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Preface

Use of airborne laser scanning to provide data for research and operational
applications in management of forest ecosystems has experienced a tremendous
growth since the mid-1990s and the amount of scientific publications resulting from
this activity has increased rapidly. Yet there is no textbook available to bring together
the results across this multitude of disciplines and synthesize on the state of the
art. The aim of this book is to fill this gap by providing a unique collection of
in-depth reviews and overviews of the research and application of airborne laser
scanning in a broad range of forest-related disciplines. However, this book is more
than just a collection of individual contributions — it consists of a well-composed
blend of chapters dealing with fundamental methodological issues and contributions
reviewing and illustrating the use of airborne laser scanning within various domains
of application. There are numerous cross-references between the various chapters
of the book which may be useful for readers who wish to get a more in-depth
understanding of a particular issue.

We hope researchers, students, and practitioners will find this book useful. We
also hope that colleagues will find the book of value as part of the curriculum in
forestry schools and those schools offering courses in forest remote sensing and
forest ecosystem assessments in a broader sense.

This book is the result of a collective effort by many good colleagues and friends.
They are all listed by name as authors of the various chapters. In addition to the
authors of the chapters, many researchers around the world have helped us by
reviewing chapters and suggesting improvements. We would like to acknowledge
these external reviewers for their efforts to improve this book: Gregory P. Asner,
Mathias Disney, James W. Flewelling, Jari Kouki, Peter Krzystek, Mikko Kaurttila,
Tomas Liamas, Eva Lindberg, Steen Magnussen, Hakan Olsson, Pekka Savolainen,
Svein Solberg, Goran Stahl, and Valerie Thomas. The errors remaining are never-
theless attributable entirely to the authors.

Joensuu, Finland Matti Maltamo
As, Norway Erik Neasset
Helsinki, Finland Jari Vauhkonen
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Chapter 1
Introduction to Forestry Applications
of Airborne Laser Scanning

Jari Vauhkonen, Matti Maltamo, Ronald E. McRoberts, and Erik Naesset

Abstract Airborne laser scanning (ALS) has emerged as one of the most promising
remote sensing technologies to provide data for research and operational applica-
tions in a wide range of disciplines related to management of forest ecosystems.
This chapter starts with a brief historical overview of the early forest-related
research on airborne Light Detection and Ranging which was first mentioned in the
literature in the mid-1960s. The early applications of ALS in the mid-1990s are also
reviewed. The two fundamental approaches to use of ALS in forestry applications
are presented — the area-based approach and the single-tree approach. Many of the
remaining chapters rest upon this basic description of these two approaches. Finally,
a brief introduction to the broad range of forestry applications of ALS is given and
references are provided to individual chapters that treat the different topics in more
depth. Most chapters include detailed reviews of previous research and the state-of-
the-art in the various topic areas. Thus, this book provides a unique collection of
in-depth reviews and overviews of the research and application of ALS in a broad
range of forest-related disciplines.
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1.1 Introduction

Satisfying national and international environmental goals and agreements requires
heavy reliance on environmental mapping and monitoring. However, collection of
information on the location and extent for many of the relevant characteristics of
forest ecosystems by means of pure ground-based field inventories is prohibitively
expensive. During the last decade, operational collection of such information has
been revolutionized by the development of Light Detection and Ranging (LiDAR) —
a technology producing distance measurements based on the return time of emitted
light. LIDAR systems mounted on aircraft can be a cost-efficient means to obtain
data on forest structure for vast geographical areas with high spatial resolution and
high positional accuracy. The term airborne laser is frequently used to distinguish
between systems that acquire LiIDAR data from aircraft and systems using space-
borne or terrestrial platforms. Most commercial airborne lasers, particularly those
used for operational purposes, are equipped with a scanning device that distributes
the emitted light across a wide corridor along the aircraft’s flight path. Acquiring
LiDAR data with these systems is known as airborne laser scanning (ALS).

A particular strength of ALS for forestry applications is its ability to accu-
rately characterize the three-dimensional (3D) structure of the forest canopy. Such
information is potentially more useful for forest inventories than the information
from other remote sensing techniques (cf. Lefsky et al. 2001; Coops et al. 2004;
Maltamo et al. 2006a). Height and density metrics derived from ALS data can be
used to estimate the horizontal and vertical distribution of biological material for
various forest growing stock and commercial timber surveys as well as ecological
applications.

Research on the use of LiDAR data for forestry applications began in the mid-
1970s with experiments using simple profiling instruments. Since approximately
1990, the emphasis has been development of tools for practical forest inventories
that exploit the capability of ALS instruments to provide full areal coverage. ALS
is currently incorporated as an essential component of operational forest inventories
in multiple countries (Nasset 2007; Maltamo et al. 2011b; Woods et al. 2011). In
addition, many countries and states are currently acquiring ALS data to construct
detailed ground elevation models which then serve as a new data source for
vegetation mapping and forest inventories (Nord-Larsen and Riis-Nielsen 2010).
Nowadays, ALS data may be obtained for applications in a variety of fields from
large numbers of providers and surveying companies, each with multiple systems.

Thus, ALS is recognized as a well-established and maturing discipline of both
scientific and practical importance. Multiple scientific review articles (e.g. Lim et al.
2003; Neasset et al. 2004; Maltamo et al. 2007; Hyypp4 et al. 2008; Koch 2010;
McRoberts et al. 2010) and text book chapters (Koch et al. 2008; Packalén et al.
2008; Hyyppd et al. 2009) on ALS have been published in recent years. However,
no full text book with a detailed overview on forestry applications is available. The
aim of the present book is to fill this gap.
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The overall purpose of this first chapter is to introduce and provide background
for the subsequent chapters. Section 1.2 documents the early development of LIDAR
for forestry applications with emphasis on ALS as that technology became available
in the 1990s. Section 1.3 continues with a technological overview and description of
basic techniques for using ALS data. The various applications described in Sect. 1.4
mainly refer to subsequent chapters. Finally, a brief overview of the structure of the
book is presented.

1.2 Early Research on Application of Profiling LiDAR
and ALS in Forestry

This section aims at documenting a few milestones important for the current
development of ALS for forestry applications. The details are intentionally left
to earlier reviews such as those by Lim et al. (2003) and Nasset et al. (2004)
that reflect North American and Nordic perspectives, respectively. Nelson (2013)
provides a comprehensive and historically interesting review on the early technical
development from the mid-1970s to circa 1990.

The first studies on modeling forest attributes using ALS data continued previous
research using data from airborne profiling LiDARs which, in turn, continued
even earlier research using aerial photography. Nelson (2013) notes that the first
mention of possible forestry applications was by Rempel and Parker (1964) who
used an airborne profiling LiDAR system to obtain ground and tree heights. The first
experiments to actually measure trees were reported by Solodukhin et al. (1976),
who compared laser profiles of felled trees with tape measurements, later mounting
the same instrument on an aircraft to acquire airborne profiles (Solodukhin et al.
1979). Similar studies using laser profilers were later conducted in North America
(Nelson et al. 1984; Aldred and Bonner 1985; Maclean and Krabill 1986), and
some studies developed methods for estimating forest volume and biomass from the
airborne canopy profiles (Maclean and Martin 1984; Maclean and Krabill 1986).

Arp et al. (1982) also used a profiling system, along with aerial photography, to
map forest height in Venezuela. The earliest uses of LiDAR data to support forest
inventories were extensions of similar uses of photogrammetric data. Maclean and
Martin (1984) reported 0.75 < R%<0.87 for a regression model of the relationship
between timber volume and cross-sectional areas of canopy profiles obtained from
aerial photography. The early LiDAR studies mimicked this approach using data
from profiling LIDAR systems acquired for a narrow transect along the aircraft flight
line. Aldred and Bonner (1985) used LiDAR profile data to estimate stand heights
within 4.1 m of actual stand heights and to assign stands to crown density classes
with 62 % accuracy. Maclean and Krabill (1986) obtained R%2~ 0.9 fora regression
model of the relationship between gross merchantable volume and cross-sectional
areas derived from laser profiles. Nelson et al. (1984) used data from a profiling
system to characterize vertical forest canopy profiles. Means of LiDAR-based and
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photography-based estimates of tree heights along flight lines were comparable
and linear models of the relationship between photo-interpreted canopy closure
and LiDAR metrics produced R? ~0.8. Schreier et al. (1985) demonstrated the
utility of LiDAR profiling data for distinguishing among coniferous trees, deciduous
trees, and low-growing vegetation. Nelson et al. (1988) constructed linear models of
relationships between height, mean volume per unit area, and mean biomass per unit
area as response variables and height profile metrics derived from LiDAR profiling
data as predictor variables and obtained 0.50 <R%2<0.60. For forest inventory
purposes, the important lesson learned from these early LiDAR profiling studies
was that regression models using LiDAR metrics could be used to predict forest
attributes of interest. The successors to LIDAR profiling systems were ALS systems
with both small footprint diameters in the range 0.1-2.0 m and large footprint
diameters in the range 5.0-10.0 m. Data from ALS systems are better suited than
profiling data when full coverage is necessary.

An important step towards the commercial development of LiDAR measure-
ments was the integration of Global Positioning System (GPS) and Inertial Nav-
igation Systems (INS) in the 1990s which facilitated accurate positioning of the
scanner and, consequently, the recorded data. Using some of the first commercial or
pre-commercial systems equipped with GPS and INS (Nzasset et al. 2004), multiple
researchers reported relevant relationships between field-measured and ALS-based
height metrics, typically quantified in terms of mean height (Nilsson 1996; Neasset
1997a; Magnussen and Boudewyn 1998; Magnussen et al. 1999). Further, simple
stand level mean or total values of forest biophysical variables such as basal area
(Means et al. 2000) and stand volume (Nasset 1997b; Means et al. 2000) were
estimated from small-footprint ALS data with similar or better accuracies than those
produced by pure sample-based ground methods.

The first studies focused on relationships between plot-level forest attributes
based on field measurements and ALS-based height distributions. These approaches
are characterized as area-based and are distinguished from individual tree
approaches proposed a few years later by Brandtberg (1999) and Hyyppa and
Inkinen (1999) that focused on detecting individual trees from surface models
constructed using ALS data. Both area-based and individual tree approaches have
been tested for ALS-based forest inventories, and variants and hybrid methods have
also been developed (Sect. 1.3.2).

1.3 Technical Basics

1.3.1 General Principles of ALS

Overviews of theoretical and physical aspects of ALS that were published in the
late 1990s (Baltsavias 1999; Wehr and Lohr 1999) still constitute useful sources
of information. The physical principles of ALS are also described in Chap. 2 of
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this book. The basis of all ALS systems is emission of a short-duration pulse of
laser light and measurement of the elapsed time between emission and detection of
the reflected light back at the sensor. Using the speed of light, the elapsed time is
converted to the distance from the point of emission to the underlying object from
which the light was reflected. Because the position and the orientation of the sensor
are recorded using a GPS and INS, ALS data constitute a set of 3D coordinates that
represent the scanned surface from which the pulses were reflected.

ALS instruments used in forestry applications are typically small-footprint,
discrete-return systems that record from one to a few echoes for each emitted pulse.
The diameter of the emitted laser beam on the ground, characterized as the beam’s
footprint, depends on the beam divergence and the flying altitude. Small footprint
proprietary systems typically have footprint diameters of 1 m or less and are often
preferred for forestry applications because they facilitate accurate linkages between
the scanning data and individual trees, plots, or forest stands. In contrast, large
footprint systems typically have footprint diameters as great as 10s of meters. The
spacing of pulses on the ground depends on parameters such as flying altitude and
speed, pulse repetition frequency, viewing angle, and scanning pattern.

The emitted laser pulses generate different types of data as they are reflected
from the ground and recorded at the sensor, depending on the interaction with the
forest canopy (cf. Chap. 2) and whether the sensor has full-waveform capabilities
or is a discrete return system. In simplified terms, full-waveform recording systems
(Chap. 3) digitize the entire sequence of returned energy as a function of height,
whereas most systems described in the following chapters are discrete return
systems that record from one to a few (typically four to five) discrete echoes
reflected from between the bare earth and the top of the canopy. The recorded
data of discrete return systems depend on factors such as the algorithm used in
real time to trigger and record echoes from the backscatter signal received at the
sensor. Depending on the sensor, additional information for properties such as the
intensities of echoes may be recorded.

1.3.2 Basic Inventory Techniques

1.3.2.1 Area-Based Approaches

A fundamental concept underlying the area-based approach is that the 3D point
cloud consisting of the heights corresponding to all the echoes for a given surface
area, for example a sample plot, contains information that can be used to charac-
terize the ground surface and the vertical distribution of the biological material
in the vegetation layers above that area. For most applications, the vertical ALS
height distribution for a particular area ignores the horizontal position of individual
echoes within the area in question but maintains heights for all echoes. The entire
ALS height distribution, or the portion of it representing the vegetation, can then
be used to calculate discrete metrics that are related to properties of the distribution
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of biological material. Metrics include parameters of the ALS height distribution
such as the mean or percentiles and parameters related to the canopy density such
as penetration rates. The ALS height distribution can also be approximated by
continuous distribution functions.

Magnussen and Boudewyn (1998) showed that the proportion of small footprint
ALS echo heights at or above a given reference height corresponded well with the
proportion of leaf area above this height. Although leaf area is generally not an
inventory variable of interest, a seminal contribution of this study was demonstration
of the utility of ALS height percentiles as predictor variables. This innovative
approach has subsequently been found useful for prediction of a wide range of
forest attributes. Several extensions of this concept are relevant. First, ALS pulse
densities for spatial units used for model calibration should be sufficiently large to
produce reliable estimates of the parameters of the echo height distributions used
as model predictor variables. Second, pulse densities should be sufficiently large to
estimate these parameters for both spatial units used to calibrate models and spatial
units used for areal estimation. The latter feature permits calibration of models using
ground and ALS data for circular plots and estimation using square grid cells of the
same area.

As noted by Magnussen and Boudewyn (1998), the number of pulses per
spatial unit must produce reliable estimates of ALS metrics used to predict forest
attributes. In this regard, minimum pulse densities have rarely been less than 0.1
pulses/m? (Nasset 1997b; Holmgren 2004), and minimum plot areas have rarely
been less than 200 m? (Nasset 2002; Andersen and Breidenbach 2007; Gobakken
and Neasset 2008; Breidenbach et al. 2008; Maltamo et al. 2011a, b). Although
multiple reports of the effects of varying pulse densities on ALS-based volume
and biomass estimates have been published, the results are not directly comparable
because common plot areas were not used; similarly, reports of the effects of varying
plot sizes are not directly comparable because common pulse densities were not
used. However, when the results of these comparative studies are expressed in terms
of pulses per plot, Thomas et al. (2006), Maltamo et al. (2006b), Breidenbach et al.
(2008), and Gobakken and Neasset (2008) all reported that reducing pulse densities
to 100-225 pulses per plot had no adverse effects on the quality of fit of volume or
biomass models when using echo height deciles as predictor variables. Holmgren
(2004), Magnusson et al. (2007), and Strunk et al. (2012) all reported that reducing
the number of pulses per plot to 50 or fewer had no serious adverse effects on model
fits or estimates. Thomas et al. (2006) compared not only qualities of fit but also the
distributions of echo heights for pulse densities of 200 and 2,000 pulses per plot,
and reported that the distributions were essentially the same.

Nesset (1997a) compared means of stand-level heights for 36 stands using tree
measurements for approximately 15 plots per stand to three ALS-based means:
arithmetic mean ALS height, mean weighted ALS height, and the within-stand mean
over 15 x 15 m cells of the greatest ALS height per cell. The latter means deviated
the least from the means based on tree measurements. Nasset (1997b) estimated
stand volume from multiple linear and nonlinear models using three small footprint
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ALS metrics as independent variables: mean stand height calculated as the mean
of maximum echo heights for small grid cells, mean height of all ALS echoes,
and canopy cover density calculated as the proportion of canopy echoes. R? values
ranged from 0.45 to 0.89, depending on the site. A seminal contribution of these two
studies was the idea of tessellating a spatial study area into grid cells, predicting the
response variable for each grid cell, and calculating the mean over grid cells as an
estimate for the entire study area (see further details in Chap. 11).

The insight of Magnussen and Boudewyn (1998) regarding the necessity of a
sufficient number of pulses to characterize the vertical distributions of ALS echo
heights, in combination with the grid cell approach proposed by Neasset (1997a, b),
led Neasset and Bjerknes (2001) to select grid cells with the same areas as plots
used to calibrate prediction models. Nasset (2004) provided a partial rationale for
selecting spatial units of equal areas and a caution against using ALS metrics such
as maximum height that depend on plot size. However, Zhao et al. (2009) proposed
models using ALS metrics based on echo height distributions that can be calibrated
using spatial units of one size and applied to spatial units of different sizes.
Magnussen et al. (2013) proposed the use of cumulants (moments) of distributions
of ALS canopy heights to predict plot-level distribution of forest attributes such as
tree diameter, basal area, and volume. Despite these advances, the issue of whether
models constructed using plots with particular areas and pulse densities can be
applied without adverse effects to grid cells with different areas and pulse densities,
particularly in a readily implementable and efficient manner, remains somewhat
uncertain.

Numerous investigations of procedures for characterizing relationships between
forest attributes and ALS metrics have been reported of which only those making
unique contributions are cited herein. In a university-industry partnership, Means
et al. (2000) used linear models and commercially available small footprint ALS
data to predict height, basal area, and volume. Packalén and Maltamo (2006),
Hudak et al. (2008), Latifi et al. (2010), and Andersen et al. (2011) investigated
non-parametric approaches including nearest neighbors imputation. Maltamo et al.
(2004), Breidenbach et al. (2008), and Vauhkonen et al. (2011) investigated linear
mixed effects models with random stand-level intercepts, and Breidenbach and
Kublin (2009) and Junttila et al. (2008) investigated Bayesian methods.

Lefsky et al. (2002), Nzasset et al. (2005), Jensen et al. (2006), Nesset (2007),
Breidenbach et al. (2008), and Asner et al. (2012) investigated using common
models for relationships between forest attributes and LiDAR metrics for differing
forest conditions. For response variables such as volume, biomass, and carbon, the
prospects for common models were positive under the condition that the sensor
systems and acquisition parameters were stable across study areas (Nasset 2009).
However, for a comprehensive dataset consisting of 1,395 plot-level observations
representing 10 different boreal forest areas, Naesset and Gobakken (2008) reported
that the quality of fit of models to aboveground biomass data was significantly
improved by including variables related to proportions spruce and proportion
broadleaf trees (see also Chap. 11).
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1.3.2.2 Individual Tree Approaches

For tree-level inventories, ALS data are typically used to detect individual treetops
and to predict attributes of interest using sets of allometric models. Algorithms and
techniques similar to those developed for aerial images can be used with ALS
data (Hyyppd et al. 2008). Tree-level inventories consist of a sequence of steps
that includes tree detection, feature extraction, and estimation of tree attributes.
For these applications, the ALS data contributions include estimation of heights of
the vegetation surface; estimation of physical properties such as height differences
between potential tree tops during tree detection; estimation of individual tree
heights and crown sizes used as input to the allometric models (e.g. Hyyppd and
Inkinen 1999; Persson et al. 2002); and avoidance of problems related to variations
in geometry and radiometry of spectral images (e.g. Mikinen et al. 2000).

Detection of individual trees usually relies on a raster-based canopy height
model (CHM) interpolated from the ALS height data (e.g. Hyyppéd and Inkinen
1999; Persson et al. 2002; Popescu et al. 2003), although point-based techniques
could be used, particularly for the segmentation (see Chap. 5). An important
consideration is that all trees cannot usually be detected. The degree to which
individual trees are successfully detected is affected by the detection algorithm
and its parameterization (Kaartinen et al. 2012). In addition, detection success is
strongly affected by forest conditions, particularly stand density and spatial pattern,
which suggest problems related to both interlaced tree crowns and trees below the
dominant canopy (Vauhkonen et al. 2012a). Methods for resolving these problems
include selection of an appropriate level of filtering a priori (Heinzel et al. 2011;
Ene et al. 2012), use of full-waveform data (Reitberger et al. 2009) and improved
3D algorithms (L#hivaara et al. 2014; Tang et al. 2013).

The estimation task requires that relevant information for estimating tree
attributes of interest must be extracted from the ALS data. Tree-level estimation
combines direct measurements, species-specific properties that can be predicted
from the ALS data, and tree allometry in the form of dimensional relationships
between plant parts. In addition to estimates of locations, the tree detection and
delineation component typically produces heights, crown dimensions, and height
and intensity distributions for individual tree segments (e.g. Holmgren and Persson
2004). Estimates for the latter properties are particularly useful for ALS-based
species recognition (Chap. 7).

Use of allometric models to estimate attributes such as the diameter at-breast-
height (DBH) poses problems, because relationships between measurable tree
dimensions and DBH are far from deterministic but rather are affected by factors
such as tree density and silvicultural history (Korpela 2004; Maltamo et al. 2007).
Geometrically weighted regression methods have been investigated as a means of
overcoming at least some of these problems (Salas et al. 2010). Propagation of errors
in the ALS-based DBH estimates to stem taper model predictions can be avoided by
estimating stem volumes directly from the ALS data using regression models (e.g.
Takahashi et al. 2005) or nearest-neighbor techniques (e.g. Maltamo et al. 2009),
which can use a large number of predictor variables (Vauhkonen et al. 2010).
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Multiple tree-level studies have focused on individual tree detection, feature
extraction, and estimation steps in this inventory procedure. Remarkably, however,
few studies have reported plot- or stand-level estimates obtained from the full
detection and estimation procedure (Korpela et al. 2007; Peuhkurinen et al. 2007,
2011; Vauhkonen et al. 2014). The accuracy of aggregated estimates depends
on multiple factors including both tree-level detection and tree-level estimation
errors. Undetected trees and errors in the allometric model predictions degrade
the accuracies of plot- and stand-level estimates and seriously constrain single-tree
applications in semi-natural forests (Korpela et al. 2007). Approaches that attempt to
circumvent the effects of these error sources such as semi-individual tree detection
are being developed (Breidenbach et al. 2010, Chap. 6). The individual tree
approach may be most relevant for applications such as wood procurement planning
for which unbiased estimators are not necessarily required (e.g. Peuhkurinen et al.
2007; Vauhkonen et al. 2014).

Finally, the complementary properties of the individual tree and area-based
approaches should be noted. In addition to actual tree detection, data on individual
trees can be generated by predicting diameter distributions with the area-based
approach (Chap. 9), while combining these approaches has been found especially
beneficial for reducing tree detection errors (Maltamo et al. 2004; Breidenbach
et al. 2010; Lindberg et al. 2010). Breidenbach et al. (2012) and Vastaranta et al.
(2012) proposed generating field reference data for the area-based approach by
means of modified tree detection approaches. Vauhkonen et al. (2014) used an
area-based mean diameter prediction for targeting detailed tree-level analyses for
stands that are sufficiently mature for cutting. In addition to the earlier mentioned
height distribution, other feature types can also be calculated at area and tree levels
(e.g. Hyyppd et al. 2012; Vauhkonen et al. 2012b; @rka et al. 2013), and for some
applications, the addressed domain may even be difficult to identify (e.g. Vauhkonen
et al. 2011; Mehtitalo and Nyblom 2012, Chap. 10).

1.4 Applications

The first studies of forestry applications of ALS focused on traditional forest
inventory variables such as height, basal area and volume (e.g. Nasset 1997a, b;
Hyyppéd and Inkinen 1999; Means et al. 2000). The context for these studies
was usually stand level management inventories using the area-based approach.
Rather soon thereafter operational use of ALS for this purpose was initiated in
Norway (Chap. 11) and subsequently in other countries. These first inventories were
complemented by economic analyses of the costs and benefits of the use of ALS
as an auxiliary source of information (Chap. 16). In Finland, because estimates
of species-specific stand attributes are required, ALS data were combined with
aerial image data (Chap. 12). Issues related to the co-registration of the different
sources of data are discussed in Chap. 4. Nowadays, area-based forest inventories
are increasingly conducted for different forest conditions such as plantations
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(Chap. 13). Since circa 2008, use of ALS as a sampling mechanism has rapidly
become more common (Chap. 14), especially for larger regional studies for which
full ALS coverage obviously is cost prohibitive. Multiple ALS-assisted sampling
approaches can still produce estimates with high precision. Thus, the currently most
relevant forest inventory applications are for National Forest Inventories and tropical
REDD + inventories. Additional ALS-assisted inventory applications include pre-
harvest (e.g. Vauhkonen et al. 2014) and conservation inventories (Chaps. 17, 18,
and 19).

The ability of ALS data to characterize the 3D structure of forest canopies
facilitates numerous ecological applications. Some ecological parameters such as
canopy cover (Chap. 20) and canopy gaps (Chap. 21) can be almost directly
estimated from ALS data. While a highly accurate estimate for canopy cover can be
calculated as a proportion of vegetation hits above a specified height limit, canopy
gaps can be detected from a CHM. Measures associated with these variables are
among the most obvious attributes that can be simply estimated from ALS data.
Estimation of some other traditional forest inventory variables, such as biomass and
volume, using ALS data can be based on allometric relationships, but may require
considerably more complex, multi-step procedures (see Chap. 8).

Vertical forest structure, another key ecological parameter, can also be estimated
from ALS data. Such information is useful and interesting if for no other reason
than to distinguish canopy layers. However, this information can also be used as
input to fire risk (Chap. 22) and habitat models (Chap. 17). To date, most ALS-
assisted habitat models are for bird species (e.g. Hill et al. 2004), although recent
studies have also focused on mammals (Melin et al. 2013). ALS has become an
important information source for species level biodiversity studies (Chap. 18) that
focus on characteristics such as richness, diversity, composition (e.g. Miiller and
Brandl 2009), and naturalness (e.g. Bater et al. 2009). Finally ALS data have been
used to model deadwood attributes (Chap. 19) and to guide field inventories of
deadwood (e.g. Pesonen et al. 2010).

1.5 Structure of the Book

ALS has gained widespread acceptance as an important and useful source of
auxiliary information for describing the 3D structure of forests. Researchers and
practitioners alike have found these data useful for forest inventory, ecological
and environmental research. The overall intent of the book is to provide a com-
prehensive, state-of-the-art review for these areas of application. The book is
organized into three parts following this introduction. Because inventory, ecological
and environmental disciplines share the same basic approach to extraction of
information from the primary data, Part I (Chaps. 2, 3,4, 5, 6,7, 8,9, and 10) focuses
on methodological issues. However, most of the book is devoted to applications
which are further organized into two parts. Part IT (Chaps. 11, 12, 13, 14, 15, and 16)
focuses on forest inventory applications at multiple geographical scales, from local,
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operational, wall-to-wall management inventories to regional, strategic, sampling-
based inventories, and Part IIT (Chaps. 17, 18, 19, 20, 21, and 22) focuses on
ecological and environmental applications. The application chapters of Parts II and
IIT refer back to the general treatment of methodological issues in Part I whenever
appropriate; thus, cross-references among chapters are frequent.

Because most chapters are written as state-of-the-art reviews, the book can
be viewed as a comprehensive and unique review of a wide range of forestry
applications of ALS. Many of the chapters focus on boreal forests simply because
methods were initially developed for boreal conditions. The reviews provide a suffi-
ciently comprehensive overview of recent research and applications that researchers,
students and practitioners should all find the book to be a useful reference text.
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Chapter 2
Laser Pulse Interaction with Forest Canopy:
Geometric and Radiometric Issues

Andreas Roncat, Felix Morsdorf, Christian Briese, Wolfgang Wagner,
and Norbert Pfeifer

Abstract This chapter focuses upon retrieving forest biophysical parameters by
extracting three-dimensional point cloud information from small-footprint full-
waveform airborne laser scanner data. This full waveform gives the end user the
possibility to gain control over range determination and the subsequent derivation
of the point clouds. Furthermore, the attribution of physical parameters to the
single points using these waveforms becomes additionally possible. The underlying
physical principles form the begin of this chapter, followed by forward modeling of
waveforms over simulated forested areas, the treatment of real waveforms and an
example for validating the results of full-waveform analysis.

2.1 Introduction

Airborne Laser Scanning (ALS) has played a role of increasing importance in the
management of forest ecosystems, as already pointed out in Chap. 1 of this volume.
The principal outcome of ALS campaign are area-wide three-dimensional (3D)
point clouds, derived by laser range measurements and knowledge about position
and attitude of the instrument.
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Usually, the determination of the range is a “black box™ to the end user.
However, full-waveform (FWF) ALS instruments have become increasingly avail-
able throughout the past decade. These instruments sample the temporal profile
(waveforms) of both the emitted laser pulse and of its echoes in a high frequency.
As a consequence, they allow the end user to get control over range determination.
Thus, studies of FWF data over forest canopies can be a means to gain fundamental
knowledge and understanding of the interaction between laser pulses and vegetation.
Furthermore, sophisticated analysis of radiometry for these waveforms enables the
assignment of biophysical parameters to the target points, such as the backscatter
cross-section and the target reflectance.

In this chapter, we give a detailed insight in the concept and the workflow of
processing such FWF data in a general perspective as well as in the context of
vegetation and forest studies. We start with presenting the physical principles in
Sect. 2.2. Based on these principles and a three-dimensional model of the scene,
FWF ALS return signals can be simulated. Section2.3 presents approaches for
forward modeling and provides several examples in the context of forest canopy
analysis. However, in most cases the spatial distribution of the scatterers and
their reflectance properties are not known in advance, so that they have to be
reconstructed (see Sect.2.4). In order to validate the results of this reconstruction
from a geometric and radiometric point of view, terrestrial laser scanning (TLS) has
proven to be a precise and efficient tool. An example for such a validation is given in
Sect. 2.5. The last section concludes with a discussion and an outlook on directions
for future work.

2.2 Physical Principles of Small-Footprint
Full-Waveform ALS

Besides delivering three-dimensional point clouds in high resolution as basis for
further analyses, ALS can also provide physical parameters of the scanned surfaces
if temporal profiles of the transmitted laser pulse and of its echoes are recorded.
This technique is known as full-waveform ALS (Wagner et al. 2004).

The relation of the transmitted laser power, P;, to the echo power of its
reflections, P,, is given by the radar equation (Jelalian 1992):

D? 2R
P.(t) = —— P |t — — | 0 nsys Narm 2.1
47 R*B? Vg

with B, denoting the beam width of the transmitted laser beam, R the range from
the sensor to the reflecting surface, ¢ the travel time, v, the group velocity of the
laser (approximately the speed of light in vacuum), o the effective backscatter
cross-section (in m?), D, the aperture diameter, nary the atmospheric transmission
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Fig. 2.1 Laser pulse interaction with an extended target (Wagner et al. 2006). In ALS, the laser and
the receiver are very close together so that o is called backscatter cross-section in the subsequent
text

factor, and ngsys the system transmission factor. The backscatter cross-section is
a product of the target area (A[m?]), the target reflectivity (p[]), and the factor
47 /§2 describing the scattering angle of the target (£2[sr]) in relation to an isotropic
scatterer:

4r
o= o pA (2.2)
Figure 2.1 sketches the transmission of a laser pulse, the scattering process at a
target and the recording of the echoes.

As an example of a small target in a forest canopy, we show the backscatter
cross-section of a maple leaf in relation to its size and orientation to the laser ray
(Fig.2.2).

In the case of extended targets, the echo signal is a superposition of single echoes
along the laser ray at different ranges R;. Their respective time delay is 2R; /v,
so that we can use time and range interchangeably in this context. If scatterers of
equal reflectance are closer to each other than half the laser pulse length, then their
echoes do not form separate maxima. While the use of advanced signal processing
strategies enables for the separation of close targets below this threshold (Parrish
et al. 2011; Jutzi and Stilla 2006), there is a certain minimal range difference AR
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Backscatter cross—section of a maple leaf (p=0.4) within the laser footprint
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Fig. 2.2 Backscatter cross-section o for a maple leaf (reflectance p = 0.4) within the area of
the laser footprint Ay, in relation to its size and its orientation to the laser ray, expressed by the
leaf radius r and the incidence angle ¢, resp. The range was chosen to R = 500 m and the beam
divergence to 8, = 0.5 mrad

where targets cannot be separated any more and form a cluster. For such a cluster at
arange R; £ AR we get (Wagner et al. 2006):

Ri+AR

D? 1 2R
P (1) = yp /327]SYS NAT™ / —i b (l . )U(R)dR (2.3)
3
Ri~AR

with 6/(R) = do/ dR being the derivative of the backscatter cross-section w.r.t. the
range. Since o/ (R) is zero outside the interval [R; — AR, R; + AR], the term

Ri+AR

/ Py (t - E) o/ (R)dR = / P, (’ - ﬁ) o/(R)dR = P,(t) ® 0] (1)
Vg I Ve

Ri—AR

is the convolution (®) of the transmitted laser power with the differential backscatter
cross-section.
Assuming that AR < R;, Eq. (2.3) can be approximated by

Ri+AR
D2 2R\
Pe,i(l‘)34 B2R 4775Ys77ATM / P, t_v_ o;(R)dR
i 2
Ri~AR
D2

= 1 ’32R4USYS narm P (1) ® o/ (t).
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We cannot record P,(¢) and P,(¢) directly; instead, their convolution with the
scanner’s system response function I"(¢) is recorded. This yields

D2
4np}

2

D
= P (t I (t t
= ﬁtR477$YS77ATM (1) ® T'(1) ® o (1)

P i(t) ® I'(1) R477$Ys narm P (t) ® o (t) ® I'(t)

because convolution is commutative. Thus, we can define P, (¢) ® I'(¢) as system
waveform S(t), the quantity actually recorded when a copy of the transmitted laser
pulse is stored. Summing up all n echoes of such a pulse, we get the recorded echo
power P, (t) as

P(t)—ZlPez(r)w(r)— = ﬂznsysnATMZ 'S(r)®a(r) 24)
i i=1 ’

The primary output of ALS campaigns are three-dimensional area-wide point clouds.
Full-waveform ALS allows for a precise determination for the range R; of a
target and subsequently for its three-dimensional position (See details on range
determination in full-waveform data in Sect.2.4). For the derivation of physical
target properties, the first goal is to determine the backscatter cross-section o;. For
this purpose, we re-group Eq. (2.4) and retrieve:

4mpi R}

——L—P.(t Q7' S@).
D2Znsys natm ) ®

ol(1) =

The operator “® '~ denotes deconvolution, which is an ill-posed task and needs
additional constraints for a stable solution (Tikhonov and Arsenin 1977). There are
several deconvolution approaches in ALS research which we will treat in detail in
Sect.2.4.

After range determination and deconvolution, the term (471/3’?) / (Dfnsys NATM)
remains as unknown quantity whose elements cannot be easily separated and
determined independently. As last step for the calculation of the backscatter cross-
section, we need to solve the integral

o

0; = /o{(l)dl.

—00

The solution for o; and further radiometric quantities, known as radiometric
calibration, is described in Sect. 2.4.
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2.3 Forward Modeling of ALS Return Waveforms
over Forested Areas

In the previous section, we have presented the calculation of the backscatter
cross-section as result of a waveform deconvolution and integration. To foster
a meaningful interpretation of such waveforms over forest canopies, we now
synthesize them using radiative transfer models in virtual forest scenes.

The earliest modeling studies of vegetation ALS returns were carried out for
large footprint systems (Sun and Ranson 2000; Ni-Meister et al. 2001; Koetz et al.
2006), such as LVIS (Land, Vegetation, and Ice Sensor) and the previously planned
VCL (Vegetation Canopy Lidar) mission, which unfortunately never made it into
space. Given the large footprint of these systems (10-25 m in diameter), the virtual
scene was constructed using geometric primitives, such as cones or ellipsoids, to
represent tree crowns. These geometric primitives were then filled with virtual plant
material (a combination of the optical properties of leafs and branches) using a
turbid media approach. However, it is very difficult to obtain the proper values for
the parametrization of such turbid media from field data. In addition, the geometric
representation using crown archetypes might be too coarse for real-world laser
scanner data simulation (Calders et al. 2013). Consequently, for small footprint data,
the model tree representations need to explicitly resolve the tree structure at the sub-
footprint level, e.g. in the form of position and orientation of single leaves.

Driven by other application domains, such as ecological simulations and com-
puter graphics, fractal models (or L-systems) of tree geometry have been developed
in recent years, which explicitly describe the tree geometry from stem to the leaf
or needle level. These three-dimensional models should provide a better geometric
representation to individually simulate the effects of acquisition properties such as
incidence angle, point density, terrain slope, laser footprint size, laser wavelength
and canopy reflectance on the accuracy of biophysical vegetation data products.

To date, the most difficult task in simulating vegetation returns is to obtain
a representative backscatter cross-section of the vegetation canopy. For this, one
would need to know locations, sizes, orientations and reflectances of the scattering
elements to compute p as in Eq. (2.2). If we consider small-footprint laser scanning,
with footprint diameters normally in the order of some decimetres, the objects of
relevance would be single leaves and branches within the canopy. Unfortunately,
it is difficult to obtain realistic characterizations of actual vegetation canopies that
are faithful at the single leaf level, including the location, orientation and optical
properties of that leaf element. As opposed to the indirect parametrization of turbid
media approaches, such information could at least directly be derived from field
measurements, such as destructive sampling or terrestrial laser scanning.

2.3.1 Radiative Transfer Approaches

During the last decade, the number of models and approaches that have the
capability to model small-footprint ALS returns has increased substantially. In one
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Fig. 2.3 Illustration of a waveform simulation based on a virtual tree model. The approach
described here is based on an intensity and depth image derived from POVRAY (a). The differential
backscatter cross-sections (b) derived from these images are convolved with a Gaussian-shaped
laser pulse (c) to obtain the modeled laser scanner return waveforms (d)

of the first small-footprint simulation studies, Morsdorf et al. (2007) applied the
open-source ray tracer POVRAY and detailed 3D tree models based on L-systems to
simulate discrete-return ALS returns. The ray tracer is used to generate an intensity
and a depth image, which are combined to form the differential backscatter cross-
section o7 (). The differential cross-section is then convolved with a laser pulse of
given shape and length (P, (¢)) to yield the simulated waveform (Fig. 2.3).

This approach has the drawback of only taking single scattering into account
and Kotchenova et al. (2003) have shown that especially for the near-infrared
wavelengths often used in LiDAR remote sensing, multiple scattering can have
a significant effect on the lower parts of larger waveform returns. In addition,
many of the well-established models previously applied in imaging spectroscopy
and the modeling of passive optical imagery, have been adapted and extended to
allow for the simulation of ALS waveforms. For instance, LIBRAT (Disney et al.
2006) is a Monte-Carlo-based radiative transfer model, that has been parametrized
with forest scenes that are explicitly resolving the needle level of single shoots.
These models have the advantage that they resolve multiple scattering within the
vegetation canopy, although this is less of an issue for ALS remote sensing, since
we measure in the so-called hot-spot configuration (sender and receiver are on the
same optical path), where the contribution of multiple scattering is relatively low. It
has been used by Disney et al. (2010) to simulate small-footprint ALS waveforms,
see Sect. 2.3.3 for details.
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Another model capable of simulating ALS returns is the well-established DART
(Gastellu-Etchegorry et al. 1996) model, which was recently extended to have a
forward simulation model for ALS returns (Rubio et al. 2009). FLIGHT (North
1996) is another radiative transfer model with a long tradition in the passive optical
domain of remote sensing, which was enhanced with a laser mode and subsequently
used by North et al. (2010) to simulate waveforms of the spaceborne GLAS
(Geoscience Laser Altimeter System) instrument aboard ICESat.

2.3.2 Scene Construction

As described above, the theoretical concepts and tools to model ALS returns are
well established nowadays. One critical obstacle for the wider use of these tools
is the parametrization of the virtual, three-dimensional forest scene. Depending on
the modeled sensor, the 3D scene needs to resolve different spatial scales. As stated
above, for the early studies simulating large footprint lasers (Sun and Ranson 2000;
Ni-Meister et al. 2001), the maximum level of detail in the canopy characterization
was the tree/crown level. Thus, the models were easily parametrized by having
a list of tree locations and dimensions to produce a representation to base the
simulation upon. The distribution of the canopy elements within the crown was
described using turbid media, without explicitly prescribing leaf or shoot locations
and orientations.

A similar, but more detailed approach was used for the construction of the explicit
3D scenes in the RAMI IV experiment (Widlowski et al. 2008), using field measured
tree locations and dimensions. Instead of using turbid media for the tree crowns,
very detailed 3D tree models were used, which resolved the structure down to the
shoot and needle level.

However, these detailed reconstructions were not modeled using real tree
geometry, as this was very hard to obtain. Consequently, currently large effort is
put on using TLS to provide detailed, realistic 3D models of vegetation elements, as
e.g. outlined by Cote et al. (2009).

2.3.3 Applications

The motivation for simulation of ALS returns can be manifold, but generally there
is an interest to study the variability of ALS vegetation returns and their derived
products when changing some parameters of their acquisition. An example would
be the gap fraction or fractional cover, which is an structural variable in many earth
system models and can be provided by ALS at larger scales. Still, it is unclear how
for instance the footprint size and wavelength would affect this variable. This is
where modelling could help by establishing relationships between changes in sensor
and survey configuration and the desired environmental variable.
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So far, most applications of modeling of ALS vegetation returns have been
focused on the simulation of full-waveform returns, as it is the default result of
all models. Until now, only Morsdorf et al. (2007) and Disney et al. (2010) have
simulated discrete return data. The largest problem for modeling discrete return data
is to model the instrument’s treatment of the incoming signal for return detection. To
overcome this, Morsdorf et al. (2007) used actual ALS data and geometric-optical
calibration targets to re-engineer the return detection method of the simulated ALS
system. On the other hand, Disney et al. (2010) implemented a number of return
detection methods to study the sensitivity of echo statistics (height) on the choice
of echo detection. But even for full-waveform signals, the modeling often excludes
most effects introduced by receiving the signal with a particular sensor.

The largest issue is the unavailability of the sensor response function of com-
mercial ALS systems. The sensor response function introduces another convolution
term to the radar equation; this has no significant influence as long as a linear
transfer system can be assumed. In this case, we can apply Eq.(2.4). However, it
is most likely that the instrument response function is specific for each particular
ALS system and only a thorough laboratory calibration could provide this response
function.

2.3.3.1 Sensor and Survey Configuration Effects

The first studies simulating small-footprint ALS were mostly looking at the effects
sensor or survey settings would have on ALS waveforms. Morsdorf et al. (2007)
looked into the effects of footprint size and laser wavelength on the distribution of
discrete return data. While footprint size affected return distributions significantly,
the impact of the laser wavelength (1,064 vs. 1,560 nm) on discrete return height
statistics was much less evident. This was explained by the echo triggering methods
applied, which will detect the rising edge of the signal, independent of the signal
strength,! as long as it is above the noise level for a particular system. For the
full-waveform data, however, the return energy was strongly related to canopy
reflectance at the laser wavelength. A similar, but more extensive study was carried
out by Disney et al. (2010) using a Monte Carlo ray tracing approach to study
the effects of footprint size, canopy structure, scan angle, sampling density (point
spacing) and signal triggering methods on average values of canopy height metrics
obtained by small-footprint ALS. They found significant changes in the average
canopy height for two different types of forest when changing the footprint diameter
(between 0.1 and 1 m) and the scan angle, with a maximum incidence angle of 30°.
For varying point density, triggering method and canopy structure, the changes in
average canopy height were less significant or insignificant.

"Most commercial ALS systems employ adaptive thresholding to avoid “trigger walk”, making
discrete return data less susceptible to changes in object reflectance.
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Fig. 2.4 Simulated NDVI profiles as potentially measured by an airborne multi-spectral ALS
instrument (left). Three-dimensional representation of the virtual canopy (right)

2.3.3.2 Sensor and Product Prototyping

Another common application of radiative transfer models in remote sensing is
the prototyping of new sensors or products. The large advantage of modeling
environments is that almost everything can be easily measured in the virtual 3D
scene, including properties that would be very hard to obtain in the field (e.g. true
leaf area index). Thus, new sensors and new ways of product derivation can be
fully tested for their feasibility in the virtual environment. As the costs for building
airborne and spaceborne laser systems are quite high, a number of laser-based
simulating studies have been devoted to this issue.

Morsdorf et al. (2009) illustrated the potential of a small-footprint, multi-
spectral laser for the estimation of profiles of vegetation indices, e.g. such as NDVI
(Normalized Differenced Vegetation Index). In a virtual forest stand comprised of
detailed Scots pine trees derived from a tree growth model, they quantified how
much a laser-based NDVI profile could be used to estimate the actual distribution
of green and brown canopy elements. Figure 2.4 shows the resulting NDVI profiles
along with the 3D structure of the simulated canopy. NDVI values are lower towards
the lower parts of the canopy, which is caused by the higher amount of dead branches
in those areas.

In another study, Hancock et al. (2012) tested the potential of dual-wavelength,
large-footprint lasers to provide better estimates of the ground elevation opposed
to using single-wavelength lasers. Single-wavelength, large-footprint lasers have
problems in properly detecting the ground given sloped terrain and vegetation cover.
According to the authors, dual-wavelength lasers can be used to get a more robust
estimate of ground elevation, even on slopes. However, there needs to be a spectral
gradient between the vegetation canopy and the ground (e.g. soil or litter).
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2.4 Full-Waveform Data Processing and Model Inversion

In general, the position, sizes, orientations and reflectance characteristics of scatter-
ing objects are not given. Thus, these quantities have to be reconstructed, in our case
from FWF ALS data. Raw FWF data are sampled values of the system waveform
and of the recorded echo waveform, denoted by S[t] and P,[t], respectively. The
sampling interval is typically 1 ns whereas the bit depth is typically 8 or 12 bit (see
Sect. 3.1). Figure 2.5 shows an example for S[¢t] and P,[t], recorded with a Riegl
LMS-Q560 instrument.
FWF data processing can be split into several tasks:

¢ Determination of the number of scatterers and

e (Calculation of their distance from the scanner;

» Fitting the raw waveforms to continuous functions and
» Calculation of additional echo parameters;

¢ Deconvolution and

¢ Radiometric calibration

Throughout the last decade, a number of approaches for FWF data processing have
been presented, e.g.:

* Range estimation using classical detectors (Wagner et al. 2004)

¢ Wiener-filter deconvolution (Jutzi and Stilla 2006)

* Gaussian Decomposition (Wagner et al. 2006)

* Correlation-based range estimation (Roncat et al. 2008)

* Generalized-Gaussian modeling (Mallet et al. 2009)

* Expectation/Maximization (EM) deconvolution (Parrish and Nowak 2009)
* B-spline deconvolution (Roncat et al. 2011a)
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Fig. 2.5 Raw waveform measurements S[¢] and P,[t], recorded with a Riegl LMS-Q560 instru-
ment in a sampling rate of 1 ns. The reconstructed continuous signal (Gaussian Decomposition) of
this example can be seen in Fig. 2.6
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Table 2.1 FWF data processing approaches and their outputs

Add.echo
Approach # Echoes Range Ampl. Cont.model params Deconv. Radiom.Cal.
Classical detectors e ° ° — _ _
Wiener filter — — — <& o
Gauss. decomp. — o . o .
Correlation . ° — — S _ _
Gener. Gaussians @ . ° . ° — °
EM [ ] [ ] — JE— N ® O
B-splines < <o — . o ° S

Ampl. amplitude, Cont.model continuous model, Add.echo params additional echo parameters,

Deconv. deconvolution, Radiom.Cal. radiometric calibration

bullet ... primary results, o ...result based on initial estimates provided by another technique,
. possible, but not originally intended, ~ ...approximately possible (e.g. with some further

assumptions), — ... not provided by the approach

These approaches aim at one or more of the above mentioned tasks. A summary is
given in Table 2.1.

The Gaussian Decomposition approach allows for a very elegant solution of
range determination and derivation of further echo attributes which additionally
enable for the derivation of physical target parameters. This technique has therefore
become a standard in FWF data processing and has been commonly used within
vegetation and forestry studies (Chauve et al. 2007; Reitberger et al. 2008; Wagner
et al. 2008; Hofle et al. 2012). We will thus have a detailed look at this technique in
the subsequent paragraphs.

The goal is to fit Gaussian functions, i.e. scaled bell curves, to the sampled
waveforms S[¢t] and P,[t]. While the temporal profile of the system waveform is
very close to one Gaussian function, the recorded echo waveform may contain the
added echoes of n scatterers, so that

S<f)=3exp( (ZS” )andP(r)—Zp,,o)_zpr,exp( G-y )

s .
=i =i pi

2.5)

respectively (Wagner et al. 2008). The fit is aimed at fulfilling Y (S[t] — S(;))*> —
min. and > (P, [t] — P,(t;))> — min. In case of Gaussian Decomposition this
is a non-linear minimization problem which can e.g. be solved by the Levenberg-
Marquardt approach (Wagner et al. 2006). Gaussian Decomposition is examplarily
illustrated in Fig. 2.6 whereas Fig. 2.7 shows the distribution of the echo amplitudes
P; in two adjacent flight strips in a partly vegetated area around Schonbrunn palace
in Vienna (Lehner and Briese 2010).

As input data additionally to the sampled waveforms, this adjustment approach
needs the number of scatterers n and approximate values for the positions (%, ¢;),
the widths (s,,5,,) and the amplitudes (S’, 13,») of the Gaussians (see Table 2.1).
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Fig. 2.6 Example of Gaussian Decomposition for the data shown in Fig.2.5: Left: System
waveform S(¢) (one Gaussian with parameters #,, S and s,), right: Recorded echo waveform P, (¢)
(right; sum of four Gaussians with parameters #;, P; and s, ;)
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Fig. 2.7 Echo amplitudes ﬁi for two adjacent strips of the Schonbrunn campaign (Lehner and
Briese 2010). Left: P in strip 5, middle: P;in strip 6, right: difference in amplitude. The two strips
are overlapping to around 50 %, therefore the difference is largest at the margins of the strips,
mainly because of the range difference. Other big differences in amplitude can be found at tilted
roof tops because of the different acquisition geometry

The number of scatterers can be retrieved e.g. by classical echo detectors, correlation
techniques or statistical approaches (see references Wagner et al. 2004; Roncat et al.
2008; Mallet et al. 2009 and Table 2.1). They are capable to deliver approximate
positions of the scatterers as well. The scattering process can only broaden the
backscattered laser pulse2 so that the width for a tentative echo 7, s, ;, has a lower
bound given by the width of the system waveform, s;. The latter can be retrieved

20r leave its width unchanged in the case of direct reflection.
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from the manufacturer’s specifications. E.g. the Optech ALTM 3100 system has a
pulse width of 8.0ns, expressed as full width at half maximum (FWHM), when
operated at a pulse repetition rate of 50 kHz (Chasmer et al. 2006; Mallet and Bretar
2009).% As mentioned earlier, this quantity is a limiting factor for the separation of
two subsequent targets within the echo waveform: assuming equal signal strength,
the minimal separation distance rg is half the length of the transmitted pulse, i.e.
rr = vg x FWHM/2. In case of the above example of the Optech ALTM 3100
system, the minimal separation distance results to rg ~ 8ns x (30/2)cm/ns =
120 cm.
The relation of the standard deviation s of a Gaussian to its FWHM is

FWHM = 2+/2In2s >~ 2.355s. (2.6)

For the above mentioned system, this gives a value of s; ~ 3.4ns for the system
waveform.

