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Foreword

This book gives a complete global geometric description of the motion of the two di-
mensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum
and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in
almost every physics book on classical mechanics. So why is this book necessary? The
answer is that the standard treatments are not complete. For instance in physics books one
cannot see the monodromy in the spherical pendulum from its explicit solution in terms
of elliptic functions nor can one read off from the explicit solution the fact that a tennis
racket makes a near half twist when it is tossed so as to spin nearly about its intermediate
axis. Modern mathematics books on mechanics do not use the symplectic geometric tools
they develop to treat the qualitative features of these problems either. One reason for this
is that their basic tool for removing symmetries of Hamiltonian systems, called regular
reduction, is not general enough to handle removal of the symmetries which occur in the
spherical pendulum or in the Lagrange top. For these symmetries one needs singular re-
duction. Another reason is that the obstructions to making local action angle coordinates
global such as monodromy were not known when these works were written.

The point of view adopted in this book is to start with a somewhat unfamiliar abstract
mathematical model of the physical system such as the study of the geodesic flow of a left
invariant metric on the three dimensional rotation group. Using the symplectic geometric
formulation of Hamiltonian mechanics we then show that the equations of motion agree
with those found by more traditional methods for a well known physical system, namely,
the force free rigid body or Euler top. This justifies our mathematical model. We do not
try to build our model from fundamental physical principles. We have not written a book
on mechanics or Hamiltonian particle dynamics. We only discuss five special integrable
systems, which is a very small sample of the rich variety of general Hamiltonian systems.
Moreover the behavior of the solutions of these integrable systems is much more regular
than the nearly unpredictable motion of a general Hamiltonian system such as the three
body problem.

Our main goal is to understand the global geometric features of our model integrable
systems. The main tool we use is reduction to remove the symmetries and to obtain
a system with one degree of freedom. This allows us to determine the range and the
topology of every fiber of the energy momentum mapping of the system. The topology
of a fiber corresponding to a singular value of the energy momentum mapping is of great
interest. Physically, these motions are simpler than the general motion and therefore are
easier to study experimentally. Mathematically, these fibers contain a relative equilibrium
of the system, that is, a motion which is also an orbit of the symmetry group. For instance,
in the spherical pendulum the relative equilibria are circular orbits on the 2-sphere which
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lie in a plane parallel to and below the equator. Other examples are the regular precession
and sleeping motions of the Lagrange top. Finally, to complete the qualitative picture,
we describe how the fibers of the energy momentum map fit together. Sometimes this
involves showing that the monodromy of certain torus bundles are nontrivial. That this
phenomenon happens in the spherical pendulum and the Lagrange top was not known
until the 1980s.

This book is written from a bottom up approach with examples being given prominence
over theory. The examples are treated in a uniform way. First the mathematical model
is described and then the equations of motion are derived. Next the symmetries and
corresponding integrals are obtained and it is shown that the given problem is Liouville
integrable. Finally, the geometry of the level sets of the energy momentum map, which
gives a complete geometric description of the motion, are obtained by first using reduction
to remove the symmetries and then reconstructing the geometry from the geometry of the
reduced system. This program may seem to be excessively lengthy. There are two reasons
why we have followed it. First, our procedure gives complete answers, whereas short cut
ones do not. Second, in carrying out our program the reader sees enough detail in the text
to be able to understand the arguments without having to look at the theory. The theory
given in chapters VI through XI is what the authors feel is the minimum necessary to
justify all the unproved assertions in the examples.

This book was not written to be read in a sequential fashion. We strongly encourage the
reader to browse.



Introduction

The mathematical pendulum

We begin by looking at the mathematical pendulum.

Figure 0.1. The mathematical pendulum.

Let T*R be the cotangent bundle of R, which we identify with R? and give coordinates
(x,y). The canonical symplectic form @ = dx Ady on T*R is the element of oriented area
on R2. Consider the Hamiltonian system (H,T*R, ®) with Hamiltonian

H:T'R—R:(x,y)— %yz — CoSX.

> The following argument shows that the Hamiltonian vector field Xy on T*R correspond-
ing to the Hamiltonian H is

0 d 0 0
X =X=—+y=— = y=— —sinx—. 1
H(xay) xax+yay yax Slnxay ( )
(0.1) Proof: By definition of Hamiltonian vector field, see appendix A §3,

dH (p)zp = ©(p)(Xu(p),zp) 2

for every z, = (v, w,) in the tangent space T,(T*R) to T*R at p. Let Xu(p) = (X(p),
Y(p)). Now dH(p)z, = %—i]vp + %—‘;{wp. Moreover, ®(p)(Xu(p),zp) is the oriented area
spanned by the parallelogram with sides Xz (p) and z,, that is,

o) Xun(p).zp) =det (7)) =Xy ¥ (2

Therefore (2) is equivalent to

o0H o0H
gvara—yw,,:fY(p)v,,JrX(p)w,, 3)
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for every (vp,wp) € R% In (3) choose (v,,w,) = (1,0). Then X(p) = %—’; =y. Next
choose (v,,w,) = (0,1). Then Y (p) = —%—i’ = —sinx. O

Note that (1) may be written as the second order differential equation
X d (—cosx) sin 4)
X=——(— X) = —SInx.
dx
By Newton’s second law of motion, an integral curve of (1) describes the motion of a

particle of unit mass under a force coming from the potential V : R — R : x — —cosx.

Vv

<

|
A
i
|
|
I
i
-7 /3

X

Figure 0.2. The graph of the potential V (x) = —cos.x.

Thus H is the total energy of the particle, namely the sum of the kinetic and potential
> energy. We now show that H is a Morse function on 7*R.

(0.2) Proof: The point p = (x,y) is a critical point of H if and only if Xz (p) = 0, that is, if and
only if
JH JH
O:a—y:sinx and O:X:y.
Thus {p = (n7,0) € R?|n € Z} is the set of critical points of H. The corresponding
critical value of H is —1 if nis even or 1 if n is odd. Since the Hessian of H at p is

0’H 0%H
x> Jxdy cosnwt 0 (=" 0
2 _ _ _
DH(p) = R2H  9°H _< 0 1>_< 0 1)’

dyox Tyz p

H is a Morse function, because D>H (p) is nondegenerate. ]

NG SN
ENSZAN N

'

1
1
-3 - bid

w
el

Figure 0.3. The level sets of H(x,y) = %yz — COSX.

When n = 2k the Morse index of D*H (nr,0) is zero, and so the critical points (2k7,0)
are relative minima of H; whereas when n = 2k + 1 the Morse index of D*H(nm,0) is
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one, and so the critical points (2k7,0) are saddle points of H, see figure .3. Using the
Morse lemma, see appendix F §1, there is a neighborhood Uy, of (2k7,0) in the open strip
((2k—1)7,(2k + 1)) x R such that for / slightly greater than —1 the level set H~'(h) N
Uy is diffeomorphic to a circle. Since H has no critical values in the interval (—1,1), by
the Morse isotopy lemma, see appendix F §3, we deduce that for every & € (—1,1) the
level set H~! (h) NUj is diffeomorphic to a circle. Thus for 4 € (—1, 1) the whole level set
H~'(h) is diffeomorphic to a countable disjoint union of circles. If & > 1, then H~!(h)
is the union of the graphs of two smooth functions y; = ++/2(h+ cosx). The graphs of
y+ are disjoint if 42 > 1. On the other hand, if 4 = 1, then the graphs of y. = £2cos %x
intersect only at the points ((2k + 1)m,0). There they intersect transversely as can be
seen by applying the Morse lemma at the points ((2k+ 1)7,0). Thus we have obtained a
picture of the level curves of H as given in figure .3.

To simplify the topology of the level sets of H, we make use of the fact that H is invariant
under the translation symmetry

ZxT'R—T*R: (n,(x,y)) — (x+2n7,y). %)

Thus H induces a function H on the space of orbits T*R/2nZ. Concretely, this
orbit space is identified with the cotangent bundle 7*S! of the circle S'. Here S! is

T

X

Figure 0.4. The graph of H(x,y) = 1y* — cosx with (x,y) € T*S".

thought of as the orbit space R/27Z of the real numbers modulo 27. Geometrically, 7*S"
is the cylinder S' x R which is obtained from R? by cutting along the vertical lines x = 0
and x = 27 and then pasting the edges together. Applying this process to figure .3 gives
figure .4 which depicts the level sets of H and hence the orbits of the induced Hamiltonian
vector field Xj;. A short argument using Newton’s second law shows that the second order
differential equation

X = —sinx xmod2m

describes the motion of a particle of mass one on the unit circle under the influence of a
constant vertical downward unit force, see figure .1.

From figure .4 we see that the topological circle, defined by the component of the level
set H~'(h) (h > 1) lying in the upper half cylinder, is very different from the topological
circle defined by the level set H™! (h) (=1 < h < 1). The first circle is not contractible in
TS! to a point whereas the second circle is. Hence it is impossible to continuously deform
the first circle into the second one. This difference in the topological disposition of the
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two circles corresponds to the physical fact that for small energy the particle oscillates
about the bottom of the circle, while for large energy the particle loops over the top of the
circle.

Exercises

1. Let (x,y) be canonical coordinates on 7*R = R? with symplectic form @ = dxAdy.
Suppose that the Hamiltonian H : T*R — R is a sum of kinetic and potential energy,
that is, H(x,y) = $y*+V (x), where V : R — R.

a) Find a potential function V such that the zero level set of H is connected, compact
and has one singular point which is a cusp.

b) Construct a polynomial Hamiltonian on 7*R whose zero level set is an n-leaf
clover.

¢) Show that there is no smooth Hamiltonian which is the sum of kinetic and po-
tential energy which has a 3-leaf clover as a level set.

d) For smooth V with countable many isolated critical points give a topological
characterization of the critical level sets of H.

2. Construct a Hamiltonian function on S? which is a Morse function with two critical
points. Draw its level sets. Construct a vector field on S with only one equilibrium
point and sketch its orbits. Show that this vector field is not Hamiltonian.

3. a) On R? consider the action - of Z? defined by (n,m) - (x,y) = (x4n,y+m). The
orbit space R?/Z? is a two dimensional torus 72, which may be modeled by a
square with the opposite sides identified. The symplectic form Q = dx Ady on R?
induces a symplectic form Q on T2. Show that the vector field X on T2 induced by
the Hamiltonian vector field X = % + 8% on R? is not Hamiltonian on (T2, Q).

b) Sketch the orbits of a Hamiltonian vector field on (72, Q) where the Hamiltonian
is a Morse function with the fewest number of critical points.

¢) Construct a vector field X on 72 with rwo equilibrium points.

d)* Show that a smooth function on 72 must have at least three critical points. Find
a smooth function on 72 with exactly three critical points. Sketch its level sets.

e) Deduce that the vector field X constructed in c) is not Hamiltonian.

4. Let M be a compact connected orientable smooth two dimensional manifold with
volume form Q. In what follows we show that every integral curve of a Hamiltonian
vector field Xy of a one degree of freedom Hamiltonian system (H,M, Q) is either
an equilibrium point, a periodic orbit, or is asymptotic to an equilibrium point as
t — +oo. Form € Mlety: R— M :t — ¢ (m) be the integral curve of X through
m. The w-limit set @(y)of yis the closure of the set 7~ { ¢ (m)|t >T}.

a) Show that () is nonempty.
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b) If ¥ is an equilibrium point or a periodic orbit of Xz, show that @(y) = . Is the
converse true?

¢)* If y is not a periodic orbit of Xy, show that @(7) is a critical point of H, that is,
an equilibrium point of Xy.

4. (Period energy relation for the mathematical pendulum.) When |k| < 1 show that
the period of an integral curve of the mathematical pendulum which starts at (x,0)
where 0 < x; = x4 (h) < @ and h+ cosx; = 0, is given by

Xt

T(h)=2

1
—————dx.
v/2(h+ cosx)
Show that T = 4K (\/(h+1)/2), where K is the complete elliptic integral of the
first kind, see the exercises of chapter 1. Deduce that
a) t(—1)=2m, (1) =ccand 7'(—1) = w/4.
b) 7 is a real analytic function on (—1,1).
¢)* v/ >0on (—1,1). Hint: show that 7 satisfies a differential equation.
5. a) Suppose that a particle moves on the graph of y = f(x) under the influence of
gravity and that the origin is a stable equilibrium point. Determine the shape of

the graph of f so that the period of oscillation of the particle about the origin is a
constant independent of the energy.

b)* Show that a) is equivalent to the fact the derivative of the area enclosed by a
level set of the Hamiltonian of the particle with respect to the Hamiltonian itself is
a constant. Hint: see appendix D §1.

6. (Reduction of discrete symmetry of mathematical pendulum.)

a) (Discrete symmetry.) Show that
ST R = 8" xR (x,y) = (—x,—y). (6)

generates a Z-symmetry of the mathematical pendulum. Show that the fundamen-
tal domain 2 of the Z-action on T*S! generated by { is the piece of the cylinder
in figure .4, which lies in the half space y > 0 with the points (£x,0) on the cir-
cle 92 = T*S' N {y = 0} identified. Deduce that the orbit space P = T*S'/Z, is
homeomorphic to a cone on S' with vertex at the Z,-orbit corresponding to the
point (0,0) € T*S".

b) Show that the algebra of real analytic invariant functions of the abelian group Z,
generated by { is generated by

T| = COSX, Tp = ysinx, 3= %yz —COSX 7)
subject to the relation

C=ig—(m+u)(l-1)=0, |n|<1&n>-1, ®)
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which defines the orbit space P. Draw a picture of the semialgebraic variety P.

¢) (Reduced Poisson bracket.) In order to have dynamics on the Z,-reduced space
P we first need a Poisson bracket {, }g3 on C*(R?). A calculation shows that

aC

2

= -1 = —

{t,n} =1 973
acC

{T27T3} :211(T3+T1)+T12— 1=—
(91’1

aC
{mul=n= ey

Then for every F, G € C*(R?) we have {F,G} =Y, ; g—gg—g{’q,q}. We say that a

function f on P is smooth if there is a smooth function F on R? such that f = F|P.
Let C*(P) be the space of smooth functions on P. Then (P,C*(P)) is a differential
space, which is subcartesian because P is a semialgebraic variety. On C*(P) we
define a Poisson bracket {, }, as follows. Suppose that f,g € C*(P). Then there
are F,G € C*(R?) such that f = F|P and g = G|P. Let {f,g}p = {F,G}ps|P.
Because the defining function C (8) of the orbit space P is a Casimir in the Poisson
algebra o7 = (C*(R?),{, }gs,"), the collection .# of all smooth functions on R,
which vanish identically on P, is a Poisson ideal in </. Consequently, the Poisson
bracket {, }, is well defined. So = (C~(P) =C=(R*/.%),{, }p,") is a Poisson
algebra.

d) (Reduced dynamics.) Consider the derivation —ady on the Poisson algebra 7.
This derivation gives rise to the Z,-reduced Hamiltonian vector field Xy on the
subcartesian differential space (P,C*(P)) associated to the Zy-reduced Hamilto-
nian H : P — R : T+ 73. On R the integral curves of —ady satisfy

t={1,H}p={11,B3}p=—n0
th={n,Hp,={00l,=2u(n+u)+1 -1
T3 = {T],H}P = {Tl,T3}P =0.

The equality 73 = 0 shows that H is an integral of Xp. Check that C (8) is also
an integral of Xg. A calculation shows that —ady leaves C~'(0), {73 4+ 7 = 0},
and {7; = 1} invariant. Thus the reduced space P is invariant under the flow of
—ady. Consequently, the reduced Hamiltonian vector field Xy on P is —ady|P.
Because the Hamiltonian vector field Xj; of the mathematical pendulum is com-
plete, the reduced vector field Xy is complete. Its flow @/ is a 1-parameter group
of diffeomorphisms of P. In fact, for p € H~!(e) the closure of the integral curve
{ofl(p)epP |t € R} is a connected component of the level set H~!(e), since a level
set of the reduced Hamiltonian H is compact.
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Chapter I

The harmonic oscillator

1 Hamilton’s equations and S' symmetry

Physically, the harmonic oscillator in the plane is described by a particle of unit mass
acted upon by two linear springs of unit spring constant: one spring acts in the x;-direction
and the other in the x;-direction. Mathematically, the configuration space of the harmonic
oscillator is Euclidean 2-space. In other words, the space of positions of the particle is R?
with coordinates x = (x1,x2) and Euclidean inner product (, ) where (x,x") = x1x} +xpx}.
The space of all positions and momenta of the particle is the cotangent bundle T*R?
of R%. This phase space has coordinates (x,y) and a canonical symplectic form @ =
dx; Adyy +dx; Adyy. The Hamiltonian function H : T*R? — R of the harmonic oscillator
is the sum of kinetic energy %(y, y) and potential energy %(x,x). Letting z = (x,y) € R%,

H(z) = 3(0,3) + 3 (%) = 3(2,2). M
Here (, ) is the Euclidean inner product on R*, which we have identified with 7*R2.

The motion of the harmonic oscillator is described by Hamilton’s equations

E X\ 0 12 D]H(X,y) _ y

dr\y) \—-hL 0)\DH(x,y))] \—x)"
Here I, is the 2 x 2 identity matrix. Since the Hamiltonian vector field Xy (x,y) = (y, —x)
is linear, the flow of the linear vector field is

o R XR* = R*: (1,2) > (exp 1Xy) 2 = (cost)l,  (sint)l . )
' s pidu)z —(sint)l, (cost)l )™

Given any initial condition z € T*R?, the integral curve of Xy through the point z is  —
@ (z). Thus from a quantitative point of view, we know everything about the vector field
Xp, because we have an explicit formula (2) for every integral curve. On the other hand,

from a qualitative point of view, the explicit formula is very unsatisfactory. For instance,
we do not know if the integral curves lie on a lower dimensional invariant manifold or
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2 Harmonic oscillator

how they fit together. In the rest of this chapter we will describe the global qualitative
features of the invariant manifolds of Xg.

Claim: The h-level set H~'(h) of the Hamiltonian H (1) is an invariant manifold of the
vector field of the harmonic oscillator.

(1.1) Proof: Since
H:LXHH = <x’x>+<y7y> = <y7x>7<xay> = 07

H is constant on the integral curves of Xy, that is, H is an integral (= conserved quantity)
of Xy, see chapter VII §3. In particular the A-level set

H ' (h) = {zeR*| 1 (z,2) = h},

which is diffeomorphic to a 3-sphere S* when & > 0, a point when & = 0, and is empty
when i < 0, is a smooth invariant manifold of Xy . In other words, every integral curve of
Xy with initial condition in H~'(h) lies in H~!(h) for all time. O

The rotational symmetry of the potential energy %(x,x) gives rise to another conserved
quantity, namely, the angular momentum

L:T*R>* > R: (x,y) — x1y2 — X2)1- 3)

To see this, consider the S! = R/27Z-action on R?

coss —sins
w:SlxR2—>R2:(s,x)b—>RXx:<. )
sins  coss

Wy is a counterclockwise rotation through an angle s about the origin. The infinitesimal
generator of the action y is the vector field

X =2

P Vs (x) = (=x2,x1).

s
s=0

y lifts to an S! action ¥ on T*R? defined by
¥:S'xT*R? - T*R?: (5,(x,y)) = (Rex,Ryy).
W preserves the canonical 1-form 6 = y; dx; +y>dx; = (y,dx) on T*R2, since
Y:0 = (Rsy,dRsx) = (Rsy,Rsdx) = (y,dx) = 6.
Therefore W, is a symplectic mapping, that is, ¥; ® = o, since
w=—-do=—d¥o =¥ do =¥ o.

The infinitesimal generator of the action ¥ is the vector field

d
Y()C,y) = & ‘Ps(x>y) = (—X2>xl>—Y27)’1) = (DzL(X,y)y—DlL(X,y))-
s=0
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Thus Y is a Hamiltonian vector field X;, corresponding to the angular momentum L (3).
That the lifted S' action W preserves the canonical 1-form and is the flow of the Hamil-
tonian vector field corresponding to the Hamiltonian L = X__16 is a particular case of a
more general set of results, see chapter VII §3. Since

(¥iH)(x,y) = 5 (Ryy.Rey) + 5 (Ryx, Ryx) = H(x,y),

H is constant on the integral curves of X;. Therefore L is constant on the integral curves
of Xy, that is, L is an integral of Xy, see chapter VI §4. This implies that the ¢-level set
of L,

L7'(0) = {(x,y) € T"R*|x1y2 —xoy1 = £},

is an invariant manifold of Xy. When ¢ # 0 the level set L~!(¢) is diffeomorphic to
S' x R? , while when ¢ = 0 the level set L~!(0) is homeomorphic but not diffeomorphic
to S' x R? as it is a cone on S' x S! together with its vertex at the origin.

2 S!' energy momentum mapping

In order to organize the qualitative information about the harmonic oscillator which can
be obtained from the integrals of energy and angular momentum, define the S! energy
momentum mapping

EM TR =R : (x,y) = (H(x,y),L(x,y)) = (%(y%+y%+x%+x%),x1y2 —x21).

Because H and L are polynomial integrals of Xy, the fiber &.4 ' (h,() is an invariant
manifold of Xy which is a real algebraic variety. Other geometric properties of &.#
correspond to qualitative properties of Xy. To describe such global geometric properties
of &4 , we shall

1. Find the critical points, critical values and range of &.7 .

2. Find the topological type of every fiber of the energy momentum mapping. This
determines the bifurcation set of &4, the set of values (h,¢) where the ropologi-
cal type of the fiber changes.

3. Analyze how the fibers of constant angular momentum foliate a given energy level
set.

We begin by finding the critical points and corresponding critical values of the energy
momentum map. A point z = (x,y) € T*R? is a critical point of &.# if and only if the
derivative of & at z is not surjective, that is,

DEM(2) = (DH(z)> _ (x1 Xy y2> @

DL(z) Y2 —Y1 —X2 X

has rank less than two. There are two cases to be considered.

CASE I: rank D&.#/ (z) = 0. This can only happen if DH(z) = DL(z) = 0. Then z=0is
the critical point and &.7 (0) = (0,0) is the corresponding critical value of &.7 .
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CASE IL. rank D& (z) = 1. This occurs if and only if DH(z) and DL(z) are linearly
dependent and are not both zero. From (4) it follows that DH(z) = 0 if and only if DL(z) =
0. Therefore we may suppose that DH (z) # 0, that is, z # 0. Thus for some ¢ € R

0=DL(z) — uDH (z) = (y2,—y1,—%2,X1) — 1 (x1,%2,Y1,)2).- ®)
If 4 =0, then z = 0, which is a contradiction. Therefore u # 0. Composing the linear

mapping (x1,x2,y1,y2) — 1" (y2, —y1, —x2,x1) with itself gives z = u~2z. Thus u? =1,
since z # 0. Consequently, the solutions of (5) define two punctured 2-planes

H: = {(X],XQ,*XQ,X]) S T*R2|(X1,XZ) S (Rz\{(070)})}

and

T = {(xl,xz,xg,—xl) € T*R2|(x1,x2) IS (Rz\{(0,0)})}.
On IT; the corresponding set of critical values of &.# is the diagonal ray {(h,h) €
R?|h > 0} since 0 < ¢ = L|IT%, = x} +x3 = H|IT. = h; while on IT* the correspond-
ing critical values of &.# is the antidiagonal ray {(h,—h) € R?|h > 0}. Therefore the
critical fiber &.2 ' (h,h), h > 0 is the circle

S\ =H ' (W)NIT, = {(x1,00,—x2,x1) € T'R*|x{ + 25 = h, h >0} (6)
while the critical fiber &.# ' (h,—h), h > 0 is the circle
SLy=H"(h) NI = {(x1,x2,x2,—x1) € T*R*|x] +23 = h, h > 0}. (7)

Note that the image of S| , under the bundle projection 7 : T*R* — R? : (x,y) > x is

the circle x% +x§ = h, which is positively oriented when the sign is + and negatively
otherwise. Another way to interpret the critical circles S;h is to note that solving (5)

subject to the condition that z € H~'(h), h > 0 is equivalent to finding the critical points
> of L on H!(h). Thus L has two critical manifolds S’ , on H~!(h). The manifolds S ,

are nondegenerate of Morse index 2 for Sl+_ , and O for Slf‘h.

(2.1) Proof: To show that S 1+ , is a nondegenerate critical manifold of L|H~!(h) we must verify
that at every p = (x1,x2,—x2,x1) € S, the Hessian of L|H~"(h) when restricted to a 2-
plane NpSl+ , hormal to Sl+.h in 7,H~!(h) has Morse index 2. From the fact that p is a

critical point of L|H~!(h) with Lagrange multiplier u = 1, it follows that the Hessian of
LIH™'(h) at pis Q, which equals

D*(LIH'(h))(p) = (D*L(p) — D*H(p))| T,H " (h) =
ker DH(p)

see chapter XI §2. Since S} , is an orbit of Xy, we see that T,S) , is spanned by the

vector Xy (p) = (—x2,x1,—x1 7 —x2). As ker DH (p) is spanned by the linearly independent
vectors

Xy = (—x2,x1,—x1,—X2), f1 = (X2, =X1,—X1,—=X2), fo = (X1,X2,%2, —X1),
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a normal 2-plane N,,SLh is spanned by the vectors {f1,f2}. A calculation shows that
the matrix of Oy with respect to the basis {f1,f>} is —2. Therefore Q+|NpSl+‘h is
nondegenerate with Morse index 2. A similar calculation shows that at p € Sl,h the
Hessian Q_ = D*(L|H " (h))(p) restricted to N,S! , is equal to 2/,. Thus Q,|NpSlf‘h is
nondegenerate with Morse index 0. g

Consequently, on S | the function L assumes its maximum value /4, while on Sl_h the

+.h
function L assumes its minimum value —h. Therefore, the closed wedge {(h,£) € R? |O <
|¢| < h} is the image of the energy momentum mapping &./7 .

> To find the topology of a fiber of &.# corresponding to a regular value, we simultaneously
diagonalize the quadratic forms defining the energy and angular momentum by a linear
symplectic coordinate change. Consider the linear change of coordinates on R*

@ = (2 QB> (i) =P <f,> ®)

where A =4 <° f]l) and B =14 (' (1)) Since A’A+ B'B = I, and A'B = B'A, the matrix P

1 0
is symplectic and orthogonal, that is, P*@ = @ and (Pz, Pw) = (z,w) for every z,w € R*.
With respect to the (£, 1) coordinates, the Hamiltonian H becomes

H(,n) = (P*H)(&,n) = (HP)(§, 1) = 5(nf +n3 +& +&3).

Because P is symplectic, the Hamiltonian vector field Xj; corresponding to His P~'XyP,

that is, :
a (5) - (—né) '

Moreover the angular momentum L becomes
L=(P'L)(E.m)=3(n; —ni+& &)

Since P is symplectic, Lis an integral of X;. Therefore the fiber of EM = EMP at
(h,£) is the set of (£,1) € R* which satisfy

Si+m3+ &R +E) =h=H(E M) ©
mF-ni+&-&) =L =L(&n).
This implies
ni+& =h—t
(10)

n3+& =h+t.
Therefore when 0 < |¢| < h, that is, when (h,/) is a regular value of EM , each of the
equations in (10) defines a circle. Hence (5‘77!71(&6) is a 2-torus Thzé Since P is a
diffeomorphism, we find that &.# ' (h,¢) is a 2-torus when (h, /) is a regular value. (]
We now describe geometrically how the orbits of Xgﬁhz[ foliate the 2-torus Thzf Observe

> that the flow (p,ﬁ of X5 defines a free proper action of § ' = R/27Z on the 2-torus T"hz[
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(2.2) Proof: Since S' is compact, we need only show that at every point p € fhz( the isotropy
group {t € S'| ¢/ (p) = p} is the identity element of S'. For (§,1) #0andz € R

EN  H(&\ [ (cost), (sint)h\ (&

n) ¢ n)  \—(sint), (cost)l,) \n
implies that t = 2n7 for every n € Z. These values of ¢ correspond to the identity element
in S! under the orbit mapping R — R/27Z. (]

This implies the orbit space i?,/ /S! is a smooth one dimensional manifold, see chapter
VII ((2.9)).

Claim: The orbit space T,ﬁ /S is diffeomorphic to S'.

(2.3) Proof: Since the S'-action defined by the flow of Xj; is free and proper, we know from
results proved in chapter VII ((2.12)) that fhzé is the total space of a smooth principal
bundle with base a smooth one dimensional manifold with no boundary. Because the
bundle projection map p is smooth, compactness and connectedness of 7}12[ implies that
the base is a compact connected one dimensional smooth manifold with no boundary.
This implies that the base is a circle C. 0

> We now show that a fiber ' = p~!( p) where p € C of the principal bundle p is a global
cross section for the flow of X on Thzj. Suppose that (§,1) € €. After time 27 the

integral curve of Xj; through (&,7) intersects ¢ for the first positive time at (pfn(é .M),
which is in fact (§,1). O

Since the image under the bundle projection p of the integral curve through (&,m) of
Xp;_; parameterizes C and crosses p for the first positive time at 27, we find that

olL(Em) = ol (&),

In other words, the integral curve of Xj through a point on 4 winds once around C
as its projection winds once around the circle {(0,&,vh—£,1,) € Thz/ |E3+m3 =h+
£}. Therefore the rotation number of the flow of Xz on Thzf is 1. Applying the linear
symplectic coordinate change P! with P given by (8), we find that P~!% is a global

cross section for the flow of Xy on Thzﬁ and that every integral curve of Xp | Th% , has rotation
number 1. ' '

The information we have obtained so far about the level sets of the energy momentum
mapping of the harmonic oscillator is summarized in the bifurcation diagram figure 2.1.
The set of regular values of &.# is the open wedge 7 in the (h,¢) plane defined by
0 < |¢| < h, since the critical values of &.# are the two rays {(h,+£h) € R-o X R|h > 0}.
Because 7 is simply connected, the energy momentum mapping &.# defines a trivial
smooth fibration over .7 with fiber T2, that is, &.#~'(.7) is diffeomorphic to 7 x T2,
see chapter VIII §2.

To complete the qualitative analysis of the energy momentum mapping we need only
understand how an energy surface H~!(h), h > 0, which is diffeomorphic to the 3-sphere
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3, is built up from the fibers of the energy momentum mapping &.# ' (h,¢) as ¢ varies
over [—h,h]. Recall that &.# ~'(h,?) is a circle when |¢| = h and is a 2-torus T2 when
|¢] < h. This problem will be solved in the next two sections by showing the the S'
momentum mapping &.# has an extension to a U(2)-momentum mapping whose restric-
tion to H~!(h) is the Hopf fibration.

st

%

pt o0~ T2

Figure 2.1. The bifurcation diagram. The image of &.# is shaded.
The topological type of its fibers or union of fibers is as indicated.

3 U(2)-momentum mapping

As with the construction of the S! energy momentum mapping, we begin our construc-
tion of the U(2)-momentum mapping by looking for additional integrals of the harmonic
oscillator.

We start by looking for quadratic ones. Suppose that F' is a homogeneous real quadratic
function on R*. Then F is an integral of Xy if and only if 0 = Ly, F = {F,H}, where
{,} is the standard Poisson bracket on C*(R*), see chapter VI §4. From [Xp,Xp] =
—X{Fny» it follows that [XFr,Xu] = 0. Conversely, if Xz, Xgy] = 0, then X(rny = 0. Thus
the function {F,H} = (%’ %—?) - (‘;—f, %—I;) is constant. But F is a homogeneous real

quadratic function on R*. Hence %—f = ‘3—5 = 0 at the origin. Therefore {F,H} = 0, that

is, F is an integral of Xy . This proves

Claim: The homogeneous real quadratic function F : R* — R is an integral of the har-
monic oscillator vector field Xy if and only if [Xp,Xy] = 0.
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Since F' is a homogeneous quadratic function, the Hamiltonian vector field X is linear.
Thus F is a homogeneous quadratic integral of Xy if and only if the matrices Xr and Xy
commute. Now every homogeneous real quadratic function F on R* is given by a 4 x 4

— t . .
symmetric matrix, which can be written as AB f(‘: , where A is a 2 x 2 real matrix and

B and C are 2 x 2 real symmetric matrices. Therefore the Hamiltonian vector field Xr
corresponding to F has integral curves which satisfy

dx JoF

— = — = Ax+C
dr dy rhey
dy JoF

—~ =— ——— =B At
dr ox A

2 f/;,), where B=B' and C =",

that is, X € sp(4,R), see chapter VII §5.1 example 2. The infinitesimally symplectic ma-

0 B3 A calculation
-L 0

>,WhereA: —A"and B=1FH'.

So XF is the 4 x 4 infinitesimally symplectic matrix (

trix corresponding to the harmonic oscillator vector field Xy is <

shows that Xr and X commute if and only if Xp = (2 _AB

Claim: The set of all 4 x 4 infinitesimally symplectic matrices which commute with the
infinitesimally symplectic matrix Xp corresponding to the harmonic oscillator vector field
is isomorphic to the Lie algebra u(2) of the Lie group U(2) of 2 x 2 unitary matrices.

(3.1) Proof: Define a mapping

B :u(2) = sp(4,R) 1 A+iB (’; ‘AB>.

Since A +iB € u(2), it follows that A’ —iB" = (A +iB)' = —(A+iB). Hence A = —A’ and
B = B’, which implies that </ € sp(4,R). Thus the image of the mapping ¥ is contained
in sp(4,R). Clearly ¥ is bijective on its image and linear. O

From now on we will consider u(2) to be a subspace of sp(4,R). Let

0 0o 0 1 o -1 0 0 o 0 1 0 0 0 10
. _|o 0 10 | 0o 0 0 o 0o 0o -1 - _|o 0o 0 1
Ei=1|o 10 o] 270 0 o 1] BTl o o 0| Ba=] 0 0o ol
-1 0o 0 o 0o 0 1 0 0 10 0 0o -1 0 0

Then {E},E,,E3, E4} form a basis for u(2). The quadratic Hamiltonian function corre-
sponding to the linear Hamiltonian vector field E; is W;(z) = %a)(Eiz,z). Here z = (x,y)
and the matrix of the canonical symplectic form @ on R* is —E4. This establishes the

Claim: The functions

Wi(x,y) =x1x2 +y1y2
Wa(x,y) = x1y2 —x2y1 = L(x,y)
2 2 2 2 (11)
W;(x,y) = (y, +x7— _xz)
Wi(x,y) = 53 +x1 +y3+x3) = H(x,y)

are a basis for the vector space of all the quadratic integrals of the harmonic oscillator
vector field.
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From the claim we see that the functions W, W,, Wz, W, are integrals of the harmonic
oscillator vector field. Moreover, these integrals satisfy the relation
WP+ WE =W3W, (12)
with B B
Wiy =Wy —Ws =y +x3>0and Wy =Wy + W3 =3 +x3 >0.

We now give a geometric interpretation of these integrals. Let y: R —R? : 7+ (x1(2),x2(1))
be the projection onto configuration space of an integral curve of Xy of energy & > 0 start-
ing at (x°,3°). From (2) we see that () passes through x° at time # = 0 and is given by

(x1(),x2(2)) = (xYcost +y{sinz, x5 cost +y9sint). (13)

Since the integral curves of Xy of positive energy are closed, it follows that ¥ is a planar
> closed curve, called a Lissajous figure, which we now show is an ellipse.

X2

Figure 3.1. A Lissajous curve.

(3.2) Proof: First we note that the initial condition (x°,y") determines the values of the inte-
grals, namely,

Wi (x0,y°) = w1, Wa(x,30) = i, W3(x0,)°) = w3, Wa(x",3°) = by
Therefore using the definition of Ws and W, we get
~ ~ 2 ~ 2
(W3 —x1()?) (Wa —x2(1)%) = (1 (1)y2(1)) " = (W1 —x1 (1)x2 (1)),
which upon simplification is
W4X1 (t)2 — 2\/72)61 (t)xz(t) + W3X2(t)2 = W3W4 — le = W% (14)
Since w3 +wyq = h > 0 and w3wyg — W% = W% > 0, if wy > 0 then the quadratic form
Q(xl,xz) :W4x%—2v72x1x2+ﬁ3x% :sz (15)
is positive definite and hence the curve (13) is an ellipse &.

We now describe the geometry of the ellipse & more precisely. In complex coordinates
{ = x| + ixy the quadratic form Q = sz becomes

4.2(8,8) = (g — Wy +241) 2+ 2(g +3) LT+ (g — 3 — 201)C = 42, (16)
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Apply the rotation { = ze™. Then (16) becomes

(Wg — w3 +2iw) e 2i0 2+2(W4+W3)ZZ+(W4—W3 2iwy)e —2i0 22 4W27 (17)

which is diagonal if the angle ¥ is chosen so that (wsg — w3 + 2iw; )ez"é‘

positive. So set

is real and, say,

2w
29 = —tan~ ! 2! (18)
W47W3

Then the symmetry axis of & lies along the line in R?, which passes through the origin
and subtends an angle 20 with the positive x;-axis. After performing the rotation e'?,
where ¥ satisfies (18), equation (17) becomes

A7 +2BZ+ A7 —4w2, (19)

where A = |y — w3 +2iw1| > 0 and B = Wy +w3 > 0. Inreal coordinates (3})=(5n0 i) (3

equation (19) becomes
2(A+B)E7 +2(B—A)E3 = 4w, (20)
Since
B2 — A% = (W3 +wy)? — (g —w3)? —4wi = 4(wgw3 —w?) = 4w > 0,

it follows that B—A > 0. Thus (20) is an equation for the ellipse &, which in standard

form is (51 ) (%2)2 =1, where a = \/@ is the major semi-axis a and b = % is its

minor semi-axis. Consequently, the eccentricity e of & is

b? B—A 24
e=/1-= = /1-—2 =,/ -2
a A+B VA+B

Now suppose that w, = 0. Then the quadratic form Q (15) factors into the product of the
linear factors wax; — wixp and —wjx; + w3xp. Hence Q = 0 defines two lines given by

Wwax; —wixa =0 or —wix;+w3xp =0. 21

Because x” lies on 7, it satisfies exactly one of the equations in (21). Since the energy is
fixed, we have
XT+x5 <xT+yi+x5+y3 =2h. (22)

Therefore 7 is a line segment, which lies inside the disc in configuration space defined by
equation (22). O

We now return to the problem of finding an extension of the S'-momentum map of sec-
tion 2. Following the construction of the S'-momentum mapping, we look for a group
acting on 7*R? which properly contains S' and has Hamiltonian vector fields for its in-
finitesimal generators. In contrast to the S I case, the action on 7*R? we find will not be
a lift of an action on the configuration space R2. This is reflected in the observation that
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some of the new integrals are not linear in the momenta, see chapter VII §5. Consider the
linear action of the unitary group

UQ2) = {U: (Z _b> € Gl (R)

a

da+bb=0L&db="ba
a,b € gl, (R)

on R* = T*R? defined by ¥ : U(2) x R* = R*: (U, (x,y)) = U (i) Since
a =b\'[(0 L\fa —b\_ (0 L
b a L 0)\» a)  \-b o)

Yy is a linear symplectic map, that is, ¥, @ = @. For u :(2 ;B) €u(2), the infinitesimal
generator Y* corresponding to u is the vector field

Yi(xy) = —

d X A —B X
(1) = (W) 6)

ds

with flow y : R* — R*: § — exptu (j) Since the matrix Y" is infinitesimally sym-
plectic, the vector field Y'“ is linear Hamiltonian with Hamiltonian function

JURY SR (xy) = %w(u(x,y)’,(x,y)'). (23)
For fixed (x,y) € R?, the function u + J*(x,y) is linear. Therefore by duality it makes
sense to define the mapping J : T*R? — u(2)* by setting J(x,y)u = J*(x, ).

> An important property of J is that it intertwines the linear action of U(2) on R* with the
coadjoint action of U(2) on u(2)*, the dual of the Lie algebra u(2).

(3.3) Proof: This is a consequence of the calculation

J(U () )u=J"(U(x,y)") = 30(uU(x,y)",U(x,y))

=1o(U'uU(x,y), (x,y)"), since U is symplectic

= J(x,y) (Uﬁ1 ulU) = J(x,y)(Ady -1 u)

= (Ad), 1 J(x,y)) u. O
Therefore J is the U(2)-momentum mapping corresponding to the linear action P, see
chapter VII §5. If we identify u(2)"* with u(2) using the Killing metric k defined by
k(u,v) = %truV’, then the momentum mapping intertwines the linear action of U(2) on
R* with the adjoint action of U(2) on its Lie algebra u(2). Identifying u(2) with R* by
choosing the basis {E;}, the U(2)-momentum mapping J becomes the mapping

J:R* S R*: (x,y) — (W1 (x,y),Wz(x,y),W3(x,y),W4(x,y)).

> Thus the components of the U(2)-momentum mapping J are quadratic integrals of the
harmonic oscillator.

(3.4) Proof: This is just the content of the equations W;(z) = %o)(E,-z, z) fori=1,....4. An
alternative argument starts by observing that every element U € U(2) when written as
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—b
( Z a > is also an element of SO (4), the group of all orientation preserving linear

isometries of (R*,(,)). Consequently, ¥y preserves H and so 0 = LynH = —Lx,,J".
O

Now consider the 2-torus

ac —ad —bc bd

ad ac —bd —bc a*+bhr =1

bc —bd ac —ad U A+d =1 (’
bd bc ad ac

T2 =

which is an abelian subgroup of U(2). Restricting the U(2) action on R* to a T'-action
gives rise to a momentum mapping j : T*R? — (¢2)* = R? where (¢)* is the dual of the
Lie algebra r* of T2 and j(x,y) = (Wa(x,y),Wi(x,y)). In other words, j is the S! energy
momentum map &.7 studied in section 2. Therefore the U(2)-momentum mapping J is
a proper extension of &4 .

4 The Hopf fibration

In this section we study the qualitative properties of the Hopf mapping

HR* SR (x,y) — (wl (x7y),wz(x,y),W3(x,y)7W4(x7y)), (24)
where
wi =W =xix+yiy wy  =Wo =x1y2 —xoy
ws =Ws =301+ -y3—x)  wa =Wi=307+ )7 +0).

The Hopf variables w;, i = 1,... 4 satisty the relation
C(W17W27W3,W4):W%-i-W%-‘rW%—WZ:O, wy > 0. (25)

Therefore the image of the Hopf map is contained in the semialgebraic variety ¢ defined
> by (25). Topologically  is a cone on S with vertex at 0. To show that % is the image of

the Hopf map, it suffices to verify that D7 (x,y) : T(,CMR4 = Typ(xy) € 1s surjective for

all (x,y) # (0,0), since 7(0) = 0 and € \ {0} is a smooth three dimensional manifold.

(4.1) Proof: When (x,y) # (0,0) the derivative

Xooxo» i

[ 2 »m —x x

DA (x,y) = Xy Xy -y
XXy »2

has rank > 3 because its first three rows are nonzero and pairwise orthogonal. It has rank
< 3, since

imDA(x,y) C Typ(xy)C = kerDC(H(x,y)) = ker (wi, w2, w3, w4)

and (w1, wp, w3, wy4) is nonzero. O
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Restricting the Hopf mapping .7# to the 3-sphere
H 'Y(h) = S?/ﬂ ={(x,y) eR* |y%+y%+x%+x% =2h, h >0}
and using (25) gives the mapping

F S?/ﬁ - R4 — S]% - R3 : (X7y) = (Wl (x,y),wz(x,y)7W3(x,y)). (26)
Here S7 is the 2-sphere {w € R®|w? +w3 +w3 = h*}. The map . is called the Hopf
fibration. From a topological point of view the Hopf fibration is quite nontrivial and will
require quite a bit of work to be understood.

Claim: The Hopf fibration .% has the following properties:

I. 7 is aproper submersion.
1. For every w € S7 the fiber Z~!(w) is a great circle on S%/ﬁ contained in the
2-plane IT", see (27).
III. For every w,w’ € S? with w # w’, the circles .# ~!(w) and .% ~!(w') are linked in
S%/ﬁ with linking number 1, see (29).

Figure 4.1. Visualization of the Hopf fibration.
(4.2) Proof: 1. Consider the mapping
F:R* =5 R3: (x,y) = (wi,wo,w3) = (X122 +y1y2, X192 — %231, 3 07 +23 =3 —3)).
Clearly F is smooth and has derivative
X2 X1 y2 Y1
DF(x,y)={ » -»n -xn x |.
X1 —X2 Y1 -2

Since .F = F‘S?/Th’ the Hopf fibration .% is smooth. When (x,y) # (0,0) the rows of

DF (x,y) are nonzero and pairwise orthogonal. Hence D.7 (x,y) = DF (x, y)|T(w>Sf/ﬂ is

a surjective linear map from T(x,y)S%/ﬂ t0 Tz (1., S7 for every (x,y) € Sf/ﬂ. Thus .Z is a
submersion. Moreover, .7 is a proper map, because its domain is compact.
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II. The following argument shows that every fiber of .% is a great circle on S
be the 2-plane in R* defined by

3 w
NeTR Let IT

b9 ();) = (7W17/’l+W3,W270)<§> =0

2 (?) = Con 0w b)) 0. -

when w € 57\ {(0,0, )}, and the 2-plane {(0,x2,0,y,) € R* | (x2,y2) € R?}, when w =
(0,0, —h). To see that equation (27) defines a 2-plane we argue as follows. We know that
the covectors 7y and 7, are linearly dependent if and only if O = 7; A 7y, that is, when all

the 2 x 2 minors of
w1 h4+w3 wp 0
—wy W 0 h+tws

vanish. In other words, w; = w, = 0 and w3 = —h. But this is excluded by hypothesis.
Therefore (27) defines a 2-plane, when w € S7\ {(0,0,—h)}.

We now show that .# ~!(w) C IT" “SSM' Suppose that w € 7\ {(0,0,—%)}. Then for
every (x,y) € F!(w) C SSJ@’ we have x3 +y? > 0. To see this note that (x,y) € 7! (w)
if and only if (26) holds. Now x? +y? = w3 +wq. But (x,y) € Sf/ﬂ, s0 w4 = h. Therefore

x? 4y = w3 +h. By hypothesis w3 € (—h,h] so x3 +y? > 0. Now write the defining

equations of w1 and wy as
< X1 )’1> (xz) <w1> ) (28)
Y1 X Y2 wp

Since the determinant x} 47 > 0 we may invert (|, !) to obtain

G (o) =t (32) = e ().

which is (27). Thus . ~!(w) C IT". Hence . !(w) C II* ﬂSf/ﬂ. Now suppose that
w = (0,0, —h). Then the defining equations for w3 and w4 become

Vi+x—x3-y; = —2h
Vitxi+x5+y; = 2h,

since (x,y) € Sf/ﬂ. Adding these equations together and dividing by 2 gives y? +x7 = 0,
that is, x; = y; = 0. Hence .Z (0,0, —h) C I1(0.0.-%) ﬂSf/ﬂ. Therefore for each w € S7
the fiber .# ~!(w) is contained in IT" ﬂSf/ﬂ. Because . is a submersion, .# ~!(w) is a
smooth compact one dimensional submanifold of §

is the great circle IT" NS

?/ﬂ without boundary. Hence .7 ~! (w)

3
eI
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> o

Figure 4.2. Linking number. In the figure on the left the curves have linking
number 0, yet can not be pulled apart without being cut. In the figure on the right
the curves have linking number +1.

Before proving property III we must define the notion of linking number of two smooth
oriented disjoint circles y; and y; in an oriented 3-sphere S3. Intuitively, the circles y; are
linked if they cannot be pulled apart without being cut, see figure 4.2. A more precise
definition goes as follows. For simplicity we will assume that ¥; bounds a smooth ori-
ented closed 2-disk 5% in $3. Since $3 is simply connected, the circle y; is null homotopic
and hence is smoothly contractible to a point p € S3. In other words, there is a diffeo-
morphism F : D; C R? — $3 C R*, called a contraction, such that F(0) = p and such
that for every r € (0, 1] the map F restricted to the boundary 85% of the closed 2-disk
D = {x € R?| (x,x) < 2} is a diffeomorphism onto y;. Orient the 2-disk D, so that
F| 85% is orientation preserving. Furthermore assume that F is transverse to ¥, in S3,
that is, either y, N F(D?) = & or for every x in D? such that F(x) € y» N F(D?) we have
T.F (Y}D%) + Ty = T.S3. The linking number of the circles y; and 7, is the intersection
number of F (D%) with ¥, that is,

Link (y1,72) = Y #(T.F (D7), T72) (29)
x€T

where 7 = {x € DﬂF(x) € 1,NF(D?})} and

1, if the orientation of T,F (T,D?) ® Ty 7>
#(T.F (T.D7), Txy) = is the same as 75>
—1, otherwise.

Note that the sum in (29) is finite, since F' is transverse to ». An argument, which is left
as an exercise, shows that the definition of linking number does not depend on the choice

of oriented 2-disk 5% with boundary 7.

III. With these preliminaries out of the way we are in a position to prove property III
of the Hopf fibration %, namely, that two distinct fibers of % have linking number 1.
Suppose that w,v € S7 and w # v. Then .% ~!(w) N.# ~!(v) = @. Thus the corresponding
2-planes IT" and IT" intersect only at 0, see the proof of property II for the definition of
IT". Let IT be a 3-plane in R* containing IT*. Then IT" is not contained in 1. Moreover
II"NII = ¢" is a line in R*. Let 2 =IINS> be the great 2-sphere in S° cut out by IT
and let SVIV =I1"NS? be the great circle on S cut out by IT". Furthermore let H* be the
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closed upper hemisphere of S? with boundary S&V. Then H is diffeomorphic to a closed
2-disk D with boundary S!. To see this just project points of H* onto the equatorial
plane containing S!. Since IT" is not contained in IT, the great circle S} = IT" N S? is
not contained in $2. Because the line ¢* intersects the great 2-sphere S? in two antipodal
points py and p_, the circle Sé intersects S? at p, and p_. Since IT" NIT" = {0}, the
points py and p_ do not lie on the equator S}, of S?. Hence exactly one of the points
p+, say p., lies in the interior of the hemisphere H". Therefore the linking number of
the two circles .Z ! (w) and .Z~!(v) in § is £ 1, since we have not been careful about
orientations. If we choose orientations properly we can arrange that the linking number
is 1. This completes the proof of the properties of the Hopf fibration. (]

We now draw some conclusions about the Hopf fibration from the properties we have just
proved. From property I we know that .% is a proper submersion. Therefore the Hopf
mapping % : Sf/ﬁ — 87 : (x,y) = w defines a locally trivial bundle with fiber S', see
chapter VIII §2. To find the local trivializations of the bundle .# explicitly we use the
identities

(wax1 +wiyr) (30)

1 1
WX —w and =
3( 1X] —w2yr) =

T htws

which hold for (xy,x2,y1,y2) € Z ! (w) when w € (52\ {(0,0,—%)}) = Uy, and the iden-
tities

1

a h— w3
which hold when w € (57 \ {(0,0,/)}) = U,. Note that {U;,U,} form an open covering
of $2. Let S' = {(x,y) € R? |x2 +y? = 1}. Consider the mappings

x| (wix2 +way2) and y; = (—wax2 +wiy2), (€20

h—W3

71 :Up x S'— F71(U)) : (wi,wa,w3,x,y) —

32
(xvh+W3,\/ﬁ(ww—wz}’)y)’\/h+w 7\/ﬁ(W2X+w1y)) G2
and
T Us X Sl — yil(UZ) : (W],WZ,W:;,)C,)/) —
(33)

1 | — 1
(7M(W]X+W2));x\/h w3, \/m

Using the definition of the Hopf fibration .%, it is easy to check that .%oty = m; and
F oty = My, where m; : Uy x S' — U; and m, : Uy x S' — U, are the projections onto the
first factor. A short calculation shows that

(—wax+w y),y\/hfvvg)

o ZNU) = Up x ST (xg,x0,91,02) = (Wi, wa, w3,x,y) =

= (mery]ya‘,xw‘Q7xzy17%(yf+x%*x%*ﬁ>a \/}’XLTB, \/}:iim)
since x? +y? = h+ws in .Z ! (U;), and also that

ot TN U) = Up x ST (x1,20,31,02) = (Wi, w2, w3,x,y) =

:(x1x2+y1y2,x1y27xzy1,%(}*12+x127x227y22),\/%7\/2'37),
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since x22 4 y2> = h— w3 in .F 1 (U2). Thus T ! and T, ! are continuous. Consequently
> the mappings 7; and T, are local trivializations of the bundle .%. The Hopf fibration
is not trivial, that is, the bundle .% : S3m — S7 is not isomorphic to the trivial bundle

S2 xSt — 52,

(4.3) Proof: This follows from the fact that the linking number is a topological invariant and
two distinct fibers of the Hopf fibration are linked with linking number one, whereas the
fibers of the trivial bundle are unlinked. Another argument uses the observation that the
total space Sf/ﬁ of the Hopf fibration is not diffeomorphic to the total space Sﬁ x ST of

the trivial bundle, because the first homology group of Sf/ﬂ vanishes, whereas the first
homology group of S,% x 8! is Z. For yet another argument see chapter VIII §1. 0

Claim: The Hopf bundle .% : Sf/ﬂ — S% is an S principal bundle.
(4.4) Proof: We prove this assertion in several steps.

> First we show that the S' bundle 7, : H~!(h) — M;, = H~'(h)/S', where 7, maps each
orbit of energy % of the harmonic oscillator vector field X to a point, is an S! principal
bundle.

(4.5) Proof: H~'(h) is invariant under the flow ¢ of Xy. Since @i =idg | the flow ¢f

3
V2h
defines an action of S' = R/2nZ on H~ ! (h) = Sf/ﬁ given by

cost) I sint) I X
s! S?/Th - Sf/ﬂ : (Z’ (x,y)) = (ptH(x,y) - (—((smtt))jz ((costt))lzz) (y) ’

Because every orbit of this action has minimal period 27, the isotropy group of every
point on S is the identity element of S! = R/27Z. Therefore the S'-action is free. It is
also proper, since S' is compact. Thus the bundle 7, is a principal S! bundle, see chapter
VII ((2.12)). O

> Next we show that the orbit space M), is diffeomorphic to a 2-sphere .

(4.6) Proof: Because the S'-action defined by the flow of the harmonic oscillator is free and
proper, the orbit space Mj, is smooth, see chapter VII §2.2. We now use Morse theory to
determine the topology of M;. Consider the smooth function LIH~! (k) : H~'(h) — R,
which is the restriction of the angular momentum L (3) to the energy level set H~!(h).
Because L|H ! (h) is invariant under the flow of Xy, it induces a smooth function L :
My, — R on M. Since the set of critical points of L|H~!(h) consists of two disjoint
circles, which are nondegenerate critical submanifolds of H~!(h) of Morse index 0 and
2, see ((2.1)), the function Zh is a Morse function on M) with two nondegenerate critical
points, one of Morse index 0 and the other of Morse index 2. Thus M), is homeomorphic
to a 2-sphere, see chapter XI ((3.2)). Because M, is smooth, it is diffeomorphic to a 2-
sphere. O
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Figure 4.3. Poincaré disks used to construct the orbit space
(left). The orbit space H~!/S! = 52 (right).

To visualize the orbit space M}, consider figure 4.3. Here the 3-sphere S — is to be thought

i
of as the one point compactification of R?, the point at infinity having been added. Thus
the z-axis is actually a circle. Every S! fiber of the Hopf fibration passes transversely
through one of the two closed 2-disks D4 or Dg, which have bounding circles A or B,
respectively. Corresponding to each point on A there is a unique point ¥(p) on B. Gluing
the disk Dy to the disk Dp along their boundary by the diffeomorphism ¥ gives a 2-sphere
S§2, which is the orbit space M;,.

> The bundle 7, : H~'(h) — Mj, is isomorphic to the Hopf bundle .% : S?/Th — S

(4.7) Proof: This result follows because the map ¢ making diagram 4.1 commutative is a
diffeomorphism. In more detail, the map ¢ is well defined because each fiber of % is a
single orbit of Xy. Since each fiber of 7, is also a single orbit of Xy, the mapping ¢ is
injective. Clearly, @ is surjective. Its inverse is continuous since S%l is a compact Hausdorff
space. Hence ¢ is a homeomorphism. Because the bundle .# is locally trivial, it has a
smooth local section. Hence ¢ is smooth. Its inverse is also smooth because the bundle

7y, is locally trivial and hence has a smooth local section. This completes the argument

Ttp

S M,

3
V2h
F

Si
Diagram 4.1
that the bundle 7, : H~'(h) — S2 is an S'-principal bundle. O

The preceding result allows us to draw the following conclusions



L4 Hopf fibration 19

> There is no global cross section for the flow of the harmonic oscillator vector field Xy on
the energy level set H~! (h).

(4.8) Proof: To see this we argue as follows. Suppose that the 2-disk D C Sf/ﬂ is a global

cross section. Since every orbit of Xy on S?/Th is a circle, it would follow that Si/ﬂ

is homeomorphic to D? x S'. Therefore two distinct orbits of Xz on H~! (k) would be
unlinked in Saﬂ. But these orbits are two distinct fibers of the Hopf fibration, which are

. . 3 . . . . 3 . . 2 l
linked in § e This is a contradiction. Therefore § 18 not homeomorphic to D x S

as asserted. This proves the result. ]
> The orbit space M;, = H~'(h)/S" is not a submanifold of H~'(h).
(4.9) Proof: See the preceeding argument. O

To determine which principal bundle the Hopf fibration .% is, we calculate its classifying
map. From the definition of the local trivializations 7; (32) and (33) we find that the
transition map between chart overlaps is given by

1:2_1011 (U NUy) x ST — (U NU) x S' ((W7 (j))) = (W7812(W) (i))

where

. _¢l. 1 wi —w2
g12.U1QU2%SO(2,R)—S .(W17W2,W3)0—>\/m<wz Wi )

Let S; = {(w1,w2,0) € S2 |w? +w3 = h®} C U; N U, be the equator of the 2-sphere S5.
By definition, the classifying map of the bundle .7 is

1w —wn
X =2812|Sk : SL — SO(2,R) : (wi,wy) — Y (W; " ) ) (34)

Clearly the mapping x has degree 1.

We now give a way to visualize geometrically the fibration of H~'(h) by level sets of the
angular momentum L. In figure 4.4 the union of the X orbits through Dy is the closed
solid torus STg = Dp x S' with boundary 7% and the union of the Xy orbits through Dy is
the closed solid torus STy = D4 x S' with boundary 72.

A/

Figure 4.4. The gluing map.

To understand how the 3-sphere S?/E is the union the two solid tori STy and STp we
need to know the map v : T? — T2 which glues the solid torus STg to the solid torus
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ST} along their common boundary 72. Using the local trivializations 7; it follows that
ST =11 ((SzN{w3 >0}) x S'), STy = 71 ((S;N{w3 < 0}) x '), and T? = 7, (S, x ') =
(S }5 x S1). Therefore, in the charts provided by the local trivializations, the gluing map
y is the graph of the transition map 7, lo1) restricted to § }E x S1, that is,

l,l/:Sé ><S1 —)S}E ><Sl : (W17W27 (;) ) — (Wl.,Wz,X(Wl.,Wg) (ﬁ) )

To visualize the gluing map y, we identify the 2-torus 7' with the lattice Z> C R?. Taking

the S! orbits of Xy as vertical and the circles A and B as horizontal, the image of A under

the mapping v is the line A" : {(x, —x) € R?|x € R}, see figure 4.4. If we identify the

2-torus T2 with R%/Z?, we see from figure 4.4 that the gluing map v is just the map on
1

T2 induced by the linear map ¥ of R? into itself with matrix ( Doy ) The map v is well
defined because y(Z?) = Z2.

The above treatment of the Hopf fibration gives a description of the fibers of the Hopf
mapping 7 (24) over the wy = h > 0 section of its image cone & (25). To complete the
description of the geometry of the Hopf mapping, we look at the fibers of .7 over other
slices of €. The results are given in table 4.1, which we leave as an exercise to verify.

Section of €  Topology of section Topology of fiber

Lws=k>0 52 53
2.w3=k#0 R? S' x R?
3wy =k#0 R? St x R?
4w =k#0 R? S x R?
5.w3=0 cone on S' cone on T2
6.wr =0 cone on S' cone on T2
7.w =0 cone on S' cone on T2

Table 4.1. The fibers of the Hopf map.
5 Invariant theory and reduction

In this section we examine the geometry of the space of orbits of energy h of the har-
monic oscillator. We will show that this space is a symplectic manifold. This fact can be
exploited in several ways. One way is to gain some insight into the geometry of the folia-
tion of the energy surface H~'(h) by integral curves of Xz and to see how the symplectic
structure of this foliation depends on the energy. Suppose that we have a Hamiltonian
system with an integral, which is the Hamiltonian of the harmonic oscillator. Using this
independent first integral, we reduce the original Hamiltonian vector field to a Hamil-
tonian vector field on the orbit space H~!(h)/S", which is two dimensions less than the
original phase space. We will show how to carry out this reduction process using invariant
theory. This procedure has two advantages. First, it allows us to show that any smooth
Hamiltonian, which is invariant under the flow of the harmonic oscillator vector field and
hence has the harmonic oscillator Hamiltonian as an integral, is a smooth function of four
quadratic polynomials. Second, using these polynomials, we can explicitly construct the
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reduced space H~'(h)/S' together with an embedding of it in Euclidean space. As a
consequence, we obtain the associated Poisson (and symplectic) structure of the reduced
space and the reduced vector field, which gives the reduced dynamics. These algebraic
techniques will be used repeatedly in succeeding chapters of this book because they give
a geometrically faithful model of the reduced space, even when it is not a smooth man-
ifold. We may summarize the contents of this section as follows. Let .%# be a function
which is invariant under the flow of the harmonic oscillator vector field Xy. We reduce
the Hamiltonian system (.#,R*, @) to a Hamiltonian system (Kh,S,%, @) on a 2-sphere
Si which is the space formed by collapsing each orbit of Xy of energy 4 to a point.

We begin by proving

Claim: The Hamiltonian %  is invariant under the flow of the harmonic oscillator vector
field Xp if and only if it is an integral Xp.

(5.1) Proof: 7 is invariant under the flow of the harmonic oscillator vector field if and only if it
is constant on the integral curves of Xy if and only if it is an integral of Xy;. More formally,
let /7 be the flow of Xp. Since .# is invariant under @/, it follows that (¢ )*.# = .
Differentiating this condition with respect to ¢ and evaluating the result at ¢+ = 0 gives
Lx,# = 0. In other words, %" is an integral of Xy;. Conversely, suppose that ¢ is an
integral of Xy. Then

d . d . < d * x
3 (@A = (@) = (o) (3| (o) H) = (@) (Lx, H) =0.
5s=0 s=0

Therefore 1 — (¢f)*.# is a constant function, that is, (¢f7)* ¢ = (@f')*# = ¢ . Thus
¥ is invariant under the flow of Xp. O

We now describe all the smooth functions which are integrals of Xz;. We begin by find-
ing all polynomial integrals of Xy. We show that they are polynomials in the quadratic
integrals

Wi = XXty wy =

i +xi =y —x)

12 —X2)1

x
wy =3 wy =3 +xg+y3+x).

Claim: The algebra of polynomials which are invariant under the S'-action given by the
flow of the harmonic oscillator vector field Xy is generated by the quadratic functions w;,

which satisfy the relation
wi=wl +w3 —|—w§7 where w4 > 0. (35)
(5.2) Proof: We introduce complex conjugate coordinates

i =xi+iy, m=x1—iy1, & =x+iy2, M =x2—iy2.

Then the algebra R [x,y] of real polynomials on R* becomes the algebra of Hermitian
polynomials HP [§,1] = { ¥.¢;;€'n/ |c,-j =Cji, where ¢;; € C}. Writing the Hamiltonian
H in complex conjugate coordinates gives H(&,n) = %(51711 + &mn2). Moreover, we
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obtain the Hamiltonian vector field on C*

E=2i—— =—if 17:2;"9—

an =i, (36)

where & = (€1,&),2 7= (gx ia%) and 1 = (n1,M2), ai = %(8% —l—ia%). The flow of

X isthe S I_action - on C* given by

§'x € (s, (E,m) o (8571, (37)

where s € C with |s| = 1. A real polynomial is invariant under the flow of Xy if and only
if the corresponding Hermitian polynomial is invariant under the flow of X. A Hermitian

polynomial is invariant if and only if for each of its monomials M = &'n/ = 2 nl n2
we have
sM :S\i\éis*\j\nj — lil=lil Enl=¢n/=M
where |i| =i +1i and | j| = ji + j2. In other words, |i| = |j|.
> We now show that every S! invariant Hermitian monomial M can be written as a product
of the invariant quadratic monomials oy = &1y, where £ = 1,2 and k = 1,2.

(5.3) Proof: The factors in the monomial M = é éz nl 2 can be displayed as two lists
i in

—N—

SEEEREEE §1& &

MM MNaeeee-- n.
——— ————

Ji J2
Because |i| = |j|, the above two lists have the same length and hence their entries may

be paired off. This pairing expresses M as the product of quadratic monomials oy as
claimed. U

Since
on=&m :x%+y%:W4+W3

o2 = &My = (x1x2 +y1y2) — i(x1y2 —X2y1) = w1 —iw
O21 = &1 = (xix2 +y1y2) +i(x1y2 —x2y1) = wi —iwa
0 =EM =33 +3 = ws — w3,

every S' invariant polynomial is a sum of monomials which are products of wy,wa, w3, w4
times a real coefficient. From the identity

(x1x2 +y192) + (K1y2 = x0231)% = (5 +37) (5 +3) (38)
it follows that w} +w3 +w3 = w3. Clearly w4 > 0. This proves the claim. O

Claim: The only polynomial relation among the generators w; of the algebra of polyno-
mials invariant under the flow of Xy is w} + w3 +wj —wj =0.

(5.4) Proof: Consider the complexified Hopf mapping
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b C4 — C4 : (XhXZayIJZ) - (W17W27W3,W4) =
= (xix2+y1y2, xiy2 —xoy1, 307+ =3 —3), 103 +ad+y3+x3)).
We assert that the image of @ is equal to the zero set 2% of the polynomial F = w% + w% +

w3 —w3. Since Fe® = 0, which follows from (38), the image of ® is contained in Z%. To
prove the reverse inclusion, let (wi, w2, w3,ws) € 2. Consider the following cases:

CASE 1. If wg +w3 #£0, let

(x1,%2,51,y2) = (0, —w2 /v/Wa + w3, v/ Wa + w3, w1 /v/ws +w3).
CASE 2. If wa +w3 =0, let (x1,x2,y1,y2) = (0,0,0,+/2w4).

Which branch of the square root one chooses above is immaterial, as long as it is con-
sistent. In all of the above cases, ®(x1,x2,y1,y2) = (wi,w2,w3,wsq). Thus the image
of @ contains Z7. Next we show that the polynomial F is irreducible. Suppose not.
Then F is the product of two factors. Write F = (ow + 8)(yw1 + &), where a, 3,7, 6
are polynomials in wy, w3, ws. Clearly we can take oo = Yy = 1. Since F has no term
which is linear in wy, we must have 8 = —f3. Therefore the expression for F becomes
—B% = w3 +w3 —w3. Consequently the degree of 3 is at most 1. Since f8(0,0,0) = 0,
we may write § = bw, + cw3 4+ dwy for some b, c,d € C. Squaring the preceding formula
for B and equating coefficients with the expression for —f2 gives b = +i, ¢ = +i and
bc = 0, which is a contradiction. Let .# be the ideal in C [wy, w2, w3, ws] generated by F.
Since C is a field, the polynomial ring C[wy, wy, w3, w4] is a unique factorization domain
and an integral domain. Thus every irreducible element is prime. Since every ideal in an
integral domain which is generated by a prime polynomial is a prime ideal, .# is a prime
ideal. Suppose that f is a polynomial in C[wy,ws, w3, ws] such that fo® = 0, that is, f
is a polynomial relation among the generators w;. Since the image of ® is the zero set
of #and f vanishes on the image of @, it follows that the zero set of the ideal generated
by f contains the image of . By the Hilbert Nullstellensatz there is a positive integer m
such that f* € .Z. Since . is prime, f € .&. ]

The flow of Xy defines an algebraic linear action of SO(2,R) = S' on R* given by

H . 4 pi.[[a b\ (x ab —bhL (x
0" :SO(2,R) xR* =R <<b a>’<y>>H<b12 a12)<y>7

where >+ b> = 1. We may use a theorem of Schwarz to conclude that every smooth
integral of the harmonic oscillator is a smooth function of the quadratic integrals. Thus
we have proved

Claim: For every smooth function .# on R*, which is invariant under the flow of the
harmonic oscillator, there is a smooth function K on R* such that .#" = J*K, where J is
the U(2)-momentum mapping of the harmonic oscillator.

We now turn to constructing a Poisson bracket on R? with coordinates (w1, w2, ws3). Since
the Hamiltonian vector fields X,,, fori=1,...,4 form a Lie algebra which is isomorphic to
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the Lie algebra u(2), the quadratic integrals w; form a Lie algebra under Poisson bracket
{,} on C*(T*R?) which is isomorphic to u(2). The bracket relations for this Lie algebra

{A s B } w1 wy w3 Wy B
w1 0 —2w3 2wy 0
wy | 2wz 0 —2w; 0
w3 — 2W2 2W1 0 0
W4 0 0 0 0
A

Table 5.1 The structure matrix % of the Poisson algebra o7

are found by calculating {w;, w2} = 0(X,,,,X,,) = —2wj3. The rest of the bracket re-
lations are given in table 5.1. Using the quadratic integrals w = (wy,wa, w3, w4) as co-
ordinates on R*, the space C*(R*) can be made into a Poisson algebra </ by defining

a Poisson bracket by {f,g} = ):?jzl 57’[[%” {wj,w;}, where f,g € C*(R*), see chapter
)  dw; UV

VI §4. The bracket {, } is entirely determined by the bracket relations given in table 5.1,

because of the chain rule.

For K € C(R*) the corresponding Hamiltonian vector field Xk is
oK dK
wi={w K} =) —{w;iwi} =-2) —¢€iuwi 39)
J {] } ),:aw,-{’ i} %awiﬂk

for j=1,...,4. Note that for any f € C*(R*) we have {f,ws} =0 and {f,w] —w? —

W% - W%} = 0, because they vanish for f = w; where i = 1,--- ;4. Thus the functions wy

and wi — w% — w% — w% are Casimir elements of the Poisson algebra .o/. Therefore the
level set wy = h for h > 0 defines a smooth submanifold R® x {h} of R* diffeomorphic
to R? which is invariant under the flow of the vector field Xk. Using (39) we see that
Xk|(R3x {n}) Is given by

w=—2gradK(w) X w, (40)

where w = (wy,wp,w3)" € R3 and all partial derivatives are evaluated with wy = h.

Now consider the space % of smooth functions on R3 which are restrictions of smooth
functions on R* to {w4 = h}. For K € 7 let K}, € 2 be the restriction of K to {wy = h}.
Because wy is a Casimir for o7, the space £ is a Poisson subalgebra of <7 with bracket

{ABY | wi ws  ws |B
w1 0 —2W3 2W2
wo 2ws 0 —2w
wi | —2wp 2wy 0
A

Table 5.2 The structure matrix W of the Poisson algebra %8. Here the
functions w; are restricted to R x {h}.
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relations given in table 5.2. Using the Poisson algebra %, we show that the smooth 2-
> sphere Sﬁ defined by W% + w% + w% = h? has a symplectic 2-form

@, (w)(u,v) :—#(w,uxv). 41)

Here w € S7, u,v € T,,S7, and (, ) is the Euclidean inner product on R®.

(5.5) Proof: Consider the structure matrix W (w) of the Poisson algebra 8 given in table 5.2.
Since kerW (w) = span{w} and T,,S;, = span{w}™, the matrix W (w)|T,,S}, is invertible.
On S7 define the symplectic form @, (w)(u,v) = u' (W~ (w))'(v) for w € S and u,v €
T,.Sp. Lety € T,,S7. Then W (w)y = 2w x y = u so that

wxu=wx (2wxy) =2(w(wy)—y(w,w)) = =2y (w,w) = —2h%y.

Thus W—! (Wu = —#w x u, which yields

u (W= (w))v = fﬁ(w xu)'v= fﬁ(w XU, v) = fﬁ(wm X V).
Therefore @y, (w)(u,v) = fﬁ (w,u X v). O

On the symplectic manifold (S7, ;) the vector field X 3 (w) = —2(gradKj, x w), where

K; = K|(R® x {h}), is Hamiltonian because
o (w) (Xg, (W),v) = — 313 (w, —2(grad Kj, x w) x v) = % (w x (grad K}, x w),v)
= 1%2 (fw(gradl?h,w) + grad K, (w,w),v) = (grad Ky, v) = dKy(w)v,

where w € S,21 and v € TWS%.

Up to the factor 2 the integral curves of the vector field Xk,, when the Hamiltonian I?h
is %(1 Cwr L wl + Iy 'w3), satisfy Euler’s equations for the rigid body in momentum
coordinates, see chapter III §3.3.

Note that the image under the U (2)-momentum mapping J of the integral curves of
X |H~'(h) are the integral curves of Xk, on the orbit space H~!(h)/S! = S with sym-
plectic form @j,. This is precisely what the regular reduction theorem says in the case of
the harmonic oscillator, see chapter VII §6. Here (Sﬁ, @) is the reduced phase space, K,
is the reduced Hamiltonian, and J is the reduction mapping.

6 Exercises

1. (Complex projective 1-space.) Complex projective I-space CP' is defined as the
set of equivalence classes of vectors in C2\ {0} under the equivalence relation ~
defined by (z1,z2) ~ (w1, ws) if there is a A € C* = {z € C||z| = 1} such that
(z1,z2) = (Aw1,Awy). Denote the equivalence class of (z1,z2) by [z1 : z2]. In other
words [z; : z2] are homogeneous coordinates on CP'. Let

Uy ={[1:22/z1] € CP|z; #0} and U ={[z1/z2:1] € CP!|z; # 0}
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with coordinates w = zp /71 and z = z1 /22, respectively. Show that {U;,U,} form
an atlas for CP! with transition function

(p12:U]QU2—>UlﬂUQZZ—>W:1/Z‘
Show that CP! is diffeomorphic to $? by verifying that the function
f:CPI%R:[zl:zﬂ%%(u|z1\2+b|12|2), a>b>0

is a Morse function with two nondegenerate critical points. Show that

®—Im (z2dz1 —z1dz22) A (Z2dZ1 —Z1dZ2)
l21* + |zaf?

is a symplectic form on CP!.

. (Linking number.)

a) Let A and B be two smooth circles in $3. Suppose that W, and Wp are disjoint
tubular neighborhoods of A and B in 3. Then W, and Wp are diffeomorphic to
Dy x S' and Dg x S! for some 2-disks D4 and Dg respectively. There are 2-forms
N4 and Mp on $3 which are nonzero on Wy and Wy and zero elsewhere. To show
that 14 is closed we argue as follows. Since the normalized volume 3-form volgs
generates H>(S3), it follows that for some A being a real valued function we have
dna = Avolg. By Stokes’ theorem [z dna = [543 4 = 0, since 9S> = @. Therefore
A = 0. Similarly np is closed. Since Wy and Wp are contractible in $3, the 2-forms
N4 and np are exact. So there are 1-forms &4 and Eg on S such that dé4 = 1
and d€g = np. This also follows because H(S%) = H'(S?) = 0. Define the linking
number of A and B as

Link(A,B) = /;3 gA ANB.

Show that Link (A, B) does not depend on the choice of &4. Also show that Link(A, B)
does not depend on the representative of 1z € H>(S?), that is, if nj = np +d¢ for
some 1-form ¢ on %, then Link (A, B) = [ €4 ATp.

b) Is Link(A, B) = Link(B,A)?

. To show that the linking number as defined in the text does not depend on the

oriented 2-disk D? with boundary y. Let F : D3 C R? — 53 be a smooth contraction
of D}. Let G : D} C R? — §° be another contraction of ;. Give the 2-disk D? the
orientation opposite to that of the 2-disk D%‘ Consider the oriented 2-sphere % C
$3 formed from the 2-disks F (5?) and G(D?) by identifying OF (5%) =F (35%)
with dG(D?) = G(9dD?). The intersection number of S with 7, is equal to its
intersection number with F (5%) minus its intersection number with G(ﬁ%) If we
show that the intersection number of $2 with Y> is zero, then we are done. To do
this choose a point p in §3\ (S2U7,) and let ¢ : S3\ {p} — R? be stereographic
projection. Since ¢ preserves orientation, the intersection number of 2 and 7, is
the same as the intersection number of ¢(S?) and @oy,. Thus we have to show that
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the intersection number of an oriented smooth circle 7 : [0, 1] — R? which meets an
oriented $2 C R3 transversely is zero. If ¥ does not intersect S then we are done.
Suppose that at ¥(fy) € S the curve ¥ has intersection number 1. Then for some
sufficiently small € > 0, y(fo — €) lies in the bounded component of R3\ $?; while
¥(to + €) is in the unbounded component. Reparametrize ¥ so that y is defined on
[0,1] and begins and ends at p = y(fy). Since y is a closed curve, there is a 1] €
(0,1) such that y(¢;) € S2. Choose #; as small as possible. There are only finitely
many since ¥ intersects $? transversely. Then for every ¢ € (0,#(), ¥(¢) lies in the
unbounded component of R\ $2. Now g = () # p since ¥ is a diffeomorphism.
Since 7y is transverse to S? at q1, Y(t1 + €) lies in the bounded component of R3 \
§? for sufficiently small € > 0. Therefore the intersection number of y at g is
—1. A similar argument shows that the next intersection point ¢, of ¥ with S? has
intersection number 1. If g» = p then we are through; otherwise repeat the argument
a finite number of times until # = 1 is reached. Since Y has an even number of
intersections with S2, its intersection number is 0. Thus the linking number is well
defined.

. (Degree of a map.) Let (M,o) and (N,7) be two connected compact oriented

manifolds of dimension r with volume forms ¢ and 7, respectively. Suppose that
f M — N is a smooth map. Let n = f(m) be a regular value of f. For each

pefl(n)let
1, ifT,f:(TyM,0,) = (T,N,T,)

sign, ' = is orientation preserving
—1, otherwise

Define the degree of f by

degf = Z sign,, f.

pef1(n)

Show that [y, f*t = (deg f) [y 7. If f: M — N and g : M — N are smoothly homo-
topic, then show that deg f = degg.

. (Hopf invariant.)

a) Let g : $° — $? be a smooth map and let ¢ be a 2-form on S? which generates
H?(S?). Since a is closed, g*a is a closed 2-form on S3. Since H?(S%) = H'($3) =
0, there is a 1-form 8 on S such that g* o = dB. Define the Hopf invariant of g to
be

Hopi(g) = [, BAdB.

Show that Hopf(g) does not depend on the choice of 3. Moreover, if g and & are
homotopic show that Hopf(g) = Hopf(h).

b) Let p and g be distinct regular values of the map g. Let D, and D, be disjoint
closed 2-disks on 2. Let o), and oy be 2-forms on $% which are nonzero on D,
and Dy, respectively, and are zero elsewhere. Let 14 = g* o, and np = g*¢;. From
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exercise 2 we know that the linking number of the circles A = g~ !(p) and B =
g '(q) in $% is given by Link(A,B) = [ &4 A M, where 1g = d&g. To show that

Link(A, B) = Hopf(g) / EANMA

we argue as follows. Because dim H?(S?) = 1, there is a 1-form 8 on S? such that
o, — 0y, = dp. Therefore Ny —np = g*(df) = d(g"pB). Hence

[L&nmu—nn == [ dEng'B)+ [ 5B =0

c¢) Consider the map
f:8={(z1.2) € Claa* + |l =1} = CP' : (z1,22) = [21 : 22

Note that f(1,0) = [1: 0]. Composing f with stereographic projection from the
north pole onto the equatorial plane gives the Hopf map. To show that for every
21 : z2] € CP' = 82 the fiber f~!([z; : z2]) is a great circle on §3 we argue as
follows. For ¢ = (c1,ca,c3) € §2 C R® we see that (z1,22) € f~!(c) if and only if
21 >+ \z2|2 =1, ]z)*~ |z2|2 =c3,and 2@ =c+icy. Thus [z = 1 (1—c3) £0.
Choose 29 so that |J* = (1 —¢3) and 20 satisfies 22975 = ¢ +ic,. Show that

o) ={¢(,) € S3||C| =1}. Thus f~!(c) lies in a complex 1-dimensional
subspace of C? and hence is a great circle on S3.

d) Here we show that the Hopf invariant of the Hopf map is 1. Let p be the north
pole of S? and D), be the disk on 52 containing p and bounded by the equator. Let
o be the 2-form on D, whose pull back under the chart

{uf +u3 <1} = S CR: (u1,u0) —~ uz = \/ 1 — i} —u}
is %. Show that po = 1. Using the relation Z 1 xidx; = 0, which comes
from taking the exterior derivative of the defining equation of S, show that the pull

back of ® by the Hopf map # is df where = —%(deXQ + x3dx4). Finally, using
spherical coordinates

Xx] =sin@sin@cosH
Xy =sin@sin@sinO
X3 =sin@cos @

X4 =cos®

with0<® <7, 0<¢ <mand 0 <6 <2, show that

2
ASﬁAdﬁ:E/g3x1dx2AdX3AdX4 =1.

. (Exceptional fibers.) Consider the harmonic oscillator in dimension three. The

integrals of motion are the energy and SO(3) angular momentum.
a) Describe all the fibers of the energy momentum map.

b) Show that the fibers with positive energy and zero angular momentum are smooth
Lagrangian submanifolds of 7*R? with its standard symplectic form, which are not
tori.
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7. (n-Dimensional harmonic oscillator.)

a)Letz=(z1,...,2,) be coordinates for C". Put a Kihler structure on C” by defin-

ing the Kéhler form Q = 53 dz; Adz;. Leth: C" — Rz h(z,Z) be a smooth

real valued function. Define the Kdhler Hamiltonian vector ﬁeld X, associated to

the Kdhler Hamiltonian h by X, 1€ = dh, where dh = Y, 87 dzj Show that
= —IZ] 1 az 8zj' In particular, if 2 : C" = R:z— %ZF, z,z; is the harmonic

oscillator Hamiltonian, then X;, = —i Z;?:] z j%, which is a holomorphic vector

J .

field on C" whose flow is @ : Rx C" — C": (t,z) — ¢ "z.

b) Let (z,w) = Yj_, z;W; be the standard Hermitian inner product on C". An invert-

ible linear map U : C" — C" is unitary if (Uz, Uw) = (z,w) for every z,w € C". The

set of all unitary matrices forms the Lie group U(n) with Lie algebra u(n) given by

the set of all skew Hermitian linear maps u : C" — C”, that is, (uz,w) + (z,uw) =0
for every z,w € C". Show that the n x n skew Hermitian matrices

i(ej®é,i+ek®zj.), 1<j<k<n
ejRe —e@e;, 1< j<k<n (42)
i(ej®er), 1<j<n

form a basis for u(n) as a real vector space. Here {e j};f:] is the standard basis for

C". Recall that i(z®z') € C® (C")* is the skew Hermitian linear map w — i{w, z)z.
Write out the matrices in (42) explicitly. Show that

k:u(n) xu(n) — C: (u,v) — truv’
is a Hermitian inner product on u(n). Since k is Ady-invariant for every U € U(n),
it follows that k is the Killing (Hermitian) metric.
¢) The Lie group U(n) acts on C" by ®: U(n) x C* — C" : (U, z) — Uz. For every

u = (ujx) € u(n) the vector field infinitesimally generated by u is

d

X“(z) = gé_

expxu Zu/kzka

Show that X* is the Kihler Hamiltonian vector field associated to the function

J:C"—> Rz %(uz,z) =
i n
= E |: Z (Reuijeszk —Imujklmz_,-zk) =+ Z uijjZ/' i| .
=1

i<k

Show that j* is an integral of the harmonic oscillator vector field Xj,. Define the map
J :C"—u(n)" by 7 (z)u= j“(z) for every z € C" and every u € u(n). Show that
Y intertwines the U(n)-action <I> on C" with the coadjoint action of U(n) on u(n)".
In other words,

FUu=Ad,_ (7 (@)u= g U "u). (43)
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Thus 7 is a Kéhler momentum mapping for the action ®. Use the Killing Hermi-
tian metric & to identify u(n)” with u(n). Using the basis (42) of u(n), show that _#
becomes

J:C"—u(n):zm $(z07") = L(zj7). (44)
Verify directly that J intertwines the U(n) action @ and the adjoint action of U(n)
on u(n).
d) Show that U(n) acts transitively on the set of all 1-dimensional complex sub-
spaces of C" with isotropy group at span{e;} isomorphic to U(n — 1). Deduce
that the orbit space U(n)/U(n — 1) is diffeomorphic to CP"~!, complex projective
(n—1)-space. For z # 0 show that i(z®Z') has rank 1 and trace (z,z). If z#0
deduce that the U(n) adjoint orbit & through { = J(z) is diffeomorphic to cpl.
In particular, CP"~! is defined by

(ijk)(zﬂzm) = (ijm)(zézk)’ 1< jak:évm <n
(45)
Z_y;:lzﬁj =1.

Since (45) is the set of all relations among the quadratic (and hence smooth) inte-
grals of the harmonic oscillator restricted to the level set h~! (), the space =1 (1) /8"

of orbits of the harmonic oscillator of energy % is diffeomorphic to CP"!. Show
that
TR~ (5 7 (3) = cP T =h7 (5)/8!

is the reduction map for the harmonic oscillator. Use the following argument to find
the symplectic form on the reduced space CP"~!. On the orbit O¢ with (z,z) = 1,
there is a symplectic form

w(C)(Vg“:Wg):k(Cv [ngwd)v (46)

where v = DJ(z)v and wy = DJ (z)w liein T; 0 € u(n). Using (46), (z,z) = 1 and

the fact that Ve = %(ijk —I-Zjvk), we = %(szk —‘ijWk), show that

o = $Im ((v,w) (z,2) — (v,2) (W, 2)). 47
Replacing z by z/+/(z,2), (47) becomes
II <<V7 W> <Z7Z> — <V7Z> <W7Z>>

@=gim (z,2)

7
which is % times the imaginary part of the Fubini-Study Hermitian metric on CP"~!.




Chapter 11

Geodesics on S°

In this chapter we study the geodesic vector field on the tangent bundle of the 3-sphere.
We examine its relation to the Kepler vector field, which governs the motion of two bodies
in R? under gravitational attraction. We give two methods to regularize the flow of the
Kepler vector field: one energy surface by energy surface and the other for all negative
energies at once.

1 The geodesic vector field

Here we find the geodesic vector field on the 3-sphere and give a formula for its flow.

We begin by discussing the geodesic vector field. Suppose that (, ) is the Euclidean inner
product on R*. This induces a Riemannian metric g on R* defined by g(x)*(y)z = (,2),
where x € R* and y,z € T,R* = R*. Pulling back the canonical symplectic 2-form on
T*R* by the map g, see chapter VI §2, we obtain the symplectic form @y = —d(y,dx) on
TR*. On (TR*, w4) consider the Hamiltonian function

%:TR“—)R:(x,y)b—)%(y,y). (1)

Since an integral curve of the Hamiltonian vector field X, satisfies x =y and y = 0, it
is a straight line on TR*, except when y = 0; then it is a point. Hence X, describes
the motion of a particle in TR* which is not subject to any force. To constrain this free
particle so that it moves on the 3-sphere S> = {x € R* | (x,x) = 1}, we add a force A (x,%)x
which is normal to $ at the point x. The motion of the particle subject to this constraining
force is governed by Newton’s equations

X=A(x,%)x. ?2)
Differentiating the defining equation of S* twice gives
(x,%) + (x,) =0. 3)

Substituting (2) into (3) and using the constraint (x,x) = 1 gives A (x,x) = —(x,X). Hence
the motion of the free particle constrained to S3 is governed by the second order equation
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X == x)x “

subject to the constraints (x,x) = 1 and (x,x) = 0. Written as a first order equation on the
tangent bundle 7'S® = {(x,y) € TR* | (x,x) = 1 & (x,y) =0} of $3, the constrained system
(4) becomes

£ o=y

y o=y ©)

This defines the integral curves of the vector field ¥ = (y, %) — (y,y){x, %) on TS°.
Note that 7'S? is an invariant manifold of (5), thought of as a vector field on TR?, since
the initial conditions (x,x) = 1 and (x,y) = 0 are preserved under its flow. The above
> discussion is not at all Hamiltonian. What we want to do is to show that Y is a Hamil-
tonian vector field on the phase space (T'S*,Q4). Here Qq is a suitable symplectic form.

(1.1) Proof: To do this, we use modified Dirac brackets, see chapter VI §4. On the open subset
M = T(R*\ {0}) of TR* consider the constraint functions

M —R:(xy) = ((xx)—1) and c: M —R:(x,y) —~ (x,y).

Let {, } be the standard Poisson bracket on C*(TR*), the space of smooth functions on
the symplectic manifold (TR*, @), see chapter VI §4. Since the matrix ({c;,c;}), which

27)() <x(’)x>>, is invertible on M with inverse (C;;) = ﬁ (? Bl) and 0 is

a regular value of the constraint map ¢ : M — R? : m — (c1(m),c2(m)), the constraint
manifold 7S* = €~'(0) is a cosymplectic submanifold of (M, w4|M). In other words,
Q4 = wy|TS? is a symplectic form on 7'S3. For F € C*(M) let

is equal to (7<

2
F*=F — Z ({F,C,‘}—I—F,')C,‘jcj‘,
i=1

where the F; lies in the ideal of (C*(M),-) generated by ¢; and c;. Define a Poisson
bracket {, } g on C*(TS?) by
{FITS*,G|TS*} 3 = {F*,G*}|TS>.

Note that the Hamiltonian vector field XF|TS3 of the Hamiltonian F constrained to 75>

is the Hamiltonian vector field Xy« restricted to TS?. Applying these remarks to the
unconstrained Hamiltonian .77’ (1) on M gives

%* :%—Z({%,Ci}ﬁ-%)cijc‘j
<Y7y> + <xvx>_l <(<x,y> -, <y7y> 7%)7 ( - <x,y>, %(<x7x> - l))>
((x2) () = (x,2)),

where we have chosen 7] = (x,y)(1 — (x,x)) and % = —(y,y) ({x,x) — 1).

