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Foreword

This book gives a complete global geometric description of the motion of the two di-
mensional harmonic oscillator, the Kepler problem, the Euler top, the spherical pendulum
and the Lagrange top. These classical integrable Hamiltonian systems one sees treated in
almost every physics book on classical mechanics. So why is this book necessary? The
answer is that the standard treatments are not complete. For instance in physics books one
cannot see the monodromy in the spherical pendulum from its explicit solution in terms
of elliptic functions nor can one read off from the explicit solution the fact that a tennis
racket makes a near half twist when it is tossed so as to spin nearly about its intermediate
axis. Modern mathematics books on mechanics do not use the symplectic geometric tools
they develop to treat the qualitative features of these problems either. One reason for this
is that their basic tool for removing symmetries of Hamiltonian systems, called regular
reduction, is not general enough to handle removal of the symmetries which occur in the
spherical pendulum or in the Lagrange top. For these symmetries one needs singular re-
duction. Another reason is that the obstructions to making local action angle coordinates
global such as monodromy were not known when these works were written.
The point of view adopted in this book is to start with a somewhat unfamiliar abstract
mathematical model of the physical system such as the study of the geodesic flow of a left
invariant metric on the three dimensional rotation group. Using the symplectic geometric
formulation of Hamiltonian mechanics we then show that the equations of motion agree
with those found by more traditional methods for a well known physical system, namely,
the force free rigid body or Euler top. This justifies our mathematical model. We do not
try to build our model from fundamental physical principles. We have not written a book
on mechanics or Hamiltonian particle dynamics. We only discuss five special integrable
systems, which is a very small sample of the rich variety of general Hamiltonian systems.
Moreover the behavior of the solutions of these integrable systems is much more regular
than the nearly unpredictable motion of a general Hamiltonian system such as the three
body problem.
Our main goal is to understand the global geometric features of our model integrable
systems. The main tool we use is reduction to remove the symmetries and to obtain
a system with one degree of freedom. This allows us to determine the range and the
topology of every fiber of the energy momentum mapping of the system. The topology
of a fiber corresponding to a singular value of the energy momentum mapping is of great
interest. Physically, these motions are simpler than the general motion and therefore are
easier to study experimentally. Mathematically, these fibers contain a relative equilibrium
of the system, that is, a motion which is also an orbit of the symmetry group. For instance,
in the spherical pendulum the relative equilibria are circular orbits on the 2-sphere which



xii Foreword

lie in a plane parallel to and below the equator. Other examples are the regular precession
and sleeping motions of the Lagrange top. Finally, to complete the qualitative picture,
we describe how the fibers of the energy momentum map fit together. Sometimes this
involves showing that the monodromy of certain torus bundles are nontrivial. That this
phenomenon happens in the spherical pendulum and the Lagrange top was not known
until the 1980s.
This book is written from a bottom up approach with examples being given prominence
over theory. The examples are treated in a uniform way. First the mathematical model
is described and then the equations of motion are derived. Next the symmetries and
corresponding integrals are obtained and it is shown that the given problem is Liouville
integrable. Finally, the geometry of the level sets of the energy momentum map, which
gives a complete geometric description of the motion, are obtained by first using reduction
to remove the symmetries and then reconstructing the geometry from the geometry of the
reduced system. This program may seem to be excessively lengthy. There are two reasons
why we have followed it. First, our procedure gives complete answers, whereas short cut
ones do not. Second, in carrying out our program the reader sees enough detail in the text
to be able to understand the arguments without having to look at the theory. The theory
given in chapters VI through XI is what the authors feel is the minimum necessary to
justify all the unproved assertions in the examples.
This book was not written to be read in a sequential fashion. We strongly encourage the
reader to browse.



Introduction

The mathematical pendulum
We begin by looking at the mathematical pendulum.

x

Figure 0.1. The mathematical pendulum.

Let T ∗R be the cotangent bundle of R, which we identify with R2 and give coordinates
(x,y). The canonical symplectic form ω = dx∧dy on T ∗R is the element of oriented area
on R2. Consider the Hamiltonian system (H,T ∗R,ω) with Hamiltonian

H : T ∗R → R : (x,y) �→ 1
2 y2 − cosx.

� The following argument shows that the Hamiltonian vector field XH on T ∗R correspond-
ing to the Hamiltonian H is

XH(x,y) = ẋ
∂
∂x

+ ẏ
∂
∂y

= y
∂
∂x

− sinx
∂
∂y

. (1)

(0.1) Proof: By definition of Hamiltonian vector field, see appendix A §3,

dH(p)zp = ω(p)(XH(p),zp) (2)

for every zp = (vp,wp) in the tangent space Tp(T ∗R) to T ∗R at p. Let XH(p) =
(
X(p),

Y (p)
)
. Now dH(p)zp =

∂H
∂x vp +

∂H
∂y wp. Moreover, ω(p)(XH(p),zp) is the oriented area

spanned by the parallelogram with sides XH(p) and zp, that is,

ω(p)(XH(p),zp) = det
(

X(p) vp
Y (p) wp

)
= X(p)wp −Y (p)vp.

Therefore (2) is equivalent to

∂H
∂x

vp +
∂H
∂y

wp =−Y (p)vp +X(p)wp (3)



for every (vp,wp) ∈ R2. In (3) choose (vp,wp) = (1,0). Then X(p) = ∂H
∂y = y. Next

choose (vp,wp) = (0,1). Then Y (p) =− ∂H
∂x =−sinx. �

Note that (1) may be written as the second order differential equation

ẍ =− d
dx

(−cosx) =−sinx. (4)

By Newton’s second law of motion, an integral curve of (1) describes the motion of a
particle of unit mass under a force coming from the potential V : R → R : x �→ −cosx.

x

V

−π π
Figure 0.2. The graph of the potential V (x) =−cosx.

Thus H is the total energy of the particle, namely the sum of the kinetic and potential
� energy. We now show that H is a Morse function on T ∗R.

(0.2) Proof: The point p = (x,y) is a critical point of H if and only if XH(p) = 0, that is, if and
only if

0 =
∂H
∂y

= sinx and 0 =
∂H
∂x

= y.

Thus {p = (nπ,0) ∈ R2|n ∈ Z} is the set of critical points of H. The corresponding
critical value of H is −1 if n is even or 1 if n is odd. Since the Hessian of H at p is

D2H(p) =

⎛⎜⎜⎜⎝
∂ 2H
∂x2

∂ 2H
∂x∂y

∂ 2H
∂y∂x

∂ 2H
∂y2

⎞⎟⎟⎟⎠
p

=

(
cosnπ 0

0 1

)
=

(
(−1)n 0

0 1

)
,

H is a Morse function, because D2H(p) is nondegenerate. �

−3π −π π 3π

Figure 0.3. The level sets of H(x,y) = 1
2y2 − cosx.

When n = 2k the Morse index of D2H(nπ,0) is zero, and so the critical points (2kπ,0)
are relative minima of H; whereas when n = 2k + 1 the Morse index of D2H(nπ,0) is

xiv Introduction



one, and so the critical points (2kπ,0) are saddle points of H, see figure .3. Using the
Morse lemma, see appendix F §1, there is a neighborhood Uk of (2kπ,0) in the open strip
((2k−1)π,(2k+1)π)×R such that for h slightly greater than −1 the level set H−1(h)∩
Uk is diffeomorphic to a circle. Since H has no critical values in the interval (−1,1), by
the Morse isotopy lemma, see appendix F §3, we deduce that for every h ∈ (−1,1) the
level set H−1(h)∩Uk is diffeomorphic to a circle. Thus for h ∈ (−1,1) the whole level set
H−1(h) is diffeomorphic to a countable disjoint union of circles. If h ≥ 1, then H−1(h)
is the union of the graphs of two smooth functions y± =±√

2(h+ cosx). The graphs of
y± are disjoint if h > 1. On the other hand, if h = 1, then the graphs of y± = ±2cos 1

2 x
intersect only at the points ((2k + 1)π,0). There they intersect transversely as can be
seen by applying the Morse lemma at the points ((2k+1)π,0). Thus we have obtained a
picture of the level curves of H as given in figure .3.

To simplify the topology of the level sets of H, we make use of the fact that H is invariant
under the translation symmetry

Z×T ∗R → T ∗R :
(
n,(x,y)

) �→ (x+2nπ,y). (5)

Thus H induces a function H̃ on the space of orbits T ∗R/2πZ. Concretely, this
orbit space is identified with the cotangent bundle T ∗S1 of the circle S1. Here S1 is

y
x

z

H̃ � 1

−1

z

Figure 0.4. The graph of ˜H(x,y) = 1
2 y2 − cosx with (x,y) ∈ T ∗S1.

thought of as the orbit space R/2πZ of the real numbers modulo 2π . Geometrically, T ∗S1

is the cylinder S1 ×R which is obtained from R2 by cutting along the vertical lines x = 0
and x = 2π and then pasting the edges together. Applying this process to figure .3 gives
figure .4 which depicts the level sets of H̃ and hence the orbits of the induced Hamiltonian
vector field XH̃ . A short argument using Newton’s second law shows that the second order
differential equation

ẍ =−sinx xmod2π

describes the motion of a particle of mass one on the unit circle under the influence of a
constant vertical downward unit force, see figure .1.

From figure .4 we see that the topological circle, defined by the component of the level
set H̃−1(h) (h > 1) lying in the upper half cylinder, is very different from the topological
circle defined by the level set H̃−1(h) (−1 < h < 1). The first circle is not contractible in
T S1 to a point whereas the second circle is. Hence it is impossible to continuously deform
the first circle into the second one. This difference in the topological disposition of the

xvIntroduction



two circles corresponds to the physical fact that for small energy the particle oscillates
about the bottom of the circle, while for large energy the particle loops over the top of the
circle.

Exercises
1. Let (x,y) be canonical coordinates on T ∗R=R2 with symplectic form ω = dx∧dy.

Suppose that the Hamiltonian H : T ∗R→R is a sum of kinetic and potential energy,
that is, H(x,y) = 1

2 y2 +V (x), where V : R → R.

a) Find a potential function V such that the zero level set of H is connected, compact
and has one singular point which is a cusp.

b) Construct a polynomial Hamiltonian on T ∗R whose zero level set is an n-leaf
clover.

c) Show that there is no smooth Hamiltonian which is the sum of kinetic and po-
tential energy which has a 3-leaf clover as a level set.

d) For smooth V with countable many isolated critical points give a topological
characterization of the critical level sets of H.

2. Construct a Hamiltonian function on S2 which is a Morse function with two critical
points. Draw its level sets. Construct a vector field on S2 with only one equilibrium
point and sketch its orbits. Show that this vector field is not Hamiltonian.

3. a) On R2 consider the action · of Z2 defined by (n,m) · (x,y) = (x+n,y+m). The
orbit space R2/Z2 is a two dimensional torus T 2, which may be modeled by a
square with the opposite sides identified. The symplectic form Ω = dx∧dy on R2

induces a symplectic form Ω̃ on T 2. Show that the vector field X̃ on T 2 induced by
the Hamiltonian vector field X = ∂

∂x +
∂
∂y on R2 is not Hamiltonian on (T 2,Ω̃).

b) Sketch the orbits of a Hamiltonian vector field on (T 2,Ω̃) where the Hamiltonian
is a Morse function with the fewest number of critical points.

c) Construct a vector field X on T 2 with two equilibrium points.

d)∗ Show that a smooth function on T 2 must have at least three critical points. Find
a smooth function on T 2 with exactly three critical points. Sketch its level sets.

e) Deduce that the vector field X constructed in c) is not Hamiltonian.

4. Let M be a compact connected orientable smooth two dimensional manifold with
volume form Ω. In what follows we show that every integral curve of a Hamiltonian
vector field XH of a one degree of freedom Hamiltonian system (H,M,Ω) is either
an equilibrium point, a periodic orbit, or is asymptotic to an equilibrium point as
t →±∞. For m ∈ M let γ : R → M : t �→ ϕH

t (m) be the integral curve of XH through
m. The ω-limit set ω(γ)of γ is the closure of the set

⋂
T>0

{
ϕH

t (m) t ≥ T
}

.

a) Show that ω(γ) is nonempty.

xvi Exercises



b) If γ is an equilibrium point or a periodic orbit of XH , show that ω(γ) = γ . Is the
converse true?

c)∗ If γ is not a periodic orbit of XH , show that ω(γ) is a critical point of H, that is,
an equilibrium point of XH .

4. (Period energy relation for the mathematical pendulum.) When |h| < 1 show that
the period of an integral curve of the mathematical pendulum which starts at (x+,0)
where 0 < x+ = x+(h)< π and h+ cosx+ = 0, is given by

τ(h) = 2
∫ x+

−x+

1√
2(h+ cosx)

dx.

Show that τ = 4K(
√

(h+1)/2), where K is the complete elliptic integral of the
first kind, see the exercises of chapter 1. Deduce that

a) τ(−1) = 2π , τ(1) = ∞ and τ ′(−1) = π/4.

b) τ is a real analytic function on (−1,1).

c)∗ τ ′ > 0 on (−1,1). Hint: show that τ satisfies a differential equation.

5. a) Suppose that a particle moves on the graph of y = f (x) under the influence of
gravity and that the origin is a stable equilibrium point. Determine the shape of
the graph of f so that the period of oscillation of the particle about the origin is a
constant independent of the energy.

b)∗ Show that a) is equivalent to the fact the derivative of the area enclosed by a
level set of the Hamiltonian of the particle with respect to the Hamiltonian itself is
a constant. Hint: see appendix D §1.

6. (Reduction of discrete symmetry of mathematical pendulum.)

a) (Discrete symmetry.) Show that

ζ : S1 ×R → S1 ×R : (x,y) �→ (−x,−y). (6)

generates a Z2-symmetry of the mathematical pendulum. Show that the fundamen-
tal domain D of the Z2-action on T ∗S1 generated by ζ is the piece of the cylinder
in figure .4, which lies in the half space y ≥ 0 with the points (±x,0) on the cir-
cle ∂D = T ∗S1 ∩{y = 0} identified. Deduce that the orbit space P = T ∗S1/Z2 is
homeomorphic to a cone on S1 with vertex at the Z2-orbit corresponding to the
point (0,0) ∈ T ∗S1.

b) Show that the algebra of real analytic invariant functions of the abelian group Z2
generated by ζ is generated by

τ1 = cosx, τ2 = ysinx, τ3 =
1
2 y2 − cosx (7)

subject to the relation

C(τ) = 1
2 τ2

2 − (τ3 + τ1)(1− τ2
1 ) = 0, |τ1| ≤ 1 & τ3 ≥−1, (8)
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which defines the orbit space P. Draw a picture of the semialgebraic variety P.

c) (Reduced Poisson bracket.) In order to have dynamics on the Z2-reduced space
P we first need a Poisson bracket { , }R3 on C∞(R3). A calculation shows that

{τ1,τ2}= τ2
1 −1 =

∂C
∂τ3

{τ2,τ3}= 2τ1(τ3 + τ1)+ τ2
1 −1 =

∂C
∂τ1

{τ3,τ1}= τ2 =
∂C
∂τ2

Then for every F , G ∈C∞(R3) we have {F,G}= ∑i, j
∂F
∂τi

∂G
∂τ j

{τi,τ j}. We say that a

function f on P is smooth if there is a smooth function F on R3 such that f = F |P.
Let C∞(P) be the space of smooth functions on P. Then (P,C∞(P)) is a differential
space, which is subcartesian because P is a semialgebraic variety. On C∞(P) we
define a Poisson bracket { , }P as follows. Suppose that f ,g ∈ C∞(P). Then there
are F,G ∈ C∞(R3) such that f = F |P and g = G|P. Let { f ,g}P = {F,G}R3 |P.
Because the defining function C (8) of the orbit space P is a Casimir in the Poisson
algebra A = (C∞(R3),{ , }R3 , ·), the collection I of all smooth functions on R3,
which vanish identically on P, is a Poisson ideal in A . Consequently, the Poisson
bracket { , }P is well defined. So B =

(
C∞(P) =C∞(R3/I ),{ , }P, ·

)
is a Poisson

algebra.

d) (Reduced dynamics.) Consider the derivation −adH on the Poisson algebra A .
This derivation gives rise to the Z2-reduced Hamiltonian vector field XH on the
subcartesian differential space (P,C∞(P)) associated to the Z2-reduced Hamilto-
nian H : P → R : τ �→ τ3. On R3 the integral curves of −adH satisfy

τ̇1 = {τ1,H}P = {τ1,τ3}P =−τ2

τ̇2 = {τ2,H}P = {τ2,τ3}P = 2τ1(τ3 + τ1)+ τ2
1 −1

τ̇3 = {τ1,H}P = {τ1,τ3}P = 0.

The equality τ̇3 = 0 shows that H is an integral of XH . Check that C (8) is also
an integral of XH . A calculation shows that −adH leaves C−1(0), {τ3 + τ1 = 0},
and {τ1 = ±1} invariant. Thus the reduced space P is invariant under the flow of
−adH . Consequently, the reduced Hamiltonian vector field XH on P is −adH |P.
Because the Hamiltonian vector field XH̃ of the mathematical pendulum is com-
plete, the reduced vector field XH is complete. Its flow ϕH

t is a 1-parameter group
of diffeomorphisms of P. In fact, for p ∈ H−1(e) the closure of the integral curve
{ϕH

t (p) ∈ P t ∈ R} is a connected component of the level set H−1(e), since a level
set of the reduced Hamiltonian H is compact.

Exercisesxviii
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Chapter I

The harmonic oscillator

1 Hamilton’s equations and S1 symmetry

Physically, the harmonic oscillator in the plane is described by a particle of unit mass
acted upon by two linear springs of unit spring constant: one spring acts in the x1-direction
and the other in the x2-direction. Mathematically, the configuration space of the harmonic
oscillator is Euclidean 2-space. In other words, the space of positions of the particle is R2

with coordinates x = (x1,x2) and Euclidean inner product ( , ) where (x,x′) = x1x′1+x2x′2.
The space of all positions and momenta of the particle is the cotangent bundle T ∗R2

of R2. This phase space has coordinates (x,y) and a canonical symplectic form ω =
dx1∧dy1+dx2∧dy2. The Hamiltonian function H : T ∗R2 → R of the harmonic oscillator
is the sum of kinetic energy 1

2 (y,y) and potential energy 1
2 (x,x). Letting z = (x,y) ∈ R4,

H(z) = 1
2 (y,y)+

1
2 (x,x) =

1
2 〈z,z〉. (1)

Here 〈 , 〉 is the Euclidean inner product on R4, which we have identified with T ∗R2.

The motion of the harmonic oscillator is described by Hamilton’s equations

d
dt

(
x
y

)
=

(
0 I2

−I2 0

)(
D1H(x,y)
D2H(x,y)

)
=

(
y

−x

)
.

Here I2 is the 2×2 identity matrix. Since the Hamiltonian vector field XH(x,y) = (y,−x)
is linear, the flow of the linear vector field is

ϕH : R×R4 → R4 : (t,z) �→ (exp tXH)z =
(

(cos t)I2 (sin t)I2
−(sin t)I2 (cos t)I2

)
z. (2)

Given any initial condition z ∈ T ∗R2, the integral curve of XH through the point z is t �→
ϕH

t (z). Thus from a quantitative point of view, we know everything about the vector field
XH , because we have an explicit formula (2) for every integral curve. On the other hand,
from a qualitative point of view, the explicit formula is very unsatisfactory. For instance,
we do not know if the integral curves lie on a lower dimensional invariant manifold or

1� Springer Basel 2015
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2 Harmonic oscillator

how they fit together. In the rest of this chapter we will describe the global qualitative
features of the invariant manifolds of XH .

Claim: The h-level set H−1(h) of the Hamiltonian H (1) is an invariant manifold of the
vector field of the harmonic oscillator.

(1.1) Proof: Since
Ḣ = LXH H = 〈ẋ,x〉+ 〈ẏ,y〉 = 〈y,x〉−〈x,y〉 = 0,

H is constant on the integral curves of XH , that is, H is an integral (= conserved quantity)
of XH , see chapter VII §3. In particular the h-level set

H−1(h) =
{

z ∈ R4 1
2 〈z,z〉= h

}
,

which is diffeomorphic to a 3-sphere S3 when h > 0, a point when h = 0, and is empty
when h < 0, is a smooth invariant manifold of XH . In other words, every integral curve of
XH with initial condition in H−1(h) lies in H−1(h) for all time. �
The rotational symmetry of the potential energy 1

2 (x,x) gives rise to another conserved
quantity, namely, the angular momentum

L : T ∗R2 → R : (x,y) �→ x1y2 − x2y1. (3)

To see this, consider the S1 = R/2πZ-action on R2

ψ : S1 ×R2 → R2 : (s,x) �→ Rsx =
(

coss −sins
sins coss

)
x.

ψs is a counterclockwise rotation through an angle s about the origin. The infinitesimal
generator of the action ψ is the vector field

X(x) =
d
ds s=0

ψs(x) = (−x2,x1).

ψ lifts to an S1 action Ψ on T ∗R2 defined by

Ψ : S1 ×T ∗R2 → T ∗R2 :
(
s,(x,y)

) �→ (Rsx,Rsy).

Ψ preserves the canonical 1-form θ = y1 dx1 + y2 dx2 = (y,dx) on T ∗R2, since

Ψ∗
s θ = (Rsy,dRsx) = (Rsy,Rs dx) = (y,dx) = θ .

Therefore Ψs is a symplectic mapping, that is, Ψ∗
s ω = ω , since

ω =−dθ =−dΨ∗
s θ =−Ψ∗

s dθ = Ψ∗
s ω.

The infinitesimal generator of the action Ψ is the vector field

Y (x,y) =
d

ds s=0
Ψs(x,y) = (−x2,x1,−y2,y1) =

(
D2L(x,y),−D1L(x,y)

)
.



I.2 S1 energy momentum mapping 3

Thus Y is a Hamiltonian vector field XL corresponding to the angular momentum L (3).
That the lifted S1 action Ψ preserves the canonical 1-form and is the flow of the Hamil-
tonian vector field corresponding to the Hamiltonian L = X θ is a particular case of a
more general set of results, see chapter VII §3. Since

(Ψ∗
s H)(x,y) = 1

2 (Rsy,Rsy)+ 1
2 (Rsx,Rsx) = H(x,y),

H is constant on the integral curves of XL. Therefore L is constant on the integral curves
of XH , that is, L is an integral of XH , see chapter VI §4. This implies that the �-level set
of L,

L−1(�) =
{
(x,y) ∈ T ∗R2 x1y2 − x2y1 = �

}
,

is an invariant manifold of XH . When � = 0 the level set L−1(�) is diffeomorphic to
S1 ×R2 , while when � = 0 the level set L−1(0) is homeomorphic but not diffeomorphic
to S1 ×R2 as it is a cone on S1 ×S1 together with its vertex at the origin.

2 S1 energy momentum mapping
In order to organize the qualitative information about the harmonic oscillator which can
be obtained from the integrals of energy and angular momentum, define the S1 energy
momentum mapping

EM : T ∗R2 → R
¯

2 : (x,y) �→ (
H(x,y),L(x,y)

)
=

( 1
2 (y

2
1 + y2

2 + x2
1 + x2

2), x1y2 − x2y1
)
.

Because H and L are polynomial integrals of XH , the fiber EM−1(h, �) is an invariant
manifold of XH which is a real algebraic variety. Other geometric properties of EM
correspond to qualitative properties of XH . To describe such global geometric properties
of EM , we shall

1. Find the critical points, critical values and range of EM .
2. Find the topological type of every fiber of the energy momentum mapping. This

determines the bifurcation set of EM , the set of values (h, �) where the topologi-
cal type of the fiber changes.

3. Analyze how the fibers of constant angular momentum foliate a given energy level
set.

� We begin by finding the critical points and corresponding critical values of the energy
momentum map. A point z = (x,y) ∈ T ∗R2 is a critical point of EM if and only if the
derivative of EM at z is not surjective, that is,

DEM (z) =
(

DH(z)
DL(z)

)
=

(
x1 x2 y1 y2
y2 −y1 −x2 x1

)
(4)

has rank less than two. There are two cases to be considered.

CASE I: rankDEM (z) = 0. This can only happen if DH(z) = DL(z) = 0. Then z = 0 is
the critical point and EM (0) = (0,0) is the corresponding critical value of EM .
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CASE II. rankDEM (z) = 1. This occurs if and only if DH(z) and DL(z) are linearly
dependent and are not both zero. From (4) it follows that DH(z)= 0 if and only if DL(z)=
0. Therefore we may suppose that DH(z) = 0, that is, z = 0. Thus for some μ ∈ R

0 = DL(z)−μ DH(z) = (y2,−y1,−x2,x1)−μ (x1,x2,y1,y2). (5)

If μ = 0, then z = 0, which is a contradiction. Therefore μ = 0. Composing the linear
mapping (x1,x2,y1,y2) �→ μ−1(y2,−y1,−x2,x1) with itself gives z = μ−2z. Thus μ2 = 1,
since z = 0. Consequently, the solutions of (5) define two punctured 2-planes

Π∗
+ =

{
(x1,x2,−x2,x1) ∈ T ∗R2 (x1,x2) ∈

(
R2 \{(0,0)})}

and
Π∗

− =
{
(x1,x2,x2,−x1) ∈ T ∗R2 (x1,x2) ∈

(
R2 \{(0,0)})}.

On Π∗
+ the corresponding set of critical values of EM is the diagonal ray {(h,h) ∈

R2 |h > 0} since 0 < � = L|Π∗
+ = x2

1 + x2
2 = H|Π∗

+ = h; while on Π∗− the correspond-
ing critical values of EM is the antidiagonal ray {(h,−h) ∈ R2 |h > 0}. Therefore the
critical fiber EM−1(h,h), h > 0 is the circle

S1
+,h = H−1(h)∩Π∗

+ =
{
(x1,x2,−x2,x1) ∈ T ∗R2 x2

1 + x2
2 = h, h > 0

}
; (6)

while the critical fiber EM−1(h,−h), h > 0 is the circle

S1
−,h = H−1(h)∩Π∗

− =
{
(x1,x2,x2,−x1) ∈ T ∗R2 x2

1 + x2
2 = h, h > 0

}
. (7)

Note that the image of S1
±,h under the bundle projection π : T ∗R2 → R2 : (x,y) �→ x is

the circle x2
1 + x2

2 = h, which is positively oriented when the sign is + and negatively
otherwise. Another way to interpret the critical circles S1

±,h is to note that solving (5)
subject to the condition that z ∈ H−1(h), h > 0 is equivalent to finding the critical points

� of L on H−1(h). Thus L has two critical manifolds S1
±,h on H−1(h). The manifolds S1

±,h
are nondegenerate of Morse index 2 for S1

+,h and 0 for S1
−,h.

(2.1) Proof: To show that S1
+,h is a nondegenerate critical manifold of L|H−1(h) we must verify

that at every p = (x1,x2,−x2,x1) ∈ S1
+,h, the Hessian of L|H−1(h) when restricted to a 2-

plane NpS1
+,h normal to S1

+,h in TpH−1(h) has Morse index 2. From the fact that p is a
critical point of L|H−1(h) with Lagrange multiplier μ = 1, it follows that the Hessian of
L|H−1(h) at p is Q+, which equals

D2(L|H−1(h)
)
(p) =

(
D2L(p)−D2H(p)

)|TpH−1(h) =

⎛⎜⎜⎝
−1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 −1

⎞⎟⎟⎠
kerDH(p)

see chapter XI §2. Since S1
+,h is an orbit of XH , we see that TpS1

+,h is spanned by the
vector XH(p) = (−x2,x1,−x1,−x2). As kerDH(p) is spanned by the linearly independent
vectors

XH = (−x2,x1,−x1,−x2), f1 = (x2,−x1,−x1,−x2), f2 = (x1,x2,x2,−x1),
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a normal 2-plane NpS1
+,h is spanned by the vectors { f1, f2}. A calculation shows that

the matrix of Q+ with respect to the basis { f1, f2} is −2I2. Therefore Q+|NpS1
+,h is

nondegenerate with Morse index 2. A similar calculation shows that at p ∈ S1
−,h the

Hessian Q− = D2
(
L|H−1(h)

)
(p) restricted to NpS1

−,h is equal to 2I2. Thus Q−|NpS1
−,h is

nondegenerate with Morse index 0. �

Consequently, on S1
+,h the function L assumes its maximum value h, while on S1

−,h the
function L assumes its minimum value −h. Therefore, the closed wedge {(h, �)∈ R2 0 ≤
|�| ≤ h} is the image of the energy momentum mapping EM .

� To find the topology of a fiber of EM corresponding to a regular value, we simultaneously
diagonalize the quadratic forms defining the energy and angular momentum by a linear
symplectic coordinate change. Consider the linear change of coordinates on R4(

x
y

)
=

(
A −B
B A

) (
ξ
η

)
= P

(
ξ
η

)
, (8)

where A = 1√
2

(
0 0
1 −1

)
and B = 1√

2

(
1 1
0 0

)
. Since AtA+BtB = I2 and AtB = BtA, the matrix P

is symplectic and orthogonal, that is, P∗ω = ω and 〈Pz,Pw〉= 〈z,w〉 for every z,w ∈ R4.
With respect to the (ξ ,η) coordinates, the Hamiltonian H becomes

H̃(ξ ,η) = (P∗H)(ξ ,η) = (H◦P)(ξ ,η) = 1
2 (η

2
1 +η2

2 +ξ 2
1 +ξ 2

2 ).