Having solved the Gaussian decomposition for S(¢z) and P,(t), we can re-write
Eq. (2.3) as

_ 4RI P 27
i = e ——Pispi 2.7
DZSsgnsysnatm

We retrieve the range R; of the i-th echo from the difference in position between the
echo and the system waveform, multiplied with the group velocity of the laser ray,
vet Rj = (t; —t;)v,/2. This o; is a physical property independent of the transmitted
laser pulse and has shown good performance in the classification of ground and
vegetation echoes, especially when looking at the distribution of the single o; within
the total backscatter cross-section o (Wagner et al. 2008).

However, o; is still dependent on the size of the illuminated target area,
A; = wR?B?/4. Normalizing w.r.t. 4; leads to the introduction of the backscatter
coefficient y[m?/m?] (Wagner 2010):

o; 4 16R} 5 (2.8)
Vi=— = o = ~ jSp,l'. .
A; wRIB} D?ZSssnsysnamm

Figure 2.8 illustrates the relation of the parameters influencing ¢ and y whereas
Fig. 2.9 shows the values of the backscatter coefficient for the Schonbrunn example.
It has to be considered that the illuminated target area can only be approximated
in the case of an extended target (target surface bigger than the laser footprint).

3In the literature, varying pulse energies Es and peak powers S are reported for this instrument
w.r.t. the pulse repetition rate. E.g. in Chasmer et al. (2006), for pulse repetition rates of 33, 71
and 100 kHz, the respective FWHM resulted in 7.0, 10.8 and 14.9ns, using Eq.(2.6) and s =
ES/(§ «/271). Nesset (2009) reports FWHM values of 10 ns at 50 kHz and 16 ns at 100 kHz pulse
repetition rate.
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Fig. 2.8 Geometric \
parameters of o and y. While \
o changes proportional to R?, \
y is independent of the range. .
A is the target area actually
illuminated by the laser beam
(cf. Eq. (2.2)). For small
beam divergences f;, the
laser footprint area A;
perpendicular to the laser
beam can be approximated as
A; =~ Acos ¥ with ¥ being
the angle between the local
surface normal n, and the
axis of the laser beam cone
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Fig. 2.9 Backscatter coefficient y for two adjacent strips of the Schonbrunn example (cf. Fig. 2.7).
Left: y in strip 5, middle: y in strip 6, right: difference in y (From Lehner and Briese (2010))

When the laser footprint only partly illuminates the target surface (e.g. leaves on a
tree or a building edge) the actual illuminated target area that corresponds to one
echo is unknown.

For practical computation of the radiometric calibration, the constant parameters
are separated from the others and summarized in the calibration constant Ccpy :

16

-2 (2.9)
D2snsys

CeaL
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Empirical studies have shown that the amplitude of the system waveform S shows
too high variation to be treated as constant (Bretar et al. 2009; Roncat et al. 2011b).
It is therefore excluded from Ccap. In practice, some of the instruments utilize gain
control in order to adapt the output signal to the dynamic range of the sensor. This
issue is discussed in Lehner et al. (2011). Further instrument details are typically not
provided to the end user. The calibration constant is calculated using assumptions
on the reflectivity of homogeneous regions (Wagner et al. 2006), artificial (Ahokas
et al. 2006; Kaasalainen et al. 2007) or natural reference targets (Kaasalainen et al.
2009; Lehner and Briese 2010) of known reflectivity at the used laser wavelength.
The atmospheric transmission factor may be determined using a standard model for
radiative transfer in the atmosphere:

2Ria

namw = 10 10,000

with @ in [DB/km] as the atmospheric attenuation coefficient (in the range of
0.2 DB/km) (Hofle and Pfeifer 2007). The backscatter coefficient y; can be finally
retrieved as

Pl' Syi
Yi = = ol R?CCAL.
S Nat™m

The use of y instead of o as feature for ALS point cloud classification has
shown noticeable advantages, e.g. in the improved separation of grassland from
road (Alexander et al. 2010). Hofle et al. (2012) pointed out that full-waveform
parameters alone (normalized amplitude, o and y) may not be sufficient for proper
point cloud classification; however, they are a good input for further classification
tasks such as tree species classification (cf. Chap. 7).

For most surfaces, a diffuse reflectivity behaviour can be assumed due to the
short wavelengths used in ALS. With y; determined as described before, we retrieve
the diffuse Lambertian reflectance p; as (cf. Egs. (2.2) and (2.8)) (Wagner 2010)

~ _ Vi
p: 4 cos B

(2.10)

with ; being the angle between the laser beam’s direction and the local surface
normal (cf. Fig. 2.8). The distribution of the diffuse reflectance in the Schonbrunn
example is shown in Fig.2.10. One can clearly see that the differences visible in
o and y at tilted roof tops are reduced to a great extent. However, due to the less
reliable estimation of the incidence angle in vegetation, the p differences are much
higher in the canopy. A second reason for that might be that Lambertian scattering
cannot be assumed in vegetated areas.

Further practical results for the radiometric calibration of multi-spectral FWF
ALS data have been published by Briese et al. (2012).
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Fig. 2.10 Diffuse reflectance p for two adjacent strips of the Schénbrunn example (cf. Fig. 2.7).
Left: p in strip 5, middle: p in strip 6, right: difference in p (From Lehner and Briese (2010))

2.5 Validation of Airborne FWF Data by Terrestrial Laser
Scanning

Given a 3D point cloud over a forested area, stemming from an FWF ALS campaign
and derived with the methods presented in the previous sections of this chapter, the
question still remains how well the forest is represented by this point cloud; i.e.
the canopy (cf. Chap. 6), the stems (cf. Chap. 8) and branches of the single trees,
the understorey and the bare ground (see Sect. 3.3.1).

Several studies have already shown that TLS is a valuable tool for the retrieval of
forest parameters on single trees and at the plot level (cf. Liang et al. 2012; Yu et al.
2013). In this section, we will present the validation of airborne full-waveform data
by TLS following the example of Doneus et al. (2010). For that study, conducted
originally for archaeological purposes, an FWF ALS dataset was simultaneously
recorded with a TLS dataset in the surroundings of the former monastery “St.
Anna in der Wiiste” (Mannersdorf, Lower Austria). The study area consists of the
monastery, meadows and forests with understorey. Figure 2.11 shows an overview
of this site.

Data were acquired on November 10, 2009, with a Riegl LMS-Q680 airborne
instrument and a Riegl VZ-400 terrestrial system. The registration of the ALS data
was performed with a strip adjustment (Kager 2004) whereas the TLS data were co-
registered with an automatic approach within the software package RiSCAN PRO
(Riegl LMS 2013). These two datasets were aligned using tie patches on planar
surfaces.

As a showcase example, Fig.2.12 shows a section of the ALS and TLS point
cloud around a single tree, together with corresponding waveforms. One can clearly
see that the point clouds are well aligned and that the canopy is correctly represented
by the FWF ALS points.
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Fig. 2.11 Orthophoto of the study site “St. Anna in der Wiiste” (left) with hillshade of the area
around the former monastery, derived from FWF ALS data (centre) and overlaid TLS coverage in
red (right) (From Doneus et al. (2010))
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Fig. 2.12 Section of the TLS (green) and ALS (red) point cloud around a single tree, together with
corresponding ALS waveforms. These waveforms represent amplitude over time which is the time
lag since emission of the laser pulse. The displayed time range equals 60 ns at 1 GHz sampling rate
(From Doneus et al. (2010))

Furthermore, the study concluded that the ALS points classified as terrain points
lie on the terrain surface measured with TLS. In vegetation, there was typically one
strong echo from the stem or a branch, with an echo width s, ; slightly broader than
the ones from the terrain echoes. Moreover, in low vegetation, the echo width was
in general higher than in regions with no understorey. This was due to the fact that
low vegetation forms a group of small scatterers which are not separable any more
in the echo waveform. Because of this, last echoes were typically some decimetres
above the ground. Without using the FWF echo width, last echoes would have been
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Fig. 2.13 TLS and FWF
ALS points in low vegetation.
Last ALS echoes are typically
a few decimetres off-ground,
only classifiable as
non-terrain points using the
echo width (From Doneus

et al. (2010))

wrongly classified as ground echoes although they still belonged to vegetation. This
fact gives further empirical evidence for the usability of the echo width as weighting
parameter for DTM generation (Miicke et al. 2010). The situation in low vegetation
is depicted in Fig. 2.13.

The example shows that TLS is capable of delivering high-resolution data on
single-tree level and also a valuable tool for giving ground truth in the classification
of FWF ALS points where an erroneous classification would lead to a wrong
digital terrain model and consequently to a wrong estimation of the canopy height.
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Especially in low vegetation in the understorey, the echo width was found to be a
good indicator for reliable ground/off-ground classification.

2.6 Conclusion and Outlook

This chapter outlines the actual research in the field of geometric and radiometric
information extraction from FWF ALS. While the geometric extraction (i.e. range
per echo and subsequently the 3D echo position) can be solved by several different
detection methods, the estimation of further physical parameters relies on additional
assumptions (e.g. Gaussian reference pulse, extended single targets). The interaction
process with complex (non-extended) targets in practical applications remains an
ill-posed problem. Solution strategies for this issue will have to be developed in
the future. In the meantime beside FWF ALS the first FWF TLS systems are also
available. These systems will offer the possibility to advance the study of FWF
data and have the advantage of an easier and repeatable setup of testing scenarios.
Alongside the radiometric calibration and analysis of single-wavelength FWF ALS,
systems of different laser wavelengths are already available (e.g. 532, 1064 and
1550 nm, see Briese et al. (2012)), but not yet as synchronously operated FWF
systems. The exploration of multi-spectral ALS missions for vegetation mapping
is one of the future research challenges in the field of FWF ALS.

The forward simulation of ALS waveforms will continue to significantly advance
our understanding of the interaction of the laser pulse with vegetation canopies.
More specifically, it will also help to assess systematic and non-systematic dif-
ferences between ALS data obtained using different sensors and under different
survey configurations. As many of the current ALS radiative-transfer models were
originally made for passive optical imagery, a model based fusion of ALS and multi-
/hyper-spectral data might become possible, for instance for a combined inversion
of biophysical variables as presented by Koetz et al. (2007). Forward modeling and
the possibility to measure everything in the virtual 3D scene will as well help in
establishing robust and transferable, physically-based vegetation products without
the need of laborious and error-prone calibration with field data. It is mandatory,
however, that both system providers and surveying companies alike are more open
with ancillary information about their systems and surveying campaigns and that
this information is maintained throughout the ALS processing chain.
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Chapter 3

Full-Waveform Airborne Laser Scanning
Systems and Their Possibilities in Forest
Applications

Markus Hollaus, Werner Miicke, Andreas Roncat, Norbert Pfeifer,
and Christian Briese

Abstract Full-waveform (FWF) airborne laser scanning (ALS) systems became
available for operational data acquisition around the year 2004. These systems
typically digitize the analogue backscattered echo of the emitted laser pulse with
a high frequency. FWF digitization has the advantage of not limiting the number of
echoes that are recorded for each individual emitted laser pulse. Studies utilizing
FWF data have shown that more echoes are provided from reflections in the
vegetation in comparison to discrete echo systems. To obtain geophysical metrics
based on ALS data that are independent of a mission’s flying height, acquisition time
or sensor characteristics, the FWF amplitude values can be calibrated, which is an
important requirement before using them in further classification tasks. Beyond that,
waveform digitization provides an additional observable which can be exploited in
forestry, namely the width of the backscattered pulse (i.e. echo width). An early
application of FWF ALS was to improve ground and shrub echo identification
below the forest canopy for the improvement of terrain modelling, which can be
achieved using the discriminative capability of the amplitude and echo width in
classification algorithms. Further studies indicate that accuracies can be increased
for classification (e.g. species) and biophysical parameter extraction (e.g. diameter
at breast height) for single-tree- and area-based methods by exploiting the FWF
observables amplitude and echo width.
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3.1 Introduction

Full-waveform (FWF) airborne laser scanning (ALS) sensors and data have become
increasingly available by the end of 2013. As there is no significant difference in the
acquisition costs between discrete and FWF data, more and more contractors and
public administrations decide in favour of the latter. Research on how the additional
information contained in FWF ALS data can be exploited has also been going on
for about a decade.

This chapter gives a review of the scientific outcomes concerning the exploitation
of FWF-derived quantities for forestry applications. In Sect.3.2, an overview of
FWF recording systems is presented, followed by Sect. 3.3 exploring the potential
of FWF data in comparison to discrete-return data. In Sect. 3.4, forestry-related
applications are described, structured in (1) point cloud classification, (2) single-
tree- and (3) area-based applications. The focus within (1) is on improved digital
terrain model calculation in forested areas based on FWF features. In (2), the
segmentation of individual tree crowns and tree species classification is discussed
in detail. The area-based applications presented in section (3) cover growing stock
estimation and structure type assessment for larger areas. The chapter ends with
conclusions in Sect. 3.5.

3.2 FWEF Recording Systems

The introduction of the first commercial small-footprint topographic ALS system
capable of FWF recording dates back to the year 2004 with the Riegl LMS-
Q560 (Riegl LMS 2013; Wagner et al. 2004), the TopEye Mark II and the Optech
ALTM 3100 following shortly afterwards (Mallet and Bretar 2009). Before this date,
some airborne bathymetric and experimental systems such as SHOALS and LVIS,
respectively, had already been operable (Mallet and Bretar 2009).

In the beginning of the twenty-first century, the ALS community has seen great
progress in hardware design, which lead to significantly increased pulse repetition
rates, the resolution of range ambiguities' and, consequently, point clouds with
strongly increased spatial density.

Beraldin et al. (2010) give a comprehensive set of instrument parameters relevant
for ALS systems, some of which are of special interest when dealing with FWF
recording systems:

Pulse length: the length of the emitted laser pulse is a limiting factor for the
discrimination of two subsequent echoes (see Sect. 2.3).

Icalled MPiA (multiple pulses in air) by Leica Geosystems (2013), CMP (continuous multipulse)
by Optech Inc. (2013) and MTA (multiple time-around) by Riegl LMS (2013).
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Sampling interval: this quantity determines the highest frequency which can still
be reconstructed from the recorded signal; according to the sampling theorem,
this frequency amounts to the inverse of twice the sampling interval. Together
with the pulse length, the sampling interval also influences the ranging accuracy.

Bit depth of amplitude recording: besides constraining the detection of weak
echoes, it mainly affects the resolved radiometric details of radiometric calibra-
tion.

Laser wavelength: this applies mainly to radiometric calibration using natural
targets or reflectivity assumptions in homogeneous areas (see Sect. 2.3).

Table 3.1 summarizes the system parameters of currently available FWF ALS
systems.

3.3 Exploring the Potential of FWF Data

When compared to conventional (i.e. discrete echo recording) ALS systems, FWF
laser scanners feature a number of enhancements (e.g. Adams et al. 2012; Liu et al.
2011), making them especially suitable for feature extraction or object classification
purposes. Discrete ALS systems are capable of recording a fixed number of range
measurements per emitted pulse (usually up to four), involving a certain threshold
for return peak detection, which is inherent to the integrated (and most often
proprietary) detection method (e.g. Thiel and Wehr 2004; Wagner et al. 2004). With
the advent of FWF detection and storage in laser scanning systems, especially tuned
echo extraction methods can be applied by the user in post-processing (Wagner et al.
2004). Detection thresholds can be adapted and the number of returns to be detected
per each emitted pulse is (at least theoretically) no longer limited (cf. Sect. 3.2 and
Mallet et al. 2010). As a consequence, FWF data provide a much higher number
of returns per emitted pulse in contrast to conventional systems (e.g. Reitberger
et al. 2008). Therefore denser point clouds are created, a fact which is of major
importance for vegetation analysis, as the representation of the canopy structure is
consequently more detailed.

To use the FWF observations to their full potential, one must understand how the
backscattered waveforms are altered when the laser pulse interacts with different
types of surfaces. The intensity of the backscattered pulse is dependent on a number
of factors, some of which are very specific to the equipment in use (e.g. the
reflectance of the surface at the laser scanner’s wavelength) or unknown (e.g. the
fraction of the laser pulse that interacted with the surface) (Ducic et al. 2006). Thus,
radiometrically calibrating laser scanning intensity data is an important requirement
before using it in subsequent classification tasks. It shall be noted that this refers to
discrete (where some assumptions about the echo signal are necessary) as well as
FWF data. Calibration approaches applied in the literature rely (1) on the fact that
the target surface is flat and extended (e.g. Ahokas et al. 2006; Kaasalainen et al.
2007; Briese et al. 2008; Lehner and Briese 2010) or (2) on range normalization
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Table 3.1 Currently available small-footprint topographic FWF ALS systems and their character-
istic system parameters. Beam width refers to the angle where the laser power density has fallen to
1/e? of its maximum

Max. PRR* Max. scan Mult. Max. range
Manufacturer  Model Scanning mech. (kHz) angle (°) pulses (m)
AHAB Chiroptera Palmer scan 400 +20 Yes 1,600
Leica ALS60 Osc. mirror 120° +37.5 Yes 6,300
Geosystems ALS70 CM Osc./rot. mirror 120° +37.5 Yes 1,850

ALS70 HP Osc./rot. mirror 120P +37.5 Yes 4,400

ALS70 HA Osc./rot. mirror 120° +37.5 Yes 6,300
Optech Aquarius®  Osc. mirror 70 +25 No 2,750

Gemini Osc. mirror 1254 +25 Yes 4,400

Orion Osc. mirror 1254 +30 Yes 4,600

Pegasus Osc. mirror 1254 +37.5 Yes 3,150
Riegl LMS Q680i Rot. pyramid 400 +30 Yes 3,000

Q780 Rot. pyramid 400 +30 Yes 5,800

Sampl. Beam Wavelength
Manufacturer  Model Pulse length interval (ns) width Bit depth (nm)
AHAB Chiroptera 4 % 1 ns 0.55 0.55mrad N/A 1,064
Leica ALS60 5ns 1 0.22mrad 8bit 1,064
Geosystems  ALS70 CM N/A 1 0.22mrad 8 bit 1,064

ALS70 HP N/A 1 0.22mrad 8 bit 1,064

ALS70 HA N/A 1 0.22mrad 8 bit 1,064
Optech Aquarius® N/A 1 N/A 12 bit 1,064

Gemini N/A 1 0.35/1.13 12bit 1,064

mrad

Orion N/A 1 0.35mrad 12bit 1,064/1,541

Pegasus N/A 1 0.35mrad 12bit 1,064
Riegl LMS Q680i 4ns 1 < 2 x 8bit 1,550

0.5 mrad
Q780 4ns 1 < 2 x 8bit 1,550
0.25 mrad

“Maximum pulse repetition rate

The instrument’s maximal PRR is higher but only 120 kHz can be recorded by the FWF digitizer
(Leica Geosystems 2013)

“In topographic mode

dThe instrument’s maximal PRR is higher but only 125kHz can be recorded by the FWF digitizer
(Optech Inc. 2013)

(i.e. distance from scanner centre to target) of the recorded intensities (e.g. Hofle
and Pfeifer 2007; Korpela et al. 2009; Luzum et al. 2004).

Vegetation usually represents very heterogeneous targets in relation to the laser’s
footprint, as the backscattering parts are distributed over the plant height and
feature very diverse reflectance properties (e.g. leaves or needles, thin branches,
thick branches, tree trunks). Consequently, the model assumptions for alternative
(1) are only met in the case of very dense vegetation. Dense foliage may also
represent a homogeneous and impenetrable target and will then be represented
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by a number of so-called single echoes (i.e. echoes without multiple reflections).
Alternative (2) is especially effective in case of large height differences between
targets (e.g. topographic variations in mountainous areas), cf. Eq. (2.4), but does
not necessarily result in significant changes when applied to areas with low relief
energy or differences in vegetation heights of a few tens of metres (e.g. tree heights
of 30 m) when the data are acquired from 1,000 m flying height above ground or
higher (cf. Morsdorf et al. 2010).

Given these challenging circumstances for radiometric calibration in vegetated
areas, most studies make use of range calibration (e.g. Hopkinson and Chasmer
2009; @rka et al. 2009; Holmgren and Persson 2004), therefore retaining the
relationship between single echoes, but making their results hardly comparable with
findings of other studies or measurements with other sensors.

Another way of ALS data calibration refers to the task of deriving the backscatter
coefficient, which is calculated on the basis of the radar equation and includes
area normalization by the laser footprint on the target (Lehner and Briese 2010)
(cf. Sect.2.3). It provides robust results, considering also differing flying altitude
above ground, incidence angles or significantly different beam divergence of
different sensors. Furthermore, assuming a Lambertian reflectance behaviour of the
illuminated target allows for the estimation of the diffuse reflectance measure which
enables the correction w.r.t different acquisition geometries (e.g. observation of a
building root from two different ALS strips) (Lehner and Briese 2010; Briese et al.
2012).

Regardless of wavelength and surface reflectivity, returns from vegetated areas
tend to have lower intensities than returns from artificial surfaces. This is mainly due
to the fact that vegetation components commonly represent non-extended targets.
Consequently, the available energy within the footprint is divided among a number
of small scatterers within the footprint of the laser beam, leaving less energy for
the single scattering element that reflects back to the sensor (Wagner et al. 2008).
As a result, vegetated areas appear generally darker in intensity images, when
compared to non-vegetated areas or artificial surfaces representing extended targets
and producing single echoes (see Figs. 3.1c and 3.2).

The distribution of scattering elements inside the footprint also influences the
width of the backscattered echo (i.e. the echo width). Height variations of small
scatterers tend to widen the return pulse, leading to a systematic broadening of the
echo width, which can be observed for vegetation targets (e.g. Ducic et al. 2006;
Hollaus et al. 2009a; Lin and Mills 2009; Doneus et al. 2008; Hofle et al. 2008). The
echo width is therefore a geometric measure that is sensitive to surface undulations
smaller than the footprint size. Furthermore, similarities exist between geometric
measures of echo distribution (e.g. vertical height variations of echoes or standard
deviation of echoes with respect to an adjustment plane) and their respective echo
widths in a defined neighbourhood (Hollaus et al. 2011) (see Fig. 3.3). In a broader
sense, the echo width can therefore be referred to as a measure of surface roughness,
which makes it a highly suitable discriminator for vegetated and non-vegetated areas
(see Fig.3.1d).
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Fig. 3.1 (a) Colour-infrared aerial image, (b) digital surface model (DSM), visualizations of ALS
point cloud colour-coded by (c¢) echo amplitude P (scaled in digital numbers DN; see Sect. 2.3)
and (d) echo width sp (standard deviation, scaled in nanoseconds; see Sect.2.3). (Modified from

Wagner et al. (2008))
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Fig. 3.2 Profile view of ALS point clouds with coloured amplitude values derived from FWF data.
The profile has a length of 100 m and a width of 5m
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Fig. 3.3 Surface roughness raster layer (1 m horizontal resolution). Left: Mean standard deviation
per raster cell of detrended terrain and near terrain echoes. Right: Mean echo width per raster cell
derived from FWF ALS data (Modified from Hollaus et al. (2011))

3.4 Applications of FWF Data

3.4.1 Improving Point Cloud Classification in Forested Areas
Using FWF Airborne Laser Scanning

In order to retrieve a reliable representation of the terrain surface in forested
areas, a sophisticated point cloud classification into terrain and non-terrain points
is essential (Kraus et al. 2004). Most forestry applications utilizing ALS data rely
on such accurate classification and subsequently derived digital terrain models
(DTMs) (Hollaus 2006; Hyyppd et al. 2008; Nasset 2007). Conventional methods
for classifying the point cloud into terrain and non-terrain echoes, a process also
called filtering, employ different geometric criteria for echo selection. These involve
distances to prior computed surfaces of different scales or levels of detail (Axelsson
2000; Kraus and Pfeifer 1998; Pfeifer et al. 2001; Briese et al. 2002), relations
of planimetric distance and height difference (Vosselman 2000) or orientation of
normal vectors as homogeneity criterion in segmentation-based approaches (Tévari
and Pfeifer 2005).

However, in certain situations geometric criteria alone hardly suffice to dis-
tinguish ground echoes from echoes close to the terrain surface. This applies
in particular to forested areas with dense understorey, as they pose two major
problems. First, if the vegetation is very low, the range difference between two
consecutive echoes may become too short for the sensor’s detector to separate them
(see Sect.2.3). As a result only one target is identified and the measured distance
(i.e. range) results from an overlap of the two actual reflections. The estimated
three-dimensional (3D) point will then be located somewhere in between them.
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Second, areas with dense lower vegetation often feature little to no penetration at
all. This is especially crucial if the trend of the terrain surface changes significantly
below the vegetation. In both cases, echoes from lower vegetation are very likely to
be wrongly classified as ground points. A DTM based on such a point cloud runs
right through the lowest vegetation levels and above the actual terrain (Pfeifer et al.
2004). These errors may be in the range of several decimetres and therefore critical
for DTM-based applications where high accuracy is required (e.g. Doneus et al.
2008).

The usage of FWF ALS opens up new prospects for DTM generation to
overcome the above mentioned difficulties. Apart from the higher point densities,
FWF ALS point clouds include additional information on radiometric and geometric
surface properties. While the echo amplitude contains information about the reflec-
tivity of the surface hit by the laser beam (see Sect. 2.3), the echo width is influenced
by the vertical distribution of small scattering elements within the footprint of the
beam (Wagner et al. 2008). These relationships provide additional knowledge about
surface properties and have been subject to analysis in several studies dealing with
point cloud classification (Mallet and Bretar 2009). They can be integrated in the
filtering process or used in a pre-processing step for ground point selection. The
amplitude differences of grass or bare soil (usually high amplitudes), asphalt roads
(usually low amplitudes) and rooftops (usually varying due to differing materials)
were used by Alexander et al. (2010) for a decision-tree-based discrimination of
surfaces.

According to the analysis of Wagner et al. (2008), echoes from the canopy,
understorey or near ground vegetation have larger variations in vertical directions
and consequently larger echo widths than the terrain. Based on this fact, Doneus
and Briese (2006) used an empirically derived echo width threshold (see also Briese
et al. 2007; Doneus et al. 2008), pre-selecting terrain echoes in the input point
cloud for the hierarchic robust filtering (Pfeifer et al. 2001; Briese et al. 2002)
and successfully removing echoes from piles of twigs and coarse woody debris
(see Fig. 3.4). In Lin and Mills (2009), a point labeling process, determining terrain
points by using a threshold for the echo width, was applied. This additional surface
information was integrated in a DTM generation approach employing Axelsson’s
progressive densification method (Axelsson 2000). They found that without employ-
ing the echo width filter, the terrain height was significantly underestimated by the
filtering strategy.

Rather than applying hard thresholds on the features of the ALS echoes which
may be sensor specific, Miicke et al. (2010) proposed a point labeling strategy
assigning weights to the single points indicating their likeliness to represent terrain
(see Fig. 3.5). Based on the previous work by Wagner et al. (2008) and Mandlburger
et al. (2007), the weights were derived based on the relationship of echo amplitude
and width and are subsequently used in a modified version of hierarchic robust
filtering. This approach does not eliminate points based on a priori determined
thresholds, rather it flags the points while keeping them in the data set. Therefore the
possibility of creating false negatives is reduced, meaning that reflections that might
nevertheless stem from terrain are still included and not lost for terrain modeling.
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Fig. 3.4 Left: aerial photograph of forested area with logging site. Right: zoomed view of
photograph and overlaid 3D point cloud with applied echo width filtering. Echoes from piles of
twigs have been removed (Modified from Doneus et al. (2008))
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Fig. 3.5 Profile views of ALS point clouds with interpolated DTM with (green) and without (red)
weights derived on the basis of echo amplitude and width. Colour-coding of the points refers
to assigned weights (blue means higher weights, orange means lower weights). Both situations
show that the terrain height is overestimated without the integration of FWF information (Modified
from Miicke (2008))

3.4.2 Single-Tree-Based Applications

In ALS-based applications for forestry the incorporation of FWF data and attributes
(i.e. amplitude, echo width) concentrates mainly on (1) delineation and three-
dimensional modelling of single trees, (2) extraction of biophysical parameters (e.g.
diameter at breast height, stem volume, biomass) and (3) species classification.
Relevant literature has shown that already the higher amount of 3D points contained
in FWF data is a huge benefit to forest applications. Through the more efficient
detection of weak echoes (i.e. reflections of rather low backscattering energy), which
are very likely to occur in the understorey, the characterization and depiction of
the stratification of the foliage is much more detailed. Reitberger et al. (2009),
who were interested in the detection of dominant and sub-dominant trees, found
that the success rate increased by 20 % for trees in lower and intermediate layers
when using FWF data due to the larger number of echoes. They used a 3D
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voxel-based segmentation technique referred to as normalized cut segmentation.
Further incorporating the echo intensity and width, along with the 3D positions of
the echoes in the clustering algorithm resulted in a total of 12 % more detected
trees, improving the detection rate for sub-dominant trees by 16 %. Subsequent
discrimination of the detected trees into needle and broadleaved species made the
advantage of waveform data even more evident, when an overall accuracy of 95 %
was achieved, in contrast to 80 % when using discrete data. Yao et al. (2012) used the
same method as described by Reitberger et al. (2009), but extended it by automatic
determination of diameter at breast height (DBH) and stem volume for the detected
single trees. They reported a 50 % increase in accuracy using waveform metrics in
their approach compared to using discrete ALS data (RMSE for stem volume and
DBH of 16 and 9 % for FWF, in contrast to 38 and 21 % for discrete).

Heinzel and Koch (2011) identified echo intensity and width from FWF ALS
data as highly significant parameters for species detection by means of exploratory
data analysis. In Heinzel and Koch (2012) they made use of their earlier findings in a
support vector classification of tree species, using rasterized FWF ALS data together
with colour-infrared (CIR) images, true-colour (RGB) images and hyperspectral
data. Out of a set of 464 features derived from the raw data to be used in
the classification, their sensitivity analysis showed that the 14 most significant
parameters came from FWF ALS and CIR data. They achieved an overall accuracy
for species determination of 79.2 % using FWF data (including intensity and echo
width information), compared to 47.3 % from 3D information alone, 46.8 % using
only textural measures from RGB, 64.7 % employing hyperspectral metrics and
50.7 % exploiting solely CIR derived features. Using all input metrics together
their evaluation showed an overall accuracy of 88 %. Also in Vaughn et al. (2012),
the benefits of FWF data were shown for tree species classification. They could
increase the classification accuracy for some tree species by 3.5-4 % by using FWF
measures.

Hollaus et al. (2009a) explored the possibilities of FWF ALS data for discrimina-
tion of three dominant tree species (spruce, larch and beech) (see Fig. 3.6). Starting
from an edge-based segmentation on the normalized digital surface model (nDSM),
which was supposed to delineate single-tree crowns, they assigned geometric (e.g.
echo height distributions, mean echo width and standard deviation of echo widths
per segment) and radiometric (e.g. mean intensities and backscatter cross-sections)
features to the segments for a decision tree classification. The echo width was
identified as a valuable parameter for the distinction between spruce and larch,
which were otherwise difficult to separate. This could be explained by biophysical
properties of these two species and their differing representation in the incorporated
leaf-off ALS data set. It was stated that a spruce features a rather dense and
homogeneous “surface” of needles, yielding low standard deviations of echo widths,
which describe the height variation of the scattering elements accumulated on
a respective segment. A larch, on the other hand, loses large amounts of its
needles during winter time and is therefore much more heterogeneous, consequently
featuring higher standard deviations. The success rate for the three selected species
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Fig. 3.6 (a) True-color orthophoto (© http://maps.live.de), (b) slope-adaptive echo ratio (SER),
(c) nDSM overlaid with segmentation result and mean values per segment of the (d) echo width
(8 p.mean) () backscatter cross-section (Omean), and (f) final tree species classification result (From
Hollaus et al. (2009a))

was 75 %, which increased to 83 % when only discrimination into coniferous and
deciduous species was applied.

In contrast to the afore mentioned studies, Hofle et al. (2012) used calibrated
FWF data (cf. Briese et al. 2008; Lehner and Briese 2010) for the detection
of vegetation in urban areas. Also following an edge-based segmentation of the
nDSM, they assigned attributes to the resulting polygon geometry, which included
features like: mean and standard deviation of normalized point height, mean echo
width, or mean backscatter cross-section and backscatter coefficient (cf. Chap. 2).
These features were derived independently for either all echoes, only the first,
the intermediate or the last echoes. Additionally, they computed a relation of the
number of echoes to all echoes for the first, intermediate and last echoes as a
measure for penetration. It was stated that this penetration measure, which was
the least computationally expensive to derive, was the most significant classifier
of vegetation segments (overall accuracy of 94 % using an artificial neural network
for classification), a measure benefiting largely from the high point density provided
by the FWF data set.

The authors were able to slightly increase the accuracy to 96 % by using a
decision-tree classification based on combined feature sets of mean intensity, mean
echo width per segment and metrics describing the height distribution of echoes
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inside a segment. It was also shown that vegetation areas in general correspond
to high values of echo width and low values of signal amplitude. Furthermore,
differences in the homogeneity of the echo width distributions for different echo
types (i.e. first, intermediate, last) were observed. Single echoes from buildings,
for example, were found to have more homogeneous echo widths than last echoes
from trees, a knowledge which could also be used to further refine the classification
results.

Single-tree-based methods basically describe the smallest entity of a forest,
thus they stand and fall with the success of detecting the same, while stand-based
methods are more robust due to the averaging over larger areas. FWF data have
proven to be highly valuable in improving this process. However, the delineation
of single trees is usually a complex and computationally extensive procedure and
therefore not very suitable for large area applications. More robust methods, which
are capable of handling large amounts of data, are used in area-based applications,
which are introduced in the following section.

3.4.3 Area-Based Applications

In contrast to single-tree-based approaches, area-based ones use circular plots,
grids or forest stands as reference unit (see Chap. 11). Commonly, ALS metrics
describe the horizontal and vertical distribution of ALS echoes within a reference
unit. They are used for a variety of statistical (e.g. Neasset 1997, 2002), (semi-)
empirical (e.g. Hollaus et al. 2009b) or physical (e.g. Hyyppi et al. 2012) models
for assessing forest parameters. An automated derivation of forest parameters using
such regression models has already reached an operational status, but commonly
uses only the 3D information (i.e. x, y, z coordinates of the echoes) from discrete,
as well as FWF ALS data. Using the additional FWF information (e.g. echo width,
backscatter cross-section) for area-based approaches is limited to few applications
until now, either due to the limited availability of the data, or because of the lack of
methods using this additional FWF information.

One of the first FWF ALS applications is described in Nilsson (1996) who used a
helicopter-borne scanning laser for estimating stand volume for a coastal Scots pine
stand. Similar to the publication by MacLean and Krabill (1986) that used the cross
sectional areas derived from an Airborne Oceanographic Lidar profiler to estimate
gross merchantable timber volume, Nilsson (1996) used the mean product of the
waveform area and the laser height to estimate stand volume. The mean values were
calculated for individual plots with a radius of 10 m. For the stand volume estimation
a linear regression model was used and a R? of 0.78 was achieved.

In addition to the higher point density of FWF ALS data compared to discrete
ones, the radiometric content (i.e. amplitude) has been shown as a beneficial
property for tree species classification. For example Heinzel and Koch (2011) have
shown that for a test site of 10 km? up to 6 tree species were classified with an overall
accuracy of 57 % using 3 variables based on the intensity, the echo width and the
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total number of targets. The overall accuracy increased to 78 % if the classification
was limited to the 4 main species, and to 91 % if the classification was limited
to conifers and broadleaved trees, respectively. The incorporated ALS data were
acquired with a Riegl LMS-Q560 scanner in the main growing season.

Wing et al. (2012) used intensities from ALS data acquired with a Leica
ALS 50 Phase II laser system to predict understorey vegetation cover in an
interior ponderosa pine forest. The explanatory ALS metrics were derived for
40.5 m? circular plots. The intensities were used to classify points associated with
undesirable understorey components (e.g. non-vegetation). The intensity data for
that study were acquired while using the variable gain setting and were therefore
not calibrated. Even without calibration, the intensity information displayed great
potential in distinguishing ALS points associated with the various understorey
components. They found that echoes associated with live vegetation typically had
intensity values within one standard deviation of the mean intensity value, and
echoes associated with other understorey components were often outside this range
(Wing et al. 2012). Making use of this knowledge, they successfully removed a
large portion of non-vegetation understorey component points. Even though the
employed Leica ALS 50 is not an FWF scanner, it can record intensity values for up
to three echoes per shot. Therefore, the derived intensities are roughly comparable
to the ones derived from an FWF scanner. Because of the recorded echo width
information small-footprint FWF scanners provide more explanatory value for echo
classification (cf. Sect. 3.4.1).

Several studies applying FWF ALS data for assessing forest parameters can be
found in the literature (e.g. Kronseder et al. 2012; Rossmann et al. 2009), but in all
of them only the 3D position information of the echoes is used to extract input
parameters for regression models. In these studies the benefit of the FWF data
is the higher echo density (Persson et al. 2005; Reitberger et al. 2008). Chauve
et al. (2009) reported that tree crowns and undergrowth were more densely sampled
due to the detection of weak and overlapping echoes within the backscattered
waveforms, which allow a more detailed description of the structure of forest stands.
For example Vetter et al. (2011) used detailed vertical structure information near
the terrain surface derived from FWF ALS data for hydraulic surface roughness
estimation within a forested area. Leiterer et al. (2012) developed a method for the
physically-based extraction of canopy structure variables (e.g. the occurrence of
various canopies in a vertical column and species composition) on grid level. They
analysed different grid sizes to extract canopy structure types based on leaf-on and
leaf-off data in a dense forest stand with high species diversity in Switzerland (see
Fig.3.7).

Lindberg et al. (2012) introduced a method to detect vertical vegetation structure
to represent the shrub layer and one or several tree layers using discrete as well as
FWF ALS data. The study was done in a hemi-boreal, spruce dominated forest in
South-West Sweden. They used different methods to estimate the vegetation volume
profile from the FWF data. The vegetation volume profile was defined as the volume
of all tree crowns and shrubs in 0.1 m height intervals for 12 m radius plots. To assess
the amount of vegetation at different heights above the ground, the ALS profiles
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Fig. 3.7 Example of the grid-based vertical stratification of forest canopy structure (cell size 5 X
5m?) (From Leiterer et al. (2012))

were rescaled using the estimated total vegetation volume. They concluded that the
vegetation structure can be described more accurately from FWF data than from
discrete ones.

Miura and Jones (2010) used different laser echo properties from FWF ALS
data to characterize forest ecological structure for an Eucalyptus coastal forest
and woodland study area in Tasmania, Australia. The applied regression analyses
showed that the ALS derived variables were good predictors of field recorded
variables describing forest structural types. They concluded that FWF ALS provide
information on the complexity of habitat structure in an efficient and cost-effective
manner.

Similar to this outcome, Neuenschwander et al. (2009) reported that FWF data
provide detailed information about branches and leaves along the laser line-of-
sight, which improved the classification accuracies of a landcover map by 15 %
compared to high-resolution Quickbird multispectral imagery. They argued that
spectral signatures are often similar for vegetation even though the vegetation types
are structurally quite different. The analyses also showed that amplitudes derived
from waveforms were selected most frequently for discriminating different tree
types and densities.
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Fig. 3.8 Shadow raster maps based on leaf-on ALS data (selected vegetation echoes only) and the
average sun positions in June (From Miicke and Hollaus (2011))

Miicke and Hollaus (2011) used high-density FWF ALS data (leaf-on and leaf-
off) to model the light conditions in forests. The geometric information of the
vegetation structure was derived directly from the 3D point cloud and was used
to model the distribution of sunlight-absorbing or intercepting parts of the foliage
which cast shadows on the surrounding understorey vegetation or ground. For
modeling the light conditions, the photogrammetric monoplotting approach was
adapted. They concluded that the resulting shadow raster maps provide valuable
input for various biodiversity analyses, e.g. modeling the amount of available
sunlight in vegetated areas (see Fig. 3.8).

3.5 Conclusion

FWF ALS offers a variety of additional features in comparison to discrete-return
ALS while only demanding for moderate efforts in echo digitization. It can even
be considered as the more natural approach since it records the signal traveling
through the atmosphere. Discrete-return systems on the other hand only extract
one parameter of this signal, namely its return time and therefore a distance, and
in some cases an intensity value. With these digitized waveforms, practically all
the information which the scanners themselves use for onboard echo extraction is
available for further post-processing.

From a geometric point of view, more echoes are usually detectable in FWF data
than in the discrete-return case, resulting in a higher point density. Furthermore,
FWF allows for the calculation of radiometric echo parameters in the same spatial
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resolution. From these parameters, the echo width is of interest in vegetation and
forest studies: (a) for an enhanced terrain/non-terrain classification of the points in
order to reliably estimate the canopy height, and (b) for the classification of tree
species. Furthermore, some studies have demonstrated the benefits of calibrated
intensities for single-tree crown segmentation and tree species classification.

Even though the availability of FWF ALS data is increasing, the applications of
e.g. echo width and backscatter cross-section in forestry are still limited. A severe
limitation is often the availability of software tools allowing computations directly
on the 3D point cloud considering also the point-based FWF attributes. Finally, the
use of FWF information for assessing forest attributes is dependent on the capability
of the ALS system to acquire the necessary information for calibrating the ALS data
(e.g. amplitude and backscatter cross-section).
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Chapter 4

Integrating Airborne Laser Scanning

with Data from Global Navigation Satellite
Systems and Optical Sensors

Rubén Valbuena

Abstract Most forestry applications of airborne laser scanning (ALS) require
simultaneous use of various data sources. This chapter covers a number of common
issues that practitioners face when dealing with data fusion schemes. The first
subsection points out the objectives that may be pursued when integrating different
data sources, and the benefits that can be obtained from using diverse remote
sensors onboard differing platforms. The next subsections are devoted to the two
data sources that usually pose most problems in their spatial co-registration with
ALS datasets: field inventory and aerial photographs. All data sources ultimately
rely on global navigation satellite systems (GNSS) which are especially error-prone
when operating under forest canopies. Positioning methods and spatial accuracy
assessment applied to forest plot and individual tree surveying are presented,
also including terrestrial laser scanning (TLS). Furthermore, procedures for digital
elevation model (DEM) generation are reviewed in the context of their use in
orthorectification, which is the most widespread method for fusion of ALS with
optical sensors. Drawbacks of using orthophotos are identified, therefore suggesting
alternatives: true-orthorectification, back-projecting ALS and image matching.

4.1 Introduction and Objectives

In this chapter, some fundamentals of remote sensing are reviewed with the purpose
of assisting practitioners with the — sometimes difficult — task of integrating various
data sources within the same project. Every positioning method is prone to errors,
but some are more severe than others. It is also important to know whether a
given error source leads to bias, or just isotropic uncertainty around a coordinate.
Usually the ALS data serve as reference to which other data sources have to be
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co-registered. The objective of this chapter is to guide on the choice of methods
for georeferencing information that applies to each case. Section 4.2 reviews the
different objectives that may be pursued in multi-source projects, specifying the
benefits of including both airborne laser scanning (ALS) and optical sensors for
forest assessment. Section 4.3 focuses on integrating the data acquired in the field,
and therefore revises some principles of global navigation satellite systems (GNSS),
detailing particularities of positioning sample plots under forest canopies. Methods
for incorporating positions of individual trees are considered as well, including
terrestrial laser scanning (TLS). Section 4.4 is devoted to fusion of ALS and optical
sensors, reviewing some basics of photogrammetry. The procedures for digital
elevation model (DEM) generation are discussed, pointing out the consequences
of using them for optical image orthorectification. The last sub-section explains
how back-projecting can be used for colouring ALS echo clouds if information on
platform position at the time of exposure is available.

4.2 The Role of Additional Data Sources in ALS-Assisted
Forest Inventory Projects

Most forestry applications of ALS depend on the combination of various data
sources. In the simplest case, information surveyed from the field must be spatially
registered with the ALS echo cloud. More complex projects may use ground-based
TLS, or additional remote sensors onboard satellite or aircraft platforms: optical
multispectral or hyperspectral imagery, synthetic aperture radar, etc (Fig. 4.1). In
most cases, georeferencing these datasets is ultimately based on GNSS, such as
the global positioning system (GPS) developed by the US Department of Defense,
among others. The georeferencing accuracy of these datasets must be appropriate
for the scale used to describe the forest variables (tree, plot or stand-level). This is
a common issue for any ALS project, though forested environments add a number
of particular challenges to data integration. Tree crowns obstruct the propagation of
electromagnetic waves, thus critically affecting the accuracy and precision obtained
by GNSS receivers situated under forest canopies. Moreover, the difficulty to
obtain accurate DEMs in forested areas complicates the orthorectifying process of
optical imagery. Errors in dataset co-registration introduce noise to the models, as
predictors displace from their corresponding response. Their effect on estimated
forest properties depends on the spatial heterogeneity of the variables considered,
and the scale used. As all these complicating factors are relevant, they have to be
taken into account at the planning stage, in order to ensure collection of data for
forest inventory with an appropriate quality.

Incorporating field data is mandatory in most ALS forest assessment projects.
ALS data are usually delivered with accurate coordinates, and no additional
measures are therefore required prior to application relying solely on the ALS
data, such as for example within hydrological or civil engineering applications,
for instance to model flooding events. However, its use for forest inventory and
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management, as well as most environmental and ecological applications, usually
requires additional GNSS-surveyed datasets to be integrated in the same project.
Field inventory data are certainly the most common data source to be included,
as it may be mandatory for either training or validating the methods used. Due
to differences among sensors and survey configurations, ALS predictive models
generally need to be calibrated for each individual case (Nesset 2009). For this
reason, surveying new GNSS-positioned field plots is required for most ALS-
assisted forest inventory projects. GNSS errors in horizontal coordinates affect the
positional co-registration between the ALS point cloud and the field data, lowering
the accuracy of forest estimates (Gobakken and Neasset 2009; Mauro et al. 2011).
There may be a variety of reasons for including additional data sources in
forestry applications of ALS. When diverse data sources are available, there
are benefits gained from their synergies and complementary assets (Table 4.1).
Approaches which use ALS estimations within forest stand boundaries obtained
from aerial images are commonplace. Photointerpretation and manual delineation
is the method most widely followed, though automated segmentation may be used
as well (Leppidnen et al. 2008). These boundaries can be used to divide the forest
area into homogeneous strata, removing variability within individual strata for
enhanced predictive modelling (e.g. Nesset 2004). Moreover, ALS echoes reach
the ground and the understory, whereas optical imagery only collects information
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Table 4.1 Summary of complementary properties of different sensors when fusing ALS with
optical sensors onboard differing platforms: (a) airborne and (b) satellite

Advantages

Disadvantages

(a) Airborne laser scanning vs. airborne optical sensors
Airborne laser scanning ~ Direct data georeferring
Provides information from under
the dominant canopy

Provides information on
photosynthetic productivity

Airborne optical sensors

(b) Airborne laser scanning vs. satellite sensors

Airborne laser scanning ~ Accurate estimation of forest
attributes

Detailed spatial information

Higher coverage at relatively low

cost

Regular temporal recurrence and

homogeneity in acquisition

Satellite optical sensors

Limited information on species
diversity and forest health
Requires prior stratification for

better predictive modeling
Need for perspective correction
Unable to penetrate the canopy

Tradeoffs between echo density
and survey extent
High cost
Less precise estimates
Sensor signal saturates at high
biomass values
Lower spatial resolution

(global validity and baseline
determination)

on the overstory (Baltsavias 1999). For this reason, tree height and crown shape
properties can be obtained from ALS data, while species information may be better
inferred from aerial photography (Persson et al. 2004; Leckie et al. 2005; @rka
et al. 2012). Multispectral and hyperspectral sensors can also be used to provide
information about health conditions of the forests (Bright et al. 2012) and support
water or chlorophyll content monitoring (Solberg et al. 2004). Adding predictors
derived from different sensors may improve the explanatory power in the modelled
relationships compared to using only one of them (Packalén and Maltamo 2006;
Valbuena et al. 2013). However, ALS obtains positions with polar geometry while
optical sensors are characterized by a perspective acquisition of incoming radiance,
posing a challenge for data fusion.

The use of sensors onboard satellite platforms can add a number of advantages
as well. Accurate field data can only be obtained for a limited number of sample
plots, whereas remote sensors usually provide less detailed information which
nevertheless covers larger areas at a lower cost. For this reason, large-scale forest
assessment assisted by remote sensing must typically be based on multi-phase
sampling schemes (e.g. McInerney et al. 2010; Andersen et al. 2011; Asner
et al. 2013; Chap. 14). In remote sensing, sensor height determines a trade-off
between total coverage and spatial and temporal resolution, so that advantages
of airborne and satellite platforms complement each other (Table 4.1b). Satellite
sensors acquire a large swath with high temporal recurrence, allowing sequential
monitoring. Satellite multispectral sensors can provide an estimate of photosynthetic
productivity that can be consistent globally, with the additional asset that carbon
reference emission levels can be defined from imagery collections already acquired
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in the past (Cohen et al. 2010). However, they are seriously affected by the presence
of cloud cover, and the estimations suffer from a saturation problem in highly
stocked forest areas (Avitabile et al. 2012).

