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Preface 2nd Edition

Ecological informatics (ecoinformatics) is an interdisciplinary framework for the 
processing, archival, analysis and synthesis of ecological data by advanced 
computational technology (Recknagel 2003).  Processing and archival of 
ecological data aim at facilitating data standardization, retrieval and sharing by 
means of metadata and object-oriented programming (e.g. Michener et al. 1997; 
Dolk 2000; Sen 2003; Eleveld, Schrimpf and Siegert 2003). Analysis and 
synthesis of ecological data aim at elucidating principles of information 
processing, structuring and functioning of ecosystems, and forecasting of 
ecosystems behaviours by means of bio-inspired computation (e.g. Fielding 1999; 
Lek and Guegan 2000; Recknagel 2003). 

Ecological informatics currently undergoes the process of consolidation as a 
discipline. It corresponds and partially overlaps with the well-established 
disciplines bioinformatics and ecological modeling but is taking its distinct shape 
and scope. In Fig. 1 a comparison is made between ecological informatics and 
bioinformatics. Even though both are based on the same computational technology 
their focus is different. Bioinformatics focuses very much on determining gene 
function and interaction (e.g. Overbeck et al. 1999; Wolf et al. 2001), protein 
structure and function (e.g. Henikoff et al. 1999; Lupas, Van Dyke and Stock 
1991) as well as phenotype of organisms utilizing DNA microarray, genomic, 
physiological and metabolic data (e.g. Lockhardt and Winzeler 2000) (Fig. 1a). By 
contrast ecological informatics focuses to determine population function and 
interactions as well as ecosystem structure and functioning by utilizing genomic, 
phenotypic, community, environmental and climate data (e.g. D’Angelo et al.
1995; Chon et al. 2003; Park et al. 2003, Jeong, Recknagel and Joo 2003) (Fig. 
1b).  

A comparison is made between ecological modeling and ecological informatics 
in Fig. 2. Even though both rely on similar ecological data they adopt different 
approaches in utilizing the data. Whilst ecological modeling processes ecological 
data top down by ad hoc designed statistical or mathematical models (e.g. 
Straskraba and Gnauck 1985; Jorgensen 1994), ecological informatics infers 
ecological processes from ecological data patterns bottom up by computational 
techniques. The cross-sectional area between ecological modeling and ecological 
informatics reflects a new generation of hybrid models that enable to predict 
emergent ecosystem structures and behaviours, and ecosystem evolution (e.g. 
Booth 1997; Downing 1997; Hraber and Milne 1997; Huse, Strand and Giske 
1999). Typically those models embody biologically-inspired computation in 
deterministic ecological models. 
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Figure 1. Ecological informatics versus bioinformatics, a) Scope of 
bioinformatics (modified from Oltvai and Barabasi (2002)), b) Scope of 
ecoinformatics 
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Figure 2. Ecological informatics versus ecological modeling 

   The term ecological informatics was suggested at the International Conference 
on Applications of Machine Learning to Ecological Modelling in 2000 (see 
Ecological Modelling 2001, 195) when the International Society for Ecological 
Informatics ISEI (www.waite.Adelaide.edu.au/ISEI) was founded. Since then an 
increasing number of researchers and research groups identify with this area, and 
biennial international conferences are organized by the ISEI. Also the new journal 
Ecological Informatics will be issued by Elsevier in October 2005 
(www.elsevier.com/locate/ecolinf). 
   The contents of the 2nd edition of the book Ecological Informatics has been 
revised and extended. Two new chapters have been added to Part I: Introduction. 
Chapter 2 by Bredeweg et al. provides an introduction to the novel concept of 
qualitative reasoning that emerges as an alternative approach to fuzzy logic for 
automated processing and utilizing of heuristic ecological knowledge. Exemplary 
applications to population and community dynamics illustrate the potential of the 
approach. Chapter 7 by Tempesti et al. addresses the novel concept of self-
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replicating cellular automata inspired by the nature of the genome as the 
hereditary information of an organism. The authors demonstrate how self-
replicating cellular automata can be explored for the design of nano-scale circuits 
for computer hardware. The paper contributes to the fast growing research on bio-
inspired design of both computer software and hardware.  
    Three new chapters have been added to Part IV: Prediction and Elucidation of 
Lake and Marine Ecosystems. Chapter 16 by Recknagel et al. presents an 
integrated approach of super- and non-supervised artificial neural networks 
(ANN) for understanding and forecasting of phytoplankton population dynamics 
in limnological time series data. The authors complement qualitative ordination 
and clustering by non-supervised ANN with sensitivity curves from supervised 
ANN to reveal complex ecological relationships. They apply recurrent supervised 
ANN for 7-days-ahead forecasting of algal species abundances and succession. 
Chapter 17 by Cao et al.  introduces hybrid evolutionary algorithms (HEA) as 
powerful tools for the discovery of predictive rule sets. The underlying algorithms 
optimize both the rule structures and multiple parameters. The authors 
demonstrate that the rule sets discovered in complex limnological time series data 
achieve not only highly accurate 7-days-ahead forecasting of algal species 
abundances and succession but provide a high degree of explanation by means of 
THEN- and ELSE-branch specific sensitivity analysis. A CD with a demo version 
of HEA is attached and instructions for HEA can be found in the Appendix. 
Chapter 20 by Atanasova et al. demonstrates computational assemblage of 
ordinary differential equations (ODE) based on an ecological process function  
library and measured ecological data. The authors document automatically 
assembled ODE for chlorophyll a in a lake and related validation results that 
indicate possibilities and limitations of the approach.  
    I want to thank all of the authors who contributed to the book with great 
enthusiasm and delivered on time. Finally I express my thanks to Dr. Christian 
Witschel and Agata Oelschlaeger of the Geosciences Editorial Team of the 
Springer-Verlag for their close collaboration in producing the book 
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Preface 1st Edition 

In the 50s and 60s cross-sectional data of lake surveys were utilized for steady 
state assessments of the eutrophication status of lakes by univariate nonlinear 
regression. This statistical approach (see Table 1) became exemplary for river, 
grassland and forest models and - because of simplicity - widespread for 
classification of ecosystems. 

In the 70s and 80s multivariate time series data were collected from ecosystems 
such as lakes, rivers, forests and grasslands in order to improve understanding of 
ecosystem dynamics. Process-based differential equations were used for the 
computer simulation of food web dynamics and functional group succession. This 
differential equation approach (see Table 1) is still widely used for scenario 
analysis.

Table 1.  Concepts for Ecosystems Analysis, Synthesis and Forecasting 

1 Sakamoto M (1966) Primary production by phytoplankton community in some Japanese   
        lakes and its dependence on lake depth. Arch. Hydrobiol. 62, 1-28
2 Dillon P, Rigler F (1974) The phosphorus-chlorophyll relationship in lakes. 

Limnol.Oceanogr. 19, 135-148          
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3 Vollenweider  RA (1968) Scientific fundamentals of eutrophication of lakes and flowing 
waters with special reference to phosphorus and nitrogen. OECD, Paris. 
OECD/DAS/SCI/68.27 

4 Straskraba M,  Gnauck A (1985) Freshwater Ecosystems: Modelling and  Simulation. 
Elsevier, Amsterdam

5 Park RA, O’Neill RV, Bloomfield JA, Shugart HH, Booth RS, Goldstein RA, Mankin JB, 
Koonce JF, Scavia D, Adams MS, Clesceri LS, Colon EM, Dettman EH, Hoopes JA, 
Huff DD, Katz S, Kitchell JF, Koberger RC, La Row EJ, McNaught DC, Petersohn L, 
Titus JE, Weiler PR, Wilkinson JW, Zahorcak CS  (1974) A generalized model for 
simulating lake ecosystems. Simulation 33-50 

6Bierman VJ (1976) Mathematical model of the selective enhancement of blue-green algae 
by nutrient enrichment. In: Canale RP (eds) Modelling Biochemical Processes in 
Aquatic Ecosystems. Ann Arbour Science Publishers Inc., Ann Arbour, 1-32                

7 Jorgensen SE (1976) A eutrophication model for a lake. Ecol. Modelling 2, 147-162 
8 Recknagel F, Benndorf J (1982) Validation of the ecological simulation model SALMO. 

Int. Revue Ges.Hydrobiol.  67, 1, 113-125 
9 Lek S, Delacoste M, Baran P, Dimonopoulos I, Lauga J,  Aulagnier J (1996) Application 

of neural networks to modelling nonlinear relationships in ecology. Ecol. Modelling 
90, 39-52  

10 Chon TS, Park YS, Moon KH, Cha EY (1996) Patternizing communities by using 
artificial neural network. Ecol. Modelling 90, 69-78 

11 Recknagel F, Petzoldt T, Jaeke O, Krusche F (1995). Hybrid expert system DELAQUA - 
a toolkit for water quality control of lakes and reservoirs. Ecol. Modelling  71, 1-3, 17-
36

12 Recknagel F (1997) ANNA - artificial neural network model predicting species 
abundance and succession of blue-green algae. Hydrobiologia, 349, 47-57 

13 Bobbin J, Recknagel F (2001) Knowledge discovery for prediction and explanation of 
blue-green algal dynamics in lakes by evolutionary algorithms. Ecol. Modelling 146, 
1-3, 253-264 

14 Whigham P, Recknagel F (2001) An inductive approach to ecological time series 
modelling by evolutionary computation. Ecol. Modelling 146, 1-3, 275-287  

15 Whigham P, Recknagel F (2001) Predicting chlorophyll-a in freshwater lakes by 
hybridising process-based models and genetic algorithms. Ecol. Modelling 146, 1-3, 
243-251

16 Holland JH (1992) Adaptation in Natural and Artificial Systems. Addison-Wesley, New 
York

17 Booth G (1997) Gecko: A continuous 2-D world for ecological modeling. Artif. Life 3, 
147-163

Ecosystems analysis, synthesis and forecasting in the past ten years was very 
much influenced by inventions in computational technology such as high 
performance computing and biologically-inspired computation. This 
computational approach (see Table 1) allows to discover knowledge in complex 
multivariate databases for improving both ecosystem theory and decision support. 
    The present book focuses on the computational approach for ecosystems  
analysis, synthesis and forecasting called ecological informatics. It provides the  
scope and case studies of ecological informatics exemplary for applications of  
biologically-inspired computation to a variety of areas in ecology.  
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Ecological Informatics is defined as interdisciplinary framework promoting the 
use of advanced computational technology for the elucidation of principles of 
information processing at and between all levels of complexity of ecosystems  -
from genes to ecological networks -, and the provision of transparent decisions 
targeting ecological sustainability, biodiversity and global warming.  

Distinct features of ecological informatics are: data integration across 
ecosystem categories and levels of complexity, inference from data pattern to 
ecological processes, and adaptive simulation and prediction of ecosystems. 
Biologically-inspired computation techniques such as fuzzy logic, artificial neural 
networks, evolutionary algorithms and adaptive agents are considered as core 
concepts of ecological informatics.   

Fig. 1 represents the current scope of ecological informatics indicating that 
ecological data is consecutively refined to ecological information, ecosystem 
theory and ecosystem decision support by two basic computational operations: 
data archival, retrieval and visualization, and ecosystem analysis, synthesis and 
forecasting.

Figure 1. Scope of Ecological Informatics 

Computational technologies currently considered being crucial for data 
archival, retrieval and visualization are:  
- High performance computing to provide high-speed data access and processing, 
and large internal storage (RAM); 
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- Object-oriented data representation to facilitate data standardization and data 
integration by the embodiment of metadata and data operations into data 
structures;
- Internet to facilitate sharing of dynamic, multi-authored data sets, and parallel 
posting and retrieval of data; 
- Remote sensing and GIS to facilitate spatial data visualization and acquisition; 
- Animation to facilitate pictorial visualization and simulation. 

Following computational technologies are currently considered to be crucial for 
ecosystems analysis, synthesis and forecasting: 
- High performance computing to provide high-speed data access and processing 
and large internal storage (RAM), and to facilitate high speed simulations; 
- Internet and www to facilitate interactive and online simulation as well as 
software and model sharing; 
- Cellular automata to facilitate spatio-temporal and individual-based simulation; 
- Fuzzy logic to represent and process uncertain data; 
- Artificial neural networks to facilitate multivariate nonlinear regression, 
ordination and clustering, multivariate time series analysis, image analysis at 
micro and macro scale; 
- Genetic and evolutionary algorithms for the discovery and evolving of 
multivariate nonlinear rules, functions, differential equations and artificial neural 
networks; - Hybrid and AI models by the embodiment of evolutionary algorithms 
in process-based differential equations, the embodiment of fuzzy logic in artificial 
neural networks or knowledge processing; 
- Adaptive agents to facilitate adaptive simulation and prediction of ecosystem 
composition and evolution. 

The present book is an outcome of the International Conference on 
Applications of Machine Learning to Ecological Modelling, 27 November to 1 
December 2000, Adelaide, Australia, which concluded with the foundation of the 
International Society for Ecological Informatics (ISEI) 
(http://www.waite.adelaide.edu.au/ISEI/). The chapters of the present book are 
based on selected papers of the conference, which are exemplary for current 
research trends in ecological informatics.

Chapters 1 to 5 address principles and ecological application of fuzzy logic, 
artificial neural networks, genetic algorithms, evolutionary computation and 
adaptive agents. Salski summarizes concepts of fuzzy logic and discusses 
applications for knowledge-based modeling, clustering and kriging related to 
ecotoxicological, geological and population dynamics data. Giraudel and Lek 
discuss the design and application of unsupervised artificial neural networks for 
the classification and visualization of multivariate ecological data. They 
demonstrate the potential of Kohonen-type algorithms by clustering data of forest 
communities in Wisconsin (USA). Morrall discusses origins and nature of genetic 
algorithms, and their suitability to induce numerical or rule-based models for 
ecological applications. Whigham and Fogel provide a scope of evolutionary 
algorithms and their potential for evolving rules, algebraic and differential 
equations relevant to ecology. They also address developments on individual and 
cooperative behaviour, prey-predator algorithms and hierarchical ecosystems 
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based on evolutionary algorithms. Recknagel reflects on Holland’s adaptive agents 
concept and its potential to more realistically simulate emergent ecosystem 
structures and behaviours. He distinguishes between individual-based and state 
variable-based agents, and emphasizes on the embodiment of evolutionary 
computation in state-variable based agents.  

Chapters 6 to 9 provide case studies for the prediction and elucidation of stream 
ecosystems by means of machine learning techniques. Goethals, Dedecker, 
Gabriels and de Pauw demonstrate applications of classification trees and artificial 
neural networks for the bioassessment of the Zwalm river system in Belgium. 
Schleiter, Obach, Wagner, Werner, Schmidt and Borchardt carried out a 
comprehensive study of the Breitenbach stream (Germany) based on a variety of 
unsupervised and supervised learning algorithms for artificial neural networks. 
They draw interesting conclusions regarding suitability of different algorithms for 
bioindication of stream habitats and input sensitivity of streams. Chon, Park, 
Kwak and Cha provide a summary of achievements in the structural classification 
and dynamic prediction of macroinvertebrate communities in Korean streams by 
artificial neural networks. They also discuss patterning of organizational aspects 
of macroinvertebrate communities.  Huong, Recknagel, Marshall and Choy study 
relationships between environmental factors, stream habitat characteristics and the 
occurrence of macroinvertebrate taxa in the Queensland stream system (Australia) 
by means of a neural network based sensitivity analysis.  

Chapters 10 to 12 contain examples of time series analysis of river water 
quality by artificial neural networks. Jeong, Recknagel and Joo apply recurrent 
neural networks to explain and predict the seasonal abundance and succession of 
different algae species in the River Nakdong (Korea). Validation results reveal a 
reasonable correspondence between seven days ahead forecasts and observations 
of algal abundance. Information on favouring conditions and processes for certain 
algal species discovered by a comprehensive sensitivity analysis comply well with 
domain knowledge. Bowden, Maier and Dandy combine super- and unsupervised 
artificial neural networks as well as genetic algorithms for automated input 
determination of neural networks in order to forecast the abundance of an algae 
species in the River Murray (Australia). Gevrey, Lek and Oberdorff apply two 
approaches of sensitivity analysis for the study of riverine fish species by means 
of artificial neural networks. 

Chapters 14 to 17 provide case studies for the application of fuzzy logic, 
artificial neural networks and evolutionary algorithms to freshwater lakes and 
marine fishery systems. Karul and Soyupak compare results for the chlorophyll-a 
estimation in three Turkish lakes achieved by multiple regression and artificial 
neural networks. Wilson and Recknagel  design a generic neural network model 
for forecasting algal blooms that is validated by means of six lake databases. It 
considers bootstrapping, bagging and time-lagged training as crucial techniques 
for minimising prediction errors. Bobbin and Recknagel apply evolutionary 
algorithms to discover rules for the abundance and succession of blue green algae 
species in the hypereutrophic Lake Kasumigaura (Japan). Resulting rules 
correspond with literature findings, reveal hypothetical relationships and are able 
to predict timing and magnitudes of algal dynamics.     
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Reick, Gruenewald and Page address the issue of data quality in the context of 
ecological time-series analysis and prediction. They describe cross-validation and 
automated training termination of neural networks applied for multivariate time-
series predictions of marine zooplankton in the German Northern Sea. Chen 
combines fuzzy logic and artificial neural networks in order to classify fish stock-
recruitment relationships in different environmental regimes near the West Coast 
Vancouver Island (Canada) and southeast Alaska (USA). 

Chapters 18 to 20 provide examples for the classification of ecological images 
at micro and macro scale by artificial neural networks. Wilkins, Boddy and 
Dubelaar demonstrate possibilities for the identification of marine microalgae by 
the analysis of flow cytometric pulse shapes with the help of neural networks. 
Robertson and Morison applied a probabilistic neural network for the automation 
of age estimation in three fish species. Thin-sections of sagittal otoliths viewed 
with transmitted light were used for all species, and the number of opaque 
increments used to estimate the age. The neural network correctly classified a 
larger range of age classes. Foody gives a representative summary of neural 
network algorithms currently used for the pattern recognition and classification of 
remotely sensed landscape images. 

At this point I want to thank all of the authors who responded with great 
enthusiasm to my request for chapters to the theme of the book and delivered on 
time. I am also grateful to 24 colleagues and friends in Australia and overseas who 
significantly improved the quality of chapters by their critical reviews.  

Finally I express my thanks to Dr. Christian Witschel and Agata Oelschlaeger 
of the Geosciences Editorial Team of the Springer Verlag for their close 
collaboration in producing the book. 

Friedrich Recknagel 
Adelaide, 15 April 2002 
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Chapter 1 

Ecological Applications of Fuzzy Logic                 
A. Salski

1.1
Fuzzy Sets and Fuzzy Logic 

The Fuzzy Set Theory developed by L. Zadeh (Zadeh 1965) as a possible way to 
handle uncertainty is particularly useful for the representation of vague expert 
knowledge and processing uncertain or imprecise information. The Fuzzy Set 
Theory is based on an extension of the classical meaning of the term "set" and 
formulates specific logical and arithmetical operations for processing information 
defined in the form of fuzzy sets and fuzzy rules. 

The theory of fuzzy sets deals with subsets of a given universe, where the 
transition between full membership and no membership is gradual. Therefore the 
boundaries of fuzzy sets are not sharp. An example of a fuzzy set is the set A of all 
large carps as a subset of all carps in Lake Belau (Salski and Kandzia 1996). 
Traditionally, the grade of membership 1 is assigned to those objects of the 
universe that fully belong to a set, while 0 is assigned to objects that do not belong 
to the set. In traditional set theory, the sets considered are defined as collections of 
objects having some property, for example the property "carp in Lake Belau". The 
property "large carp in Lake Belau" does not constitute a set in the usual sense, the 
property does not offer a precisely defined criterion of membership. Intuitively, a 
fuzzy set is a collection of objects that admits the possibility of partial 
membership in it. Thus a fuzzy set A in a given universe is characterized by a 
function )(xA  termed "the grade of membership of x in A". We shall assume 

that the values of )(xA  are elements of the interval [0,1] , with the grades 1 and 

0 representing full membership and non-membership, respectively. )(xA  is 
called the membership function of A.   

Fuzzy logic is based on the extension of the rules of conventional logic. This 
extension enables us to process fuzzy rules in the “IF – THEN” form with fuzzy 
sets in the premise and conclusion parts of these rules. These fuzzy sets represent 
imprecise expressions used by experts to describe their knowledge. Therefore 
fuzzy inference methods are particularly useful to work with such a vague 
knowledge representation. The main difference to conventional methods is that the 
Fuzzy Set Theory offers inference methods for the calculation of the conclusion 
values of rules when the premises of these rules are not completely fulfilled. 
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There are a lot of good books containing details about fuzzy sets and fuzzy 
logic such as Zimmermann (1993), Kruse et al. (1995), Bárdossy and Duckstein 
(1995) and Pedrycz (1996). 

1.2
Fuzzy Approach to Ecological Modelling and Data 
Analysis 

Heterogeneity and uncertainty belong to the characteristic properties of the data 
stored in ecological data bases and ecological information systems. Ecologists 
collect and use information from various heterogeneous data and knowledge 
sources - sources of objective (mostly quantitative) information, e.g. measurement 
and calculation, and sources of subjective (often only qualitative) information, e.g. 
expert knowledge and subjective evaluations instead of measurement data. 
Therefore in many fields of ecological research ecologists have to work with a 
necessarily subjective mixture of quantitative and qualitative information. Not all 
ecological parameters are measurable (for example the number of fish in a 
particular lake); the values of such parameters can be obtained by special 
estimation or evaluation methods, which are often of a subjective character. 
Ecological data can also have different structures and formats (e.g. time series and 
spatial data). 

The problem of uncertainty often appears in ecological modelling, in particular 
it concerns the uncertainty of data and vaguely defined expert knowledge. A large 
inherent uncertainty of ecological data results from the presence of random 
variables, incomplete or inaccurate data, approximate estimations instead of 
measurements (due to technical or financial problems) or incomparability of data 
(resulting from varying measurement or observation conditions). There are a 
number of ways to deal with uncertainty problems, e.g. probabilistic inference 
networks (Pearl 1988) or belief intervals (Shafer et al. 1990). One of the most 
successful methods of dealing with uncertainty is the fuzzy approach. Fuzzy 
approach does not mean a particular method but the integration of a fuzzy concept 
into conventional methods of  knowledge processing and data analysis. That 
means an extension of conventional methods, which is capable of utilising 
imprecise, heterogeneous and uncertain data. Compared to conventional methods 
the fuzzy approach enables us to make better use of imprecise ecological data and 
vague expert knowledge in two ways: 
- the representation and handling of imprecise data defined as fuzzy sets, 
- the representation and processing of vague knowledge in the form of linguistic  
rules with imprecise terms defined as fuzzy sets. 
Ecological data or classes of ecological objects can be defined as fuzzy sets with  
no sharply defined boundaries, which reflects better the continuous character of  
nature. Fuzzy sets can be used to handle uncertainty of data and fuzzy logic to  
handle inexact reasoning. Fuzzy logic allows working with uncertain knowledge  
about relations between ecosystem components and building models based on this  



Chapter 1 · Applications of Fuzzy Logic 5 

type of information.  
Ecological modelling and data analysis are the main application areas of the 

fuzzy set theory in ecological research. The integration of the fuzzy inference 
mechanisms and the expert system technique provides development tools for 
fuzzy expert systems and fuzzy knowledge-based models of ecological processes 
(Salski 1999). The evolution of conventional knowledge-based systems into fuzzy 
systems (adding imprecision or uncertainty handling to conventional systems) 
makes the extension of their application area for complex ecological problems 
possible (Kampichler et al. 2000; Freyer 2000; Zhu et al. 1996; Bock and Salski 
1996). There are also other fuzzy approaches to ecological modelling, e.g. the 
fuzzy statistical approach to ecological assessments (Li 2001), the fuzzy 
differential equations for fuzzy modelling in population dynamics (Barros et al. 
2000) or ecological impact analysis using fuzzy logic (Enea et al. 2001; Silvert 
1997). The fuzzy memberships can be also used as environmental indices (Silvert 
2000) or as a fuzzy association degree in the ecosystem modelling (Liu 2001). 
There are also an increasing number of other combined approaches, which result 
from linking the fuzzy approach with other techniques, e.g.:  
- fuzzy approach with neural networks for assessment in spatial decision making 
(Zheng 2001) or for habitat modelling in agricultural landscapes (Wieland et al. 
1996), 
- fuzzy modelling with conventional dynamic programming to optimal biological 
control of a greenhouse mite (Cheng et al. 1996), 
- fuzzy approach with linear programming for the optimization of  land use 
scenarios (Salski et al. 2001), 
- fuzzy approach with probabilistic uncertainty to model climate-plant-herbivore 
interactions in grassland ecosystems (Wu et al. 1996), 
- fuzzy approach with three-dimensional modelling technique (Ameskamp 1997). 

The next important research field is handling uncertainty in geographic 
information systems, that means dealing with fuzziness in reasoning with spatial 
data (Dragicevic 2000; Guesgen 2000) and in the assignment of locations to 
classes (Burrough 2000; MacMillan 2000) or fuzziness in the definitions of object 
boundaries (Cross 2000). 

Some application examples of a fuzzy approach to ecological modelling and 
data analysis are presented in this paper, namely fuzzy clustering as a tool for 
fuzzy classification of ecological data, fuzzy kriging as a method of fuzzy 
interpolation of spatial data and fuzzy knowledge-based modelling. 

Fuzzy classification and fuzzy geostatistik belong to the main problems of the 
analysis of ecological data. Conventional classification methods based on Boolean 
logic ignore the continuous nature of ecological parameters and the uncertainty of 
data, which can result in misclassification. Fuzzy classification, which means the 
division of objects into classes that do not have sharply defined boundaries, can be 
carried out in various ways, for example: 
- application of fuzzy arithmetical and logical operations, e.g. to determine land 
suitability (Burrough et al. 1992), 
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- fuzzy clustering, e.g. to classify some crop growth parameters (Marsili-Libelli 
1994) or to classify existing chemicals according to their ecotoxicological 
properties (Friederichs et al. 1996). 

Compared to conventional classification methods fuzzy clustering methods 
enable a better interpretation of the data structure. 

Spatial data is an essential part of ecological data. The fuzzy extension of the 
interpolation procedure for spatial data, the so-called fuzzy kriging, can be 
mentioned as an example of fuzzy approach to spatial data analysis (Bárdossy 
1989; Diamond 1989; Piotrowski et al. 1996). Fuzzy kriging is a modification of 
the conventional kriging procedure; it utilizes exact (crisp) measurement data as 
well as imprecise estimates obtained from an expert and defined as fuzzy 
numbers. Regionalization of ecological parameters based on fuzzy kriging reflects 
better the imprecision of input data. 

Fuzzy knowledge-based modelling can be particularly useful where there is no 
analytical model of the relations to be examined or where there is an insufficient 
amount of data for statistical analysis, or where the degree of uncertainty of these 
data is very high (Salski 1992; Salski et al. 1996; Li 1996; Daunicht et al. 1996; 
Bárdossy and Duckstein 1995; Pedrycz 1996; Bock and Salski 1998). In these 
cases the only basis for modelling is the expert knowledge, which is often 
uncertain and imprecise. 

1.3
Fuzzy Classification: A Fuzzy Clustering Approach 

Conventional clustering methods definitely place an object within only one 
cluster. With fuzzy clustering this is no longer essential, since the membership 
value of this object can be split up between different clusters. In comparison to 
conventional clustering methods the distribution of the membership values 
provides additional information - the membership values of a particular object can 
be interpreted as the degree of similarity between this object and the respective 
clusters (Salski and Kandzia 1996). 

Classifying existing chemicals according to their ecotoxicological properties 
(Friederichs et al. 1996) can be taken as an application example of the fuzzy 
cluster analysis. The large number of existing chemicals makes it necessary to 
select representative chemicals which reflect the relevant properties of possibly a 
major group of compounds. Therefore the main tasks of this application are: 
- to find distinguishable clusters with characteristic properties, 
- to find chemicals representative for each cluster, 
- to examine the role of different parameters for clustering. 

Compared to conventional clustering methods the fuzzy clustering technique is 
more appropriate to handle the uncertainty of ecotoxicological data, which results, 
for example, from the difficult comparability of these data. The analysis of the 
partition efficiency indicators was used to choose the fuzzifier value and the 
determination of the optimal number of clusters, e.g.: 
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- partition entropy (should be minimal), 
- partition coefficient, where values closer to 1 indicate the "better" partition, 
- non-fuzziness index, indicating the “best” partition by the highest value, 
independently of the number of clusters.  

The normalized values of these indicators for cluster numbers between 4 and 8 
and fuzzifier values of 1.3 and 1.6 are presented in Figure 1.1. Five clusters can be 
taken as the "optimal" number of clusters for a fuzzifier of 1.3 - whereas a 
fuzzifier of 1.6 does not lead to a clear statement.  

Fig. 1.1. Partition efficiency indicators for fuzzifier values of 1.3 (left) and 1.6 
(right) (Friederichs et al. 1996).  
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The fuzzy partition of 24 chemicals (as a part of a set with more than 200 
chemicals) in 5 clusters is presented in the Table 1.1. The numbers in boldface 
show the highest membership  

Table 1.1. Final clustering partition of the 24 chemicals (Friederichs et al. 1996).   (The 
numbers in bold-face show the highest membership values; the membership values with a 
membership 0.10 to different clusters are underlined).

values (membership values with a membership 0.10 to different clusters are 
underlined). The analysis of these results permits to recognize chemicals which 
may serve as representatives for a particular cluster (names in bold-face) and the 
characteristic properties of these clusters. For example “diphenylamine” can be 
taken as a representative for cluster 1, as its membership to the cluster 1 is close to 
1. The description of the properties which are characteristic for a particular cluster 
can be found in (Friederichs et al. 1996). 

Cluster 1 1 2 3 4 5
<15>Diphenylamine---------------- 0.98 0.00 0.00 0.01 0.01
<27>o-Dianisidine------------------- 0.96 0.00 0.00 0.03 0.01
<30>3,3Dichlorobenzidine---------- 0.69 0.00 0.08 0.12 0.11
<55>Chlorotoluidine----------------- 0.98 0.00 0.01 0.01 0.00
<74>2-Mercaptobenzothiazole------ 0.99 0.00 0.00 0.01 0.00

Cluster 2 1 2 3 4 5
<72>Trichlormethylbenzene-------- 0.00 1.00 0.00 0.00 0.00
<73>Benzoylchloride---------------- 0.00 0.99 0.00 0.01 0.00

Cluster 3 1 2 3 4 5
<67>Diethylenglykoldimethylether 0.01 0.00 0.98 0.01 0.00
<68>Haxanedioic acid--------------- 0.04 0.00 0.60 0.16 0.19
<70>Acetic acid anhydride---------- 0.05 0.21 0.52 0.11 0.11
<84>N,N-Dimethylformamide------ 0.00 0.00 0.99 0.01 0.00

Cluster 4 1 2 3 4 5
<01>Chloroform--------------------- 0.00 0.00 0.00 0.96 0.04
<03>Pentachlorophenol------------- 0.04 0.00 0.00 0.68 0.28
<10>p-Nitromethoxybenzene------ 0.00 0.00 0.00 0.99 0.01
<20>Tris-(2-chloroethyl)phosphate 0.11 0.00 0.04 0.73 0.12
<24>Benzene------------------------ 0.03 0.00 0.04 0.72 0.21
<59>Nitrobenzene------------------ 0.00 0.00 0.00 0.99 0.01

Cluster 5 1 2 3 4 5
<08>Dichlorobenzene-------------- 0.00 0.00 0.00 0.02 0.98
<13>Nonylphenol------------------ 0.00 0.00 0.00 0.01 0.99
<17>1,2,4-Trichlorobenzene------ 0.00 0.00 0.00 0.07 0.93
<18>Ditolyl ether----------------- 0.01 0.00 0.01 0.04 0.94
<23>Tributylamine----------------- 0.07 0.00 0.01 0.36 0.56
<25>Hexachloropentadiene-------- 0.09 0.01 0.01 0.25 0.64
<75>2-Nitrophenol----------------- 0.02 0.00 0.03 0.17 0.78
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1.4
Fuzzy Regionalization: A Fuzzy Kriging Approach 

Kriging belongs to the most popular methods of spatial interpolation, but its 
application is often restricted owing to an insufficient amount of data. If the 
number of available measurements is too low for conventional kriging methods, 
the data set can be supplemented using additional imprecise data subjectively 
estimated by an expert. Fuzzy kriging utilizes exact (crisp) measurement data as 
well as imprecise estimates obtained from an expert (Bárdossy et al. 1989; 1990; 
Diamond 1989; Kacewicz 1994). The imprecision and uncertainty of these 
estimates can be handled with the fuzzy sets. The logical structure of this fuzzy 
kriging procedure with both crisp and fuzzy data and a crisp theoretical variogram 
is shown in Figure 1.2. The zigzag line marks stages with fuzzy data input in form 
of fuzzy numbers. At two stages fuzziness is introduced into the calculation. First, 
fuzziness in the input values causes fuzziness in the experimental variogram. An 
expert takes the experimental variogram and its fuzziness into account when 
fitting the crisp theoretical variogram. Second, the fuzzy input values are used at 
the final step of kriging, namely at the calculation of the interpolated values. 
Therefore, if the input data set contains at least one fuzzy number the kriging 
results have the form of fuzzy numbers, too. 

As an example of an application of fuzzy kriging in spatial interpolation of 
geological data a fuzzy kriging interpolation of hydraulic-conductivity values 
from an aquifer in northwestern Germany could be mentioned (Piotrowski et al. 
1996). Because of a high spatial variability of data and irregular distribution of 
data points the modification of the original data set was necessary. After 
supplementing the original data set (557 boreholes) with 30 imprecise (fuzzy) 
points the kriging variance has been significantly reduced. The Fuzzy Evaluation 
and Kriging System FUZZEKS developed at the University in Kiel (Bartels 1997) 
has been used as a tool for spatial interpolation. The authors of this application 
consider the fuzzy kriging approach in interpolation hydrogeological parameters 
as an important tool with a potential of quantifying vast pieces of information 
available as expert knowledge. 

1.5
Fuzzy Knowledge-Based Modelling 

As mentioned above, fuzzy knowledge-based modelling can be particularly useful 
in cases where the relations between the components of an ecosystem are not 
exactly known or where we do not have any analytical model for these relations, 
or where we have an insufficient amount of data for statistical analysis. Ecologists 
often use vague and ill-defined natural language to describe their knowledge 
(Salski 1992; 1999). Therefore this knowledge can be represented by a set of  
linguistic "IF -THEN" rules, which can be interpreted as a linguistic description of 
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Fig. 1.2. Logical structure of fuzzy kriging with both crisp and fuzzy data 
(zigzag lines indicate fuzziness of data; Bartels 1997). 

the relation between the input and output of a model. It can be used as a basis for 
the calculation of the output values of the model. 

As an application example a fuzzy knowledge-based  model of  population 
dynamics of the Yellow-necked mouse (Apodemus flavicollis) in a beech forest 
can be mentioned (Bock and Salski 1998). Animal weight, food availability and 
soil surface moisture are the most important factors affecting the population 
dynamics of the Yellow-necked mouse in a beech forest. The relationships 
between these factors and the population dynamics of these small mammals are 
not exactly known. Due to technical problems associated with collecting data for a 
free ranging animal population there was a high degree of uncertainty with part of 
the available data. That was the reason for employing unconventional modelling 
methods based on the linguistic description of the process dynamics. 
Figure 1.3 shows the structure of this fuzzy dynamic model with the state variable 
"abundance". The prediction of abundance at time (k+1) is based on the values of 
abundance,   food availability, soil surface moisture and animal weight at time (k). 
The initial value Ao of the state variable and the initial values of the input 
variables "food", "moisture" and "weight" (Fo, Mo and  Wo, respectively) have to 
be provided. Then we can calculate the values of "abundance" in successive 
moments in time (k = 1,2 ,3,....) for given values of the input variables. Each 

input data
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prediction step (difference between moments in time) represents a period of two 
months. 

Fig. 1.3. The structure of a fuzzy knowledge-based  model of the population 
dynamics of the Yellow-necked mouse (Apodemus flavicollis) in a beech forest 
(Bock and Salski 1998) 

The state variable "abundance" and the variables "weight" and "food" are 
defined as linguistic variables. Seven fuzzy sets were determined for the variable 
"abundance" and three fuzzy sets for the input variables "food" and "weight". The 
input variable "moisture" is defined as a symbolic variable, which means that its 
values can only be symbolic statements (like dry, average and wet). 

The knowledge base of this model contains about 100 linguistic rules in the 
"IF-THEN" form, for example:     

       IF    the current value for "abundance" is "low" 
      AND  "weight" is "average" 
      AND  "food" is "high"  
      AND   "moisture" is "average" 
      THEN  "abundance" in the next prediction step is "high". 
The linguistic terms "low", "high", etc. in the premise and conclusion parts of 

the rules are determined as fuzzy sets. The definition of fuzzy sets and the 
formulation of linguistic rules are of a subjective character. The knowledge base 
of the model has been created using the Modelling Support System FLECO 
(Salski and Kandzia 1996). The simulation results were calculated for imprecise 
input values (e.g. "high") of the variable "food" and compared to the field study 
results. It was difficult to estimate the values of the variable “food” more 
precisely, however a fuzzy logic approach enables us to make use of such 
imprecise information. The difference between simulation and field study results 
is no bigger than 10-15%. The detailed simulation results and a model description 
can be found in (Bock and Salski 1998).  

Another application of this approach can be found in Recknagel et al (1994) 
where fuzzy rule sets were used for the forecasting of monthly occurrence of algal 
functional groups in freshwater lakes.   
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1.6
Conclusions 

Heterogeneous and imprecise ecological data and vague expert knowledge can be 
integrated more effectively using fuzzy approach. Fuzzy logic provides the means 
to combine numerical data and linguistic statements and to process both of them in 
one simulation step. Fuzzy sets with no sharply defined boundaries reflect better 
the continuous character of nature. The number of applications of fuzzy sets and 
fuzzy logic in ecological modelling and data analysis is constantly growing. 

There also are an increasing number of applications of hybrid systems which 
combine the fuzzy techniques with other techniques, e.g. probabilistic approach, 
linear programming, neural networks, cellular automata or GIS technique. An 
increasing interest in the development of fuzzy expert systems for environmental 
management and engineering can also be expected.  
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Ecological Applications of Qualitative Reasoning              
B. Bredeweg  P. Salles  M. Neumann

2.1
Introduction

Most of current ecological knowledge is qualitative and fuzzy, expressed verbally 
and diagrammatically (Rykiel 1989). This chapter discusses an approach known as 
Qualitative Reasoning (QR) to formally represent and automate reasoning with 
that kind of knowledge. QR does not use nor require numerical data and promises 
to be of great importance for capturing ecological knowledge. 

QR is an area of Artificial Intelligence (AI) that is concerned with the 
construction of knowledge models that capture insights domain experts have of 
systems’ structure and their behaviour (functioning). The behavioural aspect 
studied most is qualitative prediction of behaviour, i.e. analysing how the 
behaviour of a system evolves as time passes. Although any system can be an 
object of such a reasoning process, traditionally the majority of research deals 
with physics and engineering (Weld and de Kleer 1990). Successful application 
areas include autonomous spacecraft support (Williams et al., 2003), failure 
analysis and on-board diagnosis of vehicle systems (Price and Struss 2003), 
automated generation of control software for photocopiers (Fromherz et al. 2003), 
and intelligent aid for learning about thermodynamic cycles (Forbus et al. 1999). 
Thus, QR is relevant for researchers that are interested in important AI issues as 
well as for managers, developers, and engineers who are looking for potential 
industrial benefits of AI.  

As QR technology is probably new to many ecologists, this chapter discusses 
and explains the technology using well-understood examples from other domains 
in order to not confuse the characteristics of the technology with a discussion on 
how to represent ecological knowledge using QR. The organisation of this chapter 
is as follows. The section below further reviews the need for QR in ecological 
applications. The next section then discusses general characteristics of QR. After 
that, the application of QR technology for modelling population behaviour is 
presented, followed by a section in which current applications of QR for ecology 
are discussed. The chapter ends with a brief concluding section. 
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2.2
Why Use QR for Ecology? 

The main goal of ecological research is to understand the structure and functioning 
of nature. The structure consists of objects, such as individuals, populations, 
communities, and their relations with the physical world organized in ecosystems 
and landscapes. Functioning is explained by imposing causal relationships on 
observable features of those objects in a way that it is possible to understand why 
things happen in ecological systems. However, ecological systems have features 
that put strong barriers on research and knowledge representation, including: the 
complexity of any ecological system, and the difficulty to obtain long-term good 
quality data and to run controlled experiments. Hence, ecological knowledge is 
heterogeneous, including both quantitative and qualitative aspects. There is need 
for new and efficient computer-based tools to adequately capture that knowledge. 
As noted by Rykiel (1989), ecologists have a considerable amount of knowledge 
‘in their heads’ and not many ways to make this knowledge explicit, well 
organized, and computer-processable. 

Models and simulations are important tools for ecological research. Ecologists 
often frame their ideas in modelling expressions and test them through 
simulations. There are two distinct approaches to modelling ecological systems: 
statistical models and structural models (Bossel 1986). Much of ecological 
research relies on statistical models. These models usually do not capture the 
available structural knowledge and the parameters of statistical models usually 
have no counterpart in the real system. Structural models, on the other hand, are 
tools for describing system structure and system elements as close as possible to 
real systems. This way, such models mimic real objects, structural connections, 
parameter values and may provide behavioural predictions grounded in the system 
structure.

QR models are structural models that are particularly adequate to support the 
understanding of behaviour of systems. The following QR features are especially 
attractive for modelling ecological knowledge: 

Approaches to QR provide a rich vocabulary for describing objects, 
situations, relations, causality, assumptions, and mechanisms of change. 
Using this vocabulary it is possible to capture conceptual knowledge 
about systems and their behaviour and use that knowledge to 
automatically derive relevant conclusions without requiring numerical 
data. 
QR modelling uses a compositional approach to enable reusability. This 
is achieved by constructing libraries of partial behaviour descriptions 
(model-fragments) that apply to the smallest entities relevant within a 
domain. As larger systems are built from these basic elements, reasoning 
about the behaviour of larger systems means combining the behaviour of 
these elements. This prevents having to develop dedicated models for 
each system encountered.  
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QR models provide causal explanations of system behaviour. As causal 
relations are explicitly represented in model-fragments, it is possible to 
derive the behaviour of a complete system from the behaviour of its 
constituents and to automatically generate insightful explanations that 
causally explain the functioning of the overall systems in terms of its 
constituents. 
QR creates representations for continuous aspects of the world to support 
reasoning with little information, including incomplete knowledge or 
knowledge expressed just in qualitative (linguistic) terms (without using 
any numerical information). 

Qualitative models automate conceptual knowledge. Being explicitly 
represented this knowledge can be inspected, possibly modified, by users and by 
other modellers. The construction of such qualitative models is of particular 
interest for education, training, management, and decision-making, because they 
facilitate structured expression and communication of insights among participants. 
After all, many questions of interest in ecology can be answered in terms of ‘better 
or worse’, ‘more or less’, ‘sooner or later’, etc. (Rykiel 1989). 

2.3
What is Qualitative Reasoning? 

Early work on QR focuses on automatic generation of explanations (Brown et al. 
1982; Hollan et al. 1984) in the context of interactive learning environments, that 
is, educational software that fosters learning by having learners interact with a 
simulation of the subject matter. Key QR publications present approaches to 
having computers perform conceptual analysis of system behaviour (Bobrow 
1984). From this work originates the idea of using qualitative models and 
simulations, also referred to as articulate simulations (Forbus 1988; Bredeweg and 
Winkels 1998). A typical QR model captures a representation of both the 
structural and the behavioural aspects of a system. A qualitative model abstracts 
from quantitative information by using an ordered set of qualitative values, usually 
a set of alternating points and intervals referred to as a quantity space. Quantities 
are assigned values from such quantity spaces, allowing quantities to capture 
qualitative distinct behavioural features of a system. Changing behaviour is 
represented using a qualitative derivative for each quantity, representing: 
decreasing =[–], steady =[0], and increasing =[+]. Another typical aspect of a 
QR model is the explicit representation of causality. Different types of modelling 
primitives have been introduced in this respect, each type having a specific 
conceptual meaning and a formal defined calculus allowing implementation in 
computer programs. Following these basic ideas a wide range of topics have been 
tackled. To name a few: order of magnitude reasoning (Raiman 1986), alternative 
approaches to inferring causality (Iwasaki and Simon 1986; de Kleer and Brown 
1986), reasoning with multiple models (Addanki et al. 1991; Weld 1988), 
compositional modelling using assumptions (Falkenhainer and Forbus 1991), 
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integration with numerical simulation (Amador et al. 1993), and varying
granularity in the representation of time (Rickel and Porter 1997). 

Using the QR representational primitives, libraries of model-fragments can be 
constructed that capture knowledge from a certain domain. QR engines use these
libraries to automatically generate qualitative models of systems belonging to such 
a domain. Building a library is thus a fundamental aspect of using QR technology.
In the past, considerable effort has been put in building qualitative models for the
domain of physics (e.g. Collins and Forbus 1989; Kim 1993). Libraries for other 
domains still need to be developed and made to use. Lately, libraries capturing
ecological knowledge are being created (Salles and Bredeweg 2003). 

2.3.1
A Working Example 

Let us consider a simple two-tank system, with tanks of equal width, for which it
is known that both tanks contain a certain amount of oil and that the oil-column is
higher on the left-hand side (LHS). Let us assume that the relative heights of the
two tanks are unknown. Now suppose that the two tanks are connected via a pipe
with a valve, placed at the bottom of the containers. When the valve closing this 
pipe is opened, what behaviours may happen? Figure 2.1 illustrates the answer to
this question.

3 2

41Initial heights:
  Oilleft    >  Oilright

  Tankleft ?  Tankright

Figure 2.1. Possible behaviours of a two-tank system

The oil-column on the LHS is higher than on the right-hand side (RHS). Hence,
oil will flow from the LHS into the RHS tank until the pressure-difference
becomes zero and the system reaches an equilibrium. Since the initial description 
does not specify the relative heights of the tanks (as visualised by the dashed line
in situation 1) multiple behaviours are possible. There are three qualitatively
distinct possibilities. If the tank on the RHS is high enough it will be able to
contain all the inflowing oil (situation 3). Alternatively, the RHS tank may at the
start already be lower than the LHS oil-column. In this case, oil will be spilled
(situation 4) until the height of the decreasing LHS oil-column becomes equal to
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the height of the smaller RHS tank (situation 2). Finally, it may be the case that the 
RHS tank is smaller but still high enough to contain all the inflowing oil. The system 
stabilises at the moment that the RHS tank becomes fully filled (situation 2). 
    Notice that different behaviours would be predicted when more (or less) 
information is initially known. For instance, knowing the relative tank heights 
would result in predicting less possible behaviours. Humans are flexible in this 
respect. They apply the same basic knowledge to different situations producing 
appropriate conceptual analysis. This is also one of the features of QR and rather 
different from traditional approaches using numerical simulations. Instead of 
having a single fixed model, a QR engine automatically assembles a unique model 
to fit a particular situation. The sections below discuss this idea in more detail as 
well as other prominent features of QR. Together they show how conceptual 
behaviour analysis can be formalised and reasoned with automatically using QR 
technology. 

2.3.2
World-view: Ontological Distinctions 

QR provides explicit representations of the conceptual modelling layer, rather than 
only an executable mathematical expression. This is crucial to any attempt to 
support and automate model building and is one of the major issues of QR. This 
section discusses the two main ideas that have been developed in this respect, as 
well as an alternative approach.

2.3.2.1
Component-based Approach 

De Kleer and Brown (1984) describe a component-based approach to qualitative 
reasoning. In their approach the world is modelled as components that manipulate 
materials and conduits that transport materials. Physical behaviour is realised by 
how materials such as water, air and electrons, are manipulated by, and 
transported between, components. How components manipulate materials is 
described in a library of component models. In these descriptions a component is 
associated with qualitative equations known as confluences: relations between 
variables that describe the characteristics of the materials. The model of a certain 
component may consist of a number of qualitative-states, each specifying a 
particular state of behaviour. More specific, a qualitative state consists of a name, 
one or more specifications and a set of confluences. The specifications define the 
conditions that must be true for the qualitative state to be applicable. The 
confluences describe the specific behaviour of the materials in this state of 
behaviour. Figure 2.2 illustrates the basic idea. It shows a device consisting of two 
components, a battery and a lamp. The battery has three qualitative states of 
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behaviour: fully charged, partially charged, and empty. The lamp has two
qualitative states: it can function normally (OK) or it is broken. The behaviour of
the device as a whole is generated using the cross-product. That is, all the possible
behaviours (qualitative states) of each component are combined with all the 
possible behaviours of all other components (see Table in Figure 2.2). 

Battery

Fully
charged

Partially
charged

Empty

Lamp
OK Bright

light
Soft
light

No
light

Broken No
light

No
light

No
light

Battery

Fully
charged

Partially
charged

Empty

Lamp
OK Bright

light
Soft
light

No
light

Broken No
light

No
light

No
light

Figure 2.2. Possible behaviours of a lamp connected to a battery

    Generating the cross-product and determining the consistency of each potential 
state of behaviour is referred to by de Kleer and Brown as the intrastate analysis. 
After this analysis, the problem is to find out which states of behaviour will be
successors as time passes by. This is referred to as the interstate analysis, which 
tries to determine whether the behaviour within a certain state may lead to the
termination of that state. In other words, to find out if the values of variables are
changing such that they, when time passes by, no longer fall within the
specifications of the overall state of behaviour. In the component-based approach
this is realised by applying rules that must hold between states. An example of 
such a rule is the limit rule: if in the current state a variable has a value and 
increases or decreases, then it will respectively have the adjacent higher value, or 
the adjacent lower value, in the next state. For instance, the overall system
behaviour ‘soft light’ may move into the behaviour of ‘no light’ when the battery
power decreases to zero (and thus moves from qualitative state ‘partially charged’
to ‘empty’). Another important rule is the continuity rule: each variable value
must change continuously over states. For instance, the battery cannot
immediately change from ‘fully charged’ to ‘empty’.



Chapter 2 · Applications of Qualitative Reasoning 21

2.3.2.2
Process-based Approach 

Forbus (1984) describes a process-based approach to qualitative reasoning. In this
approach the world is modelled as consisting of physical objects whose properties
are described by quantities. Physical behaviour refers to these objects being
created, destroyed, and changed. Although in principle anything can be
represented as an object, there is a commitment in qualitative process theory
(QPT) to represent physical objects as closely as possible to how humans perceive
the physical world. Two important primitives in the process-based approach are
individual views and processes. Views describe the characteristics of an object or 
a group of objects, e.g. of a container containing a liquid. Processes describe
mechanisms of change. These changes are represented by influences. They 
describe the changes that occur when a process is active. Typical examples of
processes are heat-flow and liquid-flow. The former describes energy exchange
between objects with unequal temperatures. The latter describes how liquid flows
between connected containers with unequal pressures. Figure 2.3 depicts the
behaviour of a boiler system and illustrates the basic idea of how QPT uses
processes and the notion of limit-analysis as the basis for behaviour prediction.

he boiler system consists of a heater and a container. The container contains
wa

After the heater is turned on, a heat-flow process causes energy to flow
from the heater to the container and the water. This causes the water 

Water

The boiler
explodes, because the

internal substance
pressure is too

high

The water
starts boiling,

steam is
generated

The water
temperature
and pressure

increase

All the water
has turned to

steam

The substance
temperature and
the temperature

of the heater
become equal

The boiler
starts melting

Heater

1

2

3

4

5

6

Fig. 2.3. Possible behaviours of a boiler system

T
ter and is being heated. What behaviours may occur and which processes cause

them?
1.
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temperature, the container temperature, and the internal container 
pressure to increase. This behaviour may lead to three other behaviours 
(2, 3 or 4), due to limits being reached. 

The boiler explodes because the interna2. l pressure becomes too high. The 
reaction force generated by the container is lower than the pressure 

3.
eration of steam. This 

4.
e temperature of the heat source. From here on, no further 

5. 
ontinues. This behaviour may lead to three other 

6.
its melting point. The 

    Notic
using a  of model-fragments (albeit consisting of views and processes) is 

2.3.2.3

the constraint-based approach. This approach 
takes a qualitative version of a differential equation as starting-point. The basic 

exerted by the substance it contains. The boiler system is broken after 
this behaviour. Hence the simulation stops here. 
The temperature of the water reaches its boiling point. A new process 
‘boiling’ becomes active which causes the gen
behaviour may lead to three other behaviours (2, 4 or 5), due to limits 
being reached. 
The temperature of the substance in the container (be it water or steam) is 
now equal to th
changes take place. 
All the water has now turned into steam. The boiling process has stopped, 
but the heat-flow c
behaviours (2, 4 or 6), due to limits being reached. 
If the heater is warm enough it may ultimately cause the container to 
melt, because the container temperature will reach 
boiler system is broken after this behaviour. Hence the simulation stops 
here.

e that, despite many differences (see Bredeweg 1992) the global idea of 
library

similar to the idea of using a library of component models in the component-based 
approach.

Constraint-based Approach

Kuipers (1986, 1994) describes 

assumption is that Ordinary Differential Equations (ODE’s) can be rewritten into 
Qualitative Differential Equations (QDE’s). The qualitative differential equations 
can be used for qualitative simulation. In the constraint-based approach there is no 
explicit representation of entities from the (physical) world. This approach also 
does not use a library of any kind from which models can be assembled during 
simulation. Instead, the qualitative reasoning engine is provided with a description 
of some aspect of the (physical) world in terms of the qualitative constraints 
between variables as shown in Table 2.1. Notice that each qualitative constraint 
maps onto a specific aspect of the ordinary differential equations. 
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Behaviour prediction with constraint models is done by applying a kind of 
generate and test cycle that produces the possible behaviours of a system. The 
generation part determines how a state of behaviour may change into a new state
of behaviour, by applying transition rules to each function in the current state of 
behaviour. Testing is concerned with determining the consistency of a certain
state, by applying constraint satisfaction to the constraint model that represents the
behaviour in that state.

Table 2.1. Qualitative constraints and mathematical functions

Qualitative constraints (QDE’s) Mathematical functions (ODE’s)
ADD(f, g ,h) f(t) + g(t) = h(t)
MULT(f, g ,h) f(t) . g(t) = h(t)
MINUS(f, g) f(t) = -g(t)
DERIV(f, g) f’(t) = g(t)
M+(f, g) f(t) = H(g(t)) ^ H’(x) > 0
M–(f, g) f(t) = H(g(t)) ^ H’(x) < 0

2.3.2.4
Suitability of Approaches

Although the constraint-based approach is probably one the most used approach it
has some drawbacks. The main issue is that it does not support deriving behaviour
from the physical structure (see also next section). Instead, it takes differential
equations as a starting point. In a way, the constraint-based approach has the same
drawbacks as traditional numerical approaches. The modelling primitives
provided by this approach do not allow symbolic modelling of the conceptual
knowledge that domain experts have. Notions such as processes, static properties,
causality, and physical structure cannot be represented by this approach explicitly. 
The component-based approach does facilitate the representation of much of this 
kind of knowledge. However, the ontology of interconnecting components seems
more suitable for human made artefacts than for natural systems. From an 
ontological perspective, QPT is probably most suitable for building models about
ecological systems (Salles 1997). 

2.3.3
Inferring Behaviour from Structure 

In general, a qualitative reasoning engine takes a scenario as input and produces a
state-graph capturing the qualitatively distinct states a system may manifest
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(Figure 2.4). A scenario usually includes a structural description of the physical
appearance of the system. Such a description models the entities (e.g. physical
objects and components) that the system consists of, together with statements
concerning the structural organisation of these objects (e.g. a container containing
liquid). Often a scenario also includes statements about behavioural aspects such 
as relevant quantities and (in-)equality statements between some of those
quantities.

Library of
model fragments

Initial
values

Assumptions

Scenarios Qualitative
reasoning

engine

State graph

Transition rules

Figure 2.4. Basic architecture of a qualitative reasoning engine

A state-graph consists of a set of states and state-transitions. A state refers to a 
qualitatively unique behaviour that the system may display (a possible state of
behaviour). Similar to a scenario, a state consists of a set of declarative statements
that describe the physical structure of the system and the behaviour it manifests at
that moment. A state is typically characterised by a set of qualitative values of
relevant quantities representing their magnitude and direction of change. A state-
transition specifies how one state may change into another state. A sequence of 
states, connected by state-transitions, is called a behaviour-path, but is also
referred to as a behaviour trajectory of the system. A state-graph usually captures
a set of possible behaviours-paths, because multiple state-transitions are possible 
from certain states. To further detail these notions, consider again the two-tank
system from Figure 2.1. The simulation results obtained from a qualitative model
of this system are shown in Figure 2.51. The state-graph (LHS) shows the four 
possible states that the two-tank system may manifest. Each black circle refers to a 
possible behavioural state, the state numbers refer to identifiers created by the
reasoning engine2, and the arrows indicate which states may succeed each other. 

1 The diagrams are generated by VISOGARP (Bouwer and Bredeweg 2001) 
2 Notice that the numbers are identifiers created by the reasoning engine and that they do 
  not necessary reflect the order in which states of behaviour occur.
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Thus, the conditions set in the scenario (referred to as ‘input’ in Figure 2.5) lead to
state 1. This means that (with the knowledge the engine has) there is a unique
interpretation of the scenario. From state 1 three successors are possible: 4, 2, and 
3. Apparently, there is ambiguity concerning the possible transitions. If state 4
occurs it is always followed by the behaviour represented by state 2. States 2 and 3
have no successors, they are end-states, and represent an equilibrium of some
kind.

igure 2.5. Simulation results of a model for the two-tank system

Notice that a QR engine generates all possible solutions. That is, given a 

2.3.4

Qualitative prediction of behaviour is concerned with reasoning about the 
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scenario (a structural description) it will generate all behaviours that are 
consistent, and thus possible to infer, with the details defined in that scenario. This
is rather different from a numerical simulation that usually produces one specific
answer. One of the interesting features of QR is the awareness it creates for all
possible interpretations of a certain situation. This can for instance be useful to
support management tasks. The results obtained by the simulation show all that
may happen. If certain behaviours are not acceptable, preventive actions can be 
taken.

Qualitativeness and Representing Time 

properties of the physical world that change over time. Particularly, to include
only those qualitative distinctions in a behaviour model that are essential for
solving a particular task for a certain system. The goal is to obtain a finite
representation that leads to coarse, intuitive representations of systems and their
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behaviour. Central to qualitative reasoning is thus the way in which a system is 
described during a period of time in which the qualitative behaviour of the system
does not change. The notion of change is subtle, because numerical values of 
variables may change whereas from a qualitative point of view the behaviour of
the system remains constant. During a heat-flow process, for example, the
temperature of a liquid may increase, but from a qualitative point of view it is still 
a liquid, until another process (boiling) becomes active and the liquid becomes a 
gas.

In QR the representation of time is closely intertwined with the representation

Figure 2.6. The quantity space for the temperature of a substance 

e divided into
six qualitative values, consisting of three intervals and three points. Each value
res

<Magnitude,Derivative>. Magnitude represents the
am

of quantity values. Changes in the values of quantities represent time passing. The
possible qualitative values of a quantity may be divided into points and intervals.
A quantity can therefore, during a certain period of time (of constant qualitative
behaviour), have its value either at a point or at an interval. The intuitive
understanding behind this approach is illustrated in Figure 2. 6 for the quantity
temperature as it is used to describe the physical state of a substance. 

Absolute
nil

point

Freezing/
melting

point

Boiling/
condensing

point

Infinite
(plus)
(∞ +)

Solid Liquid Gas
Solid & Liquid Liquid & Gas

All the quantitative values a substance temperature can have ar

embles a characteristic period of constant qualitative behaviour for the
substance. If, for example, the temperature has a quantitative value somewhere
between freezing point and boiling point and this value increases, then the 
substance shows constant qualitative behaviour, namely ‘being a liquid’, until it 
reaches its boiling point. As soon as it reaches this boiling point, the substance 
arrives at a new time interval in which it again shows constant qualitative
behaviour, namely boiling.

In qualitative models this knowledge is formalized as follows. A quantity value
is represented as the pair

ount of a quantity and the Derivative represents the direction of change over 
time. The values a Magnitude can take on are represented in a Quantity Space
(QS). Consider again the two-tank system (Figure 2.1). The amount of substance
in a tank can be represented as having three possible magnitudes:
QS={zero,plus,max}, respectively meaning there is no substance, there is some
substance, and the amount of substance in the container has its highest possible
value: maximum. Values for the Derivative are also represented by a quantity
space, namely QS={min,zero,plus}, meaning the Magnitude is decreasing, steady, 
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and increasing. Thus, if amount has the value amount=<plus,plus> this can be 
read as: there is an amount and in the current state it is increasing. 

A value-history diagram shows the qualitative values generated by a QR 
engine. Figure 2.5 (RHS) shows the value-history for the quantities  involved in 

 model of the two-tank system for all the behavioural states. For instance, in 
state 1 the height of the oil_right has magnitude plus and is increasing, hence: 
<plus, plus>. Next, in state 4 this quantity has the value max and is still 
increasing: <max, plus> (representing overflow). Finally, in state 2, it has again 
value max, but now it is steady: <max, zero>. This can be inferred from the 
diagram (Figure 2.5) as follows. The possible values that height can take on are 
shown on the RHS: QS={zero, plus, max}. The circles above the state numbers 
designate the specific value the quantity has in that state. In addition, the circles 
contain a small arrow pointing up, or down, or a small black circle. These indicate 
that the quantity is increasing, decreasing, or steady, respectively. A sequence of 
quantity values is referred to as a value-history and it follows a behaviour-path. In 
the case of the two-tank system there are 3 behaviour paths: [1  3], [1  2], and 
[1  4  2]. 

Determining the relevant quantity space for each quantity is an important aspect 
of constructing

3
the

 a qualitative model because it is one of the features that determines 
the

2.3.5
Causality

nd explaining the behaviour of a system in terms of cause-effect 
relations is central to human reasoning and communication. When we think that 

                                                          

 variety of possible behaviours that will be found by the engine when the model 
is simulated. Inequality statements (e.g. height oil_left > height oil_right) are also 
important in this respect. In fact, each qualitative distinct state of behaviour is 
defined by a unique set of values and inequality statements. Transitions between 
behavioural states are the result of changes in these values and inequality 
statements. State transitions are shown in a state-graph as arrows connecting the 
circles (Figure 2.5). For example, while going from state 1 to state 4, the 
magnitude of height (for oil_right) changes from plus to max. Going from state 4 
to state 2 the oil heights in the two tanks become equal (not shown in Figure 2.5) 
and the flow becomes zero. In addition, the heights for both columns stop 
changing ( =0).

Analyzing a

‘A causes B’, we believe that if we want B to happen we should bring about A, 
and if B happens, then A might be the reason for it. Causality can also be 
perceived as being indirect: ‘A causes C indirectly’ if ‘A causes B’ and ‘B causes 
C’. Formalizing the notion of causality and exploiting it in automated reasoning is 
the basis for explanation facilities in QR systems. QPT explicitly distinguishes 

3 The model also includes the quantities amount and bottom-pressure for each tank, but 
these are not shown in the figure. 
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between changes that are caused directly or indirectly (Forbus 1984). Forbus 
refers to this as the causal directness hypothesis: changes in physical situations are 
caused by processes (influences, represented as {I+, I-}), or by propagation of 
those direct effects through functional dependencies (proportionalities,
represented as {P+, P-}). This hypothesis puts three further constraints on how 
influences and proportionalities should be applied. Firstly, all changes are 
initialised by influences. Without an influence, or for that matter a process, there is 
no change and therefore no behaviour in the physical world. Proportionalities are 
used to propagate changes, introduced by influences, throughout the whole 
system. Secondly, both influences and proportionalities are directed, i.e. their 
effect propagates in one direction only. The influencing quantity has to be known 
before the dependent quantity can be determined. The relations may not be used 
the other way around, because this would violate the causal chain of changes, 
which is one of the essential features of QPT. Thirdly, no quantity may be 
influenced directly and indirectly simultaneously. According to Forbus, a physics 
that allows a quantity to be influenced both directly and indirectly at the same time 
must be considered inconsistent, because it also violates the essential, non-
recursive, chain of causality. 

Both direct influences and qualitative proportionalities are modelling primitives 
that express causal relationships between quantities, and have mathematical
me

stem model (Figure 2.1). Such a set of dependencies 
is

aning. Direct influences determine the value of the derivative of the influenced 
quantity. For example, the relation I+(Y,X) means that dY/dt = (... + X ...). By 
definition, the quantity X is a rate and its value should be added to Y. Qualitative 
proportionalities carry much less information than direct influences. For example, 
the relation P+(Y,X) means that there is some monotonic function (f) that 
determines Y, and Y is increasing in its dependence on X, such that Y = f(... X ...) 
and dY/dX >0. A quantity that is not influenced by any process is considered to be 
constant. Notice that a single direct or indirect influence statement does not 
determine, by itself, how the quantity it constrains will change. Its effect must be 
combined with all the active influences on that quantity. Ambiguities may arise 
when positive and negative influences are combined and their relative magnitudes 
are not fully known. In these cases, the reasoning engine either considers all the 
possible combinations or any explicitly represented assumption that may constrain 
the system’s behaviour. 

Figure 2.7 shows a subset of the dependencies that hold in state 1 of the 
simulation of the two-tank sy

often referred to as the causal model. The diagram shows that the two oil-
columns have unequal heights and (bottom) pressures. The flow (rate) between the 
two tanks depends on the difference between those pressures (and is qualitatively 
proportional to it). The flow has a negative influence on the oil-column with the 
higher pressure and a positive influence on the other, decreasing and increasing 
the two amounts of oil respectively. Changes in the amounts propagate to changes 
in heights, which in turn change the pressures. Notice that this diagram also shows 
the quantity space for each quantity, the current value, and the direction of change. 
The latter is visualised by triangles pointing up (increasing), or down (decreasing), 
and by small black circles (steady) (as no quantity is steady in state 1, circles are 
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not shown in Figure 2.7). The direction of change icon is placed adjacent to the 
current value of the quantity, highlighting the latter in the context of its quantity
space. For instance, for the oil_left holds: height=<plus,min>.

= pressure1 - pressure2

plus
zero
min

flow1

pipe

max
plus
zero

pressure2
max
plus
zero

amount2

max
plus
zero

height2
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zero
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plus
zero
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plus
zero
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I-

P-

>

>

Figure 2.7. Causal dependencies for the two-tank system

It is relevant to mention that QR models represent changes in the causal
e, when the heights in

the two tanks become equal (in Figure 2.5, states 2 and 3) the flow stops and the
dir

y QPT is generally seen as a principled one. 
It

structure that may happen during the simulation. For exampl

ect influences resulting from the process no longer exist. Therefore, the causal
model of the two-tank system in states 2 and 3 is different from the one shown in
Figure 2.7 (because the inequality sign will be replaced by an equality sign, and
the arrows representing I+ and I- will be deleted). Being able to change the causal
model is an important feature of QR.

The notion of causality is complex and competing ideas exist about how to 
capture it in models, such as the notion of causal ordering (Iwasaki and Simon
1986). However, the approach taken b

also seems most promising to as a means to capture causal reasoning in the
domain of ecology (Salles 1997).
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2.3.6
Model-fragments and Compositional Modelling 

dent 
). This provides the basis 

for automating the model composition and for the re-use of models, a highly 

Tools and Software 

is a reasoning engine that implements QPT, but using 
this package requires programming skills in LISP. QSIM (Kuipers 1986) is the 
implementation of the constraint-based approach and can be downloaded from the 

Most QR systems aim at building libraries of elementary, context indepen
model-fragments (component behaviour, processes, etc.

desirable feature both for theoretical development and for applications. Model-
fragments can thus be seen as re-usable conditional statements that capture 
knowledge about the phenomena existing in a certain domain. Model-fragments 
applicable to a scenario are assembled by the engine and used to infer the 
behaviour of the system specified in that scenario (Figure 2.4). They are also used 
to infer the facts true in each of the successor states. This implies, among other 
things, that the set of facts may change and can be different for alternative states. 
In general, a model-fragment requires certain structural details to be true (e.g., a 
tank, a liquid and a contain relation between these two entities). If the required 
structure exists the model-fragment is instantiated for that structure and introduces 
the behaviour details that apply to it (e.g., the quantities amount, height, pressure 
and the dependencies that hold between them). A specific model-fragment can be 
instantiated multiple times, namely for each occurrence of the structure to which it 
applies. 
    Preferably, model-fragments implement the ‘first principles’ (the fundamental 
laws) relevant to a domain, enhancing their usability across different systems. 
Reusability requires that model-fragments represent behavioural features 
independent from the specific environment in which they operate. De Kleer and 
Brown (1984) discuss a set of modelling principles for realising this objective. 
One principle is the ‘no-function-in-structure’, which states that the model of a 
specific component may not presume the functioning of the device as a whole. For 
instance, the qualitative states of a lamp (Figure 2.2) may not specify ‘lit’ or ‘not 
lit’, because ‘being lit’ depends also on the battery (and not just on the lamp). A 
properly functioning lamp will still not produce any light when the battery is 
empty or not connected to the circuit. The no-function-in-structure principle is 
general and applies to any approach to QR that uses a library of model-fragments. 
Given a sufficiently well developed library for a certain domain the qualitative 
reasoning engine can predict the behaviour of all kinds of systems belonging to 
that domain. 

2.4

The availability of software and tools to construct and simulate QR models is 
limited. QPE (Forbus 1986) 
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WWW4. Recently easy to use QR model-building learning environments have 
been developed, notably Betty’s Brain (Biswas et al. 2001) and Vmodel (Forbus et 
al. 2001). These packages are used for teaching in middle schools and are 
optimized for that purpose. Although useful in classroom situations, essential 
features of QR are missing and hence these tools are limited in their potential to 
capture expert knowledge. To further discuss the use of QR for capturing 
ecological knowledge, this section focuses on the toolset Homer (Bessa Machado 
and Bredeweg 2003), Garp (Bredeweg 1992), and VisiGarp (Bouwer and 
Bredeweg 2001). These tools are implemented in SWI-Prolog5 and can be 
downloaded from the WWW6. Homer provides a graphical approach to 
modelling. Models created with Homer can be simulated using VisiGarp, which 
provides a graphical environment on top of Garp to run and inspect QR models.

2.4.1
Workspaces in Homer 

Homer provides nine workspaces for creating model ingredients, divided 
categories. Building blocks are used to define ingredients (types) that ca
used and assembled into co

into two 
n be re-

nstructs. 
Building blocks 

ated. Entities are organized in a subtype
y.

o : are labels that can be used to hide or show certain 

) is an example of an operating 

o

                                                          

o Entities: represent physical objects or conceptualizations that are part 
of the system to be modelled. They form an important backbone to 
any model that is cre
hierarch

o Agents: represent external influences enforced upon a system. They 
are thus exogenous to the system. For instance, the sun providing 
energy to ecological systems. 
Assumptions
detail in a model. Typical examples are operating and simplifying
assumptions. The notion of an open versus a closed population 
(migration or no migration
assumption for models in ecology. It provides a certain perspective 
on the simulation. A simplifying assumption typically reduces the 
simulation complexity. For example, to consider a particular quantity 
value constant. 
Attributes: define properties of entities that do not change (static). 
An example could be to represent the colour of an animal’s fur as 
having value brown.

4 http://www.cs.utexas.edu/users/qr/QR-software.html 
5 http://www.swi-prolog.org/ 
6 http://hcs.science.uva.nl/projects/GARP/
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o Configurations: are commonly called structural relations. Structural 
relations model how entities are physically (or structurally) related to 
each other. For example: representing that a certain species is part of

o

Const c
s: describes the initial situation of the system whose 

 is 
 starting point for running a simulation and is created by defining 

    Model-fra
fragments ar
applicability) and consequences (new knowledge that is true when the fragment 

Building a Population Model 

y 
 and natality. Figure 2.8 shows some of the 

workspaces and model ingredients that may be defined for such a model. 

 is made 
be

an ecological niche. 
Quantities: represent changeable properties of entities and are 
typically seen as implementing the behavioural characteristics of a 
system. 

o Quantity Spaces: represent the values that quantities can take on. 
ru ts 

Scenarioo
behaviour is to be captured by the qualitative model. A scenario
the
(and relating) instances of building blocks. (In)-equality statements 
can also be added. 

gments: define behavioural features for one or more entities. Model-
e assembled form building blocks, have conditions (specifying their 

applies), and are organized in a subtype hierarchy. Different types of model-
fragments exist, notably static, agent, and process. An important aspect of a 
model-fragment is the specification of causal knowledge in terms of influences 
(only in processes and agents), proportionalities, and correspondences. (In)-
equality statements are also defined in fragments. 

2.4.2

As example consider the behaviour of a population consisting of frogs, that is onl
determined by ‘natural’ mortality

The assumption hierarchy is shown on the LHS. Among others it defines an 
operating assumption for open and closed populations. The entity hierarchy is 
shown on the RHS. It is kept simple for reasons of clarity. A distinction

tween biological entity and set of entities. According to the model there are two 
kinds of biological entities (animal and plant), and there are three kinds of 
animals. Notice that the representation of entities follows an inheritance structure. 
For example, all facts that can be inferred for animal also apply to frog. A 
scenario is shown in the middle of Figure 2.8. It specifies the existence of a 
population named population7. This population consists of frog named frog and 
                                                          
7 This is not the place to explain all the visual details in Homer. However, the fact that 

labels such as ‘Population’ appear twice has a meaning. The italic version refers to the 
type as specified in the entity hierarchy, where as the bold version refers to the instance
name given in a specific situation. The user (the creator of the model) must provide the 
instance name. When omitted, Homer inserts the default name similar to the type. 
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has the quantity size. Size can take on five values
QS={zero,low,normal,high,max}, and currently has the value normal. The 
derivative of size (shown by two arrows and zero) is unknown (no value is pointed
out) and there is an assumption named closed population (identified by a question
mark).

igure 2.8. Assumption and entity hierarchy, and a scenario of a frog population

order for an engine to infer behaviour it needs a library of model-fragments
ca

) = Size(t) + (Born + Immigrated) – (Dead + Emigrated)
Born, dead,

im

migrated); I–(Size, Emigrated)
ffect

that size has on born, dead, and emigrated. This is obtained by means of
qualitative proportionalities: 

am n the

F
model

In
pturing general knowledge about population dynamics. A part of this is shown

in Figure 2.9. The domain theory implemented here is a qualitative reading of the
equation:

Size(t+1
Size stands for the number of individuals of a population.
migrated, and emigrated refer to the amount of individual being added or 

removed due to natality, mortality, immigration and emigration processes.
Following the QPT ontology, the representation for the four basic population
processes and their effects on Size becomes:

I+(Size, Born); I–(Size, Dead); I+(Size, Im
The domain theory should also include feedback loops that represent the e

P+(Born, Size); P+(Dead, Size); P+(Emigrated, Size) 
This way, the combination of I+(Size, Born) and P+(Born, Size) reads as ‘the 
ount of individuals being born should be added to the size’ and ‘whe
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po

considered exogenous to the system. That is, the
am epend on the population 
siz

e with a five-valued quantity space (all coloured green). The 
as

ecifying th 8 (coloured red). In 
processes become

pulation size changes (increases or decreases) the amount of individuals being
born also changes in the same direction’. Immigration is not included in this
feedback loop, because it is

ount of inflow resulting from immigration does not d
e. Instead, it is seen as an external factor that is determined outside the scope of

the system.
These ideas are diagrammatically represented in Figure 2.9, using the

workspace for defining model-fragments in Homer. The model-fragment closed
population (LHS) is a subtype of population (the latter has to be included in the
model before the former can become active). This previously defined fragment
introduces an instance of the entity population (named population) and the
quantity siz

sumption closed population (no migration) is an additional condition (coloured
red). The new knowledge added by the model-fragment closed population
includes (coloured blue): quantities born and dead (both with the two-valued
quantity space QS={zero,plus}), positive proportionalities ( +) from size to born
and dead, and bi-directional correspondences between the values zero for size,
born and dead (to express the idea that when size is zero that the other quantities
must also be zero). 

Figure 2.9.  Model-fragments for a simple population model

The model-fragments born (Figure 2.9, middle) and dead (Figure 2.9, RHS) are 
both of type process. They require the model-fragment population (coloured red) 
to exist, before they may become true. In addition, there is an inequality statement
sp at the size of the population is ‘greater than zero’
other words, only if a population has some individuals these
active. The knowledge introduced by the model-fragment born is: the quantity

8 All lines with an arrow should be read following the direction of the arrow. In this case,
the inequality should be read as ‘zero < (current) Quantity (value)’. 
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born, with value plus currently assigned, and a positive influence (I+) from this 
quantity on size. The value zero represents that there is no natality, the value plus
means that individuals are being born. In summary, this model-fragment captures 
the idea that natality becomes active as soon as there is a population with some 
individuals, and that the number of individuals being born increases with the size 
of the population. The model-fragment dead is essentially the same except it 
introduces a negative influence on the population size (I–). Thus, when a 
population exists there will be individuals dying, which reduces the population 
size.

2.4.3
Running and Inspecting Models with VisiGarp 

 the 
f model-fragments (Figure 

2.9), the reasoning engine builds up a complete simulation model that produces 

Starting with the scenario (Figure 2.8) in which the value of size is normal and
derivative is unknown (<normal,?>) and the library o

the results shown in Figure 2.10. The resulting causal model in state 1 is depicted 
at the LHS (top). It shows the two influences from born and dead on size and the 
feedback via the proportionalities. Size has value normal and is decreasing. Born
and dead are both plus and decrease (because of the feedback from size). As 
mentioned above, different states may show different sets of dependencies. For 
instance, the processes natality and mortality are not active in state 8, because size
has value zero.

The state-graph is depicted at the LHS (bottom). It shows that the following 
behaviours are possible [1  6  8], [1  7], [2], [3  4], and [3  5  9]. The 
matching quantity values are depicted in the value-history (RHS). Given that in 
the initial scenario size has magnitude normal and derivative unknown, the 
interpretation of the competing influences from born and dead leads to three 
states. In state 1 the population decreases (born < dead), in state 2 it remains 
stable (born = dead), and in state 3 it increases (born > dead). The behaviour 
captured in state 1 proceeds via state 6 to state 8, in which the population has 
become extinct. Alternatively, state 1 may proceed to state 7, in which case the 
population stabilises. In a similar way the increasing behaviour captured in state 3 
may proceed to state 4, and stabilise, or further increase via state 5 and reach the 
maximum value in state 9. In summary, if both born and dead are positive, but 
their relative magnitudes are unknown all behaviours are possible. The population 
can grow to its maximum size, go extinct, or stabilise at any intermediate value. 
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igure 2.10. Simulation results for a closed population model

2.4.4

The model constructed so far assumes a population without migration. Hence the
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Adding Migration to the Population Model 

population cannot recover from extinction and in the simulation there is no
transition from state 8 in Figure 2.10. Figure 2.11 depicts three of the model-
fragments needed to implement migration. The open population model-fragment
(LHS) competes with the closed population discussed above (Figure 2.9). It
applies when the assumption open population is true (thus, when specified in a 
scenario).
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Figure 2.11. Model-fragments for a population model including migration

In addition to the quantities born and dead it introduces emigrated and 
immigrated. Changes in population size also affect emigration, but not
immigration. Next, a set of model-fragments is required to implement the 
migration processes. Emigration and immigration are shown in Figure 2.11 
(middle and LHS). Similar to dead and born they start when a population exists.
When active, emigration has a negative influence on the population size and 
immigration has a positive influence. Colonization is modelled as a special case of
immigration (not shown in the Figure). Descriptions of these two processes are
similar, but colonization starts a new population where such a population does not
exist. Hence, population size has to be zero.

A simulation with this extended model is shown in Figure 2.12. For the sake of 
clarity, size has been given a three-valued quantity space QS={zero,plus,max}.
Also the causal model taken from state 9 (Figure 2.12, LHS, top) does not show
all the available information. For instance, correspondences are not shown. 
Finally, the value-history shows a particular behaviour path, namely [13  14 
18  9  11  15  1  13] (and not all values from all states). Notice, that 
this path implements a loop. In the initial scenario, the population size has value
plus and an unknown derivative. The state-graph shows that nine states of 
behaviour match that initial description (states with numbers 1 through 9). State 9 
is on the selected path and the value-history shows that the population is
increasing, along with all the processes. This behaviour moves on to state 11, in
which the population reaches its maximum size and stops growing. Next, the 
population may start to decrease (state15), reach the next lower value plus (state 
1), and then become extinct (state 13). Colonisation may then start (state 14), and
create a new population which starts gaining size in state 18, and actually ‘exists’
in state 9. 

The transitions [13 14] and [11  15] are special from a QR point of view,
as they do not reflect a value change due to increasing or decreasing. Instead, the 
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derivative of immigration changes, from =[0] to =[+] and from =[0] to =[–],
respectively. This is the result of a special feature implemented into the Garp 
reasoning engine by means of which exogenous quantities can be assigned certain
‘behaviour’. As if the external world behaves in a certain way. In this case, 
immigration has been assigned ‘exogenous sinus’ (Figure 2.8) by specifying this
assumption in the scenario. ‘Exogenous sinus’ can be used to enforce a continuous
change on an exogenous quantity. As a results, immigration changes following the
pattern: I=[0] I=[+] I=[0] I=[–] I=[0] I=[+]  etc. 
Assigning some default behaviour to exogenous quantities is required for 
representing population dynamics in order to enforce a disturbance of some kind
through the system.

The examples discussed above present initial ideas on how to capture
ecological knowledge using QR. Of course, many additional details can be 
represented yielding more advanced models and simulations that deliver important
conclusions and explanations. The next section discusses examples of such 
applications.
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Figure 2.12. Simulation results with an open population model
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2.5
Examples of QR-based Ecological Modelling 

This section presents applications of QR techniques to various ecological 
problems. It is not the intention to be exhaustive, but to present an overview of the 
possibilities QR has to offer for ecological modelling. In fact, formalizing 
qualitative ecological knowledge in qualitative terms is a longstanding problem in 
ecological modelling. May (1973) performed a qualitative analysis of the results 
produced by differential equation models about interactions between populations 
to study the relationship between complexity and stability of biological 
communities. May used only the signs {+, 0, –} and showed that a less complex 
community met the conditions for stability, while the more complex was not 
stable. Therefore, the ‘common-sense wisdom’ that more complexity means 
increased stability may not be true. 

An approach for building qualitative models about the dynamics of 
communities subject to recurrent disturbance (such as fire) was proposed by Noble 
and Slatyer (1980). This approach is based on a small number of attributes of the 
plant’s life history (vital attributes) that can be used to characterise the potentially 
dominant species in a particular community. Simulations produce a replacement 
sequence that depicts the shifts in composition and dominance following a 
disturbance. Further developments describe a simulation model that is also based 
on the vital attributes but now combined with quantitative knowledge about the 
abundance of the populations and their survival according to the availability of 
environmental resources (Moore and Noble, 1990; 1993). 

Câmara et al. (1987) describe SLIN, a program that supports qualitative 
simulations using values expressed in linguistic terms (such as low, medium, high) 
manipulated by a set of logical rules. SLIN was used in studies about the 
management of water resources of a hydropower plant and assessment of oil 
dispersion in the sea after a tanker accident (Antunes et al. 1987). Recently 
McIntosh (2003) describes a modelling language for dealing with partial and 
imprecise ecological knowledge. Borrowing some concepts from QR, such as the 
representation of quantities (including the distinction between amount and 
derivative, both having two value components, magnitude and sign, and a set of 
possible qualitative values), the author implements his ideas using a rule-based 
approach and presents an example about vegetation dynamics. 

2.5.1
Population and Community Dynamics 

Following a principled approach to QR Salles and Bredeweg (1997) have 
developed a library of model-fragments that can be used to construct models and 
automate reasoning about the behaviour of populations (the examples presented in 
section 4 are based on this work). This library was used to construct a model of 
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the Cerrado Succession Hypothesis (CSH) (Salles and Bredeweg 2005). The 
Cerrado is the second largest Brazilian biome, a kind of savannah type of 
vegetation with a wide range of natural physiognomies, spanning from open 
grasslands to closed forests. Fire is one of the most influential determinants of this 
physiognomy and its influence is expressed by the follow hypothesis: if the fire-
frequency increases (for example, because of human actions), then the vegetation 
becomes less dense, with reduction of trees and shrub populations so that grass 
may dominate. If, on the contrary, fire-frequency decreases, the vegetation 
becomes denser, with more trees and shrub and less grass. A set of model-
fragments defines the different physiognomies according to the proportion of three 
populations, tree, shrub and grass. For example, the cerradão is a forest defined 
by the maximum size of tree population and no grass. The campo limpo is open 
grassland defined by the maximum size of grass population and no trees and 
shrubs. Between these two extremes, other physiognomies may have more or less 
of the three populations. According to the literature and Brazilian researchers, it is 
‘commonsense’ that fire destroys the litter and, under this condition, temperature 
and light increase and humidity decreases. These are negative influences for the 
germination of trees and shrub seeds, and positive influence for the germination of 
grass seeds. These ideas are the basis for the causal model captured in the CSH. 
Simulations with the CSH model produce the behaviour predicted by the 
hypotheses mentioned above. Notice that, the CSH is a typical situation in which a 
mathematical approach is not adequate, because the ecological system is complex 
and numerical data about the whole phenomena do not exist. There is ‘only’ a 
conceptual model, that is, the expert’s commonsense understanding and 
hypothesis to explain the final result. 

The work on the CSH has been the inspiration for a number of additional 
research efforts, among which the interactions between populations of different 
species. Such interactions are important for understanding the behaviour of larger 
communities. Salles et al. (2003a) present a set of models about interactions such 
as predation/parasitism, commensalism, cooperation/mutualism, amensalism, and 
competition. Each model produces simulation results that are characteristic for the 
interaction type it models. For example in the case of predation the state-graph 
shows four behaviours: only the prey reaching maximum size, both species 
stabilising at a corresponding size, both disappearing, and the predator 
disappearing while the prey grows to its maximum size. 

The ants’ garden is an interesting example of interacting species. This system, a 
well-known symbiosis between ants (Formicidae) and a fungi (Lepiotaceae), is 
more complex than initially understood. A third species, the specialized garden 
parasite fungi (Escovopsis), is often present and may destroy the system by 
attacking the cultivated fungi. However, it almost never happens because ants 
carry on their body colonies of bacteria (Streptomyces) that produce antibiotics 
specifically targeted to suppress the growth of Escovopsis. Traditional modelling 
approaches, based on differential or difference equations, are not adequate to 
handle this complex balance of interactions, but qualitative models can and have 
been made. Using the set of interacting population models Salles et al. (2003b) 
describe the ants’ garden as follows: ants and Lepiotaceae fungi as mutualism; 
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Escovopsis and Lepiotaceae fungi as parasitism; ants and bacteria as 
commensalism; and bacteria and Escovopsis fungi as amensalism. One of the 
typical simulations with this model produces the following four behaviours: 
coexistence of all the involved species, complete extinction of the garden, 
coexistence with Escovopsis but the ants and Lepiotaceae fungi reaching their 
maximum size, and the elimination of the parasite, with the garden reaching its 
maximum size. As the authors argue, this is another example of how QR models 
formalises conceptual knowledge, in this case representing alternative hypotheses 
of systems’ behaviour. 

Nuttle et al. (2004) describe models to support learning and research on food 
chains and the trophic cascades. They present an evaluation of three alternative 
mechanisms for implementing the basic trophic interaction, and discuss their 
potential to serve as basic building blocks for building more complex 
representations of food chains and food webs. 

2.5.2
Water Related Models 

Aquatic systems offer the integration of physical, chemical and biological aspects 
that might be combined with social, cultural and economic aspects. Salles et al. 
(2003c) describe a model developed for understanding stream ecosystems, to 
predict values of variables and to combine such understanding with restoration 
and proactive actions of management. The models show the effects of good and 
bad management practices on the effects of pollution by organic matter and the 
consequences for the amount of dissolved oxygen and fish stocks. Problems found 
during the modelling effort and implemented solutions are discussed, including 
the explicit representation of assumptions and the role of ambiguities in the 
outcomes of the models (Salles et al. 2003c). 

A model for supporting stakeholders and decision makers to address problems 
related to nutrient cycle in stream ecosystems is presented by Neumann and 
Bredeweg (2004). The model explores the concept of the spiralling of resources in 
segments of a river from the perspective of processes within the nutrient cycle 
represented by the uptake rate (from nutrients to autotrophs), retention rate (from 
autotrophs to detritus), and release rate (from detritus to nutrients). Each segment 
of the river can be characterized with the definition of attributes and the influences 
coming from the catchments area. 

Benthic macro-invertebrate communities, which have distinct responses to 
physical, chemical, and biological disturbances, are particularly interesting for 
assessing impacts of conversion of natural landscapes to urban and agricultural 
uses. However, modelling is difficult in this context because information relating 
anthropogenic activities to benthic communities is fragmented and temporally 
inconclusive. Tullos et al. (2004) present models that describe the impacts of 
watershed development and riparian deforestation activities on benthic macro-
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invertebrate communities based on a comprehensive understanding of the 
underlying processes that control these communities. 

It is known that changes during the salmon development depend upon the 
moving sum of average daily water temperatures. Guerrin and Dumas (2001a,b) 
describe models for assessing the impact of the environment on salmon population 
dynamics. The models are implemented in QSIM and represent the functioning of 
spawning areas of salmon (salmon reeds) and the impact on mortality rates at 
early stages. The model consists of two sub-models that are quite complex, 
combining processes that occur at different time scales (fast and slow). A 
qualitative autonomous clock allows for the accumulation of degree-days from 
average water temperatures. The two sub-models are coupled via some shared 
variables and by means of transition states, in order to make alternative 
simulations of both. The model shows, for example, that when rain increases, the 
flow of water on the river also increases, increasing suspended solids and 
sediments and reducing the dissolved oxygen. These factors increase fish 
mortality, as expected from experts and the literature. 

