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Preface

The aim of this book is to summarize the current ideas and theories about the basic

mechanisms for transport in chaotic flows. The dispersion of matter and heat in

chaotic or turbulent flows is generally analyzed in different ways. The establish-

ment of a paradigm for turbulent transport can substantially affect the development

of various branches of physical sciences and technology. Thus, chaotic transport

and mixing are intimately connected with turbulence, plasma physics, Earth and

natural sciences, and various branches of engineering.

Since this book is on theory, it uses mathematics freely. This is a book on

physical science, not on mathematics. The level of mathematics used should not

be beyond that of a graduate student in physics since turbulent transport is a subject

of which at least a basic understanding is essential in engineering and in many of the

natural sciences. It was not written as a course that might be followed and used to

introduce students to turbulence. Rather, it is a text useful for those beginning or

already involved in research. It might form the basis of a number of advanced

courses about plasma physics or ocean physics. In addition, this book contains

material expanded from recent extended review articles.

My previous book “Turbulence and diffusion. Scaling versus equations” pub-

lished by Springer in 2008 was devoted to the scaling concept, which plays a central

role in the analysis of very complex systems. The goal was to present how scaling

and renormalization technique might be applied to turbulent transport in plasma and

to cover as many examples as possible. On the contrary, this new work is focused on

the detailed description of the most often used theoretical models. This allows one

to apply with confidence the phenomenological arguments and correlation methods

to treat complex phenomena in many branches of the physical science. I thoroughly

consider random shear flows, Richardson’s relative dispersion, and convective

turbulence, but the plasma physics problems are not the focus of our interest in

this book. I have tried to include a number of examples apart from the standard

ones, including in particular chaotic mixing in microchannels, scaling for strong

convective turbulence, percolation models of turbulent transport, etc.
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Part I of the book consists of three chapters, which contain a reasonably standard

introduction to diffusion phenomena. In Part II, we give a brief but self-contained

introduction to the Lagrangian description of chaotic flows. Part III contains dis-

cussions of phenomenological models of turbulent transport on the basis of the

conventional diffusive equation. We briefly review the fractal concept and consider

different models of random shear flows in Part IV. The percolation approach and

fractional equations to analyze anomalous transport are presented in Part V. In Part

VI, we study the cascade phenomenology and relative dispersion problem. The

focus of Part VII is to provide an overview of the convective turbulence. In the last

Part, we treat correlation effects and transport scaling in the presence of coherent

structures and flow topology reconstruction.

The illustrations are an important supplement to the text. It is through figures that

information is carried most readily, and often in the most pleasurable form, to the

mind and memory of a reader.

Lists of suggested further reading are provided at the end of each chapter. These

are of literature that students might be expected to peruse, if not read in detail, in

the course of their study of the contents of the chapter, e.g., to appreciate better the

historical derivation of knowledge. Also listed are reference works that will provide

information about basic fluid dynamics or ocean physics, should it be required. In

conclusion, we note that the table of contents is essentially self-explanatory.

The author thanks Profs. B.Cushman-Roisin, N.Erokhin, C.Gibson, G.Golitsyn,

V.Kogan, E.Kuzntsov, F.Parchelly, T.Schep, V.Shafranov, A.Timofeev, E.Yurch-

enko, and G.Zaslavsky for the useful discussions and support.

Lawrence, KS, USA O.G. Bakunin

.
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Part I

Diffusion and Correlations



Chapter 1

Introduction

1.1 Diffusion Phenomenon

In this book, our attention is concentrated mainly on the underlying phenomenon of

the diffusive action of chaotic flows (turbulence). Indeed, we shall be concerned

with the subject of passive scalar transport, where by “scalar” we mean something

like small particle or chemical species concentration and by “passive” we mean that

the added substance does not change the nature of fluid to the point where

turbulence is appreciably affected.

By designating the number of particles per unit of volume by nð~r; tÞ and the flow
of atoms or molecules by~q, that is, the number of particles crossing a unit of surface

area per unit of time in concentration gradient rn, we then have the following

equation, which is Fick’s first law for diffusion

~q ¼ �Drn; (1.1.1)

where D is the diffusion coefficient. The diffusion coefficient D characterizes the

migration of particles of a given kind in a given medium at a given temperature.

It depends on the size of the particle, the structure of the medium, and the absolute

temperature (for a small molecule in water at room temperature D � 10�5 cm2=s).
The “�” sign accounts for the fact that the flow and concentration gradient are of

opposite sings. If the phase is pure,D is the self-diffusion coefficient. By taking into

account the continuity equation:

@n

@t
þr �~q ¼ 0; (1.1.2)

we have the general equation for three-dimensional diffusion:

@n

@t
¼ Dr2n: (1.1.3)
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This equation states that the time rate of change in concentration is proportional

to the curvature of the concentration function with the diffusion coefficient D (see

Fig. 1.1.1). This equation is Fick’s second law for diffusion. It does not have a

simple solution particularly for a three-dimensional system.

The form of the problem generally solved with respect to the above applications

of diffusion theory is the initial value problem, i.e., to determine the concentration

distribution nð~r; tÞ at time t when the initial distribution nð~r; 0Þ is known. Since

much of our subsequent discussion is concerned with unbounded domains in the

dependent variable, we present the solution of the initial value problem on an

infinite one-dimensional domain. Let the Fourier transform of the concentration

distribution be denoted by

~nkðtÞ ¼
ð1
�1

nðx; tÞeikxdx: (1.1.4)

Then if we multiply the one-dimensional form of the diffusion equation by eikx

and integrate over all space, we find

@~nkðtÞ
@t

¼ D

ð1
�1

eikx
@2

@x2
nðx; tÞdx: (1.1.5)

Now suppose that

nð�1; tÞ ¼ 0 and
@

@x
nðx; tÞ

����
x¼�1

¼ 0: (1.1.6)

n(x, t)

x

n(x0 − δx, t)

n(x0, t)

n(x0 + δx, t)

x0

2
n(x0 + δx) − n(x0 − δx)nm =

Fig. 1.1.1 Schematic

illustration of the

concentration profile

evolution
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Then upon integrating (1.1.5) by parts twice, we obtain

@

@t
~nkðtÞ ¼ �Dk2~nkðtÞ; (1.1.7)

so that if ~nkð0Þ is the Fourier transform of the initial concentration distribution, we

have as the solution to

~nkðtÞ ¼ e�Dk2t~nkð0Þ: (1.1.8)

Hence, upon Fourier inversion we see that

nðx; tÞ ¼ 1

2p

ð1
�1

dk exp(� Dk2tÞ
ð1
�1

eikðx�x0Þnðx0; 0Þdx0: (1.1.9)

If we interchange the order of the k and x integrations in this expression, we

obtain

Pðx� x0; tÞ ¼ 1

2p

ð1
�1

eikðx�x0Þexpð�Dtk2Þdk ¼ 1ffiffiffiffiffiffiffiffiffiffi
4pDt

p exp � x� x0ð Þ2
4Dt

 !
(1.1.10)

which is a special case of the traditional Gauss distribution

PðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pR2

p exp � x2

2R2

� �
(1.1.11)

with a time-dependent dispersion RðtÞ ¼ ffiffiffiffiffiffiffiffi
2Dt

p
. The function Pðx� x0; tÞ is the

probability that a particle initially at x0 diffuses to the point x in time t, so that the

Fourier representation of the particle distribution function can be also rewritten as

nðx; tÞ ¼
ð1
�1

Pðx� x0Þnðx0; 0Þdx0: (1.1.12)

Here, it is clear that diffusion smoothly fills the available space hx2i ¼ 2Dt,
where hx2i is the mean square distance being covered. In terms of the transport

scaling, one obtains

RðtÞ ¼ hx2i1=2 ¼ ð2DtÞ1=2 / t1=2: (1.1.13)

Displacement is not proportional to time but rather to the square root of the time;

therefore, there is no such a notion as a diffusion velocity. This is an important

result. Thus, the shorter period of observation t corresponds to the larger apparent

velocity. This is an absurd estimate and we discuss this problem bellow. The

definition of the diffusion coefficient,

1.1 Diffusion Phenomenon 5



D ¼ D2
COR

2tCOR
; (1.1.14)

is based on using the notions of the correlation length DCOR and the correlation time

tCOR. If the values of time and length are smaller than the correlation values, then

the motion of particles has a ballistic character; whereas if these values are larger

than the correlation scales, we deal with the diffusion mechanism RðtÞ / t1=2.
The key problem in investigating diffusion in chaotic medium (turbulent flows)

is the choice of the correlation scales responsible for the effective transport. This is

not surprising, because models of transport in chaotic flows differ significantly from

one-dimensional transport models [1, 2]. Indeed, chaotic velocity field generates

fluctuations of various scalar quantities in the flow: concentration, temperature,

humidity, and so on (see Fig. 1.1.2). Often, several different types of transports are

present simultaneously in turbulent diffusion. In chaotic flows, among eddies could

appear complex vortex structures, and the competition between the strain and

rotation determines whether the material line will align (see Fig. 1.1.3). Therefore,

by taking into account the initial diffusivity (seed diffusion), anisotropy, stochastic

instability, and reconnection of streamlines, the presence of coherent structures,

etc., appears to be important.

For three-dimensional case, the diffusion equation takes the form

@n

@t
¼ Dr2nðx; y; z; tÞ ¼ D

@2n

@x2
þ @2n

@y2
þ @2n

@z2

� �
; (1.1.15)

Colda

b

D/20 per division

Hot

Cold

D/5 per division

Hot
0 20 40

Time (s)

60

0 20 40 60

Fig. 1.1.2 Time recording of the temperatures in the hard convective turbulence regime,

Ra ¼ 2:1� 109. (After Castaing et al. [3] with permission)
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where, for instance, the particle flux in the x direction is given by

qx ¼ �D
@nðx; y; zÞ

@x
: (1.1.16)

Here, r2 is the Laplace operator.

In the case of spherical symmetry, one obtains

@n

@t
¼ D

1

r2
@

@r
r2
@n

@r

� �
: (1.1.17)

Then, we find the point source solution in the well-known form

nðr; tÞ ¼ Np

ð4pDtÞ3=2
e�r2=4Dt; (1.1.18)

where Np is the number of particles. This is a three-dimensional Gaussian distribu-

tion. The concentration remains highest at the source, but it decreases there as the

three halves power of the time. An observer at radius r sees a wave that peaks at

t ¼ r2=6D. Diffusion phenomena are at the heart of irreversible statistical mechan-

ics, since the form of the diffusion equation shows that the solution must depend on

the sign of t. Here, we are dealing with a phenomenon in which it matters whether

t decreases or increases.

1.2 Self-Similar Solutions

The Fourier procedure is effective to solve linear equations only. However, there

is no escape from consideration of nonlinear problems because they are of acute

interest in relation to investigation of transport and mixing in chaotic flows. There is

Fig. 1.1.3 The scalar distribution on a two-dimensional plane (After Brethouwer et al. [2] with

permission)
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no unique recipe to solve nonlinear equations; therefore, we consider here a

nonuniversal but widely applied self-similar approach. Near the end of the nine-

teenth century, Boltzmann noted in the study of the linear diffusion equation that

the two independent variables space x and time t could be combined into a new

variable x, where x ¼ xðx; yÞ. With this new variable, the diffusion equation (partial

differential equation) could be transformed into an ordinary differential equation.

The Boltzmann “ansatz” was given as follows:

xðx; tÞ ¼ x

t1=2
: (1.2.1)

Thus, he suggested to construct self-similar variables and to examine the self-

similar behavior of partial differential equations [4–7]. In order to find the similarity

variables, we use the Lie theory of groups where it has been shown that the similarity

variables are identical to the invariants of a particular one (or more) parameter

group of transformations. We briefly consider the procedure, details, and references

that can be found in [7–9]. We shall examine the one-dimensional linear diffusion

equation:

@nðx; tÞ
@t

¼ @2nðx; tÞ
@x2

: (1.2.2)

We define one parameter group G as follows:

G ¼
n ¼ aaGL �n

x ¼ a
bG
L �x

t ¼ a
gG
L
�t

8><
>: : (1.2.3)

Here, aL is positive and real. This is called the “linear group.” The exponents aG,
bG, and gG are constants, which are defined such that the equation under consider-

ation equation is “(absolutely) constant conformally invariant” under the group

G. A function FðyÞ is said to be “constant conformally invariant” under G if

FðyÞ ¼ f ðaLÞF �yð Þ; (1.2.4)

where f ðaLÞ is some function of the parameter aL. If f ðaLÞ � 1, the constant

conformal invariance is called “absolute.”

Thus, substitution of the new variables leads to

a
aG�2bG
L

@2�n

@�x2
� a

aG�gG
L

@�n

@�t
¼ 0: (1.2.5)

For this equation to be conformally invariant under the transformation group G,
one requires

8 1 Introduction



aG � 2bG ¼ aG � gG or gG ¼ 2bG: (1.2.6)

We will define these constants later. Let us now consider the “invariants” of the

transformation group G. The invariants are obtained from the condition Q̂I � 0.

Here, I is an invariant and Q̂ is the operator

Q̂� @�n

@aL

����
aL¼1

@

@n
þ @�x

@aL

����
aL¼1

@

@x
þ @�t

@aL

����
aL¼1

@

@t
¼�aGn

@

@n
�bGx

@

@x
� gGt

@

@t

(1.2.7)

The solutions of the equation under consideration, Q̂I � 0, can be obtained by

solving the Lagrange subsidiary equations

dn

�aGn
¼ dx

�bGx
¼ dt

�gGt
: (1.2.8)

These “invariants” are the self-similar variables. Solutions of this equation are

given by

fðxÞ ¼ nðx; tÞ
taG=gG

; (1.2.9)

xðx; tÞ ¼ x

tbG=gG
; (1.2.10)

where gG ¼ 2bG .One can see that the Boltzmann transformation is recovered.

Having found the self-similar variables, let us transform the diffusion equation,

using the new variables f and x into an ordinary differential equation

@2f

@x2
þ x
2

@f
@x

� aG
gG

f ¼ 0: (1.2.11)

The solution can be written in terms of complementary error function as follows:

f ¼ Ai
2
aG
gG erfc

x
2

� �
þ Bi

2
aG
gG erfc � x

2

� �
; (1.2.12)

where i2aG gG= is an ordering parameter and

i�1 erfc
x
2
¼ 2ffiffiffi

p
p e�x2=4 ; i0 erfc

x
2
¼ erfc

x
2
; (1.2.13)

ik erfc
x
2
¼
ð1
x
2

ik�1 erfc t dt; k ¼ 0; 1; 2; . . . : (1.2.14)

1.2 Self-Similar Solutions 9



At this stage, the parameter aG=gG is still arbitrary.

Now we specify boundary conditions or a conservation law. Boundary condi-

tions on particle density, nðx ! 1; tÞ ¼ 0, nðx; t ¼ 0Þ ¼ 0, have necessarily “con-

solidated” into one for f. Thus, one obtains the boundary condition for the self-

similar variable x in the form fðx ! 1Þ ¼ 0. The third boundary condition could

have one of two forms, which would yield self-similar solutions. They are n�
ðx ¼ 0; tÞ ¼ const or in terms of the normalization condition (the conservation law)

ð1
0

nðx; tÞdx ¼ const: (1.2.15)

Since nðx ¼ 0; tÞ transforms to fðx ¼ 0Þ, we can see that nðx ¼ 0; tÞ ¼ const

requires that aG=gG ¼ 0. The self-similar solution of the diffusion equation for this

boundary condition is

nðx; tÞ ¼ fðxÞ ¼ A erfc
x
2

� �
¼ A erfc

x

2
ffiffi
t

p
� �

: (1.2.16)

The conservation law should be also invariant under the group transformation in

order to have similarity solutions

ð1
0

nðx; tÞdx ¼ a
aGþbG
L

ð1
0

�nd�x: (1.2.17)

For this to be conformally invariant, we have the relationship in the form

aG
gG

¼ � bG
gG

¼ � 1

2
: (1.2.18)

The self-similar solution that satisfies this conservation law and the boundary

conditions are given by

nðx; tÞ ¼ fffiffi
t

p ¼ 2A0ffiffiffi
p

p ffiffi
t

p e�
x2

4t ; (1.2.19)

where the constant A0 can be determined from the normalization condition.

This similarity solution was also found by direct physical and dimensional

arguments. The intensive search for self-similar solution is motivated by the desire

for a deeper understanding of the physical phenomena described by transport

equations. Simple scaling arguments to built similarity solutions (self-similar solu-

tion of the first kind) were lucidly given in [8–11]. On the other hand, it is now clear

the role of self-similar solution as intermediate asymptotic, which describes

the behavior of solutions of wider class models in the ranges where they no longer

depend on certain details. Thus, self-similar solutions provide important clues to a
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wider class of solution of the original partial differential equations [12–16]. In the

next section, we apply the procedure described here to several interesting examples.

1.3 Inhomogeneous Media and Nonlinear Effects

In studies of the evolution of the distribution function of particles in complex

systems, it has been found that the mixing problem in inhomogeneous media

could be modeled with a diffusion equation in the form

@n

@t
¼ @

@x
xmD

@n

@x

� �
: (1.3.1)

Here, we continue our treatment of self-similar solutions by the discussion of a

fairly special class of self-similar solutions, which are named “self-similar solution

of the second kind.” In contrast to self-similar solutions of the first kind for which

the similarity exponent is determined by dimensional arguments alone in this new

case, the similarity exponent could be found in the process of solving the

eigenvalues problem. Here, the dimensional consideration is not sufficient [7, 8].

Thus, using the linear group G defined above, we find the self-similar variables

to be

xðx; tÞ ¼ x
1

t2�mD

(1.3.2)

and

fðxÞ ¼ nðx; tÞ
t
aG
gG

: (1.3.3)

Then the equation under analysis transforms to the expression

aG
gG

fþ x
mD � 2

@f
@x

¼ @

@x
xmD

@f
@x

� �
: (1.3.4)

The requirement of “consolidation” specifies that

bG
gG

¼ 1

2� mD

>0 or mD<2: (1.3.5)

The constant aG=gG can be specified by boundary conditions.

The solutions for the two cases

nð0; tÞ ¼ const and

ð1
0

nðx; tÞdx ¼ const (1.3.6)

1.3 Inhomogeneous Media and Nonlinear Effects 11



are given by the formulas

nðx; tÞ ¼ K

ð
1

xmD
exp � x2�mD

2� mDð Þ2
" #

dx� 1

 !
(1.3.7)

and

nðx; tÞ ¼ K

t
1

2�mD

exp � x2�mD

tð2� mDÞ2
" #

; (1.3.8)

respectively, where K is a constant.

On the other hand, many complex transport phenomena can be modeled with the

nonlinear diffusion equation

@n

@t
¼ @

@x
nmN

@n

@x

� �
: (1.3.9)

For example, in studying of mixing it has been shown that the governing

equation often has the nonlinear form because the diffusion coefficient for particles

depends on the density of particles [6–9]. For such problems, the self-similar

variables are of the form

xðx; tÞ ¼ x

tbG=gG
(1.3.10)

and

fðxÞ ¼ n

1
tmN 2

bG
gG
� 1

� 	 ; (1.3.11)

where the parameter bG=gG is chosen to satisfy the boundary conditions or conser-

vation laws and f satisfies

@

@x
fmN

@f
@x

� �
þ bG

gG
x
@f
@x

� 1

mN

2
bG
gG

� 1

� �
f ¼ 0: (1.3.12)

We can again apply the boundary conditions considered above and then find that

bG
gG

¼ � 1

mN

2
bG
gG

� 1

� �
: (1.3.13)

The equation for f can be directly integrated to yield
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fðxÞ ¼ ¼ 1� mN

mNþ2

� 	
x2

2

� 	 1
mN x<x0

¼ 0 x>x0

(
; (1.3.14)

where

x0 ¼
2 mN þ 2ð Þ

mN

� �1
2

; mN>0: (1.3.15)

This could be considered a “sharpfront” solution in that

fmNþ1ðx ¼ x0Þ ¼ 0 (1.3.16)

and

dfmNþ1

dx

����
x¼x0

¼ 0: (1.3.17)

The motion of a front is given by scaling

x frontðtÞ / Q
mN

mNþ2t
1

mNþ2; (1.3.18)

where

nðx; 0Þ ¼ QdðxÞ: (1.3.19)

and hence

ðþ1

�1
nðx; tÞdx ¼ Q ¼ const; t � 0: (1.3.20)

Figure 1.3.1 demonstrates the distribution of heat wave front. The velocity of the

front is

VfrontðtÞ ¼ dx front

dt
/ Q

mN
mNþ2t

�mNnþ1

mNþ2 : (1.3.21)

The velocity VfrontðtÞ decreases in time, but the front infinitely penetrates since

xfrontðtÞ ! 1 when t ! 1.

If mN>1, the density gradient infinitely grows,

@n

@x

����
����! 1 as x ! �x front 	 0: (1.3.22)

1.3 Inhomogeneous Media and Nonlinear Effects 13



Despite an infinite growth of the density gradient, the particle flux

q ¼ �k0n
mN

@n

@x
(1.3.23)

tends to zero when x ! xfrontðtÞ � 0.

When sn ! 0, we see

nðx; tÞ ¼ Q

2
ffiffiffiffiffi
pt

p 1

e
x2

4t

: (1.3.24)

This expression describes the conventional particle flux distribution for the case

of classical linear diffusion equation.

Self-similarity is not the panacea to solve all problems. Some difficulties related

to the ordinary differential equations may not be amenable to solution, neither

analytical nor numerical. Moreover, even by solving mathematically, the solution

may not describe a physically interesting phenomenon. Indeed, the technique

considered above is limited to problems where neither scale length nor time scales

such as fixed boundaries exist in the problem.

1.4 Periodic Media and Diffusion at Large Scales

In this section, we treat a fruitful multiscale technique for the construction of

“macroscopic” equations from “microscopic” dynamics in terms of passive scalar

transport. Let us begin with a presentation of the basic ingredients of the method,

n(x)

x

Vfront

x front (t)

Fig. 1.3.1 Schematic

illustration of the

concentration front

propagation. Here Vfront

is the velocity of the heat

front and xfront is the position
of the heat front
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which allows us to derive the effective diffusion coefficient Deff from the transport

equation in one spatial dimension:

@

@t
n ¼ @

@x
DðxÞ @

@x
n

� �
; (1.4.1)

where DðxÞ is a periodic function with the period L0 (see Fig. 1.4.1). We will find

Deff in terms of DðxÞ. Our aim is to write an effective diffusion equation valid at

long time and large scales, which are much larger than the period L0.
First we calculate the value nb � na, where points a and b are the boundary

points. One can represent this value in the discrete form as

nb � na ¼
X
i

Dni; (1.4.2)

where

DðxiÞDniDxi
¼ qðxiÞ: (1.4.3)

In the steady case and in the absence of internal sources, the flux does not depend

on the spatial variable, q ¼ qeff ¼ inv. This allows one to compute

nb � na ¼
X
i

q
Dxi
DðxiÞ : (1.4.4)

nb < na

x

D(x)

L0

a b

na

qeff

Fig. 1.4.1 Schematic

illustration of the periodic

media
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Here, we are dealing with the segments of the length Dx centered in x. It is
possible to rewrite this expression in the integral form

nb � na ¼ q

ð
dxi
DðxÞ ¼

q
Dx

xb�xa

Ð xb
xa

dx
DðxÞ

: (1.4.5)

Here, the denominator is related to the mean value of the inverse diffusion

coefficient

1

xb � xa

ðxb
xa

Dxi
DðxiÞ ¼

1

DðxÞ

 �

: (1.4.6)

Thus, one obtains the relation for the effective particle flux in the conventional

form with the effective diffusion coefficient

q ¼ qeff ¼ 1

DðxÞ

 �

Dn
Dx

: (1.4.7)

Indeed, this elementary consideration gives the diffusion scaling

xðtÞ � xð0Þð Þ2
D E

ffi 2Deff t; (1.4.8)

where the effective diffusion coefficient is given by the formula

Deff ¼ 1

DðxÞ

 ��1

¼ 1

L0

ðL0
0

dx

DðxÞ
� ��1

: (1.4.9)

The previous results use qualitative arguments. However, there is a way to

rationalize these heuristic considerations by more precise calculations using the

multiscale method [17, 18]. Let us introduce the hierarchy of interrelated spatial and

temporal scales. We suppose that spatial and temporal scales are related diffusively

as follows:

D � L2

T
� l2

t
: (1.4.10)

If we introduce a small spatial scale as X ¼ ex, the slow time T is given by the

relation T ¼ e2t. Here, e is the small parameter of the problem.

Now it is convenient to expand n in powers of e:

n x;X; t; Tð Þ ¼ n0 x;X; t; Tð Þ þ e n1 x;X; t; Tð Þ þ e2n2 x;X; t; Tð Þ þ � � � : (1.4.11)
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The space and time derivatives must be decomposed as follows:

@

@x
! @

@x
þ e

@

@X
;

@

@t
! @

@t
þ e2

@

@T
: (1.4.12)

Using the diffusive equation, we obtain the relations:

L̂n0 ¼ 0; (1.4.13)

L̂n1 ¼ @

@x
DðxÞ @

@X
n0

� �
þ @

@X
DðxÞ @

@x
n0

� �
; (1.4.14)

L̂n2 ¼ � @

@T
n0 þ @

@x
DðxÞ @

@X
ðn1 þ n2Þ

� �
þ @

@X
DðxÞ @

@x
n1 þ @

@X
n0

� �� �
;

(1.4.15)

where the operator L̂ is given by the formula

L̂ ¼ @

@t
� @

@x
DðxÞ @

@x

� �
: (1.4.16)

Because of the periodicity, n0 will relax to a constant, independent of x and t

@

@x
n0 ¼ 0; (1.4.17)

and hence

@

@t
n1 ¼ 0: (1.4.18)

The equation for L̂n1 can be represented as

DðxÞ @

@x
n1 þ @

@X
n0

� �
¼ const: (1.4.19)

Using the result @
@x n1
� 
 ¼ 0 and dividing by DðxÞ, we obtain

const
1

DðxÞ

 �

¼ @

@X
n0; (1.4.20)

where the average is now over the fast variables. The equation for n2 can be solved

only if solvability condition, on
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n0ðX; TÞ ¼ n0ðx;X; t; TÞh i; (1.4.21)

is imposed. Taking the average of equation for L̂n2, one arrives at the expression

@

@T
n0 ¼ @

@X
DðxÞh i @

@X
ðn0Þ

� �
þ @

@X
DðxÞ @

@x
n1


 �
: (1.4.22)

By taking into account the results obtained above, we have the diffusion

equation,

@

@T
n0 ¼ Deff

@2

@X2
n0; (1.4.23)

with the effective diffusivity

Deff ¼ 1

DðxÞ

 ��1

: (1.4.24)

Such a multiscale technique can be applied to more general problems. For

instance, it is applicable to models with two or three dimensions and problems of

scalar transport with a fairly generic incompressible velocity field [19].
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Chapter 2

Advection and Transport

2.1 Advection–Diffusion Equation

The further extension to flowing fluids is easily accomplished if we merely replace

the partial derivative with respect to time @=@t in the diffusion equation

@n

@t
¼ Dr2n (2.1.1)

by the total derivative [5, 10, 11]

d

dt
¼ @

@t
þ Vi

@

@xi
; (2.1.2)

which takes into account the effects of convection upon the time dependence.

It follows that the diffusion equation becomes

@n

@t
þ @ðnViÞ

@xi
¼ Dr2n: (2.1.3)

Here, ~V ¼ ðVx;Vy;VzÞ is the Eulerian velocity. In the case of incompressible

flow

divð~VÞ ¼ @Vx

@x
þ @Vy

@y
þ @Vz

@z
¼ 0; (2.1.4)

one obtains the equation

@n

@t
þ ~V � rn ¼ Dr2n; (2.1.5)

which is so-called convection–diffusion equation.

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_2, # Springer-Verlag Berlin Heidelberg 2011
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This equation can be interpreted in slightly different manner. The total flux ~q of

solute molecules through a motionless surface is equal to the sum of the diffusion

flux and the convective flux (see Fig. 2.1.1):

~q ¼ ~Vn� Drn: (2.1.6)

The relative importance of convection and diffusion in a given physical situation

is usually appreciated with the Peclet number Pe. Suppose that the characteristic

size of the fluid domain is L0 and that the characteristic velocity is V0. At this stage,

it is useless to define a dimension concentration. One easily obtains the following

one-dimensional representation:

@n

@~t
þ ~V

@n

@~x
¼ 1

Pe

@2n

@~x2
; (2.1.7)

where Pe represents the ration of convection to diffusion and

~t ¼ t
V0

L0
; ~x ¼ x

L0
; (2.1.8)

that is

Pe ¼ V0L0
D

: (2.1.9)

Initial

Initial

Dispersion

Dispersion

Advection

x

x

Concentration

Concentration

Fig. 2.1.1 Schematic diagram of the scalar diffusion and distortion of this purely diffusive

behavior by advection
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The equation of convection–diffusion also must be completed by boundary

conditions. For example, take an impermeable and motionless solid; the normal

particle flux is obviously zero in this case.

It is important to note that in spite of the oversimplified character of the

convection–diffusion equation, the use of the model functions for Vð~r; tÞ allows

one to describe transport in chaotic flows as well as nontrivial correlation mecha-

nisms responsible for the scalar transport in the presence of complex structures such

as system of zonal flows, convective cells, braded magnetic fields, etc. [22–28].

Moreover, turbulent transport could have nondiffusive character where the

scaling R2 / t is not correct. To describe the anomalous diffusion, it is convenient

to use the scaling with an arbitrary exponent H [29–31]

R2 / t2H; (2.1.10)

where H is the Hurst exponent. The case H ¼ 1/2 corresponds to the classical

diffusion R2ðtÞ / t. The values 1 > H > 1/2 describe superdiffusion, whereas the

values 1/2 > H > 0 correspond to the subdiffusive transport. The case H ¼ 1

corresponds to the ballistic motion of particles R2ðtÞ / t2. Calculating the Hurst

exponent H and determining the relationship between transport and correlation

characteristics underlie the anomalous diffusion theory.

2.2 Transport and One-Dimensional Hydrodynamics

The advection–diffusion equation is linear, but it does not mean that this partial

differential equation is simple. The advective term is responsible for fairly compli-

cated behavior in the scalar distribution function. The concentration field and the

velocity field are coupled in this case.

Indeed, advection creates gradients of concentration, whereas the molecular

diffusion tends to wipe out gradients. That is why to solve the scalar transport

problem we have to fulfill the transport equation by the equation describing the

velocity field. The Navier–Stokes equation of motion for a Newtonian fluid

@Vi

@t
þ Vj

@Vi

@xj
¼ � 1

rm

@P

@xi
þ nF

@2Vi

@xj@xj
; (2.2.1)

is often used. Here, Vi is the velocity in the xi direction, rm is the density, P is the

pressure, and nF is the kinematic viscosity. The situation becomes even more

difficult because of the Navier–Stokes equation is nonlinear. The analytical solution

of such a system of the partial differential equations is very difficult task.

However, there is an exception. The one-dimensional case is the most simple

as usual. Suppose that the advection–diffusion equation through a velocity field is

coupled with the equation of motion, which in one-dimensional hydrodynamics

without pressure is Burgers’ equation.
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@V

@t
þ V

@V

@x
¼ nF

@2V

@x2
: (2.2.2)

The Burgers model has long attracted a great deal of attention for describing

deterministic and stochastic flows in aerodynamics and plasma physics [9, 22, 32].

This equation retains the inertial nonlinearity and high dissipation, which play a

leading role in the formation of turbulent flow. The Burgers differential equation

is especially attractive because it can be reduced to a linear diffusion equation

by means of a nonlinear Cole–Hopf change of variables [33, 34]. This fact allows

us to simplify our problem by reducing the nonlinear equation of motion to the

linear one.

By following the above arguments and for the sake of simplicity, we consider the

system of the coupled differential equations in the form

@V

@t
þ V

@V

@x
¼ D

@2V

@x2
; (2.2.3)

@n

@t
þ V

@n

@x
¼ D

@2n

@x2
; (2.2.4)

where the initial conditions for the velocity and density fields of the passive

impurity are given by

Vðx; tÞjt¼0 ¼
@C0ðxÞ

@x
; nðx; tÞjt¼0 ¼ nðxÞ: (2.2.5)

This system of equations with identical kinetic coefficients (unit Prandtl number

Pr � nF=D ¼ 1) is just as simple as a separate Burgers equation. Indeed, using the

generalized Cole–Hopf change of variables,

Vðx; tÞ ¼ �2nF
@

@x
ln wðx; tÞ (2.2.6)

nðx; tÞ ¼ Bðx; tÞ
wðx; tÞ ; (2.2.7)

it reduces to two ordinary linear heat conduction equations

@w
@t

¼ D
@2w
@x

; (2.2.8)

@B
@t

¼ D
@2B
@x

; (2.2.9)
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where the initial conditions are given by

wðx; tÞjt¼0 ¼ exp �C0ðxÞ
2D

� �
; (2.2.10)

Bðx; tÞjt¼0 ¼ n0ðxÞexp �C0ðxÞ
2D

� �
: (2.2.11)

Recall that the simplicity of the derivation of these analytic results depends

on the ratio of the kinetic coefficients of the liquid (the Prandtl numbers). The

situation becomes somewhat more complicated when the kinetic coefficients are

different, and a reasonably complete analytic investigation is possible only for

particular types of flows. Nevertheless, the analytical solutions of these equations

can provide the basis for understanding complex problems such as scalar

clustering and localization [9–12]. Indeed, scalar particles play the role of a

marker for determining the localized dynamical structures of the velocity field

of a fluid flow.

2.3 Advection in Two-Dimensional Shear Flow

In this section, we consider the advection problem in relation to the general two-

dimensional linear shear velocity field. A tracer is released at the origin of a fluid

that undergoes a linear shear characterized by the constant velocity gradient Ĝ; that
is, the velocity field is given by

~V ¼ Ĝ �~r: (2.3.1)

The shear field can be expressed in the component form as

VxðyÞ ¼ G � y; (2.3.2)

VyðxÞ ¼ a � G � x; (2.3.3)

where G is the shear rate (a constant) and the parameter amay range from�1 (pure

rotation), through zero (simple shear), to +1 (pure elongation). Figure 2.3.1

illustrates this general field in some of its possible forms. For two-dimensional

incompressible flow

@Vx

@x
þ @Vy

@y
¼ 0 (2.3.4)

this linearization correctly describes the qualitative behavior of streamlines in a

small domain.
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The general form of the solution of the convection–diffusion equation, which is

@n

@t
þ ~V � rn� Dr2n ¼ dð~r; tÞ; (2.3.2)

with the velocity field under consideration is given by the relation [35]

n ¼ BðtÞexp � 1

2
~r t � b̂ðtÞ �~r

� �
; (2.3.5)

where b̂ðtÞ is a symmetric second-order tensor. The time function BðtÞ and b̂ðtÞ
verify a coupled set of differential equations that can be readily deduced from the

convection–diffusion equation.

For comparison purposes, the complete solution is presented for a simple shear

flow in two-dimensional space. The velocity gradient Ĝ can be expressed as

Ĝ ¼ 0 G
0 0

� �
: (2.3.6)

The solution can be written as

nð~r; tÞ ¼ 1

4pDt
3

12þ ðGtÞ2
 !1=2

exp �
3 x� y

2
Gt

� �2
Dt 12þ ðGtÞ2
� �� y2

4Dt

0
B@

1
CA: (2.3.7)

α = –1 α = 0 α = 1

Fig. 2.3.1 Different types of two-dimensional linear flows. The characteristic parameter a ranges
from�1 toþ1. The case a ¼ �1 corresponds to the pure rotation. The case a ¼ þ1 corresponds to

the pure shear
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This form can be compared to the purely diffusive solution

nð~r; tÞ ¼ 1

4pdDt

� �d=2

exp � ~r 2

4Dt

� �
: (2.3.8)

Here, d is the space dimensionality. For the two-dimensional case d ¼ 2 and

Ĝ ¼ 0, one obtains the correct solution

nð~r; tÞ ¼ 1

4pDt
3

12

� �1=2

exp � x2

4Dt
� y2

4Dt

� �
: (2.3.9)

The opposite case when diffusivity is negligible, D ¼ 0, leads to singularities.

The solution in this situation is obvious: the particle stays at the origin forever.

2.4 Effective Diffusivity and Advection

Fluctuation–dissipation relations are an intrinsic part of the statistical description of

dynamical systems. On the macroscopic scale, the particle density fluctuations of

the subcomponents of the system occur due to the interaction with the random

velocity field, which, in our case of the scalar transport description, enter the

convection–diffusion equation. Moreover, on the basis of the convection–diffusion

equation,

@n

@t
¼ D0Dn� ~Vð~r; tÞrn; (2.4.1)

it is appropriate to raise a question about the estimation of effective transport in a

turbulent (or chaotic) flow (see Fig. 2.4.1). Here, the vector ~Vð~r; tÞ describes an

arbitrary velocity field, and D0 is the seed diffusion coefficient. Here, we consider

an incompressible fluid.

Let us multiply this equation by n and apply the Gauss theorem,

ð
W

div ~A dW ¼
ð
S

AndS: (2.4.2)

Here, ~A is an arbitrary vector field and An is the normal component of this field

on the boundary S. Then one finds the equation [36, 37]

1

2

@

@t

ð
W

n2dW ¼
ð
S

nD0ðrnÞNdS�
ð
W

D0ðrnÞ2dW: (2.4.3)
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The flux D0ðrnÞN characterizes the contribution of external sources inside the

volumeW, which is bounded by the surface S, whereas the term D0ðrnÞ2 is related
to the scalar redistribution inside the considered volume W(see Fig. 2.4.2).

For a single closed volume W in the absence of external flows, we arrive at

1

2

@

@t

ð
W

n2dW ¼ �2D0

ð
W

ðrnÞ2dW: (2.4.4)

This equation is correct even when the liquid within the inner vessel is kept in

motion. Indeed, fluid mixing only indirectly affects the rate of evolution toward

equilibrium in the presence of molecular diffusion. Advection enhances scalar

density gradients and then diffusion is intensified.

The concept of turbulent diffusion is concerned with the evolution of a

mean value (first moment) of the scalar distribution function. Naturally, the mean

value cannot fully describe the behavior of a passive scalar. Of importance are

Mean velocity in laminar flow 

t

V

Fluctuation
amplitude  

Fig. 2.4.1 A typical time

recording of the velocity in a

turbulent flow

S
n1

n1 < n2

W

Fig. 2.4.2 A typical plot of

a control volume of fluid
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fluctuations of the scalar, which are particularly large in the case of small molecular

diffusion D0, which corresponds to the large Peclet numbers. To characterize

fluctuations, one can study the evolution of the functionalð
W

ðdnÞ2dW: (2.4.5)

Here, the fluctuation of scalar density is

dn ¼ n� nh i; (2.4.6)

and nh i ¼ 0, whereas dn ¼ dnðtÞ. Then we obtain the Zeldovich fluctuation–-

dissipation relation,

1

2

@

@t

ð
W

ðdnÞ2dW ¼ �
ð
W

D0ðrnÞ2dW: (2.4.7)

Here, again the velocity field has dropped out of this averaged equation, but the

effect of diffusion remains. The term on the right-hand side of fluctuation–dissipation

relation is negative-definite (or zero). This means that the fluctuation of scalar density

decreases (or is constant). This is true in the limit of t ! 1.

In the case of quasi-steady random flow, we can omit the term describing density

evolution,

@

@t

ð
W

n2dW ¼ 0; (2.4.8)

and we arrive at the relationð
S

nD0ðrnÞNdS ¼
ð
W

D0ðrnÞ2dW: (2.4.9)

Since the term D0ðrnÞ2 is related to the scalar redistribution and that is why it is
convenient to introduce here the effective diffusive coefficient in the form

Deff ¼ 1

n2L0

ð
W

D0ðrnÞ2dW; (2.4.10)

where L0 is the system characteristic size. The minimum condition for the effective

diffusivity Deff is given by the minimizing of the above functional. This gives a

purely diffusive equation

D0Dnð~rÞ ¼ 0: (2.4.11)

The minimum value of the effective diffusivity Deff in the case under consider-

ation coincides with the molecular (seed) diffusivity D0.
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2.5 Fluctuation Effects in Scalar Transport

At the initial stage of relaxation, we are faced with a quite different scenario. To

show this, we now consider the important differences between the diffusion from a

continuous source, in which particles are released in sequence at a fixed position

(see Fig. 2.5.1), and that of a single puff of particles. When a substance (scalar) is

released into a turbulent flow from a source, it is transported by the motion of the

fluid elements and by diffusion of molecules. It is essential to distinguish carefully

between how scalar is transported by fluid elements and how it is transported by

molecular motion (see Fig. 2.5.2). As was shown above in most environmental

chaotic flows, the Peclet numbers based on the characteristic velocity scale V0 and

Wind

Ridge 

Breeze 

Fig. 2.5.1 Schematic

diagram of a chimney plume

L(t)

scalar

Marked particles 

Fig. 2.5.2 Schematic

illustration of the difference

between displacements of the

marked particle and tracer
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the characteristic spatial scale L0 are large ( � 102). That is why it is natural to

consider cases when the molecular diffusion effect could be neglected.

It is natural to analyze the initial stage of evolution of a single puff of particles by

considering cloud of marked particles on the basis of mass conservation law [38],

ð
W

nð~r; tÞdW ¼ Np: (2.5.1)

Here, Np is the number of particles in a single puff. By taking the ensemble

mean, we find the integral relations

ð
W

dndW ¼ 0; (2.5.2)

ð
W

nh idW ¼ Np: (2.5.3)

By introducing the initial spatial scale of cloud of uniformly distributed particles

as L0 / W0
1=3, we arrive at the formula

ð
W

n2ð~r; 0ÞdW ¼
ð
W

nð~r; 0Þh i2dW / N2
p

L60
W0 /

N3
p

L30
; (2.5.4)

where dnð~r; 0Þ ¼ 0. In the absence of molecular diffusivity, the number of contam-

inant within each fluid particle remains constant during a cloud spreading. By

taking the ensemble mean, one obtains the relation

ð
W

n2dW ¼
ð
W

nh i2dW þ
ð
W

ðdnÞ2dW ¼ N2
p

L30
: (2.5.5)

As time is growing, we have

ð
W

hnð~r; tÞi2dW ! 0; (2.5.6)

ð
W

dnð~r; tÞ2dW ! N2
p

L30
: (2.5.7)

In the case when the fluctuation amplitude during the evolution has the same

order over the whole cloud of size LðtÞ, one finds

dn2WðtÞ � dn2L3ðtÞ / N2
p

L30
; (2.5.8)
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whereas the mean concentration of scalar particles is given by the scaling

hnð~r; tÞi2 �/ Np

L3ðtÞ
� �2

: (2.5.9)

Thus, we arrive at the conclusion that the relative fluctuation magnitude is

growing with time as

dn2

hni2 /
L3ðtÞ
L30

: (2.5.10)

However, there is considerable difference between a real cloud and a cloud of

marked particles. Indeed, as a result of molecular diffusion, scalar particles cross

the boundaries of fluid particles. From the fluctuation–dissipation relation consid-

ered above, we have

1

2

d

dt

ð
W

n2dW ¼ 1

2

d

dt

ð
W

hni2dW þ 1

2

d

dt

ð
W

ðdnÞ2dW ¼ �
ð
W

D0ðrnÞ2dW:

(2.5.11)

Here, the term on the right-hand side is always negative, and in the limit of

t ! 1, one obtains

ð
W

n2dW ! 0; (2.5.12)

ð
W

hni2dW ! 0: (2.5.13)

Thus, in contrast to a cloud of marked fluid particles we findð
W

ðdnÞ2dW ! 0; as t ! 1: (2.5.14)

In fact, in a real cloud there exist two competing processes. Due to the chaotic

advection, the minimum thickness of all parts of a scalar particle cloud tends to zero,

resulting in a continual increase in the gradients of scalar density across the thinnest

part of the cloud. Thus, turbulence intensifies the gradient, without increasing the

maximum density. On the other hand, the molecular diffusion tends to extend the

distance over which the tracer is spread. Batchelor [23, 24] was the first who

recognized the importance of balance between those effects and pointed out that

on the final stage the minimum thickness of the cloud remains constant, but particle

density decays to zero due to the molecular diffusivity. We will develop these

Batchelor phenomenological arguments below in relation to both the exponential

instability effects and the Kolmogorov approach to well-developed turbulence.
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2.6 The Zeldovich Scaling for Effective Diffusivity

Above we defined the minimum value of the effective diffusivityDeffon the basis of

the fluctuation–dissipation relation. However, the upper estimate of the effective

diffusion coefficient is case of great interest. In the case of a quasi-steady turbulent

flow, one can consider the steady scalar density equation

D0Dnð~rÞ � ~Vrnð~rÞ ¼ 0: (2.6.1)

By following the simplified perturbation technique, we suppose that for the one-

dimensional problem the scalar density and the velocity fields are given by

n ¼ hni þ n1 ¼ n0 þ n1; (2.6.2)

V ¼ hVi þ v1 ¼ v1; (2.6.3)

where hVi ¼ 0, n1 � n0, and D0Dn0 ¼ 0. Simple calculations lead to the equation

for density perturbation n1 for a turbulent velocity field:

D0

@2n1ðxÞ
@x2

¼ v1
@n0ðxÞ
@x

: (2.6.4)

For the sake of simplicity, this equation is presented in the one-dimensional

form. In the framework of the dimensional estimate, we obtain

n1 � v1
L0n0
D0

� n0Pe / V0; (2.6.5)

where the Peclet number is small, Pe ¼ V0L0=D0 � 1, which corresponds to weak

turbulence case. By deriving this relation, we use the condition of smallness of the

term v1rn1 in comparison with v1rn0. The expression for the effective diffusion

coefficient is given by

Deff � 1

n20L0

ð
W

D0ðrn0Þ2ð1þ const � Pe2ÞdW: (2.6.6)

Note that the term rn0rn1 is illuminated because of the extreme properties of

the distribution n0. Thus, we obtain the scaling

Deff / D0ð1þ const � Pe2Þ: (2.6.7)

For instance, in the case of atmospheric turbulence we have the following esti-

mates:D0 � 0:1 cm2=s; V0 � 10 cm=s; L0 � 10�2 cm; andDeff � 103 cm2=s �D0.

This upper estimate of transport Deff in the steady turbulent flow is given by the
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scaling Deff � V2
0t / V2

0 , where Pe<1 and the correlation time t has a diffusive

nature t � tD � L20=D0. This result shows the important dependence of the effective

diffusivity Deff on the turbulent fluctuation amplitude V0 in the limit of the small

Peclet numbers.
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Chapter 3

The Langevin Equation and Transport

3.1 Brownian Motion and Diffusion

To interpret the diffusion coefficient in terms of medium characteristic, we consider

the Langevin equations of motion of particle suspended in a liquid (see Fig. 3.1.1).

The irregular movements of small particles immersed in a liquid, caused by the

impacts of the molecules of the liquid, were described by Brown in 1828. Since

1905, the Brownian movement has been treated statistically, on the basis of the

fundamental works of Einstein and Langevin. Langevin’s approach to Brownian

motion was the first example of a stochastic differential equation and inspired the

development of the mathematical theory of continuous time stochastic processes:

m _V ¼ KFðtÞ: (3.1.1)

Here, KF(t) is the fluctuating force caused by bombardment of the particle by the

molecules of the liquid and m is the particle mass. We now make the important

assumption that KF(t) may be divided into two parts [25–30]:

KFðtÞ ¼ �btmV þ mAðtÞ; (3.1.2)

where the term � btmV represents the usual viscous drag on a particle moving with

velocity V, and mA(t) is a stochastic force of average value zero representing the

effects of molecular impacts on a particle at rest. The viscous drag also arises, of

course, from molecular impacts. When the particle is in motion the molecular

momentum change on impact is greater on the advancing forward face of the

particle than on the rear face – there is a net average force tending to slow up the

particle (see Fig. 3.1.2). Thus, we have for the equation of motion

_V ¼ �btV þ AðtÞ: (3.1.3)

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_3, # Springer-Verlag Berlin Heidelberg 2011
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For a sphere of radius R0, Stokes’ law gives the relation in the form

btm ¼ 6pR0�F ¼ 1

BE
; (3.1.4)

where �F is the coefficient of viscosity and BE is the mobility coefficient. This law

works quite well even down to molecular dimensions [45–47]. In order to obtain a

solution, we multiply the equation of motion through by x

x _V ¼ x€x ¼ �btx _xþ xAðtÞ: (3.1.5)

Start

FinishFig. 3.1.1 Pass of a

two-dimensional

Brownian motion

Feffective 

Fig. 3.1.2 Brownian particle
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Now one can use the formal relation

d

dt
x2 ¼ 2x _x: (3.1.6)

Using this we derive the new form of the Langevin equation of Brownian

particle motion as follows:

1

2

d2

dt2
x2 � ð _xÞ2 ¼ � bt

2

d

dt
x2 þ xAðtÞ; (3.1.7)

Now we apply the averaging method. The time average of xA(t) is zero, because
x and A are uncorrelated (see Fig. 3.1.3). We also take into account the equipartition

theorem

V2
� � ¼ _x2

� � ¼ kBT

m
: (3.1.8)

Here, T is the temperature of medium and kB the Boltzmann constant. In order to

find the solution, let ZL be the time average of
dðx2Þ
dt

; then the time average of the

Langevin equation is

1

2

dZL
dt

� kBT

m
¼ � bt

2
ZL: (3.1.9)

By integrating, we find the expression for value ZL in the form

ZL ¼ 2kBT

mbt
þ C0e

�bt t; (3.1.10)

t

x2(t)

Fig. 3.1.3 A typical plot of

squared displacement of a

Brownian particle
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where C0 is a constant. We are not interested in the transient term, which merely

would allow us to fit the initial conditions. Then, using angular parenthesis to

denote time average,

d

dt
ðx2Þ

� �
¼ d

dt
x2
� � ¼ 2kBT

mbt
¼ 2DBt; (3.1.11)

Note that hx2i1=2 / t1=2, as expected for diffusion process (see Fig. 3.1.4). Our

derivation is due to Langevin.

We saw that the diffusion coefficient of the Brownian particle was given in terms

of the damping time associated with the friction force by which we can now

reexpress as

DB ¼ kBT

mbt
; DB ¼ kBT

BE
: (3.1.12)

Here, BE is the mobility. This connection between the diffusion coefficient and

the mobility is known as the Einstein relation. For the special case of Stokes’ law,

this gives us

R2 ¼ hx2i ¼ kBT

3pR0nF
t ¼ 2DBt; (3.1.13)

as given originally by Einstein. Numerous experimental studies of the Brownian

movement have confirmed with a great accuracy [45–47].

x2 = 2DBt

t

x2(t)

x2 = DBbtt2

2DB
bt

Fig. 3.1.4 A typical plot of

the mean-squared

displacement of a Brownian

particle
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3.2 Mean Square Velocity and Equipartition

The Langevin equation considered above has a linear form and therefore one can

find its formal solution in the form

VðtÞ ¼ Vð0Þe�bt t þ
ðt
0

ebtðu�tÞAðzÞdz: (3.2.1)

The first term represents the transient part of the solution: that which depends on

the initial conditions and which arises from the solution to the corresponding

homogeneous equation. This is the complementary function. The second term

represents the steady-state response to the “source force” A(t). This is the particular
integral and this part persists when all memory of the initial condition has gone. It is

conventional to enunciate properties of the random force A(t). These are listed as

AðtÞh i ¼ 0. This follows from the considerations of the center of mass frame of the

fluid. We also suppose that Aðt1ÞAðt2Þh i ¼ 0, unless t1 is “almost identical with” t2,
which means that the correlation time of the random force is short. The value

A2ðtÞ� �
has some definite value, which leads to the formulas

Aðt1ÞAðt2Þh i ¼ A2dðt1 � t2Þ: (3.2.2)

A2 ¼
ð1
�1

Að0ÞAðtÞh idt (3.2.3)

As a simple application of these results, we can consider the mean value of VðtÞ.
We find a given initial conditions (see Fig. 3.2.1)

VðtÞh i ¼ Vð0Þe�btt (3.2.4)

Here, AðtÞh i ¼ 0.

V(t)
V0 exp(− bt t)

V0

t

Fig. 3.2.1 Schematic

diagram of velocity

fluctuations of a Brownian

particle
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By similar arguments, we can now examine the mean square velocity. A key

result then follows when we exploit the equipartition theorem to relate the equilib-

rium mean square velocity of the Brownian particle to the temperature of its

surrounding medium. The expression for the mean square velocity is given by the

relation

V2ðtÞ� � ¼ V2ð0Þe�2bt t þ 2e�2btt
ðt
0

ebtz Vð0ÞAðzÞh idz

þ e�2btt
ðt
0

dz

ðt
0

dy ebtðzþyÞ AðzÞAðyÞh i: (3.2.5)

The first term is the transient response, which dies away at long times; it is of

no interest. The second term vanishes since there is no correlation between Vð0Þ
and A(t). The third term is of interest since it describes the equilibrium state of the

particle, independent of the initial conditions. In this term, we make use of the

smallness of the correlation time and approximate the force autocorrelation func-

tion by the delta function expression:

Aðt1ÞAðt2Þh i ¼ A2dðt1 � t2Þ: (3.2.6)

Thus, we obtain at long times the relation in the following form:

V2ðtÞ� � ¼ A2e�2bt t
ðt
0

dz e2btz ¼ A2e�2bt t

2bt
ðe2bt t � 1Þ ¼ A2

2bt
ð1� e�2bt tÞ: (3.2.7)

In the long time limit, this gives the relation

V2
0 ¼ hV2i ¼ A2

2bt
¼ kBT

m
(3.2.8)

Using the equipartition theorem yields the important relationship

bt ¼
m

2kBT
V2
0 ; (3.2.9)

On the other hand, one can express the mobility in the form

BE ¼ m2

2kT

ð1
�1

Að0ÞAðtÞh idt: (3.2.10)

Thus, we relate the two forces in the Langevin equation: the mobility or friction

force and the random force. Here, the dissipative force is expressed in terms of the

autocorrelation function of the fluctuation force. This result is called the fluctuation

dissipation theorem. The Boltzmann factor that appears in the fluctuation dissipation

theorem between the macroscopic and the microscopic force is a consequence of

equipartition.
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3.3 Autocorrelation Function

In the previous analysis of Brownian motion, we saw that the motion of particles

was conveniently expressed in terms of the velocity autocorrelation function. The

calculation of this is only slightly more complicated than that of the mean square

velocity. We have

Vðt0ÞVðt0 þ tÞh i ¼ V2ð0Þe�btð2t0þtÞ

þ e�btð2t0þtÞ
ðt0
0

dz

ðt0þt

0

dy ebtðzþyÞ AðzÞAðyÞh i; (3.3.1)

where the cross term vanishes, as above. The first term is of no interest since at long

times t the memory of the initial state is lost. The steady-state behavior is contained

in the remaining term. We also use the smallness of the correlation time of the force

autocorrelation function and the delta function approximation. This forces y ¼ z
when the integral over z is performed. The calculation is identical to that for the

mean square velocity, except for the additional e�bt t prefactor

Vðt0ÞVðt0 þ tÞh i ¼ A2

2bt
e�btt; (3.3.2)

or

CVðtÞ ¼ V2ð0Þ� �
e�bt t: (3.3.3)

Thus, we consider that the correlation time for the velocity autocorrelation

function is simply the damping time associated with the friction force (see

Fig. 3.3.1)

t ¼ 1

bt
: (3.3.4)

We saw that the diffusion coefficient of the Brownian particle was given in terms

of correlation time t by

DB ¼ kBT

m
t ¼ 1

2
A2t2: (3.3.5)

Here, the correlation length DCOR is given by the formula

DCOR � V0

bt
¼ 1

bt

ffiffiffiffiffiffiffiffi
kBT

m

r
: (3.3.6)
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One can estimate transport of the small sphere, which is floating in water, whose

radius is R0 � 5� 10�5 cm, t � m=3p�FR0 � 8� 10�8 s, �F � 0:0135 g=ðcm sÞ,
m � 5� 10�13 g, T � 300K. This gives the diffusion coefficient D � 3:8�
10�6 cm2=s. However, when considering tracer transport in chaotic or turbulent

flows, one has to take into account the specific nature of fluctuating velocity field

(cascade mechanisms, coherent structures, etc.) to define the adequate characteristic

spatial and temporal correlation scales.

3.4 Velocity Distribution Function

To obtain the velocity distribution function, we may first calculate all the moments

hV2ni, from which we get the characteristic function [42–45]. In the stationary state,

i.e., for large times,

VðtÞ ¼
ð1
0

e�bttAðt� tÞdt: (3.4.1)

To derive this equation, t� t0 ¼ t was substituted, and then the range of integra-
tion was extended to infinity because of the factor expð�bttÞ. Then, we obtain the

relations

VðtÞ2kþ1
D E

¼ 0 (3.4.2)

VðtÞ2k
D E

¼
ð1
0

� � �
ð1
0

e�btðt1þ���þt2kÞ Aðt� t1Þ � � �Aðt� t2kÞh idt1 � � � dt2k

¼ 2kð Þ!
2kk!

ð1
0

ð1
0

e�btðt1þt2ÞA2dðt1 � t2Þdt1dt2
� �k

: (3.4.3)

t

tCOR tCOR

C(t)
Fig. 3.3.1 A typical plot of

the velocity correlation

function
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The double integral is equal to the value

V2
� � ¼ A2

2bt
(3.4.4)

giving the expression of interest in the following form:

VðtÞ2k
D E

¼ ð2kÞ!
2kk!

A2

2bt

	 
k

: (3.4.5)

The characteristic function is given by the relation in the form

FpðuÞ ¼ 1þ
X1
k¼1

ðiuÞk VðtÞk
D E
k!

¼
X1
k¼0

ðiuÞ2k VðtÞ2k
D E
ð2kÞ! ¼

X1
k¼0

ðiuÞ2n
2kk!

A2

2bt

	 
k

¼
X1
k¼0

1

k!
� u2A2

4bt

	 
k

¼ exp � u2A2

4bt

	 

: (3.4.6)

Now, the velocity distribution function is given by the formula

f ðVÞ ¼ d VðtÞ � Vð Þh i ¼ 1

2p

ð1
�1

FpðuÞe�iuVdu

¼ 1

2p

ð1
�1

exp �iuV � u2A2

4bt

	 

du ¼

¼
ffiffiffiffiffiffiffiffi
bt
pA2

r
exp � btV

2

A2

	 

¼

ffiffiffiffiffiffiffiffiffiffiffi
m

2pkT

r
exp �mV2

2kT

	 

:

(3.4.7)

This is the Maxwell stationary distribution [42–45]. The probability density

times the length of the interval dV is then the probability of finding the particle in

the interval ðV;V þ dVÞ. This distribution function depends on time t and the initial
distribution. Once we have found f ðV; tÞ, any averaged value of the velocity can be
calculated by integration XðVÞ

X VðtÞð Þh i ¼
ð1
�1

XðVÞf ðV; tÞdV: (3.4.8)

The distribution function can be also calculated in a much simpler way with the

help of the Fokker–Plank equation. For the Langevin model, the equation of motion

for the distribution function f ðV; tÞ is given by

@f ðV; tÞ
@t

¼ bt
@ðVf Þ
@V

þ bt
kBT

m

@2f

@V2
: (3.4.9)
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This equation is one of the simplest Fokker–Plank equations. By solving it

starting with f ðV; 0Þ for t¼0 and subject to the appropriate boundary conditions,

one obtains the distribution function f ðV; tÞ for all later times.

3.5 Kinetics and Diffusion Equation

As soon as the theory for the free particle was established, a natural question arose

as to how it should be modified in order to take into account outside forces as, for

example, gravity. In this section, we briefly consider the Klein–Kramers or Kramers

equation, which is an equation of evolution for the distribution functions f ðV; x; tÞ
in position and velocity space describing the Brownian motion of particles in an

external field.

Let us assume that the outside force acts in the direction of the x-axis and

Langevin equations should in this case be replaced by

_x ¼ V; (3.5.1)

_V ¼ �btV þ KFðxÞ þ AðtÞ; (3.5.2)

where

Aðt0ÞAðtÞh i ¼ 2bt
kBT

m

	 

dðt� t0Þ: (3.5.3)

Without any external force this system of equations reduces to the classical

Langevin model. Two cases of special interest and importance are FKðxÞ ¼ �aK ,
field of constant force (for example, gravity) and FKðxÞ ¼ �bKx, elastically bound

particle (for example, pendulum). The corresponding equation to describe proba-

bility density in the presence of nonuniform force mKFðxÞ is given by

@f

@t
þ V

@f

@x
� KFðxÞ @f

@V
¼ 1

t0

@

@V
Vf þ kBTp

m

@f

@V

	 

: (3.5.4)

Here, f(t,V,x) is the particle distribution function, KF(x) is the acceleration, V is

the velocity, Tp is the temperature, t0 is the characteristic time, and m is the mass of

the particle. At this point it must be strongly emphasized that theories based on the

Kramers equation are only approximate. They are valid only for relatively large

t and, in the case of elastically bound particle (FKðxÞ ¼ �bKx), only in the

overdamped case, that is, when the friction coefficient bK is sufficiently large.

It is worth noting that a formal integration of this kinetic equation over velocity

with accounting for the following conditions:
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f Vj j ! 1ð Þ ! 0 and
@

@V
f M ! 1ð Þ (3.5.5)

leads only to the continuity equation for the particle density in physical space

@n

@t
þ @

@x
U�n ¼ 0; (3.5.6)

where the mean values are given by

nðx; tÞ ¼
ð1
�1

f ðx;V; tÞdV; (3.5.7)

U� ¼ 1

n

ð1
�1

Vf ðx;V; tÞdV: (3.5.8)

Indeed, as early as 1940, Kramers [48] pointed out the difficulties encountered in

an attempt to obtain the diffusion equation in ordinary coordinate space

@n

@t
¼ D

@2n

@x2
� @

@x
ðV0nÞ (3.5.9)

from the simplest kinetic equation which includes spatial nonuniformity,

@f

@t
þ V

@f

@x
� @

@V

V

t0
� KFðxÞ

	 

f

� �
¼ 1

t0

@

@V

kBTp
m

@f

@V

	 

: (3.5.10)

Even here a demand arose for a nontrivial approach with integration over a

simplified trajectory r ¼ r0 þ Vt0 in lieu of “conventional averaging” with the

fixed value r0. Here, r0 is an arbitrary initial point. This corresponds to the system

of characteristic lines

dV

dt
¼ � V

t0
(3.5.11)

and

dr

dt
¼ V: (3.5.12)

From this point of view, the spatial nonuniformity of the distribution function f at
scales l � V0t0 can be ignored: f ðt;V; xÞ � f ðt;V; xþ lÞ. This means that only

local effects are described by this kinetic equation (see Fig. 3.5.1). However, this

argument was not effective enough for the introduction of corrections to the kinetic
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equation at that time. Kramers in fact pointed out the conventional character of the

diffusion equation and its close relation to the correlation function behavior.

