — _ngljl-~-j2r—l.i2r"
diB];jZ--'er—l i_ _B/;jz---er—Zer—l . d,'B];jzi _ _B]('lez7 (54)
dB}' = B}, d;B}=0.
Then, by Sect. 3.1, Remark 2 and Sect. 3.2, Theorem 1, the functions
Bii B Bt Biiduet o Bihjz-dr i depend on the variable x' only. Then,

formula (47) implies prdn,; = 0; hence, from equation 1, — dn, + 1, =0,
1, = 0. This proves (b). -
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Note that for any n-form p on W’, the 1-contact component p;p is an n-form on
the set W1, and since pidp = pidhp + pidp1p = dhp + pidp,p, the 1-contact
(n+ 1)-form pidpp is also defined on W'*!. Therefore, the form I jpidp;p is
defined and is an (n + 1)-form on W1,

Corollary 1 The form I \p\dp;p vanishes identically,

Iipydpip = 0. (55)

Proof We have the identity

(n2r+l,r+l)*pldplp
= (R *(dpi1p — padpip — padpip — -+ = puvidpip)  (56)

_ d(n2r+1,r+l)*p1p _pz(n2r,r+1)*dp1p

because pidpip =0, psdpip =0, ..., ppr1dpip = 0. Comparing this formula
with decomposition (5) and using the uniqueness of the component I;p;dp,p
(Theorem 3, (b)), we get identity (55). O

Remark 7 If podn, is w-generated, then podn; = O (see the proof of Theorem 3).

Remark 8 Part (b) of Theorem 3 can alternatively be proved by means of the
properties of Lepage forms. Note that the uniqueness condition 1y, — dy; + 1, =0
implies that ny, = p1dn,; this means, however, that 1, is a Lepage form whose
Lagrangian hn; = 0 is the zero Lagrangian. Using Sect. 4.3, Theorem 3, we get
n, = dx + u, where the form « is 1-contact and the form p is of order of con-
tactness > 2. Then, however, di, = du, which is a form of order or contactness
> 2. Equation n, — dn; + n, = 0 now implies that 1, = 0 because 7, is 1-contact
(and —du + n, is of order of contactness > 2).

Next, consider (n + k)-forms on W’*! for arbitrary k > 1. The following result
generalizes Theorem 3.

Theorem 4 Let k > 1, let ny be a k-contact, ©'" " -horizontal (n + k)-form on W1,
expressed in a fibered chart (V, ), Y = (x',y%), by

0<k<r

There exist k-contact w°-generated k-form Ly on V¥t a (k—1)-contact
(n+k — 1)-form Jiny and an (k + 1)-contact (n + k)-form Kn, defined on V¥ *1,
such that

(ner’rH)*VI = LIy — dJyn + Kin. (58)
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(b) Suppose that we have a decomposition

(m? TR =g — dny + 1, (59)

such that v, is 1-contact and »’-generated, n, is 1-contact, and 1, is a 2-
contact form. Then,

No = Lin- (60)

Proof

(a) Let k> 1, let W be an open set in Y, and let 5 be a k-contact, (n + k)-form,
defined on some open set W"*!. In a fibered chart (V, ), = (x',y°),on ¥,
has a unique decomposition

n=no+n +m+---+n, (61)

where 1 is the »°-generated component, 7, includes all o7 -generated terms,
which do not contain any factor w?, n, includes all w7, -generated terms,
which do not contain any factors w?, wﬁ, etc.; finally, #, consists of w?

Jijaedr
1 1 a a a a
generated terms which do not include any factors w?, OF, WF iy ey OF 5 o
n, has an expression
— \Wj2edr a
n. =W ANl o Ao (62)

for some (k — 1)-contact (k — 1)-forms W27, which do not include any

g g g g
factors w?, OF, OF iy OF5 Then, by (38),

n, ==Y Adof, ;. Noj)

k j\ oy k it
= (=1 d(¥" A U)ﬁb.uj,,l A wj,) = (=1) a7 A w]{'r]jz...j,.,] N @j,
= —(—1) pkfld\P{‘uz N quljzmjrq A o),
+ (DAY N ofy, o No)
(1) (j1)2--:Jr o ;
(=1 ped¥p 7 Narfy, Ao
(63)
The term pk_ld‘P{}jz"J’ Nf, . AN in this expression is k-contact (and
therefore contains the factor dx' A dx®> A --- Adx") and is generated by the
forms ?, . . Thus, from the definition of the (k—1)-component
Pr_1d¥729 it follows that the form py_dWW/V2-9 A of; i A\ wj contains

. y y y .
the exterior factors wy, , , @, ; and w;, ,; only. Decomposition (61)
now reads
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(n2r+l,r+l)*n =Not+m+m+---+n_,+ 77Ir71

+( ) (lIIJlJz Jr /\w“h i /\wjr) (64)
— (= 1) prd P2 p O
where 7,_, can be written as
- k 12,
Me—1 = Mp—1 — (_1) pkfld‘PJal]z i /\w]uz Jr—1 /\a)jr (65)
— \IIJI/Z Jr— lijuz n l/\w0~
Then, however,
12 .
17 \PIZ lAd( 1112]2/\@]"*)
= — (= 1) py Wit A O i N (66)
a 66
+( 1) d(\PJlJZ -1 /\wjl]z ia /\wjr—l)
— (—1) pkd\Pjof]z' Jre1 A\ C!)j]j2 Jr /\ W;j,_,
The term py_;d P27 ANwfi i, Aw;,, in this expression is k-contact,
contains the factor wp, and is generated by the forms w7, . . From the

definition of the (k — 1)-component p;_d¥/V2", it follows that this term
contains the exterior factors wy, ; ., @p, ; O, ;5 O ;0 only. The
decomposition (61) (or (64)) now reads

(@Y =g+ st A s

k r—
(=DM A Ny )
— (=) ped¥p I N A (67)
+ (=D @I Nof, L Aw)
= prd VT A Dy gy N i)
where
ﬁr— =Wy — ( ) le]Uz e A w]uz Jr—2 A COj‘r—l (68)
— lIJ]llZ 2 A w A wyp.

Jij2eJr—2
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Continuing in the same way, we get after » — 1 steps

(r¥ sy = g 4 iy + (= 1) d (P2 A f A ;)

— (—l)kpkd‘{”(}j2 A a)]f’]jz A j,
+ o+ (Df (P A of

o Aw;)
J1J2-Jr— Jr—1
k J1j2-dr-1 12 o (69)
— (=1)"prd ¥’} Nofs o N

k)i,
+ (=D Nof AN y)
— (_l)kpkleQjZ»~J»- N

ijadrt N @i

where

= = (1) poid ¥ A of Aoy,

i a (70)
=YIA w; A .
The form 77, contains a)]‘.’l, wJ‘.’ljz, ey wﬁjz...j,’ w;;jZeril’ . a)jaljzmjﬂ.”.zmi’_i1 but no
factor w’. Then,
n = —‘P{; Nd(o° A wj))
= (—l)kd(‘{’ja1 AN’ ANwj) — (—l)kd‘I’{,1 Ao’ A wj, 1)
= —(—l)kpkfldq”(‘; Ao’ A Wy,
+ (_l)kd(‘{”al Ao A wjl) - (_l)kpkd\lﬂzlrl AN A Wjy s
and
(n2r+1,r+1>*n
= 110 — (—l)kpk,IdT{; A CU” A G)jl
— (=)W A 0" Aoy, + WA o Ay,
o W AR, N YT AN, Ney) (72)
— (=D (ped¥ A 0" Ay, + prd P2 A 0f ;) A,

+ .- +pkd\1'{;j2"‘j"" A’

Ji2--dr—2
12 Jr a .
+pdeP0 A wjljZ--'jr—l A wJ')'

Ny,

Summarizing

(R0 %y = Lg — dJen + Ken, (73)
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where

i =g = (=) prrd ¥ A o” A ay,
T = (=D (A 07 A wj, + PR A ol A ),

... 12 - 4 )
+ + \PJI ’ ‘A Djijnejra N o),
+WPrANof L AN o)), (74)

K = (=1 pe1 (d¥) A0 Aoy, +d¥E Ao, Ay,
S dl}lng..j,.,l N A ;j,

Jij2-dr—2
j1j2-Jr (4 .
+ le” A Do A w]r)’

(b) To prove uniqueness of the component I, we adapt to the decomposition
(73) a classical integration approach. It is sufficient to consider the case when

I — dJn + Kinp = 0, (75)

and to prove that Iy = 0. Choose 7-vertical vector fields E;, Z,, ..., Z; on
Y and consider the pullback of this n-form by the r-jet prolongation of a
section y of Y, J¥Tly¥iz .. .iz iz [in. Clearly, the pullback J>*!y* annihilates
contact n-forms. Since the Lie derivative of a contact form by a m-vertical
vector field is a contact form (Sect. 2.5, Theorem 9, (d)), hence
J2r+1})*i5k. . -iEZiEllkrl

= J" ¥z g,z dJy + T ki, s,z Ky

= J ki, g, iz, (0=, Jin — diz, Jin) + T ytis, iz, iz Ky
— _J21‘+1

(76)
Y¥iz,. . .ig,iz,diz, Jin

because the forms iz,. . .ig,iz,0=,Jin and ig,. . .iz,iz, Ky are contact. Repeat-
ing this step,
J2r+l'})*i5k. . .igzigllk}']

o 2r+1 . . . . 2r+1 o . . . .
= —J " y¥ig, . g, iz, 0, iz, Jkn + T yFig, . . g,z diz, iz, iy

= J2r+1j/*l'3k. . .i34i53di52i51]k11

L _1 P 2r+1q*._ . . d._ . s s (77)
== (=TT g, g, is, diz iz, . s,iz, S

== (=D Yydi iz, .. s,z S

(=D dI M y*iz iz, .. iz, iz, Ji.

[


http://dx.doi.org/10.2991/978-94-6239-073-7_2

8.3 Variational Projectors 283

Thus, integrating over an arbitrary piece Q C X with boundary 0Q,

/J”“y*igk...igzigllm = (fl)k/dﬂ’“y*igkigk,l.--isziEIJk’?
Q Q

(78)
k . .. ..
= (—1) / J2 +1'})*15kl5,‘71. . -lEglEIJkn~
oQ
This identity holds for all n-vertical vector fields E;, E,, ..., Z, but on the

other hand, the right-hand side depends on their values along the boundary 9
only. Replace the vector field =, with f=;, where f is a function, defined on a
neighborhood of Q, vanishing along 9Q. Then, we get

/ T iz igyies i = (—1)F / frP iz igyiz L = 0. (79)
Q Q

Since the function f is arbitrary in the interior of the piece Q, this is only
possible when the integrand satisfies J**1y*iz, .. .iz,iz, 1y = 0. Finally, the
section 7y is also arbitrary; since through every point of the domain of
definition of the form iz,.. .iz,iz Ity passes the (2r+ 1)-jet prolongation
J?+ 1y of y; therefore,

Ly = 0. (80)

This proves that the form I;n in formula (73) is defined uniquely by the
assumptions of Theorem 4. O

Corollary 1 Extends to arbitrary forms as follows.

Corollary 2 For any integer k> 1 and any (n+k — 1)-form p on W' the form
Lprdpyp vanishes,

Iiprdpip = 0. (81)

Proof Using the canonical decomposition of the form dp;p, we get the identity

(ner"rH)*pkdpk,D
= (Y5 (dprp — prrdpep — Pre2dpip — -+ — Prndpip) (82)
_ d(n2r+17r+l)*pkp _ pk+1(n2r,r+l)*dpkp

because the components satisfy the conditions pyi1dprp = 0, pri2dprp =0, ...,
Pk+ndprp = 0. Comparing this formula with decomposition (58) and using the
uniqueness of the component I;p;dp,p (Theorem 4, (b)), we get identity (81). [
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Our next aim is to determine an explicit formula for the component I;1 of a form
n by a geometric construction; the result will be proved on a successive application
of Theorem 3.

Theorem 5

(a) Let n be a 2-contact, n" " -horizontal (n + 2)-form on the set W', Then for
any m-vertical vector fields E, and E,

(iz, iz, n — iz, Liz,n). (83)

(b) Let k>2 and let n be a k-contact, n" " -horizontal (n + k)-form defined on

WL Then for any m-vertical vector fields E,, Z,. . .., B
lEk~ . -lEzlE]Ik’/I = % (lEklEk,l' . .lgzlkfllEIV] — lEklEk,p . .lgzlgllkfllgzi’]
— iEkiEk,l- . ~iE4iEZiEIIk71iE37I — = iEk—l' . .igzigllk,liakn).
(84)
Proof
(a) From the decompositions
2ttty o ) i dan — iz dJon + iz, Kon 85
(m )iz {Iligln—dJliEIn—&-Kligln (83)
it follows that
iziz o — 5 (iz,liiz,n — iz, Diz,n) = iz,iz,dJon — iz,iz, Kon
1 (86)

+ = (71.5261]11'5117 + iEzKliEln — iEldJ2iEl77 + iElKliEzﬂ)-

[\S]

Using the properties of the Lie derivative operator (see Appendix 5), we can
write
. | . : .
iz, iz, dJon + 3 (—iz,dJyiz,n — iz,dJaiz,n)
= iz,0z,Jon — iz, diz, Jon
1 : o . L
+ 5 (—85211 iz, + diz,Jiiz,n — 851J213117 + diz, Jriz, }’]) (87)
= ig,0z,Jon — Oz,iz,Jan — diz, iz, Jon
1

+ = (=0g,J1iz,n + diz, Jyig,n — 0=, Jhiz,n + diz, Jriz, 1),

0|
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thus

.. .. . .o
iz iz b — 5 (iz, Dz, — iz, hiz,n)
= igzagl.]zi’] — 8521'31]2;7 — diEQiEIJzn

1 . - . -
+ 3 (—652.]1 iz, n + diz,J iz, — 0=, aiz, n + dlglleglﬂ)

.. 1, . ) .
—ig,izg, Kon + 7 (iz,Kiiz, n + iz, Kyiz,n).

Now integrating

/JZVH“/" (lEzlEJz'l ) (iz,Iviz, n — 1311115217))

1
_ / JAr Ly <—i52i51.]27] + 5(iEleiEln + iE,JziEI’?)>.

oQ

To conclude that this condition implies

I, . ..
> (ig,liz,n — iz, liz,n) = 0

iz, iz, by — 3

we proceed as in the proof of Theorem 4.
(b) To complete the proof, we apply elementary induction.