B— NII—
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From Hamilton’s equations on (TR*, @y) it follows that the integral curves of X ,-« satisfy

d (x X —(x,y)  (x x)> (x)

— =A X, = ’ ’ . 6

dt (y) (x.7) (y) (— My (o) \y ©)
Using (6) and the definition of 7'S3, it is easy to see that the integral curves of X -+ |TS?
satisfy (5). Because X%\Tﬁ = Xp+ |TS3, the geodesic vector field on T'S® is the Hamil-

tonian vector field X7 on (TS3,Q4) corresponding to the Hamiltonian function
H:%”*\TS3:TS3—>R:(x,y)»—>%<y,y>. @)

Note that H is the free particle Hamiltonian on TR* restricted to 7'S>. Thus the integral

> curves of the geodesic vector field X on 7'S satisfy (5). To find the flow of the geodesic
vector field Xy, we first look for integrals (= conserved quantities) of the vector field
X,r+. From the construction of the Hamiltonian 7* on TR*, we know that TS is
an invariant manifold of X ;-+. Therefore the functions f;(x,y) = 3 (x,x) and f>(x,y) =
(x,y) are integrals of X +. A calculation shows that f3(x,y) = %(y7 y) is also an integral
of Xr«. The integrals {fi,f>,f3} span a Lie subalgebra of (C*(TR*),{, }), which is
isomorphic to s1(2,R) since { f1, 2} =2f1, {f1, 3} = f2, and {f3, fo} = —2f3. Because
the functions f; are constant along the integral curves of X ,+, so is the matrix A(x,y) (6).
Since A%(x,y) = —2.¢*(x,y) I and 7 *(x,y) > 0, the flow of X -« is

(pr‘%m(x,y) = exptA(x,y) (;) = (cos (1V2H%) b + (sin (1V27%) |\ 27) A(x,y)) (;C) .

Restricting ¢/ to the invariant manifold 7'S® gives

cos (tv/2H) sin (1v/2H) /v2H
of! (x,y) = ) ®)
—V2H sin(tv/2H) cos(rv2H)
which is the flow of the geodesic vector field X; on T'S3. g

Clearly, all of the integral curves of Xy on the level set H~!(h) with 4 > 0 are periodic
> of period 27 //2h. In fact, when y # 0, the image of the integral curve t — @ (x,y) under
the bundle projection map 7'S® — §3 : (x,y) > x is the geodesic

Yixy) :R—>S3:tHx(cos(t\/ﬁ))+y((sin(t\/ﬁ)/\/ﬁ). )

(1.2) Proof: To see that ¥ ) is a geodesic on $3 it suffices to show that

1. ¥x,y) is parametrized up to an affine transformation by arc length.
2. The acceleration ) ,) has no tangential component.

From the equations of motion for geodesics it follows that item 2 holds. Item 1 holds
because ¥ is parametrized. Another argument to prove item 1 goes as follows. Differenti-
ating (9) gives

(Vs Yowy)) = 2H sin® (1V2H) (x,x) + cos® (1V2H) (,y) = (,y) = 2H(x,),
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which is a constant of motion. This constant is nonzero, since y # 0. g

The explicit formula (8) for the flow of the geodesic vector field gives no qualitative
information about how the integral curves are organized into invariant manifolds. To
understand the invariant manifolds, it is useful to explain the role of the obvious symmetry
of the problem, namely, the group SO(4) of rigid motions of the 3-sphere. This will be
done in the next section.

2 The SO(4)-momentum mapping

In this section we construct the momentum mapping associated to the SO(4) symmetry
of the geodesic vector field on (T'S%,9y4) and study its geometric properties.

Recall that SO(4) is the Lie group of orthogonal linear mappings of (R*,(,)) into itself
with determinant 1. Consider the action of SO(4) on R* given by ¢ : SO(4) x R* — R*:
(A,x) — Ax. This action lifts to an action of SO(4) on (TR*, @) defined by

®:S0(4) x TR* — TR*: (A, (x,y)) — (Ax,Ay).
> ® preserves the 1-form 6 = (y,dx) on TR*.
(2.1) Proof: We compute
@40 = (Ay,dAx) = (Ay,Adx) = (A'Ay,dx) = (y,dx) = 6.
The second to last equality follows because A € SO(4). O
Thus the action & is symplectic, for
Dy = —D;(dO) = —d(D40) = —dO = wy.
> To show that @ is a Hamiltonian action, we must verify that for every a € so(4), the Lie

algebra of SO(4), the vector field

d
q)expta(xvy) = & ((expta)x, (expta)y) = (axvay) = (Xa(x)aay):
t=0 =0

d
Xy = 4

which is the infinitesimal generator of & in the direction a, is a Hamiltonian vector field
on (TR*, ay).

(2.2) Proof: From the momentum lemma, see chapter VII ((5.7)), it follows that X = Xja
where

JU TR = R (x,y) = 0(x,y)Xa(x) = (ax,y). (10)

Thus the action ® has momentum mapping J : TR* — so(4)" defined by J(x,y)a =
J(x,y). Choose a basis {eij}1<i<j<4 of s0(4) where the (k,¢)™ entry of the 4 x 4 matrix
ejjis 1if (k,0) = (i, j), =1 if (k,£) = (j,i), and O otherwise. Then

T4 (x,y) = (eijx,y) = xiyj —x;yi = Sij(x,y). an
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> The mapping J is coadjoint equivariant.
(2.3) Proof: We compute

J(®(x,y))a = J(Ax,Ay)a = (aAx,Ay) = (A" aAx,y)
=J(x,y)(Ady-1a) = Ad),_ (J(x,y))a. O

Since @4 maps T'S? into itself for every A € SO(4), ® restricts to an action donTS? given
by ®:S0(4) x TS* — TS*: (A, (x,y)) — (Ax,Ay). For every a € so(4) the infinitesimal
generator X“ of the SO(4)-action ® leaves T'S® invariant because

d
(x,x) = 2(x,x) = 2{x,ax) = 0,
dr

d(x,y . .
P = ) ) = () +{axy) = O,

d(y,y .
<dl L= 2y = 20ua) = 0,

since a’ = —a. Therefore X¢|TS3 is a vector field on TS3. The action P preserves the

symplectic form Q4 on T'S? because
DLQy = B (y|TS?) = (P04)|TS> = ay|TS> = Q.
Claim: The action ® on (TS?,Q4) is Hamiltonian with momentum mapping
7 =J|TS®:TS> CTR* = s0(4)". (12)

(2.4) Proof: Because X¢ leaves T'S3 invariant and Q4 = @y|T'S?, it follows that X%|T'S3 =
Xjajrs3- Thus X | TS? is the infinitesimal generator of ® on 7'S* in the directiona. [

So far the SO(4) symmetry is not related to the geodesic flow on 7'S>. But note, the
Hamiltonian 7 is preserved by the action ®, because for every A € SO(4)

A (®a(x,y)) = 3 ((Ax,Ax) (Ay, Ay) — (Ax, Ay)*) = A7 (x,y).
> Thus the function J¢ (10) is an integral of the vector field X, for every a € so(4).

(2.5) Proof: For every a € so(4) we have &, ,,7¢* = 7*. Therefore

expta

d
0= | @ " = Ly = Ly, A" = Ly, J" (13)
=0

FromA the fact that @ preserves both the Hamiltonian .777* and the manifold TS3, it follows
that @ preserves the geodesic Hamiltonian H = 2#*|T'S>. Therefore for every a € so(4)
the function J%|T'S? is an integral of the geodesic vector field Xy

In order to study the geometry of the momentum mapping ¢ (12), we transform it into
an easier to understand mapping, see (16) below. We begin by recalling that the 4 x 4
skew symmetric matrices {e;;},;_ ;4 form a basis for the Lie algebra (so(4), [,])- The
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covectors {e;}, cicjea where ¢}; = ef;, form the standard dual basis for so(4)". The Lie
bracket {, }S0<4)* on so(4)" is defined by {e?ﬂezk}so(@* = Lonn €]} g €pns Where leij ea) =
Zm.n C?}fl[k €mn-

For u,v,w € R* consider the map © : /\2R4 —50(4) :uAw > Ly, Where 0, : R* 5 R*:
v (v,w)u — (v,u)w is a linear mapping, which is skew symmetric, that is, (£, ,x,y) =
—(x, €y y) for every x,y € R*. Using the basis ~{e,~/\e{,~}l<i<j<4 of A’R*, we see that
®(ei Nej) = e;j. Thus ¥ is an isomorphism. Consequently the mapping ¥ : so(4)" —
(NR*)* = N*(R)* 1 €]+ €} Aef. Since

V' (ef;) (x,y) = (¢f Aej)(x,y) = €j (x) €j(y) —e; ()€ (x) = xiyj —xji = Sij(x,y), (14)

for every x,y € R?, it follows that (A>R*)* is the space .# of homogeneous quadratic
functions on TR*, which is spanned by {Sij}1§i<j§4' As a subspace of C*(TR*), . has
a Poisson bracket {, } .., which is induced from the standard Poisson bracket {, } on the
space of smooth functions on (TR* ay). In other words, for every (x,y) € TR*

{Sij7S€k}y(xvy) = w4(XS,'j (xvy)7XS/;/¢ (xvy))v (15)

where X, is the Hamiltonian vector field on (TR*, @4) corresponding to the Hamiltonian
function ;. A calculation using (15) gives table 2.1.

{A,B}, | Si2 Sz S Sz S Su ‘B

Si2 0 S23 S —Si3 —Sua 0

Si3 | =523 0 S34 Si2 0 —Sis

Sia | =S —S3 0 0 S12 S13

823 Sz =S 0 0 S —S4

824 S14 0 —Si2 —S3 0 S23

S34 0 Sia —=S13 Soa =823 0
A

Table 2.1. The Poisson bracket on .7 .

Because the functions f| = %(x,x), fo={x,y), and f3 = %(y, y) are invariant under the
SO(4) action @ on TR, the function J* (10) is an integral of Xy, for every a € so(4). In
other words, {f;,J*} =0fori=1,2,3 and a € so(4). Thus the Lie algebra (s1(2,R),{, })
spanned by {f;}, ;<3 and the Lie algebra (., {, } .») are dual pairs in the Lie algebra of
homogeneous quadratic functions on TR* with Poisson bracket {, }. In other words, they
have the following properties:

1. They centralize 5, that is, {7, f;} = 0= {*, S }.
2. They centralize each other, that is, {f;,Sjx} = 0.

> We now show that the Lie algebras (., {, } ) and (so(4)",{, }so(4y) are isomorphic.

(2.6) Proof: From the definition of S;; (11) we obtain dS;;(x,y) = —(e;;(y),dx) + (e;;(x),dy).



1.2 The SO(4)-momentum mapping 37

Since ;] (dx) = —a% and @, (dy) = %, we find that

X5, (3) = @](5)(5) = e ). 5+ (1) 51

Therefore

{Sij,Sact o (x,9) = (X5, 1 dSij) (x,y) = —(ew(x),ei;(v)) + {ew(¥), €ij(x))
= ((eijen — eweij)x,y) = ([eij,enlx,y) = ' ([eij.en]”) (x,y)
= ﬂt({e;kj>e2k}so(4)*)(xvy)'

The last equality above follows by definition of the Poisson bracket {, }SO(4>*. Hence ¥
is a Lie algebra isomorphism. O

On A?R* define an inner product B: AR* x A2R* — R: (uAv,xAy) — det <<<':;C>> 2’:;’;)

Since {e; Aej}, ;4 is an orthonormal basis of (A*R*,B), we may identify \*R* with

0 -4

Figure 2.1. The mapping p.
( /\2R4)*. Instead of studying the momentum mapping _# (12) we study the mapping

2
p:TS*CTR* — /\ R*: (x,y) = xAy= Z Sij(x,y)eiNej, (16)
1<i<j<4

which is nothing but B’o19’o J . The S;; are the Pliicker coordinates of the oriented 2-
plane spanned by {x,y} corresponding to the 2-vector x Ay. In other words, S;; is the
2 x 2 minor formed from the i and j™ columns of the 2 x 4 matrix with rows x and y,

that is, S;; = det(xi xf). Because
yi Yj
0=(xAY)A(XAY) = (812534 — S13524 + S14523) 1 Aezr Nez Mey,
the Pliicker coordinates of x Ay satisfy Pliicker’s equation

812834 — 813524 + 514523 = 0. (17

Let C be the set of all nonzero 2-vectors on R* whose Pliicker coordinates satisfy (17). By
> definition p(7'S?) C C. Actually, C is the image of p.

(2.7) Proof: Suppose that 8 € C. Then 6 is decomposable, that is, there are vectors u,v € R*
such that 6 = uAv. To see this, let (S;;) be the Pliicker coordinates of 6. Since 6 # 0
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not every S;; is zero. Suppose that Sy, is nonzero. Let u = (1,0, —S523/S12,—524/512) and
v =(0,812,513,514). Using Pliicker’s equation (17) it is easy to check that the Pliicker
coordinates of the 2-vector u A v are (S;;). Therefore & = uAv. A similar argument,
which we omit, works in the other cases. Let {x,y} be an orthonormal basis of the 2-plane
spanned by {u,v}. Then u Av = A x Ay for some nonzero A. Therefore p(x,Ay) = 6.0

For h>01let H~'(h) = {(x,y) € TS* C TR*| 3 (y,y) = h} be the h-level set of the geodesic
Hamiltonian H (7). Consider the mapping

2
ph:Hfl(h)gTS3—>Cg/\ R*: (x,y) —xAy, (18)
which is the restriction of p (16) to H~'(h). From the identity

Y Gy —xpi)’ = () (00) — (x)? (19)

1<i<j<4

we see that the image of pj, is contained in the submanifold C;, of C defined by ¥ < j<4 S%]-
> = 2h. Cy is diffeomorphic to $?
' rphic o §7 o xS e

(2.8) Proof: Adding and subtracting one half times (17) from one quarter times the defining
equation of Cp, and using the variables

&1 = 5(S12+S) m = 3(S12—S)
& = 5 (S13— S4) M2 = 5(S13+S24) (20)
& =15(S14+53) M3 =13(S14—523),

we obtain £ + &7 + &7 = h/2 and n? 4+ 13 +n3 = h/2. O

We now investigate the geometry of the map pj,.

Claim: For every h > 0, the map pj;, : H~'(h) — C, (18) is a surjective submersion each
of whose fibers is a single oriented orbit of the geodesic vector field Xy of energy .

(2.9) Proof: To show that p;, is surjective, suppose that S = (S;;) € Cy. Since Cy, is contained
in C = p(TS?), there is an (x,y) € T'S® such that p(x,y) = S. But 21 = Zl<,<j<4S since
S € Cp,. From (19), the definition of S;; (14), and the fact that (x,y) € TS3, we find that
%(y,y) = h. Hence (x,y) € H~'(h).
To show that pj is a submersion, we must verify that the rank of 7(, )py is 4 for every
(x,y) € H~'(h), because C, is 4-dimensional. Towards this goal, let V(xy) be the space
spanned by the Hamiltonian vector fields XS,»_/-, 1<i<j<4,on (TR4, @) corresponding
to the Hamiltonian function S;; : TR* - R: (x,¥) = xjyj — xjy;i. Since S;ﬂTS3 is an
integral of of the geodesic vector field Xy; on T'S3, it follows that Vi) € kerdH (x,y) =

T(x’y)H*l (h) for every (x,y) € H~'(h). Now

(Tiwy)Pi) Viey) = (dSij(x,9)Xs,, (x,3)) = ({Sij, S} ) = P 1)
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Using (20) we see that 6 X 6 matrix Pis conjugate to the matrix

C(HEEY) 0 ) ((Teexd) 0
P‘( 0 <{ni,n,»}y>>‘( o <zkei,~knk>>’

The last equality follows using table 2.1. But S = (S;;) = py(x,y) € C. Because & and
n lie in Si/m, each of the 3 x 3 skew symmetric matrices (¥, & &) and (¥ &jx M) is

nonzero. Thus each of these matrices has rank 2. Therefore, the rank of T{, ,ypj, is 4 for
every (x,y) € H~'(h). Thus pj, is a submersion.

Given S = (S;) € Cy, the fiber W = p, ' (S) is a union of orbits of the geodesic vector field
Xp of energy h because S,<]~|TS3 are integrals of X. By definition of pj, (18), W is the set
of all ordered pairs {x,y} of orthogonal vectors in R* such that (x,x) = 1, (y,y) = 2k and
the 2-plane IT spanned by {x,y} has Pliicker coordinates (S;;). Since any two such bases
of IT are related by a counterclockwise rotation in Il, we find that

W = {(xcos 6 —ysin0,xsin@ +ycos ) € H ' (h) | 6 € [0,27]}.
Therefore W is a unique oriented orbit of X traced out by an integral curve of Xy. [

Corollary: Cj, is the space of orbits of positive energy / of the geodesic vector field Xy
on T'S3 with orbit mapping pj, : H~'(h) = Cj.

(2.10) Proof: The corollary follows immediately from the claim and the definition of orbit space,
see chapter VII §2. O

The goal of the following discussion is to construct a symplectic form on Cj,. We begin
by defining a Poisson bracket {, } on the space C*(.’) of smooth functions on the Lie
algebra (., {, } ). For f,g € C*() let

_ of 98 (g
Uel= X o5, a5, S-S 22)

1<(<k<4

As is shown in example 1 of chapter VI §4, (C*(.¥),{, } ) is a Lie algebra. On C*(.%*)
define a multiplication - by (f-g)(s) = f(s)g(s) for every s € .#. Then (C*(.¥),-) is a
commutative ring with unit. Using (22) it is straightforward to check that Leibniz’ rule
holds, namely {f,g-h} = {f,g} -h+{f,h} g, for every f,g,h € C*(.). Therefore
o = (C°(),{, }»,-) is a Poisson algebra. The functions

C = Z S%i—Zh and C = 512534 — S13524 + 514523

1<i<j<4

are Casimirs for <. In other words, {Ci, f} = {Cs,f} = 0 for every f € C*(.%). From
(22) it is enough to show that {Cy,S;;} = {C»,S;;} =0for 1 <i < j <4. This is a direct
verification using table 2.1. Let .# be the ideal in (C*(.#),-) which is generated by C;

> and Cy. Then .# is a Poisson ideal in <7, that is, if g € .7, then {f,g} € & for every
fec ().

(2.11) Proof: Since f € . there are f}, f» € C*(.) such that f = fC| + f,C>. Now
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{f,gt={/1,8}-Ci+fi-{Ci.g} +{f2,8} - Co+ fo-{C2,g}, by Leibniz’ rule
={fi.g} - Ci+{fo,8} eI,

where the equality above follows because C; and C, are Casimirs. Therefore we can
define a Poisson bracket {, }, on C*()/.% by {f+ .7, g+ 7}, = {f,}. In order
to be able to identify the space C*(.’)/.# with the space C*(C}) of smooth functions on
Cj,, we need to know that .# is the set of smooth functions vanishing identically on C,.
This is a consequence of the following general

Fact: Suppose that 0 is a regular value of the smooth map F : R” — R : z — (Fi(2),...,
Fi(z)). Then M = F~'(0) is a smooth submanifold of R" defined by F| (z) = -+ = Fi(z) =
0. If G : R® — R is a smooth function, which vanishes identically on M, then there are
smooth functions g; : R” — R, 1 <i <k, such that G = Zf‘:l giF;.

(2.12) Proof: Locally the fact follows using Taylor’s formula with integral remainder. The global
result is obtained by piecing together the local results using a partition of unity. We leave
the details to the reader. g

Consequently, we may define the quotient Poisson algebra = o/ /% = (C*(Cy). {, }¢, ,
-). Because {S;; + .7, Su + J}Ch ={Sij,Su} - the matrix of Poisson brackets ({S;; 4 .#,
S+ 5 }Ch) has rank 4. Therefore Cj, is a cosymplectic manifold. In other words, the
Poisson bracket {, }Ch is nondegenerate and hence defines a symplectic form @, on

> Cp, see chapter VI §4. Moreover, o, satisfies p; @, = Qu|H ' (h).

(2.13) Proof: For every (x,y) € H~'(h) we know that T}, ,,H~'(h) is spanned by the vectors
(x.y)
{Xs, (6.9}, i jy- Since (TS?,Q4) is a cosymplectic submanifold of (TR*, ey), we
have

94(X7Y)(XSij(xa)’)vxszk(xvy» = w4(X5ij(x,y),Xs%(x,y)) = {Sij7S[k}y’(x7y)
= {SiJ'VS[k}Ch(ph(xvy)) = wh(ph(xvy))(T(x,y)phXSij (xvy)7T(x,y)phXka(xvy))
= (p;fwh)(x,y)(Xs,.j(x,y),Xsek(x,y)). g

We now prove the main result of this section, which describes the geometry of the map-
ping p (16). As a consequence, we know the geometry of the SO(4)-momentum mapping
7 (12) of the geodesic vector field Xy on (TS*,Qu).

Claim: The mapping p : TS> C TR* — C C A’R*: (x,y) — x Ay is a surjective submer-
sion, each of whose fibers is a unique oriented orbit of the geodesic vector field Xz on
(TS, Q).

(2.14) Proof: We have already shown that p is surjective ((2.7)). To show that each of its fibers
is a unique oriented orbit of Xy we argue as follows. Suppose that S = (S;;) € C. Because
S is nonzero, ¥ << j<4 Sl-zj = 2h for some h > 0. Therefore S € Cj,. Since the fiber p;l (S)
of py is a unique oriented orbit of Xy of energy & ((2.9)), so is the fiber p~'(S) of p
because p = pj, on H~'(h).
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To show that p is a submersion, first note that by ((2.9)) the map p;, : H~'(h) — Cj, is
a submersion. Note that H~' (k) and C, are codimension 1 submanifolds of 7'S* and C,
respectively. Since a normal direction to H~!(h) at (x,y) € T'S* and a normal direction
to Cy, at p(x,y) € C is spanned by gradH (x,y) and grad F(p(x,y)) respectively, where
F(Sij) = Yi<icj<4 Sizj —2h = 0 defines Cj, as a submanifold of C, it suffices to show that
(Tixy)p gradH(x,y), grad F (p(x,y))) is nonzero. We compute. Clearly gradH(x,y) =
(0.7). Hence Ty, (erad H (x,y)) = xAy = (8;;(x,y)). But gradF (p (x,y)) = 2(Si;(x.)-
Therefore

(Tiyp(gradH(x,y)),grad F(p(x,y))) =2 Y S}(x.y) =4h>0. m
1<i<j<4

This claim has some interesting consequences.

Corollary 1: The space of orbits of the geodesic vector field with positive energy is the
manifold C. The orbit map is p : TS> — C, see (16).

(2.15) Proof: This follows immediately from the claim and the definition of orbit space, see
chapter VII §2. O

Observe that every smooth integral of the geodesic vector field on 7'S3 is a smooth func-
tion of the integrals S;;. More precisely we prove

Corollary 2: Suppose that G : TS> C TR* — R is a smooth integral of the geodesic
vector field Xz on (T'S?,9y). Then there is a smooth function G : C € A’R* — R such
that G = p*G.

(2.16) Proof: Since G is a smooth integral of Xy on TS3, it is constant on every orbit of Xy
on TS, Because each fiber of p is a unique orbit of Xy on TS3, G descends to a smooth
function G on the orbit space C. But p : TS*> — C (16) is the orbit map, so G = p*G. O

3 The Kepler problem

We investigate the bounded motion of a particle in R® which is under the influence of a
gravitational field of a second particle fixed at the origin. This is Kepler’s problem.

3.1 The Kepler vector field

In this subsection we define the Kepler Hamiltonian system (H, TyR?, @3). We then show
that the Kepler Hamiltonian vector field Xy conserves energy H, angular momentum J,
and the eccentricity vector e. On the set ¥_ of positions and momenta where the values
of H are negative, the orbits of Xy are bounded, yet the flow of Xy is incomplete.

On the phase space TyR? = (R*\ {0}) x R? with coordinates (¢, p) and symplectic form
= 21-3:1 dg; A dp;, consider the Kepler Hamiltonian

H:TyR® = R:(q,p)— 2(p.p) —pllq| " (23)
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Here (, ) is the Euclidean inner product on R and ||g|| is the length of the vector g. The
integral curves of the Hamiltonian vector field Xz on ToR? satisfy the equations

e (24)

which describe the motion of a particle of mass 1 about the origin under the influence of
an inverse \q|2 force — such as Newtonian gravity. We consider the case where the force
is attractive, that is, g > 0. However, much of the following analysis can be carried out
without change for u < 0.

The Kepler vector field Xy has some obvious integrals: the total energy

h=5(p,p)—ullgl™", (25)
which is nothing but the Hamiltonian H, and the angular momentum

J=(,/2,J3) =qxp. (26)
Here x is the vector product on R3.

(3.1) Proof: A direct way to see that J is an integral is to compute

dJ dq dp -3 _
G " q (PTaxg =pxp ullgl~gxq=0,

where the second to last equality follows using (24).

A more sophisticated way to see this is to note that the SO(3)-action SO(3) x R? — R3:
(0,q) — Oq lifts to a Hamiltonian action

SO(3) x THR® — THR’ : (0,(q,p)) + (0q,0p).
This latter action has the momentum mapping
- 0 3 =)
J: TR =s0(3) : (g,p)— |- 0 1 |,
J —Ji 0
defined by f(q,p)X = (p,X(q)) where X € s0(3). Now use the map k” associated to the

Killing metric k : s0(3) x s0(3) = R: (X,Y) — L trXY" to identify so(3)* with so(3).
This identification boils down to taking transposes. Follow this by the map

0 —X3 X2
iISO(3)—>R3 X = X3 0 —X] | = X = (x17x27x3)7
—X2 X 0

which identifies so(3) with R?, see chapter III §1. Then J becomes the usual angular
momentum J : ToR?> — R3: (g, p) + ¢ x p. Since the SO(3) action on (TyR?, @) leaves
the Kepler Hamiltonian H (23) invariant, every component of the angular momentum J is
constant on the integral curves of Xy . O
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> There is another integral of the Kepler vector field, called the eccentricity vector:

e=(er,e2,e3) = —lgl| 'g+ " px(gxp). (27)

(3.2) Proof: To see this we calculate

%_,E -1 -3 _ —1dﬁ —1d£

e g+ 3 = g1 (g gl P
=gl ({¢.p)a—(a.9) p) — llgll >g xJ, using (24)
=lgl|* (g% (gx p)—qx (g x p)) = 0. O

We now prove some properties of the flow of the Kepler vector field Xp.

Claim: If the energy # is negative, then the image of every integral curve of the Kepler
vector field under the bundle projection 7 : ToR? — R3: (¢, p) + ¢ is bounded.

(3.3) Proof:
CASE 1. J = 0. Since e is an integral of Xy and J = 0, the direction e = —¢||g||~! of
the motion is constant. Therefore the motion takes place on the line ¢(r) = r(f) e. From
conservation of energy we obtain A+ pr—! = li'2 > 0. Therefore ||g(¢)|| < u(—h)~".

CASE 2. J # 0. Since J> = |lg x p||* = [lg[P*[|p||* <q7p>2,wehave

- 2
h=5(p,p)—ullgl™" = 3(a.p)*llqll >+ 371lqll > — mllgl " = 372(lql > — ullqll ="

Now the function V;(||q||) = 3/%(/¢]| =2 — 1|q|| " has a unique nondegenerate minimum at
llgll = J?/u corresponding to the critical value —u?/(2J%). Since limy o Va(llgll) oo
and limyg) ~.V;(|[q]]) /O, the function V; is proper on the set where it has negative

values. Therefore V, ! ([—u?/(2J%),h]) is compact. Thus the length of ¢(¢) is bounded,
when h < 0. g

Claim: The flow of the Kepler vector field Xy is not complete.

(3.4) Proof: Consider a bounded motion with J =0 and 2 < 0 which starts at (r(0),7(0)) =

_ _ /(= dr i
(u/(=h),0). The time it takes to reach the origin is T = [ \/m This is
obtained by separating variables in 37 = h+ pr~ ! and integrating. Performing the inte-
gral gives T = Z p(—2h)=3/2, wh1ch is finite. O

3.2 The so(4)-momentum map

Let £_ be the open subset of TyR? where the energy H is negative. In this subsection we
show that on X_ the components of the angular momentum J and the modified eccentricity
vector € = —ve, where v = 11 /y/—2H, form a Lie algebra under Poisson bracket which
is isomorphic to so(4). This defines a representation of so(4) on the space of Hamiltonian
vector fields on (2_, @3 = @3|X_) which has a momentum mapping / In fact f isa
surjective submersion from X_ to

C={J, & eR|(J+eJ+&=(J—€J—¢) >0} (28)



44 Geodesics on $°

each of whose nonempty fibers is a unique oriented bounded orbit of Xp.

> First we show that on (X_, @3) the components of the angular momentum J and the mod-
ified eccentricity vector e satisfy the Poisson bracket relations

{3}y =Y &indi, {Jiej} =Y jner, and {&,e;} =Y €. (29
k 3 k
(3.5) Proof: We verify only the third equality in (29). Let A = pe. Since {qs, pm} = Oum,
{gi,q;} =0, and {p;, p;} = 0, we have
a llgll} =0, {qa: I} = Zeabcqm and {pg,Jp} = Zeabcpc-
c c

Using bilinearity and the derivation property of Poisson bracket, expand

{AiaAj} = {Zsijkpj]k - ”HQH71 qis Zglfmnpm-,n - ,LLHC]H71 qlf}
Tk

m,n
to obtain {A,’,Aj} =-2HY, Sijk-]k- Recall the identity ) ; Eijk€itm = ‘Smk6éj - 5jm§€k- (]
> The bracket relations (29) define a Lie algebra which is isomorphic to so(4).

(3.6) Proof: For i = 1,2,3 define §; = %(J, +e¢;)and n; = %(J,- —¢;). In terms of &; and 7; the
bracket relations (29) become

{88} = zk:f:ijk &, {nin;} = Zk:sijk Mk, and {&;,n;} =0. (30)

These relations define the Lie algebra so(3) x so(3), which is isomorphic to so(4).

The mappings J; — adj, = —X, and ¢; — ad;, = —X;, define a representation of so(4) on
the space of Hamiltonian vector fields on (X_, @3). In other words, we have a Hamiltonian
action of the Lie algebra so(4) on (X_,@3). Associated to this Lie algebra action is the

mapping

S = Ru(gp) = (@)= (gxpv(lal'g—n""px(gxp))).  GD
Here we have chosen {&},.;c¢ = {/1,J2,J3,€1,€2,€2} as a basis for so(4) with Lie
bracket {,}. Let Z ¢ be the i component of the mapping #. Then the bracket
relations (29) may be written as {_# &, #¢} = #&&} Therefore we say that the
map _# is the momentum map of the so(4)-action on (X_, @3).

We now investigate the geometric properties of the mapping jv (31). We begin by noting
that the vectors J and € satisfy

Je =0
JI+(EE =v2>0.

The verification of the first equation in (32) is a straightforward. For the second, see (37)
below. These relations define a smooth 4-dimensional manifold Cy, which is diffeomor-
phic to 2 x S%, because (32) is equivalent to

J+eJ+8) =(J-¢J—¢ = v?>0. 33)

(32)
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Write v = p/+/—2h for some h < 0 and consider the map
In= JH'(h):H'(h) CZ_ —Cy CRC. (34)
Claim: ﬁ is a surjective submersion.

(3.7) Proof: Let (¢,p) € H ' (h) and let V,, ,) = span {X;, (¢, p), Xz, (q,P)}lng. Since J and €
are integrals of X, it follows that V(, ,y C kerdH (g, p) which is T(W)H‘l (h). Therefore

dJi(q,
D/h(‘]:]’)W(q,p) = < ia P)) V

aei(q,p) )| 1P

_ <({Jivj.i}(%l7)) ({Jh?j}(q,p))) _p
({esi}a.p)  ({eeHa.p)

On Cy (32) the rank of P is 4, because P is conjugate to the matrix

(({éivéj}) 0 ) _ (22k8ijk (Jx+ex) 0 )

0 ({ni,n;}) 0 2 eiu(k—a))’
see (30) and (33). Therefore j;: is a submersion.

To show that j;is surjective, let (J,€) € Cy. Then e = |le|| = v=!|[¢| € [0,1] because
vi= J.J)+ (ee) > Vz(e,e>. Choose

(—vu ' (1—e)e'e,—uv3(e(1—e)) ' Jx€), whene € (0,1) and J # 0
(g.p)=1{ (—uv?pxJ,p), whene=0andJ #0. Here (p,J) =0, ||p|| = uv~!
(—vu~'e,—vu=2¢€), whenJ = 0. Here e = 1.

A straightforward calculation shows that (¢, p) € H~'(h) and ;ﬂ;(q7 p)=(J,e). O
Corollary: For every ¢ € Cy the fiber ;7\; ! (c) is a union of bounded Keplerian orbits.
(3.8) Proof: From the fact that j;; is a submersion, it follows that
dimkerD_#(q, p) = dimT(, , H'(h) —dimimD _#,(q,p) = 5—4 = 1.
But Xy (gq,p) € kerDj;:(%p). Hence for every ¢ € Cy
Ty Fy ' (€) =kerD Zi(¢.p) = span{Xu(q,p)}.
Therefore ﬁ !(c) is a union of bounded Keplerian orbits. O
The following claim is a substantial sharpening of the above corollary.

Claim: For every c € Cy, the fiber ﬁl(c) is

1. an oriented ellipse, when ¢ & C, N{J = 0};
2. aline which is the union of two half open line segments

{(GV"E, v ' (V2h+2uc-1)e) e THR? |0 € (O,/,L/(—h)]},

that join smoothly at (i/(—vh)e,0), when ¢ € C, N{J = 0}.
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(3.9) Proof:
CASE L. ¢ = (J,€) € Cy\ (CyN{J =0}). Let h = —u?/2v%. We have to show that the
datah <0, J #0, and e = —v~! € determine a unique oriented ellipse which is traced out

by the projection ¢ — ¢(r) of an integral curve z — (g(t), p(¢)) of Xp. Because J # 0 and
(q(),J) = (p(t),]) =0, the curves ¢ + ¢(t) and ¢ ~ p(¢) lie in a plane IT C R? which
is perpendicular to J. Since (J,e) = 0, the eccentricity vector e also lies in IT. Therefore
we may write (g,e) = ||g||ecos f, where f is the true anomaly, namely, the angle ZAOP.
From the definition of the eccentricity vector e (27) it follows that (g,e) = —||g||+u =" J2.
Therefore

lgllecos f = —llq]| +u~" 2. (35)
Suppose that e = 0. Then (35) becomes ||g|| = p~! J2, which defines a circle % in IT with

center at the origin. Since 0 = d”‘l( I = (q, dl) (g, p), the tangent vector p(z) to € at

Figure 3.1. Ellipse in the plane IT.

q(t) is perpendicular to ¢(¢). Because {g,p,p x ¢} is a positively oriented basis of R,
{q,p} is a positively oriented basis for IT. Hence the circle traced out by ¢ +— ¢(t) is
positively oriented. Suppose that e # 0. Then equation (35) may be written as

e((ue)™" 7> = llg|l cos £) = l|qlI. (36)

Equation (36) describes the locus of points P in the plane IT for which the ratio of the
distance OP to the origin to the distance PM to the line MB, where OB = (,ue)’l.lz, is a
constant e, see figure 3.1. Thus the locus is a conic section. To see which conic it is, we
calculate the size of e.

= el* =1-2u""gl " llgx plP+u"?lpx (gx p)|I*, using (27)
=1-2u"Yq 7" P +u2(lplP7? = (p.J)?), usingI=gxp
=142u7*Jh, since (p,J) =0and k= §(p,p) — ullq|~". 37

Since & < 0, it follows that e € [0, 1). Therefore the locus
lgll = 72" (1 +ecosf) ™! (38)

is an ellipse in I1 with eccentricity e and major semiaxis lying along e, which is directed
from the center of attraction O, that is also a focus, to the periapse A, of length a =
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> J2u~'(1—e?)~! = u/(—2h). When traced out by  — ¢(t), this ellipse is oriented in the
direction of increasing true anomaly f.

(3.10) Proof: From the fact that {q, p} is a positively oriented basis of the plane IT, we obtain

J =g x p||, which is the area of the positively oriented parallogram
spanned by {¢, p}.
(0¢G0T
= det —1 —1 )
(p.e”'e) (p,(Je)" I xe)
since {e~'e, (Je) 1] x e} is a positively oriented
orthonormal basis of IT

_ e
= [|q|l i (39)

Equation (39) follows by first differentiating (g,e~'e) = ||¢g||cos f and (g, (Je)~'J x e) =
lg|lsin f along an integral curve of Xy and then using the fact that p = ‘(ii,—" and ¢ =
J =0 to obtain (p,e"'e) = % cos f — |lq]| sinf% and (p,(Je) ' I xe) = % sin f +

gl cosf%. From (39) we see that % > 0. O

CASE 2. ¢ = (J,€) € C, N{J = 0}. Since J = 0, the modified eccentricity vector € =
v|lgll~'g. Because € is constant along any integral curve ¢ +— (g(t),p(t)) of Xy and
h < 0, the image of t — ¢(t) lies along € and is the half open line segment {cv~'e €

H|G € (0,u/(=h)]}. From J = 0 it follows that p = Ae for some A € R. In order
that (ov~'e, p) € H~'(h), where h = —u?/(2v)?, we must have A>v? = (p,p) = 2h+

2uc~!. Therefore #, '(c) is the line which is the union of the two half open line seg-

ments {(ov '€ +v-!(\/2h+2u0"T)€) € TyR*|c € (0,u/(—h)]}, which join
smoothly at (1/(—hv)e,0). O

It is not hard to show that on ;ﬂ;‘l (Cv\ ({J=0}NCy)) the mapping ﬁ is proper,
whereas on 7, ' ({J =0} NCy) it is not.

We now turn to examining the so(4)-momentum mapping j (31). Let C be the subman-
ifold of R? x (R*\ {(0,0)}) defined by (J,¢) = 0.

Claim: The map

J X CCR :(q.p)— (g% p,v(lgl ™ 'a— 1" px (g% p))) = (J.8)

is a surjective submersion, each of whose fibers is a unique bounded orbit of the Kepler
vector field Xy .

(3.11) Proof: First we show that jis surjective. Supppose that ¢ = (J,€) € C. Then ||J +E||2 =
|J—€||* = v for some v > 0. Hence (J,€) € Cy. Let h = —u?/(2v?). From ((3.7)) it
follows that /h_l (c) is nonempty. Hence _# ~!(c) is nonempty. Because /h_l (c)isa

unique oriented bounded orbit of the Kepler vector field, f !(c) is as well.

Since C is a 5-dimensional smooth manifold, the map _# is a submersion if for every
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(g,p) € X_ the rank of D/(q p) is 5. Actually it suffices to show that for every (g, p) €
H~!(h) the vector D_# 7 (q,p)gradH (g, p) is normal to Cy at /(q D), because
—1 _ N .

1. by (3.1, D7 (g, p) Ty pyH ' (h) = T g

2. anormal space to H~!(h) in £_ at (g, p) is spanned by gradH(q, p);

3. as a submanifold of C the manifold Cy is defined by

F(J&)=(J,J)+ (€@ - v> =0, (40)
where v = u(v/—2H) /2

Since the normal space to Cy at ﬂq, p) = (J,€) € Cis spanned by grad F (J,€) =2(J,€),
it suffices to check that (D_# (q, p) gradH(q, p), grad F(_# (¢q,p))) is nonzero. The fol-
lowing calculation does this.

0 +# (gradH(q,p), gradH(q,p)) = DH(q,p) gradH(q, p)
=D(—1u*((1.J)+(©€@) ") (q,p) grad H(q, p),
using H = —pu?/(2v?) and (40)
=302 ((1.9) + €®) (W, DI(q, p) grad H (g, p))
+ (e, De(q, p) gradH(q, p)))
=u"2H(q.p)* (D7 (q.p)gradH(q,p),grad F( 7 (¢,p))). O

The above result has several useful consequences.

Corollary 1. The smooth manifold C (28) is the space of orbits of negative energy of the
Kepler vector field Xz and the momentum map ¢ : £_ — C (31) is the orbit map.

(3.12) Proof: The corollary follows from ((3.11)) and the definition of orbit space. O

The next corollary says that every smooth integral of the Kepler vector field on X_ is a
smooth function of the components of angular momentum J and the modified eccentricity
vector €. More precisely,

Corollary 2. Suppose that G: X_ C TQR3 — R is a smooth integral of the Kepler vector
field Xy . Then there is a smooth function G:C C R® — R such that G = / G.

(3.13) Proof: Since G is an integral of Xy on ¥_, it is constant on each bounded orbit of X and
hence is constant on the fibers of the momentum map j Because C is smooth and is
the space of orbits of Xy on X_ with orbit mappmg j G descends to a smooth function
G:C C R® — R. In other words, G = / G. O

3.3 Kepler’s equation

So far we have only used the constants of motion to describe the orbits of the Kepler
vector field Xy of negative energy. This means that we cannot tell where on the orbit the
particle is at a given time.
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In order to give a time parametrization of a bounded Keplerian orbit, we define a new time
scale, the eccentric anomaly s, by

ds _
5 = V2l @1

Before finding a differential equation for ||¢(s)||, we use the integrals of energy and angu-
lar momentum to find a differential equation for ||g(¢)||. Multiplying the energy integral

h=3(p,p) — wlall~" by 2|lg|1* gives [lq|*|[pll* = 2etllq]l + 2/ lgl*. But [lg[P*||p|* =
lg x plP*+ (g, p)* = 7>+ (p,g). In other words,

dliq
Jot? (LY 42 =21 gl 201 @)

Using (41) to change to the time variable s and dividing by —2#h gives

d||g||\?
(Y -+ =201l - Lol @)

since a = u/(—2h) = J?u~"' (1 —e*)~'. Instead of separating variables and immediately
integrating (43) we first change variables by eap = a — ||¢||. Then (43) simplifies to

d
( P ) +pi=1 (44)
ds
Since ||¢(0)]] = a(1 — ), from the definition of p we obtain p(0) = 1. Therefore

llg(s)|| = a— aecoss. (45)

To find the relation between the eccentric anomaly time scale s and the physical time scale
t, we substitute (45) into (41) and integrate to obtain

V=2h(t—1)=+v-2h /dt / (a —aecoss)ds = as— aesins. (46)

Here 7 is a time related to the time of periapse passage. Its precise definition is given
below. Dividing (46) by a and using a = 1 /(—2h) = v/ gives Kepler’s equation

s—esins = u’v=? (t—1) = nt, 47)

-3

where £ is the mean anomaly and n = u?v =3 is the mean motion. Note that

quH dlg]| ds
(a0 = (g, 50) = ] AL = g TN
=+/—2hae sins, using (41) and (45)

= Vesins. 48)

When t = 7 from Kepler’s equation it follows that s = 0. Let 7’ be the physical time
corresponding to s = 27 in (47). Then 7 — 7’ is the period of elliptical motion, which
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1

according to Kepler’s equation, is 2zn~" = 2xv3u~2 = 2zu~"/24%/2. This is Kepler’s

third law of motion.

During elliptical motion the particle goes through the periapse periodically. Therefore
the time 7 in (47) is not uniquely determined by the initial condition (¢(0), p(0)), which
defines the integral curve of Xy. We will define 7 as follows. In the interval [—7, 7] there
are precisely two values £5p (with €2 = 1) which satisfy ||¢(0)|| = a(1 — ecos €5p). To fix
the choice of € note that from (48) we have € = (¢(0), p(0))/(vesinsp), unless 5o = 0
in which case € is irrelevant. Set sy = €5¢ and let 7= —n~! (sg — esinsp). In words, we
define 7 as follows. If at r = 0 the particle is in the upper half of the ellipse, then 7 is the
first time before t = 0 when the particle passed through the periapse; otherwise it is the
first time on or after t = 0 when the particle passes through the periapse.

Jxe

Figure 3.2. The eccentric anomaly.

To describe the classic geometric meaning of the eccentric anomaly s, consider the figure
3.2. Let O be the center of attraction, A the periapse and C the center of the ellipse of
eccentricity e. The arrow on the ellipse indicates the direction of motion and P is the
position of the particle on the ellipse with true anomaly f. Construct a line SP through P
which is perpendicular to the line CA. Project P parallel along SP to the point S on the
circle € with center C and radius equal to the distance CA.

Claim: The eccentric anomaly s is the angle ZACS.

(3.14) Proof: Let ¢ = ZACS. From figure 3.2 we obtain CS = a and CO = ae. Since CF =
CO + OF, we find that acos 6 = ae + ||g|| cos f. As the orbit is elliptical, we have ||¢|| =
a(l —e*)(14ecos f)~'. This may be rewritten as

llgl| = a—e(ae+||q||cos f) = a—aecoso.

But ||¢|| = a — aecoss. Hence coss = coso. Since s = 0 when ¢ = 0, we obtain ¢ = s.
O

As the point S traces out the circle % uniformly with speed n, the point P on the ellipse
traces out the projection of an integral curve of the Kepler vector field in configuration
space.
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4 Regularization

In this section we remove the incompleteness of the flow of the Kepler vector field by
embedding it into a complete flow. This process is called regularization. We regularize
the Kepler problem in two ways: one, called Moser’s regularization, works on a fixed
negative energy level; while the other, called Ligon-Schaaf regularization, works on all
negative energy level sets at once.

4.1 Moser’s regularization
We begin by discussing Moser’s regularization. On the phase space (ThR® = (R*\ {0}) x
R, @3 = ():?: 1 dg; Adp;) |T0R3) with coordinates (g, p) consider the Kepler Hamiltonian

H(q,p) = 3|Ipl* ~llal " (49)

Here {, ) is the Euclidean inner product on R? with associated norm || ||. We have chosen
physical units so that u4 = 1. The integral curves of the Hamiltonian vector field Xy
associated to H satisfy

dg JH

d_,_ o

dr dap

Lol =22 -
a4l g= dq’

Let R-g be the multiplicative group of positive real numbers. On R x TyR? define an
R.y-action by

Py :Rog x (Rx THRY) = Rx ToR*: (p,(1,4,p)) — (P°1,p°q,p " 'p). (51

> The equations of motion (50) of the Kepler problem are invariant under the action (51) of
the virial group.

(4.1) Proof: We check this as follows.

p)

dip“g) d(p 4y -3. 12 3.2
=p p and a0y P lgll~"q=—lp~ql " p~q. O

d(p’1)

Under the virial group the Kepler Hamiltonian H (49) transforms as H + p~>H and the
symplectic form transforms as @3 — p @;.

We now regularize the bounded orbits of the Kepler problem of fixed negative energy.
Using the virial group we reduce our considerations to the level set H~! (—%) First we
introduce a new time scale s by & = ||¢||~!. Consider the new Hamiltonian

F(q.p) = llqll(H(g.p)+3) + 1= llall(Ip|* +1). (52)

> The integral curves of Xz on F~(1) are integral curves of Xz on H™! (—3). using the
time parameter s.
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(4.2) Proof: Using the time parameter s the integral curves of X satisfy

dg  dgdr b 1
dg _dgdi _ ol 2 (H 1

&~ aa Pl ||q||ap( (¢:p)+3) .
dp dp dr o p) 1

dp _dpdr — a2 (m N

e el g~ —ldl 5 (. p)+3)

OnH~!(~3) we have H(g.p) + 3 = 0. So |4 & (H(q.p) + 3) = Z (llll (H (q.p) + 3))
for z = g or p. Therefore on F~!(1) = H~! (—%) equation (53) is in Hamiltonian form

dg  OF
ds %
~ 54
a _ oF oY
ds  dq’
Hence the integral curves of Xz on H~!(— %) are the same as the integral curves of X on
F~'(1), using the time parameter s. O
Let K : ToR® — R, where
= = 2
K(q.p) = 3F(q.p)* = gllal*(lp|* +1)*. (55)

> The integral curves of Xz on K (%) are the same as the integral curves of X5 on Fl(1).

(4.3) Proof: This follows because on F~'(1) we have

dg _ 9F? zoF OK

ds 29p  dp Ip
a0 oF R

= Tag o= Ay -

On our way toward defining Moser’s regularization map consider stereographic projection
@ : S5, =5\ {np} — R? from the north pole np = (0,0,0, 1) of the 3-sphere §* = {u €
R*|(u,u) = ¥j_, u?} to the 3-plane R* = R x {0} in R*. For each u € S3, let g = ¢(u) be
the point of intersection of the line joining np to u with R3. A short calculation shows that
qi= 134 fori=1,2,3. Let T“'Sﬁp ={(u,v) € TR3|u € Sﬁw 0= (u,v) :Z‘}:l Ujvj, v#
0}. Consider the mapping

@y TSy, = TR 2 (u,v) = (q,p) = (— (1 —ua)v—vati, (1 —ug) '), (56)

where u = (i, us) and v = (¥,v4). Then ®,,' is the composition of a lift of stereographic
projection

Eﬁ : T+S13;p — T0R3 : (uvv) — (qvp) = ((1 71'{4)_12;7 (1 - M4)17+ V4ﬁ)7

followed by the momentum reversal y : T)R?> — TyR? : (¢, p) +— (—p,q). When (u,v) €
> T+, we have the identities

gl = [[vI*(1 —us)? (57a)
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PP +1=2(1—u)" (57b)
(g,p) = —vs. (57¢)

(4.4) Proof: Using (u,u) = 1 and (u,v) = 0, from (56) we get

3

Z (v;(l —ug) +M,‘V4)2

i=1

3
2 2
lgl* =Y a =
i=1

= (1= ua)*(|VI[* = v3) — 2uavi(1 — ua) +v3(1 —uu3)
= VIP(1 —ua)?;

s

3
PP +1=(1—us) 2 Y uf +1=(1—us) 2(1—uz)+1=2(1—uy) "
i=1

(q,p) = i%‘pi = —i (i1 — uag) +uva) (1 — ug) ;)
iz -
:M4V4—V4(1—u4)71(1—142):—V4. 0
Define Moser’s mapping
Dy HR® — T*’Sﬁp (g, p) — (u,v) = ((@,us), (v, v4))

by

@ =2p(|plP+1)~" and us=([pl* - D(pl*+1)7! 58)

Vo= —5(IpI*+1)g+{g.p)p

and  v4 = 7<Q7P>
> We now show that CD;,II (56) is the inverse of Moser’s mapping ®,; (58).

(4.5) Proof: Suppose that (u,v) € T*S>. Then

1~

By (B (u,v)) = Dua(g.p),  where g = —(1 —uy)i—vaiiand p = (1 —us) i

= (1= ua) (1 =) 7", (21— ua) ™" =2) (1 — ),

((1—ua) " [(1 — a)V + vatl] — vaii(1 —us) ™", va))
using (58) the identities (57a) — (57¢)

= (@, 1= (1—ug)),v+(1 —uy) Mg —(1 —u4)71V4ﬁ,V4)) = (u,v).

Now suppose that (¢, p) € TyR>. Then

D3 (P (q.p)) = Py (w,v) = (= (1~ a)v = vair, (1~ ua) ™),

where u, v are given by (58)

(=2(lpI? + D7 =3 IpI* + g + (g pypl +2(a. p)(lpI* + 1)~ p,

2(llplI? + 1)~ 5 lplI? + 1)p) = (4,p). 0

> The restriction ® of Moser’s mapping @ (58) to H *1(—%) is a diffeomorphism of
H~'(—1) onto Tngp ={(u,v) eT*S? | ||u]|> = 1} with inverse & = &, |T; S}
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(4.6) Proof: Using (u,v) € T1S3, and the identities [|¢[* = ||v][*(1 —us)? and [|p[|*+1 =

2(1—ug)™" we get 3|Ipl* —llgll ™" + 3 = (1 —ua) ™" = (V[ (1 —ua))~" = 0, that is,

(g,p) € H’l(—%). So ® = <I>_1|T1 s3 , maps TlS3 into H*I(—%). From the fact that

v(g,p) = (—2H(q,p))~"/> = 1 when (q p)EH™ ( 1), a stralghtforward calculation,

given in (69a) — (69¢c), shows that ® = Py |H~ '(—%) maps H~'(—}) into TlSnp‘

Because Moser’s mapping is a diffeomorphism of ToR> onto T+S§p, it follows that @
is a diffeomorphism of H~'(—3) onto Ty Sgp with inverse ®. O

The map ®,,' pulls back the 1-form ():?:1 qidpi)|H™ ' (— 5) on H!(— %) to the 1-form
—(Z‘}:lvjduj) |T]S3 on T]S3.

(4.7) Proof: On H~!(—1) we have

3
Zq,dp, = Z l—u4 v,+V4u,)d((l—u4 lu,- Zv,du,

i=1

—Zuivi(l—m du4—V4(l—u4 Zu,du,—m 1—ua)” Zu duy

i=1
since 0 = d( ‘}:1 u?) gives —ugduy = Z?:] u; du;
3
= - Z vidu; + vaug (1 —ug) " dug + vaug (1 —ug) " duy

i=1

(1—u4)(1—u4) 2vadua, smceZ luv,z—mmandif’jm?zl—ui

—72\//‘(114}'. O
j=1

> The inverse @;,,1 (56) of Moser’s mapping is symplectic,
(4.8) Proof: On T3 S5, we get

3 3 3
Ml)*(z1 dgi Adp;) = (@) (dY gidpi) = d ((@3,")* (Y qidpi))
i= i=1 i=1

4 4
—d() vjduj) =Y dujAdv;. O
j=1 j=1
On TS, let
K(u,v) = (@) K(u,v) = 5|vI?, (59)

using (57a) and (57b). From ((4.7)) and ((4.8)) it follows that on the energy level H ™~ ( 2)
the Hamiltonian system (H, ToR?, co) is equivalent to the Hamiltonian system (K, T*Sﬁp,
(Z‘} p duj /\dvj)| T+S3 ) on K~ ( ) via Moser’s mapping @y (58). Clearly K extends
to a smooth function on TSN K~ ( ), whose Hamiltonian vector field Xx defines the

geodesic flow on $* on K~ ( ). Hence Moser’s mapping embeds the incomplete flow
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of the Kepler vector field Xy on H~! (—%) into the complete geodesic flow on K~! (%)
Using the virial group we can use Moser’s mapping to regularize the Kepler vector field

a negative energy level at a time.

We now see how the integrals of the geodesic flow pull back under the of Moser’s map-
> ping. We show that under Moser’s mapping ®y, the integral S;; = w;v; —ujv;, 1 <i <
j <3, of Xg on K~'(}) pulls back to the k™ component J; of the SO(3)-momentum
J = p x grestricted to H~'(—1). Here {i, j,k} = {1,2,3}. The integral Sjs = u;v4 — vjus,
1<i<3,0f Xy on K~! (%) pulls back to the the it component of the eccentricity vector

e=—|q|"'g+px (g p) restricted to H~' (—1).
(4.9) Proof: When 1 <i< j <3 we get

Dy (Sij K (3)) (,v) = (Piy (wivj —ujvi) ) |[H ' (=3)
= 2pi(llpIP+ 1)~ (= 3UlpI? + Vg + (. p)p))
—(= 3PP+ D)gi+ (g, p)pi)2p;(I|pl* +1)7"] , using (58)
= (qipj—pja)|H " (=3) = IH ' (=3).

Also when i = 1,2,3 we have

Py (Sial K1 (3)) (u,v) = (g (uivs —uavi) )|H ' (—3)
= [=2pi(llplP + 1) g, p) + 3a(llp* — 1)
—(a: )PP (lp I+ 1) pi+ (g, p) (IpIIP +1) ' pi]
= [=pila.p) +ailpl* = 5(IIpI* +1)ai]
= [=llgll ™ qi +ai(p.p) = pila, P [H ' (=5) = eil H' (=)
The second to last equality follows since %(Hp”2 +1) = ||q|| " defines H’l(—%).
> Let
T:TTS SRy Y (v —uwi)? = [|a < 9%

1<i<j<3

Then J ! (0) is the set of all integral curves of the geodesic vector field Xk, which pass

through the collision set C = {(u,v) € T*S3 | ug=1}on T+S3,

(4.10) Proof: The image of each integral curve of Xx under the bundle projection map is a great
circle on $3. Each great circle intersects the equatorial 2-sphere {uy = 0} NS> at some

point P = (u,0,V,v4). Suppose that J(P) = 0. Then u x v=0. If v £ 0, then u = AV for
some nonzero A € R. But (u,v) € T*S3. So 0= (u,v) = (&, V) + ugvy4 = (1, ), since ug =
0. Consequently, 0 = A (v,v), which contradicts the fact that A # 0 and v # 0. Therefore
V=0, thatis, P = (it,0,0, v4). For some 7 > 0 the integral curve y: R — TS5 : ¢ X (P)

of Xk passes through the collision set C. To see this we must find 7 so that

u . u sin(zv2K) (0
cos(7v2K) <0> + 557 <V4>
1] _ k|0
b (PT 0 - ) n 0 s
v} V4 — V2K sin(1v/2K) <0> +cos(TV2K) <V4>
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using (8). Noting that K = K(P) = %vﬁ > 0, the fourth component of (60) reads 1 =
v4|v4| ! sin(Tv/2K), which gives T = 1/(2v4), if v4 > 0 or T = 371/(2|v4]), if v4 < O.
Thus the first three components of (60) read 0 = cos(7v/2K), as desired. Consequently, at
time ¢ = 7 the integral curve ¥, which starts at P = (1,0, 0, v,4) passes through the collision
set C. Thus J~1(0) is a subset of C. The collision set is clearly a subset of J1(0). [

Under Moser’s mapping J ~1(0) corresponds to the set of bounded orbits of the Kepler
problem with 0 angular momentum. This is precisely the set of bounded Keplerian orbits
which reach the origin of R? in finite time.

4.2 Ligon-Schaaf regularization

On the subset £_ of phase space TyR>, where the Kepler Hamiltonian is negative, one can
perform regularization in such a way that the embedding is symplectic and the resulting
vector field is Hamiltonian with an SO(4) symmetry, which integrates the so(4) symmetry
of the Kepler Hamiltonian. This symmetry does not arise from a lift of a symmetry on
configuration space.

We regularize all negative energy Keplerian orbits at once using the Ligon-Schaaf map

P5:X CTHR - T7S;, CTR:

6 ()= i v ()

where
w = (vig.p)" lallp.(p.p)lgll — 1) .
v = (=llgllg+(a.p)p,~v(a.p)"{a.p)).
and v(q,p) = (ﬁ — |Ip|I?)~"/%. We start by factoring ®y.
Claim: Let
S:X CTHR* = T1S;, xRog S TR X R: (g, p) = (u,,V), (63a)
where v = v(g, p) and (u,v) is given by (62). Also let
L:TiS* xRog — T8 CTR: (u,n,v) s <fs~> (63b)

—sinvgy  cosvy v

where (;:) = ( cosva Sinv“) ("). Then &g = LoS.

(4.11) Proof: Before proving the claim we look at each factor of the Ligon-Schaaf map more
carefully starting with the mapping S (63a). On X_ we have an R+ ¢-action

PV iR o xEZ- =2 :(p,(q.p) = (p2q.p 'p) (64)

of the scaling group. To see that ¥ is well defined suppose that p € R~ and (¢, p) € X _.
Then at (g, p) the value of the Kepler Hamiltonian H (49) is negative. So

H(p*q,p~"p)=3llp~'plI* = Ip%qll ™" = p*H(q,p) <O.
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> Thus for every p € R the map ‘PX sends ¥_ into itself. The action ¥V is free for if

> (p%q,p~'p) = (¢,p), then p = 1. Every orbit of the R--action (64) intersects the level
set (H|Z_)~!(—3) in exactly one point.

(4.12) Proof: Suppose that (¢,p) € £_. Then m = ‘P“: (¢, p) € H! (—%), since

@n)!

H(m) =H(v(q,p)¢.V(4.p)p) = V(q,p)’H(q,p) = =5
for v(g,p)* = (—2H(q, p))~". Because H(‘I’g (¢,p)) =p2H(q,p), the ¥V -orbit through
(g, p) intersects (H|X_)~! (—%) at m only when p = v(g,p) .. d
> The orbit space T_ /R is diffeomorphic to (H|Z_)~!(—1) with orbit map

my - CToR® = (HIZ_) (=1 CZ_:(q,p) = @,P) = (v(a.p) *q.v(q.p)p). (65)

(4.13) Proof: We need only show that (H|X_)~! (—%) is a smooth submanifold of THR?, since
Y = H !((—e0,0)) is an open subset of TyR>. Suppose that (¢, p) € THR? is a critical
point of H. Then 0 = dH(q,p) = (p,dp) + ||| ~>(g,dq). This implies ¢ = 0 = p, which
contradicts the fact that (g, p) € ToR3. Thus every negative real number is a regular value
of H|Z_. Consequently, (H|Z_)~!(—3) is a smooth manifold. O

Let 7153, = {(u,v) € TS5, | [[v[|* = 1}. Define an R-g-action " on 7353, x R~ by
PR x (1185, X Rag) = T1S5, x Rog : (1, (,v),4)) = ((u,v),uA).  (66)

The action W7 is free for if ((u,v),uA) = ((u,v),A), then u = 1. The space TlSip x {1}
> is the orbit space (T Sgp x R=g)/Rxp of the action ¥V The orbit map is

iy 1Sy, X Rog — 1185, x {1} 1 ((u,v), 1) — ((u,v),1). (67)
Claim: Using the restriction of Moser’s mapping @, (58) to (H|X_)~! (—%), given by

D (H\Z,)’l(—%) C THR? — TS?1p (g, p) — (u,v)
(68a)
= ((lgllp. 1P gl = 1), (=gl ~'q + (g, p)p. ~(a.P))),

and Moser’s fibration

Fy:X = TS5, (q,p) —
. ) 1 B (68b)
((v(g,p)" Nl lpIPllgll = 1), (=llgll~'a+ (g p), —v(g,p) (g, p))),

2

T~ | plI?, we obtain the following commutative diagram.

where v(g,p) > =
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s 5 iS5 xRoo - (q,p) — (Fu(g,p),v(9,p))
Ty ir
HE) () —2— 7183, x {1} (¢.P) —— (®(3.5),1)

Diagram 4.2.1

Morover, the bundle mapping S is an R+ ¢-bundle isomorphism.

(4.14) Proof: The next calculation shows that the image of X_ under Moser’s fibration Fj; is
contained in TlSip. Using the definition of Fj, (68b) and v = v(q, p) we have
(w,u) = v gl P17 + (el gl = 1)?
= (=lpl* +2llal~Dlallpl? + Apl*lal = 1) = 1; (69a)
(u,v) =valllg. ) IpI* = v~ g.p)+ v g p) = v llall(g.p)IPI* = 0:  (69b)
(vov) = llall~llall® = 2llall~"(a: p)* +llpll{a: p)* + v (g, p)?
=1-2[lgl " g. p)* +|IpI*(a. )* +2ll4ll " {a. ) — IPII*(g.p)* = 1. (69¢)

Thus Fy (X_) € T3 S>. Suppose that ug = 1. Then ||¢||||p||> =2 using (62). So —2H(q,p) =
llgl='(2 = llqlllp||*) = 0, which contradicts the fact that H(g,p) < 0. Consequently,
S(X_) C TlSﬁp x Rwg, since v(q,p) = (=2H(q,p))~"/? > 0 for (¢,p) € £_. Diagram
4.2.1 is commutative because v(g,p) = 1 and
®(7,p) = ®(v_2q,vp) = ((Iv24llvp. Ivel?lv-2qll - 1),
(—IIv 2l 'v g+ (v 2q,vp)vp,— (v 2q,vp)))
= ((v"lgllp,IpIPlgll = 1), (= llgl~ g, +(a. p)p.v~"(a,p))) = Fu(q,p).

From ((4.6)) it follows that the mapping s in diagram 4.2.1 is a diffeomorphism.

We have not yet shown that the mapping S is an R~ -bundle isomorphism. To do this, and

> thus finish proving the ((4.14)), we must show that the mapping S is a fiber preserving
R o-isomorphism and is a diffeomorphism. This assertion follows when we establish:

i) Forevery (g, p) € (H|Z_)~'(—3) and for every p > 0 we have S(‘Pg,, @.p))
= ‘PZ;—I (S(Zl\,ﬁ))

ii) The mapping S|7;, ' (g, p) from the fiber 7, (g, p) to the fiber 7" (s(g, p)) is
one to one and onto.

(4.15) Proof:
i) We compute

V(¥ (@.5) = v(p 24.pp) = (P*(-2H(@.p)) " =p "
while FM(‘P“;f, (3,p)) = Fu(p~2q,pp) = ®(g, p). Therefore

S(¥)-1(a,p)) = ((7.p).p~") =¥ -1 (5(d.0))-
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ii) Suppose that S(‘ng, (@,p)) = S(‘P‘éfl (g,p)) for some p, 6 € Rog. Then p = o,
because (<1>(Zj,ﬁ),p’1) = (@(@ﬁ),c’l) by hypothesis. Therefore we get lPX-l (g,Dp)
= ‘P‘;f, (@, p), which shows that S|, 1(@, p) is an injective map from the fiber T, Y@,p)

into the fiber 7, (s(g, p)). Suppose that (0,P,A) € ;' (s(g,p)). Then
(0,P,A) =¥} (®(G,p),1) = (®(3,p),A) = S(A*G, A" p).
Thus S maps the fiber 7, 1(g, p) onto the fiber b ! (s(g,p))- O

> To show that the mapping S: X_ C LR? =T Sﬁp x Rs (63a) is a diffeomorphism we
argue as follows.

(4.16) Proof: Suppose that (u,v,v) € TISf’lp x R~¢. Then 77 (u, v, v) = (u,v, 1) € Tngp. Since s is
a diffeomorphism, there is a unique (7, p) € (H|Z_)~'(—3) such that (g, p) =s~ ' (u,v, 1).
Because S maps the fiber 7' (g, p) one to one and onto the fiber 77! (u,v,1) and the
R.p-action W7 is free, there is a unique p € R such that S(q,p) = S(‘PX(Z]\, D)) =
(#,v,v). Thus the mapping S is one to one and onto. The next argument shows that for
every (¢,p) € L the tangent T, \S : Ty )X — Ts(q,)(Th Sip x R-p) of the mapping
S is surjective. Suppose that y: [0,1] — TlSﬁp X R is a smooth curve, which passes
through (u,v,v) at t = 0. Then 77y is a smooth curve on 7} S5, x {1}, which passes
through (u,v,1) at t = 0. Since s is a diffeomorphism of (H|Z_)~'(—3) onto Tngp X
{1}, the curve s~ !o(mroy) on (H\Z,)’l(—%) is smooth and passes through (g, p) atr =
0. Therefore ‘PXO(s’lo(irToy)) is a smooth curve on ¥_ which passes through (g, p).

Consequently, T{, ,)S is surjective. Because dimX_ = dim(7; Sgp x Rx), it follows that
Tiy,p)S 1s bijective. In other words, S is a local diffeomorphism. Thus S is a global
diffeomorphism since it is injective. O

Thus S is an isomorphism of R+ y-bundles and this completes the proof of ((4.14)). O

Claim: Consider the 1-form 6 = v((v,du) +dv4)|M on M = T1S;, x R-g C TR* xR
with coordinates (u,v, V). Then

S*((v{v,du))|M) = (v(g,p){q.p)d(v(q.p) ") — (g,dp))[Z- (70a)
S*((vdvy)|M) = (v(g.p)d(v(q.p) " (q,p)))IZ-, (70b)

that is,
576 = —((g,dp) +d(q,p))[Z. (70¢)

(4.17) Proof: Equation (70c) follows from equations (70a) and (70b) because

S*(v{v,du) +vdvs) = v(q,p){q.p)dv(q.p) "' — {(g,dp)
—v(q.p){g.p)dv(q.p) " —d(g.p)
= —(g,dp) —d(q,p)-

The following calculation verifies equation (70a). We have

§*((vodu)) = (= llgll"g+ (g, p)p.—v "a.p)). (dv""|lgllp).d(lqll I PI*)))
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=v g P lgll(lgll ™" = llplI*)dv = v~ (g, p) [l ({p.dp) +lla] ~(g,dq))
— v {g,dp)

=v Yg.p)lgll (—llgll =" v~ dv+(—2H)(—2H) " dH)
—v g, p)llgll " dH — v~ (g.dp)

since v = (—2H)~"/2 implies dv = (—2H)3/2dH =

v(—2H)""dH and dH = (p.dp) +|lq] (¢,dq)
=(g.p)dv"—v '{g,dp).

On the right hand side of the above equations we have used the abbreviation v for v(q, p).
Since S*v4 = —v(q,p)~ (g, p), we obtain equation (70b). O

Corollary: The mapping S is a symplectic diffeomorphism sending X_ to M with $*(d6) =
(X1 dgindpi)[=-.

(4.18) Proof: Take the exterior derivative of both sides of (70c). O

We now look at the factor L (63b) of the Ligon-Schaaf mapping ®;5 (61). On T+S? we
have an R g-action

WP R X TS — T78%: (1, (rs)) — (r,ps) (71)

of a scaling group. The action WP is free, for if (r,is) = (r,s), then y = 1. Because
every orbit of the action WP intersects 775> exactly once, the orbit space T+$3 /R~ is
diffeomorphic to 7753, the unit tangent sphere bundle to S, with orbit mapping

mp TS = 11832 (rys) — (ry||s]| " ts).
Claim: Using the mapping
L:TiS®xRag = THS?: (u,v,v) —~ (r(u,v7 v),s(u,v,v))7
where
r(u,v,v) = T7(u,v) =cosvau+sinvgv

(72)
s(u,v,v) = vs(u,v) = v(—sinvqu+cosvqv),

diagram 4.2.2 is commutative

TIS3 xR L T*s’ (M,V,V) - (I‘(M,V, V),s(u,v,v))
r b195)
3 14 3 ~ ~
S° x {1} N (u,v,1) —— (F(u,v),5(u,v))
Diagram 4.2.2

Moreover, the mapping L is an R~ o-bundle isomorphism.
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(4.19) Proof: The maps in diagram 4.2.2 are properly defined, because if (u,v) € T 3, then for
(7,5) = £(u,v) we have ||[7]|> = 1 = ||5]|* and (7,5) = 0. So (r,s) = (7, v5) = L(u,v,v) €
T+S3. From (72) it follows that 7(u,v) = 7(u,v,1) and 5(u,v) = s(u,v,1). Consequently,
diagram 4.2.2 is commutative.

As a first step toward verifying that the mapping L is an R~ -bundle isomorphism, we
> will show that the mapping

TS ) {1} =TS = 1183 : (u,v) @ - T(V4)<‘V‘> (73)

with T'(vy) = < cosva Sinv“) is a diffeomorphism.

sin V4 COSsVy

(4.20) Proof: We start by showing that for every (u,v) € T{S® the tangent mapping Tyl of €
is a bijective linear mapping of 7(,, , (T,53) into itself.

(4.21) Proof: Differentiating (73) gives

(£) = Tawe(2) =0 &)+t (5, 3) (2) =700 [(2) 15 ()] 0

for (i,v) € Ty (T1S %) and v4 € R. Since Tl (1S 3 = {(%y) € TR4| u,x) =0 =
(v,y) & (u,y) + (¥, v) = 0}, the next calculation shows that (,y) = (v, —u) € T, v)(TlS ).

<M7X> = (u,v) =0, <V7)>> = _<V7”> =0, and (u,y) < > < > <V,V> =1-1=0.
Therefore (1,%) given by (74) lies in Ty, (TiS%). Let (£,9) € Ty, (TiS%). Set (:):

T(vg)~! (}) V4( u) Then (it,v) € Ty, (T1S?). Using (74) we get

T(u,v)£<z> = T(V4)(T(V4)*1 (’y‘) - m(:;)) +V4T(V4)<7l;t> = (;‘)

Thus T{,,)¢ is a surjective, and so bijective, linear mapping of T(”_’v)(Tl $3) into itself. [

We now show that the mapping ¢ (73) is a diffeomorphism of 715> into itself. Since ¢ is
smooth and its tangent map is bijective at every point of 7153, from the inverse function
theorem it follows that / is a local diffeomorphism. To show that / is a global diffeomor-

phism it suffices to demonstrate that it is injective. For s € [0,1] let ¢ : T} 35783 (‘:)

— T (sva) < > Since /0 =id 7,83 and ¢! = ¢, it follows that ¢ is homotopic to idT] 3, whose

degree is 1. Hence the degree deg/ of ¢ is 1. Induce an orientation on 715> from the
standard orientation of TR* = R®. For every (u,v) € 715 the map Tiv¢ is bijective
and orientation preserving, because T (v4) € SO(4,R). Since 715> is connected and com-
pact, the mapping £ is surjective, being an open mapping. Therefore, every (x,y) € T1 5>
is a regular value of £. The fiber F = ¢~!(x,y) is a finite set, because it is a discrete
closed subset of a compact set. From the definition of degree of smooth mapping we have
1 =degl =Y ,cr 1, see exercise 4 of chapter I. Therefore F has only one element. In
other words, the mapping / is injective. This proves ((4.20)). (|
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To finish the proof that the mapping L (72) is an Rs-bundle isomorphism, we need to
show that L is a diffeomorphism and a fiber preserving R~ -isomorphism. We establish
the latter assertion by verifying

i) For every (u,v,1) € T{S3 x R+ and every p > 0 we have L(‘Pg(mv, 1)) =
‘Pg(f(u, v, l))
ii) The mapping L|m; !(u,v,1) from the fiber 7, '(u,v,1) to the fiber

7' (¢(u,v,1)) is one to one and onto.

(4.22) Proof:
i) We compute

L(W) (u,v,1)) = L(u,v,p) = (r(u,v,p),s(u,v,p)) = (F(u,v), p5(u,v))
= ‘Pff (Fu,v),5(u,v)) = ‘Pg(f(um, 1)).

ii) Suppose that L(‘Pg(u,v, 1)) = L(‘Pg(u,v, 1)) for some p, 0 € Ryg. Then (7(u,v)7
ps(u,v)) = (F(u,v),05(u,v)), which implies p = &. Therefore W) (u,v, 1) = W5 (u,v,1).
So L|m; ' (u,v,1) is an injective map from the fiber 7 ! (u,v, 1) to the fiber 7, (€(u,v,1)).
Suppose that (R, S, 1) € ! (¢(u,v,1)). Then

(E,g,l) = ‘I’g(@(u,v, 1)) = (7(u,v),ls~(u,v)) = (r(u,v,l),s(u,v,l)) = L(u,v,A).

Thus L|7; ! (u,v, 1) maps the fiber 77! (u,v, 1) onto the fiber 7, (€(u,v,1)). d
> The mapping L is a diffeomorphism.

(4.23) Proof: The argument is similar to the proof of ((4.16)). We include the details. Suppose
that (r,s) € T*S®. Then 7p(r,s) = (7,5) € T1S>. Since the mapping ¢ is a diffeomor-
phism, there is a unique (u,v,1) € T18% x {1} such that £='(7,5) = (u,v,1). Because
L maps the fiber 7' (#,v,1) one to one and onto the fiber 7' (¢(u,v,1)), there is a
unique v € Rs such that L(u,v,v) = (r,s), since the R¢-action ¥7 is free. Conse-
quently, the mapping L is one to one and onto. The next argument show that for every
(u,v,v) € T1S* x Ry the tangent Ty T<M_V7V)(T1S3 x Rsg) — TL(M_’W)(T*S*%) is sur-
jective. Suppose that y: [0,1] — 7783 : t +— ¥(¢) is a smooth curve in 7753, which
passes through (r,s) = L(u,v,v). Then mpey is a smooth curve in 715> which passes
through (7,5) at t = 0. Since £: 1S3 x {1} — T S? is a diffeomorphism, £~ ezpoy is a
smooth curve on 71S? x R, which passes through (u,v,1) = ¢~1(7,5) at t = 0. Now
L~'(r,s) = (u,v, V) for some unique v € R, since the action ¥ is free. So the smooth
curve WY of~lompoy passes through (u,v,Vv) at time t = 0. Thus Tiuvv)L is surjective.
Because dim7j,,,,,)(T15® X Rxo) = dim Ty, (TFS?), the tangent map Tj,,,,)L is in-
jective and hence is bijective. Therefore L is a local diffeomorphism. Because L is one to
one, it is a global diffeomorphism. O

Thus L is an isomorphism of R~ y-bundles and this finishes the proof of ((4.19)). O

To finish the proof of ((4.11)) we show that the image of the Ligon-Schaaf mapping ®;¢
(61)is T*Sgp. To do this we need to show that L maps Tngp onto T*Sﬁp.



Ligon-Schaaf regularization 63

(4.24) Proof: Suppose that for some (u,v,v) € TlSﬁp x Rso we have L(u,v,v) = (np,s) €
T+$* C TR*. Herenp = (0,0,0,1) € R*. Then 0 = (np,s) =s4. So L(u,v,v) =Ty (v4) (':) =

(np,(ﬁO))t, where Ty (v4) :( cosve - sinvy ) Set u =np, v = (V,v4) = (5,0), and

—vsinvg  Vcosvy
Vv = 1. Then L(&,v,V) = T1(0) (@: (np, (5,0))". But the mapping L is one to one. Thus
(,9,1) = (np, (5,0), 1) is the only point of 715> x R~ which maps to (np, (5,0)) in 7+
under L. This proves the assertion. O

> Consider the 1-form (r,ds)|7*$* on T+S3 C TR* with coordinates (r,s). Then
L*((rds)|T*S%) = —v(vdvs + v{v,du))|(T1S? x Rsy). (75)
(4.25) Proof: Using the definition of the mapping L (72) we get d(L*s) =
= V[(—cosvs dva)u — sinvy du — (sinvs dva)v+ cosvy dv] + ( —sinvg 1+ cos V4,v) dv.
So

L*({r,ds)) = (L*r,d(L"s))
= (—sinv4cosvy(u,u) + cos2vg (u,v) — sinvy (v, u) + sinvg cos vy (v, v))dv
+v(- oS24 (i, 1) — cOs v4 sin vy (i, v) — cos vy sinvy (v, u) — sin®vy (v, v))dvy
— cos vy sinvy (u, du) +cos?vy (u,dv) — sin®vg (v, du) + cos vy sinvy (v, dv)
= —vdvy — (v,du).

The last equality above follows because (u,u) = (v,v) = 1 and (u,v) = 0, which implies
(u,du) = (v,dv) =0 and (u,dv) + (v,du) = 0. O

Corollary: L is a symplectic diffeomorphism sending M = Tngp x Ry to T*Sgp with
L* (L3, drjAds))|TTS3,) = dB, where 6 = v ((v,du) +dvs)[M.

(4.26) Proof: Take the exterior derivative of both sides of (75). O

Claim: The Ligon-Schaaf map ®15: X C TyR®> — TS} C TR* (61) has the following
properties.
1.1t is a symplectic diffeomorphism of (X_, (X3, dgi A dpi)[Z-) onto
(TS5, (Xj=1 drj Ads))|TTS3,).
2. It pulls back the Delaunay Hamiltonian ¢ : T*S?lp CTR* = R: (rs) —
—1|5]| 72 to the Kepler Hamiltonian H : ToR® — R: (¢, p) — S| o[> — g/ 7"
3. It pulls back the Delaunay vector field X ;» on T*Sgp, whose integral curves
satisfy

dr
dr
ds
dr

= [lsll™*s
(76)

=—[sll?~
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and whose flow is
H(r\ _ cosv 3t v-lsinv=3r\ [r (77)
¢ \s) = —vsinv 3t cosv 3t K

with v = ||s]|, to the Kepler vector field X5 on X_.
4. It intertwines the SO(3)-momentum mapping

J:ToR* =R : (¢,p) = pxq, (78)

with the SO(4)-momentum mapping

2
I TS CTR* — /\ R*: (r,s)—rAs= Z (risj—rjsi)eiNej,  (79)
1<i<j<4

that is, J = ®;¢ _¢. Here A’R* is identified with so(4) via the mapping
which sends e; A e; to the 4 X 4 skew symmetric matrix e;;, whose i 7 entry
is 1, whose jith entry is —1, and whose other entries are 0.

(4.27) Proof:
1. As @y is the composition of the mappings S : LR > T Sﬁp x Rsg and L: T1S° x
R.o — T*5%, each of which are symplectic diffeomorphisms with $*(d@) = (¥, dg; A
dpi)|ToR? ((4.18)) and L* (¥} drj Ads;)|TFS3)) = d6 ((4.25)), it follows that P is a
symplectic diffeomorphism from (T0R3, (X, dqi/\dp,-)|ToR3) onto (T*Sf’lp7 (Z‘}:l drj A
ds;)|T*S;,).
2. We compute. From the definition of the mapping S (63a) we have S*(—%v’z) =
—%v(q,p)72 = H(q,p); while from the definition of the mapping L (63b) we have
L*(—3|1s||72) = =3 v~2. Therefore ;7 = H.
3. Since the Ligon-Schaaf mapping ®;s exhibits an equivalence between the Kepler
Hamiltonian system (H ,TQR37(Z?:ldq,~ /\dpi)|T0R3) and the Delaunay Hamiltonian
system (A, TS, ():‘}:ldrj Ads;)|T*S5,), it pulls back the Delaunay vector field
X on T+S3 to the Kepler vector field Xy on X_, that is, ®; (X » = Xy. To find
formula (76) for the Delaunay vector field X » on T+S83, we look at the Hamiltonian
system (%” TR* ):4 1 drjAds;) with Hamiltonian .2 (r §) = ;<s s)~! constrained to

T3 with constraint functions ¢y (r,s) = 3({r,r) — 1) and ¢3(r,s) = (r,s). Since the matrix
({ci,c;j}) of Poisson brackets is invertible with inverse given by (Cj;) = (r, ! ((1) Bl>,
the manifold 7' is cosymplectic with symplectic form (¥;_, dr; Ads;)|TS*. We com-
pute the constrained equations of motion using the modified Dirac bracket procedure. Let

- — Z {Jf c,}—l—t%”)C,]cj7

i,j=1

where J4 = (r,s)({s,s) "% — %(r, ry), and M = (s,8) " ({r,r) = 1). Then



Ligon-Schaaf regularization 65

H* = =4 (5,5) " = (o) (= () (s.9) ™ 4+, (s.5) ™ +78), (= (o), 3(rr) = 1))
=L = (ns)2 + Lsys) () — 1),
So
dr OJH* - -
E: ds :<S,S> 2s—<r,s>s—|—<s7s> 1(<r?r>_1)
ds JH* _
5:—W:—@,s) Yt (rs)s.

Therefore the Delaunay vector field X ;» = Xp+|T+S? has integral curves which satisfy
(76). 1t is straightforward to verify that (pt"“/f given by (77) is the flow of X ;. Comparing
(77) with the geodesic flow (8) in §1, one sees that the Delaunay flow is the same as the
geodesic flow with time parameter ¢ = v3s, where s is the geodesic time parameter.

4. Since
L*(rAs) = (cosvau+sinvgv) A (—vsinvgu+veosvav) = VuAv,

we obtain L*((r As)

A (1)) = (vurv) K1 (L), see (59). Consequently,
@ ((rns) A (=3) =8 (vurnIK™(3) = (Vg P)IH (=5) =JIH ! (=3),

using v(gq,p) = 1 if (¢,p) € H’l(—%) and ((4.9)). We now use scaling to obtain the
desired result. For every d > 0 we have (r,s) € %”*1(—%41’2) if and only if ||s|| = d.
Then (r,d"'s) € s~} (—%) So for every d > 0 we have

L ((rAs)|l2~ 1 (=3)) =dL* ((rnd~'s)| 27 (—1))
= (dv(u/\dflv))\Kfl(%) = (v(u/\v))\Kfl(%dz),

So for every d > 0,
S'L((ras)|l 7 (=3)) = (d7'V(g:p)I) [H (—3d ) =J|H ' (=3d7?),

which implies ®}¢ # = J on £_ and thus ®}¢ # =J on TR*. This follows because
W o1 (—5d=%) = T*S%, which is an open subset of TR* and £_ = (JH ' (—3d2) is
d>0 d>0

an open subset of THR>. Moreover, the components of the momentum mapping J andJ

are polynomials.

For every 1 <i < j <4 we have

Lx_)f(r,-sj — rjsi) =FiSj+ris; —Fjsi —rjs;

[ I I

= s rir — s~ *sjsi+ ||s

=0.

sisj—||s rjri, using (76)

Therefore the SO(4)-momentum mapping _# is conserved by the flow of the Delaunay
vector field X . O
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5 Exercises

1. (s1(2,R) and the Kepler problem.) For the Kepler problem with rotationally sym-
metric Hamiltonian H = %p~p— ﬁ letj=gxp,x=q-q,y=p-p,andz=q-p.

a) Show that the functions x,y, z Poisson commute with the components of j. More-
over, show that the Poisson brackets of x,y, and z define a representation of sI(2,R).
Conclude that so(3) and s1(2, R) form a dual pair in the Lie algebra of homogeneous
quadratic polynomials.

b) In xyz-space draw that level sets of j> = const. for different values of the constant
including zero. These are models for the SO(3) reduced space.

¢) Draw the intersections of the & = const. surfaces with a given j = const. surface
to see the integral curves of the reduced dynamics.

d) Show that the level sets j2> = const. are symplectic leaves for the Poisson mani-
fold s1(2,R) = R? with coordinates (x,y,z)

2. (Geodesics on a hyperboloid.) Consider H*! = {x € R* | (x,x) = —1}, which is the
set of vectors in R* whose Lorentz length squared is —1. Here (x,y) = x;y| +x2y2 +

X3Y3 — X4V4 is the Lorentz inner product on R*. Geometrically, H>' is a hyperboloid
of two sheets. Its tangent bundle TH>! = {(x,y) € TR*| (x,x) = —1 & (x,y) = 0}

is a symplectic manifold with symplectic form @ = ey |TH>'. Here @y = ¥} dx; A
dy; is the standard symplectic form on TR*.
a) Consider the Hamiltonian system (H,TH>', ), where

H:TH>' CTR* - R: (x,y) — 10) (80)

is the Hamiltonian. Show that TH>'! is an invariant manifold of the vector field on
TR* whose integral curves satisfy

— 1)

Show that an integral curve of (81), which starts on 7+ H*! = {(x,y) € TH>!| (y,y) >
0}, is an integral curve of the Hamiltonian vector field Xp. Verify that the flow of
Xy on TTH>! is given by

o R T T (,7(X7y)) . ( coshtv2H (sinhtx/ﬁ)/ﬁ) <x> .

v/2H sinhtv/2H coshtv2H y

Show that the image of an integral curve of X, under the bundle projection map

THH3!' C TR* — H>! : (x,y) + x, is a geodesic on H!. Verify that every integral

curve of X on TTH>! lies in the 2-plane in R* spanned by its initial conditions.

b) Let O(3,1) = {0 € Gl(4,R) | (Ox,0y) = {x,y) for all x y € R*} be the Lorentz

group. The Lie algebra of O(3,1) is 0(3,1) = {£ € ¢gl(4,R) | (Ex,y) + (x,Ey) =

0, for all x, y € R*}. Show that the Lie bracket on o(3, 1) is given by
i(CXT)+x@y —y@x' oxXy—1TX

g =gn—ng = (o7 DTy et oo,

(oxy—1xx)
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where & = i(xcf) x),n:(i(yg) y),andc,‘z:,x,yeR3.Herei:R3—>so(3,R):

0
0 -y n
X+ ( x3 0 X ) .

) ox 0

Verify that the O(3, 1)-action on H>!, givenby ¢ : O(3,1) x H»! — H>! : (A,x) —
Ax, lifts to a Hamiltonian action @: O(3,1) x TH*! — TH™! : (A, (x,y)) > (Ax,Ay)
with coadjoint equivariant momentum mapping J : TH>! C TR* — 0(3,1)*. Here
J(x,y)E = J% (x,y) with & € 0(3,1) and

JS:TH>' CTR* 5 R: (x,y) — (Ex,y). (82)
Observing that the Hamiltonian H (80) is invariant under the action ® of O(3,1) on
TH3!, deduce that J¢ is an integral of Xy for every & € 0(3,1).

¢) Define the mapping ® : A’R* — 0o(3,1) : vAw > £,,,, where £,,, : R* = R*:
z— {z,v)w— (z,w)v. Prove the following statements.

L. 4, €0(3,1) forevery v, w € R*.
2. ¥ is a bijective real linear mapping.

3. Consider the action
§:0(3,1) x A’R* — A’R*: (0,v Aw) — Ov A Ow. (83)

The mapping ¥ intertwines the action 6 with the adjoint action of O(3,1) on
0(3,1), that is,
V80 = Adpet = 0°9°0"" (84)

for every O € O(3,1).

d) With (x,y) = Z?:l x;vi — x4y4 for every x, y € R* prove the identity

4
@) ) — )= Y (yi—xpy) = Y va—xayi): (85)
1<i<j<3 i=1
- 1) ()
K:AZR* X AZR* S R: (AW, xA b—)det( Vi W’x). 86
( Dt ) my) G

Show that K is a nondegenerate inner product on A*R* with {ecNer}icpopen
being an orthonormal basis with respect to which the matrix of K is diagonal.
Show that the Morse index of K is 3. Verify that K is invariant under the action
8 (83). Letk:0(3,1) x0(3,1) = R: (§,1) — —3trén. Show that k is a non-
degenerate inner product on o(3,1), which is invariant under the adjoint action
Ad. With & :(’(x‘,’) g) and n :(’(yf) g) where o, 7, x, y € R, show that
k(&,m) = (0,7) — (x,y). Here (, ) is the Euclidean inner product on R3. Verify
that 9"k =K.
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e) Let J: TH3' C TR* — A’R* be the mapping K’o%'oJ. Show that for every
(x,y) € TH*!

J(x,y)=xAy= Z K(xNyeiNej)eiNej= Z Tij(x,y)eiNej, (87)
1<i<j<4 1<i<j<4

where {¢; } ' | is the standard basis of R* and T;;(x,y) = x;y; — x,;. Deduce that J
intertwines the O(3, 1)-action ® on TH>' with the O(3, 1)-action § on A>R*. Let

T\/EHS’1 ={(x,y) € T+H3"1|(x,x> =—1, (x,y) =0, and (y,y) =2h > 0}
be the bundle of tangent vectors to H>!, whose squared Lorentz length is 2k > 0.
Then T, 5;H*! = H™'(h). Show that O(3,1) acts transitively on 7. 5;H>!. Us-
ing Pliicker coordinates {7j;},;_;, on A?(R*), show that the image of T \/2—,1H3=1
under the mapping J (87) is the smooth submanifold V;, of A?(R*) defined by

TioT3a —Ti3Tos +To3Tia =0

(88)
Th+ T3+ T3~ T~ Ty — Ty =—2h

Deduce that V;, is diffeomorphic to 72, Hint: use the diffeomorphism
Vi CA'R* = R (Ti))1<icjes = (Ti2,T13, Toz, TsaX V2 _myx 12, T14X71/2)7

where X = 2h+ T2 + T3+ T4 >0, since 24 > 0. Show that O(3, 1) acts transitively
on Vj, and that V}, is the space of orbits of the geodesic flow on 7+ H>! of energy
h>0.

f) Show that Vj, is a symplectic manifold. For u = e4 A\/2he; € Vj, let u = ¥ (u).
The adjoint orbit &), = {v = Adou € o(3, 1)|0 €0(3,1)} of O(3,1) through u is
a symplectic manifold with symplectic form wy (ad,&,adyn) =k(v,[£,n]). Since
B|Vjy - Vy C© A*(R*) = 0 C o(3,1) is a diffeomorphism, Q, = (8[V)* @, is a
symplectic form on V},.

