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Preface

The aim of this book is to summarize the current ideas and theories about the basic
mechanisms for transport in chaotic flows. The dispersion of matter and heat in
chaotic or turbulent flows is generally analyzed in different ways. The establish-
ment of a paradigm for turbulent transport can substantially affect the development
of various branches of physical sciences and technology. Thus, chaotic transport
and mixing are intimately connected with turbulence, plasma physics, Earth and
natural sciences, and various branches of engineering.

Since this book is on theory, it uses mathematics freely. This is a book on
physical science, not on mathematics. The level of mathematics used should not
be beyond that of a graduate student in physics since turbulent transport is a subject
of which at least a basic understanding is essential in engineering and in many of the
natural sciences. It was not written as a course that might be followed and used to
introduce students to turbulence. Rather, it is a text useful for those beginning or
already involved in research. It might form the basis of a number of advanced
courses about plasma physics or ocean physics. In addition, this book contains
material expanded from recent extended review articles.

My previous book “Turbulence and diffusion. Scaling versus equations” pub-
lished by Springer in 2008 was devoted to the scaling concept, which plays a central
role in the analysis of very complex systems. The goal was to present how scaling
and renormalization technique might be applied to turbulent transport in plasma and
to cover as many examples as possible. On the contrary, this new work is focused on
the detailed description of the most often used theoretical models. This allows one
to apply with confidence the phenomenological arguments and correlation methods
to treat complex phenomena in many branches of the physical science. I thoroughly
consider random shear flows, Richardson’s relative dispersion, and convective
turbulence, but the plasma physics problems are not the focus of our interest in
this book. I have tried to include a number of examples apart from the standard
ones, including in particular chaotic mixing in microchannels, scaling for strong
convective turbulence, percolation models of turbulent transport, etc.

vii



viii Preface

Part I of the book consists of three chapters, which contain a reasonably standard
introduction to diffusion phenomena. In Part II, we give a brief but self-contained
introduction to the Lagrangian description of chaotic flows. Part III contains dis-
cussions of phenomenological models of turbulent transport on the basis of the
conventional diffusive equation. We briefly review the fractal concept and consider
different models of random shear flows in Part IV. The percolation approach and
fractional equations to analyze anomalous transport are presented in Part V. In Part
VI, we study the cascade phenomenology and relative dispersion problem. The
focus of Part VII is to provide an overview of the convective turbulence. In the last
Part, we treat correlation effects and transport scaling in the presence of coherent
structures and flow topology reconstruction.

The illustrations are an important supplement to the text. It is through figures that
information is carried most readily, and often in the most pleasurable form, to the
mind and memory of a reader.

Lists of suggested further reading are provided at the end of each chapter. These
are of literature that students might be expected to peruse, if not read in detail, in
the course of their study of the contents of the chapter, e.g., to appreciate better the
historical derivation of knowledge. Also listed are reference works that will provide
information about basic fluid dynamics or ocean physics, should it be required. In
conclusion, we note that the table of contents is essentially self-explanatory.

The author thanks Profs. B.Cushman-Roisin, N.Erokhin, C.Gibson, G.Golitsyn,
V.Kogan, E.Kuzntsov, F.Parchelly, T.Schep, V.Shafranov, A.Timofeev, E.Yurch-
enko, and G.Zaslavsky for the useful discussions and support.

Lawrence, KS, USA 0.G. Bakunin
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Part I
Diffusion and Correlations



Chapter 1
Introduction

1.1 Diffusion Phenomenon

In this book, our attention is concentrated mainly on the underlying phenomenon of
the diffusive action of chaotic flows (turbulence). Indeed, we shall be concerned
with the subject of passive scalar transport, where by “scalar” we mean something
like small particle or chemical species concentration and by “passive” we mean that
the added substance does not change the nature of fluid to the point where
turbulence is appreciably affected.

By designating the number of particles per unit of volume by n(7, ) and the flow
of atoms or molecules by ¢, that is, the number of particles crossing a unit of surface
area per unit of time in concentration gradient Vn, we then have the following
equation, which is Fick’s first law for diffusion

G=—DVn, (1.1.1)

where D is the diffusion coefficient. The diffusion coefficient D characterizes the
migration of particles of a given kind in a given medium at a given temperature.
It depends on the size of the particle, the structure of the medium, and the absolute
temperature (for a small molecule in water at room temperature D ~ 1075 cm?/s).

The “—” sign accounts for the fact that the flow and concentration gradient are of
opposite sings. If the phase is pure, D is the self-diffusion coefficient. By taking into
account the continuity equation:

on ~
E—kV-q—O, (1.1.2)

we have the general equation for three-dimensional diffusion:

Oon

— =DV’n. 1.1.3

o (1.1.3)
0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 3
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4 1 Introduction

This equation states that the time rate of change in concentration is proportional
to the curvature of the concentration function with the diffusion coefficient D (see
Fig. 1.1.1). This equation is Fick’s second law for diffusion. It does not have a
simple solution particularly for a three-dimensional system.

The form of the problem generally solved with respect to the above applications
of diffusion theory is the initial value problem, i.e., to determine the concentration
distribution n(7,¢) at time ¢ when the initial distribution n(#,0) is known. Since
much of our subsequent discussion is concerned with unbounded domains in the
dependent variable, we present the solution of the initial value problem on an
infinite one-dimensional domain. Let the Fourier transform of the concentration
distribution be denoted by

(t) = JOO n(x, t)e®dx. (1.1.4)

Then if we multiply the one-dimensional form of the diffusion equation by e'**
and integrate over all space, we find

On(t) _ [ e @
o —DJiwe 8x2n(x’ 1)dx. (1.1.5)

Now suppose that

n(£oo,t) =0 and %n(x, 1) =0. (1.1.6)

n(x, t)
_ n(xq+ 0x) — n(xy — 6x)

2

n(xq + ox, 1)

n(xq— ox, t)E

Fig. 1.1.1 Schematic ;
illustration of the ;
concentration profile ' X0
evolution Y

v



1.1 Diffusion Phenomenon 5

Then upon integrating (1.1.5) by parts twice, we obtain

)
Eﬁk(t) = —DI*7i (1), (1.1.7)

so that if 724 (0) is the Fourier transform of the initial concentration distribution, we
have as the solution to

i (t) = e PP, (0). (1.1.8)

Hence, upon Fourier inversion we see that

1 (> Xy
n(x,t):%J dkexp(—Dkzt)J e = p(x, 0)dx. (1.1.9)

—00 —00

If we interchange the order of the k and x integrations in this expression, we
obtain

1 . —¥)?
Plx—x;t) = e ) exp(—Dtk?)dk = b x)> (1.1.10)

o0 1
21 J e \/4nDteXp< 4Dt

which is a special case of the traditional Gauss distribution

2

1 X
—_— - 1.1.11
gl eXP( 2R2) ( )

with a time-dependent dispersion R(r) = v/2Dt. The function P(x — x';7) is the
probability that a particle initially at x’ diffuses to the point x in time ¢, so that the
Fourier representation of the particle distribution function can be also rewritten as

P(x) =

n(x,t) = JDC P(x — x)n(x',0)dx'. (1.1.12)

—00

Here, it is clear that diffusion smoothly fills the available space <x2> = 2Dt,
where (x?) is the mean square distance being covered. In terms of the transport
scaling, one obtains

R(t) = ()% = 2D0)"? o 172, (1.1.13)

Displacement is not proportional to time but rather to the square root of the time;
therefore, there is no such a notion as a diffusion velocity. This is an important
result. Thus, the shorter period of observation ¢ corresponds to the larger apparent
velocity. This is an absurd estimate and we discuss this problem bellow. The
definition of the diffusion coefficient,
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A2
D = —COR (1.1.14)

is based on using the notions of the correlation length Acor and the correlation time
Tcor. If the values of time and length are smaller than the correlation values, then
the motion of particles has a ballistic character; whereas if these values are larger
than the correlation scales, we deal with the diffusion mechanism R(7) x /2,

The key problem in investigating diffusion in chaotic medium (turbulent flows)
is the choice of the correlation scales responsible for the effective transport. This is
not surprising, because models of transport in chaotic flows differ significantly from
one-dimensional transport models [1, 2]. Indeed, chaotic velocity field generates
fluctuations of various scalar quantities in the flow: concentration, temperature,
humidity, and so on (see Fig. 1.1.2). Often, several different types of transports are
present simultaneously in turbulent diffusion. In chaotic flows, among eddies could
appear complex vortex structures, and the competition between the strain and
rotation determines whether the material line will align (see Fig. 1.1.3). Therefore,
by taking into account the initial diffusivity (seed diffusion), anisotropy, stochastic
instability, and reconnection of streamlines, the presence of coherent structures,
etc., appears to be important.

For three-dimensional case, the diffusion equation takes the form

0

(1.1.15)

l:szn(xayaZat) :D|:+

9*n @4_82;1
ox2  Oyr 072

ot

a Cold

A/20 per division

Hot

b Cold

A/5 per division

Hot | | L -
0 20 40 60
Time (s)

Fig. 1.1.2 Time recording of the temperatures in the hard convective turbulence regime,
Ra = 2.1 x 10°. (After Castaing et al. [3] with permission)
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Fig. 1.1.3 The scalar distribution on a two-dimensional plane (After Brethouwer et al. [2] with
permission)

where, for instance, the particle flux in the x direction is given by

a b )
g = _pontxy2) (1.1.16)
Ox
Here, V? is the Laplace operator.
In the case of spherical symmetry, one obtains
on 1 0 ,0n
—=D—5 —|r=|. 1.1.17
ot 2 Or [r 8r] ( )
Then, we find the point source solution in the well-known form
N .
n(r,f) = ——L e /4D, (1.1.18)

(4nDr)*?

where N, is the number of particles. This is a three-dimensional Gaussian distribu-
tion. The concentration remains highest at the source, but it decreases there as the
three halves power of the time. An observer at radius r sees a wave that peaks at
t = r?/6D. Diffusion phenomena are at the heart of irreversible statistical mechan-
ics, since the form of the diffusion equation shows that the solution must depend on
the sign of . Here, we are dealing with a phenomenon in which it matters whether
t decreases or increases.

1.2 Self-Similar Solutions

The Fourier procedure is effective to solve linear equations only. However, there
is no escape from consideration of nonlinear problems because they are of acute
interest in relation to investigation of transport and mixing in chaotic flows. There is
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no unique recipe to solve nonlinear equations; therefore, we consider here a
nonuniversal but widely applied self-similar approach. Near the end of the nine-
teenth century, Boltzmann noted in the study of the linear diffusion equation that
the two independent variables space x and time ¢ could be combined into a new
variable &, where ¢ = &£(x,y). With this new variable, the diffusion equation (partial
differential equation) could be transformed into an ordinary differential equation.
The Boltzmann “ansatz” was given as follows:

E(x, 1) :ﬂ%' (1.2.1)

Thus, he suggested to construct self-similar variables and to examine the self-
similar behavior of partial differential equations [4-7]. In order to find the similarity
variables, we use the Lie theory of groups where it has been shown that the similarity
variables are identical to the invariants of a particular one (or more) parameter
group of transformations. We briefly consider the procedure, details, and references
that can be found in [7-9]. We shall examine the one-dimensional linear diffusion
equation:

on(x, 1) _ O*n(x, )

1.2.2
ot ox? ( )
We define one parameter group G as follows:
n=an
G =< x=d"x. (1.2.3)
t=a’t

Here, ay is positive and real. This is called the “linear group.” The exponents o,
pg, and 7y are constants, which are defined such that the equation under consider-
ation equation is “(absolutely) constant conformally invariant” under the group
G. A function F(y) is said to be “constant conformally invariant” under G if

F(y) = f(a)F(y), (1.2.4)

where f(ar) is some function of the parameter ap. If f(ar) = 1, the constant
conformal invariance is called “absolute.”
Thus, substitution of the new variables leads to

27 —
o6 —2B¢ 0°n 066 @ _

R (1.2.5)

For this equation to be conformally invariant under the transformation group G,
one requires



1.2 Self-Similar Solutions 9

oG —2pg =0 — 7y Oor Vg =2p;. (1.2.6)

We will define these constants later. Let us now consider the “invariants” of the
transformation group G. The invariants are obtained from the condition QI = 0.
Here, [ is an invariant and Q is the operator

9, 0%
_ 811 8aL

o, o
1 Ox 8aL

apL=

7] 0

=1

a (1.2.7)
—=—u nﬁ,[g X——Pgt—

o Mgy oty ey,

The solutions of the equation under consideration, QI = 0, can be obtained by
solving the Lagrange subsidiary equations

dn dx dr

—ogn  —fgx =yt

(1.2.8)

These “invariants” are the self-similar variables. Solutions of this equation are
given by

$(¢) = ':ix/t) ; (1.2.9)
X
Clx, 1) = vt (1.2.10)

where y; = 2f; .One can see that the Boltzmann transformation is recovered.
Having found the self-similar variables, let us transform the diffusion equation,
using the new variables ¢ and ¢ into an ordinary differential equation

P 0P oG,
S taE =0 (1.2.11)

The solution can be written in terms of complementary error function as follows:

é = A% erfc (g) + Bi%6 erfc (— ;) , (12.12)

where i>%6/76 is an ordering parameter and

2 .
i! erfcg = ﬁefqm, i° erfcg = erfc =, (1.2.13)

ikerfcgzj lerfcrdr, k=0,1,2,.... (1.2.14)
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At this stage, the parameter og /7y is still arbitrary.

Now we specify boundary conditions or a conservation law. Boundary condi-
tions on particle density, n(x — oo, ) = 0, n(x,t = 0) = 0, have necessarily “con-
solidated” into one for ¢. Thus, one obtains the boundary condition for the self-
similar variable ¢ in the form ¢ (& — oo) = 0. The third boundary condition could
have one of two forms, which would yield self-similar solutions. They are n X
(x = 0,¢) = const or in terms of the normalization condition (the conservation law)

J n(x,t)dx = const. (1.2.15)
0

Since n(x = 0,7) transforms to ¢(& = 0), we can see that n(x = 0,7) = const
requires that o /y; = 0. The self-similar solution of the diffusion equation for this
boundary condition is

n(x, 1) = ¢p(&) = Aerfc (g) = Aerfc (2%/2) (1.2.16)

The conservation law should be also invariant under the group transformation in
order to have similarity solutions

J n@Jﬁx:afH%J fdx. (1.2.17)
0 0

For this to be conformally invariant, we have the relationship in the form

%6 _ Pe_ 1 (1.2.18)

VG Y6 2

The self-similar solution that satisfies this conservation law and the boundary
conditions are given by

e e
n(x,t)—\/;—ﬁ\/;e , (1.2.19)

where the constant A’ can be determined from the normalization condition.

This similarity solution was also found by direct physical and dimensional
arguments. The intensive search for self-similar solution is motivated by the desire
for a deeper understanding of the physical phenomena described by transport
equations. Simple scaling arguments to built similarity solutions (self-similar solu-
tion of the first kind) were lucidly given in [8—11]. On the other hand, it is now clear
the role of self-similar solution as intermediate asymptotic, which describes
the behavior of solutions of wider class models in the ranges where they no longer
depend on certain details. Thus, self-similar solutions provide important clues to a
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wider class of solution of the original partial differential equations [12—-16]. In the
next section, we apply the procedure described here to several interesting examples.

1.3 Inhomogeneous Media and Nonlinear Effects

In studies of the evolution of the distribution function of particles in complex
systems, it has been found that the mixing problem in inhomogeneous media
could be modeled with a diffusion equation in the form

on_ 9 ( , On
E:a<x a) (1.3.1)

Here, we continue our treatment of self-similar solutions by the discussion of a
fairly special class of self-similar solutions, which are named ““self-similar solution
of the second kind.” In contrast to self-similar solutions of the first kind for which
the similarity exponent is determined by dimensional arguments alone in this new
case, the similarity exponent could be found in the process of solving the
eigenvalues problem. Here, the dimensional consideration is not sufficient [7, 8].

Thus, using the linear group G defined above, we find the self-similar variables
to be

) = (132)
and
$(&) = H(Zt) : (1.3.3)
16

Then the equation under analysis transforms to the expression

%G g4 < 84)8(5% a¢>. (13.4)
Ve mp—2 0&  O¢ o¢
The requirement of “consolidation” specifies that
1
'B—G = >0 or mp<2. (1.3.5)
V¢ 2—mp
The constant o /7, can be specified by boundary conditions.
The solutions for the two cases
0]
n(0,¢) = const and J n(x,1)dx = const (1.3.6)
0
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are given by the formulas

T I U S P
n(x,t) = K(J m exp [ 2 mD)Z] d¢ 1) (1.3.7)

and

K 2—mp
n(x,1) = ——exp |~ ————|, (1.3.8)
o 12 — mp)

respectively, where K is a constant.
On the other hand, many complex transport phenomena can be modeled with the
nonlinear diffusion equation

on_ 9 ( , On

For example, in studying of mixing it has been shown that the governing
equation often has the nonlinear form because the diffusion coefficient for particles
depends on the density of particles [6-9]. For such problems, the self-similar
variables are of the form

1) =5 (1.3.10)

and

(&) = (1.3.11)

1 (ke _ 1)’
()

where the parameter fi;/7 is chosen to satisfy the boundary conditions or conser-
vation laws and ¢ satisfies

0 (Y o9 1
86(") aé>+v6 e " my (2

ﬁG—1)¢=0. (1.3.12)

piel

We can again apply the boundary conditions considered above and then find that

ﬂ_G:_L(zﬂ_G_l). (1.3.13)

TG mnN YG

The equation for ¢ can be directly integrated to yield
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#(8) = {: (1= () 3)™ b, (1314
= >4
where
£ = (M) —— (13.15)
mN

This could be considered a “sharpfront” solution in that

P (E=¢)) =0 (1.3.16)
and
d¢nzN+1
—0 (1.3.17)
A€l

The motion of a front is given by scaling

Xprom (1) o< QN IR, (1.3.18)
where
n(x,0) = Qo(x). (1.3.19)
and hence
+00
J_OC n(x,t)dx = Q = const, ¢>0. (1.3.20)

Figure 1.3.1 demonstrates the distribution of heat wave front. The velocity of the
front is

_ dx front my myyt1

Viront (1) = P o QNI INTE (1.3.21)

The velocity Vion(#) decreases in time, but the front infinitely penetrates since
Xgront () — 00 when t — oo.
If mx>1, the density gradient infinitely grows,

on

— 00 a8 X — X font F O. (1.3.22)
Oox
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Fig. 1.3.1 Schematic 4
illustration of the
concentration front n(x)
propagation. Here Vizon
is the velocity of the heat Viont
front and Xgon iS the position

of the heat front —

v

Despite an infinite growth of the density gradient, the particle flux

0
g = —kon™ =2 (1.3.23)
Ox
tends to zero when X — Xgront () — 0.
When o, — 0, we see
0 1

n(x, 1) = (1.3.24)

2Vt &5

This expression describes the conventional particle flux distribution for the case
of classical linear diffusion equation.

Self-similarity is not the panacea to solve all problems. Some difficulties related
to the ordinary differential equations may not be amenable to solution, neither
analytical nor numerical. Moreover, even by solving mathematically, the solution
may not describe a physically interesting phenomenon. Indeed, the technique
considered above is limited to problems where neither scale length nor time scales
such as fixed boundaries exist in the problem.

1.4 Periodic Media and Diffusion at Large Scales

In this section, we treat a fruitful multiscale technique for the construction of
“macroscopic” equations from “microscopic” dynamics in terms of passive scalar
transport. Let us begin with a presentation of the basic ingredients of the method,
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which allows us to derive the effective diffusion coefficient D from the transport
equation in one spatial dimension:

0 0 0

where D(x) is a periodic function with the period Lo (see Fig. 1.4.1). We will find
Degr in terms of D(x). Our aim is to write an effective diffusion equation valid at
long time and large scales, which are much larger than the period L.

First we calculate the value n, — n,, where points @ and b are the boundary
points. One can represent this value in the discrete form as

npy—na =y An (1.4.2)
where
A .
D(x;) En = q(x). (14.3)

In the steady case and in the absence of internal sources, the flux does not depend
on the spatial variable, ¢ = gt = inv. This allows one to compute

AX,‘
np — ng = ZqD(x,-)' (1.4.4)
1
D(x)
deff
_—
ntl
n,<n,
i Ly i
Fig. 1.4.1 Schematic 4 v g b
illustration of the periodic E E N\ X
media - - d
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Here, we are dealing with the segments of the length Ax centered in x. It is
possible to rewrite this expression in the integral form

du; q
— :qJD(x) - (14.5)

Here, the denominator is related to the mean value of the inverse diffusion

coefficient
1 Ay 1
= . 1.4.
Xp — Xq JD(XI') <D(x)> (140

Xq

Thus, one obtains the relation for the effective particle flux in the conventional
form with the effective diffusion coefficient

1 \ An
q = qett = <ZTX)> Ax (1.4.7)

Indeed, this elementary consideration gives the diffusion scaling
< (x(r) = X(O))2> 2 2Dl (14.8)

where the effective diffusion coefficient is given by the formula

oo~ o) - 0w

The previous results use qualitative arguments. However, there is a way to
rationalize these heuristic considerations by more precise calculations using the
multiscale method [17, 18]. Let us introduce the hierarchy of interrelated spatial and
temporal scales. We suppose that spatial and temporal scales are related diffusively
as follows:

D~— . (1.4.10)

If we introduce a small spatial scale as X = ex, the slow time 7T is given by the
relation T = &¢. Here, ¢ is the small parameter of the problem.
Now it is convenient to expand n in powers of ¢:

n(,X,t,T) = no(x, X, t, T) + & ny(x,X,t,T) + &®na(x, X, ,T) +---.  (1.4.11)
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17
The space and time derivatives must be decomposed as follows
0 0 0 o o0 5,0

Using the diffusive equation, we obtain the relations:
ljl’l() = 07
~ 0 0 0 0
Lny == D(x)— — (D)=
" o ( () ax"") T ox ( () ax”")’

0 0 0
Lny = _ﬁnoJr& (D(x)

2 )+ o (o2 + Lo

(1.4.15)
where the operator Lis given by the formula

(1.4.13)

(1.4.14)

(1.4.16)

Because of the periodicity, ny will relax to a constant, independent of x and ¢

0
o 0 1.4.17
ox o ’ ( )
and hence
0
=.m = 0. 1.4.18
ot m ( )
The equation for Ln; can be represented as
D(x) @C n + aim) = const. (1.4.19)

Using the result (£n;) = 0 and dividing by D(x), we obtain

1 0
const<m> = 8_Xn0’ (1.4.20)

where the average is now over the fast variables. The equation for n, can be solved
only if solvability condition, on
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no(X,T) = (no(x,X,,T)), (1.4.21)

is imposed. Taking the average of equation for Ln,, one arrives at the expression

%no :a% <<D(x)>a%(n0)> +%<D(x)%n1>. (1.4.22)

By taking into account the results obtained above, we have the diffusion
equation,

%”O _ Deffaa_;zno, (1.4.23)
with the effective diffusivity
[\ !
Detr = <W> . (1.4.24)

Such a multiscale technique can be applied to more general problems. For
instance, it is applicable to models with two or three dimensions and problems of
scalar transport with a fairly generic incompressible velocity field [19].
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Chapter 2
Advection and Transport

2.1 Advection-Diffusion Equation

The further extension to flowing fluids is easily accomplished if we merely replace
the partial derivative with respect to time 9/0¢ in the diffusion equation

on
— =DV 2.1.1
o n ( )
by the total derivative [5, 10, 11]
d 0 0
— =4 V=, 2.1.2
dr 0Ot + Ox; ( )

which takes into account the effects of convection upon the time dependence.
It follows that the diffusion equation becomes

ot 8xi

=DV?n. (2.1.3)

Here, V= Vs, Vy, V,) is the Eulerian velocity. In the case of incompressible
flow

OV BV, V.

div(V) o +8—y+ 5 0, (2.1.4)
one obtains the equation
% +V-Vn=DVn, (2.1.5)
which is so-called convection—diffusion equation.
0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 21
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Fig. 2.1.1 Schematic diagram of the scalar diffusion and distortion of this purely diffusive
behavior by advection

This equation can be interpreted in slightly different manner. The total flux § of
solute molecules through a motionless surface is equal to the sum of the diffusion
flux and the convective flux (see Fig. 2.1.1):

G=Vn—DVn. (2.1.6)

The relative importance of convection and diffusion in a given physical situation
is usually appreciated with the Peclet number Pe. Suppose that the characteristic
size of the fluid domain is Ly and that the characteristic velocity is V. At this stage,
it is useless to define a dimension concentration. One easily obtains the following
one-dimensional representation:

On -0n 1 &*n

— —=—— 2.1.7
G 9% Pe o @1
where Pe represents the ration of convection to diffusion and
-V
F=l 5= (2.1.8)
Lo Lo
that is
VoL
Pe =22, (2.1.9)
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The equation of convection—diffusion also must be completed by boundary
conditions. For example, take an impermeable and motionless solid; the normal
particle flux is obviously zero in this case.

It is important to note that in spite of the oversimplified character of the
convection—diffusion equation, the use of the model functions for V(7)) allows
one to describe transport in chaotic flows as well as nontrivial correlation mecha-
nisms responsible for the scalar transport in the presence of complex structures such
as system of zonal flows, convective cells, braded magnetic fields, etc. [22-28].

Moreover, turbulent transport could have nondiffusive character where the
scaling R?  t is not correct. To describe the anomalous diffusion, it is convenient
to use the scaling with an arbitrary exponent H [29-31]

R? o 2, (2.1.10)

where H is the Hurst exponent. The case H = 1/2 corresponds to the classical
diffusion R*() oc t. The values 1 > H > 1/2 describe superdiffusion, whereas the
values 1/2 > H > 0 correspond to the subdiffusive transport. The case H = 1
corresponds to the ballistic motion of particles R?(¢) o 2. Calculating the Hurst
exponent H and determining the relationship between transport and correlation
characteristics underlie the anomalous diffusion theory.

2.2 Transport and One-Dimensional Hydrodynamics

The advection—diffusion equation is linear, but it does not mean that this partial
differential equation is simple. The advective term is responsible for fairly compli-
cated behavior in the scalar distribution function. The concentration field and the
velocity field are coupled in this case.

Indeed, advection creates gradients of concentration, whereas the molecular
diffusion tends to wipe out gradients. That is why to solve the scalar transport
problem we have to fulfill the transport equation by the equation describing the
velocity field. The Navier—Stokes equation of motion for a Newtonian fluid

oV; oV; 1 oP O*V;
Ny L8, OV 22.1
T T L @2.1)

is often used. Here, V; is the velocity in the x; direction, p,, is the density, P is the
pressure, and vg is the kinematic viscosity. The situation becomes even more
difficult because of the Navier—Stokes equation is nonlinear. The analytical solution
of such a system of the partial differential equations is very difficult task.

However, there is an exception. The one-dimensional case is the most simple
as usual. Suppose that the advection—diffusion equation through a velocity field is
coupled with the equation of motion, which in one-dimensional hydrodynamics
without pressure is Burgers’ equation.
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ov ov o*V

The Burgers model has long attracted a great deal of attention for describing
deterministic and stochastic flows in aerodynamics and plasma physics [9, 22, 32].
This equation retains the inertial nonlinearity and high dissipation, which play a
leading role in the formation of turbulent flow. The Burgers differential equation
is especially attractive because it can be reduced to a linear diffusion equation
by means of a nonlinear Cole—Hopf change of variables [33, 34]. This fact allows
us to simplify our problem by reducing the nonlinear equation of motion to the
linear one.

By following the above arguments and for the sake of simplicity, we consider the
system of the coupled differential equations in the form

2

i 3 el (2.2.3)

on on O*n
Ejuvazpw, (2.2.4)

where the initial conditions for the velocity and density fields of the passive
impurity are given by

N
Vix,0)],_ = ;x(x), n(x, )],y = n(x). 2.2.5)

This system of equations with identical kinetic coefficients (unit Prandtl number
Pr = vg/D = 1) is just as simple as a separate Burgers equation. Indeed, using the
generalized Cole—Hopf change of variables,

0
V(x, 1) = —2vFa In y(x, 1) (2.2.6)
~c(x,)
n(x,t) = D) (2.2.7)

it reduces to two ordinary linear heat conduction equations

oy _ 1

Z=pt, (2.2.8)
" 2

0s _ po (2.2.9)

o ox’
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where the initial conditions are given by

1(6,0)],_o = exp <— Tzol(jx)> , (2.2.10)
_ Yo (x)
c(x,8)|,—g = no(x)exp| — D) (2.2.11)

Recall that the simplicity of the derivation of these analytic results depends
on the ratio of the kinetic coefficients of the liquid (the Prandtl numbers). The
situation becomes somewhat more complicated when the kinetic coefficients are
different, and a reasonably complete analytic investigation is possible only for
particular types of flows. Nevertheless, the analytical solutions of these equations
can provide the basis for understanding complex problems such as scalar
clustering and localization [9-12]. Indeed, scalar particles play the role of a
marker for determining the localized dynamical structures of the velocity field
of a fluid flow.

2.3 Advection in Two-Dimensional Shear Flow

In this section, we consider the advection problem in relation to the general two-
dimensional linear shear velocity field. A tracer is released at the origin of a fluid
that undergoes a linear shear characterized by the constant velocity gradient G; that
is, the velocity field is given by

V=G-F 23.1)

The shear field can be expressed in the component form as
Vi) =G -y, (2.3.2)
Vy(x) =o-G-x, (2.3.3)

where G is the shear rate (a constant) and the parameter o may range from —1 (pure
rotation), through zero (simple shear), to +1 (pure elongation). Figure 2.3.1
illustrates this general field in some of its possible forms. For two-dimensional
incompressible flow

OVx + % _
ox  dy

0 (2.3.4)

this linearization correctly describes the qualitative behavior of streamlines in a
small domain.
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Fig. 2.3.1 Different types of two-dimensional linear flows. The characteristic parameter o ranges
from —1 to +1. The case « = —1 corresponds to the pure rotation. The case « = +1 corresponds to
the pure shear

The general form of the solution of the convection—diffusion equation, which is

% +V-Vn—DV?n =41, (2.3.2)

with the velocity field under consideration is given by the relation [35]

n = B(f)exp (—%F’ - B(r) f) (2.3.5)

where f(¢) is a symmetric second-order tensor. The time function B(z) and S(7)
verify a coupled set of differential equations that can be readily deduced from the
convection—diffusion equation.

For comparison purposes, the complete solution is presented for a simple shear
flow in two-dimensional space. The velocity gradient G can be expressed as

. [0 G
G{O 0]. (2.3.6)

The solution can be written as

12 Y )2

~ 1 3 / 3()(,' — EG[) yZ

i’l(l’, l) = 4nDi 3 exp ——2 — 5 . (237)
Dt \ 12 + (Gi) Dt(12+ (Gr) ) t
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This form can be compared to the purely diffusive solution

. 1 d/2 ’—;Z
n(rt) = (4nth> exp (— H) (2.3.8)

Here, d is the space dimensionality. For the two-dimensional case d =2 and

G= 0. one obtains the correct solution

(Ff) = i oy 2.3.9)
U =gp\12) P\ Tapr " apd) -

The opposite case when diffusivity is negligible, D = 0, leads to singularities.
The solution in this situation is obvious: the particle stays at the origin forever.

2.4 Effective Diffusivity and Advection

Fluctuation—dissipation relations are an intrinsic part of the statistical description of
dynamical systems. On the macroscopic scale, the particle density fluctuations of
the subcomponents of the system occur due to the interaction with the random
velocity field, which, in our case of the scalar transport description, enter the
convection—diffusion equation. Moreover, on the basis of the convection—diffusion
equation,

% — DoAn — V(F,0)Vn, @4.1)

it is appropriate to raise a question about the estimation of effective transport in a
turbulent (or chaotic) flow (see Fig. 2.4.1). Here, the vector \7(7, t) describes an
arbitrary velocity field, and Dy is the seed diffusion coefficient. Here, we consider
an incompressible fluid.

Let us multiply this equation by #n and apply the Gauss theorem,

J divAdw = J A,dS. (2.4.2)
w S

Here, A is an arbitrary vector field and A, is the normal component of this field
on the boundary S. Then one finds the equation [36, 37]

9 J ndW = J nDo(Vn)ydS — J Do(Vn)*dW. (2.4.3)
ot Jw s w

N =
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Fig. 2.4.1 A typical time AV
recording of the velocity in a
turbulent flow

Fluctuation
amplitude

Mean velocity in laminar flow

Fig. 2.4.2 A typical plot of
a control volume of fluid

n

The flux Do(Vn), characterizes the contribution of external sources inside the
volume W, which is bounded by the surface S, whereas the term D()(Vn)2 is related
to the scalar redistribution inside the considered volume W(see Fig. 2.4.2).

For a single closed volume W in the absence of external flows, we arrive at

1o J n?dw = —ZDOJ (Vn)2dw. (2.4.4)
20t )y w

This equation is correct even when the liquid within the inner vessel is kept in
motion. Indeed, fluid mixing only indirectly affects the rate of evolution toward
equilibrium in the presence of molecular diffusion. Advection enhances scalar
density gradients and then diffusion is intensified.

The concept of turbulent diffusion is concerned with the evolution of a
mean value (first moment) of the scalar distribution function. Naturally, the mean
value cannot fully describe the behavior of a passive scalar. Of importance are
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fluctuations of the scalar, which are particularly large in the case of small molecular
diffusion Dy, which corresponds to the large Peclet numbers. To characterize
fluctuations, one can study the evolution of the functional

J (on)*dw. (2.4.5)
w

Here, the fluctuation of scalar density is
on=n— (n), (2.4.6)

and (n) =0, whereas on = dn(t). Then we obtain the Zeldovich fluctuation—
dissipation relation,

9 J (on)*dw = fJ Do(Vn)*dw. (2.4.7)
ot Jw W

Here, again the velocity field has dropped out of this averaged equation, but the
effect of diffusion remains. The term on the right-hand side of fluctuation—dissipation
relation is negative-definite (or zero). This means that the fluctuation of scalar density
decreases (or is constant). This is true in the limit of r — oo.

In the case of quasi-steady random flow, we can omit the term describing density
evolution,

9 J AW = 0, (2.4.8)
ot Jw
and we arrive at the relation
J nDy(Vn),dS :J Do(Vn)*dw. (2.4.9)
S w

Since the term D()(Vn)2 is related to the scalar redistribution and that is why it is
convenient to introduce here the effective diffusive coefficient in the form

Deff = —— J Do(Vn)*dw, (2.4.10)
n w

where L is the system characteristic size. The minimum condition for the effective
diffusivity D.g is given by the minimizing of the above functional. This gives a
purely diffusive equation

DoAn(7) = 0. (2.4.11)

The minimum value of the effective diffusivity D¢ in the case under consider-
ation coincides with the molecular (seed) diffusivity Dy,.
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2.5 Fluctuation Effects in Scalar Transport

At the initial stage of relaxation, we are faced with a quite different scenario. To
show this, we now consider the important differences between the diffusion from a
continuous source, in which particles are released in sequence at a fixed position
(see Fig. 2.5.1), and that of a single puff of particles. When a substance (scalar) is
released into a turbulent flow from a source, it is transported by the motion of the
fluid elements and by diffusion of molecules. It is essential to distinguish carefully
between how scalar is transported by fluid elements and how it is transported by
molecular motion (see Fig. 2.5.2). As was shown above in most environmental
chaotic flows, the Peclet numbers based on the characteristic velocity scale V and
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the characteristic spatial scale Lo are large ( > 10%). That is why it is natural to
consider cases when the molecular diffusion effect could be neglected.

It is natural to analyze the initial stage of evolution of a single puff of particles by
considering cloud of marked particles on the basis of mass conservation law [38],

J n(7, 1) dW = N,. 2.5.1)
w

Here, N, is the number of particles in a single puff. By taking the ensemble
mean, we find the integral relations

J ondW = 0, (2.5.2)
w

J (n)dW = N,. (2.5.3)
w

By introducing the initial spatial scale of cloud of uniformly distributed particles
as Ly Wol/ 3, we arrive at the formula

N2 N3
J n?(7,0)dw = J (n(7,0))*dW oc =2 Wy oc -2, (2.5.4)
w w Ly Ly

where dn(#,0) = 0. In the absence of molecular diffusivity, the number of contam-
inant within each fluid particle remains constant during a cloud spreading. By
taking the ensemble mean, one obtains the relation

) : 2q — Vo
nsdW = (n)°dW + | (on)"dW =—. (2.5.5)
14 114 W Ly
As time is growing, we have
J (n(7,1))2dw — 0, (2.5.6)
W
N2
J on(F,1)*dw — —£. (2.5.7)
W Ly

In the case when the fluctuation amplitude during the evolution has the same
order over the whole cloud of size L(¢), one finds

N2
on*W (1) ~ on*L*(1) o L—S (2.5.8)
0
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whereas the mean concentration of scalar particles is given by the scaling

n(7, 1)) ~ o Np ’
(n(7, 1)) (Lg(o) . (2.5.9)

Thus, we arrive at the conclusion that the relative fluctuation magnitude is
growing with time as

(2.5.10)

However, there is considerable difference between a real cloud and a cloud of
marked particles. Indeed, as a result of molecular diffusion, scalar particles cross
the boundaries of fluid particles. From the fluctuation—dissipation relation consid-
ered above, we have

Id

1d 1d(
24 :——J 44 ——J on)*d :*J D Zaw.
zdzJW” Wesg | orawes o] @nrav——| pyvaraw

2 dt
(2.5.11)

Here, the term on the right-hand side is always negative, and in the limit of
t — 00, one obtains

J n?dw — 0, (2.5.12)
w

J (n)*dW — 0. (2.5.13)
w
Thus, in contrast to a cloud of marked fluid particles we find
J (on)?dW — 0, as — oo. (2.5.14)
w

In fact, in a real cloud there exist two competing processes. Due to the chaotic
advection, the minimum thickness of all parts of a scalar particle cloud tends to zero,
resulting in a continual increase in the gradients of scalar density across the thinnest
part of the cloud. Thus, turbulence intensifies the gradient, without increasing the
maximum density. On the other hand, the molecular diffusion tends to extend the
distance over which the tracer is spread. Batchelor [23, 24] was the first who
recognized the importance of balance between those effects and pointed out that
on the final stage the minimum thickness of the cloud remains constant, but particle
density decays to zero due to the molecular diffusivity. We will develop these
Batchelor phenomenological arguments below in relation to both the exponential
instability effects and the Kolmogorov approach to well-developed turbulence.
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2.6 The Zeldovich Scaling for Effective Diffusivity

Above we defined the minimum value of the effective diffusivity D¢gon the basis of
the fluctuation—dissipation relation. However, the upper estimate of the effective
diffusion coefficient is case of great interest. In the case of a quasi-steady turbulent
flow, one can consider the steady scalar density equation

DoAn(7) — VVn(F) = 0. (2.6.1)

By following the simplified perturbation technique, we suppose that for the one-
dimensional problem the scalar density and the velocity fields are given by

n={n)y+n =ny+ny, (2.6.2)
V= <V> + vy =vy, (263)

where (V) = 0, n; < no, and DyAng = 0. Simple calculations lead to the equation
for density perturbation 7, for a turbulent velocity field:

82111 (X) 8]10()()

0 =V
Ox? Ox

. (2.6.4)

For the sake of simplicity, this equation is presented in the one-dimensional
form. In the framework of the dimensional estimate, we obtain

L
n ~ v =00 ~ ngPe x Vy, (2.6.5)
Dy

where the Peclet number is small, Pe = VoLy/Do < 1, which corresponds to weak
turbulence case. By deriving this relation, we use the condition of smallness of the
term v Vn; in comparison with v;Vng. The expression for the effective diffusion
coefficient is given by

1
Degy = —— J Do(Vng)*(1 + const - Pe?)dW. (2.6.6)
noLo Jw

Note that the term VngVn, is illuminated because of the extreme properties of
the distribution ng. Thus, we obtain the scaling

Dest o< Do(1 + const - Pe?). (2.6.7)
For instance, in the case of atmospheric turbulence we have the following esti-

mates: Dy &~ 0.1cm?/s; Vo ~ 10cm/s; Lo ~ 1072 cm; and Degr ~ 10° cm? /s >> D,
This upper estimate of transport D in the steady turbulent flow is given by the
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scaling Deg ~ Vgr o V2, where Pe<1 and the correlation time t has a diffusive
nature T &~ tp ~ L3 /Dy. This result shows the important dependence of the effective
diffusivity Deg on the turbulent fluctuation amplitude Vj in the limit of the small
Peclet numbers.
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Chapter 3
The Langevin Equation and Transport

3.1 Brownian Motion and Diffusion

To interpret the diffusion coefficient in terms of medium characteristic, we consider
the Langevin equations of motion of particle suspended in a liquid (see Fig. 3.1.1).
The irregular movements of small particles immersed in a liquid, caused by the
impacts of the molecules of the liquid, were described by Brown in 1828. Since
1905, the Brownian movement has been treated statistically, on the basis of the
fundamental works of Einstein and Langevin. Langevin’s approach to Brownian
motion was the first example of a stochastic differential equation and inspired the
development of the mathematical theory of continuous time stochastic processes:

mV = Kg(t). (3.1.1)

Here, Kg(¢) is the fluctuating force caused by bombardment of the particle by the
molecules of the liquid and m is the particle mass. We now make the important
assumption that Kx(#) may be divided into two parts [25-30]:

Ke(t) = —BmV + mA(r), (3.1.2)

where the term — f5,mV represents the usual viscous drag on a particle moving with
velocity V, and mA(?) is a stochastic force of average value zero representing the
effects of molecular impacts on a particle at rest. The viscous drag also arises, of
course, from molecular impacts. When the particle is in motion the molecular
momentum change on impact is greater on the advancing forward face of the
particle than on the rear face — there is a net average force tending to slow up the
particle (see Fig. 3.1.2). Thus, we have for the equation of motion

V=—BV+A(). (3.1.3)

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 37
DOI 10.1007/978-3-642-20350-3_3, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.1.1 Passofa
two-dimensional
Brownian motion

Finish

Fig. 3.1.2 Brownian particle [

For a sphere of radius R, Stokes’ law gives the relation in the form

1
pm = 6mRyNp = —, 3.14)
Bg

where 7 is the coefficient of viscosity and By is the mobility coefficient. This law

works quite well even down to molecular dimensions [45—47]. In order to obtain a
solution, we multiply the equation of motion through by x

AV = xi = —f,xx + xA(r). (3.1.5)
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Now one can use the formal relation

d 2

Fral = 2xx. (3.1.6)

Using this we derive the new form of the Langevin equation of Brownian
particle motion as follows:

L&, 5 pd

Now we apply the averaging method. The time average of xA(?) is zero, because
x and A are uncorrelated (see Fig. 3.1.3). We also take into account the equipartition
theorem

(V¥) = () = kT, (3.1.8)

m

Here, T is the temperature of medium and kg the Boltzmann constant. In order to
find the solution, let Z; be the time average of ( ) ; then the time average of the
Langevin equation is

1dz.  keT
e —&zL. (3.1.9)

By integrating, we find the expression for value Z; in the form

2kgT
ZL =B 4 e, (3.1.10)
mﬁr
A
P 0)
Fig. 3.1.3 A typical plot of t
squared displacement of a
Brownian particle "
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where C is a constant. We are not interested in the transient term, which merely
would allow us to fit the initial conditions. Then, using angular parenthesis to
denote time average,

d o\ _d, , 2T
<a(x)>—dt<x>— ) = 2Dgt, (3.1.11)

Note that <x2>1/ 2o 112, as expected for diffusion process (see Fig. 3.1.4). Our
derivation is due to Langevin.

We saw that the diffusion coefficient of the Brownian particle was given in terms
of the damping time associated with the friction force by which we can now
reexpress as

Dy = 2. (3.1.12)

Here, Bg is the mobility. This connection between the diffusion coefficient and
the mobility is known as the Einstein relation. For the special case of Stokes’ law,
this gives us

kT
- 37'ER()VF

R* = (%) t = 2Dgt, (3.1.13)

as given originally by Einstein. Numerous experimental studies of the Brownian
movement have confirmed with a great accuracy [45—47].

A

< x2(1) > VZs

/ < x? >:2DBt

Fig. 3.1.4 A typical plot of , ) N
=Dpft
the mean-squared ,/ T (¥ )=DyB, /

displacement of a Brownian /
particle




3.2 Mean Square Velocity and Equipartition 41
3.2 Mean Square Velocity and Equipartition

The Langevin equation considered above has a linear form and therefore one can
find its formal solution in the form

V(1) = V(0)e P +J P A(2)dz. (3.2.1)
0

The first term represents the transient part of the solution: that which depends on
the initial conditions and which arises from the solution to the corresponding
homogeneous equation. This is the complementary function. The second term
represents the steady-state response to the “source force” A(f). This is the particular
integral and this part persists when all memory of the initial condition has gone. It is
conventional to enunciate properties of the random force A(f). These are listed as
(A(#)) = 0. This follows from the considerations of the center of mass frame of the
fluid. We also suppose that (A(#;)A(f)) = 0, unless # is “almost identical with” #,,
which means that the correlation time of the random force is short. The value
<A2(t)> has some definite value, which leads to the formulas

(A(t)A(t)) = A*5(t) — 1o). (3.2.2)
A = JOO (A(0)A(r))dr (3.2.3)

As a simple application of these results, we can consider the mean value of V(¢).
We find a given initial conditions (see Fig. 3.2.1)

V(1)) = v(0)e P (3.2.4)
Here, (A(1)) = 0.
t oo
Voexp(= B, 1)
)

Fig. 3.2.1 Schematic

diagram of velocity AN >
fluctuations of a Brownian p
particle
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By similar arguments, we can now examine the mean square velocity. A key
result then follows when we exploit the equipartition theorem to relate the equilib-
rium mean square velocity of the Brownian particle to the temperature of its
surrounding medium. The expression for the mean square velocity is given by the
relation

(V2(1)) = V*(0)e 2Pt 4 2e 7201 Jt e (V(0)A(z))dz
0

t t
+e 2 L dz JO dyef A (2)A(®y)). (3.2.5)

The first term is the transient response, which dies away at long times; it is of
no interest. The second term vanishes since there is no correlation between V(0)
and A(#). The third term is of interest since it describes the equilibrium state of the
particle, independent of the initial conditions. In this term, we make use of the
smallness of the correlation time and approximate the force autocorrelation func-
tion by the delta function expression:

(A(0)A(r)) = A%3(11 — 1) (3.2.6)
Thus, we obtain at long times the relation in the following form:

t _ A2 —2p,t A2
(V3(1) = Aze_zﬁ"J dze?ts = ;T(ezﬁ” -1)= 25,
0 t t

In the long time limit, this gives the relation

(1—e 1), (3.2.7)

A2 kgT
2 pr— 2 = —— =" —
Vi = (V)= B m (3.2.8)

Using the equipartition theorem yields the important relationship

m 5

=——V, 3.2.9
Bt 2kBT 0 ( )
On the other hand, one can express the mobility in the form
m2 o0
Br = — A(0)A(r))dz. 3.2.10
=g | a0a@) (3210

Thus, we relate the two forces in the Langevin equation: the mobility or friction
force and the random force. Here, the dissipative force is expressed in terms of the
autocorrelation function of the fluctuation force. This result is called the fluctuation
dissipation theorem. The Boltzmann factor that appears in the fluctuation dissipation
theorem between the macroscopic and the microscopic force is a consequence of
equipartition.
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3.3 Autocorrelation Function

In the previous analysis of Brownian motion, we saw that the motion of particles
was conveniently expressed in terms of the velocity autocorrelation function. The
calculation of this is only slightly more complicated than that of the mean square
velocity. We have

(V(to)V(to + 1)) = V*(0)e Fil20H)

fo to-+t
+ e Fiut) J dz J dy e (A(2)A(y)), (3.3.1)
0 0

where the cross term vanishes, as above. The first term is of no interest since at long
times ¢ the memory of the initial state is lost. The steady-state behavior is contained
in the remaining term. We also use the smallness of the correlation time of the force
autocorrelation function and the delta function approximation. This forces y =z
when the integral over z is performed. The calculation is identical to that for the
mean square velocity, except for the additional e /" prefactor

2

—be (3.3.2)

(V(to)V(to +1)) = ﬁe ,

or
Cy(t) = (V3(0))e . (3.3.3)

Thus, we consider that the correlation time for the velocity autocorrelation
function is simply the damping time associated with the friction force (see
Fig. 3.3.1)

1

=—. 334
5, (3.3.4)

T

We saw that the diffusion coefficient of the Brownian particle was given in terms
of correlation time 7 by

kT 1
Dp = 27 1 = ~ A2, (3.3.5)
m 2

Here, the correlation length Acog is given by the formula

Vo 1 /kgT
A N—=—]— 3.3.6
COR 5B \/ p” ( )
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Fig. 3.3.1 A typical plot of 1
the velocity correlation
function

C(1)

One can estimate transport of the small sphere, which is floating in water, whose
radius is Rg &~ 5 x 1073 cm, t ~ m/3nneRy ~ 8 x 107%s, np ~ 0.0135g/(cms),
m~35x10"83g, T~~300K. This gives the diffusion coefficient D ~ 3.8x
107%cm?/s. However, when considering tracer transport in chaotic or turbulent
flows, one has to take into account the specific nature of fluctuating velocity field
(cascade mechanisms, coherent structures, etc.) to define the adequate characteristic
spatial and temporal correlation scales.