285

(88)

(89)

(90)

O

According to Theorem 5, formula (59) defines a mapping I; from the Abelian
group of k-contact (n + k)-forms on W"*! to n**10-horizontal (n + k)-forms on

W'+, I is clearly a morphism of Abelian groups.

Theorem 6

(a) Condition iy = 0 is satisfied if and only if n is a strongly contact form.

(b) The mapping I satisfies
Ik 9] Ik = Ik

Proof

(a) This follows from Theorem 4, (b).
(b) To prove (b), write (n> 1+ %y = Iy — dJin + Kin. Then

(n2(2r+1+,2r+2 ) * (n2r+1,r+1 ) *’,’

_ Ik(n2r+1,r+l)*’1 _ djk(n2r+1,r+1)*n +Kk(n2r+1,r+1)*7’

O1)
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and from the properties of the pullback operation

<n2(2r+1+,2r+2)* (n2r+ Lr+1 )*17

— (7T2<2r+l+’2r+2)*(lk7] _ dJkVI +Kk7l)

— (n2(2r+l+,2r+2)*1k17 _ d(n2(2r+l+,2r+2)*1kn
+ (n2(2r+1+,2r+2)*Kkn

= Ll — dJidin + Kilkn

7 d(n2(21‘+1+,21'+2)*Jk’1 + (n2(2r+1+,2r+2)*Kk’1.

Comparing (92) with (93) and using the uniqueness of these decompositions
(Theorem 4 (b)), we get formula (91). O

Remark 9 Property (a) characterizes the kernel of the mapping I;. Its image consists
of the k-contact, w?-generated (n + k)-forms ¢ on W2"*! for which the equation

e=1ILn (94)

has a solution #. The corresponding integrability conditions, which should be
satisfied by ¢, are determined by the structure of the mapping I; and can be studied
by means of the formal divergence equations (Chap. 3).

Remark 10 The uniqueness of the component I;# in the decomposition (59) means
that the pullback of the vector space of k-contact (n + k)-forms on W™*! is iso-
morphic with the direct sum of two subspaces of the vector space of k-contact
(n + k)-forms on W* 1, one of which is the subspace of strongly contact forms.

We conclude this section by extending the decomposition (59), defined for k-
contact (n + k)-forms on W', to any forms p € Q] W. Substituting in formula

(56) n = pxp, we get
(7T2r+l,r)*p
_ (n2r+l,r+1)*pkp 4 (n2r+1,r+1)*(l)k+1p +pk+2,0 4. +Pk+np)
= (@Y (Lpep — dJipip + Kipep)

+ (B (1 p + praap + -+ Pranp)
_ (Tc2r+1,r+1)*lkpkp _ d(n2r+1,r+1)*Jkpkp

+ (n2r+l,r+l)*Kkpkp + (n2r+17r+l)*(]’k+lp + Pi2p + - +pk+np)'
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Therefore, setting

«fkp — (n2r+1.r+1)*1kpkp’
Jp = (T pep, (96)
Hep = (TN Kprp + (7T (D p 4 priap + - Pranp)

we get the decomposition
() p = Ip —d Jp + Hip. (97)

According to Theorem 4, this formula defines a mapping p — .#;p of the Abelian
group of & W of (n 4+ k)-forms, defined on W”, into the Abelian group Qﬁfle
of (n + k)-forms on W21,

The following theorem summarizes elementary properties of the mapping
Q W3p— Jipc Qifle. As before, to simplify notation, we omit obvious
pullback operations on differential forms with respect to the canonical jet projec-
tions n*: J"Y — J*Y.

Theorem 7

(@) The mapping p — Jp of the Abelian group Q, . W into Qiﬁch is a mor-
phism of Abelian groups.

(b) The kernel of the mapping .9 is the Abelian group of strongly contact forms
@, W, and its image is isomorphic with the quotient group Q, W /@, W.

(c) For every p € QW the mapping J satisfies

=¢k<ﬁkp = <ﬂk,0. (98)

Proof

(a) Obvious.

(b) If S4p =0, then by Lemma 3, p is strongly contact, thus p belongs to the
Abelian group @, W.

(c) Applying the pullback operation to both sides of formula (97) and using the
properties #,#rp = 0 and A ¥ rp = 0 of the mappings S, ¢, and A,

(n2(2r+1)+l72r+1 )*(n2r+lﬁr)*p

: (99)
= <¢k (TCZHLIJ)*p — dfk(nz”lv’ )*p + »%k(n2r+l’r)*p7
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and
(n2(2r+1)+1,2r+1)*<n2r+lm)*p
_ (n2(2r+1)+1,2r+1)*]kp _ d(n2(2r+1)+1,2r+1)*jkp
+ (n2(2r+1)+1,2r+1)*%»kp
= I1Iwp — d I Iwp + H I rp — d(m® @2 g p
+ (ﬂ:2(2r+1)+1,2r+1)*%kp

— jktﬂkp _ d(ﬂ:2(2r+1)+1,2r+1)*fkp 4 (ﬂ2(2r+1)+1’2r+1)*,%k'0.

(100)

Comparing these formulas and using the uniqueness of the decompositions,
we get assertion (c). O

We call the Abelian group morphism Q) W > p — Fip € QX 'W the kth
variational projector. To simplify notation, we sometimes write just .# instead of .#.

8.4 The Euler-Lagrange Morphisms

Consider the variational sequence (33), Sect. 8.2
0—Ry —Q;—Q)/0] —Q}/0; — Q)/0; — (101)

Note that by definition of the horizontalization morphism #: Q;W — Q;HW, the
equivalence relation on the Abelian group Q;W associated with the subgroup of
contact forms @;W - Q;W coincides with the equivalence relation defined by
h. Similarly, Part Theorem 7, Sect. 8.3, shows that for each k > 1, the equivalence

relation on the Abelian group Q W, associated with the subgroup @; W C

Q, W of strongly contact forms, coincides with the equivalence relation induced
by the variational projectors #y. Thus, the diagram, defining the variational
sequence, can be expressed as

0 0 0
! ! !
0o — o 4L e L .4 e
! ! ! !

o — R — o L o L oo L .4 o (102)
N LA Lh Lh
Ro— R, — e — W

1 1
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0 0 0
! ! !
- ®;+1 - ®;+2 — o — 0y — 0
! i i
— o, L o, L Lo Lo, L
Lh Lh lh
- j:H-l - jer-Z — = Iy
! ! !
0 0 0

The corresponding representation of the variational sequence (101) is

0— Ry — Qf =5k —5py = 2y
(103)

E, Ent Enpa
n f’i n+ f; n+ .

The Abelian group morphisms Ej in this sequence will be called the Euler—
Lagrange morphisms. Our task in this section will be to determine the structure of
the morphisms Ej;. The formulas we derive establish explicit correspondence
between the morphisms E; and basic concepts of the calculus of variations on
fibered manifolds such as the Euler-Lagrange mapping and the Helmholtz map-
pings. The following two theorems give us a way to calculate the chart expressions
of these morphisms Ej.

Theorem 8 The Euler—Lagrange morphisms in the variational sequence (103) can
be expressed as

[ hdp, peQW, 0<k<n-—1,
Exhp = {Ildhp, pEQW, k=n, (104)
and
EvixIp = Lerdprp,  p €Y W, k>1. (105)

Proof If p € Q W, then E,hp = Jdp = I)pidp = I,pidhp + I,p1dp,p. Thus, by
Sect. 8.3, Corollary 1,

E,hp = I dhp. (106)
If p € Q W, where k> 1, then

EpixIip = Fir1dp = Ly 1prrdp

(107)
= Ly 1Pr1dpip + Le1Prv1dpry 1 p
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hence, by Corollary 2, (81)
EpixIrp = L dpip. (108)
Theorem 9 Let (V, ), Y = (x',y°), be a fibered chart on Y.
(@) Iff € Q,V, then
Eof = dif -dx'. (109)
(b) Let 1<k<n—1and let hpE I}V be a class. Then if hp is expressed by
hp = pi i o dX" Adx® Ao A dxt, (110)
then the image Eyhp is given by
Echp = digpi iy i AN dX® Adx" AdxP A - A dx (111)

Proof We prove assertion (b). According to the trace decomposition theorem
(Sect. 2.2, Theorem 3), a form p € OV has an expression

p= S Wn®l+ Y d(@iA) + p. (112)

0<|J|<r—1 [I=r—1

where p, is the traceless component of p and CI)(JT, ‘P(JT are some forms. Since the
morphism / annihilates the contact forms w§ and dw{, py has an expression

Po = A,<1,'2m,'kdx"1 Adx A - A dx®

FA) o dy A dx Ndx A A dx
+ A?]Jazz i3i4...ikdy‘(lr|l A dy.{lrz2 A dxi3 A dxi4 AREERA dxik (113)

4o AT e dygt NdyP A A dy? ! A dx*

a1 02" " Ok-1lk j-1
+ AL Ay N YR A - Ay

102"

JiJa Js

G+ oriss1ivis.iy ATC fraceless. Thus, any class hp is

where the coefficients A
expressed as the k-form

hp = pi o dX" Adx® Ao A dit, (114)
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where
J I )
Pitiy.iv. = (Aiiy..iy "‘Ao—l, igig...ikyg,li. + (711622 i3i44..iky;|li1y;z_iz
W Je - W
+e +Ao]11;2' : 'gl;f—llik ygllilyjzziz o ‘(;If—llik—l +Aﬂlltfzz o '0,;( ygllily;zziz o .y-l;lfik)
Alt(iliz. . lk)
(115)
The class hdp of dp is then given by
hdp = diyp; i, 5 AN dX® Ndx" Adx A - A dx (116)
Clearly, hdp is defined on V'*1. O

Remark 11 If k=n— 1, then since &"2in1g, = dx" Adx2 A--- Adx"', the
class hp = p; ;.  dx" Adx? A--- Adx1 (110) can be written as hp = ploy.
Then, the image E,_hp is expressed as

Eo1hp = diyp;;. . ANdx® Adx" Ndx® A A dxn
= diypiyiy. i, 8" N g = dip' - g (117)
= hdhp,

where d;p' is the formal divergence of the family p'. Thus, the Euler-Lagrange
morphism E,_; can also be expressed in short as E,,_; = hd.

Now, we study the Euler—Lagrange morphisms E,.; for k>0. We derive
explicit formulas for k£ =0, 1; in subsequent sections, these formulas will be
compared with basic variational concepts, which appeared already in the previous
sections devoted to the calculus of variations.

In order to study the morphism E,,, we find the chart expression of the class zp of
a form p € Q) V. According to the trace decomposition theorem (Sect. 2.2, Theo-
rem 3), p has an expression

p= Z oI ND! + Z dofNPL + po, (118)

o< <r-1 [|=r—1

where p, is the traceless component of p. Clearly, hp = hp,. But p, has an
expression
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Po = Aiiy.i X AdX? A - A dxi

FAG AN N A nd

+ A{;lg Ly Ny NdXD NN A da” (119)

+- +A{;l{§, I idyS ANdyP A AdyT A dx

HANE YS! Ny A Ny
where the summation indices satisfy |J;| = |/2| = -+ = |Jy41| = r, and the coef-
ficients A7 .. {,‘f;_ ivo1ives.., Are fraceless. Thus, any class hip can be expressed as the
n-form

hp = pj;,.; dX" Adx® A Nd, (120)

where

AL 1 a1 02
piliz...i/, - Alllz y +A01 iis.. l,,yllll +Aalo'2 i3i4.. luyjltly.lztz
JiJ> Jn—1 On—1 JiJo Jn 01 (02 On
+- +A6|02 * O llnyflllylez Yt +A01f72" ‘o dvinYhaja Vi
Alt(iliz. . .ln).

(121)
Thus, hp can also be characterized as
hp = Ly, (122)

where & = gh2hp, o (Sect. 4.1, (112)).

Remark 12 In variational terminology, the class A = hp is the Lagrangian, asso-
ciated with the n-form p, that is, an element of the module QZ&I V of 7" !-horizontal

forms, defined on V"' c J*t'Y. The function %, characterizing the class hp
locally, is the Lagrange function, associated with hp (and with the given fibered
chart, cf. Sect. 4.1).

We can now prove the following theorem.

Theorem 10 If the class hp of an n-form p € Q,V is expressed as
hp = Ly, (123)

then

E.hp = <ag+ > (-1 dydy,.. d,\aaf“ﬁ )w"/\wo. (124)

1<s<r ]1}2 s
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Proof The class E,hp is defined to be E, hp = #1dp = I,dhp (Theorem 8, (104)).
Since

0¥ |
dhp =dLNwy = Y Sw) Ao, (125)
o< <r+1 7Y
we have
0¥ ' 0¥

Iidhp = + —-1)'d;d;,...dj, ——— |o° A 126

1 (ayv I;r( Vi 4 ayf‘ljz..,jx> ’ (126)

(Sect. 8.3, Theorem 3). O

Now we find the chart expression of the class . p of a form p € Q| V. Writing
pip as

po= 3 APl Ao, (127)

0<s<r

we get, according to Sect. 8.3, Theorem 3,

.flp:IlplpZSU(J)(;/\(,OQ7 (128)
where
o =As+ Y (=1)'djd,...d A (129)
1<s<r

Remark 13 According to formula (128), the class ¢ = .#p of aform p € Q. |V is
an element of the Abelian group Qﬁfl}yV of 7*"+1%-horizontal forms, defined on the
set V>+1 c J¥*1y; in the variational theory, elements of the Abelian groups

Qiﬁ}YV are the source forms on the fibered manifold Y (cf. Sect. 4.9).