2.5.3
Management and Sustainability 

Sustainable development is hampered by limitations on the available knowledge 
about important interactions and by difficulties to integrate the broad variety of 
regional problems into typical patterns of global change. Eisenack and Petschel-
Held (2002) describe a QSIM model for understanding the interactions between 
nature and society. Their QR model helps to identify scenarios under which 
regional land-use changes due to small holders agriculture in developing countries 
following the ‘impoverishment-degradation’ spiral. The outcome depends on how 
the small holders achieve their daily income and how this relates to environmental 
conditions around them. Eisenack (2003) addresses two threads of the debate on 
sustainable fisheries: participatory management frameworks and ‘ichtyocentric’ 
control strategies. A model of management framework is set up, composed of 
economic, ecological and political aspects, upon which viability criteria are posed. 
Then the author investigates how different management strategies change the 
structure of the resulting state transition graph to conclude that a qualitative 
viability analysis can be a helpful first step for the design of controllers or the 
assessment of management frameworks. 

2.5.4
Details in Qualitative Algebra 

Guerrin (1991; 1992) developed a system (SIMAO) for simulating the 
interpretation of measurements, observations and analyses, commonly done on 
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aquatic ecosystems for management purposes. His approach includes directed 
causal graphs and a qualitative algebra used to combine heterogeneous knowledge 
obtained by measurements (numerical), observations (linguistic) and calculations. 
With the support of causal graphs, SIMAO is able to reason with causal relations 
such as “an increase in photosynthesis decreases the CO2 concentration in water, 
which in turn (…) hence a risk of decrease of fish production” and to calculate the 
values of variables using the qualitative algebra. This qualitative algebra was also 
applied to other biological problems, including photosynthesis (Hunt and Cooke 
1994) and the life cycle of a plant population (Salles et al. 1996). Guerrin proposes 
that this approach could be an option to be used in controlled ecological life 
support systems (CELSS), modelling, simulation, and control (Guerrin et al. 
1994).

2.5.5
Details in Automated Model Building 

Applying QR to ecological systems pose new challenges for automatic model 
building. Rickel and Porter (1997) describe in the domain of plant physiology an 
approach for answering predictive questions. Depending on the question their 
approach automatically finds a model with the simplest level of detail adequate for 
answering that question. A particular feature of their approach is the ability to 
move between different timescales. Keppens and Shen (2002) address the problem 
of user preferences in the case of incomplete knowledge. They introduce an order 
of magnitude preference calculus to handle reasoning with preferences. Their 
models describe how the Mediterranean vegetation is being affected by various 
climate related factors, managed and accidental fires, and cattle farming. 

2.5.6
Diagnosis

Diagnosis (finding the cause of undesired behaviour) is a promising area for 
applications for model-based reasoning in ecology (Struss and Heller 1998). 
Heller and Struss (2002) use model-based technology to support the tasks of 
situation assessment (determining the actual state of the system) and therapy 
recognition (determining what can be done to recover from the undesired 
behaviour). Their work concerns rivers and water treatment plants. 
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2.6
Conclusion

Representing qualitative ecological knowledge is of great interest for ecological 
modelling. QR provides means to build conceptual models and to make qualitative 
knowledge explicit, organized and manageable by means of symbolic computing. 
This chapter discusses the main characteristics of QR using well-known examples. 
It also shows how this technology can be used to represent ecological knowledge 
and an overview is given of ecological applications that have already been 
developed using QR. Ongoing QR research focuses on improving QR tools and 
technology. An additional goal is to integrate quantitative knowledge with 
qualitative knowledge. In a collaborative work with ecologists, particularly in the 
construction of reusable knowledge libraries, it is possible to foresee a wider range 
of applications to ecological modelling and better ways of dealing with the 
complexity of ecological and environmental systems. But most of all, the 
deployment of QR technology for ecological purposes should become an 
important goal in itself because, as pointed out by (Rykiel 1989), “many questions 
of interest in ecology can be answered in terms of ‘better or worse’, ‘more or less’, 
‘sooner or later’, etc.” and when quantitative methods are inadequate or lacking, it 
is still possible to make estimates, predictions, and decisions with scientific 
support.
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Chapter 3 

Ecological Applications of Non-supervised 
Artificial Neural Networks
J.L. Giraudel  ·  S. Lek

3.1 Introduction 

For ecological data, cluster analysis (CA) is basically a classification technique for 
sorting sample units into groups based upon their resemblance. Several algorithms 
permit similar work, but due to the heuristic nature of the methods, it is impossible 
to choose the 'best' one (Van Tongeren 1995). Some conventional methods need 
prior knowledge of the number or of the size of the clusters. On the other hand, 
particular shapes of the clusters may lead to erroneous conclusions. The results are 
commonly displayed on dendrograms becoming hard to interpret for huge 
datasets.  

Inspired by the structure and the mechanism of the human brain, the Artificial 
Neural Networks (ANNs) should be a convenient alternative tool to traditional 
statistical methods. ANNs have already been successfully used in ecology (Lek 
and Guegan 1999). Whereas, the backpropagation algorithm of ANNs in a 
supervised learning way is mostly used in the ecological applications (Lek et al. 
2000), only a few applications  of ANNs with non-supervised learning also called 
Self-Organizing Maps (SOM) are known. Nevertheless, SOM has been 
demonstrated in patternizing ecological communities (Chon et al. 1996) and has 
been applied to the analysis of community data (Foody 1999) or to model 
microsatellite data (Giraudel et al. 2000).  

The Kohonen SOM is the prototype of  non-supervised ANNs invented by 
Kohonen (1995). It performs a topology-preserving projection of the data space 
onto a regular two-dimensional space and can be used to visualize clusters 
effectively.

The main aim of this paper is to demonstrate a practical methodology for the 
best use of SOMs for community classification. The presentation will be made 
using a well-known dataset: upland forests in Wisconsin, USA (Peet and Loucks 
1977). Firstly, the methodology leading to a good learning process will be 
specified. It will be shown that the SOM is a good tool to interpret the 
classification with abundance data or abiotic variables. Then, computing the 
unified-matrix, an effective way to obtain clusters will be explained and some 
indices to evaluate the quality of the map will be given.  
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3.2
How to Compute a Self-Organizing Map (SOM) with an 
Abundance Dataset? 

3.2.1                                                                                                             
A Dataset for Demonstrations  

We consider a classical abundance dataset in the form of a matrix with n rows and 
p columns, the rows representing the species and the columns the sample units 
(SUs); in addition, for each SU, environmental factors are sometimes available 
(Table 2.1). Then, each SU can be considered as a vector in the n-dimensional 
space Rn. Measurements of abundance are density, presence, frequency, biomass.  

The SOM algorithm has been applied to a classical dataset (Table 2.2): the 
distribution of 8 tree species (n=8) in 10 sites (p=10) in Southern Wisconsin - 
USA (Peet and Loucks 1977). This data matrix has been expanded to provide 
information for soil texture (five classes of percentage in the A1 horizon). This 
dataset has been particularly used by Ludwig and Reynolds (1988) who used it 
with some classical methods of ordination and of classification. It has already 
been used by Chon et al. (1996) to check the feasibility of the Kohonen algorithm 
in clustering ecological data providing a dendrogram based on the method of 
average linkage between groups (Fig. 3.1). Although this dataset is relatively 
small and simple, it is convenient for demonstrating the methods used in this 
paper.  

Table 3.1. An ecological data matrix, n species (sp1,…,spn) are observed in p sample 
units (SU1,…,SUp). xij can be species abondance or species proportion or presence-
absence or preprocessing data.  

    sample units 
    SU1 SU2 … SUp

sp1 x11 x12 … x1p

sp2 x21 x22 … x2p

species . . .   . 
spn xn1 xn2 … xnp

Site factor f y1 y2 … yp



Chapter 3  ·  Non-supervised Artificial Neural Networks 51 

0

5

10

15

SU1 SU2 SU3SU4 SU5 SU7SU6 SU8 SU9 SU10
R
e

s
c

a
le

d
D

is
ta

n
c

e
C

lu
s
te

r
C

o
m

b
in

e
R
e

s
c

a
le

d
D

is
ta

n
c

e
C

lu
s
te

r
C

o
m

b
in

e

3

7.5

Figure 3.1. Dendrogram for clustering the ten upland forest communities: data 
from Ludwig and Reynolds (1988), dendrogram from Chon et al. (1996) 

Table 3.2. Data matrix of abundances for eight trees in 10 upland forest                     
sampling units, southern Wisconsin Peet and Loucks (1977)

Species Sample Units 

Name Number SU1 SU2 SU3 SU4 SU5 SU6 SU7 SU8 SU9 SU10

Bur oak (1) 9 8 3 5 6 0 5 0 0 0

Black oak (2) 8 9 8 7 0 0 0 0 0 0

White oak (3) 5 4 9 9 7 7 4 6 0 2

Red oak (4) 3 4 0 6 9 8 7 6 4 3

American elm (5) 2 2 4 5 6 0 5 0 2 5

Basswood (6) 0 0 0 0 2 7 6 6 7 6

Ironwood (7) 0 0 0 0 0 0 7 4 6 5

Sugar maple (8) 0 0 0 0 0 5 4 8 8 9

Soil texture 4 5 3 2 1 1 2 1 1 1
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3.2.2                                                                                                          
The Self-Organizing Map (SOM) Algorithm  

This section explains how the SOM algorithm can be adapted to an abundance 
dataset. The SOM algorithm has been described by Kohonen (1982) in the early 
eighties. Since that time, it has been most widely used for data mining and 
knowledge discovery. 

The SOM algorithm performs a non-linear projection of the dataset onto a 
rectangular grid (r rows and c columns) laid out on a hexagonal lattice with S
hexagons (S= r.c): the Kohonen map. Formally, the Kohonen neural network 
consists of two layers: the first one (input layer) is connected to each vector of the 
dataset, the second one (output layer) forms a two-dimensional array of nodes 
(Fig. 3.2). The main characteristic of the SOM classification is the conservation of 
the topology.  Close sample units (stands or stations) are associated with the same 
node or to nearby nodes on the map.  

For this purpose, in each hexagon, a virtual unit (VU) will be considered 
(Figure 3.3). The VUs SkkVU 1 are in fact, virtual sites with species abundance 
(wik) to be computed (Table 3.3).  

Table 3.3. Components of the virtual units in the output layer

    virtual units 
    VU1 VU2 … VUS

sp1 w11(t) w12(t) … w1S(t)
sp2 w1S(t) w22(t) … w2S(t)

species . . .   . 
spn wn1(t) wn2(t) … wnS(t)
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Figure 3.2. A two-dimensional self-organizing map. Each sphere symbolizes 
each neuron at the input layer (data row) and the output layer (Kohonen map). 

The modifications of the VUs are made through an ANN. Imitating the 
organization of the human brain, the ANN has a learning ability: the components 
(wik) of each virtual unit (actually, species abundance) are computed during a 
training phase. The modifications of each (wik) take place by iterative adjustments 
based on the species abundance of the sample units presented in the input layer. 
As opposed to a supervised learning process, for each input unit, the desired 
output is unknown, we  are referring to unsupervised learning. The aim of the 
training process is that the distribution of the VUs on the map should reflect the 
distribution of the SUs. Once the training phase is completed, the VUs are left 
unchanged.  

The learning steps are well known (Kohonen 1995) and can be summarized as 
follows:  

Step 1: Epoch t=0, the virtual units SkkVU 1 are initialized with random 
samples drawn from the input dataset.  

Step 2: A sample unit SUj is randomly chosen as an input unit.  
Step 3: The distance between SUj and every virtual unit is computed.  
Step 4: The virtual unit VUc closest to input SUj is chosen as the winning 

neuron. VUc is called the Best Matching Unit (BMU).  
Step 5: The virtual units SkkVU 1 are updated with the rule:  
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Step 6: Increase time t to t + 1. If  t < tmax then go to step 2 else stop the 
training.  
There is no precise rule for the choice of the size of the grid, it can be chosen 

larger than the number of SUs. A hexagonal lattice has to be preferred, because it 
does not favor horizontal or vertical directions as much as the rectangular array 
(Kohonen 1995). For our dataset, the SOM has been formed with 16 hexagons: 4 
rows and 4 columns (c = 4 ; r = 4 ; S = 16) .  

In step 5, in the equation (3.1), the function hci(t) is called the neighborhood 
function and plays a very central role. Several choices can be made for the 
definition of the neighborhood function. If there are less than a few hundred 
nodes, selection of neighborhood functions is not very crucial, however, special 
caution is required in the choice of the size of the neighborhood affected by the 
learning (see Kohonen 1995). The simplest neighborhood function is the bubble: it 
is constant in the neighborhood of the BMU and zero elsewhere. In this work, we 
have chosen a neighborhood written in terms of the Gaussian function:  

)(2exp).()( 2

2

t
rrtth ck

ck (3.2) 

2
ck rr is the Euclidean distance on the map between the BMU VUc and each 

virtual unit VUk.
is a decreasing function of the time which defines the width of the part of the 

map affected by the learning process.  
 is the ``learning-rate factor'', it is a decreasing function of the time.  
 and  both converge towards 0.  

The learning process is broken down into two parts:  
The ordering phase: during this phase, the virtual stations are highly modified 

in a wide neighborhood of the Best Matching Unit. So, this occurs with large 
values for  and .

The tuning phase: when this second phase takes place, only the virtual units 
adjacent to the BMU are modified. This phase is much longer than the former one 
and  is decreasing very slowly towards 0.  

According to Kohonen's advice, the number of steps must be at least 500 times 
the number of network units of which around 2 000 steps are for the ordering 
phase. For the Wisconsin forest community data, the learning phase has been 
broken down into 2 000 steps for the ordering phase and 80 000 steps for the 
tuning phase.  

The species abundance can be preprocessed before the learning process of the 
SOM. There is no limitation: transformations such as logarithmic or  
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standardization may be applied. Moreover, in step 3, as opposed to what happens 
with the most used clustering methods, the Euclidean distance is not the only 
possibility and some measurements of ecological similarity can be chosen. 
However, in this case, the use of the learning rule (eq. 3.1) has to be adapted in 
order to be compatible with the chosen distance (Kaski 1997).  

For instance in this work, as suggested by Orloci (1978), the Whittaker's 
relative transformation (1952) for absolute distance has been used. In this way, the 
distance between 2 units SUi and SUj respectively defined with species abundance 
is computed by: (x1i , …, xni) and (x1j , …, xnj

n
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And the learning rule (eq. 3.1) becomes:  

Table 4.4. Species proportions in each virtual unit. These proportions are computed 
during the learning process of the SOM using the Whittaker's relative transformation. 

Virtual Units Species 
  sp1 sp2 sp3 sp4 sp5 sp6 sp7 sp8

VU1 0.13 0.33 0.38 0.00 0.17 0.00 0.00 0.00
VU2 0.14 0.28 0.33 0.09 0.16 0.00 0.00 0.00
VU3 0.07 0.10 0.27 0.24 0.07 0.14 0.00 0.10
VU4 0.00 0.00 0.24 0.26 0.00 0.24 0.04 0.21
VU5 0.23 0.30 0.24 0.11 0.12 0.00 0.00 0.00
VU6 0.16 0.22 0.28 0.19 0.16 0.00 0.00 0.00
VU7 0.05 0.07 0.25 0.23 0.05 0.16 0.04 0.15
VU8 0.00 0.00 0.22 0.23 0.00 0.22 0.09 0.24
VU9 0.31 0.31 0.17 0.13 0.07 0.00 0.00 0.00
VU10 0.25 0.21 0.21 0.19 0.13 0.02 0.00 0.00
VU11 0.16 0.07 0.21 0.23 0.16 0.08 0.06 0.03
VU12 0.03 0.00 0.10 0.16 0.09 0.20 0.18 0.24
VU13 0.27 0.21 0.19 0.19 0.12 0.02 0.00 0.00
VU14 0.18 0.00 0.19 0.26 0.18 0.10 0.06 0.03
VU15 0.10 0.00 0.11 0.19 0.14 0.17 0.15 0.16
VU16 0.03 0.00 0.05 0.14 0.12 0.21 0.19 0.26
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3.3
How to Use a Self-Organizing Map with an Abundance 
Dataset?

3.3.1                                                                                                       
Mapping the Stations  

The SOM has been computed in order that the VU distribution should follow the 
SU distribution. Most usually, the SOM is used to show SUs in the corresponding 
hexagons, SUs are mapped by a nearest neighbor method. For this purpose, the 
BMU is computed for each SU and this SU is put in the corresponding hexagon. 
The results obtained with the Euclidean distance are given in Fig. 3.4 and those 
obtained with the Whittaker's relative transformation are given in Fig. 3.5. 

VU1 VU2 VU3 VU4

VU5 VU6 VU7 VU8

VU9 VU10 VU11 VU12

VU13 VU14 VU15 VU16

Figure 3.3. The output layer of the Kohonen network. A virtual unit VUk has 
been defined in each hexagon of the rectangular grid. 
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In order to observe how the choice of the measurement methods could be 
reflected in community groupings, an other map has been built using Euclidean 
distance.

When the learning process is finished, a map with S hexagons is obtained and 
in each hexagon, there is a virtual station in which species abundance has been 
computed. For the upland forest data, the species abundance of the VUs after the 
learning process using the Whittaker's relative transformation can be seen in Table 
3.4.  

Then this map can be used in different ways: representation of the stations on 
the map, component planes (the species composition of each VU can be used to 
display the distribution of each species),  representation of an abiotic variable on 
the map, determination of clusters in the SU space. Moreover, some new data 
unknown during the learning process can be added to the map. It is very 
convenient to compute the BMUs for these data and to map them.  

SU1
SU2

SU3

SU4 SU5 

SU6

SU7

SU8 SU9 
SU10

Figure 3.4. 10 upland forest sites mapped on the Self-Organizing Map using the 
Euclidean distance. 

However, the ordination on the map of these data will be consistent only if 
these items can be assumed to follow the same distribution as the items that were 
taken into account during the learning process (Kaski 1997).  



  J.L. Giraudel  ·  S. Lek58

SU1

SU2

SU3

SU4

SU5

SU6

SU7

SU8

SU9

SU10

Figure 3.5. 10 upland forest sites mapped on the Self-Organizing Map using the 
Whittaker's relative transformation. 

3.3.2                                                                                                  
Displaying a Variable  

Component plane representation visualizes the species abundance of the VUs. 
This representation can be considered as a "sliced" version of the SOM. Each 
plane displays each species abundance in the VUs.  

For instance, this method has been applied to the upland forest data (using the 
Whittaker's relative transformation) and the abundance of sugar maple is shown in 
Fig. 3.6. A grey shade has been used: light colour for poor abundance and dark 
colour for greater abundance. With this representation, the SOM becomes a 
powerful tool to analyse the community structure: a large abundance can be seen 
in the right part of the map (in SUs 6 to 10) and an absence is noted in the left part 
(SUs 1 to 5).  
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SU1

SU2

SU3

SU4

SU5

SU6

SU7

SU8

SU9

SU10

Sugarmap

Figure 3.6. Component plane for sugar maple. The gray levels describe the 
proportion of sugar maple at each location on the map. The map has been 
computed using the Whittaker's relative transformation 

3.3.3                                                                                                
Displaying an Abiotic Variable  

The way to display an environmental factor on a SOM is rather easy. The aim is to 
attribute a value for this factor in each hexagon of the map. For an output unit k (a 
hexagon), if at least one SU is in the hexagon, we affect the arithmetic mean of the 
SU factors to the virtual unit VUk. If no SU is in the hexagon k, the arithmetic 
mean of the values of the abiotic variable in the adjacent hexagons is chosen. 
Then, each hexagon is coloured in different levels of grey according to the value 
of the environmental factor. In Fig. 3.7, the soil texture has been displayed for the 
upland forest data and a decreasing gradient of this factor can be seen from the left 
to the right part of the map.  
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S U4
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S U6

S U7
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S U9

S U10

0 1 2 3 4 5

Figure 3.7. Soil texture for the upland forest dataset. 

3.3.4                                                                                                  
Clustering with a SOM 

Visual inspection of the SOM allows some groups to be seen immediately: the 
SUs in the same hexagon are reputed to be in the same cluster. By this way, 8 
clusters are defined for the upland forest dataset (Figs. 3.5, 5): AI (SUs 1, 2), AII
(SU 3), AIII (SU 4), AIV (SU 5), AV (SU 6), AVI (SU 7), AVII (SU 8), and AVIII (SUs 
9 and 10). It can be noticed that these clusters are the same with the Euclidean 
distance and the Whittaker's relative transformation.  

By combining some hexagons, it is possible to form bigger clusters. But, a 
deficiency of the initial SOM algorithm was the difficulty in detecting the cluster 
boundaries on the map for units in different hexagons. A few enhancement 
techniques have been proposed to tackle this problem, for instance, hierarchical 
feature maps (Miikkulainen 1990) or adaptive coordinates (Merkl and Rauber 
1997). However, these two methods are not considered further in this paper, the 
unified-matrix (U-matrix) approach (Ultsch and Siemon 1990) will be preferred 
for its ability to provide a very flexible tool for ecologists.  
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VU1 VU2 VU3 VU4

VU5 VU6 VU7 VU8

VU9 VU10 VU11 VU12

VU13 VU14 VU15 VU16

VU10 VU11

VU5 VU6 VU7

VU2 VU3

VU13 VU14 VU15 VU16

VU9 VU10 VU11 VU12

VU5 VU6 VU7 VU8

VU1 VU2 VU3 VU4

VU13 VU14 VU15 VU16

VU9 VU10 VU11 VU12

VU5 VU6 VU7 VU8

VU1 VU2 VU3 VU4

(a) (b)

(d)(c)

SU5 SU7

SU9

SU1

SU4 SU8

SU3 SU6

SU2

SU10

(e)

0 0.2 0.4 0.6 0.8 1

Figure 3.8. A U-matrix representation of the self-organizing map computed 
using the Whittaker's relative transformation. (a) Location of the virtual units VUk
on the self-organizing map. (b) New hexagons are inserted between adjacent 
hexagons. (c) Gray levels showing the distance between two adjacent hexagons. 
Light for short distances and dark for large distances. (d) Each hexagon with 
virtual units is colored according to the minimum of its adjacent hexagons. (e) 
Sample units mapped on the U-matrix. Plains (light areas) can be seen separated 
by ravines (dark areas) 

The U-Matrix Display  
This method will be presented using the results obtained with the Whittaker's 
relative transformation. With the U-matrix method, in order to detect a clustering 
structure, a new map will be built. When the learning process has been completed, 
a map with c columns and c rows is obtained. In each hexagon of the map, VUs 
have been defined (Fig. 3.8a) and the species abundances of each VU are known. 
In order to visualize the cluster structure of the map, the key idea of the  
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SU1

SU2

SU5 SU7

SU4

SU3
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SU6
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SU2

SU5 SU7

SU4

SU3

SU9

SU10

SU8

SU6

(a)

(b)

Figure 3.9. A U-matrix representation of the self-organizing map computed 
using the Whittaker's relative transformation. Two different levels of brightness 
are shown in a) and b) 

The U-matrix method is to compute the distance between two VUs located in two 
adjacent hexagons. High value distances will be used as an indication of cluster 
boundaries. To visualize the distances, new hexagons will be used and from the 
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initial grid a new one can be constructed, inserting a new hexagon between each 
adjacent hexagon (Fig. 3.8 b). So, if c columns and r rows make up the initial grid 
of the output layer, the U-matrix is a matrix with (2c - 1) columns and (2r - 1)
rows where grey levels show the distance values (Fig. 3.8 c). But distance values 
are only available for the new hexagons so the unified distance matrix has to be 
completed. For this purpose, in each hexagon including a virtual unit, a distance 
has been added, calculated as the minimum of its adjacent hexagons (Fig. 3.8 d). If 
dark colours are used for large distances and light colours for short distances, the 
U-matrix can be seen as a landscape displaying the distances between the VUs. 
This landscape is formed with light plains separated by dark ravines. When, SUs 
are mapped, the units in the plains are close to each other in the input layer so 
these SUs are similar (for species abundance) and clusters becomes apparent (Fig. 
3.8 e).  

An enhancement of this representation can be made: a triangle-based cubic 
interpolation (Watson 1992) has been applied to the U-matrix. Then, a smooth 
surface is obtained and displayed with the possibility of changing the brightness of 
the figure. The brighter the display, the lower the number of clusters becoming 
apparent.  

The outcome of this process for the Wisconsin forests can be seen in Fig. 3.9. 
In this way, on Fig. 3.9 a, 4 clusters can be made out: BI (SUs 1, 2, 3 and 4), BII
(SU 5), BIII (SUs 7, 9 and 10), and BIV (SUs 6 and 8). Then on Fig. 3.9b, the SUs 
can be grouped in 2 clusters CI (SUs 1, 2, 3, 4 and 5) and CII (SUs 6, 7, 8, 9 and 
10).  

If we consider the U-matix computed with the Euclidean distance (Fig. 3.10), 3 
clusters can be made out: EI (SUs 1, 2, 3, 4 and 5), EII (SU 7) and EIII (SUs 6, 8, 9 
and 10).  

So the clustering method with the SOM can be summarized as follows:  
1. Training the SOM: the species abundance is computed for each VU.  
2. Computing the U-matrix.  
3. Mapping the SUs onto the U-matrix.  
4. Making the clustering structure apparent for the human expert of the dataset by 
selecting the brightness of the display.  

3.4
Discussion  

As already mentioned by Chon et al. (1996), high similarity between the SOM 
results and the dendrogram (Fig. 3.1) may be observed. The 8 clusters (AI to AVIII)
previously defined with the SOM are those identified on the dendrogram by a 
dotted line at distance 3, except for the SU 4 which is grouped with the SUs 1 and 
2 on the dendrogram. The U-matrix enhances the SOM and brings more accurate 
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Figure 3.10. A U-matrix representation of the self-organizing map computed 
using the Euclidean distance.

results. The 4 clusters (BI to BIV) seen in the Figure 3.9a are exactly those 
identified on the dendrogram by a dotted line at distance 7.5. In the same way, 
with the 2 clusters CI and CII in the SOM (Fig. 3.9b) at distance 15 on the 
dendrogram.  

The clusters defined with the SOM built using the Euclidean distance are also 
very similar with those obtained with the dendrogram but the cluster EII including 
the SU 7. This new cluster can be explained by the high value of the species 
abundances in the SU 7, the Euclidean distance puts greater importance on the 
absolute quantities of species and less importance on their relative proportions.  

These results constitute a validation of the use of SOMs associated with a U-
matrix for clustering ecological data. With a large dataset, when dendrograms 
become very difficult to read, the SOM and the U-matrix are able to provide a 
very convenient visualization. These methods have been applied on a large 
dataset: 250 sampling sites were classified according to the similarity of their 
invertebrate species composition (with 283 species) (Céréghino et al. 2001). But it 
is worth noticing that the U-matrix is not a "ready made" clustering algorithm but 
rather a tool for the inspection of high dimensional data (Ultsch and Siemon 
1990). The clusters have to be ``seen'' on the map by the human dataset expert. In 
this way, the expert can define all types of clusters including the non-convex ones.  

The U-matrix display is in fact 3-dimensional. Nowadays, software allows a 3D 
representation in which interactive rotations can be carried out. Some applications 
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of such techniques have been proposed with SOMs (Vesanto et al. 1998) and 
could be turned to good account with large ecological datasets.  

With unsupervised training, the map quality cannot easily be estimated: the 
SOM algorithm is not based on the minimization of a goal function. However, 
several criteria have been suggested, for instance, average quantization error and 
topological quantization error may be used to quantify topology preservation 
(Hämäläinen 1994, Kraaijveld et al. 1995). For ecological data, the Euclidean 
distance is not necessarily the only possibility, thus the use of the topographic 
error (Kiviluoto 1996) can be suggested. The topographic error  gives the 
proportion of sample units for which the first BMU and the second BMU are not 
in adjacent hexagons on the map. On the forest upland dataset,  has been 
computed equal to 0 - for all SUs, the first BMU and the second BMU are in two 
adjacent hexagons - this is the proof of an excellent learning process and the 
achievement of a very smooth map.  

Sometimes, in a few sites, some species abundances are not known. In such a 
case, conventional clustering methods cannot be used. However, a SOM can be 
computed in the following way: in step 3, if some components of SUj are missing, 
the computation of the distances between SUj and each virtual unit has to be made 
only with the available components. The BMU is worked out and updated with its 
neighbors (eq. 3.1) using only the available components of SUj. If only a small 
proportion of the components of the data vector is missing, better results are 
obtained in this way than by discarding the sample units from which components 
are missing (Kaski 1997).  

All the experiments have been carried out on a PC computer with an Intel 
Pentium PIII-500 using MATLAB software with a program file written by the 
authors. Depending on the size of the input dataset, the training process can last 
from a few minutes to several hours, but this process has to be carried out only 
once. The U-matrix computation and the different displays last a very short time (a 
few seconds).  

3.5
Conclusion

We presented in this paper some ways to use SOMs for visualizing an abundance 
dataset. Due to its extreme adaptability, the SOM can have a number of variants 
that make it a very convenient tool for studying the ecological communities.  

The SOM enhanced by the U-matrix method is an effective clustering method 
including techniques to display the species abundance or abiotic variables.  

The SOM is a promising approach and completes the results obtained by 
classical methods of classification.  
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Chapter 4 

Ecological Applications of Genetic Algorithms
D. Morrall

4.1
Introduction

In the early 1960’s biologists were attempting to simulate evolution in natural 
systems (e.g., Fraser 1960, 1962).  About this same time, Holland was working 
towards the goal of expressing mathematically the adaptive processes of natural 
systems in order to create artificial systems using these processes.   Holland’s 
1975 publication “Adaptation in natural and artificial systems” provides a 
landmark conceptual framework for evolutionary adaptation in artificial systems 
using genetic algorithms.  His work on genetic algorithms was based on the 
premise that natural evolution offers the best model for balancing efficiency and 
flexibility in complex systems. 

During the 1970’s genetic algorithms were primarily the domain of computer 
programmers.  Programmers studying artificial intelligence techniques were 
exploring design attributes of GAs such as mutation and crossover rates, model 
behavior, and overall performance.   Goldberg (1989) provides a thorough 
overview of the development of genetic algorithms between the 1950’s and 
1980’s.   By the 1980’s and 90’s, genetic algorithms were becoming widely used 
as an optimization tool for a variety of real-world applications.  Optimization 
techniques exploited the standard binary GAs cability to represent and optimize 
real-world problems.  Some of the most common applications were in the area of 
combinatorial optimization.  Combinatorial optimization models included the 
classical traveling salesman problem (see Goldberg 1989), worker scheduling 
(Carnahan et al. 2000), traffic flow (Srinivasan et al. 2000), electrical and waste 
routing (Savic and Walters 1997; Song et al. 1997; Rauch and Harremoes 1999; 
Su and Lii 1999) and molecular design (Hibbert 1993; Venkatasubramanian et al. 
1995).  Parametric optimization was somewhat less common than combinatorial 
optimization.  Examples include growth media optimization (Weuster-Botz et al. 
1995), drug release formulation (Hirsch and Muller-Goymann 1995), and 
optimization of bioprocess rates (Park et al. 1997). 

Classifier systems and control strategies could perhaps be considered the next 
generation of GAs.  While they are also optimization problems in some sense, 
they typically require a more complex structure than the bit-string GA.  These 
applications often incorporate rules or symbolic capabilities.  Pattern recognition 
(e.g., Lavine et al. 1999), equation discovery (D’Angelo et al. 1995), consumer 
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choice (Greene and Smith 1987), fighter plane combat (Smith et al. 2000), 
medical diagnosis (Pattichis and Schizas 1996) and various game playing 
programs are examples of classifier and control strategies.    During the 1990’s a 
shift towards hybrid approaches (e.g., GA-Neural Net combinations) began to 
emerge (Fishman and Barr 1991).   Hybrid models capitalize on the GAs ability to 
evolve components of the hybrid system such as cellular automata or neural net 
node weightings.   

Although simulations of evolution in natural systems were initiated in the field 
of biology, GAs were not widely used for ecological modelling until the 1990’s.  
The development of the more complex GA designs that Goldberg (1989) refers to 
as genetic based machine learning paved the way for ecological modelling with 
genetic algorithms. This paper will explore the state of the art of GAs in the field 
of ecology and possibilities for future exploration of ecological systems using 
evolutionary programming.  Though the focus of this paper is on genetic 
algorithms, many of the ideas presented in this paper are applicable to other 
machine learning and hybrid approaches that are based on the theory of evolution.   
The term evolutionary algorithm is sometimes used as a more general descriptor to 
refer to the entire suite of methods that employ the process of evolution through 
natural selection and will also be used in this text.   

4.2                  
Ecology and Ecological Modelling

Eco- comes from the Greek “oikos” meaning home.  “Ecology… is concerned 
with the most complex level of biological integration.   It attempts to explain why 
organisms live where they do and what physical and biological variables govern 
their distribution, numbers, and interactions.  Based on an understanding of the 
fundamental principles that govern organism distributions, numbers, and 
interactions, the future behavior and assemblages of organisms can be predicted.  
Induction is defined as arriving at knowledge of the universal from examination of 
particulars; to see what is common to a set of similars.  Aristotle stated that “It is 
by induction that we know universals and the primary premises on which 
demonstrations are based” (Lloyd 1968).  Ecology is largely a field of induction.  
The complexity of ecological systems and the vast array of interdisciplinary data 
that must be collected to understand an ecological system make the process of 
“arriving at knowledge of the universals from the particulars” a challenging 
endeavor.   

To further complicate matters, non-linear relationships and dependencies in 
data are common in ecological systems, which are by definition integrative.  
Eugene Odum, the father of ecology, made the oft quoted statement that 
ecosystems are more than the sum of their parts; inferring the presence of non-
linear interactions which can lead to unexpected emergent properties.   Ecological 
modelling has, since its inception, attempted to develop ways to mathematically 
describe these complex, non-linear ecological systems.  Traditional ecological 
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modelling can be thought of as a top-down or deductive technique that represents 
broad ecological principles to produce the detailed patterns observed in nature.  
Early classic models that have contributed greatly to ecological theory included 
the Lotka-Volterra (Lotka 1925, Volterra 1926) predator-prey population model 
and H.T. Odum’s (1957) Silver Spring ecosystem energy flow model.  These and 
other traditional ecological models are procedural, equation-based models.  State 
variables, equations, and parameters are explicitly coded into the model.  
Equations and parameters are typically static with only the state variables 
changing over time.   These types of models have done much to help us test 
ecological theory by determining if the observed system pattern could be produced 
by equations representing the biological processes and interactions.  An ability to 
recreate the reflection tells us that the proposed interactions and mechanisms are 
plausible.  These models paved the way for predictive models designed to 
simulate how the effect of a stressor (e.g., nutrient loading) might change the 
environment. 

Major advances have been made in the field of ecology through ecological 
modelling.  However, the discovery of new theoretical breakthroughs via 
traditional ecological modelling has been limited in the past decade.  Jorgensen, in 
his paper on the state-of-the-art of ecological modelling (1999), suggests that 
ecological modelling has two primary difficulties that limit its effectiveness: 
obtaining reliable parameters and how to build ecosystem properties into the 
models.  Constructing an ecosystem model requires a detailed understanding of 
ecosystem function in order to determine the appropriate level of complexity.  Yet, 
even with reliable parameters and good model structure, traditional ecosystem 
models don’t represent system properties of adaptation.  As a result, ecosystem 
models base their analysis on parameters and structure at time t but attempt to 
predict ecosystem function at time t+1 (Jorgensen 1999).  This failure to 
incorporate the dynamic structural aspects of ecological systems into our models 
limits both our ability to understand governing mechanisms and our ability to 
develop predictive models.   

GAs are a bottom-up or inductive technique that can, through dynamic 
evolution, build the rules governing ecological systems.  They offer a tool for 
parameter optimization and for the development of structurally dynamic models.  
Genetic algorithms can be used to solve a wide variety of problems but are most 
commonly employed when: you don’t know what set of instructions to give to the 
computer to solve the problem (i.e., let the GA figure out the rules for you) the 
dataset is very large and an exhaustive search for the solution is inefficient (e.g., 
traditional optimization techniques won’t work) the data are fuzzy or there is 
missing information the response surface is irregular (i.e., you need to find a 
general solution) Koza (1992) goes as far as to say that genetic programming 
provides “… a single, unified, domain dependent approach to the problem of 
induction” (Figure 4.1). 
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Figure 4.1.  Ecological concepts are discovered from complex data by the 
process of induction.  Genetic algorithms provide a mathematical tool to guide the 
researcher through the inductive process. 

4.3
Genetic Algorithm Design Details 

Genetic Algorithms (GA) are computer solution-search and problem-solving 
techniques based on the principles of evolution by natural selection. Through the 
process of natural selection, GAs evolve linear, coded representations of data to 
solve problems or develop strategies.  Selection rules are designed by the 
programmer to govern the direction that is taken to evolve solutions to problems. 
Control strategies may be defined based on the programmer’s conceptions about 
how a system operates (e.g., select organisms that are better at procuring food) or 
rules may be independent of internal system operation (e.g., optimize for 
correlation between observed and predicted organism distributions).  Rules may 
be altered simply to produce a desired outcome (i.e., without any implied 
causality) or to evaluate multiple hypotheses about how a system operates. 

Although the concept of GA is simple, actual GA development involves 
multiple design decisions and choices from among a wide variety of 
implementation techniques (see Holland 1975 for a classic example).   The 
optimization problem is coded as a finite-length string, often using a binary 
representation.  Therefore, it must be possible to represent the solution as this 
finite-length string.   Problem representation by a fixed-length string is the key 
limitation to GAs.  For more detail on GAs see Goldberg (1989).   The basic 
strategy includes the following procedures (Figure 4.2).  GAs randomly create a 
population of individuals.  The mathematical representation of each individual 
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depends upon problem to be solved.  Individuals in the population are evaluated to 
determine their fitness (e.g., how well the individual produces the desired 
outcome). The fitness evaluation is the most important determinant of how future 
recombination is guided and the direction in which the population will evolve.  
After fitness has been determined, individuals must be chosen to be parents.  
There are a variety of methods that can be used for parent selection.  Tournament 
selection and roulette are 2 common methods.  Once the parents have been 
chosen, each parent is cloned to produce a child that is an exact replica.  Genetic 
material of the children is then exchanged via crossover or altered via mutation.    

Figure 4.2.  Summary of the process of evolution with a genetic algorithm.  The 
population of size n is randomly created where each individual is a chromosome 
constructed of genes (e.g., genetic material).  Parents are selected from the 
population and reproduce to create children.  The children undergo mutation and 
crossover.  Their fitness is evaluated and the unfit individuals in the population are 
replaced.  The process continues until a desirable outcome is achieved. 

The probabilities of mutation and crossover are selected by the user.  The 
children replace the least fit individuals in the population.  The process continues 
either until a specified number of generations have been completed or until an 
individual in the population meets the success criteria.  Because there is a random 
component in the GA, no two runs are the same.  The trajectory of population 
fitness over time will vary between runs (Figure 4.3).   
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Figure 4.3.  Example of the variability in fitness scenarios between different 
genetic algorithm simulations using the same parameter set.  The genetic 
algorithms was run 10 times using the same set of parameters.  The difference in 
fitness scenarios is a result of the random initialization of the population and the 
random nature of the mutation and crossover operators. 

4.4
Applications of Genetic Algorithms to Ecological  
Modelling 

In the field of ecology as in other fields, genetic algorithms have been used for 
parameter optimization, equation discovery, and pattern searching.  Reynolds and 
Ford (1999) developed a modelling approach (Pareto Optimal Model Assessment 
Cycle) that allows for simultaneous evaluation of multiple output criteria for a 
model with a given parameter set.  A genetic algorithm is used to generate optimal 
parameter sets (Pareto Optimal Sets) and evaluate fitness in terms of their ability 
to predict the model output.   Reynolds used this approach to parameterize and 
evaluate the ecological theory, model structure, and assessment data of WHORL, 
a canopy competition model.  Through this dynamic process they were able to 
reveal deficiencies in the model structure and criteria to make improvements.   
Ludvigan et al (1997) used a GA to search for optimal bacterial phospholipid fatty 
acid (PLFA) combinations to biogeochemical parameters.  Random combinations 
of PLFAs were chosen and evolved using a GA with a partial least squares fitness 
function.  These combinations of engineering and statistical techniques with 
evolutionary algorithms provide a robust approach to data evaluation.   

Similar in approach to parameter optimization is the use of GAs to look for data 
patterns such as subsurface zones of bacterial activity (Mahinthakumar al. 1999) 
and fish distributions (D’Angelo et al. 1995).  These studies attempt to find the 
optimum combination of variables to predict the distributions of organisms in 
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relation to their habitat.  With the surge in use of geographic information systems 
(GIS) to present environmental data on a spatial template, these types of analysis 
are common and are expected to become more prevalent.   Jeffers (1999) and 
Stockwell (1999) provide examples of some species distribution models that use 
abundance or presence/absence data to predict distributions of organisms as a 
function of spatial habitat characteristics.  Fielding (1999) suggests that these 
types of exploratory analysis are some of the most promising and least 
controversial uses of machine learning applications. 

From a practical standpoint, GAs have several limitations in the way that they 
have been used historically in ecology.  Many of the current GA applications can 
be accomplished using other more traditional techniques.  Often the traditional 
techniques don’t perform as well as a GA (e.g., applications of linear statistics to 
non-linear problems), however, they always beg the question “why didn’t you use 
technique X ?”.  Also, GAs are not very transparent to non-users.  While it is easy 
to explain the basics of how a GA operates, it still seems like magic to the 
uninitiated.  And finally, many of the combinatorial, parametric and pattern 
recognition applications of GAs require large datasets.  

With these limitations in mind, it seems probable that new ground will be 
broken by GAs that do things for which GAs are uniquely suited.  For example, 
GAs that incorporate evolution into ecological systems can allow us to truly 
explore the science of evolution, to understand ecosystems and open the doors to a 
multitude of practical applications.  These GAs are distinct from earlier process 
models in that they can evolve both the equations governing them and the 
equation rate parameters.  Through the GA, the modeler produces a dynamic 
“movie” of the evolution of mechanisms producing the patterns.  Questions can be 
posed regarding whether and how a particular mechanism might have arisen to 
produce a natural phenomenon.  Typically few assumptions and constraints, other 
than Darwinian selection, are built into a genetic algorithm model.  As a result, 
GAs can substantiate ecological theory by recreating it based on fundamental rules 
(i.e., dynamic induction). 

There are some fascinating examples of explorations into evolutionary theory 
and the emergence of ecological systems and properties.  The fundamentals of 
how to build these models came largely from computer game playing strategies 
(e.g., Bouskila et al. 1998).  Koza (1992) in his book on genetic programming 
presents a thorough discussion of a genetic program designed to find the optimal 
foraging strategies for an Anolis lizard and emergent properties in ants.  In the 
lizard example, the optimal foraging strategy as described by Roughgarden (1992) 
was discovered based simply on the location of the prey, the abundance of the 
prey, and the velocity of the lizard.  Over time, the lizard can adapt his strategy if 
the environmental conditions change.  This provides both an example of control-
cost strategy and a demonstration that evolutionary programs can evolve the 
theories governing complex behavioral strategies using only simple governing 
rules.  In the ant emergent behavior program (Deneubourg et al. 1986; 1991), a set 
of rules is used that governs the actions of individual ants.  When these rules are 
simultaneously executed, a complex pattern of behavior emerges that causes the 
ants to collect and consolidate food pellets into a single pile. 
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Researchers have long hypothesized that collective behavior could arise from 
colonial organisms operating according to very simple rules.  Traditional 
engineering style models would require tremendous computer power to simulate 
individuals and explicitly code the possible sets of interactions.  Genetic 
algorithms, on the other hand, are especially well suited for this type of 
applications and demonstrated that the emergence of complex behavior was 
indeed possible from simple rules.  Others, including Kvasnicka and Pospichal 
(1999) and Reuter and Breckling (1999) have similarly demonstrated emergent 
behavior among artificial agents and organisms. GAs, such as Giske et al.’s (1998) 
model of spatial dynamics in fish, that simulate coordinated movement of 
organisms based on simple rules have greatly improved our understanding of how 
groups of organisms travel, sometimes great distances, together in a coordinated 
fashion.   

The transition from population and community ecology to ecosystem science 
occurs when organisms are placed in a physical and chemical environment.  
Ecosystem science deals with the interaction between organisms and their non-
living environment.  An important component of the ecosystem is the spatial 
landscape within which organisms live.  Natural landscapes have complex patch 
dynamics that influence both the distribution of organisms and their interactions 
(Borhman and Likens 1979).  The evolution of multiple-species within a 
landscape requires representation of diverse niches with different evolutionary 
pressures (Cedeno and Vemuri 1999).  Organisms may move through the system 
and change in number as well as immigrate and emmigrate as system properties 
change.  It is through their ability to simulate evolution in response to changing 
environmental conditions and spatial heterogeneity that GAs can offer most to the 
field of ecosystems ecology.    

One example of a genetic algorithm that can be used to simulate evolution in 
ecosystems is Holland’s Echo model (1995).  Echo is a generic ecosystem model 
with evolving agents and a resource limited environment.  Hraber et al. (1997) 
state that the primary contribution of Echo to ecological modelling is that 
evolution is built in as a fundamental part of the system.  Echo includes both 
ecological interactions and evolutionary dynamics.  This provides the potential for 
evolution of ecological structure and function in response to changing conditions.  
Through this approach they can simultaneously evolve multiple species and 
species interactions.  They consider Echo a mechanistic model because primitive 
components and mechanisms are built into the model that spontaneously give rise 
to macro-level properties.   Echo incorporates spatial attributes of the ecosystem 
and the opportunity for co-evolution; both of which are essential for simulation of 
complex ecosystems.  Agents, or individuals within Echo, occupy sites within a 
two-dimensional world.  They reproduce and exchange genes when they have 
acquired sufficient resources through trade and combat.   Each agent contains 6 
external tags (offense, defense, and mating) and internal conditions (combat, trade, 
and mating) genes (Figure 4.4).   Internal tags are not visible to other agents.  
Agents interact based on their own internal conditions and the other agents’ 
external tags.  They have different abilities to accept and accumulate resources.  
Like Echo, EUZONE (Downing 1997) describes an evolutionary computation 
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model that includes both ecological and evolutionary interactions.  EUZONE 
evolves species of phytoplankton-like creatures in a two-dimensional world.  Echo 
and EUZONE are designed to capture the fundamental attributes of complex 
adaptive systems.   

Figure 4.4.  The structure of an Echo agent.  Each agent consists of a gnome and 
a resource reservoir.  The genome has r+7 genes, where r is the number of 
resources in the world.  Six of these, the tags and the conditions, are composed of 
variable-length strings or resources (i.e., of the lower case letters that represent 
resources).  Tags are visible to other agents.  Conditions and other properties are 
not.    

GAs can also be used to develop self-designing ecosystems.  The development 
of self-designing adaptive systems solves the problem that process models have in 
trying to represent dynamically changing systems.  Fontaine (1981) made an early 
attempt at creating a self-designing ecosystem using a standard process model and 
adjusting the parameters.  The model parameters were optimized by running the 
model for 3 time-steps, altering the parameters and rerunning the model with the 
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best set of parameters.  The goal of this effort was “the search for a single 
principle that adequately describes the evolution of ecosystem structure and 
function at all levels of resolution…” (Fontaine 1981).  With evolutionary 
programming not only can the parameters be optimized more effectively, but the 
model structure, state values, and behaviors can be changed to produce a dynamic, 
evolving ecosystem.  GAs and GPs were developed to create self-designing 
computer programs (Koza 1992) and are therefore the logical techniques to be 
applied to this effort.  Self-designing computer programs can be used to create 
self-designing ecosystems.  The work of Holland (1995) and Hraber et al. (1997) 
are in essence self-designing systems.       

4.5
Predicting the Future with Genetic Algorithms 

Sustainability has become the ultimate goal of many ecological management 
practices in the 21st century.    Regardless of what we are attempting to sustain it 
must be sustained in the face of a continuously changing environment.   Natural 
change is accelerated through human alteration of habitats (e.g., channelization of 
streams), addition of pesticides and fertilizers, and the introduction of non-native 
species.  For organisms to survive they must be able to adapt to both natural and 
human-induced change.   Ecological models must also incorporate evolution and 
co-evolution into their frameworks if they are to predict the sustainability of 
various ecologies (e.g., Janssen 1998).  Evolution can be incorporated into 
ecological models through adaptation of species currently in the system and by 
forecasting changes in species composition (e.g. Maier et al. 1998).   Co-evolution 
in ecological systems is described by the Gaia theory (Lovelock and Margulis 
1974; Downing and Zvirnsky 1999) and which incorporates  the feedback 
mechanisms common in natural systems.  Gaia refers to the circular pathway 
whereby organisms respond to their environment, modify the environment, and 
are, in-turn, modified by the environment.   Representation of this phenomenon is 
critical for predicting the future of ecological systems. 

As Jorgensen (1999) noted, most traditional models are limited because they 
use a static representation of ecological systems that is developed and 
parameterized based on the system characteristics at a certain point in time.   They 
do not take into account the flexibility and adaptive capabilities of natural systems 
and therefore may over-predict or erroneously predict the effect of stressors.   A 
combination of genetic algorithms with traditional engineering based models and 
other artificial intelligence techniques (e.g., cellular automata and neural 
networks) can provide a dynamic representation of how adaptive responses to 
environmental change govern species change.  These dynamic approaches 
facilitate exploration of various possible trajectories of adaptation that might result 
from changes in the environment.     

Because of the broad scale at which the environment is being changed, tools are 
needed that can accurately predict the sustainability of populations, communities, 
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and ecosystems.  This need will become increasingly important in the future.  
Dynamic simulation of organism adaptation and interdependencies marks the 
beginning of a new age in ecological modelling and offers the possibility for 
development of superior predictive models.  GAs based on the fundamentals of 
theoretical ecology can help us find the mathematical foundations for the concepts 
on which predictive ecology is based.    

4.6
The Next Generation: Hybrid Genetic Algorithms 

The examples noted above point out the capabilities of GAs to optimize 
parameters, discover equations, search for patterns, and develop classifier and 
control strategies.  Yet GAs are not the best technique for all problems.  Neural 
nets, for example, are often superior at pattern recognition.  Many readily 
available statistical techniques perform as well as or better than GAs at developing 
regression and classification systems.  These techniques, however, do not have the 
evolutionary capabilities needed to develop control strategies and complex 
adaptive systems. 

While each of these techniques will continue to be used very successfully, 
hybrids using the best attributes of each technique will have the potential to offer 
revolutionary advances.  Work done by Patel et al. (1998) is an intriguing example 
of a hybrid neural net and genetic algorithm.  Their objective was to design new 
molecules that would kill bacteria.  They trained a neural network on a dataset of 
chemicals and their ability to kill bacteria.  They then used a genetic algorithm to 
rearrange the amino acid sequences to create new chemicals.  The neural network 
then evaluated the efficacy of these new chemicals.  This approach took advantage 
of the strengths of each technique. 

D’Angelo-Morrall et al. (in prep) created a hybrid statistical clustering and GP 
model.  The objective of this work was to predict the toxicity to aquatic organisms 
of a wide variety of chemicals.   Because the chemicals in the dataset were very 
diverse, a single equation could not adequately predict the toxicity of all 
chemicals.  They used k-means clustering to group the chemicals into similar 
classes.  The GP was then used to evolve equations to predict the toxicity of each 
groups of chemicals.  The performance of the hybrid statistical/GP was compared 
with a GP that did both clustering and predictions and K-means analysis that did 
both clustering and predictions.  When the dataset was of sufficient size for 
predictions (training set n=50; testing set n=10) the hybrid approach outperforms 
the individual methods. 

Whigham and Recknagel (2001) developed a novel hybrid of a process-model 
and GA with the goal of optimizing the model structure.  They started with a 
standard process model and used the GA to optimize the process-based equations 
and, where necessary, evolve new equations.  This hybrid model performed better 
than either a stand-alone GA or process model.  This type of hybrid has great 
potential for producing better process models and provides a means by which we 
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can question the many of the standard process equations that have become 
paradigms. 

These are just a few examples of hybrid architectures, which are becoming 
more and more prevalent.  It is expected that in the future, the powerful 
evolutionary framework of GAs will be commonly used as an integral component 
of hybrids.   This transition from independent frameworks to coupled systems is 
the next generation in the evolution of artificial intelligence programming 
techniques and has the potential to open new frontiers in ecological modelling. 
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Chapter 5 

Ecological Applications of Evolutionary 
Computation
P.A. Whigham  · G.B. Fogel

5.1
Introduction

Ecological modelling covers a broad range of techniques, concepts and fields of 
study. Ecosystems display many complex structures, such as hierarchical 
organization, and many components interacting at different temporal and spatial 
scales. These components, and the overall structure of any ecosystem, have also 
been derived through complex adaptations that produce such features as 
speciation, symbiosis and community structures.  

The most basic ecological models are concerned with the behavior of a single 
species, group of species or community and their variation in time. These models 
can be expressed as predictive functions, based on independent variables such as 
environmental factors, other species and other abiotic factors. More complex 
models capture the coupled interaction between species and may incorporate 
spatial extent when describing the system. The most complex models attempt to 
capture the spatial and temporal patterns of an ecosystem at several levels of 
description. These models aim to understand the biological and evolutionary 
mechanisms that have produced an observed ecosystem and to explore the basic 
properties that produce diversity and structure in an idealized system.  

Evolutionary computation is a discipline that makes use of principals from 
natural evolution to evolve solutions to complex computational problems. These 
techniques have been applied to such diverse areas as optimization, inductive 
modelling, constructing characteristic features of biological systems and as 
theoretical models of social and population-based interactions. Their capability to 
handle large search spaces (in terms of possible decisions or model constructs) in 
an efficient manner, and their similarity to biological systems, such as 
genotype/phenotype mapping, structured populations of individuals, adaptation 
and evolution makes them ideal candidates for constructing ecological models.  

The advent of technologies such as global positioning systems, satellite images, 
improved field data collection services and unobtrusive tracking devices have 
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allowed ecologists to collect data at new resolutions and with higher accuracy and 
frequency.  This improved data collection offers the possibility for the use of 
inductive modelling techniques to develop new theories and models of ecological 
systems at many scales and complexities. This data can also be used to verify 
theoretical models of ecology and to give insight to the complex hierarchical 
structures inherent in ecosystems.  

This chapter outlines some of the basic approaches to ecological modelling and 
shows that evolutionary computation techniques have been successful in a number 
of different ecological areas. The diverse range of techniques supported by 
evolutionary algorithms is shown to be appropriate for the extension of current 
approaches and the development of new techniques for understanding ecological 
systems, and is a major area of the emerging discipline of ecological informatics. 

5.2
Ecological Modelling 

Ecology is a discipline that covers many scales of description, both spatial and 
temporal, and is fundamentally concerned with the interactions between 
organisms and their environment (Gillman and Hails 1997). Haeckel (1866) first 
defined the concept of ecology in terms of an understanding of components (biotic 
and abiotic), and how they can be viewed, described and modelled as a system. 
An ecological model must be able to describe the changes in a system based on 
generalities of how a system is functioning, the selected components that make up 
the system, and within certain temporal and spatial resolutions. Ideally these 
models allow either a prediction in terms of future states of the system, or elicit 
greater understanding of how the system functions and the driving forces and 
interactions of the system. Ecology may also be defined as the study of the 
processes that influence the distribution and abundance of organisms, their 
interactions and the transformations of energy within a system.  

5.2.1
The Challenges of Ecological Modelling 

Ecological modelling is a challenging discipline due to the inherent complexity, 
nonlinearity, and spatiotemporal dynamics of the multivariate system being 
described. For example, computational models of individual interactions in 
ecological systems can be very complex (Judson 1994). These models are 
typically characterized by many parameters that describe how each individual 
behaves. As a result, the system as a whole produces complex, often unpredictable 
behavior. Alternative models of individuals produce a mathematical equation that 
relates several biotic and abiotic independent quantities to a particular dependent 
variable. This equation can then be used to predict the future states of the system 
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given present knowledge. These models are often formulated as a combination of 
deterministic factors combined with a term or terms that capture the intrinsic 
stochastic nature of the system and the errors associated with measurement and 
observation. Of course, although these models are typically expressed in linear 
terms, they describe a system that is generally replete with nonlinear interactions 
and temporal variation.  

Extensions to these basic linear functions are often formulated as differential 
equations (when time is continuous) or difference equations (when time is taken 
in discrete intervals). Difference equations rely on an interpretation of nonlinear 
systems and their resolution in the form of a singular equation, and have been 
applied to individuals and population dynamics (Hassel and Comins 1976).  With 
this approach, it may not be possible to encapsulate all of the correct variables into 
the equation or might incorrectly set the importance (weights) for each term in the 
equation. There are also a number of simplifying assumptions required when 
formulating difference or differential equations that can make the resulting models 
difficult to interpret when applying them to real ecosystems. Coupled equations 
have been used to understand and explore plant-herbivore, host-parasite, host-
pathogen and other competition interactions. Extensions to these models have 
allowed intraspecies competition to be represented (for example, (Watkinson 
1987)), however all these equations have constants that must be set to represent 
the corresponding modelled system. As these equations become more complex the 
issue of parameter selection, based on measured data, has become an issue due to 
the nonlinear behaviour of the model as a whole.  

The dynamics of communities are interested in the interactions between 
species, and how the communities as a whole respond to changes in exogenous 
factors, and the introduction or removal of species in the community pool. These 
models are often constructed as a matrix of interactions, and expressed as partial 
differential equations. The dynamics of communities are often very complex and 
are difficult to model in any complete sense. Once again, the tuning of parameters 
and the selection of other constants in the model relies on matching the measured 
dynamics of the community and the model.  

The previously described models have focused on the time dynamics of 
systems, and have assumed that the spatial interactions can be ignored, are at the 
same scale, or are homogeneous. However, since most ecological systems have 
spatial extent, and are limited in their interactions by location, the inclusion of 
space is often fundamental for exploring ecological systems. Extending the 
previous non-spatial models to a regular grid often involves extending the 
complexity of the model to include not only local interactions (at a single grid 
cell) but the influence of neighbouring cells and the species found at these 
locations. These models, often termed cellular automata (CA), have been widely 
used in studying plant and animal interactions (Comins et al. 1992; Silverton et al. 
1992; Colasanti and Grime 1993). Spatial models often display long-term 
population persistence and dynamics that cannot be captured using a spatial 
models. Metapopulation models, based on spatial distributions, have also been 
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studied, where the local models are described using a differential or difference 
equation that incorporate a colonization term that indicates how local populations 
spread (Levins and Culver 1971; Carter and Prince 1981). These models differ 
from CA in that the spatial terms are explicitly represented in the equations, rather 
then an explicit model of spatial distribution being used to give spatial extension. 
The difficulty with cellular models is that the production of realistic local rules 
that give rise to appropriate global behaviour is a complex task with few 
guidelines.  Spatial structure has also been studied in relation to island 
biogeography and the concept of gene flow between metapopulations (McCauley 
1995), however all of these approaches are complex in nature and difficult to 
formulate and test. 

5.2.2
Summary 

The previous discussion presented some of the basic challenges involved in 
modelling ecological concepts. There are several salient points: models based on 
differential and difference equations have constants that require tuning based on 
measured data, and most models are simplified in order to be solved, either by 
assumptions that produce linear models, or by removing the complexities of the 
system. Additionally, models that incorporate spatial and temporal information, 
and those based on populations of individuals, are difficult to formulate or 
express. In the following sections, applications of evolutionary algorithms to 
ecological modelling will be reviewed. These applications are both extensions to 
traditional modelling efforts and wholly new approaches to ecological 
informatics.  

5.3
Evolutionary Computation 

Evolutionary computation (EC) is an area of computer and information science 
that uses principals from biological evolution to solve computational problems. 
The concept of simulating evolution on a computer has a long history. Early 
efforts focused on learning machines (Friedberg 1958; Friedberg 1959; Fogel 
1962; Fogel et al. 1966), evolutionary systems dynamics (Barricelli 1954; Conrad 
and Pattee 1970), engineering applications (Rechenberg 1965; Schwefel 1965), 
and genetics (Fraser 1957; Bremermann 1962; Fraser 1962; Bremermann et al. 
1966; Bagley 1967; Rosenberg 1967; Holland 1969; Holland 1973). This history 
is reviewed in Fogel (Fogel 1998; Fogel 2000). Since natural evolution has 
successfully created complex systems, and discovered novel solutions to difficult 
problems (such as vision, language and cooperation), there was a clear attraction 
towards the use of these principles to construct information systems that could be 
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used for modelling, discovery of patterns, construction of artificial systems, 
design work and optimization.  

Evolution in real-world systems can best be described as a two-step process of 
heritable variation and selection. Variation occurs in the variety of behaviors that 
are exhibited by individuals of organisms interacting in communities, populations, 
and environments. The individual behavior (phenotype) is the product of a genetic 
composition (genotype) and the interaction of that genotype with the cellular 
environment. However, nature only measures the worth (fitness) of any individual 
at the level of phenotype. Selection removes those individuals from the population 
that do not have an appropriate fitness leaving behind those organisms with 
sufficient fitness to pass their genotype to the subsequent generation. During this 
process of heredity, variation to the genotype can occur, which may or may not 
lead to alternative behavior in the progeny. The process of selection repeats itself 
on the second generation of individuals, culling those with insufficient fitness. 
Variation in the reproductive process is the source of change at the genetic level, 
which may translate into new innovation at the phenotypic level. Selection serves 
as a filtering mechanism to ensure that individuals of low fitness are removed 
along the way. Evolution, then, is the coupling of these two processes over time.  

Sewall Wright (1932) offered the concept of an adaptive landscape as a means 
to describe the manner in which evolution may proceed into novel adaptive zones. 
Individual genotypes can be mapped into their respective phenotypes, which are 
in turn mapped onto the surface of an adaptive topography. Each peak on this 
topography represents a phenotype of high fitness (and, therefore, one or more 
optimized genotypes). Evolution proceeds up the slopes of these peaks towards 
solutions of increasing fitness as the selective mechanism culls inappropriate 
phenotypic variants. However, this is an admittedly idealized concept. In reality, 
the adaptive topography changes with time as a function of the environment and 
organism-environment interactions. Simulation of evolution in a computer can 
demonstrate these same phenomena and can be used to search both static and 
temporal fitness landscapes for regions of high fitness. 

Within an engineering context, search algorithms define a problem in terms of 
a search-space (the space of all possible solutions). Individual points in this 
search-space represent solutions to the problem at hand. The goal is to find useful 
solutions by traversing this search space in an efficient manner. However in many 
engineering problems, the number of potential solutions is astronomical and an 
exhaustive search of all solutions is infeasible in real time. Evolutionary 
algorithms have proven to be successful at searching complex nonlinear adaptive 
topographies (fitness functions) to return a near-optimal (or optimal) solution in 
real time. Evolutionary algorithms are an extremely successful approach to 
problems that can be framed as a search for a set of particular values, conditions 
or structures. A requirement for such a system is the ability to measure a relative 
fitness between individuals. Through the use of evolutionary algorithms, complex, 
nonlinear problems can be searched for near-optimal solutions. However, since 
evolution represents a stochastic search through the solution space, no application 
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can guarantee the optimal solution. However, for many problems a real-time near-
optimal solution is quite satisfactory, and in fact often it is not possible to 
determine when an optimal solution has been reached. Evolutionary algorithms 
find good solutions to novel problems in complex situations – requirements that 
suit the concepts of ecology and ecological modelling. 

5.3.1
The Basic Evolutionary Algorithm 

The basic evolutionary algorithm (EA) comprises the following main components, 
independent of the actual representation used for individuals:  

A method for generating an initial population of individuals. Typically this is 
made at random. The representation of the individual in the population is typically 
correlated to the problem that is being addressed.  

A fitness function. This function gives a measure of fitness that can be used to 
score the worth of individuals in the population in terms of their performance to 
the task at hand. 

A method of selection, based on fitness. This selection pressure drives the 
population towards better solutions. Common forms of selection are proportional, 
where the probability of selection is directly proportional to the fitness of an 
individual compared with the population as a whole, and tournament (round-
robin), where the selection is based on a fitness ranking between a random subset 
of the population.  

A method of reproduction with heritable variation. Reproduction may mimic 
various genetic operators, such as mutation and crossover, to produce new 
individual behavior in the population with some variety. These operators 
commonly allow for both random changes within an individual’s representation, 
and the sharing of genetic information between two or more members of the 
population. Alternatively, the variation operators can be applied to the phenotype 
directly, avoiding a requirement for genetic representation.  

A method of determining and maintaining population size. The basic 
evolutionary algorithm uses a single population with a constant number of 
individuals for each generation. Other strategies allow a population to gradually 
change via a steady-state mechanism, or allow the population to grow and decay 
based on some measure of external resources.  

A termination criterion. Typically this is based on a performance measure (i.e. 
a minimum desired fitness measure) or a total effort in terms of number of 
generations, clock time, or computer processing time. 
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Figure 5.1. Genetic operators of crossover and mutation for bit-strings (GA). 

There are a large variety of different strategies for each of these stages, 
however the underlying concepts are similar. A typical evolutionary algorithm 
with a single evolving population performs the following steps, based on the 
above components: 
Commence with a randomly (or biased) population of N individuals, P(0). 
t := 0
WHILE termination criterion not reached DO 
Calculate the fitness F(n) for each individual n  P(t).
Repeat steps i iv until N new individuals have been created in P(t+1):
Select a pair of individuals n1,n2  P(t), using a selection method. 
Based on a probability pc, crossover n1 and n2 by taking a part of each individual 
and combining them to form a new individual n1  and n2 .
Based on a probability pm, mutate n1  and n2 .
Insert n1  and n2  into P(t+1).
t := t + 1 

+

/

C

A

B

+

/

~

A

C

B

Parent 1

+

~

A

A

Child 1

Parent 2

+

/

/
B

C

B

C

Child 2

Crossover Sites



                                                                       P.A. Whigham  · G.B. Fogel                   92

Figure 5.2. Crossover using tree structures (GP) 

The details of the variation operators depend largely on the structure used to 
represent the individuals of the population. The choice of an appropriate 
representation is a key ingredient in the development of an evolutionary 
algorithm, however current theory (Wolpert and Macready 1997) suggests that no 
one representation or set of variation operators is most useful over all fitness 
functions. Therefore, the user is required to tailor the representation and variation 
operator to the problem at hand.  

Figure 5.1 shows typical variation operators (crossover and point mutation) for 
individuals represented as bit strings. The site(s) for crossover is commonly 
selected at random and the parent material is recombined to create two new 
offspring. Mutation is normally applied with a certain probability to each site of 
the bit string, typically transforming the value from a 0 to 1, or vice versa. Figure 
5.2 shows crossover using a tree structure as the individual representation (such as 
found in Genetic programming (GP)). Commonly, two random crossover sites are 
selected from the parents, and the subtrees below this site are swapped to create 
two new children. Mutation of a tree structure involves randomly selecting an 
internal node, deleting the subtree below this node and randomly creating a new 
subtree.  The size of the new subtree is limited to some maximum depth of tree to 
limit the individual size. This can also be considered as a means of limiting the 
specialization of the tree representation: a smaller tree typically represents a more 
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general (parsimonious) solution. It is important to realize that the representations 
and variations offered above are merely two of many potential representations and 
the choice of the most appropriate method is left to the user to determine for each 
problem. This is an important point to address for the researcher as different 
representations may affect the utility of the evolutionary approach on the search 
space in question. 

5.3.2
Summary 

Evolutionary algorithms use concepts based on biological evolution to evolve 
solutions to problems for optimization, simulation and models of individual, 
group and community interaction. These approaches allow useful solutions to 
nonlinear problems to be generated in real-time and allow complex systems to be 
developed and described that are difficult to model with standard mathematical 
approaches.

5.4
Ecological Modelling and Evolutionary Algorithms 

Section 5.2 discussed various goals of ecological modelling and the traditional 
frameworks used to understand and represent ecological problems. The following 
sections will describe various applications of EAs to develop or supplement 
models that have become standard approaches to understanding the patterns in 
ecology. Areas of research will also be highlighted that can extend current 
ecological theory based on evolutionary techniques. 

5.4.1
Equation Discovery 

Developing equations to describe the functional relationship between variables in 
a system is a key goal to understanding ecological systems. Typically, a 
differential or difference equation is created to describe the system, constants of 
the equations are tuned and the equations used to model the system. Given a set of 
data describing the independent and dependent variables, the goal is to produce an 
equation that models this information. Ideally the form of the solution should be 
constrained to allow only physically meaningful interpretations to be produced. 
One such example of an evolutionary system that allows this to occur is based on 
GP (Whigham 1995; Whigham and Crapper 1999), and uses a context-free 
grammar to allow bias in the form of evolved solutions. This approach has been 
successfully applied to freshwater system modelling, by creating equations that 
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predict the concentration of chlorophyll-a (Whigham and Recknagel 1999) and 
allows the equations to express relationships between variables as a function of 
past values, average values and nonlinear mathematical functions such as 
exponential, logarithms and power functions. The expressive nature of the 
equations allows more detailed exploration of the patterns then could be achieved 
using a statistical approach, since the constraints of independence and linearity are 
not required.  

5.4.2
Optimisation of Difference Equations 

There have been many developments of differential and difference equations to 
predict ecological response. Often there are difficulties in tuning the parameters of 
these equations; since the equations respond in a nonlinear fashion and so simple 
hill climbing search algorithms (i.e. dynamic programming) do not perform 
adequately. Since these problems can be framed as an optimization of the 
parameters of the difference equation, evolutionary algorithms are a suitable 
approach. One such example has been to use a GA to tune the parameters of a 
difference equation, with the parameters constrained within known physical 
limits. Each candidate solution (population member) represented a vector of the 
parameter values, and the fitness function was a measure of how well the 
difference equation predicted the measured data describing the freshwater system 
(Whigham and Recknagel 1999). Constraining the parameter values and using 
independent training and test data sets the equation parameters were evolved to 
produce far greater accuracy and generalization ability (the RMSE for the unseen 
test period of 1986 and 1993 was originally 91.46 and reduced to 46.75, as shown 
in Figure 5.3). This gave the evolved difference equation accuracy that was 
comparable to neural network and GP applications for the same data set.  

Extensions to this work investigated evolving components of the difference 
equation to derive new terms (such as the grazing term) to substitute in the 
equation. This allowed an exploration of other forms of representation for this 
term, and concluded by demonstrating that the grazing term is likely to not be a 
linear function of chlorophyll-a concentration (Whigham and Recknagel 2000). 
This work was also extended to demonstrate that a complete differential equation 
could be evolved, however as the degrees of freedom increased, the possibility of 
exploiting other relationships in the data, and therefore not producing a physically 
based solution, became more likely. 
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Figure 5.3. Evolved difference equation versus original parameter settings for 
the two unseen test years: 1986 and 1993. 

5.4.3
Evolving Differential Equations 

A common approach in ecology is to produce a set of differential equations to 
represent the relationships between variables in a system. Previous work has 
shown that searching for suitable differential equations based on ecological data 
are possible (Todorovski et al. 1998). In this work, Lagramge, an equation 
discovery system, was used to define the space of possible model structures and to 
automate the modelling of phytoplankton growth. Although this approach did not 
use an evolutionary system to perform the search (the search was a systematic 
breadth-first search of the possible equations) there is clearly an opportunity to 
extend the work using evolution to examine a larger search space of possible 
equations. Work that demonstrates the use of evolving differential equations is 
that of Sakamoto and Iba (Sakamoto and Iba 2001). In this work, equations 
representing a number of coupled differential equations were evolved using GP, 
however this approach has not currently been applied to ecological data.  
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5.4.4
Rule Discovery 

Expressing knowledge or models in the form of rules became popular during the 
1970’s with the advent of expert systems (Buchanan and Shortliffe 1984). There 
has been a long history of rule discovery using evolutionary techniques (Wilson 
1987; De Jong 1988; Grefenstette 1988; Robertson and Riolo 1988; De Jong and 
Spears 1991; Frey and Slate 1991; Lees and Ritman 1991; Corcoran and Sen 
1994; Sipper 1994). The attraction with rules is that they can be easily interpreted 
by a user, and can be treated independently of the system in which they were 
created. A recent approach to rule discovery using evolution has been described 
by Bobbin and Recknagel (Bobbin and Recknagel 2001), where a set of rules for 
predicting various algal concentrations were created. For example, the following 
rule set described Microcystis dynamics (Recknagel et al. 2002): 

IF P >= 126 AND P <= 81.7 µg/l  
THEN Microcystis = 500,000 cells 
ELSE
IF pH >= 9.72 THEN Microcystis = 500,000 cells  
EXCEPT IF T <= 19.5 ºC AND T >= 5.67 ºC THEN
Microcystis = 3,000 cells 
ELSE
IF N/P >= 47.2 AND N/P <= 55.2 THEN
Microcystis = 0 
ELSE
IF S >= 95.5 cm THEN Microcystis = 3.5 cells  
EXCEPT IF T >= 5.67 ºC AND T <= 15.7 ºC THEN
Microcystis = 0
OR IF N >= 1,110 µg/l THEN Microcystis = 0 
  IF P >= 15.6 µg/l AND P <= 116 µg/l  

THEN Microcystis = 100,000 cells  
EXCEPT IF T >= 26.7 ºC THEN Microcystis = 500,000 cells  
EXCEPT IF S <= 160cm then Microcystis = 100,000 cells 
ELSE
IF N >= 757 µg/l AND N <= 1,690 µg/l THEN  
Microcystis = 0 cells  
EXCEPT IF T >= 15.7 ºC AND T <= 26.7 ºC THEN
Microcystis = 3,000 cells  
EXCEPT IF P <= 15.6 µg/l THEN
Microcystis = 0 cells 
ELSE
IF T >= 15.7 AND T <= 26.7 ºC THEN
Microcystis = 100,000 cells  
EXCEPT IF S <= 160 cm AND S >= 74.4 cm THEN  
Microcystis = 0 cells 
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ELSE
IF T >= 5.67 ºC AND T <= 15.7 ºC THEN
Microcystis = 3,000 cells 
ELSE
Microcystis = 100,000 cells. 

This model successfully predicted both the timing and magnitude of 
Microcystis on unseen data from the same lake environment and was assessed as 
having a physically plausible interpretation. 

A second example of rule discovery involved evolving a set of rules to predict 
the habitat density of a spatially-distributed marsupial (Whigham 2000). This 
work used a grammar-based GP system to show that spatially-explicit rules could 
be evolved that predicted the location and density of a marsupial, based on 
surveyed information and a set of spatial data. The resulting model was used to 
question the currently accepted home range for these marsupials. The evolved 
rules allowed expressions to be constructed that could not be easily formed using 
other techniques (McKay et al. 1997).  

Several other rule-based systems, based on using a GA, have been created. 
GARP (Stockwell and Peters 1999) allowed the explicit integration of 
geographical data and a GA to discover rule sets that expressed spatial 
knowledge. This system has been used to automate the predictive spatial 
modelling of the distribution of species of plants and animals. BEAGLE (Fox et al. 
1994), a GA for constructing logical expressions, was used to generate rules that 
could predict presence/absence of the duck species Aythya ferina on gravel pit 
lakes in southern Britain. GAFFER (Jeffers 1999) allowed the discovery of rules 
for numerical prediction and classification, and was designed to apply to real data 
sets where little background knowledge of relationships between variables was 
available. GAFFER was applied to discover rules that characterised habitat 
features determining the abundance of individual aquatic species.  

5.4.5
Modelling Individual and Cooperative Behaviour 

Modelling and understanding individual behaviour in an environment is of 
fundamental ecological interest. Work has been done using GP to evolve foraging 
strategies based on a model of the Anolis lizard (Koza et al. 1992). This work 
aimed at understanding what was an optimal foraging strategy, based on the 
abundance of insects, the velocity of the lizard, and the spatial relationship 
between the lizard and insects.  The work demonstrated that for a set of insect 
abundance, lizard velocities and spatial placement the system evolved a sequence 
of progressively improved strategies. The models were expressed as a 
mathematical function that included decision points, based on an if-then function, 
and the current observed spatial positions of the insects, as viewed by the lizard. 
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These types of models show promise in producing hypotheses regarding 
individual behaviour and proposing theories that could be tested in the field. 

A second example of individual behaviour is the study of trail following, in 
particular ant foraging and the use of pheromones for trail marking. The simplest 
concept is the evolution of trail following, as demonstrated by the Sante Fe trail 
experiments (Koza 1992). Here an artificial ant must learn to produce a trail 
following strategy that discovers food placed along a trail scattered amongst a 
144-cell grid. GP was shown to be capable of finding solutions to this problem, 
even though the fitness function was based purely on the number of food units 
discovered within a certain number of evaluations. This type of model indicates 
that complex spatial behaviour for an individual can be evolved and studied, 
which may be used to understand observed foraging behaviour of real species. 

Extending the concepts of a single population attempting to find a single best 
solution, coevolutionary algorithms use a number of subpopulations where each 
subpopulation evolves competing (rather than cooperating) solutions (Cohoon et 
al. 1987; Whitley and Starkweather 1990).  Extensions of these ideas include the 
cooperative coevolutionary genetic algorithm (GA) (Potter and De Jong 1994), 
where a subpopulation represents a species that solves one particular aspect of a 
problem. The final complete solution is obtained by assembling representative 
members from each subpopulation. The subpopulations evolve independently, 
using a GA, where the goal is to have each subpopulation solve one aspect of the 
problem. This has similarities to the concepts of speciation, where each 
subpopulation finds a niche in the solution space to exploit.  Other approaches 
with coevolution allow the modelling of individual behaviour in the population to 
produce models of predator-prey interactions (Cliff and Miller 1996; Haynes and 
Sen 1996; Rosin and Belew 1997) and other forms of competition. Each 
individual is represented as a bit string, neural network, or symbolic function that 
can evolve to produce behavior based on the competition produced from other 
individuals in the population.  These approaches have been successful in 
demonstrating concepts such as diversity, extinction and genetic drift. However, 
these systems are difficult to interpret when applied to real ecosystem behavior or 
when they are coupled with data based on measured systems. 

Extensions to multiple populations use the explicit representation of space, 
using CA or other grid-based representations, to allow spatial interactions to be 
explicitly represented. An early example of this approach was ‘Tierra’ (Ray 
1992). Here organisms are represented as simple computer programs that compete 
for the memory and processing resources of the computer. The population 
changed over time through reproduction with mutation, and was constrained in 
terms of total size by having old individuals, or those that performed poorly, being 
gradually removed. The work showed that parasites could evolve in the 
population that used parts of other organisms for their own benefit.  

A more complex system using self-replication and cooperating bits of computer 
code that evolved in a virtual computer world was called ‘Avida’ (Adami 1998). 
This was an extension of ‘Tierra’, with spatial structure based on a grid. The 
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results of this work demonstrated that evolving individuals with spatial structure 
showed some of the observed properties from real systems, such as power laws 
and self-organised criticality (Bak 1996).  However, it should be noted that 
although a model shows self-organized criticality, or some other property that can 
be interpreted as ecological based, it is not necessarily useful as a model of an 
ecosystem. Few works based on these complex system approaches have been able 
to produce theoretical predictions that have been testable with real ecosystems 
(however, see Section 5.4.6 for one example). 

Extending this concept to communities, GP has been used to demonstrate the 
evolution of cooperative behavior (Koza 1994). This work showed that high-level 
cooperative behavior of a community of ants, operating in parallel and with only 
local sensing, emerges by evolving each individual. Other work has used the 
behavior of real ants to construct systems that solve optimization problems 
(Dorigo and Caro 1999).  These works relate to community ecology, where the 
structure and function of a community can be shown to evolve based on a simple 
task.  

Simulated evolution has also been used to study the interactions of coevolving 
individuals within a population (for example (Kaufmann and Johnson 1992; 
Angeline and Pollack 1993; Fogel 1993; Ashlock et al. 1996)). Allowing the 
fitness function to depend on the constituents of the population, rather then being 
a fixed measure against a problem, causes the population to coevolve. Many of 
these simulations are based on an idealized model of interaction referred to as the 
interated prisoner’s dilemma (IPD). IPD describes the interactions between 
individuals in a competitive environment, where there are varying payoffs based 
on whether two individuals cooperate, defect or some combination. IPD has been 
successful in modelling the evolution of cooperative strategies between 
individuals in a community, and is a useful theoretical model of social interaction. 
For example, Ashlock et al. (1996) studied partner selection as a process in social 
interactions. The models showed that, based on the degree to which individuals 
are intolerant of defections and social isolation, various ecologies dominated. 
However, like many theoretical studies, this work has not been extended to 
predictions of real ecosystem structure, although there is clearly an opportunity to 
use this form of modelling for predictions of population structure, cooperative 
behavior and more complex interactions such as language development and 
symbiosis. 

Extending this concept to community assemblages has been achieved using the 
Echo model (Forrest and Jones 1994; Hraber and Milne 1997), where a set of 
agents coevolves under the pressure of invasion and agent interaction. This work 
allowed a study of species abundance patterns, community assembly rules, species 
richness and ecosystem stability. Other work using a genetic approach has 
allowed a model of plant-herbivore interactions (Hartviggsen and Starmer 1995). 
In this work the plants have simulated genes that infer a certain resistance to 
grazing, and the herbivores have simulated genes that produce conditions that 
overcome these plant defenses. The work allowed an investigation of density 
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dependence and allowed several conclusions relating to coevolutionary patterns to 
be inferred. 

5.4.6
Predator-Prey Algorithms 

Following the traditional predator-prey models studied by Lotka and Volterra 
(Lotka 1927) a number of works have studied competitive coevolution to model 
predator-prey behaviour (Haynes et al. 1995; Cliff and Miller 1996; Haynes and 
Sen 1996; Rosin and Belew 1997). These models use competition between 
evolving communities of predators and prey to demonstrate how survival 
strategies and behaviour can coevolve. Since the complexity of real pursuit-
evasion are too difficult to code as a simple set of differential equations, the use of 
evolving models affords more complex instances, such as perceptual 
specialization, behaviour prediction and planning, to be studied.  

The concept of evolutionary stable strategies (ESS) (Smith and Price 1973; 
Smith 1982) has been commonly used to predict the behaviour and characteristics 
of naturally evolved organisms (Dawkins 1989; Motro 1991; Visser et al. 1992; 
Wolf and Waltz 1993). The behaviour of complex adaptive systems are 
anticipated by examining an evolutionary game with various possible strategies 
for each player and prescribed payoffs dependent on the play of all participants. 
The equilibrium conditions of the game are determined mathematically and it is 
assumed that once the players’ strategies have reached an equilibrium, they will 
tend to remain in that condition, barring external influences. The hawk-dove game 
is a typical example of a game that can lead to an ESS condition given a variety of 
assumptions regarding the population including an infinite population and payoffs 
to competitors described only on the average. With these assumptions, 
mathematics can be used to determine the ESS for the population. Evolutionary 
computation has been applied to the hawk-dove game in order to determine if the 
ESS maintains value under the realization that in natural populations, the 
assumptions mentioned above are not realistic (Fogel and Fogel 1995; Fogel and 
Fogel 1997; Fogel et al. 1998). Under more realistic conditions of finite 
populations and stochastic payoffs, the evolutionary simulations demonstrated that 
populations may evolve in trajectories that are unrelated to an ESS, even in very 
simple systems with small populations. This more realistic modelling of an 
evolving system has therefore cast doubt on the utility of ESSs to provide useful 
explanations of the behaviour of populations even at relatively low levels of 
selection, even under persistent mixing.  
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5.4.7
Modelling Hierarchical Ecosystems 

Living systems involve many levels of hierarchical interaction, from the genetic 
level through the individual to the community and complete ecosystem (Conrad 
and Pattee 1970). Conrad and Pattee argued that a theory of evolution that does 
not reflect this structure cannot be expected to be useful in terms of predictions 
and models of real systems. They presented a model (EVOLVE I) based on a 
population of cell-like organisms subject to a strict mass conservation law. This 
limitation of resources induced competitive behavior between individuals in the 
population. The system showed that artificial life models could lead to discoveries 
about biological evolution.  

Extensions of this work involved the construction of three nested models, each 
corresponding to a different layer of biological organization (Rizki and Conrad 
1985; Conrad and Rizki 1989; O'Callaghan and Conrad 1992). EVOLVE III 
(O'Callaghan and Conrad 1992) included organizations for genetic structure, 
organisms and populations, where each of these components was modelled 
independently. The genetic structure contained simple representations of DNA 
and an algorithm for abstracting transcription, translation and protein folding.  
Organisms had a number of phenotypic traits, including response to light 
intensity, rates of energy usage, protection and aggression mechanisms and a life 
cycle history. Each trait was coded by a collection of genes that could be mutated 
during reproduction to allow variation in future organisms. The ecosystem was 
represented as a set of populations and an abiotic environment, where each 
population was composed of individual organisms. The system was designed to 
allow various types of populations, organisms and genetic structure to be 
independently studied. For example, a simple population consisted of producers 
and decomposers. Producer organisms used nutrients from the environment and 
returned them to the environment with a degraded energy value. In turn, 
decomposers used these degraded nutrients and returned them to the environment 
as nutrients available to producers after a period of time. This allowed the system 
to produce a food cycle where mass was conserved.  

Demonstrating the link between theoretical and real ecosystems, EVOLVE III 
was used to explore relationships between adaptability of populations and the 
variability of the environment. Results from the theoretical model suggested that 
populations cultured in a constant environment usually dominated those cultured 
in a variable environment when both were placed in a variable environment at an 
early stage of development. This pattern was verified by laboratory experiments 
and indicates the potential predictive value of the model. This work represented a 
significant approach and goal of simulation studies using evolution: the systems 
must be able to demonstrate behavior that can be used to interpret real ecosystems 
and that the results should be verifiable through laboratory experiments. 
EVOLVE IV (Brewster and Conrad 1998) was designed to explore the effects of 
environmental uncertainty on niche proliferation and the evolution of interspecific 
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interactions. Although many models of ecosystems have been built in the past 
decade, especially under the field of artificial life, the conclusions from these 
models have been difficult to interpret back to real systems and give predictions 
that could be verified experimentally.  

More recently there has been interest in the use of exergy and other 
thermodynamic measures (Jorgensen 1992; Jorgensen 1992; Jorgensen et al. 
1995; Salomonsen and Jensen 1996; Svierezhev 2000) to give global descriptions 
of system dynamics. Incorporating these concepts into evolutionary ecosystem 
models would be a positive direction for future research. 

5.5
Conclusion

The previous sections have described some of the basic applications of 
evolutionary computation techniques to various aspects of ecological modelling. 
Although there are many areas that have not been given adequate attention, it is 
clear that the use of difference and differential equations, the modelling of 
cooperation and community structure, the use of space and spatial behavior and 
the construction of hierarchical organization are areas where evolutionary 
computation techniques match well with ecological modelling. Models from 
large-scale behavior of communities, through to the way in which genetic material 
evolves in a species, can be studied using these types of models. The future is 
extremely positive for these evolutionary techniques to support and extend the 
current understanding of ecological processes and functions. 
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Chapter 6  

Ecological Applications of Adaptive Agents
F. Recknagel

6.1
Introduction

Ecologists are constantly searching for new modelling paradigms in order to 
simulate realistically the distinct nature of ecosystems by computer models. The 
ecosystem concept as established by Forbes (1887) had the most forming 
influence on ecosystem modelling in the past century. It no longer bears close 
examination as ecosystems like lakes are known to evolve and being driven by 
exogenous forces rather than existing permanently and in isolation. However, the 
ecosystem approach resulted in valuable databases from monitoring as well as 
quantitative and qualitative descriptions of ecosystem dynamics and has made 
ecology a predictive science (Rigler and Peters 1995). Computer models resulting 
from the ecosystem concept were mainly based on differential equations (DE) for 
well-defined ecological entities and processes, adjusted by measured or estimated 
parameters. Radtke and Straskraba (1980) firstly tried to overcome the rigidity of 
such models by parameter optimization of ecological goal functions relevant to 
lake ecosystems as introduced by Straskraba (1977). The authors considered their 
results as contribution to a structural self-optimising ecosystem model but 
admitted that more adequate models and more suitable optimisation procedures 
would be needed to make it a success. In order to overcome model rigidity, 
Kaluzny and Swartzman (1985) suggested a library of alternative representations 
of ecological processes from where a simulation model picks the most relevant 
one for a specific ecological situation. The authors concluded that their approach 
was limited by validation data and ‘the difficulty of tracing model response to 
single processes’ (Kaluzny and Swartzman 1985). Jorgensen and Mejer (1979) 
introduced the thermodynamic entity exergy for holistic ecosystem modelling that 
has led to the concept of structural dynamic models (Jorgensen 1986). It equips an 
ecosystem model with a global rather than local goal function, namely maximizing 
exergy storage, to be satisfied by optimising process parameters in the course of 
simulation. Even though this approach avoids the problem of biasing by ‘local’ 
optima as faced by Radtke and Straskraba (1980), it may require more adequate 
models and more suitable optimisation procedures as well.   

Machine learning techniques such as artificial neural networks (ANN) 
(Rumelhart et al. 1986) and evolutionary computation (EC) (Holland 1992) allow 
looking at the same problem from a different angle. They are inductive techniques 
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and allow extracting empirical patterns as reflected by multivariate nonlinear time 
series data. Even though the range and extent of data available may limit ANN, 
EC can explore both causal and empirical information by means of hybrid 
frameworks to induce and evolve models (Bobbin and Recknagel 2001; Whigham 
and Recknagel 2001). However predictive capacity of resulting models still relies 
on underlying causal and empirical knowledge. The application of adaptive agents 
(AA) (Holland  1992; Holland 1998) is an attempt to go one step further: to evolve 
ecosystem structures and behaviours by emerging, submerging, interacting and 
evolving ecological entities simulated by adaptive agents.  