3.4 Velocity Distribution Function

To obtain the velocity distribution function, we may first calculate all the moments
<V2”>, from which we get the characteristic function [42—45]. In the stationary state,
i.e., for large times,

wo:memA@—nm. (3.4.1)
0

To derive this equation, ¢ — ¢ = 7 was substituted, and then the range of integra-
tion was extended to infinity because of the factor exp(—f,#). Then, we obtain the
relations

<w&“v=o (3.4.2)
<V(t)2k> :L ...JO e—/f,(r1+A.A+r2k)<A(t_Tl)...A(,_hk»dfl...dhk
R[> [ Zg er40) 42 k
- 2%k o Jo e mtnlg o(t1 — 12)drydry | (3.4.3)
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The double integral is equal to the value

A2
(V) = 5 (3.4.4)
t
giving the expression of interest in the following form:
k
w R (A2
<V(t) > =S ag) (3.4.5)

The characteristic function is given by the relation in the form

S i (m)"<V(r)"> ) Zoc: (m)z"<V(¢)2’<> ) Zao: (i) <A2>k

= K = (@) £ 2%k \ 2B,
1 < u2A2>k < u2A2)
=10 BN : (3.4.6)
; '\ 45 4p,
Now, the velocity distribution function is given by the formula
1 [ )
f(v) = <5(V(t) - V)> = — J F,;(u)eﬂ“vdu
21 )
1 > 2A2
- J—oo exp <iuV - M4ﬁ; )du = (3.47)

= ﬂex _ﬁ,V2 = ™ ex _m_V2
“Va2P\ T ) T\ 2P\ T T )

This is the Maxwell stationary distribution [42-45]. The probability density
times the length of the interval dV is then the probability of finding the particle in
the interval (V,V + dV). This distribution function depends on time  and the initial
distribution. Once we have found f(V, r), any averaged value of the velocity can be
calculated by integration X (V)

XWV(@)) = JOC X(V)f(V,n)dv. (3.4.8)

—00

The distribution function can be also calculated in a much simpler way with the
help of the Fokker—Plank equation. For the Langevin model, the equation of motion
for the distribution function f (V) is given by

i\
o

m ov?’

B2 1 p,

5 (3.4.9)
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This equation is one of the simplest Fokker—Plank equations. By solving it
starting with f(V,0) for =0 and subject to the appropriate boundary conditions,
one obtains the distribution function f(V, ) for all later times.

3.5 Kinetics and Diffusion Equation

As soon as the theory for the free particle was established, a natural question arose
as to how it should be modified in order to take into account outside forces as, for
example, gravity. In this section, we briefly consider the Klein—Kramers or Kramers
equation, which is an equation of evolution for the distribution functions f(V, x, t)
in position and velocity space describing the Brownian motion of particles in an
external field.

Let us assume that the outside force acts in the direction of the x-axis and
Langevin equations should in this case be replaced by

x=V, (3.5.1)
V = —B,V+ Ke(x) + A1), (3.5.2)
where
kT
(A(A()) =28, (B—) s(t—1). (35.3)
m
Without any external force this system of equations reduces to the classical
Langevin model. Two cases of special interest and importance are Fg(x) = —ak,
field of constant force (for example, gravity) and Fx(x) = —bgx, elastically bound

particle (for example, pendulum). The corresponding equation to describe proba-
bility density in the presence of nonuniform force mKg(x) is given by

o o o 1.0 (. kT, Of
SV o kel =~ (Vf+ av). (3:54)

Here, f(#,V,x) is the particle distribution function, Kr(x) is the acceleration, V is
the velocity, T, is the temperature, 7 is the characteristic time, and m is the mass of
the particle. At this point it must be strongly emphasized that theories based on the
Kramers equation are only approximate. They are valid only for relatively large
¢t and, in the case of elastically bound particle (Fg(x) = —bgx), only in the
overdamped case, that is, when the friction coefficient bk is sufficiently large.

It is worth noting that a formal integration of this kinetic equation over velocity
with accounting for the following conditions:
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f(V] - o0) — 0 and %f(M — 00) (3.5.5)

leads only to the continuity equation for the particle density in physical space

on 0
o + p U.n=0, (3.5.6)

where the mean values are given by

n(x, 1) = Jm f(x,V,0av, (3.5.7)
U, = % Joo VF(x,V,0)dv. (3.5.8)

Indeed, as early as 1940, Kramers [48] pointed out the difficulties encountered in
an attempt to obtain the diffusion equation in ordinary coordinate space

on D82n 0

from the simplest kinetic equation which includes spatial nonuniformity,

o Lo _0|(V_ _ 1 9 (keT, Of
oV o avao KF(X))’C}TO av<m av)' (3.5.10)

Even here a demand arose for a nontrivial approach with integration over a
simplified trajectory r = ro + V1 in lieu of “conventional averaging” with the
fixed value r(. Here, r( is an arbitrary initial point. This corresponds to the system
of characteristic lines

v _ v

— = —— 3.5.11
dr T0 ( )
and
dr
— = 3.5.12
7 ( )

From this point of view, the spatial nonuniformity of the distribution function f at
scales A < Vo can be ignored: f(¢,V,x) = f(¢,V,x + 1). This means that only
local effects are described by this kinetic equation (see Fig. 3.5.1). However, this
argument was not effective enough for the introduction of corrections to the kinetic
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Fig. 3.5.1 Phase-space 14
representation of a particle
trajectory
Vo
0 Xo i X

equation at that time. Kramers in fact pointed out the conventional character of the
diffusion equation and its close relation to the correlation function behavior.
There is an interesting interrelation between the diffusion coefficient in a phase
space Dy and the diffusion coefficient D in an ordinary space. Indeed, they have
completely different kind of dependence on the characteristic frequency f,

kgT
Dy =28, (3.5.13)
m
ksT 1
Dp =2~ . (3.5.14)
m P,
This allows us to eliminate the value f§, and to obtain the formula
keT\’
Dy -Dp = <B> : (3.5.15)
m

One can see that diffusion in ordinary space depends inversely in the space-
phase diffusivity. To visualize this relation let us consider an ensemble of colli-
sionless particles (for instance, suprathermal electrons in turbulent plasma), which
is beyond our simplified Brownian model. Thus, the ballistic particle motion can be
interpreted as trapping in phase space. Indeed, if collisions (interactions) are absent,
then the particle has constant velocity and, hence, does not change its position in the
velocity space, whereas they passed a significant distance in the coordinate space
[48-58].
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There are certainly deep connections between the conventional approach to the
transport equation in the configuration space and the phase-space representation.
The Hamiltonian theory gives the advantage of using additional degrees of freedom
to treat nonlocality and memory effects in the framework of phase-space. The kinetic
model provides the possibility of describing ballistic modes and establishing the
relationship between different exponents and distributions.
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Chapter 4
Lagrangian Description of Chaotic Flows

4.1 The Taylor Diffusion and Correlation Concept

In the previous consideration, the scalar diffusion was discussed in terms of
Eulerian (laboratory) coordinate frame. In modern studies in fluid dynamics, it is
quite common to describe the velocity and pressure fields in the Eulerian way, with
these quantities being measured and defined at a given point in space. Having found
this Eulerian velocity field, u,-(xj, t), where i and j range over 1, 2, and 3 and y; is
associated with the coordinate x;, we can then consider the equations

do _dv _ dvu

dr, 4.1.1)
up 1753 us

in order to obtain the particle paths and properties associated with them. Such
knowledge can be important for the understanding of flows visualized experimen-
tally by dye or smoke.

An alternative approach is that of the Lagrangian description, in which the
individual particles are marked and followed in a time-dependent way. A time
derivative on a given marked particle gives its velocity, and this gives a connection
with the Eulerian description mentioned above.

The partial differential equations for the Eulerian and Lagrangian schemes look
superficially different, but are connected by the ordinary differential equations
quoted above. However, there are some phenomena of relevance and importance
in connection with turbulence and with transition to turbulence, in which an
approach from the Lagrangian point of view gives rise to simpler and less intuitive
nonlinear mathematics and leads to illuminating insights. The Lagrangian approach
to such problems is described in this chapter.

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 53
DOI 10.1007/978-3-642-20350-3_4, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 4.1.1 Schematic 4
illustration of the Lagrangian
coordinate system and motion
of a wandering particle

Here, we discuss the Taylor definition of scalar dispersion from a continuous
source [59, 60]. Figure 4.1.1 represents the motion of wandering particle. This is the
Lagrangian position coordinate of the marked particle. The Lagrangian velocity
V() is given by the formula

. Ax
V() = limao 5 - 4.1.2)

By following the Taylor statistical approach [59-63], we consider the displace-
ment x(#) of a marked fluid particle in one dimension

x(t) = J V(xo, #)dr. .13)

0

The displacement will be positive as often as it is negative; therefore, its mean
value will be zero. That is why we will treat the mean squared particle displace-
ment. The mean square of a large number of x is expressed as

1 5 dx

Z ={x=) = ) 4.14

5 5 020) = (v ) = V() @14
If the turbulence field is spatially homogeneous, this formula can be represented

as follows:

%<x2(t)> = 2J; di(V()V(t+1)). 4.1.5)
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Fig. 4.1.2 Schematic
diagram of the Lagrangian
particle trajectories

The averaging procedure is based on the supposition that one considers simulta-
neously released a large number of particles at + = O (see Fig. 4.1.2), at different
points in the fluids, and averaged over all the particle tracks.

Taylor introduced the Lagrangian correlation function C(¢) in the form

C(t) = (V(x0,2)V(x0,z + 1)) = VIRL(1), (4.1.6)

where Vj, is the characteristic scale of velocity fluctuations. Then the famous Taylor
expression is given by

t

%(ﬁ(z)) = L C(!)d! = Dr. 4.1.7)

N =

On the other hand, one obtains an important relationship, which is used in the
subsequent discussions,

d2
37 W), =2¢0), 4.1.8)

The exponential form of the correlation function to describe turbulent transport
is commonly attributed (see Fig. 4.1.3)

The turbulent diffusion coefficient is estimated by the scaling Dt ~ V1. Here, t
is the Lagrangian correlation time, which is given by

T= iz Joo C(r)dr. (4.1.9)
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Ry, /

Uy 1A

Fig. 4.1.3 Distribution of the Lagrangian autocorrelation coefficient normalized with integral
scale. (a) Measurements. (b) Calculations. (1) Re = 70; (2) Re = 25; (3) The exponential form of
correlation function. (After Sato and Yamamoto [64] with permission)

Such definitions are especially relevant for the description of turbulent transport
where velocity fluctuates in a fairly unpredictable way, whereas in a steady laminar
flow the velocity does not change with time.

4.2 The Boltzmann Law Renormalization

The Lagrangian representation of the diffusion coefficient can be used to study the
distribution of particles suspended in a turbulent flow. Consider a suspension of
particles in a fluid with a spatially constant external field (gravity) imposed upon it.
We denote the external force by mg and choose the z-axis of the coordinate system
in the direction of the external force. The motion will build up a concentration
gradient in the z direction, and this concentration gradient will induce a diffusion
current Degr % in the opposite direction to that induced by external force. Here, D¢
is the effective diffusion coefficient. In the steady case, these two currents will
cancel each other
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nVZ = Deff @ . (421)
0z

Here, the characteristic velocity is given by the formula
V, x Bgmg = tgg, “4.2.2)

where Bg, is the mobility coefficient and tz is the characteristic time. By solving the
differential equation, one obtains the conventional distribution of particles
suspended in a fluid

* dz
n= noexp{ -V, L Den(?) } 4.2.3)

The main question is the choice of the effective diffusion coefficient. In the
framework of the Brownian motion description, it was applied the expression

Des ~ (kgT)Bg (4.2.4)

and hence the distribution of particles is given by the Boltzmann law

n= noexp{ — (Z}:—?) z} = noexp{ — (%) z}. 4.2.5)
T

Here, T is the field temperature and Vr is the thermal velocity.
However, to the case of particles suspended in a chaotic flow, the Lagrangian
representation of the effective diffusivity

1
Dep = Dt ~ 3 V3tcorz (4.2.6)

is more relevant. The particle distribution obtained

3g> 1E }
n=npexps — | — | - z “4.2.7)
’ p{ <V§ TCoR

differs significantly from the Brownian case. Here, 1z = Bgm.

This form of the distribution of particles suspended in a turbulent flow takes into
account the amplitude of velocity fluctuation V) as well as correlation effects by the
Lagrangian correlation time Tcor. On the other hand, such a representation agrees
well with experiments [65].
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4.3 Turbulent Transport and Scaling

It is clear even intuitively that the result of action over a long period of a random
flow is similar to the result of a large number of molecular actions. As we have seen
above, transport in a chaotic flow depends on the behavior of the correlation
function C(¢). Let us employ the Taylor representation of the diffusion coefficient
in the form

1 ! / ‘ ! 1 ! / / /
5<x2(z)> = L dt L c(tdd" = JO (t—1)C(¢)dr 4.3.1)

to obtain transport scalings. In the framework of the Laplace transformation, one finds
C(z) x (1 - é) - tJ C(w)F(w)dw, 43.2)
0

where the triangular filter is given by formula

F(z) =1 —é. 4.3.3)
The ordinary calculations yield the relation
2 oot 2
c) = (1-3) :—J (o) [512,21 do, 4.3.4)
t 2 Jo T

Now we can derive two important asymptotic results. For times much greater
than the correlation time, > 1, w =~ 0, we are dealing with the narrow filter
function. The mean squared displacement is given by the relation

(x*(t)) = Virt ~ Drt, 4.3.5)

N —

which coincides with the Taylor definition Dt = V%r. On the other hand, for times
less than the correlation time, ¢t < 1, we find

1 2> 1
3 (x*(t)) ~ 5 JO C(w)dw o 5vgrz (4.3.6)

This leads to the ballistic scaling, (x*(z)) = (V?)#* (see Fig. 4.3.1).
Even from the general considerations, it is clear that the Taylor relationship

between the diffusion coefficient and the Lagrangian correlation function of velocity
is an effective tool of investigation. In the next sections, we show that the
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Fig. 4.3.1 Lateral particle diffusion from a fixed point in a grid turbulence. Continuous line
Y2 = V62t2; Dotted line Y*  t. (After Sato and Yamamoto [64] with permission)

development of correlation ideas had essential influence on the form of diffusion
equations as well as on the choice of the effective correlation length and correlation
time.

4.4 Anomalous Diffusion in Turbulent Shear Flows

The model of isotropic steady random flow is an idealization; therefore, it would be
interesting to consider anisotropy effects widely distributed in environmental and
industrial flows. In this section, we discuss correlation mechanisms and transport in
a turbulent flow in the presence of a uniform shear (see Fig. 4.4.1).

By following the statistical approach, we find the Lagrangian longitudinal
and transverse displacements X(7) and Y(¢)of a scalar particle on the basis of
equations [66]

X _ v+ i), (@41

—=V,@0). 4.4.2)
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Fig. 4.4.1 A typical plot of Uly) a
shear velocity profile in the
Corrsin (1953) model

v

Here, we suppose that the turbulence is homogeneous in planes normal to the
mean velocity U, where U(x,0) = 0. We are dealing with the uniform mean shear

a U( ) = const. (4.4.3)

These displacements can be expressed in terms of the shear velocity field as

X(t) = JO Ely] (1) + Vi(r )} a7, (4.4.4)

Y(r) = J Vy(f)dr'. (4.4.5)
0

As before, we are not interested in the lowest order statistical moments. Squaring
X(r) and Y (¢) and averaging, we find in the limit of # — oo

(Y*(t)) = 2Dyt = 2(VatoL)t, (4.4.6)

(X*(1)) = ; (:g) Y\ = i <‘31(y]> Vit £ (4.4.7)

Here, Dy = V%v:L is the Taylor turbulent diffusion coefficient, V| is the charac-
teristic amplitude of turbulent pulsations, and 1y, is the Lagrangian correlation time.
This formula describes the anomalous diffusion in the longitudinal direction at
large times; the scalar blob becomes fairly elongated (see Fig. 4.4.2).

Such a nontrivial result could be interpreted in terms of characteristic spatial and
temporal correlation scales AH, Ty,

2

A
Dy o~ (4.4.8)
ZTJ_
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Fig. 4.4.2 A single puff U(y)
evolution in a shear velocity I

In the model under consideration, the transverse temporal correlation scale is
related to the statistical nature of turbulent pulsations,

1 2Dt

— =t (4.4.9)
LTI

and describes the diffusive character of “correlation cloud” transverse spreading,
whereas the longitudinal spatial correlation scale is supposed to have a ballistic
nature

Here, 0, is the spatial scale related to the velocity gradient, and V| is the
characteristic velocity scale.

Now the scaling for the anomalous longitudinal transport in a turbulent shear
flow is given by the formula with the time-dependent diffusion coefficient,

Vi
Dy (1) (5) Drf*. (4.4.11)
1
On the other hand, in terms of longitudinal displacement one obtains the scaling
2 2v2. 3

(X2(1)) o< Dyt ox (VLV)) VorLr. (4.4.12)

This corresponds to the anomalous diffusion with the Hurst exponent H = 3/2.
Solvable theoretical model considered here is rather simplified, but at the same

time there are many advantages in its treatment. In our case, we are dealing with
anisotropy related to shear effects, ballistic approximation of longitudinal
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Correlation
Shear approach
effects (Taylor 1921)
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Anomalous transport in shear turbulent flow dispersion
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Fig. 4.4.3 Anomalous transport in a turbulent flow

displacements, and diffusive nature of transverse correlations in the presence of
turbulence (see Fig. 4.4.3). Note that in the presence of the strong vertical stratifi-
cation in environmental flows the ratio of longitudinal spatial scale of particle cloud
to transverse scale continuously grows, confirming the above arguments [67-72].

4.5 Seed Diffusivity and Turbulent Transport

In the first section of this chapter, we have discussed the relation between single-
particle statistics (Lagrangian description) and transport effects in chaotic flows.
The effects of molecular (seed) diffusion were ignored at that stage. However, the
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Fig. 4.5.1 Schematic
illustration of the domain of
the main contribution to the
Corrsin functional for the
Lagrangian correlation
function

pu

“seed diffusivity” concept can be successfully applied to the consideration of
correlation effects in turbulent flows. The conventional Taylor definition of the
turbulent diffusion coefficient, which is based on the Lagrangian correlation func-
tion, does not contain any information on molecular diffusion (see Fig. 4.5.1).
Serious problems obviously arise when we analyze the passive tracer transport.
Thus, in the absence of streamline reconnections (steady flow cases), we certainly
need the “seed diffusivity” mechanism responsible for the effective transport.

On the other hand, there are many observations, which provide extensive
information on the Eulerian correlation function. In the framework of the Eulerian
description, velocity correlations decay in both space and time and we have two
characteristic correlation scales: the Eulerian characteristic time and the Eulerian
characteristic spatial scale. Let us consider the Eulerian representation for the
correlation function, which takes into account the velocity correlation at points
separated by a distance 4

Ce(A, 1) = (u(xo, T)u(xo + A, T + 1)). (4.5.1)

Here, u(x(,T) is the Eulerian velocity at point xy and time 7.

It would be important to establish the relationship between the Lagrangian and
the Eulerian correlation functions as well as between the Lagrangian and the
Eulerian characteristic time scales. Such relations are fairly useful for using
Lagrangian measurement data in Eulerian simulation models. At present, there is
no rigorous relation between the Lagrangian correlation function and the Eulerian
one. Actually, there is no Lagrangian relation between the points xy and xo + 4 in
the Eulerian correlation function definition, where A is merely some arbitrary
displacement.

To find a relation between the Lagrangian and the Eulerian correlation functions,
one can represent the Lagrangian correlation function in the form
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C(t) = (V(x(0)V(x(1)) = JOO (VO)V(y)o(y — x(1)))dy. (452)

Corrsin [73] employed the factorization approach (the “independence hypothesis™):

VOV (x)oy = x(0)) = (V(0O)V(x))(d(y = x(1))), (4.5.3)

where he applied the Gaussian distribution p(y, t) to describe trajectory correlations
(0(y —x(1))) = p(y,1), whereas the term (V(0)V(x)) can now be interpreted as the
Eulerian correlation function, Cg(4, t). In this context, the approximation formula
in terms of the randomization of the Lagrangian correlation function with the
probability density p(/,¢) takes the form

() = J (s )Ca (2, 1) 4.5.4)

—00

Thus, the Lagrangian correlation function can be expressed through the Eulerian
one if we know the probability density function of particle displacements.

In a simplified case, for the probability density p(/,¢) it is natural to use the
Gaussian distribution, which in three-dimensional space is given by the formula

1 22
At) = exp| — . 4.5.5
pid1) (4nDot)*? p( 4Dot) @)

This formula includes the molecular diffusion coefficient Dy, which can be
interpreted as the diffusive nature of the displacement 4. Note that such an elegant
representation of 4 plays the role of the Lagrangian distance and the diffusive
displacement at the same time. It is possible to examine the Corrsin conjecture by
assuming certain forms of the Eulerian correlation function basing on environmen-
tal data and to establish relations between the Lagrangian and the Eulerian

08—
0.6—
B -

Fig. 4.5.2 Ratio of 04— O
Lagrangian to Eulerian |
integral length scales against S~ -
the turbulent Reynolds
numbers. (After Sato and 0.2 | | | | | | | | |
Yamamoto [64] with 10 20 40 60 80 100

permission)
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characteristic spatial and time scales (see Fig. 4.5.2). Such a phenomenological
approach is not universal because the variety of turbulence types leads to a wide
range of parameters, which describe the ration of the Lagrangian and the Eulerian
characteristic scales [67-69, 81, 82].

The Corrsin approach allows one to employ phenomenological arguments to
obtain simplified approximations of transport in turbulent flows where the molecu-
lar diffusion effects are significant [74—80]. In order to display effectiveness of the
diffusive renormalization of correlation effects, we consider turbulent velocity field
on small spatial scales, where viscous effects have considerable influence. In this
small domain, the velocity profile could be represented as linear. This allows one to
apply the Corrsin anomalous transport model, <X2(t)> = %w‘z,DTﬁ, to estimate
scalar spot dispersion in a turbulent flow. Here, the shear flow parameter wy is

2
given by the relation w} = (%) . Then, the spot dispersion in a scalar center-of-

mass system can be estimated as
2 2 2.3
L~(t) o 2Dt + 2Dyt + gDowvf , (4.5.6)

where the turbulent diffusion coefficient has the Taylor correlation representation

Dr= J c(f)dr. 4.5.7)
0

The correction found (2/3)Dowi £ has to be small because the linear approxi-
mation of the velocity profile is valid only for small times. This estimate shows, as
could be expected, that turbulence increases the effective tracer transport. However,
a nontrivial effect arises in a new restatement of the problem, when one considers
the dispersion of mean scalar density in a source reference system, as it was done by
Saffman [249].

By following the Saffman approach, we describe the scalar evolution by the
advection-diffusion equation

0
5’; + i Vn = DoV°n, (4.5.8)

where the initial scalar distribution is given by
n(rito) = 6(F — 7o) 4.5.9)

It is convenient to apply the diffusive approximation of correlation effects in the
form that is slightly different from the Corrsin conjecture

V(o) = Juv(f, On(F, tffe, 10)d7 45.10)
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Here, V is the Lagrangian velocity and uy is the turbulent velocity in the same
direction as the Lagrangian velocity V. Then one obtains the Lagrangian correlation
function

C(r)=(V()V(1)) = J(uV(F, Nuy (ro, to)n (7, t|ro, 1) )di (4.5.11)
The solution of the diffusion equation can be obtained in the form
1 !
n = ny(t)exp —Es,-j-xixj , 4.5.12)

where 7/ = (x|, x},x}) is the position vector relative to the fluid particle with which
element of substance originally coincided and the dimensional factor s;; is given by

Ojj
s — (4.5.13)
""" Do(t — to)
By the same arguments, one expresses the velocity uy (7', 1) as follows:
611\/
Fot) = v(t) + X = ). 4.5.14
i)~ o00)+5 (G @514

Here, v(¢) is the velocity of the fluid particle, which was at 7 at the moment 7o,
and hence, V(#y) = v(t). Calculations lead to the relation

V(1)) = v(t) + Do(t — to)Vuy. (4.5.15)

To obtain the correlation function C(r) = (V(¢)V(#)) and the dispersion, we
have to calculate the value

(1) (VPuy)) = (uyV2uy) = (V(uyVuy)) — <(Vuv)2> ~ (Vuy)*. (4.5.16)

Here, it is convenient to introduce the characteristic time T, :a);' =

1/ <(Vuv)2>. Now the expression for the dispersion is given by the formula

2
L*(t) = 2D (t — to) + 2Do(t — to) — §Dowzv(r — 1)’ (4.5.17)

One can see that the effect of interaction between the chaotic velocity field
and the molecular diffusion decreases the dispersion relative to the origin. As
before the correction — (2/3)Dow} (¢ — fo)® has to be small because the approxi-
mation used is valid only for small times, 1<t(LVy/ vF)fl/ * ~ tRe /2. For more
detailed estimates, we refer the reader to [62, 249].



Further Reading 67

Further Reading

Correlation and Diffusion

J.-P. Bouchaund, A. Georges, Phys. Rep. 195, 127 (1990)

H.L. Pecseli, Fluctuations in Physical Systems (Cambridge University Press,
Cambridge, 2006)

L.E. Reichl, A Modern Course in Statistical Physics (Wiley-Interscience,
New York, 1998)

D. Sornette, Critical Phenomena in Natural Sciences (Springer, Berlin, 2006)

Lagrangian Correlation Function and Turbulence

G.K. Batchelor, The Scientific Papers of Sir G 1. Taylor. Meteorology, Oceanology,
Turbulent Flow, vol. 2 (Cambridge University Press, Cambridge, 1960)

G.K. Batchelor, HK. Moffat, M.G. Worster, Perspectives in Fluid Dynamics
(Cambridge University Press, Cambridge, 2000)

P. Bernand, J.M. Wallace, Turbulent Flow (Wiley, New York, 2002)

T. Cebeci, Analysis of Turbulent Flows (Elsevier, Amsterdam, 2004)

O. Darrigol, Words of Flow: A History of Hydrodynamics from the Bernoullis to
Prandtl (Oxford University press, New York, 2009)

P.A. Davidson, Turbulence, An Introduction for Scientists and Engineers (Oxford
University Press, Oxford, 2004)

U. Frisch, Turbulence: The Legacy of A.N. N. Kolmogorov (Cambridge University
Press, Cambridge, 1995)

W. Frost, T.H. Moulden (eds.), Handbook of Turbulence (Plenum Press, New York,
1977)

S. Heinz, Statistical Mechanics of Turbulent Flows (Springer, Berlin, 2003)

M. Lesieur, Turbulence in Fluids (Kluwer, Dordrecht, 1997)

W.D. McComb, The Physics of Fluid Turbulence (Clarendon Press, Oxford, 1994)

A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, 1975)

H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT, New York, 1970)

A. Tsinober, An informal Introduction to Turbulence (Kluwer, Dordrecht, 2004)

Correlation Functions and Geophysical Turbulence

G.T. Csanady, Turbulent Diffusion in the Environment (D. Reidel, Dordrecht, 1972)
N.F. Frenkiel (ed.), Atmospheric Diffusion and Air Pollution (Academic,
New York, 1959)



68 4 Lagrangian Description of Chaotic Flows

F.T.M. Nieuwstadt, H. Van Dop (eds.), Atmospheric Turbulence and Air Pollution
Modeling (D. Reidel, Dordrecht, 1981)

H.A. Panofsky, .LA. Dutton, Atmospheric Turbulence, Models and Methods for
Engineering Applications (Wiley Interscience, New York, 1970)

F. Pasquill, F.B. Smith, Atmospheric Diffusion (Ellis Horwood Limited, New York,
1983)

J.C. Wyngaard, Turbulence in the Atmosphere (Cambridge University Press,
Cambridge, 2000)

Seed Diffusion Effects

M.P. Brenner, Classical Physics Through the Work of GI Taylor (MIT, Cambridge,
2000)

R.M. Mazo, Brownian motion, Fluctuations, Dynamics and Applications
(Clarendon Press, Oxford, 2002)

T. Squires, S. Quake, Rev. Mod. Phys. 77, 986 (2005)

G.H. Weiss, Aspects and Applications of the Random Walk (Elsevier, Amsterdam,
1994)

Ya B. Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff, The Almighty Chance (World
Scientific, Singapore, 1990)



Chapter 5
Lagrangian Chaos

5.1 The Arnold-Beltrami—Childress Chaotic Flow

Since a key ingredient of Lagrangian particle description is the relation between
Eulerian and Lagrangian representations, we start by reiterating this well-known
kinematic material: if V(&, ) is the (Eulerian) velocity field, and if X(z, ) is the
motion of a fluid particle that at r = 0 was at position @, then in terms of this
(Lagrangian) data the connection between the two representations is given by the
formula

(E» = V(X(t,d),1). (5.1.1)

Conversely, if we introduce the material derivative operator

D 0 -
—=—4V. 5.1.2
Dt 8t+ vy ( )

then the above equation may be stated in the Eulerian representation by the formula

D¥
Dt

=i

(%, 1). (5.1.3)

Either way we arrive at the following system of coupled ordinary differential
equations for the motion of a point in the fluid continuum:

x: VX(xayvzat)a
.)-) = Vy(x7)’az7 t)7 (5]4)
2=V, (x,y,z,1)

where (V,,V,,V.) are the Cartesian components of the velocity field V. We
call these the advection equations. Although they arise from purely kinematical

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 69
DOI 10.1007/978-3-642-20350-3_5, © Springer-Verlag Berlin Heidelberg 2011
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considerations in the fluid mechanical context, and thus must be considered
“embedded” in the evolution of any flow, equations obtained have the format of a
“dynamical system” in the usual sense of the mechanics of systems with a finite
number of degree of freedom.

The behavior of streamlines in steady-state three-dimensional flows can be very
complex. The following equations:

dv dy dz
—= = 5.1.5
VeV, V. (5.1.5)

define streamlines of the field of velocities V(x, ¥,z). A more convenient notation of
this system, for example, in the following form:

dx V. __
&ZVZ:f](X,y,Z), (516)
dy V,
FETa = fa(x,y,2) (5.1.7)

shows that we are dealing with the “non-steady-state” problem for a dynamics
system with two-dimensional phase space (x, y). Variable z is playing the role of
time. For fields with

divV =0, (5.1.8)

we can present the system under consideration in the Hamiltonian form in order to
apply the already well-developed apparatus of the theory of dynamic system to the
full.

Three-dimensional dynamics introduces us to a qualitatively new phenomenon —
the existence of streamlines chaotically arranged in space — which is sometimes
called the Lagrangian turbulence. Various forms of this phenomenon have interest-
ing practical applications and have played an important role in our understanding of
the onset of turbulence, as well. In 1965, V.I.Arnold [83] suggested that the
following steady-state three-dimensional flow,

Vi=A sinz+ C -cosy, (5.1.9)
Vy=B-sinx+ A - cosz, (5.1.10)
V,=C -siny+ B - cosx, (5.1.11)

has a nontrivial topology of streamlines, since it satisfies the Beltrami condition:

rotV = constV. (5.1.12)

The numerical analysis carried out in [84] confirmed the peculiarity of this flow.
This problem was also studied by Childress [85]. This flow was named the ABC-flow
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(Arnold-Beltrami—Childress). For instance, it can be shown that by computing a
Poincare section for the case A = /3 , B= \/5, C = /1, the phase space of ABC-
flow is decomposed into regular and chaotic regions [84—88].

Another important characteristic of the ABC-flow is the fact that the set of
equations

dx B dy B dz
Asinz+ Ccosy Bsinx+Acosz Csiny+ Bcosx’

(5.1.13)

defining streamlines of the velocity field can be presented in the explicit Hamilto-
nian form [86-88]. In order to do this, let us write the previous relation in the
following form:

dx 1 0

= 1.14
z Yoy © S

dy 1 0
—=—-——H 5.1.15
dz Yox F ( )

where

Y(x,y) =C-siny + B - cosx, (5.1.16)
Hg(x,y,z) = W(x,y) + A(ysinz — xcosz). (5.1.17)

This set of equations with the Hamiltonian Hg(x, y, z) is non-integrable, with the
exception of an obvious case when it is reduced to the two-dimensional set (i.e.,
when one of the coefficients A, B, and C becomes zero). To be more definite, by
assuming that A = 0, we find the first integral in this integrable case:

C -siny+ B - cosx = Hy = const. (5.1.18)

Streamlines on the plane (x, y) are shown in Fig. 5.1.1. There are three types of
streamlines in it: closed streamlines, infinite streamlines, and singular streamlines,
passing through saddle points of the surface Hy(x,y) and corresponding to
separatrix.

Let us consider the Hamiltonian of streamlines Hg(x,y,z). If A = 0 (a two-
dimensional case), it defines a family of cylindrical surfaces (stream tubes) corres-
ponding to various values of the energy integral Hy = const (which is also the
stream function). A perturbation of the Hamiltonian Hg/(x, y, z) in the case of small
A is equivalent to a small nonstationary perturbation of the dynamic system.
A considerable proportion of stream tubes slightly change their shapes in accor-
dance with the Kolmogorov—Arnold—Moser theory [§9-91]. However, in the case
of A # 0, there are such singular separatrix surfaces, which are heavily affected
even by a small perturbation. The latter leads to formation of stochastic layers in the
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Fig. 5.1.1 ABC-flow
streamline topology for
the integrable case C = 0
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Fig. 5.1.2 ABC-flow streamline topology for the case A> = 1, B> = 2/3, and C> = 1/3

vicinity of destroyed separatrix and, consequently, to chaos of streamlines. In the
case of large values of A ~ 1, stochastic layers expand (Fig. 5.1.2) and chaos
of streamlines embraces a considerable portion of three-dimensional space. The
appearance of large regions of chaos of streamlines in the ABC-flow is, in fact, the
manifestation of a far more global phenomenon.

The existence of stochastic particle motion in flows that are laminar according to
the conventional Eulerian measure (chaotic advection) is a key feature of the flow
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regime being discussed. The possibility of chaotic advection underscores why
monitoring the motion of a single particle is not a reliable indicator of whether a
flow is laminar or turbulent.

5.2 Hamiltonian Systems and Separatrix Splitting

If the flow is two-dimensional, there is no more z-dependency and, consequently, no
chaos of streamlines. Indeed, three-dimensional dynamics differs drastically from
two-dimensional dynamics where streamlines have a relatively simple structure and
coincide with lines of the level of the stream function W(x, y). Hamiltonian systems
with a low number of degrees of freedom (1 %or 2) can be considered as the
simplest ones with chaotic dynamics. Conventionally, 1% degree of freedom
indicates a system with one degree of freedom driven by periodical perturbation
W(x,y,t) = Yolx,y) + e,¥1(x,y,1). Integrable dynamics of such a system in the
phase space can be described more or less fairly completely because of its relatively
simple topological structure. There are two kinds of singular points in the phase
space: elliptic and hyperbolic. Motion near the elliptic points is stable and persists
with a small perturbation in accordance with the KAM theory [92-95], and the
motion near the hyperbolic (saddle) points is so dramatically unstable that a general
perturbation leads to the chaotic dynamics near the separatrix. The separatrix
represents an unperturbed singular trajectory that crosses the saddle points.

The motion in the neighborhood of a hyperbolic point is very complex. Without
entering into technical details, we observe that a hyperbolic point in phase space
has an analogy with a saddle point in physical space: two lines move toward the
point (stable separatrix branch +) and two are moving away (unstable separatrix
branch —) [92-95], as in Fig. 5.2.1. A point on the unstable line moves away from
the hyperbolic point after each iteration. It will move toward another hyperbolic
point but will never reach it. The unstable line intersects with the stable line of the

KAM curve

elliptic point
[ ]

KAM curve

KAM curve

Fig. 5.2.1 Schematic illustration of the separatrix splitting and generation of the stochasticity near
a separatrix
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neighboring hyperbolic point at so-called homoclinic points. Because the
homoclinic points are not stable points of the map and sit on the stable line of the
neighboring hyperbolic point, they will move toward this point under the action of
the map. However, because of the area-preserving property of the map (shaded in
Fig. 5.2.2), the oscillations around the stable line become wilder and wilder
producing an infinite sequence of homoclinic points on the stable line that prevents
points on this line from reaching the hyperbolic point. The oscillations near the
hyperbolic point result in a very complex behavior of the system between the stable
KAM tori. A similar behavior accounts for an infinite number of iterations neces-
sary for leaving a hyperbolic point along its unstable line. This wild behavior near
hyperbolic points is also illustrated by a numerous numerical examples.

One can say that stochastic layer is a seed of chaos in Hamiltonian dynamics.
A narrow domain near the separatrix is extremely sensitive to small perturbations.
Perturbation destroys the unperturbed separatrix, and a finite width layer with
chaotic motion inside it replaces the unperturbed separatrix. In fact, the stochastic
layer has complicated topological structure. It consists of an infinite number of
islands, subislands, island-around-islands, etc. An island is a domain with elliptic
points inside and integrable KAM curves around the points (see Fig. 5.2.3). Smaller
stochastic layers of higher order exist inside the islands, but invariant (integrable)
curves isolate these layers from the main stochastic layer.

It became clear that the insight into the origin of chaotic dynamics can come
from the understanding of the dynamics in the destroyed separatrix domain.
Numerous publications were focused on the following specific problems: splitting
of the separatrix, estimating the stochastic layer width, and applications [85-95].
The research on the separatrix splitting followed the original Melnikov’s formula,

Fig. 5.2.2 Schematic
illustration of stable and
unstable of hyperbolic
periodic orbits
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Fig. 5.2.3 Schematic
illustration of the separatrix
splitting and generation of the
stochastic layer of width A

the so-called Melnikov’s integral, which gives the change in stream function
amplitude 0% due to the separatrix splitting

5?0(&)) _ Jd[d\PO(X(t’ f;)t)>y(ta to)). (5.2.1)

It gave an expression for the area of the lobe, which appeared due to the different
asymptotics for stable and unstable perturbed separatrix. By taking into account the
advection equation in terms of perturbated stream function

W(x,y,1) = Yo(x,y) + &, P1(x,y,1) (5.2.2)

one obtains the integral over Lagrangian trajectory of tracer in the following form:

(5.2.3)

oW (1) = Jdtsw VVY¥ = ¢, Jdt{a\{'l(l‘) Mo 9¥1(1) a_\p}

Ox 0Oy dy Ox

Here, the trajectory of scalar particle can be represented as the asymptotic
expansions

x(t,t0) = x(to) + &4, x1(2), (5.2.4)
y(t,10) = y(to) +&y1(1), (5.2.5)

where ¢ is the perturbation amplitude and (x(#y) and y(#)) are the initial points of
the particle. At this stage of analysis of stochastic layer contribution to transport,
we omit all these complicated calculations, which may be carried out exactly for
different analytical representation of streamline functions, because the reader could
find these results in many publications [85-95]. However, by concluding this
section we note that because of an analogy between Hamiltonian models and
two-dimensional incompressible flows, it is natural to consider stochastic layers
in the vicinity of streamlines having the separatrix form (see Fig. 5.2.4). On the
other hand, in the presence of stochastic layers we must obviously search for new
correlation effects as well as characteristic spatial and temporal correlation scales
necessary for phenomenological models of transport.
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Fig. 5.2.4 A typical Poincare section (After Budyansky [96] with permission)

5.3 Stochastic Instability and Single-Scale Approximation

The stochastic instability of trajectories was first discovered [97—100] in billiard-
like systems. Now let us turn our attention to the chaotic flow case. From the formal
point of view, we can analyze this phenomena in the framework of the divergence
of initially nearby trajectories

1(6) ~ 1(0)exp(hg) ~ 1(0)exp (i) : (5.3.1)

Ts

Here, /(¢) is the distance between trajectories at the moment ¢ and kg is the
Kolmogorov entropy expressed in terms of Lyapunov’s exponent [101, 102]:

. it
hK = llm[(o)ﬂo_’ —00 {7 ln%} (532)

Indeed, consider the case of a stationary velocity field

= V(X) (5.3.3)

Let ¥(¢) be the trajectory corresponding to the initial condition ¥(# = 0) = Xj.
Let us find the equation of perturbation of this trajectory. With this aim in view,
consider a close trajectory X(¢) + ly(¢) with the initial condition

Ft=0)=%+1 (5.3.4)
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where I is an infinitesimal vector. The perturbation of the trajectory f(z‘) satisfies
the following equation:

dly oz
& = VIV (5.3.5)

This can be rewritten on the following form:

dal .. L
g T (V9= V)V, (5.3.6)

The stochasticity of streamlines and trajectories of particles of a liquid means
that the Lyapunov exponent /iy is positive. In this context, the chaotic properties of
dynamic systems have been investigated in many textbooks [93—102]. An example
of such exponential divergence of two orbits near the separatrix of Hamiltonian
system with very close initial conditions is shown in Fig. 5.3.1.

We look here more closely at the scaling aspect of the problem, since both the
Kolmogorov entropy £k and the spatial scale / define decorrelation mechanisms and
transport. Thus, by considering the evolution of fluid element of size L+ in hydrody-
namical field with the characteristic velocity scale V|, and characteristic frequency
o, it is easy to estimate stretching fluid element during the characteristic time 7¢:

5L v
Li~L S~ 22 (5.3.7)
2 wl

Here, A is the characteristic spatial scale. Then, the length of fluid element,

\4

Fig. 5.3.1 Schematic
diagram of exponential
instability. Exponential
divergence of orbits near the
unperturbed separatrix with
very small differences in the Separatrix
initial conditions
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V I‘/‘E()
L(t) =~ L, (—0> =L, exp {i In Ku} =~ L, exp <L) , (5.3.8)
wl Tg

70
corresponds to the time ¢ (see Fig. 5.3.2). Here, the dimensionless parameter

Ku— -2
" wl

(5.3.9)

is the Kubo number, which plays the role of the mapping parameter K. In the
discrete form, it could be represented as the mapping procedure

Sxy ~ K oxg = dxg exp(N InK). (5.3.10)
Here, N is the number of iterations, dxy is the initial length of phase element, and

oxy is the length of the element under analysis after iterations. In the streamline
chaos case

T0 T0
Ku) ~ =~ . 5.3.11
vs(Ku) InKu In (%) ( )

Note, the characteristic time 7t also must be interpreted in terms of flow
parameters, 79 = 7o(Vo, 4, @) [103, 104]. This allows us to treat stochastic instabil-
ity effects, correlations, and transport properties from the common standpoint.

Here, we discuss a passive scalar transport in a random flow in the framework of
single-scale approximation. We suppose that such a flow is characterized by the
single velocity amplitude Vj and the length scale Ly. The characteristic magnitude
of the velocity gradient is given by Vi /L. A scalar blob will be stretched and rolled
up by the chaotic flow (see Fig. 5.3.3). In a steady random flow, the stretching and
folding of volumes of the fluid proceed exponentially [106, 107]. The small scales
of such a blob are given by the relation

Fig. 5.3.2 The figure shows
hydrodynamic evolution of a
small fluid element

8L~ Vylo
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Fig. 5.3.3 Schematic
diagram of evolution of a
region of phase space

A(t) = Lo exp(—y,t), (5.3.12)

where 7, is the stochastic instability increment. In the presence of molecular (seed)
diffusivity gradients disappear. One can estimate the mixing spatial scale (the
Batchelor scale) Apix by comparison of the diffusion rate

D

Ip = Tp! R (5.3.13)

mix
and the rate of stretching ). In the case of the single-scale approximation, we find

Dy Vo

e PR (5.3.14)
Adix(tmix) Lo

In terms of the Peclet number, one obtains the scaling for the dissipation scale in
the framework of single-scale approximation

Ly
re

where Pe > 1. This allows us to derive the formula for the mixing time in the large
Peclet number limit

Amix (Pe) o (5.3.15)

Ly
—— = Loexp(—)slmix ), 5.3.16
\/ITe_ 0 p( Vsim ) ( )



80 5 Lagrangian Chaos

and we arrive to the scaling,

InP
tmin (P€) ny ¢ (5.3.17)
S

In the case of sufficiently random flow, the mixing time weakly depends on the
seed diffusivity. We suppose the steady flow under consideration not to be
concerned with the existence of separatrix or stagnation points. The case of chaotic
advection where the flow topology reconstruction is related to the separatrix
reconnection as well as the Batchelor dissipation scale cascade representation is
considered later.

5.4 Chaotic Mixing in Microchannels

Mixing of the fluid flowing through microchannels is important in a variety of
industrial applications such as the homogenization of solutions of reagents in
chemical reactions, the control of dispersion of material along the direction of
Poiseuille flows, and so on (see Fig. 5.4.1). At the low Reynolds numbers Re = VS—ﬁ"
in channels with smooth walls, flows are usually laminar, so the mixing of material
between streams in the flow is purely diffusive. Here, Vjyis the characteristic
velocity, Ly is the characteristic spatial scale, and vg is the kinematic viscosity.
For instance, in the microchannel condition we are dealing with the following

characteristic values:Vy<100cm/s, Ly ~ 0.01 cm, and vg = 0.01 g/(cm s), and this

BN

Fig. 5.4.1 Characteristic 0
geometry of the Poiseuille
two-dimensional flow
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leads to the estimate for the Reynolds number Re<100. On the scale of a
microchannel, the diffusive mixing is slow in comparison with the convection
along the channel. In this case, we are dealing with the large Peclet number,

VoL
Pe =-22>100, (5.4.1)
Dy

where Dy<107° cm? /s is the molecular diffusivity. For such laminar flows, the
distance along the channel that is required for mixing to occur is

L2
Imix o< Vo D—O = Pe - Ly. (5.4.2)
0

This mixing length can be prohibitively long (/,ix > 1 cm) and scales linearly
with the Peclet number Pe.

To reduce the mixing length, there must be transverse components of flow that
stretch and fold volumes of fluid over the cross section of the channel [108, 109].
These stirring flows will reduce the mixing length /,;x by decreasing the average
distance, A, over which diffusion must act in the transverse direction to homogenize
unmixed domains. In the case of a steady random flow, the stretching and folding of
the volumes under consideration proceed exponentially as a function of the longi-
tudinal distance traveled by the volume:

A(l) = Loexp (— Ai) (5.4.3)

s

where the initial transverse scale is taken to be L, and A; is a characteristic length
determined by the geometry of trajectories in the chaotic flow. It is natural to
estimate the mixing length by

A2 lmix
Imix = Voip = Vo%, (5.4.4)
0

where tp is the diffusion characteristic time. After substitution, one obtains the
equation for the mixing length in the form

lmix V()LO lmix
= — 5.4.5
\/ Lo \/ Dy eXP< ) (5.4.5)

For the large Pe, in a flow that is chaotic over most of its cross section, we expect
an important reduction of the mixing length relative to that in an unstirred flow:

Imix (Pe)  AsIn(Pe). (5.4.6)
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The scaling for the transverse spatial scale takes the form

Ly
In(Pe)”

A(lix) o (5.4.7)

Indeed, asymmetric grooves in the channel walls induce an axially modulated
secondary flow in the form of an asymmetric set of counter-rotating fluid rolls (see
Fig. 5.4.2). The asymmetry of the rolls is periodically reversed, so that the distance
between stripes halves with each cycle, leading to exponential stretching and
folding of fluid volumes. Thus, after N cycles requiring the mixing time

l ix qs
e OC X o N L (5.4.8)
Vo Vo

where /; is the cycle length, stripes are separated by a distance

(5.4.9)

It is now obvious that mixing occurs when the time to diffuse between stripes tp
is comparable to the cycle time Tp;x,

(5.4.10)

Fig. 5.4.2 (a) Three-dimensional schematic of one-and-a-half cycles of the mixer device. Each
cycle is composed of two sets of grooves (six per set in the case shown) in the floor of the channel.
The grooves are in the form of herringbones that are asymmetric with respect to the center of the
channel (along x); the direction of the asymmetry switches from one half-cycle to the next. The
flow is driven by an axially applied pressure gradient, VP. (b) Schematic of the lid-driven cavity
model that is used to treat the flow in the cross section. The arrows beneath the cavity indicate the
motion of the bottom wall. Contour plots of the approximate stream function of the flow in the
cross sections are shown for each half-cycle. (After Stroock and McGraw [108] with permission)
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which yields the scaling
N(Pe)  InPe. (5.4.11)
After substitution, one obtains the expression for the mixing length in the form
Imix(Pe) = AsN(Pe) = J;In Pe. (5.4.12)
Finally, we find the relation for the mixing time,

/AtsA() In Pe
D() Pe '

Tmix (Pe) (5.4.13)

Indeed, the number of cycles (or mixing length) measured in the staggered
herringbone mixer depends logarithmically on Pe, N(Pe) o In Pe over six decades.

One can see that the stochastic instability leads to the appearance of new
decorrelation mechanisms. For example, it often “destroys” subdiffusion regimes,
which are based on the repeated returns of particles. This problem has been studied
in the context of both astrophysical and plasma physics applications where the
exponential divergences of two neighboring streamlines of a chaotic flow play a
significant role [110-114].

5.5 Multiscale Approximation

We already treated above the single-scale approximation of chaotic mixing in terms
of the Peclet number. It would be natural to generalize this approach to a multiscale
flow. The impressive description of chaotic mixing in the framework of the
Kolmogorov theory of scalar cascade was done by Batchelor [39]. We discuss
such an approach later in the context of the cascade phenomenology. Here, we
represent simplified dimensional arguments to obtain transport scaling for a
multiscale chaotic flow.

Let us suppose that for the spatial scales less than the mixing spatial scale Apy;x

[ K Anix, (5.5.1)
a random flow stretches and folds volumes of the fluid exponentially,
P(t) = L exp(—7,1), (5.5.2)

where 7, is the stochastic instability increment. In terms of transport scaling, this
can be represented as
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gzz(t) o P(t) (5.5.3)
ar . .