Three levels of data fusion may be involved in ALS projects (Fig. 4.1). Although
the accuracy of elevation coordinates may be important for some applications, for
most purposes the quality of the horizontal coordinates is the most relevant with
regard to data fusion. First of all, the field data ought to be properly registered
with respect to the ALS data by means of GNSS positioning. The performance of
current GNSS receivers and operating methods has been evaluated in temperate and
boreal forests (e.g. Nasset and Gjevestad 2008; Andersen et al. 2009; Valbuena
et al. 2010), though the effect of complex tropical canopies on GNSS positioning
is yet to be studied (d’Oliveira et al. 2012). The second level of data fusion is
required when airborne optical sensors are to be included, either multispectral or
hyperspectral, for example to determine the relative presence of different species
(Packalén et al. 2009). When the aim is to assure that optical radiometric information
corresponds with ALS returns reflected from a same feature on the ground, either
of these alternatives may be followed: orthorectification, back-projection or image
matching, in order of increasing accuracy of the horizontal coordinates. The last
level of data combination is performed when satellite information is also included.
To obtain accurate estimations in ALS projects, the errors of all data sources should
be diminished. Should significant spatial mismatches be detected, methods for
spatial adjustment among datasets may be considered (see methods for adjusting
the field data in Sect. 4.3.3.2).

4.3 Incorporating Data Acquired in the Field into
ALS-Based Forest Inventory Projects

Plot establishment, which is required for most forestry applications of ALS, relies
on GNSS technologies for accurately determining the geographical position of the
information acquired in the field. Forest measurements, acquired either at plot-level
or for individual trees, is the most common type of field information to be integrated
with ALS datasets, although field information may also originate from other remote
sensing techniques, such as TLS or hemispherical photography (Lovell et al. 2003).
GNSS receivers may also be positioned onboard harvesters or logging machines,
obtaining the positions of selective cuttings (Holmgren et al. 2012) and skidroads
(d’Oliveira et al. 2012). As a result, forest inventories based on ALS remote sensing
are especially affected by issues concerning the accuracy of GNSS occupations
obtained under dense canopies (Gobakken and Nasset 2009; Dorigo et al. 2010).
The quality standards that must be attained in GNSS surveying will be determined
by the scale and resolution of all the datasets integrated in an ALS-assisted forest
inventory and management project. Plot size is an important factor, because small
plots are more vulnerable to GNSS positional errors than large ones (Gobakken
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and Nesset 2009; Frazer et al. 2011; Mauro et al. 2011). In general, the level of
accuracy which is acceptable depends on the actual application and characteristics
of the data. For instance, when Tachiki et al. (2005) used GNSS for delineating
stand boundaries, the same errors led to larger miscalculations in perimeter than
area. Consequently, the effect of GNSS errors depends on the spatial variability of
the forest property of interest, and the scale at which it is measured, estimated and
validated, i.e., tree, plot or stand-level.

4.3.1 Basics in Global Navigation Satellite Systems (GNSS)

GNSS receivers observe and record electromagnetic signals from constellations of
satellites: the American GPS, the Russian GLONASS, the European Galileo or the
Chinese Compass/BeiDou (the latter ones will eventually be fully operational). The
satellites broadcast their ephemerides, i.e. time and position in the sky, which are
interpreted by the receiver to compute its distance to each of them. Horizontal
coordinates can be computed with a minimum of three satellites by trilateration,
whereas a fourth one is required for calculating the vertical coordinate. Observing a
larger number of satellites increases the possibilities of obtaining a good geometrical
position of satellites and therefore contributing to improved accuracy and precision
(Habrich et al. 1999; Neasset et al. 2000). The wide range of receiver types
available in the market may be roughly classified in order of increasing accuracy as
recreational, mapping, survey and geodetic-grade. Most receivers currently observe
epochs of the civilian code (coarse acquisition C/A), and the phase of the carrier
frequency (so-called carrier phase). The distance to each satellite can be calculated
from the code by pseudorange, i.e. the time difference between the receiver’s clock
and the moment when the satellite broadcasted the signal. Higher accuracy can be
obtained when the receiver determines the carrier phase, however this requires that
the initial phase ambiguity is solved (Nasset 1999).

Many error sources affect accurate range determination in GNSS surveys, and
forest canopies add many obstacles such as complete blockage or attenuation of the
signal and a strong multipath effect (Hasegawa and Yoshimura 2007). Multipath
occurs when signals reflected from nearby objects lead to strong errors in distance
measurement (Fig. 4.2). Many developments have provided solutions to all those
issues. Dual-frequency receivers remove the ionospherical delay error, albeit with
an elevated signal-to-noise ratio (Arslan and Demirel 2008). The choke-ring antenna
(Jet Propulsion Laboratory, California) was designed to mitigate signals reflected
from underneath, though signals reflected from above by tree crowns may still affect
the accuracy of the position measurement (Valbuena et al. 2012).

Differential correction (DGNSS) is commonly applied for solving ephemeris
and clock synchronism errors by observing the same signals simultaneously from a
tandem of rover and base receivers, with the latter situated on a know position. Static
observations can be acquired by a stand-alone receiver and corrected afterwards
at post-processing stage. Alternatively, real-time kinematic (RTK) corrections can
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Fig. 4.2 The multipath effect. Signal reflections lead to uncertainty in range measurements

be applied while surveying with an established base receiver if continual radio
contact with the rover is maintained. The baseline distance between rover and base
affects the final accuracy, and therefore RTK provides best accuracy when operating
under unobstructed conditions, i.e. out from the forest. However, establishing a
dedicated base-station may be impractical for large-scale forest inventories. In such
cases, post-processing differential corrections can be performed from independent
local/regional/global networks of base stations (e.g. Andersen et al. 2009; Valbuena
et al. 2010). Moreover, real-time corrections can also be obtained from satellite-
based augmentation systems (SBAS) such as WAAS in north-America, EGNOS in
Europe, SDCM in Russia, MSAS in Japan, or GAGAN in India. Other commercial
SBAS services may also be considered, according to each study area and the
accuracy requirements. SBAS are however affected by canopy blockage as well,
as they also need to reach the GNSS receiver from the satellite. Roughly speaking,
the accuracy obtained can improve from meters when measuring autonomously to
just centimetres or even millimetres when applying these techniques for DGNSS
(Naesset 2001; Nasset and Gjevestad 2008).

Three different types of DGNSS solutions may be obtained, depending on
the quality and the time of observation. If continuous tracking is achieved, the
differential correction procedure may be capable of solving the initial carrier phase
ambiguity. This type of solution is called fixed-solution, and it achieves more
accurate positioning than the other types of differential solutions: float and code-
solutions. Repeated interruption of signal reception from satellites may prevent the
receiver from solving phase ambiguities, since continuous tracking of the carrier
phase is needed (Hasegawa and Yoshimura 2007). Thus, signal blockage caused
by the forest canopy is a handicap for fixing DGNSS solutions. An approximation
using both pseudorange and carrier phase, so-called float-solution, is then computed.
When no approximation to phase ambiguities can be performed we obtain a code-
solution computed from pseudorange only. The accuracy of the coordinates obtained
by these different types of solutions computed by the differential correction may
range from meters in code-solutions to centimetres in fixed-solutions (Neasset and
Jonmeister 2002). As recording more epochs increases sample size, float-solutions
are more reliable for long recording periods, reaching accuracies comparable to
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fixed-solutions (Nasset 2001). Whether a receiver situated under the canopy is
capable of consistently obtaining fixed solutions is however a major issue in DGNSS
surveying for ALS applications in forestry (Valbuena et al. 2010).

The roving receiver is usually set at a certain height above ground (usually
around two meters), in order to widen the observed horizon for its antenna and
also to avoid multipath. In rough terrain, signals from the ground can be further
masked by applying a cut-off angle. Moreover, static GNSS observations result in
multiple epochs which are recorded during the observing time at a rate specified
by the operator. The final GNSS occupation is usually computed by the receiver’s
software by means of epoch averaging, also involving algorithms for differential
correction and outlier filtering. The choice of an optimal antenna height, logging
rate and cut-off angle depends on which conditions, in each case, present the highest
limit to GNSS surveying’s reliability. If field conditions impede observing the
minimum number of satellites required, the logging rate can be set to record at lower
frequencies, allowing a larger time window to observe satellites. On the other hand,
when operating in floating mode, a higher frequency may be preferred to assure
a large sample size of epochs which may increase the precision (Nasset 2001).
Elevation angle masks may be chosen in the presence of rocky terrain, or they may
be avoided when mountains blocking the horizon are a limiting condition (Valbuena
et al. 2010). The antenna is commonly elevated higher above the ground as it may
significantly increase the number of observed satellites at high latitudes (Arslan and
Demirel 2008), or avoid the obstruction of vegetation, e.g. in the presence of dense
understory. On the other hand, Valbuena et al. (2012) suggested that distancing the
receiver from the canopy bulk may be advisable in a self-pruning forest or wet
conditions, advising to lower the antenna heights in such cases.

4.3.1.1 Determining Accuracy and Precision

Absolute accuracy of a surveyed position’s coordinates p = (x,y,z) can only
be known by comparing them against their reference ones prer = (Xre, Yref» Zref)
obtained with a more accurate methodology. In the case of GNSS, a closed-traverse
total station survey is the common procedure for quality control. Bias is estimated
by calculating absolute errors (e,) at each coordinate direction:

ep = (p— prr)”. @.1)

Nonetheless, determining the accuracy of a large number of GNSS occupations
is usually impractical and expensive. Alternatively, a figure of precision (o,) may
be provided by the receiver according to the GNSS epochs’ dispersion around their
average (each logr=1,...,mrecorded along the observation time is an epoch):

T \/Zil(’” =P/ m=1. “.2)
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Fig. 4.3 Anisotropic accuracy in trilateration and positional dilution of precision. (a) In trilater-
ation, the uncertainty in range measurements (dashed lines) leads to an overall precision in the
final positioning (shaded area). (b) This area depends on the relative positions of satellites (dotted
arrows), being larger for trilateration angles of lower sine

Another common way of describing GNSS precision is given by the dimension-
less parameter positional dilution of precision (PDOP). PDOP is a measure of the
geometry of available satellites’ relative positions, and decreases when conditions

are favourable:
PDOP = ,/0Z + Uyz + UZZ. 4.3)

where 02, 05 and o2 depend on the cofactor matrix resulted from trilateration, and
therefore change according to the position of satellites. As a result, an error in
ranging propagates to a larger uncertainty in final coordinates when the satellites
are situated in a near-straight line with the GNSS receiver (Fig. 4.3).

Many studies have been carried out to evaluate the performance of GNSS
receivers under forest canopies. Practitioners who need to evaluate a subcontracted
GNSS survey may wish to hone their ability to distinguish when accuracy and
precision are computed against an independent ground-truth (e.g. Liu and Brantigan
1995; Sigrist et al. 1999; Nasset and Jonmeister 2002; Andersen et al. 2009;
Valbuena et al. 2012), or merely against the mean position of epochs recorded (e.g.
Tachiki et al. 2005; Zengin and Yesil 2006). GNSS positioning is usually prone
to bias when operating under forest conditions, since multipath necessarily leads
to overestimating the range measurement (Fig. 4.2). Therefore, an independent
set of highly accurate reference points is needed to determine absolute accuracy
as distances between GNSS-occupied coordinates and their reference positions
(Eq. 4.1). In contrast, the precision computed by the receiver for that same GNSS
occupation is the standard deviation of the epochs recorded around their mean
(Eq. 4.2) (Hasegawa and Yoshimura 2007; Valbuena et al. 2010). To properly reflect
on the meaning of a given precision measurement, it should be remembered that
twice that distance from their average is needed for enclosing 95 % of the epochs
observed. If many positions i =1, . . ., n are occupied, the proper assessment of their
overall performance should be done by means of their root mean squared error
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(RMSE) (Sigrist et al. 1999), which takes into account their bias and variability in
comprehensible units of measure. RMSE allows comparing groups surveyed under
different conditions (e.g. Neasset 2001):

RMSE, = \/<Zf=lel,i/n)2 +3_ (e, —e_,,,.)z/ (n—1). (44

Andersen et al. (2009) and Valbuena et al. (2010) showed that precision and
PDOP values provided by the receivers may disagree with real accuracies, especially
at short observing times. Therefore, obtaining the reference positions is compulsory
for truly determining the accuracy of GNSS occupations. Control datasets are
usually generated by means of ground topographic traverse surveying. In forested
environments, traverses allow to link terrain positions under tree crowns with refer-
ence DGNSS occupations obtained in the absence of canopy’s influence. A traverse
consists of determining the positions of visually-connected points by the distances
between them and their bearing angles, usually with a total station. Measuring
backsight and foresight at each point determines the angle between consecutive
segments, and their corresponding distances. Best conditions are obtained when a
polygonal traverse can be closed and all surveyed points are determined by least-
squares adjustment of these redundant measures (Wolf and Brinker 1994). This
allows for internal assessment of error propagation, resulting in a traverse survey
with an accuracy superior to that of under-canopy DGNSS surveying.

4.3.2 GNSS for Positioning Plot-Level Information

The effects of GNSS errors on ALS-assisted forest inventory estimates depend
mainly on the response variable and ALS metrics selected for the models, that tie
the ALS metrics to the biophysical property observed on a plot (Gobakken and
Nesset 2009), the choice of GNSS receiver and plot size (Mauro et al. 2011),
and the spatial heterogeneity of canopy structure at the study area (Frazer et al.
2011). A number of authors have tested the performance of several types of GNSS
receivers and positioning procedures, and the effect of diverse canopy types (e.g. Liu
and Brantigan 1995; Deckert and Bolstad 1996; Sigrist et al. 1999; Nesset 1999,
2001). Provided that there are sufficiently long observation periods, the accuracies
obtained generally tend to converge among systems and conditions (Nzsset et al.
2000; Valbuena et al. 2010). The most practical approach is therefore to record
GNSS epochs at plot centre while forest mensuration is carried out, allowing
enough time for the receiver to log several hundred epochs. Nasset and Gjevestad
(2008) suggested that differential correction must be a mandatory practice for the
observation periods which would be realistic in field data collection for ALS forest
inventory. Obtaining accurate coordinates matters more if small plots are located
within spatially heterogeneous forest areas (Frazer et al. 2011; Mauro et al. 2011).
For this reason, Gobakken and Nesset (2009) found the ALS estimates to be more
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affected by GNSS positioning errors in mature forests with relatively fewer stems
than young planted stands with more even tree spacing. It has been suggested that
recording times may be optimized at each plot according to dominant height, basal
area (Nasset and Jonmeister 2002), canopy cover, volume, stand density or leaf
area index (Valbuena et al. 2012). Overall, an occupation time of 10 min should
be sufficient in practice for positioning 9—15 m-radius circular plots with current
survey-grade GNSS receivers. This works as a general rule of thumb in fairly
uniform boreal and temperate forest conditions, and for the actual accuracy required
for ALS area-based applications. In dense tropical forests accurate positioning
may be more challenging, and the effect of GNSS errors may be diminished by
using larger plot sizes (e.g. Asner et al. 2013). The use of hand-held receivers is
discouraged for this duty.

In clear sky conditions, frequent logging rates decrease the uncertainty of the
positions obtained, since a larger number of observations is obtained (Eq. 4.2).
However, this practice may be counterproductive when the GNSS receiver is
set under dense forest cover, as numerous obstacles increase the probability for
the signal to be interrupted (Hasegawa and Yoshimura 2007). It is an advised
practice to lower the logging rate, especially when detecting that the receiver hardly
fixes any solution. This would allow a longer window of time for the receiver
to fix the initial phase ambiguity. Naesset (2001) found that float dual-frequency
solutions may achieve lower accuracies than fixed single-frequency ones. Even with
a large number of epochs recorded, float solutions will be worse than fixed ones
in the presence of bias. The continuous tracking of satellites is essential for fixing
the phase ambiguity, and most receivers can deduce satellite trajectory when the
observation is temporarily interrupted, being more likely to detect the signal back
afterwards. The receiver should therefore be kept functioning during the whole
campaign, even when no epochs are being recorded at a forest plot, unless battery
availability is a limitation. The operator may well allow the receiver to find satellites
at a gap in the canopy at the beginning of the survey, and also at several intervals
during a working day if eventually detecting a low availability of satellites.

In mountainous areas, the obstruction of the horizon significantly limits the
number of satellites observed (Deckert and Bolstad 1996). In DGNSS, there is not
much practical use in choosing a base station situated at the other side of a ridge,
if that prevents rover and base receivers from simultaneously observing the same
satellites. The effect of the surrounding topography can be an important determinant
in the choice of stations for differential correction. Only one base receiver situated
in the main aspect direction of the foreslope may obtain higher accuracies than a
network of stations observing satellites in the backslope, out of the rover’s horizon
(Valbuena et al. 2010). This criterion prevails over the baseline distance, unless
exceeding 50-100 km (Andersen et al. 2009). Moreover, receivers incorporating
a cut-off mask and a choke-ring antenna have been found to efficiently mitigate
the effect of steep terrain. Hence, antenna heights no longer limit the accuracy
obtained critically. However, other benefits can be obtained from raising the antenna
up to 4 m from the ground, as increasing the observing horizon may be crucial in
study areas in mountainous terrain or high latitudes (Arslan and Demirel 2008).
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In such conditions, when the number of satellites observed is a limiting factor, the
best setting is to raise the antenna height and apply no cut-off. Nevertheless, as
indicated above, approximating the GNSS receiver to the crown bulk of the canopy
may compromise the accuracy obtained, especially in wet conditions (Sigrist et al.
1999; Valbuena et al. 2012).

External validation of GNSS positioning by traverse surveying can be reserved
for only a sample of all GNSS occupations, as long as the whole range of forest
conditions occurring at the study area are present. On the other hand, evaluating
the quality of forest plot establishment by means of descriptors obtained by GNSS
receivers during the occupation may be sufficient for most area-based inventory
applications of ALS. The best ones are, in order of reliability (c.f. Nasset and
Jonmeister 2002): the type of solution obtained (fixed, float or code), the precision
around the mean provided by the receiver, and the PDOP. However, some of these
are receiver-dependent (Valbuena et al. 2010), and it is difficult to know exactly the
built-in algorithms included in the instruments, for instance outlier filtering. These
descriptors are therefore only to be compared when obtained by the same receiver.

4.3.3 Subplot-Level Positioning of Individual Tree Data

Incorporating tree-wise information into an ALS project is a demanding task,
mostly in terms of field acquisition costs. It is therefore important to consider
beforehand whether comparing against individual tree positions is really required, as
the reliability of individual tree detection approaches for forest parameter estimation
from ALS can in many cases be adequately evaluated at the plot or stand-level. The
decision depends mainly on whether the targeted forest property requires spatially
explicit information, for example in studies on tree competition or spatial pattern
distributions. Although most forest management planning and forecasting systems
have traditionally been based on stand-level inventory, there are increasingly more
methods based on tree lists or species-wise diameter distributions.

A number of techniques can be used to obtain individual tree positions in the
field (see e.g. Vauhkonen et al. 2012). Frequently, individual trees are positioned
relatively to reference landmarks occupied by GNSS or within a traverse survey.
Depending on the survey equipment and the amount of resources available for field
data acquisition, the positioning of individual trees may be grounded on each of the
three basic positioning methods: ranging, triangulation or trilateration (Fig. 4.4).
In the most common case, (a) bearings and distances may be determined using
a compass and a measuring tape, or a total station, which usually requires an
additional operator holding the prism (see e.g. Valbuena et al. 2012). The reference
landmark may also be the position where to set a TLS instrument, using its resulting
point cloud as a source to extract the positions of individual trees (Henning and
Radtke 2006). (b) Field photogrammetry applies triangulation of stereo images
to determine individual tree positions (Forsman et al. 2012). Alternatively, (c)
using direct ultrasonic transponder trilateration may allow carrying out tree position
surveying by a single operator alone (Lamas 2010; Holmgren et al. 2012).
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Fig. 4.4 Methods for determining spatial positions. The position of an individual tree is deter-
mined relative to a reference, using a different method depending on what can be measured in
each case. (a) If a distance and a bearing angle are available, the position can be determined by
simple trigonometry. (b) If angles can be known but not ranges, triangulation can be used from two
reference observations. (c) If distances can be determined but not angles, three range observations
are needed for trilateration. In any of the cases, the absolute (or relative) positions of reference
landmarks must be known (dashed lines). Any positioning method falls within either of these
categories: as ranging is used by ALS, TLS and total stations, triangulation by photogrammetry
and theodolites, and trilateration by GNSS

4.3.3.1 Fusion of Terrestrial Laser Scanning with ALS

Combining ALS with TLS may be based on measures at plot-level (Lovell
et al. 2003; Hilker et al. 2010). TLS surveys have the capacity for automatically
determining accurate positions of individual stems, obtaining accuracies of few
centimetres (Henning and Radtke 2006; Maas et al. 2008). For this reason, the
combination of ALS and TLS can be carried out at the level of individual trees as
well. In order to avoid trees shadowing each other, a whole plot can be covered from
many reference landmarks (Hilker et al. 2012). Lindberg et al. (2012) extracted
individual stem positions and attributes from TLS and used them for training
the ALS data. They found that TLS can be a reliable alternative to traditional
field collection in ALS-based forest assessment, and a step toward harmonizing
procedures and reducing human subjectivity. The weight of TLS sensors must
nevertheless be born in mind, as well as the fact that dense forest conditions may
require some manual clearing in the areas surrounding the scanner, as excessive
noise challenges most stem detection algorithms.

4.3.3.2 Methods for Adjusting Field Information to ALS Data

The accuracy of relative stem positions offered by TLS or total station surveying is
superior to the accuracy offered by any alternative in GNSS positioning under forest
canopies. Moreover, due to slanted trunks, tree positions may differ significantly
depending on whether they are determined on the ground or by detecting tree tops
from above via remote sensing. A systematic method should be used to determine
which stem positions represent the same tree in both the ALS and the field data.



76 R. Valbuena

Korpela et al. (2007) proposed a practical two-phase method based on both remote
sensing and field survey. The positions of tree tops in the dominant canopy can
be determined from photogrammetry or ALS in the first phase. The second phase
assumes those tree positions as reference and the rest of the trees are positioned
relative to them in the field, assuring redundancy for trilateration and least-squares
adjustment. The outcome is a reasonably good match between the two datasets
achieved directly. As an alternative to adjusting the positions of one dataset against
another, individual trees can be linked virtually, based on their relative positions and
taking into account e.g. the error of each positioning method (Fritz et al. 2011), or
their estimated maximum crown width (Persson et al. 2004).

Furthermore, it may also be the case that mismatches between two datasets
are due to any of the other causes listed throughout this chapter: GNSS errors,
orthorectification, coordinate transformations, etc. If individual tree positions are
available, there are still good chances to manually adjust the data to match the
positioning of the ALS point cloud or canopy height model. Field plot coordinates
can be rotated and translated according to several criteria such as tree species and
height (Dorigo et al. 2010). One solution may also be obtained by minimizing
height-weighted residual distances or maximizing likelihood with crown width-
based gaussian kernels (Olofsson et al. 2008).

4.4 Fusion of ALS and Optical Sensors

A number of applications which can be developed by using a combination of
ALS with optical sensors are detailed in several chapters of this book. In general,
using both ALS and optical sensors improves the results obtained with any of
them alone (Holmgren et al. 2008; Packalén et al. 2009; Mclnerney et al. 2010;
Valbuena et al. 2013). However, this kind of approach faces important challenges
in relation to achieving a correct spatial adjustment of the information derived from
diverse sensors (Honkavaara et al. 2006). The precision of the data recorded by
remote sensors has to be accompanied by their accurate georeferencing, otherwise
the potential synergies among sensors are lost. It is not uncommon to encounter
problems of data mismatching (see Valbuena et al. 2011; Bright et al. 2012), and it
is therefore advised to reflect on the possible sources of georeferencing errors that
may affect the datasets involved in forest applications of ALS.

In case of using aerial or satellite imagery in an ALS-based forest inventory
project, the user should understand the characteristics of the optical sensor and
the post-processing tasks that have been carried out to obtain the final product.
The objective must be to acknowledge the geometric and radiometric properties
of the images, which will determine the forest characteristics that can (or cannot)
be inferred from them. Aerial photographs are less affected by atmospheric effects
than satellite imagery, but are more affected by anisotropy of forest canopy
reflectance (Tuominen and Pekkarinen 2004). Questions on radiometric properties
of optical sensors are well covered elsewhere, and hereby only the processes that
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affect the geometric properties of optical products will be described. Practitioners
should check for two image properties: (1) the spatial resolution, which defines
the minimum size of objects to be identifiable; and (2) the accuracy obtained in
georeferencing the position of those objects. These are always important in any
remote sensing application, but the high positional accuracy obtained by the ALS
sensor makes them critical. For this reason, when an orthoimage is to be used along
with ALS data, even if only for manual delineation of forest stands, the accuracy of
its georeferencing should be well documented.

4.4.1 Perspective Acquisition in Optical Sensors

Optical sensors acquire information in a perspective projection and thus tree
crowns are observed from above at nadir, but sideways elsewhere. Moreover,
because optical sensors are passive instruments, the acquired data depend on the
bidirectional reflectance of sunlight on objects, and thus a same tree shows differing
spectral characteristics in different pictures, according to its relative position within
each one (Tuominen and Pekkarinen 2004). The radiation acquired arrives at the
sensor at different nadir angles (@), i.e. the angle between the projective ray which
carried the radiometric information and the nadir position. Due to perspective, equal
segments within the photo represent different distances on the ground, depending
on whether they are at nadir or close to the picture’s border. For these reasons, in
order to use optical imagery along with ALS data, the sensor perspective has to
be corrected so that elements in the picture are located with a map-like orthogonal
projection. Pixel size in an image is defined by the size of each individual charge-
coupled device (CCD) sensor and the altitude of the platform. Hence, higher spatial
resolutions are offered when a sensor is operated at lower altitude, but anisotropy
and within-picture scale differences due to high variability in nadir angles becomes
larger. Satellite imagery is therefore less affected by perspective and it is usually
purchased as an already orthorectified product, whose positional errors have been
assured by the vendor to be lower than pixel size. The end-user may consequently
assume the position of all pixels as correctly georeferenced in satellite imagery,
and they usually need to pay more attention to their radiometric characteristics
(e.g. atmospheric effects). This chapter will therefore be more focused on the
problems arising when aerial images are to be integrated in an ALS project for
forest inventory, as the quality of their geometrical properties must be ensured.

The model describing the perspective acquisition of optical sensors is grounded
on the condition of collinearity, for which an element situated on the terrain
and its position in the picture are in line with the centre of projection (Wolf
1983). Accordingly, relations between segments defining distances to the centre of
projection must be proportional at sensor and terrain scales, which are provided by
the interior and exterior orientation (IO and EO), respectively. Two IO horizontal
distances are obtained as the distances from photo-coordinates of a pixel (X,4, Y,n)
to the picture’s centre or principal point (X, Y,,), while the vertical distances to the
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centre of projection is the focal length! of the lens (f). These are properly obtained
only after the camera is calibrated, so that the imagery is usually supplied as an
already distortion-free product (otherwise, the distortion model and principal point
displacement ought to be determined for the same focal length used in the survey).
The EO provides these same relations at terrain scale, as distances from the GNSS-
determined position of the onboard sensor at the time of exposure (X, Yo, Zp) to
the position of the target element (X;, Y;, Z;), e.g. a tree top or an element on the
ground. Absolute coordinates for EO should be expressed in a common reference
system, whereas the size of the CCD sensor is needed to calculate the 10 photo
coordinates. Regardless of the units and reference system used, the ratios between
each horizontal distance and the vertical one must be equal at camera and terrain
scales, respectively, at left (I0) and right (EO) sides of the collinearity equations
(Wolf 1983; Schenk 1999):

Xpp = Xpn  muy (X, — Xo) +mypp (Y, = Yo) +mi3(Z, — Hp)

= , 4.5)
f ms1 (X; — Xo) +mz (Y, —Yo) + ms3 (Z, — Hp)
Ypp = Ypu _ mar (Xy = Xo) + may (Vi = Yo) + ma3 (Z, — Ho) 4.6)
f m31 (X, — Xo) + mz (Y, — Yo) + m33 (Z, — Hy) ' ’

As the position of the sensor does not coincide with the coordinate system
used, its EO attitude angles must be used for rotating the segments by means of
a rotation matrix Msx3 = [m;;]. The roll, pitch and yaw of sensor’s platform, which
are provided by the inertial navigation system in aerial photography, are respectively
the rotation angles around along-track, across-track and vertical axes (w, @, «). If all
these angles are determined to be clock-wise positive, the rotation matrix can be
constructed as (Wolf 1983; Schenk 1999):

M =

COSQ - COSK  COSw -Sink+sinw - sing - cosk  sinw - Sink—cosw - sin @ - cos K
—COS@-sink  COSw -COSKk—Sinw -Sing -sink  sinw - cOSK+ Cosw - sing - sink
sing —sinw - cos @ COS @ - COS @

4.7

The collinearity equations are the general model, with variations, for correcting
the perspective acquisition of optical sensors. They can be used for multiple
applications applying calculations at either direction, i.e. not only to calculate terrain
locations of elements in the picture but also for rendering positions on the ground
from the camera perspective, a practice called synthetic rendering (Forkuo and

"More precisely denominated camera constant as most cameras consist of a system of compound
lenses, though the collinearity model simplifies it to a pin-point exposure of a single lens with
equivalent focal distance.
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Fig. 4.5 Schematic representation of alternatives for positioning information from optical sensors:
(a) orthorectification, (b) back-projecting ALS and (c¢) image matching. Arrows are projective
rays defined by Eqgs. 4.5 and 4.6. The key input parameters for the equations, and the unknowns
(enclosed in a grey rectangle) that apply in each case are shown

King 2005). For this reason, Eqs. 4.5 and 4.6 form the basis for all the techniques
which allow for the information of optical sensors to be integrated within an
ALS project (Fig. 4.5), i.e., imagery orthorectification, ALS back-projection, or
photogrammetric point clouds (PPCs) generated by image matching. They can also
be used for other applications related to data integration, as for instance St-Onge
(2008) and Armenakis et al. (2010) used synthetic rendering as a quality control
test for evaluating and correcting systematic errors in the relative GNSS-based
georeferencing of ALS datasets and imagery.

By using orthophotos, an ALS point cloud may be coloured by attaching to each
echo the digital number (DN) of the image pixel located vertically below the ALS
echo according to its horizontal coordinates. It is common practice to use DTM-
rectified photos for this purpose, therefore carrying the ensuing positioning errors
for those DNs (Valbuena et al. 2008). The product of back-projecting is also a
coloured ALS point cloud, but in that case the positional accuracy of the DN is at
the scale of the pixel size (Valbuena et al. 2011). To date, the positional errors of DNs
located in image matching PPCs has not been contrasted against the other methods,
but the author advices applying this method for data fusion. Using several scenes,
redundancy in Eqgs. 4.5 and 4.6 can be solved by least-squares adjustment, leading to
a sub-pixel accuracy in horizontal coordinates (X;, ¥;) which is superior to any other
method. On the other hand, elevation coordinates (Z;) are still better determined by
ALS direct range measurement, while its uncertainty in PPCs depends on the angle
used for triangulation (Fig. 4.6).
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a ALSranging b Imagery triangulation

Fig. 4.6 Anisotropic accuracy in positioning. (a) The uncertainty in range and scan angle
measurements leads to higher accuracy in vertical than horizontal coordinates in ALS (Baltsavias
1999). (b) In image matching most uncertainty is in depth, and therefore in PPCs the accuracy of
elevations is lower than horizontal coordinates

4.4.2 ALS-Assisted Orthorectification

The process of orthorectification consists of computing the absolute coordinates
(X, Y;) of each pixel within an image by applying its IO and EO in Egs. 4.5 and
4.6, and assuming its elevation (Z;) according to a DEM. Thus, the quality of the
final positioning of features depicted in the image largely depends on the type of
DEM used — digital terrain model (DTM) or digital surface model (DSM) —, and
the procedure used for generating it. While a DTM represents the ground surface, a
DSM details other elements, such as tree crowns and canopy gaps. Traditionally,
DTMs have been used for orthophoto production (Baltsavias and Kiser 1998).
They were produced by manual photogrammetric measurement, i.e. deducing Z,
by triangulating the positions of the same element in overlapping stereo images
(following the same principle as in Fig. 4.4b). Alternatively, automated image
matching techniques can also be used for mass point detection (e.g. Zhang and
Gruen 2004), allowing to obtain DSMs whose quality differs among methods
(St-Onge and Achaichia 2001; Waser et al. 2008). As optical cameras are unable
to observe positions from underneath the vegetation, the capacity of ALS to obtain
ground echoes offered great advancements for DTM generation in forested areas
(Baltsavias 1999).

4.4.2.1 Precise DTM Generation

Three processing steps are involved in DEM generation from an ALS point cloud
(c.f. Axelsson 1999). First, echoes are classified, according to their relative geometry
or type, into ground, vegetation, buildings, or other features that reflected them.
Second, the echoes from a certain class may be filtered, as for example only
those classified as ground are used for DTM generation. The last step is the
DEM-modelling itself, which may involve several tasks for interpolation, such as
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tessellation or rasterization. The optimal filter for ground classification varies among
vegetation types and terrain roughness conditions (Sithole and Vosselman 2004),
as well as characteristics of the ALS acquisition such as pulse density (Liu et al.
2007). The classification can be done according to whether they are first/last echoes,
or simply as ground/vegetation based on the relative geometry (Axelsson 2000).
The quality of this classification of ALS echoes into either ground or vegetation
is the factor most affecting DTM and DSM generation (Hollaus et al. 2006).
Most procedures have shown the capacity of ALS surveys to generate much more
accurate DTMs than photogrammetry (Kraus and Pfeifer 1998). Reported RMSEs
of elevation coordinates obtained from ALS-derived DTMs are generally within
the range of 0.15-0.35 m in forested areas. Its accuracy concerns the reliability
for forest inventory directly, as tree heights are commonly considered above the
DTM. In practice, the DTM is used as reference, either to compute heights above
ground of individual ALS echoes, or to obtain a raster-type canopy height model
by subtraction of DSM minus DTM. It must also be taken into account that DTM
quality is affected by the density of the forest canopy (Reutebuch et al. 2003),
and therefore the accuracy is generally lower in deciduous than coniferous forests
(Hodgson and Bresnahan 2004). The success of classification and interpolation is
most challenged when vegetation grows on rough terrain (Axelsson 2000), and
therefore elevation errors are also higher in steeper slopes (Hodgson and Bresnahan
2004). For these reasons, correct estimation of tree heights in the presence of dense
understory and mountainous relief may still be subject to further methodological
refinements (Gatziolis et al. 2010).

Due to the use of DTMs for orthophoto generation, problems have been found
when integrating them with ALS data in forestry applications, as sometimes the
position of tree crowns is different in each dataset (Valbuena et al. 2008; Bright et al.
2012). As the presence of trees is not modelled in the DTM, the Z; position of tree
tops is presumed lower than it actually is, and they appear leaning over canopy gaps
in the final orthoproduct. The magnitude of this positional error mainly depends
on the nadir angle 6, while tree height and terrain slope are also significant factors
(Valbuena et al. 2011). Consequently, elements at the border of the picture are more
affected than those close to the nadir point (X, Y,,), and the error is larger for tall
trees growing in mountainous terrain.

4.4.2.2 True-Orthorectification

A so-called true-orthophoto can be generated by applying the height from a DSM
as Z,, rather than using the DTM as in traditional orthorectification, presum-
ably obtaining a better correction of the objects’ positions. Procedures for true-
orthophoto generation aim at solving the described geometrical errors encountered
in orthophoto production (Schickler and Thorpe 1998). An ideally perfect DSM
which truly models the presence of trees could be used to solve the deficiencies
found in orthophotos, therefore providing a smaller geolocation error between
optical and ALS data. Valbuena et al. (2011) found errors in their true-orthophotos
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to be mainly related to the uncertainty of the DSM used. Hence, the final quality
of a true-orthophoto is completely dependent on whether the technique used for
modelling tree canopy truly represents the trees depicted in the picture.

Smoothing techniques may be required pre-processing steps when a DSM is
intended to be used as a basis for orthorectification. Image quality can be degraded
significantly if the DSM contains too much detail. For this reason, St-Onge (2008)
applied a cavity filling procedure to a high-resolution DSM. The inclusion of
breaklines, i.e. sudden changes in the trend between neighbouring pixels, which
is common when modelling buildings in urban areas (Schickler and Thorpe 1998),
is impractical for forested areas. Moreover, true-orthorectification usually includes a
visibility analysis, e.g. a depth-buffer algorithm, in search for blind spots occurring
behind elements significantly taller than wide. This prevents imputing the DNs of a
given image to areas where no information was actually sensed from the camera’s
perspective at the moment of exposure. In theory, true-orthorectification procedures
must suffice to achieve a correct reposition of tree crowns in their real coordinates,
but practice is however different. Techniques which are well implemented in urban
areas can be difficult to adapt to forest environments, and therefore studies involving
forestry applications are scarce (Kiichler et al. 2004; Waser et al. 2008; Valbuena
et al. 2008).

Besides of its geometric quality, it is also worth checking the radiometric
properties of a final orthorectified product, as they may also be affected during
a number of procedures involved in orthophoto creation. The final product is
usually supplied as a mosaic created from many individual exposures. Smoothing
techniques for seamless mosaics are common at this stage, as well as methods
for radiometric normalization (Baltsavias and Kiser 1998). To ensure the final
orthoproduct to be a single raster image with internally-consistent geometry, a
final resampling stage is usually carried out. Resampling can also induce some
additional geometric displacement, besides of modifying the original DNs in the
final orthophoto. When a visibility analysis takes place, checking whether occluded
areas have been filled with real DNs from other pictures, or synthetic DNs have been
derived from neighbouring pictures (e.g. St-Onge 2008) during the mosaicking and
resampling stages would be beneficial.

4.4.3 Back-Projecting ALS

When integrating the optical data with the ALS, as an alternative to using an
orthorectified product, individual ALS echoes can be rendered from the perspective
of the original unrectified scenes (Elmstrom et al. 1998). This technique is called
back-projected ALS, as the original DN corresponding to each echo is retrieved
back to its original position in the ALS cloud for its further use as a map-like
orthogonally-projected product. This way, the colour information from the optical
sensor is attached to each echo (Fig. 4.7), and therefore becomes available for its
direct use in forestry applications. As the back-projected ALS is a point cloud in
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Fig. 4.7 View in 3D perspective of two forest plots’ ALS back-projected onto pansharpened
(a) true colour rgb-composite and (b) false colour infrared images. Their detail illustrates how
the resulting accuracy may allow distinguishing areas of differing bidirectional reflection within
individual tree crowns

vector format, mosaicking and resampling procedures are unnecessary, avoiding
errors and artefacts. For this reason, back-projecting has been found superior
to orthorectification for integrating the information from optical data and ALS
datasets (Valbuena et al. 2011). Persson et al. (2004) and Holmgren et al. (2008)
implemented this technique pursuing the fusion of ALS-delineated crowns and
aerial photography for species classification. Packalén et al. (2009) successfully
improved prediction models by including species mixture information deduced
from the optical DNs of back-projected point clouds. @rka et al. (2012) applied
this technique for individual tree species classification using combinations of ALS
metrics with intensity and multispectral predictors.

Although mismatches between optical and ALS information may still be found in
back-projected products, they are usually small in magnitude. Valbuena et al. (2011)
considered the errors induced by atmospheric refraction and Earth’s curvature.
Atmospheric refraction has a minimal effect in aerial surveying, although ALS sys-
tems include built-in corrections that could be implemented while back-projecting
as well. The effect of the Earth’s curvature implied that back-projecting ALS is best
carried out prior to obtaining projected coordinates. Packalén et al. (2009) outlined a
number of additional sources for mismatch in back-projected ALS. Tree crowns may
be moved by the wind and therefore be detected at different positions by each sensor.
Moreover, an ALS echo situated on a blind spot behind a tree, in an area occluded
from the perspective at the camera’s position, would erroneously by associated with



84 R. Valbuena

a DN which does not correspond to the element which reflected it. For this reason,
echoes situated under the canopy lack a counterpart in the optical imagery. This
effect can be diminished by filtering the point cloud as a first step, so that only
single and first echoes are selected for their back-projection. Also, the occurrence
of blind spots can be reduced by back-projecting each ALS echo only to the picture
from which the nadir angle 6 is narrowest.

4.5 Concluding Remarks

Using other sources of information along with ALS can be highly beneficial for
forest assessment. However, coordinate errors and ensuing mismatching among
data sources are fairly common issues to deal with in forestry applications of
ALS. For this reason, good planning in advance is recommended as most trouble
may be avoided during data acquisition, or by requesting specific data from the
provider. This information includes methods and networks employed for differential
correction in GNSS positioning, or the EO obtained in photogrammetric surveys,
for instance. The positional accuracy of field data should be in accordance with
the objectives pursued in each case. Canopy conditions affect GNSS errors and the
subsequent inaccuracy in ALS forest estimations. Thus, GNSS surveying should
be tailored to the specific properties of the forest area under study. The positional
errors found in orthophotos are difficult to track without knowing the platform’s
position during acquisition. If such information is available, it is recommended to
consider alternatives for data fusion: back-projecting ALS or image matching. The
latter provides higher accuracy but requires greater overlap between images.
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Chapter 5
Segmentation of Forest to Tree Objects

Barbara Koch, Teja Kattenborn, Christoph Straub, and Jari Vauhkonen

Abstract This chapter reviews the use of airborne LiDAR data for the segmentation
of forest to tree objects. The benefit obtained by LiDAR data is typically related to
the use of the third dimension, i.e. the height data. Forest and stand objects may be
segmented based on physical criteria, for example height and density information,
while a further delineation to different timber types would require leaf-off data or
an additional data source such as spectral images. Most forest applications of the
LiDAR data are based on using digital surface models, but especially tree-level
segmentation may benefit from a combination of raster and point data, and can be
performed solely on point data. Finally, there are several established techniques for
tree shape reconstruction based on the segmented point data.

5.1 Introduction

Segmentation in general means identifying and grouping objects based on statistical
similarities or similar features in data. This procedure has a statistical background,
but not necessarily any relation to the thematic content. The use of segmentation
has a long history in the processing of 2D remote sensing data (e.g. Blaschke 2010),
and well-known pixel-, edge- and region-based methods described in general image
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analysis text books (e.g. Gonzalez and Woods 2008) are applied. Since the most
common methods used with airborne laser scanning data (referred to as LiDAR
data in the following text) are also fundamentally similar to those based on high-
resolution aerial images (Hyyppé et al. 2008), the present chapter mainly omits
detailed descriptions of the basic algorithms and focuses on the utility and special
features produced by the LiDAR data towards the segmentation task.

The main advantage of the LiDAR data as an input for the segmentation and
object building is the use of the third dimension in the resolution and accuracy
which cannot be provided by other (3D) remote sensing methods. Most of the
forestry applications are related to the segmentation of single crowns, while the
use of LiDAR data for the segmentation of stands, or between forest and non-forest,
has been in a more narrow focus in the last years. However, to automatically process
large forest areas, a combination of data and methods for hierarchical segmentation
would be required, i.e. the use of spectral or microwave data for forest—non-forest
or stand type segmentation (according to e.g. crown closure or species), and LiDAR
data for more detailed segmentation within the segmented strata, for example. A
premise behind this approach is a possibility to provide detailed (up to tree-level)
information for the estimations for larger areas. Based on this background, the
chapter is divided into following main sections:

1. segmentation of forest objects,
2. segmentation of forest stand objects, and
3. segmentation of single tree objects.

The segmentation may be based directly on the point cloud, or more typically, on
a raster image interpolated from the data. While the point data provide information
on the position of each reflected and registered echo, the rasterized data include
averaged or classified information (e.g. the highest or lowest reflection within a
pixel). The use of the raster data thus results in a loss of information, but reduces
the computational burden involved in processing point data. Most forest applications
of the LiDAR data are based on digital surface models (DSMs, the top of the
canopy), digital terrain models (DTMs, the bare ground), and normalized DSMs
(nDSMs, obtained as the difference between the DSM and DTM, thus representing
vegetation height), the latter being also referred to as canopy or crown height
models (CHMs). A number of possible algorithms exist for surface modeling (e.g.
Lloyd and Atkinson 2002). The produced (normalized) vegetation height values are
denoted by dZ in the following text.

Approaches combining various data sources are not discussed in detail, even
though multispectral, hyperspectral, and/or radar data could have a high importance
in producing additional information for forest and stand segmentation. Instead,
to follow the scope of the entire book, the focus is mainly on demonstrating the
possibilities of using LIDAR data for the segmentation of the different objects.
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5.2 Forest Segmentation

Mapping forest area boundary is required as such by many applications related
to sustainable forest and landscape management, such as change statistics and the
estimation of stem volume, biomass and carbon stock. The forest boundary are also
needed prior to any more detailed (stand or tree level) segmentation. Up-to-date
information on the forest boundary does often not exist or may need improvement
especially in areas in which the forest cover is changing rapidly.

Not many papers focus on the delineation of the forest boundary based on LIDAR
data. One of the few studies was carried out by Eysn et al. (2012) and is based
on a single crown approach. The approach, entitled tree triples method, defines
the crown cover based on the sum of the crown area of three neighboring trees
combined with the area of their convex hull. This approach is especially useful
for open areas in which it is more easy to delineate single trees but more difficult
to define a forest border. While Eysn et al. (2012) used exclusively LiDAR data,
for example, Wang et al. (2007, 2008a) presented an approach combining spectral
information from aerial images and curvature features from airborne LiDAR data.
For the segmentation they used a JSEG algorithm (Deng and Manjunath 2001),
which divides the segmentation in a color quantization and a spatial segmentation
parts. In addition, they compared the texture between crown height models, green
vegetation index, and the JSEG-segmentation to refine the forest boundary.

Straub et al. (2008) developed a procedure for forest area segmentation, which
can be applied in coniferous, deciduous and mixed forests of different complexity
based solely on aerial LiDAR. The procedure is implemented in the TreesVis
software (Weinacker et al. 2004b) and is presented below as an example algorithm
for forest delineation. The approach is divided into two main parts:

1. Delineation of regions covered by vegetation.
2. Classification of the vegetation regions into different vegetation classes:

(a) forest areas,
(b) connected groups of trees outside forests, and
(c) single trees outside forests.

The procedure makes use of the multiple returns of the point cloud. A DSM and
a DTM are derived from the points using an “Active Surface Filtering Algorithm”
(Weinacker et al. 2004b). Within a tolerance zone defined by the maximum distance
beneath the DSM and the maximum distance above the DTM the echoes are
classified into:

1. ground points (within the zone above the DTM),

2. surface points (within the zone below the DSM), and

3. intermediate points (points with height values between the tolerance zone above
the DTM and the zone below the DSM).
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Fig. 5.1 Cross-sections of point clouds for building, ground and vegetation (Straub et al. 2008)

The “intermediate points” will be found in nearly all cases only within the
vegetation and not within man-made objects (like buildings) or ground points
(Fig. 5.1). The irregularly distributed points are arranged on a grid with a cell size
of 1 m? (adaptable to different resolutions) within the extent of the full study area.
Two types of local density images are created:

1. AllPointsImage, in which the cell values represent the number of all
points/echoes of the dataset, and

2. IntermediatePointsImage, in which the cell values represent the number of
“intermediate points/echoes”.

Due to the fact that more points will be found in overlapping flight strips com-
pared to single ones, the cell values of the IntermediatePointsImage are normalized
with those of the AllPointsImage as g’ = g;/g», where g’ is the output value of the
“normalized image”. A median filter with a 5 x 5 pixel window is used to smooth the
normalized image. Finally a global threshold (defined by empirical tests) is applied
to extract regions which are covered by vegetation. Connected vegetation pixels
are grouped together into vegetation objects. Morphological closing with a circular
structuring element (radius 3 m) is used for boundary smoothing and to fill small
holes. In this way vegetation (trees and bushes) is delineated from ground, open
grass areas and man-made objects.

To classify the vegetated area into forest, tree and bush areas, the vegetation
features which can be measured or estimated from ALS data are applied. Such
features are (1) height of the vegetation, (2) tree crown cover, (3) size of the
vegetation region, and (4) width of the vegetation region. Forest vegetation is
defined according to minimum values set for these attributes, and objects not
fulfilling the defined minima are classified as non-forest vegetation.

The mentioned features are computed with the following approaches (the
threshold values used by Straub et al. 2008 are given):

1. The vegetation height based on nDSM with a pixel wise computation. A thresh-
old of 3 m is defined as a minimum height for forest. The forest pixels are
intersected with the regions classified as vegetation before. The resulting regions
represent potential vegetation pixels above 3 m.
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2. The local tree crown cover of a vegetation area characterized by a grid of
20 x 20 m (adaptable) with the vegetation pixels above 3 m. The result is a
mixture of regular and individually shaped grid cells. Within each cell, the
tree crown cover is computed by first extracting potential canopy gaps by
thresholding all pixels below the 3 m of the nDSM. By subtracting the surface
percentage of gaps from each individual cell the area covered by tree crowns is
derived and expressed as a percentage of total ground area of each grid cell.
Only cells with a tree crown cover of at least 50 % are accepted as forest
vegetation.

3. The size of a vegetation region (a group of connected pixels) calculated from the
number of pixels multiplied with the corresponding ground resolution of a pixel,
with a minimum size of 1,000 m2.

4. The width of the irregularly shaped vegetation regions measured with the help of
profiles along the medial axis obtained by “skeletonization” (Soille 2003). The
skeleton is computed by fitting circles into a vegetation region with the largest
radius possible. A circle C has the largest radius in the input region R if there is
no other circle in R that is a superset of C. The skeleton is derived from the center
points of those maximal circles. There will be at least two points on the region
boundary to which a center point will have the same shortest distance (Steger
et al. 2008).

Due to the fact that vegetation objects can have high variations in their shape,
post-filtering is necessary to remove irrelevant branches from the skeleton. Based
on the skeleton the longest connected chain of pixels is computed which finally is a
single one-pixel-wide center line without other branches.