We now find an explicit expression for the symplectic form ;. For every v €V},
show that &, = T,8,& € T,V,, for every & € 0(3,1). In fact, T,V,, = spang{&, |§ €
0(3,1)}. Infinitesimalizing (84) show that at every v € V;, we have adz ®(v) = T, 9§,
for every & € 0(3,1). We have 5,,Q), = Q, for every O € O(3,1). To see this justify
each step of the following calculation.

Ségh(“)(ém nu) = Qh(50(“))(Tu60€uvTu60nu)
= @ (9200 ())(Toud T,60&y, Toud T, 80Mu)
(Ado® () (T () Ado(ade ¥ (u)), Ty Ado (adg O (u)))
) (T (u)adagye Ado® (1)), Ty () adadon Ado® (u))
,[Ado&, Adon]) =k(AdoD (1), Ado [§,1])
=k( (u),[€.n]) = () (&, M)

Write v = Spu. Then T,,60&, = &, € T,V,. The above calculation shows that

Qh(v)(gwnv) :k(ﬂ(“)v[évn})' (39)

I
z 8
>
o
Q
&)

=
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To make (89) explicit, show that

éu = 564/\ V2he| +eq N\ V2/’lt§€1 = (—xz,—X3,0,62,—63,0) e T,Vy,

where & :(l(xf) g), with o, x € R? and we use {ej Aea,eq Aes,ex Aes,e3 Aey,

ex Ney,e) Aeg} as a basis for A2(R*). Let :<i(yf) 2;) where 7, y € R?. Note

that ¥ (u) =—V/2h ( (eo) ; €01> Justify each step of the following calculation.
1

k(9 (u),[&,1]) = —tr(B(u) [&,7])
I%\/ﬂtf<(e?)z el> (i(cxr)+x®y’*y®x’ G><yfr><x)

0 (oxy—1xx)! 0
1./ [e1®(0xy—Txx) *
T2 2htr< * (e1)'(0xy—1Txx)
= V2h(0 xy—1Txx)1 = V2h(02y3 — O3y2 — Tax3 + T3%2).
So
Q4(0u) (T,80(—x2,—x3,0,02,—03,0), T, 80(—y2, 3,0, 72, —73,0)) =
= V2h(02y3 — O3y2 — Tox3 + T3x2).

. (Positive energy Keplerian orbits.) This exercise deals with Keplerian orbits of

positive energy. Specifically we discuss the changes that need to be made to the
treatment of the Kepler problem in §3.2.

a) First check that the arguments establishing the equation
lgll = p~"J?(1+ecos )~ (90)

for the Keplerian orbit with angular momentum J and eccentricity vector e as well
as the equation
E=14+2u"2Jh 91)

for the magnitude squared of the eccentricity vector continue to hold for positive
energy h. When A > 0 from (91) it follows that e > 1. Deduce that the Keplerian
orbit (90) is one branch of a hyperbola. For (90) to hold show that |f| < fo = T —
cos~'e™!. Thus (cos fy, % sin fo) are the directions of the asymptotes of the branch
of the hyperbola. From (91) and the facts that (g,J) = 0 and (p,J) = 0 deduce that
a Keplerian orbit of positive energy is a hyperbola, which lies in a 2-plane I1, which
is perpendicular to J. Show that {e,J x e} is an orthogonal basis of I1. Let C be the
center of the hyperbola, which is the origin of the e-(J x e) coordinate system. Let O
be the center of attraction, which is a focus of the hyperbola. Show that the periapse
A of the hyperbola lies on the e-axis between C and O and that the major semi-axis
of the hyperbola OA has length a = J2u="(e* —1)~! = u(2h)~". For u € R let
P = (acoshu,bsinhu) be a point on the hyperbola. Let OP = ||q|| with f the true
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anomaly of P, that is, f is the angle between e and the line segment OP. Show
that CO = ae = acoshu + ||¢||cos f. Deduce that the equation of the hyperbolic
1

Keplerian orbit (90) can be written as ||g|| = ecoshu — 1. The minor semi-axis of

the hyperbola lies on the (J x e)-axis. Show that its length is b = av/e? — 1 and that
llg|l sin f = bsinhu.

b) We now determine the analogue of Kepler’s equation for a hyperbolic orbit. First

we use
ds  V2h
e lqll

to define the eccentric anomaly s. Following the derivation of equation (43) in §3.3
show that

92)

d||g||\2
(DY 4 (e — 1) = 2algl) +

with ¢(0) = a(e — 1). Using the change of variable aep = ||¢|| + a, show that the
above equation becomes
dp\ 2
— (i) +p2 — 1

ds
with p(0) = 1. Integrating, gives p(s) = coshs. Hence ||¢(s)|| = ae coshs — a,
which substituted into (92) and integrating gives the hyperbolic analogue of Ke-
pler’s equation
nf = esinhs — s, (93)

where n = V2hu! = ,ul/za’3/2 is the mean motion and ¢ = ¢ — 7 is the mean
anomaly. Here 7 is the time at the passage of the periapse.

. (Hamilton’s theorem.) Hamilton’s theorem states that the velocity of a particle of

mass m subject to an attractive central force with potential U (|x|) = —kﬁ, k>0
moves on a circle ¢, which uniquely determines its Keplerian orbit. Here |x| is
the length of a vector x € R*\ {0} using the Euclidean inner product {, ). Assume
that the conserved angular momentum J = x x mv of the particle is nonzero. The
argument outlined in sections a) — ¢) gives a proof of Hamilton’s theorem.

a) Show that the position x(7) and velocity v(¢) = ‘;—’t‘ of the particle at time 7 lies in a
plane I, which is perpendicular to J, which we can assume to be the vector (0,0, ),
where j = |J| > 0. Using polar coordinates (r, 0) in I, show that j = rz%. Deduce
that % > 0. Consequently, we can reparametrize the curves ¢ — x(r) and t — v(z)
using 6 instead of 7. Show that this reparametrization preserves the original positive
of orientation of these curves given by increasing ¢.

b) Rewrite Newton’s equations of motion

dv X
==k 4
" x[? ©4)

using polar coordinates on IT and change the parametrization of the velocity in (94)
to 6. Show that we obtain
dv

E:(Rcose,Rsine,O), 95)
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where R = k/ jm. Integrating (95) gives
v(0) = (—Rsin6,Rcos 6,0) +c. (96)
Deduce that v(0) — ¢ moves on a circle % in I with center at ¢ and radius R.

¢) Choose coordinates on I so that ¢ = (0,¢,0), where ¢ = |¢| > 0. Let e = ¢/R.
Then v(6) — ¢ = (—Rsin6,R(e+cos6),0). Using

Jj= <Jv (ana 1)> = <X(9) X mV(@),(O,(L 1)>7
where x(68) = (r(6) cos 6, r(6)sin6,0), deduce that
r=r(6)=A(1+ecosf) !, 97

where A = j/mR = j?/k. Equation (97) describes a conic section of eccentricity e
with a focus at O = (0,0,0).

d) When 0 < e < 1, show that 8 — v(6) — c traces out the full velocity circle %

e) When e > 1 equation (97) describes a branch of a hyperbola. The following
argument shows that 6 — v(6) — ¢ traces out a positively oriented arc of €. This arc
subtends a positive angle ®, which is equal to the scattering angle of the hyperbola.
Because e > 1 for equation (97) to hold |8 < 8y = & — 6,, where 6, = cos e~ .
Using conservation of energy show that

» 2h k1 2h
e
Hence the velocity of the particle lies outside of the closed 2-disk with center at O

and radius % Show that v(0) — ¢ lies on the velocity circle ¢ and the energy

circle d&, given by |v| = \/%, if and only if 0 = ﬁ = A*I(I +ecos0), that is,
if and only if 6 = £6y = +(7m — 6,). Show that the velocity vectors v(46p) — ¢ are
the end points of a closed arc .7 on % and that

v(+6y) — ¢ = (—Rsin(£6y),Rcos(£6),0) = (FRsin 6., —Rcos 6,,0).  (98)

From (98) deduce that v(6p) — ¢ lies the 3™ quadrant of IT; while v(—8y) — ¢ lies
the 4th quadrant of TT. Deduce that the positive arc .o, oriented so that 8 increases,
has an initial end point at v(—6p) — ¢ and a final end point at v(6y) — ¢. Show that

v(60) = (Rcos(37—6.),Rsin(3w — 6.),0);

while
v(—6p) = (Rcos(— (37— 6.)),Rsin(—(37—6,)),0).
Thus the positive angle ® subtended by the positive arc <7 is equal to 2(7w — 6;).

When —6) = —(7 — 6,), then d_g, = ;E:gg;l is the direction of the incoming

asymptote of the branch of the hyperbola with center C at (ae,0,0) in IT; while

when 6y = 7 — 6,, then dg, = ;Egg;l is the direction of the outgoing asymptote of

the branch of the hyperbola. By definition, the scattering angle W of the hyperbolic
motion is the counterclockwise rotation about C, which sends d_ g, into dg,. Show
that ¥ =2(7 — 6,) = O.
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5. (Regularization of positive energy Keplerian orbits.) Let (H,TyR>, ws) be the

Kepler Hamiltonian system with TyR? = (R*\ {0} ) x R? having coordinates (g, p),
symplectic form @3 = Z?:] dg; Adp;, and Hamiltonian

H:TyR® = R:(q,p) — 3(p.p)—lq] " (99)

Here (, ) is the Euclidean inner product on R3 with ||g|| being the length of the
vector ¢ € R?. We look only at a positive energy Keplerian orbit, which in exercise
3 we have shown to be a branch of a hyperbola.

a) To regularize the positive energy Keplerian orbits, we will use an argument anal-
ogous to the one given in §4 for the negative energy orbits. Start by using the virial
group to show that we may reduce our considerations to the level set H~! (%) Next
introduce a new time scale s by % = |lq|I~". Consider the rescaled Hamiltonian

F:TR* - R:(q,p) gl (H(g.p)—3)+1=Lllql(lpl*—1).  (100)

Show that the integral curves of X on F! (1) are the same as the integral curves
of Xy on H™! (%), using the time parameter s. Let

K:TyR' = R:(q,p) = 5F*(q,p) = glal*(Ipl* 1) (101)
be the regularized Hamiltonian. Show that the integral curves of Xz on K! (%) are
the same as the integral curves of Xz on F! (1), using the time parameter s.

b) Let (, ) be the Lorentz inner product on R* given by (u,v) = ujv +upvy +
u3vs —ugvy. Let H*' = {u € R|(u,u) = —1}. Consider the stereographic projec-
tion map

o HY CRY SR g (1-g0) "7 = (1-q4) (91,92, 93)
from (0, 1) with inverse
0 R = HY CR g 201 GP) (G- (1+ %)
The positive energy analogue of Moser’s regularization map in §4 is

@, TH>' CTR* - HR3:

W) = (@p) = (— (1 —us)o—vait, (1 —ug)'7), 102

which is the composition of T ¢! followed by momentum reversal (¢, p) — (—p, q).
For (u,v) € TH>' = {(u,v) € TR4|(u,u> = —1 & (u,v) =0} show that the follow-
ing identities hold.
2_ 2
lgll” = (vv)(1 —ua) (103a)
Ipl>=1=—2(1—uy)! (103b)
(4,p) = va. (103¢)
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Using the above identities show that the inverse of the regularization mapping <I>A_,11
is given by

@y THR? = THY CTR*: (¢,p) — ((@,us),(V,v4)),

where

{N =—(lpl>=1)~"'2p) and us={(llpI>=D)'(lpI>+1)

<

(104)

<

=3(lpI?>—1)g—(g,p)p and vs=(q.p).

¢) Verify that the pull back by the regularization mapping CDA_/zl (102) of the regular-
ized Hamiltonian K (101) is the geodesic Hamiltonian

A TH CRY = R (u,v) = Lvw). (105)

Show that (®,,')* @3 = ws|TH>'. Deduce that the flow of the regularized Kepler
vector field Xz on K -1 (%) is the flow of the geodesic Hamiltonian vector field X ,»

on #~1(}).
d) Following the proof of ((4.9)) show that

Dy (v —viuy)| 2~ (3)) = IH ' (3),
where (i, j,k) ={1,2,3}, and

D (uiva —viug) |2~ (3)) = eil H'(3),
forl <i<3.

(Center of mass and the two body problem.)

a) For the two body problem in space show that regular reduction by the translation
group can be interpreted as passing to a center of mass frame. Do the reduction of
the translation and rotational symmetries in one step by using the Euclidean group
E(3).

b) Consider the spherical analogue of the planar two body problem. This is the
motion of two particles connected by a spring constrained to move on the surface of
a 2-sphere. The rotation group SO(3) is an obvious symmetry group of the problem,
as compared to the Euclidean group E(2) for the planar problem. Construct all the
SO(3) reduced spaces. Show that there is no notion of a center of mass frame.

¢)* Is the spherical two body problem Liouville integrable?
a) Construct an isomorphism between the Lie algebra so(4) and so(3) x so(3).
b) Show that the corresponding Lie-Poisson algebras are isomorphic.

¢) Write out Hamilton’s equations on the Lie-Poisson algebra corresponding to
$0(3) x s0(3).
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(Souriau’s linearization and regularization.) In the Kepler problem

9 =p
) = 7%q7 r= HqH7

r

(106)

letH = %( p,p) — % be the Hamiltonian and define a new time variable s by

s={q,p) —2ht.
a) Show that % = % Thus s is the eccentric anomaly.

b) Define a 4-vector & by & :( ; ) Let E = col(&,&',E" E") be a 4 x 4 ma-

trix, where ’ is differentiation with respect to s. Show that Z satisfies the linear
differential equation

" =AR (107)
0 1 0 0
o 0o 1 0
where A = 0 0 0 1
0 2 0 O

¢) Solve (107) and thus find &(s). Note that because & (s) is defined for all s and
hence for all t by Kepler’s equation, it follows that the Kepler problem has been
regularized.

(Bacry-Gyorgyi variables and the conformal group.) Using the same notation in the
Kepler problem as in exercise 8, set & = v/—2h, P :< (x’t/l//q"’ ) and Q :( o;f,N )
Here we are confining ourselves to the case of bounded motions, namely, 4 < 0.

a) Show that P'P = Q'Q = 1 and P'Q = 0.

b) Let £ be the 6 x 6 matrix
oP'-PQ' P Q
P! 0 1
o' -1 0
¢) Show that {2 = 0.

d) Show that the components of § satisfy the Poisson bracket relations for the Lie
algebra so(4,2).

e) Show that the map from the regularized phase space of the negative energy orbits
(g, p,h) — € is a symplectic diffeomorphism if we equip the SO(4,2)-coadjoint
orbit through { with the symplectic structure given in chapter VI §2 example 3.
The tricky part of this is deciding which component of the variety {2 =0, # 0 in
s0(4,2)" you need to map to.

(Levi-Civita regularization.)

a) Let R3 = R? — {0}. On T*R} = R} x R? with coordinates (x,y) and symplectic
form w = 21‘3:1 dx; N\ dy; consider the Kepler Hamiltonian

H(x,y) =0} +y3) — (F +3) 712 (108)
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Identify R% with Cp = C—{0} and T*R% with T*Cy = Cy x C. Introduce complex
coordinates ¢ = x; +ixy and p = y; +iyp on T*Cy. Show that @ = Re(dq A dp)
and that the Kepler Hamiltonian becomes

H(q,p) = llpl* = llqll ™" (109)

b) Using the time rescaling 2‘ | show that the integral curves of Xy on the

level set H~'(—k%/2) are a time reparametrlzatlon of the integral curves of the
vector field Xz on the level set K~'(0) where

K(g,p)=2llqllk™" (311>~ llall =" +3&) = &~ llgll I pl* +K gl —2k". (110)
c) Define the Levi-Civita map
L :T*Co—T Co: (u,v) — (q,p) = ((2k) ", kv ). (111)
Show that . has the following properties:
1) £ is a smooth two to one surjective submersion with £ (—u, —v) = .Z(u,v).
2) £*(Re(gdp)) = Re(udv —vdu). Hence . is symplectic.
3) The Hamiltonian
K(u,v) = (LK) (u,v) = L(|v[ + |u]*) — 2k (112)

is defined on K~!(0) which is a 3-sphere centered at the origin and having radius
2/+/k. Since K~'(0) is compact, all the integral curves of Xx on K~'(0) are defined
for all time. Thus K is the Levi-Civita regularization of the Kepler Hamiltonian for
negative energy orbits. Note that up to an additive constant, K is the harmonic
oscillator Hamiltonian.

d) The Levi-Civita map % is not an equivalence between the Hamiltonian systems
(K,T*Cy, ) and (K,T*Cy, ®), because it is not a diffeomorphism. Show that that
vector fields Xx on K~'(0) and Xz on K~'(0) are Z-related, that is, T.% °Xx =
Xz o . Thus the image of an integral curve of Xx on K ~1(0) under the Levi-Civita
map . is an integral curve of Xz on K~1(0).

e) On T*Cy define a Z-action generated by (u,v) — (—u,—v). Show that this
action is free, preserves the symplectic form @, and preserves the Hamiltonian K.
Thus there is an induced Hamiltonian %" on (T*Cy/Z,, ®). Since the map .Z is
invariant under the Z,-action, it induces an equivalence between the Hamiltonian
systems (£, T*Co/Z,®) and (K,T*Co, ®). Thus the regularized energy surface
H~'(—k?/2) of the Kepler Hamiltonian is % ' (0) = (S 2/\[)/Zz, which is real

projective three space RP.

(Kustaanheimo-Stiefel regularization.) Let x = (xj,x2,x3) be a vector in Rg =
R*\ {0} and let z = (z1,22) € C3 = C?\ {0} = R*)\ {0}. Define the 2 x 2 skew
Hermitian matrices

o (O LY (0 =i o (10
=110 2=\Vi o0 3=Vo -1 )
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Let (z,w) = z;W] + zow; be the standard Hermitian inner product on C2. Show that
the mapping

T C% — R(3) T (<Za O] (Z)>7 <Z7 62(Z)>7 <Z7 03 (Z») ) (1 13)

is the Hopf map.

a) On C% define an action
@:U(1)x C§— CF: (e, (z1,22)) = (e"21,€522).
Let 7*C3 = (C? — {0}) x C2. Lift ¢ to a U(1)-action
@:S'xT*C - T*C}: (ei‘y,z,w) — (eiszyei‘yw).

Define a 1-form 6 on 7*C3 by 6 = —2iIm (w,dz). Show that Q = —d6 is a sym-
plectic form on T*C(z) and that ® is a Hamiltonian action with momentum map

I T*C}— R (z,w) — 2Re (w,2).
Let % = .7~1(0)\ {0}.
b) The map 7 (113) lifts to the Kustaanheimo-Stiefel map
H S T*CE— TRy (z,w) — (x,y) =
(((z. q(z))),{az)fl (Re(w,0j(z)))), forj=1,2,3.
The following calculation shows that
(A7) (D) = 6], (114)

where ¥ = (y,dx) is the canonical 1-form on T*R3. For every u,w,z € C?

(u,0;(2)) oj(w) =2(w,z) u — (u,z) w. (115)

™

1

J

Interchanging u with z in (115) and subtracting the result from (115) gives
3
i Z Im (u, 6j(z)) 0;(w) = (w,z) u — (w,u) z— iIm (u,z) w. (116)
j=1

Taking the inner product of (116) with z and then adding the result to its complex
conjugate gives

oy

Im (u,0(z)) Im(z,0;(w)) = Re (z,w) Re (u,z) — (z,z) Re (u, w). (117)
1

J
Replacing w in (117) with —iw gives
3

(u,05(z)) (z,0j(w)) = Im (z,u) Re (w,z) — (z,2) Im (w, u). (118)
=1

J
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Finally, replacing w by dz and u by w in (118) gives

gl

Re (w,0j(z))Im(z,0;(dz)) = Im(z,dz) Re (z,w) — (z,z) Im(w,dz).  (119)
1

~.
Il

Consequently

(120)

(H SO =2 (Im<z7dz>Re(Z,w> —(z,z)Im <w,dz>> '

(z,2)
From (120) it follows that (JZ.%)* (%] %) = 6|-%.
¢) On T*R} with coordinates (x,y) and symplectic form @ = ¥; dx; A dy;, consider
the time rescaled Kepler Hamiltonian

K(x,y) = 5k~ Ixll(lly]* +#%)

whose wk~!-level set corresponds to the —k?/2-level set of the Kepler Hamilto-
nian. Setting u = w in (117) show that on .% ||(#.%)*||y||> = (w,w)(z,z) "' and
(2.7 )c||2 = (z,2). Therefore on .#, we obtain the regularized Hamiltonian

K= (X7)K = 3k (ww) +12(z,2)). (121)

When k = 1 the regularized Hamiltonian is the harmonic oscillator Hamiltonian on
(T*C?,Q) restricted to the open cone .#. Show that the regularized Hamiltonian
K (121) is invariant under the U(1)-action ®. Since the mapping . is not a
diffeomorphism, the harmonic oscillator vector field Xk is not equivalent to the
Kepler vector field Xz. Show that they are K .S -related on ¥, that is, on . we
have T(#.%) Xk = Xgo (). Moreover, show that after dividing out the S'-
action ¢ on ., we obtain an equivalence of Hamiltonian systems. Show that the
orbit space % /S is diffeomorphic to 773, the tangent bundle to S* less its zero
section.

(Generalized Kepler equation.) Consider the Ligon-Schaaf map
LS:T_ CTHR® — T+Sgp CTR*:(q,p) — (r,9),
with @ = v~! (g, p). Show that its inverse is given by

g = B ss) (sing — (r,r) " 2s)F+ (s,8) 72 (rs — cos )3)

>,1/2( rcos @ + (s,s>71/2
1 —rqcosp— (s,s)

ssin@
—1/2

P = [,L<S,S , >
S4. 81N Q

where r = (7,r4), s = (5,54) and @ is a smooth solution of

(p—r4sin(pfS4(s,s>7l/zcos(p =0.
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a) Show that SO(4)-action on an energy surface of the Delaunay vector field is
transitive.

b) Show that the mapping © : A°’R* — so(4), defined by @(uAv)w = (v,w)u —
(v,u)w for every u,v,w € R*, intertwines the SO(4)-action SO(4) x A’R* — A\’R*:
(A,u Av) — Au A Av with the adjoint action of SO(4) on so(4).

¢) Show that the orbit space (Cj,, @) of the flow of the Delaunay vector field
on s~ '(h) is symplectically diffeomorphic to the coadjoint orbit O, through

7 (e1,hez) = hel, = 1 € so(4)" with its usual symplectic structure ®¢, , See ex-
ample 3 chapter VI §2.

Show that the Hamiltonian vector field X, corresponding to the i component of
the eccentricity vector (27) is incomplete. Give a geometric explanation of this
incompleteness. State precisely where the flow of X,, is defined.

Given an initial position and momentum of a Keplerian elliptical orbit, determine
the argument of the perihelion, that is, the angle between the line of nodes (= the
line of intersection of the plane of the elliptical orbit and the equitorial plane of the
celestial sphere) and the line joining the foci of the ellipse.



Chapter I11

The Euler Top

Mathematically, the motion of the Euler top is described by geodesics of a left invariant
metric on the rotation group SO(3). Physically, the Euler top is a rigid body moving about
its center of mass (which is fixed) without any forces acting on the body.

1 Facts about SO(3)

We begin by reviewing some basic facts about the group of rotations of R>.

1.1 The standard model

On R? with Euclidean inner product (, ), the orthogonal group O(3) is the group of linear
maps which preserve the inner product, that is, O € O(3) if and only if for every x,y € R3,
(Ox,0y) = (x,y). The group of rotations SO(3) of (R3,(,)) is the identity component of
O(3). Equivalently, O € SO(3) if and only if 00" = and detO = 1. The group SO(3) is
a connected compact Lie group with Lie algebra 7,SO(3) =so(3) = {X € gl(37R)|X +
X' =0}. X €s0(3) if and only if it is a 3 x 3 skew symmetric real matrix, that is, for
every x,y € R?, (Xx,y) + (x,Xy) = 0. The Lie algebra so(3) has a Lie bracket [, | defined

by the relations
[E1,Er) = E\Ey — E2Ey = B3, [Es,E3) = Ey, [E3,E1] = Es,

where {E1, Ep, E3} is the standard basis

00 0 0 0 1 0 -1 0
Ei=(0 0o -1], Ez=|0 o0 of, E3={1 0 of.
01 0 -1 0 0 0 0 0

Rewritten, the bracket relations read [E;, E;] = 22:1 &jkEy. Here g, =0, if i, j and k are
not distinct. If i, j and k are distinct, & is 1 if ijk is an even permutation of 123 and —1
otherwise.

On so(3) there is an inner product & : so(3) x so(3) — R, called the Killing metric. The
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> Killing metric is defined by
k(X,Y)=—LtuXxy (1)
and has the following properties.
1. ks positive definite.

2. For 0 € SO(3) let Adp X = OXO~! € 50(3). Then for every X,Y € so(3) we have
k(AdoX,AdpY) = k(X,Y), that is, k is Adp-invariant. In other words, Adj, | =
kfeAdook’.

3. For X,Y,Z € so(3) we have k([Z,X],Y) +k(X,[Z,Y]) =0.

(1.1) Proof:
1. Let X = Y3 | x;E;. Then

2 1 0 —mo m\
|X| :k(X,X) = —itr X3 0 —X1 =X +x2+x320.
—X2 X 0

Equality holds if and only if X = 0.
2. For O € SO(3), we have

k(AdpX,AdpY) = —Lt0XY0™' = —LuXy =k(X,Y).

Forevery X,Y € so(3) we have k(AdpX,Y) =k(X,Ad,-1Y), because k is Ad,,-1 -invariant.
The preceding equation may be rewritten as

(K*(AdoX))Y = k*(X)(Ady 1Y) = (AdL_ k*(X))Y

for every Y € so(3). Hence (k*oAdo)X = (AdJ,_,°k*)X for every X € so(3).

3. Since C%lzzl?)‘dwp zZW =adzW = [Z,W] for every Z,W € so(3), differentiating the equa-
tion k(Adexp 1z X, AdexprzY) =k(X,Y) with respect to # and setting r = 0 gives k([Z,X],Y)+
k(X,[Z,Y])=0. O

Define the linear map

0 —X3 X2
i:503) = R:X=[x 0 -—x|—x=(x1x,x3). 2
—X2 X1 0

> The map i allows us to do calculations in R? instead of in so(3). It has the following
properties.

1. i is an isometry from (so(3),k) to (R3,(,)) .

2.1 is an isomorphism of the Lie algebra (so(3),[,]) with the Lie algebra
(R3, x ), where X is the vector product on R3, see exercise 3.

3. i intertwines the adjoint action of SO(3) on so(3) with the usual action of
SO(3) on R?, namely, i(AdpX) = 0i(X).
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(1.2) Proof:
1. For X = Z?:] xiE;and Y = Z?:l viE;,

k(X,Y) = x1y1 +x2y2 +x3y3 = (x,y) = (i(X),i(Y)).

2.ForX =Y} xEiandY =Y3 | yiE;,

3 3
=i( Y epxiyiE) = Y, &pxiyjec=xxy=i(X)xi(Y) = Xy.
i,j,k=1 i,j,k=1
3. For O € SO(3) define the mapping Ap : R* — R3 : x+ i(Adpi~' (x)). Then Ap € O(3),
because
(Aox,Aoy) = k(Adpi~'x,Adoi™'y) = k(i 'x,i"'y) = (x,y).

In fact Ap € SO(3), because the map o : SO(3) — O(3) : O+ Ay is continuous and sends
the identity element into itself. Since ¢ is a group homomorphism and

7,6 : T,S0(3) = T,O(3) = T,SO(3) : X~ icadyoi ' = X,

it follows that o is the inclusion map. Therefore O = ioAdgpoi~ !, that is, the map i inter-
twines the adjoint action of SO(3) on so(3) with the usual action of SO(3) on R. O

> We now show that every element in so(3) has a normal form. More precisely, we show
that for every element X € so(3) there is an O € SO(3) such that Adp X = rE|, where
r=|X|.

(1.3) Proof: Using the standard basis {e;,ez,e3} of R® the matrix of X is Y3 | x;E;. If X =0
then X is already in normal form. So suppose that X # 0. Then r = |X| > 0 and the unit
vector x = %(xl ,X2,X3) is an eigenvector of X corresponding to the eigenvalue 0. Let IT
be the plane orthogonal to the line spanned by the vector x. IT is invariant under X, for
if y € I1, then Xy € I because (Xy,x) = —(y,Xx) = 0. On ( , (, )JIT) the mapping X|IT
is skew symmetric and has characteristic polynomial A 4 r%. Let y € II be a vector of
unit length. Then {y, 1Xy} is an orthonormal basis of TT because 0, Xy) = —(Xy,y) =
—(y,Xy) implies that (y, %Xy) =0and (%Xy, %Xy) =y —rizXzy) = (y,y) = 1. Thus the
matrix O~! = col(x,y, er) of column vectors is orthogonal. In fact O~! is in SO(3),
because detcol(x,y, 1 Xy) = (x x y,Xy) = (x X y,x X y) > 0. The matrix of X with
respect to the ordered orthonormal basis {x,y, er} isY =rE;. Clearly r=|Y| = |X|. O

> As a corollary of the above normal form, we find that for X € so(3) the linear map ady :
s0(3) — s0(3) : Y — [X,Y] has eigenvalues 0, £ir.

(1.4) Proof: For O € SO(3), it follows that Adp(ady)(Adp) ™' = adag, x. since
Ado(ady)(Adp) ™'Y = Adp [X,Ad,-1 Y] = [AdpX,Y].

Therefore ady has the same eigenvalues as adag,, x. Choosing O € SO(3) so that Adp X =
rEy, we see that ady has the same eigenvalues as ad,g, = radg,. Butadg, E; =0,adg, E> =
E3, adg, E3 = —E,. Therefore the matrix of ad,z, with respect to the basis {E{,E», E3} is
rEj. Consequently ady has eigenvalues 0, %ir. (]
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1.2 The exponential map

We now derive some basic properties of the exponential mapping

1
exp:so(3) = gl(3,R) : X ’E)EX".

> We start by showing that the image of exp is contained in SO(3).

(1.5) Proof: Since X € so(3), it is skew symmetric. So

(expX)' i ni Zz)%(fX)" = exp(—X) = (expX)~!

Therefore the image of exp is contained in O(3). But exp is continuous and exp0 = /.
Hence the image of exp is contained in SO(3). O

> Next we show that for a nonzero X € so(3)

. 1
expX =1+ My + 7208 er, 3)

r I
where = |X|. Since lim,_,o %3 SNz — 1 and lim,_,o 125087 = %, equation (3) is defined when

X =0 and gives exp0 = 1.

(1.6) Proof: For X € so(3), a calculation shows that its characteristic polynomial is A3 +7?A.
Therefore X3 +r2X = 0, from which the formulz

X2n+1 _ (_l)annX and X2n+2 _ (_1)nr2nX2 n>0

follow by induction. Substituting these expressions into the power series for exp gives
equation (3). O

When |X| = 1 we obtain the special case of (3):
(expsX)y =y+sins(x x y)+ (I —coss) (x X (x X y)), 4)

where x = i(X) and y € R?. Because (expsX)x = x, equation (4) defines a one parameter
group of rotations about the axis x. If {x,y} are orthonormal vectors in R?, then (4)
becomes

(expsX)y =ycoss+ (x x y)sins, 5)

since x X (x X y) = —y.

Because the function 72 : so(3) — R: X + k(X,X) is differentiable, the functions sinr/r
and (1 —cosr)/r? are differentiable. From (3) it follows that exp is differentiable. Next
> we prove the following formula for the derivative of exp:

exp(—X)(DexpX) = (1 —exp(—ady))/ady . (6)

The right hand side of (6) is to be thought of as a power series in ady.
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(1.7) Proof: Consider the function

Z:R%* = gl(3,R) : (s,1) — Z(s,1) = exp(—sX fstY)i

P exp(sX +stY).

Then Z(0,0) = 0, while

d
Z(1,0) = exp(—X)$ exp(X +1Y) = exp(—X)(DexpX)Y.
t=0
Differentiating Z(s,) with respect to s gives
%Z(s,t) = %(exp(—sX —stY)) % exp(sX +stY) +exp(—sX —stY) %{;t exp(sX +stY)
= —exp(—sX —stY)(X +tY)% exp(sX +stY) 4 exp(—sX —stY) 3‘?; exp(sX + stY)

= —exp(—sX —st¥)(X +1Y) % exp(sX +stY) +exp(—sX — stY)% (X +1Y)exp(sX +stY))
= exp(—sX —stY)Y exp(sX + stY).

Consequently,

1 1
Z(1,0) = / —Z(s,0)d / (exp—sX)Y(expsX)ds = / exp(—s ady)Y ds.
0 0

The last equality follows because

1. For every s € R the linear map ¥(s) : s0(3) — s0(3) : ¥ > (exp —sX)Y (expsX)
is invertible.
2. The map y: R — Gl(s0(3),R) : s — y(s) is a one parameter subgroup.

3.7/(0) = —ady.

Therefore ¥ is the one parameter subgroup s — exp(—s ady ). Expanding exp(—s ady) in
a power series in s and integrating with respect to s gives

L adg) +o )y = (M) v O

dy)? —
(ad)™ =7, ady

1 1
Z(1,0)=(1— Eadx +3

1.3 The solid ball model

In this subsection we will show that the rotation group SO(3) is homeomorphic to a closed
solid ball in R? of radius 7 with antipodal points on its bounding 2-sphere identified. Such
a homeomorphism can be constructed by sending the rotation O to the vector in the solid
ball, which is the axis of rotation of O, normalized so that its length is the amount of
rotation O makes in a right handed sense about its rotation axis. Our proof shows that this
homeomorphism is defined by the exponential map.

Let D} = {X € s0(3)|k(X,X) < #*} be an open 3-ball in (s0(3),k) of radius 7 and let
= {X €50(3)|k(X,X) = 7>} be a 2-sphere of radius 7, which is the boundary D3 of
the 3-ball D2. The proof of the solid ball model of SO(3) takes three steps.



84 The Euler top

1. The exponential map exp : 53, C 50(3) — SO(3) is a diffeomorphism of D3 onto
its image and is continuous on its closure E;.
2. The image of 5,3, under the exponential mapping is SO(3).

3. On 85; = 52 the exponential map is two to one.

(1.8) Proof:
Step 1.
From (6) we see that the derivative of the exponential map is invertible if and only if the
linear mapping Z = (1 — exp(—ady))/ady is invertible. If X # O then =+ir,0 are eigen-
values of ady. Consequently, we find that (1 —e~") /ir, (¢" —1)/ir and 1 are eigenvalues
of Z. For X € D3\ {0}, 0 < r < m. Hence Z has no zero eigenvalues. If X =0 then 1,1, 1
are eigenvalues of Z. Thus DexpX is invertible for all X € D3. Tt is clearly continuous in
D3

To show that exp is a diffeomorphism of D*}[ onto its image, we need only verify that
exp |D3 is one to one. Toward this end, suppose that for some X, Y € D3 we have expX =
expY. Let r = |X| and s = |Y|. Furthermore, suppose that r and s are greater than zero.
The proofs of the other cases are omitted. Then r,s € (0, 7). Using (3) we obtain

sinr 1 —cosr sins 1—coss
—X+¥X2=—Y+(72)Y2. (7)
r r s K

Subtracting (7) from its transpose and then dividing by 2 gives Si—;"X = Si%Y . Therefore

) )

. sin“r sin“s

sin’r = —5 kX, X) = ——
r s

k(Y,Y) = sin’s.

Because r,s € (0,7), it follows that sinr = sins and therefore 1 X = 1Y. Adding (7) to its
transpose and using the preceding equation gives cosr = coss, once we have noted that
X? 0. Therefore r = s, since r,s € (0, 7). Consequently, X =Y.

. . . =3
From (3) we see that the exponential mapping is continuous on Dj.

Step 2.

To show that the image of Ei under the exponential mapping is SO(3), we need the fol-
> lowing normal form for rotations. Given A € SO(3), there is an O € SO(3) such that

AdpA = exp OE| for some 0 € [0, 7].

(1.9) Proof: Since A € SO(3), A has an eigenvalue +1. This follows from
det(A—1)=det ((I—A)'A) = det(I —A) = —det(A—1),

which implies det(A —I) = 0. In other words, A leaves the line spanned by the eigenvector
x corresponding to the eigenvalue 1 pointwise fixed. This line is called the axis of rotation
of A. Normalize x so that its length is 1. Let IT be the plane in R? orthogonal to x. IT is
invariant under A, because if y € II then (Ay,x) = (Ay,Ax) = (y,x) = 0, that is, Ay € I1.
Therefore A|IT is an orthogonal linear map on (I, (,)|IT). Let y be a unit vector in II.
Then {y,x x y} is an orthonormal basis of I, because (y,x x y) = detcol(y,x,y) = 0 and
(x % y,x xy) = (x,%)(y,y) — (x,y)? = 1. With respect to the orthonormal basis {x,y,x x y}
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of R? the matrix of A is (y §) Since 1 =detA = detA = detA|IT, the map A|IT lies
in SO(2). Hence the matrix of A|IT with respect to the orthonormal basis {y,x x y} is
A=(o o) for some 0 € [0,2x]. If €' € [0, 7], we are done. Otherwise, sin 6’ < 0.

sin @’ cos/
Now use the orthonormal basis {—x,y,y x x}. With respect to the orthonormal basis
{»yx x} the matrix of A|TTis ( 9, ¢ ) where 8" =27 — 6’ € [0, ]. Because either

sin 9" cos 6
detcol(x,y,x x y) = (x X y,x x y) > 0, or detcol(—x,y,y X x) = (—x X y,y X x) > 0, the
matrix O~! formed by taking the vectors {x,y,x x y} or {—x,y,y x x} for its columns lies
in SO(3). Moreover, AdpA = OAO~! = exp OE|, where 6 = 6" or 6", O

The second step is proved by noting that A = Ad,-1 (exp6E;) = exp(6 Ad,)-1 E; ) and
k(68 Ad,-1 E1,0 Ady-1 E1) = 6°k(Ey,Ey) = 6% < m°.

Step 3.
Suppose that X,Y € 52 and expX = expY. Then using (3) we obtain

1+%X2:epr=eXpY: 1+%Y2

which implies that X = £Y. Conversely, if X = =Y then expX = expY. Therefore on Sf,
the exponential mapping is two to one with expX = exp(—X). In other words, exp maps
antipodal points on S2 to the same element of SO(3).

This establishes the solid ball model of SO(3). O

1.4 The sphere bundle model

In this subsection we describe the sphere bundle model of the rotation group.

Let
718> = {(x,y) e TR =R’ x R*| (x,x) = 1, (x,y) =0 & (y,y) = 1}

be the unit tangent sphere bundle to the unit 2-sphere S2. In other words, 7152 is the set
of all ordered pairs of orthonormal vectors in R3. T{S? is diffeomorphic to the rotation
group SO(3) via the smooth map

@:T1S* CTR? - SO(3) TR’ : (x,y) — col(x,y,x X y), (8)
whose smooth inverse is the restriction to SO(3) of the projection
7:R% = TR?: A =col(ay,a,a3) — (a1,a2). 9

7152 can be made into a Lie group by pushing forward the Lie group structure on SO(3)
via the mapping 7 (9). In more detail, define a multiplication - on 7152 by

(xvy) ' (Z7W) = ﬁ( COI(X7y,X Xy) 'COI(Z7W7Z X W)) (10)
= (z1x+ 22y +23(x x ), wix+way +w3(x xy)).

Observe that e = (e1,e) is the identity element of (7; s2, ).
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Since
T(w)(T]SZ) = {(u,v) € TR3| (x,u) =0, (u,y)+ (x,v) =0 & (y,v) = O},
we find that
T,(T18?*) = {u = ((0,u3,—12), (—u3,0,u1)) € TR?| (uy,u2,u3) €R*}. (11

In other words,

0 —us u
T,(T18*) ={u=7U) e TR}|U = | u3 0 —u | €so3)y,
—Uup ui 0

which has the standard basis {&; = 7T(E;)}. Define a Lie bracket [, ] on T,(7}5?) by
[u,v] =7([U,V)), (12)

for u, v € T,(T;S?). In terms of the standard basis {&i} we obtain the bracket relations
> [€:,€;] = L &jx€x. The following argument shows that (7,(77S%), [, ]) is the Lie algebra
of the Lie group (7752, -).

(1.10) Proof: For every (x,y) € T;S? define left translation by (x,y) as
Lisy) 1 TiS? = Ti8%: (&w) = (9) - (2,w) (13)

and right translation by (x,y) by R(y,) T18? — T15% : (z,w) = (z,w) - (x,y). Hence we
may define the diffeomorphism

Int(x,y) : T]S2 — T1S2 : (Z,W) — L(x,y)OR(x,y)*l (Z,W),

which induces the group homomorphism Int : 7,5 — Diff(715?) : (x,y) = Int( ). Here
(Diff(7;5?%),°) is the group of diffeomorphisms of 7;S% with composition ° as multiplica-
tion. Differentiating Int(, ) at e, we obtain the linear map

Ad(yy) : T(TyS?) = To(T18%) : v TInt () v = T(Adgoi(xyasn) V)
which gives rise to the group homomorphism
Ad:TiS* = GIT.(T1S*),R) : (x,y) = Ad(,).

Differentiating Ad at e gives the linear map ad : T,(7;5%) — gl(7,(715%),R) : u — ady,
where

adyV = T,(Ad(y ) V) = T(T;(Adcoi(ryxxy)V)U) = T(adyV) = 7([U,V]).
The Lie bracket on 7, (T} Sz) is defined by [u, v] = ad,v, which agrees with (12). OJ

If we identify the T, (7}$?) with R? using the mapping

0 —u3
i:T,(1S*) =R :u= (( us ),( 0 )) = u = (u,u2,u3),
—up uy
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it follows that i is an isomorphism of the Lie algebra (7,(7;5?),[, ]) with the Lie algebra
(R3, x), since i(&;) = e;. In other words, i([u,v]) = i(u) x i(v) for every u,v € T,(T;S?).
Define the Killing metric k on T,(7;S?) as follows. For u,v € T,(T;S5?) let

k(u,v) = (i(w),i(v)), (14)

where (, ) is the Euclidean inner product on R3?. The Killing metric & is infinitesimally
Ad-invariant because for t,u,v € T,(T} Sz)

k(t, [u, v]) = (i(t),i(u) xi(v)) = (i(t) x i(w),i(v)) = k([t, u],v).

Since 7152 is connected, it follows that k is Ad-invariant, that is, k(Ad(xﬁy)u,Ad(w)v) =
k(u,v), for every (x,y) € T;S%.

> We now turn to discussing the geometry of the sphere bundle model. One of the advan-
tages of the sphere bundle model of SO(3) is that 7152 is the total space of an S'-principal
bundle over §? with bundle projection

T: IS CTR* 5 2 CR*: (x,y) — x. (15)

(1.11) Proof: A calculation shows that for every (v,w) € T(, ) (Th 52) we have Ty T(vyw) = v.
Since v € T,.82, it follows that 7 is a submersion. In addition, 7 is a surjective proper map.
Therefore by the Ehresmann theorems of chapter VIII §2, 7 is a locally trivial bundle with
fiber S'.

To show that 7 is a principal bundle, see chapter VII §2.2, we argue as follows. Consider
the S' = R/27Z-action

S x 187 — 1187 (1, (x,y)) = (x,exp(—tX)y) = (x,ycost — (x x y)sint), (16)

where X is the skew symmetric matrix i ~' (x) and i is the map given by (2). The action ¥
has the following properties.

1. ¥, preserves the fibers of the bundle 7. In other words, ¥, maps the unit circle in
1,52 into itself.

2. The action W is proper, since S' is compact.

3. The action W is free, because if (x,y) = W¥;(x,y) = (x,ycost — (x X y)sinz), then
y=ycost— (x xy)sinz. Taking the inner product of both sides of this last equation
with y and using the fact that (y,y) = 1, yields 1 = cost, that is, = 27 n for some
neZ. Hencet=ecS'.

Therefore 7;S? is the total space of an S' principal bundle over the smooth orbit space
V = T;5?/S" with bundle projection A : T;S?> — V, see chapter VII ((2.12)). Since 7 is
invariant under W, it induces a smooth map o : V — S? which makes the diagram 1.4.1
commute. The map o is surjective because 7 is. Also o is injective, because the fiber
of T is a unique S' orbit of ¥ by property 1. Therefore o is a homeomorphism, since V
is a compact Hausdorff space. To verify that o is a diffeomorphism, it suffices to show
that for every v € V, the tangent map 7,0 : T,V — TGMS2 is injective, because dim7,V =
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T, % _id T, §?
A T
\% o 2

Diagram 1.4.1

dim T(,(l,)Sz. Towards this goal suppose that 0 = 7,6 (w,,) for some w, € T,V. Since A is
a surjective submersion, there is a w(, ) € Ty(,)(715%) such that (Tixy)A)W(xy) = Wy and
A(x,y) = v. Therefore 0 = (T,6°T(,y)A)W(ry) = (T(x,)T)W(ry), sSince T = c°A. In other
words
Wiry) EkerTx )T = T(x_yﬂ*l (x), since 7 is a smooth bundle
= Ty '(v), since 77! (x) and A~ (v) are the
same S' orbit
= kerT(, A, since A is a smooth bundle.

Therefore w, = 0. Thus 7 and A are isomorphic bundles. In fact they are isomorphic S'
principal bundles, since the horizontal arrows in diagram 1.4.1 are diffeomorphisms and
the map id interwines the S'-action ¥ on T} 5% with itself. ]

Now consider the diagram

S3 4’52

T; 52

Diagram 1.4.2

Here h is the Hopf fibration, see chapter I ((4.2)), 7 is the map (9) and p : S - SO(3) is
a two to one covering map, see (17) below.

Claim: The bundle projection 7 : 7 5% — S2 is double covered by the Hopf fibration 4.

(1.12) Proof: We start by defining the covering map p : > — SO(3). This involves an extensive
excursion into quaternions.

As a real vector space the set of quaternions H has a basis {1,i, j,k}. Thus every ¢ € H
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can be written uniquely as ¢ = qo 1 4+ q1 i+ q2 j + g3k, where (go,q1,92,93) € R*. We
make H into an associative noncommutative algebra by defining a multiplication - on its
basis elements by requiring

1. 1 commutes with i, j and k.
2. ==k =—1i-j=—ji,j-k=—k jandk-i=—i-k.
3.i-j=k j-k=iandk-i=j.

Using properties 1 — 3 and the distributive law, it follows that multiplication is defined

for any two quaternions. For g € Hdefine gby g =¢qo 1 —q1i—q2 j — g3 k. It is straight-

forward to check that g-p = p-g. The 3-sphere S° C H is the set of all quaternions g

such that G- g = 1. Check that S is a Lie group under quaternionic multiplication with

identity element e = 1. Identify R® with the vector subspace of H spanned by the vec-

tors i, j and k. For every ¢ € S> C H consider the linear map L, : R> - R* : x5 g-x-g
> The map L, is orthogonal.

(1.13) Proof: First observe that for x = xyi+x; j+x3k € R®* C H we have x-¥ = x} +x3 +x3 =
(x,x), where ( , ) is the Euclidean inner product on R3. Consequently, for x,y € R3 C H

4(xy) = (x+y)- (x+y) = (x =) - (x - ).

Since L, is a linear map, it suffices to show that it is length preserving. We verify this as
follows: Lyx-Lgx=¢q-x-X-g=¢q-g-x-X = x-X,since g-q = 1. O

Thus we have a map
p:8—=003):q— L, a17)

p is a group homomorphism, since
quX:p-q.x.ﬁ = p(qxq)ﬁ — (LpoLq)x.

Because L = idgs, p is continuous, and because $3 is connected, the image of p lies
> in SO(3). The map p is a submersion and hence its image is a/l of SO(3).

(1.14) Proof: By its very definition, p is smooth. Because p is a group homomorphism, it
suffices to show that T,p : T,5° — 7;SO(3) = so(3) is bijective. Since (1,i) = (1,5) =
(1,k) = 0, we can identify 7,5> = {y € H| (y,1) = 0} with R* C H. Using this identifi-
cation we assert that

3 0 —X3 X2
T,p:R’—s0(3):x=x1i+xj+x3k— —=2( x3 0 —x|. (18)

—X2 X1 0

To see this, observe that the curves t — e, t — '/, and t — e, which lie on $3 and pass
through 1 represent tangent vectors to S at e in the direction i, j and k respectively, since

4 eéi =i, & eéj = jand §| eék = k. Therefore T,p (i) is the linear map on R? given by
1= 1= 1=l

el x-e = ix—x-i = —2(x3j — x2k).

t=0

d
L,ix = —

x— .
1=0 dr

dr
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Similarly, 7,p(j) is the linear map x — —2(—x3i +x;k) and T,p (k) the linear map x —
—2(x2i —x1 ). This proves (18). Consequently the map T,p is bijective. Therefore p is a
submersion. (]

> Next we show that the kernel of p is Z.

(1.15) Proof: Suppose that L, = idgs. Then for every x € R? C H, we have G- x- ¢ = x, that
is, x-q = q - x. Letting x be succesively i, j and k in the preceding equation, we see that
g= 01 where Q0 € R. Since ¢-§ = 1, we have Q> = 1. Therefore ¢ = +1. Hence
kerp =7Z,. ]

Thus p is a two to one covering map. In other words, the twofold covering group of
SO(3) is §3. A geometric way of saying this is that if we act on $> by the fixed point free
proper Z,-action generated by the map which sends the point g into —¢g, then the smooth
orbit space, see chapter VII ((2.9)), is SO(3). Thus SO(3) is diffeomorphic to the space
formed by identifying antipodal points on S, that is, real projective three space RP?.

o h
g=yitxtityajtonk ———— Lji=(y3+x3 =3 —x3,2 (x1y2—x231), 2 (X112 4+y132))

p

Ly=col(Lyi,Lyj,Lqk)

T

(LgiLqJ)
Diagram 1.4.3

We now look at diagram 1.4.3. The top horizontal map 4 is the Hopf fibration, see chapter
1 ((4.2)). The first vertical map p is the two to one submersion (17), while the second
vertical map is the diffeomorphism 7 (9). The diagonal map 7 is the bundle projection
(15). From diagram 1.4.3 it follows that diagram 1.4.2 commutes. This proves ((1.12)).
0

> Next we determine the isomorphism type of the bundle .

(1.16) Proof: For y € $?, we know that the fiber A~!(y) of the Hopf bundle is a great circle on S3,
see chapter I ((4.2)). Let p = Top. From diagram 1.2 it follows that p (' (y)) = = (y).
Moreover, the fiber of p is two antipodal points on S>. Therefore, on fibers p is a two
to one covering map. Let Sk be the equator of $? and let x;, : Sk — S' C §3 be the
classifying map of the Hopf fibration, see chapter I. Then peyj, is a classifying map
Xr:S }5 — S' C 7157 of the bundle T. We compute the degree of ¥ as follows

deg yr =degp -degy, =2-1 =2.

This determines the homotopy class of }; and hence the isomorphism type of 7. (]
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Figure 1.4.1. Solid ball model of SO(3).

We now give a way to visualize the bundle 7, see figure 1.4.1. Think of 7S as the
closed solid ball D” in R®: x2 +x3 +x2 < 1 with points on its boundary $%: x3 43 +
x3 = 1 identified by the antipodal mapping R* — R® : x — —x. Look at the piece of
the hyperboloid H in D° defined by ¥ +x3 —x2 = L and 22 +x3 + 2 < 1 with waist C
being the circle defined by x7 +x3 = J and x3 = 0. This piece H intersects S* in two
disjoint circles Cy : x7 +x3 = 3 with x3 = 4. Orienting S positively induces a positive
orientation on Cy and C_. Under the antipodal map, the closed 2-disk D bounded by
the circle C. is identified with the closed 2-disk D_ bounded by the circle C_. Because
the oriented circles C agree after identification by the antipodal map, H is a 2-torus 7>
in the solid ball model and not a Klein bottle. In fact, H bounds a solid torus ST formed
by identifying the oriented end 2-disks D and D_ of the solid cylinder x% —l—x% - x% < %
and X} +x3+x3 < 1.

A B AE

/£ \

/[ \

/ \

I \

I ) _
— 1 [ D
Dy —+— ~+— D)

\ ]

\ /

\ 4

N 7

C E °

B=C

Figure 1.4.2. Solid tori in SO(3).

Claim: 7752\ ST is a solid torus ST>.

(1.17) Proof: To see this, consider the slice {x; =0} N (715%\ ST1) given by the shaded region
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of the left 2-disk in figure 1.4.2. Before identification this slice is two disjoint closed
2-disks Dy and D;. Under the antipodal map, the boundary piece AC of D is identified
with the boundary piece EB of D, thus forming a closed 2-disk D, see the right 2-disk in
figure 1.4.2. The same argument holds for every slice of the solid ball model through the
x3-axis. Therefore 7152\ ST is diffeomorphic to D x S ! which is a solid torus ST>. O

We have decomposed 7; S2 into the union of two solid tori ST and ST, which are identi-
fied along their common boundary T2 by a map v : T> — T2. We now discuss the geom-
etry of the gluing map y. Let 7 be the closed 2-disk defined by x7 +x3 < % & x3 =0. Let
S and S4' be the boundary 0% of Z and dD the boundary of D, respectively, see figure
1.4.3. Clearly d 2 and 9D are closed curves on the 2-tori d(ST;) and 9 (ST3), respectively.
Because Z and D are contractible in ST} and ST, respectively, the curves S7' and %' are
meridians on d(ST;) and d(ST>), respectively. Consider the light curve S! on 9(ST)
drawn in figure 1.4.3. It is the same as the curve Sé on d(ST;). The curve Sf is closed,
since it joins the points P and P’ which are antipodal on S? and hence are identified.
S‘f intersects D once at P. Similarly, the curve Sg intersects Z once at Q. Therefore, S‘f
and Sé are not contractible in ST} and ST, respectively. Hence S{ and S% are longitudes on

Figure 1.4.3. Solid tori in the solid ball model of SO(3).

d(STi) and J(ST»), respectively. Thinking of S5 as a curve on d(S7;), we see that S5’
intersects Z twice with intersection number of the same sign. Consequently, S5’ is homo-
topic on d(ST) to two times S§. Thus the gluing map y : d(ST>) = T? — I(STy) = T*?
takes the longitude Sg onto the longitude Sf by the identity map and the meridian S%' onto
a curve on d(ST;) which is homotopic to two times the longitude S}. We now give a map,
which up to homotopy, is the gluing map . Identify 72 with R?>/Z? and consider the

e (8 on(E) (1 7))

Geometrically we visualize ¥ as in figure 1.4.4. Since A € S1(2,Z), the map v preserves
77 and hence induces a map W : 72 — T2. On T? the curves {£; = 0 mod 1} and {& =
0 mod 1} are a longitude and a meridian, respectively. Under ¥, the longitude {&; =
0 mod 1} is mapped bijectively onto itself; whereas the meridian {&, =0 mod 1} is taken
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1

Figure 1.4.4. The gluing map of the solid tori in the solid ball model of SO(3).

onto the curve {(&1,2&;) € T?| & mod 1}, which is homotopic to two times the longitude
{& = 0mod 1}. Thus homotopically P has the same properties as the gluing map .

2 Left invariant geodesics

In this section we present two models for the Euler top: one based on SO(3) and the
other on 71S2. Given a left invariant (dual) metric on the cotangent bundle, we consider
the Hamiltonian formed by taking a cotangent vector to half its length squared. The
pull back by left trivialization of Hamilton’s equations on the cotangent bundle gives the
Euler-Arnol’d equations, whose solutions describe the motion of the top in space.

2.1 Euler-Arnol’d equations on SO(3) xR3

We begin by deriving the Euler-Arnol’d equations for the traditional SO(3) model of the
Euler top.
Suppose that the initial position of the top is the frame {e},e>,e3} in R3, which we identify
with the identity element e of SO(3). An arbitrary position of the top is given by the frame
{Bey,Bey,Bes }, which is obtained by rotating the initial frame by B. We identify this new
frame with the element B in SO(3). Thus the configuration space of the Euler top is
the rotation group SO(3). The phase space is the cotangent bundle 7*SO(3) with its
canonical symplectic form €, see chapter VI §2.
To describe the motion of the Euler top we need a Hamiltonian function on phase space.
Towards this end, let p be a left invariant (dual) metric on T* SO(3). In other words, for
every A € SO(3), p(A) is a nondegenerate inner product on 7,7 SO(3) such that for every
B €S0(3)

p(BA)(0pa, Ba) = p(A)(@a, Ba)- (19)

The cotangent vector ¢y is defined by the mapping

Z:S0(3) xs0(3)" = T*SO3) : (A, &) — (TpLy 1) a0 = au, (20)
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where Ly : SO(3) — SO(3) : B+ AB is left translation. Thus .& is a trivialization of the
cotangent bundle 7 : 7*SO(3) — SO(3) : @4 — A. By definition oy is the momentum of
the top at the position A. From left invariance it follows that p is completely determined
by its value at e. Because p is nondegenerate, p(e) may be written as

ple)(a,B)=x((I"") a,p). @1

Here k is the (dual) metric on so(3)" induced by the Killing metric & (1) on so(3). In
particular, x is defined by k (o, ) = B(k"(c)). The map I : so(3) — so(3), which is
uniquely determined by (21), is k-symmetric and invertible. [ is called the moment of
inertia tensor of the Euler top, see exercise 5. Let I; be the eigenvalues of /. They are
real and nonzero and are called the principal moments of inertia of the top. Below we
will show that we may suppose that the matrix of p(e) with respect to the dual basis
{E} = k*(E;)} of so(3)" is diag (I, I, 13).

The motion of the Euler top on (7% SO(3),Q) is given by the integral curves of the Hamil-
tonian vector field X  corresponding to the Hamiltonian

A :T*SO(3) = R:ay — p(A)(aa, o). (22)

Because .77 assigns to a cotangent vector one half its p-length squared, the vector field
X is the geodesic vector field on 7* SO(3) associated to the left invariant metric p. The
image of an integral curve of X, under the bundle projection 7 is a geodesic on SO(3)
for the left invariant metric p, see chapter VI §3.

To write out Hamilton’s equations for X ,» explicitly, we pull back the Hamiltonian system
(22,T*SO(3),Q) by left trivialization . (20). We obtain the equivalent Hamiltonian
system (H,SO(3) x s0(3)", ), where the Hamiltonian H = .£* () is

H:SO(3) xs0(3)" = R: (A, &) = L p(e)(a,a) = Jk(k* (I ).k () (23)
and the symplectic form o = Z*Q is
o(A, @) (T.LaX, B), (TeLaY, 7)) = =B(Y) + y(X) + ([, Y]), 24)
for X,Y € s0(3) and B, € s0(3)", see chapter VI §2 example 2’. Because
Tia ) (SO(3) x 50(3)") = {(T.LsX = AX, )| X €50(3) and o € s0(3)"},

we may write Xg (A, &) = (T,LaX1, 01 ) for some X; = X1 (A, @) € so(3) and some o =
a1 (A, o) € s0(3)". By definition of Hamiltonian vector field,

dH (A, a)(T.LaX>, 00) = ©(A, &) (Xu (A, &), (T.LaX>, 02)) (25)

for every (T.LsX2,00) € Tia x)(SO(3) x s0(3)"). Differentiating H (23) and using the
definition of @ (24), equation (25) becomes

p(e)(OC,OCz)=7061(X2)+O£2(X1)JrOC([X],Xz]) (26)
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for every X, € so(3) and every ap € so(3)". Setting X, = 0 in (26) gives ap(X;) =
o (p(e)’a) for every o € so(3)*. Hence X; = p(e)*(ct). Similarly, setting a = 0
in (26) and using X; = p(e)u(a) gives

o1(%2) = a((p(e) (). X)) = (ad . 0)(Xa)

for every X, € so(3). Hence o = ad;) a. Consequently, the Hamiltonian vector field

of the Euler top on SO(3) x so(3)" is

(©)*(a)

Xu(A,0) = (Ap(e)j(a),ad;(e)u(wa). (27)

If y: R — SO(3) xs0(3)" : 1+ (A(t), (t)) is an integral curve of Xy and if A is a fixed
> rotation, then 7: R — SO(3) x 50(3)" : 1+ (A(r), a(t)) = (AoA(t),x(r)) is an integral
curve of Xy, because

ai(n) A 440 (AoA(r))p(e)*(a) _

dt — 07ar — :XH(A(I),a(f))~ 0
da(t) da(r) ad’ .«

ar dr ple)*(a)

> We now show how to bring the matrix of p(e) into diagonal form.
(2.1) Proof: Under the mapping
j=kbeim ViR = 50(3)" 1 e E, (28)

the inner product p(e) on so(3)* pulls back to an inner product p on R3. For v,w € R3
we have

pvw) = p(e)(j(v),j(w) = k((K(I ") ok®) (i v),i " w)
= k(i7" ((I")"'v),i "(w)), using the k-symmetry of 1.
Here I’ = jeloi !
= (") vw).

With respect to the standard basis {e;} of (R3,(,)) the matrix of p is invertible and
symmetric. Hence there is a rotation O of R? such that the matrix of p with respect to the
basis {Oe;};_, is diag(1;',1,',I;'"). Under the map j, the basis {Oe;}?_, becomes the
becomes the basis {Ad’o,lEi*}?:1 of s0(3)". The matrix of p(e) with respect to this basis
is diag(/; ! iy ! e 1). Classically, this diagonalization procedure is called transforming
the moment of inertia tensor to its principal axes. See exercise 5. ]

> This is not quite what we want because the principal axis transformation does not give an
equivalent Hamiltonian system for the motion of the Euler top.

(2.2) Proof: Consider the diffeomorphism Ry : SO(3) — SO(3) : A — AO of configuration
space given by right translation by O, where O is the rotation constructed in ((2.1)). Phys-
ically, the initial position of the top is the new frame {Oe;, Oe;, Oe3} instead of the frame
{e1,e2,e3} and its general position is {OBe;,OBey,OBes} instead of {Bej,Bey,Bes}.
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The diffeomorphism Ry lifts to a symplectic diffeomorphism T*Rp of (T*SO(3),Q)
given by
T*Ro:T*SO(3) = T*SO(3) : otg > (TuRp-1) Ota.

Pushing the left invariant metric p forward by T*Ro gives a new left invariant metric p’
p'(A) (0, Br) = p(AO) (TaRo-1) o, (TaRo 1) 4 ).

Pulling p’ back by the left translation L4 1 we obtain p’(e)(a,B) = p(e)(Ad,,  a,
Adj,_, B). By construction of the rotation O in ((2.1)), the matrix of p’(e) with respect to
the basis {E;} of so(3)" is diag(1; ', I, ', I; ).

Let (227, T*SO(3),Q) be the Hamiltonian system obtained by pushing forward the orig-
inal Hamiltonian system (¢, T* SO(3),Q) of the Euler top by the symplectic diffeomor-
phism T*Ry. Pulling back (#',T*SO(3),Q) by left trivialization .# (20) we obtain a
new Hamiltonian system (H',SO(3) x so(3)", @) with Hamiltonian

H':30(3) xs0(3)" = R: (A, ) — $p’(e) (e, 0) (29)

and symplectic form ® (24). With respect to the basis {E;} of so(3)", the matrix of p’ is
diag(1;', ', 1Y), 0

From now on we will assume that p(e) is diag([fl,lgl,lgl). Writing o = Y; p;E; and
using the relations (=) E} = I, 'E}, adpE; = — Yi_, €E}, and Ef = E!, it follows that
the integral curves of Xy (27) on (SO(3) x s0(3)*, ) satisfy the Euler-Arnol’d equations

dA 0 -L'ps  L'm
- = A( 5'ps 0 —I'p )
dr ~L'p I'p 0
d 0 p3 —p 0 —~(L =1 Yy (T =L Ypips
dt( —p3 0 12 ) = ( (1{7]1*11:]1)171172 | 04 (5 =5 Ypaps )
2 0 (I =L )pips (3 =1, )paps 0

Pulling the Euler-Arnol’d equations back by the diffeomorphism id x j (28) gives

dA 0 - 3_lp3 12_1172
Sl Al L'ps 0 ~I;'py (30a)
1 —1 —1
=L 'py I p 0
d _
- = px)'p (30b)

on (SO(3) xR*, @' = j*). Here (I") ' p= (I; ' p1,I5 ' p2, 15 ' p3).

2.2 Euler-Arnol’d equations on 775> x R?

In this section we derive the Euler-Arnol’d equations for the Euler top in the nontraditional
sphere bundle model.
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Before launching into the details, we derive the nontraditional Euler-Arnol’d equations
from the traditional ones, (30a) and (30b), as follows. Let (x,y) € 715% and set A =
col(x,y,x x y) in (30a). Taking the first two columns of the both sides of (30a) gives
x=1I"psy—I ' pa(x xy
0 2_1( ) (31a)
y=—L pax+1I 'pi(xxy).

Clearly (30b) remains unchanged:
p=pxI")"p. (31b)

Of course this derviation does not show that the Euler-Arnol’d equations in the sphere
> bundle model (31a) — (31b) are in Hamiltonian form. To do this we give an argument
which parallels the derivation in the traditional SO(3) model.

(2.3) Proof: First, let p be a left invariant (dual) metric on the Lie group (7152, -). Because of
left invariance, p is determined by its value at the identity element e of 7} 5%. In particular,
for every a, 8 € T, (T S?), the dual of the Lie algebra of 7352,

ple)(a,B) =x((I"") a,p). (32)

Here K is the (dual) metric on 7, (715?), induced by the Killing metric k (14) on T,.(T; 52),
is defined by k(a, ) = B(k’(ct)). The linear map I : T,(TS?) — T,(T15?), which is
uniquely determined by (32), is invertible and k-symmetric. / is defined by

i(IA(“)) =1'(i(n)) = (Liur, bus, Ius),

that is, i(l.l) = ((0,I3u3, —huy), (—13u3,0,11u1)).

Let
LTS X T (NS) = THTS?) 1 (), @) = (T L)1) 0= 0y,

where L, ) is left translation on (7 §2,-) by (x,y). Z is a trivialization of the cotangent
bundle
T: T*(TISZ) — T]Sz DOy (x,y)

by left translation. On T* (T} 5?) with its canonical symplectic form Q, consider the Hamil-

tonian
I T*(TISZ) —R: Oxy) = %p(x,y) (oc<x’y),a(x$y)). (33)

Pulling back the Hamiltonian system (., T*(T1S?),Q) by the left trivialization % gives
the equivalent Hamiltonian system (H,T;S* x T, (T15%), ®), where the Hamiltonian H =
LA s

H:T\S* < T} (T15%) = R: ((x,y),0) = Lp(e)(a,a) (34)

and symplectic form @ = Z*Q is

(x)(x,y, OC) ((TeL(x.,y)uv ﬁ)v (TEL(xA,y)Va Y)) = _B(V) + )/(ll) + OZ([U,VD, (35)
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foru,v € T,(T1S?) and B,y € T} (T15?).

To compute the Hamiltonian vector field Xy, note that Xz (x,y,t) = (EL(XO,)Xl, 061) for
some x| = X (x,y,&) € T,(T15?) and some a; = o (x,y,&) € T(T1S?). From the defi-
nition of Xy it follows that

dH(xaya (X) (TeL(x,y)X% aZ) = w(xaya a) (XH(x7ya a)’ (T;L(X7}’)X27 OCZ)) ) (36)

for every x, € T,(T1S?) and every o, € T;(T1S?). Differentiating H and using the defini-
tion of w (35), equation (36) becomes

ple)(a,02) = =01 (X2) + 02 (x2) + a([x1,%2]), 37
compare with (26). Arguing exactly as in §2.1 we find that

Xp(y.@) = (TLuy(p(e)(@).ad) ;o ). (38)

where p(e)*(ct) = k’o(I')". Hence on (T1 5% x T*(T; S%), ®) the Euler-Arnol’d equations
are

d
300 = TLuy(p(e)e) (39)
da ;
o = e ® (39b)
which are Hamilton’s equations for Xy . O

To write (39a) and (39b) in a more convenient form, consider the isomorphism
j=kbei ViR 5 THTS?) e €.

{€7} is a basis of T,*(T1S?), which is dual basis to the standard basis {&;} of T,(T;S?),
because
£f () = kH(i ™! (er))er = k(i (e1),i (er)) = (enver) = 8.

Pulling Xy back by the diffeomorphism

y=idx j: 1> xR = T1S* x T (1iS%) : (x,y,p) = (x,5, Y pi})
i

gives a Hamiltonian vector field Xz on (715? x R, @’ = w*®) with Hamiltonian
H':TiS* xR = R (v, p) = 5 () pop) = 5 (I pE+ L 03+ 151 p3).
> Here H' = w*H. Hamilton’s equations for Xy are

. _
b "3y =L ' pa(xxy)

dy _ _
o =-1I lp3x—s—ll 1pl(x><y)

(40a)
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dp

= 7)1 40b
= px(I")""p, (40b)

where (I')~'p = (1f1p171{1P2,[§1P3)-

(2.4) Proof: With respect to the bases {€}} of T,*(T1S?) and {g&;} of T,(T;S?) the matrix of
ple)’: T} (TiS?) — T,(T1S?) is diag(I; ', 1; ', I 1), because
ei(p(e)*(e7) = ple)(&] i) = i (k" ((T")'e))
= &) ((k*o(I )k (&) = e (1) &) = el (1 &),

Writing & =}, p;€;, we see that p(e) jj(Oc) =Y, I, pi€;. Differentiating the definition of
left translation L,y (13) gives

TL( »U= (CO](x,y./ny)-U) = (u3y—u2(x><y),—u3x+u1(x><y))7

for u =Y, u;e; € T,(T1S?). Setting u = p(e)i(a) in the above equation and using (39a)
we obtain (40a). To obtain (40b) we first show that adfgl_ej- = — Y« &jk €. We compute

(adf.€%)(g0) = €5([ei, &) = €5(Yemen) = &r; = —( Y &ner) (€0).
k k
From (39b) we find that

Z;(c(jTI?)i‘c";k :Zpi(lj_lpj adt i ZP; pj Eijk € = Z(PX (1" 'p)ig;.

i ij i
Equating components gives (40b). (]

Note that the right hand side of (40a) and (40b) defines a vector field on R° with coordi-
nates (x,y,p). A calculation shows that 7 5% x R3 is an invariant manifold of this vector
field.

3 Symmetry and reduction

In this section we discuss the SO(3) symmetry of the Euler top. Using the regular reduc-
tion theorem, see chapter VII ((6.1)), to remove this symmetry, we obtain a Hamiltonian
system on the 2-sphere S2. We show that the integral curves of the reduced Hamiltonian
vector field satisfy Euler’s equations.

3.1 SO(3) symmetry
In this subsection we discuss the natural SO(3) symmetry of the Euler top.

Because the configuration space of the Euler top is the Lie group SO(3), it has a natural
symmetry, namely, the action of SO(3) on itself by left translation

L:S0(3) x SO(3) — SO(3) : (B,A) > LgA = BA. (A1)
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This action lifts to an action
L:SO(3)xT*SO(3) = T*SO(3) : (B,ox) > aga = (TaLy 1 )'ota,  (42)
> where oty = (TyL,1)" & for a € s0(3)*. The action L on (T*SO(3),Q) is Hamiltonian.

(3.1) Proof: Let & € so(3). The infinitesimal generator X% (o) = | Lexp,g 4) of the action
L in the direction & is the Hamiltonian vector field X & on (T*SO(3),Q2 = —d6) where

F5:T*SO(3) = R: oy (X5 _16)(o). (43)
To see this we observe that the canonical 1-form 6 on 7*SO(3) is invariant under L.
Therefore
0=1Ly:6=d(X*_16)+X°_1do=d 7 -Xx°_1Q,
which implies X = X i O

> Next we show that the SO(3)-action L (42) has a coadjoint equivariant momentum map-
ping
J :T*SO(3) = s0(3)" : s — (T.R4) (44)

where R : SO(3) x SO(3) — SO(3) : (B,A) — RgA = AB is right translation.

(3.2) Proof: We begin by finding another expression for the function ¢ € (43). Let Xe (A) =

| Lexp ,g A) be the infinitesimal generator of L (41) in the direction &. Then
d d
Xe(A) = o exptEA = o Rayexpté = T,R4E.
=0 t=0

From the momentum lemma, see chapter VII ((5.7)), it follows that _# ¢ (aia) = o (Xe(A))
= ((T.R4)'(aa) )&, forevery & € 50(3). Since & — 7 £ (ay) is a linear function on so(3),
we may define the mapping ¢ : T*SO(3) — s0(3)" by Z(ou)E = #%(an). This
> momentum mapping is coadjoint equivariant, because for B € SO(3) we have
F(Lpan) = (T.Rpa) otpp = (TeRpa) (TpaLpay1) @
= (TpLg-1°T.Rp) (T.RA) (TaLy-1) &0 = Ady_; 7 (0a). a

Pulling back the SO(3)-action L (42) by the left trivialization mapping . (20) gives the
action

7:50(3) x (SO(3) x 50(3)") — SO(3) x 50(3)" : (B, (A, )) ~ (BA, ). (45)

> ¢ is a Hamiltonian action on (SO(3) x 50(3)",® = £*Q) with equivariant momentum

mapping
J=%" 7 :S0(3) xs0(3)" = s0(3)": (A, ) — Ad,_, 0. (46)

(3.3) Proof: To verify (46) we compute

J(A,(X) = /(f(z&&)) = /(OCA) = (TgRA)lOCA = (TQRA)Z(TALAfl)ZOC = Adi‘,] (04
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Coadjoint equivariance follows because for B € SO(3)
J(ls(A, ) =J(BA, &) = AdEBA)_la =Ad, (Ad\_ ) = Adj J(A,a). O

We now show that the natural SO(3) symmetry gives rise to conserved quantities for the
> Euler top. First we observe that the Hamiltonian

A :T*SO(3) = R:ay — 5p(A)(aa, an)
is invariant under the SO(3)-action L (42).
(3.4) Proof: We compute. For every B € SO(3) we have

H(Lpow) = A (0pa) = 3p(BA) (0pa, 0pa) = 3P (LpA) (TaLy-1 ) ta, (TaLy—1) 0ta)
(Lyp)(0a) = # (), since p is left invariant. O

o=

Thus for every & € so(3) we see that 7 (Zexng o) = 7 (ay). Infinitesimalizing gives
0 =dA (o) X*(00) = dA (o)X e (o) = { 7%, A} (o).

Thus for every & € so(3), the &-component _# of the momentum mapping _¢ (44) is

> anintegral of the Hamiltonian vector field X ,» whose integral curves govern the motion of
the Euler top. In other words, _# is an so(3)"-valued integral of X . A similar argument
shows that the mapping J (46) is an so(3)"-valued integral of the Euler-Arnol’d vector
field Xy, whose integral curves are solutions of (30a) and (30b).

3.2 Construction of the reduced phase space

In this subsection we construct the reduced phase space, which is obtained after removing
the rotational symmetry of the Euler top.

To start the process of reduction, let i be a nonzero element of so(3)". The p-level set
J~!(u) of the momentum map J is {(A,Adju) € SO(3) x s0(3)*|A € SO(3)}. Thus
J~'(u) is a smooth submanifold of SO(3) x so(3)*, which is diffeomorphic to SO(3),
because it is the graph of the smooth mapping SO(3) — so(3)" : A — Adj ut.

We now want to find a subgroup of SO(3) which acts on J~!(u). Because J is coadjoint
equivariant, we look at the isotropy group

SO(3), = {B € SO(3)| Adl,_,jt = p}. 7

Since Adp,pu = AdjAdpu = Adju for every B € SO(3),,, it follows that J(BA, Adp, i) =

J(BA,Ad} ). Therefore restricting the SO(3)-action 7 (45) to SO(3), x J~ (1) defines
the action

®:80(3), xJ () =T (u) : (B,(A,Adju)) — (BA,Adju). (48)
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To get a better idea of what the isotropy group SO(3) means, apply the map Tl L jok” to
both sides of equation Ady,_, u = . This gives
1
ik’ (1) =

YTl i(keAdy okF) (K (1)) = (ieAdpei~")(y) = By.

. 1
1| [l
Thus SO(3),, is the set of all rotations which leave the unit vector y = Ifl\ iok”(u) fixed.
Physically, |u|y is the angular momentum vector of the Euler top with respect to a fixed
> frame. Let ¥ =i 'y and note that |[Y| = 1. Next we show that the image of the one
parameter subgroup A : R — SO(3): # — exptY is the isotropy subgroup SO(3),,.

(3.5) Proof: By definition, SO(S)“ is a closed subgroup of SO(3) and hence is a compact Lie
group. Its Lie algebra so(3), = {X € so(3)|ad§(u = 0} is one dimensional. To see this
apply the map iok” to both sides of the equation defining so(3) u fo obtain

0= i(k"oadiok") (K" (1)) = —(icadyoi™")(J1]y)) = —|u|i(X) xi(Y),
where the second equality follows since ady is k-skew symmetric. Therefore X and Y are
linearly dependent. Hence dimso(3),, = 1.

We would be done if we knew that SO(3) u Was connected, because the image of the one
parameter group A is circle. The following argument shows that SO(3) is isomorphic
to SO(2) and hence is connected. Write R* = span{y} @ IT, where IT is a plane in R?
orthogonal to the vector y. IT is invariant under every B € SO(3),,, because B € SO(3)
and By = y. Moreover, B|II € SO(2), since B € SO(3) implies that B|IT preserves the
length of every vector in IT and 1 =detB =(} 4n)= det(B|IT). The smooth map
0 :S0(3), — SO(2) : B+ B|IT is a homomorphism of Lie groups. Actually, 0 is an
isomorphism. To see that & is surjective, let B € SO(2) and choose {w, 7} to be a positively
oriented orthonormal basis of IT such that {y,w,z} is a positively oriented orthonormal
basis of R3. Define the linear map % : R®> — R3 by requiring that % sends the positively
oriented ordered orthonormal basis {y,w,z} to the ordered basis {y, Bw,Bz}. Clearly %
is an extension of B. _Since B € SO(2), {Bw,Bz} is a positively oriented orthonormal
basis of IT. Hence {y, Bw, Bz} is a positively oriented orthonormal basis of R>. Therefore,
% € S0(3) u- Hence o is surjective. Because 2 is the unique rotation which extends B,
it follows that o is injective. Thus ¢ is an isomorphism. (]

We return to discussing the construction of the reduced space. The reduced space P, =
’1([,L)/SO(3)ﬂ is the space of SO(3),-orbits on J~!(u). Since the action ® (48) on

J! (u) is free and proper, Py is a smooth symplectic manifold, see chapter VII ((2.9)).
> The following argument shows that P, is the SO(3) coadjoint orbit &), through p.

(3.6) Proof: Consider the mapping
my I (1) C€SO(3) x50(3)* — 50(3)" 1 (A,Adhu) = v = Adjp. (49)
Because the fiber 7, I(v) is a single SO(3) y-orbit, the image of 7 is the orbit space P,.
By definition, 7, (J~!(u)) is the coadjoint orbit &, = {v = Ad}u € so(3)" (3)}.
From example 3 of chapter VI §2, we know that the symplectic form @4, on Oy is
0o, (V)(ad;v,adyv) = —v([§,n]), where &, 1 € so(3). O
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3.3 Geometry of the reduction map
In this subsection we study the geometry of the reduction map 7 (49).
> Our main result is that 7, is double covered by the Hopf fibration.
(3.7) Proof: This follows from ((1.12)) once we prove

Claim: The SO(3),, principal bundle m : J ~!(u) — 0, is isomorphic to the S! principal
bundle 7: 7,5 — $2.

(3.8) Proof: We find a succession of principal bundle isomorphisms.

1. We begin by looking at the S'-action y : ST x SO(3) — SO(3) : (5,A) — (expsY)A,

where Y = ﬁ k®(u). Since  is free and proper, SO(3) is the total space of an S'-principal

bundle over SO(3)/S' = $? with bundle projection 6” : SO(3) — §? : A+ A~!y, where
y =i(Y). We now show that the principal bundles 7, and ¢” are isomorphic. Consider
diagram 3.3.1. Since p = |u|k*oi~!(y) and A € SO(3), it follows that Ad\u = B; (A~ 'y),
where f3; = k*oi. Therefore diagram 3.3.1 commutes. Let % (A) = (A, Ad} ). Then

Pexpsy (#1(A)) = ((expsY)A,Ad(’expsy)Ap,) = B1(ys(A)).

In other words, %) intertwines the actions y and ®. Because %) and fB; are diffeomor-
phisms, the principal bundles 67 and 7, are isomorphic.

7 _
S0(3) L TN A (4,Ad} (1)
o’ Tty
2 L,l = kPoi Vi -1 t (1hoi—1
S“” u ATy —— “'”AdA(k ol (y))

Diagram 3.3.1

2. Consider diagram 3.3.2. Because SO(3) acts transitively on the 2-sphere 52, there is
an O € SO(3) such that Oy = ¢;. Since (0~'A)~'y = A~'0y = A e, diagram 3.3.2
commutes. The second to last equality holds since y = O~ 'e;.

B

SO(3) so(3) A oA
ol o’
52 4ld> 52 Alep —— Ale

Diagram 3.3.2
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Define the S' action 0 : ST x SO(3) — SO(3) : (s,A) + (expsEj)A. Since 0 is free and
proper, SO(3) is the total space of an S' principal bundle over SO(3)/S! = §? with bundle
projection 6¢! : SO(3) — 5% : A — A~ 'e|. Because

P(6,(A)) = (0 'expsE0)0 'A = (exps(Ady1E1)) % (A)
= (expsY)(#2(A)) = ¥s(#a(A)),

the map %, intertwines the actions 6 and y. Thus the bundles ¢¢! and 6” are isomorphic
principal bundles, since the maps %, and id are diffeomorphisms.

3. To complete the proof of the claim, consider diagram 3.3.3. Clearly this diagram
commutes. The S'-action W : ' x 7157 — T15% : (s, (x,y)) > (x,ycoss — (x x y)sins)
defining the principal bundle 7 (15) extends to an S'-action

¥ : 5! x SO(3) = SO(3) :
X

(S, col (x,y,x x y)t) — [ ¥ coss— (x x y)'sins | = (expsEj) col (x,y,x x y)',
Y sins+ (x X y)' coss

¥ is the same as the action 0. Therefore %3 (Ws(x,y)) = 05(A3(x,y)), that is, S inter-
twines the actions 6 and W. Since 3 and id are diffeomorphisms, the principal bundles
T and o°¢! are isomorphic.

B
7,52 >+ S0(3)  (x,y) —— col(x,y,x %)
T o¢l

id
S2 4I> S2 x — X

Diagram 3.3.3

Composing the bundle isomorphisms (%3, id), (%,,id) and (%1, B1) shows that the prin-
cipal bundles 7 and 7, are isomorphic. |

3.4 Euler’s equations

In this subsection we study the reduced Hamiltonian vector field of the Euler top. This
vector field is obtained by removing the SO(3) y Symmetry of the Hamiltonian vector field

Xy (27) restricted to the invariant manifold J~! (i). The integral curves of the reduced
Hamiltonian vector field satisfy Euler’s equations.

We start by constructing the reduced Hamiltonian. Observe that the Hamiltonian of the
Euler top
H:S0(3) xs0(3)" - R: (A, &) = sa((K"(I" ") at), (50)
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when restricted to the p-level set of the momentum J, is invariant under the left SO(3) -
action @ (48).

(3.9) Proof: To see this recall that J~! (1) = {(A,v = Ad}u) € SO(3) x 50(3)*|A €S0(3)}.
Therefore we obtain (H|J~")(1)(A,v) = v(kb(l’l)’v). Since Pp(A,v) = (BA,v) for
every B € SO(3),,, we see that H|J ~!(u) is invariant under the action .

Thus H|J~' (i) induces a function Hy on the SO(3),,-orbit space J~' (1) /SO(3), = O
defined by 7w, H, = H|J ~!(u). Here m, is the reduction mapping
Ty J (1) C€SO(3) x50(3)* — Oy Cs0(3)" 1 (A,V) V. (51

Hence the reduced Hamiltonian is Hy, : 0, Cso(3)" —R: v Lv(k*((I71)'(v))). Since
O, is a symplectic manifold with symplectic form 04, , we obtain the reduced Hamilto-
nian system (Hy, Oy, 0g, ).

To see that the integral curves of Xy, on O, satisfy Euler’s equations, we need another
model for the reduced system. Consider the diffeomorphism

=it S2C R = 0, Cs0(3)" i prr v (52)

where S is the 2-sphere of radius » = |u|. Pulling back the reduced Hamiltonian H, by ]
gives the Hamiltonian

He:S]CRY 5 R:ip=(pi,pap3) = s pi+15 ' 3+ 15 p3). (53)

> The following calculation shows that (f)*a)gu = w,, where @, is the symplectic form on
52 given by
@:(p)(p % x1,p X x2) = —(p,x1 X X2), (54)
for x1,x2 € R3.

(3.10) Proof: For some A € SO(3), we may write p = A(j~'(i)). Then

i'(p) = (i""eAT o) (K (1)) = Ady-i (K"(1)) = K (Adju) = K°(v).

Let & =i"'(x{). Then
K (adLv) = —ade (R (v)) = [ (), ()] = i (p ).
Similarly, if n =i~ (x2), kb(ad,’7 V) =i'(p xx;). We compute (j)* ®g, as follows:

() ©g,)(p)(p X x1,p X X2) = Og, G (Tpi(p xx1), Ty j(p x x2))
= 00, (j(p)) (j(p xx1),j(p x x2)), since jis the restriction of a linear map
= 0g, (v)(adtv,adyv) = =v([&,n])) = —j(p) (i (x1 xx2))
= —k(z ( )i l(xl ><x2)) = —(p,x1 Xx2). O

The integral curves of the reduced Hamiltonian vector field Xy, on (O, ®, ) satisfy the
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> equations V = ad}(b v, see chapter VII §6.1 example 2. Pulling X, back by fgives

(=1v)
the vector field Xy, on (52, @,) whose integral curves satisfy Euler’s equations

p=pxI')"'p (55)
in angular momentum coordinates. Here (I')~'p = (Il_lpl,lz_lpz,lglm).

(3.11) Proof: Since Xy, is a vector field on S2, we may write X, (p) = p x X for some X =
X(p) € R®. From the definition of Hamiltonian vector field and the symplectic form o,
(54) we obtain dH,(p)(p x x) = —(p,X x x) for every x € R3. Differentiating (53) gives
dH,(p)(p x x) = ((I')~'(p), p x x) for every x € R%, that is, ((I')~'(p) —X) x p=0.
Consequently, for some A € R we have X = A p+ (I")~'(p). In other words, Xy, (p) =
px (Ap+ ()Y (p)) = px (I')"!(p). Thus the integral curves of Xy, satisfy Euler’s
equations (55). O

4 Qualitative behavior of the reduced system

In this section we give a global qualitative description of the solutions of Euler’s equations
(55) on the reduced space Sf. For a quantitive treatment see exercise 2. This amounts to
finding the topology of the level sets of the reduced Hamiltonian H, (53).

> We begin by showing that H, is a Morse function on S? with six critical points.

(4.1) Proof: Since S? is compact, H, has a critical point g. Using Lagrange multipliers, we see
that ¢ = (x,y,z) is a solution of the equations

0= DH,(q) = ADG(q) = (I, 'x, 1, 'y,1; '2) = A(x.y,2)
0=Glg) =3 (+y*+2* = r?).

In other words, ¢ lies on the intersection of an eigenspace of the diagonal matrix (1')~! =
diag (1 ! Ny ! Ny 1) with the 2-sphere S? of radius r. From now on we assume that

o<ni'<n'<ih (56)

Since the eigenvalues of (I’)~! are distinct, the eigenspaces corresponding to the eigen-
values I} 1712’ 1713’ I are spanned by the vectors rey, res, re3 respectively, which lie on 2.
Hence H, has six critical points £re; i = 1,2,3 with Lagrange multiplier Ii_l, i=1,2,3,
respectively. At the critical point ¢ with Lagrange multiplier A the Hessian of H, is

HessH,(q) = (D°H () —AD*G(q))| , =diag(ly' =4, 1,' =A.I7' =2)| .

Tqu Tng

see chapter XI §2. Since 7,52 = kerDG(q) = {v € R? | (v,q) = 0}, the tangent space

Tire,S? is spanned by {e;, e} where j # i, k # i and k # j. Therefore at £rey, re,, and
+re3, the Hessian of H, is

diag(l, ' -1yt =Y, diag(l; ' - L L -5 1), and diag(1, ' — L L -1 Y,
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respectively. Because (56) holds, we see that g is a nondegenerate critical point. Thus H,
is a Morse function. In particular, the Morse index of H, at the critical point *re; is 2 if
i=1,1ifi=2,and 0 if i = 3. Hence H, has two maxima, two saddle points and two
minima. u

Figure 4.1. The level sets H,~! (k). In the left figure %13_1 <h< %12_1;
in the center figure 7 = %12_1; and in the right figure %12_1 <h< %Il_l.

Geometrically the level set H, ! (k) of the Hamiltonian is the intersection of a triaxial
ellipsoid &, : %(Iflp% —&—I{lp% —I—Iglp%) = h with the 2-sphere p% +p% +p§ =72, see
figure 4.1.

> To show the pictures in figure 4.1 are qualitatively correct we use Morse theory.

(4.2) Proof: First we show that the 1723 '-level set of H, on S? is two points {%re3}. The
point ¢ = (x,y,7) lies on H, ! (%rzlgl) if and only if

P+ 2 = 3! (57a)
Pyid = (57b)

Multiplying (57b) by 15 ! and subtracting the result from two times (57a) gives
(' —EY?+ (L -y = o (58)

Since (56) holds, I; ' —I;' >0, and I, ' — ;' > 0. Thus (58) yields x = y = 0. Conse-
quently, z = +£r.