On the other hand, in the presence of molecular (seed) diffusivity Dy, for the
spatial scales greater than the mixing spatial scale

1> Anix, (5.54)

we are dealing with the diffusive regime, which is described by the relation

d

& (t) o 2Dr. (5.5.5)

On the basis of these equations, it is possible to build the approximation formula
describing both the exponential regime and the diffusive stage

d
5zz(t) o 2D (1). (5.5.6)

In this context, we consider the dimensional approximation of the effective
diffusion coefficient in the form

d I \?
Elz(’) o 2Do + 2D ( Am) . (5.5.7)

Basing on this expression, we are able to estimate the characteristic lifetime of a
blob evolution in a multiscale chaotic flow as follows:

2
dr = Ldi : (5.5.8)

2
2Dy + 2Dt (ﬁ)

After simple calculations, one obtains the scaling

A% Pe
mix (Pe) Ao Dmix | : 559
! ( e) DT n(l +P€L0/Amix> ( )

Here, L is the small initial distance. The estimate of the characteristic mixing
time in the scaling form,

1
Tmix (Pe) & y— In Pe, (5.5.10)
s

was repeatedly used in the explanation of anomalously long lifetimes of coherent
structures in chaotic flows with the large Peclet numbers, Pe > 1 [115, 116]. Thus,
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Fig. 5.5.1 A typical evolution of temperature spots (After Pitterbarg [117] with permission)
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the very long lifetimes of temperature spots on the Ocean surface were interpreted
in [117] on the basis of this logarithmical dependence (see Fig. 5.5.1). Besides, in
the framework of the Lagrangian description of magnetic turbulence, it is possible
to employ the approximation formula

d
&12(2) o 2Dt (1) (5.5.11)

to describe electron heat conductivity in galaxy clusters in terms of multiscale
representation of force line walks [118].

Note that the estimate obtained here for 7., (Pe) insignificantly differs from the
single-scale approximation. This encourages us to search for new physical
arguments to treat stochastic instability effects in multiscale chaotic flows.
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Chapter 6
Correlation Effects and Transport Equations

6.1 Averaging and Linear-Response

It is rather natural to wonder about the effective equation, which rules the asymp-
totic evolution in the case of diffusion in chaotic (turbulent) flow instead of the Fick
one. Indeed, we would like to know what are equations replacing the conventional
diffusion equation at large spatial scales and long times.

In the framework of Lagrangian approach, it is convenient to employ the scalar
evolution equation in the form

dn  On on
= _ — =0 6.1.1

dt ot T ox; ( )
where the assumption of incompressibility is applied

oV, oV, OV:
Oox 0Oy 0z

=0. 6.1.2)

In terms of Lagrangian representation, the solution of this equation is given by
the formula n(F, t) = no(a). Here, ny is the initial scalar distribution function. Note,
for a single scalar particle situated at the point @ at the moment #, one obtains

n(t=0)=68(F—a), (6.1.3)

where symbol § denotes the Dirac function.

However, the continuity equation could be the grounds for more fruitful
approach to build the effective diffusion equation on the basis of Lagrangian
correlation function. For the sake of simplicity, we analyze the continuity equation
for the density of a passive scalar in the one-dimensional case:

on on

—+V(#)—=0 6.1.4

V) 5 =0, (6.14)
0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 89
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where n(x, t) is the spatial density of the passive scalar. For an incompressible flow

oV

divV =
v Ox

=0. (6.1.5)

and V = V(z) is the random velocity field. The general solution of the continuity
equation is given by the formula

n(x,t) = no(x){x 1 Jt V(t’)dt'}. (6.1.6)

m Jo

In principle, if we know the distribution function (V) for the random velocity
field V(¥), then one obtains the mean scalar density

n(x,t) = Joo no(x) {x —% JI v({)dl }f(V)dV. (6.1.7)

—00 0

To incorporate the information on correlation effects, we average the continuity
equation over the ensemble of realizations, assuming that the density field can be
represented as a sum of the mean density ng and the fluctuation component
ny =n— (ny,

n(x,t) = no(x, ) + ny(x, 7). (6.1.8)

We also set (n;) = 0 and the velocity field is represented as a sum of the mean
velocity vy and the fluctuation amplitude v, V = vy + v;, where vy = const
and (v;) = 0.

After simple algebra, one obtains

Ong  Ony Ong  Onm\
G oo (G ) =0 ©19

Upon averaging this equation, we arrive at the equation for the mean density 7,

dng ony ony o
a0 < §> =0 (€110

By subtracting this equation from the previous one, we find the equation for the
density perturbation 7

om  om  ong  Om < 3”1>:o. 6.1.11)

o T T ey T ey T Moy
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Here, it was assumed

8n0 o 81’!1 -
<V] 8x> = O, <V(] ax> =0. (6112)

As aresult of these manipulations, we arrive at the following set of equations for
both the mean density ny and the density perturbation n;:

al’lo (‘3110 8111 A

E+VOE+<V1§>—O, (6.1.13)
Bnl 8711 8}10 8n1 3}11 o
8I+V08x+vlax+vlax<vlax>0. (6.1.14)

Let us introduce a small parameter ¢. We assume that the fluctuations n; and v,
are as small as ¢ in comparison with the mean density ng, n; ~ eng, and v ~ &vy.
The quasilinear character of the approximation indicates that, in the equation for ng,
we keep the nonlinear term of the order of &2 but, in the equation for n;, we keep
only the terms that are of the first order of ¢. As a result, the transformations put the
equation for density fluctuations #; into the form

81’[1 6n1 - 81’10
E“FVOE— —Vla. (6.1.15)

This equation could be solved by the Green function method. The solution for
ny(x, t) has the form

ny(x, 1) =

Vl(ll)

0

! 0 t
—J no 1) g, (6.1.16)
0z
Here, z is given by z = x — v (¢ — #;). Substituting this expression for n; into the
equation for the mean density n, and performing simple manipulations yield

t 2
Ing %_J Fmo(z,tr) g (6.1.17)

AR R =

The integral nature of this equation reflects the Lagrangian character of the
relationships between the derivatives of ng(x, 7). The particular form of the transport
equation is governed by the choice of the correlation function C(z,7/) =
(v (&)v1(t1)). If we assume that the correlations are short-range, the quasilinear

equation takes the conventional form with the diffusivity, Dy ~ v%r,

8n0 (9]10 N

Ong Ong 0*np(x, 1)
a " ax

D
T o2

. (6.1.18)
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Thus, in this approximation, we arrive at the familiar Taylor representation for
the turbulent diffusion coefficient. The method considered here is named as
quasilinear because in the set of the equation we had to solve, the equation for
the mean density had the nonlinear term <v1 %i» whereas the approximation
equation for the density perturbation was linear. Below we will treat different
methods of renormalization of this quasilinear approach based on the phenomeno-
logical modification of the equation for density perturbations.

Basing on the averaging procedure for the short-range correlation function, we
obtain the Taylor expression for the turbulent diffusivity

Dy = Jm (V(0)V/())dr, (6.1.19)
0

which is also the famous Kubo—Green formula for the transport coefficient

D= ro C(r)dr. (6.1.20)
0

This correlation representation allows one to interpret the classical Einstein
formula ’;%Tf = D as the fluctuation-response relation, which connects the response
coefficient (friction factor) f8, and the corresponding correlation function (velocity
autocorrelation function) C(¢). Such a formulation of the problem leads to linear-
response concept, which provides the fairly general formalism for the transport
coefficient description. Thus, in the presence of small temporal and spatial
variations of the field (7, ), the evolution of the system under consideration is
described by the set of the Onsager equations

Qu(7,t) .
ot - —VJ(}"7t), (6121)
J(7 1) = Loy (7 1), (6.1.22)
1(7 1) = =Vo(F,1). (6.1.23)

Here, J(r,t) is a flux, x(r,f) is a thermodynamic force, and L; is the
corresponding transport coefficient, which is represented by Kubo—Green formula

L; = const JDO (J(0)J (z))dz. (6.1.24)
0

It is obvious that in the case of scalar particle transport in a chaotic flow we are
dealing with the particle density, particle flux, and scalar diffusivity. However, the
linear-response concept was originally developed in the framework of equilibrium
statistical mechanics based on Hamiltonian description of systems. This leads to the
methodological problem, which was clearly formulated by Van Kampen [58]. Thus,
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when considering the perturbation of the dynamical system 0x;(7), one can write a
Taylor expansion for the difference between perturbed and unperturbed values in
the form

ox; (1) .
ox;(1) Zax, 0 0) +0(672(0)), (6.1.25)

where 07 = {0x;}. As we discussed in the previous chapter devoted to the stochastic
instability, in the presence of chaos the term Ox;(r)/0x;(0) grows exponentially with
time. This means that the region of applicability of the linear approach under
consideration could be very limited. Nevertheless, the linear-response theory suc-
cessfully describes the transport coefficients on the basis of correlation function and
the Kubo—Green relation, which is confirmed by numerous observations as well as
simulations [43]. However, we have to take into account that the conventional
description of transport has an average character because the measured quantities
are always the result of averaging over the ensemble of trajectories. From this point
of view, the stochastic instability works as a decorrelation mechanism and supports
to the mixing. This is very important conclusion since the main task of the turbulent
transport theory is the search for phenomenological arguments to describe complex
correlation effects basing on the different approximations of particle trajectories,
topology of coherent structures, etc.

6.2 Correlations and Phenomenological Transport Equation

When studying complex correlation effects, one can obtain different phenomeno-
logical equation to describe transport in the framework of the quasilinear approach.
Thus, in the case of steady random processes, the function C(z,7,) = C(t — t;) in
the equation under analysis,

—+V()a— C(l‘*[l)

ony Oony . ! 821’10(2,2‘1)
- L o, 6.2.1)

plays the role of the memory function. By differentiating this equation with respect
to x and then by differentiating the same equation with respect to ¢, after simple
calculations, one obtains

8)’[0 6n0 62 821’10 ) 62710 o
E—&-voa—i—ro(az P20 L (R -G)TR) =0 (622)

Here, it is convenient to introduce the new set of variables n = x — vot, £ = 1.
This leads to the telegraph equation:
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Fig. 6.2.1 Schematic Wind —
illustration of a chimney
plume

Ground level
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— - distribution
h
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where 1/Cj is the propagation velocity. This is the hyperbolic telegraph equation in
frame of reference related to the coordinates &, 7). The telegraph equation is known
by this name because it was first derived by Kelvin in his analysis of signal
propagation in the first transatlantic cable and then was often applied to describe
turbulent diffusion [119-127]. The example of interest is the diffusion of the
chimney plume. Particle mixing is important in a variety of industrial and natural
settings (see Fig. 6.2.1). How can a paint manufacturer assure that pigments are
mixed thoroughly into the paint medium? Usually the source is a buoyant plume
emitted from a chimney of height /4, which first mixed with the atmosphere under
the action of its own thermal and mechanical energy, by the processes of
‘entraining’ the surrounding fluid. At some stage, this process is overtaken by the
diffusing action of the external turbulence and then the pollutant is assumed to
diffuse like a passive scalar from a source at greater height Ak above the original
source. To treat the transition process, one can take into account the limited velocity
of particle propagation, which is related to the limitation on wind velocity
fluctuations creating turbulent mixing [119, 120].

To obtain the telegraph equation from the phenomenological point of view, one
could consider the relation for the particle flux in the form

_ Oq
q=4q0 — TE. (6.2.4)
where
qo(x,t) = —Dq On(c, 1 . (6.2.5)

ox
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The term t(dq/0t) describes the influence of the turbulent pulsations. The
general solution has the form

!

q(x,1) = J

, t—1t]dr t
qo(x, 1) exp [— —} — + go exp {— —} . (6.2.6)
0 T T T

In the case when ¢ >> 1, one finds the asymptotic solution in the form

0 t—1dr
q(x, 1) = —J Do—n exp [— } —. (6.2.7)
0o Ox T T
On the basis of the conventional Fick relation,
on(x,1) 0q(x,1)
= _ 6.2.8
ot ox ( )
we arrive at the telegraph equation in the form
0 ? o?
" p, 2 (6.2.9)

o o o

This equation can be regarded as an interpolation between the wave and diffu-
sion equation. On the other hand, the expression for the particle flux describes
memory effects. Therefore, it is possible to replace the exponential function by an
arbitrary memory function My, (t — ')

a6, :J do(x, ! )Mt — ﬂ)th'. (6.2.10)
0

In this general case, one obtains the renormalized diffusion equation in the form

dr
My (t—1)—.
T

t 2 /
On(x, 1) J pdnr) (6.2.11)

0 (9)( 2

From the modern point of view, such an approach to the turbulent transport looks
fairly naive. However, in essence, the idea of using the additional derivative in the
equations describing the anomalous character of diffusion was clearly formulated
as early as 1934 [119].

6.3 Heavy Particles in Chaotic Flow

Phenomenological arguments based on the memory function formalism are rather
effective tool to build simplified models of transport in chaotic flows. Here, we
study the influence of particle inertia on the turbulent diffusion using the memory
function approach [45-47].
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Let us consider an equation for inertial particles of finite size R suspended in a
turbulent flow. In the framework of the passive scalar approach, one obtains the
simplified relation

av V-U
= +g.

dr N 70

6.3.1)

Here, V is the inertial particle velocity, U is the fluid velocity, and g is the
gravitational acceleration. The characteristic time is given by the conventional
Stokes formula

2
T (6.3.2)
9pV]:
where p, is the particle density, p is the fluid density, and v is the fluid viscosity.
As experimentally discovered, inertia effects in turbulent flow lead to decrease of
the settling velocity V because of chaotic nature of the fluid velocity U [67-72]. The
first attempts to estimate this effect were based on using the linear dependence of the
fluid velocity on time (see Fig. 6.3.1). However, the memory function formalism is
more relevant to this problem. In terms of the Langevin approach, such a description
was successfully used to investigate complex correlation effects [45—47]. Thus, for
the classical Langevin model we have the equation of motion in the form

dv Vv

—=—-—+A 6.3.3
= o HAD, (6.33)
A

F

Experimental data

iy

/ The Stokes law

Fig. 6.3.1 A typical plot of .
gravitational settling of
aerosol particles v
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where A(?) is a stochastic acceleration of average value zero representing the effects
of molecular impacts on a particle at rest. This leads to the relation for the
correlation function

(VOV(0) =——~=—-—. (6.3.4)

Using the memory function formalism, we find the renormalized equation of
motion,

av L[ NN
T JOM(t OV + AQ), (63.5)

and hence, we obtain the integral equation for the autocorrelation function as
follows:

dc(n _ J M(t — £)C()dr. (6.3.6)

Here, M(¢) is the memory function. This allows one to investigate the correlation
functions, which differ significantly from the exponential representation.
In our case, such a renormalized equation takes the form

7 t
% _ J M(t— ) V() — U()]df + g, (6.3.7)
0

where M(¢) is the phenomenological memory function describing the inertia effects
in the presence of “ensemble” of turbulent pulsations.

On the other hand, when the characteristic time 1 is less than the temporal scale
of turbulent pulsations (small particle inertia), one can obtain an approximation
relation for the velocity of the inertial particle [128]

. - dU
VaU-— ‘COE + 108 (6.3.8)

We must make special note here. The Lagrangian (total) acceleration of the
small fluid element is given by the conventional relation

au  oUu

— =24 0vVU 6.3.
7 6t+UVU, (6.3.9)

and the velocity field of the surrounding fluid Uis incompressible so that

divU =0, (6.3.10)
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whereas the velocity field Vis compressible and by calculating the divergence of
the inertial particle velocity, we find

o a— ou;\ (0U;
divV = —1,V(UV)U = TO(@)@)(@)@) (6.3.11)

Here, the standard index notation is used and the gravitational acceleration does
not contribute to this compressibility effect. The equation for the particle density
takes the following form:

d 0 - -
T =5 HVVn=—ndivV. (6.3.12)
In the framework of the Lagrangian approach, this gives the integral formula for
the coarse-grained particle density, n(7, )

t

n(7,t) = n(0,0) exp{roJ [v(ﬁ(ﬂ)v)ﬁ(/)}dﬂ}. (6.3.13)

0

This representation is valid for spatial scales, which exceed the particle size as
well as the Brownian diffusion scale (see Fig. 6.3.2).

For instance, inertia effects are really important when describing particle-
turbulence interactions in atmospheric clouds. Turbulence in atmospheric clouds
is related to enormous Reynolds numbers on order of 10° to 107. Thus, the ratio of

Gravitational settilng of aerosol particles

T T L I I I I I I
112 -
2 besmas 5. -
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-/ T
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0.96 =
0.92 -
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Fig. 6.3.2 Simulation results for average setting velocity (V3) against inertia parameter. (After
Maxey [128] with permission)
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energy-containing and dissipative spatial scales is on order of 10° for typical
convective cloud. For small cloud droplets, the renormalized Stokes drag force
model is a reasonable approximation. The equation of motion for the droplets often
includes the memory term (the Basset “history” force due to diffusion of vorticity
from an accelerating particle). For more details, we refer the reader to [67-72].

6.4 The Quasilinear Approach and Phase-space

In the previous sections, we considered the quasilinear approximation in the
framework of the hydrodynamic approach. However, the quasilinear equations
(which are based on keeping a nonlinear term in the equation for mean density
and using a nonlinear equation for perturbations) were first obtained in kinetics
considering the problem of waves and particles interaction on the basis of Vlasov’s
equation [129, 130]

HfV,x,t)  0f  =0f
o Vot Eay =0 4D
divE = 4mne J f(V,x,0)av. (6.4.2)

Here, f(V, x,¢) is the velocity distribution function, E is the electric field, and n is
the plasma density. The quasilinear formulation of this problem was repeatedly
discussed in detail [131-134]. Therefore, we will consider only those aspects that
play an important role for the subsequent consideration. A kinetic problem is
naturally much more complex. Thus, in the one-dimensional case the equations
for the mean part of the distribution function fy(V, ) and perturbation f;(V,x, 1)
have the form, which is analogous to the quasilinear approximation for the passive
scalar equations

I e /. O\
T, e <EW> _o, (6.4.3)

%4,‘/%4,6 %f

o ox Ty 0. (6.4.4)

However, the diffusive equation in the velocity space, which was obtained as the
result of transformations

o _ 0 [, o
o av {DV 8\/} ’ 4>
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with the quasilinear diffusion coefficient

e [ EL
Dy = (E) dek (6.4.6)

is added by the equation describing the energy dissipation of electric field due to the
Landau damping

d
@ Ex)* = =29 |Exl, (6.4.7)

where the characteristic frequency 7, is defined by the equation

7 = 2ne’w J%é(w —kV)dv. (6.4.8)

Here, (k) describes the frequency dependence on the wave number &, and |E|*
is the spectral function of electric field. It is natural that the expression for the
quasilinear diffusion coefficient Dy in a velocity space can be interpreted in terms
of the autocorrelation function of accelerations C,

o0

Dy ~ J:C Ca(f)dt ~ (%)2 L (E(0)E(¢))dr. (6.4.9)

One can see the analogy with the Taylor representation for the coefficient of
turbulent diffusion

00

DTWJ

C(f)dr = ro (V(0)V(1))dt. (6.4.10)

0 0

However, in the case of phase space we deal with the more complex problem. It
is well known that the quasilinear description of weak-turbulent plasma is based on
the notion about stochastic instability and randomness of phases [129-134].

6.5 The Dupree Approximation

Many theoretical and numerical investigations confirm the appearance of diffusion
in a space of velocities in the stochastic limit. In spite of the effectiveness of the
quasilinear approximation, some correlation effects were not considered. Thus, the
mixing process of stochastically instable trajectories leads to the nonlinear irrevers-
ible decay of correlations with the characteristic time [134]
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1

_ 6.5.1
(k2Dy)'? ©>D

T X

Here, Dy is the diffusion coefficient in velocity space and k is the wave number.

In the Dupree papers, it was suggested to consider the correlations decay by
analogy with the Landau damping [135-137] using the frequency “renormalization”
in the form

w(k) = ok) +—. (6.5.2)

Such an approach can be interpreted as the renormalization (modification) of the
equation for the perturbation of the distribution function f;

o 0 200 _fi
Doy g Rl (6.5.3)

Here, the term fi/7; approximates the terms omitted in the quasilinear
approximation.

It is natural to consider the renormalization of the quasilinear diffusion coeffi-
cient in terms of the autocorrelation function of accelerations

e

2
) = (£) (B0, DE(x(0), 0)). (6.5.4)

m

Then, the particle velocity in the framework of one-dimensional electrostatic
turbulence is given by
e t
V(t)=Vo+— J E[x(?),7]dr . (6.5.5)
mJo

By representing the electric field as the totality of many independent Fourier
components, one obtains

E(x,t) =Y Exexpli(kx — wyt)]. (6.5.6)
k

The formal substitution of this expression in the formula for the correlation
function yields

clt) = (_)2 ; (Ey expli(ke(t) — wpt))Ep expli(K'x(0)]). (6.5.7)
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Then, by analogy with Corrsin, Dupree used the independence hypothesis

() = (%)2 SO B (explike(s) — oxt) + i(kAX(). (6.58)
k

For the Gaussian statistics, one obtains (expA) = exp @ and hence the formula

for the correlation function takes the form

¢ M] . (6.5.9)

Clr) = (;)2 > IExf? exp {i(kx —opt) = ——

k

Using the dimensional estimate % <AV2(t)> ~ 4Dy, it is easy to find the scaling
for <Ax2(t)> ~ %th3 . Then, the expression for the diffusion coefficient for one-
dimensional electrostatic turbulence for ¢t — oo takes the Dupree form [134—137]

' e\? 2 1, 3
D= — (£ E iV — ant) — —K2Dy3 |dr. (6.5.1
LC(r)dr (m) Xk:L IE| exp[l(kV oxt) = KDyt }dr (6.5.10)

It is easy to note that this expression differs essentially from quasilinear one
Do = (—) E |E|5( k_k) (6.5.11)
Q T , V .
m z k ’

where ¢ is the symbol of the Dirac function. Thus, the Dupree diffusivity scales
with E; as D |Ek|3/2, whereas the quasilinear prediction is Dqr. o< |E¢|*.

6.6 Renormalization Theory Revisited

The Dupree renormalized scaling Dy o \Ek|3/ % was tested in numerical test particle
simulations [138—142]. The results were mixed, and no definitive conclusions were
drawn. The authors of [138] observed that the diffusivity numerically found is
significantly smaller than that predicted by the Dupree theory. Ishihara and Hirose
[138] confirmed their finding. Moreover, by adopting the method proposed by Salat
[139], they recalculated the diffusivity without assuming Markovian process and
concluded that Dy should be time-dependent [141]. An explicit analytical expres-
sion for the diffusivity has been represented by Salat [82] and Ishihara et al. [142]. It
has been shown that in the asymptotic limit, Dy scales with the turbulent field and
time as

Dy o |Ei|*? /13 (6.6.1)
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The predicted velocity variance <[AV]2> o £2/3 in one-dimensional electrostatic
turbulence increases with time more slowly than the usual Brownian motion,

<[AV]2> o t. This indicates a diffusion process, which is not free, but restricted,

and dependent on the past history of particle trajectory.
The time integration is to be carried out along the perturbed particle trajectory
x(¢) given by

x(t) =xo0+ Vot + Ax(t), (6.6.2)

where

Ax(t) = % L dr L E[x(¢"),{"d!" (6.6.3)

is the derivation from the free streaming trajectory xo + Vot.
Then, the velocity variance is formally given, with V = Vj, by

<[AV > ( )Z|Ek|J 'JH ds'expli(kV —ay)s') (explik[Ax() — Ax(¢ —s')]])
(6.6.4)

For a Gaussian statistics, the average in this expression can be approximated by
the equation

2

(exp[ik[Ax(7) — Ax(? — §)]]) ~ exp [— % <[Ax(t’) A — s’)]2>] . (6.6.5)

In the quasilinear theory Ax = 0. This is equivalent to the assumption that the
particles continue to experience the Eulerian field. In the original resonance broad-
ening theory by Dupree, the variance of particle trajectories is assumed to be
independent of the memory effects, which lead to the following approximation,

<[Ax(l’) ~Ax(f - s')}2> ~ <[Ax(s’)]2>. (6.6.6)

The correlation function <[Ax(t) — Ax(t— s)]2> was calculated more rigorously
as follows. Each term in the expansion

(1) = Ax(r=5) ) = ([AX(@) ) = 2(Ax())Ax(1—9)) + ([Ax(t= "), (66.7)

is in the form of

eN?2 il 7 (5] 7
(Ax(t)x(02)) = (n—) JO dt’lL ', L ar, L A5 (E(¢")), O EX(E), '),
(6.6.8)
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If the velocity variance is a result of diffusive process, we can make the
following approximation:

2 l‘ll I‘(g
(%) J dt”IJ A5 (Elx(?1), 1)E[x("2), ) ~ 2Dy min(f1,7),  (6.6.9)
0 0

provided time-dependence of Dy, if any, is sufficiently weak. The substitution
yields

<A)C(l‘1)x(l‘2)> = 2Dy J ] dlll Jz dl‘/z min(t’1 , l‘lz). (6.6.10)
0 0

For t;>t,, the double integral reduces to %(3t1 — )13, and thus for > 5> 0,

the variance <[Ax(t) — Ax(t — s)]2> becomes
2 2 2

<[Ax(z) — Ax(r—5)] > =3 (31 =29)Dy, 6.6.11)

which does depend on ¢ as well as the relative time s. This non-Markovian nature of
the spatial variance will be responsible for the time-dependence of the velocity
diffusivity. The substitution of this expression into the cumulant yields the follow-
ing closed form for the diffusivity Dy:

Do) = (£ 1

r J0

2
1
exp [i(kv — )T — §/<2/)Vr2(3z — 2‘5)] dr. (6.6.12)

For resonant particles with V = wy /k, the upper limit of Dy is given by

e\2 2 ! 1 ) >
Dy = (g) > IE J exp[—3k Dyt? | dr. (6.6.13)

k

In the asymptotic limit # — oo, the integral approaches @ T \/iT Therefore, the
upper limit of the diffusivity is

2/3
B\ 1. 5\ 1
Dy max = (T) WZ?%'E"‘ el (6.6.14)

Actually, in the approach suggested in [138—142], applying the substitution of a
ballistic scaling (Ax?(7)) o< (AV?(t))t* o< (Dyt)t?, where ¢ is the parameter of
the integrand, for a Dupree dimensional approximation (Ax*(7)) o< Dyt? yields
the coordination of theoretical results and simulations. Naturally, the correlation
effect approximation suggested by Dupree and based on the independence hypoth-
esis and dimensional estimates is fairly rough. However, it allows one to visualize
correlation effects omitted in the quasilinear approach and opens new possibilities
to obtain transport estimates.
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Chapter 7
The Taylor Shear Dispersion

7.1 Dispersion in Laminar Flow

As early as in 1953, Taylor found that the dispersion of solute along the tube axis
for long times, i.e., for times longer than the diffusive time to explore the tube
section, is simply described as a translation with the mean solvent velocity plus a
diffusive dispersion characterized by an effective diffusion coefficient. It was
shown analytically that the distribution of concentration is centered on a point,
which moves with this mean velocity and is symmetrical about it in spite of the
asymmetry of the flow along the tube. The effective diffusivity can be calculated
from observed distributions of concentration. The analysis relates the longitudinal
diffusivity to the coefficient of molecular diffusion and that is why observations
of concentration along a tube provide a new method for measuring diffusion
coefficients.

We discuss here the model of the effective transport of tracer in a laminar shear
flow in the presence of seed diffusivity. Taylor pointed out that vertical mixing, in
the presence of vertical shear, and a horizontal concentration gradient must lead to
horizontal diffusion simply because particles mixed in the vertical will experience
a range of horizontal advective velocities (see Fig 7.1.1). It was suggested [143]
a fruitful method of obtaining the effective diffusion coefficient, which is based on
averaging the transport equation to investigate dispersion in laminar tube flow

2 2
r On 10 /[ On o°n
1(@) a’ﬂza(”&)*@} 71D

Here, n is the scalar density, V, is the characteristic longitudinal (along the
x-axis) velocity, and Dy is the seed diffusivity. In this approach, the influence of
molecular diffusion on longitudinal convective transport is analyzed. We consider
the Poiseuille flow in a cylindrical tube.

To solve the equation under consideration, it is convenient to introduce the new
axial coordinate

on
EJF V.
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Fig. 7.1.1 Schematic
diagram of the Taylor Vi@
longitudinal dispersion
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X:
z(x,t) = x — Vot, (7.1.2)
where
Vi
Vo= (V) =7 (7.1.3)

is the mean velocity of the flow. After substitution, one obtains the diffusion
equation in the following form:

on 1 -2y on_ Do [l O ( On
s S-ghalta)l o o

where y = r/Ry

Now we can learn the scalar transport problem in the framework of the decom-
position method, where the density field n can be represented as a sum of the mean
density (n) and the fluctuation component 7,

n= <I’l> +n](zay7t) =no —|—n1(x,z,t), (715)
\/,V:(V)—&-Vl =Vy+ V. (7.1.6)

Here, use is made of the expression for mean values

21 (R
N

0271 f(f(’ rdrdf  Ro?

rAdr. (7.1.7)
0



7.1 Dispersion in Laminar Flow 109

To simplify the calculations, we consider the steady case. Then, substitution

yields
1 —2y?] 9(n) Do [1 0 ( On
S ) e

By accounting for the no flux condition

an:()

— , at r=0 and r=Ry (7.1.9)
or

we easily find the expression for #,

n(z,y) =

Ay VR [2y2 -

% b, | 2 }%—n(z,O). (7.1.10)

For the density perturbation, one obtains the formula

8n0 V()Ro y4 2 1
=— — |—-% —=. 7.1.11
mEY) =5 5p0 | T2 Y 3 ( )
Note that the order of n; is given by the Zeldovich scaling
VoL
ni(Pe) o« ng [g 0 ~ nyPe, (7.1.12)
0

where Pe is the Peclet number.
Now, the term <V1 d’“> which defines an additional contribution in longitudinal
diffusive transport, can be rewritten in the form

O (VoLo)2 Pno ("1 ¥, 11[1,
<V ax> Dy 0Ox? L —Z Y =3\ gy (7.1.13)

After simple calculations, we find

6711 (V()Lo)z 62710 82110
\% =-D, . 7.1.14
< " ox > 48Dy  Ox? Ox ( )
The equation for ng takes the following form:
0 0 ny
= Doy + D, . 1.1
5,0 T Vog o = (Do + )82 (7.1.15)

This method is a good example of a general mathematical technique: the
simplification of a complicated system by the elimination of “fast modes.” The
result obtained is not trivial,
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Dy =D +V§L(2’—D +D ! Pe? (7.1.16)
o TE0Tep, T 0T P\gg )¢ A

because this additional diffusive contribution D+ depends inversely on seed diffu-
sivity Dg. The physical interpretation of this result is the limitation of the influence
of nonuniformity of the longitudinal velocity profile V,(z) by transverse diffusion.
Hence, nonuniform longitudinal convection in combination with transverse diffu-
sion leads to longitudinal diffusion. Naturally, the new diffusive mechanism
manifests itself at a large distance downstream only, since the equation obtained
is correct only for

Lo?
>>tp ~ oo (7.1.17)
0

On the other hand, the condition of smallness of the transverse spatial scale in
comparison with the longitudinal one / was used: Ly <</ (see Fig. 7.1.2).

In conclusion, we note that the Taylor formula could be also interpreted in terms
of correlation scales phenomenology

2 2.2 27 2
D, x M x —VOTJ‘ X Yolo
D (72 0

x DyPé?. (7.1.18)
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Fig. 7.1.2 Distribution of concentration at three stages of dispersion. Broken line shows distribu-
tion in the absence of molecular diffusion for comparison with curve III. (After Taylor [143] with
permission)
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Here, it is supposed that the diffusive characteristic time is proportional to the
transverse correlation time tp & T X L% /Do. Below we will demonstrate an effi-
ciency of such arguments to investigate anomalous transport mechanism in strongly
anisotropic media.

7.2 Scalar Distribution Function

Let us consider a different (more general) method to describe particle distribution in
the framework of the Taylor model of scalar dispersion. The Poiseuille flow in
cylindrical geometry is analyzed

on 2\ On n 190n 0*n
E+2Vnz<1—R—%>a—Do(ﬁ+;5+w>, (7.2.1)

where x is the longitudinal coordinate and r is the radial coordinate. The boundary
condition is given by

on(x,r,t)
# lr=r, = 0. (7.2.2)
It is necessary to introduce an initial condition, which in this case is

n(x,r,t =0) =, (x,r). (7.2.3)

Let us introduce values ng(r,t), which can be obtained by integrating the
distribution function in the form

~+00
n(r,t) = J n(x,r,)x*dx, (7.2.4)

—00

Then, we derive the set of equations

8]’!0 o (92710 1 Bno
or D”(arz 5 ar>’ 72
ony *ny 1 0my r?

For k > 2, the distributions 7n; can be calculated as follows:

0nk ((’)2nk 1 8ﬂk> ( r2)
- = D() - t—-——]+ 2ka 1——= Ng—1 + Dok(k — 1)”/{,2, (727)
Ot o r or R}
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with the boundary condition:

ony(r, 1)
or

lh—g, = 0. (7.2.8)

The initial condition has the following form:
+00
ni(r,t=0) = J @, (x,r)x"dx (7.2.9)

It is easy to resolve the set of above equations and obtain the expression for
ng(r, t). Consider the central moments of the distribution function:

e (ry 1) = Jﬂo n(x,r, 1) (x — (x))*dx. (7.2.10)

—00

One can see that p, = const. We put u, = 1, since such a supposition corres-
ponds to the particle balance relation. By definition u; will be zero. The second and
third moments are expressed as

V2R3
=2(D m t 7.2.11
Mo ( 0+48D)+lp2() ( )

1 VIR*
2.12
Hz = 480 D2 H’%() (7 )

where functions 1, and 5 are given by
) =R (B A B Lo o (7.2.13)
2T agpz\ 8 "3° 20 T2 2) -

LVARS (1 .y 11,9 T T la 1,
S 7 (1 L i (712.14
V() =& D} (125 35¢ tge Tgc e t3p¢ +C3> ( )

Here, ¢ = r/Ry. The constants C, and C; are related to the particle distribution
as

n(x,r,t =0) =, (x,r). (7.2.15)

Note, the mean values

R

2
(1) = L 11 (r £)rdr (7.2.16)
0
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are of central interest. One can see that (u,(z)) and (u5(7)) have the linear depen-
dence on time.

Let us consider the case when the initial distribution is given by ¢, (x,r) = d(x),
where J(x) is the delta-function. As was mentioned above, the values (u,()) and
(us(r)) are proportional ¢, and hence, we have

V2RZ
t 502:2<D + - 0)1; 7.2.17)
<M2()> 0 48D, (
1 V3R}
- 'm 2.1
(m3(1)) 180 D3 (7.2.18)

We supposed here that the mean values (u,) and (u;) are not zero, at the initial
point.

In order to represent particle distribution function, it is convenient to introduce a
dimensionless parameter eg = 12Dgt/R3. Let us consider the expression

=5 (7.2.19)

where the parameter 7, = 48D3/V2R?2 is introduced. Now the particle distribution
function is given by the expression

(3)

23 on (6,
ne(0,) = ¢,(0,) — 3—3, d 152 ) + . (7.2.20)
gl
Here,
x —{x) ng — &R
Oy =—""= V2 T (7.2.21)
n (1 +mg) ' "eg

We apply a parameter ng = 12Dgx/V,,Rj as well as distributions

12 &, (0,)
0,) =—=e"=, @30, A 7.2.22
fulOn) = e " () =S (1222
The particle distribution obtained is valid when
Ry
t>Tp =eg—— (7.2.23)

12Dy’

The approach considered in this section, although fairly general, does not exhibit
correlation effects, which are the key to analyze the scalar transport in complex
flows.
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7.3 Transport in Coastal Basins

On the basis of the Taylor model of the longitudinal dispersion, it is possible to
analyze the process of salt and heat transport in partially mixed coastal basins. It is
well known that vertical mixing through vertically sheared horizontal currents is
caused by horizontal dispersion (see Fig. 7.3.1). The velocity shear is usually
related to tidal and wind-driven flows. Under conditions of strong vertical mixing
and horizontal advection, one can consider a steady-state balance between advec-
tion and vertical mixing of a tracer as an appropriative approximation

827!1
072

al’lo

Dy = Vx(z)a. (7.3.1)

Here, D, is the coefficient of seed (vertical) diffusivity, ng is the depth-averaged
concentration of a tracer, and n; is the perturbation of tracer concentration in the
water column. This equation shows that the perturbation of tracer concentration in
the vertical direction is the steady-state response to a source term that describes
advection in coastal basins under consideration. The velocity profile V,(z) is
supposed to be known and 7, is an unknown quantity. Using the Taylor equation,
we find the diffusive flux of tracer in the horizontal direction. Water column has the
height Hy

Hy Hy
- — —. 7.3.2
2 <z< > ( )

For the sake of simplicity, the velocity profile V,(z) is supposed to be linear,
Vi(z) =Vp 7i; - As it was mentioned above, the velocity shear is due to either wind-

Ocean surface

Fig. 7.3.1 Schematic
illustration of velocity and
density profile in a coastal
basin
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driven or tidal currents. The conventional normalization condition (the conserva-
tion law) is given by the relation:

!
Ho

J Cddz =0, (13.3)
Hy

2

An appropriative approximation for the Taylor dispersion could be the experi-
mentally observed simple scaling:

Vo*Ho?

Do) ~ 4565

(7.3.4)

Let us list the typical magnitudes corresponding to our model. Thus, for a coastal
basin 10 m deep with tidal currents having a velocity difference between top
and bottom Vo ~ 0.1 m/s, and seed diffusion of order Dy = 107> m? /s, the above
scaling leads to the estimate of D, ~ 10m?/s. It is interesting to estimate the
characteristic time to reach a near uniform concentration of a tracer in a basin of
the spatial scale Ly The relevant approximation is the diffusive representation,
24/D,t. Taking Ly = 20 km, and Dy, = 10 m?/s, we easily obtain the characteristic
time ¢ = 120 days [144-146].

The flow dynamics is a consequence of a horizontal pressure gradient responsi-
ble for the greater density of water at one end of the basin

Ve 9P, [pD avx}' (1.3.5)

Por = ox "oz P s

Here, Dy is the coefficient of seed (vertical) diffusivity. It is convenient to
introduce a new nondimensional coordinate y as follows:

Yz =1+ 2}%. (1.3.6)

Let us suppose that the velocity shear stress is zero at the surface. By solving the
dynamical equation under consideration for the steady case, one obtains the formula

3 2
_ &y (Ho\ 9 (¥ _
V, = 2pD0(2) ax<3 1>. (7.3.7)

Note that this expression shows that, as predicted, the current V, is inversely
proportional to Dy. After substitution of the previous result into the diffusion
equation, we find the expression for the density perturbation

5 4
_ & (Ho\(OpNOn (1 3 S
e 6pD(2)<2) <6x)8x<y 10 2)° (7.38)
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Now, the tracer flux is given by the relation

g*H® <8p> > on

V) =—C ey =
(V) hp2D03 Ox) Ox

(7.3.9)

where the constant C, is estimated as C, = 1.7 x 10~*. The tracer flux has the
classical diffusive form of the Fick law. This allows one to represent the diffusion
coefficient as follows:

2 2
H() 8,0 1
D, = C — —. 7.3.10

02D} (8x> *D3 (7.3.10)

This expression corresponds to the Taylor shear dispersion under condition
when vertical shear is produced by the longitudinal density gradient. Note that in
this model the effective diffusivity is inversely proportional to the cube of the
vertical (seed) diffusivity Dy. Now one can easily estimate the effective diffusivity
taking into account the orders of magnitudes: Hop = 10 m, V& 0.5m/s,
Do = 1072VoHy =~ 1073 m? / s. If the characteristic spatial scale of the density
gradient is of order =—p/ (8"’ ~ 1,000km, simple algebra gives
D, =~ 2m?/s. On the other hand, the effective diffusion coefficient is proportional
to the square of the longitudinal density gradient. This can lead to nonlinear
diffusion equation because when the tracer is replaced by salt the diffusivity
becomes a function of function of the gradient since salt affects the density.

7.4 The Taylor Approach to Chaotic Flows

Many of the worst problems of water pollution are found in estuaries because the
pollutant may travel up and down the estuary several times before reaching the sea;
the process for its removal depends more on turbulent mixing than on simple
advection. There has been a much greater revolution in the ideas about river and
estuarine dispersion than about air pollution dispersion. Consider a river of depth
Hjy =~ 3m and typical turbulent velocity of Vy ~ 0.03m/s. Whereas estimates of
the eddy diffusivity based simply on turbulent motion are of the order of
Dy =~ 1072m? /s, Taylor’s theory for the effect of shear on the longitudinal turbu-
lent dispersion showed that the diffusivity Dy may be of the order of 1 m?/sin
straight two-dimensional channels [148—150]. Later work shows that, in curved
rivers (see Fig. 7.4.1) about Ly ~ 200 m wide, D, is of the order of 10° mz/s [151].

For turbulent flows in straight tubes, Taylor [148] derived and experimentally
verified the axial dispersion scaling, Det,

Deir(Vy) = 10.1 - RoV,. (7.4.1)
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Fig. 7.4.1 Sketch of a
meandering river /

Meander width

Injection point

Loops

Here, R, is the pipe radius, V, = \/% is the friction velocity, 7 is the Reynolds

stress, and p is the fluid density (see Fig. 7.4.2).
It is interesting that similar scaling laws were obtained for an open channel of the
depth H, [149].

Der(V,) = 5.9 -HyV, (7.4.2)
and for curved pipes (curved rivers) [150]
D (Vi) =~ 20 - RV, (7.4.3)

In these studies, note that the viscous sublayers were ignored as well as the
variation of the turbulence properties across the width of the channel, although it is
now known that this is unjustified in many natural channels, in which the value of
D.sr may consequently be much higher than that given for an open channel.

Consider phenomenological arguments to explain a universality of these scaling
laws. On the basis of the correlation concept, the value of Dy can be written as

Deit = VfJ Ry (r)dt =Vit,. (7.4.4)
0

Here, 7, is a measure of the time taken for a fluid particle to sample the whole
cross section. The time taken to sample the part of the cross section outside the
viscous sublayer is, on dimensional grounds, of order 7 (V) o Ry/V. in a pipe and
in an open channel is of order 7, (V.) o< Hy/V.. These times give values of De
consistent with the Taylor prediction. But these times are not normally accurate
estimates of the times taken to sample the whole cross section since within the
viscous sublayer the properties of the turbulence depend directly on the viscosity vg,
and the lateral mixing sufficiently near the wall is dominated by molecular
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Fig. 7.4.2 Distribution of concentration in Hull and Kent’s experiment. Observation stations:
Filled triangle Bonanza (13.8 miles); Filled circle Green River (43.1 miles); Filled square Hanna
(108.5 miles). (After Taylor [148] with permission)

processes whose intensity is measured by the molecular diffusivity Dy. This
suggests that the time taken to sample the whole cross section is greater than
Ro/V or Hy/V, by an amount that increases as D, decreases and as the height of
the viscous sublayer increases (that is as the Reynolds number decreases).

An estimate of the increase can be made if it is assumed that the lateral transfer of
contaminant everywhere including the sublayer obeys the gradient law of diffusion
with a diffusivity, which is the sum of the molecular diffusivity Dy and an eddy
diffusivity Dy calculated by means of the Reynolds analogy. This assumption is not
theoretically well founded; in particular, the lateral transfer of contaminant within
the sublayer depends on Dy, whereas the lateral transfer of momentum does not and
this makes the validity of Reynolds analogy very unlikely [151].

In terms of the dissipation rate ¢p, one can represent the friction velocity V, in
the form

2 _ epRo
2Vy '

(7.4.5)

*

where V) is the characteristic velocity scale. Then we can obtain a modified scaling
relation

AL
Deie ~ 10.1RoV, ~ 10.1 (V—> RPel?. (7.4.6)
0
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The effect of tidal oscillations and stratifications, which are often present in
environmental flows, may increase effective diffusivity further. Nevertheless, the
simple water pollution models, in which mixing is assumed to take place rapidly
between “boxes” of water moving up and down the estuary, are often adequate
approximations.

7.5 The Lagrangian Mixing in Turbulent Flow in a Pipe

The phenomenological approach to the longitudinal dispersion has become widely
popular due to its exceptional efficiency in describing transport in the presence of
anisotropy. On the other hand, the Lagrangian description of turbulent diffusion on
the basis of the Taylor statistical method is valid under conditions of steady and
homogenous turbulence. Batchelor pointed out that such strong conditions are
accomplished even for flows in straight pipes and channels if we restrict ourselves
by consideration of the longitudinal direction only [152].

Let us consider the case of the large Reynolds numbers when fluid flows along a
pipe under the action of a steady pressure gradient. The Lagrangian representation
for the longitudinal velocity of the small fluid element is given by the formula

dx(z -
% =V, (70, to +1). (7.5.1)

This longitudinal velocity V,depends on the fluid element initial position 7{ in
the pipe cross section at the time ¢ = ). However, because of turbulent mixing (see
Fig. 7.5.1) after a long time (correlation time t), a random velocity function
becomes steady and independent of the initial position 7.

(Vi(Fo, 10 + 1)) = Up. (7.5.2)

This means that for flows in a pipe under the action of a steady pressure gradient,
the conditions of steady and homogenous turbulence are accomplished in the
longitudinal direction. That is why it is convenient to employ the Taylor formula
for turbulent dispersion in the form

([X(1) = (X(1)))] *) o 2Drt, (7.5.3)

where Dr is the longitudinal turbulent diffusion coefficient. Here, we consider the
central region of the turbulent flow in a straight pipe. When the Reynolds number is
large, the thickness of the viscous layer takes a negligible fraction of the pipe cross
section. Then, if a scalar particle is near the viscous layer, where the fluctuation
of the velocity is likely to be negative, there must be a tendency to move in the
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Fig. 7.5.1 Schematic
diagram of the Batchelor
mixing in a circular pipe

direction away from the boundary. In fact, if a fluid element is once inside the
central region of turbulent motion, it remains within it [153].

The diffusion in the turbulent flow under consideration is related with the
variation of mean velocity with position over cross section of the pipe. Recall
that the distribution of velocity across the pipe is determined by the friction velocity

Vilp) = /=, (7.5.4)

where 7f is the Reynolds stress and p is the fluid density. In such a case, it would be
natural to expect that the longitudinal turbulent diffusion coefficient Dy ~ 2Vo?1
depends only on the friction velocity V., and the pipe radius Ry

Dy ~ 2V3t o RV, (7.5.5)

which corresponds exactly to the Taylor result considered above.
It is a result of ergodic theory [152, 153] that after a long time all the small fluid
elements in the pipe must have the same mean velocity U,

X0 _ . (15.6)

Indeed, fluid elements in the case under consideration move freely over the
whole cross section of the pipe and it is impossible to distinguish them one from
another. This mean velocity is equal to the discharge velocity Uy = Up. Now the
expression

<[X(t) - Uot]2> o const VL t (15.7)

is represented by the longitudinal dispersion in flows in straight pipes and channels
with the transverse spatial characteristic scale Ly.
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7.6 The Taylor Dispersion and Memory Effects

The universality of the Taylor convective dispersion impels us to use the heuristic
methods of including nonlocal effects and memory effects into the initial local
equation. Indeed, in environmental flows (rivers, estuaries, etc.) there are often
stationary eddy structures next to the bed that could trap scalar particles [154, 155].
In a river, there are lagoons, recirculating eddies, beaver dams, etc., which are
responsible for scalar trapping in “dead zones”’(see Fig. 7.6.1). In the framework of
the heuristic approach, it is easy to include such memory effects in the transport
equation under analysis. This allows us to analyze trapping effects, which play an
important role in tracer transport. Thus, one can represent the total concentration of
tracer n(x,t) as two parts

n(x,t) = Pa(x,t) + qr,(1), (7.6.1)

where P4 (x, t) corresponds to actively transporting particles and gr(x, #) describes
trapping. In the simplest case, the relationship between P, and gr; is given by

aCITr
ot

= OCT(ﬁTPA — qTr)- (762)

Here, a7 and f; are the parameters of the problem. If all the particles are released
in the untrapped region at ¢ = 0, one obtains

t
qre(x, 1) = ocTﬁTJ Pa(x, r)e_“T(’_I)dr. (7.6.3)
0

Here,

M(t — 1) = oSy exp[—or(t — 1)) (7.6.4)

Fig. 7.6.1 Schematic
illustration of the vortex
trapping in a river
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is the memory function. In general, we can rewrite the expression in the form with
an arbitrary memory function M

t

qri(x, 1) = J Pa(x, )M (t — 7)dr. (7.6.5)
0

Then, based on tracer conservation, it is possible to describe transport by the
equation

8PA 6qTr‘ BPA 82PA
it vZA_pZia
a "o TV ox a2

(7.6.6)

Using the Taylor method, the modified equation for the mean density can be
rewritten in the form

ony ! *ny(x, 1)

The expression for the effective diffusion coefficient, which takes into account
memory effects, is then given by

Dett = JOO M(7)dr. (7.6.8)
0

Here, we consider the behavior over a long time.

Note that tracer transport in the presence of vortex structures or complex profiles
of shear flows could be even nondiffusive and we have to employ sophisticated
phenomenological arguments to describe such an anomalous dispersion.