There is an interesting interrelation between the diffusion coefficient in a phase

space DV and the diffusion coefficient D in an ordinary space. Indeed, they have

completely different kind of dependence on the characteristic frequency bt

DV ¼ kBT

m
bt; (3.5.13)

DB ¼ kBT

m

1

bt
: (3.5.14)

This allows us to eliminate the value bt and to obtain the formula

DV � DB ¼ kBT

m

	 
2

: (3.5.15)

One can see that diffusion in ordinary space depends inversely in the space-

phase diffusivity. To visualize this relation let us consider an ensemble of colli-

sionless particles (for instance, suprathermal electrons in turbulent plasma), which

is beyond our simplified Brownian model. Thus, the ballistic particle motion can be

interpreted as trapping in phase space. Indeed, if collisions (interactions) are absent,

then the particle has constant velocity and, hence, does not change its position in the

velocity space, whereas they passed a significant distance in the coordinate space

[48–58].

0

V0τ

V0

x0 x

VFig. 3.5.1 Phase-space

representation of a particle

trajectory
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There are certainly deep connections between the conventional approach to the

transport equation in the configuration space and the phase-space representation.

The Hamiltonian theory gives the advantage of using additional degrees of freedom

to treat nonlocality and memory effects in the framework of phase-space. The kinetic

model provides the possibility of describing ballistic modes and establishing the

relationship between different exponents and distributions.
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Part II

Lagrangian Description



Chapter 4

Lagrangian Description of Chaotic Flows

4.1 The Taylor Diffusion and Correlation Concept

In the previous consideration, the scalar diffusion was discussed in terms of

Eulerian (laboratory) coordinate frame. In modern studies in fluid dynamics, it is

quite common to describe the velocity and pressure fields in the Eulerian way, with

these quantities being measured and defined at a given point in space. Having found

this Eulerian velocity field, uiðxj; tÞ, where i and j range over 1, 2, and 3 and ui is
associated with the coordinate xj, we can then consider the equations

dx1
u1

¼ dx2
u2

¼ dx3
u3

¼ dt; (4.1.1)

in order to obtain the particle paths and properties associated with them. Such

knowledge can be important for the understanding of flows visualized experimen-

tally by dye or smoke.

An alternative approach is that of the Lagrangian description, in which the

individual particles are marked and followed in a time-dependent way. A time

derivative on a given marked particle gives its velocity, and this gives a connection

with the Eulerian description mentioned above.

The partial differential equations for the Eulerian and Lagrangian schemes look

superficially different, but are connected by the ordinary differential equations

quoted above. However, there are some phenomena of relevance and importance

in connection with turbulence and with transition to turbulence, in which an

approach from the Lagrangian point of view gives rise to simpler and less intuitive

nonlinear mathematics and leads to illuminating insights. The Lagrangian approach

to such problems is described in this chapter.

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_4, # Springer-Verlag Berlin Heidelberg 2011
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Here, we discuss the Taylor definition of scalar dispersion from a continuous

source [59, 60]. Figure 4.1.1 represents the motion of wandering particle. This is the

Lagrangian position coordinate of the marked particle. The Lagrangian velocity

V(t) is given by the formula

VðtÞ ¼ limDt!0

Dx
Dt

: (4.1.2)

By following the Taylor statistical approach [59–63], we consider the displace-

ment x(t) of a marked fluid particle in one dimension

xðtÞ ¼
ðt
0

Vðx0; t0Þdt0: (4.1.3)

The displacement will be positive as often as it is negative; therefore, its mean

value will be zero. That is why we will treat the mean squared particle displace-

ment. The mean square of a large number of x is expressed as

1

2

d

dt
x2ðtÞ� � ¼ x

dx

dt

� �
¼ xðtÞVxðtÞh i: (4.1.4)

If the turbulence field is spatially homogeneous, this formula can be represented

as follows:

d

dt
x2ðtÞ� � ¼ 2

ðt
0

dt0 VðtÞVðtþ t0Þh i: (4.1.5)

0

V(r0)
rr

r0
r

V(r)
rr

x2

x1

x3
(t)r

r

Fig. 4.1.1 Schematic

illustration of the Lagrangian

coordinate system and motion

of a wandering particle
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The averaging procedure is based on the supposition that one considers simulta-

neously released a large number of particles at t ¼ 0 (see Fig. 4.1.2), at different

points in the fluids, and averaged over all the particle tracks.

Taylor introduced the Lagrangian correlation function C(t) in the form

CðtÞ ¼ Vðx0; zÞVðx0; zþ tÞh i ¼ V2
0RLðtÞ; (4.1.6)

where V0 is the characteristic scale of velocity fluctuations. Then the famous Taylor

expression is given by

1

2

d

dt
x2ðtÞ� � ¼ ðt

0

Cðt0Þdt0 ¼ DT: (4.1.7)

On the other hand, one obtains an important relationship, which is used in the

subsequent discussions,

d2

dt2
x2ðtÞ� ���

t¼t ¼ 2CðtÞ: (4.1.8)

The exponential form of the correlation function to describe turbulent transport

is commonly attributed (see Fig. 4.1.3)

The turbulent diffusion coefficient is estimated by the scaling DT � V2
0t. Here, t

is the Lagrangian correlation time, which is given by

t ¼ 1

V2
0

ð1
0

CðtÞdt: (4.1.9)

Fig. 4.1.2 Schematic

diagram of the Lagrangian

particle trajectories
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Such definitions are especially relevant for the description of turbulent transport

where velocity fluctuates in a fairly unpredictable way, whereas in a steady laminar

flow the velocity does not change with time.

4.2 The Boltzmann Law Renormalization

The Lagrangian representation of the diffusion coefficient can be used to study the

distribution of particles suspended in a turbulent flow. Consider a suspension of

particles in a fluid with a spatially constant external field (gravity) imposed upon it.

We denote the external force by mg and choose the z-axis of the coordinate system
in the direction of the external force. The motion will build up a concentration

gradient in the z direction, and this concentration gradient will induce a diffusion

current Deff
@n
@z in the opposite direction to that induced by external force. Here, Deff

is the effective diffusion coefficient. In the steady case, these two currents will

cancel each other
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Fig. 4.1.3 Distribution of the Lagrangian autocorrelation coefficient normalized with integral

scale. (a) Measurements. (b) Calculations. (1) Re ¼ 70; (2) Re ¼ 25; (3) The exponential form of

correlation function. (After Sato and Yamamoto [64] with permission)
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nVz ¼ Deff

@n

@z
: (4.2.1)

Here, the characteristic velocity is given by the formula

Vz / BEmg ¼ tEg; (4.2.2)

where BE is the mobility coefficient and tE is the characteristic time. By solving the

differential equation, one obtains the conventional distribution of particles

suspended in a fluid

n ¼ n0exp �Vz

ðz
0

dz

DeffðzÞ
� �

: (4.2.3)

The main question is the choice of the effective diffusion coefficient. In the

framework of the Brownian motion description, it was applied the expression

Deff � ðkBTÞBE (4.2.4)

and hence the distribution of particles is given by the Boltzmann law

n ¼ n0exp � mg

kBT

	 

z

� �
¼ n0exp � 3g

V2
T

	 

z

� �
: (4.2.5)

Here, T is the field temperature and VT is the thermal velocity.

However, to the case of particles suspended in a chaotic flow, the Lagrangian

representation of the effective diffusivity

Deff � DT � 1

3
V2
0tCORz (4.2.6)

is more relevant. The particle distribution obtained

n ¼ n0exp � 3g

V2
0

	 

� tE
tCOR

z

� �
(4.2.7)

differs significantly from the Brownian case. Here, tE ¼ BEm.
This form of the distribution of particles suspended in a turbulent flow takes into

account the amplitude of velocity fluctuation V0 as well as correlation effects by the

Lagrangian correlation time tCOR. On the other hand, such a representation agrees

well with experiments [65].
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4.3 Turbulent Transport and Scaling

It is clear even intuitively that the result of action over a long period of a random

flow is similar to the result of a large number of molecular actions. As we have seen

above, transport in a chaotic flow depends on the behavior of the correlation

function CðtÞ. Let us employ the Taylor representation of the diffusion coefficient

in the form

1

2
x2ðtÞ� � ¼

ðt
0

dt0
ðt0
0

cðt00Þdt00 ¼
ðt
0

ðt� t0ÞCðt0Þdt0 (4.3.1)

to obtain transport scalings. In the framework of the Laplace transformation, one finds

CðzÞ � 1� z

t

� �
¼ t

ð1
0

~CðoÞ ~FðoÞdo; (4.3.2)

where the triangular filter is given by formula

FðzÞ ¼ 1� z

t
: (4.3.3)

The ordinary calculations yield the relation

CðzÞ � 1� z

t

� �
¼ t2

2

ð1
0

~CðoÞ sin ot
2

ot
2


 �2
do: (4.3.4)

Now we can derive two important asymptotic results. For times much greater

than the correlation time, t � t; o � 0, we are dealing with the narrow filter

function. The mean squared displacement is given by the relation

1

2
x2ðtÞ� � � V2

0tt � DTt; (4.3.5)

which coincides with the Taylor definition DT ¼ V2
0t. On the other hand, for times

less than the correlation time, t � t, we find

1

2
x2ðtÞ� � � t2

2

ð1
0

~CðoÞdo / 1

2
V2
0 t

2 (4.3.6)

This leads to the ballistic scaling, x2ðtÞ� � ¼ hV2it2 (see Fig. 4.3.1).
Even from the general considerations, it is clear that the Taylor relationship

between the diffusion coefficient and the Lagrangian correlation function of velocity

is an effective tool of investigation. In the next sections, we show that the
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development of correlation ideas had essential influence on the form of diffusion

equations as well as on the choice of the effective correlation length and correlation

time.

4.4 Anomalous Diffusion in Turbulent Shear Flows

The model of isotropic steady random flow is an idealization; therefore, it would be

interesting to consider anisotropy effects widely distributed in environmental and

industrial flows. In this section, we discuss correlation mechanisms and transport in

a turbulent flow in the presence of a uniform shear (see Fig. 4.4.1).

By following the statistical approach, we find the Lagrangian longitudinal

and transverse displacements XðtÞ and YðtÞof a scalar particle on the basis of

equations [66]

dX

dt
¼ UðYÞ þ VxðtÞ; (4.4.1)

dY

dt
¼ VyðtÞ: (4.4.2)

102
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Y
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Fig. 4.3.1 Lateral particle diffusion from a fixed point in a grid turbulence. Continuous line
�Y2 ¼ V0

02t
2; Dotted line �Y2 / t. (After Sato and Yamamoto [64] with permission)
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Here, we suppose that the turbulence is homogeneous in planes normal to the

mean velocity �U, where �Uðx; 0Þ ¼ 0. We are dealing with the uniform mean shear

d

dy
�UðyÞ ¼ const: (4.4.3)

These displacements can be expressed in terms of the shear velocity field as

XðtÞ ¼
ðt
0

dU

dy
Yðt0Þ þ Vxðt0Þ


 �
dt0; (4.4.4)

YðtÞ ¼
ðt
0

Vyðt0Þdt0: (4.4.5)

As before, we are not interested in the lowest order statistical moments. Squaring

XðtÞ and YðtÞ and averaging, we find in the limit of t ! 1

Y2ðtÞ� � ¼ 2DTt ¼ 2ðV2
0tLÞt; (4.4.6)

X2ðtÞ� � ¼ 1

3

dU

dy

	 
2

hY2it2 ¼ 2

3

dU

dy

	 
2

V2
0tLt

3: (4.4.7)

Here, DT ¼ V2
0tL is the Taylor turbulent diffusion coefficient, V0 is the charac-

teristic amplitude of turbulent pulsations, and tL is the Lagrangian correlation time.

This formula describes the anomalous diffusion in the longitudinal direction at

large times; the scalar blob becomes fairly elongated (see Fig. 4.4.2).

Such a nontrivial result could be interpreted in terms of characteristic spatial and

temporal correlation scales Dk; t?,

Dk /
Dk

2

2t?
: (4.4.8)

U(y)

x

Fig. 4.4.1 A typical plot of

shear velocity profile in the

Corrsin (1953) model
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In the model under consideration, the transverse temporal correlation scale is

related to the statistical nature of turbulent pulsations,

1

t?
/ 2DT

d2?
; (4.4.9)

and describes the diffusive character of “correlation cloud” transverse spreading,

whereas the longitudinal spatial correlation scale is supposed to have a ballistic

nature

DkðtÞ ¼ Vkt: (4.4.10)

Here, d? is the spatial scale related to the velocity gradient, and Vk is the

characteristic velocity scale.

Now the scaling for the anomalous longitudinal transport in a turbulent shear

flow is given by the formula with the time-dependent diffusion coefficient,

DkðtÞ /
Vk
d?

	 
2

DTt
2: (4.4.11)

On the other hand, in terms of longitudinal displacement one obtains the scaling

X2ðtÞ� � / Dkt / r?Vk
� �2

V2
0tLt

3: (4.4.12)

This corresponds to the anomalous diffusion with the Hurst exponent H ¼ 3/2.

Solvable theoretical model considered here is rather simplified, but at the same

time there are many advantages in its treatment. In our case, we are dealing with

anisotropy related to shear effects, ballistic approximation of longitudinal

U(y)

x

Fig. 4.4.2 A single puff

evolution in a shear velocity

field

4.4 Anomalous Diffusion in Turbulent Shear Flows 61



displacements, and diffusive nature of transverse correlations in the presence of

turbulence (see Fig. 4.4.3). Note that in the presence of the strong vertical stratifi-

cation in environmental flows the ratio of longitudinal spatial scale of particle cloud

to transverse scale continuously grows, confirming the above arguments [67–72].

4.5 Seed Diffusivity and Turbulent Transport

In the first section of this chapter, we have discussed the relation between single-

particle statistics (Lagrangian description) and transport effects in chaotic flows.

The effects of molecular (seed) diffusion were ignored at that stage. However, the

Shear
effects 

Correlation cloud
growth  

DT = ∫ C(t)dt
Δ//∂y

∂V//δV// ∝

Anomalous transport in shear turbulent flow
(Corrsin 1953)  

Δ// ∝ δV// t

Correlation
approach

(Taylor 1921) 

Ballistic
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Taylor
dispersion
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Anisotropy

Δ⊥ ∝ 2D⊥ t

t∝Δ//∂y
∂V//δV// ∝

3
2
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dU V0

2 τLt3=Δ//
2

τ⊥
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2

D⊥ ∝

ì
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ì
î

Fig. 4.4.3 Anomalous transport in a turbulent flow
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“seed diffusivity” concept can be successfully applied to the consideration of

correlation effects in turbulent flows. The conventional Taylor definition of the

turbulent diffusion coefficient, which is based on the Lagrangian correlation func-

tion, does not contain any information on molecular diffusion (see Fig. 4.5.1).

Serious problems obviously arise when we analyze the passive tracer transport.

Thus, in the absence of streamline reconnections (steady flow cases), we certainly

need the “seed diffusivity” mechanism responsible for the effective transport.

On the other hand, there are many observations, which provide extensive

information on the Eulerian correlation function. In the framework of the Eulerian

description, velocity correlations decay in both space and time and we have two

characteristic correlation scales: the Eulerian characteristic time and the Eulerian

characteristic spatial scale. Let us consider the Eulerian representation for the

correlation function, which takes into account the velocity correlation at points

separated by a distance l

CEðl; tÞ ¼ uðx0; TÞuðx0 þ l; T þ tÞh i: (4.5.1)

Here, u(x0,T) is the Eulerian velocity at point x0 and time T.
It would be important to establish the relationship between the Lagrangian and

the Eulerian correlation functions as well as between the Lagrangian and the

Eulerian characteristic time scales. Such relations are fairly useful for using

Lagrangian measurement data in Eulerian simulation models. At present, there is

no rigorous relation between the Lagrangian correlation function and the Eulerian

one. Actually, there is no Lagrangian relation between the points x0 and x0 þ l in

the Eulerian correlation function definition, where l is merely some arbitrary

displacement.

To find a relation between the Lagrangian and the Eulerian correlation functions,

one can represent the Lagrangian correlation function in the form

D0tR ∝

Fig. 4.5.1 Schematic

illustration of the domain of

the main contribution to the

Corrsin functional for the

Lagrangian correlation

function
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CðtÞ ¼ Vðxð0ÞÞVðxðtÞÞh i ¼
ð1
�1

Vð0ÞVðyÞdðy� xðtÞÞh idy: (4.5.2)

Corrsin [73] employed the factorization approach (the “independence hypothesis”):

Vð0ÞVðyÞdðy� xðtÞÞh i ¼ Vð0ÞVðxÞh i dðy� xðtÞÞh i; (4.5.3)

where he applied the Gaussian distribution rðy; tÞ to describe trajectory correlations
dðy� xðtÞÞh i � rðy; tÞ, whereas the term Vð0ÞVðxÞh i can now be interpreted as the

Eulerian correlation function, CEðl; tÞ. In this context, the approximation formula

in terms of the randomization of the Lagrangian correlation function with the

probability density rðl; tÞ takes the form

CðtÞ ¼
ð1
�1

rðl; tÞCEðl; tÞdl: (4.5.4)

Thus, the Lagrangian correlation function can be expressed through the Eulerian

one if we know the probability density function of particle displacements.

In a simplified case, for the probability density rðl; tÞ it is natural to use the

Gaussian distribution, which in three-dimensional space is given by the formula

rðl; tÞ ¼ 1

ð4pD0tÞ3=2
exp � l2

4D0t

	 

: (4.5.5)

This formula includes the molecular diffusion coefficient D0, which can be

interpreted as the diffusive nature of the displacement l. Note that such an elegant

representation of l plays the role of the Lagrangian distance and the diffusive

displacement at the same time. It is possible to examine the Corrsin conjecture by

assuming certain forms of the Eulerian correlation function basing on environmen-

tal data and to establish relations between the Lagrangian and the Eulerian
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Fig. 4.5.2 Ratio of

Lagrangian to Eulerian

integral length scales against

the turbulent Reynolds

numbers. (After Sato and

Yamamoto [64] with

permission)
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characteristic spatial and time scales (see Fig. 4.5.2). Such a phenomenological

approach is not universal because the variety of turbulence types leads to a wide

range of parameters, which describe the ration of the Lagrangian and the Eulerian

characteristic scales [67–69, 81, 82].

The Corrsin approach allows one to employ phenomenological arguments to

obtain simplified approximations of transport in turbulent flows where the molecu-

lar diffusion effects are significant [74–80]. In order to display effectiveness of the

diffusive renormalization of correlation effects, we consider turbulent velocity field

on small spatial scales, where viscous effects have considerable influence. In this

small domain, the velocity profile could be represented as linear. This allows one to

apply the Corrsin anomalous transport model, X2ðtÞ� � ¼ 2
3
o2

VDTt
3, to estimate

scalar spot dispersion in a turbulent flow. Here, the shear flow parameter oV is

given by the relation o2
V ¼ dU

dy

� �2

. Then, the spot dispersion in a scalar center-of-

mass system can be estimated as

L2ðtÞ / 2DTtþ 2D0tþ 2

3
D0o2

Vt
3; (4.5.6)

where the turbulent diffusion coefficient has the Taylor correlation representation

DT ¼
ðt
0

Cðt0Þdt0: (4.5.7)

The correction found ð2=3ÞD0o2
Vt

3 has to be small because the linear approxi-

mation of the velocity profile is valid only for small times. This estimate shows, as

could be expected, that turbulence increases the effective tracer transport. However,

a nontrivial effect arises in a new restatement of the problem, when one considers

the dispersion of mean scalar density in a source reference system, as it was done by

Saffman [249].

By following the Saffman approach, we describe the scalar evolution by the

advection-diffusion equation

@n

@t
þ~u rn ¼ D0r2n; (4.5.8)

where the initial scalar distribution is given by

nð~r; t0Þ ¼ dð~r �~r0Þ: (4.5.9)

It is convenient to apply the diffusive approximation of correlation effects in the

form that is slightly different from the Corrsin conjecture

VðtÞh i ¼
ð
uVð~r; tÞnð~r; tj~r0; t0Þd~r: (4.5.10)
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Here, V is the Lagrangian velocity and uV is the turbulent velocity in the same

direction as the Lagrangian velocity V. Then one obtains the Lagrangian correlation
function

CðtÞ ¼ VðtÞVðt0Þh i ¼
ð

uVð~r; tÞuVð~r0; t0Þnð~r; tj~r0; t0Þh id~r (4.5.11)

The solution of the diffusion equation can be obtained in the form

n ¼ nmðtÞexp � 1

2
sijx

0
i x

0
j

� �
; (4.5.12)

where~r 0 ¼ ðx01; x02; x03Þ is the position vector relative to the fluid particle with which
element of substance originally coincided and the dimensional factor sij is given by

sij � dij
D0ðt� t0Þ : (4.5.13)

By the same arguments, one expresses the velocity uVð~r; tÞ as follows:

uVð~r; tÞ � vðtÞ þ x0j
@uV
@xj

	 

: (4.5.14)

Here, vðtÞ is the velocity of the fluid particle, which was at~r0 at the moment t0,
and hence, Vðt0Þ ¼ vðt0Þ. Calculations lead to the relation

VðtÞh i � vðtÞ þ D0ðt� t0Þr2uV : (4.5.15)

To obtain the correlation function CðtÞ ¼ VðtÞVðt0Þh i and the dispersion, we

have to calculate the value

vðt0Þðr2uVÞ
� � ¼ uVr2uV

� � ¼ rðuVruVÞh i � ðruVÞ2
D E

� ðruVÞ2: (4.5.16)

Here, it is convenient to introduce the characteristic time tu ¼ o�1
V ¼

1= ðruVÞ2
D E

. Now the expression for the dispersion is given by the formula

L2ðtÞ ¼ 2DTðt� t0Þ þ 2D0ðt� t0Þ � 2

3
D0o2

Vðt� t0Þ3: (4.5.17)

One can see that the effect of interaction between the chaotic velocity field

and the molecular diffusion decreases the dispersion relative to the origin. As

before the correction � ð2=3ÞD0o2
Vðt� t0Þ3 has to be small because the approxi-

mation used is valid only for small times, t<tðLV0=nFÞ�1=2 � tRe�1=2. For more

detailed estimates, we refer the reader to [62, 249].
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Chapter 5

Lagrangian Chaos

5.1 The Arnold–Beltrami–Childress Chaotic Flow

Since a key ingredient of Lagrangian particle description is the relation between

Eulerian and Lagrangian representations, we start by reiterating this well-known

kinematic material: if ~Vð~x; tÞ is the (Eulerian) velocity field, and if ~Xðt;~a0Þ is the
motion of a fluid particle that at t ¼ 0 was at position ~a0, then in terms of this

(Lagrangian) data the connection between the two representations is given by the

formula

@~X

@t

 !
~a0

¼ ~V ~Xðt;~a0Þ; t
� �

: (5.1.1)

Conversely, if we introduce the material derivative operator

D

Dt
¼ @

@t
þ ~V � r; (5.1.2)

then the above equation may be stated in the Eulerian representation by the formula

D~x

Dt
¼ ~Vð~x; tÞ: (5.1.3)

Either way we arrive at the following system of coupled ordinary differential

equations for the motion of a point in the fluid continuum:

_x ¼ Vxðx; y; z; tÞ;
_y ¼ Vyðx; y; z; tÞ;
_z ¼ Vzðx; y; z; tÞ

(5.1.4)

where ðVx;Vy;VzÞ are the Cartesian components of the velocity field ~V. We

call these the advection equations. Although they arise from purely kinematical

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,
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considerations in the fluid mechanical context, and thus must be considered

“embedded” in the evolution of any flow, equations obtained have the format of a

“dynamical system” in the usual sense of the mechanics of systems with a finite

number of degree of freedom.

The behavior of streamlines in steady-state three-dimensional flows can be very

complex. The following equations:

dx

Vx
¼ dy

Vy
¼ dz

Vz
(5.1.5)

define streamlines of the field of velocities ~Vðx; y; zÞ. A more convenient notation of

this system, for example, in the following form:

dx

dz
¼ Vx

Vz
� f1ðx; y; zÞ; (5.1.6)

dy

dz
¼ Vy

Vz
� f2ðx; y; zÞ (5.1.7)

shows that we are dealing with the “non-steady-state” problem for a dynamics

system with two-dimensional phase space (x, y). Variable z is playing the role of

time. For fields with

div ~V ¼ 0; (5.1.8)

we can present the system under consideration in the Hamiltonian form in order to

apply the already well-developed apparatus of the theory of dynamic system to the

full.

Three-dimensional dynamics introduces us to a qualitatively new phenomenon –

the existence of streamlines chaotically arranged in space – which is sometimes

called the Lagrangian turbulence. Various forms of this phenomenon have interest-

ing practical applications and have played an important role in our understanding of

the onset of turbulence, as well. In 1965, V.I.Arnold [83] suggested that the

following steady-state three-dimensional flow,

Vx ¼ A � sin zþ C � cos y; (5.1.9)

Vy ¼ B � sin xþ A � cos z; (5.1.10)

Vz ¼ C � sin yþ B � cos x; (5.1.11)

has a nontrivial topology of streamlines, since it satisfies the Beltrami condition:

rot ~V ¼ const ~V: (5.1.12)

The numerical analysis carried out in [84] confirmed the peculiarity of this flow.

This problem was also studied by Childress [85]. This flow was named the ABC-flow
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(Arnold–Beltrami–Childress). For instance, it can be shown that by computing a

Poincare section for the case A ¼ ffiffiffi
3

p
; B ¼ ffiffiffi

2
p

; C ¼ ffiffiffi
1

p
, the phase space of ABC-

flow is decomposed into regular and chaotic regions [84–88].

Another important characteristic of the ABC-flow is the fact that the set of

equations

dx

A sin zþ C cos y
¼ dy

B sin xþ A cos z
¼ dz

C sin yþ B cos x
; (5.1.13)

defining streamlines of the velocity field can be presented in the explicit Hamilto-

nian form [86–88]. In order to do this, let us write the previous relation in the

following form:

dx

dz
¼ 1

C
@

@y
HE; (5.1.14)

dy

dz
¼ � 1

C
@

@x
HE (5.1.15)

where

Cðx; yÞ ¼ C � sin yþ B � cos x; (5.1.16)

HEðx; y; zÞ ¼ Cðx; yÞ þ Aðy sin z� x cos zÞ: (5.1.17)

This set of equations with the Hamiltonian HEðx; y; zÞ is non-integrable, with the
exception of an obvious case when it is reduced to the two-dimensional set (i.e.,

when one of the coefficients A, B, and C becomes zero). To be more definite, by

assuming that A ¼ 0, we find the first integral in this integrable case:

C � sin yþ B � cos x ¼ H0 ¼ const: (5.1.18)

Streamlines on the plane (x, y) are shown in Fig. 5.1.1. There are three types of

streamlines in it: closed streamlines, infinite streamlines, and singular streamlines,

passing through saddle points of the surface H0ðx; yÞ and corresponding to

separatrix.

Let us consider the Hamiltonian of streamlines HEðx; y; zÞ. If A ¼ 0 (a two-

dimensional case), it defines a family of cylindrical surfaces (stream tubes) corres-

ponding to various values of the energy integral H0 ¼ const (which is also the

stream function). A perturbation of the Hamiltonian HEðx; y; zÞ in the case of small

A is equivalent to a small nonstationary perturbation of the dynamic system.

A considerable proportion of stream tubes slightly change their shapes in accor-

dance with the Kolmogorov–Arnold–Moser theory [89–91]. However, in the case

of A 6¼ 0, there are such singular separatrix surfaces, which are heavily affected

even by a small perturbation. The latter leads to formation of stochastic layers in the
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vicinity of destroyed separatrix and, consequently, to chaos of streamlines. In the

case of large values of A ~ 1, stochastic layers expand (Fig. 5.1.2) and chaos

of streamlines embraces a considerable portion of three-dimensional space. The

appearance of large regions of chaos of streamlines in the ABC-flow is, in fact, the

manifestation of a far more global phenomenon.

The existence of stochastic particle motion in flows that are laminar according to

the conventional Eulerian measure (chaotic advection) is a key feature of the flow
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Fig. 5.1.2 ABC-flow streamline topology for the case A2 ¼ 1, B2 ¼ 2=3, and C2 ¼ 1=3
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regime being discussed. The possibility of chaotic advection underscores why

monitoring the motion of a single particle is not a reliable indicator of whether a

flow is laminar or turbulent.

5.2 Hamiltonian Systems and Separatrix Splitting

If the flow is two-dimensional, there is no more z-dependency and, consequently, no
chaos of streamlines. Indeed, three-dimensional dynamics differs drastically from

two-dimensional dynamics where streamlines have a relatively simple structure and

coincide with lines of the level of the stream functionCðx; yÞ. Hamiltonian systems

with a low number of degrees of freedom ð1 1
2
or 2Þ can be considered as the

simplest ones with chaotic dynamics. Conventionally, 1 1
2

degree of freedom

indicates a system with one degree of freedom driven by periodical perturbation

Cðx; y; tÞ ¼ C0ðx; yÞ þ eoC1ðx; y; tÞ. Integrable dynamics of such a system in the

phase space can be described more or less fairly completely because of its relatively

simple topological structure. There are two kinds of singular points in the phase

space: elliptic and hyperbolic. Motion near the elliptic points is stable and persists

with a small perturbation in accordance with the KAM theory [92–95], and the

motion near the hyperbolic (saddle) points is so dramatically unstable that a general

perturbation leads to the chaotic dynamics near the separatrix. The separatrix

represents an unperturbed singular trajectory that crosses the saddle points.

The motion in the neighborhood of a hyperbolic point is very complex. Without

entering into technical details, we observe that a hyperbolic point in phase space

has an analogy with a saddle point in physical space: two lines move toward the

point (stable separatrix branch +) and two are moving away (unstable separatrix

branch �) [92–95], as in Fig. 5.2.1. A point on the unstable line moves away from

the hyperbolic point after each iteration. It will move toward another hyperbolic

point but will never reach it. The unstable line intersects with the stable line of the

KAM curve

KAM curve

KAM curve

elliptic point
–

–

–

–

+

+

+

+

Fig. 5.2.1 Schematic illustration of the separatrix splitting and generation of the stochasticity near

a separatrix
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neighboring hyperbolic point at so-called homoclinic points. Because the

homoclinic points are not stable points of the map and sit on the stable line of the

neighboring hyperbolic point, they will move toward this point under the action of

the map. However, because of the area-preserving property of the map (shaded in

Fig. 5.2.2), the oscillations around the stable line become wilder and wilder

producing an infinite sequence of homoclinic points on the stable line that prevents

points on this line from reaching the hyperbolic point. The oscillations near the

hyperbolic point result in a very complex behavior of the system between the stable

KAM tori. A similar behavior accounts for an infinite number of iterations neces-

sary for leaving a hyperbolic point along its unstable line. This wild behavior near

hyperbolic points is also illustrated by a numerous numerical examples.

One can say that stochastic layer is a seed of chaos in Hamiltonian dynamics.

A narrow domain near the separatrix is extremely sensitive to small perturbations.

Perturbation destroys the unperturbed separatrix, and a finite width layer with

chaotic motion inside it replaces the unperturbed separatrix. In fact, the stochastic

layer has complicated topological structure. It consists of an infinite number of

islands, subislands, island-around-islands, etc. An island is a domain with elliptic

points inside and integrable KAM curves around the points (see Fig. 5.2.3). Smaller

stochastic layers of higher order exist inside the islands, but invariant (integrable)

curves isolate these layers from the main stochastic layer.

It became clear that the insight into the origin of chaotic dynamics can come

from the understanding of the dynamics in the destroyed separatrix domain.

Numerous publications were focused on the following specific problems: splitting

of the separatrix, estimating the stochastic layer width, and applications [85–95].

The research on the separatrix splitting followed the original Melnikov’s formula,

Fig. 5.2.2 Schematic

illustration of stable and

unstable of hyperbolic

periodic orbits
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the so-called Melnikov’s integral, which gives the change in stream function

amplitude dC0 due to the separatrix splitting

dC0ðt0Þ ¼
ð
dt
dC0ðxðt; t0Þ; yðt; t0ÞÞ

dt
: (5.2.1)

It gave an expression for the area of the lobe, which appeared due to the different

asymptotics for stable and unstable perturbed separatrix. By taking into account the

advection equation in terms of perturbated stream function

Cðx; y; tÞ ¼ C0ðx; yÞ þ eoC1ðx; y; tÞ (5.2.2)

one obtains the integral over Lagrangian trajectory of tracer in the following form:

dC0ðt0Þ ¼
ð
dt eo ~VrC0 ¼ eo

ð
dt

@C1ðtÞ
@x

@C0

@y
� @C1ðtÞ

@y

@C
@x

� �
: (5.2.3)

Here, the trajectory of scalar particle can be represented as the asymptotic

expansions

xðt; t0Þ � xðt0Þ þ eo x1ðtÞ; (5.2.4)

yðt; t0Þ � yðt0Þ þ e y1ðtÞ; (5.2.5)

where e is the perturbation amplitude and (xðt0Þ and yðt0Þ) are the initial points of
the particle. At this stage of analysis of stochastic layer contribution to transport,

we omit all these complicated calculations, which may be carried out exactly for

different analytical representation of streamline functions, because the reader could

find these results in many publications [85–95]. However, by concluding this

section we note that because of an analogy between Hamiltonian models and

two-dimensional incompressible flows, it is natural to consider stochastic layers

in the vicinity of streamlines having the separatrix form (see Fig. 5.2.4). On the

other hand, in the presence of stochastic layers we must obviously search for new

correlation effects as well as characteristic spatial and temporal correlation scales

necessary for phenomenological models of transport.

y

y

D

Fig. 5.2.3 Schematic

illustration of the separatrix

splitting and generation of the

stochastic layer of width D
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5.3 Stochastic Instability and Single-Scale Approximation

The stochastic instability of trajectories was first discovered [97–100] in billiard-

like systems. Now let us turn our attention to the chaotic flow case. From the formal

point of view, we can analyze this phenomena in the framework of the divergence

of initially nearby trajectories

lðtÞ � lð0Þexp(hKtÞ � lð0Þexp t

tS

� �
: (5.3.1)

Here, l(t) is the distance between trajectories at the moment t and hK is the

Kolmogorov entropy expressed in terms of Lyapunov’s exponent [101, 102]:

hK ¼ limlð0Þ!0; t!1
1

t
ln

lðtÞj j
lð0Þj j

� �
: (5.3.2)

Indeed, consider the case of a stationary velocity field

d~x

dt
¼ ~Vð~xÞ (5.3.3)

Let ~xðtÞ be the trajectory corresponding to the initial condition ~xðt ¼ 0Þ ¼~x0.
Let us find the equation of perturbation of this trajectory. With this aim in view,

consider a close trajectory ~xðtÞ þ~l0ðtÞ with the initial condition

~xðt ¼ 0Þ ¼ ~x0 þ~l0 (5.3.4)

1.5

0

–2 –1 0 xm

ym

a

Fig. 5.2.4 A typical Poincare section (After Budyansky [96] with permission)
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where ~l0 is an infinitesimal vector. The perturbation of the trajectory ~lðtÞ satisfies
the following equation:

d~l0
dt

¼ ð~lrÞ~Vð~xÞ: (5.3.5)

This can be rewritten on the following form:

d~l

dt
þ ð~VrÞ~l ¼ ð~lrÞ~V: (5.3.6)

The stochasticity of streamlines and trajectories of particles of a liquid means

that the Lyapunov exponent hK is positive. In this context, the chaotic properties of

dynamic systems have been investigated in many textbooks [93–102]. An example

of such exponential divergence of two orbits near the separatrix of Hamiltonian

system with very close initial conditions is shown in Fig. 5.3.1.

We look here more closely at the scaling aspect of the problem, since both the

Kolmogorov entropy hK and the spatial scale l define decorrelation mechanisms and

transport. Thus, by considering the evolution of fluid element of size L* in hydrody-
namical field with the characteristic velocity scale V0 and characteristic frequency

o, it is easy to estimate stretching fluid element during the characteristic time t0:

L1 � L�
dL
l

� L�
V0

ol
: (5.3.7)

Here, l is the characteristic spatial scale. Then, the length of fluid element,

Separatrix

l (t)

p

q0

Fig. 5.3.1 Schematic

diagram of exponential

instability. Exponential

divergence of orbits near the

unperturbed separatrix with

very small differences in the

initial conditions
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LðtÞ � L�
V0

ol

� �t=t0

¼ L� exp
t

t0
lnKu

	 

� L� exp

t

tS

� �
; (5.3.8)

corresponds to the time t (see Fig. 5.3.2). Here, the dimensionless parameter

Ku ¼ V0

ol
(5.3.9)

is the Kubo number, which plays the role of the mapping parameter KS. In the

discrete form, it could be represented as the mapping procedure

dxN � KN
S dx0 � dx0 expðN lnKSÞ: (5.3.10)

Here, N is the number of iterations, dx0 is the initial length of phase element, and

dxN is the length of the element under analysis after iterations. In the streamline

chaos case

tSðKuÞ � t0
lnKu

� t0
ln V0

lo

� � : (5.3.11)

Note, the characteristic time t0 also must be interpreted in terms of flow

parameters, t0 ¼ t0ðV0; l;oÞ [103, 104]. This allows us to treat stochastic instabil-
ity effects, correlations, and transport properties from the common standpoint.

Here, we discuss a passive scalar transport in a random flow in the framework of

single-scale approximation. We suppose that such a flow is characterized by the

single velocity amplitude V0 and the length scale L0. The characteristic magnitude

of the velocity gradient is given by V0=L0. A scalar blob will be stretched and rolled

up by the chaotic flow (see Fig. 5.3.3). In a steady random flow, the stretching and

folding of volumes of the fluid proceed exponentially [106, 107]. The small scales

of such a blob are given by the relation

V0

δL ≈ V0 / ω

L*

V0

V0
Fig. 5.3.2 The figure shows

hydrodynamic evolution of a

small fluid element
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DðtÞ ¼ L0 expð�gstÞ; (5.3.12)

where gs is the stochastic instability increment. In the presence of molecular (seed)

diffusivity gradients disappear. One can estimate the mixing spatial scale (the

Batchelor scale) Dmix by comparison of the diffusion rate

gD ¼ t�1
D � D0

D2
mix

(5.3.13)

and the rate of stretching gs. In the case of the single-scale approximation, we find

D0

D2
mixðtmixÞ

� V0

L0
: (5.3.14)

In terms of the Peclet number, one obtains the scaling for the dissipation scale in

the framework of single-scale approximation

DmixðPeÞ / L0ffiffiffiffiffiffi
Pe

p ; (5.3.15)

where Pe � 1. This allows us to derive the formula for the mixing time in the large

Peclet number limit

L0ffiffiffiffiffiffi
Pe

p ¼ L0 expð�gstmixÞ; (5.3.16)

1

3

2

Fig. 5.3.3 Schematic

diagram of evolution of a

region of phase space
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and we arrive to the scaling,

tmixðPeÞ / lnPe

gs
: (5.3.17)

In the case of sufficiently random flow, the mixing time weakly depends on the

seed diffusivity. We suppose the steady flow under consideration not to be

concerned with the existence of separatrix or stagnation points. The case of chaotic

advection where the flow topology reconstruction is related to the separatrix

reconnection as well as the Batchelor dissipation scale cascade representation is

considered later.

5.4 Chaotic Mixing in Microchannels

Mixing of the fluid flowing through microchannels is important in a variety of

industrial applications such as the homogenization of solutions of reagents in

chemical reactions, the control of dispersion of material along the direction of

Poiseuille flows, and so on (see Fig. 5.4.1). At the low Reynolds numbers Re ¼ V0L0
nF

in channels with smooth walls, flows are usually laminar, so the mixing of material

between streams in the flow is purely diffusive. Here, V0is the characteristic

velocity, L0 is the characteristic spatial scale, and nF is the kinematic viscosity.

For instance, in the microchannel condition we are dealing with the following

characteristic values:V0<100 cm=s, L0 � 0:01 cm, and nF � 0:01 g=ðcm s), and this

0
x

L0

y

Vx (y)

Fig. 5.4.1 Characteristic

geometry of the Poiseuille

two-dimensional flow
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leads to the estimate for the Reynolds number Re<100. On the scale of a

microchannel, the diffusive mixing is slow in comparison with the convection

along the channel. In this case, we are dealing with the large Peclet number,

Pe ¼ V0L0
D0

>100; (5.4.1)

where D0<10�5 cm2=s is the molecular diffusivity. For such laminar flows, the

distance along the channel that is required for mixing to occur is

lmix / V0

L20
D0

¼ Pe � L0: (5.4.2)

This mixing length can be prohibitively long (lmix � 1 cm) and scales linearly

with the Peclet number Pe.
To reduce the mixing length, there must be transverse components of flow that

stretch and fold volumes of fluid over the cross section of the channel [108, 109].

These stirring flows will reduce the mixing length lmix by decreasing the average

distance, D, over which diffusion must act in the transverse direction to homogenize

unmixed domains. In the case of a steady random flow, the stretching and folding of

the volumes under consideration proceed exponentially as a function of the longi-

tudinal distance traveled by the volume:

DðlÞ ¼ L0 exp � l

ls

� �
; (5.4.3)

where the initial transverse scale is taken to be L0, and ls is a characteristic length
determined by the geometry of trajectories in the chaotic flow. It is natural to

estimate the mixing length by

lmix � V0tD � V0

D2ðlmixÞ
D0

; (5.4.4)

where tD is the diffusion characteristic time. After substitution, one obtains the

equation for the mixing length in the form

ffiffiffiffiffiffiffi
lmix

L0

r
¼

ffiffiffiffiffiffiffiffiffiffi
V0L0
D0

r
exp � lmix

ls

� �
; (5.4.5)

For the large Pe, in a flow that is chaotic over most of its cross section, we expect

an important reduction of the mixing length relative to that in an unstirred flow:

lmixðPeÞ / ls lnðPeÞ: (5.4.6)
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The scaling for the transverse spatial scale takes the form

DðlmixÞ / L0
lnðPeÞ : (5.4.7)

Indeed, asymmetric grooves in the channel walls induce an axially modulated

secondary flow in the form of an asymmetric set of counter-rotating fluid rolls (see

Fig. 5.4.2). The asymmetry of the rolls is periodically reversed, so that the distance

between stripes halves with each cycle, leading to exponential stretching and

folding of fluid volumes. Thus, after N cycles requiring the mixing time

tmix / lmix

V0

� N
ls
V0

; (5.4.8)

where ls is the cycle length, stripes are separated by a distance

DðNÞ / L0
2N

: (5.4.9)

It is now obvious that mixing occurs when the time to diffuse between stripes tD
is comparable to the cycle time tmix,

D2ðNÞ
D0

� tmix / Nls
V0

; (5.4.10)

Fig. 5.4.2 (a) Three-dimensional schematic of one-and-a-half cycles of the mixer device. Each

cycle is composed of two sets of grooves (six per set in the case shown) in the floor of the channel.

The grooves are in the form of herringbones that are asymmetric with respect to the center of the

channel (along x); the direction of the asymmetry switches from one half-cycle to the next. The

flow is driven by an axially applied pressure gradient, rP. (b) Schematic of the lid-driven cavity

model that is used to treat the flow in the cross section. The arrows beneath the cavity indicate the
motion of the bottom wall. Contour plots of the approximate stream function of the flow in the

cross sections are shown for each half-cycle. (After Stroock and McGraw [108] with permission)
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which yields the scaling

NðPeÞ / lnPe: (5.4.11)

After substitution, one obtains the expression for the mixing length in the form

lmixðPeÞ � lsNðPeÞ � ls lnPe: (5.4.12)

Finally, we find the relation for the mixing time,

tmixðPeÞ / lsD0

D0

lnPe

Pe
: (5.4.13)

Indeed, the number of cycles (or mixing length) measured in the staggered

herringbone mixer depends logarithmically on Pe, NðPeÞ / lnPe over six decades.
One can see that the stochastic instability leads to the appearance of new

decorrelation mechanisms. For example, it often “destroys” subdiffusion regimes,

which are based on the repeated returns of particles. This problem has been studied

in the context of both astrophysical and plasma physics applications where the

exponential divergences of two neighboring streamlines of a chaotic flow play a

significant role [110–114].

5.5 Multiscale Approximation

We already treated above the single-scale approximation of chaotic mixing in terms

of the Peclet number. It would be natural to generalize this approach to a multiscale

flow. The impressive description of chaotic mixing in the framework of the

Kolmogorov theory of scalar cascade was done by Batchelor [39]. We discuss

such an approach later in the context of the cascade phenomenology. Here, we

represent simplified dimensional arguments to obtain transport scaling for a

multiscale chaotic flow.

Let us suppose that for the spatial scales less than the mixing spatial scale Dmix

l � Dmix; (5.5.1)

a random flow stretches and folds volumes of the fluid exponentially,

l2ðtÞ ¼ L20 expð�gstÞ; (5.5.2)

where gs is the stochastic instability increment. In terms of transport scaling, this

can be represented as
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d

dt
l2ðtÞ / l2ðtÞ: (5.5.3)

On the other hand, in the presence of molecular (seed) diffusivity D0, for the

spatial scales greater than the mixing spatial scale

l � Dmix; (5.5.4)

we are dealing with the diffusive regime, which is described by the relation

d

dt
l2ðtÞ / 2DT: (5.5.5)

On the basis of these equations, it is possible to build the approximation formula

describing both the exponential regime and the diffusive stage

d

dt
l2ðtÞ / 2DeffðlÞ: (5.5.6)

In this context, we consider the dimensional approximation of the effective

diffusion coefficient in the form

d

dt
l2ðtÞ / 2D0 þ 2DT

l

Dmix

� �2

: (5.5.7)

Basing on this expression, we are able to estimate the characteristic lifetime of a

blob evolution in a multiscale chaotic flow as follows:

dt ¼ 2l dl

2D0 þ 2DT
l

Dmix

� �2 : (5.5.8)

After simple calculations, one obtains the scaling

tmixðPeÞ � D2
mix

DT

ln
Pe

1þ Pe L0=Dmix

� �
: (5.5.9)

Here, L0 is the small initial distance. The estimate of the characteristic mixing

time in the scaling form,

tmixðPeÞ � 1

gS
lnPe; (5.5.10)

was repeatedly used in the explanation of anomalously long lifetimes of coherent

structures in chaotic flows with the large Peclet numbers, Pe � 1 [115, 116]. Thus,
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the very long lifetimes of temperature spots on the Ocean surface were interpreted

in [117] on the basis of this logarithmical dependence (see Fig. 5.5.1). Besides, in

the framework of the Lagrangian description of magnetic turbulence, it is possible

to employ the approximation formula

d

dz
l2ðzÞ / 2DeffðlÞ (5.5.11)

to describe electron heat conductivity in galaxy clusters in terms of multiscale

representation of force line walks [118].

Note that the estimate obtained here for tmixðPeÞ insignificantly differs from the

single-scale approximation. This encourages us to search for new physical

arguments to treat stochastic instability effects in multiscale chaotic flows.
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Part III

Phenomenological Models



Chapter 6

Correlation Effects and Transport Equations

6.1 Averaging and Linear-Response

It is rather natural to wonder about the effective equation, which rules the asymp-

totic evolution in the case of diffusion in chaotic (turbulent) flow instead of the Fick

one. Indeed, we would like to know what are equations replacing the conventional

diffusion equation at large spatial scales and long times.

In the framework of Lagrangian approach, it is convenient to employ the scalar

evolution equation in the form

dn

dt
¼ @n

@t
þ Vi

@n

@xi
¼ 0; (6.1.1)

where the assumption of incompressibility is applied

@Vx

@x
þ @Vy

@y
þ @Vz

@z
¼ 0: (6.1.2)

In terms of Lagrangian representation, the solution of this equation is given by

the formula nð~r; tÞ ¼ n0ð~aÞ. Here, n0 is the initial scalar distribution function. Note,
for a single scalar particle situated at the point a at the moment t, one obtains

nðt ¼ 0Þ ¼ dð~r �~aÞ; (6.1.3)

where symbol d denotes the Dirac function.

However, the continuity equation could be the grounds for more fruitful

approach to build the effective diffusion equation on the basis of Lagrangian

correlation function. For the sake of simplicity, we analyze the continuity equation

for the density of a passive scalar in the one-dimensional case:

@n

@t
þ VðtÞ @n

@x
¼ 0; (6.1.4)
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where nðx; tÞ is the spatial density of the passive scalar. For an incompressible flow

div~V ¼ @Vx

@x
¼ 0: (6.1.5)

and V ¼ VðtÞ is the random velocity field. The general solution of the continuity

equation is given by the formula

nðx; tÞ ¼ n0ðxÞ x� 1

m

ðt
0

Vðt0Þdt0
� �

: (6.1.6)

In principle, if we know the distribution function f(V) for the random velocity

field V(t), then one obtains the mean scalar density

nðx; tÞ ¼
ð1
�1

n0ðxÞ x� 1

m

ðt
0

Vðt0Þdt0
� �

f ðVÞdV: (6.1.7)

To incorporate the information on correlation effects, we average the continuity

equation over the ensemble of realizations, assuming that the density field can be

represented as a sum of the mean density n0 and the fluctuation component

n1 ¼ n� nh i,

nðx; tÞ ¼ n0ðx; tÞ þ n1ðx; tÞ: (6.1.8)

We also set n1h i ¼ 0 and the velocity field is represented as a sum of the mean

velocity v0 and the fluctuation amplitude v1, V ¼ v0 þ v1, where v0 ¼ const

and v1h i ¼ 0.

After simple algebra, one obtains

@n0
@t

þ @n1
@t

þ ðv0 þ v1Þ @n0
@x

þ @n1
@x

� �
¼ 0: (6.1.9)

Upon averaging this equation, we arrive at the equation for the mean density n0

@n0
@t

þ v0
@n0
@x

þ v1
@n1
@x

� �
¼ 0: (6.1.10)

By subtracting this equation from the previous one, we find the equation for the

density perturbation n1

@n1
@t

þ v0
@n1
@x

þ v1
@n0
@x

þ v1
@n1
@x

� v1
@n1
@x

� �
¼ 0: (6.1.11)
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Here, it was assumed

v1
@n0
@x

� �
¼ 0; v0

@n1
@x

� �
¼ 0: (6.1.12)

As a result of these manipulations, we arrive at the following set of equations for

both the mean density n0 and the density perturbation n1:

@n0
@t

þ v0
@n0
@x

þ v1
@n1
@x

� �
¼ 0; (6.1.13)

@n1
@t

þ v0
@n1
@x

þ v1
@n0
@x

þ v1
@n1
@x

� v1
@n1
@x

� �
¼ 0: (6.1.14)

Let us introduce a small parameter e. We assume that the fluctuations n1 and v1
are as small as e in comparison with the mean density n0, n1 � en0, and v1 � ev0.
The quasilinear character of the approximation indicates that, in the equation for n0,
we keep the nonlinear term of the order of e2 but, in the equation for n1, we keep

only the terms that are of the first order of e. As a result, the transformations put the

equation for density fluctuations n1 into the form

@n1
@t

þ v0
@n1
@x

¼ �v1
@n0
@x

: (6.1.15)

This equation could be solved by the Green function method. The solution for

n1ðx; tÞ has the form

n1ðx; tÞ ¼ �
ðt
0

v1ðt1Þ @n0ðz; tÞ
@z

dt1: (6.1.16)

Here, z is given by z ¼ x� v0ðt� t1Þ. Substituting this expression for n1 into the
equation for the mean density n0 and performing simple manipulations yield

@n0
@t

þ v0
@n0
@x

¼
ðt
0

v1ðtÞv1ðt1Þh i @
2n0ðz; t1Þ
@z@x

dt1: (6.1.17)

The integral nature of this equation reflects the Lagrangian character of the

relationships between the derivatives of n0ðx; tÞ. The particular form of the transport

equation is governed by the choice of the correlation function Cðt; t1Þ ¼
v1ðtÞv1ðt1Þh i. If we assume that the correlations are short-range, the quasilinear

equation takes the conventional form with the diffusivity, DT � v21t,

@n0
@t

þ v0
@n0
@x

¼ DT

@2n0ðx; tÞ
@x2

: (6.1.18)

6.1 Averaging and Linear-Response 91



Thus, in this approximation, we arrive at the familiar Taylor representation for

the turbulent diffusion coefficient. The method considered here is named as

quasilinear because in the set of the equation we had to solve, the equation for

the mean density had the nonlinear term v1
@n1
@x

� 	
, whereas the approximation

equation for the density perturbation was linear. Below we will treat different

methods of renormalization of this quasilinear approach based on the phenomeno-

logical modification of the equation for density perturbations.

Basing on the averaging procedure for the short-range correlation function, we

obtain the Taylor expression for the turbulent diffusivity

DT ¼
ð1
0

Vð0ÞVðtÞh idt; (6.1.19)

which is also the famous Kubo–Green formula for the transport coefficient

D ¼
ð1
0

CðtÞdt: (6.1.20)

This correlation representation allows one to interpret the classical Einstein

formula kBT
mbt

¼ D as the fluctuation-response relation, which connects the response

coefficient (friction factor) bt and the corresponding correlation function (velocity

autocorrelation function) CðtÞ. Such a formulation of the problem leads to linear-

response concept, which provides the fairly general formalism for the transport

coefficient description. Thus, in the presence of small temporal and spatial

variations of the field að~r; tÞ, the evolution of the system under consideration is

described by the set of the Onsager equations

@að~r; tÞ
@t

¼ �rJð~r; tÞ; (6.1.21)

Jð~r; tÞ ¼ LJwð~r; tÞ; (6.1.22)

wð~r; tÞ ¼ �rað~r; tÞ: (6.1.23)

Here, Jð~r; tÞ is a flux, wð~r; tÞ is a thermodynamic force, and LJ is the

corresponding transport coefficient, which is represented by Kubo–Green formula

LJ ¼ const

ð1
0

Jð0ÞJðtÞh idt: (6.1.24)

It is obvious that in the case of scalar particle transport in a chaotic flow we are

dealing with the particle density, particle flux, and scalar diffusivity. However, the

linear-response concept was originally developed in the framework of equilibrium

statistical mechanics based on Hamiltonian description of systems. This leads to the

methodological problem, which was clearly formulated by Van Kampen [58]. Thus,
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when considering the perturbation of the dynamical system dxiðtÞ, one can write a

Taylor expansion for the difference between perturbed and unperturbed values in

the form

dxiðtÞ ¼
X
j

@xiðtÞ
@xjð0Þ dxjð0Þ þ O d~r 2ð0Þ
 �

; (6.1.25)

where d~r ¼ dxif g. As we discussed in the previous chapter devoted to the stochastic
instability, in the presence of chaos the term @xiðtÞ=@xjð0Þ grows exponentially with
time. This means that the region of applicability of the linear approach under

consideration could be very limited. Nevertheless, the linear-response theory suc-

cessfully describes the transport coefficients on the basis of correlation function and

the Kubo–Green relation, which is confirmed by numerous observations as well as

simulations [43]. However, we have to take into account that the conventional

description of transport has an average character because the measured quantities

are always the result of averaging over the ensemble of trajectories. From this point

of view, the stochastic instability works as a decorrelation mechanism and supports

to the mixing. This is very important conclusion since the main task of the turbulent

transport theory is the search for phenomenological arguments to describe complex

correlation effects basing on the different approximations of particle trajectories,

topology of coherent structures, etc.

6.2 Correlations and Phenomenological Transport Equation

When studying complex correlation effects, one can obtain different phenomeno-

logical equation to describe transport in the framework of the quasilinear approach.

Thus, in the case of steady random processes, the function Cðt; t1Þ � Cðt� t1Þ in
the equation under analysis,

@n0
@t

þ v0
@n0
@x

¼
ðt
0

Cðt� t1Þ @
2n0ðz; t1Þ
@z@x

dt1; (6.2.1)

plays the role of the memory function. By differentiating this equation with respect

to x and then by differentiating the same equation with respect to t, after simple

calculations, one obtains

@n0
@t

þ v0
@n0
@x

þ t0
@2n0
@t2

þ 2v0
@2n0
@x@t

þ ðv20 � C0Þ @
2n0
@x2

� �
¼ 0: (6.2.2)

Here, it is convenient to introduce the new set of variables � ¼ x� v0t, x ¼ t.
This leads to the telegraph equation:

6.2 Correlations and Phenomenological Transport Equation 93



@n0
@x

þ t0
@2n

@x2
¼ C0t0

@2n0
@�2

; (6.2.3)

where
ffiffiffiffiffiffi
C0

p
is the propagation velocity. This is the hyperbolic telegraph equation in

frame of reference related to the coordinates x; �. The telegraph equation is known

by this name because it was first derived by Kelvin in his analysis of signal

propagation in the first transatlantic cable and then was often applied to describe

turbulent diffusion [119–127]. The example of interest is the diffusion of the

chimney plume. Particle mixing is important in a variety of industrial and natural

settings (see Fig. 6.2.1). How can a paint manufacturer assure that pigments are

mixed thoroughly into the paint medium? Usually the source is a buoyant plume

emitted from a chimney of height hA, which first mixed with the atmosphere under

the action of its own thermal and mechanical energy, by the processes of

‘entraining’ the surrounding fluid. At some stage, this process is overtaken by the

diffusing action of the external turbulence and then the pollutant is assumed to

diffuse like a passive scalar from a source at greater height Dh above the original

source. To treat the transition process, one can take into account the limited velocity

of particle propagation, which is related to the limitation on wind velocity

fluctuations creating turbulent mixing [119, 120].

To obtain the telegraph equation from the phenomenological point of view, one

could consider the relation for the particle flux in the form

q ¼ q0 � t
@q

@t
: (6.2.4)

where

q0ðx; tÞ ¼ �D0

@nðx; tÞ
@x

: (6.2.5)
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Fig. 6.2.1 Schematic

illustration of a chimney

plume
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The term tð@q=@tÞ describes the influence of the turbulent pulsations. The

general solution has the form

qðx; tÞ ¼
ðt
0

q0ðx; t0Þ exp � t� t0

t


 �
dt0

t
þ q0 exp � t

t

h i
: (6.2.6)

In the case when t � t, one finds the asymptotic solution in the form

qðx; tÞ ¼ �
ðt
0

D0

@n

@x
exp � t� t0

t


 �
dt0

t
: (6.2.7)

On the basis of the conventional Fick relation,

@nðx; tÞ
@t

¼ � @qðx; tÞ
@x

; (6.2.8)

we arrive at the telegraph equation in the form

@n

@t
þ t

@2n

@t2
¼ D0

@2n

@x2
: (6.2.9)

This equation can be regarded as an interpolation between the wave and diffu-

sion equation. On the other hand, the expression for the particle flux describes

memory effects. Therefore, it is possible to replace the exponential function by an

arbitrary memory function Mmðt� t0Þ

qðx; tÞ ¼
ðt
0

q0ðx; t0ÞMmðt� t0Þ dt
0

t
: (6.2.10)

In this general case, one obtains the renormalized diffusion equation in the form

@nðx; tÞ
@t

¼
ðt
0

D
@2nðx; t0Þ

@x2
Mmðt� t0Þ dt

0

t
: (6.2.11)

From the modern point of view, such an approach to the turbulent transport looks

fairly naive. However, in essence, the idea of using the additional derivative in the

equations describing the anomalous character of diffusion was clearly formulated

as early as 1934 [119].

6.3 Heavy Particles in Chaotic Flow

Phenomenological arguments based on the memory function formalism are rather

effective tool to build simplified models of transport in chaotic flows. Here, we

study the influence of particle inertia on the turbulent diffusion using the memory

function approach [45–47].
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Let us consider an equation for inertial particles of finite size R0 suspended in a

turbulent flow. In the framework of the passive scalar approach, one obtains the

simplified relation

d~V

dt
¼ �

~V � ~U

t0
þ~g: (6.3.1)

Here, ~V is the inertial particle velocity, ~U is the fluid velocity, and ~g is the

gravitational acceleration. The characteristic time is given by the conventional

Stokes formula

t0 ¼ 2R2
0r0

9rnF
; (6.3.2)

where r0 is the particle density, r is the fluid density, and nF is the fluid viscosity.

As experimentally discovered, inertia effects in turbulent flow lead to decrease of

the settling velocity ~V because of chaotic nature of the fluid velocity ~U [67–72]. The

first attempts to estimate this effect were based on using the linear dependence of the

fluid velocity on time (see Fig. 6.3.1). However, the memory function formalism is

more relevant to this problem. In terms of the Langevin approach, such a description

was successfully used to investigate complex correlation effects [45–47]. Thus, for

the classical Langevin model we have the equation of motion in the form

dV

dt
¼ � V

t0
þ AðtÞ; (6.3.3)

V

The Stokes law 

mg 

Experimental data 
F

Fig. 6.3.1 A typical plot of

gravitational settling of

aerosol particles
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where A(t) is a stochastic acceleration of average value zero representing the effects
of molecular impacts on a particle at rest. This leads to the relation for the

correlation function

d

dt
VðtÞVð0Þh i ¼ dCðtÞ

dt
¼ �CðtÞ

t0
: (6.3.4)

Using the memory function formalism, we find the renormalized equation of

motion,

dV

dt
¼ � 1

t0

ðt
0

Mðt� t0ÞVðt0Þdt0 þ AðtÞ; (6.3.5)

and hence, we obtain the integral equation for the autocorrelation function as

follows:

dCðtÞ
dt

¼ �
ðt
0

Mðt� t0ÞCðt0Þdt0: (6.3.6)

Here,M(t) is the memory function. This allows one to investigate the correlation

functions, which differ significantly from the exponential representation.

In our case, such a renormalized equation takes the form

d~V

dt
¼ �

ðt
0

Mðt� t0Þ ~Vðt0Þ � ~Uðt0Þ� �
dt0 þ~g; (6.3.7)

whereMðtÞ is the phenomenological memory function describing the inertia effects

in the presence of “ensemble” of turbulent pulsations.

On the other hand, when the characteristic time t0 is less than the temporal scale

of turbulent pulsations (small particle inertia), one can obtain an approximation

relation for the velocity of the inertial particle [128]

~V � ~U � t0
d~U

dt
þ t0~g: (6.3.8)

We must make special note here. The Lagrangian (total) acceleration of the

small fluid element is given by the conventional relation

d~U

dt
¼ @ ~U

@t
þ ~Ur~U; (6.3.9)

and the velocity field of the surrounding fluid ~U is incompressible so that

div ~U ¼ 0; (6.3.10)
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whereas the velocity field ~V is compressible and by calculating the divergence of

the inertial particle velocity, we find

div ~V ¼ �t0rð~UrÞ~U ¼ �t0
@Ui

@xj

� �
@Uj

@xi

� �
: (6.3.11)

Here, the standard index notation is used and the gravitational acceleration does

not contribute to this compressibility effect. The equation for the particle density

takes the following form:

dn

dt
¼ @n

@t
þ ~Vrn ¼ �n div ~V: (6.3.12)

In the framework of the Lagrangian approach, this gives the integral formula for

the coarse-grained particle density, nð~r; tÞ

nð~r; tÞ ¼ nð0; 0Þ exp t0

ðt
0

r ~Uðt0Þr
 �
~Uðt0Þ� �

dt0
� �

: (6.3.13)

This representation is valid for spatial scales, which exceed the particle size as

well as the Brownian diffusion scale (see Fig. 6.3.2).