Because P is symplectic, the Hamiltonian vector field XH̃ corresponding to H̃ is P−1XHP,
that is,

d
dt

(
ξ
η

)
=

(
η

−ξ

)
.

Moreover the angular momentum L becomes

L̃ = (P∗L)(ξ ,η) = 1
2 (η

2
2 −η2

1 +ξ 2
2 −ξ 2

1 ).

Since P is symplectic, L̃ is an integral of XH̃ . Therefore the fiber of ẼM = EM ◦P at
(h, �) is the set of (ξ ,η) ∈ R4 which satisfy

1
2 (η

2
1 +η2

2 +ξ 2
1 +ξ 2

2 ) = h = H̃(ξ ,η)

1
2 (η

2
2 −η2

1 +ξ 2
2 −ξ 2

1 ) = � = L̃(ξ ,η).
(9)

This implies
η2

1 +ξ 2
1 = h− �

η2
2 +ξ 2

2 = h+ �.
(10)

Therefore when 0 ≤ |�| < h, that is, when (h, �) is a regular value of ẼM , each of the

equations in (10) defines a circle. Hence ẼM
−1
(h, �) is a 2-torus T̃ 2

h,�. Since P is a
diffeomorphism, we find that EM−1(h, �) is a 2-torus when (h, �) is a regular value. �

We now describe geometrically how the orbits of XH̃ |T̃ 2
h,� foliate the 2-torus T̃ 2

h,�. Observe

� that the flow ϕ H̃
t of XH̃ defines a free proper action of S1 = R/2πZ on the 2-torus T̃ 2

h,�.
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(2.2) Proof: Since S1 is compact, we need only show that at every point p ∈ T̃ 2
h,� the isotropy

group {t ∈ S1 |ϕ H̃
t (p) = p} is the identity element of S1. For (ξ ,η) = 0 and t ∈ R(

ξ
η

)
= ϕ H̃

t

(
ξ
η

)
=

(
(cos t)I2 (sin t)I2
−(sin t)I2 (cos t)I2

)(
ξ
η

)
implies that t = 2nπ for every n ∈ Z. These values of t correspond to the identity element
in S1 under the orbit mapping R → R/2πZ. �

This implies the orbit space T̃ 2
h,�/S1 is a smooth one dimensional manifold, see chapter

VII ((2.9)).

Claim: The orbit space T̃ 2
h,�/S1 is diffeomorphic to S1.

(2.3) Proof: Since the S1-action defined by the flow of XH̃ is free and proper, we know from
results proved in chapter VII ((2.12)) that T̃ 2

h,� is the total space of a smooth principal
bundle with base a smooth one dimensional manifold with no boundary. Because the
bundle projection map ρ is smooth, compactness and connectedness of T̃ 2

h,� implies that
the base is a compact connected one dimensional smooth manifold with no boundary.
This implies that the base is a circle C. �

� We now show that a fiber C = ρ−1(p) where p ∈C of the principal bundle ρ is a global
cross section for the flow of XH̃ on T̃ 2

h,�. Suppose that (ξ ,η) ∈ C . After time 2π the

integral curve of XH̃ through (ξ ,η) intersects C for the first positive time at ϕ H̃
2π(ξ ,η),

which is in fact (ξ ,η). �

Since the image under the bundle projection ρ of the integral curve through (ξ ,η) of
XH̃−L̃ parameterizes C and crosses p for the first positive time at 2π , we find that

ϕ H̃−L̃
2π (ξ ,η) = ϕ H̃

2π(ξ ,η).

In other words, the integral curve of XH̃ through a point on C winds once around C
as its projection winds once around the circle {(0,ξ2,

√
h− �,η2) ∈ T̃ 2

h,� ξ 2
2 +η2

2 = h+
�}. Therefore the rotation number of the flow of XH̃ on T̃ 2

h,� is 1. Applying the linear
symplectic coordinate change P−1 with P given by (8), we find that P−1C is a global
cross section for the flow of XH on T 2

h,� and that every integral curve of XH |T 2
h,� has rotation

number 1.

The information we have obtained so far about the level sets of the energy momentum
mapping of the harmonic oscillator is summarized in the bifurcation diagram figure 2.1.
The set of regular values of EM is the open wedge T in the (h, �) plane defined by
0 ≤ |�|< h, since the critical values of EM are the two rays {(h,±h) ∈ R>0 ×R |h > 0}.
Because T is simply connected, the energy momentum mapping EM defines a trivial
smooth fibration over T with fiber T 2, that is, EM−1(T ) is diffeomorphic to T ×T 2,
see chapter VIII §2.

To complete the qualitative analysis of the energy momentum mapping we need only
understand how an energy surface H−1(h), h > 0, which is diffeomorphic to the 3-sphere



I.3 U(2)-momentum mapping 7

S3, is built up from the fibers of the energy momentum mapping EM−1(h, �) as � varies
over [−h,h]. Recall that EM−1(h, �) is a circle when |�| = h and is a 2-torus T 2 when
|�| < h. This problem will be solved in the next two sections by showing the the S1

momentum mapping EM has an extension to a U(2)-momentum mapping whose restric-
tion to H−1(h) is the Hopf fibration.

�

h

� S1

� S3

� T2�
�
��

pt

Figure 2.1. The bifurcation diagram. The image of EM is shaded.
The topological type of its fibers or union of fibers is as indicated.

3 U(2)-momentum mapping

As with the construction of the S1 energy momentum mapping, we begin our construc-
tion of the U(2)-momentum mapping by looking for additional integrals of the harmonic
oscillator.

We start by looking for quadratic ones. Suppose that F is a homogeneous real quadratic
function on R4. Then F is an integral of XH if and only if 0 = LXH F = {F,H}, where
{ , } is the standard Poisson bracket on C∞(R4), see chapter VI §4. From [XF ,XH ] =
−X{F,H}, it follows that [XF ,XH ] = 0. Conversely, if [XF ,XH ] = 0, then X{F,H} = 0. Thus
the function {F,H} = ( ∂F

∂x ,
∂H
∂y )− ( ∂F

∂y ,
∂H
∂x ) is constant. But F is a homogeneous real

quadratic function on R4. Hence ∂F
∂x = ∂F

∂y = 0 at the origin. Therefore {F,H} = 0, that
is, F is an integral of XH . This proves

Claim: The homogeneous real quadratic function F : R4 → R is an integral of the har-
monic oscillator vector field XH if and only if [XF ,XH ] = 0.
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Since F is a homogeneous quadratic function, the Hamiltonian vector field XF is linear.
Thus F is a homogeneous quadratic integral of XH if and only if the matrices XF and XH
commute. Now every homogeneous real quadratic function F on R4 is given by a 4×4
symmetric matrix, which can be written as

(−B At

A C

)
, where A is a 2×2 real matrix and

B and C are 2× 2 real symmetric matrices. Therefore the Hamiltonian vector field XF
corresponding to F has integral curves which satisfy

dx
dt

=
∂F
∂y

= Ax+Cy

dy
dt

= −∂F
∂x

= Bx−Aty.

So XF is the 4×4 infinitesimally symplectic matrix
(

A C
B −At

)
, where B = Bt and C =Ct ,

that is, XF ∈ sp(4,R), see chapter VII §5.1 example 2. The infinitesimally symplectic ma-

trix corresponding to the harmonic oscillator vector field XH is
(

0 I2
−I2 0

)
. A calculation

shows that XF and XH commute if and only if XF =
(

A −B
B A

)
, where A =−At and B = Bt .

Claim: The set of all 4×4 infinitesimally symplectic matrices which commute with the
infinitesimally symplectic matrix XH corresponding to the harmonic oscillator vector field
is isomorphic to the Lie algebra u(2) of the Lie group U(2) of 2×2 unitary matrices.

(3.1) Proof: Define a mapping

ϑ : u(2)→ sp(4,R) : A+ iB →
(

A −B
B A

)
.

Since A+ iB ∈ u(2), it follows that At − iBt = (A+ iB)t =−(A+ iB). Hence A =−At and
B = Bt , which implies that A ∈ sp(4,R). Thus the image of the mapping ϑ is contained
in sp(4,R). Clearly ϑ is bijective on its image and linear. �

From now on we will consider u(2) to be a subspace of sp(4,R). Let

E1 =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

⎞⎟⎟⎠, E2 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠, E3 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞⎟⎟⎠, E4 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞⎟⎟⎠.

Then {E1,E2,E3, E4} form a basis for u(2). The quadratic Hamiltonian function corre-
sponding to the linear Hamiltonian vector field Ei is Wi(z) = 1

2 ω(Eiz,z). Here z = (x,y)
and the matrix of the canonical symplectic form ω on R4 is −E4. This establishes the

Claim: The functions

W1(x,y) = x1x2 + y1y2

W2(x,y) = x1y2 − x2y1 = L(x,y)

W3(x,y) = 1
2 (y

2
1 + x2

1 − y2
2 − x2

2)

W4(x,y) = 1
2 (y

2
1 + x2

1 + y2
2 + x2

2) = H(x,y)

(11)

are a basis for the vector space of all the quadratic integrals of the harmonic oscillator
vector field.
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From the claim we see that the functions W1,W2,W3,W4 are integrals of the harmonic
oscillator vector field. Moreover, these integrals satisfy the relation

W 2
1 +W 2

2 = W̃3W̃4 (12)

with
W̃3 =W4 −W3 = y2

1 + x2
1 ≥ 0 and W̃4 =W4 +W3 = y2

2 + x2
2 ≥ 0.

We now give a geometric interpretation of these integrals. Let γ : R→R2 : t �→ (
x1(t),x2(t)

)
be the projection onto configuration space of an integral curve of XH of energy h > 0 start-
ing at (x0,y0). From (2) we see that γ(t) passes through x0 at time t = 0 and is given by(

x1(t),x2(t)
)
= (x0

1 cos t + y0
1 sin t,x0

2 cos t + y0
2 sin t). (13)

Since the integral curves of XH of positive energy are closed, it follows that γ is a planar
� closed curve, called a Lissajous figure, which we now show is an ellipse.

x2

x1

Figure 3.1. A Lissajous curve.

(3.2) Proof: First we note that the initial condition (x0,y0) determines the values of the inte-
grals, namely,

W1(x0,y0) = w̃1, W2(x0,y0) = w̃2, W̃3(x0,y0) = w̃3, W̃4(x0,y0) = w̃4.

Therefore using the definition of W̃3 and W̃4 we get(
w̃3 − x1(t)2)(w̃4 − x2(t)2)= (

y1(t)y2(t)
)2

=
(
w̃1 − x1(t)x2(t)

)2
,

which upon simplification is

w̃4 x1(t)2 −2w̃2 x1(t)x2(t)+ w̃3 x2(t)2 = w̃3w̃4 − w̃2
1 = w̃2

2 . (14)

Since w̃3 + w̃4 = h > 0 and w̃3w̃4 − w̃2
1 = w̃2

2 ≥ 0, if w̃2 > 0 then the quadratic form

Q(x1,x2) = w̃4 x2
1 −2w̃2 x1x2 + w̃3 x2

2 = w̃2
2 (15)

is positive definite and hence the curve (13) is an ellipse E .

We now describe the geometry of the ellipse E more precisely. In complex coordinates
ζ = x1 + i x2 the quadratic form Q = w̃2

2 becomes

4Q(ζ ,ζ ) = (w̃4 − w̃3 +2i w̃1)ζ 2 +2(w̃4 + w̃3)ζ ζ +(w̃4 − w̃3 −2i w̃1)ζ
2
= 4w̃2

2 . (16)
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Apply the rotation ζ = zeiϑ . Then (16) becomes

(w̃4 − w̃3 +2i w̃1)e2iϑ z2 +2(w̃4 + w̃3)zz+(w̃4 − w̃3 −2i w̃1)e−2iϑ z2 = 4w̃2
2 , (17)

which is diagonal if the angle ϑ is chosen so that (w̃4 − w̃3 + 2i w̃1)e2iϑ is real and, say,
positive. So set

2ϑ =−tan−1 2w̃1

w̃4 − w̃3
. (18)

Then the symmetry axis of E lies along the line in R2, which passes through the origin
and subtends an angle 2ϑ with the positive x1-axis. After performing the rotation eiϑ ,
where ϑ satisfies (18), equation (17) becomes

Az2 +2Bzz+Az2 = 4w̃2
2 , (19)

where A= |w̃4−w̃3+2i w̃1| ≥ 0 and B= w̃4+w̃3 > 0. In real coordinates
(

x1
x2

)
=

(
cosϑ −sinϑ
sinϑ cosϑ

)(
ξ1
ξ2

)
equation (19) becomes

2(A+B)ξ 2
1 +2(B−A)ξ 2

2 = 4w̃2
2 . (20)

Since

B2 −A2 = (w̃3 + w̃4)
2 − (w̃4 − w̃3)

2 −4w̃2
1 = 4(w̃4w̃3 − w̃2

1 ) = 4w̃2
2 > 0,

it follows that B−A > 0. Thus (20) is an equation for the ellipse E , which in standard
form is

( ξ1
b

)2
+

( ξ2
a

)2
= 1, where a =

√
2w2√
B−A

is the major semi-axis a and b =
√

2w2√
A+B

is its
minor semi-axis. Consequently, the eccentricity e of E is

e =

√
1− b2

a2 =

√
1− B−A

A+B
=

√
2A

A+B
.

Now suppose that w̃2 = 0. Then the quadratic form Q (15) factors into the product of the
linear factors w̃4x1 − w̃1x2 and −w̃1x1 + w̃3x2. Hence Q = 0 defines two lines given by

w̃4x1 − w̃1x2 = 0 or − w̃1x1 + w̃3x2 = 0. (21)

Because x0 lies on γ , it satisfies exactly one of the equations in (21). Since the energy is
fixed, we have

x2
1 + x2

2 ≤ x2
1 + y2

1 + x2
2 + y2

2 = 2h. (22)

Therefore γ is a line segment, which lies inside the disc in configuration space defined by
equation (22). �

We now return to the problem of finding an extension of the S1-momentum map of sec-
tion 2. Following the construction of the S1-momentum mapping, we look for a group
acting on T ∗R2 which properly contains S1 and has Hamiltonian vector fields for its in-
finitesimal generators. In contrast to the S1 case, the action on T ∗R2 we find will not be
a lift of an action on the configuration space R2. This is reflected in the observation that
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some of the new integrals are not linear in the momenta, see chapter VII §5. Consider the
linear action of the unitary group

U(2) =
{

U =

(
a −b
b a

)
∈ Gl4 (R)

ata+btb = I2 & atb = bta
a,b ∈ gl2 (R)

}
on R4 = T ∗R2 defined by Ψ : U(2)×R4 → R4 :

(
U,(x,y)

) �→U
(

x
y

)
. Since

(
a −b
b a

)t ( 0 I2
−I2 0

)(
a −b
b a

)
=

(
0 I2

−I2 0

)
,

ΨU is a linear symplectic map, that is, Ψ∗
U ω = ω . For u =

(
A −B
B A

)
∈ u(2), the infinitesimal

generator Y u corresponding to u is the vector field

Y u(x,y) =
d

ds s=0
Ψexpsu

(
x
y

)
=

(
A −B
B A

) (
x
y

)

with flow ψu
t : R4 → R4 :

(
x
y

)
�→ exp tu

(
x
y

)
. Since the matrix Y u is infinitesimally sym-

plectic, the vector field Y u is linear Hamiltonian with Hamiltonian function

Ju : R4 → R : (x,y) �→ 1
2 ω

(
u(x,y)t ,(x,y)t). (23)

For fixed (x,y) ∈ R4, the function u �→ Ju(x,y) is linear. Therefore by duality it makes
sense to define the mapping J : T ∗R2 → u(2)∗ by setting J(x,y)u = Ju(x,y).

� An important property of J is that it intertwines the linear action of U(2) on R4 with the
coadjoint action of U(2) on u(2)∗, the dual of the Lie algebra u(2).

(3.3) Proof: This is a consequence of the calculation

J(U(x,y)t)u = Ju(U(x,y)t)= 1
2 ω

(
uU(x,y)t ,U(x,y)t)

= 1
2 ω

(
U−1 uU(x,y)t ,(x,y)t), since U is symplectic

= J(x,y)
(
U−1 uU

)
= J(x,y)(AdU−1 u)

=
(
Adt

U−1 J(x,y)
)

u. �

Therefore J is the U(2)-momentum mapping corresponding to the linear action Ψ, see
chapter VII §5. If we identify u(2)∗ with u(2) using the Killing metric k defined by
k(u,v) = 1

2 truvt , then the momentum mapping intertwines the linear action of U(2) on
R4 with the adjoint action of U(2) on its Lie algebra u(2). Identifying u(2) with R4 by
choosing the basis {Ei}, the U(2)-momentum mapping J becomes the mapping

J : R4 → R4 : (x,y) �→ (
W1(x,y),W2(x,y),W3(x,y),W4(x,y)

)
.

� Thus the components of the U(2)-momentum mapping J are quadratic integrals of the
harmonic oscillator.

(3.4) Proof: This is just the content of the equations Wi(z) = 1
2 ω(Eiz,z) for i = 1, . . . ,4. An

alternative argument starts by observing that every element U ∈ U(2) when written as
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a −b
b a

)
is also an element of SO(4), the group of all orientation preserving linear

isometries of (R4,〈 , 〉). Consequently, ΨU preserves H and so 0 = LY u H = −LXH Ju.
�

Now consider the 2-torus

T 2 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

ac −ad −bc bd
ad ac −bd −bc
bc −bd ac −ad
bd bc ad ac

⎞⎟⎟⎠ ∈ U(2)
a2 +b2 = 1
c2 +d2 = 1

⎫⎪⎪⎬⎪⎪⎭,
which is an abelian subgroup of U(2). Restricting the U(2) action on R4 to a T 2-action
gives rise to a momentum mapping j : T ∗R2 → (t2)∗ = R2 where (t2)∗ is the dual of the
Lie algebra t2 of T 2 and j(x,y) =

(
W4(x,y),W1(x,y)

)
. In other words, j is the S1 energy

momentum map EM studied in section 2. Therefore the U(2)-momentum mapping J is
a proper extension of EM .

4 The Hopf fibration
In this section we study the qualitative properties of the Hopf mapping

H : R4 → R4 : (x,y) �→ (
w1(x,y),w2(x,y),w3(x,y),w4(x,y)

)
, (24)

where

w1 =W1 = x1x2 + y1y2 w2 =W2 = x1y2 − x2y1

w3 =W3 = 1
2 (y

2
1 + x2

1 − y2
2 − x2

2) w4 =W4 = 1
2 (y

2
1 + x2

1 + y2
2 + x2

2).

The Hopf variables wi, i = 1, . . . ,4 satisfy the relation

C(w1,w2,w3,w4) = w2
1 +w2

2 +w2
3 −w2

4 = 0, w4 ≥ 0. (25)

Therefore the image of the Hopf map is contained in the semialgebraic variety C defined
� by (25). Topologically C is a cone on S2 with vertex at 0. To show that C is the image of

the Hopf map, it suffices to verify that DH (x,y) : T(x,y)R4 → TH (x,y)C is surjective for
all (x,y) = (0,0), since H (0) = 0 and C \{0} is a smooth three dimensional manifold.

(4.1) Proof: When (x,y) = (0,0) the derivative

DH (x,y) =

⎛⎜⎜⎝
x2 x1 y2 y1
y2 −y1 −x2 x1
x1 −x2 y1 −y2
x1 x2 y1 y2

⎞⎟⎟⎠
has rank ≥ 3 because its first three rows are nonzero and pairwise orthogonal. It has rank
≤ 3, since

imDH (x,y)⊆ TH (x,y)C = kerDC(H (x,y)) = ker(w1,w2,w3,w4)

and (w1,w2,w3,w4) is nonzero. �
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Restricting the Hopf mapping H to the 3-sphere

H−1(h) = S3√
2h = {(x,y) ∈ R4 y2

1 + y2
2 + x2

1 + x2
2 = 2h, h > 0}

and using (25) gives the mapping

F : S3√
2h ⊆ R4 → S2

h ⊆ R3 : (x,y) �→ (
w1(x,y),w2(x,y),w3(x,y)

)
. (26)

Here S2
h is the 2-sphere {w ∈ R3 |w2

1 +w2
2 +w2

3 = h2}. The map F is called the Hopf
fibration. From a topological point of view the Hopf fibration is quite nontrivial and will
require quite a bit of work to be understood.

Claim: The Hopf fibration F has the following properties:

I. F is a proper submersion.
II. For every w ∈ S2

h the fiber F−1(w) is a great circle on S3√
2h

contained in the
2-plane Πw, see (27).

III. For every w,w ′ ∈ S2
h with w = w ′, the circles F−1(w) and F−1(w ′) are linked in

S3√
2h

with linking number 1, see (29).

Figure 4.1. Visualization of the Hopf fibration.

(4.2) Proof: I. Consider the mapping

F : R4 → R3 : (x,y) �→ (w1,w2,w3) =
(
x1x2 + y1y2,x1y2 − x2y1,

1
2 (y

2
1 + x2

1 − y2
2 − x2

2)
)
.

Clearly F is smooth and has derivative

DF(x,y) =

⎛⎝ x2 x1 y2 y1
y2 −y1 −x2 x1
x1 −x2 y1 −y2

⎞⎠.

Since F = F |S3√
2h

, the Hopf fibration F is smooth. When (x,y) = (0,0) the rows of

DF(x,y) are nonzero and pairwise orthogonal. Hence DF (x,y) = DF(x,y)|T(x,y)S3√
2h

is

a surjective linear map from T(x,y)S3√
2h

to TF (x,y)S2
h for every (x,y) ∈ S3√

2h
. Thus F is a

submersion. Moreover, F is a proper map, because its domain is compact.
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II. The following argument shows that every fiber of F is a great circle on S3√
2h

. Let Πw

be the 2-plane in R4 defined by

π1

(
x
y

)
= (−w1,h+w3,w2,0)

(
x
y

)
= 0

π2

(
x
y

)
= (−w2,0,−w1,h+w3)

(
x
y

)
= 0,

(27)

when w ∈ S2
h \{(0,0,−h)}, and the 2-plane {(0,x2,0,y2) ∈ R4 (x2,y2) ∈ R2}, when w =

(0,0,−h). To see that equation (27) defines a 2-plane we argue as follows. We know that
the covectors π1 and π2 are linearly dependent if and only if 0 = π1 ∧π2, that is, when all
the 2×2 minors of (−w1 h+w3 w2 0

−w2 w1 0 h+w3

)
vanish. In other words, w1 = w2 = 0 and w3 = −h. But this is excluded by hypothesis.
Therefore (27) defines a 2-plane, when w ∈ S2

h \{(0,0,−h)}.

We now show that F−1(w) ⊆ Πw ∩ S3√
2h

. Suppose that w ∈ S2
h \ {(0,0,−h)}. Then for

every (x,y)∈F−1(w)⊆ S3√
2h

, we have x2
1+y2

1 > 0. To see this note that (x,y)∈F−1(w)

if and only if (26) holds. Now x2
1 +y2

1 = w3 +w4. But (x,y) ∈ S3√
2h

, so w4 = h. Therefore

x2
1 + y2

1 = w3 + h. By hypothesis w3 ∈ (−h,h] so x2
1 + y2

1 > 0. Now write the defining
equations of w1 and w2 as (

x1 y1
−y1 x1

) (
x2
y2

)
=

(
w1
w2

)
. (28)

Since the determinant x2
1 + y2

1 > 0 we may invert
(

x1 y1
−y1 x1

)
to obtain(

x1 −y1
y1 x1

) (
w1
w2

)
= (x2

1 + y2
1)

(
x2
y2

)
= (h+w3)

(
x2
y2

)
,

which is (27). Thus F−1(w) ⊆ Πw. Hence F−1(w) ⊆ Πw ∩ S3√
2h

. Now suppose that
w = (0,0,−h). Then the defining equations for w3 and w4 become

y2
1 + x2

1 − x2
2 − y2

2 = −2h

y2
1 + x2

1 + x2
2 + y2

2 = 2h,

since (x,y) ∈ S3√
2h

. Adding these equations together and dividing by 2 gives y2
1 + x2

1 = 0,

that is, x1 = y1 = 0. Hence F−1(0,0,−h)⊆ Π(0,0,−h)∩S3√
2h

. Therefore for each w ∈ S2
h

the fiber F−1(w) is contained in Πw ∩ S3√
2h

. Because F is a submersion, F−1(w) is a

smooth compact one dimensional submanifold of S3√
2h

without boundary. Hence F−1(w)

is the great circle Πw ∩S3√
2h

.
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Figure 4.2. Linking number. In the figure on the left the curves have linking
number 0, yet can not be pulled apart without being cut. In the figure on the right
the curves have linking number +1.

Before proving property III we must define the notion of linking number of two smooth
oriented disjoint circles γ1 and γ2 in an oriented 3-sphere S3. Intuitively, the circles γ i are
linked if they cannot be pulled apart without being cut, see figure 4.2. A more precise
definition goes as follows. For simplicity we will assume that γ1 bounds a smooth ori-
ented closed 2-disk D2

1 in S3. Since S3 is simply connected, the circle γ1 is null homotopic
and hence is smoothly contractible to a point p ∈ S3. In other words, there is a diffeo-
morphism F : D2

1 ⊆ R2 → S3 ⊆ R4, called a contraction, such that F(0) = p and such
that for every r ∈ (0,1] the map F restricted to the boundary ∂D2

r of the closed 2-disk
D2

r = {x ∈ R2 | (x,x) ≤ r2} is a diffeomorphism onto γ1. Orient the 2-disk D2
1 so that

F |∂D2
1 is orientation preserving. Furthermore assume that F is transverse to γ2 in S3,

that is, either γ2 ∩F(D2
1) = ∅ or for every x in D2

1 such that F(x) ∈ γ2 ∩F(D2
1) we have

TxF(TxD2
1)+Txγ2 = TxS3. The linking number of the circles γ1 and γ2 is the intersection

number of F(D2
1) with γ2, that is,

Link(γ1,γ2) = ∑
x∈T

#
(
TxF(TxD2

1
)
,Txγ2) (29)

where T = {x ∈ D2
1 F(x) ∈ γ2 ∩F(D2

1)} and

#
(
TxF(TxD2

1),Txγ2
)
=

⎧⎨⎩ 1, if the orientation of TxF(TxD2
1)⊕Txγ2

is the same as TxS3

−1, otherwise.

� Note that the sum in (29) is finite, since F is transverse to γ2. An argument, which is left
as an exercise, shows that the definition of linking number does not depend on the choice
of oriented 2-disk D2

1 with boundary γ1.

III. With these preliminaries out of the way we are in a position to prove property III
of the Hopf fibration F , namely, that two distinct fibers of F have linking number 1.
Suppose that w,v ∈ S2

h and w = v. Then F−1(w)∩F−1(v) =∅. Thus the corresponding
2-planes Πw and Πv intersect only at 0, see the proof of property II for the definition of
Πw. Let Π be a 3-plane in R4 containing Πw. Then Πv is not contained in Π. Moreover
Πv ∩Π = �v is a line in R4. Let S2 = Π∩ S3 be the great 2-sphere in S3 cut out by Π
and let S1

w = Πw ∩S3 be the great circle on S3 cut out by Πw. Furthermore let H+ be the
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closed upper hemisphere of S2 with boundary S1
w. Then H+ is diffeomorphic to a closed

2-disk D2 with boundary S1
w. To see this just project points of H+ onto the equatorial

plane containing S1
w. Since Πv is not contained in Π, the great circle S1

v = Πv ∩ S3 is
not contained in S2. Because the line �v intersects the great 2-sphere S2 in two antipodal
points p+ and p−, the circle S1

v intersects S2 at p+ and p−. Since Πw ∩Πv = {0}, the
points p+ and p− do not lie on the equator S1

w of S2. Hence exactly one of the points
p±, say p+, lies in the interior of the hemisphere H+. Therefore the linking number of
the two circles F−1(w) and F−1(v) in S3 is ±1, since we have not been careful about
orientations. If we choose orientations properly we can arrange that the linking number
is 1. This completes the proof of the properties of the Hopf fibration. �

We now draw some conclusions about the Hopf fibration from the properties we have just
proved. From property I we know that F is a proper submersion. Therefore the Hopf
mapping F : S3√

2h
→ S2

h : (x,y) �→ w defines a locally trivial bundle with fiber S1, see
chapter VIII §2. To find the local trivializations of the bundle F explicitly we use the
identities

x2 =
1

h+w3
(w1x1 −w2y1) and y2 =

1
h+w3

(w2x1 +w1y1) (30)

which hold for (x1,x2,y1,y2) ∈F−1(w) when w ∈ (S2
h \{(0,0,−h)}) =U1, and the iden-

tities
x1 =

1
h−w3

(w1x2 +w2y2) and y1 =
1

h−w3
(−w2x2 +w1y2), (31)

which hold when w ∈ (S2
h \ {(0,0,h)}) = U2. Note that {U1,U2} form an open covering

of S2
h. Let S1 = {(x,y) ∈ R2 x2 + y2 = 1}. Consider the mappings

τ1 : U1 ×S1 → F−1(U1) : (w1,w2,w3,x,y) �→(
x
√

h+w3,
1√

h+w3
(w1x−w2y),y

√
h+w3,

1√
h+w3

(w2x+w1y)
) (32)

and
τ2 : U2 ×S1 → F−1(U2) : (w1,w2,w3,x,y) �→( 1√

h−w3
(w1 x+w2 y),x

√
h−w3,

1√
h−w3

(−w2 x+w1 y),y
√

h−w3
) (33)

Using the definition of the Hopf fibration F , it is easy to check that F ◦τ1 = π1 and
F ◦τ2 = π2, where π1 : U1 ×S1 →U1 and π2 : U2 ×S1 →U2 are the projections onto the
first factor. A short calculation shows that

τ−1
1 : F−1(U1)→U1 ×S1 : (x1,x2,y1,y2) �→ (w1,w2,w3,x,y) =

=
(
x1x2 + y1y2,x1y2 − x2y1,

1
2 (y

2
1 + x2

1 − x2
2 − y2

2),
x1√
h+w3

, y1√
h+w3

)
,

since x2
1 + y2

1 = h+w3 in F−1(U1), and also that

τ−1
2 : F−1(U2)→U2 ×S1 : (x1,x2,y1,y2) �→ (w1,w2,w3,x,y) =

=
(
x1 x2 + y1 y2,x1 y2 − x2 y1,

1
2 (y1

2 + x1
2 − x2

2 − y2
2), x2√

h−w3
, y2√

h−w3

)
,
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since x2
2 + y2

2 = h−w3 in F−1(U2). Thus τ−1
1 and τ−1

2 are continuous. Consequently
� the mappings τ1 and τ2 are local trivializations of the bundle F . The Hopf fibration

is not trivial, that is, the bundle F : S3√
2h

→ S2
h is not isomorphic to the trivial bundle

S2
h ×S1 → S2

h.