7.7 Dispersion in Random Shear Flows

Analysis of random shear flows is a natural generalization of the Taylor approach to
the scalar dispersion. Such a model was proposed in a paper by Dreizin and Dykhne
[156] where a physically clear model of strongly anisotropic transport in a random
velocity field was investigated. First, we assume that “seed” diffusion with the coeffi-
cient Dy acts on the plane. In our model, the longitudinal direction coincides with
the z-axis (Fig. 7.7.1). In the transverse direction, the diffusing particle experiences
random pulsations, which produce narrow convective flow with a velocity V, and a
width ag. Here, the velocity field has a “quenched” randomness. In the transverse
direction, the diffusion can be neglected compared to the velocity drift carrying the
molecule with the flow. In the framework of this consideration, there is no drift in
the direction perpendicular to the layers.
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Fig. 7.7.1 The

Dreizin—Dykhne random
shear flow geometry
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Let us consider a simple model for calculating the diffusion coefficient in the
transverse direction D, using characteristic correlation scales:

~ 12
DJ_ ~ VO'CJ_,

(7.7.1)

where the transverse correlation time 7, is given by 7 (x) o< t/N(¢). Here, N() is
the number of shear flows intersected by the particle during its longitudinal motion

(the number of particle-jet interactions)

N(2)

E

2Dyt

ao

(7.7.2)

Thus, we obtain the following formula for the transverse diffusion coefficient:

t
D (t sza,/—.
L() 040 Do

This leads to transport scaling in the form

21(t) x Vo ag

t 3/4
Dy '

(7.7.3)

(7.7.4)

In the superdiffusive case under consideration, it was found that the Hurst
exponent is H = 3/4>1/2. Such a representation is valid only if the perpendicular
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spatial displacement is no larger than the perpendicular correlation length
AL (t)<ACOR ~ ag.

Note that there are different scaling approaches to treat anomalous transport in a
system of random shear flows. One can employ the ballistic representation for the
transverse displacement of scalar particles similar to the Corrsin shear wind model

;LJ_(I) ~ Vol‘eff(l‘) = V()IPOC(I). (7.7.5)

Here, P is the relative number of the small fraction of “noncompensated”
fluctuations ON, P (N) = %. Using the Gauss representation for a number of
“noncompensated” fluctuations 6N, one obtains

3/4
SN() ~ VN o 4, 4 o« Voay” (Dio) . (7.7.6)

The same result can be obtained by the insignificant modification of the phe-
nomenological expression for 1, (¢),

21 (1) = Ve (1), (7.7.7)
where

ON
() = VoPo = Vo——. .
Veri (1) = Vo P VON(t) (7.7.8)

The search for a more satisfactory method of nondiffusive transport description
is the subject of the following chapters. Nevertheless, the Dreizin—Dykhne model of
anomalous diffusion in a system of random shear flows is the very effective tool to
investigate complex correlation effects in the framework of random walk
phenomenology.
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Part IV
Fractals and Anomalous Transport



Chapter 8
Fractal Objects and Scaling

8.1 Fractal Dimensionality

Many physical systems do exhibit self-similarity, although, of course, within some
finite range of scales. The list includes Brownian motion, turbulent flows, porous
media, polymers, clusters, etc. The geometry of these systems, often based on random
processes, is complicated. The concept of fractal dimension helps to express, model,
and comprehend both the geometrical complexity and its physical consequence
[157-164]. Furthermore, fractal concepts and scaling laws establish similarities
between correlation effects and growth phenomena in a variety of equilibrium
(such as percolation) and far-from-equilibrium (such as diffusion-limited aggregation
and viscous fingering) processes. This connection is of heuristic significance, because
presently there is no first-principle theory to describe, for example, turbulence,
turbulent transport, or diffusion-limited aggregation, which are markedly far-from-
equilibrium and nonlocal processes.
The fractal dimension df serves as an exponent in the power law of the type

M(ir) = 2% M(r), (8.1.1)

which shows how the “property” M of the fractal (for example, its mass) changes
when the characteristic size in the embedding space is rescaled by a factor A, — A.
Note that A is independent of r, which stresses the self-similarity at all scales.
Regular homogeneous (called also compact) objects satisfy this definition with dr
being the “usual” integer dimension 1, 2, 3, and so on.

The most interesting feature of this definition is that there are indeed objects —
fractals — fitting (8.1.1) with dg “fractional” (see Fig 8.1.1). For example, dp =
% = 1.58496..., indicating that the fractal under consideration (the Sierpinski
gasket) is not a line and not a surface. This shows that an object can be self-similar
if it is formed by parts similar to the whole. Isotropic fractals are self-similar: they
are invariant under isotropic scale transformations and such exactly self-similar
objects are named deterministic fractals.

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 129
DOI 10.1007/978-3-642-20350-3_8, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 8.1.1 Force stage of the
construction of the Sierpinski
gasket

In contrast to the idealized objects, which are invariant under isotropic scale
transformations, there are many natural objects, which are random. Despite this
randomness, such objects could be self-similar in a statistical sense (for example,
the Brownian particle path, clusters, and the coastline of a continent). Nontrivial
topology of both deterministic fractals and random fractal structures can be
described qualitatively by the generalization of the Euclidean dimension concept.
Thus, by embedding dimension, dg, we understand the smallest Euclidean dimen-
sion of the space in which a given object can be embedded.To decide on the
fractality of an object, we need to measure its Hausdorff dimension. The volume
W () of an arbitrary object can be measured by covering it with balls of linear size J,
and volume 0% . If N(d) balls will cover it, then

W(d) = N(5)5%. (8.1.2)

We can expect that for any object, the number of balls is given by the scaling

1

(8.1.3)

since the volume of an object does not change if we change the unit of measurement 0.
To generalize the previous definition for the case of fractal objects, we can write the
new scaling for the number of balls in the form (see Fig. 8.1.2)

(8.1.4)

where dr is the fractal dimension. Usually objects with nontrivial geometry where
dr # df are called fractals [157-164]. From this definition, we obtain the formula
to calculate the fractal dimensionality as follows:
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Fig. 8.1.2 Schematic

illustration of the box ﬂji
dimension for a smooth S
curve of length L and for

planar region of area A 4
bounded by a smooth curve /’

— L
E N(S) oc;

S
N(S) o< 6—2

dp = im{w}. (8.1.5)

For the Sierpinski gasket, the natural unit to measure the length of the set at
iteration k is the length of the smallest interval 6; = (1/2). The number of
intervals of length Jat level k is given by N(&;) =3k In this case, the
corresponding fractal dimensionality dgp = 1.584... < dg = 1, and that is why
the Sierpinski gasket is a fractal object.

The discussion of a new geometry of nature, one that embraces the irregular
shapes of objects such as coastlines, lighting bolts, cloud surfaces, and molecular
trajectories, began in the 1960s [157]. A common feature of these objects is that
their boundaries are so irregular that such fundamental concepts as dimension and
length measurement must be generalized. Therefore, we shall consider some of the
metric peculiarities of a few usual mathematical objects, which we subsequently
adopt to describe turbulent transport and anomalous diffusion.

8.2 Seacoast Length and the Mandelbrot Scaling

The Brownian motion of a small (micron-size) particle suspended in an isotropic
solvent is one of the simplest examples of stochastic fractals. The Brownian particle
is in uninterrupted and irregular motion with a zigzag trajectory (see Fig. 8.2.1) due
to the fluctuative movement of the solvent molecules and their collisions with the
particle.
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Fig. 8.2.1 Zigzag trajectory
of Brownian particle in a two-
dimensional plane

Let us consider the Gaussian distribution

S xz 8.2.1
p(X,t)—WeXp D) 3.2.1)

which satisfies the scaling law

P
P(il/z)@ /Lt) = ;LI/Z

(8.2.2)
so that the distribution for the random variable 4'/2X (At) is the same as that for X(z).
This scaling relation establishes that the irregularities are generated at each scale in
a statistically identical manner, i.e., if the fluctuations are known in a time interval
Jf >t > 1 they can be determined in the expanded interval 2%/ > ¢ > A7 as well as
in the contracted interval ¢ >t > % Thus, as expressed by Feder (1988), the
Brownian process is invariant in distribution under a transformation that changes
the time interval by a factor A and the space interval by a factor A2, Such a
distribution that is invariant under a transformation that scales time and space by
different factors is called self-affine. When the distribution is invariant under a
transformation that scales space and time by the same it is called self-similar. The
same considerations could be applied to curves; i.e., they can be either self-similar
or self-affine depending on how they scale. Thus, the scaling properties of the
concentration are determined by those of the Gaussian probability density.

From the formal standpoint, the length of the very “tortuous” curve (the fractal
curve) L(0) can be rewritten in the form

0 1

(8.2.3)

In this fractal approach, the full length L(J) is approximated by the small
segments of size d, N(J) is the number of these segments, which are necessary
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for such an approximation, and dr is the fractal dimensionality of the curve. In the
framework of the conventional representation of the geometry of curves, we have to
use the value dr = d = 1. However, in this case there are the drawbacks of the
conventional method of length measurement by a “yardstick” (ruler). Mandelbrot
considered the problem of measurement of a tortuous seacoast length in which the
increase of measurement accuracy (the decrease of the value ) leads to the growth
of the value N(J) (dg > 1). From the formal standpoint, this approach yields:

L(8) = 6 N(8)|5_y — 0. (8.2.4)

This means that such a fractal line embraces “almost” the full plane. The
advantage of this definition is the possibility to describe the longest and more
complex lines (fractal lines). It is natural to generalize the previous definition.
We can obtain the expression for the fractal region in the form:

Wy~ 07 N() ~ o7, (8.2.5)

Here, we are dealing with the fractal cases dg > d. Note that in practice, the
power law holds only over an internal range of o (see Fig. 8.2.2).

The simplest model, which permits us to analyze the fractal properties of
transport processes, is d-dimensional random walks. For the mean square displace-
ment, one obtains

2 Acor”
R3(1) = 2dDr ~ 24 55"

t
1~ AéOR% ~ AZorN(1). (8.2.6)

Here, Acor is the correlation length and 7 is the correlation time. For this case,
it is easy to obtain an expression that includes the fractal dimensionality of the
Brownian trajectory for the number of “steps” in the scaling form

A

log F(x)

Slope

Fig. 8.2.2 A typical plot of
power law, which holds only
over and intermediate range
of parameter X >
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2dDt 1
N([, ACOR) ~ ) X 2 - (827)
ACOR ACOR

This means that fractal dimensionality of random walks, dg = 2. Note that the
value dr is independent of the space dimensionality d. Here, we assume that Acog is
the small quantity, Acor = 9. This corresponds to the definition of the fractal curve,
N(d) = 1/6%.

From the “fractal” point of view, the scaling laws describing anomalous trans-
port in terms of the Hurst exponent R(¢) oc #/ can be treated analogously

t t
R(t) = AcorN( Acor) ~ ACOR; ~ Acor - (8.2.8)

cor)?

)H
The fractal dimensionality in this case is given by the relationship
dr(H) = —. (8.2.9)

When we are dealing with the Brownian motion, H = 1/2, we arrive at the
familiar result dp = 2.

Fractal ideas have wide applicability to anomalous transport in chaotic (turbu-
lent) flows. Not only the walking particle trajectory, but also percolation
streamlines, diffusive fronts, etc., appear to be fractal objects. More detailed
information can be found in many textbooks and reviews on fractal geometry and
fractal models [157-164].

8.3 Fractal Topology and Intersections

We can analyze the fractal topology from a more general point of view. Consider
two objects of dimension d; and d, embedded in a space of dimension d. It is a well-
known result that the intersection of the two objects has dimension d; +d, — d
with probability 1 [157-160]. Indeed, let S; and S, be fractal sets with Hausdorff
dimension df, and d,, respectively, embedded in a space of dimension d. We
denote the potential dimension of their intersection by S; N S». A simple sum rule is
known for their co-dimensions:

d—dy ,=d—dp +d—dp,. (8.3.1)
Thus, we get the following equation:

di, = dp, +dp, —d. (83.2)
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By knowing the potential dimension, we can immediately determine the true
value of the Hausdorff dimension, which lies between 0 and d. In particular, in the
case where S, is an ordinary set with integer dimension d> such as a line or a plane,
we have

dy, = dp, — (d — db). (83.3)

For instance, two planes in space intersect generically along a line (see
Fig. 8.3.1)

wa=di+dr—d=2+2-3=1. (8.3.4)
A plane and a line in space intersect generically at a point
wo=di+dr—d=2+1-3=0. (8.3.5)

For a random walk in one dimension, this means that the random walk, which is
intrinsically a two-dimensional fractal object, has been “folded” many times to fit
within a one-dimensional space. In other words, the random walker comes back an
infinite number of times on its previous steps. It does so marginally within a plane
and only a finite number of times in three and higher dimensions. This shows us
why dimensionality plays such a significant role in the correlation effect
description.

Long-range correlation effects are responsible for anomalous transport in com-
plex systems. In everyday language, “correlation” means some relation between
events. The probability theory employs the rigorous mathematical notion of “return
of a walking particle” to the initial point [13, 15, 16] to describe simple correlation
effects (see Fig. 8.3.2). This is best illustrated by considering the problem of one-
dimensional random walks at the very beginning of the process. In the problem
as formulated, the particle will definitely return to its initial position, thereby

d*l><2 =1

Fig. 8.3.1 Schematic
diagram of two manifolds
intersection
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Fig. 8.3.2 Schematic N
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providing a clear realistic interpretation of the abstract notion of correlations.
Rigorous analysis of returns on complicated spatial grids is necessarily based on
the chain functional equation for the return probability Py(z). Recall that most of the
fundamental problems in the theory of random-walk processes can be formulated in
terms of chain functional equations [15, 16]. However, we restrict ourselves here to
the brief consideration of return effects.

Qualitative estimates for these effects can be obtained from the classical solution
to the equation for the probability density function p(x,?) describing the random
walks of a particle. For a space of dimensionality d, one obtains the distribution for
a particle returning to the point x = 0 at the time ¢

(dx)* x2 (ox)*
PO = p(X, l)(5x>d|x*>0 = W exXp —m o 0.8 W (836)

Here, (5x)dis the small area around the point x and D is the diffusion coefficient.
In the one-dimensional case, we arrive at Py (¢) oc /2. This simple formula serves
merely to obtain estimates. However, for our purposes here, this solution is impor-
tant because it provides the evidence that the dimensionality of the space, d, which
was used above as a formal parameter, plays a significant role. The correct
dependence for Po when d = 2 and d = 3 is given by [13, 15]

1 1
Po(N) O(m<<W.

8.3.7)

For grids of dimensionality d < 2, the particle will inevitably return to its initial
position. For grids with d > 2, the particle can execute random walks without
returning.
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Note that for a random walk with dr = 2, we need to go to a space of dimension
d = 4 for the number of intersections to constitute a set of zero dimension,

di,  =di+dy—d=2+2-4=0, (8.3.8)

i.e., for the set of crossing to become almost vanishing. In other words, in a space
of four or more dimensions, a random walk has very little chance to cross itself and
this explains why four dimensions play a special role in theories of interacting
fields, such as spin models that we will study later on. At and above four
dimensions, these theories are well described by so-called mean-field approaches,
while below four dimensions, the large number of crossings of a random walk
makes the role of fluctuations important and leads to complex behaviors.

8.4 Self-avoiding Random Walks

The model of random walk can be used as a very idealized model of a linear
polymer in good solvent. This model would consider each step in the random walk
as the monomer of the polymer chain and would assume that any two neighboring
links can point in arbitrary directions. Moreover, the polymer is allowed to inter-
sect, as the Brownian trajectory does. A more realistic model of a polymer is that of
a self-avoiding random walk that prohibits self-intersections. Obviously, if the self-
avoiding random walk is fractal, then its fractal dimension should be smaller than
dr = 2 calculated above. Using such probabilistic approximations, we derive an
important scaling relation for particles executing random motion with no self-
intersections. A self-avoiding random walk is a random walk that never intersects
its own trajectory (see Fig. 8.4.1). Though this condition is rather simple, theoretical
treatment becomes extremely difficult, since the whole past trajectory affects the

< Start

Finish

Fig. 8.4.1 A typical example
of self-avoiding random walk
in a two-dimensional plane



138 8 Fractal Objects and Scaling

present motion. We introduce the probability p(N) of self-intersection after N
random walks [15, 16],

p(N) =

R (8.4.1)

where R?(N) is the root-mean-square displacement, d is the space dimensionality,
and N = ¢/t is the number of random walks. Here, ¢ is the time and 7 is the
correlation time. In fact, we are assuming that the probability of the particle
trajectory intersecting itself is proportional to the number of visited grid points
within the region of random particle motion. Then, the probability for a particle to
execute N self-avoiding random walks can be estimated as

N2
PsN) ~ (1=l o mexppW) merp(~Tg). (842
By taking into account the fact that the relationship between the quantities R and
N is of a diffusive nature, we can estimate the effective probability of self-avoiding
random walks by averaging the probability Pg(/N) with the Gauss distribution:

Ps(r) = T exp <— 1% (%)2> m exp <— 4R—;) (dR)". (8.4.3)

We assume that the main contribution to the integral comes from the extremum
of the integrand, and simple manipulations lead to the scaling:

R(t) x 717> 1, (8.4.4)

for d < 3. Here, we must take into account the fact that, in a space of dimensionality
d = 1, non-self-intersecting random walks can occur only for the particles moving
in one direction, which indicates that R o . We see that this scaling satisfies this
condition automatically. The corresponding Hurst exponent is

3

2+d 845

H(d)
This scaling was first obtained in the theory of polymers by Flory [165-167] and
it gives a correct value in the case d = 1,d = 2, and d = 4. In the case d = 3, we
obtain the estimate dp = 1/H = 5/3, which is a little bit different from the
renormalization group method, where dr(3) = 1.701 & 0.003.
Note, the Flory scaling for self-avoiding random walks gives, in the case d = 4,
the fractal dimension

_24d

dr(d) 3

2, (8.4.6)
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which coincides with the fractal dimensionality of the conventional Brownian
motion. This confirms the previous estimate, dg, , =d) +dy —d=2+2 -4 =0,
where Brownian motion in four dimensions was represented as walk without self-
intersections.

8.5 Two-Dimensional Random Flows and Topography

The analysis of transport in three-dimensional chaotic flow in a general case is too
complicated. However, in two dimensions for incompressible flows we are faced
with a quite different scenario. Here, one should employ a stream function formal-
ism. The streamlines ¥ = W¥(x,y, t)of a random two-dimensional flow could be
considered as the coastlines in a hilly landscape flooded by water. Recall that
incompressibility implies that the velocity field is related to the stream function ¥

de _ 0¥(x,y,1)

=T 5 (8.5.1)
_dy  0¥(x,y,1)
R e (8.5.2)

Here, ¥ (x,y,1) is, at the same time, the Hamiltonian function.

In the framework of the Lagrangian description of scalar particles, the character
of behavior of streamlines is of great interest. There are different types of
streamlines topology. For instance, Fig. 8.5.1 demonstrates flighting-type of jets,
which could contribute most to the effective scalar transport due to the convective
character of scalar motion along streamlines. The correlation scales here are related
to the ballistic motion of tracer (see Fig. 8.5.2). On the other hand, there exist
trapping-type streamlines, which are related to loop (vortex) structures (see
Fig. 8.5.3). In this case, the effective transport could be defined by the correlation
time, which is given by the dimensional estimate

Ly

(Lo, Vo) ~ Vo' (8.5.3)

where V) is the characteristic velocity scale and L is the characteristic length of
vortex loop. However, for steady two-dimensional flows the effective transport
takes place only when the seed diffusivity Dy is superimposed. This allows one to
introduce one more characteristic time
L%
(Lo, Do) = —. (8.5.4)
Dy
The case of great interest arises when a closed fractal streamline embraces
almost full the flow domain. It is obvious that the characteristic spatial scale
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Fig. 8.5.1 A typical

configurations of streamline

geometry for two- \
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flows. (After
Kravtsov [168]
with permission)
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plays a key role in the description of the effective transport. The problem is to
express the characteristic spatial scale through the flow parameters such as charac-
teristic velocity scale V), characteristic frequency o in the case of frequency driven
flow, seed diffusivity Dy, etc.

Let us consider streamlines topology via the scaling representation of closed
fractal loops, which are a key to this complex problem. The interesting interpreta-
tion of such a model is based on the representation of a “rough” /D + ID landscape
as a graph of one-dimensional random walks in the x—¢ axes, where the ¢-axis can be
interpreted as a horizontal coordinate and the x-axis can be a vertical one. Then,
different values of the Hurst exponent correspond to different types of landscape
“roughness”, <(Ax)2> oc #1. This implies that the “rough landscape” is a statisti-
cally self-affine fractal over a corresponding range of length scales with the
characteristic Hurst exponent, which is equal to the roughness exponent H (see

Fig. 8.5.4). For such landscapes, the mean height difference 1/ (Ah)2 between the
pairs of points separated by a “horizontal” distance Ar is given by
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Fig. 8.5.2 Schematic diagram showing the Gulf Stream

Fig. 8.5.3 The stream function of two-dimensional turbulent flow. (After Rhines [169] with
permission)
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Fig. 8.5.4 Schematic
illustration of the Brownian
landscape

Ah(AF) o (Ar)!. (8.5.5)

It is easy to generalize this representation for the case of a rough surface with
another dimensionality. In the framework of turbulent transport description, a
similar model was analyzed, where the streamline function ¥, is used as the
“height” characteristic of the two-dimensional random field:

A\
‘Pg(l)%‘{’o(%> . (8.5.6)

In this connection, there is a problem in obtaining the relationship between the
fractal dimensionality characterizing a single loop D; and the Hurst exponent H
(the stream function exponent) [170, 171].

The probabilistic approximation is, as usual, the simplest method. The authors of
[172, 173] used the model of self-avoiding random walks to describe the single loop
character. However, to describe cases with different Hurst’s exponents it is neces-
sary to use the probability density function with the arbitrary values H:R(N) oc N,
instead of the Brownian case, where H = 1/2. Then, the expression for the proba-
bility of self-avoiding Brownian motion takes the form

po = [ oo~ () @0, @57

By minimizing the integrand over R, we arrive at the scaling:

d+2

N(R) o RFm (8.5.8)
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For the two-dimensional case (d = 2), this fractal dimensionality can be consid-
ered as dimensionality of a single contour loop (coastline) of a self-affine surface

2

d(d = 2,H) ~ Dy (H) 1+ H

(8.5.9)

The value of H = 1 yields result, which corresponds to the linear type of
behavior with D, = 1. The random walk with H = 1/2 corresponds to D, =4 /3.
However, this is not correct estimate in the region of small H. Indeed, the fractal
dimensionality of the percolation hull D, = 7/4 [174—176] has to be larger than the
fractal dimensionality of the coastline of the self-affine surface Dj,(H).

This chapter provides only a quick overview of fractal structures analysis.
A more detailed account can be found in [177-182]. The fractal concepts appear
to be very fruitful to obtain the relationships between the parameters, which
characterize transport, correlation, and geometric properties of the model under
consideration. One of the reasons of such efficiency is the possibility to describe the
geometric properties of different natural objects by using the scaling terminology.
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Chapter 9
Random Shear Flows and Correlations

9.1 Autocorrelation Function for Fluids

Lagrangian velocity correlations are certain quantities in turbulent diffusion
because of Taylor’s relation, which expresses the mean square displacements of
fluid particles as a double integral over time of two-time Lagrangian velocity
correlations. Taylor’s relation also has important physical consequences for anom-
alous transport. Indeed, long-range correlations are responsible for anomalous
transport. Thus, the representation of the autocorrelation function C(#) in the
power form C(r) o< % leads to the nondiffusive estimate for effective transport

Do () o JC(r) dr o 117% 9.1.1)

or in terms of the mean squared displacement

R*(t,00¢) o Dege(t) - t o< £277¢. 9.1.2)

This relation allows one to determine the Hurst exponent as follows:
R*(t,H) o< P oc 27, (9.1.3)
H(OC(;) =2— dc. (914)
We now go one step further in modeling the correlation effects. It is well known
that interactions both create and destroy correlations. There is a useful example,
which illustrates this in terms of the correlation function. Let us consider “the
collective” (hydrodynamic) nature of the evolution of a correlation cloud by the
formal calculation of the autocorrelation function. Suppose a tagged particle in a

system in equilibrium is conditioned to be at the origin at # = 0 with velocity V

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 145
DOI 10.1007/978-3-642-20350-3_9, © Springer-Verlag Berlin Heidelberg 2011
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p(7,0) = 8(7), i(F,0) = Vo). (9.1.5)

For times much longer than the mean free time between collisions, the time
development of p(7,t) and (7, t) is described to be a first approximation by the
solution of linearized hydrodynamic equations. For the particle density, p(7, t), this
is the diffusion equation in the conventional form

dp
— = DyAp. 1.
BT oAp 9.1.6)

The hydrodynamic equations for the divergence free part i, of the velocity
density are

Oty

ot

= —vpV X (V X ily) 9.1.7)
divi, =0 (9.1.8)

where vg is the kinematic viscosity. The irrotational part ifjong Of the velocity density
does not contribute to the leading long-time tail in the velocity autocorrelation
function. These equations are most easily solved for the Fourier transform ﬁ,,.(l;, 1)
of i, (r, ) with

—

ity (R, 1) = (V = (V- £)k) ek 9.1.9)

for the initial condition under consideration. Here, k is the unit vector along k, and
the Gaussian solution of the diffusion equation (for its Fourier transformation) is
given by

Do) = e Dok, (9.1.10)

Now assume that, if after a not too short time 7, the tagged particle is at a position 7,
its average velocity is given by (7, t). In other words, assume that at time ¢ the
tagged particle on the average has the same velocity as the other particles in its
neighborhood, and that the average velocity i(F,t) to first approximation is not
influenced by the fact that the tagged particle is located at 7 at time ¢. Then the
average velocity of the tagged particle to leading order can be found as

—

V() ~ jdma 1) (7. 1) ~ dF p(F, )i (1) ©.1.11)

In terms of the Fourier transformation, we find

- 1 L -
Vi(r) ~ = Jdkpk(t) i, (—k, t) 9.1.12)
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After calculations, one obtains the formula

R 1 .
Vi(t) ~ dT Rr(ve+ Do) 1] 4 V. 9.1.13)

The velocity autocorrelation function could be calculated by averaging ‘7171(0
over the equilibrium velocity distribution,

d
d—1 _al — [ Bam\?
=— 2 Do) 2= | vV [ E2) o5 1.14
c(t) = (v + Do) dJ vv( 2n> e 9.1.14)
Now we arrive at the scaling
c(t,d) ~ =L vy + Do)yt < - (9.1.15)
s ~ Bdmd F 0 td/Z . I

This is in accord with the Corrsin assumptions on diffusive spreading of a
“correlation cloud.” From the dimensional point of view, the correlation function
can be expressed in the form

Cltnd) = (VOV() ~— L0
T T (Do)

9.1.16)
where it was assumed that the number of interactions N; is proportional to the
number of particles that are located in the correlation region Wp(r),
Ni(t) = nWp(1) =~ n(Dot)d/ 2. Here, n is the concentration of particles in this region.
One may conclude that the velocity autocorrelation function has a long-time
tail, due to the conservation of particle number and momentum. This result agrees

with that of the more sophisticated theories as well as the results from computer
simulations [182—-184].

9.2 Superdiffusion and Return Effects

We briefly considered above a strongly anisotropic transport in the system of
random shear flows basing on the scaling arguments. Note that the simplest
example of the system of shear flows is given by the streamline function (see
Fig. 9.2.1)

Y(x) =¥y sin(z). 9.2.1)

Here, ¥y is an arbitrary stream function amplitude. The velocity field for this
streamline function is represented as
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Fig. 9.2.1 Schematic 4
illustration of the periodic
shear flow 4
4
V(@)
0
Ly O¥/0z \ [ Wocos(z)
i(x) = <8‘P/6x> = ( 0 . 9.2.2)

Randomization of this sinusoidal velocity field leads to the Dreizin—Dykhne
random shear flow (see Fig. 9.2.2). Here, we discuss this anomalous transport
model on the basis of the Corrsin conjecture

() = Jm (s )CE (1) dJ, 9.2.3)

—00

where the Lagrangian correlation function is expressed through the Eulerian one.
For the probability density p(4,?), it is natural to use the Gaussian distribution.
Indeed, we have seen that the molecular diffusivity in the presence of velocity shear
generates random jumps of scalar particles. This permits employing Taylor’s
analysis when considering transport in a given velocity profile.

On the other hand, by taking into account the one-dimensional character of the
correlation cloud spreading, N;(r) o Rp() o (Dot)'/?, one can employ the scaling
for the correlation function obtained in the previous section:

v
Ctd=1)r——. 9.2.4)
( ) n(Dot)'/?
This yields the transport estimate in the form
t of
O J J Cc(ydld’" o« 2. (9.2.5)
0Jo



9.2 Superdiffusion and Return Effects 149

Fig. 9.2.2 Schematic z Y
diagram of the

Dreizin—Dykhne random
shear-flow geometry a

=N

Ve (@

To explain the Dreizin and Dykhne result in the framework of the correlation
approach, we consider the correlation function of shear flows in the following form:

ctr=|" wome %

Here, V,(z) is the velocity of the flow at the point z and the supposition was made
that the probability density has the Gaussian form. Using the conjecture about the
significant role of returns has become the main step in the description of anomalous
diffusion, since the condition z — 0 for the probability density p(z, ) corresponds
to the return to the initial point. After calculations, one finds the expression

(9.2.6)

C(r) M L 9.2.7)
O(\/471—D0t0(t1/2' 2.

Using the classical Taylor definition of the turbulent diffusivity, one defines the
mean square displacement in the perpendicular direction,

2 o " Viao 3/2
A5 (1) = c(ddat" e, 9.2.8
1) Jo Jo & O< Var Dy ( )

Here, we are dealing with the superdiffusion regime, 1, /4, and the Hurst
exponent H = 3 /4.

In concluding this chapter, we note that the Dreizin and Dykhne model of the
anomalous transport in the system of shear flows [156] became well known after the
paper [185] by Matheron and de Marsily. Their work has close relation to percola-
tion transport in a porous media. Below we discuss the percolation concept and
percolation transport in more detail.
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9.3 Longitudinal Diffusion and Quasilinear Equations

In the random shear-flow model, the longitudinal and transverse correlation effects
are separated. It would be interesting to apply here the renormalized quasilinear
approach, which is fairly efficient in describing anomalous diffusion. The conven-
tional quasilinear equations for passive scalar problem in the two-dimensional case
under consideration are given by

al’l() - 8n1 .
o —<VX(Z)a>7 9.3.1)
6711 (9]’1() -

The dependences ny = ny(x,t) and n; = ny(x,z,t) were used to describe the
two-dimensional case. In fact, the equation for n; is linear and hyperbolic and it
keeps the Lagrangian character of correlations. This opens up the possibility of
describing the omitted correlation effects by including the additional diffusive term,
which is in agreement with the Corrsin diffusive renormalization.

Let us derive an equation for the passive tracer density under conditions when
longitudinal correlation effects can be approximated by the longitudinal diffusive
term Do%. Thus, in the two-dimensional case the renormalized quasilinear
equations for the system of random shear flows have the form

81’10 o 8n1

o _<VX(Z)§>7 (9.3.3)
ony Om Ong
o = Dogz V@G 034

Here, the diffusion coefficient D, characterizes the seed diffusion. Thus, we kept
equation for the density perturbation n; linear but passed from a hyperbolic
equation of form to the parabolic equation.

Then, applying the method of Green’s functions to the equation for the density
perturbation n; yields

n = — sz’ Jdl‘/{VX(Z,) M J%eik(z_z/)e_Dokz(’_’,) } . (9.3.5)
Ox 2n

The substitution of this expression in the formula for a flux leads to the relation
in terms of the memory function:

ax = (v 5 ) = [ar 25 Do - o) ©36)
0
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Here, M(t — ¢') is the memory function represented as

dk

M) =5 {e-DOW-” [t z')<vx<z>vx<z’>>e-"k<z’-z>}. ©3.7)

Consider the system of random flows with the Eulerian correlation function
Ce(z —7') = (Vx(2) Vx(Z)). (9.3.8)

Using the Fourier transform Cg(k) of the function Cg(z — 2') = (Vx(2)Vx(Z)),
we can rewrite the expression for the flux ¢, in the form

' -

- , % ~ Dok (1) 8710()(, l/) N J% CE(k) 8)’10(X, f)

= Jdt JZn{CE(k)e Ox ) 2%\ Dok2 Ox ©.3.9)
0

for the case of a smooth profile ny(x, #). The effective diffusion coefficient is given
by the expression that coincides with the Howells form [186], but for an anisotropic
model

< Cg(k) dk
— 50 D0k2 27'C.

Dt (Do) ~ J (9.3.10)

If this integral is finite, one has conventional diffusion with an effective diffu-
2
sivity in accordance with Taylor’s scaling, D o zVT?]-

9.4 Random Shear Flows and Generalized Scaling

On the other hand, Matheron and de Marsily [185] showed that the anomalous
transport in the longitudinal direction occurs if

1 Colk) dk T Cr(k)
Degf = — dk
et J D0k2 2n x

—00 —00

— 0. (9.4.1)

This condition for the anomalous diffusion has the clear physical interpretation
in terms of dimension of

c o
[k—f} :J dk Ce(k)k™? x VZal. (9.4.2)

—00

Here, V) is the characteristic velocity scale and ay is the typical distance between
two sequent zeros of V(z). In the case of
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o0

V2 < 0o and J dk Cp(k)k 2 < 00 (9.4.3)
—00

the transport in random shear flows is similar to the transversal Taylor diffusion in
channels of size ay. The origin of anomalous diffusion is related to the fact that a
scalar travels in a given direction for a very long time before changing direction.

The case of anomalous diffusion can also be interpreted in terms of scaling
representation of Eulerian correlation function

z—17

Celz—7) x v02< 4 >VE (9.4.4)

or in terms of the spectrum
Ci (k) ~ k%! (9.4.5)

and the assumption about the diffusive character of the wave numbers, which make
the main contribution to the transport

1 1
o

41)(t) ~ /Dot

Here, k — 0. By taking into account the simplified version of the Corrsin
conjecture, we arrive at

k() o (9.4.6)

2% (1) ~ J J C(f")dr' dt" oc Cp(2)/(1))F. 9.4.7)
0JO

Then simple calculations yield a scaling:

A i 1> %
) xDt = Vi —=] £ x—s 7, 9.4.8
0= 0w = Vi) 7 7 049
which relates the Hurst exponent
H(op) =1-E (9.4.9)

4

describing anomalous transport in the transverse direction to the exponent og
characterizing the spatial correlation properties of a system of random shear flows
[187, 188]. Note that for incompressible flows subdiffusive regimes are impossible,
and hence, 0 < oy <2. The special case o — 1 =0 corresponds to a white
spectrum

C(k) oc k=1 = k° (9.4.10)
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and recovers the anomalous diffusion found previously by Dreizin—Dykhne with
H = 3/4. For 0 < ar < 2, one has superdiffusion, while for o« > 2 we arrive to the
conventional diffusive behavior.

9.5 Isotropization and Manhattan flow

Besides the simplified model of random shear flow, more interesting is the under-
standing of the anomalous diffusion in incompressible velocity fields. Avellaneda
and others [187] obtained a very important and general result about the asymptotic
diffusion in an incompressible velocity field (7). If the molecular diffusivity Dy is
nonzero and the infrared contribution to the velocity field is weak enough,

)
<. 9.5.1)

a0

k2

Then one has the standard diffusion with the finite effective diffusion coefficient
Dy

On the other hand, there are several ways to generalize the model of anomalous
transport in random shear flows [189, 190]. Here, we consider a superdiffusion
regime for the “Manhattan grid” flow. Thus, from the formal standpoint, for the
incompressible case the velocity field is given by

Vx(xv Z) = _%7 (9.5.2)
V.(x,z) = 7%?2). 9.5.3)

We construct a two-dimensional random steady flow (quenched disorder) by the
superposition of two random stream functions ¥*(z), ¥*(x)

P(x,z) = P(2) + (). (9.5.4)

A flow with the stream function W (x, z) is then a two-dimensional generalization
of the random shear flows model (see Fig. 9.5.1). Note, in the case when ¥*(z) and
W?(x) are regular sinusoidal functions such a superposition gives a periodical two-
dimensional system of swirling eddies (cell system).

For the Dreizin—Dykhne flow, we have obtained the scaling for the effective
diffusivity in the transverse direction in the form

Degr (1) o V2 (\/a—gvg 12 o Vi, 9.5.5)
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Fig. 9.5.1 A typical plot of a
random Manhattan grid flow

In this two-dimensional case, we are faced with a quite different scenario. It is
believed that there exists a common effective diffusivity for both x-direction and
z-direction Deg(f) = Dy,

Dest (1) o V2 <“0) 172, (9.5.6)
f

off

After calculations, one obtains a new scaling for the effective diffusivity for the
“Manbhattan grid” flow,

Vo \ /3
Dest (1) o Voao (a—o z) x '3 (9.5.7)
0

Using the classical Taylor definition of the turbulent diffusivity, one defines the

mean square displacement,

Vo 2/3
R(1) o< D (1) o ag (—r) o 123, (9.5.8)
ap

Here, the Hurst exponent is denoted as H = 2/3. New scaling for the correlation
function takes the following form:

Deff(t) 5[ Qo 2/3 1

This scaling could be interpreted in terms of the number of interactions N (¢)
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Vo

C(t) = (V(0O)V()) vom, (9.5.10)
where
H
Ni(1) o (@> o . (9.5.11)
ap

The number of interactions N, () could be represented as the number of visited
sites. Here, it is natural to use the Alexander-Orbach conjecture [31] N;(#) 23,
for 2 < d < 6. Indeed, the value N; corresponds to the number of “layers”
intersected by the test particle.

On the other hand, it is possible to generalize the renormalization applied above,
Dy — Deg(f), to a multiscale random flow. For this purpose, we consider the
relation found in the previous section

) OE
2~ Dt ~ V2 —2—) 2 9.5.12
0~ et = V() P 0512

which have to be modified to

L\
Deff;zx/g( 5 t> 2. (9.5.13)
eff

Here, 0 < ar < 2. After calculations, one obtains the relation for the Hurst
exponent in the following form:

2
_2+O(E

H(og) (9.5.14)

When o = 1, one obtains the Hurst exponent H = 2/3, which corresponds to
the Manhattan grid flow.

This estimate looks fairly rough, but this scaling coincides with the rigorous
result obtained by the sophisticated renorm-group technique [191, 192]. Now we
can make one more step further. On the basis of scaling obtained, it is possible to
relate the Eulerian and the Lagrangian correlation exponents. The Hurst exponent
in terms of the Lagrangian correlation exponent is given by the formula

R? o Degit zJC(z)dt x 27 H(oe) =1 —ac/2. (9.5.15)

Here, 0 < o < 2. By comparing the relations for H(oc) and H(og), one easily
finds the relationship

B ZOCE
_2+OCE

oc (o) (9.5.16)
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In the region of applicability o < ag. Obviously, this is an approximation only,
but such relationship could be useful for the qualitative analysis of anomalous
transport problem. Note that two statistical ensembles are involved in all these
random flow models, namely the distribution of velocities and the different walks
for a given random velocity distribution. The effective transport depends on both,
and we must take into account this fact in discussing such nontrivial correlation

effects (see Fig. 9.5.2).

Anomalous transport in random flows

Ballistic approximation
(Corrsin 1953)
AyocVyt

Corrsin conjecture (1959)

<N\

Saffman effect 1960

Random shear flows
(Dreizin-Dykhne 1972)

2
Voag A

A
+ b,

!

CTRW

Fractal concept

Isotropization

Dy — Dy

Matheron-Marsili 1980

/

Manhattan flow

0

23
R o {Ko} 23 \ Multi-scale flows and
a,

Scaling for correlations

Fig. 9.5.2 Anomalous transport in random flows
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9.6 Diffusion in Power-Law Shear Flows

In this section, in contrast to the random shear-flow model, we investigate the
motion of a tracer particle moving in a steady velocity field (see Fig. 9.6.1)

V(x,z) = Volz|"*sgn(z). (9.6.1)

This can be viewed as the average over many configurations of the random walk
in shear-flow problem. For power-law shear flow, the most longitudinally stretched
walk must have each transverse step in the same direction, in order that the walk has
the largest possible velocity at each time step. In a typical realization of such a flow, the
longitudinal velocity V,(z) at transverse coordinate z increases as z'/2, a feature that
leads to faster-than-ballistic motion of a tracer particle. The transverse displace-
ment has a diffusive character,

z(f) o< y/Dot 9.6.2)

Here, Dy is the seed diffusion coefficient. On the other hand, the root mean
square longitudinal displacement R may be roughly estimated through the longitu-
dinal velocity at time ¢ [193]

Pr

Vi(z(1)) o Vo(Dor) " (9.6.3)

Then one obtains the relation in the form

Fig. 9.6.1 Schematic
illustration of a power-law
shear flow
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R(1) o Vor(Dot) %, 9.6.4)

where the Hurst exponent is given by the formula

H(fg) =1+ '%R 9.6.5)

The increase in longitudinal velocity with timescale is the underlying mecha-
nism that leads to R(¢) growing faster than linearly with time. It is interesting to
notice that for f; = 0, x is independent of the diffusion coefficient Dy. This is the
case of “split flow” (see Fig. 9.6.2)

For the power-law shear flow V(x,z) = Vo|z|’*sgn (z)%, the probability distribu-
tion of a Brownian particle can be described by the advection—diffusion equation

dp(x, z,t)
ot

op(x,z,t ?p(x,z,t
(o) P20 TPEED

g (9.6.6)

Here, the contribution of diffusion in the longitudinal direction has been
neglected. It would be interesting to determine the distribution of longitudinal
displacements,

pp(x, 1) = Jp(x, z,t)dz. 9.6.7)

The initial condition is given by p(7, t = 0) = 6(0). For describing the probability
distribution, it will be convenient to introduce the scaled longitudinal and trans-
verse displacements,

> V@)

A 4

A 4

A 4

A
\ 4

A

A

A

Fig. 9.6.2 A typical plot of
velocity profile of a split flow <
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X 4

(Vol‘) (Dol‘)ﬁ"’/z ’ 77(2, t) = \/D_Ot

In terms of these variables, we may write the probability distribution in the
scaling form as follows:

1) =

(9.6.8)

1+,

f(&n) = Vot(Dol)#p(x, z,1). (9.6.9)

The longitudinal probability distribution is give by the formula

fi(é) = Jf(é,n)dn (9.6.10)

We expect that this function has the asymptotic behaviors f7 () — const as
¢ — 0and

ﬁ(é)oc%s as &—0. (9.6.11)

ec™"

Now we are able to find the value of the shape exponent dg by constructing an
estimate for the probability of finding the extreme walks that contribute to the tail of
the distribution [193]. This implies that the probability of finding a stretched walk
decays as a pure exponential in ¢, e~*’. On the other hand, a stretched walk has a
longitudinal displacement, which scales as

t
R(t) Jzﬂkdz o 1t Pr, (9.6.12)
0

This maximal value corresponds to a scaled displacement &(f) o< t%*/2, and
hence, the distribution function is given by

OrBr
f(é) o eXp<—t 2 ) (9.6.13)

Since we have supposed that this function decays exponentially in ¢, we find the
shape exponent as

Sr(Be) = é (9.6.14)

Using the relation for the Hurst exponent
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Br

HBr) =1+, (9.6.15)
the expression for dg can be written as
or(H) = L (9.6.16)
R =1- .6.

This is of the same form as the phenomenological Fisher relation [194] between
the shape and size exponents for the usual situation where H < 1. We discuss the
Fisher relation in next section.

9.7 The Fisher Relation

Fractional exponents need not only appear in algebraic tails of distributions. An
important case involves exponential functions. Thus, in the case when there exists a
single special scale the configuration-averaged probability distribution of
displacements decays at large distances as

P(x,t) o exp (— (tiﬁ) &R) ) 9.7.1)

Here, Of is the large-distance shape exponent, and H is the transport Hurst
exponent.
In the case of Gaussian distribution, one has the formula

2
P(x, 1) o exp <— (ﬁ) ) . 9.7.2)

Here, H = 1/2 and g = 2. For the self-avoiding random walks H = 3/5 and
Or = 5/2. Indeed, for many random-walk processes, the size and shape exponents,
H and 0g, respectively, satisfy [194]

1

Here, we consider the range 0<H <1. This relation can be deduced simply from
the observation that walks, which are completely stretched, contribute to the tail of
the probability distribution. Thus, the probability of finding a stretched walk, where
x scales as t, is

P(x o t,1) exp(—t(lfH)é’*). 9.7.4)
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On the other hand, a completely stretched walk is constructed by choosing only
one direction at each step of a walk, and clearly this leads to a probability at time ¢,
which decays as

P(r) o< exp(—const - #). 9.7.5)

Equating these two forms yields the famous Fisher relation, o = ﬁ

The probability distribution of displacements in two-dimensional random flow
(Manhattan grid flow) satisfies this Fisher hyperscaling with the exponents H =
2/3 and og = 3. However, the Fisher argument appears to work for isotropic
random velocities but fails for layered random velocities. Indeed, this relation
fails in the case of the Dreizin—Dykhne model, where the anisotropic nature of
the problem plays a crucial role in determining the tail of the distribution function.
In their case, the shape exponent is much smaller than the value that is expected on
the basis of the Fisher scaling because the value of the Hurst exponent H = 3/4
would imply dg = 4. In this model, hyperscaling leads to anomalously slow large-
distance decay of the probability distribution, whereas the authors of Ref. [185]
found og = 4/3.

We can conclude that the investigation of complex random walks provides a
foundation for understanding a very wide range of transport phenomena. In partic-
ular, they play an important role in turbulent transport, kinetics, polymer physics,
biology, etc. Random walks can be generated on simple lattices or in continuous
spaces. Thus, the well-known example is the nearest neighbor walk on a square
lattice, where the random walk starts on a site that can be placed at the origin.
Return of particles to the initial point is one of the important and nontrivial
properties of random walk models. There are many cases where such correlation
effects are dominated. For instance, this related to random walks on random
substrates, including fractal substrates, as models for transport phenomena in
disordered systems. Below, we extensively investigate random walks on fractal
and percolation clusters in connection with turbulent transport in random two-
dimensional flows, where an extract enumeration approach is valuable.
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Chapter 10
Transport and Complex Structures

10.1 Bond Percolation Problem

Percolation problems are a prime example where fractal geometries play an impor-
tant role in determining the macroscopic properties of a system [195-199]. On the
other hand, percolation is a powerful tool for the study of transport properties of
complex systems, including such problems as electrical conductivity, the flow of
liquids through porous materials, and anomalous diffusion in chaotic flows. In
principle, the percolation approach describes statistically complex systems and
does not relate to classical dynamical laws. That is why the percolation method
has the similar status as the random walk approach.

To illustrate the basic definitions of the percolation theory, let us consider a
square grid. The cells of the grid are occupied with a probability p and empty with
the probability 1 — p. Neighboring occupied sites (black in Fig. 10.1.1) with a
common edge form a connected cluster. If p < 1, the clusters are small and
isolated. When p increases from O to 1, so does the mass of the largest clusters.
There is a value of 0 <p <1, at which a unique cluster appears that connects
opposite sides of the grid. When the size of the grid Ly — oo, this percolating
cluster is infinite; p., at which the infinite cluster appears, is called the percolation
threshold or critical probability. Numerical calculations performed on finite grids
allow one to conclude that p, ~ 0.59275 for clusters formed by neighboring sites on
a 2D square lattice; they also show that the clusters are fractal distributions of
occupied cells.

As p approaches p,, the finite clusters increase in size; a, being the radius of
clusters that contribute most to this increase, diverges to infinity at p.. When a
diverges, there is no characteristic length to scale the length-dependent physical
properties of the system. As fractal structures, the system looks the same at different
magnifications. The properties of the system become nonsensitive to many local
details, such as small changes in interactions of particles, lattice structure, and so
on, which do not influence the large-scale behavior. This feature results in the
universality of the critical exponents that describe diverging parameters near p..

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 165
DOI 10.1007/978-3-642-20350-3_10, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 10.1.1 Schematic
picture of a percolation
cluster

These universal exponents depend on the model under consideration and the
dimensionality of the system but not on the details of the local structure.

Near the transition point p = p., geometrical percolation can be described in
the same terms as thermal second-order phase transition, say, a transition from a
parametric state at high temperatures and a ferromagnetic state at low temperatures.
The analogue of temperature T is the occupation probability p of one site; the
analogue of the order parameter, say, the magnetization M, (T), is the probability
P (p) that a randomly chosen site belongs to an infinite cluster

p—pc—T.—T, (10.1.1)
Poo(p) < M(T). (10.1.2)

In magnetic materials, the magnetization vanishes at the critical temperature T
according to the power law [200]

M.(T) < (T. —T)" (10.1.3)
with the critical exponent f. Immediately above the percolation threshold,
0<p-—-p. K1, (10.1.4)
the order parameter P, (p) behaves in a similar way (see Fig. 10.1.2):
Poo(e) o (p—po)f = el (10.1.5)
Of course, P (p < p.) = 0, because only finite clusters exist at p < p..

The correlation length a also diverges when p approaches (both from below and
from above) (see Fig. 10.1.2), with a new critical exponent v:
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Fig. 10.1.2 A typical plot of A a(p) p A
characteristic correlation »
length and the probability of [ N ‘vl ]
finding a site belonging to an
infinite percolation cluster 1
0 De P
(2) : : (10.1.6)
ale) X —— = —, 1.
|p - p(" |F|

where ¢ is the small percolation parameter characterizing nearness of the system to
the percolation threshold. Such a behavior resembles the divergence of the correla-
tion length near critical points for thermal phase transitions. Both critical exponents
f and v are universal, because they depend on the dimensions of the system f§ =
f(d) and v = v(d) but not on the local details. The aim of the percolation theory is
to calculate these exponents from the first principles and to find relationships among
them. Below we illustrate relationships between the critical exponents and the
fractal characteristics of the percolation networks; the techniques of calculating
the values of critical exponents are discussed in [196-202].