For instance, inertia effects are really important when describing particle-

turbulence interactions in atmospheric clouds. Turbulence in atmospheric clouds

is related to enormous Reynolds numbers on order of 106 to 107. Thus, the ratio of

1.12

Gravitational settilng of aerosol particles

1.08

1.04
<V3>

1.0

0.96

0.92

0 2 4 6
A

8 10

Fig. 6.3.2 Simulation results for average setting velocity V3h i against inertia parameter. (After

Maxey [128] with permission)
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energy-containing and dissipative spatial scales is on order of 105 for typical

convective cloud. For small cloud droplets, the renormalized Stokes drag force

model is a reasonable approximation. The equation of motion for the droplets often

includes the memory term (the Basset “history” force due to diffusion of vorticity

from an accelerating particle). For more details, we refer the reader to [67–72].

6.4 The Quasilinear Approach and Phase-space

In the previous sections, we considered the quasilinear approximation in the

framework of the hydrodynamic approach. However, the quasilinear equations

(which are based on keeping a nonlinear term in the equation for mean density

and using a nonlinear equation for perturbations) were first obtained in kinetics

considering the problem of waves and particles interaction on the basis of Vlasov’s

equation [129, 130]

@f ðV; x; tÞ
@t

þ ~V
@f

@x
þ ~E

@f

@V
¼ 0; (6.4.1)

div ~E ¼ 4pne
ð
f ðV; x; tÞd~V: (6.4.2)

Here, f ðV; x; tÞ is the velocity distribution function, ~E is the electric field, and n is
the plasma density. The quasilinear formulation of this problem was repeatedly

discussed in detail [131–134]. Therefore, we will consider only those aspects that

play an important role for the subsequent consideration. A kinetic problem is

naturally much more complex. Thus, in the one-dimensional case the equations

for the mean part of the distribution function f0ðV; tÞ and perturbation f1ðV; x; tÞ
have the form, which is analogous to the quasilinear approximation for the passive

scalar equations

@f0
@t

þ e

m
E
@f0
@V

� �
¼ 0; (6.4.3)

@f1
@t

þ V
@f1
@x

þ e

m

@f0
@V

¼ 0: (6.4.4)

However, the diffusive equation in the velocity space, which was obtained as the

result of transformations

@f0
@t

¼ @

@V
DV

@f0
@V


 �
; (6.4.5)
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with the quasilinear diffusion coefficient

DV ¼ e

m

� �2 ð Ekj j2
oðkÞ � kV

dk (6.4.6)

is added by the equation describing the energy dissipation of electric field due to the

Landau damping

d

dt
Ekj j2 ¼ �2gk Ekj j2; (6.4.7)

where the characteristic frequency gk is defined by the equation

gk ¼ 2pe2o
ð
@f0
@V

dðo� kVÞdV: (6.4.8)

Here, oðkÞ describes the frequency dependence on the wave number k, and Ekj j2
is the spectral function of electric field. It is natural that the expression for the

quasilinear diffusion coefficient DV in a velocity space can be interpreted in terms

of the autocorrelation function of accelerations Ca

DV �
ð1
0

CaðtÞdt � e

m

� �2 ð1
0

Eð0ÞEðtÞh idt: (6.4.9)

One can see the analogy with the Taylor representation for the coefficient of

turbulent diffusion

DT �
ð1
0

CðtÞdt ¼
ð1
0

Vð0ÞVðtÞh idt: (6.4.10)

However, in the case of phase space we deal with the more complex problem. It

is well known that the quasilinear description of weak-turbulent plasma is based on

the notion about stochastic instability and randomness of phases [129–134].

6.5 The Dupree Approximation

Many theoretical and numerical investigations confirm the appearance of diffusion

in a space of velocities in the stochastic limit. In spite of the effectiveness of the

quasilinear approximation, some correlation effects were not considered. Thus, the

mixing process of stochastically instable trajectories leads to the nonlinear irrevers-

ible decay of correlations with the characteristic time [134]
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tk / 1

k2DVð Þ1=3
: (6.5.1)

Here, DV is the diffusion coefficient in velocity space and k is the wave number.

In the Dupree papers, it was suggested to consider the correlations decay by

analogy with the Landau damping [135–137] using the frequency “renormalization”

in the form

oðkÞ ! oðkÞ þ i

tk
: (6.5.2)

Such an approach can be interpreted as the renormalization (modification) of the

equation for the perturbation of the distribution function f1

@f1
@t

þ ~V
@f1
@x

þ ~E
@f0
@V

¼ f1
tk
: (6.5.3)

Here, the term f1=tk approximates the terms omitted in the quasilinear

approximation.

It is natural to consider the renormalization of the quasilinear diffusion coeffi-

cient in terms of the autocorrelation function of accelerations

CðtÞ ¼ e

m

� �2
EðxðtÞ; tÞEðxð0Þ; 0Þh i: (6.5.4)

Then, the particle velocity in the framework of one-dimensional electrostatic

turbulence is given by

VðtÞ ¼ V0 þ e

m

ðt
0

E xðt0Þ; t0½ �dt0: (6.5.5)

By representing the electric field as the totality of many independent Fourier

components, one obtains

Eðx; tÞ ¼
X
k

Ek exp iðkx� oktÞ½ �: (6.5.6)

The formal substitution of this expression in the formula for the correlation

function yields

CðtÞ ¼ e

m

� �2X
kk0

Ek exp iðkxðtÞ � oktÞ½ �Ek0 exp iðk0xð0Þ½ �h i: (6.5.7)

6.5 The Dupree Approximation 101



Then, by analogy with Corrsin, Dupree used the independence hypothesis

CðtÞ ¼ e

m

� �2X
k

Ekj j2 exp iðkxðtÞ � oktÞ þ iðkDxðtÞ½ �h i: (6.5.8)

For the Gaussian statistics, one obtains expAh i ¼ exp
hA2i
2

and hence the formula

for the correlation function takes the form

CðtÞ ¼ e

m

� �2X
k

Ekj j2 exp iðkx� oktÞ �
k2 Dx2ðtÞ� 	

2


 �
: (6.5.9)

Using the dimensional estimate d

dt
DV2ðtÞ� 	 � 4DV , it is easy to find the scaling

for Dx2ðtÞ� 	 � 2
3
DVt

3. Then, the expression for the diffusion coefficient for one-

dimensional electrostatic turbulence for t ! 1 takes the Dupree form [134–137]

D ¼
ðt
0

CðtÞdt ¼ e

m

� �2X
k

ð1
0

Ekj j2 exp i(kV � oktÞ � 1

3
k2DVt3


 �
dt: (6.5.10)

It is easy to note that this expression differs essentially from quasilinear one

DQL ¼ p
e

m

� �2X
k

Ekj j2dðok � kVÞ; (6.5.11)

where d is the symbol of the Dirac function. Thus, the Dupree diffusivity scales

with Ek as D / Ekj j3=2, whereas the quasilinear prediction is DQL / Ekj j2.

6.6 Renormalization Theory Revisited

The Dupree renormalized scaling DV / Ekj j3=2 was tested in numerical test particle

simulations [138–142]. The results were mixed, and no definitive conclusions were

drawn. The authors of [138] observed that the diffusivity numerically found is

significantly smaller than that predicted by the Dupree theory. Ishihara and Hirose

[138] confirmed their finding. Moreover, by adopting the method proposed by Salat

[139], they recalculated the diffusivity without assuming Markovian process and

concluded that DV should be time-dependent [141]. An explicit analytical expres-

sion for the diffusivity has been represented by Salat [82] and Ishihara et al. [142]. It

has been shown that in the asymptotic limit, DV scales with the turbulent field and

time as

DV / Ekj j4=3=t1=3: (6.6.1)

102 6 Correlation Effects and Transport Equations



The predicted velocity variance DV½ �2
D E

/ t2=3 in one-dimensional electrostatic

turbulence increases with time more slowly than the usual Brownian motion,

DV½ �2
D E

/ t. This indicates a diffusion process, which is not free, but restricted,

and dependent on the past history of particle trajectory.

The time integration is to be carried out along the perturbed particle trajectory

x(t) given by

xðtÞ ¼ x0 þ V0tþ DxðtÞ; (6.6.2)

where

DxðtÞ ¼ e

m

ðt
0

dt0
ðt0
0

E xðt00Þ; t00½ �dt00 (6.6.3)

is the derivation from the free streaming trajectory x0 þ V0t.
Then, the velocity variance is formally given, with V ¼ V0, by

DVðtÞ½ �2
D E

¼ e

m

� �2X
k

Ekj j2
ðt
0

dt0
ðt0
t0�t

ds0exp iðkV�okÞs0½ � exp ik Dxðt0Þ�Dxðt0�s0Þ½ �½ �h i

(6.6.4)

For a Gaussian statistics, the average in this expression can be approximated by

the equation

exp ik Dxðt0Þ � Dxðt0 � s0Þ½ �½ �h i � exp � k2

2
Dxðt0Þ � Dxðt0 � s0Þ½ �2

D E
 �
: (6.6.5)

In the quasilinear theory Dx ¼ 0. This is equivalent to the assumption that the

particles continue to experience the Eulerian field. In the original resonance broad-

ening theory by Dupree, the variance of particle trajectories is assumed to be

independent of the memory effects, which lead to the following approximation,

Dxðt0Þ � Dxðt0 � s0Þ½ �2
D E

� Dxðs0Þ½ �2
D E

: (6.6.6)

The correlation function DxðtÞ � Dxðt� sÞ½ �2
D E

was calculated more rigorously

as follows. Each term in the expansion

DxðtÞ�Dxðt�sÞ½ �2
D E

¼ DxðtÞ½ �2
D E

�2 DxðtÞDxðt� sÞh iþ Dxðt�sÞ½ �2
D E

; (6.6.7)

is in the form of

Dxðt1Þxðt2Þh i ¼ e

m

� �2 ðt1
0

dt01
ðt01
0

dt001
ðt2
0

dt02
ðt02
0

dt002 E xðt001Þ; t001½ �E xðt002Þ; t002½ �h i:
(6.6.8)
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If the velocity variance is a result of diffusive process, we can make the

following approximation:

e

m

� �2 ðt01
0

dt001
ðt02
0

dt002 E x t01ð Þ; t001½ �E x t002ð Þ; t002½ �h i � 2DV min t01; t0ð Þ; (6.6.9)

provided time-dependence of DV, if any, is sufficiently weak. The substitution

yields

Dx t1ð Þx t2ð Þh i ¼ 2DV

ðt1
0

dt01
ðt2
0

dt02 min t01; t02ð Þ: (6.6.10)

For t1>t2, the double integral reduces to 1
6
3t1 � t2ð Þt22, and thus for t> s> 0,

the variance DxðtÞ � Dxðt� sÞ½ �2
D E

becomes

DxðtÞ � Dxðt� sÞ½ �2
D E

¼ 2

3
ð3t� 2sÞs2DV ; (6.6.11)

which does depend on t as well as the relative time s. This non-Markovian nature of

the spatial variance will be responsible for the time-dependence of the velocity

diffusivity. The substitution of this expression into the cumulant yields the follow-

ing closed form for the diffusivity DV:

DVðtÞ ¼ e

m

� �2X
k

ðt
0

Ekj j
2

exp i kV � okð Þt� 1

3
k2DVt2 3t� 2tð Þ


 �
dt: (6.6.12)

For resonant particles with V � ok=k, the upper limit of DV is given by

DV ¼ e

m

� �2X
k

Ekj j2
ðt
0

exp � 1

3
k2DVtt2


 �
dt: (6.6.13)

In the asymptotic limit t ! 1, the integral approaches
ffiffiffiffi
3p

p
2

1
k
ffiffiffiffiffiffi
DVt

p . Therefore, the

upper limit of the diffusivity is

DVmax ¼
ffiffiffiffiffiffi
3p

p

2

� �2=3
e2

m2

X
k

1

k
Ekj j2

 !2=3
1

t1=3
: (6.6.14)

Actually, in the approach suggested in [138–142], applying the substitution of a

ballistic scaling Dx2 tð Þ� 	 / DV2ðtÞ� 	
t2 / DVtð Þt2, where t is the parameter of

the integrand, for a Dupree dimensional approximation Dx2 tð Þ� 	 / DVt3 yields

the coordination of theoretical results and simulations. Naturally, the correlation

effect approximation suggested by Dupree and based on the independence hypoth-

esis and dimensional estimates is fairly rough. However, it allows one to visualize

correlation effects omitted in the quasilinear approach and opens new possibilities

to obtain transport estimates.
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Chapter 7

The Taylor Shear Dispersion

7.1 Dispersion in Laminar Flow

As early as in 1953, Taylor found that the dispersion of solute along the tube axis

for long times, i.e., for times longer than the diffusive time to explore the tube

section, is simply described as a translation with the mean solvent velocity plus a

diffusive dispersion characterized by an effective diffusion coefficient. It was

shown analytically that the distribution of concentration is centered on a point,

which moves with this mean velocity and is symmetrical about it in spite of the

asymmetry of the flow along the tube. The effective diffusivity can be calculated

from observed distributions of concentration. The analysis relates the longitudinal

diffusivity to the coefficient of molecular diffusion and that is why observations

of concentration along a tube provide a new method for measuring diffusion

coefficients.

We discuss here the model of the effective transport of tracer in a laminar shear

flow in the presence of seed diffusivity. Taylor pointed out that vertical mixing, in

the presence of vertical shear, and a horizontal concentration gradient must lead to

horizontal diffusion simply because particles mixed in the vertical will experience

a range of horizontal advective velocities (see Fig 7.1.1). It was suggested [143]

a fruitful method of obtaining the effective diffusion coefficient, which is based on

averaging the transport equation to investigate dispersion in laminar tube flow

@n

@t
þ Vx 1� r

R0

� �2
" #

@n

@x
¼ D0

1

r

@

@r
r
@n

@r

� �
þ @2n

@x2

� �
: (7.1.1)

Here, n is the scalar density, Vx is the characteristic longitudinal (along the

x-axis) velocity, and D0 is the seed diffusivity. In this approach, the influence of

molecular diffusion on longitudinal convective transport is analyzed. We consider

the Poiseuille flow in a cylindrical tube.

To solve the equation under consideration, it is convenient to introduce the new

axial coordinate

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_7, # Springer-Verlag Berlin Heidelberg 2011
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zðx; tÞ ¼ x� V0t; (7.1.2)

where

V0 ¼ Vh i ¼ Vx

2
(7.1.3)

is the mean velocity of the flow. After substitution, one obtains the diffusion

equation in the following form:

@n

@t
þ Vx

1� 2y2

2

� �
@n

@z
¼ D0

R2
0

1

y

@

@y
y
@n

@y

� �� �
; (7.1.4)

where y ¼ r=R0

Now we can learn the scalar transport problem in the framework of the decom-

position method, where the density field n can be represented as a sum of the mean

density nh i and the fluctuation component n1,

n ¼ nh i þ n1ðz; y; tÞ ¼ n0 þ n1ðx; z; tÞ; (7.1.5)

Vx ¼ Vh i þ V1 � V0 þ V1: (7.1.6)

Here, use is made of the expression for mean values

Ah i �
Ð 2p
0

Ð R0

0
rAdr dyÐ 2p

0

Ð R0

0
rdr dy

¼ 2

R0
2

ðR0

0

rAdr: (7.1.7)

Concentration profile 

t1

t2>t1

x

Vx (z)

x

Fig. 7.1.1 Schematic

diagram of the Taylor

longitudinal dispersion
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To simplify the calculations, we consider the steady case. Then, substitution

yields

Vx
1� 2y2

2

� �
@hni
@z

¼ D0

R2
0

1

y

@

@y
y
@n

@y

� �� �
: (7.1.8)

By accounting for the no flux condition

@n

@r
¼ 0; at r ¼ 0 and r ¼ R0 (7.1.9)

we easily find the expression for n,

nðz; yÞ ¼ @n0
@z

VxR0

8D0

2y2 � y4

2

� �
þ nðz; 0Þ: (7.1.10)

For the density perturbation, one obtains the formula

n1ðz; yÞ ¼ @n0
@z

V0R0

2D0

� y4

2
þ y2 � 1

3

� �
: (7.1.11)

Note that the order of n1 is given by the Zeldovich scaling

n1ðPeÞ / n0
V0L0
D0

� n0Pe; (7.1.12)

where Pe is the Peclet number.

Now, the term V1
@n1
@x

� �
, which defines an additional contribution in longitudinal

diffusive transport, can be rewritten in the form

V1

@n1
@x

� 	
¼ �ðV0L0Þ2

D0

@2n0
@x2

ð1
0

� y4

2
þ y2 � 1

3

� �
1

2
y2

� �
ydy: (7.1.13)

After simple calculations, we find

V1

@n1
@x

� 	
¼ � V0L0ð Þ2

48D0

@2n0
@x2

¼ �D�
@2n0
@x

: (7.1.14)

The equation for n0 takes the following form:

@

@t
n0 þ V0

@

@x
n0 ¼ ðD0 þ D�Þ @

2n0
@x2

: (7.1.15)

This method is a good example of a general mathematical technique: the

simplification of a complicated system by the elimination of “fast modes.” The

result obtained is not trivial,
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Deff ¼ D0 þ V2
0L

2
0

48D0

¼ D0 þ D0

1

48

� �
Pe2 (7.1.16)

because this additional diffusive contribution D* depends inversely on seed diffu-

sivity D0. The physical interpretation of this result is the limitation of the influence

of nonuniformity of the longitudinal velocity profile VxðzÞ by transverse diffusion.

Hence, nonuniform longitudinal convection in combination with transverse diffu-

sion leads to longitudinal diffusion. Naturally, the new diffusive mechanism

manifests itself at a large distance downstream only, since the equation obtained

is correct only for

t>>tD � L0
2

D0

: (7.1.17)

On the other hand, the condition of smallness of the transverse spatial scale in

comparison with the longitudinal one l was used: L0 <<l (see Fig. 7.1.2).
In conclusion, we note that the Taylor formula could be also interpreted in terms

of correlation scales phenomenology

D� /
D2
==

tD
/ V2

0t
2
?

tD
/ V2

0L0
2

D0

/ D0Pe
2: (7.1.18)
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Fig. 7.1.2 Distribution of concentration at three stages of dispersion. Broken line shows distribu-
tion in the absence of molecular diffusion for comparison with curve III. (After Taylor [143] with

permission)
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Here, it is supposed that the diffusive characteristic time is proportional to the

transverse correlation time tD / t? / L20=D0. Below we will demonstrate an effi-

ciency of such arguments to investigate anomalous transport mechanism in strongly

anisotropic media.

7.2 Scalar Distribution Function

Let us consider a different (more general) method to describe particle distribution in

the framework of the Taylor model of scalar dispersion. The Poiseuille flow in

cylindrical geometry is analyzed

@n

@t
þ 2Vm 1� r2

R2
0

� �
@n

@x
¼ D0

@2n

@r2
þ 1

r

@n

@r
þ @2n

@x2

� �
; (7.2.1)

where x is the longitudinal coordinate and r is the radial coordinate. The boundary
condition is given by

@nðx; r; tÞ
@r

r¼R0
j ¼ 0: (7.2.2)

It is necessary to introduce an initial condition, which in this case is

nðx; r; t ¼ 0Þ ¼ ’nðx; rÞ: (7.2.3)

Let us introduce values nkðr; tÞ, which can be obtained by integrating the

distribution function in the form

nkðr; tÞ ¼
ðþ1

�1
nðx; r; tÞxkdx; (7.2.4)

Then, we derive the set of equations

@n0
@t

¼ D0

@2n0
@r2

þ 1

r

@n0
@r

� �
; (7.2.5)

@n1
@t

¼ D0

@2n1
@r2

þ 1

r

@n1
@r

� �
þ 2Vm 1� r2

R2
0

� �
n0: (7.2.6)

For k � 2, the distributions nk can be calculated as follows:

@nk
@t

¼ D0

@2nk
@r2

þ 1

r

@nk
@r

� �
þ 2kVm 1� r2

R2
0

� �
nk�1 þ D0k k � 1ð Þnk�2; (7.2.7)
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with the boundary condition:

@nkðr; tÞ
@r

r¼R0
j ¼ 0: (7.2.8)

The initial condition has the following form:

nkðr; t ¼ 0Þ ¼
ðþ1

�1
’nðx; rÞxkdx (7.2.9)

It is easy to resolve the set of above equations and obtain the expression for

nkðr; tÞ. Consider the central moments of the distribution function:

mkðr; tÞ ¼
ðþ1

�1
nðx; r; tÞ x� xh ið Þkdx: (7.2.10)

One can see that m0 ¼ const. We put m0 ¼ 1, since such a supposition corres-

ponds to the particle balance relation. By definition m1 will be zero. The second and
third moments are expressed as

m2 ¼ 2 D0 þ V2
mR

2
0

48D0

� �
tþ c2ðrÞ; (7.2.11)

m3 ¼
1

480

V3
mR

4

D0
2
tþ c3ðrÞ; (7.2.12)

where functions c2 and c3 are given by

c2ðrÞ ¼
V2
mR

4
0

48D2
0

� 3

8
x8 þ 4

3
x6 � 3

2
x4 þ 1

2
x2 þ C2

� �
; (7.2.13)

c3ðrÞ ¼
1

64

V3
mR

6
0

D3
0

1

12
x12 � 11

25
x10 þ 7

8
x8 � 7

9
x6 þ 1

4
x4 þ 1

30
x2 þ C3

� �
: (7.2.14)

Here, x � r=R0. The constants C2 and C3 are related to the particle distribution

as

nðx; r; t ¼ 0Þ ¼ ’nðx; rÞ: (7.2.15)

Note, the mean values

mkðtÞh i ¼ 2

R2
0

ðR
0

mkðr; tÞrdr (7.2.16)
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are of central interest. One can see that m2ðtÞh i and m3ðtÞh i have the linear depen-

dence on time.

Let us consider the case when the initial distribution is given by ’nðx; rÞ ¼ dðxÞ,
where dðxÞ is the delta-function. As was mentioned above, the values m2ðtÞh i and
m3ðtÞh i are proportional t, and hence, we have

m2ðtÞh i � s2 ¼ 2 D0 þ V2
mR

2
0

48D0

� �
t; (7.2.17)

m3ðtÞh i ¼ 1

480

V3
mR

4
0

D2
0

t: (7.2.18)

We supposed here that the mean values m2h i and m3h i are not zero, at the initial
point.

In order to represent particle distribution function, it is convenient to introduce a

dimensionless parameter eR ¼ 12D0t=R
2
0. Let us consider the expression

m3h i
s3n

¼ 3
ffiffiffi
2

p

5 1þ �Rð Þ3=2
1

e1=2R

� l3
e1=2R

; (7.2.19)

where the parameter �R ¼ 48D2
0=V

2
mR

2
0 is introduced. Now the particle distribution

function is given by the expression

ny ynð Þ ¼ ’n ynð Þ � l3
3 !

’
ð3Þ
n ynð Þ
e1=2R

þ :::: (7.2.20)

Here,

yn ¼ x� xh i
sn

¼
ffiffiffi
2

p ny � eR
1þ �Rð Þ1=2e1=2R

: (7.2.21)

We apply a parameter ny ¼ 12D0x=VmR
2
0 as well as distributions

’nðynÞ ¼
1ffiffiffiffiffiffi
2p

p e�
y2
2 ; ’ð3Þ

n ðynÞ ¼ d3’nðynÞ
dy3n

: (7.2.22)

The particle distribution obtained is valid when

t � TD ¼ eR
R0

12D0

: (7.2.23)

The approach considered in this section, although fairly general, does not exhibit

correlation effects, which are the key to analyze the scalar transport in complex

flows.
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7.3 Transport in Coastal Basins

On the basis of the Taylor model of the longitudinal dispersion, it is possible to

analyze the process of salt and heat transport in partially mixed coastal basins. It is

well known that vertical mixing through vertically sheared horizontal currents is

caused by horizontal dispersion (see Fig. 7.3.1). The velocity shear is usually

related to tidal and wind-driven flows. Under conditions of strong vertical mixing

and horizontal advection, one can consider a steady-state balance between advec-

tion and vertical mixing of a tracer as an appropriative approximation

D0

@2n1
@z2

¼ VxðzÞ @n0
@x

: (7.3.1)

Here, D0 is the coefficient of seed (vertical) diffusivity, n0 is the depth-averaged
concentration of a tracer, and n1 is the perturbation of tracer concentration in the

water column. This equation shows that the perturbation of tracer concentration in

the vertical direction is the steady-state response to a source term that describes

advection in coastal basins under consideration. The velocity profile VxðzÞ is

supposed to be known and n1 is an unknown quantity. Using the Taylor equation,

we find the diffusive flux of tracer in the horizontal direction. Water column has the

height H0

� H0

2
<z<

H0

2
: (7.3.2)

For the sake of simplicity, the velocity profile VxðzÞ is supposed to be linear,

VxðzÞ ¼ V0
z
H0
. As it was mentioned above, the velocity shear is due to either wind-

'(z)
Vx (z)

z z

Ocean surface 

r

Fig. 7.3.1 Schematic

illustration of velocity and

density profile in a coastal

basin
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driven or tidal currents. The conventional normalization condition (the conserva-

tion law) is given by the relation:

ðH0
0

2

�H0
0
2

n0dz ¼ 0; (7.3.3)

An appropriative approximation for the Taylor dispersion could be the experi-

mentally observed simple scaling:

DxðD0Þ � V0
2H0

2

100D0

: (7.3.4)

Let us list the typical magnitudes corresponding to our model. Thus, for a coastal

basin 10 m deep with tidal currents having a velocity difference between top

and bottom V0 � 0:1m=s, and seed diffusion of order D0 ¼ 10�3 m2=s, the above
scaling leads to the estimate of Dx � 10m2=s. It is interesting to estimate the

characteristic time to reach a near uniform concentration of a tracer in a basin of

the spatial scale L0. The relevant approximation is the diffusive representation,

2
ffiffiffiffiffiffiffi
Dxt

p
. Taking L0 ¼ 20 km, and D0 ¼ 10 m2/s, we easily obtain the characteristic

time t ¼ 120 days [144–146].

The flow dynamics is a consequence of a horizontal pressure gradient responsi-

ble for the greater density of water at one end of the basin

r
@Vx

@t
¼ � @P

@x
þ @

@z
rD0

@Vx

@z

� �
: (7.3.5)

Here, D0 is the coefficient of seed (vertical) diffusivity. It is convenient to

introduce a new nondimensional coordinate y as follows:

yðzÞ � 1þ 2
z

H0

: (7.3.6)

Let us suppose that the velocity shear stress is zero at the surface. By solving the

dynamical equation under consideration for the steady case, one obtains the formula

Vx ¼ � gy

2rD0

H0

2

� �3 @r
@x

y2

3
� 1

� �
: (7.3.7)

Note that this expression shows that, as predicted, the current Vx is inversely

proportional to D0. After substitution of the previous result into the diffusion

equation, we find the expression for the density perturbation

n1 ¼ � gy

6rD2
0

H0

2

� �5
@r
@x

� �
@n

@x
y2 � y4

10
� 5

2

� �
: (7.3.8)
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Now, the tracer flux is given by the relation

n1Vxh i ¼ �Cb
g2H0

8

r2D0
3

@r
@x

� �2 @n

@x
; (7.3.9)

where the constant Cb is estimated as Cb � 1:7� 10�4. The tracer flux has the

classical diffusive form of the Fick law. This allows one to represent the diffusion

coefficient as follows:

Dx ¼ Cb
g2H0

8

r2D3
0

@r
@x

� �2

/ 1

D3
0

: (7.3.10)

This expression corresponds to the Taylor shear dispersion under condition

when vertical shear is produced by the longitudinal density gradient. Note that in

this model the effective diffusivity is inversely proportional to the cube of the

vertical (seed) diffusivity D0. Now one can easily estimate the effective diffusivity

taking into account the orders of magnitudes: H0 ¼ 10 m, V0 � 0:5m=s,

D0 ¼ 10�2V0H0 � 10�3 m2=s. If the characteristic spatial scale of the density

gradient is of order lr ¼ �r= @r
@x

� �
� 1; 000 km, simple algebra gives

Dx � 2m2=s. On the other hand, the effective diffusion coefficient is proportional

to the square of the longitudinal density gradient. This can lead to nonlinear

diffusion equation because when the tracer is replaced by salt the diffusivity

becomes a function of function of the gradient since salt affects the density.

7.4 The Taylor Approach to Chaotic Flows

Many of the worst problems of water pollution are found in estuaries because the

pollutant may travel up and down the estuary several times before reaching the sea;

the process for its removal depends more on turbulent mixing than on simple

advection. There has been a much greater revolution in the ideas about river and

estuarine dispersion than about air pollution dispersion. Consider a river of depth

H0 � 3m and typical turbulent velocity of V0 � 0:03m=s. Whereas estimates of

the eddy diffusivity based simply on turbulent motion are of the order of

DT � 10�2 m2=s, Taylor’s theory for the effect of shear on the longitudinal turbu-

lent dispersion showed that the diffusivity Deff may be of the order of 1 m2=sin
straight two-dimensional channels [148–150]. Later work shows that, in curved

rivers (see Fig. 7.4.1) about L0 � 200m wide, Deff is of the order of 10
3 m2=s [151].

For turbulent flows in straight tubes, Taylor [148] derived and experimentally

verified the axial dispersion scaling, Deff ,

DeffðV�Þ � 10:1 	 R0V�: (7.4.1)
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Here, R0 is the pipe radius, V� ¼
ffiffiffiffi
tF
r

q
is the friction velocity, tF is the Reynolds

stress, and r is the fluid density (see Fig. 7.4.2).

It is interesting that similar scaling laws were obtained for an open channel of the

depth H0 [149].

DeffðV�Þ � 5:9 	 H0V� (7.4.2)

and for curved pipes (curved rivers) [150]

DeffðV�Þ � 20 	 R0V�; (7.4.3)

In these studies, note that the viscous sublayers were ignored as well as the

variation of the turbulence properties across the width of the channel, although it is

now known that this is unjustified in many natural channels, in which the value of

Deff may consequently be much higher than that given for an open channel.

Consider phenomenological arguments to explain a universality of these scaling

laws. On the basis of the correlation concept, the value of Deff can be written as

Deff ¼ V2
�

ð1
0

RLðtÞdt ¼ V2
�t?: (7.4.4)

Here, t? is a measure of the time taken for a fluid particle to sample the whole

cross section. The time taken to sample the part of the cross section outside the

viscous sublayer is, on dimensional grounds, of order t?ðV�Þ / R0=V� in a pipe and
in an open channel is of order t?ðV�Þ / H0=V�. These times give values of Deff

consistent with the Taylor prediction. But these times are not normally accurate

estimates of the times taken to sample the whole cross section since within the

viscous sublayer the properties of the turbulence depend directly on the viscosity nF,
and the lateral mixing sufficiently near the wall is dominated by molecular

Loops 

Injection point 

Meander width 

Fig. 7.4.1 Sketch of a

meandering river
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processes whose intensity is measured by the molecular diffusivity D0. This

suggests that the time taken to sample the whole cross section is greater than

R0=V or H0=V� by an amount that increases as D0 decreases and as the height of

the viscous sublayer increases (that is as the Reynolds number decreases).

An estimate of the increase can be made if it is assumed that the lateral transfer of

contaminant everywhere including the sublayer obeys the gradient law of diffusion

with a diffusivity, which is the sum of the molecular diffusivity D0 and an eddy

diffusivity DT calculated by means of the Reynolds analogy. This assumption is not

theoretically well founded; in particular, the lateral transfer of contaminant within

the sublayer depends on D0, whereas the lateral transfer of momentum does not and

this makes the validity of Reynolds analogy very unlikely [151].

In terms of the dissipation rate eD, one can represent the friction velocity V� in
the form

V�2 ¼ eDR0

2V0

; (7.4.5)

where V0 is the characteristic velocity scale. Then we can obtain a modified scaling

relation

Deff � 10:1R0V� � 10:1
V�
V0

� �1=3

R
4=3
0 e1=3D : (7.4.6)
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Fig. 7.4.2 Distribution of concentration in Hull and Kent’s experiment. Observation stations:

Filled triangle Bonanza (13.8 miles); Filled circle Green River (43.1 miles); Filled square Hanna
(108.5 miles). (After Taylor [148] with permission)
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The effect of tidal oscillations and stratifications, which are often present in

environmental flows, may increase effective diffusivity further. Nevertheless, the

simple water pollution models, in which mixing is assumed to take place rapidly

between “boxes” of water moving up and down the estuary, are often adequate

approximations.

7.5 The Lagrangian Mixing in Turbulent Flow in a Pipe

The phenomenological approach to the longitudinal dispersion has become widely

popular due to its exceptional efficiency in describing transport in the presence of

anisotropy. On the other hand, the Lagrangian description of turbulent diffusion on

the basis of the Taylor statistical method is valid under conditions of steady and

homogenous turbulence. Batchelor pointed out that such strong conditions are

accomplished even for flows in straight pipes and channels if we restrict ourselves

by consideration of the longitudinal direction only [152].

Let us consider the case of the large Reynolds numbers when fluid flows along a

pipe under the action of a steady pressure gradient. The Lagrangian representation

for the longitudinal velocity of the small fluid element is given by the formula

dXðtÞ
dt

¼ Vxð~r0; t0 þ tÞ: (7.5.1)

This longitudinal velocity Vxdepends on the fluid element initial position ~r0 in

the pipe cross section at the time t ¼ t0. However, because of turbulent mixing (see

Fig. 7.5.1) after a long time (correlation time t), a random velocity function

becomes steady and independent of the initial position~r0.

Vxð~r0; t0 þ tÞh i ¼ U0: (7.5.2)

This means that for flows in a pipe under the action of a steady pressure gradient,

the conditions of steady and homogenous turbulence are accomplished in the

longitudinal direction. That is why it is convenient to employ the Taylor formula

for turbulent dispersion in the form

XðtÞ � XðtÞh iÞ½ 
 2� � / 2DTt; (7.5.3)

where DT is the longitudinal turbulent diffusion coefficient. Here, we consider the

central region of the turbulent flow in a straight pipe. When the Reynolds number is

large, the thickness of the viscous layer takes a negligible fraction of the pipe cross

section. Then, if a scalar particle is near the viscous layer, where the fluctuation

of the velocity is likely to be negative, there must be a tendency to move in the
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direction away from the boundary. In fact, if a fluid element is once inside the

central region of turbulent motion, it remains within it [153].

The diffusion in the turbulent flow under consideration is related with the

variation of mean velocity with position over cross section of the pipe. Recall

that the distribution of velocity across the pipe is determined by the friction velocity

V�ðrÞ ¼
ffiffiffiffiffi
tF
r

r
; (7.5.4)

where tF is the Reynolds stress and r is the fluid density. In such a case, it would be

natural to expect that the longitudinal turbulent diffusion coefficient DT � 2V0
2t

depends only on the friction velocity V� and the pipe radius R0

DT � 2V2
0t / R0V�; (7.5.5)

which corresponds exactly to the Taylor result considered above.

It is a result of ergodic theory [152, 153] that after a long time all the small fluid

elements in the pipe must have the same mean velocity U0

XðtÞh i
t

¼ U0: (7.5.6)

Indeed, fluid elements in the case under consideration move freely over the

whole cross section of the pipe and it is impossible to distinguish them one from

another. This mean velocity is equal to the discharge velocity U0 ¼ UD. Now the

expression

XðtÞ � U0t½ 
2
D E

/ const V�L0 t (7.5.7)

is represented by the longitudinal dispersion in flows in straight pipes and channels

with the transverse spatial characteristic scale L0.

Fig. 7.5.1 Schematic

diagram of the Batchelor

mixing in a circular pipe
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7.6 The Taylor Dispersion and Memory Effects

The universality of the Taylor convective dispersion impels us to use the heuristic

methods of including nonlocal effects and memory effects into the initial local

equation. Indeed, in environmental flows (rivers, estuaries, etc.) there are often

stationary eddy structures next to the bed that could trap scalar particles [154, 155].

In a river, there are lagoons, recirculating eddies, beaver dams, etc., which are

responsible for scalar trapping in “dead zones”(see Fig. 7.6.1). In the framework of

the heuristic approach, it is easy to include such memory effects in the transport

equation under analysis. This allows us to analyze trapping effects, which play an

important role in tracer transport. Thus, one can represent the total concentration of

tracer n(x,t) as two parts

nðx; tÞ ¼ PAðx; tÞ þ qTrðtÞ; (7.6.1)

where PAðx; tÞ corresponds to actively transporting particles and qTrðx; tÞ describes
trapping. In the simplest case, the relationship between PA and qTr is given by

@qTr
@t

¼ aTðbTPA � qTrÞ: (7.6.2)

Here, aT and bT are the parameters of the problem. If all the particles are released

in the untrapped region at t ¼ 0, one obtains

qTrðx; tÞ ¼ aTbT

ðt
0

PAðx; tÞe�aTðt�tÞdt: (7.6.3)

Here,

Mðt� tÞ ¼ aTbT exp �aT t� tð Þ½ 
 (7.6.4)

Islands 

Traps 

Fig. 7.6.1 Schematic

illustration of the vortex

trapping in a river
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is the memory function. In general, we can rewrite the expression in the form with

an arbitrary memory function M

qTrðx; tÞ ¼
ðt
0

PAðx; tÞMðt� tÞdt: (7.6.5)

Then, based on tracer conservation, it is possible to describe transport by the

equation

@PA

@t
þ @qTr

@t
þ V

@PA

@x
¼ D

@2PA

@x2
: (7.6.6)

Using the Taylor method, the modified equation for the mean density can be

rewritten in the form

@n0
@t

¼
ðt
0

Mðt� tÞ @
2n0ðx; tÞ
@x2

dt: (7.6.7)

The expression for the effective diffusion coefficient, which takes into account

memory effects, is then given by

Deff ¼
ð1
0

MðtÞdt: (7.6.8)

Here, we consider the behavior over a long time.

Note that tracer transport in the presence of vortex structures or complex profiles

of shear flows could be even nondiffusive and we have to employ sophisticated

phenomenological arguments to describe such an anomalous dispersion.

7.7 Dispersion in Random Shear Flows

Analysis of random shear flows is a natural generalization of the Taylor approach to

the scalar dispersion. Such a model was proposed in a paper by Dreizin and Dykhne

[156] where a physically clear model of strongly anisotropic transport in a random

velocity field was investigated. First, we assume that “seed” diffusion with the coeffi-

cient D0 acts on the plane. In our model, the longitudinal direction coincides with

the z-axis (Fig. 7.7.1). In the transverse direction, the diffusing particle experiences
random pulsations, which produce narrow convective flow with a velocity V0 and a

width a0. Here, the velocity field has a “quenched” randomness. In the transverse

direction, the diffusion can be neglected compared to the velocity drift carrying the

molecule with the flow. In the framework of this consideration, there is no drift in

the direction perpendicular to the layers.
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Let us consider a simple model for calculating the diffusion coefficient in the

transverse direction D? using characteristic correlation scales:

D? � V2
0t?; (7.7.1)

where the transverse correlation time t? is given by t?ðxÞ / t=NðtÞ. Here, NðtÞ is
the number of shear flows intersected by the particle during its longitudinal motion

(the number of particle-jet interactions)

NðtÞ �
ffiffiffiffiffiffiffiffiffiffi
2D0t

p
a0

: (7.7.2)

Thus, we obtain the following formula for the transverse diffusion coefficient:

D?ðtÞ / V2
0a0

ffiffiffiffiffiffi
t

D0

r
: (7.7.3)

This leads to transport scaling in the form

l?ðtÞ / V0 a
1=2
0

t

D0

� �3=4

: (7.7.4)

In the superdiffusive case under consideration, it was found that the Hurst

exponent is H ¼ 3=4>1=2. Such a representation is valid only if the perpendicular

a0

z

V0

Fig. 7.7.1 The

Dreizin–Dykhne random

shear flow geometry
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spatial displacement is no larger than the perpendicular correlation length

l?ðtÞ<DCOR � a0.
Note that there are different scaling approaches to treat anomalous transport in a

system of random shear flows. One can employ the ballistic representation for the

transverse displacement of scalar particles similar to the Corrsin shear wind model

l?ðtÞ � V0teffðtÞ � V0t P1ðtÞ: (7.7.5)

Here, P1 is the relative number of the small fraction of “noncompensated”

fluctuations dN, P1ðNÞ ¼ dN
N . Using the Gauss representation for a number of

“noncompensated” fluctuations dN, one obtains

dNðtÞ �
ffiffiffiffi
N

p
/ t1=4; l? / V0 a

1=2
0

t

D0

� �3=4

: (7.7.6)

The same result can be obtained by the insignificant modification of the phe-

nomenological expression for l?ðtÞ,

l?ðtÞ � VeffðtÞt; (7.7.7)

where

VeffðtÞ � V0 P1 � V0

dN
NðtÞ : (7.7.8)

The search for a more satisfactory method of nondiffusive transport description

is the subject of the following chapters. Nevertheless, the Dreizin–Dykhne model of

anomalous diffusion in a system of random shear flows is the very effective tool to

investigate complex correlation effects in the framework of random walk

phenomenology.
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Part IV

Fractals and Anomalous Transport



Chapter 8

Fractal Objects and Scaling

8.1 Fractal Dimensionality

Many physical systems do exhibit self-similarity, although, of course, within some

finite range of scales. The list includes Brownian motion, turbulent flows, porous

media, polymers, clusters, etc. The geometry of these systems, often based on random

processes, is complicated. The concept of fractal dimension helps to express, model,

and comprehend both the geometrical complexity and its physical consequence

[157–164]. Furthermore, fractal concepts and scaling laws establish similarities

between correlation effects and growth phenomena in a variety of equilibrium

(such as percolation) and far-from-equilibrium (such as diffusion-limited aggregation

and viscous fingering) processes. This connection is of heuristic significance, because

presently there is no first-principle theory to describe, for example, turbulence,

turbulent transport, or diffusion-limited aggregation, which are markedly far-from-

equilibrium and nonlocal processes.

The fractal dimension dF serves as an exponent in the power law of the type

MðlrÞ ¼ ldFMðrÞ; (8.1.1)

which shows how the “property” M of the fractal (for example, its mass) changes

when the characteristic size in the embedding space is rescaled by a factor l, r ! l.
Note that l is independent of r, which stresses the self-similarity at all scales.

Regular homogeneous (called also compact) objects satisfy this definition with dF
being the “usual” integer dimension 1, 2, 3, and so on.

The most interesting feature of this definition is that there are indeed objects –

fractals – fitting (8.1.1) with dF “fractional” (see Fig 8.1.1). For example, dF ¼
ln 3
ln 2

¼ 1:58496:::, indicating that the fractal under consideration (the Sierpinski

gasket) is not a line and not a surface. This shows that an object can be self-similar

if it is formed by parts similar to the whole. Isotropic fractals are self-similar: they

are invariant under isotropic scale transformations and such exactly self-similar

objects are named deterministic fractals.

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_8, # Springer-Verlag Berlin Heidelberg 2011
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In contrast to the idealized objects, which are invariant under isotropic scale

transformations, there are many natural objects, which are random. Despite this

randomness, such objects could be self-similar in a statistical sense (for example,

the Brownian particle path, clusters, and the coastline of a continent). Nontrivial

topology of both deterministic fractals and random fractal structures can be

described qualitatively by the generalization of the Euclidean dimension concept.

Thus, by embedding dimension, dE, we understand the smallest Euclidean dimen-

sion of the space in which a given object can be embedded.To decide on the

fractality of an object, we need to measure its Hausdorff dimension. The volume

WðdÞ of an arbitrary object can be measured by covering it with balls of linear size d,
and volume ddE . If NðdÞ balls will cover it, then

WðdÞ ¼ NðdÞddE : (8.1.2)

We can expect that for any object, the number of balls is given by the scaling

N dð Þ / 1

ddE
(8.1.3)

since the volume of an object does not change if we change the unit of measurement d.
To generalize the previous definition for the case of fractal objects, we can write the

new scaling for the number of balls in the form (see Fig. 8.1.2)

NðdÞ / 1

ddF
; (8.1.4)

where dF is the fractal dimension. Usually objects with nontrivial geometry where

dF 6¼ dE are called fractals [157–164]. From this definition, we obtain the formula

to calculate the fractal dimensionality as follows:

Fig. 8.1.1 Force stage of the

construction of the Sierpinski

gasket

130 8 Fractal Objects and Scaling



dF ¼ lim
d!0

lnNðdÞ
ln 1

d

� �
( )

: (8.1.5)

For the Sierpinski gasket, the natural unit to measure the length of the set at

iteration k is the length of the smallest interval dk ¼ ð1=2Þk. The number of

intervals of length dkat level k is given by NðdkÞ ¼ 3k. In this case, the

corresponding fractal dimensionality dF ¼ 1.584. . . < dE ¼ 1, and that is why

the Sierpinski gasket is a fractal object.

The discussion of a new geometry of nature, one that embraces the irregular

shapes of objects such as coastlines, lighting bolts, cloud surfaces, and molecular

trajectories, began in the 1960s [157]. A common feature of these objects is that

their boundaries are so irregular that such fundamental concepts as dimension and

length measurement must be generalized. Therefore, we shall consider some of the

metric peculiarities of a few usual mathematical objects, which we subsequently

adopt to describe turbulent transport and anomalous diffusion.

8.2 Seacoast Length and the Mandelbrot Scaling

The Brownian motion of a small (micron-size) particle suspended in an isotropic

solvent is one of the simplest examples of stochastic fractals. The Brownian particle

is in uninterrupted and irregular motion with a zigzag trajectory (see Fig. 8.2.1) due

to the fluctuative movement of the solvent molecules and their collisions with the

particle.

δ
LN(δ) ∝

δ2
N(δ) ∝

S

Fig. 8.1.2 Schematic

illustration of the box

dimension for a smooth

curve of length L and for

planar region of area A
bounded by a smooth curve

8.2 Seacoast Length and the Mandelbrot Scaling 131



Let us consider the Gaussian distribution

rðx; tÞ ¼ 1

4pDtð Þd=2
exp � x2

4Dt

� �
; (8.2.1)

which satisfies the scaling law

Pðl1=2x; ltÞ ¼ Pðx; tÞ
l1=2

(8.2.2)

so that the distribution for the random variable l1=2XðltÞ is the same as that for X(t).
This scaling relation establishes that the irregularities are generated at each scale in

a statistically identical manner, i.e., if the fluctuations are known in a time interval

lt0 � t � t0 they can be determined in the expanded interval l2t0 � t � lt0 as well as
in the contracted interval t0 � t � t0

l . Thus, as expressed by Feder (1988), the

Brownian process is invariant in distribution under a transformation that changes

the time interval by a factor l and the space interval by a factor l1=2. Such a

distribution that is invariant under a transformation that scales time and space by

different factors is called self-affine. When the distribution is invariant under a

transformation that scales space and time by the same it is called self-similar. The

same considerations could be applied to curves; i.e., they can be either self-similar

or self-affine depending on how they scale. Thus, the scaling properties of the

concentration are determined by those of the Gaussian probability density.

From the formal standpoint, the length of the very “tortuous” curve (the fractal

curve) LðdÞ can be rewritten in the form

LðdÞ � d NðdÞ / d

ddF
¼ 1

ddF�1
: (8.2.3)

In this fractal approach, the full length LðdÞ is approximated by the small

segments of size d, NðdÞ is the number of these segments, which are necessary

Fig. 8.2.1 Zigzag trajectory

of Brownian particle in a two-

dimensional plane
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for such an approximation, and dF is the fractal dimensionality of the curve. In the

framework of the conventional representation of the geometry of curves, we have to

use the value dF ¼ d ¼ 1. However, in this case there are the drawbacks of the

conventional method of length measurement by a “yardstick” (ruler). Mandelbrot

considered the problem of measurement of a tortuous seacoast length in which the

increase of measurement accuracy (the decrease of the value d) leads to the growth
of the value NðdÞ (dF > 1). From the formal standpoint, this approach yields:

LðdÞ � d NðdÞjd!0 ! 1: (8.2.4)

This means that such a fractal line embraces “almost” the full plane. The

advantage of this definition is the possibility to describe the longest and more

complex lines (fractal lines). It is natural to generalize the previous definition.

We can obtain the expression for the fractal region in the form:

Wd � dd NðdÞ � dd�dF : (8.2.5)

Here, we are dealing with the fractal cases dF > d. Note that in practice, the

power law holds only over an internal range of d (see Fig. 8.2.2).

The simplest model, which permits us to analyze the fractal properties of

transport processes, is d-dimensional random walks. For the mean square displace-

ment, one obtains

R2ðtÞ � 2dDt � 2d
DCOR

2

2dt
t � D2

COR

t

t
� D2

CORNðtÞ: (8.2.6)

Here, DCOR is the correlation length and t is the correlation time. For this case,

it is easy to obtain an expression that includes the fractal dimensionality of the

Brownian trajectory for the number of “steps” in the scaling form

Slope

log F(x)

x0

Fig. 8.2.2 A typical plot of

power law, which holds only

over and intermediate range

of parameter X
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Nðt;DCORÞ � 2dDt

DCOR
2
/ 1

D2
COR

: (8.2.7)

This means that fractal dimensionality of random walks, dF ¼ 2. Note that the

value dF is independent of the space dimensionality d. Here, we assume that DCOR is

the small quantity, DCOR � d. This corresponds to the definition of the fractal curve,
NðdÞ ¼ 1=ddF .

From the “fractal” point of view, the scaling laws describing anomalous trans-

port in terms of the Hurst exponent RðtÞ / tH can be treated analogously

RðtÞ � DCORNð DCORÞ � DCOR

t

t
� DCOR

t

ðDCORÞ
1
H

: (8.2.8)

The fractal dimensionality in this case is given by the relationship

dFðHÞ ¼ 1

H
: (8.2.9)

When we are dealing with the Brownian motion, H ¼ 1=2, we arrive at the

familiar result dF ¼ 2.

Fractal ideas have wide applicability to anomalous transport in chaotic (turbu-

lent) flows. Not only the walking particle trajectory, but also percolation

streamlines, diffusive fronts, etc., appear to be fractal objects. More detailed

information can be found in many textbooks and reviews on fractal geometry and

fractal models [157–164].

8.3 Fractal Topology and Intersections

We can analyze the fractal topology from a more general point of view. Consider

two objects of dimension d1 and d2 embedded in a space of dimension d. It is a well-
known result that the intersection of the two objects has dimension d1 þ d2 � d
with probability 1 [157–160]. Indeed, let S1 and S2 be fractal sets with Hausdorff

dimension dF1 and dF2 , respectively, embedded in a space of dimension d. We

denote the potential dimension of their intersection by S1 \ S2. A simple sum rule is

known for their co-dimensions:

d � d�F1�2
¼ d � dF1 þ d � dF2 : (8.3.1)

Thus, we get the following equation:

d�F1�2
¼ dF1 þ dF2 � d: (8.3.2)
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By knowing the potential dimension, we can immediately determine the true

value of the Hausdorff dimension, which lies between 0 and d. In particular, in the

case where S2 is an ordinary set with integer dimension d2 such as a line or a plane,
we have

d�F1�2
¼ dF1

� ðd � d2Þ: (8.3.3)

For instance, two planes in space intersect generically along a line (see

Fig. 8.3.1)

d�1�2 ¼ d1 þ d2 � d ¼ 2þ 2� 3 ¼ 1: (8.3.4)

A plane and a line in space intersect generically at a point

d�1�2 ¼ d1 þ d2 � d ¼ 2þ 1� 3 ¼ 0: (8.3.5)

For a random walk in one dimension, this means that the random walk, which is

intrinsically a two-dimensional fractal object, has been “folded” many times to fit

within a one-dimensional space. In other words, the random walker comes back an

infinite number of times on its previous steps. It does so marginally within a plane

and only a finite number of times in three and higher dimensions. This shows us

why dimensionality plays such a significant role in the correlation effect

description.

Long-range correlation effects are responsible for anomalous transport in com-

plex systems. In everyday language, “correlation” means some relation between

events. The probability theory employs the rigorous mathematical notion of “return

of a walking particle” to the initial point [13, 15, 16] to describe simple correlation

effects (see Fig. 8.3.2). This is best illustrated by considering the problem of one-

dimensional random walks at the very beginning of the process. In the problem

as formulated, the particle will definitely return to its initial position, thereby

d2 = 2

d1 = 2

d*
1×2 = 1

Fig. 8.3.1 Schematic

diagram of two manifolds

intersection
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providing a clear realistic interpretation of the abstract notion of correlations.

Rigorous analysis of returns on complicated spatial grids is necessarily based on

the chain functional equation for the return probability P0ðtÞ. Recall that most of the

fundamental problems in the theory of random-walk processes can be formulated in

terms of chain functional equations [15, 16]. However, we restrict ourselves here to

the brief consideration of return effects.

Qualitative estimates for these effects can be obtained from the classical solution

to the equation for the probability density function rðx; tÞ describing the random

walks of a particle. For a space of dimensionality d, one obtains the distribution for
a particle returning to the point x ¼ 0 at the time t

P0 ¼ rðx; tÞ dxð Þdjx!0 ¼
ðdxÞd

4pDtð Þd=2
exp � x2

4Dt

� �
x!0

/ ðdxÞd
4pDtð Þd=2

: (8.3.6)

Here, ðdxÞdis the small area around the point x and D is the diffusion coefficient.
In the one-dimensional case, we arrive at P0ðtÞ / t�1=2. This simple formula serves

merely to obtain estimates. However, for our purposes here, this solution is impor-

tant because it provides the evidence that the dimensionality of the space, d, which
was used above as a formal parameter, plays a significant role. The correct

dependence for P0 when d ¼ 2 and d ¼ 3 is given by [13, 15]

P0ðNÞ / 1

N2
� 1

Nd=2
: (8.3.7)

For grids of dimensionality d � 2, the particle will inevitably return to its initial

position. For grids with d > 2, the particle can execute random walks without

returning.

Return points 

Mean displacement 

Fig. 8.3.2 Schematic

illustration of return points for

Brownian motion in a two-

dimensional plane
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Note that for a random walk with dF ¼ 2, we need to go to a space of dimension

d ¼ 4 for the number of intersections to constitute a set of zero dimension,

d�F1�2
¼ d1 þ d2 � d ¼ 2þ 2� 4 ¼ 0; (8.3.8)

i.e., for the set of crossing to become almost vanishing. In other words, in a space

of four or more dimensions, a random walk has very little chance to cross itself and

this explains why four dimensions play a special role in theories of interacting

fields, such as spin models that we will study later on. At and above four

dimensions, these theories are well described by so-called mean-field approaches,

while below four dimensions, the large number of crossings of a random walk

makes the role of fluctuations important and leads to complex behaviors.

8.4 Self-avoiding Random Walks

The model of random walk can be used as a very idealized model of a linear

polymer in good solvent. This model would consider each step in the random walk

as the monomer of the polymer chain and would assume that any two neighboring

links can point in arbitrary directions. Moreover, the polymer is allowed to inter-

sect, as the Brownian trajectory does. A more realistic model of a polymer is that of

a self-avoiding random walk that prohibits self-intersections. Obviously, if the self-

avoiding random walk is fractal, then its fractal dimension should be smaller than

dF ¼ 2 calculated above. Using such probabilistic approximations, we derive an

important scaling relation for particles executing random motion with no self-

intersections. A self-avoiding random walk is a random walk that never intersects

its own trajectory (see Fig. 8.4.1). Though this condition is rather simple, theoretical

treatment becomes extremely difficult, since the whole past trajectory affects the

Start

Finish

Fig. 8.4.1 A typical example

of self-avoiding random walk

in a two-dimensional plane
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present motion. We introduce the probability p(N) of self-intersection after N
random walks [15, 16],

pðNÞ � N

RdðNÞ ; (8.4.1)

where R2ðNÞ is the root-mean-square displacement, d is the space dimensionality,

and N ¼ t=t is the number of random walks. Here, t is the time and t is the

correlation time. In fact, we are assuming that the probability of the particle

trajectory intersecting itself is proportional to the number of visited grid points

within the region of random particle motion. Then, the probability for a particle to

execute N self-avoiding random walks can be estimated as

PSðNÞ � ð1� pÞNjN!1 � expð�pNÞ � exp �N2

Rd

� �
: (8.4.2)

By taking into account the fact that the relationship between the quantities R and

N is of a diffusive nature, we can estimate the effective probability of self-avoiding

random walks by averaging the probability PS(N) with the Gauss distribution:

PSðtÞ ¼
ð1

�1
exp � 1

Rd

t

t

� �2
� �

1

ð4pDtÞd=2
exp � R2

4Dt

� �
ðdRÞd: (8.4.3)

We assume that the main contribution to the integral comes from the extremum

of the integrand, and simple manipulations lead to the scaling:

RðtÞ / t
3

2þd 	 t
1
2; (8.4.4)

for d � 3. Here, we must take into account the fact that, in a space of dimensionality

d ¼ 1, non-self-intersecting random walks can occur only for the particles moving

in one direction, which indicates that R / t. We see that this scaling satisfies this

condition automatically. The corresponding Hurst exponent is

HðdÞ ¼ 3

2þ d
: (8.4.5)

This scaling was first obtained in the theory of polymers by Flory [165–167] and

it gives a correct value in the case d ¼ 1, d ¼ 2, and d ¼ 4. In the case d ¼ 3, we

obtain the estimate dF ¼ 1=H ¼ 5=3, which is a little bit different from the

renormalization group method, where dFð3Þ ¼ 1:701
 0:003.
Note, the Flory scaling for self-avoiding random walks gives, in the case d ¼ 4,

the fractal dimension

dFðdÞ ¼ 2þ d

3
¼ 2; (8.4.6)
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which coincides with the fractal dimensionality of the conventional Brownian

motion. This confirms the previous estimate, d�F1�2
¼ d1 þ d2 � d ¼ 2þ 2 �4 ¼ 0,

where Brownian motion in four dimensions was represented as walk without self-

intersections.

8.5 Two-Dimensional Random Flows and Topography

The analysis of transport in three-dimensional chaotic flow in a general case is too

complicated. However, in two dimensions for incompressible flows we are faced

with a quite different scenario. Here, one should employ a stream function formal-

ism. The streamlines C ¼ Cðx; y; tÞof a random two-dimensional flow could be

considered as the coastlines in a hilly landscape flooded by water. Recall that

incompressibility implies that the velocity field is related to the stream function C

Vx ¼ dx

dt
¼ � @Cðx; y; tÞ

@y
; (8.5.1)

Vy ¼ dy

dt
¼ @Cðx; y; tÞ

@x
: (8.5.2)

Here, Cðx; y; tÞ is, at the same time, the Hamiltonian function.

In the framework of the Lagrangian description of scalar particles, the character

of behavior of streamlines is of great interest. There are different types of

streamlines topology. For instance, Fig. 8.5.1 demonstrates flighting-type of jets,

which could contribute most to the effective scalar transport due to the convective

character of scalar motion along streamlines. The correlation scales here are related

to the ballistic motion of tracer (see Fig. 8.5.2). On the other hand, there exist

trapping-type streamlines, which are related to loop (vortex) structures (see

Fig. 8.5.3). In this case, the effective transport could be defined by the correlation

time, which is given by the dimensional estimate

tðL0;V0Þ � L0
V0

; (8.5.3)

where V0 is the characteristic velocity scale and L0 is the characteristic length of

vortex loop. However, for steady two-dimensional flows the effective transport

takes place only when the seed diffusivity D0 is superimposed. This allows one to

introduce one more characteristic time

tðL0;D0Þ � L20
D0

: (8.5.4)

The case of great interest arises when a closed fractal streamline embraces

almost full the flow domain. It is obvious that the characteristic spatial scale
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plays a key role in the description of the effective transport. The problem is to

express the characteristic spatial scale through the flow parameters such as charac-

teristic velocity scale V0, characteristic frequency o in the case of frequency driven

flow, seed diffusivity D0, etc.

Let us consider streamlines topology via the scaling representation of closed

fractal loops, which are a key to this complex problem. The interesting interpreta-

tion of such a model is based on the representation of a “rough” 1D þ 1D landscape

as a graph of one-dimensional random walks in the x–t axes, where the t-axis can be
interpreted as a horizontal coordinate and the x-axis can be a vertical one. Then,

different values of the Hurst exponent correspond to different types of landscape

“roughness”,
�ðDxÞ2	 / t2H. This implies that the “rough landscape” is a statisti-

cally self-affine fractal over a corresponding range of length scales with the

characteristic Hurst exponent, which is equal to the roughness exponent H (see

Fig. 8.5.4). For such landscapes, the mean height difference

ffiffiffiffiffiffiffiffiffiffiffiffi
ðDhÞ2

q
between the

pairs of points separated by a “horizontal” distance Dr is given by

Fig. 8.5.1 A typical

configurations of streamline

geometry for two-

dimensional chaotic

flows. (After

Kravtsov [168]

with permission)
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Fig. 8.5.2 Schematic diagram showing the Gulf Stream

Fig. 8.5.3 The stream function of two-dimensional turbulent flow. (After Rhines [169] with

permission)

8.5 Two-Dimensional Random Flows and Topography 141



DhðDrÞ / ðDrÞH: (8.5.5)

It is easy to generalize this representation for the case of a rough surface with

another dimensionality. In the framework of turbulent transport description, a

similar model was analyzed, where the streamline function Cl is used as the

“height” characteristic of the two-dimensional random field:

Cl lð Þ � C0

l
l0

� �H

: (8.5.6)

In this connection, there is a problem in obtaining the relationship between the

fractal dimensionality characterizing a single loop ~Dh and the Hurst exponent H
(the stream function exponent) [170, 171].