Theorem 11 If the class .91p of an (n+ 1)-form p € Q, |V is expressed as

J1p = e,0° A o, (130)

then

Hgvjljz---jk(g)w‘.'. A’ A g, (131)

J1J2--Jk

1
E.qS1p = 5

0<k<r
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where
HQ‘J:z..Jk (F) — (?8‘7 _ (_1)k (ng
ayjljz--Jk ayjlj2<-Jk
; N (132)
1l )
- Z (—1) (k)dpk+1dpk+2' dp, 80—"
I=k+1 YirjaeediPrs1Prsa-pi

Proof The image E,1.#p is defined by the equation E,, ;. ,p = #»dp. However,
if .#, p is defined on V*, then .7 . p = (n®*1¥)*.#,p (Sect. 8.3, Theorem 7); thus,
the image can also be calculated from the equation

E1 7171p = Epp1 (7P T)5 01 p = (@ TW)4E, S 1 p

133
— (RS dp. (133)

O

We apply this formula to the representation (130) of the class of p. Setting .#,p = ¢,
we have

Enﬂfla = fzd? = Iz[)zdﬁ = IQd? (134)

This expression can be easily determined by means of the mapping I, defined by

1
iEzigllzdS = E(iEzlliEIdg — igllligzde), (135)
where E; and E, are any n-vertical vector fields (Sect. 8.3, Theorem 5). From this
expression, we conclude that

Lde = Z H 29k () o) A @’ A wy, (136)

1
20§k§r J1J2--Jk
where the components H/2J(¢) are given by (132).

Consider the variational sequence (103). Theorem 10 shows that the morphism
E, in this Abelian sheaf sequence is exactly the Euler—Lagrange mapping of the
calculus of variations (cf. Sect. 4.5). The mappings E,_; and E,,; also admit a
direct variational interpretation (Remark 11, Theorem 11). In the subsequent sec-
tions, we consider the part of the variational sequence Var} including E,,

oo B B gt g (137)

and the corresponding part of the associated complex of global sections Vary,Y
(Sect. 8.2, (35)),
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E,
s YRRy B Ty R Ty (138)

Since by Sect. 8.2, Theorem 2, the cohomology groups H* (Var}Y) of (138) and the
cohomology groups H*(Y,Ry) are isomorphic, this fact allows us to complete the
properties of the kernel and the image of the Euler—Lagrange mapping by their
global characteristics. The results bind together properties of the variationally
trivial Lagrangians, and variational source forms with the topology of the under-
lying fibered manifold Y in terms of its (De Rham) cohomology groups.

Remark 14 In general, to determine the De Rham cohomology groups of a smooth
manifold of a smooth fibered manifold is a hard problem; for basic theory of the
DeRham cohomology, we refer to Lee [L] and Warner [W]; in simple cases, one
can apply the Kiinneth theorem (Bott and Tu [BT]).

The following are well-known standard examples of manifolds and their
cohomology groups:

(@) Euclidean spaces R": H'R" = 0 for all k> 1.
(b) Spheres S™:

kon __ Ra k:Oana
H'S _{0, 0<k<n. (139)

(c) Punctured Euclidean spaces (complements of one-point sets {x} in R"),
complements of closed balls B C R":

H*(R"\{x}) = H*(R"\B) = H*s""'. (140)
(d) Tori TF =S8" x S! x --- x S' (k factors S'):
1" =RO). (141)
(e) Mobius band.:

H'M = H'S'. (142)

() H'X xY)=R
(g) Cartesian products (Kiinneth theorem), k > 0:

H'XxY)= ® HX®HY (143)
r+s=k
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(h) Disjoint unions (M, M, disjoint):

H"(M; UM,) = H*M, ® H*M,. (144)

8.5 Variationally Trivial Lagrangians

Let W be an open set in Y. Recall that a Lagrangian 4 € kW is called variationally
trivial, if its Euler—Lagrange form vanishes,

E,/.=0. (145)

This condition can be considered as an equation for the unknown n-form A. Our
main objective in this section is to summarize previous local results on the solutions
of this equation and to complete these results by a theorem on global solutions.

The mapping E, is the Euler—Lagrange morphism in the complex of global
sections

b W W B gt B gty (146)

and equation (145) has the meaning of the integrability condition for the corre-
sponding equation for an unknown (n — 1)-form #,

A=E,_n. (147)
Thus, since E,_7 is defined to be hdn, equation (147) can also be written as
A= hdy. (148)

Integrability condition (145), representing exactness of the sheaf variational
sequence, ensures existence of local solutions, defined on chart neighborhoods in
the set W. According to Theorem 9, Sect. 4.8, the following conditions are
equivalent:

(a) 4 is variationally trivial.
(b) For any fibered chart (V,y), ¥ = (x,y°), such that V C W, there exist
functions g’: V" — R, such that on V*, 1 is expressible as A = Ly, where

L =dg'. (149)
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(c) For every fibered chart (V, ), ¥ = (x,y7), such that V C W, there exists an
(n—1)-form g € Q| V such that on V"

) = hdp. (150)

A question still remains open, namely, under what conditions there exists a
solution p, defined globally over W or, in other words, when a given Lagrangian,
locally expressible as “divergence,” can be expressed as a “divergence” globally.
The following theorem is an immediate consequence of the properties of the
complex of global sections ((138), Sect. 8.4).

Theorem 12 Let Y be a fibered manifold over an n-dimensional manifold X, such
that H'Y = 0. Let 4 be a "-horizontal Lagrangian. Then the following conditions
are equivalent:

(a) A is variationally trivial.
(b) There exists an (n — 1)-form u € Q.\Y such that on J'Y

) = hdp. (151)

Proof

1. We show that (a) implies (b). In view of Sect. 4.8, Theorem 9, only existence of
U, defined globally on JY, needs proof. But by Sect. 8.2, Theorem 2, the
cohomology groups H¥(Var},Y) are isomorphic with the De Rham cohomology
groups H*(Y,Ry); thus, condition H"Y = 0 implies H"(Var,Y) = 0 proving
existence of u.

2. The converse is obvious. U

On analogy with the De Rham sequence, a variationally trivial Lagrangian can
also be called variationally closed. A variationally closed Lagrangian 4 € h,W is
called variationally exact, if A = hdy for some u € h,_|W. Theorem 12 then says
that if H"Y = 0, then every variationally closed Lagrangian is variationally exact.

In the following examples, we refer to the cohomology groups given in Sect. 8.4,
Remark 13.

Examples (Obstructions for variational triviality)

1. If the fibered manifold Y is the Cartesian product R" x R", endowed with the
first canonical projection, then every variationally trivial Lagrangian on Y is
variationally exact.
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2. Let Y = S%, and consider S° as a fibered manifold over S? (the Hopf fibration).
Then, H3S* = R # 0; therefore, a variationally trivial Lagrangian on J"S® need
not be closed.

3. If Y = R" x Q; then, the Kiinneth theorem yields H"(R" x Q) = H"Q. Thus, if
H"Q = 0, then variational triviality always implies variational exactness. If for
example Q is an n-sphere §", punctured Euclidean space R""!\{0}, or the k-
torus 7%, then variational triviality does not imply variational exactness.

8.6 Global Inverse Problem of the Calculus of Variations

Let W be an open set in Y. Recall that a source form ¢ € #{W is said to be
variational, if there exists a Lagrangian A € A, W such that its Euler-Lagrange form
E,/ coincides with ¢,

¢ =E,i. (152)

¢ is said to be locally variational, if there exists an atlas on Y, consisting of fibered
charts, such that for each chart (V, ), = (x',y?), from this atlas, the restriction of
¢ to V* is variational.

The mapping E, in formula (152) is the Euler—Lagrange morphism in the
complex of global sections

o WS W B gt B gty (153)

which determines the integrability condition for equation (152),
E, 116 =0. (154)

The problem to determine conditions ensuring existence of the Lagrangian 4, and to
determine / as a function of the source form ¢, is the inverse problem of the calculus
of variations.

If the source form ¢ is expressed in the form

e =¢e;0° N\ wo, (155)
then equation (152) is expressed as a system of partial differential equations

0¥ 0¥
o=t 3 () dydd

= 1<oc<m (156)
Js ’ — Y =1
ay/ﬁjz--ﬁ-

1<s<r
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for an unknown function ¥ = & (xi,y”,yj”l,y;'ljz, e Y ]) Integrability condi-
tion (154) is then of the form
Eup16= Z HUj:,jz“'j"(g)wJ‘fljzmjk AN’ Awy =0, (157)

0<k<r

N —

where H,, , /¥2+J(¢) are the Helmholtz expressions (Sect. 8.4, Theorem 11); thus, if
s is the order of the functions ¢&;, the integrability condition reads

686 _ (_ )k (%v
8ylylj2---jk ayj{rljzu-Jk
° e, 158
- Z (_l)l(]l<>d[7k+1d[1k4' . 'dpl 60— =0, ( )
I=k+1 Vit dPrsiPics 21

ISO',VSHL OSk§S7 1§j17j27"'7jk§n-

Integrability condition (158) ensures existence of local solutions 4 of equation
(152), or which is the same solutions . of the system (5); solutions are given
explicitly by the Vainberg—Tonti Lagrangians

Js = L0, (159)

where

i 0 0 .0 4
gs(xJ ,yjl,yjljz,--~,yj,j2,“jx)
1
0 i v v v v
=Y /So(xaty ,lyj,,lyj,jz,~~-Jyjljz‘__,-;)dl
0

(160)

(Sect. 4.9, (3), Sect. 4.10, Theorem 12 and Theorem 13, Sect. 8.4, Theorem 11).

In this section, we complete these results by a theorem ensuring existence of
global solutions of equation (152), where the open set W C Y coincides with the
fibered manifold Y. The following result completes properties of the source forms
by establishing a topological condition ensuring that local variationality implies
(global) variationality.

Theorem 13 Let Y be a fibered manifold with n-dimensional base X, such that
H'™'Y = 0. Let ec INW be a source form. Then the following conditions are
equivalent:

(a) ¢ is locally variational.

(b) ¢ is variational.

Proof This assertion is an immediate consequence of the existence of an isomor-
phism between the cohomology groups H*(Var},Y) and the De Rham cohomology
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groups H*(Y,Ry) (Sect. 8.2, Theorem 2); thus, condition H"™'Y =0 implies
H""(Var}Y) = 0 as required. O

Remark 14 The meaning of Theorem 13 can be rephrased as follows. First, it states
that in order to ensure that a given source form ¢ is locally variational, one should
verify that its components satisfy the Helmholtz conditions (158), and second, if in
addition the (n + 1)-st cohomology group H"*'Y of the underlying fibered mani-
fold vanishes, then ¢ is automatically variational.

Examples (Obstructions for global variationality)

4. If Y =R x M, where M is the Mgbius band, then H2Y = 0; hence, local
variationality always implies variationality.

5. If Y =S'x M, where S' is the circle and M is the Mdbius band, then
H?>Y = H*(S' x M) = H'S' ® H'M = R @& R = R% Thus, in general, local
variationality does not imply variationality.

6. If the 3-sphere S° is considered as a fibered manifold over S? (Hopf fibration),
then since H>S® = R # 0, local variationality does not necessarily imply global
variationality.

7. If k> 1, then the k-torus T* can be fibered over the I-torus T' by means of the
Cartesian projection. Since H'"'T* = 0, we have obstructions against global
variationality.
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Appendix
Analysis on Euclidean Spaces and Smooth
Manifolds

In this appendix, we summarize for the reference essential notions and theorems of
differentiation and integration theory on Euclidean spaces as needed in this book.
Main coordinate formulas of the calculus of vector fields and differential forms on
smooth manifolds are also given. We also included elementary concepts from
multilinear algebra and the trace decomposition theory over a real vector space.

A.1 Jets of Mappings of Euclidean Spaces

Let L(R",R™) be the vector space of linear mappings of R” into R™, L¥(R", R™)
the vector space of k-linear mappings of the Cartesian product R” x R" x --- x R"
(k factors) into R™, and let Lé‘ym(R”, R™) be the vector space of k-linear symmetric
mappings from of R” X R" x --- x R" (k factors) into R". Let U C R" and V C
R™ be open sets, and denote

r _ n m 2 n m r n m
J(U,V)=UxVxLR",R") x L, ,(R",R") x --- x Lg,,. (R, R"). (1)

sym
J'(U,V) is an open set in the Euclidean vector space

R” x R” x L(R",R") x L2,_(R",R") x --- x L _(R",R"). )

Sym Ssym

Using the canonical bases of the vector spaces R" and R, this vector space can be
identified with the Euclidean vector space R" of dimension

veren(iens () (4 e (0D @

The set J"(U,V) can be identified with collections of real numbers

P= (x50, 5 Ygy i)y L<ijisjas e jr <n, 1<a<m, such that the

systems y}’l o, ATC symmetric in the subscripts. We call P an r-jet; the point x € U,

x = x' is called the source of P and the pointy € V,y =7, is called the target of P.
We set for every point P € J"(U,V), P = (xi,y“,yj”l,y]’-’ljz, s Vi)

X = xi(P)’ Y= yU(P)’ y;jzmjk - ')).;J;.fZ"Zik (P)’ I<k<r. (4)
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Then, by abuse of language, x, y°, and Yi\jn-jo» denote both the components of
P and also real-valued functions on J"(U, V). Restricting ourselves to independent
functions, we get a global chart, the canonical chart (x', Y i Y .j,»)’
J1<ja < -+ <ji, defining the canonical smooth manifold structure on J'(U,V);
elements of this chart are the canonical coordinates on J"(U, V). The set J' (U, V),
endowed with its canonical smooth manifold structure, is called the manifold of r-
Jjets (with source in U and target in V).

We sometimes express without notice an element P € J”(U, V) as a collection of
real numbers P = (x',)°, Yo Y5, ), subject to  the condition
<< <

We show that the r-jets can be viewed as classes of mappings, transferring the
source of an rjet to its target. Given an rjet P=J"(U,V),
P= (xi’yg’yﬁ>yf‘1jz7'"7y;'71jzmj,-)’ one can always find a mapping f = f°, defined
on a neighborhood of the source x € U, such that f(x) = y, whose derivatives satisfy

Dy f*(¥'(P)) = y; (P), DiDunf’(x'(P)) =¥}, (P),
<oy DDy Dif° (X (P)) = 7, i (P).

Indeed, one can choose for the components of f the polynomials

(5)

. 1 . . 1 . ; . .
fﬁ(l./) — ya +_y{7 (tll _xll) _|__y{7' (tJl _xll)(tlz _sz)
1174 21712 (6)
1 . . . . . . .
+ . +ﬁyj]j2“'jr(t]1 _ x]l)(ﬂZ _sz) e (t]' _ x./r).

Any mapping f, satisfying conditions (5), is called a representative of the r-jet
P. Using representatives, we usually denote P = Jif.

A.2 Summation Conventions

This section contains some remarks to the summation conventions used in this
book. We distinguish essentially three different cases:

(a) Summations through pairs of indices, one in contravariant and one in covariant
position (the Einstein summation convention). In this case, the summation
symbol is not explicitly designated.