10.2 Fractal Dimensionality and Percolation

At percolation threshold p,, the infinite percolating cluster contains holes of all
possible sizes because the correlation length @ diverges. Above p,., the length a is
finite and corresponds to the linear size of the largest “holes” left by the percolating
cluster. It means that at p > p,, the percolation cluster is self-similar only on length
scales 4 < a and homogeneous at larger scales 4 > a. At 4 < a and 4 > a, the mass
of the infinite cluster scales differently:

M.(A) o< A%, ) <a, (10.2.1)
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M.(2) x P o4, J>a. (10.2.2)

Here, the cluster density is given by the formula

p(A) = %. (10.2.3)
At /. = a, the two last expressions should recover the same mass:
Pl (p— po)f? = atv, (10.2.4)
But according to the definition, a o |p — p.|”". Hence,
dp =d— %, (10.2.5)

which relates the fractal dimension of the percolation cluster to the exponents
p and v. The expression for the density is given by

pla) o a Pl = a%. (10.2.6)

The exponents f§ and v are the universal constants in the sense discussed above;
therefore, dr is universal as well. For two-dimensional grids with § = 5/36 and
v =4/3, one gets dp = 91/48 ~ 1.8958. In three-dimensional case, the key perco-
lation exponents are v = 0.875, f = 0.417. There has been considerable progress
over the last decades in the determination of the geometrical properties of two-
dimensional random percolation cluster for different lattice models [103, 196].
Thus, scaling exponent for the hull fractal dimensions D, =1+ 1/v=7/4 is
known exactly, so is the exponent v = 4/3 characterizing the divergence of corre-
lation length near the percolation threshold. The values of these scaling exponents
are confirmed by numerous computer simulations [203, 204]. The scaling
exponents v and D), characterize the geometrical properties of percolation clusters
and allow one to determine other exponents, which arise in the theory of critical
phenomena through the hyperscaling relations [204, 205]. In the subsequent con-
sideration, we use these results to analyze two-dimensional random flows.

The percolation problem is very closely connected with the theory of phase
transition in statistical physics. It was shown that the problem of the lattice bond
percolation is equivalent to the one-state Potts model. Later it was realized that the
one-state Potts model at the tricritical point (which is a diluted model with percola-
tion vacancies) is geometrically equivalent to the critical Ising model [103]. At
these points in the phase diagrams, the three coexisting phases become identical. At
the tricritical points, the mean field theory based on the Landau representation for
the free energy becomes valid.
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10.3 Finite Size Scaling

At the first stage of our analysis, we have restricted our attention to systems of
infinite size. Estimates of percolation effects in finite systems can be obtained on
the basis of phenomenological arguments, which were first suggested by Fisher as
early as in 1971 [206]. Indeed, scaling laws for finite systems are important for
practical application as well as for simulations.

Let us consider some property z(Lo, ¢) of a system of finite size Ly. We assume
that this quantity for infinite systems is proportional to &”,

z(g) o . (10.3.1)

Here, 9 is an exponent. In the framework of the scaling concept, the quantity
z(Lo, &) should be scaled only by the correlation length and that is why we find

L
2(Lo,€) x a °Z (—0> , (10.3.2)

a
where 9 is an exponent. The basic idea is that for Ly > a(¢) one can break the
system into (%0) "blocks of linear size a. Within each of these, the behavior is self-
similar [207-209]. For infinite system, where Ly — oo, the value under consider-
ation does not depend on L that leads to the condition

L
z(f) = Z(y)],_,, = const. (10.3.3)

Thus, we obtain the relation for the quantity z(Lo, ¢)in the following form:

ox a(e)’ o L (10.3.4)

81’0'

Z(L()7 8)

|Ln~>oo

By comparing this result with the initial percolation representation, one finds the
relationship among the percolation exponents

0
a(9,v) = 3 (10.3.5)
The final result is the following:
(Lo
z(Lo, &) x a Z(—) (10.3.6)
a

When the correlation length is much greater than the system size, the value
z(Lo, &) does not depend on a. This leads to the scaling

z2(Lo,€) ox Lo~ a> L. (10.3.7)
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On the other hand, this relation is valid when ¢ — 0 for any finite large size of
system under consideration. The exponent ¥ can be found on the basis of
simulations or experiments because the correlation exponent v is usually known.

10.4 Comb Structures and Percolation Transport

Most percolation problems cannot be solved analytically, and numerical simulation
is indispensable tool in this field. However, there exists simple and effective model
of comb structure (see Fig. 10.4.1) to investigate transport on an infinite cluster at
the threshold percolation. Diffusion processes on such structures have been studied
intensively [210-212].

Comb structures comprise of a backbone and orthogonal close-ended teeth. In
this setting, the backbone represents the connected pathways, which span the
cluster, while the orthogonal close-ended teeth represent the dead-end pathways,
which emanate from backbone. In the electrical analogy problem, the backbone
represents the conducting pathway and the teeth represent the dangling bonds along
which current does not flow. Here, transport properties of ‘regular’ comb structures
having teeth of infinite length are identified in terms of scaling. In this model, there
are no loops to form connections between different dangling bonds, and the
dangling bonds are uniformly spaced along the backbone.

Elementary estimates lead to a simple scaling for transport along this comb
structure

(A*) oc D (T), (10.4.1)

where Dy, is diffusion coefficient along the axis x and (T') is the mean effective time
of longitudinal movement. Let (T) be
/ Back-bone

Fig. 10.4.1 Schematic //'
picture of a comb structure Teeth
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Fig. 10.4.2 Schematic
diagram of complex comb
structure
t

(T) x t-D(t) x

i (10.4.2)

Here, we introduce the return probability ®.(7), which in the one-dimensional
case is given by

D (1) ~ p(0,0)A =~ (10.4.3)

A
\ArDot ’

where p is the Gaussian distribution function, Dy is the seed diffusion coefficient,
and A is the distance between teeth.

Now we obtain an anomalous regime of diffusion (subdiffusion) with the Hurst
exponent H = 1/4

D,
2 XX
(A*) o 7D Vi, (10.4.4)

or for D,, = Dy, we can rewrite

(Ax*) o /Dt (10.4.5)

However, in this approach the percolation character of correlation effects was
lost and we did not use the correlation length a(¢), which is the main magnitude
characterizing spatial scales of the system near the percolation threshold . Models
of anomalous transport on comb structures are widely applied due to the fairly
universal kind of topology. More complex comb structures (see Fig. 10.4.2) could
be also investigated by an analytical way [210-212].

10.5 Hilly Landscape and Percolation

The mathematical analysis of continuum percolation is quite different from lattice
analogue. In a discrete problem, the sites 7 (or bonds) in a lattice are occupied with
the probability p and nearest-neighbor sites are regarded as linked. There exists a
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unique percolation threshold p. above which, p > p., occupied sites belong to an
infinite percolation cluster. In the work presented here, we consider percolation on a
continuum. In a continuum problem, 7; is replaced by the continuum variable r and
we study the isolines (in two dimensions) or isosurfaces (in three dimensions) of a
smooth potential V(7).

The basic problem of continuum percolation theory can be formulated very
simply. Given a continuous potential \7(7), then for each & there may or may not
exist an infinite connected set with \7(?) < h. If such a set does not exist for a range
of h < h., and does exist for a range of & > h,, then A, is known as the percolation
threshold.

In 2D, there exists a better visualizable representation of this problem. One can
consider a topographical analogy where areas with \7(x, y) < h are the valleys filled
with water to a given level 4 in a mountain range V(x,y) > & (see Fig. 10.5.1). An
interconnected ocean of water of infinite extent exists if the level of water % is
greater than critical percolation threshold /.. The case of incompressibility implies
that the velocity field is related to the stream function ¥

OV (x,y,1) 0¥ (x,y,t)
Vi, y,0) = — —200 0y (g ) = 10.5.1
(2, 3,1) ay 3(6,3,1) o (10.5.1)
Here, W(x,y, ) is the Hamiltonian (streamline) function.
If the potential V() is a random function, in a sense that coordinate
CF—7") = (V(OV(F") (10.5.2)

is a sufficiently fast decay function, then both discrete and continuum problems are
equivalent, and the contours of constant V() =/ can be considered as the

Fig. 10.5.1 Schematic picture of contour lines in continuum percolation model
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perimeters of percolation clusters. One is typically interested in locating percolation
threshold and studying scaling behavior near the threshold.

We are going to use the percolation geometrical arguments to investigate the
appearance of anomalous transport in two-dimensional chaotic flows. The percola-
tion approach looks very attractive because it gives a simple and, at the same time,
universal model related to both long-range correlation effects and complex topol-
ogy. Kadomtsev and Pogutse [213] reduce the increasing of turbulent diffusion in
two-dimensional chaotic flows to the problem of random contours, which are well
described in the framework of percolation approach. Thus, it was supposed that the
main contribution to the effective transport is related to the existence of the
percolation streamline near the threshold. Here, we restrict ourselves by the sin-
gle-scale approximation of the streamline function. For the steady case, the charac-
teristic spatial scale is given by the relation

¥(x,y)

N = 10.5.3
v (1022
The percolation theory requires the existence of at least one coastline of infinite

length, which is given by the scaling law [103]:

L(e) o< / (@)D (10.5.4)

Here, D;(v) = 14+ 1/v = 7/4 is the coastline exponent and ¢ is a small dimen-
sionless quantity, which characterizes the degree of deviation of the system from
the critical state (the percolation threshold),

oY

&R ——
;LVO’

(10.5.5)

where 0% is the value of the streamline function ¥ = W(x,y) near the percolation
threshold, /A is the characteristic scale, and V) is the characteristic velocity of the
flow. To describe transport effects, it is necessary to employ the correlation length
a(e), which is the main magnitude characterizing spatial scales of the system
located near the percolation threshold, ¢ — O,

ale) = (10.5.6)

o
Here, 4 is the geometric characteristic scale.
Thus, the idea of long-range correlations was accomplished in the framework of

the percolation approach. Such a critical behavior is not amenable to any kind of a

conventional perturbation analysis. We discuss this problem in more detail later in

the framework of small percolation parameter renormalization as well as in relation
to the presence of stochastic layers in two-dimensional random flows.
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On the other hand, there exists an important topological difference between
two-dimensional (2D) and three-dimensional (3D) percolation problems. In the
two-dimensional case, the only infinitely extended cluster may exist at a time
(V(7) >h or V(i) < h), while in three dimensions there may exist simulta-
neous percolation through both clusters.

10.6 Phenomenological Arguments for Percolation Parameter

We consider here a simple and effective method, which permits us to estimate the
percolation parameters by using the finite value of the percolation parameter ¢,
instead of ¢ — 0. In fact, it is possible “to hide” singularity into a phenomenological
small parameter. Thus, the correlation length is one of the most important values
describing transport. However, in a system of finite size L, we cannot consider the
infinite value

Acor = a(5)|340 — 00. (10.6.1)

Here, it is relevant to introduce a new small “renormalization” parameter ¢, as
the value that provides the condition

a(e) = il Lo. (10.6.2)

The simplest calculations yield a new small parameter

A

1
6.(Lo) ~ (L—> (10.6.3)

This result can be interpreted in the framework of percolation experiments with
finite size samples. Under these conditions, the percolation threshold arises when
the value of ¢, slightly differs from zero and is situated in an interval Ae. The
estimate obtained for ¢, can be considered as the characteristic width of this interval
(see Fig. 10.6.1) Ae¢ = ¢&.(Ly). Actually, we are starting from the initial small
parameter

A
i Lo) = - < 1, (10.6.4)

which describes a real physical system with the characteristic scales Ly and A. On
renormalization, we obtain a new percolation parameter

1
Ae = &.(g) =~ & (10.6.5)
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Fig. 10.6.1 Sketch of 4 |
renormalization procedure for a(p) !
a system of finite size :
I
I
I
|
I
L |
N
l
I
I
I
|
Pe
: »
Ae= a*(L) P

It is natural that the value A¢ decreases if the system size Ly increases.

Similar renormalization method could be applied to the transport description of
two-dimensional chaotic flows, which allows us to develop the Kadomtsev—Pogutse
percolation approach discussed in the previous section. The key problem is to
determine a small parameter & and to find an adequate renormalization condition
for the finite value of ¢,. Then we can calculate the diffusion coefficient that is
based on the estimate of the finite correlation length a(e. ) and correlation time (¢,.)

Degr(&4)

(10.6.6)

In the framework of phenomenological approach, we can estimate the correla-
tion time T as

L(ey)

O C

(10.6.7)

where L is the length of the percolation streamline. After substitution, one finds

A fale )\ A1\

Corresponding scaling will be obtained below on the basis of stochastic layer
concept. In this percolation approach, the renormalized small percolation parameter
&, is expressed through the characteristic random flow parameters, such as the
Peclet number, the Kubo number, and the energy dissipation rate Indeed, in two
dimensions we are faced with a quite different scenario. While many fractals, such
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Fig. 10.6.2 Schematic Percolation Hull
picture of a percolation hull

as the comb structures, are essentially loopless structures, many others, such as two-
dimensional percolation clusters, consist of a network of loops.

In our case, the percolation hull is the best candidate to approximate scalar
ballistic path. A percolation cluster is a collection of occupied sites connected
to each other by paths along nearest-neighbor pairs of sites and surrounded inside
and outside by vacant sites. The perimeter of a percolation cluster is the continuous
path of occupied sites at a boundary, which can be either external or internal to the
cluster. The term “hull” was first used by Mandelbrot [157-161] to describe the
island of points enclosed by the external boundary of a cluster, but it has been
generalized to refer to the boundary as well (see Fig. 10.6.2), and that meaning will
be used here.

10.7 Subdiffusion and Percolation

The main specific feature of percolation media is that they consist of nonoverlap-
ping regions (clusters) such that the transport inside each cluster is possible,
whereas the passage of particles between clusters is impossible. Since only finite
clusters exist in such a medium occurring in the state below the percolation
threshold, the transport of particles over large distances in this state is hindered.
Finite clusters possess fractal properties. Above the percolation threshold, the
medium contains an infinite cluster and the transport of particles is not limited
with respect to the range. A key characteristic of such a medium is the correlation
length a. Below the percolation threshold, the distribution of clusters with respect to
size [ falls in the region / < a (the number of clusters with dimensions / > a is
exponentially small). On approaching the percolation threshold, the correlation
length exhibits unlimited growth: @ — oco. Above the percolation threshold, this
parameter becomes finite again and the distribution of finite clusters exhibits the
same properties as those below the threshold. As for the infinite cluster, it possesses
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(like the finite clusters) fractal properties and is scale invariant on the spatial scale
Ly < a, while being statistically homogeneous on the scale Ly > a.

An important topological feature of any cluster is that it can be subdivided into
two regions: backbone and a set of dead-ends, so that backbone connects remote
parts of the cluster and all of them are linked to backbone, each at a single site,
while being isolated from each other. It is important to note that the fractal
dimension of dead-ends is greater than that of backbone (see Fig. 10.7.1). Scalar
particles occurring within backbone will be called “active.” The total number of
active particles decreases with time, since they are lost in dead-ends and localized
in small clusters. This implies that effective transport can be even subdiffusive if we
consider finite time intervals.

Indeed, there exist two different time intervals. In the framework of the coastline
phenomenology, the key value is the characteristic correlation time, t(¢,) = L%)
The first case when

L(e,)

> 1(e) = v
0

(10.7.1)

was preliminary considered above on the basis of the conventional definition of the
diffusion coefficient,

2
Dy o ). (10.7.2)
(&)
The second case corresponds to the interval
L %
Y (10.7.3)
Vo

Fig. 10.7.1 Schematic
diagram of a percolation
network (nodes-links-blobs
(NLB) model)
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Here, particles are captured by dead-ends and localized in small clusters, and
that is why the mean squared displacement of tracer is less than the correlation
spatial scale R?() < a*.In some sense, the percolation cluster looks like a labyrinth
for walking scalar particles. It is convenient to introduce the estimate of the mean
squared displacement of tracer particles in the following form:

R*(f) oc a®P oo (1), (10.7.4)

where P, is an additional factor, which describes the part of space related to
“active” motion of scalar particles. We expect that the effective transport will be
anomalous so that

R*(1) o 1, (10.7.5)

where H is the Hurst exponent. By establishing the relation between the phenome-
nological expression for R?()and the conventional probabilistic representation

R%(1) oc d N(t)Acor?, (10.7.6)

we conclude that the additional factor P, introduced above could characterize the
fractal dimensionality effects as well as time dependence. This is a great advantage
of the two-dimensional percolation model. Here, d is the space dimensionality,
Acor is the spatial correlation scale, and N is the number of steps. Simplified
estimates of effective transport for comb structures give the value of the Hurst
exponent H = 1/4, which could be considered as a lower boundary. Thus, we
expect that 1/4 < H < 1/2. The reader can find more discussions on this subject
in the section devoted to the percolation description of transport in chaotic flows in
the framework of the renormalization technique.
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Chapter 11
Fractional Models of Anomalous Transport

11.1 Random Walks Generalization

In the framework of the probabilistic approach to transport in random flows, the
probability density p(7,¢) plays a central role. This is the probability to find a
random walker at time ¢ at distance  from its starting point. In a random system,
p(7,t) contains information on both static disorder and the dynamical process. In
homogenous systems, the probability density is Gaussian and does not depend on
the configuration considered

(1) = ot (— rz) (1.1.1)
p i (4nD0t)d/2 p 4D0t . 1.

Here, Dyis the seed diffusion coefficient and d is the space dimensionality.

In random systems, p(F,¢) varies from configuration to configuration and
depends on the starting point. To obtain a complete description of scalar particle
diffusion in random systems, one has to study the configurational average of
probability density p(r, t), where the particle density is given by

o0

Joo n(7, 1)dF = N, J p(F,1)dF. (11.1.2)

—00 —00

Here, N, is the scalar particle number. The variance of the probability density
represents the mean square displacement, from which the diffusion constant and the
conductivity can be obtained. The Fourier transform of p(r,) represents the
scattering function, which is also experimentally accessible.

The anomalous character of transport in random systems has stimulated the
search for transport equations that differ significantly from conventional diffusive
description. Besides the different phenomenological methods of modification of the
diffusion equation, the integral equation can be used to describe the random walk
processes. As early as 1905, Albert Einstein obtained a functional equation for the

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 181
DOI 10.1007/978-3-642-20350-3_11, © Springer-Verlag Berlin Heidelberg 2011
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particle density solely on the basis of the general ideas about the process of random
walk [214]:

+00

n(x,t+1) = J We(y)n(x — y, t)dy, (11.1.3)

—00

where Wg(y)is the probability density of undergoing a jump y. This fundamentally
nonlocal equation can be made local by reducing it to the conventional diffusion
equation

on(x, 1) D *n(x, t)

= . 11.14
ot ox? ( )
Here, the diffusion coefficient is given by Brownian type formula
1 +00 y2 <y2>
D =- We(y) =dy = ~—. 11.1.5
| oS e = (1L.L5)

The key element in the random walk approach is Markov’s postulate that the
length of the jump y is independent of the prehistory of motion. By introducing the
probability G for a particle at position x at time 7 to pass over to the interval X’ + dx’
during the time interval d¢, one obtains the functional equation for the density of
walking particles

on +oo
— = J G(x — X)n(t,x')dx'". (11.1.6)
ot oo

This representation demonstrates the nonlocal character of transport (see
Fig. 11.1.1). Linear equation always provides the best conditions for an analysis.
The Einstein functional is linear and it is more convenient here to switch to the
Fourier representation for the particle density n(x, ) and the functional kernel G(x)
with respect to the variable x. Formal manipulations yield the equation

Oy (1)

T G (1), (11.1.7)

which indicates the absence of memory effects for the Fourier harmonics.
Here, G; and 7k (¢) are the Fourier transformations of the functions G(x) and n(x, )
with respect to the variable x. The approach based on the Fourier representation of
nonlocal functional equation was developed by Levy and Khintchine, who used the
approximate equation of the scaling form [215]

ong (1)
ot

= —const|k|" 7 (r); 0 <oy <2. (11.1.8)
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Fig. 11.1.1 Schematic diagram of Levy—Chinchine walks

It is easy to see that, for o, = 2, we are dealing with the Gaussian distribution
(corresponding to a conventional diffusion equation Gkﬁk = —Dyk*i1;). Indeed, the
formal approach based on the scale-invariant behavior of the probability density
leads to the relation

n(x,t) = t_ig(x, o). (11.1.9)

Then, for the Gaussian distribution with o, = 2, we obtain

2
g(x,2) = 2\/_exp< 2) (11.1.10)

Some other analytic distributions are also known. For the case o, = 1, we obtain
the Cauchy distribution [216]; if o, = 3/2, one arrives at the Holtsmark distribution
[13]. For the case o, = 1/2, we have the Levy—Smirnov distribution [14]. All the
probability densities with o <2 have power-law tails and corresponding Levy
flights differ significantly from Brownian walks. The important feature is that the
second and higher order of moments of the distributions with 1 < o <2 and all
moments of the distributions with 0 < ap < 1 diverge. There is also an important
result, which follows from the Fourier representation of density n(x, f)

21/2__2 0
@)= 8k<3k k(0] o) (ILL1D)
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This expression is useful for relating the transport scaling laws to probabilistic
approximations. Now it is easy to find a relationship between the Hurst exponent H
that describes anomalous transport and the Levy—Khintchine exponent oy, that is the
parameter of the kernel power approximation H(op) = 1/ar, where 1 < o <2.
These results were represented schematically and the reader can find more detailed
information on these topics in numerous publications [13—15].

11.2 Functional Equation for Return Probability

In the previous discussions, we applied the probability to return to the origin at time
t using the Gaussian distribution in the form

P(0,1) =

1 X 1
——exp | ——— X . 11.2.1
2v/1 d Dot P ( 4D0[>x~>0 \/d Dyt ( )

Here, d is the dimensionality of a space and Dy is the diffusion coefficient of
randomly walking particle. This formula describes the probability to return without
excluding that previous returns can already have occurred. To analyze transport in
chaotic flows, where coherent vortices are responsible for trapping effects (see
Fig. 11.2.1), it is natural to introduce the probability P;(¢)to return to the origin for
the first time at the moment 7.

In the framework of the continuous time approach, the functional equation for
the probability to return to the origin for the first time at the moment ¢ can be
represented as the following:

P(0,1) = Jr P(0,7)P(t — )d + 5(2). (11.2.2)
0

Here, 6(¢) is the delta function, which describes the fact that the scalar particle
that is situated at the origin at the moment under consideration corresponds to the
above definition. On the other hand, the integral part of the relation is responsible
for the contribution from the scalar particles, which come back to the origin at a
time ' and then will return to the origin after a time interval ¢ — 7. The functional
equation obtained is linear relation and, which is more important, this equation
appears to be a convolution. Therefore, it is relevant to apply the Laplace transform

F(s) = L F(t) exp(—st)dt. (11.2.3)

Upon substitution, we find the relation

P(0,s5) = 14 Py (s)P(0,s). (11.2.4)



11.2  Functional Equation for Return Probability 185

Fig. 11.2.1 A tracer trapping by vortex structures in a two-dimensional flow (After Danilov [222]
with permission)
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An unknown function for us is the probability P;(¢) to return to the origin for the
first time, whereas for the probability P (0, r) we can apply the Gaussian representa-
tion. In the one-dimensional case, we have

~ < exp(—st)
PO,s)=| —= 11.2.5
9= Vi (12
After simple algebra, one finds
- P(0,s) — 1
Bys) = PO =1 (11.2.6)
P(0,s)

By applying the inverse Laplace transform, one can obtain the solution for the
probability P;(¢) to return to the origin for the first time at the moment #.

const const
Pi(1) = 228 (,7) 11.2.7
1( ) ZW exp 4t ( )

This is the Levy—Smirnov distribution with the asymptotic behavior,
Py(t)|, .., o< t73/2. The corresponding Levy—Khintchine exponent is oy = 1/2.

Discoveries of anomalous diffusion in numerous phenomena have stimulated the
search for transport equations that differ significantly from the conventional diffu-
sive representation. An elegant integral equation corresponding to this problem was
suggested by Einstein and Smoluchowski. However, trapping and memory effects
were not included in that equation. To describe trapping and subdiffusive regimes,
the continuous time random walk model was introduced in [13]. Fortunately,
several detailed reviews [11, 14, 15] have been published recently.

11.3 Ensemble of Point Vortices and the Holtsmark
Distribution

As early as 1919, Holtsmark founded the Levy distribution with o = 3/2 in
describing the statistical properties of particle ensemble [44]. In the case of chaotic
flows, we can investigate an analogous problem, where a random ensemble of point
vortices can be considered. In a system of point vortices, the motion of each vortex
depends on the influence of other vortices of the ensemble under consideration (see
Fig. 11.3.1). However, in contrast to the Holtsmark model, here we deal with a point
vortex distribution in velocities f{V). The direct use of the Holtsmark distribution
for three-dimensional vortex systems was not confirmed by simulations. However,
numerical simulations of point vortex ensemble on a plane allow one to consider the
Levy distribution as rather correct [217, 218]. Thus, in the two-dimensional case,
the velocity field from point sources is given by
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Fig. 11.3.1 The Holtsmark distribution
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vx(f):—iz ;0= ) =3 V() (11.3.1)

j-1 |’ —r,|

N

Z

~1 |’_’J|

va (11.3.2)

Below, we consider an ensemble of point vortices with the identical “charges”
I'; = I'y. Let the sum N of independent random variables g; be the expression

g= Zg,. (11.3.3)
J

Then, on the basis of the Markov method we can write the expression for the

probability density
N
flg) = <5<g—2gj>>, (11.3.4)
J

where () denotes averaging over an ensemble. In our case, we are averaging over
the ensemble of noncorrelated point vortices. We use here the Fourier transforma-
tion that allows us to calculate the probability density by factorization of its Fourier
transform. Since the Fourier transform of delta function is given by the expression
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5(F) = (2;)3 Jd3/€ e (11.3.5)

we find the probability density as

= (L for )Y )

(2n)’

- (2;3 Jd3/€{effGH FL () (11.3.6)

In the case under consideration gj = gj(i); therefore, using the factorization of
Fourier transform of distribution function, we obtain

<exp (_i,;z g (fj.)) > _ 1:!1 {%exp [—ilégj(f,-)] } - {V?/—’;exp [—i/?g*(rﬁ} }N
! (11.3.7)

We used here an approximation of the probability function P in the form
P = dF/Wy. Here, Wy is the region volume where “sources” (vortices) creating
the field under consideration are distributed. To investigate statistical properties
of a random field, it is naturally to suppose a large amount of vortices. Then by
applying the classical result

(-3

we rewrite the Fourier transform of distribution density

N—oo 2 exp(—2z), (11.3.8)

full) = {J;—'; exp| ~ikg(7)| }N = [n®]" (11.3.9)

in the form

A = 1= [t @]} = L1k [ %] it ]|
~ exp{% Jdr(l ~exp [il?g‘])}.

It is easily seen that the expression (relation) N/Wy corresponds to the spatial
density of vortices ny, which we assume a constant in order to simplify our
calculations. Moreover, the condition N — oo allows us to use the result obtained

(11.3.10)
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to analyze a field of point vortices, where the summation does not include a
contribute of the vortex situated in the point under analysis. Then the expression
for the Fourier transform of probability density is given by

A zexp{—an(l —exp[—i/Zg(f)]) dF}. (11.3.11)

Let the value g is approximated by

g(7) =;<i> (11.3.12)

Then, the formal integration over the space with d-dimensions, where
di = r?=dr leads to the expression for the Fourier transform of Levy distribution

~ = . IE'F = d
felk) = exp{—nvj [1 — exp <l rw“)] dr} = exp{—const . k‘/v}. (11.3.13)

The Levy exponent of the distribution oy, depends on a space dimensionality d
and the exponent yy:ap.(d, yy) = % The power tail of the distribution function is
given by

1

ek (11.3.14)

f(g) x

For the gravity case y;, = 2 (an acceleration a is proportional inversely to the
squared distance) in three-dimensional space d = 3, the Holtsmark exponent is
a =3/2 and f(a) o< a=>>. In the case of the two-dimensional (d = 2) point
vortices system, where y;, = 1, we find «; = 2, and hence,

() X3 (11.3.15)
Such a scaling for the tail of the velocity distribution function is the effective tool
to investigate strongly nonequlibrium systems where stochastic mechanisms of

acceleration or strong spatial gradients form nonexponential distribution [219-221].

11.4 Fractal Time and Scaling

Scaling concept is rather relevant to the anomalous transport problem. To interpret
the scaling representation or the waiting time distribution function, it is convenient
to employ the Weierstrass-like random walk [13]. Consider the effective probabil-
ity distribution v(¢), which describes the hierarchy of independent Poisson events
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Y1) = C(NY (20) exp [—(go)j : t] (11.4.1)
Y = (o). (11.4.2)

Here, the normalization condition is given by
Jl/f(t) dr=1 (11.4.3)
0

In the case of g<1 and N > 1, the characteristic times are expressed as

7, =1/(¢)’, and hence,
To< T <Tp <ot (11.4.4)

By analyzing the expression for the probability density i/, we see that the
smallest time contributes most. For the hierarchy under consideration, we have

t t t
Vo = Co exp(——), v, =C exp(——),...,wj =C; exp(——), (11.4.5)
To T1 Ti

J
where

1 1
=l nu=— nn="—", ... ="— (11.4.6)
8o 80 8o/

Let us build the condition to obtain the effective probability density in the scale-
invariant form. After simple algebra, we derive

1-N
V() = N {N goexp(—got) +N2gy? exp(—gozt) + } (11.4.7)

1-N
Y(got) = T{N goexp(—go’t) + N?go” exp(—go’t) + ...} =~

(11.4.8)
y(t)
—~2 —(1-N —got
N g ( )80 exp(—got)
In the case when
1
—— > (1 —N)go (11.4.9)
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the effective probability density is scale-invariant and is given by the formula

Y ()

Y (got) =N (11.4.10)

Now we arrive at the asymptotic representation for the waiting time distribution
function v (¢)

1
W (1) X for 1— oo, (11.4.11)
where the characteristic exponent y is given by

1
y:M:m—N (11.4.12)
Ingy Intg

These calculations demonstrate how the waiting time distribution function v(r)
can be interpreted in terms of fractal representation.

The waiting time distribution function must be the effective tool to investigate
trapping effects in flows with vortex structures (see Fig. 11.4.1). Indeed, in the case
of one-dimensional system of regular situated vortices (array of rolls) it is possible
to find a scaling for the effective transport. Suppose that all of the tracer is initially
released in a single cell. The main question is: how many cells, N(¢), have been
invaded by tracer at time #? In the presence of seed diffusion, we expect that

Tl

(2

Fig. 11.4.1 The stream function of two-dimensional turbulent flow. (After Rhines [169] with
permission)
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Fig. 11.4.2 Vortex structures Vortices
and coherent zones

Boundary layers

[

I
Scalar trapping

v

N(t) « \/Dot. (11.4.13)

With certain restriction, this "2 _law is correct. However, there is an intermediate
stage

t< L’ (11.4.14)
o 4.

where the waiting time between two “jumps” is an important factor. Here, L is the
cell characteristic scale. Below we consider the case of one-dimensional array of
rolls in more details.

For the general two-dimensional case, there are anomalies if the velocity field is
frozen in time. In this case, a finite fraction of the scalar particles is trapped, since
the streamlines must form closed loops in the neighborhoods of local maxima and
minima of the stream function. This forms trapping regions and leads to the
appearance of “coherent” behavior in some spatial regions separated from each
other (see Fig. 11.4.2). Such coherent structures in the form of long-living vortices
considerably change the character of transport in chaotic flows in comparison with
the conventional diffusion.

11.5 Fractional Derivatives and Anomalous Diffusion

One of the valuable concepts used to study various transport processes is scaling.
Scaling has a surprising power of prediction, simple manipulations allowing one to
connect apparently independent quantities and exponents. We have seen how to
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extend our ideas of using partial differential equations for the possible treatment
of anomalous transport. We have looked at the nonlocal transport equation as
well as the continuous time random walk approach. This allows us to apply the
scaling concept to construct a generalized transport equation. Moreover, it is
possible to introduce a fractional derivative when considering the conventional
one-dimensional diffusion equation

on(x, 1) 0*n(x,1)
5 =D, B (11.5.1)

for x>0 and n(0, ) = n;(z), n(x,0) = no(x) = 0. By taking the Laplace transform,
one obtains

D%ty
oxt’

siis(s,x) = Do (11.5.2)

The solution of this equation is given by the formula

g(s,x) = iy 4(s, 0) exp{—1 /Diox}' (11.5.3)

The number of walking particles N, in terms of the Laplace transformation is
represented by the expression

Nps(s) = J: Aig(s,x) dx = 7y o(s) %. (11.5.4)

Note that this leads to the relationship between the number of walking particles
N,(t) and the particle distribution function n(0, r) = n;(r). In the ordinary variables,
this formula leads to the expression for N, (r)in the form

(1) = Jt ﬂn,(r’)d/. (11.5.5)

N,
o/n(t—1)

This coincides exactly with the definition of the fractional derivative of order /2
[223-226]

d'Pf(1 1 d [ d
) _ fJ flr)dr (11.5.6)
a2 T(1—1/2) dt ) o (1 —1)?
The fractional representation could be also obtained for n(0,¢) = ny(¢)
t N tl
ni(f) = J _ND (11.5.7)
0+/Don(t — )
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Fig. 11.5.1 Schematic y A
representation of the meaning
of fractional derivation

\
Ay = py (Aol

Fractional derivatives provide a rather effective description of long-range
correlations and memory effects. We can also use the symmetric fractional deriva-
tive of an arbitrary order o > 0 that can be defined, for a “sufficiently well-behaved”
function f(x), where —oo<x<oo, as the pseudodifferential operator
characterized by its Fourier representation,

d* ~
—_— = —|k|* f(k), 11.5.8
e 1) =~k ) (11538)
where o >0 and — 0o < k < co. Recall that the power form of the Fourier repre-
sentation for the kernel of the nonlocal Einstein functional

G(k) = const [k|™, (11.5.9)

where 0 < o, <2, can also be interpreted in terms of fractional derivatives.
Indeed, for the common derivative, we have, by definitionAy = pAx. For a
fractal function, we have (see Fig. 11.5.1)

Ay = (Ax)™, (11.5.10)

where u and y; are the ordinary derivative and Holder derivative, respectively. More
exactly, for Ax <0 and Ax > 0, the left-hand and right-hand derivatives, w;; and
respectively, must be introduced [223-226]. Of course, this approach is fairly formal.
The model of greatest interest for which fractional derivatives are a natural tool for
investigating anomalous transport is elaborated upon in the following sections.

11.6 Comb Structures and the Fractional Fick Law

Comb structures comprise of a backbone and orthogonal close-ended teeth. Diffu-
sion processes on such structures have been studied intensively because of their
potential relevance to transport processes at the threshold percolation. In this



11.6 Comb Structures and the Fractional Fick Law 195

setting, the backbone represents the connected pathway, which span the cluster,
while the orthogonal close-ended teeth represent the dead-end pathways, which
emanate from backbone. In the electrical analogy problem, the backbone represents
the conducting pathway and the teeth dangling bonds along which current does not
flow. Comb structures also provide a concrete realization of fractal diffusion
equations and anomalous diffusion [210-212].

Here, transport properties of “regular” comb structures having teeth of uniform
length (see Fig. 11.6.1) are identified in analytical studies. The rigorous description
of a comb structure can be represented on the basis of fractional differential
equation. As usual, a diffusive flux along an axis of comb structure is given by

a .

Here, D, = D19(y). The character of diffusion along the teeth is also usual. We
assume that the diffusion coefficient along the teeth Dy, = D, differs from the
coefficient corresponding to the axis of a structure. A diffusive tensor for the whole
comb structure has a form

~_(Dio(y) O
D,_,_< 0 Dz). (11.6.2)

Basing on the tensor form of the Fick law ¢, = ﬁVn, we derive a diffusive
equation that takes into account anisotropy of transport

0 ? ?
5~ D00) 5~ D2 ) Gl ) = 5301000 (11.63)
4
LU

Fig. 11.6.1 Schematic A
picture of regular comp
structure

A
Y
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Here, G(x,y,1) is the Green function of the diffusion equation. By applying the
Laplace transformation in time and the Fourier transformation in the longitudinal
coordinate x, we find

2 =

<s + D1k 5(y) — D, aayz) G(s, kv, y) = 8(y). (11.6.4)

To simplify our analysis, let us consider a point source o(x)d(y)d(¢) as initial
data. A solution will be found in an exponential form:

G(s,k,y) = g(s, k) exp(—koly|). (11.6.5)
Substitution of this equation yields the following system of equations:
(s — Dako?) G(s, ke, y) = 0, (11.6.6)
(D1 + 2k’ D2) () &(s, ks y) = 3(y). (11.6.7)
The last equation includes a singular coefficient d(y). The system can be easily

solved after we define the value ky from the above equation ky = \/[‘)12. For the
function g(s, k), we obtain

1
S, ky) =——————. 11.6.8
$lke) = o3 YDk (11.6.8)
Inverse Fourier transformation leads to the Green function
© 2 Dy(t+y)?\ 9uy/D3
G(x,y,t) = T+ exp| — — Z 11.6.9
S P<4Dﬂ TR D e
where the following normalization was used:

> 1
exp(—ct)dt =— (11.6.10)

0 C

Easy calculations confirm that transport along the axis of comb structure appear

to be anomalous
) t
1)y =Dy —. 11.6.11
&0) =D/ 5 ( )

This coincides with the elementary scaling estimates. In conformity with the
initial suppositions, transport along teeth has a classical diffusive character:
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(y*(r)) = 2Dyt. Different generalizations of this model are naturally possible due to
different complications of comb structure topology.

To obtain the generalized diffusion equation in the two-dimensional case, let us
consider the solution obtained in more detail. To this end, the Fourier transform of
this solution in the coordinate y is performed:

24,
(2D + D1k2) (2% + kz)

G(s, ke, ky) = (11.6.12)

Accordingly, the following diffusion equation for the anisotropic random walks
on the comb structure is obtained:

k2
(21)2;+le2)<2 21) (s, ke, ky) = 0. (11.6.13)

With the neglect of the product (kf X k}z,) in this equation (this is possible at large
scales), the following effective equation in the (s, k, k,) representation is obtained:

(s+k2 /H+2D2k ) n(s, ke, ky) ~ 0. (11.6.14)

In the usual (x, y, 7) representation, the effective diffusion equation has the form

(8 Dy & 9 o

5 2) (t,x,y) ~ 0 (11.6.15)

Thus, the operator expression for the effective diffusion tensor in the generalized
Fick law is obtained:

. D92
Der = (ND_Z i ) (11.6.16)
0 D,

In the case of the three-dimensional comb structure, the random walk is
described by the diffusion tensor of the form

Di6(y)é(z) 0 0
Dy = 0 Dyd(z) 0 |. (11.6.17)
0 0 D

Accordingly, the diffusion equation has the form

0 = 0? 0? 0?
(55~ B190190) g1z = 52062 513~ D33 )

X G(t,x,y,2) = 6(x)5(y)0(2)0(1)

(11.6.18)
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The solution of the three-dimensional problem will be represented in the form
G(x, ky,y,2) = g(s, ki) exp(—Ay|y| — Z:|z]). (11.6.19)

After the substitution of this solution into the fractional differential equation, the
parameters Ayand /. and the function g(s, k,) are determined in the form

2D R
A = 31 (11.6.20)

The Fourier transform in the coordinates y and z provides the Green’s function
for three-dimensional case:

420
(2D27 + DikP) (75 + K2) (22 +42)

Gy, ky ko, s) = (11.6.21)

The effective diffusion equation for the three-dimensional anisotropic case is
obtained with the use of the above consideration:

1)3/4
_DUVs k2+2Dz,/ k2+D3k2
21/4 /D3D2

X n(s, ke, ky, k) = 0

(11.6.22)

or, in the usual representation,

0__ Dy PN 2Dy ROP 5N
ot 2 1535% 2 9r3/4 \/Eaxz o172 3922 vk ky k;) =

(11.6.23)

Therefore, the effective diffusion tensor in the Fick’s law for the three-dimen-
sional anisotropic walk on the comb structure has the form

D 93/4
R 0 0

ENCRG
Dest = 0 2D, g%; o |- (11.6.24)
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The anomalous random walk on the multidimensional comb structure in the
asymptotic limit of large times (large scales) is described by the effective diffusion
equations containing not only the usual spatial derivatives, but also fractional time
derivatives. Such a representation is associated with the subdiffusion character of
random walks on the multidimensional comb structure.

11.7 Diffusive Approximation and Random Shear Flows

In the above discussion, we have seen how to construct and solve fractional
differential equations modeling phenomena that have long-time memory and/or
long-range interactions. We have seen that the long-range power-law correlations
that characterize anomalous transport result in a non-Markovian description of the
underlying process. Here, the diffusive renormalization of quasilinear equations for
scalar transport is analyzed in the framework of the random shear flow model
(Dreizin—Dykhne flow; Fig. 7.7.1), which is the best illustration of the above thesis.

At this stage, we are able to treat random shear flows with non-Gaussian
longitudinal correlations. In the model under analysis, the transversal and longitu-
dinal correlation effects are separated. In fact, the Eulerian correlation function
could be represented by the scaling in the form

ﬂ A 1
Cldyy) o Vi) o = (11.7.1)
/]

Here, o is the correlation exponent. Such a representation allows us to consider
random flows, where anisotropy effects play an important role. For the effective
transverse transport, one can employ the ballistic estimate in the form

() o< Vi ()t (11.7.2)

Here, 4, is the perpendicular displacement and 4, is the longitudinal displace-
ment. In the case under analysis, we are dealing with the diffusive character of
longitudinal motion. This leads to the scaling for the longitudinal displacement
Ay = v/2Dyt . Upon substitution of this estimate into the formula for the perpen-
dicular displacement, we find the scaling,

) 4 J——
t —— ot T, 11.7.3

The expression for the Hurst exponent takes the form

H(og) =1--%, (11.7.4)
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where 0 < ar < 2. Note that for oz > 2 this scaling yields the subdiffusive regime,
which contradicts the initial assumptions about the incompressibility of the flow
and using the streamline concept.

Now we obtain an equation for the passive tracer density under conditions when
longitudinal correlation effects can be approximated by the longitudinal diffusive
term Dy %22"2‘ . Thus, in the two-dimensional case the corresponding renormalized
equations have the form

6n0 B on 1

B —<Vx(2)§>; (11.7.5)
8111 o 82111 6n0
A =Do5 - X(Z)E' (11.7.6)

Here, D, is the seed diffusion. The dependences ng = no(x, ) and n; = ny(x, z,t)
were used to describe the two-dimensional case. Using the Laplace transformation
over t and the Fourier transformation over z, one obtains

g

sito(s, x) — no(x,0) = D(s) T (11.7.7)

Vx(2)Vx()

~ P R Y
D(S) = limLOHOO 2—140 J LdZJ dZ/ \/D_Os
—Ly J-x

(11.7.8)

Then, one can write a diffusion equation for the model of random drift flows.
Indeed, the “renormalization” of the quasilinear equations allows us to obtain the
transport equations, which differ significantly from the classical diffusion equation.
The correlation function K¢ (|z —Z'|) = Vx(z)Vx(z') can be represented in the
power form

v

Ke(w) = Ke(lz = 7)) oc =0

(11.7.9)

In terms of the Laplace transformation, the renormalized transport equation
takes the form

(11.7.10)

Ve s\E1 0%
sio(5,x) = mo(,0) = = (3) 7 S5

2D, \2 o2’

By changing to the dependence in time, we obtain the fractional differential
equation [188, 227]

o °\\2D,) oxr 2ymrr’
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Here, the order of the derivative with respect to time y depends on the parameter o,

y(og) = 2H(og) = 2 — %E , (11.7.12)
which describes correlation properties in the longitudinal direction. In the case of
incompressible flows, subdiffusive regimes are impossible and oy < 2. The special
case ap = 1 corresponds to a white spectrum and recovers the anomalous diffusion
found previously by Dreizin—Dykhne with H = 3/4. A fractional differential equa-

tion for the Dreizin—Dykhne model is the following:

*no(r,x) _ O J no(t,0dr_ Voa Dmo(tx)  no©0.6) gy

a2 T 0R )y /at—r) 2Dy O 2yml

For 0 < ar <2, one has superdiffusion, while for ar >2 we arrive to the
conventional diffusive behavior.
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Chapter 12
Isotropic Turbulence and Spectra

12.1 The Reynolds Similarity Law

The knowledge gained from similarity theory is applied in many fields of natural
and engineering science, among others, in fluid mechanics. In this field, similarity
considerations are often used for providing insight into the flow phenomenon
and for generalization of results. The importance of similarity theory rests on the
recognition that it is possible to gain important new insights into flows from the
similarity of conditions and processes without having to seek direct solutions for
posed problems. Thus, the Navier—Stokes equation of motion for a Newtonian fluid
is given by

oi

1
o H@V)i =~ Vp+ A, (12.1.1)

m

where (7, r)is the Eulerian velocity, p,, is the density, and vr is the kinematic
viscosity. It is well known that the properties of a flow on all scales depend on the
Reynolds number [228-233]

~ VoL
==,

Re (12.1.2)

Here, V) is a typical macroscopic velocity and Ly is a typical gradient scale
length. Flows with Re < 100 are laminar. On the other hand, fluids and plasmas
often exhibit a turbulent behavior. The standard criterion for turbulence to develop
is that the Reynolds number must be sufficiently high (see Fig. 12.1.1). Especially
in the astrophysical system, due to the large spatial scales, Reynolds numbers are in
general huge and most environmental and astrophysical fluids and plasmas are
therefore observed or expected to be strongly turbulent.

In similarity considerations, strictly, only quantities with the same physical units
can be included. The “dimensionless proportionality factors” of the different terms

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 205
DOI 10.1007/978-3-642-20350-3_12, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 12.1.1 Example of a
turbulent flow at about

Re = 5,500 (After Papailiou
and Lykoudis [234] with
permission)

of a physical relationship computed from it by dividing all terms by one term in the
equation are designated similarity numbers or dimensionless characteristic numbers
of the physical problem. Physical processes of all kinds can thus be categorized as
similar only when the corresponding dimensionless characteristic numbers, defin-
ing the physical problem, are equal. This requires, in addition, that geometric
similarity exists and the boundary conditions for the considered problems are
similar. The concept of similarity can therefore only be applied to physical pro-
cesses of the same kind, i.e., to fluid flows or heat transport processes separately.
When certain relationships apply both to flow processes and to heat transfer
process, one talks of an analogy between the two processes.

In order to illustrate the sort of way in which Reynolds number can affect the flow
configuration, we shall consider a specific geometry, namely an infinite circular
cylinder in an otherwise unbounded fluid (see Fig. 12.1.2), the flow far from the
cylinder being uniform. The Reynolds number appropriate to this problem is
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Fig. 12.1.2 Flows of water V()
past a cylinder for different
values of the Reynolds
number

Laminar flow >

Turbulent flow

Re =V Ly/vp, where Vj is the velocity of the fluid far from the cylinder and L is
the diameter of the cylinder.

To describe flow processes, it is necessary to integrate the conservation laws just
derived. Since the integration of these equations in closed form is, in general, not
possible because of the inherent mathematical difficulties, flows are often investi-
gated experimentally. Fluid mechanical and thermodynamic data are measured
with models geometrically similar to the full-scale configuration, for which the
flow is to be determined. However, since in general the models are smaller in size,
the measured data have to be applied to the full-scale configuration with the rules
of the theory of similitude. This theory makes use of similarity parameters, in which
the characteristic quantities with physical dimensions of the flow considered are
combined to dimensionless quantities. Two flows about geometrically similar
bodies are called similar, if the individual similarity parameters have the same
value for both flows. The similarity parameters, which are important for the flow
process considered, can either be determined with the method of dimensional
analysis applied to the physical properties of the flow or by nondimensionalizing
the conservation equations.

12.2 Cascade Phenomenology

Most of the water and air around us is in turbulent states. The complexity of the
shape of cigarette smoke is also due to turbulence. On the other hand, observed
features such as star-forming clouds and accretion discs are very chaotic with
Re > 108. Chaotic structures develop gradually as Re increases, and those with
Re ~ 10° are appreciably less chaotic than those with Re ~ 10”. Indeed, when the
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Reynolds number is small, viscosity stabilizes the flow. When it is greater than 10%,
the flow is unstable and becomes turbulent. For water at room temperature, vg is
about 107 cmz/s; hence, flow becomes turbulent for relatively small Ly and V, — for
example Ly ~ 10cm and Vjy = 10 cm/s. Nearly the same estimate can be made for
air.

In 1941, Kolmogorov introduced a statistical theory of small-scale eddies in high
Reynolds number incompressible turbulence [235, 236]. The theory was based on
two fundamental hypotheses: first, the distribution of the velocity difference

SVi(l) = I'V ii(P) (12.2.1)

between two points in space is a universal function, depending only on the spatial

separation ’f ‘ , the kinematic viscosity vg, and the mean energy dissipation per unit

_VF (911,‘ 8uj 2
"=y 2 <(a_xj+8_x,») , (12.2.2)

where (...) denotes an ensemble average. For instance, the mean atmospheric
dissipation rate is of order 1.5 x 107% m?/s>. Second, when the spatial separation
is sufficiently large compared with the characteristic dissipation length scale, the
distribution does not depend on vg. From these hypotheses and dimensional analy-
sis, Kolmogorov deduced that, while the stirring force that creates turbulence will
surely vary from flow to flow and will affect the turbulence characteristics, the
small-scale/high-wave number motions at which dissipation takes place develop a
common form for all flows. If this is true, it can be argued that the equilibrium state
should be scaled by the viscosity vr and dissipation rate ¢x. In this case, the length
scale and characteristic timescale are given by

3/4 1/2
L=t o= (V—F> . (12.2.3)
/4
eg

K

mass &g

They are known as the Kolmogorov length and timescale, respectively, and they
should be good yardsticks of dissipative phenomena. Typically /, ~ 1/4 mm
(strong wind tunnels) to 8 mm (mean atmosphere). Additionally, a velocity scale

L,
V, = = (vpex) /4 (12.2.4)

Ty

can be formed on the basis of the Kolmogorov length and timescale. Typically V, ~
60 mm/s (strong wind tunnels) to 2 mm/s (mean atmosphere).