Raster to vector conversion is used to convert the one pixel-wide center lines
into vector lines which are smoothed using a method which projects the contour
points onto a local regression line (a least-squares approximating line) fitted to a
defined number of original contour points. For each contour point of the vectorized
and smoothed center line a profile is generated to measure the local width of the
vegetation object (Fig. 5.2).
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Finally the median of all width measurements is computed as an average width
for each object and used for classification. A minimum width of 30 m was defined
in this example for forest vegetation. Objects classified as non-forest vegetation are
further classified into single tree objects or a connected group of trees based on the
size and shape of the area. Finally vegetation objects are slightly modified. Areas
surrounded by forest vegetation without trees and smaller than 0.5 ha are extracted
and merged with the forest mask.

The accuracy assessment based on a point raster method 10 by 10 m with 66
points proved for forest areas in this example an accuracy of 99 %. For group of
trees and single trees the accuracy was lower and between 60 and 70 %. However
this was more a problem of the not good enough co-registration to hit with the
verification point raster the crown areas as reported by Straub et al. (2008).

5.3 Stand Segmentation

A ‘stand’ refers to the basic unit of forest management, for which reason the
assessment and delineation of such units is the basis for all operational management
measures. A forest stand is “a geographically contiguous parcel of land whose
site type and growing stock is homogeneous” (Koivuniemi and Korhonen 2006).
Stands are thus mainly defined based on growing stock features, but in practice
also operational and organizational considerations have an influence on stand
delineation; however, the segmentation based on the LiDAR data can be based
solely on physical criteria such as height and density. The problems related to
stand segmentations based on similar physical criteria will likely increase along
with the implementation of management forms favoring uneven-aged and multi-
species forest structures, but currently most commercially managed forest stands
pose a similar tree age and dominant tree type.

Probably one of the first approaches using LiDAR data alone for the stand
segmentation was carried out by Diedershagen et al. (2004), while later approaches
have combined multispectral and LiDAR data (Pascual et al. 2008; Packalén et al.
2008). Leppinen et al. (2008) tested an automatic approach using colour infrared
aerial photographs and LiDAR data. The segmentation was based on a region
growing algorithm and height, density and hardwood pixel percentage, aiming at
producing stands with an equal timber type. They compared the result with a manual
aerial image interpretation, and reported that the segmented units derived from
this process were unacceptably small (0.6-0.8 ha) for forest operations under the
Nordic conditions. However, the density and height data were found reasonable
for segmenting and clustering different timber classes to come up with operational
units.

Tiede et al. (2004) used an object-based semi-automatic mapping approach
to combine LiDAR and multi-spectral data. They used an initial image segmen-
tation followed by object-relationship modeling of forest development stages.
They achieved an overall accuracy of 63 %, identifying problems with younger
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development stages. A combined approach of aerial photography and LiDAR-based
CHMs for an automatic segmentation of forest stands was also carried out by
Mustonen et al. (2008), according to whom the combination of the CHM and
multi-spectral image did not improve the result compared to the use of CHM
alone. The segmentation was based on producing homogeneous diameter and height
distributions. Wu et al. (2013) used a hybrid segmentation approach for the stand
segmentation. They first extracted a three-band image containing height, density and
species features. Based on the image, a mean shift algorithm was applied to generate
raw forest stands, which were then refined by a spectral clustering algorithm. The
results produced by the developed approach outperformed the reference methods for
the segmentation.

An example approach that is described as a detailed example of LiDAR-based
stand segmentation (Koch et al. 2009) is based on the use of DTMs, DSMs, and
nDSMs. The extraction of forest stand boundaries is divided into several steps,
which each can be used independently allowing to focus on those steps which are
required or possible under given frame conditions. The presented semi-automatic,
stepwise approach combining different segmentation methods in a series of modules
starts with a semi-automatic segmentation of forest roads and is followed by a fully
automated segmentation of forest areas into stands according to height, stand type
and density.

In many cases in intensively managed forest areas, the stand boundaries are fol-
lowing forest roads. Therefore a method to extract forest roads semi-automatically
from the DTM is first used. Due to the fact that roads normally have lower
slope values compared to the surrounding terrain in shaped areas, this information
can be used for delineating road segments automatically (Koch et al. 2009). The
procedure is mainly applicable in mountainous areas and thus in terrain with >15 %
inclination. In flat areas the forest road an automatic extraction from laser data is
not possuble but has to be extracted form other data sources. In the second step the
actual segmentation of the forest stands is based on stand type, crown cover and
height class, determined as follows:

Stand type: The definition employs the different reflectance and penetration
rates between deciduous and coniferous vegetation under leaf-off conditions. A
comparison of two nDSMs calculated under leaf-off conditions (Fig. 5.3) shows
less height differences for broadleaved than coniferous stands. However, an ideal
leaf-off situation is not obtained, for example, in the case of evergreen broadleaved
species. Therefore a combination of LiDAR and spectral data is recommended if the
classification of broadleaved and coniferous stands is required (see also Chap. 7).

Crown cover is defined by the tree crowns covering the ground using the method
described by Straub et al. (2008). The canopy density is estimated based on the
nDSM which represents canopy heights for each x—y position. A threshold operation
(selection of pixels with height values within a defined interval) is used to extract
potential crown regions with the height values between 50 and 100 % of the top
height per plot. The ratio of the size of extracted crown regions to the plot size is
used as an estimate for the canopy density.
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Height estimation: The top height H,, i.e. the mean height of the 100 thickest trees
per ha, is often used to characterize a forest stand. As the height of trees is correlated
with their stem diameters, the top height is determined as the average height of the
100 tallest trees per ha (Dees et al. 2006). The 90th percentile computed from the
dZ values is used as an estimate for stand height following several corresponding
studies (Nasset and Bjerknes 2001; Means et al. 2000; Rieger et al. 1999). In Straub
et al. (2008) this variable yielded a strong correlation of 0.87 with the top height
derived from the field data.

For a better characterization of the different stand features the forest area is
divided into grid cells for which different cell sizes can be selected. A grid size
of 20 m turned out to be most appropriate for applications in central European
forests. The calculation of the above mentioned stand features besides the pre-
segmentation by roads are carried out for each grid cell. This will provide a thematic
map layers of forest type (species), crown closure and height classes. In a final
step the different layers are combined in a hierarchical classification process. After
the classification, neighboring grid cells belonging to the same classes are merged
into larger segments. In the final step areas smaller than a defined minimum size
are erased or merged with the neighboring segments. This stand segmentation is
not purely based on physical consideration but tries to follow the criteria used by
forest organizations for stand delineation and therefore differs from the approach
suggested by Leppinen et al. (2008).

5.4 Segmentation of Single Trees

5.4.1 An Overview

The detection and delineation of the individual trees are often carried out as
two (separate) steps. Only the former is in fact required to derive an estimated
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position and height for the detected trees, which can be readily used for modeling
other tree attributes. However, subsequent crown delineation allows extracting
information on the crown dimensions and a further modeling of the crown shape,
for example.

With some degree of adaptations, the majority of the tree detection studies are
addressed in the image domain (e.g. Hyypp4 and Inkinen 1999; Hyyppd et al. 2001a;
Persson et al. 2002; Popescu et al. 2002, 2003, and many others). The tree tops
are typically detected with an approach based on searching local height maxima.
The differences between the algorithms are typically related to adjusting the CHM
smoothing in order to obtain a desired number of local maxima in varying canopy
conditions. In the local maxima search, the applied window size has a major impact
on the tree detection result. The window size and the degree of smoothing can be set
according to prior information from preceding field measurements (Popescu et al.
2003), as a function of the height values of the CHM (Pitkénen et al. 2004) or based
on other information such as estimated stand density (Ene et al. 2012).

The tree crown segments are typically formed around the local maxima using
well-known watershed or region growing techniques (e.g. Vincent and Soille 1991).
However, also techniques based on template matching (Holmgren and Wallerman
2006; Holmgren et al. 2012) and clustering of the point data (e.g. Morsdorf et al.
2004) are used. The section below presents the most typical techniques based on the
use of raster (Sect. 5.4.2), vector (Sect. 5.4.3) and hybrid (Sect. 5.4.4) data, the latter
including both raster and vector data sources and a priori information. An additional
Sect. (5.4.5) is dedicated to tree shape reconstruction techniques following the actual
segmentation.

5.4.2 Raster-Based Methods

5.4.2.1 Treetop Detection

To apply local maxima detection on a CHM, the latter has to be extracted from
the laser point cloud, interpolated and smoothed. The smoothing typically results
in a loss of detail, trimming upper branches, and filling holes in the CHM. The
smoothing process is however required to identify a correct number of local maxima
as starting point for the tree segmentation process. Together with the penetration
of the laser pulses through the canopy layer, the CHM underestimates the true
height of the canopy surface. To compensate for these effects, Solberg et al. (2006)
implemented a residual height adjustment method, in which the median of the
differences calculated between control-measured tree heights and the associated
local maxima were used to obtain a residual percentile. The corresponding value
of the residual percentile was added to the dZ-values of the entire CHM, resulting in
a residual height adjusted CHM. However, the degree of the height underestimation
may vary over the CHM, and for instance, the edges of the crowns may be more
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strongly affected and more residuals may occur above the corrected CHM. Thus,
this procedure primarily aims at correcting the height values of the tree tops.

All methods based on CHM smoothing require a decision on the applied
smoothing factor. A strong smoothing normally leads to an under-representation
of local height maxima relative to the treetops, while a weak smoothing leads to an
over-representation of the maxima. Even though smoothing factors can be optimized
for given stand structures, this step implies frequent interactions by the user and
restricts the automatic process. If the stands are uneven-aged the problem gets more
complicated because no optimal solution can be provided for all trees within the
stand.

A solution which may improve the results of the single tree segmentation
for uneven-aged stands and large areas with different stand structures is a prior
stratification into height classes (Koch et al. 2006). In this approach the smoothing
of the height model is adapted to different height classes within the stand. Based
on the smoothed CHM a pixel counts as a local maximum, if all of its neighbors
(in a 4-connected neighborhood) have got a lower height-value or if all neighbors of
some connected pixels with equal height (a “plateau”) have got a lower height-value.
Correspondingly, Pitkdnen et al. (2004) increased the intensity of the smoothing
window as a stepwise function of the height of the CHM. The range for Gaussian
standard deviations (o) defining the smoothing intensity was adjusted manually to
obtain a feasible number of local maxima at the both ends of the tree height range,
whereas the o in between were linearly interpolated. After this height based filtering,
the tree crowns can be separated by normal segmentation methods, e.g. watershed
segmentation.

As all these approaches are based on analyzing local maxima, they lack the
ability to detect trees which are not represented in the CHM. For example trees
in the understory are overtopped by tall trees or branches of the dominant trees. The
detection of those trees that are visible in the CHM also depends on the sensitivity of
the applied algorithm. Various tree detection approaches were tested in international
algorithm comparison studies by Kaartinen et al. (2012) and Vauhkonen et al.
(2012). While the findings of Kaartinen et al. (2012) point the applied algorithm as a
major factor towards the success rates in the tree detection, Vauhkonen et al. (2012),
including a considerably wider range of forest types in the comparison, found that
the tree detection result was more dependent on tree density and spatial distribution
of trees (i.e. clustering) than on the algorithm itself.

5.4.2.2 Segmentation and Post-processing of the Result

One of the most popularly used raster-based approaches for the segmentation is the
watershed or pouring algorithm implemented in many image processing software
products. The pouring algorithm starts “flowing water” from a defined maximum
height towards the lower heights and the area is split into regions according to
the water flow. The watershed algorithm has a similar but inverse principle (Soille
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1999): the regions are extended, as long as neighboring pixels with lower or same
height value exist. Overlapping regions in the “height-valleys” are finally distributed
evenly to all involved tree regions. The algorithm produces a 2D-approximation of
the tree crown shape.

The segmentation of crowns with the pouring algorithm works reasonably well
for highly uniform stands. However, the result may include segments not resembling
tree crowns, i.e. regions too small to be trees, non-tree-like shapes, unusual spatial
relationships, and combinations of tree groups or canopy gaps. For example,
Solberg et al. (2006) restricted their region growing algorithm by including rules
for polygon convexity, when considering those directions where the regions could
grow. Alternatively, post-processing the segments by split and merge rules based on
allowable segment dimensions could possibly improve the result. Another splitting
or merging criterion could be a topological character like the minimum distance
between the tree tops. To avoid problems in very young stands with small trees, the
number of possible merges of adjacent region can be restricted.

Geometrical reasoning criteria can be used, for example identifying elliptical
groups with a combination of a minimal area and the regions anisometry (the
quotient of both radii of a fitted ellipse). For example, if the length of the region
is at least 2.5 times its width with at least three times the respective minimal area for
its height and tree species class, it can be most probably judged as a group of trees.
Such congregations can be disjoined analogous to Straub et al. (2008), who used
the approach of Heipke (2001), which has been developed for tree groups within
settlements. For each tree group the biggest inner circle was consecutively detected
and subtracted, until the area of the circle fell below the defined double minimum
area for the given height and species class. Correspondingly, the circles could be
expanded according to similar criteria.

Geometric tree crown models or templates (Holmgren and Wallerman 2006;
Holmgren et al. 2012) have also directly been used for tree crown segmentation.
In these studies, a correlation surface was created as the maximum pixelwise corre-
lation between the CHM and geometric tree crown models, defined as generalized
ellipsoids of revolution (Pollock 1996). Both the CHM and the correlation surface
were used in the segmentation, and additional splitting and merging criteria were
defined according to the geometric models.

The pouring and watershed algorithms involve inherent problems related to
defining the final segments. The segment boundaries may not overlap, causing
potential problems in dense stands, whereas in more open stands, the problem is
to detect the minimum edge of the crowns. An algorithm to separate the actual
crown edge from neighboring canopy gaps or adjacent understorey trees may be
required. An algorithm based on searching vectors within the segmented regions to
determine the crown edge (Hyyppa et al. 2001b; Friedlédnder 2002) reduces the area
of a tree crown but does not enlarge it. Starting from the tree’s top, a vector to each
border point of the segmented region is calculated. Proceeding in one pixel wide
steps on each vector, the slope of the tree crown at each of these points is measured
as height difference between two points. If this height difference or slope exceeds a
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certain threshold the vector breaks and a new border point is generated. The crown
edge is moved inside of the region. Occasionally occurring outliers are removed
afterwards.

5.4.2.3 Object-Based Methods

The use of object-based algorithms was followed by Tiede and Hoffmann (2006),
who segmented tree crowns using a two stage approach. In the first stage, a non-
tree/tree classification is carried out in order to later focus on more complex
object creating functions. The object creation process is limited only to those areas
classified as canopy. The canopy is the next step broken down into pixel-sized
objects for local maxima detection. A weak point for this method is the requirement
to set an appropriate search radius for each stand. Within this radius the local
maxima are considered as tree tops and seed points for a region growing algorithm.
Different stopping criteria for the region growing are used to define the crown edge.
One is the height difference and another is the maximum crown area. Normally the
procedure is finished by a clean-up process to fill the holes within the crown region.
This algorithm provided good results for non-complex stand structures. However,
the definition of the radius requires user-interaction, which limits the use of this
approach for large or diverse areas.

5.4.3 Point Cloud Based Methods

5.4.3.1 k-means Clustering Techniques

Among the vector-based methods, clustering is one of the most often used
approaches for segmentation. Several clustering mechanisms exist, among which
k-means is the most popular iterative partitioning approach. Several attempts to
partition ALS data into clusters (Jain et al. 1999) and in particular single tree crowns
have been reported recently (Morsdorf et al. 2004; Cici et al. 2008; Doo-Ahn et al.
2008; Reitberger et al. 2009). The k-means method requires seed points, which are
typically derived as smoothed CHM-based local maxima (Morsdorf et al. 2004). It
is noteworthy that the k-means method works well when a data set has “compact” or
“isolated” clusters (Mao and Jain 1996). Therefore, more adaptive alternatives have
been developed for different forest structures. Gupta et al. (2010) showed that it is
advantageous to scale down the dZ values of both the seed points and normalized
raw points. This helped in minimizing the squared error function, which was the
ultimate objective of the k-means method. Gupta et al. (2010) obtained good results
by not smoothing the CHM, but removing the superfluous local maxima using a
search algorithm based on a distance threshold, which was adaptable to the stand
characteristics.
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Li et al. (2012) describe a different method to avoid the inherent errors and
uncertainties due to the CHM interpolation. They used the highest points within
a threshold distance as seed points and grew the cluster within a threshold moving
downwards. However, they assumed an always existing spacing between the crown
tops of the trees to find a correct seed point for starting the process. As the threshold,
they suggested a distance adapted to the crown size. In addition, they used a convex
hull-based crown shaping index to improve the detection. The method works well
for forest stands with homogeneous crown sizes, but in case of natural or uneven-
aged stands the performance of the algorithm is unknown.

5.4.3.2 Voxel Based Single Tree Segmentation

The inspiration for the 3D single tree modeling comes from the inspection of hor-
izontal distribution of forest canopies. Wang et al. (2008b) projected a normalized
point cloud to 2D canopy layers of different height levels to describe the distribution
of the tree crown reflections along z-axis. For this approach a local voxel space was
defined by projecting the normalized points to a 2D horizontal plane. This projection
starts with the voxels of the top layer which comprises the highest point and moves
downwards layer by layer. The resolutions for the layers can be adapted to the data
quality and stand characteristics. Wang et al. (2008b) showed that for data with 5—
12 points per m? from an even-aged or multi-storey old-grown forest, a resolution
between 0.5 and 1 m provided the best results.

The clusters on the horizontal projection image at each layer represent the
distribution of reflections from tree crowns in the corresponding height level. The
basic idea is to trace the reflections from top to bottom. At each layer the tree
contours are delineated based on hierarchical opening and closing processes using
a set of predefined structuring elements. Considering the projection image, a higher
gray value of a pixel in the 2-D layer is set to represent a higher amount of points
in the corresponding voxel. Thus a higher significance is assigned to the pixel
with a higher gray value by keeping a larger neighborhood around the pixel. The
morphological process starts with the brightest pixels on the projection image as
seed pixel. The lower gray value the pixels have, the smaller structuring element
is used for closing and the bigger structuring element is used for opening. Finally,
potential regions from different gray value levels at same neighborhoods are merged.

The uppermost part of the individual crowns is normally easy to delineate
because of the concentration of LIDAR reflections at the tree tops. The delineation is
more difficult when proceeding to lower layers due to a lower number of reflections
and conjunct neighboring crowns. To solve this problem an improvement of the
hierarchical morphological algorithm is necessary. To face the problem, crown
contours from the higher height level are copied to the next layer and only expanded
according to the cluster features on the projection image. The enlargement stops
when the neighboring regions conjunct. The utilization of reference regions will
not influence the emergence of new tree tops at sub height level due to the parallel
performance of the process in and out-side the reference regions.
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5.4.4 Combining Raster, Point and a Priori Information
for Tree Object Building

5.4.4.1 Adapting Tree Detection and Segmentation Algorithms
with a Priori Information

As summarized from the previous sections, a major missing source of information
that could benefit both tree detection and segmentation is the expected crown size
and stand density. The studies by Heinzel et al. (2011) and Ene et al. (2012)
have developed the use of such information to find the appropriate raster or voxel
resolution and a proper smoothing factor for the CHM.

Ene et al. (2012) developed an adaptive method for the CHM generation and
single tree delineation. They adjusted the filter size and the CHM resolution
according to prior information obtained in the form of area-based stem number
estimates. Assuming that trees are located according to a homogenous Poisson
process, one can calculate an expected tree-to-tree distance for optimizing the
CHM resolution and filter size. For assessing the CHM resolution, Ene et al.
(2012) proposed two different methods, in which a set of CHMs in varying
resolutions was created as a starting point. To obtain a feasible CHM resolution,
they considered two approaches based on a trialing with a priori information on the
stem number.

The approach followed by Heinzel et al. (2011) integrated a granulometry
method in the single tree segmentation and estimation of tree crown size. The
method builds upon the principles of grey-scale granulometry (Dougherty 1992;
Chen and Dougherty 1994), in which images are analyzed by a series of basic
morphological operations (dilation, erosion, opening, closing) followed by differ-
ential calculus. Structuring elements (SEs), which detect or measure objects, can
be considered as templates of the objects to be observed. A series of SEs with
varying size are analyzed on the same image, and the size at which most of the
texture, measured as grey values, disappears refers to the desired size of the observed
objects. Earlier, granulometry has been tested in tree crown applications by Soille
(1999, 2003), who used aerial photographs, restricted the attempts to a small subset
of two homogenous stands, and did not provide a verification of the results.

Heinzel et al. (2011) used color-infrared (CIR) images with the nDSM as
intensity images reflecting high pixel values on the illuminated top of the crown
as well as nearly constant low grey values at the borders. Under these conditions the
image grey values are applicable for texture analyses. An algorithm by Straub et al.
(2008) was used to remove non-tree objects from the image data in advance and
the CIR values of the ground regions visible between the crowns were set to zero
according to a height threshold based on the nDSM. A moving window of varying
size was then iteratively adapted to the size of the observed crowns, and in each
iteration only one crown size class was stored to the raster image.

This approach achieved reliable estimations of the crown sizes from a full
automated texture analysis. The investigations by Heinzel et al. (2011) also proved
the granulometry based method to be operational. The mean error for the test
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sites amounted to approximately 4.7 pixels, corresponding to a 1.2 m divergence
from the reference crown size measured in the field. When considering the total
spectrum of 20 crown size classes ranging from O to 25 m, and the fact that the
texture features from the vegetation are highly variable, the described error appears
to be relatively small. The granulometric method is thus a promising approach to
extract information for finding an appropriate smoothing for raster-based single tree
segmentation.

5.4.4.2 Combined Image and Point Cloud Analyses

Some approaches combine raster and point data to improve the segmentation of
single trees (Reitberger et al. 2009; Hofle and Hollaus 2010). Reitberger et al.
(2009) used a normalized cut approach first presented by Shi and Malik (2000)
for segmentation based on full waveform LIDAR point data. The approach is
based on graph partitioning and criteria to measure the between- and within-
group dissimilarity. As a first step followed by Reitberger et al. (2009), a crude
segmentation was performed with the watershed algorithm (Vincent and Soille
1991). Importantly, this segmentation was run to a highly smoothed CHM to
produce an under-segmented result, which leaves room for further refinement within
the segmented regions. The reflections extracted from the full-waveform data were
arranged in voxels, which were cut to regions according to the graph partitioning
idea to maximize the within-segment similarity and correspondingly minimize that
between the segments. The similarity between the voxels was measured by point
distribution, echo width and intensity. The approach produced a considerably higher
detection rate for the small trees compared to using watershed segmentation alone,
yet with a cost of likely false detections.

Hofle and Hollaus (2010) used an edge based approach to the segmentation.
After generating nDSMs with a pixel size of 0.5 m they searched for concave
edges between objects. An edge cutting algorithm was combined with constraints
on normalized heights and occurrences of multiple reflections within cells. A ratio
of the amount of first and intermediate echoes to the amount of last and single
echoes and a height threshold were used as criteria to delineate vegetation. Based
on the edge detector applied in a predefined (e.g. 7 m) window, a final edge map
was derived by cutting the area into segments. The segments were finally combined
with the information based on the echo and height thresholds to identify vegetation
segments. The segment geometry and topology of the vegetation objects were
further classified, producing a correct segmentation of more than 95 % of the trees
in urban areas. The method is also documented as robust, fast and transferable.

5.4.4.3 Integration of Echo Features for Segmentation

In earlier studies, the tree detection and segmentation is typically based on the
first echoes and namely on their coordinate values. Hyyppid et al. (2012) and
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Rutzinger et al. (2008) employed last pulses and other echo features in addition
to the coordinates, respectively, for the segmentation. The former generated the
surface models based on the last pulse data, suggesting better chances to separate
neighboring trees. An improvement of 6 % compared to the use of first pulse data
was reported.

Rutzinger et al. (2008) describe objects using the full information obtained
from full-waveform LiDAR data flown under leaf-off conditions. This includes
occurrence and distribution measures, and waveform descripting features such as
amplitude, echo width and the number of echoes. After echo labeling they used
a fixed neighborhood (0.5 m) for calculating the features. For the calculation
of the point features roughness criteria derived from the standard deviation of a
plane fitting residuals in a fixed distance 3-D neighborhood was used. For the
segmentation all points sorted descending according to their roughness were used
as seed points for the segmentation. The used homogeneity criteria were the echo
width and the tolerance setting of the user. If an echo width of the considered
point was within a predefined tolerance, then the point was accepted as a part of
the segment and as the next seed point. The segment cut was also limited by 3D
maximum growing distance and segment maximum size.

Although some of the criteria required site-specific adapting, the echo width
as a criterion for region growing to separate vegetation from non-vegetation is
physically reasonable and seems to be robust. For the classification of the segments
into vegetation and non-vegetation a classification tree built mostly from mean
segment features was used. Classification accuracies >90 % were reported for these
classes.

5.4.5 Tree Shape Reconstruction

5.4.5.1 Convex Hull

After single tree segmentation and object building, the modeling of the 3D shape
of the tree is of interest for many applications such as the tree species recognition
(cf. Chap. 7). There are different methods available of which some will be shortly
presented to give an idea how the tree shape reconstruction can be approached. The
basis for all tree shape reconstructions is a successful segmentation of the single
trees; for this process, additional refinement in horizontal and vertical directions
may be required.

The shape of the point cloud clusters representing tree crowns can be geometri-
cally reconstructed by means of the convex hull (Morsdorf et al. 2004; Koch et al.
2009), which corresponds to an outer boundary of a triangulation of point data
(Fig. 5.4). For example Preparata and Shamos (1985) and O’Rourke (1994) describe
algorithms for the computation of the convex hull. The convex hull can be produced
from point data in 2D and higher dimensions, and it is applicable if the surface
is convex or completely visible from an interior point. The facets of the convex
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Fig. 5.4 An example of a single tree point cloud (/eft) and triangulations based on it, illustrated
in 2-D for ease of visualization (Vauhkonen 2010b). The outer boundary of the triangulation in
the middle figure corresponds to the convex hull of the point cloud, whereas the outer boundary
illustrated by the solid line in the right-hand figure corresponds to a single connected component
extracted from an alpha shape determined by the given alpha value (filled circle). A field-measured
crown base height is illustrated using a dashed, horizontal line and ground hits using grey circles

hull correspond to the outer boundary of a triangulation of the input points. The
major idea is to compute a convex envelope (polytope) based on the construction
of “an unambiguous, efficient representation of the required convex shape”. The
complexity of the algorithms depends on the number of input points and the number
of those points belonging to the convex hull. In LiDAR studies, Gupta et al. (2010)
used the Quick hull (QHull) algorithm because this algorithm has an output sensitive
performance (in terms of the number of extreme points), reduced space requirements
and a floating-point error handling. The QHull accounts for round-off errors and it
returns “thick” facets defined by two parallel hyperplanes. The outer planes contain
all input points and the inner planes exclude all output vertices. The QHull algorithm
removes facets that are not clearly convex by merging with neighbors.

5.4.5.2 Alpha Shapes

As an alternative for the convex hull approach, the number of facets belonging to
the minimum convex polygon may be restricted to obtain a more detailed shape.
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A particularly useful approach to perform this restriction is the concept of 3D alpha
shapes (Edelsbrunner and Miicke 1994), in which a predefined parameter alpha is
used as a size-criterion to determine the level of detail in the obtained triangulation
(Fig. 5.4). The convex hull of the point data thus corresponds to an alpha shape
computed using an infinitely large alpha value, whereas with very small values, the
shape reverts to the input point set. The alpha value thus defines the level of detail
in the obtained shape and, along with the applied point density, determines whether
the resulting shape is formed from a solid structure or from cavities, holes or even
separate components (see Edelsbrunner and Miicke 1994).

The benefit of this approach lies in various applications, which require a detailed
characterization of the 3D crown shape and/or crown attributes following an initial
segmentation. For example, Vauhkonen (2010a) showed that by iterating the alpha
values, the horizontal segmentation of living crowns of Scots pine trees could be
further vertically delimited, allowing the determination of tree crown attributes
such as the crown base height. Tree crown objects formed by the alpha shape
technique were used in predicting the species and stem attributes of Scandinavian
trees (Vauhkonen et al. 2008, 2009), the crown volume derived in this way also
being found the strongest predictor of tree stem attributes (Vauhkonen et al. 2010).
The presented approach can be expected to be sensitive to the applied point density
(Vauhkonen et al. 2008), for which reason the related applications are expected to
benefit from a presence of high density point data. Examples beyond discrete-return
ALS data are given by Reitberger et al. (2009), Rentsch et al. (2011), and Yao
et al. (2012) using full-waveform ALS data, and by Rutzinger et al. (2010) using
terrestrial (mobile) laser scanning data.

5.4.5.3 Superquadrics

The shape modeling of segmented single trees can also be performed by the
geometry of extended superquadrics (Weinacker et al. 2004a). In mathematics the
superquadrics belong to the family of geometric shapes resembling ellipsoids and
quadrics, which resemble many shapes like cubes, cylinders, and spindles in varying
levels of detail (Fig. 5.5). Superquadrics are highly flexible and therefore popular
in geometric modeling especially in computer graphics (Barr 1981; Chevalier
et al. 2003). This flexibility makes superquadrics also interesting for modeling
crown shapes. Weinacker et al. (2004a) used the superquadrics for crown shape
modeling improving flexibility by integrating deformations (Jaklic et al. 2000) like
“tapering” (causes dilation or compression along one direction), “displacement”
(planes parallel a distinct plane can be displaced, the z-coordinate was not but the
total height was changed), “bending” (the length of the axis is not changed but
the planes are rotated in different angles), “cavity” (convex objects can be changed
in concave ones) and ‘“torsion” (torsion around the z-axis). The function to be
minimized is described in Weinacker et al. (2004a). For the fitting process based on
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Fig. 5.5 Modeling a broad-leaved (above) and a conifer tree crown using superquadrics based on
LiDAR point data. The green and red points show the points which have been used for the crown
modeling

Fig. 5.6 Tree crown shape modeling using a prismatic 3D crown model

the segmented single tree point clouds all parameters can be introduced separately
as stochastic. A more robust fitting and a priori weighting of each laser point is also
possible. Therefore the algorithm is very flexible and a high number of possible
parameter combinations can be used to achieve the best adaption.

5.4.5.4 Prismatic 3D Models

Finally, each detected tree crown may be described by an array of 2D tree crown
regions in different layers at different height levels. Since the layers in voxel space
have a certain thickness, 3D prisms can be constructed for the 2D crown regions
in different layers with the thickness of layers as the height of the prisms. Groups
of 3D prisms at different height levels are then derived for each individual crown,
and a prismatic 3D crown model can be reconstructed by combining all the crown
prisms (Fig. 5.6).
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5.5 Concluding Remarks

To conclude, there are several currently established techniques that allow forest to
tree level segmentation and object building based on airborne LiDAR data. Further-
more, the segmented objects can be further detailed or combined in hierarchical,
multi-scale procedures, for which the example algorithms and techniques presented
in this chapter provide a starting point.

Both area and single tree level approaches are used for forest area (Sect. 5.2) and
individual stand (Sect. 5.3) delineations. Open forests and regeneration areas consti-
tute challenges towards defining forest area, as a clear measure for the tree assembly
constituting a forest area may not be identifiable based on the analyzed height,
density and spatial pattern metrics. Stand level segmentation can be performed
successfully, if a physical property like similar height and crown size distribution
structure is considered as an adequate criterion for separating the individual stands.
Compared to visual delineations, the results produced automatically are typically
more fine-grained and may require an additional aggregation step to produce
operational units. In uneven-aged forest areas and when non-physical criteria like
administrative units need to be considered, the identification of the stand borders
becomes more difficult and may require additional external information.

Individual tree crown delineations (Sect. 5.4) are most commonly based on
raster-image analysis techniques such as local maxima detection and watershed
segmentation. However, detecting the local height maxima from raster-based CHMs
inherently misses trees below the dominant canopy, and techniques developed to
adjust the degree of the CHM smoothing cannot fundamentally overcome this
limitation. The detection of the small trees may be improved by means of a local
refinement (Reitberger et al. 2009) or full analysis based on the 3D point clouds
(Lahivaara et al. 2014; Tang et al. 2013). The latter techniques have been developed
only recently and their operational applications may be currently restricted by
the computational burden involved. Furthermore, due to the transmission losses
occurring in the upper canopy (cf. Korpela et al. 2012) and the fact that forest
structure also affects the detection of the dominant trees (Vauhkonen et al. 2012),
even the best-case information obtainable regarding the lower-storey trees may
only be indicative. The detection of “semi-individual” tree crowns (Chap. 6) is an
example approach to compensate for the segmentation errors.

Despite the limitations described in the previous paragraph, the segmented
dominant trees constitute useful information for applications such as wood procure-
ment planning (see Vauhkonen et al. 2014). Tree crown reconstruction techniques
presented in Sect. 5.4.5 enable further delineation of the tree crowns in the vertical
direction, allowing further applications towards modeling tree growth and forest
development, forest light interaction, and photo-realistic visualization, to name but
a few.
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Chapter 6
The Semi-Individual Tree Crown Approach

Johannes Breidenbach and Rasmus Astrup

Abstract The individual tree crown (ITC) approach is a popular method for
estimating forest parameters from airborne laser scanning data. One disadvantage
of the approach is that errors in tree crown detection can result in estimates of
forest parameters with considerable systematic errors. The semi-ITC approach is
one method to reduce such systematic errors. In this chapter, we present different
variations of the semi-ITC approach and review their application. Two variations of
the semi-ITC approach are applied in a case study and compared with the ITC and
the area-based approach. One of the semi-ITC approaches is based on the k nearest
neighbors (kNN) method used to estimate forest parameters. In the case study,
we analyze how different distance metrics and numbers of neighbors influence the
accuracy and precision of forest parameter estimates at plot level and stand level.

6.1 Introduction

Forest inventories can be used to provide estimates of natural resources on national,
regional, and local scales in order to meet reporting requirements and to support
decision-making processes in policy and management. Traditionally, forest invento-
ries are based on extensive field work. The combination of field data and airborne
laser scanning (ALS) has proven valuable when providing estimates with high
precision especially for management inventories that provide information on small
domains such as stands.

The first studies attempting to use ALS data in a forest inventory context (Nilsson
1996; Neasset 1997; Means et al. 2000) applied the area-based approach (ABA). In
the ABA, the response variable is an aggregated value over a sample plot such as
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timber volume per ha or mean tree height. The predictor variables are characteristics
of the ALS height distribution at the sample plot such as the mean height, height
percentiles, or proportion of returns within a certain height layer (Nasset 2002).
The predictor variables in the ABA are often denoted as height and density metrics
(see Chap. 1 for further details).

Due to the visibility of single trees in high-resolution ALS data, Hyyppé and
Hyyppa (1999), Hyyppé and Inkinen (1999), Borgefors et al. (1999), and Hyyppa
et al. (2001b) started using automatically detected tree crowns to estimate forest
properties. The aim of the individual tree crown approach (ITC), which is also
known as individual tree detection (ITD) or single tree approach, is to derive tree
attributes of interest from trees or tree crowns detected in ALS data (see Chap.
1). The ITC approach is conceptually similar to earlier approaches used in high-
resolution photography (Gougeon 1995; Gougeon and Leckie 2003; Hyyppa et al.
2008) and basically consists of five steps:

1. Detection of tree crowns in canopy height models or point clouds covering the
areas of interest (AOIs) for which estimates of forest parameters are required.

2. Linking detected crowns with trees observed on field plots with known tree
locations. The primary assumption in the traditional ITC approach is that one
field-measured tree can be linked to one crown detected in the ALS data.

3. Fitting statistical models that regress field-measured tree characteristics against
metrics derived from the detected tree crowns. Such metrics usually include the
area of the detected crown and the maximum ALS height within the detected
crown.

4. Application of the fitted model to the detected tree crowns within AOIs such as
stands in order to estimate tree characteristics of interest.

5. Typically, the estimates for crown segments within each stand are averaged or
summed in order to estimate mean or total forest characteristics within the stand.

Popular methods for crown detection in canopy height models are watershed
algorithms (Chap. 5). Since the canopy height model is segmented, the detected tree
crowns are often denoted “segments”.

Usually, only dominant trees are correctly identified in step 1 in the sense that
exactly one field-measured tree is within one detected crown segment (Persson et al.
2002). Frequently, only “correctly identified” segments with one linked field tree are
used to fit regression models in step 3. However, the number of field-measured trees
within a segment influences the response variable such as timber volume or dbh
(diameter at breast height) of the segment. In general, it can be said that omitting
observations from a regression model based on the response variable, for example
empty segments or segments with several field trees, will result in biased regression
models.

Hyyppi and Inkinen (1999) and Hyyppé et al. (2001a) estimated the dbh for
detected crowns in stands using the fitted model in step 3. Using the estimated
dbh and maximum ALS height, timber volume was estimated for each segment
using existing volume models. The authors reported considerable systematic errors
for estimates on stand level using the ITC approach, which largely resulted from
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errors in the crown segmentation. Hyyppé and Inkinen (1999) suggested the use of
a correction factor to compensate for the systematic error. The semi-ITC approach—
described in detail in the section below—is another method to eliminate, or at least
reduce, such systematic errors. It should be noted that the semi-ITC approach is not
necessarily more precise than the ABA, but provides estimates with a higher spatial
resolution.

In general, the data requirement of ITC approaches is greater than for the ABA
because high-density ALS data (> 1 return per m?) are necessary and the coordinates
of single trees need to be recorded in the field. However, the ITC approach may be
more intuitive for forest practitioners because the single tree is the smallest unit
of interest in operational management. Additionally, in mixed-species forests, ITC
approaches may have an advantage over the ABA when it comes to tree species
classification. Furthermore, the ITC approach provides tree coordinates that may be
useful in certain applications.

In the next section (Sect. 6.2) we give a short overview of developments around
the ITC approach. Thereafter (Sect. 6.3) we describe the semi-ITC approach. The
results of a case study, in which different variations of the ITC and semi-ITC
approach were compared to the ABA, are presented and discussed in Sects. 6.4
and 6.5. While the ITC approach may be useful in many different contexts such
as the estimation of environmental variables or wood quality, in this chapter
we focus on traditional forest inventories that provide information about timber
volume or biomass. Forest inventories are usually based on field samples and
statistical estimators to infer population-level characteristics. In this regard, ALS
data analyzed with a (semi-) ITC approach may help to improve the precision of
estimates. This chapter covers primarily the modeling part of the analyses. We
refer to Chap. 14 and Flewelling (2008, 2009) where sampling-related issues are
covered.

6.2 Development of the ITC Approach

A large number of studies have modified or advanced the ITC approach, either
adopting one or several of the steps mentioned above, or estimating different
response variables. Only a few examples are summarized in this section.

e Most work has focused on improving the automated detection of trees in ALS
data (e.g., Kaartinen et al. 2012). Especially algorithms that adapt to certain
forest structures such as crown sizes or the number of trees appear promising
(e.g., Heinzel et al. 2011; Ene et al. 2012; Lindberg et al. 2013). Chapter 5 gives
an overview of methods for single tree detection and segmentation from ALS
surface models or point clouds that can be used to detect trees or their crowns in
step 1.

* A somewhat extreme approach was to omit step 3 and instead use existing
relationships between crown properties that were obtained from the detected tree
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crowns to estimate tree parameters of interest in step 4 (Hyyppa et al. 2005;
Vastaranta et al. 2011). Many growth models, for example, contain sub-models
for the relationship of the crown diameter and the dbh which could be exploited.
However, usually the measuring method of the data used to fit the growth model
differs from the method used to measure the crown diameter from the segments.
While this approach is tempting because no field data are needed for model
fitting, extreme care during the validation of the results is necessary, as it is
very likely to arrive at biased estimates. Transferred to the ABA, this approach
would mean that a documented relationship between ALS metrics and a response
variable is utilized without fitting a new model (Suvanto and Maltamo 2010).
Instead of a parametric regression in step 3, nonparametric regression techniques
can be used to describe the relationship between tree parameters of interest
and predictor variables obtained from the ALS data within the segments (e.g.,
Maltamo et al. 2009; Vauhkonen et al. 2010; Breidenbach et al. 2010; Yu et al.
2011). This approach is especially useful if the response is multivariate (e.g.,
simultaneous prediction of tree height, crown height, and timber volume) or
if it is desirable to use many predictor variables (Vauhkonen et al. 2010). In
addition to metrics derived from ALS returns within the tree segment, Maltamo
et al. (2009), Vauhkonen et al. (2010), and Peuhkurinen et al. (2011) also used
metrics similar to those used in ABA, computed from the ALS returns in a small
neighborhood about the ITC.

6.3 The Semi-ITC Approach

6.3.1 Background

The detection of trees and their crowns is most successful in open-spaced homoge-
nous coniferous forests. Nonetheless, even in forests well-suited for automated tree
detection algorithms, only a proportion of the trees are “correctly” identified in the
sense that one field-measured tree can be linked to exactly one identified crown
segment (e.g., Persson et al. 2002; Koch et al. 2006). In general, two types of errors
(omission and commission) can occur:

1.

Field-measured trees may be missed during automated segmentation because
several trees can be clustered within one segmented tree crown. Especially
small trees under or next to a dominant tree often will not be detected. Such
commission errors are sometimes called “under-segmentation.”

. Commission errors usually result from “over-segmentation” when one tree crown

is split into several segments. A less common reason for commission errors may
be the segmentation of non-tree objects.

The frequency of the errors depends on the properties of the crown detection

algorithm and the ALS data as well as the forest structure (Vauhkonen et al. 2012).
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The reasons for systematic errors of estimates based on the conventional ITC
approach are twofold. First, and most importantly, the above-described omission and
commission errors usually will not compensate for each other. The number of stems
is usually underestimated because suppressed trees are less likely to be detected
(Maltamo et al. 2004). Second, the correctly identified trees are the largest and most
dominant trees (Persson et al. 2002). The allometry of the detected trees thus differs
from the missing trees, which results in an overestimation of the mean tree size for
the detected trees due to a bias in the regression. In a study by Peuhkurinen et al.
(2011), underestimation of stem number and the overestimation of mean stem size
compensated for each other almost exactly in the estimates of timber volume and
basal area on plot-level.

The systematic errors in ITC estimates motivated Maltamo et al. (2004) and
Lindberg et al. (2010) to combine the ABA and ITC approach. In their studies, the
diameter distribution predicted using the ABA was utilized to augment the diameter
distribution resulting from the ITC approach, as suggested by Hyypp4 and Inkinen
(1999). Yu et al. (2010) and Vastaranta et al. (2011) included a plot-level correction
for the systematic error of the ITC estimates. Vastaranta et al. (2011) found 20
sample plots to be sufficient to estimate the correction factor.

Other ways for reducing systematic errors of ITC approaches are semi-ITC
approaches (Hyyppi et al. 2005; Flewelling 2008; Breidenbach et al. 2010). The
prefix “semi” supposedly weakens the following word “individual” because it
indicates that an automatically detected tree crown can be a cluster that may contain
no, one, or several field-measured trees (Breidenbach et al. 2010). A better term for
the semi-ITC approach could be TCA (tree crown approach), from which the word
“individual” is omitted. Nonetheless, the term semi-ITC (or semi-ITD) has become
somewhat established and is therefore also used in this chapter.

In contrast to the other above-described methods, semi-ITC approaches aim to
reduce or prevent systematic errors on the segment level, not on the plot level.
Another method that reduces systematic errors has been described by Mehtitalo
(2006). His method compensates for effects of overlapping tree crowns. In his
example, the method improved ITC stem count estimates based on simulated
ALS data.

6.3.2 Variations of the Semi-ITC Approach

Semi-ITC approaches are special cases of the ITC approach in the sense that some
of the 5 steps described in the Introduction section (Sect. 6.1) are modified.
Flewelling (2008, 2009) described what we refer to as the parametric semi-
ITC approach. In the parametric semi-ITC approach, all trees within a segment
are considered (step 2). In step 3, logistic regressions are used to estimate the
probabilities that an ITC represents 0, 1, 2, ..., n trees. Conditional regressions
are fit to estimate the diameters and heights of the various numbers of trees.
In application (step 4), the logistic regressions and conditional regressions are
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combined to estimate the probabilistic outcome for each detected tree crown;
expectations are calculated and summed to obtain estimated stand tables for each
stand. Flewelling also used fused CIR (color infrared) data to separate further
the ITC outcomes and resultant stand tables by species group. The regression
equations were fit in such a way as to be unbiased for basal area and tree count by
species group. Special steps were taken to retain the full variability of the diameter
and height outcomes. Otherwise, the diameter regressions would have caused the
inferred diameter distribution to be too narrow.

Compared to the above-described approach, a simplified variation of the para-
metric semi-ITC approach is the tree cluster approach proposed by Hyyppi et al.
(2005, 2006). In the approach, all trees within a segment are considered (step 2). In
cases where there are several trees within a segment, the variable of interest such
as timber volume is aggregated (added) within a segment. The aggregated variable
of interest is then regressed against predictor variables derived from the segments
(step 3). In order to arrive at unbiased results, it is important to use also the empty
segments with no linked trees in the regression. In this approach it is assumed that
all trees within one segment belong to the same tree species. Since this assumption
may often not hold in the case of natural forests, the tree cluster approach is suited
for estimates independent of tree species.

Breidenbach et al. (2010) have described what we hereafter call the nonpara-
metric semi-ITC approach, in which each segment is attributed with a tree list in
step 2. The tree list includes tree properties, such as the timber volume of field-
measured trees associated with a segment. The list can be empty for segments that
do not contain a tree or it can consist of one or several trees. If there are several
trees within a segment, they may be different species. In step 3, a nonparametric
k nearest neighbor model (kNN) is “fitted” using the aggregated tree properties.
The kNN model fulfills the same purpose as the linear and logistic models in the
parametric semi-ITC approach. In step 4, the tree lists associated with the reference
segments used to fit the KNN model are imputed to the target segments in stands.
Since tree lists are imputed, any property measured for trees in the field could be
estimated using one kNN model.

Since parametric and nonparametric methods have advantages and disadvan-
tages, approaches combining both methods are feasible too. For example, a kNN
method could be used determining how many trees a semi-ITC segment contains,
and use regression models to estimate the sizes of the associated trees.

6.3.3 Studies Applying the Semi-ITC Approach

Hyyppa et al. (2005, 2006) used the tree cluster approach to estimate timber volume
within segments. They found the tree cluster approach to be superior to the ITC
approach on the segment level. The estimates were not aggregated on the plot level
or stand level.
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Breidenbach et al. (2010) compared the most similar neighbor (MSN) technique
(Moeur and Stage 1995) and random forests (Breiman 2001) to determine the
distance in the feature space' between a target and a reference segment. The
predictor variables were obtained from ALS and multispectral images. The response
was species-specific timber volume and the number of neighbors (k) was set to
one. The semi-ITC approach did not result in systematic errors and outperformed
the ABA slightly for overall timber volume but more clearly for species-specific
timber volume. MSN was found to be a better suited distance metric than random
forests.

The nonparametric semi-ITC approach was used by Packalén et al. (2011, 2013)
to estimate the spatial distribution of trees. The semi-ITC approach was found to
be superior to both the ITC approach and ABA but the accuracy was in general
low. Also Vauhkonen et al. (2011), found the nonparametric semi-ITC approach
superior to other approaches considered for timber volume estimation. However,
the differences between the approaches were minor and the ITC approach was better
suited for species prediction. The latter was also reported by @rka et al. (2013).

Breidenbach et al. (2012) used the nonparametric semi-ITC approach to generate
artificial sample plots in areas of high-density ALS data. The Euclidean distance
metric was used instead of MSN. An aggregation of response variables from
field measured trees within a segment to “fit” the kNN model was therefore not
necessary. The artificial plots supplemented the field plots in the ABA based on
MSN using low-density ALS data. The authors found that the use of the artificial
plots generated using the semi-ITC approach helped to improve estimates of timber
volume.

Holmgren et al. (2012) applied the nonparametric semi-ITC approach to estimate
stem volume, mean tree height, mean diameter, and stem number that had been
measured with harvesters. The nonparametric semi-ITC approach was also used to
compare the performance of new and existing tree detection algorithms (Lindberg
et al. 2013). Vauhkonen et al. (2013) compared ITC and semi-ITC (termed “tree-
list imputation”) for wood procurement planning. While the semi-ITC estimates
of timber volume by species were usually less biased than the ITC estimates, the
variances were not notably different in most cases.

Wallerman et al. (2012) used the nonparametric semi-ITC approach to estimate
forest parameters from photogrammetric point clouds instead of ALS. Due to the
availability of digital aerial images and improved photogrammetric software, it is
foreseeable that this kind of application will increase considerably in the future.

The above-cited list of studies using the semi-ITC approach may not be complete.
Nonetheless, the simplicity and wide acceptance of kNN methods seems to have
favored the selection of the nonparametric semi-ITC approach over the parametric
semi-ITC approach so far. This is somewhat surprising, since the tree cluster
approach is also easily implemented.

IThe feature space is spanned by the selected predictor variables. The distance is thus not
geographic in nature but determined by the similarity of the predictor variables.
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6.4 A Case Study

In the case study presented here, four approaches are compared to estimate tree
biomass on plot level and stand level: ITC, the nonparametric semi-ITC, the
(parametric) tree cluster approach, and the (parametric) area-based approach. The
study area is located in the municipality of Lardal in southern Norway. For
the nonparametric semi-ITC approach, different nearest neighbors distance metrics
(raw Euclidean, Mahalanobis, MSN, and random forest) as implemented in the R
package yalmpute (Crookston and Finley 2008) and different numbers of neighbors
(k=1, ..., 10) are tested. For an introduction to kNN methods, we refer to the
review paper by Eskelson et al. (2009).