(4.3) Proof: This follows from the fact that the linking number is a topological invariant and
two distinct fibers of the Hopf fibration are linked with linking number one, whereas the
fibers of the trivial bundle are unlinked. Another argument uses the observation that the
total space S3√

2h
of the Hopf fibration is not diffeomorphic to the total space S2

h × S1 of

the trivial bundle, because the first homology group of S3√
2h

vanishes, whereas the first

homology group of S2
h ×S1 is Z. For yet another argument see chapter VIII §1. �

Claim: The Hopf bundle F : S3√
2h

→ S2
h is an S1 principal bundle.

(4.4) Proof: We prove this assertion in several steps.

� First we show that the S1 bundle πh : H−1(h)→ Mh = H−1(h)/S1, where πh maps each
orbit of energy h of the harmonic oscillator vector field XH to a point, is an S1 principal
bundle.

(4.5) Proof: H−1(h) is invariant under the flow ϕH
t of XH . Since ϕH

2π = idS3√
2h

, the flow ϕH
t

defines an action of S1 = R/2πZ on H−1(h) = S3√
2h

given by

S1 ×S3√
2h → S3√

2h :
(
t,(x,y)

) �→ ϕH
t (x,y) =

(
(cos t) I2 (sin t) I2
−(sin t) I2 (cos t) I2

)(
x
y

)
.

Because every orbit of this action has minimal period 2π , the isotropy group of every
point on S3 is the identity element of S1 = R/2πZ. Therefore the S1-action is free. It is
also proper, since S1 is compact. Thus the bundle πh is a principal S1 bundle, see chapter
VII ((2.12)). �

� Next we show that the orbit space Mh is diffeomorphic to a 2-sphere .

(4.6) Proof: Because the S1-action defined by the flow of the harmonic oscillator is free and
proper, the orbit space Mh is smooth, see chapter VII §2.2. We now use Morse theory to
determine the topology of Mh. Consider the smooth function L|H−1(h) : H−1(h) → R,
which is the restriction of the angular momentum L (3) to the energy level set H−1(h).
Because L|H−1(h) is invariant under the flow of XH , it induces a smooth function L̃h :
Mh → R on Mh. Since the set of critical points of L|H−1(h) consists of two disjoint
circles, which are nondegenerate critical submanifolds of H−1(h) of Morse index 0 and
2, see ((2.1)), the function L̃h is a Morse function on Mh with two nondegenerate critical
points, one of Morse index 0 and the other of Morse index 2. Thus Mh is homeomorphic
to a 2-sphere, see chapter XI ((3.2)). Because Mh is smooth, it is diffeomorphic to a 2-
sphere. �
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DA

Figure 4.3. Poincaré disks used to construct the orbit space
(left). The orbit space H−1/S1 = S2 (right).

To visualize the orbit space Mh consider figure 4.3. Here the 3-sphere S3√
2h

is to be thought

of as the one point compactification of R3, the point at infinity having been added. Thus
the z-axis is actually a circle. Every S1 fiber of the Hopf fibration passes transversely
through one of the two closed 2-disks DA or DB, which have bounding circles A or B,
respectively. Corresponding to each point on A there is a unique point ϑ(p) on B. Gluing
the disk DA to the disk DB along their boundary by the diffeomorphism ϑ gives a 2-sphere
S2, which is the orbit space Mh.

� The bundle πh : H−1(h)→ Mh is isomorphic to the Hopf bundle F : S3√
2h

→ S2
h.

(4.7) Proof: This result follows because the map ϕ making diagram 4.1 commutative is a
diffeomorphism. In more detail, the map ϕ is well defined because each fiber of F is a
single orbit of XH . Since each fiber of πh is also a single orbit of XH , the mapping ϕ is
injective. Clearly, ϕ is surjective. Its inverse is continuous since S2

h is a compact Hausdorff
space. Hence ϕ is a homeomorphism. Because the bundle F is locally trivial, it has a
smooth local section. Hence ϕ is smooth. Its inverse is also smooth because the bundle
πh is locally trivial and hence has a smooth local section. This completes the argument

Diagram 4.1

S3√
2h

�πh
Mh

�

F

S2
h

�
�
�
�
��

ϕ

that the bundle πh : H−1(h)→ S2
h is an S1-principal bundle. �

The preceding result allows us to draw the following conclusions
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� There is no global cross section for the flow of the harmonic oscillator vector field XH on
the energy level set H−1(h).

(4.8) Proof: To see this we argue as follows. Suppose that the 2-disk D ⊆ S3√
2h

is a global

cross section. Since every orbit of XH on S3√
2h

is a circle, it would follow that S3√
2h

is homeomorphic to D2 × S1. Therefore two distinct orbits of XH on H−1(h) would be
unlinked in S3√

2h
. But these orbits are two distinct fibers of the Hopf fibration, which are

linked in S3√
2h

. This is a contradiction. Therefore S3√
2h

is not homeomorphic to D2 × S1

as asserted. This proves the result. �

� The orbit space Mh = H−1(h)/S1 is not a submanifold of H−1(h).

(4.9) Proof: See the preceeding argument. �

To determine which principal bundle the Hopf fibration F is, we calculate its classifying
map. From the definition of the local trivializations τi (32) and (33) we find that the
transition map between chart overlaps is given by

τ−1
2 ◦τ1 : (U1 ∩U2)×S1 → (U1 ∩U2)×S1 :

(
(w,

(
x
y

)
)
) �→ (

w,g12 (w)
(

x
y

))
where

g12 : U1 ∩U2 → SO(2,R) = S1 : (w1,w2,w3) �→ 1√
h2−w2

3

(
w1 −w2
w2 w1

)
.

Let S1
E = {(w1,w2,0) ∈ S2

h |w2
1 +w2

2 = h2} ⊆ U1 ∩U2 be the equator of the 2-sphere S2
h.

By definition, the classifying map of the bundle F is

χ = g12|S1
E : S1

E → SO(2,R) : (w1,w2) �→ 1
h

(
w1 −w2
w2 w1

)
. (34)

Clearly the mapping χ has degree 1.

We now give a way to visualize geometrically the fibration of H−1(h) by level sets of the
angular momentum L. In figure 4.4 the union of the XH orbits through DB is the closed
solid torus STB = DB ×S1 with boundary T 2 and the union of the XH orbits through DA is
the closed solid torus STA = DA ×S1 with boundary T 2.

A

ψ
�

A′

B
Figure 4.4. The gluing map.

To understand how the 3-sphere S3√
2h

is the union the two solid tori STA and STB we

need to know the map ψ : T 2 → T 2 which glues the solid torus STB to the solid torus
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STA along their common boundary T 2. Using the local trivializations τi it follows that
STB = τ1

(
(S2

h∩{w3 ≥ 0})×S1
)
, STA = τ1

(
(S2

h∩{w3 ≤ 0})×S1
)
, and T 2 = τ1(S1

E ×S1) =

τ2(S1
E ×S1). Therefore, in the charts provided by the local trivializations, the gluing map

ψ is the graph of the transition map τ−1
2 ◦τ1 restricted to S1

E ×S1, that is,

ψ : S1
E ×S1 → S1

E ×S1 :
(
w1,w2,

(
x
y

)) �→ (
w1,w2,χ (w1,w2)

(
x
y

))
.

To visualize the gluing map ψ , we identify the 2-torus T 2 with the lattice Z2 ⊆R2. Taking
the S1 orbits of XH as vertical and the circles A and B as horizontal, the image of A under
the mapping ψ is the line A′ : {(x,−x) ∈ R2|x ∈ R}, see figure 4.4. If we identify the
2-torus T 2 with R2/Z2, we see from figure 4.4 that the gluing map ψ is just the map on
T 2 induced by the linear map ψ̃ of R2 into itself with matrix

(
1 0
1 1

)
. The map ψ is well

defined because ψ̃(Z2) = Z2.

The above treatment of the Hopf fibration gives a description of the fibers of the Hopf
mapping H (24) over the w4 = h > 0 section of its image cone C (25). To complete the
description of the geometry of the Hopf mapping, we look at the fibers of H over other
slices of C . The results are given in table 4.1, which we leave as an exercise to verify.

Section of C Topology of section Topology of fiber

1. w4 = k > 0 S2 S3

2. w3 = k = 0 R2 S1 ×R2

3. w2 = k = 0 R2 S1 ×R2

4. w1 = k = 0 R2 S1 ×R2

5. w3 = 0 cone on S1 cone on T 2

6. w2 = 0 cone on S1 cone on T 2

7. w1 = 0 cone on S1 cone on T 2

Table 4.1. The fibers of the Hopf map.

5 Invariant theory and reduction

In this section we examine the geometry of the space of orbits of energy h of the har-
monic oscillator. We will show that this space is a symplectic manifold. This fact can be
exploited in several ways. One way is to gain some insight into the geometry of the folia-
tion of the energy surface H−1(h) by integral curves of XH and to see how the symplectic
structure of this foliation depends on the energy. Suppose that we have a Hamiltonian
system with an integral, which is the Hamiltonian of the harmonic oscillator. Using this
independent first integral, we reduce the original Hamiltonian vector field to a Hamil-
tonian vector field on the orbit space H−1(h)/S1, which is two dimensions less than the
original phase space. We will show how to carry out this reduction process using invariant
theory. This procedure has two advantages. First, it allows us to show that any smooth
Hamiltonian, which is invariant under the flow of the harmonic oscillator vector field and
hence has the harmonic oscillator Hamiltonian as an integral, is a smooth function of four
quadratic polynomials. Second, using these polynomials, we can explicitly construct the
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reduced space H−1(h)/S1 together with an embedding of it in Euclidean space. As a
consequence, we obtain the associated Poisson (and symplectic) structure of the reduced
space and the reduced vector field, which gives the reduced dynamics. These algebraic
techniques will be used repeatedly in succeeding chapters of this book because they give
a geometrically faithful model of the reduced space, even when it is not a smooth man-
ifold. We may summarize the contents of this section as follows. Let K be a function
which is invariant under the flow of the harmonic oscillator vector field XH . We reduce
the Hamiltonian system (K ,R4,ω) to a Hamiltonian system (Kh,S2

h,ωh) on a 2-sphere
S2

h which is the space formed by collapsing each orbit of XH of energy h to a point.

We begin by proving

Claim: The Hamiltonian K is invariant under the flow of the harmonic oscillator vector
field XH if and only if it is an integral XH .

(5.1) Proof: K is invariant under the flow of the harmonic oscillator vector field if and only if it
is constant on the integral curves of XH if and only if it is an integral of XH . More formally,
let ϕH

t be the flow of XH . Since K is invariant under ϕH
t , it follows that (ϕH

t )∗K = K .
Differentiating this condition with respect to t and evaluating the result at t = 0 gives
LXH K = 0. In other words, K is an integral of XH . Conversely, suppose that K is an
integral of XH . Then

d
dt
(ϕH

t )∗K =
d

ds s=0
(ϕH

t+s)
∗K = (ϕH

t )∗
( d

ds s=0
(ϕH

s )∗K
)
= (ϕH

t )∗(LXH K ) = 0.

Therefore t → (ϕH
t )∗K is a constant function, that is, (ϕH

t )∗K = (ϕH
0 )∗K = K . Thus

K is invariant under the flow of XH . �

We now describe all the smooth functions which are integrals of XH . We begin by find-
ing all polynomial integrals of XH . We show that they are polynomials in the quadratic
integrals

w1 = x1x2 + y1y2 w2 = x1y2 − x2y1

w3 = 1
2 (y

2
1 + x2

1 − y2
2 − x2

2) w4 = 1
2 (y

2
1 + x2

1 + y2
2 + x2

2).

Claim: The algebra of polynomials which are invariant under the S1-action given by the
flow of the harmonic oscillator vector field XH is generated by the quadratic functions wi,
which satisfy the relation

w2
4 = w2

1 +w2
2 +w2

3, where w4 ≥ 0. (35)

(5.2) Proof: We introduce complex conjugate coordinates

ξ1 = x1 + iy1, η1 = x1 − iy1, ξ2 = x2 + iy2, η2 = x2 − iy2.

Then the algebra R [x,y] of real polynomials on R4 becomes the algebra of Hermitian
polynomials HP [ξ ,η ] =

{
∑ci jξ iη j ci j = c ji, where ci j ∈ C

}
. Writing the Hamiltonian

H in complex conjugate coordinates gives H̃(ξ ,η) = 1
2 (ξ1η1 + ξ2η2). Moreover, we
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obtain the Hamiltonian vector field on C4

ξ̇ = −2i
∂ H̃
∂η

=−iξ η̇ = 2i
∂ H̃
∂ξ

= iη , (36)

where ξ = (ξ1,ξ2),
∂

∂ξ = 1
2 (

∂
∂x − i ∂

∂y ) and η = (η1,η2),
∂

∂η = 1
2 (

∂
∂x + i ∂

∂y ). The flow of
XH̃ is the S1-action · on C4 given by

· : S1 ×C4 → C4 :
(
s,(ξ ,η)

) �→ (sξ ,s−1η), (37)

where s ∈ C with |s|= 1. A real polynomial is invariant under the flow of XH if and only
if the corresponding Hermitian polynomial is invariant under the flow of XH̃ . A Hermitian
polynomial is invariant if and only if for each of its monomials M = ξ iη j = ξ i1

1 ξ i2
2 η j1

1 η j2
2

we have
s ·M = s|i|ξ is−| j|η j = s|i|−| j| ξ iη j = ξ iη j = M,

where |i|= i1 + i2 and | j|= j1 + j2. In other words, |i|= | j|.
� We now show that every S1 invariant Hermitian monomial M can be written as a product

of the invariant quadratic monomials σ�k = ξ�ηk, where �= 1,2 and k = 1,2.

(5.3) Proof: The factors in the monomial M = ξ i1
1 ξ i2

2 η j1
1 η j2

2 can be displayed as two lists

i1︷ ︸︸ ︷
ξ1 · · · · · · ·ξ1

i2︷ ︸︸ ︷
ξ2 · · ·ξ2

η1 · · ·η1︸ ︷︷ ︸
j1

η2 · · · · · ·η2︸ ︷︷ ︸
j2

.

Because |i| = | j|, the above two lists have the same length and hence their entries may
be paired off. This pairing expresses M as the product of quadratic monomials σ�k as
claimed. �
Since

σ11 = ξ1η1 = x2
1 + y2

1 = w4 +w3

σ12 = ξ1η2 = (x1x2 + y1y2)− i(x1y2 − x2y1) = w1 − iw2

σ21 = ξ2η1 = (x1x2 + y1y2)+ i(x1y2 − x2y1) = w1 − iw2

σ22 = ξ2η2 = x2
2 + y2

2 = w4 −w3,

every S1 invariant polynomial is a sum of monomials which are products of w1,w2,w3,w4
times a real coefficient. From the identity

(x1x2 + y1y2)
2 +(x1y2 − x2y1)

2 = (x2
1 + y2

1)(x
2
2 + y2

2) (38)

it follows that w2
1 +w2

2 +w2
3 = w2

4. Clearly w4 ≥ 0. This proves the claim. �

Claim: The only polynomial relation among the generators wi of the algebra of polyno-
mials invariant under the flow of XH is w2

1 +w2
2 +w2

3 −w2
4 = 0.

(5.4) Proof: Consider the complexified Hopf mapping
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Φ : C4 → C4 : (x1,x2,y1,y2)→ (w1,w2,w3,w4) =

=
(
x1x2 + y1y2, x1y2 − x2y1,

1
2 (y

2
1 + x2

1 − y2
2 − x2

2),
1
2 (y

2
1 + x2

1 + y2
2 + x2

2)
)
.

We assert that the image of Φ is equal to the zero set ZF of the polynomial F = w2
1+w2

2+
w2

3−w2
4. Since F◦Φ = 0, which follows from (38), the image of Φ is contained in ZF . To

prove the reverse inclusion, let (w1,w2,w3,w4) ∈ ZF . Consider the following cases:

CASE 1. If w4 +w3 = 0, let

(x1,x2,y1,y2) =
(
0,−w2/

√
w4 +w3,

√
w4 +w3,w1/

√
w4 +w3

)
.

CASE 2. If w4 +w3 = 0, let (x1,x2,y1,y2) = (0,0,0,
√

2w4).

Which branch of the square root one chooses above is immaterial, as long as it is con-
sistent. In all of the above cases, Φ(x1,x2,y1,y2) = (w1,w2,w3,w4). Thus the image
of Φ contains ZF . Next we show that the polynomial F is irreducible. Suppose not.
Then F is the product of two factors. Write F = (αw1 +β )(γw1 + δ ), where α,β ,γ,δ
are polynomials in w2,w3,w4. Clearly we can take α = γ = 1. Since F has no term
which is linear in w1, we must have δ = −β . Therefore the expression for F becomes
−β 2 = w2

2 +w2
3 −w2

4. Consequently the degree of β is at most 1. Since β (0,0,0) = 0,
we may write β = bw2 +cw3 +dw4 for some b,c,d ∈ C. Squaring the preceding formula
for β and equating coefficients with the expression for −β 2 gives b = ±i, c = ±i and
bc = 0, which is a contradiction. Let I be the ideal in C [w1,w2,w3,w4] generated by F .
Since C is a field, the polynomial ring C [w1,w2,w3,w4] is a unique factorization domain
and an integral domain. Thus every irreducible element is prime. Since every ideal in an
integral domain which is generated by a prime polynomial is a prime ideal, I is a prime
ideal. Suppose that f is a polynomial in C [w1,w2,w3,w4] such that f ◦Φ = 0, that is, f
is a polynomial relation among the generators wi. Since the image of Φ is the zero set
of I and f vanishes on the image of Φ, it follows that the zero set of the ideal generated
by f contains the image of Φ. By the Hilbert Nullstellensatz there is a positive integer m
such that f m ∈ I . Since I is prime, f ∈ I . �
The flow of XH defines an algebraic linear action of SO(2,R) = S1 on R4 given by

ϕH : SO(2,R)×R4 → R4 :
((

a −b
b a

)
,

(
x
y

))
�→

(
aI2 −bI2
bI2 aI2

)(
x
y

)
,

where a2 + b2 = 1. We may use a theorem of Schwarz to conclude that every smooth
integral of the harmonic oscillator is a smooth function of the quadratic integrals. Thus
we have proved

Claim: For every smooth function K on R4, which is invariant under the flow of the
harmonic oscillator, there is a smooth function K on R4 such that K = J∗K, where J is
the U(2)-momentum mapping of the harmonic oscillator.

We now turn to constructing a Poisson bracket on R3 with coordinates (w1,w2, w3). Since
the Hamiltonian vector fields Xwi for i= 1, . . . ,4 form a Lie algebra which is isomorphic to
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the Lie algebra u(2), the quadratic integrals wi form a Lie algebra under Poisson bracket
{ , } on C∞(T ∗R2) which is isomorphic to u(2). The bracket relations for this Lie algebra

{A,B} w1 w2 w3 w4 B

w1 0 −2w3 2w2 0
w2 2w3 0 −2w1 0
w3 −2w2 2w1 0 0
w4 0 0 0 0
A

Table 5.1 The structure matrix W of the Poisson algebra A .

are found by calculating {w1,w2} = ω(Xw1 ,Xw2) = −2w3. The rest of the bracket re-
lations are given in table 5.1. Using the quadratic integrals w = (w1,w2,w3,w4) as co-
ordinates on R4, the space C∞(R4) can be made into a Poisson algebra A by defining
a Poisson bracket by { f ,g} = ∑4

i, j=1
∂ f

∂w j

∂g
∂wi

{w j,wi}, where f ,g ∈ C∞(R4), see chapter
VI §4. The bracket { , } is entirely determined by the bracket relations given in table 5.1,
because of the chain rule.

For K ∈C∞(R4) the corresponding Hamiltonian vector field XK is

ẇ j = {w j,K} = ∑
i

∂K
∂wi

{w j,wi}=−2∑
i,k

∂K
∂wi

ε jikwk (39)

for j = 1, . . . ,4. Note that for any f ∈ C∞(R4) we have { f ,w4} = 0 and { f ,w2
4 −w2

1 −
w2

2 −w2
3} = 0, because they vanish for f = wi where i = 1, · · · ,4. Thus the functions w4

and w2
4 −w2

1 −w2
2 −w2

3 are Casimir elements of the Poisson algebra A . Therefore the
level set w4 = h for h > 0 defines a smooth submanifold R3 ×{h} of R4 diffeomorphic
to R3 which is invariant under the flow of the vector field XK . Using (39) we see that
XK|(R3×{h}) is given by

ẇ =−2gradK(w)×w, (40)

where w = (w1,w2,w3)
t ∈ R3 and all partial derivatives are evaluated with w4 = h.

Now consider the space B of smooth functions on R3 which are restrictions of smooth
functions on R4 to {w4 = h}. For K ∈ A let K̃h ∈ B be the restriction of K to {w4 = h}.
Because w4 is a Casimir for A , the space B is a Poisson subalgebra of A with bracket

{A,B} w1 w2 w3 B

w1 0 −2w3 2w2
w2 2w3 0 −2w1
w3 −2w2 2w1 0
A

Table 5.2 The structure matrix W of the Poisson algebra B. Here the
functions wi are restricted to R3 ×{h}.
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relations given in table 5.2. Using the Poisson algebra B, we show that the smooth 2-
� sphere S2

h defined by w2
1 +w2

2 +w2
3 = h2 has a symplectic 2-form

ωh(w)(u,v) =− 1
2h2 (w,u× v). (41)

Here w ∈ S2
h, u,v ∈ TwS2

h, and ( , ) is the Euclidean inner product on R3.

(5.5) Proof: Consider the structure matrix W (w) of the Poisson algebra B given in table 5.2.
Since kerW (w) = span{w} and TwSh = span{w}⊥, the matrix W (w)|TwSh is invertible.
On S2

h define the symplectic form ωh(w)(u,v) = ut(W−1(w))t(v) for w ∈ S2
h and u,v ∈

TwSh. Let y ∈ TwS2
h. Then W (w)y = 2w× y = u so that

w×u = w× (2w× y) = 2
(
w(w,y)− y(w,w)

)
=−2y(w,w) =−2h2 y.

Thus W−1(w)u =− 1
2h2 w×u, which yields

ut(W−1(w))t v =− 1
2h2 (w×u)t v =− 1

2h2 (w×u,v) =− 1
2h2 (w,u× v).

Therefore ωh(w)(u,v) =− 1
2h2 (w,u× v). �

On the symplectic manifold (S2
h,ωh) the vector field XK̃h

(w) = −2(grad K̃h ×w), where

K̃h = K|(R3 ×{h}), is Hamiltonian because

ωh(w)
(
XK̃h

(w),v
)
=− 1

2h2 (w,−2(grad K̃h ×w)× v) = 1
h2

(
w× (grad K̃h ×w),v

)
= 1

h2

(−w(grad K̃h,w)+grad K̃h (w,w),v
)
= (grad K̃h,v) = dK̃h(w)v,

where w ∈ S2
h and v ∈ TwS2

h.

Up to the factor 2 the integral curves of the vector field XKh , when the Hamiltonian K̃h

is 1
2 (I

−1
1 w2

1 + I−1
2 w2

2 + I−1
3 w2

3), satisfy Euler’s equations for the rigid body in momentum
coordinates, see chapter III §3.3.

Note that the image under the U(2)-momentum mapping J of the integral curves of
XK |H−1(h) are the integral curves of XKh on the orbit space H−1(h)/S1 = S2

h with sym-
plectic form ωh. This is precisely what the regular reduction theorem says in the case of
the harmonic oscillator, see chapter VII §6. Here (S2

h,ωh) is the reduced phase space, Kh
is the reduced Hamiltonian, and J is the reduction mapping.

6 Exercises
1. (Complex projective 1-space.) Complex projective 1-space CP1 is defined as the

set of equivalence classes of vectors in C2 \ {0} under the equivalence relation ∼
defined by (z1,z2) ∼ (w1,w2) if there is a λ ∈ C∗ = {z ∈ C| |z| = 1} such that
(z1,z2) = (λw1,λw2). Denote the equivalence class of (z1,z2) by [z1 : z2]. In other
words [z1 : z2] are homogeneous coordinates on CP1. Let

U1 = {[1 : z2/z1] ∈ CP1|z1 = 0} and U2 = {[z1/z2 : 1] ∈ CP1|z2 = 0}
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with coordinates w = z2/z1 and z = z1/z2, respectively. Show that {U1,U2} form
an atlas for CP1 with transition function

ϕ12 : U1 ∩U2 →U1 ∩U2 : z → w = 1/z.

Show that CP1 is diffeomorphic to S2 by verifying that the function

f : CP1 → R : [z1 : z2]→ 1
2 (a|z1|2 +b|z2|2), a > b > 0

is a Morse function with two nondegenerate critical points. Show that

ω = Im

(
(z2 dz1 − z1 dz2)∧ (z2 dz1 − z1 dz2)

|z1|2 + |z2|2
)

is a symplectic form on CP1.

2. (Linking number.)

a) Let A and B be two smooth circles in S3. Suppose that WA and WB are disjoint
tubular neighborhoods of A and B in S3. Then WA and WB are diffeomorphic to
DA ×S1 and DB ×S1 for some 2-disks DA and DB respectively. There are 2-forms
ηA and ηB on S3 which are nonzero on WA and WB and zero elsewhere. To show
that ηA is closed we argue as follows. Since the normalized volume 3-form volS3

generates H3(S3), it follows that for some λ being a real valued function we have
dηA = λvolS3 . By Stokes’ theorem

∫
S3 dηA =

∫
∂S3 ηA = 0, since ∂S3 =∅. Therefore

λ = 0. Similarly ηB is closed. Since WA and WB are contractible in S3, the 2-forms
ηA and ηB are exact. So there are 1-forms ξA and ξB on S3 such that dξA = ηA
and dξB = ηB. This also follows because H2(S3) = H1(S3) = 0. Define the linking
number of A and B as

Link(A,B) =
∫

S3
ξA ∧ηB.

Show that Link(A,B) does not depend on the choice of ξA. Also show that Link(A,B)
does not depend on the representative of ηB ∈ H2(S3), that is, if η ′

B = ηB +dζ for
some 1-form ζ on S3, then Link(A,B) =

∫
S3 ξA ∧η ′

B.

b) Is Link(A,B) = Link(B,A)?

3. To show that the linking number as defined in the text does not depend on the
oriented 2-disk D2

1 with boundary γ . Let F : D2
1 ⊆ R2 → S3 be a smooth contraction

of D2
1. Let G : D̃2

1 ⊆ R2 → S3 be another contraction of γ1. Give the 2-disk D̃2
1 the

orientation opposite to that of the 2-disk D2
1. Consider the oriented 2-sphere S2 ⊆

S3 formed from the 2-disks F(D2
1) and G(D̃2

1) by identifying ∂F(D2
1) = F(∂D2

1)

with ∂G(D̃2
1) = G(∂ D̃2

1). The intersection number of S2 with γ2 is equal to its
intersection number with F(D2

1) minus its intersection number with G(D̃2
1). If we

show that the intersection number of S2 with γ2 is zero, then we are done. To do
this choose a point p in S3 \ (S2 ∪ γ2) and let ϕ : S3 \ {p} → R3 be stereographic
projection. Since ϕ preserves orientation, the intersection number of S2 and γ2 is
the same as the intersection number of ϕ(S2) and ϕ◦γ2. Thus we have to show that



I.6 Exercises 27

the intersection number of an oriented smooth circle γ : [0,1]→ R3 which meets an
oriented S2 ⊆ R3 transversely is zero. If γ does not intersect S2 then we are done.
Suppose that at γ(t0) ∈ S2 the curve γ has intersection number 1. Then for some
sufficiently small ε > 0, γ(t0 − ε) lies in the bounded component of R3 \S2; while
γ(t0 + ε) is in the unbounded component. Reparametrize γ so that γ is defined on
[0,1] and begins and ends at p = γ(t0). Since γ is a closed curve, there is a t1 ∈
(0,1) such that γ(t1) ∈ S2. Choose t1 as small as possible. There are only finitely
many since γ intersects S2 transversely. Then for every t ∈ (0, t1), γ(t) lies in the
unbounded component of R3 \S2. Now q1 = γ(t1) = p since γ is a diffeomorphism.
Since γ is transverse to S2 at q1, γ(t1 + ε) lies in the bounded component of R3 \
S2 for sufficiently small ε > 0. Therefore the intersection number of γ at q1 is
−1. A similar argument shows that the next intersection point q2 of γ with S2 has
intersection number 1. If q2 = p then we are through; otherwise repeat the argument
a finite number of times until t = 1 is reached. Since γ has an even number of
intersections with S2, its intersection number is 0. Thus the linking number is well
defined.