Because the critical points {+re3} are nondegenerate minima, we may apply the Morse
lemma, see chapter XI §2, to conclude that for a value of £ slightly greater than %rzlg "
the level set H, ! (h) is diffeomorphic to two disjoint circles, one in the neighborhood
of re3 and the other in the neighborhood of —re3. Thus H;'(h) is not connected. A
similar argument shows that for % slightly less than %rzlf ! the level set H- Y(h) is
also the disjoint union of two circles near +re;. Since H, has no critical values in
S = A2 3P Y Y (3L ), using the Morse isotopy lemma, see chapter
XI §3, we deduce that for h € .# the h-level set of H, is diffeomorphic to the disjoint
union of two circles.

To describe the remaining level set H,~ 1(%r212_ ') we note that ¢ = (x,y,z) lies in the
%rzlg Ilevel set of H, if and only if

MR+ LY 42 = 3L (592)

Py 42 = 2 (59b)
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Multiplying (59b) by I, ! and subtracting the result from two times (59a) shows that 0 =
(L' =5 Nz22— (I, ' — 17 ")x%. Thus the %rzlz_ "level set of H, is the intersection of the

two 2-planes [Ty = {(x,y,2) € R3‘ (L' =) 2z=x(1;" —1;7")/2x} with the 2-sphere

S2. Since IT, # I1_ and I1, NII_ is the line spanned by the vector e,, the level set
H! (%rzlg 1Y is an algebraic variety V, which is the union of two circles which intersect
each other at {+re, }. Because {+re;} are nondegenerate saddle points, using the Morse
lemma we see that these circles intersect transversely. This completes the verification of

figure 4.1. d

The information we have obtained about about the topology of the level sets of H, is
summarized in figure 4.2.

r s v 50 x st

pt
R '

Figure 4.2. Bifurcation diagram for the level sets of the
reduced Hamiltonian H, of the Euler top.

Putting all the pictures in figure 4.1 together gives figure 4.3. Since the connected

Figure 4.3. Level sets of H, on S>.

components of the level sets of H, on S? are orbits of the reduced vector field Xy, , figure
4.3 gives a qualitative description of the solutions of Euler’s equations of the Euler top. We

> now verify that the orientations of the integral curves of the vector field X, on Sf in figure
4.3 are correct.

(4.3) Proof: By continuity, it suffices to show that the linearization of Xy, at (0,0,r) is an
infinitesimal counterclockwise rotation around the positive p3-axis. Differentiating (55)
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gives
0 L' -LYes (' -5 )p
DXp,(p1,p2,p3) = ( (5" =1 "ps 0 (' =1 Yp )
G =Y G -Yp 0

Since T(O,O.r)S;Z" is spanned by {ej, ez}, the linearization of Xy, at (0,0,r) is

0 (' -5
W:DXHr(Ovovr)‘T(O,O.r)SE:( r(lfl—I;I) r(zo 3) )

u 0
0 u’!

P'wWP :( (s) o ) where s = r ((I;' — ;) (1! —13’1))1/2. Since s > 0, Z is an
infinitesimal counterclockwise rotation about the p3-axis. Hence W is also. A similar

argument handles each of the remaining cases. O

Let P :( > where u = (' =I5 /(I7' = I5"). A calculation shows that Z =

5 Analysis of the energy momentum mapping
In this section we study the energy momentum mapping &.# of the Euler top:

EM :SO(3) xs0(3)" — Rxso(3)":
(A,0) = (H(A,a),J(A, @) = (b a(k>(I" 1) @), AdY,_ )

Our main goal is to determine the topology of its fibers &.# ! (h, 1), because these fibers
are invariant under the flow of the Euler-Arnol’d vector field Xy, see table 5.1. We also
describe how the fibers &.2 ' (h, 1) foliate a level set J~!(u) of constant angular mo-
mentum [, see figure 5.2.

(h,ut) topology of H"! (h) topology of &.4 ' (h, 1)
0,0) point SO(3)
h= %rzli_l, two points S'(JS! whose double cover
i=1,3 is once linked.
he L r#0 | S'YS! T2\ T2
h= %rzlg ! \7, the union of two W, the union of two 72 in
circles on S? which SO(3) which intersect along
intersect transversely two circles, whose double
at two points. cover is once linked.

Table 5.1 Topology of the fibers of the energy momentum map &.7 .

> We now reconstruct the fiber &.# ' (h, 1) from the h-level set of the reduced Hamiltonian
H,. Here r = |u|.

(5.1) Proof: From the definition of the reduced Hamiltonian H, (53) and the reduction mapping

T J7 (1) CSO(3) xs0(3)" — §* C R : (A, Adjp) —~ A~ (iek’ (), (60)
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we find that
P _ -1 _ _ -
7y () = (H ()™ () = B ()T () = 6. ().
Using table 5.1 we obtain the bifurcation diagram figure 5.1. g
|1l N
SO(3) w N
50 x !

SO(3)

\
—T h

Figure 5.1. Bifurcation diagram for the energy momentum map of the Euler top.

> The following argument verifies the entries in the third column of table 5.1.

(5.2) Proof: First we find the critical points and critical values of &.#. Suppose that u = 0.
Then J~1(0) = {(A,0) € SO(3) x so(3)|A € SO(3)}, which is diffeomorphic to SO(3).
On J~!(0) the Hamiltonian H is the constant function 0. Therefore, every point of J~!(0)
is a critical point of H|J~'(0) and hence is a critical point of &.#. The corresponding
critical value of &.# is (0,0).

From now on we suppose that gt # 0. Then J~!(u) is diffeomorphic to SO(3).

Claim : The function
HJ 7 (@) s (1) = R (A, Adjp) — 3 k(K (Adjp), I (K (Adjp)))

is an SO(3)y—invariant Bott—Morse function with six nondegenerate critical SO(3)-
orbits yli =7 (&re;) fori = 1,2,3, two of Morse index 2, 1 and 0 respectively.

(5.3) Proof: By construction H|J~'(u) = (m,)*H,. Therefore p is a critical point of H|J ™' (u)
if and only if D(H|J~'(1t))(p) = DH,(m:(p))Dm.(p) is not surjective. Since 7, is a
submersion, p is a critical point if and only if DH,(m,(p)) is not surjective, that is, if
and only if 7,(p) is a critical point of H,. By ((4.1)) the set of critical points of H, is
{#rei|i =1,2,3}. Therefore the six SO(3),,-orbits — {n;l(:tre,-)|i =1,2,3} form
the set of critical points of H|J~!(1t). Since an SO(3),,-orbit is diffeomorphic to a circle,
the critical set of H|J -1 (u) is the union of six circles yii, i =1,2,3, which correspond to

1

the critical values §r2 Ifl, i=1,2,3, respectively.

We now show that each of the y,i is a nondegenerate critical manifold, see chapter XI
§2. Choose an open neighborhood ?/ii of +re; in $? such that the bundle 7, : J = (1) —
2, when restricted to (%), is a trivial SO(3) u principal bundle. Then there is
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a diffeomorphism ¢ : 77 (%*) CJ ' (u) — %* x SO(3),. which intertwines the
SO(3),,-action @ (48) on 7 (%) with the SO(3),,-action on %; x SO(3),, given by
(B,(q,A)) — (q,BA). If we parametrize the SO(3),,-orbit }/li byt +— Cbexptéi (pli) where
&t e so(3), and pif € ¥, then @ (") is parametrized by f — (+re;,exprE™). Thus
for fixed 1o the set 7= = (¢) ™ (%* x {expto&*}) is a slice to %" at %" (19). Since the
mapping 7, restricted to LE’ii is a diffeomorphism onto @/ii, the Morse index of H|J~!(u)
restricted to .#/* at 7 (to) is the same as the Morse index of H, at +re;. Therefore ¥ is
a nondegenerate critical manifold of H|J ™! (u). O

We return to verifying the third column of table 5.1. Suppose that / is a regular value
of the Hamiltonian H,. Then for h € .# = (3211, 12 ") J (3720, 1, 5 r21Y) the level
set H, ! (h) is diffeomorphic to the disjoint union of two circles S}. Since each S} is null
homotopic in S, the circle S ; bounds a disk 5?, which is contractible in S2. Therefore, the
bundle 7, : J~' (1) — S? restricted to 7! (53) is trivial, that is, 7! (55) is diffeomorphic
to 55 x S', see chapter VIII §2. Hence, the manifold &.2# ' (h,u) = w7 '(H; ' (h)) is the

disjoint union of two 2-tori 85? x S'. Now suppose that 1 = %rzll_ Lorh= %r213_ L
Then the h-level set of H, is the disjoint union of two points. Therefore, the manifold
&M (h,p) is the disjoint union of two circles, whose double covers are linked once.
This follows because the reduction map 7, is double covered by the Hopf map and any
two distinct fibers of the Hopf fibration are linked once. Finally, suppose that 7 = %rzlz’ I
Then H, ' (h) is the union of two circles C; which intersect each other transversely at
+re;. Since each of the circles bounds a contractible disk on S2, each set 7, 1(C;) is a
2-torus sz. Using the Morse lemma, chapter XI §2, we see that these tori intersect each

> other transversely in J~! (1) along two circles yzi Hence J/zi is a hyperbolic periodic orbit
of the vector field X |/~ (1).

Figure 5.2. The fibration of J~!'(u) by the level sets of H.

(5.4) Proof: Since (m,)*w, = Q|J "' (), the reduction mapping 7, is a symplectic diffeomor-
phism of the slice (%5, Q|(-#5") onto (%", w,|%,"). Therefore the vector field X |-75"
pushes forward under 7, to the vector field Xy, |%,~, which clearly has a hyperbolic equi-
librium point at +re;. O
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The union of the two 2-tori 7, ! (C;) is the variety W = ' (V), which is the union of the
closures of the stable and unstable manifolds of the hyperbolic periodic orbits ’)/2 and 7, .
> The local unstable manifold of yi is not twisted.

(5.5) Proof: To see this, let 7/ be an open neighborhood of £re; in 52 Then the intersection
of "I/ with the closure of the local unstable manifold of £re; is a contractible subset of
s2. Consequently, the closure of the local unstable manifold of J/i is a trivial bundle over
St 1 Thus it is not twisted. O

This completes verification of the third column of table 5.1. g
> Figure 5.2 is a qualitatively correct picture of the level sets of H on J ! (u).

(5.6) Proof: Let 7 C S? be a small closed 2-disk about the north pole (0,0, ) of the 2-sphere
S2. Using stereographic projection pr from the north pole, we find that the image of S\ 2
is the closed 2-disk E in R?, see figure 5.3. Since E is contractible, the bundle 7, |7, ' (E)
is trivial, that is, 1( ) is diffeomorphic to the solid torus S' x E. Thus we obtain a
decomposition of J (u), which is diffeomorphic to SO(3), into the union of two solid
tori ST; = 7, ' (2) and ST> = 7, ' (E).

Figure 5.3. Stereographic projection of the level sets of the reduced Hamiltonian H,..

Let us investigate more carefully how the solid torus ST fits into SO(3). First remove ST,
from the solid ball D3. Clearly, ST> is homeomorphic to S 1 (9 U _@2) which is a solid
torus on the two overlapping 2-disks 21 and Z,. The solid torus ST is formed by

1. Taking the cylinder ¢ = [0, 1] x (2] U %,) and giving it a number of half
twists.
2. Placing the result in the 3-disk D3\ %

3. Identifying antipodal points on the two end 2-disks of 4" and also on
A(D*\ ).
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In figure 5.4 we illustrate this construction when the cylinder % has undergone zero half
twists. The lines AA’, BB', and CC’ in this figure are the center lines of the cylinders
[0,1] x 21, [0,1] x (21N Z5), and [0,1] x P, respectively. After antipodal identifica-
tion of the end 2-disks, we obtain fwo solid tori with center circles AA’CC’ and BB'. In
figure 5.4 there are only three fibers which are center circles of solid tori. (Do not for-
get to include the centre circle DD'.) These fibers correspond to critical submanifolds of
H|J~' () of index 0 or 2. According to ((5.3)) there are four such critical submanifolds.

Figure 5.4. Replace the cylinder ¢” with no half twists.

Hence figure 5.4 does not describe the foliation of J~' (1) by level sets of H. An obvious
generalization of the above argument eliminates the possibility of replacing the cylinder
% with an arbitary even number of half twists. Suppose that % is replaced in D3\ € after
an odd number of half twists greater than one. For the sake of argument say three. It is
clear that the curves AA’, BB’,CC’ and DD’ are center circles of solid tori. However, the
double cover of AA’ and BB’ in S3 has linking number three, see exercise 10. Thus AA’
and BB' do not correspond to any critical submanifold of H|J~!(u) because the double
covers of the critical manifolds of H|J~!(u) have linking number one. Thus we can only
replace € with one half twist.

Whether this is a clockwise or counterclockwise half twist depends on the sign of the
linking number. We determine this sign as follows. Orient SO(3) so that its double cover
§3 is positively oriented. Give the solid tori S7; in SO(3) the induced orientation. Orient a
2-disk in ST;, which is transverse to the center circle, so that its image under the reduction
map has the same orientation as a solution to Euler’s equations which it contains. This,
together with the orientation of ST}, determines the orientation of the center circles A’A
and B'B. As integral curves of Xy on J~'(u), the curves A’A and B’B are positively
oriented. Hence their double covers in S, which are integral curves of the harmonic
oscillator on an energy surface, are also positively oriented. Thus their linking number in
§3 is +1. Therefore the cylinder € is given a counterclockwise half twist when looking
in the direction of the positively oriented curve B’B.

This completes the verification of figure 5.2. O
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6 Integration of the Euler-Arnol’d equations

In this section we integrate the Euler-Arnol’d equations

o -

o= b 'pay—1, ' pa(x xy)

o (61a)
il ;1p3x+1f1p1(x><y)

d _

=Py (61b)

in the sphere bundle model (7752 x R, @’), see §2.2. Here I'p = (I, p1,bp2, I3 p3). These
solutions describe the motions of the Euler top in space.

We begin by looking at certain invariant manifolds of the Euler-Arnol’d equations. A
straightforward calculation shows that the angular momentum

J:TiS? xR = R (x,y,p) — Ap = col(x,y,x X y)p (62)
and energy
H':T1S* xR 5 R: (x,y,p) = (7' pi + L' p3 + I ' p3). (63)
are integrals of these equations.

We now choose a better orthonormal basis {€},é>,e3} of R? to study the Euler-Arnol’d
equations (61a) and (61b). Let Ap be a rotation which sends the conserved angular mo-
mentum vector £ = Ap of magnitude |¢| to the vector |¢|e3. Let A = ApA = col(X,y,X X ¥).
Then (X,y, p) is a solution of the Euler-Arnol’d equations, where the angular momentum
integral J' = |¢|e3 = ¢. In what follows we will assume that {€},e>,e3} is the standard
basis of R and drop the tildes on the variables x and y.

Suppose that (h, £) is a regular value of the energy momentum mapping
EM" TS xR = RXR: (x,y,p) = (H'(x.y.p).J (x.y,p)).
Then (&.#")~"(h,¢) is diffeomorphic to the disjoint union of two 2-tori. Call one of
them Thzé. Then Thz[ is an invariant manifold of the Hamiltonian vector field Xy, whose
> integral curves satisfy the Euler-Arnol’d equations. We wish to describe Thzj as a bundle
whose projection map is

n:T CTIS xR = 8, C 87 CRY: (x,3,p) = p. (64)

(6.1) Proof: Observe that 7E(Th27é) is a connected component of the h-level set of the reduced
Hamiltonian Hyy, : S‘Za —R:p— 1((I')"'p,p) and hence is diffeomorphic to a circle
S}Zj, since h is a regular value of Hy. S}M is parametrized by a periodic solution of
Euler’s equations (61b).
To find an explicit description of 72, we begin by solving J'(x,y, p) = £ = |l|e3 for p.
Using (62) we obtain |¢| ' p = (col(k,y,x x y))'es. In other words,
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X3 = |Z|71p1 (65a)
i o= [0 ' (65b)
xiy2—xoyr = [0 ' ps. (65¢)

Substituting (65a) and (65b) into the defining equations of 7} s2

x%—l—x%—l—x% =
xiyi+xy+xyz = 0 (66)
ity = 1
gives
C4x o= 1-07%p (67a)
xiyiFxy: =~ pips (67b)
M4y = 110 7%p3 (67¢)

Because £ is a regular value of the reduced Hamiltonian Hy, p; # +|{|e; for i = 1,2,3.
Therefore the right hand side of (67a) is nonzero for every p € S}M. Write (65¢) and (67b)

as the linear system
—X; X 7!
G )G = i) @
X X2/ 2 =1 p1p2
Using (67a), we obtain its solution

1= wz (Plple +[llpax2)
(69)
V2= (Iflpm p1p2%2).

Therefore the 2-torus 7}7, is the set of points (x1,x2, 107 proyi,yas 1€ pa, p) € TISE X R3
where '

2, 2 -
Xi+x=1-1(7%p}, y1 = Iélz (P1P2X1+V|PM2) 2= wz (|€\P3X1 P1P2x%2),

and p = (p1, p2, p3) lies in the connected component of
I'pi L' P+ pi =2k and pi4pi+pi = |0,
which defines S }, vz This gives the desired description of the bundle 7 (64). g

Because Th , 1s a smooth invariant manifold of Xy, the restriction of Xy to Th ;1s a vector
field whose integral curves satisfy
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X1 = oa(p)xi—B(p)x (70a)
X = Bp)x+alp)x (70b)
p = px(I)'p. (70¢)

Here p € S,'M and

(151 —L, ") pipaps

AUy '+ p3)
2 _ Y PaTh Py
10> = p?

2
0] — p}

and  B(p) (71)

a(p) =—

(6.2) Proof: Consider the Euler-Arnol’d equations, (61a) and (61b), subject to the constraints
(66). Restrict these equations to (J')~!(fe3). In other words, impose the additional con-
straints (65a) — (65¢). Using (65a) and (65b) eliminate x3 and y3 from (61a). We obtain

o= 5y — 07 L papaxa — piya) (72a)
B o= L 'pyr— 07 L papiyi — paxt) (72b)
yio= =L 'paxi+107' 1 pi(paxa — piy2) (72¢)
Vo = =l paxa+ 0 pi(piyn — paxi) (72d)

together with (70c) and the constraints (65¢), (67a— 67b). Restrict (72a—72d) to (H') ' (h).
Since (69) holds on Thzj (a connected component of (J')~1(¢) N (H')~!(h)), equations
(72¢) and (72d) hold as soon as (72a) and (72b) do. Substituting (69) into (72a) and (72b)
to eliminate y; and y, gives (70a) and (70b) where the functions o/(p) and B(p) are de-
fined by (71). Clearly, (70c) holds. Since 7(T};,) = S}, ,» it follows that p € S}, ;. O

Because of the hierarchical nature of the equations (70a) — (70c), we can solve them as
follows. Let ¢t — p(¢) be a solution of Euler’s equations (70c), which parametrizes S}lj,
see exercise 2. Substituting 7 — p(¢) into (70a) and (70b) gives the time dependent linear
system

X1 = a(t)x1 7ﬁ(l)xz

73
Xy = (t)x1+a(t)x2, (73)

where a(t) = a(p(t)) and B(t) = B(p(t)). Introduce polar coordinates > = x? +x3 and
6 = tan~! % Then (73) becomes

de dr
i B(t) and i o). (74)

From (67a) we get r2(t) = 1 — |[¢| "% p3(¢). Integrating (74) gives

O(t):/olﬁ(s) ds+6(0). (75)
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Therefore,
xi1(t) = \/1— 0| 2p2(t) cosB(r) and xa(r) = \/1—|¢| 2p3(r) sinB(r).

Substituting x| (¢) and x5 (¢) into (69) and using (65a) and (65b) gives ¢ — (x(1),¥(1), p(t)),
where

x(t) = (/1= €] 2p}(t) cos B(t),\/ 1 — €| > p3(r) sinB(t), €] ' pi (1)) (76a)

¥ = (- J% [p1(1)pa(r) cos 0(r) + || ps (1) sin 6(1)],

J% €1p3(1)cos (1) — 1 (1)pa(r) sin O] 11| p2(0)).  (76b)

Note that 1 — (x(z),y(), p(t)) is a solution of the Euler-Arnol’d equations which lies in
Thzj C T15? x R? and under the bundle projection map 7 (64) maps onto ¢ +— p(¢) which
is a solution of Euler’s equation of energy / and angular momentum /. O

We now give a geometric description of some of the components of the vector field Xz
on the 2-torus 7;%,. Let A be the one parameter subgroup of (715, -) defined by

A:R— Ti8% 11+ ((cost,—sint,0), (sinz,cost,0)).

Observe that the image of A is the isotropy group SO(3),. Considered as a subgroup
of (7152,-), we see that SO(3), is diffeomorphic to S'. The one parameter subgroup A
induces an action

@: 8" x (1S xRY) = TS xR : (1, (x,y),p) = (A(1) - (x,3).p) = (Rix.Ryy, p), (77)

where R, is a counterclockwise rotation about the e3-axis through an angle . The mo-
mentum mapping of the action ® is the e3-component of the momentum mapping J'. The
action @ maps (J')~!(¢) into itself because for (x,y, p) € (J')~'(£) we have
J,((I)t (x,y,p)) = J/(ﬁz)@ﬁt)’a p)= COl(ﬁ,x,E,y, Etx X ﬁt}’)l’
= R, (col(x,y,x X y)p) = RJ' (x,y,p) = R,(|€]e3) = |[¢|e3 = L.

Because @ leaves p fixed, it preserves the Hamiltonian H’. Thus the induced action
@' = P|(S! x Thzj) is defined. Also every orbit of the action @' is a fiber of the bundle

w:Tr C ) (0) =S4, CS7(xy.p) = p (78)

> and thus belongs to a ruling of Thz/ by circles The infinitesimal generator of the action
@' is the vector field ¥ = —xp -2 ax +x ax The vector field Y is vertical in the bundle
> because TwY =0. Forevery (x,y,p) € Th_ , the vertical component of the vector X/ (x,y, p)

is B(p)Y (x,y,p)-
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7 The rotation number

In this section we give two ways of finding the rotation number of the flow of the Euler-
Arnol’d equations of the Euler top. The first one is an analytic formula based on the
integration of the Euler-Arnol’d equations given in §6. The second is follows from a
geometric interpretation of the classical Poinsot construction.

7.1 An analytic formula

We begin by deriving an analytic formula for the rotation number. Recall that S}lﬁ is a
connected component of the level set of the reduced Hamiltonian H, on S|25| correspohding
to the regular value A. Thus S,'L ¢ is parametrized by a periodic solution 7 — p(r) of Euler’s
equations of minimal positive period T = T (h,£). Let z — 6(¢) be the function defined

by (75).
Claim: The quantity ﬁ AB(T) = ﬁ(G(T) —0(0)) is the rotation number of the flow of
Xy on Th%(.

(7.1) Proof: Because under the bundle map 7 (78) every integral curve of XH/|Th2j projects to
the periodic integral curve S}L’ , of Euler’s equations, every fiber of 7 is a cross section for
the flow @' of Xz on T,%,. From the fact that along S} , the function 7 — B(z) (71) is

strictly positive and bounded away from 0, it follows that the function ¢ — 0(t) (75) is
strictly increasing and is unbounded as ¢ — F-oo. Therefore for every g € Thzly the image

of the curve ¢ — cb(la(z)fe(o)(‘Z) is the fiber of the bundle 7 over p = 7(g) € S} ,. Since
1+ p(t) = (@M (g)) starts at p, parametrizes S}, > and has minimal positive period T,

we see that (pf/(q) € n~!(p). Therefore for every g € Thz/ there is a minimal 7 > 0 such
that

@é(1>79(0) (q) = (Pﬁ/(‘l)» (79)

Below we show that T = T'. Using (79) and the definition of rotation number, it follows

that ﬁAG(T) = ﬁ (6(T)— 6(0)) is the rotation number of the flow of Xz on Th%e. O

> We now show that t =T.

(7.2) Proof: Let (&(1).0(1).p(1) = ®p) _g10)(@) = Py (g) andlet (x(1).y(1). p(1)) = 9/ (q).
We calculate & (¢) as follows. From the definition of the action ® (77), we find that

E(t) = (x1(0) cos @(t) —x2(0)sin@(t),x1 (0) sin @(¢) +x2(0) cos (t),x3(¢)) ,

where g = (x(0),(0),p) and p(0) = p. Comparing the above expression for &(t) with
the expression for x(¢) given in (76a) and looking at their third components, we see that
&(r) = x(0) if and only if 7 = nT, because t — pi(¢) is periodic with minimal positive
period T'. Since 7 in (79) is positive and minimal, we conclude that T =T (]

The rotation number has the following physical interpretation. Recall that the action of
SO(3) on itself under left multiplication by A corresponds to changing the space frame
{e1,e2,e3} to the frame {Ae1,Aez,Aes}. When A is in the isotropy group SO(3) ., . left
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multiplication by A leaves e3 fixed. Thus the action of the isotropy group corresponds
to the Euler top rotating around the e3-axis. Hence the rotation number is the amount of
revolution around the spatial e3-axis the top makes in time 7. Here the top has energy /
and angular momentum £ = |{|e3.

7.2 Poinsot’s construction

In this subsection we present a modern version of Poinsot’s construction. This construc-
tion leads to another geometric description of the rotation number of the Euler top.

Using the sphere bundle model of the preceding section we define the Poinsot mapping
by
P:(J) 1) CTiS? xR = R (x,y, p) = col(x,y,x x y)(I') ! p, (80)

where J’ is the angular momentum mapping J : 715> — R3 : (x,y, p) ~— col(x,y,x x y). In
the terminology of exercises 4 and 5, the Poinsot mapping assigns to an angular momen-
tum vector of magnitude |¢| in the body frame, which corotates with the body, an angular
velocity vector in the space frame of magnitude |¢|.

Claim: The image of (&.#)~"(h,¢) under Poinsot’s mapping P (80) is contained in the
affine subspace <) = {(Q1,Qa, %) | (Q1,Q) € R?} of Euclidean 3-space (R*,(, )).

(7.3) Proof: Suppose that (x,y, p) € (&) (h,£). Then

(P(x,y,p),£) = (col(x,y,x xy)(I') "' p,|€les) = ((I') " p,col(x,y,x x y) ' (|¢]e3))
= ((I")""p,p), since (x,y,p) € (/') (£)
=2h, since (x,y,p) € (H')~(h). O
Let 6’ be the orbit of the action & = @[(S' x T;?) (77) through (x,y, p) € T;,.

Claim: The image of the circle 4 under the Poinsot mapping & is a geometric circle in
oy of (R3,( , )) with center at %eg and radius rad(x,y, p) = || P(x,y, p) — ‘2/763” Here || ||

is the norm on R? associated to the Euclidean inner product ( , ).

(7.4) Proof: For every (x,y,p) € Th%é we have

1P (x3.p)) ~ sl = 1P (col R, R R x R) — Bl = IRPLx,: )~ Fes]
= HCol(vavaY)(I')* 2 |5|R ‘33H =||P(x,y,p) — |g|63H
Corollary: The radius function rad : &.7 ' (h,£) — R : (x,y,p) — ||P(x,y, p) — %@H is
invariant under the S'-action ®'.

> We now want to show that the image of the 2-torus Thzﬂ under the Poinsot mapping P is
the annulus

o = {(Ql,Qz, il efd/|rmmfm1nrad< |§|<maxradfrmax} 81)
2,

h 4
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This entails verifying that i, > 0. As preparation recall that the orbits of the S'-action
@ are fibers of the reduction mapping

T (1) (0) S TiS? xR = 8%« (x,,p) = p. (82)

Since the radius function rad is invariant under the action ®, it induces a function rad, on

T = (S (h,0)).
Claim: For every p € .%, ¢ we have rad,(p) = ||Dp — %6@”, where D = (I')~!.

(7.5) Proof: For every (x,y,p) € ﬂlzll(p) we have

radf(p) = radg(iqg‘(x,y,p)) = rad()@y,p)
= [|col(@,y,xx )(I) ' p = Fresll = (1) p = Freol(x,y,xxy) " (O]
~ Do 2. since pe ()0 =

> Next we show that rady is strictly positive on .%7 .

(7.6) Proof: From the preceding claim we see that rad,(p) > 0 for every p € .#}, ;. Suppose

that rad,(p) = 0 for some p € 4, 4. Then Dp = (%)p Therefore %

of D and hence equals I;! for some i € {1,2,3}, that is, h = %If1|£|2. Thus (h,¢) is a
critical value of the energy momentum map &.# . This is contrary to our hypothesis. [

is an eigenvalue

To prove the assertion about the image of the Poinsot mapping, from the definition of
rady it follows that the radius function rad is strictly positive on &.# ' (h,£). Since
&M (h,0) is compact, rad has a positive minimum. Thus <7 (81) is an annulus. O

For latter purposes, see ((7.10)), we want to know more about the critical points and
critical values of rad,. Towards this goal, consider the function

R: Ty gSﬁ,l —R:p— ((D— %)Zp,p).
Claim: R and rad, have the same critical points with the same Morse index.
(7.7) Proof: Since R is the square of rady, differentiating we obtain
DR(p)v =2rad¢(p) Drad;(p)v, (83)

forevery p € S‘Za andv e TpS|2[|. From (83) it follows that R and rad, have the same critical
points, since rad(p) is strictly positive on ., ¢ ((7.6)). Differentiating (83) gives

D?R(p)(v,w) = 2Drad,(p)vDrady(p)w + 2rad,(p) D*rad(p) (v, w), (84)

for p € S‘zé‘ and v,w € TPSIZé’I' If p is a critical point of R on .%}, ¢ then (84) becomes

DzR(p)(v, w) = 2rad;(p) Drad, (p)(v,w). (85)
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Since rady is strictly positive on .#}, ¢, from (85) we see that p is a nondegenerate critical
point of R if and only if it is a nondegenerate critical point of rad,. Moreover, they have
the same Morse index. U

> We now show that R is a Morse function.

(7.8) Proof: Because .}, ¢ is compact and R is continuous, R has a critical point p = (x?,xg,xg)).
By Lagrange multipliers, p satisfies

(( —%)2+11+AQD)17:0 (86a)
(p,p) = €1 and (Dp, p) = 2h. (86b)
Here D = diag(d1,d>,d3) = (I, 1, ', 15 ) and dy > d» > d3 > 0 (56).

Suppose that all of the components of p are nonzero. Then (86a) becomes

(dl—%)z-l-ll-i-lzm = 0 (87a)
(d —%)2—%/114-/1251’2 =0 (87b)
(d3—%)2+/11+/12d3 = 0. (87¢)

Subtracting (87a) from (87b) and (87b) from (87c) gives

12:_(d]+d2)+% and A,z:—(dz_’_ds)_'_%’

since di —d, and dp — d3 are nonzero. Consequently, d; = d3, which is a contradiction.
Therefore at least one of the components of p is zero.

Now suppose that two components of p are zero, say x(l) and xg. The other cases are similar
and their proof is omitted. Then the equations in (86b) give h = %d3|€|2. Hence (h,{) is
a critical value of &.# . This is a contradiction. Therefore exactly one component of p is
Zero.

Suppose that x(l) = 0. Again the other cases are handled similarly and the details are left
to the reader. Solving (86a) and (86b) we obtain

2h—d ‘f‘z d |€|2—2h

0 0 3 0 2

x; =0 x::lzwi X3 =1\ —— 88
! 2 dz*d}, ’ 3 dz*dg, ’ ( )

whenh € %) = (%d3|€|2, %d2|€|2). The argument when h € % = (%d2|€\2, 1d, 10]%) is left
to the reader. Since x(z) and xg are nonzero, (86a) becomes (87b) and (87c). Solving them
for the Lagrange multipliers A; and A, we obtain

2
M :d2d3—% and /12:—(d2+d3)+%. (89)

Therefore (88) is a solution to (86a) and (86b). The set .7}, = 7y (&4 (h,0)) has two
connected components .4 (€ = +) one of which is the circle Sllz.,é = Ty (Th%é). A glance
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at figure 4.3 shows that for fixed € the rwo critical points p.

[2h — ds| () o€ —2h
0 0 3 0 2

=0 =4/ — = _
ol 2 dz—d3 R € dz—d3 ’

lie on .7%. The value of R at p§ is W( do|0]* —h)(h— %d3|€|2). At p4 the Hessian of R

is

diag((d — 26)° + 21 + Ao, (dr = 26)° + D + Dochy, (ds — 25)° + A + Jodk)

£
e

Since T,e ¢ = ker[ 12 3 is spanned by the vector e, usin
jo ( dixy dyxy dixz 0, xg xg) P y ! g
(89) it follows that

Hess,: R = (di — 5(da +dz))2 — (5(da *d3))2-

But 0 < d3 < dp < dy which implies that dj — §(d> +d3) > d» — 3 (do +d3) = 3(d> — d3)
> (. Hence Hess e R > 0, that is, p§ is a nondegenerate minimum of R.

In table 7.1 we summarize information about the critical points of the function R. It

follows that R is a Morse function. O
critical points & conditions critical value index
2h—ds|0)? do|t>—2h 2
L0k 2 e [ (P - )| 0
ifhe .7
2h—ds|(|? dy|0]>—2h 2
2 (g 2 0. [ | Y| 1
ifhe .7
2h—ds |0 dy|0]>—2h 2
5. (2 0 e [UE ) | - e | 1
ifhe %
2h—d, |0 dy 0> —2h 2
4 (e Zrl /22 0), | A (P -n)-SasleP) | 0
ifhe %

Table 7.2.1 Critical points of R and their Morse index.

Using ((7.7)) we deduce that rad, : 3, C S‘ze‘ — R is a Morse function. Fixing € and
looking at table 7.1 we see that rad; has two nondegenerate minima and rwo nondegen-
erate maxima on .¥’¢ with corresponding critical values 7y, and 7. From the above
discussion we see that the image of the 2-torus Th%[ under the Poinsot mapping P (80) is a
closed annulus .27 in the affine plane <7, which is bounded by two circles Cpin and Cpax
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with center at % e3 and radius 7y, and rpex. Moreover, both P~ (Cipin) and P~ (Cax)

consist of two orbits of the S'-action &', because each orbit is the inverse image under the
reduction map 7| of a critical point of rad, on Sllz.l' Since the Hessian of rad, is definite
at these critical points, the Poinsot mapping P has a fold singularity along each orbit in
P~ '(Cmin) and P~ (Cmax). We leave it as an exercise to deduce from these geometric
facts that 7,7, cannot be embedded in R®.

Let 47 be an orbit of the S'-action @' on Thz_/{ whose image under the Poinsot map-
ping P is the oriented circle Cpax C o%. Then % is a cross section for the flow of
Xp|T?,. Hence for p € ) there is a smallest positive time 7 = T'(h,/) such that g =
(pﬁ/ (p) € 61. Here (p,H/ is the flow of X/. Let ﬁAG(T) be the rotation number of
the flow of XH/|Th2[ e Under the Poinsot mapping P the image of the integral curve
7:R— T2, : 1+ ¢l (p) of the Hamiltonian vector field X |T?, is the curve T': R —

o/ CR3 1t (Poy)(t), which is called the herpolhode corresponding to integral curve 7.
The angle AY(T'), subtended by the oriented arc on Ciax between P(p) and P(g), we call

> the herpolhode angle . Note that P(q) is not the first point after P(p) where the curve I'
meets Cpax, but is the second.

P(r)

Figure 7.2.1. The herpolhode angle of a solution of the Euler-
Arnol’d equations on a 2-torus in Thzl

(7.9) Proof: To see this, recall that P! (Cmax) is the disjoint union of two @' orbits %) and
% on Thz/. Before crossing 47, the curve 7 : ¢ — @' (p), which starts at p € %), must
cross %, transversely, say at the point . This follows from the fact that every orbit of the
Sl-action @' on Th%é is a cross section for the flow of Xy |Th2£. Thus P(r) € Cpa is the first
point where ¥ crosses %5. A similar argument shows that starting at r the curve ¥ crosses
¢ for the first time at the point g. Thus P(gq) is the second point on Cpax. O

To find the relationship between the rotation number and the herpolhode angle we look
more closely at the geometry of the Poinsot mapping P (80). Recall that the orbits of the
Sl-action @' give a ruling of the 2-torus Thzf by circles and that the image of a fiber of
the bundle 7 : (J))~'(¢) C 18> xR® — S‘zﬁ‘ : (x,y, p) — p under the Poinsot mapping P is
a geometric circle in the annulus &7 = {(Q,Q2, %) ER? |0 <P <+ <r2 )
We now see how P maps a circle .# in Thzj, which is transverse to the fibers of the bundle
7 (78), into the annulus .«7. More formally, for p € S‘ZM let € be the circle 7! (p) and
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let . be a circle in T;7,, which is chosen so that {¢,.} is a basis for H;(T}?,,Z). Let

% =tan~! %T be the angular variable in the affine plane .7, which contains the annulus
<7/, that measures the amount of rotation about the centre of 7. We want to compute
[ o P*dV.

S

First we give a precise description of .. Let

o: sfﬂ \{££,0,0)} CR} = J 1 ({) CTIS? xR3:
TP = pp e
p1 ( ) . Yyt (90)
p=|pr2|=yp)= 0 —£Z— |.r
P3 \V |[|2*P%
ﬁpl ﬁpz

> Then o is a section of the bundle 7|7 ~! (S‘ZL,‘ \{(£]¢],0,0)}). The curve .” is parametrized
by applying the section ¢ to the closed integral curve y: R — S% st p(t) of Euler’s
equations of positive period T and energy h # a|l|*, b|¢|?, c|¢|*. Here a = Lhb=0"
and ¢ = I;l. Now

M(a_ﬂz)
(6(0) = Plxoysp) — colxoprx ) (1)1 p = | Ly o1
P(o(p)) =P(x,y,p) =col(x,y,xxy)(I')" 'p=| 2E=0b-0) |.

i,

Since P(c(p)) = ((P°0)* (L), (P°0)*(Q2), %), the point P(c(p)) lies the annulus 7.

Therefore
Ry _1(Po0)" () p2p3
Poo)*d® = (Poc *d(tan 1—) :d(tan 17) :d(D—‘)7
(Proyav=(rroydian Ty, (Peo) (@) »
_ lt(b—c)
where D = TS We now show
2x, ife< % <b
/ P*do = N (92)
Kz 0, ifb< ;7 <a.
(7.10) Proof: First we observe that
/ Prdd = (Poc)*dﬁ:/dtan-'(z)@).
54 Jy=0* b4 P1
The last integral above is the variation of the function ¢ — ¥(r) = tan~" (D %‘E’f)(’)) over

the closed integral curve ¥(1) = (p1(t), p2(t), p3(t)) of Euler’s equations on S‘Zf‘ of period
T and energy h. There are two cases.

2h

< b. From exercise 2 we get

pi(t) =Acn(nt;k), pa(t) = Bsn(nt;k), and p3(t) = Cdn(nt;k),
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where A2 =

2h— cmz 2 _ 2h—c|(? 2 a|/|
—— B e and C* = = —=. Also

=/( _ _ — )(2/1 ll)
(at|* —2h)(b—c) and k = NaltP 2"

Because the integral curves of Euler’s equations on S‘ 7| are homotopic when & € (%c\ﬁ \2,

%b|€ |7), the variation of the function W over y does not depend on h. Therefore we
may let &\, %cw? This implies k — 0. So sn(nt;k) — sinnt, cn(nt;k) — cosnt, and

dn(nt;k) — 1. Moreover, D5C — D= 1/% and n — n = y/(a—c)(b—c). Therefore

W(r) - V(1) = tan~ (Dtannt) The variation of the function ¥ over [ £, 3Z)is 2m

because the function Dtan7t is periodic of period = 2% and is strictly monotonic increasing
n 3n
from —oo to o0 on [— %, 2] and [3%, 5]

CASE 2. b|(|* < 2h < a|¢|*. Again from exercise 2 we get

p1(t) = Adn(nt;k), p2(t) = Bsn(nt;k), and p3(¢t) = Cen(nt;k),

_colo? _
WhereA2:2ha_“f‘ ,B2 = “Vl 2h ,and C% = aw Zh . Also

vV = b=aal®=2n)
(2h—clél")(a—b) and k= /=0 -

Because the integral curves of Euler’s equations on S‘zﬂ are homotopic when i € (%b\f \2,

%a|€|2), the variation of the function P over y does not depend on /. Therefore we may let
h %awz. This implies k — O So sn(nt; k) — sinnt, cn(nt k) — cosnt, and dn(nt; k) —

1. Moreover,DliTC sD=_——b<¢  andn—in= v/(a—c)(a—b). Therefore ¥(t) —
(a— b)(a c)

Y(t) = tan~ ( Dsin 2t). The variation of the function ¥ over [0, 27”] is 0 because the
function lem 2nt is periodic of perlod and is continuous. (]

We now prove the relation between the rotation angle of the A@(T) of the solution ¥ of
the Euler-Arnol’d equations on Thzé of period T and the herpolhode angle AY(T') in the
annulus .27 of the herpolhode Pey.

Claim: We have

0, ifb|l)* <2h<all]

93
o1, if > < 2h < |0 ©3)

AO(T) :Aﬂ(T)—{

(7.11) Proof: We begin by constructing an affine frame on Thzl. Applying the section ¢ (90)
to the periodic integral curve Y of the reduced Hamiltonian vector field XH‘ " of energy

h and period T, gives a closed curve [0,7] = T, : = o (y(1)) on T;,. This curve
is transverse to every S I orbit of the action @', which rule Th%(, and its tangent vector at
o(y@))is I = Ty1y0Xn,, (¥(t)), which is nonzero. Set 6; = & (y(r)) and let Z(®(a;)) =
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Ts, @, be the push out of the vector .7; along the ruling s — @) (o;) of Thz_l through o;.
> Zis an S'-invariant vector field on Thzg because

T (6) P Z(P(61)) = Ty (6,) P} T, P T = T, (o) T
= TP} 7 = Z(P).s(07) = Z(PL(Py(071))).- O

Since

T, T (Xprr (P(01) = Z(®4(01))) = X, (Pi(01)) — Xny, (P (1))
= Xn,,(01) = Xny, (01) =0,

the vector field Z is the horizontal component of the vector field X/ on Thzj with respect
to the bundle mapping 7 (78). Therefore Xy — Z is the vertical component of XH’|Th2,£’
which is equal to B((1))Y (®(0;)) at ®{(c;). Thus X = Z+ BY on T,

Now we can describe the relation between the rotation number and the herpolhode angle.
Since the Poinsot map P is equivariant, we get P.Y =TPY = %. To see this, we compute

P(q);(xmyap)) = P(ﬁfxaﬁlyap) = COl(ﬁfxaElyvﬁtx X I}ily)(l/)ilp
zﬁtcol(x,y,xxy)(ll)flp:§,P(x,y,p). O

The evolution of the herpolhode angle ¢ along the integral curve y: R — S% it y(t) of
XH‘ /] is satisfies

dd d

— = (d®,P.Xy) = (dO,P.Z+B=).

= (A0, PXyy) = (d9.P.Z+ B )

Hence after a period T of y we get

AS(T)=0(T)—9(0) = /T<d19,P*Z>(y(t)) dt—}—/OTﬁ(p(t)) dr.

0
But by construction of the vector field Z we have P.Z(y(t)) = P.0.(Xu, (¥(t))) = P 0. g -
So

/OT<d19,P*Z)(y(t))dt:/OT((G*P*sz‘()/(t)),i—i/) dt:/yza*yG*P*dﬂ:/yP*dﬂ.

Therefore

0, ifb|l|* <2h<all]

AB(T). O
x, ifcll? <2h<blg? " )

A19(T):/yp*dﬂ—f—/oTB(p(t))dt:{ )
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8 A twisting phenomenon

In this section we describe and explain a twisting phenomenon which a tennis racket-like
rigid body performs.

Consider a triaxial rigid body with principal axes {e], 2,3} fixed to the body at its center
of mass. Suppose that the corresponding principal moments of inertia /; satisfy 0 < I} <
I, < I;. We say that the rigid body is tennis racket-like if it is nearly planar that is,

L~ +1, (94)
I3 is approximately equal to [} + I, and
L < b, 95)

I} is much less than /». Since an old fashioned wooden tennis racket fulfills all of these
conditions nicely, we will talk of a tennis racket.

€]

Figure 8.1. The principal axes of a tennis racket.

The following experiment demonstrates the twisting phenomenon quite dramatically. Take
a tennis racket and mark its faces so that they can be distinguished. Call one rough and the
other smooth. Hold the racket horizontally so that the smooth face is up. Toss the racket
attempting to make it rotate about the intermediate principal axis e;. After one rotation
catch the racket by its handle. The rough face will almost always be up! Thus the racket
has made a near half twist around its handle.

Figure 8.2. A special heteroclinic orbit, connecting ¥, with _, in the
solid ball model of phase space. The numbers correspond to those in
figure 8.3. The moments of inertia are: I} = 18, , = 16 and 5 = 1.
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The problem, of course, is to explain this twisting phenomenon. In what follows we give
a qualitative explanation. Since we are interested in the rotational motion of the racket,
we can forget about the motion of its center of mass. In other words we suppose that the
center of mass of the racket is fixed. The racket rotating around its intermediate prin-
cipal axis e, corresponds to one of the hyperbolic period orbits yj‘ of the Euler-Arnol’d
equations of the Euler top with energy & = %M |212’ !"and angular momentum £ = |/|e3, see
figure 8.2. In §5 we showed that ¥, with ¥, are heteroclinic, that is, the closure of the
unstable manifold of 7/2+ contains ¥, . Therefore every motion of the tennis racket which
starts “near” )/2+ eventually comes “near" ¥, . Warning: the racket spinning exactly about
its ep-axis does not twist at all. Thus we should quantify what we mean by “near". For an
estimate of the size of the region about )/2+ where the racket does not twist, see exercise

s@\%

5
Yz
o

Figure 8.3. A special heteroclinic orbit in configura-
tion space at evenly spaced time intervals.

12. Since yf and y; are heteroclinic for every triaxial rigid body, this qualitative feature
of the motion cannot be the whole story why the racket twists. What it does not explain
is why the racket makes a twist when going from y; to % . To say what we mean by a

Figure 8.4. The angles ¢(¢) and ¢(t).

twist, we must have some reference plane fixed in space. The following discussion shows
that the handle of the racket moves nearly in the plane. Suppose that the racket has
energy h and angular momentum ¢ = |¢|e3. Moreover, assume that the principal axis
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frame {e],e>,e3} and the frame {e},e,e3} fixed in space are the same at time ¢t = 0.

Claim. Let the position of the racket be as given in figure 8.1 and let a(¢) be the angle
the handle e; makes with the e;—e, plane at time 7. Then

0 < tana(t) < \/ (1 8k~ 10P)) /(1(16P —2111)). (96)

(8.1) Proof: Since the angular momentum of the rigid body is £ = |¢|e3, its component along the
ey-axis at time 7 is p; (¢), where 1 — p(t) = (p1(t), p2(), p3(¢))) is a solution of Euler’s
equations (55) on Sﬁl of energy h. Thus

10| p1(t) = |cos @(t)| = sina(r). 97)

Using the explicit solution of Euler’s equations in terms of Jacobi elliptic functions, see

exercise 2, we find that when h € [%M\zlgl, %M\ZIZ_I],

pr(0) =/ h— 0P /(17" = 15 en(nr:k).

Here

(L' =Y —2h)
(I = hEh— 0P

n:\/(lfl—lgl)(zh—wﬁlgl) and k=

Since |cn(nt; k)| < 1, see exercise 1, we obtain

0 <sinor) < |17|\/(2h—|e|21;1)/(1;1—1;1), (98)

which yields (96). Similarly when i € [1[¢]*1;1, 1|¢]I;!] we find that

pi(t) =/ h— 6P 1) /(17 — 15 ") dn(it: ).

Here

(I =LY @h— 0P

A=y (L =LY =2k) and k= | L2 - .
v (" =P —20)

Since |dn(7it; k)| < 1, we again obtain (98). O

Corollary: For a tennis racket rotating almost about its intermediate axis the angle a(r)
is small for all ¢.

(8.2) Proof: When the racket rotates nearly around its intermediate axis, 1 ~ %M |212_ !, Using
(94) the right hand side of (96) is ~ % This is small because of (95). g

Thus the plane swept out by the handle of the racket is fixed in space. With respect to this
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> plane we can see if the racket twists. To show that the racket does indeed twist, consider
its motion along the unstable manifold of y; as it goes from a neighborhood of y2+ toa
neighborhood of 7, .

(8.3) Proof: Let the position of the racket be as given in figure 8.1. At time ¢ the ¢-component
p2(t) of the angular momentum ¢ = |{¢|e3 of the racket is

pa(t) = [¢]cos p(1). 99

Using exercise 2, the solution 7 — p(¢) = (p1(z), p2(¢), p3(t)) of Euler’s equation of en-
ergy h = %|£ |212’ ! which goes from the hyperbolic equilibrium point |£|e; along its unsta-
ble manifold to the hyperbolic equilibrium point —|¢|e; is given by

11 11
p(t) = Iul(y/ ;2,1 53,1 sechnt, —tanhnt, | / % sechnt). (100)
) I} ) B}

Here n = |[¢|\/(1;' —1;Y)(1; ' —1;!). Therefore cos ¢ (1) = —tanhnz. From (100) we see that
att = —oo, p(—o0) =(0,|u|,0), while at = co, p(e0) = (0, —|¢|,0). Therefore ¢(—o0) =0,
while @(eo) = 7. Refering to figure 8.3, this says that the e»-axis of the racket starts with
e3 vertically above the invariant e;—e; plane and finishes with —e3 vertically below. Thus
the racket has made a near half twist in going from near }/2+ to near ¥, along the unstable
manifold. (]

To explain the experiment described at the beginning of this section in finer detail we
should show that

1. The racket has enough time perform a twist, that is, the time it takes the handle to
make one revolution is longer than the time it takes to perform a half twist.
2. The racket is likely to be caught after making a half twist.

3. The experiment is repeatable because the handle revolves nearly uniformly.

We refer the reader to the exercise 12 for a treatment of these points.

9 Exercises

1. (Jacobi elliptic functions.) Consider the system of differential equations

X =yz
y = —xz (101)
7 = _k2xy7

where 0 < k? < 1. Define the Jacobi elliptic functions as the integral curve

t— (x(z),y(t)g(t)) = (sn(t;k)7cn(t;k)7dn(t;k))
of (101) which passes through (0,1,1) atz = 0.

a) Show that the functions x2 + y2 and k2x? + 72 are integrals of (101) and deduce
that
sn’(t;k) +cn®(1;k) = 1 and k*sn”(t;k) +dn?(1;k) = 1.
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Consequently, for all ¢
[sn(t;k)| < 1, |en(t;k)| < 1and k' = /1 —k2 < dn(t;k) < 1.

b) Let x(t) = sn(t;k). From (101) deduce that £ = —L_—— > 0 forx €

(1-x2)(1—k2x2)

o _qx 1 . . .
(=1,1). Hence t(x) = [y V) dx is a smooth inverse of sn(¢;k) on
(—1,1). Since t(+1) = £K (k) = =K is finite, 7(x) is continuous on [—1, 1]. There-
fore, sn(K;k) = 1. Hence cn(K;k) = 0 and dn(K; k) = k.
¢) Show that sn(¢;0) = sin#, cn(z;0) = cost, dn(#;0) = 1 and sn(z;1) = tanhr,
cn(t; 1) = secht, dn(r; 1) = sechr.

d) Define

,sn(t;k) 1

80 = gy M0 =~ ey 4 S0 =K s

Show thatt — (& (¢),m(¢), £ (¢)) is an integral curve of (101) passing through (1,0,k)
atr=0. Since r — (sn(r +K:k),cen(t + K;k),dn(r + K; k) ) is also an integral curve
of (101) passing through (1,0,k") at = 0, deduce that

cn(t; k)
dn(z;k)

Conclude that sn(z;k) and cn(z; k) are periodic of period 4K while dn(z;k) is peri-
odic of period 2K.

sn(t;k) , 1
ddn(t+K;k) =k .
dn(t;k)’ and dn(t +K:k) dn(t; k)

sn(t+K;k) = , en(t+ K k) = —k'

e) Using the substitution x = iy/+/1 — y? the integral u = [ W dx be-
—x?)(1—k?x
comes i — if(;'y/\/ 1-? m dy. Let w = iu. Then y = sn(w;k’). There-
fore
sn(w; k') 1 dn(w; k')
k)=1i——+, k)= ————, and dn(us;k) = ———=.
sn(usk) = i en(w; k) en(iu;k) cn(w; k') and dn(u;k) cn(w; k)

Show that sn(w;k’),cn(w; k') and dn(w; k') are periodic of period 4K’, 4K’ and 2K’
respectively where K’ = [ ——L_ dy. Thus sn, cn and dn have a second
pecively Jo i &

purely imaginary period of 4iK’,4iK’ and 2iK’ respectively.

(Euler’s equations on S?.) Let x € R? and let (, ) be the Euclidean inner product
on R®. On the 2-sphere S2 C R? given by (x,x) = (2 show that every vector in
Tty S7 = {& € R*[(x,&) = 0} can be written as x x p for some p € R?.

a) Define a 2-form @y on S7 by @ (x)(x x p,x X s) = (x,p X s), where p,s € R®.
Show that wy is the element of surface area of S% and that it is a symplectic form.

b) On the symplectic manifold (S%, @y) consider the Hamiltonian function

H:S2CR = R:(x,y,2) = %(axz—i—byz—&—czz),
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where a > b > ¢ > 0. Show that the Hamiltonian vector field X has integral curves
which satisfy Euler’s equations

i =—(b—0c)yz
y = (a—c)xz (102)
z = —(a—Db)xy.

Note that (102) defines a vector field on R* which has S7 as an invariant manifold.

c) Integrate Euler’s equations using Jacobi elliptic functions, see exercise 1. In
particular show that

i) When (*b > 2h > (*c, (x(t),y(t),z(t)) = (Acn(nt;k), Bsn(nt;k),
Cdn (nt;k)), where
2o 2h—c€27 B 2h—c£2, C2:a€2—2h
a—c b—c a—c
(a—b)(2h—cl?)
(b—c)(al?—2h)"

n = (al?—=2h)(b—c) and k=

ity When ?a > 2h > £?b, (x(1),y(t),z(t)) = (Adn(nt;k), Bsn(nt;k),
Cen(nr; k)), where
2 o 2h—c£2’ 32:a€2—2h7 C2:a€2—2h
a—c a—>b a—c
(b—c)(al?>—2h)
(a—b)(2h—ct?)’

n = (a—b)(2h—cf?) and k=

The signs of A, B and C above are chosen so that x(z),y(¢) and z(¢) lie in
one of the connected components of

2y =0
ax*> +by* + ¢z = 2h,

when 24 # 2b. When 2k = ¢2b all choices of sign are possible.

3. Let x be the vector product and (, ) the Euclidean inner product on R3. For x,y,z €

R? show that

A xx (yxz)=(xz2y—(xyz

b)xx (yXxz)=(xxy)xXz+yx(xX2z).

¢) (x,y x z) = det(col(x,y,z)) = (x X y,2).

d) (2 x yxxy) + (63)° = (x2) ().

e) Let A : R — R be an invertible linear mapping. Show that A(x x y) =

ﬁ(Ax x Ay), for any x,y € R3.

From b) deduce that (R, x) is a Lie algebra, which is isomorphic to (so(3),[, ]).
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(Coriolis’ theorem.)

a) We establish some terminology which allows us to state Coriolis’ theorem pre-
cisely. Let (V,(, )) be 3-dimensional Euclidean space with its standard inner prod-
uct. A frame of reference . is a positively oriented orthonormal basis {f1, f2, f3}
of V. We say that the vector v € V looks like the vector x € R® in the frame
% if and only if v = Z?:lxi f;. Corresponding to the frame % is its coframe
Fr={f{. 15, fi}, where fi(fj) = ;. Suppose that &/ = {ay,as,a3} is a refer-
ence frame such that the vector v looks like the vector X € R?, thatis, v= Y7 | X;a;.
Let A = (A;;) be the 3 x 3 matrix whose ij1 entry A;; = f7(a;), that is, a; looks
like the jt column of A in the frame .%. Show that x = AX.

b)LetA: R — SO(3): 1+ A(t) = col(ai(t),ax2(t),a3(t)). Then o = {a;(z),a(z),
a3(t)} is a reference frame for V whose j™ member a; () looks like the j® column
of the matrix A(¢) with respect to the fixed frame .%. We say that <7 is a reference
frame which rotates with respect to the fixed frame .%. Let x : R — R? : 1 = x(¢)
be a differentiable function. Suppose that & : R — V : 7+ E(¢) is a motion in V so
that its position Z(7) at time 7 in the fixed frame .% looks like x(¢); while is position
in the rotating frame <7 looks like X (7). Show that x(¢) = A(t)X (¢).

c) Differentiating the preceding equation gives

‘:T)t‘ =A()X +A(z)%{ :A(t)A’1x+A(t)(jT):. (103)
The velocity of 7 — Z(¢) at time ¢ with respect to the fixed frame .% is a vector in V
which looks like ‘é—f; while with respect to the rotating frame it is a vector in V which
looks like ‘%. The skew symmetric matrix A’(t)A~!(¢) € so(3) is an infinitesimal
motion in the fixed frame at time . The corresponding vector ® = i(A(t)A~(t)) in
R’ is the angular velocity at time t with respect to the fixed frame. Show that

dx dX

— —o(t) x x(t) :A(t)E.

T (104)

This is Coriolis’ theorem in the fixed frame.

d) Write A(r1)A~' (1) = A(t) (A7'A(1)) A~ (1) = Ada) (A1 (1)A(r)). Deduce that
(1) = A(1)Q(1), where Q(t) = i(A~ " (t)A(¢)) is the angular velocity at time t with
respect to the rotating frame. Show that (103) can be written as

dx_

5, =AW [Q(t) xx+d—X}. (105)

dr
This is Coriolis’ theorem in the rotating frame.

(Moment of inertia tensor.)

a) A body is a set of points B C R? with a mass distribution given by a positive
measure dm, whose support is B and is not contained in any line through the origin.
Assume that the center of mass of the body is at the origin in R3, that is, the first
moments [x; dm of dm are zero for i = 1,2,3. A body is rigid if the Euclidean
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distance between any two of its points does not change when the body is moving.
Let £(7,X) be the position of a point X in the body at time ¢ whose position at
time O is X. Show that for a rigid body there is a unique A(¢) € O(3) such that
E(t,X) =A(t)X. Suppose that the curve R — O(3) : t — A(r) is smooth and that
the initial position A(0) of the body is id. Then A(t) € SO(3).

b) Let (, ) be the Euclidean inner product on R3. Let o/ = {a(t),a2(t),a3(t)},

where A(r) = col(a; (t),a2(),a3(r)) € SO(3), be a frame, which is corotating with
the body 8. The kinetic energy (of rotation) of a rigid body B in the frame .o/ is

K= %/%@'(t,x),é(t,x» dm = %/%(AX,A'X> dm = %/%(A’IAX,A’IAX) dm.

Now Q(t) = i(A~'A(t)) € R? is the angular velocity of B at time 7 with respect to
the frame .. Then (A~!A)X = i(A7'A) x X = Q x X. So

K= ;/%@ < X, Q% X) dm — %/%<97Q><X7X> —(Q,X)? dm.

Let M = (M;;) = (/ X;X; dm) be the matrix of second moments of the mass distri-
bution dm of 8. Then M is a symmetric 3 x 3 matrix with M;; > 0 for i = 1,2,3.
Show that M = [z X ® X* dm, where X @ X* € R* ® (R*)* = gl (3,R) is defined by
(X®@X*)(Y)=X"(Y)X = (X,Y)X for every Y € R?. Show that

K=1((Q,QuM—-(MQ,Q))=1Q,Q),

where I : R?* — R3: 0 — (trM) @ — M is the moment of inertia tensor of B.

¢) Let £(7,X) = OAX be the position of the body at time ¢, where O € SO(3). Show
that OX ® (0X)* = O(X ® X*)O~! and deduce that

K=1((Q,Q)u(0oM0™") - (0MO™")Q,Q)).

Choose O € SO(3) so that OMO' = diag(M;,M>,M3). Such a rotation O is called
a principal axis transformation. Show that K = %(IQ, Q), where I = diag(l;,1»,1»)
with I} = My + M3, I = M| + M3 and Iz = M| + M,, which are called the principal
moments of inertia of B. Show that

0<L <h+5h, 0<L<L+hL, and 0<L <[ +L. (106)

d) Let L = [ X X (Q x X) dm. Show that L = IQ. So L is the angular momentum
of B in the corotating frame <7. Using the notation L instead of p, show that we
can write Euler’s equations p=px I 'pas L=Lx Q. Let £ = [z x x (@ X x) dm,
where x = AX and ® = AQ. Show that £ = AL. Hence / is the angular momentum
of B in the fixed frame F = {ey,ez,e3}. Using Coriolis’ theorem and Euler’s
equations show that ¢ =0, that is, ¢ is constant during the motion of ‘B. Conversely,
if we know that ¢ = 0, then using Coriolis’ theorem deduce Euler’s equations.

. Show that every ¢ € H can be written uniquely as o + 3 - j for some a,3 € C =

R+R-i C H. For every o € C show that j- o -j = —a. Verify that the map

0:SCH—-SUQ):a+B-j— ( 7% g ) is an isomorphism of Lie groups.
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(Equation of the herpolhode.) Let 7: R — SO(3) x R® : ¢ (g(t),p(t)) be a
solution of the Euler-Arnol’d equations of motion of the Euler top of energy /
and angular momentum ¢ = |¢|es. Let P be the Poinsot mapping (80). Then
I:R—R3:1 P(J(1)) = A(t)(I') " p(¢) is the herpolhode corresponding to 7.

a) Let Q(r) = (I') "' p(r) and set () = A(1)Q(t). Then @(r) is the angular velocity
of the top in the space frame at time 7. Show that I'(¢) = @ ().

b) Let M; = |¢ |71 pi. Using the solution of the Euler-Arnol’d equations (61a) and
(61b), show that A(r) = col (x(¢),y(r), (x x y)(t)), where

1—MZ2cosB,\/1—M3 sin6,M)

=
=
-~
=
I
—

y(t) = (\/SW[MIMZ cosG—i—Mg,sinG}7 \/117[M3COSG—M1M2 sinG],Mz)
1 1

(xxy)(t) = (\/;17 [M M5 cos 6 szsineLﬁ [M5 cos @ + M M5 sin 0], M3).
- -

¢) Using o(r) = A(1)Q(t) and the fact that Y3 MiQ; = 2[¢| ' h, show that

cos 6

a)l(t) Q) —2M|71]1M1 _<Q2M3_£123M2) 0 @
a)z(t) = Qo M3 — Q3M> Q —2|f‘7 hM, 0 2n
o3 (1) 0 0 1 @
20k
cos¢p —sing 0\ [Rcos6 R(t)cos (6(1) + (1))
= |sing cosp O] | Rsin® | = [ R(r)sin(6(r)+ (1)) |,
0 0 1) \2le|™'n 21¢|'h

where

R(t)2 (@ =200 M) ( QoM —Q3Mp )2 1 (PP 1) paps
= s =

1=Mj | 0> —p}
and _—
QM3 —Q3M [l(1y " =15 " )pa(t)p3 (1)
tan (1) = 2oL =R I =
Q=27 hMy ({71 =2m)py (1)

d) Show that the herpolhode angle is AY(T) = AO(T) + A@(T), where T is the
period of a solution of Euler’s equations of energy & and angular momentum mag-
nitude |¢|. Using the results of exercise 1 show that

AQ(T) = { 0, %flzj \E\j <2h< 11:1 |e|§

2r, W I [T <2h <L |4
Let 72 C R* be a 2-dimensional torus. Suppose that 7z : 7% — [0, 1] x S is a smooth
surjective mapping such that 71 ({0} x S) and £~ ! ({1} x S!) are each the union
of two disjoint circles which are the only singularities of 7 and are fold points.
Show that 72 cannot be embedded in R3.

Consider 715> C R® as a Lie group. Give a symplectic form on TR® whose restric-
tion to 735% x R? is the canonical symplectic form on 7 (7;5?) pulled back by left
trivialization.
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10. Consider a vector field on X on a flat 2-torus 72 = R?/Z? in R* whose flow is a

11.

projection of the straight line flow on R* with slope p/q, where p, g are relatively
prime positive integers. Let j : 7> — S3 be an embedding. Give a vector field ¥ on
§3 such that j*(Y|j(T?)) = X.

a) Let w: 83\ {(0,0,0,1)} — R3 be stereographic projection from the north pole.
Show that 7(7?) is a 2-torus in R?. An integral curve y of Y is called a p-q torus
knot. Draw a picture of 7(7y) when (p,q) = (2,3). This knot is called the trefoil.
Draw a picture of the projection of () on R? using a convention which distin-
guishes over crossings from under crossings. Here we assume that () is oriented.
Construct an orientable surface bounded by 7(7y) from its planar projection by re-
placing every crossover with a rectangle which has been given a counterclockwise
half twist and whose edges lie on 7(y). Fill in the remaining pieces of 7(y) with
rectangles. Do this for the trefoil knot. Find a different filling procedure which
produces a nonorientable surface bounded by 7 (7). Show that the 2-1 torus knot
bounds a Mobius band.

b) Suppose that y and y/ are two distinct integral curves of the vector field X on 72.
Then 7y and ¥’ are called parallel p-q torus knots. Find a formula for the linking
number of 7(y) and 7(y’).

(A geometric formula for the rotation number.) Let T : [0, 7] — S‘zﬂ t—p(t)bea
periodic solution of period 7' of Euler’s equations (102) on (52 0= Vols‘z” ), which

has energy h = }(ap} +bp3 + p3) with @ > b > ¢ > 0 and angular momentum of
magnitude /.

2
a) Recall that B(p) = lél(lilpf& Show that B(p) = %—&-Zh_‘z‘w V\zp . Deduce

T at-n [T pi(t)
T)_/0 Bp() di =T - “ /o\é\z—lp%(t)dt

The above formulae expresses the rotation number of the flow of X on T} (e, as the
sum of a dynamic and a geometric phase.
2
b) Write the eastern hemisphere of S|2z| as 1"’7“ =4/1— ﬁ i /Iz and recall that its
volume form o is ‘}‘ dp szldp 3, Show that
p2dp3 —p3dps
o=- ﬁ d(p { 7. 2 } ).
p5+ D3

Using Stokes’ theorem show that the unoriented area |A| of the domain D in S%
bounded by the curve I" is given by

e < —palt >p2> »
)+P3( )

Using Euler’s equations (102) show that |A| is the absolute value of the integral

giving the geometric phase of the rotation number AG(T).
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¢) Determine the oriented area A as follows. Note that 6 = —|o|. If a|¢ > 2h>
b|e \2, then T encloses the positive pj-axis in R and is traced out in a clockwise
fashion. Hence I has negative orientation. If b|¢|* > 2h > c|¢|* then I encloses the
positive p3-axis and it traced out counterclockwise. Thus I" has a positive orienta-
tion. Use a rotation which takes the positive pz-axis to the positive pj-axis so that
the oriented areas can be compared. Deduce the formula

A, ifalf|* > 2h > b|¢?
AO(T) =T — ’
(M) =1 {7/4, if O] > 2n > |l

(The twisting phenomenon.) Let {€},e>,e3} be the principal axes of a triaxial rigid
body with principal moments of inertia 0 < I; < I < I5. Let {e1,e2,e3} be a frame
fixed in space which is the principal axis frame at time = 0. Assume that the body
is a tennis racket, thatis, 3 ~ I} + 5L and I} < L.

a) (Almost uniform rotation of the handle.) Because the handle ¢; moves nearly in
the e;—e; plane, see ((8.1)), the amount that its projection on the e;—e, plane rotates
around the e3-axis is nearly the same as the amount that ] rotates around e3. This
latter rotation at time ¢ is 6(t) = [j B(s)ds, where

By =101, P31 + 15 p3(0) (117 — (1),

and 7 — p(t) is a periodic solution of Euler’s equations on Sﬁ.z of energy h and
period T = T'(h,(). Prove the following. There is an M > 0 such that for every
t € R we have |6(t) — Bt| <M, where § = + J B(s)ds. First show that

w1, )
= — —— (|0°I;7 —2h) —————. 107
PO =1~ U0 =20 e 2 (on

From the fact the B(¢) — B is a periodic function of period T and average value 0
deduce that

t o T o
\/O(B(s)—ﬁ)dslé/o B(s)—Blds = M

for every r € R. For a tennis racket-like body M is small, when / is close to % |0 \212_ L
To see this use the triangle inequality to show that

T 2
M< 3(\@\2117172}1)/ f‘ids. (108)
g b =)

Using (108) and the fact that |p; (r)| < \/(Zh — |€|2151)/(1f1 —1;'"), see the proof
of ((8.1)), deduce the estimate: M < 2T (2h— |¢|*I; ') /|¢|. When h ~ |¢|* /2L, show
that |¢|T =~ 277:/\/(1171 ~ LY (5"~ I;"). Note that the right hand side of the pre-
ceding formula is the period of rotation of the body around its intermediate axis.

Using the fact that the rigid body is tennis racket-like, it follows that M ~ 4xl, /I
which is small.
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Use the same kind argument as in estimating the right hand side of (108) to prove
B> % — ﬁ (2h— |€|2151) = |¢|/I5. Thus the time the projection of €] on the e1—e;
plane needs to make one revolution about e3 is at most 2nlz /|¢)|.

b) (Enough time to twist.) From (107) it follows immediately that B < 2h/].
When h = %|€ /L, we find that B < |/|/I,. Therefore the time needed for the
projection of €7 on the e;—e; plane to make one revolution about ej is at least t, =
2nl,/|¢|. For a tennis racket-like body show that ¢, is larger than the characteristic

twisting time 271:/\/(11_l LY -nth.

c) (A long time near 7/2+ .) Show that the racket moving near the unstable (stable)
manifold of %" (7, ) spends most of its time near %, (7%, ). The hyperbolic character
of the periodic orbits yzi is essential here.

d) (No twist region.) Consider the function
F(p1,p2,p3) = (I =L i+ (L' = 11)p3

on the energy surface h = %(If ! p% +1, ! p% +1I; ! p%) The following argument
shows that a tennis racket will not make a half twist if

F(0) < 2Bh(I " — 13 1) e, (109)

where fo = 2‘”7"3 andn=|{|\/(I;' —1;')(1;! —1;"). First show that
F=LyF = -4 =)l =15 pipaps,
where X is the Euler vector field X(p) = p x (I')~'p on . Using the inequali-

ties |p2| < [¢| and |p1p3| < (o~ p? +0p3) with 0 = \/(151 -h/u -t
deduce that |F'| < 2|¢|nF. This inequality integrates to F(¢) < F(0)e*". By a) the
largest time required for the projection of the handle on the e;—e, plane to make
one revolution is 7y = 21l /|¢|. Therefore if F(0) is sufficiently small then F(z) is
not very large for ¢ € [0,#]. Thus we need a bound on F () which excludes the oc-
curence of a half twist. From its definition A = F(p(t)) = F(t) determines a family
of ellipses

Er (U =L P+ — L =2
Show that if for every 7 € [0, 1] the curve &), lies in the interior of the ellipse
g:thIflp%qLI;lp%

then the integral curve ¢ — p(z) of the vector field X on the energy surface does not
cross the {p2 = 0} plane. From I3 — I, < I, —I; deduce the estimate

F(t) > B =50 pr+ 15 p3).

Show that &) lies in the interior of & if F(t) < 2hl3(I; ' —I5"). Show that if (109)
holds on the energy surface then no twist occurs.



Chapter IV

The spherical pendulum

In this chapter we treat the spherical pendulum as a constrained Hamiltonian system. We
derive Hamilton’s equations and show that there is an axial symmetry which gives rise to
a conserved angular momentum. Thus the spherical pendulum is a Liouville integrable
Hamiltonian system. Using the technique of singular reduction, see chapter VII §7, we
remove the axial symmetry to obtain a Hamiltonian system with one degree of freedom
which we analyze. From the qualitative description of the reduced system we obtain a
complete qualitative picture of the motion of the spherical pendulum. Because of mon-
odromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of
global action coordinates, see chapter XI §1.

1 Liouville integrability

First we recall some standard facts about Hamiltonian systems on TR?, see chapter VI
§3. Let (, ) be the Euclidean inner product and x the usual vector product on R3. Let
¢ = (x,y) be canonical coordinates on TR3, that is, the canonical symplectic 2-form is
o= ):?:1 dx; A dy;. Corresponding to a smooth Hamiltonian function H : TR3 — R is its
Hamiltonian vector field Xy, whose integral curves satisfy Hamilton’s equations

& oH
d  dy

Y (1)
dy _ JH
dt ox’

Using the symplectic form @, we define a Poisson bracket {, } g3 on C*(TR?) by

af d
&) = 0050 = 57 5 (6w

whose structure matrix is ({&;, §}rg3) =< 01 18) In terms of Poisson brackets Hamil-
-5

ton’s equations for Xy read
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X = {x,H}TR3

).’ = {y ) H }TR3 .
We now describe the spherical pendulum as a constrained Hamiltonian system. First
consider the unconstrained Hamiltonian system (H,TR3, @) with Hamiltonian

2

H:TR = R:(x,y) = 1(50,0) +7(x,e3). 3)

The integral curves of Xy give the motion of a particle of unit mass in R3 under a constant
vertical gravitational force. Choosing an appropriate unit of length, we may assume that
¥ = 1. Now constrain the particle to move on the tangent bundle 7'S? of the 2-sphere §? C
R3, which is defined by {(x,y) € TR3|<x,x> =1& (x,y) = 0}. Then Newton’s equations
of motion are

X+e3 = Ax, 4)

so that the resultant force on the particle is normal to S?. We determine the multiplier A in
(4) by differentiating the constraint equation 0 = (x,x) — 1 twice and then using (4). This
gives

0= (%,%) + (x,%) = (%,%) — (x,e3) + 1 {x,x) = (£, %) — (x,e3) + 1.
Thus the constrained equations of motion are
¥=—e3+ ((x,e3) — <x,x>)x,
which written as a first order system are
X =y
. 5
v o=—es+((xe3) = (vy))x ©)

Suppose that (x,y) € T'S* and that # — (x(z),y(r)) is a solution of (5) starting at (x,y).
Then

d .
E((x,x) —1) =2(x,%) =2(x,y) =0

o) = (6004 (3 = Do) {e3.0)+ () — 000 G 2) = 0.

> So (x(r),y(t)) € TS%. In other words, T'S? is an invariant manifold of (5).

Next we show that (5) are Hamilton’s equations for the constrained Hamiltonian system
(H|TS?,TS? o|TS?), which is the spherical pendulum.

The following argument shows that the 2-form w|TS? is symplectic.
(1.1) Proof: Let TyR® = (R?\ {0}) x R3. The constraint functions
c1:ToRP 5 R:(x,y) = (x,x)—1 and c¢r: THR® = R: (x,y) — (x,y)

define the function % : TyR® — R? : m +— (ci(m),c2(m)), whose O-level set '~1(0) is
the constraint manifold 7'S2. Since 0 is a regular value of &, the constraint manifold 752
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is smooth. For every (x,y) € ToR? the matrix ({c;,c;}rgs(x,y)) = 2(x,x) (_01 é) is

invertible with inverse C = (C;) :ﬁ (? _01) . Consequently, the constraint manifold

TS? is cosymplectic. Therefore |TS? is a symplectic form, see chapter VI ((4.7)). O

Using modified Dirac brackets, see chapter VI §4, we compute Hamilton’s equations for
the constrained Hamiltonian H |TS2 (3) as follows. Let

*=H-— Z ({H,ci}rps +Hi)Cijcj (6)

i,j=1

%(y,y)—s—(x e3) + x)(_2<x7Y>+H1)<x,y>
ey (* (n3) + (x,e3) + Hy) ({x,x) — 1),

2

where H; is in the ideal of the commutative algebra (C*(7'S?),-) of smooth functions on
TS? generated by the constraints ¢; with j = 1,2. Choose H; = —(x,y)((x,x) —2) and
Hy = —((x,x) = 1) ({,y) — (x,e3)). Then

H*(x,y) = S0,y) + (v e3) + 3 () — (x,e3)) ((r,x) = 1) = L (x,3)2

Using (2), we see that on ToR? the Hamiltonian vector field X+ has integral curves which
satisfy

o =y 1) — ()

dy

a =—e3+ %63(<xax> - ]) - (<y7y> - (x,e3>)x+ (x,y}y.

We have X2 = Xy 752 Therefore Hamilton'’s equations for the spherical pendulum
are given by (5).

We now look at the symmetries of the spherical pendulum. As a phys1cal system in R,

01 - 0
the spherical pendulum is invariant under a counterclockwise rotation R, = (Zﬁif o 0)
0 0 1

through an angle 7 about the positive x3-axis. Lifting this to TR? gives the S'-action
@:S' xTR? = TR : (x,y) — (Rix,R,y). (7

The infinitesimal generator of the S'-action ® is the vector field Y (x,y) = d,| D, (x,y),
whose integral curves satisfy

— =XxXe3
dr
3
Y e
a2

Using (1) we see that Y is the Hamiltonian vector field X; corresponding to the Hamilto-
nian function
J:TR = R: (x,y) = (x X y,e3) = x1y2 — X231 ©)
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Thus J is the momentum mapping of the S'-action ®. Since T'S? is invariant under @,
the spherical pendulum has an S'-symmetry, namely, the S'-action ®|(S' x TS?). This
symmetry gives rise to the integral J|T'S?, because the Hamiltonian H|TS? is invariant
under @, which implies

(ITS HITS} 0 = —Lx

J|TS2 (

H|TS?) = 0. (10)

Hence the spherical pendulum is Liouville integrable.

2 Reduction of the S! symmetry

We remove the ' symmetry ®|(S' x T'S?) of the spherical pendulum using singular
reduction, see chapter VII §7. The regular reduction theorem does not apply,
because the S'-symmetry ®@|(S' x T'S?) leaves the points (0,0,+1,0,0,0) fixed. After
reduction we get a one degree of freedom Hamiltonian system on a singular reduced
phase space.

2.1 The orbit space TR3/S!

As a first step in the reduction process we find the invariants of the S'-action ® (7).

Claim: The algebra R [x,y}sl of polynomials on TR3, which are invariant under the S'-

action @, is generated by

Ei=xiyi+xy: &G=303+y-3-23) m=x; o
SG=xiy2—xy1 &=301+3+x3+x3) m=ys.

(2.1) Proof: The action & fixes every point on the 2-plane
= {(0’07n170707 772) € TR3|(7717772) = ()C3,y3) € RZ} (12)

Therefore the algebra of polynomials invariant under &®|(S' x IT) is R[x3,y3], the algebra
of polynomials in the variables x3 and y3. The action ®|(S! x T(R? x {0})) is

®:5' xR> 5 R>: (1,%,9) —~ (RX.R.Y),

cost  —sint
sint cost

where X = (x1,x2),y = (y1,)2), and R, :< ) In other words, ® is the diagonal

action of SO(2,R) on R? x R2. Therefore R[x,y]sl =R[x3,y3] ® R[)?,)“}]Sl . It follows that
R[)?,)“J]Sl is generated by &; (11) for 1 <i <4, compare with ((5.2)) of chapter L. a

> The generators &, 1 <i<4andn;,1<j<2of R[x,y]S1 satisfy only one relation
G+8+& =8 &=0 (13)
that defines the semialgebraic variety W x R? of R® = R* x R? with coordinates (£,7).

(2.2) Proof: Use an argument analogous to the one demonstrating ((5.4)) in chapter 1. O
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Let

¢ TR = R®: (x,y) = (E(x,)),n(x,)) = (E1(x),- - &l y) M (x,y), ma(x,y))  (14)

> be the Hilbert map of the S'-action ® (7). As a set the space of TR3/S! of S! orbits is the
semialgebraic variety W x R*> = ¢(TR?) defined by (13).

(2.3) Proof: We need a better description of the fibers of the Hilbert map ¢. Let & € W and

suppose that ¢(x,y) = (&,0) with & + & =y3 +y3 > 0. Then solving { g zgii J:X“yvi

for (x1,x2) gives { 2 z 8;2: 1§?§§%E§iigi§ . Thus ¢~ !(p) €V} x {(0,0)} where

W=l eTRg 08 { DZ0ERENETS) )

Using the relation &2 + &2 = (& + &3)(E4 — &), a calculation shows that for every ¢ € V;
we have ¢(g,0) = (£,0). Consequently, V; x {(0,0)} = ¢~!(&,0). Clearly V; x {(0,0)}

is a single orbit of the S'-action ®. Under the hypothesis that & — &; = x% —l—x% >0, a
similar argument shows that V5 x {(0,0)} = ¢~'(&,0), where

Vs = {(x1.x9.91.72) € TR?| & — >0&{ =& +08)/(6a—8) y
2= (o y10) € TR G- &y 2= (i —n&)/(& &) )
Note that = (0,7) = {(0,0,x3,0,0,y3) € TR?|(x3,y3) = (11,72) } is an orbit of P, being
a fixed point. Thus the image of the Hilbert map ¢ is the semialgebraic variety W x R?

(14). Since each fiber of ¢ is a single S'-orbit of ®, it follows that W x R? is the orbit
space TR3/S'. O

Claim: The orbit space TR? /S !'is homeomorphic to W x R? via the mapping ¢ induced
by the Hilbert map ¢.

(2.4) Proof: Let p : TR? — TR3/S! be the orbit map, which assigns to each (x,y) € TR the S'
orbit (x,y) = {®;(x,y) € TR |t € S'}. Since by definition the Hilbert map ¢ is invariant
under the S'-action @, it induces a map

C:TR3/S' W xR?: (x,y) = ¢(x,y).

The map ¢ is continuous because the Hilbert map ¢ is and the orbit map p is continuous
and open by definition of the topology of the orbit space TR?/S!, see chapter VII §2.
Since every fiber of the Hilbert map ¢ is an S'-orbit and ¢ is surjective, it follows that the
map G is bijective.

To verify that the inverse of ¢ is continuous, it is enough to show that the map ¢ has a
continuous local cross section. Towards this goal consider the mappings

YU =(WxR)\{& =6} TR :

- R &
(&.n)— (0, V& —&, m, N m,nz)
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and
VU= (WxR)\{-& =&} = TR:

& &
= (- 0,
(5777) ( \/mvmvnlv 54"’537”2)
Clearly y; and y» are continuous. Moreover, goy; = idy, and goyr = idy,. Thus
w1 and y» are continuous local sections of ¢. However, U; UU; = (W x R?)\ TI, see
(12). To finish the proof we need to show that y; has a continuous extension ¥, to
U, UI1, namely, ¥, |IT = idpy, while ¥, |U; = y. To see that ¥, is continuous we argue
as follows. From the relation & + &7 + &7 = &7 with & > O we get || < & for 1 <i<3

and |&;| < /&2 — &2 for j = 1,2. From the first of preceding inequalities we obtain

VE —& < \2&; (152)

while from the second we get

\/;f% <VE+E < \2&, forj=12. (15b)

From (15a), (15b), and the definition of the mapping y/; it follows that
v, (070»71170707 712) = ;iino ‘l’l(éﬁ]) = (0707”1170707772)
4
(Emet,

Thus V, is continuous as desired. g

2.2 The singular reduced space
In this subsection we construct the singular reduced space.

1
It is convenient to employ another set of generators for Rlx, y]S , namely

01 = X3 G3:y%+y%+y% GS:x%'i_x% (16)
02 =3 04 = X1y1 +X2)2 O6 = X1y2 —X2)1-
Since T'S? C TR? is invariant under the S'-action ® (7), the defining equations
X +x3 —&—x% =1
xX1y1 +x2y2 +x3y3 =0
of T'S? may be expressed in terms of invariants as
os+o02 =1
1 (172)

os+o010, =0.

Therefore the orbit space TS*/S' of the S'-action ®|(S' x TS?) is the semialgebraic
variety V defined by (17a) and

6i+ 02 =05(03—-037), 03—05>0&05>0, (17b)
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which comes from the identity (x;y; +x2y2)2 + (x1y2 —x2)1 )2 = (x% —|—x%) (y% —|—y%). Using
the invariants (o7,... Og) as coordinates on R®, (17b) defines a semialgebraic variety
¥ C RS, which is the image of the Hilbert mapping

6 : TR = X: (x,y) = (01(x,)),...,06(x,y)) (18)

of the S'-action @ (7).

Because J|T'S? (9) is the momentum map of the S'-action ®|(S! x T5?), for every j € R
the reduced space V; = (J|TS?)~1(j)/S" is the semialgebraic subvariety of V defined by
(17a), (17b), and

Oo=]. (17¢)

Eliminating o4 and o5 from (17b) using (17a) and then using (17¢) gives the semialgebraic
variety P; in R3 with coordinates (01,072, 03) defined by

o3(1—0})—05—j>=0, |oy|<1&03>0. (19)
In other words, the image of V; under the projection mapping
LR =R (01,...,06) = (01,02,03) (20a)
is the semialgebraic variety P;. A straightforward calculation shows that the map
Vi PiCR* 5 R®: (01,00,03) = (A1,...,A) = (01,02,03,—6102,1 — o7, j) (20b)

is the inverse of u|V;. Since the maps u and v; are continuous and polynomial, the semi-
algebraic variety V; is isomorphic to the singular reduced phase space P;. When j # 0,

02 02

Figure 2.2.1. The singular reduced phase space P; .
In the left figure j = 0, while in the right figure j # 0.

P; is diffeomorphic to R?, the diffeomorphism being the graph of the function

j*+o3
03 = PRl
-0

|61|<1.
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When j = 0, By is not the graph of a function, because it contains the vertical lines
{(£1,0,03) € R3|o3 > 0}, see figure 2.2.1. Py is not smooth because (£1,0,0) are
singular points, which correspond to the fixed points (0,0,+1,0,0,0) € TS? of the
action ®|(S' x TS?). However, Py is homeomorphic to R?, because near each of its
singular points it is a cone on S' with vertex the singular point.

In fact, Py is the orbit space of the Z-action Z, x TS' — T'S' : (x,y) — (—x,—y) on T'S',
the tangent bundle of S'. Geometrically, the orbit space T'S'/Z, is obtained by taking
the piece of the cylinder T'S! on or above its equatorial zero section and then identifying
points on the resulting bounding circle which have the same x-coordinate. Physically,
Py is the phase space T'S' of the mathematical pendulum with points identified by the
Z,-action. This identification is necessary because we can not distinguish positive and
negative velocities in the spherical pendulum. See exercise 6 of the introduction.

From the above discussion we see that singular reduction of the spherical pendulum not
only produces an accurate model of the reduced phase spaces, but also a geometrically
faithful representation of the j — O limit.

2.3 Differential structure on P;

In this subsection we define the space C*(P;) of smooth functions on the singular reduced
space P;. We show that the pair (P;,C*(P;)) is a locally compact subcartesian differential
space, see chapter VII §3.

First we look at the Hilbert map o : TR3 — X C R® (18). We say that f: £ C R® — Riis
smooth if and only if for every p € X there is an open subset U, of p in R® and a smooth
function f, : U, C R® — Rsuch that f|(2NU,) = f,(ENU,). Another way of saying this
is: f is a smooth function on X if and only if there is a smooth function F on R® such that
f=F|Z. Let C;*(X) be the collection of smooth functions on X. Using a partition of unity
on R, one can show that every open subset of RO is the inverse image of an open interval
under a smooth function. Thus every open subset of X in the topology induced from RS is
the inverse image of an open interval under a smooth function on X. Because composing
any n-tuple of smooth functions on X with a smooth function on R” results in a smooth
function on X, it follows that C;°(X) is a differential structure. So the pair (£,C;°(X)) is
a differential space, which is a locally compact subcartesian because ¥ is a closed subset
of R%. Also o is a continuous map from the differential space (TR? C*(TR?)) to the
differential space (X,C;°(X)).

> We now show that ¢ is a smooth mapping from (7R?,C*(TR?)) into (£,C(Z)).

(2.5) Proof: Towards this goal define the linear map 6* : C*(£) — C*(TR?) : f + foo. Since
the map o is surjective, it follows that o* is injective. To see this, suppose that c*f = 0
for some f € C;°(X). Then for every (x,y) € TR? we have 0 = f(o(x,y)). Because o is
surjective, it follows that f = 0. Therefore 6*(C;°(X)), which is isomorphic to C;*(X), is
a subset of C*(TR?). Because 0 : (TR?,C*(TR?)) — (£,C°(X)) is a continuous map of
differential spaces, it follows that the mapping ¢ is smooth, see chapter VII §3. (]

1
> The above result can be refined somewhat to the statement that 6* : C;°(X) — C°°(TR3)S

. . . o st . .
is an isomorphism. Here C*(TR3)” is the space of smooth functions on TR, which are
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invariant under the S'-action ® (7).

(2.6) Proof: For every f € C°(X), the smooth function ¢*f on TR? is invariant under the

S'-action ®. Consequently, 6*(C*(2)) C C°°(TR3)S1. Since @ is a linear action of the
compact Lie group~S1 on TR, a theorem of Schwarz states that for every smooth S'-
invariant function f on TR3 there is a smooth function F on R® with coordinates the
invariants o;, 1 <i < 6 such that f = G*(f |X). In other words, the linear mapping ¢* :

1

Cr () — C°°(TR3)S is surjective and hence is an isomorphism. O
Since the action @ is proper, the orbit space TR?/S' is a differential space (TR?/S',
C=(TR3/SY)), see chapter VII §3.2. Here a function f : TR?/S! — R is smooth if
and only if p*f is a smooth S!-invariant function on TR3. Recall that p : TR? —

> TR3/S! is the orbit map of the S'-action ®. Thus the linear mapping p* : C*(TR3/S") —

1

C°°(TR3)S is an isomorphism.
Since the Hilbert map o (18) is invariant under the S'-action ®, there is an induced map
G :TR?/S' — X such that Gop = 6. Also 6" : C°(X) — C*(TR?/S!) is an isomorphism
because 6* = (p*)~'oc* and both 6* and p* are isomorphisms. The map

_>R6 (é n) (617"'766) = (7717772’54—53+77227§17§4+§37§2)

with inverse
R® - RC: (01,...,06) = (€,n) = (04,06, 1 (05 — 03+ 03), L (05 + 03+ 07),01,01)

is a homeomorphism of W x R? onto X. Precomposing with the homeomorphism ¢ ((2.4))
shows that & is a homeomorphism. Thus we have proved

Claim: The differential spaces (£,C;°(X)) and (TR?/S',C*(TR?/S")) are diffeomorphic
via the diffeomorphism ©.