The probabilistic approximation is, as usual, the simplest method. The authors of

[172, 173] used the model of self-avoiding random walks to describe the single loop

character. However, to describe cases with different Hurst’s exponents it is neces-

sary to use the probability density function with the arbitrary values H:RðNÞ / NH,

instead of the Brownian case, where H ¼ 1/2. Then, the expression for the proba-

bility of self-avoiding Brownian motion takes the form

PSðtÞ ¼
ð1
�1

exp � 1

Rd
ðNÞ2

� �
1

NHð Þd exp � R2

N2H

� �
ðdRÞd: (8.5.7)

By minimizing the integrand over R, we arrive at the scaling:

NðRÞ / R
dþ2

2ð1þHÞ (8.5.8)

Δr

Δh

Mountain

Fig. 8.5.4 Schematic

illustration of the Brownian

landscape
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For the two-dimensional case (d ¼ 2), this fractal dimensionality can be consid-

ered as dimensionality of a single contour loop (coastline) of a self-affine surface

dFðd ¼ 2;HÞ � ~DhðHÞ ¼ 2

1þ H
: (8.5.9)

The value of H ¼ 1 yields result, which corresponds to the linear type of

behavior with ~Dh ¼ 1. The random walk with H ¼ 1/2 corresponds to ~Dh ¼ 4=3.
However, this is not correct estimate in the region of small H. Indeed, the fractal

dimensionality of the percolation hull Dh ¼ 7=4 [174–176] has to be larger than the
fractal dimensionality of the coastline of the self-affine surface ~DhðHÞ.

This chapter provides only a quick overview of fractal structures analysis.

A more detailed account can be found in [177–182]. The fractal concepts appear

to be very fruitful to obtain the relationships between the parameters, which

characterize transport, correlation, and geometric properties of the model under

consideration. One of the reasons of such efficiency is the possibility to describe the

geometric properties of different natural objects by using the scaling terminology.
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Chapter 9

Random Shear Flows and Correlations

9.1 Autocorrelation Function for Fluids

Lagrangian velocity correlations are certain quantities in turbulent diffusion

because of Taylor’s relation, which expresses the mean square displacements of

fluid particles as a double integral over time of two-time Lagrangian velocity

correlations. Taylor’s relation also has important physical consequences for anom-

alous transport. Indeed, long-range correlations are responsible for anomalous

transport. Thus, the representation of the autocorrelation function CðtÞ in the

power form CðtÞ / t�aC leads to the nondiffusive estimate for effective transport

DeffðtÞ /
ð
CðtÞ dt / t1�aC (9.1.1)

or in terms of the mean squared displacement

R2ðt; aCÞ / DeffðtÞ � t / t2�aC : (9.1.2)

This relation allows one to determine the Hurst exponent as follows:

R2ðt;HÞ / t2H / t2�aC ; (9.1.3)

HðaCÞ ¼ 2� aC: (9.1.4)

We now go one step further in modeling the correlation effects. It is well known

that interactions both create and destroy correlations. There is a useful example,

which illustrates this in terms of the correlation function. Let us consider “the

collective” (hydrodynamic) nature of the evolution of a correlation cloud by the

formal calculation of the autocorrelation function. Suppose a tagged particle in a

system in equilibrium is conditioned to be at the origin at t ¼ 0 with velocity ~V

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_9, # Springer-Verlag Berlin Heidelberg 2011
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rð~r; 0Þ ¼ dð~rÞ; ~uð~r; 0Þ ¼ ~Vdð~rÞ: (9.1.5)

For times much longer than the mean free time between collisions, the time

development of rð~r; tÞ and ~uð~r; tÞ is described to be a first approximation by the

solution of linearized hydrodynamic equations. For the particle density, rð~r; tÞ, this
is the diffusion equation in the conventional form

@r
@t

¼ D0Dr: (9.1.6)

The hydrodynamic equations for the divergence free part ~utr of the velocity

density are

@~utr
@t

¼ �nFr� r�~utrð Þ (9.1.7)

div ~utr ¼ 0 (9.1.8)

where nF is the kinematic viscosity. The irrotational part~ulong of the velocity density
does not contribute to the leading long-time tail in the velocity autocorrelation

function. These equations are most easily solved for the Fourier transform ~utrð~k; tÞ
of ~utrð~r; tÞ with

~utrð~k; tÞ ¼ ~V � ð~V � k̂Þk̂� �
e�nFk2t (9.1.9)

for the initial condition under consideration. Here, k̂ is the unit vector along k, and
the Gaussian solution of the diffusion equation (for its Fourier transformation) is

given by

~rkðtÞ ¼ e�D0k
2t: (9.1.10)

Now assume that, if after a not too short time t, the tagged particle is at a position~r,
its average velocity is given by ~uð~r; tÞ. In other words, assume that at time t the
tagged particle on the average has the same velocity as the other particles in its

neighborhood, and that the average velocity ~u ~r; tð Þ to first approximation is not

influenced by the fact that the tagged particle is located at ~r at time t. Then the

average velocity of the tagged particle to leading order can be found as

~VIðtÞ �
ð
d~r rð~r; tÞ~uð~r; tÞ � d~r rð~r; tÞ~utrð~r; tÞ (9.1.11)

In terms of the Fourier transformation, we find

~VIðtÞ � 1

2pð Þd
ð
d~k~rkðtÞ ~utr �~k; t

� �
(9.1.12)
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After calculations, one obtains the formula

~VIðtÞ � d � 1

d
2p nF þ D0ð Þ t½ � �d

2 ~V: (9.1.13)

The velocity autocorrelation function could be calculated by averaging ~V~VIðtÞ
over the equilibrium velocity distribution,

CðtÞ ¼ d � 1

d
2pðvF þ D0Þt½ ��d

2
1

d

ð
d~VV

bdm
2p

� �d
2

e�
bdmV

2

2 : (9.1.14)

Now we arrive at the scaling

Cðt; dÞ � d � 1

bdmd
2pðvF þ D0Þt½ ��d

2 / 1

td=2
: (9.1.15)

This is in accord with the Corrsin assumptions on diffusive spreading of a

“correlation cloud.” From the dimensional point of view, the correlation function

can be expressed in the form

Cðt; dÞ ¼ Vð0ÞVðtÞh i � V2
0

n D0tð Þd=2
; (9.1.16)

where it was assumed that the number of interactions NI is proportional to the

number of particles that are located in the correlation region WDðtÞ,
NIðtÞ � nWDðtÞ � nðD0tÞd=2. Here, n is the concentration of particles in this region.
One may conclude that the velocity autocorrelation function has a long-time

tail, due to the conservation of particle number and momentum. This result agrees

with that of the more sophisticated theories as well as the results from computer

simulations [182–184].

9.2 Superdiffusion and Return Effects

We briefly considered above a strongly anisotropic transport in the system of

random shear flows basing on the scaling arguments. Note that the simplest

example of the system of shear flows is given by the streamline function (see

Fig. 9.2.1)

CðxÞ ¼ C0 sinðzÞ: (9.2.1)

Here, C0 is an arbitrary stream function amplitude. The velocity field for this

streamline function is represented as
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~uðxÞ ¼ @C=@z
�@C=@x

� �
¼ C0 cosðzÞ

0

� �
: (9.2.2)

Randomization of this sinusoidal velocity field leads to the Dreizin–Dykhne

random shear flow (see Fig. 9.2.2). Here, we discuss this anomalous transport

model on the basis of the Corrsin conjecture

CðtÞ ¼
ð1
�1

rðl; tÞCEðl; tÞ dl; (9.2.3)

where the Lagrangian correlation function is expressed through the Eulerian one.

For the probability density rðl; tÞ, it is natural to use the Gaussian distribution.

Indeed, we have seen that the molecular diffusivity in the presence of velocity shear

generates random jumps of scalar particles. This permits employing Taylor’s

analysis when considering transport in a given velocity profile.

On the other hand, by taking into account the one-dimensional character of the

correlation cloud spreading, NIðtÞ / RDðtÞ / ðD0tÞ1=2, one can employ the scaling

for the correlation function obtained in the previous section:

Cðt; d ¼ 1Þ � V2
0

n D0tð Þ1=2
: (9.2.4)

This yields the transport estimate in the form

l2?ðtÞ �
ðt
0

ðt0
0

Cðt00Þ dt0dt00 / t3=2: (9.2.5)

Vx(z)

0

a0

z

Fig. 9.2.1 Schematic

illustration of the periodic

shear flow
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To explain the Dreizin and Dykhne result in the framework of the correlation

approach, we consider the correlation function of shear flows in the following form:

CðtÞ ¼
ð1
�1

Vxð0ÞVxðzÞh i
exp � z2

4D0t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pD0tÞ

p dz: (9.2.6)

Here, VxðzÞ is the velocity of the flow at the point z and the supposition was made

that the probability density has the Gaussian form. Using the conjecture about the

significant role of returns has become the main step in the description of anomalous

diffusion, since the condition z ! 0 for the probability density rðz; tÞ corresponds
to the return to the initial point. After calculations, one finds the expression

CðtÞ / V2
0a0ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD0t
p / 1

t1=2
: (9.2.7)

Using the classical Taylor definition of the turbulent diffusivity, one defines the

mean square displacement in the perpendicular direction,

l2?ðtÞ �
ðt
0

ðt0
0

Cðt00Þ dt0dt00 / V2
0a0ffiffiffiffiffiffiffiffiffiffiffiffi
4pD0

p t3=2: (9.2.8)

Here, we are dealing with the superdiffusion regime, l? / t3=4, and the Hurst

exponent H ¼ 3=4.
In concluding this chapter, we note that the Dreizin and Dykhne model of the

anomalous transport in the system of shear flows [156] became well known after the

paper [185] by Matheron and de Marsily. Their work has close relation to percola-

tion transport in a porous media. Below we discuss the percolation concept and

percolation transport in more detail.

Vx (z)

a0

zFig. 9.2.2 Schematic

diagram of the

Dreizin–Dykhne random

shear-flow geometry
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9.3 Longitudinal Diffusion and Quasilinear Equations

In the random shear-flow model, the longitudinal and transverse correlation effects

are separated. It would be interesting to apply here the renormalized quasilinear

approach, which is fairly efficient in describing anomalous diffusion. The conven-

tional quasilinear equations for passive scalar problem in the two-dimensional case

under consideration are given by

@n0
@t

¼ �hVXðzÞ @n1
@x

i; (9.3.1)

@n1
@t

þ VXðzÞ @n0
@ x

¼ 0: (9.3.2)

The dependences n0 ¼ n0ðx; tÞ and n1 ¼ n1ðx; z; tÞ were used to describe the

two-dimensional case. In fact, the equation for n1 is linear and hyperbolic and it

keeps the Lagrangian character of correlations. This opens up the possibility of

describing the omitted correlation effects by including the additional diffusive term,

which is in agreement with the Corrsin diffusive renormalization.

Let us derive an equation for the passive tracer density under conditions when

longitudinal correlation effects can be approximated by the longitudinal diffusive

term D0
@2n1
@z2 . Thus, in the two-dimensional case the renormalized quasilinear

equations for the system of random shear flows have the form

@n0
@t

¼ �hVXðzÞ @n1
@x

i; (9.3.3)

@n1
@t

¼ D0

@2n1
@z2

� VXðzÞ @n0
@ x

: (9.3.4)

Here, the diffusion coefficient D0 characterizes the seed diffusion. Thus, we kept

equation for the density perturbation n1 linear but passed from a hyperbolic

equation of form to the parabolic equation.

Then, applying the method of Green’s functions to the equation for the density

perturbation n1 yields

n1 ¼ �
ð
dz0
ð
dt0 VX z0ð Þ @n0 x; t0ð Þ

@x

ð
dk

2p
eik z�z0ð Þe�D0k

2 t�t0ð Þ
	 


: (9.3.5)

The substitution of this expression in the formula for a flux leads to the relation

in terms of the memory function:

qX � �VXðzÞ @n1
@x

� �
¼
ðt
0

dt0
@n x; t0ð Þ

@x
M t� t0ð Þ: (9.3.6)
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Here, M(t � t0) is the memory function represented as

Mðt� t0Þ ¼
ð
dk

2p
e�D0k

2 t�t0ð Þ
ð
d z� z0ð Þ VXðzÞVX z0ð Þh ie�ik z0�zð Þ

	 

: (9.3.7)

Consider the system of random flows with the Eulerian correlation function

CEðz� z0Þ ¼ VXðzÞVXðz0Þh i: (9.3.8)

Using the Fourier transform ~CEðkÞ of the function CEðz� z0Þ ¼ VXðzÞVXðz0Þh i,
we can rewrite the expression for the flux qx in the form

qX �
ðt
0

dt0
ð
dk

2p
~CEðkÞe�D0k

2 t�t0ð Þ @n0ðx; t0Þ
@x

	 

�
ð
dk

2p

~CEðkÞ
D0k2

	 

@n0ðx; tÞ

@x
(9.3.9)

for the case of a smooth profile n0(x, t). The effective diffusion coefficient is given

by the expression that coincides with the Howells form [186], but for an anisotropic

model

DeffðD0Þ �
ð1
�1

~CEðkÞ
D0k2

dk

2p
: (9.3.10)

If this integral is finite, one has conventional diffusion with an effective diffu-

sivity in accordance with Taylor’s scaling, Deff / V2
0

D0
.

9.4 Random Shear Flows and Generalized Scaling

On the other hand, Matheron and de Marsily [185] showed that the anomalous

transport in the longitudinal direction occurs if

Deff �
ð1

�1

~CEðkÞ
D0k2

dk

2p
/

ð1
�1

dk
~CEðkÞ
k2

! 1: (9.4.1)

This condition for the anomalous diffusion has the clear physical interpretation

in terms of dimension of

CE

k2


 �
¼
ð1
�1

dk ~CEðkÞk�2 / V2
0 a

2
0: (9.4.2)

Here, V0 is the characteristic velocity scale and a0 is the typical distance between
two sequent zeros of VðzÞ. In the case of
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V2
0 <1 and

ð1
�1

dk ~CEðkÞk�2 <1 (9.4.3)

the transport in random shear flows is similar to the transversal Taylor diffusion in

channels of size a0. The origin of anomalous diffusion is related to the fact that a

scalar travels in a given direction for a very long time before changing direction.

The case of anomalous diffusion can also be interpreted in terms of scaling

representation of Eulerian correlation function

CEðz� z0Þ / V0
2 l

z� z0

� �aE

(9.4.4)

or in terms of the spectrum

~CEðkÞ � kaE�1 (9.4.5)

and the assumption about the diffusive character of the wave numbers, which make

the main contribution to the transport

kðtÞ / 1

l==ðtÞ
/ 1ffiffiffiffiffiffiffi

D0t
p : (9.4.6)

Here, k ! 0. By taking into account the simplified version of the Corrsin

conjecture, we arrive at

l2?ðtÞ �
ðt
0

ðt0
0

Cðt00Þ dt0 dt00 / CEðl==ðtÞÞt2: (9.4.7)

Then simple calculations yield a scaling:

l2?ðtÞ � Deff t � V2
0

lffiffiffiffiffiffiffi
D0t

p
� �aE

t2 / t2

l==
aEðtÞ / t2�

aE
2 ; (9.4.8)

which relates the Hurst exponent

HðaEÞ ¼ 1� aE
4

(9.4.9)

describing anomalous transport in the transverse direction to the exponent aE
characterizing the spatial correlation properties of a system of random shear flows

[187, 188]. Note that for incompressible flows subdiffusive regimes are impossible,

and hence, 0 � aE � 2. The special case aE � 1 ¼ 0 corresponds to a white

spectrum

~CðkÞ / kaE�1 ¼ k0 (9.4.10)
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and recovers the anomalous diffusion found previously by Dreizin–Dykhne with

H ¼ 3/4. For 0 � aE � 2, one has superdiffusion, while for aE > 2 we arrive to the

conventional diffusive behavior.

9.5 Isotropization and Manhattan flow

Besides the simplified model of random shear flow, more interesting is the under-

standing of the anomalous diffusion in incompressible velocity fields. Avellaneda

and others [187] obtained a very important and general result about the asymptotic

diffusion in an incompressible velocity field~u ~rð Þ. If the molecular diffusivity D0 is

nonzero and the infrared contribution to the velocity field is weak enough,

ð
d~k

~u ~k
� ���� ���2� �
k2

<1: (9.5.1)

Then one has the standard diffusion with the finite effective diffusion coefficient

Deff .

On the other hand, there are several ways to generalize the model of anomalous

transport in random shear flows [189, 190]. Here, we consider a superdiffusion

regime for the “Manhattan grid” flow. Thus, from the formal standpoint, for the

incompressible case the velocity field is given by

Vxðx; zÞ ¼ � @C x; zð Þ
@z

; (9.5.2)

Vzðx; zÞ ¼ � @Cðx; zÞ
@x

: (9.5.3)

We construct a two-dimensional random steady flow (quenched disorder) by the

superposition of two random stream functions CxðzÞ, CzðxÞ

Cðx; zÞ ¼ CxðzÞ þCzðxÞ: (9.5.4)

A flow with the stream functionCðx; zÞ is then a two-dimensional generalization

of the random shear flows model (see Fig. 9.5.1). Note, in the case when CxðzÞ and
CzðxÞ are regular sinusoidal functions such a superposition gives a periodical two-

dimensional system of swirling eddies (cell system).

For the Dreizin–Dykhne flow, we have obtained the scaling for the effective

diffusivity in the transverse direction in the form

DeffðtÞ / V2
0

a0ffiffiffiffiffiffi
D0

p
� �

t1=2 / ffiffi
t

p
: (9.5.5)
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In this two-dimensional case, we are faced with a quite different scenario. It is

believed that there exists a common effective diffusivity for both x-direction and

z-direction DeffðtÞ ¼ D0,

DeffðtÞ / V2
0

a0ffiffiffiffiffiffiffiffi
Deff

p
� �

t1=2: (9.5.6)

After calculations, one obtains a new scaling for the effective diffusivity for the

“Manhattan grid” flow,

DeffðtÞ / V0a0
V0

a0
t

� �1=3

/ t1=3: (9.5.7)

Using the classical Taylor definition of the turbulent diffusivity, one defines the

mean square displacement,

RðtÞ / Deff ðtÞt / a0
V0

a0
t

� �2=3

/ t2=3: (9.5.8)

Here, the Hurst exponent is denoted as H ¼ 2=3. New scaling for the correlation

function takes the following form:

CðtÞ / DeffðtÞ
t

/ V2
0

a0
V0t

� �2=3

/ 1

t2=3
: (9.5.9)

This scaling could be interpreted in terms of the number of interactions NIðtÞ

Fig. 9.5.1 A typical plot of a

random Manhattan grid flow
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CðtÞ ¼ Vð0ÞVðtÞh i / V0

V0

NIðtÞ ; (9.5.10)

where

NIðtÞ / V0t

a0

� �H

/ tH: (9.5.11)

The number of interactions NIðtÞ could be represented as the number of visited

sites. Here, it is natural to use the Alexander–Orbach conjecture [31] NIðtÞ / t2=3,
for 2 � d � 6. Indeed, the value NI corresponds to the number of “layers”

intersected by the test particle.

On the other hand, it is possible to generalize the renormalization applied above,

D0 ! DeffðtÞ, to a multiscale random flow. For this purpose, we consider the

relation found in the previous section

l2?ðtÞ � Deff t � V2
0

lffiffiffiffiffiffiffi
D0t

p
� �aE

t2; (9.5.12)

which have to be modified to

Deff t � V2
0

lffiffiffiffiffiffiffiffiffi
Deff t

p
� �aE

t2: (9.5.13)

Here, 0 � aE � 2. After calculations, one obtains the relation for the Hurst

exponent in the following form:

HðaEÞ ¼ 2

2þ aE
: (9.5.14)

When aE ¼ 1, one obtains the Hurst exponent H ¼ 2=3, which corresponds to

the Manhattan grid flow.

This estimate looks fairly rough, but this scaling coincides with the rigorous

result obtained by the sophisticated renorm-group technique [191, 192]. Now we

can make one more step further. On the basis of scaling obtained, it is possible to

relate the Eulerian and the Lagrangian correlation exponents. The Hurst exponent

in terms of the Lagrangian correlation exponent is given by the formula

R2 / Deff t / t

ð
CðtÞdt / t2�aC HðaCÞ ¼ 1� aC=2: (9.5.15)

Here, 0 � aC � 2. By comparing the relations for HðaCÞ and HðaEÞ, one easily
finds the relationship

aCðaEÞ ¼ 2aE
2þ aE

: (9.5.16)
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In the region of applicability aC � aE. Obviously, this is an approximation only,

but such relationship could be useful for the qualitative analysis of anomalous

transport problem. Note that two statistical ensembles are involved in all these

random flow models, namely the distribution of velocities and the different walks

for a given random velocity distribution. The effective transport depends on both,

and we must take into account this fact in discussing such nontrivial correlation

effects (see Fig. 9.5.2).

Ballistic approximation
(Corrsin 1953)

Δ// ∝ V// t  

Random shear flows
(Dreizin-Dykhne 1972)  

t3/4

D0

V0
2a0λ⊥ ∝

Matheron-Marsili 1980 

Corrsin conjecture (1959) 

Anomalous transport in random flows 

Saffman effect 1960 

CTRW

Isotropization 

D0 → Deff

Multi-scale flows and
Scaling for correlations  

Fractal concept 

Manhattan flow 
2/3

t2/3

a0

V0R ∝ a0

Fig. 9.5.2 Anomalous transport in random flows

156 9 Random Shear Flows and Correlations



9.6 Diffusion in Power-Law Shear Flows

In this section, in contrast to the random shear-flow model, we investigate the

motion of a tracer particle moving in a steady velocity field (see Fig. 9.6.1)

~Vðx; zÞ ¼ V0 zj jbRsgnðzÞx̂: (9.6.1)

This can be viewed as the average over many configurations of the random walk

in shear-flow problem. For power-law shear flow, the most longitudinally stretched

walk must have each transverse step in the same direction, in order that the walk has

the largest possible velocity at each time step. In a typical realization of such a flow, the

longitudinal velocity VxðzÞ at transverse coordinate z increases as z1=2, a feature that
leads to faster-than-ballistic motion of a tracer particle. The transverse displace-

ment has a diffusive character,

zðtÞ /
ffiffiffiffiffiffiffi
D0t

p
(9.6.2)

Here, D0 is the seed diffusion coefficient. On the other hand, the root mean

square longitudinal displacement R may be roughly estimated through the longitu-

dinal velocity at time t [193]

Vx zðtÞð Þ / V0 D0tð Þ
bR
2 : (9.6.3)

Then one obtains the relation in the form

z

x

Vx(z)

Fig. 9.6.1 Schematic

illustration of a power-law

shear flow
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RðtÞ / V0t D0tð Þ
bR
2 ; (9.6.4)

where the Hurst exponent is given by the formula

HðbRÞ ¼ 1þ bR
2
: (9.6.5)

The increase in longitudinal velocity with timescale is the underlying mecha-

nism that leads to R(t) growing faster than linearly with time. It is interesting to

notice that for bR ¼ 0, x is independent of the diffusion coefficient D0. This is the

case of “split flow” (see Fig. 9.6.2)

For the power-law shear flow ~Vðx; zÞ ¼ V0 zj jbRsgn ðzÞx̂, the probability distribu-

tion of a Brownian particle can be described by the advection–diffusion equation

@rðx; z; tÞ
@t

þ sgnðzÞ zj jbRV0

@rðx; z; tÞ
@x

¼ D0

@2rðx; z; tÞ
@z2

: (9.6.6)

Here, the contribution of diffusion in the longitudinal direction has been

neglected. It would be interesting to determine the distribution of longitudinal

displacements,

rLðx; tÞ �
ð
rðx; z; tÞdz: (9.6.7)

The initial condition is given by r ~r; t ¼ 0ð Þ ¼ dð0Þ. For describing the probability
distribution, it will be convenient to introduce the scaled longitudinal and trans-

verse displacements,

z

x

Vx(z)

Fig. 9.6.2 A typical plot of

velocity profile of a split flow
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x x; tð Þ ¼ x

V0tð Þ D0tð ÞbR=2
; � z; tð Þ ¼ zffiffiffiffiffiffiffi

D0t
p : (9.6.8)

In terms of these variables, we may write the probability distribution in the

scaling form as follows:

f x; �ð Þ � V0t D0tð Þ
1þbR

2 r x; z; tð Þ: (9.6.9)

The longitudinal probability distribution is give by the formula

fL xð Þ �
ð
f x; �ð Þd�: (9.6.10)

We expect that this function has the asymptotic behaviors fL xð Þ ! const as

x ! 0 and

fL xð Þ / 1

ex
dR

as x ! 0: (9.6.11)

Now we are able to find the value of the shape exponent dR by constructing an

estimate for the probability of finding the extreme walks that contribute to the tail of

the distribution [193]. This implies that the probability of finding a stretched walk

decays as a pure exponential in t; e�a t. On the other hand, a stretched walk has a

longitudinal displacement, which scales as

RðtÞ /
ðt
0

zbRdz / t1þbR : (9.6.12)

This maximal value corresponds to a scaled displacement xðtÞ / tbR=2, and
hence, the distribution function is given by

fL xð Þ / exp �t
dRbR
2

� �
: (9.6.13)

Since we have supposed that this function decays exponentially in t, we find the

shape exponent as

dR bRð Þ ¼ 2

bR
: (9.6.14)

Using the relation for the Hurst exponent
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H bRð Þ ¼ 1þ bR
2
; (9.6.15)

the expression for dR can be written as

dRðHÞ ¼ 1

1� H
: (9.6.16)

This is of the same form as the phenomenological Fisher relation [194] between

the shape and size exponents for the usual situation where H < 1. We discuss the

Fisher relation in next section.

9.7 The Fisher Relation

Fractional exponents need not only appear in algebraic tails of distributions. An

important case involves exponential functions. Thus, in the case when there exists a

single special scale the configuration-averaged probability distribution of

displacements decays at large distances as

Pðx; tÞ / exp � x

tH

� �dR� �
: (9.7.1)

Here, dR is the large-distance shape exponent, and H is the transport Hurst

exponent.

In the case of Gaussian distribution, one has the formula

Pðx; tÞ / exp � x

t1=2

� �2
 !

: (9.7.2)

Here, H ¼ 1=2 and dR ¼ 2. For the self-avoiding random walks H ¼ 3=5 and

dR ¼ 5=2. Indeed, for many random-walk processes, the size and shape exponents,

H and dR, respectively, satisfy [194]

dR ¼ 1

1� H
(9.7.3)

Here, we consider the range 0<H<1. This relation can be deduced simply from

the observation that walks, which are completely stretched, contribute to the tail of

the probability distribution. Thus, the probability of finding a stretched walk, where

x scales as t, is

Pðx / t; tÞ / exp �t 1�Hð ÞdR
� �

: (9.7.4)
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On the other hand, a completely stretched walk is constructed by choosing only

one direction at each step of a walk, and clearly this leads to a probability at time t,
which decays as

PðtÞ / exp �const � tð Þ: (9.7.5)

Equating these two forms yields the famous Fisher relation, dR ¼ 1
1�H .

The probability distribution of displacements in two-dimensional random flow

(Manhattan grid flow) satisfies this Fisher hyperscaling with the exponents H ¼
2=3 and dR ¼ 3. However, the Fisher argument appears to work for isotropic

random velocities but fails for layered random velocities. Indeed, this relation

fails in the case of the Dreizin–Dykhne model, where the anisotropic nature of

the problem plays a crucial role in determining the tail of the distribution function.

In their case, the shape exponent is much smaller than the value that is expected on

the basis of the Fisher scaling because the value of the Hurst exponent H ¼ 3=4
would imply dR ¼ 4. In this model, hyperscaling leads to anomalously slow large-

distance decay of the probability distribution, whereas the authors of Ref. [185]

found dR ¼ 4=3.
We can conclude that the investigation of complex random walks provides a

foundation for understanding a very wide range of transport phenomena. In partic-

ular, they play an important role in turbulent transport, kinetics, polymer physics,

biology, etc. Random walks can be generated on simple lattices or in continuous

spaces. Thus, the well-known example is the nearest neighbor walk on a square

lattice, where the random walk starts on a site that can be placed at the origin.

Return of particles to the initial point is one of the important and nontrivial

properties of random walk models. There are many cases where such correlation

effects are dominated. For instance, this related to random walks on random

substrates, including fractal substrates, as models for transport phenomena in

disordered systems. Below, we extensively investigate random walks on fractal

and percolation clusters in connection with turbulent transport in random two-

dimensional flows, where an extract enumeration approach is valuable.
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Part V

Structures and Nonlocal Effects



Chapter 10

Transport and Complex Structures

10.1 Bond Percolation Problem

Percolation problems are a prime example where fractal geometries play an impor-

tant role in determining the macroscopic properties of a system [195–199]. On the

other hand, percolation is a powerful tool for the study of transport properties of

complex systems, including such problems as electrical conductivity, the flow of

liquids through porous materials, and anomalous diffusion in chaotic flows. In

principle, the percolation approach describes statistically complex systems and

does not relate to classical dynamical laws. That is why the percolation method

has the similar status as the random walk approach.

To illustrate the basic definitions of the percolation theory, let us consider a

square grid. The cells of the grid are occupied with a probability p and empty with

the probability 1� p. Neighboring occupied sites (black in Fig. 10.1.1) with a

common edge form a connected cluster. If p � 1, the clusters are small and

isolated. When p increases from 0 to 1, so does the mass of the largest clusters.

There is a value of 0< p< 1, at which a unique cluster appears that connects

opposite sides of the grid. When the size of the grid L0 ! 1, this percolating

cluster is infinite; pc, at which the infinite cluster appears, is called the percolation

threshold or critical probability. Numerical calculations performed on finite grids

allow one to conclude that pc � 0:59275 for clusters formed by neighboring sites on

a 2D square lattice; they also show that the clusters are fractal distributions of

occupied cells.

As p approaches pc, the finite clusters increase in size; a, being the radius of

clusters that contribute most to this increase, diverges to infinity at pc. When a
diverges, there is no characteristic length to scale the length-dependent physical

properties of the system. As fractal structures, the system looks the same at different

magnifications. The properties of the system become nonsensitive to many local

details, such as small changes in interactions of particles, lattice structure, and so

on, which do not influence the large-scale behavior. This feature results in the

universality of the critical exponents that describe diverging parameters near pc.

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_10, # Springer-Verlag Berlin Heidelberg 2011
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These universal exponents depend on the model under consideration and the

dimensionality of the system but not on the details of the local structure.

Near the transition point p ¼ pc, geometrical percolation can be described in

the same terms as thermal second-order phase transition, say, a transition from a

parametric state at high temperatures and a ferromagnetic state at low temperatures.

The analogue of temperature T is the occupation probability p of one site; the

analogue of the order parameter, say, the magnetization McðTÞ, is the probability

P1ðpÞ that a randomly chosen site belongs to an infinite cluster

p� pc $ Tc � T; (10.1.1)

P1ðpÞ $ McðTÞ: (10.1.2)

In magnetic materials, the magnetization vanishes at the critical temperature Tc
according to the power law [200]

McðTÞ / ðTc � TÞb (10.1.3)

with the critical exponent b. Immediately above the percolation threshold,

0< p� pc � 1; (10.1.4)

the order parameter P1ðpÞ behaves in a similar way (see Fig. 10.1.2):

P1ðeÞ / ðp� pcÞb ¼ ej jb: (10.1.5)

Of course, P1ðp < pcÞ ¼ 0, because only finite clusters exist at p < pc.
The correlation length a also diverges when p approaches (both from below and

from above) (see Fig. 10.1.2), with a new critical exponent n:

Fig. 10.1.1 Schematic

picture of a percolation

cluster
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aðeÞ / 1

p� pcj jn ¼
1

ej jn ; (10.1.6)

where e is the small percolation parameter characterizing nearness of the system to

the percolation threshold. Such a behavior resembles the divergence of the correla-

tion length near critical points for thermal phase transitions. Both critical exponents

b and n are universal, because they depend on the dimensions of the system b ¼
bðdÞ and n ¼ nðdÞ but not on the local details. The aim of the percolation theory is

to calculate these exponents from the first principles and to find relationships among

them. Below we illustrate relationships between the critical exponents and the

fractal characteristics of the percolation networks; the techniques of calculating

the values of critical exponents are discussed in [196–202].

10.2 Fractal Dimensionality and Percolation

At percolation threshold pc, the infinite percolating cluster contains holes of all

possible sizes because the correlation length a diverges. Above pc, the length a is

finite and corresponds to the linear size of the largest “holes” left by the percolating

cluster. It means that at p > pc, the percolation cluster is self-similar only on length

scales l < a and homogeneous at larger scales l > a. At l < a and l > a, the mass

of the infinite cluster scales differently:

McðlÞ / ldF ; l < a; (10.2.1)

ppc

1

P∞

0

L < ∞

L = ∞

a(p)Fig. 10.1.2 A typical plot of

characteristic correlation

length and the probability of

finding a site belonging to an

infinite percolation cluster
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McðlÞ / P1ld; l> a: (10.2.2)

Here, the cluster density is given by the formula

rðlÞ ¼ Mc

ld
: (10.2.3)

At l ¼ a, the two last expressions should recover the same mass:

P1ld � ðp� pcÞbxd ¼ adF : (10.2.4)

But according to the definition, a / p� pcj j�v
. Hence,

dF ¼ d � b
n
; (10.2.5)

which relates the fractal dimension of the percolation cluster to the exponents

b and n. The expression for the density is given by

rðaÞ / a�b=n ¼ adF�d: (10.2.6)

The exponents b and v are the universal constants in the sense discussed above;

therefore, dF is universal as well. For two-dimensional grids with b ¼ 5=36 and

n ¼ 4=3, one gets dF ¼ 91=48 � 1:8958. In three-dimensional case, the key perco-

lation exponents are n ¼ 0:875, b ¼ 0:417. There has been considerable progress

over the last decades in the determination of the geometrical properties of two-

dimensional random percolation cluster for different lattice models [103, 196].

Thus, scaling exponent for the hull fractal dimensions Dh ¼ 1þ 1=n ¼ 7=4 is

known exactly, so is the exponent n ¼ 4=3 characterizing the divergence of corre-

lation length near the percolation threshold. The values of these scaling exponents

are confirmed by numerous computer simulations [203, 204]. The scaling

exponents n and Dh characterize the geometrical properties of percolation clusters

and allow one to determine other exponents, which arise in the theory of critical

phenomena through the hyperscaling relations [204, 205]. In the subsequent con-

sideration, we use these results to analyze two-dimensional random flows.

The percolation problem is very closely connected with the theory of phase

transition in statistical physics. It was shown that the problem of the lattice bond

percolation is equivalent to the one-state Potts model. Later it was realized that the

one-state Potts model at the tricritical point (which is a diluted model with percola-

tion vacancies) is geometrically equivalent to the critical Ising model [103]. At

these points in the phase diagrams, the three coexisting phases become identical. At

the tricritical points, the mean field theory based on the Landau representation for

the free energy becomes valid.
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10.3 Finite Size Scaling

At the first stage of our analysis, we have restricted our attention to systems of

infinite size. Estimates of percolation effects in finite systems can be obtained on

the basis of phenomenological arguments, which were first suggested by Fisher as

early as in 1971 [206]. Indeed, scaling laws for finite systems are important for

practical application as well as for simulations.

Let us consider some property zðL0; eÞ of a system of finite size L0. We assume

that this quantity for infinite systems is proportional to e#,

zðeÞ / e#: (10.3.1)

Here, # is an exponent. In the framework of the scaling concept, the quantity

zðL0; eÞ should be scaled only by the correlation length and that is why we find

zðL0; eÞ / a�sZ
L0
a

� �
; (10.3.2)

where # is an exponent. The basic idea is that for L0 > aðeÞ one can break the

system into L0
a

� �dF
blocks of linear size a. Within each of these, the behavior is self-

similar [207–209]. For infinite system, where L0 ! 1, the value under consider-

ation does not depend on L0 that leads to the condition

Z
L0
a

� �
¼ ZðyÞjy!1 ¼ const: (10.3.3)

Thus, we obtain the relation for the quantity zðL0; eÞin the following form:

zðL0; eÞjL0!1 / aðeÞs / 1

ens
: (10.3.4)

By comparing this result with the initial percolation representation, one finds the

relationship among the percolation exponents

s #; nð Þ ¼ #

n
: (10.3.5)

The final result is the following:

zðL0; eÞ / a�
#
nZ

L0
a

� �
: (10.3.6)

When the correlation length is much greater than the system size, the value

zðL0; eÞ does not depend on a. This leads to the scaling

zðL0; eÞ / L0
�#=n; a � L0: (10.3.7)
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On the other hand, this relation is valid when e ! 0 for any finite large size of

system under consideration. The exponent # can be found on the basis of

simulations or experiments because the correlation exponent n is usually known.

10.4 Comb Structures and Percolation Transport

Most percolation problems cannot be solved analytically, and numerical simulation

is indispensable tool in this field. However, there exists simple and effective model

of comb structure (see Fig. 10.4.1) to investigate transport on an infinite cluster at

the threshold percolation. Diffusion processes on such structures have been studied

intensively [210–212].

Comb structures comprise of a backbone and orthogonal close-ended teeth. In

this setting, the backbone represents the connected pathways, which span the

cluster, while the orthogonal close-ended teeth represent the dead-end pathways,

which emanate from backbone. In the electrical analogy problem, the backbone

represents the conducting pathway and the teeth represent the dangling bonds along

which current does not flow. Here, transport properties of ‘regular’ comb structures

having teeth of infinite length are identified in terms of scaling. In this model, there

are no loops to form connections between different dangling bonds, and the

dangling bonds are uniformly spaced along the backbone.

Elementary estimates lead to a simple scaling for transport along this comb

structure

Dx2
� � / Dxx Th i; (10.4.1)

where Dxx is diffusion coefficient along the axis x and Th i is the mean effective time

of longitudinal movement. Let Th i be

Teeth

Back-bone

Fig. 10.4.1 Schematic

picture of a comb structure
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Th i / t � FðtÞ / tffiffiffiffiffiffiffi
D0t

p : (10.4.2)

Here, we introduce the return probability F1ðtÞ, which in the one-dimensional

case is given by

F1ðtÞ � rð0; tÞD � Dffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p ; (10.4.3)

where r is the Gaussian distribution function, D0 is the seed diffusion coefficient,

and D is the distance between teeth.

Now we obtain an anomalous regime of diffusion (subdiffusion) with the Hurst

exponent H ¼ 1/4

Dx2
� � / Dxxffiffiffiffiffiffi

D0

p ffiffi
t

p
; (10.4.4)

or for Dxx ¼ D0, we can rewrite

Dx2
� � / ffiffiffiffiffiffiffi

D0t
p

: (10.4.5)

However, in this approach the percolation character of correlation effects was

lost and we did not use the correlation length aðeÞ, which is the main magnitude

characterizing spatial scales of the system near the percolation threshold . Models

of anomalous transport on comb structures are widely applied due to the fairly

universal kind of topology. More complex comb structures (see Fig. 10.4.2) could

be also investigated by an analytical way [210–212].

10.5 Hilly Landscape and Percolation

The mathematical analysis of continuum percolation is quite different from lattice

analogue. In a discrete problem, the sites~rj (or bonds) in a lattice are occupied with
the probability p and nearest-neighbor sites are regarded as linked. There exists a

Fig. 10.4.2 Schematic

diagram of complex comb

structure
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unique percolation threshold pc above which, p > pc, occupied sites belong to an

infinite percolation cluster. In the work presented here, we consider percolation on a

continuum. In a continuum problem, r
*

j is replaced by the continuum variable r
*
and

we study the isolines (in two dimensions) or isosurfaces (in three dimensions) of a

smooth potential ~V ~rð Þ.
The basic problem of continuum percolation theory can be formulated very

simply. Given a continuous potential ~V ~rð Þ, then for each h there may or may not

exist an infinite connected set with ~Vð~rÞ < h. If such a set does not exist for a range
of h < hc, and does exist for a range of h > hc, then hc is known as the percolation

threshold.

In 2D, there exists a better visualizable representation of this problem. One can

consider a topographical analogy where areas with ~V x; yð Þ < h are the valleys filled
with water to a given level h in a mountain range ~V x; yð Þ > h (see Fig. 10.5.1). An

interconnected ocean of water of infinite extent exists if the level of water h is

greater than critical percolation threshold hc. The case of incompressibility implies

that the velocity field is related to the stream function C

Vxðx; y; tÞ ¼ � @Cðx; y; tÞ
@y

; Vyðx; y; tÞ ¼ @Cðx; y; tÞ
@x

(10.5.1)

Here, Cðx; y; tÞ is the Hamiltonian (streamline) function.

If the potential ~Vð~rÞ is a random function, in a sense that coordinate

Cð~r �~r 0Þ ¼ ~Vð~rÞ~Vð~r 0Þ� �
(10.5.2)

is a sufficiently fast decay function, then both discrete and continuum problems are

equivalent, and the contours of constant ~Vð~rÞ ¼ h can be considered as the

Fig. 10.5.1 Schematic picture of contour lines in continuum percolation model
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perimeters of percolation clusters. One is typically interested in locating percolation

threshold and studying scaling behavior near the threshold.

We are going to use the percolation geometrical arguments to investigate the

appearance of anomalous transport in two-dimensional chaotic flows. The percola-

tion approach looks very attractive because it gives a simple and, at the same time,

universal model related to both long-range correlation effects and complex topol-

ogy. Kadomtsev and Pogutse [213] reduce the increasing of turbulent diffusion in

two-dimensional chaotic flows to the problem of random contours, which are well

described in the framework of percolation approach. Thus, it was supposed that the

main contribution to the effective transport is related to the existence of the

percolation streamline near the threshold. Here, we restrict ourselves by the sin-

gle-scale approximation of the streamline function. For the steady case, the charac-

teristic spatial scale is given by the relation

l � Cðx; yÞ
rCðx; yÞ
				

				: (10.5.3)

The percolation theory requires the existence of at least one coastline of infinite

length, which is given by the scaling law [103]:

LðeÞ / l
aðeÞ
l

� �Dh

: (10.5.4)

Here, DhðnÞ ¼ 1þ 1=n ¼ 7=4 is the coastline exponent and e is a small dimen-

sionless quantity, which characterizes the degree of deviation of the system from

the critical state (the percolation threshold),

e � dC
lV0

; (10.5.5)

where dC is the value of the streamline function C ¼ Cðx; yÞ near the percolation
threshold, l is the characteristic scale, and V0 is the characteristic velocity of the

flow. To describe transport effects, it is necessary to employ the correlation length

aðeÞ, which is the main magnitude characterizing spatial scales of the system

located near the percolation threshold, e ! 0,

aðeÞ ¼ l
ej jn : (10.5.6)

Here, l is the geometric characteristic scale.

Thus, the idea of long-range correlations was accomplished in the framework of

the percolation approach. Such a critical behavior is not amenable to any kind of a

conventional perturbation analysis. We discuss this problem in more detail later in

the framework of small percolation parameter renormalization as well as in relation

to the presence of stochastic layers in two-dimensional random flows.
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On the other hand, there exists an important topological difference between

two-dimensional (2D) and three-dimensional (3D) percolation problems. In the

two-dimensional case, the only infinitely extended cluster may exist at a time

ð~Vð~rÞ > h or ~Vð~rÞ < hÞ, while in three dimensions there may exist simulta-

neous percolation through both clusters.

10.6 Phenomenological Arguments for Percolation Parameter

We consider here a simple and effective method, which permits us to estimate the

percolation parameters by using the finite value of the percolation parameter e�
instead of e ! 0. In fact, it is possible “to hide” singularity into a phenomenological

small parameter. Thus, the correlation length is one of the most important values

describing transport. However, in a system of finite size L0 we cannot consider the
infinite value

DCOR � aðeÞje!0 ! 1: (10.6.1)

Here, it is relevant to introduce a new small “renormalization” parameter e� as
the value that provides the condition

aðe�Þ ¼ l
ej jn � L0: (10.6.2)

The simplest calculations yield a new small parameter

e� L0ð Þ � l
L0

� �1
n
: (10.6.3)

This result can be interpreted in the framework of percolation experiments with

finite size samples. Under these conditions, the percolation threshold arises when

the value of e� slightly differs from zero and is situated in an interval De. The
estimate obtained for e� can be considered as the characteristic width of this interval
(see Fig. 10.6.1) De � e� L0ð Þ. Actually, we are starting from the initial small

parameter

e0ðl; L0Þ � l
L0

� 1; (10.6.4)

which describes a real physical system with the characteristic scales L0 and l. On
renormalization, we obtain a new percolation parameter

De � e� e0ð Þ � e
1
n
0: (10.6.5)

174 10 Transport and Complex Structures



It is natural that the value De decreases if the system size L0 increases.
Similar renormalization method could be applied to the transport description of

two-dimensional chaotic flows, which allows us to develop the Kadomtsev–Pogutse

percolation approach discussed in the previous section. The key problem is to

determine a small parameter e0 and to find an adequate renormalization condition

for the finite value of e�. Then we can calculate the diffusion coefficient that is

based on the estimate of the finite correlation length aðe�Þ and correlation time tðe�Þ

Deffðe�Þ / a2ðe�Þ
tðe�Þ : (10.6.6)

In the framework of phenomenological approach, we can estimate the correla-

tion time t as

tðe�Þ � Lðe�Þ
V0

; (10.6.7)

where L is the length of the percolation streamline. After substitution, one finds

tðe�Þ � l
V0

a e�ð Þ
l

� �Dh

� l
V0

1

e�

� �n�Dh

: (10.6.8)

Corresponding scaling will be obtained below on the basis of stochastic layer

concept. In this percolation approach, the renormalized small percolation parameter

e� is expressed through the characteristic random flow parameters, such as the

Peclet number, the Kubo number, and the energy dissipation rate Indeed, in two

dimensions we are faced with a quite different scenario. While many fractals, such

p

pc

a(p)

L

Δε = ε*(L)

Fig. 10.6.1 Sketch of

renormalization procedure for

a system of finite size
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as the comb structures, are essentially loopless structures, many others, such as two-

dimensional percolation clusters, consist of a network of loops.

In our case, the percolation hull is the best candidate to approximate scalar

ballistic path. A percolation cluster is a collection of occupied sites connected

to each other by paths along nearest-neighbor pairs of sites and surrounded inside

and outside by vacant sites. The perimeter of a percolation cluster is the continuous

path of occupied sites at a boundary, which can be either external or internal to the

cluster. The term “hull” was first used by Mandelbrot [157–161] to describe the

island of points enclosed by the external boundary of a cluster, but it has been

generalized to refer to the boundary as well (see Fig. 10.6.2), and that meaning will

be used here.

10.7 Subdiffusion and Percolation

The main specific feature of percolation media is that they consist of nonoverlap-

ping regions (clusters) such that the transport inside each cluster is possible,

whereas the passage of particles between clusters is impossible. Since only finite

clusters exist in such a medium occurring in the state below the percolation

threshold, the transport of particles over large distances in this state is hindered.

Finite clusters possess fractal properties. Above the percolation threshold, the

medium contains an infinite cluster and the transport of particles is not limited

with respect to the range. A key characteristic of such a medium is the correlation

length a. Below the percolation threshold, the distribution of clusters with respect to

size l falls in the region l< a (the number of clusters with dimensions l � a is

exponentially small). On approaching the percolation threshold, the correlation

length exhibits unlimited growth: a ! 1. Above the percolation threshold, this

parameter becomes finite again and the distribution of finite clusters exhibits the

same properties as those below the threshold. As for the infinite cluster, it possesses

Percolation Hull Fig. 10.6.2 Schematic

picture of a percolation hull
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(like the finite clusters) fractal properties and is scale invariant on the spatial scale

L0 < a, while being statistically homogeneous on the scale L0 � a.
An important topological feature of any cluster is that it can be subdivided into

two regions: backbone and a set of dead-ends, so that backbone connects remote

parts of the cluster and all of them are linked to backbone, each at a single site,

while being isolated from each other. It is important to note that the fractal

dimension of dead-ends is greater than that of backbone (see Fig. 10.7.1). Scalar

particles occurring within backbone will be called “active.” The total number of

active particles decreases with time, since they are lost in dead-ends and localized

in small clusters. This implies that effective transport can be even subdiffusive if we

consider finite time intervals.

Indeed, there exist two different time intervals. In the framework of the coastline

phenomenology, the key value is the characteristic correlation time, tðe�Þ � Lðe�Þ
V0

.

The first case when

t > tðe�Þ � Lðe�Þ
V0

(10.7.1)

was preliminary considered above on the basis of the conventional definition of the

diffusion coefficient,

Deff / a2ðe�Þ
tðe�Þ : (10.7.2)

The second case corresponds to the interval

t � tðe�Þ � Lðe�Þ
V0

: (10.7.3)

Dead ends

Fig. 10.7.1 Schematic

diagram of a percolation

network (nodes-links-blobs

(NLB) model)
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Here, particles are captured by dead-ends and localized in small clusters, and

that is why the mean squared displacement of tracer is less than the correlation

spatial scale R2ðtÞ < a2. In some sense, the percolation cluster looks like a labyrinth

for walking scalar particles. It is convenient to introduce the estimate of the mean

squared displacement of tracer particles in the following form:

R2ðtÞ / a2P1ðtÞ; (10.7.4)

where P1 is an additional factor, which describes the part of space related to

“active” motion of scalar particles. We expect that the effective transport will be

anomalous so that

R2ðtÞ / t2H; (10.7.5)

where H is the Hurst exponent. By establishing the relation between the phenome-

nological expression for R2ðtÞand the conventional probabilistic representation

R2ðtÞ / d NðtÞDCOR
2; (10.7.6)

we conclude that the additional factor P1 introduced above could characterize the

fractal dimensionality effects as well as time dependence. This is a great advantage

of the two-dimensional percolation model. Here, d is the space dimensionality,

DCOR is the spatial correlation scale, and N is the number of steps. Simplified

estimates of effective transport for comb structures give the value of the Hurst

exponent H ¼ 1=4, which could be considered as a lower boundary. Thus, we

expect that 1=4< H< 1=2. The reader can find more discussions on this subject

in the section devoted to the percolation description of transport in chaotic flows in

the framework of the renormalization technique.

Further Reading

Percolation Concept

A. Bunde, S. Havlin (eds.), Fractals and Disordered Systems (Springer, Berlin,

1995)

J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University

Press, Cambridge, 2000)

B. Duplantier, Brownian Motion, Poincare Seminar, p. 201 2005

J. Feder, Fractals (Plenum Press, New York, 1988). Department of Physics

University of Oslo, Norway

D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985)
R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1998)

178 10 Transport and Complex Structures



Phase Transitions

J. Cardy (ed.), Finite-Size Scaling (Elsevier, Amsterdam, 1988)

L.P. Kadanoff, Statistical Physics: Dynamics and Renormalization (World Scien-

tific, Singapore, 1999)

V. Privman (ed.), Finite Size Scaling and Numerical Simulation of Statistical
Systems (World Scientific Publishing, Singapore, 1990)

H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena
(Clarendon Press, Oxford, 1971)

J.M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously
Disordered Systems (Cambridge University Press, London, 1979)

Percolation and Transport

A.J. Chorin, Vorticity and Turbulence (Springer, New York, 1994)

W.C. Conner, J. Fraisserd, Fluid Transport in Nanoporous Materials (Springer,

Berlin, 2006)

J.-F. Gouyet, Physics and Fractal Structure (Springer, Berlin, 1996)
A. Hunt, Percolation Theory for Flow in Porous Media (Springer, Berlin, 2005)

M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992)

M. Sahimi, Application of Percolation Theory (Taylor and Francis, London, 1993a)
M. Sahimi, Rev. Mod. Phys. 65, 1393 (1993b)

Further Reading 179



Chapter 11

Fractional Models of Anomalous Transport

11.1 Random Walks Generalization

In the framework of the probabilistic approach to transport in random flows, the

probability density rð~r; tÞ plays a central role. This is the probability to find a

random walker at time t at distance r from its starting point. In a random system,

rð~r; tÞ contains information on both static disorder and the dynamical process. In

homogenous systems, the probability density is Gaussian and does not depend on

the configuration considered

rð~r; tÞ ¼ drd

ð4pD0tÞd=2
exp � r2

4D0t

� �
: (11.1.1)

Here, D0is the seed diffusion coefficient and d is the space dimensionality.

In random systems, rð~r; tÞ varies from configuration to configuration and

depends on the starting point. To obtain a complete description of scalar particle

diffusion in random systems, one has to study the configurational average of

probability density rðr; tÞ, where the particle density is given by

ð1
�1

nð~r; tÞd~r ¼ Np

ð1
�1

rð~r; tÞd~r: (11.1.2)

Here, Np is the scalar particle number. The variance of the probability density

represents the mean square displacement, from which the diffusion constant and the

conductivity can be obtained. The Fourier transform of rðr; tÞ represents the

scattering function, which is also experimentally accessible.

The anomalous character of transport in random systems has stimulated the

search for transport equations that differ significantly from conventional diffusive

description. Besides the different phenomenological methods of modification of the

diffusion equation, the integral equation can be used to describe the random walk

processes. As early as 1905, Albert Einstein obtained a functional equation for the

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_11, # Springer-Verlag Berlin Heidelberg 2011
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particle density solely on the basis of the general ideas about the process of random

walk [214]:

nðx; tþ tÞ ¼
ðþ1

�1
WEðyÞnðx� y; tÞdy; (11.1.3)

where WEðyÞis the probability density of undergoing a jump y. This fundamentally

nonlocal equation can be made local by reducing it to the conventional diffusion

equation

@nðx; tÞ
@t

¼ D
@2nðx; tÞ
@x2

: (11.1.4)

Here, the diffusion coefficient is given by Brownian type formula

D ¼ 1

t

ðþ1

�1
WEðyÞ y

2

2
dy ¼ y2

� �
2t

: (11.1.5)

The key element in the random walk approach is Markov’s postulate that the

length of the jump y is independent of the prehistory of motion. By introducing the

probability G for a particle at position x at time t to pass over to the interval x0 þ dx0

during the time interval dt, one obtains the functional equation for the density of

walking particles

@n

@t
¼
ðþ1

�1
Gðx� x0Þnðt; x0Þdx0: (11.1.6)

This representation demonstrates the nonlocal character of transport (see

Fig. 11.1.1). Linear equation always provides the best conditions for an analysis.

The Einstein functional is linear and it is more convenient here to switch to the

Fourier representation for the particle density n(x, t) and the functional kernel G(x)
with respect to the variable x. Formal manipulations yield the equation

@~nkðtÞ
@t

¼ ~Gk~nkðtÞ; (11.1.7)

which indicates the absence of memory effects for the Fourier harmonics.

Here, ~Gk and ~nkðtÞ are the Fourier transformations of the functions G(x) and n(x, t)
with respect to the variable x. The approach based on the Fourier representation of

nonlocal functional equation was developed by Levy and Khintchine, who used the

approximate equation of the scaling form [215]

@~nkðtÞ
@t

¼ �const kj jaL ~nkðtÞ; 0 < aL � 2: (11.1.8)
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It is easy to see that, for aL ¼ 2, we are dealing with the Gaussian distribution

(corresponding to a conventional diffusion equation ~Gk~nk ¼ �D0k
2~nk). Indeed, the

formal approach based on the scale-invariant behavior of the probability density

leads to the relation

nðx; tÞ ¼ t
� 1

aLgðx; aLÞ: (11.1.9)

Then, for the Gaussian distribution with aL ¼ 2, we obtain

gðx; 2Þ ¼ 1

2
ffiffiffi
p

p exp � x2

4

� �
: (11.1.10)

Some other analytic distributions are also known. For the case aL ¼ 1, we obtain

the Cauchy distribution [216]; if aL ¼ 3=2, one arrives at the Holtsmark distribution

[13]. For the case aL ¼ 1=2, we have the Levy–Smirnov distribution [14]. All the

probability densities with aL < 2 have power-law tails and corresponding Levy

flights differ significantly from Brownian walks. The important feature is that the

second and higher order of moments of the distributions with 1 � aL < 2 and all

moments of the distributions with 0 < aL < 1 diverge. There is also an important

result, which follows from the Fourier representation of density n(x, t)

x2
� �1=2 ¼ � @

@k

@

@k
~nkðtÞjt¼0

� �
: (11.1.11)

t

X(t)

Fig. 11.1.1 Schematic diagram of Levy–Chinchine walks
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This expression is useful for relating the transport scaling laws to probabilistic

approximations. Now it is easy to find a relationship between the Hurst exponent H
that describes anomalous transport and the Levy–Khintchine exponent aL that is the
parameter of the kernel power approximation HðaLÞ ¼ 1=aL, where 1 � aL<2.

These results were represented schematically and the reader can find more detailed

information on these topics in numerous publications [13–15].

11.2 Functional Equation for Return Probability

In the previous discussions, we applied the probability to return to the origin at time

t using the Gaussian distribution in the form

Pð0; tÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p d D0t

p exp � x2

4D0t

� �
x!0

/ 1ffiffiffiffiffiffiffiffiffiffiffi
d D0t

p : (11.2.1)

Here, d is the dimensionality of a space and D0 is the diffusion coefficient of

randomly walking particle. This formula describes the probability to return without

excluding that previous returns can already have occurred. To analyze transport in

chaotic flows, where coherent vortices are responsible for trapping effects (see

Fig. 11.2.1), it is natural to introduce the probability P1ðtÞto return to the origin for

the first time at the moment t.
In the framework of the continuous time approach, the functional equation for

the probability to return to the origin for the first time at the moment t can be

represented as the following:

Pð0; tÞ ¼
ðt
0

Pð0; t0ÞP1ðt� t0Þdt0 þ dðtÞ: (11.2.2)

Here, dðtÞ is the delta function, which describes the fact that the scalar particle

that is situated at the origin at the moment under consideration corresponds to the

above definition. On the other hand, the integral part of the relation is responsible

for the contribution from the scalar particles, which come back to the origin at a

time t0 and then will return to the origin after a time interval t� t0. The functional
equation obtained is linear relation and, which is more important, this equation

appears to be a convolution. Therefore, it is relevant to apply the Laplace transform

~FðsÞ ¼
ð1
0

FðtÞ expð�stÞdt: (11.2.3)

Upon substitution, we find the relation

~Pð0; sÞ ¼ 1þ ~P1ðsÞ ~Pð0; sÞ: (11.2.4)
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Fig. 11.2.1 A tracer trapping by vortex structures in a two-dimensional flow (After Danilov [222]

with permission)
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An unknown function for us is the probability P1ðtÞ to return to the origin for the
first time, whereas for the probability Pð0; tÞ we can apply the Gaussian representa-
tion. In the one-dimensional case, we have

~Pð0; sÞ ¼
ð1
t

expð�stÞffiffiffiffiffiffiffiffiffiffiffiffi
4pD0t

p : (11.2.5)

After simple algebra, one finds

~P1ðsÞ ¼
~Pð0; sÞ � 1

~Pð0; sÞ : (11.2.6)

By applying the inverse Laplace transform, one can obtain the solution for the

probability P1ðtÞ to return to the origin for the first time at the moment t.

P1ðtÞ ¼ const

2
ffiffiffiffiffiffiffiffi
p t3

p exp � const

4t

� �
: (11.2.7)

This is the Levy–Smirnov distribution with the asymptotic behavior,

P1ðtÞjt!1 / t�3=2. The corresponding Levy–Khintchine exponent is aL ¼ 1=2.
Discoveries of anomalous diffusion in numerous phenomena have stimulated the

search for transport equations that differ significantly from the conventional diffu-

sive representation. An elegant integral equation corresponding to this problem was

suggested by Einstein and Smoluchowski. However, trapping and memory effects

were not included in that equation. To describe trapping and subdiffusive regimes,

the continuous time random walk model was introduced in [13]. Fortunately,

several detailed reviews [11, 14, 15] have been published recently.

11.3 Ensemble of Point Vortices and the Holtsmark

Distribution

As early as 1919, Holtsmark founded the Levy distribution with aL ¼ 3=2 in

describing the statistical properties of particle ensemble [44]. In the case of chaotic

flows, we can investigate an analogous problem, where a random ensemble of point

vortices can be considered. In a system of point vortices, the motion of each vortex

depends on the influence of other vortices of the ensemble under consideration (see

Fig. 11.3.1). However, in contrast to the Holtsmark model, here we deal with a point

vortex distribution in velocities f(V). The direct use of the Holtsmark distribution

for three-dimensional vortex systems was not confirmed by simulations. However,

numerical simulations of point vortex ensemble on a plane allow one to consider the

Levy distribution as rather correct [217, 218]. Thus, in the two-dimensional case,

the velocity field from point sources is given by
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Vxð~rÞ ¼ � 1

2p

XN
j�1

Gjðy� yjÞ
~r �~rj
		 		2 ¼

X
Vxjð~rjÞ; (11.3.1)

Vyð~rÞ ¼ 1

2p

XN
j�1

Gjðx� xjÞ
~r �~rj
		 		2 ¼

X
Vyjð~rjÞ: (11.3.2)

Below, we consider an ensemble of point vortices with the identical “charges”

Gj ¼ G0. Let the sum N of independent random variables gj be the expression

g ¼
XN
j

gj: (11.3.3)

Then, on the basis of the Markov method we can write the expression for the

probability density

f ðgÞ ¼ d g�
XN
j

gj

 !* +
; (11.3.4)

where h i denotes averaging over an ensemble. In our case, we are averaging over

the ensemble of noncorrelated point vortices. We use here the Fourier transforma-

tion that allows us to calculate the probability density by factorization of its Fourier

transform. Since the Fourier transform of delta function is given by the expression

Fig. 11.3.1 The Holtsmark distribution
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dð~rÞ ¼ 1

ð2pÞ3
ð
d3~k ei

~k~r; (11.3.5)

we find the probability density as

f ð~gÞ ¼ 1

ð2pÞ3
ð
d3~ke

i~k ~G�
PN
j

~gj

� �* +
¼ 1

ð2pÞ3
ð
d3~k ei

~k~GH e
i~k
PN
j

~gj
* +

¼ 1

ð2pÞ3
ð
d3~kfei~kGH ~f kð~kÞg (11.3.6)

In the case under consideration ~gj ¼ ~gjð~rjÞ; therefore, using the factorization of

Fourier transform of distribution function, we obtain

exp �i~k
X
j

~gjð~rjÞ
 !* +

¼P
N

j

d~rj
WV

exp �i~k~gjð~rjÞ
h i
 �

¼ d~r

WV
exp �i~k~gð~rÞ
h i
 �N

(11.3.7)

We used here an approximation of the probability function P in the form

P ¼ d~r=WV . Here, WV is the region volume where “sources” (vortices) creating

the field under consideration are distributed. To investigate statistical properties

of a random field, it is naturally to suppose a large amount of vortices. Then by

applying the classical result

1� z

N

� �N				N!1 � expð�zÞ; (11.3.8)

we rewrite the Fourier transform of distribution density

~fkð~kÞ ¼
ð
d~r

WV
exp �i~k~gð~rÞ
h i
 �N

¼ �ð~kÞ
h iN

(11.3.9)

in the form

~f kð~kÞ ¼ 1� 1� �jð~kÞ
h in oN

¼ 1� 1

N

ð
Nd~rj
WV

1� expð�i~k~gjÞ
h i
 �N

� exp � N

WV

ð
dr 1� exp �i~k~g

h i� �
 �
:

(11.3.10)

It is easily seen that the expression (relation) N=WV corresponds to the spatial

density of vortices nV , which we assume a constant in order to simplify our

calculations. Moreover, the condition N ! 1 allows us to use the result obtained
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to analyze a field of point vortices, where the summation does not include a

contribute of the vortex situated in the point under analysis. Then the expression

for the Fourier transform of probability density is given by

~fkð~kÞ ¼ exp �nV

ð
ð1� exp �i~k~gð~rÞ

h i
Þ d~r


 �
: (11.3.11)

Let the value g is approximated by

gð~rÞ ¼~r

r

1

rgV

� �
: (11.3.12)

Then, the formal integration over the space with d-dimensions, where

d~r ¼ rd�1dr leads to the expression for the Fourier transform of Levy distribution

~fkð~kÞ ¼ exp �nV

ð
1� exp i

~k~r

rgVþ1

 !" #
d~r

( )
¼ exp �const � k d

gV

n o
: (11.3.13)

The Levy exponent of the distribution aL depends on a space dimensionality d
and the exponent gV :aLðd; gVÞ ¼ d

gV
. The power tail of the distribution function is

given by

f ðgÞ / 1

gaLþ1
: (11.3.14)

For the gravity case gV ¼ 2 (an acceleration a is proportional inversely to the

squared distance) in three-dimensional space d ¼ 3, the Holtsmark exponent is

aL ¼ 3=2 and f ðaÞ / a�5=3. In the case of the two-dimensional (d ¼ 2) point

vortices system, where gV ¼ 1, we find aL ¼ 2, and hence,

f ðVÞ / 1

V3
: (11.3.15)

Such a scaling for the tail of the velocity distribution function is the effective tool

to investigate strongly nonequlibrium systems where stochastic mechanisms of

acceleration or strong spatial gradients form nonexponential distribution [219–221].