4. (Degree of a map.) Let (M,σ) and (N,τ) be two connected compact oriented
manifolds of dimension r with volume forms σ and τ , respectively. Suppose that
f : M → N is a smooth map. Let n = f (m) be a regular value of f . For each
p ∈ f−1(n) let

signp f =

⎧⎨⎩ 1, if Tp f : (TpM,σp)→ (TnN,τn)
is orientation preserving

−1, otherwise

Define the degree of f by

deg f = ∑
p∈ f−1(n)

signp f .

Show that
∫

M f ∗τ = (deg f )
∫

N τ . If f : M → N and g : M → N are smoothly homo-
topic, then show that deg f = degg.

5. (Hopf invariant.)

a) Let g : S3 → S2 be a smooth map and let α be a 2-form on S2 which generates
H2(S2). Since α is closed, g∗α is a closed 2-form on S3. Since H2(S3) = H1(S3) =
0, there is a 1-form β on S3 such that g∗α = dβ . Define the Hopf invariant of g to
be

Hopf(g) =
∫

S3
β ∧dβ .

Show that Hopf(g) does not depend on the choice of β . Moreover, if g and h are
homotopic show that Hopf(g) = Hopf(h).

b) Let p and q be distinct regular values of the map g. Let Dp and Dq be disjoint
closed 2-disks on S2. Let αp and αq be 2-forms on S2 which are nonzero on Dp
and Dq, respectively, and are zero elsewhere. Let ηA = g∗αp and ηB = g∗αq. From
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exercise 2 we know that the linking number of the circles A = g−1(p) and B =
g−1(q) in S3 is given by Link(A,B) =

∫
S3 ξA ∧ηB, where ηB = dξB. To show that

Link(A,B) = Hopf(g) =
∫

S3
ξA ∧ηA

we argue as follows. Because dimH2(S2) = 1, there is a 1-form β on S2 such that
αp −αq = dβ . Therefore ηA −ηB = g∗(dβ ) = d(g∗β ). Hence∫

S3
ξA ∧ (ηA −ηB) =−

∫
S3

d(ξA ∧g∗β )+
∫

S3
g∗(αp ∧β ) = 0.

c) Consider the map

f : S3 = {(z1,z2) ∈ C2 |z1|2 + |z2|2 = 1}→ CP1 : (z1,z2) �→ [z1 : z2].

Note that f (1,0) = [1 : 0]. Composing f with stereographic projection from the
north pole onto the equatorial plane gives the Hopf map. To show that for every
[z1 : z2] ∈ CP1 = S2 the fiber f−1([z1 : z2]) is a great circle on S3 we argue as
follows. For c = (c1,c2,c3) ∈ S2 ⊆ R3 we see that (z1,z2) ∈ f−1(c) if and only if
|z1|2+ |z2|2 = 1, |z1|2−|z2|2 = c3, and 2z1z2 = c1+ i c2. Thus |z2|2 = 1

2 (1−c3) = 0.
Choose z0

2 so that |z0
2|2 = 1

2 (1− c3) and z0
1 satisfies 2z0

1z0
2 = c1 + i c2. Show that

f−1(c) = {ζ (z0
1,z

0
2) ∈ S3 |ζ | = 1}. Thus f−1(c) lies in a complex 1-dimensional

subspace of C2 and hence is a great circle on S3.

d) Here we show that the Hopf invariant of the Hopf map is 1. Let p be the north
pole of S2 and Dp be the disk on S2 containing p and bounded by the equator. Let
ω be the 2-form on Dp whose pull back under the chart

{u2
1 +u2

2 < 1}→ S2 ⊆ R3 : (u1,u2) �→ u3 =
√

1−u2
1 −u2

2

is du1∧du2
2π u3

. Show that
∫

Dp
ω = 1. Using the relation ∑4

i=1 xi dxi = 0, which comes
from taking the exterior derivative of the defining equation of S3, show that the pull
back of ω by the Hopf map h is dβ where β =− 1

π (x1dx2 + x3dx4). Finally, using
spherical coordinates ⎧⎪⎪⎨⎪⎪⎩

x1 = sinϖ sinϕ cosθ
x2 = sinϖ sinϕ sinθ
x3 = sinϖ cosϕ
x4 = cosϖ

with 0 ≤ ϖ ≤ π , 0 ≤ ϕ ≤ π and 0 ≤ θ ≤ 2π , show that∫
S3

β ∧dβ =
2

π2

∫
S3

x1 dx2 ∧dx3 ∧dx4 = 1.

6. (Exceptional fibers.) Consider the harmonic oscillator in dimension three. The
integrals of motion are the energy and SO(3) angular momentum.

a) Describe all the fibers of the energy momentum map.

b) Show that the fibers with positive energy and zero angular momentum are smooth
Lagrangian submanifolds of T ∗R3 with its standard symplectic form, which are not
tori.
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7. (n-Dimensional harmonic oscillator.)

a) Let z = (z1, . . . ,zn) be coordinates for Cn. Put a Kähler structure on Cn by defin-
ing the Kähler form Ω = i

2 ∑n
j=1 dz j ∧dz j. Let h : Cn → R : z �→ h(z,z) be a smooth

real valued function. Define the Kähler Hamiltonian vector field Xh associated to
the Kähler Hamiltonian h by Xh Ω = dh, where dh = ∑n

j=1
∂h
∂ z j

dz j. Show that

Xh =−i∑n
j=1

∂h
∂ z j

∂
∂ z j

. In particular, if h : Cn → R : z �→ 1
2 ∑n

j=1 z jz j is the harmonic

oscillator Hamiltonian, then Xh = −i∑n
j=1 z j

∂
∂x j

, which is a holomorphic vector

field on Cn whose flow is ϕ : R×Cn → Cn : (t,z)→ e−it z.

b) Let 〈z,w〉=∑n
j=1 z jw j be the standard Hermitian inner product on Cn. An invert-

ible linear map U : Cn → Cn is unitary if 〈Uz,Uw〉= 〈z,w〉 for every z,w ∈ Cn. The
set of all unitary matrices forms the Lie group U(n) with Lie algebra u(n) given by
the set of all skew Hermitian linear maps u : Cn → Cn, that is, 〈uz,w〉+ 〈z,uw〉= 0
for every z,w ∈ Cn. Show that the n×n skew Hermitian matrices⎧⎨⎩

i(e j ⊗ et
k + ek ⊗ et

j), 1 ≤ j < k ≤ n
e j ⊗ et

k − ek ⊗ et
j, 1 ≤ j < k ≤ n

i(e j ⊗ et
j), 1 ≤ j ≤ n

(42)

form a basis for u(n) as a real vector space. Here {e j}n
j=1 is the standard basis for

Cn. Recall that i(z⊗zt)∈ C⊗(Cn)∗ is the skew Hermitian linear map w �→ i〈w,z〉z.
Write out the matrices in (42) explicitly. Show that

k : u(n)×u(n)→ C : (u,v) �→ truvt

is a Hermitian inner product on u(n). Since k is AdU -invariant for every U ∈ U(n),
it follows that k is the Killing (Hermitian) metric.

c) The Lie group U(n) acts on Cn by Φ : U(n)×Cn → Cn : (U,z) �→Uz. For every
u = (u jk) ∈ u(n) the vector field infinitesimally generated by u is

Xu(z) =
d
ds s=0

Φexpsu(z) =
n

∑
j,k

u jk zk
∂

∂ z j
.

Show that Xu is the Kähler Hamiltonian vector field associated to the function

ju : Cn → R : z �→ i
2 〈uz,z〉=

=
i
2

[
∑
j<k

(
Reu jk Rez jzk − Imu jk Imz jzk

)
+

n

∑
j=1

u j jz jz j

]
.

Show that ju is an integral of the harmonic oscillator vector field Xh. Define the map
J : Cn �→ u(n)∗ by J (z)u = ju(z) for every z ∈ Cn and every u ∈ u(n). Show that
J intertwines the U(n)-action Φ on Cn with the coadjoint action of U(n) on u(n)∗.
In other words,

J (Uz)u = Ad t
U−1(J (z))u = J (z)(U−1uU). (43)
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Thus J is a Kähler momentum mapping for the action Φ. Use the Killing Hermi-
tian metric k to identify u(n)∗ with u(n). Using the basis (42) of u(n), show that J
becomes

J : Cn → u(n) : z �→ i
2 (z⊗ zt) = i

2 (z jzk). (44)

Verify directly that J intertwines the U(n) action Φ and the adjoint action of U(n)
on u(n).

d) Show that U(n) acts transitively on the set of all 1-dimensional complex sub-
spaces of Cn with isotropy group at span{e1} isomorphic to U(n− 1). Deduce
that the orbit space U(n)/U(n−1) is diffeomorphic to CPn−1, complex projective
(n− 1)-space. For z = 0 show that i(z⊗ zt) has rank 1 and trace 〈z,z〉. If z = 0
deduce that the U(n) adjoint orbit Oζ through ζ = J(z) is diffeomorphic to CPn−1.
In particular, CPn−1 is defined by⎧⎨⎩ (z jzk)(z�zm) = (z jzm)(z�zk), 1 ≤ j,k, �,m ≤ n

∑n
j=1 z jz j = 1.

(45)

Since (45) is the set of all relations among the quadratic (and hence smooth) inte-
grals of the harmonic oscillator restricted to the level set h−1( 1

2 ), the space h−1( 1
2 )/S1

of orbits of the harmonic oscillator of energy 1
2 is diffeomorphic to CPn−1. Show

that
J|h−1( 1

2 ) : h−1( 1
2 )→ CPn−1 = h−1( 1

2 )/S1

is the reduction map for the harmonic oscillator. Use the following argument to find
the symplectic form on the reduced space CPn−1. On the orbit Oζ with 〈z,z〉 = 1,
there is a symplectic form

ω(ζ )(vζ ,wζ ) = k(ζ ,
[
vζ ,wζ

]
), (46)

where vζ = DJ(z)v and wζ = DJ(z)w lie in Tζ Oζ ⊆ u(n). Using (46), 〈z,z〉= 1 and
the fact that vζ = i

2 (v jzk + z jvk), wζ = i
2 (w jzk + z jwk), show that

ω = 1
4 Im

(〈v,w〉〈z,z〉−〈v,z〉〈w,z〉). (47)

Replacing z by z/
√〈z,z〉, (47) becomes

ω = 1
4 Im

( 〈v,w〉〈z,z〉−〈v,z〉〈w,z〉
〈z,z〉

)
,

which is 1
4 times the imaginary part of the Fubini-Study Hermitian metric on CPn−1.



Chapter II

Geodesics on S3

In this chapter we study the geodesic vector field on the tangent bundle of the 3-sphere.
We examine its relation to the Kepler vector field, which governs the motion of two bodies
in R3 under gravitational attraction. We give two methods to regularize the flow of the
Kepler vector field: one energy surface by energy surface and the other for all negative
energies at once.

1 The geodesic vector field
Here we find the geodesic vector field on the 3-sphere and give a formula for its flow.

We begin by discussing the geodesic vector field. Suppose that 〈 , 〉 is the Euclidean inner
product on R4. This induces a Riemannian metric g on R4 defined by g(x)�(y)z = 〈y,z〉,
where x ∈ R4 and y,z ∈ TxR4 = R4. Pulling back the canonical symplectic 2-form on
T ∗R4 by the map g�, see chapter VI §2, we obtain the symplectic form ω4 =−d〈y,dx〉 on
T R4. On (T R4,ω4) consider the Hamiltonian function

H : T R4 → R : (x,y) �→ 1
2 〈y,y〉. (1)

Since an integral curve of the Hamiltonian vector field XH satisfies ẋ = y and ẏ = 0, it
is a straight line on T R4, except when y = 0; then it is a point. Hence XH describes
the motion of a particle in T R4 which is not subject to any force. To constrain this free
particle so that it moves on the 3-sphere S3 = {x ∈ R4 〈x,x〉= 1}, we add a force λ (x, ẋ)x
which is normal to S3 at the point x. The motion of the particle subject to this constraining
force is governed by Newton’s equations

ẍ = λ (x, ẋ)x. (2)

Differentiating the defining equation of S3 twice gives

〈x, ẍ〉+ 〈ẋ, ẋ〉= 0. (3)

Substituting (2) into (3) and using the constraint 〈x,x〉= 1 gives λ (x, ẋ) =−〈ẋ, ẋ〉. Hence
the motion of the free particle constrained to S3 is governed by the second order equation

31� Springer Basel 2015
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ẍ =−〈ẋ, ẋ〉x (4)

subject to the constraints 〈x,x〉= 1 and 〈ẋ,x〉= 0. Written as a first order equation on the
tangent bundle T S3 = {(x,y)∈ T R4 〈x,x〉= 1 & 〈x,y〉= 0} of S3, the constrained system
(4) becomes

ẋ = y
ẏ = −〈y,y〉x. (5)

This defines the integral curves of the vector field Y = 〈y, ∂
∂x 〉 − 〈y,y〉〈x, ∂

∂y 〉 on T S3.
Note that T S3 is an invariant manifold of (5), thought of as a vector field on T R4, since
the initial conditions 〈x,x〉 = 1 and 〈x,y〉 = 0 are preserved under its flow. The above

� discussion is not at all Hamiltonian. What we want to do is to show that Y is a Hamil-
tonian vector field on the phase space (T S3,Ω4). Here Ω4 is a suitable symplectic form.

(1.1) Proof: To do this, we use modified Dirac brackets, see chapter VI §4. On the open subset
M = T (R4 \{0}) of T R4 consider the constraint functions

c1 : M → R : (x,y) �→ 1
2 (〈x,x〉−1) and c2 : M → R : (x,y) �→ 〈x,y〉.

Let { , } be the standard Poisson bracket on C∞(T R4), the space of smooth functions on
the symplectic manifold (T R4,ω4), see chapter VI §4. Since the matrix ({ci,c j}), which

is equal to
(

0 〈x,x〉
−〈x,x〉 0

)
, is invertible on M with inverse (Ci j) =

1
〈x,x〉

(
0 −1
1 0

)
and 0 is

a regular value of the constraint map C : M → R2 : m �→ (
c1(m),c2(m)

)
, the constraint

manifold T S3 = C−1(0) is a cosymplectic submanifold of (M,ω4|M). In other words,
Ω4 = ω4|T S3 is a symplectic form on T S3. For F ∈C∞(M) let

F∗ = F −
2

∑
i, j=1

({F,ci}+Fi)Ci jc j,

where the Fi lies in the ideal of (C∞(M), ·) generated by c1 and c2. Define a Poisson
bracket { , }T S3 on C∞(T S3) by

{F |T S3,G|T S3}T S3 = {F∗,G∗}|T S3.

Note that the Hamiltonian vector field XF |T S3 of the Hamiltonian F constrained to T S3

is the Hamiltonian vector field XF∗ restricted to T S3. Applying these remarks to the
unconstrained Hamiltonian H (1) on M gives

H ∗ = H −∑
i, j
({H ,ci}+Hi)Ci jc j

= 1
2 〈y,y〉+ 〈x,x〉−1〈(〈x,y〉−H1,〈y,y〉−H2

)
,
(−〈x,y〉, 1

2 (〈x,x〉−1)
)〉

= 1
2

(〈x,x〉〈y,y〉−〈x,y〉2),
where we have chosen H1 = 〈x,y〉(1− 1

2 〈x,x〉) and H2 =−〈y,y〉(〈x,x〉−1).
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From Hamilton’s equations on (T R4,ω4) it follows that the integral curves of XH ∗ satisfy

d
dt

(
x
y

)
= A(x,y)

(
x
y

)
=

(−〈x,y〉 〈x,x〉
−〈y,y〉 〈x,y〉

)(
x
y

)
. (6)

Using (6) and the definition of T S3, it is easy to see that the integral curves of XH ∗ |T S3

satisfy (5). Because XH |T S3 = XH ∗ |T S3, the geodesic vector field on T S3 is the Hamil-
tonian vector field XH on (T S3,Ω4) corresponding to the Hamiltonian function

H = H ∗|T S3 : T S3 → R : (x,y) �→ 1
2 〈y,y〉. (7)

Note that H is the free particle Hamiltonian on T R4 restricted to T S3. Thus the integral
� curves of the geodesic vector field XH on T S3 satisfy (5). To find the flow of the geodesic

vector field XH , we first look for integrals (= conserved quantities) of the vector field
XH ∗ . From the construction of the Hamiltonian H ∗ on T R4, we know that T S3 is
an invariant manifold of XH ∗ . Therefore the functions f1(x,y) = 1

2 〈x,x〉 and f2(x,y) =
〈x,y〉 are integrals of XH ∗ . A calculation shows that f3(x,y) = 1

2 〈y,y〉 is also an integral
of XH ∗ . The integrals { f1, f2, f3} span a Lie subalgebra of (C∞(T R4),{ , }), which is
isomorphic to sl(2,R) since { f1, f2}= 2 f1, { f1, f3} = f2, and { f3, f2} = −2 f3. Because
the functions fi are constant along the integral curves of XH ∗ , so is the matrix A(x,y) (6).
Since A2(x,y) =−2H ∗(x,y) I2 and H ∗(x,y)≥ 0, the flow of XH ∗ is

ϕH ∗
t (x,y) = exp tA(x,y)

(
x
y

)
=

(
cos(t

√
2H ∗)I2 +

(
sin(t

√
2H ∗)/

√
2H ∗)A(x,y)

)(x
y

)
.

Restricting ϕH ∗
t to the invariant manifold T S3 gives

ϕH
t (x,y) =

⎛⎜⎝ cos(t
√

2H) sin(t
√

2H)/
√

2H

−√
2H sin(t

√
2H) cos(t

√
2H)

⎞⎟⎠(
x
y

)
, (8)

which is the flow of the geodesic vector field XH on T S3. �

Clearly, all of the integral curves of XH on the level set H−1(h) with h > 0 are periodic
� of period 2π/

√
2h. In fact, when y = 0, the image of the integral curve t �→ ϕH

t (x,y) under
the bundle projection map T S3 → S3 : (x,y) �→ x is the geodesic

γ(x,y) : R → S3 : t �→ x
(

cos(t
√

2H)
)
+ y

(
(sin(t

√
2H)/

√
2H

)
. (9)

(1.2) Proof: To see that γ(x,y) is a geodesic on S3 it suffices to show that

1. γ(x,y) is parametrized up to an affine transformation by arc length.
2. The acceleration γ̈(x,y) has no tangential component.

From the equations of motion for geodesics it follows that item 2 holds. Item 1 holds
because γ is parametrized. Another argument to prove item 1 goes as follows. Differenti-
ating (9) gives

〈γ̇(x,y), γ̇(x,y)〉= 2H sin2 (t
√

2H)〈x,x〉+ cos2 (t
√

2H)〈y,y〉= 〈y,y〉= 2H(x,y),
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which is a constant of motion. This constant is nonzero, since y = 0. �

The explicit formula (8) for the flow of the geodesic vector field gives no qualitative
information about how the integral curves are organized into invariant manifolds. To
understand the invariant manifolds, it is useful to explain the role of the obvious symmetry
of the problem, namely, the group SO(4) of rigid motions of the 3-sphere. This will be
done in the next section.

2 The SO(4)-momentum mapping
In this section we construct the momentum mapping associated to the SO(4) symmetry
of the geodesic vector field on (T S3,Ω4) and study its geometric properties.

Recall that SO(4) is the Lie group of orthogonal linear mappings of (R4,〈 , 〉) into itself
with determinant 1. Consider the action of SO(4) on R4 given by ϕ : SO(4)×R4 → R4 :
(A,x) �→ Ax. This action lifts to an action of SO(4) on (T R4,ω4) defined by

Φ : SO(4)×T R4 → T R4 :
(
A,(x,y)

) �→ (Ax,Ay).

� Φ preserves the 1-form θ = 〈y,dx〉 on T R4.

(2.1) Proof: We compute

Φ∗
Aθ = 〈Ay,dAx〉 = 〈Ay,Adx〉 = 〈AtAy,dx〉 = 〈y,dx〉 = θ .

The second to last equality follows because A ∈ SO(4). �

Thus the action Φ is symplectic, for

Φ∗
Aω4 =−Φ∗

A(dθ) = −d(Φ∗
Aθ) = −dθ = ω4.

� To show that Φ is a Hamiltonian action, we must verify that for every a ∈ so(4), the Lie
algebra of SO(4), the vector field

Xa(x,y) =
d
dt t=0

Φexp ta(x,y) =
d
dt t=0

(
(exp ta)x,(exp ta)y

)
= (ax,ay) = (Xa(x),ay),

which is the infinitesimal generator of Φ in the direction a, is a Hamiltonian vector field
on (T R4,ω4).

(2.2) Proof: From the momentum lemma, see chapter VII ((5.7)), it follows that Xa = XJa

where

Ja : T R4 → R : (x,y) �→ θ(x,y)Xa(x) = 〈ax,y〉. (10)

Thus the action Φ has momentum mapping J : T R4 → so(4)∗ defined by J(x,y)a =

Ja(x,y). Choose a basis {ei j}1≤i< j≤4 of so(4) where the (k, �)th entry of the 4×4 matrix
ei j is 1 if (k, �) = (i, j), −1 if (k, �) = ( j, i), and 0 otherwise. Then

Jei j(x,y) = 〈ei jx,y〉 = xiy j − x jyi = Si j(x,y). (11)
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� The mapping J is coadjoint equivariant.

(2.3) Proof: We compute

J(ΦA(x,y))a = J(Ax,Ay)a = 〈aAx,Ay〉= 〈A−1aAx,y〉
= J(x,y)(AdA−1 a) = Ad t

A−1(J(x,y))a. �

Since ΦA maps T S3 into itself for every A∈ SO(4), Φ restricts to an action Φ̂ on T S3 given
by Φ̂ : SO(4)×T S3 → T S3 :

(
A,(x,y)

) �→ (Ax,Ay). For every a ∈ so(4) the infinitesimal
generator Xa of the SO(4)-action Φ leaves T S3 invariant because

d〈x,x〉
dt

= 2〈x, ẋ〉 = 2〈x,ax〉 = 0,

d〈x,y〉
dt

= 〈ẋ,y〉+ 〈x, ẏ〉 = 〈x,ay〉+ 〈ax,y〉 = 0,

d〈y,y〉
dt

= 2〈y, ẏ〉 = 2〈y,ay〉 = 0,

since at = −a. Therefore Xa|TS3 is a vector field on T S3. The action Φ̂ preserves the
symplectic form Ω4 on T S3 because

Φ̂∗
AΩ4 = Φ̂∗

A(ω4|T S3) = (Φ∗
Aω4)|T S3 = ω4|T S3 = Ω4.

Claim: The action Φ̂ on (T S3,Ω4) is Hamiltonian with momentum mapping

J = J|T S3 : T S3 ⊆ T R4 → so(4)∗. (12)

(2.4) Proof: Because Xa leaves T S3 invariant and Ω4 = ω4|T S3, it follows that Xa|T S3 =

XJa|T S3 . Thus Xa|T S3 is the infinitesimal generator of Φ̂ on T S3 in the direction a. �

So far the SO(4) symmetry is not related to the geodesic flow on T S3. But note, the
Hamiltonian H ∗ is preserved by the action Φ, because for every A ∈ SO(4)

H ∗(ΦA(x,y)) = 1
2

(〈Ax,Ax〉〈Ay,Ay〉−〈Ax,Ay〉2) = H ∗(x,y).

� Thus the function Ja (10) is an integral of the vector field XH ∗ for every a ∈ so(4).

(2.5) Proof: For every a ∈ so(4) we have Φ∗
exp taH

∗ = H ∗. Therefore

0 =
d
dt t=0

Φ∗
exp taH

∗ = LXaH ∗ = LXJa H
∗ = −LXH ∗ Ja. (13)

From the fact that Φ preserves both the Hamiltonian H ∗ and the manifold T S3, it follows
that Φ̂ preserves the geodesic Hamiltonian H = H ∗|T S3. Therefore for every a ∈ so(4)
the function Ja|T S3 is an integral of the geodesic vector field XH . �

In order to study the geometry of the momentum mapping J (12), we transform it into
an easier to understand mapping, see (16) below. We begin by recalling that the 4× 4
skew symmetric matrices {ei j}1≤i< j≤4 form a basis for the Lie algebra (so(4), [ , ]). The
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covectors {e∗i j}1≤i< j≤4
, where e∗i j = et

i j, form the standard dual basis for so(4)∗. The Lie

bracket { , }so(4)∗ on so(4)∗ is defined by {e∗i j,e
∗
�k}so(4)∗ = ∑m,n cmn

i j,�k e∗mn, where [ei j,e�k] =

∑m,n cmn
i j,�k emn.

For u,v,w ∈ R4 consider the map ϑ :
∧2R4 → so(4) : u∧w �→ �u,w, where �u,w : R4 → R4 :

v �→ 〈v,w〉u−〈v,u〉w is a linear mapping, which is skew symmetric, that is, 〈�u,wx,y〉 =
−〈x, �u,wy〉 for every x,y ∈ R4. Using the basis {ei ∧ e j}1≤i< j≤4 of

∧2R4, we see that
ϑ(ei ∧ e j) = ei j. Thus ϑ is an isomorphism. Consequently the mapping ϑ t : so(4)∗ →
(
∧2R4)∗ =

∧2(R4)∗ : e∗i j �→ e∗i ∧ e∗j . Since

ϑ t(e∗i j)(x,y) = (e∗i ∧ e∗j)(x,y) = e∗i (x)e∗j(y)− e∗i (y)e
∗
j(x) = xiy j − x jyi = Si j(x,y), (14)

for every x,y ∈ R4, it follows that (
∧2R4)∗ is the space S of homogeneous quadratic

functions on T R4, which is spanned by {Si j}1≤i< j≤4. As a subspace of C∞(T R4), S has
a Poisson bracket { , }S , which is induced from the standard Poisson bracket { , } on the
space of smooth functions on (T R4,ω4). In other words, for every (x,y) ∈ T R4

{Si j,S�k}S (x,y) = ω4
(
XSi j(x,y),XS�k(x,y)

)
, (15)

where XSrs is the Hamiltonian vector field on (T R4,ω4) corresponding to the Hamiltonian
function Srs. A calculation using (15) gives table 2.1.

{A,B}S S12 S13 S14 S23 S24 S34 B
S12 0 S23 S24 −S13 −S14 0
S13 −S23 0 S34 S12 0 −S14
S14 −S24 −S34 0 0 S12 S13
S23 S13 −S12 0 0 S34 −S24
S24 S14 0 −S12 −S34 0 S23
S34 0 S14 −S13 S24 −S23 0

A

Table 2.1. The Poisson bracket on S .

Because the functions f1 = 1
2 〈x,x〉, f2 = 〈x,y〉, and f3 = 1

2 〈y,y〉 are invariant under the
SO(4) action Φ on T R4, the function Ja (10) is an integral of Xfi for every a ∈ so(4). In
other words, { fi,Ja}= 0 for i = 1,2,3 and a ∈ so(4). Thus the Lie algebra (sl(2,R),{ , })
spanned by { fi}1≤i≤3 and the Lie algebra (S ,{ , }S ) are dual pairs in the Lie algebra of
homogeneous quadratic functions on T R4 with Poisson bracket { , }. In other words, they
have the following properties:

1. They centralize H ∗, that is,{H ∗, fi}= 0 = {H ∗,S jk}.
2. They centralize each other, that is, { fi,S jk}= 0.

� We now show that the Lie algebras (S ,{ , }S ) and (so(4)∗,{ , }so(4)∗) are isomorphic.

(2.6) Proof: From the definition of Si j (11) we obtain dSi j(x,y) = −〈ei j(y),dx〉+ 〈ei j(x),dy〉.
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Since ω �
4 (dx) =− ∂

∂y and ω �
4 (dy) = ∂

∂x , we find that

XSi j(x,y) = ω �
4 (dSi j)(x,y) = 〈ei j(x),

∂
∂x

〉+ 〈ei j(y),
∂
∂y

〉.

Therefore

{Si j,S�k}S (x,y) = (XS�k dSi j)(x,y) = −〈e�k(x),ei j(y)〉+ 〈e�k(y),ei j(x)〉
= 〈(ei je�k − e�kei j)x,y〉 = 〈[ei j,e�k]x,y〉= ϑ t([ei j,e�k]

∗)(x,y)
= ϑ t({e∗i j,e

∗
�k}so(4)∗)(x,y).

The last equality above follows by definition of the Poisson bracket { , }so(4)∗ . Hence ϑ t

is a Lie algebra isomorphism. �

On
∧2R4 define an inner product B :

∧2R4×∧2R4 →R : (u∧v,x∧y) �→ det
(〈u,x〉 〈u,y〉
〈v,x〉 〈v,y〉

)
.

Since {ei ∧ e j}1≤i< j≤4 is an orthonormal basis of (
∧2R4,B), we may identify

∧2R4 with

x

y

ρ
� x

y

Figure 2.1. The mapping ρ .