6.4.1 Field Data

A total of 30 forested Norwegian National Forest Inventory (NFI) sample plots were
located in the study area. The NFI plots in this part of the country are distributed
along a 3 x 3 km grid. Each circular plot has a size of 250 m? and all trees with a dbh
>5 cm are measured for dbh, species and location. The location of the plot center
coordinate is measured with survey-grade GPS equipment resulting in accuracies
usually better than 0.5 m. The tree height is measured on a subsample of 10 trees per
plot. The heights of the remaining trees are estimated based on a tariff method using
the measured trees for calibration at the plot level. Single-tree biomass is estimated
using the models by Marklund (1988). The biomass models are species-specific and
require dbh and tree height as input parameters. The model for birch was used for
all deciduous trees. The NFI sample plots were measured between 2005 and 2009
and were used to fit or train the statistical models. The proportions of spruce, pine
and deciduous species on the NFI plots were 74 %, 6 %, and 20 %, respectively.
Table 6.1 gives an overview of further characteristics of the NFI data.

For validation, in 2012, between 5 and 7 sample plots were measured in 30
randomly selected compact stands of between 1 and 3 ha in size. Compact stands
were selected to minimize problems resulting from detecting stand borders during
field work. The compactness of the stands was determined based on their area to
perimeter ratio which had to be >0.2. Stand borders were determined from aerial
images in a recent forest management inventory. It was known from the inventory
that large-volume stands (=150 m>/ha) were twice as common as small-volume

Table 6.1 Characteristics of NFI tree-level and plot-level parameters

Parameter Mean  Standard deviation =~ Maximum
Tree-level dbh (cm) 12 67 41
Tree-level height (m) 10 4 24
Tree-level biomass (kg) 86 129 920

Plot-level biomass (Mg/ha) 84 73 249
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Table 6.2 Characteristics of tree-, plot- and stand-level parameters of validation

data

Parameter Mean  Standard deviation = Maximum
Tree-level dbh (cm) 16 83 51
Tree-level height (m) 13 5 31
Tree-level biomass (kg) 163 191 1,528
Plot-level biomass (Mg/ha) 111 83 338
Mean stand-level biomass (Mg/ha) 124 66 257

stands (<150 m3/ha). In order to reflect the whole range of stands, the sampling
probability of small-volume stands was increased by two. A total of 186 sample
plots were available for validation. The measurements on the validation plots were
done in accordance with the NFI protocol described above. However, tree positions
were not recorded. The proportions of spruce, pine, and deciduous species on the
validation plots were 73 %, 7 %, and 20 %, respectively. Table 6.2 gives an overview
of further characteristics of the validation data.

6.4.2 ALS Data

Discrete return ALS data with up to three intermediate returns were acquired
between 21 and 25 May 2009 using Optec Gemini sensors (ALTMO5SSEN180 and
ALTMO4SEN161) with a half scan-angle of 12° (Gjessing and Werner 2009). The
average flying height and speed of the fixed-wing aircrafts was 690 m above ground
and 80 m s~!, respectively. The flight and sensor settings resulted in an average
density of approximately 10 pulses per m? and a footprint size of 13 cm. Elevations
were normalized to heights above ground by the data provider. ALS intensities were
not used in the study.

6.4.3 Segmentation

Using the software FUSION (McGaughey 2010), a digital canopy height model
(CHM) with a cell size of 35 cm was calculated from the highest ALS return within
a cell. All return types were considered. A simple watershed algorithm was then
applied to the inverted CHM where the canopy height was above 2 m. Segments
smaller than 0.5 m? were deleted. For more details on the segmentation procedure,
we refer to Breidenbach et al. (2012).

A total of 884 segments were located wholly within the 30 NFI sample plots. The
segment size was in the range 0.6—18.7 m?, with a median of 1.6 m?. These reference
segments were imputed in the nonparametric semi-ITC approach (Sect. 6.4.5.2).
These segments were also used in the tree cluster approach (Sect. 6.4.5.3). A subset
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of these segments was used in the ITC approach as described in Sect. 6.4.5.1. Of
the 884 segments, 64 % were empty in the sense that no field-measured tree was
located within their boundary. Further, 25 %, 5 %, and 5 % of the segments had one,
two, and three or more field-measured trees located within their boundary. A total of
498 trees were located within 315 of the segments and a maximum of 9 trees were
located within one segment.

A total of 9,114 segments had their centroids within the validation plots and were
used to estimate the biomass on these plots using the ITC and semi-ITC approaches.
The segment size was in the range 0.6-41.1 m?> with a median of 1.6 m.

6.4.4 Explanatory Variables

Height and density metrics are well-known explanatory variables in the ABA.
Height metrics are statistics that describe the distribution of the heights of ALS
returns within a sample plot or some other area. For example, height metrics
can be the mean (Hyeqn), standard distribution (Hgp), or percentiles of the height
distribution (Hyin, Hpio, -- ., Hpoos Hmax)- Density metrics are the proportion of
returns within certain height bins or above or below a certain pre-determined
height. In the case study, density metrics within 5 m vertical bins were calculated.
For example, Ds_jy denotes the proportion of returns within 5-10 m and D- pean
denotes the proportion of returns above the mean. In this case study, the explanatory
variables derived from ALS raw data are based on all return types (i.e., first,
intermediate and last returns).

Similar to the ABA, metrics describing the height and density distribution of the
returns within each segment can be calculated. It should be noted that the metrics
of the segments are even more closely intercorrelated than those used in the ABA
because the segments are smaller than sample plots and consequently the metrics are
based on fewer returns. In addition to the explanatory variables known in the ABA,
the segment’s area (Ayg) or variables derived thereof such as the crown diameter
of the segment are important predictor variables for ITC and semi-ITC approaches.
Selection of explanatory variables was based on previous experience and iterative
comparisons of different model alternatives.

6.4.5 Specifics of the ITC, Semi-ITC, and Area-Based
Approaches

6.4.5.1 ITC Approach

Similarly to Hyyppd and Inkinen (1999), Persson et al. (2002), and Peuhkurinen
et al. (2011), a linear model based on segments wholly within a NFI sample plot
with one “correctly identified” field measured tree was fitted in step 3. However,
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instead of estimating the segment’s dbh independent of species in step 3 and using
the estimated dbh with existing biomass models, we used the tree biomass within
a segment as the response variable in step 3. This procedure was followed because
the study site consisted of heterogeneous forests with several tree species. Only the
segment area and its interaction with the largest return height within the segment
turned out to be significant explanatory variables. This resulted in the model

y = Bo+ Bi Aseg+ﬂ2 Hinax + B3 Aseg Hpax + €, (6.1)

where ¢ is a random error. The estimated standard distribution of the model was
0 = 60.2 kg or 64.7 % of the mean where 6 = \/ﬁ S (i — $,)* and 7 = the
estimated biomass of the segment. A total of n =225 segments were used to fit
the model. The cqgfﬁcient of dete/r\mination was 13\2 =0.75, wl}ile the estimated
coefficients were B, = —19.43,8, = —18.17,8, = 8.39,8;, = 2.18. The
hierarchical structure of the data—several segments were clustered within one
plot—and the heteroskedasticity of the residuals were ignored.

6.4.5.2 Nonparametric Semi-ITC Approach

The explanatory variables Agey, Hmax, Hsp, and Dspean Were used to “fit” KNN
models using the 884 segments that were wholly within a NFI sample plot. As
opposed to Breidenbach et al. (2010), no segments were excluded due to an
unexpected relationship between measured height and maximum ALS height. In
a pre-analysis it was found that excluding “outlying” segments surprisingly resulted
in larger root mean squared errors (RMSESs) on plot level.

To fit KNN models based on the distance metrics MSN and random forests, the
sum of the single tree biomass within the segment independent of species and the
sum of the single tree biomass for spruce trees within the segment were used as
response variables. The mean of the nearest neighbors was used for estimates based
on more than one nearest neighbor (k > 1).

6.4.5.3 Tree Cluster Approach

The tree cluster approach (Hyyppa et al. 2005, 2006) was used to provide an
example of the parametric semi-ITC approach. The linear regression model was
based on the same 884 segments as were used in the nonparametric semi-ITC
approach (all segments wholly within a NFI sample plot). If several trees were
within a segment, the biomass of the trees within a segment was summed. In
contrast to the approach used by Hyyppi et al. (2005, 2006), also empty segments
were used in the regression. The biomass of empty segments was assumed to be
zero. The structure of the model was the same as Eq. (6.1), with & = 58.6 kg or
138 % of the mean biomass within a segment at the NFI sample plots including all
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empty segments and R? = 0.70. The estimated coefficients were ,30 = 24.53, ,3 =
—3.75, /32 = —13.18, ,33 = 2.81. Given these regression parameters, negative
estimates can occur. Measures could be taken to prevent negative estimates but this
was not considered necessary in our case.

6.4.5.4 Area-Based Approach

The following model was fit to estimate the biomass observed on the 30 NFI plots
using the ABA

¥y = Bo+ Bi Hyean + B2 Hpas + B3 Hpoo + Bs Ds_10 + Bs HpooDs_1o + &,

where & = 592.81 kg or 24.3 % of the mean biomass observed at the NFI sample
plots and R? = 0.89. All estimates were in kg and then converted to Mg/ha The esti-
mated coefficients were ,30 = 382.54, ,31 = 503.04, /32 = 280.02, ,83 = —92.33,
,B = —7158.20, ,35 = 1019.92.

6.4.5.5 Plot-Level and Stand-Level Estimates

The ITC and semi-ITC models were used to estimate the biomass of all segments
with a centroid within the validation plots in step 4. The validation plots were
therefore the areas of interest, not complete stands. The estimates for segments
associated with a sample plot were aggregated to the plot-level by summing them in
order to obtain the biomass estimate of the sample plot.

The estimates on the stand level were the averaged estimates for the sample plots
within a stand. Therefore, we assume that a stand only consists of the area covered
by the sample plots within the stand. The sample plots thus allow a full census of
the stand-level biomass. It should be noted that this approach is different to the
operational application where stand-level estimates are obtained by segmenting
the full stand and applying the regression models to all segments within a stand.
The area of a validation stand is the sum of the areas of the validation plots within
the stand. Our validation stands are therefore rather small compared to real stands.

6.4.6 Goodness-of-Fit Criteria

The alternative approaches are compared based on the root mean squared error

1 R
RMSE = |- (i =)’
i
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and the systematic error (also denoted bias?)
1 ~
= (i =)
e

where y; is the observed biomass, ¥, is the estimated biomass, n is the number
of observations and i=1, ..., n. Relative RMSE and systematic errors were
obtained by dividing the RMSE and systematic errors by the mean observed biomass
(Table 6.2) multiplied by 100.

6.4.7 Results and Discussion

6.4.7.1 Comparison of the ITC, Semi-ITC, and Area-Based Approaches

The ITC approach resulted in RMSEs of 111.8 % and 104.0 % on plot level and
stand level, respectively. The large RMSE was mostly driven by the large systematic
error of —90.4 % and —88.3 % on plot level and stand level, respectively. The
absolute value of the systematic error increases with increasing biomass (Figs. 6.1a
and 6.2a). The negative systematic error results from the fact that each segment is
attributed with a biomass estimate for a complete tree with the crown properties
of the segment although many segments only cover a crown part without stem.
The number of segments that cover only parts of crowns increases with crown
size. Therefore, the absolute value of the systematic error increases with increasing
biomass at the sample plot.

Since the nonparametric semi-ITC approach imputes reference segments that
can contain none, one, or several trees, it does not predict a biomass for every
segment. As a consequence, the systematic error is reduced to 7.1 % and 7.2 %
on plot level and stand level, respectively (Figs. 6.1b and 6.2b). In fact, in our case
study, a positive systematic error was visible. This means that the observed biomass
in the field tended to be slightly larger than the estimated value. The biomass was
especially underestimated in stands within the medium range of observed biomass.
The smaller systematic error compared to the ITC approach also results in smaller
RMSE:s of 29.4 % and 14.4 % on plot level and stand level, respectively.

RMSE:s of 27.9 % and 16.8 % respectively on plot level and stand-level were
obtained using the tree cluster approach, which is one example of a parametric
semi-ITC approach (Figs. 6.1c and 6.2c). Systematic errors were practically zero.
However, underestimates in stands in the medium range were cancelled out by

2If we assume that the biomass obtained from field measurements is the true biomass or at least
very close to it, we could use the term bias. However, biomass was not measured. Instead, biomass
models were used to estimate the tree biomass from dbh and height measurements. Furthermore,
height models were used to estimate the height of some trees. Without any assumptions, the term
systematic error is technically more correct in our case.
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Fig. 6.1 Observed versus predicted tree biomass on plot level. (a) ITC. (b) Nonpar. semi-ITC.
(c) Tree cluster approach. (d) ABA

overestimates in stands with large biomass ranges. Overestimation in stands with
large biomass may have resulted from the fact that large segments were located on
these plots which were not in the reference data.

Compared to the other methods, the ABA resulted in the smallest RMSEs of
22.4 % and 12.7 % on plot level and stand level, respectively (Figs. 6.1d and
6.2d). Systematic errors were practically irrelevant. This result shows that a small
number of (NFI) sample plots can be sufficient to fit models for forest management
inventories, a finding that is supported by several previous studies (e.g., Peuhkurinen
et al. 2011; Nasset 2002).

Hardly any systematic errors were reported in the semi-ITC study by conducted
Breidenbach et al. (2010). The reason for the slight remaining systematic error in
the semi-ITC approaches thus requires further research. Given that the systematic
error did not occur when the semi-ITC approaches were applied to the NFI plots,’

3Leave-one-plot-out cross validation was applied. Detailed results are not presented here.
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Fig. 6.2 Observed versus predicted biomass on stand level. (a) ITC. (b) Nonparametric semi-ITC.
(¢) Tree cluster approach. (d) ABA

one explanation for the systematic error could be that the growth in the 3-8 years
time difference between the measurement of the NFI and validation plots affected
the semi-ITC approaches more than the ABA. The fact that especially stands in
the medium range, which have the strongest biomass growth, were underestimated
supports this hypothesis. In the absence of the remaining systematic error, the semi-
ITC approaches would be slightly more precise than the ABA.

Although many studies have further developed automatic tree detection and
segmentation algorithms (see Chap. 5), only few have analyzed how the improved
methods influence estimates of forest parameters on plot level or stand level and
how the accuracies compare to the ABA. As RMSEs cannot be compared across
study sites, since they are influenced by the forest structure, we next attempt a more
qualitative comparison of our results with other studies.

As opposed to Hyyppid and Inkinen (1999), who found that the ITC approach
underestimates timber volume, the findings by Hyyppd et al. (2001a) and our own
results show that the ITC approach overestimates timber volume and tree biomass,
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respectively. Reasons for differences between the studies may be that different tree
crown segmentation algorithms were used and that we did not apply existing models
to estimate biomass from an estimated dbh but rather estimated biomass directly. It
should also be noted that we did not smooth the surface model before segmentation
as is often done in ITC studies. Hyyppd and Inkinen (1999) and Hyyppi et al.
(2001a) assumed that the systematic error resulted from the fact that only dominant
trees were detected in their study, which suggests that their algorithm resulted in less
over-segmentation than ours. In our study, RMSEs on stand level are not comparable
with those of Hyyppé and Inkinen (1999) and Hyypp4 et al. (2001a) because in the
latter studies the variance of the field data were subtracted from the RMSE.

As in our case study, Yu et al. (2010) and Vastaranta et al. (2011) reported that
the ITC approach, if not corrected for the systematic error, resulted in considerably
larger RMSEs than the ABA. After including a correction for the systematic error
on the area-level, the ITC approach was slightly more precise than the ABA. In
contrast to Yu et al. (2010) and Vastaranta et al. (2011), Peuhkurinen et al. (2011)
found the ABA to be slightly more precise than the ITC approach for timber volume
estimates on plot level, but also described situations in which the ITC approach
may be better.* A small systematic error in the ITC volume estimates was not
significantly different from zero, although the number of stems was significantly
underestimated (Peuhkurinen et al. 2011). The reason for the small systematic error
of the ITC estimate of timber volume by Peuhkurinen et al. (2011) is that the mean
segment volume was overestimated and the number of stems was underestimated.
In their case, these two systematic errors had opposite signs and almost canceled
each other out entirely.

Whereas more over-segmentation than under-segmentation occurred in the study
by Vauhkonen et al. (2013), the opposite is the case in our study. In both cases (more
over-segmentation or more under-segmentation), the semi-ITC approach helps to
reduce the systematic errors.

Bortolot (2006) described an approach where plot-level metrics are calculated
from tree clusters detected on the plot. The approach proved to better than the ITC
approach and may be an alternative to the semi-ITC approach in cases where field-
measured tree positions are not available or when the spatial resolution of the ALS
data is low.

6.4.7.2 Influence of Distance Metrics and Number of Neighbors
in the Nonparametric Semi-ITC Approach

Since the nonparametric semi-ITC approach uses the kNN method, the number
of neighbors used for the prediction and choice of the distance metric influences
the accuracy and precision of the estimates. Of all the distance metrics compared

“Plots consisted of several sub plots such that their plot-level results were obtained in a similar way
to the stand-level estimates in our study.
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Fig. 6.3 Influence of the number of neighbors used for prediction (k) and the distance metric
(Euclidean and most similar neighbors) on the RMSE (left-hand graph) and systematic error of
nonparametric semi-ITC estimates (right-hand graph)

(Euclidean, Mahalanobis, MSN, and random forest), the Euclidean distance resulted
in the smallest RMSEs on both plot and stand level. A comparison of RMSEs
calculated with the Euclidean distance metric and the next-best metric, MSN, is
shown in Fig. 6.3. Similar results have been reported by McRoberts (2012), who
attributed the advantage of the Euclidean distance metric over others to the fact that
it does not overfit the data.

An increase in the number of neighbors to 5 improved the RMSEs of the semi-
ITC approach on plot level based on the Euclidean distance metric (Fig. 6.3). Similar
observations were made by Vauhkonen et al. (2011, 2013). However, interestingly,
the RMSE on stand level constantly increased with increasing k. An increased
number of neighbors (k) means that the average of several segments is used for the
prediction in semi-ITC. As stated by Moeur and Stage (1995), the use of one nearest
neighbor (k = 1) usually maintains the original variance of the response variable (or
the covariance between several response variables in a multivariate setting). This
variability is lost with increasing k (McRoberts 2009). Our case study suggests
that this loss of the original variability results in a lower level of precision when
aggregating the results on stand level. The RMSEs on plot and stand level are thus
competing criteria for selecting the optimal number of neighbors (McRoberts 2012).
It is also interesting to note that the systematic error, as opposed to the random error,
does not decrease by aggregating estimates on the stand level (Fig. 6.3). In our case,
the most likely reason why the systematic error too increased with k is that the
extrapolation bias was promoted with an increasing number of neighbors.
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6.5 Conclusions

Semi-ITC approaches help to reduce the systematic error of ITC approaches caused
by errors in crown segmentation. However, the assumption that each detected tree
crown relates to exactly one field tree is abandoned in semi-ITC approaches. For
the nonparametric semi-ITC approach, a simple distance metric (Euclidean) and the
use of one nearest neighbor (k = 1) gave the best results in the case study, especially
on aggregated levels such as forest stands. The tree cluster approach (a parametric
semi-ITC approach) can be a good alternative if tree species are not of interest.
Compared with the area-based approach (ABA), systematic errors are more likely
to occur if ITC or semi-ITC approaches are applied. Furthermore, compared with the
ABA, estimates of higher precision cannot always be realized using ITC or semi-
ITC approaches. Whether an ITC, semi-ITC, or area-based approach is superior
depends on many factors such as the segmentation algorithm, the statistical methods,
the available ALS and field data, the variable of interest, and the forest structure.
Regardless of which approach is used to estimate forest parameters, the estimates
should always be carefully validated on all scales of interest.

Semi-ITC approaches have not yet been studied extensively. We see their
potential especially with respect to response variables that strongly vary on small
scales that are difficult to model using the ABA. Response variables that fulfill this
criterion include biomass (see also Chap. 8), diameter distributions (Chap. 9) and
tree species (Chap. 7), although this strongly depends on the forest structure. A rigid
comparison with the ABA should always be included. We see this as a challenge for
future studies.
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Chapter 7

Tree Species Recognition Based on Airborne
Laser Scanning and Complementary Data
Sources

Jari Vauhkonen, Hans Ole Orka, Johan Holmgren, Michele Dalponte,
Johannes Heinzel, and Barbara Koch

Abstract Species-specific information is important for many tasks related to forest
management. We review the use of airborne laser scanning (ALS) and comple-
mentary data for providing this information. The main ALS-based information is
related to structural features, intensity of the echoes, and waveform parameters,
whereas spectral information may be provided by fusing data from different sensors.
Various types of classifiers are applied, the current emphasis being in non-linear
or otherwise complex techniques. The results are successful with respect to the
main species, whereas the overall accuracy depends on the desired level of detail
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in the classification. We expect fusion approaches combining ALS and especially
hyperspectral data to become more common and further improvements by the
development of advanced sensor technology.

7.1 Introduction

Information on tree species is required by forest management systems that use
species-specific growth and yield models or involve different treatment schedules
depending on species. A species recognition step is also required if the prediction of
the other tree attributes like stem diameter is based on species-specific equations; in
that case the selection of the correct allometric model is crucial towards the obtained
accuracies (Korpela and Tokola 2006). Distinguishing between the species has been
one of the biggest challenges in the ALS-based inventories and ALS itself was not
originally considered an adequate data source with this respect. However, the most
recent research suggests that a high degree of species-specific information may be
extracted also from ALS data.

One of the earliest attempts to predict tree species based on ALS data was
reported by Tormé (2000), who concluded that “only 3D-coordinates are not enough
to estimate stand tree species proportions. The alternatives to get better results
are either to classify single trees and compute tree species proportions from these
or to use also intensity information by using aerial images or laser which can
measure intensity”. Following this study, the first tree-level analyses were carried
out by Brandtberg et al. (2003) and Holmgren and Persson (2004), while the studies
by Persson et al. (2004), Hill and Thomson (2005), Koukoulas and Blackburn
(2005), and Packalén and Maltamo (2006) combined ALS with spectral image
data to provide species information at various scales. Furthermore, Reitberger et al.
(2006) proposed the use of full-waveform recording sensors to produce additional
information to the discrete-return data. The number of papers published in this
research area has rapidly increased since around 2008, but the main principles
and data sources have remained more or less the same compared to these initial
approaches. The most recent studies focus on advanced sensors and information
extraction and estimation techniques to improve the predictions.

Most of the research in the field of the ALS-based species recognition has
been conducted in Scandinavia, Central Europe and North America. Boreal forests
located in the northern part of Europe are generally characterized by a smaller
number of species compared to temperate forest types in Central Europe and
Northern America. For certain applications in Scandinavian boreal forests it may
be sufficient to distinguish between conifers and deciduous trees or at the utmost
between spruce and pine (Holmgren and Persson 2004; @rka et al. 2009a). This
is reasonable since the latter two species are economically most important for
Scandinavian forestry.

Besides the studies concerted on Scandinavian conditions there are also some
investigations which have developed methods to distinguish a larger number of
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tree species. In this context and in a taxonomically correct way, the term “species”
should be substituted by “genera” because the differentiation between individual
taxonomic species is usually not feasible by means of remotely sensed data.
Whether based on ALS or spectral data only very few approaches have been
undertaken so far to separate taxonomic species within the same genera. Examples
of those studies are Hughes et al. (1986) and Dalponte et al. (2008, 2012).

As these differences in the species composition and forest structure naturally
affect the methodology used in the different study areas, we divide the rest of this
chapter according to following: First, we present a framework and an overview of
the common methodology used in the species classification task regardless of the
species composition. Second, we describe the potential sources for the species-
specific information based on ALS and additional data using the classification of
individually delineated Scandinavian trees as an example case. This case may be
considered as a simple problem (only three species classes), but it still represents the
different aspects of the problem, since a successful classification of these vegetation
types usually requires information from multiple data sources. We then generalize
these information sources to area-based, species-specific estimation applications
and shortly extend the discussion to the classification of several genera in Central
Europe, North America and tropics. Finally we present conclusions and future out-
looks regarding species-specific estimation based on ALS and complementary data.

7.2 An Overview of the Species-Specific Estimation Task

There are different strategies how to treat the species in the estimation tasks.
The simplest and least detailed approach is to determine the stand-level main
species based on some external information, such as visual interpretation of aerial
photographs (e.g. Naesset 2002). In that case, the ALS-based estimation is focused
on the total stand attributes, yet the result also includes the determination of the
species. If the species are predicted, the prediction can be done separately from
other tree/stand attributes, or simultaneously with the other attributes. Instead
of producing a comprehensive species map, the interest may be in detecting
occurrences of economically or ecologically important species (e.g. Sdynijoki
et al. 2008).

All the previously mentioned problems can be basically solved both at the single
tree and area (e.g. plot or stand) levels. It is notable that tree species itself is
rarely the actual end-product expected from an ALS-based forest inventory. Instead,
forest inventories typically aim at predicting species-specific forest attributes at a
certain area, which constitute continuous properties and may require an aggregation
of predictions from the initial computation units (tree segments or grid cells)
to the desired geographical unit. Despite the previously mentioned differences,
the species-specific estimation tasks often share similar properties. The schematic
diagram in Fig. 7.1 attempts to cover those methodological similarities in species-
specific estimations. We acknowledge that additional and other categories could be
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Fig. 7.1 Schematic diagram describing a general species classification task

formulated and alternative terms used. However, we try to generalize the problem as
much as possible; for example, over different spatial scales (tree, plot, forest levels)
and various classification vs. estimation based approaches.

The diagram contains four subsequent levels which refer to the major aspects of
the classification approaches. The first one includes the type of data used. For the
scope of this textbook, ALS-based methods play the major role and can be divided
into a sole use of the ALS data and a combination with multi- or hyperspectral
images. Considering species classification, the use of other airborne data types like
SAR is rare and only few authors like Sato and Koike (2003) have worked on it.
The first studies using terrestrial laser scanning (TLS) for the same purpose have
also been published recently (Puttonen et al. 2010). However, due to the non-area
wide nature of the TLS data, the analysis of these data results in different types of
applications, in terms of scale, than the airborne data covered here.

The second level consists of predictive features derived from the ALS data and
complementary data sources. A premise for the discrimination between species is
that their differences can be adequately described in the feature space determined by
the extracted features. The principal information sources include the (i) structural
properties in the 3D point clouds and (ii) measures of the pulse energy reflected
back, i.e. the intensity data. Using (iii) full-waveform recording sensors, the
information about the geometry of the reflections produces additional information.
Even though the intensity values are somewhat related to the reflectance properties
of the target, the ALS data need to be coupled with spectral data to truly measure
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these properties. The information in such images includes (iv) spectral and (v)
textural features. Few authors like Vauhkonen et al. (2008, 2009), Barilotti et al.
(2009), and Heinzel and Koch (2012) have derived textural features also from
ALS based surface models. The last group, (vi) crown shape features, is related
to individually delineated trees, being therefore less applicable for area based
approaches.

The use of the classification features derived at the tree level requires the prior
extraction of the single trees either in 3D from the point cloud or in 2.5D from a
digital surface model (cf. Chap. 5). Failures of the single tree extraction directly
reduce the quality of the species differentiation. Until now, classifications based
on crown and shape models have resulted in an adequate accuracy only when
classifying a few species with strong differences in the crown shape and for this
reason they have mainly been applied in Scandinavian boreal forests (e.g. Holmgren
and Persson 2004). For the classification of several species with minor shape
differences these approaches may not be applicable. However, the shape properties
might contribute to a better detection of subtle differences between species of nearly
similar appearance in tandem with other feature groups.

The third level of the diagram refers to the method of discrimination between tree
species. These are methods which assign the observations to classes corresponding
to tree species, being mainly different statistical classifiers or machine learning
systems. After extracting the features, producing the species-specific predictions
corresponds to a general classification or estimation problem described in the
literature related to pattern recognition and machine learning (e.g. Fukunaga 1990;
Bishop 2006; Theodoridis and Koutroumbas 2009). Therefore, this part is addressed
here very briefly.

As outlined earlier, the species classification accuracies may benefit from
combining features of different types (e.g. categorical, continuous) and data from
multiple sources. One cannot usually assume a linearly separable classification
problem or make similar assumptions regarding the distribution of the features,
for which reason the use of different non-linear or non-parametric classification
techniques like support vector machines (SVMs) or nearest neighbor (NN) algo-
rithms has become especially popular. Furthermore, since the dimensionality of the
feature space extracted from the airborne data may be very high, the generalization
properties of a classifier may be further improved by employing feature reduction
strategies. Different statistical approaches to produce species-specific information
from ALS and complementary data sources are compared by Hudak et al. (2008),
Korpela et al. (2010b), Niska et al. (2010), Vauhkonen et al. (2010) and @rka
et al. (2012), whereas Brandtberg et al. (2003), Holmgren and Persson (2004),
Packalén and Maltamo (2007) and @rka et al. (2009a, 2012) present different feature
selection/reduction approaches applied for species-specific estimation.

The fourth and last level of the diagram divides the so-called classification
depth into two subtypes. It is distinguished between classification approaches
which aim at differentiating between genera and those aiming at even more
detailed differentiation between species. As explained in the introduction, the terms
genera and species are often used outside their taxonomic meaning in the remote
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sensing studies. The Scandinavian species classification approaches typically aim at
separating the groups of Scots pine (Pinus sylvestris), Norway spruce (Picea abies)
and a broad group of deciduous trees, mainly consisting of birches (Betula spp.).
In Central Europe, an example genera-level classification could aim at separating
spruce, pine, beech (Fagus spp.) and oak (Quercus spp.), whereas a complete
classification of the last species, for example, would require separating red oak
(Quercus rubra), sessile oak (Quercus petraea) and common oak (Quercus rubur).

7.3 Estimation Based on Discrete-Return ALS Features

7.3.1 Principal Sources of Information in Discrete-Return
ALS Data

The species-specific information extracted from typical discrete return ALS data is
based on either the coordinate or intensity data. The vertical profiles of the point
data describe the structural properties of the tree crowns and may therefore reflect
species-specific differences in these structures. The structural information can be
quantified in terms of height value distribution, distribution of different types of
returns in different parts of the tree crown, and geometric measurements. Principally
all these properties are related to the amount and allocation of foliage in different
parts of the tree crown as seen by an ALS sensor. If the species have real-world
differences in these properties, then this information may be extracted from the ALS
data and used to discriminate between tree species.

In addition to the structural information, most ALS systems record properties of
the backscattered laser signal (Wehr and Lohr 1999), which is commonly referred
to as “intensity”. For discrete return lasers, intensity often represents some measure
of the strength of the returned echo, usually the peak amplitude (Wehr and Lohr
1999, see also Chaps. 2 and 3). A pioneer work of using intensity for vegetation
studies is reported by Schreier et al. (1985). Today, the intensity is recorded
for all echoes in discrete return lasers, which usually record from one to four
echoes per emitted pulse. However, sensor algorithms for both echo triggering and
intensity recordings are proprietary information, and accurate descriptions of how
the intensity recordings are performed are normally not available for end users.
Waveform recording sensors digitize the returned energy in consecutive narrow
intervals giving more control of the physical meaning of these numbers.

The intensity captured by current commercial ALS systems offers a radiometric
resolution of 8-bit, 12-bit or 16-bit (Hofle and Pfeifer 2007). The wavelength of the
emitted pulse is 1,064 nm in most ALS systems used for forestry applications, but
it could be located in other parts of the infrared spectrum (700-1,500 nm). Thus,
intensity describes some properties related to the reflectivity in these wavelengths.
However, intensity is not only related to the reflectivity of the target, but also the
area of the target and the scattering from the target (e.g. Korpela et al. 2010b).
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Since both the reflectivity in the near infrared wavelength and the sizes, shapes and
arrangement of leaves and branches differ between tree species the intensity may be
expected to indicate these differences in species classification.

7.3.2 Studies Based on Using the Structural
and Intensity Features

Holmgren and Persson (2004) classified pine and spruce trees in southern Sweden
using proportions of different types of echoes, and features based on height value
distribution, point geometry, and intensity. Altogether 20 classification features were
divided in 8 groups based on their mutual correlation, i.e. the different groups
were assumed to describe different properties between the species. Proportion of
vegetation hits, i.e. points above the estimated crown base height, and the standard
deviation of the of the intensity values were the two most important features,
producing classification accuracies of 88 % and 84 %, respectively. Accuracies
of 93-95 % could be reached using combinations of 3-8 features. All of these
combinations included the standard deviation of the intensity values and the
proportion of the first echoes within the tree crown. Additional information was
obtained using height distribution features and parameters describing a parabolic
surface fitted to the tree-level point data.

In a later study, Holmgren et al. (2008) included deciduous trees in the analysis
carried out in the same geographical area. They grouped the classification features
into height distribution, canopy shape, proportions of echo types, and intensity
features, with only slight differences to Holmgren and Persson (2004). In that study,
the most important individual feature was the mean value of the shape parameters
normalized by tree height, which resulted in about 72 % classification accuracy
in the three species case. An accuracy of 87-88 % was obtained adding different
combinations of ratio between ALS-based crown base height and tree height,
proportion of echoes in the canopy, and mean intensity.

The height and intensity distribution features were further examined by @rka
et al. (2009a, 2010, 2012), who calculated the features closely corresponding to
the area-based estimation (Nasset 2002, Chaps. 1 and 11) at individual tree level
and separately for different echo types. @rka et al. (2009a) found 17 features to
explain a significant proportion of variability between spruce and birch trees in a
Norwegian study area. Altogether 14 of these features were based on the height
value distributions, but the maximum and mean intensity of first-of-many echoes
and the mean intensity of the last-of-many echoes were found to be among the
most important classification features, providing overall accuracies of 73 %, 70 %
and 67 %, respectively. Both intensity and height distribution features differed
considerably when calculated by different echo categories. @rka et al. (2009a)
further pointed out that the tree height significantly affected to the height distribution
features and a better performance could be obtained by normalizing these features
with respect to the tree height.
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In a later analysis, @rka et al. (2012) found the proportions of single, last and
intermediate echoes more important than the height percentiles. These proportions
combined with density features extracted from the highest and lowest vertical
layers of the point cloud resulted in an accuracy 74-77 % in the classification of
pine, spruce and deciduous trees in Norway. Correspondingly, the 90th percentile,
kurtosis and coefficient of variation derived from range normalized intensities of
first echoes were found to be a best combination of the intensity features, providing
an accuracy of 63—75 % depending on the classifier used.

Vauhkonen et al. (2008, 2009) derived structural information applying a compu-
tational geometry concept called 3D alpha shapes (Edelsbrunner and Miicke 1994)
for species discrimination in southern Finland. The proposed approach was based
on triangulating the point clouds of the individual trees and deriving classification
features describing the allocation of computational volume and connected structures
at different relative height levels. This feature group was found to be comparable
to the point distribution features in classifying coniferous trees, and could alone
produce a 93 % accuracy of pine, spruce and deciduous trees. Although based
on a limited set of trees, their results indicate that very detailed (branch level)
differences can be extracted from the very high density (40 pulses m~2) ALS data.
In a simulation carried out by Vauhkonen et al. (2008), these features were however
found to be more sensitive to the reduction of the point density than features based
on height distribution, for example.

The studies of Vauhkonen et al. (2008, 2009) also include a comparison between
the structural and intensity features, but the intensity data were given less priority as
these were considered to contain noise between the species. The intensity features
describing the differences in the distributions of the first echoes separated slightly
between deciduous and conifer trees, but not between the coniferous species. When
combining structural and intensity features to separate spruce, pine and deciduous
trees, three out of nine features selected described the intensity distribution. In
another study area in southern Finland Vauhkonen et al. (2010) used a non-
parametric approach to estimate the species, stem diameter, tree height and stem
volume simultaneously using ALS data in a more practical pulse density (6-8
pulses m™2). Two thirds of the features considered were derived from the intensity
distribution. The features selected were the higher percentiles (40th, 50th, 60th and
70th) computed from first echoes and the mean intensities in two crown layers
corresponding to relative height layers 60—70 % and 70-80 %. The overall accuracy
obtained ranged from 68 to 79 %.

7.3.3 Intensity Normalization for Tree Species Predictions

As opposed to the previous studies that used raw intensity values, the later studies by
Korpela et al. (2010b) and Brka et al. (2012) suggest a calibration or normalization
of the intensity as a necessary step to produce improved species recognition
accuracies. The recorded intensity values are dependent on many factors, such as
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the range from sensor to target, incidence angle, atmospheric transmittance and
transmitted power (Ahokas et al. 2006; Wagner et al. 2006). Calibration methods
based on both physical and more data-driven approaches are used (Ahokas et al.
2006; Coren and Sterzai 2006; Hofle and Pfeifer 2007). Among the effects for which
the intensity data should be calibrated, a normalization based on the range from the
sensor to the target (range normalization) is the most mature. The normalization
methods and details on the improved accuracies can be found from Korpela et al.
(2010b) and @rka et al. (2012). Furthermore, calibration of the sensor specific
effects related to the hardware and software, such as the Automatic Gain Control
(AGC) of Leica sensors (Korpela 2008; Korpela et al. 2010a) and the differences
in intensity between scan directions in Optech Airborne Laser Terrain Mappers
(ALTM), which is referred to as banding (@rka et al. 2012), may be required.

The reasons causing the different intensity values have been dealt with by
Korpela et al. (2010b). For example trees with large and almost horizontal leaves
(e.g. Norway maple) produce high intensities while trees with small leaves and
narrow angles to the incoming pulse (birches, aspen) produce lower intensities.
Generally, conifers produce lower average intensities than most of the deciduous
trees. For the three most common boreal species, the intensities of birch, spruce and
pine are usually in this order (Korpela et al. 2010b; @rka et al. 2009a). Employing
this information, Korpela et al. (2010b) obtained an accuracy of 88-90 % when
classifying the aforementioned species with intensity features. The features selected
were the mean and standard deviation, skewness, kurtosis and percentiles (20th,
40th, 60th, 80th and 90th) of crown echoes, mean intensity of four upper crown
layers, where a crown layer was defined as one tenth of the tree height.

7.3.4 Considerations Regarding the Use of the Structural
and Intensity Features

There are some important considerations regarding the use of ALS data in species
classification. First, other forest properties than species may influence the recorded
structural and intensity information. Such properties are tree height (Korpela et al.
2010b; @Brka et al. 2009a) and site fertility (Korpela et al. 2010b). Korpela et al.
(2010b) found out that pine trees produced a lower average intensity of the first
echoes than spruce in forested areas, while there was no difference between trees
grown in open and fertile stands. @rka et al. (2009a) showed that differences in tree
heights between species could cause the incorrectly selection height features. Age
is another property that might influence ALS measurements due to the change in
crown architecture and reflectivity of trees with increasing age. However, Korpela
et al. (2010b) did not find any influence of age in the classification accuracy based
on intensity features.

Secondly, the intensity differs between echo categories (@rka et al. 2009a, 2010).
Thus, which categories to use is an important question. The ‘first returns’ (first-of-
many and single echoes) are considered as an optimal combination as these echoes
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are less affected by transmission losses due to penetrating the crown (Korpela et al.
2010Db). Single echoes have the highest intensity among the echo categories, which is
natural as only one echo is recorded when there is not enough backscattered energy
for additional echoes. However, the drawback of using only either one echo category
compared to combining single and first of many is that the number of echoes per tree
crown, and thus feature derivation possibilities, are reduced. The intensity of last of
many echoes is related to the energy reflected by the preceding echoes, but also these
have been found to support the separation of spruce and birch (@rka et al. 2009a).

The third issue is that the ALS measurements and thus the accuracy of the tree
species classification vary between sensors (Korpela et al. 2010b; @rka et al. 2010).
The classification accuracy obtained using a normalized intensity from two different
sensors differed by 10 percentage points in a Finnish study (Korpela et al. 2010b)
and 3 percentage points in a Norwegian study (Orka et al. 2010).

Finally, the differences in the phenological status of the vegetation as observed
by ALS sensors have been used to improve species classification accuracies. @rka
et al. (2010) studied the point height value distributions under leaf-on and leaf-off
conditions and found campaign-specific properties that could be used in the species
estimation task. The intensity of first of many echoes was lower in birch and aspen
trees when using leaf-off ALS data compared to using leaf on data, for last of many
echoes an opposite trend was found. Furthermore, they discovered a shift in the
proportions of echoes in the first-of-many and single return categories between
acquisitions performed under leaf-off and leaf-on canopy conditions. Specifically,
the deciduous trees that had lost their foliage were found to produce more multiple
(first-of-many) echoes under leaf-off than leaf-on canopy conditions, resulting in
classification accuracies in the order of 10 percentage points higher in overall
accuracy. Earlier, Liang et al. (2007) reported an accuracy of 89 % in coniferous-
deciduous tree classification in Finland following a difference between the digital
surface models constructed from either first and last echoes. In the study of @rka
et al. (2010), the use of different sensors also caused differences to the height value
distributions, which did not affect remarkably on classification accuracies.

7.4 Estimation Based on Full-Waveform Features

Compared to discrete-return ALS, the parameters derived from full-waveform
ALS data (Chap. 3) have been shown to produce more information especially for
solving multiple species problems typical to North America and Central Europe, for
example. The parameters of the reflected waveform have proved to be more sensible
in the differentiation between similar species than other feature types (Heinzel and
Koch 2012).

Reitberger et al. (2008), Hollaus et al. (2009), and Heinzel and Koch (2011)
describe the use of waveform characteristics like width, amplitude, and intensity
of the echo and total number of detectable targets as highly relevant for accurate
species detection in temperate forests of Central Europe. Figure 7.2 illustrates major


http://dx.doi.org/10.1007/978-94-017-8663-8_3

7 Tree Species Recognition Based on Airborne Laser Scanning. . . 145

Width (Standard Deviation - 2)

Received Powe

Amplitude

Intensity

-
L

Time

Fig. 7.2 Extract from a reflected laser signal depicting metrics of the waveform (schematic)

waveform parameters based on simply modeling a single echo with a Gaussian
shape. The width of an echo is considered as the double standard deviation and
the amplitude is the height of the Gaussian at its peak.

Related to the definition of an intensity value (see Sect. 7.2), the echo amplitude
can be defined more precisely using full-waveform data (Fig. 7.2). From a physical
point of view it describes the complete area below the Gaussian model of a reflector
and therefore provides a measure for the reflected energy which is received by the
system installed in the aircraft. Further explanations of the waveform parameters
like the backscatter cross section are provided by Wagner et al. (2006) and Chap. 3
of this book.

Comprehensive explanations of the interaction between the ALS pulse and
the surface of forest trees are currently missing. However, Hollaus et al. (2009)
presents some hypotheses which explain the backscatter cross section of an echo
with attributes from different species under leave-off conditions. For example they
propose that the entity of thin spruce needles work as an extended target which leads
to high backscatter cross sections. In contrast the leafless branches of a beech work
as small scatterers with small cross sections.

As an example of the classification features and accuracies obtained in studies
using the full-waveform features, Hollaus et al. (2009) used the mean backscatter
cross section of all echoes above the 50th height percentile and a ratio of the number
of echoes reflected above the 50th height percentile to classify coniferous and
deciduous trees with an accuracy of 83 %. They further highlight the potential to
separate beech, larch and spruce using the standard deviation of the echo widths per
crown segment, which resulted in an accuracy of 75 %. Heinzel and Koch (2011)
identified the intensity, the width and the total number of targets, corresponding to a
measure of canopy density, as the most important features in discrimination between
different species classes. In their study, up to six tree species were classified with
an overall accuracy of 57 %, four main species with an accuracy of 78 %, and
coniferous and deciduous tree groups with an accuracy of 91 %.
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It is notable that in addition to the full-waveform features, similar structural
features than outlined in previous sections are typically used. However, more
detailed structural information may be obtained by calculating these features at an
individual echo level (Heinzel and Koch 2011). Remarkably, very high classification
accuracies between coniferous and deciduous trees have been obtained based on
unsupervised classification methods, which depicts the clear difference between
these classes. For example, Reitberger et al. (2008) reported an 85 % classification
accuracy in a leaf-on situation and an 96 % accuracy in a leaf-off situation following
a clustering approach of the full-waveform data. Yao et al. (2012), on the other
hand, obtained accuracies of 93 % and 95 % by using unsupervised and supervised
classification methods, respectively, reporting much less differences between leaf-
on and leaf-off data sets.

Despite all benefits the disadvantage of using waveform parameters is that
waveform information is not always available with the original ALS data and
discrete ALS system are more commonly available. Since waveform systems are
still more expensive and require higher data storage capacities such information
is often not being recorded during survey. Most datasets are limited to the so
called discrete ALS information which only contains the spatial coordinates of
the individual echoes. According to Vaughn et al. (2012) the limitation to discrete
ALS leads to a reduced overall accuracy. In their example of five tree species from
Northern America classification rates reduce from 85 to 79 % even when completely
leaving out the use of special waveform parameters in both classifications and only
caused by the reduced number of extracted echoes per pulse.

7.5 Estimation Based on Combined ALS
and Spectral Image Data

Complementary information for the species classification can be extracted from the
combination of ALS and spectral image data, which may be provided by either
multi- or hyper-spectral sensors. Multispectral sensors record spectral values usually
covering three to four broad bands, whereas hyperspectral sensors are capable of
acquiring data with a high spectral resolution that usually results in observations
of tens to hundreds of spectral bands. The latter provide a detailed characterization
of the spectral signature of the tree(s), which is useful in the classification process.
The use of multispectral data has a longer tradition for the species classification
whereas hyperspectral data has become more popular in the recent years due to
their increased availability. The simultaneous acquisition of the two data types (e.g.
Asner et al. 2007, 2012; @rka et al. 2012) reduces the cost of data acquisition, but
is potentially a limited alternative for practical forestry applications due to various
technical, economic and weather reasons. Issues related to combining different data
sources are presented in Chap. 4.

Compared to the species classification accuracies obtained by using ALS data
alone, the improvement of adding image data is related to the spectral signatures
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differing between certain species. The spectral signature of tree species is usually
characterized by a peak of reflectance in the green area of the spectrum (from about
520 to 570 nm). This peak is strictly connected with the chlorophyll content of
vegetation. There is also a rapid increase of reflectance moving from the red region
(from about 630 to 700 nm) to the infrared one (from about 700 to 1,500 nm).
This area, between about 680 and 720 nm, is called red-edge region, and it is widely
exploited in vegetation studies, as the exact location of it and its behavior are strictly
correlated with the species, the age of the tree, and its health condition (Cho and
Skidmore 2006). In the infrared area of the spectrum (after about 750 nm), there is
a strong difference in reflectance between coniferous and broadleaves species. This
is useful in the classification process, but the infrared area is usually also noisier, for
the presence of the same absorption bands.

Using multispectral images, the available spectral bands describe the differences
between the tree species at a limited interval. Most commercial sensors have four
bands located in the blue, green, red and infrared parts of the spectrum. The
choice of the spectral bands is made by the camera manufacturers and may not be
optimized for tree species classification. For example, when an optical radiation
model was used to examine the composition of the spectral bands of a Leica
sensor, the conclusion was that the tree species classification could be improved
if one additional band measuring the red edge region of the spectrum was included
(Heikkinen et al. 2010).

One problem when using spectral values from aerial images is that the illumi-
nation conditions vary between images and within individual images. There are
physical, empirical or semi-empirical models that can be used for radiometric
correction (Collings et al. 2011). There are several factors influencing the radio-
metric values that one has to consider before operational classification of tree
species. There are three main categories that need to be considered (Collings et al.
2011): (1) atmospheric composition that affects the scattering and absorption of
light, (2) equipment noise and errors, and (3) the systematic variation in intensity
across an image frame that is caused by different view and solar angles of the
observations. This last effect is typically dependent on land-cover type. The data
also vary according to seasonal differences of the vegetation. This variation, weather
and sun conditions limit the time frame for a successful image acquisition to a short
period especially in the high latitudes.

The majority of the studies in the literature present different ways to combine
spectral and ALS data for individual tree crowns classification, but it is possible to
define two main strategies: (A) an individual tree crown (ITC) approach and (B)
a pixel approach. Approach A combines features extracted from both spectral and
ALS data at an ITC level (Holmgren et al. 2008; @rka et al. 2012). Conversely,
approach B extracts the features from both data at a pixel level, and afterwards the
pixel level classification map is aggregated for the ITCs extracted from ALS data.
Some studies that follow approach B (e.g. Dalponte et al. 2008; Jones et al. 2010)
do not perform the final pixel aggregation, but stop their analysis to the pixel-level
classification map. This output can be an instrument for having an idea of the tree
species distribution over a large area, which can be used for qualitative studies of
tree species distribution.
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The information extracted from the spectral images may be based on different
statistics like spectral mean values. One could also use ratios between spectral bands
because these could be less sensitive to different illumination conditions compared
with individual spectral bands (Persson et al. 2004). Tree-level variations due to
self-shading and shading from other trees may need to be considered since they
have a high impact on the reflectance values. One way to reduce the errors due
to self-shading is to only select pixels from the sunny side of the tree crowns as
demonstrated by Olofsson et al. (2006) and Dalponte et al. (2014), for which there
are also alternative techniques.

Regarding the classification accuracies obtained by fusing ALS and multispectral
data, Holmgren et al. (2008) showed that classification accuracies of 87-88 %
between pine, spruce and deciduous trees could be increased up to 95-96 % by
including the spectral mean values calculated at per-pixel basis. In the study of
(rka et al. (2012), a benchmark accuracy level of 74-77 % obtained using structural
information based on ALS data could be increased up to 87-89 %. The imagery was
acquired simultaneously with the ALS data, which improves the operational possi-
bilities to use a combination of these data sources. In both of these studies, the clas-
sification of the deciduous trees was the reason for the improved accuracies, whereas
the information for the coniferous trees was obtained mainly from the ALS data.

(Orka et al. (2013) demonstrated a major improvement in the classification
accuracy due to using a combination of hyperspectral and ALS data compared to
only ALS or combined ALS and multispectral data. The authors applied a feature
extraction to the hyperspectral images at pixel level and afterwards, the mean value
of the principal components in each crown were considered. The results showed an
improvement of kappa accuracy from 0.56 (ALS data only) to 0.78 (hyperspectral
and ALS data).

On the same dataset, Dalponte et al. (2014, 2013) applied a classification system
based on a pixel approach. The classification accuracy they obtained by combining
hyperspectral and ALS data was marginal compared with only using hyperspectral
data. This is mainly due to the fact that by considering a high spatial resolution of
the spectral images, only few ALS echoes are contained in each pixel. Thus, it is
not possible to extract high level statistics due to the low number of points per pixel,
and many pixels of the ALS images are interpolated as they do not contain any ALS
echo. However, the ITCs were extracted from the ALS data, which demonstrates
their importance for the phase of pixel aggregation (Dalponte et al. 2013).