11.4 Fractal Time and Scaling

Scaling concept is rather relevant to the anomalous transport problem. To interpret

the scaling representation or the waiting time distribution function, it is convenient

to employ the Weierstrass-like random walk [13]. Consider the effective probabil-

ity distribution cðtÞ, which describes the hierarchy of independent Poisson events
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cjðtÞ ¼ CðNÞjðg0Þj exp �ðg0Þj � t
h i

(11.4.1)

cðtÞ ¼
XN
j

cjðtÞ: (11.4.2)

Here, the normalization condition is given by

ð1
0

cðtÞ dt ¼ 1 (11.4.3)

In the case of g<1 and N � 1, the characteristic times are expressed as

tj ¼ 1=ðqÞj, and hence,

t0 < t1 < t2 <:::: (11.4.4)

By analyzing the expression for the probability density c, we see that the

smallest time contributes most. For the hierarchy under consideration, we have

c0 ¼ C0 exp � t

t0

� �
; c1 ¼ C1 exp � t

t1

� �
; . . . ;cj ¼ Cj exp � t

tj

� �
; (11.4.5)

where

t0 ¼ 1; t1 ¼ 1

g0
; t2 ¼ 1

g02
; . . . tj ¼ 1

g0j
(11.4.6)

Let us build the condition to obtain the effective probability density in the scale-

invariant form. After simple algebra, we derive

cðtÞ ¼ 1� N

N
N g0 expð�g0tÞ þ N2g0

2 expð�g0
2tÞ þ :::

� 

(11.4.7)

cðg0 tÞ ¼ 1� N

N
N g0 expð�g0

2tÞ þ N2g0
2 expð�g0

3tÞ þ :::
� 
 �

cðtÞ
N g0

� ð1� NÞg0 expð�g0tÞ
(11.4.8)

In the case when

1

N g0
� ð1� NÞg0 (11.4.9)
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the effective probability density is scale-invariant and is given by the formula

c g0tð Þ ¼ cðtÞ
N g0

: (11.4.10)

Now we arrive at the asymptotic representation for the waiting time distribution

function cðtÞ

cðtÞ / 1

t1þg for t ! 1; (11.4.11)

where the characteristic exponent g is given by

g ¼ lnN

ln g0
¼ ln 1

N

ln t0
(11.4.12)

These calculations demonstrate how the waiting time distribution function cðtÞ
can be interpreted in terms of fractal representation.

The waiting time distribution function must be the effective tool to investigate

trapping effects in flows with vortex structures (see Fig. 11.4.1). Indeed, in the case

of one-dimensional system of regular situated vortices (array of rolls) it is possible

to find a scaling for the effective transport. Suppose that all of the tracer is initially

released in a single cell. The main question is: how many cells, N(t), have been

invaded by tracer at time t? In the presence of seed diffusion, we expect that

Fig. 11.4.1 The stream function of two-dimensional turbulent flow. (After Rhines [169] with

permission)
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NðtÞ /
ffiffiffiffiffiffiffi
D0t

p
: (11.4.13)

With certain restriction, this t1/2-law is correct. However, there is an intermediate

stage

t � L0
2

D0

(11.4.14)

where the waiting time between two “jumps” is an important factor. Here, L0 is the
cell characteristic scale. Below we consider the case of one-dimensional array of

rolls in more details.

For the general two-dimensional case, there are anomalies if the velocity field is

frozen in time. In this case, a finite fraction of the scalar particles is trapped, since

the streamlines must form closed loops in the neighborhoods of local maxima and

minima of the stream function. This forms trapping regions and leads to the

appearance of “coherent” behavior in some spatial regions separated from each

other (see Fig. 11.4.2). Such coherent structures in the form of long-living vortices

considerably change the character of transport in chaotic flows in comparison with

the conventional diffusion.

11.5 Fractional Derivatives and Anomalous Diffusion

One of the valuable concepts used to study various transport processes is scaling.

Scaling has a surprising power of prediction, simple manipulations allowing one to

connect apparently independent quantities and exponents. We have seen how to

Scalar trapping 

Boundary layers 

n

Vortices

x

Fig. 11.4.2 Vortex structures

and coherent zones
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extend our ideas of using partial differential equations for the possible treatment

of anomalous transport. We have looked at the nonlocal transport equation as

well as the continuous time random walk approach. This allows us to apply the

scaling concept to construct a generalized transport equation. Moreover, it is

possible to introduce a fractional derivative when considering the conventional

one-dimensional diffusion equation

@nðx; tÞ
@t

¼ D0

@2nðx; tÞ
@x2

(11.5.1)

for x> 0 and nð0; tÞ ¼ nIðtÞ, nðx; 0Þ ¼ n0ðxÞ ¼ 0. By taking the Laplace transform,

one obtains

s~nsðs; xÞ ¼ D0

@2~ns
@x2

: (11.5.2)

The solution of this equation is given by the formula

~nsðs; xÞ ¼ ~nI sðs; 0Þ exp �
ffiffiffiffiffiffiffiffi
s

D0x

r
 �
: (11.5.3)

The number of walking particles Np in terms of the Laplace transformation is

represented by the expression

~NpsðsÞ ¼
ð1
0

~nsðs; xÞ dx ¼ ~nI sðsÞ
ffiffiffiffiffiffi
D0

s

r
: (11.5.4)

Note that this leads to the relationship between the number of walking particles

NpðtÞ and the particle distribution function nð0; tÞ ¼ nIðtÞ. In the ordinary variables,
this formula leads to the expression for NpðtÞin the form

NpðtÞ ¼
ðt
0

ffiffiffiffiffiffi
D0

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt� t0Þp nIðt0Þ dt0: (11.5.5)

This coincides exactly with the definition of the fractional derivative of order ½

[223–226]

d1=2f ðtÞ
dt1=2

¼ 1

Gð1� 1=2Þ
d

dt

ðt
�1

f ðtÞ dt
t� tð Þ1=2

: (11.5.6)

The fractional representation could be also obtained for nð0; tÞ ¼ nIðtÞ

nIðtÞ ¼
ðt
0

Nðt0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0pðt� t0Þp dt0: (11.5.7)
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Fractional derivatives provide a rather effective description of long-range

correlations and memory effects. We can also use the symmetric fractional deriva-

tive of an arbitrary order a> 0 that can be defined, for a “sufficiently well-behaved”

function f(x), where �1< x<1, as the pseudodifferential operator

characterized by its Fourier representation,

da

d xj ja f ðxÞ ¼ � kj ja ~f ðkÞ; (11.5.8)

where a > 0 and �1< k<1. Recall that the power form of the Fourier repre-

sentation for the kernel of the nonlocal Einstein functional

~GðkÞ ¼ const kj jaL ; (11.5.9)

where 0< aL < 2, can also be interpreted in terms of fractional derivatives.

Indeed, for the common derivative, we have, by definitionDy ¼ mDx. For a

fractal function, we have (see Fig. 11.5.1)

Dy ¼ mHðDxÞaH ; (11.5.10)

where m and mH are the ordinary derivative and Holder derivative, respectively. More

exactly, forDx< 0 and Dx> 0, the left-hand and right-hand derivatives, mH� and mHþ ,

respectively, must be introduced [223–226]. Of course, this approach is fairly formal.

The model of greatest interest for which fractional derivatives are a natural tool for

investigating anomalous transport is elaborated upon in the following sections.

11.6 Comb Structures and the Fractional Fick Law

Comb structures comprise of a backbone and orthogonal close-ended teeth. Diffu-

sion processes on such structures have been studied intensively because of their

potential relevance to transport processes at the threshold percolation. In this

Δy = μH (Δx)αH
x

yFig. 11.5.1 Schematic

representation of the meaning

of fractional derivation
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setting, the backbone represents the connected pathway, which span the cluster,

while the orthogonal close-ended teeth represent the dead-end pathways, which

emanate from backbone. In the electrical analogy problem, the backbone represents

the conducting pathway and the teeth dangling bonds along which current does not

flow. Comb structures also provide a concrete realization of fractal diffusion

equations and anomalous diffusion [210–212].

Here, transport properties of “regular” comb structures having teeth of uniform

length (see Fig. 11.6.1) are identified in analytical studies. The rigorous description

of a comb structure can be represented on the basis of fractional differential

equation. As usual, a diffusive flux along an axis of comb structure is given by

qx ¼ �Dxx
@n

@x
: (11.6.1)

Here, Dxx ¼ D1dðyÞ. The character of diffusion along the teeth is also usual. We

assume that the diffusion coefficient along the teeth Dyy ¼ D2 differs from the

coefficient corresponding to the axis of a structure. A diffusive tensor for the whole

comb structure has a form

Dij ¼ D1dðyÞ 0

0 D2

� �
: (11.6.2)

Basing on the tensor form of the Fick law ~qd ¼ D̂rn, we derive a diffusive

equation that takes into account anisotropy of transport

@

@t
� D1dðyÞ @2

@x2
� D2

@2

@y2

� �
Gðx; y; tÞ ¼ dðxÞdðyÞdðtÞ: (11.6.3)

Δ

L0

x

Fig. 11.6.1 Schematic

picture of regular comp

structure
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Here, Gðx; y; tÞ is the Green function of the diffusion equation. By applying the

Laplace transformation in time and the Fourier transformation in the longitudinal

coordinate x, we find

sþ D1k
2
x dðyÞ � D2

@2

@y2

� �
~~Gðs; kx; yÞ ¼ dðyÞ: (11.6.4)

To simplify our analysis, let us consider a point source dðxÞdðyÞdðtÞ as initial
data. A solution will be found in an exponential form:

~~Gðs; k; yÞ ¼ ~~gðs; kÞ expð�k0 yj jÞ: (11.6.5)

Substitution of this equation yields the following system of equations:

ðs� D2k0
2Þ ~~Gðs; kx; yÞ ¼ 0; (11.6.6)

ðD1k
2 þ 2k0

2D2Þ dðyÞ ~~gðs; kx; yÞ ¼ dðyÞ: (11.6.7)

The last equation includes a singular coefficient dðyÞ. The system can be easily

solved after we define the value k0 from the above equation k0 ¼
ffiffiffiffi
s
D2

q
. For the

function gðs; kÞ, we obtain

gðs; kxÞ ¼ 1

2D2k0
2 þ D1k2x

: (11.6.8)

Inverse Fourier transformation leads to the Green function

Gðx; y; tÞ ¼
ð1
0

tþ yj jð Þ exp � x2

4D1t
� D2 tþ yj jð Þ2

4t

 !
@t

ffiffiffiffiffiffi
D3

2

p
p
ffiffiffiffiffiffiffiffiffiffiffi
D1t3t

p ; (11.6.9)

where the following normalization was used:

ð1
0

expð�ctÞ dt ¼ 1

c
(11.6.10)

Easy calculations confirm that transport along the axis of comb structure appear

to be anomalous

x2ðtÞ� � ¼ D1

ffiffiffiffiffiffi
t

D2

r
: (11.6.11)

This coincides with the elementary scaling estimates. In conformity with the

initial suppositions, transport along teeth has a classical diffusive character:
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y2ðtÞ� � ¼ 2D2t. Different generalizations of this model are naturally possible due to

different complications of comb structure topology.

To obtain the generalized diffusion equation in the two-dimensional case, let us

consider the solution obtained in more detail. To this end, the Fourier transform of

this solution in the coordinate y is performed:

Gðs; kx; kyÞ ¼ 2ly
ð2D2lþ D1k2Þðl2 þ k2yÞ

: (11.6.12)

Accordingly, the following diffusion equation for the anisotropic random walks

on the comb structure is obtained:

ð2D2lþ D1k
2Þ l

2
þ k2y
2l

 !
nðs; kx; kyÞ ¼ 0: (11.6.13)

With the neglect of the product (k2x � k2y ) in this equation (this is possible at large
scales), the following effective equation in the ðs; kx; kyÞ representation is obtained:

sþ D1

2
k2x

ffiffiffiffiffiffiffiffiffiffi
s

D2

þ
r

2D2ky
2

� �
nðs; kx; kyÞ � 0: (11.6.14)

In the usual (x, y, t) representation, the effective diffusion equation has the form

@

@t
� D1

2
ffiffiffiffiffiffi
D2

p @2

@x2
@1=2

@t1=2
� D2

@2

@y2

� �
nðt; x; yÞ � 0 (11.6.15)

Thus, the operator expression for the effective diffusion tensor in the generalized

Fick law is obtained:

D̂eff ¼
D1

2
ffiffiffiffi
D2

p @1=2

t1=2
0

0 D2

 !
: (11.6.16)

In the case of the three-dimensional comb structure, the random walk is

described by the diffusion tensor of the form

Dij ¼
~D1dðyÞdðzÞ 0 0

0 ~D2dðzÞ 0

0 0 ~D3

0
@

1
A: (11.6.17)

Accordingly, the diffusion equation has the form

@

@t
� ~D1dðyÞdðzÞ @2

@x2
� ~D2dðzÞ @2

@y2
� D3

@2

@z2

� �
� Gðt; x; y; zÞ ¼ dðxÞdðyÞdðzÞdðtÞ

(11.6.18)
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The solution of the three-dimensional problem will be represented in the form

Gðx; kx; y; zÞ ¼ gðs; kxÞ expð�ly yj j � lz zj jÞ: (11.6.19)

After the substitution of this solution into the fractional differential equation, the

parameters lyand lz and the function gðs; kxÞ are determined in the form

lz ¼
ffiffiffiffiffiffi
s
~D2

r
; ly ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ~D3lz
~D2

s
; gðs; kÞ ¼ 1

2 ~D2lþ ~D1k2
: (11.6.20)

The Fourier transform in the coordinates y and z provides the Green’s function
for three-dimensional case:

Gðkx; ky; kz; sÞ ¼ 4lylz
ð2 ~D2lþ ~D1kx

2Þðl2y þ k2yÞðl2z þ k2z Þ
: (11.6.21)

The effective diffusion equation for the three-dimensional anisotropic case is

obtained with the use of the above consideration:

sþ
~D
3=4
1

ffiffi
s

p

21=4
ffiffiffiffiffiffiffiffiffiffiffi
~D3

~D2
2

q k2x þ 2 ~D2

ffiffiffiffiffiffi
s
~D3

r
ky

2 þ ~D3k
2
z

0
B@

1
CA

� nðs; kx; ky; kzÞ � 0

(11.6.22)

or, in the usual representation,

@

@t
�

~D1

2

ffiffiffiffiffiffiffiffiffiffiffi
~D3

~D2
2

q @2

@x2
@3=4

@t3=4
� 2 ~D2ffiffiffiffiffiffi

~D3

p @2

@x2
@1=2

@1=2
� ~D3

@2

@z2

0
B@

1
CA� nðs; kx; ky; kzÞ � 0

(11.6.23)

Therefore, the effective diffusion tensor in the Fick’s law for the three-dimen-

sional anisotropic walk on the comb structure has the form

D̂eff ¼

~D1

2
ffiffiffiffiffiffiffiffi
~D3

~D2
2

p @3=4

@t3=4
0 0

0 2 ~D2ffiffiffiffi
~D3

p @1=2

@t1=2
0

0 0 ~D3

0
BB@

1
CCA: (11.6.24)

198 11 Fractional Models of Anomalous Transport



The anomalous random walk on the multidimensional comb structure in the

asymptotic limit of large times (large scales) is described by the effective diffusion

equations containing not only the usual spatial derivatives, but also fractional time

derivatives. Such a representation is associated with the subdiffusion character of

random walks on the multidimensional comb structure.

11.7 Diffusive Approximation and Random Shear Flows

In the above discussion, we have seen how to construct and solve fractional

differential equations modeling phenomena that have long-time memory and/or

long-range interactions. We have seen that the long-range power-law correlations

that characterize anomalous transport result in a non-Markovian description of the

underlying process. Here, the diffusive renormalization of quasilinear equations for

scalar transport is analyzed in the framework of the random shear flow model

(Dreizin–Dykhne flow; Fig. 7.7.1), which is the best illustration of the above thesis.

At this stage, we are able to treat random shear flows with non-Gaussian

longitudinal correlations. In the model under analysis, the transversal and longitu-

dinal correlation effects are separated. In fact, the Eulerian correlation function

could be represented by the scaling in the form

Cðl==Þ / V?2ðl==Þ / 1

laE==
: (11.7.1)

Here, aE is the correlation exponent. Such a representation allows us to consider

random flows, where anisotropy effects play an important role. For the effective

transverse transport, one can employ the ballistic estimate in the form

l?ðtÞ / V?ðl==Þ t: (11.7.2)

Here, l? is the perpendicular displacement and l== is the longitudinal displace-
ment. In the case under analysis, we are dealing with the diffusive character of

longitudinal motion. This leads to the scaling for the longitudinal displacement

l== �
ffiffiffiffiffiffiffiffiffiffi
2D0t

p
. Upon substitution of this estimate into the formula for the perpen-

dicular displacement, we find the scaling,

l?ðtÞ / t

laE==ðtÞ
/ t1�aE=4: (11.7.3)

The expression for the Hurst exponent takes the form

HðaEÞ ¼ 1� aE
4
; (11.7.4)
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where 0 � aE � 2. Note that for aE > 2 this scaling yields the subdiffusive regime,

which contradicts the initial assumptions about the incompressibility of the flow

and using the streamline concept.

Now we obtain an equation for the passive tracer density under conditions when

longitudinal correlation effects can be approximated by the longitudinal diffusive

term D0
@2n1
@z2 . Thus, in the two-dimensional case the corresponding renormalized

equations have the form

@n0
@t

¼ �hVXðzÞ @n1
@x

i; (11.7.5)

@n1
@t

¼ D0

@2n1
@z2

� VXðzÞ @n0
@x

: (11.7.6)

Here, D0 is the seed diffusion. The dependences n0 ¼ n0ðx; tÞ and n1 ¼ n1ðx; z; tÞ
were used to describe the two-dimensional case. Using the Laplace transformation

over t and the Fourier transformation over z, one obtains

s~n0ðs; xÞ � n0ðx; 0Þ ¼ ~DðsÞ @
2~n0
@x2

; (11.7.7)

~DðsÞ ¼ limL0!1
1

2L0

ðL0
�L0

dz

ð1
�1
dz0

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s z� z0j j2=D0

q� �
ffiffiffiffiffiffiffiffi
D0s

p VXðzÞVXðz0Þ

8>><
>>:

9>>=
>>;:

(11.7.8)

Then, one can write a diffusion equation for the model of random drift flows.

Indeed, the “renormalization” of the quasilinear equations allows us to obtain the

transport equations, which differ significantly from the classical diffusion equation.

The correlation function KCð z� z0j jÞ ¼ VXðzÞVXðz0Þ can be represented in the

power form

KCðwÞ ¼ KCð z� z0j jÞ / V2
0

1þ waE
: (11.7.9)

In terms of the Laplace transformation, the renormalized transport equation

takes the form

s~n0ðs; xÞ � n0ðx; 0Þ ¼ V2
0ffiffiffiffiffiffi
2D

p
0

s

2

� �aE
2
�1 @2~n0

@x2
: (11.7.10)

By changing to the dependence in time, we obtain the fractional differential

equation [188, 227]

@gn0
@tg

¼ V2
0

affiffiffiffiffiffiffiffi
2D0

p
� �aE @2n0

@x2
� n0ð0; xÞ

2
ffiffiffi
p

p
tg

; (11.7.11)
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Here, the order of the derivative with respect to time g depends on the parameter aE,

gðaEÞ ¼ 2HðaEÞ ¼ 2� aE
2

; (11.7.12)

which describes correlation properties in the longitudinal direction. In the case of

incompressible flows, subdiffusive regimes are impossible and aE � 2. The special

case aE ¼ 1 corresponds to a white spectrum and recovers the anomalous diffusion

found previously by Dreizin–Dykhne with H ¼ 3/4. A fractional differential equa-

tion for the Dreizin–Dykhne model is the following:

@3=2n0ðt; xÞ
@t3=2

¼ @2

@t2

ðt
0

n0ðt0; xÞdt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðt� t0Þp ¼ V2

0affiffiffiffiffiffi
2D

p
0

@2n0ðt; xÞ
@x2

� n0ð0; xÞ
2
ffiffiffi
p

p
t3=2

: (11.7.13)

For 0 � aE � 2, one has superdiffusion, while for aE >2 we arrive to the

conventional diffusive behavior.
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Chapter 12

Isotropic Turbulence and Spectra

12.1 The Reynolds Similarity Law

The knowledge gained from similarity theory is applied in many fields of natural

and engineering science, among others, in fluid mechanics. In this field, similarity

considerations are often used for providing insight into the flow phenomenon

and for generalization of results. The importance of similarity theory rests on the

recognition that it is possible to gain important new insights into flows from the

similarity of conditions and processes without having to seek direct solutions for

posed problems. Thus, the Navier–Stokes equation of motion for a Newtonian fluid

is given by

@~u

@t
þ ð~u rÞ~u ¼ � 1

rm
rpþ nFD~u; (12.1.1)

where ~uð~r; tÞis the Eulerian velocity, rm is the density, and nF is the kinematic

viscosity. It is well known that the properties of a flow on all scales depend on the

Reynolds number [228–233]

Re ¼ V0L0
nF

: (12.1.2)

Here, V0 is a typical macroscopic velocity and L0 is a typical gradient scale

length. Flows with Re < 100 are laminar. On the other hand, fluids and plasmas

often exhibit a turbulent behavior. The standard criterion for turbulence to develop

is that the Reynolds number must be sufficiently high (see Fig. 12.1.1). Especially

in the astrophysical system, due to the large spatial scales, Reynolds numbers are in

general huge and most environmental and astrophysical fluids and plasmas are

therefore observed or expected to be strongly turbulent.

In similarity considerations, strictly, only quantities with the same physical units

can be included. The “dimensionless proportionality factors” of the different terms

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_12, # Springer-Verlag Berlin Heidelberg 2011
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of a physical relationship computed from it by dividing all terms by one term in the

equation are designated similarity numbers or dimensionless characteristic numbers

of the physical problem. Physical processes of all kinds can thus be categorized as

similar only when the corresponding dimensionless characteristic numbers, defin-

ing the physical problem, are equal. This requires, in addition, that geometric

similarity exists and the boundary conditions for the considered problems are

similar. The concept of similarity can therefore only be applied to physical pro-

cesses of the same kind, i.e., to fluid flows or heat transport processes separately.

When certain relationships apply both to flow processes and to heat transfer

process, one talks of an analogy between the two processes.

In order to illustrate the sort of way in which Reynolds number can affect the flow

configuration, we shall consider a specific geometry, namely an infinite circular

cylinder in an otherwise unbounded fluid (see Fig. 12.1.2), the flow far from the

cylinder being uniform. The Reynolds number appropriate to this problem is

Fig. 12.1.1 Example of a

turbulent flow at about

Re ¼ 5,500 (After Papailiou

and Lykoudis [234] with

permission)
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Re ¼ V0 L0=nF, where V0 is the velocity of the fluid far from the cylinder and L0 is
the diameter of the cylinder.

To describe flow processes, it is necessary to integrate the conservation laws just

derived. Since the integration of these equations in closed form is, in general, not

possible because of the inherent mathematical difficulties, flows are often investi-

gated experimentally. Fluid mechanical and thermodynamic data are measured

with models geometrically similar to the full-scale configuration, for which the

flow is to be determined. However, since in general the models are smaller in size,

the measured data have to be applied to the full-scale configuration with the rules

of the theory of similitude. This theory makes use of similarity parameters, in which

the characteristic quantities with physical dimensions of the flow considered are

combined to dimensionless quantities. Two flows about geometrically similar

bodies are called similar, if the individual similarity parameters have the same

value for both flows. The similarity parameters, which are important for the flow

process considered, can either be determined with the method of dimensional

analysis applied to the physical properties of the flow or by nondimensionalizing

the conservation equations.

12.2 Cascade Phenomenology

Most of the water and air around us is in turbulent states. The complexity of the

shape of cigarette smoke is also due to turbulence. On the other hand, observed

features such as star-forming clouds and accretion discs are very chaotic with

Re � 108. Chaotic structures develop gradually as Re increases, and those with

Re ~ 103 are appreciably less chaotic than those with Re ~ 107. Indeed, when the

t 

V(t) 

Laminar flow 

t 

V(t) 

Turbulent flow 

Fig. 12.1.2 Flows of water

past a cylinder for different

values of the Reynolds

number
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Reynolds number is small, viscosity stabilizes the flow. When it is greater than 104,

the flow is unstable and becomes turbulent. For water at room temperature, nF is

about 102 cm2/s; hence, flow becomes turbulent for relatively small L0 and V0 – for

example L0 � 10 cm and V0 � 10 cm=s. Nearly the same estimate can be made for

air.

In 1941, Kolmogorov introduced a statistical theory of small-scale eddies in high

Reynolds number incompressible turbulence [235, 236]. The theory was based on

two fundamental hypotheses: first, the distribution of the velocity difference

dVlðlÞ ¼~l r ~uð~rÞ (12.2.1)

between two points in space is a universal function, depending only on the spatial

separation ~l
��� ���, the kinematic viscosity nF, and the mean energy dissipation per unit

mass eK

eK ¼ nF
4

X
i; j

@ui
@xj

þ @uj
@xi

� �2
* +

; (12.2.2)

where :::h i denotes an ensemble average. For instance, the mean atmospheric

dissipation rate is of order 1:5� 10�6 m2=s3. Second, when the spatial separation

is sufficiently large compared with the characteristic dissipation length scale, the

distribution does not depend on nF. From these hypotheses and dimensional analy-

sis, Kolmogorov deduced that, while the stirring force that creates turbulence will

surely vary from flow to flow and will affect the turbulence characteristics, the

small-scale/high-wave number motions at which dissipation takes place develop a

common form for all flows. If this is true, it can be argued that the equilibrium state

should be scaled by the viscosity nF and dissipation rate eK . In this case, the length

scale and characteristic timescale are given by

ln � nF3=4

e1=4K

; tn ¼ nF
eK

� �1=2

: (12.2.3)

They are known as the Kolmogorov length and timescale, respectively, and they

should be good yardsticks of dissipative phenomena. Typically ln � 1=4mm

(strong wind tunnels) to 8 mm (mean atmosphere). Additionally, a velocity scale

Vn ¼ ln
tn

¼ ðnFeKÞ1=4 (12.2.4)

can be formed on the basis of the Kolmogorov length and timescale. Typically Vn �
60mm=s (strong wind tunnels) to 2 mm/s (mean atmosphere).

Because of additionally assumed statistical isotropy, the field increments

depend solely on l, which allows one to define the characteristic eddy velocity
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Vl ¼ dV2
l

� �1=2
, or in terms of spectral terminology often used in turbulence theory

Vk ¼ d V2
k

� �1=2
, where k is the wave number, k � l�1ðkÞ ¼ lk. There are three scale

ranges (see Fig. 12.2.1): the energy-containing scales, driving the flow, the inertial

range, where nonlinear interactions govern the dynamics and the influence of

driving and dissipation is negative, and the dissipation range at smallest scales,

where dissipative effects dominate, removing energy from the system. Suppose that

the fluid motion is excited at scales LE and greater. A far-reaching idea of

Kolmogorov was that of an inertial subrange (kE � k � kv) consisting of a section
of wave number space between kE and kn

kE ¼ 1

LE
; kn ¼ 1

ln
/ Re3=4kE; (12.2.5)

where energy cascade toward small scales without significant dissipation or pro-

duction. In principle, such a picture was already in the mind of Richardson about 20

years before Kolmogorov when he developed a qualitative theory of turbulence.

Such a cascade in this range of wave numbers would depend on just eK and not nF.
Kolmogorov argued that this has an important consequence for the form of the

energy spectrum function EðkÞ. The one-dimensional energy spectrum is the

amount of energy between the wave number k and (k + dk) divided by dk

V2
k ¼

ð
Dk

EðkÞ dk � kEðkÞ: (12.2.6)

l
k

π2
=

ν
ν

π
l

k
2

=
E

E L
k

π2
=

Inertial interval 

Cascade 

Energy input Energy dissipation 

Fig. 12.2.1 Schematic picture of energy cascade in homogeneous and isotropic turbulence
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Because EðkÞ has units of (length)3/s2, the only form EðkÞ dimensionally consis-

tent with a scaling in terms of k and EK is given by (see Fig. 12.2.2)

EKðkÞ / CKk
�5=3eK2=3; (12.2.7)

where CK is the Kolmogorov constant and kE � k � kv.
Indeed, within the internal range the statistical properties of the turbulence are

determined by the local wave number k and eK, the rate of cascade energy, which is
scale-independent,

eK / V3
k

lk
/ V2

k

tKðkÞ /
V2
k

kVkð Þ�1
: (12.2.8)

The energy cascades through nonlinear interactions to progressively smaller

and smaller scales at the eddy turnover rate, tKðkÞ � 1=VkðkÞk, with insignificant

energy losses along the cascade. From this relation, we obtain

tKðkÞ � 1

eK1=3k2=3
(12.2.9)

Vk � eKlkð Þ1=3 � eK
k

� �1=3

; (12.2.10)

EKðkÞ / kV2
k / k�5=3eK2=3: (12.2.11)

This prediction of a�5/3 spectrum is amenable to experimental verification and,

in fact, has been observed to occur in a wide range of turbulent flows at high

5 / 3~(k) kEK

log klog klog kE

log E (k)

Energy 
cascade 

Fig. 12.2.2 A typical plot

of Kolmogorov energy

spectra in fully developed

homogeneous isotropic

turbulence
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Reynolds numbers [75–78] with the typical value CK ¼ 1:6. Results accumulated

from many different experiments in different types of turbulent flows (particularly

from atmospheric and oceanographic turbulence) and covering a very wide range of

wavenumbers are shown in Fig. 12.2.3.

12.3 The Taylor Microscale

The important feature, which has been realized in [235], was the idea of a virtually

continuous range of eddy sizes, with turbulent energy being handed down from

larger to smaller eddies and ultimately dissipated in viscous action. It is natural to

employ the expression for the mean energy dissipation per unit mass eK

eK ¼ nF
4

X
i; j

@ui
@xj

þ @uj
@xi

� �2
* +

; (12.3.1)

to obtain one more characteristic scale. In the framework of dimensional analysis,

the mean energy dissipation can be represented as

eK ¼ nF
V0

2

lT
2
: (12.3.2)

Here, lT is the Taylor microscale and V0 is the turbulent fluctuation amplitude.

The Taylor spatial scale is an intermediate one because it is less than macroscale L0

and greater than the Kolmogorov viscous spatial scale ln � nF3=4

e1=4
K

ln � lT � L0: (12.3.3)

Initially, the Taylor microscale was introduced to characterize the Eulerian

correlation function behavior

lT / � CEð0Þ
2C00

Eð0Þ : (12.3.4)

Here, CEð~rÞ is the Eulerian correlation function.

By using the estimate of the dissipation rate in the following form:

const � eK / V0
3

L0
/ V3ðlÞ

l
(12.3.5)

one can find the relation among the characteristic scales, which are often used in

cascade phenomenology
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Fig. 12.2.3 Kolmogorov’s universal scaling for one-dimensional longitudinal power spectra. The

present min-layer spectra for both free-stream velocities are compared with data from other

experiments. (After Saddoighi and Veeravalli [237] with permission)
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ln / lT
Re1=2

� lT / L0
Re1=2

� L0: (12.3.6)

In a typical grid turbulence laboratory experiment, the large scale L0is of order of
5 cm, whereas the Taylor microscale is approximately 2 mm and the viscous

Kolmogorov spatial scale is about 0.1 mm.

The original Taylor definition is slightly different from the definition represented

above. He used the formula for the isotropic turbulence in the rigorous form

eK ¼ 15nF
u2i
� �
l2T

; (12.3.7)

where ui is i-component of the velocity fluctuation and the coefficient 15 in this

representation is considerably large than one because so many components are

involved. The Taylor microscale can be relatively easily experimentally measured.

However, to discuss scaling arguments the simplified definition is also suitable.

12.4 Dissipation and Kolmogorov’s Scaling

There is no commonly accepted unique definition of turbulent flow, and it is usually

identified by its main features. Turbulence implies fluid motion in a broad range of

spatial and temporal scales, so that many degrees of freedom are excited in the

system. The viscous dissipation characteristic scale is given by the relation

ln / nF3

eK

� �1=4

: (12.4.1)

By applying the Kolmogorov hypothesis

const � eK / V3
k

lk
/ V2

0

L0
; (12.4.2)

we arrive at the scaling for the characteristic length in the form

lnðV0Þ / 1

V0

� �3=4

: (12.4.3)

This means that the depth of the Kolmogorov cascade penetration scales

inversely with the turbulent fluctuations amplitude.

Let us estimate the number of degrees of freedom excited in developed turbu-

lence on the basis of the dissipation length scale. Since structures of size
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l � ln / 1

kn
(12.4.4)

are ironed out by viscous dissipation and slaved to larger scales, we have only to

count the number of presumably independent structures of size approximately equal

to ln in a domain of volume L3E . This leads to the estimate of the number of degrees

of freedom excited in a turbulent flow

N� / LE
ln

� �3

/ kn
kE

� �3

/ k3ER
9=4: (12.4.5)

However, nonlinear interactions are expected to reduce this number in much the

same way as in weakly confined systems. Furthermore, the assumption of a constant

energy transfer rate all along the cascade, which is the basis of the Kolmogorov

similarity approach, implicitly contains the idea that the energy transferred was

equally shared by all the daughter eddies at half scale.

The information regarding the similarity concept can be looked at from another

point of view. In the inviscid limit, the Navier–Stokes equation is invariant under

the rescaling,

x ! x0 ¼ lx; (12.4.6)

t ! t0 ¼ lð1�aI=3Þt; (12.4.7)

u ! u0 ¼ laI=3u; (12.4.8)

for any aI . Note that in a general case the values of the scaling exponent aI are
limited by requiring that the velocity fluctuations do not break incompressibility.

In the context of the well-developed turbulence description, let us consider the

local dissipation rate er, which is dimensionally given by the simple estimate

er / u3r
r , and hence scales as laI�1. This would mean that

er
eL0

/ r

L0

� �aI�1

: (12.4.9)

The constancy of er in the Kolmogorov picture now suggests aI ¼ 1 in three-

dimensional space.

The scaling behavior is one of the most intriguing aspects of fully developed

turbulence. Indeed, this is an important property of turbulent Navier–Stokes fluids

that everybody agrees on now that the dissipation rate is not determined by anything

microscopic or molecular that happens. There is no parameter that governs the

dissipation rate; rather the fluid dissipates whatever you throw at it. If you stir the

fluid harder, the spectrum just moves a little farther out in k space until it finds a

place where the energy can be dissipated at the same rate it is being injected.
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12.5 Acceleration and Similarity Approach

The fluid particle acceleration is among the most natural physical parameters of

interest in turbulence research. The material derivative of the velocity vector is

given by the Navier–Stokes equation

~A ¼ D~A

dt
¼ @~u

@t
þ ð~u rÞ~u ¼ � 1

rm
rpþ nFD~u; (12.5.1)

where ~Að~r; tÞis the Eulerian acceleration, p is the pressure, rm is the density, and nF
is the kinematic viscosity. In fully developed turbulence, the viscous damping

term is small compared to the pressure gradient term and therefore the acceleration

is closely related to the pressure gradient. Basing on the Kolmogorov theory of

isotropic turbulence, it can be argued that the acceleration should be scaled by the

viscosity nF and dissipation rate eK . In the case under consideration, one finds [238]

A / eK3

nF

� �1=4

: (12.5.2)

Indeed, the acceleration must scale with the dissipation rate eK and it scales

inversely with the viscosity nF. In terms of dimensional arguments, this means

A½ 	 ¼ m2

s3

	 
x
s

m2

h iy
¼ m

s2

h i
: (12.5.3)

After simple algebra, one obtains the conditions

2x� 2y ¼ 1; 2x� y ¼ 2: (12.5.4)

Hence, the exponents of interests are x ¼ 3=4, y ¼ �1=4. The classical predic-
tion of the variance of acceleration components (correlation function) is

AiAJh i ¼ const
eK3

nF

� �1=2

dij: (12.5.6)

Recent measurements indicate that this scaling is observed for the large Reynolds

numbers 500<Re< 1; 000 [239]. It was found that the acceleration is a very

intermittent variable with extremely large acceleration arising in structures.

The use of accelerations in a chaotic flow description possesses a large potential.

Thus, it would be fruitful to employ not only the phase space, but also the accelera-

tion space to treat nontrivial effects of turbulent transport. The situation at hand is

close to that with the one-dimensional kinetic equation considered by Kramers. In

order to achieve the Markovian character of the processes under the conditions of
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spatial nonuniformity, he had to introduce an additional independent variable

(velocity). In phase space, this made it possible to describe transport in nonuniform

media, where the density gradient plays an essential role. In the anomalous trans-

port description, applying the acceleration space could give additional degrees of

freedom to treat nonlocal and memory effects [240].
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Chapter 13

Turbulence and Scalar

13.1 Scalar in Inertial Subrange

Velocity field generates fluctuations of various scalar quantities y in the turbulent

flow: temperature, pressure, humidity, and so on (see Fig. 13.1.1). Soon after

Kolmogorov’s first seminal papers on energy spectrum of turbulence, cascade

ideas were applied to passive scalars advected by turbulence [241, 242]. This is

the problem of determining the statistical properties of the distribution of a scalar

field that is convected and diffused within a field of turbulence of known statistical

properties. The advection–diffusion equation is given by

@y
@t

þ~u � ry ¼ D0r2y; (13.1.1)

where D0 is the molecular diffusivity and ~u is the advection velocity, which is

nondivergent. The dissipation rate of the scalar ‘energy’ y2
� �

can be described by

the equation, which is similar to the energy conservation law

@ y2
� �
@t

¼ �2D0 ryj j2
D E

: (13.1.2)

Fourier component of the spectrum of y is changed by the interaction between y
and~u; other Fourier components are changed simultaneously in such a way that the

sum of the contributions to y2
� �

from all Fourier components remains the same.

This shows that y variance is simply transferred from small to large wave numbers

in the advection subrange and ey is a given constant quantity. The dissipation rate of
the scalar ‘energy’ y2

� �
is also the spectral transfer rate. By following the line of

argument of Obukhov and Corrsin, we suppose that the seed diffusivity D0 is so

small as to make the effect of diffusion appreciable only at the large wave number

end of the spectrum. By keeping the Kolmogorov estimate for the characteristic

time of nonlinear interaction in the case of scalar cascade
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tKðkÞ � l

VðlÞ /
l

ðeKlÞ1=3
/ 1

eK1=3k2=3
; (13.1.3)

one can obtain the expression for a scalar flux in the following form:

ey / y2k
tKðkÞ ¼

y2k
ðkVkÞ�1

: (13.1.4)

The scalar spectrum is given by the relation

EyðkÞ ¼
ð
ykj j2dWk (13.1.5)

In the inertial–convective subrange, where neither viscosity nor diffusion is

important the scaling of interest takes the form (see Fig. 13.1.2)

EyðkÞ ¼ y2k
k
/ eytKðkÞ

k
/ CyeyeK�1=3k�5=3; (13.1.6)

where

k > kn / 1=ln / eK
nF3

� �1=4

: (13.1.7)

In this range of wave numbers, the Fourier components of ~u are independent of

viscosity (inertial subrange) and the Fourier components of y are independent of

molecular diffusion (convective subrange). The k�5/3 temperature spectrum has

been observed experimentally in turbulence of sufficiently high Reynolds number

(see Fig. 13.1.3). The parameter Cy, called the Obukhov–Corrsin constant, is found

in the range Cy � 0:45� 0:55 [75–78].

Fig. 13.1.1 The scalar distribution on a two-dimensional plane (After Brethouwer et al. [2] with

permission)
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The scaling for the scalar perturbation on scales of order l is given by the formula

dyðlÞ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eytKðlÞ

p
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eyl

ðeKlÞ1=3
s

/ l1=3; (13.1.8)

~(k) k −5/3Eθ

log kνlog klog kE

(k)log Eθ

Scalar 
cascade 

Fig. 13.1.2 A typical plot of

the Corrsin–Obukhov scalar

spectra in fully developed

homogeneous isotropic

turbulence
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Fig. 13.1.3 Temperature and velocity spectra at a depth of 15 m near Cape Mudge. (After Grant

[243] with permission)
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which leads to estimate for the scalar gradient as follows:

ry / dyðlÞ
l

/ 1

l2=3
: (13.1.9)

We see that decreasing spatial scales leads to increasing scalar gradients and

creating fascinating pictures (see Fig. 13.1.1).

In contrast to the Kolmogorov phenomenological arguments for the energy

spectrum where only two relations were used

const ¼ eK / V2
k

tKðkÞ ; (13.1.10)

tKðkÞ � 1

VkðkÞk : (13.1.11)

In the case of scalar spectrum, one more supposition was applied. Indeed,

we save the condition const ¼ ey as well as the estimate for the characteristic

time tKðkÞ, but we extract the scaling for the velocity Vk � eK
k

� �1=3
directly from

the Kolmogorov analysis.

In this sense, this approach loses its “universality”, but when we are dealing

with the problem of scalar transport, extra arguments are often a necessary part of

description. Indeed, the appearance of additional degrees of freedom allows one to

describe numerous regimes of turbulent transport. However, such mobility makes

us hesitant in choosing appropriative solution.

13.2 The Batchelor Scalar Spectrum

Batchelor [39, 152] recognized the critical importance of the dissipation region

l< ln � nF3
eK

	 
1=4
to describe small-scale turbulence. In this range of scales, the

Kolmogorov scaling for the velocity VðlÞ / ðeKlÞ1=3should be replaced by the

linear dependence (see Fig. 13.2.1)

VðlÞ / const l / eK
nF

� �1=2

l: (13.2.1)

Here, we use the viscous characteristic time tn.
We derive now the spectrum for the viscous–convective range of scales. The

boundary of this region is given by the diffusive estimate

lB
2 / D0tn / D0nF2

eK

� �1
2

: (13.2.2)

222 13 Turbulence and Scalar



If the Prandtl number

Pr ¼ nF
D0

(13.2.3)

is large, the Batchelor scale is small compared with the Kolmogorov scale ln

lB � D0nF2

eK

� �1
4

<<
nF3

eK

� �1
4

� ln: (13.2.4)

On scales between the Kolmogorov scale and the Batchelor scale, the velocity

gradient is approximately uniform. On these grounds, it is possible to determine the

spectrum of fluctuations of the scalar field in the viscous–convective subrange. The

expression for a scalar flux is given by

ey / y2k
tCASCðkÞ /

y2k
ðkVkðkÞÞ�1

/ y2k
tn

/ eK
nF

� �2

y2k : (13.2.5)

Here, we apply the linear approximation for the velocity VðlÞ / eK
nF

	 
1=2

l. This
yields the scaling of interest

EyðkÞ ¼ y2k
k
/ eytn

k
(13.2.6)

Finally, one obtains (see Fig. 13.2.2)

EyðkÞ / const ey
nF
eK

� �1=2
1

k
; (13.2.7)

Viscous range scales 

Inertial range scales 

lδ

V ( l )

V ( l )

Fig. 13.2.1 Schematic

picture of the velocity

differences on the distance for

laminar and turbulent flow
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where

l�1
n ¼ kn<k<kB ¼ l�1

B : (13.2.8)

We stress that Batchelor succeeded in describing the exponential instability

effects in terms of cascade phenomenology. Indeed, in the viscous range of scales

we are dealing with the exponential stretching

d

dt
l / VðlÞ / const l: (13.2.9)

The value lB � D0nF2
eK

	 
1
4

describes the depth of the scalar cascade penetration and

at the same time this is the stretching characteristic scale (see Fig. 13.2.3). In

contrast to the single-scale approximation here, we are dealing with the hierarchy

of scales. Using the Kolmogorov assumption

const � eK / V3
k

lk
/ V2

0

L0
; (13.2.10)

one finds the scaling for the characteristic length in terms of the Peclet number

lB � L0
D0nF2

V0
3

� �1
4

/ 1

Pe3=4
; (13.2.11)

which differs from the single-scale approximation.

5/3(k ) ~ k−Eθ

log kνlog klog kE

(k )logEθ

1(k) ~ k−Eθ

log kB

Fig. 13.2.2 Idealized

Batchelor scalar spectra in

fully developed homogeneous

isotropic turbulence
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13.3 The Small Prandtl Number and Scalar Spectrum

Batchelor also considered the opposite case of the small Prandtl number

Pr ¼ nF
D0

� 1: (13.3.1)

Here, the “conduction cutoff” occurs at the wave number

ly ¼ D0
3

eK

� �1
4

¼ lnPr
�3=4; Pr<1: (13.3.2)

To obtain the scalar spectrum, it is convenient to consider the balance between

advection and diffusion

~u ry ¼ D0 D#: (13.3.3)
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Fig. 13.2.3 Viscous–convective subrange spectra (After Gibson and Schwarz [244] with permission)
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The scalar perturbations in the range between the conduction cutoff and the

viscous cutoff are described by the estimate

VðlÞ y0
L0

� D0

yk
l2
: (13.3.4)

By applying the Kolmogorov scaling for the velocity VðlÞ / ðeKlÞ1=3, we arrive at

dyðlÞ / ðeKlÞ1=3l2 y0
D0L0

/ e1=3K l7=3: (13.3.5)

Now the scalar spectrum in the range of wave numbers between the conduction

cutoff and the viscous cutoff is given by

EyðkÞ / y2k
k
/ eye

2=3
K k�17=3; (13.3.6)

where

l�1
y ¼ ky<k<kn ¼ l�1

n ; (13.3.7)

This is the internal-diffusive-range spectrum (see Fig. 13.3.1). Experimentally,

such a range could be expected to exist for turbulence in liquid metals. A numerical

simulation of a passive scalar convected by a frozen velocity field presented in

[245–248] confirms the 17/3 exponent.

5/3~ −k(k )Eθ

log kνlog klog kE

log E (k )θ

17/3~ −k(k)Eθ

log kD

Fig. 13.3.1 Idealized

Batchelor scalar spectra in

fully developed homogeneous

isotropic turbulence for

the small Prandtl numbers

(Pr<1)
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13.4 Seed Diffusivity and Turbulent Transport

On the basis of the Kolmogorov phenomenology, it is possible to introduce a “self-

consistent” diffusion coefficient that describes both the Lagrangian contribution

and molecular diffusion effects [73, 249]. The quasilinear scaling for the turbulent

diffusion coefficient in terms of the Lagrangian correlation function,

DT ¼
ð

Vð0ÞVðtÞh idt / Vh i2t; (13.4.1)

points to the relation between the diffusivity and the turbulent energy spectrum

EðkÞ. To establish the direct relationship between the turbulent diffusion coefficient
DT and the energy spectrum EðkÞ, let us consider a “local” diffusion coefficient

dDðkÞ[186] related to the specific scale length lk � 1=k of eddies with the charac-

teristic velocity Vk. Thus, the velocity and scalar fields are decomposed into

ingredients. Here, the smallest spatial scale corresponds to the Batchelor dissipative

scale lB. Now the diffusion equation for the scale k is given by

Vkryk ¼ D0r2yk; (13.4.2)

where

yk ¼ yk�1 þ ::::þ y2 þ y1: (13.4.3)

After averaging, we obtain the relation

hVkyki ¼ �D0ryk: (13.4.4)

Thus, we derive the expression that is differential in the form:

dDðkÞ ¼ 2

3

EðkÞ
k2D0

dk: (13.4.5)

Note that the value of DðkÞ should be taken into account along with molecular

diffusion D0. Upon solving this differential equation, we obtain the expression for

the turbulent diffusion coefficient

ðDðkÞ þ D0Þ2 ¼
ð1
k

EðkÞ
k2

dk þ D2
0; (13.4.6)

where by assumption, Dð1Þ ¼ 0. In this formula, the integral term plays the main

role for scales that are larger than the characteristic turbulent scale lT that enters into

the expression for the Reynolds number: Re ¼ V0lT
nF

. By neglecting the molecular

diffusion effects, we derive the Howells expression
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DH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
k

EðkÞ
k2

dk

s
(13.4.7)

which differs significantly from the quasilinear scaling DT / V2
0t .The new scaling

yields a different type of estimate for the diffusion coefficient,

DHðV0Þ / V0l / D0Pe; (13.4.8)

where l is the characteristic spatial scale. Of course, there is no unique recipe to

obtain the estimates of turbulent transport and the best way depends on a flow

character. Nevertheless, the diffusive renormalization considered above was con-

firmed by the direct calculation of the correlation function and repeatedly used to

describe scalar transport in chaotic flows.

13.5 Fluctuation–Dissipative Relation and Cascade Arguments

It is interesting to incorporate the Kolmogorov scaling arguments in the fluctuation–

dissipative relationship for scalar density fluctuations

1

2

d

dt

ð
W

nh i2dW þ 1

2

d

dt

ð
W

ðd nÞ2 ¼ �
ð
W

D0ðrnÞ2 dW: (13.5.1)

Thus, for the case of quasi-steady flows, we can write the Zeldovich expression

in the following form:

D0

ð
w

ðrnÞ2dW / Qðn1 � n2Þ; (13.5.2)

where the flux Q through a boundary is estimated in terms of the mixing length L0
and the velocity fluctuations V0

Q � S V0 � L0h irn � S DT

Dn
L0

� �
macro

: (13.5.3)

The Zeldovich expression is valid even for the high Peclet numbers

Pe ¼ V0L0
D0

� 1. Simple calculations yield the fluctuation–dissipative relation [37]

ðrnÞ2
D E

¼ V0L0
D0

� � ðDnÞ2
L20

: (13.5.4)

In terms of the Peclet number, one can rewrite this formula for turbulent flows

228 13 Turbulence and Scalar



rnjlocal �
DT

D0

� �1=2 ðDnÞ2
L20

� Pe1=2 rnjmacro: (13.5.5)

This means that when Pe � 1, two fluid elements having substantially different

scalar densities (or temperatures) can appear side by side, which was confirmed by

numerous experiments and numerical simulations [250–257].

Let us express the local density perturbations dnjturb on scales l

dnjturb / rnjlocall � Pe1=2 rnjmacrol: (13.5.6)

We can estimate the scale l basing on the Kolmogorov phenomenology as

l � ln / L0

Re
3=4
l

/ L0

Pe
3=4
l

; where Pe / Re � 1: (13.5.7)

Then, the expression for the amplitude of scalar density perturbation on spatial

scales of order ln is given by the scaling

dnjturb � Pe�1=4dnjmacro � Re�1=4dnjmacro: (13.5.8)

This scaling obtained for the cascade case (strong turbulence) differs remarkably

from the quasilinear limit (week turbulence where Pe � 1)

dnðPeÞ / n0Pe; Pe � 1: (13.5.9)

It is possible to estimate the convective contribution to turbulent transport as

q / dnV0, which leads to the expecting flat scaling for the effective diffusivity in

the following form:

DeffðPeÞ / qðPeÞ
n0

L0 / D0Pe
3=4: (13.5.10)

This differs considerably from weak turbulence case (Pe < <1) where

quasilinear regimes of transport are described by scaling DeffðPeÞ / D0Pe
2.
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Chapter 14

Relative Diffusion and Scaling

14.1 The Richardson Law and Anomalous Transport

In this chapter, we consider the dispersion of pairs of particles passively advected

by homogeneous, isotropic, fully developed turbulent type. Due to the incompres-

sibility of the velocity field the particle will, on average, separate one from another.

There are important differences between the diffusion from a continuous source, in

which particles are released in sequence at a fixed position, and that of a single puff

of particles (see Fig. 14.1.1). Indeed, the measure of a dispersant that is required in

observation or in a predictive model will often depend on whether the dispersant is

introduced into a chaotic flow continuously from a location or the dispersant is

released at some particular time as a patch or group of particles, an ‘instantaneous

release’. In the last case, the size of the patch and its mean or maximum concentra-

tion as function of time provide useful measure.

Thus, one can employ dimensional arguments to estimate the effective concen-

tration in a patch of particles of size L0

n effðtÞ / N

Ld0ðtÞ
: (14.1.1)

Here, N is the total number of particles in this patch and d is the dimensionality

of the space. For instance, in three-dimensional space the diffusive estimate of the

patch size L20 / D0t leads to the scaling

n effðtÞ / N

ðD0tÞ3=2
/ t�3=2; (14.1.2)

whereas the Richardson formula, L20 / l2R / t3, gives considerably different

estimate for the effective concentration
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n effðtÞ / N

l3RðtÞ
/ t�9=2: (14.1.3)

The relative dispersion of two fluid material points is a direct generalization of

single particle dispersion. The results of various experiments on diffusion in

atmosphere lead to the Richardson law [258]

1

2

d l2RðtÞ
� �
dt

¼ const l2RðtÞ
� �2

3: (14.1.4)

Here, lR is the separation of two scalar particles. This means that the spread of a

large cloud of particles could not be built up by superimposing the growths of

component elements of the cloud treated separately. In terms of the relative

diffusion coefficient, this result can be presented as

DRðlRÞ ¼ CR lR
4
3; (14.1.5)

where CR � 0:2 is the Richardson constant. Moreover, by integrating once, we can

write the mean square separation of the particle as (see Fig. 14.1.2)

l2RðtÞ
� � / t3; (14.1.6)

where lR ranges from 102 to 106 cm. This scaling for the separation of two scalar

particles differs significantly even from the ballistic estimate.

t0

t1

t2

t3

l(t1)

l(t3)

l(t2)

Fig. 14.1.1 Schematic picture of the relative dispersion
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The unique nature of the relative diffusion was recognized by Richardson at a

very early stage (1926). Indeed, from the conventional point of view, we can

consider that particle 1 and particle 2 are released simultaneously at time t ¼ 0

and at positions x1 and x2, respectively. Let the distance between the two particles

be l(t). Then we shall put

YðtÞ ¼ x2ðtÞ � x1ðtÞ; (14.1.7)

and the mean square separation is given by the relation

Y2ðtÞ� � ¼ x21ðtÞ
� �� 2 x1ðtÞx2ðtÞh i þ x22ðtÞ

� �
: (14.1.8)

Destroying correlations in time, x1ðtÞx2ðtÞh i ¼ 0, leads to the result that is in

accord with the following estimate:

Y2ðtÞ� � � 2ð2DTÞt: (14.1.9)

The mechanism behind pair separation l2RðtÞ
� � / t3 in turbulent flows has been a

puzzle since it was reported and understanding the particle pair dispersion in

turbulent velocity fields is of great interest for both theoretical and practical

implications. Based on the theory of phenomenological turbulence, Obukhov

suggested [236] a theoretical interpretation of the Richardson law for relative

diffusion. Indeed, it is possible to compose the scaling for the diffusion coefficient

based on the dimensional character of the value eK ¼ ½L2=T3� and the variable k that
characterizes the spatial scale k � 1=lðkÞ ¼ ½1=L�. Then, simple calculations yield

the dimensional estimate for the Richardson coefficient:
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Fig. 14.1.2 The Richardson

scaling. The thin straight lines

are / t3. (After Ott and
Mann [259] with permission)
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DRðlÞ ¼ L2

T

� �
� k2eKð Þ1=3

k2
� eK1=3l4=3 / l4=3 (14.1.10)

or in terms of the mean square relative separation

l2RðtÞ
� � / const eKt3; (14.1.11)

where const � 3. This coincides exactly with the Richardson predictions. Thus, the

idea of describing turbulence by the hierarchy of eddies of different scales has

obtained its first experimental confirmation in the framework of the scalar transport.

14.2 The Batchelor Intermediate Regime

Richardson’s scaling has been explained in the framework of the Kolmogorov–Obuchov

phenomenology fruitfully applied in the inertial range of spatial scales. However,

there are several stages in the process of relative diffusion. At the first stage, the

particles are initially close together and only the smallest eddied can increase their

separation. At the next stage particles move further apart, a greater range of eddy

sizes become important, with, at all times, the eddies comparable in size to the

interparticle separation having the dominant effect (see Fig. 14.2.1). The last stage

is when the distance between particles becomes greater than the largest turbulent

eddy, and the motion of each particle becomes independent of the other. The

separation between them is then determined by their own individual random

walks. This stage is characterized by the largest energy-containing eddies.

In context of the transport description, we should also analyze a character of

relative motion of scalar particles on scales essentially less than inertial ones. Thus,

mechanisms responsible for forming anomalous character of relative diffusion are

switched on viscous scales. Beyond the inertial range, there is no synergetics of

nonlinear vortices interaction and that is why it is impossible to apply the turbulent

cascade concept. However, we have an advantage in using intriguing physical

mechanisms such as exponential stretching of fluid elements and memory effects

related to quasiballistic motion of scalar particles. The pioneering works in this field

were done by Batchelor who developed scaling ideas and discovered several new

turbulent transport regimes.

The scaling suggested by Richardson,

DRðlRÞ / lR
4
3; (14.2.1)

corresponds to his notion of the hierarchical character of turbulent transport. Thus,

he related the acceleration effect to increasing in the scale of eddies taking part in

transport processes. Therefore, in his approach the diffusion coefficient DR is the

function of the interparticle distance lR.
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Batchelor [260] considered the problem from a different point of view. In his

model, the diffusion coefficient DR is the result of statistical averaging over the

ensemble of different scales. Batchelor argued, to the contrary, that relative diffu-

sivity DR should be independent of lR; on dimensional grounds, this implies that

DRscales with squared time

DRðtÞ / l
4=3
R ðtÞ / eKt2: (14.2.2)

It is natural to suppose that there exists an intermediate regime corresponding to

the initial stage of separation process where the dependence of the relative diffu-

sivity DRðtÞ has a linear form

DRðtÞ / V2
� t: (14.2.3)

Here, V� is the characteristic velocity scale, which is not universal parameter but

depends on the initial separation l� of scalar particles under consideration. In such

regimes, the dissipation rate eK is still the key value and we could construct the

relation for V� basing on dimensional arguments

V� / ðl�eKÞ1=3; (14.2.4)

where l� is the parameter. After substitution, one obtains

DRðtÞ / l2RðtÞ
t

/ ðl�eKÞ2=3t; (14.2.5)
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Fig. 14.2.1 Traces of pairs of particles that are initially within 2 mm of each other. (After Ott and

Mann [259] with permission)
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or for the relative distance in the intermediate range

l2RðtÞ
� � / l2� þ const � ðl�eKÞ2=3t2; (14.2.6)

where

t<t� � l2�
eK

� �1=3
: (14.2.7)

Such a quasiballistic behavior is rather adequate for the problem under analysis,

but the main feature of this consideration is the physical meaning of the character-

istic length l� and the characteristic timescale t� introduced by Batchelor. Thus, t�
may be identified as the scale for which the two scalar particles “remember” their

initial relative velocity while they move in the same eddy of size l�. Here, we are

dealing with the Lagrangian nature of initial stage of dispersion, which leads to the

appearance of nontrivial memory effects.

At times of the order of t�, this eddy breaks up, and the growth of the pair

separation will undergo a transition to the classical Richardson scaling

l2�ðt�Þ / eKt3�: (14.2.8)

Here, the characteristic viscous time, tn ¼ ðnF=eKÞ1=2, is a good approximation

for the characteristic time t�, because on the “viscous boundary” the Richardson

law is automatically valid

l2n / eKt3n : (14.2.9)

Here, ln is the Kolmogorov microscale ln ¼ ðn3F eK= Þ1=4.
Indeed, in the intermediate range of scales we are faced with a new scenario. By

following the Batchelor–Townsend [261] line of arguments, it is natural to build the

approximation equation, which can connect the ballistic mode and the Richardson

law. On the basis of dimensional arguments, it is possible to rewrite the Richardson

equation for the interparticle distance in the form

d l2RðtÞ
� �
dt

¼ eKt2OðtÞ ¼ eKt2O
t

tn
;

l�ffiffiffiffiffiffiffiffi
eKt3

p
� �

: (14.2.10)

In the framework of scaling concept, a power form is appropriative approxima-

tion of the function O. Thus, we arrive at

d l2RðtÞ
� �
dt

¼ eKt2
t

tn

� �B l�ffiffiffiffiffiffiffiffi
eKt3

p
� �z

: (14.2.11)
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In the ballistic mode, the separation lR has to be independent of the viscosity, but
the memory effects are essential. This leads to the formula

d l2RðtÞ
� �
dt

¼ eKt2
l�ffiffiffiffiffiffiffiffi
eKt3

p
� �2=3

¼ ðeKl�Þ2=3t; (14.2.12)

where the characteristic exponents are B ¼ 0, z ¼ 2=3. On the other hand, when we
are dealing with the large times, the separation lRðtÞ has to be independent of the

initial particle separation l�, which yields the relation

d l2RðtÞ
� �
dt

¼ eKt2; (14.2.13)

where the characteristic exponents are z ¼ 0, B ¼ 0.

Batchelor’s quasiballistic regime has been observed in numerical experiments

[262], where it was shown measurements of relative dispersion for turbulence

levels up to Re � 800. For experimentally accessible initial separations, these

data scale as t2 for more than two decades in time, with no hint of classical

Richardson t3 scaling. This behavior holds throughout the entire inertial range,

even for large initial separations. This demonstrates once again that the initial

separation is an important parameter for relative dispersion in turbulent flow and

cannot be neglected.

14.3 Dissipation Subrange and Exponential Regime

The description of relative diffusion in a dissipative interval of isotropic turbulence

was first introduced by Batchelor in his analysis of exponential stretching of fluid

element in a chaotic flow on small scales [263]. Such an exponential stretching of

fluid element obviously leads to exponential growth of the distance between

two scalar particles placed inside this element and separated by a small distance.