(
∧2R4)∗. Instead of studying the momentum mapping J (12) we study the mapping

ρ : T S3 ⊆ T R4 →
∧2

R4 : (x,y) �→ x∧ y = ∑
1≤i< j≤4

Si j(x,y)ei ∧ e j, (16)

which is nothing but B�◦ϑ t◦J . The Si j are the Plücker coordinates of the oriented 2-
plane spanned by {x,y} corresponding to the 2-vector x∧ y. In other words, Si j is the
2× 2 minor formed from the ith and jth columns of the 2× 4 matrix with rows x and y,
that is, Si j = det

(
xi x j
yi y j

)
. Because

0 = (x∧ y)∧ (x∧ y) = (S12S34 −S13S24 +S14S23)e1 ∧ e2 ∧ e3 ∧ e4,

the Plücker coordinates of x∧ y satisfy Plücker’s equation

S12S34 −S13S24 +S14S23 = 0. (17)

Let C be the set of all nonzero 2-vectors on R4 whose Plücker coordinates satisfy (17). By
� definition ρ(T S3)⊆C. Actually, C is the image of ρ .

(2.7) Proof: Suppose that θ ∈C. Then θ is decomposable, that is, there are vectors u,v ∈ R4

such that θ = u∧ v. To see this, let (Si j) be the Plücker coordinates of θ . Since θ = 0
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not every Si j is zero. Suppose that S12 is nonzero. Let u = (1,0,−S23/S12,−S24/S12) and
v = (0,S12,S13,S14). Using Plücker’s equation (17) it is easy to check that the Plücker
coordinates of the 2-vector u∧ v are (Si j). Therefore θ = u∧ v. A similar argument,
which we omit, works in the other cases. Let {x,y} be an orthonormal basis of the 2-plane
spanned by {u,v}. Then u∧ v = λ x∧ y for some nonzero λ . Therefore ρ(x,λy) = θ . �

For h> 0 let H−1(h)= {(x,y)∈ T S3 ⊆ T R4 1
2 〈y,y〉= h} be the h-level set of the geodesic

Hamiltonian H (7). Consider the mapping

ρh : H−1(h)⊆ T S3 →C ⊆
∧2

R4 : (x,y) �→ x∧ y, (18)

which is the restriction of ρ (16) to H−1(h). From the identity

∑
1≤i< j≤4

(xiy j − x jyi)
2 = 〈x,x〉〈y,y〉−〈x,y〉2 (19)

we see that the image of ρh is contained in the submanifold Ch of C defined by ∑1≤i< j≤4 S2
i j

� = 2h. Ch is diffeomorphic to S2√
h/2

×S2√
h/2

.

(2.8) Proof: Adding and subtracting one half times (17) from one quarter times the defining
equation of Ch, and using the variables

ξ1 =
1
2 (S12 +S34) η1 =

1
2 (S12 −S34)

ξ2 =
1
2 (S13 −S24) η2 =

1
2 (S13 +S24)

ξ3 =
1
2 (S14 +S23) η3 =

1
2 (S14 −S23),

(20)

we obtain ξ 2
1 +ξ 2

2 +ξ 2
3 = h/2 and η2

1 +η2
2 +η2

3 = h/2. �

We now investigate the geometry of the map ρh.

Claim: For every h > 0, the map ρh : H−1(h)→Ch (18) is a surjective submersion each
of whose fibers is a single oriented orbit of the geodesic vector field XH of energy h.

(2.9) Proof: To show that ρh is surjective, suppose that S = (Si j) ∈ Ch. Since Ch is contained
in C = ρ(T S3), there is an (x,y) ∈ T S3 such that ρ(x,y) = S. But 2h = ∑1≤i< j≤4 S2

i j since
S ∈ Ch. From (19), the definition of Si j (14), and the fact that (x,y) ∈ T S3, we find that
1
2 〈y,y〉= h. Hence (x,y) ∈ H−1(h).

To show that ρh is a submersion, we must verify that the rank of T(x,y)ρh is 4 for every
(x,y) ∈ H−1(h), because Ch is 4-dimensional. Towards this goal, let V(x,y) be the space
spanned by the Hamiltonian vector fields XSi j , 1 ≤ i < j ≤ 4, on (T R4,ω4) corresponding
to the Hamiltonian function Si j : T R4 → R : (x,y) �→ xiy j − x jyi. Since Si j|T S3 is an
integral of of the geodesic vector field XH on T S3, it follows that V(x,y) ⊆ kerdH(x,y) =
T(x,y)H−1(h) for every (x,y) ∈ H−1(h). Now(

T(x,y)ρh
)|V(x,y) =

(
dSi j(x,y)XS�k(x,y)

)
= ({Si j,S�k}S ) = P̃. (21)
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Using (20) we see that 6×6 matrix P̃ is conjugate to the matrix

P =

(
({ξi,ξ j}S ) 0

0 ({ηi,η j}S )

)
=

(
(∑k εi jkξk) 0

0 (∑k εi jkηk)

)
.

The last equality follows using table 2.1. But S = (Si j) = ρh(x,y) ∈ Ch. Because ξ and
η lie in S2√

h/2
, each of the 3×3 skew symmetric matrices (∑k εi jk ξk) and (∑k εi jk ηk) is

nonzero. Thus each of these matrices has rank 2. Therefore, the rank of T(x,y)ρh is 4 for
every (x,y) ∈ H−1(h). Thus ρh is a submersion.

Given S = (Si j)∈Ch, the fiber W = ρ−1
h (S) is a union of orbits of the geodesic vector field

XH of energy h because Si j|T S3 are integrals of XH . By definition of ρh (18), W is the set
of all ordered pairs {x,y} of orthogonal vectors in R4 such that 〈x,x〉= 1, 〈y,y〉= 2h and
the 2-plane Π spanned by {x,y} has Plücker coordinates (Si j). Since any two such bases
of Π are related by a counterclockwise rotation in Π, we find that

W = {(xcosθ − ysinθ ,xsinθ + ycosθ) ∈ H−1(h) θ ∈ [0,2π]}.
Therefore W is a unique oriented orbit of XH traced out by an integral curve of XH . �

Corollary: Ch is the space of orbits of positive energy h of the geodesic vector field XH
on T S3 with orbit mapping ρh : H−1(h)→Ch.

(2.10) Proof: The corollary follows immediately from the claim and the definition of orbit space,
see chapter VII §2. �

The goal of the following discussion is to construct a symplectic form on Ch. We begin
by defining a Poisson bracket { , } on the space C∞(S ) of smooth functions on the Lie
algebra (S ,{ , }S ). For f ,g ∈C∞(S ) let

{ f ,g}= ∑
1≤i< j≤4
1≤�<k≤4

∂ f
∂Si j

∂g
∂S�k

{Si j,S�k}S . (22)

As is shown in example 1 of chapter VI §4, (C∞(S ),{ , }S ) is a Lie algebra. On C∞(S )
define a multiplication · by ( f · g)(s) = f (s)g(s) for every s ∈ S . Then (C∞(S ), ·) is a
commutative ring with unit. Using (22) it is straightforward to check that Leibniz’ rule
holds, namely { f ,g · h} = { f ,g} · h+ { f ,h} · g, for every f ,g,h ∈ C∞(S ). Therefore
A = (C∞(S ),{ , }S , ·) is a Poisson algebra. The functions

C1 = ∑
1≤i< j≤4

S2
i j −2h and C2 = S12S34 −S13S24 +S14S23

are Casimirs for A . In other words, {C1, f} = {C2, f} = 0 for every f ∈C∞(S ). From
(22) it is enough to show that {C1,Si j} = {C2,Si j}= 0 for 1 ≤ i < j ≤ 4. This is a direct
verification using table 2.1. Let I be the ideal in (C∞(I ), ·) which is generated by C1

� and C2. Then I is a Poisson ideal in A , that is, if g ∈ I , then { f ,g} ∈ I for every
f ∈C∞(S ).

(2.11) Proof: Since f ∈ I there are f1, f2 ∈C∞(S ) such that f = f1C1 + f2C2. Now
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{ f ,g}= { f1,g} ·C1 + f1 · {C1,g}+{ f2,g} ·C2 + f2 · {C2,g}, by Leibniz’ rule
= { f1,g} ·C1 +{ f2,g} ·C2 ∈ I ,

where the equality above follows because C1 and C2 are Casimirs. Therefore we can
define a Poisson bracket { , }Ch

on C∞(S )/I by { f +I ,g+I }Ch
= { f ,g}. In order

to be able to identify the space C∞(S )/I with the space C∞(Ch) of smooth functions on
Ch, we need to know that I is the set of smooth functions vanishing identically on Ch.
This is a consequence of the following general

Fact: Suppose that 0 is a regular value of the smooth map F : Rn → Rk : z �→ (
F1(z), . . . ,

Fk(z)
)
. Then M =F−1(0) is a smooth submanifold of Rn defined by F1(z) = · · ·=Fk(z) =

0. If G : Rn → R is a smooth function, which vanishes identically on M, then there are
smooth functions gi : Rn → R, 1 ≤ i ≤ k, such that G = ∑k

i=1 giFi.

(2.12) Proof: Locally the fact follows using Taylor’s formula with integral remainder. The global
result is obtained by piecing together the local results using a partition of unity. We leave
the details to the reader. �

Consequently, we may define the quotient Poisson algebra B =A /I = (C∞(Ch),{ , }Ch
,

·). Because {Si j +I ,S�k +I }Ch
= {Si j,S�k}S , the matrix of Poisson brackets ({Si j +I ,

S�k +I }Ch
) has rank 4. Therefore Ch is a cosymplectic manifold. In other words, the

Poisson bracket { , }Ch
is nondegenerate and hence defines a symplectic form ωh on

� Ch, see chapter VI §4. Moreover, ωh satisfies ρ∗
h ωh = Ω4|H−1(h).

(2.13) Proof: For every (x,y) ∈ H−1(h) we know that T(x,y)H−1(h) is spanned by the vectors
{XSi j(x,y)}1≤i< j≤4

. Since (T S3,Ω4) is a cosymplectic submanifold of (T R4,ω4), we
have

Ω4(x,y)
(
XSi j(x,y),XS�k(x,y)

)
= ω4

(
XSi j(x,y),XS�k(x,y)

)
= {Si j,S�k}S (x,y)

= {Si j,S�k}Ch
(ρh(x,y)) = ωh(ρh(x,y))

(
T(x,y)ρhXSi j(x,y),T(x,y)ρhXS�k(x,y)

)
= (ρ∗

h ωh)(x,y)
(
XSi j(x,y),XS�k(x,y)

)
. �

We now prove the main result of this section, which describes the geometry of the map-
ping ρ (16). As a consequence, we know the geometry of the SO(4)-momentum mapping
J (12) of the geodesic vector field XH on (T S3,Ω4).

Claim: The mapping ρ : T S3 ⊆ T R4 →C ⊆∧2R4 : (x,y) �→ x∧ y is a surjective submer-
sion, each of whose fibers is a unique oriented orbit of the geodesic vector field XH on
(T S3,Ω4).

(2.14) Proof: We have already shown that ρ is surjective ((2.7)). To show that each of its fibers
is a unique oriented orbit of XH we argue as follows. Suppose that S = (Si j) ∈C. Because
S is nonzero, ∑1≤i< j≤4 S2

i j = 2h for some h > 0. Therefore S ∈Ch. Since the fiber ρ−1
h (S)

of ρh is a unique oriented orbit of XH of energy h ((2.9)), so is the fiber ρ−1(S) of ρ
because ρ = ρh on H−1(h).
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To show that ρ is a submersion, first note that by ((2.9)) the map ρh : H−1(h) → Ch is
a submersion. Note that H−1(h) and Ch are codimension 1 submanifolds of T S3 and C,
respectively. Since a normal direction to H−1(h) at (x,y) ∈ T S3 and a normal direction
to Ch at ρ(x,y) ∈ C is spanned by gradH(x,y) and gradF(ρ(x,y)) respectively, where
F(Si j) = ∑1≤i< j≤4 S2

i j −2h = 0 defines Ch as a submanifold of C, it suffices to show that
〈T(x,y)ρ gradH(x,y), gradF(ρ(x,y))〉 is nonzero. We compute. Clearly gradH(x,y) =
(0,y). Hence T(x,y)ρ

(
gradH(x,y)

)
= x∧y=

(
Si j(x,y)

)
. But gradF(ρ(x,y))= 2

(
Si j(x,y)

)
.

Therefore〈
T(x,y)ρ

(
gradH(x,y)

)
,gradF(ρ(x,y))

〉
= 2 ∑

1≤i< j≤4
S2

i j(x,y) = 4h > 0. �

This claim has some interesting consequences.

Corollary 1: The space of orbits of the geodesic vector field with positive energy is the
manifold C. The orbit map is ρ : T S3 →C, see (16).

(2.15) Proof: This follows immediately from the claim and the definition of orbit space, see
chapter VII §2. �

Observe that every smooth integral of the geodesic vector field on T S3 is a smooth func-
tion of the integrals Si j. More precisely we prove

Corollary 2: Suppose that G : T S3 ⊆ T R4 → R is a smooth integral of the geodesic
vector field XH on (T S3,Ω4). Then there is a smooth function Ĝ : C ⊆ ∧2R4 → R such
that G = ρ∗Ĝ.

(2.16) Proof: Since G is a smooth integral of XH on T S3, it is constant on every orbit of XH
on T S3. Because each fiber of ρ is a unique orbit of XH on T S3, G descends to a smooth
function Ĝ on the orbit space C. But ρ : T S3 →C (16) is the orbit map, so G = ρ∗Ĝ. �

3 The Kepler problem
We investigate the bounded motion of a particle in R3 which is under the influence of a
gravitational field of a second particle fixed at the origin. This is Kepler’s problem.

3.1 The Kepler vector field
In this subsection we define the Kepler Hamiltonian system (H,T0R3,ω3). We then show
that the Kepler Hamiltonian vector field XH conserves energy H, angular momentum J,
and the eccentricity vector e. On the set Σ− of positions and momenta where the values
of H are negative, the orbits of XH are bounded, yet the flow of XH is incomplete.

On the phase space T0R3 = (R3 \{0})×R3 with coordinates (q, p) and symplectic form
ω3 = ∑3

i=1 dqi ∧dpi, consider the Kepler Hamiltonian

H : T0R3 → R : (q, p) �→ 1
2 〈p, p〉−μ‖q‖−1. (23)
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Here 〈 , 〉 is the Euclidean inner product on R3 and ‖q‖ is the length of the vector q. The
integral curves of the Hamiltonian vector field XH on T0R3 satisfy the equations

q̇ = p

ṗ = −μ ‖q‖−3q,
(24)

which describe the motion of a particle of mass 1 about the origin under the influence of
an inverse |q|2 force — such as Newtonian gravity. We consider the case where the force
is attractive, that is, μ > 0. However, much of the following analysis can be carried out
without change for μ < 0.

The Kepler vector field XH has some obvious integrals: the total energy

h = 1
2 〈p, p〉−μ‖q‖−1, (25)

which is nothing but the Hamiltonian H, and the angular momentum

J = (J1,J2,J3) = q× p. (26)

Here × is the vector product on R3.

(3.1) Proof: A direct way to see that J is an integral is to compute

dJ
dt

=
dq
dt

× p+q× dp
dt

= p× p−μ‖q‖−3 q×q = 0,

where the second to last equality follows using (24).

A more sophisticated way to see this is to note that the SO(3)-action SO(3)×R3 → R3 :
(O,q) �→ Oq lifts to a Hamiltonian action

SO(3)×T0R3 → T0R3 :
(
O,(q, p)

) �→ (Oq,Op).

This latter action has the momentum mapping

J̃ : T0R3 → so(3)∗ : (q, p) �→
⎛⎝ 0 J3 −J2
−J3 0 J1
J2 −J1 0

⎞⎠,
defined by J̃(q, p)X = 〈p,X(q)〉 where X ∈ so(3). Now use the map k � associated to the
Killing metric k : so(3)× so(3) → R : (X ,Y ) �→ 1

2 trXYt to identify so(3)∗ with so(3).
This identification boils down to taking transposes. Follow this by the map

i : so(3)→ R3 : X =

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠ �→ x = (x1,x2,x3),

which identifies so(3) with R3, see chapter III §1. Then J̃ becomes the usual angular
momentum J : T0R3 → R3 : (q, p) �→ q× p. Since the SO(3) action on (T0R3,ω3) leaves
the Kepler Hamiltonian H (23) invariant, every component of the angular momentum J is
constant on the integral curves of XH . �
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� There is another integral of the Kepler vector field, called the eccentricity vector:

e = (e1,e2,e3) = −‖q‖−1q+μ−1 p× (q× p). (27)

(3.2) Proof: To see this we calculate

de
dt

=− d
dt
(‖q‖−1q)+μ−1 dp

dt
×J = ‖q‖−3 〈dq

dt
,q〉q−‖q‖−1 dq

dt
+μ−1 dp

dt
×J

= ‖q‖−3 (〈q, p〉q−〈q,q〉 p
)−‖q‖−3 q×J, using (24)

= ‖q‖−3 (q× (q× p)−q× (q× p)
)
= 0. �

We now prove some properties of the flow of the Kepler vector field XH .

Claim: If the energy h is negative, then the image of every integral curve of the Kepler
vector field under the bundle projection τ : T0R3 → R3 : (q, p) �→ q is bounded.

(3.3) Proof:
CASE 1. J = 0. Since e is an integral of XH and J = 0, the direction e = −q‖q‖−1 of
the motion is constant. Therefore the motion takes place on the line q(t) = r(t)e. From
conservation of energy we obtain h+μr−1 = 1

2 ṙ2 ≥ 0. Therefore ‖q(t)‖ ≤ μ(−h)−1.

CASE 2. J = 0. Since J2 = ‖q× p‖2 = ‖q‖2‖p‖2 −〈q, p〉2, we have

h = 1
2 〈p, p〉−μ‖q‖−1 = 1

2 〈q, p〉2‖q‖−2 + 1
2 J2‖q‖−2 −μ‖q‖−1 ≥ 1

2 J2‖q‖−2 −μ‖q‖−1.

Now the function VJ(‖q‖)= 1
2 J2‖q‖−2−μ‖q‖−1 has a unique nondegenerate minimum at

‖q‖= J2/μ corresponding to the critical value −μ2/(2J2). Since lim‖q‖↘0 VJ(‖q‖)↗ ∞
and lim‖q‖↗∞ VJ(‖q‖) ↗ 0, the function VJ is proper on the set where it has negative
values. Therefore V−1

J ([−μ2/(2J2),h]) is compact. Thus the length of q(t) is bounded,
when h < 0. �

Claim: The flow of the Kepler vector field XH is not complete.

(3.4) Proof: Consider a bounded motion with J = 0 and h < 0 which starts at (r(0), ṙ(0)) =
(μ/(−h),0). The time it takes to reach the origin is T =

∫ μ/(−h)
0

dr√
2μr−1+2h

. This is

obtained by separating variables in 1
2 ṙ2 = h+μr−1 and integrating. Performing the inte-

gral gives T = π
2 μ(−2h)−3/2, which is finite. �

3.2 The so(4)-momentum map
Let Σ− be the open subset of T0R3 where the energy H is negative. In this subsection we
show that on Σ− the components of the angular momentum J and the modified eccentricity
vector ẽ = −ν e, where ν = μ/

√−2H, form a Lie algebra under Poisson bracket which
is isomorphic to so(4). This defines a representation of so(4) on the space of Hamiltonian
vector fields on (Σ−, ω̃3 = ω3|Σ−) which has a momentum mapping J̃ . In fact J̃ is a
surjective submersion from Σ− to

C = {(J, ẽ) ∈ R6 〈J+ ẽ,J+ ẽ〉= 〈J− ẽ,J− ẽ〉> 0} (28)
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each of whose nonempty fibers is a unique oriented bounded orbit of XH .

� First we show that on (Σ−, ω̃3) the components of the angular momentum J and the mod-
ified eccentricity vector ẽ satisfy the Poisson bracket relations

{Ji,Jj}= ∑
k

εi jk Jk, {Ji, ẽ j}= ∑
k

εi jk ẽk, and {ẽi, ẽ j}= ∑
k

εi jk Jk. (29)

(3.5) Proof: We verify only the third equality in (29). Let A = μ e. Since {q�, pm} = δ�m,
{qi,q j}= 0, and {pi, p j}= 0, we have

{Ja,‖q‖}= 0, {qa,Jb}= ∑
c

εabcqc, and {pa,Jb}= ∑
c

εabc pc.

Using bilinearity and the derivation property of Poisson bracket, expand

{Ai,A j}=
{
∑
j,k

εi jk p jJk −μ‖q‖−1 qi,∑
m,n

ε�mn pmJn −μ‖q‖−1 q�
}

to obtain {Ai,A j}=−2H ∑k εi jkJk. Recall the identity ∑i εi jkεi�m = δmkδ� j −δ jmδ�k. �

� The bracket relations (29) define a Lie algebra which is isomorphic to so(4).

(3.6) Proof: For i = 1,2,3 define ξi =
1
2 (Ji + ẽi) and ηi =

1
2 (Ji − ẽi). In terms of ξi and ηi the

bracket relations (29) become

{ξi,ξ j}= ∑
k

εi jk ξk, {ηi,η j}= ∑
k

εi jk ηk, and {ξi,η j}= 0. (30)

These relations define the Lie algebra so(3)× so(3), which is isomorphic to so(4). �

The mappings Ji �→ adJi =−XJi and ẽi �→ adẽi =−Xẽi define a representation of so(4) on
the space of Hamiltonian vector fields on (Σ−, ω̃3). In other words, we have a Hamiltonian
action of the Lie algebra so(4) on (Σ−, ω̃3). Associated to this Lie algebra action is the
mapping

J̃ : Σ− → R6 : (q, p) �→ (J, ẽ) =
(
q× p,ν

(‖q‖−1q−μ−1 p× (q× p)
))
. (31)

Here we have chosen {εi}1≤i≤6 = {J1,J2,J3, ẽ1, ẽ2, ẽ2} as a basis for so(4) with Lie
bracket { , }. Let J̃ εi be the ith component of the mapping J̃ . Then the bracket
relations (29) may be written as {J̃ εi ,J̃ ε j} = J̃ {εi,ε j}. Therefore we say that the
map J̃ is the momentum map of the so(4)-action on (Σ−, ω̃3).

We now investigate the geometric properties of the mapping J̃ (31). We begin by noting
that the vectors J and ẽ satisfy

〈J, ẽ〉 = 0

〈J,J〉+ 〈 ẽ, ẽ〉 = ν2 > 0.
(32)

The verification of the first equation in (32) is a straightforward. For the second, see (37)
below. These relations define a smooth 4-dimensional manifold Cν , which is diffeomor-
phic to S2

ν ×S2
ν because (32) is equivalent to

〈J+ ẽ,J+ ẽ〉= 〈J− ẽ,J− ẽ〉 = ν2 > 0. (33)
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Write ν = μ/
√−2h for some h < 0 and consider the map

J̃h = J̃ |H−1(h) : H−1(h)⊆ Σ− →Cν ⊆ R6. (34)

Claim: J̃h is a surjective submersion.

(3.7) Proof: Let (q, p)∈H−1(h) and let V(q,p) = span{XJj(q, p), Xẽ j(q, p)}
1≤ j≤3

. Since J and ẽ
are integrals of XH , it follows that V(q,p) ⊆ kerdH(q, p) which is T(q,p)H−1(h). Therefore

DJh(q, p)|V(q,p) =

(
dJj(q, p)

dẽ j(q, p)

)
V(q,p) =

(({Ji,Jj}(q, p)
) ({Ji, ẽ j}(q, p)

)({ẽi,Jj}(q, p)
) ({ẽi, ẽ j}(q, p)

)) = P.

On Cν (32) the rank of P is 4, because P is conjugate to the matrix(({ξi,ξ j}
)

0

0
({ηi,η j}

))=

(
2∑k εi jk (Jk + ẽk) 0

0 2∑k εi jk (Jk − ẽk)

)
,

see (30) and (33). Therefore J̃h is a submersion.

To show that J̃h is surjective, let (J, ẽ) ∈ Cν . Then e = ‖e‖ = ν−1 ‖ẽ‖ ∈ [0,1] because
ν2 = 〈J,J〉+ 〈ẽ, ẽ〉 ≥ ν2〈e,e〉. Choose

(q, p)=

⎧⎨⎩
(−νμ−1 (1− e)e−1 ẽ,−μν−3 (e(1− e))−1 J× ẽ

)
, when e ∈ (0,1) and J = 0(−μ−2ν2 p×J, p

)
, when e = 0 and J = 0. Here 〈p,J〉= 0, ‖p‖= μν−1(−νμ−1 ẽ,−νμ−2 ẽ
)
, when J = 0. Here e = 1.

A straightforward calculation shows that (q, p) ∈ H−1(h) and J̃h(q, p) = (J, ẽ). �

Corollary: For every c ∈Cν the fiber J̃ −1
h (c) is a union of bounded Keplerian orbits.

(3.8) Proof: From the fact that J̃h is a submersion, it follows that

dimkerDJ̃h(q, p) = dimT(q,p)H
−1(h)−dimimDJ̃h(q, p) = 5−4 = 1.

But XH(q, p) ∈ kerDJ̃h(q, p). Hence for every c ∈Cν

T(q,p)J̃
−1

h (c) = kerDJ̃h(q, p) = span{XH(q, p)}.

Therefore J̃ −1
h (c) is a union of bounded Keplerian orbits. �

The following claim is a substantial sharpening of the above corollary.

Claim: For every c ∈Cν the fiber J̃ −1
h (c) is

1. an oriented ellipse, when c ∈Cν ∩{J = 0};
2. a line which is the union of two half open line segments{(

σν−1ẽ,±ν−1(√2h+2μσ−1
)

ẽ
) ∈ T0R3 σ ∈ (0,μ/(−h)]

}
,

that join smoothly at (μ/(−νh)ẽ,0), when c ∈Cν ∩{J = 0}.
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(3.9) Proof:
CASE 1. c = (J, ẽ) ∈ Cν \ (Cν ∩{J = 0}). Let h = −μ2/2ν2. We have to show that the
data h < 0, J = 0, and e =−ν−1 ẽ determine a unique oriented ellipse which is traced out
by the projection t �→ q(t) of an integral curve t �→ (q(t), p(t)) of XH . Because J = 0 and
〈q(t),J〉 = 〈p(t),J〉 = 0, the curves t �→ q(t) and t �→ p(t) lie in a plane Π ⊆ R3 which
is perpendicular to J. Since 〈J,e〉 = 0, the eccentricity vector e also lies in Π. Therefore
we may write 〈q,e〉= ‖q‖ecos f , where f is the true anomaly, namely, the angle ∠AOP.
From the definition of the eccentricity vector e (27) it follows that 〈q,e〉=−‖q‖+μ−1 J2.
Therefore

‖q‖ecos f =−‖q‖+μ−1 J2. (35)

Suppose that e = 0. Then (35) becomes ‖q‖= μ−1 J2, which defines a circle C in Π with

center at the origin. Since 0 = d‖q(t)‖2

dt = 〈q, dq
dt 〉 = 〈q, p〉, the tangent vector p(t) to C at

P

M

O
A

B

Figure 3.1. Ellipse in the plane Π.

q(t) is perpendicular to q(t). Because {q, p, p× q} is a positively oriented basis of R3,
{q, p} is a positively oriented basis for Π. Hence the circle traced out by t �→ q(t) is
positively oriented. Suppose that e = 0. Then equation (35) may be written as

e
(
(μe)−1J2 −‖q‖cos f

)
= ‖q‖. (36)

Equation (36) describes the locus of points P in the plane Π for which the ratio of the
distance OP to the origin to the distance PM to the line MB, where OB = (μe)−1J2, is a
constant e, see figure 3.1. Thus the locus is a conic section. To see which conic it is, we
calculate the size of e.

e2 = ‖e‖2 = 1−2μ−1‖q‖−1 ‖q× p‖2 +μ−2 ‖p× (q× p)‖2, using (27)

= 1−2μ−1‖q ‖−1 J2 +μ−2(‖p‖2J2 −〈p,J〉2), using J = q× p

= 1+2μ−2 J2h, since 〈p,J〉= 0 and h = 1
2 〈p, p〉−μ‖q‖−1. (37)

Since h < 0, it follows that e ∈ [0,1). Therefore the locus

‖q‖= J2μ−1(1+ ecos f )−1 (38)

is an ellipse in Π with eccentricity e and major semiaxis lying along e, which is directed
from the center of attraction O, that is also a focus, to the periapse A, of length a =
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� J2μ−1(1−e2)−1 = μ/(−2h). When traced out by t �→ q(t), this ellipse is oriented in the
direction of increasing true anomaly f .

(3.10) Proof: From the fact that {q, p} is a positively oriented basis of the plane Π, we obtain

J = ‖q× p‖, which is the area of the positively oriented parallogram
spanned by {q, p}.