7.6 Species-Specific Estimation Using the Area-Based
Approach

The previous sections focused the analyses on data with a rather high spatial
resolution, being typically interpreted at an individual tree level. On the contrary, the
area-based approaches use data in considerably lower densities (e.g. ALS data with
a density <1 pulses m~2; Maltamo et al. 2011) to produce forest attribute for plots,



7 Tree Species Recognition Based on Airborne Laser Scanning. . . 149

(micro-)stands or forest areas. Therefore, the structural information derived from
the area-based data may not be so obviously related to species-specific properties,
as the plot data may combine trees of several sizes and species. However, also the
plot-level information can be generalized to form species-specific estimations in the
Scandinavian conditions (cf. Maltamo et al. 2011). This approach is addressed in
Chap. 12 of this book; therefore, this section only briefly reviews the methodological
aspects related to the species-specific estimation.

Those area-based methods that produce species-specific estimates have been
developed in Scandinavia especially by Packalén and Maltamo (2006, 2007, 2008)
and these methods are currently used operationally in Finland (see Chap. 12). In
these approaches, the species-specific predictions are produced using a plot-level
imputation method with essential species-specific attributes (e.g. volume, basal
area) as dependent variables and airborne features as independent variables. The
estimation is based on searching for most similar neighbor plots in a feature space
determined by the ALS and image features. The airborne features are typically based
on height and the density features derived from the ALS data and due to the low
density of the data, these features are assumed to be more related to the dimensions
of the growing stock. The species-specific information is expected to be based on
information derived from aerial images.

The image features used in the estimation include spectral mean values and the
textural features introduced by Haralick et al. (1973). These features are derived
from the locations corresponding to field plots; orthorectification techniques are
used to co-register the image data with ALS. To develop the method further,
Packalén et al. (2009) linked the ALS points to the pixel values of unrectified
aerial photographs. The average spectral values were then used as predictors of the
species proportions. The developed methods avoids the geometric errors related to
the orthorectification process and furthermore has a potential to avoid radiometric
correction due to fetching the spectral values from several images and averaging the
images in that way (cf. Chap. 4).

The obtained results have indicated highly accurate results for the stand totals and
also for main tree species whereas the accuracy is worse for minor tree species. Due
to the properties of the airborne information, the estimation may be assumed to be
based on the properties of the dominant canopy; therefore, it can be questioned how
good the accuracy could be regarding the minor species, which are typically located
below the dominant canopy (cf. Packalén and Maltamo 2007; Packalén et al. 2009).
Also at the tree-level, Vauhkonen et al. (2011) found the accuracies of the species-
specific estimates to be connected with the unequal tree detection probabilities of the
different species, in that the species located in the dominant canopy were estimated
more accurately.

In attempting to further develop the species-specific estimates, Niska et al. (2010)
tested neural networks as an alternative estimation method to the nearest neighbor
techniques, which resulted in only minor improvements. Villikka et al. (2012) found
leaf-off data extracted at the plot level to provide more accurate estimates than leaf-
on data and to discriminate between coniferous and deciduous trees even without
the use of aerial images. Vauhkonen et al. (2013) found the plot-level intensity


http://dx.doi.org/10.1007/978-94-017-8663-8_12
http://dx.doi.org/10.1007/978-94-017-8663-8_12
http://dx.doi.org/10.1007/978-94-017-8663-8_4

150 J. Vauhkonen et al.

distributions useful for separating plots dominated by certain species from other
types of forest (see also Donoghue et al. 2007). Furthermore, Vauhkonen et al.
(2012) reported improvements by using the corresponding alpha shape metrics than
calculated at the individual tree level (Vauhkonen et al. 2008, 2009). @rka et al.
(2013) estimated main species with an overall accuracy of 86 % and estimated
species composition in deciles accurately for 83 % of the plots using only ALS data.
Based on these observations, it seems to be possible to develop the feature space to
produce further species-specific information also using area-based methods.

7.7 On the Classification of Multiple Species
in Complex Forest Canopies

Although the previous text is mainly based on examples from studies carried out
in Scandinavian forest conditions, it can be concluded that principally similar
techniques in both feature extraction and classification are applied elsewhere
(Brandtberg et al. 2003; Moffiet et al. 2005; Kim et al. 2009; Suratno et al. 2009;
Jones et al. 2010; Heinzel and Koch 2012; Vaughn et al. 2012). The difference is the
complexity of the classification problem, which can grow very high in the temperate
forests and thus affect the obtainable species classification accuracies.

When comparing the results from temperate forests with those from boreal
forests it is noticeable that for multiple species the accuracies may vary highly
between the different classes. For example Jones et al. (2010) report a span from 7 to
97 % when classifying up to eleven species combining hyperspectral and ALS data.
Very similar conclusions are reported by Heinzel and Koch (2011), who improved
the initial 13-79 % accuracy when classifying six species to 78-86 % (4 main
species) and up to 96 % (coniferous-deciduous classes) by limiting the classification
depth to cover less species. On the other hand, when considering simple coniferous-
deciduous case, the assignment to these classes can be done accurately at various
scales using simple height distribution features (van Aardt et al. 2008).

The number of species classes considered in the boreal zone is usually lower,
but also there the detailed classification of the deciduous species could cause
considerably lower accuracies. Therefore, the detail of the classification problem
poses an important factor affecting the potential accuracies obtained. However, even
a seemingly complex classification problem may be solvable with a reasonable
accuracy, but it calls for a detailed knowledge in species morphology, which can
be reproduced to feature space (e.g. Brandtberg 2007; Niccolai et al. 2010).

Several authors have pointed out increased accuracies by combining ALS data
with hyperspectral data especially in challenging, multiple species conditions.
For example, Dalponte et al. (2012) report an increase from 74 to 83 % overall
accuracy when classifying seven species by combining ALS features with spectral
information. A similar increment of classification performance is confirmed by
Heinzel and Koch (2012) who report an increase from 79 to 88 % when classifying
the main species of a temperate forest. The main species of such a Central European
forest comprise Scots pine, spruce, beech and oak.
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The fusion of structural properties from ALS with hyperspectral data is expected
to increase especially in challenging conditions such as tropics (cf. Asner 2013) and
there already are examples of successful classifications of multiple savanna species
(Naidoo et al. 2012; Sarrazin et al. 2012). However, the scale and complexity factors
related to tropical forest canopies may also result to opposite decisions regarding
the applied sensor(s) and scale(s). For example, Wolf et al. (2012) suggest tropical
species richness to be related mainly to topography due to species-level associations
with water and nutrient availability. They report a generalized least squares model
based on measures of canopy and terrain structure (i.e. ALS features only) to be
able to explain a significant proportion of the variation in tropical species richness
at scales ranging from 0.01 to 1 ha, which could potentially be used as simplified a
priori information for later species assessments.

7.8 Concluding Remarks and a Future Outlook

Regarding classification methods and applied classification features, certain con-
clusions can be made based on previous studies. Only minor differences were
found between linear discriminant analysis and more complex classifiers such as
Random Forests or SVMs when classifying the typical Scandinavian tree species
(Korpela et al. 2010b; @rka et al. 2012). Correspondingly, Niska et al. (2010)
found only minor differences between NN and neural network based methods in
an area-based imputation of stem volume per these species. However, in multiple
species problems, non-linear or advanced classifiers may be preferred against
simple linear classification methods (Heinzel et al. 2010). For example, Jones
et al. (2010) manage to differentiate up to 11 species using SVMs. The results
of @rka et al. (2009b) and Heinzel et al. (2010) also indicate a better stability
of the SVMs against linear discrimination in high dimensional feature spaces
when discriminating multiple species classes. This can also be confirmed from a
theoretically point of view (Gokcen and Peng 2002; Chen and Peter Ho 2008). On
the other hand, a benefit of using NN techniques is the potential to simultaneously
predict other attributes than species (Packalén and Maltamo 2007; Vauhkonen et al.
2010).

Regarding the combination of the classification features, i.e. the optimal combi-
nations of intensity and structural data, the studies considered here report somewhat
contradictory results even in forests with a rather similar structure (cf. Korpela et al.
2010b; @rka et al. 2012). Consequently, a clear suggestion if either intensity or
structural information or the combination is apparently difficult to give. As the
majority of ALS sensors provide intensity recordings, the opportunity to utilize both
intensity and structural measurements is present, but the use of them and the balance
between the classification features likely changes between the test areas and needs
to be considered using training or calibration data.

The development of new sensor technology could in the future make methods
combining ALS and spectral data more efficient. First, higher geometrical precision
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of the data sources or integrated systems makes it easier to merge the data with high
precision to allow analysis at an individual tree level. Also, each data source could
in the future become more similar to the past combination of both data sources.
For example, aerial images can already now be used to produce three dimensional
measurements of the tree canopy with high precision.

One possibility is that multispectral laser systems will develop which could pro-
vide spectral data for tree species classification without above described problems
with varying illumination conditions. There are results from experiments with TLS-
based systems for which a high resolution laser scanner was combined with an
active hyperspectral sensor to classify three tree species (Puttonen et al. 2010).
The best classification results were achieved with the combined use of features
derived from both spectral and geometrical data. By using a sensor in which the
range and reflectance measurements were integrated, Vauhkonen et al. (2014) found
the reflectance values of those pulses that had penetrated through the foliage to
improve the discrimination between pine and spruce trees. Morsdorf et al. (2009)
have simulated data from a multispectral full waveform laser and found that band
ratios were useful for prediction of the amount of chlorophyll content. Systems have
been tested that uses frequency multiplies of the laser pulse (Tan and Narayanan
2004). Also, new systems that use wide ranges of the reflectance spectrum are
expected to be developed. However, the current tests are based on laboratories, and
there are today limitations for operational use of these sensors that are difficult to
combine with eye-safety restrictions (Puttonen et al. 2010).

The pulse densities of the instruments are likely to increase in the future, which
enables the extraction of more detailed tree crown structures such as branch level
information. The full waveform recording sensors becoming more commonly used
supports this development. Analyses based on full waveform data are currently
lacking in Scandinavian conditions, but expected to be reported in the near future.
Besides increased point density, the waveform metrics likely produce additional
information to area-based analyses carried out using a lower pulse density.
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Chapter 8
Estimation of Biomass Components
by Airborne Laser Scanning

Sorin C. Popescu and Marius Hauglin

Abstract Airborne laser scanning (ALS) has evolved for the past three decades into
becoming an established technology to accurately derive forest inventory parameters
and assess aboveground biomass of forests. In addition to total above ground
biomass, there is interest in estimating biomass of individual tree components, such
as stem, branches, foliage, bark and even roots, for a better understanding of carbon
sequestration by trees and their components, but also for better estimating tree
biomass resources for bioenergy production utilizing various parts of forest trees.
This chapter introduces the importance of forest biomass studies with airborne ALS
remote sensing means and presents the various approaches for estimating above
ground biomass of forests and tree components biomass. The chapter reviews the
most common methodological approaches for estimating biomass, such as the area
based approach (ABA) and the individual tree crown (ITC) approach, discusses
advantages and disadvantages to both methods, presents the allometry involved, and
includes a brief discussion on biomass change and multi-platforms ALS data used
for estimating biomass.

8.1 Introduction

Traditionally, the tree stem and its volume have in many countries been the main
subject of a forest inventory, and this is reflected in the methodological development
of ALS-based estimation methods. Most of the methodological framework that form
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the basis for this chapter was first developed with a focus on estimation of timber
volume. Interests towards a more extensive mapping of forest biomass have however
been growing since the early 2000s, mainly caused by two interrelated factors:
The inclusion of forest biomass in carbon accounting systems, and the possible
utilization of forest biomass for energy purposes.

Man-made emissions of CO; are believed to be a major cause for global climate
change. This has led to measures to control and reduce CO,-emissions, including
national or regional accounting of carbon flux. In this accounting, forests play a
role since they absorb and store carbon from the atmosphere. Mapping of forest
biomass — and how it changes over time — is in this context essential. In the last 10—
15 years there has also been growing interest towards the use of forest biomass for
energy purposes, and in addition to the environmental benefits of using renewable
energy, also the expected decrease in supply of fossil fuels is held as a reason to
utilize more of the forest biomass. The reserves of fossil fuels on earth are inevitably
decreasing and even if the expected output from unconventional fossil fuels such as
shale gas is growing, it is still suggested by many that alternative sources of energy
should be searched for. Biomass from forests is thus likely to be one of several
sources of energy that will replace conventional fossil fuels at some point in the
future. Both carbon sequestration and utilization for bioenergy purposes raise the
need for mapping of forest biomass. Whereas a large scale mapping is typically
suggested for regional carbon sequestration, mapping at a finer scale— such as the
stand, or even single-tree level — is more useful in the context of managing and
harvesting from forests for bioenergy purposes. The two types of application can
require different types of mapping and both will be discussed in the course of this
chapter, which is organized into six sections: after this introductory section, the next
section introduces terms and concepts related to the estimation of biomass. The third
section, which is the main section of this chapter, is devoted to the procedures and
concepts involved in estimating biomass and biomass components by ALS. Before
some concluding remarks in the last section, we briefly touch upon topics related to
biomass change, and the use of multi-platform laser remote sensing.

8.2 Estimating Biomass — Definitions and Terms

The biomass of a tree can be divided into fractions — or components. Descriptions
of typical biomass components are given in Table 8.1, and some are illustrated
in Fig. 8.1. Some components — such as foliage — are straight-forwardly defined,
but others need more specifications to be unambiguously described. Biomass is
typically quantified by dry weight, which is the total weight excluding the weight
of the water contained within the matter in question (more on this in the next
subsection). One will often encounter biomass figures given at a per area basis,
typically in units of Mg/ha, i.e. metric ton per hectare.
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Table 8.1 List of commonly used single-tree biomass components

Component Remark

Total above-ground biomass  Stump height should be defined

Stem biomass Can be divided into bark and stem wood biomass
or may refer to merchantable stem biomass

Branch biomass Can be divided into live and dead branches

Foliage/needle biomass

Stump biomass

Crown biomass Typically the sum of the branch and foliage biomass

Total below-ground biomass  Inclusion of stump must be defined, also minimum
thickness of roots

Root biomass Can be subdivided according to root size

Total tree biomass

ABOVE-GROUND BIOMASS STEM BIOMASS

t CROWN BIOMASS ’
1

BELOW-GROUND BIOMASS

FINE ROOT BIOMASS

Fig. 8.1 Biomass components above- and below-ground

The carbon content of wood and bark of trees is about 50 % of dry biomass
(Houghton et al. 1997), therefore, carbon estimates can be obtained by multiplying
dry biomass estimates by 0.5. As such, most efforts of carbon estimation stored by
forests focus on the estimation of dry biomass.

To derive information about these biomass fractions from the ALS data one must
find a relationship — directly, or indirectly — between the remotely sensed data and
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the biomass component in question. What we here mean by direct relationship
can be illustrated by an example: Consider a case where the height of a tree is
reduced by cutting it halfway up the stem and removing the top part. This will
clearly affect how the laser pulses will be reflected from this tree, so we can say
that there is a direct relationship between the tree height and the ALS data. If
one dug a tunnel and removed half of the roots of a tree, this would not have
any effect on how the laser pulses are reflected from this tree (we are obviously
not considering the long term effects of this treatment here). This means that
there is no direct relationship between root biomass and ALS data. Fortunately,
an indirect relationship between root biomass and ALS data does exist, and this will
be discussed in the following. If we consider above-ground components such as
stem biomass, when — contrary to the roots — the stem could actually be hit by laser
pulses, it is reasonable to believe that an indirect relationship will be most useful
when estimating stem biomass as well. After all, most of the information inherent
in the ALS data will not be directly related to the stem, since few of the pulses will
be reflected from the stem itself. So in such cases we must also look for an indirect
relationship, which almost certainly will involve the concept of allometry, or the
systematic relationship between biophysical properties — such as size or shapes of
certain parts — found in many living organisms. The existence of these allometric
relationships is a key factor in the methodological framework that form the basis
for ALS-based estimations in forests, and it is especially visible in the process of
estimating biomass components. Allometric relationships — that certain properties
of the trees covary in a systematic fashion, allows for the development of allometric
models, also known as allometric Equations. A typical example of an allometric
model which most foresters will be familiar with is a single-tree diameter/height —
volume model, i.e. a volume equation. By analyzing a large number of sampled
trees with accurately measured diameter at breast height (DBH), tree height and
stem volume one can derive a predictive model expressed as a function that takes
DBH and height as input and yields stem volume as the output. A typical purpose
of such a model is to use properties that are easy to measure — such as DBH and
height in this example — to get a prediction of a property that is time-consuming
or difficult to measure directly, like stem volume. These modeling principles can
also be used for other properties of a tree, and we will in the next section discuss
allometric biomass models.

The reason why allometry is important when estimating biomass with ALS is
that there are only certain properties — in particular tree height — that can be directly
related to the information in the ALS data. As described in Chap. 1, a crucial bit
of information that is needed when estimating biomass with the ABA is the height
above ground for the laser echoes. So when stand volume is derived using the ABA,
it relies on the fact that volume is systematically related to the tree heights. With the
ITC approach, estimation of tree properties such as stem volume also depends on
allometric relationships.
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8.2.1 Allometric Biomass Models

Single-tree biomass field measurements are often needed as reference data in
estimation of biomass at various spatial scales. This is usually also true for remote
sensing methods, thus even in large-scale regional mapping the reference data might
consist of field measurements of biomass on single trees. The biomass of these trees
is used — together with the remote sensing data — to build predictive models.

Since the moisture content of trees varies, dry weight is typically preferred
when quantifying forest biomass, as we have mentioned earlier. Obtaining accurate
measurements of the dry weight of biomass-components of a tree do however
involve a time-consuming and work-intensive process, which include destructive
sampling, drying and weighing. Consequently, the use of existing allometric mod-
els — often referred to as biomass equations — is common when obtaining single-tree
forest biomass data from field measurements. These allometric models are typically
species-specific models with diameter at breast height (DBH), and sometimes also
tree height or other characteristics as explanatory variables. Allometric biomass
models are usually derived using a set of destructively sampled trees, and there are
studies that have collected and reviewed a large number of available regional and
national allometric biomass models, such as Zianis et al. (2005) for Europe, Jenkins
et al. (2003, 2004) and Ter-Mikaelian and Korzukhin (1997) for North America and
Eamus et al. (2000) and Keith et al. (2000) for Australia. In addition to models
for total above-ground biomass, also models for biomass of components such as
branches, bark, roots, and foliage are available for certain species and in certain
regions.

Note that the errors associated with predictions of some biomass components
from these allometric models — such as branch or root biomass —can be larger than
for predictions of other components such as stem wood. It means that e.g. branch
biomass varies more than stem wood biomass for a given diameter and height, which
for many tree species is intuitively reasonable. This implies however that stem wood
biomass in many cases can be more accurately predicted than for example branch
biomass, using these allometric models.

The choice of allometric models have been shown to affect the predictions from
an ALS-based biomass model, and Zhao et al. (2012) conclude that the use of
regional biomass models when deriving the reference data in most cases are better
than using national models, provided the regional models were developed with a
representative set of data (the reference data referred to here will be described in
more detail later in this chapter, and it is also analogue to the reference data used in
the ABA described in Chap. 1). Since collecting field reference data for allometric
biomass models is costly and time-consuming, some regional models are based on
only a limited number of sampled trees, and this could affect the applicability even at
the regional level. It is thus advisable to thoroughly consider the choice of allometric
models, if several are available.


http://dx.doi.org/10.1007/978-94-017-8663-1

162 S.C. Popescu and M. Hauglin

8.2.2 Component Ratio Methods and Biomass
Expansion Factors

Another approach that was proposed for biomass estimates in the Forest Inventory
and Analysis (FIA) program of the United States Department of Agriculture
(USDA) Forest Service that would produce national-level biomass and carbon
estimates consistent with FIA volume estimates at the tree-level is described in
Heath et al. (2009). The approach is called the component ratio method (CRM)
and its steps can be summarized as follows: (1) convert wood volume in the stem to
biomass using a compiled set of wood specific gravities; (2) calculate the biomass of
bark on the stem using a compiled set of percent bark and bark specific gravities; (3)
calculate the biomass of tops and branches as a proportion of the stem biomass based
on component proportions from Jenkins et al. (2003); (4) calculate the biomass of
the stump based on equations in Raile (1982); and (5) sum the parts to obtain the
total aboveground biomass. Root biomass is calculated as a proportion of the stem
biomass based on component proportions described in Jenkins et al. (2003). There
are advantages to using such an approach, for example: (1) there is considerable
research and operational inventory experience in deriving individual tree volume
estimates; and (2) tying biomass to volume, and then converting biomass to carbon
by using the 0.5 conversion factor, provides not only consistent volume and biomass
estimates, but also carbon estimates that match volume and biomass predictions.
Based on the same logic of the relationship between biomass and carbon, there
is a relationship between biomass and volume. Somogyi et al. (2008) compiled
a database to calculate biomass or carbon for forests of the Eurasian region
from proxy variables derived by forest inventories such as, tree volume. This
database contains several types of expansion, conversion and combined factors,
by various tree species or species groups, to calculate individual tree biomass.
This approach is based on the following equation that involves biomass expansion
factors (BEF):

Biomass (t) = V x D x ExpF x (1 + R) (8.1)

where V is volume (m?), D is wood density (t m73), ExpF is biomass expansion
factor (dimensionless), and R is root-to-shoot ratio (dimensionless, the ratio between
root and total above ground biomass).

The Intergovernmental Panel on Climate Change (IPCC) guidance for national
greenhouse gas inventories (Penman et al. 2003) lists the BEF approach as the
preferred method for some of the tiers involved in carbon estimates. The higher tier
methods demand for greater specificity, such as country-level factors and factors
specific to species. It is generally recognized that when individual tree data is
available, biomass estimates based on individual trees are preferred (Heath et al.
2009).
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8.2.3 Model Type and ALS-Derived Metrics

There are several types of regression techniques in use when predicting biomass
components from ALS data, some of which were referred to in Chap. 1. In general,
the same types of statistical models are used for estimation of biomass components
as those used for estimation of stem volume and other forest characteristics using
ALS data. Linear regression models are common, and could involve variable
reduction techniques such as stepwise selection if the ALS-derived variables are
numerous, or highly correlated. Also non-parametric regression models based on
machine learning techniques such as random forest and support vector machines
have been successfully used to predict forest biomass components. With regard to
the statistical features derived from the ALS data —i.e. the predictor variables in the
models — many of the same features as those discussed in Chap. 1 are also used in
predictive modeling of forest biomass with ALS data.

As described at the beginning of this section, it is necessary to find a relationship
between the ALS data and the targeted biomass component in order to develop a
predictive model. As we have already discussed, this relationship can be direct or
indirect, but to distinguish between the two types of relationship is in practice not
necessary, nor is it always possible. In the context of developing predictive models
and finding suitable predictor variables it suffices to find that a relationship exists. In
some modeling procedures — such as stepwise regression — the actual ALS-derived
features that are used as predictor variables in the model will be determined through
the process of fitting the model, and typically consists of a subset of a large range
of ALS-derived features extracted prior to the model fitting. A different approach
would be to a-priori select one or a few ALS-derived features that one believes will
capture the relationship between the ALS data and the desired property. An example
of this could be to use the maximum above-ground height of the echoes assigned
to a single tree to model tree height or DBH. Another example could be the use of
geometric features derived from the echoes assigned to the crown of a single tree as
predictors for modeling properties such as crown or foliage biomass. More specific,
this could mean to use the volume of a three-dimensional convex hull or the area of a
two-dimensional projection of the laser echoes assigned to a tree crown as predictor
variables, as was done by Hauglin et al. (2013) and Kankare et al. (2013b).

8.3 Estimating Biomass and Biomass Components by ALS

The use of ALS to estimate forest biomass has been investigated in a number of
studies. Most of these studies follow the ABA described in Chap. 1, i.e. biomass is
predicted at the plot, stand or regional level. Zolkos et al. (2013) and Koch (2010)
summarize some of these studies and are good starting points for in-depth studies
of biomass estimation with the ABA.
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Lately there have also been studies investigating the estimation of forest biomass
over large areas using ALS as a sampling tool, following the approach described
in Chap. 14. See for example Andersen et al. (2011), Gobakken et al. (2012) or
Stephens et al. (2012).

Some studies have proposed methods to estimate biomass at the single-tree level
using ALS, following the ITC approach described in Chap. 1. Popescu (2007)
estimated single-tree DBH from ALS data and used this ALS-derived DBH with
allometric models to get total above-ground biomass, whereas Gleason and Im
(2012), Hauglin et al. (2013) and Kankare et al. (2013b) related single-tree biomass
directly to ALS-derived variables. An approach where elements from both ABA
and ITC are combined is described in Chap. 6, and that chapter also contains a
case study on estimation of biomass. In the rest of this section we will describe
some of the concepts and procedures that are used for estimation of biomass and
biomass components in forests by ALS, primarily focusing on the ABA and the
ITC approach.

8.3.1 ALS Estimation of Biomass Components with the ABA

A typical methodological approach for estimation of biomass components by ALS
is similar to the ABA described in Chap. 1, in which stem volume is predicted for
area units.

The approach can be summarized as follows: The ALS data are first spatially
assigned to area units, typically raster cells or sample plots. The ALS echoes in each
area unit are then analyzed, and a range of statistical features are derived. Usually the
features are computed from the height distribution of the laser echoes, and typically
include measures such as moments and order statistics of the distributions. Also
features derived from the returned intensity of the echoes have been used. These
ALS features are then related to ground reference values through regression models.
When computing biomass, the ground reference values are usually derived with
existing allometric models. Since the biomass is derived using allometric models,
the actual field measurements carried out on each plot are typically recordings of
DBH, species and possibly also tree heights. These actual measurements are the
inputs to the allometric models, which in turn will yield biomass as output. This
modeled biomass will then be aggregated for all trees on a plot, and used as the
reference value. Any allometric model taking the properties actually measured in the
field as input can be applied in this step of the process, which means that for example
biomass components such as below-ground biomass can be used. The underlying
assumption here is that the amount of biomass of the selected component is related
to the remote sensing data. This will usually be the case when allometric models
which have DBH as one of the main inputs are used, since DBH is indirectly related
to the ALS data. As described in the previous section the errors associated with the
predicted biomass from allometric models varies according to biomass component,
which means that for example below-ground biomass in most cases will be modeled
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Fig. 8.2 Summary steps of the ABA. AGB refers to Above Ground Biomass and CB to Compo-
nents Biomass

with a larger error than stem wood biomass. Due to the randomness of these errors
they will decrease when aggregating up to a plot level.

In the next step predictive regression models are developed with the plot-level
field measurements — in this case biomass — and ALS-derived metrics from the same
plots, following the ABA described in Chap. 1.

The ALS regression models are in the next step used to predict biomass for
new area units, typically raster cells. The raster cells can then be aggregated to
get biomass figures for the desired spatial units, for example forest stands. Most
commonly the total above ground biomass is modeled, but some studies also
report separate estimates for biomass components, like foliage, branches or below-
ground biomass (Hauglin et al. 2012; Kotamaa et al. 2010; Lim and Treitz 2004;
Nesset and Gobakken 2008). This is achieved by simply applying an appropriate
allometric model when calculating the ground reference biomass at the sample
plots. Rather than using model variables only derived from the height distribution
of the ALS-echoes some researcher have proposed methods where not only the
above-ground heights of the laser echoes are taken into consideration but also the
planar distribution of the ALS-echoes. This is typically done in studies identifying
individual trees and where information related to these identified trees is extracted.
The studies described by Bortolot and Wynne (2005) and Gleason and Im (2012) are
examples of this latter approach, but predictions are in these cases still done at the
plot level. The steps for the ABA, as it relates to deriving total aboveground biomass
or components biomass, are summarized in Fig. 8.2.
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A potential disadvantage of the area-based approach is that regression models
used to link ALS-derived metrics to plot biomass have limited portability to other
species or other study areas, or may change in time for the same area as the
three-dimensional forest structure changes. More so, models may be dependent on
instruments used to collect data because different ALS systems respond differently
to the same forest (Nasset and Gobakken 2008). ALS metrics found to be significant
in explaining plot-level biomass and regression models reported in the literature
often lack commonalities. For example, ALS metrics commonly include mean,
maximum and median canopy height, quadratic mean canopy height, or quantile
heights. These metrics have been used alone or combined in linear models or
nonlinear models, with or without transformations, such as logarithmic. In the
context of airborne laser scanning of forest structural parameters, most estimation
models described in existing literature are likely to be not only site- or species-
specific but also scale-dependent, due to the fact that the models are fitted using data
collected at a given plot size and should be applied at a scale or pixel (raster cell)
size appropriate to the plot size used in the model fitting (Nesset 2002). As such,
deriving biomass for tree components becomes more difficult for the area-based
approach, whereas allometric equations for biomass components have already been
developed at individual tree level for commonly occurring tree species, as previously
mentioned in this chapter.

8.3.2 ALS Estimation of Biomass Components
with the ITC Approach

As described in Chap. 1, an ITC approach is available as an alternative method when
estimating forest attributes from ALS data, and in Popescu (2007) it is described
how biomass components can be estimated using ALS at the single tree level. In
the ITC approach described by Popescu (2007) DBH is estimated from the ALS
data and then this ALS-derived DBH can be used with an allometric model to get a
biomass estimate for the tree in question. A similar approach was used early on to
derive single-tree stem volume from ALS data by Hyyppd et al. (2001). Although
DBH is not directly measured by ALS, good estimates of DBH can be derived by
using the information that is captured by ALS — particularly height and crown size
related metrics. The allometric relationship between height and DBH are for many
species strong, and is utilized in numerous allometric models. In the particular study
described by Popescu, ALS-derived height and crown diameter was used to estimate
DBH for Loblolly pine trees. When ALS is used to identify and map individual
trees, dimensions and location of individual trees are derived with high accuracy,
therefore a map of individual tree biomass can be generated at the extent of airborne
ALS coverage. This approach was used by several studies, such as Popescu 2007,
and Zhao et al. 2011, with the major steps illustrated in Fig. 8.3. To summarize
their approach, the stem biomass was assigned to the pixel in the biomass map
corresponding to the tree location and the foliage biomass was distributed uniformly
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over the pixels covered by the crown, as shown in Fig. 8.4. This biomass map was
used for validating spaceborne ALS biomass estimates, such as those derived using
the Geoscience Laser Altimeter System (GLAS) aboard the Ice Cloud and land
Elevation Satellite (ICESat) (Popescu et al. 2011). Zhao et al. 2009, used a similar
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Fig. 8.4 Local-scale biomass map derived with the single-tree approach for forest conditions in
East Texas, USA

biomass map to validate a scale-invariant biomass estimation approach. The map
was used as reference data to synthesize training and test datasets at multiple scales
for validating two scale-invariant biomass models, a linear functional model and an
equivalent nonlinear model that uses ALS-derived canopy height distributions and
canopy height quantile functions as predictors, respectively.

In the case of ITC estimation of biomass components, there are several advan-
tages over ABA, most notably that, once trees are mapped with ALS, the ITC
method can be applied to derive biomass components where an allometric model
is available at tree level. In other words, this method takes advantage of current
AGB allometric models from existing literature and ALS is only concerned with
the accurate mapping and measurement of trees. In traditional forest biometry,
allometric relationships are derived based on field measurements at individual tree
level and not plot or area level. With the ABA, in and of itself the relationship
between ALS metrics and biomass per some unit area has no practical meaning
other than for scaling up biomass values to the extent of ALS data.
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As with the ABA, also biomass components — such as roots — with no direct
relationship to the ALS data can be estimated using the ITC approach. There are
however some biomass components — in particular branches and foliage — where the
ALS data might contain more direct information. In many cases, most of the laser
echoes interacting with individual trees are reflected from the tree crowns, therefore
from elements of tree crowns, such as foliage and branches. This suggests that the
ALS data might contain direct information on the reflective surface, therefore on
the branch- and foliage biomass. Hauglin et al. (2013) showed in a study with
Norway spruce that ALS data in fact can contain more information regarding the
branch biomass than the actual field measured DBH. An alternative approach could
thus be to estimate the biomass of these components directly from the ALS data.
Although it is appealing to use the remotely sensed data in such a direct fashion,
there are some challenges that need to be resolved in order to fully utilize this
information.

In any operational mapping of forest biomass one must make sure that the data
material used to develop the model corresponds to the forest resources that are
being mapped. In schemes such as those used in operational forest inventories (see
Chap. 11) this is achieved by using a statistical sample from the target area as the
model data. This means that a new set of model data will have to be collected
for each area that is inventoried. In the direct modeling of branch biomass from
ALS data Hauglin et al. (2013), Kankare et al. (2013b) and Rty et al. (2011)
investigated the use of model data obtained through destructive sampling — that
is — actually cutting down and weighing trees. In most operational settings this
would be associated with prohibitively high costs, and would therefore not be an
option. Further development of the method might however solve this by using model
data obtained by other means, such as model data obtained using terrestrial laser
scanning (TLS).

Mapping of biomass or biomass components at the individual tree level, fol-
lowing the general approach, has the advantage of using species-specific allometric
equations extensively investigated and tested in existing literature or forest practice,
whether regional or generalized equations. Another advantage is the fact that
the ITC approach brings minimal scaling effects to inventorying forest biomass.
Biomass maps at scales above tree levels will be immediately available by inte-
grating tree-level results up to the desired scale. As long as the algorithms for
processing ALS data and identifying individual trees perform accurately, one could
expect the derivation of highly spatial specific and accurate biomass maps by
following this approach. However, as reported in the literature, ITC segmentation
and measurement algorithms vary in their performance of identifying all trees
correctly and deriving their measurements. A possible concern is the inefficiency of
many tree-segmentation algorithms to identify understory and suppressed trees, or to
delineate trees under very dense canopy conditions. The systematic errors that will
arise from this erroneous crown delineation were the motivation for the semi-ITC
approach described in Chap. 6, which is an alternative to the general ITC approach,
also for estimation of biomass components.
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In some cases however, the ITC approach can be effective because the main
contributors to above ground biomass are the dominant trees (Zavitkovski 1976)
that could be identified more easily by tree-delineation algorithms on ALS data.

8.4 Biomass Change

As with traditional forest inventory methods, the use of ALS data will only
provide a “snapshot” of the total above ground biomass or components biomass
levels when the data were acquired. Changes in biomass due to temporal variation
(e.g. disturbance, anthropogenic management activities, forest growth) could be
monitored utilizing the pre-existing models and repeat data collection missions.
As such, changes in total above ground biomass and components biomass can be
analysed with spatially coincident ALS data acquired at multiple dates. However,
published studies on using repeat or multi-temporal airborne ALS data sets to
characterize biomass change are very few and none of these refer to components
biomass change. Noting that the estimation of biomass change can be largely built
upon the general inference on change (see Chap. 15), with a few most important
published results on estimating biomass change in particular being listed below.

Hudak et al. 2012, used repeat ALS acquisition over conifer forests and con-
cluded that ALS can provide accurate spatially explicit biomass maps to characterize
C dynamics. Meyer et al. 2013, analysed biomass changes in a tropical forest from
both ground measurements and ALS data and quantified uncertainty by propagating
measurement and prediction errors across spatial scales. They found that errors
associated with both the mean biomass stock and mean biomass change declined
with increasing spatial scales. Naesset et al. 2013, used field data and a model
based approach supported by repeat ALS data to analyze variance estimates and
demonstrated the potential gain in terms of reduced uncertainties by adding ALS
data to field measurements. They found that ALS data contributed to improved
precision of the biomass change estimates. The standard errors for individual change
categories, such as, forest degradation, deforestation, and untouched, were reduced
by 18-84 %. The largest improvement in precision was experienced for degradation
(73-84 %), which is a category that is difficult to assess with most other remote
sensing techniques.

8.5 Biomass Assessment with Multi-platform ALS

While the focus of this text book is on airborne ALS applications in forest studies,
ALS data are collected from multiple platforms, such as terrestrial, airborne, and
spaceborne platforms. Each platform provides data over different spatial scales and
enables C estimates with different levels of uncertainty and errors. TLS provide
highly detailed scans for small areas, while data collected utilizing airborne and
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spaceborne ALS can estimate biomass from local to regional and continental scales.
Utilizing multi-platform ALS data will allow us to better understand the variation in
forest structure and biophysical parameters at multiple spatial scales, and to provide
more accurate measurements of AGB with uncertainty estimates. Using TLS,
Kankare et al. (2013a) developed single tree based biomass models from multiple-
scan TLS data and reported improved accuracies for components biomass, such
as branch biomass. An excellent meta-analysis of AGB estimation using airborne
and spaceborne sensors is presented in Zolkos et al. 2013, which also discusses
AGB estimation with various types of laser remote sensors, such as discrete return
ALS or full-waveform sensors. This review paper identified the interest in mapping
biomass so that carbon stocks and changes can be monitored consistently across a
range of scales. Their findings are discussed in relation to monitoring, reporting
and verification (MRV) in the context of reducing carbon emissions associated
with deforestation and forest degradation (REDD). The components of MRV
include measuring the extent and change in forest area, reporting carbon stocks
and emissions, and verifying the findings and implementation of REDD activities
(Houghton et al. 2009; Herold and Skutsch 2011). MRV guidelines do not explicitly
state accuracy requirements, but previous studies assert that satellite remote sensing
biomass estimates should meet biomass errors within 20 Mg/ha or 20 % of field
estimates, whichever is greater, and should not exceed errors of 50 Mg/ha for a
global biomass map at 1 ha resolution (Hall et al. 2011; Houghton et al. 2009).

8.6 Conclusions

ALS and multi-platform laser studies for assessing vegetation biomass and other
biophysical parameters in many forest ecosystem types report reliable results with
uncertainty estimates. Zolkos et al. (2013) found that the level of accuracy obtained
when estimating biomass using ALS-data is dependent on forest type — among other
factors. The mean errors from the studies reviewed by Zolkos et al. varied from
less than 20 % to more than 40 % of the field measured biomass, and statistics for
some selected published studies are given in Table 8.2. A general finding was that
accuracy — that is, model error relative to the field measured biomass — was declining
with increasing plot size. Zolkos et al. further compare ALS-based biomass models
with models using data derived from other types of remote sensing sensors such
as radar and passive optical sensors. From their results they draw the conclusion
that biomass models developed from ALS are significantly better than those based
on radar and passive optical sensors. Koch (2010) also reaches similar conclusions.
An integration of ALS with other airborne and spaceborne sensors is suggested by
Koch as a possible path of development, and the need for more knowledge on the
interaction between the laser beams and the vegetation is emphasized.

We will end this chapter by highlighting a concluding remark from the meta-
study by Koch (2010) where it is asserted that laser scanning will play an important
role in the future mapping of forest biomass.
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Chapter 9
Predicting Tree Diameter Distributions

Matti Maltamo and Terje Gobakken

Abstract Diameter distribution of trees is an important stand attribute that
describes stand structure in terms of volume, biomass, value, growth and
biodiversity factors. Diameter distribution can be characterized using different
approaches such as probability density functions, percentile-based distributions
or nearest neighbour applications. We review the research related to airborne
laser scanning (ALS)-based predictions of diameter distributions. This includes
the above-mentioned plot level approaches, as well as predicting the diameter of
individual trees and combinations of different approaches. Although ALS does not
directly measure tree diameter, there is a strong statistical relationship between ALS
metrics and the characteristics of a diameter distribution. The capability of ALS to
reproduce different shapes of diameter distribution is the most notable feature of
these applications.

9.1 Introduction

Tree diameter at breast height (DBH) is, together with species, the most common
attribute to be measured or registered for an individual tree. The DBH is easy to
measure in field and due to strong allometric relationships within a tree, it allows
for rather accurate prediction of other attributes, such as basal area, height and
volume. Measurement of DBH for trees within a certain area produces the diameter
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Fig. 9.1 An example of ALS height distribution (/eff) and underlying diameter distribution (right)

distribution, which is an important descriptor of stand structure. For example,
together with height and tree taper models, diameter distribution allows for flexible
calculation of timber assortments. Diameter distribution is also a highly important
attribute characterizing the economic value, growth and structural biodiversity
characteristics of forests. The shape of the diameter distribution is unimodal in
most managed stands. Thus, because of this feature, several studies have relied
on theoretical probability density functions, such as the Weibull distribution (e.g.
Bailey and Dell 1973), to model diameter distributions. Some other modelling
approaches include percentile-based distributions or non-parametric imputation,
which also allows for characterization of multimodal diameter distributions. The
modelling of diameter distributions is usually related to applications where the
actual DBH’s are not known but the distribution is predicted by applying some
stand level attributes as independent variables. This is the usual case in stand-
level management inventories. Estimation of diameter distributions is also done for
analyses of forest structure, for example by comparing the parameter values of the
underlying distribution in different areas. The criteria applied to compare different
distributions estimates include e.g., root-mean-square error (RMSE) of the derived
volume values, error indices and statistical tests (Reynolds et al. 1988; Haara et al.
1997; Siipilehto 1999).

The role of diameter distribution modelling in the airborne laser scanning (ALS)
context is different from that based on field measurements. Due to the close
correlation between forest canopy and ALS metrics there is also a relationship
between the latter and diameter distribution (Fig. 9.1). However, ALS data are
mainly affected by the vertical distribution of the canopy elements, making tree
height the primary attribute that can be obtained from a tree. Tree height cannot,
however, replace the role of DBH in all applications. While tree height is an
excellent descriptor of the vertical component of stand structure, all tree attribute
models are traditionally based on DBH. This means that information on DBH is
still a primary requirement. At tree level, the prediction of DBH from height-based
variables is problematic because DBH for a given tree height varies considerably,
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especially for the tallest trees (e.g. Maltamo et al. 2004). An alternative method is
diameter distribution modelling, using similar approaches that have been used with
ground-based measurements (e.g. Gobakken and Nzasset 2005).

9.2 Predicting Theoretical Diameter Distributions

9.2.1 Parametric Prediction of Diameter Distributions

The diameter distribution can be constructed by assuming that it corresponds
to some probability density function. Several density functions have been used
for modelling the diameter distribution (Eriksson and Sallnds 1987). To give
more weight to larger and more valuable trees, diameter distributions weighted
by basal area (called hereafter weighted distributions) are often used (Pdivinen
1980; Van Deusen 1986). The objective of most of the studies considering various
distribution functions has been to assess the accuracy of different methods and
models to estimate probability density function parameters and to compare different
distributions. The Weibull density function is the most frequently used density
function for describing diameter distribution (Poudel and Cao 2013).

For practical applications in forest planning and management it is important that
the procedures used to derive the required output data are robust. Therefore, the two-
parameter Weibull has often been selected for use in forestry contexts rather than the
three-parameter formulation. The advantages of the two-parameter Weibull include
simplicity of mathematical derivation, the low number of parameters to be estimated
and its flexibility in describing different shapes of unimodal distributions (Bailey
and Dell 1973). The probability density function of the two-parameter Weibull
distribution for a random variable x is (Dubey 1967):

c /x\c—1 X\ ¢
f(x)—b<b) exp[ (b)]’ x>0;b,c>0 9.1)
where b is a scale parameter and c is a shape parameter. The two-parameter Weibull
distribution parameters of Eq. 9.1 are derived for each field plot or stand by fitting
the two-parameter Weibull distribution to the discrete ground reference diameter or
basal area distributions (empirical trees).

After the estimation of the Weibull distribution is done regression models are
constructed for the parameters using stand characteristics (e.g. basal area, stem
number, basal area median diameter, basal area mean diameter, stand age, mean
height, and site index) as explanatory variables. When the parameters of Weibull
distribution are predicted the cumulative distributions can be calculated. The total
number of trees in each diameter class is found by scaling the relative number of
trees and relative basal area for the weighted distributions to ground truth, i.e. stem
number and basal area, respectively.
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It has been argued that statistics, such as percentiles computed directly from
empirical diameter distributions, may have stronger correlation to stand inventory
characteristics compared to the distribution parameters themselves. Thus, if reliable
regressions for predicting such statistics could be obtained from stand inventory
characteristics, they could be equated to theoretical parameters through analytical
relationships (e.g., Bailey et al. 1981). Dubey (1967) derived percentile estimators
for parameter recovery of the two-parameter Weibull and it is possible to use several
combinations of two percentiles to estimate b and c. However, Dubey (1967) showed
that the 24 and 93 percentiles were jointly best for estimating b and ¢ in a two-
parameter Weibull.

9.2.2 ALS-Based Prediction of Diameter Distributions

Gobakken and Nasset (2004) were the first to derive diameter distributions from
laser scanner data. They compared the accuracy of diameter and weighted dis-
tributions obtained using parameter prediction and parameter recovery methods.
Distribution parameters and the 24 and 93 percentiles for parameter recovery
of a two-parameter Weibull were derived for empirical diameter and weighted
distributions. Regression analysis was used to relate the distribution parameters
and percentiles to various metrics for canopy height and canopy density that were
derived from ALS data. Stem number and basal area were also predicted from the
laser data. On average, the distance between transmitted laser pulses was 1.0 m on
the ground. Aerial photo-interpretation was used to divide the plots into three strata
according to age class and site quality. Stratum-specific regressions modelling the
observed percentiles and total plot volume predicted from the estimated distributions
were used to assess the accuracy of the regressions. The precision was slightly better
for the predictions based on parameter recovery using the 24 and 93 percentiles
compared to predictions where the cumulative distributions were defined directly
by the predicted Weibull parameters (b, ¢). An example of a field-measured ground
reference distribution for a sample plot and its predicted distribution is presented in
Fig. 9.2.

A satisfactory characterization of the diameter distribution does not require a
mathematical probability distribution known a priori. Borders et al. (1987) devel-
oped a percentile-based diameter prediction method using a system of percentiles
defined across the range of observed diameters. This approach is more flexible as
can be applied to irregularly shaped distributions and makes no assumption about
the diameter distribution. Gobakken and Nasset (2005) predicted the weighted
distributions of coniferous plots derived from ALS data using the parameter
recovery method and a method based on a system of 10 percentiles defined across
the range of observed diameters and compared the accuracies. Regression analysis
was used to relate the percentiles to the metrics of various canopy heights and
canopy density derived from the laser data. The methods were evaluated in typical
one-layered forests and in forests with large diameter variability, such as those
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Fig. 9.3 An example of an inverse J-shaped diameter distribution (/eft) and an irregular diameter
distribution (right), modified from Gobakken and Nzasset (2005). The figure depicts the sample
distributions and predicted distributions based on methods with parameter recovery and 10
percentiles, respectively. N number of trees, SD, standard deviation of callipered tree

with multimodal and inverse J-shaped distributions. The total plot volume predicted
from the estimated distributions was used to assess the accuracy of the regressions.
Neither bias nor standard deviation differed significantly between the two validated
methods. An example of the field-measured ground reference distribution for a
sample plot and the predicted distributions is presented in Fig. 9.3.

Bollandsas and Nasset (2007) made regression models for uneven-sized Norway
spruce stands predicting 10 percentiles and stand basal area. An independent
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validation showed non-significant mean differences in 20 of 21 diameter classes for
data corresponding to the model calibration data. The model reproduced diameter
distributions that corresponded well with the model calibration data (uneven-
sized forest). However, the model was not flexible enough to reproduce normal
and uniform diameter distributions. Volume estimates derived from predicted
diameter distributions were generally well-determined, irrespective of the observed
distribution.

9.2.3 Specific Cases to Utilize Theoretical Diameter
Distributions

When theoretical diameter distributions are predicted, they are usually scaled
according to either stem number or basal area. However, it would be beneficial if
the resulting distribution was compatible with all known (measured or estimated)
stand attributes. Kangas and Maltamo (2000) applied a calibration estimation
technique developed by Deville and Sirndal (1992) to predict distributions with
such properties. In general this means that trees are either added to or removed from
size classes in order to modify the distribution so that it becomes compatible with
all stand attributes of interest. In the ALS context, Maltamo et al. (2007) predicted
parameters of a Weibull distribution as well as stem number, basal area and stand
volume. The Weibull distribution was first predicted and scaled according to the
predicted stem number. Then, it was modified to be compatible also with estimated
basal area and stand volume. The novel point in this study was that the calibration
estimation technique was applied using stand volume estimates. In field context tree
volumes are not measurable without destructive sampling, but the predicted stand
volume estimate is available using the area-based ALS approach corresponding
to other stand attributes. The other finding was that volume estimates obtained
from diameter distributions were as accurate as those obtained from weighted
distributions. This is contrary to what has been found in entirely field based studies.

Breidenbach et al. (2008) applied a generalized linear model (GLM) to estimate
the shape and scale parameters of the Weibull distribution by using ALS metrics
as predictors. The benefit of the GLM approach is that it is a one-step procedure,
so there is no need to fit the Weibull distribution separately and then predict the
parameter values (Cao 2004). The specific point of this study was that trees with
different DBH values were measured from four differently sized concentric circle
plots. Only trees with DBH larger or equal than 30 cm were measured from the
largest plot with radius of 16 m. The change in plot size was taken into consideration
by applying left- and right-truncated Weibull distributions, conditional on the DBH.

Instead of predicting Weibull parameters with ALS it is also possible to utilize
the stand attributes predicted using an area-based approach in diameter distribution
modelling. These estimates can be used in existing parameter prediction models.
For example, in Nordic countries there exist several such field information-based
models (e.g. Pidivinen 1980; Tham 1988; Holte 1993; Maltamo 1997). Such
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general models for predicting diameter distributions have been used in ALS-
related studies by, e.g. Maltamo et al. (2006) and Holopainen et al. (2010). In
general, this approach may not be optimal since no local information on diameter
distribution is utilized, although the area-based approach always includes field
reference measurements for DBHs. Conversely, this approach can be applied to
all ALS inventory areas where stand attribute models have been constructed by
simply applying existing models without the need to go to revert to the modelling
data. A more advanced but similar type of approach was applied by Mehtitalo
et al. (2007) and Peuhkurinen et al. (2011), in which both diameter distribution
and height curve were recovered from ALS-based stand attributes. An advantage
of this approach is that no parameter model for Weibull is needed, but distributions
are instead recovered according to mathematical relationships between distribution
parameters and stand attributes. The recovered diameter distribution and height
curve combination is also compatible with the utilized stand attributes.