(b) Summations through more indices or multi-indices. In this case, we usually
omit the summation symbols for summations, which are evident.

(¢) Summations of expressions through variables, labeled with non-decreasing
sequences of integers. In this Appendix, we discuss the corresponding
conventions in more detail.

Let k be a positive integer, let L‘R” be the vector space of collections of real
numbers u = u;;, ;, where 1<i,i,...,ix <n, and JFR" the vector space of
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collections of real numbers v =v;;, ;, where 1<ij <ip<-.- <ijx<n. We
introduce two mappings 1: J'R" — L*R" and «: LFR" — J*R" as follows.
Choose a vector v € J'R", v = Vijiy.ip» Where 1 <ip <ip < --. < <n, and set

for any sequence of the indices ji,js, . . ., jk, NOt necessarily a non-decreasing one,

Vivjaedc = Vizye) e (7)

where 7 is any permutation of the set {1,2,...,k}, such that the subscripts satisfy
Ji) < Jr2) < 0 < ik~ Then set

1(V) = Viijpooii- (8)

The vector 1(v) is symmetric in all subscripts and is called the canonical extension
of v to L*R"; the mapping 1 is the canonical extension (by symmetry). If u € LFR",
U = Ui, .., SEt

1
r(u) = Vivjaeds = ] Z Wiy yjuay - dviay » )
-

whenever j; <j, < --- <ji; K is called the symmetrization. For any function
f: JFR" — R, the function f o k: L*R" — R is called the canonical extension of
f. When no misunderstanding may possibly arise, we write just f instead of f o k.
Clearly, definitions (8) and (9) imply

Ko1=idpgr. (10)

Note that in the finite-dimensional Euclidean vector space R, the points of RY
are canonically identified with the canonical coordinates of these point. In what
follows we shall consider the symbols u;,;, ;, and v;;, ; both as the points of RY as
well as the canonical coordinates on the vector spaces LR" and J*R", respectively.

Denote

L NiIN,!. . .N,!
NGz i) =~ (1)
where N; is the number of occurrences of the index [ = 1,2,...,n in the k-tuple
(J1,J25 - - -»Jx)- The following lemma states two formulas how to express a linear

form, whose variables are indexed with non-decreasing sequences; these formulas
are based on simple algebraic relations.
Let

¢ = Aty 12
112---1k

i <ip <<
be a linear form on J*R".
Lemma 1 A linear form ® (12) on J*R" can be expressed as

o= Bj]jz"Jijljz..ka (13)
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where

Bl2de — 1 Al (14)

N(ij2- - )

Proof Supposing that B2/t and vj;, j, are symmetric, we have

jlj2-dky,, . — k(1)Jk(2) -+ Ik
B Vijaoji = E E B” O IOV i

Ju2seedk K
1
- Z ENI!Nz Nl BE T, (15)

<< -<j

_ ;s F\RI2dky,.
= E N(i1ip. . .ix)B Viijn.osic-

J1<ja < <k
If this expression equals @, we get (14). O

Lemma 1 can be applied to linear forms df, where f: J*'R" — R is a function. df
is defined by

- 9 -
df(V) cE = Z <a\}4f> Ziyin.igy (16)

i <ip <<y

where

0

iyin...ik
a 1112 ik

—
— ™)
- —

[11

(17)

i Sip <<y

is a tangent vector. But the chain rule yields 7.f - E = T,,)(f o k) o Ty1 - E, so we
have the following assertion.

Lemma 2 The linear form df (16) can be expressed as

O(f o
df(V)-E=( 4 “))()E,-ljz...jk. (18)

oujyj,

Proof Using formula (10), we get from (16)

_ Ofokor)\
df(V) E = Z (%) Sitiy...ig
...k v

i1 <ip <<y

Z Z <a(f oK > (a(ujljZ»»jk ° l))
Mg ) sy N Piini /

i <ip <o <ig Jrofa,--Jk

3 (8(/‘ OK) 3 (‘9(%/10’)>
i aujljl-ujk (V)i <i i avili2~~-ik v

J1i25-dk 1v)ip <ip < - <y

[x]

i1ig. iy (19)

1l

l]iz..,ik’
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But writing

0

Tt 2= S
J12--Jk

(11

J1j2-

, (20)

we see that 7,1 extends the components Z;;, ;. i1 <ip < --- <i; by the index
symmetry,

S = IOV EDANT )
=nn-Jk 8\» . =
i <ip < <ig iriy...0x v

Thus, using the symmetric components (21), one can also express the exterior
derivative df (19) as in (18). O

Corollary 1 Let f: J'R" — R be a function, v € J'R" a point, and let
=Ejj.jo Where 1<ji <jp<--- <ji<n, be the components of a tangent
vector of J*R" at the point v. Then the derivatives of the functions f and f o x satisfy

[1]

Z <i> Ejijr it = (a(fo K>> Biripie- (22)
ji<izsio Wi o Otiyiy..ix ) 1)
Proof (22) follows from (16) and (18). O
Corollary 2
(a) Partial derivatives of the functions f and f o k satisfy the condition
A(f oK) L of
= NG i) ok, (23)
a”jljz Jk avj}.(l)ji(z)---j/l(k)

where A is any permutation of the index set {1,2,....k}, such that
Ji) iy < Sy, and
of 1 O(f o k)

=— o1 (24)
Oiiy iy N(ivia - ix) Oti iy iy

for any permutation 7.
(b) For any permutation Lyl ),k of the indices I, b, ...l the
derivatives of the function f o i satisfy

dfor) _9(fox)

ouy Ouy,y,. .,

() lx@) Loy
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Proof

(a) From the chain rule, we have for any (j, /2, . . .,Jjk)

O(f o k) _ Z ( of o K> I(Viriy...i, © K)_ (26)

oujyj,..jy Wiyiy..ix oujyj,..jy

But from Eq. (9), there is exactly one nonzero term on the right-hand side,
namely the term in which (iiir...ix) = (j;ax2)- - Jik))> such that
Ty SJaey < -+ <Jjy) for some permutation 4. Then

a(f o K) 8f 8(Vj;(1).12(z)-<~j;.(k) © K)

= OK- , (27)
aujlj2~jk avjzu)iz(zy--jzu) 8uj1j2»»jk

where by (9)

1
Vixwda@)-dawy © ® = X E :ujz(uji(z)u-jm)' (28)
ot

Differentiating (24), we get

a(vj;.mj;.(z)--»j/:(k) o K) - l Z auji(l)jf(z)”jr(k)
k!
T

aujljZan aujljijk (29)
_ N{IN,L...N,!
B k! '
Substituting from (29) back to (27), we have
O(f ox) of
:N(jljz...jk)—OK. (30)
a"tjljz Jk avjzu)j;(z)u-j/z(k)

Conversely, given a k-tuple of indices (i,i2,...,4) such that
1<ii<ip < -+ <ip <n, we get from (30) and (10)
of 1 O(f o k)

=— o1 31
Oiiy iy N(ivia - ix) Oti )iy iy (31

for any permutation t. Formulas (30) and (31) prove Corollary 2.
(b) Formula (25) follows from (23). O

Remark Formula (22) can also be used, with obvious simplification, in the form

a _ af

8“1‘11'2..41‘,(

[1]

itin..ig (32)

=
L Th2ede T
J1<jp < <jr au]l}z--:]k
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A.3 The Rank Theorem

In the following two basic theorems of analysis of real-valued functions on finite-
dimensional Euclidean spaces, we denote by x' and y° the canonical coordinates on
the Euclidean spaces R" and R™, respectively.

Theorem 1 (The Rank theorem) Let W be an open set in R", and let f: W — R be
a C"-mapping. Let ¢ <min(m, n) be a positive integer. The following conditions are
equivalent:

(1) The mapping f has constant rank rank Df (x) = q on W.

(2) Foreverypointxy € W there exist a neighborhood U of x, in W, an open rectangle
P C R" with center 0, a C" diffeomorphism ¢@: U — P such that ¢(x9) =0, a
neighborhood V of f(xo) such that f(U) C V, an open rectangle Q C R™ with
center 0, and a C" diffeomorphism \y: V. — Q such that Y(f (x0)) = 0, and on P,

o (2, x T x2 ) = (x4, x9,0,0,...,0). (33)

Formula (33) can be expressed in terms of equations of the mapping yf o',

which are of the form

o __ X7, 1<0<gq,
y °f{o, g+1<o<m. (34)

In particular, if g = n < m, then yyf ¢! is the restriction of the canonical injection
(%, x") — (xhx%, ..., %7,0,0,...,0) of Euclidean spaces; if g =n=m,
Yfe~! is the restriction of the identity mapping of R”; if the dimensions n and
m satisfy n>m, then yfop~! is the restriction of the Cartesian projection
(U, o2, x0T L x) — (xb a2, ..., x™) of Euclidean spaces.

The following is an immediate consequence of Theorem 1.

Theorem 2 (The Inverse function theorem) Let W C R” be an open set, and let
f+ W — R" be a C'-mapping. Suppose that detDf (xy) # 0 at a point xo € W. Then
there exists a neighborhood U of xo in W and a neighborhood V of f (xo) in R" such
that f(U) =V and the restriction f|,: U — V is a C'-diffeomorphism.

A.4 Local Flows of Vector Fields

In this book, the symbol 7,f denotes the tangent mapping of a mapping f at a point
x. Sometimes, we also use another notation, which may simplify calculations and
resulting formulas. If 7 — {(¢) is a curve in a manifold, then its tangent vector at a
point 7y is denoted by either of the symbols
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d¢
Tl 1, (5) (35)

The tangent vector field is denoted by

d¢
(- 1=—. 36
L= (36)
Note, however, that sometimes the symbol d{/dt may cause notational problems
when using the chain rule.
The following is a well-known result of the theory of integral curves of vector
fields on smooth manifolds.

Theorem (The local flow theorem) Let r > 1 and let & be a C” vector field on a
smooth manifold X.

(a) For every point xy € X there exists an open interval J containing the point
0 € R, a neighborhood V of xy, and a unique C" mapping oa: J X V — X such
that for every point x € V, a(0,x) =x and the mapping J >t — o,(t) =
o(r,x) € X satisfies

Tyon = (o (1)) (37)

(b) There exist a subinterval K of J with center 0 and a neighborhood W of xy in V
such that

afs +1,x) = a(s,a(t,x)), a(—t,a(t,x)) =x (38)

for all points (s,t) € K and x € W. For every t € K, the mapping W > x —
a(t,x) € X is a C* diffeomorphism.

Condition (37) means that t — o,(¢) is an integral curve of the vector field &,
and the mapping (¢, x) — o, (¢) = a(t,x) is a local flow of £ at the point xy; we also
say that o is a local flow of & on the set V. Equation (37) can also be written as

do,

= Ea(n). (39)
A.5 Calculus on Manifolds

In this Appendix, we give a list of basic rules and coordinate formulas of the
calculus of differential forms and vector fields on smooth manifolds.
We use the following notation:

Tf tangent mapping of a differentiable mapping f
f*n  pull-back of a differential form # by f
[£,{] Lie bracket of vector fields ¢ and {
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d exterior derivative of a differential form
icn contraction of a differential form # by a vector field &
0¢n  Lie derivative of a differential form # by a vector field &

Theorem 1 (The pull-back of a differential form) Let X, Y and Z be smooth
manifolds.

(@) For any differentiable mapping f: X — Y, any p-form n and any q-form p on Y

FEm N p) =f*n A f*p. (40)

(b) Letf: X — Y and g: Y — Z be differentiable mappings. Then for any p-form
wonZ

frg*u=(gof)*u. (41)

Theorem 2 (Exterior derivative) Let X and Y be smooth manifolds.
(a) For any p-form n and g-form p on X
dinAp)=dnAp+(=1)'nAdp. (42)
(b) For every p-form n on X
d(dn) = 0. (43)
(c) For any differentiable mapping f: X — Y and any p-form n on Y
df*n = f*dn. (44)
Theorem 3 (Contraction of forms by a vector field) Let X and Y be smooth
manifolds.

(@) Let n be a p-form on X, and let & and [ be two vector fields on X. Then

igien = —igigy). (45)
(b) Let n be a p-form, p a qg-form, and let { be a vector field on X. Then

iimAp)=imAp~+(=1)'nNip. (46)

(c) Let f: X — Y be a differentiable mapping, n a p-form on Y, and let £ be a
vector field on X, { a vector field on Y. Suppose that & and (are f-related.
Then

frin = igf*n. (47)
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Theorem 4 (Lie derivative)

(a) Let X be a smooth manifold, n a p-form, p a g-form, and let & and { be vector
fields on X. Then

0cn = igdn + digy, (48)

Ozdn = dogy, (49)
Oc(nAp)=0enAp+nAdep, (50)
fleh = Ogien — igden, (51)
Ojeqn = 0:0cn — 0 0en. (52)

(b) Let f: X — Y be a differentiable mapping of smooth manifolds, let & be a
vector field on X, and { be a vector field on Y. Suppose that & and { are f-
compatible. Then for any p-form n on Y

f*0m = 0sf*n. (53)

Theorem 5 Let X and Y be smooth manifolds, f: X — Y a C' mapping. Let (U, ),
¢ = (x'), be a chart on X, and (V,\), y = (°), a chart on Y, such that f(U) C V.

(a) For any point x € U and any tangent vector & € T, X at the point x, expressed

t=¢(5m) (54)

Ik

the image Tf - € is

ofe ") i 0
= (R20)) o) (55)
oy \) fy

(b) The pull-back f*n of a differential p-form n on Y, expressed as

Ip

1 . . .
n :ﬁ”ilizm' dx" Ndx? A - Adx, (56)

is given by

1007 fe )0y fe™") 0L fe)
oo Ot Bce (57)
. ('/I(TIO'Z»“(TP of) : dxil A dxiz VANEEIAN dxi”.

f*n =
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Theorem 6 Let (U, ¢), ¢ = (x'), be a chart on X.