For every j € R the semialgebraic variety V; of X is defined by (17a) and (17¢), where
¥ C R is defined by (17b). A function f on V is smooth if and only if there is a smooth
function F on R® such that f = F|V;. Hence (VJ7C°°( ;) is a differential space, which is
subcartesian and locally compact because V; is a closed subset of R®. g

The mapping v; : P; C R® — V; C R® (20b) with inverse |V} : V; C R® — P; C R® (20a) is
a homeomorphism. Define the space C*(P;) of smooth functlons on Pj to be vi(C=(V))).
Then the linear map v; : C7°(V;) — C=(P, ) is surjective. It is also injective, because the
mapping V; is sur]ecnve Therefore v is an isomorphism. We have proved

Claim: For every j € R the differential spaces (V;,C;*(V;)) and (P;,C*(P;)) are diffeo-
morphic via the diffeomorphism v;.

Corollary: The differential space (P;,C*(P;)) is locally compact and subcartesian.

> Another way of defining the space of smooth functions on P; is to say that f € C°(P;) if

and only if there is a smooth function F' on R3 with coordinates o;, 1 <i < 3 such that
f=F|P;.
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(2.7) Proof: Since the mapping p|V; (20a) is injective, it follows that the linear mapping
(1|V;)* - € (Pj) — C7°(V;) is surjective. To see this let g € C7°(P;). Then (u|V;)*g is a
smooth function on V;, because the mapping (t|V; is the inverse of the mapping v; and
vi (u|vi)g) = ((u|Vj)ovj)*g = g. The linear mapping (p4|V;)* is injective, because the
mapping t|V; is surjective. Therefore (1t|V;)* is an isomorphism, which is the inverse of
v;. Consequently,

CT(Py) = Vi ((u[Vy) G (P))) = v} (G (V) = C™(P)). -

2.4 Poisson brackets on C*(P;)

In this subsection we construct a Poisson bracket {, } pon the space of smooth functions
C*=(P;) of the reduced space (P;,C”(Pj)).

We start by noting that the space C*(TR3/S') of smooth S'-invariant functions on the
> symplectic manifold (7R3, ®) is a Poisson subalgebra of the Poisson algebra (C*(TR?),
{, }g3,-) of smooth functions on TR?.
)

(2.8) Proof: If f,g € C*(TR3)’ , then applying the S'-action @ (7) for every 7 € S' we get

(I)l*{f7g}TR3 = CI): (Lng) = L'iI),*chD;kf = Lxd)’*gq);kf = {q)t*f7cb;kg}TR3 = {f7g}TR3" U

Using the invariants {0y,...,06} (16) the structure matrix %, s for the Poisson

(1Y)
1
bracket {, };g3 on C*(TR? ) is

{A,B}TRs O] (e3] 03 Oy O35 Og ‘ B
(& 0 1 262 0 0 0
o -1 0 0 0 0 0
o3| 200 0 0 2(62—03) —4os O
os| O 0 —2(c7—o03) 0 —205 0
O35 0 0 404 265 0 0
O6 0 0 0 0 0 0
A
1
Table 2.4.1. The structure matrix WCN(TR3)51 for {, };g3 on C°"(TR3)S .
Consider (o7, ...,05) to be coordinates on R®. Then the space C*(R®) of smooth func-

tions on R® has a Poisson bracket {, }gs Whose structure matrix W (o) 1s given by
table 2.4.1. From table 2.4.1 we see that the function C| = Gf + 0'62 — o05(03 — 622) is
a Casimir element of the Poisson algebra (C*(R®),{, }gs,-), that is, {Cy, f}ge = 0 for
every f € C*(R®). Since the semialgebraic variety ¥ is defined by C; = 0 and the in-
equalities 03 — 622 > 0 & 03 > 0, the structure matrix Wcl_w(g) is equal to the structure
matrix %m(Ré).

Because T'S? /S1 C TR? /Sl, the semialgebraic variety V defined by (17a) and (17b) is
a subvariety of X. The Poisson bracket {, }, on C*(V) may be computed using the
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Dirac prescription, since ({05 + 67,04+ 6102} s ) [V = 2. In particular, for every f,g €
C*(R®) by definition {f|V,g|V}, = ({f*,g" }rs)|V. where for h = f or g we have

W =h—1(os+ 0t —1){h,04+ 0102} ge + 1 (04 + 6162){h, 05 + 67 — 1 } .

Therefore the structure matrix %= (y) for the Poisson bracket {, },, on C*(V) is given in
table 2.4.2.

{A,B}V o1 (o)) O3 Og ‘ B
o 0 -0} 20 0
o | —(1-0?) 0 —20105 0
03 —262 20'1 (e3] 0 0
O6 0 0 0 0
A

Table 2.4.2. The structure matrix #¢=(y) for {, }, on C*(V).

The reduced space V; is the semialgebraic subvariety of V defined by 6 = j. As C; = 0¢
is a Casimir element of the Poisson algebra (C*(V),{, },,-), the Poisson bracket {, }Vj
on C*(V;) is the restriction of the Poisson bracket {, },, to V;. Consequently, the structure
matrix #¢=(y,) of the Poisson bracket {, }v, on C*(V;) is equal to the structure matrix
Wew(yy with its last row and column deleted. As V; is diffeomorphic to the singular
reduced space P; by the diffeomorphism v;|V; (20b), the structure matrix Wew P)) of the
Poisson bracket {, } p; ON C™(Pj) is the same as the structure matrix #¢=(y,).

It is easier to calculate in the ambient space R? with coordinates (o7, 62, 03) than on the
reduced space P;. On C*(R?) define a Poisson bracket {, }gs Whose structure matrix is
given in table 2.4.3.

{A7B}R3 O] (629 03 ‘ B
o 0 -6} 20,
oy | —(1-0?) 0 —206,03
o3 —20, 20103 0
A

Table 2.4.3. The structure matrix %= (gs) for {, }gs on C*(R%).

An inspection of table 2.4.3 shows that

3 oC
{01,.0j} s = Y €ijk5—
=t 9ok

where C = 03(1 — 6%) — 67 — j%. Note that C = 0 is the defining equation of the reduced
space P;. Since C is a Casimir element of the Poisson algebra (C*(R?),{, }gs,-) , the
Poisson bracket {, } p; ON C*(P;) is obtained by restricting {, }g3 to P;. Thus the structure

matrix #¢=p,) of the Poisson bracket {, } p; ON C*=(P)) is equal to the structure matrix
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W= (r3)- From the definition of the Poisson bracket {, }gs it follows that
3 af 9 af 9 d
{fyg}lv :):zjzl Téré{dfﬁj}w = 22:1 (Zgj:1 sijkaTj;Ing) (;Tg{ =(VfxVg,VC),

for every f,g € C*(R?). Here (,) is the Euclidean inner product on R® and V# is the
gradient of 1 € C*(R?).

2.5 Dynamics on the reduced space P;

In this subsection we show that after removing the S'-symmetry, the spherical pendulum
gives rise to a reduced Hamiltonian system on the reduced phase space (Pj7 c= (Pj)).

Because the Hamiltonian H|T'S? (3) of the spherical pendulum is invariant under the S'-
action ®@|(S' x T5?), it induces the function
HjIRS%RZ(01702703)H%G3+(717 (21)
whose restriction to the reduced space P; is the reduced Hamiltonian. Note that H;|P; €
C™(P)). For every f € C*(R?) the Hamiltonian derivation
—adp, p; 1 C7(Pj) = C™(P)) : 1Py = {f1P;, Hjl Py} p, = ({f . Hj}gs) 1P
which governs the reduced dynamics, has integral curves which satisfy

(1P

T]:{f|Pj7Hj|Pj}Pj' (22)
Because the Hamiltonian vector field Xy ¢ of the spherical pendulum has a local flow
and the differential space (P;,C*(P;)) is locally compact and subcartesian, it follows that
the derivation —ade| P, of C*(P;) has a local flow, which is a local one parameter group
of local diffeomorphisms of P;, see chapter VII §4. A calculation shows that

d 2 d d
The integral curves of the vector field ady; on R satisfy
dGl -5
a7
do:
d—zz—(l—c%)—om (23)
t
dO'g
— =—-20
ar 2,

which leaves the reduced space P; invariant.

3 The energy momentum mapping

In this section we study the qualitative properties of the energy momentum mapping
EMTS> CTR? - R?: (x,y) — (H,J) = (%(y%—i—y%—i—y%) + X3, X1)2 —xzyl) (24)

of the spherical pendulum. In particular, we will determine its set of critical values, its
range, the topology of its fibers, and how these fibers fit together.
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3.1 Ciritical points of &.#

We begin by finding the set CP of critical points of the energy momentum map &.#, that
is, the set of points where the derivative of &.# has rank < 2.

> First we show that the phase space 7'S?> C TR? of the spherical pendulum, defined by
Fl(x,y):x%—&—x%—i—x%—lzo (25a)
F(x,y) = x1y1 +x2y2 +x3y3 =0 (25b)
is a submanifold of 7R3,

(3.1) Proof: The derivative

dFi(x,y)\ _(2x 2x 2x3 0 O O
dB(xy))  \y1 oy ¥z X1 o X

has rank 2 on T'S? because the minors [1;4] = 2x%, [2;5] = 2x3, and [3;6] = 2x3 do not

all vanish since x7 +x3 +x3 = 1. Thus T'S? is a submanifold of TR® with tangent space
dF (x,
T<x1y)(TSz) = ker(dF;ng for every (x,y) € TS2. O

Since
D(EAM|TS?)(x,y) = (i’j(ﬂfyy))) T (TS?),

the rank of D(&.4|TS*) = 0 if and only if for every (x,y) € T'S? we have
dH(xay)|T(x.y)(T52) =0 and d"(xvy)u—‘(x,y)(TSz) =0. (26)

Using the Euclidean inner product (, ) on 7R3 = R®, we see that the first equation in (26)

is equivalent to dH (x,y) L ker (32&; D But ker <ggg§ D is equal to

span{dF; (x,y)}" Nspan{dF(x,y)}*" = (span{dF(x,y)} + span{dF; (x,y)})J'.
So dH(x,y) € span{dFj (x,y),dF»(x,y)}, that is,
(0,0,1,y1,y2,y3) € span{2(xy,x2,x3,0,0,0), (y1,¥2,y3,X1,%2,X3) }. (272)
Similarly, the second equation in (26) is equivalent to
(y2, 1,0, —x2,x1,0) € span{2(x,x2,x3,0,0,0), (y1,¥2,y3,X1,%2,%3) }. (27b)
Equation (27b) holds if and only if there are real numbers A and u such that
(v2,=¥1,0, =x2,x1,0) = 24 (x1,x2,x3,0,0,0) + p(y1,¥2, Y3, X1,%2,%3), (28)

that is,

0 =2 +py (30a)  yi =px (30d)
0 =2Axx+uy, (30b) y2 = px2  (30e)
1 =2Ax3+puys (30c) y3 = px3  (300).
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Then (30d) — (30f), (25a), and (25b) give
0= x1y1 +x2y2 +X2y3 = L(x] +25 +23) = U

Therefore equations (30d) — (30f) become y; =y, = y3 = 0. If A = 0, then the right hand
side of equation (28) is the zero vector, whereas the right hand side is a nonzero vector.
This is a contradiction. Hence A # 0. Therefore equations (30a) and (30b) give x| =x; =
0. So x3 = =1, since (25a) holds. Thus p+ = (0,0,41,0,0,0) € T'S? are the only critical
points of J|TS?. Since (27a) holds at p, we have dH (p+)|T,, (TS?) = 0. Thus py are
the only points on T'S?> where D(&.4 |TS?) has rank 0.

The derivative D(&.# |TS?)(x,y) has rank 1 at (x,y) € TS? if and only if (x,y) # p+
and for some real number A we have 0 = (dJ(x,y) + A dH (x,y)) \T(x’y)(TSz), that is,
dJ(x,y) + AdH (x,y) € span{dFj(x,y),dF>(x,y)}. So for some ¢, 3 € R we have

(y27 _y1707 —X2,X170)+2,(0,O, 1;)’17)’273’3) = Za(xl7x27x3;07070)+/3(y1;)’27)’37X17X27X3)7

that is,
y2 =2ax;+By; (3la) —x+Ayr = PBx; (31d)
-1 =2ax2+By: (31b) x1+Ay; =fx» (le)
A =20x3+Bys (3lc) Ays = PBxs (GIf).
Then

B =B(xi+x3+x3) =x1(—x2+Ay1) +x2(x1 +Ay2) +x3(Ay3) = A (x1y1 +x2y2 +x3y3) =0.

So (31a) — (31f) become

y2  =20x; (32a) —x+Ayr =0 (32d)
v =2ax (32b) x+Ay, =0 (32)
A =2o0x3 (320) Ays =0 (32f).

Suppose that A = 0. Then equations (32d) and (32e) give x; = x, = 0. Thus x3 = +1,
which using (32¢) implies & = 0. Thus equations (32a) and (32b) give y; = y» = 0. So
0 = x1y1 +x2y2 +x3y3 = +y3. Thus pL = (0,0,+1,0,0,0) solves (31a) — (31f). But this
is excluded by hypothesis. Therefore A # 0. Hence y3 = 0 and

=21
{ i; :)L_,ii (33a)

If a = 0, then equation (32c) gives A = 0, which is a contradiction. Therefore & # 0. So
X3 = % and

yi=-20x
{)’2 2206)(1. (33b)

Note that x3 # +1, for if x3 = 1, then a short argument shows that (x,y) = p4. But this
is excluded by hypothesis. From equations (33a) and (33b) we get

Qo+A2"Nx =0=Q2a+A . (34)
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If 2 # —A~! then (34) gives x; = x, = 0. But this implies that (x,y) = p+, which is
excluded. Therefore 2a = —A~!. Sox; = -A% <0 and

RE = {(x1,02, 2% A 2, =47 'x1,0) € TS* [xf + 5 =1-2* & 0<A* <1} (35)

is the subset of TS?\ {p~.} where D(&.# |TS?) has rank 1. In other words, RE = {(x,y) €
TS\ {pi}|XH|TS2 (x,¥) = AXjp52(x,y) for some A € R\ {0}}, that is, RE is the collec-
tion of orbits of the vector field X ;5 each of which is an orbit of the vector field X 7.

that generates the S' symmetry of the spherical pendulum. In other words, RE is the set
of relative equilibria. RE has two connected components: RE; = {(x,y) € RE| A >0}

and RE_ = {(x,y) €RE|A < 0}.
Lemma: On RE, we have J|TS? < 0; while on RE_ we have J|T'S? > 0.

(3.2) Proof: Suppose that (x,y) € RE;. Using (35) we get J|TS?(x,y) = -2~ '(x} +x3) =
—A71(1-21%) <0,since 0 < A2 < 1 and A > 0. Similarly, (J|TS?)|RE_ > 0. O
Consequently, D(&.4|TS?) has rank 2 on 7S%\ (REU{p+}). Thus we have proved

Claim: The set of critical points CP of the energy momentum map &./7 | TS? of the spher-
ical pendulum is REU {p+ }.

3.2 Critical values of & .#

In this subsection we parametrize the set CV of critical values of the energy momentum
mapping & of the spherical pendulum. By definition CV is the image of the set of
critical points CP under &.# .

We give another description of CV. We show that

Claim: The set of critical values of & is the set {A = 0}, where A is the discriminant
of the polynomial P (39), that is, {(h, j) € R2|P has a multiple root in [—1,1]}.

(3.3) Proof: Because the reduction map
p;: (J|ITS?)1(j) CTR® — P, CR®: (x,y) = (01,02,02) (36)

is a smooth map onto the differential space (P;,C*(P;)), it follows that (%, j) € R? is a
critical value of the energy momentum mapping &.# if and only if / is a critical value of
the reduced Hamiltonian H;|P;. Since P; is a singular semialgebraic variety P;, we must
define what we mean by a critical value of H;. In geometric terms, (%, j) € CV if and only
if the 2-plane

I,: o5+ 01=h (37a)

intersects the semialgebraic variety P;, defined by
i+ =03(1-0}), |o1|<1& 035>0, (37b)

at a point 6° = (0{,07,67) with multiplicity greater than one, see figure 3.2.1. To

explain this last phrase, consider the equation

0(01,00) =63+ j>—2(h—01)(1— %) =0, (38)
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which is obtained by solving for 03 in (37a) and then substituting the result into (37b).
The point ¢° € P; has multiplicity greater than one if and only if the Taylor polynomial
of Q at (6,67) € [~1,1] x R has no constant or linear terms. This condition is satisfied

if and only if 0, = 0'3 = 0 and the polynomial
P(cy) =2(h—0y)(1 —07) — j*> =20 —2hot — 201 +2h — 2 (39)
has a multiple root o} € [—1,1]. O

O

Figure 3.2.1. The critical level sets of the reduced Hamiltonian H; on the
reduced space P;. In the figure on the left j = 0; while in the figure on the

right j # 0.

Another way to formulate the above discussion goes as follows. The point (4, j) is a
critical value of &.# if and only if the line ¢,

%63 +0o1=h (40)
intersects the curve .%#
oi(l-o7)=j> |o1|<1&03>0 (41)

at a point (G?,O, 0'30 ) with multiplicity greater than one, see figure 3.2.2. Note that .# is
the image of the fold curve of the projection map

7n:R* > R%:(01,05,03) = (01,0,03) (42)

restricted to P;. Geometrically this means that over every point p in the interior of 7(P;),
the fiber 77! (p) consists of two distinct points; while over every point p on .%, the fiber
n~!(p) consists of a point. For the reconstructed level sets of H i on P; see figure 3.2.2.
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03

BN

-1

o03+201 =2h

o1

03

Figure 3.2.1. The critical points of the reduced Hamiltonian H; on
Pin{o, = 0}. In the left figure j = 0 while in the right figure j # 0.
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Claim: Let A = {(h,j) € R2|P has a multiple root in [—1,1]} be the discriminant of the
polynomial P (39). The discriminant locus {A = 0} is parametrized by

1

h =35 —

2% 2s
D4 1

= V=5

(1 _52)7

fors e [—1,0)U{1}.

Figure 3.2.3. The discriminant locus {A = 0} in the 41— plane. The set of critical
values of &7 is the union of the dark curves, which is &.# (RE), and points
(—1,0) and (1,0), which are &.# (p+). The shaded region is the set of regular

values of &4 .

(3.4) Proof: For every (h, j) € A, the polynomial P (39) factors as

2(01 —5)(01 —1) =207 —2(25 +1) 0% +2(2st +5°) 01 — 215°

(43)

(44)
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for some s € [—1,1] and ¢ € R. Equating coefficients of (39) and (44) gives

2s+t=nh (45a)
25t + 5> = —1 (45b)
2ts*> = j2>—2h. (45¢)

If s = 0, then equation (45b) becomes 0 = —1, which is a contradiction. Therefore s # 0.
Eliminating ¢ from (45a) and (45b) gives the expression for / in (43). Eliminating ¢ from
equations (45a) and (45c) and then using the first equation in (43) to eliminate & gives the
second equation in (43). For j to be real we must have s € [—1,0) U{1}. O

A branch A of the discriminant locus {A = 0} is parametrized by (43) with the + sign
fixed and parameter s € [—1,0).

Claim: 4. is the curve

j=+2(B R +hVR +3)\h+ Vi +3=+B(h), whereh>—1.  (46)

(3.5) Proof: Solving the first equation in (43) for s gives s = %(h —V/h%+3). Substituting this
result into the second equation in (43) gives

. 1 2V3 1 2 2
=B (3R /R +3), 47)
P VR 3-h
which simplifies to the expression for £B(h) in (46). O

We now verify that figure 3.2.3 is correct. Because :t‘é—g is positive for every h > —1, the
branches intersect at most once. Since j = £B(—1) = 0, the branches %, of {A =0}
join continuously at (—1,0). Because %‘17 = =+ 1, the branches do not join smoothly

at (—1,0), but make an angle of 7/2 with each other. The point (1,0) € A, which corre-
sponds to the parameter value s = 1, does not lie on either of the branches 9. Hence
(1,0) is an isolated point of A and is therefore an isolated critical value of the energy
momentum mapping &.Z .

The critical values (41,0) of &.# are special, because they correspond to the criti-
cal points (0,0,+1,0,0,0) of &.4 on TS?, which are fixed points of the S'-symmetry
®|(S! x TS?) of the spherical pendulum. Under the reduction map p; (36) these points
correspond to the singular points (£1,0,0) of the reduced space Py and hence are critical
points of the reduced Hamiltonian Hy. They do not depend on the Hamiltonian, but are a
consequence of symmetry alone.

3.3 Level sets of the reduced Hamiltonian H;|P;
Here we describe the qualitative features of the reduced system (H;|P;,P;,{, } P,-)-

From figure 3.2.2 we can read off the topology of the h-level set of the reduced Hamilto-
nian H;|P; on the reduced space P;. The results are given in table 3.3.1.
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Conditions on (4, j) Topology of (H;|P;)~"(h)
1. j=+xB(h),h > -1 a point
2. j| <B(h),h > —1 a smooth S'
and (h, j) # (1,0)
3. (1,0) a topological S' with a

conical singular point

Table 3.3.1 The topology of the &-level set of the reduced Hamiltonian
H;|P; on the reduced phase space P;.

> We now verify the entries in the second column of table 3.3.1.

(3.6) Proof:

1. When |j| = B(h) and h > —1, the line ¢, (40) intersects the curve .# (41) at a non-
singular point py ;. Thus the image of the level set (H;|P;)~!(h)) under the projection
mapping 7 (42) is py,; Since py, j € F, we infer that (H;|P;)~!(h) is a point. So / is the
minimum value of H;|P; on P;. Thus the set of (h, j) bounded by the branches %, and
containing the point (1,0) is the range of the energy momentum mapping &.#. When
h=—1, we have j = £B(—1) =0. The line /_; meets .% at the point p_; o = (—1,0).
Thus (Ho|Py)~"(1) is the singular point (—1,0,0) of the reduced space Py.

2. When |j| < B(h), =1 < hand (h, j) # (1,0), the line ¢ intersects 7(P;) in a closed line
segment L ; whose end points lie on .. Over every point in the interior of Lj, ; the fiber
of the projection map 7 consists of two distinct points; while over the end points the fiber
of 7 is just a single point. Thus (H;|P;)~!(h) = n~'(Ly,;) is a topological circle. Since
(h, j) is a regular value of &.# , the value h is a regular value for the reduced Hamiltonian
H;|P;. Hence (H;|P;)~!(h) is a smooth circle.

3. When /1 = 1, the line /; intersects 7z(Fy) in a closed line segment Ly o. Thus (Ho|Py) ' (1)
= ﬂ’l(Ll,o) is a topological circle. As a semialgebraic variety in R, the 1-level set of
Hy| Py is defined by

07 =03(1-0}), |01/<1&03>0
(48)
1 = %G3+61.
Eliminating o3 from (48) yields
0=07—-4(1-01)°+2(1—01)°, oy <1.

Hence (Ho|Py)~'(1) has a nondegenerate tangent cone at the singular point (1,0,0) of
Py. At other points (Ho|Py)~'(1) is smooth. This completes the verification of the second
column of table 3.3.1. d

3.4 Level sets of the energy momentum mapping & .7

We are now in position to describe the topology of the fibers of the energy momentum
mapping &/ of the spherical pendulum. The results are given in table 3.4.1.
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Conditions on (A, j) Topology of &.4 ' (h, j)
1. |j| <B(h),—1<h T2, a smooth 2-torus
and (h, j) # (1,0)
2. j==+B(h),h>—1 S!, a smooth circle
3. (-1,0) a point
4. (1,0) T*, a 2-torus with a longitudinal
circle pinched to a point.

Table 3.4.1 The topology of &.# ' (h).
Before verifying of the entries in the second column of table 3.4.1 we need the

Facts:
1. The reduction mapping

pj: ‘]71(]) 4)Pj c R3 : (xvy) - (0-1 (X,y),Gz(X,y),Gg,(X,y)) 49)

. —1 o st if P; is smooth at p
is smooth and has fibers p; (p) —{ point.  otherwise.
2. For every (h, j) in the image of &.# we have &.4 ' (h,j) =
p; ! (H,P)~" (h)).
(3.7) Proof :
1. Let f be a smooth function on the reduced space P;. Let ¢ be the Hilbert map of
the S'-action ® (7) and let u : R® — R® : (07,...,06) — (01,02,03) be the projection
mapping. Then (uoc)*f is a smooth ®-invariant function on (J|7'S?)~!(j). Hence the
linear mapping

(o0)" : = (P) = (1) + £ = ((woo) A ()

is well defined. By construction, the reduction map p; : J) = P;j (49) is equal to
(uo0)|(J|TS?)~1(j). Therefore (toc)* = p;. By definition p; is a surjective mapping.
1

Therefore p} is injective. In other words, p; (c=(P)) cCc=(( j))s . Thus the re-

duction map p; is a smooth mapping between the differential spaces (P;,C*(P;)) and
1

((J1782)71(j),C=((|TS%) 7" ()" ), see chapter VIT §3.

2. Because the reduction mapping p; is surjective and p;* (H;|P;) = H|J (), we have

St~ (hj) = H™ () NI () = p; ((H,1P) ™ (h). O

If p is a point where the reduced space P; is nonsingular, then u~'(p) is a nonsingular
point of V; and hence is a nonsingular point of the orbit space W x R2 (13). From ((2.3))
it follows that 7' (u =" (p)) = ;! (p) is a smooth S'. If p is a singular point of P;, then
7' (u="(p)) is a point of J~'(j) where the isotropy group of the action ®;[J~!(j) is
nontrivial. This can only happen when j = 0 and 7, ' (p) is a fixed point of ®;|J~1(0).
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> The verification of the second column of table 3.4.1 proceeds as follows.

(3.8) Proof:

1. The conditions on (A, j) in the first entry of the first column of table 3.4.1 are equivalent
to requiring that (h, j) is a regular value of the energy momentum mapping. Hence h is a
regular value of the reduced Hamiltonian H; on P;. By table 3.3.1 the level set H;l (h)
is diffeomorphic to S'. From ((3.5)) it follows that &.# ' (h, j) — H;l(h) is a smooth
bundle with projection map p;|&.# " (h, j) and fiber S'. Since the reduced space P; is
homeomorphic to R?, the level set Hj’1 (h) bounds a 2-disk which is contractible in P; to
a point. Thus the bundle p; is trivial, see chapter VIII §2. In other words &7~ (h Jj)is
a 2-torus Th ;- By construction Th - Is invariant under the flow of the vector fields X ;¢
and X 7. This completes the verification of the entries in the first row of table 3.4.1.

={x=x}

A

={n=x}
==}

7™ p =g =1)

¢ _ ==}

O A !

Figure 3.4.1. The image R of the 2-torus Thzj where (h, j) is a regular value of
&4, under the bundle projection map 7r;g. In the top figure j # 0 and —1 <
X3 <x3 <x < 1; in the middle figure j = 0, Xy =-1 andxg' =h < 1; in the
bottomﬁgurej =0,x3 =—1, x3 =landh>1.

Figure 3.4.1 gives a picture of the 2-torus 7,2 ; as some sort of fibration over its image

under the projection map 77> : TS* - §%: (x,y) — x. Recall that the 2-torus Thz’ f CTR?
is defined by

XPx+ag =1 (50a)
xiy1+x2y2 +x3y3 =0 (50b)
ST+ +y3) +x=h (50c)
Xy —Xx1y2 = j. (50d)

> When (h,j) is a regular value of the energy momentum map &.7, the image R of the
2-torus Thz’ = &1 (h, j) under the projection map Ty : TS? — 2 is given in table
3.4.2.
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Conditions on (A, j) R Toplogy of R
1. j#0 {xESz‘—1<x; <x3 §x3+<1} a closed annulus
2.j=0& ~1<h<1 | {xeS|—1=x; <x3<xf<h} |D,aclosed2-disk
3.j=0&h>1 {xes|—l=x;<;s<xf=1} |

Table 3.4.2 The set R. Here xgt are roots of (50e) in [—1,1].

(3.9) Proof:
Substituting (50a) — (50d) into the identity

(x1y2 = x2y1)” + (Xiy1 +x2y2)” = (6] +23) (07 +3)
and simplifying gives
0<y3=Plx3) =2(h—x3)(1-3) — j* (50e)

where |x3| < 1. Consequently, x3 € [x3,x;] where P(x;) =0, x; < xJ, and P(x3) > 0
when x3 € (x5 ,x;). Thus the image of the 2-torus Th% f under the bundle projection map
Tirs2 is contained in R = {x € $ C R¥|xy <x3 <xj}.

Suppose that x lies in the interior intR of R. Then |x§[| < 1. Using (50e), which gives
y3 = £4/P(x3) with €2 = 1, we can solve equations (50b) and (50c) to get

yi=—(1 —x%)’1 (sz + exix3 P(x3))
y2 = (1=x3) 7 (jix1 — exax31/P(x3)).
> This shows that when x € intR the fiber (7, |Thz_j)*1 (x) is the two points (x1 X2, X3.Y1,Y2,

€y/P(x3)) in Th%j where y; and y, are given by (51).

We now verify the entries in the third column of table 3.4.2.

(5D

1. j#0. Then |x3] < 1. So R is a closed annulus in S? with boundary dR = {(x1,x2,x5) €
S}, which is the disjoint union of two circles: C’, when x3 = x3 and B, when x3 = x3 .
Because [x5| < 1 and y3 = &(P(x7))"/? = 0, using equations (51) and (50e) we see that
- , -1 -1
(Trse T )~ OR) = {(x1,22,25, = (1= (5)%) 2, (1= (45)%) " :1,0) € T},

which is the disjoint union of two homologous circles: C, when x3 = x;, and B, when
x3 = x5, on T ;. Bach is an orbit of the vector field X;;r52 on T}, ;. Thus 0 (T;7;) = R.

2. j=0and —1 <h < 1. We have x; = —1 and x;r = h. Thus R is a closed 2-disk with
boundary C' = {(x1,x2,/) € $?}. Because —1 < x7 =h < 1 and y5 = e(P(x7))"/> =0
we see that

C = (r|T7) "1 (C) = {(x1,%2,1,0,0,0) € T} |} + x5 = 1 —h* > 0},

which is an orbit of the vector field X JTs? On Thz_o. Thus ;¢ (Th2 j) =R.
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3. j=0and 1 < h. We have xf ==1. Thus R is the 2-sphere S2. Since (0,0,+1,0,0,0) €
772, and ;52 (0,0,41,0,0,0) = (0,0, %1), we have shown that ETSz(Thzj) =R

This completes the verification of the entries in the third column of table 3.4.2. g
> We now reconstruct the 2-torus Th% f from its image R under the mapping & = ;¢ |Th% it

(3.10) Proof:
CASE 1. j # 0. Then R is a closed annulus with boundary dR two disjoint circles B’ and
C' on S%. Suppose that x is a point in the interior intR of R. Then 7~ (x) is two points.
If x lies on dR, then 7! (x) is a point. In other words, T,E ; has a fold singularity over dR
with fold curve 7' (dR). Thus 77 ; is an $%-bundle over intR with S° pinched to a point
over each point of JR. Next we look more closely at the geometry of the mapping 7.
Let A’ be the open arc {(0, (1 —x3)"/%,x3) € Sz}|x; < x3 <x7} on S%. Then the closure
1 (A") of T~'(A’) is acircle A on Th%j, because for every x € A’ C intR, the fiber 77! (x)
is two points; whereas for (0,0,x3) € (A”\ A’) C JR, the fiber 7~'(0,0,x7) is the point
g = (0,0,x7,0,0,0); while the fiber 7~'(0,0,x3 ) is the point g = (0,0,x5,0,0,0). Let
B=7"'(B')and C = 7~ !(C’). Then B and C are circles on Thz,j, which are homologous.

Moreover, either {A, B} or {A,C} is a basis of H| (Th%ﬁZ).

CASE 2. j =0. This case is more difficult because the geometry of the mapping 7 is more
complicated. Suppose that —1 < & < 1. Let A’ be the open arc {(0, (1 —x3)"/%,x3) €
S2| —1 < x3 < h} on S%. For every x € A’ C intR the fiber 77! (x) is the two points

{(0,4/1 —x%,x3,0,—8x3\/2(h—x3),£\/Z(h—x3)(l —x%))}7

where €2 = 1. When x = (0,v/1 —h2,h) € A7\ A/, the fiber 7! (x) € 7-1(A)\ 71 (A)
is the point ¢ = (0,v/1 —h2,4,0,0,0). To find the rest of 7—!(A’) first note that the
fiber 7~1(0,0,—1) is the circle B = {(0,0,—1,y1,y2,0) € T3o|y} +3 = 2(h+1) > 0}.
Geometrically a point on B is a positive tangent ray to S? at B’ = (0,0, —1) of length
\/2(h+1). We say that the mapping 7 blows up the point B’ to the circle B, because B =
7~ !(B'). Observe that B is homologous to the circle C = 7! (C') = {(x1,x2,4,0,0,0) €
Th2_0|x% +x3 = 1—h? > 0}. Now the tangent to the curve (—1,/) — S?: x3 — (0, (1 —
x3)!/2,x3), which parametrizes the arc A’, is (0, —x3(1 —x3)~'/2,1). The corresponding

positive tangent ray of length /2(h+ 1) to A" is (0,—/2(h+ 1)x3,1/2(h+1)(1—x3)).
Thus the tangent ray to A’ at the point B’ is (0,/2(h+ 1),0), which corresponds to the
point ¢ = (0,0,—1,0, \/m, 0) on the circle B. Consequently, A = {g,g}Ur ' (A")
is a circle on Th?O which intersects the circle B only at . Note that 7-1(A’) = AUB and
that {A,B} is a basis for H, (Th2,07 Z) asis {A,C} since ANC = {q}.

Suppose that & > 1. If x € §2\ {(0,0,4+1)} C intR, then the fiber 7~ (x) is two points.
The fiber 7'(0,0,—1) is the circle B = {(0,0,—1,y(,2,0) € Th%0|y§+y§ =2(h—1)>
0}; whereas the fiber 77'(0,0,1) is the circle C = {(0,0,1,y1,y2,0) € Thz_o|y% +y3 =
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2(h—1) > 0}. Thus the mapping 7 blows up the points (0,0,—1) and (0,0,1) to the
circles B and C, respectively. Consider the open arc A’, which is parametrized by

(=1,1) = 2\ {(0,0,£1)} 1 x3 = (0,1/1 —3,x3).

Then the tangent ray to A’ at B' = (0,0,—1) is (0,1/2(h—1),0), which corresponds to
the point g = (0,0,—1,0,+/2(h—1),0) on B; while tangent ray to A’ at C' = (0,0, 1) is
(0,—+/2(h—1),0), which corresponds to the point g = (0,0,—1,0,—+/2(h—1),0) on
C. Consequently, A = {g,qg} Un ' (A’) is a circle on 7}1270, which intersects B only at g and
C only at g. Note that 7-1(A’) = AUBUC and that {A, B} is a basis for H, (Th%o, Z)asis
{A,C} since ANC = {q}.

This completes the reconstruction of the torus 7)? ; from its image R under the bundle
projection 7¢>. (|

We return to verifying the entries in the second column of table 3.4.1.

2. To verify the second entry we note that the conditions on (4, j) in the first column are
precisely those for which the h-level set of the reduced Hamiltonian H; is a nonsingular
point of the reduce space P;. From ((3.5)) it follows that EM™! (h, j) is a smooth st

3. When (h,j) = (—1,0) the line £_; (40) intersects the curve .%# (41) at the point
(o‘?7 0'9) = (—1,0). In other words, the 2-plane I1_; (37a) intersects the reduced space Py
at the singular point (O'P, Gg, Gg) = (—1,0,0). From ((3.5)) it follows that &.2 ~'(1,0) is
the point (0,0, —1,0,0,0) € TR3.

Figure 3.4.2. The pinched 2-torus T* = &.#~'(1,0). In the
left figure the 2-torus is pinched along a longitude; in the right
figure the 2-torus is pinched along a merdian.

4. When (h,j) = (1,0) the line ¢; intersects p(FP) in a closed line segment, whose
end points lie on the fold curve .. One end point is 6° = (60,0Y) = (1,0). Thus
the 2-plane II; intersects P in a topological circle H, 1(1) with singular point p® =
p~(c?) = (1,0,0). From ((3.5)) it follows that p, ' (Hy ' (1) \ {p°}) — Hy ' (1) \ {p°}
with projection map po|(H, ' (1) \ {p°}) is a bundle with fiber S'. Since H,'(1)\ {p°}
is contractible in Py, the bundle p, ' (Hy ' (1)\ {p°}) — Hy '(1)\ {p°} is trivial. Thus
po ' (Hy ' (1)\ {p°}) is topologically a cylinder S' x R. Because p° is a singular point of
Py, the fiber p, ' (p°) is a point. Therefore &.#~'(1,0) is a one point compactification
of a cylinder, that is, a cylinder with its ends identified to a point. In other words, it is a
2-torus T* with a longitudinal circle pinched to a point. In ((3.11)) below we show that
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po ' (p°) = (0,0,1,0,0,0) is a critical point of H|T'S? of Morse index 2. Thus p, ' (p°) is
a conical singular point of &.2~'(0,1).

Another way of describing &.# ~'(1,0) is a 2-torus with a meridial circle pinched to a
point. To see this project &.# ' (h,0) onto the 2-sphere S? using the bundle projection
Ty This gives rise to a 2-disk with boundary {x3 = x; = h}. Ash 71, we getx]
1. Hence m;q(&.27(1,0)) is S>. Moreover, for p € $2\ {(0,0,1)} the fiber n;slz(p)

consists of two distinct points; while at (0,0,1) the fiber TET_S]2

From this information we can reconstruct &.# '(1,0), see figure 3.4.2. We find that
it is a surface of revolution formed by rotating a figure eight about an axis through the
crossing point. Topologically this surface is a 2-torus with a meridial circle pinched to
a point. The topological equivalence between a torus with a meridial circle pinched to
a point and a torus with a longitudinal circle pinched to a point cannot be realized by a
homeomorphism of R? but can be by a homeomorphism of S3.

(0,0,1) is a single point.

This completes the verification of table 3.4.1 g

> Next we determine the topology of the energy surfaces H~! (/) of the spherical pendulum.
The results are summarized in table 3.4.3. To verify the entries in the second column of

Conditions Topology of H~!(h)
1.h=-1 point
2. -1<h<1 a smooth 3-sphere, $°
3.h=1 U, a topological 3-sphere
4. h>1 RP, real projective 3-space.

Table 3.4.3 Topology of the level sets H~(h).

table 3.4.3, we use Morse theory. As a submanifold of TR? with coordinates (x,y), the
tangent bundle 7'S? of S? is defined by

Fi(x,y) = xi+83+x3-1=0 (52a)
B(x,y) = xiy1+xy2+x3y3 =0. (52b)

On TR? consider the function H : TR® — R : (x,y) — %(y% + 33 +33) + x5
> We now show that H|T'S? is a Morse function.

(3.12) Proof: Because H|T'S? is proper and is bounded below, it has a critical point p = (x,y).
By Lagrange multipliers the critical point p satisfies

DH(xay)—i_a'l DF1(X,y)+lzDF2(X,y) = Oa and Fl(x7y) = 07 FQ(X,y) =0. (53)

Writing out the first equation in (53) gives

2Mx1+Ay1 =0 (543.) yi+Ax; =0 (54d)
2A1x + lzyz =0 (54b) 2+ Ax, =0 (546)
14+2A1x3 + }.3))3 =0 (54C) v3+ Ax3 =0 (54f)
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in addition to (52a) and (52b). Therefore
2o =M (xF +x3+13) = —(x1y1 +x2y2 +x3y3) = 0.

Hence y; =y, = y3 = 0. Consequently (54a) — (54¢) read

22x1 =0 (55a)
2% =0 (55b)
s = —1. (55¢)

Suppose that A; = 0. Then (55¢) gives 0 = —1, which is a contradiction. Therefore A; # 0.
Hence (55a) and (55b) give x| = x, = 0. From (52a) we obtain x3 = € where €2 =1; while
from (55¢) we obtain A; = —%8. Thus H|T'S? has two critical points pe = (€e3,0) with
Lagrange multipliers A; = %8 and A, =0.

To show that p, is nondegenerate critical point of H|T'S?, first note that the tangent space

T, (TS?) to TS? at pe is ker (gggﬂ) = ker <g 8 208 g 8 2) which is spanned by

the vectors {e1,ez,e4,e5}. Therefore

Q=D*(H|TS*)(pe) = (D°H + M D*Fi + MLD*F)| (pe) = diag(—e,—¢,1,1),

Tpe (TS?)

whereupon the critical points pe are nondegenerate. Thus the Morse index of Q is 2 if

e=1or0if e = —1. Hence, p_; = (—e3,0) is a nondegenerate minimum of H with
corresponding minimum value —1, and p4; = (e3,0) is a nondegenerate saddle point of
index 2 corresponding to the critical value 1. (|

> We now verify the entries in the second column of table 3.4.3.

(3.11) Proof:
1. At the critical value 4 = —1, the level set (H|T'S?)~! (k) is a point.

2. By the Morse lemma, see chapter XI §2, for values of & slightly greater than the
minimum value —1, the h-level set of H|T'S? is diffeomorphic to a 3-sphere S3. Using
the Morse isotopy lemma, see chapter XI §3, it follows that the level set (H|TS?)~!(h) is
diffeomorphic to S3 for every h € (—1,1).

4. For h > 1 we claim that (H|7'S?)~!(h) is diffeomorphic to the unit tangent S' bundle
715> C R? x R of the 2-sphere S2. Consider the smooth mapping

@ (H|TS*) ' (h) = T1S*: (x,y) = (&,1) = (x, ﬁ)

The level set (H|TS?)~!(h) € R? x R? is defined by (x,x) =1, (x,y) =0, and h =
2(3,y) + (x,e3). A computation shows that (£,1) € @ ((H|T'S?)~!(h)) satisfies (£,&) =
1, (€,m) =0,and (n,n) = (2h—2x3) "' {y,y) = 1. In other words, the image of ¢ is con-
tained in 775%. Since 7: TS? — (H|TS?)~'(h) : (§,1) — (§,1\/2h—2&;3) is a smooth
inverse of ¢, the mapping ¢ is a diffeomorphism. Now 7152 is the set of ordered pairs of
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orthonormal vectors &, 1 € R3. Extend the ordered pair {&, 7} to the positively oriented
ordered orthonormal basis {&,7,& x 11} of R®. Every such basis may be identified with
a rotation of R?, whose matrix is col(&,1,& x i7). Thus

w:Ti8? = S0(3): (§,m) = col(§,n.& xn)
is a smooth map with smooth inverse
6 :80(3) = Ti8> col(§,1, &) = (&,1).

Hence 7152 is diffeomorphic to SO(3), which in turn is diffeomorphic to real projective
3-space RP3 by ((1.15)) of chapter III.

3. At the critical value & = 1, the level set (H|7'S?)~!(1) is an algebraic subvariety U of
TR3 defined by

g +ad=1 (56a)
X1y1 +x2y2 +x3y3 =0 (56b)
JOT+y+y3) +x =1 (56¢)

The variety U is singular only at p; = (0,0,1,0,0,0) because the rank of

2x1 2x 2x3 0 0 O
V1 y2 y3 X1 X2 X3
0 0 1 y » »

is <3 on U only at p;. Since p; is a nondegenerate critical point of H|T'S?> with Morse
index 2 ((3.11)), from the Morse lemma it follows that there is a neighborhood of p; in U
which is diffeomorphic to a neighborhood of the vertex 0 of the cone C = {(&;, &, m1,M2)
€ R4| E2+ &2 =n} +n?}. Note that C is a cone on a 2-torus and contains two 2-planes
{(51752,851,—8§2| (&1,&) € R?} which intersect transversely at 0. Thus U is a topo-
logical manifold, which is smooth except at one point where it has a conical singularity.

We now give a global description of the variety U: first, as a fibration over S with projec-
tion mapping 7 = 7, |U. Using (56¢) it is straightforward to see that the fiber of 7 over
a point in $2\ {(0,0,1)} is an S'; while over (0,0, 1) it is the point p;. Thus the mapping
7 is proper. Consequently, the variety U is compact. U is also connected, because 7 is a
continuous open mapping and its image is S, which is connected. Second, we can view
U as the disjoint union of two singular closed solid tori whose boundaries are identified.
Consider the smooth function J|U : U C TS? = R: (x,y) — x1y2 —x2y1. In ((3.5)) we
showed that (J|U)~'(0) = (J|T'S?)~'(0) is a pinched 2-torus 7*. This singular 2-torus 7*
is the boundary of the closed singular solid 2-torus ST, = {(x,y) € U |J (x,y) >0} and
is also the boundary of the closed singular solid 2-torus ST_ = {(x,y) € U |J (x,y) <O0}.
The boundary T of ST is a 2-torus with a longitudinal circle pinched to a point; while
the boundary T of ST, is a 2-torus with a meridial circle pinched to a point, see figure
3.4.3. We now find the map which glues 7'} to T* so that the closed singular solid tori ST +
form the variety U. We think of the singular 2-torus 7'} as a one point compactification
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Figure 3.4.3. The variety U in $3, which we think of as R with a point
added at infinity. The upper and lower parts of the solid cone form the
singular closed solid torus ST, whose boundary T} is the singular 2-torus
with a longitudinal circle pinched to a point, which forms the vertex of the
cone. The exterior of the solid cone is again a solid cone which forms the
singular closed solid torus ST, whose boundary 7* is the singular solid
torus with meridial circle pinched to a point, which is the vertex of the cone.

of the cylinder S '« R. The 1-dimensional lattice H, (TLZ), which is isomorphic to Z,
is formed from the 2-dimensional lattice Z? defining the 2-torus 72 = R?/Z? by taking
its first component Z x {0}. In other words, T} is the one point compactification of
R?/(Z x {0}). Similarly, the singular 2-torus T* is the one point compactification of the
cylinder R?/({0} x Z). Consider the invertible linear mapping

72 2. n 0 —1 n
01" =1 : <n2> »—>(1 0) <n2>,
which sends the lattice Z x {0} bijectively onto the lattice {0} x Z. Thus the map ¢
induces a diffeomorphism ¢ of the cylinder S' x R onto the cylinder R x S'. The map ¢
extends to a homeomorphism @ of the one point compactification of S' x R onto the one
point compactification of R x S!. In other words, @ is a homeomorphism of the singular

% ¢

Figure 3.4.4. The bifurcation of the energy surface (H|T'S*)~! (k) of the spherlcal pendu-
lum as / increases through 1. In the left figure 1 < h < 1 and (H|TS?)~'(h) is a smooth
3-sphere; in the middle figure 4 = 1 and (H|TS?)~'(h) is a topological 3-sphere; in the
right figure 1 > 1 and (H|TS?)~! (k) is a smooth real projective 3-space.

2-torus T onto the singular 2-torus 7. So @ is the desired gluing map. The variety U is
homeomorphic to S3, because every continuous loop in U is contractible to a point, that
is, U is simply connected.

In figure 3.4.4 we give a picture of the bifurcation of the energy surfaces of the spherical
pendulum as the energy & increases through 1. Each energy surface in figure 3.4.4 is
depicted as the union of two closed solid tori. Geometrically, what happens as 2 " 1 is
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the circle, bounding the shaded disk in the left figure contracts to the vertex of the cone in
the middle figure where 7 = 1. When # increases past 1 the vertex of this cone reappears
as a shaded disk in the right figure.

This completes the verification of table 3.4.3. 0

We have verified the bifurcation diagram for the energy momentum mapping &.# of the
spherical pendulum. From figure 3.4.5 it is clear that for regular values of & the energy
level H='(h) is foliated by 2-tori with two singular S' fibers.

iy .

I

Figure 3.4.5. The bifurcation diagram of the energy momentum
mapping &.# of the spherical pendulum.

4 Rotation number and first return time

Suppose that (A, j) is a regular value of &.# . In this section we derive formule for the
rotation number and time of first return to a cross section for the flow of XH\TSZ on the

2-torus T} ;- We show that the rotation number is a multivalued real analytic function on
the set of regular values of the energy momentum map, while the first return time is a
single valued real analytic function.

4.1 Definition of first return time and rotation number

The first return time is defined as follows. When (A, j) is a regular value of &.#, the dif-
ferentials d(H|TS?), d(J|T'S?) are linearly independent at every point of Thz] =&EM " (h,))

and therefore so are the vector fields Xp ;¢ and X; 7. Consider the curve ¢~ =

2
71:T_Sl2 ({x3=x3})on Th%j, which is the image of the integral curve r — (p,JlTS (p) of X;i752

2
Is of Xpy752 on Th%j. Note that

atevery r € 4"~ the vector field X752 (r) is transverse to ¢~ . Then observe that the image

through p. The curve '~ is a cross section for the flow (p,H
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2
of the integral curve I': t — (p,H ITs (p) of Xu|rs? through p under the reduction mapping

7; (49) is a periodic integral curve t — (p,H ’(g) through g = 7;(p) of the reduced vector
field Xy, of period 7> 0. Thus (¢ (p) = @1 (x,(p)) = 4. So 0¥ (p) € €~ =717 (q).
Thus I intersects ¢~ for the first time at t = T. The time T = T'(h, j) is called the first
return time.

Figure 4.1.1. The rotation number of the image of the integral
curve of vector field XH|T5q|T,12_, under the bundle projection map
7752, which starts at the point p’ = 775 (p) and ends at the point
¢ = 752 (q). Both p’ and ¢’ lie on the image under 775 of an
integral curve of Xy rs2|T;2, on T2,.

J\T~Sz () H|TS?

Let 6 be the smallest positive number such that ¢ =¢@r" " (p), see figure 4.1.1.

2m6
By definition 6 is the rotation number of the flow of Xy ;5 on 7?2 ;- Because Xp 70 is

invariant under the S!-action generated by the flow of X Jj|7s2» the rotation number and the
time of first return does not depend on the choice of the point p on ~. Since 4~ can be
an arbitrary integral curve of X 5> on Thz’ j» the rotation number and the first return time
depend only on (h, j).

We now derive a formula for the rotation number 6 = 6, ;. Suppose that j # 0. Then
use the bundle map 775> to project an integral curve y of Xp ;¢ on Th2 ;onto a curve I’
in the annular region 7ty (6.4 ' (h, j)) = o of $?. Let x;| <7 be coordinates on .« with
(x1,X2,x3) being coordinates on R3. Furthermore, let 6 = tan~! ;‘—f and x3 be coordinates

on the universal covering space o of <. The following argument shows that a lift T of
I' to o satisfies

1
6 j
= _ 57
dr 1—x§ (572)
dx
o = VP, (57b)

with €2 = 1. How the sign of ¢ is determined is discussed below.
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(4.1) Proof: By definition of Lie derivative, we find that

de ) 1 dx, dx; xlyz — X201 J
— =L 0|TS") = — —X—— = .
dr XH\TSZ( | ) x%—i—x% (xl dr 2 dr ) x1 +x2 l—xg
Also,
85 px, 2 (6ITS) = pi(Ly , 01) = pi(02), using (23)
a5 = Py By O1) = PjL02), usIng

=+pj(\/o3(1—0})—j?), since oy —o3(1— o?)+ j? is an integral
of X, with constant value 0

—:l:pj \/Zh o1)(1-0?)— ), smcey() € (H|TS*)~!(h), which

gives 03 =2(h—0y)
=&/ P(x3),

where €2 = 1 and P(x3) = 2(h—x3)(1 —x3) — j>. The sign ambiguity is handled by the
following sign convention. Suppose that ¥(fp) = x5 and that at o — & > 0 for § > 0 and
small the value of € is known. Then at time 7y + & the value of € is the negative of €
at tg — 8. Since 8 # 0 and ¥3(f9) = 0 when F(to) € 82?’ the curve [ has at least first

order contact with 9.7 at I(f). Because I' crosses 6= = ”TSZ

at I'(fo) and the mapping 7, \Th7 ; has a fold singularity at ¥(fo), the curve I has second

({x3 = x3°}) transversely

order contact with 9.7 at f‘(to). The sign convention ensures that the solutions of (57a)
and (57b) in o7 are real analytic. a

Now consider the curve [0,276), ;) — Th s (psleS (p), where p lies in a fold curve

of the projection 7|7} ;. Suppose that the projected curve [0,276), ;) — % s —

g2 ((psj‘TS2 (p)) is an arc of the small circle ¥~ = {x3 = x; } on 2, which joins two suc-
cessive points of intersection I'(0) and I'(T") with €~. Let 211, ; be the angle between

> I'(0) and I'(T") as measured from the center of the small circle ' ~. Then ¥, ; is equal to
the rotation number 6y, ;.

(4.2) Proof: This follows because

210y, 270y, ;
2nYy, i = do = Ly ,60ds, bydefinitionofrotationnumber
2] 0 0 J|TS2

271'9;1.’./'
= / ds = 27139;,.]',
0 )

where the second to last equality follows using equation (8) and the definition of 8. [J
> We now find a formula for 6, ;.

(4.3) Proof: Since P(x3) > 0 for x = (x1,x2,x3) in the interior of <7, from (57b) we see that
% #0. Hence forr € (0,7 /2)U(T /2,T) we may parametrize the curve y by x3. Chasing
down the minus signs, we find

T 5 do x 9
210, = /0 Ly, 0 dr = / ot [ g d = 2/ L dns,

'3 3 ar
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Using (57a) and (57b) we get

.
X3 1
20 (h, j) =276, ; = Zj/ ————— dux3, (58)
! Jry (1-23)y/P(x3)
which is the desired formula for the rotation number. Some care needs to be taken in
interpreting (58) when j = 0, for then the integral is infinite. g

‘We now derive a formula for the first return time 7. From the definition of the small circle
¢~ = {x3 =x; } of the annulus & = ;.2 (6.2 " (h, j)) and the sign convention for € in
(57b), it follows that the time of first return is

= [Fa [Taa Mg ea [T o)
X3 3

X3

where —1 < x3 < x§ < 1 are consecutive roots of P(x3) = 2(h—x3)(1 —x3) — j.

We now suppose that (4, j) is a regular value of & and j = 0. Then 0 = xpy; —x1y2 =
det( ! i 1), that is, the vectors (i') and @ 1) are linearly dependent. So there is a
2 2 2

X
y1 = Ax

. From the equations of motion (5) on
Y2 =A4x

nonzero real number A such that {

=Ax;

_ yz — . Thus the vertical 2-plane IT C R? spanned by the

TR3 it follows that {

0 1
the projection map 7o gs : TR? — R?: (x,y) — x. Since T'S? is an invariant manifold of
(5), it follows that the image of the integral curve 7 — @#I7S* (p) on 1%, = &M (h,0)

starting at p under the projection map 7, ¢ is an arc of the great circle ITN 52 through the
: 1
north and south poles (0,0,=+1) and the point m(xl ,x2,0). We need to look at two

X1 0
vectors (xz) and (O) is invariant under the image of every integral curve of (5) under

cases.

CASE . —1 < h < 1. The image of &.# ' (h,0) under the bundle projection 7> is
the closed 2-disk D on S? with center at (0,0, —1) and boundary the small circle ¢+ =
{(x1,x2,h) € Sz|x% +x3 = 1 —h? > 0}. Suppose that p = (x1,x2,4,0,0,0) € &4 (h,0),
where 7, (p) = (x1 ,x2,h) € €. Then the time T'(h,0) of first return of the integral
curve y:t (p,mT (p) of Xyrs2 on &4 (h,0) to the closed orbit C = nTS2 (¢T) of
XJ|T52 starting at p is

T(h,0) 2/ dxs3.
2(h—x3)(1—x3)

This follows because the projected curve I': 7 — T, (@) rs? (p)) to D satisfies the dif-
ferential equation i3 = (2(h—x3)(1 —x3))"/? with xy = —1 and x{ = h, and reaches ¢"*
at the point Ty (p*) = (—x1,—x2,h) € INET, where p* = (—x1,—x2,h,0, 0,0) € C,
for the first time at 7'(h,0). Because p* # p, the first return time 7'(h,0) is not the



1v4.2 Analytic properties of the rotation number 171

period of the integral curve 7y, which is indeed 27 (h,0). We now determine the rota-
tion number 0(h,0) of the integral curve y. Because I'(T(h,0)) = p*, which lies in
IIN%™ and is a half of a full rotation about the positive x3-axis from p, it follows
2
> that ﬂTSz((pﬁ,{S (p)) = p*. Thus the rotation number 6(h,0) of y is 5. The next
argument shows how to determine the sign.

(4.4) Proof: Suppose that (4, j) is a regular value of &.# as j \, 0. Let C; be a closed orbit of
X752 on EM (h, j) starting at p; with p; — p. Then for all j > 0 and sufficiently small
the curve (fl* = My (C;) is homotopic in S2\ {(0,0,£1)} to the image under ;5 of a
relative equlibrium in RE; corresponding to the energy momentum value (%5 '(j), j).
Here %, is given by (46). The projected relative equilibrium is traversed in an clockwise
direction about the positive x3-axis and thus is negatively oriented. Giving 4" =1limj o ‘Kj‘*
the same orientation as CJG’L, it follows that the plus sign holds, that is, the rotation number
of yis 0(h,0) = % A similar argument shows that if j 0 then the rotation number of y
is —3. 0
CASE 2. h > 1. The image of &.# ~'(h,0) is 2. Suppose that p = (0,0,1,y1,y2,0),
where y? +y3 =2(h—1). Then p € &.4 " (h,0). The time T (h,0) of first return of the
integral curve y: f — (meS2 (p) of Xp|r52 on &1 (h,0) to the closed orbit C of X)irs?
on &4~ (h,0) starting at p is

1

T (h,0) :2/1] ; dxs.
Ty /2(h—x3)(1 —x3)

This follows because the projected integral curve I': ¢ +— nTSz((p,H rs? (p)), which starts
at Ty (p) = (0,0, 1) = p*, satisfies the differential equation x3 = (2(h —x3)(1 —x3))!/?
with x; = —1 and x = 1, and I reaches p* for the first time at T (,0). Thus y reaches
C at the point p for the first time at 7'(h,0). So T (h,0) is the period of y. The rotation
number 6(h,0) of yis £1 and the sign is determined as in ((4.4)).

4.2 Analytic properties of the rotation number
Next we investigate the analytic properties of the rotation number.

Let Z be the set of regular values of the energy momentum mapping, see figure 3.2.3. On

> %' =% \{j=0} the rotation number 6 : Z* — R : (h, j) — 6y j (58) is locally a single
valued real analytic function. Because Z# is not simply connected, 8 need not be single
valued on all of Z.

(4.5) Proof: Let P(z) = 2(h—z)(1 —z2) — j?, where (h,£) € %". Consider the 1-form @ =
1 . . .
——————dz on CV, the extended complex plane, which is cut along the real axis
(1-2)\/PQ) pexp &
between x_ and x and again between x( and o. Here x. ¢ are distinct roots of P with

—l<x_<xp <h<l<x, if-1<h<l1
—l<x_<xp <1<h<xg, ifh>1.
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Write /P Jr—rroel(0-10:160)/2 \where 7 — X0+ = ro €%+ and 0 < 6y 1. < 27.
With this ch01ce of complex square root on C* we see that @ is single-valued. It is
meromorphic with a first order pole at z = +1 whose residue Res @ at z = %1 is

z==1

lim (zF 1) (60)

1 . 1 1 1 o1
el (1-22)y/P(z) A VP([) TP 2l
When (hy, jo) € % the polynomial P has three distinct real roots: two in (—1,1) and one
n (1,00). Thus there is an open neighborhood Uy of (ho, jo) in %" where P has zeroes
with the preceding property. For every (h, j) € Up there is a positively oriented smooth
curve ¢ in C” which encircles the cut [x_,x] and avoids the points & and +1. We can
rewrite (58) as

j 1
0(h, j / 4 61)
9= 22 ¢ (1-22)\/P(2)
Now complexify h, j, and Uy. With (h, jo) € US we have
89 j() 1 8 1
2 (h,j / dz=0.

Similarly for fixed ho with (ho, j) € US we get 5= % (ho7 /) = 0. Using Hartog’s theorem we

deduce that 6 is a complex analytic function on UO . This implies that 0 is a real analytic
function on Uy = UOC NRZ. So 6 is locally a real analytic function on %". O

To show that 6 can be extended to a locally single valued real analytic function on all
of %, it suffices to show that it remains bounded as j — 0. Thus we need to show that
> for (h,j) € Z" with —1 < h < 1 we have

lim 6(h, j) = +4; (62a)

j—0%

while for (h, j) € %" with h > 1 we have

lim 6(h,j)==+l. (62b)
j—0E
(4.6) Proof: If we have proved
1 .
. N )2 if—1<h<1
lim 6(1, /) { 1, ifh>1, (63a)

then we obtain :

. N L if-1<n<t

o) ={ 3 1T (63b)
because O(h,—j) = —6(h, ). Suppose that (h,j) € ZN{j >0} and that —1 < h < I.
Let 4_; be a positively oriented smooth curve in C* which encircles —1. Let 6, be a
positively oriented smooth curve in C” which encircles the cut [x_,x] and & but avoids

%_,. Finally let 63 = 4| + %>. Then

/ Gf—i-zﬂ/ o=4L 277:1ResZD')+9(h J)=—1+0(n,)).
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To show that lim; o ﬁ j% @ = 0 we argue as follows. As j — 0 we have x; — —1 and

)53+ — h. Thus the contour %3 encircles the cut along the real axis between —1 and & and
avoids 1 by intersecting the real axis between 4 and 1. So

B h 1 \/§ h 1
/ﬁm _2/4 V2(h—x)(1—x2) des N \/hfxdx’

since —1 <x < himplies (h —x)(1 —x*) > (h—x)(1 —h?). Changing variables by u* =
h — x, the last integral above is 2v/h+ 1. Thus lim;_,o ﬁ fés @ = 0. So we have proved
(63a), when —1 < h < 1. To prove (63a) when i > 1, let €_; be a positively oriented
smooth curve in C” which encircles —1 and let % be a positively oriented smooth curve
in C¥ which encircles 1 and avoids 4. Let %> be a positively oriented smooth curve in C*
which encircles the cut [x_,x;] and & but avoids €. Finally let 63 = €| + €| + 6.
Then

= %w:iﬁ %]w+§/ﬁw+§ %as

- §2ni[Reslw+Relsw] +6(h.j)=—1+6(h,j).
== =

To show that lim; o ﬁ j% @ = 0 we argue as follows. As j — 0 we have x; — —1 and

)c3+ — 1. Thus the contour %3 encircles the cut along the real axis between —1 and 1 and
avoids £ by intersecting the real axis between 1 and 4. So

! 1 V2ot _ Von
Aﬂ;w' _2/4 \/Z(h—x)(l—xz)dxg Vi—1 /,1 NP

where the inequality follows since —1 <x <1 < h gives (h—x)(1—x%) > (h—1)(1—x%).
Thus lim; 0 5= Jo, @ =0. O

We now turn to describing the global real analytic function 8 on % which is defined by
analytically continuing the locally defined real analytic functions 0|%;. Here {%} is a
suitable open covering of Z. Let Z be the universal covering space of % with covering
mapping 7 : # — R. Then Z is a real analytic manifold, which is diffeomorphic to a
2-disk D in R? because Z is diffeomorphic to an annulus. The covering projection 7 is
real analytic. Each function element 8|%; lifts to a locally defined real analytic function

element 5|@Zl where n(@T]) = % and U?Zj = (%). Here 5|@Zl = (Gon)\@f/:j.
> Since Z is simply connected, there is a single valued real analytic function 8 whose local
function elements are 0|%; ;.

(4.7) Proof: Let I" be a simple closed curve in %. Then T bounds a 2-disk D. Since % is
simply connected, there is a homotopy Iy such that Iy =T" and I'y is a point p € D.
LetS= {s €10,1] | 0 is a single valued real analytic function in the disk Dy bounded by

F‘Y}. Then S is nonempty, because for some (i, j) the point p € ?Z j- Then there is an
50 > 0 such that T'y) C % ;. Let o = sup{s € S}. Then ¢ > s9 > 0. Now suppose that
0 < L. Cover I'c with open disks Ay C %) j(x) of radius %5 with center at the point
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pr € T where for k > 1 the distance between p;_1 and py is less than 8. Then the disks
Ay pairwise overlap and a finite number of them cover I's. There is an 51 < ¢ such that
I's, € Dg Ul Ak By definition of o, the function 6 is single valued and real analytic in

Dy, . By analytic continuation 6 is single valued and real analytic on (J;A. Therefore, 6
is single valued and real analytic on Dy, U J;A, which contains Ds as a proper subset.

There is an so > o such that I'y, € Dg UJ,Ax. On Dy, the function 9 is single valued and
real analytic. But this contradicts the definition of ¢. Therefore o = 1. Ill other words,
the function 6 is real analytic and single valued on I" and hence on all of Z. (]

The above result just states that 8 could be a multivalued real analytic function on %.
The following discussion shows that 8 is multivalued. We begin by proving

Fact: The variation of 6 along an oriented closed curve I" in % depends only on the
homotopy class of T".

(4.8) Proof: Suppose that I'; and I'; are homotopic positively oriented closed curves in Z.
Then the curve Y =1I"} — I is null homotopic in Z. Since the fundamental group of Z is
isomorphic to Z, it is abelian and hence is isomorphic to the first homology group of Z.
Therefore 7 is the boundary of some domain & in %. Hence

40— dG:/ dG:/dZG:O,
JT I, Jy=0& 3

where the second to last equality follows by Stokes’ theorem. (|
Next we prove

Claim: Let I" be a positively oriented curve which generates the fundamental group of Z.
As (h, j) makes a circuit around I the value of 8 decreases by 1.

(4.9) Proof: Using the above fact we may choose I" to be the positively oriented non-null
homotopic rectangular curve in Z U {(1,0)} made up of four line segments joining the
points (/’Ll,j()) (h(),j()) (/’l077j0) and (h] , 7j0) with hg < 1 < hy and jy > 0. Let Fj be
the oriented line segment joining the points (41, ) and (ho, j) and F’ the oriented line
segment joining (Ao, —j) and (hy, —j). Here 0 < j < jo. The curve I is homotopic to the
curve IV = I US) UT, U], where S/ is the line segment joining (h1,—j) to (hy, j) and
SJ is the line segment joining (ho, j) to (ho,—j). Therefore

/dG lim dG—hm{ /d9+/ d9+/ de}
r INOJTY

because 0 (h, —j) = 79(h7]) when j #0
lj.if\no [2(0(ho, j) — O(h1,j)) + (6 (h1,j) — O (h1,—)))

+ (6(ho, j) — B(ho,—j))] = —1,

where the last equality follows from (62a) and the fact that 0 is locally real analytic and
hence locally continuous. Hence the variation of 6 along I" in % is —1. (]
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4.3 Analytic properties of the first return time
In this subsection we prove some analytic properties of the time 7" of first return.
> On %" the time of firstreturn 7 : 2” — R: (h, j) — T (h, j) is alocal real analytic function.

(4.10) Proof: We use the same choice of complex square root on C* and definition of the open
neighborhood Uy of (hy, jo) in %" as in ((4.5)). Let € be a positively oriented closed
curve in C” which encircles the cut [x; ,x7] along the real axis and avoids the points +1
by intersecting the real axis between —1 and x5 and again between x; and 1. Then the

1 . . Z] S 1 .
1-form 7 dz is holomorphic along € and T (h, j) = [, 750 dz. Now complexify £,
j and Uj. For fixed complex jjo with (i, jo) € US we have

aT d 1
—,h7':/—,( )d:O.
oi 0= [ o )

\/2(h—z)(1 —z2)—j2

Similarly for fixed complex ho with (ho, j) € US we get 5 I (ho, /) = 0. Using Hartog’s

theorem, this shows that 7" is a complex analytic functlon on U0 . Consequently, T is a

real analytic function on Uy = UOC NR2. So T is locally a real analytic function on %". [J

> To show that T can be extended to a real analytic function on all of %, it suffices to show
that the function

h*=min(h,1) 1
T(h,0): (~1,1)U(1,00) = R: hHZ/ S S P
2(h—x)(1—x2)

is real analytic.

(4.11) Proof: Making the successive changes of variables x = cos26 and u = 4/ hi] cos O in
(64) we get

(hof—zf/ \/mde 2xf/ \/ mr

where 8% = cos™ !4/ % and u* = h};—ﬂl Therefore

o) 2V2K(\ /1Y), if-1<h<1
T(h,0) =
A_K(\/2), ifh>1.

h+1 h+1
For 0 < k < 1 the function K (k) = fol m du is the complete elliptic integral,
—u?)(1—k?u
which is a real analytic function of k. (]

We now prove

Claim: The function T : Z — R: (h, j) — T (h, j) is a single valued real analytic function.
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(4.12) Proof: The same argument used in ((4.9)) shows that the variation of T along an oriented

>

closed curve I' in % depends only on the homotopy class of I'. Choose the curves I" and
I'V as in the argument proving ((4.10)). Then

/dT:lim dT = lim [/,dT+ .dT+/.dT+/AdT}
r INOJTI N0 /T s r s

= tlim [((T(ho, /) =T (1, ) + (T (b1, =) =T (ho, =J)

+ ((T(ho,—j) = T (ho, j)) + (T (h1, j) = T (h1,—)))]
-0,

where the last equality follows because T is locally real analytic and hence is locally
continuous. Thus 7 is a single valued real analytic function on %. g

S Monodromy

In this section we show that over the set % of regular values the fibers of the energy
momentum map &.7 of the spherical pendulum fit together in a nontrivial way.

5.1 Definition of monodromy

More precisely, let I" be a closed non-null homotopic curve in Z C R2, which bounds a
2-disk in R? containing the point (1,0) in its interior. We will show that the 2-torus bundle
&4 (T') — T with bundle projection map &.# is nontrivial, that is, it is not isomorphic
to the trivial bundle 72 x S' — S! with bundle projection map being the projection on
the second factor. In other words, the classifying map x of the bundle &.# (') — T,
which glues together the end 2-tori of the 2-torus bundle &.#~'(T'\ {pt}) — T\ {pt},
is not homotopic to the identity map. Note that the bundle &.# ' (T'\ {pt}) is trivial
because I"\ {pr} is contractible. In fact, the map y. induced on the first homology group

H (&4 (pt),Z) of the end 2-torus &.4 " (pt) by the classifying map y is (*11 ?)

with respect to a suitably chosen basis. The map ). is called the monodromy map of the
bundle &.# (') — I and depends only on the homotopy class of the curve I in Z.

(5.1) Proof: To see this suppose that [is a closed curve in %, which is homotopic to I', then the

bundles &.# ' (I') — T and &4~ (I') — T are isomorphic. Therefore their classifying
maps are homotopic, which implies that their monodromy maps are equal. |

Claim: The bundle &.# ' (T') — T is not trivial.

(5.2) Proof: From table 3.4.3 we see that for each #; > 1 the energy surface (H|TS?)~!(h)

is diffeomorphic to RP3; while for each —1 < /g < 1 the energy surface (H|T'S?)~!(h)
is diffeomorphic to S3. Since H;(RP3,Z) = Z, and H; (S, Z) = 0, it follows that RP is
not even homeomorphic, let alone diffeomorphic, to S3. Suppose that the 2-torus bundle
&1 (T) — Tis trivial. Let T'y be a curve in 2N {h > 1}, which separates Z into two
connected components, and let I’y be a curve in Z N {—1 < h < 1}, which does the same
thing, see figure 5.1.1. Give I'g and I'j opposite orientations. From the hypothesis that the
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bundle &.# ' (T) — T is trivial it follows that the manifolds &.# ' ([) and &.4 ' (T'y)
are diffeomorphic. But &.# ! (Iy) is isotopic to (H|TS?)~" (ho); while &4 ' (I}) is
isotopic to (H|7'S?)~!(hy). Therefore the /g and k| level sets of H|T'S? are diffeomorphic,
which is false. Thus the bundle &.# (") — T is nontrivial. O

J _

e

S]

>< = RP?

To r]%\

Figure 5.1.1. The geometric situation.

5.2 Monodromy of the bundle of period lattices

In this subsection we construct the bundle & — I of period lattices over the closed curve
I in the set Z# of regular values of &.# such that its transition maps with respect to a
collection of suitably chosen trivializations are fixed elements of S1(2,Z). Computing
the variation of these period lattices as the loop I' is traversed once determines the mon-
odromy map of the 2-torus bundle &.# (') — I.

For each (h, j) € I the fiber &, ; of the bundle & — T of period lattices is the period lat-

tice of the 2-torus &.# ' (h, j). The period lattice 27, ; is obtained in the following way.

H|TS? J|TS? . .
Let ¢, and @ be the flows of the Hamiltonian vector fields X5 and Xj 7,

respectively, of the Liouville integrable system (H |TS%,J|TS%,TS?, a)|TSz) determined

by the spherical pendulum. Since &.# - (h, j) is smooth, connected, compact submani-
2 2

fold of T'S?, which is invariant under the commuting flows (p,H 5" and (psleS , there is an

RZ-action given by

O R X EM () = EM () ((5.0),0) = (9] o0 TV (p).  (65)

Fix pg € &4 (h,j) and let L,, = {(T1,T>) € R2|<I>(T1’TZ)([10) = po} be the isotropy
group of the action ® at pg. Because (4, j) is a regular value of &.#, the vector fields
Xurse and X)irs give a basis for each tangent space to EM! (h, j) and so yield a fram-
ing of &4~ (h, j). Consequently, ® is a locally transitive action. Since &.2 ' (h, j) is
connected, the action @ is transitive. Thus the isotropy group L = L, does not depend on
the point po. Because &.2# ' (h, j) is compact, L is a discrete subgroup of (R%,+), which
is a rank 2 is a lattice. The lattice L depends only on (A, j) and is called the period lattice
Py, j of &4 (h, ). From transitivity it follows that &.# " (h, j) is diffeomorphic to
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the orbit space R?/Z? of the linear action of L on R?. In other words, &.# ' (h, j) is
diffeomorphic to the 2-torus 72 = R? /Z2.

We now give an explicit description of the period lattice &7, ;. For fixed (h, j) € I consider
the Hamiltonian functions F| = 27 and F> = —270(h, j)J + T (h, j)H on T'S?. Here we
require that the rotation number 6 (h, j) has its principal value, that is, 6(h, j) € [0,1).
From the definition of the rotation number 6 and the time T of first return we see that the
flows @1 and ¢/2 of the Hamiltonian vector fields Xr, and Xr, on TS? have the following
properties.

1. They commute.
2. They leave &.# ' (h, j) invariant.
3. They are periodic of period 1 on &.2 ' (h, j).

Therefore with respect to the framing

EM N, j) = TEM " (h,j):pr— span{X; 752 (), Xprs2(P)}

the period lattice &7, ; is generated by the vectors (25 ) and (72;:(2(?51 )>, which do not

depend on the point p in &.4 ' (h, j).

We now construct the bundle &2 — I of period lattices over I'. Because the rotation
number 6 is locally a smooth on %, while the time T of first return is a smooth on all of
2, and Z is an open subset of R, which retracts onto I', there is a good open covering
 of % which restricts to a good open covering of I'. This means that there is a covering
{U%} 4c; of Z by open sets U%, a € I such that

1. U U*NUP, U*NT, and U* NUB NT are connected and contractible.
2.UNUPNUY = 2.
3. The functions 6% = 8|U* and T* = T|U* are smooth and single valued.

Over U* NT a parametrization of the bundle &7 — T is given by the smooth family of
lattices

P i 0 () 3) () o

Claim: On the overlap U*NU B AT the transition function for the period lattice bundle
Z —Tis

Oup = 0po0y ' (U*NUPNT) x 22 — (U*NUPNT) x 22 :

((h, ), (;’)) = ((hyJ),8ap (:1)) 67)

where gop5 € SI(2,Z), which is specified in (71) below.

(5.3) Proof: For i = 1,2 consider the functions F* : &.# ' (U%) — R: p s F¥(p) where

F*(p)=2nJ(p) and F(p)=-2m0%EM (p))J(p)+T*(EA4 (p))H(p).
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The flows (pf‘ and (ptF 2 of the Hamiltonian vector fields XFla and XF2a on the open subset

EM U of TS? commute, leave &.# ' (U%) invariant, and are periodic of period 1.
Thus F* and F}* are action variables on &.# -1 (U%), see chapter IX §2. So we have a
T? = R?/Z?-action

QT x EM(UY) = EH(UY): ((s,1),p) = (<pf‘ao<pf2a)(p)7 (68)

which is proper and free. Therefore &.# 71(U @) is the total space of a principal T?-
bundle, see chapter VII ((2.12)), with a trivialization % : &.# ' (U%) — U® x T? such
that 7j07% = é”<//l|&//l_' (U%), where m; : U% x T? — U% is projection on the first factor.
The trivialization T% intertwines the 72-action (68) with the T2-action

P T2 x (U X T?) = U*xT?: ((5,1), ((h, ), (s',2")) = ((h, ), (s +5/,t+1")),

that is,
(@, (P) = f (£ (p)), (69)

for every p € &4 ' (h,j) and every (s,r) € T?. From the intertwining property (69) it

follows that for every (h, j) € U* the tangent T{ (’L'a)(_,:j) of the mapping

(Ta)(ih%j) (T2 = EM (R, j): (s,0) = (T%) 7 ((hy j), (5,2)) =7

at (s, 1) sends the lattice Z> C T(S’,)T2 onto the lattice in 7,&.# ' (h, j) with basis {Xpe(r),
Xpg(r)}. But this latter lattice is just the period lattice &7, ; of &.2 ~Y(h,j) at r. Since
Sy, ; does not depend on the point r € &4 “!(h, j), the mapping T(XA’,)(T"‘),;} does not
depend on (s,t) € T2. Consequently, the inverse of the parametrization G, (66)

o' U P (UNT)XZ?: Py (1)), TyT™(Phj)
(h,j)eu*nr

does not depend on the point p in &.# ' (h, j). Therefore for every (h, j) € U*NUPNT
we have the partial transition map

aff o By (g1 .2 2
Ty = (m207%) o (%) ) 1 T7 > T7, (70)
where m, : U% x T? — T? is projection on the second factor. This partial transition map

has a tangent T(s,[)rfliﬁj), which does not depend on the point (s,#) € T2. Moreover, the

map Trgﬁ.) is an invertible linear isomorphism of R? onto itself, which preserves the

lattice Z2. The set of all such linear isomorphisms forms the group SI(2,Z), which is a
discrete subgroup of the Lie group SI(2,R). Since U* NUP NT is connected, it follows
that the continuous map

U“nUP T = SI2,2) : (h, ) = TTP, (71)

is constant, namely, gq5. Thus the mapping 6, (67) is the fransition map for the bundle
& — T of period lattices. a
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D> The period lattice bundle &7 — I is isomorphic to the bundle of first homology groups
H;(&.#~1(T),Z) — T of the fibration &.# ' (T') — I. Here we have H, (&.4 (), Z) =
U Hi(E47 (1)), 2).
(h.j)er
(5.4) Proof: For every (n,m) € Z? and every p € &4~ (h, j) with (h, j) € U*NT consider
the mapping

Y Py Hi (6l (1), 2) : (nXpe +mXpe) (p) = [0, (72)
where [y,""] is the homology class of the closed curve y,"" : ¢ ((p:;fx Mp,i%a)(p) on
EM! (h, j). This class does not depend on the point p, because of the transitivity of the

R2-action @ (65). In addition, the period lattice &7, ; does not depend on the choice of the
point p. Therefore the mapping y® is well defined. The closed curve ¥, is homotopic

to n times the closed curve y': [0,1] = &4 (h,j) 1 1 (p,F1 (p) followed by m times
o

the curve y2: [0,1] = &4 (h, ) it — o (p). Thus [v,""] = n[y'] +m[y?]. So the

mapping W (72) is linear. Since [y'] and [y?2] generate the lattice H, (&.# ' (h, j),Z),

the map y* is an isomorphism of lattices. Therefore as a bundle map covering the identity

map on U*NT, the mapping y* is an isomorphism of the bundle |J &7, ; — U*NI onto
(h,j)eU*nT

the bundle () H; (é‘l///fl (h,j),Z) — U*NT. So the bundle of period lattices over I'is
(h,j)eu*nr

isomorphic to the bundle of first homology groups assoicated to &.# ' (I') — T. |

Claim: The monodromy map of the bundle &.# ~!'(I'") — I with bundle projection map
. 10
EM is (71 1).
(5.5) Proof: We find the monodromy map by computing the variation of the period lattice along
the positively oriented curve I" in %. First we choose a good open covering {U*} ., of
the set Z of regular values of &.# so that {U “}2:1 is a finite good covering of I" such
that U* NU**! + & for every 1 < o < £ — 1. For (ho, jo) € U' N[ set 8 (ho, jo) = 0.
This fixes the global multivalued function 8 on Z2. Then 8¢ (hy, jo) = —1 by ((4.9)). For
each | < o < ¢—1 on the overlap U*NU%! we have 8% = 0%*! and T = T%F!,
Therefore on U* NU**! the transition map gq a+1 for the period lattice bundle is the
identity matrix in S1(2,Z). In other words, there is no variation in the period lattice along

I" when going from U%* NI to U**! NT". Of course the period lattice varies on each U,
4 .

On the remaining overlap U’ N U the period lattice generated by {(2(;t ), (72;2?}! (?)” )) }

is transformed into the period lattice generated by '

{(2;)7 (72T7r16();l(7)1))} _ { <2(;T> ’ (*2”(]?5((;7]{')) + l)> } , since T is single valued on %
{0+ (e )

So when going from U‘NT to U' NT the transition map g1 for the period lattice bun-

dle is the matrix (_11 ?) Hence the monodromy map . : Hy (&4 (ho, jo),Z) —
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H (8.4 (ho, jo),Z) of the bundle &.# ' (T) — T is the variation of the period lattice
around I'. This variation is just the product g | fo;ll 8a,a+1 of the variation on the over-

laps, which is (_ll (1)) O

We now give a more physical argument to determine the monodromy map of the spherical
pendulum. Let I" be a positively oriented circle in % with center (1,0) and of radius &.
Let po = (£1,0) € T. Let 't = (£I') N {4 > 0} be closed oriented semicircular arcs of
I, which join p, to p_. Let p™ € &.#~'(p~). The integral curve  of the Hamiltonian
vector field Xp; 7.2, which starts at p, is periodic of period T (1 + ¢€,0), has time of first
return T (1 + €,0), and has rotation number 0. Also the integral curve 6 of the Hamil-
tonian vector field X TS starting at py is periodic of period 27 with rotation number

0. Therefore the period lattice &2,_ is generated by the vectors (2(;: ) and (T 0 )

(1+¢,0)
Transported along the arc (I'")~! joining p to p_ the period lattice &, becomes the
. . S 2 T .
period lattice &,,_, which is generated by the vectors ( 0) and (T (1 _870)). This

follows because transporting the first homology class [y] of &.# ! (p, ), represented by
the closed curve ¥, along (I'")~! results in the homology class [y~], represented by .
Moreover, ¥~ is an integral curve of Xnrs2 starting at p~ € &4 - (p-) that is periodic
of period 2T (1 — €,0), has first return time 7'(1 — €,0), and rotation number —%, because
[\ {p+} liesin ZN{j < 0}. Also transporting [8] along (I'"")~! gives [§], which is
represented by the integral curve 8! of X 7Ts? starting at p~ and is periodic of period 27
with rotation number 0. Therefore we have constructed an invertible linear map

M= Py =Py {(2@’ (T(lfa@)} ~ {(2(?)’ <T<‘ f8,0)>}'

Transported along the arc I't joining p to p_ the period lattice &7, becomes the period

lattice &7,,_, which is generated by the vectors {(2: ), (T ( llﬂs 0)) }. This follows

because transporting the homology class [y] gives the homology class [y'], represented

by the curve ¥, which is an integral curve of Xu|rs? starting at p~ that is periodic of

period 27 (1 — €,0), has first return time 7 (1 — €,0), and rotation number %, because

I\ {p+} liesin ZN{j > 0}. Also transporting the homology class [§] along T'" gives
the homology class [§7], where 6~ is an integral curve of X7 starting at p~ that is
periodic of period 27 with rotation number 0. Therefore we get an invertible linear map

M™: Py — Py {(25) <T(1+Os,0)>} ~ {(2(;[) <T(1_j€7°)>}'

So the invertible linear map

M=M")"teM": 2, —P,, :

{<2o” ): (T(lfsm)} - {<23 ) (raZe0) = (0)+ (r<1+°e7o>>}

has a matrix (_11 ?) Since 6 and 7 are closed curves on &4 71(p+), they represent

the homology classes [8] and [y] which form a basis of Hy(&.# ' (p),Z). Thus the
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monodromy map is

M ). 2) s w2 () (0 9)(5) o

Now consider the integral symplectic intersection form (, ) on the first homology group
Hy (&4 (py),Z), which comes from the natural orientation of &2 '(p,) =T? =
R?/Z2. This intersection form is defined by

([6],[8]) =0, ([}, [¥]) = 0, and ([7],[8]) = 1.

Then the monodromy map M, (73) associated to a small positively oriented loop I" around
(1,0) in Z satisfies

M. ([A]) = [A] = ([A],[8]) 8] (74)
for every [A] € Hy(&.4""(p),Z), where p, € I'. Equation (74) is called the Picard-
Lefschetz formula with § being the vanishing cycle.

6 Exercises

1. (Weierstrass elliptic functions.) Consider the smooth affine elliptic curve E defined
by {(x,y) € C? |y2 =4(x—ej)(x—e2)(x—e3)}, where e3 < e < ej and e| + €2 +
e3 = 0. The compact Riemann surface corresponding to E C CP! is a 2-torus C/A,
where A is a lattice.

a) (The @ function.) The Weierstrass & function corresponding to A is

1 1 1
==+ ) ———]. 1
#Ak) u? VEA =A\{0} {(IJ —Vv)? V2} W

Prove the following properties.

i. g1is meromorphic with poles only on A, which are second order. In particular,
() = 5 +0(1).
ii. g is an even function, that is, p(—u) = p(1).
iil. o is doubly periodic, that is, (1 + v) = o(u) for every v € A.

iv. For every a,b € C we have the addition formula

_1(p'a)-p'(b)
Pa+b)= ( OB

4
Hint: The complex analytic functions W (1) = @(u +b) + @(u) and Z(p) =
1O — ! 2 .
% (%) — (1) have poles only at —b+ A and 0+ A and satisfy

m +0O(1), where ¢ = b or 0. Deduce that —Z(u) + W (u) is constant

on E C CP'. From W (a) = ﬁ + (a) +0O(1) deduce (2).

2
) ~ pla) — p(b). @
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v Show that 7: C —E C C: > (x(u),y(1)) = (2(1), £’ (1)) parametrizes
the curve E.

vi. Letu=— [~ % Withx € C¥ = (CU{eo})\ ([e3,€2]U[eq,o0]) we have chosen
the square root in the definition of u so that for j = 1,2,3 we have x —¢; =
r;et%, where r; >0 and 0 < 6; < 2. Thus y(x) = 2\/rirar3€/(01+0216)/2,
Show that the conformal map

p’l:{z6C|{Imz>0}—>C:zH—/w% 3)

transforms the positively oriented upper half plane onto the interior of the
positively oriented rectangle R with vertices at 0, %/l’ , — %l + %l’ , — %l being
the image of —oo, €3, €7, and ey, respectively. Here
oo di 3 dx
%l:/ —>0and%?t’:/ —>0. )
Jey Y —e Y
Show that (3) is the inverse of .

b) (The ¢ function.) The Weierstrass { function is defined by

C(u):l+z< ! +%+%). )

B year \H—V

Show that

L ') =—pu).
ii. Show that { is an odd function, that is, {(—p) = —&(u).

iii. The { function is quasi-periodic, that is, for every v € A there is a unique
n(v) € Csuch that {(u+v) = (u)+n(v).
iv. Show that for every v € A we have {(1v) = in(v).
v. Show that

é‘(y—a)—ﬁﬂ)*‘é/(a):%(%)’ “

Hint: The functions W (u) = % (%) and Z(u) = {(pu—a) - E(u)

both have poles at 0+ A and a + A, which are first order with residue —1 and
1, respectively. Then compete the proof as in exercise a) iv.
Show that the function 1 has the following properties.

vi. v — 1(V) is a Z-linear function on A.
vii. Let {A,A'} is a Z-basis for the lattice A. Then

An(A) =A'n(A) = 2xi, ©)

which is Legendre’s relation. Hint: Integrate { around a suitable rectangular
contour.
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¢) (The o function.) Define the Weierstrass ¢ function by

1 2
o) =p [T (1-5)eb 207, ®)

VEA*

i. Show that % logo =¢.
ii. Show that for every v € A we have

log (%) = v ©)

2. (Formula for rotation number.) Consider the smooth affine elliptic curve E
defined by

V2 = pelu) = 22— 1)(c; —u) — 163,
where ¢ = (c1,¢2) € (R X Rx) \ {discr p. = 0}. The polynomial p, has three dis-
tinct real roots u; such that —1 < u3 <0 < up < 1 < u; and is positive on (u3,uy).
The change of variables

u:2x—%cl and v=2y

transforms the curve E into the elliptic curve E, defined by y* = 4x> — gox + g3,
where g, = c1 —1land g3 = 3c1 — %c? — %c%. E. is in Weierstrass normal form
V= 4(x—e1)(x—e2)(x—e3) where for j = 1,2,3 we have e¢; = ;(u] + éq)
with %(71 + %c1) <ey3<er< %(1 + 3c1) <eyand ej+ex+e3 =0. Let A,

be the lattice corresponding to E. with Z-basis {A,4'} with A, 71/ € Rog. Let
£ be the Weierstrass elliptic function corresponding to A., where p(—%l) =e,
p(f%l + %l’) = ey, and p(%l’) = e3. Note that the mapping 7 : C — E. C C?:
p— (x(u),y(n)) = (2(1),£'(1)), which is a parametrization of E,, is also its
universal covering map.

a) The angular period ©(c) = [,7 12‘32 d—v” is the rotation number of the spherical

pendulum when (c1,¢;) = (h, ). Let & = “VHCZ 4 Show that @ is a meromorphic
1-form on E. = E. U {e} C CP! with poles only at P = - (1,ic2), Py = (—1,—icy),
and o having residues 1, 1, and —2, respectively. Let I bea positively oriented
closed loop in C, which encircles the cut [u3,uz] so that 1 lie in its exterior. Show
that ®@(c) = —i frib Changing to x, y variables show that ® pulls back to a 1-form
& on E,, which can be written as

1 y+yp dxy4yp dx

D = Dp, +Dp, = | =+ :
TR T ey 2xmam

Here Pi = (xp,yp) = (%(1 + %Cl)v%iCZ) and Py = (xp,,yp,) = (%(*1 + %Cl)a
—%icz). Show that the 1-forms ®p; are meromorphic on E, with poles only at
Pj and oo, which are first order and have residues 1 and —1, respectively.
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b) Let Q = (xg,y0) = (#(a),'(a)) be a point on E,. Consider the 1-form ®y.
Let I'” be a closed loop on E., whose universal cover is the closed line segment
Uo— A+ A’ 1o — A. The following argument shows that

"X,

I:,/;,q’Q:”(’l’)“’C(“)’l/:/eQ[n(l’)+l’x]%+ni. (10)

J €

In what follows we use the Weierstrass elliptic functions @, 17, {, and ¢ associated
to the lattice A.. Show that the pull back of ®¢ by the universal covering map is
the 1-form

l(;o’(w +'(a)
2\ o) — @(a)

Using the definition and properties of the ¢ function, justify each step of the next
calculation.