Because of additionally assumed statistical isotropy, the field increments
depend solely on [/, which allows one to define the characteristic eddy velocity
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V= <5V,2>1/ 2, or in terms of spectral terminology often used in turbulence theory

Vi= (o V,f)l/z, where k is the wave number, k ~ [~! (k) = ;. There are three scale
ranges (see Fig. 12.2.1): the energy-containing scales, driving the flow, the inertial
range, where nonlinear interactions govern the dynamics and the influence of
driving and dissipation is negative, and the dissipation range at smallest scales,
where dissipative effects dominate, removing energy from the system. Suppose that
the fluid motion is excited at scales Lr and greater. A far-reaching idea of
Kolmogorov was that of an inertial subrange (kg < k < k,) consisting of a section
of wave number space between kg and k,

1
kp=—, k =-—oRe’ kg, (12.2.5)
LE l v

where energy cascade toward small scales without significant dissipation or pro-
duction. In principle, such a picture was already in the mind of Richardson about 20
years before Kolmogorov when he developed a qualitative theory of turbulence.
Such a cascade in this range of wave numbers would depend on just ¢x and not vg.
Kolmogorov argued that this has an important consequence for the form of the
energy spectrum function E(k). The one-dimensional energy spectrum is the
amount of energy between the wave number k and (k + dk) divided by dk

ﬁsz@%zM@. (12.2.6)
Ak
Energy input Energy dissipation
Cascade
————— >
| | >
| | i
- Lo gl
L, /, /
- /
e
Inertial interval

Fig. 12.2.1 Schematic picture of energy cascade in homogeneous and isotropic turbulence
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Fig. 12.2.2 A typical plot 4
of Kolmogorov energy
spectra in fully developed
homogeneous isotropic
turbulence

log E (k)

f Energy f \\
i cascade ~
_
v v .
log kj; log k, log k

Because E(k) has units of (length)*/s, the only form E(k) dimensionally consis-
tent with a scaling in terms of k and Ek is given by (see Fig. 12.2.2)

Ex (k) oc Cick™Peg?3, (12.2.7)

where Ck is the Kolmogorov constant and kg < k < k,.

Indeed, within the internal range the statistical properties of the turbulence are
determined by the local wave number k and ¢k, the rate of cascade energy, which is
scale-independent,

Vi V2 V2
K X — X X —-
e (k) (kVy)

g (12.2.8)

The energy cascades through nonlinear interactions to progressively smaller
and smaller scales at the eddy turnover rate, t¢ (k) = 1/V;(k)k, with insignificant
energy losses along the cascade. From this relation, we obtain

1

2\ 1/3
Ve ~ (exli) ' ~ (%K) , (12.2.10)
Ek (k) oc kV? oc k=333, (12.2.11)

This prediction of a —5/3 spectrum is amenable to experimental verification and,
in fact, has been observed to occur in a wide range of turbulent flows at high
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Reynolds numbers [75-78] with the typical value Cx = 1.6. Results accumulated
from many different experiments in different types of turbulent flows (particularly
from atmospheric and oceanographic turbulence) and covering a very wide range of
wavenumbers are shown in Fig. 12.2.3.

12.3 The Taylor Microscale

The important feature, which has been realized in [235], was the idea of a virtually
continuous range of eddy sizes, with turbulent energy being handed down from
larger to smaller eddies and ultimately dissipated in viscous action. It is natural to
employ the expression for the mean energy dissipation per unit mass &g

-y %"-%2 (12.3.1)
K=y Ox;  Ox; ’ e

isJ

to obtain one more characteristic scale. In the framework of dimensional analysis,
the mean energy dissipation can be represented as

Vo?
EK = VF—~

7 (12.3.2)
T

Here, A7 is the Taylor microscale and V, is the turbulent fluctuation amplitude.

The Taylor spatial scale is an intermediate one because it is less than macroscale L

. . 3/
and greater than the Kolmogorov viscous spatial scale [, = *7
7

I, € Ar < L. (12.3.3)

Initially, the Taylor microscale was introduced to characterize the Eulerian
correlation function behavior

Ce(0)
- 2075(0)°

Ar (12.3.4)

Here, Cg(F) is the Eulerian correlation function.
By using the estimate of the dissipation rate in the following form:

‘ Vo' V3(D)
const =~ g X — X
K7L I

(12.3.5)

one can find the relation among the characteristic scales, which are often used in
cascade phenomenology
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Fig. 12.2.3 Kolmogorov’s universal scaling for one-dimensional longitudinal power spectra. The
present min-layer spectra for both free-stream velocities are compared with data from other
experiments. (After Saddoighi and Veeravalli [237] with permission)
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l, x L A X ——= K Ly. (12.3.6)

Ar Ly
Re! P12 Rel/2
In a typical grid turbulence laboratory experiment, the large scale Lyis of order of
5 cm, whereas the Taylor microscale is approximately 2 mm and the viscous
Kolmogorov spatial scale is about 0.1 mm.
The original Taylor definition is slightly different from the definition represented
above. He used the formula for the isotropic turbulence in the rigorous form

2
<ZZ> , (12.3.7)
T

where u; is i-component of the velocity fluctuation and the coefficient 15 in this
representation is considerably large than one because so many components are
involved. The Taylor microscale can be relatively easily experimentally measured.
However, to discuss scaling arguments the simplified definition is also suitable.

12.4 Dissipation and Kolmogorov’s Scaling

There is no commonly accepted unique definition of turbulent flow, and it is usually
identified by its main features. Turbulence implies fluid motion in a broad range of
spatial and temporal scales, so that many degrees of freedom are excited in the
system. The viscous dissipation characteristic scale is given by the relation

v 3 1/4
I, o (L> . (12.4.1)

By applying the Kolmogorov hypothesis

Vi v2
const & gg X l—k xX — (12.4.2)
k

we arrive at the scaling for the characteristic length in the form

1)\ 34
1,(Vo) o (7> . (12.4.3)
0

This means that the depth of the Kolmogorov cascade penetration scales
inversely with the turbulent fluctuations amplitude.

Let us estimate the number of degrees of freedom excited in developed turbu-
lence on the basis of the dissipation length scale. Since structures of size
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1
< lyoc o (12.4.4)

are ironed out by viscous dissipation and slaved to larger scales, we have only to
count the number of presumably independent structures of size approximately equal
to /, in a domain of volume L; . This leads to the estimate of the number of degrees
of freedom excited in a turbulent flow

Le\Y (k)
N, o (TE) o (E) o kIR, (12.4.5)

However, nonlinear interactions are expected to reduce this number in much the
same way as in weakly confined systems. Furthermore, the assumption of a constant
energy transfer rate all along the cascade, which is the basis of the Kolmogorov
similarity approach, implicitly contains the idea that the energy transferred was
equally shared by all the daughter eddies at half scale.

The information regarding the similarity concept can be looked at from another
point of view. In the inviscid limit, the Navier—Stokes equation is invariant under
the rescaling,

x—x =x, (12.4.6)
t— 1 = -y, (12.4.7)
u—u ="y, (12.4.8)

for any «;. Note that in a general case the values of the scaling exponent o; are

limited by requiring that the velocity fluctuations do not break incompressibility.
In the context of the well-developed turbulence description, let us consider the

local dissipation rate ¢., which is dimensionally given by the simple estimate

3 — .
& X ")—, and hence scales as 1% ~!. This would mean that

9(171
& & <r> . (12.4.9)

€L, L()

The constancy of ¢, in the Kolmogorov picture now suggests ¢y = 1 in three-
dimensional space.

The scaling behavior is one of the most intriguing aspects of fully developed
turbulence. Indeed, this is an important property of turbulent Navier—Stokes fluids
that everybody agrees on now that the dissipation rate is not determined by anything
microscopic or molecular that happens. There is no parameter that governs the
dissipation rate; rather the fluid dissipates whatever you throw at it. If you stir the
fluid harder, the spectrum just moves a little farther out in k space until it finds a
place where the energy can be dissipated at the same rate it is being injected.
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12.5 Acceleration and Similarity Approach

The fluid particle acceleration is among the most natural physical parameters of
interest in turbulence research. The material derivative of the velocity vector is
given by the Navier—Stokes equation

1
=—+4 (@ V)i = —— Vp+ vpAll, (12.5.1)

. DA O
A="—
dt ot

m

where A (7, 1)is the Eulerian acceleration, p is the pressure, p,, is the density, and vp
is the kinematic viscosity. In fully developed turbulence, the viscous damping
term is small compared to the pressure gradient term and therefore the acceleration
is closely related to the pressure gradient. Basing on the Kolmogorov theory of
isotropic turbulence, it can be argued that the acceleration should be scaled by the
viscosity vz and dissipation rate ¢x. In the case under consideration, one finds [238]

£ 1/4
A (L) . (12.5.2)

Indeed, the acceleration must scale with the dissipation rate ex and it scales
inversely with the viscosity vp. In terms of dimensional arguments, this means

m?] rsp m
4] = [8—3] {E} - L—z} . (12.5.3)
After simple algebra, one obtains the conditions
2x—=2y=1, 2x—y=2. (12.5.4)

Hence, the exponents of interests are x = 3/4, y = —1 /4. The classical predic-
tion of the variance of acceleration components (correlation function) is

o3\ 172
(A;A;) = const (L) 0jj. (12.5.6)
VF

Recent measurements indicate that this scaling is observed for the large Reynolds
numbers 500 <Re < 1,000 [239]. It was found that the acceleration is a very
intermittent variable with extremely large acceleration arising in structures.

The use of accelerations in a chaotic flow description possesses a large potential.
Thus, it would be fruitful to employ not only the phase space, but also the accelera-
tion space to treat nontrivial effects of turbulent transport. The situation at hand is
close to that with the one-dimensional kinetic equation considered by Kramers. In
order to achieve the Markovian character of the processes under the conditions of
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spatial nonuniformity, he had to introduce an additional independent variable
(velocity). In phase space, this made it possible to describe transport in nonuniform
media, where the density gradient plays an essential role. In the anomalous trans-
port description, applying the acceleration space could give additional degrees of
freedom to treat nonlocal and memory effects [240].
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Chapter 13
Turbulence and Scalar

13.1 Scalar in Inertial Subrange

Velocity field generates fluctuations of various scalar quantities 0 in the turbulent
flow: temperature, pressure, humidity, and so on (see Fig. 13.1.1). Soon after
Kolmogorov’s first seminal papers on energy spectrum of turbulence, cascade
ideas were applied to passive scalars advected by turbulence [241, 242]. This is
the problem of determining the statistical properties of the distribution of a scalar
field that is convected and diffused within a field of turbulence of known statistical
properties. The advection—diffusion equation is given by

0
%ﬂ?-vezbovze, (13.1.1)

where Dy is the molecular diffusivity and i is the advection velocity, which is
nondivergent. The dissipation rate of the scalar ‘energy’ <92> can be described by
the equation, which is similar to the energy conservation law

=L = —apg( Vo). (13.12)

Fourier component of the spectrum of 6 is changed by the interaction between 6
and if; other Fourier components are changed simultaneously in such a way that the
sum of the contributions to <02> from all Fourier components remains the same.
This shows that 0 variance is simply transferred from small to large wave numbers
in the advection subrange and &g is a given constant quantity. The dissipation rate of
the scalar ‘energy’ <02> is also the spectral transfer rate. By following the line of
argument of Obukhov and Corrsin, we suppose that the seed diffusivity Dy is so
small as to make the effect of diffusion appreciable only at the large wave number
end of the spectrum. By keeping the Kolmogorov estimate for the characteristic
time of nonlinear interaction in the case of scalar cascade

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 219
DOI 10.1007/978-3-642-20350-3_13, © Springer-Verlag Berlin Heidelberg 2011
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Fig. 13.1.1 The scalar distribution on a two-dimensional plane (After Brethouwer et al. [2] with
permission)

/ / 1
TK(k) NWO( (8K1)1/3 0.8 8K1/3k2/3 ; (1313)
one can obtain the expression for a scalar flux in the following form:
0; 0;

£ X = . (13.1.4)

"l (kv !

The scalar spectrum is given by the relation

Ey(k) = J|ek|2de (13.1.5)

In the inertial-convective subrange, where neither viscosity nor diffusion is
important the scaling of interest takes the form (see Fig. 13.1.2)

9_% ~ g9tk (k)

Eq(k) =~ X Coepex Pk, (13.1.6)
where
c 1/4
k> ky o< 11, o (—’2) : (13.1.7)
VR

In this range of wave numbers, the Fourier components of i/ are independent of
viscosity (inertial subrange) and the Fourier components of 6 are independent of
molecular diffusion (convective subrange). The k> temperature spectrum has
been observed experimentally in turbulence of sufficiently high Reynolds number
(see Fig. 13.1.3). The parameter Cy, called the Obukhov—Corrsin constant, is found
in the range Cy ~ 0.45 — 0.55 [75-78].
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Fig. 13.1.2 A typical plot of
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Fig. 13.1.3 Temperature and velocity spectra at a depth of 15 m near Cape Mudge. (After Grant
[243] with permission)

The scaling for the scalar perturbation on scales of order / is given by the formula

891

LTV
(8K1)1/3o<1 , (13.1.8)

00(1) o< \/eptx (1) x
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which leads to estimate for the scalar gradient as follows:

50) 1

V0 oc == o s (13.1.9)

We see that decreasing spatial scales leads to increasing scalar gradients and
creating fascinating pictures (see Fig. 13.1.1).

In contrast to the Kolmogorov phenomenological arguments for the energy
spectrum where only two relations were used

2

t=eg ox —— 13.1.10

const = gx X w0’ ( )
1

k) ~ . 13.1.11

In the case of scalar spectrum, one more supposition was applied. Indeed,
we save the condition const = g as well as the estimate for the characteristic

time 7 (k), but we extract the scaling for the velocity V; = (CTK) 13 directly from
the Kolmogorov analysis.

In this sense, this approach loses its “universality”, but when we are dealing
with the problem of scalar transport, extra arguments are often a necessary part of
description. Indeed, the appearance of additional degrees of freedom allows one to
describe numerous regimes of turbulent transport. However, such mobility makes
us hesitant in choosing appropriative solution.

13.2 The Batchelor Scalar Spectrum

Batchelor [39, 152] recognized the critical importance of the dissipation region

3\ 1/4
I<l, = (%) to describe small-scale turbulence. In this range of scales, the

Kolmogorov scaling for the velocity V(I) o (exl)"/?

linear dependence (see Fig. 13.2.1)

should be replaced by the

1/2
V(l) o const I (i—’() l (13.2.1)
F

Here, we use the viscous characteristic time T,.
We derive now the spectrum for the viscous—convective range of scales. The
boundary of this region is given by the diffusive estimate

1
D 2\ 2
152 Doty o ( oVE ) . (13.2.2)

¢
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Fig. 13.2.1 Schematic 4
picture of the velocity
differences on the distance for
laminar and turbulent flow
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Pr=— 13.2.3
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is large, the Batchelor scale is small compared with the Kolmogorov scale /,

1 1
D 2\ % 3\ %
Iy ~ ( ovF ) <<(Vi> ~1,. (13.2.4)
EK EK

On scales between the Kolmogorov scale and the Batchelor scale, the velocity
gradient is approximately uniform. On these grounds, it is possible to determine the
spectrum of fluctuations of the scalar field in the viscous—convective subrange. The
expression for a scalar flux is given by

2 2 2 N2
&y X Ok x Ok — X % x (s«) 9,%. (13.2.5)
teasc(k) — (kVi(k)) Ty VE

1/2
Here, we apply the linear approximation for the velocity V(/) (f—’;) {. This
yields the scaling of interest

02 e,
Eq(k) = o "k (13.2.6)

Finally, one obtains (see Fig. 13.2.2)

1724
Ey(k) o const &g (V—F> -, (13.2.7)
EK k
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Fig. 13.2.2 Idealized
Batchelor scalar spectra in
fully developed homogeneous
isotropic turbulence

log E, (k)

5

v

log k. log k, logk, logk

where
7 = ky<k<kp = Iz". (13.2.8)
We stress that Batchelor succeeded in describing the exponential instability

effects in terms of cascade phenomenology. Indeed, in the viscous range of scales
we are dealing with the exponential stretching

d
&l ox V(I) x const /. (13.2.9)

1
N 2 1 . .
The value /p =~ (D ‘;:(F )Adescrlbes the depth of the scalar cascade penetration and

at the same time this is the stretching characteristic scale (see Fig. 13.2.3). In
contrast to the single-scale approximation here, we are dealing with the hierarchy
of scales. Using the Kolmogorov assumption

Vi v
const ~ gg x —& ox -2 (13.2.10)
Ik Lo

one finds the scaling for the characteristic length in terms of the Peclet number

1
D()VF2 : 1

which differs from the single-scale approximation.
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Fig. 13.2.3 Viscous—convective subrange spectra (After Gibson and Schwarz [244] with permission)

13.3 The Small Prandtl Number and Scalar Spectrum

Batchelor also considered the opposite case of the small Prandtl number

VE
Pr=— 1. 13.3.1
7 Do < ( )

Here, the “conduction cutoff”” occurs at the wave number

DO3 417
lp= (8—> =L,Pr34, Pr<l. (13.3.2)
K

To obtain the scalar spectrum, it is convenient to consider the balance between
advection and diffusion

i VO = Dy AY. (13.3.3)
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The scalar perturbations in the range between the conduction cutoff and the
viscous cutoff are described by the estimate

0 0,
V() 2~ Dy=

» 5 (13.3.4)

By applying the Kolmogorov scaling for the velocity V(1) o (ek!) 13, we arrive at

50(1) o (51(1)1/3[2;% x e’ 13 (13.3.5)
0L0

Now the scalar spectrum in the range of wave numbers between the conduction
cutoff and the viscous cutoff is given by

02
Ey(k) oc 2 o goe k13, (13.3.6)
where
I = ko<k<k, =1, (13.3.7)

This is the internal-diffusive-range spectrum (see Fig. 13.3.1). Experimentally,
such a range could be expected to exist for turbulence in liquid metals. A numerical
simulation of a passive scalar convected by a frozen velocity field presented in
[245-248] confirms the 17/3 exponent.

log E, (k)

Eo(k) - k717/3
Fig. 13.3.1 Idealized
Batchelor scalar spectra in .
fully developed homogeneous E
isotropic turbulence for Y >
the small Prandtl numbers logk logh

(Pr<l)
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13.4 Seed Diffusivity and Turbulent Transport

On the basis of the Kolmogorov phenomenology, it is possible to introduce a “self-
consistent” diffusion coefficient that describes both the Lagrangian contribution
and molecular diffusion effects [73, 249]. The quasilinear scaling for the turbulent
diffusion coefficient in terms of the Lagrangian correlation function,

Dr = J(V(O)V(r)}dt x (V) (13.4.1)

points to the relation between the diffusivity and the turbulent energy spectrum
E(k). To establish the direct relationship between the turbulent diffusion coefficient
Dt and the energy spectrum E(k), let us consider a “local” diffusion coefficient
0D (k)[186] related to the specific scale length /, ~ 1/k of eddies with the charac-
teristic velocity V. Thus, the velocity and scalar fields are decomposed into
ingredients. Here, the smallest spatial scale corresponds to the Batchelor dissipative
scale /z. Now the diffusion equation for the scale k is given by

ViV, = DyV>0,, (13.4.2)
where
Or =Or1 + ... + 02+ 0. (13.4.3)
After averaging, we obtain the relation
(ViOr) = —DoV0y. (13.4.4)
Thus, we derive the expression that is differential in the form:

E(k)
2Dy

SD(k) = % Sk. (13.4.5)

Note that the value of D(k) should be taken into account along with molecular
diffusion Dy. Upon solving this differential equation, we obtain the expression for
the turbulent diffusion coefficient

(D(k) + Dy)? = r’ %dk + D2, (13.4.6)
k

where by assumption, D(oco) = 0. In this formula, the integral term plays the main
role for scales that are larger than the characteristic turbulent scale /; that enters into

the expression for the Reynolds number: Re = VVU—:T By neglecting the molecular
diffusion effects, we derive the Howells expression
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CE(k
Dy = J Qdk (13.4.7)
¢k
which differs significantly from the quasilinear scaling Dt o V3t .The new scaling
yields a different type of estimate for the diffusion coefficient,

Dy (Vo) o Vod o DyPe, (13.4.8)
where A is the characteristic spatial scale. Of course, there is no unique recipe to
obtain the estimates of turbulent transport and the best way depends on a flow
character. Nevertheless, the diffusive renormalization considered above was con-

firmed by the direct calculation of the correlation function and repeatedly used to
describe scalar transport in chaotic flows.

13.5 Fluctuation-Dissipative Relation and Cascade Arguments

It is interesting to incorporate the Kolmogorov scaling arguments in the fluctuation—
dissipative relationship for scalar density fluctuations

1d 2 1d ), 2
EEJW (n) dW+§EJW (0n)" = JWDO(W) aw. (13.5.1)

Thus, for the case of quasi-steady flows, we can write the Zeldovich expression
in the following form:

DOJ (Vn)2dW  Q(ny — ny), (13.5.2)

where the flux Q through a boundary is estimated in terms of the mixing length Ly
and the velocity fluctuations V

An
0~ S(Vy-Ly)Vn= S Dr (L_> . (13.5.3)
0 macro

The Zeldovich expression is valid even for the high Peclet numbers
Pe = Vg—ﬁ“ > 1. Simple calculations yield the fluctuation—dissipative relation [37]

<(Vn)2> - <V°L°) (An)” (13.5.4)

Dy L3

In terms of the Peclet number, one can rewrite this formula for turbulent flows
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~ Pe'’? Vn| (13.5.5)

macro*

Dr\ "2 (An)?
Vn|locad ~ D_O L(z)

This means that when Pe >> 1, two fluid elements having substantially different
scalar densities (or temperatures) can appear side by side, which was confirmed by
numerous experiments and numerical simulations [250-257].

Let us express the local density perturbations dn|,,,, on scales 1

5n|turb X vn‘local}' ~ Pel/z vn' (1356)

macro)“'
We can estimate the scale 4 basing on the Kolmogorov phenomenology as

Jdy o0 Lo
L~ X — X —7,
' 62/4 Pei/4

where Pe o< Re > 1. (13.5.7)

Then, the expression for the amplitude of scalar density perturbation on spatial
scales of order /, is given by the scaling

Snl gy ~ Pe™ 00| o ~ Re™ /450 (13.5.8)

macro*

This scaling obtained for the cascade case (strong turbulence) differs remarkably
from the quasilinear limit (week turbulence where Pe < 1)

on(Pe) x ngPe, Pe < 1. (13.5.9)

It is possible to estimate the convective contribution to turbulent transport as
q x onVy, which leads to the expecting flat scaling for the effective diffusivity in
the following form:

q(Pe)

no

D (Pe) Ly < DoPe*/*, (13.5.10)

This differs considerably from weak turbulence case (Pe < <1) where
quasilinear regimes of transport are described by scaling D (Pe) oc DyPe?.
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Chapter 14
Relative Diffusion and Scaling

14.1 The Richardson Law and Anomalous Transport

In this chapter, we consider the dispersion of pairs of particles passively advected
by homogeneous, isotropic, fully developed turbulent type. Due to the incompres-
sibility of the velocity field the particle will, on average, separate one from another.
There are important differences between the diffusion from a continuous source, in
which particles are released in sequence at a fixed position, and that of a single puff
of particles (see Fig. 14.1.1). Indeed, the measure of a dispersant that is required in
observation or in a predictive model will often depend on whether the dispersant is
introduced into a chaotic flow continuously from a location or the dispersant is
released at some particular time as a patch or group of particles, an ‘instantaneous
release’. In the last case, the size of the patch and its mean or maximum concentra-
tion as function of time provide useful measure.

Thus, one can employ dimensional arguments to estimate the effective concen-
tration in a patch of particles of size Ly

N
Li(r)

N efi (1) o (14.1.1)

Here, N is the total number of particles in this patch and d is the dimensionality
of the space. For instance, in three-dimensional space the diffusive estimate of the
patch size L} o< Dot leads to the scaling

N
neff(f) 0.8 W 0.8 f_3/2, (1412)

whereas the Richardson formula, Lé o 11% o ), gives considerably different
estimate for the effective concentration

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 231
DOI 10.1007/978-3-642-20350-3_14, © Springer-Verlag Berlin Heidelberg 2011
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1))
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e G

Fig. 14.1.1 Schematic picture of the relative dispersion

N
neff(t) oc o /% (14.1.3)
I (1)
The relative dispersion of two fluid material points is a direct generalization of

single particle dispersion. The results of various experiments on diffusion in
atmosphere lead to the Richardson law [258]

1.d(/z())
2 dt

2
3

= const(/3(1))". (14.1.4)

Here, Iy is the separation of two scalar particles. This means that the spread of a
large cloud of particles could not be built up by superimposing the growths of
component elements of the cloud treated separately. In terms of the relative
diffusion coefficient, this result can be presented as

Dr(lg) = Cg Ig5, (14.1.5)

where Cr ~ 0.2 is the Richardson constant. Moreover, by integrating once, we can
write the mean square separation of the particle as (see Fig. 14.1.2)

(I(0)) oc P, (14.1.6)

where I ranges from 107 to 10® cm. This scaling for the separation of two scalar
particles differs significantly even from the ballistic estimate.
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Fig. 14.1.2 The Richardson
scaling. The thin straight lines
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The unique nature of the relative diffusion was recognized by Richardson at a
very early stage (1926). Indeed, from the conventional point of view, we can
consider that particle 1 and particle 2 are released simultaneously at time ¢t = 0
and at positions x; and x,, respectively. Let the distance between the two particles
be [(f). Then we shall put

Y(1) = x2(8) — x1(2), (14.1.7)

and the mean square separation is given by the relation

(Y2(1)) = (x1 (1)) — 2(x1(t)x2(1)) + (x3(1)). (14.1.8)

Destroying correlations in time, (x1(f)x2(¢)) = 0, leads to the result that is in
accord with the following estimate:

(Y*(1)) ~ 2(2D7)t. (14.1.9)

The mechanism behind pair separation <l%e (t)> o £ in turbulent flows has been a
puzzle since it was reported and understanding the particle pair dispersion in
turbulent velocity fields is of great interest for both theoretical and practical
implications. Based on the theory of phenomenological turbulence, Obukhov
suggested [236] a theoretical interpretation of the Richardson law for relative
diffusion. Indeed, it is possible to compose the scaling for the diffusion coefficient
based on the dimensional character of the value ex = [L?/T°] and the variable k that
characterizes the spatial scale k ~ 1/I(k) = [1/L]. Then, simple calculations yield
the dimensional estimate for the Richardson coefficient:
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72 e 1/3
Dr(l) = {7} ~ % ~ e B3 o M3 (14.1.10)

or in terms of the mean square relative separation
(Ix(1)) oc const ek, (14.1.11)

where const ~ 3. This coincides exactly with the Richardson predictions. Thus, the
idea of describing turbulence by the hierarchy of eddies of different scales has
obtained its first experimental confirmation in the framework of the scalar transport.

14.2 The Batchelor Intermediate Regime

Richardson’s scaling has been explained in the framework of the Kolmogorov—Obuchov
phenomenology fruitfully applied in the inertial range of spatial scales. However,
there are several stages in the process of relative diffusion. At the first stage, the
particles are initially close together and only the smallest eddied can increase their
separation. At the next stage particles move further apart, a greater range of eddy
sizes become important, with, at all times, the eddies comparable in size to the
interparticle separation having the dominant effect (see Fig. 14.2.1). The last stage
is when the distance between particles becomes greater than the largest turbulent
eddy, and the motion of each particle becomes independent of the other. The
separation between them is then determined by their own individual random
walks. This stage is characterized by the largest energy-containing eddies.

In context of the transport description, we should also analyze a character of
relative motion of scalar particles on scales essentially less than inertial ones. Thus,
mechanisms responsible for forming anomalous character of relative diffusion are
switched on viscous scales. Beyond the inertial range, there is no synergetics of
nonlinear vortices interaction and that is why it is impossible to apply the turbulent
cascade concept. However, we have an advantage in using intriguing physical
mechanisms such as exponential stretching of fluid elements and memory effects
related to quasiballistic motion of scalar particles. The pioneering works in this field
were done by Batchelor who developed scaling ideas and discovered several new
turbulent transport regimes.

The scaling suggested by Richardson,

Dr(lr) < Iy, (14.2.1)

corresponds to his notion of the hierarchical character of turbulent transport. Thus,
he related the acceleration effect to increasing in the scale of eddies taking part in
transport processes. Therefore, in his approach the diffusion coefficient Dy is the
function of the interparticle distance /.
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8]

Fig. 14.2.1 Traces of pairs of particles that are initially within 2 mm of each other. (After Ott and
Mann [259] with permission)

Batchelor [260] considered the problem from a different point of view. In his
model, the diffusion coefficient Dy is the result of statistical averaging over the
ensemble of different scales. Batchelor argued, to the contrary, that relative diffu-
sivity Dy should be independent of /x; on dimensional grounds, this implies that
Dgscales with squared time

Dg(t) o< I (1) o ex . (14.2.2)
It is natural to suppose that there exists an intermediate regime corresponding to

the initial stage of separation process where the dependence of the relative diffu-
sivity Dg(7) has a linear form

Dg(t) oc V2. (14.2.3)
Here, V. is the characteristic velocity scale, which is not universal parameter but
depends on the initial separation /, of scalar particles under consideration. In such

regimes, the dissipation rate ¢x is still the key value and we could construct the
relation for V, basing on dimensional arguments

V, o (Lex)'?, (14.2.4)

where [, is the parameter. After substitution, one obtains

2
Dr(f) ox B2 o (1,ex)*t, (14.2.5)



236 14 Relative Diffusion and Scaling

or for the relative distance in the intermediate range

(I%(f)) o< I + const - (l*sK)z/z’tz, (14.2.6)
where
lz 1/3
Rn*z<*) . (14.2.7)
9%

Such a quasiballistic behavior is rather adequate for the problem under analysis,
but the main feature of this consideration is the physical meaning of the character-
istic length [, and the characteristic timescale 7, introduced by Batchelor. Thus, 7.
may be identified as the scale for which the two scalar particles “remember” their
initial relative velocity while they move in the same eddy of size I,. Here, we are
dealing with the Lagrangian nature of initial stage of dispersion, which leads to the
appearance of nontrivial memory effects.

At times of the order of t,, this eddy breaks up, and the growth of the pair
separation will undergo a transition to the classical Richardson scaling

P(t,) o exT>. (14.2.8)

Here, the characteristic viscous time, 7, = (Vg/ sK)l/ 2isa good approximation
for the characteristic time 7., because on the “viscous boundary” the Richardson
law is automatically valid

P o et (14.2.9)

Here, [, is the Kolmogorov microscale /, = (v/ ex)4.

Indeed, in the intermediate range of scales we are faced with a new scenario. By
following the Batchelor—Townsend [261] line of arguments, it is natural to build the
approximation equation, which can connect the ballistic mode and the Richardson
law. On the basis of dimensional arguments, it is possible to rewrite the Richardson
equation for the interparticle distance in the form

d(lz (1) 7 r 1
StsKﬁQU)SKﬁQ(ERVGEﬁ>. (14.2.10)

In the framework of scaling concept, a power form is appropriative approxima-
tion of the function Q. Thus, we arrive at

dB0Y LN L\
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In the ballistic mode, the separation /; has to be independent of the viscosity, but
the memory effects are essential. This leads to the formula

d{lx(1)) ) < L )2/3 2/3
— eyt = (exl)?t, 142.12
& K o (exly) ( )

where the characteristic exponents are ¢ = 0, { = 2/3. On the other hand, when we
are dealing with the large times, the separation /g(¢) has to be independent of the
initial particle separation /,, which yields the relation

d{73(1)
dt

= e, (14.2.13)

where the characteristic exponents are { =0, ¢ = 0.

Batchelor’s quasiballistic regime has been observed in numerical experiments
[262], where it was shown measurements of relative dispersion for turbulence
levels up to Re =~ 800. For experimentally accessible initial separations, these
data scale as # for more than two decades in time, with no hint of classical
Richardson 7 scaling. This behavior holds throughout the entire inertial range,
even for large initial separations. This demonstrates once again that the initial
separation is an important parameter for relative dispersion in turbulent flow and
cannot be neglected.

14.3 Dissipation Subrange and Exponential Regime

The description of relative diffusion in a dissipative interval of isotropic turbulence
was first introduced by Batchelor in his analysis of exponential stretching of fluid
element in a chaotic flow on small scales [263]. Such an exponential stretching of
fluid element obviously leads to exponential growth of the distance between
two scalar particles placed inside this element and separated by a small distance.
The fruitful approach to analyze this initial stage of dispersion is to use the linear
dependence for fluctuations of velocity

V(I) o const - I. (14.3.1)

This is natural approximation for the viscous subrange because it provides
correct transition to the Kolmogorov dependence

V() o (ex - )3 (14.3.2)
The modified scaling for relative diffusion takes the form

Dg(I) o< V(I)I o const I*. (14.3.3)
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This relation implies an exponential growth of pair separation. Indeed, the
modified scaling Dg(/) o< I? can be applied to obtain the average relative distance
between two scalar particles (/(z)) if we use the Taylor definition of the diffusion
coefficient

aB0)

Dg(t) dr (14.3.4)
Then we can write the differential equation
d » 2
T (Ix(1)) = const(I3()). (14.3.5)

Its exponential solution describes relative diffusion on scales where viscosity
effects are important

(B(1)) = Bexp (%) (143.6)

Here, [y is the initial distance between scalar particles in the dissipative interval
of scales and 7, = (Vg /sK)l/ % is the characteristic temporal scale related to the
dissipation range.

This result brings out the essentially accelerative nature of the relative diffusion,
which occurs as long as the separations involved are small compared with the
viscous scale. The initial separation of scalar particles must be less than the
Kolmogorov dissipative spatial scale

V3 1/4
<<l <l = (;,_F> ) (14.3.7)
K

The corresponding applicability condition for times is given by

p\/2
t< 1, = (—F) . (14.3.8)
K

Often, recourse is made of the simplified approximation formula to connect the
exponential regime with the Richardson one

Ig < V(r + Ig, )0t — V(r,1)5t = 8V (r)st. (14.3.9)

Thus, for the small values of Ig, [g</,, the estimate V(r) o const - r leads to the
exponential regime, whereas in the case of [z > [, we arrive at the Richardson
scaling with the estimate V(r) o (e - r)l/ 3. However, such an approach ignores
the ballistic mode, <l,2e(t)> x (l*sK)z/ 312 therefore, it is rather superficial.
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Fig. 14.3.1 Schematic diagram of Batchelor and Richardson relative dispersion regimes

Batchelor distinguished four regimes: an exponential regime, a regime domi-
nated by the initial velocity difference, the inertial range regime (Richardson
regime), and a normal diffusion regime at large separation (see Fig. 14.3.1). Papers
by Batchelor considered above have provided the starting point for many
subsequent treatments of the scalar transport, a problem that has attracted renewed
attention, with respect to dynamical chaos and anomalous diffusion, in recent years.

14.4 Gaussian Approximations and Relative Dispersion

It is natural to make an attempt to find adequate differential equations, which
provide precise description of different stages of complex chaotic mixing phenom-
ena, instead of several scaling models discussed above. Thus, the analysis of the
dispersion process by means of a conventional diffusion equation is based on
two important physical assumptions, which can be verified a posteriori. The first
one is that the dispersion process is self-similar in time, which is probably true in
nonintermittent velocity field; the second one is that the velocity field is short
correlated in time.

Approximation <112Q(t)> o t* suggested by Richardson corresponds to his notion
of the hierarchical character of turbulent transport. Thus, he related essentially
accelerative nature of the relative distance growth to increasing in the scale of
eddies taking part in transport processes. Therefore, in his approach the diffusion
coefficient Dy is the function of the interparticle distance /g.

Richardson was concerned with finding a diffusion equation to describe the
concentration field relative to the center of mass of a moving cloud. To treat the
shape characteristics of a spreading cloud, he introduced the distance-neighbor
function F, the probability density, to find two initially close particles at the distance
g from one another at the moment ¢
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8F(1R,t) 0 4/3 8F(1R,t)
R - il SLVA 14.4.1
ot dlg Crl dlg ( )

Batchelor [263] considered the problem from a different point of view. In his
model, the diffusion coefficient Dy is the result of statistical averaging over the
ensemble of different scales and he proposed using the temporal dependence for the
definition of Dg(r) ~ (I4(1) >2/ ? & const ex#2. Then, the equation for the probability
density takes the following form, which is similar to the Richardson equation but
with the time-dependent coefficient of diffusion:

t
= const ext” — —. (14.4.2)

Note that the arguments in favor of one type or another of the diffusion coeffi-
cient have a qualitative character in both these cases. These pioneering models lead
to different results in spite of the underlying law <l,2e(t)> o 1. However, the
distribution function F is different in these cases. It is easy to see this difference
when we employ the Fourier transform

Fiu(t) = JOC F(x, )e*dx. (14.4.3)

—00

Thus, in the conventional diffusive equation, the law of temporal relaxation of
the function F in the Fourier form corresponds to the relation

Fi(t) < exp(—1), (14.4.4)

whereas in the case of the time-dependent diffusion coefficient we deal with
stronger decay:

Fi (1) oc exp(—£). (14.4.5)
Here, F(t) is the Fourier transformation of the function F(x,f) over the variable

x. It is obvious that the characters of those solutions describing the probability
density evolution are also different. Thus, for the Richardson model, we find

35 /2 3
() = n (g Cm) , (14.4.6)

whereas the Batchelor equation yields the different result
2 3
(I(0) = (5 CRt) ) (14.4.7)

The same situation we have when comparing the distance-neighbor function F at
zero point. For the Richardson model, one obtains
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3 1

FO,) =
( ) \/6_7I(%CR[)3/2

(14.4.8)

whereas the Batchelor representation gives the dependence as follows (see
Fig. 14.4.1):

1
Var(iu)

Unfortunately, it is impossible to decide what is a correct equation, if one looks
at this problem from the conventional diffusion point of view, because the physical
arguments from Kolmogorov and Obukhov lead to an explanation in terms of the
hierarchy of scales, whereas Richardson and Batchelor deal with the local diffusive
equation with partial differentials.

The development of Batchelor’s ideas concerning relative diffusion has led to
new approaches where nontrivial mixing effects were described in more detail. In
the conventional transport theory, diffusive models are grounded on kinetic
equations. Transition from a configuration space to a phase-space allows one to
describe both ballistic and nonlocal effects. Kinetic approximation was used in
the second Obukhov work on relative diffusion [265]. In spite of some critical

F(0,1) = (14.4.9)

L5 | | |
|
|
|
|
1.0 Ji -
TN
s |
< |
S
< |
EnE
= \
0.5 - \\ —
Fig. 14.4.1 Average
distance-neighbor function
from 209 realizations of C
compared with suggestions
of Batchelor and Richardson.
Continuous line Batchelor;
N dash lines empirical;

M dash lines Richardson

(After Sullivan [264] with _
permission) Yo



242 14 Relative Diffusion and Scaling

comments on such an approach, here again, however, Obukhov has made what
appears to me to be an observation of great interest. Thus, he recognized the
perspective of using a velocity space in the analysis of statistical properties of
turbulent pulsations and suggested to use an approximative kinetic equation for the
velocity distribution function Fy (V, x, )

8fv —
- F ==
ot +VVFy =&

O*Fy

S (14.4.10)

Here, e plays the role of the diffusive coefficient in a velocity space Dy . Indeed,
Yaglom [266, 267] found that the correlation function of accelerations related to
turbulent pulsations of velocity is given by the expression

Ca(t) = (A(D)A(D)) = exd (), (14.4.11)

where A(t) is an acceleration, which can be treated as a white noise in an impulse
space. Such a form of the correlation function permits describing a random process
on the basis of the Fokker—Plank equation in phase-space with the constant diffu-
sion coefficient Dy = ¢k.

By considering the evolution of the theoretical models describing complex
transport effects, we can note an interesting tendency. Initially, new ideas arise
when transport phenomenon is studied in a usual (configuration) space. Then, they
penetrate into kinetic theory, where problems are related to the analysis of a velocity
space or a phase space. Thus, relative diffusion models were developed in a similar
manner.

14.5 Fractional Equation Approach

Fractional differential equations are an especially effective tool for investigating
anomalous transport. These equations allow us to obtain scalar probability density
functions based on the scaling representation of characteristic parameters of the
model. Thus, the Einstein functional equation for the particle density
+00
on _ J G(x — xn(t,x')dx’ (14.5.1)
ot o
could be applied to describe nonlocal effects of turbulent diffusion. Such an
approach was realized by Monin who was guided by ideas about the hierarchical
properties of well-developed isotropic turbulence [268]. In the corresponding
formulation of the problem, all statistical parameters are determined exclusively
by the scale length /; =~ 1/k and the mean energy dissipation rate ¢x. In the
framework of Fourier’s representation for the Einstein functional
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o) -
5 = Gk, (14.5.2)

where the functional kernel is given by scaling G(k) = const k%, there is only the
“uncertain parameter”o;. By following the Kolmogorov phenomenology, it is
natural to compose G(k) as

1

~ 1.2
G(ek, k) = ex3ks o ———.
(K ) K Trel<5K7k)

(14.5.3)

Note, the kernel dimensionality is inversely proportional to the relaxation time.
Thus, we obtain the equation for the particle density with fractional derivatives:

on 13 0%3n
5 = / TR (14.5.4)

Here, the Levy—Khinchine exponent is o, = 2/3 (see Fig. 14.5.1). In an effort to
derive a conventional differential equation, one can differentiate the fractional
differential equation twice with respect to time

Pn &*n

S = K (14.5.5)

The solution in terms of the Whittaker functions behaves asymptotically as
n(— o) o< x~ /13 [268]. The fractional equation obtained differs significantly
from the conventional diffusive equation suggested by the Richardson,
Batchelor, Okubo, and others [269-272]. This new equation allows one to
incorporate the Kolmogorov hierarchy of spatial scales, which, in our case, is
related to the hierarchy of relaxation times.

On the other hand, applying the continuous time random walk approach makes it
possible to consider both spatial nonlocality and memory effects [11, 12]. Blumen,

Fig. 14.5.1 Schematic
illustration of a Levy flight
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Klafter, and Shlesinger [273] employed the advantages of this method to describe
the Richardson relative diffusion R?(¢) oc #°. It is natural that the use of the nonlocal
operator leads to the distribution function, which differs significantly from the
conventional diffusion models. Nevertheless, convincing arguments in favor of
choice of the specific type of equation describing the behavior of the distribution
function are absent and the search for adequate theoretical models and experimental
proofs has been continued.

14.6 Turbulence Scaling and Fractality

In the above discussions, we have implicitly assumed that e is spatially homoge-
neous and not fractal. However, the Kolmogorov theory fails to describe intermit-
tency effects. Landau noted that theory does not take proper account of spatial
fluctuations of local dissipation rates. In fact, high Reynolds number turbulence is
intermittent with regions of high turbulence activity separated by regions of very
low turbulence. The correlation of energy dissipation rate, ep(x), at x is given by the
often-studied function [17, 62]

K..(l) = (e'p(x + 1,1)e'p(x, 1)), (14.6.1)
where ¢, is the fluctuation of the energy dissipation
e (7, 1) o< ve|Vu(7, 1) (14.6.2)
The dimensional arguments lead to the scaling

VIOV 1
Ko(l) = ep(l)* (#) X 75 (14.6.3)

where the Kolmogorov scaling was applied, V(I) I'/3. However, experiments
have confirmed that the energy dissipation region of isotropic turbulence in three-
dimensional space has a fractal structure and the correlation of energy dissipation
rate is given by

1
K:(1) o i (14.6.4)

which decays as the power law, where the intermittency exponent is y; = 0.25 £ 0.05
[17,78]. On the other hand, it was found in [219] that data are best fitted by a relation

Dg(l) o 16+31) (14.6.5)
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with the same intermittency exponent u; ~ 0.2. One can see that the correlation
term 2y, /3 is approximately ten times less than the Richardson 4/3 exponent, but
the physical meaning of the fractal representation of intermittency phenomena is of
great importance. The above scaling indicates that the velocity field has fractal
properties with the dimensionality dp = 3 — p;.

Mandelbrot [274] and then Fricsh, Sulem, and Nelkin [275] have renormalized
the Kolmogorov—Obukhov spectrum using the fractal representation of energy
dissipation regions. The fraction of the volume corresponding to “one dissipation
center” can be represented in the form:

Wa 1 g
zmﬁzﬁwl F, (14.6.6)

Here, N(/) is the number of “dissipation centers” in the region of size I, Wy ~ I
is the volume of this region, d is the dimensionality of Euclidean space, and df is the
fractal dimensionality of the “cluster” consisted of “dissipation centers”. The
Kolmogorov—Obukhov expression for &g can be rewritten in the renormalized
form:

3
const = ¢p & V(TZ)QF(I). (14.6.7)

Then, upon performing calculations, we arrive at the formula in terms of the
wave number k  1/I:

sz _d—dp - 1 1
Er(k) o TQF(k) o Ex(k)k™ =" ~ k5/3 fld—dr)/3 "

(14.6.8)

The last factor is the correction factor caused by the fractal nature of energy
dissipation regions. Experiments are satisfactorily described by the value dp ~ 2.8
[17,22].

The similar analysis has led to the modification of the Richardson scaling

Dr(l) o< VIQE(1) o< V(1) 1% o 1345, (14.6.9)

The Kolmogorov idea partially loses its initial universality after we introduce a
new parameter dr. However, at the same time, such corrections essentially increase
the possibilities to fit theory and experiment.

On the other hand, in [273] the modified continuous time random walk model
was considered, where the intermittency effects are included by scaling

. | d—de 1/ w
s = — = — Lal
V(x) o< X'®,  yp 3+ G 3(1-1— 2). (14.6.10)
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Then, the mean square separation of two particles is given by

1 1 —u
R (1) oc 7,y < — .

(14.6.11)

Note that this scaling for the modified Richardson law has been obtained
independently by Hentschel and Procaccia [276], who used a much different
approach. Hundreds of research papers have been written on the application of
the continuous time random walk approach to turbulent diffusion basing on fractal
concept, but we shall not go into detail here. For a fuller treatment of this exciting
subject, we refer the reader to [17, 22, 77, 78].
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Chapter 15
Two-Dimensional Turbulence and Transport

15.1 Two-Dimensional Navier-Stokes Equation

The Navier—Stokes equation is an equation of the motion of a fluid element in
the absence of a pressure-gradient force and viscosity. In an incompressible fluid,
the fluid mass density p,, is constant. If we further assume that p,, is uniform, the
equation may be expressed as

di  oi

- _= 2T\ — 2
m” atJr(W)u VT + veVZil, (15.1.1)

V.i=0. (15.1.2)

]y
|

Here, T = P/p,, is the temperature, in units of energy, and vg is the kinematic
viscosity. In a two-dimensional fluid, the viscosity vg has components only in the
x—y plane, and these components are functions of x, y, and 7. Here, VT can be
eliminated by taking the curl of equation (15.1.1). In two dimensions

V x [(@- V)i = V x (;Vuz—ﬁx ﬁ) (15,13

= (ii-V)Q+QV - i,

where Q = V x i is the vorticity vector, which lies in the z direction. Equations
(15.1.1) and (15.1.2) reduce to the equation of vorticity,

@ 90

ottt 7. 0 — 283
ar ar + (- V)Q =vV-Q. (15.1.4)

Furthermore, in two dimensions # may be expressed by a scalar stream function V:

i=-V xW¥Ye =-VY x e, (15.1.5)

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 249
DOI 10.1007/978-3-642-20350-3_15, © Springer-Verlag Berlin Heidelberg 2011



250 15 Two-Dimensional Turbulence and Transport

Q=V¥e, (15.1.6)

where ¢, is the unit vector in the z direction. Equations (15.1.1) and (15.1.2) can
then be written in terms of the function ¥ only:

gtvzw — (V¥ x &) - V(V*¥) — v V*Y = 0, (15.1.7)
where V is the two-dimensional gradient operator. If the viscosity is small, the
mode excited in this system is highly nonlinear. The Reynolds number
Re = VyLo/vr gives a measure of the “nonlinearity” of the system. Here, Vj is a
typical macroscopic velocity, L is a typical gradient scale length, and vg is the
kinematic viscosity. If the Reynolds number is large, spatial Fourier modes rapidly
cascade two-dimensionally to other Fourier modes, and a turbulent state results.
The equation for mode coupling between different spatial Fourier modes can be
obtained from (15.1.7) by expressing ¥ in terms of its Fourier amplitude:

1 g
Y= 2 %;‘I’k(t) exp(ik - X) + c.c |, (15.1.8)

where £ is the two-dimensional wave vector and Wy is the corresponding Fourier
amplitude. Equation (15.1.7) then reduces to

¥ 1 :
- KvpWy = 5 > AP, (15.1.9)
! k=k'+k"

where the matrix elements Af, ,, are given by

A ==& x &) - &.(k™ — k7). (15.1.10)

1
2

This equation shows that the coupling coefficient A has a large value when kK,
and &’ have comparable magnitudes, which indicates that the modal cascade is
dominated by local interactions in K space.