Finally, Thomas et al. (2008) applied ALS-based Weibull parameter prediction
in different types of forests including coniferous, hardwoods and mixed-woods.
A special case in their study was a bimodal stand structure with a few large old
trees and a large number of smaller trees. For this forest structure, they applied
a finite mixture approach (e.g. Zhang et al. 2001) in which different modes of
the multimodal distribution are characterized using separate Weibull functions and
then combined to yield the final estimate. The study successfully predicted the
parameters of two separate modes of the distribution, and ALS-based finite mixture
distribution was able to characterize bimodal distributions. The drawback of the
study was that there was no ALS-based separation of the different forest types that
would be required for the application phase.

9.3 Non-parametric Prediction of Tree Lists

An alternative to parametric diameter distribution prediction is the utilization
of non-parametric approaches. Nearest neighbour (k-nn) imputation methods in
particular provide excellent possibilities for predicting diameter distributions. The
basic idea of this approach is that diameter distributions of field-measured reference
plots are imputed to target plots based on a measure of similarity between the
reference and target plots. The measures of similarity are independent variables such
as stand attributes or ALS metrics. The characteristics of diameter distribution, or
some other defined parameters, are used as dependent variables in the imputation.
Since the diameter distribution estimate is based on actual trees it is called a tree
list. A benefit of using actual trees is that the resulting estimate can then also be a
multimodal or descending distribution.

In the context of field data the first non-parametric nearest neighbour application
was made by Haara et al. (1997). However, field-based k-nn diameter distribution
models have not been very successful in practical applications. This is due to the fact
that there is only a low number of stand attributes that can be used as independent
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variables. Additionally, the correlation between stand attributes, such as number of
stems and mean height, and the diameter distribution can be low or at least have a
strong averaging effect on the estimates. A large field data set is also required, and
in addition to the plot data used in the non-parametric estimation, tree data are also
needed. This might be problematic due to data rights since, in the field context, the
data sets used are collected for other purposes and have usually been at very large
geographical scales, including forest areas of numerous forest owners.

In the case of ALS-based forest inventories, the above-mentioned problems can
mostly be avoided. A number of different area-based ALS metrics can be used in
imputation (e.g. Vauhkonen et al. 2010). Additionally, if other data sources (e.g.
image data) are utilized, the number of predictor candidates is further increased. On
the other hand, this leads to problems related to selecting the optimal independent
variables and the threat of model over-fitting (Packalén et al. 2012). In the case of
ALS, the field data are also usually available because area-based methods require
local sampling of field plots. Although only sum and mean attributes are modelled
in operational ALS forest inventories, the underlying diameter distributions always
exist since field measurements are carried out at tree level. The main benefit of this
is that local variability in diameter distributions is included in the reference data.
Additionally, there is no need or even the possibility of applying geographically
wider data sets, due to differences in the technical settings of a laser scanner between
flights and the differences in properties between laser scanners.

Research related to ALS-based k-nn diameter distributions is still rather rare,
however (Packalén and Maltamo 2008; Peuhkurinen et al. 2008; Maltamo et al.
2009a). There has also been some earlier work related to tree list imputation using
aerial images (Temesgen 2003), but in general the level of accuracy associated
with the use of independent variables derived from aerial images has not been
good enough for wider application. Packalén and Maltamo (2008) applied the
non-parametric most similar neighbour (k-MSN) method for the prediction of
species-specific diameter distributions, and in this case the situation was even
more complex, since diameter distribution had to be predicted simultaneously for
three different tree species (pine, spruce and deciduous species). Metrics calculated
from both ALS data and aerial images were used as independent variables and 15
species-specific stand attributes were used as dependent variables in the canonical
correlation analysis. In this case, species-specific distributions were imputed from
the reference data as a whole, i.e. all species-specific distributions were imputed
from the same chosen neighbour and averaged over all k-neighbours. This means
that not all of the species considered may exist in each of the chosen neighbour
plots. Correspondingly, some species that are not growing in the target plot may be
imputed.

Studies by Packalén and Maltamo (2008) and Peuhkurinen et al. (2008) have
shown that species-specific diameter distributions can be imputed by applying
remote sensing data. The accuracy, especially for main tree species, was found to
be good according to the RMSE figures and error indices. As a comparison, k-MSN
based species-specific stand attribute estimates were used as an input to existing
Weibull distribution models. The accuracy of the predictions using the Weibull
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Fig. 9.4 Comparison of Weibull and k-MSN predictions (Modified from Packalén and Maltamo
2008)

models was close to the results obtained using the k-MSN application, but the
benefit of k-MSN arises from the possibility of predicting multimodal distributions,
as seen in Fig. 9.4. The diameter distributions presented were averaged to stand-
level while original predictions were made at plot level.

9.4 Prediction of Diameter Distribution in the Case
of Single Tree Detection

The prediction of diameter distribution differs fundamentally from the area based
approach in the single tree detection case. Single tree detection provides estimates
of tree height and canopy characteristics which can be applied in the prediction of
DBH at tree level. The diameter distribution is then summed from single trees. This
approach is rather straightforward but there are some issues related to tree detection
and DBH prediction.

The challenge of the prediction of DBH from tree height is mainly related to
the largest trees. When a tree is maturing, DBH growth continues but the increase
in tree height gradually diminishes. Consequently, DBH for a given tree height
varies considerably. There is additionally a considerable variation in the DBH/height
relationship between different stands. This might be caused by factors such as site



186 M. Maltamo and T. Gobakken

fertility, soil class, stand density and stand management history. Additionally, in
the ALS context, the trees that are recognized do not usually include the smallest
trees (e.g. Persson et al. 2002). This does not have a major effect on the stand-level
volume estimates, but the resulting diameter distribution might be left-truncated.
Such a distribution can be problematic when predicting future growth and yield and
the need for silvicultural operations. Furthermore, single trees that are detected must
be classified to the correct tree species to be counted towards the correct species-
specific diameter distribution.

The models between DBH and ALS-based tree height and crown characteristics
(diameter or area) were firstly presented by Hyypp4 and Inkinen (1999) and Persson
et al. (2002). The models between ALS metrics and tree attributes are usually ALS
campaign specific due to the properties of ALS scanners. Kalliovirta and Tokola
(2005) constructed species-specific DBH- models based on national forest inventory
(NFI) data from Finland. The idea behind developing such models is that they
can be applied to derive DBH information from remotely sensed height and crown
characteristics data. Since the models are based on NFI data they can be applied in
the area of whole country. The drawback of using field data in diameter modelling
is that crown characteristics derived in the field and from remote sensing data may
not correspond to each other.

In addition to utilizing height and crown area/diameter in modelling DBH from
ALS data it is also possible to utilize ALS point cloud metrics (e.g. Villikka et al.
2007). Thus, height and density metrics corresponding to those used in the area-
based approach are used, but calculated from the area of the detected tree crown
rather than from an entire field-plot. Instead of using only tree-level metrics, a
circular area around the tree can also be used to calculate the area-based metrics
to also describe tree social status compared to surrounding trees (Vauhkonen et al.
2010).

The data are often hierarchical when predicting DBH in a stand, i.e. several
trees are measured from one stand. In such cases, it is expected that the biophysical
properties of trees growing in the same stand are more similar than when compared
to trees growing in other stands, and this knowledge should be utilized. Mixed-
effects modelling provides a means of predicting hierarchically structured variables.
Maltamo et al. (2004) applied this to DBH prediction in the ALS context and, later,
Salas et al. (2010) compared different spatial models constructed for this purpose.
Recently, Maltamo et al. (2012) applied mixed-effects modelling and stand-level
field calibration of mixed-effects models to improve model applicability. Most of
the DBH prediction studies are based on regression modeling but k-nn imputation
has been used as well (Maltamo et al. 2009b; Vauhkonen et al. 2010).

In conclusion, it can be stated that the use of k-nn imputation, mixed-effects
modelling and tree-level ALS point cloud data have improved the accuracy of
diameter prediction. Both k-nn and mixed-effects models also allow simultaneous
prediction of different tree attributes. In the best cases so far, the RMSE values of
DBH-estimates have been slightly over 1 cm. However, the accuracy is usually still,
say, about 3 cm, which yields rather high errors in estimating tree volume.
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9.5 Combining the Area-Based Approach and Single Tree
Detection to Improve Diameter Distribution Estimates

Single tree detection usually results to distribution estimates where the largest
trees are detected but smaller are not. In this context Mehtitalo (2006) presented
theoretical framework to recover smaller trees based on the spatial pattern and
detectability of trees. The problem of not detecting small trees has also led to
some experiments in which single tree detection and the area-based approach are
combined (e.g., Maltamo et al. 2004; Lindberg et al. 2010; Ene et al. 2012). The idea
generally is to utilize detected trees and some area-based sum variable, such as stem
number or volume, to calibrate the estimates so that the detected single trees sum up
to the area-based variable. While Ene et al. (2012) only considers detection rates,
other above-mentioned studies examined combined diameter or height distributions.

Maltamo et al. (2004) first performed single tree detection. According to shortest
identified tree a truncation point was defined. The height distribution of the
detected trees was then characterized by a Weibull distribution applying both the
two-parameter approach and the truncated form of the two-parameter approach.
According to the chosen truncation point, the height estimates for smaller trees were
then derived with the Weibull function (see Fig. 9.5). For application purposes, the
Weibull parameters were regressed using stand-level independent variables derived
from the individual trees detected. Then the height distribution was converted to
DBH’s using a model based on tree height and crown area. This kind of approach
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Fig. 9.5 The principle of combining detected trees and theoretical Weibull distribution
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led to considerably improved estimates of stand level volume and stem numbers
when compared to approaches relying only on single tree detection. However, it
involves a risk of unrealistic estimates of diameter distribution and, in general, this
kind of approach is sensitive to stem number errors since it does not include any
ALS-based information about forest structure for small trees.

Lindberg et al. (2010) first detected individual trees and estimated their height
and diameter. In the next step they imputed area based target distributions at plot
level by utilizing k-nn. These target distributions included estimates of stem volume
and number of stems as well as percentiles of tree height and DBH. These two
approaches were then compared and calibrated. The number of trees based on single
tree detection was first rescaled to fulfil the estimated area based stem volume at plot
level. Trees included in the tree lists from the single tree detection were then either
removed or added into the percentiles according to the information concerning the
area based target distribution. The result of this procedure was a tree list that was
consistent with unbiased estimates at the area level.

The accuracy of the single tree detection and area-based approaches has been
compared in a few studies (Packalén et al. 2008; Breidenbach et al. 2010; Yu
et al. 2010, Peuhkurinen et al. 2011). These studies found that the accuracies of
predicted stand attributes were similar, although it can be very difficult to make
fair comparisons with respect to e.g., data acquisition costs and how to handle
tree species recognition. Nevertheless, Peuhkurinen et al. (2011) found that the
diameter distribution of a stand was more accurately predicted using the area-based
approach utilizing the parameter recovery of the Weibull function compared to
individual tree detection. However, the saw log size proportion of the diameter
distribution was more accurately predicted using single tree detection. It is also
notable that an ALS-based Weibull estimate was able to characterize J-shaped
descending distribution forms (Peuhkurinen et al. 2011). Diameter distributions
provide a favourable combination of accuracy and costs when evaluating the value
of information and comparing different inventory approaches (Chap. 16).

Different approaches to combine single tree detection and area based approach
have been developed. Usually the idea has been to calibrate the result of single
tree detection by taking into account also small trees. In principle this improves
accuracy and removes bias but these approaches need high density ALS data and the
estimation procedure is usually complex. It is also not guaranteed that the accuracy
will increase in all application stands.
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Chapter 10

A Model-Based Approach for the Recovery
of Forest Attributes Using Airborne Laser
Scanning Data

Lauri Mehtitalo, Jukka Nyblom, and Anni Virolainen

Abstract As three-dimensional wall-to-wall information on forest structure, ALS
echoes provide information on the growing stock and canopy structure. Even though
the ALS echo heights are associated with the dimensions of trees, a theoretical
model to relate ALS data with interesting forest attributes is missing. The recorded
observation of echo height can be viewed as an outcome of a complex process
mixing several random sub-processes related to the forest and the atmosphere in a
non-trivial way. The forest-related processes include those generating stand density,
tree heights, tree locations, tree crown shapes, and the internal structure of tree
crowns. This chapter presents our recent work on development of a theoretical
model for ALS echo heights. Furthermore, extensions are presented to take into
account randomness in tree crown shape, to incorporate the penetration of laser
pulses into tree crowns, and to develop the model for mixed stands.

10.1 Introduction

The possibilities of airborne laser scanning (ALS) as a forest inventory tool has been
recognized for decades (e.g. Solodukhin et al. 1977; Nelson et al. 1984). Decreased
costs of data collection in the 2000s have made it an alternative to the traditional field
surveys (e.g., Nasset et al. 2004). However, as Lim et al. (2003) and Junttila et al.
(2008) have pointed out, theoretical understanding of the relationship between forest

L. Mehtitalo (D<)
School of Computing, University of Eastern Finland, Joensuu, Finland
e-mail: lauri.mehtatalo @uef.fi

J. Nyblom
Department of Mathematics and Statistics, University of Jyviskyld, Jyviskyld, Finland

A. Virolainen
School of Forest Sciences, University of Eastern Finland, Joensuu, Finland

M. Maltamo et al. (eds.), Forestry Applications of Airborne Laser Scanning: Concepts 193
and Case Studies, Managing Forest Ecosystems 27, DOI 10.1007/978-94-017-8663-8__10,
© Springer Science+Business Media Dordrecht 2014


mailto:lauri.mehtatalo@uef.fi

194 L. Mehtitalo et al.

structure and laser data is still incomplete. Theoretical models on the behavior of
ALS pulses in tree canopies have been developed (Sun and Ranson 2000; Ni-Meister
et al. 2001), but these models focus on the modeling of the emitted energy in forest,
not in the recovery of the forest attributes from recorded echoes. A model for the
forest stand would be useful in estimation of forest attributes of interest, such as the
stand density and distribution of tree heights. Such a model was recently presented
by Mehtitalo and Nyblom (2009, 2012) and Mehtitalo et al. (2010).

The connection between the canopy heights (Z) and tree heights (H) is evident,
but the distributions of these two random variables are not identical (Magnussen
and Boudewyn 1998). There are several reasons for this difference. We start by
considering laser echoes from one single tree. The mean of these echo heights do
not equal the tree height (i) because observed canopy height for a given tree equals
tree height only at the tree apex (Nelson 1997; Magnussen et al. 1999). Therefore,
most echo heights are from lower heights than the total tree height. A common
strategy to overcome this property of missed treetop in the individual tree detection
approaches (cf. Chap. 1) is to take the maximum echo height as the estimate of the
tree height and by using high-density laser data. However, (ii) the echo height at
any location within a tree canopy underestimates the height of the surface of the
canopy at the given point. This underestimation results from the pulse penetration
into the crown before producing a detectable echo. Gaveau and Hill (2003) observed
the mean penetration of 1.27 m (range —0.14, 3.06) in a broadleaf forest. The
degree of penetration depends on the structure of the canopy (e.g., Gaveau and
Hill (2003) found a smaller penetration for shrub canopies than for forest canopies)
and the properties of the laser pulse itself (e.g. wavelength, footprint size, pulse
discretization method, etc.). Some authors include also the tendency of a pulse to
miss the treetops in the penetration component (e.g. Magnussen et al. 1999), even
though they are caused by different processes.

When one switches from tree level to stand level, the following three additional
issues can be recognized that make the distribution of echo heights different from
the distribution of tree heights: (iii) uniformly spread laser pulses hit more likely a
large individual tree crown than a small one, which means that large trees are over-
represented in the data of ALS echoes. This sampling probability proportional to
size (PPS) property (e.g. N&sset 1997; Magnussen et al. 1999) is further emphasized
by the effect of (iv) canopy overlap: considering two overlapping crowns at the
location of the echo, the pulse echoes from the one that has the canopy at a
higher level. The overlap may have important implications in stands with large size
variation, high stand density and clustered pattern of tree locations, whereas it may
be less important in even-sized plantations with low density and systematic spatial
pattern of tree locations (Mehtétalo 2006). Finally, (v) the ALS data includes ground
echoes, i.e., echoes from the openings between individual trees. To summarize,
the laser echo heights include information on the tree heights, but the relationship
between ALS echo heights and tree heights is rather complex. Especially, the five
properties listed above demonstrate that the distributions of these two variables
differ not only in mean and standard deviation but also in shape.

In this chapter, we assume that the marginal distribution of ALS echo heights (z)
has been observed for the forest area of interest using e.g. airborne laser scanner.
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However, we also assume that the latitude (x) and longitude (y) of the echoes are
not available or, if available, they are not utilized. Such a restriction is justified
in situations where the x-y coordinates of the pulses relative to each other do not
provide meaningful information on the forest, for example, if the area for which the
distribution of z is observed (e.g. a sample plot) is rather homogeneous and the pulse
density is so low that individual crowns cannot be recognized from the point cloud.
The widely-used area-based approach (cf. Chap. 1) is also based on the marginal
distribution of the echo heights, whereas the individual-tree recognition approaches
utilize also the x-y coordinates of the echo.

The recorded observation of ALS echo height can be seen as an outcome of a
process that is a complex mixture of several random sub-processes, including those
generating stand density, tree heights, tree locations, tree crown shapes, the internal
structure of tree crowns, and the properties of the laser pulse. In this chapter, the
aim is to present a general model of forest canopy height. The model integrates the
above-mentioned sub-processes, parameterizing the distribution of echo heights Z
by meaningful parameters of them. The aim is to develop a model that can be used
in estimation and inference from a marginal distribution of canopy heights collected
by an airborne laser scanner. We will present the theoretical basis of the models,
an overview of the previous publications, as well as some theoretical developments
that substantially relax the quite restrictive assumptions of the previously published
models.

10.2 Models for ALS Echo Heights in Forest Stands

10.2.1 The Tree-Specific Crown Envelope

The tree specific crown envelope is defined as a smooth solid surface, which covers
the whole tree crown like a hood and has a minimum volume under it, as illustrated
by Fig. 10.1. The crown envelope makes two important simplifications compared to
true trees. First, the envelope does not take into account the high-level structure of
tree crowns caused by branches and leaves, but treats an individual tree crown as a
three-dimensional object with solid surface on the top. Second, the area of the cross-
section of the crown envelope decreases from the bottom to the top, even though the
true cross-section may increase. This is justified because the true crown width of the
tree at a given height is not observable from above if the crown has larger width at
any height above. We introduce this simplifying concept as the starting point for our
mathematical derivations.

There is a trade-off between the smoothness of the top surface of the envelope
and the envelope volume: the higher the requested degree of smoothing, the larger
the volume. In practice, the crown envelope is defined by a parametric function.
In this case, the crown envelope is of the assumed mathematical form, covers all
branches (or at least a large majority of them), and has the minimum volume.
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Fig. 10.1 Illustration of the concept of crown envelope. The gray objects with thin borderlines
demonstrate six trees. The dashed thick line shows the tree-specific crown envelope for one tree.
The thick black lines show the area-specific crown envelope and the triangles demonstrate laser
echoes form pulses that have penetrated into the crowns envelope according to an exponential
distribution. Height z(v) is the height of the area-specific crown envelope at location v, z(v) and /(v)
are the corresponding echo height and realized penetration, respectively

In what follows, we assume for simplicity that the horizontal cross-section of
a tree crown is circular. Then it is possible to specify the crown shape in terms
of crown radius at a given height above the ground. However, some of the results
presented in this chapter are valid also for cross-sections of any closed shape of the
cross-section (Stoyan et al. 1995).

The parametric function that is used specifies the crown radius r at height z above
the ground for a tree with total height 4. A commonly used simple function for
tree crowns is the ellipsoid (Nelson 1997), which was used also by Mehtitalo and
Nyblom (2009),

Cl(/’l) 0< Z =< hmax

Z, h = . 10.1
R I A

where the half axes a(h) and b(h) specify the shape of the tree as a function of tree
height. The function is constant from ground level to the height of maximum crown
width A,,,,. Thereafter, it is a decreasing function of z until the height of the tree top,
h. Mehtitalo and Nyblom (2009) further specified the half axes to be proportional
to the total height as a(h) = ph and b(h) = gh, therefore the parameters specifying
the crown shape were ¢ = (p,q)’.

Mehtitalo and Nyblom (2012) found the simple ellipsoid insufficient for mod-
eling large Scots pine trees, which had the shape between a cone and an ellipsoid.
Therefore, they extended the model by allowing the center of the ellipsoid to move
away from the x-axis, which is at the tree stem. The resulting three-parameter model
allows the shape to vary between conical and ellipsoidal forms
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Fig. 10.2 Empirical crown shape functions for Norway spruce (solid) and Scots Pine (dashed)
based on Eq. 10.2. The individual symbols and gray lines show the original observations
(triangle = spruce, circle = pine)

h()’0+b) 0 <z =< hypax
rzhle) = h (yo + b\/l . (i/h—xo)z(bZ—yg)) Bopax < 2 < h (10.2)

b2(1—x0)*

where @ = (yp,x0,b) specify the location of the ellipsoid center and the vertical
half axis. Figure 10.2 shows examples of empirical crown shape functions based
on Eq. 10.2.

A more flexible three-parameter function is provided by the Lame function
(Rautiainen and Stenberg 2005; Mehtétalo et al. forthcoming)

R 0<Z§hmax
2 hle) = . N\ 10.3
rkle) R(l—(“h)) har <2< h 103

h—qh

where the parameter vector is @ = (R,q,f)’. Parameter R specifies the maximum
crown radius, which is reached at the height gh. Parameter ¢ (¢ > 0) specifies the
shape so that ¢t < [ provides convex shapes, ¢t = I produces a cone, / <t < 2 produces
shapes between cone and ellipsoid, t = 2 produces an ellipsoid and ¢ > 2 produces
even more concave shapes.

Consider a tree at location u. Assume that the height of the tree is generated by
a random process specified by a cumulative distribution function F(%), such as the
widely used Weibull distribution (Bailey and Dell 1973)

F(hlg)=P(H<h) =1—exp (—(%)a) (10.4)
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where the parameter vector § = («,8)’ includes the shape and scale parameters
of the distribution, respectively. Because of the randomness of tree height, the
crown envelope radius (and hence the area of the cross-sectional area of the crown
envelope) at height  is also random. From a technical point of view, the crown
envelope shape defines a transformation of the random tree height (Mehtitalo and
Nyblom 2009, 2012). Therefore, the probability distribution of the crown radius has
the following relationship with that of tree height (Eq. 10.4):

P(R=<r)y=F{h(r|p)|é}, (10.5)

where h(z, r|@) expresses the height of a tree that has crown envelope radius r
at height z above the ground. This function results from solving the crown shape
function (e.g. one of Egs. 10.1, 10.2 and 10.3) for A.

However, Virolainen et al. (forthcoming) observed that field-measured crown
profiles of Scots pine vary considerably among individual trees, and even the
profile of same tree can change with the direction of view. Therefore, additional
randomness to the crown radius is introduced by the among-tree and within-tree
variability in crown envelope shape. This variation can be taken into account by
allowing the parameters of the crown shape functions Eqs. 10.1, 10.2 and 10.3
to vary between trees. In this situation, the crown radius function is defined as
r (2, h |@; ), where the additional subscript i indicates that the parameter vector ¢
is specific for each tree. Allowing separate parameters for all trees is, however,
not an option in reality. This problem can be overcome by treating the tree-
specific parameters as realizations from a common distribution of parameters, as
is commonly done in the mixed-effects models (Pinheiro and Bates 2000).

10.2.2 The Area-Specific Crown Envelope

In area-based approaches, the echoes cannot be assigned to certain trees. Instead,
only the sample plot (or stand) of origin is known, yielding an observed marginal
distribution of echo heights for the plot in question. For analysis of such data, the
concept of crown envelope is extended to the area level.

Similarly to the tree-level crown envelope, the area-specific crown envelope is
such a smooth solid surface, which covers all crowns of the plot like a hood and
has minimum volume under it. Furthermore, to connect the plot-specific envelope
with the tree specific one, we define that the height of the area-specific envelope at a
given point in the horizontal plane is the maximum over all tree-specific envelopes
that extend to the point in question (Fig. 10.1, see also Fig. 10.3).

Mehtitalo and Nyblom (2009, 2012) interpreted the ALS echo heights as
observed heights of the area-specific crown envelope at the points of laser echoes.
This approach implicitly assumes that the footprint size is 0, the pulses are exactly
vertical, and the pulses do not penetrate to the area-specific envelope but return
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Fig. 10.3 An illustration of the theoretical model of Mehtitalo and Nyblom (2009). The probabil-
ity for a randomly located ALS pulse to echo from below the level of the black plane z equals the
ratio of the plane area to the total area

immediately when hitting the top surface of the envelope. Even though these
assumptions are simplifying and unrealistic to some degree, the concept provides
a sound approach that implicitly takes into account the previously discussed
properties of missed treetops, canopy overlap, PPS sampling and ground echoes.
An approach to take into account the laser pulse penetration will be presented later
in this chapter.

The laser echo height is interpreted as the observed height of the area-specific
crown envelope. Because the locations of trees and laser returns are unrelated, we
think that the laser pulse hits the area-specific envelope at a random point within
the plot, with uniform probability over the plot area. Therefore, the cumulative
distribution function (c.d.f.) of ALS echo height, G (2), can be specified as the
probability that the area-specific envelope at an randomly selected point v (in x-y
plane) within the area is below the height z, i.e.,

Gz =P(Z(v)<32).

Furthermore, this probability is equal to the probability that the (randomly
placed, zero-footprint, vertical) pulse misses the union of crown discs at height z,
i.e., it hits the black area of Fig. 10.3. Here the crown discs are the cross-sections
of the tree-specific crown envelopes. Assuming that the cross-sectional areas of the
crown envelopes of neighboring trees are independent, the probability of the pulse
at v to miss all cross-sections at height z is the product of probabilities to miss all
tree-specific cross-sections. Furthermore, point v misses the cross-section of tree i at
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height z if the crown envelope radius at height z is smaller than the distance between
the pulse location v and the tree location u;. We get

GGlo) =[], P(rGhile) < u—vl) (10.6)

where N is the total number of trees in the stand and r (2, 4;) is a function specifying
the crown radius at height z above the ground for tree i that has the total height
of /’li.

Equation 10.6 now specifies in very general terms the distribution of ALS echoes
from the area-specific envelope at point v within the area of interest, where tree
locations are given by u;, i=1,..., N. However, the equation is not useful if the
tree heights and locations are unknown as they usually are. This problem can be
overcome by making assumptions on the processes generating tree heights and
locations.

To include the distribution of tree heights into the model, recall that we can treat
the crown radius as a transformation of tree height (Eq. 10.5). Each term of the
product in Eq. 10.6 is actually the value of the c.d.f. of crown radius for r = ||u; — v||
(Eq. 10.5). Therefore, the c.d.f. of ALS echo heights can be expressed by writing
Eq. 10.5 into Eq. 10.6 to get

Glo.&) =[] FihGlv—ullo)lt}.

The expression includes a product over all trees of the area of interest. However,
the probability of the crown i to not extend to point v, F {h (Z, ||v—u; || |@) |& }, is
1 for trees sufficiently far from the point v. Therefore, it suffices to take the product
over the nearby trees only:

Gilp.&)=]] FihG v —uwlll@)|€}, (10.7)

isllv—ui ll <Rpmax
where R, s the upper limit for the crown radius of a tree (Mehtitalo et al. 2010;
Mehtitalo and Nyblom 2012).

The results of Virolainen et al. (forthcoming) indicated a need for tree-specific
vectors @; to account for the tree-to-tree variation in crown shape. In order to
properly take into account the tree-to-tree variation in crown shape, we specify
the probability density associated with ¢, as p(¢;). However, we assume that all
the trees are realizations of the same model. For example, if the crown shape is
described by appropriate re-parameterizations of Eqgs. 10.2 or 10.3, p(¢;) might be
the tri-variate normal density with mean g and variance-covariance matrix . Then
the total number of parameters in this model would be nine. For each tree, we may
define the probability to have the crown radius below distance ||v — u;|| as the mean
probability over the distribution of ¢,. Therefore, we get

Gew e =TT, o [ Ficl=ulle)lspeln)ds.
! (10.8)
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10.2.3 Distribution of Echo Heights Under a Grid Pattern
of Tree Locations

Mehtitalo et al. (2010) applied Eq. 10.6 to a Eucalyptus plantation where trees are
planted according to a grid pattern. In this particular situation, the value of Eq. 10.6
varies according to the location v within a rectangle defined by four consecutive
trees from two adjacent lines. On the other hand, all rectangles of the forest stand
are identical with respect to the probabilistic properties of canopy. Therefore, to
compute the distribution of echo heights for the stand, it is enough to average
Eq. 10.6 over one rectangle. Denoting the distance between rows by [ and the
distance between trees of a row by m, the mean of Eq. 10.6 over the cell becomes

1 m pl
G (z = — P (r(z,h < |ju; = v|)dvid 10.9
10 = 5 [ [ Tl P Glilo) < =D dndss (109

where v; and v, are the x and y coordinates related to location v.
Mehtitalo et al. (2010) assumed that the randomness in crown envelope radius
arises only through the randomness of tree heights. In this case, Eq. 10.9 becomes

: Lt :
G (208 = %/o /OHI-;||V_M,-||<R,,WF{’Z G v —ui|l|@)|& } dvidva. (10.10)

Equations 10.9 and 10.10 provide a model for a situation where the stand density
and spacing of a plantation are known. Mehtitalo and Nyblom (2012) presented
a model for a special case of a square grid pattern with unknown grid-spacing.
In a stand with A trees per m? and square grid pattern of tree locations, inter-tree
distances are | = m = \/LX (meters). Hence,

(VEVZRR VAVAY
Gepsn=af [T ] FuGIv-ulle)liian

i5llv—ut; || < Rimax

(10.11)

In this case, the c.d.f. of echo heights is expressed using three vectors of
parameters: that specifying the tree crown envelope shape as a function of tree
height, that specifying the plot-specific distribution of tree heights, and the stand
density.

10.2.4 Distribution of Echo Heights Under a Random Pattern
of Tree Locations

A common starting point for any analysis related to spatial pattern of tree locations
is to assume complete spatial randomness, where tree locations are generated
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independently from a uniform distribution over the area of interest. In such a
situation, the c.d.f. of echo heights (Eq. 10.7) simplifies to

G (zlg.§.A) =exp %—X/O wr(zhi o) f (h|€)dh (10.12)

where f(h|§)=F’'(h|§) is the probability density function of tree heights
(Mehtétalo and Nyblom 2009).

10.2.5 The Density Function of Echo Heights

Sections 10.2.3 and 10.2.4 provided expressions for the c.d.f. of echo heights
from the area-specific envelope in the case of three different patterns of tree
locations: for a rectangular grid with known spacing (Eq. 10.10), for a square
grid pattern with unknown stand density (Eq. 10.11), and for a random pattern
of tree locations with unknown stand density (Eq. 10.12). The c.d.f. was param-
eterized using parameters for the plot-specific distribution of tree heights, for
the crown envelope shape for a given tree height, and for stand density (¢, &
and A). For clarity of presentation, we now define a single parameter vector 6
which includes all those parameters that are unknown. The exact contents of this
vector may differ according to the specific application: for example, the stand
density of a plantation may be known in advance (Mehtitalo et al. 2010, see also
Chap. 13), or the parameters specifying the average crown shape for the region may
have been estimated beforehand using a training dataset (Mehtitalo and Nyblom
2012).

A specific property of the c.d.f. of echo heights, G (|6), is that the distribution
consists of two components: a discrete component for the echoes from the ground
and a continuous component for the echoes from the canopy (Fig. 10.4, left). The
discrete component is visible as a jump at z = 0 to the level that quantifies the
proportion of ground echoes. As 7 increases from 0O, the c.d.f. is first relatively
flat until z gets values that correspond to the upper parts of the canopy, where the
majority of individual crowns have a fast decrease in the cross-sectional area.

A common way to explore ALS echo heights is through a histogram, which is
consistent with the probability density function (p.d.f.). The p.d.f. corresponding to
G (20) has also discrete and continuous parts. More specifically, the value of the
p-d.f. at z = 0 is equal to the jump of the c.d.f. at z = 0; the proportion of ground
echoes. For strictly positive values of z, the p.d.f. is the first derivative of G (2 |0)
(Fig. 10.4, right)

GO|o) =0

g(z|0) = G Glo) i50° (10.13)
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Fig. 10.4 Illustration of the cumulative distribution function of echo heights from an area-specific
envelope (left) and the corresponding probability density function (right). The discrete part of the
p.d.f. is demonstrated by the triangle

10.2.6 Including a Component for Penetration
Within the Crown

The models in Sects. 10.2.3 and 10.2.4 take into account the effects and factors
related to missing treetops, PPS sampling, canopy overlap, and ground echoes.
However, the penetration of the laser pulses into tree crowns was not addressed by
Mehtitalo and Nyblom (2009, 2012) nor by Mehtitalo et al. (2010). Mehtétalo et al.
(forthcoming) provides a crude solution to the problem by introducing an additional
fixed penetration parameter. However, the results were not very good due to the fact
that penetration is better modeled as a random variable. For example, Gaveau and
Hill (2003) observed penetrations ranging from O to 3 m in mixtures of broad-leaved
trees, the mean penetration being around 1 m.

We hypothesize that the penetration of the pulse is related to the canopy gap
fraction of the area under study. Therefore, the higher number of gaps, the higher
the value of the mean penetration. A generally accepted starting point for modeling
the canopy gap fraction is the Beer-Lamberts law (e.g. Grover et al. 1999), which
states that the proportion of openings in a canopy of height / can be expressed as

P (A) =exp(—K (A) QAL/cos (A))

where parameters A, K(A), and QA are the beam direction, canopy extinction
coefficient for beam direction A, and non-randomness factor, respectively. Let
random variable L be the penetration of the pulse into a tree crown. The probability
for a laser pulse to penetrate less than a fixed value [ into a tree crown is therefore
the complement of the canopy gap fraction. Furthermore, assuming parallel beams
and homogeneous canopies with randomly oriented convex leaves and substituting
K(A) =4 yields
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Fig. 10.5 The p.d.f. of ALS echo heights under the model that assumes random tree locations.
The stand density is 1,500 trees per ha, tree height follows the Weibull (10,20) distribution, crowns
are elliptic (Eq. 10.1) with p=0.1 and q = 0.4, and penetration follows an exponential distribution
with a mean of 0 (the most peaked curve), 2 and 4 m (the flattest curve)

P(L<I)=B()=1—exp(=8)

which is the c.d.f. of the exponential distribution with rate parameter § and density
b(l) = dexp(—41). The triangles in Fig. 10.1 demonstrate echo heights under the
exponential distribution of penetration of laser pulses into tree crows.

To integrate the penetration into the models of Sects. 10.2.3 and 10.2.4, we define
the echo height at point v as the difference between the crown envelope height Z
and pulse penetration L as Z = Z — L. The p.d.f. of the resulting random variable
is the convolution of the two distributions, yielding

G(z)+/°og(z)[1—3(z)]dz z=0
g (z]0) = 0 0 (10.14)
/ g@b(iz—2dz 72>0
0

where g (2) is the probability density of the laser pulses without the penetration
and g;(z|@) is the density with penetration. The additional parameter (the rate of
penetration) is now included in the parameter vector . A graphical illustration of
the effect of integrated penetration on the probability density of echo heights is
shown in Fig. 10.5.

Unfortunately, empirical results of Virolainen et al. (forthcoming) indicate
that the penetration is not necessarily distributed according to the exponential
distribution. A natural explanation is that the gaps in the crowns are not distributed
uniformly. A natural extension could be a distribution that a has two parameters
and provides the exponential distribution as a special case. Such alternatives are, for
example, the gamma and Weibull distributions.
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Fig. 10.6 The empirical histogram of 400 echo heights from a mixed Scots pine — Norway spruce
sample plot in southern Finland (left), and the true histogram of tree heights (right, wide bars).
The narrow bars show spruces (light) and pines (dark) separately. The black smooth lines show the
fitted density function (1st derivative of Eq. 10.15, left), and the corresponding height distribution
for whole tree stock (right). The gray lines on the right show the species-specific components of
the Weibull mixture distribution

10.2.7 Extension to Mixed Stands

The model can also be extended to mixed species stands. In this extension, it is
assumed that the stand density and the functions for the individual crown shape and
the height distribution are specific for each tree species. For example, assuming a
mixed stand with two tree species and a random spatial pattern of tree locations
yields (c.f. Eq. 10.12):

(o]

G@M&p%épkmﬁwm{4npfr@hmffMEJM
0 (10.15)

+u—m/J@ww»7mw»M”,

where the parameter p specifies the proportion of tree species 1 of the total stand
density A, parameters £, and ¢ specify the height distribution and crown shape
for tree species 1 and correspondingly &, and ¢, for tree species 2. Therefore, the
height distribution of the stand is a mixture of two densities with weight specified
by p. Figure 10.6 shows an example application of the model in Eq. 10.15 in a forest
stand with dominated Norway spruces trees growing under a dominant crown layer
of Scots pine; the shape of individual crowns is described by the models shown in
Fig. 10.2.

The echo height is not the only characteristic recorded by laser scanners.
Especially, the proportion of energy reflected by the target (echo intensity) might
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provide information about the reflectance of the forest. Extension of the model-
based approach to bivariate ALS data of echo height and intensity, Z = (Z v ) ,
arises by defining the joint distribution of Z as

G@)=P(Z =2).

This model might be useful especially in mixed stands where two tree species
are rather similar in crown shape but have different distributions of echo intensity
(for definition, see Chaps. 2 and 3). Additional parameters specifying the species-
specific distribution of echo intensity would be introduced by this extension.

10.3 Applications of the Approach

10.3.1 Parameter Estimation

The models presented in Egs. 10.9, 10.10, 10.11, 10.12, 10.13 and 10.14 define the
distribution of ALS echo heights under the different assumptions on the process
and forest stand. The estimation of the parameters of these models is naturally done
using conventional estimation methods. Studies applying a model-based approach
have used the method of Maximum Likelihood (ML) due to its strong theoretical
basis (Casella and Berger 2002). The method searches for such estimates for the
parameter vector @ that produce the maximum value of the log-likelihood function.
Assuming independent, identically distributed echo heights, the log-likelihood as a
function of parameters is defined as

11(0) = ZiﬁN Ing (z |0) (10.16)

where z; is the observed echo height for pulse i, i=1, ..., N and g is the density
corresponding to the assumed model (Eq. 10.13 if no penetration is assumed or
Eq. 10.14 if penetration is assumed). Due to the structure of the density function
in these equations, the log likelihood can be written alternatively as a sum of
two components corresponding to ground echoes and echoes from the crown,
respectively, as

11(0) = MyInG (0]0) + ZKM Ing (z |9). (10.17)

where M, is the total number of ground echoes, and the latter sum is taken
over the non-zero echoes to tree crowns (i=1, ..., M). The ML estimators are
asymptotically unbiased and efficient. The method also provides estimators of the
standard errors of the parameters. However, possible lack of independence among
observations (e.g. nearby echo heights likely stem from the same tree) may lead
to lack of efficiency and underestimation of the standard errors of the estimators.
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However, the point estimators of # remain asymptotically unbiased even with
dependent data. All properties of the ML-estimators are valid only if the assumed
model is correct.

With our model, evaluating of the p.d.f. for the likelihood may be computa-
tionally highly intensive, especially under the grid-based spatial models where the
distribution function itself includes numerical integrals over an area (Eqgs. 10.10 and
10.11). Therefore, some efforts have been made to approximate the likelihood using
methods where the p.d.f. is evaluated only for a small set of regularly spaced values
of z. Virolainen (2010) and Mehtitalo et al. (2010) used an approximation based on
splines, whereas Mehtitalo et al. (forthcoming) used classified ALS echo heights
when computing the likelihood.

10.3.2 Applications to Actual Data

Mehtitalo and Nyblom (2009) evaluated the model for random pattern of tree
locations (Eq. 10.12) in a simulated dataset, which exactly followed the assumptions
behind the model. Mehtitalo and Nyblom (2012) reported on a similar simulation
study for a square grid pattern of tree locations (Eq. 10.11). Results were encourag-
ing, but they do not demonstrate the performance of the model in practice.

Mehtitalo and Nyblom (2012) reported on an application to a real dataset from an
old-growth Norway spruce sample plot. Models for crown shape were first estimated
from empirical data where individual trees had been recognized and extracted
from an ALS point cloud (Fig. 10.2). The example showed good potential, but
the evaluation still left many questions unanswered. Especially, ‘true’ tree heights
were based on ALS data and only one sample plot was used in the demonstration.
Furthermore, the feasibility of fitting a generic crown-shape function remains an
open question.

Mehtitalo et al. (2010, forthcoming) presented a more pragmatic application of
the approach. They proposed a two-stage fitting approach that has similar principal
data needs as the area-based approaches. The first step involves ‘model’ training
using ground-measured sample plots. Because all trees of these plots were known
for total height, accurate estimates for the parameters specifying the distribution
of heights were available. Therefore, the training stage provided estimates of the
parameters related to tree crown shape, conditional to the known height distribution.
In the evaluation stage, the same model was used for estimation of the height
distribution of the evaluation plots, but with the previously estimated parameters
of crown shape treated as fixed constants. The empirical part of the study used
Eucalyptus plantations where trees were planted according to a known rectangular
grid pattern. Therefore, Eq. 10.10 was used with the known stand density and
distances between rows and trees within rows. The quality of the estimated height
distribution was evaluated using the mean and dominant height based on that
distribution. The procedure resulted in RMSEs of 1.4 and 0.8 m for mean and
dominant height, respectively. The corresponding empirical biases were —0.35 and
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0.22 m. These values include also the errors related to the determining of the true
tree heights using measurements and locally calibrated height-diameter models.

An application utilizing no field data was implemented and evaluated in
Mehtitalo et al. (forthcoming). The likelihood based on the model of Eq. 10.10
was maximized with respect to all of its parameters simultaneously, and no field
data were used to aid the estimation. The resulting estimated distributions of tree
heights showed an RMSE of 2.9 m and 0.9 m for mean and dominant height, the
biases being 0.03 m and —0.23 m, respectively, when the estimated dominant and
mean heights were compared to the assumed true heights.

10.4 Discussion and Conclusions

This chapter gave an overview of the model-based approach proposed by Mehtitalo
and Nyblom (2009) and further developed by Mehtitalo et al. (2010), Mehtitalo
and Nyblom (2012), and Mehtiitalo et al. (forthcoming). The approach is based on a
model for the marginal distribution of the ALS echo heights from forest. The echo
heights are modeled as the outcomes of a stochastic process, which integrates the
underlying forest-related sub-processes in a theoretically justified way.

The derivations presented in this chapter demonstrate that even though the task
is challenging, it is soluble at least in the simplest cases. However, the current
versions of the model is too limited for practical use, and mathematically and
computationally much more demanding than, e.g., the currently used area-based
approach. However, if these issues can be solved, the model provides several
benefits compared to the empirical approaches. The major benefits would be:

(1) The approach implicitly and simultaneously takes into account properties
related to missed treetops, pulse penetration, PPS sampling, canopy overlap
and ground echoes through modeling the processes behind these in a theoreti-
cally justified manner.

(i) The model is parameterized using the stand attributes of interest. Therefore,
the problem of stand attribute estimation with the model-based approach is a
problem of parameter estimation.

(iii) Estimation of characteristics related to stand density, stand structure, and tree
canopy is possible under the same general approach.

(iv) The approach provides a possibility to estimate forest characteristics without
campaign-specific calibration data using low-density ALS data.

(v) There are apparent ways to extend the approach to more complex situations, as
demonstrated by the bivariate model for echo height and intensity.

The model assumes specific random processes for stand density, tree locations,
and heights of individual trees. In contrast, the studies reported so far have assumed
that the process generating tree crown envelope shapes as a function of tree heights
is fixed. In addition, penetration of ALS pulses into tree crowns has not been
assumed or it has been assumed fixed. The model has been published only for
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single-species stands. This chapter provided extensions of the model to relax these
restrictions. Equation 10.8 now provides a starting point for areas with random
tree shapes. The need for this extension was demonstrated by Virolainen et al.
(forthcoming). We also presented a model that allows penetration of pulses into
tree crowns (Eq. 10.14) according to a given distribution function, such as the
exponential distribution justified by the Beer-Lambert’s law. Finally, an extension to
a mixed stand with two tree species with different crown shape was presented with
a real-data example in Sect. 10.2.7. An approach to include the echo intensity into
the model by assuming bivariate observations was outlined, too.

In forest inventory, the parameters of primary interest are those specifying the
stand density and the distribution of tree heights. The other parameters, i.e. those
specifying the crown shape, the randomness in them, or the penetration of pulses
into the tree crowns are not of primary interest. They can therefore be called
nuisance parameters in this context. They are necessary to make the model as
realistic as possible, and are therefore included for more efficient and less biased
estimation of the parameters of primary interest. However, a parameter that is
regarded as a nuisance parameter in the context of forest inventory can be of primary
interest in other situations. For example, the estimated distribution of penetration
could be related with the canopy gap fraction. Therefore, it could be the parameter
of primary interest if the model is used for estimation of the leaf area index.

The model-based approach provides means to analyze the marginal distribution
of ALS echo heights for a given area. The data are marginal with respect to locations
of the pulses. For this reason, the information on the location of pulses within the
area is not utilized. Such an approach is justified and may be efficient in a situation
where (i) the tree locations do not provide any information on the underlying forest
or (ii) the locations of laser echoes with in relation to each other are unknown.

The previous studies (e.g. Mehtitalo et al. 2010) have considered the model-
based approach only for situations where the pulse density is low. In that situation,
analysis of the marginal distribution of z is justified because the x-y coordinates
do not include any essential information about the stand structure beyond the echo
heights z. The situation is similar to the area-based approach, where predictors are
usually quantities that are calculated from the marginal distribution of echo heights
(e.g., percentiles, or moments of it). The individual tree detection (ITD) approaches
have potential for higher accuracy than the area-based and model-based approaches
because ITD is able to utilize the information of the relative locations of the echoes,
too. On the other hand, ITD can be used only with high-density data where the x-y
data includes essential information.

The locations may be unknown if the data are full-waveform data from scanners
with a large footprint (e.g. Sun and Ranson 2000; Ni-Meister et al. 2001). In such
case the information provided by the sensor is the marginal distribution of the
canopy heights within the single footprint. The model-based approach could provide
means to analyze such data for estimation of interesting forest attributes for the
footprint area.

The model has been developed only for a limited set of spatial patterns (random
and strictly regular). For practical applications, an extension for a general spatial
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model, such as the Gibb’s process (Illian et al. 2008) is needed. However, nice
solutions as the ones of Eqgs. 10.12 and 10.15 do not necessarily exist for the more
general model.

There is still an open question about whether all necessary nuisance parameters
can be satisfactorily included in the model, still keeping the model simple enough
for estimation. The estimation is already quite demanding using the models
presented in this chapter. Especially, the models for grid pattern (Eqs. 10.10 and
10.11) are computationally demanding because the cumulative distribution function
already includes a numerically evaluated integral over a two-dimensional space.
For estimation, this c.d.f. needs still to be differentiated to compute the likelihood
to be repeatedly evaluated in the estimation. We have done some work to find
approximations of the likelihood, and these approximations have shown potential
with the models used until now. However, the extensions of the model introduce
more complexity of the model. Especially, inclusion of random penetration and
random crown shape introduce additional integrals to the models which most
likely need to be evaluated numerically. Switching to the Bayesian framework in
estimation could provide a step towards a good solution, but the need to evaluate the
likelihood still remains.
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Chapter 11
Area-Based Inventory in Norway — From
Innovation to an Operational Reality

Erik Naesset

Abstract The aim of this chapter is to give an overview of the development of ALS
as an operational tool for forest management inventories in Norway. The chapter
will shed light on some of the technical and institutional challenges that were faced.
Interaction between the scientific community and private sector was seen as a critical
factor for successful adoption of the new technology for practical purposes and it
will briefly be described. A description of local adoptions of the methods and of
research conducted to improve the technical and economic performance will be
given. Finally, some future needs and directions will be discussed. It is believed
that the lessons learned in Norway may be found useful for similar efforts in other
countries.

11.1 Introduction

Like in many other western countries, forest inventories in Norway are traditionally
conducted at two very different geographical scales serving two distinct purposes,
namely (1) the National Forest Inventory (NFI) providing data for national and
regional policy-making and (2) forest management inventories (FMI) primarily
serving the need for local data for management of individual forest properties. The
NFI which dates back to 1919, is basically a sample survey based on a probability
sample of field plots used to estimate important parameters such as total timber
volume for the entire country and individual regions, such as counties with a typical
size of around 2,000—-50,000 km?2. The management inventories, which are spatially
explicit, aim at providing data for every treatment unit (forest stand) for tactical and
strategic planning. Thus, FMIs will in most cases have a wall-to-wall coverage.
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Although the first management inventories date back to around 1870-1880,
a systematic development of methodologies and implementation of inventory
programs started in the 1950s and early 1960s. Like in many other European
countries, the inventories relied on field visits to every stand that was identified
and delineated using aerial photography and topographic maps. Point sampling
taking advantage of the recent developments by Bitterlich in 1948 and onwards
(the relascope; see e.g. Bitterlich 1984) was commonly performed in every stand to
produce volume estimates, whereas tree species distribution, site quality, treatment
proposals and other properties required for forecasts and analyses were subjectively
assessed during the field visit.

An important shift in technology and methodological approaches took place in
the late 1970s, which paved the road for introduction of airborne laser scanning
(ALS) in management inventories 20 years later (around year 2000, see below).
During a period of 10-15 years (~1975-1990), stereo photogrammetry supported
by geographical information systems became the basic method for stand-based
inventories. Analogue stereo plotters were used for stand delineation, while mea-
surement and interpretation of stand tree height and crown closure were used to
predict volume using established volume models. Other parameters such as tree
species and site quality were interpreted by manual interpretation. Field visits
were only occasionally performed, and mainly to determine specific silvicultural
treatment needs and to verify the photo interpretation.