The fruitful approach to analyze this initial stage of dispersion is to use the linear

dependence for fluctuations of velocity

VðlÞ / const � l: (14.3.1)

This is natural approximation for the viscous subrange because it provides

correct transition to the Kolmogorov dependence

VðlÞ / ðeK � lÞ1=3: (14.3.2)

The modified scaling for relative diffusion takes the form

DRðlÞ / VðlÞl / const l2: (14.3.3)
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This relation implies an exponential growth of pair separation. Indeed, the

modified scaling DRðlÞ / l2 can be applied to obtain the average relative distance

between two scalar particles lðtÞh i if we use the Taylor definition of the diffusion

coefficient

DRðtÞ /
d l2RðtÞ
� �
dt

: (14.3.4)

Then we can write the differential equation

d

dt
l2RðtÞ
� � ¼ const l2RðtÞ

� �
: (14.3.5)

Its exponential solution describes relative diffusion on scales where viscosity

effects are important

l2RðtÞ
� � ¼ l20 exp

t

tn

� �
: (14.3.6)

Here, l0 is the initial distance between scalar particles in the dissipative interval

of scales and tn ¼ ðnF=eKÞ1=2 is the characteristic temporal scale related to the

dissipation range.

This result brings out the essentially accelerative nature of the relative diffusion,

which occurs as long as the separations involved are small compared with the

viscous scale. The initial separation of scalar particles must be less than the

Kolmogorov dissipative spatial scale

l0 � lR � ln ¼ n3F
eK

� �1=4
: (14.3.7)

The corresponding applicability condition for times is given by

t � tn ¼ nF
eK

� �1=2
: (14.3.8)

Often, recourse is made of the simplified approximation formula to connect the

exponential regime with the Richardson one

lR / Vðr þ lR; tÞdt� Vðr; tÞdt � dVðrÞdt: (14.3.9)

Thus, for the small values of lR, lR<ln, the estimate VðrÞ / const � r leads to the
exponential regime, whereas in the case of lR � ln we arrive at the Richardson

scaling with the estimate VðrÞ / ðeK � rÞ1=3. However, such an approach ignores

the ballistic mode, l2RðtÞ
� � / l�eKð Þ2=3t2; therefore, it is rather superficial.
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Batchelor distinguished four regimes: an exponential regime, a regime domi-

nated by the initial velocity difference, the inertial range regime (Richardson

regime), and a normal diffusion regime at large separation (see Fig. 14.3.1). Papers

by Batchelor considered above have provided the starting point for many

subsequent treatments of the scalar transport, a problem that has attracted renewed

attention, with respect to dynamical chaos and anomalous diffusion, in recent years.

14.4 Gaussian Approximations and Relative Dispersion

It is natural to make an attempt to find adequate differential equations, which

provide precise description of different stages of complex chaotic mixing phenom-

ena, instead of several scaling models discussed above. Thus, the analysis of the

dispersion process by means of a conventional diffusion equation is based on

two important physical assumptions, which can be verified a posteriori. The first

one is that the dispersion process is self-similar in time, which is probably true in

nonintermittent velocity field; the second one is that the velocity field is short

correlated in time.

Approximation l2RðtÞ
� � / t3 suggested by Richardson corresponds to his notion

of the hierarchical character of turbulent transport. Thus, he related essentially

accelerative nature of the relative distance growth to increasing in the scale of

eddies taking part in transport processes. Therefore, in his approach the diffusion

coefficient DR is the function of the interparticle distance lR.
Richardson was concerned with finding a diffusion equation to describe the

concentration field relative to the center of mass of a moving cloud. To treat the

shape characteristics of a spreading cloud, he introduced the distance-neighbor

function F, the probability density, to find two initially close particles at the distance
lR from one another at the moment t

1/2

tν = eK

ν

τ
t

l2 ∝ l 2 exp

V0

LE

l2 ∝ εKt3
3
2

t2l2 ∝ (εKl*)

t0 =
eK

1/3

l*
2/3

l2 ∝ t
n

Fig. 14.3.1 Schematic diagram of Batchelor and Richardson relative dispersion regimes
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@FðlR; tÞ
@t

¼ @

@lR
CRl

4=3 @FðlR; tÞ
@lR

: (14.4.1)

Batchelor [263] considered the problem from a different point of view. In his

model, the diffusion coefficient DR is the result of statistical averaging over the

ensemble of different scales and he proposed using the temporal dependence for the

definition of DRðtÞ � l2RðtÞ
� �2=3 / const eKt2. Then, the equation for the probability

density takes the following form, which is similar to the Richardson equation but

with the time-dependent coefficient of diffusion:

@FðlR; tÞ
@t

¼ const eKt2
@

@lR

@F

@lR
: (14.4.2)

Note that the arguments in favor of one type or another of the diffusion coeffi-

cient have a qualitative character in both these cases. These pioneering models lead

to different results in spite of the underlying law l2RðtÞ
� � / t3. However, the

distribution function F is different in these cases. It is easy to see this difference

when we employ the Fourier transform

~FkðtÞ ¼
ð1
�1

Fðx; tÞeikxdx: (14.4.3)

Thus, in the conventional diffusive equation, the law of temporal relaxation of

the function F in the Fourier form corresponds to the relation

~FkðtÞ / expð�tÞ; (14.4.4)

whereas in the case of the time-dependent diffusion coefficient we deal with

stronger decay:

~FkðtÞ / expð�t3Þ: (14.4.5)

Here, ~FkðtÞ is the Fourier transformation of the function F(x,t) over the variable
x. It is obvious that the characters of those solutions describing the probability

density evolution are also different. Thus, for the Richardson model, we find

l2RðtÞ
� � ¼ 35

9

2

3
CRt

� �3
; (14.4.6)

whereas the Batchelor equation yields the different result

l2RðtÞ
� � ¼ 2

3
CRt

� �3
: (14.4.7)

The same situation we have when comparing the distance-neighbor function F at

zero point. For the Richardson model, one obtains
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Fð0; tÞ ¼ 3ffiffiffiffiffiffi
6p

p 1

2
3
CRt

	 
3=2 ; (14.4.8)

whereas the Batchelor representation gives the dependence as follows (see

Fig. 14.4.1):

Fð0; tÞ ¼ 1ffiffiffiffiffiffi
2p

p
2
3
CRt

	 
3=2 (14.4.9)

Unfortunately, it is impossible to decide what is a correct equation, if one looks

at this problem from the conventional diffusion point of view, because the physical

arguments from Kolmogorov and Obukhov lead to an explanation in terms of the

hierarchy of scales, whereas Richardson and Batchelor deal with the local diffusive

equation with partial differentials.

The development of Batchelor’s ideas concerning relative diffusion has led to

new approaches where nontrivial mixing effects were described in more detail. In

the conventional transport theory, diffusive models are grounded on kinetic

equations. Transition from a configuration space to a phase-space allows one to

describe both ballistic and nonlocal effects. Kinetic approximation was used in

the second Obukhov work on relative diffusion [265]. In spite of some critical

1.5

1.0

0.5

(y
2 )

1/
2  
òq

/q
 d

y 
®

0
0 1 2

y/(y2)1/2

3 4

Fig. 14.4.1 Average

distance-neighbor function

from 209 realizations of C

compared with suggestions

of Batchelor and Richardson.

Continuous line Batchelor;
N dash lines empirical;

M dash lines Richardson
(After Sullivan [264] with

permission)

14.4 Gaussian Approximations and Relative Dispersion 241



comments on such an approach, here again, however, Obukhov has made what

appears to me to be an observation of great interest. Thus, he recognized the

perspective of using a velocity space in the analysis of statistical properties of

turbulent pulsations and suggested to use an approximative kinetic equation for the

velocity distribution function FVðV; x; tÞ

@FV

@t
þ ~VrFV ¼ eK

@2FV

@V2
: (14.4.10)

Here, eK plays the role of the diffusive coefficient in a velocity space DV . Indeed,

Yaglom [266, 267] found that the correlation function of accelerations related to

turbulent pulsations of velocity is given by the expression

CAðtÞ ¼ Að0ÞAðtÞh i ¼ eKdðtÞ; (14.4.11)

where AðtÞ is an acceleration, which can be treated as a white noise in an impulse

space. Such a form of the correlation function permits describing a random process

on the basis of the Fokker–Plank equation in phase-space with the constant diffu-

sion coefficient DV ¼ eK.
By considering the evolution of the theoretical models describing complex

transport effects, we can note an interesting tendency. Initially, new ideas arise

when transport phenomenon is studied in a usual (configuration) space. Then, they

penetrate into kinetic theory, where problems are related to the analysis of a velocity

space or a phase space. Thus, relative diffusion models were developed in a similar

manner.

14.5 Fractional Equation Approach

Fractional differential equations are an especially effective tool for investigating

anomalous transport. These equations allow us to obtain scalar probability density

functions based on the scaling representation of characteristic parameters of the

model. Thus, the Einstein functional equation for the particle density

@n

@t
¼

ðþ1

�1
Gðx� x0Þnðt; x0Þdx0 (14.5.1)

could be applied to describe nonlocal effects of turbulent diffusion. Such an

approach was realized by Monin who was guided by ideas about the hierarchical

properties of well-developed isotropic turbulence [268]. In the corresponding

formulation of the problem, all statistical parameters are determined exclusively

by the scale length lk � 1=k and the mean energy dissipation rate eK. In the

framework of Fourier’s representation for the Einstein functional
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@~nkðtÞ
@t

¼ ~GðkÞ~nk; (14.5.2)

where the functional kernel is given by scaling ~GðkÞ ¼ const kaL , there is only the

“uncertain parameter”aL. By following the Kolmogorov phenomenology, it is

natural to compose ~GðkÞ as

~GðeK; kÞ ¼ eK
1
3k

2
3 / 1

trelðeK; kÞ : (14.5.3)

Note, the kernel dimensionality is inversely proportional to the relaxation time.

Thus, we obtain the equation for the particle density with fractional derivatives:

@n

@t
¼ eK1=3 @

2=3n

@x2=3
: (14.5.4)

Here, the Levy–Khinchine exponent is aL ¼ 2=3 (see Fig. 14.5.1). In an effort to
derive a conventional differential equation, one can differentiate the fractional

differential equation twice with respect to time

@3n

@t3
¼ eK

@2n

@x2
: (14.5.5)

The solution in terms of the Whittaker functions behaves asymptotically as

nð! 1Þ / x�11=13 [268]. The fractional equation obtained differs significantly

from the conventional diffusive equation suggested by the Richardson,

Batchelor, Okubo, and others [269–272]. This new equation allows one to

incorporate the Kolmogorov hierarchy of spatial scales, which, in our case, is

related to the hierarchy of relaxation times.

On the other hand, applying the continuous time random walk approach makes it

possible to consider both spatial nonlocality and memory effects [11, 12]. Blumen,

Fig. 14.5.1 Schematic

illustration of a Levy flight

14.5 Fractional Equation Approach 243



Klafter, and Shlesinger [273] employed the advantages of this method to describe

the Richardson relative diffusion R2ðtÞ / t3. It is natural that the use of the nonlocal
operator leads to the distribution function, which differs significantly from the

conventional diffusion models. Nevertheless, convincing arguments in favor of

choice of the specific type of equation describing the behavior of the distribution

function are absent and the search for adequate theoretical models and experimental

proofs has been continued.

14.6 Turbulence Scaling and Fractality

In the above discussions, we have implicitly assumed that eK is spatially homoge-

neous and not fractal. However, the Kolmogorov theory fails to describe intermit-

tency effects. Landau noted that theory does not take proper account of spatial

fluctuations of local dissipation rates. In fact, high Reynolds number turbulence is

intermittent with regions of high turbulence activity separated by regions of very

low turbulence. The correlation of energy dissipation rate, eDðxÞ, at x is given by the
often-studied function [17, 62]

KeeðlÞ ¼ e0Dðxþ l; tÞe0Dðx; tÞh i; (14.6.1)

where e0D is the fluctuation of the energy dissipation

eDð~r; tÞ / nF ruð~r; tÞj j2: (14.6.2)

The dimensional arguments lead to the scaling

KeeðlÞ ¼ eDðlÞ2 / VðlÞ
l

� �2
/ 1

l8=3
(14.6.3)

where the Kolmogorov scaling was applied, VðlÞ / l1=3. However, experiments

have confirmed that the energy dissipation region of isotropic turbulence in three-

dimensional space has a fractal structure and the correlation of energy dissipation

rate is given by

KeeðlÞ / 1

l
m
i

; (14.6.4)

which decays as the power law, where the intermittency exponent is mi ¼ 0:25	 0:05
[17, 78]. On the other hand, it was found in [219] that data are best fitted by a relation

DRðlÞ / l
4
3
þ2

3
mið Þ (14.6.5)
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with the same intermittency exponent mi � 0:2. One can see that the correlation

term 2mi=3 is approximately ten times less than the Richardson 4/3 exponent, but

the physical meaning of the fractal representation of intermittency phenomena is of

great importance. The above scaling indicates that the velocity field has fractal

properties with the dimensionality dF ¼ 3� mi.
Mandelbrot [274] and then Fricsh, Sulem, and Nelkin [275] have renormalized

the Kolmogorov–Obukhov spectrum using the fractal representation of energy

dissipation regions. The fraction of the volume corresponding to “one dissipation

center” can be represented in the form:

QFðlÞ � Wd

NðlÞ �
ld

ldF
� ld�dF : (14.6.6)

Here, N(l) is the number of “dissipation centers” in the region of size l, Wd � ld

is the volume of this region, d is the dimensionality of Euclidean space, and dF is the
fractal dimensionality of the “cluster” consisted of “dissipation centers”. The

Kolmogorov–Obukhov expression for eK can be rewritten in the renormalized

form:

const ¼ eF � VðlÞ3
l

QFðlÞ: (14.6.7)

Then, upon performing calculations, we arrive at the formula in terms of the

wave number k / 1=l:

EFðkÞ / Vk
2

k
QFðkÞ / EKðkÞk�

d�dF
3 � 1

k5=3
1

kðd�dFÞ=3 : (14.6.8)

The last factor is the correction factor caused by the fractal nature of energy

dissipation regions. Experiments are satisfactorily described by the value dF � 2:8
[17, 22].

The similar analysis has led to the modification of the Richardson scaling

DFðlÞ / VllQFðlÞ / VlðlÞl lmi / l
4
3
þ2

3
mi : (14.6.9)

The Kolmogorov idea partially loses its initial universality after we introduce a

new parameter dF. However, at the same time, such corrections essentially increase

the possibilities to fit theory and experiment.

On the other hand, in [273] the modified continuous time random walk model

was considered, where the intermittency effects are included by scaling

VðxÞ / xgR ; gR ¼ 1

3
þ d � dF

6
¼ 1

3
1þ mi

2

� �
: (14.6.10)
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Then, the mean square separation of two particles is given by

R2ðtÞ / t
12

4�mi ; bR 
 1� mi
3

: (14.6.11)

Note that this scaling for the modified Richardson law has been obtained

independently by Hentschel and Procaccia [276], who used a much different

approach. Hundreds of research papers have been written on the application of

the continuous time random walk approach to turbulent diffusion basing on fractal

concept, but we shall not go into detail here. For a fuller treatment of this exciting

subject, we refer the reader to [17, 22, 77, 78].
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Chapter 15

Two-Dimensional Turbulence and Transport

15.1 Two-Dimensional Navier–Stokes Equation

The Navier–Stokes equation is an equation of the motion of a fluid element in
the absence of a pressure-gradient force and viscosity. In an incompressible fluid,

the fluid mass density rm is constant. If we further assume that rm is uniform, the

equation may be expressed as

d~u

dt
¼ @~u

@t
þ ð~urÞ~u ¼ �rT þ nFr2~u; (15.1.1)

r �~u ¼ 0: (15.1.2)

Here, T ¼ P=rm is the temperature, in units of energy, and nF is the kinematic

viscosity. In a two-dimensional fluid, the viscosity nF has components only in the

x–y plane, and these components are functions of x, y, and t. Here, rT can be

eliminated by taking the curl of equation (15.1.1). In two dimensions

r� ~u � rð Þ~u½ � ¼ r � 1

2
ru2 �~u� ~O

� �
¼ ~u � rð Þ~Oþ ~Or �~u;

(15.1.3)

where ~O ¼ r�~u is the vorticity vector, which lies in the z direction. Equations
(15.1.1) and (15.1.2) reduce to the equation of vorticity,

d~O
dt

¼ @ ~O
dt

þ ~u � rð Þ~O ¼ nFr2~O: (15.1.4)

Furthermore, in two dimensions~u may be expressed by a scalar stream functionC:

~u ¼ �r�C~ez ¼ �rC�~ez; (15.1.5)
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~O ¼ r2C~ez; (15.1.6)

where ~ez is the unit vector in the z direction. Equations (15.1.1) and (15.1.2) can

then be written in terms of the function C only:

@

@t
r2C� ðrC�~ezÞ � rðr2CÞ � nFr4C ¼ 0; (15.1.7)

where r is the two-dimensional gradient operator. If the viscosity is small, the

mode excited in this system is highly nonlinear. The Reynolds number

Re ¼ V0L0=nF gives a measure of the “nonlinearity” of the system. Here, V0 is a

typical macroscopic velocity, L0 is a typical gradient scale length, and nF is the

kinematic viscosity. If the Reynolds number is large, spatial Fourier modes rapidly

cascade two-dimensionally to other Fourier modes, and a turbulent state results.

The equation for mode coupling between different spatial Fourier modes can be

obtained from (15.1.7) by expressing C in terms of its Fourier amplitude:

C ¼ 1

2

X
~k

CkðtÞ expði~k �~xÞ þ c:c

0
@

1
A; (15.1.8)

where ~k is the two-dimensional wave vector and Ck is the corresponding Fourier

amplitude. Equation (15.1.7) then reduces to

dCk

dt
þ k2nFCk ¼ 1

2

X
k¼k0þk00

Lk
k0;k00Ck0Ck00 ; (15.1.9)

where the matrix elements Lk
k0;k00 are given by

Lk
k0;k00 ¼

1

k2
ð~k0 � ~k00Þ �~ezðk002 � k02Þ: (15.1.10)

This equation shows that the coupling coefficient L has a large value when ~k, ~k0,
and ~k00 have comparable magnitudes, which indicates that the modal cascade is

dominated by local interactions in ~k space.

That the total energy and enstrophy are conserved is easily shown from (15.1.1),

(15.1.2), and (15.1.3). By taking the scalar product of the velocity field ~u with

(15.1.1) and noting that

~u � rð Þ~u ¼ 1

2
ru2 �~u� ~O; (15.1.11)

as well as

r2~u ¼ �r� ~Oþrr �~u; (15.1.12)
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@

@t

u2

2

� �
þr � ~u

u2

2
þ~uT

� �
¼ nFr � ~u� ~O

� �
� nFO2: (15.1.13)

If the fluid is surrounded by either a periodic boundary or a rigid boundary, so

that the perpendicular component of the velocity field un vanishes on the boundary,
this equation gives the conservation of the total energy as

@E

@t
¼ @

@t

ð
u2

2
dW ¼

þ
nF ~u� ~O
� �

� d~S�
ð
nFO2dW: (15.1.14)

Similarly, if we take the scalar product of equation (15.1.3) with ~O, noting that

~O � ~u �rð Þ~O¼�~O � ~u� r�~O
� �� �

¼~u � ~O� r�~O
� �� �

¼~u �r O2

2

� �
; (15.1.15)

then one finds the equation

@

@t

O2

2

� �
þr � O2

2
~u

� �
¼ nFr � ~O� r� ~O

� �� �
� nFðr � ~OÞ2; (15.1.16)

For the same boundary condition, the conservation of enstrophy is obtained as

@

@t

ð
O2

2
dW ¼

þ
nF~O� r� ~O

� �
� d~S�

ð
nFðr � ~OÞ2dW: (15.1.17)

Let us consider the integral

ð
~O � ~O � r

� �
~udW: (15.1.18)

One can see that in three-dimensional space there is an additional term on the

right-hand side, which invalidates the enstrophy conservation.

The enstrophy conservation leads to the emergence of isolated vortex structures,

which is a fascinating aspect of two-dimensional turbulence. This phenomenon has

been obtained in many numerical computations (see Fig. 15.1.1). Most vortices are

monopoles but some dipoles, and even tripoles, can be formed. Such vortex forma-

tion has been observed as well in laboratory experiments with thin water layer and

more spectacularly in electron plasma experiments. Such kind of organization can be

explained in the framework of statistical mechanics as a local equilibrium around an

initial vorticity maximum.
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15.2 Inverse Cascade

The mathematical description of a fully developed turbulent state is difficult, if not

impossible. However, the turbulent spectrum may be obtained by using arguments

similar to the Kolmogorov phenomenological approach, which was applied to the

inertial range.

Recall that the inertial range is a range in wave number space where there is

neither a source nor a sink (dissipation) and where the wave number spectrum is

assumed to cascade smoothly in a stationary state. If we write the Fourier amplitude

of the velocity field as Vk, the rate at which the spectrum case is given by kVk. The

omnidirectional energy spectrum EðkÞ is defined such that
Ð
EðkÞdk gives the total

energy, where

k ¼ ð~k � ~kÞ1=2: (15.2.1)

Hence, EðkÞk has the dimension of V2
k . Kolmogorov argues that, in a quasi-steady

state, there should be a stationary flow of energy in ~k space from the source to the

Fig. 15.1.1 The stream function of two-dimensional turbulent flow. (After Rhines P.B. [169] with

permission)
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sink. This means that the energy density flow rmkVkV
2
k should be constant and

given by the dissipation rate of the energy density eK at the sink:

rmkV
3
k ¼ eK: (15.2.2)

Now, in two-dimensional turbulence there is an additional conserved quantity,

the enstrophy. Hence, two types of inertial range are expressed: one for energy and

the other for enstrophy. Since the enstrophy density is given by k2V2
k , the inertial

range of enstrophy requires that

rmkVkk
2V2

k ¼ eO ¼ const: (15.2.3)

Thus, by writing the estimate

Vk ¼ ðkEOðkÞÞ1=2; (15.2.4)

the energy spectrum in this range is given by

EOðkÞ ¼ C0 eO
rm

� �2=3

k�3: (15.2.5)

This equation shows an energy spectrum of k�3 (see Fig. 15.2.1), in contrast to

the Kolmogorov spectrum of k�5=3, which is obtained from the inertial range of

energy.

Fig. 15.2.1 One-dimensional spectra of transverse velocity component in log�� log

coordinates. (After Sommeria J. [277] with permission)
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Kraichnan [278] showed that if EOðkÞ / k�3 there is no energy cascade, while if

EðkÞ / k�5=3 there is no enstrophy cascade. Hence, a source at k ¼ kS will set up

two inertial ranges: k>kS and k<kS. Since the enstrophy, because of its larger k
dependence, is dissipated at large wave numbers at a rate faster than the energy,

k>kS region is expected to be the inertial range for enstrophy, which implies that

the k<kS region would be the inertial range for energy.

Thus, the energy spectrum has two parts:

EOðkÞ / k�3; k>kS; (15.2.6)

EðkÞ / EKðkÞ / k�5=3; k<kS: (15.2.7)

Kraichnan argues that since there is no energy cascade for k>kS, the energy

should cascade toward the smaller wave numbers for k<kS; in other words, an

inverse cascade is expected (see Fig. 15.2.2). On the other hand, the enstrophy

cascades toward the large wave number regime at k>kS.
Strictly two-dimensional (2D) turbulence is idealization, since natural flows

have a 3D aspect to them. Nevertheless, understanding the simplest 2D case gives

a good grasp of more complicated systems that occur in the atmosphere and oceans.

Examples of quasi-2D flow where the mixing and dispersion of passive tracers are

important are easily found in the atmosphere and in oceanic flows where a combi-

nation of geometry, stratification, and rotation acts to suppress motion in the

vertical direction. In a similar way, the magnetic field lines can constrain charged

particles in plasma confinement devices and astrophysical flows to quasi-2D

behavior [279–293].

EK (k) ~ k−5/3

logklogkν

logE (k)

EΩ (k) ~ k−3

logkI

Energy cascade 
Enstrophy cascade 

Fig. 15.2.2 Idealized

Kraichnan energy spectra for

two-dimensional forced

turbulent flow
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15.3 Freely Evolving Two-Dimensional Turbulence

Basing on the scaling arguments, it is possible to treat the behavior of freely (no

forcing) evolving two-dimensional turbulent flow. Of course, there is a big differ-

ence between freely evolving and forced turbulence. Thus, as early as 1969

Batchelor [294] assumed a self-similar character of evolution of freely evolving

two-dimensional turbulence.

The Navier–Stokes equation for the two-dimensional case gives the rate of decay

of the mean kinetic energy in the form

dWE

dt
¼ �2YnF ¼ �eK; (15.3.1)

where nF is the kinematic viscosity, Y ¼ O2
� �

is the enstrophy, and ~O ¼ r�~u is

the vorticity vector, which lies in the z direction. One can see that this rate is always
negative. The vorticity equation considered above leads to the enstrophy evolution

equation described by the relation

dY
dt

¼ �nF rOj j2 ¼ �eY: (15.3.2)

We see that the rate of enstrophy decay is also negative.

Viscous effects are negligible for finite time. By taking into account this set of

equations, one can suppose the self-similar form for the energy spectrum

Eðk; tÞ ¼ U0
3tZðV0ktÞ: (15.3.3)

Here, U0 is the characteristic velocity and Z is an arbitrary function. Indeed,

there are only two relevant dimensional parameters, U0 and t to describe the energy
spectrum evolution of freely evolving two-dimensional turbulence. On the other

hand, this means that in this single-scale approximation the characteristic spatial

size scales with time as

l�ðtÞ / 1=k� / U0t: (15.3.4)

This means that spectral peak migrates to small k.
The enstrophy dimensional representation in the integral form

YðtÞ ¼
ð1
0

Eðk; tÞk2dk; (15.3.5)

allows one to solve the equation for the mean kinetic energy. By introducing a new

dimensionless variable, z ¼ U0k t, we easily find the relation for the enstrophy

evolution
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YðtÞ ¼
ð1
0

U3
0tZðU0ktÞk2dk ¼ 1

t2

ð1
0

ZðzÞdz ¼ Cz

2t2
: (15.3.6)

Here, Cz is the constant. Upon substitution, we find the equation for the mean

kinetic energy in the following form:

dWEðtÞ
dt

¼ �nF
Cz

t2
: (15.3.7)

The solution of this differential equation is given by the form

WEðtÞ ¼ WEð0Þ � nF
Cz

t
: (15.3.8)

The expression for the enstrophy evolution in the inertial subrange takes the

following form:

YðtÞ ¼ � 1

2nF

dWE

dt
¼ Cz

t2
: (15.3.9)

This simplified single-scale approximation describes a growth of the integral

scale and decay of the total enstrophy as YðtÞ / 1=t2. The rate of enstrophy decay

is described by the scaling

eY ¼ � dY
dt

¼ 2
Cz

t3
: (15.3.10)

The energy flux is everywhere toward small k, while enstrophy flows in both

directions.

These results could be valid for the build-up period of the enstrophy cascade.

However, the scaling law obtained, YðtÞ / 1=t2, has only a methodological value,

because the laboratory measurements give different exponents ranging from 0.29 to

1.12 [279–281].

15.4 Scalar Spectra in Two-Dimensional Turbulence

In this section, we apply the cascade ideas to passive scalar problem. We suppose

that tracer is advected by two-dimensional well-developed turbulence [279–281].

In the inertial range, the scalar spectrum EyðkÞ will be defined, in general, by three

important parameters ey, eK , and eO. Here, ey is the scalar flux, eK is the dissipation

rate of the energy, and eO is the dissipation rate of the enstrophy. It is convenient to

introduce an additional spatial scale
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LO � eK
eO

� �1=2
: (15.4.1)

Then from the dimensional point of view, one can build a scalar power spectrum

basing on the expression

EyðkÞ ¼ y2k
k
/ f ðkLOÞeyeK�1=3k�5=3; (15.4.2)

where f is an arbitrary function, which will be defined below from the physical

arguments. Thus, in the inverse cascade subrange ðk<kSÞ the parameter eO
characterizing the dissipation rate of the enstrophy density is inessential. This

leads to f ¼ const. Now one obtains the scalar power spectrum in the form

EyðkÞ ¼ const eyeK�1=3k�5=3: (15.4.3)

On the contrary, for the direct cascade subrange ðk>kSÞ the parameter eK , which
characterizes the dissipation rate of the energy density, is inessential. On these

grounds, we approximate an arbitrary function f by the formula

f ðkLOÞ ¼ const(kLOÞ�2=3: (15.4.4)

The corresponding scaling for the scalar power spectrum is given by

EyðkÞ ¼ const eyeO�1=3k�1: (15.4.5)

Indeed, in the direct cascade subrange k>kSð Þ the velocity fluctuations are

estimated as

Vk / eO1=3

k
; (15.4.6)

which follows from the conservation of the enstrophy density

rmkVkk
2V2

k ¼ eO ¼ const. To define the scalar perturbation amplitude, one should

employ the expression for a scalar flux

ey / y2k
tCASCðkÞ ¼

y2k
ðkVkÞ�1

: (15.4.7)

This leads to the formula for the scalar perturbation in the form

yk / ey1=2

eO1=6
; (15.4.8)
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and hence, one obtains scaling for the scalar spectrum

EyðkÞ / y2k
k
/ ey

eO1=3

1

k
; (15.4.9)

The scalar power spectra obtained for the inertial range of spatial scales are

represented in Fig. 15.4.1. For a deeper discussion of scalar power spectra problem

in two-dimensional turbulent flows, we refer the reader to [287–290].

15.5 Atmospheric Turbulence and Relative Dispersion

By considering the relative diffusion in two dimensions, we are faced with a quite

different scenario. It is believed that in this case there exists the direct relationship

(based on dimensional estimates) between the relative displacement of two particles

in a turbulent flow and the expression for a spectrum EðkÞ

DRðlÞ / VðlÞl / l
ffiffiffiffiffiffiffiffiffiffiffiffi
EðkÞk

p
k/1

l

			 ; (15.5.1)

which in the case of the spectrum EðkÞ / k�5=3 yields the Richardson scaling

DR / lR
4=3.

In the case of two-dimensional turbulence, one can use the Kraichnan spectra for

the inverse cascade EðkÞ / k�3. Unlike with three-dimensional turbulence, where

energy is transported via nonlinear interactions from the large scales to the small

dissipative scales, energy in two-dimensional turbulence moves from small to large

scales. This “inverse cascade” thereby shifts energy away from the dissipative

Eθ (k) ~ k −1

log klog kν

log Eθ (k)Fig. 15.4.1 Idealized scalar

spectra for two-dimensional

turbulent flow
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scales, requiring a large-scale dissipation mechanism. At the same time, enstrophy,

the squared vorticity, is transferred downscale. So if energy is injected at a single

scale lI / 1=kI, there will be two different inertial ranges. The Kraichnan approach

leads to the modified formula for relative diffusivity

DRðlRÞ / const l2R: (15.5.2)

This means that one can obtain the differential equation for a relative displace-

ment. According to the theory of Lin [296], one expects a variation of d l2R
� �

=dt as

l2R
� �

in the enstrophy range.

d l2RðtÞ
� �
dt

¼ const � l2RðtÞ
� �

: (15.5.3)

These results are similar to the expressions describing the Batchelor viscous

regime and that is why one obtains the exponential dependence for relative distance

lR
2ðtÞ� � ¼ const exp

t

t0

� �
: (15.5.4)

Thus, a pair of particles with an initial separation smaller than the injection scale

lI would experience exponential growth until the separation reached the injection

scale lI, after which the square separation would grow cubically in time, up to the

scale of the largest eddies lE.
Unique results of observations have been published by Morel and Larcheveque

[295] based on the so-called EOLE experiment with 480 balloons distributed over

the Southern Hemisphere at the 200 mb level. It was found that the eddy dispersion

process is homogeneous, isotropic, and stationary up to scales of the order of

1,000 km. Thus, the mean square relative separation l2RðtÞ
� �

increases exponentially

with time up to 6 days (see Fig. 15.5.1), which is in agreement with the Lin predic-

tions [296], whereas l2RðtÞ
� � ¼ 80 km, T1 ¼ 1:35 days, and more slowly like t1=2

later. The relative diffusivity coefficient is saturated at t ! 1 and its estimate is

DR � 1:6� 106m2s�1. These measurements show the expected dependences. For

spatial scales between 100 and 1,000 km, good agreement is found with the theory

based on a cascade enstrophy in 2D turbulence.

τ
tl ∝ exp

LE

l2 ∝ t3

LI

l2 ∝ t

Fig. 15.5.1 Schematic

diagram of relative dispersion

regimes for two-dimensional

turbulent flow
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There are important distinctions between the atmospheric and ocean turbulence.

Motions of the air in the atmosphere and that of seawater in the oceans that fall

under the scope of environmental fluid dynamics occur on spatial scales of several

kilometers up to the size of the ears. Generally, the oceanic motions are slower than

their atmospheric counterparts. Moreover, the ocean tends to evolve more slowly

than the atmosphere. For instance, a number of oceanic processes are caused by the

presence of continents and islands, which is not so essential for the atmosphere.

Below we consider significant differences between relative dispersion in the atmo-

sphere and in the ocean.

15.6 Rough Ocean and Richardson’s Scaling

Besides significant scale disparities, the earth’s atmosphere and oceans also have

their own peculiarities. Flow patterns in the atmosphere and oceans are generated

by vastly different mechanisms. The atmosphere is thermodynamically driven by

the solar radiation, whereas oceans are forced by periodic gravitational forces and

its surface is subjected to a wind stress that drives most ocean currents (see

Fig. 15.6.1). That is why relative diffusion in the ocean could be different from

the atmospheric one. Indeed, the exceptional universality of Richardson’s scaling

could be comparable to the universality of the Kolmogorov and Obuchov spectrum

and numerous experiments confirm that this scaling correctly describes the relative

diffusion in the ocean, in spite of the large-scale ocean turbulence that cannot be

analyzed in terms of three-dimensional isotropic turbulence. Indeed, the investiga-

tion of scalar scattering in ocean verifies well the validity of “4/3 law” ranging from

10 m to 103 km (see Fig. 15.6.2). It was calculated that on the scales 10–103 m, the

magnitude of eK � 10�4cm2=c3, whereas on the scales 10–1,000 km, the value of

eK is much lower, eK � 10�5cm2=c3. This intriguing fact for the range of 10–103 m
was recently explained by Golitsyn [298] based on the consideration of spectral

characteristics of both hydrodynamical and wave turbulence.

By analyzing the relation between Lagrangian characteristics and spectral one,

we have to take into consideration the expression

ðzðt0Þ � zðtÞÞ2
D E

¼ 2

ð1
�1

ð1� eio t�t0ð ÞEzðoÞdoÞ: (15.6.1)

For example, using velocity as a Lagrangian characteristic z leads to

V2

2


 �
¼

ð1
�1

EVðoÞdo: (15.6.2)
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Fig. 15.6.1 Schematic picture of float trajectories in the North Atlantic. The motion caused by

mean currents and mesoscale eddies

Fig. 15.6.2 The plot of size-

related dispersion for

different horizontal scales

(After Okubo A. Ozmidov

R.V [297] with permission)
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Then, the Richardson law

l2R
� ðtÞi / const � eKt3; (15.6.3)

can be treated as a white noise in an impulse space, where the energy flux over the

spectrum, DV / eK , plays the role of the diffusive coefficient

ðDVÞ2
t

¼ eK ¼ const: (15.6.4)

Calculations yield the estimate of the frequency spectrum EVðoÞ in the scaling

form

EVðoÞ /
V2
� �
o

/ eK
o2

/ 1

o2
: (15.6.5)

On the other hand, we can derive the expression

1

2

dz

dt

� �2* +
¼

ð1
0

o2EzðoÞdo; (15.6.6)

which leads to the relationship between the spectra EVðoÞ and ErðoÞ in the form

ErðoÞ / EVðoÞ 1

o2
/ 1

o4
: (15.6.7)

Thus, the realization of Richardson’s law implies the specific form for the

frequency spectrum ErðoÞ / o�4.

A similar spectrum was found in both the theory and experiments on investiga-

tion of spectral properties of sea-waves by Zakharov [299] and Toba [300]

EhðoÞ / 1

o4
: (15.6.8)

Using this, Golitsyn pointed out that due to the fluid incompressibility

div ~u ¼ 0; (15.6.9)

vertical and horizontal displacements have the same frequency spectrum; hence, the

main reason for Richardson’s law to be valid in describing relative diffusion in

oceanology is the existence of the inertial interval in the turbulent spectrum of sea-

waves predicted by Zakharov. Undoubtedly, this is a highly significant example of

the interaction between wave turbulence and vortex turbulence.
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In conclusion, we recall Taylor’s words [301]: “Since the curve shown when here

seems to contain all the observational data that Richardson had when he announced

the remarkable Richardson law, it reveals a well-developed physical intuition that he

chose as his index 4/3 instead of, say, 1.3 or 1.4 but he had the idea that the index was

determined by something connected with the was energy was handed down from

larger to smaller and smaller eddies. He perceived that this is a process which,

because of its universality, must be subject to some simple universal rule.”
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Chapter 16

Convection and Rayleigh Number

16.1 Buoyancy Forces

Convection may be considered as a part of fluid turbulence and recent research has

many parallels with studies of turbulence. For instance, there is considerable

interest in coherent structures and intermittency effects. Convection in the environ-

ment is almost always a turbulent flow, characterized by unsteady motions over a

range of length and timescales [302–306]. Indeed, most of the motion in the Earth

atmosphere takes the form of convection, caused by warming of the planet by the

Sun: heat absorbed by the surface of the Earth is transmitted to the lower layers of

the atmosphere; warmer air being lighter, it rises, leaving surface for downward

currents of cold air see Fig. 16.1.1.

The upthrust on a body submerged in water is equal to the weight of water it

displaces that was discovered by Archimedes. Indeed, a body of volume W and

density rT have a weight grTW, where g is the acceleration due to gravity. In water
of density rm, the body displaces a weight of water grmW. The net buoyancy force

on the body submerged in water is gðrm � rTÞW. By applying the Newton second

law, one easily obtains the vertical acceleration in the form gðrm � ðrT=rTÞÞ. The
body referred to may itself be a volume of water. Let us suppose that this volume of

water has the density rT and it is surrounded by water of density rm. The buoyancy
of such a volume is given by the expression

Br ¼ g
rm � rT

rm
: (16.1.1)

The buoyancy is positive if the density of the volume is less than that of its

surroundings.

Consider a small volume of water of density rT, which is displaced upward by a

small displacement l. Then, the density difference between it and its new surroundings

is � lðdrT=dzÞ. Here, we suppose that there exists a uniform density gradient

drT=dz, with the z coordinate in the vertically upward direction. If it is released,

its upward acceleration will be of order
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Br ¼ gl

rT

drT
dz

: (16.1.2)

When density increasing upward

drTðzÞ
dz

>0; (16.1.3)

the net force is upward and the acceleration is positive. This means that the volume

of water will move away from its initial position (see Fig. 16.2.1).

The basic destabilizing force is the differential buoyancy experienced by a fluid

particle subjected to a temperature fluctuation. Let us estimate the typical accelera-

tion due to this differential buoyancy: ar being the thermal expansion coefficient

(i.e., � ð1=rmÞð@rT=@TÞ), g is the acceleration due to gravity, rm is some average

density, and the order of magnitude of density fluctuations is rmarDT, where DT is

the temperature difference between the top (cold) and the bottom (hot) plates. The

potential buoyancy force per unit volume is then rmargDT, which allows the

definition of the characteristic time tB through

rmargDT ¼ force ¼ rm � acceleration ¼ rm
L0
t2B

: (16.1.4)

Fig. 16.1.1 Sketch of the general atmospheric circulation composed of direct and indirect cells
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Apart from numerical factors, tB is the time required for a hot bubble to rise, or a

cold bubble to sink over the distance L0.
Damping is expected from the irreversible trend to uniformity: relaxation of

velocity gradients via viscous friction and relaxation of temperature gradients

via heat diffusion. Both processes are governed by a law of the diffusive form.

Here, we have two diffusivities: the kinematic viscosity nF ¼ �F=rm, where �F is

the dynamical viscosity, and the heat diffusivity wq ¼ wQ=Cq, where wQ is the heat

conductivity and Cq is the hear capacity per unit volume.

The viscous characteristic time tn is given by the relation nF ¼ L0
2=tn and the

diffusive characteristic time tD is then defined as follows: kq ¼ L20=tD. The

Rayleigh number

Ra ¼ argDTL03

kTnF
; (16.1.5)

can then be understood as the ratio tntD=t2B, where tB contains explicitly the control

parameter DT.
When Ra � 1, i.e., tB � tntD, the buoyancy force is insufficient to make the

hot (cold) bubble rise (sink) sufficiently quickly. Damping process, especially

thermal diffusion, irons out the fluctuation so that the layer remains at rest. On

the contrary, when Ra � 1, i.e., tB � tntD, the buoyancy is expected to be strong

enough to overturn the layer. The convection threshold should then correspond to

some “intermediate” value of Ra that remains to be estimated.

16.2 The Oberbeck–Boussinesq Equations

The Boussinesq approximation is basically an assumption of moderate heating

reasonably valid in usual experimental situations. Thermodynamic properties of

the fluid are considered in a state equation that simply reads:

Fig. 16.2.1 Schematic

illustration of a convective

flow cell
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rTðTÞ ¼ rmð1� arðT � TmÞÞ; (16.2.1)

where Tm is a reference temperature, rm is the density at that temperature, and ar is
the coefficient of thermal expansion (most of the time we will take Tm at the bottom

plate: ym ¼ 0). Mechanically, the fluid can be treated as incompressible and all

density fluctuations are neglected except in the buoyancy term.

The incompressibility condition (continuity of matter) reads

~V � r~V ¼ @Vx

@x
þ @Vy

@y
þ @Vz

@z
¼ 0; (16.2.2)

The Navier–Stokes equations in our case is given by

rm
@

@t
þ ~V � r

� �
~V ¼ �rPþ �Fr2~V þ rTðzÞ~g: (16.2.3)

It contains the buoyancy term (the dynamical viscosity �F ¼ rmnF is assumed

independent of the local temperature). According to our qualitative understanding

of the instability mechanism, we know that the vertical direction is singled out.

The heat equation reads

Cq
@

@t
þ ~V � r

� �
T ¼ wQr2T; (16.2.4)

where the heat capacity per unit volume Cq and the thermal conductivity w
Q
are

assumed constant (heating due to viscous dissipation is also neglected).

We shall generally assume that the fluid layer is of infinite horizontal extent. The

horizontal boundaries are either rigid walls or free surfaces. The case of the no-slip

condition yields a velocity of zero at the respective boundary. Such boundary conditions

at free surfaces are given by Vz ¼ 0, where we have applied the continuity equation.

In the case of rigid walls, with the effect of capillarity neglected, both the normal

stress and the shearing stress are zero at the free surface. Summarized, the boundary

conditions at rigid walls are given by @Vz=@z ¼ 0. Besides, the boundaries will

usually be assumed to be perfect heat conductors.

The validity of these approximations is discussed here. We just note that

simplifications introduced above are generally supported by order of magnitude

estimates but may be insufficient in certain cases, e.g., for water around 4� where it
presents a density maximum, thus calling for “non-Boussinesq correction”.

16.3 The Rayleigh–Benard Instability

Rayleigh–Benard instability arises when a thin layer of fluid is suggested to heat

fluxes at the top and/or bottom of the layer (see Fig. 16.3.1). The motion that results

from this type of instability is referred to as Rayleigh–Benard convection, and it is
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manifested in certain types of stratocumulus, altocumulus, and cirrocumulus, which

exhibit substructure in the form of rolls and cells (see Fig. 16.3.2). An instability

theory to explain the phenomenon was provided by Rayleigh. This type of convec-

tion was described by Thomson (1881), who observed a pattern of cells of

overturning fluid in a barrel of warm soapy water behind an inn used for cleaning

glasses. His theory is based on the Boussinesq equations applied to an incompress-

ible fluid that expands as its temperature is increased. For such a fluid, the buoyancy

is given by Br ¼ garT0, where ar is the expansion coefficient, defined such that

r0=rm ¼ �arT0. Friction and heat conductivity are parameterized in terms of a

constant viscosity nF and thermal conductivity wQ. The equations are linearized

about a state of zero mean motion and horizontally uniform temperature [307–311].

Perturbations are then governed by the equation of motion,

@~V0

@t
¼ � 1

rm
rP0 þ~garT þ nFr2~V0; (16.3.1)

the continuity equation,

r � ~V0 ¼ 0; (16.3.2)

and the thermodynamic equation,

@T0

@t
� Vzbq ¼ wqr2T0; (16.3.3)

where wq ¼ wQ=rCq, Cq is the specific heat of the homogeneous fluid, and

bq ¼ �@T=@z is maintained by heating below and/or cooling above. Substitution of

solutions of the form

T0 + ΔT

T0

Gravitation force 
L0

Fig. 16.3.1 Schematic

diagram of the

Rayleigh–Benard problem of

convection between two

infinite horizontal boundaries
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V0
z; T

0 / sin kyze
iðkxxþkyyÞegRBt; (16.3.4)

V0
y;V

0
xP

0 / cos kyze
iðkxxþkyyÞegRBt; (16.3.5)

into equations for perturbation ~V0; T0 leads to the dispersion relation

g2RBðk2x þ k2y þ k2z Þ þ gRBðwq þ nFÞðk2x þ k2y þ k2z Þ2þ
þnFwqðk2x þ k2y þ k2z Þ3 � bqgarðk2x þ k2yÞ ¼ 0:

(16.3.6)

Solving this quadratic equation leads further to the conclusion that unstable

solutions (gRB positive and real) occur when

bqgarðk2x þ k2yÞ þ nFwqðk2x þ k2y þ k2z Þ3<0: (16.3.7)

If there is no friction ðnF ¼ 0Þ, this relation reduces to simply bq>0. That is, the

lapse rate must be positive to get unstable growth. If both friction and conduction

are finite, then terms in the dispersion relation can be rearranged to

Ra>
ðkx2 þ k2y þ kz

2Þ3L40
kx

2 þ ky
2

; (16.3.8)

where Ra is the Rayleigh number, defined as

Ra � L30rTgar
wqnF

; (16.3.9)

Fig. 16.3.2 Sketch of the Rayleigh–Benard cells
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and L0 is the depth of the fluid. The expression for the Rayleigh number contains all

of the prescribed characteristics of the fluid. If it is assumed that the vertical wave

number is related to L0 by kz ¼ p=L0, then it is clear that instability can occur

for any number of combinations of kx and ky, including both cells ðkx ¼ kyÞ and
rolls ðkx ¼ 0; ky 6¼ 0Þ; and the value which Ra must exceed, according to the

dispersion relation obtained above, is a function of horizontal wave numberffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx

2 þ ky
2

q
, as shown in Fig. 16.3.3.

In order to be unstable at all, the Rayleigh number characterizing the fluid must

exceed the minimum value:

Ra	 ¼ 27p4

4

 657:5; (16.3.10)

which is found from the dispersion relation by differentiating the right-hand side of it

with respect to ðk2 þ l2Þ. Themost unstable solution for the special case of wq ¼ nF is
obtained by differentiating the dispersion relation with respect to ðkx2 þ ky

2 þ kz
2Þ

(or ðk2x þ k2yÞ) and setting

dgRB
dðkx2 þ ky

2 þ kz
2Þ ¼ 0; (16.3.11)

to find the condition of maximum gRB. A second equation in gRB is given by

kz
2

kx
2 þ ky

2 þ kz
2
¼ 1� Ra

L40

kz

kx
2 þ ky

2 þ kz
2

 !4
; (16.3.12)

Unstable 

2

k

Ra*

4

200

100

Ra

Fig. 16.3.3 Schematic

diagram of stable and

unstable regions for the

Rayleigh–Benard problem
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which is the relation among the wave numbers when gRB has its maximum value.

If we again assume that kz ¼ p=L0 and that we have square cells such that

kx ¼ ky ¼ 2p=S, where S is the spacing of the cells.

The critical value of the Rayleigh number Ra	 depends on the boundary

conditions. In the case of more realistic boundary conditions [308–311], we

have larger values than Ra	 
 657:5, but still of the same order of magnitude.

For a layer of water 10 cm deep, a Rayleigh number of 1,000 is achieved with a

temperature difference 10�4 K and that is why any realistic unstable temperature

distribution will produce Rayleigh numbers that far exceed critical values. Because

Rayleigh number increases rapidly with L0, deeper layers produce even higher

values of Ra.

16.4 The Lorenz Model and Strange Attractor

There is another line of attack, which could be used to consider the Rayleigh–Benard

convection. We start from the Boussinesq approximation, which assumes that the

density variations are incorporated only in the buoyancy term. Perturbations are then

governed by the equation ofmotion, the continuity equation, and the thermodynamic

equation, respectively

@~V0

@t
¼ � 1

rm
rP0 þ~garT þ nFr2~V0; (16.4.1)

r � ~V0 ¼ 0; (16.4.2)

@T0

@t
þ Vz

@T

@z
¼ wqr2T0: (16.4.3)

Taking the curl of the motion equation yields an equation for the vorticity,

d~O
dt

þ ð~u � rÞ~O ¼ ð~O � rÞ~uþ nFr2~O� arr� ðgDTÞ; (16.4.4)

which is given by the conventional relation ~Oðx; y; z; tÞ ¼ r �~u. The velocity is

zero in the z direction, i.e. ~u ¼ ðux; uy; 0Þ. The assumption of two-dimensionality

eliminates the term, which describes vortex stretching in the equation of motion.

The vorticity has a nonzero component only in the z direction, ~O ¼ ð0; 0;OÞ, and
the previous equation takes the form

d~O
dt

þ ð~u � rÞ~O ¼ nFr2~O� gar
@rT

@x
: (16.4.5)
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Two-dimensional incompressible flow may be expressed by the scalar stream

function c:

ux ¼ @cðx; y; tÞ
@y

; uy ¼ � @cðx; y; tÞ
@x

: (16.4.6)

The vorticity is related to the stream function c by the Poisson equation

~Oðx; y; z; tÞ ¼ r2c; (16.4.7)

and the vorticity equation could be written in terms of stream function c as follows:

@

@t
r2c� c;r2c

� � ¼ nFr4c� gar
@DT
@x

: (16.4.8)

Here, the conventional relation for the two-dimensional Jacobian operator is

used

½f ; g� � @f

@x

@g

@z
� @f

@z

@g

@x
: (16.4.9)

We now write the temperature field T in terms of a background profile Th i,
which depends only on y and the temperature perturbation T0

Tðx; y; tÞ ¼ TðyÞh i þ T0ðx; y; tÞ: (16.4.10)

The equation for the temperature perturbation T0 takes the following form:

@T0

@t
� c; T 0½ � � @c

@x

@ Th i
@y

¼ wqr2T 0 þ wq
@2 Th i
@y2

: (16.4.11)

Boundary conditions of no normal flow and no slip at the upper and lower

boundaries imply that:

c y¼0

�� ¼ r2c y¼0

�� ¼ 0;c y¼L0

�� ¼ r2c y¼L0

�� ¼ 0: (16.4.12)

The temperature at the top and bottom boundaries is fixed, so

T0
y¼0

�� ¼ 0; T0
y¼L0

�� ¼ 0: (16.4.13)

Lorenz took the system of equations obtained by truncating the original infinite

system to only three variables [313]. This corresponds to looking for solutions of

the form
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cðx; y; tÞ aRffiffiffi
2

p ð1þ a2RÞwq
¼ XðtÞ sin par

L0
x

� �
sin

p
L0

y

� �
; (16.4.14)

T0ðx; y; tÞ pRa
Ra	DT

¼
ffiffiffi
2

p
YðtÞ cos par

L0
x

� �
sin

p
L0

y

� �
þ ZðtÞ sin 2p

L0
x

� �
: (16.4.15)

By substituting the truncated Fourier expansions of c and T0 into the governing

equations, we find three coupled ordinary differential equations for the coefficients

XðtÞ, YðtÞ, and ZðtÞ:

_X ¼ � Pr X þ Pr Y; (16.4.16)

_Y ¼ �XZ þ RLX � Y; and (16.4.17)

_Z ¼ XY � bRZ: (16.4.18)

To obtain this system, one also rescales time

t0 ¼
p2ð1þ a2RÞwqt

H2
: (16.4.19)

Here, the normalized Rayleigh number is RL ¼ Ra=Ra	, the parameter bR is

related to the aspect ratio of convective cells bR ¼ 4=1þ a2R, and the Prandtl number

is Pr ¼ nF=wq. The coefficient X is proportional to the intensity of the convective

motion. The coefficient Y is proportional to the difference in temperature between

the upgoing and downgoing currents. The coefficient Z describes the horizontally

averaged deviation from the linear temperature profile. This is a dissipative system,

since its divergence is negative:

@ _X

@x
þ @ _Y

@y
þ @ _Z

@z
¼ � Pr�1� bR<0: (16.4.20)

Fixed points are given by the system:

X � Y ¼ 0; (16.4.21)

� XZ þ ðRL � 1ÞX ¼ 0; (16.4.22)

XY � bRZ ¼ 0; (16.4.23)

For RL<1, there is only one fixed point ~S0, X0 ¼ Y0 ¼ Z0 ¼ 0, corresponding to a

linear (conductive) temperature profile, with no convection. For RL>1, there are

two additional fixed points ~S1 and ~S2,
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X1 ¼ Y1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bRðRL � 1Þ

p
; Z1 ¼ RL � 1; (16.4.24)

X2 ¼ Y2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bRðRL � 1Þ

p
; Z2 ¼ RL � 1; (16.4.25)

corresponding to steady convection in parallel rolls.

By a linear stability analysis, it can be shown that ~S0 is the only stable fixed point
for RL<1. At RL ¼ 1, there is a pitchfork bifurcation in which ~S0 becomes unstable

and ~S1 and ~S2 appear as new, stable equilibria. If Pr>bR þ 1, ~S1 and ~S2 become

unstable through a subcritical Hopf bifurcation at

RL ¼ R		 ¼ PrðPrþbR þ 3Þ
Pr�bR � 1

: (16.4.26)

The consequence of the disappearance of the stable fixed point is chaotic motion

[313–317]. In the phase space, the attractor of the system (see Fig. 16.4.1) is a

“strange” object, with a fractal dimension.

The trajectory of the solution follows a part in phase space that spirals away

from one unstable fixed point and then loops in close to the other unstable fixed

Fig. 16.4.1 The Lorenz attractor
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point. It then spirals away from this second unstable focus until it loops back to the

neighborhood of the first unstable fixed point. The switching between orbiting

around one unstable fixed point and the other follows an irregular, aperiodic

sequence. Trajectories started from nearby points on the strange attractor diverge

rapidly from one another, though they remain on the attractor. Such a sensitivity to

initial conditions makes the prediction of the trajectory impossible even though the

system is deterministic. Strange attractors are intimately associated with chaotic

dynamics and unpredictability in dissipative systems.

Detailed understanding of the processes involved in the transition to turbulence

requires more sophisticated theory. In this chapter, the Rayleigh–Benard convec-

tion has served as a pretext for a detailed presentation of some technicalities

involved in convective turbulence analysis. It will now serve us to introduce both

the quasilinear approach and scaling to describe complex convective structures, at

a phenomenological level.
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Chapter 17

Convection and Turbulence

17.1 The Obukhov–Golitsyn Scaling for Turbulent Convection

In this section, we establish the relationship between the classical Zeldovich and

Kolmogorov results of turbulent transport of scalar particles and the theory of

turbulent convection. Let us consider the simplified balance of energy in a convec-

tive flow. In the steady case, the rate of kinetic energy generation,

EðþÞ ¼ arrg
ðL0
0

VZT
0h idz; (17.1.1)

must be equal to the rate of energy dissipation of convective motions due to the

viscous effects:

Eð�Þ ¼ �rnF

ðL0
0

~VD~V
� �

dz: (17.1.2)

Here, L0 is the fluid layer depth.

In order to write a heat balance equation, we have to take into account the heat

flux qT to a lower boundary of fluid. This flux is the sum of the heat conduction

contribution and the convective motion term

qT ¼ q0 þ qconv ¼ �rCpwq
dT

dz
þ rCp VZdTh i: (17.1.3)

Finally, the heat balance in the absence of internal sources has the form

qTL0 ¼ q0L0 þ EðþÞHB: (17.1.4)

When convection occurs the heat transfer is greater than that by conduction. It is

convenient to measure this increase by the dimensionless Nusselt number

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3_17, # Springer-Verlag Berlin Heidelberg 2011

279



Nu ¼ qT
q0

¼ qT
wqDT
l

� � : (17.1.5)

Here, the denominator is the heat flux that would result from the steady conduc-

tion. This means that the Nusselt number is the dimensionless value of the actual

heat flux, and when we are dealing with the conductive regime, one obtains Nu ¼ 1.

For regimes where convection is presented, we have Nu>1.

Now, by taking into account the energy balance, we can write the expression

qT ¼ qT
Nu

þ EðþÞ
HB

L0
; (17.1.6)

which allows us to estimate the efficiency of heat power convertation brought into

the convective layer

g ¼ EðþÞ
qT

¼ L0
HB

� �
1� 1

Nu

� �
� L0

HB
; (17.1.7)

where we suppose that Nu � 1. This expression allows the heat flux to be deter-

mined in terms of the external parameters of convective flows L0 andHB and so is of

considerable practical as well as conceptual value.

On the other hand, we can easily evaluate the energy dissipation for the

quasisteady case

Eð�Þ � EðþÞ ¼ gqT � L0
HB

1� 1

Nu

� �
qT � L0

HB
qT; (17.1.8)

where Nu � 1.

At this stage, it is natural to apply the Kolmogorov–Obukhov concept of well-

developed turbulence to the turbulent convection in the horizontal infinite layer of a

fluid. Thus, we can estimate the Kolmogorov constant eK. Indeed, using an expres-

sion for the kinetic energy dissipation in a flat layer Eð�Þ, we find the Golitsyn

formula [318] for an energy flux

eK ¼ Eð�Þ
rL0

¼ qT
rHB

Nu� 1

Nu
: (17.1.9)

In the case of the high Nusselt number Nu � 1 ðqT � q0Þ, we deal with the

well-developed convective turbulence. This allows us to introduce the scaling for

the energy flux

eK ¼ qT
rHB

¼ arg
rcp

� �
qT: (17.1.10)
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For modeling the turbulent convection in the atmospheric boundary layer, this

scaling was applied by Obuchov [241]. From this experiment, the order of the

magnitude of eK was experimentally defined in conditions of clear sky in a steppe

on different levels. Data obtained (see Fig. 17.1.1) allow one to consider the

estimate of eK � 5 cm2=s3 as rather correct ranging from 50 to 1,000 m.

17.2 Quasilinear Regimes of Turbulent Convection

We turn our attention to different aspects of the model under analysis. In the

turbulent convection regimes, where the Nusselt numbers are high, the formula

eK ¼ arg=rcp
� 	

qT leads to Zeldovich’s quasilinear scaling obtained from the

general analysis of scalar transport equations

Deff / D0ðconstþ Pe2Þ: (17.2.1)

Let us calculate the characteristic velocity of convective motions basing on the

dimensional estimate of viscous dissipation

Fig. 17.1.1 The mean profile of the energy dissipation rate for different values of height (After

Koporov B.M. Tsvang L.R. [319] with permission)
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eK / nF
V2
0

L0
: (17.2.2)

In the case of Nu � 1, one can find the scaling for the characteristic velocity

V0 / eK
nF

� �1=2
L0: (17.2.3)

This estimate of the characteristic velocity can be rewritten in terms of the

Rayleigh number and the Nusselt number

V2
0 / L20

eK
nF

� �
/ qT

DT

� � DT
nF

� �
/ Nu � Ra: (17.2.4)

The author of [318] used this expression to analyze the energy balance in

the case of convection in water. The experimental results were obtained, V0 �
2:6mm=s for eK � 3� 10�3 cm2=s3, which coincide with the results of indepen-

dent experimental data.

Basing on linear dependence between the energy flux eK and the convective heat

flux qT

eK ¼ arg
rcp

� �
qT / qT; (17.2.5)

it is easy to obtain a quasilinear scaling for a heat flux in terms of the Peclet number

Pe:

qTðPeÞ / Nu / V2
0 / Re2 / Pe2: (17.2.6)

On the other hand, on the basis of the transport equation,

~Vr� 	
T � � 1

rcp
r~qT; (17.2.7)

we find an estimate of temperature fluctuations

dTðPeÞ � qTðPeÞ
V0

1

rcp
/ V0 / Re / Pe: (17.2.8)

Note that both estimates obtained for the temperature fluctuation dT and con-

vective heat flux qT coincide exactly with Zeldovich’s predictions for a quasilinear

case, Pe � 1. Indeed, such turbulent convective regimes are occurred in the

regimes where viscosity effects are essential.
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17.3 Strong Convective Turbulence

For fixed fluid properties, which in our case are described by dimensionless Prandtl

number, scaling analysis of turbulent transport suggests that

Nu ¼ NuðRaÞ; (17.3.1)

and much attention has been given to the form of this functional relationship,

particularly at high Rayleigh number (see Fig. 17.3.1). The nature of dependence

NuðRaÞ for the Rayleigh number Ra>Ra� was investigated theoretically long ago

by Kraichnan [320], and his work has stimulated the search for ways to explore this

high Rayleigh number regime because it is related to fundamental change in the

heat transport mechanism.

Note that near the boundaries heat is transferred by conduction since the vertical

velocities are zero at the boundaries. The heat flux qT across each layer is

qT ¼ wq
dT
dT

; (17.3.2)

where dT is the temperature difference across the boundary layer of thickness dT.
Thus, estimate for the Nusselt number is given by

Nu ¼ dT � L0
DT � dT : (17.3.3)

Observations show that as the Rayleigh number increases, the boundary layers

become thinner and the temperature drop across them increases until

dT � 1

2
DT; (17.3.4)

and hence finally, one obtains the estimate in the form

NuðdTÞ � L0
2dT

: (17.3.5)

Fig. 17.3.1 A typical plot of

the dependence of the Nusselt

number on the temperature

difference
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In the case of Nu � 1, the interior of the fluid has almost uniform temperature

and all the temperature drop occurs across the boundary layers, which are thin

compared to the fluid depth (see Fig. 17.3.2).