The present paper reviews current developments of individual-based AA for 
microbial and terrestrial ecosystems, and designs a concept how state variable-
based AA can be applied in order to simulate evolving species abundance and 
succession in aquatic ecosystems. The proposed concept is currently developed 
and tested towards adaptive lake ecosystem simulation. It is expected to overcome 
constraints by the rigidity of traditional dynamic ecosystem models and enable to 
evolve ecosystem structures and behaviours.  

6.2
Adaptive Agents Framework 

Holland (1992) introduced Echo (Fig. 6.1.) as a generic simulator designed to 
explore interactions among large numbers of different adaptive agents (AA). It 
provides for the study of populations of evolving, reproducing agents distributed 
over a geography with different inputs of renewable resources at various sites. 
Each agent has simple capabilities – offence, defense, trading, mate selection – 
determined by a set of “chromosomes”. Chromosomes in each agent are 
differentiated into two classes: 

Tag chromosomes determine the agent’s external phenotypic characteristics 
and distinguish: offence tag, defence tag and mating tag. Tags are displayed on the 
exterior of an agent and are analogous to signature groups of an antigen or the 
logo of an organisation.  Condition chromosomes determine what kinds of 
interactions take place when agents encounter one another and distinguish: combat 
(competition), trading (mutualism) or mating  (reproduction). 

The fact that an agent’s structure is completely defined by its chromosomes, 
which are just strings over the resource alphabet {a,b,c,d}, plays a critical role in 
its reproduction. An agent reproduces when it “collects” enough letters to make 
copies of its chromosomes. An agent can collect these letters through its 
interactions: combat, trade, or uptake from the environment. Each agent has a 
reservoir in which it stores collected letters until there are enough of them for 
reproduction to take place. Interactions between agents, when they come into 
contact are determined by a simple sequence of tests based on their tags and 
conditions. In the simplest model they first test for combat, then they test for 
trading and finally they test for mating as follows: 
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Fig. 6.1.  Conceptual diagram of the adaptive agent model Echo (modified after 
Holland 1992)   

Combat: Each agent checks its combat condition against the offence tag of the 
other agent. E.g., if the combat condition is given by the string aad, then this 
condition is matched by any offense tag that begins with the letters aad. If the 
combat condition of either agent matches the offense tag of the other, then combat 
is initiated. Combat can be initiated unilaterally by either agent. If combat is 
initiated the offence tag of the first agent is matched against the defense tag of the 
second and a score is calculated.  

Trading: If combat does not take place, then the first agent in the pair checks its 
trading condition against the offence tag of the second agent, and vice versa. 
Unlike combat, which can be initiated unilaterally, trading is bilateral – a trade 
does not take place unless the trading conditions of both agents are satisfied. The 
trading condition in the simplest model has a single letter, as a suffix, that 



 F. Recknagel 112

specifies the resource being offered for trade. If the trade is executed then each 
agent transfers any excess of the offered resource (amounts over and above the 
requirements for its own reproduction) from its reservoir to the reservoir of its 
trading partner. Though this is a very simple rule, with no bidding between agents, 
it does lead to intricate, rational trading interactions as the system evolves. Trades 
that provide resources needed for reproduction increase the reproduction rate, 
assuring that agents with such rational trading conditions become common 
components of the population. 

Mating: While an agent can reproduce asexually, simply making a copy of each 
of its chromosomes when it has accumulated enough resources (letters), there is 
also a provision for recombination of chromosomes. When agents come into 
contact and do not engage in combat, the mating condition of each agent is 
checked against the mating tag of the other. As with trade, mating is only executed 
as a bilateral action. Both agents must have their mating conditions satisfied for 
recombination to take place. If this happens, then the agents exchange some of 
their chromosome material, as with crossover under the genetic algorithm.    

AA characterised by these simply defined capabilities provide for a rich set of 
variations illustrating the key kernel properties of complex adaptive systems. They 
were originally developed and applied for the study of complex adaptive 
economic systems (Holland and Miller 1991) such as stock markets (Wan and 
Hunter 1997) and businesses (Lin and Pai 2000). However modified versions of 
Echo have meanwhile been used to simulate spatial dynamics of species or 
populations represented by individuals strictly based on causal knowledge (Booth 
1997; Schmitz and Booth 1997; Kreft, Booth and Wimpenny 1998). These 
examples are based on the assumption that local emergence or submergence of 
individuals is driven by interrelationships between well-defined individuals and 
their environment. Such an individual-based approach seems to be relevant to 
terrestrial ecosystems like forests (Schmitz and Booth 1997) where spatial 
spreading of individual tree species as an outcome of competitive success is of 
major interest.  AA simulation of aquatic ecosystems requires a different approach 
as normally neither individual nor spatial aspects are relevant, nor are adequate 
data available.  

6.3
Individual-Based Adaptive Agents 

Individual-based modelling aims at naturally and easily simulating effects of 
complex ecological interactions such as individual variation, spatial processes, and 
cumulative stress. The concept was introduced by Huston, DeAngelis and Post 
(1988) who argued that in ecosystems “amplifying effects can arise from spatial 
non-uniformities and variations in the environmental conditions that each 
organism experiences, such as moisture and light for plant seedlings, or variable 
habitat and patchy distributions of preys for animals. Amplifying effects can also 
result from differences among individuals that are properties of the organisms 
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themselves such as size, age, physiological characteristics, and genetic variation”. 
Even though the concept appeared to be plausible and applicable especially to the 
distinct spatial and heterogeneous nature of terrestrial ecosystems, Railsback 
(2001) identified two reasons why individual-based modelling has so far not been 
a ‘very productive approach to ecology or ecological management’: (1) the failure 
to encode models in software that allows the behaviour of the model’s individuals 
to be observed and tested, (2) the use of inappropriate assumptions abound in 
individual-based models such as: using model components developed originally 
for one set of assumptions to simulate conditions under which those assumptions 
clearly are not met; applying relations and parameters developed for one spatial or 
temporal scale to other scales that they are not appropriate for; embedding 
empirical relations in models that are purported to be mechanistic; confusing 
individual- and population-level parameters. However Holland’s paradigm on 
adaptive agents conceptualised in Echo (Fig. 6.1.) seems to reinforce individual-
based modelling as it can be applied to spatially explicit simulation of individuals 
of species by single agents.  

Gecko (Booth 1997) is an example of an individual-based adaptive agents 
simulation system implemented on the Echo framework. In order to simulate 
community effects of spatial competition, agents in Gecko are not constrained by 
lattice but extent and compete directly for space. In extension of Echo, Gecko 
simulates energetics explicitly. “The individual-based components of Gecko 
include cross primary production, over a constrained space, and several basic 
species types. Organisms are abstracted as spheres on the resource-producing 
plane. They have behaviours to acquire food, assimilate food at realistic 
efficiencies, and pay metabolic taxes at allometrically specified rates…Creatures 
interact locally, with their neighbourhoods circumscribed by their radii, 
determined in turn by their size – the biomass they have amassed. Thus in addition 
to having position in two dimensions, Gecko creatures have the spatiotemporal 
property of extent” (Booth 1997). Applications of Gecko to a hypothetical 
terrestrial food chain consisting of a plant, a herbivorous and a carnivorous animal 
revealed that the sequential implementation of seven basic rules for agent to agent 
interactions  during each simulation step allowed to produce qualitatively sound 
results for different scenarios (Booth 1997; Schmitz and Booth 1997). Examples 
of basic rules considered in this study are: give everyone a chance to interact; 
distribute abiotic resources to autotrophic agents at the site; take maintenance tax; 
etc. In an attempt to simulate the growth of Escherichia coli from a single cell to a 
bacterial colony Gecko was implemented in a deterministic manner based on 
equations for cell growth kinetics, diffusion and colony expansion, and produced 
qualitatively sound results regarding colony structures for different glucose 
concentrations (Kreft, Booth and Wimpenny 1998).   

Even though above described examples were rather simple and vague 
reflections of real ecosystems the authors bewailed the fact that their achievements 
were limited by causal knowledge from the individual to the ecosystem level – a 
limitation that is inherent to deductive approaches strictly based on causal 
knowledge.              
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6.4
State Variable-Based Adaptive Agents 

Aquatic ecosystems such as lakes have a definite boundary with primary 
producers dominated by microscopic algal cells (1 to 200 µm) with generation 
times of hours to days, and secondary producers dominated by mesoscopic 
zooplankton (20 to 2000 µm) with generation times of days and weeks (Rigler and  

Fig. 6.2. Adaptive agents simulation of algal species dynamics 
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Fig. 6.3. Same-day-predictions of algal cells of  Microcystis (a) and Oscillatoria
(b) by artificial neural networks and evolved rules.  

Peters 1995). Dissolved inorganic nutrients are homogeneously distributed within 
the euphotic surface layer where algal cells strongly interact and grow as a result 
of competition for nutrients and light. The wind continuously stirs the surface 
layer contributing to an almost homogeneous horizontal distribution of algal cells. 
Zooplankton may also be affected by wind but are mobile to a certain extent. They 
tend to form horizontal patches in response to food availability and predation 
pressure by fish. If we focus lake modelling on the euphotic zone as the scene of  
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primary and secondary production in lakes, we can imply that plankton 
communities are almost homogenously distributed and almost instantaneously 
responding to exogenous disturbances. As the prediction and explanation of 
instantaneous algal abundance and succession appear to be the biggest challenge 
to freshwater ecologists, the AA simulation of the spatial distribution of 
individuals as suggested for terrestrial ecosystems (e.g. Schmitz and Booth 1997) 
seems no longer relevant. Neither adequate knowledge nor data would be 
available to realistically reflect individual or spatial aspects of algae and 
zooplankton. By contrast the AA simulation of aquatic ecosystems needs to focus 
on the temporal distribution of plankton populations (respective functional groups) 
by means of state variable-based AA embodying evolutionary computation. 

6.4.1                                                                                                             
Algal Species Simulation by Adaptive Agents 

Adaptive agents simulation of algal species dynamics is currently designed and 
developed according to Fig. 6.2. Four agents are considered initially to represent 
blue-green algae species typically competing in eutrophic freshwaters in summer: 
Microcystis, Oscillatoria, Anabaena and Phormidium. (see Fig. 6.2a). These four 
agents interact by competition and are determined by environmental driving forces 
such as solar radiation, water temperature, and nutrient loadings.  

6.4.1.1                                                                                               
Embodiment of Evolutionary Computation in Agents 

Each single agent is embodied by artificial Neural Networks (ANN), evolving 
differential equations (EDE) or evolving rules (ER) in order to maximise (adapt) 
their performance  (abundance) in relation to current environmental conditions 
(nutrient loadings, light, temperature and abundance of competitors).  

Case studies on ANN (Recknagel 1997; Recknagel et al. 1997), EDE 
(Whigham and Recknagel 2001) and ER (Bobbin and Recknagel 2001; Recknagel 
et al. 2002) have been conducted for the prediction of algal abundance and 
succession in lakes and reservoirs. Fig. 6.3. shows simulation results for 
Microcystis (a) and Oscillatoria (b) in Lake Kasumigaura predicted by ANN and 
ER. The underlying ER used for the same-day predictions in Fig. 6.3. are 
documented in Table 6.1. 

Examples in Fig. 6.4. are based on 7-days-ahead predictions for chlorophyll-a
and Microcystis in Lake Kasumigaura performed by EDE and ER (see Tab. 6.2.) 
and ANN (Recknagel et al. 2002), which were trained and extracted from the Lake 
Kasumigaura data base (Takamura et al. 1992). The underlying DE was adopted 
from the deterministic lake model SALMO (Recknagel and Benndorf 1982).  

During the AA simulation of algal dynamics in a specific lake, each agent 
adapts steadily to occurring environmental conditions by producing the best 
adapted model or “offspring” agent based on its evaluation and selection of mates, 
recombination strategy and mutation strategy (see Fig. 6.2b). This will be 
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achieved by recurrent evolutionary computation according to Fig. 6.5. embodied 
in the agents.  

Table 6.1. Predictive rules for annual dynamics of Microcystis and Oscillatoria
evolved from the Lake Kasumigaura database (Bobbin and Recknagel 2001) 

6.4.1.2                                                                                                    
Adaptive Agents Bank 

Natural ecosystems are characterised by redundancy in their composition and 
structure. They gain a certain degree of resilience to changing environmental 
conditions depending on the extent of redundancy. In order to develop adaptive 
agent models that gain such resilience to environmental changes, they need to 
have redundancy in their composition as well. Therefore, a bank of alternative and 
additional ecological agents for algal species will be developed occurring 
seasonally and locally in specific lakes under certain environmental conditions as 
reflected in the lake database (Tab. 6.3.). Evolutionary computation (EC) will be 
applied according to Fig. 6.5. to develop these algae-specific agents from the lake 
database that currently contains multivariate time-series of nine lakes different in 
eutrophication, climate and morphology. The range of conditions in the database 
will result in alternative agents for the same species/population resting in an agent 
bank. 

Evolved Rules for Microcystis 

IF (TEMP > 29 °C) AND  

IF (DTP > 74.2 µg/l) AND  

IF (pH > 8.15) 

THEN MICROCYSTIS >> 50,000 cells/ml 

ELSE  MICROCYSTIS <   50,000 cells/ml

Evolved Rules for Oscillatoria 

IF (NH4 < 236 µg/l) AND  

IF (8.01 < pH < 9.37) AND  

IF (60 < SECCHI < 103 cm) AND  

AND IF (DTP > 22.3 µg/l)  

THEN OSCILLATORIA >> 50,000 cells/ml 

ELSE  OSCILLATORIA <   50,000 cells/ml 
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Fig. 6.4. 7-days-ahead prediction of Chlorophyll-a and Microcystis for Lake 
Kasumigaura (Japan) in 1986 and 1993 by ANN (a and b), EDE (c and d), and ER 
(e and f)  

During simulations only those agents will be fired at a certain time that best suit 
occurring conditions but otherwise resting in the agent bank. Fired (emerging) 
agents simultaneously evolve based on EC in order to reach their optima (see Fig. 
6.2b). This agents bank will be the key to enable the adaptive agents model to 
change the composition of agents during simulations by temporarily activating or 
resting agents (e.g. algal species) depending on excitatory or inhibitory 
environmental conditions. 
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Tab. 6.2. EDE and ER applied for 7-day-ahead predictions of Microcystis in Fig. 
6.4. 
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dA/dt   =  A(t) * ( PHOT – RESP ) - A(t) * ( COP + CLAD ) * 0.0001 –  
                A(t) * ( e / 5 ) 

 PHOT  =  [ a / b * T)  * ( 0.025 * L / ( c + 0.025 * L )) 
  * (P/ A(t) /( d / X + P / X + d / A(t) + P / A(t)))] 
 X         =   5.76 * A(t) ^ 0.41 
 RESP  =   [( 0.057 / b * T ) + 0.3 * PHOT ] 

where A = Microcystis biomass µg/l,  PHOT=photosynthesis, 
RESP=respiration,  
L=photosynthetic active light, P=PO4-P phosphate, X=auxiliary term,  
COP=biomass of crustacea copepoda mg/l, CLAD=biomass of crustacea 
cladocera mg/l, T = water temperature,  
a to e = constant parameters evolved  to optimal values or functions 

Ev
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d 

R
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IF P >= 126 AND P <= 81.7 µg/l  
THEN Microcystis = 500,000 cells/ml 
ELSE IF pH >= 9.72 THEN Microcystis = 500,000 cells/ml  
EXCEPT IF T <= 19.5 ºC AND T >= 5.67 ºC  
THEN Microcystis = 3,000 cells/ml 
ELSE IF N/P >= 47.2 AND N/P <= 55.2  
THEN Microcystis = 0 cells/ml 
ELSE IF S >= 95.5 cm THEN Microcystis = 3.5 cells/ml  
EXCEPT IF T >= 5.67 ºC AND T <= 15.7 ºC  
THEN Microcystis = 0 cells/ml 
OR IF N >= 1,110 µg/l THEN Microcystis = 0 cells/ml 
IF P >= 15.6 µg/l AND P <= 116 µg/l THEN  
Microcystis = 100,000 cells/ml  
EXCEPT IF T >= 26.7 ºC THEN Microcystis = 500,000 cells/ml  
EXCEPT IF S <= 160cm then Microcystis = 100,000 cells/ml 
ELSE IF N >= 757 µg/l AND N <= 1,690 µg/l  
THEN Microcystis = 0 cells  
EXCEPT IF T >= 15.7 ºC AND T <= 26.7 ºC  
THEN Microcystis = 3,000 cells/ml  
EXCEPT IF P <= 15.6 µg/l THEN Microcystis = 0 cells/ml 
ELSE IF T >= 15.7 AND T <= 26.7 ºC  
THEN Microcystis = 100,000 cells/ml  
EXCEPT IF S <= 160 cm AND S >= 74.4 cm  
THEN Microcystis = 0 cells/ml 
ELSE IF T >= 5.67 ºC AND T <= 15.7 ºC  
THEN Microcystis = 3,000 cells/ml 
ELSE Microcystis = 100,000 cells/ml. 

where S = Secchi Depth, T = water temperature, N = NO3-N Nitrate 
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Tab. 6.3. Multivariate time series database of 9 lakes

Fig. 6.5. Application of evolutionary computation to evolve ANN (a), EDE (b) 
and ER (c) from lake databases to be embodied in algal specific agents

Lakes Years Sampling 
Frequency 

No of Water 
Quality 

Parameters 

No of 
Phytoplankton 
Species/Groups

No of 
Zooplankton 

Species/Groups 
Biwa  

(Japan) 
1984 - 91 weekly to 

monthly 
10 21 - 

Burrinjuck 
(Australia) 

1976 - 97 weekly to 
monthly 

8 8 6 

Kasumigaura 
(Japan) 

1984 - 93 fortnightly 
to monthly 

10 10 3 

Myponga 
(Australia) 

1970 - 97 weekly to 
monthly 

10 25 - 

Saidenbach 
(Germany) 

1979 - 84 fortnightly 9 5 1 

Soyang 
(Korea)

1984 - 99 monthly 7 12 12 

Tuusulanjaervi 
(Finland) 

1972 - 87 fortnightly  
to monthly 

7 10 - 

Veluvemeer 
(Holland) 

1976 - 99 weekly to 
monthly 

11 14 6 

Wolderwijd 
(Holland) 

1976 - 99 weekly to 
monthly 

11 14 6 

Orthophosphate mg/l

Nitrate mg/l

Water Temperature °C

Secchi Depth m

Solar Radiation J/cm2/d
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Y = fN (X1…Xi)

Y = f3 (X1…Xi)

Y = f4 (X1…Xi)

Y = f1 (X1…Xi)

a)   fi  { N evolved artificial neural networks }

 b)   fi  { N evolved differential equations }

 c)   fi  { N evolved IF… THEN… ELSE - rule sets }

Y = fi (X1…Xi) :
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6.4.2                                                                                                        
Pelagic Food Web Simulation by Adaptive Agents 

Adaptive agents simulation of pelagic food webs will be implemented according 
to Figure 6.6. Seven state variable-based agents will be considered initially to 
represent the following ecological entities: blue-green algae, green algae and 
diatoms, herbivorous and carnivorous zooplankton, planktivorous and piscivorous 
fish (see Figure 6.6a).  

Fig. 6.6. Adaptive agents simulation of pelagic food-web dynamics 

These seven agents interact by predation and competition, and are determined 
by environmental driving forces such as solar radiation, water temperature, 
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nutrient loadings. Each single agent is determined by EDE in order to maximise 
(adapt) their performance (abundance) in relation to current environmental 
conditions (nutrient loadings, light, temperature and abundance of competitors, 
predators or preys). EDE utilise evolutionary algorithms in order to steadily 
optimise parameter values and functions of the state variable-based agents by 
means of differential equations as used by Park et al. (1974) and Recknagel and 
Benndorf (1982). As a result, each agent adapts simultaneously to current 
environmental conditions by producing “offspring” agents based on its evaluation 
and selection of mates, recombination strategy and mutation strategy (see Figure 
6.6b). Successful case studies on EDE have been conducted by Whigham and 
Recknagel (2001a, b) and Recknagel et al. (2002). 

6.5
Conclusions 

1. Adaptive agents (AA) provide a realistic framework for ecosystem simulation, 
evolving ecosystem structures and behaviours by emerging, submerging, 
interacting and evolving ecological entities.  

2. Individual-based AA prove applicable to a spatially explicit simulation of 
highly simplified terrestrial food webs. 

3. State variable-based AA where evolutionary computation is embodied appear 
to be relevant for simulations of aquatic food webs dynamics and plankton 
species interactions. 

4. Embodiment of evolutionary computation in adaptive agents for aquatic species 
or functional groups can be achieved by evolving predictive rules (ER), 
differential equations (EDE) or artificial neural networks (ANN) from a diverse 
lake database.  

5. Ecosystem simulation by state variable-based adaptive agents gains resilience 
to environmental change from an agent bank providing alternative agents for 
same species or functional groups evolved from a diverse lake database. 

6. The presented concepts are currently tested by means of a multivariate time-
series database for nine lakes different in climate, eutrophication and 
morphology.    
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Chapter 7 

Bio-Inspired Design of Computer Hardware by 
Self-Replicating Cellular Automata                                      

G. Tempesti · D. Mange · A. Stauffer · E. Petraglio

7.1
Introduction

The use of populations of artificial organisms has established itself as a useful tool 
for modelling natural systems. When this concept is applied to the optimization of 
computing systems, approaches such as evolutionary algorithms have also proven 
very useful in the search for good solutions to very complex problems. The 
research we have been conducting in the past years has explored a different use of 
the concept of artificial organisms in the very specific framework of the design of 
complex computer hardware. 
    The analogy between biology and electronics is not as farfetched as it might 
appear at a first glance. Aside from the more immediate parallel between the 
human brain and the computer, which has led to the development of fields such as 
artificial intelligence or neural networks, a certain degree of similarity exists 
between the genome (the hereditary information of an organism) and a computer 
program. 
    The genome consists of a one-dimensional string of data encoded in a base-4 
system. The DNA (Deoxyribonucleic Acid), the macromolecule in which the 
genome is encoded, is a sequence of four bases: A (Adenine), C (Cytosine), G 
(Guanine), and T (Thymine). The information stored on the DNA is chemically 
decoded and interpreted to determine the function of a cell. A computer program 
is a one-dimensional string of data encoded in a base-2 system (0 and 1). Stored in 
an electronic memory circuit, it is interpreted to determine the function of a 
processor. Of course, carbon-based biology and silicon-based computing are 
different enough that no straightforward one-to-one relationship between the 
genome and a computer program (and indeed between any biological and 
computing process) can be established, except at a very superficial level. However, 
through careful interpretation, some basic biological concepts can be adapted to 
the design of computer systems, and some biological processes are indeed 
extremely interesting from a computer designer’s point of view: for example, an 
organism’s robustness (achieved by its healing processes) is unequaled in 
electronic circuits, while the natural process of evolution has produced organisms 
of a complexity which far exceeds that of modern computer systems. 
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    The goal of our project, called Embryonics (Mange et al. 2000) for embryonic 
electronics, is then to try to exploit some of the remarkable features of natural 
organisms and of populations of such organisms in computer hardware. To this 
end, we have been studying how the concept of self-replication (historically 
known also as self-reproduction) both at the cellular and at the organism level can 
be applied to computer hardware. 
    Achieving self-replication in computer hardware, however, is a very complex 
technological challenge. Historically, this process has been studied though a layer 
of abstraction by exploiting the cellular automata (CA) model (Codd 1968; 
Wolfram 1994), a computational model which, while both ill-suited for hardware 
implementations and difficult to manipulate, nevertheless provides a relatively 
strict mathematical framework for the development of self-replicating structures. 
Within this model, the study of self-replication has a long, if not very eventful, 
history. After a very short introduction to the CA model, we will introduce the 
most salient points of this history before introducing the results of our own 
research.

7.2
Cellular Automata 

Cellular automata are arrays of elements, or cells, whose behavior depends on the 
elements’ state (while there is no theoretical limit to the number of dimensions of 
a cellular automaton, the implementations described herein are all two-
dimensional). At regular, discrete intervals (iterations), the state of all elements is 
updated, depending on the current state of the element itself and that of its 
neighbors, according to a set of transition rules.
     It should be noted that, to avoid conflicts with biological definitions, we shall 
not use the conventional term “cell” to indicate the parts of a cellular automaton, 
opting rather for the term “element” or, in the context of our project, “molecule”. 
In fact, in biological terms, a cell can be defined as the smallest part of a living 
being which carries the complete blueprint of the being, that is the being’s genome,
a definition which is not met by the elements of a CA. 
     In order to illustrate the operation of cellular automata, we can examine one of 
the best-known (and simplest) two-dimensional CAs, commonly referred to as 
Life (Gardner 1970), an automaton where each element can be in one of only two 
states (alive or dead). The next state of an element depends on its current state and 
that of its eight closest neighbors (to the north, south, east, west, northeast, 
southeast, southwest, and northwest), and is calculated from a set of simple rules: 
if fewer than two elements in the neighborhood are alive, the next state is dead 
(death by starvation); if more than three elements in the neighborhood are alive, 
the next state is dead (death by overcrowding); if exactly three elements in the 
neighborhood are alive, then the next state is alive (birth); otherwise (i.e., if 
exactly two of the elements in the neighborhood are alive) the next state is equal 
to the current state (survival). 
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    This very simple automaton, even if theoretically inspired by the behavior of 
populations of individuals, is obviously not very powerful: for example, the 
majority of initial configurations (the set of the states of all elements at iteration 0) 
lead either to an empty space or to a collection of small, isolated cyclic patterns. 
Complex and stable structures (Figure 7.1) can be created by putting together 
simple building blocks, but no methodology exists for their design. 

Figure 7.1. Examples of stable structures in Life: the glider (top), which moves 
diagonally through space, and the glider gun (bottom), which generates gliders at 
regular intervals. 

    To resume, a cellular automaton is defined by the following parameters: 
•  A number of dimensions, usually one or two, rarely three, and almost never     

four or more. All the automata used to model self-replication are two-
dimensional, as is Life. 

•  A set of states (two in the case of Life) and an initial configuration, defining the  
state of all the elements of the array at iteration 0. While there is no theoretical 
limit to the number of states in an automaton, for practical considerations very 
few automata use more than a handful. 

•  A neighborhood, which specifies which neighbors will have an effect on an  
element’s next state. By far the most common for two-dimensional automata are 
the neighborhood of 5 (the element itself plus its cardinal neighbors to the north, 
south, east, and west) and that of 9 (the element itself plus its neighbors to the 
north, south, east, west, northeast, southeast, southwest, and northwest). Life 
uses a neighborhood of 9. 

•  A collection of transition rules, used to compute an element’s next state  

  depending on the neighborhood. The rules can be expressed either as an  
  algorithm (as for Life above) or exhaustively as a lookup table. In the latter   

ITER=0 ITER=2ITER=1 ITER=4ITER=3
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  case, the total number of rules necessarily to exhaustively define a cellular   

  automaton is SN, where S is the number of states and N the neighborhood (thus,   

  to completely define Life, a lookup table of 29=512 rules would be required). In  
  practice, the lookup table for a complex automaton (i.e., one with many states)  
  can reach a very important size.  

    It should be clear that cellular automata are not a model which can easily be 
applied to digital hardware: the need for each element to access the transition rules, 
coupled with the large number of elements required for complex behavior, is a 
serious drawback for an electronic implementation. 
    These and other considerations have led researchers to tackle the issue of 
implementing populations of complex structures in hardware through a further 
level of abstraction, by defining a self-replicating mechanism that can, in principle, 
be applied to structures of arbitrary complexity.

7.3
Von Neumann’s Universal Constructor 

The field of self-replicating hardware was pioneered by John von Neumann 
(Asprey 1992). A gifted mathematician and one of the leading figures in the 
development of the field of computer engineering, von Neumann dedicated the 
final years of his life on what he called the theory of automata (von Neumann 
1966). His research, which was unfortunately interrupted by von Neumann’s 
untimely death in 1957, was inspired by the parallel between artificial automata, 
of which the paramount example are computers, and natural automata such as the 
nervous system, evolving organisms, etc. 
    In particular, Von Neumann, confronted with the lack of reliability of 
computing systems, turned to nature to find inspiration in the design of fault-
tolerant computing machines. Natural systems are among the most reliable 
complex systems known to man, and their reliability is a consequence not of any 
particular robustness of the individual cells (or organisms), but rather of their 
extreme redundancy. The basic natural mechanism which provides such reliability 
is self-reproduction (the term used by von Neumann), both at the cellular level 
(where the survival of a single organism is concerned) and at the organism level 
(where the survival of the species is concerned). 
     In von Neumann’s work, self-reproduction is always presented as a special 
case of universal construction, that is, the capability of building any machine 
given its description (Figure 7.2). This approach was maintained in the design of 
his cellular automaton, which it therefore much more than "just" a self-replicating 
machine. The complexity of its purpose is reflected in the complexity of its 
structure, based on three separate components: 
•   A memory tape, containing the description of the machine to be built, in the  
    form of a one-dimensional string of elements. In the special case of self- 
    reproduction, the memory contains a description of the universal constructor    
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    itself (Figure 7.3). 
•  The constructor itself, a very complex machine capable of reading the memory  
    tape and interpreting its contents. 
•   A constructing arm, directed by the constructor, used to build the offspring (i.e.,  
    the machine described in the memory tape). The arm moves across the space  
    and sets the state of the elements of the offspring to the appropriate value.  

Figure 7.2. Von Neumann’s universal constructor Uconst can build a specimen 
of any machine (e.g., a universal Turing machine Ucomp) given its description 
D(Ucomp).

Figure 7.3. Given its own description D(Uconst), von Neumann’s universal 
constructor is capable of self-replication. 

    The implementation as a cellular automaton is no less complex. Each element 
has 29 possible states, and thus, since the next state of an element depends on its 

current state and that of its four cardinal neighbors, 295=20,511,149 transition 
rules are required to exhaustively define its behavior. If we consider that the size 
of von Neumann’s constructor is of the order of hundreds of thousands elements, 
we can easily understand why a hardware realization of such a machine is not 
really feasible. 
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    We should mention that von Neumann went one step further in the design of his 
universal constructor. If we consider the universal constructor from a biological 
viewpoint, we can associate the memory tape with the genome, and thus the entire 
constructor with a single cell (which would imply a parallel between the 
automaton’s elements and molecules). However, the constructor, as we have 
described it so far, has no functionality outside of self-reproduction. Von 
Neumann recognized that a self-replicating machine would require some sort of 
functionality to be interesting from an engineering point of view, and postulated 
the presence of a universal computer (in practice, a universal Turing machine, an 
automaton capable of performing any computation) alongside the universal 
constructor (Figure 7.4). Von Neumann’s constructor can thus be regarded as a 
unicellular organism, containing a genome stored in the form of a memory tape, 
read (transcription) and interpreted (translation) by the universal constructor both 
to determine its operation and to direct the construction of a complete copy of 
itself.

Figure 7.4. By extension, Von Neumann’s universal constructor can include a 
universal computer and still be capable of self-replication. 

    As we mentioned, the dimensions of von Neumann’s universal constructor are 
substantial; it has thus never been physically implemented and has been simulated 
only partially (Pesavento 1995). To the best of our knowledge, the only attempt to 
implement a complete specimen is the current work of Buckley (Buckley 2004) 
whose latest result specifies that the universal constructor (without its tape) is 
bounded by a region of 751x1048 = 787,048 cells. 
    The impossibility of achieving a physical realization did not however deter 
some researchers from trying to continue and improve von Neumann’s work. 
Arthur Burks, for example, in addition to editing von Neumann’s work on self-
replication (Burks 1970; von Neumann 1966), also made several corrections and 
advances in the implementation of the cellular model. Codd (1968), by altering the 
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states and the transition rules, managed to simplify the constructor by a 
considerable degree. However, without in any way lessening these contributions, 
we can say that no major theoretical advance in the research on self-reproducing 
automata occurred until Langton (1984) opened a second stage in this field of 
research.

7.4
Self-replicating Loops 

While the early history of the theory of self-replicating machines is basically the 
history of John von Neumann’s thinking on the matter, a practical implementation 
requires a sharply different approach. In order to construct a self-replicating 
automaton simpler than this of von Neumann, Langton (Langton 1984) adopted 
more liberal criteria. He dropped the condition that the self-replicating unit must 
be capable of universal construction and computation. 
    Langton proposes a configuration in the form of a loop (Figure 7.5), endowed 
notably of a constructing arm and of a replication program or genome, which turns 
counterclockwise. After 151 time steps, the original loop (mother loop) produces a 
daughter loop, thus obtaining the self-replication of Langton’s loop. 

Figure 7.5. Langton proposes a self-replicating machine in the form of a loop. 

    According to the biological definition of a cell as the smallest part of a living 
being which carries the complete genome, we end up with the following 
observations. 
•   Langton’s self-replicating loop is a unicellular organism: its genome requires  
    28 molecules and is a subset of the complete loop which requires 94 molecules. 
•  The size of Langton’s loop is perfectly reasonable, since it requires 94  
    molecules, thus allowing complete simulation. 
•  There is no universal construction nor calculation: the loop does nothing but  
    replicate itself. Langton’s self-replicating loop represents therefore a special  
    case of von Neumann’s self-replication of a universal constructor. The loop is a  
    non-universal constructor, capable of building, on the basis of its genome, a  
    single type of machine: itself.  
    As did von Neumann, Langton emphasized the two different modes in which 
information is used, interpreted (translation) and uninterpreted (transcription). In 
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his loop, translation is accomplished when the instruction signals are executed as 
they reach the end of the construction arm, and upon collision of signals with 
other signals. Transcription is accomplished by duplication of signals at the arm 
junctions. 
    More recently, Byl (1989) proposed a simplified version of Langton’s 
automaton. Last but not least Reggia et al. (1993) discovered that having a sheath 
surrounding the data paths of the genome was not essential, and that its removal 
led to smaller self-replicating structures which also have simpler transitions 
functions. Moreover, they found that relaxing the strong symmetry requirement 
consistently led to transition functions that required fewer rules than the 
corresponding strong symmetry version. 
    All the previous loops lack any computing and constructing capabilities, their 
sole functionality being that of self-replication. Lately, new attempts have been 
made to redesign Langton’s loop in order to embed such calculation possibilities. 
Tempesti’s loop (Tempesti 1995) is thus a self-replicating automaton, with an 
attached executable program that is duplicated and executed in each of the copies. 
This was demonstrated for a simple program that writes out (after the loop’s 
replication) “LSL”, acronym of the Logic Systems Laboratory. Finally, Perrier et
al.’s self-replicating loop (Perrier et al. 1996) shows some kind of universal 
computational capabilities. The system consists of three parts, loop, program, and 
data, all of which are replicated, followed by the program’s execution on the given 
data. 
    These improvements notwithstanding, CAs remain a model which is ill-adapted, 
at least in its conventional form, to the design of computer hardware. In our 
project, we have developed an hybrid approach which couples CA with some of 
the most interesting features of today’s programmable circuits, generally known as 
FPGAs (Sanchez 1996; Trimberger 1994), to efficiently implement self-
replication in hardware systems.

7.5
Self-replication in the Embryonics Project 

7.5.1                                                                                           
Embryonics 

The main goal of the Embryonics (embryonic electronics) project (Mange et al.
2000) is to realize, in an integrated circuit, systems embedding features inspired 
by the behavior of multi-cellular biological organisms. These bio-inspired systems 
would then possess some of the characteristics of organisms, such as the capability 
to self-repair (heal) and to self-replicate to create populations of complex entities. 
To maintain the analogy to living systems, our approach is based on four 
hierarchical levels of organization (Figure 7.6). Within this hierarchy, we shall call 
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organism a computing system dedicated to the execution of an arbitrarily complex 
application. An organism is then composed of identical parts called cells, where 
each cell is a simple, application-specific processor. Each cell is itself composed 
of a finite number of elements referred to as molecules.

At the core of the system is the cell: an artificial organism is realized by a 
matrix of identical cells distributed over the nodes of a regular two-dimensional 
grid. Each cell contains a small processor and a memory in which the genome 
program (identical for all the cells) is stored. In this multicellular organization 
only the state of a cell (i.e. the contents of its registers) can differentiate it from its 
neighbors. 

Figure 7.6.   The four hierarchical levels of organization in Embryonics. 

In the organism each cell realizes a unique function, defined by a sub-program 
called the gene, which is a part of the genome. Each cell knows its position (i.e. X
and Y coordinates) in the organism and uses it to define which gene of the genome 
it has to execute. In Figure 7.7 the genes are labelled A to F for coordinates 
(X,Y)=(1,1) to (X,Y)=(3,2) (note that, in the figure, only the expressed gene is 
represented in the cell). 

In this context, an artificial organism is capable of replicating itself if there is 
enough free space in the silicon circuit (at least six cells in the example of 
Figure 7.7) to contain the new daughter organism and if the calculation of the 
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coordinates produces a cycle ( X=1 2 3 1...  and Y=1 2 1... , implying 
X=(WX+1)modulo3 and Y=(SY+1)modulo2). Since each cell stores the same 
information (i.e. the genome program), the cycling of the coordinates causes the 
repetition of the same pattern of genes: therefore, in a sufficiently large array of 
cells, the self-replication process can be repeated for any number of specimens in 
the X and/or the Y axes.  

This self-replication of the organism, achieved through the cycling of the cell’s 
coordinates, is then an immediate consequence of the self-replication of the 
artificial cells. In fact, a cell has to self-replicate to obtain a collection of identical 
cells, which will compose the first artificial organism. The crucial hardware 
mechanism necessary to obtain populations of organisms is therefore the same as 
the one necessary to obtain a single multi-cellular organism. 

The self-replication of an arbitrarily complex cell is a task which, at first sight, 
bears a close resemblance to the self-replication of structures such as von 
Neumann’s universal constructor and Langton’s loop. When the problem is 
observed in detail, however, the requirements of an efficient hardware 
implementation introduce several important differences. 

Figure 7.7. Self-replication of a 6-cell organism in a limited homogeneous array 
of 6x4 cells (situation at the time t5 after 5 cellular divisions). 

As mentioned above, a cell is not the hardware primitive of our systems, but is 
divided into a number of small identical parts called molecules. These molecules 
correspond to the basic elements of a programmable logic circuit (commonly 
referred to as a field programmable gate array or FPGA). FPGAs (Figure 7.8) are 
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circuits composed by a two-dimensional grid of simple logic elements that can be 
configured to perform one of several different functions and to connect to each 
other in order to implement arbitrarily complex circuits. They are usually 
reconfigurable (i.e., their configuration can be erased and replaced by another to 
implement a different kind of circuit), which makes them ideal to implement the 
kind of adaptive circuits necessary for bio-inspired circuits. 

Figure 7.8.  Basic structure of a generic FPGA circuit. 

The configuration of the complete circuit is the sum of the configurations of 
the single elements: we are then faced with a two-dimensional array of identical 
elements whose function is determined by their state (the contents of the local 
configuration memory). This structure is very similar to a CA and indeed the 
configuration memories can be designed to behave as a CA. Nevertheless, some 
important differences exist. 

Probably the most important difference lies in the fact that, unlike 
conventional CAs, the number of states of an FPGA element is extremely large: a 

configuration memory cannot in practice be smaller than 16 bits (216=65,536 
states) and is often in the range of 64 to 128 bits. Obviously, the behavior of this 
kind of CA cannot be described in a lookup table and alternative methods of 
defining the state transitions must be found. 
    To address this issue, we developed both a novel approach to the design of 
hardware-friendly cellular automata, described in detail elsewhere (Stauffer and 
Sipper 2003), and a new CA-based algorithm that allows us to obtain self-
replication of arbitrarily large machines in an FPGA.
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7.5.2                                                                                                                  
The Tom Thumb Algorithm 

Our algorithm, the Tom Thumb algorithm (Mange et al. 2004a; Mange et al.
2004b), aims at implementing in silicon, through self-replication, a process similar 
to cellular division in multi-cellular organisms. The algorithm exploits the use of 
FPGAs as the molecular substrate on which the cells are built (an element of the 
FPGA will then represent a molecule in this approach). 

Before describing our new algorithm for the division of an artificial cell, let us 
remember the roles that cellular division plays in the existence of living organisms 
(Campbell, Reece and Mitchell 1999) (p. 206): “When a unicellular organism 
divides to form duplicate offspring, the division of a cell reproduces an entire 
organism. But cell division also enables multicellular organisms, including 
humans, to grow and develop from a single cell, the fertilized egg. Even after the 
organism is fully grown, cell division continues to function in renewal and repair, 
replacing cells that die from normal wear and tear or accidents. For example, 
dividing cells in your bone marrow continuously supply new blood cells. The 
reproduction of an ensemble as complex as a cell cannot occur by mere pinching 
in half; the cell is not like a soap bubble that simply enlarges and splits in two. 
Cell division involves the distribution of identical genetic material (DNA) to two 
daughter cells. What is most remarkable about cell division is the fidelity with 
which the DNA is passed along, without dilution, from one generation of cells to 
the next. A dividing cell duplicates its DNA, allocates the two copies to opposite 
ends of the cell, and only then splits into two daughter cells”. 

In conclusion, we can summarize the two key roles of cell division: 
• The construction of two daughter cells in order to grow a new organism or to 

repair an already existing one (genome translation).
• The distribution of an identical set of chromosomes in order to create a copy 

of the genome from the mother cell aimed at programming the daughter cells 
(genome transcription).

Through an example of a minimal cell made up of four artificial molecules, we 
will show how the Tom Thumb algorithm can construct both the daughter cells 
and the associated genomes. A tissue of such molecules will in the end be able to 
constitute a multicellular organism and, with sufficient space, a population of such 
organisms. 

7.5.2.1                                                                                                           
Construction of the Minimal Cell 

The minimal cell compatible with our algorithm is made up of four molecules, 
organized as a square of two rows by two columns (Figure 7.9.). Each molecule is 
able to store in its four memory positions four hexadecimal characters of our 
artificial genome, and the whole cell thus embeds 16 such characters. It should be 
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noted that our algorithm is perfectly scalable, i.e., it can be extended to larger 
molecules (more memory positions) and larger cells (more molecules) without any 
alteration to its behavior. 

Figure 7.9.  The minimal cell (2x2 molecules) with its genome at the start (t=0).

The original genome for the minimal cell is organized as a string of eight 
hexadecimal characters, i.e. half the number of characters in the cell, moving 
counterclockwise by one character at each time step (t=0,1,2,...). At startup, the 
original copy of the genome is stored in a register outside of the circuit, connected 
to the lower-left molecule in the array. 

(a)

(b) 
Figure 7.10.  The 15 characters forming the alphabet of an artificial genome. (a) 
Graphical and hexadecimal representations of the 15 characters. (b) Graphical 
representation of the status of each character. 

The 15 hexadecimal characters composing the alphabet of our artificial 
genome are detailed in Figure 7.10. They are either empty data (0), molcode data
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(for molecule code data, from 1 to 7) or flag data (from 8 to E). Molcode data will 
be used for configuring our final artificial organism (they correspond to the 
configuration of the FPGA element in conventional circuits), while flag data are 
necessary for constructing the skeleton of the cell. Furthermore, each character is 
given a status and will eventually be mobile data, indefinitely moving around the 
cell, or fixed data, definitely trapped in a memory position of a molecule. 

At each time step, a character of the original genome is shifted from right to 
left and simultaneously stored in the lower leftmost molecule (Figures 7.9. 
and 7.11.). Note that, due to our algorithm, the first, third, ... character of the 
genome (i.e. each odd character) is always a flag F, while the second, fourth, ... 
character (i.e. each even character) is always a molcode M. The construction of the 
cell, i.e. storing the fixed data and defining the paths for mobile data, depends on 
two major patterns (Figure 7.12.): 

• If the two, three or four rightmost memory positions of a molecule are empty 
(blank squares), the characters are shifted by one position to the right (shift 
data).  

• If the rightmost memory position is empty, the characters are shifted by one 
position to the right (load data). In this situation, the rightmost F' and M'
characters are trapped in the molecule (fixed data), and a new connection is 
established from the second leftmost position toward the northern, eastern, 
southern or western molecule, depending on the fixed flag information (F' = 
8 or C, 9 or D, A, B or E).  

At time t=16, 16 characters, i.e. twice the contents of the original genome, 
have been stored in the 16 memory positions of the cell (Figure 7.11.). Eight 
characters are fixed data, forming the phenotype of the final cell, and the eight 
remaining ones are mobile data, composing a copy of the original genome, i.e. the 
genotype. Both translation (i.e. construction of the cell) and transcription (i.e. 
copy of the genetic information) have been therefore achieved. 

The fixed data trapped in the rightmost memory position of each molecule 
remind us of the pebbles left by Tom Thumb to remember his way in the famous 
fable and gives its name to the algorithm. 
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Figure 7.11.   Constructing the minimal cell. 
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Figure 7.12.   The two memory patterns for constructing a cell. 

7.5.2.2                                                                                                         
Growth and Self-replication 

In order to grow an artificial organism in both horizontal and vertical directions, 
the mother cell should be able to trigger the construction of two daughter cells, 
northward and eastward. 
    At time t=11 (Figure 7.11.), we observe a pattern of characters which is able to 
start the construction of the northward daughter cell; the upper leftmost molecule 
is characterized by two specific flags, i.e. a fixed flag indicating a north branch (F
= D) and the branch activation flag (F = C). This pattern is also visible in 
Figure 7.13. (northward signal, third row). The new path to the northward 
daughter cell will start from the second leftmost memory position. 

Figure 7.13. Patterns of characters triggering the paths to the north, east, south 
and west molecules. 

    At time t=23, another particular pattern of characters will start the construction 
of the eastward daughter cell; the lower rightmost molecule is characterized by 
two specific flags, i.e. a fixed flag indicating an east branch (F = E), and the 
branch activation flag (F = C). This pattern appears also in Figure 7.13. (eastward 
signal, third row). The new path to the eastward daughter cell will start from the 
second leftmost memory position. 
    The other patterns in Figure 7.13. are needed for constructing the inner paths of 
the minimal cell (Figure 7.11.) as well as cells more complex than the minimal 
cell.
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Once the system is in place, the self-replication of the cell can occur indefinitely, 
as long as there is sufficient space in the circuit (Figure 7.14). 

Figure 7.14. Growth of a multicellular organism made up of 2 2 minimal cells.

7.5.2.3                                                                                                              
The LSL Acronym Design Example 

In Tempesti (1995), we have already shown how to embed the acronym “LSL” 
(for Logic Systems Laboratory) into a self-replicating loop implemented on a 
classical cellular automaton. Thanks to a “cut-and-try” methodology and a 
powerful simulator, we were able to carry out the painful derivation of over ten 
thousand rules for the basic cell. 
    Unlike in that heuristic method, the same example can be designed in a 
straightforward and systematic way using the Tom Thumb algorithm. 
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 (a) 

(b) 

(c)

(d) 
Figure 7.15. Self-replication of the “LSL” acronym. (a) Original specifications 
(LSL = Logic Systems Laboratory). (b) The 12x6=72 molecules of the basic cell. 
(c) Genome. (d) BioWall implementation displaying both the genotypic path and 
the phenotypic shape (Photograph by E. Petraglio). 
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     The “LSL” acronym is first represented in a rectangular array of 12 columns by 
6 rows (Figure 7.15 a). While the number of rows is indifferent, the number of 
columns should be even in order to properly close the loop (Figure 7.15 b). The 
cell is therefore made up of 12x6=72 molecules connected according to the pattern 
in Figure 7.15 b: bottom-up in the odd columns, top-down in the even columns, 
with the lower row reserved for closing the loop. It is then simple to define all the 
flags in the rightmost memory position of each molecule (grey characters in 
Figure 7.15 b). 
     Among the 72 molecules, 25 are used to display the three letters “L”, “S” and 
“L”, and are given the character “2” as molcode (black data in Figure 7.15 a 
and 7.15 b), while 47 are blank (molcode “1”). 
     The detailed information of the final genome, i.e. 72x2=144 hexadecimal 
characters (Figure 7.15 c), is derived by reading clockwise the fixed characters 
(black and grey characters in Figure 7.15 b) of the whole loop, starting with the 
lower molecule of the first column. 
    Last, it was possible to embed our basic molecule in each of the 2000 field-
programmable gate arrays of the BioWall (Tempesti et al. 2002) and to show the 
rather spectacular self-replication of our original cell (equivalent to a unicellular 
artificial organism), the “LSL” acronym, towards both vertical and horizontal 
directions (Figure 7.15 d), obtaining a population of identical organisms. 
    The LSL acronym design example can be easily generalized to produce the 
following algorithm: 
1. Divide the given problem in a rectangular array of C columns by R rows. While 
the number of rows R is indifferent, the number of columns C should be even in 
order to properly close the loop.  
2. Define all the flags in the rightmost memory position of each molecule 
according to the following patterns: bottom-up in the odd columns and top-down 
in the even columns, with the lower row reserved for closing the loop.  
3. Complete the path by adding the branch activation and north connection flag (C) 
in the rightmost memory position of the lower molecule of the first column, the 
north branch and east connection flag (D) in the rightmost memory position of the 
upper molecule of the first column, and the east branch and west connection flag 
(E) in the rightmost memory position of the lower molecule of the last column, in 
order to trigger the two daughter loops northwards and eastwards respectively.  
4. According to the original specifications, complete all the molcode data in the 
second rightmost memory position of each molecule. These molcode data 
constitute the phenotypic information of the artificial cell.  
5. The detailed information of the final genome, i.e. the genotypic information of 
the artificial cell, is derived by reading clockwise along the original path the fixed 
characters of the whole loop, i.e. the two rightmost characters of each molecule, 
starting with the lower molecule of the first column. The genotypic information, or 
artificial genome, is used as the configuration string of the artificial cell and will 
eventually take place in the two leftmost memory positions of each molecule.  
     This methodology is made possible by modifying the CA paradigm into a more 
hardware-friendly format. We call this approach the data and signals cellular 
automaton (DSCA) (Stauffer and Sipper 2003). This kind of systems, which can 



             G. Tempesti  D. Mange  A. Stauffer  E. Petraglio 144

easily be transformed into conventional CAs (albeit ones that are much too 
complex to be handled conventionally), relies on a definition of the transition rules 
which is fundamentally different from the norm: rather than by referencing a 
lookup-table depending on the element’s neighborhood, the transitions occur as a 
consequence of signals which depend on the elements’ state. This approach allows 
us on one hand to handle elements with very large numbers of states (a necessary 
condition to translate CAs into the world of programmable circuits) and on the 
other hand to easily adapt the system when the specifications change (a crucial 
feature for the design of complex machines that is missing from conventional 
CAs).

7.5.2.4                                                                                                       
Universal Construction  

In his original contribution (von Neumann 1966), von Neumann defined 
construction (or constructibility) as the capability of constructing, i.e. assembling 
and building from appropriately defined “raw materials”, an automaton using 
another automaton, the constructor. More precisely, the constructor, a two-
dimensional automaton, is able to build in the two-dimensional array defined by 
von Neumann a specimen of another automaton described by a one-dimensional 
string of characters (the artificial genome) stored into the tape of the constructor. 
     According to von Neumann (1966), a constructor is endowed with universal 
construction if it is able to construct every other automaton, i.e. an automaton of 
any dimensions. This concept is pointed out by Freitas and Merkle (2004), where 
construction universality implies the ability to manufacture any of the finitely 
sized machines which can be formed from specific kinds of parts, given a finite 
number of different kinds of parts but an indefinitely large supply of parts of each 
kind. 
     If we assume (1) the existence of an array, as large as desired, of molecules and 
(2) the existence of a string of characters, as large as desired, the artificial genome, 
we claim that we are able to construct a computing machine of any dimensions 
into the array. Remember that the molcode data M, limited to the range 1 ... 7, may 
be directly used, as in the previous example, for displaying the given 
specifications or may configure any kind of field-programmable gate array aimed 
at defining a more complex digital architecture. There are only two restrictions 
involved by our actual implementation. 
• The number of rows and/or columns should be even, in order to properly close 
the loop. 
• For any artificial organism characterized by a molcode alphabet greater than 1 ... 
7, we would be led to slightly modify the architecture of the molecule and use 
larger registers (with more than 4 bits).  
     If these two simple conditions are met, we can embed onto an array of 
molecules any array of boolean (octal, hexadecimal) values and observe the self-
replication of the original pattern. 
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     On the other hand, we have already shown that a universal Turing machine 
may be embedded in a regular array of identical cells (Restrepo and Mange 2001), 
themselves decomposed and implemented onto a regular array of molecules. Our 
new loop with universal construction can therefore verify universal computation,
thus meeting the two basic properties of the historical self-replicating cellular 
automaton designed by von Neumann (1966), i.e. universal construction and 
computation.

7.6
Conclusion

In this work, we presented some solutions to the implementation of the biological 
concepts of organisms and populations in the context of computer hardware 
through CA-based mechanisms. Unlike more conventional approaches based on 
the use of cellular automata to model biological systems, the emphasis in these 
systems is on drawing inspiration from nature to design computing machines 
endowed with some of the remarkable properties of biological entities. 
     Several years before the publication of the historical paper by Watson and 
Crick (1935) revealing the existence and the detailed architecture of the DNA 
double helix, von Neumann was already able to point out that a self-replicating 
machine necessitated the existence of a one-dimensional description, the genome, 
and a universal constructor able to both interpret (translation process) and copy 
(transcription process) the genome in order to produce a valid daughter organism. 
Self-replication will allow not only to divide a mother cell (artificial or living) into 
two daughter cells, but also to grow and repair a complete organism. Self-
replication is now considered as a central mechanism indispensable for those 
circuits which will be implemented through the nascent field of nanotechnologies 
(Drexler 1992; Roco and Bainbridge 2002). 
     From von Neumann’s seminal work (von Neumann 1966) to Langton’s loop 
(Langton 1984), cellular automata have been the framework of choice for the 
study of self-replicating machines in computer science. In our project, we 
analyzed the features of these systems in view of finally implementing self-
replication in silicon. In particular, to step beyond the limitations imposed by the 
implicit complexity of cellular automata, we shaped our Embryonics project 
around artificial multicellular organisms based on the growth of a cluster of cells, 
themselves produced by cellular division (Macias and Durbeck 2002; Mange et al.
2000). The same mechanism is capable of producing populations of machines 
which could then be used in the context of evolution and to carry out massively 
parallel computation (Chou and Reggia 1998). 
     A major by-product of this research is the introduction of a new kind of cellular 
automaton, the data and signals cellular automaton (DSCA) (Stauffer and Sipper 
2003), decomposed in a processing and a control units, which allows for a 
systematic and straightforward design methodology which has been sorely lacking. 
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We showed how this concept can be applied, though the Tom Thumb algorithm, 
to the self-replication of arbitrarily complex circuits.
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Chapter 8 

Development and Application of Predictive River 
Ecosystem Models Based on Classification Trees 
and Artificial Neural Networks
P. Goethals · A. Dedecker · W. Gabriels · N. De Pauw

8.1
Introduction

Prediction of freshwater organisms based on machine learning techniques is 
becoming more and more reliable due to the availability of appropriate datasets 
and modelling techniques. Artificial neural networks (Lek and Guegan 1999), 
fuzzy logic (Barros et al. 2000), evolutionary algorithms (Caldarelli et al. 1998), 
cellular automata (Gronewold and Sonnenschein 1998), etc. proved to be powerful 
tools to perform ecological modelling, especially when large datasets are involved. 
Models have several interesting applications in river management. They allow for 
a better interpretation of the results, easing the cause-allocation of the actual river 
status and increasing the insight needed to improve assessment systems (Fig. 8.1.). 
Models also allow for simulating the effect of potential management options and 
thus supporting decision-making. The development of effective and efficient 
monitoring networks based on models is probably another important advantage. 

The ‘River Invertebrate Prediction and Classification System’ (RIVPACS) 
approach, based on statistical modelling, is currently one of the best available 
techniques for assessing the biological quality of running waters because it offers 
the ability to use environmental variables to predict species that are expected to 
occur at a site if it is unstressed. The expected fauna is then compared with the 
observed community of macroinvertebrates in order to assess the river quality 
(Wright et al. 2000). However, biological communities are dynamic and the nature 
of RIVPACS would need to be altered in order to predict a change in faunal 
composition in response to new environmental conditions at a given site (De Pauw 
2000).  
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Fig. 8.1.  Potential applications of ecosystem models in integrated river 
management (Goethals and De Pauw 2001). 

In this context, models based on classification trees and artificial neural 
networks were developed and applied to predict the macro-invertebrate 
communities in the Zwalm river basin located in Flanders, Belgium. Because the 
macroinvertebrate communities have drastically changed as a result of several 
types of human impacts, it was attempted to train the different models in order to 
predict the effect of these different types of environmental stress. 

8.2
Study Sites, Data Sources and Modelling Techniques 

8.2.1                                                                                                          
The Zwalm River Basin 

The Zwalm river basin is part of the Scheldt river basin (Carchon and De Pauw 
1997). The Zwalm river basin has a total surface of 11,650 ha. The Zwalm river 
itself has a length of 22 km (Fig. 8.2.). The average water flow at Nederzwalm, 
very near the Scheldt is about one m3s-1. It has a very irregular regime, with low 
values in the summer (minima lower than 0.3 m3s-1) and relatively high values in 
rainy periods (maxima up to 4.7 m3s-1) (Lauryssen et al. 1994). The water quality 
in the Zwalm river basin substantially improved during the year 1999 due to 
investments in sewerage and wastewater treatment plants during the last years 
(VMM, 2000). None the less, most parts of the river are still polluted by untreated 
urban wastewater discharges and by diffuse pollution originating from agricultural 
activities.  
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Fig. 8.2. The Zwalm river basin in Flanders (Belgium). 

Although Flanders is in general rather flat, the Zwalm river basin is 
characterized by several height differences, resulting in a very unique river 
ecosystem within the Flemish region (Soresma 2000). Consequently, soil erosion 
is the most important geo-morphological process resulting in a substantial 
transport of (contaminated) sediments in the river (AMINAL 1999). Also 
structural and morphological disturbances are numerous (Carchon and De Pauw 
1997). Weirs for water quantity control obstruct fish migration and are one of 
main ecological problems within the river basin. Therefore an in-depth study has 
been made on the construction of fish migration channels and also natural 
overflow systems to reach an ecologically friendly water quantity management in 
the near future (Soresma 2000). Some upper parts of the watercourses in the 
Zwalm river basin are colonized by very rare species as Bullhead (Cottus gobio),
Brook Lamprey (Lampetra planeri) and several vulnerable macro-invertebrates. 

8.2.2                                                                                                              
Data Collection 

Structural characteristics (meandering, substrate type, flow velocity, …) and 
physical-chemical variables (dissolved oxygen, pH, …) were used as inputs to 
predict the presence or absence of macroinvertebrate taxa in the headwaters and 
brooks of the Zwalm river basin (see Table 8.1.). Structural characteristics were 
visually monitored (Dedecker 2001). Flow velocity was determined by timing the 
transport of a float over a distance of 10 m. Field measurements were made for 
temperature and dissolved oxygen (TW OXI 330/SET), pH (Jenway 071) and 
conductivity (WTW LF 90). Suspended solids were measured in the laboratory 
based on spectrophotometric measurements (Dedecker 2001). 
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Table 8.1. Monitored variables in the Zwalm river basin. 

Macroinvertebrates were collected by means of a standard handnet (NBN 1984) 
during five minute kick sampling. The objective of the sampling consists in 
collecting the most representive diversity of the macroinvertebrates within the 
examined site (De Pauw and Vanhooren 1983). The absence or presence of 
macroinvertebrate taxa was respectively represented by 0 or 1 for use in the 
different models. In total, 60 sites were monitored in the Zwalm river basin. 

8.2.3                                                                                               
Classification Trees 

Classification trees (Breiman et al. 1984), often referred to as decision trees 
(Quinlan 1986) predict the value of a discrete dependent variable with a finite set 
of values (called class) from the values of a set of independent variables (called 
attributes), which may be either continuous or discrete. Data describing a real 
system, represented in the form of a table, can be used to learn or automatically 
construct a decision tree. 

The common way to induce decision trees is the so-called ‘Top-Down 
Induction of Decision Trees’ (TDIDT, Quinlan 1986). Tree construction proceeds 
recursively starting with the entire set of training examples. At each step, the most 
informative attribute is selected as the root of the (sub)tree and the current training 
set is split into subsets according to the values of the selected attribute. For 
discrete attributes, a branch of the tree is typically created for each possible value 

Variables Units 
pH  
Temperature °C 
Dissolved oxygen mg/l 
Conductivity µS/cm 
Suspended solids mg/l 
Water level cm 
Fraction of pebbles % 
Shadow % 
Water plants 2 classes: 0 = absent; 1 = present 
Width cm 
Flow velocity m/s  
Meandering 6 classes 

(1 = well developed to 6 = absent) 
Hollow river beds 6 classes  

(1 = well developed to 6 = absent) 
Pools/Riffles 6 classes  

(1 = well developed to 6 = absent) 
Artificial embankment 
structures 

3 classes  
(0 = absent; 1 = moderate; 2 = intensive) 
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of the attribute. For continuous attributes, a threshold is selected and two branches 
are created based on that threshold. For the subsets of training examples in each 
branch, the tree construction algorithm is called recursively. Tree construction 
stops when all examples in a node are of the same class (or if some other stopping 
criterion is satisfied). Such nodes are called leaves and are labelled with the 
corresponding values of the class. 

A number of systems exist for inducing classification trees from examples, e.g., 
CART (Breiman et al. 1984), ASSISTANT (Cestnik et al. 1987), and C4.5 
(Quinlan 1993). Of these, C4.5 is one of the most well known and widely-used 
decision tree induction systems. J48 (Witten and Frank 1999) is a Java re-
implementation of C4.5. It is a part of the machine learning package WEKA, 
which also includes some of the latest developments in machine learning. This J48 
was also used for inducing classification trees and prediction models of 
macroinvertebrate taxa of the Zwalm river basin. Standard settings were used. The 
model validation was based on splitting the dataset in a training and validation set 
of respectively 40 and 20 instances. Also ten fold cross validation on the whole 
dataset (60 instances) was applied in specific cases. 

8.2.4                                                                                                     
Artificial Neural Networks 

Artificial neural networks (ANNs) are mathematical models based on the transfer 
of information through a network of functional units, called neurons. Given a 
number of input values, entered at the basis of the network, it generates one or 
more outputs. ANNs are currently recognized as an alternative for multivariate 
statistics to predict aquatic communities (Gabriels et al. 2000). Recently, several 
studies have been published, concerning the application of neural networks for 
relating freshwater macroinvertebrates with their abiotic environment (e.g. Walley 
and Fontama 1998; Schleiter et al. 1999; Gabriels et al. 2000). The neural network 
was implemented with the neural network extension of the software package 
MATLAB 5.3 for MS Windows™ (Demuth and Beale 1998). The model 
validation was based on splitting the dataset in a training and validation set of 
respectively 40 and 20 instances. Also 10 fold cross validation was sometimes 
applied, as described by Witten and Frank (2000). Several optimisation studies 
were carried out to select the best model configuration (Dedecker 2001). The best 
neural network consisted of one hidden layer and ten neurons, with ‘tansig’ and 
‘logsig’ transfer functions and ‘gradient descending with momentum and adaptive 
learning rate backpropagation’ as training algorithm (Demuth and Beale 1998). A 
scheme of this neural network is shown in Fig. 8.3. During the research, special 
interest was paid to the influence of the frequency of occurrence of the taxa on the 
prediction reliability of the developed models. Sensitivity analyses were used to 
get insight in the applied ‘concepts’ of these black box models. 
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8.2.5                                                                                                         
Model Assessment 

To compare different models, a validation set of 20 instances was submitted as 
input to the models and the predicted outputs were then compared to the measured 
results. In this way, the amount of ‘correctly classified instances’ (CCI) was 
obtained and could be used to compare the performance of the different modelling 
techniques. Ten fold cross validation  (Witten and Frank 2000) for training and 
validation on the whole dataset was used in some specific cases and is explicitly 
mentioned in the text. 

Fig. 8.3. Scheme of the applied neural networks for the Zwalm river data. 
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8.3
Results

8.3.1                                                                                                   
Classification Trees 

8.3.1.1                                                                                                        
Model Development and Validation 

Classification trees were constructed for all 52 taxa collected during the 60 
samplings in the headwaters of the Zwalm river basin. The reliability of the 
predictions differs dramatically between the macroinvertebrate taxa. The 
frequency of occurrence of the taxa in the different sites is one of the major 
explanations of this phenomenon (Table 8.2). Especially when the taxa are very 
common or extremely rare, the amount of correctly classified instances is very 
high during the validation process, but this can mainly be explained by the high 
reliability to make a good prediction merely based on a probabilistic guess. The 
J48 does not induce a meaningful tree in these cases, as can be seen in Table 8.2. 
for Aplexa and Tubificidae.

Table 8.2. Prediction of three different macroinvertebrate taxa by means of 
classification trees (CCI calculation based on tenfold cross validation, the database 
consisted of 48 instances). 

The J48 algorithm is mainly interesting for moderately frequent taxa, such as 
Asellidae and Gammaridae (Fig. 8.4.). Based on tenfold cross validation, the CCI 
score is 63 % for predicting Gammaridae. The tree also reveals interesting 
information concerning the variables that are important to predict this taxon. The 
main variables for the prediction of Gammaridae are water level, amount of 
hollow river beds, amount of stones, dissolved oxygen and pH. From the values in 
the leafs of the tree one can conclude that the Gammaridae mainly prefer the 
upstream parts of the river basin. The taxon is present in undeep waters (water 
level lower than 10.5 cm). It also prefers hollow beds and cavities, which nearly 

Taxa Frequency 
of
occurrence
in the 
Zwalm 
(%) 

Correctly 
Classified 
Instances 
(%) 

Number 
of
variables 
in the 
model 

Number of 
leafs 
(model 
complexity)

Aplexa 2 100 0 1 
Asellidae 43 63 2 3 
Tubificidae 93 94 0 1 
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only occur in fast running waters, thus also the higher and steeper upstream parts. 
Gammaridae also prefer more stony material, this means quickly running streams 
where sediments do not settle. In cases of deeper waters without cavities (due to 
artificial embankments) the Gammaridae are only present when the dissolved 
oxygen percentage is sufficiently high. The pH value plays a role under specific 
circumstances, but this classification is of the lowest importance in the tree. 

8.3.1.2                                                                                                  
Application of Predictive Classification Trees for River Management 

Fig. 8.4. Example of a classification tree model of Gammaridae in the Zwalm 
river basin. The single bold frames contain the classification variables, while the 
triple frames contain the final prediction of the Gammaridae (0 = absent and 1 = 
present). Hollbed is an ordinal categorical variable (six classes: 1= very good 
hollow beds under trees; 2 = good hollow beds; 3 = hollow beds by erosion under 
vegetation; 4 = moderate cavities; 5 = hollow beds not probable; 6 = no hollow 
beds by artificial embankments).  
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Fig. 8.5. Distribution plots of Asellidae in the Zwalm river basin, black spots 
indicate the absence of Asellidae, while white spots the presence. The four maps 
give a representation of what effect the removal of six weirs (1, 2, 3, 4, 4 and 6) in 
the Zwalm river basin can have on the Asellidae populations (top left = 
measurements August/September 2001; top right = J48 classification tree 
simulations (for August/September 2001); bottom left = simple prediction of the 
weirs-removal impact, the site in front of the weir will have the same 
characteristics as behind the weir before weir removal, while the situation behind 
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the weir is not altered; bottom right = J48 classification tree simulations of weirs-
removal). 

In Fig. 8.5. the effect on the Asellidae population of the removal of the 6 weirs 
in the Zwalm river basin is simulated by classification trees. If the two upper maps 
are compared, one can quickly notice the generalisation the model makes: 
according to the model the Asselidae only colonize the broader river sites (the 
only rule generated by the J48-model using tenfold cross validation on all sixty 
instances is:’width more than 3.5 meters: Asellidae present, while absent in the 
more narrow streams’). 

Althought the amount of correctly classified instances is rather good and the 
induced model gives an interesting generalisation to easily and reliably predict 
Asellidae in the field, the model is not interesting to predict the effects of the 
removal of the weirs. The maps at the bottom illustrate that the Asellidae will keep 
on colonizing the river stretches in sites 1 to 6 after the removal of the six weirs, 
according to the J48 model. When a simple rule (‘the site in front of the weir will 
have the same characteristics as behind the weir before weir removal, while the 
situation behind the weir is not altered’) is used to predict the Asellidae behaviour, 
similar predictions are made. According to ecological experts however, the 
Asellidae do not effectively colonize the sites behind the weir as could be thought 
according to the measurements. Most probably the presence of the Asselidae in the 
samples behind the weirs has to be explained by accidental carry-away processes 
from the sites in front of the weirs, where the conditions (slow current) are 
convenient for the Asselidae. This also explains that in the samples of the river 
stretches some kilometres in front of the weirs, Asellidae are never present. So 
according to ecological experts, the Asselidae will most probably not colonize the 
Zwalm river under undisturbed conditions and also not when the weirs are 
removed. 

8.3.2                                                                                                       
Artificial Neural Networks 

8.3.2.1                                                                                                              
Model Development and Validation 

From Fig. 8.6. one can clearly observe that artificial neural networks (ANNs) 
make better predictions compared to simple probabilistic guesses. Another trend, 
similar to the predictions with classification trees is that the reliability of the 
models is the highest for very common (Chironomidae, Tubificidae) and 
extremely rare taxa (Aplexa, Ephemera, Armiger). The added value of the artificial 
neural network is the lowest under these circumstances. 
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Fig. 8.6. Prediction of macroinvertebrate taxa in the Zwalm river basin based on 
ANNs compared to simple probabilistic guesses. 

Fig. 8.7. Probability of presence predicted by the ANN for  
Hydrophilidae in relation to flow velocity. 
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To get insight in the inference system of the ANN models, all input variables 
except the one of interest are kept constant (at the average value of the database). 
In this way, one is able to determine the impact of the variable on the presence or 
absence of a specific taxon. From Fig. 8.7. one can conclude that Hydrophylidae
prefer rather slowly running or stagnant waters, while Gammaridae rather prefer 
fast running waters (Fig. 8.8.).  

In this way, some insight is gained in the habitat preference of all taxa, what 
delivers substantial information for river ecosystem management. 

Fig. 8.8. Probability of presence predicted by the ANN for Gammaridae in 
relation  to flow velocity. 

8.3.2.2                                                                                                 
Application of Predictive Artificial Neural Networks for River 
Management 

8.3.2.2.1                                                                                                   
Prediction of Environmental Standards 

In Fig. 8.9. the convenience of ANN models for determining ecotoxicological 
information is presented. Using these ecotoxicty-curves developed by ANN model 
simulations, one can define environmental standards on a data driven basis. In Fig. 
8.9. a 90% protection level for Gammaridae is shown for dissolved oxygen (7%). 
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By developing such curves for all types of taxa, the environmental standards can 
be defined on a more scientific basis than is nowadays often done. 

Fig. 8.9. The impact of dissolved oxygen on the probability of presence of 
Gammaridae and the 90% protection level (7% of dissolved oxygen). 

8.3.2.2.2                                                                                             
Feasibility Analysis of River Restoration Options 

An illustration about the application of ANN models to mitigate human impacts 
on the Bettelhovebeek is presented in this case study. Several structural 
modifications are dramatically affecting the biological communities at this site. 

Tab. 8.3. Optimal restoration option for the Bettelhovebeek and predicted 
macroinvertebrate taxa and BBI after river restoration. 
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Structural Before river restoration After river restoration 
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Artificial embankments concrete and iron str. none 
Meandering none moderate 
Deep/shallow variation none moderate 
Hollow river beds none well developed 
Macroinvertebrate taxa Actual bad status  

(field measurement) 
Future good status 
(ANN prediction) 

Sialis absent present 
Limnephilidae absent present 
Simuliidae absent present 
   
Belgian Biotic Index moderate quality 

(BBI=5) 
good quality (BBI=7) 
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The aim of this study was to determine the most efficient restoration option to 
obtain a stable biological ecosystem meeting the minimal river water quality 
standards for Flanders, such as ‘the Belgian Biotic Index (BBI) equal or higher 
than seven’. In Tab. 8.3 only predictions for the best restoration option are 
summarized, based on a selection made from a set of simulations with artificial 
neural network models (Dedecker 2001). The results indicate that after river 
restoration, some macroinvertebrate taxa, indicative for a good water quality and 
that are currently not present, will colonize the site again. Also the predicted BBI 
changes from a moderate to a good quality and illustrates that the basic water 
quality standards for Flanders are met under the mitigated conditions. 

8.4
Discussion 

Generally the classification trees performed well to predict the macroinvertebrate 
taxa, based on the fifteen input variables. This method does not merely generate 
results with a low prediction error, but also allows the user to identify associations 
and general trends in the data (as illustrated by the Gammaridae model), making it 
more interesting than complete black-box techniques. One may conclude that 
classification trees are interesting grey-box prediction techniques, allowing the 
user to combine a small prediction error with getting some information on general 
trends in the data. This methodology can thus be used to determine the ecological 
requirements of organisms that are not sufficiently well understood (Dzeroski et 
al. 1997). Probably the results can be improved by providing other valuable 
inputs. Experiments with different sets of input variables did not only result in an 
altered prediction error, but also the complexity of the trees as well as the relative 
importance of some ‘general’ trends seemed to be affected. Further research is 
therefore necessary to get insight in the impact of different input variable sets on 
the prediction qualities of decision trees. D’heygere et al. (2001) illustrated the 
convenience of genetic algorithms to automatically select input variables sets in 
this context. Also models for very common or very rare species need to be 
optimised. The trees of these taxa are very limited and have in many cases no 
added value to black box models and probabilistic guesses. Boosting, bagging and 
meta-cost algorithms (Witten and Frank 2000) can have an interesting added value 
for this, although in many cases the transparency and robustness as well as their 
ecological validity of the induced rules is often affected by these techniques. 

Although rule-induction by classification trees generates in general robust 
models with a high predictive reliability, one has to be aware of the static 
characteristics of this type of models. Therefore, the simulations still need to be 
checked by ecological experts that can deliver knowledge that is often not 
included in the database used for the model induction. This was illustrated by the 
case study on the weirs-removal in the Zwalm river basin. To increase the model 
feasibility with regard to simulations for river restoration management, spatial-
temporal expert-rules will have to be included (such as migration kinetics of the 



Chapter 8  ·  Stream Assessment  165 

organisms in water, land and air), as well as annual measurement campaigns that 
can improve the database with regard to its information contents. 

The performance of the ANN models is in general better than simple 
probabilistic predictions and rather similar to classification tree models. Also 
Walley and Fontama (1998), Schleiter et al. (1999) and Gabriels (2000) came to 
similar conclusions for predicting macroinvertebrates based on a limited set of 
environmental characteristics. ANN models for common and rare taxa have the 
highest reliability (expressed as correctly classified instances or CCI), while for 
moderately frequent taxa the prediction is lower, but relatively much better than 
the probabilistic guesses as was also reflected in the classification tree models. 
Sensitivity analyses allowed to study the impact of the input variables on the 
presence or absence of macroinvertebrate taxa. The impact of flow velocity on the 
absence and presence of Gammaridae is confirmed by earlier observations (De 
Pauw and Vannevel 1993) and also by the rules induced via the classification tree 
models. Many other relations were detected and were in most cases confirmed 
with related ecological research results, when this information was available. This 
also indicates that these models in many cases work in an ecological meaningful 
manner. In this way ANN models allow to determine the major variables that 
affect the ecosystem quality and should be taken under direct consideration in the 
river ecosystem management. Further research is necessary to determine the 
optimal neural network configuration. Walley and Fontama (2000) used an ANN 
with two hidden layers with six nodes each for similar simulations. Also the 
impact of the applied training algorithms as well as the risk of overtraining the 
network should be further analysed to obtain reliable and meaningful predictions 
in the long run. 

Several case studies related to restoration (e.g. Bettelhovebeek) and 
environmental impact assessment proved the interesting added value of the ANN 
ecosystem models developed for river management. 
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Chapter 9 

Modelling Ecological Interrelations in Running 
Water Ecosystems with Artificial Neural Networks 
I.M. Schleiter · M. Obach · R. Wagner · H. Werner · H.-H. Schmidt ·  D. Borchardt

9.1
Introduction

The assessment of properties and processes in running water ecosystems is a 
major issue in basic and applied aquatic science and has consequences for 
environmental management. However, knowledge of the system functions, e.g. 
temporal and spatial dynamics of physical, chemical, hydro-morphological and 
biological processes, and species-habitat interrelations are still insufficient. An 
integrative and prognostic ecological assessment of running waters thus is 
presently not available (e.g. Bayerisches Landesamt für Wasserwirtschaft 1998; 
Resh et al. 1994; Statzner et al. 1994; Townsend and Hildrew 1994; Townsend 
1989; Vannote et al. 1980).  

The analysis of running water ecosystems and prediction with deterministic and 
stochastic models are limited. However, studies on water quality assessment have 
improved the methodology, which can also be applied to basic science.  

The high complexity and the spatial and temporal system dynamics are 
examples of typical non-linear relationships of abiotic and biotic variables with 
often low amounts of non-normally distributed data. This limits the application of 
traditional statistics. Artificial neural networks (ANNs) provide an alternative tool 
to analyse and model ecological relationships. Their most important features are 
multi-dimensionality, non-linearity, the ability to learn from examples and to 
generalise. 
General aims of our modelling approach are:  
Application and development of ANNs to  
1. visualise and test data reliability  
2. model ecological relations 
3. test the suitability of different ANN types and pre-processing methods 
4. detect the most important input variables 
5. visualise the network status and the activation of neurons  
6. develop neural modelling techniques initiating further research on bioindication 

and ecological prediction 
In basic and applied running water ecology detection and description of unknown 
interrelations and generation of hypotheses identification of the most relevant 
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variables for modelling, e.g. indicator species prediction of ecological properties 
of lotic ecosystems prediction of the assemblage of benthic communities in 
disturbed and undisturbed streams generalisation of interdependencies. 

In an interdisciplinary research project of mathematicians, computer scientists, 
ecologists, and engineers, the suitability of various types of ANNs was tested. 
They were used to model temporal dynamics of water quality based on weather, 
urban storm-water run-off and waste-water effluents, bioindication of lotic 
ecosystem properties using benthic macroinvertebrates, and long-term population 
dynamics of aquatic insects depending on environmental and ecological variables.  

9.2
Materials and Methods 

9.2.1                                                                                                        
Data Base 

Our research was based on two data sets from running waters in Hesse (Central 
Germany): 

Nine streams with different amounts of organic pollution (Schleiter et al. 1999; 
2001) (248 macro-zoobenthos taxa and physical, chemical, and hydro-
morphological variables)  

A thirty years data set of environmental variables (precipitation, discharge, 
water temperature) and aquatic insects (Ephemeroptera, Plecoptera, Trichoptera) 
of an almost pristine stream (Limnological River Station Schlitz; Obach et al. 
2001). 

9.2.2                                                                                                                
Data Pre-Processing 

Pre-processing includes all data alterations before the applications of ANNs. The 
first step is a test of completeness, e.g. determination of an adequate method to 
handle missing values, and plausibility. Outliers can be detected and mapped onto 
the borders of a reliable range of values (truncation) or use non-linear functions, 
e.g. logarithmic or sigmoidal. 

Variables can be normalized in order to avoid an undesireably high influence of 
large absolute values. We usually mapped the values linearly onto the interval 
[0,1]; occasionally standardisation is more advisable.  

The data set was usually divided into training (adaption of net parameters), 
verification (selection of an adequate model) and test data (to estimate 
generalisation ability). 

Selection of the most relevant variables by regression, correlation analyses or 
based on expert knowledge or combination of variables by Principal Component 
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Analysis (PCA) leads to reduced computational efforts and easier to manage 
models.  

9.2.3                                                                                                       
Artificial Neural Network Types 

The software for all applied ANN simulations was developed by the Research 
Group Neural Networks at the University Kassel (Germany). The suitability of the 
following ANN types was tested: Kohonens self organising map as an example for 
unsupervised learning networks and feed-forward networks such as conventional 
and modified Multi-Layer-Perceptrons (MLP, Rumelhart et al. 1986; Senso 
Neural Networks, Dapper 1998), General Regression Neural Networks (GRNN, 
Specht 1991), Motoric Feature Maps (MFM, Ritter et al. 1994), Linear Neural 
Networks (LNN) and also Radial Basis Function Neural Networks (RBF, Bishop 
1995).  

9.2.4                                                                                                    
Dimension Reduction 

Ecological variables are often correlated and thus data contain a certain amount of 
redundant information. For example, many variables in aquatic environments 
depend directly or indirectly on the amount of oxygen available. Dimension 
reduction finally resulted in: 
1. an improvement of the proportion of the number of input dimensions and the 

amount of available data with an improved generalization quality of ANNs 
2. reduced computation effort, particularly during ANNs training  
3. recognition of relevant predictors (to be compared also with expert knowledge)  
4. simplified and easy to analyse models based on a manageable number of 

variables. 
Data compression by linear PCA factor analysis and bottle-neck nets (Dapper 

1998; Bishop 1995) provided independent variables. The computed factor 
“pollution with organic matter” contains compressed information on Ptot, O2,
BOD5, COD, and is interpreted as a major stressor in many anthropogenically 
altered aquatic ecosystems. In contrast, selection of relevant predictors by 
sensitivity analysis (Dapper 1998), stepwise methods, genetic algorithms 
(Goldberg 1989) simply reduces the number of relevant variables to neglect 
irrelevant and redundant information. 

9.2.5                                                                                                          
Quality Measures 

Model accuracy is usually measured as the differences between predicted and 
observed data. Usual error measures are the sum of squared errors (SQE), the 
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mean squared error (MSE), the root mean squared error (RMSE), and the 
coefficient of determination (B) (Bishop 1995). 

Finer quality measures are provided below. 

9.3
Data Exploration with Unsupervised Learning Systems 

An initial application of ANNs in the process of data exploration is the use of 
unsupervised trained networks to visualise similarity of patterns, grouping of 
objects, and again outlier detection, but in multiple dimensions (Chon et al. 1996; 
Foody 1999). One of the most famous techniques is Kohonen’s self organised 
map, SOM (Kohonen 1995).  

Ref4 Ne2 Ne4 ZO2 ZO3 Ne5 Ku4 Ku5

We5 Ba4 Ku7

We4 Ba5

We6 Ma4 Ba6 Ku6 ZO4

Fr6

Fr4 Ma5 Lo5a Ku1

Ref3 Ba1 Ne6

Ma2 Ma6 Ne7 We1 RW3 RW5

Ma1 Ma7

ZO1 We2 Ba2 Fr2 RW7 RW2 Ref2

RW1 RW6

Ku2 Lo2 Lo3 Lo7 Lo6 Lo4 Lo5 Fr1 Ref1

Figure 9.1. Similarities of the 55 samples with regard to eight water properties 
(water temperature, oxygen, conductivity, total nitrogen, total phosphorus, hydro-
morphological quality class, substrate diversity, number of species per sampling 
site) visualised by a U-matrix of a 15 12 SOM (spatial proximity and light grey 
shades mean similarity). 
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We usually used this tool, but provide only one example here. Similarities 
between sampling and reference sites of different streams were visualised with 
respect to water quality, habitat features and also by colonisation patterns of 
benthic macro-invertebrates and adult aquatic insects (Fig. 9.1.). Reference sites 
are a theoretical construct based on expert knowledge of typical chemical and 
hydro-morphological quality classes: unpolluted and natural (Ref. 1), moderately 
polluted and modified (Ref. 2), heavily polluted and modified (Ref. 3), extremely 
polluted and completely degraded (Ref. 4) (LAWA 1998; Hessisches Ministerium 
für Umwelt, Landwirtschaft und Forsten 2000). 

The U-matrix (Fig. 9.1.) (Ultsch 1993) of the SOM visualises the similarities 
between samples by location and shading of the space between the neighbouring 
codebook vectors, i.e. prototypes. More than one sampling site may be mapped on 
the same codebook vector, e.g. Ku2 and Ku3. Small distances between codebook 
vectors and light grey shades indicate similar chemical and hydro-morphological 
quality. For instance, the samples We 4, 5, 6 and the reference Ref. 4 (top left) are 
clearlyseparated by their marginal position and dark border. The other samples 
show no clear separation, but rather transient regions. As expected, the most 
contrasting references Ref. 1 and 4 take opposite locations.  

Trajectories of subsequent sampling sites along streams can be visualised 
within a SOM (Fig 9.2.). Some streams, particularly RW, show only small 
differences between samples, whereas others vary considerably. For example, Ku2 
and Ku3 are mapped onto the same codebook vector, their large distances to Ku1 
and to Ku4 indicate environmental impact. A fishpond between Ku1 and Ku2 and 
a storm water overflow between Ku2 and Ku3 caused damages, mainly to the 
hydro-morphological status (see plane hydro-morphological quality class). Two 
additional storm water basins between Ku3 and Ku4 affected a further decrease of 
the water quality, whereas the hydro-morphological quality improved. The waste 
water treatment plant between Ku4 and Ku5 caused no change of the water 
properties. Between Ku5 and Ku6, river bed morphology deteriorated whereas 
water quality remained unaffected. Both recuperated downstream Ku6. Another 
option to visualise the similarities of the samples is the Sammon map (Sammon 
1969) of the SOM codebook vectors (Fig. 9.3.), approximately preserving their 
distances.

The values of the components of the codebook vectors (water or hydro-
morphological quality) can be visualised by grey levels on the SOM – the darker 
the grey shade, the lower the value (Fig. 9.4.). The interrelations of variables 
become evident, e.g. the oxygen and the water temperature planes are 
complementary.  

In conclusion, SOMs are an excellent exploration tool for multidimensional 
variables, providing visual aids for inspecting unknown data, outlier detection, and 
initial grouping of data. In contrast to many other cluster analysis methods, SOMs 
also handle data with smooth transitions, which are often typical for ecological 
data (e.g. Vannote et al. 1980). The visualisation capability (grey shades and 
distances) of SOMs shows similarities between objects and groups of objects. This 
may inspire hypothesis generation and analysis of hybrid networks (see below). 
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Figure 9.2. Trajectories along the river continua (1: sample site closest to the 
source); Ku (a), RW (b), ZO (c), References (d).  



Chapter 9 · Stream Ecosystem Analysis  175 

Ref4

Ne2Ne4
ZO2

ZO3

Ne5

Ku4

Ku5

We5

Ba4

Ku7

We4

Ba5

We6

Ma4Ba6

Ku6
ZO4

Fr6

Fr4
Ma5

Lo5aKu1

Ref3

Ba1
Ne6
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Figure 9.3. Similarities of the 55 samples with regard to eight water properties 
visualised by a Sammon map of a 15 12 SOM. 

9.4
Correlations and Predictions with Supervised Learning 
Systems

Ecological systems (ecosystems) consist of the biological community and the 
abiotic environment. Many simultaneous and complex interrelations exist among 
the environmental variables, between the environment and the community, and 
within the members of the community. Many dependencies can be described by 
multiple non-linear regressions, a typical task for supervised learning ANNs. 
However, these are not necessarily cause-effect relations. The multitude of 
relationships typically implies redundant information. Important predictors either 
have to be selected or information must be compressed.    

This is the required information to model relationships within the environment 
or the community, and to predict at least parts of the biological community from 
information on the environment and vice versa (bio-indication). 
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Figure 9.4. Planes of the individual water variables (light grey shade: high, dark 
grey shade: low values; see U-matrix-display in Fig. 9.2 containing the 
corresponding sampling sites); max. water temperature (a), min. oxygen  (b), 
number of species per sampling site (c). 
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9.4.1                                                                                                 
Correlations and Predictions of Environmental Variables  

Data of physical and chemical water variables suffer from missing or wrong 
values due to instrument failures. It is possible to model costly or difficult to 
measure variables from cheaper and more precisely measured factors. 
Applications are error detection and correction of data sets as well as to fill gaps in 
data bases with more reliable values.  

LNNs and a relatively small MLP network with only five neurons in one 
hidden layer were applied to model individual or groups of variables (e.g. 
conductivity, pH-value, O2, NH4-N, and NO3-N). The resulting accuracy was high. 
Networks with only one output neuron had improved generalisation performance 
only for NH4-N. This agrees with the narrow correlation of the variables 
conductivity, oxygen and pH among themselves and with the low correlation of 
these variables with the nitrogen variables.  

All water quality variables regarded here were predicted with good accuracy 
(B>0.7) by a reduced number of network input variables (Borchardt et al 1997a). 
For dimension reduction the two methods 'regression' and 'sensitivity analysis' 
proved to be most suited (Dapper 1998).  

9.4.2                                                                                               
Dependencies of Colonisation Patterns of Macro-Invertebrates on 
Water Quality and Habitat Characteristics 

The search for interdependencies, coherence or even causality of environmental 
variables and a community is a fundamental challenge of ecology. The abundance 
of species and the community assemblage depend on the environment. An 
important aim in ecologically based research is the description of a species’ 
environmental requirements facilitating the prediction of a community under 
given abiotic conditions. 