= det
(〈q,e−1e〉 〈q,(Je)−1J× e〉
〈p,e−1e〉 〈p,(Je)−1J× e〉

)
,

since {e−1e,(Je)−1J× e} is a positively oriented
orthonormal basis of Π

= ‖q‖2 d f
dt

. (39)

Equation (39) follows by first differentiating 〈q,e−1e〉= ‖q‖cos f and 〈q,(Je)−1J×e〉=
‖q‖sin f along an integral curve of XH and then using the fact that p = dq

dt and ė =

J̇ = 0 to obtain 〈p,e−1e〉 = d‖q‖
dt cos f −‖q‖sin f d f

dt and 〈p,(Je)−1J× e〉 = d‖q‖
dt sin f +

‖q‖cos f d f
dt . From (39) we see that d f

dt > 0. �

CASE 2. c = (J, ẽ) ∈ Cν ∩{J = 0}. Since J = 0, the modified eccentricity vector ẽ =
ν ‖q‖−1q. Because ẽ is constant along any integral curve t �→ (q(t), p(t)) of XH and
h < 0, the image of t �→ q(t) lies along ẽ and is the half open line segment {σν−1 ẽ ∈
Π σ ∈ (0,μ/(−h)]}. From J = 0 it follows that p = λ ẽ for some λ ∈ R. In order
that (σν−1ẽ, p) ∈ H−1(h), where h = −μ2/(2ν)2, we must have λ 2ν2 = 〈p, p〉 = 2h+
2μσ−1. Therefore J̃ −1

h (c) is the line which is the union of the two half open line seg-
ments {(σν−1 ẽ,±ν−1

(√
2h+2μσ−1

)
ẽ
) ∈ T0R3 σ ∈ (0,μ/(−h)]}, which join

smoothly at (μ/(−hν) ẽ,0). �

It is not hard to show that on J̃ −1
h

(
Cν \ ({J = 0} ∩Cν)

)
the mapping J̃h is proper,

whereas on J̃ −1
h ({J = 0}∩Cν) it is not.

We now turn to examining the so(4)-momentum mapping J̃ (31). Let C be the subman-
ifold of R3 × (R3 \{(0,0)}) defined by 〈J, ẽ〉= 0.

Claim: The map

J̃ : Σ− →C ⊆ R6 : (q, p) �→ (
q× p,ν(‖q‖−1q−μ−1 p× (q× p))

)
= (J, ẽ)

is a surjective submersion, each of whose fibers is a unique bounded orbit of the Kepler
vector field XH .

(3.11) Proof: First we show that J̃ is surjective. Supppose that c = (J, ẽ)∈C. Then ‖J+ ẽ‖2 =

‖J− ẽ‖2 = ν2 for some ν > 0. Hence (J, ẽ) ∈ Cν . Let h = −μ2/(2ν2). From ((3.7)) it
follows that J̃ −1

h (c) is nonempty. Hence J̃ −1(c) is nonempty. Because J̃ −1
h (c) is a

unique oriented bounded orbit of the Kepler vector field, J̃ −1(c) is as well.

Since C is a 5-dimensional smooth manifold, the map J̃ is a submersion if for every
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(q, p) ∈ Σ− the rank of DJ̃ (q, p) is 5. Actually it suffices to show that for every (q, p) ∈
H−1(h) the vector DJ̃ (q, p)gradH(q, p) is normal to Cν at J̃ (q, p), because

1. by ((3.7)), DJ̃ (q, p)T(q,p)H−1(h) = T
J̃ (q,p)Cν ;

2. a normal space to H−1(h) in Σ− at (q, p) is spanned by gradH(q, p);
3. as a submanifold of C the manifold Cν is defined by

F(J, ẽ) = 〈J,J〉+ 〈ẽ, ẽ〉−ν2 = 0, (40)

where ν = μ(
√−2H)−1/2.

Since the normal space to Cν at J̃ (q, p) = (J, ẽ)∈C is spanned by gradF(J, ẽ) = 2(J, ẽ),
it suffices to check that 〈DJ̃ (q, p)gradH(q, p), gradF(J (q, p))〉 is nonzero. The fol-
lowing calculation does this.

0 = 〈gradH(q, p), gradH(q, p)〉 = DH(q, p)gradH(q, p)

= D
(− 1

2 μ2 (〈J,J〉+ 〈ẽ, ẽ〉)−1)(q, p)gradH(q, p),

using H =−μ2/(2ν2) and (40)

= 1
2 μ2 (〈J,J〉+ 〈ẽ, ẽ〉)−2(〈J,DJ(q, p)gradH(q, p)〉

+ 〈ẽ,Dẽ(q, p)gradH(q, p)〉)
= μ−2H(q, p)2 〈DJ̃ (q, p)gradH(q, p),gradF(J̃ (q, p))

〉
. �

The above result has several useful consequences.

Corollary 1. The smooth manifold C (28) is the space of orbits of negative energy of the
Kepler vector field XH and the momentum map J̃ : Σ− →C (31) is the orbit map.

(3.12) Proof: The corollary follows from ((3.11)) and the definition of orbit space. �

The next corollary says that every smooth integral of the Kepler vector field on Σ− is a
smooth function of the components of angular momentum J and the modified eccentricity
vector ẽ. More precisely,

Corollary 2. Suppose that G : Σ− ⊆ T0R3 → R is a smooth integral of the Kepler vector
field XH . Then there is a smooth function Ĝ : C ⊆ R6 → R such that G = J̃ ∗Ĝ.

(3.13) Proof: Since G is an integral of XH on Σ−, it is constant on each bounded orbit of XH and
hence is constant on the fibers of the momentum map J̃ . Because C is smooth and is
the space of orbits of XH on Σ− with orbit mapping J̃ , G descends to a smooth function
Ĝ : C ⊆ R6 → R. In other words, G = J̃ ∗Ĝ. �

3.3 Kepler’s equation
So far we have only used the constants of motion to describe the orbits of the Kepler
vector field XH of negative energy. This means that we cannot tell where on the orbit the
particle is at a given time.
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In order to give a time parametrization of a bounded Keplerian orbit, we define a new time
scale, the eccentric anomaly s, by

ds
dt

=
√−2h‖q‖−1. (41)

Before finding a differential equation for ‖q(s)‖, we use the integrals of energy and angu-
lar momentum to find a differential equation for ‖q(t)‖. Multiplying the energy integral
h = 1

2 〈p, p〉− μ‖q‖−1 by 2‖q‖2 gives ‖q‖2‖p‖2 = 2μ ‖q‖+ 2h‖q‖2. But ‖q‖2‖p‖2 =

‖q× p‖2+ 〈q, p〉2 = J2 + 〈p,q〉2. In other words,

‖q‖2
(

d‖q‖
dt

)
2
+ J2 = 2μ ‖q‖+2h‖q‖2. (42)

Using (41) to change to the time variable s and dividing by −2h gives(
d‖q‖

ds

)
2
+a2(1− e2) = 2a‖q‖−‖q‖2, (43)

since a = μ/(−2h) = J2μ−1(1− e2)−1. Instead of separating variables and immediately
integrating (43) we first change variables by eaρ = a−‖q‖. Then (43) simplifies to(

dρ
ds

)
2
+ρ2 = 1. (44)

Since ‖q(0)‖= a(1− e), from the definition of ρ we obtain ρ(0) = 1. Therefore

‖q(s)‖= a−aecoss. (45)

To find the relation between the eccentric anomaly time scale s and the physical time scale
t, we substitute (45) into (41) and integrate to obtain

√−2h(t − τ) =
√−2h

∫ t

τ
dt =

∫ s

0
(a−aecoss)ds = as−aesins. (46)

Here τ is a time related to the time of periapse passage. Its precise definition is given
below. Dividing (46) by a and using a = μ/(−2h) = ν2/μ gives Kepler’s equation

s− esins = μ2ν−3 (t − τ) = n�, (47)

where � is the mean anomaly and n = μ2ν−3 is the mean motion. Note that

〈q, p〉= 〈q, dq
dt

〉 = ‖q‖d‖q‖
dt

= ‖q‖ d‖q‖
ds

ds
dt

=
√−2hae sins, using (41) and (45)

= ν esins. (48)

When t = τ from Kepler’s equation it follows that s = 0. Let τ ′ be the physical time
corresponding to s = 2π in (47). Then τ − τ ′ is the period of elliptical motion, which
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according to Kepler’s equation, is 2πn−1 = 2πν3μ−2 = 2πμ−1/2a3/2. This is Kepler’s
third law of motion.

During elliptical motion the particle goes through the periapse periodically. Therefore
the time τ in (47) is not uniquely determined by the initial condition (q(0), p(0)), which
defines the integral curve of XH . We will define τ as follows. In the interval [−π,π] there
are precisely two values ε ŝ0 (with ε2 = 1) which satisfy ‖q(0)‖= a(1− ecosε ŝ0). To fix
the choice of ε note that from (48) we have ε = 〈q(0), p(0)〉/(νesin ŝ0), unless ŝ0 = 0
in which case ε is irrelevant. Set s0 = ε ŝ0 and let τ = −n−1 (s0 − esins0). In words, we
define τ as follows. If at t = 0 the particle is in the upper half of the ellipse, then τ is the
first time before t = 0 when the particle passed through the periapse; otherwise it is the
first time on or after t = 0 when the particle passes through the periapse.

e

J× e

C F O A

S

P

σ f

Figure 3.2. The eccentric anomaly.

To describe the classic geometric meaning of the eccentric anomaly s, consider the figure
3.2. Let O be the center of attraction, A the periapse and C the center of the ellipse of
eccentricity e. The arrow on the ellipse indicates the direction of motion and P is the
position of the particle on the ellipse with true anomaly f . Construct a line SP through P
which is perpendicular to the line CA. Project P parallel along SP to the point S on the
circle C with center C and radius equal to the distance CA.

Claim: The eccentric anomaly s is the angle ∠ACS.

(3.14) Proof: Let σ = ∠ACS. From figure 3.2 we obtain CS = a and CO = ae. Since CF =
CO+OF , we find that acosσ = ae+‖q‖cos f . As the orbit is elliptical, we have ‖q‖=
a(1− e2)(1+ ecos f )−1. This may be rewritten as

‖q‖= a− e(ae+‖q‖cos f ) = a−aecosσ .

But ‖q‖ = a− aecoss. Hence coss = cosσ . Since s = 0 when σ = 0, we obtain σ = s.
�

As the point S traces out the circle C uniformly with speed n, the point P on the ellipse
traces out the projection of an integral curve of the Kepler vector field in configuration
space.
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4 Regularization

In this section we remove the incompleteness of the flow of the Kepler vector field by
embedding it into a complete flow. This process is called regularization. We regularize
the Kepler problem in two ways: one, called Moser’s regularization, works on a fixed
negative energy level; while the other, called Ligon-Schaaf regularization, works on all
negative energy level sets at once.

4.1 Moser’s regularization
We begin by discussing Moser’s regularization. On the phase space

(
T0R3 = (R3 \{0})×

R3, ω̃3 =
(

∑3
i=1 dqi∧dpi

)|T0R3
)

with coordinates (q, p) consider the Kepler Hamiltonian

H(q, p) = 1
2‖p‖2 −‖q‖−1. (49)

Here 〈 , 〉 is the Euclidean inner product on R3 with associated norm ‖ ‖. We have chosen
physical units so that μ = 1. The integral curves of the Hamiltonian vector field XH
associated to H satisfy

dq
dt

= p =
∂H
∂ p

dp
dt

=−‖q‖−3q =−∂H
∂q

.

(50)

Let R>0 be the multiplicative group of positive real numbers. On R× T0R3 define an
R>0-action by

Ψ̃V : R>0 × (R×T0R3)→ R×T0R3 :
(
ρ,(t,q, p)

) �→ (ρ3t,ρ2q,ρ−1 p). (51)

� The equations of motion (50) of the Kepler problem are invariant under the action (51) of
the virial group.

(4.1) Proof: We check this as follows.

d(ρ2q)
d(ρ3t)

= ρ−1 p and
d(ρ−1 p)
d(ρ3t)

=−ρ−4‖q‖−3q =−‖ρ2q‖−3ρ2q. �

Under the virial group the Kepler Hamiltonian H (49) transforms as H �→ ρ−2H and the
symplectic form transforms as ω̃3 �→ ρω̃3.

We now regularize the bounded orbits of the Kepler problem of fixed negative energy.
Using the virial group we reduce our considerations to the level set H−1(− 1

2 ). First we
introduce a new time scale s by ds

dt = ‖q‖−1. Consider the new Hamiltonian

F̃(q, p) = ‖q‖(H(q, p)+ 1
2

)
+1 = 1

2‖q‖(‖p‖2 +1). (52)

� The integral curves of XF̃ on F̃−1(1) are integral curves of XH on H−1(− 1
2 ), using the

time parameter s.
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(4.2) Proof: Using the time parameter s the integral curves of XH satisfy

dq
ds

=
dq
dt

dt
ds

= p‖q‖= ‖q‖ ∂
∂ p

(
H(q, p)+ 1

2

)
dp
ds

=
dp
dt

dt
ds

=−‖q‖−2q =−‖q‖ ∂
∂q

(
H(q, p)+ 1

2

)
.

(53)

On H−1(− 1
2 ) we have H(q, p)+ 1

2 = 0. So ‖q‖ ∂
∂ z

(
H(q, p)+ 1

2

)
= ∂

∂ z

(‖q‖(H(q, p)+ 1
2

))
for z = q or p. Therefore on F̃−1(1) = H−1(− 1

2 ) equation (53) is in Hamiltonian form

dq
ds

=
∂ F̃
∂ p

dp
ds

=−∂ F̃
∂q

.

(54)

Hence the integral curves of XH on H−1(− 1
2 ) are the same as the integral curves of XF̃ on

F̃−1(1), using the time parameter s. �
Let K̃ : T0R3 → R, where

K̃(q, p) = 1
2 F̃(q, p)2 = 1

8‖q‖2(‖p‖2 +1)2. (55)

� The integral curves of XK̃ on K̃−1( 1
2 ) are the same as the integral curves of XF̃ on F̃−1(1).

(4.3) Proof: This follows because on F̃−1(1) we have

dq
ds

= 1
2

∂ F̃2

∂ p
= F̃

∂ F̃
∂ p

=
∂ K̃
∂ p

dp
ds

=− 1
2

∂ F̃2

∂q
=−F̃

∂ F̃
∂q

=−∂ K̃
∂q

. �

On our way toward defining Moser’s regularization map consider stereographic projection
ϕ : S3

np = S3 \{np} → R3 from the north pole np = (0,0,0,1) of the 3-sphere S3 = {u ∈
R4 〈u,u〉=∑4

j=1 u2
j} to the 3-plane R3 =R3×{0} in R4. For each u∈ S3

np let q=ϕ(u) be
the point of intersection of the line joining np to u with R3. A short calculation shows that
qi =

ui
1−u4

for i = 1,2,3. Let T+S3
np = {(u,v) ∈ T R3 u ∈ S3

np, 0 = 〈u,v〉= ∑4
j=1 u jv j, v =

0}. Consider the mapping

Φ−1
M : T+S3

np → T0R3 : (u,v) �→ (q, p) =
(− (1−u4)ṽ− v4ũ,(1−u4)

−1ũ
)
, (56)

where u = (ũ,u4) and v = (ṽ,v4). Then Φ−1
M is the composition of a lift of stereographic

projection

ϕ̂ : T+S3
np → T0R3 : (u,v) �→ (q, p) =

(
(1−u4)

−1ũ,(1−u4)ṽ+ v4ũ
)
,

followed by the momentum reversal ψ : T0R3 → T0R3 : (q, p) �→ (−p,q). When (u,v) ∈
� T+S3

np we have the identities

‖q‖2 = ‖v‖2(1−u4)
2 (57a)
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‖p‖2 +1 = 2(1−u4)
−1 (57b)

〈q, p〉=−v4. (57c)

(4.4) Proof: Using 〈u,u〉= 1 and 〈u,v〉= 0, from (56) we get

‖q‖2 =
3

∑
i=1

q2
i =

3

∑
i=1

(
vi(1−u4)+uiv4

)2

= (1−u4)
2(‖v‖2 − v2

4)−2u4v2
4(1−u4)+ v2

4(1−u2
4)

= ‖v‖2(1−u4)
2;

‖p‖2 +1 = (1−u4)
−2

3

∑
i=1

u2
i +1 = (1−u4)

−2(1−u2
4)+1 = 2(1−u4)

−1;

〈q, p〉=
3

∑
i=1

qi pi =−
3

∑
i=1

(
(vi(1−u4)+uiv4)(1−u4)

−1ui
)

= u4v4 − v4(1−u4)
−1(1−u2

4) =−v4. �

Define Moser’s mapping

ΦM : T0R3 → T+S3
np : (q, p) �→ (u,v) =

(
(ũ,u4),(ṽ,v4)

)
by

ũ = 2p(‖p‖2 +1)−1 and u4 = (‖p‖2 −1)(‖p‖2 +1)−1

ṽ =− 1
2 (‖p‖2 +1)q+ 〈q, p〉p and v4 =−〈q, p〉.

(58)

� We now show that Φ−1
M (56) is the inverse of Moser’s mapping ΦM (58).

(4.5) Proof: Suppose that (u,v) ∈ T+S3. Then

ΦM(Φ−1
M (u,v)) = ΦM(q, p), where q =−(1−u4)ṽ− v4ũ and p = (1−u4)

−1ũ

=
(
((1−u4)(1−u4)

−1ũ,(2(1−u4)
−1 −2) 1

2 (1−u4)),

((1−u4)
−1[(1−u4)ṽ+ v4ũ]− v4ũ(1−u4)

−1,v4)
)

using (58) the identities (57a) – (57c)

=
(
(ũ,1− (1−u4)),(ṽ+(1−u4)

−1v4ũ− (1−u4)
−1v4ũ,v4)

)
= (u,v).

Now suppose that (q, p) ∈ T0R3. Then

Φ−1
M (ΦM(q, p)) = Φ−1

M (u,v) =
(
(−(1−u4)ṽ− v4ũ,(1−u4)

−1ũ
)
,

where u,v are given by (58)

=
(−2(‖p‖2 +1)−1[− 1

2 (‖p‖2 +1)q+ 〈q, p〉p]+2〈q, p〉(‖p‖2 +1)−1 p,

2(‖p‖2 +1)−1 1
2 (‖p‖2 +1)p

)
= (q, p). �

� The restriction Φ̃ of Moser’s mapping ΦM (58) to H−1(− 1
2 ) is a diffeomorphism of

H−1(− 1
2 ) onto T1S3

np = {(u,v) ∈ T+S3 ‖u‖2 = 1} with inverse Φ = Φ−1
M |T1S3

np.
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(4.6) Proof: Using (u,v) ∈ T1S3
np and the identities ‖q‖2 = ‖v‖2(1 − u4)

2 and ‖p‖2 + 1 =

2(1 − u4)
−1 we get 1

2‖p‖2 − ‖q‖−1 + 1
2 = (1 − u4)

−1 − (‖v‖(1 − u4))
−1 = 0, that is,

(q, p) ∈ H−1(− 1
2 ). So Φ = Φ−1

M |T1S3
np maps T1S3

np into H−1(− 1
2 ). From the fact that

ν(q, p) = (−2H(q, p))−1/2 = 1 when (q, p) ∈ H−1(− 1
2 ), a straightforward calculation,

given in (69a) – (69c), shows that Φ̃ = ΦM|H−1(− 1
2 ) maps H−1(− 1

2 ) into T1S3
np.

Because Moser’s mapping is a diffeomorphism of T0R3 onto T+S3
np, it follows that Φ̃

is a diffeomorphism of H−1(− 1
2 ) onto T1S3

np with inverse Φ. �

� The map Φ−1
M pulls back the 1-form

(
∑3

i=1 qi dpi
)|H−1(− 1

2 ) on H−1(− 1
2 ) to the 1-form

−(
∑4

j=1 v j du j
) |T1S3 on T1S3.

(4.7) Proof: On H−1(− 1
2 ) we have

(Φ−1
M )∗(

3

∑
i=1

qi dpi) =−
3

∑
i=1

(
(1−u4)vi + v4ui)d

(
(1−u4)

−1ui
)
=−

3

∑
i=1

vi dui

−
3

∑
i=1

uivi(1−u4)
−1 du4 − v4(1−u4)

−1
3

∑
i=1

ui dui − v4(1−u4)
−2

3

∑
i=1

u2
i du4

since 0 = d(∑4
j=1 u2

j) gives −u4 du4 = ∑3
i=1 ui dui

=−
3

∑
i=1

vi dui + v4u4(1−u4)
−1 du4 + v4u4(1−u4)

−1 du4

− (1−u2
4)(1−u4)

−2 v4 du4, since ∑3
i=1 uivi =−u4v4 and ∑3

i=1 u2
i = 1−u2

4

=−
4

∑
j=1

v j du j. �

� The inverse Φ−1
M (56) of Moser’s mapping is symplectic,

(4.8) Proof: On T1S3
np we get

(Φ−1
M )∗(

3

∑
i=1

dqi ∧dpi) = (Φ−1
M )∗(d

3

∑
i=1

qi dpi) = d
(
(Φ−1

M )∗(
3

∑
i=1

qi dpi)
)

=−d
( 4

∑
j=1

v j du j
)
=

4

∑
j=1

du j ∧dv j. �

On T+S3
np let

K(u,v) = (Φ−1
M )∗K̃(u,v) = 1

2‖v‖2, (59)

using (57a) and (57b). From ((4.7)) and ((4.8)) it follows that on the energy level H−1(− 1
2 )

the Hamiltonian system (H,T0R3,ω) is equivalent to the Hamiltonian system
(
K,T+S3

np,

(∑4
j=1 du j ∧ dv j) T+S3

np
)

on K−1( 1
2 ) via Moser’s mapping ΦM (58). Clearly K extends

to a smooth function on T S3 ∩K−1( 1
2 ), whose Hamiltonian vector field XK defines the

geodesic flow on S3 on K−1( 1
2 ). Hence Moser’s mapping embeds the incomplete flow
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of the Kepler vector field XH on H−1(− 1
2 ) into the complete geodesic flow on K−1( 1

2 ).
Using the virial group we can use Moser’s mapping to regularize the Kepler vector field
a negative energy level at a time.

We now see how the integrals of the geodesic flow pull back under the of Moser’s map-
� ping. We show that under Moser’s mapping ΦM the integral Si j = uiv j − u jvi, 1 ≤ i <

j ≤ 3, of XK on K−1( 1
2 ) pulls back to the kth component Jk of the SO(3)-momentum

J = p×q restricted to H−1(− 1
2 ). Here {i, j,k}= {1,2,3}. The integral Si4 = uiv4 −viu4,

1 ≤ i ≤ 3, of XK on K−1( 1
2 ) pulls back to the the ith component of the eccentricity vector

e =−‖q‖−1q+ p× (q× p) restricted to H−1(− 1
2 ).

(4.9) Proof: When 1 ≤ i < j ≤ 3 we get

Φ∗
M
(
Si j|K−1( 1

2 )
)
(u,v) =

(
Φ∗

M(uiv j −u jvi)
)|H−1(− 1

2 )

=
[
2pi(‖p‖2 +1)−1(− 1

2 (‖p‖2 +1)q j + 〈q, p〉p j
)

−(− 1
2 (‖p‖2 +1)qi + 〈q, p〉pi

)
2p j(‖p‖2 +1)−1] , using (58)

= (qi p j − p jqi)|H−1(− 1
2 ) = Jk|H−1(− 1

2 ).

Also when i = 1,2,3 we have

Φ∗
M
(
Si4|K−1( 1

2 )
)
(u,v) =

(
Φ∗

M(uiv4 −u4vi)
)|H−1(− 1

2 )

=
[−2pi(‖p‖2 +1)−1〈q, p〉+ 1

2 qi(‖p‖2 −1)

−〈q, p〉‖p‖2(‖p‖2 +1)−1 pi + 〈q, p〉(‖p‖2 +1)−1 pi
]

=
[−pi〈q, p〉+qi‖p‖2 − 1

2 (‖p‖2 +1)qi
]

=
[−‖q‖−1qi +qi〈p, p〉− pi〈q, p〉] |H−1(− 1

2 ) = ei|H−1(− 1
2 ).

The second to last equality follows since 1
2 (‖p‖2 +1) = ‖q‖−1 defines H−1(− 1

2 ). �

� Let
J̃ : T+S3 → R : (u,v) �→ ∑

1≤i< j≤3
(uiv j −u jvi)

2 = ‖ũ× ṽ‖2.

Then J̃−1(0) is the set of all integral curves of the geodesic vector field XK , which pass
through the collision set C = {(u,v) ∈ T+S3 u4 = 1} on T+S3.

(4.10) Proof: The image of each integral curve of XK under the bundle projection map is a great
circle on S3. Each great circle intersects the equatorial 2-sphere {u4 = 0}∩ S3 at some
point P = (ũ,0, ṽ,v4). Suppose that J̃(P) = 0. Then ũ× ṽ = 0. If ṽ = 0, then ũ = λ ṽ for
some nonzero λ ∈ R. But (u,v) ∈ T+S3. So 0 = 〈u,v〉= 〈ũ, ṽ〉+u4v4 = 〈ũ, ṽ〉, since u4 =
0. Consequently, 0 = λ 〈ṽ, ṽ〉, which contradicts the fact that λ = 0 and ṽ = 0. Therefore
ṽ= 0, that is, P=(ũ,0,0,v4). For some τ > 0 the integral curve γ : R→ T+S3 : t �→ϕK

t (P)
of XK passes through the collision set C. To see this we must find τ so that

⎛⎜⎜⎝
0
1
ṽ ′
v ′4

⎞⎟⎟⎠ = ϕK
τ

⎛⎜⎜⎝
ũ
0
0
v4

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
cos(τ

√
2K)

(
ũ
0

)
+ sin(τ

√
2K)√

2K

(
0
v4

)
−√

2K sin(τ
√

2K)

(
ũ
0

)
+ cos(τ

√
2K)

(
0
v4

)
⎞⎟⎟⎟⎠, (60)
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using (8). Noting that K = K(P) = 1
2 v2

4 > 0, the fourth component of (60) reads 1 =

v4|v4|−1 sin(τ
√

2K), which gives τ = π/(2v4), if v4 > 0 or τ = 3π/(2|v4|), if v4 < 0.
Thus the first three components of (60) read 0 = cos(τ

√
2K), as desired. Consequently, at

time t = τ the integral curve γ , which starts at P = (ũ,0,0,v4) passes through the collision
set C. Thus J̃−1(0) is a subset of C. The collision set is clearly a subset of J̃−1(0). �

Under Moser’s mapping J̃−1(0) corresponds to the set of bounded orbits of the Kepler
problem with 0 angular momentum. This is precisely the set of bounded Keplerian orbits
which reach the origin of R3 in finite time.

4.2 Ligon-Schaaf regularization

On the subset Σ− of phase space T0R3, where the Kepler Hamiltonian is negative, one can
perform regularization in such a way that the embedding is symplectic and the resulting
vector field is Hamiltonian with an SO(4) symmetry, which integrates the so(4) symmetry
of the Kepler Hamiltonian. This symmetry does not arise from a lift of a symmetry on
configuration space.

We regularize all negative energy Keplerian orbits at once using the Ligon-Schaaf map

ΦLS : Σ− ⊆ T0R3 → T+S3
np ⊆ T R4 :

(q, p) �→
(

r
s

)
=

(
cosv4 sinv4

−ν(q, p)sinv4 ν(q, p)cosv4

) (
u
v

)
,

(61)

where
u =

(
ν(q, p)−1‖q‖p,〈p, p〉‖q‖−1

)
v =

(−‖q‖q+ 〈q, p〉p,−ν(q, p)−1〈q, p〉), (62)

and ν(q, p) = ( 2
‖q‖ −‖p‖2)−1/2. We start by factoring ΦLS.

Claim: Let

S : Σ− ⊆ T0R4 → T1S3
np ×R>0 ⊆ T R4 ×R : (q, p) �→ (u,v,ν), (63a)

where ν = ν(q, p) and (u,v) is given by (62). Also let

L : T1S3 ×R>0 → T+S3 ⊆ T R4 : (u,v,ν) �→
(

r̃
ν s̃

)
, (63b)

where
(

r̃
s̃

)
=

(
cosv4 sinv4
−sinv4 cosv4

) (
u
v

)
. Then ΦLS = L◦S.

(4.11) Proof: Before proving the claim we look at each factor of the Ligon-Schaaf map more
carefully starting with the mapping S (63a). On Σ− we have an R>0-action

ΨV : R>0 ×Σ− → Σ− :
(
ρ ,(q, p)

) �→ (ρ2q,ρ−1 p) (64)

of the scaling group. To see that ΨV is well defined suppose that ρ ∈R>0 and (q, p)∈ Σ−.
Then at (q, p) the value of the Kepler Hamiltonian H (49) is negative. So

H(ρ2q,ρ−1 p) = 1
2‖ρ−1 p‖2 −‖ρ2q‖−1 = ρ−2H(q, p)< 0.
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� Thus for every ρ ∈ R>0 the map ΨV
ρ sends Σ− into itself. The action ΨV is free for if

� (ρ2q,ρ−1 p) = (q, p), then ρ = 1. Every orbit of the R>0-action (64) intersects the level
set (H|Σ−)−1(− 1

2 ) in exactly one point.