(@) For any two vector fields & and { on X, expressed by

P = . 58
=t (=02, (58)
the Lie bracket [£,(] is expressed by
ol , o
= (= ) 59
6= (3¢ -5 ) o (59)
(b) The exterior derivative df of a function f: X — R is expressed by
a
df = f ——dx". (60)
The exterior derivative dy of a p-form n (56) has the chart expression
1 ) . .
dn = Edﬂi‘iz"'i” AdxX ANdx? A ANdx?, (61)

where the exterior derivative du; ;, ; is determined by formula (60).
(c) The contraction iz of the form n (56) by a vector field & (58) has the chart

expression
. 1 s 7. i i
en = mnﬁlizmihl 6 dxX" Ndx* Ao Ndxr. (62)
(d) The Lie derivative O¢n of the form n (56) by a vector field £ (58) has the chart
expression
1 /o& o& o&
Ol = — <% Nsizisy — Zciy Msiviais.oiy + O Msivisiais iy
o m; . (63)
1 iiy...0p i i i
- +( 1)17 Oxir slliz...ip—l alxzk ik)dxl Adx® N Ndx?.

A.6 Fibered Homotopy Operators

In this section, we study differential forms, defined on open star-shaped sets U in an
Euclidean space R" and on trivial fibered manifolds U x V, where V is an open
star-shaped set in R™. Our aim will be to investigate properties of the exterior
derivative operator d on U and on U x V.

First, we consider a differential k-form p, where k > 1, defined on an open star-
shaped set U C R" with center at the origin 0 € R". We shall study the equation

dn=p (64)
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for an unknown (k — 1)-form 1 on V. Denote by x' the canonical coordinates on
U. Define a mapping y:[0,1] X V — V as the restriction of the image of the

mapping (s,x',x%,...,x") = (sx!,sx%,...,sx") from R x R" to R" to the open set
V; thus, in short
7(s,x) = (sx'). (65)
Then
yFdx = x'ds + sdx’. (66)

The pull-back y*p is a k-form on a neighborhood of the set [0,1] x V. Obviously,
there exists a unique decomposition

p = ds A p(s) + p'(s), (67)

such that the k-forms p(©) (s) and p’(s) do not contain ds. Note that by formula (66),
p'(s) arises from p by replacing each factor dx' with sdx, and by replacing each
coefficient f with f o y. Thus, p'(s) obeys

p'(1)=p, p'(0)=0. (68)
We set

Ip= / (), (69)
0

where the expression on the right-hand side means integration of the coefficients in
the form p(¥)(s) over s from 0 to 1.

Lemma 1 Let U be an open ball in R" with center 0.

(@) For every differentiable function f: U — R,

f=Hf +£(0). (70)
(b) Suppose that k > 1. Then for any differential k-form p on U,
p=Idp+dlp. (71)

Proof

1. If £ is a function, then df = (0f/0x')dx’, and we have by (66) y*df =
((0f /Ox') o y) - (x'ds + sdx'). Consequently,

1
ldf = xi/ (8—£ o X) ds. (72)
0
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Now (70) follows from the identity
1

_ [d{foy)
s=0 _/ ds dS

’ (73)

f=f0)= (o)

1
:xi/ (%ox>ds.
0

. Let k = 1. Then p has an expression p = B;dx', and the pull-back y*p is given
by y*p = x'(B; o y)ds + (B; o y)sdx'. Differentiating we get

LLIVEPY
5. @

s=1 _(foX)

¥dp = dy*p = ds N (—d(xi(Bi oy)+

B Os (74)
+ s(iiox)dxj Adx',
OxJ
hence
1
Ip :x"/Bio;(-ds. (75)
0
Thus,
1
d((Bioy)s) O Bjoy) :
ldp = — - -dx' 7
dp /( s o ds - dx', (76)
0
and
1a(f Bjoy)
x/-Bjoy <
Ip= | ——1—"ds-dx.
dlp / o ds - dx (77)
0
Consequently,
1
A((B; o X)S)) ,
Idp + dI :/ ————=—|ds-dx
prar < Os (78)

0
= (Bioy- )= — (Biog-s)|,—g)dx' = p.
. Let k> 2. Write p in the form

p=dx N, (79)
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and define differential forms ‘I—‘EO) (s) and Wi(s) by

¥ =ds A ‘PSO) (s) + Wi(s). (80)

Then
7p = (sdx' + xX'ds) A (ds AP (s) + Wi(s)) )

=ds A (—sdx' A ‘Pl@ (5) +y"Wi(s)) + sdy' A Wi(s).
Thus,
1
/ —sdx NP (5) + X W(s)). (82)
0

To determine Idp, we compute y*dp. Property y*dp = dy*p of the pull-back
yields

r¥dp = —ds A (sdx' A d‘l’g0> (s) 4 dx' A Wi(s)
+ X' d¥(s)) — dx' A d(sPi(s)))

=ds A (—sdxi Ad¥ (s) — dx' A Wi(s) (83)
! !
—xXd¥)(s) +dx' A Ol _ dx' A dx! A M,
' Os Ox/

where 0#(s)/Os denotes the form, arising from 7(s) by differentiation with
respect to s, followed by multiplication by ds. Now by (83) and (69),

Idp = —dx' A / sd¥” (s) — dx' A / Wi(s
1 1 (84)
lI//
/wv +MA/8?
0 0

It is important to notice that the exterior derivatives d'¥'”)(s), and d'¥’. (s) have

the meaning of the derivatives with respect to x* (the terms containing ds are
canceled; see the definition of I (67), (69)).
Now, we easily get

1
Idp—l—dlpzdx’V\/W.
s

0
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Remembering that the integral symbol denotes integration of coefficients in the
corresponding forms with respect to the parameter s from O to 1, and using (68),
one obtains

Idp +dlp = dx' A (1-W)(1) —0-¥)(0))

7 j (86)
=dx' NYi(1) =dxX' NY; = p,

as desired. O

As an immediate consequence, we get the following statement.

Lemma 2 (The Volterra—Poincare lemma) Let U be an open ball in R" with center
0, p a differential k-form on U, where k> 1. The following two conditions are
equivalent:

(a) There exists a form n on U such that

dn = p. (87)
(b) p satisfies

dp = 0. (88)

Proof If dn = p for some 5, we have dp = ddn = 0. Conversely, if dp = 0, we
take = Ip in Lemma 1. U

Condition (88) is sometimes called integrability condition for the differential
equation (87).

Now we consider a different kind of differential equations, reducing to (64) for
differential forms of sufficiently high degree. Let U be an open set U in R", and V an
open ball V in R™ with center at the origin. Denote by k the first Cartesian
projection of U x V onto U. Suppose we are given p on U x V, where k is a
positive integer. Our objective will be to study the equation

dn +m*ny = p (89)

for the unknowns a (k — 1)-form # on U x V, and a k-form 7, on U.

Let (xi, ¥7), where 1 <i<n, 1 <o <m, be the canonical coordinates on U x V,
and {: U — UxV be the zero section of U x V. Consider the mapping
(s, (e, 22,y v ym) — (a2 X syl sy? L sy™) of R x R™ X
R™ with values in R" x R™. Restricting the range of this mapping to U x V, we
define a mapping y: [0,1] x U x V — U x V by

1(s; (F,37)) = (', ). (90)
Then

prdx' = dx',  y*dy’ = y°ds + sdy°. (91)
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Consider the pull-back y*p, which is a k-form on a neighborhood of the set
[0,1] x U x V. There exists a unique decomposition

ip = ds A p(s) + p'(s) (92)

such that the k-forms p(¥)(s) and p’(s) do not contain ds. Note that by (91), p'(s)
arises from p by replacing each factor dy® with sdy’, and by replacing each
coefficient f with f o y; the factors dx' remain unchanged. Thus, p’(s) obeys

p'(1)=p, p'(0)=mn**p. (93)
We define
1
Ip=[ p”s), (94)
/

where the expression on the right-hand side means integration of the coefficients in
the form p©(s) over s from 0 to 1.

Theorem 1 Let U C R" be an open set, and let V C R™ be an open ball with
center 0.

(a) For every differentiable function f: U x V — R,

[ =1df + n*{¥f. (95)
(b) Let k> 1. Then for every differential k-form p on the Cartesian product
UxV,
p =1Idp + dlp + w*{*p. (96)
Proof
1. We have
of .. Of
df = —dx' dy’ 97
f (9)6’)6—’_<9y‘7y7 (97)
and by (91)

0 ' 0
of = (6—)]:’ o X) dx' + (8—;7 o /) (y7ds + sdy’). (98)
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Now the identity
=l =fox|s 1

d(f o / [/
0/ Ay =y 0/( /C) 1df,

which follows from (94), gives the result.
2. Let k = 1. Then p has an expression p = A;dx’ + B,dy°, thus

7%p = (Ai 0 y)dx' + (B; o y)(sdy” + y7ds)
= Y°(Bs 0 y)ds + (A; 0 )dx' + (B, o y)sdy”,

and
xrdp = dy*p
_ o dAioy) i O(Bsoy)s)
=ds A <d(y (Bsoy)) + s dx' + s dy
NAion) yi, OAion) 4 j
+ ( o dx dy' dy" | ANdx
B, ; B,
+ L (.)X) dxj—|—L ° %) dy' | Ndy°®,
Ox/ ay'
hence
1
Ip:y“/Baox-ds,
0
and
[ (0hi07) 90" -B.oy)
iox y'-Byoy :
P / < Os Ox! ) S
0
1
+/ (Bsoy)s) 00" -Byoy) ds - dy".
Os 0y°
0
We also get

1 1
B; o ; V- B,o
deZyg/%ds-dxl—l—/a(yTﬂ)d -dy’,

0 0

319

(99)

(100)

(101)

(102)

(103)

(104)
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consequently,

Idp +dlp = A; 0 x|, —
= p — w*{*p.

Lls=0 + (BU ox- s)'s:l - (BO' ox- S)|s:0

(105)

Let k > 2. Write p in the form p = dx' A ®; + dy’ A ¥, and define differential
forms ) (s), ®/(s), ¥ (s) by

¥ ®; = ds N\ <D§0) (s) + Di(s),

(106)
15, = ds NP (s) + P (s).
Then
1ip = ds A (—d' N O (s) — sdy™ P (s) + 37, (5)) (107)
+dx' A D(s) + sdy” + sy" WL (s)).
Thus,

1 1
Ip = —dx' A / ) (5) — dy” A / (sPO(s) + )79 (s))ds.  (108)
0 0

To determine Idp, we compute y*dp. We get
1idp = dy*p
= —ds A (dx' A dCDEO) (5)) + sdy” AdPO (s) + dy’ AW, (s)
+y7d¥. (s) — dx' A dDl(s) —dy® Nd(sV.(s))

S

= ds A (—dxf A (s) + dx' A — sdy” A d¥O)(s)

/ 109
—dy’ N, (s) — y'd¥,(s) + dy° A —a(s\g‘; (S))) (109

7

ay 2 BEL)

O (s)
£ +dy" A

—dx' A (d A —2
A(s¥.(s))

U
—dy’ A | dx! A A
Y (x Ox/ '’
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where 01 (s)/0s denotes the form, arising by differentiation of #(s) with respect
to s, followed by multiplication by ds. Now by (108) and (93),

1
Idp:—dxi/\/d(l)(o() dy’ /\/ sd¥P) (s) — dy” A/‘I”
0 0

1 1 (110)

: (s (s (s
—y“/d‘l’ﬁ,(s)—|—dx’/\/a +dy’ /\/as

0 0 0

Note that the expressions dCDEO) (s), dPY(s), and d¥. (s) have the meaning of
the exterior derivatives with respect to x’, y° (the terms containing ds are
canceled; see the definition of 7 (93), (94)).
Now

1 1

/as\P’ a1

0 0

Idp +dlp = dx' A

and using formula (93),

Idp +dIp = dx' A (D(1) — @}(0)) +dy” A (1-¥,(1) —0-¥,(0))
=dx' A D|(1) +dy’ AW, (1) — dx' A D(0)
=dx' AN+ dy’ ANV, — dx' A TR,
=p—mp.

(112)

As a consequence, we have the following statement.

Theorem 2 (The fibered Volterra—Poincare lemma) Let U C R" be an open set,
V C R™ an open ball with center 0. Let k > 1 and let p be a differential k-form on
U x V. The following two conditions are equivalent:

(a) There exist a (k— 1)-form n on U x V and a k-form n, on U such that
dn + m¥n, = p. (113)
(b) The form dp is m-projectable and its m-projection is dn,.

Proof Suppose we have some forms 7 and 1, satisfying condition (a). Then dp =
dn*ny = n*dn, proving (b). O

Conversely, if dp is m-projectable, then by the definition of I, Idp = 0, and then
by Theorem 1, p = Idp + dlp + n*{*p = dn + n*n, proving (a).

We also get two assertions on projectability of forms, and non-uniqueness of
solutions of equation (89).
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Corollary 1 Let U C R" be an open set, V. C R™ an open ball with center the
origin 0, p a differential form on U x V. The following two conditions are
equivalent:

1. There exists a form n on U such that p = ©*n.
2. Idp +dlp = 0.

Proof This follows from Theorem 1. O

Corollary 2 Suppose that the form dp is mw-projectable. Let (1,n,) and (i}, 7,) be
two solutions of equation (89). Then there exist a (p — 1)-form t on U x V and a
(p — 1)-form y on U such that

N=n+n*g+de, ng=ny—dy (114)

Proof By hypothesis,
dn+ g = p, dij + iy = p. (115)

These equations imply dn + n*y, = di + n*#, hence n*dn, = n*di,. But for any
section 0 of the projection 7,

Thus, by the Volterra—Poincaré lemma, #, — 1y = dy for some y. Then, however,
dn + ¥y = di + 7*(ny + dy) and

d(n—i—n*y) = 0. (117)
Applying the Volterra—Poincaré lemma again, we get (114). O

Remark 1 (The Volterra—Poincare lemma on manifolds) Let X be an n-dimensional
manifold. Every point x € X has a neighborhood U such that the decomposition of
forms, given in Theorem 1, is defined on U. Indeed, if (U, @) is a chart at x such
that @(U) is an open ball with center 0 € R”, then formulas p = ¢*u and
(¢~')*p = w establish a bijective correspondence between forms on U and ¢(U),
commuting with the exterior derivative d. In general, this correspondence does not
provide a construction of solutions of differential equations (64) and (89), defined
globally on X.

Remark 2 For k-forms p such that k = n, always dn, =0 hence 1, = dt and
equation dn + n*ny, = p (89) reduces to dn = p (64). The same is true for k > n
because in this case n, = 0.

Turning back to the definition of the fibered homotopy operator / (94), we have
the following explicit assertion.