) du =8 (1 —a) = S (1) + £ ()] d. (11)

o, Ooema AR oA A
I=—log oo —a—7) +1log o(o—7) E(a)A
e Ole—a=AtA) ol —a-2)
T g o a)
olpo—A+1) | o(do—1) ,
+log o(Ho) —log () —&(a)A

= (A A (o —a) — H(~A+A) + () (o —a) — A
AN (A + Ao+ 3 (=2 +A) =0 (=A)po + 34 — { (@)
=n(A")a—{(a)2".
Integrating % =n(A)+21/p(a) fromatoe=—1A gives
1@ =10 = [ G da= [ @)+ 2 ) an = [Cm@)+24

e da e ey

I(e)= | @0 =n(A)e~ (A= M) (=34) = L(=3 )4

=3 M)A =n(A)A] = mi,
using Legendre’s relation.

¢) Let Q = (xg,y0) = (#(a),£'(a)) be a point on E, and let I be a closed loop
on E., whose universal covering is the closed line segment po+ A/, o — A +A’.
Using an argument similar to the one in b) show that

Joo=ntja=¢@ = [“ma)+axS (12)

€]

d)Let t=A/A’. Show that

an(2) - §(a)2 = lan (1) - L(@A') + 27 7
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and that

2w —

a 27” /a d i+ mi 2mi /xgdx Tni+Tmi
= — l 1= —_— = 4 L.
YT J Al K Ao Sy y

Using (10) and the above formule deduce

vey

an(/l)fé'(a)l:r/.XQ[n(l)+l’ ]‘;’%zf,’ /:Q%+7ri. (13)

Jep J €2

When a = f%l + %Z,’ we have

an(A') = ()2’

(— ;L+%;L) A" — C(fll+%?t’)l’
(343 — hn () — In()
YA~ n(a)A) = .

Since xg = @(a) = e, equation (13) reads [;2[n(A") +A'x] % = 0. From (12) and
(13) we obtain

X dx 2mi [¥o dx
P :1:/ A+ A x] =+ == / — + 7. (14)
[ @ )+ T [T

e) Because xp, € (—o0,e3) and xp, € (e2,e1) we may choose a € 0, /l’ and b €
— 34+ 34, =14 so that P, = (@(a), ' (a)) arld Py = (p(b), ' (b)) Let T be
the loop on E, obtained by expressing the loop I" on E, in terms of x,y variables.

The universal cover of T is the closed line segment A’, —A + A’. Justify each step
of the following calculation.

c):fi/FQJZfi/FCIDpl fi/FQDPZ
=—il(a+b)n(A) — (§(a) + {(b)A] (15)
= —il(a+b)n(A) = {(a+b)A+JicrA],
since {(a+b) — ¢ (a) — {(b) = } (£ 4=20)) = Lic,
_ 41./6:@[17(%’)%’ }dx+% /XQ/ %Jr%cszrn. (16)

Here

P'(a) = p'(b)

2
@) — ob) ) — pla)— p(b) = —c3+%cr. (U7

1
xQ/:((O(a—&-b):Z(

Since a+b € —%l,—%l—l— %l’, wegetA'—a—be —%/l + %l@—%l. Therefore
Pla+b)=gpla+b—A")=p(A —a—>b) € [ez,e1].

. (Estimate for the rotation number.) If (h,¢) is a regular values of the energy mo-

mentum map &.# of the spherical pendulum, then 27 times the rotation number of
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the flow on the 2-torus &.2 ' (h, ) is
dx3
5 (1_x§)\/2(h—x3)(1—x§)—42

Note that 6(h,—¢) = —6(h,£), when ¢ # 0. The goal of this exercise is to show
that

0(h,0) =20 (18)

T <0(ht)<2m, (19)
when ¢ > 0. We will use complex analysis.

a) Let
ldz

(1-22)\/2(h—2)(1-22) -2
Since —1 < x3 < xj <1< are real roots of 2(h —z)(1 —z?) — £2, we cut the
extended complex plane C along the real axis between x5 and x3 and again between
x3 and oo. Choosmg the square root as in ((4.5)), we see that @ is a meromorphic 1-

formon C’ = C\ ([x3 ,x7]U [, 00]) with first order poles at 1. Show that Res @ =
z==+1

%i. Let %), %3, and %, be positively oriented closed curves in C” which enclose

[x;,x7] but not £1, [x;,x7] and —1 but not +1 and [x; ,x]] and £1, respectively.

Show that

0(ht) = /a):/ o —27miRes ©
J6 3 z=-1
= /a)—27ti(Resco+Resw):/ 0+ 2. (20)
Gy Gy

z=-1 z=1

Let %> be the positively oriented curve in C” which encloses the cut [xg, oo| but not
1. Show that 6> goes from near o to x5 along the underside of the cut and then
back to the original starting point. Show that the curves %4 and %> are homotopic
in C"\ {£1}. Deduce that

o

!
/ W= w = —2 0
o Jo 4 (3= 1)/20h—x) (1 - F) - 2

dxs. (21)

Since )c3 > 1, the integrand in (21) is positive. Therefore from (20) we obtain
0(h,0) <2m.

b) Consider the positively oriented Vertical lineL:z=¢&+i n where 1 € [—e0,00],
& € (x7,1) and L is closer to x; than x3, that is, x; +& < xj —&. Show that L is
homotopic to %3 in C'\ {£1}. Deduce that

e(h,é)z/%w = /La)+7r. (22)

Let z =& 4+in with 7 > 0. Define 6%* and 7%+ by 7 —xg’i =0 eieo'i, where
0 < 6%* < 2. Show that 8~ + 6+ > 7. Hence 7 > a(n) = 5(6°+ 6~ +67) >
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/2. If z= & +in with n <0, show that a(n) = ot(—n). Justify each step of the
following calculation.

/'()0 _ /’°° ide]
Jr — (1= (& +in)?)eie /2 Or—r+
_ 2f/ [ (1-&*+n?)sina(n) —2Encosa(n) dn
- (1-&2+n?)2+4&2n2 V2V

>

Therefore 0 (h,¢) > .

. Show that there is no homeomorphism of R? which maps a 2-torus with a meridial

circle pinched to a point to a 2-torus in R with a longitudinal circle pinched to a
point.

. (Horozov’s theorem.) We know that the regular values of the energy momentum

map &.# of the spherical pendulum is the set % of (h,£) € R? such that

43+ 1232 £ 4n(9 —h?)

h>—1, 2
> s < 27

nd (h,0) #(1,0).  (23)

For (h,?) € %, 27 times the rotation number of the flow of the spherical pendulum
on the 2-torus &.4 ' (h,0) is

5y dxs
0(h,0) =20 :
(0 /’ (1—x§)\/2(h—x3)(1—x§)—£2

where —1 < x3 < x] <1 <x where x* are roots of 2(h—x3)(1—x3) — (2. The
time 7 (h, é) of first return of the flow of the spherical pendulum to a cross section
on &.4 ' (h,¢) (given by an orbit of the angular momentum vector field) is

T(h,t) = z/ drs .
\/2h x3)(1—x3) — 2

We know that locally 7 and 6 are real analytic functions in %. The goal of this
exercise is to show that they are coordinates on %, that is, dT Ad 6 # 0. In other
words, for every (h,¢) € Z

oT dT
oh  dl

D = det 0. 24
0 o0 |7 (24)
oh  d¢

a) Use a computer to draw the level curves of 8 and T. Notice that these curves are
like polar coordinates centered at (1,0) with T being the radial coordinate and 6
the angular coordinate.
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b) Consider the elliptic curve
Dhety? =2(h—2)(1—22) — ¢

with (h,0) € Z. Let j/h/ be a positively oriented curve in the cut extended complex
plane C" = C\ ([x; X3 U [x9, 0]), which encloses the cut [x3 , x5 | butnot +1. Note
that 7' (h,0) = fm 3 dzand 0(h,t)= fm - 22)} Since we can homotope the curve

Yh,e in C*\ {#1} to another without changmg T or 0, it follows that we can compute
the partial derivative of T and 6 by differentiating under the integral sign. Let
wo=[,, )% dzand wy = [, | y% dz. Show that

D= %(hwo—wl)(hwl —wo)—€2wg (25)
by checking the following

1) 3h fl’h/z ) W0+th/ ¥ dZ But

/ —d 7/ d(y? +2hz* +2z+ (> — 2h)
e Y % e »? '

Therefore gh %(hwl — wp).
+

=l 27) dz. Therefore 89 =2(hwo —wy).

T
11) a0 — fl’h[ ], }

111) ah = %g = éwo. From (25), we see that we may assume that £ > 0.

c¢) Using the translation z = x + %h and the scaling y = v and x = Bu, where

3B=(3+h2)/? and a = /2, show that the elliptic curve I', » becomes the elliptic

curve I'y, lv2 =u’ —3u + p, where

2h(9 — h?) 2702

(3+h2)3/2 2(3+4h2)3/2°

When (h, () € % show that —2 < p(h,£) < 2. Also check that
B du E ﬁu+h/3

wo = — and w; =
3 3 3
o 7V T %

p=pht)=

We now explain how the curve 7, is chosen. Let C be the extended complex plane

C cut between u_ and u4 and again between ug and oo. Here ug + are real roots of
W —3u+p, —2<p<2andu_ <u, <up. Let ¥p be a closed positively oriented
curve in C* which encloses the cut [u_,u] but not £1.

d) Let 6o(p) = [, 4 and 6, (p) = Iy, ”‘g“. Show that (6, 6;) satisfy the Picard

Fuchs equation
d /6 Tp 10\ (6
oy 4 (o) _ (/P 0
s (o) = (1 5) (6)

Let r(p) = 6o(p)/6:1(p). For p € (—2,2) show that r satisfies the Ricatti equation

dr
34—p*)— =T —pr—>5r* (26)
( p)dp P
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and has the following properties.

i). r(=2)=7/5and r(2) = 1.

ii). ¥ (p) < 0 for every p € (—2,2).

To see that ii) holds we argue as follows. First we show that r(p) > 0 for every p €
(—2,2). Suppose not. Let py € (—2,2) be the smallest zero of r. Then r/(pg) < 0.
Using (26), we obtain 7 (pg) = m > 0, which is a contradiction. Suppose that
' (po) = 0, for some py € (—2,2). Differentiating (26) gives

2 d2r
3(4—=po) = (po) = —r(po) <0.

dp

Thus every critical point of  is a nondegenerate local maximum. Suppose that for
some p' € (—2,2), r(p') < 1. Since r(—2) =7/5 > 1 =r(2), it follows that r has a
minimum in (—2,2). This is a contradiction. Hence r > 1 on (—2,2). From (26) it

follows that ' (p) = 0 for p € (—2,2) if and only if (p,r(p)) lie on
0=7—xy—5y —2<x<2, &y>1. (27

Equation (27) defines a smooth function x — y(x), which is strictly decreasing on
[—2,2] because y' = 10)+ < 0. Note that y(—2) = 7/5 and y(2) = 1. Suppose that
' (po) = 0 for some pg € (—2,2). Then (po,r(po)) satisfies (27). Hence r(pg) <
7/5. But r(—=2) =7/5. Because r(po) is a nondegenerate local maximum, we see
that r has a local minimum in (=2, pg). This is a contradiction. Hence r has no
critical points in (—2,2). Since r(—2) =7/5 and r(2) = 1, it follows that ' (p) <0
for every p € (—2,2).

e) Show that wo(p)w;(p) > 0 for every p € (—2,2). Argue as follows. Since

2/ ,
3u+p)3/2

we see that wo(p) # 0 for every p € (—2,2). Suppose that for some (h°,£°) € %
with p® = p(h0, %) we have w; (p°) = 0. From the definition of w; we obtain

0
r(p°) = —;173 =

Therefore (p®) < 0 when 2% > 0 and 0 < r(p°) < % when —1 < h < 0. This
contradicts the fact that r(p) € (1,7/5) when p € (—2,2). Therefore wy(p(h,{)) #
0 for every (h,¢) € %. Setting h = 0 in the definition of w; gives

wip) _16p) 1 1 4
wo(p) B 6o(p) Brip)

where p = p(0,£). Therefore wo(p)wi(p) > 0 for every p € (—2,2).

KO3+ 2,

f) We show that D (25) is nonzero when (h,¢) € % by considering three cases.
CASE 1. h <0, £ > 0. From (e) and (25) it follows that D < 0.
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CASE 2. £ =0. When ¢ = 0 the spherical pendulum moves in a plane as if it were
a mathematical pendulum. From the geometric interpretation of 0 (%,0) ((4.2)) we

see that
mif—-1<h<l1
6(h,0) = { 2w, if h > 1. (28)

Therefore g—Z(h,O) = 0. Now

Ax; dx3
T(h,0)=2/[
-/X3 2(h*x3)(] 7)%)

is the period of the mathematical pendulum as a function of energy. In exercise 3
of the introduction we show that ‘3—2 (h,0) > 0. Because 6 is a real analytic function
on %, we have

0(h,0) = 9(%0)%‘3—?(};,0) +0(£%).

From (28) and exercise 5 it follows that

26
T < w40 —=(h,0)+O(¢?)
ael
for (h,0) € # and —1 < h < 1, £ # 0. Therefore %(h,O) # 0. Similarly, when
h > 1 we find that %—(Z(MO) # 0. Therefore D # 0 when £ = 0. Setting h = ¢ =0 in
(25) we see that D < 0. Hence D < 0 when ¢ = 0.

CASE 3. h > 0 and ¢ > 0. Using (25) show that
D =53 F (p,v), (29)

where v=v(h) = % and F(p,v) =r(p)(r(p)—2v) +vp— 1. Consider the map-
ping
¥:ZN(R)? = ={(p,v) ER}|vE(S.0)&pe (—2,3v2—1)v ) }:
(h,0) = (p(h,0),v(h)).

Show that ¥ is a diffeomorphism which maps the half-line W ({(%,0)|h > 0}) bi-
jectively onto the curve p = (3v2 —1)/v?, v € (%,oo). To show that F(p,v) <0
we argue as follows. For every fixed py € (—2,2), the function Fy,, (V) = F(po, V),
where v € . N{p = po} is strictly decreasing. To see this differentiate the defini-
tion of F and obtain aai\f = —2r(p) + p. At p =2, we know that (2) = 1. Hence
% = 0. However,

d ,dF,

A
ap(av)— 2r(p)+1>0,

since ' (p) < 0 for every p € (—2,2). Hence 33;% < 0 for every po € (—2,2). For
any (po, Vo) € . thereisa v; € (%7V0) such that pg = (3v§ — 1) /vj. Since Fp, is
strictly decreasing, F(po, Vo) < F(po,v1). Using (29) and the result of case 2 that
D < 0 when £ =0, we see that F(p,v;) < 0. Therefore F(p,v) <O0.



Chapter V

The Lagrange top

1 The basic model

Physically, the Lagrange top is a symmetric rigid body spinning about its figure axis
whose base point is fixed. A constant vertical gravitational force acts on the center of
mass of the top, which lies on its symmetry axis.

€3

e

Figure 1.1. The Lagrange top.

Mathematically, the top is a Hamiltonian system on the phase space (T SO(3), Q,). The
symplectic form €, on 7'SO(3) is the pull back of the canonical symplectic form Q on
T*SO(3) by the map p* associated to a left invariant metric p on SO(3). The metric p,
which is uniquely determined by its value at the identity element e, is given by

p(e) : T,SO(3) x T,SO(3) = s0(3) xso(3) > R: o
(X,Y) = k(I(X),Y) = 1k(X,Y) + (I3 — 1))k(X ,E3) k(Y E3).

Here k is the Killing metric on so(3), see chapter III §1, and the 1 :so(3) — so(3) is a
k-symmetric linear map. The matrix of / with respect to the standard k-orthonormal basis
{E\,E»,Es} is diag(1;,11,13), where I; are the principal moments of inertia of the top.
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Because p is a metric, / is invertible. We will assume that
0<I <. 2

To make sure that / is the moment of inertia tensor of a physically realizable top, see
exercise 5 in chapter III, we require that

I3 <2I. 3

The Hamiltonian
H:TSO(3) = R: Xy = H (X)) + (T°9) (Xn), C))

is the sum of kinetic and potential energy. The kinetic energy .# : TSO(3) - R : X4 —
% p(A)(Xa,Xa) is one half the p-length squared of a tangent vector to SO(3). The potential
energy ¥ : SO(3) — R : A — xk(Ads Es, E3) measures the height of the center of mass
of the top. To be able to define the Hamiltonian, we must pull back ¥ by the bundle
projection 7 : T SO(3) — SO(3) : X4 — A so that it is a function on 7 SO(3).

2 Liouville integrability

In this section we show that the Lagrange top is Liouville integrable, see chapter IX §1.
To do this we need two additional integrals of motion other than the Hamiltonian. These
two extra integrals arise from two rotational symmetries of the top, namely, one about the
vertical axis e3, which is fixed in space, and the other about the figure axis (= symmetry
axis) fixed in the top.

We now investigate these symmetries more carefully. Let S!' = {B € SO(3)|AdB Ez =

E3}. Then S' acts on the left on T SO(3) by
@' : S x TSO(3) = TSO(3) : (B, Xa) — TuLpXs = Xpa. )

> Physically this action corresponds to rotating the top about the vertical axis.

(2.1) Proof: To see this let A(z) € SO(3) be the configuration of the top at time 7 with respect
to the fixed frame {e},e>,e3} in R®. The figure axis of the top at time ¢ is A(t)e3. Acting
on the top on the left by B € S', we obtain the new configuration BA(¢) Applying the
mapping i : so(3) — R3, see chapter III ((1.2)), to the condition E3 = Adp E3 defining S 1
gives e3 = Bes. Since (BA(t)e3,e3) = (A(t)e3, B 'e3) = (A(t)es,e3), the angle between
the figure axis and e3 remains invariant under the left S'-action. Thus the left S'-action
corresponds to rotating the top about the vertical axis e3. g

> The action ®' is Hamiltonian with momentum mapping
Fi:TSO(3) = R: X4 — p(A)(T.RAE3,X4). (6)

Physically, ¢, is the angular momentum of the top about the e3-axis.
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(2.2) Proof: The formula for the momentum mapping follows from the momentum lemma,
see chapter VII ((5.7)). We provide some details. Let 0 be the canonical 1-form on
7*SO(3). First we show that the 1-form 6, = (p#)*6 is invariant under the action ®.
For Wy, € Tx, (T'SO(3)) and B € S' we have

((q)é) GP)(XA Wy, = p(BA) (TT TXACI)B WXMXAB)

p(
(BA)(TpLp(TtWy, ), TaALgXs), since To®f=Lgot
(A)(TTWx,,Xa), by leftinvariance of p
p(XA)WxA.
Second, note that the Lie algebra 7,S' C so(3) of S' is spanned by E3. Therefore the
infinitesimal generator of the action S! x SO(3) — SO(3) : (B,A) > BA is the vector field

d d
Xso(3)(A) = —| (exptE3)A = —

R tEy = T,RAE
al_, ar ACXPIL3 = LeRAL3

=0
and the infinitesimal generator of ®! is Xy SO(3 di|, o exp, E} X4). Since Lexpir; © T
= TOQDﬁXpl £, it follows that T X7 50(3)(Xa) = Xso )(A). Therefore

J1(Xa) = 6p(Xa)(Xrso3)(Xa))
= p(A)(TtXrs0(3)(Xa),Xa) = p(A)(Xs0(3)(A), Xa)- U

> To show that ! is a (left) symmetry of the Lagrange top we need only verify that the
action ®' preserves the Hamiltonian /7.

(2.3) Proof: For B € S, we have
(@) A (Xp) = A (Xpa) = 3p(BA)(Xpa, Xpa) + xk(Adpa E3, E3)
:%p(A)(XA,XA)—|—Xk(AdAE3,Ad371E3):%(XA). O

Therefore _#, is constant on the integral curves of the Hamiltonian vector field X ;-, that
is, 7y is an integral of the Lagrange top.

The group S' = {B € SO(3)| AdgE3 = E3} also acts on the right on T SO(3) by
®":TSO(3) x ' — TSO(3) : (Xa,B) — Xap = TaARpXa. @)
> Physically, this action corresponds to a rotation about the figure axis of the top.

(2.4) Proof: To see this, let A(¢) € SO(3) be the configuration of the top at time 7 with respect
to the fixed frame {e1,es,e3} in R3. Acting on the right by B € S gives the new config-
uration A(7)B. Since Bes = e3, we find that A(z)Bes = A(t)es. Thus the figure axis of the
top in the new configuration is the same as in the original configuration. Hence the right
S'-action corresponds to rotating the top about its figure axis. ]

> The right S'-action ®” is Hamiltonian with momentum mapping

7, :TSO(3) = R: Xy — p(A)(T.LaE3, Xa). 8)
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Physically, _#, is the angular momentum of the top about its figure axis.

(2.5) Proof: The argument follows along the same lines as the proof of ((2.2)). We only show
that the 1-form 6), is invariant under ®". First we verify that the metric p (1) is invariant
under the right S I_action @, that is,

IOAdB:AdB OI, (9)
for every B € S'. From the definition of p(e) and the fact that B € S', it follows that
p(e) (Aqu X,Aqu Y) =
= [1k(AdB—1 X,AdBfl Y) + (]3 — Il)k(AdB—l X7E3)(AdB—1 Y,E3)
= p(e)(X,Y), since k is Ad-invariant.
Equation (9) follows because p(e)(X,Y) = k(I(X),Y). The metric p is @ -invariant,
because
p(B)(T.RpX,T.RgY) = p(e)(TsLy-1 T.RpX , TsLg1 T,Rg), since p is ®'-invariant
=p(e)(Adg1X,Adg 1Y) =p(e)(X,Y).
The 1-form 6, is ®"-invariant, because
(@) 0y (Xa)Wx, = p(AB) (T t(TPzWy, ), Xas) = p(AB)(TsRp(TTWx, ), TARsXs)
= 0p(Xa)(Wx,). O

> To show that S! is a (right) symmetry of the Lagrange top it suffices to verify that the
Hamiltonian 7 is invariant under ®".

(2.6) Proof: For B € S! we have
(Pp)* A (Xa) = A (Xan) = 3P (AB)(Xan, Xa) + xk(Adsp E3, E)
= 3P(A)(Xa, Xa) + Xk(Ads Adg E3, E3),
since p is ®’-invariant and B € S!
= (Xy), sinceBeS'. O
Therefore 7, is an integral of the vector field X .

To complete the argument that the Lagrange top is Liouville integrable, we need only

show that the Poisson bracket of any two of the integrals {J¢, ¢y, #,} vanishes
> identically. Since _#; and _Z, are integrals of X », their Poisson bracket with .7#” vanishes

identically. We now show that the Poisson bracket of ¢, and _#, vanishes identically.

(2.7) Proof: To see this it suffices to show that _#, is constant on the orbits of &' ForBe §!
we have

(@) 70)(Xa) = 7(Xpa) = p(BA)(T.LsaE3, Xpa)
= p(BA)(TgLp T,LAE3,TgLpXy)
= p(A)(T,L4E3,X,), since p is ®'-invariant
— £i(Xy). 0
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3 Reduction of right S'-action

In this section we remove the symmetry about the figure axis of the Lagrange top using
the technique of regular reduction, see chapter VII ((6.1)). After reduction we obtain a
Hamiltonian system with two degrees of freedom which is equivalent to the magnetic
spherical pendulum.

3.1 Reduction to the Euler-Poisson equations

In this subsection we reduce the symmetry given by the right S'-action and obtain a
Hamiltonian system for which Hamilton’s equations are the Euler-Poisson equations.

To find an initial model for the reduced phase space, we follow the proof of the regular
reduction theorem. This constructs the orbit space of the right S I_action ®" (7) on the

> a-level set of the right angular momentum mapping _#,. We start by checking that
_#,"(a) is a smooth manifold for every a € R.

(3.1) Proof: Pulling back the right S' Hamiltonian action &’ by the left trivialization
Z:S0(3) xs0(3) > TSO(3) : (A, X) = T,LyX =X, (10)
gives the right §'-action
@": (SO(3) x50(3)) x §' — SO(3) xs0(3) : ((4,X),B) — (AB,Adp1X), (11)
because
(Adg-1 X)ap = T.Lap(TgLy-1 T,RpX) = TgLa T,RpX = TyRpXy = Xa3.

Pulling back the right momentum map _#, (8) by the left trivialization .#’ (10) shows that
the action ¢ has a momentum mapping

J,:S0(3) x50(3) = R: (A,X) — _7,(Xa)Es = p(e)(X,E3) = k(I(X),E3).  (12)
Because the derivative of J, at (A,X)
DI(AX)(VaY) = | Jy(AexptV, X +17) = p(e)(Es,Y)
=0

is a surjective linear mapping from 7(4 x) (SO(3) x s0(3)) to R, the level set J, ! (a) is a
smooth manifold. O

The level set J, ! (a) is invariant under the action ¢”, because for every B € S!
J-(AB,Adg 1 X) =k(I(Adg-1X),E3) = k(Adg1(I(X)),E3), using (9)
=k(I(X),AdgE3) = J-(A,X).

Therefore ¢ restricts to an S'-action ¢|(S! x J;"!(a)) on J, ! (a). This induced action is
a free, because if (A,X) = (AB,Adg-1 X ), then A = AB, that is, B is the identity element e.
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Hence the space J; ! (a)/S" of ! orbits of ¢”|(S' x J=!(a)) is a smooth manifold called
the reduced phase space, see chapter VII ((6.1)).

This description of the reduced phase space is somewhat abstract. We now provide a more
concrete model, namely, ¢ = {(Z,W) € s0(3) x so(3) |k(Z,Z) =1&k(Z,W)=a}.

Claim: 2 is diffeomorphic to J; ! (a)/S".
(3.2) Proof: Consider the mapping
7 J N (a) CSO(3) xs0(3) = 29 (A, X) — (AdAE3,AdAI(X)) =(Z,w). (13)

The map n¢ is surjective. To see this suppose that (Z,W) € £“. Then there is an A €
SO(3) such that Ady E3 = Z. Let X = I~ !(Ad,—1 W). Using (13) we see that 7%(A,X) =
(Z,W). We are done once we can show that (A,X) € J, !(a). This follows because

J(AX) = k(I(X),E3) = k(Ady—1 W,Ady-1 Z) = k(Z,W) = a,

since (Z,W) € 2. Now 7 maps an orbit of ¢"|(S! x J;!(a)) onto a point of 2
because for every B € S L

n*(AB,Adg1 X) = (Adap E3,AdppI(Adg-1 X))
= (Ad4(AdgE3),Ady AdgI(Ady 1 X))
= (Ad4E3,AdsI(X)), since B € S' and (9)
= (Z,W).
Hence ¢ induces a smooth mapping 6¢ : J, ' (a)/S! — 27¢ such that the dlagram 3.1.1

commutes, see chapter VII §2. In dlagram 3.1 1 the mapping p*: J, ! (a) — J; ! (a)/S!
is called the orbit map, because it assigns to each point in J,~!(a) the orbit of the action
@"|(S" x J;'(a)) through the given point.

”u

J; H(a) P
p? o
J; ' (a)/S!

Diagram 3.1.1

> We now show that ¢ is a diffeomorphism.

(3.3) Proof: Because m“ is surjective, it follows that o¢ is surjective. To show that ¢ is
injective, it suffices to verify that the fiber (7%)~!(Z,W) is a single orbit of ¢”. To
see this suppose that (A,X) and (C,Y) lie in the fiber (7¢)~!(Z,W). Then AdsE; =
Adc E3, that is, B=A"!'C € S!. Since Ad, I(X) = AdcI(Y), it follows that Ads/(X) =
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AdsAdpl(Y) = Adal(AdpY). Consequently, Y = Adg 1X because Ady and [ are in-
vertible. Therefore (C,Y) lies in the same @”|(S! x J,"!(a)) orbit as (4,X). Next we
show that the inverse of ¢ is smooth. Because 7 is a proper submersion, the bundle
n¢: J7 (@) — 274 is locally trivial, see chapter VIII ((2.1)). Thus for a suitable open
subset % C 2% about (Z,W), the bundle ¢ restricted to (7¢)~' (%) has a smooth cross
section T : % — (n*)~'(%). Therefore on %, we have 6%(p“ot) = n%T = idy. To
verify that (p?e7)°0® = id ga)-1 (4. let r € (6%)~1 (%) and set s = (p?T)°c“(r). Then
04(s) = (6%p“et)(0(r)) = 6%(r). But 0“ is injective, so s = r and we are done. There-
fore (%)~ = p®t is smooth. Consequently 6 is a diffeomorphism. (]

By the regular reduction theorem, see chapter VII ((6.1)), the orbit space J."!(a)/S! has
a symplectic form Q¢ defined by (p)*Q¢ = Q,|J, (). Define a 2-form Q¢ on £ by
(2)"Q* = Qp|J, (a).

Claim: The mapping 6 : (J; '(a)/S',Q%) — (£%,Q%) in diagram 3.1.1 is a symplectic
diffeomorphism.

(3.4) Proof: We have already shown that o¢ is a diffeomorphism. To show that it is symplectic,
let T: % — (n*)~' (%) be a cross section for the trivial bundle 7¢|((74)~!(%)). Then

by definition (p%)* Q¢ = QoI (a) = (n)*Q. So on % we have
QF — (ﬂaOT)*Qa — (paor)*ﬁa — ((Ga)fl)*ﬁa'

Because o is a diffeomorphism, the 2-form Q¢ is nondegenerate. Moreover, Q¢ is closed
because _ _
dQ* =d(((e) 1) "Q%) = ((¢*) )" dQ* =0,

since Q¢ is symplectic and hence is closed. Thus ¢ is a symplectic diffeomorphism. [J

Another way of stating the result of the claim is that (£?¢,Q%) is a model for the reduced
> space (J; ' (a)/S',Q%). For latter use we find an explicit expression for the 2-form Q.

(3.5) Proof: We begin by calculating the tangent of the mapping 7¢ (13). For (Us,T) €
Tiax) (50(3) X 30(3)) we have

Tiux)m“(Ua,T) = (Aexth X +1T)

dr},
d
( AdAexthE%dt AdAexth(](X)+ﬂ(T)))
1=0

= (Ads(ady Es), Ady (ady I(X) +1(T))
= ([AdAU,Ads B3], [Ada U, AdaI(X)] + Ads I(T)) = £(A,X,U,T).

We compute the 2-form Q¢ as follows.
QY (AdyE3,Ads (X)) (E(A,X,U,T),E(A,X,R,S)) =
= Q(m(A, X)) (T(a x) & (Ua, T), Tia x) T (R4, S) )
=Q,(A,X)((Ua,T),(Ra,S)), by definition of Q¢
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= —k(I(T),R)+k(I(S),U) +k(I(X),[U,R]),
using (8) in §2 of chapter VI and
p(e)” to identify so(3)* with so(3).
= —k(Ads I(T),AdpR) + k(Ad4 I(S),Ads I(U))
+k(AdgI(X),[AdsU,AdsR]). 0
We are now ready to compute the reduced Hamiltonian .72’ on the reduced space (2%, Q4).

First we treat the kinetic energy. From the definition of the left trivialization .Z (10) it
follows that the pull back of the kinetic energy % by .Z is

K:SO(3) xs0(3) = R: (4,X) = Jk(I(X),X) = 11k(X,X) + L (I — ) (k(X, E3))*.
From the definition of K above we find that

SR (X),X) = Ak, X) = LT — I (k(X L E3))%. (14)

Replacing X with Ad,—1 W in (14) gives
k(I (Ady W), Ady W) = LT RW, W) — S (17 — 1) (KW, Ads E3)) .
since k is Ad-invariant. By definition of ¢ (13), the reduced kinetic energy is
HO P R(ZW) = LT RWoW) = L - e (15)

Pulling back the potential energy ¥ by the left trivialization ., gives the reduced poten-
tial energy
VP R(ZW) = xk(Z,E3). (16)

Thus the reduced Hamiltonian 5 is
A P Cso(3) xs0(3) > R: (Z,W) — A 'k(W, W) + x k(Z,E3). (A7)
In (17) we have omitted the additive constant —%(Il_ - Iy Na?. In other words, if &

is the value of the Hamiltonian .77, then the value of the reduced Hamiltonian 7 is
W =h+ (17 =1 ha?

In order to compute the Hamiltonian vector field of the reduced Hamiltonian .77 on
(£27,Q%), it is necessary to use another model for the reduced Hamiltonian system
(2%, 2%, Q). The new model (H,P%, ") is obtained from the old model by pulling
back by the map i : so(3) — R?, see chapter III ((1.2)).

(3.6) Proof: The new reduced phase space P* is {(z,w) € R x R%|(z,2) = 1 & (z,w) = a},

where (,) is the Euclidean inner product on R®. Here z = i(Z)
i(W) =i(AdsI(X)). The new symplectic form @ = i*Q“ is

i(AdpE3) and w =

wa(z,w)((uxz,ux w+t),(r><z,r><w+s)) = —(t,r)+ (u,8) + (wyuxr), (18)

where u = i(AdyU) = Ai(U), t = i(Ads I(T)) = Ai(I(T)), r = i(Ads R) = Ai(R) and s =
i(AdaI(S)) = Ai(I(S)). Here we have used the fact that i([AdaU, AdsEs]) =i(AdsU) x
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i(Ad4E3) = u x z and similarly i([AdaU,Adsl(X)]) = u X w. Note that (z,#) = 0 and
(z,8) =0, since (ux z,u x w+1) and (r x z,r x w+s) lie in T, ,,) P*. From (15) we see
that the new reduced kinetic energy is

K=" P -5 R:(z,w) — 37 (wow) = (7 =Y )a%s (19)
while from (16) it follows that the new reduced potential energy is

Vi=i"y“:P* > R: (z,w) = x(z,e3) = x23. (20)

Therefore, up to an additive constant the reduced Hamiltonian is

H =i : P CR*xR* - R: (z,w) = 31 (w,w) + x 23. #3))

> Now we are in position to show that for any smooth Hamiltonian H : P — R the integral
curves of the Hamiltonian vector field Xy on (P, 0“) satisfy

_om
Z—8WXZ

(22)
'—ajx +8£X
Y= w Y 0z «

(3.7) Proof: Write Xy (z,w) = (X] x z,X] X w=+ X), where (z,X2) = 0 because Xy (z,w) €
T(;,w)P*. From the definition of Hamiltonian vector field we find that

dH (z,w) ((u X zu x w+v)) =
- (Da(Z,W)((X] Xz, X1 XW+X2)7(” X Z,U ><W+V))a (23)

for every (u x z,u xw+v) € T, P*. Using dH = (%—g, g—fv’) and the definition (18) of

the symplectic form @“, we see that (23) is the same as
J0H oH
(== uxz)+(5—,uxw+v) =—(X,u)+ (Xi,v) + (W, X1 X u). (24)
dz dw
Set u = 0. Then (24) becomes (%,v) = (X1,v) for every v € R? such that (z,v) = 0.
This last condition must hold in order that (u x z,u x w+v) € T, ,,)P?. Therefore X| =

% + Aoz for some Ay € R. Set v = 0. Then (24) becomes

JH JH JH
f(a—z X Z,U) — (W xwyu) = —(Xa,u) + (w X (W +Aoz),u)
for every u € R3. Hence X, = %—i] x 2+ Ag(w % z). Note that (X5,z) = 0 holds automati-
cally. Consequently, the integral curves Xy satisfy

. ,0H _JH

=5, Hhoaxe =g, X

. JH JH _0H J0H
w—ﬁxw—i—lo(zxw)—i—a—zxz—l—ﬂo(wxz)—ﬁxwﬁ—a—zxz. O
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Actually (22) defines a system of differential equations on R x R3, called the Euler-
Poisson equations of H. Note that the reduced space P¢ is an invariant manifold of the
Euler-Poisson equations.

We now show that if we put a nonstandard Poisson structure on C*(R> x R3), then the
Euler-Poisson equations are in Hamiltonian form. Explicitly, define a Poisson bracket
{,} on C=(R3 x R?) whose structure matrix Wee(r3xR3) 18 given in table 3.1.1.

{A,B}gs g3 71 2 3 wm wy w3 | B

71 0 0 0 0 3 -2
o) 0 0 0 —z3 0 21
23 0 0 0 2 -z 0
wi 0 3 —2 0 w3 —wp
wo -3 0 21 —ws 0 wi
w3 22— 0 wy —wi 0
A

Table 3.1.1. Structure matrix Wew g3, g3) for {, }gs . gs on C*(R? x R?).

Setting & = ({1,---, ) = (z,w) define the Poisson bracket of f, g € C*(R? x R?) by

af o
{fag}R3><R3 :;jagagj{g’g}R3xR3'

So (C*(R*x R%),{, },-) is a Poisson algebra, see chapter VI §4. For H € C*(R? x R?)
the integral curves of the Hamiltonian vector field —ady satisfy

JH

1= _{Haz}R3><R3 =35 X2

ow 25)
, JH JH
Ww=—{H,wlgs\gs = 3. % w+a—z X Z.

These are the Euler-Poisson equations (22).

Specializing (25) to the case where the Hamiltonian is the reduced Hamiltonian H¢ (21)
of the Lagrange top the reduced Hamiltonian vector field has integral curves which satisfy
, ~1
z =17 wxzg
o (26)
w = )Ye3 Xz.
The solutions of (26) on P* describe the motion of the Lagrange top after rotation about
its figure axis has been removed. This is a model for the motion of the tip of the figure
axis =(symmetry axis) of the top with a given body angular momentum a.

3.2 The magnetic spherical pendulum

In this subsection we show that after reduction of the right S! symmetry, the Lagrange top
is equivalent to the magnetic spherical pendulum up to a time rescaling.
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Physically, the magnetic spherical pendulum is a massive electrically charged particle
which moves on a 2-sphere S? under the combined influence of a constant vertical grav-
itational force and a radial magnetic field of strength a due to a monopole placed at the
center of S2. The appearance of the magnetic term is due to our choice of zero section of
the affine bundle 7.

Mathematically, the magnetic spherical pendulum is a Hamiltonian system on the phase
space (T'S?,Q,), where TS = {(x,y) € TR? | (x,x) =1 & (x,y) =0} is the tangent bun-
dle of §? and Q, is the symplectic form

Qa(x,y)((l,t,r)7 (v,s)) =—(nv)+ (u,s) +alx,uxv), 27)

with (u,7), (v,5) € Ty (TS?). Note that Q, is the sum of the standard symplectic form
on TS? plus a magnetic term a(x,u x v). Integrating this magnetic term over a domain
on S? gives a magnetic flux which is proportional to the surface area of the domain. The
Hamiltonian of the magnetic spherical pendulum is

F:TS* > R:(x,y)— %Ifl(y,y) +x (x,e3). (28)
Claim: The mapping
@ :TS* = P: (x,y) = (x,x X y+ax) = (z,w) (29)

is an equivalence between the time rescaled magnetic spherical pendulum Hamiltonian
system (F,TS?,Q,) and the Hamiltonian system (H¢, P, ®") of the Lagrange top after
reduction of the rotational symmetry about its figure axis.

(3.8) Proof: It is straightforward to check that the inverse of ¢ is the smooth mapping P* —

TS?: (z,w) > (z,w x z). Hence @ is a diffeomorphism. We now compute the tangent of ¢.
From the definition of T'S? it follows that (u,r) € Tixy) (TR?)is in Tixy) (TS?) if and only
if in addition to (x,x) = 1 and (x,y) = 0, the conditions (x,u) =0 and (u,y) + (x,r) =0
hold. Differentiating (29) gives

Ty T(x_y)(TSz) = To(ey) P 1 (1) = (,u Xy +x X1+ au)

This expression is not useful because the tangent vector (u,u X y+x X r+ au) at To(xy)P”
is not in the form (& x x,u X (x X y+ax) +7), where (x,7) = 0. The following argument
remedies this by showing that

(yuxy+xxr+au)=(UxXx,ux (xxy+ax)+xxr) (30)

where u = x x u. Note that (x,x x r) = 0 in (30).

(3.9) Proof: Since (x,x) =1 and (x,u) = 0, we find that u = (x X u) X x = u x x. Therefore

UuxXy+xxr+au=(UxXx)Xy+xxr+auxx
= —u(x,y) +x(u,y) +au x x+x x r =x(u,y) —y(x,u) +au X x+x x r,
since (x,y) =0and (x,u) =0
=ux(xxy+ax)+xxr O
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D> Next we show that ¢ 0 = Q.
(3.10) Proof: We compute
(" ")(x, Y)(( u,r), (v,5)) = O (@(x,3)) (T )@ (14,7), Ty 9 (v,5))
o (x,x x y+ax)((w,u x y+xx r+au),(v,v X y+xx s+av))
@ (z,w) (@ x z, a0 x w+T), (VX 2,V X W+5)),

using (30). Here z=x,w=xXy+ax,u=xxXu,v=xxv,r=xXxrand s =x X s. Thus
(@* @) (x,y)((u,7), (v,5)) =

—(7,v) + (&,5) + (W, x v), by definition of @* (18)
= —(xxnrxxv)+ (xxu,xxs)+ (xxy+ax,(xxu) x (xxv))
—(

rv) + (u,s) +alx,uxv),
since (x,u) = (x,v) =0 and (x,x) = 1. Therefore, @*®* = Q,. O
To finish proving the equivalence we compute ¢ *H as follows

(@"H)(x,y) = 31 ' (x x y+ax,x x y+ax) + ¥ (x,e3)

=317 0vy) + 1 (xv,e3) + 31 'a* = F. 0

Introduce a new time scale s by setting s =1, I1. Then the Hamiltonian system (f ,TS?,Q,)
becomes the magnetic spherical pendulum (F,TS*,Q,) with Hamiltonian

F(x,y) =L(F(x,y) =21 'd®) = 1 (v,y) + Ax3, 31)
where L =11 x. O

To find Hamilton’s equations for the integral curves of Xr, we consider the magnetic
spherical pendulum to be a constrained Hamiltonian system. Give the manifold M =
ToR3 = (R*\ {0}) x R? the nonstandard symplectic structure defined by the 2-form

ﬁa(x,y) ((u,r), (v,s)) =—(v,r)+ (s,u) +a(|x\73x,u X V). (32)

For any smooth function H : ToR? — Rt is straightforward to check that the Hamiltonian
vector field Xy on (T0R37Qa) has integral curves which satisfy

o
-

Y (33)
__a£+ ||7 X(;7H
y=—gotakl Ty PR

On (M, Q%) define the constraint functions ¢ : M — R: (x,y) — (x,x) — 1 and ¢3 : M —
R: ( y) — (x,y). Since 0 is a regular value of the constraint map € : M — R? : m
(c1(m),c2(m)), the constraint set € ~!(0) is the smooth manifold 7S?. Because the
matrlx ({ciscj}) of Poisson brackets is invertible on M with inverse (C;j) =i ¢ o)
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the symplectic form Q, restricted to T'S? is the symplectic form ©, (32) on TS?. To
compute the Hamiltonian vector field of the Hamiltonian

F:MCTR® 5 R:(x,y) > S(0,y) + 4 (Jx] 'x,e3) (34)

constrained to 7'S%, we use the modified Dirac procedure, see chapter VI §4. Note that
F |TS? is the Hamiltonian F of the magnetic spherical pendulum. To start the Dirac
procedure let F* = F — Z? j:l({f i+ F)C jcj, where F; are smooth functions in the
ideal of (C*(M),-) generated by the constraint functions ¢;. The Poisson bracket { , }
on C*(M) is computed with respect to the symplectic form Q.. Because {ﬁ ,c1) =
—(x,y) and {F,c2} = —(y,y), we may choose F} (x,y) = —(x,y) ((x,x)—1) and B (x,y) =
—~(53)((x.x) — 1)- Then

Fr(x,y) = 5020) + A (%] x,e3) + (000) ((r,0) = 1) = 5 ()% (35)

Using (33), it follows that the integral curves of the Hamiltonian vector field Xz, on
(M ,ﬁa) satisfy

x=y+ ((x,0) = 1)y—(x,y)x
¥= A xx (xx e3) + (x,y)y — (3, y)x
+alx xx (y+ ((xx) = Dy — (x,y)x).

Since {F*,F}|TS? = {F*,K}|TS* = 0, we see that TS2 is an invariant manifold of
Xz.. Thus the integral curves of the constrained Hamiltonian vector field Xp = X Frirse =

Xp- |T'S? satisfy the equations

xX=y
(36)
y=—Aes+ (A(x,e3) — (»y))x+axxy,

which are Hamilton’s equations for the magnetic spherical pendulum. Note that when
a=0and A =1 (36) reduce to Hamilton’s equations for the spherical pendulum, see
chapter IV equation (5).

4 Reduction of the left S! action

We complete the reduction of the Lagrange top to a one degree of freedom Hamiltonian
system by removing the left S'-action on the reduced level set J, ' (a) of the momentum
of the right S'-action. Because this left S'-action has fixed points, the regular reduction
theorem does not hold. We use invariant theory to carry out singular reduction, see chapter
VII §7.

4.1 Induced action on P

We show that the left S'-action ®° (5) on 7SO(3) induces a diagonal linear S'-action A
(40) on R? x R? and then one on the reduced space P?.
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We begin by using the left trivialization map .# (10) to pull back the left §'-action ® (5)
to the S'-action

@' : 8" x (SO(3) x50(3)) — SO(3) x 50(3) : (B, (4,X)) — (BA,X). (37)

Because the level set J, '(a) = {(A,X) € SO(3) x s0(3) |k(E3,I(X)) = a} is invariant
under ¢°, the induced action ¢*|(S' x J;'(a)) is defined. Consider the S'-action

88" % (50(3) x50(3)) = 50(3) x50(3) : (B,(Z,W)) > (AdpZ,AdgW).  (38)

The action 8¢ leaves the reduced space ¢ invariant; for if (Z,W) € £, then for
every B € S' we have k(AdgZ,AdpZ) = k(Z,Z) = 1 and k(Adp Z, AdgW) =k(Z,W) = a.
Hence (AdzZ,AdpZ) € 27°. Therefore the induced action §¢|(S! x £2¢) is defined.

Claim: The map
n:J, N (a) CSO(3) x50(3) = P (A,X) — (Ads E3,AdaI(X)), (39)

intertwines the S'-actions @*|(S' x J-!(a)) and §¢|(S! x 22%). In other words, for every
B € S' we have 1% (@j|J, (a)) = (85| 2)on”.

(4.1) Proof: Let (A,X) € J; '(a). Then
7 (@5(A,X)) = (Adg(Ada E3),Adp(Ads (X)) = 84 (n*(4,X)). O

Using the identification mapping i : so(3) — R?, see chapter IIT ((1.2)), the S'-action &*
becomes o
A:S'x (RPxRY) - R xR : (1,(z,w)) = (Riz,Rw), (40)

where S' = {R; € SO(3) |t € R} with R, :(iﬁ:ﬁ st 3) Since the reduced space P9 =
1

0 0
{(z.w) € R®* x R*|(z,2) = 1 & (z,w) = a} is invariant under the S'-action A, the
> induced action A|(S! x P%) is defined. It is Hamiltonian with momentum mapping

JO PP CRIXRY S R (z,w) = (e3,w) = ws. (41)

(4.2) Proof: The mapping i intertwines the actions §°|(S! x 2%) and A|(S! x P). To find the
momentum mapping of the action §°|(S' x £7¢) we pull back the momentum mapping
Ho (6) of the left S I_action @ (5) by the left trivialization .. We obtain the momentum

map
Jr:SO(3) xs0(3) > R: (A, X) — k(E3,Ads (X)) 42)

of the left S'-action @' (37). Because J; ! (a) and the function J; are invariant under the
right S'-action ¢@" (11), the function J;|J;!(a) induces a smooth function on the orbit
space J, ! (a)/S! = 27 given by

J&: 2% Cs0(3) x50(3) = R: (Z,W) = k(E3,W), (43)

> such that (77:”)*.?2’ = Jy|J, 1 (a). We now show that JN,? is the momentum mapping of the
Sl-action 8¢ (38).



V4.2 Orbit space (J¢)~'(b)/S! 207

(4.3) Proof: Let (Z,W) € 27°. Then the vector field ¥ = &

i _SZ(Z W) is the infinitesimal

1=
generator of the S'-action §/. On J ! (a) we have

(9" (Y Q%) = (7)Y _1((n%)*Q%) = X;, 1 .L*(Qp),

since the mapping ¢ intertwines the actions @' on J;!(a) and 8° on 224, (n9)*Q* =
Q,|J, 1 (a), and X, is the infinitesimal generator of the action ¢, which is Hamiltonian
with momentum mapping J; (42). Therefore (z)*(Y_1Q%) = dJ; = (n%)*(dJ?), since
(n“)*JZJ =JyonJ; ' (a). SoY_1Q4 = dj;‘ on Z¢, because the mapping 7¢ (39) is surjec-
tive. Thus the S'-action 8 is Hamiltonian with momentum mapping JNZ (43). O

To finish the proof of ((4.2)) we pull back the function j}' by the mapping i X i to obtain
JIPPCRIXRY 5 R (z,w) > (e3,w) = ws. (44)

J; is the momentum mapping of the S'-action A (40), because i x i intertwines the actions
8'|(S" x 22%) and A|(S" x P*) and i x i is a symplectic diffeomorphism of (22, Q%) onto
(P, 0%). d
It is interesting to see what all this means in the magnetic spherical pendulum model. The
unconstrained Hamiltonian F (34) is invariant under the S'-action

S'x (M =TyR?) — M : (1,(x,y)) = (Rix,R,y), (45)

where t — R, is a one parameter group of rotations about the e3-axis. It is straightforward
to check that the infinitesimal generator of this S'-action is the vector field X (x,y) =
(e3 x x, %) + (e3 xy, a%) Using (33) and %(\x|_1x,e3) = |x|73(x x (e3 x x)), we see that

X is a Hamiltonian vector field on (M, (AZa) corresponding to the Hamiltonian function
Jo:M =R (x,y) = (xx y,e3) +a(|x] ' x,e3).

In other words, the S'-action (45) is Hamiltonian with momentum mapping Ja. Since TS?
is an invariant manifold of X , it follows that the § I_action (45) restricted to (7'S?,Q,|TS?)

is Hamiltonian with momentum mapping J, = J |T'S%. Because the unconstrained Hamil-
tonian F (34) and the modified Hamiltonian F* (35) are invariant under the S'-action (45),
it follows that {F,J,}ys2 = {F*,J}|TS? = Ly F*|TS* = 0. Thus

Jo: TS CTR? - R: (x,y) — (x X y,e3) +a(x,e3)

is an integral of the constrained Hamiltonian vector field XF on (152, Q, |T'S?), where F =
F|TS?: (x,y) %(y7 ¥) +A(x,e3) is the Hamiltonian of the magnetic spherical pendulum.

4.2 The orbit space (J¢)~!(b)/S!

We now determine the reduced space of the left S'-action A|(S! x P*) on P (40). This
action has fixed points p, = €(0,0,1,0,0,a), where €2 = 1, because the action A (40)
fixes every point of the 2-plane span{es,eq} in R? x R? = R® and this 2-plane intersects
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P4 at pe. Since pe € (J¢)~!(ga), we can not apply the regular reduction theorem to find
the reduced phase space of the left S'-action A|(S! x P*) on (J¢)~!(ea), because the S'-
action A[(S! x P%) is not free. To construct a model for the orbit space (J¢)~'(b)/S" for
every value b of the momentum map J;/ (44) we use invariant theory.

Claim: The algebra R[z,w]sI of polynomials on R? x R3, which are invariant under the
S'-action A (40), is generated by the monomials

2,2
T =23, W3=z1W1+2w2, T5=2]+2,

Tm=ws, Ty=2w—wy, Te=w]+wi. (46)

(4.4) Proof: See chapter IV ((2.1)). O
To find a model for the orbit space (R? x R?)/S! of the action A let

TR xR 5 RC: (z,w) = (m(z,w),..., e(z,w)). (47)

> 7 is the Hilbert map of the S'-action A. The image of 7 is the real semialgebraic variety
V =R? x W in R® with coordinates ((7;,7), (73, ..., 7)) defined by

73+ = msmg, where 15 > 0 & 15 > 0. (48)

(4.5) Proof: See chapter IV ((2.2)). O
>V is homeomorphic to the orbit space (R® x R?)/S! via the induced mapping

7 (RPxRY)/S' = V. (49)

(4.6) Proof: See chapter IV ((2.3)). O

The next step is to find the orbit space (J¢)~!(b)/S'. From (44) we see that the level set
(J¢)~!(b) is defined by

A2+3+4 =1
w1 +2owa+z3w3 =a (50)
w3z = b

Let X, be the semialgebraic variety in R defined by

T+ m = msT, s >0&m >0
s+t =1 1)
mAmm =a
m =bh.

The left hand side of last three equations in (51) comes from expressing the polynomials
on the left hand side of (50) in terms of the invariants (46). From ((4.3)) it follows that
the set X, 5, = ((J¢) 1 (b)) is the space of S' orbits of the S'-action A|(S! x (J¢)~!(b)).

Claim: The semialgebraic variety P} of R3 with coordinates o;, 1 < i < 3, defined by

0=G(01,05,03) = (1-07)03 — 05 — (a—boy)* |0y <1&03>0  (52)
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is homeomorphic to the variety X, (51), where 61 = 71, 0> = M4, and 03 = 7.

(4.7) Proof: Consider the mapping

LR35 RO:
(53)
0 = (01,02,03) > (M1, M2, T3, T, 705, i) = (01,b,a— b0y, 02,1 — 07, 03).

A quick check shows that the mapping 7 : R® — R3 : 7w+ (m;, 14, 76 ), when restricted to
L., is the inverse of A |Pb“. Consequently, the varieties Py’ and X, ;, are homeomorphic,
using the topology induced from R? and R®, respectively. g

> The variety P is homeomorphic to the orbit space (J¢)~!(b)/S'.

(4.8) Proof: Consider diagram 4.2.1, where 7 = (A~'om)|(J¢)~'(b) and p is the orbit map,
which assigns to each S* orbit of A|(S' x (J¢)~! (b)) a point in the orbit space (J¢) ! (b) /S'.

)1 (b)/s!
Diagram 4.2.1.

Since the continuous mapping 7 is invariant under the S'-action A on (J¢)~!(b), it
induces the continuous map & : (J¢)~!(b)/S! — P¢, which makes diagram 4.2.1 com-
mute. Because each fiber of the bundle map 7 is a single S! orbit of A on (J¢)~!(b) and
7 has a continuous local cross section, it follows that & is invertible and its inverse is
continuous. Hence & is a homeomorphism. g

Therefore P¢ is a model for the singular reduced space (J¢)~!(b)/S'. Figures 4.2.1 and
> 4.2.2 depict the reduced space P;'. We check that these figures are qualitatively correct.

(4.9) Proof: When b # €a, the reduced space Py’ is a smooth manifold diffeomorphic to R?.

O3

(9]

02

Figure 4.2.1. The reduced space P’ when b # €a.
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To see this suppose that & = (61, 02, 03) is a singular point of . Then
(0,0,0) = DG(6) = (2b(a—b61) — 26163, —262,1 - 67). (54)

We obtain 6] = &, 05 =0, 03 = eb(a— £b), where €2 = 1. But G(6) = 0, which gives b=
€a. This contradicts our hypothesis. Hence the reduced space Py is a smooth manifold,
when b # €a. In fact P is diffeomorphic to R?, because it is the graph of the smooth
function

4 :(~1,1)xR—=R:(01,062) =~ (03 +(a—bo1)?) (1 —0}) ", |o1| < L.

To see this solve the defining equation (52) of P for 03. We check that |61 | < 1 as follows.
Suppose that 6; = € with €2 = 1. Then equation (52) becomes 0 = 622 + (a—€b)?, which
implies b = €a. But this is a contradiction. Therefore |07] < 1, because |o7| < 1 in (52).

Now suppose that b = €a. Then (€,0,0) is the only singular point of P&, if a # 0; while
(£1,0,0) are the only singular points of PO0 when a = 0. At each singular point (g,0,0)
the variety P, has a nondegenerate tangent cone with Morse index 1 given by

0=d*(1-€01)* +07 —2(1—€01)03.

Since 63 > 0 on Py, each conical singularity of Py, is topologically a cone on a circle.
Thus P, is homeomorphic, but not diffeomorphic, to R2. O

O3

—1

03
b=—-a,a#0

Figure 4.2.2. The reduced phase space Py,.

Since the Hamiltonian H“ : P* — R: (z,w) = 31, !(w,w) + xz3 is invariant under the left
S'-action A|(S" x (J¢)~'(b)) (40), there is an induced Hamiltonian on P{* given by

H: P! CR* = R:(01,00,03) — 3 o5+ x01. (55)
More precisely, (7¢)*Hf = H|(J¢) ™" (b), where
m e (J8) N b) S P — P
(56)

(z,w) = (01(z,w), 02(z,w), 03(z,w)) = (23,22w1 — 21 w2, W} + w3)

is the A| (S x (J¢)~' (b)) orbit mapping (A~"em)|(J¢)~" (b). Note that 7 maps the h* +
%Iflb2 level set of H“ onto the &y level set of Hj)'.
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4.3 Some differential spaces

We start by looking at the Hilbert map 7 : R? x R? — R (47) of the S'-action A (40).
Claim: The linear mapping 7* : C*(R®) — C=(R® x R6)Sl : [+ fom is surjective.

(4.10) Proof: Treat the invariant polynomials 7;, 1 <i < 6, (46) as coordinates on RS. Since
the S'-action A is a linear action of a compact Lie group S' on R? x R?, by Schwarz’s
theorem for each smooth S'-invariant function f on R x R3 there is a smooth function F
on R® such that 7*F = f. Hence 7" is surjective. O

The semialgebraic variety V (48) is the image of the Hilbert map 7 (47). Let .% be the
family of functions f: V C R® — R such that the function 7* f is smooth on R? x R3. Let
C>(V) be the space of smooth functions on V generated by .%. C*(V) is a differential
structure on V, see ((3.2)) in chapter VII, which contains .%, see ((3.1)) chapter VIL In
fact, # = C=(V), see ((3.11)) in chapter VIL.

Claim: The linear mapping 7* : C*(V) — C*(R? x R3)S] is an isomorphism of vector
spaces.

(4.11) Proof: Because 7r(R3 x R3) =V, the mapping 7* is injective. To see this we argue
as follows. If 7*f = 0 for some f € C*(V), then f(x(p)) = O for every p € R* x R3.
Hence f = 0 on V. By Schwarz’s theorem, for each smooth S'-invariant function f on
R3 x R? there is a smooth function F on R® such that f = 7*(F|V). Thus the mapping
7* is surjective and hence is an isomorphism. O

We give another differential structure on V. We say that a function f: V C R® — R is
a member of the family Z if and only if there is a smooth function F : R® — R such
that f = F|V. Let C;°(V) be the space of smooth functions on V generated byﬁ‘v, see
chapter VII §3. Then C;*(V) is a differential structure on V, see ((3.2)) in chapter VII,
which contains JE;, see ((3.1)) in chapter VII. In fact, T = C(V), see ((3.1.3)) in chapter
VII. The identity map on V is a homeomorphism, using ((3.14)) in chapter VII, and the

> differential space topologies on the differential spaces (V,C*(V)) and (V,C;*(V)). The
mapping idy : C;*(V) — C*(V) is an isomorphism of vector spaces.

(4.12) Proof: The mapping idy is well defined, for suppose that f € C;°(V). Then there is an

1
F € C(R®) such that F|V = f. So " f = *(F|V) € C*(R® x R®)" | that s, f € C=(V)).
Hence f = idy, f, which shows that the map idy, is well defined and is surjective. It is
injective, because the map idy is surjective. Thus idy; is an isomorphism. (]

Claim: The mapping idy is a diffeomorphism of the differential space (V,C*(V)) onto
the differential space (V,C*(V)).

(4.13) Proof: This follows immediately from ((4.12)) and the fact that idy is a homeomorphism
of V onto itself, using the differential space topologies on (V,C*(V)) and (V,C;*(V)). O

Let (R® x R3)/S! be the space of orbits of the action A with orbit map p : R® x R® —
(R* x R3)/S", which assigns to each p € R x R? the S'-orbit of A that passes through p.
A function £ : (R? x R*)/S" — R is smooth if the S'-invariant function p* f on R? x R? is
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smooth. Let C*((R* x R?)/S') be the space of smooth functions on (R* x R®)/S'. The
> linear mapping p* : C=((R¥ x R?)/S') — C=(R? x R3)S1 is an isomorphism.

(4.14) Proof: Because the orbit mapping p is surjective, the linear mapping p* is injective. If

feCce(R?x R3)SI , then it induces a smooth function f : (R* x R?)/S! — R such that
f = fep = p* f. Hence the mapping p* is surjective and thus is an isomorphism. (]

By definition the Hilbert mapping 7 (47) is invariant under the S'-action A. Therefore

> it induces a mapping 7 : (R3 x R3)/S! — V such that £ = op. The linear mapping
T C?(V) = C((R* x R?)/S") is an isomorphism.

(4.15) Proof: This follows immediately because the linear maps p* and 7* are isomorphisms

and T = (p*)~lom*. a

Since the S'-action A (40) is proper, the orbit space and its collection of smooth functions
(R*xR3)/S",C™((R? x R?)/S")) is a differential space, see ((3.6)) in chapter VII.

Claim: The mapping 7 is a diffeomorphism of the differential space ((R® x R%)/S!,
C((R* x R%)/S") onto the differential space (V,C™(V)).

(4.16) Proof: Because the mapping 7T* : C(V) — C=((R® x R*)/S") is an isomorphism, it
suffices to show that the mapping 7 is a homeomorphism from the orbit space (R x
R?)/S" onto the semialgebraic variety V. On C((R® x R*)/S') and C*(V) we use the
differential space topology, see chapter VII §3 and §4. We argue as follows. Let U be
an open subset of V. For every p € U there are open intervals /;, 1 <i < n, such that
Ny fi_l (I;) is an open subset of V containing p and contained in U. Now

T (O ) = MmO @) =, @ )~ ),
where the first equality holds because 7 is injective, since each of its fibers is a single
orbit of the action A. But 7*f € C*((R® x R®)/S'). So 7w ' (N,f; ' (1)) is an open
subset of T~ (U) C V containing 7(p). Thus 7 ' (U) is an open subset of (R? x R3)/S"
in the differential space topology. Hence the mapping 7 is continuous.
Let p € U, where U is an open subset of (R? x R3)/S! in the differential space topology.
Then there are open intervals [;, 1 <i < n, and functions F; € C°"((R3 X R3)/Sl), 1<i<

n, such that N, F; ! (U) is an open subset of U containing p. Because T is injective we
find that

() F @) =(_7F @) =_ (@ "yF)~" @)

So7( f’:lF:l (;)) is an open subset of 7(U) C V containing 7(p). Consequently, 7T(U)

is an open set. So the map 7! is continuous. Thus 7 is a homeomorphism. (]

In §3 we have shown that for every a € R the first reduced phase space P* = {(z,w) €
R* xR*|(z,2) = 1 & (z,w) = a} is a smooth S'-invariant symplectic submanifold with
symplectic form @®. We say that f is a smooth S!-invariant function on P® if there is a
smooth S'-invariant function F on R x R? such that f = F|P%. Let C""(P“)S] be the set
of smooth §!-invariant functions on P?.
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The S'-action A|(S' x P%) is Hamiltonian with momentum mapping J¢ : P* — R: (z,w) —
(w,e3) = ws. For every b € R the level set (J#)~!(b) is a smooth S'-invariant sub-

manifold of P¢. Hence the space C""((J(“)*l(b))s1 of smooth S!-invariant functions
on (J¢)~!(b) is isomorphic to C"“(P“)S]/f, where . = .7 ((J¢)~'(b)) is the ideal
of smooth S'-invariant functions on P9, which vanish identically on (J#)~!(b). Let
p=p|(JH)7Nb) : (JH)L(b) — (J&)~(b)/S" be the restriction of the S'-orbit map p :
R¥xR¥ — (R¥xR¥)/S! to (J#) ! (b). We say that f is a smooth function on (&)~ (b) /S"
if there is an F € C*(R? x R3)S1 such that f = F|(J#)~!(b). Note that F|(J&)~!(b) €

> C=((J4) 7 (b))*". The induced linear map p* : C=((J&) ' (b)/S') = C=((J&) " (b))S" is
an isomorphism.

(4.17) Proof: Because the mapping p is surjective, it follows that the linear mapping p* is
injective. To verify that p* is surjective, let f € C“((](?)*](b))sl. Then there is an
F € C*(R3 x R®)S' such that f = F|(J#)~Y(b). Since F|(J#)~!(b) is an S'-invariant
smooth function on (J#)~!(b), it induces a function F on (J#)~!(b)/S" such that p*(F) =
F|(J#)~1(b) = f. By definition F € C*((J¢)~!(b)/S'). Hence p* is surjective. O

Since the S'-action A|(S! x (J#)~!(b)) is proper, ((J&)~1(b)/S',C=((J¢) 1 (b)/S!)) is
a differential space, see ((3.8)) chapter VII. The topology on the orbit space (J&) ! (b)/S"
is the differential space topology.

Recall that £, ;, = 7((J¢) "' (b)), where 7 is the Hilbert mapping (47). We say that the
function £ is a member of the family .% if there is a smooth §'-invariant function F' on
R? x R? such that 7°f = F|J{)~'(b). Here t=xn[Jf)"'(b) : JH)" () CRPxR® —
.» CRO. Let C*(X,,) be the space of smooth functions on X, generated by .%. Then
C*(X,,) is a differential structure on X, 5, see chapter VII ((3.2)); the topology generated
by . is the same as the topology induced from R®, see ((3.13)); and .F# = C*(Zup),
see ((3.3)). Because the mapping 7 is S'-invariant and surjective with each fiber being
a single S'-orbit of the action A[(S" x (J¢)~!(b)), it follows that the induced mapping
T:(J9) " 1(b)/S! — Z,p, where Top = 7, is a homeomorphism, being the restriction of
the homeomorphism 7 to (];;‘)_' (b)/S". Here we use the differential space topology on
(le)‘l (b)/S" and X4, which by ((3.10)) and ((3.14)) of chapter VII are the same as the
quotient topology and the topology induced from R, respectively. The induced mapping
> T C%(Zqp) — C((J¢) "' (b)/S") is an isomorphism.

(4.18) Proof: Suppose that f € C*(X,;). Thenthereisan F € C“(P“)S] such that g = F|(J£) "1 (b)
= for. Butg € C*((J¢)™! (b))S'. So it induces g € C>((J4)~1(b)/S"). From gop = g =
foT = foTop, we obtain g = foT = T*(f), because p is surjective. Thus the linear map-
ping 7* is well defined and is surjective. It is injective, since the map T is surjective, and
hence is an isomorphism. O

Thus we have proved

Claim: The mapping 7 is a diffeomorphism of the differential space ((J¢)~'(b)/S",
C=((J&) "' ()/S")) onto the differential space (X4, C(Zqp))-
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Consider the mappings
A:R* = R%:(01,05,03) — (01,b,a—b0oy,05,1 — 6%, 03) (57)

and
[,L:R6*>R3Z(71'1,...,7T6)+—>(7171,7ZT4,7176). (58)

Then Py' = p(Z.p). Since (Aep)[Z,p = idy,, and (ueA)|P;' = idpg, it follows that
U|Zq is @ homeomorphism of X, onto P;'. Here we use the topology on X, and Py’
induced from R® and R?, respectively. Observe that A|P{ is the inverse of i|Z, . Let
C*(P¢) = (A|P{)*C>(X4,) be the space of smooth functions on P{. The result ((3.16))
in chapter VII shows that the differential space topology on X, ;, and P;' is the same as
the topology induced from R® and R3, respectively. Thus the mapping u |45 is @ home-
omorphism using the induced topologies. By definition the linear mapping (A|Pf)* :
C=(Z4p) — C=(P{) is surjective. It is injective because the map A|P¢ : P! — X, is
surjective. Hence (A|P;)* is an isomorphism. This proves

Claim: The mapping A|P;* from the differential space (P¢,C(PS)) onto the differential
space (Zu,b,C‘”(Zu’b)) is a diffeomorphism.

Corollary: The differential spaces (V7 C“(V)), (Zmb,C“’(Zakb)), and (Pb“ 7C""(Pb“)) are
subcartesian and locally compact.

(4.19) Proof: Because V, X ;,, and P’ are semialgebraic varieties, they are locally closed in the
topology induced from their ambient real vector space, namely, R®, R®, and R, respec-
tively. Hence the differential spaces (V,C*(V)), (£45,C™(Zap)). and (P¢,C*(Pf)) are
subcartesian and locally compact, see §3.2 in chapter VII. (]

We give another differential structure on X, ,, which is a semialgebraic variety in RS.
We say that a function f:X,;, C R® — R is a member of the family 7 if there is a
smooth function F : R® — R such that f = F |45 Let C°(X,5) be the space of smooth
functions on X, generated by the family Z. By ((3.2)) in chapter VII, C*(X,) is a
differential structure on X, ,. By ((3.16)) in chapter VII we know that the topology on
X, generated by F is the same as that induced from R and from ((3.3)) in chapter VII
it follows that .% = C°(X4p)- Using the differential space topology of (X,,,C% (X))

i

and (X4,C;%(Z4p)) from ((3.18)) of chapter VII it follows that the identity map ids, , on
X5 is a homeomorphism from the differential space (X, ;,C>(X,;)) onto the differential
space (Z4p,C;(Zap)). The mapping idy , : C7°(Z45) — C(Z4) is an isomorphism of
vector spaces.

> The mapping idy , : C7°

(Xap) = C*(X4p) is an isomorphism.

(4.20) Proof: The mapping id;m , is well defined; for suppose that f € C;*(X,p). Then there
is an F € C*(R®) such that F|Z,, = f. So n*f = n*(F)|(J¢)"'(b), where n*(F) €
C*(R?*x R3S 'Sofe C*(Zqp). Hence f =idy , f, which shows that the linear mapping
id;ﬁu_b is well defined and is surjective. It is injective because the map idy,, is surjective.
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We have proved

Claim: The identity map idy_, is a diffeomorphism of the differential space (Za:b, C oo(Zu,b))
onto the differential space (anh, C{’“(Za‘,b)).

We give another definition of differential structure on P, which is a semialgebraic
variety in R3. We say that the function f : Py C R3 — R is a member of the family
Z if there is a smooth function F : R® — R such that f=F|R3. Let C°(Py) be the space
of smooth functions on P;/ generated by Z. By ((3.2)) in chapter VII, Ci*(Py) is a differ-

ential structure on Fy. From ((3.17)) in chapter VII it follows that & = C;*(F}). Using the
differential space topology on (P,C*(Fy)) and (Pg,C;°(Py)) from ((3.18)) it follows that
the identity map idps on P{f is a homeomorphism from (Fy,C*(F})) onto (F},C(Py)).
The induced mapping idj‘;;; :C°(Pg) — C(Py) is an isomorphism of vector spaces.

(4.21) Proof: The proof follows the pattern of ((4.18)) and is left to the reader. O
Because idpe is a homeomorphism of P into itself using the differential space topology
on the differential spaces (P¢,C(P¢) and (P#,C;°(P)), we have proved

Claim: The identity map idpa is a diffeomorphism of the differential space (P, C™(Py))
onto the differential space (P¢,C;°(Py)).

4.4 Poisson structure on C* (P)

In this subsection we find a Poisson structure { , } pa N the space C;°(P¢) of smooth

functions on P, which is equivalent to the Poisson structure { , } on the smooth functions
C*(Z,p) of the singular reduced space X, given by the singular reduction theorem, see
chapter VII §7.

We begin by constructing the Poisson bracket { , } pa N C?(P%). On C*(R?), where R?

has coordinates o;, 1 <i <3, (53) define a Poisson bracket { , }g3 by the structure matrix
We=(r3) given in table 4.4.1.

{A,B}gs o1 o) 03 B
o 0 (1-0?) 20,
o | —(1-0?) 0 2b(a—boy) — 20103
03 —20n —2b(a—boy)+20103 0
A

Table 4.4.1 The structure matrix W= g3) for {, }gs.
From table 4.4.1 we get {0;,0}}gs = i 8,-,-1(3—;, where

G(61,05,03) = (1—06%)03 — 65 — (a— boy)? (59)
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is the defining equation of P¢ (52). For f,g € C*(R*) we have

af o
{f.etre = Z a(]; 36 & {GHG,}R; = (grad f x grad g, grad G).

The proof that { , } g3 satisfies the Jacobi identity is left as an exercise.

Next we define a Poisson bracket { , } pa ON C(Pg). Let S = 7 (P) be the subset of
smooth functions on R3, which vanish identically on P;'. Then # is an ideal in the as-
sociative commutative algebra (Cm(R3), -), where - is pointwise multiplication of smooth

> functions. .7 is a Poisson ideal in the Poisson algebra & = (C*(R?),{, }gs,")., that s, if
f€ . and g€ C”(R?) then {f,g}gs € 7.

(4.22) Proof: For g € C*(R?) let X, be the derivation —ad, of the Poisson algebra &'. For
p € G~1(0) with G € C*(R?) given by (59) there is an o, > 0 such that y, : I = [0, ¢t,) —
R3 : ¢ +— @f(p) is the maximal integral curve of the vector field X, starting at p. Look at
the function ¥ : T — Rt +— G(¢f (p)). Then

d¢ dG
& = (@) = (L, G0 (7)) = (G g (0 () =0,

since Gisa Ca%lmlr in &. Therefore ¢ is the constant function on /. But E? ( )=G(p)=0,
since p € G~1(0). Thus G(¢f (p)) = 0 for every ¢ € I, that is, 7,(I) € G~(0).

Let pc Pf. Theset J = {r € [0,0,) | @f(p) € P} contains 0, since @f(p) = p € B¢
by hypothesis. Set 1’ = sup,e[oﬁap){(p,g(p) € P#}. Suppose that ' < oy,. By defini-
tion of 1" we have ¢f(p) € P{ for every t € [0,/). Since P¢ is a closed subset of
R?, we get py = @f(p) = lim, ~ ¢f (p) € P?. Therefore 1’ € J C I. Let 6 = pot :
(J4)~1(h) CR* x R? — P¢ C R®, where T = 7|(J¢)"!(b), 7 is the Hilbert map (47),
and u is the projection mapping (58). Then o is surjective with image P;'. Let gy €
(J4)~1(b) such that 6(g,/) = p,. Since P is a semialgebraic variety, it is locally closed in

> the induced topology, chapter VII §3. But ¢ is an open mapping, using the topology on
(J¢)~!(b) induced from R® x R? and the topology on P induced from R,

(4.23) Proof: The orbit mapping p : (J§)~ (b) CR¥xR*— (J9)~1(b)/S' C (R x R3)/S1 is
an open mapping, because p = p|(J/?) () and p is. The mapping 7T : (J§ ) '(b)/S" —
Y. C RO, induced by T = 7|(J¢)~!(b), is a homeomorphism. Thus T = T°p is an open
mapping. But p|X, ) : Xp C R® — Py C R? is a homeomorphism. Consequently, the
map O = [1°T is an open mapping. a
So for every open neighborhood U of g, in (J¢)~'(b) there is an open neighborhood W
of py in P{f such that 6(U) = W.

Consider the derivation Xq+; = —adg+, of the Poisson algebra 2 = (C*((J¢)~' (b)) =
C=(R x R3S |(J9)~1(b),{ . Yraxrs:")- Let @ ¢ be the flow of the vector field Xo+g O
R3? x R?. Because 7* and p* are Poisson epimorphisms, see ((4.31)) and ((4.37)), the
mapping ¢ is a Poisson epimorphism of & onto 2, being equal to (w*opu*)|(J¢) " ().
Thus o intertwines the flows @ "¢ and @f, that is, GO(p,c*g = @feo. Letg= (pf;,g(q,/).
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Then 6(q) = ¢° ,(6(qs)) = 9%, (pr) = p. There is an open set U in (J¢) ! (b) containing
gy . So there is an open interval I’ C I, which contains ¢/, such that (p,G*g(q) € U for every
t €I'. Thus there is a t” € I' with " > ¢’ for which @5, (¢) € U. So

05 (p) = 05(5(q)) = 6(95 ¢(q) € (U) = W.

But this contradicts the definition of #. Hence ¢’ = ap, that is, ¢f(p) € P¢ for every
re0,0).

For every p € P we have {f,g}gp3(p) = & fo((p,g(p)). But f(¢f(p)) =0 for every t €
[0,c), since f € F. So {f,g}gs(p) =0 for every p € P?, that is, {f,g}gs € -#. Thus
# is a Poisson ideal of the Poisson algebra &. O

> We now show that & is a Poisson algebra.

1
(4.24) Proof: Let . = .7 ((J¢)~ (b)) be the ideal in (C=(R® x R3)® ) of functions, which
> vanish identically on (J¢)~!(b). Then .# is a Poisson ideal of the Poisson algebra o/’ =
- s!
(C (R3 X R3) A }R3><R37')'
1

(4.25) Proof: To see this let f € .# and g € C*(R? x R3)S . Suppose that X, = —ad, is a
derivation in the Poisson algebra «/’. For p € (J¢)~'(b) let 7, : [0,0t,) — (J4)~'(b) be
the maximal integral curve of X, starting at p. For i =, 1,2,3 let %4; be the Casimirs of &7’

the intersection of whose O-level sets define (J¢)~!(b), see (50). Then for each i = 1,2,3
we have

(1)) = (L ) (0)) = (G g a1 (0)) =0,

since G; is a Casimir of .«7’. Thus for each i = 1,2,3, ; is constant on ¥,. But ;(p) =0
for each i = 1,2,3. So y,(I) C (J9)~'(b). In other words, (J¢)~!(b) is an invariant
manifold for the vector field X, for every g € C*(R? x R?)S g

Now for every p € (J¢)~'(b) we have

d
{f,8trexr3(P) = Lx f(p) = o F(vp(t)) =0,
=0
since f vanishes identically on (J¢)~!(b). Therefore {f,g}gs. g3 € -7, thatis, .7 is a
Poisson ideal of <7 . O

We now complete the proof of ((4.24)). Since .# is a Poisson ideal of the Poisson algebra
! ! 1
/", we deduce that & /. = (C*(R> x R3)S /74, tr3xr3,*) is a Poisson algebra,
which is equal to Z, because
o R3 o R3S wo (=1 (S _ o3 o RV (a1

® xR 7 = (7 0) = ® xR U ). O
Let 1 : P* — R be the inclusion mapping. Then the induced map 1* : C*(R?) — C*(P¢)
is surjective with kernel .#; for if 0 = t*F with F € C*(R?), then for every p € P¢ we
have 0 = F(1(p)) = F(p), that is, F € .#. Thus kert* C .#. Suppose that F € .#. Then
F € C*(R®) and for every p € P? we have 0 = F(p) = F(1(p)) = (1"F)(p). Thus F €
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kert*. So .# C kert” verifying that .# = kert*. Therefore 1* induces the isomorphism
1:C(R*) /I — CP(PE) : F+ .7 — 1"F = F|P{. On C{°(P¢) define a Poisson bracket
{ ) }Pb" by

(F 1P HIPEY e = (F H o B (60)

> for every F,H € C*(R%). Note that F|P¢, H|P{ € C°(P¢) by definition. The bracket
{, }P,;’ is well defined.

(4.26) Proof: We argue as follows. Using the isomorphism 7 we can write F |P{" as F + . and
H|P{ as H+ .. Then

{F+f7H+j}R3 = {FaH}R3 + ({]7H}R3 +{F7j}R3 +{J7j}R3) = {FaH}R3 +9
since .# is a Poisson ideal in .7# . Therefore
{F+ 7 H+ I g |P = {F, H}gs [Py = {F| P H P} pa.

where the first equality above holds because #|P¢ = 0. In other words, the Poisson
bracket { , } pa does not depend on the choice of function in C>(R?)/.# which is used to

represent a function in C;*(P¢). Thus { , } pe is well defined. O

We now construct the Poisson bracket { , } on C*(P{) given by the singular reduction

theorem, see chapter VII §7. We start by noting that the space C*(R? x R?)S " of smooth
functions on R3 x R3, which are invariant under the S!-action A (40), is a Lie subalgebra
of the Lie algebra (C*(R* x R?),{, }gs,g:). see table 3.1.1. The first reduced phase
space P¢ is the submanifold of R x R? defined by

Ci(z,w)=23+35+53-1=0

(61)
CZ(Z7W) =z w1 +22w2+z3w3 —a=0.

A function on P¢ is smooth if it is the restriction to P? of a smooth function on R? x R>.
Since the functions C; and C, in (61) are invariant under the S'-action A, so is the sub-
manifold P¢. Thus a smooth function on P¢ is invariant under the action A|(S! x P%)
if it is the restriction of an A-invariant function on R3 x R® to P9. Let C*(P®)S' be
the set of smooth S'-invariant functions on P¢. Then (C“(P“)517{ , }pa) is a Lie sub-
algebra of (C*(P“),{, }pa). Recall that P* has a symplectic form @ (18). More-
over, the functions C; and C,, which define P¢, are Casimirs in the Poisson algebra
o = (C(R*xR¥),{, Igsxr3,")- On C*(P?) define a Poisson bracket { , }pa by

{F|Pa7H‘Pa}P” = {FvH}R3><R3|Pa7

> forevery F,H € C*(R? x R?). The Poisson bracket { , }ps on C*(P?) is the same as the
standard one { , } on C*(P*) using the symplectic form ®¢ on P“.

(4.27) Proof: For 1 < i,j < 3 consider the functions z; = (z,e;) and w; = (w,e;) on R* x R?
restricted to P¢. Using (22) we find that the corresponding Hamiltonian vector fields X,
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and X,,; on (P, ") are (e; X z, %) and (ej x z, a%) +(ejxw, %), respectively. Therefore
on P% we get

{Z,’,Zj}Pu = LijZi =0

{Ziawj}pa = Lijzi = e/ X Z, el Z & jkZk

{wi,wjtpa = LX“’/'W" =(ej xw,e;) Z & kWi

which agree with the entries in table 3.1.1. g

Consequently, 2 = (C*(P“),{, }pa,-) is a Poisson algebra with the Poisson algebra
B = (C‘”(P”)Sl,{ , }pa,) being a subalgebra.

Let . = .7((J¢) (b)) the set of A|(S' x P%)-invariant smooth functions on P¢, which
> vanish identically on (J¢) ™' (b) = {(z,w) € P* |W3 =b}. Then .# is a Poisson ideal in the
Poisson algebra %'
(4.28) Proof: Let Y be the infinitesimal generator of the action A|(S! x P%), which has momen-
tum mapping J§ (44). Then Y = X;« on (P%,0"). Let f € C"°(P“)Sl and let ¢/ be the
flow of the Hamiltonian vector field X; on (P%, ®“). For p € (J¢)~!(b) we have

d
% 7OJ?(<Pf(P)) = —(LxJ{)(p) = =L fYpa(P) = Af T Fpa(P) = (L £)(P)
= d f(@l'(p)), where @} is the flow of ¥

dr t=0

=0, since f is invariant under A|(S! x P%).

Therefore Jjf is constant on the integral curve ¢ — (p,f (p) of X¢, which starts at p. So
J8(9f (p)) = J4(p) = b, that is, ¢/ (p) € (J9)~'(b). Consequently, ( @)=1(p) is an
invariant manifold of X¢. For every h € % we get {h, [} pa( “’l h( (p, p)) =0, since
9/ (p) € (J8)~(b). Thus {h, f}pu € 7. 0

For f,g € C*(X,) define a Poisson bracket { , } on C*(X,;) by
T {f.8} = {F.G}pl ()" (b),

where ©* f = F|(J%)~1(b), T°g = G|(J%) " (b), and F,G € C*(P*)S'. Here 7 = m|(J%) " (b),
where 7 is the Hilbert map (48). Because . = .7 ((J¢)~!(b)) is a Poisson ideal in the
Poisson algebra &' = (C‘”(P“)S1 {, }pas+), the bracket { , } is well defined. In more
detail, suppose that T*g = G'|(J¢) ! (b) for some G’ € C*(P%)S'. Then G—G' € .7. So
{F,G—G'}pa|(J¢)"'(b) = 0, which implies that { , } does not depend on the choice of
G representing T*g. By skew symmetry of { , } p., which implies the skew symmetry of
{, },itfollows that { , } does not depend on the choice of F representing 7* f. The Jacobi
identity holds for { , } because (C*(P“,{, }pa)) is a Lie algebra.
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The goal of the next few paragraphs is to construct a Poisson isomorphism between the
Poisson algebras ¢ = (€7 (Zap) }Za‘lﬂ Jand € = (C(Zap),{, },-). Here { , }is the
Poisson bracket coming from the singular reduction theorem ((7.9)) in chapter VII, when
one reduces the Hamiltonian S'-action A|(S' x P%) on (P*, ®") with momentum mapping
J¢ and reduction mapping 7 : (J4) 1 (b) — Zyp.

Look at the Hilbert map 7 : R3 x R? — RO (47) of the S'-action A (40). Here we consider
the S!-invariant polynomials 7;, 1 <i <6 (46) to be coordinates on RO. Define a Poisson
bracket { , }go on C*(R®) by the structure matrix Wee(rs) given in table 4.4.2.

{A s B }Rﬁ 9] V%) 3 T4 Tl5 Tlg B
m 0 0 0 5 0 2my
m 0 0 0 0 0 0
3 0 0 0 —M 75 0 —27[2 Y78
T4 — 5 0 T Tts 0 2 Tls 2(71727173 — 71'6)
Tls 0 0 0 7271'1 Ts 0 747’[1 (7%
T =2m 0 2mm —2(mm—mas) 4mmy 0
A

Table 4.4.2 The structure matrix Wew gs) for {, }gs on C*(R®).
Claim: The map 7* : .# = (C*(R®),{, }gs,") = &' = (C*(R® x R3S {, FRIxRS )
is an epimorphism of Poisson algebras.

(4.29) Proof: Using table 4.4.2 a straightforward calculation shows that for every 1 <1i,j <6
we have 7T* ({m;, 7;} go) = {7 M, T*7; } g3, g3~ This implies that for every f, g € C*(R®)

we have
3f¢9g , S d(n*f 3(”8)* ,
({fag}Rﬁ ,jz,l (9717, 8717 7ﬂ]}R6 ,,121 a ) ({n«,ﬂ]}Rf))
= 3 2ED A (ot = (7 F b O
i,j=1 a 717*717, j) )

The image of the submanifold (J¢)~!(b) of R* x R?® under the Hilbert map 7 is the semi-
algebraic variety X, of R® defined by

A :7T32+7174%*7E57T6:0, 75 >0& 71 >0
<52:71754—7'!712—1:0
CG=m+mm—a=0
%04 =T — b=0.
The functions %;, 1 <i < 4, are Casimirs in the Poisson algebra .%. Let .& = .7 (X,;)

be the ideal of smooth functions in the associative algebra (C°°(R6),-), which vanish
> identically on X, ;. Then . is a Poisson ideal in the Poisson algebra ..

(4.30) Proof: The argument is similar to the proof of ((4.23)) and is included for completeness.
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For g € C*(R°) let X, be the derivation —ad, of (C*(RS,-). Let ¥ : R® - R*: p —
(¢1(p),....%€4(p)). Then €'1(0) = £,5, which is connected being the image of the
connected set (J¢)~!(b) under the continuous mapping 7. Let p € €~ 1(0). For some
o, >0lety,: 1=1[0,a,) — R®: ¢+ ¢f(p) be the maximal integral curve of the vector
field X, starting at p. Look at the mapping %; : [0,0,) — R : ¢ — G;(¢f(p)) for each
1 <i<4. Then

1) = S g2 (p)) = (1. (9 ) =0,

since %; is a Casimir in the Poisson algebra .%. Therefore ¥; is a constant function.
But p € €71(0). So ¥%(p) = €i(p) = 0. Consequently for every 1 < i < 4 we have

€i(9f (p)) = 0. that s, /(¢ (p)) = 0. So y,(1) € €~(0).

Let p € X,5. The set J = {r € [0,,) | ¢ (p) € L4} contains 0, since @F(p) = p € Lo
by hypothesis. Set ¢ = sup,c| ) {q),g( ) € Zap}. Suppose that ¢’ < a,. By defini-
tion of ¢’ we have @ (p) € £, for every r € [0,'). Since X, is a closed subset of
R®, we get py = @5 (p) =1im, v ¢ (p) € Lup. Therefore 1 € J. Let T = 7x|(J¢) ' (b) :
(I~ (b) CR*x R? — %, ;, C R®, where 7 is the Hilbert map (47). Then 7 is sur-
jective with image X,,. Let gy € (J¢)~'(b) such that 7(gs) = py. Since Z,; is a
semialgebraic variety, it is locally closed in the induced topology, see chapter VII §3.
But 7 is an open mapping, using the induced topology on ¥, ;, see ((4.23)). So for
every open neighborhood U of g, in (J¢)~'(b) there is an open neighborhood W of p,s
in X, such that 7(U) = W. Now look at the derivation X;«; = —ad«, of the Poisson
algebra 7 = (C“((Jk“)’l(b))sl A, Frawrss)- Let @7 ¢ be the flow of the vector field
Xe+g on (J4)~!(b). The mapping 7* is a Poisson epimorphism of the Poisson algebra .7
onto the Poisson algebra 7, see ((4.31)). 7 intertwines the flows (,Df*’g and @f, that is,
o ¢ = gfot. Let g = @7 f(qu). Then t(q) = ¢, (t(gr)) = ¢°,(py) = p. Because
U is an open subset of (Jl,‘f)*1 (b) containing g, there is an open interval I’ C I, which
contains ¢, such that (pf*g (g) € U forevery t € I'. Thus there is a " € I' with t” > ¢’ for

which ¢ %(g) € U. So

0% (p) = 05(1(q) = (9 *(q)) € T(U) = W.