On the other hand, we can estimate a boundary layer width dT responsible for the
conduction in the steady case from the heat transport equation. In the simplified

dimensional form, we find

V0

T

L0
� wq

T

d2T
: (17.3.6)

Then, we obtain the scaling for the layer width in terms of the Peclet number:

dTðPeÞ / L0ffiffiffiffiffiffiffiffi
PeT

p / L0

ffiffiffiffiffiffiffiffiffiffi
wq

V0L0

r
: (17.3.7)

Indeed, when Ra � 1, the buoyancy forces dominate and, when the stratification

is unstable, convection will ensue. For turbulent flows (for instance, environmental)

Ra is large, but near any boundary the scale of the motion is small and heat enters

the fluid by conduction, through a thin boundary layer. Now, it is easy to calculate

an expression for the Nusselt number

Nu / dT
L0

/ ffiffiffiffiffiffiffiffi
PeT

p /
ffiffiffiffiffi
V0

p
or V2

0 / Nu4: (17.3.8)

T (y)

T (y)

L0

y

δ

δ

Fig. 17.3.2 A typical plot of

the temperature profile in the

Rayleigh–Benard convection
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By comparing this expression for V0 ¼ V0ðNuÞ with the previous one

V2
0 / L20

eK
nF

� �
/ Nu � Ra; (17.3.9)

we can draw the well-known scaling in the theory of turbulent convection

NuðRaÞ / Ra1=3; (17.3.10)

where Ra � 1, which corresponds to regimes of strong convective turbulence. The

corresponding heat flux is given by the expression

qT / rCp

argw2q
nF

 !1=3
DT4=3: (17.3.11)

It is interesting that the estimate of temperature fluctuations obtained on the basis

of these formulas is less than the Zeldovich classical result for the case of very

strong turbulence (when Pe � Re � 1) demonstrated before:

dTðPeÞ / qTðPeÞ
V0

/ Nu

V0

/ 1ffiffiffiffiffi
V0

p / 1ffiffiffiffiffiffi
Pe

p � 1

Pe1=4
: (17.3.12)

On the other hand, in regimes with Ra / Pe � 1, the heat transport qT depends,
in general, on the condition near boundaries dT / 1

V0
� L0 and is independent of the

layer depth L0

qT ¼ wq
DT
L0

NuðRaÞ / RaðL0Þ1=3
L0

/ L30
� 	1=3
L0

: (17.3.13)

This, obviously, also leads to the scaling Nu / Ra1=3.
In the conditions of very strong turbulence, the dependence of the Nusselt

number on the Rayleigh number Nu ¼ NuðRaÞ still remains unsolved both experi-

mentally and theoretically.

17.4 Diffusive Growth of Boundary Layer

The experimental data have showed that in the case of the high Rayleigh numbers

there are regimes where a convective flow is not steady. To explain the mechanism

of unsteadiness, we represent a phenomenological approach, which was introduced

by Howard [321]. He considered high Rayleigh number convection to consist of the
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temporal development and subsequent breakdown of the boundary layers to release

buoyant fluid (see Fig. 17.4.1).

Let us suppose that heat is conducted from the boundary into a layer with

thickness

dTðtÞ /
ffiffiffiffiffiffi
wqt

p / 1

Pe1=2
: (17.4.1)

The value of dT will grow diffusively until it reaches a critical thickness at which

a local boundary layer Rayleigh number RaðdÞ is given by the relation

RaðdÞ ¼ gardTd
3
T

nFwq
¼ Ra� � O 103

� 	
: (17.4.2)

This local Rayleigh number RaðdÞ is based on the boundary layer scale dT and

temperature drop dT. At this point, the boundary layer is assumed to break away at

t � tc and the process repeats. This leads to the instability as convection tends to

increase the boundary layer thickness that in turn increases the rate of growth.

The critical Rayleigh number defines a critical boundary layer thickness dc,
which is given by

dc ¼ L0
2Ra�ðdÞ

Ra

� �1=3
¼ L0

Nu
: (17.4.3)

λ

δ

Fig. 17.4.1 Sketch of the

thermal boundary layer

destruction
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Note that the value of Ra� � 1; 000 corresponds to rigid boundary conditions.

Now, one obtains the scaling for high Rayleigh number regimes

NuðRaÞ ¼ 0:077Ra1=3: (17.4.4)

It is possible to estimate the characteristic time of delay needed to renovate

boundary layer based on relation

d3cðtÞDT � wqt
� 	3=2

DT � 1: (17.4.5)

This yields the expression

tc DTð Þ / DT�2=3: (17.4.6)

This phenomenological model of turbulent convection has provided insight into

the boundary layer evolution in the presence of time dependence effects.

Concerning the nature of the dependence of NuðRaÞ at the high Rayleigh

number, note that there exists a famous theoretical Kraichnan prediction for a

system without boundary layers

NuðRaÞ / Ra1=2: (17.4.7)

This theoretical result is based on the mixing-length theory. This means that the

Nusselt number increases much more rapidly with Ra than it does below Ra�.
Indeed, recently, the author of [322] achieved larger Ra in helium and for Ra>1010

he found that the dependence of NuðRaÞ becomes steeper. Thus Ra>1014 it is

consistent with Nu / Ra1=2. The Reynolds number at the onset of this asymptotic

regime is Re � 104.

However, to theoretically analyze turbulent convection at the high Rayleigh

number, it is necessary to apply more complex methods, which allow one to take

into account the nontrivial topology of conductive boundary layer (see Fig. 17.4.2).

17.5 Chicago Scaling

In the context of complex structures formation in chaotic flow, we consider the

experimental works [324] showing that at Rayleigh numbers between about 5� 105

and 4� 107, conventional scaling Nu / Ra1=3 applies quite well. But at

about Ra ¼ 4� 107 another distinct transition in the character of the convection

occurs, so that above this transition (see Fig. 17.5.1) NuðRaÞ / Ra
2=7	0:006

. In addi-

tion, the experiments show that the nondimensional magnitude of the temperature

fluctuations is related to Ra by
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dTh i2
� �1=2

DT
/ Ra�

1
7; (17.5.1)

while the dimensional velocity fluctuations are given by

Fig. 17.4.2 Buoyant plumes

or thermals. The plumes or

thermals, made visible by

dye in the two photographs,

rise from a heated surface in

the laboratory in the absence

of shear. (After Sparrow E.M.

et al. [323] with permission)

Fig. 17.5.1 The dependence of the characteristic temperature Dc on Nu. Dc is proportional to a

r.m.s. temperature fluctuation and is measured at the center probe. The different symbols indicate

different pressure in the helium. (After Castaing B. et al. [324] with permission)
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dVh i2
� �1=2

L0

nF
/ Ra

3
7: (17.5.2)

Kadanoff and associates at the University of Chicago have provided a rationali-

zation for these observations. First of all, assume that the Nusselt number and the

dimensionless temperature and velocity fluctuations all go as some power of Ra

dTh i2
� �1=2

DT
/ Ram1 ; (17.5.3)

dVh i2
� �1=2

L0

nF
/ Ram2 ; (17.5.4)

Nu / Ram3 : (17.5.5)

We next note that the heat flux in the interior is carried by the convection itself,

so that

Nu / dTdV / dTh i2
� �1=2

dVh i2
� �1=2

/ Ram2þm1 : (17.5.6)

By comparing last equations, one obtains,

m3 ¼ m2 þ m1: (17.5.7)

It is also true that away from the boundaries, the individual convective elements

are accelerated by buoyancy so that the main balance in the vertical momentum

equation is between acceleration and buoyancy:

dV

dt
/ V

@V

@z
/ gar dT: (17.5.8)

This gives the scaling relation for the velocity fluctuation amplitude

dVh i2
� �

/ garL0 dTh i2
� �1=2

: (17.5.9)

After substitution, we have the estimate

Ra2m2 / L30
nF2

garDTRam1 / Ramþ1: (17.5.10)
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Then, one obtains the formula

2m2 ¼ m1 þ 1: (17.5.11)

Now the critical assumption made by the Chicago group is that the velocity

achieved by buoyant elements traversing the boundary layers is determined by a

balance between buoyancy and dissipation:

garDT /
nF dVh i2
� �1=2

l2
; (17.5.12)

where l is the dept of the boundary layers. Now, l is related to the Nusselt number

by l Nuð Þ ¼ L0=Nu that allows us to find the relationship

garDT / Nu2nF2Ram2

L30
: (17.5.13)

Now, we can rewrite the formula for the Rayleigh number

Ra / Ra2m3þm2 ; (17.5.14)

or in terms of characteristic exponents

1 ¼ 2m3 þ m2: (17.5.15)

Solving equations obtained for the characteristic exponents yields

m3 ¼ 2

7
; m2 ¼ 3

7
; m1 ¼ � 1

7
; (17.5.16)

which is in agreement with the experiments.

What is remarkable about both the 2/7 and 1/3 power laws is that they predict a

dependence of the dimensional heat flux on molecular diffusion in the limit of high

Rayleigh number. Thus, for example, the scaling Nu / Ram3 implies that

qT / dVh i dTh i / nF1�2m3 : (17.5.17)

Thus, only if m3 were equal to 1/2 would the dimensional heat flux be indepen-

dent of viscosity. This indicates that no matter how turbulent the actual convection

is, there is still a dependence on molecular fluxes. This makes application to

geophysical fluids highly problematic, since other influences are bound to dominate

the convective heat flux [325–327].
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17.6 Turbulent Thermal Convection and Spectra

In concluding this chapter, we briefly consider the power spectra for heat convec-

tion. Obukhov and Bolgiano [328, 329] applied the analogy of the cascade scalar

description in turbulent flows on turbulent thermal convection. In the steady case,

we rewrite the Boussinesq equation in the simplified form

~Vr� 	
~V ¼ ar~g T � T0ð Þ; (17.6.1)

The basic equations to analyze power spectra of heat convection are related to

the scalar flux conservation

eT / dT2
l

tCASCðlÞ /
dT2

l Vl

l
¼ const; (17.6.2)

and the balance between acceleration and buoyancy

Vl
2

l
/ gardTl; (17.6.3)

that is true away from the boundaries. Here, we apply the dimensional estimate for

the cascade characteristic time tCASC / l=VlðlÞ.
In the simplified case, it is possible to employ the Kolmogorov scaling for

velocity fluctuation amplitude

Vl / ðelKÞ1=3 /
e1=3K

k1=3
/ Vk; (17.6.4)

that allows us to solve this basic system of equations. For the velocity fluctuation

amplitude, we have

Vl / ðeTar2g2Þ1=5l3=5: (17.6.5)

For the temperature fluctuation amplitude, one obtains

dTl / e2=5T

a1=5r g1=5

 !
l1=5: (17.6.6)

We now calculate power spectra for inertial range of spatial scales of turbulent

convective flow basing on the conventional definitions

EðkÞ / V2
k

k
/ eTa2rg

2
� �2=5

k�11=5; (17.6.7)
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ETðkÞ / dT2
k

k
/ e2T

arg

� �2=5
k�7=5: (17.6.8)

These are the energy spectrum and the scalar spectrum, respectively (see

Fig. 17.6.1). Such a consideration is valid when

Pr ¼ Pe

Re
¼ nF

wq
� 1: (17.6.9)

It is natural to estimate the rate of energy dissipation, which is related to the

buoyancy effects

er � gap
� 	

dVldTl / e3=5T gap
� 	6=5

l4=5: (17.6.10)

Note, that er scales as l4=5. This means that in case of small spatial scales this rate

of dissipation will be less than the Kolmogorov rate of dissipation eK / Vl
3=l. By

comparing the rate of energy dissipation which is related to the buoyancy effects

and the Kolmogorov rate of dissipation

e3=5T gap
� 	6=5

LBo
4=5 � eK; (17.6.11)

one can find the Bolgiano spatial scale

EV (k)

log k

logE (k)

log kBo

ET (k)

~ k –5/3

~ k–5/3

~ k –11/5

~ k –7/5

Fig. 17.6.1 Idealized energy

and scalar spectra for

convective turbulence
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LBo / eK5=4

gap
� 	3=2e3=4T

; (17.6.12)

which characterizes the low boundary of the Bolgiano–Obukhov regime.

For scales less than the Bolgiano spatial scale, l<LBo, we shall apply Kolmo-

gorov kind of spectra for both energy spectrum and scalar spectrum

EðkÞ / EKðkÞ / k�5=3; (17.6.13)

ETðkÞ / k�5=3: (17.6.14)

Since Bolgiany’s and Obukhov’s articles, tremendous progress in the under-

standing of the turbulent convection has been achieved by experiment, theory, and

numerical simulation. However, it has also become clear that our understanding is

far from complete. The key problem of the turbulent convection description is

closely related to the existence of coherent structures as a part of the turbulence

itself. We look at this aspect of the theory below.
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Part VIII

Structures and Complex Flow Topology



Chapter 18

Coherent Structures and Transport

18.1 Regular Structures

Until now we have discussed aspects of transport in chaotic flows ignoring, on most

occasions, the existence of coherent structures. However, the crucial issue of the

modern theory of anomalous transport is related to the formation of complex

structures in turbulent flows. Here, we are concerned with simplified models of

complex structures that are present in hydrodynamic system, magnetized plasma,

etc. In this context, a coherent structure is, for instance, a vortex system that persists

for a long time. Environmental and plasma-physical examples of complex vortex

structures include Gulf Stream rings, the Great Red Spot on Jupiter, and convective

cells systems in high temperature tokamak plasma (see Fig. 18.1.1). Thus, in the

framework of the geophysical fluid dynamics the analysis of complex structures

evolution could provide insight into the processes involved in the transformation

from a line of convective cells to an organized mesoscale system.

For the sake of simplicity first we discuss the regular structures. Such an approach

is an attractive one, which could possibly provide an alternative starting point for the

description of anomalous transport in complex system. Moreover, of particular

importance to us is the case of two-dimensional incompressible flows, with

div~u ¼ @ux
@x

þ @uy
@y

¼ 0: (18.1.1)

Both the oceans and the atmosphere (for velocities much smaller than the speed

of sound) can be regarded as incompressible and can in many situations be

considered two-dimensional systems as well [302–306]. In this simplified case,

there exists a stream function C x; y; tð Þ whose derivatives give the velocity

components of the flow:

ux x; y; tð Þ ¼ � @C x; y; tð Þ
@y

; (18.1.2)

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,
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uy x; y; tð Þ ¼ � @C x; y; tð Þ
@x

: (18.1.3)

By substituting the above equations in the equation of motion, one obtains the

equation of motion for an advected particle in terms of the stream function:

_x ¼ � @Cðx; y; tÞ
@y

; (18.1.4)

_y ¼ @Cðx; y; tÞ
@x

: (18.1.5)

The simplest example of the velocity field of interest is given by the streamline

functionCðxÞ ¼ C0 sinðxÞ. Here,C0 is an arbitrary stream function amplitude. The

velocity field for this streamline function is represented as follows:

~uðxÞ ¼ 0

C0 cosðxÞ
� �

: (18.1.6)

This is a simple shear flow. Randomization of this sinusoidal velocity field leads

to the Dreizin–Dyhne random shear flow. More interesting example arises when

one considers a superposition of two independent sinusoidal shear flows:

C x; yð Þ ¼ C0½sinðxÞ þ sinðyÞ�: (18.1.7)

The corresponding velocity field for this streamline function is given by

Fig. 18.1.1 Stremlines of a

two-dimensional cellular flow
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~uðxÞ ¼ �C0 cos y
C0 cosðxÞ

� �
: (18.1.8)

This is a periodical two-dimensional system of swirling eddies (cell system)

rotating in clockwise as well as counterclockwise fashion (see Fig. 18.1.1). Ran-

domization of this cell velocity field leads to the Manhattan random flow.

The two-dimensional array of swirling eddies can be obtained by the superposi-

tion of a sinusoidal shear flow on a periodical system of swirling eddies

C x; yð Þ ¼ C0½sinðxÞ þ sinðyÞ� þC1 sinðyÞ: (18.1.9)

Here, C1 is an arbitrary stream function amplitude (see Fig. 18.1.2).

The most often recourse is made of the Taylor vortices stream function

C x; yð Þ ¼ C0 sinðxÞ sinðyÞ: (18.1.10)

Thus, we obtain a periodical two-dimensional system of swirling eddies (aligned

with the x and y direction) that are rotating in clockwise as well as counter-

clockwise fashion (see Fig. 18.1.3). The Taylor vortices system satisfies the free-

slip boundary condition as well as the no-penetration condition. This simple

model of the streamline topology is able to capture the essential features of

Rayleigh– Benard convection as well as two-dimensional symmetric square-cell

convective system.

1

1

0.5

0.5

0

0
–1

–0.5

–0.5–1

Fig. 18.1.2 Two-

dimensional array of swirling

eddies
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18.2 Scaling for Diffusive Boundary Layer

This section considers the dispersion of a passive scalar in a periodic system of

convective cells. The complete evolution of the tracer concentration n is determined

by the advection–diffusion equation.

@n

@t
þ~u�rn ¼ D0r2n; (18.2.1)

where D0 is the molecular diffusivity and~u is the advection velocity. For the sake of
simplicity, we treat a convection cell whose horizontal length is much larger than its

height and where the convective rolls are aligned along the z-axis. In this situation,
the flow could be considered as two-dimensional.

Assuming stress-free boundary conditions and single-mode convection, an

explicit form for the velocity field is given by:

C x; yð Þ ¼ C0 sin kxxð Þ sin kyy
� �

: (18.2.2)

Here, the supposition is made that

1

1

0.5

0.5

0

0

–0.5

–0.5
–1

–1

Fig. 18.1.3 Streamlines of the Taylor vortices

300 18 Coherent Structures and Transport



C0 ¼ lV0 and kx ¼ ky ¼ 2p
l
; (18.2.3)

where l is the cell size.

It is natural to set up a transport model in the form of a random walk between

cells. Here, the diffusive boundary layer is responsible for transport among cells

(see Fig. 18.2.1). The molecular diffusivity D0 is assumed to be very small or, more

precisely, the Peclet number is large

Pe ¼ lV0

D0

>1: (18.2.4)

Here, l is the cell size and V0 is the characteristic velocity of the convective flow.

In our case, an estimation of the width of diffusive boundary layer D could be

obtained on the basis of the advection–diffusion equation by comparison of diffu-

sive and convective terms

V0

@n

@x
� D0

@2n

@y2
: (18.2.5)

On the basis of dimensional arguments, we arrive at the relation

V0

n

l
� D0

n

D2
: (18.2.6)

Δ

Fig. 18.2.1 A system of

convective cells
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This relation establishes the importance of boundary layer scale DðV0Þ through-
out a domain where a steady flow operates. Now one obtains the formula for the

boundary layer width [330, 331],

DðV0Þ /
ffiffiffiffiffiffiffiffi
D0t

p
/

ffiffiffiffiffiffiffiffi
D0l
V0

s
/ 1ffiffiffiffiffiffi

Pe
p / 1ffiffiffiffiffi

V0

p : (18.2.7)

This result is fairly predictable. Indeed, the thickness of almost all the boundary

layers goes like 1=
ffiffiffiffiffiffi
Pe

p
; 1=

ffiffiffiffiffiffi
Re

p
, etc.

The correlation timescale is given by

tðV0Þ � l
V0

� D2ðV0Þ
D0

: (18.2.8)

By estimating the fraction of space responsible for the convective contribution to

effective transport as lD=l2 � D=l, we obtain the transport scaling

Deff � V0
2t

Dl

l2

� �
� V2

0t
D
l
: (18.2.9)

This is the quasilinear expression, which is corrected (renormalized) by the

geometrical factor D=l to account for the fraction of space that is responsible for

the convection. Here, l is the cell size and V0 is the characteristic velocity of the

convective flow.

By taking into account the expressions for the correlation time tðV0Þ and

diffusive layer width DðV0Þ, we arrive at the following estimate for the turbulent

diffusion coefficient:

Deff �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D0V0l

p
� D0Pe

1=2 / V
1=2
0 : (18.2.10)

This representation of the result in terms of the Peclet number differs signifi-

cantly from both the quasilinear, Deff / V2
0 , and the Howells linear estimates,

Deff / V0. The scaling Deff / V
1=2
0 was anticipated in a related problem in [250]

and the proportionality constant has been calculated in [330]. Note that using very

tricky singular perturbation techniques it is possible to solve the advection–diffusion

equation in order to obtain the formal solution for the scalar diffusive flux and the

result coincides with the scaling obtained above. Note that the study of the influence of

particle inertia in cellular flow showed that particles in a random convective cell

systems may settle out even more rapidly than in still fluid [332].

The stream function terminology is fairly effective in considering turbulent

transport in the presence of structures. Thus, the transport scaling obtained can

also be interpreted in terms of a stream function perturbation,
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Deff � V0DðeÞ � DC; (18.2.11)

where DC is the change in the stream function amplitude across a diffusive

boundary layer D. The subsequent progress of research on diffusion processes in

systems with convective cells has led us to the understanding of the importance of

the stochastic layer width D in analyzing the convective fraction of the transport.

18.3 Anomalous Transport in a Roll System

Subdiffusive scalar transport can occur in regular steady flows as well as in random

velocity fields. The basic mechanism responsible for this slow diffusion is trapping,

which caused the existence of complex vortex structures. Thus, the subdiffusive

motion of a tracer particle in the array of convective rolls is related to both the

convection along streamlines and the molecular diffusion, which allows “jumps”

between streamlines [332–340].Note that without compressibility in two-dimensional

flows the subdiffusion mechanism cannot be realized.

We could generalize the diffusive model of transport in convective roll system

because each roll acts as a trap. We obtain not only effective diffusion coefficient

but also the scalar distribution function. The key element of such a consideration is

the waiting time distribution function decaying as

cðtÞ / 1

t1þmp
t� 1þmpð Þ: (18.3.1)

Here, mp is the waiting time characteristic exponent. This scaling representation

is valid for times t�

t�ðL0;D0Þ � L20
D0

; (18.3.2)

where L0 is the diameter of a roll. The scalar particle distribution function

corresponding to the scaling representation of the waiting time distribution is

given by the formal expression [333]

P x; tð Þ ¼ 1

tmp=2
fmp=2

xj j
tmp=2

� �
: (18.3.3)

The aim of our investigation is a relationship between the characteristic expo-

nent mp, which characterizes the rate of decay of the waiting time distribution, and

the parameter, which describes the velocity field in a system of convection rolls.

Indeed, to specify the convective flow under consideration, we can assume that for

small distances from the wall the velocity scales with the distance as follows:
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VðyÞ / V0

y

L0

� �bp
: (18.3.4)

Here, the boundary conditions imposed by the horizontal plates are given by the

simple relations: the exponent bp ¼ 0 corresponds to “free” boundary condition,

whereas the value bp ¼ 1 describes “no-slip” boundary conditions.

The particle experiences molecular diffusion D0, which allows “jumps” between

different streamlines as well as moves along the streamlines. This permits us to

obtain a relationship between the characteristic exponent mp and the parameter bp
by estimating the waiting time distribution cðtÞ through the scaling for the proba-

bility of leaving the roll P1. Indeed, in terms of probabilistic approach, one has the

balance relations

cðtÞdt ¼ P1ðNÞdN: (18.3.5)

It is convenient to pass to discrete representation of rolls. One can analyze the

streamlines as a numbered set, where i ¼ 1; :::imax. The particle thus makes a one-

dimensional random walk on this numbered set. The circular convective motion is

superimposed by definition. The probability of leaving the roll is proportional to the

probability of first return to the site i ¼ 1, which, after N steps, could be represented

as the power law

P1ðNÞ / N�3=2: (18.3.6)

Here, the supposition is made N2 � imax. Since different visits to a given roll

lead to different diffusion histories, the total time t will again be the sum of

independent, broadly distributed variables. The number of visited rolls after a

time t thus reads

NIðtÞ / t
mp
2 ; for mp<1: (18.3.7)

Now, if tðiÞ represents the time needed to make a closed loop on the ith
streamline, the total time spent by the particle in the cell is given by the formula

tðNÞ ¼
XN
j¼1

tðiðjÞÞ: (18.3.8)

Note that flux conservation condition imposes that the ith streamline is situated

at some distance from the horizontal plate, which can be expressed as follows:

i

imax

� � 1
bpþ1

L0: (18.3.9)
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In this context, the transit time is given by the formula

tðiÞ / L0
V0

� �
imax

i

� � bp
bpþ1

: (18.3.10)

It is natural to employ the Gaussian distribution function to define the probability

to be on the ith line after j steps. This leads to the formula

P i; jð Þ / j�1=2e�i2=j: (18.3.11)

Averaging leads to the relation for the mean transit time tðjÞh i in the following

form:

tðjÞh i 	
X
i

tðiÞP i; jð Þ / j
� bp

2 bpþ1ð Þ; (18.3.12)

and thus one obtains the formula for the total time spent by the particle in the cell

t ¼
XN
j¼1

tðjÞh i / N
bpþ2

2 bpþ1ð Þ: (18.3.13)

This expression shows that time and number of steps are not proportional to one

another, except the case where bp ¼ 0. Indeed, the first loop passage takes a long

time since the particle gets close to the wall where the velocity is vanishing. The

upper bound on t is given by the scaling:

tmax / L0
V0

� �
V0L0
D0

� � bp
2þbp / Pe

bp
2þbp : (18.3.14)

To obtain the characteristic exponent mp, which characterizes the rate of decay of
the waiting time distribution, we apply the probabilistic arguments considered

above

cðtÞ dt

dN
dN ¼ P1ðNÞdN; (18.3.15)

This yields the relationship between exponents mp and bp [332, 333]

mp ¼
1þ bp
2þ bp

: (18.3.16)

Now one can find the number of “invaded” rolls NIðtÞ as well as the full diffusive
front in terms of the Levy laws P x; tð Þ. In particular, for stress-free boundary
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condition bp ¼ 0, mp=2 ¼ 1=4, that, initially, gives the number of invaded rolls

grew as NIðtÞ / t1=4. For rigid boundary condition bp ¼ 1, mp=2 ¼ 1=3, that,

initially, gives the number of invaded rolls grew as NIðtÞ / t1=3. In this case, one

obtains

P X; tð Þ ¼
ffiffiffiffiffiffi
Xj j
t

r
K1=3

Xj j3=2
t1=2

 !
: (18.3.17)

This well-known result by Cardoso and Tabeling [333] reproduces quite well the

experimental data. At a later time when the effects of molecular diffusion become

dominant, the number of invaded rolls grew as NIðtÞ / t1=2, which coincides with

the conventional diffusive representation.

Chaotic flows often contain ordered regions (vortex structures) that hamper

mixing. The transport barriers they present can be overcome by frequency-driven

reconstruction of flow topology.

18.4 Convection Towers and Thermal Flux

Topological peculiarities of a flow could be used to analyze strong-turbulent

regimes. As a simple example, we can derive scaling estimates of atmospheric

convection related to the beginning of hurricanes. The initial stage of tornado

beginning is characterized by the existence of narrow convective flows (see

Fig. 18.4.1). In such a formulation of the problem, it is possible to use, as a key

geometric characteristic, the width of the “percolation” convective flow d instead of

l0

Δ

Fig. 18.4.1 Schematic

illustration of convective

towers
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the classical width of a boundary layer. Then, on the one hand, for a thermal flow

we obtain an expression in terms of d

qT � wT
T0
l

� V0dð Þ T0
l
; (18.4.1)

where V0 is the characteristic velocity of a convective flow, l is the characteristic

geometric size, and T0 is the characteristic temperature. On the other hand, the

geometry of the model under consideration leads to the estimate

qT ¼ QT

d2N dð Þ /
QT

d2
; (18.4.2)

where QT (Dg/s) is the supplied power, d2 is the convective current cross section,
and N dð Þ is the number of convective channels. By comparing these two equations,

we obtain

V0 � QTl
T0

� 1

d3
/ 1

d3
; (18.4.3)

or in terms of the Peclet number

dðPeÞ / 1

Pe1=3
: (18.4.4)

The fast rotation in our simplified model of hurricane structures is obviously

related to the narrow convective channels. Let us consider a balance of characteris-

tic times. Suppose that in our case (see Fig. 18.4.2), the rotation frequency o scales

inversely with the characteristic time tQ � L0=V0

1

oðV0Þ �
L0
V0

: (18.4.5)

With allowance for the scaling for V0 / 1=d3, we find

oðdÞ / QT

T0

l
H

� �
1

d3
/ 1

dTð Þ3 : (18.4.6)

For the sake of simplicity, we suppose that d / dT. Now, the scaling for the

thermal flux is given by

qT � V0dT � V0dð Þ T0
l

/ V
2=3
0 : (18.4.7)
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This result agrees well with the Zeldovich prediction for the case of strong

turbulence. We see that narrow convective (percolation) channels could lead to

considerable rotation frequencies at the initial stage of hurricane structure forma-

tion. Hurricane structure models are quite beyond our scope and we shall just put

forward the analogy between convective cell system and our simplified problems.

Similar problem arises in the framework of turbulent diffusion description in the

presence of coherent structures where narrow stochastic layers are responsible for

main contribution to effective transport.

18.5 Random Flow Landscape and Transport

Above we analyzed the transient regimes of anomalous transport in the array of

convective rolls in the framework of continuous time random walks. The main

feature of that case was particle trapping by vortices. The model of regular

convective cells is correct when every single vortex is separated from all others

by a separatrix.

On the contrary, when we are dealing with random two-dimensional flows such a

“small-scale” division of flow domain is unlikely. Here, the considerable contribu-

tion to transport will be related to tracer ballistic motion along streamlines, which

embraces a flow domain. For instance, by considering cellular structures of strato-

cumulus and small cumulus over oceans in terms of global climatology, we can see

that there exist simultaneously both regions where closed cells predominate and

regions where currents are more common. On the other hand, the Gulf Stream is one

of the famous examples of similar organized mesoscale system. It is difficult to

decide whether flights related to currents or trapping by vortices will define the

effective transport in such complex flows.

ωV

QT

Fig. 18.4.2 Sketch of the

vortex structure of convective

towers
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The appearance of advective currents could be related to distortion of initially

symmetric patterns by a small fluctuation field. In a simplified form, such an

example was considered in [341] on the basis of the steady velocity field

C x; yð Þ ¼ C0 sinðxÞ sinðyÞ þ eS cosðxÞ cosðkyÞ; (18.5.1)

Here, the one-parameter perturbation field

Cp x; yð Þ ¼ eS cosðxÞ cosðyÞ (18.5.2)

is superimposed on the Roberts symmetric square-cell stream functionC0. Here, eS
is the fluctuation amplitude. This is the extension of the convective cells model. If

the parameter eS>0, the streamlines C ¼ const form a periodic array of oblique

cat’s-eyes separated by continuous channels carrying finite fluid flux (see

Fig. 18.5.1). Here, channels traversing the flow domain as well as a periodic pattern

of regions of closed streamlines are presented. In this case, advection dominates

molecular diffusion D0, and tracer is transported both in thin boundary layers and

within the channels. Note that steady random flows cannot diffuse a passive scalar

in the absence of molecular diffusivity. For the large Peclet number, Pe 
 1, the

separation of the cat’s-eyes thus locates the boundary layers of thickness order

DðV0Þ / 1ffiffiffiffiffiffi
Pe

p / 1ffiffiffiffiffi
V0

p : (18.5.3)

The parameter that measures the ratio of channel to boundary layer width is

given by

eS

ffiffiffiffiffiffiffiffi
lV0

D0

s
¼ eS

ffiffiffiffiffiffi
Pe

p
: (18.5.4)

Here, D0 is the seed diffusivity and Pe ¼ lV0=D0 is the Peclet number. The

kinematic dynamo problem provided the original motivation for cat’s-eyes model

of scalar transport.

The landscape considered above is spatially periodic and has very symmetric

streamline pattern. More interesting situation arises when we apply random

separatrix splitting (see Fig. 18.5.2). This landscape reconstruction of initially

symmetric topology of two-dimensional flow allows us to treat transport and

correlation effects in terms of the continuum percolation approach. We consider a

two-dimensional zero-average-velocity steady flow specified by the bounded “com-

mon position” stream function Cðx; yÞ. We also imply an isotropic-on-average

oscillating function with a quasi-random location of saddle points along its height.

In a general case, one can represent such one-scale chaotic flow as
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Fig. 18.5.1 Streamlines of the flow for d ¼ 0:3. The channel is bounded by the streamlines

c ¼ �0:3 (After Childress S. and Soward A.M. [341] with permission)

Fig. 18.5.2 Schematic

diagram of separatrix random

splitting
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C ~rð Þ ¼
XN
i

Ci sin ~ki~r þ fi

� �
; (18.5.5)

where N 
 1. To treat such a random velocity field, we introduce the following

scales: C0 � lV0; l � C
rC

		 		. Here, V0 is the characteristic velocity scale and l is

the spatial scale.

Here, we represent the percolation method that provides to be fruitful [213, 342,

343] to describe turbulent transport in two-dimensional random flows. In such an

approach, the percolation streamline (percolation hull) contributes most to turbulent

transport near the threshold. Thus, the value dCp ¼ elV0 is the percolation scale of

the stream function near the percolation threshold, where e is the small percolation

parameter. Similar to the convective cell model, one can find the diffusive boundary

layer width by the relation

V0

n

LðeÞ � D0

n

D2ðeÞ ; (18.5.6)

where we use the percolation streamline length LðeÞ instead of the spatial scale l
(see Fig. 18.5.3). However, we shall establish a relation between the diffusive

boundary layer width D and the small percolation parameter e. Let us identify the

small “width” of a percolation streamline with the small parameter of the percolation

theory by the formula

DðeÞ ¼ le: (18.5.7)

D(ε)

L(ε)
Fig. 18.5.3 Percolation

streamline and stochastic

layer in a two-dimensional

chaotic flow
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Now, we obtain the equation for the determination of the “universal” value of e�,
as a function of the flow parameters D0;V0; l,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0LðeÞ
V0

s
¼ el: (18.5.8)

The specific calculations can be completed by using the rigorous scaling results

of the percolation theory obtained for the correlation scale a and the length of the

fractal streamline L,

aðeÞ ¼ l
ej jn ; LðeÞ ¼ l

a eð Þ
l

� �Dh

; (18.5.9)

as functions of e for the two-dimensional case, where the correlation exponent n and
the Hull exponent Dh are given by n ¼ 4=3; Dh ¼ 1þ 1=v ¼ 7=4. The functional
form of these dependencies reflects the fractal and percolation behavior of

streamlines. The solution of the renormalization equation in terms of the Peclet

number Pe ¼ lV0=D0 leads to the scaling,

e� ¼ 1

Pe

� � 1
3þn

¼ 1

Pe

� � 3
13

: (18.5.10)

In order to calculate the effective diffusion coefficient, we consider the

renormalized random walk representation of the diffusion coefficient

DeffðeÞ � a2 eð Þ
t

P1 eð Þ: (18.5.11)

Here, a is the spatial correlation scale, the correlation time is

tðeÞ � D2ðeÞ
D0

� L eð Þ
V0

; (18.5.12)

and P1 is the fraction of a space occupied by the percolation streamline. Effects

of “long range correlations” enter into the expression for the diffusion coefficient

precisely through aðeÞ. By following the ideas of the convective nature of the flow

along the percolation streamline, we estimate P1 in terms of the length of the

percolation streamline LðeÞ and the stochastic layer width DðeÞ

P1ðeÞ � LðeÞDðeÞ
a2 eð Þ : (18.5.13)

The expression derived
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DeffðeÞ � a2

t
LðeÞDðeÞ

a2
� V0D eð Þ; (18.5.14)

is similar to the formula for the effective diffusivity in the convective cell system

Deff � V0D, but here we deal with the percolation kind of dependence D ¼ DðeÞ.
After substitution, one obtains

Deff � V0Dðe�Þ � V0l
1

Pe

� � 1
3þn

� D0Pe
10=13 / V

10=13
0 : (18.5.15)

This expression allows the scalar flux to be determined in terms of the external

parameters of the random flows D0;V0; l and so is of considerable practical as well
as conceptual value. From the point of view of the renormalization of the initial

small parameter e0 ¼ 1=Pe, the expression for the effective percolation parameter

can be obtained:

e� ¼ ðe0Þ
1

3þn 
 e0: (18.5.16)

In this approach, the length of the fractal percolation line is not infinitely large,

because the small parameter e� does not tend to zero, but has a finite value,

e� ¼ dC�
lV0

; (18.5.17)

for all types of flows with the characteristics D0;V0; l. Therein lies the universality
of the formula DðeÞ ¼ le. We can also estimate the range of the percolation scaling

applicability in terms of spatial scales. It is necessary to take into account the finite

size L0 of a real system. By analogy with the system size renormalization, we can

consider the estimate

aðe�Þ ¼ lPe
v

vþ3 � L0: (18.5.18)

Then, calculations yield the inequality for the Peclet number in the form

1<Pe<
L

l

� �ðnþ3Þ=n
: (18.5.19)

Note that the simplicity of the percolation estimate of turbulent transport is

elusive. It will suffice to recall in this connection the “hierarchy” of scales used here

l
a

l

� �Dh � L � a

e�

 a � l

en�

 l 
 D � le�: (18.5.20)

This four-level spatial hierarchy of scales opens wide possibilities to obtain new

scalings in the framework of the percolation method.
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18.6 Transient Percolation Regime

In a percolation cluster walking scalar particles are captured by dead-ends and

localized in small clusters, and that is why the mean squared displacement of tracer

could be much less than the correlation spatial scale R2ðtÞ<a2, when considering

the initial stage of tracer evolution. We already introduced above the effective

formula to estimate the mean squared displacement of tracer particles in the

following form:

R2ðtÞ / a2P1ðtÞ; (18.6.1)

where P1 is an additional factor, which describes the part of space related to

“active” motion of scalar particles. Isichenko [103] considered an intermediate

percolation regime with the motion of scalar particles along the percolation stream-

line at the initial stage. Here, we are dealing with the tracer transport on timescales

of order

t<tB � LðtÞ
V0

; (18.6.2)

This case differs significantly from the percolation model of turbulent diffusion

considered in the previous section, where

t � tB � tD � D2

D0

: (18.6.3)

For the initial stage of evolution of tracer, we used the estimate of the correlation

spatial scale in the following form:

aIðtÞ � l
LðtÞ
l

� �1=Dh

� l
V0t

l

� �1=Dh

; (18.6.4)

where Dh ¼ 1þ 1=v and n ¼ 4=3. Here, the supposition was made that the test

particle path at this stage is approximately ballistic LðtÞ � V0t. Let us apply the

renormalized expression for the mean free path of scalar particle in the general form

R2ðtÞ � Deff t � aI
2ðtÞP1: (18.6.5)

where the part of space responsible for the main contribution to transport P1 is

estimated on the basis of the geometrical arguments

P1 � LD
aI2

� D
e aI

� l
aI
: (18.6.6)
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After substitution, one obtains the anomalous diffusion scaling in the following

form:

R2ðtÞ � aI
2P1 � l2

V0t

l

� �1=Dh

: (18.6.7)

This relation describes the subdiffusive regime at the initial period of advection

when the scalar particle moves along a fractal streamline.

RðtÞ / t1=2Dh / t2=7: (18.6.8)

The Hurst exponent or this case is given by

HðDhÞ ¼ 1

2Dh

¼ 2=7: (18.6.9)

The model of the evolution of correlation scale aIðtÞ can be used to interpret and
to analyze another percolation regime [344]. Thus, simultaneously with increasing

the correlation scale aIðtÞ � LðtÞ=lð Þ1=Dh , it is necessary to take into account the

decreasing stochastic layer width D ¼ DðtÞ, which, in the framework of percolation

models of turbulent diffusion, is related to the value of the small parameter e� � D=l
and hence to the correlation scale aðtÞ � l=en / D�nðtÞ. We consider this problem

below in the context of the turbulent transport description in the presence of flow

topology reconstruction (see Fig. 18.6.1).

Flux balance 

Deff ∝ V0 Δ(e)

Flow topology 
reconstruction

Stochastic layer 

Percolation approach to chaotic flows 

Small parameter Fractal streamline 

L(e) ∝ a(e)Dh

Stochastic
instability

Strong
turbulence

Drift effects 

e = e (Ku, Pe)Δ(e) ∝ λ(e)

Fig. 18.6.1 Percolation approach to chaotic flows
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Chapter 19

Flow Topology Reconstruction and Transport

19.1 High-Frequency Regimes

Steady incompressible two-dimensional flows are integrable and cannot exhibit

chaotic behavior of streamlines. However, steady three-dimensional flows and

time-dependent two-dimensional flows can have chaotic streamlines. The time

dependence of a flow is an important factor that leads to a reconstruction of the

streamline topology and has a significant influence on transport processes. For

instance, environmental flows often exhibit the transformation of line of convective

cells to organized coherent structures even at mesoscale level. To describe such

complicated regimes in frequency-driven flows, we have to take into account the

characteristic time T0 � 1=o, which becomes the key parameter among other

timescales. The analysis of hierarchy of timescales in a problem under consider-

ation is an important part of the description of transport in chaotic flows. Thus, even

dimensional arguments allow one to find a characteristic time, which have to be

applied as a correlation scale.

For instance, one can obtain the Kolmogorov scaling for well-developed turbu-

lence by the analysis of characteristic timescales. Thus, dimensional estimates

resulting from the Kolmogorov hypothesis about the energy flux over a spectrum

give

V2ðlÞ
tðlÞ / eK ¼ const: (19.1.1)

There are two ways to choose characteristic times t. The first follows from the

formula describing viscosity effects: tnðlÞ / l2=nF. The second way is based on the

Kolmogorov dimensional estimate: tKðlÞ / l=VðlÞ. At high Reynolds number,

Re ¼ tn
tK

¼ VðlÞl
nF

>1; (19.1.2)

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,
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the choice of the lowest time tK leads to the classical Kolmogorov result for well-

developed turbulence, V2ðlÞ / eKlð Þ2=3. In the scaling description of turbulent

convection, such phenomenology (fastest response principle) was successfully

applied to the forced turbulent flows whose total kinetic energy is determined by

the total power brought into the fluid [318].

It is possible to apply such an approach to the turbulent transport description.

However, one should account for numerous factors such as the seed (molecular)

diffusion, streamlines reconnection, stochastic instability, and others. We already

discussed the quasilinear transport regime, where the characteristic time is given by

the estimate 1=o. When the Kubo number is small, the scalar particle cannot “feel”

the structure of velocity field. The path of a test particle can be estimated by the

ballistic way as

lo � V0

o
� V0T0: (19.1.3)

Here, lo is the frequency path. In this connection, it is convenient to introduce

the dimensionless Kubo number

Ku ¼ loðV0Þ
l

� V0

ol
; (19.1.4)

which characterizes the turbulent transport in the presence of time-dependence

effects. Here, l is the spatial scale of the flow under consideration and V0 is the

characteristic velocity scale. One can obtain the scaling for the diffusion coefficient

on the basis of simple estimates of the correlation time tCOR � 1=o and the

correlation length DCOR � lo as follows:

Deff � D2
COR

tCOR
� V2

0tCOR � V0
2

o
� l2o Ku2: (19.1.5)

To pass from the high-frequency mode to the regimes with strong turbulence,

one can take into account the appearance of coherent structures. In this case, the

characteristic time depends on the characteristic velocity V0 and the typical struc-

ture size l. By following the fast mode selection principle, we have to apply a new

kind of estimate for the correlation time l=V0. In the case of low-frequency regime,

a scalar explores the structure of a velocity field. If the characteristic velocity is

large enough, it is obviously that

tlðV0Þ � l
V0

<
1

o
; (19.1.6)

and the effective diffusivity takes the Howells form with the linear dependence on

the turbulence amplitude, Deff / V0l. In the low-frequency regimes, where o ! 0

and Ku � 1, the real correlation scale DCOR could be much less than the formally

defined frequency path lo,
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DCOR � lo � V0

o o!0j ! 1: (19.1.7)

This also leads to the invalid scaling for the effective diffusivity

Deff � V2
0tCOR � V0

2

o o!0 ! 1j : (19.1.8)

From the general consideration, it is clear that in the low-frequency region the

effective diffusion coefficient has to increase with the frequency:

Deff oð Þ / o�T ; (19.1.9)

since a slow reorganization of the flow topology does not lead to considerable

transport increasing. Indeed, simulations [345–351] confirm this supposition.

The description of transport in a flow with symmetric convective cells could be

also interpreted on the basis of the fastest mode rule. When the amplitude of

turbulent pulsations increases, the effective correlation time sharply decreases,

t � D0lð Þ1=2
V
3=2
0

� l
V0

� tl; (19.1.10)

and one obtains the expected flat scaling

DeffðV0Þ / V2
0

D0lð Þ1=2
V0

3=2
/

ffiffiffiffiffi
V0

p
: (19.1.11)

The principle of fastest mode selection is also realized in percolation models of

turbulent transport. In the framework of steady percolation, the characteristic

correlation time is also much less than formal timescale

tðeÞ � D2ðeÞ
D0

� e2
l2

D0

� l2

D0

: (19.1.12)

In our consideration, all the temporal scales were constructed from the external

parameters of the problem and this phenomenological approach to the analysis of

the hierarchy of temporal scales allows us to treat long-range correlation effects in

terms of simple scaling. Thus, fastest mode rule can have a heuristic value.

19.2 Time Dependence and the Taylor Shear Flow

The conventional description of transport in chaotic flows has an averaged charac-

ter. At the same time, it is clear that the local characteristics such as frequency-

driven flows fluctuate. The question arises as to how these fluctuations influence the
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transport processes and how the corresponding effects can be taken into account.

Here, it is convenient to employ the advection–diffusion equation for the passive

scalar density

@n

@t
þ uXðz; tÞ @n

@x
¼ D0

@2n

@x2
þ @2n

@z2

� �
; (19.2.1)

with the expression for the longitudinal velocity in the form

uXðz; tÞ ¼ oVz cosðo tÞ: (19.2.2)

Here, oV is the dimensional parameter and o is the characteristic frequency. For

the initial condition

nðx; z; 0Þ ¼ sinðkxÞ; (19.2.3)

the exact solution is given by the formula

nðx; z; tÞ ¼ sin kx� koVz
sinðo tÞ

o

� �

� exp �k2D0 tþ oV
2

2o2
t� sinð2o tÞ

2o

� �� �� �
: (19.2.4)

In the most interesting low-frequency case, Ku � 1 and o � oV , the asymp-

totic solution, t � 1=o, takes the following form:

nðx; z; tÞ ¼ sin kx� koVz
sinðotÞ

o

� �
exp �k2tD0 1þ oV

2

2o2

� �� �
; (19.2.5)

which allows one to define the effective longitudinal diffusivity as

Deff ¼ D0 1þ o2
V

2o2

� �
/ 1

o2
: (19.2.6)

Actually, here the influence of time dependence on the scalar transport is

analyzed in terms of the Taylor method for the longitudinal dispersion in shear

flows [352, 353]. The general scheme of the averaged description of transport in

frequency-driven flows can also be formulated in terms of the advection–diffusion

equation. To treat time-dependence effects, the author of [353] considered turbulent

diffusion in the two-dimensional system of regular but time-periodic flows. To

represent this general method and verify the result obtained above, we consider

more complex expression for the longitudinal velocity of flow

322 19 Flow Topology Reconstruction and Transport



VXðz; tÞ ¼ 2V0 cosðkzÞ cosðotÞ: (19.2.7)

By applying the decomposition method, one can represent the solution of the

advection–diffusion equation in the following form:

nðz; tÞ ¼ n0 þ n1 ¼ n0 þ sinðkzÞðnS sinotþ nC cosotþ . . .Þ: (19.2.8)

The amplitudes of the harmonics nS; nC can be defined as a result of the solution

of the diffusion equation. The averaging method will be applied. Let us represent

the mean density of tracer as

n0 ¼ nh i ¼ ca þ cbx: (19.2.9)

The values V0, ca, and cb are the external flow characteristics. The substitution,

with allowance for the assumption n1 � n0, yields the equation for the average

scalar density n0 in the form

@n0
@t

¼ � VX
@n1
@x

	 

þ D0

@2n0
@x2

: (19.2.10)

The equations for the amplitudes of the harmonics nS; nC are given by the

relations

nS þ 2V0

w

@n0
@x

¼ �D0k
2

o
nC; (19.2.11)

nC ¼ D0k
2

o
nS: (19.2.12)

Simple calculations lead to the diffusive equation

@n0
@t

¼ D0

V2
0k

2

o2 þ D2
0k

4

� �
@2n0
@x2

þ D0

@2n0
@x2

; (19.2.13)

where the effective diffusivity is given by the formula

Deffðk;oÞ ¼ D0

Ku2

1þ ðotDÞ�1
þ 1

" #
; (19.2.14)

Here, the characteristic time is tD ¼ 1= D0k
2ð Þ.

For high frequencies, o>1=tD, we arrive at the quasilinear formula:

D � D0

V0
2k2

o2

� �
� D0Ku

2 / o�2: (19.2.15)
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A realistic application of the above solution to turbulent flow could be possible

only if one considers the Kolmogorov cascade. It is convenient to rewrite the Taylor

equation, considering first the cascade ln�1; ln; lnþ1; the transport at each next

(larger) scale is calculated by substituting into the formula for the turbulent

diffusivity at the smaller scale in place of the molecular transport:

Dnþ1 ¼ Dn 1þ V2
n

V2
n þ D2

n=l
2
n

� �
: (19.2.16)

One can replace the difference equation by a differential one. Finally, we obtain

the differential equation in the following form:

d lnD

d ln l
¼ const

V2 lð Þ
V2 lð Þ þ D2

l2
; (19.2.17)

Here, it is supposed that D ¼ D0 at l ¼ 0. This equation can be exactly solved

and with the power dependence V lð Þ / lk. Here, k is the characteristic exponent.

By performing all the calculations for the Kolmogorov scaling, one finds

Deff ¼ D0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
const

V0
2l2

D2
0

þ Oð1Þ
s

: (19.2.18)

The important fact here is that the expression obtained has the correct transfor-

mation properties under t ! �t – the same properties as those possessed by the

molecular-diffusion coefficient. By the meaning of the derivation, the square root

here is just an approximation of a function that always remains positive.

By concluding this section, we note that in the general case of the time-dependent

Taylor shear flow with many harmonics in the velocity profile the effective

diffusivity is described by the integral form

Deff ¼ D0 1þ
ðð ~V k;oð Þdkdo

o2 þ D2
0k

4

� �
: (19.2.19)

Despite this expression formally allows the estimate for o ! 0 to be obtained, it

appears to be only an intermediate asymptotic and does not take into account effects

related to the flow topology reconstruction, which are significant for Ku >> 1.

Below the reader will find more detailed analysis of turbulent transport processes in

low-frequency regimes (Fig. 19.2.1).

19.3 Oscillatory Rolls and Lobe Transport

In the framework of time-periodic velocity fields, the case of greatest interest is the

transport in the presence of flow topology reorganization. In this context, let us

discuss the Solomon–Gollub model that mimics the Rayleigh–Benard convection
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[339, 340]. If the temperature difference between the top and bottom of the

convective cell is increased, an additional time-periodic instability occurs, resulting

in a time-periodic velocity field. Instead of steady symmetric roll stream function,

the following form of the velocity field was applied

C x; y; tð Þ ¼ C0 sin
2p
l
ðxþ Bc sinotÞ

� �
sin

2p
l
y

� �
; (19.3.1)

where l is the characteristic spatial scale and Bc is the temporal perturbation

amplitude proportional to ðRa� Ra�Þ1=2, where Ra is the Rayleigh number and

Ra� is the critical Rayleigh number at which the time-periodic instability occurs.

The stream function amplitude C0 is given by the relation

Corrsin 1953

Kadomtsev-Pogutse 1979

Dreizin-Dykhne 1972

Correlation 
approach
(Taylor 1921)

Matheron-Marsili 1980

Taylor dispersion
(Taylor 1953)

Zeldovich 1982

Taylor 1954

Batchelor 1955

Corrsin 1959

Monin 1955

Saffman 1960

Dupree 1967-1970

CTRW

Isotropization

Fractional 
derivatives

Convective cells

Environmental 
flows

Drift wave
turbulence

Vedenov-Velikhov-Sagdeev 1960

Linear response

Multi-scale approach

Kramers 1940

Fig. 19.2.1 Turbulent transport concepts and solutions
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C0ðV0; lÞ ¼ V0l
2p

; (19.3.2)

where V0 is the characteristic velocity scale.

This simple model is able to capture the essential features of convective cell

system in the presence of the oscillatory instability because the term Bc sinðotÞ
represents the lateral oscillation of the rolls. For fixed values of the temporary

perturbation amplitude Bc, it is convenient to introduce the Kubo number in the

form

Ku ¼ C0ðV0; lÞ
l2o

¼ V0

lo
; (19.3.3)

which plays the role of dimensionless control parameter that allows one to analyze

different turbulent transport regimes taking place for different values of the

Kubo number. In the case of large Ku, we are dealing with very strong Lagrangian

correlations.

The streamline approximation under consideration ignores three-dimensional

effects as well as higher-order modes, but it nicely illustrates the qualitative features.

It was experimentally observed the dramatic enhancement in the effective diffusiv-

ity as compared to the case of steady convection and the flux across the roll boun-

daries scales linearly with the amplitude of the oscillatory instability ðRa� Ra�Þ1=2.
In order to explain these features, it is convenient to employ the dynamics of

Hamiltonian system. In our two-dimensional model, there exists a stream function

C x; y; tð Þ

ux x; y; tð Þ ¼ � @C x; y; tð Þ
@y

; uy x; y; tð Þ ¼ � @C x; y; tð Þ
@x

; (19.3.4)

One immediately notices that the pair of equations of motion for an advected

particle has a Hamiltonian structure and the stream function Cðx; y; tÞ is the

Hamiltonian

_x ¼ � @Cðx; y; tÞ
@y

; _y ¼ @Cðx; y; tÞ
@x

: (19.3.5)

The dynamics of a passively advected scalar is, in our two-dimensional incom-

pressible flow, a one-degree-of-freedom Hamiltonian system. It is well known that

phase space of such a Hamiltonian system coincides with the configuration domain

in which flow occurs.

In the case of steady flow under consideration, the stream function is indepen-

dent on time and the scalar trajectories coincide with the level curves of C.

Moreover, such Hamiltonian systems are always integrable. On the contrary, one-

degree-of-freedom Hamiltonian systems with a time-dependent Hamiltonian
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C x; y; tð Þ ¼ C0ðx; yÞ þ eoC1ðx; y; tÞ; (19.3.6)

typically exhibit non-integrable dynamics, or chaos [89–92]. In such driven system,

an advected scalar particle moves unpredictably and this advective dynamics is

referred to Lagrangian chaos (see Fig. 19.3.1). Note that the mechanism of scalar

transport for time-dependent Hamiltonian systems is related to separatrix splitting

and it is fundamentally different from that occurs in the steady case in the presence

of the molecular (seed) diffusion.

As soon as time dependence sets in by Bc 6¼ 0, chaos in the convective rolls

system is observed because one expects the heteroclinic trajectories which create

the roll boundaries in the steady case to break up, giving rise to wildly oscillation

lobes (see Fig. 19.3.2). In the case under consideration (one-degree-of-freedom

Hamiltonian systems with a time-dependent Hamiltonian), we expect lobe transport

to dominate. Recall that as one approaches the boundary dc ! 0, the period of

rotation diverges logarithmically

TSep / 1

o
ln
const

dc
; (19.3.7)

where dc is the relative stream function amplitude at the edge of the stochastic

layer. This corresponds exactly to the well-known result for the period of a true

pendulum that follows a trajectory very close to the separatrix [89–92].

Fig. 19.3.1 The trajectories

of particles near separatrix of

vortex structure (After

Gledzer A.E. [354] with

permission)
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To set up a transport model in terms of a stream function perturbation, which is

similar to the steady percolation approach, where Deff � V0DðeÞ � dC, we have to

calculate the Melnikov function, which gives the change in stream function ampli-

tude dC0 due to the separatrix splitting

dc0ðt0Þ ¼
ð
dt
dC0ðxðt; t0Þ; yðt; t0ÞÞ

dt
: (19.3.8)

By taking into account the advection equation, one obtains the integral over

Lagrangian trajectory of tracer in the following form:

dC0ðt0Þ ¼
ð
dteo~VrC0 ¼ eo

ð
dt

@C1ðtÞ
@x

@C0

@y
� @C1ðtÞ

@y

@C
@x

� �
: (19.3.9)

Here, the trajectory of scalar particle can be represented as the asymptotic

expansions

xðt; t0Þ � xðt0Þ þ eox1ðtÞ; (19.3.10)

yðt; t0Þ � yðt0Þ þ ey1ðtÞ; (19.3.11)

where e is the perturbation amplitude and xðt0Þ; yðt0Þð Þ are the initial points of the
particle. For the regular cell structure under consideration, the Melnikov function

may be carried out exactly. By omitting very complicated calculations given in

numerous textbooks and monographs on this subject [92–95, 345], we represent

only the final result

dC0ðt0Þ ¼ pDS

2
eo sinðot0Þ: (19.3.12)

Here, DS is the diffusivity related to the separatrix splitting

DS � eoo
p sinh po

2

� � : (19.3.13)

p

p 2p0

Fig. 19.3.2 Sketch of

perturbated separatrix

in a cellular flow
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The use of the Melnikov method allows us to study how the transport depends

upon the frequency of the perturbation. These results were obtained for the regular

system of convective rolls, but our interest is centered on the models of transport in

periodically driven random flows, which are developed in the next section.

19.4 Flow Topology Reconstruction and Scaling

The reorganization of flow topology, where long streamlines play an important role,

is a factor that significantly impacts on transport processes (see Fig. 19.4.1). In the

low-frequency case, o � V0=l, the correlation scale is much less than the fre-

quency path lo. As we saw in the previous section, the description of separatrix

deformation (reconnection) could provide highly significant information to obtain

effective diffusivity. The Hamiltonian description of streamlines makes the two-

dimensional model the most efficient one. In this relation, it is convenient to

consider a two-dimensional percolation chaotic flow, which permits analyzing the

spatial and temporal hierarchy of scales and extracting scales responsible for the

critical streamline evolution. Indeed, in the framework of the single-scale approach,

we have the following hierarchy of spatial scales:

l
a

l


 �Dh � L � a

e�
� a � l

en�
� l � D � le�: (19.4.1)
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1

2

3

0 1 2 3 4 5 6
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3

Fig. 19.4.1 Two-

dimensional flow topology

reconstruction (After Danilov

S.D., Dovgenko V.A., and

Yakushkin I.G. [222] with

permission)
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Here, aðeÞis the percolation correlation length, l is the spatial scale, and L is the

length of the percolation streamline:

aðeÞ ¼ le�n; LðeÞ ¼ l
a

l


 �Dh

; n ¼ 4=3;Dh ¼ 1þ 1

n
: (19.4.2)

From the point of view of probabilistic description, we have to define a geomet-

ric factor, which would be responsible for separatrix evolution. The natural estimate

for the fraction of space where the reconnection process can occur is Sper / l2.
However, as it was discussed before, the description of a single streamline (single

trajectory) does not give enough information to obtain transport coefficient,

because the measured quantities are always the result of averaging over an ensem-

ble. That is why we must pass from the single percolation streamline description to

the analysis of a stochastic layer. Note that in two-dimensional case the fraction of

space corresponding to the stochastic layer is

Slayer / LðeÞDðeÞ ¼ l2

en
; (19.4.3)

and hence, Slayer � Sper, as was expected.
Let us consider now the evolution aspects of the percolation structure growth. At

the initial stage of the evolution of the correlation length a(t) scales with the scalar

particle path LðtÞ as

aIðtÞ � LðtÞ
l

� �1=Dh

: (19.4.4)

On the other hand, simultaneously with increasing the correlation scale, it is

necessary to take into account the increasing stochastic layer width D ¼ DðtÞ,
which, in the framework of percolation models of turbulent diffusion, is related to

the value of the small parameter e � D=l and hence to the correlation scale

a � l=en. Trivial calculations allow one to obtain the expression describing the

decrease in correlation scale aDðtÞ due to the increase in the stochastic layer width

aDðtÞ � lnþ1

DnðtÞ : (19.4.5)

In the framework of the mean field theory, the consideration of the balance

between aDðtÞ and aIðtÞ enables us to estimate the characteristic time t0 that has to
be used to define the effective diffusion coefficient Deff.

In the context of the reconstruction of chaotic flow topology, one can establish

the relationship between the stochastic layer width and the parameter responsible

for streamline reorganization. Thus, in the Hamiltonian dynamics the linear estimate
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of the stochastic layer width DðtÞ / t is widely used [89–92]. Now it is easy to

represent this expression in the form

DðtÞ ¼ ðloÞt; (19.4.6)

where o is the characteristic frequency of the model under consideration. Then, the

correlation scales balance

l
V0t0
l

� � 1
Dh � l

ot0ð Þn ; (19.4.7)

allows the estimate of the characteristic time t0 to be obtained

t0 � 1

o
lo
V0

� � 1
nþ2

� 1

o
1

Ku

� � 1
nþ2

; (19.4.8)

and hence, the estimate of the turbulent diffusion coefficient is given by expression

[342]

Deff � V0D e�ð Þ � V0Dðt0Þ � lV0

1

Ku

� � 1
nþ2

/ V
7
10

0 o
3
10: (19.4.9)

Here, the lifetime of the individual percolation streamline t0 is the main param-

eter and that is why it is rather natural to employ the fast mode selection principle.

Let us estimate the time it takes the flow pattern to change completely as T0 � 1=o.
We consider the low-frequency case l � V0T0. In the context of this problem, the

relation

t0ðe�Þ � Lðe�Þ
V0

� e�
1

o
; (19.4.10)

can be used as the renormalization equation to obtain the small parameter of the

problem e�. In the time-dependent flow under consideration, one would also expect

a universal result for a specific “universal” value of the small percolation parameter

e�. For this purpose, one can use the above expression accounting for the convective
nature of motion along the percolation streamline during the lifetime of this

streamline. This equation also enables one to find the small percolation parameter

e� in terms of the time-dependent flow parameters: o; V0; l.By assuming the

percolation parameter to be small

e�ðKuÞ � D
l
� Dðt0Þ

l
� 1

Ku

� � 1
nþ2

<1; (19.4.11)

and by accounting for the finite size of the system that the correlation scale must be

less than the flow domain scale L0
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aðe�Þ ¼ l
e� Kuð Þj jn ¼ l Ku

n
nþ2 � L0; (19.4.12)

we can find an inequality for the Kubo number, which corresponds to time-

dependent percolation models of turbulent transport in the presence of the flow

topology reconstruction

1<Ku<
L

l

� �nþ2
n

¼ Kumax: (19.4.13)

The correlation scale in the low-frequency regime under consideration aðe�Þis
really much less than the frequency pass lo for e�<1:

aðe�Þ � e�Lðe�Þ � e�V0t0ðe�Þ � e2�V0=o � e2�lo � lo; (19.4.14)
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which demonstrates the correctness of the assumptions made. The percolation

scaling has been checked to hold the low-frequency domain for guiding centers in

a k�3 turbulent spectrum simulated by a large number of randomly phased waves

and this has been confirmed at very high amplitudes [346–351].