That the total energy and enstrophy are conserved is easily shown from (15.1.1),
(15.1.2), and (15.1.3). By taking the scalar product of the velocity field # with
(15.1.1) and noting that

Vid —ii x Q, (15.1.11)

as well as

V3ii=-V xQ+VV i, (15.1.12)
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0 (u? _u? L= 5
¥ (7) 4V (u7+ﬁr> = V- (u X Q) Q. (15.1.13)

If the fluid is surrounded by either a periodic boundary or a rigid boundary, so
that the perpendicular component of the velocity field u, vanishes on the boundary,
this equation gives the conservation of the total energy as

E 2 .
%:%J%dW:J)vp(ﬁx Q) -dS—JvFQZdW. (15.1.14)

Similarly, if we take the scalar product of equation (15.1.3) with Q, noting that

3. (i-V)Q=-0. (zzx (VX())) —i (ﬁx (VXQ)) :ﬁ-v(%z), (15.1.15)

then one finds the equation

%(%2) V. (%2[[) = V- (ﬁ x (v X ﬁ)) —e(V x Q)% (15.1.16)

For the same boundary condition, the conservation of enstrophy is obtained as

a Qz = g pud - 2
ajjdwzfiﬁvpgx(ng) ~dS—JvF(V><Q) aw. (15.1.17)

Let us consider the integral
Jﬁ- (ﬁ-v)ﬁdW. (15.1.18)

One can see that in three-dimensional space there is an additional term on the
right-hand side, which invalidates the enstrophy conservation.

The enstrophy conservation leads to the emergence of isolated vortex structures,
which is a fascinating aspect of two-dimensional turbulence. This phenomenon has
been obtained in many numerical computations (see Fig. 15.1.1). Most vortices are
monopoles but some dipoles, and even tripoles, can be formed. Such vortex forma-
tion has been observed as well in laboratory experiments with thin water layer and
more spectacularly in electron plasma experiments. Such kind of organization can be
explained in the framework of statistical mechanics as a local equilibrium around an
initial vorticity maximum.
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] 2000 KM
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Fig. 15.1.1 The stream function of two-dimensional turbulent flow. (After Rhines P.B. [169] with
permission)

15.2 Inverse Cascade

The mathematical description of a fully developed turbulent state is difficult, if not
impossible. However, the turbulent spectrum may be obtained by using arguments
similar to the Kolmogorov phenomenological approach, which was applied to the
inertial range.

Recall that the inertial range is a range in wave number space where there is
neither a source nor a sink (dissipation) and where the wave number spectrum is
assumed to cascade smoothly in a stationary state. If we write the Fourier amplitude
of the velocity field as Vy, the rate at which the spectrum case is given by kV}. The
omnidirectional energy spectrum E(k) is defined such that [ E(k)dk gives the total
energy, where

—

k= (k- &)'2. (15.2.1)

Hence, E(k)k has the dimension of V7. Kolmogorov argues that, in a quasi-steady
state, there should be a stationary flow of energy in k space from the source to the
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sink. This means that the energy density flow p, kV;V? should be constant and
given by the dissipation rate of the energy density ek at the sink:

PmkVi = ex. (15.2.2)
Now, in two-dimensional turbulence there is an additional conserved quantity,
the enstrophy. Hence, two types of inertial range are expressed: one for energy and

the other for enstrophy. Since the enstrophy density is given by k2v,§, the inertial
range of enstrophy requires that

PmkVik*VE = eq = const. (15.2.3)
Thus, by writing the estimate
. 12
Vi = (kEq(k)) /7, (15.2.4)

the energy spectrum in this range is given by

- /8_92/373
%W—Cp k3. (15.2.5)

This equation shows an energy spectrum of k= (see Fig. 15.2.1), in contrast to
the Kolmogorov spectrum of k>3, which is obtained from the inertial range of
energy.

(@)

{ap?

_IX

| 10
n

Fig. 15.2.1 One-dimensional spectra of transverse velocity component in log— — log
coordinates. (After Sommeria J. [277] with permission)
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Kraichnan [278] showed that if Eq (k) o k=3 there is no energy cascade, while if
E(k) x k—3/3 there is no enstrophy cascade. Hence, a source at k = kg will set up
two inertial ranges: k>ks and k<ks. Since the enstrophy, because of its larger &
dependence, is dissipated at large wave numbers at a rate faster than the energy,
k>ks region is expected to be the inertial range for enstrophy, which implies that
the k<kg region would be the inertial range for energy.

Thus, the energy spectrum has two parts:

Eq(k) oc k73 k>ks, (15.2.6)
E(k) o Ex (k) o< k=33 k<ks. (15.2.7)

Kraichnan argues that since there is no energy cascade for k>kg, the energy
should cascade toward the smaller wave numbers for k<ks; in other words, an
inverse cascade is expected (see Fig. 15.2.2). On the other hand, the enstrophy
cascades toward the large wave number regime at k>ks.

Strictly two-dimensional (2D) turbulence is idealization, since natural flows
have a 3D aspect to them. Nevertheless, understanding the simplest 2D case gives
a good grasp of more complicated systems that occur in the atmosphere and oceans.
Examples of quasi-2D flow where the mixing and dispersion of passive tracers are
important are easily found in the atmosphere and in oceanic flows where a combi-
nation of geometry, stratification, and rotation acts to suppress motion in the
vertical direction. In a similar way, the magnetic field lines can constrain charged
particles in plasma confinement devices and astrophysical flows to quasi-2D
behavior [279-293].

logE (k)

\ Enstrophy cascade

Energy cascade

4
— ' ——_—

5 Eq (k) ~ k73

E \

; \
Fig. 15.2.2 Idealized
Kraichnan energy spectra for : >
two-dimensional forced logk
turbulent flow logk; logk, og
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15.3 Freely Evolving Two-Dimensional Turbulence

Basing on the scaling arguments, it is possible to treat the behavior of freely (no
forcing) evolving two-dimensional turbulent flow. Of course, there is a big differ-
ence between freely evolving and forced turbulence. Thus, as early as 1969
Batchelor [294] assumed a self-similar character of evolution of freely evolving
two-dimensional turbulence.

The Navier—Stokes equation for the two-dimensional case gives the rate of decay
of the mean kinetic energy in the form

dWg

o= 20 = e, (15.3.1)

where v is the kinematic viscosity, ® = <QZ> is the enstrophy, and QO =V xiis
the vorticity vector, which lies in the z direction. One can see that this rate is always
negative. The vorticity equation considered above leads to the enstrophy evolution
equation described by the relation

de
== —vE|VQP = —¢o. (153.2)

We see that the rate of enstrophy decay is also negative.
Viscous effects are negligible for finite time. By taking into account this set of
equations, one can suppose the self-similar form for the energy spectrum

E(k,t) = Ug>tZ(Vokt). (15.3.3)

Here, Uy is the characteristic velocity and Z is an arbitrary function. Indeed,
there are only two relevant dimensional parameters, Uy and ¢ to describe the energy
spectrum evolution of freely evolving two-dimensional turbulence. On the other
hand, this means that in this single-scale approximation the characteristic spatial
size scales with time as

1.(f)  1/k. o Upt. (15.3.4)

This means that spectral peak migrates to small k.
The enstrophy dimensional representation in the integral form

o) = rc E(k, t)k*dk, (15.3.5)
0

allows one to solve the equation for the mean kinetic energy. By introducing a new
dimensionless variable, z = Upk t, we easily find the relation for the enstrophy
evolution
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o L1 C.
() = . UptZ(Uokt)k*dk = — | Z(z)dz = T
0

(15.3.6)

~

Here, C, is the constant. Upon substitution, we find the equation for the mean
kinetic energy in the following form:

dWE(l) C,
= —VE— . 15.3.7
dr VF 2 ( )
The solution of this differential equation is given by the form
C:
We(t) = Wg(0) — vp—. (15.3.8)

t

The expression for the enstrophy evolution in the inertial subrange takes the
following form:

1 AWy C.

O =-5wa 2

(15.3.9)

This simplified single-scale approximation describes a growth of the integral
scale and decay of the total enstrophy as © () o< 1/2. The rate of enstrophy decay
is described by the scaling

& =

de .
—3:2(;% (15.3.10)

The energy flux is everywhere toward small k, while enstrophy flows in both
directions.

These results could be valid for the build-up period of the enstrophy cascade.
However, the scaling law obtained, @ () o< 1/#?, has only a methodological value,
because the laboratory measurements give different exponents ranging from 0.29 to
1.12 [279-281].

15.4 Scalar Spectra in Two-Dimensional Turbulence

In this section, we apply the cascade ideas to passive scalar problem. We suppose
that tracer is advected by two-dimensional well-developed turbulence [279-281].
In the inertial range, the scalar spectrum Eg(k) will be defined, in general, by three
important parameters &g, ¢k, and eq. Here, &y is the scalar flux, g is the dissipation
rate of the energy, and &g is the dissipation rate of the enstrophy. It is convenient to
introduce an additional spatial scale
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e \1/2
Lo ~ <_’() . (15.4.1)

&

Then from the dimensional point of view, one can build a scalar power spectrum
basing on the expression

0;

Eo(k) == o fkLq)egex ™ 3k=313, (15.4.2)

where f is an arbitrary function, which will be defined below from the physical
arguments. Thus, in the inverse cascade subrange (k<ks) the parameter &g
characterizing the dissipation rate of the enstrophy density is inessential. This
leads to f = const. Now one obtains the scalar power spectrum in the form

Ey(k) = const epex Pk, (15.4.3)
On the contrary, for the direct cascade subrange (k>kg) the parameter &g, which

characterizes the dissipation rate of the energy density, is inessential. On these
grounds, we approximate an arbitrary function f by the formula

f(kLg) = const(kLg) />, (15.4.4)
The corresponding scaling for the scalar power spectrum is given by
Ey(k) = const ggeq ™ 2k, (15.4.5)

Indeed, in the direct cascade subrange (k>ks) the velocity fluctuations are
estimated as

891/3
P2 )

Vi x (15.4.6)

which  follows from the conservation of the enstrophy density
PmkVik*VE = gq = const. To define the scalar perturbation amplitude, one should
employ the expression for a scalar flux

03 0;
gy X = —- (15.4.7)
tcasc(k)  (kV)
This leads to the formula for the scalar perturbation in the form
1/2
O o =2 (15.4.8)
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Fig. 154.1 Ideallized s.calar 4 log Eq (k)
spectra for two-dimensional
turbulent flow

log k,, log k
and hence, one obtains scaling for the scalar spectrum
Qi &p 1

The scalar power spectra obtained for the inertial range of spatial scales are
represented in Fig. 15.4.1. For a deeper discussion of scalar power spectra problem
in two-dimensional turbulent flows, we refer the reader to [287-290].

15.5 Atmospheric Turbulence and Relative Dispersion

By considering the relative diffusion in two dimensions, we are faced with a quite
different scenario. It is believed that in this case there exists the direct relationship
(based on dimensional estimates) between the relative displacement of two particles
in a turbulent flow and the expression for a spectrum E(k)

, (15.5.1)

ko

]

Dr(l) o V() o I\/E(k)k

which in the case of the spectrum E(k) o k=573 yields the Richardson scaling
DR 0.8 ZR4/ 3.

In the case of two-dimensional turbulence, one can use the Kraichnan spectra for
the inverse cascade E(k) oc k=3. Unlike with three-dimensional turbulence, where
energy is transported via nonlinear interactions from the large scales to the small
dissipative scales, energy in two-dimensional turbulence moves from small to large

scales. This “inverse cascade” thereby shifts energy away from the dissipative
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scales, requiring a large-scale dissipation mechanism. At the same time, enstrophy,
the squared vorticity, is transferred downscale. So if energy is injected at a single
scale I; o< 1/ky, there will be two different inertial ranges. The Kraichnan approach
leads to the modified formula for relative diffusivity

Dr(Ir) o const /. (15.5.2)

This means that one can obtain the differential equation for a relative displace-
ment. According to the theory of Lin [296], one expects a variation of d<l§> /dr as
(1) in the enstrophy range.

d(iR (1))
dr

= const - <12R(t)>. (15.5.3)

These results are similar to the expressions describing the Batchelor viscous
regime and that is why one obtains the exponential dependence for relative distance

(IR*(#)) = const exp <i> (15.5.4)

7o

Thus, a pair of particles with an initial separation smaller than the injection scale
Iy would experience exponential growth until the separation reached the injection
scale I1, after which the square separation would grow cubically in time, up to the
scale of the largest eddies /g.

Unique results of observations have been published by Morel and Larcheveque
[295] based on the so-called EOLE experiment with 480 balloons distributed over
the Southern Hemisphere at the 200 mb level. It was found that the eddy dispersion
process is homogeneous, isotropic, and stationary up to scales of the order of
1,000 km. Thus, the mean square relative separation <l§(t)> increases exponentially
with time up to 6 days (see Fig. 15.5.1), which is in agreement with the Lin predic-
tions [296], whereas <l]%(t)> = 80km, T; = 1.35 days, and more slowly like ¢'/2
later. The relative diffusivity coefficient is saturated at + — oo and its estimate is
Dg =~ 1.6 x 10°m?s~!. These measurements show the expected dependences. For
spatial scales between 100 and 1,000 km, good agreement is found with the theory
based on a cascade enstrophy in 2D turbulence.

locexpt Loty Lot
A 7'y >
Fig. 15.5.1 Schematic
diagram of relative dispersion
regimes for two-dimensional
turbulent flow Ly Lg
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There are important distinctions between the atmospheric and ocean turbulence.
Motions of the air in the atmosphere and that of seawater in the oceans that fall
under the scope of environmental fluid dynamics occur on spatial scales of several
kilometers up to the size of the ears. Generally, the oceanic motions are slower than
their atmospheric counterparts. Moreover, the ocean tends to evolve more slowly
than the atmosphere. For instance, a number of oceanic processes are caused by the
presence of continents and islands, which is not so essential for the atmosphere.
Below we consider significant differences between relative dispersion in the atmo-
sphere and in the ocean.

15.6 Rough Ocean and Richardson’s Scaling

Besides significant scale disparities, the earth’s atmosphere and oceans also have
their own peculiarities. Flow patterns in the atmosphere and oceans are generated
by vastly different mechanisms. The atmosphere is thermodynamically driven by
the solar radiation, whereas oceans are forced by periodic gravitational forces and
its surface is subjected to a wind stress that drives most ocean currents (see
Fig. 15.6.1). That is why relative diffusion in the ocean could be different from
the atmospheric one. Indeed, the exceptional universality of Richardson’s scaling
could be comparable to the universality of the Kolmogorov and Obuchov spectrum
and numerous experiments confirm that this scaling correctly describes the relative
diffusion in the ocean, in spite of the large-scale ocean turbulence that cannot be
analyzed in terms of three-dimensional isotropic turbulence. Indeed, the investiga-
tion of scalar scattering in ocean verifies well the validity of “4/3 law” ranging from
10 m to 10% km (see Fig. 15.6.2). It was calculated that on the scales 10—10° m, the
magnitude of ex ~ 10~4cm? / ¢3, whereas on the scales 10—1,000 km, the value of
ex is much lower, ¢x ~ 10~3cm?/c3. This intriguing fact for the range of 10-10° m
was recently explained by Golitsyn [298] based on the consideration of spectral
characteristics of both hydrodynamical and wave turbulence.

By analyzing the relation between Lagrangian characteristics and spectral one,
we have to take into consideration the expression

<(z(/) - z(t))2> =2 J (1 — =, (0)dw). (15.6.1)

For example, using velocity as a Lagrangian characteristic z leads to

V2 i
<7> - | Bvwpao. (15.62)

—00
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Fig. 15.6.1 Schematic picture of float trajectories in the North Atlantic. The motion caused by
mean currents and mesoscale eddies
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Then, the Richardson law
(IR(1)) o< const - exr’, (15.6.3)

can be treated as a white noise in an impulse space, where the energy flux over the
spectrum, Dy ¢k, plays the role of the diffusive coefficient

(AV)®
t

= gg = const. (15.6.4)

Calculations yield the estimate of the frequency spectrum Ey (w) in the scaling
form

V) e 1
Ev(0) auocg—[(z(x—z. (15.6.5)
(0] (0] (03}

On the other hand, we can derive the expression

1/ a2\ T,
5 <E> = Ja) E.(w)dw, (15.6.6)
0

which leads to the relationship between the spectra Ey(w) and E,(w) in the form

1 1

Thus, the realization of Richardson’s law implies the specific form for the
frequency spectrum E () o< o™,
A similar spectrum was found in both the theory and experiments on investiga-

tion of spectral properties of sea-waves by Zakharov [299] and Toba [300]

1
En(o) o< —. (15.6.8)

Using this, Golitsyn pointed out that due to the fluid incompressibility
div it =0, (15.6.9)

vertical and horizontal displacements have the same frequency spectrum; hence, the
main reason for Richardson’s law to be valid in describing relative diffusion in
oceanology is the existence of the inertial interval in the turbulent spectrum of sea-
waves predicted by Zakharov. Undoubtedly, this is a highly significant example of
the interaction between wave turbulence and vortex turbulence.
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In conclusion, we recall Taylor’s words [301]: “Since the curve shown when here
seems to contain all the observational data that Richardson had when he announced
the remarkable Richardson law, it reveals a well-developed physical intuition that he
chose as his index 4/3 instead of, say, 1.3 or 1.4 but he had the idea that the index was
determined by something connected with the was energy was handed down from
larger to smaller and smaller eddies. He perceived that this is a process which,
because of its universality, must be subject to some simple universal rule.”
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Chapter 16
Convection and Rayleigh Number

16.1 Buoyancy Forces

Convection may be considered as a part of fluid turbulence and recent research has
many parallels with studies of turbulence. For instance, there is considerable
interest in coherent structures and intermittency effects. Convection in the environ-
ment is almost always a turbulent flow, characterized by unsteady motions over a
range of length and timescales [302—-306]. Indeed, most of the motion in the Earth
atmosphere takes the form of convection, caused by warming of the planet by the
Sun: heat absorbed by the surface of the Earth is transmitted to the lower layers of
the atmosphere; warmer air being lighter, it rises, leaving surface for downward
currents of cold air see Fig. 16.1.1.

The upthrust on a body submerged in water is equal to the weight of water it
displaces that was discovered by Archimedes. Indeed, a body of volume W and
density pr have a weight gpW, where g is the acceleration due to gravity. In water
of density p,, the body displaces a weight of water gp,,W. The net buoyancy force
on the body submerged in water is g(p,, — pr)W. By applying the Newton second
law, one easily obtains the vertical acceleration in the form g(p,, — (pr/p1)). The
body referred to may itself be a volume of water. Let us suppose that this volume of
water has the density pr and it is surrounded by water of density p_,. The buoyancy
of such a volume is given by the expression

B, =glm—Pr (16.1.1)

Pm

The buoyancy is positive if the density of the volume is less than that of its
surroundings.

Consider a small volume of water of density pr, which is displaced upward by a
small displacement /. Then, the density difference between it and its new surroundings
is —I(dpy/dz). Here, we suppose that there exists a uniform density gradient
dpr/dz, with the z coordinate in the vertically upward direction. If it is released,
its upward acceleration will be of order

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 267
DOI 10.1007/978-3-642-20350-3_16, © Springer-Verlag Berlin Heidelberg 2011
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/d
B, =T (16.1.2)
pr dz
When density increasing upward
d
dpr(@) (16.1.3)

dz

the net force is upward and the acceleration is positive. This means that the volume
of water will move away from its initial position (see Fig. 16.2.1).

The basic destabilizing force is the differential buoyancy experienced by a fluid
particle subjected to a temperature fluctuation. Let us estimate the typical accelera-
tion due to this differential buoyancy: o, being the thermal expansion coefficient
(i.e., — (1/pm)(9p1/IT)), g is the acceleration due to gravity, p,, is some average
density, and the order of magnitude of density fluctuations is p,,o, AT, where AT is
the temperature difference between the top (cold) and the bottom (hot) plates. The
potential buoyancy force per unit volume is then p a,gAT, which allows the
definition of the characteristic time tg through

L
Pmo,8AT = force = p,, x acceleration = p,, —;). (16.1.4)
B
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Fig. 16.2.1 Schematic I T ““““ ‘: ——————
illustration of a convective [ ' \ f ! \

flow cell

Apart from numerical factors, g is the time required for a hot bubble to rise, or a
cold bubble to sink over the distance L.

Damping is expected from the irreversible trend to uniformity: relaxation of
velocity gradients via viscous friction and relaxation of temperature gradients
via heat diffusion. Both processes are governed by a law of the diffusive form.
Here, we have two diffusivities: the kinematic viscosity vg = ng/p,,, Where g is
the dynamical viscosity, and the heat diffusivity y, = y,/C,, Where y,, is the heat
conductivity and C, is the hear capacity per unit volume.

The viscous characteristic time 7, is given by the relation vg = Lo? /7, and the
diffusive characteristic time tp is then defined as follows: k, = L3/tp. The
Rayleigh number

B o,gATLy?

R
“ kv

(16.1.5)

can then be understood as the ratio 7,7p/ 1123, where T contains explicitly the control
parameter AT.

When Ra < 1, i.e., g > 1,Tp, the buoyancy force is insufficient to make the
hot (cold) bubble rise (sink) sufficiently quickly. Damping process, especially
thermal diffusion, irons out the fluctuation so that the layer remains at rest. On
the contrary, when Ra > 1, i.e., 15 < 1,Tp, the buoyancy is expected to be strong
enough to overturn the layer. The convection threshold should then correspond to
some “intermediate” value of Ra that remains to be estimated.

16.2 The Oberbeck-Boussinesq Equations

The Boussinesq approximation is basically an assumption of moderate heating
reasonably valid in usual experimental situations. Thermodynamic properties of
the fluid are considered in a state equation that simply reads:
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pr(T) = pp(1 — 0, (T — Tw)), (16.2.1)

where Ty, is a reference temperature, p,, is the density at that temperature, and ¢, is
the coefficient of thermal expansion (most of the time we will take T, at the bottom
plate: y,, = 0). Mechanically, the fluid can be treated as incompressible and all
density fluctuations are neglected except in the buoyancy term.

The incompressibility condition (continuity of matter) reads

Ve OV, OV
ox  dy 0z

0, (16.2.2)
The Navier—Stokes equations in our case is given by

- \o o _
Pm (EH/ : V)V = —VP + V2V + pp(2)g. (16.2.3)

It contains the buoyancy term (the dynamical viscosity ng = p,, V¢ is assumed
independent of the local temperature). According to our qualitative understanding
of the instability mechanism, we know that the vertical direction is singled out.

The heat equation reads

o
C, (5 +V. v) T = y,V°T, (16.2.4)

where the heat capacity per unit volume C, and the thermal conductivity y, are
assumed constant (heating due to viscous dissipation is also neglected).

We shall generally assume that the fluid layer is of infinite horizontal extent. The
horizontal boundaries are either rigid walls or free surfaces. The case of the no-slip
condition yields a velocity of zero at the respective boundary. Such boundary conditions
at free surfaces are given by V, = 0, where we have applied the continuity equation.

In the case of rigid walls, with the effect of capillarity neglected, both the normal
stress and the shearing stress are zero at the free surface. Summarized, the boundary
conditions at rigid walls are given by 9V,/9z = 0. Besides, the boundaries will
usually be assumed to be perfect heat conductors.

The validity of these approximations is discussed here. We just note that
simplifications introduced above are generally supported by order of magnitude
estimates but may be insufficient in certain cases, e.g., for water around 4° where it
presents a density maximum, thus calling for “non-Boussinesq correction”.

16.3 The Rayleigh—-Benard Instability

Rayleigh—Benard instability arises when a thin layer of fluid is suggested to heat
fluxes at the top and/or bottom of the layer (see Fig. 16.3.1). The motion that results
from this type of instability is referred to as Rayleigh—Benard convection, and it is
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Fig. 16.3.1 Schematic T,
diagram of the
Rayleigh—Benard problem of
convection between two
infinite horizontal boundaries

Gravitation force

T,+ AT

manifested in certain types of stratocumulus, altocumulus, and cirrocumulus, which
exhibit substructure in the form of rolls and cells (see Fig. 16.3.2). An instability
theory to explain the phenomenon was provided by Rayleigh. This type of convec-
tion was described by Thomson (1881), who observed a pattern of cells of
overturning fluid in a barrel of warm soapy water behind an inn used for cleaning
glasses. His theory is based on the Boussinesq equations applied to an incompress-
ible fluid that expands as its temperature is increased. For such a fluid, the buoyancy
is given by B, = gu,T’, where o, is the expansion coefficient, defined such that
p'/pm = —,T'. Friction and heat conductivity are parameterized in terms of a
constant viscosity vr and thermal conductivity y,. The equations are linearized
about a state of zero mean motion and horizontally uniform temperature [307-311].
Perturbations are then governed by the equation of motion,

%4 1 .
%;z——VF+@J+wVWQ (16.3.1)

m

the continuity equation,
V-V =0, (16.3.2)
and the thermodynamic equation,

or’
'g—W&ZMWﬂ (16.3.3)

where y, = 1o/pCy C, is the specific heat of the homogeneous fluid, and
B, = —OT [0z is maintained by heating below and/or cooling above. Substitution of
solutions of the form
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Fig. 16.3.2 Sketch of the Rayleigh—Benard cells

VI T o sin kyze'®th) girst (16.3.4)
VI, VLP' o cos kyze' b gt (16.3.5)

into equations for perturbation ‘_/", T’ leads to the dispersion relation

7ie (K + k§ +K2) + Tre (g + ve) (kK + k§ +K2)%+

(16.3.6)
g, (K + K+ Kk2)° = g, (k2 +k2) = 0.

Solving this quadratic equation leads further to the conclusion that unstable
solutions (ygp positive and real) occur when

B8ty (K2 + K3) + Ve, (ki + k7 + k2)*<0. (16.3.7)
If there is no friction (vg = 0), this relation reduces to simply f,>0. That is, the

lapse rate must be positive to get unstable growth. If both friction and conduction
are finite, then terms in the dispersion relation can be rearranged to

(k3 + &2 + k2L

Ra> , 16.3.8
ke + k2 ( )
where Ra is the Rayleigh number, defined as
L3VTga,
Ra = 10V18% (16.3.9)

XqVF
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and Ly is the depth of the fluid. The expression for the Rayleigh number contains all
of the prescribed characteristics of the fluid. If it is assumed that the vertical wave
number is related to Ly by k, = n/Lo, then it is clear that instability can occur
for any number of combinations of &, and k,, including both cells (k, = k,) and
rolls (k, =0, ky # 0); and the value which Ra must exceed, according to the
dispersion relation obtained above, is a function of horizontal wave number

q/kx2 + k%, as shown in Fig. 16.3.3.

In order to be unstable at all, the Rayleigh number characterizing the fluid must
exceed the minimum value:

277
Ra, = T” ~ 657.5, (16.3.10)

which is found from the dispersion relation by differentiating the right-hand side of it
with respect to (k? + %). The most unstable solution for the special case of Ag = VRIS
obtained by differentiating the dispersion relation with respect to (k,(2 + ky2 + kzz)
(or (k} + k7)) and setting

dyrg
d(k? + ky* + k.2)

=0, (16.3.11)

to find the condition of maximum ygg. A second equation in ygrg is given by

4
k.2 R k,
k2 + k2 + k. Ly \ ke + ky* + k.

200

Unstable

100

Rasx

Fig. 16.3.3 Schematic | |
diagram of stable and
unstable regions for the
Rayleigh—Benard problem
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which is the relation among the wave numbers when yzp has its maximum value.
If we again assume that k, = n/Ly and that we have square cells such that
ke =k, =2n/S, where S is the spacing of the cells.

The critical value of the Rayleigh number Ra, depends on the boundary
conditions. In the case of more realistic boundary conditions [308-311], we
have larger values than Ra, ~ 657.5 but still of the same order of magnitude.
For a layer of water 10 cm deep, a Rayleigh number of 1,000 is achieved with a
temperature difference 10~* K and that is why any realistic unstable temperature
distribution will produce Rayleigh numbers that far exceed critical values. Because
Rayleigh number increases rapidly with Ly, deeper layers produce even higher
values of Ra.

16.4 The Lorenz Model and Strange Attractor

There is another line of attack, which could be used to consider the Rayleigh—Benard
convection. We start from the Boussinesq approximation, which assumes that the
density variations are incorporated only in the buoyancy term. Perturbations are then
governed by the equation of motion, the continuity equation, and the thermodynamic
equation, respectively

Vv 1 %
N L op g, T+ w7, (16.4.1)
ot m
V.V —o, (16.4.2)
or’ or
A AL (16.4.3)

Taking the curl of the motion equation yields an equation for the vorticity,

% + (@ V)Q = (Q- V)i + v VA — 0,V x (gAT), (16.4.4)
which is given by the conventional relation ﬁ(x, v,z,t) = V x ii. The velocity is
zero in the z direction, i.e. il = (uy, uy,0). The assumption of two-dimensionality
eliminates the term, which describes vortex stretching in the equation of motion.
The vorticity has a nonzero component only in the z direction, Q= (0,0,Q), and
the previous equation takes the form

da = <
n + (il - V)Q = v V2Q — gu,

ovT
Ox

(16.4.5)
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Two-dimensional incompressible flow may be expressed by the scalar stream
function :

= =020y = SR (16.4.6)

The vorticity is related to the stream function s by the Poisson equation

Q(x,y,z,1) = V2, (16.4.7)
and the vorticity equation could be written in terms of stream function / as follows:

d_, s s OAT
&V Y= Y, VY] = VY — 8% 5 (16.4.8)

Here, the conventional relation for the two-dimensional Jacobian operator is
used

_9fdg Of 0g
IF8l = Ox 0z 0z Ox’ (16.4.9)

We now write the temperature field T in terms of a background profile (T),
which depends only on y and the temperature perturbation 7

T(x,y,0) = (T(y)) +T'(x,y,1). (16.4.10)

The equation for the temperature perturbation T” takes the following form:

or' oy O(T) O*(T)
5o (16.4.11)

i n _ _ 2t N7
5~ W T L VT + 1, e

Boundary conditions of no normal flow and no slip at the upper and lower
boundaries imply that:

¥ly—o = V¥ |y—0 = 0,¥|y—1, = V¥ |y, = 0. (16.4.12)

The temperature at the top and bottom boundaries is fixed, so
T'|y=0 = 0,T"|y—1, = 0. (16.4.13)
Lorenz took the system of equations obtained by truncating the original infinite

system to only three variables [313]. This corresponds to looking for solutions of
the form
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ar . [Ta, . T
X, y,t)——— = X(¢)sin| —x | sin| —y |, 16.4.14
Vo) g s = Xwsin((e ) sn([3). - aeas
Ty, )R~ /3y (i) cos (™ ) sin( Ty ) + Z(i)sin(2ox ). (16.4.15)
Vs RG*AT_ L()x Loy LO.X . A

By substituting the truncated Fourier expansions of iy and T’ into the governing
equations, we find three coupled ordinary differential equations for the coefficients
X(1), Y(¢), and Z(2):

X=—-PrX+Prv, (16.4.16)
Y=-XZ+RX-Y, and (16.4.17)
7 = XY — bgZ. (16.4.18)

To obtain this system, one also rescales time

m* (1 + ag)y,t

7 (16.4.19)

T =

Here, the normalized Rayleigh number is R}, = Ra/Ra., the parameter by is
related to the aspect ratio of convective cells bg = 4/1 + azR, and the Prandtl number
is Pr = vg/y,. The coefficient X is proportional to the intensity of the convective
motion. The coefficient Y is proportional to the difference in temperature between
the upgoing and downgoing currents. The coefficient Z describes the horizontally
averaged deviation from the linear temperature profile. This is a dissipative system,
since its divergence is negative:

oX oY 0oz
X 0¥ 0Z b i <o 16.4.20
ax oy T oz r RS ( )

Fixed points are given by the system:

X—Y=0, (16.4.21)
—XZ+ (RL — 1)X =0, (16.4.22)
XY — bgZ = 0, (16.4.23)

For Ry <1 there is only one fixed point §0, Xo = Yo = Zy = 0, corresponding to a
linear (conductive) temperature profile, with no convection. For R >1 there are
two additional fixed points S; and S5,
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X, =Y, =+/br(RL—1), Zi=R_—1, (16.4.24)
Xo=Y,=—br(RL—1), Zy=R_ -1, (16.4.25)

corresponding to steady convection in parallel rolls.

By alinear stability analysis, it can be shown that S is the only stable fixed point
for Ry <1. At Ry, = 1 there is a pitchfork bifurcation in which 3_"0 becomes unstable
and S 1 and §2 appear as new, stable equilibria. If Pr>bg + 1, S 1 and §2 become
unstable through a subcritical Hopf bifurcation at

Pr(Pr+b 3
R. =R.. = M. (16.4.26)
Pr—br —1

The consequence of the disappearance of the stable fixed point is chaotic motion
[313-317]. In the phase space, the attractor of the system (see Fig. 16.4.1) is a
“strange” object, with a fractal dimension.

The trajectory of the solution follows a part in phase space that spirals away
from one unstable fixed point and then loops in close to the other unstable fixed

Z
|

Fig. 16.4.1 The Lorenz attractor
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point. It then spirals away from this second unstable focus until it loops back to the
neighborhood of the first unstable fixed point. The switching between orbiting
around one unstable fixed point and the other follows an irregular, aperiodic
sequence. Trajectories started from nearby points on the strange attractor diverge
rapidly from one another, though they remain on the attractor. Such a sensitivity to
initial conditions makes the prediction of the trajectory impossible even though the
system is deterministic. Strange attractors are intimately associated with chaotic
dynamics and unpredictability in dissipative systems.

Detailed understanding of the processes involved in the transition to turbulence
requires more sophisticated theory. In this chapter, the Rayleigh-Benard convec-
tion has served as a pretext for a detailed presentation of some technicalities
involved in convective turbulence analysis. It will now serve us to introduce both
the quasilinear approach and scaling to describe complex convective structures, at
a phenomenological level.
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Chapter 17
Convection and Turbulence

17.1 The Obukhov-Golitsyn Scaling for Turbulent Convection

In this section, we establish the relationship between the classical Zeldovich and
Kolmogorov results of turbulent transport of scalar particles and the theory of
turbulent convection. Let us consider the simplified balance of energy in a convec-
tive flow. In the steady case, the rate of kinetic energy generation,

Lo

E(+) = O(ppgj <V2T,>dz7 (17.1.1)
0

must be equal to the rate of energy dissipation of convective motions due to the
viscous effects:

Lo .
E_y= —vaJ (VAV )dz. (17.1.2)
0

Here, L is the fluid layer depth.

In order to write a heat balance equation, we have to take into account the heat
flux gt to a lower boundary of fluid. This flux is the sum of the heat conduction
contribution and the convective motion term

dr
qr = qo + Geconv = _pCp}{q e + pCp <V25T>. (17.1.3)
Finally, the heat balance in the absence of internal sources has the form
grLo = qoLo + E(1\Hp. (17.1.4)

When convection occurs the heat transfer is greater than that by conduction. It is
convenient to measure this increase by the dimensionless Nusselt number

0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 279
DOI 10.1007/978-3-642-20350-3_17, © Springer-Verlag Berlin Heidelberg 2011
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_qr _ 4t
_QO_(ﬂ).

Here, the denominator is the heat flux that would result from the steady conduc-
tion. This means that the Nusselt number is the dimensionless value of the actual
heat flux, and when we are dealing with the conductive regime, one obtains Nu = 1.
For regimes where convection is presented, we have Nu>1.

Now, by taking into account the energy balance, we can write the expression

Nu (17.1.5)

_9r p Hs

= 17.1.6
Nu+ OF ( )

qr

which allows us to estimate the efficiency of heat power convertation brought into

the convective layer
E L 1 L
y=Ew _ <_0) (1__> ~ 0 (17.1.7)
qr Hp Nu Hp

where we suppose that Nu > 1. This expression allows the heat flux to be deter-
mined in terms of the external parameters of convective flows Ly and Hp and so is of
considerable practical as well as conceptual value.

On the other hand, we can easily evaluate the energy dissipation for the
quasisteady case

L 1 L
Ey=E@) =7qr ~—°<1 )qT ~ g, (17.1.8)

H B Nu H B
where Nu > 1.

At this stage, it is natural to apply the Kolmogorov—Obukhov concept of well-
developed turbulence to the turbulent convection in the horizontal infinite layer of a
fluid. Thus, we can estimate the Kolmogorov constant ¢x. Indeed, using an expres-
sion for the kinetic energy dissipation in a flat layer £(_), we find the Golitsyn
formula [318] for an energy flux

_Ey  gqr Nu—1

= /= 17.1.9
« pLo  pHp Nu ( )

&

In the case of the high Nusselt number Nu > 1 (gr > qo), we deal with the
well-developed convective turbulence. This allows us to introduce the scaling for
the energy flux

o = 1L — (an) gr. (17.1.10)
pHp pCp
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50 100 200 500 1000 @ 2000 30004000 &'
Fig. 17.1.1 The mean profile of the energy dissipation rate for different values of height (After
Koporov B.M. Tsvang L.R. [319] with permission)

For modeling the turbulent convection in the atmospheric boundary layer, this
scaling was applied by Obuchov [241]. From this experiment, the order of the
magnitude of eg was experimentally defined in conditions of clear sky in a steppe
on different levels. Data obtained (see Fig. 17.1.1) allow one to consider the
estimate of ex &~ 5 cm?/s® as rather correct ranging from 50 to 1,000 m.

17.2 Quasilinear Regimes of Turbulent Convection

We turn our attention to different aspects of the model under analysis. In the
turbulent convection regimes, where the Nusselt numbers are high, the formula
ek = (ocpg/pcp)qT leads to Zeldovich’s quasilinear scaling obtained from the
general analysis of scalar transport equations

Desr o Do(const 4 Pe?). (17.2.1)

Let us calculate the characteristic velocity of convective motions basing on the
dimensional estimate of viscous dissipation
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2
EK X VF&. (1722)
Ly

In the case of Nu >> 1, one can find the scaling for the characteristic velocity

e \1/2
Vo o <K> Lo. (17.2.3)
VE

This estimate of the characteristic velocity can be rewritten in terms of the
Rayleigh number and the Nusselt number

2 25 o (4r) (AT .
V2 o L0<VF) . (AT) <VF> o Nu - Ra. (17.2.4)

The author of [318] used this expression to analyze the energy balance in
the case of convection in water. The experimental results were obtained, Vi =~
2.6mm/s for ex &~ 3 x 1072 cm?/s®, which coincide with the results of indepen-
dent experimental data.

Basing on linear dependence between the energy flux ex and the convective heat
flux gr

o
ex = (Lg) gr x qr, (17.2.5)
pc

P

it is easy to obtain a quasilinear scaling for a heat flux in terms of the Peclet number
Pe:

qr(Pe) o< Nu oc Vi oc Re? o Pe?. (17.2.6)

On the other hand, on the basis of the transport equation,

-

(V)T ~ —%vqT, (17.2.7)
PCp

we find an estimate of temperature fluctuations

Pe) 1
arPe) 1 v o Re o Pe. (17.2.8)
Vo pCp

0T (Pe) =~

Note that both estimates obtained for the temperature fluctuation 67 and con-
vective heat flux gr coincide exactly with Zeldovich’s predictions for a quasilinear
case, Pe < 1. Indeed, such turbulent convective regimes are occurred in the
regimes where viscosity effects are essential.
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17.3 Strong Convective Turbulence

For fixed fluid properties, which in our case are described by dimensionless Prandtl
number, scaling analysis of turbulent transport suggests that

Nu = Nu(Ra), (17.3.1)

and much attention has been given to the form of this functional relationship,
particularly at high Rayleigh number (see Fig. 17.3.1). The nature of dependence
Nu(Ra) for the Rayleigh number Ra>Ra, was investigated theoretically long ago
by Kraichnan [320], and his work has stimulated the search for ways to explore this
high Rayleigh number regime because it is related to fundamental change in the
heat transport mechanism.

Note that near the boundaries heat is transferred by conduction since the vertical
velocities are zero at the boundaries. The heat flux gt across each layer is

ST
ar =1y (17.3.2)

where 0T is the temperature difference across the boundary layer of thickness Jr.
Thus, estimate for the Nusselt number is given by

oT - Ly

AT o7 (17.3.3)

u

Observations show that as the Rayleigh number increases, the boundary layers
become thinner and the temperature drop across them increases until

5Tz%Aﬁ (17.3.4)

and hence finally, one obtains the estimate in the form

NM&)%%%. (17.3.5)

Fig. 17.3.1 A typical plot of |
the dependence of the Nusselt

number on the temperature 1 - 1 P — b
difference 10 10 10 10 Ra
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In the case of Nu > 1, the interior of the fluid has almost uniform temperature
and all the temperature drop occurs across the boundary layers, which are thin
compared to the fluid depth (see Fig. 17.3.2).

On the other hand, we can estimate a boundary layer width J responsible for the
conduction in the steady case from the heat transport equation. In the simplified
dimensional form, we find

T T
V()—’r-?ﬁ

—. 17.3.6
Lo Lq e ( )

Then, we obtain the scaling for the layer width in terms of the Peclet number:

Lo X
o1(Pe) o L 4 17.3.7
1(Pe) e OHVOLO ( )

Indeed, when Ra > 1, the buoyancy forces dominate and, when the stratification
is unstable, convection will ensue. For turbulent flows (for instance, environmental)
Ra is large, but near any boundary the scale of the motion is small and heat enters
the fluid by conduction, through a thin boundary layer. Now, it is easy to calculate
an expression for the Nusselt number

0
NMO(L—TOC Per o< /Vy or V30<Nu4. (17.3.8)
0

S T

T

) N (S R A

Fig. 17.3.2 A typical plot of

h file in th
Raicin-benard comecion 1 1 1 F F F t 1 1t
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By comparing this expression for Vo = V(Nu) with the previous one
2 2 (&K
Vi o< Ly (v) x Nu - Ra, (17.3.9)
F

we can draw the well-known scaling in the theory of turbulent convection

Nu(Ra) < Ra'’?, (17.3.10)

where Ra >> 1, which corresponds to regimes of strong convective turbulence. The
corresponding heat flux is given by the expression

o 9 1/3
gr  pC, <% AT*3. (17.3.11)

It is interesting that the estimate of temperature fluctuations obtained on the basis
of these formulas is less than the Zeldovich classical result for the case of very
strong turbulence (when Pe ~ Re > 1) demonstrated before:

gr(Pe) Nu 1 1 1

OT(P — .
(Pe) x Ve <xVoo< _VOO( —Pe<<Pe‘/4

(17.3.12)

On the other hand, in regimes with Ra & Pe > 1, the heat transport gy depends,
in general, on the condition near boundaries dt o vln < Ly and is independent of the
layer depth Ly

Ra(L0)1/3 N (L3)1/3

17.3.1
Lo L, (17.3.13)

AT
qr = ,(qL—ONu(Ra) x
This, obviously, also leads to the scaling Nu o Ra'/>.
In the conditions of very strong turbulence, the dependence of the Nusselt
number on the Rayleigh number Nu = Nu(Ra) still remains unsolved both experi-
mentally and theoretically.

17.4 Diffusive Growth of Boundary Layer

The experimental data have showed that in the case of the high Rayleigh numbers
there are regimes where a convective flow is not steady. To explain the mechanism
of unsteadiness, we represent a phenomenological approach, which was introduced
by Howard [321]. He considered high Rayleigh number convection to consist of the
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temporal development and subsequent breakdown of the boundary layers to release
buoyant fluid (see Fig. 17.4.1).

Let us suppose that heat is conducted from the boundary into a layer with
thickness

1
5T(l) X th X m (1741)

The value of o1 will grow diffusively until it reaches a critical thickness at which
a local boundary layer Rayleigh number Ra(0) is given by the relation

B 90, 0T53

Ra(9) -
(g

= Ra, ~ 0(10°). (17.4.2)

This local Rayleigh number Ra(d) is based on the boundary layer scale o1 and
temperature drop 67. At this point, the boundary layer is assumed to break away at
t =~ t. and the process repeats. This leads to the instability as convection tends to
increase the boundary layer thickness that in turn increases the rate of growth.

The critical Rayleigh number defines a critical boundary layer thickness J.,
which is given by

2Ra,(S\'* L
S0 = Lo (“—(5)> — 0 (17.4.3)
Ra Nu
. r
<

Fig. 17.4.1 Sketch of the

dameion ttttr ettt
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Note that the value of Ra, =~ 1,000 corresponds to rigid boundary conditions.
Now, one obtains the scaling for high Rayleigh number regimes

Nu(Ra) = 0.077Ra'/3. (17.4.4)

It is possible to estimate the characteristic time of delay needed to renovate
boundary layer based on relation

3/2

SUOAT ~ (1,t)”"AT ~ 1. (17.4.5)

This yields the expression
1.(AT) o< AT?3, (17.4.6)

This phenomenological model of turbulent convection has provided insight into
the boundary layer evolution in the presence of time dependence effects.

Concerning the nature of the dependence of Nu(Ra) at the high Rayleigh
number, note that there exists a famous theoretical Kraichnan prediction for a
system without boundary layers

Nu(Ra) « Ra'/?. (17.4.7)

This theoretical result is based on the mixing-length theory. This means that the
Nusselt number increases much more rapidly with Ra than it does below Ra,.
Indeed, recently, the author of [322] achieved larger Ra in helium and for Ra>10'°
he found that the dependence of Nu(Ra) becomes steeper. Thus Ra>10' it is
consistent with Nu oc Ra'/?. The Reynolds number at the onset of this asymptotic
regime is Re ~ 10%,

However, to theoretically analyze turbulent convection at the high Rayleigh
number, it is necessary to apply more complex methods, which allow one to take
into account the nontrivial topology of conductive boundary layer (see Fig. 17.4.2).

17.5 Chicago Scaling

In the context of complex structures formation in chaotic flow, we consider the
experimental works [324] showing that at Rayleigh numbers between about 5 x 10°
and 4 x 107, conventional scaling Nu o< Ra'/> applies quite well. But at
about Ra = 4 x 107 another distinct transition in the character of the convection
occurs, so that above this transition (see Fig. 17.5.1) Nu(Ra) Ra™""™ . In addi-
tion, the experiments show that the nondimensional magnitude of the temperature
fluctuations is related to Ra by
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Fig. 17.4.2 Buoyant plumes
or thermals. The plumes or
thermals, made visible by
dye in the two photographs,
rise from a heated surface in
the laboratory in the absence
of shear. (After Sparrow E.M.
et al. [323] with permission)

0.02
4.
4
0.01
0.009
0.008 Il 1 1 I T ) | gy
40 100 200
Nu

Fig. 17.5.1 The dependence of the characteristic temperature A, on Nu. A, is proportional to a
r.m.s. temperature fluctuation and is measured at the center probe. The different symbols indicate
different pressure in the helium. (After Castaing B. et al. [324] with permission)

(<5T>2>1/2

Ve Ra7, (17.5.1)

while the dimensional velocity fluctuations are given by



17.5 Chicago Scaling 289

1/2
(<5v>2) Ly .
AN T S Ra (17.5.2)
Vg

Kadanoff and associates at the University of Chicago have provided a rationali-
zation for these observations. First of all, assume that the Nusselt number and the
dimensionless temperature and velocity fluctuations all go as some power of Ra

1/2
(<5T>2) Ra™ 17.5.3
A X R, (17.5.3)
12
(<5V>2> Lo
N« Ra™, (17.5.4)
VF
Nu o< Ra™. (17.5.5)

We next note that the heat flux in the interior is carried by the convection itself,
so that

Nu o 0TV o (<5T>2>1/2(<5V>2)1/2 o Ra"™*™. (17.5.6)

By comparing last equations, one obtains,
ms = ny + my. (17.5.7)
It is also true that away from the boundaries, the individual convective elements
are accelerated by buoyancy so that the main balance in the vertical momentum

equation is between acceleration and buoyancy:

dv ov
r o V@ o go, OT. (17.5.8)

This gives the scaling relation for the velocity fluctuation amplitude
5 \1/2
(<5v> ) o g0, Lo (<5T> ) . (17.5.9)
After substitution, we have the estimate

L3
Ra™™ o< =% got, ATRa™" o< Ra""". (17.5.10)
VE
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Then, one obtains the formula
2my = my + 1. (17.5.11)

Now the critical assumption made by the Chicago group is that the velocity
achieved by buoyant elements traversing the boundary layers is determined by a
balance between buoyancy and dissipation:

VF(<5V>2)

72 ’

1/2

g2, AT o (17.5.12)

where 4 is the dept of the boundary layers. Now, 4 is related to the Nusselt number
by A(Nu) = Lo/Nu that allows us to find the relationship

80, AT W. (17.5.13)
0
Now, we can rewrite the formula for the Rayleigh number
Ra o Ra*™*m (17.5.14)
or in terms of characteristic exponents

1 =2m3 + my. (17.5.15)

Solving equations obtained for the characteristic exponents yields
m3:§, mzzg, mlz—%7 (17.5.16)

which is in agreement with the experiments.

What is remarkable about both the 2/7 and 1/3 power laws is that they predict a
dependence of the dimensional heat flux on molecular diffusion in the limit of high
Rayleigh number. Thus, for example, the scaling Nu o< Ra™ implies that

gr o (OV)(ST) oc vg! =™, (17.5.17)

Thus, only if m3 were equal to 1/2 would the dimensional heat flux be indepen-
dent of viscosity. This indicates that no matter how turbulent the actual convection
is, there is still a dependence on molecular fluxes. This makes application to
geophysical fluids highly problematic, since other influences are bound to dominate
the convective heat flux [325-327].
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17.6 Turbulent Thermal Convection and Spectra

In concluding this chapter, we briefly consider the power spectra for heat convec-
tion. Obukhov and Bolgiano [328, 329] applied the analogy of the cascade scalar
description in turbulent flows on turbulent thermal convection. In the steady case,
we rewrite the Boussinesq equation in the simplified form

(VV)V = a, §(T — Ty), (17.6.1)

The basic equations to analyze power spectra of heat convection are related to
the scalar flux conservation

ST2 STV,

Teasc(l) )

er X = const, (17.6.2)

and the balance between acceleration and buoyancy

V2
e o g, 0Ty, (17.6.3)

that is true away from the boundaries. Here, we apply the dimensional estimate for
the cascade characteristic time tcasc o< I/V(I).