But this contradicts the definition of #'. Hence ¢’ = o, that is, of(p) € X, for every
te[0,ap).

Let f € & = #(X,,). Forevery p € £, we have {f,g}gps(p) = d% tf . But
: t

f(@f(p)) =0 for every r € [0, ), since f € .#. Therefore {f,g}Rs (p) = for every

p € Zyp, thatis, {f,g}gs € 7. O

Leti: X, — RS be the inclusion mapping. Then the induced linear map i* : C**(R%) —
C*(X4p) is surjective with kernel .#; because if fe C?(Z4p), then there is F € C*(R®)
such that f = F|X,p. For p € X,), we have (i*(F))(p) = F(i(p)). So i*F = F|%,) = f.
Hence i* is surjective. Next we show that keri* = .#. Suppose that i*F = 0. Then
F|X,,=0,thatis, F € .#. Sokeri* C /. If F € .#,then 0=F|%,;, =i*F. So F € keri*,
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that is, .# C keri*. Thus the mapping i : C*(R%)/.% — Cr(Zap)  F+I = i*F=F|X,
is an isomorphism.

On C7°(X,) define a Poisson bracket { , }y , by
{F|Za,b:H|Za,b}Ea_b = {F>H}R6|Za,ba (62)

> for every F,H € C*(R®). The bracket { , }y,, is well defined.

(4.31) Proof: The argument follows the pattern of the proof ((4.26)) and uses the fact that .# is
a Poisson ideal of .% ((4.30)). O

> The identity mapping idy on X, ;, induces the isomorphism idEaAb (G (Zap) = C(Zap)-
(4.32) Proof: Let f € Ci°(Z,5). Then there is F € C*(R®) such that f = F|Z,,. Now t*f =
T (F)|(J4) "' (b), where *(F) € C~(R? x R3)Sl. So m*(F)|(J¢)~'(b) is the restriction
of 7*(F)|P* in C=(P*)" to (J¢)~"(b). This implies f € C*(%,). Therefore f = ids. , f-
Hence the mapping id;iu.b is well defined and is surjective. It is injective because the
mapping idy,_, is surjective. g

> The mapping id;. , is an isomorphism of the Poisson algebra % = (C7*(Zq),{ . e,
onto the Poisson algebra ¢ = (C*(Z,,),{, },-).

(4.33) Proof: We need only show that for every f, g € C;°(Z,;,) we have
id,, ({£,8.)y,,) = {ids,, £.idi, g). ©3)
There are f,3 € C>(R®) such that f = ]7|Ea’;, and g = g|X,p. So
idg,, ({£.8}5,,) =iz, , ({F & re[Zap) = {F-8}Rs|Zap- (64)

Now 7% f = T°(f|Zap) = (7 f)|(J¢) "' (b), where n* f € C""(R3 ><R3) Also we have
T f=1(dy ,f) = F|(J(§‘) !(b) for some F € C=(R? x R3)S .So t°f = F+.7, where
S = F((J¢)~1(b)) is the Poisson ideal in &' = (C*(R> x RS {, FR3xR3,-) of func-
tions in <7/, which vanish identically on (J¢)~!(b). Therefore

T ({8 rslZap) = {770 o [F) 7' (), since 7((F7) ' (b)) = Zup
= {f,G}R3xR3 |(J) "1 (b), since .# is a Poisson ideal
= {F|P“,G|P"} pa|(J¢)"1(b), by definition of { , }p
=n"({idg,, f.id5,,g}), by the singular reduction theorem
((7.9)) in chapter VII.

Since 7 maps (J¢) ! (b) onto X, ;, and is the restriction of the mapping 7 to (J§) ' (b), we
obtain

(/.8 ws[Zap = {idy, , £.id;, g} (65)
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Combining (64) and (65) gives (63) as desired. O

Claim: The mapping A : R® — R% : (01,0,,03) + (01,b,a — boy,02,1 — 62,03) (57)
induces the mapping A* : C**(R®) — C*(R3), which is a Poisson map, that is, for every
f,g € C*(R%) we have

{A°f, A g gs = A" ({8} go)- (66)
(4.34) Proof: To verify (66) it suffices to show that for every 1 < i, j < 6 we have
AT A s = AT ({0 7 o) (67)

Using tables 4.4.1 and 4.4.2 and the fact that
Am =01, A'm=b, A*my =a—boy, A*'m =0y, Ay = 1 — 6, A*m = o3,

which follows from the definition of the mapping 4, a straightforward calculation shows
that (67) holds. Thus (67) holds because A* pulls back the structure matrix cho(R6> to the
structure matrix Wee g3). g

Corollary: The mapping 1* : F = (C*(R®),{, }ge,) = & = (C*(R¥),{, }gs,") is
an epimorphism of Poisson algebras with right inverse u* : C*(R?) — C*(R®), where
piRC R (my,..., ) = (1,74, 7).

(4.35) Proof: It suffices to show that the linear mapping A* is an surjective. For g € C**(R®)
set f = u*g. Then f € C*(R3). So A*f = A*(u*g) = (U°A)*g = g, since poAd = idgs.
Consequently, A* is surjective. (]

> The mapping (A|Bf)* : C°(E4p) — Ci°(Pf) is a linear Poisson map, that is for every f,
g € C*(X,,) we have

(MBS 1 (AB) 8} pe = (ABS) ({1, 8)s,,)- (68)

(4.36) Proof: Because f € C;°(X,), there is an F € C>(R®) such that f = F|X,p. So we get
(A|PA)*(F|Z40p) = (FoA)|Zap = A*(F)|P2 € C(PF), since A*(F) € C*(R?). Similarly
g = G|Z, for some G € C*(R®) and (A|P¢)*(G|Z.) = A*(G)|P¢ € C7°(Pg). Now we
compute
(AR £ (A IPS) 8 po = (2" (PR A (G) P o
={A"(F).A*(G)}ps |By' = (A" ({F.G}yo)) 1B’
— (A ({F.GYgolZas)) P = (A ({FIZ0sGlEan)y, ) IBE

— IR (.8, ). O

Note that the map (A|P)* is injective, because A |P7 : P — X, is surjective. Recall that
C=(P§) = (A|PF)*C=(Z4p) by definition. Define a Poisson bracket { , } on C*(P{) by

AR ({7.8}) = {(AR)" f, (AIB])" g}, (69)

where f,g € C*(Z,;). The bracket on the left hand side of (69) is the bracket on C* (X, );
whereas the bracket on the right hand side is on C*(P¢). In other words, the Poisson



224 The Lagrange top

bracket {, } on C*(X,;) given by the singular reduction theorem is equivalent to the
Poisson bracket { , } on C*(Pf), using the linear Poisson isomorphism (A|Pg)*.

Claim: The map id;‘,ba G = (CP (P, }Pba,~) -9 = (C*(P?),{, },-) is an isomor-
phism of Poisson algebras.
(4.37) Proof: It suffices to show that id};ha ({f,g}Pba) = {id}Sbaf, id;‘,bag} for every f,g € Ci°(PY).
Note that idpe = (A|P;)~"°idy, ,°(A|Py"). We compute
{idpaf.idpag} = {((A[B))oidz, ,°((A1P5) 1)) f, (AIBS)*eids, , o((A[F) ")) g}
= (AR ({(idg, (A1)~ ) )f7 (idz, ,°((A17) ) )g})
= (AR eids, ) ({(( 71|Pb FAAIR) ™ g)s,,)
— ((AIB)ids, ([P ) Ughp) =i o)) O

S The Euler-Poisson equations

In this section we describe the invariant manifolds of the Euler-Poisson vector field Xy
(22) on the reduced space P by studying the geometry of the energy momentum mapping:

EM®:P* 5 R?%: (z,w) — (Ha(z,w),.l,?(z,w)) = (%Ifl(w,w) +xz3,W3) (70)

Because the reduced energy H* and and angular momentum J§ are integrals of Xya, the
fiber (EM®)~'(h?,b) is invariant under the flow of Xya«. To understand these invariant
sets, we need to know the following about the energy momentum mapping EM*.

1. What its critical points, critical values, and its range are.
2. What the topology of every fiber (EM%)~! (h¢,b) is
3. How these fibers foliate an energy level set.

We also study the qualitative properties of the image of the integral curves of Xpa
restricted to (EM®)~!(h?, b) under the projection 7% : P CR3 xR® = S2 CR%: (z,w) —
z, when (h“,b) is a regular value of EM“. These curves on S? describe the motion of the
tip of the figure axis of the top.

5.1 The twice reduced system

In this subsection we study the qualitative behavior of the twice reduced Hamiltonian
system (Hj!, P, {, }Pff)'

Recall that the twice reduced space Py is the semialgebraic variety in R defined by
G(o)=03(1—067)— 07 —(a—bo)> =0, where|o]|<1&0c3>0  (71)
and the twice reduced Hamiltonian is

H{ :P{ CR* 5 R:(01,00,03) = 37 o3+ x01. (72)
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In order to determine the topology of the level set (H{)~!(h{), we first find the criti-
cal points and critical values of Hjj. Because P is not necessarily smooth, we use an
algebraic definition of critical point. We say that 6 = (G},02,03) is a critical point
of Hj corresponding to the critical value hj if and only if the 2-plane IT defined by
%11*163 + x o1 = h{ intersects the reduced space P¢ at & with multiplicity greater than
one. Let a = I1hf, and B = I, x and form the polynomial

P(01,07) =2(a—Boy)(1 — 6%) — 67 — (a—boy)?

by eliminating o3 from (71) using the definition of I1. The point & has multiplicity greater
than one if and only if the Taylor polynomial of P at (G1,07) has no constant or linear
terms. Therefore, & is a critical point of Hj} corresponding to the critical value Aj if and
only if 6, = 0 and o7 is a multiple root of

W(o1) = 2a—o01)(1—62)— (a—boy)? (73)

in [—1,1]. Here we have set § = %, which can be arranged by a suitable choice of physical

b=a,a#0 a=b=0
() (Y]

Figure 5.1.1. The graph of W.

> units. Note that 63 = 20t — ;. Every critical point of the twice reduced Hj lies on the
curve ¥ = {on = 0} N P?, which is the fold curve of the projection map p : R? - R?:
o = (01,02,03) — (01,03) restricted to Py

(5.1) Proof: The image of P{ under the mapping p is the set of points (o1,03) in R? which
satisfy 03(1 —07) — (a—boy)? >0, |01| < 1 & 63 > 0. Over every point in the interior of
p(P) the fiber of p|P¢ consists of two distinct nonsingular points of F'; while over every
point on the boundary p(%’) of p(Py), the fiber is a single point. As is easily checked,
table 5.1.1 gives all the possibilities for p(%). O
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Conditions p(%)
1.b#+a, a0 03:“:’;’1;)2, o1 <1
2b=a,a#0 | {o3="12 1 <6 <1}U{(1,0,03)|03 > 0}
3.b=—a,a#0 | {o3= = | <6 <1}U{(~1,0,05)|05 > 0}
4.b=a=0 {(£1,0,03)|03 > 0} U{(01,0,0)||o1| < 1}
Table 5.1.1.

From (71) and the definition of the 2-plane II, the point & = (7,0, 03) is a critical point

03 O3

O

a:h0<a§¢§

03

| P(©)

=
—1 1
a=-b,a>0 a=b=0

Figure 5.1.2. Intersection of the line ¢, with the image of the fold
curve p(%). The points (G1,63) are large dots. The corresponding
critical point of Hy is (51,0, 63) with critical value ct.

of H|€ if and only if the line £, : 03+ 01 =2 & in the 01—03 plane is tangent to p(€’) or

passes through a singular point of p(¢). Figure 5.1.2 gives the geometric possibilities.
Next we give a geometric description of the set of critical values of Hf, see figure 5.1.4.

In the preceding paragraphs we showed that hj = I Yo is a critical value of Hj if and
only if

W(o) =0 - (a+b*)c*+ (2ab—1)o +2a —d® (74)
has a multiple zero in [—1,1]. The set of (a,b,) € R® where W has a multiple root in
[—1,1] is the discriminant of W. The discriminant locus of W is {Aw = 0}. A good way
to present this locus is to give a parametrization

P :Us C[-1,1] xR = {Ay =0} : (s,a) = (a,bs(s,a),as(s,a)). (75)
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Claim: The domain Uy of the parametrization &7 (75) is defined by
Us ={(s,a) € ([-1,1] xR|(1 —5*)*(a* = 25) > 0} \ {(0,a) € R*| Fa > 0}.
In other words
[-1,0)U{l}, ifa=0,

U+:{(s,a)e[—1,1]><R|sefa= L\{0HU{1}, ifa>0
{ L,uU{1}, ifa<o,

and
[-1,0)U{l1}, ifa=0,
Uf:{(s»a)E[—Ll}XRheﬂ = LU{1}, ifa>0,
(L\{0}Hu{1}, ifa<0,
where I, = [—1,min{}a?,1}].
a a
\ s
—1 1 -1 1
U- U
Figure 5.1.3. In the domain U_, which is the shaded area in the left
figure, the nonpositive a-axis is removed; while in the domain U, which
is the shaded area in the right figure, the nonnegative g-axis is removed.
Then

1. when (s,a) € Uy, we have

1 2
—(1—-5%), seH

Fla(l+s?) +(1—s)Va2 =2s], s€ I, a#0;

2. when (s,a) € U_, we have

b+(sva) =

—\/l—zs(l—sz), se g

Lla(1+52) — (1 =s)Va® =2s], s€ I, a#0;

3. when (s,a) € Uy we have

o (s,a) = {

b_(s,a)=

s(14+52), s € 5
[@>(1-5*)Fa(l—s*)Va>—2s+s(1+s%)], s € S, a#0.

FNTEFS,
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(5.2) Proof: Note that (s,7) € [—1,1] x R lies in Ay if and only if W (74) can be factored as
(6—5)(c—1) =0 —(25+1)0% + (s> +2st)0 — 5’1 (76)

Equating coefficients in (74) and (76) gives

2s+1= 20+ b* (77a)
s +2st = 2ab—1 (77b)
st = a* —2a. (77¢)

To find b(s,a) add (77a) and (77¢) to obtainz = ﬁlvz (a® +b* —2s), which then substituted
into (77b) gives

Q(b) = 256> —2(1 + 5?)ab 4 2sa* + (1 — 5*)*> = 0. (78)

Suppose that s # 0, then Q has real roots if and only if discr Q = 4(1 — s?)?(a® — 2s) >0,
that is, if and only if s € (I, U{1}) \ {0}. Solving (78) for b gives the expressions for b .
To determine the precise domain of definition of b we need to look more closely what
happens on the g-axis. When s = 0, (78) becomes 2ab = 1. Since limy_,¢ b4 (s,a) =
(2a)~! when Fa > 0, we can extend the domain of definition of b from {(s,a) €
([-1,17\ {0}) x R|disch >0} to Us.

To find o(s,a) we use t = H#SQ (a® 4 b — 25) to eliminate 7 from (77a). We obtain

2

_ s 2 1 53
a= 72(1+s2)b + 2(1+s2 ) + 1-+s? (79)
Using the expressions for b in claim (79) gives the expression for o.. g

For a fixed, the curves s — ¥: (s,a) = (b+(s,a), 0t (s, a)) are pieces of a parametrization

s € UL e (s,a)
1. -1 (—a,— §)
2.1, 0<lal < V2 | (&(4+a*),5(12—aY)
3.1 (a,3)

Table 5.1.2. Points where ¥, joins y_.

of an a-slice of {Ay = 0}. We now determine how the the curves y; fit together. A
straightforward calculation gives table 5.1.2, which lists the points where ¥, and y_ join.
We make the following observations. When Fa > 0 is fixed, - is defined and continuous
on I, U{1}. When 4a > 0, lim,_,+ b+ = Foo and lim,_,o+ otz = 0. When |a| < v/2, {1}
is an isolated point of I, U{1}. Hence (a, }) is an isolated point of .. From these facts
and table 5.1.2 we see that each of the curves ¥ defined below is continuous.

1. When a = 0, let ¥, be the curve formed by joining ¥, |[—1,0) to y—|[—1,0) at
s=—1.
2. When 0 < |a| < V2, let 1 be the curve formed by joining Y+ |[—1,0) to

7-1(=1,3a%] ats = —1 and joining -|(~1,3a?] to 7:|(0, 3a*] at s = 3a?.
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3. When |a| > v/2, let 75 be the curve formed by joining ¥;|[—1,0) to y_|[—1,1]
ats=—1and y_|[—1,1] to y4|(0,1] at s = 1.

Gathering the above information together we have proved

Claim: An a-slice of the discriminant locus {Ay = 0} of W (74) is 71 U{(0, %)} ifa=0;
»U{(a,3)},if 0 < |a| < V2; and 13, if |a| > V2.

Recall that o = I 4. Applying the map R> — R?: (b, @) — (b,]; "' ot) = (b, h%) to a fixed
a-slice of {Ay = 0} gives the set of critical values of the twice reduced Hamiltonian H}'
for a fixed value of a, see figure 5.1.4. From the algebraic definition of critical point, it is
clear that a point of the a-slice of Ay, which lies on the curve ¥, is a minimum of I;Aj.
Thus for a fixed value of a, the range of Hj is the set of (b,/j) values which lie on or
above the curves given in figure 5.1.4.

o (0,) hy o (a,}) Iy

7 /

a=0 0<lal<Vv2 V2 <la|
Figure 5.1.4. The critical values of the twice reduced Hamiltonian Hj; for fixed a.

> Next we determine the topology of the level sets of the (twice) reduced Hamiltonian Hy.
The results are given in table 5.1.3.

(5.3) Proof: To find the topology of the level sets of H;', we return to the geometric situation
sketched in figure 5.1.2. Because the image of the fold curve % under the projection p
bounds a convex subset C of R?, the line /4 intersects p (%) in at most two points p; and
P2, where pj lies to the right of py. Let [py, p2] be the segment of £¢ lying in C. Then
[p1,p2] = p ((Hy) ™' (h5)).

We now verify the entries in the second column to table 5.1.3.

1 and 2. The first and second entries follow from the fact that the fiber of p over a singular
point of p(%) is a single point of €.

3 and 4. For the third and fourth entry we observe that p~!([p1, p2]) is a pinched S°
bundle, that is, a two point bundle over the interior of [p1, p2] with fiber over p; and p;
pinched to a point. Thus the Af-level set of H is a topological circle. If 4 is a regular
value of Hf, then (Hf)~!(h$) is smooth. Otherwise, p; = (—1,0) or pr = (1,0) is the
only singular point of p(%’) because the line ¢; has negative slope. When p; = (—1,0)
is a singular point, then b = —a and 1 |, = 7%11_'. Hence the h* ,-level set of H®, is a
point. When p, = (1,0) is a singular point, then b = a with |a| < /2 and h¢ = %Il’l.
Hence the h¢-level set of Hf is the semialgebraic variety

o1+03 =
oi+d*(1—01)—o3(1—0?) = 0, |of|<1&03>0.
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Project (H%)~!(h¢) onto the 61—0, plane by eliminating 3. This gives

0=0;-(2-a)(1-a)’+(1-a)’, |a|<]1,
which has a conical singular point (1,0). Hence p~'(p>) is a conical singularity of
(HY) ™ (hG). O
Topology of Conditions on roots
[p1,p2] (H) = () of W, where 8 =}
1. p1 = p» is nonsingular | point A double real root
point of p(€) in (—1,1) and no
other root in [—1, 1]
2. p1 = p2 is a singular | point A triple real root
point of p (%) at +1 or a double

root at —1 or +1 and
no other root in [—1,1]

3.p1#prand prisa A topological S' A double root at 1
singular point of p(%) | which is smooth with |a| < V2,
except for one and one other simple
conical singular real root in [—1,1]
point
4. p1 # p2, p1 and po A smooth S' Two simple real
are nonsingular roots in [—1, 1]
points of p(%€)

Table 5.1.3. Topology of the level sets of Hj/|P;.

A connected component of a level set of H;' on P} is an orbit of the Hamiltonian deriva-
tion —adya pe. This derivation is a vector field Xya on the locally compact subcartesian
differential space P¢, see chapter VII §4. If p is a critical point of (H?)~!(h¢), which
is a nonsingular point of Py, then p is an equilibrium point of Xy«. When this is the
case, the usual definitions of elliptic and hyperbolic equilibrium point apply. On the

a==b a=b#0 a=b#0 a=—-b#0 a=b=0
la| <V2  |a| > V2

Figure 5.1.5. Integral curves of the vector field —ady g pe on Pl.

other hand, if p is a critical point of (Hf)~'(h¢), which is a singular point of P¢, we use
the following definitions. We say that p is an elliptic equilibrium point of —adyape if

for every h slightly larger than Aj, the h-level set of Hy' is a smooth circle, which shrinks
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topash— (h)*. We say that p is a hyperbolic equilibrium point of —adpya pe if the
connected component of the /-level set of H}/ containing p has points which do not lie in
any sufficiently small neighborhood of p. In figure 5.1.4 we sketch the orbits of —ang‘ pa-

5.2 The energy momentum mapping

In this subsection we study the geometry of the energy momentum mapping EM“ (70) of
the Euler-Poisson vector field Xy« (22). First we reconstruct the topology of the (h%,b)-
level set of EM using table 5.1.3 and some basic facts about the geometry of the reduction
mapping 7 (56). The results are summarized in table 5.2.1. Second we determine the
topology of the level set (H%) ™' (h?), see table 5.2.2 and show how it is foliated by level

sets of J.
Topology of Topology of
(HY) "' () (EM®)~'(h®,b) Conditions
1. a nonsingular point smooth S! (a,b,00) € Ay,
of P b#+a,a#0
2. a singular point point b=a,la|l > V2,
of P a:%—i—%az,orb:—a,
o= —% + %az
3. atopological circle a 2-torus with b=a, o= % + %az,
with a conical a fiber pinched la| <2
singular point to a point
4. a smooth S! a smooth 2-torus (h",b) regular value of EM*

Table 5.2.1. Topology of the level sets of (EM“)fl(hﬂb), Here h —
h, + %Iflbz, a=Lh,and B =1) = %

Knowing the geometry of the reduction mapping 7; : (JZ‘)’1 (b) — P¢ and the topology

of the hf-level set of the twice reduced Hamiltonian Hj/, we can reconstruct the topol-

ogy of the (h“,b)-level set of EM“ because (EM*)~! (h*,b) = (H*)~' (h) N (J§) 1 (b) =
> (mf) "' ((HY) ' (h$)). Here hf = h® — L1;7'b?. We now verify table 5.2.1.

(5.4) Proof: The first and third columns of table 5.2.1 are the same as the first and third columns
of table 5.1.3, respectively.

We now check the entries in the second column. Suppose that the 4-level set of Hj is
a point p. If p is a nonsingular point of P¢, then the fiber (7¢)~!(p) is a smooth S';
otherwise it is a point, because it is a fixed point of the left S' action 8 (38).

4. To verify the fourth entry suppose that (h*,b) = (hj + %11_ b2 b) is a regular value
of EM“ which lies in its range. Then h¢ is a regular value of H“, which implies that
hj, is a regular value of Hj}. Therefore the hj-level set of H;' is a smooth Sl Let M =
(EM®)~"(h,b). Since 7 is a proper smooth submersion of M onto (H{)~!(h%), M
is a smooth S! bundle over S, see chapter VIII §2. The total space of this bundle is
connected, because the base and fiber are connected. Moreover, M is orientable because it
is the preimage of 0 under the mapping R* x R* = R*: (z,w) = (G (z,w),...,Gs(z,w)),
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where
Gi(z,w) :z%+z§+z§—l
Ga(z,w) = zyw1 + 22wz +23w3 —a
G3(z,w) = 317 (Wi +w3 +w3) + xz3 — hY,
G4(Z7W) =w3—b

Therefore M is a smooth 2-torus. An alternative way to see this, which mimics part of
the proof of the existence of action angle coordinates, see chapter IX §2, goes as follows.
Because (h“,b) is a regular value of EM“, at each m € M the differentials dH"(m) and
dJj(m) are linearly independent. Therefore, the vector fields Xp«|M and Xje|M are
tangent to M and are linearly independent at each m € M. Since M is compact and
{H,J}}po = 0, the flows of Xya|M and X;e|M define an R2-action on M which is tran-

sitive. Again because M is compact, the isotropy group L of the R?-action is a rank 2
lattice. Therefore M is diffeomorphic to R?/L which is a 2-torus.

3. We verify the third entry as follows. Suppose that (H{)~!(h) is a topological circle
with one singular point p = (1,0,0). Then g = (7¢') ' (p) is the only singular point of the
variety M. The map 7¢ is a proper smooth submersion of M\ {g} onto (H{)~"' (h¢)\ {p}.
Since (H{) "' (h¢)\ {p} is diffeomorphic to R, it follows that M \ {g} is diffeomorphic to
a cylinder S' x R, see chapter IX §2. An alternative argument which establishes this goes
as follows. Consider the vector fields Xy« |(M \ {g}) and X;e[(M \ {g}). Since the integral
curves of Xja on P* are periodic and ¢ is an equilibrium point, the flow of X el(M\{q}) is
periodic and hence is complete. On the other hand, the only way that the flow of the vector
field Xpa|(M \ {¢}) could be incomplete is for one of its integral curves to reach ¢ in finite
time. But this is impossible, because ¢ is an equilibrium point of Xz«. Consequently, the
flows of Xpa|(M\ {q}) and X;e[(M \ {q}) define a transitive R2-action on M \ {g}, which

has a rank 1 lattice L as isotropy group. Therefore M\ {q} is diffeomorphic to R?/L
which is a cylinder S! x R. Hence M is the one point compactification of a cylinder, that
is, a two dimensional torus with a meridial circle pinched to a point. A more detailed
argument shows that ¢ is a hyperbolic equilibrium point for Xg«. Thus ¢ is a conical
singularity of M being the transverse intersection of the stable and unstable manifolds of

q. This completes the verification of table 5.2.1. g
Topology of (H*)~!(h%) Conditions
1. point h":—x—&—%lflaz
2. a smooth three sphere, S° —x it <ht < y+i17'a?

3. atopological three sphere with | h* = x + 11, 'a?
one conical singular point
4. unit tangent S' bundle over S2 | h? >y + 31'a®

Table 5.2.2. Topology of the level sets (H*)~!(h%).

We now determine the topology of the level sets of H?, see table 5.2.2. We use Morse
theory to verify the entries in table 5.2.2. The space P is the preimage of the regular value
(0,0) of the mapping R®> x R = R?: (z,w) — (Fi(z,w), F>(z,w)), where F (z,w) =z} +
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z% +z§ — 1 and Fy(z,w) = z1w1 + 22w + z3w3 — a. Consider the function H : R3xR3—
> R:(z,w)+— %Ifl (w2 +w3 +w3) + xz3. The following argument shows that H* = H|P*
is a Morse function.

(5.5) Proof: H” is bounded below and is proper. Therefore, H* has a critical point (z,w) € P¢,
which we find using Lagrange multipliers. At (z,w) we have

DH (z,w)+ A DF(z,w) + 1,DF>(z,w) =0 and Fi(z,w) = F(z,w) =0.

In other words,

20 z1 +Awy =0, Az -l-]l_lwl =0,
20z +Awy =0, yrye) +Il_lwz:O,
2023 +Aaws +x =0, Aoz +1'wy =0,

7 +723 +Z% =1, and zyw| + 20wy + z3w3 = a. Therefore
=0 +3+23) = I (aw +awm+z5ws) = I 'a,

which gives w; = az; for i = 1,2,3. Hence

QM —1I'd®)n =

(2).1 —Iflaz)zz =

QM-I 'd)sz+y =

If 21y — I, 'a*> =0, then x =0, which is a contradiction. Therefore 2A; —I;"'a? # 0, which
gives z; = zp = 0. Consequently, z3 = € with e2=1and w; = wy =0 and w3 = €a. Thus

we have shown that H* has two critical points p, = €(e3,aes) with Lagrange multipliers
A= %(—8% +1f1a2) and A, = —Ifla.

Next we show that the critical points pe are nondegenerate. The tangent space T, P? is
ker(DF1 <”S)>: ker(o 0 2 00 2) which is spanned by {e}, e, es,es}. Therefore

DF(pe) 0 0 ea 0 0
Iflazfsx 0 71111’] 0
0 I'a*—¢ 0 —al!
D’H(pe)= (D*H + MD*Fy + oD*By)|(pe) = | 47 S T
a 1 1
TreP 0 —al;! 0 I

Since det D? (H“(pg)) = lel’ 2 # 0, the critical points p, are nondegenerate. Hence H
is a Morse function. The characteristic polynomial of D2H%(pe) is the square of the
polynomial A2 — ((a>+1)I; ' —ex)A —exl; . Thus D?H(pe) has two negative and two
positive eigenvalues when € = 1 and four positive eigenvalues when € = —1. Therefore
p1 = (e3,ae3) is a nondegenerate saddle point of H* of Morse index 2 corresponding to
the critical value y + %I{ 142; whereas p—1 = (—e3,—ae3) is a nondegenerate minimum
corresponding to the critical value —y + %I L a2, g

> We are now ready to determine the topology of the level sets of H* using Morse theory.
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(5.6) Proof:
1. When h* = —y + %Iflaz, the level set (H%) ™' (h?) is the point p_1.
2. By the Morse lemma, see chapter XI §2, near p_;, the function H¢ is equal to
its second derivative at p_; up to a smooth change of coordinates. Therefore for i“
values slightly greater than —y + %I,’ 1a? the h®-level set of H® is diffeomorphic to a
three dimensional sphere S°. By the Morse isotopy lemma, see chapter XI §3, for every
W€ (—x+ 317 x + A1 'a?) the level set (H*)~!(h“) is diffeomorphic to S°.
4. For h" > x + 3I;7'a® the hi-level set of H* is diffeomorphic to the unit tangent S'
bundle 775% over S2. In chapter ITI §1 we have seen that the unit tangent circle bundle 735>
of § is diffeomorphic to real projective 3-space RP3. To check this we view (H)~!(h%)
as a bundle over S? by applying the mapping @ : P* — T'S? : (z,w) +— (x,y) = (z,w —az).
The total space ¢ ((H*)~!(h")) of this new bundle over S is defined by

X413 +x§ =1
x1y1 +x2y2 +x3y3 =0 (80a)
SO+ ) s = = g (80b)
Fix a point x on S2. Then (80b) defines a 2-sphere y% + y% + y% = 72, which has positive
radius r = (21; (h* — (xx3 + %I;Iaz)))l/z, since h* > x + %Iflaz > xx3 + %I;laz.
Intersecting this 2-sphere with the 2-plane (80a) defines a circle which is tangent to S
at x. This circle is the fiber over x of the projection map T'S> — S : (x,y) — x. Hence
@((H*)~"(h")) is diffeomorphic to 7;5. Thus (H*)~'(h®) is diffeomorphic to 77 57.
3. At the critical value h* = x + %If 142, the h%-level set of H® is the algebraic variety U,
which is defined by
z% + z% + z% =1
21w+ 22w +23w3 =a
S W W wd) e = 2 ksl
which is singular only at p; = (e3,aes3). Because p) is a nondegenerate critical point of
Morse index 2, the level set (H%)~!(h¢) is locally diffeomorphic to the zero level set of

D*H®(p), that is, to a neighborhood of the vertex of the cone defined by z% - z% + W% —
w% = 0. Thus p; is a conical singularity of U. The variety U is homeomorphic to the

Figure 5.2.1. The variety U in S3.
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3-sphere S3, see figure 5.2.1. To see this we think of $> as R® with a point added at
infinity. The upper and lower parts of the solid cone form the singular closed solid torus
ST+, whose boundary T is the singular 2-torus with a longitudinal circle pinched to a
point, which forms the vertex of the cone. The exterior of the solid cone is again a solid
cone which forms the singular closed solid torus ST _, whose boundary T* is the singular
solid torus with meridial circle pinched to a point, which is the vertex of the cone. S? is
the union of the solid tori ST+, see the proof of point 3 of ((3.11)) in chapter IV.

This completes the verification of table 5.2.2. g

From table 5.2.2 we see that as the value of i“ increases through the critical value y +
%I L 142, the topology of the h¢-level set of H? changes, see figure 3.4.4 in chapter IV. This
bifurcation is due to monodromy about the isolated critical value () + %I;laz,a) of the
energy momentum mapping EM® when |a| < 2,/x1, see figure 5.1.4. The same argument
used to compute the monodromy in the spherical pendulum, see chapter IV ((5.1)), shows
that for a small circle S' in the set of regular values of EM® with center at the isolated
critical value the 2-torus bundle (EM¢)~'(S") is nontrivial.

We now discuss how the level sets of angular momentum foliate an energy level set. For
he(—x+ %Iflaz,x + %I{laz) the energy surface (H*)~!(h%) = S is foliated by 2-tori
(J4)~1(b)N'S? as in the harmonic oscillator. When 1 > x + %I [ 'a® the energy surface
(H*)~'(h*) = RP? is foliated by 2-tori so that its twofold covering is the same as the
foliation of $3 by 2-tori of the harmonic oscillator, see figure 5.2 in chapter III.

5.3 Motion of the tip of the figure axis

In this subsection we discuss the qualitative behavior of the integral curves of the Euler-
Poisson vector field Xy« (26) on the smooth 2-torus Tz , = (EM)~ ! (h*,b). Here (h*,b)
is a regular value of the energy momentum mapping EM* (70). Thinking of the reduced
space P¢, defined by z% —|—z% —|—z§ =1 and zyw| + zow2 + z3w3 = a, as a bundle over S?
with bundle projection map

T:PPCR xR 5 S2CR?: (z,w) = 2, (81)

we can view the 2-torus Thza‘b C P“ as a bundle over R = T(]}?gﬂb) C 2. Physically, the

image of an integral curve of Xy« \Th%‘b under the projection 7 is the curve in space traced
out by the tip of the figure axis of the Lagrange top. We classify the possible motions of
the tip.

We will begin by describing the various subsets R of $* which are the image of T\Thzaﬁh.

Claim: Let zgc be roots of the polynomial V, see (83) below, which lie in [—1,1]. Then R
is one of the following sets.

1. When b # +a & a # 0, R is the closed annulus # = {z € S CR*| =1 < z; <z3 <
z3 < 1} with boundary 08 = {z3 = 23 }.



236 The Lagrange top

2. When b= —a & a+#0, Ris the closed 2-disk D" = {z€ > CR*| ~1<z3 <z <1},
which contains the south pole sp = (0,0, —1) of 2, but not the north pole np = (0,0,1),
and has boundary dD_ = {z3 = z3 }.

3. Whenb:a&a#O,RistheclosedZ—diskEi ={ze8? gR3| —1<z; <z <1},
which contains the north pole np = (0,0, 1) of 2, but not the south pole sp = (0,0, —1),
and has boundary 0D, = {z3 =z; }.

4. When b =a =0, Ris all of §%.

(5.7) Proof: By construction, the 2-torus Thza‘b C R x R3 is given by

a4+ +5=1 (82a)

w1+ 2w+ 3wz =a (82b)

T (W +wi+wh) + xz3 = (82¢)
ws = b. (82d)

Substituting (81a) — (81d) into (zywy — zow1)? = (23 +23) (W3 + w3) — (ziw1 + zaw2)?
gives

0< (z1w2 —2ow1)? =2(a—Bz3)(1 —23) — (a—bz3)* =V (z3) (83)
with |z3| < 1. Here B =1y and oo = I; (h* — %b2) =Ihj. Since (h“,b) is a regular value
in the image of EM*“, the polynomial V has two simple roots z? in [—1,1], see table 5.1.3.
Therefore, 7(Tj% ,) CR={z€ 82| —1<z5 <z <zf <1}

To finish the argument it suffices to show that R C T(Thzuﬁb). A nice way to do this, which
also explains the geometry of the projection mapping 7|7, hzu"b, is to apply the diffeomor-

phism
¢:T2, CRxR* 5 RxR3:
' (84
(zw) = (&.n) = (21712,137*W2+H(Z3)Zzawl *M(23)217W3)
where
(a—bz3)(1—23)7', if b# taanda #0
a(l+z)7 " ifb=aanda#0
w(z3) = .
a(l—z3)7 ', ifb=—aanda#0
0,ifb=a=0.
A calculation shows that @ (7} ) is the 2-torus 7% in R* x R? with coordinates (&,7),
which is defined by '
G+&=1-¢, (85a)
Sm—&m=0 (85b)
ni+ns = v(&) (85¢)

5 = b, (85d)
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where

V(E&)(1—E2) 7L ifb# +taanda #0
[2(a—B&)(1+&)—a*(1-&)] (14+&) 7" ifb=aanda#0
[2(a—=B&)(1-&)—a*(1+&)] (1-&) ", if b=—aanda#0
2(— &), ifb=a=0.

v(&) =

Let 7 be the projection 7> CR x R = R : (&,1) ~ . For £ € R, the fiber 77! (&) is
diffeomorphic to the fiber ! (¢! (£)).

Since V(&) > 0, it follows that & € [&;, &), where V(E57) =0, &5 < &7, and V(&) >0
when & € (& ,&5"), Therefore 71(T%) CR = {£ € > CR®|& € [£;7,&;7]}. Suppose that
& € intR, the interior of R. Solving (85b) and (85c¢) gives

m=e((5p) e o) % (86)

where €2 = 1. Thus when & € intR, the fiber 77! (&) = (€, 11, M2,b), where 1y and 1,
are given by (86).

1. When b # +a & a # 0, we have |&| < 1. Therefore R is a closed annulus 2 in $? with
boundary dR = {(&;,&,&;") € S}, which is the disjoint union of two circles: €', where
& =& and B, where & = &; . Because V(&) = O, equation (85¢) implies that 17} =
1 = 0. Equation (85d) gives 13 = b. Therefore d (1~ (R)) = {(&1,&,&57,0,0,b) € T?}
is the disjoint union of two circles: C = 7~!(C’), when & = &;" and B = 7~ (B'), when
&3 = &; . Each circle is an orbit of the vector field ¢.X Jg on T2

2. When b= —a & a#0, we have sp=(0,0,—1) € Rbutnp = (0,0,1) ¢ R, since §; =1
but —1 < & < 1. Thus R is a closed 2-disk D with boundary C' = {(&1,,&;) €
§%}. Because v(&;7) = 0, it follows that 7! (C’) is the circle C = {(&;, &, &,0,0,b) €
T?|E2+EF=1—(&)* >0}

3. Whenb=a & a#0, wehavenp=(0,0,1) € Rbutsp=(0,0,—1) ¢ R, because & =1
but —1 < &5 < 1. Thus R is a closed 2-disk Ei with boundary B’ = {(£1,6,6;) €
S2}. Because v(&; ) =0, it follows that 7~!(B') is the circle B = {(&,&,&;7,0,0,b) €
T?|EE+&7 =1—(&)* >0}

4. When b = a =0, both np and sp lie in R. So R = §2. g

> We now reconstruct the 2-torus 72 from its image R under the projection map 7.

(5.8) Proof:
CASE 1. b# +a&a+# 0. Then R is a closed annulus % with boundary dR which
is two disjoint small circles B' = {& = &; } N S? and C' = {& = 53*} NS% on §2. If
& cintR, then 77 !(&) is two points; while if & € R, then 77 !(&) is a point. In other
words, T2 has a fold singularity over dR with fold curve ! (dR), which is the disjoint
union of two circles: C = {(&1,&,&;, 1, 1m2,b) € T2|§12—|—§32 =1-(&)*&ni+n; =
V(&) and B={(&,&. 85 . m,m.b) € T2 [ +&5 =1 (&) &ni +n3 = V(& )}
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Consequently, 72 is an S° bundle over intR with S° pinched to a point over each point of
JR. Let A’ be the open arc {(0, (1 — £7)1/2, &) € | & <& < &} Then the closure
1 (A") of #~1(A’) in T? is a circle A, because for every & € A’ C intR the fiber 77! (&)
is two points; whereas for (0,0,&;%) € (A”\ A) C IR the fiber 771(0,0,&;") is the point
g=1(0,0,&;",0,0,b); while the fiber 7! (0,0, &;") is the point g = (0,0,&;,0,0,b). Since
n(q) = ¢ and 7(q) = ', we get g€ B and g € C. So B and C are circles on T2, which
are homologous. Moreover, either {A, B} or {A,C} is a basis of H; (T?,Z).

CASE 2. When b = —a&a # 0. Then R is a closed 2-disk ﬁi with boundary the
circle C' = {(&,&,&5) € §? | E2+E2 =1 (& )% > 0}, which contains the south pole
G’ =(0,0,—1). Let A" be the open arc {(0, (1—&3)!/2,&) € 82| —1 < & < & < 1}. For
each & € A’ C intR the fiber 77! (&) is two points, namely, (0, (1 —&7)'/2, &, m1,m2,b),
where for i = 1,2 we have 1; = €(v(&)(1 — 532)")1/25,- and €2 = 1. When & = (0,
(1—(&)H)1/2,&5"), the fiber 71 (&) is the point ¢ = (0, (1 — (&57)%)1/2,&;7,0,0,b) on
C. We now find the rest of 7~'(A’). The tangent to the curve (—1,&;") — 5% : & — (0,
(1—E3)'/2, &), which parametrizes the open arc A', is (0, —&; (1 —&)~/2,1). The corre-
sponding positive tangent ray of length \/2(ot+ ) = v(—1) to A" at ¢’ is (0, /2(ct + B),
0). Thus the corresponding affine ray at ¢’ is (0, 1/2(a + ), b), which is associated to the
point g = (0,0,—1,0,/2(c+ B),b) on the circle B = {(0,0,—1,m1,m2,b) € T?|n} +
n;3 = v(—1) =2(a+p) > 0}. Consequently, A = {q,gtUn~'(A’) is a circle on T2,
which intersects the circle B only at the point §. At g’ = (0,0,—1) the fiber 77!(g") is the
circle B. Thus the map 7 blows up the point g’ to a circle B. Note that 7-!1(A’) = AUB
and that {A, B} is a basis for H;(T2,Z) as is {A,C}, since ANC = {g}.

CASE 3. b=a&a #0. Then R is a closed 2-disk Ei with boundary the circle B’ =
{(€1,6.&,) € 8* | E2+E7 =1—(&;)? > 0}, which contains the north pole ¢/ = (0,0, 1).
Let A’ be the open arc {(0, (1—&3)"/2,&) € 8*| =1 < & <& < 1}. Foreach € A’ C
intR the fiber 77!(£) is the two points (0, (1 — &F)'/2, &, m1,m2,b), where for i = 1,2
mi=e(v(&)(1—E)™)"/7E and €2 = 1. When & = (0,(1— (&)?)!/2,&;"), the fiber
m=1(€) is the point = (0, (1 — (&57)%)"/2,&;7,0,0,b) on the circle B. We now find the
rest of 7~ 1(A’). The tangent to the curve (—1,&) — §?: & — (0,(1 — £3)1/2,&3),
which parametrizes the open arc A', is (0, —&;(1 — 632)*1/ 2.1). The corresponding pos-
itive tangent ray of length /2(a—f) = v(1) to A" at ¢’ is (0,4/2(a—3),0). Thus
the corresponding affine ray at ¢’ is (0,+/2(ct — 3),b), which is associated to the point
q=(0,0,—1,0,y/2(cc—B),b) on the circle C = {(0,0,—1,11,M2,b) € T*|nf +n3 =
v(1) = 2(a — B) > 0}. Consequently, A = {g,g} Un!(A’) is a circle on T2, which
intersects the circle B only at the point §. At ¢’ = (0,0, 1) the fiber 7! (¢’) is the circle
C. Thus the map 7 blows up the point ¢’ to a circle C. Note that 771 (A’) = AUB and that
{A,B} is a basis for H; (T?,Z) as is {A,C}, since ANC = {g}.

CASE 4. b =a = 0. Then R is the 2-sphere S? with north pole ¢’ = (0,0, 1) and south
pole g’ = (0,0,—1). Let A’ be the open arc {(0,(1 —&7)!/2,&) € SZ| —1<& <1}
For £ € A’ C intR, the fiber £7!(&) is two distinct points. At ¢ the fiber 77! (¢) is
the circle C = {(0,0,—1,my,m2,b) € T?|n} + 17 = v(~1) = 2(a + ) > 0}; while at
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G’ = (0,0,—1) the fiber 7~ !(g") is the circle B = {(0,0,—1,my,m2,b) € T?|n} + 13 =
v(1) =2(ac— ) > 0}. The map 7 blows up the point ¢ to the circle C and the point g’
to the circle B. Thus A = {¢,q} Un~'(A’) is a circle on T2, which intersects the circle C

only at ¢ and intersects the circle B only at g. Thus 7-!(A’ = AUBUC. Moreover, {A,C}
and {A, B} form a basis of H; (T2, Z). O

C={&=& <1}

Al

¢

B={&=&}
_C={&=& <1}

B ={&=—1}

S
! ﬁ
=
)
=
@\Q\ /

C={&=1}

;

A B={&=¢& >-1}
¢ _C=(&=1)
Al @ B ={&H=-1}

Figure 5.3.1. The image R of the 2-torus 72 = @(7;2 ,) under the projection map 7. Here (h“,b)
is a regular value of EM“. In the top right figure b # +a & a # 0; in the next to top right figure
b=a=a & a# 0; in the next to bottom right figure b = —a+a & a # 0; in the bottom right figure
b#a=0.

Next we look at the projection of the vector field X« |Th2a » on R under the bundle pro-

jection T (81). Consider the strip &/ = [0,6] x R with coordinates (o, ¢) where z =
(z1,22,23) ERC S?, 0 =23, 06" =27, and ¢ =tan™! i Then ¢ is the universal covering
space of ./ with covering map 7 : A CR 5o/ CS2: (0,9) —>z= (cos Q,sin@, G)l.
Here 7 is either the closed annulus %, the blow up of the closed 2-disk 51, or $2 blown
up at the north or south pole. Let p € Thza‘b andletI': ¢ — (p,Ha (p) be the integral curve of
Xpga T2 , through p. Set 7: R — 7 : £+ T(T(1)). Let 7: R— o : 1 = T(T(¢)) be the lift
of yto /. Here T: P — o is the map defined by 7% = 7. So 7oy = 7.
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Claim: The curve 7: R — o 11 (o(1), (1)) satisfies

6=nl;'\/V(c), withn?>=1 (87a)
¢=1"(b—ac)(1-0c*)! (87b)

where V is given by (83).
(5.9) Proof: We compute. Equation (87a) is obtained as follows:
6 = T(LXHalTh";,,,“) = T((Lxyaz3)| T p) = T((I7 " (z2w1 —21w2)) [ T ),
using the Euler-Poisson equations z = Iflw Xz, W= xe3 x z for H*
= nI;'/V(t(z3)), using (83)
).
Equation (87b) is obtained as follows.

=1Ly, 12 ¢) =7((2122—22)(z1 +2)""), by definition of ¢

h.b
=7(I7 (w3(2] +2) —m(@wi +2w)) (T +23) '),
using the Euler-Poisson equations for H¢
=1 (b—ac)(1—0c”)"", since T lies on T , (82a) — (82d). O
The sign ambiguity in (87a) is handled in the following way. The integral curve I crosses

each of the curves ¢+ = 771({z3 = 0*}) transversely, because €+ is an integral curve
of X s |Thza ,, and the vector fields Xy« and X, o are linearly independent on T,fa »- Thus the

curve ¢ — ¥(t) = (o(t),¢(r)) does not stop when it reaches the boundary of <7, say at
time #o. In other words, ‘31—2' (o) #0.

ClaiAI?: Suppose that ‘g (to) #0and go = ¥(19) € d.o7, while ¥(¢) lies in the interior inte/
of o for all ¢ slightly smaller than 7. Then one of the following holds.
1. ¢(to) = 0. Then i—?(zo) is an outward normal to 9.7 at Y(to).
2. ¢(tp) #0. Then g(zo) is tangent to 9.<7 at J(to).
(5.10) Proof:
1. Since g—t = (6, ) is nonzero at 1y and @(19) = 0, it follows that & (y) # 0.
2. Observe that continuity implies that ¢ # 0 for points in o/ near qo. Hence near go we
may parametrize ¥ by ¢ instead of 7. Using (87a) and (87b) we obtain
do o _ V(o)
do ¢ Lo -

Therefore g—g =0 at go. (]

Suppose that ¥(t9) = 0~ or ¢* and for some sufficiently small € > 0 the value of 1 at
time 7o — € is known. Then at time 7y + € the value of 1 is defined to be the negative of its
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value at 7o — €. From ((5.9)) it follows that this sign convention ensures that the image of
¥ lies in < for all time and is continuous. With this convention in force, equations (87a)
and (87b) do not define a vector field on ,@7, because ¥ may have self intersections. Even
worse, ¥ may not be smooth, see figure 5.3.6. When < is the universal covering space of
the closed annulus 4, the fiber 7~!(9.%) is the union of two fold curves €+ of T|7}12[17b.

In this case, 7 has second order contact with 9o/ at ¥(to) and is real analytic, although it
still may have self intersections, see figure 5.3.3.

‘We now determine the rotation number ©® of the flow of Xy« restricted to the 2-torus Thza b
The closed curve € = %~ = 7! ({o = 6 }) is the image of a periodic integral curve of
Xja on T, C (J) ' (b), since Xq is the infinitesimal generator of the S'-action A|(S! x
(J¢)~'(b)), which leaves the function z3|7;% , invariant. Because the vector fields Xpa
and X Jg are linearly independent at each point of Thza,b’ it follows that %’ is a cross section
for the flow 7" of Xpa|T2 ,. Thus for any p € € there is a smallest T = T'(h%,b) > 0
such that @& ‘(p) €€. Let (sz’a be the flow of X;a. By definition of the rotation number ©
we have (pzjgm (p) = o (p). Because the flows @ |T;7, and o'l |Thzjs commute with the
S'-action A|(S! x T;2,), the rotation number ® does not depend on the choice of the point
p on the cross section ¢ nor does it depend on the choice of integral curve of X ]g|T,35
giving the cross section. Therefore ® is a function of 4 and ¢ alone.

From the choice of the cross section % it follows that (%) is the boundary component of
the closed annulus .« correspondmg to the lower boundary {G 0~} of the closed strip
o LetT: [0,27] — T2 apiS (pb ( ). The lift of 7ol to o7 | parametrizes the line segment
on {¢ = ¢~} which j Joms 7(0) to ¥(T). Let ¥ be the difference in the @-coordinates of
() and ¥(0).

Claim: ¥ /27 is equal to the rotation number ©.

(5.11) Proof: We compute.

o/2n S} ®
19/27::/ d(p:/ (Lx,, 9) ds:/ ds — ©.
0 0 L 0

The second to last equality above follows from the Euler-Poisson equations z = e3 X z and
W = e3 x w for X;« and the definition of the coordinate ¢. g

> Here is an explicit formula for the rotation number ©.

ot _
me—2 [0 P74 46 (88)
o (1—02)\/V(o)

(5.12) Proof: If o lies in the interior int o of o, then V(o) > 0. Therefore & # 0 for every o €

int.«/. Suppose that 0(0) = 0. Then there is a#’ > 0 such that o(¢') = o™. Moreover,
we may parametrize ¥ by o in (0~,06") instead of r € (0,¢/) U (#/,T). In (87a) choose
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n = —1fort = ¢€. Then

ol G+ .
do do ‘P
210 = / qul hah /6+ io do . do do = 2/ do,
which using (87a) and (87b) gives (88). O
r

/ 7
/

Figure 5.3.2. Tangential singularity.

We now describe the qualitative behavior of a solution ¥ of (87a) and (87a). We assume
that the sign convention is in force. Then ¥ is defined for all time and lies in . If at
qo € 9./ we have ¢ # 0, then we say that ¥ has a tangential singularity at qo. Until
further notice we shall assume that 7 has only tangential singularities.

To classify the possible qualitative behaviors of 7, it suffices to look at a time interval when
¥ has three successive tangential singularities, say go = (6, 9°) = 7(0), ¢1 = (6+,0') =
7(t'), and g2 = (06—, 9?) = ¥(T), see figure 5.3.3. The reason why this suffices is that the

image of 7 in </ is invariant under the translation mapping
trans : .o/ — o : (0,9) — (0,0 +270O).

In more detail, during an elapsed time T the @-coordinate of ¥ has increased by 270.
Hence the image of 7 is invariant under the translation map trans.

Claim: The possible qualitative behaviors of yin of with only tangential singularities are
given in figure 5.3.3.

(5.13) Proof: We assume that ¢ > 0 at go. The argument when ¢ < 0 is similar and is omitted.
Since & # 0 in int.<7, the curves 7; = ¥1(0,#') and y2 = ¥|(¢',T) may be parametrized
by o instead of . As curves parametrized by o, 7| and 7, are each a graph of a smooth
function F; and F3, respectively, which are defined on (6~,0™).

9 %o o P

wavy upward looping

Figure 5.3.3. Possible behaviors of ¥ having only tangential singularities.

CASE I. Suppose that ¢ > 0 at ¢;. Then equation (87b) confirms that ¢ > 0 throughout
/. Because the sign of ¢ does not change as ¥ passes through ¢, whereas the sign of &
does by our sign convention, the function Fj is strictly increasing; whereas the function
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F, is strictly decreasing. Thus the closures of the graphs of F| and F, intersect only at ¢g;.
Since 7 has a tangential singularity at ¢, 7 is convex downward at g;. A similar argument
shows that 7 is convex upward at go and ¢,. Therefore /[0, T] is a wave. Since > > ¢°,
the rotation number ® = (¢? — ¢°) /27 of 7 is positive.

CASE II. Suppose that ¢ < 0 at g;. From (87a) and (87b) it follows that ?ch; vanishes
exactly once in (67,0%). Suppose that a = 0. From (87b) we see that ¢ has the same

sign as b throughout 27. But this is contrary to the hypothesis that ¢ changes sign in
o/ . Therefore, a # 0. Suppose that a < 0. From the fact that ¢ > 0 at g it follows that
b—ac~ > 0. Therefore b/a < o~ . From the fact that ¢ < 0 at ¢, it follows that b —
ac™ < 0. Therefore b/a > o ™. This is a contradiction because 6 > ¢~. Consequently
a > 0. Since g—ﬁ has only one zero at * = b/a, each of the functions F} and F, has only
one critical point at 6* in (67,07"). Now dF Go and dF G& have opposite signs near ¢;. To
be specific suppose that dﬂ < 0 near ¢. The argument for the other case is similar to
the one given below and is omltted Then dF 2 > O near q;. It follows that F} has a strict

maximum at 6*, whereas F, has a strict minimum there. Because < 0 and sz >0in
(o*,0"], we ﬁnd that

T dF " dF
I ) = ) ) = 1 o2
o' —F(c")=F(c")—F(c") /6 dcd /G dcdo
=FR(c") —FR(c*) =¢' —RK(c"),

that is, Fi(0*) > F>(0™). Therefore the point ¢* = (6%, F>(c™)) does not lie on the graph
of F1. There are three possible locations for g, relative to the graph of Fi, see figure 5.3.4.
Each of the three locations gives rise to a different possible qualitative behavior.

[0} ¢ transFy ¢
F; Fi
P ¢2 ¢1
— O B — (o)
q1 q0 q1
t t
q0 F I
o~ of - of
Case I Case II.1 Case I1.2 Case I1.3

Figure 5.3.4. The geometric situation.

1. Suppose that g, lies above the graph of F;. Then ¢, and ¢* lie on opposite sides of the
graph of Fy. Thus the graph of F>|(0~, 0*] crosses the graph of F] at least once. It crosses
exactly once because F»|(0~, 0*] is strictly monotonic. Therefore in < the curve Y110, T]
makes an upward pointing loop. Note that the rotation number ® = (¢ — ¢°) /27 of ¥ is
positive.

2. Suppose that g; lies below the graph of Fj. Then ¢, and ¢* lie on the same side of the
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graph of Fy. Note that F; (") > F;(67) = ¢°, while F>(6*) < F»(6~) = ¢*. Applying
the translation mapping trans to the graph of Fj gives trans (qo) = ¢ and trans (¢q;) = g.
Since Fi|(o6~, 0" ] is strictly increasing, so is trans (F1|(c~,0* ]). Because F>|(0~,0" ]
is strictly decreasing and

trans (F (0*)) = Fi(6%) + (Fz(Gf) *Fl(Gf)) = (FI(G*) —F (0'7) +Fh(o7)>F(o),

it follows that trans (F; (6*)) lies above the graph of F». Since F>(0") = g1 > trans (q;) =

g = trans (Fy(0™)), the point g lies below the graph of F». Thus we find that the graph
of trans (Fi|[c*,0)) crosses the graph of F> at least once. It crosses exactly once be-
cause Fi|[c*,07) is strictly monotonic and hence trans (F|[c*,07")) is strictly mono-
tonic. Therefore in <7 the curve /[0, T] makes a downward pointing loop. Note that the
rotation number @ of 7 is negative.

3. Suppose that g, lies on the graph of F;. Then gy = go. Thus the closures of the graphs
of F and F, form a smooth closed curve, which does not have any self intersections. Thus
Y10, T] forms a wheel. The rotation number ® of ¥ is zero.

> We now show that downward looping and wheeling motion do not occur, because the
rotation number @ is positive when b/a € (—1,1) and a > 0.

(5.14) Proof: Cut the extended complex plane along the real axis from 6~ to o™ and then
again between 6 to oo thus forming the cut extended complex plane C'. Let z — o0 =
rivoe’ei-o and choose a complex square root so that

1
Ve=07)e= o) (e o) = yrrren @10,

For i = 1,2,3 let %; be a closed positively oriented curves in C”, where % encircles the
cut [c~, o] but avoids the points 41 and the cut [6”,0); % encircles the cut [6~, 0]
and the points &1 but avoids the curve %7; and 3 encircles the cut [6°, ) but avoids the
curve %. Note that the real root 6 of V, which does not lie in [—1, 1], is strictly greater
than 1. Let @ = %. Then w is a meromorphic 1-form on C" with first order

(1-22)4/V(

poles at € = £1, which have residue Res 0= 21 This follows from the choice of square

root and the fact that b/a € [—1,1]. Hence by the residue theorem we get

® =2miRes w+27wi Res o+ o =-2n+ .
%) z7=-1 z=1 ©) i3

By Cauchy’s theorem

/w:/ w:2a/ _x=bla oo,
%) (4) [y} (X2 — 1) V(x)

since b/a € [~1,1], a > 0 and 6® > 1. This proves the assertion because 270 =
J¢ . O

This completes the verification of figure 5.3.4. g
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We now translate the motions of ¥ on </ into motions v of the tip of the figure axis of
the top on . There are two cases: when o is the universal covering space of a closed
annulus % or the universal covering space of the closed 2 disk D blown up at its center.
In the case of the closed annulus, the translation is straightforward and the results are given

in figure 5.3.3. In the case of a disk Ei consider the curve Yy given in figure 5.3.5 (a), which

(a) (b)
Figure 5.3.5. (a) The motion of the tip of the figure axis in the closed
2-disk Ei. (b) The blow up of the motion of (a) in the annulus.

represents a motion of the tip of the figure axis of the top which passes through the north
pole np of S2. Recall that under the blow up map each positive tangent ray to ¥ at np of
a suitable length after a translation corresponds to a point on the circle €, which is the
blow up of np. The point ¢; on 851, after applying the blow up map, corresponds to the

point ¢j on ¢~ The blow up of the curve ¥ in Bi is the curve I' in the annulus bounded
by €**. The curve I' is tangent to ¢ at g, and ¢}, which correspond to the two distinct
positive tangent rays to y at np. Thus I" is a wavy motion. From this discussion we see
that the motion of the tip of the figure axis of the top through the north pole is not the
limit of cuspy motion in an annulus whose upper boundary shrinks to the north pole. For
more details see the discussion after ((5.15)) below.

We now turn to discussing singularities of ¥ which are not tangential. If ¢ = 0 at ¢ € (9,127,
then we say that ¥ has a nontangential singularity at go. From ((5.9)) we see that ‘é—’; (f0) is

an outward pointing normal to oo at qo = ¥(tp). If in addition ¢ is not identically zero
on o/, we say that q is nondegenerate; otherwise we say that it is degenerate.

Claim: A nondegenerate nontangential singularity of ¥ can only occur on the upper
boundary {o =0} of &.

Before giving a formal proof, here is a physical argument using the magnetic spherical
pendulum model. When ¢ = 0, the figure axis of the top is not moving. Hence the Lorentz
force on the electrically charged particle from the magnetic monopole field is zero. Thus
only downward gravity is acting. Since the particle is moving in an annulus, this can only
happen at the upper boundary. Here is the formal proof.

(5.15) Proof: Suppose that ¥ has a nondegenerate nontangential singularity at go = (67, @p).
From the definition of this kind of singularity and using (87b) it follows that a # 0,
6~ =b/aand |b/a|] < 1. Because o~ is a root of V, from (83) we obtain o, = 0. But
771(qo) lies on an integral curve of Xy« |Thza ,»- Hence its image under the reduction map
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7, (56) lies on an integral curve of —adya, which intersects PN {02 = 0}. Since (h“,b)
is a regular value of EM*, from figure 5.1.2 we see that the line ¢4 in the 0;—03 plane
defined by 03 + 07 = 2« intersects the image of the fold curve p(€¢) defined by o3 =
(b—aoy)(1—of)~! with |61 < 1 in two distinct points (67, 05) and (67,05 ) with
0~ < o7, because 6 are simple roots of V in (—1,1). Since 6~ = b/a, it follows that
o; = 0. However, the slope of the line / is negative and p(%’) lies in the half plane
03 > 0. Therefore (67,05 ) = (b/a,0) cannot be the left most point of intersection of
with p(%). This contradicts the definition of 6. O

r

=1

T
.

Figure 5.3.6. Appearance of a cusp.

Claim: Suppose that ¢; = (6+,¢') € 94/ is a nondegenerate nontangential singularity
of 7. Then 7y has a cusp at q.

(5.16) Proof: From the definition of nondegenerate nontangential singularity and equations
(87a) and (87b) we find that a # 0, 6™ = b/a and |b/a| < 1. Parametrizing ¥ near ¢; by

o, we obtain
do a(ct —o0)

do  (1-02)\/V(o) ®

Since Thza_,, is a smooth 2-torus, V has two simple real roots 6= in (—1,1) and one real
root 6y > 1. Therefore V/(6) < 0. Expanding (1 —c2)~! and V(6)~"/2 in a Taylor
series about 6", equation (89) becomes

do a

do (1-(0")?)y/=V'(c")

(oF fc)l/erO((G*fc)),

which integrated gives

o(o)=— 30 (G+)22)a o (6t —0)*?+0((c" —0)?).

Therefore y has a cusp at g;. g

@ S O

Figure 5.3.7. Transition between wavy and looping motion of the tip of the top
without becoming cuspy.
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From the proof of ((5.15)) we see that ¥ has a cusp singularity if and only if V has two
simple roots 6~ and 6" = b/a in (—1,1) with 0 < |b| < |a|. Consequently the tip of
the figure axis of the top makes a cuspy motion only when 7 is the universal covering
space of the closed annulus % and only at those energy momentum values (h%,a,b) where
o= SB, since (b/a,0) lies on 4. Recall that oo = I} h* — %bz and 8 = I} x. Thus the north
pole of S? is never a cusp point of the motion of the tip of the figure axis.

In figure 5.3.7 we have sketched how the tip of the figure axis can pass from a wavy to an
upward looping motion without passing through a cuspy motion by a continuous variation
in the parameter (h“,a,b) and the initial condition. The motion of the tip in the middle
drawing in figure 5.3.7 is not smooth when parametrized by arc length, even though the
motion disregarding the time parametrization is. This lack of smoothness is due to the
geometric behavior of the projection mapping 7.

Type of motion Conditions The roots o+
1. wavy b+#+a, a#0, b/a>0 o™ are simple roots of V
in(—1,1). Z—Z has same
sign at ot
2. upward looping b+#+a, a#0,b/a<0 o™ are simple roots of V

in(—-1,1).0- <b/a&
ot >0. Z—(P has opposite

signs at 0.
3. cuspy 0<|b|<|a|, o= ﬁé o™ are simple roots of V
a in(—1,1). 6" =a/b.
Z—g =0ato™.
4. through north pole b=a,a#0, a#p o~ and ot =1 are

simple roots of V in
(—1,1]. 92 £ 0 at 0.
5. through south pole b=—-a, a#0, a # - 6~ =—land o™ are
simple roots of V in
[~1,1). % 20 at o+,

6. arc of great circle b=a=0, |a|<p c =-landot =a/B
are simple roots of V
in[—1,1).

7. great circle b=a=0,0>f oF = +1 are simple
roots of V.

Table 5.3.1. Types of motion of the tip of the figure axis. Here (h%,b)
is a regular value of the energy momentum mapping EM*.

Suppose that ¥ has a degenerate nontangential singularity in /. Then ¥ moves peri-
odically with period T along a vertical line joining the two boundary components of
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/. Since ¢ = 0 on all of <, from (87b) it follows that @ = b = 0. Hence V(o) =
2(ae — Bo)(1 — 6?). Suppose that a/B < 1. Then V(o) > 0 for [-1,a/B]. Hence
6~ =—1and 6" = a/f. Thus o is the universal covering space of the closed 2-disk
52_ blown up at the south pole. So the tip of the figure axis periodically traces out an arc
of a great circle on S that passes through the south pole of 2. Its rotation number is i%.
If /B > 1, then 6= = +1. In this case, ./ is the universal covering space of S2 blown
up at the north and south poles. The tip of the figure axis traverses a great circle through
the north and south poles of S2. Its rotation number is +1.

In table 5.3.1 we summarize the classification of motions of the tip of the figure axis of
the Lagrange top.

6 The energy momentum mapping
In this section we investigate the geometry of the energy momentum mapping
EAM TSOB3) = R : Xy = (H(Xa), 7+(Xa) Z1(Xa))

of the Lagrange top. Here /¢ is the Hamiltonian (4), ¢, the angular momentum (8) of
the right § I_action, and ¢ the angular momentum (6) of the left S _action. Because the
left trivialization mapping £ (10) of T SO(3) is a diffeomorphism, it suffices to look at
the geometry of

EM :S0(3) x30(3) = R*: (A, X) —~ (H(A,X),J,(A,X),Ji(A,X)). (90)

Here H = £*J¢ is given by (98), J, = £* 7, by (12), and J; = 2% _#; by (42). If we
understand the topology of the fibers &.# 71(h,a,b) and how they fit together to form
H~'(h), then we have a complete qualitative picture of the invariant manifolds of the
Hamiltonian vector field Xy, whose integral curves give the motions of the Lagrange top.

6.1 Topology of &.7# ' (h,a,b) and H~'(h)

In this subsection we reconstruct the topology of &.# - (h,a,b) from the topology of
the level set (H{)~!'(h¢) of the second reduced Hamiltonian (72) and the geometry of
the reduction mapping 7 : J; ! (a) — P¢. Here the map 7 is the composition of the
reduction map 7w : J~ '(a) — P (13) of the right S'-action (11) and the reduction map
¢ (J9)~1(b) C P* — P¢ (56) of the induced left S action (40) on P?. Reconstruction
is possible because &.# ' (h,a,b) = &~ ((H?)"'(h)), where h{ = h— 111 (b — a®)—

> %13’ a2, The results are given in table 6.1.1. We now verify the entries in the third column
of table 6.1.1.

(6.1) Proof:
land 5. If Aj) is a regular value of Hyf ora = —b and hf, = —x + %Il_la, then the level set
(H)~'(h$) bounds a contractible 2-disk in P¢. Therefore 7! ((Hf)~'(h{)) is a trivial
2-torus bundle over S, that is, &7 ! (h,a,b) is a smooth 3-torus.
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2. Over every nonsingular point of P’ the fiber of the reduction mapping 7 is a smooth
2-torus.

4. Over a singular point & of P&, with €2 = 1 the fiber of 7 is a circle. This follows
because the fiber (1) ~!(5) is a point p, being a fixed point of the left S'-action on P4;
while the fiber of (7¢)~!(p) is the smooth circle 77! (&).

Topology Topology
Conditions of (Hf)~'(h{) of &4 (h,a,b)
L. hf is a regular value a smooth §' a smooth 3-torus 7°
of Hy
2. V has a multiple root a nonsingular point of P’ a smooth 2-torus 72
in(—1,1)
3.a=b,h{ =x+4%I'a* | atopological S' witha a 3-torus with a normal
la| < 2\/3 conical singular point crossing along an S'
4.a=Db, hy=x+ %Iflaz, a singular point of P/ a smooth §'
lal > 2/B
5.a=—b, a smooth S! a smooth 3-torus 73
W= —x+3I ' d

Table 6.1.1. Topology of &.# ' (h,a,b)

3. To verify the third entry suppose that (H%)~!(h%) is a topological circle ¢ with a
conical singular point ¢ = (1,0,0), which is the singular point of P?. Since ¢ \ {0}
is contractible, 771 (¢ \ {G}) is diffeomorphic to 72 x R. The fiber 7~!(&) is a non-
degenerate critical circle of H|(J, ' (a) NJ, ! (b)) of Morse index 2 because p is a non-
degenerate critical point of H%|(J¢)~!(b) of Morse index 2, see ((6.4)). By the Morse
lemma the local stable and unstable manifolds of H*|(J¢)~'(b) at p are diffeomorphic to
X2 —x3 —x% =0, which is a double cone C = C(S° x S') on S'. The local stable and unsta-
ble manifolds of 7~ !(&) are untwisted, because the local stable and unstable manifolds
of p are contractible and a fiber of 7¢ is an S'. Therefore a neighborhood of 7~!(&) in the
fiber 77! (%) is diffeomorphic to S' x C, that is, is a double cone on T2. Consequently,
7= 1(%) is a 3-torus with a normal crossing along the circle 77!(5). In other words,
! (¥) is a product of an S ! with a 2-torus with a meridial circle pinched to a point. [

For later purposes, see figure 5.1.5, we note that the singular point oz = €(1,0,0) € P&, is
a local minimum of Hg,, when € =1, b =a and |a| > 2\/B, orwhene=—1and b= —a,
because o is an elliptic equilibrium point of —ang. Under these restrictions it follows

that 77! (o) is a local minimum for H restricted to J, ' (a) ﬂ][l (ga).

We want to determine the topology of the level sets of the Hamiltonian
H:SO(3) xso(3) = R: (A,X) — k(I(X),X) + xk(Ad, 1 E3,E3).
Let S' = {B€S0O(3) |Ad37|E3 = E3} and consider the S!-action

@' :S" x (SO(3) x50(3)) — SO(3) x 50(3) : (B, (A,X)) > (BA,X) 1)
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with orbit mapping
p:SO(3) x50(3) = S xR : (A,X) — (Ae3,i(X)) = (z,w). (92)

Since H(BA,X) = H(A,X), it follows that H is invariant under the S'-action ¢. Therefore
H induces the smooth function

H:S?xR> 5 R:(z,w) —~ I w4+ wd) + 15 wh + xzs,
> where p*H = H. We now show that H is a Morse function.
(6.2) Proof: Consider the function H : R® x R® — R: (z,w) = L(I""w,w) + x(z,e3) con-
strained to F~'(0), where F : R* x R? = R: (z,w) = (z,z) — 1. Here I =diag (I, 1",
I;'"). Because the fibers of H|F~'(0) are compact, the function H|F~'(0) is proper and

hence has a critical point (z,w). By Lagrange multipliers, at the critical point (z,w) we
have DH (z,w) + ADF (z,w) =0 and (z,z) = 1, that is,

2z =

2Azz =0 2,2, .2_
X+2)~Z3 -0 & Zl+Zz+Z3—1.

I'w =0

If A =0, then y = 0, which is a contradiction. Therefore A # 0, which implies z; =z, =0.
So z3 = €, where €2 =1 and A = —%8% = Ap,. Since [ is invertible, we get w = 0.
Therefore pe = (£e3,0) is a critical point of H|F~'(0). Now

Tp, (F’l(O)) =ker DF (pe) = ker(€e3,0) = span{ey, ez, e4,e5,¢6}.
So
Hess,,, (ﬁ‘Fil 0)) = (Dzﬁ(Pe) + ApsDzF(Ps))

Tpe (F~1(0)

= (diag(0,0,0,1; ", 1y I;") — Texdiag (2,2,2,0,0,0)

span{ey,ea,eq,e5,€6}

=diag (—ex,—ex. I I,

which is invertible and has Morse index O at p_; and Morse index 2 at p;. Thus H=

H|F~'(0) is a Morse function on F~'(0) = 52 x R>. O
h Topology of I—AI*I(h)
1. —x point
2. —x<h<y a smooth $*
3. x U=(5>xD")Jg,5C(5 x5
4. h>y a smooth §? x §?

Table 6.1.2. Topology of H~!(h). The level set U = H () in the third entry is
the disjoint union of the product of a 2-sphere and a closed 2-disk with a closed
cone on a product of a 2-sphere S? and a circle S', which are glued together along
their common boundary, which is a product of a 2-sphere > and S'.
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(6.3) Proof: We now verify the entries in the second column of table 6.1.2.

1. Because p; is a nondegenerate minimum of H on $2 x R? with corresponding critical
value —, it follows that H~'(—) is a point.

2. Using the Morse lemma near p1, there is a smooth local change of coordinates so that
H+ X is equal to its positive definite Hessian at p_. Therefore for every # slightly greater
than —y, the level set H! (h) is diffeomorphic to a 4-sphere S*. By the Morse isotopy
lemma for all —y < h < ¥ the level set H~ ! (h) is diffeomorphic to S*.

4. Foreach h >y let y: H '(h) C $? xR?> — §%: (z,w) > z. Then g is a smooth
submersion. For each z € S? the fiber of the map u is defined by (I"'w,w) = 2(h — xz3)
where w € R3. Because /& > x and |z3| < 1, we have 2(h — xz3) > 0. Therefore for each
z € S? the fiber u~!(z) is diffeomorphic to S2, which is compact. Hence u is a proper
map and thus exhibits H~" (/) as a local trivial bundle over $2 with fiber $2. Recall that
smooth bundles over S? are classified by homotopy classes of maps of an equatorial S' of
the base S? into the fiber $2. Since S is simply connected, its fundamental group 7 (S?)
is the identity element. Therefore the bundle defined by the mapping u is trivial. In other
words, H~!(h) is diffeomorphic to S2 x §2.

3. Consider the function

F R xR =R (z,w) — (I-Nl(z,w).,F(z,w)) = (%(I_lw,w)+1z3,(z7z))‘

We look at the level set U = H~' () =.% !(, 1). First we show that H~'())\ {p1} is
a smooth 4-dimensional manifold. This follows because

o DHEWN (0 0z Iwi Iwe s
w(zw)*(m(z,w) T\ 2 2 0 00

has rank 1 only at (0,0,z3,0,0,0), z3 # 0, that is, only at p; € ﬁfl(x).

By the Morse lemma there is a smooth local change of coordinates near p; such that
H—yis equal to its Hessian diag(—x,—x,1; ! 1_ 1_ ) near pj. Thus the level set
H! (h) near pl is homeomorphic to the cone C in R5 with coordinates (x;,x7,x4,s,X6)
defined by —x7 —x3 +x3 +x5 +x6 = 0. Let D" be the closed 4-disk in R* defined by
xF a5 +x] a3 a2 < 1 ertlng D' U0<,<1S = Uo<r<1 {2} +x2 +x4+x5 24x2 <r?}
and noting that CNS* = /\f x 52 Vi = ={x]+x3 = 32 U{ad + 23+ = 112}, it follows
that CN D" is topologically a cone C(S! x 52) on S! x §? with vertex at p.

Consider the map
B=plH )\ P D) H ' (0\ {1} S xR = 825\ {xes} s (zw) =

U is a smooth submersion,AWhich is proper because each of its fibers is a 2-sphere S2,
which is compact. Thus H~!(x)\ {p1} is a locally trivial bundle over S> \{ xes}

with fiber $2. This bundle is tr1v1a1 because S° N3 \ {xe3} is contractible. Consequently

H! () \ {p1} is topologically D? x S2, the product of an open 2-disk D? and a 2-sphere
$2. Let D? be an open 2-disk in Sf/i which contains the point ye3. Then fi~! (S%/f \D?)
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is a smooth submanifold of H~! (%), which is diffeomorphic to the product of a closed
2-disk and a 2-sphere and has a boundary S' x §2. To form U = H~'(y) take the dis-
joint union of ! (S%/Z \ D?) and the cone C(S' x §?) and glue them together along their

common boundary S' x 2.
This completes the verification of table 6.1.2. O

We now give another description of the algebraic variety U = H! (x). First we rescale

the variables (z,w) by (v/Xz,/I1/2w1,~/11/2w2,+/1/2w3). In the rescaled variables,

which we call (z,w), the variety U is diffeomorphic to the real algebraic variety U in
5% x R3 defined by

wiwl +wi+z3=1 (93a)
A4+ +5=1 (93b)

U is singular only at ¢ = (e3,0). Consider the S'-action

@:S' x (RPxR) 5 R xR : (¢, (z,w)) — (Riz, Rw), (94)

jag S - 0 . . . .
where R; = (Zfi: o 0), whose algebra of invariant polynomials is generated by
0 0 1

12,2 2 2
T o=z T3 =ziwi+ 22w s =5 (wi+w;—21—2)
T =ws T =ziwa— oWy T =1wWi+wi+2+23)
subject to the relation

M4 =n—ni, 7 >0. (95a)

The variety U is invariant under the S'-action @, which leaves the point g fixed. The orbit

space U/S! is the semialgebraic variety in R® with coordinates (7y,...,7) defined by
(95a) and

s+ M+ 3 + 71 = 1 (95b)

o — s+ 77 = 1. (95¢)

Solving (95b) for 75 + 75 and (95¢) for s — 75 and substituting the result into (95a) gives
the semialgebraic variety V in R® defined by

B4m=01-m—-m)(1-nr}) (96a)

together with 1 — ) — 77:22 >0 (96b) and 1 — 71:12 > 0 (96¢). The variety V is homeo-
morphic to the orbit space U /S!. Moreover, the differential spaces (U /S!,C=(U)S') and
(V,C=(V)) are diffeomorphic.

‘We now determine the topology of V. Let 7 be the subset of R? with coordinates (1, m2)
defined by (96b) and (96c), see figure 6.1.1.
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,ﬁ/

S

Figure 6.1.1. The darkened region is &, whose boundary is & U.%, where
& = {(—1,71'2) : |7l'2| < \@} and ¥ = {(—77"%4— 17752) : ‘77.'2‘ < \@}

Consider the surjective mapping
T VCR* S ZCR?: (m), M, M3, ) — (M1, T02).

First we determine the geometry of the map 7. Let & = {(—1,m) € 8§| |m| < V2}. We
find the fiber n’l(m,ng) for (m,m) € & as follows. Since m; = —1 on & from (96¢)
it follows that g — w5 = 0. Then (96a) reads 77:32 + 77:} = 0, which implies m3 = m4 = 0.
Therefore for || < V2 we get 7! (=1, m) = (—1,m,0,0). Let F = { (-2 + |, m) €
8§| |m| < 2}. When m; = —77 + 1 then (95a) reads 73 + 7173 = 0, which gives m3 =
7y = 0. Therefore for 1| <2 we get 7! (—73 +1,m) = (— 75 + 1,7m,0,0). Note that
09 = &U.Z, which is topologically an S°. !. The above argument shows that 71(92)
is topologically an S' in V. The map T = TV \r~ 1(02)) is a surjective submer-
sion of V\Tc"(&.@) onto intZ. For every (m;,m) € intZ we have | —m; — 17 > 0
and 1 — 77 > 0. Therefore the fiber 7~ ! (71, m,), which is defined by 77 + 77 = (1 —
m — 73)(1 — m?), is diffeomorphic to a circle S'. Since S! is compact, the mapping
T is proper. Therefore for every contractible subset € of 2 it follows that 7~! (%) is
topologically € x S'. Let 77:2 [0,[ ). Consider the closed horizontal line segment
Zﬁg ={(m,nd) € §| —1<m < —(ny)*+ 1} in 2 with endpoints Q1 = (—1,79) €
& and 0y = (—(nd)? +1,79) € .Z. From what we have already shown, we see that

*l(fng \ {01,0,}) is topologically a cylinder (0,1) x S' with each of its endpoints
pinched to a point. In other words, ﬁ’l(éﬂg) is topologically a 2-sphere $>. When

= /2, the fiber 7! (-1, \/i) is a point. Therefore the preimage under the map 7 of
the closed half 2-disk 2 N {m, > 0} is a closed cone C(S2) on S? with boundary 7~ (),
which is an $%2. Thus 2N {m, > 0} is topologically a closed 3-disk 5? with boundary
~1(£y). A similar argument shows that 7=!'(2 N {m, < 0}) is also a closed 3-disk 53
with boundary 7' (¢p). Thus V = 7 '(2) = 5? U 5252, that is, V is the disjoint union
of two closed 3-disks 5% and 5% glued together along their common boundary 7~ (¢y),
which is an 2. So V is a topological 3-sphere .

Because the map 71:|(\7 \ {g}) is smooth except at g = (1,0,0,0), it is a proper submer-
sion of V \ {g} onto 2\ {g}, where ¢ = (1,0). The following argument shows that
in a neighborhood of g, the variety V has a conical singularity, which is a cone C($?)
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on S? with vertex at g. For each 7! € [0,1] consider the closed vertical line segment
Lﬂ? ={(n),n)) € §| |m| < +/1—m}. Then nfl(intLﬂ?) is topologically a cylinder
(0,1) x S'; while the fiber over each of its endpoints is a point. Hence E’I(Ln?) is a

topological 2-sphere S2. Therefore the preimage under the map 7 of the right half disk

> 2N{m >0} is aclosed cone C(52) on S? with vertex at g. This completes the proof that
the semialgebraic variety Visa topological 3-sphere, which is smooth except at one point
where it has a singularity, which is a cone on 2.

We now look at the variety U. Let
P:UCR xR = U/S' =V :(z,w)— (m1(z,w), ..., ma(z,w)). 97)

Then p is the orbit map of the S' -action @ (94). Except at the singular point p; of U,
the map p is a smooth surjection of U \ {p;} onto V' \ {g} with fiber S'. Therefore p is a
proper map, which defines a locally trivial § !_fibration of U \ { p } over 1% \{g}. Since Vis
topologically a 3-sphere, V \ {g} is contractible. Consequently, U \ { p1} is topologically
the product of V \ {g} and S'. Because an open neighborhood of g in V is topologlcally
a cone C(S?) on §2, which is contractible, p~!(C(S?)) is topologically a cone C(S? x S')

> on 52 x S!. Thus we have shown that U = (D’ x S"){J ¢, 1 C(S? x S'), that is, U is
the disjoint union of the product of a closed 3-disk and S' with a cone on §? x S! glued
together along their common boundary $2 x S'. This completes our alternative description
of the algebraic variety U = H~! (x).

Next we turn to reconstructing the fopology of the level sets of the Hamiltonian
H:SO(3) xso(3) > R: (A,X) — %k(I(XLX) + xk(Ad, -1 E3,E3). 98)

The results are given in table 6.1.3.

h Topology of H~!(h)
1. —x smooth !
2. —x<h<y asmooth §' x §*
3. x W =U x S!, see table 6.1.2 for U
4. h>y a smooth SO(3) x 52

Table 6.1.3. Topology of H~!(h).
> We now verify the entries in the second column of table 6.1.3.

(6.4) Proof: From the fact that H is a Morse function with two nondegenerate critical points p_
of index 0 and p; of index 2, it follows that H is a Bott-Morse function on SO(3) x so(3)
with two nondegenerate critical circles: one p~!(p_;) of index 0 and the other p—'(p;)
of index 2. Here the mapping p is given by (97).
1. Because x is the minimum value of H, corresponding to the critical point p1, we find
that H'(p~'(py)) = H'(p_)=—-x. In other words, H~'(—) is a smooth circle
p~'(p_1), which is an orbit of the S'-action ¢



V6.2 The discriminant locus 255

2. By an equivariant version of the Morse lemma, p~'(p_;) has a tubular neighborhood
of the form §' x N where N is a neighborhood of 0 in R? in a normal slice to the S' orbit
P '(p_1) of the action ¢!, Restricting H + x to the normal slice gives z% —l—z% + w% +
w% + w% = Hess pflI-AI . Therefore for & values slightly greater than —y, the h-level set of
H is diffeomorphic to S' x §*. From an equivariant version of the Morse isotopy lemma,
it follows that for every —y < h < y the h-level set of H is diffeomorphic to S! x §*.

4. We now show that for i > y the h-level set H~! (k) is the total space of an S2-bundle
over SO(3). Consider the projection mapping 7 : SO(3) x so(3) — SO(3) : (4,X) — A.
Fix A € SO(3) and suppose that (A,X) € H~'(h). Then

$k(I(X),X) = h— xk(Ad, 1 E3,E3) > h—x >0,
where the first inequality follows because
(k(Ad,-1 E3,E3))* < k(Ad,—1 E3,Ad, 1 E3) k(E3,E3) = 1,

using the Cauchy-Schwarz inequality. Thus the fiber (t|H~'(h))~!(A) is a 2-sphere con-
tained in {A} x s0(3). Since SO(3) is a Lie group, the level set H~'(h) is a trivial S?
bundle over SO(3).

3. From H = Hop it follows that H~' () = p~'(H ' (h)). But H~'(h) = U. So we get
H™'(x)=p ' (U)=W. Applying equivariant Morse theory at p ! (p; ), we find that near
P~ '(p1) the level set W is a locally trivial bundle v over S with fiber C(S' x §2). A closer
look at the geometry of W shows that topologically W = S! x U. In particular, the bundle
v over S! is trivial. We start our analysis by observing that the orbit map p : SO(3) x
so(3) — 52 x R of the free S'-action (pz (91) is smooth, surjective and proper. Moreover,
p maps the smooth manifold W\ {p~'(p;)} onto the smooth manifold U \ { p; }. Because
aneighborhood % of the singular point p; of U is a cone C(S? x ') on §? x S! with vertex
at py, the set % is contractible. Thus topologically we have p~! (%) = C(S? x S') x S'.
Here {p;} x S! is the S'-orbit p~! (p;). Since U = (D" x §') U 2,51 C(S? x S') and %
have a common boundary, which is topologically S? x T2, the variety W is the disjoint
union of the total space ¥ of an S'-bundle u over D’ xS' and C (82 x S') x S! glued
together along their common boundary S x T2. Below we show that the bundle p is
trivial. This implies that W =U x § I as desired.

We now show that ¥ is topologically D’ x T2. Consider the mapping ¢ = pop, see
(92) and (97). o sends W into V, and is a smooth, surjective, and proper mapping of
W\ {p~'(p1)} onto V\ {g} with fiber T2. Now ¥ = ¢~ !(z~' (DN {m > 0})). But
V\ {q} is contractible and 7~!(Z N {m > 0}) is a closed 3-disk 2 inV. Thus ¥ =
6’1(53) is topologically D’ x T2

This completes the verification of table 6.1.3. g

6.2 The discriminant locus

In this section we examine the set of critical values of the energy momentum mapping
&M (90) of the Lagrange top.
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From the reduction to a one degree of freedom Hamiltonian system, see section 4.4, it fol-
lows that the set of critical values of &.# is very closely related to the set of critical values
of the twice reduced Hamiltonian Hj} (72). More precisely, (h,a,b) is a critical value of
& if and only if hf = h— 117" (b* —a?) — 117 'a? is a critical value of HY. In other
words, the polynomial W (c) = 2(at — Bo)(1 — 62) — (a — bo)? with & = 14 and B =
I % has a multiple root in [—1, 1], see section 6.1. Thus (a,b, ) lies in the discriminant
Ay of W. In the following we describe the singularities of the discriminant locus

> {Ay}=0}of W. We start by finding a parametrization of the discriminant locus {Ay =
0} of the polynomial W.

(6.5) Proof: To simplify the discussion we choose physical units so that f = % Then W

becomes

W(o) =0’ - (20+b*)6>+ (2ab—1)6 + 20 — a°. (99)
Note that (a,b, &) lies in the discriminant Ay of W if and only if for (s,7) € [-1,1] xR
the polynomial W can be factored as

(6—s)(0c—1) = 6> — (25 +1)0% + (s> +2s1) 5 — 5°1.

Therefore
200+ b = 25 +1 (100a)
2ab—1= s>+ 2st (100b)
@ =20 = s’t. (100c)

Thinking of (s,#) as parameters, we solve (100a,b,¢) for a,b, a as follows. Adding (100a)
and (100c) to eliminate o together with (100b) gives

@b =25+1+5 (101a)
2ab = 2+ 2st+ 1. (101b)
Adding and subtracting (101a) and (101b) gives
0<(a+b)?=(s+1)+1) and 0<(a—b)> = (1—5)*(r—1). (102)
t
A
bl
1
! > S
-1 1
—1|~m=--

Figure 6.2.1. The set . of allowable values of (s,?).
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For the inequalities in (102) to hold, (s,#) must lie in the set ., see figure 6.2.1. More
precisely, one of the following holds: (s,) € (—1,1) x (1,e0), or (1,¢) € {1} x [—1,e0),
or (—1,r) € {—1} x [1,00), or (s,1) € [-1,1] x {1}. Extracting the square root of both
sides of the equations in (102) gives

at+b=¢g(s+1)Vi+landa—>b = g(1—s)Vi—1,

where €2 = €2 = 1. Therefore

a(s,t) = ei(s+ DVi+ 1+ (1—s)Vi—1 (103a)
b(s,t) = e (s+ DVi+1—Je(1—s)Vi—1. (103b)

Substituting (103a) into (100c) we obtain

as,1) = §(2s+(1—s2)z+elsz(1—s2) t2—1). (103¢)
Therefore for each choice of € and &, the map

P .S CR* 5 R (s,1) = (als,1),b(s,1), o(s,1)) (104)
parametrizes a piece of the discriminant locus {Ay = 0}. g

Claim: The parametrization (104) is smooth except possibly when (s,7) € 9.7

(6.6) Proof: Define a smooth function F : R — R3 by
(s,t,a,b,0t) — (2a+b2 —2s—t,2ab—1—§*—2st,a> —2a —szt).