9.4.2.1                                                                                                       
Aquatic Insects in a Natural Stream, the Breitenbach 

One goal was to predict the monthly species abundance of aquatic insects using a 
‘sliding time-window’ on the data, first, of all environmental variables (discharge, 
precipitation, and water temperature) of the actual and the 12 preceding months, 
respectively and second, the species abundance of the 12 preceding months 
(Dapper 1998). This period comprises the one-year life-cycle of these insects. 
Second, the five most relevant predictors for ANNs were detected by a ‘stepwise 
linear regression’ (SPSS; Brosius 1995), and further, predictors were identified by 
neural sensitivity analysis (Dapper 1998). The resulting five-dimensional input 
vectors were computed with 20 MLPs. Finally, generalization ability of the best 
ANNs was visualized and compared to nets with all 51 input variables. The 
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resulting correlation coefficients of the models of 17 EPT species from the 
Breitenbach are compared in Table 9.1.  
The determination coefficient B (on the 20% test data) was surprisingly high. It 
was >0.9 for five species, >0.7 for 9 species and >0.5 for 15 species. Only for P. 
intricata and P. auberti was B just below 0.5. The quality of the prognoses varied 
among species and among the different ANNs. This was either due to the variable 
abundances in the test data, or was related to the ecological plasticity of the 
populations. As expected, linear regression models had the lowest B values in 
almost all species. In A. fimbriata, C. villosa, T. rostocki, P. auberti and P.
intricata linear regression and ANN models with pre-selection based on regression 
were of similar quality. Pre-selection of the five best variables by regression 
analysis (8 times) or by sensitivity analysis (6 times) improved prognoses. In three 
of seventeen species the reduction to the best five predictors was not accompanied 
by an increase of B. Only in the model for L. nigra did the use of all (51) 
predictors drastically increase B (by 0.29 or even 0.62) compared to models with 
the five most important variables. This may be due to the species life-cycle 
attributes (species traits). Larvae live on and in the relatively unstable sandy 
sediments and thus habitat and specimens are susceptible to almost every change 
in discharge throughout the year.  

In summary, for most species models with dimension reduction by regression 
or sensitivity analysis produced models of similar quality (i.e. difference of 
B 0.05). Pronounced differences were found for L. prima and P. auberti (pre-
selection by sensitivity analysis), or I. goertzi, P. intricata, S. torrentium and T.
rostocki (pre-selection by stepwise linear regression). 

Reliability of all models was tested on the background of ANN computation 
and ecological knowledge. The results indicated that enhanced ecological 
flexibility of populations (risk spreading), low temporal resolution of the data, 
data scaling method, or different occurrences in learning and testing data resulted 
in a low model quality. 

Scaling during pre-processing is one crucial step in exploring ecological data, 
and subsequent modelling. We transformed values linearly, sigmoidally, 
logarithmically and exponentially. Logarithmic scaling was optimal for discharge, 
to smooth extreme or rare events (floods). Prognoses for the abundance of Baetis 
vernus (and B. rhodani) after logarithmic scaling of all predictors resulted in a 
B=0.77 (compare Table 9.1 with linear scaled variables). However, after 
transforming the predicted values into original units, B was 0.63 or lower. 
Therefore, it appears that non-linear scaling did not improve any model. 

Even though four different models with high determination coefficients were 
developed for four individual study sites (and six species), generalisation ability of 
the models was not as expected. Extrapolation on neighbouring sites at 600 m 
distance upstream or downstream was restricted. 

Extreme values or low data density occurred in the different training data sets. 
If data points are dissimilar to the trained model, they should be attributed as 
novelty. To recognize those cases in general is part of the future work (novelty 
detection). The probability that many zero-predictions (i.e. no abundance in a 
particular month) had artificially increased the model quality and led to different 
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approaches (Obach et al. 2001). In addition, recurrent ANNs of the Jordan and 
Elman types were used without significant success. 

Table 9.1. Overview of predictions of the abundance of aquatic insects in 
emergence traps with sliding windows technique; best B highlighted (all = all data 
of environmental variables and abundance of the parent generation included; 
regres. = ‘most relevant’ five predictors selected by regression analysis; sensi. = 
‘most relevant’ five predictors selected by sensitivity analysis; linear = linear 
regression. E = Ephemeroptera, P = Plecoptera, T = Trichoptera). 
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9.4.2.2                                                                                    
Anthropogenically Altered Streams 

Modelling macro-invertebrate communities depending on water quality or habitat 
characteristics was difficult. It was impossible to predict the entire set of 248 taxa 
as well as the ten best indicators for high organic load (DEV 1990) by eleven or 
seven water properties with MFM and MLP networks.  
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Figure 9.5. Prediction of Gammarus pulex abundance classes (A) based on 7 
stream features with GRNN; two variables alter while the remaining 5 are kept 
constant at their mean values. T: maximum water temperature [°C]; oxygen, COD 
and NH4-N in [mg/l]. 
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The inappropriate ratio of cases and variables, the incompletely known 
ecological demands of species, and difficult analysis and training of networks with 
multiple output neurons led to models with single target variables (Borchardt et al. 
1997a, Schleiter et al. 1999; 2001).  

One of the most widespread organisms even in anthropogenically altered 
streams is Gammarus pulex. Abundance classes of this species were predicted 
with GRNN (i.e. kernel regression estimators) based on 14 stream features. 
Genetic algorithms selected the 7 most relevant variables: minimum O2, the 
maximum of water temperature, COD, and NH4-N, as well as channel 
characteristics like stream bed and bank structure, and longitudinal development 
of channel morphology. Importance (fitness) of predictors was calculated with a 
leave-one-out cross validation, suitable for small data sets. 

Ecological model reliability is high because the selected variables are in good 
concordance with empirical knowledge of the species’ distribution and related 
water quality measures (i.e. high abundance at intermediate water temperatures, 
high oxygen availability, and low pollution). Each figure (Fig. 9.5.) provides 
information on the variability of two predictors, the remaining were kept constant 
at their mean values (Obach 1998). 

9.4.3                                                                                            
Bioindication  

In the section above, we predicted community assemblage from a set of 
environmental variables. Here, we model the magnitude of abiotic characteristics, 
based on presence-absence and, in addition, abundance class data of indicator 
organisms. This is a basic task of bioindication. Because the variables may change 
in short time scales, biological indicators are adequate long-term probes for 
environmental quality. These organisms require and thus represent a defined 
environmental quality.  

Initial experiments with species selected by MLPs from the anthropogenically 
altered stream data modelled, e.g. conductivity with a high precision based on 
abundance classes of only 40, 20, 10 or even 5 benthic macro-invertebrates 
(Schleiter et al. 1999; 2001). The reduction from initially 248 to only 5 taxa 
decreased the amount of input data by about 98% (Borchardt et al. 1997b).  

Furthermore, various methods for predictor detection (e.g. sensitivity analysis 
on MLPs, linear regression analysis, genetic algorithms) were tested and the 
generalisation performance of different network types (MLPs with an additional 
special input layer, MFM, GRNN, LNN) was evaluated. 

Eleven physical and chemical water quality measures, seven hydro-
morphological habitat characteristics, and three combined quality indices 
(chemical and morphological water quality class, saprobic index) were modelled 
using presence-absence and abundance data of 127 (out of 248) species present on 
at least 10% of the 46 sites.  

Conductivity was excellently modelled with both, 127 most frequent and 
presence of 10 species (RMSE=2.8 and 4.5% of range respectively). Other 



      I.M. Schleiter · M. Obach · R. Wagner · H. Werner ·  H.-H. 
Schmidt ·  D. Borchardt 

182

chemical variables were predicted with high accuracy, with the exception of NH4-
N and Ntot (RMSE=14.5% of range). Data sets of a reduced number of species 
improved model quality for e.g. NO3-N, pH, O2, BOD5. These species can be 
successfully used for bioindication. 

For the majority of variables, presence-absence data provided better models 
compared with abundance classes. Predictability of hydro-morphological variables 
was sufficient only for the discharge regime and substrate diversity. 
Morphological quality class (Hessisches Ministerium für Umwelt, Landwirtschaft 
und Forsten 2000) was not predictable by macro-zoobenthos with the required 
accuracy. Saprobic index was estimated well based on only ten out of 60 indicator 
species (RescalRMSE=0.1).

Prediction of chemical water quality class (LAWA 1998) was easy and 
efficient. A linear regression model with presence-absence data of three predictors 
was sufficient. However, this prediction was not accurate on all test sites, because 
there are many reasons for a species’ absence beyond the water quality. Only 
when other variables were verified by expert knowledge (e.g. intact stream 
morphology, community with several species), was the model reliable (Schleiter et 
al. 2001). 

Depending on the network type and the selection method, different species 
groups were chosen for most, even for correlated output variables, and verified the 
results of Schleiter et al. (1999). Some species were useful for the prediction of 
several targets (e.g. Gammarus pulex: conductivity, saprobic index, oxygen, Ptot,
NO3-N; Chironomus thummi: conductivity, chemical water quality class, BOD5,
NO3-N), whereas others appeared in only one model. Models with species groups 
selected here may not be generalized due to restrictions in the basic data set 
(narrow geographical region and limited abiotic gradients). Probably, other 
species not occuring in the DIN table (Friedrich 1990) may be suitable 
bioindicators for the saprobity in small streams. The results obtained need further 
validation based on additional data and expert knowledge. 

The selection of relevant variables and the use of presence-absence data 
provided less complex, easier to understand and handle models and a drastic 
reduction of computational effort. This allowed an increased number of repetitions 
to provide more relevant results for generalisation. However, one problem is small 
training and test data sets. A low generalisation error may be accidental. 

9.5
Assessment of Model Quality and Visualisation 
Possibilities: Hybrid Networks 

A disadvantage of most ANNs are the complicated, difficult to comprehend 
internal network processes so that in many cases the neural networks are 
considered as black boxes.  

Usually, the quality of neural network outputs is measured based on the 
difference between observed and predicted values. For quality assessments of the 



Chapter 9 · Stream Ecosystem Analysis  183 

network outputs, the error value alone is not sufficient because it does not provide 
any information concerning the reason of the error. Large differences can have 
their origin either in an unreliable model or in biased, unrepresentative data. 
Similarly, a small error may indicate a good model or, regarding outliers, a good 
answer just by chance. Therefore, the error measure can only help during the 
training phase. When the network deals with new input data, no output 
observations are available and hence the error can only be estimated on the basis 
of the local variability of output values corresponding to training inputs close to 
the actual input. Furthermore, the local reliability of the model depends on the 
amount of training data similar to the actual input vector and the distance to the 
nearest training vector.  

We extended the combination of SOMs and RBF Networks to estimate the 
reliability of the network outputs and to get a better insight into the internal 
network activities. SOM-training optimised the centres of radial basis functions of 
an RBF Neural Network (Bishop 1995) and provided visualisation of the RBF-
layer’s activation patterns. 

In analogy to the above studies, we predicted oxygen concentration based on 
macro-invertebrate species abundance (Werner and Obach 2001). Six test sites of 
51 were randomly chosen. Fourteen predictors were selected by GRNNs and a 
genetic algorithm, which overcame the stepwise method.  

The activations of the RBF neurons can be displayed for any input pattern on 
the SOM, which has been used previously for optimising the centres of radial 
basis functions. Thus it is possible to visualize and decide whether a test site is 
well known to the network or whether an extrapolation must be assumed (Werner 
and Obach 2001). 

The variability of the output variable in classes determined by the SOM, can be 
displayed by box-and-whisker plots (Obach et al. 2001). 

9.6
Conclusions 

Artificial Neural Networks proved to be suitable tools to model non-linear 
interrelations in basic and applied ecology of running waters. Although they are 
able to describe correlations between multi-dimensional variables, causality 
detection is not possible. The major goal of model building is generalisation. Data 
samples must comprise as many information as possible and be representative for 
training and testing ANNs. For small data sets the performance of fast learning 
networks (LNN, GRNN, RBF) was estimated by cross-validation. Large amounts 
of data require pre-processing. Dimension reduction was performed with 
correlation analysis, multiple linear regression, principal component analysis, 
bottle-neck networks, sensitivity analysis, genetic algorithms and stepwise 
methods, depending on the applied ANN type and the linearity of the described 
correlation. Linear networks are simple in use, training and interpretation. They 
provide a benchmark against which the quality of other models like MLPs, 
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GRNNs, RBFNs, MFMs is compared. The application of different network types 
on the same problem is recommended.  

We focussed on single network outputs because models with multiple outputs 
were more difficult to train and interpret. The quality of the models was described 
by the comparison of an ANN model error with trivial (persistence, naïve 
prediction) or easy to calculate (linear model, long-term mean) prediction errors. 
Our preferred error measure was the RMSE of [0,1]-scaled data, the ratio of the 
expected mean error from the range of the output variable’s values. However, the 
RMSE in original units also provides valuable information to ecologists. These 
global errors do not necessarily estimate local reliability, which depends on e.g. 
the local variability of the output variable and data density. The combination of 
SOM and RBF networks (RBFSOM) combines good prediction properties on well 
supported input data with a warning function, if the particular input is not 
supported by training data, and hence the output information may not be valid. U-
Matrix, Sammon map, visualization of input vector component planes and the 
display of neuron activities on the SOM codebook vectors are some graphical 
representation possibilities of the unsupervised trained SOMs. Feedforward 
network outputs can be displayed as 3D surfaces. The example of RBFSOM 
shows that it is profitable to connect different ANNs to a hybrid network in order 
to combine their special capabilities. Combined with GRNN for input relevance 
detection RBFSOMs become capable, efficient and transparent prediction tools.  

We applied ANNs on data sets with environmental variables and communities 
to model interrelations in pristine and anthropogenically altered streams. The 
results confirmed interrelations between colonisation patterns of benthic macro-
invertebrates, chemical and hydro-morphological habitat characteristics in lotic 
ecosystems. In a pristine stream discharge predominantly determined species 
abundances and community assemblage. Water temperature and other variables 
had smaller effects. High determination coefficients on test data were surprising, 
because of large proportions of trivial zero predictions. This inspired the 
application of more adequate tools and error measures.  

On anthopogenic altered streams similarities of sampling sites as well as of 
individual variables were visualized with SOMs. Extraordinary sites were detected 
with Sammon maps and U-Matrix displays. Component planes were useful to 
analyze the responsible factors and to designate correlations among variables. 
Furthermore, leaps in the trajectories of individual streams on a map indicated 
abrupt changes of water quality. 

Dependencies of species on their environment were modelled with ANNs 
circumscribing ecological niches. The effects of two important abiotic factors on 
the abundance classes of Gammarus pulex were displayed in 3D surface figures.  

A reversed task is the prediction of environmental features from communities. 
Even information on the presence instead of the abundance of selected subsets of 
macro-invertebrates was adequate to perform bioindication of e.g. conductivity, 
oxygen and water quality classes with sufficient accuracy.  

However, the last step in data analysis is the interpretation and the check of 
plausibility and the interpretation based on expert knowledge. ANNs have been 
used for more than a decade in ecology, but there are still many research fields 
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left. Further generalisation of the models beyond the area of Bunter Sandstone in 
Central Germany is the main future task beside the quantitative and qualitative 
extension of the data base. 
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Chapter 10 

Non-linear Approach to Grouping, Dynamics and 
Organizational Informatics of Benthic 
Macroinvertebrate Communities in Streams by 
Artificial Neural Networks
T.-S. Chon · Y.S. Park · I.-S. Kwak · E.Y. Cha

10.1
Introduction

Benthic Macroinvertebrates in Streams 
The topic of conservation of aquatic ecosystems and maintenance of water quality 
has been one of the utmost concerns as of late.  The value of water, as for 
resources of drinking, agriculture, industry, energy and recreation, has been 
increasing rapidly due to the problems of water shortages and pollutions.  
Especially stream ecosystems flow through stressful sources, and are exposed to 
various natural and anthropogenic disturbances.  Due to unique characteristics of 
streams such as continuous, one-way directional flow and complex relationships 
with the watershed area, streams convey various problematic agents rapidly, 
widely, and in a systematic way (Hynes, 1960; Calow and Petts 1994; Allan 1995; 
Hauer and Lamberti 1996; Welch and Lindell 1992).   

One of the key issues in maintaining aquatic ecosystems is to find efficient and 
sustainable management strategies of biological communities residing in streams.  
Biological communities equally share “the water right” as humans do, which, 
however, has been seriously neglected or ill considered in numerous land-use 
plannings through the period of rapid industrial development in the 20th century.  
Biological communities have close interrelationships with their habitats: their 
residence is based on the habitat suitability, while communities in turn contribute 
to determine characteristics of habitats in the context of the Gaia hypothesis.  
Biological communities reveal ecological functions of stream ecosystems, and are 
direct indicators of ecosystem health.  

Among various biological communities found in streams, benthic 
macroinvertebrates have been considered as one of the most important taxa.  They 
play a key role in food web dynamics, linking producers and top carnivores, and 
are one of the most reliable indicator groups along with algae in freshwater 
ecosystems (Hellawell 1986).  Their spatial sedentariness and intermediate life 
span -from several months to several years- make macroinvertebrates ideal as for 
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an integrative and continuous indicator group of water quality (Hynes 1960; 
Hawkes 1979; Sladecek 1979; Tittizer and Kothe 1979; Hellawell 1986).  Many 
useful biological indicators based on benthic macroinvertebrates such as TBI, 
BMWP have been developed (e.g., Spellerberg 1991). 

Benthic macroinvertebrates are generally cosmopolitan and diverse.  The 
parameters on community structure such as diversity and dominance could be 
effectively used for indicating water quality as well as for expressing ecological 
status.  At the same time, each different group of macroinvertebrates could be the 
indicator to specific toxic effects.  The physicochemical analyses are specific and 
accurate, however they are sometimes not integrative, would provide only local 
information, and are generally expensive.  Monitoring by biological communities 
could be a good compensator for the physicochemical methods for indicating 
water quality (Hellawell 1986; Tittizer and Kothe 1979; Welch and Lindell 1992). 

Artificial Neural Networks and Non-Linear Data 
Through field survey, data for community dynamics are usually obtained from 
various sample sites on the regular basis, and are accumulated during the survey 
period (e.g., Fig. 8.1).  Since communities consist of many species and vary in 
nonlinear fashions, they are complex and difficult to analyze.  There have been 
numerous accounts of statistical analyses on communities through conventional 
multivariate analyses (e.g., Bunn et al. 1986; Legendre and Legendre 1987; 
Ludwig and Reynolds 1988; Quinn et al. 1991).  The researches have been usually 
directed to classification of communities to ordination of multivariate data through 
eigen analyses.  However, conventional statistical methods are mainly limited to 
linear data  (Ludwig and Reynolds 1988), and are not flexible in many aspects, for 
instance, data handling (e.g., missing samples) and predicting dynamics. 

Artificial neural networks solve this problem of complexity in community data. 
Artificial neural networks are parallel and distributed information extraction 
processors, have adaptive and self-organizing properties, and are consequently 
feasible in handling nonlinear data (Lippmann 1987; Hecht-Nielsen 1990; 
Zurada1992; Haykin 1994).  Since the neural computation system was proposed 
by McCulloch and Pitts (1943) in the forties, artificial neural networks have been 
rapidly developed in extracting information of complex and nonlinear phenomena 
in a wide spectrum in the field of machine intelligence in the eighties (e.g., 
Lippmann 1987; Wasserman 1989; Hecht-Nielsen 1990; Zurada 1992; Haykin 
1994)).   In ecology, artificial neural networks have been used for classifying 
groups (e.g., Chon et al. 1996; Levine et al. 1996), and for patterning complex 
relationships (e.g., Lek et al. 1996; Huntingford and Cox 1996; Tuma et al. 1996).  
On macro-invertebrates in aquatic ecosystems, training with artificial neural 
networks have been conducted on grouping and community dynamics (Chon et al. 
1996, 2000a, 2000b, 2000c, 2001; Park et al. 2001a, 2001b; Brosse et al. 2001).  
Implementations of artificial neural networks to ecology have been extensively 
reviewed by Lek and Guegan (1999, 2000). 
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Fig. 10.1. Monthly changes in densities (log-transformed) of selected taxa of 
benthic macroinvertebrate community at the sampling sites in the Yangjae Stream, 
Han River, Korea, from April 1996 to March 1998. (From Chon et al. 2001). 
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In this chapter, based on our experiences on filed data, we try to demonstrate 
how artificial neural networks could be utilized as a general tool for analyzing and 
predicting macroinvertebrate communities in streams.  We try to elucidate 
feasibility of artificial neural networks in grouping of communities as 
classification and ordination, predicting multivariate community dynamics, 
verifying environmental impacts, and revealing organizational aspects of 
community. 

10.2
Grouping Through Self-Organization 

10.2.1                                                                                                    
Static Grouping 

Kohonen Network 
Community data are complex and difficult to analyze as mentioned previously.  
After collection of samples, the first step required is to have a comprehensive view 
on the overall pattern of the collected community samples.  This could be 
generally conducted by classification or ordination through conventional statistical 
methods.  Through clustering the communities were grouped in a hierarchical 
manner dependent upon the degree of similarity among the sampled communities 
(Ludwig and Reynolds 1988).  Based on eigen analysis approach, associations 
among sample communities (e.g., Q mode) or variables such as taxa and 
environmental factors (e.g., R mode) could be revealed on principal factors 
through ordination (Legendre and Legendre 1987; Ludwig and Reynolds 1988).  

As mentioned previously, however, the conventional methods are generally 
limited to linear data.  Artificial neural networks is an alternative tool for 
community classification, and the self-organizing mapping (SOM) is useful for 
grouping non-linear data.  The Kohonen network (Kohonen 1989) is one of the 
most frequently used models for self-organizing, and the network has been 
successfully implemented to patterning community data (e.g., Chon et al. 1996; 
Foody 1999; Giraudel et al. 2000).  The Kohonen network extracts information 
out of multi-dimension data and maps onto the space of the reduced dimension 
(e.g., 2 or 3).  In the Kohonen network, in this study, a linear array of M2 artificial
neurons (i.e., computation nodes), with each neuron being represented as j (Fig. 
10.2) is arranged in two dimensions for the convenience of visual understanding 
(Chon et al. 1996).  Suppose a community data containing N species (i.e., N
dimensions), and the density of species, i, is expressed as a vector xi. The vector 
xi is considered to be an input layer to the Kohonen network.  In the network each 
neuron, j, is supposed to be connected to each node, i, of the input layer.  The 
connectivities are represented as weights, wij(t), adaptively changing at each 
iteration of calculations, t. Initially the weights are randomly assigned in small 



Chapter 10 · Analysis of Stream Macroinvertebrate Communities  191

values. When the input vector is sent through the network, each neuron of the 
network computes the summed distance between the weight and input as shown 
below: 

1

0

2))(()(
N

i
ijij twxtd                                         (10.1) 

The neuron responding maximally to a given input vector is chosen to be the 
winning neuron, the weight vector of which has  

Fig. 10.2. Schematic diagram of the Kohonen network.  (From Chon et al. 1996). 

the shortest distance to the input vector. The winning neuron and possibly its 
neighboring neurons are allowed to learn by changing the weights in the manner 
to further reduce the distance between the weight and the input vector as shown 
below:  
           jijiijij Ztwxttwtw ))()(()()1(                                  (10.2) 
where Zj is assigned 1 for the winning (and its neighboring) neuron(s) while it is 
assigned 0 for the rest neurons, and (t) (e.g., 0.1 - 0.4) denotes the fractional 
increment of the correction.  The radius defining neighborhood is usually set to a 
larger value early in the training process, and is gradually reduced as convergence 
is reached.  Detailed algorithm could be referred to Kohonen (1989), Hecht-  
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Fig. 10.3. Mapping of the benthic macroinvertebrate communities collected at the 
study sites in the Suyong River by the Kohonen network after training. (The first 
two characters and the next one numeric digit stand for study sites, where CM, ST 
and SY represent the Cholma, Soktae and Suyong streams of the Suyong River 
respectively. The last one or two characters appearing at the end of study sites 
represent seasons when the samples were collected: SP; spring, SU; summer, A; 
Autumn, and W; winter.) (From Chon et al. 1996). 

Nielsen (1990), Zurada (1992) and Chon et al. (1996). The grouping was 
conducted on benthic macro-invertebrate communities collected at the sample 
sites in urbanized streams in the Suyong River in Korea in different seasons.  The 
total number of species (i.e., number of nodes in the input layer) used for training 
was 99 and the number of collected samples for input data was 60.  The general 
ecological assessment on the Suyong River has been reported in Kwon and Chon 
(1993).  The input values with greatly different numerical values in densities are 
avoided for training.  In this case the data were transformed by natural logarithm 
in order to emphasize differences in low densities, and, subsequently, the 
transformed data were proportionally normalized between 0.01 and 0.99 in the 
range of the maximum and minimum density for each species collected during the 
survey period. 
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Fig. 10.3 shows an example of grouping by the Kohonen network with a 
mapping of 9  9 neurons (Chon et al. 1996).  The convergence was mostly 
reached in 500 - 1000 iterations.  Communities were grouped according to 
different impacts of pollution and topography of the sample sites.  The area of the 
map was divided according to the main tributaries (ST, CM and SY), and 
grouping was influenced by impacts of pollution.  

Classification could be also conducted by the conventional clustering analysis 
(Ludwig and Reynolds, 1988).  The same input given to the Kohonen network 
were provided to the clustering analysis utilizing the method of average linkage 
between groups (Norusis 1986).  The clustering results were in general similar to 
those by the Kohonen network (Fig. 10.3), and confirmed overall groupings by the 
Kohonen network.  Benthic macroinvertebrates responded differently in groups to 
anthropogenic impacts of pollution from oligo-saprobity to poly-saprobity as the 
stream flowed down.  Communities collected at higher saprobities showed higher 
levels of similarities, suggesting higher degree of closeness obtained among the 
communities collected at polluted sites.  

It was generally difficult to directly compare performance of groupings by the 
two methods, clustering and SOM.  Since communities were grouped in an 
unsupervised manner, there are no objective references of groupings to be 
compared with.  Based on experience with field data, however, mapping by the 
Kohonen network appeared to be more realistic.  The same groupings were 
observed between SOM and the clustering in some case.  For example, the group 
of CM2SU, CM3SU, CM4SU and CM5SU (neuron (8 (x axis), 5 (y axis)) and that 
of SY2W, SY3W, SY5W and CM2W (neuron (0,5)) in SOM in Fig. 10.3 
correspondingly matched to the same sample groups on clustering (Fig. 10.4).  In 
the other groups, however, discrepancies were observed.  For example, the 
samples in the group of CM1SP, CM2A, SY1SU and SY2SU (neuron (2,8)) in the 
Kohonen mapping (Fig. 10.3) were all scattered in the clustering analysis (Fig. 
10.4).  The communities patterned at this neuron, however, were more similar to 
field data, and the grouping in the Kohonen network appeared to be more realistic.  
Groupings in other cases (e.g., “SY2A and SY5A (neuron (6,2))” and “ST1SU and 
ST2SP (neuron (4,2))”) in Fig. 10.3 also tended to reflect more field situations 
than the groupings by the clustering analysis in the than groupings by the 
clustering analysis. 

The overall conformation of groupings was also more explainable in the map of 
the Kohonen network. The neurons representing the three tributaries of the 
Suyong River were clearly divided in the Kohonen network (Fig. 10.3).  The 
Soktae Stream (ST1 - ST4) occupied mainly a large triangular area at the upper 
left part of the map.  The most neurons representing the Cholma Stream (CM1 - 
CM5) were located around the bottom right corner of the map, while those 
designating Suyong Stream (SY1 - SY5) generally occupied a diagonal area from 
the upper right to bottom left corner of the map.  The communities patterned at the 
upper left corner were in general highly polluted, including some sample sites in 
the Soktae Stream.  This polluted area was bordered with the area of the 
intermediate pollution, diagonally starting from neuron (0, 3) to the upper right 
corner of the  
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Fig. 10.4. Clustering benthic macroinvertebrate communities collected at the 
study sites in the Suyong River in 1989. (The name of communities are explained 
in the caption of Fig. 3.  The overall saprobity level for each site appears under the 
first column of ENRICHMENT.) (From Chon et al. 1996). 
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map, which includes the sites of ST2W, ST3W, ST1SU, ST2SP, ST1A, ST2A, 
ST3A, SY4W, etc.  The area further below the border zone was mainly occupied 
by the relatively clean sample sites of the Cholma Stream along with other sites in 
the Suyong and Soktae streams.  Consequently, the mapping area appeared to be 
divided according to the impact of pollution and topography of the streams.  In the 
clustering (Fig. 10.4), however, this organization of communities was not clearly 
observed.  The sample sites were mainly lined up in different order of saprobic 
levels.    

Within these broad topographical dispositions of communities in the map of the 
Kohonen network, the trained communities further appeared be organized in small 
scale.  For example, the group of CM2SU, CM3SU, CM4SU, and CM5SU 
occurred in the same season (summer), while the other groups also appeared 
according to different seasons (Fig. 10.3).  This indicated that sampled 
communities were organized in topographical dispositions firstly, and in seasons 
secondly.  This suggested the possibility of hierarchical organization in data 
grouping in SOM.   

The Kohonen network not only allows grouping but also makes it possible to 
patternize new data, by assigning a new component (i.e., neuron).  When a newly 
collected community is given to the network as an input, it may be recognized 
either as one of the already-determined patterns or as a new pattern (Chon et al. 
1996).  The newly recognized results could be compared with the trained patterns 
(Fig. 10.5).  At the polluted sites in this case, the new data for ST4A and ST4W,  

Fig. 10.5. Recognition of benthic macroinvertebrate communities collected at 
ST4 in the Soktae Stream in 1992 on the trained Kohonen map.  (The name of 
communities are explained in the caption of Fig. 10.3.  The black and white circles 
Although the Kohonen network appeared to be a classifier of communities in this 
case, the network actually could also serve as appearing at the end of the 
community respectively represent the recognized and trained patterns.) (From 
Chon et al. 1996). 
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for example, were matched to the trained patterns.  This concept of patternizing 
may appear as a notable process in interpreting ecological data. 

Although the Kohonen network appeared to be a classifier of communities in 
this case, the network actually could also serve as an ordination tool.  From the 
aspect of reducing dimensions, the Kohonen network is basically similar to 
Principal Component Analysis (PCA): input data dimensions are effectively 
contracted to a limited number of dimensions in output (e.g., 2 or 3 dimensions).  
Not only for sample communities (Q mode), different taxa (R mode) also could be 
grouped on SOM.  Fig. 10.6 shows mapping of the selected taxa in benthic 
macroinvertebrate communities collected at Cholma, Suyong, Heodong, and 
Seoktae streams in the Suyong River through training by the Kohonen network.  
The species were classified according to the gradient of pollution and abundance.  
The right area of the map was represented by pollution tolerant species, while the 
left area was occupied by pollution intolerant species. For example, Limnodrilus 
hoffmeisteri and Chironomus sp., which were collected in streams polluted by 
organic matters, were grouped in the lower right (neuron (8, 8) (No. 2)), while 
Viviparidae (No. 7), Ordobrevia sp. (No. 15), and Paraphaenocladius sp. (No. 
69), which were collected at relatively unpolluted streams, were located at the 
lower left area of the map (neuron (0,8)).  The figure also showed that the lower 
area was patterned with abundant species, while the upper area was occupied by 
relatively rare species. Ecological explanation on associations of different taxa of 
benthic macroinvertebrates in the Suyong River will be reported elsewhere. 

Melssen et al. (1993) mentioned that the huge number of data variables may 
yield a larger number of significant principal components in PCA so that it may 
not retain sufficient information if only a few principal components are used for 
visualizing the multidimensional data space.  Also some computational problems 
might arise due to the large number of variables, such as calculating (pseudo-) 
inverse of the covariance matrix.  However the Kohonen network, trained in an 
unsupervised fashion, could be utilized to map the multidimensional data space on 
two or a few more dimensions, preserving the existing topology as much as 
possible.  Lohninger and Stanc (1992) compared the Kohonen mapping and the k-
nearest neighbour clustering in classification of mass spectral data in chemical 
compositions. They reported that the former was superior in all cases they tested.  
The comparison between the Kohonen network and statistical clustering methods 
is further discussed in Chon et al. (1996).  

Although each neuron patternizes a group of similar communities and the 
neurons representing communities under similar environmental conditions are 
generally located in groups on the map, the distances among patternized neurons 
measured on the map may not directly indicate the degree of closeness among 
communities.  Interpreting the distances among neurons on the trained map is a 
complicate problem, considering that the original multivariate data set was 
transformed into a space of a few dimensions.  Further investigations are needed 
to express the degree of associations among communities in a more feasible 
manner in reduced dimensions on the map.                                                                                      
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Fig. 10.6. Mapping of the selected taxa of benthic macroinvertebrate 
communities collected in the Cholma, Suyong, Heodong, and Soktae streams in 
the Suyong River. (The names of taxa appearing only at the last two strips from 
the bottom of the map are listed on the figure for the purpose of simplicity of 
explanation.) 

Adaptive Resonance Theory   
Since artificial neural networks have adaptive and self-organizing properties, other 
models are also feasible in organizing community data (e.g., Kamgar-Parsi et al. 
1990).  One of the most frequently used networks for classification is the Adaptive 
Resonance Theory (ART; Carpenter and Grossberg 1987; Pao 1989).   In ART (see 
Fig. 10.7b), bottom up weights, bji(0), between output node j and input node i
were initialized with some small numbers.  After the input xi , density and species 
richness in selected taxa, is given to the network, distance, dj(t), for each output 
node, j, is calculated as follows: 
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where n is the number of input nodes.  The distance, dj(t), measures the degree 
of similarity between weights and input data, and is used as a criterion for 
grouping inputs through the training process.  

Fig. 10.7. A schematic diagram representing the algorithm for the combined 
network of ART (a) and Kohonen (b) for grouping community changes (m ; 
sampling month in the sequential period, n; number of input nodes for ART,  N;
number of output nodes for ART, xi ; input data at the node i in ART, bji ; bottom 
up weights between output node j and input node i in ART, bj*i ; converged 
weight of ART which is used as input data in Kohonen network, M; order of 
output node for the Kohonen network, w tk mj i,( )* ( ) ; weight in Kohonen network).  

(From Chon et al. 2000c). 
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As each new input enters the network the distance is calculated and the output 
node j which has minimum distance is selected as j*.  If dj*(t) is smaller than ,
which is a threshold parameter in determining vigilance and determined based on 
efficiency of grouping of input data, the input is assigned to output node j*.  The 
weight for the node j*, bj*i(t), then, is updated as follows:  

b t c
c

b t
c

xj i j i i1
1

1
1

                                      (10.4) 

where c is the number of sample units classified to node j*.   

If dj*(t) is larger than  the input is assigned to new output.  This means that 
the entering input forms to a new pattern, not belonging to one of the previously 
existing patterns.  Then its weight bj*i(t) is newly assigned as follows: 

b t xj i i* 1 .                                         (10.5) 

The benthic macroinvertebrate communities collected monthly in the Suyong 
and Soktae streams in the Suyong River, Korea, from September 1993 to August 
1994, were used for input data.  Since the number of species (132) were too many 
to train at PC (Personal Computer) level, species were grouped to 7 important taxa 
such as Chironomidae, Diptera (except Chironomidae), Trichoptera, 
Ephemeroptera, Miscellaneous Insecta, Oligochaeta, and Miscellaneous 
Macroinvertebrate.  Densities (number of individuals per m2) and species richness 
(number of species) in each important taxa, as well as the total density and the 
total species richness, were given as inputs for training with ART.  The total 
number of input node for ART was sixteen.  

These weights produced by ART preserve the conformational characteristic of 
input data for grouping, and through them the associations among the 
communities are projected into the space defined in ART (Zurada, 1992).  Fig. 
10.8a is an example of classification by ART (Chon et al. 2000c).  The number of 
trained communities was 84, while the numbers of output nodes for ART was 
eleven.  The threshold for vigilance, , was set to 0.61.  Similar to the case of 
groupings by the Kohonen network (Fig. 10.3), communities were generally 
classified according to topographical conditions and degree of pollution.  Sample 
sites from the same stream had a higher tendency of grouping.  Also sample 
communities collected from the polluted sites such as TCL and THP were grouped 
closely, and were separated from the other less-polluted sites.  The community 
data collected from TKC, which were in a medium range between clean and 
polluted status, appeared to be diverse, and were divided into many small groups, 
separately (e.g., TKC4-2 and TKC4-3 of neuron 7 in Fig. 10.8a), or in groups with 
the other similar sites (e.g., TKC3-9 and TKC4-8 of neuron 0 in Fig. 10.8a).  
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Fig. 10.8. Patterns of benthic macroinvertebrate communities in one-month 
samples, collected in the Suyong River as structured by ART (a), and the Kohonen 
network (b). In (a), sample communities associated with specified neurons through 
ART training are listed in groups. In (b), the neurons were arranged in two 
dimensions, and sample communities patterned by the Kohonen network to a 
specified neuron (i, j) are grouped together in the associated table position (i, j).  
(The alpha-codes, three characters in the figure, designates the name of sample 
sites: TSD; Sadeungkol, TKC; Kochon, THP; Hapansong, TCL; Chungli, YIG; 
Imgog, YCK; Changki, and YSC; Shinchon. The first numerical digit appearing 
after the alpha-codes represents the year of collection (i.e., 3 for 1993 and 4 for 
1994) while the second numerical digit following the dash stands for the month of 
collection (e.g., 1 for January, 2 for February, etc.).) (From Chon et al. 2000c). 

a)
-----------------------------------------------------------------------------------------------------------------------------------

Neuron Number Sampling units

-----------------------------------------------------------------------------------------------------------------------------------

0   14     YIG3-9  YIG3-10 YIG3-11 YIG4-7  YCK3-9  YCK3-10 YCK4-3  YSC3-9  YSC3-10

YSC3-12  YSC4-7  TSD3-9  TKC3-9  TKC4-8                

-----------------------------------------------------------------------------------------------------------------------------------

1  12     YIG3-12 YIG4-1  YIG4-2  YIG4-3  YIG4-4  YIG4-5  YCK3-12 YSC4-2  YSC4-4

TKC4-1  TKC4-4  TKC4-5     

-----------------------------------------------------------------------------------------------------------------------------------

2   12     YIG4-6  YIG4-8  YCK4-1  YCK4-2  YCK4-4  YCK4-5  YCK4-6  YCK4-7  YCK4-8

TSD4-1 TSD4-4  TSD4-7  

----------------------------------------------------------------------------------------------------------------------------------

3     6     YCK3-11 YSC3-11 YSC4-6  YSC4-8  TSD4-5  TKC3-10 

----------------------------------------------------------------------------------------------------------------------------------

4     2     YSC4-1  YSC4-3

----------------------------------------------------------------------------------------------------------------------------------

5     3    TSD3-10 TSD3-11 TSD3-12               

----------------------------------------------------------------------------------------------------------------------------------

6     4     TSD4-2  TSD4-3  TSD4-6  TSD4-8         

----------------------------------------------------------------------------------------------------------------------------------

7     2    TKC4-2  TKC4-3                         

----------------------------------------------------------------------------------------------------------------------------------

8     2     TKC4-6  TKC4-7                         

----------------------------------------------------------------------------------------------------------------------------------

9                 8             TKC3-11 THP3-9  THP3-10 THP3-11 THP4-6  TCL3-11 TCL3-12 TCL4-6                 

----------------------------------------------------------------------------------------------------------------------------------

10               19            YSC4-5  TKC3-12 THP3-12 THP4-1  THP4-2  THP4-3  THP4-4  THP4-5  THP4-7

THP4-8 TCL3-9  TCL3-10 TCL4-1  TCL4-2  TCL4-3  TCL4-4  TCL4-5  TCL4-7

TCL4-8

----------------------------------------------------------------------------------------------------------------------------------
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Fig. 10.8. (continued)  

Comparison of ART and Kohonen Networks 
As mentioned previously, ART was feasible for classification of community data 
(Carpenter and Grossberg 1987).  The Kohonen network and ART have their own 
advantages in groupings.  Based on our experiences with community data, ART 
appeared to be more feasible in extracting information for discovering patterns 
than the Kohonen network on certain conditions.  As shown previously, the 
Kohonen network was able to decipher patterns in the community data (Fig. 10.3).  
In this case, however, the data were based on densities of species that had high 
noise levels, i.e. many species with low or zero density.  With the data for ART 
the species data were summed to the selected taxa, and the data were arranged to 
be smooth.   In this type of data without much noise, ART tended to perform 
better for grouping community samples (Chon et al. 2000c).  

Information extraction by ART could be in fact confirmed by subsequent 
training on ART’s weights by the Kohonen network.  The Kohonen network 
efficiently extracted information of the weights produced from ART and produced 
a 2 dimensional map (Fig. 10.8b).  The mapping by the Kohonen network 
correspondingly reflected the characteristics observed at the classification results 
from ART (Fig. 10.8a).  The polluted sites - THP and TCL - were closely located 
and separated from the less-polluted sites.  Communities collected from the 
medium pollution in TKC formed small groups widely dispersed on the map, 
while the less-polluted sample sites were generally divided according to 
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topographical conditions.  This indicated that the features of the input data from 
ART were accordingly conveyed to the Kohonen training.  The reversed process, 
producing the weights from Kohonen network first then training the weight 
subsequently by ART, was not in general effectively conducted in comparison 
with the ART-Kohonen process.  However, it is still early to generalize that ART is 
more effective in community data than the Kohonen network.  Various other 
factors are involved in formation of community groupings, and further 
investigation is required. 

The Kohonen network has another advantage of visual presentation.  It projects 
the data feature on a map in a reduced spatial dimension (conveniently 2 or 3) as 
shown in Fig. 10.3 and Fig. 10.8b.  ART neurons were not structured spatially 
(Fig. 10.8a).  The output results on the Kohonen network, then, are more 
comprehensible in characterizing the conformation of neurons. 

Large Scale Classification 
For the sustainable ecosystem management, surveys in large-scale spatial and time 
domains are frequently required.  For establishing strategies for land management 
or water quality control on the national basis for example, comprehensive 
understanding of the total community pattern is necessary.  For fulfilling the goal 
of the long-term study on a large area, a steady and consistent sampling under 
well-defined survey planning is necessary, and this project consequently produces 
a large amount of data.  The Kohonen network has the advantage of organizing a 
large-scale data. 

Fig. 10.9 demonstrates the possibility of a large-scale grouping.  A two 
dimensional map was produced after the training with the Kohonen network on 
the sampled communities of benthic macroinvertebrates collected in streams of 
South Korea for twelve years from 1984, which had been published in the 14 
papers from 23 tributaries in the major river system (Chon et al. 2000a).  The 
communities appeared to be grouped according to the river systems (e.g., Han 
River, Somjin River, etc).  The Han River have been most extensively surveyed, 
and the communities collected from the Han River were further sub-grouped 
according to the degree of pollution on the map (Chon et al. 2000a).  If newly 
sampled communities are given to the network, they would be conveniently 
recognized as mentioned previously, These processes of visual presentation of 
large-scale data and recognition of new data sets could be efficiently used for 
diagnosing ecological status of the surveyed area for a long time for sustainable 
ecosystem management. 
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Fig. 10.9. Mapping of benthic communities collected at the large scale in South 
Korea for 12 years form 1984 by the Kohonen network after training. (From Chon 
et al. 2000a). 

10.2.2                                                                                                     
Grouping Community Changes 

Since community develops on time domain, either in stressful or in favorable 
conditions, groupings of community “changes” is necessary for the comprehensive 
perspective on stream ecosystems.  Especially in aquatic ecosystems, where 
communities are easily affected by disturbances caused by various natural and 
anthropogenic agents (Sladecek 1979; Hellawell 1986), it is important to pattern 
community changes in response to disturbances.  However, it is not an easy task to 
classify community changes, and fewer studies have been conducted on this topic.  
Legendre et al. (1985) and Legendre (1987) discussed classifying communities in 
temporal domain, utilizing ordination and segmentation techniques in multivariate 
data series.  Similar to the case of static classification, the conventional statistical 
methods however, are limited in analyzing complex data for community changes. 

Artificial neural networks, however, could be further implemented to grouping 
“changes” in community. A combined model of artificial neural networks was 
utilized in this case.  The sampled data for community changes were trained with 
the two processes through Adaptive Resonance Theory (ART; Carpenter and 
Grossberg 1987) and the Kohonen network (Kohonen 1989).  The schematic 
diagram of the combined network is presented in Figs. 10.7a and 10.7b.  Initially 
all the community data for one-time sampling from field were trained by ART 
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(Fig. 10.7b) as mentioned previously and subsequently the weight produced by 
ART were mapped by the Kohonen network (Fig. 10.7a) (Chon et al. 2000c).  

As explained before, weights produced by ART preserved conformational 
characteristic of input data for each sampling time through training (Fig. 10.8a).  
Since one-month sampling data were accordingly characterized by weights in the 
Kohonen network (Fig. 10.8b), it was supposed that, if the weights for previous 
months were appended to the target month, they would also efficiently represent 
changes in community during the specified period.  The weights trained for one 
month in ART were combined sequentially for a certain period, and were given to 
the Kohonen network as inputs.  If community changes in three months are to be 
patternized and March is the target month for training, for example, weights for 
the two previous months were appended in front of March (i.e. January - February 
- March). In total T x n weights were used for inputs where T and n respectively 
represented for the number of months and that of variables for training as inputs 
for ART (Figs. 10.7a and 10.7b).  This was similar to creating a window of a 
specified input period (three months in this case) and scanning all through the 
target sampling times through the survey period.  The detailed process could be 
referred to Chon et al. (2000c).  

The self-organizing Kohonen network with the array of T x n artificial neurons 
maps the data feature in a reduced dimension as previously demonstrated.  In this 
case two-dimensional array with 9 x 9 neurons was used. The weights in the 
Kohonen network were represented as w tk mj i,( )* ( ) .   Since j* was determined as a 

winner in ART, and all the winner nodes were selected for input to the Kohonen 
network, j* was set to a constant for training.  Among designating digits for input 
node, sampling month in the sequential period, m, and input node for ART, i, were 
varied in this case.  When the input vector was sent through the network, each 
output neuron, k, computed the summed distance, d t'

k , between input vector 
and weights, and subsequently training is conducted in the similar manner 
explained previously for the Kohonen network. 

The field data used for ART training (Fig. 10.8a) was also provided as input to 
the network for grouping community changes.  Figs. 10.10a and 10.10b show the 
mappings for two and three months after the training by the Kohonen work.  The 
trained results showed general characteristics as observed in the results from one-
month samples (Fig. 10.8b).  Grouping was mainly based on pollution levels and 
topographical conditions. In the two-month sequences (Fig. 10.10a), several large 
groups appeared.  A large number of samples from polluted sites of TCL and THP 
were grouped together (Group A) at neuron (6, 0).  This was also the case in the 
one-month mapping (neuron (0,3) in Fig. 10.8b).  Many sample communities from 
YCK and TSD formed another large group (Group B) at neuron (3, 7).  
Communities collected at YIG in the early part of 1994 also formed a group 
(Group C) at neuron (6, 3).  Communities from TKC were spread on the map with 
small groups, similar to Fig. 10.8b.  In contrast to one-month sampling, however, a 
slight difference was observed in the two-month map (Fig. 10.10a).  Sample data 
from TSD were absorbed into Group B in the two-month map.  Communities 
collected from YSC, which were mostly located close to, or inside the group  



Chapter 10 · Analysis of Stream Macroinvertebrate Communities  205

Fig. 10.10. Mapping of benthic macroinvertebrate communities collected in the 
Suyong River when the temporal variations were trained by the Kohonen network.  
The alpha-codes for the name of sample communities are explained in the caption 
of Fig. 10.8. (From Chon et al. 2000c) a) two month training. b) three-month 
training. 
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Fig. 10.11. Recognition of newly collected benthic macroinvertebrate 
communities to the trained Kohonen network in the period of three months. The 
alpha-codes and numerical digits designating the name of sample units are 
explained in the caption of Fig. 10.8. (From Chon et al. 2000c). 

mainly consisting of YCK (neurons (2,7) and (3,7) in Fig. 10.8b), tended to drop 
off at group B in the two-month map in some cases.  However, the YSC 
communities did not move far way from Group B (Fig. 10.10a).   

In the maps describing community pattern of the period longer than two 
months, the characteristics shown in the two-month map were generally preserved.  
Most sample communities in Groups B and C were consistently found inside the 
groups as the input period increased.  Sample communities from TKC and YSC 
also showed a similar tendency as seen in the two-month map.  In Group A, 
however, the size of samples was gradually decreased. In the 3-month map (Fig. 
10.10b), for example, THP4-1, THP4-6, TCL4-2, TCL4-6 were separated from 
Group A.  Detailed discussion and patterns of community development longer 
than three months could be referred to Chon et al. (2000c).  

Once training of community changes was completed, recognition for a new 
input data by the network was possible.  Benthic communities collected at the sites 
from Suyong Stream (YIG, YCK, and YSC) from September to November in 1994 
were used for recognition.  Initially the new input data were given to ART and 
weights were updated as explained before.  The updated weights were then 
arranged sequentially for a given period (for three months in this case), and were 
subsequently provided to the trained Kohonen network for recognition (Fig. 
10.11).  Generally most of input data were recognized to belong to Group B (See 
neuron (0,1) in Fig. 10.10b for the three-month map), which was the main group 
of community formed from the Suyong Stream.  The recognized results were 
generally expected patterns from the field experience. 

As mentioned previously ART was better in classifying the smooth community 
data, while the Kohonen network was more feasible in grouping data with many 
zeros.  The output results, however, were more visually comprehensible with the 
Kohonen network in characterizing the conformation of neurons in spatial 
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dimension (conveniently 2 or 3) (Fig. 10.10). This was the reason that we first 
used ART, and then implemented the Kohonen network for training community 
changes in this study.  With the combined use of the two unsupervised neural 
networks it was possible to patternize temporal variations in community data.  

10.3
Prediction of Community Changes 

10.3.1                                                                                                
Multilayer Perceptron with Time Delay 

In the previous section, grouping of communities was presented.  Through 
grouping techniques, however, actual densities of taxa in community could not be 
provided.  Prediction of actual values in temporal development of communities, 
however, is a major concern in ecosystem management. Especially in aquatic 
ecosystems, where communities are easily affected by disturbances caused by 
various natural and anthropogenic agents, it is important to predict how 
communities would develop in response to changes in water quality.  They would 
develop either progressively with further disturbances, or regressively in recovery 
from pollution (Sladecek 1979; Hellawell 1986).  It is essential to predict the 
future level of community abundance for monitoring as well as for assessing 
ecological status of the target ecosystem. 

As previously mentioned, data for community dynamics, however, are complex 
and difficult to analyze.  In temporal patterning in ecology, artificial neural 
networks has been effectively implemented in estimating time development of 
populations and communities such as flowering and maturity of soybean 
(Elizondo et al. 1994), algal bloom (e.g., Recknagel et al. 1997; Recknagel and 
Wilson 2000), dynamics of animal population (Stankovski et al. 1998), and 
grassland community development (Tan and Smeins 1994).  However these 
models were in most cases applied in static terms; the time of input and output 
were the same.  Recently, attention also has been given to dynamic neural 
networks (e.g., Kung 1993; Giles et al. 1994; Haykin 1996).  Wray and Green 
(1994) reported that artificial neural networks could be utilized for investigating 
parameters in non-linear dynamics, and dynamics of ecological data were 
patterned and predicted by Boudjema and Chau (1996) on sets of univariate time-
series data of tree-ring thickness 

To pattern relationships between different time events of community changes, 
initially a well-known multilayer perceptron was utilized as a nonlinear predictor 
with the backpropagation algorithm (Wray and Green 1994; Haykin 1994) (Fig. 
10.12a).  The architecture is multiplayer perception, however input and output  
data were provided with time delay.  The input vector is defined in terms of the 
past samples, X(t-1), X(t-2), . . ., X(t-q), where q, prediction order, is the number of 
the total delays.  The current data, X(t), was given as matching output.   
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Fig. 10.12. The architecture of artificial neural networks with temporal 
patterning. (From Chon et al. 2000b).  a) time delayed multilayer perceptron.  b) 
Elman type recurrent neural network (RNN). 
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For field data, samples were collected in a relatively short distance within 200 
meters in the Yangjae Stream, a tributary of the Han River.  The Yangjae Stream is 
located in the Seoul metropolitan area, on the middle part of the Korean Peninsula, 
and is highly polluted with poly-saprobity.  In selecting data, attention was given 
to taxa more frequently and abundantly collected while the data for rare species 
were not included for training.  Chironomus sp., Orthocladius sp., Cricotopus sp., 
Limnodrilus sp. and Erpobdella sp. were chosen.  The first three species are 
Chironomidae, while the fourth and fifth species belong to Oligochaeta and 
Hirudinea, respectively.  These selected Genera occurred consistently at the study 
sites during the survey period.  Data collected from March 1996 to March 1998 
were used for the learning process, and a portion of samples were set aside for 
recognition (Chon et al. 2000b). 

Densities of the selected 5 Genera in sampled communities were provided as 
data sets for inputs with 1 – 5 time the delays, i.e., q = 1, 2, …, 5.  With each 
delay, input nodes were correspondingly added.  For example, if 5 Genera were 
introduced with 2 time delays, 5 × 2 = 10 nodes were assigned for each input.  The 
input layer was subsequently interconnected to the hidden layer.  Eight to thirty 
nodes were used in the hidden layer.  The number of nodes in the hidden layer was 
determined based on experiences on obtaining convergence in training.  The 
number of output nodes was 5, equal to the number of selected Genera.  Similar to 
the static implementation, the internal state of the network, NETp,j, was obtained 
by linear summation of products of weights and output values of nodes in the 
hidden layer over time.  Subsequently, these values were adjusted in a nonlinear 
fashion, logistic function in this case, to produce outputs, Y(t)p,j, as follows
(Wasserman 1989; Zurada 1992, Haykin 1994): 
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Y                                        (10.7) 

where Yp, j is activation of neuron j for pattern p, xp,i is output value of the 
neuron i of the previous layer for pattern p, wp,ji is weight of the connection 
between the neuron i of the previous layer and the neuron j of the current layer for 
pattern p, and  is activation function coefficient (e.g., 1.0 in this study). 

The output Y(t) of the multilayer perceptron was produced in response to the 
input vector, and was equivalent to the one-step prediction for the future 
development.  Subsequently actual data at time t, X(t), were provided as the target 
and the difference between Y(t) and X(t) was measured and propagated backward 
for adjusting weights in the usual manner of the backpropagation algorithm 
(Rumelhart et al. 1986).  Weights at output neurons were updated as follows :  
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where dp,j is desired output of node j for pattern p,  is training rate coefficient, 
and  is momentum coefficient.  Weight updating at the hidden layers is similar to 
processes at the neurons of the output layer.   

Fig. 10.13. Examples of field data and predictions in densities of selected Genera 
after recognition by the trained multilayer perceptron with time delay (two and 
four months) when new data for community development were given as inputs in 
the Yangjae Stream. (From Chon et al. 2000b). 
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Detailed process for the backpropagation algorithm could be referred to Rumelhart 
et al. (1986) and Zurada (1992).  

When communities were given as input to the simple multilayer perceptron 
with the time delay between one and five months, the convergence was generally 
reached in the iteration of 20,000 - 30,000 under the mean error term of 0.05, 
which is the sum of square terms of difference in output and target values divided 
by the number of input patterns.  The training rate learning and momentum 
coefficients were 0.5 and 0.9, respectively.  Trained data sets were accordingly 
matched to the original input data.  It appeared that convergence was dependent 
upon the length of time delay (Chon et al. 2000b).  When new data were given to 
the trained network for recognition, the network was able to make one-step 
predictions for the following community in time (Fig. 10.13).  In general it 
appeared that the predicted and actual field data were in accord, although some 
discrepancies were locally observed.  The trained results correspondingly reflected 
the expected development of communities under the influence of various degrees 
of organic pollution in urbanized streams in a certain time span.  However, there 
were occasions that the degree of correspondences between the actual and 
predicted data was not high.  It was difficult to obtain precise matching in 
densities between the two data sets. This is understandable that predicting density 
in “each” taxa of communities in field conditions are generally not easy.  
Correlation coefficients between the predicted and field data were 0.556 
(P<0.0001) and 0.489 (P<0.0001) respectively for the two and four month delays 
in the Yangjae Stream.  

10.3.2                                                                                                        
Elman Network 

The temporal development of input data could be revealed by the recurrent neural 
network.  The Elman type network (Elman, 1990), one of the most well-known 
dynamic models in partially connected recurrent learning, was implemented for 
learning community dynamics (Chon et al., 2000b).  The architecture of Elman 
type recurrent neural network (RNN) is basically similar to the multilayer 
perceptron except the composition of the hidden layer (Fig. 10.12b).  However, 
hidden layer embodies another context layer for implementing recurrence.  
Recurrence implies that the state of network depends on current input and its own 
internal state on the previous cycle.  In this case, the hidden layer has recurrence 
and its own internal state is represented through the context of the hidden layer.  
The number of nodes at the input and output layers was 5, and 30 neurons were 
used for the hidden and context layers. 

In the input layer, community data for selected Genera, xl(t-1), were given as 
external input.  Concurrently, output values from the hidden layer for the previous 
cycle are also provided as internal inputs to the hidden layer as Cl(t-1).  Initially, 
some small random numbers are used for the internal inputs.   The group of xl(t-1) 
and Cl(t-1) consist of the total input for the hidden layer, zl(t).  The sum of linear 
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combination of weights and inputs, Ij(t-1), is subsequently adjusted in a nonlinear 
function such as Cl(t-1) = f(Ij(t-1)).  The input process could be summarized as 
follows (Hecht-Nielsen, 1990):  
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)(                                     (10.11) 

where l = 1, 2, …, L, L = N (number of input nodes) + M (number of hidden 
nodes), )(tx  is external input, and )(tC  is context input. 
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The net output in the output layer is determined by the summation of the linear 
combination of weights and values produced from the hidden layer.  As a usual 
process in artificial neural networks, this is subsequently adjusted with a nonlinear 
function, logistic equation in this case, to produce output values for t as yk(t).  
These output values are in turn compared with actual field data, xl(t).  Weight 
adjustment is conducted in the same way as it is determined in the 
backpropagation algorithm. The difference between desired output and internal 
output was calculated, and subsequently was backpropagated through the hidden 
layer down to the context and input layers.  

When communities were trained with the Elman network (Fig. 10.14), 
convergence was also achieved and its learning efficiency generally appeared to 
be higher than that by the simple multilayer perceptron (Fig. 10.13).  The mean 
error term was apparently lower than that shown in the training by the previous 
multilayer perceptron (Chon et al. 2000b).  

When new data were given to the trained network for recognition, the network 
was able to predict community abundance for the next month (Fig. 10.14). It 
appeared that the predicted and actual field data were generally in accord, better 
than in the case of the training with the multilayer perceptron. Correlation 
coefficients in the data from recurrent neural networks were higher than those 
from the multilayer perceptron with time delay, by showing 0.675 (P<0.0001) in 
this case.  This demonstrated that the training by recurrent network is more 
efficient than in the training by the simple multilayer perceptron in their 
implementation to changes in this type of community data.  

Another advantage with the forecasting for each taxon is that it could assist to 
characterize community changes.  Even if the predicted data were not in accord 
with field data, for example, it would still give information to investigate the 
status of communities.  Since neural networks represent average effects with this  
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Fig. 10.14. Examples of field data and predictions in densities of selected Genera 
in communities of benthic macroinvertebrates after recognition by the Elman type 
recurrent neural network (RNN) when new data for community change were given 
as inputs in the Yangjae Stream. (From Chon et al. 2000b). 

type of training, more frequently appearing taxa would have more chance to be 
patterned in the training.  Then the mismatching between the actual and predicted 
data may suggest occurrence of some disturbances in communities of new data. 
The forecast of ‘changes-in-density’ could effectively pinpoint the shifting of 
ecological status in communities (Chon et al. 2000b).
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10.3.3                                                                                                            
Fully Connected Recurrent Network 

From the previous training, recurrent property in artificial neural networks was 
shown to be effective in extracting information on the time development of 
community.  A fully connected recurrent network was further implemented for 
patterning community dynamics under the scheme of real-time recurrent learning 
(Willians and Zipser 1989).  This real-time recurrent network (RTRN) has been 
characterized as containing hidden neurons and allowing arbitrary dynamics, in 
comparison with other recurrent networks such as the Hopfield network (Hopfield 
1982).  The RTRN is especially capable of dealing with time-varying input or 
output through its own temporal operations (Haykin 1994).

The RTRN consists of N neurons with M external input connections (Fig. 
10.15a).  The external input vector of community data x(t) of size M is applied to 
the network at a discrete time t.  Let y(t) denote the corresponding vector of size N
of individual neuron outputs produced one step later at time t.  The N neuron 
outputs at the upper processing layer consist of M neuron outputs and (N-M)
hidden neuron outputs.  The input vector x(t) and the one-step delayed output 
vector y(t-1) are concatenated to form the vector u(t) of size (M+N) whose ith 
element is denoted by ui(t) (Haykin 1994).  In total, an N by (M+N) recurrent 
weight matrix is formed. 

The net internal activity of neuron j at time t is as follows: 

)()()( tutwtv ijij ,                                     (10.15) 

where vj(t) is xj(t) if j denotes the external input, and yj(t-1) if j denotes the 
neuron for outputs.  wji(t) is the weight between the input and the hidden layers.  
At the next time step t+1, the output of neuron j is computed by passing vj(t)
through the nonlinearity ( ) (logistic function in this case), resulting in the 
following (Haykin 1994): 

))(()( tvty jj .                                      (10.16) 

The backpropagation algorithm (Rumelhart et al. 1986) was further 
implemented in this study.  The real time recurrent learning handles weight 
feedback in the real time process and allows faster convergence in recurrent 
learning.  The detailed algorithm could be referred to Williams and Zipser (1989).   
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Fig. 10.15. A diagram of the real-time recurrent network for patterning 
community changes in benthic macroinvertebrates in streams. (From Chon et al. 
2001).  a) input data: community. b) input data: community plus environment. 

The learning rate and the momentum coefficient were 0.3 and 0.7, respectively.  In 
this study, 7 neurons were used for community data for external inputs, and 13 
neurons for hidden nodes.  The error term was the sum of the difference between 
the output and the target data for all nodes (selected taxa) for all patterns (sample 
sites), and the criterion of the error term for allowing convergence was 0.006.  The 
data for the previous three months were given as the input in a sequence with 
recurrent feedback, while the data for the fourth month were provided as the 
matching output. 
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Fig. 10.16. Field and predicted data after training with the real-time recurrent 
network based on community plus environmental data and only community data. 
(From Chon et al. 2001). a) July 1997. b) November 1997. 
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Fig. 10.16. (continued)  b) November 1997. 

The field data were benthic macroinvertebrates collected at sample sites located 
on a reach within 200 m of the Yangjae Stream, a tributary of the Han River in 
Korea (Fig. 10.1).  Data collected from April 1996 to March 1997 were used for 
the training set, while data collected from April 1997 to March 1998 were used as 
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new data for testing the trained network.  
When community data were trained with the RTRN, convergence was usually 

reached between the 5,000th and the 10,000th iteration.  The training sets were well 
in accord with the matching output.  In order to verify the predictability of the 
trained network, we further provided new community data from April 1997 to 
March 1998.  Figs. 10.16a and 10.16b show examples of comparing field data 
with the predicted data in different seasons.  Generally, dominant taxa such as 
Oligochaeta, Chironomus, and Chironomidae showed good matches between the 
predictions and the field observations.  Pearson’s correlation coefficients (Zar, 
1984) between the predicted data and the field data ranged from 0.55 (F=34, 
P<0.001) to 0.80 (F=9.0, P<0.001).  In the similar condition, the data evaluated by 
the Elman network showed correlations coefficients usually ranging between 0.3 – 
0.4 on these types of community data (Chon et al. 2000b). 

10.3.4                                                                                                           
Impact of Environmental Factors Trained with the Recurrent Network 

Revealing the impact of environment on communities is essential for finding 
causality of community response to disturbances.  The impact of environment 
could be judged by prediction of community abundance corresponding to 
variations of environmental factors, and many researches have been conducted on 
measuring the impact of environments in community based on the sensitivity 
analysis (e.g., Dimopoulos et al. 1995; Scardi 2000; Recknagel and Wilson 2000; 
Salvador et al., 2001).  In this case, however, the time setting has been usually 
static.

As mentioned previously, however, the time factor is one of the key issues in 
community dynamics especially in the context of regressive or progressive 
community changes.  In this case, in order to emphasize time-dependency in 
community data, we trained changes in community and environment in the 
scheme of recurrent training.  The previously mentioned the fully connected 
recurrent network, RTRN, was modified to accommodate environmental factors, 
but, unlike the community data, neurons accepting environmental factors did not 
have recurrence feedbacks (Fig. 10.15b).  In concurrence with the input of 
biological data, the corresponding sets of environmental data were given to the 
modified RTRN, producing, through the connectivity of the network, continuous, 
independent effects on determining community abundance.  In addition to 7 
neurons for community data for external inputs and 13 neurons for the hidden 
layer, 4 neurons were used for receiving environmental factors separately. 

As for environmental data (E), monthly observations of water velocity and 
depth, amount of sedimented organic matter, and volume of substrates smaller 
than 0.5 mm were provided to the network.  The relationships between the 
environmental data and community dynamics were successfully extracted, and 
predictability was greatly increased when the data were trained during a period of 
strong environmental influences (e.g., flooding).  The predicted data by the 
network trained with the community plus environmental data were distinctively 
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closer to field data in July 1997 than the predictions with the community data 
alone as previously mentioned (Fig. 10.16a).  In July 1997, the correlation 
coefficient between the predicted and the matching field data was 0.94 when the 
network was trained with the input of the community plus environmental data.  In 
contrast, the correlation coefficient was 0.55 when only the community data were 
given to the network.  High densities of chironomids were present in the Yangjae 
Stream during the flooding season of the training period.  This relationship 
between precipitation and the occurrence of chironomids was reflected in the 
network trained with the community and the environmental data.  As shown in 
Fig. 16a, the predicted densities of Chironomidae and Chironomus, trained with 
the community and the environmental data, for example, well matched the field 
data, while the network trained only with the community data consistently 
underestimated the densities of Chironomidae and Chironomus (Chon et al. 
2000b).   

However, predictions based on environmental data were not always superior to 
predictions based only with the community data.  In seasons without strong 
environmental effects, the predictability seems to be similar between these two 
types of training.  For example, in the prediction of the community data of 
November 1997 in winter (Fig. 10.16b), the respective Pearson’s correlation 
coefficients were 0.60 and 0.59 for the training based on the community plus 
environmental data, and that based only on the community data.  During the 
training period there were no serious environmental disturbances occurred in this 
case.  When the effects of relationships on training factors were complex 
environmental, influences may be negatively related.   The detailed explanation 
could be referred to Chon et al. (2001).  
It is also useful to investigate causality relationships that how environmental 
factors influence community dynamics through the sensitivity analysis.  We 
conducted sensitivity analyses on the recurrent network so that the varying impact 
of environmental factors could be revealed on community changes.  Variation 
around the mean value (ranging +50 % and –50 %) was provided to each input 
value of the environmental variables.  For the simplicity of the sensitivity analysis 
of this recurrent neural network, variation term was given only to the input of the 
last month.   

In terms of different training periods and selected taxa, the sensitivity tests 
effectively showed important environmental variables in determining community 
changes. For the data of July 1997, when the flooding occurred during this period 
used for training, all four environmental variables of organic matter, depth, 
velocity and substrates (smaller than 5 mm), caused a large variation of 
communities in a wide range (Fig. 10.17a).  For the data of November 1998, 
which had no strong environmental effects, in contrast, all environmental variables 
did not produce variations in community dynamics (Fig. 10.17b). 
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Fig. 10.17. Variation of output ranges in densities of selected taxa in benthic 
macroinvertebrate community when input values ranging +50 % and –50 % were 
provided to different environmental variables for the data of July 1997.  (Variation 
was expressed as standard deviation of 11 observations.) (From Chon et al. 2001).  
a) July 1997. b) November 1997. 

bbbb

aaaa



Chapter 10 · Analysis of Stream Macroinvertebrate Communities  221

The sensitivity tests were also able to show variations for the different taxa of 
community.  Densities of Chironomidae, for example, varied greatly in response to 
different input ranges.  This could be observed for all the variables in the data of 
July 1997 (Fig. 10.17a).  Densities of Hirudinea were also sensitive to 
environmental variables in the data of July 1997.  The higher sensitivity of 
Hirudinea was also observed in the data of November 1997 without strong 
environmental effects (Fig. 10.17b).  Densities of Oligochaeta, in contrast, were 
characteristically insensitive to input variables, especially in July 1997.  This 
indicated that, in this field study, the density of Oligochaeta was not greatly 
affected by environmental variables during the flooding period in comparison with 
other dominant taxa such as Chironomidae and Chironomus sp. (Chon et al. 
2000b) 

This study examined the feasibility of the recurrent artificial neural network in 
extracting information out of temporal development.  The results showed that the 
dynamics of sets of multivariate data about communities could be rapidly 
patterned and forecasted by the network. 

10.4
Patterning Organizational Aspects of Community 

10.4.1                                                                                              
Relationships among Hierarchical Levels in Communities 

Useful ecological informatics resides in community organization, especially in 
“associations” among different levels in communities such as taxonomical or 
functional groups.  In these associative relationships, the complex community 
usually develops a hierarchy, which is a good subject for understanding system 
behavior of the target ecosystem (Allen and Starr 1982; O’Neill et al. 1986).  
Benthic macroinvertebrate communities in streams usually have clear taxonomic 
hierarchies and functional groups (e.g., collectors, shredders, etc), and these are 
essential to verify organizational characteristics in community compositions 
(Cummins et al. 1973; Cummins 1974).  By understanding associative information 
on community organization, a comprehensive view on ecosystem could be 
established, and this would help to prepare reliable strategies for achieving the 
sustainable management of ecosystems.  By applying the counterpropagation 
network, we tried to elaborate the feasibility of artificial neural network to extract 
information of interrelationships among hierarchical levels in communities of 
benthic macroinvertebrates in streams (Park et al. 2001a). 

The counterpropagation network (Hecht-Nielson 1987) is a type of hybrid 
model consisting of the two artificial neural networks: the Kohonen self-
organizing map (Kohonen 1989) and the Grossberg outstar (Grossberg 1969, 
1982) (Figs. 10.18).  The network is eventually designed to approximate 
continuous functional associations between variables, and serves as a statistically   
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Fig. 10.18. Schematic diagram of the counterpropogation neural network. n;
number of nodes on input layer, m; number of nodes on Grossberg layer, N;
number of nodes on Kohonen layer. (From Park et al. 2001a).

optimal self-programming lookup-table (Hecht-Nielson 1990).  The input data are 
arranged in two groups according to the hierarchical levels (e.g., X for 
‘Genus/Species’ and Y for ‘Family’).  Initially the data for X at layer, L1, with n
nodes are given to the input layer, L3, with N nodes, which is the Kohonen layer.  
At the same time, the data for Y at the layer, L5, with m nodes are given to the 
layer L3 (Fig. 10.18).  At the layer L3, each node i calculates Ii as sum of weights 
Uij(t) and Vik(t) with two inputs, X and Y, respectively, as shown in the process 3 in 
the counterpropagation algorithm (Fig. 10.19).  The weights Uij(t) and Vik(t) in 
Kohonen network were initially given as small random numbers in the process 1 
(Fig. 10.19).  Among all N nodes in the Kohonen layer, the node which has 
maximum Ii* becomes winner and Zi*(t) is assigned to be 1 for this winner node 
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while Zi(t) for the non-winning nodes remains zero.  For the winner and its 
neighborhood neurons in some distance, the new weights Uij(t+1) and Vik(t+1)
were updated by the iterative process as shown in the process 4 in Fig. 10.19.  
Alpha ( ) is a constant determining the learning rate and the values around 0.3 
were used in this study.  The detailed process in the Kohonen network could be 
referred to Kohonen (1989) and Chon et al. (1996). 

Fig. 10.19. Algorithm of the counterpropagation network. (From Park et al. 
2001a). 
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Fig. 10.20. Relational diagrams for training and testing by the 
counterpropagation network. (From Park et al. 2001a).

After the winner node at the layer L3 was determined, the process was proceeded 
to the layer L2 and L4 respectively for Y and X, which are Grossberg layers 
(Grossberg 1969, 1982).  At the layer L2, W1qi for Y (W2pi for X), which is the 
connecting weight between p node of the Grossberg layer and i node (winner) of 
the Kohonen layer, was updated by the iterative method as shown in the process 6 
in Fig. 10.19.  Beta ( ) (ca., 0.3) is a parameter determining the learning rate.  
Similar to the Kohonen layer, the weights were initially given as small random 
numbers. Subsequently the node at the layer L2 produced output, X’, by summing 
the weights connected to all nodes in the layer 3 (Process 8 in Fig. 10.19).  
Concurrently the nodes at the layer L4 calculated output Y’ (Fig. 10.20).  By 
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repeating this process until the weight difference became sufficiently small, the 
effective information characterizing relations of the two variable sets were 
preserved in the weights of the network.  Y’ served as trained results with the input 
of X, while X’ matching to the input of Y (Fig. 10.20).    

Since the patterns of relation were established between X and Y in the network 
through counterpropagation, the variables in the hierarchical levels could mutually 
respond to each other to new data sets.  For example, if newly collected input data 
set, Xnew, were given to the trained network, they would produce new recognized 
data set Y” corresponding to Xnew.  This could be compared with the actual field 
data, X “” (Fig. 10.20).   

The benthic macroinvertebrate communities in streams monthly collected in the 
Suyong Stream in the Suyong River in Korea from November 1992 to December 
1994 for two years were used for training by the counterpropagation network.  As 
previously mentioned, a wide range of organic pollution was shown in the study 
area.  In order to check community compositions in a limited range in 
environmental impacts, we selected the sample sites of similar saprobic status in 
slightly enriched zones ( -mesosaprobity), YIG, YCK and YSC.  General 
descriptions of communities and ecological assessment of water quality on the 
Suyong River have been reported in Kwon and Chon (1993), Kang et al. (1995), 
and Yoon and Chon (1996).  

For training with the network, the community data were organized according to 
the taxonomic hierarchy of Genus/Species, Family, Order, and Class and 
functional groups.  For the convenience of handling data, as well as for alleviating 
problem of the difficulty in classification, Genus and Species were pooled to be 
the same hierarchical level in this study.  The total number of Genus and Species 
used for training was 105, and that for Family, Order, Class, and functional 
feeding groups was 48, 19, 7, and 5, respectively. The data were pre-processed as 
previously mentioned.   

Figs. 10.21a and 10.21b show examples of the actual field data used for 
training, Genus/Species (X) and Family (Y) respectively.  The values of 
normalized density in each hierarchical group of benthic macroinvertebrates were 
expressed as different levels of contour lines.  The name of each taxa is not listed 
since the list is too long and the names of taxa are not the issue in this chapter.  
Detailed ecological implementation of the counterpropagation will be referred to 
Park et al. (2001a).  Fig. 10.21c shows trained results for Genus/Species (X’)
matching to the input of Family data (Y).  The overall conformation of community 
dynamics appeared to be similar between X’ and X, confirming the input data were 
effectively extracted through the network. Generally the “averaging effect” 
appeared: dominant groups such as Chironomidae, Tipulidae (Diptera), and 
Hydropsychidae (Trichoptera) occurred consistently, while groups not frequently 
collected tended to disappear in the trained results (Fig. 10.21c). The reverse 
process for producing Y’ (Fig. 10.20) was also possible and, in general, the trained 
results matched well with the actual data. 
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Fig. 10.21. Example of input data and test results in patterning benthic 
macroinvertebrates communities when traind with the counterpropagation 
network. a) and b) actual field data respectively for Genus/Species (X) and Family 
(Y),  c) trained data for Genus/Species (X ), d) new field data for Family (Ynew), e) 
predicted data for Genus/Species with new field data (X  ), and f)  actual field data 
(X ). (From Park et al. 2001a).

We further tried to test how the trained network correspondingly responded to 
new field data.  Fig. 10.21d was another set of field data at the Family level, which 
had been collected at the study sites from June to November 1994, and have not 
been used for training.  The new data set was given to the trained network, serving 
as Ynew as shown in Fig. 10.20.  Fig. 10.21e shows the predicted results at 
Genus/Species level (X”) after new input data Ynew were provided to the trained 
network.  Consequently this was comparable with the actual field data at 
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Genus/Species level, X”” (Fig. 10.21f).  Similar to the case of X’, the overall 
conformational characteristics in densities were generally in accordance with the 
field data for Genus/Species.  In comparing X” (Fig. 10.21e) and X”” (Fig. 
10.21f), the “averaging effect” was also observed: groups rarely occurring tended 
to disappear while the dominant groups appeared more consistently.  Patterning by 
the counterpropagation network is further described in Park et al. (2001a). 

The results demonstrate the counterpropagation network could extract 
information on relationships among hierarchical levels in communities.  
Information regarding associations or relationships in communities would be 
valuable for verifying ecosystem functioning, and would assist greatly to interpret 
ecological status of the stream ecosystem.  This type of patterning would 
especially useful for revealing inter-relationship among more than two groups at 
the same time.  The patterning of multi-relational functioning in communities of 
benthic macroinvertebrates will be discussed in the future. 

10.4.2                                                                                                     
Patterning of Exergy 

While community organization could be revealed through information of 
relationships among groups, another major aspect of ecological informatics on the 
other side is to develop an integrative expression of communities.  

The integrative expression of ecological status of community, however, is 
difficult since community consists of many variables varying in a complex manner 
as mentioned previously.  Although community develops progressively in one 
direction in general, it is difficult to simply represent the status of the community 
in one parameter; whether it is matured, disturbed or recovering for instance.  
However integrative diagnostics on community is essential for establishing 
sustainable management strategies in stream ecosystems.  

In this regard, exergy could be a useful parameter to represent the overall status 
of community. Exergy is defined as the amount of work a system can perform 
when it is brought to thermodynamic equilibrium with its environment.  Exergy 
could express the organization of the ecosystem by the living components, and 
represents the biomass of the system and the information that this biomass is 
carrying (Jørgensen 1992, 1994, 1995, 1997; Jørgensen et al. 1995). 

It is possible, according to Jørgensen (1992, 1995), to calculate a relative 
exergy (Ex) contribution of biomass and information to an ecosystem as:   

)(
1

n

i
iiCWEx                                        (10.17) 

where Ci is the concentration (biomass in this case) of the ith state variable (i.e., 
selected taxa), Wi is the information stored in the ith state variable, and n is the 
number of variables.   

In this study exergy was patterned by utilizing artificial neural networks (Park 
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et al. 2001b).  Data for benthic macroinvertebrate communities (Fig. 10.22a) were 
provided for calculating exergy, and, according to Jørgensen (1997), values 
ranging from 29.6 – 43.9 were assigned as Wi for macroinvertebrates.  In available 
information sources (Jørgensen 1997; Fonseca et al. 2000), however, only values 
of Wi at higher taxa are available, and the values for the order or family level in 
benthic macroinvertebrates are not specifically provided.  Based on experiences 
from data analyses and field experiences we arbitrarily assigned 30 for 
Oligochaeta, Diptera, Chironomidae and Hirudinae, and 35 for Gastropoda, 
Ephemeroptera, Plecoptera, Trichoptera, Odonata, and Megoloptera in this study 
(Park et al., 2001b). 

Training between Community and Exergy 
By using artificial neural network, exergy could be predicted through the 
community data. The backpropagation algorithm (Rumelhart et al. 1986) was used 
for patterning the input (community) (Fig. 10.22a) and output (exergy) (Fig. 
10.22b) data in a supervised manner.  Benthic macroinvertebrate communities, 
collected in the streams monthly from Suyong River, in Korea, from October 1997 
to September 1998, were used for field data (Fig. 10.22a).  Community 
compositions reflecting the water quality in the Suyong River were reported in 
Kwon and Chon (1993), Kang et al. (1995) and Youn and Chon (1999).  Fig. 
10.22b shows monthly changes in the total exergy for each site in the Suyong and 
Soktae streams. The patterns of changes in exergy during the survey period 
occurred differently according to the sample locations.  Although the sample sites 
were located in one river system and close to each other, the changes in exergy 
showed different patterns according to the sample sites’ location and the level of 
pollution.  Detailed discussion could the referred to Park et al. (2001b).  Among 
data for community and exergy, about one third of the samples were set aside for 
testing, and the rest were used for training. 
    Training proceeds on an iterative gradient algorithm, and was similarly 
conducted based on the backpropagation algorithm as shown in the section 10.3.1.  
The number of nodes at the hidden layer used for this study was 5.  The learning 
coefficient, which updates the weights at each iteration, was set to 0.7 in this 
study.  The moment coefficient was set to 0.8 and the activation function 
coefficients were varied between 0.1 and 1.0.  The convergence was generally 
reached in the iteration of 10,000 - 20,000 under the mean error term of 0.001.  
Trained data sets were accordingly matched to the original input data in the Soktae 
Stream (Fig. 10.23a) and in the Suyong Stream (Fig. 10.23b). 
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Fig. 10.22. Monthly changes in densities of benthic macroinvertebrate 
communities and exergy in the Soktae and Suyong streams in the Suyong River 
from October 1997 to September 1998.  a) community,  b) exergy. (From Park et 
al. 2001b). 

The input and output data were also provided with time delays.  Input data was 
the community for the previous time (T-1), while the exergy in the present time 
(T) would be output data in this case (Figs. 10.23a and 10.23b).  The training 
conditions, such as error term and learning and momentum coefficients, were 
similar to the previous on-time training.  Trained data sets were also accordingly 
matched to the original input data. 

When new data were given to the trained network for testing, the network was 
able to predict exergy (Fig. 10.24).  In general, it appeared that the predicted and 
actual field data were in accord, although some discrepancies were locally 
observed.  In comparison with the trained results, however, the level of 
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coincidence between the field and predicted data tended to be low.  The Pearson’s 
correlation coefficients lay between the field and predicted data, ranging from 0.45 
to 0.65 (F=2.64, df =24, P<0.01).  It appeared that differences between the 
predicted and field data were more frequently observed in the time-delay training 
than in the on-time training. The occurrences of discrepancies were explainable in 
many case.  They were usually due to the limited availability of data for training 
(Park et al., 2001b). 

Patterning of Changes in Exergy 
The self-organizing Kohonen network could be also applicable to patterning time 
development of exergies.  Similar to the previous case, it is supposed to have a 
linear array of M2 output neurons (i.e., computation nodes) in the Kohonen 

Fig. 10.23. Training by the backpropagation algorithm on exergy of selected taxa 
of benthic macroinvertebrate communities collected in the Suyong River from 
October 1997 to September 1998 “without time delay” and “with one-time delay”. 
The four digit number and alphabets indicate year-and-month and sample sites 
respectively.  a) Soktae Stream, b) Suyong Stream. (From Park et al. 2001b). 
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network, with each neuron being represented as j (See Fig. 10.3).  The input vector 
x is considered to be an input layer to the Kohonen network, and the set of exergy 
measured from benthic macroinvertebrate communities for a certain period, e.g., 3 
months, 4 months, etc., are provided as input to the network in this case.  The 
training process was the same as for patternizing the community data in the 
section 10.1.1.1. 

For patterning the changes in exergy, monthly measurements of exergy could 
be segmented in intervals in different periods, e.g., 3, 4, 6, etc.  In each interval, 
the data sets for exergy of different taxa from the same sample sites were used as 
input to the Kohonen network for training.  The exergy was normalized to the 
maximum of 3 kJ l-1 with the values ranging from 0.01 to 0.99.  Detailed 
procedure could be referred to Park et al. (2001b).  Learning rate was assigned at 
the values of 0.1 - 0.4. 

Fig. 10.24. Comparison with field and predicted data of exergy by the 
backpropagation algorithm on benthic macroinvertebrate communities collected in 
the Suyong River from October 1997 to September 1998 “without time delay” and 
“with one-time delay”.  a) Soktae Stream, b) Suyong Stream. (From Park et al. 
2001b). 
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Fig. 10.25 shows the grouping of “changes in exergy” by the Kohonen network 
for different sample sites during the survey period.  Since the number of samples 
was decreased as period of sampling time (e.g., 3 months, 4 months), the number 
of neurons in the Kohonen network was accordingly decreased as the period of 
training time was increased.  In 3-month segments (8 × 8 neurons), some 
groupings occurred between “different sampling times” of the same sample sites 
or between “different sample sites” in similar sampling times (Fig. 10.25a).  
However, the mapping did not show any clear tendency.  In 4-month segments (7 
× 7 neurons), in contrast, groupings appeared in a clear pattern in the two basic 
types (Fig. 10.25b).  Different sample sites were grouped according to the similar 
periods, or samples from different periods at the same sample site were patterned 
closely.  

Fig. 10.25. Mapping of the benthic communities collected at the study sites in the 
Suyong River trained by the Kohonen network after training with exergy changes 
in four months. (The three-character alpha-codes strand for the name of the 
sample sites, and the four numerical digit appearing before the alpha-codes 
represent the month and year of collection. (i.e. April 1998 for 9804)). (From Park 
et al. 2001b). 
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Most examples of groupings in exergy changes by the trained Kohonen 
network had the corresponding characteristics of community dynamics in relation 
to environments.  Examples of the first group were TSD, TYB and TYZ for the 
months of February, March and April 1998 (Listed months in the figure indicate 
the month at the end of the segment.), respectively representing the neurons for 
(2(x axis), 0(y axis)), (4,0) and (6,0) (Fig. 10.25b).  In these periods, the densities 
of Oligochaetae and Chironomidae tended to increase in March and decrease in 
April consistently.  Detailed ecological descriptions could be referred to Park et al. 
(2001b).   

This study demonstrated that artificial neural networks could be useful for 
patterning changes in exergy.  Although the sample sites were located in relatively 
close locations in the same river system, the changes in exergy appeared in diverse 
patterns.  The Kohonen network was able to separate different patterns in the time 
development of exergy and demonstrated that the trends in exergy changes could 
be useful for characteristically explaining community development and 
environmental impacts (Park et al., 2001b). 

10.5
Summary and Conclusions 

Artificial neural networks were implemented to pattern and predict benthic 
macroinvertbrate community in streams.  Properties of self-organization, 
adaptability and flexibility made of artificial neural networks were networks 
useful for extracting information out of complex community data in various ways: 
grouping for classification and ordination, prediction of community dynamics, 
verification of environmental impacts, and revealing organizational aspects of 
community.   

Based on unsupervised learning with the Kohonen network and ART, groupings 
were efficiently conduced to classify and ordinate community data.  The combined 
networks of ART and Kohonen were further utilized to group community changes.  
Short-time predictions of community dynamics were also possible through 
temporal application of artificial neural networks. The time-delayed multi-layer 
perceptron, and the partially and fully connected recurrent networks were able to 
forecast the future level of community abundance given by the previous data as 
input.  The recurrent networks appeared to predict the temporal development of 
communities better.  The fully connected recurrent network also effectively 
accommodated environmental factors, and the sensitivity analyses further revealed 
the impact of environmental factors on community dynamics. 

The organizational informatics were also patterned by artificial neural 
networks.  Patterns of relationships among different hierarchical levels in benthic 
macroinvertebrate communities were effectively elucidated by the 
counterpropagation network.  The Kohonen network and multiplayer perceptron 
were further utilized to characterize exergy, an integrative parameter indicating 
thermodynamic information in community.  Temporal exergy changes were 
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grouped by the Kohonen network and community-exergy relationships were 
effectively patterned by the multi-layer perceptron with the backpropagation 
algorithm.  
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Chapter 11 

Elucidation of Hypothetical Relationships 
between Habitat Conditions and 
Macroinvertebrate Assemblages in Freshwater 
Streams by Artificial Neural Networks                   
H. Hoang · F. Recknagel ·· J. Marshall · S. Choy

11.1
Introduction

It has been widely demonstrated that interactions among chemical and physical 
processes create environmental conditions at a range of scales that strongly 
influence the distribution and abundance of lotic biota, and thus the composition 
of macroinvertebrate assemblages (e.g. Hynes 1970).  Many studies have 
identified substrate composition, complexity and heterogeneity as major 
determinants of in-stream biota (e.g. Downes et al. 1998).  Other abiotic factors 
such as flow velocity (e.g. Barmuta 1990) and water chemistry (e.g. Bunn et al. 
1986) have also been found to influence biotic composition. 

The insight that local species assemblages are a reflection of local 
environmental conditions is fundamental to biomonitoring programmes 
increasingly incorporated into water resource management practices throughout 
the world.  Statistical models have been developed to predict the occurrence of 
macroinvertebrate taxa based on their association with environmental variables 
(e.g. Wright 1995; Reynoldson et al. 1997; Simpson et al. 1997).  Machine 
learning techniques, such as artificial neural networks (ANN), have recently been 
applied to this problem and show promise to provide greater predictive capacity 
than statistical modelling techniques (Chon et al. 1996; Walley and Fontama 1998; 
Pudmenzky et al. 1998; Schleiter et al. 1999).   

In the context of this chapter a series of ANN models were developed based on 
both the ‘clean water’ (Huong et al. 2001) and the ‘dirty water’ approach (Huong 
2001) which accurately predicted the presence and absence of most common 
macroinvertebrate taxa in the stream system of Queensland, Australia. The 
referential ‘clean water’ approach (Reynoldson et al. 1997) aimed at the prediction 
of fauna at impacted sites assuming they were unimpacted. The ‘dirty water’ 
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approach was used to identify input variables that exert some influence on outputs 
and to predict the ecological consequences of altering input variables by 
simulating various scenarios. The latter approach utilised a broader range of input 
variables and data of the Queensland stream system including sites that were 
affected by anthropogenic impacts.  

Sensitivity analyses were conducted for each single ANN model in order to 
refine the selection of input variables and strengthen the models’ validity. 
However the graphical representations of sensitivity results also illustrated the 
nature of relationships between environmental variables and the occurrence of 
macroinvertebrate taxa.  Selected results of the sensitivity analysis from ‘clean 
water’ and ‘dirty water’ models of the Queensland stream system are documented 
in this chapter and findings are discussed in the context of literature knowledge on 
stream macroinvertebrates.  

11.2
Study Sites 

The Queensland river and stream network spreads over the territory of the federal 
state of Queensland (Australia). The climate conditions of Queensland range from 
high rainfall areas (1600 mm/annum) in the tropical Northeast to low rainfall areas 
(200 mm/annum) in the Southeast. Study sites are representative for the 
catchments of all major and minor rivers. 

11.3
Materials and Methods 

11.3.1                                                                                                         
Data 

A comprehensive database of the Queensland stream system was used for the 
development of the neural network models. The database was divided into 897 
datasets of reference sites and 1159 datasets of test sites.  