In the simplified case, it is possible to employ the Kolmogorov scaling for
velocity fluctuation amplitude

1/3
&
Vi o< (eh)'? o % x Vi, (17.6.4)

that allows us to solve this basic system of equations. For the velocity fluctuation
amplitude, we have

Vi o< (era,2g?) PP, (17.6.5)

For the temperature fluctuation amplitude, one obtains

82/5
5T;o<< T )z‘/S. (17.6.6)

oc,l,/sgl/S

We now calculate power spectra for inertial range of spatial scales of turbulent
convective flow basing on the conventional definitions

V2 2/5
E(k) o< £ o (sTaf}gz) s, (17.6.7)
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ST2 2 \2/5
Er(k) oc 22K <S—T> K7, (17.6.8)
k %8

These are the energy spectrum and the scalar spectrum, respectively (see
Fig. 17.6.1). Such a consideration is valid when

_Pe_vF
" Re g

Pr ~ 1. (17.6.9)

q

It is natural to estimate the rate of energy dissipation, which is related to the
buoyancy effects

gy R (gocp)éVléT, x s%/s (goc,,)6/sl4/5. (17.6.10)

Note, that ¢, scales as [*/5. This means that in case of small spatial scales this rate
of dissipation will be less than the Kolmogorov rate of dissipation ex oc V;* /1. By
comparing the rate of energy dissipation which is related to the buoyancy effects
and the Kolmogorov rate of dissipation

& ()L, ~ e, (17.6.11)

one can find the Bolgiano spatial scale

Fig. 17.6.1 Idealized energy
and scalar spectra for
convective turbulence
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SK5/4

( 3/28%/4 ’

(17.6.12)
g“ﬂ)

LBo X

which characterizes the low boundary of the Bolgiano—Obukhov regime.
For scales less than the Bolgiano spatial scale, /<Lg,, we shall apply Kolmo-
gorov kind of spectra for both energy spectrum and scalar spectrum

E(k) o Ex (k) o< k=/3, (17.6.13)
Er(k) oc k=33, (17.6.14)

Since Bolgiany’s and Obukhov’s articles, tremendous progress in the under-
standing of the turbulent convection has been achieved by experiment, theory, and
numerical simulation. However, it has also become clear that our understanding is
far from complete. The key problem of the turbulent convection description is
closely related to the existence of coherent structures as a part of the turbulence
itself. We look at this aspect of the theory below.
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Chapter 18
Coherent Structures and Transport

18.1 Regular Structures

Until now we have discussed aspects of transport in chaotic flows ignoring, on most
occasions, the existence of coherent structures. However, the crucial issue of the
modern theory of anomalous transport is related to the formation of complex
structures in turbulent flows. Here, we are concerned with simplified models of
complex structures that are present in hydrodynamic system, magnetized plasma,
etc. In this context, a coherent structure is, for instance, a vortex system that persists
for a long time. Environmental and plasma-physical examples of complex vortex
structures include Gulf Stream rings, the Great Red Spot on Jupiter, and convective
cells systems in high temperature tokamak plasma (see Fig. 18.1.1). Thus, in the
framework of the geophysical fluid dynamics the analysis of complex structures
evolution could provide insight into the processes involved in the transformation
from a line of convective cells to an organized mesoscale system.

For the sake of simplicity first we discuss the regular structures. Such an approach
is an attractive one, which could possibly provide an alternative starting point for the
description of anomalous transport in complex system. Moreover, of particular
importance to us is the case of two-dimensional incompressible flows, with

.- Ouc  Ouy,
dlvu—a—ka—y—o. (18.1.1)

Both the oceans and the atmosphere (for velocities much smaller than the speed
of sound) can be regarded as incompressible and can in many situations be
considered two-dimensional systems as well [302-306]. In this simplified case,
there exists a stream function W(x,y,t) whose derivatives give the velocity
components of the flow:

0¥ (x,y,1)
uy(x,y,1) = —#7 (18.1.2)
0O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10, 297
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_0¥(x,y,1)

o (18.1.3)

uy(xvyvt) =

By substituting the above equations in the equation of motion, one obtains the
equation of motion for an advected particle in terms of the stream function:

PRGN (18.1.4)
Ay

5 :w. (18.1.5)
X

The simplest example of the velocity field of interest is given by the streamline
function W (x) = ¥y sin(x). Here, P is an arbitrary stream function amplitude. The
velocity field for this streamline function is represented as follows:

ii(x) = (‘I‘o C?)S(x)) (18.1.6)

This is a simple shear flow. Randomization of this sinusoidal velocity field leads
to the Dreizin—-Dyhne random shear flow. More interesting example arises when
one considers a superposition of two independent sinusoidal shear flows:

Y(x,y) = Wo[sin(x) + sin(y)]. (18.1.7)

The corresponding velocity field for this streamline function is given by

Fig. 18.1.1 Stremlines of a
two-dimensional cellular flow
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Fig. 18.1.2 Two-
dimensional array of swirling
eddies

~~_ [ —¥ocosy
i(x) = <‘P0 cos(x) > (18.1.8)

This is a periodical two-dimensional system of swirling eddies (cell system)
rotating in clockwise as well as counterclockwise fashion (see Fig. 18.1.1). Ran-
domization of this cell velocity field leads to the Manhattan random flow.

The two-dimensional array of swirling eddies can be obtained by the superposi-
tion of a sinusoidal shear flow on a periodical system of swirling eddies

W (x,y) = Polsin(x) + sin(y)] + ¥y sin(y). (18.1.9)

Here, W, is an arbitrary stream function amplitude (see Fig. 18.1.2).
The most often recourse is made of the Taylor vortices stream function

Y(x,y) = Wy sin(x) sin(y). (18.1.10)

Thus, we obtain a periodical two-dimensional system of swirling eddies (aligned
with the x and y direction) that are rotating in clockwise as well as counter-
clockwise fashion (see Fig. 18.1.3). The Taylor vortices system satisfies the free-
slip boundary condition as well as the no-penetration condition. This simple
model of the streamline topology is able to capture the essential features of
Rayleigh— Benard convection as well as two-dimensional symmetric square-cell
convective system.
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300

/
........... <
Z

(18.2.1)
(18.2.2)

axis. In this situation,
mode convection, an

sin (kyy) .

)

the advection velocity. For the sake of

DOVZn,

ixVn
iis
simplicity, we treat a convection cell whose horizontal length is much larger than its
Wy sin(k,x

n

t

d
—+

Assuming stress-free boundary conditions and single
P (x,y)

explicit form for the velocity field is given by:

convective cells. The complete evolution of the tracer concentration # is determined
Here, the supposition is made that

This section considers the dispersion of a passive scalar in a periodic system of
by the advection—diffusion equation.

height and where the convective rolls are aligned along the z

18.2 Scaling for Diffusive Boundary Layer
the flow could be considered as two-dimensional.

Fig. 18.1.3 Streamlines of the Taylor vortices
where Dy, is the molecular diffusivity and
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2n
A

W = AVy and k, = ky = =, (18.2.3)

where 4 is the cell size.

It is natural to set up a transport model in the form of a random walk between
cells. Here, the diffusive boundary layer is responsible for transport among cells
(see Fig. 18.2.1). The molecular diffusivity Dy is assumed to be very small or, more
precisely, the Peclet number is large

W

Pe =
Dy

>1. (18.2.4)

Here, / is the cell size and V/, is the characteristic velocity of the convective flow.
In our case, an estimation of the width of diffusive boundary layer A could be
obtained on the basis of the advection—diffusion equation by comparison of diffu-
sive and convective terms

On &n
Vo=— =~ Dy— 18.2.5
0ax ¥ P00 ( )
On the basis of dimensional arguments, we arrive at the relation
n n
Vo=~ Dy—. 18.2.6
07~Dos ( )

Fig. 18.2.1 A system of
convective cells
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This relation establishes the importance of boundary layer scale A(Vy) through-
out a domain where a steady flow operates. Now one obtains the formula for the
boundary layer width [330, 331],

Dol 1 1
A(V, D — X X ——. 18.2.7
(Vo) x / OTO(”VOO(\/P_EO(\/‘TO ( )

This result is fairly predictable. Indeed, the thickness of almost all the boundary
layers goes like 1/v/Pe, 1/+/Re, etc.
The correlation timescale is given by

AN (W)

2
Vo) =~ — 18.2.8
(Vo) Vo Do ( )

By estimating the fraction of space responsible for the convective contribution to
effective transport as 1A/J> &~ A/J., we obtain the transport scaling

A A
Deir = Vo*t <?> ~ VSTE. (18.2.9)

This is the quasilinear expression, which is corrected (renormalized) by the
geometrical factor A/Z to account for the fraction of space that is responsible for
the convection. Here, A is the cell size and Vj, is the characteristic velocity of the
convective flow.

By taking into account the expressions for the correlation time t(V;) and
diffusive layer width A(Vj), we arrive at the following estimate for the turbulent
diffusion coefficient:

Desr = \/DoVol =~ DoPe/? o V2. (18.2.10)

This representation of the result in terms of the Peclet number differs signifi-
cantly from both the quasilinear, Deg o< Vé, and the Howells linear estimates,

Degr < V. The scaling Degr o Vé/ 2 was anticipated in a related problem in [250]
and the proportionality constant has been calculated in [330]. Note that using very
tricky singular perturbation techniques it is possible to solve the advection—diffusion
equation in order to obtain the formal solution for the scalar diffusive flux and the
result coincides with the scaling obtained above. Note that the study of the influence of
particle inertia in cellular flow showed that particles in a random convective cell
systems may settle out even more rapidly than in still fluid [332].

The stream function terminology is fairly effective in considering turbulent
transport in the presence of structures. Thus, the transport scaling obtained can
also be interpreted in terms of a stream function perturbation,
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Deff ~ V()A(F) ~ A\P, (18211)

where AW is the change in the stream function amplitude across a diffusive
boundary layer A. The subsequent progress of research on diffusion processes in
systems with convective cells has led us to the understanding of the importance of
the stochastic layer width A in analyzing the convective fraction of the transport.

18.3 Anomalous Transport in a Roll System

Subdiffusive scalar transport can occur in regular steady flows as well as in random
velocity fields. The basic mechanism responsible for this slow diffusion is trapping,
which caused the existence of complex vortex structures. Thus, the subdiffusive
motion of a tracer particle in the array of convective rolls is related to both the
convection along streamlines and the molecular diffusion, which allows “jumps”
between streamlines [332—340]. Note that without compressibility in two-dimensional
flows the subdiffusion mechanism cannot be realized.

We could generalize the diffusive model of transport in convective roll system
because each roll acts as a trap. We obtain not only effective diffusion coefficient
but also the scalar distribution function. The key element of such a consideration is
the waiting time distribution function decaying as

Y(o) ox tliﬂp o (1), (183.1)

Here, , is the waiting time characteristic exponent. This scaling representation
is valid for times ¢,

LZ
t.(Lo, D) < =2 (18.3.2)

— DO )
where Ly is the diameter of a roll. The scalar particle distribution function

corresponding to the scaling representation of the waiting time distribution is
given by the formal expression [333]

1 |x]
P(x,1) :qup/z (W) (18.3.3)

The aim of our investigation is a relationship between the characteristic expo-
nent f,, which characterizes the rate of decay of the waiting time distribution, and
the parameter, which describes the velocity field in a system of convection rolls.
Indeed, to specify the convective flow under consideration, we can assume that for
small distances from the wall the velocity scales with the distance as follows:
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v y\"
(v) o Vo o) (18.3.4)

Here, the boundary conditions imposed by the horizontal plates are given by the
simple relations: the exponent f§, = 0 corresponds to “free” boundary condition,
whereas the value ff, = 1 describes “no-slip” boundary conditions.

The particle experiences molecular diffusion D, which allows “jumps” between
different streamlines as well as moves along the streamlines. This permits us to
obtain a relationship between the characteristic exponent y, and the parameter f3,
by estimating the waiting time distribution ¥(¢) through the scaling for the proba-
bility of leaving the roll P;. Indeed, in terms of probabilistic approach, one has the
balance relations

Y (t)dt = P{(N)dN. (18.3.5)

It is convenient to pass to discrete representation of rolls. One can analyze the
streamlines as a numbered set, where i = 1, ...in,x. The particle thus makes a one-
dimensional random walk on this numbered set. The circular convective motion is
superimposed by definition. The probability of leaving the roll is proportional to the
probability of first return to the site i = 1, which, after N steps, could be represented
as the power law

Pi(N) x N73/2, (18.3.6)
Here, the supposition is made N? < ipa. Since different visits to a given roll
lead to different diffusion histories, the total time ¢ will again be the sum of

independent, broadly distributed variables. The number of visited rolls after a
time ¢ thus reads

Ni(#) o< 72, for py<1. (18.3.7)

Now, if 7(i) represents the time needed to make a closed loop on the ith
streamline, the total time spent by the particle in the cell is given by the formula

{(N) = Zr(i(j)). (18.3.8)

N
j=1

Note that flux conservation condition imposes that the ith streamline is situated
at some distance from the horizontal plate, which can be expressed as follows:

i\
(, ) Lo. (18.3.9)
lmax
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In this context, the transit time is given by the formula

B
. L() Imax \ "
— . 18.3.1
r(l)o<<vo)<l,> (18.3.10)

It is natural to employ the Gaussian distribution function to define the probability
to be on the ith line after j steps. This leads to the formula

P(i,)) O(j71/2efi2/j. (18.3.11)

Averaging leads to the relation for the mean transit time (z(;)) in the following
form:

bp

((j)) = Y _t(i)P(i,j) ocj T, (18.3.12)

i

and thus one obtains the formula for the total time spent by the particle in the cell

=

J

(t(j)) o< N2Uo+1), (18.3.13)

N Bp+2
=1

This expression shows that time and number of steps are not proportional to one
another, except the case where ff, = 0. Indeed, the first loop passage takes a long
time since the particle gets close to the wall where the velocity is vanishing. The
upper bound on ¢ is given by the scaling:

Bp
Lo\ (VoLo\™k _ b
fmax € (V_Z) (l‘;—o"> o Pe™%s. (18.3.14)

To obtain the characteristic exponent i, which characterizes the rate of decay of
the waiting time distribution, we apply the probabilistic arguments considered
above

dt
n//(t)WdN = P;(N)dN, (18.3.15)

This yields the relationship between exponents (i, and f8, [332, 333]

1+,
72+ﬁp'

m (18.3.16)

Now one can find the number of “invaded” rolls N;(¢) as well as the full diffusive
front in terms of the Levy laws P(x,¢). In particular, for stress-free boundary
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condition 8, =0, u, /2 = 1/4, that, initially, gives the number of invaded rolls
grew as N;(f) o< t'/*. For rigid boundary condition B, =1, u,/2 =1/3, that,
initially, gives the number of invaded rolls grew as N;(f) oc t'/3. In this case, one

obtains
X X 3/2
P(X,1) = \/QKW <|t1|/2> (18.3.17)

This well-known result by Cardoso and Tabeling [333] reproduces quite well the
experimental data. At a later time when the effects of molecular diffusion become
dominant, the number of invaded rolls grew as N;(f) /2, which coincides with
the conventional diffusive representation.

Chaotic flows often contain ordered regions (vortex structures) that hamper
mixing. The transport barriers they present can be overcome by frequency-driven
reconstruction of flow topology.

18.4 Convection Towers and Thermal Flux

Topological peculiarities of a flow could be used to analyze strong-turbulent
regimes. As a simple example, we can derive scaling estimates of atmospheric
convection related to the beginning of hurricanes. The initial stage of tornado
beginning is characterized by the existence of narrow convective flows (see
Fig. 18.4.1). In such a formulation of the problem, it is possible to use, as a key
geometric characteristic, the width of the “percolation” convective flow ¢ instead of

Fig. 18.4.1 Schematic
illustration of convective
towers
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the classical width of a boundary layer. Then, on the one hand, for a thermal flow
we obtain an expression in terms of ¢

T, T,
qr waTO% (V05)7°7 (18.4.1)

where V) is the characteristic velocity of a convective flow, A is the characteristic
geometric size, and T is the characteristic temperature. On the other hand, the
geometry of the model under consideration leads to the estimate

__Or O
PN() 8

qr (18.4.2)

where Q7 (Dg/s) is the supplied power, 5° is the convective current cross section,
and N(6) is the number of convective channels. By comparing these two equations,
we obtain

N ori 1 1
Vo NT—0X5_30(§’ (18.4.3)
or in terms of the Peclet number

The fast rotation in our simplified model of hurricane structures is obviously
related to the narrow convective channels. Let us consider a balance of characteris-
tic times. Suppose that in our case (see Fig. 18.4.2), the rotation frequency w scales
inversely with the characteristic time 7o &~ Lo/Vj

1 Ly
~—. (18.4.5)
CU(V()) Vo
With allowance for the scaling for Vo oc 1/5°, we find
Or i) 1 1
00) X | = | X —73- 18.4.6
@) (To H) &~ (o1) (1840

For the sake of simplicity, we suppose that 6 o< 6T. Now, the scaling for the
thermal flux is given by

T,
qr ~ VooT =~ (Vod) 7‘) x VI3, (18.4.7)
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Fig. 18.4.2 Sketch of the
vortex structure of convective
towers

Or

This result agrees well with the Zeldovich prediction for the case of strong
turbulence. We see that narrow convective (percolation) channels could lead to
considerable rotation frequencies at the initial stage of hurricane structure forma-
tion. Hurricane structure models are quite beyond our scope and we shall just put
forward the analogy between convective cell system and our simplified problems.
Similar problem arises in the framework of turbulent diffusion description in the
presence of coherent structures where narrow stochastic layers are responsible for
main contribution to effective transport.

18.5 Random Flow Landscape and Transport

Above we analyzed the transient regimes of anomalous transport in the array of
convective rolls in the framework of continuous time random walks. The main
feature of that case was particle trapping by vortices. The model of regular
convective cells is correct when every single vortex is separated from all others
by a separatrix.

On the contrary, when we are dealing with random two-dimensional flows such a
“small-scale” division of flow domain is unlikely. Here, the considerable contribu-
tion to transport will be related to tracer ballistic motion along streamlines, which
embraces a flow domain. For instance, by considering cellular structures of strato-
cumulus and small cumulus over oceans in terms of global climatology, we can see
that there exist simultaneously both regions where closed cells predominate and
regions where currents are more common. On the other hand, the Gulf Stream is one
of the famous examples of similar organized mesoscale system. It is difficult to
decide whether flights related to currents or trapping by vortices will define the
effective transport in such complex flows.
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The appearance of advective currents could be related to distortion of initially
symmetric patterns by a small fluctuation field. In a simplified form, such an
example was considered in [341] on the basis of the steady velocity field

Y(x,y) = Posin(x) sin(y) + &5 cos(x) cos(ky), (18.5.1)
Here, the one-parameter perturbation field
W, (x,y) = escos(x) cos(y) (18.5.2)

is superimposed on the Roberts symmetric square-cell stream function ¥y. Here, &g
is the fluctuation amplitude. This is the extension of the convective cells model. If
the parameter ¢s>0, the streamlines W = const form a periodic array of oblique
cat’s-eyes separated by continuous channels carrying finite fluid flux (see
Fig. 18.5.1). Here, channels traversing the flow domain as well as a periodic pattern
of regions of closed streamlines are presented. In this case, advection dominates
molecular diffusion Dy, and tracer is transported both in thin boundary layers and
within the channels. Note that steady random flows cannot diffuse a passive scalar
in the absence of molecular diffusivity. For the large Peclet number, Pe > 1, the
separation of the cat’s-eyes thus locates the boundary layers of thickness order

1

1
A — X —. S.
(VO)O(\/P_eO(\/VE (18.5.3)

The parameter that measures the ratio of channel to boundary layer width is

given by
AV
&5 /D—0 = ¢51/Pe. (18.5.4)
0

Here, Dy is the seed diffusivity and Pe = AV()/Dy is the Peclet number. The
kinematic dynamo problem provided the original motivation for cat’s-eyes model
of scalar transport.

The landscape considered above is spatially periodic and has very symmetric
streamline pattern. More interesting situation arises when we apply random
separatrix splitting (see Fig. 18.5.2). This landscape reconstruction of initially
symmetric topology of two-dimensional flow allows us to treat transport and
correlation effects in terms of the continuum percolation approach. We consider a
two-dimensional zero-average-velocity steady flow specified by the bounded “com-
mon position” stream function ¥(x,y). We also imply an isotropic-on-average
oscillating function with a quasi-random location of saddle points along its height.

In a general case, one can represent such one-scale chaotic flow as
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P(7) = ﬁ:% sin(l?iﬂ qS,-), (18.5.5)

where N > 1. To treat such a random velocity field, we introduce the following
scales: Wo ~ AV, A= ‘%’ Here, V| is the characteristic velocity scale and 4 is
the spatial scale.

Here, we represent the percolation method that provides to be fruitful [213, 342,
343] to describe turbulent transport in two-dimensional random flows. In such an
approach, the percolation streamline (percolation hull) contributes most to turbulent
transport near the threshold. Thus, the value 6'¥, = €AV} is the percolation scale of
the stream function near the percolation threshold, where ¢ is the small percolation
parameter. Similar to the convective cell model, one can find the diffusive boundary
layer width by the relation

n n
V()L(g) ~ Dy )’ (18.5.6)
where we use the percolation streamline length L(¢) instead of the spatial scale 4
(see Fig. 18.5.3). However, we shall establish a relation between the diffusive
boundary layer width A and the small percolation parameter ¢. Let us identify the
small “width” of a percolation streamline with the small parameter of the percolation
theory by the formula

Ae) = Je. (18.5.7)

Fig. 18.5.3 Percolation
streamline and stochastic
layer in a two-dimensional
chaotic flow
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Now, we obtain the equation for the determination of the “universal” value of ¢,,
as a function of the flow parameters Dy, Vy, 4,

D()L(b)

v el (18.5.8)

The specific calculations can be completed by using the rigorous scaling results
of the percolation theory obtained for the correlation scale a and the length of the
fractal streamline L,

o — (4@
a()_|6|v,L() z( /1> : (18.5.9)

as functions of ¢ for the two-dimensional case, where the correlation exponent v and
the Hull exponent Dy, are given by v =4/3, D, = 1+ 1/v = 7/4. The functional
form of these dependencies reflects the fractal and percolation behavior of
streamlines. The solution of the renormalization equation in terms of the Peclet
number Pe = AV,/Dy leads to the scaling,

1 3
1\ 1\7
=1=] =(=) - 18.5.1
€ (Pe) (Pe) (18.5.10)

In order to calculate the effective diffusion coefficient, we consider the
renormalized random walk representation of the diffusion coefficient

2 Po(e). (18.5.11)

Here, a is the spatial correlation scale, the correlation time is

A*(e)  L(e)

~
~

Dy Vo '

TOE (18.5.12)

and P, is the fraction of a space occupied by the percolation streamline. Effects
of “long range correlations” enter into the expression for the diffusion coefficient
precisely through a(¢). By following the ideas of the convective nature of the flow
along the percolation streamline, we estimate P, in terms of the length of the
percolation streamline L(¢) and the stochastic layer width A(e)

Poo(e) m — (18.5.13)

The expression derived
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2
Desr(e) ~ “7 LEAE) | yoae), (18.5.14)

a2

is similar to the formula for the effective diffusivity in the convective cell system
Degr = VoA, but here we deal with the percolation kind of dependence A = A(g).
After substitution, one obtains

1
1\
Detr ~ VoA(e,) ~ Vol (ﬁ) ~ DoPe'"" x V', (18.5.15)

This expression allows the scalar flux to be determined in terms of the external
parameters of the random flows Dy, Vj, 4 and so is of considerable practical as well
as conceptual value. From the point of view of the renormalization of the initial
small parameter ¢y = 1/Pe, the expression for the effective percolation parameter
can be obtained:

6. = (80)™ > g0. (18.5.16)

In this approach, the length of the fractal percolation line is not infinitely large,
because the small parameter ¢, does not tend to zero, but has a finite value,

oY,

=_= 18.5.17
Vo' ( )

Ex

for all types of flows with the characteristics Dy, Vo, . Therein lies the universality
of the formula A(¢) = Ae. We can also estimate the range of the percolation scaling
applicability in terms of spatial scales. It is necessary to take into account the finite
size L of a real system. By analogy with the system size renormalization, we can
consider the estimate

a(e,) = JPe™ < L. (18.5.18)

Then, calculations yield the inequality for the Peclet number in the form

I (v+3)/v
1<Pe< <7> . (18.5.19)

Note that the simplicity of the percolation estimate of turbulent transport is
elusive. It will suffice to recall in this connection the “hierarchy” of scales used here

Dy a A
z(_) NN an> > Ax e (18.5.20)

This four-level spatial hierarchy of scales opens wide possibilities to obtain new
scalings in the framework of the percolation method.
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18.6 Transient Percolation Regime

In a percolation cluster walking scalar particles are captured by dead-ends and
localized in small clusters, and that is why the mean squared displacement of tracer
could be much less than the correlation spatial scale R?(f)<a?®, when considering
the initial stage of tracer evolution. We already introduced above the effective
formula to estimate the mean squared displacement of tracer particles in the
following form:

R*(1) x a*Po (1), (18.6.1)

where P, is an additional factor, which describes the part of space related to
“active” motion of scalar particles. Isichenko [103] considered an intermediate
percolation regime with the motion of scalar particles along the percolation stream-
line at the initial stage. Here, we are dealing with the tracer transport on timescales
of order

g 2O (18.6.2)
Vo

This case differs significantly from the percolation model of turbulent diffusion
considered in the previous section, where

t> 1~ ~—. 18.6.3
] (73] Do ( )

For the initial stage of evolution of tracer, we used the estimate of the correlation
spatial scale in the following form:

1/Dy, 1/Dy
a,(t)%i(?) zz<V)L”) , (18.6.4)

where D, = 1+ 1/v and v = 4/3. Here, the supposition was made that the test
particle path at this stage is approximately ballistic L(¢) = Vyt. Let us apply the
renormalized expression for the mean free path of scalar particle in the general form

R*(1) = Desst =~ a;* (t)Pos. (18.6.5)

where the part of space responsible for the main contribution to transport P, is
estimated on the basis of the geometrical arguments

Por—r~——. (18.6.6)
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After substitution, one obtains the anomalous diffusion scaling in the following
form:

(18.6.7)

Y

Vot 1/
A > '

RY (1) ~ a’Ps ~ /12(

This relation describes the subdiffusive regime at the initial period of advection
when the scalar particle moves along a fractal streamline.

R(r) o t1/7Pn o £217, (18.6.8)
The Hurst exponent or this case is given by

1
H(Dy) = 575-=2/7 (18.6.9)

The model of the evolution of correlation scale ¢;(¢) can be used to interpret and
to analyze another percolation regime [344]. Thus, simultaneously with increasing
the correlation scale a;(¢) ~ (L(1)/2)"/"", it is necessary to take into account the
decreasing stochastic layer width A = A(¢), which, in the framework of percolation
models of turbulent diffusion, is related to the value of the small parameter ¢, ~ A/
and hence to the correlation scale a(t) =~ 1/¢" o< A™"(¢). We consider this problem
below in the context of the turbulent transport description in the presence of flow
topology reconstruction (see Fig. 18.6.1).

Fractal streamline Stochastic layer Small parameter Flux balance

L(g) o< a(e)™r A(€) < Me) £=€(Ku, Pe) Dy e Vo Ae)
R :

Percolation approach to chaotic flows

Strong Flow topology Stochastic Drift effects
turbulence reconstruction instability

Fig. 18.6.1 Percolation approach to chaotic flows
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Chapter 19
Flow Topology Reconstruction and Transport

19.1 High-Frequency Regimes

Steady incompressible two-dimensional flows are integrable and cannot exhibit
chaotic behavior of streamlines. However, steady three-dimensional flows and
time-dependent two-dimensional flows can have chaotic streamlines. The time
dependence of a flow is an important factor that leads to a reconstruction of the
streamline topology and has a significant influence on transport processes. For
instance, environmental flows often exhibit the transformation of line of convective
cells to organized coherent structures even at mesoscale level. To describe such
complicated regimes in frequency-driven flows, we have to take into account the
characteristic time Ty &~ 1/, which becomes the key parameter among other
timescales. The analysis of hierarchy of timescales in a problem under consider-
ation is an important part of the description of transport in chaotic flows. Thus, even
dimensional arguments allow one to find a characteristic time, which have to be
applied as a correlation scale.

For instance, one can obtain the Kolmogorov scaling for well-developed turbu-
lence by the analysis of characteristic timescales. Thus, dimensional estimates
resulting from the Kolmogorov hypothesis about the energy flux over a spectrum
give

V(D)
(1)

X &g = const. (19.1.1)

There are two ways to choose characteristic times t. The first follows from the
formula describing viscosity effects: t,(/) o I*/vg. The second way is based on the
Kolmogorov dimensional estimate: tx (/) o< I/V(I). At high Reynolds number,

T V(D!
Re:—v:(—)>1, (19.1.2)
TK VE
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the choice of the lowest time 7k leads to the classical Kolmogorov result for well-
developed turbulence, V2(/) o (ex!)”*. In the scaling description of turbulent
convection, such phenomenology (fastest response principle) was successfully
applied to the forced turbulent flows whose total kinetic energy is determined by
the total power brought into the fluid [318].

It is possible to apply such an approach to the turbulent transport description.
However, one should account for numerous factors such as the seed (molecular)
diffusion, streamlines reconnection, stochastic instability, and others. We already
discussed the quasilinear transport regime, where the characteristic time is given by
the estimate 1/w. When the Kubo number is small, the scalar particle cannot “feel”
the structure of velocity field. The path of a test particle can be estimated by the
ballistic way as

1%
L, ~ -2 ~ V,T,. (19.1.3)
(0]

Here, [, is the frequency path. In this connection, it is convenient to introduce
the dimensionless Kubo number

lw (VO) ~ &
A WA’

(19.1.4)

which characterizes the turbulent transport in the presence of time-dependence
effects. Here, 4 is the spatial scale of the flow under consideration and Vj is the
characteristic velocity scale. One can obtain the scaling for the diffusion coefficient
on the basis of simple estimates of the correlation time tcor ~ 1/ and the
correlation length Acor = [, as follows:

2 2
1%
Doty = SR ~ V2100p ~ —— ~ 120 Kil®. (19.1.5)
TCOR (&

To pass from the high-frequency mode to the regimes with strong turbulence,
one can take into account the appearance of coherent structures. In this case, the
characteristic time depends on the characteristic velocity V and the typical struc-
ture size /. By following the fast mode selection principle, we have to apply a new
kind of estimate for the correlation time A/V. In the case of low-frequency regime,
a scalar explores the structure of a velocity field. If the characteristic velocity is
large enough, it is obviously that

A1

/lV N —<—, 19.1.6

(Vo) Vo <o ( )
and the effective diffusivity takes the Howells form with the linear dependence on
the turbulence amplitude, D.g o< VpA. In the low-frequency regimes, where w — 0

and Ku > 1, the real correlation scale Acor could be much less than the formally
defined frequency path /,,
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Vi
Acor < 1y = EO |0 — 00. (19.1.7)

This also leads to the invalid scaling for the effective diffusivity

V. 2
Dest ~ VSTCOR ~ %'w—»O — 00. (19.1.8)

From the general consideration, it is clear that in the low-frequency region the
effective diffusion coefficient has to increase with the frequency:

Degr(w) o< o', (19.1.9)

since a slow reorganization of the flow topology does not lead to considerable
transport increasing. Indeed, simulations [345-351] confirm this supposition.

The description of transport in a flow with symmetric convective cells could be
also interpreted on the basis of the fastest mode rule. When the amplitude of
turbulent pulsations increases, the effective correlation time sharply decreases,

< Ty, (19.1.10)
0

and one obtains the expected flat scaling

(Do;h)l/z

2
Deff(V()) X VO V03/2

o 4/ V. (19.1.11)

The principle of fastest mode selection is also realized in percolation models of
turbulent transport. In the framework of steady percolation, the characteristic
correlation time is also much less than formal timescale

A 22 X2
T(&)ND—ONL‘,D—O<<D—O.

(19.1.12)

In our consideration, all the temporal scales were constructed from the external
parameters of the problem and this phenomenological approach to the analysis of
the hierarchy of temporal scales allows us to treat long-range correlation effects in
terms of simple scaling. Thus, fastest mode rule can have a heuristic value.

19.2 Time Dependence and the Taylor Shear Flow

The conventional description of transport in chaotic flows has an averaged charac-
ter. At the same time, it is clear that the local characteristics such as frequency-
driven flows fluctuate. The question arises as to how these fluctuations influence the
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transport processes and how the corresponding effects can be taken into account.
Here, it is convenient to employ the advection—diffusion equation for the passive
scalar density

on on Pn  0%n
— ) —=Do| =—+—=— 19.2.1
with the expression for the longitudinal velocity in the form
ux(z,t) = wyzcos(wt). (19.2.2)

Here, wy is the dimensional parameter and w is the characteristic frequency. For
the initial condition

n(x,z,0) = sin(kx), (19.2.3)

the exact solution is given by the formula

i t
n(x,z,t) = sin <kx — kowyz sin(w )>
)

2 .
x exp{—kzDo [z n % (t - Mﬂ } (19.2.4)

In the most interesting low-frequency case, Ku > 1 and o < wy, the asymp-
totic solution, # > 1/w, takes the following form:

: 2
n(x,z,1) = sin ke — kovz SN exod _i2py |1+ 22U (1025)
w 202

which allows one to define the effective longitudinal diffusivity as

w? 1
Dett = Do 1 4+—% ] x—. (19.2.6)
2w? w?

Actually, here the influence of time dependence on the scalar transport is
analyzed in terms of the Taylor method for the longitudinal dispersion in shear
flows [352, 353]. The general scheme of the averaged description of transport in
frequency-driven flows can also be formulated in terms of the advection—diffusion
equation. To treat time-dependence effects, the author of [353] considered turbulent
diffusion in the two-dimensional system of regular but time-periodic flows. To
represent this general method and verify the result obtained above, we consider
more complex expression for the longitudinal velocity of flow
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Vx(z,t) = 2V, cos(kz) cos(wt). (19.2.7)

By applying the decomposition method, one can represent the solution of the
advection—diffusion equation in the following form:

n(z,t) = ng + ny = np + sin(kz)(ns sin wt + nc cos wt + .. .). (19.2.8)

The amplitudes of the harmonics ng, nc can be defined as a result of the solution
of the diffusion equation. The averaging method will be applied. Let us represent
the mean density of tracer as

ng = (n) = ¢, + cpx. (19.2.9)

The values V), c,, and ¢, are the external flow characteristics. The substitution,
with allowance for the assumption n; < ng, yields the equation for the average
scalar density 7y in the form

Oong . ony 82”’0
2 = _<VX8X> +DOT, (19.2.10)

The equations for the amplitudes of the harmonics ng,nc are given by the
relations

Woon_ Dok
ox o

ns ne, (19.2.11)

Dok?
nc =

ns. (19.2.12)

Simple calculations lead to the diffusive equation

212 2 2
8110 - 0|: Vok :|(9 no 0 no (19213)

O 0| + DAA| ox 0 x2
where the effective diffusivity is given by the formula

Ku?

1+ (wp)

Dest(k, @) = Dg , (19.2.14)

Here, the characteristic time is tp = 1/(Dok?).
For high frequencies, w>1/1p, we arrive at the quasilinear formula:

VEk?
wz

D~ DO{ ] ~ DoKu® x 2. (19.2.15)
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A realistic application of the above solution to turbulent flow could be possible
only if one considers the Kolmogorov cascade. It is convenient to rewrite the Taylor
equation, considering first the cascade /,,—1 I,, [,+1; the transport at each next
(larger) scale is calculated by substituting into the formula for the turbulent
diffusivity at the smaller scale in place of the molecular transport:

V2
D 1 19.2.1
nt+1 = |: + V2 +D2/l :| ( 9 6)

One can replace the difference equation by a differential one. Finally, we obtain
the differential equation in the following form:

dInD V2(J) (192.17)

[oR
—_
=
~
<
S
—~
~
~—
+

Here, it is supposed that D = Dy at A = 0. This equation can be exactly solved
and with the power dependence V(1) oc A*. Here, k is the characteristic exponent.
By performing all the calculations for the Kolmogorov scaling, one finds

VA
Deff = DO const D(z) + 0(1) (19218)

The important fact here is that the expression obtained has the correct transfor-
mation properties under t — —¢ — the same properties as those possessed by the
molecular-diffusion coefficient. By the meaning of the derivation, the square root
here is just an approximation of a function that always remains positive.

By concluding this section, we note that in the general case of the time-dependent
Taylor shear flow with many harmonics in the velocity profile the effective
diffusivity is described by the integral form

V(k, )dkdw
Dett = Do |1 — - 19.2.19
e 0{ +” w2+ng4} (19219

Despite this expression formally allows the estimate for o — 0 to be obtained, it
appears to be only an intermediate asymptotic and does not take into account effects
related to the flow topology reconstruction, which are significant for Ku >> 1.
Below the reader will find more detailed analysis of turbulent transport processes in
low-frequency regimes (Fig. 19.2.1).

19.3 Oscillatory Rolls and Lobe Transport

In the framework of time-periodic velocity fields, the case of greatest interest is the
transport in the presence of flow topology reorganization. In this context, let us
discuss the Solomon—Gollub model that mimics the Rayleigh-Benard convection
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Fig. 19.2.1 Turbulent transport concepts and solutions

[339, 340]. If the temperature difference between the top and bottom of the
convective cell is increased, an additional time-periodic instability occurs, resulting
in a time-periodic velocity field. Instead of steady symmetric roll stream function,
the following form of the velocity field was applied

Y(x,y,1) = ¥y sin 2771 (x + By sin wt)] sin {%y] , (19.3.1)

where 4 is the characteristic spatial scale and By is the temporal perturbation
amplitude proportional to (Ra — Ra*)l/ 2, where Ra is the Rayleigh number and
Ra, is the critical Rayleigh number at which the time-periodic instability occurs.
The stream function amplitude ‘¥ is given by the relation
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Vol
Yo (Vo, 2) = % (19.3.2)

where V) is the characteristic velocity scale.

This simple model is able to capture the essential features of convective cell
system in the presence of the oscillatory instability because the term By, sin(w?)
represents the lateral oscillation of the rolls. For fixed values of the temporary
perturbation amplitude By, it is convenient to introduce the Kubo number in the
form

_Wo(Vo,2) _ Vo
/12(1) ;LUJ ’

Ku (19.3.3)

which plays the role of dimensionless control parameter that allows one to analyze
different turbulent transport regimes taking place for different values of the
Kubo number. In the case of large Ku, we are dealing with very strong Lagrangian
correlations.

The streamline approximation under consideration ignores three-dimensional
effects as well as higher-order modes, but it nicely illustrates the qualitative features.
It was experimentally observed the dramatic enhancement in the effective diffusiv-
ity as compared to the case of steady convection and the flux across the roll boun-
daries scales linearly with the amplitude of the oscillatory instability (Ra — Ra, )"/.

In order to explain these features, it is convenient to employ the dynamics of
Hamiltonian system. In our two-dimensional model, there exists a stream function
Y(x,y,1)

_0¥(x,y,1)
Jy

O (x,y,t
, uy(x,y,t):f%, (19.3.4)

Uy (X ' Ys t ) =

One immediately notices that the pair of equations of motion for an advected

particle has a Hamiltonian structure and the stream function W(x,y,?) is the
Hamiltonian

(19.3.5)

COPyD) 0¥y
ay YT ax

The dynamics of a passively advected scalar is, in our two-dimensional incom-
pressible flow, a one-degree-of-freedom Hamiltonian system. It is well known that
phase space of such a Hamiltonian system coincides with the configuration domain
in which flow occurs.

In the case of steady flow under consideration, the stream function is indepen-
dent on time and the scalar trajectories coincide with the level curves of Y.
Moreover, such Hamiltonian systems are always integrable. On the contrary, one-
degree-of-freedom Hamiltonian systems with a time-dependent Hamiltonian
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ly(xayvt) = lP()(xay) + 8(/)\}‘1()(,)7, t), (1936)

typically exhibit non-integrable dynamics, or chaos [§9-92]. In such driven system,
an advected scalar particle moves unpredictably and this advective dynamics is
referred to Lagrangian chaos (see Fig. 19.3.1). Note that the mechanism of scalar
transport for time-dependent Hamiltonian systems is related to separatrix splitting
and it is fundamentally different from that occurs in the steady case in the presence
of the molecular (seed) diffusion.

As soon as time dependence sets in by By, # 0, chaos in the convective rolls
system is observed because one expects the heteroclinic trajectories which create
the roll boundaries in the steady case to break up, giving rise to wildly oscillation
lobes (see Fig. 19.3.2). In the case under consideration (one-degree-of-freedom
Hamiltonian systems with a time-dependent Hamiltonian), we expect lobe transport
to dominate. Recall that as one approaches the boundary 6, — 0, the period of
rotation diverges logarithmically

1 = const
Tsep X 5 ln 5[// s

where Jy, is the relative stream function amplitude at the edge of the stochastic
layer. This corresponds exactly to the well-known result for the period of a true
pendulum that follows a trajectory very close to the separatrix [89-92].

(19.3.7)

Fig. 19.3.1 The trajectories
of particles near separatrix of
vortex structure (After
Gledzer A.E. [354] with
permission)




328 19 Flow Topology Reconstruction and Transport

Fig. 19.3.2 Sketch of b
perturbated separatrix
in a cellular flow

2

To set up a transport model in terms of a stream function perturbation, which is
similar to the steady percolation approach, where D.gr =~ VoA(¢) ~ 6¥, we have to
calculate the Melnikov function, which gives the change in stream function ampli-
tude 0% due to the separatrix splitting

dedTO(X(t’ l‘()),}’(f, tO))
dr

W (to) = . (19.3.8)

By taking into account the advection equation, one obtains the integral over
Lagrangian trajectory of tracer in the following form:

OWo(ro) = Jdmw‘?vwo = &, sz{ Ty A [

Here, the trajectory of scalar particle can be represented as the asymptotic
expansions

x(t,10) = x(to) + €01 (1), (19.3.10)
y(t,10) = y(to) + ey1 (1), (19.3.11)

where ¢ is the perturbation amplitude and (x(fo), y(#)) are the initial points of the
particle. For the regular cell structure under consideration, the Melnikov function
may be carried out exactly. By omitting very complicated calculations given in
numerous textbooks and monographs on this subject [92-95, 345], we represent
only the final result

D
S (10) = ”—258w sin(oo). (19.3.12)

Here, Ds is the diffusivity related to the separatrix splitting

Dg ~— 09 (19.3.13)

7 sinh (%)
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The use of the Melnikov method allows us to study how the transport depends
upon the frequency of the perturbation. These results were obtained for the regular
system of convective rolls, but our interest is centered on the models of transport in
periodically driven random flows, which are developed in the next section.

19.4 Flow Topology Reconstruction and Scaling

The reorganization of flow topology, where long streamlines play an important role,
is a factor that significantly impacts on transport processes (see Fig. 19.4.1). In the
low-frequency case, w < V/Z, the correlation scale is much less than the fre-
quency path /,. As we saw in the previous section, the description of separatrix
deformation (reconnection) could provide highly significant information to obtain
effective diffusivity. The Hamiltonian description of streamlines makes the two-
dimensional model the most efficient one. In this relation, it is convenient to
consider a two-dimensional percolation chaotic flow, which permits analyzing the
spatial and temporal hierarchy of scales and extracting scales responsible for the
critical streamline evolution. Indeed, in the framework of the single-scale approach,
we have the following hierarchy of spatial scales:

b i
W(5) mLrE s an S s An e (19.4.1)
s e

*

Fig. 19.4.1 Two-
dimensional flow topology
reconstruction (After Danilov
S.D., Dovgenko V.A., and
Yakushkin L.G. [222] with
permission)
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Here, a(¢)is the percolation correlation length, A is the spatial scale, and L is the
length of the percolation streamline:

a

a(e) = e ", L(e) = /1()L

Dy 1
) v =4/3.Dy =14 (19.4.2)

From the point of view of probabilistic description, we have to define a geomet-
ric factor, which would be responsible for separatrix evolution. The natural estimate
for the fraction of space where the reconnection process can occur is Sper o< el
However, as it was discussed before, the description of a single streamline (single
trajectory) does not give enough information to obtain transport coefficient,
because the measured quantities are always the result of averaging over an ensem-
ble. That is why we must pass from the single percolation streamline description to
the analysis of a stochastic layer. Note that in two-dimensional case the fraction of
space corresponding to the stochastic layer is

/12
Stayer X L(e)A(e) = —

)
)
81

(19.4.3)

and hence, Siayer > Sper, as was expected.

Let us consider now the evolution aspects of the percolation structure growth. At
the initial stage of the evolution of the correlation length a(7) scales with the scalar
particle path L(¢) as

1/Dy,
al(t) ~ (%”) . (19.4.4)

On the other hand, simultaneously with increasing the correlation scale, it is
necessary to take into account the increasing stochastic layer width A = A(r),
which, in the framework of percolation models of turbulent diffusion, is related to
the value of the small parameter ¢ =~ A/J and hence to the correlation scale
a =~ J/¢". Trivial calculations allow one to obtain the expression describing the
decrease in correlation scale ap(f) due to the increase in the stochastic layer width

/'L\'+1

ap(f) ~ NGOk (19.4.5)

In the framework of the mean field theory, the consideration of the balance
between ap(¢) and a;(¢) enables us to estimate the characteristic time 7, that has to
be used to define the effective diffusion coefficient D gy.

In the context of the reconstruction of chaotic flow topology, one can establish
the relationship between the stochastic layer width and the parameter responsible
for streamline reorganization. Thus, in the Hamiltonian dynamics the linear estimate
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of the stochastic layer width A(#) o ¢ is widely used [89-92]. Now it is easy to
represent this expression in the form

A(t) = (Ao, (19.4.6)

where o is the characteristic frequency of the model under consideration. Then, the
correlation scales balance

1
Vol‘()) Dy A
A ~ o 19.4.7)
( 2 (CO[()) (
allows the estimate of the characteristic time 7, to be obtained

1 o\ 1 (1\™
to ~ — ~—|— 19.4.8
0 w (V()) (0] (KM) ’ ( )

and hence, the estimate of the turbulent diffusion coefficient is given by expression
[342]

w5
Desr = VoA(es) = VoA(ty) = AVy (—) x Vo, (19.4.9)

Ku

Here, the lifetime of the individual percolation streamline #; is the main param-
eter and that is why it is rather natural to employ the fast mode selection principle.
Let us estimate the time it takes the flow pattern to change completely as Ty ~ 1/w.
We consider the low-frequency case 4 < VTy. In the context of this problem, the
relation

L(s*)NS 1
VO = *CO

fo(e,) ~ , (19.4.10)

can be used as the renormalization equation to obtain the small parameter of the
problem ¢,. In the time-dependent flow under consideration, one would also expect
a universal result for a specific “universal” value of the small percolation parameter
¢,.. For this purpose, one can use the above expression accounting for the convective
nature of motion along the percolation streamline during the lifetime of this
streamline. This equation also enables one to find the small percolation parameter
&, in terms of the time-dependent flow parameters: w, Vjy, A.By assuming the
percolation parameter to be small

A A 1\™
&(Ku)z;z: ()0)@<KM) <1, (19.4.11)

and by accounting for the finite size of the system that the correlation scale must be
less than the flow domain scale L
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A )
a(e,) = ——— = A Ku= < Ly, (19.4.12)
& (Ku)|
we can find an inequality for the Kubo number, which corresponds to time-
dependent percolation models of turbulent transport in the presence of the flow
topology reconstruction

2

L\
1<Ku< ()> = Kityax. (19.4.13)

The correlation scale in the low-frequency regime under consideration a(e,)is
really much less than the frequency pass [/, for ¢, <1:

ale,) =~ e.L(e.) = &.Voto(e.) = Voo ~ e2l, < Ly, (19.4.14)

Turbulent transport and scaling concept

Correlations Stochastic instability
Cascade Random walks
Relative Mixing Fractals Diffusive Stochastic
dispersion length renormalization layer
Inverse ) l
Phase
cascade CTRW o
transitions Lobe
transport
Intermittenc . .
v Fractional Percolation
derivatives
Nonlocal
kinetics

Complex structures and topology reconstruction

Fig. 19.4.2 Turbulent transport and scaling concept
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which demonstrates the correctness of the assumptions made. The percolation
scaling has been checked to hold the low-frequency domain for guiding centers in
a k> turbulent spectrum simulated by a large number of randomly phased waves
and this has been confirmed at very high amplitudes [346-351].

On the other hand, the fastest mode principle discussed above is also suitable for
turbulent transport in low-frequency regimes. Indeed, taking the characteristic
correlation time in the scaling form

L 1

in the case of strong turbulence (Re > 1), the correlation time will be less than
characteristic frequency. Here, the supposition was made that the characteristic
exponent y>0. This estimate can also be interpreted in terms of the correlation path
L.for an arbitrary frequency-driven flow as follows:

L XX V()’C X — — = l(,,. (19416)

V/

Here, [, is the frequency path. One can expect that the correlation path in the
case of strong turbulence scales with the velocity fluctuation amplitude V. This
leads to the double inequality 1>x>0 and hence to the flat scaling for the correla-
tion path

Acor(Vo) < L.(Vo) o< Vo' %, 1>7>0. (19.4.17)

Thus, we obtain one more tool to treat transport in chaotic flows where the
reconstruction of the flow topology is essential.

The approach considered makes it possible to use the correlation scale balance as
the basis for constructing new turbulent transport models based on the model
approximations for the growth of the stochastic layer width A(r). Repeat that the
evolution of a single percolation streamline does not provide all necessary infor-
mation to describe turbulent transport effects. Specifically stochastic layer that
arises around a percolation streamline is responsible for the effective transport in
chaotic flows Fig. 19.4.2

Further Reading
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