(4.12) Proof: Suppose that (q, p) ∈ Σ−. Then m = ΨV
ν(q,p)−1(q, p) ∈ H−1(− 1

2 ), since

H(m) = H(ν(q, p)−2q,ν(q, p)p) = ν(q, p)2H(q, p) =− 1
2

for ν(q, p)2 =(−2H(q, p))−1. Because H(ΨV
ρ (q, p))= ρ−2H(q, p), the ΨV -orbit through

(q, p) intersects (H|Σ−)−1(− 1
2 ) at m only when ρ = ν(q, p)−1. �

� The orbit space Σ−/R>0 is diffeomorphic to (H|Σ−)−1(− 1
2 ) with orbit map

πV : Σ− ⊆ T0R3 → (H|Σ−)−1(− 1
2 )⊆Σ− : (q, p) �→ (q̂, p̂)=

(
ν(q, p)−2q,ν(q, p)p

)
. (65)

(4.13) Proof: We need only show that (H|Σ−)−1(− 1
2 ) is a smooth submanifold of T0R3, since

Σ− = H−1((−∞,0)) is an open subset of T0R3. Suppose that (q, p) ∈ T0R3 is a critical
point of H. Then 0 = dH(q, p) = 〈p,dp〉+‖q‖−3〈q,dq〉. This implies q = 0 = p, which
contradicts the fact that (q, p) ∈ T0R3. Thus every negative real number is a regular value
of H|Σ−. Consequently, (H|Σ−)−1(− 1

2 ) is a smooth manifold. �

Let T1S3
np = {(u,v) ∈ T+S3

np ‖v‖2 = 1}. Define an R>0-action ΨT on T1S3
np ×R>0 by

ΨT : R>0 × (T1S3
np ×R>0)→ T1S3

np ×R>0 :
(
μ,((u,v),λ )

) �→ ((u,v),μλ ). (66)

The action ΨT is free for if
(
(u,v),μλ

)
=

(
(u,v),λ

)
, then μ = 1. The space T1S3

np ×{1}
� is the orbit space (T1S3

np ×R>0)/R>0 of the action ΨV . The orbit map is

πT : T1S3
np ×R>0 → T1S3

np ×{1} :
(
(u,v),μ

) �→ (
(u,v),1

)
. (67)

Claim: Using the restriction of Moser’s mapping ΦM (58) to (H|Σ−)−1(− 1
2 ), given by

Φ : (H|Σ−)−1(− 1
2 )⊆ T0R3 → T S3

np : (q, p) �→ (u,v)

=
(
(‖q‖p,‖p‖2‖q‖−1),(−‖q‖−1q+ 〈q, p〉p,−〈q, p〉)), (68a)

and Moser’s fibration

FM : Σ− → T1S3
np : (q, p) �→(

(ν(q, p)−1‖q‖p,‖p‖2‖q‖−1),(−‖q‖−1q+ 〈q, p〉,−ν(q, p)−1〈q, p〉)), (68b)

where ν(q, p)−2 = 2
‖q‖ −‖p‖2, we obtain the following commutative diagram.
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Diagram 4.2.1

Σ− � T1S3
np ×R>0

S

�

πV

�

πT

�(H|Σ−)−1(− 1
2 )

s T1S3
np ×{1}

(q, p) � (FM(q, p),ν(q, p))

� �
(q̂, p̂) �

(
Φ(q̂, p̂),1

)

Morover, the bundle mapping S is an R>0-bundle isomorphism.

(4.14) Proof: The next calculation shows that the image of Σ− under Moser’s fibration FM is
contained in T1S3

np. Using the definition of FM (68b) and ν = ν(q, p) we have

〈u,u〉= ν−2‖q‖2‖p‖2 +(‖p‖2‖q‖−1)2

= (−‖p‖2 +2‖q‖−1)‖q‖2‖p‖2 +(‖p‖2‖q‖−1)2 = 1; (69a)

〈u,v〉= ν−1‖q‖〈q, p〉‖p‖2 −ν−1〈q, p〉+ν−1〈q, p〉−ν−1‖q‖〈q, p〉‖p‖2 = 0; (69b)

〈v,v〉= ‖q‖−2‖q‖2 −2‖q‖−1〈q, p〉2 +‖p‖〈q, p〉2 +ν−2〈q, p〉2

= 1−2‖q‖−1〈q, p〉2 +‖p‖2〈q, p〉2 +2‖q‖−1〈q, p〉2 −‖p‖2〈q, p〉2 = 1. (69c)

Thus FM(Σ−)⊆T1S3. Suppose that u4 = 1. Then ‖q‖‖p‖2 = 2 using (62). So −2H(q, p)=
‖q‖−1(2 − ‖q‖‖p‖2) = 0, which contradicts the fact that H(q, p) < 0. Consequently,
S(Σ−) ⊆ T1S3

np ×R>0, since ν(q, p) = (−2H(q, p))−1/2 > 0 for (q, p) ∈ Σ−. Diagram
4.2.1 is commutative because ν(q̂, p̂) = 1 and

Φ(q̂, p̂) = Φ(ν−2q,ν p) =
(
(‖ν−2q‖ν p,‖ν p‖2‖ν−2q‖−1),

(−‖ν−2q‖−1ν−2q+ 〈ν−2q,ν p〉ν p,−〈ν−2q,ν p〉))
=

(
(ν−1‖q‖p,‖p‖2‖q‖−1),(−‖q‖−1q,+〈q, p〉p,ν−1〈q, p〉))= FM(q, p).

From ((4.6)) it follows that the mapping s in diagram 4.2.1 is a diffeomorphism.

We have not yet shown that the mapping S is an R>0-bundle isomorphism. To do this, and
� thus finish proving the ((4.14)), we must show that the mapping S is a fiber preserving

R>0-isomorphism and is a diffeomorphism. This assertion follows when we establish:
i) For every (q̂, p̂)∈ (H|Σ−)−1(− 1

2 ) and for every ρ > 0 we have S
(
ΨV

ρ−1(q̂, p̂)
)

= ΨT
ρ−1

(
s(q̂, p̂)

)
.

ii) The mapping S|π−1
V (q̂, p̂) from the fiber π−1

V (q̂, p̂) to the fiber π−1
T

(
s(q̂, p̂)

)
is

one to one and onto.

(4.15) Proof:
i) We compute

ν(ΨV
ρ−1(q̂, p̂)) = ν(ρ−2q̂,ρ p̂) =

(
ρ2(−2H(q̂, p̂))

)−1/2
= ρ−1;

while FM(ΨV
ρ−1(q̂, p̂)) = FM(ρ−2q̂,ρ p̂) = Φ(q̂, p̂). Therefore

S
(
ΨV

ρ−1(q̂, p̂)
)
=

(
Φ(q̂, p̂),ρ−1)= ΨT

ρ−1

(
s(q̂, p̂)

)
.



Ligon-Schaaf regularization 59

ii) Suppose that S
(
ΨV

ρ−1(q̂, p̂)
)
= S

(
ΨV

σ−1(q̂, p̂)
)

for some ρ , σ ∈ R>0. Then ρ = σ ,

because
(
Φ(q̂, p̂),ρ−1

)
=

(
Φ(q̂, p̂),σ−1

)
by hypothesis. Therefore we get ΨV

ρ−1(q̂, p̂)

= ΨV
σ−1(q̂, p̂), which shows that S|π−1

V (q̂, p̂) is an injective map from the fiber π−1
V (q̂, p̂)

into the fiber π−1
T (s(q̂, p̂)). Suppose that (Q̂, P̂,λ ) ∈ π−1

T (s(q̂, p̂)). Then

(Q̂, P̂,λ ) = ΨV
λ
(
Φ(q̂, p̂),1

)
=

(
Φ(q̂, p̂),λ

)
= S(λ 2q̂,λ−1 p̂).

Thus S maps the fiber π−1
V (q̂, p̂) onto the fiber π−1

T

(
s(q̂, p̂)

)
. �

� To show that the mapping S : Σ− ⊆ T0R3 → T1S3
np ×R>0 (63a) is a diffeomorphism we

argue as follows.

(4.16) Proof: Suppose that (u,v,ν)∈ T1S3
np×R>0. Then πT (u,v,ν) = (u,v,1)∈ T1S3

np. Since s is
a diffeomorphism, there is a unique (q̂, p̂)∈ (H|Σ−)−1(− 1

2 ) such that (q̂, p̂) = s−1(u,v,1).
Because S maps the fiber π−1

V (q̂, p̂) one to one and onto the fiber π−1
T (u,v,1) and the

R>0-action ΨT is free, there is a unique ρ ∈ R>0 such that S(q, p) = S(ΨV
ρ (q̂, p̂)) =

(u,v,ν). Thus the mapping S is one to one and onto. The next argument shows that for
every (q, p) ∈ Σ− the tangent T(q,p)S : T(q,p)Σ− → TS(q,p)(T1S3

np ×R>0) of the mapping
S is surjective. Suppose that γ : [0,1] → T1S3

np ×R>0 is a smooth curve, which passes
through (u,v,ν) at t = 0. Then πT ◦γ is a smooth curve on T1S3

np ×{1}, which passes
through (u,v,1) at t = 0. Since s is a diffeomorphism of (H|Σ−)−1(− 1

2 ) onto T1S3
np ×

{1}, the curve s−1◦(πT ◦γ) on (H|Σ−)−1(− 1
2 ) is smooth and passes through (q̂, p̂) at t =

0. Therefore ΨV
ρ ◦(s−1◦(πT ◦γ)) is a smooth curve on Σ− which passes through (q, p).

Consequently, T(q,p)S is surjective. Because dimΣ− = dim(T1S3
np ×R>0), it follows that

T(q,p)S is bijective. In other words, S is a local diffeomorphism. Thus S is a global
diffeomorphism since it is injective. �

Thus S is an isomorphism of R>0-bundles and this completes the proof of ((4.14)). �

Claim: Consider the 1-form θ = ν(〈v,du〉+ dv4)|M on M = T1S3
np ×R>0 ⊆ T R4 ×R

with coordinates (u,v,ν). Then

S∗
(
(ν〈v,du〉)|M)

=
(
ν(q, p)〈q, p〉d(ν(q, p)−1)−〈q,dp〉)|Σ− (70a)

S∗
(
(ν dv4)|M

)
=

(
ν(q, p)d(ν(q, p)−1〈q, p〉))|Σ−, (70b)

that is,

S∗θ =−(〈q,dp〉+d〈q, p〉)|Σ−. (70c)

(4.17) Proof: Equation (70c) follows from equations (70a) and (70b) because

S∗(ν〈v,du〉+ν dv4) = ν(q, p)〈q, p〉dν(q, p)−1 −〈q,d p〉
−ν(q, p)〈q, p〉dν(q, p)−1 −d〈q, p〉

=−〈q,dp〉−d〈q, p〉.
The following calculation verifies equation (70a). We have

S∗(〈v,du〉) = 〈(−‖q‖−1q+ 〈q, p〉p,−ν−1〈q, p〉),(d(ν−1‖q‖p),d(‖q‖‖p‖2)
)〉
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= ν−2〈q, p〉‖q‖(‖q‖−1 −‖p‖2)dν −ν−1〈q, p〉‖q‖(〈p,dp〉+‖q‖−3〈q,dq〉)
−ν−1〈q,dp〉

= ν−1〈q, p〉‖q‖(−‖q‖−1ν−1 dν +(−2H)(−2H)−1 dH
)

−ν−1〈q, p〉‖q‖−1 dH −ν−1〈q,dp〉
since ν = (−2H)−1/2 implies dν = (−2H)−3/2 dH =
ν(−2H)−1 dH and dH = 〈p,dp〉+‖q‖−3〈q,dq〉

= 〈q, p〉dν−1 −ν−1〈q,dp〉.

On the right hand side of the above equations we have used the abbreviation ν for ν(q, p).
Since S∗v4 =−ν(q, p)−1〈q, p〉, we obtain equation (70b). �

Corollary: The mapping S is a symplectic diffeomorphism sending Σ− to M with S∗(dθ)=
(∑3

i=1 dqi ∧dpi)|Σ−.

(4.18) Proof: Take the exterior derivative of both sides of (70c). �

We now look at the factor L (63b) of the Ligon-Schaaf mapping ΦLS (61). On T+S3 we
have an R>0-action

ΨD : R>0 ×T+S3 → T+S3 :
(
μ,(r,s)

) �→ (r,μs) (71)

of a scaling group. The action ΨD is free, for if (r,μs) = (r,s), then μ = 1. Because
every orbit of the action ΨD intersects T1S3 exactly once, the orbit space T+S3/R>0 is
diffeomorphic to T1S3, the unit tangent sphere bundle to S3, with orbit mapping

πD : T+S3 → T1S3 : (r,s) �→ (r,‖s‖−1s).

Claim: Using the mapping

L : T1S3 ×R>0 → T+S3 : (u,v,ν) �→ (
r(u,v,ν),s(u,v,ν)

)
,

where
r(u,v,ν) = r̃(u,v) = cosv4 u+ sinv4 v

s(u,v,ν) = ν s̃(u,v) = ν(−sinv4 u+ cosv4 v),
(72)

diagram 4.2.2 is commutative

Diagram 4.2.2

T1S3 ×R>0
� T+S3L

�

πT

�

πD

�T1S3 ×{1} �
T1S3

(u,v,ν) �
(
r(u,v,ν),s(u,v,ν)

)

� �

(u,v,1) �
(
r̃(u,v), s̃(u,v)

)

Moreover, the mapping L is an R>0-bundle isomorphism.
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(4.19) Proof: The maps in diagram 4.2.2 are properly defined, because if (u,v) ∈ T1S3, then for
(r̃, s̃) = �(u,v) we have ‖r̃‖2 = 1 = ‖s̃‖2 and 〈r̃, s̃〉 = 0. So (r,s) = (r̃,ν s̃) = L(u,v,ν) ∈
T+S3. From (72) it follows that r̃(u,v) = r(u,v,1) and s̃(u,v) = s(u,v,1). Consequently,
diagram 4.2.2 is commutative.

As a first step toward verifying that the mapping L is an R>0-bundle isomorphism, we
� will show that the mapping

� : T1S3 ×{1}= T1S3 → T1S3 : (u,v) �→
(

r̃
s̃

)
= T (v4)

(
u
v

)
(73)

with T (v4) =
(

cosv4 sinv4
−sinv4 cosv4

)
is a diffeomorphism.

(4.20) Proof: We start by showing that for every (u,v) ∈ T1S3 the tangent mapping T(u,v)� of �
is a bijective linear mapping of T(u,v)(T1S3) into itself.

(4.21) Proof: Differentiating (73) gives(
ẇ
ż

)
= T(u,v)�

(
u̇
v̇

)
= T (v4)

(
u̇
v̇

)
+ v̇4T (v4)

(
0 1
−1 0

)(
u
v

)
= T (v4)

[(
u̇
v̇

)
+ v̇4

(
v

−u

)]
(74)

for (u̇, v̇) ∈ T(u,v)(T1S3) and v̇4 ∈ R. Since T(u,v)(T1S3) = {(ẋ, ẏ) ∈ T R4 〈u, ẋ〉 = 0 =

〈v, ẏ〉 & 〈u, ẏ〉+ 〈ẋ,v〉= 0}, the next calculation shows that (ẋ, ẏ) = (v,−u) ∈ T(u,v)(T1S3).

〈u, ẋ〉= 〈u,v〉= 0, 〈v, ẏ〉=−〈v,u〉= 0, and 〈u, ẏ〉+ 〈ẋ,v〉=−〈u,u〉+ 〈v,v〉= 1−1 = 0.

Therefore (ẇ, ż) given by (74) lies in T(u,v)(T1S3). Let (ẋ, ẏ) ∈ T(u,v)(T1S3). Set
(

u̇
v̇

)
=

T (v4)
−1

(
ẋ
ẏ

)
−v̇4

(
v

−u

)
. Then (u̇, v̇) ∈ T(u,v)(T1S3). Using (74) we get

T(u,v)�
(

u̇
v̇

)
= T (v4)

(
T (v4)

−1
(

ẋ
ẏ

)
− v̇4

(
v

−u

))
+ v̇4T (v4)

(
v

−u

)
=

(
ẋ
ẏ

)
.

Thus T(u,v)� is a surjective, and so bijective, linear mapping of T(u,v)(T1S3) into itself. �

We now show that the mapping � (73) is a diffeomorphism of T1S3 into itself. Since � is
smooth and its tangent map is bijective at every point of T1S3, from the inverse function
theorem it follows that � is a local diffeomorphism. To show that � is a global diffeomor-
phism it suffices to demonstrate that it is injective. For s ∈ [0,1] let �s : T1S3 → T1S3 :

(
u
v

)
�→ T (sv4)

(
u
v

)
. Since �0 = idT1S3 and �1 = �, it follows that � is homotopic to idT1S3 , whose

degree is 1. Hence the degree deg� of � is 1. Induce an orientation on T1S3 from the
standard orientation of T R4 = R8. For every (u,v) ∈ T1S3 the map T(u,v)� is bijective
and orientation preserving, because T (v4) ∈ SO(4,R). Since T1S3 is connected and com-
pact, the mapping � is surjective, being an open mapping. Therefore, every (x,y) ∈ T1S3

is a regular value of �. The fiber F = �−1(x,y) is a finite set, because it is a discrete
closed subset of a compact set. From the definition of degree of smooth mapping we have
1 = deg� = ∑p∈F 1, see exercise 4 of chapter I. Therefore F has only one element. In
other words, the mapping � is injective. This proves ((4.20)). �
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To finish the proof that the mapping L (72) is an R>0-bundle isomorphism, we need to
show that L is a diffeomorphism and a fiber preserving R>0-isomorphism. We establish
the latter assertion by verifying

i) For every (u,v,1) ∈ T1S3 ×R>0 and every ρ > 0 we have L(ΨT
ρ (u,v,1)) =

ΨD
ρ
(
�(u,v,1)

)
.

ii) The mapping L|π−1
T (u,v,1) from the fiber π−1

T (u,v,1) to the fiber
π−1

D

(
�(u,v,1)

)
is one to one and onto.

(4.22) Proof:
i) We compute

L
(
ΨT

ρ (u,v,1)
)
= L(u,v,ρ) =

(
r(u,v,ρ),s(u,v,ρ)

)
=

(
r̃(u,v),ρ s̃(u,v)

)
= ΨD

ρ
(
r̃(u,v), s̃(u,v)

)
= ΨD

ρ
(
�(u,v,1)

)
.

ii) Suppose that L
(
ΨT

ρ (u,v,1)
)
= L

(
ΨT

σ (u,v,1)
)

for some ρ , σ ∈ R>0. Then
(
r̃(u,v),

ρ s̃(u,v)
)
=

(
r̃(u,v),σ s̃(u,v)

)
, which implies ρ = σ . Therefore ΨT

ρ (u,v,1) = ΨT
σ (u,v,1).

So L|π−1
T (u,v,1) is an injective map from the fiber π−1

T (u,v,1) to the fiber π−1
D

(
�(u,v,1)

)
.

Suppose that (R̃, S̃,λ ) ∈ π−1
D

(
�(u,v,1)

)
. Then

(R̃, S̃,λ ) = ΨD
λ
(
�(u,v,1)

)
=

(
r̃(u,v),λ s̃(u,v)

)
=

(
r(u,v,λ ),s(u,v,λ )

)
= L(u,v,λ ).

Thus L|π−1
T (u,v,1) maps the fiber π−1

T (u,v,1) onto the fiber π−1
D

(
�(u,v,1)

)
. �

� The mapping L is a diffeomorphism.

(4.23) Proof: The argument is similar to the proof of ((4.16)). We include the details. Suppose
that (r,s) ∈ T+S3. Then πD(r,s) = (r̃, s̃) ∈ T1S3. Since the mapping � is a diffeomor-
phism, there is a unique (u,v,1) ∈ T1S3 ×{1} such that �−1(r̃, s̃) = (u,v,1). Because
L maps the fiber π−1

T (u,v,1) one to one and onto the fiber π−1
D (�(u,v,1)), there is a

unique ν ∈ R>0 such that L(u,v,ν) = (r,s), since the R>0-action ΨT is free. Conse-
quently, the mapping L is one to one and onto. The next argument show that for every
(u,v,ν) ∈ T1S3 ×R>0 the tangent T(u,v,ν) : T(u,v,ν)(T1S3 ×R>0)→ TL(u,v,ν)(T+S3) is sur-
jective. Suppose that γ : [0,1] → T+S3 : t �→ γ(t) is a smooth curve in T+S3, which
passes through (r,s) = L(u,v,ν). Then πD◦γ is a smooth curve in T1S3 which passes
through (r̃, s̃) at t = 0. Since � : T1S3 ×{1} → T1S3 is a diffeomorphism, �−1◦πD◦γ is a
smooth curve on T1S3 ×R>0, which passes through (u,v,1) = �−1(r̃, s̃) at t = 0. Now
L−1(r,s) = (u,v,ν) for some unique ν ∈ R>0, since the action ΨT is free. So the smooth
curve ΨV

ν ◦�−1◦πD◦γ passes through (u,v,ν) at time t = 0. Thus T(u,v,ν)L is surjective.
Because dimT(u,v,ν)(T1S3 ×R>0) = dimTL(u,v,ν)(T+S3), the tangent map T(u,v,ν)L is in-
jective and hence is bijective. Therefore L is a local diffeomorphism. Because L is one to
one, it is a global diffeomorphism. �

Thus L is an isomorphism of R>0-bundles and this finishes the proof of ((4.19)). �

To finish the proof of ((4.11)) we show that the image of the Ligon-Schaaf mapping ΦLS
(61) is T+S3

np. To do this we need to show that L maps T1S3
np onto T+S3

np.
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(4.24) Proof: Suppose that for some (u,v,ν) ∈ T1S3
np × R>0 we have L(u,v,ν) = (np,s) ∈

T+S3 ⊆T R4. Here np=(0,0,0,1)∈R4. Then 0= 〈np,s〉= s4. So L(u,v,ν)=Tν(v4)
(

u
v

)
=(

np,(ŝ,0)
)t , where Tν(v4) =

(
cosv4 sinv4

−ν sinv4 ν cosv4

)
. Set û = np, v̂ = (ṽ,v4) = (ŝ,0), and

ν̂ = 1. Then L(û, v̂, ν̂) = T1(0)
(

û
v̂

)
=

(
np,(ŝ,0)

)t . But the mapping L is one to one. Thus

(û, v̂,1) = (np,(ŝ,0),1) is the only point of T1S3×R>0 which maps to (np,(ŝ,0)) in T+S3

under L. This proves the assertion. �

� Consider the 1-form 〈r,ds〉|T+S3 on T+S3 ⊆ T R4 with coordinates (r,s). Then

L∗(〈r,ds〉|T+S3)=−ν
(
ν dv4 +ν〈v,du〉)|(T1S3 ×R>0). (75)

(4.25) Proof: Using the definition of the mapping L (72) we get d(L∗s) =

= ν [(−cosv4 dv4)u− sinv4 du− (sinv4 dv4)v+ cosv4 dv]+
(− sinv4 u+ cosv4,v

)
dν .

So

L∗(〈r,ds〉) = 〈L∗r,d(L∗s)〉
=

(− sinv4 cosv4〈u,u〉+ cos2v4〈u,v〉− sin2v4〈v,u〉+ sinv4 cosv4〈v,v〉
)

dν

+ν
(− cos2v4〈u,u〉− cosv4 sinv4〈u,v〉− cosv4 sinv4〈v,u〉− sin2v4〈v,v〉

)
dv4

− cosv4 sinv4〈u,du〉+ cos2v4〈u,dv〉− sin2v4〈v,du〉+ cosv4 sinv4〈v,dv〉
=−ν dv4 −〈v,du〉.

The last equality above follows because 〈u,u〉 = 〈v,v〉 = 1 and 〈u,v〉 = 0, which implies
〈u,du〉= 〈v,dv〉= 0 and 〈u,dv〉+ 〈v,du〉= 0. �

Corollary: L is a symplectic diffeomorphism sending M = T1S3
np ×R>0 to T+S3

np with
L∗((∑4

j=1 dr j ∧ds j)|T+S3
np
)
= dθ , where θ = ν

(〈v,du〉+dv4
)|M.

(4.26) Proof: Take the exterior derivative of both sides of (75). �

Claim: The Ligon-Schaaf map ΦLS : Σ− ⊆ T0R3 → T+S3
np ⊆ T R4 (61) has the following

properties.
1. It is a symplectic diffeomorphism of

(
Σ−,(∑3

i=1 dqi ∧ dpi)|Σ−
)

onto(
T+S3

np,(∑4
j=1 dr j ∧ds j)|T+S3

np
)
.

2. It pulls back the Delaunay Hamiltonian H : T+S3
np ⊆ T R4 → R : (r,s) �→

− 1
2‖s‖−2 to the Kepler Hamiltonian H : T0R3 →R : (q, p) �→ 1

2‖p‖2−‖q‖−1.
3. It pulls back the Delaunay vector field XH on T+S3

np, whose integral curves
satisfy

dr
dt

= ‖s‖−4s

ds
dt

=−‖s‖−2r,
(76)
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and whose flow is

ϕH
t

(
r
s

)
=

(
cosν−3t ν−1 sinν−3t

−ν sinν−3t cosν−3t

)(
r
s

)
(77)

with ν = ‖s‖, to the Kepler vector field XH on Σ−.
4. It intertwines the SO(3)-momentum mapping

J : T0R3 → R3 : (q, p) �→ p×q, (78)

with the SO(4)-momentum mapping

J : T+S3 ⊆ T R4 →
∧2

R4 : (r,s) �→ r∧ s = ∑
1≤i< j≤4

(ris j − r jsi)ei ∧ e j, (79)

that is, J = Φ∗
LSJ . Here

∧2R4 is identified with so(4) via the mapping
which sends ei ∧ e j to the 4× 4 skew symmetric matrix ei j, whose i jth entry
is 1, whose jith entry is −1, and whose other entries are 0.

(4.27) Proof:
1. As ΦLS is the composition of the mappings S : T0R3 → T1S3

np ×R>0 and L : T1S3 ×
R>0 → T+S3, each of which are symplectic diffeomorphisms with S∗(dθ) = (∑3

i=1 dqi ∧
dpi)|T0R3 ((4.18)) and L∗((∑4

j=1 dr j ∧ds j)|T+S3
np
)
= dθ ((4.25)), it follows that ΦLS is a

symplectic diffeomorphism from
(
T0R3,(∑3

i=1 dqi∧dpi)|T0R3
)

onto
(
T+S3

np,(∑4
j=1 dr j ∧

ds j)|T+S3
np
)
.

2. We compute. From the definition of the mapping S (63a) we have S∗(− 1
2 ν−2) =

− 1
2 ν(q, p)−2 = H(q, p); while from the definition of the mapping L (63b) we have

L∗(− 1
2‖s‖−2) =− 1

2 ν−2. Therefore Φ∗
LSH = H.

3. Since the Ligon-Schaaf mapping ΦLS exhibits an equivalence between the Kepler
Hamiltonian system

(
H,T0R3,(∑3

i=1 dqi ∧ dpi)|T0R3
)

and the Delaunay Hamiltonian
system

(
H ,T+S3

np, (∑4
j=1 dr j ∧ ds j)|T+S3

np
)
, it pulls back the Delaunay vector field

XH on T+S3
np to the Kepler vector field XH on Σ−, that is, Φ∗

LSXH = XH . To find
formula (76) for the Delaunay vector field XH on T+S3, we look at the Hamiltonian
system

(
H̃ ,T R4,∑4

j=1 dr j ∧ds j
)

with Hamiltonian H̃ (r,s) =− 1
2 〈s,s〉−1 constrained to

T S3 with constraint functions c1(r,s) = 1
2 (〈r,r〉−1) and c2(r,s) = 〈r,s〉. Since the matrix

({ci,c j}) of Poisson brackets is invertible with inverse given by (Ci j) = 〈r,r〉−1
(

0 −1
1 0

)
,

the manifold T S3 is cosymplectic with symplectic form (∑4
j=1 dr j ∧ ds j)|T S3. We com-

pute the constrained equations of motion using the modified Dirac bracket procedure. Let

H∗ = H̃ −
2

∑
i, j=1

({H̃ ,ci}+H̃i)Ci jc j,

where H̃1 = 〈r,s〉(〈s,s〉−2 − 1
2 〈r,r〉), and H̃2 = 〈s,s〉−1(〈r,r〉−1). Then
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H∗ =− 1
2 〈s,s〉−1 −〈r,r〉−1〈(−〈r,r〉〈s,s〉−1 +H̃1,〈s,s〉−1 +H̃2

)
,
(−〈r,s〉, 1

2 (〈r,r〉−1)
)〉

=− 1
2 〈s,s〉−1 −〈r,s〉2 + 1

2 〈s,s〉−1(〈r,r〉−1).

So

dr
dt

=
∂H∗

∂ s
= 〈s,s〉−2s−〈r,s〉s+ 〈s,s〉−1(〈r,r〉−1)

ds
dt

=−∂H∗

∂ r
=−〈s,s〉−1r+ 〈r,s〉s.

Therefore the Delaunay vector field XH = XH∗ |T+S3 has integral curves which satisfy
(76). It is straightforward to verify that ϕH

t given by (77) is the flow of XH . Comparing
(77) with the geodesic flow (8) in §1, one sees that the Delaunay flow is the same as the
geodesic flow with time parameter t = ν3s, where s is the geodesic time parameter.
4. Since

L∗(r∧ s) = (cosv4 u+ sinv4 v)∧ (−ν sinv4 u+ν cosv4 v) = ν u∧ v,

we obtain L∗((r∧ s)|H −1(− 1
2 )
)
= (ν u∧ v)|K−1( 1

2 ), see (59). Consequently,

Φ∗((r∧ s)|H −1(− 1
2 )
)
= S∗

(
(ν u∧ v)|K−1( 1

2 )
)
=

(
ν(q, p)J)|H−1(− 1

2 ) = J|H−1(− 1
2 ),

using ν(q, p) = 1 if (q, p) ∈ H−1(− 1
2 ) and ((4.9)). We now use scaling to obtain the

desired result. For every d > 0 we have (r,s) ∈ H −1(− 1
2 d−2) if and only if ‖s‖ = d.