Lemma 3 Let p be a differential k-form on the product of open sets U XV,
considered as a fibered manifold over U, expressed in the canonical coordinates
(x',y") on U x V as
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1 , : 4
p= I;Amzm% iy dYT N AYT N NdY? Ndx" Ndx® A - Ndx, (118)

where k = p + q. Then the fibered homotopy operator I is given by

1
IP = yo /A(mla’z...q,,l iyia...iy (xja Syv)spilds . dyal A dyﬂ'z ARERIA dyUIFI
0

(119)
Adx" Ndx® A Adx.
1 satisfies
Pp=0. (120)
Proof The homotopy (x,y7) — x(s, (x',y%)) = (, sy°) yields
1*p :I%(P "(A66163...0p 1 iriz.niy © 2)§ 7 ds Ady™ AdY A N dy T
+ (Avi0s...0, irin.dy © X)S'AY” Ndy™ A=+ Ndy™) (121)
Adxt Adx® A - A dx
which implies that
Ip = (Avioy...0, iris.iy © X)X (Y™ Ndy™ A --- Ndy™)
1
=y / (Avorosnay 1 iy © 15 ds - dy™ Ndy™ Ao Ady™' (122)
0
Adx" Ndx? A Adx.
Identity (120) is now an immediate consequence of formula (119). O

A.7 Differential Ideals

For basic concepts of the theory of differential ideals and related topics, we refer to
Bryant et al. [Br].

Let X be an n-dimensional smooth manifold. We denote by A’TX the bundle of
alternating p-forms over X; in this notation, A'TX = T*X is the cotangent bundle
of X. Sections of the bundle A’TX, differential p-forms on X, form a module over
the ring of functions, denoted by €,X. The direct sum

QX =QXDUXDLX B -+ B QX (123)
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together with the exterior multiplication of forms is the exterior algebra of X. We usually
consider elements of Q, X as elements of QX. The multiplication A in QX is associative
and distributive, but not commutative; instead we have for any n € Q,X and p € Q,X,

nAp=(=1"pAn. (124)
A subset @ C QX is called an ideal, if the following two conditions are satisfied:

(a) O is a subgroup of the additive group of QX.
(b) If € ®and p € QX then n A p € O.

An ideal ® C QX is called a differential ideal, if for any n € O also dn € O,
thus, a differential ideal is an ideal closed under exterior derivative operation.

Any non-empty set 0 C QX generates a subgroup @y of the additive group of
QX, formed by (finite) sums

p= A pg (125)

where 17, € 0 and p, € QX. Oy is an ideal, which is a subset of any ideal containing
0; it is said to be generated by the set 0 (or by the generators n € 0). If the set 0 is
finite, we say that @y is finitely generated.

Let ¥"X denote the module of vector fields on X. We denote

A (@) ={¢ €V X|izn C O,n € O} (126)

This set, the Cauchy characteristic space of ®, has the structure of a subgroup of
the additive group of ¥“X. The annihilator

(©) = {u € WXlizu =0, € #(O)} (127)

is the retracting subspace of ©.

A.8 The Levi-Civita Symbol

We introduce in this appendix a real-valued function, defined on the symmetric
group t € S,, the Levi-Civita symbol, playing an essential role in algebraic
computations with skew-symmetric expressions. We also derive basic computation
formulas for the Levi-Civita symbol, needed in this book.

Any permutation T € S, can be written as the composition of transpositions 1y,
that is T = 1)y 0 Tpy—1 © - - - 0 75 o 7;. This decomposition of 7 is not unique, but the
number sgn T = (—1)M , the sign of the permutation 7, is independent of the choice
of the decomposition. If sgn T = 1 (resp. sgn T = —1), the permutation t is called
even (resp. odd). The function Sy >t — sgn t € {1, —1} is sometimes called the
sign function. As an immediate consequence of the definition, we have

sgn(v-7) =sgnv-sgnt (128)

for all permutations v, t € S,.
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The sign function T — sgn 7 can be considered as a function on the set of distinct
n-tuples (iy, i, . . ., i) of integers, such that 1 <ij, i, ..., i, <n. We define the Levi-
Civita, or permutation symbol &;,;, ;, setting &,;, ; = 1 if the n-tuple (i1, 2, ..., i)
is an even permutation of (1,2,...,n), &, ; = —1 if (i,i2,...,i,) is an odd
permutation of (1,2,...,n), and &;;, ; = 0 whenever at least two of the indices
coincide. Clearly,

_ 1 2 n
Eiviydy = E sgn t - (31}(1)51}(2). . .5%). (129)

1€S,

Sometimes it is convenient to express this formula in a different form, without
explicit mentioning the permutations t. To this purpose, we introduce the
alternation operation in the indices (iy, i, . .., i), denoted Alt(ii,. . .i,), by

1
D ST O O 0f = 0,00 Alt(hii. ). (130)
' 1es,

It is understood in this formula that the operator Alt(i;. . .i,) is applied to the right-
hand side expression, and represents explicit expression on the left-hand side. From
(130) we get, in particular,

Bipiy = O; 7 07 Alt(iria i) (131)

Formula (131) indicates that the Levi-Civita symbols &;;, ; and &1 can be
expressed by means of determinants. We have

1 2 " ; ; )
51'11 5121 te 5[1 511 512 “ee 51
n L. 11 153 In
Eiriy..iy = 51’2 51'2 51’2 ) 8”12'"1”: 52 52 52 . (132>
5 & ... & Sioe L
Clearly, multiplying these determinants, we get
! 2 4 j j2 jn
51'1 51'1 - 6i1 5111 (511_ o 511
1 2 " . Y .
DL O A I R 1
- . (133)
o o .. ol
'1 '2 "l . . .
_ % 0 . 5 — nlol RS Altiris. . i)
R
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Lemma 1

(a) For every k such that 1 <k <n,

giliz...ikSkﬂSHz...SnSIUZHJNHNHZWS” = k'(l’l - k)'éii 6iz : 51: Alt<1112 . lk) (134)

(b) For every k such that 0 <k <s<n,

1

n—ky, Coo St sl s P P i

3! (n — S)8]1]24--]k]k+1]k+2~-»];h+1l.\-+2~-ln 5ik+15ik+2' : -51‘5 Alt(’k+llk+2- - olslsp1ls42- - ~ln)
1 lk+15{k+z

B k'(? — k)' Jkrt Je2" " '5j.;811j2---Jklk+1lk+2»<-l.vl.y+1l.c+z---ln

Alt(jifo- - Juks1ks2- - Js)-

(135)
Proof
1. Setting
N = OhoR.. .0 Alt(iria. i), (136)
we have

i1V -0

= NI g Alt(iyiy. . dy)

...y 1

Ajzljlzjli = 51:1 572. . .5]}71 5] Alt(l]lz . .i[_l) Alt(lllz . l[)

1, .. . A o . (137)
I (A11J2--J1715}1 o AJ_I/Zu-JI—l 5/1 _ Aj)/Z-»JH 511
l

llizu.l‘],l i[ l,i2i3.,,il,1 il lli1i3i4..,il,1 iz

e — A2 51— AV S )

Q1. i3 02 Q10230201 -

Note that contracting this expression, we obtain

s =1

i i1 " (138)

Now formula (133) can be written in the form

8,'1,'2,,%8]1}2“']" = pl A2

i1p...0p " (139>

Contracting (139) in one pair of indices, we get

L. 12+ Jn—15 JU2eJn-15 __ _ Jij2--Jn—1
stllz---llmsdl : Y= n!Ailiz...i,,,]s - (n 1)'1'A i3...1, (140)

1.0y
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proving (134) for k = 1. After n — k contractions, we obtain

J1J2 Skt 1Sk42+Sn 1 J1j2--jk 1

102 o Bk Sk 1 Sk42 -8

(n —n + k)! 1110k k! i1iy...0x 7

which leads to (134).
2. To prove formula (135), consider the tensors

(3=%) : Jliriglhez gl

Alt(ik+1ik+2. R Y AT .in)
and

1 vt Sleva 5&

327

— A — A2k (141)

F8jlj2'~<jkik+ljk+2---jvic+]i:+2~<in i1 Cigsn st Y (142)

Ty S dkikr i dsisiaiseain Qi Oyt 405
k'(s—k)' J1J2 e Tkl 1 U2 Lsbs 1 Ls+2 - In Y Jry 7 Jran Js (143)

Alt(jija. . Jijks vkr2- - Js)-

Suppose that the component (142) is different from 0. Then

(@) the set {ixi1, k12, - - by Ist1, Is42, - - -, in} cONsists of distinct elements,
(b) the set {j1,/2,- - s JirJkt1,Jk+25 - - -5 Js} consists of distinct elements,
(c) the set {lki1,lkt2,--.,1s} satisfies

{ik+lyik+27' CY) ié‘a is+|7is+2? LRS! ln} N {j17j27 .- '7jk7jk+l7jk+25 .. '7jS}

(144)
= {lk+1; lk+27 LR ls}
Take jir1 = lev1, Jio2 = lesa, - - - Jjs = I5. Then (142) reduces to
n—k 1 It sl I
(}’l _— S) E8jlj2'~-jklk+llk+2-~-.vis+lij+2-~in51}1]51}12' ° '5l‘y (145)
Alt(ik+1ik+2. . .isix+lis+2. . ln)

There exist exactly one (s — k)-tuple in the Set ix1, k12, - - - Ly Ist15 Is+25 « - -5 Ins

Say gy, igs2, - - -, Iy such that 55:1155212 .. 55:: = 1. Then
il = Jir1 = byt B2 = Jr2 = b2y oo is = Js = U, (146)

and (146) gives the expression

M(n—k)lg.. T
- cosly b1 lg4 200 ln T coesly1ls42. 00
(n —k)' n s 5! J1J2-- Tkl 1 b2 sls 1 Ls+2 S!(S —k)' J1J2 - Tkl 1bk+2 +1ls+2

(147)
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Compute now (143) for the same indices, satisfying conditions (147). We get

1 k! let gl
k!(s_ k)l l Jk+1  Jket2 "
_ 1
sl(s —

I
5jx Ejr o filirtlisa - sissrisia.in

(148)

k)' ol i ddyrtigan in -

This shows that if the component (142) is different from 0, then also the
component (143) is different from 0, and is equal to (142).
Conversely, if (143) is different from 0, then

1 I ] I
5k+15k+2 5 &j i ] l i Tg4n...],
k!(s _ )l Tkt Jkv2” s G2 Jkiks 1 k2 slst U s 20 (149)

Alt(jija. . Jiks ka2 - Js),

we obtain again conditions (a), (b), and (c). O

Corollary 1 If k = n, (134) coincides with (133). If k = 0, we have
g;s‘lszm;yngsl‘vzms" =nl. (150)

Corollary 2 (Bases of forms) Let X be an n-dimensional smooth manifold, and let
(U, @), ¢ = (x'), be a chart on X. Then the forms

1 . ) .
Wy = _Silizn.i,,dxll Adx? A--- A dxl”,

n!

Oy ky = mEklkz...k,),lkpil,ﬂip+2...i,,dxl”“ Adx" N A dx™ (151)

ISPSn—la

define bases of n-forms, (n — 1)-forms, ..., 2-forms, and 1-forms, respectively. The
inverse transformation formulas are

ghlelngyy = dxl' A dx2 A+ A dxt,
8k1k2<--kplp+]lp+2-~]na)klk2‘“kp — dxlp+1 A dxlp+2 Ao A dxln’ (152)

I<p<n
Proof Immediate: The forms (151) are defined by

Wy = dx" NdxXP A - A dx", oy = ia/ax"l o, Ok, = iﬁ/@x"Z Wiy s

s Ok, = lo/o Okikykyys -+ Ok = /01 Okiky.diyz
(153)

and are linearly independent. O
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A.9 The Trace Decomposition

This appendix is devoted to specific algebraic methods, used in the decomposition
theory of differential forms on jet manifolds. To this purpose we present elementary
trace decomposition formulas and their proofs (Krupka [K15]).

Beside the usual index notation, we also use multi-indices of the form
I=(ijip...0x), where r and n are positive integers, k =0,1,2,...,r, and
1 <iy,ia,...,ix <n. The number k is called the length of I and is denoted by |I|.
For any index j, such that 1 <j <n, we denote by Ij the multi-index (ii,. . .ij). The
symbol  Alt(iyip...Ix) (respectively, Sym(ijip...ix)) denotes alternation
(respectively, symmetrisation) in the indices iy, i, .. ., i.

Let E be an n-dimensional vector space, E* its dual vector space, and let r and
s be two non-negative integers; suppose that at least one of these integers is non-
zero. Then by a tensor of type (r,s) over E, we mean a multilinear mapping
U E*XE*X---XE*XEXEX---xE—R (r factors E*, s factors E);,
r (respectively, s) is called the contravariant (respectively, covariant) degree of
U. A tensor of type (r,0) (respectively, (0, s)) is called contravariant (covariant) of
degree r (respectively, s). The set of tensors of type (r, s) considered with its natural
real vector space structure is called the tensor space of type (r,s) over E, and is
denoted by T E.

Let e; be a basis of the vector space E, ¢! the dual basis of E*. The tensors
e, Re, R - Re, el ®e? @ - ®eb, 1<j1,j2y. . fry 1,2, .., 05 <n, form a
basis of the vector space T, E. Each tensor U € T, E has a unique expression

U= Ujljzmj'i]l'z...ixej] Re, R Qe ® e ®---® ei“', (154)
where the numbers U1, ; are the components of U in the basis ;.

Remark 1 If a basis of the vector space E is fixed, it is sometimes convenient to
denote the tensors simply by their components; in this case, a tensor U of type (r, s)
over E is usually written as

U= Ui, .. (155)

Remark 2 The canonical basis of the vector space E = R" consists of the vectors
e; = (1,0,0,...,0), e, = (0,1,0,0,...,0), ..., e, = (0,0,...,0,1). The basis of
the tensor space T;R" associated with (e1,€z,...,€,) is also called canonical. A
tensor U € T/R" can be expressed either by formula (154) or by (155); these
formulas define the canonical identification of the vector space T;R" with the
vector space RV of the collections U = U2+, ;. where N = dim T"R" = n".