Each site-specific dataset contained 39 physical variables, 17 potentially 
impacted environmental variables and colonisation patterns of 40 
macroinvertebrates taxa at family level. Different combinations of data were used 
for the development of specific models. 
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11.3.2                                                                                                     
Neural Network Modelling 

The ‘clean water’ ANN models (Hoang et al. 2001) were developed by using data 
from so-called ‘reference sites’ of the Queensland stream system that were 
considered to be minimally affected by anthropogenic disturbance (see Conrick 
and Cockayne 2000). Therefore only those environmental variables were chosen 
as model inputs considered being relatively stable under the influences of human 
impacts. 

Data used for the development of the ‘dirty water’ ANN models were taken 
from both reference and degraded sites containing physical and chemical 
variables.  

Predictive ANN models were developed for each macroinvertebrate taxa 
(mostly families) recorded in the Queensland streams database. ANN training was 
carried out by the feed-forward back-propagation algorithm (Rumelhart, Hinton 
and Williams 1986) and the sigmoid transfer function (see Fig. 11.1). The models 
were validated regarding their correct predictions of macroinvertebrate occurence 
either for reference sites (‘clean water’) or for reference and impacted sites (‘dirty 
water’). The ‘clean water’ models achieved an average prediction accuracy of 
82% (Hoang et al. 2001). The ‘dirty water’ models achieved an average prediction 
accuracy of 97% (Hoang 2001). Validation results of both approaches are 
summarized in Fig. 11.2.  

Fig. 11.1. ANN architecture used for modelling of the Queensland stream system 
considering both the ‘clean water’ and ‘dirty water’ approach 
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Fig. 11.2. Validation results achieved by ANN modeling of the Queensland 
stream system based on both the ‘clean water’ and ‘dirty water’ approach 

11.3.3                                                                                                    
Sensitivity Analysis  

A comprehensive sensitivity analysis was conducted for all ‘clean water’ and 
‘dirty water’ ANN models of macroinvertebrate taxa. Each input variable was 
varied within the range of its mean +/- five standard deviations while the 
remaining inputs were kept at their respective means. The model outputs were 
computed for 150 steps above and below the mean, with each step therefore 
equivalent to one thirtieth of a standard deviation. Resulting graphs of the input-
output relationships over the range of the varied inputs illustrated how the varying 
environmental parameters influenced the predicted probability of 
macroinvertebrate occurrences.   

Even though in the first instance the sensitivity analysis was used to improve 
the ANN models’ validity by selecting the most sensitive input variables, it also 
demonstrated its potential to provide invaluable insights into the nature of 
relationships between the streams’ environmental conditions and occurrence of 
macroinvertebrates. 
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11.4
Results and Discussion 

As detailed below selected results of input-output relationships discovered by the 
sensitivity analyses are discussed that are either complementary or contradictory 
to existing theories on the ecology of stream macroinvertebrates.  

11.4.1                                                                                                         
Elucidation of Hypothetical Relationships 

Cladocera (water flea) is known to be actively swimming zooplankton that prefers 
slow flowing water at reasonable depth. Such conditions would typically occur in 
streams that tend towards high order down land streams at low altitudes with large 
channel widths when increasing water depth would correspond with a slightly 
decreasing flow velocity. The sensitivity curve in Figure 11.3c clearly indicates 
that the upper range of depths from 0.2 to 1.2 m favors Cladocera.   

Figure 11.3.  Relationships of  Cladocera  with a) water temperature and c) 
water depth as discovered by sensitivity analysis. b) Physiological activity of 
Daphnia in relation to water temperature as summarized by Lampert and Sommer 
(1997) 
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Figure 11.3b represent unimodal curves on optimal temperature conditions for 
physiological processes such as ingestion and reproduction rates of several 
Daphnia species extracted from laboratory experiments as summarized in Lampert 
and Sommer (1997). It shows that a decrease in physiological activity rates above 
the maximum is usually more rapid than the increase in the rates at sub-optimal 
temperature. A similar shaped sensitivity curve was discovered for the relationship 
between Cladocera occurrence and water temperature (Figure 11.3a) that 
indicated a similar optimum temperature range from 10 to 30ºC as in Fig. 11.3b.  

Baetidae are known to be common in clear, cold streams  (Suter 1996). They 
belong to the mayflies that emerge first in spring and may occur on warm days in 
late winter. In Queensland, Baetidae was observed in southern parts but never 
found in tropical areas. Hawking & Smith (1997) characterise Baetidae as fast 
swimmer where their nymphs prefer deep habitat. The sensitivity curves in Fig. 
11.4 indicated these relationships very well. 

Figure 11.4. Relationships of Baetidae with a) water temperature and b) water 
depth as discovered by sensitivity analysis. 

Chironomids (midge larvae) tend to be highly abundant in freshwater 
ecosystem such as streams. The two subfamilies Tanypodinae and Orthocladiinae 
were monitored in Queensland streams. Orthocladiinae are known for their cold-
stenothermic nature that makes them abundant in subalpine and mountain streams, 
where maximum water temperatures in summer reach 10°C. In middle and 
lowland streams, where water temperature may exceed 20°C, the abundance of 
Orthocladiinae decreases significantly (Lindegaard and Brodersen 1995). The 
sensitivity curves in Fig. 11.5 indicated the preferred occurrence of 
Orthocladiinae at upper stream reaches (Fig. 11.5a) and cold water (Fig. 11.5b). 
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Fig. 11.5. Relationships of Orthocladiinae occurrence with a) stream reaches and 
b) water temperature as discovered by sensitivity analysis. 

Tanypodinae occur very rarely in montane and sub alpine streams but become 
more abundant in low-order downstreams with increasing water temperature 
(Lindegaard and Brodersen 1995). The same trend was discovered by the 
sensitivity curves in Fig. 11.6. 

Fig. 11.6. Relationships of Tanypodinae occurrence with a) stream order and b) 
water temperature as discovered by sensitivity analysis. 
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Planobidae can survive under drought conditions with even extremely low dry-
season-monthly-mean (DSMM) rainfall. Fig. 11.7b indicates Planobidae’s 
preference of low slope sites. 

Norton et al. (1988) suggested that Acarina (water mites) are demographically 
at least as conservative as soil-dwelling relatives. They live in cold, oligotrophic 
waters and have multi-year generation times. 

Sensitivity curves in Fig. 11.8 revealed that Acarina occurred preferentially at 
low temperatures in Queensland streams (Fig. 11.8a), and low nitrogen (Fig. 
11.8b) and phosphorus concentrations indicating oligotrophic conditions. 

Fig. 11.7. Relationships of Planobidae occurrence with a) dry-season-monthly-
mean (DSMM) rainfall and b) stream slope as discovered by sensitivity analysis. 

Fig. 11.8. Relationships of Acarina occurrence with a) water temperature and b) 
nitrogen concentrations as discovered by sensitivity analysis. 
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11.4.2                                                                                                 
Discovery of Contradictory Relationships  

Even though most sensitivity results revealed relationships complementary to 
literature findings, only some results where contradictory as shown in Fig. 11.9.  

Giller and Malmqvist (1998) observed that the majority of Dugesiidae (triclads) 
that live in streams are cold-living species. However the sensitivity curve in Fig. 
11.9a shows for Queensland streams that Dugesiidae were only present at water 
temperatures of more than 20°C. 

Libellulidae are of tropical origin but the sensitivity curve in Fig. 11.9b 
indicates their absence at latitudes above –20(S) in Queensland streams, which 
characterise tropical zones of Queensland. 

Fig. 11.9. Relationships of a) Dugesiidae occurrence with water temperature, b) 
Libellulidae occurrence with latitude, c) Dytiscidae occurrence with latitude and 
d) Dytiscidae occurrence with stream order as discovered by sensitivity analysis 
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The occurrence of Dytiscidae is suggested to be highly abundant in the 
southeastern parts of Australia and most common in littoral areas (Lawrence and 
Britton 1991). However the sensitivity curves in Figs. 11c and d showed that they 
were only observed in North Queensland at low-order streams. The findings from 
these sensitivity results, which were apparently contradictory to previous 
knowledge may suggest further research in this area.    

11.4.3                                                                                                
Limitations of the Method 

The present sensitivity analysis investigated only relationships between one single 
input and a specific output. However the occurrence of macroinvertebrates is 
always the result of multivariate nonlinear patterns of habitat conditions. Most 
habitat parameters do not occur in isolation but are closely interrelated.  

The interrelationship between stream current, water temperature and oxygen 
demand of macroinvertebrates is an example. The current continually replenishes 
water and hence also oxygen in the immediate vicinity of the respiratory surfaces 
of the animals, and quite low levels can be tolerated in strong currents that renew 
oxygen at a high rate. Generally, metabolic rates and oxygen demand are higher of 
stream invertebrates than of still water forms at a given temperature. Respiration is 
temperature-related and rates can increase by 10% or more per 1ºC temperature 
rise. Thus increased temperature does not only reduce oxygen availability but it 
also increases oxygen demand that can add to the physiological stress of 
organisms (Giller and Malmqvist 1998). 

The most important hydraulic characteristic for individual organism is the 
prevailing current velocity striking the organism head-on (Statzner et al. 1988). 
Macroinvertebrate species react differently to current velocity and show 
differential preferences. As a consequence different flow conditions lead to 
divergent assemblages of organisms. In a detailed survey by Quinn and Hickey 
(1994), boundary layer Re (Renolds number) was the most strongly correlated 
individual variable with invertebrate distribution and taxa richness in two New 
Zealand streams. However a combination of mean velocity, substrate size, and 
depth gave stronger correlation than any single variable. It appears that the 
interaction between current velocity and stream substrate size is particularly 
important in determining invertebrate distributions. 

Orth and Maughan (1983) identified optimum velocity, depth, and substrate as 
determining factors for major taxa of benthic macroinvertebrates of warm-water 
woodland stream. The combination of current velocity of 60cm/sec, a depth of 34 
cm and rubble-boulder substrate resulted in optimal diversity of benthic 
assemblages. Taking into account that habitat selection by benthos may be based 
on factor combinations, the investigators derived “joint preference factors” using 
the product of the individual preference factors.  
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Another example for the fact that ecological patterns underlie multivariate 
factors is indicated by the relationship between mean species richness and pH 
(Hildrew and Townsend 1987). Streams with a pH as high as 6.5 but low 
alkalinity (low Ca2+) often show similar features as acidic waters with pH< 5.5 
(Willoughby and Mappin 1988). Effects of pH on aquatic fauna are different at 
different water temperatures (Hynes 1970). Food supply also depends on current 
speed, either to convey particles to filter feeding organisms or to deposit detritus 
(Hellawell 1986). Toxicity of ammonia and hydrogen sulfide to aquatic organism 
is dependent on both temperature and pH conditions. 

These and other examples illustrate the multivariate effects of different habitat 
conditions on distributions of macroinvertebrates. To study the effect of individual 
variable while keeping all other variables at their respective means ignores this 
fact. Further research needs to consider techniques for multivariate sensitivity 
analysis in order to elucidate aquatic habitat conditions. 

11.5
Conclusions 

The sensitivity analyses by means of validated ANN models can contribute to 
improved understanding of the ecology of streams and rivers. The interpretation of 
resulting sensitivity curves may reveal impacts of environmental conditions on the 
occurrence of macroinvertebrate taxa.  Such additional knowledge can be useful 
for  the bioindication of stream habitats by means of macroinvertebrate 
assemblages, and enhance our capacity to monitor and mitigate stream 
ecosystems.  The shape of the sensitivity curves of taxa would indicate how 
important it is to manage disturbances within certain bounds in order to maintain 
healthy aquatic ecosystems.  Taxa with a threshold response to a disturbance 
appear to be eliminated at a stream site that proves to be beyond a certain 
disturbance level. Taxa with ramp responses would gradually become rarer as 
disturbance intensified.  The identification of such threshold conditions would 
provide catchment and water resource managers with a powerful tool. 

Overall it can be concluded that ANN provide a powerful tool for stream  
modelling allowing the user not only to achieve highly accurate predictions but 
discover information on general trends in the data. Therefore, this methodology 
can efficiently be applied to determine ecological requirements of stream 
organisms that are not fully understood. 
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12.1
Introduction

Ecological modeling is an interdisciplinary branch in ecology. A model 
synthesized from adequate laboratory and field data can explain observed patterns 
and predict future ecosystem behaviors (Odum 1983; Krebs 1994). For 
accomplishing both objectives, it is necessary to use models that adequately 
address the uncertainty and complexity of ecosystems. Artificial Neural Networks 
(ANN) have been demonstrated to successfully model non-linear and complex 
phenomena. They have been used in aquatic ecology (e.g. Recknagel, 1997; 
Brosse et al., 1999), medicine, linguistics, and social sciences (Bullinaria 1997; 
Blom et al. 1999; Carson et al. 1999; Young et al. 2000). 

ANN can function both as predictors and classifiers of temporal and spatial 
ecosystem patterns (e.g. Lek et al. 1996; Recknagel et al. 1997; Chon et al. 2000). 
Applications of scenario and sensitivity analyses have demonstrated explanatory 
capabilities of ANN (e.g. Recknagel and Wilson 2000; Jeong et al. 2001a). Highly 
complicated freshwater ecosystems can thus be elucidated to a certain extent by 
the ANN approach. 

ANN may have good applicability in lotic and lentic freshwater ecosystems, 
which are distinguished primarily by the degree of water flow (see Burt 1992). 
Phytoplankton often is the major primary producer in these systems; it can exhibit 
very different population and community aspects in rivers compared to lakes 
(Reynolds 1992). Rivers with a high degree of flow regulation have even greater 
complexity and different community features (Stober and Nakatani 1992; Joo et 
al. 1997). Great efforts have been undertaken in modeling phytoplankton 
dynamics by heuristic and deterministic approaches (e.g. Kamp-Nielson 1978; 
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Reynolds 1984; Sommer et al., 1986; Kromcamp and Walsby 1990) and much has 
been achieved in understanding the ecology of this community. However, 
Recknagel (1997) and Jeong et al. (2001a) demonstrated that inductive modelling 
of phytoplankton dynamics by means of ANN can result in more realistic, holistic 
models by exploring the information content and complexity of aquatic time 
series. Jeong et al. (2001a) successfully applied recurrent neural networks (RNN)
for modelling phytoplankton dynamics in the Nakdong River ecosystem of Korea. 

Phytoplankton becomes a concern to the society when it forms a dense growth 
at the water surface, known as an algal bloom. Blooms frequently are observed in 
lowland rivers throughout the world. However, studies on mechanisms of algal 
bloom formation in rivers have received less attention than in lakes and reservoirs. 
Serious water quality problems in the Nakdong River are associated with blooms 
of Microcystis aeruginosa during hot summers, and of Stephanodiscus hantzschii
from winter to early spring (Ha 1999). In this study, annual dynamics of these two 
algal species in the lower Nakdong River were modeled by RNN. Results of the 
study improved our understanding of factors controlling formation of algal blooms 
in regulated river systems.   

12.2
Description of the Study Site 

The Nakdong River basin is situated in the southeastern part of South Korea (35o

to 37o N, 127o to 129o E) (Fig. 12.1). South Korea experiences four distinct 
seasons, and is characterized by heavy rainfall during the monsoon season and 
several typhoon events. The annual mean precipitation across the river basin is 
about 1,200 mm, but more than 50% of the annual rainfall is concentrated during 
summer (June–August). The annual mean water temperature at the study site was 
13.7ºC. The mean water temperature was 2.2ºC during the coldest month 
(January), and 25.9ºC in August, the warmest month. 

The main channel of the river is 526 km long, and the catchment area occupies 
about 25% of the whole country, covering an area of 23,817 km2. The Mulgum 
station of the Nakdong River, from which data for the model were collected, is 
situated 27.4 km upstream of the estuarine dam at the river mouth, and has a 
maximum water depth of ~11 m, a mean depth of ~4 m, and a river width of 250-
300 m. 

Over 10 million people depend on the river for their drinking, agricultural, and 
industrial water supply. The Nakdong River has 4 multi-purpose dams and an 
estuarine dam. Physical alterations, industrialization, and urbanization have 
accelerated eutrophication of the lower part of the river (Kim et al. 1998). 
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12.3
Materials and Methods 

12.3.1                                                                                                            
Data Collection and Analysis 

Environmental and limnological parameters (Table 12.1) were measured over a 
five-year period (1994-1998). Precipitation data were obtained from 5 
representative meteorological stations (Andong, Daegu, Hapcheon, Jinju, and 
Miryang) within the Nakdong River basin.  

River flow data were obtained from the Flood Control Center. Irradiance and 
evaporation data were collected from the Busan Local Meteorological Station, 
which is closest to the river study site. 

Weekly water samples were collected at a depth of 0.5 m and the following 
water quality parameters were measured: water temperature, Secchi transparency, 
pH, turbidity, concentrations of dissolved oxygen (DO), nitrate (NO3

--N), 
ammonia (NH4

+-N), phosphate (PO4
3--P), dissolved silica (SiO2), chlorophyll a

(chl. a), phytoplankton biovolume, and zooplankton abundance. Water 
temperature and DO (mg L-1) were determined with a YSI Model 58 meter; Secchi 
transparencies were determined with a 20-cm disk; pH was measured with an 
Orion Model 250A meter; and turbidity (NTU) was detected by Model 11052 
Turbidimeter. Water samples were filtered using 0.45 µm Whatman GF/C glass 
filters to determine nutrient concentrations. The filtrates were frozen and analyzed 
by a QuikChem Automated Ion Analyzer (NO3

--N, No. 10-107-04-1-O; NH4
+-N, 

No. 10-107-06-1-B; PO4
3--P, No. 10-115-01-1-B; SiO2, No. 10-114-27-1-A). 

Chlorophyll a concentrations were determined spectrophotometrically after 
extraction, using methods described by Wetzel and Likens (1991). 

Phytoplankton samples were collected and immediately preserved with Lugol’s 
solution. Species were identified by means of a Nikon light microscope (×1,000) 
and the following taxonomic references: Foged (1978), Cassie (1989), and Round 
et al. (1990). Phytoplankton was enumerated using an inverted microscope 
(ZEISS, ×400) by the sedimentation method after Utermöhl (1958). The 
biovolume of individual species was estimated from mean cell dimensions and the 
cellular shape of each species, according to Wetzel and Likens (1991). Mean cell 
biovolumes were based on individual cell volume calculations of 10 to 25 cells. 

Zooplankton was collected from a depth of 0.5 m using a 3.2 L Van Dorn water 
sampler until a total of 8 L of water was obtained. Water samples were filtered 
through a 35- m net, and the retained zooplankton was preserved with 10% 
formalin (final concentration: 4%). Macrozooplankton (almost exclusively 
Copepoda and Cladocera) was counted with an inverted microscope at ×25-50 
magnification. Microzooplankton (mostly Rotifera) was counted with an inverted 
microscope at ×100-400 magnification. Zooplankton taxa were identified to genus 
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or species (except for juvenile Copepoda) using Koste (1978), Smirnov and 
Timms (1983), and Einsle (1993). 

Fig. 12.1. Map of the Study Site.       Multi-purpose dams;        estuarine barrage ;  

     rainfall gauging station;         study site (Mulgum, RK 27). 
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12.3.2                                                                                                    
Modelling the Phytoplankton Dynamics 

The architecture of RNN (Fig. 12.2) was used to model the dynamic behavior of 
M. aeruginosa and S. hantzschii in the Nakdong River. Vectors of external inputs 
with time lags by up to 7 days were used to better explore seasonal trends in the 
time-series, as previously suggested for aquatic modelling by Chon et al. (2000), 
Jeong et al. (2001a), and Walter et al. (2001). 

Fig. 12.2. Architecture of the Recurrent Neural Network Adopted in this Study. 

RNN (Pineda 1987) are comparable to the deterministic modelling paradigm 
where the system state at time t is calculated by the means of system states at time 
(t-1) (see Recknagel 2001). Assuming that the weights of neurons of the hidden 
layer represent the “hidden” state of the system, copied weights of time (t-1) are 
considered as feedback inputs for the determination of weights of neurons at time 
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t. RNN are applicable to time-series modelling and forecasting (Connors et al. 
1994).  

While developing the RNN models, input and output data from the study site 
for 1995 to 1998 were used for training, and data from 1994 were used for 
validation (Table 12.1). Among the investigated parameters, chl. a was not used, 
in order to avoid autocorrelation between input and output variables. One hidden 
layer was selected for all the applications, and the numbers of nodes and neurons 
in the hidden layer were selected as control settings to find optimum training and 
prediction results by varying from 2 to 22. The hyperbolic tangent function was 
used to estimate the activation levels of both hidden and output layers, and the 
momentum was set at 0.7. 

Tab. 12.1. Parameters used as input and output variables in the neural network 
optimum training and prediction results by varying from 2 to 22. The hyperbolic 
tangent function was used to estimate the activation levels of both hidden and 
output layers, and the momentum was set at 0.7. 

Training and validation were conducted by means of daily interpolated and 
averaged data. Fifteen trials on every time-vector were conducted with training 
iterations of 1,100, and the best-predicting models were selected based on the 
output variable based on a linear regression coefficient for every composed model. 
When a model was selected, additional training (1,000 iterations) was done to 
improve the network performance.  

Division Categories Variables Unit 
Meteorological Irradiance MJ m-2 d-1

Precipitation mm d-1

Discharge CMS d-1Hydrological 
Evaporation mm d-1

Water temperature ºC 
Secchi depth cm Physical 
Turbidity NTU 
pH  
DO mg L-1

Nitrate-N mg L-1

Ammonia-N mg L-1

Phosphate-P g L-1

Chemical 

Dissolved silica mg L-1

Rotifera Ind. L-1

Cladocera Ind. L-1

Input variables 

Biological 
Copepoda Ind. L-1

M. aeruginosa m 3 mL-1
Output variables Biological S. hantzschii m 3 mL-1
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12.3.3                                                                                                    
Neural Network Validation and Knowledge Discovery on Algal 
Succession 

Model validation was based on visual comparisons between observed and 
simulated output values. With the best performing RNN, two types of sensitivity 
analyses as described in Jeong et al. (2001a) were implemented: ‘Most Influencing 
Parameter (MIP)’ and ‘Sensitivity on Wide-ranged Disturbance (SWD)’. 

The network was disturbed by ±1 to 2 SD for the sensitivity analyses. 
According to Zar (1984), ±1 SD represents commonly occurring variation, and ±2 
SD covers about 95% of total data variation. The sensitivity analysis with ±1 SD 
can explain general conditions, while disturbance of ±2 SD may suggest specific 
and infrequent interactions between algal species and input variables. The results 
of sensitivity analyses were interpreted compared with known ecological 
information. All RNN models were developed by means of the neural network 
shell NeuroSolutions 3.0 (NeuroDimension, 1999). 

12.4
Results and Discussion 

12.4.1                                                                                             
Limnological Aspects and Plankton Dynamics in the Lower Nakdong 
River 

Time series data from the lower Nakdong River indicate hypertrophic conditions 
and distinct annual and seasonal variability (Table 12.2). Due to the increased 
flow regulation, the ecosystem has been modified to become a river-reservoir 
hybrid (Joo et al. 1997). Construction of an estuarine barrage in conjugation with a 
water intake has increased water retention time and accelerated eutrophication in 
the lower 50 km of the river. Depending on the total amount of rainfall during the 
summer, the river exhibits distinctive seasonal characteristics. Rainfall patterns 
during the summer monsoon and typhoon events drive changes in physical-
chemical parameters in the lower Nakdong River (Park 1998; Lee et al. 1999). 

Rotifera dominated the zooplankton community of the river from 1994 to 1998, 
while Cladocera and Copopoda were much less abundant. Zooplankton 
populations did not display significant inter-annual variation. However, there were 
“clear water phases” in early spring and autumn, as earlier documented and 
attributed to macrozooplankton grazing of phytoplankton (Kim et al. 1998; Kim et 
al. 2001). 
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Table 12.2. Limnological characteristics of the lower Nakdong River for five 
years (1994-1998). *, means ± SD (n = 263; 52-53 in each year). 

Overall phytoplankton dynamics were strongly influenced by magnitudes and 
timing of M. aeruginosa and S. hantzschii blooms. Annual average biovolumes of 
M. aeruginosa and S. hantzschii peaked in years with low annual precipitation. M.
aeruginosa especially proliferated during the extreme drought of 1994, while the 
peak biovolume of S. hantzschii occurred in the winter of 1996. Both M.
aeruginosa and S. hantzschii accounted for 80% of the phytoplankton abundance 
as a result of fast growth in the summer and winter, respectively. During blooms, 
these two species accounted for more than 90% of the algal  abundance.  

Microcystis spp. rarely forms blooms in flowing water systems except pool-like 
and sluggish rivers (see Reynolds 1992). Even though centric diatoms such as S.
hantzschii were found widely in river systems (Lack 1971; Moss and Balls 1989; 
Köhler 1994; Murakami 1998), there have been almost no reports of winter 
Stephanodiscus blooms. Ha et al. (1999) reported that hydrologic stagnation in the 
Nakdong River influenced phytoplankton dynamics. In particular, the Microcystis
bloom formation was directly related to the importance of hydrodynamics and 
nutrient loading. The Stephanodiscus proliferation may be due to combined 
factors such as cold temperature, low flow, and high availability of dissolved 
silica.

Mean±SD Division Parameters Unit 
5 years’ 1994 1995 1996 1997 1998 

Irradiance MJ m-2 day-1 12.8±6.5* 14±7 14±6 12±6 13±6 12±6 Meteorological 
Air temperature ºC day-1 15±8 16±9 15±8 15±8 15±8 16±8 
Precipitation mm day-1 974±306 765 841 1007 1352 1670 
Discharge CMS 567±714 399±79 466±358 488±480 686±825 794±1184 Hydrological 
Evaporation mm day-1 3±2 4±2 3±2 3±2 3±2 3±1 
Water
temperature ºC 17±9 20±10 16±10 17±10 18±9 17±8 

Secchi depth cm 74±25 72±22 75±20 74±22 74±32 74±23 Physical 

Turbidity NTU 18±54 20±64 12±35 9±9 19±38 27±91 
pH  8.4±0.8 8.7±0.9 8.3±0.6 8.4±0.7 8.5±0.8 8.0±0.8 
DO mg L-1 10.8±4.0 9.9±3.8 11.4±3.6 11.9±3.9 10.2±4.5 10.5±3.4 
Conductivity s cm-1 349±128 312±92 405±118 396±114 374±146 250±76 
Alkalinity mg CaCO3 L-1 57±17 55±13 66±13 67±13 58±17 41±9 
Nitrate-N mg L-1 2.7±1.0 1.8±0.9 2.5±1.0 2.3±1.0 3.3±0.8 3.2±0.5 
Ammonia-N mg L-1 0.6±0.7 0.3±0.3 0.8±0.8 0.7±0.6 0.3±0.3 0.8±1.0 
Phosphate-P g L-1 34.7±25.2 33.1±22.1 34.3±25.2 20.5±15.2 32.7±23.0 52.8±27.9 

Chemical 

Silica mg L-1 4.3±3.8 3.6±2.3 2.6±2.8 3.0±2.3 4.6±4.2 7.5±4.4 

Rotifera ind. L-1 1644±325
0

1241±208
6

1285±176
4

1021±127
4

3046±571
3

1304±174
7

Cladocera ind. L-1 91±311 25±58 201±588 71±176 79±140 30±61 
Copepoda ind. L-1 60±151 23±43 65±147 43±67 109±251 36±62 

M. aeruginosa. X106 m3 mL-1 2.84±12.3
4

5.34±18.8
1 1.42±3.08 3.66±11.5

1
3.64±15.8

2 0.15±0.39

S. hantzschii X106 m 3 mL-1 15.10±24.14 12.97±26.74 17.24±29.42 20.89±27.11 10.22±22.88 9.50±11.48 

Biological 

Chlorophyll a g L-1 50.2±91.5 84.7±178.
5 65.5±74.7 48.5±49.2 37.5±80.6 28.0±26.4 



Chapter 12  ·  Algal Species Succession in Rivers                                                                                                   263 

12.4.2                                                                                               
Configuring the Neural Network Architecture and Predictability 

Network training (Table 12.3) was done with various time-delayed input vectors. 
The number of nodes in all time vectors was between 9 and 21 when the boundary 
was given between 2 and 22, except for the case of a 1-day-delay (case 10), which 
satisfied criteria suggested from Hecht-Nielsen (1987). Using the 4-year data set, 
there was little tendency for decreases of node number and mean squared error 
(MSE) when the time-delay was increased. The MSE for network training 
decreased as TDL increased by month with a fixed number of hidden layer nodes 
(see Chon et al., 2000). However, among 8 time vectors,  4-day-delay inputs gave 
a significant negative correlation between node number and MSE. Jeong et al. 
(2001a) predicted time-series algal biomass in the lower Nakdong River using a 
model with 3-day-delayed inputs; this was related to water residence time. 
According to the ecological input data (i.e. number of exemplars, input 
parameters, and their unseen relationships), an adequate TDL could be selected 
variably. 

Table 12.3. Node numbers and MSE for each time-delayed vector with 1,100 
iterations , correlation coefficients between node number and MSE for each time 
vector , and best-predicting network for 1994 algal dynamics. 
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Fig. 12.3. Prediction results for M. aeruginosa (A) and S. hantzschii (B) and the 
MIP analysis (C) 

The best-predicting network was obtained from the 4-day-delayed input vector. 
It displayed the best predictability when initially trained at 1,100 iterations. After 
additional 1,000 iterations, the final MSE reached 0.0017 and the results of 
prediction were quite good (Fig. 12.3). The model effectively predicted species 
dynamics in 1994 (Fig. 12.3A). The timing of peak biovolume of both species was 
well recognized, even though there was some under-estimation in the late bloom 
of S. hantzschii. In the case of M. aeruginosa, the model produced a small spring 
peak in April, but the actual magnitude was much smaller. Recknagel (1997), 
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Chon et al. (2000), and Jeong et al. (2001a) previously documented the 
predictability of ANN for species abundance and succession of freshwater algae 
and macro-invertebrates. In this study, the Time-Delayed Recurrent Neural 
Network (TDRNN) recognized distinct seasonal abundance and succession of 
phytoplankton species as typical for the lower Nakdong River. 

12.4.3                                                                                                
Elucidation of Ecological Hypotheses 

Based on the Most Influencing Parameter sensitivity analysis (MIP) of the 
validated RNN, both phytoplankton species were influenced largely by water 
temperature and pH (Fig. 12.3c). Dissolved Inorganic Nitrogen (DIN) was 
important for the biovolume changes of S. hantzschii, but had relatively minor 
effects on M. aeruginosa. Meteorological events, hydrological regimes, and 
zooplankton abundances had less impact on dynamics of the phytoplankton. The 
patterns observed in the phytoplankton are consistent with the conclusion of Joo et 
al. (1997), that the lower Nakdong is a reservoir-like ecosystem. Phytoplankton 
also is influenced during a short period in the summer rainy season, when there is 
a sudden increase of discharge (Ha 1999), and a base flow that continues from fall 
to late spring (Park 1998). 

The occurrence of both bloom-forming species was previously found to be 
correlated with increased pH, water temperature, and nutrient availability in lakes 
and reservoirs (Reynolds 1984; Harris 1986; Sommer et al. 1986; Shapiro 1990). 
Results of the RNN-based sensitivity analysis correspond with these previous 
findings and indicate that short-term dynamics of bloom-formation in river-
reservoir systems like the Nakdong River are mainly driven by physical-chemical 
parameters such as temperature and pH, while long-term trends are basically 
determined by the hydrological regime. 

Sensitivity on Wide-ranged Disturbance (SWD) for the input variables revealed 
information on relationships between input variables and both species (Fig. 12.4). 
The response differed among the two species considered. Irradiance, evaporation, 
Secchi depth, DO, conductivity, nitrate, phosphate, and dissolved silica 
concentration influenced the increase or decrease of phytoplankton, while rainfall, 
discharge, turbidity, ammonia concentration, and zooplankton abundances did not 
have any recognizable effects. As we changed the range of disturbance for 
evaporation and water temperature, both species exhibited dynamic variations. 
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Fig. 12.4. Results of SWD analysis for the trained model (sensitivity analysis). 

Irradiance (MJ m-2 day-1)

0 5 10 15 20 25 30

C
el

l b
io

vo
lu

m
e 

(x
10

6
m

3  m
L-1

)

0

2

4

6

8

M. aeruginosa
S. hantzschii

Discharge (CMS day-1)

240 320 400 480 560
0

2

4

6

8

pH

7.0 7.5 8.0 8.5 9.0 9.5 10.0
0

2

4

6

8

Nitrate (mg L-1)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

2

4

6

8

Silica (mg L-1)

0 3 6 9
0

2

4

6

8

Rotifera (ind. L-1)

0 2000 4000 6000
0

2

4

6

8

Secchi depth (cm)

30 45 60 75 90 105 120
0

2

4

6

8

Evaporation (mm day-1)

0 2 4 6 8 10 12
0

2

4

6

8
Rainfall (mm day-1)

0 3 6 9 12 15
0

2

4

6

8

Water
temperature
(oC)

0 5 10 15 20 25 30 35
0

2

4

6

8

Turbidity (NTU)

30 35 40 45 50 55 60
0

2

4

6

8

DO (mg L-1)

4 6 8 10 12 14 16
0

2

4

6

8

Conductivity ( s cm-1)

200 300 400 500
0

2

4

6

8
Alkalinity (mg CaCO3 L

-1)

30 40 50 60 70 80
0

2

4

6

8

Ammonia (mg L-1)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8
Phosphate ( g L-1)

0 20 40 60 80
0

2

4

6

8

Cladocera (ind. L-1)

0 30 60 90 120 150
0

2

4

6

8
Copepoda (ind. L-1)

0 20 40 60 80 100 120 140
0

2

4

6

8



Chapter 12  ·  Algal Species Succession in Rivers                                                                                                   267 

12.4.3.1                                                                                            
Microcystis aeruginosa  

Shapiro (1990) presented several hypotheses to explain dominance of blue-greens 
in the phytoplankton of north temperate lakes. These included positive responses 
to high water temperature, low light, low N/P ratios, buoyancy, zooplankton 
grazing, and the CO2 - pH complex. The results of SWD analysis (Fig. 12.4) 
revealed relationships between M. aeruginosa, water temperature and pH 
consistent with this hypothesis. As stated by Shapiro (1990), blue-green algae are 
most competitive at temperatures exceeding 20oC. Results of the SWD indicated 
that M. aeruginosa starts to grow at 20 oC and then explosively augments the 
phytoplankton at temperatures in excess of 30 oC in the lower Nakdong River. 

Changes in pH and CO2 concentration are important factors controlling 
cyanobacteria dominance (Harris, 1986). At pH values greater than 8.5, 
exponential growth occurs. King (1970) and Shapiro (1984) suggested that 
physiological adaptations of blue greens enable them to out-compete eukaryotic 
algae at high pH and/or low CO2. Reynolds (1986) documented that this 
phenomenon held true for both M. aeruginosa and Anabaena flos-aquae. In the 
case of the lower Nakdong River, Ha et al. (1999) reported that seasonal changes 
of pH are important for the middle phase of proliferation of blue-greens, rather 
than stimulating their initial growth. Results of the SWD on the validated RNN 
model indicate a strong correlation between increasing dominance of M.
aeruginosa in the lower Nakdong River and increased pH, consistent with field 
observations (Talling 1976) and controlled experiments (Shapiro 1984) on other 
freshwater systems. 

Another factor found by SWD to be strongly correlated with the proliferation of 
M. aeruginosa was evaporation, which is a function of the river’s heat budget and 
therefore its water temperature (Yoon 1998). Severe evaporation during a drought 
can be linked to a decline of water flow, which causes high water stagnation in the 
lower Nakdong River. Jeong et al. (2001a) documented a similar influence of 
evaporation on the changes of chl a concentrations through time-series ANN 
model application. 

Complex interactions among environmental parameters appear to be 
responsible for the severe bloom events in the lower Nakdong River. With 
elevated water temperatures, low discharge rates, and high irradiance, blooms of 
Microcystis spp. are stimulated in this river. In addition, high nutrient 
concentrations are a necessary pre-requisite for out-breaks of blue green algal 
blooms (Ha et al. 1999). After the initial phase of algal proliferation, pH is 
important for selecting the dominant species. 

12.4.3.2                                                                                    
Stephanodiscus hantzschii 

Stephanodiscus hantzschii blooms in the lower Nakdong River could be explained 
by hydrodynamic factors. The results of SWD indicated that water temperature, 
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Secchi depth, pH, and dissolved silica were strongly related to the dynamics of the 
species (Fig. 12.4). Stephanodiscus is known to prefer low water temperatures, 
and several European eutrophic rivers had blooms of this genus in the winter 
(temperatures around 15 oC) (Descy et al. 1987). Ha (1999) reported that S.
hantzschii blooms in the lower Nakdong River occurred at much lower 
temperatures (4-8 oC). In this SWD study, when the water temperature exceeded 7-
8 oC, biovolume of S. hantzschii sharply decreased. 

Because diatoms use dissolved silica to generate frustules, the concentration of 
SiO2 is an important determinant of their growth (Round et al. 1990). An 
enclosure experiment conducted by Ha et al. (1998) and Ha and Joo (2000) 
indicated that S. hantzschii was dominant at low SiO2 (1–1.5 mg L-1), while 
Fragilaria crotonensis and Synedra acus had a competitive advantage in SiO2-
added enclosures. From the field data, ANN could recognize the importance of 
dissolved silica, which was similar to that indicated by the experimental results. 

Stephanodiscus hantzschii abundance increased at pH levels around 7.5-8.5 and 
started to decrease after pH 9.0. Similar to the case of M. aeruginosa, this situation 
can be interpreted by the CO2-pH complex. Most algal species, except blue-
greens, are sensitive to dissolved carbon dioxide in the water, because they are 
unable to utilize the other dissolved forms that occur at higher pH. The decrease of 
S. hantzschii at higher pH values could be explained by this phenomenon. 

12.5                                                                                            
Implications on Ecological Informatics for Limnology 

Natural ecosystems are distinctly non-linear, dynamic and complex. Powerful 
mathematical and computational techniques are required to elucidate and predict 
driving forces and processes underlying extreme ecosystem behaviors such as 
algal bloom events (Straskraba 1994). As shown in this study, artificial neural 
networks prove to be one suitable computational technique for these purposes. 
However, the newly emerging discipline of ecological informatics provides a 
variety of computational techniques such as fuzzy logic, cellular automata, 
evolutionary algorithms and adaptive agents (e.g. Fielding 1999; Whigham and 
Recknagel 2001a; Whigham and Recknagel 2001b; Bobbin and Recknagel 2001; 
Jeong et al. 2001b; Recknagel 2001). Paired with growing power of computers 
these techniques extent, complement, reinforce or hybridise ecological modeling 
techniques towards more realistic modelling of limnological phenomena at 
different levels of organization and complexity (see Fig. 12.5). 

Hybrid architectures of empirical models as suggested by Medsker (1996) may 
further encourage inter-disciplinary research between ecology and computer 
science. For example, although the results of this study can stand alone by their 
good performance, they also can serve as information for developing Cascade 
Artificial Neural Networks (CANN), linking together the various study sites (e.g. 
between upper and lower river segments). Neuro-Genetic Learning (NGL), which 
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evolves either neural network’s architecture or its weights, is another example for 
using informatics in the prediction of phytoplankton dynamics in a time series 
(Jeong et al. 2001b). With its sophisticated methods, ecological informatics is 
highly suitable for searching out and predicting ecosystem dynamics. 

Fig. 12.5. Contribution of Ecological Informatics to Hybrid Modelling of 
Limnological Phenomena at Different Levels of Organisation 

12.6
Conclusions 

Artificial neural networks were applied to the prediction and elucidation of two 
bloom forming algal species in the Nakdong river-reservoir system. The lower 
Nakdong River, which has characteristics of both rivers and reservoirs, represents 
a complicated system for algal bloom modeling. Yet, RNN proved capable not 
only to predict the distinct seasonal abundance and succession of Microcystis 
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aeruginosa and Stephanodiscus hantzschii but elucidate key driving variables by 
means of sensitivity analyses. Findings of the sensitivity analysis corresponded 
very well with existing theories on the ecology of these two algae species. 

This study yields promising results for the application of machine learning to 
complex ecosystems such as regulated rivers. It encourages inter-disciplinary 
research between ecologists, modelers and computer scientists in the newly 
emerging area of ecological informatics in order to better understand and predict 
ecological phenomena at different levels of organization.   
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Chapter 13 

An Evaluation of Methods for the Selection of 
Inputs for an Artificial Neural Network Based 
River Model
G.J. Bowden  ·  G.C. Dandy  ·  H.R. Maier

13.1
Introduction

Artificial Neural Network (ANN) models are highly flexible function 
approximators, which have shown their utility in a broad range of ecological 
modelling applications. The rapid emergence of ANN applications in the field of 
ecological modelling can be attributed to their advantages over standard statistical 
approaches.  Such flexibility provides a powerful tool for forecasting and 
prediction, however, the large number of parameters that must be selected only 
serves to complicate the design process.  In most practical circumstances, the 
design of an ANN is heavily based on heuristic trial-and-error processes with only 
broad rules of thumb to guide along the way. 

The main steps in the development of an ANN model include choice of 
performance criteria, division of data, data pre-processing, determination of model 
inputs, determination of network architecture, optimisation (training) and model 
validation (Maier and Dandy 2000a).  One of the most important steps in this 
developmental process is the determination of the significant input variables.  
Where the potential number of input variables to an ANN is large and little a
priori knowledge is available to suggest which subset of variables to include, the 
selection process is inherently difficult.  In this paper, the step involving the 
determination of model inputs is considered in detail and a number of different 
methods are evaluated.  As far as possible, all other steps in the ANN modelling 
process are held constant so that the various input determination techniques can be 
compared. 

In the majority of ANN applications, practitioners give little attention to the 
task of input selection (Maier and Dandy 2000b).  This is largely because ANNs 
belong to the class of data driven approaches, whereas conventional statistical 
methods are model driven (Chakraborty et al. 1992).  In the latter, the model’s 
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structure is determined first by using empirical or analytical approaches, before 
estimating the unknown model parameters.  Data driven approaches are usually 
assumed to be able to determine which model inputs are critical.  However, as 
pointed out by Maier and Dandy (2000b), presenting a large number of inputs to 
the ANN and relying on the network to determine the significant inputs, usually 
increases the network size.  This results in certain disadvantages, such as an 
increase in the amount of data required to estimate the connection weights 
properly and a reduction in processing speed (Lachtermacher and Fuller 1994). 

The input selection problem can be formulated as having a set of input 
variables to an ANN, and an output value which can be used to evaluate the fitness 
or merit of the network using those variables.  For example, for the problem of 
forecasting cyanobacteria, the inputs to the ANN are causal variables such as 
turbulence (flow), water temperature, turbidity, colour and nitrogen and 
phosphorus concentrations.  From these variables, a subset of inputs must be 
selected that yield the network of highest fitness.  This subset of inputs forms an 
n-dimensional input vector Xn, which can be used to forecast the concentration of 
cyanobacteria Y.  The aim of the ANN is to produce a generalised relationship of 
the form 

Y=f(Xn)                                        (13.1)

It is a generalised relationship because the functional form of f(•) is not 
revealed explicitly but rather, is represented by the ANN model's structure and 
parameters.  The network’s fitness can be determined using an appropriate 
measure e.g. smallest root mean square prediction error.  In complex applications, 
the number of input variables can be quite large and this problem is further 
exacerbated in time series studies, where appropriate lags must also be chosen.  
Therefore, analytical techniques for determining the optimal subset of inputs 
present the modeller with a distinct advantage. 

Maier and Dandy (2000b) reviewed 43 papers on the application of ANNs for 
hydrological modelling, and found that in many cases the lack of a methodology 
to determine the input variables raised doubt about the optimality of the inputs 
obtained.  In some instances, inputs were chosen arbitrarily.  In other cases, a
priori knowledge was used and when different methods were employed, such as 
trial-and-error, often the validation data were used as part of the training process.  
Intuitively, the preferred approach for determining appropriate inputs and lags of 
inputs, involves a combination of a priori knowledge and analytical approaches 
(Maier and Dandy 1997; Fernando and Jayawardena 1998; Maier et al. 1998). 

There are two broad stages in input determination.  Firstly, unsupervised input 
preprocessing (i.e. discarding redundant inputs) and secondly, supervised input 
selection (i.e. using the ANN’s output in an analytical procedure to determine the 
significant input variables).  In unsupervised input preprocessing, the original set 
of input variables is processed to produce a subset of inputs containing as much 
information as possible from the original set.  This subset of inputs can then be 
used in a supervised input selection process to determine which combinations of 
these inputs result in the network of highest fitness. 
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In this paper, as a first step in preprocessing the input variables, unsupervised 
techniques (Section 13.2.1) have been used to reduce the dimensionality of the 
input space.  These techniques are the Self-Organizing Map (SOM) and principal 
component analysis (PCA).  They are compared with the commonly employed 
approach of using a priori knowledge of the system to be modelled.  Once 
redundant inputs have been removed, the input subsets obtained from each 
unsupervised method are further refined using two supervised input selection 
methods (Section 13.2.2).  These are a hybrid genetic algorithm (GA) and ANN 
(GA-ANN) and a stepwise ANN modelling procedure.  The input determination 
methods have been used for selecting the optimal subset of input variables for 
forecasting the concentration of Anabaena spp. in the River Murray at Morgan, 4 
weeks in advance.  The model inputs obtained using each method are compared 
and each of the six sets of inputs have been used to develop ANN models for 
forecasting Anabaena spp. in the River Murray at Morgan.  The ANNs’ 
performance on an independent validation set was used to assess the adequacy of 
each method of input determination. 

13.2
Methods

13.2.1                                                                                             
Unsupervised Input Pre-Processing 

A priori identification 
In a typical ANN forecasting application, the modeller collects all time series data, 
subject to availability, that is likely to have an influence on the output variable.  
Obviously, some knowledge of the system is assumed in determining this set of 
candidate input variables.  However, the data set, although comprehensive, is 
likely to contain some redundant information.  An unsupervised approach to 
reduce the dimensionality of the input data is to use expert knowledge of the 
system being modelled.  In this way the set of all variables likely to influence the 
output variable can be reduced to a subset of only those variables most likely to 
have a significant influence.  Expert knowledge can also be used to select the 
maximum lag of each variable chosen.  To aid in this task, it is possible to make 
use of time series plots of each potential input variable and the output variable.  
Inspecting the data plots gives a visual indication of any potential relationship that 
may exist between the input and output variable. 

A priori identification is widely used in many ANN applications and since it is 
dependent on an expert’s knowledge, it is very subjective and case dependent.  
That is why the two analytical procedures (the SOM and PCA) are also being 
considered. 
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Self-Organizing Map (SOM) 
The Self-Organizing Map was developed by Kohonen (1982) and arose from 
attempts to model the topographically organised maps found in the cortices of the 
more developed animal brains.  The underlying basis behind the development of 
the SOM was that topologically correct maps can be formed in an n-dimensional 
array of processing elements (PEs) that did not have this initial ordering to begin 
with.  In this way, input stimuli, which may have many dimensions, can come to 
be represented by a one- or two-dimensional vector which preserves the order of 
the higher dimensional data (NeuralWare 1998). 

The SOM employs a type of learning commonly referred to as competitive, 
unsupervised or self-organizing, in which adjacent cells within the network are 
able to interact and develop adaptively into detectors of a specific input pattern 
(Kohonen 1990).  The SOM can be considered to be as “neural” because results 
have indicated that the adaptive processes utilized in the SOM may be similar to 
the processes at work within the brain (Kohonen 1990). 

The SOM has potential extending beyond its original purpose of modeling 
biological phenomena.  Sorting items into categories of similar objects is a 
challenging, yet frequent task.  The SOM achieves this task by nonlinearly 
projecting the data onto a lower dimensional display and by clustering these data.  
This attribute has been used in a wide number of applications ranging from 
engineering (including image and signal processing and recognition, 
telecommunications, process monitoring and control, and robotics) to natural 
sciences, medicine, humanities, economics and mathematics (Kaski et al. 1998). 

The Self-Organizing Map Algorithm 
In competitive learning, neurons in the network adapt gradually to become 
sensitive to different input categories.  The SOM network generally consists of 
two layers, an input layer and a Kohonen layer.  The input layer is fully connected 
to the Kohonen layer, which in most common applications is two-dimensional.  
None of the PEs in the Kohonen layer are connected to each other.  The PEs in the 
Kohonen layer measure the distance of their weights to the input pattern.  During 
the recall phase, the Kohonen PE with the minimum distance is the winner and has 
an output of 1.0, whilst the other Kohonen PEs have an output of  0.0. 

The procedure for determining the winning PE is as follows: 
The first step is to determine the extent to which the weights of each PE match 

the corresponding input pattern.   If the input data have N values and are denoted 
by, n

i NixX ),...,1;( , then each of the M PEs in the Kohonen layer 
will also have N weight values and can be denoted by, 

n
jiji NiMjwW ),...,1;,...,1;( .  For each of the M Kohonen 

PEs, the distance, such as the Euclidean distance, is calculated using 

.,...,1,
2
1

1

2 MjwxWXD
N

i
jiijj

                                (13.2) 

The PE with the lowest value of Dj is the winner during recall.  During training, 
a conscience mechanism adjusts the distances to encourage PEs that are not 
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winning with an average frequency and to negatively adjust PEs that are winning 
at an above average frequency.  This mechanism ensures that a uniform data 
distribution develops in the Kohonen layer.  In adjusting the distance, a bias, Bj, is 
added to the distance and forms the new adjusted distance, D'

j.  The bias is 
calculated using 

)1( jj FMB                                        (13.3) 

where  is a learning coefficient; Fj is the frequency at which the PE j has 
historically won; and M is the number of PEs in the Kohonen layer.  Once Bj and 
Dj are computed, the adjusted distance, D'

j can be calculated using 

jjj BDD '

                                        (13.4) 

To ensure biological plausibility, lateral interaction with neighbouring PEs is 
enforced by applying arbitrary network structures called neighbourhood sets, Nc.
Throughout the process, all PEs within the winner's neighbourhood set will have 
their weights updated, whilst PEs outside of this set are left intact.  The width or 
radius of Nc can be time variable.  The updating process to implement this 
procedure is given by 

tNjif
tNjif

tW
tWtXttW

tW
c

c

j

jj
j )(

))()()(()(
)1(

                                                                     (13.5) 

where  is a scalar valued adaptation gain 0< (t) and Nc is the 
neighbourhood set.  After the weights have been updated, the next input is 
presented to the network and the process continues until convergence has been 
reached.  After successively presenting different inputs to the SOM, the net effect 
is that the weights reflect the topological relationship that exists within the input 
data (Islam and Kothari 2000). 

Implementation of the SOM 
The SOM has been used in ecological modelling applications to order data by 
similarity (e.g. Chon et al. 1996; Foody 1999).  In this paper, the SOM is used to 
cluster the input variables into groups of similar inputs.  By then sampling one 
input from each cluster, it is possible to remove highly correlated, redundant 
variables from the original data set.  The SOM is implemented using the NCS
NeuFrame software.  To cluster the data, the input variables are presented to the 
network as the SOM’s inputs.  The software default parameters are used for the 
learning rate, neighbourhood size and number of epochs.  The output of the SOM 
is obtained using a Dynamic Patterns grid, which shows a dynamic representation 
of the nodes that are winning each pattern.  Each individual cell in the grid 
represents a node in the Kohonen layer.  There is no theoretical principle for 
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determining the optimum size of the Kohonen layer (Cai et al. 1994), hence, the 
Kohonen layer was kept large enough to ensure that the maximum number of 
clusters were formed from the training data.  Once the clusters are formed, one 
input from each cluster is sampled and used in the final subset of input variables. 

Principal Component Analysis (PCA) 
When many potential variables are available, PCA can be used to reduce the 
dimensionality of the input data set.  By using principal components (PCs), the 
variables can be transformed to a new, smaller set of variables, which capture 
most of the information in the original data set.  This is achieved by computing 
factors (new variables) as linear combinations of the old variables.  The weights 
are selected in such a way as to ensure that some optimality criterion is maximised 
(Masters 1995). 

To commence the procedure, a single linear combination of all variables is 
sought such that the majority of the variation in the training set is captured.  After 
a single dominant factor is found, it is then necessary to find a second factor that 
captures the remaining information not explained by the first factor.  The second 
PC is chosen such that it is orthogonal to the first.  Next a third factor is sought 
that best captures the remaining information and is orthogonal to the first and 
second.  The process continues until all the variance in the data set is accounted 
for.  If there are p input variables of interest, it is hoped that m, where m<<p,
different PCs will account for most of the variation in x.  As the interrelations 
among the variables increases, the proportion of variance explained by the first 
few components increases.  Hence, it is common for most of the important 
information to be concentrated in the first few principal components, with the 
system noise falling mostly in later components that can be discarded (Masters 
1995).  However, it is possible, but usually unlikely, that by discarding the later 
components, some important information may be lost (Jolliffe 1986; Masters 
1995).  An added advantage of PCA is that each of the computed factors are 
independent of each other and there is no redundancy in the information that they 
contain (Masters 1995). 

If the input variables have different units, it may be necessary to normalise the 
data.  PCA attempts to capture variation.  Numerically, a variation in flow 
between 10,000 and 20,000 ML/day is much greater than a variation in river level 
between 1.0 and 5.0 m.  However, the effect of each of these variables on the 
system being investigated may be rather similar and the information content of the 
flow data is not inherently greater.  Hence, by normalising the data, all variables 
are put on an equal basis in the analysis. 

13.2.2                                                                                                
Supervised Input Determination 

It is important to note that substantial variation amongst the input variables does 
not necessarily imply any relationship with the output variable.  Hence, after the 
input dimensionality has been reduced using the unsupervised procedures (a priori
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identification, SOM and PCA), supervised procedures must ultimately decide 
upon which variables have the most significant impact on the ANN's forecasting 
ability. 

Genetic Algorithm (GA) Selection of Inputs 
A genetic algorithm is a powerful optimisation technique inspired by the 
principles of natural evolution and selection (Goldberg 1989).  Evolutionary 
algorithms have been widely used in optimising water resources variables (e.g. 
Simpson et al. 1994; Dandy et al. 1996) and in ecological modelling applications 
(e.g. Howard and D'Angelo 1995; Downing 1998). 

To initiate the technique, a population of random solutions is generated.  The 
fitness of each member of the population can then be evaluated using an objective 
function and the next generation is produced from the previous one using a 
process of selection, crossover and mutation. 

A GA can be used to select an appropriate combination of inputs to an ANN 
model.  GAs are well suited to this task as they have the ability to search through 
large numbers of combinations where there may be interdependencies between 
variables.  For the problem of determining inputs to an ANN model, a population 
of randomly selected ANNs is generated, each with a different subset of input 
variables as depicted by a binary string.  The models are trained and then the 
output of each ANN is used to determine the predictive error, or fitness of the 
solution.  In this research, the root mean square error (RMSE) between the actual 
and predicted values is used to determine the fitness of the model.  Based on the 
fitness of each member in the population, a selection scheme can then be 
employed to create a new population for the next generation.  In this way, fit 
solutions are allowed to live and subsequently breed in the process of crossover.  
In the crossover process, two parent strings are cut and part of the strings 
exchanged to produce two new individuals.  To maintain genetic diversity and 
ensure that no important genetic material is overlooked, a mutation operation 
introduces small random changes. 

The process is continued in an iterative manner until the error from the ANN 
model converges to an acceptable value or the maximum number of generations is 
completed.  Due to the selective pressure applied over the generations, the overall 
trend is the evolution of higher fitness chromosomes representing optimal input 
subsets.

Implementation of the GA-ANN 
The commercially available software package, NeuroGenetic Optimizer (NGO)
(BioComp Systems 1998) was used in this research to implement the GA-ANN.  
The NGO uses GAs to evolve ANN structures while simultaneously searching for 
significant input variables. 

Stepwise ANN Modelling Procedure 
A stepwise modelling procedure was also used in this study to determine the ANN 
model inputs (see Masters 1993; Maier et al. 1998).  This method involves 
developing N-bivariate models, where N is the number of input variables.  The 
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input variable that gives the smallest error (e.g. RMSE) is then included in the 
model.  Subsequently, N-1 models are developed by combining the variable that 
resulted in the best forecast with each of the remaining variables.  This procedure 
can then be repeated using models with three input variables, four input variables 
etc., until the addition of any extra variables does not improve model performance.  
The disadvantages of this procedure are that it is computationally intensive and the 
synergistic effect of certain combinations of variables may be overlooked. 

13.3
Case Study 

The ANN models were developed to forecast (4 weeks in advance) a particular 
species group of cyanobacteria (Anabaena spp.) in the River Murray at Morgan, 
South Australia.  In this research, the available data include weekly values of 
concentrations of the cyanobacterium Anabaena spp., total phosphorus, soluble 
phosphorus, total kjedahl nitrogen (TKN) and silica as well as turbidity, colour, 
pH, temperature, river levels at Morgan and weekly flows at Lock 7 (for locations 
see Maier et al. (2000)).  All data were available from 1980/1981 to 1995/1996.  A 
full description of the case study is provided in Maier et al. (1998) and Maier et al. 
(2000).  Three additional variables were used in this study, namely, pH, silica 
concentrations and river levels.  pH was included as pH variations can alter 
phytoplankton community composition i.e. low pH (< 6.0) favours eukaryotes, 
and high pH (> 8.0) favours cyanobacteria.  Silica itself is not a direct requirement 
for cyanobacterial growth, however, silica is an important nutrient for the growth 
of diatoms and therefore, it is a key nutrient that determines phytoplankton 
succession.  River levels were also included as they are highly correlated to flow 
data but exhibit less noise.

13.4
Model Development 

Backpropagation networks were developed using the commercially available 
software package NeuroGenetic Optimizer (NGO) (BioComp Systems 1998).  The 
NGO evolves ANN structures whilst simultaneously searching for combinations 
of significant input variables.  The following features can be optimised by the 
NGO:
1. the inputs used, 
2. the number of hidden layers, 
3. the number of hidden layer neurons in each layer, and 
4. the transfer functions at each of the hidden and output layer nodes (logistic, 

hyperbolic tangent or linear). 
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It has been shown that only one hidden layer is required to approximate any 
continuous function, given that sufficient degrees of freedom (i.e. connection 
weights) are provided (Cybenko 1989).  Hence, one hidden layer was utilised in 
this study and this feature was not varied.  The number of hidden layer neurons by 
layer was optimised by the NGO and the maximum limit was set at 64 neurons.  
The test set data were used to choose the optimal network architecture and inputs.  
The GA-ANN process was conducted in an iterative manner until the maximum 
number of generations was exceeded.  With a population size of 30 networks, it 
was found that optimal ANN models could be determined within 10 generations. 

The NGO also has the capability to lock all inputs active and only optimise the 
network architecture, which means that it can be used to perform the stepwise 
modelling technique.  Unless stated otherwise, the default software parameters 
were used since the focus is on evaluating the input determination techniques 
rather than studying the effect of varying the network's parameters. 

13.4.1                                                                                              
Performance Measures and Model Validation  

The onset, peak and duration of a bloom or growth event are the three most 
important characteristics describing the occurrence of Anabaena spp.  The RMSE 
is not an ideal measure of fitness but it was considered the most suitable error 
measure, as it places greater emphasis on larger forecasting errors.  Even if the 
RMSEs of several forecasts are similar, the usefulness of the forecasts may differ.  
For example, two forecasts may have the same RMSE, but one may forecast 
increases that lead the actual event while the other may lag it, making the former 
more useful.  Therefore, a visual inspection of the plots of actual and predicted 
results is important in addition to calculating the RMSE between them.  In this 
research, the plots of the actual and predicted (4 week forecast) values were 
inspected, and the RMSE between them calculated for an arbitrary two-year 
validation period spanning November 1992 to November 1994. 

13.4.2                                                                                                           
Data Division 

In this paper, the main objective is to compare different input determination 
techniques.  To provide a fair comparison between the different models, it is 
important that all other modelling factors are held constant and that the models are 
tested and validated on data that is statistically representative of the data used in 
the training process.  This provides the most rigorous test of a model's 
performance based on the input selection method since other sources of poor 
performance such as attempting to validate the model on data outside the range 
used in training are effectively eliminated.  In addition, the ASCE Task 
Committee on Application of Artificial Neural Networks in Hydrology (2000) 
observed that "an optimal data set for training would be one that fully represents 
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the modeling domain and has the minimum number of data pairs in training".  To 
achieve this, the data were divided into training and testing sets using a SOM.  
The validation data were combined with the remaining data and clustered using 
the SOM.  Once the clusters were formed, two data records from each cluster 
containing validation data were sampled (i.e. one for each of the training and 
testing sets).  In the instance that a cluster only contained one record other than the 
validation record, then this record was placed in the training set.  The advantage of 
using the SOM data division technique is that it employs the minimum number of 
samples for compiling training, testing and validation sets that are statistically 
similar.  When computationally intensive supervised input determination 
techniques such as the GA-ANN are used, compact training, testing and validation 
sets are advantageous as they increase processing speed.  Since the SOM data 
division technique allows training, testing and validation sets to be selected that 
are statistically representative of the same population, a fair comparison of the 
input selection techniques can be made whilst providing the most rigorous test of 
each method. 

A full description of the use of the SOM for dividing data into statistically 
similar subsets is provided in Bowden et al. (2000). 

13.4.3                                                                                            
Determination of Model Inputs 

Six ANN models were developed, each using a different combination of 
unsupervised and supervised input determination methods (Figure 13.1).  After 
applying the unsupervised techniques to the initial data set, the inputs were 
reduced to the subsets displayed in Table 13.1.  The supervised input 
determination techniques were performed using the subsets shown in Table 13.1. 

13.5
Results and Discussion

Details of each of the models developed are shown in Table 13.2.  It can be seen 
that a variety of different inputs have been selected in each of the models.  In 
general, the models that utilise a GA-ANN for the supervised input determination 
included a wider variety of input variables than the models developed using the 
stepwise modelling procedure.  The stepwise modelling procedure tended to 
produce more compact models since the process is terminated once the addition of 
any extra variables fails to improve the model performance. 

GAs are stochastic processes and as such repetition of experimental treatments 
was performed to evaluate the effect of stochasticity on the set of inputs identified 
for each GA-ANN model.  It was found that by performing multiple runs for each 
GA-ANN, there were only slight differences in the optimal subset of inputs 
identified.  However, most importantly, it was found that each of the models 
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identified by the GA-ANN consistently outperformed the models developed by the 
stepwise ANN modelling procedure when measured on the validation set. 
Graphical comparisons of the 4-week forecasts of the concentration of Anabaena
spp. in the River Murray at Morgan for the validation period obtained using model 
1 and model 2 are shown in Figures 13.2 and 13.3, respectively.  Both of these 
models were developed using a priori knowledge as the unsupervised input 
processing technique.  Model 1 used a hybrid GA-ANN for the supervised input 
selection, whereas model 2 used the stepwise ANN modelling procedure.  The 
precision of the cell count data can range from 20% to 70% depending on the 
number of Anabaena trichomes counted (M.D. Burch, personal communication). 
Hence, error bars were conservatively set at 30% and included in Figures 13.2, 
13.3 and 13.4.  From Figure 13.2, it can be seen that model 1 is able to predict the 
onset and duration of the two large growth events but underestimates the 

Table 13.1. Input Subsets Identified Using the Unsupervised Input Determination 
Techniques

a priori
identification 

No. 
of
inpu
ts

PCA 

No. 
of 
inpu
ts 

SOM 

No.
of 
inpu
ts 

Anabaena lags 1, 2, 
3, 4 4 Anabaena PCs 1, 2, 

…, 7 7
Anabaena lags 1, 5, 6, 
9, 12, 13, 18, 20, 23, 
24, 25 

11 

Turb. lags 1, 2, …, 
10 10 Turb. PCs 1, 2, 3, 4 4 Turb. lags 1, 14, 20 3 

Col. lags 1, 2, …, 10 10 Col. PCs 1, 2, 3 3 Col. lags 1, 20 2 
Temp. lags 1, 2, 3, 4 4 Temp. PCs 1, 2 2 Temp. lags 1, 13 2 

Flow lags 1, 2, …, 
10 10 Flow PCs 1, 2, 3 3 

Flow lags 1, 3, 5, 7, 8, 
10, 11, 14, 15, 17, 18, 
20, 21, 22, 23, 24, 25 

17 

pH lags 1, 2 2 pH PCs 1, 2, 3, 4 4 pH lag 1 1 
Total. P. lags 1, 2, 
…, 10 10 Silica PCs 1, 2, 3, 4 4 Sol. P. lag 1 1 

Sol. P. lags 1, 2, …, 
10 10 Total. P. PCs 1, 2, 3, 

4, 5 5 TKN lag 1 1 

TKN lags 1, 2, …, 
10 10 Sol. P. PCs 1, 2, …, 6 6 River Lev. Lag 1 1 

  TKN PCs 1, 2, …, 7 7   
  River Lev. PCs 1, 2, 3 3   
Total No. of Inputs 70  48  39 
PC, principal component. 
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Figure 13.1. The input determination techniques utilised to determine the 
inputs for each of the six models. 

magnitude of the second large peak.  In Figure 13.3, it can be seen that model 2 
was unsuccessful at predicting the onset of the two large growth events and 
instead provided a forecast which led the actual events.  However, model 2 was 
successful at predicting the duration and relative magnitude of the two growth 
events.  Model 2 only used flow, lags 1-10 weeks and turbidity, lags 1-10 weeks 
as input variables, whereas Model 1 made use of 7 different variables including 
past lags of flow, turbidity, Anabaena spp., nutrient data, colour, temperature and 
pH (Table 13.2).  Therefore, other variables are required in addition to flow and 
turbidity, in order to forecast the onset of the Anabaena spp. growth events.  It is 
also important to note that the significant lags selected by the GA-ANN were not 
intuitive.  The superior performance shown by model 1 on the validation set may 
have resulted from the GA-ANN finding a synergistic combination of input 
variables and lags.  Such a combination of inputs would be impossible to 
determine using the stepwise ANN modelling procedure.  The stepwise ANN 
procedure is more likely to overlook combinations of interdependent variables, 
which may together carry significant information. 
A plot of the 4-week forecasts for the validation period obtained using model 3 is 
shown in Figure 13.4.  Model 3 used PCA as the unsupervised processing 
technique and a GA-ANN for the supervised input selection.  From Figure 13.4, it 
can be seen that model 3 picked up the general shape of the two large peaks of 
Anabaena spp. but underestimated the duration and relative magnitude of the 
second peak.  In general, model 3 was unable to perform as well on the validation 
data as model 1 (the model developed using a priori knowledge and the GA-
ANN) (Figure 13.2). 

Supervised Input Reduction 

Unsupervised Input Reduction 

Data 
Divided Using

a priori
identification

GA Stepwise 

PCA 

GA Stepwise

SOM 

GA Stepwise 

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
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Table 13.2. Details of the Models Developed Using Each Combination of Input 
Determination Technique 

Unsupervis
ed method 

Supervised 
Method 

Model 
No. Inputs Selected 

Architecture
(NI - NH - 
NO)

Hidden 
layer 
nodes 

Output
layer 
node 

GA-ANN 1 

Anabaena lags 1, 3, 4 
Turb. lags 5, 6 
Col. lags 1, 2, 5, 7, 9 
Temp. lags 2, 3, 4 
Flow lags 1, 4, 6, 8, 9 
pH lags 1, 2 
Total P. lags 2, 3, 5, 7 
Sol. P. lags 1, 2, 3, 4, 5, 7, 8, 9 
TKN lags 2, 3, 5, 6, 7, 8 

38 - 57 - 1 

28
Logistic 
22 Tanh 
7 Linear 

Tanh 
a priori
identificati
on

Stepwise 2 Flow lags 1, …, 10 
Turb. lags 1, …, 10 20 - 35 - 1 

15
Logistic 
11 Tanh 
9 Linear 

Logistic 

GA-ANN 3 

Temp. PC 1 
Col. PCs 1, 2 
pH PC 1 
Silica PCs 1, 3, 4 
TKN PCs 1, 5, 6 
Total P. PC 1 
Sol. P. PCs 2, 3, 4, 5, 6 
River Lev. PCs 1, 2 
Anabaena PCs 1, 3, 4, 6 

22 - 36 - 1 

16
Logistic 
1 Tanh 
19 Linear 

Tanh 

PCA 

Stepwise 4 
Flow PCs 1, 2, 3 
Total P. PCs 1, …, 5 
Temp. PCs 1, 2 

10 - 52 - 1 6 Tanh 
46 Linear Linear 

    

20
Logistic 
20 Tanh 
20 Linear 

Logistic 

Stepwise SOM GA-ANN 5 

Anabaen
a lags 1, 
5, 7, 12, 
13, 20, 
23
Flow 
lags 7, 8, 
10, 13, 
15, 17, 
20, 22, 
25
Turb. lag 
1
Col. lags 
1, 16 
Silica lag 
1

20 - 61 - 
1
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Figure 13.2. Forecasts and actual concentrations of Anabaena spp. for the 
validation period for model 1 (input determination: a priori + GA-ANN). 

Figure 13.3. Forecasts and actual concentrations of Anabaena spp. for the 
validation period for model 2 (input determination: a priori + Stepwise ANN 
modelling procedure). 
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Figure 13.4. Forecasts and actual concentrations of Anabaena spp. for the 
validation period for model 3 (input determination: PCA + GA-ANN). 

Table 13.3. RMSE for the 4-week Forecasts 

The RMSEs of the 4-week forecasts for each of the models developed are 
shown in Table 13.3.  Looking at the performance on the validation set, it can be 
seen that the models developed using a priori knowledge performed significantly 
better than the models developed using PCA and the SOM as unsupervised input 
processing techniques.  This suggests that, where available, expert knowledge on 
the system being modelled provides a suitable means for removing redundant 
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a priori
identification 

PCA SOM 

Data Set GA Stepwis
e

GA Stepwis
e

GA Stepwis
e

Model No. 1 2 3 4 5 6 
Training 
Set

256.3 382.0 371.6 439.8 420.3 398.3 

Testing Set 505.4 491.3 561.3 577.9 504.0 502.6 
Validation
Set

386.2 517.1 436.4 549.4 436.4 602.1 

RMSE are given in cells/ml 
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input variables and lags of variables.  However, this technique is very subjective 
and dependent on the case study under investigation.  In addition, this type of 
expert knowledge is often unavailable and the only alternative is to proceed with 
an analytical technique.  Based on the performance on the validation set, PCA and 
the SOM technique both provided an equally suitable means of reducing the  
dimensionality of the input set.  However, the results for the test set suggest that 
the SOM ANN models perform slightly better than the PCA ANN models.  In this 
theoretical study, the performance of each model has been based on the 
independent validation set, however, in a real-world application, the decision of 
which input determination method to use would be based entirely on the test set 
performance.  Thus, this contradictory result requires further investigation but may 
in part be due to the training, testing and validation sets not being entirely 
representative of the same population, despite the use of the SOM data division 
technique.  Due to the nature of the Anabaena spp. data, it is difficult to compile 
training, testing and validation sets that are statistically similar. 

The results in Table 13.3 also confirm that the GA-ANN performed better than 
the stepwise ANN procedure when measured on the validation set.  However, the 
GA-ANN and stepwise ANN procedure produced very similar results when 
measured on the test set.  Table 13.2 shows that each of the six models developed 
contained different network architectures.  The network architecture of each 
model was optimised using the NGO and was found to be very dependent on the 
input subset used.  The GA-ANN technique usually identified more input 
variables than the stepwise ANN procedure, resulting in larger models. 

13.6
Conclusions 

The results of this study show that the combination of a priori knowledge and a 
hybrid GA-ANN provided the most effective means of identifying the significant 
input variables.  The resulting model (model 1) was able to forecast the onset and 
duration of the major incidence of Anabaena spp. in the validation set with a good 
level of accuracy.  The inputs found to be important in this model include nutrient 
levels (total phosphorus, soluble phosphorus and TKN) as well as turbidity, 
colour, temperature, flow, pH and previous concentrations of Anabaena (Table 
13.2). 

Of the analytical unsupervised techniques, the PCA ANN models and the SOM 
ANN models had identical performance when measured on the independent 
validation set.  Both unsupervised methods provide a suitable means of reducing 
input dimensionality. 

The models (1, 3 and 5) which utilised the GA-ANN as the supervised input 
determination outperformed the models developed using the stepwise ANN 
modelling procedure.  The GA-ANN had the ability to efficiently evaluate a very 
large number of networks and consequently, it was able to find synergistic 
combinations of inputs resulting in superior forecasts for the validation set. 
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Chapter 14 

Utility of Sensitivity Analysis by Artificial Neural 
Network Models to Study Patterns of Endemic 
Fish Species
M. Gevrey  ·  S. Lek  ·  T. Oberdorff

14.1
Introduction

Artificial Neural Networks (ANNs) have become more and more frequently used 
in ecology in the last decade, essentially to resolve forecasting problems (Cornuet 
et al. 1996; Recknagel et al. 1997; Guégan et al. 1998; Clair and Ehrman 1998; 
Ozesmi and Ozesmi 1998; Maier and Dandy 1999; Laberge et al. 2000). 

Many studies have shown that this tool has a better predictive power than the 
classical linear methods (Lek et al. 1996b; Brey et al. 1996; Ramos-Nino et al.
1997; Starrett et al. 1997; Huntingford and Cox 1997; Paruelo and Tomasel 1997; 
Whitehead et al. 1997). Nevertheless ANNs are known as a “black box” type 
model, unable to clarify the contribution of the explanatory variables to the 
dependent one. However, even if the prediction capacity is of prime importance, it 
is also necessary, particularly in ecology, to evaluate the way explanatory 
variables contribute to the explanation of the ecological processes involved. 
Several authors have thus focused on the analysis of output variables sensitivity 
with respect to the input (Garson 1991; Goh 1995; Lek et al. 1996a,b; Maier and 
Dandy 1996; Balls et al. 1996; Scardi 1996; Seginer 1997; Dimopoulos et al.
1995; 1999). In this paper, two algorithms developed by Lek (Lek et al. 1996a,b) 
and Dimopoulos (Dimopoulos et al. 1995; 1999) are evaluated and compared. 

These two methods reinvestigate a previous study analysing patterns of 
endemic riverine fish species richness at the global scale (Oberdorff et al. 1999). 
In this study, the endemic species richness was directly dependent on species 
diversity (e.g. total species richness). Total species richness was itself influenced 
by factors related to components of river size (i.e. surface area of the drainage 
basin) and to a lesser extent, energy availability (i.e. net primary productivity). 

This study comprises four sections corresponding to: i) the development of the 
two methods, ii) the presentation of the dataset, iii) the investigation of results 
obtained for predictions and those obtained with the contribution methods, iv) the 
discussion of the ecological significance of the results obtained. 
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14.2
Contribution of Environmental Variables 

In the Multi-Linear Regression (MLR) model, the influence of each variable can 
be roughly assessed by checking the final values of the regression coefficients. 
However, it is more difficult with ANNs to find the contribution of the input 
variables directly from the models, specific algorithms are necessary to use. 

Most authors have used the principle of step by step elimination of the variables 
to determine this influence (Balls et al. 1996; Maier and Dandy 1996) but others 
have tried different methods using connection weights (Garson 1991; Goh 1995), 
the perturbation of input variables (Scardi 1996), the partial derivatives of the 
output according to the input variables (Dimopoulos et al. 1995; 1999) or the 
successive study of the variables by a variation of one of them while the others are 
fixed to a determined value (Lek et al. 1996a,b), etc. The two methods retained for 
this study are the Profile method (Lek et al. 1996a,b) and the PaD method 
(Dimopoulos et al. 1999). 
The “Profile algorithm” 
This method was suggested by Lek et al (1996a, b). The general idea is to study 
each input variable successively, to do so the others are blocked during the 
utilisation of the model. The principle of this algorithm is to construct a fictitious 
matrix considering the range of all input variables. In greater detail, the values of 
each variable are divided into 12 values at equal intervals between their minimum 
and maximum values. For all variables except one, the 12 values are set at their 
minimum values, then successively their first quartile, median, third quartile and 
maximum. For each studied variable, five values for each of the 12 points are 
obtained. These five values are reduced to the median value. Then the profile of 
the output variable can be plotted for 12 values levels of the variable considered. 
The same calculations can then be repeated for each of the other variables. For 
each variable a curve is then obtained, which gives a set of profiles of the variation 
of the dependent variable according to the increase of the input variables. 
The “Pad algorithm” 
This method gives two different results, the first one being a profile of the output 
for each input variable and the second being a classification of the variable in 
increasing order of importance. 
“The derivatives profile” 
This is a sensitivity analysis proposed by Dimopoulos et al. (1995; 1999). It is 
based on the principle of partial derivatives of the ANN response with respect to 
each descriptor. When the input xj is modified, the output yj changes, yj=f(xj).
Then the sensitivity of the network outputs according to small input perturbations 
can be studied, which is represented by the Jacobian matrix 

nm
T xydxdy . For a network with n inputs, one hidden layer with ni

nodes, and one output (i.e. m=1), the gradient vector of yj with respect to xj is
T

jnjejj dddd ,,,,1  (Dimopoulos et al. 1995), with: 
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(on the assumption that a logistic sigmoid function is used for the activation. 
When Sj is the derivative of the output node with respect to its input, Iij is the 
output node for the input xj, wis  and wei are the weights between the sth output node 
and ith hidden node, and between the eth input node and the ith hidden node). 

A set of graphs of the partial derivatives versus each corresponding input 
variable can then be plotted, and enable the direct access of the variation of the 
input variable influence on the output. One example of an interpretation of these 
graphs is that, if the partial derivative is negative then, for this value of the studied 
variable, the output variable will tend to decrease while the input variable will 
increase. Inversely, if the partial derivatives are positive, the output variable will 
tend to increase while the input variable will increase. Derivatives equal to zero 
imply independence between the output and the considered input variable. 
“The relative contributions” 
The sensitivity of the ANN output for the data set with respect to an input is 
calculated by a sum of the square partial derivatives values obtained per variable: 

2

1
)(

N

j
jee dSSD                                                                                      (14.2) 

One SSD (Sensitivity for a Set of Data) value is obtained per input variable. The 
SSD values allow classification of the variables according to their increasing 
contribution to the output variable in the model. The input variable, which has the 
higher SSD value, is the variable mostly influencing the output variable. 

14.3
Application to Ecological Data 

Dataset: 
Data were used from 136 rivers of the Northern Hemisphere located as follows: 58 
in Africa (43%), 52 in Europe (38%), 19 in America (14%) and 7 in Asia (5%); 49 
rivers between 0° and 10° (36%), 11 between 11° and 20° (8%), 8 between 21° 
and 30° (6%), 17 between 31° and 40° (12%), 33 between 41° and 50° (24%), 13 
between 51° and 60° (10%) and 5 between 61° and 70° (4%). This database is the 
same as the one used by Oberdorff (1999) with the addition of some new data. 

Studied variables retained are as follows: total species richness (TSR), referring 
to the total number of riverine fish species collected from the entire drainage 
basin; endemic species richness (ESR), referring to the total number of endemic 
fish species collected from the entire drainage basin (endemic species are defined 
as those inhabiting only one drainage basin, narrow endemic); total surface area of 
the drainage basin (km2) (SAD); and net primary productivity (kg-2y-1) (NPP) 
(because the net aquatic primary productivity data were not available for rivers in 
the literature, the formula given by Lieth (1975) was used, which included the 
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mean annual air temperature and the mean annual rainfall to estimate average 
values of terrestrial primary productivity). 

The prediction method 
ANNs were employed to predict the endemic species richness using a set of 
explanatory variables at the input, which were the total species richness, the 
surface of the drainage basin and the net primary productivity. Because the 
endemic species richness depends normally only on total species richness 
(Oberdorff et al. 1999), ANNs were also employed to predict the total species 
richness and investigate the contribution of the drainage basin surface area and the 
net primary productivity. There is a range of different types of ANNs but the most 
widely used is the multi-layered perceptron which is trained using the algorithm of 
backpropagation of errors (Rumelhart et al. 1986). It is based on a supervised 
learning of a known data matrix, a correction of the connection weights is done in 
order to obtain a minimal error, that is the method of gradient descent based on the 
difference between the observed and the expected outgoing signals. The final 
model obtained can be used to carry out predictions. 

For the prediction of ESR, a three layer feed-forward (3-5-1) neural network 
was used: i.e. 3 input neurones corresponding to each quantitative variable (TSR, 
SAD, NPP), one hidden layer with 5 neurones determined as the optimal 
configuration (best compromise between bias and variance, Geman et al. 1992; 
Kohavi 1995) and one output neurone for the endemic species richness. The 
activation function used is the log sigmoïd function. To test and validate the 
model, a leave-one-out procedure was investigated (Efron 1983; Jain et al. 1987),
where each observation is tested using a model trained by all the observations. In 
reality, each observation (river) is unique and can be added to the training sample 
according to a posteriori validation. In this way, 136 training phases were 
performed with 135 observations followed by 136 testing phases with only one 
observation. 

For the prediction of TSR, the network used had two input neurones: SAD and 
NPP, also 5 hidden neurones and one output neurone for TSR. The above test and 
validation procedure was used for the model. 

The computational program was undertaken using Matlab® software release 
5.3 on PC. 

14.4
Results

14.4.1                                                                                             
Predictive Power 

The results of the ANNs model to predict ESR by the leave-one-out testing 
procedure, with 500 iterations and 5 neurons in the hidden layer, are presented in  
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Fig. 14.1. The determination coefficient between observed and estimated values 
testified the predictive power of the model (r²=0.92). Figure 1a shows that the 
ANNs gave satisfactory results over the whole range of the dependent variable 
values. The points are well aligned on the diagonal of the perfect-fit line. There 
are many more low values of ESR but the highest are better predicted. In Fig. 
14.1b, the results of the study of the relationship between residuals and estimated 
values shows complete independence (r=-0.018, n=136, P=0.838) and an average 
of residuals equal to zero (equal distribution of the points on both sides of the x-
axis). More low value points can be again seen, which also correspond to the 
highest residuals deviation. In Fig. 14.1c, the distribution of residuals was 
compared to a normal distribution but it appears that there is an exaggerated 
clustering of residuals at zero for the distribution of residuals to be normal. Thus, 
the assumption of normality may not hold. Lillieffors test of normality of residuals 
gives a maximum difference of 0.268 (P<0.001). 

Fig. 14.1. (a) Relationship between observed and estimated values of ESR,       
(b) Relationship between the residuals and the estimated values of ESR,              
(c) Distribution of residuals (observed values- estimated values of ESR). 

The results of the ANNs model to predict TSR are in Figure 14.2. The 
determination coefficient is lower than for ESR (r²=0.86). The points are less well 

0

3.
5 7

-3
.5

10
.5 14

17
.5 21

0

10

20

30

40

50
(c)

(b)

R
es

id
ua

ls

Estimated values

(a)

Es
tim

at
ed

 v
al

ue
s

Observed values

-14
-7
0
7

14
21
28



                 M. Gevrey  ·  S. Lek  ·  T. Oberdorff 298

aligned on the diagonal of the perfect-fit line. (Fig. 14.2a). There are many low 
values of TSR, which are underestimated, but there is a complete independence 
between the residuals values and the estimated values (n=136, r= 0.045, P=0.606) 
(Fig. 14.2b). Nevertheless, there is an exaggerated clustering of residuals at zero in 
order for the distribution to be normal. The assumption of normality may not hold. 
Lillieffors test of normality of residuals gives a maximum difference of 0.225 
(P<0.001) (Fig. 14.2c). 

Fig. 14.2. (a) Relationship between observed and estimated values of TSR,         
(b) Relationship between the residuals and the estimated values of TSR,              
(c) Distribution of residuals (observed values- estimated values of TSR). 

14.4.2                                                                                                   
Sensitivity Analysis 

Here are given the results of the investigation of the two sensitivity methods. 
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Profile method 
Figure 14.3 shows the results of the contribution analysis with the 3 variables: 
TSR, SAD and NPP in the predictive model of ESR. The variable TSR has a 
curve, which follows the entire range of ESR values when the SAD and NPP 
curves are what can be called “crushed”. 

Fig 14.3. Contribution of the three independent variables (TSR, SAD and NPP) 
used in the 3-5-1 ANN model by the Profile algorithm. 

Figure 14.4 is the graph of the contribution analysis with the 2 variables SAD 
and NPP in the predictive model of TSR. The SAD curve has a positive linear 
shape. The relationship between NPP and TSR is non linear and positive. 

Fig 14.4. Contribution of the two independent variables (SAD and NPP) used in 
the 2-5-1 ANN model by the Profile algorithm. 
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“Pad method”: The derivatives profile 
Fig. 14.5 shows the results of the partial derivative method, that is three graphs 
(one for each variable), which represent the partial derivative of the output with 
respect to the input values versus the values of this input. 

As it can be seen in Fig. 14.5a, the values of partial derivatives of ESR with 
respect to TSR are nearly all positive or equal to zero for the whole range of TSR 
values. The partial derivatives plot can be divided into three parts: (1) TSRs lower 
than 50: the partial derivatives of ESR are equal to zero, there is no increase in 
ESR for an increase in TSR; (2) TSRs between 50 and 150: the partial derivatives 
values of ESR increase. An increase in TSR leads to an increase in ESR; (3) TSRs 
higher than 150: the values of ESR partial derivatives stay positive but are lower. 
An increase in TSR leads to a more moderate increase in ESR. 

Concerning the plots of the ESR partial derivatives with respect to SAD and 
NPP, Fig. 14.5b and Fig. 14.5c respectively, both the points are mainly close to 
zero. There is an independence of the ESR variable versus SAD and NPP. 

Fig 14.6 shows the results of the partial derivative of TSR with respect to the 
two variables SAD and NPP. 

Fig. 14.6a is the graph of the TSR partial derivatives with respect to SAD 
versus SAD. All the partial derivative values are positive. In the case of the low 
SAD values the partial derivatives values are high, and become lower with the 
increase in SAD. 

Fig. 14.6b shows the graph of the TSR partial derivatives with respect to NPP 
versus NPP. The partial derivatives plot can be divided into three parts: (1) NPPs 
lower than 1500 kg-2y-1, the partial derivatives are near zero, there is an 
independence of NPPs for these values; (2) NPPs between 1500 and 2250 kg-2y-1,
the partial derivatives are positive and high, an increase in NPP leads to an 
increase in TSR; (3) NPPs higher than 2250 kg-2y-1, the partial derivatives of TSR 
are negative, an increase in NPPs leads to a decrease in TSR. 

The relative contributions 
The algorithm permitted the calculation of a value of SSD per variable. Several 
simulations were undertaken to obtain those SSDs. Because there was variation 
between simulations in the obtained values of SSD and the relative proportions 
between the SSDs of the 3 variables were conserved, thus the SSDs were 
expressed as a percentage of the sum of the three SSDs and then averaged. The 
values obtained are: SSDTSR=76.77%, SSDSAD=19.74% and SSDNPP=3.49%. 
Therefore, TSR is the most significant variable, followed by SAD and then NPP, 
which has a very low contribution. The differences between the three SSDs are 
sufficient for the t-test to be significant (P<0.01). 

The same method was applied with TSR as the output variable and SAD and 
NPP as the inputs. The results obtained are: SSDSAD=70.67% and 
SSDNPP=29.33%. The t-test gives a significant difference between SAD and NPP 
(P<0.01). 
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Fig 14.5. Partial derivatives of the ANN model response (ESR) with respect to 
each independent variables (Pad algorithm, Derivatives Profile) (a) TSR, (b) SAD, 
(c) NPP. 
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Fig 14.6. Partial derivatives of the ANN model response (TSR) with respect to 
each independent variables (Pad algorithm, Derivatives Profile) (a) SAD, (b) NPP. 

14.5
Discussion 

The power of Artificial Neural Networks is verified by a very high determination 
coefficient between the observed values and the estimated values for both models 
(r2=0.92 for ESR prediction and r²=0.86 for TSR prediction). The results are in 
agreement with the literature, in which ANN performances have repeatedly been 
reported to surpass those of more traditional methods such as MLR (cf. reference 
cited in the introduction). This may point to the predominantly non-linear 
relationships between the studied variables on the one hand, and on the other 
hand, the ability of ANNs to take directly into accounts any non-linear 
relationships between the dependent variables and each independent variable (Lek 
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et al. 1996b). Therefore, ANNs appear to constitute a powerful alternative in 
predictive ecological modelling. 

With both the Profile method and the Pad method, TSR is found to be the most 
important variable in explaining the variability of the endemic species richness. 
This is in agreement with the conclusions made by Oberdorff (1999). Moreover, 
the way that the TSR varies the ESR is also similar in the two methods. For low 
values of TSR, ESR does not increase, then ESR increases with average values of 
TSR and with high TSR values, ESR increases but more moderately. 

The two variables SAD and NPP are not expressed by both methods. If ESR is 
predicted only by the TSR the determination coefficient found will be r²=0.83. 
With the Profile method their curves have a limited range and with the PaD 
method their partial derivatives values are almost all near zero. This is in 
agreement with the study of Oberdorff (1999), where the total species richness is 
the only variable influencing the endemic species richness. 

The Profile and PaD methods were applied to the total species richness to test 
which of the two variables NPP and SAD is the most important, and how they 
intervene in the TSR variation. In this case, the curves of SAD and NPP are well 
expressed with the Profile method, and the partial derivatives differ from zero 
with the PaD method. TSRs increase with SADs using both methods, but they 
give different results for NPPs. With the Profile method TSRs increase with NPPs 
whereas with the Pad method, TSRs increase only for values of NPP between 
1500 and 2250 kg-2y-1.

In conclusion, these methods show that the endemic species richness is 
dependent only on the total species richness and that total species richness is 
dependent on the surface area of the drainage basin and to a lesser extent, the net 
primary productivity. 