An important political decision was made which later had a great impact on how
the management inventories were conducted. During this period it was decided to
offer the forest owners direct economic support from the state (subsidies) if they
could collaborate on inventories across property boundaries. The motivating factor
for the support was an expectation of higher activity in the forestry sector when
the economical values of the forests became evident to the owners through more
complete and reliable information about the resources. Since the support was offered
directly to the private owners, it stimulated competition in the market between
providers of inventory services who looked for better products than their competitors
and it promoted large-scale solutions (economy of scale). Wall-to-wall inventories
covering large tracts of land, say, 5,000-10,000 ha, suddenly became the rule rather
than the exception. The average size of private forest properties in Norway is
around 50 ha. Field-based sample surveys covering the entire geographical area of
interest were performed in conjunction with the wall-to-wall inventories to provide
overall estimates of wood volumes, and the sample surveys were also used to
adjust for the systematic errors that frequently occur in manual photo interpretation.
Thus, by the end of the 1990s there was a strong tradition and acceptance for
large-area wall-to-wall management inventories based on photo interpretation and
supported by field-based sample surveys. Another interesting observation from the
last epoch of the 1990s, was a close collaboration between the service providers
(inventory firms, the forest owners associations) and the research community.
Digital photogrammetry was introduced in the forestry sector in 1997 and soon after
the so-called area-based method to produce stand-wise volume and other estimates,
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which was proposed in 1997 (Nasset 1997a, b), was applied to three dimensional
(3D) point clouds from digital photogrammetry (Nasset 2002a).

The aim of this chapter is to give an overview of the development of ALS as
an operational tool for FMI in Norway. The chapter will shed light on some of
the technical and institutional challenges that were faced. The interaction between
the scientific community and private sector that took place and was seen as a
critical factor for successful adoption of the new technology for practical purposes
will briefly be described. A description of local adoptions of the methods and of
research conducted to improve the technical and economic performance will be
given. Finally, some future needs and directions will be discussed. It is believed
that the lessons learned in Norway may be found useful for similar efforts in other
countries.

11.2 Early Tests and Method Development

The first test with ALS with the aim of estimating properties such as mean height
and volume of individual stands was conducted in 1995 (Nasset 1997a, b). That was
only a couple of years after the first commercial ALS instruments were introduced
for topographic mapping (Ussyshkin and Theriault 2010). In 1995, some state-of-
the-art proprietary instruments were capable of recording two echoes per emitted
pulse, some could only collect either first or last echo (Baltsavias 1999). In our
experiments we used the ALTM 1020 sensor produced by Optech Inc, Canada. The
instrument could collect up to two echoes per pulse, but one would have to set
the operating mode (first only, last only, or first and last) prior to acquisition. In
our first dataset we collected last echoes only simply because there was very little
awareness in those early days that the first echo data could be useful for vegetation
studies. It was recognized though that last echoes were the most appropriate ones
for derivation of the digital terrain surface. In our first acquisition the applied pulse
repetition frequency was 2 kHz, although ALTM 1020 could be operated up to
5 kHz (Baltsavias 1999). The pulse density was around 0.09-0.12 pulses m~2. This
illustrates an intriguing technological development. Over a time period of around 15
years the capacity has increased by a factor of around 100, representing a doubling
of the capacity about every second year.

Although this first test was conducted without any previous experience about
relevant point densities and flight and instrument parameters, several useful results
were documented:

1. Gridding: The concept of gridding the data into regular grid cells was introduced
(Nasset 1997a) and proved to be useful for estimation of mean height and volume
of stands.

2. Mean height estimation: ALS data was shown to provide accurate results of
mean height (N@sset 1997a). It was also shown empirically that the relationship
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between height of the ALS echoes and the mean height of the trees depends on
the size of the grid cells. This latter result was formalized in a more theoretical
manner by Magnussen and Boudewyn (1998).

3. Volume estimation: Stand volume could be estimated from ALS data following
the grid approach (Nasset 1997b). Canopy cover density and volume below the
canopy surface were defined and introduced as variables complementary to the
height in volume estimation. The use of ALS-derived height and cover is a
fundamental approach to estimation of volume as well as biomass.

4. The area-based approach: The so-called area-based approach was briefly out-
lined (Nasset 1997a, p. 55, b, p. 252) and defined the research agenda for the
following 5 years.

However, the identification of accurate geo-positioning of the field plots as
a prerequisite for application of ALS in operational forest inventory (Nasset
1997b, p. 252) called for intensive testing of equipment, methods, and procedures
for accurate positioning under forest canopies. In the mid 1990s state-of-the-art
differential Global Positioning System (GPS) positioning in forests indicated an
expected accuracy of around 3—4 m (e.g. Deckert and Bolstad 1996) using C/A
(course/acquisition) code observations. A series of experiments was carried out in
order to improve the positioning accuracy to better match with that of the ALS
echoes (30—40 cm). Carrier phase observations were used; the number of available
satellites was increased by also observing and recording data from the Russian
Global Navigation Satellite System (GLONASS); different types of receivers were
applied, including survey grade receivers; and different processing algorithms
and software packages were tested, which even included use of precise satellite
ephemeris and thus avoiding the need for differential correction against a base
station with known coordinates. The conclusion of this series of tests (Nasset 1999,
2001a; Nasset et al. 2000; Nasset and Jonmeister 2002; Nasset and Gjevestad
2008) indicated that an average accuracy of better than 0.5 m should be achievable
for plot positioning under forest canopies, at least in boreal forests.

In 1998, the various steps of the area-based method were detailed and about
1,600 field plots were measured within a 1,000-ha study to empirically test the
performance of the methodology with point clouds derived from ALS (Nasset and
Bjerknes 2001; Nasset 2002b) or image matching (Nasset 2002a).

The basic steps of the area-based method are as follows:

1. Stand delineation and interpretation: The forest stands in the area of interest
(AQOI) are delineated. Delineation using orthophotos or stereo photogrammery
is commonly adopted. Manual interpretation is conducted to derive properties
like for example tree species, site quality, and age which are required either as
primary variables that are sought for every stand in the inventory or used for
stratification of the inventory.

2. Sample survey: A field sample survey is conducted across the entire AOIL.
Such surveys are commonly performed according to stratified sampling schemes
applying systematic sampling with a random start or systematic cluster sampling.
Thus, the collected sample of field plots can be considered as a (stratified)
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probability sample. Conventional field data are collected on the plots (e.g. tree
diameter and height) and the plots are accurately geo-referenced.

3. ALS acquisition and processing: ALS data are acquired for the AOI. The entire
AOI is partitioned into regular grid cells with cell size equal to the sample plot
size. Various metrics are derived from the 3D ALS point cloud for each cell and
field plot. These metrics basically belong to two distinct “families” of variables,
namely (1) canopy height-related variables like order statistics, mean height, and
variability among the heights of the ALS echoes and (2) canopy density metrics
which characterize the frequency of echoes above a certain height threshold
relative to the total number of recorded echoes. A wide range of other metrics
or slightly modified metrics can be found in the literature, see e.g. Junttila et al.
(2008).

4. Model fitting: Based on the sample plots regression models with biophysical
properties such as mean height, basal area and volume as dependent variables
are fitted with ALS metrics used as independent variables.

5. Stand-wise estimation: Finally, the fitted models are used to predict the biophys-
ical properties of interest for every grid cell. The individual cell estimates are
aggregated to stand estimates.

In the early description in Naesset (1997a, b) this methodology was characterized
as “two-phase sampling” while Nasset and Bjerknes (2001) and Nasset (2002b)
labeled it “a two-step procedure”. According to sampling terminology a more
appropriate characterization would be “synthetic regression estimation for small
areas” (Sarndal et al. 1992). The term “synthetic estimation” refers to a situation
where a sample for a large area is used to provide estimates for a smaller area based
on predictions. This terminology was introduced in the ALS literature by Andersen
and Breidenbach (2007).

The first full-scale tests reported results based on independent validation for
entire forest stands following every step in the procedure outlined above. Forest
stands are the relevant units in operational forest management. Thus, the tests
evaluated the products that were obtained in the last step (step 5) described above. In
young planted forest stands (tree heights typically below 8—10 m) with an observed
average mean height of 6.64 m it was found that stand mean height could be
predicted with a precision (standard deviate of the difference between observed and
predicted mean height) of 0.56 m (Nasset and Bjerknes 2001). The mean difference
was 0.23 m (p > 0.05). It is expected that biomass at stand level in such very young
stands may be predicted with an accuracy of 20-30 % of the observed mean value
(Nesset 2011). In young forest stands (i.e., stands that have reached an age where
commercial thinning is a relevant treatment option) and mature stands quantitative
biophysical properties of relevance for forest planning are amongst others mean
tree height, dominant height, mean stem diameter, basal area, stem number, and
volume. The first full-scale testing revealed a precision for these properties of
around 4-8 % (mean and dominant height), 612 % (mean diameter), 9-12 % (basal
area), 17-22 % (stem number), and 11-14 % (volume) (Nasset 2002b). Subsequent
full-scale testing (Naesset 2004a, 2007), including a testing of the first operational
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inventory (Naesset 2004b), and full-scale tests conducted by colleagues in Finland
(e.g. Maltamo et al. 2006a, b, Chapter 12) and Sweden (e.g. Holmgren 2004)
confirm these results. A rule of thumb which seems to apply to boreal forest stands,
at least under Nordic conditions, indicates that volume estimates at stand level are
expected to have a precision of around 10-15 % of the mean value. A summary
of the results from some of the Nordic validation studies can be found in Nasset
(2007). Similar studies have been conducted in other countries and continents as
well (Hollaus et al. 2006; Hudak et al. 2006; Jensen et al. 2006; Thomas et al. 2006;
Rombouts et al. 2008; Latifi et al. 2010).

11.3 From Research to Commercial Applications: Marketing
and Adoption to Local Practices

Forestry is sometimes considered a conservative branch. The extremely long time
horizons under which many decisions are made call for continuity rather than
frequently shifting policies and practices. For example, investment decisions in
planting and establishment of new forests can have up to a 100 year horizon or
sometimes even longer. Introducing new methods and techniques in forest inventory
can therefore sometimes be challenging.

Once it became evident around 1999 that ALS-based inventories could provide
more accurate estimates of important biophysical properties than conventional
methods (see also Chap. 12), a strategy consisting of five pillars was adopted by
the research community with the aim of introducing the area-based method for
operational use in the commercial market within “reasonable time”. The five pillars
were:

1. Scientific evidence: It was anticipated that careful scientific documentation and
acceptance in the scientific community for the promising results that were pro-
vided were the best “selling arguments” for the proposed method. In particular,
independent validation of the new method under practical conditions and in full
scale was given priority and resulted in four full-scale tests with independent
validation (Neasset 2002b, 2004a, b, 2007).

2. Utility and economical benefit: Acquisition of ALS data was considered expen-
sive around the turn of the millennium. However, the promising results showing
improved accuracies indicated a potential for increased utility of the data and
improved management decisions resulting from better data. Many practitioners
tend to focus on immediate costs of forest inventory and ignore the benefits of
improved data. Emphasis was therefore put on showing through scientific studies
what benefits in monetary terms one potentially could expect by the new method.
As an example, it was shown that under Norwegian conditions one could expect
a net utility (net present value) over conventional but cheaper inventory methods
of at least 25 €/ha (Eid et al. 2004).
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3. Commercial engagement in concepts and ideas: Ownership to the new method
among commercial service providers was considered a key to adoption of
the new method in operational inventory. Once the proof of concept and the
first results from the full-scale testing and validation (Nasset 2002b) were
presented to the users in a user workshop in Norway in year 2000, private
service providers showed an immediate interest in the concept. However, it was
considered important from both sides — the scientific community and private
forest industry — to repeat previous tests on full scale in a practical setting
with strong involvement from the service providers (1) to get a confirmation of
previous results and (2) to give the private sector an opportunity to gain “hands-
on” experience with the method. A second full-scale demonstration (6,000 ha)
was therefore carried out in 2001-2002 in conjunction with an operational FMI
in a joint research project between the scientific community and the inventory
company Prevista AS, Norway (Nasset 2004a). The demonstration project also
addressed new scientific questions of great relevance to the forest industry in
Norway, namely what the effects of steep and rough terrain would be on the
accuracy of the inventory. The study did not reveal any serious degradation of the
accuracy (Nasset 2004a). In 2001, the results based on the two first studies and
a description of how the method could be incorporated in operational inventory
was presented in a professional journal in Norway (Nasset 2001b). The article
received a lot of attention from the forest industry.

4. Continuity of accepted practices: To gain ownership to the new concept among
the service providers and to receive acceptance and maintain confidence in the
forest inventory products from the customers (the forest owners) it was consid-
ered to be of great importance to maintain as many elements of the conventional
inventory routines as possible. For example, the stand map of a forest property
is one of the most intuitive products of a management inventory which most
forest owners are familiar with. Maintaining the conventional stand map and
how it traditionally had been produced — by manual stand delineation using
stereo photogrammetry — was essential. Stereo photogrammetry was therefore
kept as an initial step of the production chain and even the map products remained
unchanged, although ALS obviously offer some advantages in terms of automatic
stand delineation (Koch et al. 2009, Chapter 5) and even a map representation at
finer geographical scales, like at an individual cell level (typically 200400 m?).
Instead of replacing existing routines, emphasis was put on improving them. One
such improvement was to present the ALS echoes of the vegetation visually as
points in 3D in digital photogrammetry in the same view as the 3D representation
of the aerial image. Thus, the operator could easily see the height variation in the
canopy to support the manual stand delineation. This is still a preferred method
for stand delineation in many of the Norwegian forest inventory companies.

5. Marketing and communication: After a major strategic decision was made by
Prevista AS, the company started as the first one to market ALS-assisted manage-
ment inventories in Norway in 2001. The concept was also presented to relevant
companies and agencies in Finland (e.g. Metséhallitus and Metsdamannut) and
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Sweden (e.g. Skogssillskapet and Vistra Skogsdgarna). These efforts were
supported by the research community and researchers often participated with
scientific presentations on some of these occasions.

Prevista AS was awarded the first commercial contract for an operational
ALS-assisted management inventory in 2002. The contract comprised an area of
46,000 ha in Nordre Land municipality in southeastern Norway (Neasset et al.
2004). There is no doubt that the public subsidies stimulating collaboration
among forest owners in an area and favoring inventory methods which can offer
economic scale effects were of crucial importance for Prevista’s success. Another
“success factor” was the model for cost-sharing between different sectors and
actors that had been adopted by public agencies in Norway in 1992. Through
the so-called Geovekst initiative, a public-private partnership coordinated by the
National Mapping Authority, the forestry sector was given access to the public
geo-data infrastructure, including ALS data. This partnership also stimulated
coordinated ALS acquisitions and cost-sharing between the National Mapping
Authority (topographic mapping) and private forestry, which the ALS-assisted forest
inventories have profited from. The inventory in Nordre Land municipality was also
conducted in close collaboration with the research community. An independent
validation of the accuracy of the stand-based estimates was carried out in order to
document the performance of the method in a full-scale environment. It was also
deemed essential for future marketing of the method that the results were published
even according to scientific standards. The results of the validation were in line with
previous findings (Nasset 2004b).

Once this first operational project had started and served as a reference for future
work, similar contracts were signed with forest owners in other parts of the country.
Three years later, in 2005, seven more projects were under contract and the same
year Prevista AS entered into the first commercial contract in Sweden based on the
same methodology. That was just 2 years after research colleagues in Sweden had
done their first full-scale tests (Holmgren 2004; Holmgren and Jonsson 2004). Even
5 years later, around 2010, most FMIs in Norway were performed with support of
ALS data and every inventory company in the market offered products based on
ALS-assisted inventory methods.

Before the end of the decade, the first full-scale operational projects had been
carried out in several other countries as well, like for example Finland (2008; see
Chap. 12), Canada, Sweden and Spain (Turunen et al. 2012). Forest inventory com-
panies, as well as surveying companies which traditionally have not been engaged
in forest inventory, therefore saw an opportunity for developing an international
market for services in forest inventory based on ALS. For example, the Norwegian
surveying companies Blom ASA and TerraTec AS through their respective daughter
companies Blom Geomatics AS (Norway), Blom Sweden AB (Sweden), Blom
Kartta Oy (Finland), TerraTec OY (Finland) and TerraPro Oii (Estonia) started to
market ALS-assisted FMI in the respective countries, covering the entire chain from
ALS data acquisition to final data delivery of refined forest inventory products. In
a similar way, the Danish company COWTI through its Norwegian branch COWI
AS also offered full solutions for the clients — from ALS acquisition to forest
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inventory end products for forest management. COWI has been active in especially
the Swedish market. The Finnish company Arbonaut Oy, which is one of the major
actors in the Finnish market for forest inventory services, has engaged in countries
throughout the world, and in particular in testing and demonstration of ALS-assisted
carbon inventories under the UN REDD process in developing countries.

It is interesting to notice how the various commercial actors have adjusted their
services to the inventory traditions and expectations in the various countries. It
has been a common practice to apply the ALS-assisted, area-based method as it
is described in this chapter in e.g. Norway and Sweden. In those two countries both
Blom Geomatics AS, Blom Sweden AB and COWI AS have offered more or less
the same products. In Finland, however, information about tree species and species-
specific biophysical parameters is a primary requirement in FMI. This has led to
the development of inventory procedures relying on non-parametric methods (see
Chap. 12). In the Finnish market, Blom ASA through Blom Kartta Oy has adopted
to this tradition by offering even such products, in competition with amongst others
Arbonaut Oy and TerraTec Oy.

Finally, it should be mentioned that inventories based on single-tree segmentation
also have been marketed. The Swedish company Foran Remote Sensing AB in
collaboration with other companies in the Foran Group (Foran Sverige AB, Sweden;
Foran Norge AS, Norway) seems to have taken a leading role to offer such
products — especially in Norway and Sweden. The number of signed contracts based
on single-tree segmentation is limited though, but companies in the Foran Group
also offer — and have been actively involved — in numerous area-based, ALS-assisted
inventories.

In the commercial efforts commenced in all the Nordic countries there have been
strong alliances between the scientific research community and the commercial
actors, at least in the early phase of method development. Individuals from the
research community have either collaborated directly with the various companies
or been recruited by them. As opposed to what seems to have been the tradition
in previous decades when new methodological achievements were implemented in
practical operations, the introduction of ALS in operational management inventory
had a strong scientific component with a desire to conduct controlled and indepen-
dent testing and validation of the new procedures and products. Numerous scientific
publications resulting from this work were published in Finland (see Chap. 12),
Norway and Sweden (see above). The forest industry even conducted its own
inquiries and communicated the results to a broader audience (e.g. Lindgren 2006,
2012).

11.4 Technical and Economic Improvements

When the first full-scale testing of the area-based method was conducted there
was hardly any experience with the influence on the accuracy of the biophysical
stand properties of technical specifications of the ALS acquisitions, sensor effects as
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such and design parameters of the field sample surveys. Thus, no attempt had been
made to quantify how the relationship between costs and accuracy were affected by
parameters that the analyst potentially could control in order to design the surveys
in a manner that reflected individual clients’ specific requirements.

A number of factors that will have an influence on the costs and potentially also
may have an impact on the accuracy were identified and gave rise to a series of
studies exploring how these factors and design parameters affected the accuracy
of the forest stand estimates. Factors that were considered can be divided into five
distinct groups, which will be discussed below.

11.4.1 ALS Acquisition Parameters

11.4.1.1 Point Density Per Unit Area

Reduced point density per unit area may allow greater areal coverage per over-
flight and thus reduced costs. In order to address this issue, Gobakken and Nasset
(2008) thinned data with an initial point density of 1.13 points m~2 to densities
of 0.25, 0.13 and 0.06 points m~2, respectively. They found that the values of
most laser-derived metrics (canopy height-related densities such as percentiles, and
density-related metrics such as canopy density for different vertical layers) to some
extent were affected by point density, although the effect was rather small in most
cases. One important exception was noted though: the maximum recorded height
for a given target area (grid cell, plot or stand) was strongly influenced by point
density, with significantly lower maximum height being recorded at low densities.
These effects will also be influenced by forest type, with larger effects of point
density for open forests with a highly variable canopy surface. Further, it was
reported that the variability of most metrics was influenced by point density, with
increasing variability for lower densities. Point density is thus expected to influence
the accuracy of biophysical properties predicted from ALS data.

Gobakken and Neasset (2008) conducted a Monte Carlo simulation by which
they assessed the influence of point density on stand predictions of biophysical
properties in an independent validation. They found that the accuracy of stand-based
predictions of mean tree height, basal area and volume was almost unchanged from
1.13 to 0.25 points m~2. Thus, the current practice in Norway to collect ALS data
for forest inventory purposes with a density of around 0.7 points m~2 was confirmed
to be relatively robust. The study confirmed previous results obtained under similar
forest conditions in other Nordic countries (e.g. Maltamo et al. 2006a).

11.4.1.2 Flying Altitude

Increasing flying altitude may allow greater performance and areal coverage per
over-flight if the instrument has capacity for higher point repetition frequencies
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under the constraint that a requested point density per unit area is met. Neasset
(2004c, 2009) conducted controlled empirical experiments with repeated over-
flights over two study areas where field data for sample plots and independent
validation stands were collected. Within each of the two studies the same sensor
was used, i.e., the Optech ALTM 1210 sensor in Neasset (2004c) and the Optech
ALTM 3100 in Nesset (2009). In order to isolate the effect of flying altitude, all
other parameters were kept constant. It was considered of particular importance
to keep the point repetition frequency constant within each of the experiments.
The flying altitudes were 530-540 and 840-850 m above ground level (Nasset
2004c), i.e., an increase in altitude by approximately 60 %, and 1,100 and 2,000 m
(Neasset 2009), an increase of around 80 %. ALS-derived canopy height and canopy
density metrics were compared across acquisitions. Both studies reported significant
differences for some of the metrics typically used in forest inventory, but basically
the canopy height distributions derived from the various flying altitudes were fairly
stable. It was noted though that there was a weak tendency of an upwards shift in
the canopy height distributions by increasing flying altitude, which explained why
some of the metrics deviated between the acquisitions. Nasset (2009) also reported
that the distribution on echo categories differed between the flying altitudes, with
fewer multiple echoes at the higher flying altitude. Thus, the consequence of
changing altitude will differ between echo categories. Nasset (2004c) indicated
that metrics derived from the first echoes seemed to be more stable than last echo
metrics.

Since flying altitude above ground may vary considerably within a given project
if there are large differences in the terrain elevation, which is very common
in Norway, Nasset (2004c) conducted a Monte Carlo simulation in which ALS
data from the two altitudes were mixed randomly for different field plots and
the area-based method was followed by fitting regression models and predicting
biophysical properties for the independent validation stands. The results revealed
that the precision of the stand estimates of mean height, basal area and volume was
robust against variability in flying altitude within a project. The same conclusion
was reached by Nesset (2004a). Nasset (2009) fitted regression models for the
two acquisitions separately and showed in a cross validation that the accuracy of
mean height and volume predictions was approximately the same for the two flying
altitudes. However, fitting models with data from one flying altitude and applying
the models to ALS data from another altitude revealed that some systematic
differences in predicted biophysical properties may be expected.

A general conclusion from these experiments is that variability in flying altitude
within an operational project is less of a concern if field data for model fitting
is collected across all terrain elevations. However, fitting models with data from
one flying altitude and applying the models to data from another flying altitude
for prediction purposes may introduce systematic errors in the predictions. Also
these results confirmed general recommendations for ALS-assisted forest inventory
in Norway, namely (1) that terrain variability within a project area is not a critical
factor and (2) it is not recommended to use regression models across inventories if
there are large differences in flying altitude between the inventories.



226 E. Nasset

11.4.1.3 Pulse Repetition Frequency (PRF)

Higher PRF may, in combination with increased flying altitude, permit a greater
areal coverage per over-flight and thus reduced costs. However, higher PRF may
generate more noise in the data and also lower measurement precision. Nasset
(2009) compared two ALS acquisitions with different PRFs (50 kHz and 100 kHz)
from repeated over-flights over 40 field-measured plots (1,000 m? in size) using the
same instrument (Optech ALTM 3100) under otherwise the same settings (flying
altitude, scan angle). At these PRFs the instrument at hand had a pulse width of
10 and 16 ns, respectively, pulse energy of 121 and 66 |LJ, and peak power of 12.0
and 4.1 kW. Significant effects were found for the ALS-derived metrics as well
as for predicted biophysical properties. There was a general upwards shift in the
canopy height distributions with increasing PRF. The proportion of multiple echoes
decreased with increasing PRF and there were significant differences for many of
the laser-derived metrics between the two PRFs, especially for metrics derived from
the last echoes. The effects of doubling the PRF were generally stronger than of
increasing the flying altitude by almost the same factor (80 %, see above). It was
noted though that forest inventories based on ALS data acquired with different PRFs
do not necessarily provide differences in the precision of the stand estimates if the
PRF is kept constant within a project.

Due to shifts in the entire point clouds acquired at different PRFs, fitting
regression models for biophysical properties with data from one PRF will tend
to produce systematic errors in predictions with the models when applied to data
acquired with another PRF. The general recommendation in Norway is to avoid
using different PRFs within an inventory and also avoid transferring regression
models developed with data acquired at different PRFs across inventories.

11.4.2 Sensor Effects

Individual ALS instruments have unique specifications (e.g. characteristics of
the emitted laser beam, i.e., peak power, pulse width etc.). These characteristics
may influence on the vegetation measurements as illustrated above. If different
instruments can be used interchangeably in an inventory, ALS acquisitions may
be conducted more effectively by using several aircrafts and instruments in an area
to take advantage of favourable weather conditions and expensive infrastructure.
Sensor effects were assessed by Neasset (2005, 2009) in empirical studies in two
different areas where field data for sample plots and independent validation stands
had been collected. The instrument used in Nasset (2005) was an Optech ALTM
1210 sensor with a PRF of 10 kHz which in fact was upgraded to 33 kHz. Thus, it
is actually the same instrument that was used but with very different specifications
before and after upgrade. Some labelled this specific instrument ALTM 2033 after
upgrade (e.g. Maltamo et al. 2006b). Some key specifications before and after
upgrade were pulse widths of 7 and 11 ns, respectively, pulse energy of 138 and
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84 wJ, and peak power of 20.0 and 7.6 kW. It should be noted that the flying
altitude on average was 26 % higher in the latter acquisition, but it was adjusted
for the effects of different flying altitudes based on the experiences gained by
Nasset (2004¢). In Nasset (2009), the two instruments that were used were the
Optech ALTM 1210 and Optech ALTM 3100, with pulse widths of 11 and 10 ns,
respectively, pulse energy of 84 and 121 wJ, and peak power of 7.6 and 12.0 kW.
The two instruments used by Nzasset (2009) were operated at a fairly similar PRF
(33 and 50 kHz) and flying altitude (1,200 and 1,100 m above ground level). Nasset
(2009) also corrected carefully for the effect which different point densities may
have on the results by thinning the ALS data to the same point densities. It is
important to recognize that instrument differences to a large extent can be related
to the same instrument properties that are important to consider when using a
given instrument with different operational settings, like flying altitude and PRF
(resulting in alteration of important properties like pulse width, pulse energy and
peak power).

The two studies were presented as examples and demonstrations of what
sensor effects one must expect when using standard instruments available in the
commercial market. Thus, the results in Nesset (2005) showed a tendency of
an upwards shift in the canopy height distributions for the data acquired after
instrument upgrade — an effect one would expect as a consequence of a higher
PRF (see above). The instrument effects were much more pronounced in the study
by Neasset (2009). A pronounced shift in the point clouds resulting in statistically
significant shifts in canopy height-related metrics as well as in metrics related
to canopy density was reported. For some of the height metrics (e.g. the 90th
percentile) a shift of around 0.3 m was found.

By fitting regression models for mean height and volume using the field plots and
ALS-metrics derived from the ALTM 1210 acquisition and applying those models
for prediction of the same biophysical properties using the ALS data from the
ALTM 3100 acquisition statistically significant under-predictions of mean height
of 2.2 % and volume of 7.5 % were reported. When this exercise was repeated
with prediction based on ALS-data acquired by the ALTM 3100 instrument with
a PRF of 100 kHz rather than 50 kHz, the under-prediction for mean height and
volume increased to 2.5 and 10.7 %, respectively. Thus, this study demonstrated
that in cases where the sensor or operating properties that influence the resulting
point clouds from tree canopies deviate much between the model training data and
the data used for prediction, systematic errors in for example volume of, say, 10 %
or more must be expected. Therefore, it has been recommended in Norway to avoid
usage of different instruments in the same inventory or to use fitted models across
ALS datasets acquired with different sensors.

An important sensor-specific factor that to date has not been assessed is the
algorithm (and its parameters) used to trigger an echo in the sensor. Simulations
have shown that the algorithms used to trigger an echo may have a great impact
on the resulting height values of discrete return ALS systems (Wagner et al. 2004).
Unfortunately, the commercial system providers like for example Optech, do not
offer detailed information concerning their detection method.
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11.4.3 Field Sample Survey

11.4.3.1 Stratification

An effective stratification of the sample survey may improve accuracy and/or reduce
the field sampling effort to reach a given accuracy requirement. When the first full-
scale tests (Nasset 2002b, 2004a) as well as the first operational inventory (Nasset
2004b) were conducted, there was not much scientific evidence to build upon as
far as stratification was concerned. Two considerations were important though,
namely (1) that it was considered useful for reasons given above (Sect. 11.3) to
follow a general stratification that already had been practiced for years in FMI using
conventional methods, and (2) that the stratification should aim at identifying unique
forest classes for which it was reasonable to expect similar relationships within
each class between ALS-derived canopy distributions and relevant biophysical
properties. Thus, since the ALS point cloud will reflect the size and shape of the tree
crowns, the composition of biological material within the crowns (branches, foliage)
and the structure of the forest, similarities in the forest structure and these crown
properties on one hand and their relation with biophysical properties like height,
basal area and volume on the other hand were sought. A reasonable compromise
between the two motivations was to use age class and site quality as the basic
criteria for stratification. In a boreal forest dominated by spruce, pine and a few
deciduous species, the crown shape will tend to be more rounded with increasing
age. Similarly, poorer sites will tend to have shorter trees with more rounded crowns
and with an open forest structure with more scattered trees. Poorer sites will also
tend to be dominated by pines rather than spruce. Thus, site quality is also a fairly
good species discriminator. Age class and site quality are properties that for a long
time have been derived from existing maps and by stereo photo interpretation.
However, a first comprehensive study of the discriminating power of these
properties in modeling of biophysical properties from ALS data was not conducted
before Na@sset and Gobakken (2008) analyzed a large dataset of 1,395 field plots
with above-ground biomass as response variable. In their regression model they
included indicator variables for age class and tree species in addition to site index
and relevant ALS-derived canopy height and canopy density metrics. It appeared
that the indicator variables for tree species were the strongest predictor variables
among the non-ALS variables. When the tree species indicator variables were
included in the model, site index did not make any meaningful contribution to the
model. Similarly, site index was not a statistically significant variable. However, it
was shown that site index and tree species were highly inter-correlated. Thus, if tree
species is not at hand for stratification, a combination of age class and site index,
which sometimes is available in existing maps, is a good compromise. This is also
in accordance with current practice in operational ALS-assisted forest inventories in
Norway. It should be noted though that since tree species as well as age class and site
quality at a stand level commonly are derived on the basis of photo interpretation
(see details above) the assignment of individual stands to strata will be subject
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to errors. This may induce errors also in the final stand estimates because less
appropriate regression models may be used for prediction of the stand properties. In
some projects with large variation in altitude, stratification has also been based on
altitude since the crown shape of especially spruce trees tends to become narrower
closer to the alpine tree line.

11.4.3.2 Sample Size

Reducing the number of field sample plots will have a direct impact on costs and
the issue of determining an appropriate sample size has been a major concern in
the scientific literature as well as in practical inventories. Gobakken and Nasset
(2008) conducted a Monte Carlo study in which they by simulation assessed the
effects of reducing the plot number on the accuracy of stand-based predictions in an
independent validation dataset following the area-based method. Starting with 50,
34 and 48 plots, respectively, in each of three pre-defined strata, they reduced the
number of plots to 75 and 50 % of the initial plot numbers. The results showed
a moderate reduction in accuracy when reducing the sample size from the full
sample to the 75 % sample and even more when the sample size was only 50 %
of the initial size. However, effective ways of selecting the sample can compensate
for smaller sample sizes. Maltamo et al. (2011) analyzed the effects of sampling
strategy for selection of sample plots to be used as training data. Using a common
validation dataset for multiple sampling designs, Maltamo et al. (2011) used nearest
neighbors methods and found that with ALS-based stratification, the sample size
could be substantially reduced with no adverse effects. Further details can be found
in Chap. 14.

What can be inferred from these and other international studies is that there is
a potential for reduced sample sizes without any serious reduction in accuracy of
the predictions if the field resources are used in a “smart” way. Using ALS data as
prior information in the design phase of the field sampling is one important means
to maintain accuracy with reduced sample sizes. It has been used as a rule of thumb
in ALS-assisted FMIs in Norway to allocate around 50 plots to each stratum in pre-
stratified sampling. All full-scale tests with independent validation data (see details
above) have used around 50 plots per stratum as an initial sample size. The recent
studies reviewed here indicate that this general recommendation can be somewhat
relaxed when using ALS data as prior information in the design phase.

11.4.3.3 Plot Size

Plot size has a direct impact on costs. In the study by Gobakken and Nasset (2008)
in which ALS data were thinned to analyze the effects of point density, the effects
of plot size were also assessed. The analysis was based on plots distributed on
three predefined strata and each plot consisted of tree measurements within two
concentric circles on each plot. For young and fairly dense and even forest the plots
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(n=50) around a common plot center had a size of 200 and 300 m?, respectively.
For plots in mature forest on poor sites (more open and low-biomass forest) (n = 34)
the plot sizes were 200 and 400 m?, respectively, while in mature forest on good sites
(more closed and high-biomass forest) (n = 48) the plot sizes were 200 and 400 m?2.
When regression models for mean height, basal area and volume were fitted to ALS-
derived metrics for these plots it was revealed that the RMSE of the models in most
cases was lower for the larger plots while the coefficient of correlation tended to
be higher. There were some differences between the forest strata though, indicating
that the influence of plot size on the accuracy depends on the properties of the forest.
Open forests with scattered trees will have a canopy surface with higher variability.
Thus, when ALS is used to obtain a sample of points of the canopy from which
the ALS-metrics are derived, a highly variable surface will need more observations
in terms of higher point density and/or larger plots to maintain accuracy relative to
plots with larger tree stocking and a more even and closed canopy surface.

The Monte Carlo simulation mentioned in Sect. 11.4.1.1 was even applied to
assess the influence of plot size on stand predictions of biophysical properties in an
independent validation. It was found that the precision of the stand predictions of
mean height, basal area and volume in most cases was improved by increasing plot
size.

Neasset et al. (2011) applied design-based, model-assisted estimators to estimate
the biomass in a forest inventory of a 960 km? area where a pre-stratified probability
sample of field plots was used in the estimation along with a complete wall-to-wall
coverage of ALS data. Standard error estimates of the estimated biomass were also
provided. Biomass estimates and associated standard error estimates were provided
on the basis of only field plots as well (i.e., a so-called direct estimate). Even in this
study the field plots consisted of tree measurements within two concentric circles
(200 and 400 m?, respectively). Both the ALS-assisted estimation and the pure
field-based estimation relied primarily on the 200 m? plots. However, when the plot
size was increased to 400 m?, the precision (standard error) improved relatively
more for the ALS-assisted estimate than for the pure field-based estimate. This
finding indicates that larger field plots may be favorable in forest inventories assisted
by ALS. It is therefore important that design and planning of forest inventories
jointly considers the field survey and the ALS acquisition. Numerous causes for the
seemingly higher relative efficiency of ALS-assisted surveys with larger plots can
be given. Some of them are mentioned above. Other factors are the so-called plot
boundary effects (Mascaro et al. 2011; Nasset et al. 2013). Plot boundary effects
have the potential to cause discrepancies between ground and remote sensing-based
assessments, which will favor larger plots, see further details in Chap. 14.

Because there is a trade-off between point density and plot size on one hand,
and plot size and sample size (number of plots) on the other, these three important
design properties must be considered jointly when planning ALS-assisted forest
inventories.
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11.4.3.4 Field Plot Positioning Accuracy

Accurate positioning of field plots is expensive because it requires use of advanced
GPS and GLONASS receivers and also time-consuming and demanding procedures
for data processing (post-processing with data from base-station). Relaxed require-
ments for positioning accuracy may reduce costs but may also have a negative
impact on accuracy of the biophysical estimates.

In a Monte Carlo simulation Gobakken and Neasset (2009) assessed the influence
of positional errors of the field plots on ALS-derived metrics. The plot positions
were randomly altered from the true positions by horizontal shifts in steps from
0.5 m and up to 20 m. They also used different plot sizes (200 m? versus 300 or
400 m?) since it is likely that the relative impact of positional errors will be smaller
for larger plots. The difference in ALS-derived canopy height-related metrics and
canopy density metrics between the correct positions and the altered positions
increased gradually with increasing positional error and the differences were more
pronounced for the smallest plot size. The differences were also more pronounced
for uneven forest with scattered trees than for dense forests. The impact on the ALS-
derived metrics varied somewhat between the various metrics, as one would expect.
For example, in a stand with even tree heights but uneven spacing of the trees, it is
reasonable that the density-related metrics are more influenced by positional errors
than the canopy height-related metrics.

In a simulation where regression models were fitted using the field plots with
altered positions and applied to predict biophysical properties of independent
validation stands it was revealed that the precision of predictions was fairly stable
up to a positional error of around 5 m for mean height. For basal area and volume
the precision degraded faster than for mean height, most likely due to uneven
stand density which will have a limited impact on the mean height estimate. The
precision degraded faster for smaller training plots than for large plots. For some
of the larger positional errors a sudden drop in precision was observed, caused
by erroneous location of the plots in neighboring stands with entirely different
characteristics.

Although the work by Gobakken and Neasset (2009) can only be considered an
individual case study, it demonstrated that plot size is an issue also when it comes to
the impact of positional accuracy. Further, it can be concluded that different ALS-
metrics and biophysical properties will be influenced differently by positional errors,
depending on what properties of the forest that varies the most over space. The study
site is quite typical for the boreal forest in Norway. Based on plot sizes commonly
used in operational ALS-assisted management inventories in Norway (250-400 m?),
it has been recommended to keep the positional errors below 2—3 m on average.
All inventory companies now use GPS receivers and data recording and processing
routines that comply with this recommendation.
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11.4.4 Seasonal Effects

If season (leaf-on, leaf-off) affects the accuracy for otherwise equal acquisition
parameters, then there is a potential for cost-savings by relaxing other design
parameters by choosing the most favorable season.

Nasset (2005) demonstrated how ALS-derived canopy height and canopy
density metrics in a mixed conifer-deciduous forest may be affected by canopy
conditions by comparing the metrics derived under leaf-on and leaf-off conditions,
respectively. It was revealed that the canopy density was reduced significantly under
leaf-off conditions while the relative height distribution within the canopy was less
influenced. However, a significant downwards shift was noted also for the canopy
height distribution.

When regression models for biophysical properties (mean height, basal area,
volume) were fitted to ALS-derived metrics for mixed forest sample plots under
leaf-on and leaf-off conditions, respectively, the correlation coefficient was higher
and the RMSE was lower for the leaf-off data. When the regression models were
used for independent validation for large plots (~0.34 ha in average size) following
the area-based approach it appeared that the precision was equal or higher under
leaf-off conditions. Similar findings have been reported in Finland, see Chap. 12.
The reason for the similar or superior performance of the leaf-off data seems to be
that in a mixed forest, the relationship between ALS-metrics and the biophysical
properties are more similar for coniferous and deciduous trees.

The study demonstrated that there is a significant impact of canopy conditions on
relationships between ALS metrics and biophysical properties. Thus, it is essential
to avoid mixing leaf-on and leaf-off data in the same inventory. Further, leaf-off
data may offer some opportunities for better models and more precise predictions
in mixed forests. However, the leaf-off periods after snow-melting in the spring and
before snow-fall in the autumn are rather short in Norway. Therefore, there is a high
risk associated with acquisition of ALS data in these two narrow time windows,
given that the data need to be collected under either leaf-on or leaf-off conditions
in a given project. Thus, for planning of ALS-assisted forest inventories in Norway
it is generally recommended to collect data in the leaf-on season. However, if leaf-
off data already have been collected for other purposes and can be proven to have
been collected under stable conditions, they will be well suited for forest inventory
purposes.

11.4.5 Effects of Geographical Region

If the relationship between ALS-metrics and essential biophysical stand properties
such as mean height, basal area and volume are similar in different geographical
regions, then geographically distant inventories may be treated as one project,
sharing some of the same infrastructure (e.g. field sample plots used for regression
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model construction). Field plots and associated ALS metrics from a pool of data
may even be used across inventories allowing great savings in field inventory.

Nesset et al. (2005) and Neasset (2007) assessed the effects of geographical
origin of the ALS and field data by combining ALS and field data from two different
districts in each of the two studies for regression model construction. Within each
of the two comparisons the same sensor was used for both districts and the sensor
was operated with roughly the same settings (flying altitude, PRF, scan angle). The
plot sizes used to fit the individual models across districts were identical or almost
identical. Models were constructed for six different biophysical properties in each
study, and both studies used field data from pre-stratified field surveys. For the 30
models that were fitted, an indicator variable for district was statistically significant
in only five of the models. The five models were either for mean height or dominant
height. No significant effect was found in any of the models for basal area and
volume. Similar stability in regression relationships has been reported across a wide
range of geographical areas and forest conditions in other parts of the world (see
Chap. 14 for further details).

However, it is worth noting that in the most comprehensive study conducted to
date (1,395 observations collected in 10 different geographical areas in the boreal
forest in Norway), Nasset and Gobakken (2008) reported significant effects in
biomass models of tree species as well as of geographical district. To the extent
that tree species composition and other properties of the forest that influence on
tree crown shapes, sizes and composition (branches, foliage) vary between regions
it is reasonable to expect regional effects. Differences in relationships between
crown properties and biophysical properties of interest, like for example biomass
and volume, will necessarily have an impact on regression models because the
information inherent in an ALS point cloud from a tree canopy reflects the properties
of the crowns and structure of the canopy but not the properties of the stems, which
total tree height, basal area, stem volume and total tree biomass relate to. In the
study by Nasset and Gobakken (2008) most of the areas were located in parts
of the country strongly influenced by a dry continental climate with low winter
temperatures and high summer temperatures. However, one among the ten areas
was located on the Atlantic coast of Norway with an oceanic climate with high
annual precipitation and mild winters. An indicator variable for this particular area
was highly significant in the model, indicating that factors not captured by other
variables that were included in the regression model (e.g. tree species and age class)
had an influence on the relationship between the ALS-metrics and biomass. It is
reasonable to assume that differences in stand and crown structure and stem forms
caused by differences in climatic conditions are among the basic factors captured
by the indicator variable.

In conclusion, these studies suggest that field plots and regression models may
be shared between geographical regions if it can be justified that the relationships
between crown and canopy properties on one hand and stem properties (especially
taper) on the other are fairly similar. A general recommendation for operational
inventories has been to exercise some caution if data from different regions are
combined. One option might be to use data across regions and include indicator
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variables in the models to account for regional effects. Thus, one may take
advantage of a larger overall dataset in the form of potentially positive effects on the
uncertainty of the parameter estimates and/or lower inventory costs due to reduced
overall sample sizes.

11.5 Future Research and Development — New Products
and Opportunities

Forest management planning in Norway has traditionally applied an approach where
mean values for essential biophysical stand properties like mean height and total
volume distributed on species have been required for management decisions and
forecasting. One important direction of research has been to exploit the relationship
between the ALS height distribution of a stand and the tree size distribution (e.g.
the diameter distribution) for predicting size distribution from the ALS point cloud.
Studies in this field (Gobakken and Nasset 2004, 2005; Bollandsas and Nasset
2007; Maltamo et al. 2009; Bollandsés et al. 2013b; Magnussen et al. 2013) have
demonstrated that diameter distributions can be predicted at stand level with a
precision that is accepted by the customers, especially by using percentiles of
the size distributions as target variables (see further details in Chap. 9). Although
diameter distributions have been delivered as part of the management plan in a
couple of operational ALS-assisted inventories lately, extraction of size distributions
still seems to remain very much within the research community. However, because
there is a growing awareness of the value of more detailed information on species
and size distributions to better communicate the wood qualities and quantities
available in a stand prior to harvest decisions, it is assumed that there will be a
growing interest in this kind of information in the future.

Likewise, distribution of wood quantities on qualities (assortments) prior to
harvest has been seen as a means to increase the value of the wood by indicating
how the wood potentially could be utilized (e.g. use of sawn wood for construction
and panels). Since essential wood quality properties like amount, size and properties
of the knots in the wood are related to tree crown properties, there is definitely
opportunities for providing some of the needed information from ALS-based
inventories. Recent research confirm that relevant crown properties may be predicted
at plot or stand level in the area-based framework using parametric or non-
parametric estimation techniques (Maltamo et al. 2010; Bollandsés et al. 2011). It
is also expected that harvesters through improvements of positioning techniques in
the future can provide single-tree information on taper and crown properties with
geo-location accuracy for individual trees at sub-meter level. This may open up for
more detailed modeling and estimation of wood quality-related properties.

When the first operational ALS-assisted inventory was conducted in 2002, it was
decided to restrict the inventory to areas covering the age classes from young to
mature forest. Thus, areas of recently planted forest and young forest up to an age
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corresponding to a tree height of around 8—10 m were left out. For these areas, which
constitute around 30 % of the productive forest area in Norway, traditional methods
based on photo interpretation and field visits were maintained. The traditional
methods are costly and also not very precise, given the small amount of resources
available for field work in most management inventories. The data requirement for
such very young stands also differs a lot from older stands. The main decision in
such stands is often related to tending operations. The most valuable information is
considered to be height, stem numbers and tree species distribution — especially the
amount of decisions trees, since conifer trees usually are considered more valuable
for wood production and a high proportion of deciduous trees may indicate a need
for tending. Although estimation of height and stem number in such very young
stands were among the first topics that were addressed (Neasset and Bjerknes 2001),
little research has been conducted during the last decade. There is obviously a
potential for extraction of relevant information also for the very young forest (see
Chap. 12), especially by fusing ALS data with digital aerial images for tree species
classification.

The scientific studies conducted in Norway from the very beginning in 1995
and until today have taken place in the southeastern part of the country with
typical boreal forest conditions and a continental climate which is very similar
to the vast tracts of managed forests in Finland and Sweden. This has facilitated
easy and relevant comparison between studies conducted in the different countries.
Most of the forest resources are also found in the southeastern part of the country.
However, Norway’s geography and climate with large and rapid changes in altitude
and weather conditions, with steep gradients in terrain altitude, precipitation,
temperature and other factors influencing the forest structure and therefore also
the performance of forest inventory, suggest that more experience is needed on the
performance of ALS-assisted forest inventories under other conditions than those
considered so far.

There is a potential for entirely new information products which previously have
not been part of the management inventories. A forest owner is obliged to maintain
cultural remains predating the Reformation in 1537. Such remains are automatically
protected by law. Information on cultural remains is thus required in planning of
e.g. harvest operations. Promising results have been achieved for detection of such
remains from ALS data in forested areas (Bollandsés et al. 2012; Risbgl et al.
2013). There is obviously a great potential for extraction of properties related to
biodiversity and even assessment of habitat qualities for birds and mammals (see
Chaps. 17 and 18). The forest biomass is becoming ever more important as a
resource for renewable energy production while the forests also may become an
important instrument for mitigation of climate change. The first calls for methods
to accurately quantify biomass in the management plans in a similar way as the
plans provide information about timber volumes and other biophysical properties.
Promising results have been reported in this field (Hauglin et al. 2012). The latter
points to development of new products and markets for carbon trade, by which
carbon-offsets need to be quantified. Thus, estimation of change in biomass and
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carbon stocks becomes a necessity. Recent studies have shown great opportunities
for ALS even in this area (Bollandsés et al. 2013a; Nasset et al. 2013).

As indicated above, the traditions and data requirements in management planning
differ somewhat between countries. Current practice in Norway does not assume
that biophysical stand properties like mean height, basal area and volume are
estimated separately for each tree species. Instead, mean tree height is assumed to be
the same for all species while total basal area and volume are distributed on species
according to the tree species distribution derived by photo interpretation. Future
studies may look closer at for example the Finnish practice to estimate species-wise
information directly (see further details in Chap. 12).

Finally, it should be mentioned that extraction of information at an individual
tree level has always been an intriguing research challenge. Although the ALS
point density that is required to extract single-tree information in most cases is
considered too expensive for operational use, previous efforts to improve algorithms
for single-tree delineation (Solberg et al. 2006; Ene et al. 2012), to classify tree
species (@rka et al. 2009, 2012, 2013), to extract properties of the trees that can
characterize the wood quality in the interior of the stems prior to harvest, and to
find ways to mitigate the serious underestimation of tree heights and total stand
volume (Breidenbach et al. 2010) will continue, using ALS data alone as well as in
combination with optical data, such as multispectral (@rka et al. 2012, 2013) and
hyperspectral (Dalponte et al. 2013; @rka et al. 2013) aerial images.

11.6 Conclusions

In retrospect, the development and introduction of ALS-based forest management
inventory in Norway went surprisingly fast and the new procedures and products
gained confidence and acceptance in the market during a period of only 2-3
years. Some of the “success factors” have been presented in this chapter. It is also
relevant to point at the experience that has been gained later on through scientific
studies that have tried to improve quality and reduce costs of the inventories. The
technical results from these studies to a large degree suggest designs that the first
operational inventories already followed. Thus, one of the reasons for the fast and
successful implementation of the new inventory concept may be that they were
quite well designed from the very beginning, despite lack of in-depth experience
with ALS at that time. Although the practices that were established when the first
inventories were conducted around 2002 have been somewhat modified over the
years, there is obviously a potential for continuous improvements with positive
effects on the products (improved accuracy, new types of information, lower costs).
There is obviously some good opportunities for improvements through continued
research but also by learning from practical experiences in other countries (see e.g.
Chap. 12).
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