Remark 3 The transformation equations for the associated bases in T, E are easily
derived from the transformation equations for bases of the vector space E. Suppose,
we have two bases e; and €; of E. Let €; = A’; e, and g = B;ep be the corresponding
transformation equations. Then
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A?B’p = (SZ, (156)
where 07 is the Kronecker symbol, o) =1 and &) = 0 if p # g, and

€, Ve, R - ®ej ®éil®éi2®...®él}
:A;’llA;’Z, AprBll B> . ngepl ®ep @ Qep, Qe Qe R --- R el

q1 92
(157)
Expressing a tensor U € T, E as in (154), we have
U=0", 18 080 08 08 98" g -8 (158)
— []P1p2-~17rqlqzm%ep1 ® ePz R X epr ® ed ® e?? R R els .
Clearly, then
Uplpzmprlhtlzu-% 7Ap1Ap72' AP,BiIllBiIZZ Bf;.; l_]j]jzmjrilizmi;' (159)

The Kronecker tensor over E is a (1, 1)-tensor J, defined in any basis of E as
d=¢ ®e". (160)

It is immediately seen that the tensor é does not depend on the choice of the basis e;.
We can also write 0 = 51’:e,v ® e/, where 5} is the Kronecker symbol (Remark 3).

This definition can be extended to tensors of type (r,s) for any positive integers
rand s. Let o« and f§ be integers such that 1 <a <r, 1 <f <s, and let e; be a basis of
E. We introduce a linear mapping 1 : T'-lE — T'E as follows. For every

VeT|E,
V=V e, 0e, 8 Re, Qe ®e? @ ®e, (161)
define a tensor 13V € T7E by
GV = Wi, e, Qe,® - Qe¢, Qe ®e?® - Qe (162)
where
Witz dumtidat s b i tipipi s = 5111“/11]2 B Y ST A s oig g1y (163)

Thus,

oy — Yivredr-l, . . ) . . .
lﬂv =V i &) @ € @ ®e;, , Ve e, ® ® €
Re"Re?R: - ReF'Re e R---®eb

r

(164)

(summation through s on the right-hand side). It is easily verified that this tensor is
independent of the choice of e;.
The mapping 1 defined by formulas (152), (163) is the (at, f§)-canonical

injection. A tensor U € T,E, belonging to the vector subspace generated by the
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subspaces l%(T{_’llE) CT/E, where 1 <a<rand 1< <s, is called a Kronecker
tensor, or a tensor of Kronecker type.

A tensor V € T'E, V = Vhk-k ,  is a Kronecker tensor if and only if there
exist some tensors V((;’ >) € T;_’llE, V((g )) = V((Z ))k‘kz'“k"" Lb..1,_,» Where the indices
satisfy 1 <p <r, 1 <q<s, such that V&k-*, . can be expressed in the form
Vi = 051 V((Il))jm”jr Ly, 5?; V((zl;jm"'jr Wlyd, 0?: V((Sl))jm"'jr hyeds_y

+ %?V((f))j]j;.njr bt + 5% V((22>)j1j3“~j, Wit o+ (5? V((f))jljz.njr Wbt

+ 55: V((lr))jljl--jr—l bt + 5;; V((g))jljZ---jr—l Wisd o+ 5/lrv V((S)jljl--jr—l bt
(165)

A tensor U € T, E expressed as in (154), is said to be traceless, if its traces are
all zero,

Sl]lz.,.lr,] L. . . l]Slz...l,,l L ) . lllz.”l,-,]s . . .
U SJJ2-Js—1 T 0’ U SJJ2-Js—1 T 07 e U SJ2-Js—1 T Ov
Slll'_).,.l,,1. . . J— 115‘/2...[,-,1 L. ) — 1112.4.lr,]SA . . —
U Ji8J2--Js—1 T 07 U J18J2-Js—1 T 0’ Y U J18j2-fs—1 T O’
sl Ly _ lisly. Doy . _ Libp..lL_s _
U ' J1J2--Js—18 T 07 U " J12--Js—18 T 07 Tt U ' JUj2--Js—18 T 0.

(166)

To prove a theorem of the decomposition of the tensor space T E by the trace
operation, recall that every scalar product g on the vector space E induces a scalar
product on T7E as follows. Let g be expressed in a basis as

8(&0) =gyl (167)

where ¢ = ¢, { =" are any vectors from E. Let U,V € T{E be any tensors,
U= Uiy, o,V =Viizi, . We define a bilinear form on T7E, denoted by
the same letter, g, by

il il isls T T2+ Jr kiky...k,
(U, V) = gk &jrky- - -8jrk, 8182 - & Uiy i VI, iy, (168)

Lemma 1 Formula (168) defines a scalar product on the tensor space T.E.

Proof Only positive definiteness of the bilinear form (168) needs proof. If we
choose a basis of E such that gix = dy, then g(U, V)(168) has an expression

gU VY= Y > Uy, VIR (169)
ki kg ey Il

Obviously, this is the Euclidean scalar product, which is positive definite. O
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Theorem 1 (The trace decomposition theorem) The vector space T,E is the direct
sum of its vector subspaces of traceless and Kronecker tensors.

Proof We want to show that any tensor W € T, E has a unique decomposition of
the form W = U 4 V, where U is traceless and V is of Kronecker type. To prove
existence of the decomposition, consider a scalar product g (169) on T;E. It is
immediately seen that the orthogonal complement of the subspace of Kronecker
tensors coincides with the subspace of traceless tensors. Indeed, if U € TJE,
U= Ui, ., then calculating the scalar product g(U,V) for any tensor
V ETE, V=Vhk-k , . satisfying condition (165), the condition

g(U,V)=0 (170)

implies that U must be traceless. The uniqueness of the direct sum follows from the
orthogonality of subspaces of traceless and Kronecker tensors in 7, E with respect
to the scalar product g. O

Theorem 1 states that every tensor W € T"E, W = Wi, is expressible in
the form
Witizde g
iri3...0, i03...0y i Diaisz...ir
+ 6 (( 1) 1 bis..l, 5 V ))2 ’ hlydy T+ 0 IV((S)) ” L.l
( 2)
( 2

iyi3...0 iy (2)i1i3..0p
Wd, + o+ OV, <g) .. dyy

5'2
Sir (ririz..ip—1 5 V)lllv dr Y (Pirizeir—
+ llv(l) bils..lg + Lis..1s + + [xV ) Ll ls—y>

(s
(171)

))tm Iy bls. +(3[2V

where U = Uhia-ir L., 1s @ uniquely defined traceless tensor, and for every p and

g such that 1 <p<r, 1 <g<s, the tensor V((f;)) = V((L’]’))i‘iz“'i”l Ll,..1,_, belongs to the

r—1
tensor space T, | E.

Remark 4 The traceless component U2+, ;. ; and the complementary Kronecker
component of the tensor W in (171) are determined uniquely. However, this does

not imply, in general, that the tensors V((Z )) are unique. If the contravariant and
covariant degrees satisfy r + s <n + 1, then the tensors V((g )) may not be unique.

Formula (171) is called the trace decomposition formula.

Denote by E! the vector subspace of tensors U = U/V2Jr, ;. in the tensor
space T,E, symmetric in the superscripts and skew-symmetric in the subscripts;
sometimes these tensors are called symmetric-skew-symmetric. We wish to find the
trace decomposition formula for the tensors, belonging to the tensor space E;. Set

trU = Ukj‘jz"'j”‘kiliz.“is,l, (172)
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and

(r+1)(s+1)
n+r—s

Sym(]UZ . -jr+1)'

qU = 5ﬁ [ rs Alt(i1i2~ . -is+1)

i2i. sy (173)
These formulas define two linear mappings tr: E/ — E'~| and q: Ef — E'].
Theorem 2
(a) Any tensor U € E} has a decomposition
U =trqU + qtrU. (174)
(b) The mappings tr and q satisfy
trrtU =0, qqU =0. (175)

Proof

(a) Using (173) we have, with obvious notation,

r+1 Co S
- Lypjaj3-Jrel, ., VAT 3777 T S
QU= n+r—s (5/11 U "igis.igi 511‘2U " iy dgst
_ Shppied, 0 L S odsedrel L, (176)
yl}U ’ DI I4l5 . Tt 51'#[ U g 1213“.1311)
Sym(]l,h- . Jr+1)'
Thus,
trqU = ;(516(]1‘2}3---»“, L 5k Ui
Qv = n+r—s k 20341 is kiziy...igs1
k ppajsedrs K prijseden.
B 5i3U igkigis. iy T T 5;'”1 v " hyis..isk
2 prkisadey o S pgKisdrer
+ 52 U ' 013 0g+1 512U " kizig...ig4y
_ Shyksiseden . o L g pRaseden
54’3U " ipkigis g 511'”[ U i ik (177>
i3 1 1j2kjajs - i3 1 1j2Kjajs )
+ 52 U72Ki4s ]Mizismim _ 55'2 72Ki4s jr+lki3i4mi.,.+1
_ shrkisised . .. . S pikisiseder
51‘3U " igkiyis.dgen (%‘Hl U " iyis...ik

Jrel ppisdek . sie piadsedik
+ + 51{ U " 0030541 51'2 U " kizig...igq 1

— S sk o Yt piadzedck
i3

ipkigis...isy1 is+1 lZZB---i.rk)'
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Computing the traces, we get

trqU = ﬁ(ﬂUJZB jHllzlz dgpr T U Jr+llzlzl4 dgp1 T Ujmmjrﬂi2i3i4i5~-is+1
—_ e — szj3mjr+lizi}.uixiwl + szi3j4...j,.+1 Di3...igr1 5% Ukj3j4mjr+lki354<<-i.v+1
_ 5Z Ukj3.i4~~.ir+1l,2ki4i5 i — 5/3+1U7<]314 Jret s ik
+ szj}j4j5"Jr+]i2i34..i.¢+1 - 513 ks < jr+lkl3i4 Ayt
- 5ﬁ szk“jS”'j’“izkms...im - (XTHUMM RaLTRA
o URB - 5’12 U i
— 6{;“ szj}"'jrkizki4i5..<iA+1 — = 5{11 yr- Ik bnis...igk) - (178)

Further straightforward calculations yield

trqU = [ia3-drit 512 Ukiia-drit Kisia..i

slst1

infy.dgpn ﬁ (179)
Sym(jojs. - jr+1)  Alt(iai. . igy1).
But by (172), the second term is exactly qtru, proving (174).
(b) Formulas (175) are immediate. O

Formula (174) is the trace decomposition formula for tensors U € E].

The following assertion is a consequence of Theorem 2. It states, in particular,
that the decomposition (174) of a tensor U € E is unique.

Theorem 3 Let U € EI.

(a) Equation qV + tW = U for unknown tensors V € E!_! and W € E{{ has a
unique solution such that tV = 0, QW = 0. This solution is given by V = trU,
W =qU.

(b) Equation qX = U has a solution X € Ef:ll if and only if q U = 0. If this
condition is satisfied, then X = trU is a solution. Any other solution is of the
form X' = X + qY for some tensor Y € E'"J.

Proof

(@ If qVv4+uW =U, rV =0 then V =trqV =trU because tr trW = 0; if
qW =0, then W = quW = q(U — qV) = qU.

(b) If equation X = U has a solution U, then necessarily qU = 0. Conversely, if
qU =0, then U = qtrU and X = trU solves equation qX = U. Clearly, the
tensors X' = X + qY, where Y € E'~} also solve this equation. U

Example 1 We find the trace decomposition formula (174) for r = 1. Writing
U= UJ1

Hiy..i» We have trtU = Ukm2 4., and
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1 . A
QU = - (0 U ki, + O U ki + -+ O Ui ). (180)
Analogously
2(s + .. . ..
qU = %541 szlzlz-ul'.cH Alt(iyiy. . .ig11)  Sym(jja)
1 1 77) i1 177 1 j 181
= m(% Ui iy = O 0 i iy — - = O Uiy (181)
+ 55? Ujl ii3.dgrl T 55; Ujl i1i3ig.dsy1 - yzfﬂ I lzl3~--i.vi1)
hence
uqU = m(ntzizisu-im —(s— I)Uj2i2i3i4~-~is+1
1 0 i\ 182
- m(él,z Utisiaioy + o Uikiis. iy + -+ 5&1 Uiy k) (182)
=U"; 0, — queU.
Formulas (181) and (183) yield U = trqU + qtrU. In particular, if r = 1 and s = n,
then U=U!, , ,wU=Us, . andqU = 0. Thus,

U= }’léljl Ussizig...i,, Alt(ll iz. . ln)

n e - (183)
= 0] U'sigig...iy + 0L, Uslirsiziyoiy + -+ 0] Uliviy iy s

Example 2 We determine decomposition (174) for r =2 and s =n — 1, and find
explicit expressions for the traceless and Kronecker components trq U and q trU of
the tensor U. Writing U = Ui irir...i,.; and using the proof of Theorem 2, we have

jaj 2 7 7kj3 j2 1 7kj 2 1 7kj
rqU = U™y, i, — (5] U kisigooiy + 02U ikigisoiy + -+ 07U i ik

j3 1 ok ok i3 1 1iak
+ 55'2 U yisiis..iy + 5§3U2 iakigis.iy, T 0 5/, U™ i i k)

(184)
and
Lo sio g b i s
qurU = 3 ((%ZU Kisigoiy T 5@(/ inkigis.iy T © 0+ izi3...i,l,1k
+ o szkki;im..in + 5/,: UjZkizki4i5...l,, -+ 5/ i2i3,.4i,1,1k)
kj3 2 1 7kj > 7k
=3 (512U kiiein — 02U tisigis. iy — = L UMy i iy (185)
-
+ 5;;U']2ki3i4i54..l,, 5“U kisisisin — =" = O U ki iy i)
2(n—1)

=T5§§Ukj3ki3i4mi” Sym(jajz)  Alt(iis. . .in).
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Let s and j be positive integers such that j <s <n. Consider the vector space of
tensors X = XIIIZ"‘IJ';HIZ',-H.‘.,}, indexed with multi-indices Iy, I, .. ., I; of length r and
indices ijy1,ij42,...,1s, such that 1<ij,ij,.. .0, <n, symmetric in the
superscripts entering each of the multi-indices, and skew-symmetric in the
subscripts. Our objective will be to solve the system of homogeneous equations

D1 SP2 ivhh..I . L s .
oo 5f,jX Titiand, = 0 Alt(pipa. . pjij1ijya. . i)

(186)
Sym(lip1) Sym(bpsy) ... Sym(Ip;)

for an unknown tensor X. In this formula, the alternation operation is applied to the
subscripts, and the symmetrizations to the superscripts, and then the summations
through double indices are provided.