Disadvantages 
The principal disadvantage of the Profile method is the use of a fictitious matrix. 
In fact, twelve values were retained for each variable, taken from between their 
minimum and maximum values at equal intervals. The plotted curves for each 
variable are then smoothed, and are therefore not precise. For a definite value of 
one independent variable, it is not directly possible to find the value of the 
dependent variable. The curves can only demonstrate how the variables influence 
the output in relation to an increase in its values; it is a general view. If the 
contribution order of the variable is needed, this method is not able to give it 
directly. An analysis for a definite value can only be carried out by comparison of 
the curves’ slopes. 

Because a graph is obtained for each variable with the Pad method, it is less 
easy to get a general view of the influence of all the variables, as with the Profile 
method. 

Advantages 
The Pad method seems more favorable than the other. This method uses the real 
values of the observations. Moreover, it permits the direct obtaining of two things; 
the first being the evolution of the output according to the increase in each 
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independent variable and this with the precise values of the independent variable. 
The second is a classification of the independent variable in increasing order of 
influence. Moreover, when a variable is more dominant than another, the partial 
derivatives obtained for the other are near to zero. 

The profile method, because it presents all the variables at the same scale 
permits a general view of how the independent variables influence the output. 
When a variable is dominant, a curve with a large range is represented for this 
variable while the other curves are “crushed”. 

These methods are able to provide explanations for the model. The most 
influential variable is known, as is the order of influence of all the variables, and 
the way that these variables intervene in the model. 

14.6
Conclusions 

The results obtained with both methods match closely with the previous results. 
The predictive power of ANNs has often been demonstrated, and this new study 
puts to the fore their explicative power which is very interesting in ecological 
research. 

This article paves the way forward for broad research concerning the 
contribution of the input variables in ANN’s, firstly by the use of other databases 
to test the methods, secondly by the discovery of new methods and finally by the 
investigation of other existing methods. 
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Prediction and Elucidation of
Lake and Marine Ecosystems



Chapter 15 

A Comparison between Neural Network Based 
and Multiple Regression Models for Chlorophyll-a
Estimation
C. Karul  ·  S. Soyupak

15.1
Introduction

15.1.1                                                                                                   
Eutrophication in Water Bodies and Relevant Models  

Eutrophication and associated algal blooms are serious problems in many lakes and 
reservoirs.  Deterioration of water quality for human consumption, limitation of 
recreational use, depletion of dissolved oxygen levels below tolerable levels for 
certain fish species and severe ecosystem degradation are amongst the adverse 
effects of eutrophication (Ryding and Rast 1989).  

Various types of simulation models have been developed to predict the 
magnitude and timing of algal blooms.  One major class of models for predicting 
water quality parameters (i.e. algal concentrations) can be named “as empirical 
water body models”. They were primarily developed as extensions of the 
phosphorus model.  Models developed by Dillon and Rigler (1974); Rast and Lee 
(1978); and Bartsch and Gakstatter (1978) are based on a fit of a log-log plots of 
Chlorophyll-a and P.  They are the typical examples of such models. Later Smith 
and Shapiro (1981) have presented a modified correlation that takes into account 
the potential nitrogen limitation. Specifically, some regression models predict the 
algal concentrations as a function of flushing corrected average annual phosphorus 
inflow concentrations as summarized by Ryding and Rast (1989). Some empirical 
statistical models developed for 233 Florida lakes predict logarithm of 
chlorophyll-a concentrations as functions of “logarithm of total phosphorus 
concentrations” and  “logarithm of total nitrogen concentrations”(Canfield et al. 
1983; 1984). The authors has stressed the applicability of simple models with very 
few parameters for predicting chlorophyll-a concentrations and they further 
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emphasize the importance of aquatic macrophytes. The final outcome of their study 
was that the nitrogen was limiting nutrient for hypertrophic lakes.  

Deterministic models (Jorgensen 1976; Benndorf and Recknagel 1982), time 
series analysis models (Whitehead and Hornberger 1984), and fuzzy-logic models 
(Recknagel et al. 1994) are the other major classes of models for the same purpose. 

Since the empirical models utilizes limited number of parameters to predict 
chlorophyll-a concentrations, it is natural to conclude that they provide rough 
estimates with low degree of precision with serious oversimplifications. The 
processes that lead to eutrophication of water bodies are known to involve 
extremely complex behaviors with nonlinear relations between system parameters 
and the system responses that can not be readily explained with simplistic 
approaches. Starting from this idea, the authors of this manuscript thought that 
developing artificial neural network tools that are adequately trained with several 
environmental factors could be a better approach for more precise predictions. The 
characteristics of artificial network methodology allow learning complex systems 
and predicting their responses with high degree of precision if adequately applied.  

15.1.2                                                                                                               
Artificial Neural Networks  

The use of artificial neural networks in solving complex problems is becoming 
popular in many disciplines due to their capability to ‘learn’ non-linear relations.  
The method of artificial neural network has been inspired by biological nervous 
system. Neural Network, in computer science, is highly interconnected network of 
information-processing elements that mimics the connectivity and functioning of 
the human brain.  One of the most significant superiority of artificial neural 
networks is their ability to learn from a limited set of examples. Artificial neural 
networks are being created mimicking the structure and functioning of biological 
neural networks, in an artificial way. 

A properly trained and verified artificial neural network for the specific problem 
of interest recognizes the data and makes predictions with desirable accuracy. The 
problem of interest can be non-linear in nature and it can be at any degree of 
complexity.  Neural networks are composed of simple neuron-like operating 
elements (neurons) and weighted connections between these elements.  The 
network function is determined largely by the connections between neurons. A 
neural network can be trained to perform a particular job by adjusting the values of 
the connections (weights) between neurons. The algorithmic approaches for 
developing an artificial neural network model for a specific problem exist in 
literature (Fu 1994; Mathworks 1998).   
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15.1.3                                                                                                                        
The Use of Artificial Neural Networks in Environmental Modelling 

There are numerous examples of the use of neural networks in environmental 
modelling. Moreau et al. (1999) embedded neural networks in Lotka-Volterra 
predator-prey models. Brion and Lingireddy (1997) used neural networks in 
identification of the sources of microbial contamination. Zhang and Stanley (1997) 
adopted neural networks for water demand forecasting.  Robertson and Morison 
(1999) attempted to estimate the age of fish automatically with a neural network 
algorithm that proved successful at least for some fish species. The use of neural 
network algorithms in modelling and analysis of eutrophication in lakes is also 
quite promising because of the complex nature of the problem.   

Several studies have been carried out on the use of neural networks in 
eutrophication modelling and Lake Management in recent years.  Scardi (1996) 
used neural networks as to estimate phytoplankton production, Recknagel et al. 
(1997), Recknagel (1997) and Yabunaka et al. (1997) predicted chlorophyll-a 
concentration and algal species abundance as a function of sampled water quality 
parameters. Some zooplankton, such as Rotifers and Diaphanosoma sp., were added 
as variables to simulate the predator grazing in these studies. Karul et al. (1998a) 
developed an input-output model where measured water quality parameters were 
used to estimate chlorophyll-a concentrations. Keiner and Brown (1998) used 
neural networks to estimate chlorophyll-a concentrations at the ocean surface as an 
alternative to linear regression methods.  Results of all of the above-cited works 
achieved satisfactory levels of precision. However, there is insufficient information 
to compare the effectiveness of neural network approaches against the use of 
multiple regression methods. One notable exception (Karul et al. 1999b) was based 
on only a single water body.  

The main objective of this study was to develop neural network models for 
different water bodies to simulate eutrophication process. It was thought that the 
neural network based models that are adequately trained with several environmental 
factors could be a better approach with more precise predictions than multiple 
regression methods. A further objective of this study was to compare the 
performance of the neural network models with that of multiple linear regression 
models. 

15.2                                                                                                                          
Data and Lakes   

Data collected from three very different Turkish water bodies, the Keban Dam 
Reservoir (KDR), Mogan and Eymir Lakes, have been utilized in this study. Table 
15.1 summarizes the basic properties of these water bodies in a comparative way. 
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Table 15.1. Properties of Freshwater Lakes 

KDR is located in Eastern Anatolian Part of Turkey between northern latitudes of 
35o20´ and 38o37´, and eastern longitudes of 38o15´ and 39o52´. Due to highly varying 

Properties  Lake Eymir Lake Mogan Keban Dam Reservoir 

Lake  formation FFoorrmmeedd bbyy tthhee

ddeeppoossiittiioonn ooff aalllluuvviiaall

mmaatteerriiaall ccaarrrriieedd bbyy

ssiiddee ttrriibbuuttaarriieess..

FFoorrmmeedd bbyy tthhee

ddeeppoossiittiioonn ooff aalllluuvviiaall

mmaatteerriiaall ccaarrrriieedd bbyy

ssiiddee ttrriibbuuttaarriieess..

Artificial reservoir 

primarily for energy 

production. 

Shape  AA rriivveerriinnee ppaatttteerrnn

cchhaarraacctteerriizzeedd bbyy

rriivveerriinnee ppaatttteerrnn bbyy

lloonngg aanndd nnaarrrrooww

mmoorrpphhoollooggyy..

Resembles enlarged 

riverbeds. 

Irregular plan view.  

Depth SShhaallllooww SShhaallllooww Deep 

Watershed area  997700 kkmm22 997700 kkmm22 64 100 km 2

Average width 300m 1350m  

Center-line length 4.5 km 6 km 151 km 

Average water 

elevation (From sea 

level) 

968.5m 972m 845 m 

Average surface area 1.22 km2 5.43 km2 191 km2 at max. water 

level  

Average volume  3.5 million m3 11.63 million m3 30.6*10 9 m3

Average depth 3m 2.20 m 21.7 m at max.  water 

elevation  

Trophic status Eutrophic-Dominated 

by suspended algae 

Eutrophic-Dominated 

by macrophyte  

Oligotrophic to 

eutrophic 

(No macrophytes) 

Secchi depths 0.25-0.70 m 0.2-3.75 m 0.22-5.64 m 

Cholorophyll-a 9.02-87.2 0 gg//lltt.. 0.0-23.8 gg//lltt.. 1-33.36 gg//lltt..

P  0.05-0.57 mg/l as 

ortho-P 

0.021-0.81mg/l as 

Total-P  

0.001-0.081 mg/l as 

Phosphate
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seasonal hydrological inputs as well as power generation, the reservoir is subject to 
significant water level fluctuations exposing sediments from the inundated area at 
various times. Further, mass loads of pollutants entering the reservoir, for example, 
nitrogen and phosphorus, are highly seasonal.  The data show a persistent seasonal 
metalimnetic oxygen minima, and high spatial heterogeneity with respect to Secchi 
depth, nutrient concentration levels, turbidity and chlorophyll-a (Soyupak et al. 
1998).  The data utilized in this study covers the years 1991-1993 (see data of 
Yemi en et al. (1994) and compilation by Karul (1998b) and (1999a)).  

Mogan and Eymir lakes are small and shallow lakes located near Ankara in 
Central Anatolia.  The total watershed of the lakes is about 970 km2 at the outlet of 
Eymir. Both of lakes are formed by the inundation of the main canal through 
deposition of alluvial material. Hence, the lakes are analogous to wide riverbeds. 
The database that was utilized for Mogan and Eymir Lakes during this study covers 
the years 1993-1995 (Altınbilek et al. 1995) and was compiled by Karul (1999a).  
Mogan Lake is situated between the northern latitudes of 39  28' and 39  53' and 
eastern longitudes of 32 30' and 33 00'. Mogan Lake is a shallow eutrophic lake with 
seasonally  dense growth of macrophytes and wide seasonal and diurnal variations in 
dissolved oxygen concentrations.  The main inflow enters the lake through a swamp 
area and the outflow gives rise to a canal, which enters Eymir Lake. Hydrologically, 
Lake Eymir is fed by the outflow from Lake Mogan as well as Kı lakçı Creek, a 
small tributary confluence near the lake outlet. On the bases of OECD Lake 
classification criteria (Vollenweider and Kerekes 1981), Lake Eymir is  eutrophic 
lake. 

126, 31 and 34 valid data sets were obtained from Keban Dam Reservoir 
(Yemi en et al. 1994), Mogan Lake and Eymir Lake (Altınbilek et al., 1995), 
respectively. Each data set for KDR included PO4, NO3, Alkalinity, Suspended 
Solids, pH, Temperature, Electrical conductivity, Dissolved Oxygen, Secchi depth, 
densities of Daphnia species only, and bulk densities of species belonging to 
Cladocera and Copepoda as input and Chlorophyll-a as output. Data sets for 
Mongan and Emir Lakes include Total Phosphorus, NO3, NH3, Suspended Solids, 
Temperature, Electrical conductivity, pH, Turbidity, Secchi depth as input and 
Chlorophyll-a as output. 

15.3
Methodology 

Data sets available for each water body were collected over several months from the 
upper 1 m (euphotic zone) of pre-selected stations for each lake. Since the available 
data was not appropriate to form times series a steady-state approach was adopted. 
Temporal component was eliminated, since the prime goal of the study was to 
develop neural network tools for  chlorophyll-a concentrations utilizing the data 
related to governing environmental parameters. Eliminating temporal component 
was something new when compared to almost the earlier related works  (Recknagel 
et al. 1997; Yabunaka et al. 1997; Karul et al. 1998a). 
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15.3.1                                                                                                               
Artificial Neural Network Approach   

An algorithmic approach for developing artificial neural network models for 
estimating chlorophyll-a concentration in lakes and reservoirs have been discussed 
in detail previously by Karul et al. (1999b; 2000). A summary of previously 
established approach is given below.   

15.3.1.1                                                                                                           
Training Method 

A three layer feed-forward neural network model was used. Fig. 15.1 shows the 
adopted neural network topology for the estimation of output parameters for Keban 
Dam Reservoir as an example. A tangent-sigmoid transfer function was selected 
between the input layer and the hidden layer, and a linear transfer function was 
selected between the hidden layer and the output layer. The Neural Network 
Toolbox of MatLab by Mathworks Co. (Demuth and Beale 1998) was used during 
the study.   

There are many variations of the backpropogation algorithm and the simplest 
implementation of it updates the network weight and bias values in the direction in 
which the performance function decreases most rapidly, i.e. the negative of the 
gradient. One iteration of the backpropagation algorithm is given by Equation 
(15.1). 

kkkk gxx 1                                               (15.1)

where xk is the vector of weights and biases at the kth iteration; k is the learning 
rate at the kth iteration ; gk is the gradient at the kth iteration. 
The Levenberg–Marquardt variation of the backpropagation algorithm was 
employed in calculation of all neural network weights. The Levenberg–Marquardt 
algorithm converges faster than other back propagation algorithms and is probably 
best when there are neurons up to a few hundred.  Hagan and Menhaj (1994) give 
detailed information on the utilization of the Levenberg-Marquardt algorithm and a 
summary for its implementation is included in Demuth and Beale (1998). The 
algorithm is: 

xk+1 = xk – [JTJ + I]-1JTe                                                                 (15.2)  
                                                       

where xk is the vector of weights and biases at the kth iteration; J is the Jacobian 
matrix, which contains first derivatives of the network errors with respect to 
weights and biases; e is the vector of network errors; I is the identity matrix and   is 
a scalar. 
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Fig. 15.1. An example of the neural network structure (e.g. KDR) for the 
estimation of output parameters in case studies  

Once trained, the weights and biases of the neural network can be used to 
generate the output vector a as a function of input vector p, as given in Equation 
(15.3). 

a = f2(HW. f1(IW.p+b1)+b2)                                                                  (15.3) 

where b1 is the bias vector between the input layer and the hidden layer; b2 is the 
bias vector between the hidden layer and the output layer; IW is the weight matrix 
between the input layer and the hidden layer; HW is the weight matrix between the 
hidden layer and the output layer; f1 is the transfer function between the input layer 
and the hidden layer; f2 is the transfer function between the hidden layer and the 
output layer; p is the input vector and a is the simulated output vector.  

The hyperbolic tangent sigmoid function and linear function are given by 
equations (15.4) and (15.5) respectively. 

                        1
1

2)(1 2xe
xf                                     (15.4) 

                                    xxf )(                                         (15.5)
                                                                

PO4 Phosphorus

NO3 Nitrogen

Alkalinity

Suspended  Solids

pH

Water  Temperature

Electrical Conductivity

Dissolved Oxygen

Secchi Depth

Chlorophyll-a

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
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 is decreased after each successful step and is increased when an individual step 
increases the performance function. By this manner, the performance function will 
always be reduced at each iteration of the algorithm. An initial  value of 0.001 was 
used.  

15.3.1.2                                                                                                                   
Data Pre-Processing 

To increase the efficiency of training, the network inputs and targets were scaled by 
normalizing the mean and S.D. of the training set. This process normalizes the input 
and target values so that they have zero mean and unity S.D. When training is 
completed, the simulation results are de-normalized by reversing the action. 

15.3.1.3                                                                                                         
Improving Generalization 

A three-layer feed-forward backpropagation neural network with sufficient number 
of neurons can approximate any function. Thus, one should be aware of the danger 
that neural network may be memorizing the available data rather than generalizing 
it, so called over-fitting the data. An over-fitted neural network model typically 
imitates the data in the training set very successfully but generates a bad estimation 
for the data not included in the training. For a good generalization, over-fitting 
should be prevented taking the appropriate measures. Over-fitting can be prevented 
by utilizing either of the two methods: i) Regularization, and ii) Early stopping. The 
second method, early stopping, is used in this study to prevent overtraining.  

To decide when to stop training, the data set is randomly divided into three 
sub-sets, one half is used for training, one quarter for validation and the last quarter 
for testing. The error term, i.e. the difference between measured target values and 
the calculated values was calculated for the training set, validation set and the test 
set separately. The error on the validation set will normally decrease during the 
initial part of the training. However, when the network begins to overfit the data, the 
validation set error will start to rise. When this increase continues for a predefined 
number of iterations the   training is stopped   and  the weight values are kept 
constant. The set is used to compare with the validation set to see if they exhibit a 
similar behaviour. If the validation errors and test errors do not show a similar 
behaviour, this may indicate a poor division of data.        

Mean square error is the typical performance function used in feed-forward 
neural networks:  

       

                          (15.6) 

NatNeMSE iii /)(/)( 22
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where MSE is the  mean square error; N is  the  number of elements; i is the index 
for  elements; ei is  the error of the ith element; ti is   the target value (measured) for ith

element and ai is the calculated value for ith element.    

15.3.2                                                                                                                
Multiple Regression Modelling Approach  

For each neural network model, a corresponding multiple linear regression model 
was developed. The aim of using exactly the same data values was to compare the 
performances of two methods (neural network and multiple linear regression) under 
exactly the same conditions. To achieve this, the available data was divided into two 
equal batches, one of which is used to train the neural network while the entire data 
is used to calculate the regression coefficients. Exactly the same data batch was 
used to calculate the multiple linear regression models and the regression 
coefficients were calculated using the entire data.  MatLab of Mathworks Co. 
(Demuth and Beale 1998) was used for all calculations. 

15.4
Results

The Figures 15.2, 15.3 and 15.4 give the measured data against predictions utilizing 
the Neural Network Model for KDR, Eymir and Mogan Lakes respectively. 
Similarly Figures 15.5, 15.6 and 15.7 presents the measured data against predictions 
utilizing the Multiple Regression Models for these water bodies. Same data set of 
each water body was used for both methods.    

The multiple regression models are given below:  

For KDR: 

chl_a keban = 10-3.2506.alk + 0.0067.EC - 0.0016.DO + 0.983NO3 – 0.0485.pH – 0.1331.PO4 + 5.3673.Secchi – 

0.0323.SS + 0.007. Temp + 0.348
                                                            

                          (15.7) 
For Mogan lake:  

chl_a mogan = 10-9.57.NH3 + 1.01.NO3 + 0.2831.TP – 0.6682.E.C. + 0.0088.pH – 0.265.Secchi - 0.3215.SS + 

0.0248.Temp - 0.4849. Turb - 0.0919
       

                                    (15.8) 
For Eymir Lake: 

chl_a eymir = 10-0.3455.NH3 + 0.4414.NO3 - 0.0807.TP + 0.1388.E.C. + 0.0014.pH – 0.1691.Secchi - 2.667.SS + 

0.0009.Temp - 0.0737. Turb -             0.0025
      

                                                        (15.9)
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Fig. 15.2. The regression plot for the KDR neural network model results showing 
training, validation and test data 

Fig. 15.3. The regression plot for Mogan Lake neural network model results 
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Fig. 15.4. The regression plot for Eymir Lake neural network model results 

Fig. 15.5.  Multiple regression results for the  KDR 
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Fig. 15.6.  Multiple regression results for Mogan Lake    
                                                                    
where  chl-a is the chlorophyll-a concentration, mg/l; alk is the alkalinity, mg/l as 
CaCO3; EC is the electrical conductivity, mho; DO is the dissolved oxygen 
concentration, mg/l; NO3 is the nitrate concentration, mg/l; PO4 is the phosphate 
concentration, mg/l; Secchi is  the Secchi depth, m ; SS is  the suspended solids  
concentration ,mg/l and Temp is the water temperature, degree Celcius,   NH3 is the 
ammonia concentration, mg/l and Turb is the turbidity, NTU. 

15.5
Conclusions and Recommendations

15.5.1                                                                                                      
Conclusions 

Performances of artificial neural network models:  
Assessment of the performances of the developed artificial neural network models 
was made possible with the help of a group of regression plots (Figures 15.2, 15.3 
and 15.4).  The linear regression coefficients were 0.75, 0.95 and 0.92 for Keban 
Dam Reservoir, Mogan Lake and Eymir Lake respectively.  The better results for 
Mogan and Eymir Lakes as compared to KDR were attributed to their relatively 
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much smaller size and homogenous characteristics. However, an R-value such as 
0.75 for a very large water body with high temporal and spatial variability can still 
be assumed as reasonably acceptable.    

Performances of multiple regression models:
Similar to artificial neural network models, assessment of the performances of the 
developed multiple regression models were made possible with the help of a group 
of regression plots (Figures 15.5, 15.6 and 15.7). The linear regression coefficients 
were 0.55, 0.88 and 0.69 for Keban Dam Reservoir, Mogan Lake and Eymir Lake 
respectively. Again, R-values of regression plots were relatively higher for Mogan 
and Eymir Lakes as compared to R-value for KDR. However, R-value of multiple 
regression plot was significantly lower than R-value of artificial neural network plot 
for each water body.  

Comparisons of the Performances of Artificial Neural Networks and multiple 
regression models: 
Examination and comparison of the figures (with the calculated R-values) related to 
the regression plots and for neural network model results gives an obvious 
impression on the superiority of neural network model for KDR, Mogan Lake and 
Eymir Lake. So it was concluded that the neural network model seemed to predict 
chlorophyll-a with a better performance than that of the selected multiple regression 
models for the examined water bodies of entirely different character.  

As a concluding remark it can be stated that, there is a potential in artificial 
neural network approach to be used as a modelling tool to estimate major 
parameters of eutrophication (i.e. chlorophyll-a) because of its inherent property of 
being able to be trained for very complex and non-linear systems. Neural network 
can be trained to recognize the environment to predict the system’s response to the 
conditions of the environment even in highly variable water bodies with respect to 
location and time.  

15.5.2                                                                                           
Recommendations  

Since this study had the main intentions of getting initial information related to i) 
the performances of artificial neural networks in estimating chlorophyll-a 
concentrations in different water bodies and ii) comparing the performances of 
artificial neural networks with that of simple regression methods, sophisticated 
statistical evaluation methods were not planned to be employed as comparison tools 
at the beginning. However, it is recommended to apply such tools in future to 
strengthen the conclusions derived from this particular study. It is further suggested 
that the performance of artificial neural networks should be tested utilizing the 
relevant data obtained from several other water bodies.  
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Chapter 16 

Artificial Neural Network Approach to 
Unravel and Forecast Algal Population 
Dynamics of Two Lakes Different in 
Morphometry and Eutrophication
F. Recknagel · A. Welk · B. Kim · N. Takamura

16.1
Introduction

Limnological time-series of the unstratified shallow, eutrophic Lake Kasumigaura 
(Japan) and the stratified deep, mesotrophic Lake Soyang (Korea) were used for a 
comparative study of phytoplankton population dynamics by super- and non-
supervised artificial neural networks (ANN).  
    Water quality data of Lake Kasumigaura from 1984 to 1993 revealed lasting 
hypertrophic conditions over the study period with mean total phosphorus 
concentrations of 118 µg/l and recurrent blue-green algal blooms in summer 
(Takamura et al. 1992).  By contrast water quality data of Lake Soyang from 1988 
to 2000 indicated a mean total phosphorus concentration of 16 µg/l with a 
temporary shift from mesotrophic to eutrophic conditions in the late 1980s and a 
consolidated mesotrophic state since the late 1990s in response to varying 
intensities of fish farming (Kim 2002). The change from mesotrophic to eutrophic 
conditions was  accompanied with the changing dominance from dinoflagellates to 
blue-green algae during late summer blooms which were triggered by high 
nutrient loadings during the monsoon season (Heo and Kim 1997; Kim et al. 2000; 
Kim 2002). Both lakes experience similar temperate climate with monsoonal rain 
in mid-summer. Using real lake data the present research aimed at: (1) forecasting 
seasonal succession of blue green algae and diatom populations in both lakes and 
determination of the populations’ sensitivities against physical and chemical lake 
properties by means of recurrent supervised ANN; (2) analysing complex 
interactions between algal populations and seasons, pH and nutrient conditions, 
underwater light and temperature conditions by means of non-supervised ANN. 
Results from the sensitivity analysis by supervised ANN were brought into a 
context with data ordination and clustering by non-supervised ANN in order to 
test hypotheses on complex interactions of algal populations with environmental 
conditions as postulated by Reynolds (1984).  
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    Ecological time-series data of lakes have previously been ordinated and clustered 
by conventional multivariate statistics (e.g. Varis et al. 1989; Varis 1991; Van 
Tongeren et al. 1992) but failed to cope with multiple non-linear nature of data. By 
contrast data ordination and clustering by non-supervised ANN (Kohonen 1989; 
Kohonen 1995) proves to be applicable to highly complex and non-linear data 
including limnological time-series ( e.g. Chon et al. 1996; Recknagel  et al. 2004).  
    The results show that recurrent supervised ANN allow 7-days-ahead forecasts 
of seasonal succession and abundances of blue-green algae and diatoms in quite 
distinctive lakes with reasonable accuracy. The sensitivity curves from supervised 
ANN complemented well the ordination and clustering of the two algal 
populations regarding their temperature, nitrogen, phosphorus preferences as well 
as pH tolerances by means of non-supervised ANN. These results revealed from 
data corresponded well with related hypotheses postulated by Reynolds (1984). 
The pattern analysis of periods with distinctively different water quality conditions 
of the two lakes by non-supervised ANN has discovered behaviours of phyto- and 
zooplankton likely in response to according management efforts. 

16.2
Materials and Methods 

16.2.1                                                                                                      
Study Sites and Data 

Lake Kasumigaura is situated in the southeastern part of Japan and receives flow 
from 56 rivers and streams. Its catchment area of 2135 km2 consists of paddy areas 
but is largely urbanised and industrialised. The lake was turned from a brackish 
into a freshwater lake 5 years after a floodgate to the Pacific Ocean was 
implemented in 1963.  

Tab. 16.1. General characteristics of Lake Kasumigaura and Lake Soyang 

     Lake Soyang is situated in the northeastern part of South Korea and fed by the 
Soyang River contributing 90% of the inflowing water. Nutrient loadings to Lake 
Soyang are predominantly caused by non-point sources from paddy and forest 
areas, and temporarily by in-lake fish farming using net cages.  

Lake Kasumigaura Lake Soyang 
Surface area km2 219.9 45  
Maximum volume km3 662 2900  
Maximum depth m 7 110  
Mean depth m 3.9 42  
Water residence time years 0.55 0.7  
Catchment area km2 1597 2675  
Circulation Type non-stratified warm monomictic 
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    Tab. 16.1 summarises characteristics of the two lakes. Tab. 16.2 provides 
details of the limnological databases of the two lakes. 
    Data of Lake Kasumigaura were collected with a column sampler of 2m at the 
centre of the Takahamairi Bay. Data of Lake Soyang were collected in meter steps 
at the central station and averaged over the upper 10 m for the present study. As 
the measurement intervals of the raw data from both lakes were highly irregular 
and sampling dates different for physical, chemical and biological data the data 
was interpolated to create consistent daily values as required for the development 
of ANN models. 

Tab. 16.2. Limnological properties reflected by the databases of Lake 
Kasumigaura and Lake Soyang  

16.2.2                                                                                                        
Methods 

A recurrent supervised ANN (Fig. 16.1) was applied to predict 7-days-ahead 
seasonal succession of Microcystis and Cyclotella for Lake Kasumigaura, and of 
Anabaena and Asterionella for Lake Soyang. Recurrent supervised ANN were 
introduced by Pineda (1987) mimicking the principles of deterministic modelling 
by ordinary differential equations. They consider both, current external inputs as 
well as feedback inputs of copied neuron weights at time t-1 in order to determine 

 Lake Kasumigaura       
(1984 – 1993) 

Lake Soyang             
(1988 – 2000) 

Limnological Variables Mean / Min / Max Mean / Min / Max 
PO4 µg/l 14.44 / 1 / 235 3.4 / 0.15 / 20 
NO3 mg/l 0.52 / 0.001/ 2.38 1.02 / 0.3 / 2.2 
Si mg/l 3.66 / 0.015 / 12.49  
Chl-a µg/l 73.05 / 0.69 / 279.5 3.7 / 0.4 / 45.1 
DO mg/l 10.23 / 4.88 / 18.21 9.36 / 5.3 / 13.1 
Turb. NTU  1.36 / 0.5 / 10.35 
Secchi Depth m 0.87 / 0.28 / 3.8 4.12 / 0.7 / 10 
pH 8.75 / 7.12 / 10.13 7.3 / 6.2 / 9.1 
Water Temperature  C 16.48 / 2.1 / 32 15.2 / 4.6 / 29.5 
Phytoplankton cells/ml: 
Anabaena 
Oscillatoria
Microcystis
Cyclotella 
Asterionella

6008 / 1 / 112112 
20160 / 1 / 502302 
38563 / 1 / 644117 

5160 / 1 / 75420 

465 / 1 / 17000 

162 / 1 / 9130 

670 / 1 / 20600 
Zooplankton ind./l:  
Cladocera 
Copepoda 
Rotifera 

170 / 1/ 2446 
156 / 1 / 640 
229/ 1 /2542 

4 / 1 / 56 
7 / 1 / 80 

32 / 1 / 47 
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current weights of neurons at time t. They prove to be very efficient for time series 
modelling (e.g. Walter et al. 2001; Jeong, Recknagel and Joo 2003). 

Fig. 16.1. Structure of the recurrent supervised ANN 

    For Lake Kasumigaura the ANN were trained with daily input values for PO4,
NO3, Si, Secchi depth, pH and water temperature and daily output values for 
Microcystis and Cyclotella of the years 1984 to 1985 and 1987 to 1993. The 
prediction results for 1986 were validated with independent daily input and output 
values not used for ANN training, and assessed by the mean square errors (MSE). 
A comprehensive sensitivity analysis was conducted by means of the recurrent 
supervised ANN to discover relationships between the input variables and the 
Microcystis and Cyclotella populations.
    For Lake Soyang we trained the ANN with daily input values for PO4, NO3,
Secchi depth, turbidity, pH and water temperature and daily output values for 
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Anabaena and Asterionella of the years 1990 to 1992 and 1994 to 2000. The 
prediction results for 1997 were validated with independent daily input and output 
values not used for ANN training, and assessed by the r2 values of the linear  

Fig. 16.2. Structure of the non-supervised ANN 

Fig. 16.3. Ordination and clustering of seasons of the year of Lake Kasumigaura 
by means of non-supervised ANN represented as distance matrix map (a) and 
partitioned map (b) 

equation without intercept. A comprehensive sensitivity analysis was conducted 
by means of the recurrent supervised ANN to discover relationships between the 
input variables and the Anabaena and Asterionella populations.
    A non-supervised ANN as introduced by Kohonen (1989) was applied 
according to  Kohonen (1995) to ordinate, cluster and map water quality and 
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phytoplankton data of both lakes with respect to seasons and ranges of nutrients, 
pH and water temperature conditions (see Fig. 16.2).  
    As a result of the training of the non-supervised ANN by means of the 
normalised input data the Euclidian distance between the inputs is calculated and 
visualised as a distance matrix (U-matrix) and a partition map (K-means). Whilst 
dissimilar input patterns map onto different regions of the input space, similar 
patterns are clustered to groups.  
    The Fig. 16.3 shows the clustering and mapping of the seasons of the year for 
Lake Kasumigaura. Tab. 16.3 summarises the criteria  for ordination and 
clustering of time-series data of Lake Kasumigaura and Lake Soyang by means of 
the non-supervised ANN. 

Tab.16.3. Classification criteria for ordination and clustering of time-series data 
of lake Kasumigaura and Lake Soyang by non-supervised ANN 

16.3
Results

16.3.1                                                                                         
Forecasting Seasonal Algal Abundances and Succession 

The recurrent supervised ANN (Fig. 16.1) were specifically designed and trained 
for the two lakes in order to forecast abundances of representative blue-green 
algae and diatom populations for 7-days-ahead.   The Fig. 16.4 shows forecasting 
results for Microcystis (Fig. 16.4, top, left) and Cyclotella (Fig. 16.4, bottom, left) 
of the testing year 1986 of Lake Kasumigaura. Whilst the predicted timing and 
magnitude of the summer peak of Microcystis corresponded well with the 
measured data (r2 = 0.9), the predicted timing of the spring peak of Cyclotella was 
3 weeks too early with the same magnitude as observed and a r2 = 0.4. The ANN 
also forecasted slight summer and autumn peaks of Cyclotella even though only a 
similar autumn peak was observed in 1986.   

Classification Criteria Lake Kasumigaura Lake Soyang 
Seasons: 
Spring 
Early Summer 
Late Summer 
Autumn 
Winter 

15th March to 30th May 
1st June to 30th July 
1st August to 30th September 
1st October to 30th November 
1st December to 14th March 

15th March to 30th May 
1st June to 30th July 
1st August to 30th September 
1st October to 30th November 
1st December to 14th March 

Water Quality Ranges: 
PO4-P 
NO3-N 
pH 
Secchi Depth 
Water Temperature 

< 5; 5>= and < 25; > 25 
< 0.5; 0.5>= and < 1; >= 1 
<7.5; 7.5<= and < 8.5; >= 8.5 
<0.75; 0.75<= and < 1.5; >=1.5 
< 15; 15>= and < 20; >= 20 

< 5; 5>= and < 25; > 25 
< 1; 1>= and < 1.5; >= 1.5 
<7; 7<= and < 8.5; >= 8.5 
<0.75; 0.75<= and < 1.5; >=1.5 
< 15; 15>= and < 20; >= 20 
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     The forecasting results of the summer peak of Anabaena (Fig. 16.4, top, right) 
for Lake Soyang was reasonable regarding both magnitude and timing with a r2 = 
0.6. However the predicted timings of two spring peaks of Asterionella (Fig. 16.4, 
bottom, right) for Lake Soyang were several weeks too early resulting in a r2 = 
0.3. 

Fig. 16.4. 7-days-ahead forecasting of Microcystis and Cyclotella for Lake 
Kasumigaura in 1986 (left column), and of Anabaena and Asterionella for Lake 
Soyang in 1997 (right column) 

16.3.2                                                                                                          
Relationships between Algal Abundances and Water Quality 
Conditions 

Sensitivity analyses by means of the recurrent supervised ANN (Fig. 16.1) as well 
as ordination and clustering by means of non-supervised ANN (Fig. 16.2) were 
carried out based on data from 1984 to 1993 of Lake Kasumigaura and data from 
1988 to 2000 of Lake Soyang in order to study complex relationships between 
blue-green algae and diatom populations, and water quality conditions (see Tab. 
16.3).  The Fig. 16.5 illustrates relationships between water temperature and 
Microcystis and Cyclotella in Lake Kasumigaura, and Fig. 16.6 between water 
temperature and Anabaena and Asterionella in Lake Soyang. These figures clearly 
show that in both lakes blue-green algae  Microcystis and Anabaena reach their 
highest abundances at temperatures higher than 20  C but diatoms Cyclotella and 
Asterionella at temperatures below 16  C. In Figs. 16.7 and 16.8 relationships 
between pH and: (1) Microcystis and Cyclotella in Lake Kasumigaura, and (2) 
Anabaena and Asterionella in Lake Soyang are represented. Even though the pH 
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ranges (Tab. 16.2) indicate distinctive alkaline conditions of Lake Kasumigaura 
but neutral to alkaline conditions of lake Soyang,  

Fig. 16.5. Clustering of Microcystis and Cyclotella abundances regarding 
temperature classes in Lake Kasumigaura using non-supervised ANN (top) and 
sensitivity curves of Microcystis and Cyclotella abundances over the temperature 
range of Lake Kasumigaura using supervised ANN (bottom)  

Fig. 16.6. Clustering of Anabaena and Asterionella abundances regarding 
temperature classes in Lake Soyang using non-supervised ANN (top) and 
sensitivity curves of Anabaena and Asterionella abundances over the temperature 
range of Lake Soyang using supervised ANN (bottom) 
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Fig. 16.7. Clustering of Microcystis and Cyclotella abundances regarding pH 
classes in Lake Kasumigaura using non-supervised ANN (top) and sensitivity 
curves of Microcystis and Cyclotella abundances over the pH range of Lake 
Kasumigaura using supervised ANN (bottom) 

Fig. 16.8. Clustering of Anabaena and Asterionella abundances regarding pH 
classes in Lake Soyang using non-supervised ANN (top) and sensitivity curves of 
Anabaena and Asterionella abundances over the pH range of Lake Soyang using 
supervised ANN (bottom) 
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Fig. 16.9. Clustering of Microcystis and Cyclotella abundances regarding NO3-N
classes in Lake Kasumigaura using non-supervised ANN (top) and sensitivity 
curves of Microcystis and Cyclotella abundances over the NO3-N range of Lake 
Kasumigaura using supervised ANN (bottom). 

Fig. 16.10. Clustering of Anabaena and Asterionella abundances regarding NO3-
N classes in Lake Soyang using non-supervised ANN (top) and sensitivity curves 
of Anabaena and Asterionella abundances over the NO3-N range of Lake Soyang 
using supervised ANN (bottom) 
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Fig. 16.11. Clustering of Microcystis and Cyclotella abundances regarding PO4-P
classes in Lake Kasumigaura using non-supervised ANN (top) and sensitivity 
curves of Microcystis and Cyclotella abundances over the PO4-P range of Lake 
Kasumigaura using supervised ANN (bottom)    

Fig. 16.12. Clustering of Anabaena and Asterionella abundances regarding PO4-
P classes in Lake Soyang using non-supervised ANN (top) and sensitivity curves 
of Anabaena and Asterionella abundances over the PO4-P range of Lake Soyang 
using supervised ANN (bottom) 
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the results in Figs. 16.7 and 16.8 demonstrate the coincidence of high abundances 
of blue green algae and high pH values of 8 to 9 in Lake Kasumigaura and 7 to 8.5 
in Lake Soyang. By contrast the diatom Cyclotella in Lake Kasumigaura  peaks at 
pH of 9 to 9.3 whilst the diatom Asterionella in Lake Soyang seems to occur at 
neutral to slightly acidic conditions. The Figs. 16.9 and 16.10 reflect preferences 
of diatoms to higher concentrations of NO3-N in both lakes but tolerance of blue-
green algae to relatively low concentrations of NO3-N. The relationships of algal 
groups to PO4-P concentrations show the opposite trend compared to NO3-N for 
both lakes. The diatoms Cyclotella in Lake Kasumigaura (Fig. 16.11) and 
Asterionella in Lake Soyang (Fig. 16.12) reach highest abundances at relative low 
PO4-P concentrations. However the blue-green algae Microcystis in Lake 
Kasumigaura (Fig. 16.11) and Anabaena in Lake Soyang (Fig. 16.12) show a 
distinct preference for highest PO4-P concentrations. 

16.3.3                                                                                                    
Relationships between Algal Abundances, Seasons and Water 
Quality Changes 

Ordination and clustering by means of non-supervised ANN (Fig. 16.2) were 
carried out based on data from 1984 to 1986 and from 1987 to 1989 of Lake 
Kasumigaura, and data from 1992 to 1993 and 1998 to 1999 of Lake Soyang in 
order to study complex relationships between functional algal groups, annual 
seasons (see Tab. 16.3) and water quality changes. The period from 1984 to 1986 
of Lake Kasumigaura was selected to reflect conditions of relative PO4-P
sufficiency but NO3-N deficiency, and 1987 to 1989 because of relative NO3-N
sufficiency but PO4-P deficiency.  The period from 1992 to 1993 of Lake Soyang 
was selected to reflect conditions of relative PO4-P sufficiency but NO3-N 
deficiency as a result of intensive fish farming, and 1998 to 1999 because of 
relative NO3-N sufficiency but PO4-P deficiency as a result of terminated fish 
farming.  
    The Fig. 16.13 shows the seasonal abundance clusters of the green algae 
Scenedesmus and the diatom Cyclotella for two periods with distinctive nutrient 
conditions in Lake Kasumigaura. The results suggest that both algae experience  a 
shift of their predominant occurrence from spring in the period 1984 to 1986 to 
winter in period 1987 to 1989 with two times higher abundances in the second 
period. The Fig. 16.14 shows patterns of two blue-green algae where the highest 
abundance of Microcystis shifts from late summer to autumn and declines by 50% 
between periods 1 and 2. A different trend can be observed in Fig. 16.14 for 
Oscillatoria  that shifts its dominance from spring in period 1 to late summer in 
period 2 by tripling its abundance.    
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Fig. 16.13.  Seasonal abundance clusters of the Scenedesmus and Cyclotella for 
two periods 1984 to 1986 and 1987 to 1989 with distinctive nutrient conditions in 
Lake Kasumigaura  

Fig. 16.14. Seasonal abundance clusters of the Microcystis and Oscillatoria for 
two periods 1984 to 1986 and 1987 to 1989 with distinctive nutrient conditions in 
Lake Kasumigaura 
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Fig. 16.15.  Seasonal abundance clusters of cladocera and copepoda for two 
periods 1984 to 1986 and 1987 to 1989 with distinctive nutrient conditions in 
Lake Kasumigaura 

Fig. 16.16.  Seasonal clusters of NO3-N and PO4-P concentrations for two 
periods 1984 to 1986 and 1987 to 1989 with distinctive nutrient conditions in 
Lake Kasumigaura 
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Fig. 16.17.  Seasonal abundance clusters of Anabaena and Asterionella for two 
periods 1992 to 1993 and 1998 to 1999 with distinctive management conditions in 
Lake Soyang 

Fig. 16.18.  Seasonal clusters of NO3-N and PO4-P concentrations for two 
periods 1992 to 1993 and 1998 to 1999 with distinctive management conditions in 
Lake Soyang
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The Fig. 16.15 shows that abundances of both cladocera and copepoda for the two 
periods of Lake Kasumigaura are highest in early and late summer and partially in 
autumn with slightly increased numbers in period 2. The seasonal patterns of 
nutrient concentrations in Lake Kasumigaura in Fig. 16.16 show a 30% increase of 
NO3-N from period 1 to 2 but at the same time a 30% decrease of PO4-P. While 
NO3-N peaks in winter in period 1 it peaks in spring and early summer in period 2. 
By contrast PO4-P peaks in early and late summer in period 1 but peaks in winter 
in period 2. 
    The Fig. 16.17 shows seasonal abundance patterns of Anabaena and 
Asterionella during and after intensive fish farming in Lake Soyang. It indicates 
that the abundance of Anabaena peaked in early and late summer during fish 
farming but only in late summer and decreased by 50% after fish farming. By 
contrast Asterionella became most abundant in autumn during fish farming but 
peaked with in spring after fish farming at tenfold higher abundance.   
    The seasonal patterns of NO3-N and PO4-P were also visualised for the two 
different periods of management of lake Soyang in Fig. 16.18.  The results 
demonstrate that NO3-N concentrations were highest in winter and spring during 
fish farming but shifted to spring and early summer with 30% increased maxima. 
However highest PO4-P concentrations occurred in winter and early summer 
during fish farming but only in winter at 30% lower magnitude after fish farming. 

16.4
Discussion 

16.4.1                                                                                                      
Forecasting Seasonal Algal Abundances and Succession 

The results in Fig. 16.4 have demonstrated that recurrent supervised ANN have 
the capacity for forecasting outbreaks and seasonal succession of different algal 
populations in distinctive lakes for one-week-ahead. Blue-green algae Microcystis
which were observed to peak at 650,000 cells/ml in mid August 1986 in the 
shallow hypertrophic Lake Kasumigaura were forecasted to peak at 550,000 
cells/ml in late August, and Anabaena which were observed to peak at 5,000 
cells/ml in late August 1997 in the deep mesotrophic Lake Soyang were forecasted 
to peak at 6,000 cells/ml in early September. Diatoms Cyclotella that were 
observed to peak at 55,000 cells/ml in mid April 1986 in Lake Kasumigaura were 
forecasted to peak at 60,000 cells/ml in mid March, and Asterionella that were 
observed to peak at 4,000 cells/ml in mid May 1997 in Lake Soyang were 
forecasted to peak at 6,000 cells/ml in late April. The predicted timing was 
slightly delayed for outbreaks of the blue-green algal populations in the two lakes, 
but was up to 4 weeks earlier for the diatom populations.  
    Overall the results are encouraging towards the development of early warning 
systems for blue-green algal blooms based on real time forecasting by supervised 
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ANN.  Such a system has been successfully tested for forecasting chlorophyll-a of 
a coastal bay (Lee, Fernando and Wong 2004) by means of on-line electronically 
measurable variables such as water temperature, dissolved oxygen, solar radiation.     

16.4.2                                                                                              
Relationships between Algal Abundances, Seasons and Water 
Quality Changes 

The results in Figs. 16.5 to 16.12 have shown that ordination and clustering by 
non-supervised ANN and sensitivity analyses by supervised ANN can be 
integrated  to a powerful tool for analysing complex ecological relationships in 
data. It has revealed from data that blue-green algae and diatoms have distinctive 
relationships with water temperature, pH, NO3-N- and PO4-P- concentrations 
despite differences in the trophic state and morphometry of a lake.  For both lakes 
clusters of the automatically mapped blue-green algae abundances corresponded 
well with the sensitivity curves indicating fastest growth at water temperatures 
higher then 20  C. By contrast clusters of the automatically mapped diatom 
abundances corresponded well with the sensitivity curves indicating fastest growth 
at water temperatures below 15  C namely between 9 and 12  C. These results 
comply with the temperature preferences postulated for specific algal assemblages 
(e.g. Reynolds 1984; Shapiro 1990), and discovered for Microcystis and 
Stephanodiscus in River Nakdong by Jeong, Recknagel and Joo (2003).  
    With regards to pH Microcystis in Lake Kasumigaura was mapped in the range 
between 8 and 9, and mapped together with Anabaena in Lake Soyang in the 
range between 7 to 8.5. As the pH of freshwater is determined by its CO2 budget 
(Stumm and Morgan 1970) alkaline conditions are likely for a hypertrophic lake 
such as Kasumigaura as the availability of dissolved CO2 can be seasonally 
limited when the primary productivity is highest (Schindler 1971). This may 
explain the slight upward shift of the pH range at which blue green algae 
predominately occur in Lake Kasumigaura compared to Lake Soyang. However 
the Figs. 16.7 and 16.8 clearly show that high abundances of blue-green algae in 
both lakes coincide with distinct alkaline conditions. Relationships between 
diatoms and pH revealed by Figs. 16.7 and 16.8 show that high abundances of 
Cyclotella in Lake Kasumigaura coincide with extreme high pH values greater 
than 9, whilst Asterionella in Lake Soyang seems to be most abundant at neutral 
pH.   
    Talling (1976) concluded from a series of experiments that both diatoms and 
blue-green algae appear to be photosynthesis tolerant regarding high pH and low 
CO2 concentrations. Shapiro (1984) postulated that blue-green algae are 
physiologically adapted to cope well with low CO2 concentrations and out-
compete eukaryotic algae at high pH. Reynolds (1984) confirmed these findings 
for Microcystis aeruginosa and Anabaena flos-aquae. By virtue of the present 
results and the literature findings it can be concluded that Microcystis and 
Anabaena behave very much like K-selected species as they are specialised for 
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distinct environmental conditions such as higher water temperature and pH 
whereby Cyclotella and Asterionella tolerate a much broader range of conditions 
typical for r-selected species. As postulated by Reynolds (1984) the differentiation 
between K- and r-selected algal species relies very much on their capability to 
cope with sinking and grazing losses. Both Microcystis and Anabaena are 
considered K-selected as they minimise sinking losses by regulating their 
buoyancy and avoid grazing losses by forming large cell colonies or filaments as 
well as contain toxic substances (Reynolds 1984). By contrast Cyclotella and 
Asterionella are considered r-selected by having relatively high sinking losses 
because of their dense silica cell walls and being largely exposed to grazing 
(Reynolds 1984).   
   The elucidation of relationships between algal populations and nutrient 
conditions in lakes with different trophic states was another aim of the current 
study. With regards to NO3-N concentrations clusters in Figs. 16.9 and 16.10 gave 
evidence that Microcystis and Anabaena reached highest abundances in both lakes 
when NO3-N was lowest in concentration. On the other hand highest abundances 
of Cyclotella in Lake Kasumigaura and Asterionella in Lake Soyang were 
clustered at medium concentrations of NO3-N. These findings were supported by 
corresponding sensitivity curves showing for both lakes that blue green algae 
peaked at low NO3-N concentrations e.g. 0.4 mg/l in Lake Kasumigaura and 0.9 
mg/l in Lake Soyang but diatoms peaked at higher NO3-N concentrations e.g. 0.8 
mg/l in Lake Kasumigaura and 1.3 mg/l  in Lake Soyang. There are two possible 
explanations for these results: (1) blue-green algae diminish NO3-N concentrations 
significantly by high NO3-N uptake during maximum growth and diatoms are 
competitively excluded because of  both non-favouring NO3-N levels and water 
temperatures at that times, and (2) some blue-green algae out-compete diatoms at 
times of lowest NO3-N concentrations by assimilating dissolved atmospheric 
nitrogen N2 through heterocysts (Fay et al. 1968) as being clearly demonstrated 
for Anabaena but not yet for Microcystis (Reynolds 1984). The hypothesis (1) 
may explain best the results in Fig. 16.9 for Lake Kasumigaura whilst hypothesis 
(2) is more likely to reflect conditions in lake Soyang where summery 
stratification further accelerates sinking losses of diatoms. Opposite trends were 
revealed in the two non-P-limited lakes for relationships between blue-green 
algae, diatoms and PO4-P in Figs. 16.11 and 16.12. Both Microcystis and 
Anabaena showed affinity to highest PO4-P concentrations which read in Lake 
Kasumigaura 25 to 40 g/l and in Lake Soyang 4 to 5 g/l but Cyclotella and 
Asterionella became most abundant at low PO4-P concentrations of 2.5 to 5 g/l. 
The results for Microcystis and Anabaena correspond well with their intolerances 
of low PO4-P concentrations postulated by Reynolds (1984). It was found by 
Mackereth (1953) that Asterionella cells have a phosphorus storage capacity 
equivalent to 24 times the absolute cell minimum that may explain Asterionella’s 
and Cyclotella’s tolerance to low PO4-P concentrations as observed in this study.  
Although most findings of this research correspond well with current knowledge 
on algal specific relationships with pH and nutrient conditions it must be pointed 
out that these relationships are distinctively bi-directional as e.g. algal metabolism 
in turn changes nutrient and CO2 budgets as well. Therefore patterns of 
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relationships between physical, chemical and biological properties of ecosystems 
automatically mapped from historical data by non-supervised ANN may reflect 
not necessarily the cause but the result of such relationships.  
    The results in Figs. 16.13 to 16.18 have demonstrated that ordination and 
clustering by non-supervised ANN can reveal seasonal and long-term patterns for 
ecological relationships in lakes.  
    The data for Lake Kasumigaura were seasonally ordinated and clustered for 
both the period 1 from 1984 to 1986 and the period 2 from 1987 to 1989 between 
which a significant increase of the TN (total nitrogen)/TP (total phosphorus) ratio 
from 10 to approximately 20 had been observed (Takamura et al. 1992). The 
resulting patterns revealed that Cyclotella peaked during winter in period 1 and 
with two times higher magnitude during spring in period 2. The shift of highest 
abundance of Cyclotella from winter to spring and period 1 to 2 seems to be 
determined by higher NO3-N concentrations in period 2 and its know preference 
of NO3-N sufficiency discussed above for findings in Fig. 16.9. The green algae 
Scenedesmus appeared to be most dominant in spring and early summer in both 
periods with a 30% increased abundance in period 2. Microcystis clearly 
dominated in late summer in period 1 but shifted its dominance to autumn in 
period 2 with a 60% decrease in abundance. By contrast Oscillatoria shifted its 
dominance from early summer in period 1 to late summer in period 2 by more 
than doubling its maximum abundance. Results in Fig. 16.14 show competitive 
seasonal exclusion between Microcystis and Oscillatoria  for both periods with a 
distinct PO4-P limitation of Microcystis in autumn of period 2 (see Fig. 16.16) 
caused by high growth and PO4-P consumption of Oscillatoria in late summer. 
While cladocera tended to have highest abundances in late summer of both 
periods, copepoda peaked at the transition from late summer to autumn. As in both 
periods high cladocera abundance coincided with abundant Microcystis there 
seems to be an indication for feeding of decaying Microcycstis cells by cladocera 
as observed in Lake Kasumigaura by Hanazato and Yasuno (1987) and Hanazato 
(1991). Results in Fig. 16.15 show also seasonal exclusion by predation of 
cladocera by copepoda for both periods.  
    The data for Lake Soyang were seasonally ordinated and clustered for both the 
period 1 from 1992 to 1993 with intensive fish farming and the period 2 from 
1998 to 1999 with no fish farming. These periods were chosen as stopping fish 
farming  in period 2 eased eutrophication of the lake by approximately 30% lower 
PO4-P concentration  (Kim et al. 2000).  The seasonal clusters in Fig. 16.17 
indicate a distinct response behaviour of blue-green algae and diatoms to the 
changed management between period 1 and 2. The abundance of Anabaena peaks 
in period 2 only in late summer at a 50% lower maximum but occurs in early 
summer at insignificant level only. One possible reason for this seasonal shift and 
reduced abundance of Anabaena can be found in Fig. 16.18 indicating that high 
PO4-P concentrations in summer were typical for period 1 providing PO4-P 
sufficiency as required by blue-green algae but occurred in winter only at 30% 
lower concentrations in period 2. On the other hand there is a shift in the 
dominance of Asterionella from autumn in period 1 to spring in period 2 with a 
ten times increaseed abundance (Fig. 16.17, bottom). Distinct spring blooms of 
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Asterionella in period 2 may have been triggered by a combination of the slightly 
increased NO3-N concentrations in spring as a result of no fish farming, and its 
known PO4-P storage capacity (Mackereth 1953) charged during the wintrily PO4-
P enrichment of the lake.  

16.5
Conclusions 

The current study has demonstrated that complex limnological time-series data 
can beneficially be processed by ANN in order to provide: (1) one-week-ahead 
forecasting of outbreaks of harmful algae or water quality changes by recurrent 
supervised ANN, and (2) clusters to unravel ecological relationships regarding 
seasons, water quality ranges and long-term environmental changes by non-
supervised ANN. It has also been shown that these methods provide a useful 
framework for comparative studies between largely different lakes. Future work 
will focus on the integration of super- and non-supervised ANN into a 
representative lake data warehouse archiving long-term time-series of a broad 
range of lakes and rivers reflecting diverse climate, morphometric and eutrophic 
conditions. It will further facilitate “basic research on complex interactions (that) 
will lead to explanations for the variability and unpredictability that presently 
hamper lake management efforts…” 
Carpenter (1988). 
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Chapter 17 

* Please find Demo Version of the Hybrid Evolutionary Algorithm on CD enclosed in the book.

Hybrid Evolutionary Algorithm* for Rule 
Set Discovery in Time-Series Data to 
Forecast and Explain Algal Population 
Dynamics in Two Lakes Different in 
Morphometry and Eutrophication
H. Cao · F. Recknagel · B. Kim · N. Takamura

17.1                                                                                                   
Introduction 

It has been demonstrated that ecological time series, which are highly complex 
and nonlinear can be successfully unraveled and predicted by artificial neural 
networks (ANN) and genetic algorithms (e.g. Recknagel et al. 1997; Recknagel 
1997; Recknagel et al. 1998; Maier et al. 1998; Jeong et al. 2001; Whigham and 
Recknagel 2001; Wilson and Recknagel 2003; Stockwell 1999; Recknagel et al. 
2002; Jeong et al. 2003; Lee, Fernando and Wong 2004). Even though ANN are 
very competitive in classifying or predicting noisy data by minimizing the root 
mean square error of approximations they lack an explicit representation. By 
contrast, Whigham and Recknagel (2001) proposed grammar based genetic 
programming to evolve functions and rules, and Bobbin and Recknagel (2003) 
applied an evolutionary algorithm to discover predictive rules for population 
dynamics in limnological data. Even though both approaches allowed to discover 
predictive rules for ecological relationships they had following limitations: (1) the 
rules were relatively simple with attributes being associated only with constant 
parameters rather than functions to reflect complex relationship between multiple 
attributes, and (2) the parameters which determine the output values on the rules 
were generated randomly rather than being simultaneously optimised during the 
evolution. Whigham and Recknagel (2001) performed the hill climbing mutation 
for the fine-tuning of the random real numbers and Bobbin and Recknagel (2003) 
adopted a self-adapting evolutionary algorithm to modify these parameters. 
However both methods fail when the number of parameters increases with the 
complexity of the rule.  
    This research aims at rule-based prediction and explanation of population 
dynamics of diatom and blue-green algae species in the two different lakes 
Kasumigaura and Soyang by means of a hybrid evolutionary algorithm (HEA).  
HEA evolves the structure of the rule set by using genetic programming, and 
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optimises the random parameters in the rule set by using a general genetic 
algorithm. Rules discovered by HEA have the IF-THEN-ELSE structure and 
allow imbedding complex functions synthesised from various predefined 
arithmetic operators. The maximum tree depth and rule set size control the 
complexity of rule sets.  
    The results demonstrate that HEA allows to discover rule sets which predict 
well unseen data and represent causal relationships between physical and chemical 
variables and algal population dynamics.    

17.2                                                                                        
Materials and Methods 

17.2.1                                                                                                      
Study Sites and Data 

Lake Kasumigaura is situated in the southeastern part of Japan and receives flow 
from 56 rivers and streams. Its catchment area of 2135 km2 consists of paddy areas 
but is largely urbanised and industrialised. The lake was turned from a brackish 
into a freshwater lake 5 years after a floodgate to the Pacific Ocean was 
implemented in 1963.  
     Lake Soyang is situated in the northeastern part of South Korea and fed by the 
Soyang River contributing 90% of the inflowing water. Nutrient loadings to Lake 
Soyang are predominantly caused by non-point sources from paddy and forest 
areas, and temporarily by in-lake fish farming using net cages. 
Tab. 17.1 summarises characteristics of the two lakes. Tab. 17.2 provides details 
of the limnological databases of the two lakes. 

Data of Lake Kasumigaura were collected with a column sampler of 2m at the 
centre of the Takahamairi Bay. Data of Lake Soyang were collected in meter steps 
at the central station and averaged over the upper 10 m for the present study. As 
the measurement intervals of the raw data from both lakes were highly irregular 
and sampling dates different for physical, chemical and biological data the data 
were interpolated to create consistent daily values as required for the development 
of rule set models. 

Tab. 17.1. General characteristics of Lake Kasumigaura and Lake Soyang 
Lake Kasumigaura Lake Soyang 

Surface area km2 219.9 45 
Maximum volume km3 662 2900 
Maximum depth m 7 110 
Mean depth m 3.9 42 
Water residence time years 0.55 0.7 
Catchment area km2 1597 2675 
Circulation type non-stratified warm monomictic 
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Tab. 17.2. Limnological properties reflected by the databases of Lake 
Kasumigaura and Lake Soyang  

Lake Kasumigaura 
(1984 – 1993) 

Lake Soyang 
(1990 – 2000)      Limnological Variables 

Mean / Min / Max Mean / Min / Max 
PO4 g/l 14.16 / 1 / 235 3.6 / 0.15 / 19.75 
NO3 mg/l 0.52 / 0.001 / 2.39 1.11 / 0.4 / 2.2 
Si mg/l 3.29 / 0.015 / 12.49  
Chla g/l 74.5 / 0.69 / 279.5 3.4 / 0.18 / 46.1 
Turbidity NTU (Turb)  1.43 / 0.4 / 10.35 
Secchi Depth m  (SD) 0.85 / 0.25 / 3.8 4.17 / 0.6 / 10 
pH 8.75 / 7.12 / 10.13 7.3 / 6.2 / 9.1 
Water Temperature oC (WT) 16.37 / 2.1 / 32 15.1 / 4.2 / 29.4 
Solar Radiation Jcm-2 day -1 1281 / 65 / 3364 420 / 54 / 2869 
Phytoplankton cells/ml 
Microcystis 
Cyclotella
Anabaena
Asterionella

38637 / 1 / 644117 
5160 / 1 / 75420 1304 / 1 / 34393 

681 / 1 / 20594 

17.2.2                                                                                                     
Hybrid Evolutionary Algorithm 

Evolutionary algorithms (EA) are adaptive methods which mimic processes of 
biological evolution, natural selection and genetic variation. They search for 
suitable representations of a problem solution by means of genetic operators and 
the principle of “survival of the fittest”. Due to their merits of self-organization, 
self-learning, intrinsic parallelism and generality, EA have been successfully 
applied to pattern recognition, economic prediction, optimum control and parallel 
processing (Goldberg 1989; Bäck et al. 1997). 

Fig. 17.1.  Conceptual diagram of HEA for the discovery of predictive rule sets 
in water quality time-series 
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     The principal framework of the rule discovery in water quality time-series by 
the suggested hybrid evolutionary algorithm (HEA) is represented in Fig. 17.1. 
The detailed algorithm for the rule discovery and parameter optimization by HEA 
is shown in Fig. 17.2.  
     HEA uses genetic programming (GP) to generate and optimize the structure of 
rule sets and a genetic algorithm (GA) to optimize the parameters of a rule set. GP 
(Koza 1992, 1994; Banzhaf et al. 1997) is an extension of genetic algorithms (GA) 
(Holland 1975; Mitchell 1996) in which the genetic population consists of 
computer programs of varying sizes and shapes. In standard GP, computer 
programs can be represented as parse trees, where a branch node represents an 
element from a function set (arithmetic operators, logic operators, elementary 
functions of at least one argument), and a leaf node represents an element from a 
terminal set (variables, constants and functions of no arguments). These symbolic 
programs are subsequently evaluated by means of “fitness cases”. Fitter programs 
are selected for recombination to create the next generation by using genetic 
operators, such as crossover and mutation. This step is iterated for consecutive 
generations until the termination criterion of the run has been satisfied. A general 
genetic algorithm (GA) is used to optimize the random parameters in the rule set. 
We give the detailed descriptions of HEA in following sections. 

Fig. 17.2. Flowchart of the hybrid evolutionary algorithm (HEA) 
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17.2.2.1                                                                                                            
Structure Optimization of Rule Sets Using GP 

Encoding 
We suppose each rule set has the form of 

                           IF (TIF1)
                           THEN y = TTHEN1
                           ELSE IF (TIF2)
                                      THEN y = TTHEN2                                                                                    
                                      
                                                    ELSE IF (TIFK)
                                                              THEN y = TTHENK

                             ELSE  y = TELSEK+1                                     (17.1) 
where K is the size of the rule set, i.e. the number of IF-branches, y is the output 
variable. Then each chromosome in the rule set population can be represented as a 
vector of binary trees denoted as (TIF1, TTHEN1, TIF2, TTHEN2, , TIFK, TTHENK,
TELSEK+1).
     By defining the following three function sets as 

                 Logic function set:  FL = {AND, OR} 
                 Comparison function set: FC = { >, <, , }

Arithmetic function set:  FA = { , , , sin, cos, exp, ln} 
The function sets of the IF_Tree (i.e. TIF1, TIF2, , TIFK} and the 
THEN/ELSE_Tree (i.e. TTHEN1, TTHEN2, , TTHENK, TELSEK+1) can be described as  

F IF = FL  FC  FA      and     F THEN/ELSE = FA
respectively. The terminal sets of the IF_Tree  and the THEN/ELSE_Tree are the 
same as 

T = {x1 , , xn , c}
where n is the number of input variables and c is a random constant. For example, 
a  rule set with the form of  

4

3 4

4

IF ((ln( PO ) 98) AND ((WT 30.8) OR (pH *SD 49.4)))
THEN WT pH *sin(Chl ) NO *PO
ELSE IF ((WT>20.5) AND (PO /SD 4))
           THEN pH *exp(WT) Chl / 4
           ELSE  = (NO

Microcystis a

Microcystis a
Microcystis 3 4-3.5)/(PO *WT+4.8)

               (17.2) 

can be represented as a vector of binary trees ((TIF1, TTHEN1, TIF2, TTHEN2, TELSE3)
illustrated in Fig. 17.3. Besides the function sets, the complexity of a rule set can 
be controlled by the predefined maximum size of a rule set (MAXK) and the 
maximum tree depth (DIF and DTHEN/ELSE for the IF_Tree and the 
THEN/ELSE_Tree respectively). 
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                       TIF1                                                        TTHEN1

              
           TIF2                                  TTHEN2                                                             TELSE3

Fig. 17.3  An example of the representation of a rule set in GP 

Fitness Evaluation 
Suppose that the ith observed data for the input variables and the output variable 
are (x1i, x2i, , xni) and yi respectively. As for each rule set with the form of (1), we 
calculate the return values (TRUE/FALSE) of TIF1, TIF2, , TIFK in sequence based 
on the observed values of input variables to find out which condition is first 
satisfied. Say the first IF_Tree to be satisfied is TIFm, we choose the corresponding 
THEN_Tree TTHENm to calculate the predicted value of yi denoted as ˆ iy . If none of 
these IF_Trees is satisfied, the only choice is to use the last tree TELSEK+1 to 
calculate ˆiy . Such procedure is performed on each data point from the training 
data. We define the RMSE (Root Mean Square Error) as the fitness function: 

Fitness = 2

1

1 ˆ( )
k

i i
i

y y
k
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where k is the number of training data points. Obviously, here the lower the fitness 
value is, the better is the rule set. 

Genetic Operators 
Since each rule set is represented as a vector of trees, there are two levels of 
crossover available, the vector-level crossover and the tree-level crossover.  
Consider two parents: 

Parent a: (TIF1
(a), TTHEN1

(a), TIF2
(a), TTHEN2

(a), , TIFKA
(a), TTHENKA

(a), TELSEKA+1
(a))

Parent b: (TIF1
(b), TTHEN1

(b), TIF2
(b), TTHEN2

(b), , TIFKB
(b), TTHENKB

(b), TELSEKB+1
(b))

where KA and KB are the sizes of the rule set a and b respectively.  
     The vector-level crossover is performed as follows. Randomly select a position 
between the pairs of IF_THEN statement within Parent a and Parent b as the 
crossover point, say j and k for a and b respectively. Then swap the corresponding 
IF-THEN-ELSE statements below the crossover points and produce two new rule 
sets. We use either of them as the crossover offspring on condition that its size 
does not exceed MAXK. Fig. 17.4 illustrates such procedure of doing vector-level 
crossover.   

Fig. 17.4.  Illustrations of vector-level crossover of rule sets 



H. Cao · F. Recknagel · B. Kim · N. Takamura 354

      The tree-level crossover is performed between the IF_Trees and the 
THEN/ELSE_Trees of two parents in sequence. First we do the IF_Tree crossover 
as follows. Randomly choose an IF_Tree from each parent and a node within the 
tree as a crossover point as well, swap the subtrees rooted at the crossover points 
and produce two new trees, then use either of them as the corresponding IF_Tree 
of the offspring on condition that its maximum depth does not exceed DIF. Fig. 
17.5 illustrates an example of tree-level IF_Tree crossover. It needs to be pointed 
out that in the IF_Tree there are three different types of function nodes which 
come from FL, FC, FA respectively, to ensure that the crossover always produces 
legal rule sets, and only the same type of nodes are selected as the crossover 
points. Afterwards the THEN/ELSE Tree crossover is similarly done as described  

Notes:
IF_Tree1 from Parent1:

4IF ((ln( PO ) 98) AND ((WT 30.8) OR (pH*SD 49.4)))
IF_Tree2 from Parent2:

4IF ((WT>20.5) AND (PO /SD 4))
Offspring IF_Tree1: 

4IF ((PO /SD 4) AND ((WT 30.8) OR (pH *SD 49.4)))
Offspring IF_Tree2:

4IF ((WT>20.5) AND (ln( PO ) 98))
Fig. 17.5.  Illustrations of tree-level IF_Tree crossover of rule sets  
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above. The only difference is that we can choose any node as the crossover point 
due to their identical arithmetic node type. Finally we select either of the parents 
and replace the IF_Tree and the THEN/ELSE_Tree chosen previously with the 
newly generated ones by the above two-step crossover.  Thus we get a complete 
crossover offspring of the two parents.   
      Similarly the tree-level mutation is performed on the IF_Tree and the 
THEN/ELSE_Tree of one parent in sequence. The tree-level mutation of IF_Tree
begins by randomly selecting an IF_Tree from the parent and also a node within 
the tree as the mutation point, replacing the subtree rooted at the mutation point 
with a randomly generated new subtree, thus producing an offspring IF_Tree. Fig. 
17.6 illustrates an example of tree-level IF_Tree mutation. Afterwards the 
mutation of the THEN/ELSE Tree is in a similar way as discussed above. Thus we 
get a complete mutation offspring of the parent by replacing the IF_Tree and the 
THEN/ELSE_Tree chosen previously with the newly generated ones by the above 
two-step mutation.  

Notes:
IF_Tree from Parent: 

4IF ((ln( PO ) 98) AND ((WT 30.8) OR (pH *SD 49.4)))
Offspring IF_Tree: 

4 3IF ((ln( PO ) 98) AND ((WT 30.8) OR (NO /SD>50.4)))
Fig. 17.6. Illustrations of tree-level IF_Tree mutation of rule sets  

Simplification of Rule Sets 
The simplification of rule sets includes the simplification of the IF_Tree and the 
THEN/ELSE Tree. We use the following consecutive steps to simplify the IF_Tree 
in each rule set: 
(1) Simplification of the arithmetic subtrees: It is done by replacing subtrees which 
consist of arithmetic operations in FA between constants by their calculated values. 
(2) Simplification of the comparison subtrees: It is done by replacing the subtrees 
which consist of comparison operations in FC between constants by their 
comparison outcome, i.e. 0 or 1 for TRUE and FALSE respectively. 
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(3) Simplification of the logic subtrees: We use Tab. 17.3 to simplify the AND 
subtrees  and OR subtrees which consist of 0 or 1 in their branch nodes. 

Tab. 17.3. The simplification of the logic subtrees 

AND OR 
0 AND 0 = 0 0 OR 0 = 0 
0 AND 1 = 0 0 OR 1 = 1 
1 AND 0 = 0 1 OR 0 = 1 
1 AND 1 = 1 1 OR 1 = 1 

0 AND subtree = 0 0 OR subtree = subtree
1 AND subtree = subtree 1 OR subtree = 1 

     We only use the above step (1) to simplify the THEN/ELSE_Tree in each rule 
set. In addition we delete the redundant pairs of IF_THEN statements from the 
original rule set by checking the number of the input data points which can satisfy 
the condition of the IF_Tree. If the number is zero, then the corresponding IF-
THEN pair is regarded as making no sense and should be deleted from the original 
rule set. The size of the rule set can thus be significantly reduced in this way.    
     The simplification of rule set is performed on all individuals in every 
generation. This procedure should be done prior to the parameter optimization 
because it is helpful to reduce the total number of parameters to optimize while 
maintaining the fitness of the rule set. 

17.2.2.2                                                                                                   
Parameter Optimization of Rule Sets Using a General Genetic 
Algorithm

As the parameters in the rule set, especially those contained in the IF-Trees, play 
an important role in calculating the accuracy of the rule set, they need to be 
optimised in each generation.  Here we design a general genetic algorithm (GA) to 
approach this task.  
     GAs can have various forms due to different representations, fitness evaluations 
and genetic operators which may vary with specific problems. Among all these 
components, genetic operators, including crossover and mutation, are usually 
considered as the most important parts. Here we used a novel crossover operator 
based on the nonconvex linear combination of multiple parents during the 
recombination of the population, which proved to work stably and effectively in 
solving the problem of multiple parameters optimization (Yu et al. 1999). 

Encoding 
At the beginning, we first check all the constants contained in the IF_Trees and the 
THEN/ELSE_Trees of the rule set, including counting the number of constants l
and recording their positions. Each individual in the parameter population can then 
be represented as an l-dimensional row vector (c1, c2, , cl) where each 
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component ci for i =1, 2, , l is encoded as a floating number and generated 
randomly ranging from 0 to 20 during the initialization of the parameter 
population. 

Fitness Evaluation 
Before the fitness evaluation of an individual in the parameter population, we first 
return to the original rule set and replace all constants with the corresponding 
components of the row vector (i.e. the individual) and then follow the same 
procedure as in Section 17.2.2.1.2 to calculate the fitness. 

Genetic Operators 
We use a multiple-parent crossover operator to create a new individual in the 
parameter population in the following way. Randomly select M different 
individuals from the old population (M>2) denoted as X1, X2, , XM where Xk = 

(c1k, c2k, , clk) (k:1~M). Produce M coefficients k , where k  ranges from a to 

b (a<0, b>1), which satisfy 1
1

M

k
k . Generate a new individual, X, by the 

nonconvex linear combination of these M individuals as follows: 
M

k
kk XX

1

If the fitness value of X is lower than that of the worst individual in the current 
population, then replace it with X. This step is iterated a predetermined maximum 
number (MAX) of times. There are three adjustable control parameters M, a, b in 
this procedure. Setting their optimal values depends upon the properties of the 
specific problem. 

Selection Strategy 
We use tournament selection with sample size of 4 to recombine the new rule set 
population. That is, each time we randomly choose 4 different individuals from the 
current rule set population and compare their fitness values. The best one among 
them is added to the new population. This procedure is repeated until the 
predefined population size N is reached. In the meantime an elitism strategy is 
adopted which means we always keep the best rule set in the current generation to 
the next generation.  

17.2.2.3                                                                                                      
Forecasting by Rule Sets 

Once the best rule set is obtained in one run, we then test its validity and generality 
by calculating the predicted values on the testing data points and the RMSE for the 
testing data. A lower RMSE for the unseen data usually implies that the rule set 
has better generalised the patterns found in the training data. 



H. Cao · F. Recknagel · B. Kim · N. Takamura 358

17.3                                                                                        
Case Studies Lake Kasumigaura and Lake Soyang                                                    

17.3.1                                                                                                     
Parameter Settings and Measures 

To examine the effectiveness of HEA, we applied it to predict 7-days-ahead 
seasonal succession of Microcystis and Cyclotella for Lake Kasumigaura, and of 
Anabaena and Asterionella for Lake Soyang. For Lake Kasumigaura the daily 
input data for PO4, NO3, Secchi depth, pH, water temperature, solar radiation, 
Chla, and Si as well as daily output data for Microcystis and Cyclotella of the 
years 1984 to 1985 and 1987 to 1993 were used for training, and the data of 1986 
were used for testing the generalisation behaviour of the resulting rule sets. For 
Lake Soyang the daily input data for PO4, NO3, Secchi depth, pH, water 
temperature, solar radiation, Chla, and Turbidity as well as daily output data for 
Anabaena and Asterionella of the years 1990 to 1996 and 1998 to 2000 were used 
for training, and the data of 1997 were used for testing.  
     100 runs were conducted independently for each data set. All the experiments 
were performed on a Hydra supercomputer (IBM eServer 1350 Linux) with a peak 
speed of 1.2 TFlops by using the programming language C. The parameter settings 
of HEA are listed in Tab. 17.4. 

Tab. 17.4. Parameter settings of the hybrid evolutionary algorithm for rule set 
discovery 

   Structure      
Optimization  

(GP) 

N = 200  
FL = {AND, OR}  FC = { >, <, , }  FA = { , , , exp, ln} 
MAXK = 4  DIF = DTHEN/ELSE = 4   MAXGEN = 100 

   Parameter  
Optimization  

(GA) 
popsize = 50  a = 0.5  b = 1.5   M = 8  MAX = 500 

     In order to validate the results of different rule sets not only the training error 
(fitness) but also the testing error (RMSE) is calculated as follows: 

2

1

1 ˆ( )
m

i i
i

y y
m

where m is the number of testing data points, iy  and  ˆiy  are the ith observed 
value and the ith predicted value of the output variable such as Microcystis
abundance.
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17.3.2                                                                                                     
Results and Discussion 

Tab. 17.5 shows the best rule sets in terms of the minimal testing error in 100 runs 
with 7-days-lagged input data for each algal population. Fig. 17.7 shows the 
validation results for the best rule sets.   

Tab. 17.5.  The best rule sets in terms of the minimal testing error obtained in 
100 runs with 7-days-lagged input data for each algal population 

Algal 
Population Best  Rule Sets Condition Training 

   Error 
Testing 
  Error 

RULE SET 1: 
IF (PO4 < 52.11) 
THEN Microcystis = WT*(WT-14.05)+ PO4*WT

Mic1 Microcystis

ELSE  Microcystis = Chla*(pH*15.32+WT-152.37) Mic2 

512.95 392.47

RULE SET 2:   
IF (PO4  171.54 AND Si*exp(PO4) > 85.04) 
THEN Cyclotella = 3.67

Cyc1 

ELSE IF (WT  16.36) 
THEN Cyclotella = 335.95

Cyc2 

ELSE IF ((PO4*exp(PO4 ))  126.71) 
THEN Cyclotella = exp(pH)/pH+exp(pH)/3.96

Cyc3 

ELSE IF ((Si*exp(WT))  74.60) 
THEN Cyclotella = exp(pH)/pH+254.678

Cyc4 

Cyclotella

ELSE Cyclotella = 335.95 Cyc5 

923.17 863.07

RULE SET 3:  
IF (WT > 20.66) 
THEN Anabaena = (Turb*70.73-27.41)* 
11.93*ln(|Chla |)/pH

Ana1 
Anabaena

ELSE  Anabaena = 37.27*Chla*Chla /pH Ana2 

193.14 73.57

RULE SET 4: 
IF ((exp(SD)  55.95)OR(WT > 17.30)) 
THEN Asterionella = 18.34

Ast1 

ELSE  IF ((WT > 12.88)OR(PO4  4.7)) 
THEN Asterionella = 120.56

Ast2 

ELSE IF (SD*exp(SD) < 37.65)  
THEN Asterionella = Turb*(exp(pH)/pH)* Chla

Ast3 

Asterionella

ELSE  Asterionella = Turb*Chla*59.83 Ast4 

115.47 67.71
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Fig. 17.7.  7-days-ahead forecasting of Microcystis and Cyclotella for Lake 
Kasumigaura in 1986 (left column), and of Anabaena and Asterionella for Lake 
Soyang in 1997 (right column) by using the rule sets shown in Tab. 17.5. 

     The predicted timing and magnitude of the summer peak of Microcystis (Fig. 
17.7, top, left) for Lake Kasumigaura correspond very well with the measured data 
(R2 = 0.96). The predicted timings of the spring and autumn peaks of Cyclotella
(Fig. 17.7, bottom, left) compare well with the observed data, but the magnitude is 
slightly under-estimated resulting in a R2 = 0.68.  
     As for Lake Soyang, the forecasting result of the summer peak of Anabaena in 
1997 (Fig. 17.7, top, right) is reasonable regarding both magnitude and timing 
with a R2 = 0.83 even though the observed slight early summer peak was missed. 
The predicted timings of two spring peaks of Asterionella in 1997 (Fig. 17.7, 
bottom, right) are almost consistent with the measured data, but the magnitude of 
the second peak is slightly over-estimated resulting in a R2 = 0.70. 
     From the above results it can be concluded that the forecasting of the diatom 
populations Cyclotella and Asterionella is more challenging compared to the blue-
green algal populations Microcystis and Anabaena. This finding is also reflected 
by the complexity of rule sets discovered by HEA that is higher for diatoms than 
for blue-green algae. While RULE SET 1 for Microcystis and  RULE SET 3 for 
Anabaena in Tab. 17.5 are relatively simple consisting of one single rule and their 
IF conditions are associated with only one input variable respectively. On the 
contrary, RULE SET 2 for Cyclotella and RULE SET 4 for Asterionella are much 
more complicated in the structure which consists of 4 and 3 IF condition branches 
respectively.
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     To further analyse and interpret the rule sets in Tab. 17.5 discovered by HEA, 
we highlighted the activation of rule condition branches as well as interesting 
regions within the forecasting periods for each algal population.     
     Fig. 17.8 illustrates the 7-days-ahead forecasting of Microcystis segmented by  
THEN-branch and ELSE-branch of RULE SET 1. As the IF condition is only 
related to the input variable PO4, we draw the curve of input PO4 for Lake 
Kasumigaura in 1986 and mark the threshold value as well. Obviously Fig. 17.8 
reflects the preference of Microcystis to relatively high concentrations of PO4. We 
shadow the region which satisfies the ELSE condition branch i.e. when PO4
52.11. However as indicated by the THEN-branch of RULE SET 1 algal 
abundance of Microcystis at low PO4 determined only by the combination of both 
PO4 concentration and water temperature. This result is consistent with the 
findings by Reynolds (1984) that Microcystis is intolerant to both low PO4
concentrations and water temperature. 

Fig. 17.8. 7-days-ahead forecasting of Microcystis for Lake Kasumigaura in 
1986 segmented by THEN-branch and ELSE-branch of RULE SET 1 in Tab. 
17.5.

     Fig. 17.9 shows the results of a sensitivity analysis regarding the THEN- and 
ELSE-branches of RULE SET 1. It reflects once more the distinct sensitivity of 
Microcystis to PO4 and water temperature of the THEN-branch (Fig. 17.9, left). By 
contrast if the condition Mic2 is satisfied i.e. PO4  52.11, Fig. 17.9 (right) 
indicates that Microcystis is very sensitive to high temperature and pH value 
causing highest abundance of Microcystis.  The value ranges of pH and WT 
indicate that the high Microcystis abundances coincide with pH values higher than 
8 and water temperature over 20oC. Both values comply with literature findings 
based on field observations and laboratory experiments (Reynolds 1984; Shapiro 
1990). 
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Fig. 17.9. Sensitivity analysis with disturbance STDEV of input data for THEN-
branch (left) and ELSE-branch (right) of RULE SET 1 for Microcystis in Tab. 
17.5.

Fig. 17.10. 7-days-ahead forecasting of Cyclotella for Lake Kasumigaura in 1986 
segmented by different condition branches of RULE SET 2 in Tab. 17.5. 

     Fig. 17.10 illustrates the 7-days-ahead forecasting of Cyclotella segmented by 
different condition branches of RULE SET 2. As the structure of RULE SET 2 is 
rather complex we focus our interpretation at condition Cyc3 that determines  
highest abundances of Cyclotella. The condition Cyc3 can be rewritten as follows: 
Cyc3:

4 4 4IF ((PO >171.54 OR Si*exp(PO ) 85.04) AND PO 3.57 AND WT<16.36)
where the condition PO4*exp(PO4) 126.71 in RULE SET 2 is equivalent to 
PO4 3.57. The condition Cyc3 clearly demonstrates that Cyclotella favours water 
temperature below 16oC and low PO4 concentrations above 3.57 g/l.  These 
results correspond well with literature findings that diatom cells are tolerant to low 
water temperatures  (e.g. Reynolds 1984) and can have a phosphorus storage 
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capacity that may explain their tolerance to low PO4-P concentrations Mackereth 
(1953). 
     As the outputs of other three conditions are constant, we only plot the 
sensitivity curves for Cyc3 and Cyc4 in Fig. 17.11. It can be seen that in both 
cases Cyclotella experiences high sensitivity to the change of pH and a higher pH 
gives rise to a higher algal abundance. In fact as observed in the measured data, 
Cyclotella in Lake Kasumigaura peaks at extreme high pH values of 9 to 9.3. 

Fig. 17.11. Sensitivity analysis with disturbance STDEV of input data for the 
Cyc3 (left) and Cyc4 (right) condition branches of RULE SET 2 for Cyclotella in 
Tab. 17.5.  

Fig. 17.12. 7-days-ahead forecasting of Anabaena for Lake Soyang in 1997 
segmented by THEN-branch and ELSE-branch of RULE SET 3 in Tab. 17.5. 

     Fig. 17.12 illustrates the 7-days-ahead forecasting of Anabaena segmented by  
the THEN- and ELSE-branches of RULE SET 3. We also plot the curve of water 
temperature for Lake Soyang in 1997 which is the only input variable related to 
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the condition and shadow the region which satisfies the condition WT>20.66. It 
can be seen from the graph that Anabaena peaks at a water temperature higher 
than 20oC. However the specific abundance of Anabaena is ultimately determined 
by the combined effect of water temperature, turbidity, pH and Chla as reflected 
by THEN-branch of the rule set. That is the reason why the shadowed window 
shows a quite a wide abundance range of Anabaena during June and July.    
     Fig. 17.13 shows the sensitivity analysis regarding the THEN- and ELSE-
branchs of RULE SET 3. Both cases show that Anabaena experiences little 
sensitivity to changes of pH, and high sensitivity to Chla. When the condition 
Ana1 (i.e. WT>20.66) is satisfied, the sensitivity of Anabaena is also high to 
turbidity. Both relationships are typical for the period after the summer monsoon  
in Lake Soyang that has been observed to coincide with high abundance of 
Anabaena (Kim et al. 2000).

Fig. 17.13. Sensitivity analysis with disturbance STDEV of input data for 
THEN-branch (left) and ELSE-branch (right) of RULE SET 3 for Anabaena in 
Tab. 17.5.  

     Fig. 17.14 illustrates the 7-days-ahead forecasting of Asterionella segmented 
by different condition branches of RULE SET 4. In order to interpret the RULE 
SET 4 we focus at the condition Ast3 that reflects conditions for highest 
abundances of Asterionella. The condition Ast3 reads as follows: 
Ast3:

4IF (WT 12.88 AND PO <4.7 AND SD<2.65)
It is notable that the condition SD*exp(SD)<37.65 in RULE SET 4 is equivalent 
to SD<2.65 and the condition exp(SD) 55.95 in RULE SET 4 is equivalent to 
SD 4.02. It becomes obvious that Asterionella prefers an environment with water 
temperatures below 13oC, PO4 concentration below 4.7 g/l and Secchi depths 
lower than 3m. This findings confirm once more the tolerance of diatoms to low 
water temperatures and PO4 concentrations as discussed before for Asterionella in 
Lake Kasumigaura.  

Input range %
0 20 40 60 80 100

A
na

ba
en

a 
ce

lls
*1

0/
m

l

0

200

400

600

800

Turb: 0.22 - 3.34 NTU 
Chla: 0 - 12.81 g/L 
pH: 7.16 - 8.18 

Ana1: THEN Anabaena = 
                       (Turb*70.73-27.41)*11.93*ln(|Chla|)/pH 

Input range %
0 20 40 60 80 100

An
ab

ae
na

 c
el

ls
*1

0/
m

l

0
20
40
60
80

100
120
140
160

Chla: 0 - 5.14 g/L 
pH: 6.78 - 7.42 

Ana2: ELSE Anabaena = 37.27*Chla*Chla/pH

Input range %
0 20 40 60 80 100

A
na

ba
en

a 
ce

lls
*1

0/
m

l

0

200

400

600

800

Turb: 0.22 - 3.34 NTU 
Chla: 0 - 12.81 g/L 
pH: 7.16 - 8.18 

Ana1: THEN Anabaena = 
                       (Turb*70.73-27.41)*11.93*ln(|Chla|)/pH 

Input range %
0 20 40 60 80 100

An
ab

ae
na

 c
el

ls
*1

0/
m

l

0
20
40
60
80

100
120
140
160

Chla: 0 - 5.14 g/L 
pH: 6.78 - 7.42 

Ana2: ELSE Anabaena = 37.27*Chla*Chla/pH



Chapter 17  · Evolved Rules for Algal Population Dynamics in Lakes   365 

Fig. 17.14. 7-days-ahead forecasting of Asterionella for Lake Soyang in 1997 
segmented by different condition branches of RULE SET 4 in Tab. 17.5. 

     As the outputs of RULE SET 4 for the other two conditions are constant, we 
only plot the sensitivity curves for Ast3 and Ast4 in Fig. 17.15. It can be seen that 
in both cases the sensitivity of Asterionella is high to the changes of turbidity and 
Chla whose increases will cause a higher abundance of Asterionella.

Fig. 17.15. Sensitivity analysis with disturbance STDEV of input data for the 
Ast3 (left) and Ast4 (right) condition branches of RULE SET 4 for Asterionella in 
Tab. 17.5.  
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17.4                                                                                        
Conclusions 

A hybrid evolutionary algorithm (HEA) has been developed to discover predictive 
rule sets in complex ecological data. It has been designed to evolve the structure 
of rule sets by using genetic programming and to optimise the random parameters 
in the rule sets by means of a genetic algorithm.  
     HEA was successfully applied to long-term monitoring data of the shallow, 
eutrophic Lake Kasumigaura (Japan) and the deep, mesotrophic Lake Soyang 
(Korea). The results have demonstrated that HEA is able to discover rule sets, 
which can forecast for 7-days-ahead seasonal abundances of blue-green algae and 
diatom populations in the two lakes with relatively high accuracy but are also 
explanatory for relationships between physical, chemical variables and the 
abundances of algal populations. The explanations and the sensitivity analysis for 
the best rule sets correspond well with theoretical hypotheses and experimental 
findings in previous studies.  
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Chapter 18 

Multivariate Time Series Prediction of Marine 
Zooplankton by Artificial Neural Networks         
C.H. Reick · A. Grünewald · B. Page

18.1
Introduction

Most applications of Neural Networks are based on their high adaptivity to almost 
any set of given input-output relations ("patterns"). An example is pattern 
recognition: here, a usually complex input, e.g. a picture of a number, has to be 
mapped on a much simpler output, e.g. the binary representation of that number. 
Networks trained to reproduce such input-output relations can be used to identify 
a complex input from the much simpler output.  