Then

-2 -1 0 2b 2
DF(s,t,a,b,0t) = ( —2s—2t 25 2b 2a 0O )

-2t —s* 22 0 -2
Since the [345]-minor of DF is 8(b*> — a?), DF has rank 3 when a® # b*. By the implicit
function theorem, the level set F~!(0) is the graph of the mapping (104), except possibly
for those values of (s,7) € . where a(s,t)2 = b(s,t)z. Using (102) it is straightforward
to check that a(s,t) = b(s,t) if and only if s =1 &t € [—1,00) or s € [-1,1) &t = 1.
Similarly, we see that a(s,t) = —b(s,t) ifand only if s= —1 &1 € [l,00) or s =1 &t =
—1. In other words, a(s,)* = b(s,7)* if and only if (s,7) € 0.7. O

We now investigate the {a = b} slices of the discriminant locus {Ay = 0}. We begin
with the {a = b} slice. Let s = 1. Then (103a) — (103c) become

a=eVi+t,b=eV1+t,a=1 (105a)
fore2=1and7 > —1. Let¢ = 1. Then (103a) and (103c) become

a=3eV2(1+s), b=13eV2(l+s), a=}+3s—1s (105b)
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for €2 =1 and s € [-1,1]. Thus {b = a} N{Ay = 0} is parametrized by (105a) and
(105b), see figure 6.2.2.

LN
R

Figure 6.2.2. The b = a slice of A, = 0.

For the {a = —b} slice let s = —1. Then (103a) — (103c) become
a=eVi—1,b=—eVi—1,a=—3 (106a)
withe2=1andz > 1. Fors = 1 and t = 1 we obtain the point
a=0,b=0, 0= 1. (106b)

Thus {b = —a} N {Aw = 0} is parametrized by (106a) and (106b), see figure 6.2.3.

(01

o (0,1/2)

a

~1)2

Figure 6.2.3. The b = —a slice of A,, = 0.

>> Next we analyze the geometry of the discriminant locus {Ay = 0} near {b = *a}.

(6.7) Proof: First suppose that (a,b, ) lies on the line {; parametrized by a — (a,€a, 1€) with
€2 = 1. Set 6 = v+ € and introduce new variables x = € — 20, y = a — €b, z = b, which
turns the line £, into the z-axis. Then W (o) (99) becomes

U®v) =V’ + (2e+x— )W +2(ex+yz)v —y*.

Recall that a cubic polynomial p(u) = au’® + bu® 4 cu +d with a # 0 has a multiple zero
if and only if its discriminant D), vanishes, that is, if and only if

D, = b*c* —dac® —4b>d — 27a>d* + 18abed = 0. (107)
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Therefore U has a multiple zero if and only if

Dy = 4(2e +x—22)*(ex+yz)? — 32(ex+yz)> —27y*
+4y?(2e +x—2%)% —36y*(2e +x— 2*) (ex+yz) = 0. (108)

Since the constant and linear terms of the Taylor polynomial of Dy at (0,0,z) vanish, the
z-axis is in the locus of singular points of { Dy = 0}. To find the tangent cone to {Dy =0}
at (0,0,z) in a plane parallel to the x—y plane, which is normal to the z-axis at (0,0,z),
we need to know the terms of degree two in x and y in the Taylor polynomial of Dy. A
calculation gives

(2e — 22)? (x* 4 2ezxy + 2&y7). (109)

Let € = 1. At each point of the segment I = {|z| < v/2} of the z-axis the tangent cone
to {Dy = 0} in a normal slice consists of a point. Since (a,b, @) = (0,0, 1) is an isolated
point of the {a = —b} N {Aw = 0}, it follows that (x,y,z) = (0,0,0) is an isolated point
of the intersection of {Dy = 0} and the normal slice. Therefore the line segment /-

Yﬁ
z)\

Figure 6.2.4. The crease singularity of A,, = 0.

is isolated in {Dy = 0}. In other words, the line segment parametrized by a > (a,a, %)
for |a| < v/2 forms an isolated one dimensional piece of {Aw = 0} called the thread. This
thread is perhaps the most remarkable feature of the set of critical values of the energy
momentum mapping of the Lagrange top. At each point of the segment I = {|z| > v/2}
of the z-axis when € = —1 or on the z-axis when € = 1 the tangent cone to {Dy = 0} in
the normal slice consists of two intersecting lines. Hence the tangent cone to {Dy = 0} at
each point in /5 is two transversely intersecting 2-planes. Recall that for (a,b, &t) on the
line /_ or on the line segments ¢; when |a| > v/2, the Hamiltonian H|(J; ' (a)NJ; ! (ea))
assumes its minimum value. Therefore the tangent cone to {Ay = 0} forms a crease, see
figure 6.2.4.

Second suppose that (a,b, o) lies along the curve 6 = {Aw = 0} N {b = a}, which is
parametrized by a — (a,a, %(—a2 +2v2¢ea — 1)), where €2 = 1 and a € I. Here I is the
interval [0,1/2) if € = 1 or the interval (—+/2,0] if € = —1. Set ¢ = v+ 1 and introduce

new variables x = 2 + (a2 —2\2ea+ 1), y=a—b, and z = b, which turns % into the
segment / of the z-axis. Then W (o) (99) becomes

U(v) =V + (4 —x+y? +2yz — 22y — 2e/22)V?

(110)
+2(2—x+y* +3yz+ 7> —2eV/2y — 2eV/2z)v — ¥

A calculation shows that the constant term of the Taylor polynomial of Dy vanishes at



260 The Lagrange top

every z in the segment / of the z-axis, whereas the linear terms in the normal slice do not.
Thus {Dy = 0} is smooth along I. So the discriminant locus {Ay = 0} is smooth on €.

Finally, suppose that (a,b, at) = (£v/2,€V/2, %) Set 0 =v+1 and introduce new variables
x=1-2a,y=a—bandz=b— V2. Then (£v/2,€V2, %) becomes the point (x,y,z) =
(0,0,0) and W (o) (99) becomes

Uv) =V + (x—2eV2z— 22V +2(x + V2ey + yz)v — y*. (111)

We want to describe the discriminant locus {Ay = 0}, that is, the set of (x,y,z) where U
has a multiple root in [0,2].

Claim: Let D be the discriminant of the cubic polynomial

F(u) = au® — bu® 4 cu— d?, (112)
where a > 0 and the constant term is a square. Let D¢ be the discriminant of the special
quartic polynomial

). (113)

Then the discriminant loci of F and G are equal, that is, {Dr =0} = {Dg = 0}.

(6.8) Proof: Using (107) we see that the discriminant of F is a*Dp = 453 — 2712, where s =

%b2 —acandt= %b3 — %abc—l—azdz. For a special quartic polynomial Q(u) = u*+Au®+

Bu+C its discriminant is Dg = 4S° — 27T?, where S = A? + 12C and T = 2A% +27B* —
72AC. For the polynomial G we find that § = 341*2(%b2 —ac)and T = 2751*3(%273 -

tabc+a*d?). Hence %DG =a’Dr. O

From ((6.8)) it follows that the locus {Dy = 0} of multiple zeroes of the cubic polynomial
U (111) is the same as the locus of multiple zeroes of the special quartic polynomial

Y(v) = v+ L (x —2eV2z = 2 +yv+ (v —26V2z— 22)* — L (x +£V2y +y2),

which is the well known swallowtail surface, see figure 6.2.5. The double line of the

Figure 6.2.5. The swallowtail surface {Dy = 0} near
(0,0,0), when € = 1. When € = —1, the surface must
be reflected in the x-y plane.

the special quartic Q is the union of the line of self intersection given by B =0 & A —
4C = 0 & A < 0 and the whisker given by B =0 & A2 —4C=0&A > 0. The double
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line of Y is the z-axis, on which ¥ (v) = (v* — %(28\@1+22))2. On the z-axis Y has a
zero of multiplicity 4 at z = 0 and at z = —2&+/2, which are swallowtail points. Y has a
double real root on the z-axis when z € I;, where I is either (—co,—21/2) U (0,0) when
€ =1or (—,0)U(0,2v/2) when € = —1. ¥ has a double purely imaginary root on the
z-axis when z € I, where I is either (—2\@, 0), when € =1, or (0,2\&), when € = —1.
Therefore the line of self intersection of {Dy = 0} is the union of the segments of the
z-axis where z € I;; whereas the whisker of {Dy = 0} is the segment of the z-axis where

Figure 6.2.6. The discriminant locus Ay = 0 near the
swallowtail point (v/2,+/2,1/2), when & = 1. When & =
—1, the surface must be reflected in the x-y plane.

z € L. For the discriminant locus {Aw = 0} the above discussion translates into the fol-
lowing. The points (a,b, ) = (£v/2,€/2, %) are swallowtail points. The whisker is the
thread, which is parametrized by a ~ (a,a, 1) where |a| < v/2. The line of self intersec-
tion is parametrized by a — (a,a, %) where |a| > /2. Since the line of self intersection
of {Dy = 0} is a crease singularity, the discriminant locus {Ay = 0} is missing the rail
of the swallowtail surface, see figure 6.2.6. Another way of saying this is that the tail of
the swallowtail surface of {Dy = 0} corresponds to multiple roots of ¥ which do not lie
in [0,2]. In figure 6.2.6 we have sketched the discriminant locus {Ay = 0} near a swal-
lowtail point. ]

Under the mapping (a,b,a) — (a,b,h) = (a,b,lflcx + %Ifl([ﬂ —a*) + 1 'a?) the
image of the discriminant locus {Ay = 0} is the set of critical values of &.#, see
figure 6.2.7.

Figure 6.2.7. The set of critical values of the energy
momentum mapping &.7 of the Lagrange top.
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We end this subsection by describing the motion of the top which corresponds to a fixed
critical value of the energy momentum mapping &.#. Suppose that the critical value
(h,a,b) lies on the smooth two dimensional piece of the set of critical values. In phase
space, the motion takes place on a two dimensional torus, see table 6.1.1. In physical
space the top is spinning at a constant speed about its figure axis, which makes a fixed
angle with the vertical axis, while turning uniformly about the vertical axis. In other
words, the top is undergoing regular precession. If the critical value lies on a crease in the
{b = —a} plane, then the top is spinning at a constant speed about its figure axis which is
pointing vertically downward. If the critical value lies on the crease in the {b = a} plane,
then the top is spinning at a constant speed about a figure axis, which is pointing vertically
upward. Here the top is said to be sleeping. This motion is stable because the total energy
of the top on the intersection of the appropriate level sets of the angular momenta is at
a minimum. If the critical value lies on the thread, then the top is either spinning at a
constant speed about its figure axis which is vertical or moving so that it is asymptotic
to this motion as time goes to +oo. Here the top is said to be waking. This motion is
unstable except at the points where the thread attaches itself to the two dimensional piece
of the set of critical values. At the points of attachment the motion is stable because it
is surrounded by bounded motions which either lie on tori or on the stable or unstable
manifolds of hyperbolic periodic orbits.

6.3 The period lattice

Let Z be the set of regular values which lie in the image of the energy momentum
mapping &.4. We have shown that if (h,a,b) € #, then &4 ' (h,a,b) is a smooth
3-torus Th3_a_b. On T,fa’b the motion of the top is the superposition of three circular mo-
tions, namely, a constant spin about its figure axis; a constant precession of its figure axis
about the vertical axis; and a variable up and down nutating motion of its figure axis.
In this subsection we look more closely at how these smooth 3-tori are defined by dis-
cussing the concept of period lattice &?(h,a,b) associated to the smooth 3-torus Th3 ab
where (h,a,b) € Z.

The period lattice &7 (h,a,b) is a lattice over Z generated by certain Hamiltonian vector
fields Xp. Specifically, for some open neighborhood % of (h,a,b) in %, the function F
lies in the free C*(% )-module generated by the angular momenta J,, J;, and the energy
H. Moreover, the flow of the vector field Xp\ThB,_a,ﬁb, is periodic of period 1 for every

(W, d.b)yew.
> The following argument constructs a basis for the period lattice £ (h,a,b).

(6.9) Proof: Clearly, the vector fields 27X;, and 27X, on T/?_a,b are elements of a basis for
P (h,a,b). To construct the third basis element, note that Tﬁa‘b = (mfom®) 1 ((HE) "' (hY)),
where 74 : J-!(a) — P% is the reduction map of the S'-action @"|(S" x J (a)) (11)
and 7 : (J9)~'(b) C P* — P{ is the reduction map of the induced S'-action &' (38)
on P%. On the smooth 2-torus Th2a7b = (m)" ' ((H) "' (h})) the vector field 27Xye has
a periodic flow of period 1. Note that (T;}, ) = T}2 ,. Here i = h{ + 31;'b? and
m((H*) ' (h*)) = (H#) "' (h%). Let @ be the rotation number of the flow of Xpa|T}2 ,
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and let 7 be the period of the flow of —adyg on the circle (H2)~!(h). From the definition
of rotation number it follows that the vector field TXya — 270X ¢ on Thzt,7 » has a periodic
flow of period 1. Choose a point p on T,Sa’b and let %" be the image of an integral curve
of X;, through p. Since X, has a periodic flow on Th% b of period 1, ¥ is a closed curve.
Consider an integral curve 7 — ¥(¢) of the vector field ¥ = Xy — @X J, which starts at
p- Since ¢ — myon”((t)) is a periodic integral curve of —adpg of period T, it follows that
T is the least positive time such that y(7') € €. Thus % is a cross section for the flow of
Y on T,f_a‘b. During the time T the integral curve of X, which starts at p, has travelled
through an angle 270®,. By construction, the vector field 7Xy — 270,X;, — 270,X), has
periodic flow on &.# ~'(h,a,b) of period 1. Thus the period lattice & (h,a,b) of the
smooth 3-torus &.# ' (h,a,b) has a basis {Xors,, Xons,, XrH-270,0,~270,J, }- O

To give a geometric interpretation of the rotation number ®,, we reduce the Lagrange top
to the Hamiltonian system (H;,P¢, {, } P;}) with one degree of freedom. This time we first
reduce by the left S'-action and then by the induced right S'-action. Because the argument
follows along the same lines as that given in §3.1 and §4, we give only the high points,
leaving the details to the reader. Recall that S' = {B € SO(3)| AdgE3 = E3}. The left
S'-action on TSO(3), given by @, : §' x TSO(3) — T'SO(3) : (B,X4) — Xpa, becomes
the action

@ :S" x (SO(3) x50(3)) — SO(3) x s0(3) : (B,(A,X)) — (BA,X),

after pulling back by the left trivialization .Z (10). The action @, is Hamiltonian with
momentum mapping _#; : TSO(3) = R : X4 — p(e)(Ad,-1 E3,X). Under ., the map
¢ pulls back to the momentum mapping

Jo:SO(3) x50(3) = R: (A,X) — k(Ad, 1 E3,1(X))

of the action ¢y. Since every value b is a regular value of Jy, the level set J, l(b) is
a smooth manifold. Because ¢ acts freely and properly on J, L(b), the orbit space
J[l(b)/S1 is a smooth manifold. Let &2, = {(Z,W) € SO(3) x so(3) |k(Z,Z) =1&
k(Z,W) = b}. From the fact that the orbit map

Ty J; (b)) = Py (AX) — (Ady 1 E3 (X)) = (Z,W)

is a submersion and every fiber 7, (Z,W) is a single @ orbit, it follows that the orbit
space J, L(b)/S" is diffeomorphic to ;. By the regular reduction theorem, the reduced
space & has a symplectic form

Qp(Z,W)(Tmy(— [U,Ady-1 E3],I(R)), Tm(— [V,Ady -1 E3] ,1(S))) =
= —k(I(R),V)+k(I(S),U)+k(1(Z),[U,V]),

where the arguments of Q,(Z, W) lie in T.wyP?. Under ¢ the Hamiltonian of the
Lagrange top

A :TSO(3) = R: Xy p(A)(Xa,Xa) + xk(Ad, 1 E3,E3)
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pulls back to H : SO(3) xso(3) = R: (X,A) — %k(I(X),X) + xk(Ad,-1 E3,E3). Since
H is invariant under the $'-action ¢y, it induces a function

Hy: Py —R:(ZW) = k(TN (W), W) + xk(Z,E3).

If & is the value of H, then &y, = h is the value of the reduced Hamiltonian I;(b.

Using the identification map i : so(3) — R, see chapter III ((1.2)), we obtain a second
model (Hp, Py, @) of the reduced Hamiltonian system (Hp, #p,€);). Here the reduced
phase space is P, = {(z,w) € R* x R3 | (z,z) =1 & (z,w) = b} with reduction map

Ty J; (D) = Pyt (A,X) = (z,w) = (i(2),i(W)). (114)
The symplectic form is

wh(sz)((_u X Z:é)? (_V X Zun)) = _(571}) + (nau) + (w,u X V).
The arguments of @y(z,w) lie in 7(; ) P,. The reduced Hamiltonian is
Hy,:P, CR* xR 5 R: (z,w) = 7 (wi+w3) + 157 ws + xzs.
On R? x R? Hamilton’s equations are
t=zxI'(w) (115a)
W= zxyes+wx I (w), (115b)
where I~ (w) = (I} "y v ! wo, Iy 'w3), are the left Euler-Poisson equations for Hy. They
are the negative of the right Euler-Poisson equations (22) of §3.1. Restricting the left

Euler-Poisson equations to B, gives the Hamiltonian vector field Xy, of the reduced
Hamiltonian H,,.

The right Hamiltonian action ®” : TSO(3) x §' — T'SO(3) : (X4, B) +— Xap with momen-
tum mapping _#r: T SO(3) — R : X4 — p(A)(Xa,T.LoE3), when pulled back by the left
trivialization . gives the right Hamiltonian action

@": (SO(3) x50(3)) x 8" = SO(3) xs0(3) : ((4,X),B) + (AB,Ady 1 X)

with momentum mapping J, : SO(3) x so(3) — R: (A,X) — k(I(X),E3). Note that the
induced right S1-action on P, is the restriction of the diagonal action

A:S'x (R*xRY) - R xR (1,(z,w)) = (Riz, Ryw), (116)
- cost —sint 0

where R, = (| sint cost 0 |. Since Z, is invariant under the left S1 action @y, it
0 0 1

induces the function J® : P, — R : (z,w) + w3, which is an integral of the reduced vector
field Xp,. Let EMy : P, — R?: (z,w) — (Hb(z,w),Jr(z,w)) be the energy momentum
mapping of Xy, .

After this preparation we are ready to give a geometric interpretation of the angle 270, ..
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Claim: Let (h),a) be a regular value of EMj. On the smooth 2-torus Thzb 4» Which is the
(hp,a)-level set of EM}, the rotation number of the flow of Xy, is ©,.

(6.10) Proof: Note that the image of the 3-torus Th% .. under the reduction map 7, is a smooth
2-torus Thz,,,a- Since T, Xy = Xp, o 7y, T, X5, = XJ;VJ o7y, and T, X5, = 0, we see that the
image of the vector field Y = TXy —270,X;, —270,X;, on Th3 . under T'7, is the vector
field Z = (TXp, —27©,X ;) 7, on Thz,,,w The vector field Z has a periodic flow of period
1 on Thz,,. ., because the vector field ¥ belongs to the period lattice &7 (h,a,b) associated to

the 3-torus 7

. . 2
hab: Therefore @, is the rotation number of Xy, on Th;,, a O

> In order to compute the monodromy in the next subsection, we need an explicit formula
for the rotation number ®,, see (119).

(6.11) Proof: We find a formula for ®, using the same technique as we used to find the rotation
number ®, see §5.3. Look at the reduced space P, as a bundle over S? with bundle
projection T : P, — S2: (z,w) > z. On T(Thzb. ,) introduce coordinates ¢ = tan~! % and
z3. The equations on T(Thz,,. »)» which are satisfied by the image of an integral curve of

Xu, \Tth“ o under 7, are obtained as follows. From the third component of the first Euler-
Poisson equation (115a) we find that

5= I N ziw2—z2w1)
= i ((Z%+Z%)(W%+W%) — (21w +Z2W2)2)]/2, where n% =1
= i ((1=B)2n (h— L' — yz)) — (b—az)?)'? (117)
since
z% +z% +z§ =1,
w1 +22w2 +23w3 = b,
S i) + 3 Wi gy =y = h
w3=a
are the defining equations for Thz,, o+ From the definition of the angle ¢ we get ¢ = Lxy, ¢ =
(z122 — 2221) (2} +23)~". Using (115a) we obtain

o = [I'slawi+ow) - L' wi( +3)] (i +2) !

= ['sb-azn)-L'a(l-3)](1-23)". (118)
Choosing 1 = —1 and using (117) and (118) shows that the rotation number ®, is given
by

G ¢ G b—az)d
210, =2 73 gdazz/i3 (b az) dzs
5 b 5 (1-2)y/2(8 - Bz)(1-B) — (b—az)?
—ZHL d (119)

1/‘13+ z3
55\ Ja(@—Bes)(1-8) - (b—azs)?
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where & = I (h— %13’1112) and B = I;x. In addition, z3 € [—1, 1] are roots of the poly-
nomial 2(& — Bz3)(1 —23) — (b —az3)*. O

6.4 Monodromy

In this subsection we examine how the 3-torus fibers of &.# fit together. Let Ibea loop
in the set of regular values X of &4 , which bounds a disk in R? that intersects the thread
at one point. The curve I' is not null homotopic in Z. As I is traced out once, we will
show that the variation of the period lattice associated to the 3-torus T} b (hyab) €
is nonzero and gives rise to monodromy. Another way to say this is that the level sets of
&/ over points in I fit together to form a nontrivial smooth 3-torus bundle over I

Thread

Figure 6.4.1. The loop I'.

Next we turn to discussing monodromy, Wthh we now define. Let I be a loop as
given above Since &4 restricted to &4~ ( ) is a proper submersion, it follows that
EM~\(T) is a smooth 3-torus bundle over I'. Because / = F\ {pt} is contractible, the
bundle &.#~'(I) is trivial. Therefore the bundle &.# ' (I) is determined by an ori-
entation preserving diffeomorphism y of the fiber 73 = &.# ! (pt) into itself, called
the monodromy map, see chapter X §1 or chapter IV §5. The map y induces the map
X+t H'(T3,Z) — H'(T3,Z), which is the monodrony of the bundle &.# ' (). The
goal of the rest of this subsection is to show that ). :( é (}) E; ) The map y is not
homotopic to the identity map on &.# ~'(pt), because x. is not conjugate in S1(3,Z) to
the identity map. Consequently, the bundle is nontrivial. This fact was unknown classi-
cally and represents a new qualitative feature of the Lagrange top.

To compute the monodromy, we need to find the variation in the period lattice as (h,a,b)
runs over the closed curve . The loop r may be smoothly homotoped within % to a loop
I in the {b = 0} plane which bounds a disk that intersects the thread at (0,0, %) This
homotopy does not change the diffeomorphism type of the three torus bundle. In other
words, the monodromy maps of the bundles &.# ~'(T") and &.4 ~'(T") are homotopic and
hence the bundles have the same monodromy. We now find the variation in the period
lattice & (h,a,0) associated to the 3-torus fiber 7;} .0 @ (h,a,0) runs once around the
curve [, see figure 6.4.2.
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Figure 6.4.2. The curve I'.
(6.12) Proof: The period lattice &2 (h,a,0) has a basis
{2nX),, 27X),, TXy — 270X, —2700X), }, (120)

where ®g = 64‘ | and 0 = @,

0_ o, or cdo
2m0p =2 /cr (1-02)y/2(a—Bo)(1—02)—a®’

where ¢ = I1h* =1, (h+ ' —I3 ) 2) and § = I x. From (119) we get
73t 2d
27:@9:7254/73 5%
T (1-23) \/206 Bz3)(1—23) —a?2}
dz3

/z; V28— Ba)(1-2) a3

where o = I, (h — %I; 1az). We calculate the variation in the period lattice along I" by
taking the limit of I" as a ™\ 0, see figure 6.4.2. Using an argument similar to the one
used in the spherical pendulum, see chapter IV §4, we find that ®; = lim,\ o @2 and

. From (88) we find that
)

—2al 1!

©, = lim,. o ®? are equal to —% if h € (—x,x) or —1 if h € (),0). Thus the variation
in G)? and @Y after one loop around I' is —1. Hence the initial basis (120) of the period
lattice #(h,a,0) becomes the basis

{27X),, 27X),, TXy —27(0) — 1)X;, — 27(0) — 1)X), }, (121)
after running around I once. Thus the variation in the bases of & (h,a,0) is given by the

0 0 0
matrix (0 0 0) . Therefore the monodromy of &,.# ~'(T'), which is the matrix taking
1 1 0

1
the initial basis of Z(h,a,0) into the final basis, is . = 0 . Conjugating y. by
1

—_— O
— o O
v

—_—_

1 0 O 1
P=|1 1 0] €SI(3,Z)gives Py.P~' =0
0 0 1 0

monodromy mapping of the 3-torus bundle &.# ! ().

0
O) , which is a standard form for the
1



268 Lagrange top

7 Hamiltonian Hopf bifurcation

Consider the family of motions of the Lagrange top where the figure axis of the top is ver-
tical and the spin |a| about the figure axis is increased through |a| = 21/B. These motions
are interesting because the top goes from unstable to stable motion. In physical terms, the
top has become gyroscopically stabilized. Mathematically, this family of motions corre-
sponds to the set of critical values of the energy momentum mapping where the thread
attaches itself to the two dimensional piece of the discriminant locus and then becomes a
crease. The goal of this section is to show that the top has undergone a Hamiltonian Hopf
bifurcation, which is the mathematical explanation of gyroscopic stabilization.

7.1 The linear Hamiltonian Hopf bifurcation

In this subsection we carry out a linear analysis of the motion of the top when its figure
axis is vertical. We show that the left Euler-Poisson equations undergo a linear Hamilto-
nian Hopf bifurcation.

After reducing the left S'-action on SO(3) x so(3), the motion of the Lagrange top is
governed by the left Euler-Poisson equations on R x R3

: =zxI'(w)

. . (122)
Wwoo=zxyxes+wxI ' (w).

Here I = diag(/;,1;,13) with 0 < I3 <2}, 0 < I} < I3 and ) > 0. The Euler-Poisson
equations are in Hamiltonian form on (R® x R*, {, }gs,gs) with Hamiltonian

By ROXRY = R (2,w) = 30y (] w3) 4 315wl + 223,

The structure matrix W= g3 «g3) of the Poisson bracket {, }gs, g3 is given in table 7.1.1.

{A,B} 21 22 23 wi wy w3 ‘ B
21 0 0 0 0 3 22
22 0 0 0 —-z3 0 2]
23 0 0 0 2 —u 0
wi 0 3 22 0 w3  —wnp
wy | —23 0 71 —Ww3 0 wi
w3 2 -z 0 w2 —wip 0
A

Table 7.1.1. The structure matrix We- (g3 gs) of the Poisson bracket {, } g gs-
To simplify matters we rescale the time by setting s = I;¢. Then (122) becomes
=2zX It w
(w) ~ (123)
W o=zxBes+wxI(w),

where [ = diag(1,1,y), 1 >y=1 /I3 > % and § = I, > 0. The rescaled Euler-Poisson
equations (123) are in Hamiltonian form on (R* x R, {, }g3, g3) With Hamiltonian

Fy RO xR® = R: (z,w) — LWl +w3) + Lywd + Bzs. (124)
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After reduction of the left S'-action, see §6.3, the motion of the top takes place on the
reduced phase space P, = {(z,w) € R x R3|(z,z) =1 & (z,w) = b}, which is defined by
the O-level sets of C; = z% +z§ —|—z§ — 1 and G = 71wy + 20wa +z3w3 — b. Sleeping or
waking motion of the top occurs when the left and right S! angular momenta are equal,
that is, b = a. After reduction, these motions correspond to the point p, = (e3,ae3) on Py,
which is an equilibrium point of Xz |P,. Linearizing X 7, about p, and then restricting to

0

0 0
TPaPa:ker< 0 0 0 0 1 > :Span{€17€27€47€5}

gives the smooth family of 4 x 4 matrices

0 ay 0 —1

o —ay O 1 0
a=Ro=| "8 0wy | (125)

B 0 —aly-1) 0

0 —a 1

Gr—1\¢ a 0 -1 0
Qa:(Wa ) = 1 0
—1 0 0 0

is a symplectic form on T}, P,. The matrix R, is infinitesimally symplectic with respect to
Qg, that is, REQ, + Q,R, = 0, or equivalently R, € sp(Q,,R).

" §

Ny %

lal <2v/B la| =2y/B la| >2\/B

Figure 7.1.1. Movement of the eigenvalues of R, for a near ag = 2\/E .

We now look more closely at the smooth family a — R,. A calculation shows that the
characteristic polynomial of R, is A* +20A? + 82, where

a=3a(P+(1-7)?°)—p and §=-a*y(1-7)+p.
Soa+d= %a2(2y— 1)>0and -6 = %(a2 —4f). Thus the eigenvalues of R, are
+iv o +va2 — 82, when |a| > 2,/

+3V2(V8 —a+iV§ + ), when |a| < 2/B
+i(2y—1)y/B, when |a| =2,/B.
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The roots +i(2y — 1)\/3 are of multiplicity two. As a varies near ag = 2\/3 , the move-
ment of the eigenvalues of R, is given in figure 7.1.1.

To understand the fusing of the eigenvalues at a = ap, we examine

0 2vvB 0 -1
R=R, = -2yy/B 0 1 0
0 0 B 0 2(r-)VB
-B 0 20r-1)VB 0
The matrix R can be written uniquely as a commuting sum of a semisimple matrix .’ =
0 r 0 0 \0/ VB 0 -1
-+ 0 0 0 . . | =vB o 1 0 _
0 0 0 and a nilpotent matrix .4 = o 5 o —VB .Here r =
0 0 —r O -B 0 \/B 0
(2y— 1)\/3 . Because R is infinitesimally symplectic with respect to the symplectic form
0 -2 0 1
_ _ 2B 0 -1 0
Q=0 = 0 1 0 0
-1 0 0 0

it follows that . and ./ are also infinitesimally symplectic.

To find the infinitesimally symplectic normal form of R, let e = (0,0,1,0) and set f =
e— #Q(e,,?e) NS e. From.#?+ 1> =0, 4% =0and Q(e,./ ¢) = —1, it follows that
Q(f, N/ f)=—1and Q(f,.-Lf) = QN f,.7f) = 0. Consequently {f&Yf,a/Vf,
7%54/1/ £} is a symplectic basis of R* with respect to the standard symplectic form

0 0 -1 0
o= (1) 8 8 I)l . The infinitesimally symplectic normal form of R is
01 0 0
0 -r 0 0
_ p-1 _ r 0 0 0
=P RRh=| _| o ¢ - |
-1 r 0

where Py = col(f, %,S’f, —JVf,—%YJVf).

To see that the smooth family @ — R, undergoes a linear Hamiltonian Hopf bifurcation at
a = ayp, we first transform it using the smooth coordinate change

1 0 0 0
[ o 1 o0 o0
a— Q= la o 0 1 (126)
0 1a -1 0
The transformed smooth family is a — U, = Qa’lRa Q,, where
0 ta(2y—1) 1 0
1
| —la@y-1) 0 0 1
Ua = 14p—a?) 0 0 la@2y—1) (127)
0 1@p—a®) —la2y-1) 0
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and the transformed symplectic form Q.Q,0, is ®. At a = ag the real symplectic linear
map Q = Q;OIPO € Sp(®, R) conjugates Uy, into the normal form %, that is, Q~'U,,Q =
Z. Using Q we transform a — U, into the smooth family a — V, = Q~'U,Q, where
Vo =%.

ag
The following result gives a smooth normal form for the family a — V,, of infinitesimally
symplectic linear maps on (R*, @).

Claim: Suppose that y: R — sp(@,R) : u — By, is a smooth family of real infinitesimally
symplectic matrices on (R*, @) with

0 b 0 0

00 0

Bo=| 1 o o b
1 b 0

For every U in some open interval / containing O there is a smooth family 7/ — Sp(®,R) :
= Py ! of real linear symplectic mappings which transforms the smooth family ¥ into
the smooth normal form I": I — sp(®,R) :

0( | —(b+vi(w)  wa(p) ‘() )

—1_ | b+vi(u 0 0 V2l

W PuBu Py = A 0 0 7(h4iv1(u))
0 -1 b+vi(p) 0

Here v; : I — R : > v;(u) is a smooth function with v;(0) = 0.

(7.13) Proof: Consider the mapping

@ :R? x Sp(@,R) — sp(@,R) : ((vi,v2),P) — P~ (Bo+ viXs + V2 Xy)P.

Here
0 -1 0 0 00 1 0
1 0 0 o o o0 0o 1
Xs=10 0 0 -1 and Xy=| 7 o o o |
0 0 1 0 00 0 0

which are both infinitesimally symplectic. Partially differentiating ¢ with respect to
(v1,v2) we obtain Dy@(0,1)(s,t)" = sXs +1Xy. Moreover, the partial derivative of ¢
at (0,1) with respect to P is D,¢(0,1)X = adp,X where X € T;Sp(®,R) = sp(w,R).
Using the fact that

sp(@,R) = imadg, & span{Xs, Xy}, (128)

which is proved in ((7.14)) below, we see that D@(0,1) is surjective. From the implicit
function theorem, it follows that the image of ¢ contains an open neighborhood % of By.
Choose an open interval I containing 0 such that for every u € I, the matrix B(u) € % .
Again from the implicit function theorem, there are smooth functions v; : I — R : 1
v;(1) with v;(0) =0 and P: I — Sp(w,R) : . — P(u) such that

By = @(vi(u),va(1t),Py) = Py (Bo+vi()Xs + va(1)Xnr) Py

for every u € 1. This proves the claim except for (128). O
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(7.14) Proof: To prove (128) we show that {Xs,X)s} spans kerady, Nkerady,, and that a com-
plement to imadp, is given by kerady, Nkerady,,. First observe that kerady, is a Lie
subalgebra of sp(®,R) with basis {Xjs, Xy, X7, Xs} where

00 0 0 10 0 0
o o0 0 o o1 o o
Xv=11 100 0 and Xr=|, o |
01 0 0 0 0 -1

This follows because [XT7XM} = XTXM —XMXT = 2XM, [XT,XN] = —2XN, [XM,XN} =
Xr, and [Xs,Xy] = [Xs,Xn] = [Xs,X7] = 0. From these bracket relations we see that the
matrix of ady,, | kerady, with respect to the basis {Xy, Xy, X7, Xs} is

[=NeleNe)

0o -2
0 0
1 0
0 0

[=ReNeNe)

Therefore the intersection of kerady,, and kerady, is spanned by {Xj;,Xs}. Similarly,

0O 0 0 O

0O 0 2 0

adyy [kerady, = | | | o o

0O 0 0 O
So keradg = (keradXM ﬂkeradxs) ® (imadXN ﬂkeradxs). Since Xs is semisimple, we
have sp(®,R) = kerady, @ imady,. Note that in ((7.13)) By = bXs — Xy. From XsXy =

XnXs and the fact that Xy is nilpotent we obtain imadg, = imady, ® (im ady, Nker adxs).
Consequently, we get sp(®,R) = imadg, EB(keradxM ﬂkeradxs). This proves (128). O

In the course of the above proof we have shown that the tangent space at By to the
Sp(®,R)-orbit & = {P~'ByP|P € Sp(w,R)} through B is imadg,. Thus the plane
spanned by Xg and Xy is transverse to O at By.

Since V,, = %, the smooth normal form of the family a — V,, near ay is the family a — ¥,

where
0( : —(r+vi(a))  wala) (Z :
_ r+vi(a 0 0 Va(a
Ya= -l 0 0 v | (129)
0 —1 r+vi(a) 0

To compute the smooth functions v; and V; in (129) observe that the families a — Y, and
a — R, are smoothly conjugate. Therefore the characteristic polynomial of Y,

A 20r+v)2A2 4+ ((r+ V)2 +wn)?

is equal to the characteristic polynomial of R,

23 (P+ (=1 = B)A>+ (B—d’v(1—-7))".

Equating coefficients and solving gives

via) = /1P + (r- 1) B~ 2r— )V/B
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va(a) = —4(a*> —4P).
Note that v; (ag) = v2(ag) = 0. Hence Y,, = %. Since

dy,
da

dV]
" da

dv
Xg+ d2

d \%)
X d —=
M an da

= —ao #07

a=ao

a=ay a=a a=ay

the curve a — ¥, crosses the orbit & = {P~1Y, P|P € Sp(w,R)} transversely at ¥,,,. Thus
the curve a — V, crosses ¢ transversely at V. Hence the eigenvalues of a small smooth
perturbation of the curve a — R,, such that the new curve lies in sp(®,R) and passes
through R, has the same behavior as those of a — Ry, see figure 7.1.1. We say that the
curve a — R, undergoes a linear Hamiltonian Hopf bifurcation at a = ay.

7.2 The nonlinear Hamiltonian Hopf bifurcation

In this subsection we show that, after reduction of the left S'-action, the Lagrange top
undergoes a nonlinear Hamiltonian Hopf bifurcation when the left and right angular
momenta are equal and the spin |a| about the figure axis increases through Z\f This
entails finding a smooth family a — Y, of local symplectic diffeomorphisms, which for
every a near 2\/3 transforms the reduced Hamiltonian F, (124) into a Hamiltonian H,
whose 4-jet at the origin is in normal form to second order. Specifically, we show that
H, = H?+&’H* 4 0(¢e*), where

Hy = —3ay—1)(&m—&m) +3(nf +n3) + §(a® —4B) (&7 + &)
and

H = 5@ +2B)(EF+E)* + ga(14y—9)(Eima— &am) (&7 +&3)
LBy=2)(Em—&m)™

Since ;5(a*+2B) > 0, the Hamiltonian H, undergoes a nonlinear Hamiltonian Hopf

bifurcation as a increases through 2\/3 . The construction of the symplectic diffeomor-
phism Y, uses techniques from normal form theory. The argument is not straightforward
as we need a constructive version of Darboux’s theorem.

To start our analysis we choose a special parametrization of the reduced space P, near
pa = (e3,ae3) given by

@.:U =D} xR* CR* = Pyt (x1,x2,y1,2) = (21,22,23, W1, W2, W3)
= (w00, (1 =3 —3) 2 91,32, (@ —x1y1 —xoy2) (1 —x3 —x3)"V/2). (130)

Here ¢,(0) = p, and D? is the 2-disc {x? +x3 < 1}. The reason why ¢, is special is that
it intertwines the right S'-action on P,, see (116), with the S'-action

S'xR* = R : (s, (x,y)) = (Rex,RyY), (131)
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where R, = (Z?;j _CS;IS) Because the reduced Hamiltonian i’; (124) is invariant under

the right S _action on P,, the Hamiltonian

~

Hy= (@) Fo:U CRY = R: () = 307 +33) + B(1 - —x3)'/2
2 -
+ 3y(a—xiyi —x22) (1 =2 —x3) " (132)
is invariant under the S'-action (131) on R*.

We now find the induced symplectic structure on an open neighborhood of 0 in U. Recall
that the reduced space P, is defined by the O-level sets of the Casimirs z% + z% + z% -1
and zyw; + zow2 + z3w3 — a of the Poisson algebra (C*(R® x R*),{, }p3.g3,")- Thus
the Poisson bracket {, }, on C*(F,) is the restriction of {, }gs,gs on C” (R3 x R?) to
C*(P,). On C=(U) define a Poisson bracket {, }u by pulling back {, }, by @,, that is,
for f,g € C*(U)

1.8ty =0:({(0") . (9) 8}n,)-

The structure matrix W“ vy of {, }y on C=(U) is given in table 7.2.1.

{A,B} X1 X V1 y2 | B
X1 0 0 0 £ 1 ,\% )c%
X2 0 0 -/ lfxffxg 0
yi 0 \/l—x%—x% 0 (a—x1y1—x2y2)(1— x%—x%)’l/z
Y2 | /13— 0 —(a—x1y1—x2y2)(1-23—23) 1/ 0
A

Table 7.2.1. The structure matrix W" of {, }v-
Since ng (U)(O) is invertible, the Poisson bracket {, },, defines a symplectic structure

Quxy) = (W) (0)™)" = (a—xiy1 —xy2)(1 =27 —x3) /2 dx; Ay
—(1 =23 —x3)""/2(dx; Adys — dxa Adyr) (133)
on an open neighborhood of 0 in R*. Note that ﬁa is invariant under the S'-action (131)

on R*. Introduce new variables (£,1) by (x,y)" = Q.(E,n)", where Q, is given by (126).
The pulled back symplectic form Q;Q, = Q, is

QuEm) = (a—ialE+&)—(Em—&m))(1-& — &) dE AdE,
+(1—EF—E})7V2(d& Adny +dE Adny —a dEy AdEy). (134)
Thus (NZG(O) = Qflﬁu(O)Qa is the standard symplectic form @ = d&; Adn; +dé; Adn, on

R*. Since Q, commutes with diag(Rs,Ry), the 2-form Q is invariant under the S'-action
(131) on R*. Pulling back the Hamiltonian H by Q, gives the S'-invariant Hamiltonian
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Ho(&.1) = §a® (E2 + &) + Sa(&ima — &m) + S} +13)
+ly(a—La(@+&) - (Em—&am) (1 -&-&)~!
+B(1-EF—EHY (135)

Introduce a formal small parameter € and replace the variables & and n by €& and en.
Then the blown up Hamiltonian H)(&,n) = S%Ha(sé ,€MN) and the blown up symplectic

form Q/ (&,1) = e%fla(séj,sn) have 4-jet at the origin given by H, = H> +&>H* 4+ 0(&*),

where
H = Jmi+nd)+i@-4B)(E+&)
—La@y—1)(Em - &m) (136)
Hy = {(ar—B)(E&+&) —3ay(Em—&m) (& +&)
+3y(Em —&m)? (137)

and Q) = Q0+ £2Q2 + 0(*), where

Q0 = d& Adn +dE Ad = © (138)
Q2 = (Ja(E2+ &) — (Eim — &m)) A& N d&,
+ LR+ E3)(dE Ay +dE A dmp). (139)

We now drop the prime.

From (138) we see that to zeroth order the symplectic form §~2a is the standard constant
symplectic form @. In other words, Q, is flat to zeroth order. Darboux’s theorem, see
chapter VI ((4.8)), states that there is a coordinate change which makes Q, flat to all
orders. However, the usual proof, see chapter VII exercise 13, does not give a constructive
way to find this coordinate change. The goal of the following discussion is to show how
to construct a coordinate change which removes the second order terms in ,. We begin
by giving a constructive proof of the Poincaré lemma.

Claim: Let A be a diagonalizable linear vector field on R” with all of its eigenvalues
strictly negative. Let ¢, be the flow of A. Suppose that 8 is a closed p-form with p > 1 in
a closed ball B, of radius r about 0 in R”. Then the (p — 1)-form a = — J;” ¢/ (A_1B) dr
satisfies § = da in B,.

(7.15) Proof: Note that ¢ = lim;_,.. ¢, = 0. The integral defining ¢ exists because every
coefficient of A_I B is bounded on B,, while the pull back of the differentials by ¢, decay
exponentially. To finish the argument we compute

d

* * _ < d * _ “ *
B=—(e:p-gip) =~ [ glorBra=—[" 41 (or.B)a

- —/: 0 (Laf) dr = —/: 0 (A dB+d(A_IB))dr
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= fd(/w o (A_p)dr), sincedf =0and ¢;d=de;
Jo

=da. O
Suppose that f is a p-form with coefficients which are homogeneous polynomials of
degree £. Choose A to be the vector field —x; 8%1 —Xn a The flow of A is @ (x) =
e~"x. The above proof of the Poincaré lemma shows that &t = — ;-— + ” (A_1PB).

Before proceeding to state and prove the formal power series version of the Darboux
theorem, we prove the following claim which gives the basic computational tools of
normal form theory.

Claim:

1. Let X be a vector field on R" on which we have coordinates x=(x1,...,%,). Then the
formal power series in € given by (expeLy)x =Y,>0 & L’,}x is the formal ﬂow of X. Here
Lyx is the vector whose i component is the Lie derlvatlve Lyxx; of the function x; with
respect to X.

2. Suppose that Q is a smooth geometric quantity on R” such as a function, a vector field,
or a differential form. Then the formal pull back of Q by the time € map of the flow of X
is given by the formal power series (expeLx)*Q =Y,>¢ %L;} 0.

(7.16) Proof:
1. From the power series for exp it is easy to see that € — exp €Ly is a one parameter
group. Therefore € — (exp &Ly )x is a one parameter group of invertible formal power
series mappings on R”. Since & (expeLx)x = Lxyx = X(x), the one parameter group
€ — exp €Ly is the formal flow of X
2. We compute

¥ d
(exp(8+n)Lx) 0= (expeLx)*(a (exp an)*Q)
n=0 n=0

= (expely)*(Lx Q).

d d
el Ly) 0= —
4 (CXPELX)"Q an

Therefore by induction C%",, (expeLy)*Q = (expeLx)* (L% Q). Hence
f’l

! den

(expeLy)* Q= Z—

n>0

87[
(expely)*Q = Z o Q. |
=0 ’

n>0

The following claim shows how to flatten a formal power series closed 2-form to second
order.

Claim: Let Q = Qp+ €Q1 +--- be a formal power series closed 2-form on R?" with Qg a
constant symplectic form. By the Poincaré lemma, there is a formal power series 1-form
a = op+ € +--- such that Q = da. Define a vector field X by X _1Q¢ = —o. Then
changing coordinates by the time € map of the flow of X flattens Q to second order.

(7.17) Proof: Applying the coordinate change exp €Ly to the 1-form o gives

a = (expely)*a = o+ eLya+0(?) = ag+£(0y + Ly o) + O(€?)
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=op+ed(X Jop)+e(on +X_Jdog) +0(e?) = ap +ed(X Jap) +O(g?),
since Qy = doy and X _1Qy = —o;. Hence
(expeLx)*Q = (expeLy)*(der) = d ((expeLx)*a)
=da = dopy+0(e?) = Qo+ 0(e?). 0
With these tools at hand we flatten S~2 to second order as follows. Clearly ﬁo = dao
where a® = £ dn; + & dn,. Usmg the Poincaré lemma and the homogenelty of Q
find that Q2 = do, where & = (A1 Q2) and A = =& % —& % —mi 55 nzam-
A calculation gives
o = [—gm(El+E7) —gaba (&P + &) + 38 (Eime — &mi)] &y
+[—§m(E7 +8) + §ai (67 + &) — 1861 (& — &m)] d&
—2E(EE+ED) dny — LE(ER + EF) dma.

Clearly o is S' invariant; while o2 is S! invariant since A and Q2 are. Put X2 =
—(Q) (). Because —d&; = (Q9)*(52-) and dn; = (Q0)( ), we find that

X; = [ymE+E) - gabal& +8) +1&(Em— &m)] am
+[—gm(EP + &)+ %aél(éf‘i‘ézz) - %51(51772—52771)] ainz

5(51"‘52) 5(514‘52) 5

5

Note that X(f is §' invariant. Pulling ﬁu back by the time £2 map of the flow of Xa2 flattens
Q, to fourth order, that is, Q, = (exp £2LX3)*Qa = Q%+ 0(e*) = o+ 0(e*). Since X?
is $1 invariant, the time €2 map of its flow commutes with the S _action on R*. Therefore
in the flattened coordinates the new Hamiltonian is ! invariant and is given by

Hy = (expe’Lyz) H, = H} + €2 (H} + L2 H?) + 0(e%) = H, + ’H, + 0(&"),

where

=37 +m)+ §(a® —4B) (& + &) — 3aRy— 1) (&M — &m)
(EP+E)+BE+E) (Em—&m) + 1 2y— D (&M —&m)?
§(E7+&) (i +m3),

A= %az, and B = %a( 14y —9). Flattening , at order four or higher does not change
the terms through second order in H,. Since the occurrence of the Hamiltonian Hopf
bifurcation depends only on the terms in H,, up through second order in H,, we will treat
H, as a Hamiltonian on (R*, ).

D> I\)\'—‘

We now find the normal form of H, to second order using representation theory. The
algebra of S' invariant polynomials on (R*, ®) is generated by M = %(512 +&2),N=
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%(1’]12 + 1’]22), T=E&n +&ny, and S = &1 — &1ny. Note that T2 4+ 8% = 4MN. Using
the Poisson bracket {, } associated to the symplectic form @, we find that {M,N,T,S}
form a Lie algebra . with bracket relations {T,M} = —2M, {T,N} = 2N, {M,N} =T,
and {S,M} = {S,N} = {S,T} = 0. In other words, .Z is isomorphic to sl(2,R) x
R. Let 2 be the vector space of homogeneous quadratic polynomials on .#, which is
spanned by {M? MN,MT,MS,N* NT,NS,T?,TS,S*}. On 2 we have a representation
of sl(2,R) given by ad : sl(2,R) — gl(2,R) : X > ady. From the theory of represen-
tations of sl(2,R) we know that 2 = kerady @ imady. Explicitly, kerady is spanned
by {M?,MS,S?,4MN — T?} and imady is spanned by {adyM? adxM?, adyM?,ad}M?,
ady(MS),ad% (MS)} = {—2MT,2T? +4MN,12NT, 24N> 2ST,2NS}. We have

6MN = (T?> +2MN) + (4MN —T?) = —ady(MT) + S*.
Writing H,, in terms of {M,N,S,T} gives
H, =N+ —4p)M—La2y—1)s
H) = 4AM> +2BMS+ L (2y—1)S> = IMN

To remove the term — %MN from H, and thus bring H, into normal form to second order,
we apply the change of coordinates exp £2ad | T and obtain
12

2 —_— =2 2 554 =2 4
H, = (expe ad%MT)*Ha =H,+¢e(H, +ad%MTHa)+O(£ )

—H, +€X(H, — }ad_»MT) +0(e*)
-2 .
= H,+€*[Hj — fyady(MT) — 5 (a* = 4B)M”]
=H? 4+’ H} +0(eh).
Here H? = ﬁf and
H} = (4A— L (a* —4B))M* +2BMS + L (3y—2)$?
— L(a®+2B)M> + La(14y—9)MS + L 3y—2)s%.

Thus the 4-jet of H, at the origin is in the proper form for a nonlinear Hamiltonian Hopf
bifurcation.

8 Exercises

1. Let (h,j) be a regular value for the energy momentum mapping &.# of the mag-
netic spherical pendulum. Suppose thatI": R — &.# - (h,j) C TS? is an integral
curve of the Hamiltonian vector field Xy of the magnetic spherical pendulum. Let
7 : TS? — S? be the bundle projection.

a) Show that the curvature of y = moI" is a decreasing function of its height on S°.
Deduce that y has no downward pointing cusps.
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b)* Does the rotation number ©(F, j) of the flow of Xy on &.4 ' (h, j) satisfy an
estimate of the form C; < O(h, j) < C, where C; are positive constants which do
not depend on % or j?

. Give an argument (not a calculation) why the coefficient of (7 +&7)? in the normal

form for the nonlinear Hamiltonian Hopf bifurcation of the Lagrange top does not
depend on the parameter y = I; /1.

. Give a geometric explanation how a cusp catastrophe (= the discriminant locus) of

the generic cubic polynomial F (u) = au’® — bu* + cu—d?, where a > 0 and becomes
a swallowtail surface (= the discriminant locus) of the special quartic

b d b c
4 3 _
Glu) =u 2a" +\/ﬁu+<l6a2 4a)'

In particular, explain why it is essential that the constant term in F is a square.

. Lift the S'-action

S'xR®2 5 R?: (t,x: (x1,%2)) — Ry ("‘) = <°°S’ 75"”) (X‘>

X2 sint cost X
to a Hamiltonian action S' x T*R? — T*R?: (1, (x,y)) > (R.x,R;y) on (T*R?, 4 =
dx; Ady; +dx; Adyz) with momentum mapping J : T*R? 5> R: (x,y) = x1y2 —
x2y1. Also consider the symplectic action of Z, on (T*R, @, = dx; Ady;) which

is generated by (xj,y;) — (—x1,—y1). The goal of this exercise is to show that the
singular reduced spaces J~'(0)/S! and T*R/Z, are isomorphic.

a) Show that the map y : T*R — J~1(0) C T*R? : (x1,y1) > (x1,0,y1,0) induces
a homeomorphism between T*R/Z; and J~'(0)/S".

1
b) Because y*wy; = @y, show that y* : CW(T*RZ)S — Cm(T*R)Zz S foyis

an injective Poisson map.

c) Using Schwarz’s theorem show that the polynomials x?, y?, and x1y| generate
C=(T*R)*. Because

V(1 +33) =1, v (v +y3) =1, and ¥ (xy1 +x232) = X131,

deduce that y* is surjective and hence is an isomorphism of singular reduced
spaces.

. Consider the Lagrange top after reduction of the left S'-action, see §6.3. In other

words we look at the reduced Hamiltonian system (H,, P,, ®,), which is invariant
under the Hamiltonian right S'-action given by (116). The goal of this exercise
is to carry out singular reduction of this right S' symmetry near the fixed point
Pa = (e3,ae3).

Let @, be the coordinate change (130), which maps Dy x R? = {x} + x3 = 1} x R?
into a neighborhood of p, in P,. Recall that @, intertwines the right S'-action (116)
on P, with the S'-action (131) on R*. In addition, @, pulls back the Hamiltonian



280

Lagrange top

system (H,, P,, ®,) to the Hamiltonian system (ﬁa,R4,§AZa), where H, is given by
(132) and Q, by (133).

a) Near p, show that the pull back by ¢, of the momentum map J¢: P, CR3 x R? —
R: (z,w) — w3 —a of the right S I_action on P, is the momentum map

= -1/2
JH:D CRY = R (x,y) = a— (xiy1 +x2y2) (1= (6] +13)) !

of the S'-action on (R*, Q).
b) Let 7 : (J%)~'(0) — P, = (J*)~'(0)/S" be the reduction map. Consider the
symplectic map

N o . /2, _
YT R=R*= (J*) " (0) C TR =R*: (¢,p) = (4,0,a(1- (1-¢*) *)g", p).
Consider the linear Z,-action on R? generated by ( : R?> = R?:(q,p)— (—q,—p).
Show that ©% = oy is an orbifold chart for P,, that is,

1. The mapping ¥ is Z,-invariant.

2. The induced map O : R? /Ly — P, is a diffeomorphism of differential

spaces.

In this chart show that ® = y/*ﬁa = —(1—¢*)""2dgAdp is a symplectic form
on P,.

¢) Since ﬁa is invariant under the S I_action, there is an induced Hamiltonian ﬁa on
the singular reduced space P,. In the orbifold chart (R?, ©) show that
. P 2 _
Hu(q.p) = V" Ha(q,p) = 3p° + 50 (1= (1-¢%)"*) ¢ 2.
d) Analyze the behavior of the one parameter family of one degree of freedom

Hamiltonian systems (H,, R%, @) near (0,0). Can one see if this family has mon-
odromy?
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Chapter VI

Fundamental concepts

In this chapter we describe the basic mathematical structures needed to do Hamiltonian
mechanics. We begin with a section on symplectic linear algebra. The motion of a Hamil-
tonian system takes place on a symplectic manifold, that is, a manifold with a closed non-
degenerate 2-form, called a symplectic form. The symplectic form allows one to turn the
differential of a function, called a Hamiltonian, into a vector field whose integral curves
satisfy Hamilton’s equations. An algebraic way of treating Hamiltonian mechanics is via
Poisson brackets. When the vector space of smooth functions on a symplectic manifold,
which is a Lie algebra under Poisson bracket, is made into an algebra using pointwise
multiplication of smooth functions, we obtain a Poisson algebra. The symplectic formu-
lation of mechanics can be recovered from this Poisson algebra.

1 Symplectic linear algebra

In this section we treat the fundamentals of symplectic linear algebra.

Let V be a finite dimensional real vector space. A skew symmetric bilinear form
0 :V xV — Ris said to be nondegenerate if the linear mapping 6% : V — V* : v o* (v)is
bijective. Here 6*(v) is the linear map 6*(v) : V — R:w > &(v,w). A vector space V on
which is defined a nondegenerate skew symmetric bilinear form o is called a symplectic
vector space. © is called the symplectic formonV.

Example 1. Let W be a finite dimensional real vector space and let V =W x W*. Define a
bilinear form & on V by & ((w, ), (w’,a')) = au(w') — o/ (w), for every (w,ax),(w',a') €
W x W*. (V,0) is a symplectic vector space. Clearly o is skew symmetric. We need
only show that ¢ is nondegenerate. Suppose that for some (w, ) € W x W* we have
0=o*((w,a))(w,a) for every (W,a') € W x W*. In particular, for every w' € W we
have 0 = o*((w,)) (w',0) = o((w, @), (w',0)) = at(w’), that is, & = 0. Similarly, for
every o € W* we have 0 = o*((w,)) (0,@’) = —a’(w), that is, w = 0. Hence the linear
map o* is injective. Since dimV* = dimV, o* is surjective and hence bijective. g

Let (V,0) be a symplectic vector space and let W be a subspace of V. The symplectic
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perpendicular W° of W in V is the set of all vectors v € V such that ¢ (v,w) = 0 for every
w € W. Below we assemble the basic properties of symplectic perpendicularity.

Fact: Let U, W be subspaces of (V,0).
a)IfU CW, then W° CU°.
b) USNWC = (U +W)°
¢) dimV = dimU +dimU°.
d)yU = (U°)°.
e) (UNW)® =U° +W°.

(1.1) Proof:

a) Suppose that v € W°. Then o (v,w) = 0 for every w € W and hence for every w € U,
because U C W. Therefore v € U°.

b) Suppose that v € U NW°. Then o (v,u) = 0 for every u € U and o (v,w) = 0 for every
weW.So0=0c(u+w)=0o(vz) forevery z € U+ W. In other words, v € (U + W),
that is, U "W° C (U+W)°. Because U CU +W and W C U + W from a) it follows
that (U +W)® CU® and (U+W)°® C W°. Consequently (U +W)® CU°NW€°. Thus
b) holds.

¢) Consider the linear mapping G : U — (V/U")* :u s o*(u) and let v € V. Since
o' (u)(v+U°) = 6(u,v+U°) = 6(u,v), the mapping & is well defined. Suppose that
6(u) = 0 for some u € U. Then for every v+U® € V/U® we have 0 = o(u)(v+U°) =
o (u,v) for every v € V., which implies that u = 0, since o is nondegenerate. Thus the
linear mapping G is injective. So dimU < dim (V/UG) = dim (V/U°) = dimV —
dimU®. Next consider the mapping G = toc?: V — U*, where 1 : V* — U* is the
inclusion mapping. Now 0 = 6(v) for some v € V if and only if for each u € U we
have 0 = o(v,u), that is, if and only if v € U®. Thus U® = ker6. Consequently, the
induced map ¥ : V/U® — U* is injective. So dimU* > dimV /U?, which gives dimU =
dimU* > dimV —dimU°. The above inequalities show that dimV = dimU + dimU?°,
that is, ¢) holds.

d) Suppose thatu € U and v € U°. Then 0 = o (u,v), which implies that u € (U®)°. Thus
U C(U°)°. By c¢) we have dimU +dimU°® = dimV =dimU° 4+ dim(U?°)°, which gives
dimU = dim(U?)°. Therefore U = (U°)°.

e) We compute

(UNW)° = (U°)°N(W°)°)°, usingd)
:((U"—i—W")")c7 using b)
=U°+W?°, usingd). O

A subspace W of a symplectic vector space (V, o) is isotropic if and only if W C W°. In
other words, W is isotropic if and only if o|(W x W) vanishes identically.

Example 2. Let u be a nonzero vector in V and let U be the subspace of V spanned
by u. Then U is isotropic, because o (u,u) = —0(u,u) by skew symmetry of o. Hence
o (u,u) =0. O
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Let W be an isotropic subspace of the symplectic vector space (V, o). W is Lagrangian if
and only if W = W°.

Fact: Every isotropic subspace of a symplectic vector space (V,0) is contained in a
Lagrangian subspace.

(1.2) Proof: Let W be an isotropic subspace of (V,o). If W = W° we are done. Otherwise,
because W is properly contained in W, there is a nonzero vector v in W which is not in
W. Let U be the space spanned by v. Then U is isotropic, thatis, U CU°®. AsU CW°, we
deduce that U CU° NW°. From ((1.1a)) and ((1.1d)) it follows that W C U°. Because
W is isotropic, W C W€ and hence W C U° NW€°. Therefore U+ W CU°NW° =
(U+W)°, that is, U + W is isotropic. Because W is properly contained in U + W, after
a finite number of repetitions of the above argument we have constructed a Lagrangian
subspace of (V, o) which contains W. O

Example 3. If (V,0) is the symplectic vector space constructed in example 1, it follows
that W x {0} and {0} x W* are Lagrangian subspaces. O

A subspace W of a symplectic vector space (V, o) is symplectic if and only if o|(W x W)
is nondegenerate. Below we collect together some properties of symplectic subspaces.

Fact:

a) W is symplectic if and only if W NW° = {0}.

b) If W is a symplectic subspace, then so is W°.

c) Every symplectic vector space (V,0) is the direct sum of o-
perpendicular 2-dimensional symplectic subspaces (V;,o|(V; x V;)),
which have a basis {e;, f;} with respect to which the matrix of &|(V; x V;)
. 0 -1
(0 1)

d) If Y is a subspace of W which is complementary to W NW° in W, then
Y is symplectic. In fact, ¥ is a maximal symplectic subspace of (V, o)
contained in W.

(1.3) Proof:

a) Suppose that w' € WNW°. Then o(w',w) =0 for every w € W. In other words,
ci(w') =0 W*. As 6|(W x W) is nondegnerate, it follows that w’ = 0. Hence W N\W© =
{0}. Conversely, suppose that 6*(w') = 0 € W* for some w' € W. Then for every w € W,
we have 0 = 6(w',w), that is, w' € W°. Hence w' € WNW? = {0}. Therefore the map
o : W — W* is injective and hence surjective because dimW = dimW*. Thus o|(W x W)
is nondegenerate.

b) Since W is symplectic, {0} = WNW° = (W°)° NW?, using ((1.1d)). From a) it
follows that W€ is symplectic.

¢) Let v be a nonzero vector in V. Suppose that for every v/ € V, 6(v,v') = 0. Then
v € V. Since o is nondegenerate, it follows that VNV ° = {0} and hence v = 0, which
is a contradiction. Thus there is a v/ € V such that 6(v,v/) = r # 0. Let V; be the space

spanned by {v, %v’}. The matrix of o|(V; x V1) is < (1) 7(])

other words, (Vi,6[(Vy x Vi)) is a symplectic subspace of (V, ). Set W = V. Repeat the

> , which is invertible. In
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above argument on the symplectic vector space (W7 o|(W x W)) After a finite number of
repetions we find that V = Zipzl @V; where (Vi, o|(V; x V,)) are 2 dimensional symplectic
subspaces, which are mutually o-perpendicular and hence the dimension of V' is even.

d) Let U =kero|(Wx W) ={we W|G(w,w’) =0 for every w’ € W}. Then by defini-
tion U = WNW®°. The skew symmetric bilinear form o|(W x W) on W induces a skew
symmetric bilinear form 6 on W /U defined by 6(w+U,w'+U) = o (w,w'). This defi-
nition is all right because o(w,U) = 0 for every w € W and U is a o|(W x W)-isotropic
subspace of W. In addition, & is nondegenerate; for if 0 = 6(w+U,w' + U) for every
w +U € W/U, then 0 = o(w,w') for every w' € W, that is, w € kero|(W x W) = U.
Sow+U =0+U. Let Y be a complementary subspace to U in W. Consider the linear
map @ :Y — W /U :y+~ y+U. Then ¢ is an isomorphism such that ¢*G = o|(Y x Y).
Consequently, the skew symmetric bilinear form |(Y x Y) on Y is nondegenerate, that
is, Y is a symplectic subspace of (V, o).

Suppose that Y’ is a symplectic subspace of (V, o) which is contained in W and properly
contains Y. Then dimY’ > dimY and hence Y'NW NW? # {0}. This assertion follows
because

dimY +dim(WNW°) =dimW = dimY’ + dimW NW° —dim(Y' "W NW°),

and hence dimY' NWNW®° =dimY’ —dimY > 0. Letz€ Y N"WNW?. Then 0 = o(z,))
forevery y € Y/ CW. Since Y’ is symplectic, we deduce that z = 0, thatis, Y "\WNW° =
{0}. This is a contradiction. Therefore ¥ is a maximal symplectic subspace of (V,0)
contained in W. (]

The following decomposition is called the Witt decomposition,.

Fact: Let (V,0) be a symplectic vector space and let W be a subspace of V. Then V may
be written as V =X @Y @ Z where X,Y and Z are o-perpendicular symplectic subspaces
suchthat W =X&(WNW°), W =Y @ (WNW?), and WNW? is a Lagrangian subspace
of Z.

(1.4) Proof: Choose X C W complementary to W NW€°, and Y C W° complementary to W N
W€°. Then ((1.3d)) shows that both X and Y are symplectic. Let Z = (X @Y )°. Then Z is
symplectic as well. Hence V =X @Y ¢ Z is a decomposition of V into o-perpendicular
symplectic subspaces. W MW C Z by construction. Let 7 be an isotropic subspace of Z
with the properties that TNWNW° = {0} and T & (W NW°) = R is symplectic. Then
RO X @Y is symplectic. To see that RG X @Y =V observe that

W=Xo(WNW°)CX®RCXDYDR
and
We=Y®e(WNW°)CYGRCXDYDR.

Therefore (REX®Y)° CWNWC CR. AsSRCR®X DY, we find that ( REX DY)° C
R°.So (R®X@®Y)° CRNRC® = {0}, because R is symplectic. Therefore V=ROX DY .
Hence dimR =dimZ. AsRC Z, we get R =Z.

We now show that W "W is a Lagrangian subspace of Z. Since Z=T & (WNW?9), it
follows that

dimZ = dim(W NW?) +dim7 < dim(WNW?)+ 1 dimZ,
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because T is an isotropic subspace of the symplectic subspace Z. Therefore %dimZ <
dimWNW?. But WNW?¢ is an isotropic subspace of Z. Hence dim(W NW?) < %dimZ.
Thus %dimZ = dim(WNW?), that is, W NW? is a Lagrangian subspace of Z. O

2 Symplectic manifolds

In this section we define the concept of a symplectic manifold.

A symplectic manifold (M, ®) is a pair consisting of a smooth manifold M with a 2-form
® which is

1. closed, that is, dw = 0;

2. nondegenerate, that is, @(p) is an nondegenerate skew symmetric bilinear
form on T,M at each p € M. In other words, (T,M,®(p)) is a symplectic
vector space.

Example 1. Let V be a real vector space and set M =V x V*. On M define the constant
2-form ® by o((v,a),(V,&')) = a(v') — &'(v), see example 1 §1. Then (M, ®) is a
symplectic manifold.

Example 2. Consider the cotangent bundle 7*N of a smooth manifold N. This is the
phase space of classical mechanics, which is typically the space of all positions and
momenta of a physical system. To show that 7*N is a symplectic manifold we first define
the canonical 1-form 6 by

00 (ve) = 0(TTvg). (1)

Here t: T*N — N is the map which assigns to every covector ¢ in T*N its point of
attachment 7(o) in N and v, is a vector in the tangent space Ty (T*N) to T*N at ot. The
canonical 2-form or symplectic structure Q on T*N is the 2-form Q = —d 6. Therefore
Q is closed. We have not yet shown that Q is nondegenerate.

Figure 2.1. The canonical 1-form on T*N.

First we prove some general facts. Let ¢ : N — N be a diffeomorphism of N and let
> @:T*N—=T*N:ar (Tyra)® ') o Then by definition 0@ = @ot. Also ¢*6 = 6.

(2.1) Proof: For every o € T*N and every vy € To(T*N) we have

((9%6)())ve = 0(9())(Te®(v)), by definition of pull back
=¢(a) (Ta(a)T(Ta@(va )), by definition of 6
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= (Tq)('[(a))(P71)ta(T('ﬁ(a)T(Toca(va)))’ by definition of (/ﬁ
(To(e(ay @ ) (Ta@(Tat(v)))), since Top = @ot gives TToT ¢ =T TT.
Tot(ve)) = 0(0)vq. O

On our way towards showing that Q is nondegenerate we first define a connection on
T*N. Let X be a vector field on N w1th local flow @ and let X be the vector fieldon T*N,

whose infinitesimal generator is (pr = (p, Then infinitesimalizing 7(¢; ( ) =X (t(a))
gives T7(X (o)) = X(1(e)) for every a € T*N. Thus X is a horizontal vector field on

T*N for an Ehresmann connection on the bundle 7: T*N — N, whose vertical distribution
is defined by o — ker T, T, see (2) below and chapter VIIL. Given a 1-form 3 on N define
the vector field XA by

xXB(a) = 2| (a+1B(r(@).

dr =0

Here (ptxl3 () = a+1tB(t(a)) is the flow of XP on T*N. Because T, (X (ax)) = 0 for
> every o € T*N, we say that XP is a vertical vector field on T*N. At every point o € T*N
we have

To(T*N) = spanR{XB(Oc)“i' e Ql( )}@spanR{X |X e Z(N)}, 2
where 2 (N) is the set of vector fields on N and Q! (N) is the set of 1-forms on N.
We are now in a position to prove
Claim: The canonical 2-form Q on T*N is nondegenerate.
(2.2) Proof: Since T7(X (a)) = 0, it follows that for every & € T*N we have
0(0)(x* (@) = a(T2(xP (1)) = 0. )

Recall that X is a vector field on N. Let fX (o) = a(X (t(t))) = 6(a)(X (t)). Then fX
is a smooth function on 7*N. Now

f(a+iB(t(a))

=0
= t:§a+zﬁ(r(a)))X(r(a)), since 7(a +1B(t(a))) = 7(x)

= B(r(a))X(t(@)) = (BIX)(7(a)).
So Lys fX = (B|X)°t. For every 1-form B; and 3, on N we have

(Lys X)) =

do(xP xPy =xP _1d(6(xP)) —xP _1d(e(xP)) - [xP xP] 6
= —(0|[xP1 xP]), since 6(XP) = 0, using (3)
=0, “
since [XP1, XP2] = 0. This follows because the flows (pX " and (ptxﬁ2 commute. Also

do(xP,X)=xP _1d(e(X)) -Xx 1 d(6(xP)) - [xP,Xx] 16
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= Lys fX — (0][xP X]), using (3) and the definition of fX.
Since 6(XP) =0 we get
0="Lg(6(xP)) = (Lg0)X +6((X,XP]) = 6(1x", X)),
because ((pt)? )"0 = 6 implies L3 6 = 0. Therefore

d6(XP,X) = Lyp * = (BIX)er. 5)

Let (x1,...,x,) be local coordlnates on N near n. Then {dx;(n),...,dx,(n)} are cood-

inates for T*N and {%| 5 a | } are coordinates for 7, N. With respect to the basis
1 X /\

{x%i(ay,), 8x |a iy of Tg, (T*N) the matrix (d6(a,) (X% (at) ’3)5 |a is the matrix

((dx;(n )|8x,-|n>> = (8;). Thus the matrix of the 2-form Q at a, is (% o,)> Where

Dq, = (d"(“n)(a%la,,v ai”a”). Since the matrix of Q is invertible for every o, € T*N,
the 2-form Q is nondegenerate. g

Example 2': Suppose that T*N is the cotangent bundle T*G of a Lie group G. Let g* be
the dual to its Lie algebra g. Then 7: T*G — G : &g — g is a trivial bundle with bundle
projection 7. A trivialization of T*G is given, for example, by left translation

L :Gxg = T'G:(g,0) = (TyLy1) o = 0, (6)

where L, : G — G : h — gh is left translation by G. The map . identifies a covector at a

point with a left invariant 1-form, which may be thought of as an element of g*. Pulling

back the canonical 1-form 6 on 7*G by the mapping .Z gives the 1-form ¥ = .£*60

on G x g*. Similarly, pulling back the canonical 2-form Q on 7*G gives the 2-form
=2%*Qon G X g*.

We calculate the 1-form ¥ as follows. First we compute the tangent of the mapping 70 %.
For & € g and 8 € g*, the mapping

(pt(gvﬁ) IGXQ* — Gxg* : (g7(X) — (geXplf,OH'tB)

is the flow of the vector field X(¢-F) (g, at) = (T.L¢&,B) on G x g*. Using the left trivial-
ization ., we pull back the action L of left translation to obtain a G-action £ on G X g*
defined by £, (h, &) = (Lgh, o). Note that X -8 is invariant under the action ¢ because

0P (ty(h, @) = P (gh, ) = (ghexpi&,a+1B) = Ly (0*F) (h,a)).

Therefore the tangent of 70 % is

d d
Tioa (2o L) (Tl B) = o | T2 (0" (g.0)) = o Lyexpi§ = TL,E.
t=0 t= 0

Consequently,
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B(g,00) (L&, B) = 0(L (g, @) (T(g.0)L (TeL&, B))
= g (Tg.a) (To L) TLgE  B)) = g(T.LeE) = a(E). (7

To compute the 2-form ®, we use the formula
,d@(X(iwﬁ)’X(TI‘V)) =—x&B) _ydaxmn_19)+x00 _JdaxEP_19)+[xEL xMN]_y

for the exterior derivative of ©. We now calculate each term on the right hand side of the
above equation. For the first term, we find that

(XEP_dxMY_19)) (g, 0) = Ly ) (XM _109) (g, @)

= 2 Oy i) (g, @)
de|,_
= = Dlgexpré,o+1B) (X7 (gexpiE, a+1B))
t=0
= = O(gexprE,a tiB) Tlgeupien. 1) = S| (a-+iB)(n) = B(n).
t=0 t=0

The second term is calculated similarly. The third term follows once we notice that

(MY 4y (5:8) (1Y) (5!3))(&0‘)

[X(évﬁ)’X(HVY)](g7 a) = — ((P \/ o(p \/, O(p\/ O(P\/,

dr|,_

—| (gexpVi&expvimexp—vi&exp—Vin, a)

dr|,_
= (TeLg [&77” 70)7

as then
(X EP) x11)) (g, 0) = B (g, ) (T.Lg [§,1],0) = (€, 7).
Therefore the 2-form w on G x g* is given by

(g, 0)((TeLs§, B). (TLgn, 7)) = —B(n) + ¥(&) + a([€. n]). ®)

From (8) it is immediate that @ is a nondegenerate 2-form on G x g*. Since @ = .Z*Q
and Q is closed, it follows that ® is closed. Hence ® is symplectic. Because .Z is a
diffeomorphism, we deduce that Q is symplectic. (]

Example 3. Another important example of a symplectic manifold is an orbit &), of the
coadjoint action of a Lie group G on the dual g* of its Lie algebra g. In more detail, the
coadjoint action of G on g* is defined by

Ad*:Gxg*—g":(gVv)— Ad;,1 v )
where the adjoint action Ad of G on its Lie algebra g is

d
—| gexptEg!.

Ad:Gxg—g:(g,&)—
dr},2,
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> The coadjoint orbit O, through u € g* is {v = Ad, u € g*| g € G}. The following calcu-
lation shows that the tangent space T, 0, to 0, at v is {ad% v|& € g}. Ttis reasonable that
this should be the case, because this equality is obtained by differentiating the defining
relation of &);. Here ad is the tangent to the mapping Ad in the direction &, that is,

d
adf g—gin= ar Adexptéjn = [5,77]7
t=0

where [, ] is the Lie bracket on g.

(2.3) Proof: For & € g the curve y5 : R — Oy s Ad. eV lies in 0, and passes through v

exp
at s = 0. y° represents the tangent vector —ad% v to the coadjoint orbit &, at the point v

J)i(s) =4 éd’ & V= —ad; v. Therefore 7,0, C {ad;;v| & € g}. To prove

exp —
s=0 P

the reverse inclusion, for some & € g consider the curve I'> : R — Oy s exp(sadé) u.

d
because g

The image of I'¢ is contained in Oy because exp(s ad%)u = Ad’exp seht. Since I5(0)=pu

and 11%(0) = ad’, we are done. O
For & € g define the vector field X© on &, u by X 3 (v)=-— ad’g V. As is easily checked the
flow (pS5 of X5 on Oy is

s

o (V) = Adl, V- (10)
On 0, define a 2-form Q by

QV) (X4 (v),X1(v)) = =v([&.m)). (1D
Claim: Q is a symplectic form on the coadjoint orbit &,.

(2.4) Proof: First we show that Q is closed. Recall that the exterior derivative of an n-form ®
is

dO(X0, X1, -, Xn) = Yo (—1)1d(Xi 1 ©) (X0, .., Xis - .., X)) .
. 75(\ia e

+ Yo<ic jen(—1) 1 ([Xi, X;]10) (Xo, .. X Xn)-
Applying (12) to the 2-form Q gives
dQ(X%, XM X¢) = d(x¢_1Q)(X",X%) +d(x"_1Q)(x%,x%)
+d(X* Q) (x5, X" —Q([x4,X"],x%) — (x4, x°], XM — Q([X",x°],X%). (13)

Again using (12), this time to compute the exterior derivative of the 1-form X 10, we
obtain

d(X%_1Q)(x1,x%) =d(X" 1 (x5 _1Q)x5 —d(X° 1 (X5_1Q)X" — X1, X5 (X5_1Q).
Similarly by cyclically permuting the variables in the above equation gives

d(XT_1Q) (X%, x8) = d(X°_I(X"_1Q))XE —d(X5_I(X"_1Q))X¢ - [X¢,X5)_1(X"_1Q)
and

d(XS_1Q)(X%,XM) = d(XE (X5 _1Q)xT —d(x"_1 (x5 _1Q))xE —[x%,x"_1(x¢_1Q).
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Substituting the above three equations into (13) gives
dQ(X%, XM x6) = d(X"_i(x® _1Q))X° —d(x° (x5 _1Q))X"
—d(X® (X" _Q)X¢ +d(x® (X" _1Q))X°
+d(X° (X Q)X —d(X"_J(X°_1Q))X". (14)
We calculate the first term in (14) as follows

AX_IXE_1Q)(V)XE(v) = (Lye QXE, X)) (v)

2 2(9f (v)) (¥ (95 (V) X" (9 (V)

of(v([E,m]), using (11)

= ad’C v([€,n]), using (10)
=v([£,[E.n]]).

The other terms in (14) follow similarly. Therefore

dQ(XS.X1.X%) = v([S,[E.n]]) —v([n.[E.8])—v([¢ [n.E])
+V([E, [, 81 + V(. [E,E1D) — v(E,[E,m))

2v([E. 18]+ (& [, ET1+[n.[¢.€1)
0

by the Jacobi identity. Thus d Q = 0, which is what we wanted to show.
To see that Q is nondegenerate, suppose that 0 = Q(v)(X¢ (v),X"(v)) for every X (v) =
— ad’n v € Ty 0. Then from the definition of Q it follows that for every 1 € g, we have

0=v([&n]) = v(adgn) = (adi v)(n) = —X*(v)(n),

that is, X% (v) = 0, since X (v) annihilates all of g*. Consequently € is nondegenerate.
Note that Q is invariant under the coadjoint action of G on &,. O

3 Hamilton’s equations

In this section we define the concept of Hamiltonian vector field.

On a symplectic manifold (M, ®), the nondegeneracy of the symplectic form @ implies
that the mapping ®*(p) : T,M — T;M defined by *(p)(v)w = @(p)(v,w) forv,w € T,M
is an isomorphism for every p € M. Denote the inverse of ®(p) by ®’(p). For each
smooth function f on M we may define the Hamiltonian vector field Xy of the Hamilto-
nian function f by Xy(p) = @’(p)(df(p)). or equivalently Xy ® = df.

Example 1. Consider the cotangent bundle 7*N with its canonical symplectic form Q.
Suppose that f : T*N — R is a smooth function. We calculate a local expression for the
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Hamiltonian vector field Xy as follows. Let U be an open subset of R". Then locally
T*N is T*U = U x (R")* with bundle projection 7 : T*U — U : (u, ) — u. From the
definition of the canonical 2-form Q it follows that for every (u, o) € T*U

QX (@) : Ty (T*U) = R" x (R)* 5 T, o (TU) = (R")" x R (v, ) = (%(u,0)) (v. B),

where QF (u, &) (l‘;

by = —B(w) + y(v), that is, QF (u, &) (é) = (—PB,v). Consequently, the local expression

> is the linear function on 7}, o)(T*U) whose value at (w,7) is given

for Q is Q°(u, o) (y,w) = (fy) Locally, the 1-form df is

df :T*U CR" x (R")" = (R")* xR": (u, ) = (D f(u, ), D2 f (u,x)).

Thus on T*N the local expression for the Hamiltonian vector field X corresponding to f
is given by

Xp:T*U - R"x (R")":
(uy 00) = @ (u,0) (D1 f (u, @), Da f (u, ) = (Daf (u, ), =D1 f (u, @)

An integral curve y: I — T*U of X; satisfies Hamilton’s equations

dy(t) Dy f
500 - (24500 m

Example 2. We derive an expression for the Hamiltonian vector field Xx on TN asso-
ciated to the Hamiltonian function K : TN — R : v — %g()c)(v7 v), where g is a smooth
nondegenerate metric on N and v € T,N. On TN we use the symplectic form o = (g*)*Q,
where Q is the canonical 2-form on 7*N. The mapping gﬁ(x) : TN — T} N is defined by
g (x)(v) : TN — R : w— g(x)(v,w). From the local expression of Xx given in (15) below
we see that its integral curves are geodesics for the metric g. Thus Xk is the geodesic
vector field associated to the metric g.

We begin by deriving a local expression for the 1-form © on TN defined by 3 (v)(w,) =
g(x)(T,twy,v). Here v € T,N, w, € T,N and 7: TN — N is the bundle projection. Then
¥ = (g%)*0, where 6 is the canonical 1-form on 7*N. Let U be an open subset of R”.
Then locally TN is TU = U x R" with bundle projection 7: TU — U : (x,v) + x. More-
over, the tangent of 7 is

Tt:T(TU)=(UxR") x (R"xR") = TU =U xR": ((x,v),(w,2)) = (x,w).

Therefore, ¥ (x,v)(w,z) = g*(x)(v)w, where ¥(x,v) is a linear mapping from R” x R”
into R. To find the symplectic form @ on TN we note that @ = (g¥)*Q = —(g?)*d6 =
—d(g")*6 = —d®. Thus it suffices to compute the exterior derivative of . This we do
as follows. By definition of exterior derivative

—(dl?(x, V) (wi,z1)) (w2,22) = =D O (x,v)w1 (w2, 22) + D29 (x,v)z1 (W2, 22)
= —Dg*(x)w1 (v,w2) — g*(x) (z1)w2 + Dg* (x)wa (v, w1) + g*(x) (z2) w1
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= o(x,v) ((wl,m), (W2712))7

which is the desired local expression for the symplectic form @ on TN. Now we compute
the local expression for the Hamiltonian vector field Xx. On TU the function K is given
by K:UxR"CR"xR" = R: (x,v) — Jg(x)(v,v) = 1¢%(x)(v)v. Thus the 1-form dK
is

dK(x,v) :R"xR" = R: (wy,21) = D1 K(x,v)w; + D2K(x,v)z) = %ng(x)wl (v,v)+ g4 x)(v)z1.
Let Xk be the vector field on TU given by
Xk :UxR" 5 R"xR": (x,v) = (X" (x,v),X?(x,v)).

Then for any vector field ¥ on TU equal to (Y!,¥?) we have o(Xg,Y) = dK(Y), by
definition of Xk, that is,

~Dgf(x)X' (nY") = g* () (X*)Y' + DgF ()Y (v X") +¢F () ()X =
= 3Dg )Y (vv) +g*(x) (V)Y

Setting ¥' = 0 in the above equation gives g (x)(¥Y?)X' = g%(x)(v)Y2. In other words,
g(®)(¥2,X") = g(x)(v,Y?) for every Y2. Thus by symmetry and nondegeneracy of g(x)
we obtain X! (x,v) = v. Setting ¥? = 0 and using X' = v gives

—Dg*x)v(nY") = g* () (X*)Y! (vv) + DgF)Y' (vv) = 3DgF ()Y (nv),
which rewritten, using the symmetry property (Dg®(x)X)(Y,Z) = (Dg*(x)X)(Z,Y), is

g (X2, Y") = 3 (Dg*(xw(Y',v) = DgF (x)v(v.Y") — Dg*(x)Y' (v)) = ~T(x,v)¥".
Therefore we obtain X?(x,v) = fg(x)b (l:(x, v)) = —I'(x,v). Hence the local expression
of the vector field Xk is

XK()C,V) = (Vv —T(x,v)). (15)

Since the components of I" are the usual Christoffel symbols of the metric g, the image
of the integral curves of the geodesic vector field Xk under the bundle projection 7 are
geodesics on N for the metric g. |

Let ¢ : M — M be a diffeomorphism of the symplectic manifold (M, ). If ¢ preserves
@, that is, @*® = w, then @ is a symplectic diffeomorphism.

Claim: Let f be a smooth function on (M, ). The flow q),f of a Hamiltonian vector field
Xy is a local one parameter group of symplectic diffeomorphisms of (M, ®).

(3.1) Proof: From the definition of the flow of a vector field it follows that ¢ — (p,f is a local
one parameter group. To show that (p;f is symplectic, we calculate

Lx,0 =Xy _1do+d(X; 1) =d’f, using the definition of X; and
the fact that ® is closed
=0.
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By definition of Lie derivative d%((p,f)*a) = ((p;f)*(LXf.w) = 0. We get ((pif)*a) =w. O

A basic property of a symplectic diffeomorphism is that it maps a Hamiltonian vector
field into another Hamiltonian vector field.

Claim: For every smooth function on the symplectic manifold (M, ®) and for every sym-
plectic diffeomorphism ¢ of (M, ) into itself we have

O Xy =Xor- (16)
(3.2) Proof: We calculate
Xoprdo=d(¢9'f) = ¢"df = ¢"(Xy J0) = ¢'X; "0 = ¢"Xy 0,
since @ is symplectic. Equation (16) follows because @ is nondegenerate. g

Example 3. We derive Hamilton’s equations on the cotangent bundle of a Lie group,
which has been trivialized using left translation. Let G be a Lie group and (T*G,Q) its
cotangent bundle with canonical 2-form Q. Suppose that 57 : T*G — R is a smooth
function. The Hamiltonian vector field X ,» on (T*G,Q) corresponding to .77 is defined
by

A ()ve = Q&) (X (@), ver) (17
forevery vy € T (T*G). Trivialize T*G using the mapping . : G X g* — T*G (6) coming
from left translation. Pulling the Hamiltonian .7# back by .’ gives the Hamiltonian H :
Gxg*—=R:(g,a)— (o). Note that £*Q = w (8). Using ((3.2)) we find that the
Hamiltonian vector field Xy on (G X g*, ) is given by Xy = Z*(X»).

We now derive Hamilton’s equations, which are satisfied by the integral curves of the
vector field Xy on G x g*. In this context Hamilton’s equations are called the Euler-
Arnol’d equations. Partially differentiating H in the directions 7,L,n € T,G and 8 € g*
gives

dH(g7 (X)(TngTl,ﬁ) :DIH(g7a)T€Lgn +[3(D2H(g,a)),

since DyH (g, ) = B (D2H (g, ) for DoH (g, @) € g™ = g. Because Xy (g, @) € T,G x
g%, we may write
XH(gva) = (TeLgX(gva)vA(gva))' (18)

By definition of Xy, we have
dH(g,a)(T.Lgn, B) = 0(g, @) ((TLX (g, @), A(g, @), (TeLgn. B))
for any 1 € g and any 8 € g*. Now using (8) the preceding equality reads
DiH(g,a)TeLgn + B(D2H (g, ) = —A(g, o)1 + B(X (g, @) + a([X (g, @), n]). (19)
Setting n = 0 in (19) gives B(D,H(g,a)) = B(X(g, o)) for every B € g*. Therefore

X(g,(X):DzH(g7OC). (20)
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Setting B = 0 in (19) gives D1H(g, o) T.Lyn = —A(g, ¢)n + (ady a)n, for any 1 € g.
Using (20), we obtain

A(g, o) = —(T.Ly) (D1 H (g, ) + adlDzH(g_(x> o. (2D

Substituting (20) and (21) into (18) gives the Euler-Arnol’d vector field Xy on G X g*.
The integral curves of Xy satisfy the Euler-Arnol’d equations

g = TLy(D2H(g, )

22
= 7(T6Lg)’(D1H(87a))+adi)2H( =

g_(X)OC.

If the Hamiltonian .77 : T*G — R is left invariant, then so is H. Therefore, D{H = 0, so
the Euler-Arnol’d equations for a left invariant Hamiltonian are

§=T.Ly(D2H (g, @)
o= adgzmg’a)a. O

4 Poisson algebras and manifolds

In this section we define the notions of a Poisson algebra and a Poisson manifold. This
leads to an algebraic formulation of Hamiltonian mechanics.

A Poisson algebra (<7 ,{, },-) is a real Lie algebra under the bracker {, } which is also a
commutative ring with unit under the multiplication -. In addition, for every f,g,h € &/
Leibniz’ rule: {f,g-h} =h-{f,g} +g-{f,h} holds. Leibniz’ rule simply states that
for every f € </ the linear mapping ady : &/ — &/ : g — {f,g} is a derivation. We
call ady the Hamiltonian derivation associated to f. Thinking of ady as a formal vector
field, its formal flow is given by q),f =exp(rads) =Y, %t" adf. Amap ¢:o/ — %
is a homomorphism of Poisson algebras if it is a homomorphism of the Lie algebra and
commutative ring structures. A bijective homomorphism of the Poisson algebra .o is
an automorphism of 7. It is easy to check that the formal flow (ptf is a one parameter
group of automorphisms of .7, that is, ((p,f)*(g -h) = ((p,f)*g . ((p,f)*h and ((p,f)*{g,h} =
{((p,f)*g7 ((p,f)*h} An element f € & is a Casimir if and only if {f,g} = 0 for every
g € /. Clearly the unit element of .o is a Casimir. If the only Casimir elements are real
multiples of the unit element of <7, then <7 is a nondegenerate Poisson algebra.

We now give some examples of Poisson algebras.

Example 1. Let g* be the dual of the finite dimensional Lie algebra g with Lie bracket
[,]. Forevery f,g € C*(g*) and every u € g* define a Poisson bracket {, }4+ by

{f>&}er () = p((df(u), dg(m)))- (23)

The right hand side of (23) is well defined since the differential df (i) of f at u is a linear
form on g*, which we identify with an element of g. To check that (C*(g*),{, }4<) isa
Poisson algebra, where - is the usual product of smooth functions, we first verify Leibniz’
rule:

{frg-hyg-(u) = p(ldf(u).dg-h)(w))
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w(ldf (), g(m)dh(p)+h(u)dg(u)])
= (g'{fah}g* —|—h~{f,g}g*)(,u).

We now need only show that {, }4+ satisfies the Jacobi identity. This is not entirely
straightforward.

Let {x;}, i=1,...n be a basis for g. Identifying (g*)* with g we can think of {x;} as
coordinates on g*. Since ady: g* — g* : h— {f,h}g is a deriva