On the other hand, the fastest mode principle discussed above is also suitable for

turbulent transport in low-frequency regimes. Indeed, taking the characteristic

correlation time in the scaling form

tðV0Þ � L

V0
w �

1

o
; (19.4.15)

in the case of strong turbulence Re � 1ð Þ, the correlation time will be less than

characteristic frequency. Here, the supposition was made that the characteristic

exponent w>0. This estimate can also be interpreted in terms of the correlation path

Ltfor an arbitrary frequency-driven flow as follows:

Lt / V0t / V0

Vw
0

� V0

o
� lo: (19.4.16)

Here, lo is the frequency path. One can expect that the correlation path in the

case of strong turbulence scales with the velocity fluctuation amplitude V0. This

leads to the double inequality 1>w>0 and hence to the flat scaling for the correla-

tion path

DCORðV0Þ � LtðV0Þ / V0
1�w; 1>w>0: (19.4.17)

Thus, we obtain one more tool to treat transport in chaotic flows where the

reconstruction of the flow topology is essential.

The approach considered makes it possible to use the correlation scale balance as

the basis for constructing new turbulent transport models based on the model

approximations for the growth of the stochastic layer width DðtÞ. Repeat that the
evolution of a single percolation streamline does not provide all necessary infor-

mation to describe turbulent transport effects. Specifically stochastic layer that

arises around a percolation streamline is responsible for the effective transport in

chaotic flows Fig. 19.4.2

Further Reading

Flow Reconstruction and Transport Scaling

O.G. Bakunin, Turbulent and Diffusion. Scaling Versus Equations (Springer,

Berlin, 2008)

R. Balescu, Aspects of Anomalous Transport in Plasmas (IOP Bristol, Philadelphia,

2005)

Further Reading 333



P. Castiglione et al., Chaos and Coarse Graining in Statistical Mechanics
(Cambridge University Press, Cambridge, 2008)

A. Crisanti, M. Falcioni, A. Vulpiani, Rivista Del Nuovo Cimento 14, 1–80 (1991)

P.H. Diamond, S.-I. Itoh, K. Itoh, Modern Plasma Physics, vol. 1 (Cambridge

University Press, Cambridge, 2010)

W. Horton, Y.-H. Ichikawa, Chaos and Structures in Nonlinear Plasmas (Word

Scientific, Singapore, 1994)

M.B. Isichenko, Rev. Mod. Phys. 64, 961 (1992)

H.K. Moffatt, Rep. Prog. Phys. 621, 3 (1983)

H.K. Moffatt, G.M. Zaslavsky, P. Comte, M. Tabor, Topological Aspects of the
Dynamics of Fluids and Plasmas (Kluwer Academic Publishers, Dordrecht,

1992)

T. Tel, Phys. Rep. 413, 91 (2005)

G.M. Zaslavsky, Phys. Rep. 371, 461–580 (2002)

Lobe Transport

H. Aref, M.S. El Naschie, Chaos Applied to Fluid Mixing (Pergamon, Oxford,

1994)

S. Childress, A.D. Gilbert, Stretch, Twist, Fold: The Fast Dynamo (Springer,

Berlin, 1995)

J. Ottino, The Kinematics of Mixing (Cambridge University Press, Cambridge,

1989)

E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge,

1993)

R. Samelson, S. Wiggins, Lagrangian Transport in Geophysical Jets and Wves.
The Dynamical System Approach (Springer, New York, 2006)

S. Wiggins, Chaotic Transport in Dynamical Systems (Springer, New York, 1990)

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos
(Springer, New York, 1999)

334 19 Flow Topology Reconstruction and Transport



References

1. M. Van-Dyke, An Album of Fluid Motion (Parabolic, Stanford, CA, 1982)

2. G. Brethouwer, J.C.R. Hunt, F.T.M. Nieuwstadt, J. Fluid Mech. 474, 193–225 (2003)

3. B. Castaing et al., J. Fluid Mech. 204, 1–30 (1989)

4. H.C. Berg, Random Walks in Biology (Princeton University Press, Princeton, NJ, 1969)

5. YaB Zeldovich, A.A. Ruzmaikin, D.D. Sokoloff, The Almighty Chance (World Scientific,

Singapore, 1990)

6. H. Carslaw, Mathematical Theory of Conduction of Heat in Solids (Macmillan,

London, 1921)

7. L. Dresner, Similarity Solutions of Nonlinear Partial Differential Equations (Longman,

London, 1983)

8. G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics (Cambridge University Press,

Cambridge, 1994)

9. J.M. Burgers, The Nonlinear Diffusion Equation (D. Reidel, Dordrecht, 1974)

10. R.M. Mazo, Brownian Motion, Fluctuations, Dynamics and Applications (Clarendon,

Oxford, 2002)

11. G.H. Weiss, Aspects and Applications of the Random Walk (Elsevier, Amsterdam, 1994)

12. A.P.S. Selvadurai, Partial Differential Equations in Mechanics (Springer, Berlin, 2000)
13. E.W. Montroll and M. F., Shlesinger on the Wonderful World of RandomWalks, in Studies in

Statistical Mechanics, vol 11 (Elsevier Science Publishers, Amsterdam 1984), p. 1

14. A. Pekalski, K. Sznajd-Weron (eds.), Anomalous Diffusion. From Basics to Applications
(Springer, Berlin, 1999)

15. M.F. Shiesinger, G.M. Zaslavsky, Levy Flights and Related Topics in Physics (Springer,

Berlin, 1995)

16. D. Sornette, Critical Phenomena in Natural Sciences (Springer, Berlin, 2006)
17. F.U. Turbulence, The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge,

1995)

18. U. Frisch, in: J.R. Herring and J.C. McWilliams Lecture Notes on Turbulence

(World Scientific, Singapore, 1987)

19. L. Biferale et al., Phys. Fluids 7, 2725 (1995)

20. M.J. Ringuette et al., J. Fluid Mech. 594, 59–69 (2008)

21. D.W. Hughes, J. Fluid Mech. 594, 445 (2008)

22. K.R. Sreenivasan, Rev. Mod. Phys. 71, S383 (1999)

23. L.M. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer, Berlin, 2006)
24. W. Horton, Rev. Mod. Phys. 71, 735 (1999)

25. P.W. Terry, Rev. Mod. Phys. 72, 109 (2000)

26. J.A. Wesson, Tokamaks (Oxford University Press, Oxford, 1987)

27. O.G. Bakunin, Reviews of Plasma Physics, vol. 24 (Springer, Berlin, 2008)

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3, # Springer-Verlag Berlin Heidelberg 2011

335



28. P.H. Diamond, S.-I. Itoh, K. Itoh, Modern Plasma Physics (Cambridge University Press,

Cambridge, 2010)

29. G.P. Bouchaud, A. Gorges, Phys. Rep. 195, 132–292 (1990)

30. J.W. Haus, K.W. Kehr, Phys. Rep. 150, 263 (1987)

31. D. Ben-Avraham, S. Havlin, Diffusion and Reactions in Fractals and Disordered Systems
(Cambridge University Press, Cambridge, 1996)

32. W. Horton, Y.-H. Ichikawa, Chaos and Structures in Nonlinear Plasmas (Word Scientific,

Singapore, 1994)

33. A. Scott, Nonlinear Science (Oxford University Press, Oxford, 2003)

34. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974)

35. R.T. Foister, T.G.M. Van de Ven, J. Fluid Mech. 96(1), 105 (1980)

36. YaB Zeldovich, A.D. Myshkis, Principles of Mathematical Physics (Nauka, Moscow, 1973)

37. YaB Zeldovich, Zg Eksp, Teoret. Fiz. 7(12), 1466 (1937)

38. P.C. Chatwin, P.J. Sullivan, J. Fluid Mech. 91(2), 337 (1979)

39. G.K. Batchelor, J. Fluid Mech. 5, 113 (1959)

40. P. Langeven, Comptes Rendues 146, 530 (1908)

41. B. Duplantier Brownian Motion, Poincare Seminar (2005)

42. C.W. Gardiner, Handbook of Stochastic Methods (Springer, Berlin, 1985)
43. L.E. Reichl, A Modern Course in Statistical Physics (Wiley-Interscience, New York, 1998)

44. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

45. W.T. Coffey, Y.P. Kalmykov, J.T. Waldron, The Langevin Equation (World Scientific,

Singapore, 2005)

46. K. Jacobs, Stochastic Processes for Physicists Understanding Noisy Systems (Cambridge

University Press, Cambridge, 2010)

47. K. Sekimoto, Stochastic Energetics (Springer, Berlin, 2010)
48. H. Kramers, Physica 7, 284 (1940)

49. G.M. Zaslavsky, M. Edelman, Chaos 10, 135 (2000)

50. O.G. Bakunin, S.I. Krasheninnikov, Plasma Phys. Rep. 21, 502 (1995)

51. P. Hanggi, H. Thomas, Phys. Rep. 88, 207 (1982)

52. P. Hanggi, M. Borkovec, P. Talkner, Rev. Mod. Phys. 62, 251 (1990)

53. O.G. Bakunin, Phys. Lett. A 322, 105–110 (2004)

54. H. Malchow, L. Schimansky-Geier, Noise and Diffusion in Bistable Nonequilibrium Systems
(Teuber, Leipzig, 1985)

55. K.S. Garcia et al., Phys. Rep. 465, 149 (2008)

56. O.G. Bakunin, Plasma Phys. Rep. 29(9), 847 (2003)

57. H. Risken, The Fokker–Planck Equation (Springer, Berlin, 1989)

58. N.G. Van Kampen, Stochastic Processes in Physics and Chemistry (North Holland,

Amsterdam, 1984)

59. G.I. Taylor, Proc. London Math. Soc. Ser. 20, 196 (1921)

60. G.K. Batchelor (ed.), The Scientific Papers of Sir G.I. Taylor. Meteorology, Oceanology,

Turbulent Flow, vol. 2 (Cambridge University Press, Cambridge, 1960)

61. W.D. McComb, The Physics of Fluid Turbulence (Clarendon, Oxford, 1994)
62. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics (MIT, Cambridge, 1975)

63. H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT, Cambridge, 1970)

64. Y. Sato, K. Yamamoto, J. Fluid Mech. 175, 183 (1987)

65. L. Zeng, J. Fluid Mech. 594, 271 (2008)

66. Corrsin S, in Proceedings of Iowa Thermodynamics Symposium, 1953, pp. 5–30
67. G.T. Csanady, Turbulent Diffusion in the Environment (D. Reidel, Dordrecht, 1972)
68. N.F. Frenkiel (ed.), Atmospheric Diffusion and Air Pollution (Academic, New York, 1959)

69. F.T.M. Nieuwstadt, H. Van Dop (eds.), Atmospheric Turbulence and Air Pollution Modeling
(D. Reidel, London, 1981)

70. H.A. Panofsky, I.A. Dutton, Atmospheric Turbulence Models and Methods for Engineering
Applications (Wiley Interscience, New York, 1970)

336 References



71. F. Pasquill, F.B. Smith, Atmospheric Diffusion, Ellis Horwood Limited (Ellis Horwood

Limited, Halsted Press: a Division of Willey, New York, 1983)

72. J.C. Wyngaard, Turbulence in the Atmosphere (Cambridge University Press, Cambridge,

2010)

73. S. Corrsin, in N.F. Frenkiel (ed.) Atmospheric Diffusion and Air Pollution (Academic,

New York, London 1959)

74. J.S. Hay, F. Pasquill, Adv. Geophys. 6, 345 (1959)

75. P. Bernand, J.M. Wallace, Turbulent Flow (Wiley, Hoboken, NJ, 2002)

76. T. Cebeci, Analysis of Turbulent Flows (Elsevier, Amsterdam, 2004)

77. P.A. Davidson, Turbulence. An Introduction for Scientists and Engineers (Oxford University
Press, Oxford, 2004)

78. A. Tsinober, An Informal Introduction to Turbulence (Kluwer Academic Publishers,

Amsterdam, 2004)

79. U. Marconi, A. Vulpiani, Phys. Rep. 461, 111 (2008)

80. O.G.J. Bakunin, Plasma Phys. 72, 647–670 (2006)

81. Y. Kaneda, T. Ishida, J. Fluid Mech. 402, 311 (2000)

82. C. Cambon, F.S. Godeferd, F. Nicolleau, J.C. Vassilicos, J. Fluid Mech. 499, 231 (2004)

83. V.I. Arnold, Ann. Inst. Fourier 16, 316–361 (1966)

84. M.M. Henon, Acad. Sci. Paris 262, 312–314 (1966)

85. S. Childress, A.D. Gilbert, Stretch, Twist, Fold: The Fast Dynamo (Springer, Berlin, 1995)

86. G.M. Zaslavsky, The Physics of Chaos in Hamiltonian Systems (ICP, London, 2007)
87. V.I. Arnold, B.A. Khestin, Topological Methods in Hydrodynamics (Springer, Berlin, 2006)
88. H.K. Moffatt, G.M. Zaslavsky, P. Comte, M. Tabor, Topological Aspects of the Dynamics of

Fluids and Plasmas (Kluwer Academic Publishers, Dordrecht, 1992)

89. A.J. Lichtenberg, M.A. Liberman, Regular and Stochastic Motion (Springer, Berlin, 1983)

90. MacKay R.S., Meiss J.D. Hamiltonian Dynamical Systems. A Reprint Selection Hilger, 1987

91. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 1993)

92. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer,

New York, 1999)

93. H. Aref, M.S. El Naschie, Chaos Applied to Fluid Mixing (Pergamon, Oxford, 1994)

94. J. Ottino, The Kinematics of Mixing (Cambridge University Press, Cambridge, 1989)

95. S. Wiggins, Chaotic Transport in Dynamical Systems (Springer, New York, 1990)

96. M.V. Budyansky et al., J. Exp. Theor. Phys. 99, 1018–1027 (2004)

97. N.S. Krylov, Selected Papers (Nauka, Moscow, 1950)

98. J.R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics
(Cambridge University Press, Cambridge, 1999)

99. C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems (Cambridge University Press,

Cambridge, 1993)

100. V. Berdichevski, Thermodynamics of Chaos and Order (Longman, London, 1998)

101. P. Castiglione et al., Chaos and Coarse Graining in Statistical Mechanics (Cambridge

University Press, Cambridge, 2008)

102. P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press,

Cambridge, 2003)

103. M.B. Isichenko, Rev. Mod. Phys. 964, 961 (1992)

104. O.G. Bakunin, Nucl. Fusion 47, 1857–1876 (2005)

105. C. Eckart, J. Mar. Res. 7, 265–275 (1948)

106. P. Welander, Tellus 7, 141–156 (1955)

107. J.M. Ottino, Phys. Fluids 22, 021301 (2010)

108. A.D. Stroock, G.J. McGraw, Philos. Trans. R. Soc. Lond. A 362, 971–986 (2004)

109. T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005)

110. G.M. Zasavsky, B.V. Chirikov, Sov Phys Uspekhy 14, 549 (1972)

111. A.B. Rechester, M.N. Rosenbluth, Phys. Rev. Lett. 40, 38 (1978)

112. V.S. Ptuskin, Astrophys. Space Sci. 61, 251 (1979)

References 337



113. A.B. Rechester, M.N. Rosenbluth, R.B. White, Phys. Rev. Lett. 42, 1247 (1979)

114. T.X. Stix, Nucl. Fusion 18, 353 (1978)

115. J.-L. Thiffeault, M.D. Finn, Philos. Trans. R Soc. A 364, 3251–3211 (2006)

116. K. Horiuti, T. Fujisawa, J. Fluid Mech. 595, 341 (2008)

117. L.I. Pitterbarg, S.V. Semovsky, Dokladi Akademii Nauk 285, 589–593 (1985)

118. R. Narayan, Phys. Rev. Lett. 42, 1247 (1999)

119. B.I. Davydov, Dokl Akad Nauk SSSR 2, 474 (1934)

120. G.H. Weiss, Aspects and Applications of the Random Walk (Elsevier, Amsterdam, 1994)

121. A. Cattaneo, Atti Semin Mat Fis Univ Modena 3, 83 (1948)

122. S. Goldstein, Quart. J. Mech. Appl. Math. 4(4.1), 129 (1951)

123. R.W. Davies, Phys. Rev. 93, 1169 (1954)

124. D.D. Joseph, L. Prezioso, Rev. Mod. Phys. 61, 41 (1989)

125. R. Ferrari et al., Physica D 154, 111–137 (2001)

126. O.G. Bakunin, Physics-Uspekhi 46, 323 (2003)

127. V. Uchaikin, Physics-Uspekhi 173, 765 (2003)

128. M.R. Maxey, J. Fluid Mech. 174, 441–465 (1987)

129. A. Vedenov, E.P. Velikhov, R.Z. Sagdeev, Plasma Phys. Control. Nucl. Fusion Res. 2,

82 (1962)

130. W.E. Drummond, D. Pines, Plasma Phys. Control. Nucl. Fusion Res. 3, 1049 (1962)

131. B.B. Kadomtsev, Collective Phenomena in Plasma (Nauka, Moscow, 1976)

132. A.S. Kingsep, Introduction to the Nonlinear Plasma Physics Mosk (Fiz.-Tekh. Inst, Moscow,

1996)

133. V.N. Tsytovich, Theory of Turbulent Plasma (Plenum, New York, 1974)

134. M.N. Rosenbluth, R.Z. Agdeev (eds.) Handbook of Plasma Physics (North-Holland,

Amsterdam 1984)

135. T.H. Dupree, Phys. Fluids 9, 1773 (1966)

136. T.H. Dupree, Phys. Fluids 10, 1049 (1967)

137. T.H. Dupree, Phys. Fluids 15, 334 (1972)

138. O. Ishihara, A. Hirose, Comments on Plasma. Phys. Control. Fusion 8, 229 (1984)

139. A. Salat, Naturforsch Z. Teil A 38, 1189 (1983)

140. O. Ishihara, A. Hirose, Phys. Fluids 28, 2159 (1985)

141. A. Salat, Phys. Fluids 31, 1499 (1988)

142. O. Ishihara, H. Xia, A. Hirose, Phys. Fluids B 4, 349 (1992)

143. G.I. Taylor, Proc. R. Soc. London Ser. A 219, 186 (1953)

144. B. Cushman-Roisin, J.-M. Beckers, Introduction to Geophysical Fluid Dynamics (Aca-

demic, New York, 2010)

145. S.A. Thorpe, Introduction to Ocean Turbulence (Cambridge University Press, Cambridge,

2007)

146. C.J. Hearn, The Dynamics of Coastal Models (Cambridge University Press, Cambridge,

2008)

147. R. Ferrari, W. Young, J. Mar. Res. 55, 1069 (1997)

148. G.I. Taylor, Proc. R. Soc. London, Ser. A 223, 446 (1954)

149. J.W. Elder, J. Fluid Mech. 5, 544–560 (1959)

150. H.B. Fischer, J. Hydraul, Div. Proc. ASCE 93, 187 (1967)

151. P.C. Chatwin, C.M. Allen, Annu. Rev. Fluid Mech. 17, 119 (1985)

152. G.K. Batchelor et al., Proc. Phys. Soc. 68, 1095 (1955)

153. J.L. Lumley, J. Math. Phys 3(2), 309–312 (1962)

154. L.C. Van Rijn Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas Aqua,

1993

155. C. Ancey et al., J. Fluid Mech. 595, 83–114 (2008)

156. A. Dreizin Yu, A.M. Dykhne, Sov. Phys. J. Exp. Theor. Phys. 36, 127 (1973)

157. B.B. Mandelbrot, The Fractal Geometry of Nature (Freemen, San Francisco, 1982)

158. A. Bunde, S. Havlin (eds.), Fractals and Disordered Systems (Springer, Berlin, 1995)

338 References



159. A. Bunde, S. Havlin (eds.), Fractals in Science (Springer, Berlin, 1996)
160. J. Feder, Fractals, Department of Physics University of Oslo, Norway (Plenum, New York,

1988)

161. J.-F. Gouyet, Physics and Fractal Structure (Springer, Berlin, 1996)
162. H.M. Hastings, G. Sugihara, Fractals (Oxford University Press, Oxford, 1993)

163. L.S. Liebovitch, Fractals and Chaos Simplified for the Life Sciences (Oxford University

Press, Oxford, 1998)

164. M. Schroeder, Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise (W.H.

Freeman and Company, New York, 2001)

165. P.G. De Gennes, Introduction to Polymer Dynamics (Cambridge, 1990)

166. P.G. De Gennes, Scaling Concepts in Polymer Physics, (Cornell University Press, 1979)

167. M. Kleman, O.D. Lavrentovich, Soft Matter Physics (Springer, Berlin, 2003)
168. V.E. Kravtsov, I.V. Lerner, V.I. Udson, J. Exp. Theor. Phys. 91(2(8)), 569 (1986)

169. P.B. Rhines, J. Fluid Mech. 69(Part 3), 417–443 (1975)

170. M.B. Isichenko, J. Kalda, J. Nonlinear Sci. 1, 255 (1991)

171. M.B. Isichenko, J. Kalda, J. Nonlinear Sci. 1, 375 (1991)

172. M. Mitsugu, S. Ouchi, K. Honda, J. Phys. Sos. Japan 60, 2109 (1991)

173. S. Isogami, M. Matsushita, J. Phys. Sos. Japan 61, 1445 (1992)

174. A. Bunde, J.F. Gouet, J. Phys. A: Math. Gen. 18, L285 (1985)

175. H. Saleur, B. Duplantier, Phys. Rev. Lett. 58, 2325 (1987)

176. B. Sapoval, B. Rosso, J. Gouyet, J. Phys. Lett. 46, 149 (1985)

177. J. Kondev, C.L. Henley, Phys. Rev. Lett. 74, 4580 (1995)

178. J. Kondev, C.L. Henley, D.G. Salinas, Phys. Rev. E 61, 104 (2000)

179. J. Kondev, Phys. Rev. Lett. 86, 5890 (2001)

180. J. Kalda, Phys. Rev. E 64, 020101(R) (2001)

181. J. Kalda, Phys. Rev. Lett. 90, 118501–1 (2003)

182. O.G. Bakunin, Chaos Solitons & Fractals 23, 1703 (2005)

183. P. Resibois, M. Leener, De Classical Kinetic Theory (Wiley, New York, 1977)

184. B. Berne, J. Chem. Phys. 56, 2164 (1972)

185. G. Matheron, G. De Marsily, Water Resour. Res. 16, 901 (1980)

186. I.D. Howells, J. Fluid Mech. 9, 104 (1960)

187. M. Avellaneda, A. Majda, J. Phys. Fluids 4, 41 (1992)

188. O.G. Bakunin, T. Schep, J. Phys. Lett. A 322, 105 (2004)

189. S. Redner, Physica D 38, 287 (1989)

190. J.-P. Bouchaud, A. Georges, Phys. Rev. Let. 64, 2503 (1990)

191. D.L. Koch, J.F. Brady, Phys. Fluids A 1, 47 (1990)

192. A.J. Majda, A.L. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press,

Cambridge, 2002)

193. E. Ben-Naim, S. Redner, Phys. Rev. A 45, 7207 (1992)

194. M.E. Fisher, J. Chem. Phys. 44, 616 (1966)

195. S.R. Broadbent, J.M. Hammersley, Proc. Camb. Phil. Soc. 53, 629 (1957)

196. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985)

197. H.E. Stanley, J.Stat. Phys. 34, 843 (1984)

198. I.M. Sokolov, Sov. Phys. Usp. 29, 924 (1986)

199. D. Stauffer, Phys. Rep. 2, 3 (1979)

200. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon,

Oxford, 1971)

201. A. Hunt, Percolation Theory for Flow in Porous Media (Springer, Berlin, 2005)

202. M. Sahimi, Application of Percolation Theory (Taylor&Francis, New York, 1993)

203. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1998)

204. L.P. Kadanoff, Statistical Physics: Dynamics and Renormalization (World Scientific

Publishing, Singapore, 1999)

References 339



205. J.M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered
Systems (Cambridge University Press, London, 1979)

206. R.A. Fisher, Statistical Methods and Scientific Inference (Hafner, New York, 1973)

207. J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press,

London, 2000)

208. J. Cardy (ed.), Finite-Size Scaling (Elsevier, Amsterdam, 1988)

209. V. Privman (ed.), Finite Size Scaling and Numerical Simulation of Statistical Systems (World

Scientific Publishing, Singapore, 1990)

210. E. Montroll, G. Weiss, J. Math. Phys. 6, 178 (1965)

211. E. Montroll, H. Scher, Phys. Rev. Ser. B 12, 2455 (1972)

212. Lubashevskiy I.A. and Zemlianov, JETF, 114, 1284 1998

213. B.B. Kadomtsev, and O.P. Pogutse, Plasma Physics and Controlled Nuclear Fusion

Research. In: Proceedings of the 7-th International Conference, IAEA Vienna, 1, 649 1978

214. A. Einstein, Ann. Physik 17, 549 (1905)

215. AYa Khintchine, P. Levy, Compt. Rend. 202, 274 (1936)

216. A. Cauchy, Comptes Rends 37, 292 (1853)

217. A. Leonard, I. Mizic, Phys. Fluid. (1994)

218. B. Kuvshinov, T. Schep, Phys. Rev. Lett. 215, 3675 (1998)

219. G.M. Zaslavsky, Chaos 4, 253 (1994)

220. A.V. Chechkin, V.Y. Gonchar, J. Exp. Theor. Phys. 91, 635 (2000)

221. O.G. Bakunin, Plasma Phys. Rep. 16, 529 (1990)

222. S.D. Danilov, V.A. Dovgenko, I.G. Yakushkin, J. Exp. Theor. Phys. 91, 423–432 (2000)

223. K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented
Exposition (Springer, Berlin, 2010)

224. L. Pietronero, Fractals’ Physical Origin and Properties (Plenum, New York, 1988)

225. B.J. West, M. Bologna, P. Grigolini, Physics o Fractal Operators (Springer, New York,

2003)

226. G. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press,

Oxford, 2005)

227. O.G. Bakunin, Physica A 337, 27–35 (2004)

228. G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics (Cambridge University Press,

Cambridge, 1994)

229. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press,

Cambridge, 1973)

230. O. Darrigol, Words of Flow: A History of Hydrodynamics from the Bernoullis to Prandtl
(Oxford University Press, New York, 2009)

231. L. Prandtl, O.G. Tietjens, Applied Hydro- and Aeromechanics (McGraw-Hill, London, 1953)

232. M. Samimy et al., A Gallery of Fluid Motion (Cambridge University Press, Cambridge,

2003)

233. P. Taberling, O. Cardoso, Turbulence. A Tentative Dictionary (Plenum, New York, 1994)

234. D.P. Papailiou, P.S. Lyykoudis, J. Fluid Mech. 62, 11–31 (1974)

235. N. Kolmogorov, Dokl. Akad Nauk SSSR 30, 299 (1941)

236. A.M.C.R. Obukhov, Acad. Sci. U.R.S.S 32, 19 (1941)

237. S.G. Saddoughi, S.V. Veeravally, J. Fluid Mech. 268, 333–372 (1994)

238. A.M. Yaglom, Dokl. Akad Nauk SSSR 67, 795 (1949)

239. A. La Porta et al., Fluid particle accelerations in fully developed turbulence. Lett. Nat. 409,

1017 (2001)

240. O.G. Bakunin, Plasma Phys. Control. Nucl. Fusion 45, 1909 (2003)

241. A. Obuchov, M. Izvestia, S.S.S.R. Akad Nauk, Geophysics 13, 58 (1949)

242. S. Corrsion, J. Appl. Phys. 22, 469 (1951)

243. H. Grant, J. Fluid Mech. 34, 423 (1968)

244. C.H. Gibson, W.H. Schwarz, J. Fluid Mech. 16, 365 (1963)

245. M.-C. Jullien, P. Castiglione, Phys. Rev. Lett. 85, 3636 (2000)

340 References



246. P. Vaishnavi et al., J. Fluid Mech. 596, 103 (200)

247. A. Grosman, V. Steinberg, Elastic turbulence in a polymer solution flow. Lett. Nat. 405,

53 (2000)

248. D.R. Fereday, Phys. Fluids 16, 4359 (2004)

249. P.G. Saffman, Fluid Mech. 8, 18 (1959)

250. H.K. Moffatt, J. Fluid Mech. 106, 27 (1981)

251. H.K. Moffatt, Rep. Prog. Phys. 621, 3 (1983)

252. K.R. Sreenivasan, Rev. Mod. Phys. 71, 383 (1999)

253. P.G. Mestayer, J. Fluid Mech. 125, 475 (1982)

254. S. Chen, R.H. Kraichnan, Phys. Fluids 68, 2867 (1998)

255. G. Falkovich, K. Gawedzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)

256. Z. Warhaft, Annu. Rev. Fluid Mach. 32, 203–240 (2000)

257. B.I. Shraiman, E.D. Siggia, Nature 405, 639 (2000)

258. L.F. Richardson, Proc. R. Soc. London, Ser. A 110, 709 (1926)

259. S. Ott, J. Mann, J. Fluid Mech. 422, 207 (2000)

260. G.K. Batchelor, Q. J. R. Meteor. Soc 76, 133 (1950)

261. G.K. Batchelor, A.A. Townesend, In Surveys in Mechanics (Cambridge University Press,

Cambridge, 1956), pp. 352–99

262. M. Bourgoin et al., Science 311, 835–838 (2006)

263. G.K. Batchelor, Proc. CambridgePhylor. Soc 48, 345 (1952)

264. P.J. Sullivan, J. Fluid Mech. 20, 606 (1971)

265. A.M. Obuchov, in N.F. Frenkiel (ed) Atmospheric Diffusion and Air Pollution (Academic,

New York, 1959)

266. A.M. Yaglom, Correlation Theory of Time-Independent Random Functions Gosmeteoizdat,

Leningrad (1981)

267. B. Sawford, Annu. Rev. Fluid Mech. 33, 289–317 (2001)

268. A.S. Monin, Dokl. Akad. Nauk SSSR 105, 256 (1955)

269. A. Okubo, Oceanol. J. Soc. Jpn. 20, 286 (1962)

270. G. Boffetta, I.M. Sokolov, Phys. Fluids 14, 3224 (2002)

271. L. Biferale and I. Procaccia Phys. Rep. 254, (2005)

272. Transport and mixing in geophysical flows. Springer LNP-744 (2008)

273. G. Zumofen, A. Blumen, J. Klafter, M.F. Shlesinger, J. Stat. Phys. 54, 1519 (1989)

274. B.B. Mandelbrot, J. Fluid Mech. 72, 401 (1975)

275. U. Frisch, P.-L. Sulem, M.A. Nelkin, J. Fluid Mech. 87, 719 (1978)

276. H.G.E. Hentschel, I. Procaccia, Phys. Rev. A 29, 1461 (1984)

277. J. Sommeria, J. Fluid Mech. 170, 139–168 (1986)

278. R.H. Kraichnan, J. Fluid Mech. 47(3), 525–535 (1971)

279. R.H. Kraichnan, D. Montgomery, Rep. Prog. Phys. 43, 547 (1980)

280. J. Sommeria, Les Houches Series (Nova Science Publisher, New York, 2010)

281. P. Tabeling, Phys. Rep. 362, 1–62 (2002)

282. D.L. Rudnick, R. Ferrari, Science 283, 526–529 (1999)

283. W.J. McKiver, J. Fluid Mech. 596, 201 (2008)

284. B.B. Kadomtsev, Tokamak Plasma: A Complex System (IOP Publishing, Bristol, 1991)

285. J.A. Wesson, Tokamaks (Oxford University Press, Oxford, 1987)

286. S.R. Keating, P.H. Diamond, J. Fluid Mech. 595, 173 (2008)

287. D. Biskamp, Magnetohydrodynamic turbulence (Cambridge University Press, Cambridge,

2004)

288. E. Falgarone, T. Passot (eds.), Turbulence and Magnetic Fields in Astrophysics (Springer,
Berlin, 2003)

289. J.E. Pringle, A. King, Astrophysical Flows (Cambridge University Press, Cambridge, 2005)

290. A. Ruzmaikin, A. Shukurov, D. Sokoloff, Magnetic Fields of Galaxies (Springer, Berlin,

1988)

291. C. Pasquero, J. Fluid Mech. 439, 279 (2001)

References 341



292. D.D. Schnack, Lectures in Magnetohydrodynamics. With an Appendix on Extended MHD.

(Springer, Berlin, 2009)

293. YaB Zeldovich et al., Magnetic Fields in Astrophysics (Springer, Berlin, 2005)
294. G.K. Batchelor, Phys. Fluids Suppl. II. 12(12), 233–239 (1969)

295. P. Morel, M. Larcheveque, J. Atmos. Sci 31, 2189 (1974)

296. J.T. Lin, J. Atmos. Sci 29, 394 (1972)

297. A. Okubo, R.V. Ozmidov, Fizika atmosfery i okeana 1, 643 (1965)

298. G.S. Golitsyn, Dokl. Akad. Nauk SSSR 433(4), 231 (2010)

299. B.E, Zacharov, N.I. Filinenko Dokl. Akad. Nauk SSSR, 170, 6, (1966)

300. K. Toba, Oceanogr. Soc. Japan 29, 56 (1973)

301. J.I. Taylor, in N.F. Frenkiel (ed) Atmospheric Diffusion and Air Pollution (Academic,

New York, 1959)

302. D.G. Andrews, An Introduction to Atmospheric Physics (Cambridge University Press,

Cambridge, 2010)

303. E. Palmen, C.W. Newton, Atmospheric Circulation Systems (Academic, London, 1969)

304. R.S. Scorer, Environmental aerodynamics (Wiley, New Jersey, 1978)

305. R.A. Houze, Cloud Dynamics (Academic, London, 1993)

306. H.U. Roll, Physics of the Marine Atmosphere (Academic, London, 1965)

307. P. Berge, Y. Pomeau and C. Vidal. L’ordre dans le chaos, Hermann, Editeurs des sciences et

des arts (1988)

308. G.K. Batchelor, H.K. Moffat, M.G. Worster, Perspectives in Fluid Dynamics (Cambridge

University Press, Cambridge, 2000)

309. P. Manneville, Instabilities. Chaos and Turbulence. An Introduction to Nonlinear Dynamics
and Complex Systems (Imperial College Press, London, 2004)

310. L.M. Pismen, Patterns and Interfaces in Dissipative Dynamics (Springer, Berlin, 2006)
311. G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets

(Cambridge University Press, Cambridge, 2008)

312. J.S. Turner, Buoyancy Effects in Fluid (Cambridge University Press, Cambridge, 1973)

313. E.N. Lorenz, J. Atmos. Sci 20, 130 (1963)

314. R.A. Meyers, Encyclopedia of Complexity and Systems Science (Springer, Berlin, 2009)
315. G. Nicolis Foundations of Complex Systems WS (2007)

316. M. Schroeder, Fractals, Chaos, Power Laws. Minutes from an Infinite Paradise (W.H.

Freeman and Company, New York, 2001)

317. S.H. Strogatz, Nonlinear Dynamics and Chaos (Perseus, New York, 2000)

318. G.S. Golitsyn, J. Fluid Mech. 95, 567 (1979)

319. B.M. Koporov Tsvang L.R. Fizika atmosfery i okeana 6 643 (1965)

320. R.H. Kraichnan, Phys. Fluids 5, 1374 (1962)

321. L.N. Howard In Proc 11th Int. Congr., Appl. Mech Munchen FRG, 1109–1115 (1966)

322. R. Verzicco, K.R. Sreenivasan, J. Fluid Mech. 595, 203 (2008)

323. E.M. Sporrow, J. Fluid Mech. 41, 792 (1970)

324. B. Castaing et al., J. Fluid Mech. 204, 1–30 (1989)

325. T. Zhao, Convective and Advective Heat Transfer in Geological Science (Springer, Berlin,

2008)

326. C. Normand, Y. Pomeau, M.G. Velarde, Per. Mod. Phys. 49, 581 (1977)

327. A. Boubnov, G.S. Golitsin, Convection in Rotating Fluids (Springer, Berlin, 1995)
328. A.M. Obuchov, Dokl. Akad. Nauk SSSR 125, 1246–1248 (1959)

329. R. Bolgiano, J. Geophys. Res. 46(12), 2226–2229 (1959)

330. M.V. Osipenko, O.P. Pogutse, N.V. Chudin, Sov. J. Plasma Phys. 13, 550 (1987)

331. M.N. Rosenbluth, H.L. Berk, I. Doxoas, W. Horton, Phys. Fluids 30, 2636 (1987)

332. M.R. Maxey, S. Corrsin, J. Atmos. Sci. 43, 1112 (1986)

333. O. Cardoso, P. Tabeling, Euro. J. Mech. B/Fluids 8, 459 (1989)

334. O. Cardoso, P. Tabeling, Europhys. Lett. 7, 225 (1988)

335. M.B. Nezlin, Zg. Eksp. Teoret. Fiz. Lett. 34, 83 (1981)

342 References



336. S.B. Antipov, M.B. Nezlin, E.H. Snegkin, A.S. Trubnikov, Zg. Eksp. Teoret. Fiz. 89, 1905

(1985)

337. T.H. Solomon, E. Weeks, H.L. Swinney, Physica D 76, 70 (1994)

338. E.R. Weeks, J.S. Urbach, H.L. Swinney, Physica D 97, 291 (1996)

339. T. Solomon, J. Gollub, Phys. Rev. A 38, 6280 (1988)

340. T. Solomon, J. Gollub, Phys. Fluids A 31, 1372 (1988)

341. S. Childress, A.M. Soward, J. Fluid Mech. 205, 99 (1989)

342. M.B. Isichenko, YaL Kalda, E.V. Tatarinova, O.V. Telkovskaya, V.V. Yankov, Sov. Phys.

J. Exp. Theor. Phys. 69, 517 (1989)

343. A.V. Gruzinov, M.B. Isichenko, YaL Kalda, Sov. Phys. J. Exp. Theor. Phys. 70, 263 (1990)

344. O.G. Bakunin, Turbulent and Diffusion, Scaling Versus Equations (Springer, Berlin, 2008)
345. V. Rom-Kedar et al., J. Fluid Mech. 214, 347 (1990)

346. J.-D. Reuss, F. Spineanu, J.H. Misguich, J. Plasma Phys. 59, 707 (1998)

347. P.N. Yushmanov, Comm. Plasma Phys. Control. Fusion 14, 313 (1992)

348. A.I. Smolyakov, P.N. Yushmanov, Nucl. Fusion 3, 383 (1993)

349. M.B. Isichenko, W. Horton, D.E. Kim, E.G. Heo, D.-I. Choi, Phys. Fluids 4(12), 3973 (1992)

350. G. Zimbardo, P. Veltri, P. Pommois, Phys. Rev. E 61, 1940 (2000)

351. M. Ottaviani, Europhys. Lett. 20, 111 (1992)

352. E. Knobloch, W.J. Werryfield, Astrophys. J. 401, 196 (1992)

353. Y.B. Zeldovich, Zg. Eksp. Teoret. Fiz. 7(12), 1466 (1937)

354. A.E. Gledzer, Fizika atmosfery i okeana 35, 838 (1999)

References 343



Index

A

ABC-flow, 70–72

Advection, 21–34, 69, 75, 114, 116, 219, 225,

300, 309, 315, 328

Advection–diffusion equation, 21–23, 65, 158,

219, 300–302, 322, 323

Alexander–Orbach conjecture, 155

Anisotropy, 6, 61, 62, 119, 195

Anisotropy effect, 59, 199

Anomalous diffusion, 23, 59–62, 124, 131,

149–153, 165, 186, 192–195, 201,

239, 315

Anomalous transport, 62, 65, 111, 124, 134,

135, 145, 148, 149, 151–153, 156,

171, 173, 181–201, 216, 231–234,

242, 297, 303–306, 308

Arnold–Beltrami–Childress chaotic flow,

69–73

Astrophysics, 83, 205, 254

Atmospheric boundary layer, 281

Atmospheric cloud, 98

Atmospheric turbulence, 33, 211, 258–260

Autocorrelation function, 42–44, 92, 97, 100,

101, 145–147

Averaging, 39, 47, 55, 60, 89–93, 107, 138,

147, 187, 227, 235, 240, 305, 323, 330

B

Backbone, 170, 177, 194, 195

Ballistic mode, 49, 236–238

Ballistic motion, 23, 139, 157, 308

Basset “history,”, 99

Batchelor dissipation scale, 80, 227

Batchelor mixing scale, 79

Beltrami condition, 70

Bolgiano spatial scale, 292, 293

Boltzmann, 8, 9, 39, 42

Boltzmann law, 56–57

Bond percolation, 165–168

Boundary layer, 281, 283–287, 290, 300–303,

307, 309, 311

Boussinesq, 269–271, 291

Boussinesq approximation, 274

Braded magnetic field, 23

Brownian motion, 37–40, 43, 46, 57, 103, 129,

131, 134, 136, 139, 142

Buoyancy, 267, 269–271, 274, 289–292

Buoyancy force, 267–269, 284

Burgers’ equation, 23–24

Burgers’model, 24

C

Cascade, 80, 83, 209, 210, 213, 214, 219, 224,

228–229, 234, 250, 252, 254, 256, 257,

259, 291, 324

Cascade mechanism, 44

Cascade phenomenology, 83, 207–211, 224

Cauchy distribution, 183

Chaos, 72–74, 78, 93, 239, 327

Chaotic advection, 32, 72, 73, 80

Chaotic flow,

Characteristic frequency, 48, 77, 100, 140, 322,

331, 333

Chicago scaling, 287–290

Cloud of marked particles, 31, 32

Coastal basin, 114–116

Coastline exponent, 173

Coherent structure, 6, 44, 84, 93, 192, 267, 293,

297–315, 319, 320

Cole–Hopf change of variables, 24

Comb structures, 170–171, 176, 178, 194–199

Complex comb structure, 171

O.G. Bakunin, Chaotic Flows, Springer Series in Synergetics 10,

DOI 10.1007/978-3-642-20350-3, # Springer-Verlag Berlin Heidelberg 2011

345



Complex correlation effect, 93, 96, 124

Complex structure, 23, 165–178, 287, 297

Concentration gradient, 3, 56, 107

Conduction cut-off, 225, 226

Conformally invariant, 8, 10

Conservation law, 10, 31, 207, 219

Continuity equation, 3, 47, 89, 90, 270, 271, 274

Continuous time random walk, 186, 193, 243,

245, 246, 308

Continuum percolation, 171, 172, 309

Contour loop, 143

Convection, 21, 22, 81, 110, 267–293, 300,

302, 303, 306–308, 320, 326

Convection–diffusion equation, 21, 23, 26, 27

Convective cells, 23, 276, 297, 300–303, 308,

309, 311, 313, 319, 321, 325, 326

Convective cloud, 99

Correlation concept, 53–56, 117

Correlation effect, 57, 63, 65, 75, 89–104, 113,

124, 129, 135, 145, 150, 156, 161, 171,

173, 194, 199, 200, 309, 321

Correlation exponent, 155, 170, 199, 312

Correlation length, 6, 43, 59, 124, 133, 166,

167, 169, 171, 173–176, 320, 330

Correlation mechanism, 23, 59

Correlation scale, 6, 44, 61, 75, 110, 123, 139,

178, 312, 315, 319, 320, 329–333

Correlation spatial scale, 178, 314

Correlation temporal scale, 44, 60, 61, 75

Corrsin conjecture, 64, 65, 148, 152

Corrsin shear wind model, 124

Critical exponent, 165–167

Critical probability, 165

Critical Rayleigh number, 286, 325

D

Damping time, 40, 43

Dead-end, 170, 177, 178, 195, 314

Decorrelation mechanisms, 77, 83, 93

Density fluctuation, 27, 29, 91, 108, 269, 270

Density gradient, 13, 14, 28, 116, 216, 267

Density perturbation, 33, 90–92, 109, 115,

150, 229

Diffusion, 3–5, 14–18, 23, 28–32, 37–40, 48,

53, 59, 62–66, 79, 81, 89, 94, 95, 99,

100, 107, 110, 118, 120, 122, 129,

150–151, 153, 157–160, 170, 171, 181,

195, 219, 220, 225, 231–246, 269, 290,

303, 304, 306, 309

Diffusion characteristic time, 81

Diffusion coefficient, 3–5, 12, 15, 16, 27, 33,

37, 40, 43, 44, 48, 56–58, 61, 63, 84, 92,

101, 102, 107, 116, 119, 120, 122, 123,

136, 150, 151, 170, 175, 177, 181, 182,

184, 195, 227, 228, 232–235, 238–240,

302, 303, 312, 320, 321, 324, 330

Diffusion equation, 4, 6–12, 14, 15, 18, 21, 24,

46–49, 59, 66, 89, 95, 108, 115, 116,

146, 182, 183, 193, 195–200, 227,

239, 323

Diffusion mechanism, 6

Diffusion phenomenon, 3–7

Diffusion process, 40, 103, 303

Diffusive front, 134, 305

Dirac function, 89, 102

Dispersion, 5, 54, 65, 66, 80, 107–124,

231–233, 236, 237, 239–242, 254,

258–261, 272, 273, 300, 322

Dissipation rate, 118, 175, 208, 211, 214,

215, 219, 235, 242, 244, 253, 256, 257,

281, 292

Dissipation subrange, 237–239

Dissipative spatial scale, 99, 238

Distribution function, 5, 11, 23, 28, 44–47,

89, 90, 99, 101, 111–113, 159, 161,

171, 188, 189, 191, 193, 240, 242,

244, 303, 305

Droplets, 99

Dupree approximation, 100–102

E

Effective diffusive coefficient, 15, 16, 29, 33,

56, 57, 84, 107, 116, 122, 151, 153, 303,

312, 321, 330

Effective diffusivity, 18, 27–29, 33–34, 57,

107, 116, 119, 151, 153, 154, 229, 313,

320, 321, 323, 324, 326, 329

Effective transport, 6, 27, 63, 107, 139, 140,

145, 156, 173, 177, 178, 191, 302,

308, 333

Einstein formula, 92

Electrostatic turbulence, 101–103

Elliptic point, 73, 74

Embedding dimension, 130

Energy-containing eddies, 234

Energy dissipation, 100, 175, 208, 211, 242,

244, 245, 279–281, 292

Energy spectrum, 209, 210, 219, 222, 227,

252–255, 292, 293

Ensemble mean, 31

Enstrophy, 250, 251, 253–257, 259

Enstrophy cascade, 254, 256, 259

Environmental flow, 59, 62, 119, 121, 284, 319

Equation of vorticity, 249, 255, 275

346 Index



Equipartition theorem, 39, 42

Euclidean dimension, 130, 245

Eulerian acceleration, 215

Eulerian characteristic spatial scale, 63–65

Eulerian characteristic time, 63–65

Eulerian correlation function, 63, 64, 151, 152,

199, 211

Eulerian description, 53, 63

Eulerian (laboratory) coordinate frame, 53

Eulerian velocity, 21, 63, 69, 205

Eulerian velocity field, 53

Exponential instability, 32, 77, 224

Exponential regime, 84, 237–239

Exponential stretching, 82, 224, 234, 237

F

Fastest mode rule, 321

Fastest mode selection, 321

Fick relation, 95

Fick’s first law, 3

Fick’s second law, 4

Finite size scaling, 169–170

Fisher relation, 160–161

Flat scaling, 229, 333

Flory scaling, 138

Flow topology reconstruction, 80, 306, 315,

319–333

Flow topology reorganization, 321, 324, 329

Fluctuation amplitude, 31, 34, 90, 211, 213,

289, 291, 309, 333

Fluctuation–dissipation relation, 27, 29, 32, 33,

228–229

Fluctuations, 30–32

Fluid dynamics, 53, 260, 297

Fokker–Plank equation, 45, 46, 242

Folding, 78, 81, 82

Fourier component, 101, 219, 220

Fourier inversion, 5

Fourier procedure, 7

Fourier representation, 5, 182, 183, 194, 242

Fourier transform, 4, 5, 146, 151, 181, 182,

187–189, 196–198, 200, 240

Fractal dimension, 129–131, 133, 134,

137–139, 142, 143, 167–168, 177, 178,

245, 277

Fractal line, 133

Fractal model, 134

Fractal object, 129–143

Fractal streamline, 139, 312, 315

Fractal time, 189–192

Fractal topology, 134–137

Fractional derivative, 192–194, 243

Fractional equation, 242–244

Fractional Fick law, 194–199

Freely evolving two-dimensional turbulence,

255–256

Frequency path, 320, 333

Frequency spectrum, 262

Fully developed turbulence, 214, 215, 231, 252

G

Gauss distribution, 5, 138

Gaussian approximation, 239–242

Gaussian distribution, 7, 64, 132, 148, 160,

171, 183, 184, 305

Gaussian probability density, 132

Gaussian statistics, 102, 103

Golitsyn formula, 280

Green function method, 91, 150, 196, 198

GreenKubo–Green formula, 92, 93

H

Hamiltonian description, 92, 329

Hamiltonian dynamics, 74, 330

Hamiltonian form, 70

Hamiltonian model, 75

Hamiltonian system, 73–77, 326, 327

Hamiltonian theory, 49

Hausdorff dimension, 130, 134, 135

Heat conductivity, 24, 85, 269, 271

Heat flux, 270, 279, 280, 282, 283, 285,

289, 290

Heat wave front, 13

Heavy particle, 95–99

Hentschel, 246

Heteroclinic trajectories, 327

High frequency regime, 319–321

Hilly landscape, 139, 171–174

Homoclinic point, 74

Homogenous turbulence, 119

Howells expression, 151, 227

Hull, 143, 168, 176, 311, 312

Hull fractal dimension, 168

Hurst exponent, 23, 61, 134, 138, 140, 142,

145, 149, 152, 154, 155, 158–161, 171,

178, 184, 199, 315

Hyperbolic point, 73, 74

I

Incompressible flow, 21, 25, 75, 90, 139, 152,

201, 275, 297

Incompressible velocity field, 18, 97, 153

Index 347



Independence hypothesis, 64, 102, 104

Industrial flow, 59

Inertial particles, 96–98

Inertial subrange, 209, 219–222, 256

Infinite percolating cluster, 165, 167, 172

Inhomogeneous media, 11–14

Instantaneous release, 231

Intermittency, 244, 245, 267

Intersections, 134–137

Invariants, 8–10, 74, 129, 130, 132, 177, 214

Inverse cascade, 252–254, 257, 258

Irreversible statistical mechanics, 7

Ising model, 168

Isotropic turbulence, 205–216, 221, 224, 226,

237, 242, 244, 260

K

KAM theory, 73

Kinetic coefficient, 24, 25

Kinetic equation, 46–49, 215, 241, 242

Kinetic problem, 99

Klein–Kramers equation, 46, 215

Kolmogorov, 32, 208, 209, 214, 219, 222,

224, 227, 229, 234, 236, 237, 241,

243, 245, 252, 253, 260, 279, 280,

292, 319, 320

Kolmogorov–Arnold–Moser theory, 71

Kolmogorov cascade, 213, 324

Kolmogorov constant, 210, 280

Kolmogorov entropy, 76, 77

Kolmogorov hypothesis, 213, 319

Kolmogorov length, 208

Kolmogorov scaling, 213–214, 222, 223, 226,

228, 244, 291, 319, 324

Kolmogorov similarity, 214

Kolmogorov spatial scale, 77, 211, 213,

238, 243

Kolmogorov theory, 83, 215, 244

Kolmogorov time scale, 208

Kramers equation, 46, 215

Kubo–Green relation, 93

Kubo number, 78, 175, 320, 326, 332

L

Lagrangian approach, 53, 89, 98

Lagrangian chaos, 69–85, 327

Lagrangian characteristic spatial scale, 61–63,

65, 77, 79, 80, 82–84

Lagrangian characteristic temporal scale, 97

Lagrangian correlation function, 55, 58, 63, 64,

148, 227

Lagrangian description, 53–66, 85, 119, 139

Lagrangian position, 54

Lagrangian representation, 56, 57, 69, 89, 119

Lagrangian trajectory, 75, 328

Lagrangian turbulence, 70

Lagrangian velocity, 54, 66, 145

Laminar flow, 56, 73, 80, 81, 107–111,

205, 223

Landau damping, 100, 101

Landau representation, 168

Landscape roughness, 140

Langevin approach, 37, 96

Langevin equation, 37–49

Langevin model, 45, 46, 96

Laplace operator, 7

Laplace transformation, 58, 193, 196, 200

Larcheveque, 259

Large-scale behavior, 165

Lattice structure, 165

Levy flight, 183, 243

Levy–Khintchine exponent, 184, 186, 243

Levy–Smirnov distribution, 183, 186

Lie theory of groups, 8

Linear group, 8, 11

Linear-response, 89–93

Lobe transport, 324–329

Long range correlations, 135, 145, 173, 194,

199, 312, 321

Loop (vortex) structure, 139

Lyapunov’s exponent, 76, 77

M

Macroscopic equation, 14

Magnetic turbulence, 85

Magnetized plasma, 297

Manhattan grid flow, 153–155, 161

Manhattan random flow, 299

Mapping parameter, 78

Marked particles, 30–32, 53, 54

Markovian character, 215

Markov’s postulate, 182

Mass conservation law, 31

Maxwell distribution, 45

Mean density, 90–92, 99, 108, 122, 323

Mean square distance, 5

Melnikov formula, 74

Melnikov function, 328

Memory effect, 49, 95, 103, 121–122, 182,

186, 194, 216, 234, 236, 237, 243

Memory function, 93, 95–97, 122, 150, 151

Microchannel, 80–83

Microscopic dynamics, 14

348 Index



Mixing, 7, 11, 12, 28, 79–84, 93, 94, 100,

107, 114, 116, 117, 119–120, 228,

239, 241, 254, 287, 306

Mixing length, 81, 83, 228, 287

Mixing time, 79, 80, 82, 83

Mobility, 38, 40, 42, 57, 222

Molecular diffusivity, 29, 31, 32, 79, 81, 84,

118, 148, 153, 219, 300, 301, 309

Molecular motion, 30

Multiscale method, 16

Multiscale technique, 14, 18

N

Navier–Stokes equation, 23, 205, 214, 215,

249–252, 255, 270

Newtonian fluid, 23, 205

Newton second law, 267

Non-diffusive character, 23

Non-integrable dynamics, 327

Nonlinear equations, 8, 24, 99

Non-local effect, 121, 216, 241, 242

Nusselt number, 279–284, 287, 289, 290

O

Obukhov–Corrsin constant, 220

Onsager equation, 92

Order parameter, 166

Oscillatory instability, 326

Oscillatory roll, 324–329

P

Particle flux, 7, 14, 16, 23, 92, 94, 95

Particle inertia, 95–98, 302

Particle trapping, 308

Passive scalar equation, 89, 150

Passive scalar transport, 3, 14, 78

Peclet number, 22, 29, 30, 33, 34, 79, 81, 83,

84, 109, 175, 224, 228, 282, 284, 301,

302, 307, 309, 312, 313

Percolating cluster, 165, 167, 176

Percolation, 129, 149, 165–178, 306, 308, 309,

311–315, 321, 328–330, 332, 333

Percolation hull, 143, 176, 311

Percolation method, 165, 311, 313

Percolation networks, 167, 177

Percolation parameter, 167, 173–176, 311,

313, 331

Percolation regime, 314–315

Percolation streamline, 134, 173, 175, 311,

312, 330, 331, 333

Percolation theory, 165, 167, 172,

173, 312

Percolation threshold, 165–168, 170–174,

176, 194, 311

Percolation transport, 149, 170–171

Perturbation technique, 33, 302

Phase element, 78

Phase-space, 48, 49, 70, 71, 73, 79, 99–100,

215, 216, 241, 242, 277, 326

Plasma physics, 24, 83, 297

Point vortex, 186

Point vortex distribution, 186

Poiseuille flow, 80, 107, 111

Poisson equation, 275

Potts model, 168

Power-law shear flow, 157–160

Prandtl number, 24, 25, 223, 225–226,

276, 283

Q

Quasi-ballistic motion, 234

Quasi-linear approach, 92, 93, 99–100, 104,

150, 278

Quasi-linear approximation, 99–101

Quasi-linear diffusion coefficient, 100, 101

Quasi-linear equation, 91, 99, 150–151,

199, 200

Quenched randomness, 122

R

Random percolation cluster, 168

Random processes, 93, 129, 242

Random velocity field, 27, 90, 122,

303, 311

Random walk, 124, 133–140, 142, 143, 157,

160, 161, 165, 181–184, 186, 189,

193, 197, 199, 243, 245, 246, 301,

304, 308, 312

Rate of stretching, 79

Rayleigh–Benard convection, 270, 271, 274,

278, 284, 299, 324

Rayleigh–Benard instability, 270–274

Rayleigh number, 267–278, 282, 283,

285–287, 290, 325

Reconnection of streamlines, 6

Reconstruction of chaotic flow topology, 80,

306, 330, 333

Regular comb structure, 170, 195

Regular structures, 297–300

Relative diffusion, 231–246, 258, 260, 262

Relaxation, 30, 240, 243, 269

Index 349



Renormalization, 56–57, 65, 92, 101–104, 138,

155, 173–175, 178, 199, 200, 228,

312, 313

Renormalized diffusion equation, 95

Renormalized quasilinear equation, 150

Resonant particle, 104

Return effect, 136, 147–149

Return of a walking particle, 135

Return probability, 136, 171, 184–186

Reynolds number, 64, 80, 81, 98, 118, 119,

205–208, 211, 215, 220, 227, 244,

250, 287, 319

Reynolds similarity law, 205–207

Reynolds stress, 117, 120

Richardson constant, 232

Richardson law, 232, 233, 246, 263

Richardson’s formula, 231

Richardson’s scaling, 233, 234, 236–238,

245, 258, 260–263

Roll system, 303

Rough landscape, 140

S

Saddle point, 71, 73, 309

Scalar cascade, 83, 219, 224, 291

Scalar spectrum, 220, 222–226, 256–258,

292, 293

Scaling, 5, 23, 58–59, 77, 102, 109, 129–143,

151–153, 169–170, 189–192, 213–214,

220, 231–246, 260–263, 278–281,

287–290, 300–303, 329–333

Secondary flow, 82

Seed diffusion, 6, 27, 62, 115, 122, 150, 157,

171, 181, 191, 200, 320, 327

Self-affine surface, 143

Self-avoiding random walk, 137–139, 142, 160

Self-diffusion coefficient, 3, 227

Self-intersections, 137–139

Self-similar behavior, 8

Self-similar solution, 7–11

Self-similar variable, 8–12

Separatrix, 71–75, 77, 80, 308, 327–330

Separatrix splitting, 73–76, 309, 327, 328

Serpinski gasket, 129–131

Settling velocity, 96

Shape exponent, 159–161

Shear flow, 25–27, 59–62, 122–124, 145–161,

199–201, 321–324

Single puff of particles, 30, 31, 231

Single-scale approximation, 76–80, 83, 85,

224, 255, 256

Solomon–Gollub model, 324

Spatial scale, 16, 31, 44, 60–63, 65, 75, 77, 79,

80, 82–84, 89, 98, 99, 110, 115, 116,

139, 140, 171, 173, 177, 178, 205, 211,

213, 222, 227–229, 233, 234, 238, 243,

256, 258–260, 291–293, 311, 313, 314,

320, 325, 329, 330

Spectra, 205–216, 221, 224–226, 253–258,

262, 291–293

Spectral transfer rate, 219

Steady turbulent flow, 33

Stochastic fractal, 131

Stochastic instability, 6, 76–80, 83, 85, 93,

100, 320

Stochastic instability increment, 79, 83

Stochastic layer, 71, 72, 74, 75, 173, 175, 303,

311, 312, 315, 327, 330, 331, 333

Stokes drag force model, 99

Stokes’ law, 38, 40

Strange attractor, 274–278

Stream function, 71, 73, 75, 82, 139, 141, 142,

147, 153, 172, 191, 192, 249, 252, 275,

297–299, 302, 303, 309, 311, 325–328

Streamlines reconnection, 6, 63, 320

Streamlines reorganization, 330

Streamline topology, 72, 139, 140, 299, 319

Stretching, 77–79, 81, 224, 274

Strong convective turbulence, 283–285

Strong turbulence, 205, 229, 285, 306, 308,

320, 333

Subdiffusive regime, 152, 186, 200, 201, 315

Subdiffusive transport, 23, 303

Superdiffusion, 23, 147–149, 153, 201

Suprathermal electrons, 48

T

Taylor convective dispersion, 121

Taylor definition, 54, 58, 63, 149, 154, 213, 238

Taylor diffusion, 53–56, 152

Taylor microscale, 211–213

Taylor relationship, 58, 145

Taylor shear dispersion, 107–124

Taylor statistical approach, 54, 119

Telegraph equation, 93–95

Temporal scale, 16, 97, 213, 238, 321

Time-periodic instability, 325

Total flux, 22

Transport coefficient, 92, 93, 330

Transport equation, 10, 15, 23, 49, 89–104,

107, 121, 122, 181, 186, 193, 200, 281,

282, 284

Transport model, 6, 65, 75, 148, 301, 328,

329, 333

350 Index



Transport scaling, 5, 58, 83, 123, 184, 302

Turbulence, 3, 32, 53, 70, 94, 117, 129,

205–216, 219–229, 233, 249–263, 267,

279–293, 308, 320

Turbulent diffusion, 6, 28, 55, 60, 63, 65, 92,

94, 95, 100, 119, 120, 145, 173, 227,

242, 246, 302, 308, 314, 315, 322,

330, 331

Turbulent flow, 6, 24, 27, 28, 30, 33, 44, 56,

57, 59, 63, 65, 89, 96, 116, 119–120,

129, 141, 191, 206, 210, 211, 213,

214, 219, 223, 228, 233, 237, 252,

254, 255, 258, 259, 267, 284, 291,

297, 320, 324

Turbulent fluctuations, 34, 211, 213

Turbulent mixing, 94, 116, 119

Turbulent plasma, 48, 100

Turbulent pulsation, 60, 61, 95, 97, 242, 321

Turbulent spectrum, 252, 262, 333

Turbulent thermal convection, 291–293

Turbulent transport, 23, 55, 56, 58–59, 62–66,

93, 95, 129, 131, 142, 161, 215, 222,

227–229, 234, 239, 279, 283, 302,

311, 313, 315, 320, 321, 324, 326,

332, 333

Turbulent velocity field, 33, 65, 233

V

Viscosity effect, 238, 282, 319

Viscous layer, 119

Viscous sublayer, 117, 118

Vortex structure, 6, 122, 139, 185, 191, 192,

251, 297, 303, 306, 308, 327

W

Week turbulence, 229

Well-developed turbulence, 32, 214, 256, 280,

319, 320

Z

Zeldovich fluctuation–dissipation relation, 29

Zeldovich prediction, 282, 308

Zonal flow, 23

Index 351


	Chaotic Flows
	Preface
	Contents
	Part I:  Diffusion and Correlations
	Part II: Lagrangian Description
	Part III: Phenomenological Models
	Part IV: Fractals and Anomalous Transport
	Part V: Structures and Nonlocal Effects
	Part VI: Isotropic Turbulence and Scaling
	Part VII: Convection and Scaling
	Part VIII: Structures and Complex Flow Topology
	References
	Index