In applications to time series prediction these input-output relations relate past 
to future data. But here the task is not to reproduce a previously known input-
output relation. Instead one wants the Neural Network to produce correctly from 
known past data presently unknown future data.  Here another feature of Neural 
Networks comes into play, namely their ability to generalize. Neural Networks 
cannot only be trained to learn particular input-output relations. During training 
they also seem to develop a more general representation of these relations. On the 
basis of these relations predictions can be performed. The nature of this more 
general representation is not very clear and may depend on the chosen network 
structure, but one can understand it as a kind of inter- or extrapolation of the 
trained input-output relations. Operationally the ability of a Neural Network to 
generalize is usually defined as its ability to produce correct outputs — i.e. 
predictions in the present context — for inputs that have not been used during 
training (see e.g. Hertz et al. (1991)). It is clear that an appropriate generalization 
may fail, but there are striking examples where this generalization works 
extremely well, e.g. for the prediction of the (secondary) protein structure from its 
sequence of amino acids (Rost and Sander 1993) or the prediction of chaotic 
dynamics (Wan 1994).  

Especially when low quality data are used for prediction or if the number of 
simultaneous variables is high, it is often hard to judge, whether a particular 
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Neural Net is able to generalize. This situation is often encountered when working 
with environmental data sets, as everyone knows, who tried to work e.g. with 
biological  time series (see e.g. Reick and Page (2000)). The reasons for this low 
quality are simple: First, environmental data are typically taken under non-
laboratory conditions, i.e. external disturbances cannot be controlled and the data 
get noisy. Second, one has usually to measure what one can get, and not what one 
would like to measure. So one cannot be sure, whether the data are representative 
for some hidden deterministic dynamics. And finally, long measurement 
campaigns are expensive so that environmental data sets are typically quite short 
compared to their noise level. This problem is only insufficiently compensated by 
measuring simultaneously several variables (the extra costs are typically low), 
because hereby one can only improve the information on particular system states, 
but cannot gain additional information on the diversity of system states; this could 
only be obtained from sufficiently long time series. But this information on the 
diversity of states is indispensable for predictions of high quality.  Moreover, the 
information of additional variables is often redundant and also noisy, to the 
consequence that by using these data as additional inputs in Neural Nets their 
performance can get even worse. 

The prediction quality is usually measured by computing the average prediction 
error for a number of prediction instants. But the question is, how far this 
prediction error can be trusted, when a Neural Network is used to predict 
unknown data. When working with Neural Networks one experiences that the 
lower the data quality, the less reliable are the computed prediction errors. As 
already discussed, this situation is especially encountered, when working with 
environmental data so that here one should always carefully analyze their 
reliability. This means one has to inquire the ability of a Neural Network to 
generalize. How to do this by crossvalidation techniques will be discussed in 
section II. Unfortunately, crossvalidation is very laborous, because the same 
Neural Network has to be trained over and over again with different parts of the 
available data. The solution can only be a complete automatization of the training 
process. Standard Neural Network software, like e.g. SNNS (Zell 1994), supports 
mainly the visual supervision of the training at the computer monitor. But this is 
much too laborous when performing crossvalidation studies. Alternatively, one 
could use the programming interfaces, that are part of many Neural Network 
products. But besides the uncomfortability of such a solution, there is a more 
fundamental problem with automatization: Many training algorithms have been 
developed in the past and many of them are available in Neural Network 
packages. But when using them for automatized training the main problem is how 
to stop the training, such that the network is neither under- and nor overadapted in 
order to guarantee optimal generalization. For visual supervision at the screen, 
there is a widely accepted stopping technique by Weigend et al. (1991). As a first 
step to automatization we show in section III how this technique can be cast into 
an algorithm. Finally we show in section IV how crossvalidation and automatized 
training can be applied to an environmental data set, namely to plankton time 
series from the North Sea. In contrast to most other prediction studies, we will not 



Chapter 18  ·  Time-Series Prediction of Marine Zooplankton 371

show how well Neural Nets predict these time series, but instead show how the 
failure of their ability to generalize can be substantiated.  

18.2
Generalization

To find a Neural Network, by which a particular time series can be correctly 
predicted, many prediction experiments have to be performed. In these 
experiments one varies the type of input data, modifies the preprocessing of the 
data and changes the internal structure of the Neural Networks. The success of a 
particular prediction experiment is usually measured by the prediction error that is 
obtained when trying to predict data that were not used during training. The 
Neural Network with the least prediction error will then be chosen to perform 
actual predictions. 

When working with data of high quality, this procedure often works quite well. 
But when working with poor data the prediction quality is low, and this leads to 
two problems. First, the experimental effort to find a Neural Network with an 
acceptable prediction error increases. Whereas this is mainly a practical problem, 
the second is of more fundamental nature: The reliability of the predictions gets 
questionable. In the case of a Neural Network with a small prediction error (small 
in relation to a characteristic scale of the data; the error computed for available 
data, not in actual predictions) a doubling or even tripling of the error would still 
be a small error. Therefore, a small prediction error is a good indication that for 
actual predictions the error will also be small. For low quality data the situation is 
different. If one finds only networks with prediction errors that cannot be judged 
small, e.g. 20-30% relative error, then a doubling or tripling of the error in actual 
predictions will no more be acceptable. Therefore, in this case, the reliability of 
the predictions gets problematic. 

In our opinion, this problem can be discussed in the context of the more general 
problem of generalization. The term ”generalization” is usually bound to a small 
output error (here: prediction error) for non-training data. It is clear that a small 
prediction error is an indication of a successful generalization. But what about 
generalization, if the error is not small? Even in that case a Neural Network may 
correctly reproduce essential features of a time series — although with a 
significant error. Obviously in such a situation other aspects than the prediction 
error get relevant for the question of generalization, as e.g. the reliability of the 
prediction error, as discussed above. Therefore, in the following, we will discuss 
how a generalization success or failure can be detected for low quality 
predictions. 

We start the discussion by distinguishing several causes for predictive 
performance failures of Neural Networks: 

Unpredictability. The data may not represent a phenomenon governed by a 
common rule. It is obvious that in such a case any prediction method will fail. 
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Despite its triviality, this point is mentioned here, because Neural Networks are 
often tentatively applied to phenomena whose predictability is questionable, like 
in the case of stock returns. 

Poor data. It may happen that in principle the considered phenomenon is 
predictable, but the data used for training contain not enough information. Several 
types of information deficiencies can be distinguished: First, there may be simply 
not enough data available. Second, the data may be too noisy. Third, the data set 
may be incomplete, in the sense that certain aspects of the phenomenon are not 
represented by the data. And finally, the data may contain the wrong information. 
This can happen if the phenomenon to be predicted is recently governed by a 
different rule as before (instationarity). If the data used for training contain no or 
only partial information on the present rule, the Neural Network performs the 
predictions according to the past rule, and consequently fails. 

Overadaptation. Training a Neural Network means to change its parameters 
iteratively until it reproduces a given set of input-output relations with sufficient 
accuracy. This accuracy is measured by the error between the intended and the 
actual output. Except for the initial training phase, where strong fluctuations may 
be observed, this error usually decreases monotonically during training. But when 
the error is monitored for a different data set, that is not used for training, one 
often observes that beyond a certain point the error increases. This indicates that a 
good adaptation and a good generalization are conflicting aims. So, when 
employing Neural Networks for predictive purposes, one has to take care that the 
training process is terminated before an overadaptation occurs. This problem, 
especially how to detect and prevent an overadaptation, will be discussed in more 
detail in section III.

Underadaptation. As already mentioned, after an initial phase typically not 
only the error for the training data decreases, but also the error for independent 
data. So, terminating the training too early may lead to an underadaptation and a 
reduced ability to distinguish different system states. This problem is easily 
circumvented by sufficiently long training periods. More fundamental is the 
problem, that the training process may stick to a local minimum in the error 
landscape so that, although the Neural Network may in principle be capable of a 
good adaptation, the optimal parameters are not found during training. This 
problem is well known from numerical mathematics and no general solution exists 
(see e.g. Press et al. (1986)).  

Unsuited network structure. It is a general experience that when changing the 
various structural elements of a Neural Network, like the number of neurons, the 
topology of their connections or the type of activation and output functions, its 
predictive performance changes. Unfortunately there are no general rules what 
type of network structure is appropriate for a particular problem so that one can 
never exclude that a performance failure is the result of an unsuited network type. 
A partial solution to this problem is the use of training procedures that change not 
only the network parameters, but also its topology. 

From these five causes for performance failures the first two 
(”unpredictability” and ”poor data”) are independent of Neural Networks and 
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from the remaining three only ”overadaptation” and ”unsuited network structure” 
are related to generalization failures, while the cause ”underadaptation” is the 
result of an insufficient adaptation. Nevertheless, in practice, one is usually not 
able to identify the particular cause for a performance failure so that in practice a 
general performance failure cannot be distinguished from a generalization failure. 

But besides prediction quality, there are also a second and third aspect of 
generalization and these turn out to be measurable almost independently of the 
prediction quality. The second aspect, as already mentioned, concerns the 
reliability of the predictions. One characteristic of generalization failures is their 
independence from the data: Let us assume, we had trained a Neural Network 
with high quality data. We now take other data, documenting the same 
phenomenon, but of low quality (e.g. by adding noise to the high quality data). If 
the Neural Network generalizes for the high quality data quite well, it will clearly 
produce poorer predictions with the low quality data, but the predictions are still 
reliable (although the prediction error will be larger), because the Neural Network 
had learned the essential features of the underlying system. This characteristic of 
generalization can even be detected from low quality data, because reliability 
means that the estimated prediction error can be trusted, even if it is high. 

The third aspect of generalization concerns model correctness. Each trained 
Neural Network can be considered as a (formal) model representing the dynamics 
underlying the data. The generalization would obviously fail, if this formal model 
would be incorrect. In that case the predictions errors would show systematic 
deviations from the correct values. Accordingly this aspect of generalization is 
related to the correlation between errors and data. 

To see how reliability and model correctness can be detected we consider the 
two types of generalization failures separately. First overadaptation is considered. 
This type of generalization failure is related to a particular trained network: As 
usual one splits the available data into in-sample and out-of-sample data, trains the 
Neural Netwark with the in-sample data and uses the out-of-sample data to 
measure the predictive performance. For the reliability of the predictions one has 
to look whether the prediction error can be trusted, or, expressed otherwise, 
whether the prediction error is stationary. This is usually only possible, if the data 
set is sufficiently large and this is often not the case. It is much simpler to test for 
model correctness. Here one has to check whether the prediction errors are 
uncorrelated to the data. It is easy to show that (linear) uncorrelatedness between 
errors and data is identical to an ideal correlation between predictions and data 
(besides an error in bias). Therefore the check for this aspect of generalization is 
identical to the usual check for model correctness by correlations (see e.g. Theil 
(1966)).

The second type of generalization failure, the inadequacy of network structure, 
leads to a different generalization check. The structure of a Neural Network is 
independent of the particular values of its various parameters. So, in contrast to 
the previous case, here not a particular (trained) Neural Network is considered, 
but a whole family of networks, all with the same structure. With respect to the 
network structure reliability means here, that the predictive performance of the 
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network is independent of the choice of the in-sample data. Clearly, for testing 
this, it has to be assumed that the training is optimal, i.e. that the particular Neural 
Network is neither under- nor overadapted. Assuming this, it is obvious how this 
aspect of generalization can be checked: Not only a single splitting of the data into 
in-sample and out-of-sample data has to be considered, but various different 
splittings. For each of these data splittings one trains the Neural Network with the 
in-sample data and determines the prediction errors for the associated out-of-
sample data. For a good generalization with respect to the network structure the 
prediction errors should be independent of the particular data splitting. This can 
be checked, e.g., by considering the fluctuations of the mean prediction errors of 
the various sets of out-of-sample data. Only if these fluctuations are small, the 
prediction quality is independent from the particular splitting. An even simpler 
check would be to plot the prediction errors for overlapping out-of-sample data 
sets. Once more a small variation of the errors indicates a good ability to 
generalize with respect to network structure. This technique is well known in the 
time series literature under the names ”cross-validation” and ”v-leave-out” (see 
e.g.Weiss and Kulikowski (1990)). 

These considerations show, that particular aspects of generalization can be 
checked, even if the quality of the predictions is low. 

18.3
Automatic Termination of Training 

As discussed above, to investigate whether a network structure is suited for a 
particular prediction problem, one has to perform crossvalidation studies. 
Unfortunately, using standard software with visual supervision of the training 
process, this is very laborious, because the training has to be repeated for many 
different training sets. In this situation it would be advantageous to automatize the 
training. Actually, the problem is not the training itself, but how to stop the 
training optimally to prevent under- and overadaptation. This problem is tackled 
by a stopping technique introduced by Weigend et al. (1991). But although this 
technique has been used in a number of studies (Weigend et al. 1991; Dodier 
1994; Wan 1994), it seems, that nobody has tried to cast it into an algorithm  
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Fig. 18.1. Our early stopping algorithm. 
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suitable for automatization. In the following we will show how this can be done. 
For further details see Grünewald (2000). 

Supervised training procedures, like backpropagation, use the output error to 
optimize iteratively the network parameters. Hereby the network is adapted to the 
data. But, as already discussed, adaptation and generalization are mutually 
excluding aims. Therefore, the network has to be trained for sufficiently many 
training cycles to prevent underadaptation, but the training has to be stopped 
before the network begins to overadapt. Overadaption can be detected only by 
data that were not used for training. So one splits the in-sample data once more 
into two parts: the (genuine) training set and a validation set. The idea is to use, as 
usual, the training set to adapt the network, but to use the validation set to 
terminate training. This is done by monitoring during training the validation error
that is obtained when applying the Neural Network after each iteration step to the 
validation set. One often observes that during training this validation error first 
decreases and then passes through a minimum, where the error starts increasing 
(see e.g. the diagrams in Weigend (1994)). If in parallel the error on the training 
set is monitored, one observes that even beyond the minimum of the validation 
error the training set error decreases. This can be interpreted as the onset of 
overadaptation: the network starts learning details that are not only irrelevant for 
predicting new data, but also impair the prediction quality. Therefore the optimal 
stopping point is at the minimum of the validation error curve. Following Dodier 
(1994), this technique of stopping, originally introduced by Weigend et al. (1991), 
will be called early stopping in the following. 

To convert early stopping into a useful algorithm, two problems have to be 
surmounted: (i) The validation error does not always undergo a minimum. In that 
case another stopping criterion has to be used. (ii) The validation error curve need 
not be smooth, but may show noisy behavior atop of an overall decrease or 
increase. In that case the curve contains many local minima that have to be 
escaped in order to search for the (hopefully) global minimum. Our solution to 
these problems is the algorithm shown in Fig. 18.1. It contains three parameters: 

MAXCYC Maximum number of training cycles after which every training is 
stopped.  

DELAY Number of training cycles by which stopping is delayed after a 
possible stopping point is detected. 

TOL Improvement in validation error that is considered insignificant 
(”tolerance”).

To explain the algorithm, the parts related to the delay counter ”D” (inside the 
dashed frame in Fig. 18.1) are first ignored. Without them the algorithm works as 
follows: As usual the network is trained iteratively. In each step the validation 
error (”err”) is computed and if this error is smaller than the best error found so 
far (”bestErr”), the parameters of that – so far – best network  and best error are 
saved (”bestNet = net”, ”bestErr = err”). The whole process is stopped, when the 
number of iteration cycles (”C”) reaches the maximum number of iteration cycles 
(”MAXCYC”). So far this algorithm describes simply a search for a best network 
that is stopped after a fixed number of training cycles and it is completely 
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irrelevant whether the validation error has a minimum, is ever increasing or shows 
a noisy behaviour with many minima. Insofar it has nothing to do with early 
stopping. Nevertheless, if MAXCYC is set to a very large value so that one can be 
sure that the global minimum of the validation error is reached (if it can be 
reached), this algorithm gives the same result as early stopping. But numerically it 
is not desireable to train the network in every case by the maximum number of 
cycles. Instead, one would like to stop the training already when the optimal 
network has been found. This cannot be fully achieved, but at least partially by 
including the so far ignored parts into the algorithm.  

To explain their function, we first suppose TOL to be zero. When starting the 
algorithm the delay counter ”D” is set to zero. If during training the validation 
error decreases (”bestErr > err”) the delay counter stays zero (”D=0”). But if the 
error gets worse, i.e. if the validation error curve undergoes a minimum, the delay 
counter starts counting (”D=D+1”). If the validation error continues to increase, 
the delay counter will reach its maximum value DELAY and the training is 
stopped. So this is not really early stopping, but a delayed early stopping. The 
reason to perform some additional training cycles is to check whether the detected 
minimum is only a small local minimum or can be considered a global minimum. 
To understand how the algorithm detects this situation, assume that the delay 
counter already started counting, i.e. the network error already increased for D
training cycles, and that in the present training cycle a validation error is found 
that is smaller than all previous validation errors (”err < bestErr”). Fig. 18.1 
shows that in this case the delay counter is once more set to zero (”D=0”).
Thereby the delay counter has to start once more from the beginning and the 
training will last at least DELAY additional training cycles (if not MAXCYC is 
reached before). Thereby the local minimum has been escaped. This means that 
for TOL equal to zero, the training stops only, if a detected minimum remains the 
absolute minimum for the next DELAY training cycles. If not, the next minimum 
will be checked. In this way training escapes, as desired, local minima.  

Nevertheless, there is a problem: What happens, if the validation error is ever 
decreasing, or, decreasing on the average with local minima separated not farther 
than DELAY training cycles apart? In that case D would always be reset to zero, 
before DELAY has been reached. Accordingly, the algorithm continues training 
for the full MAXCYC training cycles. Such a behaviour is not always desireable, 
namely, when the error improves only insignificantly, so that even by longer 
training a substantially better network cannot be expected. To stop training in 
such cases before MAXCYC has been reached, the additional parameter T OL has 
been introduced. Once more the situation of a monotoneously decreasing 
validation error is considered, but now with TOL larger than zero. In this case the 
delay counter is reset to zero only if the validation error improves by an amont 
larger than TOL, i.e. in the case ”err < bestErr - TOL”. Therefore the training is 
stopped, if for DELAY training cycles the validation error improves less than TOL.
Accordingly, as intended, a too long training is prevented, if no significant 
improvement can be expected. 
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It is clear that the choice of the three parameters DELAY, MAXCYC and TOL is 
decisive for a proper work of our early stopping algorithm. Therefore one has to 
perform some extra training runs to identify viable values for them. They should 
be chosen such that the training is stopped either because a ”global” minimum is 
detected, or because the network improvement gets insignificant but not because 
MAXCYC is reached;  this parameter should guarantee only an ”emergency stop”. 

18.4
Case Study: Zooplankton Prediction 

In this section we apply crossvalidation and early stopping to an environmental 
data set from Greve (1988). The data document the zooplankton development 
from 1975 to 1994 at a position close to Helgoland island in the German North 
Sea. Every second or third workday the plankton was fished with a net of mesh 
size 150 µm. Simultaneously several other measurements were made: 
temperature, salinity etc. and in particular the water flow through the net. Each 
plankton organism from the catch was then visually inspected under a microscope, 
identified and counted. By the known water flow the number of individuals could 
then be converted into the density of organisms (individuals per cubic meter), 
called abundance in the following. The result is a large data set with the 
abundances of 45 groups of zooplankton organisms (”taxa”) at more than 3200 
points of time. In addition we have data for two phytoplankton groups (diatoms 
and flagellates) from separate catches at the same position (measured as carbon 
mass per cubic meter) and data for seven physical parameters (water temperature, 
salinity, phosphate concentration, etc.). Unfortunately the catches were taken 
irregularly (all two or three days). To apply time series prediction methods one 
has to make the data equidistant. To this end we averaged all data of 
approximately one week (actually we averaged over 365.25/52=7.01923 days to 
account for intercalary days) so that the final data set has 52 data points for each 
of the twenty years. 

The main problem with these data is that they are taken from a single point in a 
floating environment. Therefore the plankton organisms from two successive 
catches may not belong to the same population so that even on the level of 
populations there may be no deterministic relationship between two data points. 
Moreover it is known that plankton often comes in patches so that also the 
representativity of these random sample plankton measurements is questionable. 
And indeed, our extensive prediction studies of this data set indicate that short 
time predictions of the abundance are not possible. Nevertheless, if one restricts 
oneself to the prediction of only the order of magnitude of the abundances, a 
moderate prediction quality is achievable. For a given abundance x we define this 
magnitude m by 

m = log10(x+1)                         (18.1). 
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(The addition of ”1” in this equation assures that abundance zero is mapped to 
magnitude zero; for large abundance the magnitude differs only negligibly from 
its decadic logarithm.) Accordingly, in the following we will consider only 
predictions of the magnitude of abundances and not of the abundances itself. 
Technically this was achieved by transforming all plankton data from abundances 
to magnitudes before averaging. This has also been done with the phytoplankton 
data. 

It is generally expected that there is a complex network of interactions between 
the several types of plankton organisms (”food web”). Accordingly we tried to 
perform predictions by using simultaneously the time series of several taxa as 
input of the Neural Networks. In view of the large amount of possible 
combinations of taxa such studies could only be performed by massive 
automatization. Our aim here is not to present the results from this study (see 
Grünewald 2000). Instead we want to demonstrate the application of 
crossvalidation and early stopping to a particular prediction problem. The example 
we consider is the prediction of Barnacle larvae (Cirripedia nauplius) with a 
16x5x2x1 feedforward Neural Network. As input we use the data from the last 
eight weeks of Cirripedia nauplius itself and also the last eight weeks of our 
diatom data. This combination was chosen because Cirripedia nauplius at least 
partially preys on diatoms. As learning algorithm we used ”Resilient 
Backpropagation” (Riedmiller and Braun 1993), which is usually faster than the 
classical backpropagation algorithm.  

From the 20 years of data we used the first 16 years as in-sample data and the 
last four years as out-of-sample data. For training the in-sample data were 
partititioned in 30 different ways into training and validation data (see Fig. 18.2); 
we used 12 years for training and 4 years for validation. The parameters used for 
the early stopping algorithm were MAXCYC = 1000, MAXDEL = 100 and TOL = 
10-4. Fig. 18.3 shows the predictions for the out-of-sample data obtained by the 
Neural Network that was trained with the data splitting no. 16 of Fig. 18.2. The 
predictions reproduce quite well the data. This is substantiated by a value of 0.91 
for the correlation between the predictions and the data. Accordingly, the error, 
also shown in Fig. 18.3, is on the average significantly smaller than the data, 
although not small. At wintertime, where the error is of the same order as the data, 
better prediction results cannot be expected, because there are often less than 15 
individuals per m3 present, so that already the statistical uncertainty from 
sampling is of the order of the abundances. Overall, this prediction looks quite 
well.
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Fig. 18.2. Data splitting used for crossvalidation. 

Fig. 18.3. Prediction of the magnitude of Cirripedia nauplius with a 16x5x2x1 
Neural Network. Input are the data from the last eight weeks of both Cirripedia 
nauplius and diatoms. Full line: measurements; dashed line: predictions; dotted 
line: prediction error. For training the data splitting no. 16 of Fig. 18.2 has been 
used.



Chapter 18  ·  Time-Series Prediction of Marine Zooplankton 381

Fig. 18.4. Crossvalidation results for the prediction of Cirripedia nauplius.
Shown are the data and the absolute errors of predictions by 30 Neural Networks. 
The structure of the networks was identical, but they were trained by different 
data splittings, namely those indicated in Fig. 18.2. The network structure was the 
same as in Fig. 18.3. 

Nevertheless, a more critical look at the predictions changes this impression. A 
first indication that the generalization may not work well is the value 0.46 of the 
correlation between the data and the prediction error. This value is still significant 
so that the predictions cannot be considered to be independent of the data so that 
the modelling of the data by the Neural Network is only partially correct. And this 
is not the result of an insufficient training: the training was broken off by the early 
stopping algorithm at training cycle 364, because the last 100 cycles the validation 
error was increasing. The picture gets even worse, if one looks at the full 
crossvalidation results shown in Fig. 18.4. Obviously there are other splittings of 
the training data, for which the error is about 50% of the data maximum, so that 
the quality of the predictions depends strongly on the choice of the training data 
and the predictions are not reliable. Accordingly, one has to conclude that for this 
Neural Network generalization fails.  

18.5
Conclusions

In this article we discussed the application of time series prediction by Neural 
Networks to environmental data sets. Such data are typically of low quality as 
compared to laboratory data for various reasons: boundary conditions for the 
phenomenon to be studied are not controllable, taking clean data is much too 
expensive or the phenomenon is so complex that the relevant variables that should 
be measured are not known. The consequence is: one usually has to work with the 
data one can get, and not the data one would like to have. The zooplankton 
forecasts considered in the previous section illustrate this situation: the data are 
from a completely uncontrollable environment, taking data more frequently or in 
addition at other points of the sea would let the costs explode and, finally, the 
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details of the interactions between the different plankton organisms and also how 
they are influenced by environmental conditions is only insufficiently known so 
that it is not clear what variables would be relevant.  

We discussed that in the context of prediction the concept of generalization has 
three aspects: prediction quality, prediction reliability and model correctness. 
When working with clean laboratory data a good prediction quality usually is also 
an indication of reliability and model correctness. But when working with data of 
low quality, as is usually the case with environmental data, only a poor prediction 
quality can be expected so that the reliability and model correctness have to be 
considered independently of the prediction quality. Here crossvalidation 
techniques can be employed. Unfortunately, this is extremely laborous because 
the same Neural Network has to be trained for many different data splittings so 
that an automatization would be helpful. We showed that a major problem of 
automatization is to stop the training process automatically, such that the networks 
get neither under- nor overadapted. As a solution we proposed our early stopping 
algorithm and showed by an example how it can be applied in practice.  

Actually, our early stopping algorithm is only a first step in the direction of 
automatized prediction studies. For large data sets with many variables one would 
need Neural Network tools that allow for complex definitions of large sequences 
of prediction experiments with networks of different structure, the automatic 
execution of these experiments as well as their automatic documentation and 
analysis. In the next years the various environmental monitoring programs with 
their automatic data aquisition will yield an ever increasing flood of data. By 
employing times series prediction methods, like those based on Neural Networks, 
these data could in principle be used for environmental management, e.g. to detect 
and anticipate significant ecosystem changes. But this will only be possible if 
appropriate Neural Network tools are available. And these have still to be 
developed. 
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Chapter 19 

Classification of Fish Stock-Recruitment 
Relationships in Different Environmental 
Regimes by Fuzzy Logic with Bootstrap
Re-sampling Approach
D.G. Chen

19.1
Introduction

The analysis of stock-recruitment (SR) relationships is a basic step in developing 
and evaluating fishery policies, such as establishing optimal escapement goals for 
salmon or optimal size of spawning stocks at maximum sustainable yield (MSY). 
Traditional SR analyses assume that there is a functional relationship between the 
size of the stock spawning biomass and the biomass of fish that recruit in the 
future. Numerous models have been discussed for this functional relationship. A 
comprehensive summary can be found from Ricker (1975), Hilborn and Walters 
(1992) and Quinn and Deriso (1999).  

In the search for better tools for fish stock assessment, there has recently been a 
growing interest in the use of machine learning models (such as neural network 
models, fuzzy logic models and genetic algorithms) for research and management 
of natural resources (Lek et al. 1995; Mackinson et al. 1999 and Tang et al. 2000). 
It has been demonstrated that these models offer substantial advantages over 
traditional SR methods in model fit and forecast (Saila 1996; Chen and Ware 1999 
and Chen et. al. 2000).   

In this paper, the utility of fuzzy logic model with a hybrid global learning 
algorithm is explored to classify the SR relationships under different regimes for 
environmental and fishery management interventions. A bootstrap re-sampling 
scheme is also proposed to address the lack of uncertainty estimation in the 
machine-learning methods. The scheme produces a sampling probability 
distribution for the SR parameters related to fishery management policies so that 
the associated uncertainty measures (such as, variance, standard error, or 
confidence interval) can be obtained. Two SR applications: 1) southeast Alaska 
(SEAK), USA, pink salmon, and 2) west coast Vancouver Island (WCVI), BC, 
Canada, herring, are examined to demonstrate the advantages of this new model to 
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the traditional approaches. In both examples, the annual mean sea-surface 
temperature (SST) is incorporated as an environmental intervention.    

19.2
Fuzzy Stock-Recruitment Model 

19.2.1                                                                                                 
Traditional Stock-Recruitment Model 

SR analysis begins with the assumption of a functional relationship, denoted by 
F( ), between spawners and recruitment: 

Rt = F(St, )                                       (19.1) 

where Rt and St are the corresponding recruits and spawners at brood year t (t=1, 
, n),  is a vector of parameters associated with this relationship and usually 

is associated with the fishery management policy. The Ricker model (1975) 
(hereafter referred to as Ricker-SR) is the most commonly used form in the 
fisheries literature: 

Rt = St exp(a - b St ) exp( t)                                     (19.2) 

where a is the parameter measuring fish stock reproductive performance at low 
stock size with exp(a) the maximum recruits per spawner and b is the parameter 
representing density-dependence in juvenile survival rate; and t is a normally 
distributed “process” error with mean 0 and standard deviation .  This model can 
be linearized as: 

yt =
t

t

S
R

log = a - b St  + t .                                     (19.3)

The parameters a and b can be estimated by simple least-squares regression. 
Having estimates of a and b, fishery management parameters, such as the optimal 
stock size at maximum sustainable yield (MSY), SMSY, and harvest rate, MSY, can 
be calculated for species that die after spawning based on the formulations from 
Hilborn (1985), Hilborn and Walters (1992) and Quinn and Deriso (1999): 
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b
aaSMSY

)07.05.0(
 and   )07.05.0( aaMSY .

                   (19.4)

There is an increasing awareness that changes in environmental and fishery 
conditions can impact SR relationships. It is now known that fishery SR 
relationships have been masked by environmental and fishery management 
interventions. Fish recruitment is not only related to numbers of spawners in the 
parental generation, but is also influenced by environmental factors (e.g. sea 
surface water temperature and salinities) controlling natural survival and fisheries 
(Koslow et al. 1986; Ware and McFarlane 1995; Ware 1996; Ryall et al. 1999; 
Chen and Ware 1999; Chen et al. 2000).  Therefore, the means to incorporate 
these interventions into SR analysis and to classify the SR relationships for 
different environmental regimes are becoming increasingly important. The 
procedures to incorporate these interventions into the SR analyses are summerized 
in Chen and Irvine (2001). This paper will be concentrated on the classification of 
the SR relationship into different regimes. The commonly used approach in the 
classification is to subset the SR relationships with various types of average for 
the classification of the intervention (such as by SST, salinity) (hereafter referred 
to as crisp classification). For example, Ware (1996) utilized the long-term time 
series average of the environmental factor (e.g. SST) to categorize the SR into two 
different regimes: “Warm Years” and “Cool Years”. Schweigert and Noakes 
(1990) briefly discussed discriminant function models for the “Poor”, “Average” 
and “Good” recruitment groups, which is obtained by ranking the recruitment 
from the lowest to the highest and assigning first one-third SR data to the “Poor” 
subgroup, the middle one-third to the “Average” subgroup and the last one-third to 
the “Good” subgroup. The very same classification was used in Hyatt at al. (1994) 
in the forecast and assessment for Barkley Sound sockeye from British Columbia, 
Canada. Four fundamental problems originated from these crisp approaches. 
Firstly and most importantly, the data observed for the environmental variable 
might be just a short time series of the real world representations and the crisp 
classifications based on the observed data have high possibility for 
misclassification. Secondly, the crisp approach oversimplifies the natural 
characteristics of the environmental interventions and it is easy to misclassify 
those years close to the thresholds. Using the SST data from the west coast of 
Vancouver Island as a simple example, since the long-term time series average for 
SST is 10.45°C (Fig. 19.1), then the years of 1982 and 1991 with SST of 10.40°C 
and 10.42°C, respectively, would be classified as “Cool Years” and the years of 
1961, 1962 and 1977 with SST of 10.47 °C, 10.50°C and 10.54°C would be 
classified as “Warm Years”. The misclassification could even be serious for the 
years with SST of 10.45°C since it would be difficult to classify them into either 
category. Thirdly, this approach embedded the disadvantage that the information 
from SST is ignored in the process of fitting the data using equation (19.3). And 
finally, with this crisp classification, the SR data from the “Warm Years” are not 
used in fitting the SR model to the data from “Cool Years” and verse visa. 
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Figure 19.1. Time series of the annual mean sea surface temperature (°C) at 
Amphitrite Point, west coast of Vancouver Island. The horizontal line is the long-
term time series average. Note year 1977 is the year for the transition to the 
current warm climate regime. 

In general, most of these environmental factors are intrinsic fuzzy terms and 
there is no crisp and clear break point for the classification. Therefore a fuzzy 
logic approach should lead to an improved SR analysis.

19.2.2                                                                                                      
Fuzzy Stock-Recruitment Model 

A fuzzy logic model is also known as a fuzzy inference system or fuzzy-rule-
based system. Basically, any fuzzy logic model consists of three parts, which are 
the fuzzy membership functions, fuzzy decision rules, and the fuzzy reasoning. 
Several types of fuzzy reasoning have been developed in the literature (Bandemer 
and Gottwald 1995; Lee 1990).  Following the traditional SR model (19.3), a 
fuzzy logic SR model (hereafter referred as Fuzzy-SR) is proposed in this paper to 
model and classify the fish SR relationship. Without loss of generality, the 
description of this Fuzzy-SR model is restricted to only two environmental 
regimes, i.e. such as “Cool” and “Warm”. The extension to any number of regimes 
can be easily made with corresponding modifications to the fuzzy membership 
functions, fuzzy decision rules, and the fuzzy reasoning. 
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19.2.2.1                                                                                                  
Fuzzy Membership Function (FMF) 

Corresponding to the traditional treatment for the environmental variables in the 
SR analyses, only SST is used as fuzzy input and the stock spawner biomass (S) 
and recruitment (R) are kept as crisp variables.  

The logistic membership function for the input variable SST is used for the 
fuzzy partition as “Cool” and “Warm”. Specifically the symmetrical membership 
functions for “Warm” and “Cool” are defined as:   

)](exp[1
1),,(

SST
SSTFMFWarm ;                                (19.5)

)](exp[1
1),,(
SST

SSTFMFCool                                  (19.6)

where parameter  is used to describe the mean SST and parameter  is used to 
describe the slope of the membership function (Fig. 19.2). It can be easily shown 
that  

FMFWarm(SST, ,  ) + FMFCool(SST, , ) =1. And if ,
FMFWarm(SST, ,  )  I (SST- ) and  FMFCool(SST, , )  I (  -SST) where 
I(x) is the indicate function defined as I(x) = 0 if x<0 and I(x) =1 if x 0.

It is worth noting that for this case, the fuzzy implications of equations (19.5) 
and (19.6) return to the crisp classification, which is that if SST is lower than the 
long-term time-series average ( ), SST is “Cool”, otherwise, it is “Warm” (the 
dashed line in Fig. 19.2). Therefore, the Fuzzy-SR model is an extension of the 
traditional SR model (Ware 1996; Schweigert and Noakes 1990; Hyatt at al. 1994) 
(hereafter referred as Crisp-SR).  



  D.G. Chen 390

Figure 19.2. a) is the fuzzy membership function of “Warm” for SST (WCVI 
herring stock) after the hybrid optimization with resultant estimates:  = 0.49 and 

 = 20.82; b) is the fuzzy membership function of “Warm” for SST (SEAK pink 
salmon stock). The dashed line in both plots illustrates the crisp classification of 
“Warm” based on the long-term time series average (i.e. “Cool Years” if SST is 
less than the average, otherwise, “Warm Years”). 

19.2.2.2                                                                                                     
Fuzzy Rules 

There are two fuzzy rules that are totally determined by the choice of the fuzzy 
membership functions defined in Section 19.2.2.1.  In general form, each fuzzy 
rule is written as: 

 Rule 1: If SSTt is “Cool”, then yt = a1 - b1 St;                                     (19.7)

  Rule 2: If SSTt is “Warm”, then yt = a2 - b2 St;                                   (19.8)

where a1, a2, b1 and b2 are fuzzy parameters to be estimated. In fact a1 and a2 are 
the parameters corresponding to the “Cool” and “Warm” regimes to measure fish 
stock reproductive performance at low stock size. Furthermore, exp(a1) is the 
maximum recruits per spawner for the “Cool” regime and exp(a2) the maximum 
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recruits per spawner for the “Warm” regime. The parameter b1 and b2 represent 
density-dependence in juvenile survival rate in “Cool” and “Warm” regimes,  

respectively. The function yt = 
t

t

S
R

log , t =1 to n, is the log-transformed stock  

productivity.  With the rules defined in (19.7) and (19.8), the “consequent” parts 
of the two fuzzy rules are defined by the non-fuzzy equations of the stock spawner 
biomass, which is similar to the definition given by Takagi and Sugeno (1983). 

19.2.2.3                                                                                                       
Fuzzy Reasoning 

With the above “implications” Rule i (i  = 1 to 2) and for any observed SSTt and 
corresponding St (the fish spawner biomass), the model value of y is then inferred 
from the following steps: 

Step 1: The firing level (weight) for Rule i is computed by: 
  Rule 1:   1-wt= FMFCool(SSTt, , )

Rule 2:    wt= FMFWarm(SSTt, , ) ; 

Step 2: For each Rule i, tiŷ is calculated by the function defined in (19.7) and  
(19.8): 

tiŷ  = ai - bi St

Step 3: The final output of the Fuzzy-SR system, tŷ , that is inferred from the two 
rules is computed by the weighted average defuzzification method as 

21 ˆˆ)1(ˆ ttttt ywywy .                                    (19.9)

This process is summarized in Table 19.1. With the defined Fuzzy-SR model, 
the parameters from the FMF (e.g. , ) as well as fuzzy parameters (a1, a2, b1 and
b2) can be estimated by any optimization procedures. 
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Table 19.1. Fuzzy reasoning process. Column “Implication Premise” describes 
the fuzzy membership function for SST under two fuzzy rules; column 
“Consequence” is the value calculated from each consequence for the inputs and 
corresponding parameters, and column “Weight” is calculated from the fuzzy 
memberships from the input. 

         Implication  Premise             Consequence             

Weight   
          Cool   
              
     R1  0.4          y1 = a1 - b1 S                  1- w = 0.4 
                 
              Warm     
                         y2 = a2 – b2 S                      w = 0.6  
     R2

  0.6      

    

        SST  
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19.3
Hybrid Optimal Learning and Bootstrap Re-sampling 
Algorithms

The objective for the learning algorithm is to optimize some error measures (or 
energy functions), which is mostly the sum of squares of errors (SSE): 

   E( , ; a1, a2, b1, b2 ) = 
n

t
tt yy

1

2ˆ  = 

n

t
ttttt SbawSbawy

1

2
2211 )()()1( ,                      

                                                                                                                   (19.10) 

where yt is the observed fish recruitment biomass and tŷ  is the Fuzzy-SR 
modelled value from (19.9), which is a function of unknown parameters ,
(from the FMF of SST) and a1, a2, b1, b2 (fuzzy parameters). The estimation of 
these parameters is obtained from minimizing (19.10), which is equivalent to the 
classical non-linear least-squares estimation (LSE). However, it is well known that 
it is difficult to find the global optimal set of parameters, especially when there are 
a large number of local minima. In such instances, conventional mathematical 
search algorithms are likely to converge on some local minima, instead of the 
global minima. In the search for a better optimal algorithm, Chen et al. (2000) 
discussed the application of genetic search algorithms to SR fitting and 
forecasting. Although genetic search algorithms are global optimization 
algorithms, it has been found that the algorithms do require a large amount of 
computer time to find the global optima. In a situation requiring bootstrapping 
which includes re-sampling the SR data for a large number of times, the genetic 
algorithms do not seem practical. In this paper, a hybrid optimal learning 
algorithm which combines the gradient descent and linear least-squares estimation 
(LSE) is adopted to search for the global optima and also for the bootstrap re-
sampling procedure.     
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19.3.1                                                                                                   
Hybrid Optimal Learning Algorithms 

The gradient method is the basic learning algorithm for any optimization (Press et 

al. 1988). To implement the gradient descent, the error rate,
P
E

, needs to be 

calculated for each parameter (P = , , a1, a2, b1, b2), which can be easily 
obtained from equation (19.10).  Then, the optimal parameter estimate can be 
learned as: 

P(k+1) = P(k) - )(kP
E

,                                                   (19.11) 

where P(k) indicates the kth updates for parameter P and  is a learning rate to vary 
the speed of convergence. However, the gradient descent method is notorious for 
its slowness to converge and tendency to be trapped in local minima if there is no 
prior information for the parameters.   

Because of the linearity of the fuzzy rules in (19.7) and (19.8), the gradient 
descent learning algorithm can be combined with the linear LSE to calculate the 
global optima. It can be seen from equation (19.10) that for fixed parameters 
and , the minimization of (19.10) to obtain the parameter estimates for a1, a2, b1
and b2 is equivalent to the linear LSE, which is: 

     
Y = XB,                                       (19.12)

where Y = (y1, , yn)  is a n  1 vector of observed fish stock productivity indicate   

defined  as yt =
t

t

S
R

log , B = (a1, b1, a2, b2) , is an 4  1 parameter vector, and  

          X   =      

nnnnnn SwwSww

SwwSww

,,)1(,1

,,)1(,1 111111

,  is a n  4 matrix  
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constituted by observed fish spawner biomass and known parameters  and 
from FMF. The global optimal parameter estimate can be obtained from: 

YXXXB ')'(ˆ 1 ,                                     (19.13)

under the assumption that XX '  is non-singular. Otherwise B̂ in (19.13) 
becomes ill-defined.  To deal with this problem, the sequential method (Goodwin 
and Sin 1984; Strobach 1990) is adopted here. Specifically this calculates 
iteratively the following sequential formulas: 

1,,1,0,
1

)(

1
'

1

'
11

1

'
1111

ni
xVx
VxxV

VV

BxyxVBB

iii

iiii
ii

iiiiiii

                 

                                                                                                                  (19.14)

where iV is called the covariance matrix and '
ix is the ith row vector of matrix X. 

The initial conditions for the sequential equations (19.14) are B0 = 0 and V0 =  I,
where  is a large positive number and I is the 4  4 identity matrix. The LSE for 
B̂ is then equal to Bn in (19.14). 

It is well known that the LSE for parameters: a1, a2, b1 and b2 are the global 
optima for (19.10) if the FMF parameters  and  are known in advance. 
However, according to the definition of FMF (19.5) and (19.6),  is the parameter 
to describe the long-term time series average and  is the parameter to describe the 
slope of the logistic curve. Therefore there is good prior knowledge to be used for 
the initial values and there is a high possibility to reach the global optima. Now 
the hybrid optimal algorithm to learn the global optima for the FMF and fuzzy 
parameters can be initialized to combine the steepest gradient descent method and 
the linear LSE as follows. Each iteration of this hybrid learning procedure consists 
of a forward pass and a backward pass. In the forward pass, the initial values for 
and  are initialized and the observed data for (St, Rt, SSTt) are specified for a 
forward calculation to get X and Y in equation (19.12). Then the optimal estimates 
for fuzzy parameters: a1, a2, b1 and b2 can be attained by the sequential LSE in 
(19.14). After attaining fuzzy parameters: a1, a2, b1 and b2, the calculations keep 
going forward until the SSE in (19.10) is obtained. Then in the backward pass, the 
error rates for  and  propagate from the output end toward the input end, and the 
estimates for  and  are updated based on the steepest gradient descent (19.11).  

The proposed hybrid learning algorithm is guaranteed to find the global optima 
for the fuzzy parameters (i.e. a1, a2, b1 and b2) and also the FMF parameters (i.e. 
and ) if reasonable prior knowledge is available for the fuzzy membership 
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function, which is most often the case.  In fact, this hybrid learning algorithm not 
only decreases the dimension of the search space in the gradient method, but it 
also substantially reduces the convergence time. 

19.3.2                                                                                                    
Bootstrap Re-sampling Procedure 

For any reasonable and intelligent fisheries management implementation, it is 
wise and prudent not only to give a point estimate for the fishery policy 
parameters, but also to give a measure of the uncertainty for these management 
policy parameters.  The most commonly adopted measures are the standard errors, 
confidence interval and even a probability distribution. Of course, if the 
probability distribution can be obtained, the associated standard error and 
confidence interval can be readily calculated. However, to my knowledge, this is 
not a common practice in most machine-learning methods. To address the lack of 
uncertainty estimation in the machine-learning models (the Fuzzy-SR model in 
this paper), a bootstrap re-sampling scheme is proposed to produce a sampling 
probability distribution for the stock parameters related to fishery management 
policies so that the associated variance (or standard error) and confidence interval 
can be obtained since bootstrap resampling is widely used to obtain such sampling 
distributions. Efron and Tibshirani (1993), Shao and Tu (1995), and Davision and 
Hinkley (1997) provide extensive theoretical backgrounds and plenty of examples.  

In general, the available data (St, Rt, SSTt) to the Fuzzy-SR model can be 
treated as either deterministic or random variables. In the case of deterministic 
variables, the residuals ttt yy ˆ , are assumed to be identically independently 
distributed (i.i.d.) with a zero mean and a constant variance of 2.  In the case of 
random variables, data (St, Rt, SSTt) are assumed to be i.i.d. with E( t|St, SSTt)=0. 
The above assumptions correspond to two different types of settings for bootstrap 
resampling (Tibshirani 1994). One setting treats the inputs as fixed based on the 
deterministic variables (St, SSTt) with the model residuals ttt yy ˆ  as the 
sampling units, which are called bootstrap residuals. The other setting treats each 
data point (St, Rt, SSTt) as a sampling unit, which is commonly called bootstrap 
pairing. Since most SR data are intrinsically auto-correlated based on the spawner 
and recruitment interactions, then the bootstrap residuals would be more 
appropriate with the diagnostics of the residuals from the Fuzzy-SR model. This 
bootstrap residuals re-sampling strategy involves following steps: 

Step 1: Construct the Fuzzy-SR model from Section (19.2.2) from the original 
SR data (St, Rt, SSTt; t=1 to n) and obtain the parameter estimates (i.e. a1, a2, b1,
b2,  and )  from the hybrid optimal  learning algorithm in Section (19.3.1); 

Step 2: Calculate the residuals, ttt yy ˆ .  Perform the residual diagnostics 
for independence and homogeneity.  If the residuals are identically independently 
distributed (i. i. d.) with a zero mean and a constant variance of 2, then go to Step
3. Otherwise, go back to Step 1 with a proper transformation for the SR data; 
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Step 3: Randomly draw an i. i. d. sample { *t }n
t=1 with replacement from 

the residuals ttt yy ˆ  and construct the matrix X and  Y* =  [y*1,…,y*n ]  in 

equation  (17.12) with  y*t   = t + *t , t = 1,…,n; 
Step 4: Using the procedure from (19.14) to get a new set of parameter vector 

B=(a1, a2, b1, b2) with the resampled data; 
Step 5: Repeat Step 3 to Step 4 a large number of times, say, N, (with 1000 as a 

suggested number of repeats).  
The above steps will yield a sample for the Fuzzy-SR parameter vector as B1,
, BN.  This sample can be used to construct a sampling distribution for the SR 

parameters: a1, a2, b1 and b2. The sampling distributions can then be obtained for 
the fishery management policy parameters, such as MSY spawner, SMSY and MSY 
exploitation rate, u MSY from equation (19.4).   

19.4
Two Real Data Analyses 

19.4.1                                                                                                              
West Coast Vancouver Island Herring Stock 

19.4.1.1                                                                                                       
Data Prescription and Preliminary Analyses  

It was found from a long-term research program of the west coast of Vancouver 
Island (WCVI), British Columbia herring stock that the SST (in year t-3) has 
profound impact on the biomass of 3-year old herring recruits (in year t) along 
with the biomass of spawners (i.e. parents) in the year in which the recruits were 
born (Ware 1991; Ware and McFarlane 1995; Chen and Ware 1999).  
Temperature is believed to be a proxy “signal” which reflects inter-annual 
variability in the relative biomass of larval and juvenile herring predators, and 
possibly some important components of the herring food supply. In general, cooler 
(warmer) temperatures tend to produce larger (smaller) recruitments 3-years later.  
This negative correlation between the SST and the biomass of WCVI herring 
recruits has been a consistent feature of the recruitment time series, since Tester 
(1948) discovered it about 50-years ago.  Recent work indicates that the 
relationship between parent spawners and recruits is masked by the temperature 
effect (Ware 1996; Chen and Irvine 2001). The underlying dome-shaped SR 
relationship becomes apparent if the recruitment data are sorted into two groups: 
year-classes born in years of above average temperature, and year-classes born in 
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years of below average temperature (Fig. 19.3a).  For each group there is a 
significant Ricker-like relationship between spawner and recruit biomass.  

Figure 19.3. a) is for the Crisp-SR model. The bullets ( ) are the SR data 
corresponding to the “Warm Years” and the circles ( ) are the SR data 
corresponding to the “Cool Years”.  The lines from the top to the bottom are the 
fitted lines from Ricker model for the “Cool Years”, all data combined and “Warm 
Years”. b) is for the Fuzzy-SR model. The bullets ( ) are the SR data with the 
radius in proportion to the magnitude of SST in that the higher the SST, the larger 
the radius.  The lines in the top and the bottom are the Fuzzy-SR model fitted lines 
and the line in the middle is the fit from the simple Ricker model to all data 
combined.

19.4.1.2                                                                                                  
Fuzzy-SR Model Analysis 

To implement the Fuzzy-SR model, the input data SST for the fuzzy operation is 
re-scaled from 0 to 1.  The fuzzy membership function is illustrated in Figure 
19.2a corresponding to the re-scaled data. This FMF in Fig. 19.2a is also 
standardized to the range 0 to 1 with FMFWarm(0, , )=0 and with FMFWarm(1, ,

)=1. Following the Fuzzy-SR model described in Section (19.2.2), the fuzzy 
parameters (a1, a2, b1 and b2) and FMF parameters (  and ) are learned from the 
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procedures described in Section 19.3. In the optima learning process, the initial 
value for the centre-parameter  is chosen to be the long-term time series average 
and initial slope parameter  is chosen to be 200 to reflect the crisp classification. 
Figure 19.3b) illustrates the performance of the Fuzzy-SR model. The estimated 
parameters as well as the summary statistics are summarized in Table 19.2. For 
comparison, a Ricker SR model was also fit to the data.  

Table 19.2. Summary of the model fits from the Ricker SR model (Ricker-SR), 
the SR model with crisp classification (Crisp-SR) and the fuzzy SR model in this 
paper (Fuzzy-SR). For Ricker-SR, there is only one set of a and b, which is placed 
under a1 and b1 in the table.  The value inside the bracket is the estimated standard 
error, which is obtained from the simple linear regression for Ricker-SR and 
Crisp-SR. The standard error for Fuzzy-SR is the calculated standard error from 
the bootstrap sample. NA indicates that the value is not applicable. In the table 
RMSE is the rooted mean squares of errors, AIC is value from Akaike information 
criterion and r is the correlation coefficient. 

A comparison of the results produced by the three different models is 
summarized in Table 19.2. The model comparison is based on three criteria. The 
first is the estimated root-mean-square-error (RMSE) in which the smaller the 
RMSE, the better the model fit. The second criterion is the well-known Akaike 

Ricker-SR Crisp-SR Fuzzy-SR Ricker-SR Crisp-SR Fuzzy-SR

RMSE 16.18 12.13 10.98 5828.16 5004.98 4709.74

AIC 221.13 202.69 198.92 524.23 519.09 515.44

r -0.12 0.58 0.68 0.43 0.64 0.68

a1
0.62       

(0.25)
1.17     

(0.23)
1.47      

(0.23)
1.05    

(0.28) 
0.57     

(0.48)
0.52      

(0.33)

b1
2.97E-2    
( 6.2E-3)

2.97E-2   
(4.90E-3) 

3.16E-2   
(4.90E-3)

5.52E-5    
(7.89E-5)

2.58E-6   
(1.52E-4) 

1.23E-4   
(1.07E-4)

a2 NA
0.70     

(0.37)
0.54     

(0.29)
NA

1.49    
(0.31)

1.72     
(0.28)

b2 NA
5.40E-2   

(1.20E-2)
5.46E-2   

(9.47E-3)
NA

1.03E-3   
(8.15E-4)

6.82E-5   
(7.59E-5)

NA NA 0.49 NA NA NA

NA NA 20.82 NA NA NA

WCVI Herring SEAK Pink
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information criterion (AIC) (Sakamoto et. al. 1986) to penalize MSE from the 
number of the model parameters. When using AIC criterion to compare the model 
fit, the smaller the AIC, the better the fit. The third criterion is the correlation 
coefficient (r).  From all these three criteria, the Fuzzy-SR model produced the 
best fit to the original recruitment time series. The Crisp-SR model performed 
better than the Ricker-SR model, which is consistent with the results obtained by 
Ware (1996).

Table 19.3. Summary statistics of the bootstrap re-sampling distributions 
corresponding to two different environmental regimes: “Cool” and “Warm”. The 
column “Model” represents the estimate from the Fuzzy-SR model, “Mean” is the 
mean for the 1000 bootstrap samples and “CI” is the 95% sample confidence 
interval obtained from 2.5% and 97.5% sample quantiles.  

19.4.1.3                                                                                                
Bootstrap Re-sampling Analysis 

The residuals from the Fuzzy-SR model are diagnosed for the independence and 
homogeneity.  The independence for the residuals can be checked by the time 
series autocorrelation function (Box et. al. 1994) and the homogeneity of residuals 
can be identified from the residual plot and also the Kolmogorov- Smirnov 
goodness-of-fit test. For this data, there is no violation for the assumptions. 
Therefore the bootstrap residuals procedure in Section (19.3.2) is legitimate to 
carry out for N = 1000 times. The bootstrap sampling distributions for the Fuzzy- 
SR parameters: a1, a2, b1 and b2 are illustrated in Fig. 19.4 (the first two rows in 
Fig. 19.4). These bootstrap samples can be readily used to obtain the uncertainty 
estimate, such as confidence intervals and standard errors (Table 19.3).   

Model M ean CI Model Mean CI

a1 1.47 1.46 (0.98, 1.92) 0.52 0.61 (0.103, 1.3)

b 1 3.16E-02 3.13E-02 (2.28E-2, 4.07E-2) 1.23E-04 1.55E-04 ( 6.12E-6 ,3.98E-4) 

SMSY NA NA NA 1960 1808 (484, 3770)

MSY NA NA NA 0.24 0.27 (0.05, 0.53)

a2 0.54 0.59 (0.64,1.17) 1.72 1.84 (1.36, 2.49)

b2 5.46E-02 5.61E-02 (3.38E-2, 7.61E-2) 6.82E-05 1.03E-04 (5.27E-6 ,2.91E-4) 

SMSY NA NA NA 9573 8589 (2670, 24600)

MSY NA NA NA 0.65 0.68 (0.55, 0.81)

WCVI Herring SEAK Pink

Cool

Warm
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Figure 19.4. Bootstrapping sampling distributions for fuzzy parameters: a1, b1 ,
a2, b2, a1 -a2 and b1 - b2 from 1000 bootstrap samples. In each plot, the line at the 
top of the histogram bars is the kernel density estimate of the probability density 
function. The horizontal line with open arrows in the end denotes the 95% sample 
confidence interval. The sample means from the bootstrap samples are marked as 
the dashed vertical lines. The vertical solid lines for the first two rows are the 
parameter estimates from the Fuzzy-SR model. The vertical solid lines for the last 
row are from zero to test whether the difference between the two parameters is 
statistically significant. 

In Fig. 19.4, the 95% confidence intervals are marked by the horizontal lines 
with open arrows and the sample standard errors for the fuzzy parameters are also 
listed in Table 19.2. It can be seen from Table 19.3 and also Fig. 19.4 that all the 
model parameters are statistically significant.  

Furthermore these bootstrap samples can be used to test the significance of the 
environmental impact on SR relationships from different environmental regimes. 
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This is carried out by testing the difference of the Ricker a and b between the 
“Warm” and “Cool” regimes.  The last row in Fig. 19.4 is the distributions for a1-
a2 and b1-b2 marked with the 95% confidence intervals, which are (0.034, 1.62) 
and (-0.045, -0.004), respectively.  Since both intervals do not cover zero, then the 
differences for a1-a2 and b1-b2 are statistically significantly different. Specifically 
WCVI herring is more productive and less density-dependent in “Cool” regime 
than in “Warm” regime (a1 is significantly larger than a2, and b1 is significantly 
less than b2).  

19.4.2                                                                                                  
Southeast Alaska Pink Salmon  

19.4.2.1                                                                                                       
Data Description and Preliminary Analysis 

Detailed data descriptions and preliminary analyses for Southeast Alaska (SEAK) 
pink salmon (Oncorhynchus gorbuscha) can be found from Quinn and Deriso 
(1999, p104–123). The SR time series is reproduced in Figure 17.5. To account 
for some of the unexplained variation in recruitment, Quinn and Deriso introduced 
an environmental factor: average annual sea surface temperature (SST) off Sitka, 
Alaska into the analysis. They found that a Ricker climatic SR model produced a 
statistically significant fit to the recruitment time series.  
In order to determine the impact of different environmental regimes, these SR data 
are sorted into two subclasses: year- classes born in years of above average SST, 
and year-classes born in years of below average SST (Fig. 19.5a).  The Crisp-SR 
approach is then fitted to these two data sets. It is found that there exist two 
different SR relationships with the stock productivity parameter for “Warm Years” 
1.49 and “Cool Years” 0.57. Also the Crisp-SR model fits better than the Ricker-
SR model, which is concluded from a decrease in the RMSE and an increase in the 
correlation coefficient (r)  (Table 19.2). 
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Figure 19.5. a) is for the Crisp-SR model. The bullets ( ) are the SR data 
corresponding to the “Warm Years” and the circles ( ) are the SR data 
corresponding to the “Cool Years”.  The lines from the top to the bottom are the 
fitted lines from Ricker model for the “Cool Years”, all data combined and “Warm 
Years”. b) is for the Fuzzy-SR model. The bullets ( ) are the SR data with the 
radius in proportion to the magnitude of SST in that the higher the SST, the larger 
the radius.  The lines in the top and the bottom are the Fuzzy-SR model fitted lines 
and the line in the middle is the fit from the simple Ricker model to all data 
combined. In both plots, the SR data is in unit of 1000 fish. 

19.4.2.2                                                                                                  
Fuzzy-SR Model Analysis 

The same procedure described in Section 19.4.1.2 is carried out for these data. It 
was found that the estimate for  is close to zero from the hybrid optimal learning 
algorithm, which leads to a simplified FMF defined as wt = FMFWarm(SST) = SST 
for the standardized SST (Fig.19.2b). For this FMF, there are no FMF parameters 
associated with it. Then the learning algorithm discussed in Section (19.3.1) is in 
fact the linear LSE, which is a global optimization to estimate the fuzzy SR 
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parameters (a1, a2, b1 and b2). Figure 19.5b) illustrates the performance of the 
Fuzzy-SR model and the estimated parameters as well as the summary statistics 
are summarized in Table 19.2.  The Fuzzy-SR model produced the best fit to the 
original recruitment time series based on the estimated root-mean-square-error 
(RMSE), AIC and the correlation coefficient (r). The Crisp-SR model performed 
better than the Ricker-SR model. 

19.4.2.3                                                                                                 
Bootstrap Re-sampling Analysis 

The residual diagnostics do not show any violation for the assumption of 
independence and homogeneity. Then the bootstrap residuals procedure in 
Section (19.3.2) is carried out for N = 1000 times to generate the bootstrap 
samples for the Fuzzy-SR parameters (a1, a2, b1 and b2). These bootstrap samples 
can be readily used to obtain the uncertainty estimate, such as confidence intervals 
and standard errors (Table 19.2 and Table 19.3).  In addition, these samples can be 
used to test the significance of environmental impact  (SST) on this stock (the first 
row in Fig. 19.6). It can be concluded that the SST has highly significant impact 
on this stock and the productivity parameter increased from 0.52 in “Cool” regime 
to 1.72 in “Warm” regime.   

Furthermore, the associated management policy parameters SMSY and MSY can 
be readily calculated from equation (19.4) based on the bootstrap samples (Table 
19.3). The resultant sampling distributions are illustrated in Fig. 19.6 (last two 
rows).  It is also apparent that the distributions for these parameters are not exactly 
normal.  

19.5
Summary and Discussion 

The Fuzzy-SR model developed in this paper for SR analysis was based on 
extensions of the traditional Ricker model (Ricker-SR) and the Ricker model with 
crisp classification for the selected environmental variable (Crisp-SR). This 
approach can be naturally extended to any other form of SR models, such as the 
Beverton-Holt; Cushing; Deriso-Schnute and Shepherd listed in Quinn and Deriso 
(1999).  Although the Fuzzy-SR model in this paper was illustrated by only one 
environmental variable (i.e. SST), it can be easily adapted to classify more 
environmental factors (such as salinity) and any fishery intervention factors. 
Unlike traditional SR models, Fuzzy-SR adapts the fuzzy logic decision algorithm, 
which helps to classify underlying empirical relationships. This enables more 
reasonable parameter estimates and consequently better advice for fisheries 
management. To address the lack of suitable uncertainty estimation in the fuzzy 
logic machine-learning method, a bootstrap re-sampling approach was proposed to 
make statistical inference for the SR parameters, to develop distribution plots for  
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Figure 19.6. Bootstrapping sampling distributions for a1 - a2, b1 - b2, SMSY and 
MSY for “Cool” and “Warm” regimes. In each plot, the line at the top of the 

histogram bars is the kernel density estimate of the probability density function 
and the vertical dashed line is the sample mean. The horizontal lines with open 
arrows in the end denote the 95% sample confidence interval. In the first row, the 
vertical sold lines from zero is to use to test whether the difference between the 
two parameters is statistically significant. In the last two rows, the vertical sold 
lines are the parameter estimates from the Fuzzy-SR model. 

the SR parameters productivity and capacity (i.e. a and b), and further to make 
inferences for fishery policy parameters. It was found that the resampling  
distributions for the stock parameters did not appear to be exactly normally 
distributed and therefore the approaches from Ricker-SR and Crisp-SR normally 
used to estimate SR parameters may not be appropriate. This serves as a warning 
for the use of simple regression statistics in SR analysis. 

This Fuzzy-SR model is evaluated for two independent sets of fish stocks. The 
model is capable of classifying the effects of environmental interventions on the 
SR process based on the fuzzy logic algorithms. Fuzzy logic operations are used to 
categorize the input/output information on environmental intervention (SST) into 
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fuzzy sets with an associated degree of membership function based on Takagi and 
Sugeno (1983). The inherent uncertainties in the environmental data were taken 
into account by the fuzzification process.  The Fuzzy-SR model is capable of 
empirically approximating the underlying SR relationship, and can also provide a 
crisp and simple functional relationship among the inputs and output according to 
the fuzzy rules (two in this application). An important feature of the Fuzzy-SR 
model is that the functional SR relationships described by the fuzzy rules can be 
chosen to more realistically describe the biological processes that affect 
recruitment.  

Accordingly, the Fuzzy-SR model with the bootstrap resampling algorithm can 
be a useful tool for stock recruitment analysis to fish population.
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Chapter 20 

20. Computational Assemblage of Ordinary 
Differential Equations for Chlorophyll-a Using a 
Lake Process Equation Library and Measured 
Data of Lake Kasumigaura
N. Atanasova · F. Recknagel · L. Todorovski · S. Džeroski · B. Kompare

20.1 Introduction 

Lake ecosystems are highly complex dynamic systems. Modelling of such 
ecosystems is ongoing challenges scientists, who continue to gain better 
understanding of ecological processes in order to more realistic simulate 
ecosystem behaviours. Two basic modelling approaches can be distinguished: the 
deductive, knowledge driven approach resulting in deterministic models, and the 
inductive, data driven approach exploring candidate models and match them with 
measured data resulting in empirical models. 

Deterministic models are typically represented by ordinary differential 
equations (ODE) which are being applied to lake ecosystems since the 1970s  (e.g. 
Straskraba and Gnauck 1984; Recknagel 1989; De Angelis 1992; Chapra 1997; 
Jorgensen and Bendoricchio 2001). If applied to real lake data ODE can be well 
adjusted and interpreted in the context of the domain due to their explicit 
causality. However, complex ecological processes are often not yet fully 
understood and therefore ODE are sometimes adapted to our incomplete 
knowledge resulting in simplified models.  

By contrast inductive models induced from the data by bio-inspired 
computation such as artificial neutral networks and evolutionary algorithms may 
rely heavily on the comprehensiveness of data. They have been demonstrated to 
be powerful predictive tools (e.g. Recknagel et al. 2002; Lee et al. 2005) but may 
still be limited in their representation and explanation.  

In this paper we apply an approach that combines both domain knowledge and 
data. The domain knowledge is gathered in a knowledge library, which is used to 
guide the process of induction from real data. The result is a set of elementary 
process descriptions for ODE that match basic principles of the domain of interest 
(Todorovski and Dzeroski, 2001; Langley et Al., 2002; Todorovski, 2003). In the 
early days of the development of these tools (Todorovski & Džeroski, 1997), the 
knowledge had to be provided as an explicit definition of the space of candidate 
models. Now, these tools allow the user to provide higher-level domain 
knowledge about building mathematical models of complex real-world systems.  
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In this paper we apply the combined modelling approach to Lake Kasumigaura 
(Japan) by utilising a library for process equations of lake domain knowledge and 
measured data. Previous research on modelling of lake Kasumigaura was based on 
artificial neural networks (ANN), genetic algorithms (GA) and evolutionary 
algorithms (EA). ANN was trained to predict the dominant algal genera 
(Recknagel et al. 1997; Recknagel et al. 1998; Wei et. al., 2001) and zooplankton 
abundance (Recknagel et al. 1998) in Lake Kasumigaura. GA was applied to 
induce predictive ODE for Chl-a (Whigham and Recknagel 2001) and EA to 
induce predictive rules for Chl-a in the lake (Bobbin and Recknagel 2001; 
Recknagel et al. 2002). In the context of this research we attempt to discover 
predictive ODE for the Chl-a by assembling and adapting process equations from 
a lake domain library.  

20.2
Methods and Material  

20.2.1                                                                                                   
LAGRAMGE: Computational Assemblage of ODE  

Fig. 20.1. An automated modeling framework based on the integration of 
domain-specific modeling knowledge in the process of equation discovery
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generic domain 
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for Lagramge 2.0
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The principal concept of computational assemblage of ODE by LAGRAMGE is 
shown in Fig. 20.1. After the modelling task has been defined and the lake data 
been specified domain knowledge is transformed from the library into a grammar. 
This grammar specifies the space of candidate models as illustrated in the left part 
side of Fig. 20.1. Once the grammar has been determined, LAGRAMGE is 
heuristically searching through the space of candidate models and testing each of 
them with measured data after fitting constant parameter values. These models are 
evaluated by means of two error measurements. One is mean square error (MSE) – 
it measures the discrepancy between measured data and data obtained by 
simulating the model. The other is minimum description length (MDL) function 
that takes into account model complexity. The function contains an additional 
term that introduces a penalty for the complexity of the equation.  Further details 
about the algorithm of LAGRAMGE  can be found in (Todorovski, 2003). 

20.2.2                                                                                                        
Domain Knowledge Library for Lake Ecosystems

In order to be used in the model induction procedure, the knowledge needs to be 
coded in the knowledge library. Todorovski (2003) developed the formalism for 
encoding the domain knowledge about lake ecosystems. Using this formalism 
Atanasova et al. (2004) developed a comprehensive knowledge library for lakes 
ecosystems. The library supports the construction of 0-dimensional N-box models, 
i.e., supports modelling of stratified lakes. The equations coded in the library are 
recruited from literature models developed for lakes, and can be assembled to 
different levels of ecosystem structures such as the simple Vollenweider model 
(Vollenweider, 1968) or the fairly complex model SALMO (Benndorf and 
Recknagel 1982; Recknagel and Benndorf 1982). For more details see Atanasova 
(2004). 

In general, the knowledge coded in the library can be conceptually presented as 
shown in Fig. 20.2, where only a part of the library is depicted. The boxes 
represent the types of state variables, whereas the arrows stand for ecological 
processes that influence the state variables. According to this diagram the library 
allows for modelling of dissolved inorganic nutrients (e.g. inorganic nitrogen, 
phosphorus and silica), primary producers (e.g. diatoms and green algae), 
secondary producers (e.g. zooplankton), dissolved organic matter and detritus. 
Processes, which are in the library, but not depicted on Fig. 20.2 are describing 
dissolved oxygen pathways such as aeration, oxygen production or consumption 
processes. 

The knowledge in the library is formalized in terms of the: (1) taxonomy of 
variable types, (2) taxonomy of basic processes that govern the behavior of the 
state variables, (3) alternative models of the basic processes, and (4) knowledge 
how to combine models of individual processes to a system of ODE for an 
ecosystem.  

Basic processes (arrows in Fig. 20.2) are declared as process classes. A process 
class represents different formulations of a certain basic process. For example, the 
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process that describes a primary producer growth (arrow no. 1 in Fig. 20.2) 
includes the exponential, logistic and limited growth models. Furthermore, the 
limited growth model includes different formulations growth functions limited by 
nutrients, light or temperature.  

According to the ODE for the state variables the classes of processes are 
combined by so-called combining schemes. Combining scheme of specific 
variable represent the all processes that may affect that variable. In other words, 
each combining scheme represents a differential equation for the specific state 
variable. Thus, the library contains six combining schemes for six dependant 
(state) variable types. 

Fig. 20.2. Generalized scheme of compartments and interactions
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variable variable_type ‘variable_name’ 

The word system in front of the word variable variable specifies a state variable.  
The process variables are defined by the word process, followed by the process  
name and the process arguments: 

process ‘process name’(argument1, argument2, ...) process_notation

Arguments represent the variables in the observed system that influence (or are 
influenced by) the specific process. They are used in the process formulations in 
the library. If some of the arguments in the process are considered as sets within 
the process then we put the names of those arguments into brackets {}. A set can 
contain none (empty), one or many variables (arguments) of the same type.  

Tab. 20.1. Declared variable types in the knowledge library 
Variable type Description dependant (state) / 

independent (forcing) 
type Concentration is real concentration of a substance generic 
type Light is real light intensity independent 
type Temperature is real temperature independent 
type Precipitation is real precipitations independent 
type Flow is real flow rate independent 
type Area is real contributing area of the incoming 

nutrients 
independent 

type Inorganic is Concentration dissolved inorganic nutrients dependant 
type Population is Concentration concentration of a population generic 
type Detritus is Population particulate dead organic matter dependant 
type Oxygen is Concentration dissolved oxygen dependent 
type Dom is Concentration dissolved organic matter dependant 
type Primary_producer is
Population

primary producers dependant 

type Animal is Population secondary producers dependant 

Fig. 20.3. Graphical presentation of variable types and sub-types in the 
knowledge library for lake modelling 

real non-
negative numbers: LightFlowTemperatureConcentration Precipitation

PopulationInorganic Oxygen Dom

AnimalPrimary_producers Detritus
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Thus, in order to correctly introduce the expert knowledge to LAGRAMGE we 
need to know the: (1) types of variables declared in the library and (2)  types of 
ecological processes declared in the knowledge library. The types of the variables 
in the knowledge library for lakes are given in Tab. 20.1. The type Concentration
is a generic variable type that is determined by sub-types of variables. It has four 
sub-types, i.e. Inorganic  representing the dissolved inorganic nutrients, 
Population representing particulate organic matter, Dom denoting a dissolved 
organic matter and Oxygen representing dissolved oxygen concentration. 
Population has again three sub-types – Primary_producers, Animal and Detritus.
The types of variables are schematically shown in Fig. 20.3. 

Tab. 20.2. Description of process’ definition in the knowledge library
 Process description Process name Arguments: types of 

variables involved in the 
process’ formulations 

Argument 
declared as 
Set: y/n 

1 Outflow of a substance 
from the system 

Outflow 1. Concentration 
2. Flow

n
n

2 Inflow of a substance to 
the system 

Inflow 1. Concentration 
2. Concentration 
3. Flow

n
n
n

3 Settling of a substance Sedimentation 1. Concentration 
2. Temperature 

n
y

4 Diffusion Diffusion 1. Concentration 
2. Concentration 

n
n

5 Growth of a primary 
producer 

PP_growth 1. Primary_producer 
2. Inorganic 
3. Temperature 
4. Light 

n
y
y
y

6 Predator prey 
interactions 

Feeds_on 1. Animal
2. Population 
3. Temperature 

n
y
y

7 Respiration of a primary 
producer 

Respiration_PP 1. Primary_producer 
2. Inorganics 
3. Temperature 
4. Light 

n
y
y
y

8 Respiration of an animal 
(sec. prod) 

Respiration_A 1. Animal
2. Temperature 

n
y

9 Natural mortality of a 
primary producer 

Mortality_PP 1. Primary_producer 
2. Inorganic 
3. Temperature 
4. Light 

n
y
y
y

10 Natural mortality of an 
animal (sec. prod) 

Mortality_A 1. Animal
2. Temperature 

n
y

11 Excretion from 
secondary producers 

Excretion_A 1. Animal
2. Temperature 

n
y

If we want to model interactions between several species (for example primary 
producer grazing on more then one nutrient) we need to declare sets of variables. 
Declaration of set Primary_producers of the type Primary producer is given below. 
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Please note the plural form of the set name, which is derived from the singular 
name of the variable type name:  

type Primary_producers is set(Primary_producer). 
The Tab. 20.2 includes the description of the majority of the processes declared 

in the knowledge library. In the first column the description of the ecological 
processes is given. The second column contains the processes’ names as they are 
declared in the library. The third and the fourth column give information about the 
arguments, i.e. the variables involved in the processes’ formulations. In the third 
column the types of the involved variables (arguments) are listed, whereas the 
fourth contains information whether the variable is included in the process 
declaration as set or not. 

For example, in line 5 the definition of the ecological process Growth of a 
primary producer is given. The process name is PP_growth and it has 4 
arguments. The first is of type Primary_producer and it represents the variable 
which the process refers to. The rest of the arguments are variables of types 
Inorganic, Temperature and Light. They are all declared in the library as sets. The 
statement in the task specification process PP_growth(phyto1, {ps}, {temp}, 
{llight}) growth, describes the growth of a primary producer phyto1. The process 
is influenced by single inorganic nutrient ps, temperature temp and light light
respectively. Living one of the brackets {} empty would indicate no influence by 
the variable which was left out. For instance definition of a growth process of 
phytoplankton (phyto1) that is influenced by two nutrients phosphorus (ps) and 
nitrogen (ns) and temperature (temp), but not light (light) limited would be:  

process PP_growth(phyto1, {ps, ns}, {temp}, {}) growth.
Note that this specific “Lake” knowledge library includes several formulations 

for each of the process classes in the task specification (Atanasova et al., 2004). 
For example the process class PP_growth contains five different models for 
primary producer growth, i.e. exponential, logistic, growth limited by temperature, 
light and nutrients, growth limited model that accounts for variable optimal 
temperature and growth limited model that couples the effects of light and 
temperature. Furthermore, light, temperature and nutrients limitations are defined 
as function classes that include several different formulations for each. Thus, we 
have more than fifty possible formulations for the PP_growth process, which are 
all correct from the standpoint of the used library and defined task. Similarly, we 
have several possible formulations for the rest of the process classes in this 
system.  

In order to find a model of a specific system with Lagramge we need (1) 
measurements of the state (dependent) and forcing (independent) variables that 
will be used in the optimisation procedure and (2) expert knowledge about the 
variables and processes, which will be used for determining the model structure. 
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20.2.3                                                                                                                 
Data of Lake Kasumigaura 

Lake Kasumigaura is a shallow lake in Japan with maximal depth of 7 m and 
average depth of 4 m. It has a volume of 662 million m3 and a surface area of 220 
km2. The hypereutrophic state of the lake causes blue-green algal blooms in 
summer and autumn with frequently high abundances of Microcystis and 
Oscillatoria. The Tab. 20.3 summarises the measured data of Lake Kasumigaura 
from 1986 to 1992 that were used as in a daily interpolated format in the context 
of this study.  

Tab. 20.3. Structure of the database of Lake Kasumigaura for 1986 to 1992

Limnological Variables Mean / Min / Max

PO4 g/l 14.16 / 1 / 235 
NO3 mg/l 0.52 / 0.001 / 2.39 
Si mg/l 3.29 / 0.015 / 12.49 
Chla g/l 74.5 / 0.69 / 279.5 
Water Temperature oC (WT) 16.37 / 2.1 / 32 
Solar Radiation Jcm-2 day -1 1281 / 65 / 3364 
Phytoplankton cells/ml 
Microcystis and Oscillatoria 
Scenedesmus 
Synedra
Zooplankton individuals/l 
Cladocera

28735 / 0 / 616666 and 17765 / 0 / 250775 
833 / 0 / 11648 

4990 / 0 / 75130 

157 / 0 / 1002

20.2.4                                                                                                
Experimental Framework 

In order to test the performance of the LAGRAMGE algorithm for the simulation 
of chlorophyll-a (chl-a) by means of ODE assembled and adapted to data from 
Lake Kasumigaura following experiments were designed and conducted:  
- Experiment 1: Discover chl-a models for each year separately. This experiment 
focused on the question whether it is possible to find a generic model structure for 
all years from 1986 to 1992 and just optimise the parameter values for each year 
or to require specific model structures for each year. We tested each year-specific 
model on the remaining years in order to find out whether there is a generic model 
for all measured years. Algal grazing by zooplankton was not included in this 
experiment as zooplankton data were only available for the years 1986 to 1989. 
- Experiment 2: Discover one chl-a model for all years from 1986 to 1992. This 
experiment focused on the question whether it is possible to derive a generic 
model from all data that would be valid for each single year. The model was 
trained by data from 1986 to 1991, and tested for the year 1992. Algal grazing by 
zooplankton was not included in this experiment as zooplankton data were only 
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available for the years 1986 to 1989.  
- Experiment 3: Discover one chl-a model including algal grazing by zooplankton 
by using the years 1986 to 1988 for learning and 1989 for testing. 

The task specification for experiment (3) is given in Tab. 20.4. Following types 
of variables are declared: inorganic nutrients, i.e nitrogen_nitrate (no3), dissolved 
inorganic phosphorus (ps) and silica (silica), primary producer (chla), animal 
(clad), temperature (temp) and light (light). The word system in front of the 
primary producer declaration denotes that only chla model will be discovered 
(chla is the only state variable), while the rest of the variables will be considered 
as independent variables. The processes are declared in lines from 8 to 11. 
Phytoplankton growth is described in line 8 (recall the process description from 
the previous section). The process Feeds_on (line 9) stands for (1) predatory loss 
of phytoplankton (chla) and (2) growth of zooplankton (clad). Optional arguments 
of this process are the food (phyto) and temperature (temp), which means that the 
growth of clad can be or not influenced by the food (none or many species) and 
temperature. Similarly the rest of the processes in the system (Respiration_PP, and 
Sedimentation) are defined (see lines 10 and 11). 

Tab. 20.4. Modelling task specification for lake Kasumigaura

  1: 
  2: 
  3: 
  4: 
  5: 
  6: 
  7: 
  8: 
  9: 
10: 
11: 

variable Inorganic ps 
variable Inorganic no3 
variable Inorganic silica 
system variable Primary_producer chla 
variable Animal clad 
variable Temperature temp 
variable Light light 
process PP_growth(chla, {ps, no3, silica}, {temp}, {light}) gr1 
process Feeds_on(clad, {chla}, {temp}) feeds1 
process Respiration_PP(chla, {temp},{},{}) resp1 
process Sedimentation(chla, {temp}) sed1 

According to the experimental setup the grazing process (Feeds_on) was either 
included or excluded from the induction procedure. The task specification from 
Tab. 20.4 was modified for this case by replacing the process Feeds_on by natural 
mortality (Mortality_PP): process Mortality_PP(chla, {temp}, {}, {}) mort1. 

According to the combining schemes (mass balances) declared in the library, 
this task specification gives either the model structure as (20.1), or in the case of 
replacing the Feeds_on process (predatory loss) by natural mortality as (20.2): 

PP _ growth - Respiration - Sedimentation - Feeds_ondchla
dt

         (20.1) 

PP _ growth - Respiration_PP - Mortality_PP - Sedimentationdchla
dt

                       (20.2) 
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Note that the formulation of the process loss of phytoplankton by grazing 
needed some adjustments since the zooplankton abundance unit [individuals/l] 
was not compatible with the biomass unit [mass/volume]. We overcame this 
problem by allowing only one possible formulation of the Feeds_on process in 
the knowledge library, i.e: 

m axF eed s_ on  (G ra z in g ) 1( ) 2 ( ) _f TC f te m p f F c la d c h l a      
where Cf is zooplankton filtration rate [ml/(individuals*time)], clad is the 
abundance of cladocera in [individuals/ml], chl_a is chlorophyll-a
concentration in [mg/l chl-a], f1(temp) is temperature influence function 
(unitless) and f(FT) is food limitation function for zooplankton growth (unitless). 
In this case FT represents the total phytoplankton concentration. Considering this, 
the loss of phytoplankton is calculated in [mg/l chl-a].  

20.3
Results and Discussion 

20.3.1                                                                                                    
Experiment 1 

This experiment aimed to identify separate ODE models for the calculation of chl-
a for each years. Thus the LAGRAMGE algorithm discovered 7 models with 
corresponding MSE and MDL function. Due to the preference to the simpler 
models those with the minimal MDL values for each year were chosen as best 
models, i.e. equation (20.3) was the best model for  1986, equation (20.4) for 
1987, equation (20.5) for 1988, equation (20.6) for 1989, equation (20.7) for 1990, 
equation (20.8) for 1991 and equation (20.9) for 1992: 

2 2

2 2

3 0 50.152 0.1
0 3 4.7 7 0.011 15 5 196.7 17.4 2.5
0.040.001

5

dchla ps no silica temp light tempchla chla
dt ps no E silica light

chla chla chla

                           (20.3) 

2 2

2 2

( 15)

30.08 0.005
3.2 6 3 0.00012 0.023 16.2 41.8

0 0.0960.01 1.11
15 5 5

tmp

dchla ps no silica temp lightchla chla
dt ps E no silica light

tempchla chla

(20.4) 
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( 18.8)30.09 0.022 1.11
0 3 0 0.022 10.8 200
0.050.01

7.2 5

tempdchla ps no silica temp lightchla chla
dt ps no silica light

tempchla chla

                      (20.5) 

( 15)30.09 0.02 1.13
0 3 0 0 6.4 200

0.140.77
5

tempdchla ps no silica temp lightchla chla
dt ps no silica light

chla chla chla

(20.6) 

( 20)30.134 0.004 1.12
3.2 5 3 0 0 19.8 0

0.28 50.54
5 15 5

tempdchla ps no silica temp lightchla chla
dt ps E no silica light

tempchla chla chla

                                                  (20.7) 
30.224 0.0009

0 3 0 0 20 10.3
0.5 20.332
5 15 5

dchla ps no silica temp lightchla chla
dt ps no silica light

tempchla chla chla

                       (20.8) 
1

179.5
( 19) ( 15)184.5530.139 1.11 0.056 1.12

0 3 0 0
0.00010.023

1.3 5

light

temp tempdchla ps no silicachla light e chla
dt ps no silica

tempchla chla chla

                           (20.9) 

The alternative model structures include processes as shown in equation (20.2). 
In all cases the growth term is dependent on nutrient concentrations, water 
temperature and underwater light. Nutrient limitation functions for ps, no3 and 
silica are formulated with the two variations of Monod term, i.e. 

( )
constant

xf x
x

 or
2

2( )
constant
xf x

x
. Note that the smaller the constant 

(half saturation coefficient) in the Monod term the smaller is the influence by x.

For example, a term with saturation coefficient zero, i.e.,
0

x
x

 is equal to 1, 

which means no limitation (influence) by x. From this we can reveal the nutrients’ 
influence on the total phytoplankton growth and how the limiting nutrient(s) is 
changing with time. According to the models this influence is pretty 
unpredictable, which is probably a result of the variety of algae species, in the 
total phytoplankton. Phosphorus was found to be the limiting nutrient only in 
1990, and in 1987 together with nitrate and silica. Also the saturation constant in 
the phosphorus limitation function is very small. Nitrogen was the limiting 
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nutrient in 1986 (together with silica) and 1987 (together with phosphorus and 
silica), while silica was limiting in 1986, 1987 and 1988. Nutrients did not limit 
the phytoplankton growth in 1989, 1991 and 1992. To find the limiting nutrient it 
is crucial (1) to know the load of the lake with the nutrients (external and internal) 
and (2) to estimate which algae will bloom most severely. The latest is partly 
revealed by the models. In 1986 nitrogen limitation can be related with the severe 
microcistis blooms. There were small amounts of diatoms, obviously limited by 
silica. It is surprisingly for the 1987 model that all nutrients were found as 
limiting, although there are no diatoms identified in this year. Severe blooms of 
diatoms in 1988 were limited by silica as revealed by equation (5). According to 
the discovered models the lake receives quite a lot of nutrients, since the nutrients 
were not limiting the growth in 1989 1991 and 1992, and in 1990 the limitation by 
phosphorus is negligible. 
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Fig. 20.4. Simulation results of the chl-a [mg/l] equations (20.3) to (20.9) 
assembled and trained by Lake Kasumigaura data of 1986 to 1992 
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Monod expression is used for light limitation function in all models except for 
1992, where the photoinhibition formulation for light is used. Temperature 
influence is modelled with the linear temperature curve in all years except for 
1992, when the influence is exponential. The rest of the processes, i.e. 
respiration, mortality and sedimentation are modelled with similar 
formulations in all models. The models differ greatly in the parameter values 
that may suggest that some of them should be replaced by variables.  

The performance of the 6 models compared to the measured data is shown in 
Fig. 20.4. Most of the models are able to approximate well the timing and 
magnitude of chl-a.

In order to find a model that would simulate the phytoplankton during the entire 
period satisfactorily, each model was validated on the data set that was not used 
for training of that specific model. None of the discovered models could 
accurately simulate chl-a on unseen data, except for the equation (20.5) 
discovered for the data of 1988. The validation of this model is shown in Fig. 
20.5. The model performs satisfactorily, except in 1986. This year seems to be 
quite unusual, since the chl-a peak is nearly twice as much as it is in the rest of the 
years.

20.3.2                                                                                                     
Experiment 2 

The first experiment has clearly demonstrated the highly dynamic nature of algal 
biomass represented in Lake Kasumigaura reflected by the calculated data of 6 
annually specific ODE and the measured data for chl-a. Both vary distinctly in 
timing and magnitude year by year. To find a generic model structure that would 
accurately simulate chl-a dynamics for consecutive years is therefore very 
challenging. However the equation (20.5) discovered for the data of 1988 in the 
experiment 1 has indicated that LAGRAMGE can discover common patterns in 
complex data, and that the year 1988 provides average lake data which are suitable 
for training the chl-a model. Our second experiment aimed at the discovery of a 
generic chl-a model trained by data of all years 1986 to 1991. The ODE structure 
was specified according to equation (20.2). The ODE for chl-a with the lowest 
MDL identified by LAGRAMGE reads sa follows: 

2

2

( 18.1)

30.117 0.00658
2.6 07 3 9.8 05 0 20 200
0.0720.003 1.1

3.3 5
temp

dchla ps no silica temp lightchla chla
dt ps E no E silica light

tempchla chla

                         (20.10) 
This equation (20.10) reflects that nutrient concentrations are supposed to have 

little impact on the growth process as expressed by the modified Monod kinetics 
in the first term. Half saturation constants in phosphorus and nitrogen limiting 
functions were calibrated by LAGRAMGE with very small values, i.e. 2.6E-07 
and 9.8E-05, whereas silica has no influence at all with half saturation constant 0. 



N. Atanasova · F. Recknagel · L. Todorovski · S. Džeroski · B. 
Kompare

 422

The respiration process is formulated by simple first order kinetics. Mortality and 
sedimentation, i.e. the last two terms are formulated as temperature dependant 
processes. Equation (20.10) has a similar structure as equation (20.3) to (20.9) but 
different parameter values. However in contrast to the equation (20.5) discovered 
for the year 1988 it does not consider silica as limiting nutrient.  

As the numerical solution of ODE requires initial values for each state variable  
we provided the measured initial values for the first day of each year in case that 
we simulated consecutive years as for experiment 2. 
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Fig. 20.5. Simulation results of the chl-a [mg/l] equation (20.10) assembled and 
trained by Lake Kasumigaura data of 1986 to 1992 and tested by the data of 1992 
(dashed line) and equation (20.5) trained on 1988 data (solid line) 

The Fig. 20.5 illustrates the simulation results of experiment 2 where the ODE 
structure and parameters for chl_a were assembled and adapted according to the 
Lake Kasumigaura data from 1986 to 1991, and tested for data of 1992. Though 
not very accurate the model still manages to predict most of the chl-a peaks and 
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crashes. The simulation is best for years 1987 and 1988 and least accurate for 
1986. The model quite accurately performs on the unseen data, i.e. data from 1992 
(see Fig. 20.5). 