In the proof of the following theorem, we want to distinguish between two
groups of indices in the expression &' 07" . .51;_’X1112“'1/ ijirisea..d, the indices labeling
the tensor Xlllz"'ljzj/urllj/;z...iv will be called interior (the complementary indices,
labeling the Kronecker tensors, are called exterior).

Theorem 4 Let q and j be positive integers such that 1 <j<s<n. Let X =
XIIIZ“"J',-]‘HI-MAJ(, be a tensor, indexed with multi-indices Iy, I, . . ., I; of length r and
indices i1, iji2, ..., Iy such that 1<ij ., ij10,...,i;<n, symmetric in the
superscripts entering each of the multi-indices, and skew-symmetric in the sub-
scripts. Then X satisfies equation (186) if and only if it is a Kronecker tensor.

Proof Suppose we have a tensor X121 iiviea..is» Satisfying equation (187). We
want to show that X is a Kronecker tensor. Consider a fixed component
XIIIZ"'Ijlellez__ic. Choose pi, pa, ..., pj and iy, ip, ..., ij such that the s-tuples
(P1,D2, - s Pjs Big1, Bjs2, - - dg) and (iy, b2, . . ., &, §j1, §jg2, - - -, is) consist of mutually
different indices, and consider expression

511711511’22 . '5?X1112"'1ji,-_1i,-<2-~iv Alt(iliz. . l]l]+1 . ly) (187)
Sym(Zip1) Sym(lLpsy) ... Sym(Ijp;).

The summations in (187) are defined by the alternation Alt(ii. . .ijijy1. . .is) and the
symmetrizations Sym(;p; ), Sym(Lp,), . . ., Sym(I;p;). We divide the summands in

four groups according to the positions of the indices py, pa, ..., pjand iy, o, .. ., i;.

(a) None of the indices p1, p», ..., pj and iy, iy, ..., i; is interior.

(b) None of the indices py, p», ..., pj is interior, at least one of the indices i, i,
..., ij is interior.

(c) At least one of the indices py, p2, ..., p;j is interior, none of the indices iy, i,
..., ij is interior.

(d) At least one of the indices py, ps, ..., p; is interior, and at least one of the
indices iy, i, ..., i; is interior.
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Equation (187) involves expressions (187) such that iy =py, i» =ps, ...,
iy = pgq- For this choice of indices, the terms (a) become

1 2 q 1 12.“1 . . .
GO OXN T i AlUPID2. - Pyigiiigra. - i)

(188)

Sym(fip1) Sym(hLpy) ... Sym(Ip,)
(no summation through p1, ps, ..., py). Expressions (b) and (c) vanish identically
because the indices (iy,i,...,iq,0ig+1,ig12,---,1s) are mutually different and

XNhdg is skew-symmetric in the subscripts. The terms in (d) are of

Kronecker type, each summand is a multiple of the Kronecker symbol 5;‘;, where
o« & {p1,p2;- -, pq}t and B € {igr1igia. . .is}.

Thus, (187) is the sum of the terms (a) and (d). But the left-hand side of
Eq. (186) is determined from (187) by the trace operation in i = py, i, = pa, ...,
iqg = pq. The terms entering (a) lead to an expression of the form cX, where ¢ is a
non-zero constant, namely to the expression

ig1ig2..dy

-]' ivhb...I;
wéﬁ:éﬁi . 5£/X 12 ij+]ij+2-~ix Alt(plpz. . pj)

1 i L.

Since the contraction of the terms (d) in i} = py, i» = pa, ..., iy = p, does not
influence the factors 5%, (d) leads to a Kronecker tensor.

(189)

Corollary 1 Assume that in addition to the assumptions of Theorem 4, the tensor

_ yhbol
X = Xl o s traceless. Then

xhbdi
Li1ljpo.--Ls

=0. (190)
Proof This follows from Theorem 4, and from the orthogonality of traceless and
Kronecker tensors. (]

Example 3 For tensors of lower degrees equations (186) can be solved directly by
means of the decomposition of the unknown tensor X. Consider for example the
system

o X12 =0 Alt(pipais)  Sym(iipr)  Sym(izpa) (191)

for a traceless tensor X = X", The decomposition of the left-hand side is
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1 §P2 vz iy SP2ypiiz 152 yip: i\ Si2 ypip2 .

551 522X it 5[915sz it 5515[72}( it 5171 5P2X B
_ SpiSPryit . St SP2ypii . SPL SR yip2, _ Si S yPip2,
LS X iz, — 5l XTI, LS X 5 5 XPP,

P27 p1 P27 D1 2Pl
_ SPispryitle S SPayPiiz  _ SPLSER yip:  _ SiSi ypip2
5573 522X Pi 5i35§2X P 55)3 5PzX P1 5i3 5P2X 14 (192)
1 §P2 yiix iy P2 ypiix 1 52 yiip2 it Si2 ypipa
+ 557251'3 X p1 + 5P25i3 X P + 552553)( p1 + 5172 51’3X pi
_ SPisPryiii _ shu Py SPiSiyihipr S Sz ypip:
(SZI 5571 X P2 5[71 5Z X P2 521 5i3X P2 5!71 5i3X P2
1 SP2 yilia i1 Sp2 yp1ia 15 yiip2 iy Si2 ypip2
+ 55)% 5£1X p T 5i35£1X T 55)% 5P1X p T 5535P1X P2
Contraction in p; and p, gives the expression
2 vy i 1)1 1y 10 10
nX12i3_|_nX]2i3_|_nX]2i3+Xlli3 _nX]2i3
iyi | iy iy _ yiih, _ yiil
— X", =X =X = XN = XNy (193>

_|_Xlllzi3 _ }’le'lzi3 _ Xlll2i3 +Xl]lzi3
= (n® = 2)X"i2, — X1,

Since this expression should vanish, we get (n? —2)X"12, — X2, = 0 which is
only possible when X'12; = 0.

A.10 Bases of Forms

We summarize for reference some useful formulas for the bases of differential
forms on an n-dimensional manifold X.

Lemma 1 (Bases of forms) Let X be an n-dimensional smooth manifold, and let
(U, @), ¢ = (x'), be a chart on X. Then the forms

1 . . .
wy = ;giliz.“indxll Adx? A - Adx™ (194)

and

Okyky. ky = msklkz...k[,i,,ﬂi[,+2“.i,ldxlp+l AdxP2 A Adxn, (195)

define bases of n-forms and (n — p)-forms on U. The transformation formulas to
the canonical bases are

Sklkzu-kplpﬂlp+2--»lnwklkzmkp — dxlp+l A dxlp+2 A A dxj”. (196)

Proof See Appendix A.8. O
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The Jacobian determinant of a transformation X =¥ (x!,x* ... x"),

det(9x” /0x"), has the following basic properties:

Lemma 2 (Jacobians)

(@) The local volume forms on X are on intersections of the charts are related by
the formula

_ OxP
wo = det <%> wo. (197)

(b) The derivative of the Jacobian satisfies

0] ox” ox" PxP Ox4

(c) The (n— 1)-forms wy and ®; obey the transformation formulas

foox

det@wok. (199)

Proof (b) To verify formula (198), consider any regular matrix a and its inverse

a’l,

11 1 1 g1 1
a; a4 a, by b, b,

a=|a & &\, a'=|pn 3 | (200)
n n n 7 n 71
a; 4 a by by by

and compute the derivative Odeta/ Odj. Multilinearity and the Laplace
decomposition with respect to the s-th row of the determinant of a yields
deta = ajA} + a3AS + - - - + a’AS, with algebraic complements Aj. Thus

n°"n’

8deta_Ap. (201)

— - =AD
Ody

But a is regular, so the inverse matrix satisfies

bi bé bé Ai Ai S AT
b} b3 ... b2 1 Al A oA (202)
... (deta)"| ... ’
vyovy ... b, A}l Aﬁ ... A
hence A’; = deta - bg and we conclude that
Odeta
= deta - Di. (203)

Ody
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Now substituting
ox" ox"
==, bl=— 204
s Oxs’ S Oxs’ (204)

we get

8 ddeta 0d ox" O*xr Oxt
— = det — 205
e (axs) Z ad) oxm (w) D394 D (205)
(c) Using the transformation properties of the forms wq and @ (formula (197)),

. 3xk 556 . axk 0x
W; = 1y/pzi 00 = 67 a *1y/oxk 00 = 8 ; ta Wk (206)

O

Remark (Different bases) Sometimes it is convenient to consider bases of forms,
differing from the forms (195) by a constant factor. If we set

1 A . A
Wik k, = IWSklkz...kpi,ﬂ Vipra g @XTTE N DX Ndx (207)
then for example
1 A . A
dx' N oy, = m8k1k2i§i4~--indxl ANdx® Ndx'* N - Ndx
I(n—2)! ;
1 0k ePlivis-in )
2| — 2\ 1kai3iy...in P
2 E 2; (208)
1 sl /
= o3 PR, = ol o,
1
5( b Wk — 5k1 wkz)
etc. (cf. Appendix A.8).
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Long exact sequence, 257

M
Manifold of r-jets, 306
Mapping
adapted to a submersion at xp, 5
differentiable, 1
open, 5
tangent, 1
Matter, 188
Maxwell equations, 197
Metric fields, 188

Index

Morphism of complexes, 230
Morphism of sheaf spaces, 204, 209
isomorphism of sheaf spaces, 209
Multi-index notation, 43
length, 43

N
Natural

bundle, 197

Lagrange structure, 194

Lagrangian, 196, 197
Noether’s

current, 192

equation, 173

theorem, 174
Noether-Bessel Hagen equation, 173
Non-orientable base, 107
Normal topological space, 254
Null Lagrangian, 134, 278

(0]
Obstructions for global variationality, 300
Open mapping, 2

rectangle, 5

P
Partition of unity, 110
Physical fields, 188
Poincaré-Cartan form, 126
Presheaf morphism, 215
injective, 215
surjective, 215
Presheaf isomorphism, 215
Principal component of a Lepage form, 123
fiber bundle, 195
L+!-bundle, 196
Lepage equivalent, 91
of the Hilbert Lagrangian, 190
Principle of analytic continuation, 203
Product of sheaves, 205
Projectable mapping of sheaf spaces, 204
Projection of
a fibered manifold, 7
a morphism, 7
a vector field, 8
Projector operator, 66
Projection of a sheaf space, 202
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Projectors, 43

Prolongation of connection bundle, 200
of C"-automorphism, 20

Prolongation formula, 38

Pull-back of a differential form, 312

Pushforward vector field, 179

n-horizontal form, 9

n-horizontalization, 17, 36

n-projection, 8, 108

m-projectable extension, 110

m-vertical vector, 9

7'+ 1-horizontal, 54

7"+ _horizontal, 62

7"+ -horizontal component, 54

7**~1-projectable extension, 91

Q

Q-lifting, 196

Quotient sheaf space, 210
Quotient projection, 210

R
Rank function, 1, 311
function locally constant, 1
of f at a point, 1
rank theorem, 2
Real projective space, 207
Rectangle, 2
Reflexive binary relation, 11
r-jet
with source x and target y, 11, 305
prolongation of a section, 15
of oztE, 25
of C"-automorphism, 20
Representative of an r-jet, 306
Resolution, 239
canonical, 243
Restriction
mappings of a sheaf, 201
morphisms of a space, 214
of a section, 214
of a sequence, 240
of a sheaf, 207, 214, 239
of a space, 211
Right inverse, 215
Routh condition, 175
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S
Scalar curvature of the metric tensor, 189
Second derivative variables, 160
-order Euler-Lagrange form, 166
variation, 111
Section, 4
holonomic, 42
integrable, 42
of a sheaf, 214
of a sheaf space, 202
Sequence of
Abelian groups, 226
exact, 227
finite, 227
non-negative, 226
global sections, 242
Sheaf
acyclic, 259
fine, 254
morphism associated, 219
of
commutative rings with unity, 255
continuous sections, 212, 215,
216, 242
discontinuous sections, 216, 242
g-forms of order r, 265
sections of vector bundle, 216
partition of unity, 253
soft, 244, 270
space, 201, 207
morphism, 204, 209
of commutative rings with unity, 226
of S-modules, 216, 242
structure, 201
trivial, 215
Short exact sequence, 227
of sheaves, 240
Skyscraper sheaf space, 207
Solution of the formal divergence
equation, 86
Source, 11, 305
form, 146, 293
Spacetime, 188
Stable point, 111
Strongly contact form, 69, 265
Submersion, 4
at xo, 4
Subsheaf, 213
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Sum of sheaves, 208

Support of a vector field, 130

Symmetric binary relation, 11

Symmetriztion, 43, 94, 331

System of Kronecker type, 83
symmetric in the subscripts, 305, 83

Symmetry of an extremal, 178

Symmetric tensor product, 198

Support, 253

T
Tangent

mapping, 1, 312

bundle projection, 6
Target, 11, 305
Tensor action, 196

bundle projection, 7

bundle of type O, 196

space of type (r,s), 331
Tietze theorem, 253
Topology

discrete, 207

final, 203

initial, 206

of spacetime, 188
Torus, 207
Total derivative operator, 35
Trace decomposition, 43
Traceless

in the indices, 44

component, 45, 47, 48
Trace decomposition

formula, 47

theorem, 47, 336
Transformation properties of

derivatives, 196
equations for tensor
components, 331

Transitive equivalence relation, 11
Trivial

group morphism, 227

sheaf, 215

sheaf morphism, 239
Twisted base differential form, 107

\%
Vainberg-Tonti Lagrangian, 136, 299
Variation

of a section, 108

a variational functional, 108

induced by vector field, 198
Variational

derivative, 108, 111

functional, 105

higher-order, 112

integrators, 156

multiplier, 157

projector, 288

sequence, 272

source form, 147, 295, 298

structure, 104
Variationality

(integrability) conditions, 157

local, global, 299

of differential equations, 156
Variationally

closed Lagrangian, 297

exact Lagrangian, 297

trivial Lagrangian, 134, 295
Vector

bundle morphism, 17

of tensors of type (0,2), 188
field along a section, 108

Index

space of k-linear symmetric mappings, 305

space of linear mappings, 305
Vertical subbundle, 9
Volterra-Poincaré lemma, 76, 319

fibered, 323

Y
Young decomposition, 86

Z
Zero
section, 75
of an Abelian sheaf, 207
sheaf subspace, 250
Zorn’s lemma, 250
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