In comparison with the model discovered on 1988 this model did not perform 
so well, though it was trained on longer data set. Possible explanation of this is 
that there is more noise in the long data set so it is more difficult to learn the lake’s 
behaviour  (with the present optimisation method). On the other hand learning the 
behaviour from one year’s data is much easier but the year should be 
representative enough so the model can be evaluated on longer period, which was 
the case in this study. In any case, long term data set is needed in order to draw 
some relevant conclusions. 

20.3.3.                                                                                             
Experiment 3 

The experiment 3 was carried out with Lake Kasumigaura data from 1986 to 1988 
for training and data of 1989 for testing by adding the grazing process to the ODE 
for chl_a according to the task specification in Tab. 20.4. As a result the equation 
(20.11) had been discovered with the lowest value of MDL: 

2

2

3 2.40.107 0.054
4.7 10 3 0.00016 0.01 9.3 147.6 15 5

0.009 0.12 0.07
5 4.6 9.53 0

dchla ortp no silica temp light tempchla chla
dt ortp E no silica light

temp temp chlachla clad chla
chla

                         (20.11) 
In equation (20.11) the impact of nutrients on the growth process appears to be 
strengthened compared to equation (20.10). The grazing rate (Feeds_on) has been 
formulated by a proportional relationship with zooplankton (clad) and 
phytoplankton (chl_a) biomass as well as water temperature. The constant 
parameter value 0.07 indicates that only small amount of chl-a is consumed  by 
zooplankton grazing. The training results of equation (20.11) achieve better MSE 
values for 1986 and 1989 (see Fig. 20.6) when compared with the previous 
equation (20.10). It captures the trend in 1987 but it overestimates the late summer 
peak as it similarly does in 1988. The equation (20.10) simulated the seasonal 
dynamics of chl_a in 1986 very poorly. It didn’t simulate well the chl_a dynamics 
in 1987 and 1989 by underestimating the spring and early summer peaks of both 
years and overestimating the late summer peak in 1987. 

From experiment 3 it can be concluded that LAGRAMGE could not assemble a 
reasonable chl_a equation from data of one year only that would accurately 
simulate chl_a of other years. However some better simulation results compared 
with those from the first experiment were achieved by chl_a equations assembled 
and trained separately by data of each year i.e. equation (20.12) for 1986, (20.13) 
for 1987, (20.14) for 1988 and (20.15) for 1989 (see Fig. 20.7). These models 
achieved fairly good simulation results for the years 1988 and 1989, but 
underestimated spring peaks in 1986 and 87. As expected the equations (20.12) to 
(20.15) show that rate functions for growth, respiration and sedimentation are 
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differently represented when grazing is added to the chl_a mass balance equations. 
As a result the growth rates consider differently limiting nutrients, i.e. in 1986 
phosphorus is identified in addition to nitrogen and silica, in 1987 all three 
nutrients remain limiting, in 1988 nitrogen is added to silica, and in 1989 all 
nutrients are limiting. 
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Fig. 20.6. Simulation results of the chl-a [mg/l] equation (20.11) annually 
assembled and trained by Lake Kasumigaura data of 1986 to 1988 and tested by 
the data of 1989  
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Fig. 20.7. Simulation results of the chl-a [mg/l] equations (20.12) to (20.15) 
annually assembled and trained by Lake Kasumigaura data of 1986 to 1989  

These findings highlight the need to represent different functional algal groups 
such as diatoms, green and blue-green algae by separate ODE in order to 
realistically consider their specific nutrient requirements and selective 
preferencees during grazing by herbivorous zooplankton such as cladocera.     
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20.4.
Conclusions 

The software LAGRAMGE for computational assemblage and adaptation of ODE 
by using the expert knowledge and measured data has been applied for the 
simulation of chl-a in Lake Kasumigaura. As a result two types of chl-a models 
were discovered: (1) chl-a equations without considering zooplankton grazing 
assembled and trained by data of consecutive years were data of the last year was 
used for testing, and (2) chl-a equations considering zooplankton grazing 
assembled and trained by data of the years 1986 to 1989. The test results of the 
different models have demonstrated that LAGRAMGE can discover ODE that 
allow to simulate chl-a in Lake Kasumigaura for a variety of years. However the 
generalisation of discovered equations for unseen data of consecutive years was 
unsatisfactory, and the accuracy of calculated trajectories with regards to timing 
and magnitudes of peak events was moderate. The results have highlighted the 
importance of nutrients as growth limiting factors, and the need for considering 
functional algae groups in order to appropriately represent their selective grazing 
by zooplankton. 
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Chapter 21 

Identification of Marine Microalgae by Neural 
Network Analysis of Simple Descriptors of Flow 
Cytometric Pulse Shapes                       
M.F. Wilkins · L. Boddy · G.B.J. Dubelaar

21.1
Introduction

Phytoplankton play a pivotal role in marine ecosystems - collectively fuelling the 
food web, sometimes forming nuisance blooms, and implicated in climate control. 
They are sensitive bioindicators in marine ecosystems. Thus, knowledge of 
species composition, distribution and abundance in the worlds oceans is essential. 
Traditionally such data have been obtained by microscopic analysis in the 
laboratory, but this is laborious and time-consuming, abundance estimates are 
uncertain due to limitations on the number of cells that can be counted, and 
analysis is often performed a long time after sampling. Analytical flow cytometry 
(AFC) is a valuable research tool in marine science (Burkill and Mantoura 1990; 
Jonker et al. 1995) that negates many of these problems. AFC measures various 
light scatter, diffraction and fluorescence parameters on individual cells, at rates of 
about 103 cells sec-1, providing signatures which can allow taxa to be 
discriminated.  

The vast quantities of non-normally distributed, multivariate data that AFC 
generates are difficult to analyse by multivariate statistical methods, but artificial 
neural networks (ANNs; Lippmann 1987; Hush and Horne 1993; Fu 1994; Haykin 
1994) have been successfully employed. These typically consist of a three-layered 
structure of simple data processing elements or nodes (corresponding to the neural 
cells of their biological counterparts) connected by weighted connections. The 
input layer contains one node for each input parameter, while the output layer 
contains one node corresponding to each of the potential categories to which the 
input pattern may belong. The network is trained to recognise the different 
categories of data via a learning procedure, during which the network is repeatedly 
presented with labelled examples of each data category and the internal weighted 
connections between nodes are modified to produce a network output that more 
nearly reflects the correct identification. Following training an unknown data 
pattern can be presented to the network and the network output indicates the most 
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likely category for the data pattern. ANNs have the advantage in comparison to 
multivariate statistics of making no prior assumptions as to the nature of the 
category data distributions, and once trained, they are fast and efficient in use. In 
most of the early studies applying ANNs to AFC data only a few taxonomic 
categories were discriminated (e.g. Frankel et al. 1989, 1996; Morris et al. 1992; 
Balfoort et al. 1992; Smits et al. 1992; Wilkins et al. 1994, 1996). Scaling up is 
not a trivial task, but 36 to 72 phytoplankton species, grown in artificial culture, 
have now been discriminated (with 70% overall successful identification) using 
multilayer perceptron (MLP) and radial basis function (RBF) ANNs (Boddy et al. 
1994, 2000; Wilkins et al. 1999). The latter offers significant advantages in the 
ability to reject data patterns not corresponding to any of the classifications known 
to the network (Morris and Boddy 1996, Wilkins et al. 1999). While some species 
are always identified with high success, others are not, due to overlap of character 
distributions. To improve discrimination, additional and/or different 
discriminatory characters are required.  

Conventional flow cytometers use analog data capture electronics to collect 
summary statistics for each pulse, such as pulse width, peak pulse height and 
integrated value. However, the pulse shape of the light scatter and fluorescence 
signals, acquired as the analysed particle traverses the beam focus, may well 
contain additional discriminatory information which can be exploited (Godavarti 
et al. 1996). CytoBuoy, an autonomous AFC designed for mounting within a buoy 
for in situ sampling (Dubelaar et al. 1999; Dubelaar and Gerritzen 2000) uses a 
single green (532 nm) laser and retains full digital pulse shape information for 
four signals: forward scatter (FSC), side scatter (SSC), orange fluorescence (FLO) 
and red fluorescence (FLR), sampled at 4MHz. The raw 8-bit sample values for 
each signal are accumulated in an internal 64kB data buffer before transmission to 
the shore by radio link; this limits the number of particles in any one sampling run 
to a few thousand, depending on particle size. 

The CytoBuoy is designed to process a relatively wide sample stream. To 
maintain a sufficiently large depth of focus over this stream, the laser focus width 
cannot be reduced to less than 5µm. The measured pulse shapes are the 
convolution of the light intensity profile across the laser focus with the particle 
shape (or distribution of optically emitting material) along its longest axis (as 
particles flowing through the laser beam are stretched by the fluid acceleration). 
The measured pulse shapes of particles smaller than about 5µm are essentially 
dominated by the Gaussian shaped light intensity profile, with little or no 
influence from the particle shape itself. The shape features of particles 
bigger/longer than a few times the laser focus width (about 20 µm and larger) are 
well expressed in the detector pulses (Fig. 21.1a), whereas for intermediate sized 
particles (roughly 5 – 20 µm) the shape expression varies from little to reasonable. 

In this paper neural net analysis of CytoBuoy pulse shape data is investigated. 
In order to apply ANNs to pulse shape analysis, the first step is that of feature 
extraction: converting the raw pulse representation (i.e. a variable length sequence 
of sample values) into a more compact representation capable of capturing the 
variation between the different categories (i.e. a small number of characteristic 
measurements, each quantifying a different aspect of the pulse shape). In addition 
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it is desirable, if possible, to separate out information on particle size and overall 
maximum pulse intensity from the shape information, to investigate the 
discriminability of different categories from pulse shape alone; the extra 
information can then be supplied to the network via additional input parameters.  

The following biological questions are specifically addressed: does pulse shape 
improve discrimination between taxa? Which taxa can easily be discriminated 
using pulse shape information alone and which cannot? Which taxa form clear 
groups under pulse shape? If any of the taxa that can be identified on pulse shape 
alone are taxa that are difficult to identify by the summary statistics usually used, 
what features of the pulse shape are important in discrimination, and with what 
structural/morphological features are they correlated? 

Fig. 21.1. (a) CytoBuoy pulse shapes for FSC (black trace), SSC (light grey trace), FLR  
(dark gray trace) for an example of an unknown chain-forming diatom from a natural  
sample (the FLO signal is negligible and not visible). The cells form doublets, clearly seen  
in the FLR and SSC traces.  The total chain length is 248 m. (b) the corresponding DCT  
power spectra; the FLR trace has a peak at 13.7 m, corresponding to the spacing between  
the cells of the doublets, while the SSC trace has a peak at 31 m, corresponding to the  
spacing.between doublets. 
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Table 21.1
The performance of RBF networks trained on pulse shape parameters alone (6 
parameters), summary statistics alone (12 parameters) , and combined pulse 
shape parameters and summary statistics (18 parameters) tested on an 
independent data set of 500 data patterns per species (for details of parameters 
see text). Figures are the percentage of test data correctly identified with 
estimated 95% confidence limits (5 replicates)

Appro
x.size 
( m)

Pulse 
shape 
parameters 

Summary 
statistics

Combined 

Amphidinium carterae 15-20 30 2 67 4 73 3
Aureodinium 
pigmentosum

7-12 17 2 92 1 93 3

Chaetoceros simplex var. 
calcitrans

4-6 29 2 68 4 68 10

Chroomonas salina 5-12 38 5 93 3 92 2
Chrysochromulina 
camella

6-12 22 6 49 10 50 4

Chrysochromulina chiton 5-9 19 1 65 4 69 2
Chrysochromulina 
polylepis

6-8 15 4 40 7 41 3

Cryptomonas 
calceiformis

10-15 77 3 80 3 82 4

Cryptomonas maculata 12-20 51 4 84 2 92 2
Cryptomonas reticulata 18-25 54 3 71 4 79 5
Dunaliella minuta 3-12 20 1 35 8 43 11
Dunaliella tertiolecta 6-12 45 4 74 3 79 1
Emiliana huxleyi 5-7 27 2 64 2 65 5
Gymnodinium simplex 6-10 4 2 69 3 69 3
Hemiselmis brunnescens 5-8 51 5 89 2 86 2
Hemiselmis virescens 5-8 45 3 98 0 97 1
Imantonia sp. 3-8 35 1 69 5 68 5
Isochrysis galbana 4-8 22 2 82 3 83 3
Ochrosphaera 
neopolitana

8-10 28 3 88 2 91 2

Pavlova lutheri 4-6 17 2 75 2 75 2
Phaeocystis pouchetii 3-6 13 7 71 4 70 4
Plagioselmis punctata 6-9 21 5 91 3 93 2
Platychrysis sp. 6-12 5 2 22 11 13 7
Prorocentrum minimum 16-18 5 2 54 6 54 11
Prorocentrum nanum 8-10 6 2 26 13 27 6
Prymnesium parvum 8-10 7 2 33 9 39 9
Pyramimonas grossii 5-10 22 3 56 7 53 4
Pyramimonas obovata 4-8 1 1 57 9 59 9
Rhinomonas salina 5-10 49 3 93 2 94 1
Rhodomonas sp. 8-13 43 2 90 1 91 2
Synechococcus sp. 1-3 66 6 97 2 96 1
Tetraselmis striata 6-8 35 4 37 3 49 5
Tetraselmis suecica 6-15 9 2 24 14 31 18
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21.2
Materials and Methods 

21.2.1                                                                                                           
Pulse Shape Extraction 

CytoBuoy pulse shape data for 36 small unicellular phytoplankton species in pure 
culture (Table 21.1) were collected during the course of the AIMS project (CEC 
grant no. MAS3-CT97-0080). These species were selected from a much larger 
database of species as the only Each species was represented by four data files 
containing 64kB of 8-bit sample values. Pulse shape data for 1000 particles per 
species were extracted from these files by purpose-written software. The length of 
each pulse, log peak value and log mean value were found, and particles for which 
the FSC pulse was less than four sample values in length (2 m) were rejected. The 
pulses were normalised using a cubic spline interpolation procedure (Press et al. 
1992) to a standard number of samples and to unit integral value. This 
normalisation procedure effectively separates out information describing pulse 
shape from global pulse characteristics such as length and area, allowing 
independent assessment of the contribution of each type of information to species 
discrimination. The number of samples used to represent each pulse was chosen to 
be a power of two plus one, for subsequent compatibility with the frequency-space 
decomposition methods used; 33 samples was found to be an adequate description 
of the pulse shapes for the species in this study, although other species may 
require more (e.g. chain-formers; Fig. 21.1a). 

21.2.2                                                                                                      
Data Filtering 

The data for each species were plotted and pulses corresponding to particles with 
low integral red fluorescence (a measure of chlorophyll content) were removed; 
such particles are frequently present in phytoplankton cultures and typically 
represent cellular debris, dead cells or bacterial contamination of the culture.   

21.2.3                                                                                                          
Data Transformation 

A discrete cosine transformation (DCT) procedure (Press et al. 1992) was used to 
decompose all pulses into a frequency space representation, expressing the 
original pulse as the superposition (sum) of a number of separate components 
taking the form of cosine waves with differing amplitude and frequency. The 
reason for this is twofold. Such a representation effectively separates out elements 
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of structure due to the presence of features with different length scales in the 
pulse. The representation is also more compact. Typically only a few of the low-
frequency components have any significant amplitude, with the amplitude of the 
remaining high-frequency components being close to zero. Thus, instead of using 
all 33 sample values to represent the pulse, the overall shape of the pulse can be 
approximated with reasonable accuracy using relatively few cosine coefficients. 
The square of the amplitude coefficients represents the power spectrum of the 
pulse (the amount of energy contained in components of each frequency). The 
position of the peak of the power spectrum can be used to define a “characteristic 
length” for each pulse- this is the length scale of the most significant features 
detected by the pulse. For example, a chain-forming diatom gives rise to a signal 
with regularly-spaced peaks (Fig. 21.1a), leading to a peak in the power spectrum 
at the spatial frequency corresponding to the length of the individual cells in the 
chain (Fig. 21.1b). 

21.2.4                                                                                                       
Principal Component Analysis 

Principal component analysis (Joliffe 1986) was used to investigate the extent to 
which the variation between the normalised pulse shapes seen in the data set could 
be explained by the combination of a small number of independent modes of 
variation. The mean of the DCT transformed data was estimated and used to 
generate a “mean pulse shape” for each parameter, the average of all the 
normalised pulses over the data for all 36 species. The effect of variation from the 
mean pulse shape along each of the first four principal component axes was 
plotted (Fig. 21.2). The first mode was characterised primarily by a shift in the 
position of the FLO peak (corresponding to the presence of phycoerythrin) with 
respect to the peaks for the other signals. The second mode consisted of 
simultaneous sharpening of the SSC and FLO peaks accompanied by the 
development of a double peak in the FSC signal. The third mode consisted of a 
shift in the position of the SSC peak, while the fourth mode was similar to the 
second except that sharpening of the FLO peak was accompanied by flattening of 
the SSC peak and vice versa. Higher modes showed more complex shape changes. 
Several species showed pronounced bimodal distributions in the first mode of 
variation, e.g. Cryptomonas maculata and Rhinomonas salina – this may be 
caused not by the presence of two distinct subpopulations but rather be due to cells 
with inherent asymmetry passing through the instrument in opposite orientations. 
Supporting evidence for this conclusion comes from examining the between-class 
variance as a percentage of the explained variance for each mode (Table 21.2), 
showing that while the first mode accounts for the largest fraction (21.2%) of the 
total variance, only 2.4% of this is due to between-class variance: there is thus 
very little discriminatory information in this mode, implying that the cause of this 
variation is common to cells of all species.  
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Fig. 21.2. The first four principal modes of variation of normalised pulse shapes, 
together with the tenth mode, from DCT data set (1000 patterns from each of 36 
species). The black and grey lines show one standard deviation positive and 
negative deviation respectively from the mean pulse shape (dotted line). Modes 1 
and 3 are characterised primarily by shifts in the position of the FLO and SSC 
peaks respectively, while modes 2 and 4 are characterised primarily by 
simultaneous variation in the sharpness of the SSC and FLO peaks. The amount of 
variance explained by each mode is given in Table 21.2. 

 Mode
 1 2 3 4 
FSC 

SSC 

FLO 

FLR 
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21.2.5                                                                                                        
Neural Network Analysis 

The available data was partitioned into independent training and test data sets, 
both containing data for 500 particles per species. Radial basis function neural 
networks were trained to discriminate the 36 species using (i) pulse shape 
information only; (ii) summary statistics only; (iii) combined pulse shape and 
summary statistics. The pulse shape information for each particle consisted of six 
parameters, the six principal components of the DCT-transformed training data 
found previously to contain the most discriminatory information (components 2, 4, 
6, 10, 11, 12). The summary statistic information for each particle consisted of 
twelve parameters, the pulse length, peak pulse value, and mean pulse value for 
each of the four signals (FSC, SSC, FLO and FLR). The combined pulse shape 
and summary statistics thus had a total of eighteen parameters.  

All RBF HLNs used the Mahalanobis distance metric, implementing 
multivariate Gaussian basis functions, and were initially positioned using the 
Kohonen LVQ algorithm (Kohonen 1990); networks of this type have previously 
been shown to perform well (Wilkins et al. 1999). The number of HLNs was 

Table 21.2
The explained variance (as a percentage of the 
total variance) and the between -class variance 
(as a percentage of the explained variance) for 
each of the first twelve modes of variation.
Mode Explained 

variance 
(% of total)

Between-
class 
variance 
(% of 
explained 
variance)
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3 13.4 3.6
4 8.0 42.2
5 5.2 3.3
6 4.6 36.8
7 3.0 0.6
8 2.8 4.4
9 2.3 3.8
10 2.2 11.7
11 1.8 22.3
12 1.5 11.1

Table
The explained variance (as a percentage of the 
total variance) and the between -class variance 
(as a percentage of the explained variance) for 
each of the first twelve modes of variation.
Mode Explained 

variance 
(% of total)

Between-
class 
variance 
(% of 
explained 
variance)

1 21.2 2.4
2 16.0 57.8
3 13.4 3.6
4 8.0 42.2
5 5.2 3.3
6 4.6 36.8
7 3.0 0.6
8 2.8 4.4
9 2.3 3.8
10 2.2 11.7
11 1.8 22.3
1 1.5 11.1

Table 21.2
The explained variance (as a percentage of the 
total variance) and the between -class variance 
(as a percentage of the explained variance) for 
each of the first twelve modes of variation.
Mode Explained 

variance 
(% of total)

Between-
class 
variance 
(% of 
explained 
variance)

1 21.2 2.4
2 16.0 57.8
3 13.4 3.6
4 8.0 42.2
5 5.2 3.3
6 4.6 36.8
7 3.0 0.6
8 2.8 4.4
9 2.3 3.8
10 2.2 11.7
11 1.8 22.3
12 1.5 11.1

Table
The explained variance (as a percentage of the 
total variance) and the between -class variance 
(as a percentage of the explained variance) for 
each of the first twelve modes of variation.
Mode Explained 

variance 
(% of total)

Between-
class 

Table 21.2
The explained variance (as a percentage of the 
total variance) and the between -class variance 
(as a percentage of the explained variance) for 
each of the first twelve modes of variation.
Mode Explained 

variance 
(% of total)

Between-
class 
variance 
(% of 
explained 
variance)

1 21.2 2.4
2 16.0 57.8
3 13.4 3.6
4 8.0 42.2
5 5.2 3.3
6 4.6 36.8
7 3.0 0.6
8 2.8 4.4
9 2.3 3.8
10 2.2 11.7
11 1.8 22.3
12 1.5 11.1

Table
The explained variance (as a percentage of the 
total variance) and the between -class variance 
(as a percentage of the explained variance) for 
each of the first twelve modes of variation.
Mode Explained 

variance 
(% of total)

Between-
class 
variance 
(% of 
explained 
variance)

1 21.2 2.4
2 16.0 57.8
3 13.4 3.6
4 8.0 42.2
5 5.2 3.3
6 4.6 36.8
7 3.0 0.6
8 2.8 4.4
9 2.3 3.8
10 2.2 11.7
11 1.8 22.3
1 1.5 11.1



Chapter 21  ·  Identification of Marine Microalgae  439 

automatically determined using the orthogonal least squares learning algorithm to 
select an optimal subset from a large pool of candidate HLNs (Chen et al. 1991).  

Following training, the test data set was used to assess the network performance 
in terms of proportion of correct identification, and to determine which species 
were consistently misidentified. Each network was replicated five times and the 
results averaged. 

21.2.6                                                                                                           
Hardware and Software 

All RBF networks were simulated in software using AimsNet
(http://www.cf.ac.uk/biosi/staff/wilkins/aimsnet), a software package developed 
by one of the authors (M.F.W.) under the AIMS project (CEC grant no. MAS3-
CT97-0080) running on a 500MHz PC under WindowsNT. 

21.3
Results

Using the pulse shape data alone, six species (Synechococcus sp., Cryptomonas 
calceiformis, Cryptomonas maculata, Cryptomonas reticulata, Tetraselmis 
tetrathele and Hemiselmis brunnescens) were all discriminated correctly with 
greater than 50% accuracy; however over the whole test data set only 28.6% of 
data patterns were correctly recognised (Table 21.1). The corresponding figure 
using summary statistics alone was 67.2%; this rose slightly to 69.2% when the 
pulse shape and summary statistic information were combined. The addition of 
pulse shape information generally improved the discrimination between species 
from the same genus, e.g. Tetraselmis (4 species), Chrysochromulina (3 species), 
Cryptomonas (3 species) and Dunaliella (2 species). For example, the amount of 
T. striata misidentified as T. tetrathele was reduced by a factor of two; plotting the 
pulse shapes for these species shows that while the SSC, FLO and FLR signals are 
similar, the FSC signal for T. tetrathele shows a pronounced asymmetry which can 
be exploited to aid discrimination (Fig. 21.3). For the three Cryptomonas species, 
the FSC signal for C. maculata shows two distinct peaks that are significantly 
closer together than for the other two species (Fig. 21.4). 
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Fig. 21.3. The normalised mean pulse shapes for the four Tetraselmis species, 
showing the distinctive asymmetry of the FSC signal for T. tetrathele. Key: 
T. striata (thick black line); T. suecica (thin black line); T. tetrathele (light grey 
line); T. verrucosa (dark grey line).  

Fig. 21.4. The normalised mean pulse shapes for the three Cryptomonas species, 
showing the smaller interpeak separation in the FSC signal of C. maculata in 
comparison to the other two species. Key: C. reticulata (light grey line); C.
maculata (thin black line); C. calceiformis (thick black line). 

FSC SSC 

FLO FLR 

FSC SSC 

FLO FLR 
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21.4
Discussion 

These results demonstrate that the incorporation of pulse shape information 
provides a modest increase in discriminating power, and that principal component 
analysis can be used to separate out genuine variation between pulse shapes, due 
to differences between the organisms under study, from spurious variation arising 
from the physics of the data capture process.  

The data used in this study all originated from small single-celled organisms, a 
consequence of the difficulty of obtaining sufficient training data for larger 
organisms due to the limited internal buffer space of the CytoBuoy. The pulse 
shape information for larger organisms, e.g. colony and chain forming species, 
contains proportionately more discriminatory information (Fig. 21.1). Such 
particles can be up to a millimeter in length (2000 samples).  

The recognition performance of 69.2% for 36 species appears low by 
comparison with previous studies: for example 72 taxa were identified with 70% 
success from FACSort data (Boddy et al., 2000), while 34 species were 
discriminated with over 90% correct recognition from EurOPA data (Wilkins et 
al., 1999). This latter result is due to the higher resolution of the EurOPA 
cytometer, which also incorporated two-laser excitation and additional diffraction 
parameters as an index of particle shape. The CytoBuoy prototype has a resolution 
2-3 times lower than the EurOPA, due to compromises in the optics imposed by 
its compact design and autonomous mode of operation. The optics of the 
CytoBuoy have since been substantially redesigned in order to improve sensitivity 
and resolution.  

21.5
Conclusions 

The use of AFC pulse shape information does improve discrimination of 
microalgal taxa, and is likely to be even more useful when species that form 
chains are to be discriminated. The use of RBF ANNs was again shown to be a 
rapid and useful tool for analysing large sets of high dimensional data. 
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Chapter 22 

Age Estimation of Fish Using a Probabilistic 
Neural Network
S.G. Robertson  · A.K. Morison

22.1
Introduction

Age composition data provide fundamental insights into fish biology and stock 
productivity and allow the estimation of the basic parameters for describing 
growth, mortality rates and recruitment. Much time and money is spent on the 
collection and preparation of samples, and skilled technicians labour for many 
hours at microscopes, counting increments in the prepared structures. It is 
estimated that over 1 million fish were aged worldwide in 1999, mostly using 
scales and otoliths (Campana and Thorrold 2001). However, the process is 
somewhat subjective and there is much interest in automating the process and 
making estimates more reliable. To date none of the tested methods have been 
successful. A pilot study by Robertson and Morison (1999) first suggested that 
neural networks may provide the way forward for this previously intractable 
problem. In this paper we firstly give a brief account of traditional approaches to 
age estimation. We then describe the previous attempts to develop automatic or 
computer-aided methods and the problems they have encountered. Finally we 
describe the results of a recent application of a probabilistic neural network to the 
process of age estimation in fish and discuss the strengths of this novel approach. 

22.2
Traditional Methods of Age Estimation 

Fisheries scientists have been estimating the age and growth of fish by various 
means since it was first realised that modes in length-frequency distributions could 
be used to estimate the age of discrete cohorts. Since then methods of estimating 
fish age have proliferated but usually involve counting of growth increments on 
hard parts (scales, vertebrae, fin rays, fin spines, eye lenses and otoliths). On 
otoliths (usually the structure of choice for all but the youngest of fish), these 
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increments are composed of alternating opaque and translucent zones. The 
technique is analogous to the counting of tree rings. More recently, radiometric 
methods (Bennett et al. 1982) and trends in radiocarbon levels (Kalish 1993) have 
provided independent estimates of age. However, these methods are even more 
expensive and time consuming and are mainly used to validate (show the accuracy 
of) ages estimated from increment counts. The counting of growth increments on 
otoliths is still the most commonly employed method of age estimation.  

The process of age estimation by counting growth increments is not 
straightforward and requires considerable experience to be done reliably. Age 
estimates may be made as part of a validation study, for descriptions of age 
composition and life history parameters, or as part of ongoing or “production” 
ageing for commercially exploited species (Morison et al. 1998a). This ongoing 
process providing estimates of the age composition of the catch from commercial 
fisheries over many years also requires special attention to the issue of 
maintaining accuracy across years, and often across readers. The importance of 
the ageing data for fisheries assessments, and the recognition of problems of 
consistency in age estimates, have led to considerable attention being given to the 
procedures for the prevention, identification and quantification of biases and 
errors in age estimates (Beamish and Fournier 1981; Chang 1982; Kimura and 
Lyons 1991; Richards et al. 1992; Campana et al. 1995; Morison et al. 1998a; 
Gröger 1999; Campana 2001). The problem of validation of a method of 
estimating age is a important issue in itself that is often poorly done. This was first 
highlighted by Beamish and McFarlane (1983) and has been recently revisited by 
Campana (2001). 

Differences between laboratories and between readers are common, and are not 
helped by differences in methods of sample preparation. The species and the 
structure largely determine the preferred preparation techniques, but there is also 
strong conservative element as particular laboratories will favour particular 
preparation methods. A conservative approach is due partly to the available 
equipment and the skills of staff, partly to the need to maintain consistency over 
years, but also to the familiarity of staff with interpreting a particular form of 
preparation. Staff become used to viewing specimens in a particular orientation 
and form of illumination (using either transmitted or reflected light) to the extent 
that they can find it difficult to interpret samples presented differently. This is 
similar to the difficultly people have recognising faces presented upside down or 
as a negative image, and points to an important aspect of the process: it is as much 
one of pattern recognition as of counting increments. However, as a pattern 
recognition problem it is probably closer to the character recognition in hand 
writing than face recognition as there are a limited number of groups (age classes) 
to be recognised. There may be much individual variation but each age class 
shares common features.  
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22.3
Approaches to Automation in Fish Age Estimation 

Williams and Bedford (1974) remarked that “otolith reading remains ... as much 
an art as a science” and the subjective nature of the interpretation of the 
increments has driven the search for more objective methods. In some instances 
these have exploited the correlation between otolith growth and fish by developing 
linear regressions relating fish age and various measures of otolith size or weight 
(Boehlert 1985; Fletcher 1995). The statistical approach using correlates of fish 
age has not been widely adopted. Its use for the age estimation of short-lived 
species such as pilchards (Sardinops neopilchardus) (Fletcher 1995) owes as 
much to the great difficulties experienced with the interpretation of the highly 
variable increment patterns on the otoliths of these species, as to the efficacy of 
the technique. Spatial and temporal variation in these relationships also create 
problems for the routine application of such methods (Worthington et al. 1995).  

The processing power of modern computers and image analysis software has 
stimulated much interest in their ability to automate the increment recognition and 
age estimation process. At one level these have required or allowed interaction 
with the user to assist in the identification of increments (Macy 1995; Cailliet 
1996). More advanced methods have sought algorithms that identified increments 
as minima and maxima in digital profiles of brightness level (Troadec 1991; 
Welleman and Storbeck 1995; Lagardère and Troadec 1997; Morison and 
Robertson 1997; Takashima et al. 2000).  

One problem with these approaches is that they assume that one growth 
increment is formed each year. This is usually true, but it is also common that 
such increments are comprised of two or more distinct sub-annual increments, 
called false increments. The ability to consistently distinguish annually formed 
increments is the valuable skill that an experienced reader brings to the process. 
Recognition of peaks and troughs in a brightness profile is statistically simple, but 
discerning which should be counted and which excluded is not. These methods are 
also only reliable on samples with very clear increments, but such samples are 
usually in the minority. 

We have tried the ‘find-the-peaks-and-count-them’ approach for these species 
in a pilot study comparing different automation methods and found them to be 
satisfactory only in a very narrow range of circumstances (Morison and Robertson 
1997). The signals are inherently noisy and the change in slope method for 
identifying peaks (e.g. Takashima et al. 2000) requires specifying a particular 
search bandwidth. As increments usually become narrower towards the otolith 
margins, this bandwidth must be progressively reduced to work equally reliably on 
the broad inner increments, when growth is fast, and on the narrow outer 
increments, formed when growth slows. Signal processing techniques have also 
been applied to these data involving scaling, demodulation and spectral analysis, 
to extract the number of cycles as an age estimate (Troadec 1991; Lagardère and 
Troadec 1997; Troadec et al. 2000). However, in either case the approach requires 
a rigid algorithm that reflects the expected reduction in increment spacing. The 
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expected pattern has first to be identified and numerically coded and therefore the 
methods do not cope well with variations from the standard pattern. 

Neural networks may side-step this problem. We showed that a back-
propagation neural network, using single transects across otolith images, had the 
potential to reproduce the age estimates of an experienced reader with acceptable 
precision for two of the three species tested (Robertson and Morison 1999). The 
method worked better than any previous methods and for a greater range of age 
classes.

Using neural networks to automate the fish age estimation is a fundamentally 
different approach to those used previously. Past attempts have mostly tried to 
duplicate the outcome by duplicating the process used by human readers: identify 
each valid annual increment and then count them. Using neural networks aims to 
duplicate the outcome without identifying the process. This pragmatic approach 
focuses on the quality of the age estimates without putting effort into developing 
algorithms to identify increments in images. It recognizes that the process used by 
human readers is enormously complex. Experienced otolith readers use a 
combination of features of each otolith to assist them in making age estimates. 
They consider the shape of the otolith, the width and spacing of increments and 
how this changes from the otolith centre (the primordium) to the edge, the 
consistency or completeness of increments around the image, the sharpness of the 
transition from opaque to translucent zones. Even for fish of the same age these 
patterns have significant individual variation, and may vary between species, with 
sex and maturity, with fish size, and among different sub-populations, and from 
year to year. In interpreting this variation readers employ their experience from 
having viewed many thousands otolith of the same species. The way this is done is 
difficult to codify into strict decision rules. This is further complicated in that 
weight given to different aspects may vary among readers, without necessarily 
compromising the accuracy of the estimated ages. The results of the initial trial of 
a neural network were encouraging but the sample size was very small (40 
individuals) and the testing method did not use a completely independent sample 
set to evaluate network performance. We were also aware that other network types 
and additional data inputs may substantially increase the effectiveness of the 
networks. A more rigorous test of the approach was needed. 

22.4
The Application of a Probabilistic Neural Network to Fish 
Age Estimation 

The same three species were used in these experiments as in the pilot study: 
Pagrus auratus (Sparidae) (987 samples), Acanthopagrus butcheri (Sparidae) 
(913 samples) and Macruronus novaezelandiae (Merlucciidae) (1531 samples). 
Age estimates for these samples had previously been made using the procedures 
and protocols described by Morison et al. (1998a). Thin-sections of sagittal 
otoliths viewed with transmitted light were used for all species, and the number of 
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opaque increments used to estimate the age. This method of age estimation has 
previously been validated for A. butcheri by Morison et al. (1998b), for P. auratus
by Francis et al. (1992), and for M. novaezelandiae by Kalish et al. (1997) and 
Punt et al. (2001). The samples used in this study do not come from known-age 
fish, but the ages were estimated by experienced readers with many years of 
experience with each of the species. 

Images of the otolith sections were saved as eight bit greyscale tagged image 
format files. From each of the images, luminance data were collected from up to 
five transects for all species (the signal data). The transects lines were marked 
with the cursor on the images from the primordium of the otolith to the edge of the 
otolith. The transects were marked on the areas of the otolith which showed a 
clear alternating patterns of opaque and translucent zones that would be used by 
an experienced reader when estimating age. The location and number of transects 
varied among species but were consistent for all individuals within species 
(Figures 22.1 to 22.3). Three transects were taken from blue grenadier, five from 
the other two species. For each transect, its length was calculated (in number of 
pixels) from the XY coordinates of the start and finish points. 

Figure 22.1. Sectioned snapper otolith showing typical locations of transects. 
Transects were sampled from the ventral lobe (1) then successively counter - 
clockwise around the otolith from the primordium. The example is of a 10 year 
old, 60 cm snapper sampled on 5/3/97 from Port Phillip Bay. 

Signal data from otolith images was pre-processed with a discrete fast Fourier 
transform (DFT). As the DFT transform requires that the array length be 2n pixels, 
the original signal data were first mapped to an array of 128 values. The harmonic 
(absolute) values of the first 21 complex numbers were used as inputs to the neural 
network. Reconstructed profiles from 21 complex numbers had been found to 
accurately reproduce the originals (Figure 22.4). In addition to the signal data 
from the otolith images, other data used as inputs to neural networks included fish 
length (cm), otolith weight (g), sex, area of capture, and date of capture. Sex was 
expressed as a categorical variable. Date of capture was expressed as a decimal 
number representing the proportion of the year from 1 January. The number of 
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input variables used for the neural networks thus totalled 114 for A. butcheri and 
P. auratus, and 70 for M. novaezelandiae. A summary is given in Table 22.1. 

A probabilistic network was used for the test and implemented using 
proprietary software (Ward Systems Neuroshell®). Probabilistic neural networks 
(PNNs) are intrinsic classification models and are known for their ability to train 
quickly (Masters 1993). PNNs categorise data into a specified number of output 
categories that correspond to, in this application, age-classes. The topology of the 
PNNs resembles the back propagation neural network i.e. there are three layers in 
the networks. The difference lies in the number of neurons in the hidden layer and 
the function of the hidden layer. There are as many neurons in the hidden layer as 
there are samples in the pattern dataset. The input layer uses the same linearly 
scaled data as the input layer of the back propagation models. The output layer 

Figure 22.2. Sectioned black bream otolith showing typical locations of 
transects. Transects were sampled using the same locations and sequence as the 
transects taken from the snapper otolith sections. The example is of a 9-year-old 
25 cm black bream sampled on 1/4/97 from Sydenham Inlet. 

has the same number of neurons as the number of age classes. The probabilistic 
neural network provides a probability density function of age-membership as an 
output (i.e., all the outputs sum to one) where the most probable age-class is 
classified by the output neuron with the highest value. The hidden layer in the 
PNN uses a 'sphere of influence' weighting function (a multi-variate extension of 
Parzen’s method (Masters 1995)) to classify the given inputs to a particular age-
class. The width of the 'sphere of influence' is determined by a scaling parameter 
that varies between input variables. There is no objective method for determining 
the size of this scaling parameter (Masters 1994). Neuroshell® software uses a 
‘genetic’ algorithm for determining the optimum size of the scaling parameter for 
each age-class. 

Datasets were randomly divided into training, test, and validation subsets in the 
ratio of 3:1:1. The training set was used for minimising or fitting the model to 
produce the desired output response for a given data input. The test set was used to 
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evaluate when the training has reached an optimal level. The presentation of all 
the training samples to the neural network and genetic optimisation of the scaling 
parameters marked the completion of one generation. The training was continued 
until no change in the error term for the test set was observed in 20 generations. 
The production set provided an estimate on the final performance of the trained 
model, using a dataset not previously used in the training (minimisation) or test 
phases of model fitting.  

Table 22.1. Summary of input variables used for training neural networks. 

Figure 22.3. Sectioned blue grenadier otolith showing typical locations of 
transects. The first two transects were drawn from the primordia to the edge of the 
ventral lobe. The third transect was drawn from the primordium to the distal edge 
of the otolith. The example is of an 8 year old 93 cm female blue grenadier 
captured on 29/6/98 from the west coast of Tasmania. 

Network performance was evaluated by two criteria. Firstly, an index of 
average percent error (IAPE) (Beamish and Fournier 1981) was calculated as a 
measure of precision with success being quantified as a value of less than 10% 

Dataset Variables Data type 
Biological Otolith weight (g) Continuous 
 Fish length (cm) Continuous 
 Sex Categorical 
 Date of capture Continuous 
 Transect lengths (pixels)* Continuous 
Signal  First 21 harmonics from DFT* Continuous 

*Data were collected from five transects per individual  
for A. butcheri and P. auratus and three per individual  
for M. novaezelandiae.
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(Morison et al. 1998a). Secondly, the slope and intercept for a linear regression of 
predicted on observed ages was used as a measure of bias, with success being 
quantified as no significant differences from 1 and 0 respectively. Kolmogorov-
Smirnov tests were used to compare the observed and predicted age compositions 
of the production set. 

The first two transects were drawn from the primordia to the edge of the ventral 
lobe. The third transect was drawn from the primordium to the distal edge of the 
otolith. The example is of an 8 year old 93 cm female blue grenadier captured on 
29/6/98 from the west coast of Tasmania. 

Figure 22.4. Original transect of grescale values and a transect reconstructed 
from an inverse discrete fast Fourier transform using twenty one complex 
numbers. The reconstructed line is displayed 10 greyscale values lower than the 
true value for ease of comparison. 

22.5
Results

Trained networks achieved low APEs on the training sets. However, APEs were 
over 5% on the test sets, and close to 10% on the production sets for each of the 
three species (Table 22.2). Regression statistics showed significant bias in the 
estimated ages for M. novaezelandiae but not for the other two species. The fitted 
network models achieved R2 values in excess of 0.8 for all species indicating that 
they explained a high level of the variation within the datasets.  
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For A. butcheri age bias plots show close agreement between mean predicted 
and observed ages although the standard errors are relatively wide for some age 
classes (Figure 22.5). The age composition plots show that the abundance of the 
strong year classes was underestimated (particularly the 3 and 9 year olds) and 
that of the adjacent weaker year classes was overestimated. Nevertheless, the 
Kolgomorov-Smirnov test found no significant difference between the 
distributions. Almost 50% of age estimates that were correct and almost 60% were 
within 1 year of the correct age (Table 22.2). 

The age bias plots for P. auratus show good agreement between mean 
predicted and observed ages for the younger and older age classes but for the 7, 9 
and 10 year old fish the neural network overestimated their age. The standard 
errors were wide for age classes with few individuals. The predicted and observed 
age compositions agreed closely for most ages up to 8 years. However, there was 
greater variability for the older age classes for which the neural network generally 
failed to match the age composition. However, the Kolgomorov-Smirnov test 
indicated that there was no significant difference between the distributions. The 
percentage of age estimates that were correct was similar to that for A. butcheri,
but a much higher percentage was within one year of the correct age (Table 22.2). 

The age bias plot for M. novaezelandiae also showed close agreement for the 
younger age classes, but poorer estimates for the older age classes. The mean age 
predicted by the neural networks did not differ greatly among age classes above 7 
year old fish. This is reflected in the significant regression (the slope was 
significantly different from 1). However, there were relatively few fish in these 
older age classes in the production set so these differences did not produce great 
discrepancies between the observed and predicted age compositions, and the 
Kolmogorov-Smirnov test comparing these distributions was not significant. The 
sample for M. novaezelandiae produced the lowest percentage of correct age 
estimates but the highest percentage that were within 1 year of the correct age 
(Table 22.2). 

Table 22.2. Model fits and bias and precision tests for each species. 
APE=average percent error; Regression = */NS if either slope or intercept are/not 
significantly different from 1 or 0 respectively 

Species R2 APE Regression % Correct % Within 1 Year 
A. butcheri 0.88 8.68 NS 49.5 78 
P. auratus 0.81 9.18 NS 47.2 59.4 
M. novaezelandiae 0.83 8.24 * 35.7 81.3 
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Figure 22.5. Age bias (left) and age composition (right) plots for each species. 
The age bias plots show mean (  2 SE) predicted ages against observed age; the 
line shows equal age estimates. 

22.6
Discussion 

These results confirm the findings from the preliminary study of Robertson and 
Morison (1999) that neural networks offer a practical means to objectively 
estimate the age of fish. More confidence can be placed in the results presented 
here because of the larger sample sizes and the more rigorous testing procedures. 
The separation of training, test and production sets provides a test of the ability of 
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the trained networks to correctly classify new samples. These results will therefore 
provide a more accurate indication of the accuracy that could be expected if the 
method was implemented for ongoing production age estimation.  

This study has also confirmed the value of three improvements suggested by 
Robertson and Morison (1999). Firstly, it has showed that the DFT can effectively 
capture the information from a transect across an otolith image. This robust and 
widely used transformation greatly reduces the number of data inputs and hence 
the complexity of the neural network model that needs to be constructed. The 
PNN models were fitted with less than half the number of inputs used in the pilot 
study, but were still able to include signal data from five transects rather than one, 
and incorporate auxiliary data as well. Lagardère and Troadec (1997) used a 
Fourier transformation for estimating the number of daily increments on the 
otoliths of larval sole Solea solea, but applied it to a demodulated signal. Further 
refinements of this approach are possible, so that the information in a greater 
amount of the image can be incorporated into future models.  

Secondly, this study has shown that the biological data (fish length, otolith 
weight, and date of capture) can be incorporated into neural networks and 
contribute to their ability to estimate the age of samples. The relative importance 
of these auxiliary data sources to each model can be assessed from the magnitude 
of the individual scaling factors the trained network assigns to each input 
variable . For this study the most important variables varied for each species: for 
A. butcheri 9 of the 10 inputs with the highest scaling factors were Fourier 
transform harmonics; for P. auratus and M. novaezelandiae otolith weight, 
transect lengths, fish length and Fourier transform harmonics were all given high 
values. However, there was no clear point of demarcation of input variables with 
high or low scaling factors. The nature of the differences between the species were 
unexpected, especially since the otoliths of A. butcheri and P. auratus are similar 
in shape and clarity whereas those of M. novaezelandiae are more complex and 
difficult to interpret. 

Thirdly, this implementation of neural networks has confirmed that PNNs are 
an appropriate network type for the problem of age estimation. The relative 
performance of PNNs compared with other types of neural networks was not 
explored here, and would be worthwhile, but the scaling factors they produce for 
each network input are one feature of PNNs that shows there utility for fish age 
estimation. They provide an ability to differentiate important inputs from those 
that contribute little discriminating power in a manner that is analogous to 
sensitivity tests. Sensitivity tests have been used to explore the relative importance 
of the data sources and the strength of their contribution to the response variable 
of interest (Walter et al. 2001). It does not add greatly to the complexity of the 
model to incorporate all the readily available data types into a model. 
Nevertheless, it would be useful to have a formal procedure for the identification 
of the minimum number of inputs needed to obtain satisfactory model predictions.  

The PNNs showed an improvement over the results of the back-propagation 
models used in the pilot study (Robertson and Morison 1999) in producing 
acceptable results under more rigorous training and testing procedures. Results for 
M. novaezelandiae in particular were superior, as the earlier neural network 
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models failed to successfully estimate the age of this species. Despite the 
promising progress, the results are still below the performance of human readers 
who usually achieve APE values below 1% for A. butcheri and P. auratus, and 
below 5% for M. novaezelandiae (Morison et al. 1998a). Nevertheless, the PNNs 
correctly classified a much larger range of age classes than previous studies have 
managed (e.g. Welleman and Storbeck 1995; Troadec et al. 2000). Also, these 
results were achieved on a representative subset of otoliths and without the need 
for any a priori growth patterns or user intervention. 

There are still several issues that would benefit from further investigation. 
Some of the apparent errors of the neural network age estimates may be due to 
mistakes made the human reader in estimating the age of the samples used to train 
the networks. Such errors may affect the ability of neural networks to train 
effectively or degrade their performance on the production set. This issue could 
only be effectively addressed by the use of all known age samples to train and test 
the network. However, such data sets are rare and difficult to obtain for many 
commercially exploited fish species. 

One further development that is highly desirable is to test the performance of 
neural networks against more conventional multi-variate statistical methods. Few 
attempts have been made along these lines for age estimation in fish. (Boehlert 
1985) used multiple linear regression methods but there are other well-established 
non-linear multi-variate statistical methods that could employed. Neural networks 
require such benchmarking to truly test the extent to which they represent a 
significant advancement in modelling for age estimation in fish or other ecological 
issues.

Acknowledgments  

This work was supported by grants from the Australian Fisheries Research and 
Development Corporation (project numbers 96/136 and 98/105). Fisheries 
Victoria provided funds for the collection and ageing of A. butcheri and P. 
auratus. The Australian Fisheries Management Authority provided funds for the 
collection and ageing of samples of M. novaezelandiae. The assistance of many 
colleagues at the Marine and Freshwater Resources Institute is greatly appreciated, 
particularly Corey Green and Kyne Krusic-Golub for estimating ages, staff of the 
Bay and Inlet program for sample collection, and David Smith for comments on 
the draft manuscript.  Steve Ward is thanked for his prompt and insightful 
suggestions for implementing the neural networks. 

References  

Beamish RJ, Fournier DA (1981) A method for comparing the precision of a set of age 
determinations. Journal of the Fisheries Research Board of Canada 36, 1395-1400 



Chapter 22  ·  Age Estimation of Marine Fish  457 

Beamish RJ, McFarlane GA (1983) The forgotten requirement for age validation in 
fisheries biology. Transactions of the American Fisheries Society(112), 735-43 

Bennett JT, Boehlert G, Turekian KK (1982) Confirmation of longevity in Sebastes 
diploproa (Pisces: Scorpaenidae) from 210Pb/226Ra measurements in otoliths. Marine 
Biology 71, 209-215 

Boehlert GW (1985) Using objective criteria and multiple regression models for age 
determination in fishes. Fisheries Bulletin U.S.A. 83, 103-117 

Cailliet GM, Botsford LW, Brittnacher JG, Ford G, Matsubayashi M, King A, Watters DL, 
Kope RG (1996) Development of a computer-aided age determination system - 
evaluation based on otoliths of bank rockfish off California. Transactions of the 
American Fisheries Society 125(6), 874-888 

Campana SE (2001) Accuracy, precision and quality control in age determination, 
including a review of the use and abuse of age validation methods (Review). Journal of 
Fish Biology 59(2), 197-242 

Campana SE, Annand MC, McMillan JI (1995) Graphical and statistical methods for 
determining the consistency of age determinations. Transactions of the American 
Fisheries Society 124, 131-138 

Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a 
comprehensive understanding of fish populations? Canadian Journal of Fisheries & 
Aquatic Sciences 58(1), 30-38 

Chang WYB (1982) A statistical method for evaluating the reproducibility of age 
determination. Canadian Journal of Fisheries and Aquatic Sciences 39, 1208-1210 

Fletcher WJ (1995) Application of the Otolith Weight - Age Relationship For the Pilchard, 
Sardinops Sagax Neopilchardus. Canadian Journal of Fisheries & Aquatic Sciences 
52(4), 657-664 

Francis RICC, Paul LJ, Mulligan KP (1992) Ageing of adult snapper (Pagrus auratus) from 
otolith annual ring counts: validation by tagging and oxytetracycline injection. 
Australian Journal of Marine and Freshwater Research 43, 1069-1089 

Gröger J (1999) A theoretical note on the interpersonal correction of age readings by means 
of calibration techniques. Archive of Fishery Marine Research 47(1), 77-101 

Kalish JM (1993) Pre- and post-bomb radiocarbon in fish otoliths. Earth and Planetary 
Science Letters 114, 549-554 

Kalish JM, Johnston JM, Smith DC, Morison AK, Robertson SG (1997) Use of the bomb 
radiocarbon chronometer for age validation in the blue grenadier Macruronus 
novaezelandiae. Marine Biology 128(4), 557-563 

Kimura DK, Lyons JJ (1991) Between reader bias and variability in the age-determination 
process. Fishery Bulletin 89, 53-60 

Lagardere FTH (1997) Age estimation in common sole Solea solea larvae - validation of 
daily increments and evaluation of a pattern recognition technique. Marine Ecology-
Progress Series 155, 223-237 

Macy WKI (1995) The application of digital image processing to the aging of ling-finned 
squid, Loligo pealei, using the statolith. In 'Recent Developments In Fish Otolith 
Research'. (Eds Secor, D. H., Dean, J. M., and Campana, S. E.)  pp 283-302. 
(University of South Carolina Press: Colombia.) 

Masters T (1993) Practical Neural Network Recipes in C++. (Academic Press Inc.: San 
Diego.)

Masters T (1995) Advanced algorithms for neural networks. A C++ sourcebook. 437 pp. 
(John Wiley and Sons: New York.) 



                                        S.G. Robertson  · A.K. Morison 458

Morison AK, Coutin PC, Robertson SG (1998a) Age determination of black bream, 
Acanthopagrus butcheri (Sparidae), from the Gippsland Lakes of south-eastern 
Australia indicates slow growth and episodic recruitment. Marine and Freshwater 
Research 49, 491-98 

Morison AK, Robertson SG (1997) Automatic ageing of fish from otoliths: a pilot study. 
Final report to FRDC for Project #96/136    (Marine and Freshwater Resources 
Institute: Queenscliff.) 

Morison AK, Robertson SG, Smith DC (1998b) An integrated system for production fish 
aging: image analysis and quality assurance. North American Journal of Fisheries 
Management 18, 587-98 

Punt AE, Smith DC, Thomson RB, Haddon M, He X, Lyle JM (2001). Stock assessment of 
the blue grenadier Macruronus novaezelandiae resource of south-eastern Australia. 
Marine and Freshwater Research 52, 701-717 

Richards LJ, Schnute JT, Kronlund AR, Beamish RJ (1992) Statistical models for the 
analysis of ageing error. Canadian Journal of Fisheries and Aquatic Sciences 49, 1801-
1815

Robertson SG, Morison AK (1999) A trial of artificial neural networks for automatically 
estimating the age of fish. Marine and Freshwater Research 50, 73-82 

Takashima Y, Takada T, Matsuishi T, Kanno Y (2000) Validation of auto-couning method 
by NIH Image using otoliths of white-spotted char Salvelinus leucomanenis. Fisheries 
Science 66, 515-520 

Troadec H (1991) Frequency demodulation on otolith numerical images for the automation 
of fish age estimation. Aquatic Living Resources 4, 207-219 

Troadec H, Benzinou A, Rodin V, Le Bihan J (2000) Use of deformable template for two-
dimensional growth ring detection of otoliths by digital image processing: Application 
to plaice (Pleuronectes platessa) otoliths. Fisheries Research 46, 155-163 

Walter M, Recknagel F, Carpenter C, Bormans M (2001) Predicting eutrophication effects 
in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO 
and the recurrent neural network model ANNA. Ecological Modelling 146, 1-3, 97-
113

Welleman HC, Storbeck F (1995) Automatic ageing of plaice (Pleuronectes platessa L.) 
otoliths by means of image analysis. In 'Recent Developments in Fish Otolith 
Research'. (Eds Secor, D. H., Dean, J. M., and Campana, S. E.)  pp 271-282. 
(University of South Carolina Press: Columbia.) 

Williams T, Bedford BC (1974) The use of otoliths for age determination. In 'Ageing of 
Fish'. (Eds Bagenal, T. B.)  pp 114-123. (Unwin Brothers: Old Woking.) 

Worthington DG (1995) Variation in the relationship between otolith weight and age - 
implications for the estimation of age of two tropical damselfish (Pomacentrus 
moluccensis and P. wardi). Canadian Journal of Fisheries & Aquatic Sciences 52(2), 
233-242



Chapter 23 

Pattern Recognition and Classification of 
Remotely Sensed Images by Artificial Neural 
Networks
G.M. Foody

23.1
Introduction

Pattern recognition is concerned with a range of information processing issues 
associated with the description or classification of measurements. It is based on a 
broad and often loosely related body of literature and techniques (Schalkoff, 
1992). Although statistical and structural (syntactic) approaches have dominated 
the subject there has been a growing interest in the use of neural networks for 
pattern recognition applications (Schalkoff, 1992; Bishop, 1995). This is 
particularly evident in relation to pattern recognition applications in remote 
sensing. Remote sensing is often used to derive information on the environment 
(Campbell, 2002; Lillesand et al., 2004). For example, satellite remote sensors are 
commonly used to provide images of the Earth’s surface that may be analysed to 
yield information on a diverse range of issues of ecological significance. This 
includes information on a variety of important environmental phenomena 
including land cover and its dynamics (e.g. deforestation), vegetation productivity 
and yield, soil water content, water quality and variation in surface temperature. 
Remote sensing has, therefore, the potential to provide information to support 
ecological research, particularly that addressing macro or coarse spatial scale 
issues (Roughgarden et al., 1991; Kasischke et al., 1997; Lucas and Curran, 1999; 
Hall, 2000). The value of remote sensing as a source of information on the 
environment is, however, sometimes limited by the image analysis techniques 
used. Traditionally, statistical techniques have been used widely in the analysis of 
remotely sensed data. However, in common with other fields of study, including 
ecology, the last 10-15 years has witnessed a rapid growth in the use of neural 
networks (Atkinson and Tatnall, 1997; Lek et al., 2000). This chapter aims to 
report on some of the main application of neural networks in remote sensing and 
indicate topics where further development may be expected to occur. 
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23.2
Neural Networks in Remote Sensing 

Of the many pattern recognition applications, neural networks have been most 
widely used in remote sensing for image classification and regression-type 
analyses. They have been adopted increasingly as a result of their freedom from 
restrictive assumptions as well as practical demonstrations of their ability to 
commonly provide more accurate outputs than conventional methods. 

23.2.1
Classification Applications 

Remotely sensed data are extremely attractive for thematic mapping applications. 
This is mainly because the data have a map-like format, provide complete and 
continuous coverage of large areas inexpensively and are relatively consistent. 
Consequently, remote sensing has become a major source of thematic maps such 
as those depicting land cover.  
    Thematic mapping is typically based on some sort of classification analysis. 
Two broad types of classification are used, supervised and unsupervised 
(Schowengerdt, 1997; Mather, 1999). The unsupervised classifiers are essentially 
clustering techniques. These are generally used to search for natural spectral 
classes in the remotely sensed data. This type of approach can be useful in 
exploratory analyses and where a basic generalisation of the data set is required. 
Deriving meaningful labels for the derived clusters is, however, sometimes 
difficult. More commonly, therefore, supervised classification techniques are 
used. With this type of classification the classes of interested are known at the 
outset. The classification algorithm is trained to recognise the remotely sensed 
response of each class and then applied to the image in order to allocate each pixel 
in the image to the class with which it has the greatest similarity (Campbell, 2002; 
Mather, 2004). This type of approach has been widely used in studies of land 
cover and land cover change. There are, however, many problems that often limit 
the accuracy of classification analyses. Thus, the considerable potential of remote 
sensing as a source of land cover information is often not fully realised 
(Townshend, 1992; Wilkinson, 1996; Estes et al., 1999). Many factors may be 
responsible for this situation, ranging from the characteristics of the remote sensor 
(e.g. its spectral, radiometric, temporal and spatial resolutions), the nature of the 
classes  (e.g. level of class detail, degree of class heterogeneity) and the 
classification methods used (Foody and Arora, 1997; Scepan, 1999; Estes et al.,
1999; Loveland et al., 1999; Friedl et al., 2000). The latter issue has been the 
focus of considerable attention. Recently attention has focused on neural network 
based approaches for image classification which offer considerable advantages 
over traditional methods (e.g. statistical approaches such as the maximum 
likelihood classification), particularly with regard to the freedom from restrictive 
assumptions about the data sets (Fischer et al., 1997; Fischer, 1998). Comparative 
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analyses have also generally shown that neural networks may be used to classify 
remotely sensed data more accurately than conventional statistical approaches, 
particularly if the data are incompatible with the assumed model that underlies 
statistical classifications (Benediktsson et al., 1990; Peddle et al., 1994; Paola and 
Schowengerdt, 1995). 

23.2.2
Regression Applications 

Commonly remotely sensed data have been used to derive estimates of 
environmental variables. Thus, for example, remotely sensed data have been used 
to estimate a range of environmental phenomena including the biomass of forests, 
moisture content of soils and the temperature and sediment content of water 
bodies. This is often the only feasible way of deriving information on the 
variables over large areas and the only practical source of spatial data to drive 
some ecosystem simulation models (Lucas and Curran, 1999). A variety of 
methods may be used to derive the estimates of environmental variables but 
regression techniques have proved popular (e.g. Lawrence and Ripple, 1998 
Curran et al., 2001). As with the classification of remotely sensed data, a 
fundamental problem is that the assumptions that underlie regression analysis may 
not be satisfied, leading to significant error and misinterpretation. Neural 
networks, however, have considerable potential as non-parametric alternative to 
regression analysis and in recent years have been used increasingly in the 
extraction of environmental information from remotely sensed data (e.g. Baret, 
1995; Jin and Liu, 1997; Foody et al., 2001). Similarly, neural networks have 
been widely used in the related application of model inversion (e.g. Wang and 
Dong, 1997). 

23.3
The Neural Networks Used in Remote Sensing 

A variety of neural networks have been used in remote sensing. This section aims 
to briefly outline the key features of the most widely used networks. Emphasis 
will be placed upon the feedforward networks, such as the multi-layer perceptron 
(MLP), radial basis function (RBF) probabilistic neural network (PNN) and 
generalised regression neural networks (GRNN), that have been used most widely 
in remote sensing. Other network types that have been used less frequently but for 
which there is considerable scope for further application in remote sensing are 
also discussed briefly. 
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23.3.1
Feedforward Neural Networks 

Feedfoward networks comprise a set of simple processing units arranged in layers 
that are interconnected and can, once trained, be used for classification and 
regression applications (Figure 23.1). The number of input and output units is 
determined by the characteristics of the remotely sensed data used (e.g. the 
spectral wavebands) and the desired output (e.g. number of classes in a 
classification). In most studies, there is, for example, one input unit associated 
with each spectral waveband in the remotely sensed imagery to be used and one 
output unit associated with each class to be classified or variable to be estimated, 
although other architectures are possible (e.g. if using thermometer or spread 
encoding of data). The nature of the hidden layers and of the interconnections 
between units in different layers, however, differs substantially between the 
different types of feedforward network. 

Figure 23.1. A basic feedforward neural network with a single hidden layer. The 
lines connecting the units between layers represent the weighted connections. The 
network illustrated uses n input variables (e.g. the 6 non-thermal channels of the 
Landsat TM) to derive an m class classification.  For regression type applications 
there is normally only a single output (e.g. a prediction of an environmental 
variable such as forest biomass). 
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23.3.1.1
Multi-Layer Perceptron (MLP) 

The MLP is probably the most widely used type of neural network in remote 
sensing (Day, 1997; Atkinson and Tatnall, 1997). With an MLP, the number of 
hidden units and hidden layers is typically determined after a series of trial runs, 
although some heuristics may be used to help guide the selection of the network 
architecture (e.g. Wang, 1994; Kanellopoulos and Wilkinson, 1997). In general, 
the more complex the problem the larger the network, in terms of hidden units and 
layers, required for its solution. Each unit in a layer of the MLP network is 
connected to every unit in the adjacent layer(s) of the network by a weighted 
connection (Figure 23.1). The units undertake very simple analyses. For example, 
a unit in the hidden layer simply formulates the weighted sum of all of its inputs 
and passes this through its transformation function to generate the output that is 
then propagated to units in the next layer. The input to a unit, such as one of the 
hidden units in Figure 23.1, is calculated from, 
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where oa is the magnitude of the output from unit a in the previous layer that contains 
N units and wha the weight of the interconnection channel between units a and h. This 
net input (neth) is then transformed by the unit’s activation function to produce an 
output for the unit (Schalkoff, 1992). Typically a sigmoidal activation function, 

oh =  1/(1+exp(- neth))    (23.2) 

where  is a gain parameter, that is often set to 1.0, is used. Although each individual 
unit in the network performs relatively simple analyses, the network as a whole 
may be used to solve complex problems. This is achieved by setting the weights 
connecting the units to values that enable the network to accurately predict class 
membership or estimate the value of the phenomenon of interest from the 
remotely sensed data presented to it. The magnitude of each weighted connection 
is determined via an iterative training procedure using a learning algorithm such 
as backpropagation or quickpropagation (Davalo and Naim, 1991; Schalkoff, 
1992; Bishop, 1995). Training begins with the magnitude of the weighted 
connections set at randomly determined values. The training sample is then passed 
through the network and, as the desired output of the network is known for each 
case in the training sample, the error in the network’s predictions may be 
calculated. This derived error is then effectively passed backwards through the 
network with the magnitude of the weights connecting the units adjusted in 
relation to the error magnitude. Typically the weight adjustment is made with an 
application of a function such as, 
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wha(f) = - hoa + wha(f-1)   (23.3) 

where f is the iteration number, h a computed error and  and  are parameters which 
define the learning rate and momentum which may facilitate network learning 
(Schalkoff, 1992). The process of entering the training data, calculating the 
network’s error and adjusting the magnitude of the weighted connections between 
units in relation to the error magnitude continues until the network is capable of 
identifying class membership or predicting the magnitude of the phenomenon of 
interest accurately. The selection of an appropriate point at which to stop the 
training of the network is a difficult but important task. The analyst must seek to 
avoid the problems of under- and over-fitting the network to the training data and 
frequently achieves this through the use of a verification set. The sample of cases 
contained in the verification set are used to evaluate the generalisation ability of 
the network but are not used directly in the training of the network. By classifying 
the verification set at intervals during the training of the network it is usually 
possible to identify a suitable point at which to stop training. In this way 
dependence on the potentially mis-leading training or learning error, calculated on 
the training set, is reduced and a guide to the generalisation ability of the network 
is provided. 

23.3.1.2
Radial Basis Function (RBF) 

RBF networks have been used less frequently in remote sensing than the MLP. 
The RBF network, however, has considerable potential in remote sensing studies 
(Fischer et al., 1997; Rollet et al., 1998; Bruzzone and Prieto, 1999; Foody, 
2004a). While the MLP can have one or more hidden layers the RBF has only a 
single hidden layer of units. The units contained in this hidden layer are very 
different to those used in the MLP. The hidden units in the RBF network use a 
radial basis transformation function which responds to only a small region of the 
input space upon which it has been centred (Bishop, 1995). Each of the radial 
basis functions has two key parameters that describe the location of the function’s 
centre and its width. The hidden unit measures the distance between an input data 
vector and the centre of its radial basis function. This, together with the function’s 
width is used to derive the input to the hidden unit from which the unit’s output 
may then be calculated. This radial basis function has its peak at zero distance and 
declines with increasing distance from the centre. Consequently, the output of the 
radial unit is 1.0 if the input data vector lies on the function’s centre but declines 
the greater the distance between the input vector and function’s centre until it is 
0.0. The activation level of a basis function is, therefore, constant on concentric 
circles around its centre and hence the feature space is partitioned into 
hypersheres (Bishop, 1995). This is very different to the basic MLP with a single 
hidden layer that partitions the entire feature space with hyperplanes along which 
the activation level of the hidden units is constant. Since the RBF units respond to 
local regions it is common for a RBF network to require a more complex 
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architecture, comprising more hidden units, than a MLP network constructed for 
the same problem.  
    The RBF model provides a smooth interpolating function in which the number 
of basis functions and so hidden units required is a function of the complexity of 
the problem in-hand rather than the size of the data set (Bishop, 1995). As there is 
only a single hidden layer there are only two sets of weights in the network, one 
connecting the hidden layer to the input layer and the other connecting the hidden 
layer to the output layer. Those weights connecting to the input layer contain the 
parameters of the basis functions. The weights connecting the hidden layer to the 
output layer are used to form linear combinations of the activations of the basis 
functions (hidden units) to generate the network outputs. Since the hidden units 
are non-linear, the outputs of the hidden layer may be combined linearly and so 
processing is rapid.  The output of the network is derived from, 
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where M is the number of basis functions, x the input data vector, wkj represents a 
weighted connection between the basis function and output layer and j is the non-
linear function of unit j, which is typically a Gaussian of the form 

j(x) = exp(-¦x- j¦ 2 / 2 j
2)                 (23.5) 

in which j and j are the parameters specifying the basis function’s centre and 
width respectively. 
    Training a RBF network involves two distinct stages. In the first stage, the basis 
functions are determined using an unsupervised analysis. This effectively defines 
the weights connecting the units in the input and hidden layers. The determination 
of the basis function parameters in this first stage of training the RBF network 
may also make use of unlabelled cases (Bishop, 1995). This can be advantageous 
in remote sensing applications as ground data are often scarce or costly to obtain 
but the remotely sensed data set is generally voluminous (Shahshanhani and 
Landgrebe, 1994; Fardanesh and Ersoy, 1998). In the second stage of training, the 
weights connecting the hidden and output layers are derived using a linear 
supervised method (Bishop, 1995). 

23.3.1.3
Probabilistic Neural Networks (PNN) 

The PNN is used only for classification problems and is typically very much 
larger than an MLP or RBF network designed to undertake the same task. With 
the PNN network, estimates of the probability density functions (p.d.f.) of the 
possible classes are derived and used to select the most probable class of 
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membership for each case (Specht, 1990). Rather than assume a certain form for 
the p.d.f. (e.g. a normal distribution) a kernel-based approximation is commonly 
used (Bishop, 1995). With this, simple functions are located at each available case 
and added together to derive an estimate of the overall p.d.f. This kernel-based 
approach to p.d.f approximation has similarities to aspects of the RBF networks. 
Indeed, radial units are contained in the hidden layer of a PNN. In total, the PNN 
contains at least three layers with the input and output layers performing similar 
functions to the other network types. The radial units of the PNN essentially copy 
the training data and hence the number of hidden radial units is equal to the size of 
the training set. PNN networks are consequently typically very much larger than 
MLP and RBF networks designed for the same problem. Each radial unit models a 
Gaussian function centred on the relevant training case and is connected to the 
unit in the output layer associated with the actual class of membership for that 
training case. Thus each output unit is connected to only the radial units 
associated with the same class with a zero connection to all other radial units. In 
the output units, the sum of all the responses of the radial units belonging to the 
relevant class is derived and these are proportional to the kernel based estimates of 
the p.d.f.’s of the defined classes. These outputs may be normalised to sum to 
unity to provide a probabilistic output and each case of previously unknown 
membership may be allocated to the class with which it has the highest probability 
of membership. This type of network can be rapid to train but, because of its size, 
slow to apply to large data sets. It has a major advantage over the other network 
types of being able to readily accommodate prior information into the analysis, 
which is often advantageous in remote sensing applications (Strahler, 1980; 
Mather, 2004) and can be used to increase classification accuracy (Foody, 2001). 

23.3.1.4
Generalised Regression Neural Network (GRNN) 

The GRNN is a regression (Bayesian) network that has some similarities with the 
PNN. The GRNN, however, has four layers and is used only for regression-type 
problems. First, is the input layer as normal. Second, a layer of radial units that are 
used to provide a representation of the centres of clusters identified from the 
training sample. The radial layer is typically large, but usually smaller than the 
size the training sample, and is trained using a clustering algorithm. The third 
layer in the network is a layer of regression units. Two types of unit are 
encountered in this layer, one calculates the desired regression outputs while the 
other calculates the probability density. In total there is always one more unit in 
this third layer than in the output layer. The fourth layer is the output layer that 
integrates the outputs from the regression layer to provide the networks 
predictions. Relative to MLP and RBF networks constructed for the same 
problem, a GRNN typically has a much larger architecture (e.g. Foody et al.,
2001). Because of the large size of this type of network it is typically slow to 
apply to large data sets, although it does train rapidly. 
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23.3.1.5
Other Network Types 

A range of other networks has been used in remote sensing (e.g. Corne et al.,
2004). Three in particular are worthy of brief discussion. These are the Hopfield, 
ART and Kohonen neural networks. Each is very dissimilar to the feedforward 
networks that have been described above. 
    The Hopfield neural network belongs to a set of recurrent networks. Unlike the 
feedforward networks, in which information is essentially propagated in a single 
direction, the outputs of units in a Hopfield network are fed back into the inputs. 
The Hopfield network is, therefore, a fully connected network (Aleksander and 
Morton, 1990; Davalo and Naim, 1991). It was used initially as a contents 
addressable (associative) memory device but is also able to solve complex 
combinatorial problems (Cote and Tatnall, 1997). The Hopfield neural network 
has been used in a range of applications in remote sensing including the tracking 
of clouds (Cote and Tatnall, 1997) and in the refinement of soft/fuzzy image 
classifications in order to effectively sharpen the resolution of thematic maps 
(Tatem et al., 2001; 2003). 
    Adaptive resonance theory (ART) provides the foundation for real-time 
networks that solve the stability-plasticity problem that handicaps the use of other 
approaches such as the MLP (Carpenter et al., 1999a; Gopal et al., 1999; Gamba 
and Houshmand, 2001). That is, the ART networks are able to perform rapid, 
stable on-line learning, recognition and prediction. ART networks may be adapted 
to accommodate fuzzy logic and have been used in supervised image 
classification applications (Gopal et al., 1999; Carpenter et al., 1999b). 
    The Kohonen network belongs to a set of self-organising competitive learning 
systems. Sometimes referred to in the literature as a self-organising map (SOM) or 
self-organising feature map (SOFM), the Kohonen network has been used 
commonly for unsupervised classification. The network uses unsupervised 
learning to provide a topologically ordered output that displays the relative 
similarity of cases entered to it. The network consists of just two layers of units, 
input and output. The output is a low, typically 2, dimensional array of units. Each 
unit in the output layer is fully connected to all adjacent units in that layer as well 
as to all of the input units. The lateral connection of units in the output layer aids 
competitive learning such that similar cases cluster together in the output array 
and are associated with a different region of the output array than dissimilar cases. 
This network has been used for unsupervised classification (Poth et al., 2001), 
although if training data are available it may also be used to label cases (e.g. Ito 
and Omato, 1997; Ji, 2000). 
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23.4
Current Status 

The potential of neural networks for the provision of accurate environmental 
information from remotely sensed data has been demonstrated in numerous 
studies. With regard to both classification and regression type problems this has 
been largely demonstrated with the MLP network. 
    Many studies have demonstrated that neural networks can generally be used to 
classify remotely sensed data at least as, but usually more, accurately than 
conventional statistical classifiers (e.g. Benediktsson et al., 1990). For example, 
Peddle et al. (1994) provide a comparative evaluation of neural network, 
maximum likelihood and evidential reasoning classifications of alpine land cover. 
The results show that for a variety of classification scenarios based upon SPOT 
HRV and ancillary topographic data that, in general, the highest accuracy was 
obtainable when a neural network was used to classify the data. For example, in 
one set of analyses it was apparent that the accuracy of a maximum likelihood 
classification declined with the addition of ancillary information on topography 
from 75% to 32% approximately while the corresponding accuracies derived from 
a neural network showed and increase from 75% to 90% approximately. This 
result is significant in that it shows the neural network was, unlike the 
conventional statistical classification, able to constructively use the ancillary 
information and derive a significantly higher classification accuracy.
    The MLP has also been used successfully in regression applications. Many 
studies have focussed on the estimation of biophysical properties from remotely 
sensed data (e.g. Weiss and Baret, 1999; Kimes et al., 2000; Boyd et al., 2002). 
Studies that illustrate the value of neural networks for this type of application 
include those focused on the estimation of leaf area index (Smith, 1993) and forest 
biomass (Foody et al., 2001). In terms of relative performance against standard 
regression analysis, neural networks have been shown to be able to derive more 
accurate predictions. For example, in the estimation of tropical forest biomass 
from Landsat TM data, Foody et al. (2001) derived correlation coefficients 
between the biomass predicted from a multiple regression analysis and a MLP 
neural network with that derived from field measurement of r=0.50 and r=0.80
respectively.
    Although the MLP is the most widely used neural network in remote sensing 
data analysis attention is increasingly turning to alternative network types (e.g. 
Corne et al., 2004). For supervised classification applications, perhaps the most 
common use of neural networks in remote sensing, attention has recently turned 
increasingly to the RBF (Fischer et al., 1997; Rollet et al., 1998; Bruzzone and 
Prieto, 1999), PNN (Foody, 2001) and ART type networks (Carpenter et al.,
1999a; Gopal et al., 1999; Liu et al., 2004) networks which may sometimes be 
more appropriate than the MLP.  
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23.4.1
An Example of Neural Networks for Classification 

To help appreciate the potential of artificial neural networks for use in remote 
sensing a series of classifications using the MLP, RBF and PNN outlined above 
were undertaken. These classification analyses used multi-spectral imagery 
acquired by an airborne thematic mapper sensor of an agricultural site in the UK; 
details on the data set and test site may be found in Foody and Arora (1997). 
Briefly, the data set comprised the remotely sensed response in 11 spectral 
wavebands for 600 pixels sampled from the imagery. These 600 pixels were 
extracted through a stratified random sampling design that ensured that 100 pixels 
were extracted for each of the six main crop classes found at the test site. 
    The data set was divided into equally sized but independent training and testing 
sets. The training set was, however, further divided into a classical training set and 
a verification set to help guide the parameterization of the neural networks. For 
the purpose of this example, 10 pixels of each class were used to form the 
verification sample. A software package that aims to optimally design neural 
networks was then used to generate appropriate MLP, RBF and PNN classifiers, 
using the accuracy of the verification set as a guide to network selection. In each 
case the starting point was that n=11 and m=6 (Figure 23.1), although it was 
possible for relatively uninformative inputs, and so units, to be ignored. 
    In addition to the neural networks, a standard quadratic discriminant analysis 
was used to derive a conventional maximum likelihood classification. This was a 
stepwise dicriminant analysis, using Wilks’ lambda as the variable selection 
criterion, in which the entire training sample was used as the training set (there 
was no need for a verification sample).  
    Each of the 4 classifications, therefore, used the same training and testing 
samples, although the division of the training sample into training and verification 
sets does slightly reduce the direct comparability of the analyses. A summary of 
the networks generated and of the classifications derived is given in Table 23.1.  

Table 23.1. Summary of the classifiers and the accuracy with which they 
classified the independent testing set (DA = discriminant analysis). The neural 
network architecture is described in terms of the number of input:hidden:output 
units and this, along with other network parameters, was determined by an 
empirical procedure. Note that discriminating variables (wavebands) that 
contributed little could be ignored in each analysis (the data some wavebands 
were excluded in neural network and the discriminant analysis) 

Classifier Architecture  Accuracy (%)
MLP  11:26:6   94.33 
RBF  9:27:6    90.00 
PNN  7:240:    90.66 
DA  Not applicable   91.33
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Table 23.2. Confusion matrices from the classifications: (a) MLP, (b) RBF, (c) 
PNN and (d) DA. Note in each matrix the actual class of membership is shown in 
the columns and the predicted class of membership in the rows. Classes are sugar 
beet (SB), wheat (W), barley (B), carrots (C), potatoes (P) and grass (G).

Class SB W B C P G Total
SB 45 1 2 0 2 0 50 
W 2 48 2 0 0 2 54 
B 0 1 46 0 0 0 47 
C 1 0 0 48 0 0 49 
P 2 0 0 2 48 0 52 
G 0 0 0 0 0 48 48
Total 50 50 50 50 50 50 300 

(a) MLP 

Class SB W B C P G Total
SB 42 3 1 0 0 0 46 
W 4 43 2 0 2 1 52 
B 1 4 45 0 0 0 50 
C 1 0 0 47 0 4 52 
P 2 0 0 3 48 0 53 
G 0 0 2 0 0 45 47
Total 50 50 50 50 50 50 300 

(b) RBF 

Class SB W B C P G Total
SB 41 5 0 0 0 0 46 
W 4 42 2 0 2 0 50 
B 2 2 47 0 0 0 51 
C 0 1 0 47 0 3 51 
P 2 0 0 3 48 0 53 
G 1 0 1 0 0 47 49
Total 50 50 50 50 50 50 300 

(c) PNN 

Class SB W B C P G Total
SB 45 0 0 0 0 0 45 
W 1 46 0 0 0 0 47 
B 0 4 50 0 0 0 54 
C 1 0 0 45 1 1 48 
P 3 0 0 5 48 9 65 
G 0 0 0 0 1 40 41
Total 50 50 50 50 50 50 300 

(d) DA 
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It was apparent that the six crop classes exhibited a high degree of separability 
in the remotely sensed data set, with the accuracy with which the testing set was 
classified =90% for each method. The highest accuracy, 94.33%, was observed 
for the classification by the MLP. Moreover, the difference in accuracy between 
the MLP classification and the least accurate classification, derived from the RBF, 
was statistically significant (p<0.05, difference between proportions test; Foody, 
2004b).

A more detailed assessment of the 4 classifications can be made from their 
associated confusion matrices (Table 23.2). It is evident from these matrices that 
while the differences in overall classification accuracy between the 4 
classifications were relatively small there were substantial differences in the 
patterns of class allocations. The quality of a particular classification may, 
therefore, vary with the specific requirements of a user. In, general, however, the 
focus is on overall classification accuracy and consequently, in this example, the 
MLP would be viewed as the most accurate and useful classifier. It is, it also 
worth noting that all of the neural network classifiers yielded classifications in 
which the number of cases allocated to each class was relatively constant and, 
linked in part to this, the individual class accuracies were relatively similar. This 
is often a desirable feature in classifications and is not the case with the 
discriminant analysis. Note for example, that the range of the number of cases 
allocated to the classes was 24 (65-41) for the discriminant analysis but only 7 for 
each of the neural networks. The accuracy with which each individual class was 
classified also varied between the techniques but was most variable for the 
discriminant analysis. Unless interest was on a specific class, this would tend to 
make the neural network classifications more attractive to many users. It is 
possible, however, for a specific class to be classified most accurately by a 
classifier with low overall accuracy or variable individual class accuracies so the 
evaluation of the classifications is very dependent on the application in-hand. 
Overall, however, the results highlight the value of neural networks for accurate 
classification of remotely sensed data. 

23.4.2
Concerns with Neural Networks 

Despite the demonstrated potential of neural networks for classification and 
regression applications a variety of concerns and problems have been noted. For 
example, the difference in accuracy relative to that obtainable from a conventional 
approach is not always large (as in the example above), it can be difficult to 
understand the results derived and the analysis is based upon a set of subjective 
decisions (Wilkinson, 1997; Foody, 1999a). Issues such as the parameterization of 
a network as well as the size and nature of the training set have a marked impact 
on classification accuracy and other approaches may be more appropriate (Zhuang 
et al., 2004; Foody et al., 1995; Staufer and Fischer, 1997; Foody, 1999b; 
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Kavzoglu and Mather, 2003; Foody and Mathur, 2004; Pal and Mather, 2004). 
Moreover, if the assumptions underlying a model based technique are satisfied it 
has been suggested that that technique be used instead of the neural network in 
order to exploit fully advantage conveyed by the underlying model. Sometimes 
the problems encountered with neural networks relate to general issues. For 
example, although a neural network classification may make no assumptions 
about the data sets used the classification analysis is founded on a set of 
assumptions. Key amongst these are the commonly made assumptions that the 
classes have been defined exhaustively and are discrete and mutually exclusive. 
While these assumptions can be satisfied in demonstration projects that have 
shown the potential of neural networks they are less satisfiable in ‘real world’ 
studies. Thus the accuracy of neural network analyses may still be insufficient for 
some users (Wilkinson, 1996). Frequently, the problem here is that neural 
networks have generally been used to derive conventional ‘hard’ classifications 
(in which each pixel is allocated firmly to a single class). This is often 
inappropriate due to the presence of mixed pixels, that typically dominate 
remotely sensed data sets used in macro scale studies (Foody et al., 1997; 
Campbell, 2002). Moreover, in many studies the classes are continuous rather 
than discrete. Additionally, the set of classes may not have been defined 
exhaustively. There are, however, means of reducing these problems. For 
example, the problems associated with continuous classes and mixed pixels may 
be reduced by using the network to derive a soft or fuzzy classification rather than 
the conventional hard classification (Foody, 1996). Fuzzy classifications have 
been derived using a range of networks, notably the MLP (Foody, 1999c) and 
ARTMAP (Gopal et al., 1999). These have been found to provide accurate 
estimates of sub-pixel class composition and provide a richer thematic 
representation that the conventional hard classification. Additionally, using a 
Hopfield neural network the sub-pixel fractions derived from a soft classification 
may be located within the area represented by a pixel to derive an enhanced or 
super resolution thematic representation (Tatem et al., 2001; 2003). The effect of 
a non-exhaustively defined set of classes may also be reduced by post-
classification thresholding of the network outputs or use of a network such as the 
RBF that partitions feature space locally and so is less prone to untenable 
extrapolation than the widely used MLP (Vasconcelos et al., 1995; Foody, 2001). 

23.5
Conclusions

Neural networks are powerful general purpose computing tools. They have 
become popular in the analysis of remotely sensed data, particularly for 
classification and regression-type problems in which they have often been 
demonstrated to extract information more accurately than conventional methods. 
Although not free from problems, it seems likely that neural networks will be used 
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increasingly in ecological research using remote sensing. Moreover, as some of 
the problems encountered in use of neural networks arise from a tendency to focus 
upon the MLP only it is likely that there will be a greater use of other network 
types. In addition, it is expected that the range of applications of neural networks 
in remote sensing will broaden. Applications in which neural networks have 
already been used and increased usage may be expected include: image pre-
processing (e.g. geometric, atmospheric and radiometric correction), stereo-
matching imagery, image compression, feature extraction, map generalisation, 
multi-source data analysis, data fusion and image sharpening (e.g. Day, 1997; 
Foody, 1999a). Thus while neural networks have rapidly become established in 
remote sensing it is likely that they will be used increasingly and in a broader 
range of activities that will help exploit more fully the potential of remote sensing 
as a useful tool in ecological research. 
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V
validation 151-165, 175-180, 207-220, 

239-250, 255-270, 275-291, 293-304, 
309-322, 325-344, 369-382, 431-442 

Von Neumann 128-131 
__________________________ 
W

weights 151-165, 175-180, 207-220, 
239-250, 255-270, 275-291, 293-304, 
309-322, 325-344, 369-382, 431-442, 
445-456, 459-473 

__________________________
Z
zooplankton 369-382 



Appendix to Chapter 17
Instructions for Demo Version of the Hybrid Evolutionary 
Algorithm on Attached CD

This software is used to demonstrate how to automatically create either a function 
and rule set for ecological data by using the hybrid evolutionary algorithm (HEA).  

You can use the Demo Version by the following steps:  
1. Click the exe file HEAdemo.exe and the following screen will appear.  

2. Double click the “Function Model” to choose the model type. Click “Ok” to 
start the function modelling and the following screen will appear. 
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3. There are three data sets which are preset and fixed to test the efficiency of 
HEA in function modelling. You can choose any of them by double clicking the 
file name. Suppose we select the data file “Lake Kasumigaura.txt” and then click 
“Modeling”. The following screen will appear.  
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4. This window is used to complete the parameter settings of HEA and modelling 
experiment. The simplest way is to use the default settings and click “Ok” to go to 
the next step. However as those default values are set only for the purpose of 
quick running and usually can not make sure to achieve good result, you had 
better change some parameters by yourself if you do not mind the running time 
and hope to get better result. The meaning of those parameters are listed below: 
Function Set: 
There are 4 arithmetic operators (“+”,”-“,”*”,”/”) and 4 functions (“sin”, “cos”, 
“exp”, “ln”). HEA will use these predefined operators and functions to construct 
the model expression. You can click the corresponding box alternatively to choose 
it or not.   
GP Modeling Parameters: 
“Max Tree Depth”: the maximal tree depth of the function model. The larger this 
value is, the more complicated is the model. It ranges from 3 to 10. 
“Popsize”: the size of the initial population. It ranges from 50 to 1000. 
“Max Geno”: the maximal number of generations in one run. It defines the 
termination criterion. It ranges from 5 to 500. 
“Training data”: 
You need to define the starting record no. and the ending record no. of the training 
data by referring to the  “Date” and the “Record no” in the left table. The training 
data can start from any year but must be continuous.  
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“Testing data”:
Similarly you need to define the starting record no. and the ending record no. of 
the testing data by referring to the  “Date” and the “Record no” in the left table. 
The testing data can also start from any year but must be continuous. In the default 
settings, we usually fix the training years and testing years as the same as we have 
done in the paper.  In addition in order to reduce running time, in this demo 
version we only use observed data rather than interpolated data to do the 
modelling. 
“do parameter optimisation”: It means in every generation we will optimise all 
the parameters in each model by using a general GA as described in the paper. 
You can choose to perform this process or not by click the box alternatively. 
Usually the result will get better compared with not using this process. 

Once you complete all the parameter settings, click “Ok” to start the modelling 
procedure. Then the following screen will appear.  

5. This window will display the real-time modelling procedure. The information 
shown here includes the graphs for fitting training data and predicting the testing 
data and the evolving curve generation by generation; the meanings of the input 
variables and output variable; the current generation; the training error and the 
testing error, running time; and the expression of the best-evolved model.  You 
can click  “shift” to view different graphs as follows.   
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6. When the predefined “Max Geno” is reached, the HEA will stop running and 
you can click “Save” to save the modelling results as a text file in the selected 
folder. 

7.Click “Exit” to return to the following window so that you can select another 
data file to do the function modelling by following the previous Step3 ~ Step6.  
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8. If you want to try “rule set model”, click “exit” again and return to the 
following initial screen. 
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9. Double click the “Rule Set Model” and click “Ok” to start the rule set 
modelling and the following screen will appear. 
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10. There are four data sets which are preset and fixed to test the efficiency of 
HEA in rule set modelling as we have used in the paper. You can choose any of 
them by double clicking the file name. Suppose we select the data file 
“Kasumigaura_Microcystis_rawdata.txt” and then click “Modeling”. The 
following screen will appear. 
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11. This window is used to complete the parameter settings of HEA for rule set 
modeling. Most parameters have the same meanings as described in Step 4. We 
only mention some differences here. 

As for the “Function Set”, it consists of three function sets: Arithmetic, Logic and 
comparison. They are used to construct the IF Tree and THEN/ELSE Tree in the 
rule set. You can choose the arithmetic function set by clicking the corresponding 
box but for the other two function sets, they are always selected by default. 
“Rule Set Max Size”: the maximal size of a rule set. The size of a rule set means 
the number of  the IF-branches contained in the rule set . Obviously the larger this 
value is, the more complicated is the rule set. It ranges from 1 to 5. 

When you complete all the parameter settings, click “Ok” to start the modelling 
procedure. The following screen will appear.  
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12. This window will display the modelling procedure of rule set dynamically. 
You can click “Shift” to view different graphs as follows.   
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13.When the modelling procedure is finished you can save the result and click 
“Exit” to go back to the following window to choose a new data set. 