Then (r,d−1s) ∈ H −1(− 1
2 ). So for every d > 0 we have

L∗((r∧ s)|H −1(− 1
2 )
)
= dL∗((r∧d−1s)|H −1(− 1

2 )
)

=
(
dν(u∧d−1v)

)|K−1( 1
2 ) =

(
ν(u∧ v)

)|K−1( 1
2 d2),

So for every d > 0,

S∗L∗((r∧ s)|H −1(− 1
2 )
)
=

(
d−1ν(q, p)J

)|H−1(− 1
2 d−2) = J|H−1(− 1

2 d−2),

which implies Φ∗
LSJ = J on Σ− and thus Φ∗

LSJ = J on T R4. This follows because⋃·
d>0

H −1(− 1
2 d−2) = T+S3, which is an open subset of T R4 and Σ− =

⋃·
d>0

H−1(− 1
2 d−2) is

an open subset of T0R3. Moreover, the components of the momentum mapping J and J
are polynomials.

For every 1 ≤ i < j ≤ 4 we have

LXH
(ris j − r jsi) = ṙis j + riṡ j − ṙ jsi − r jṡ j

= ‖s‖−4sis j −‖s‖−2rir j −‖s‖−4s jsi +‖s‖−2r jri, using (76)
= 0.

Therefore the SO(4)-momentum mapping J is conserved by the flow of the Delaunay
vector field XH . �
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5 Exercises
1. (sl(2,R) and the Kepler problem.) For the Kepler problem with rotationally sym-

metric Hamiltonian H = 1
2 p · p− 1

|q| let j = q× p, x = q ·q, y = p · p, and z = q · p.

a) Show that the functions x,y,z Poisson commute with the components of j. More-
over, show that the Poisson brackets of x,y, and z define a representation of sl(2,R).
Conclude that so(3) and sl(2,R) form a dual pair in the Lie algebra of homogeneous
quadratic polynomials.

b) In xyz-space draw that level sets of j2 = const. for different values of the constant
including zero. These are models for the SO(3) reduced space.

c) Draw the intersections of the h = const. surfaces with a given j = const. surface
to see the integral curves of the reduced dynamics.

d) Show that the level sets j2 = const. are symplectic leaves for the Poisson mani-
fold sl(2,R) = R3 with coordinates (x,y,z)

2. (Geodesics on a hyperboloid.) Consider H3,1 = {x ∈ R4 〈x,x〉=−1}, which is the
set of vectors in R4 whose Lorentz length squared is −1. Here 〈x,y〉= x1y1+x2y2+
x3y3−x4y4 is the Lorentz inner product on R4. Geometrically, H3,1 is a hyperboloid
of two sheets. Its tangent bundle T H3,1 = {(x,y) ∈ T R4 〈x,x〉=−1 & 〈x,y〉= 0}
is a symplectic manifold with symplectic form ω =ω4|T H3,1. Here ω4 =∑4

i=1 dxi∧
dyi is the standard symplectic form on T R4.

a) Consider the Hamiltonian system (H,T H3,1,ω), where

H : T H3,1 ⊆ T R4 → R : (x,y) �→ 1
2 〈y,y〉 (80)

is the Hamiltonian. Show that T H3,1 is an invariant manifold of the vector field on
T R4 whose integral curves satisfy

ẋ = y
ẏ = 〈y,y〉x. (81)

Show that an integral curve of (81), which starts on T+H3,1 = {(x,y)∈T H3,1 〈y,y〉>
0}, is an integral curve of the Hamiltonian vector field XH . Verify that the flow of
XH on T+H3,1 is given by

ϕH : R×T+H3,1 → T+H3,1 :
(
t,(x,y)

) �→(
cosh t

√
2H (sinh t

√
2H)/

√
2H√

2H sinh t
√

2H cosh t
√

2H

)(
x
y

)
.

Show that the image of an integral curve of XH , under the bundle projection map
T+H3,1 ⊆ T R4 → H3,1 : (x,y) �→ x, is a geodesic on H3,1. Verify that every integral
curve of XH on T+H3,1 lies in the 2-plane in R4 spanned by its initial conditions.

b) Let O(3,1) = {O ∈ Gl(4,R) 〈Ox,Oy〉 = 〈x,y〉 for all x y ∈ R4} be the Lorentz
group. The Lie algebra of O(3,1) is o(3,1) = {ξ ∈ gl(4,R) 〈ξ x,y〉+ 〈x,ξ y〉 =
0, for all x, y ∈ R4}. Show that the Lie bracket on o(3,1) is given by

[ξ ,η ] = ξ η −η ξ =

(
i(σ × τ)+ x⊗ yt − y⊗ xt σ × y− τ × x

(σ × y− τ × x) t 0

)
,
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where ξ =

(
i(σ) x
xt 0

)
, η =

(
i(τ) y
yt 0

)
, and σ , τ , x, y ∈ R3. Here i : R3 → so(3,R) :

x �→
⎛⎝ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎞⎠.

Verify that the O(3,1)-action on H3,1, given by ϕ : O(3,1)×H3,1 → H3,1 : (A,x) �→
Ax, lifts to a Hamiltonian action Φ : O(3,1)×T H3,1 →T H3,1 :

(
A,(x,y)

) �→ (Ax,Ay)
with coadjoint equivariant momentum mapping J : T H3,1 ⊆ T R4 → o(3,1)∗. Here
J(x,y)ξ = Jξ (x,y) with ξ ∈ o(3,1) and

Jξ : T H3,1 ⊆ T R4 → R : (x,y) �→ 〈ξ x,y〉. (82)

Observing that the Hamiltonian H (80) is invariant under the action Φ of O(3,1) on
T H3,1, deduce that Jξ is an integral of XH for every ξ ∈ o(3,1).

c) Define the mapping ϑ : Λ2R4 → o(3,1) : v∧w �→ �v,w, where �v,w : R4 → R4 :
z �→ 〈z,v〉w−〈z,w〉v. Prove the following statements.

1. �v,w ∈ o(3,1) for every v, w ∈ R4.

2. ϑ is a bijective real linear mapping.

3. Consider the action

δ : O(3,1)×Λ2R4 → Λ2R4 :
(
O,v∧w

) �→ Ov∧Ow. (83)

The mapping ϑ intertwines the action δ with the adjoint action of O(3,1) on
o(3,1), that is,

ϑ ◦δO = AdO◦ϑ = O◦ϑ ◦O−1 (84)

for every O ∈ O(3,1).

d) With 〈x,y〉= ∑3
i=1 xiyi − x4y4 for every x, y ∈ R4 prove the identity

〈x,x〉〈y,y〉−〈x,y〉2 = ∑
1≤i< j≤3

(xiy j − x jyi)
2 −

4

∑
i=1

(xiy4 − x4yi)
2. (85)

Let

K : Λ2R4 ×Λ2R4 → R : (v∧w, x∧ y) �→ det
(〈v,x〉 〈w,x〉
〈w,x〉 〈w,y〉

)
. (86)

Show that K is a nondegenerate inner product on Λ2R4 with {e�∧ ek}1≤�<k≤4
being an orthonormal basis with respect to which the matrix of K is diagonal.
Show that the Morse index of K is 3. Verify that K is invariant under the action
δ (83). Let k : o(3,1)× o(3,1) → R : (ξ ,η) �→ − 1

2 trξ η . Show that k is a non-
degenerate inner product on o(3,1), which is invariant under the adjoint action

Ad. With ξ =

(
i(σ) x
xt 0

)
and η =

(
i(τ) y
yt 0

)
, where σ , τ , x, y ∈ R3, show that

k(ξ ,η) = (σ ,τ)− (x,y). Here ( , ) is the Euclidean inner product on R3. Verify
that ϑ ∗k = K.
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e) Let J̃ : T H3,1 ⊆ T R4 → Λ2R4 be the mapping K�◦ϑ t◦J. Show that for every
(x,y) ∈ T H3,1

J̃ (x,y) = x∧ y = ∑
1≤i< j≤4

K(x∧ y,ei ∧ e j)ei ∧ e j = ∑
1≤i< j≤4

Ti j(x,y)ei ∧ e j, (87)

where {ei}4
i=1 is the standard basis of R4 and Ti j(x,y) = xiy j − x jyi. Deduce that J̃

intertwines the O(3,1)-action Φ on T H3,1 with the O(3,1)-action δ on Λ2R4. Let

T√2hH3,1 = {(x,y) ∈ T+H3,1 〈x,x〉=−1, 〈x,y〉= 0, and 〈y,y〉= 2h > 0}
be the bundle of tangent vectors to H3,1, whose squared Lorentz length is 2h > 0.
Then T√2hH3,1 = H−1(h). Show that O(3,1) acts transitively on T√2hH3,1. Us-
ing Plücker coordinates {Ti j}1≤i< j≤4 on Λ2(R4), show that the image of T√2hH3,1

under the mapping J̃ (87) is the smooth submanifold Vh of Λ2(R4) defined by

T12T34 −T13T24 +T23T14 = 0

T 2
12 +T 2

13 +T 2
23 −T 2

34 −T 2
24 −T 2

14 =−2h
(88)

Deduce that Vh is diffeomorphic to T S2. Hint: use the diffeomorphism

Vh ⊆ Λ2R4 → R6 : (Ti j)1≤i< j≤4 �→
(
T12,T13,T23,T34X−1/2,−T24X−1/2,T14X−1/2),

where X = 2h+T 2
12+T 2

13+T 2
23 > 0, since 2h> 0. Show that O(3,1) acts transitively

on Vh and that Vh is the space of orbits of the geodesic flow on T+H3,1 of energy
h > 0.

f) Show that Vh is a symplectic manifold. For u = e4 ∧
√

2he1 ∈ Vh let μ = ϑ(u).
The adjoint orbit Oμ = {ν = AdOμ ∈ o(3,1) O ∈ O(3,1)} of O(3,1) through μ is
a symplectic manifold with symplectic form ων(adν ξ ,adν η) = k(ν , [ξ ,η ]). Since
ϑ |Vh : Vh ⊆ Λ2(R4) → Oμ ⊆ o(3,1) is a diffeomorphism, Ωh = (ϑ |Vh)

∗ωOμ is a
symplectic form on Vh.

We now find an explicit expression for the symplectic form Ωh. For every v ∈ Vh
show that ξv = Teδvξ ∈ TvVh for every ξ ∈ o(3,1). In fact, TvVh = spanR{ξv ξ ∈
o(3,1)}. Infinitesimalizing (84) show that at every v∈Vh we have adξ ϑ(v)= Tvϑξv
for every ξ ∈ o(3,1). We have δ ∗

OΩh = Ωh for every O ∈ O(3,1). To see this justify
each step of the following calculation.

δ ∗
OΩh(u)(ξu,ηu) = Ωh(δO(u))(TuδOξu,TuδOηu)

= ωμ(ϑ ◦δO(u))(TOuϑ TuδOξu,TOuϑ TuδOηu)

= ωμ(AdOϑ(u))
(
Tϑ(u)AdO(adξ ϑ(u)),Tϑ(u)AdO(adξ ϑ(u))

)
= ωμ(AdOϑ(u))

(
Tϑ(u)adAdOξ AdOϑ(u)),Tϑ(u)adAdOη AdOϑ(u))

= k(AdOϑ(u), [AdOξ ,AdOη ]) = k(AdOϑ(u),AdO [ξ ,η ])

= k(ϑ(u), [ξ ,η ]) = Ωh(u)(ξu,ηu).

Write v = δOu. Then TuδOξu = ξv ∈ TvVh. The above calculation shows that

Ωh(v)(ξv,ηv) = k(ϑ(u), [ξ ,η ]). (89)
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To make (89) explicit, show that

ξu = ξ e4 ∧
√

2he1 + e4 ∧
√

2hξ e1 = (−x2,−x3,0,σ2,−σ3,0) ∈ TuVh,

where ξ =

(
i(σ) x
xt 0

)
, with σ , x ∈ R3 and we use {e1 ∧ e2,e1 ∧ e3,e2 ∧ e3,e3 ∧ e4,

e2 ∧ e4,e1 ∧ e4} as a basis for Λ2(R4). Let η =

(
i(τ) y
yt 0

)
, where τ , y ∈ R3. Note

that ϑ(u) =−√
2h

(
0 e1

(e1)
t 0

)
. Justify each step of the following calculation.

k(ϑ(u), [ξ ,η ]) =− 1
2 tr

(
ϑ(u) [ξ ,η ]

)
= 1

2

√
2h tr

(
0 e1

(e1)
t 0

)(
i(σ × τ)+ x⊗ yt − y⊗ xt σ × y− τ × x

(σ × y− τ × x) t 0

)
= 1

2

√
2h tr

(
e1 ⊗ (σ × y− τ × x) t ∗

∗ (e1)
t(σ × y− τ × x)

)
=
√

2h(σ × y− τ × x)1 =
√

2h(σ2y3 −σ3y2 − τ2x3 + τ3x2).

So

Ωh(Ou)
(
TuδO(−x2,−x3,0,σ2,−σ3,0),TuδO(−y2,−y3,0,τ2,−τ3,0)

)
=

=
√

2h(σ2y3 −σ3y2 − τ2x3 + τ3x2).

3. (Positive energy Keplerian orbits.) This exercise deals with Keplerian orbits of
positive energy. Specifically we discuss the changes that need to be made to the
treatment of the Kepler problem in §3.2.

a) First check that the arguments establishing the equation

‖q‖= μ−1 J2(1+ ecos f )−1 (90)

for the Keplerian orbit with angular momentum J and eccentricity vector e as well
as the equation

e2 = 1+2μ−2 J2 h (91)

for the magnitude squared of the eccentricity vector continue to hold for positive
energy h. When h > 0 from (91) it follows that e > 1. Deduce that the Keplerian
orbit (90) is one branch of a hyperbola. For (90) to hold show that | f | < f0 = π −
cos−1e−1. Thus (cos f0,±sin f0) are the directions of the asymptotes of the branch
of the hyperbola. From (91) and the facts that 〈q,J〉= 0 and 〈p,J〉= 0 deduce that
a Keplerian orbit of positive energy is a hyperbola, which lies in a 2-plane Π, which
is perpendicular to J. Show that {e,J×e} is an orthogonal basis of Π. Let C be the
center of the hyperbola, which is the origin of the e-(J×e) coordinate system. Let O
be the center of attraction, which is a focus of the hyperbola. Show that the periapse
A of the hyperbola lies on the e-axis between C and O and that the major semi-axis
of the hyperbola OA has length a = J2μ−1(e2 − 1)−1 = μ(2h)−1. For u ∈ R let
P = (acoshu,bsinhu) be a point on the hyperbola. Let OP = ‖q|| with f the true
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anomaly of P, that is, f is the angle between e and the line segment OP. Show
that CO = ae = acoshu+ ‖q‖cos f . Deduce that the equation of the hyperbolic
Keplerian orbit (90) can be written as 1

a‖q‖= ecoshu−1. The minor semi-axis of
the hyperbola lies on the (J×e)-axis. Show that its length is b = a

√
e2 −1 and that

‖q‖sin f = bsinhu.

b) We now determine the analogue of Kepler’s equation for a hyperbolic orbit. First
we use

ds
dt

=

√
2h

‖q‖ (92)

to define the eccentric anomaly s. Following the derivation of equation (43) in §3.3
show that (d‖q‖

ds

)2
+a2(e2 −1) = 2a‖q‖+‖q‖2

with q(0) = a(e− 1). Using the change of variable aeρ = ‖q‖+ a, show that the
above equation becomes

−
(dρ

ds

)2
+ρ2 = 1

with ρ(0) = 1. Integrating, gives ρ(s) = coshs. Hence ‖q(s)‖ = ae coshs− a,
which substituted into (92) and integrating gives the hyperbolic analogue of Ke-
pler’s equation

n�= esinhs− s, (93)

where n =
√

2h μ−1 = μ1/2a−3/2 is the mean motion and � = t − τ is the mean
anomaly. Here τ is the time at the passage of the periapse.

4. (Hamilton’s theorem.) Hamilton’s theorem states that the velocity of a particle of
mass m subject to an attractive central force with potential U(|x|) = −k 1

|x| , k > 0
moves on a circle C , which uniquely determines its Keplerian orbit. Here |x| is
the length of a vector x ∈ R3 \{0} using the Euclidean inner product 〈 , 〉. Assume
that the conserved angular momentum J = x×mv of the particle is nonzero. The
argument outlined in sections a) – c) gives a proof of Hamilton’s theorem.

a) Show that the position x(t) and velocity v(t) = dx
dt of the particle at time t lies in a

plane Π, which is perpendicular to J, which we can assume to be the vector (0,0, j),
where j = |J|> 0. Using polar coordinates (r,θ) in Π, show that j = r2 dθ

dt . Deduce
that dθ

dt > 0. Consequently, we can reparametrize the curves t �→ x(t) and t �→ v(t)
using θ instead of t. Show that this reparametrization preserves the original positive
of orientation of these curves given by increasing t.

b) Rewrite Newton’s equations of motion

m
dv
dt

=−k
x
|x|3 (94)

using polar coordinates on Π and change the parametrization of the velocity in (94)
to θ . Show that we obtain

dv
dθ

= (Rcosθ ,Rsinθ ,0), (95)
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where R = k/ jm. Integrating (95) gives

v(θ) = (−Rsinθ ,Rcosθ ,0)+ c. (96)

Deduce that v(θ)− c moves on a circle C in Π with center at c and radius R.

c) Choose coordinates on Π so that c = (0,c,0), where c = |c| ≥ 0. Let e = c/R.
Then v(θ)− c =

(−Rsinθ ,R(e+ cosθ),0
)
. Using

j = 〈J,(0,0,1)〉= 〈x(θ)×mv(θ),(0,0,1)〉,
where x(θ) =

(
r(θ)cosθ ,r(θ)sinθ ,0

)
, deduce that

r = r(θ) = Λ(1+ ecosθ)−1, (97)

where Λ = j/mR = j2/k. Equation (97) describes a conic section of eccentricity e
with a focus at O = (0,0,0).

d) When 0 ≤ e < 1, show that θ �→ v(θ)− c traces out the full velocity circle C .

e) When e > 1 equation (97) describes a branch of a hyperbola. The following
argument shows that θ �→ v(θ)−c traces out a positively oriented arc of C . This arc
subtends a positive angle Θ, which is equal to the scattering angle of the hyperbola.
Because e > 1 for equation (97) to hold |θ | < θ0 = π −θ∗, where θ∗ = cos−1e−1.
Using conservation of energy show that

|v|2 = 2h
m

+
k

m2
1
|x| >

2h
m
.

Hence the velocity of the particle lies outside of the closed 2-disk with center at O

and radius
√

2h
m . Show that v(θ)− c lies on the velocity circle C and the energy

circle ∂E , given by |v| =
√

2h
m , if and only if 0 = 1

r(θ) = Λ−1(1+ ecosθ), that is,
if and only if θ =±θ0 =±(π −θ∗). Show that the velocity vectors v(±θ0)−c are
the end points of a closed arc A on C and that

v(±θ0)− c =
(−Rsin(±θ0),Rcos(±θ0),0

)
= (∓Rsinθ∗,−Rcosθ∗,0). (98)

From (98) deduce that v(θ0)− c lies the 3rd quadrant of Π; while v(−θ0)− c lies
the 4th quadrant of Π. Deduce that the positive arc A , oriented so that θ increases,
has an initial end point at v(−θ0)− c and a final end point at v(θ0)− c. Show that

v(θ0) =
(
Rcos( 3

2 π −θ∗),Rsin( 3
2 π −θ∗),0

)
;

while
v(−θ0) =

(
Rcos(−( 1

2 π −θ∗)),Rsin(−( 1
2 π −θ∗)),0

)
.

Thus the positive angle Θ subtended by the positive arc A is equal to 2(π − θ∗).
When −θ0 = −(π − θ∗), then d−θ0 = x(−θ0)

|x(−θ0)| is the direction of the incoming
asymptote of the branch of the hyperbola with center C at (ae,0,0) in Π; while
when θ0 = π −θ∗, then dθ0 =

x(θ0)
|x(θ0)| is the direction of the outgoing asymptote of

the branch of the hyperbola. By definition, the scattering angle Ψ of the hyperbolic
motion is the counterclockwise rotation about C, which sends d−θ0 into dθ0 . Show
that Ψ = 2(π −θ∗) = Θ.
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5. (Regularization of positive energy Keplerian orbits.) Let (H,T0R3,ω3) be the
Kepler Hamiltonian system with T0R3 = (R3 \{0})×R3 having coordinates (q, p),
symplectic form ω3 = ∑3

i=1 dqi ∧dpi, and Hamiltonian

H : T0R3 → R : (q, p) �→ 1
2 (p, p)−‖q‖−1. (99)

Here ( , ) is the Euclidean inner product on R3 with ‖q‖ being the length of the
vector q ∈ R3. We look only at a positive energy Keplerian orbit, which in exercise
3 we have shown to be a branch of a hyperbola.

a) To regularize the positive energy Keplerian orbits, we will use an argument anal-
ogous to the one given in §4 for the negative energy orbits. Start by using the virial
group to show that we may reduce our considerations to the level set H−1( 1

2 ). Next
introduce a new time scale s by ds

dt = ‖q‖−1. Consider the rescaled Hamiltonian

F̃ : T0R3 → R : (q, p) �→ ‖q‖(H(q, p)− 1
2 )+1 = 1

2‖q‖(‖p‖2 −1). (100)

Show that the integral curves of XF̃ on F̃−1(1) are the same as the integral curves
of XH on H−1( 1

2 ), using the time parameter s. Let

K̃ : T0R3 → R : (q, p) �→ 1
2 F̃2(q, p) = 1

8‖q‖2(‖p‖2 −1)2 (101)

be the regularized Hamiltonian. Show that the integral curves of XK̃ on K̃−1( 1
2 ) are

the same as the integral curves of XF̃ on F̃−1(1), using the time parameter s.

b) Let 〈 , 〉 be the Lorentz inner product on R4 given by 〈u,v〉 = u1v1 + u2v2 +
u3v3 −u4v4. Let H3,1 = {u ∈ R3 〈u,u〉=−1}. Consider the stereographic projec-
tion map

ϕ−1 : H3,1 ⊆ R4 → R3 : q �→ (1−q4)
−1q̃ = (1−q4)

−1(q1,q2,q3)

from (0̃,1) with inverse

ϕ : R3 → H3,1 ⊆ R4 : q̃ �→ 2(1−‖q̃‖2)−1(q̃,− 1
2 (1+‖q̃‖2)

)
.

The positive energy analogue of Moser’s regularization map in §4 is

Φ−1
M : T H3,1 ⊆ T R4 → T0R3 :

(u,v) �→ (q, p) =
(− (1−u4)ṽ− v4ũ,(1−u4)

−1ũ
)
,

(102)

which is the composition of T ϕ−1 followed by momentum reversal (q, p) �→ (−p,q).
For (u,v) ∈ T H3,1 = {(u,v) ∈ T R4 〈u,u〉=−1 & 〈u,v〉= 0} show that the follow-
ing identities hold.

‖q‖2 = 〈v,v〉(1−u4)
2 (103a)

‖p‖2 −1 =−2(1−u4)
−1 (103b)

(q, p) = v4. (103c)
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Using the above identities show that the inverse of the regularization mapping Φ−1
M

is given by

ΦM : T0R3 → T H3,1 ⊆ T R4 : (q, p) �→ (
(ũ,u4),(ṽ,v4)

)
,

where{
ũ =−(‖p‖2 −1)−1(2p) and u4 = (‖p‖2 −1)−1(‖p‖2 +1)

ṽ = 1
2 (‖p‖2 −1)q− (q, p)p and v4 = (q, p).

(104)

c) Verify that the pull back by the regularization mapping Φ−1
M (102) of the regular-

ized Hamiltonian K̃ (101) is the geodesic Hamiltonian

H : T H3,1 ⊆ R4 → R : (u,v) �→ 1
2 〈v,v〉. (105)

Show that (Φ−1
M )∗ω3 = ω4|T H3,1. Deduce that the flow of the regularized Kepler

vector field XK̃ on K̃−1( 1
2 ) is the flow of the geodesic Hamiltonian vector field XH

on H −1( 1
2 ).

d) Following the proof of ((4.9)) show that

Φ∗
M
(
(uiv j − viu j)|H −1( 1

2 )
)
= Jk|H−1( 1

2 ),

where (i, j,k) = {1,2,3}, and

Φ∗
M
(
(uiv4 − viu4)|H −1( 1

2 )
)
= ei|H−1( 1

2 ),

for 1 ≤ i ≤ 3.

6. (Center of mass and the two body problem.)

a) For the two body problem in space show that regular reduction by the translation
group can be interpreted as passing to a center of mass frame. Do the reduction of
the translation and rotational symmetries in one step by using the Euclidean group
E(3).

b) Consider the spherical analogue of the planar two body problem. This is the
motion of two particles connected by a spring constrained to move on the surface of
a 2-sphere. The rotation group SO(3) is an obvious symmetry group of the problem,
as compared to the Euclidean group E(2) for the planar problem. Construct all the
SO(3) reduced spaces. Show that there is no notion of a center of mass frame.

c)∗ Is the spherical two body problem Liouville integrable?

7. a) Construct an isomorphism between the Lie algebra so(4) and so(3)× so(3).

b) Show that the corresponding Lie-Poisson algebras are isomorphic.

c) Write out Hamilton’s equations on the Lie-Poisson algebra corresponding to
so(3)× so(3).
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8. (Souriau’s linearization and regularization.) In the Kepler problem

q̇ = p

ṗ = − 1
r3 q, r = ‖q‖, (106)

let H = 1
2 〈p, p〉− 1

r be the Hamiltonian and define a new time variable s by

s = 〈q, p〉−2ht.

a) Show that ds
dt =

1
r . Thus s is the eccentric anomaly.

b) Define a 4-vector ξ by ξ =
(

t
q

)
. Let Ξ = col(ξ ,ξ ′,ξ ′′,ξ ′′′) be a 4× 4 ma-

trix, where ′ is differentiation with respect to s. Show that Ξ satisfies the linear
differential equation

Ξ′ = AΞ (107)

where A =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
0 2h 0 0

⎞⎟⎟⎠.

c) Solve (107) and thus find ξ (s). Note that because ξ (s) is defined for all s and
hence for all t by Kepler’s equation, it follows that the Kepler problem has been
regularized.

9. (Bacry-Györgyi variables and the conformal group.) Using the same notation in the
Kepler problem as in exercise 8, set α =

√−2h, P =
(

t ′′′
α−1q′′′

)
and Q =

(
α t ′′
q′′

)
.

Here we are confining ourselves to the case of bounded motions, namely, h < 0.

a) Show that PtP = QtQ = 1 and PtQ = 0.

b) Let ζ be the 6×6 matrix ⎛⎝QPt −PQt P Q
Pt 0 1
Qt −1 0

⎞⎠
c) Show that ζ 2 = 0.

d) Show that the components of ζ satisfy the Poisson bracket relations for the Lie
algebra so(4,2).

e) Show that the map from the regularized phase space of the negative energy orbits
(q, p,h) → ζ is a symplectic diffeomorphism if we equip the SO(4,2)-coadjoint
orbit through ζ with the symplectic structure given in chapter VI §2 example 3.
The tricky part of this is deciding which component of the variety ζ 2 = 0,ζ = 0 in
so(4,2)∗ you need to map to.

10. (Levi-Civita regularization.)

a) Let R2
0 = R2 −{0}. On T ∗R2

0 = R2
0 ×R2 with coordinates (x,y) and symplectic

form ω = ∑3
i=1 dxi ∧dyi consider the Kepler Hamiltonian

H(x,y) = 1
2 (y

2
1 + y2

2)− (x2
1 + x2

2)
−1/2. (108)
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Identify R2
0 with C0 = C−{0} and T ∗R2

0 with T ∗C0 = C0×C. Introduce complex
coordinates q = x1 + i x2 and p = y1 + i y2 on T ∗C0. Show that ω = Re(dq∧ d p)
and that the Kepler Hamiltonian becomes

H(q, p) = 1
2‖p‖2 −‖q‖−1. (109)

b) Using the time rescaling ds
d t = k

2|q| show that the integral curves of XH on the
level set H−1(−k2/2) are a time reparametrization of the integral curves of the
vector field XK̃ on the level set K̃−1(0) where

K̃(q, p)= 2‖q‖k−1 ( 1
2‖p‖2−‖q‖−1+ 1

2 k2) = k−1 ‖q‖‖p‖2+k‖q‖−2k−1. (110)

c) Define the Levi-Civita map

L : T ∗C0 → T ∗C0 : (u,v)→ (q, p) =
(
(2k)−1 u2, k vu−1). (111)

Show that L has the following properties:

1) L is a smooth two to one surjective submersion with L (−u,−v) = L (u,v).

2) L ∗(Re(qd p)
)
= Re(udv− vdu). Hence L is symplectic.

3) The Hamiltonian

K(u,v) = (L ∗K̃)(u,v) = 1
2 (|v|2 + |u|2)−2k−1 (112)

is defined on K−1(0) which is a 3-sphere centered at the origin and having radius
2/

√
k. Since K−1(0) is compact, all the integral curves of XK on K−1(0) are defined

for all time. Thus K is the Levi-Civita regularization of the Kepler Hamiltonian for
negative energy orbits. Note that up to an additive constant, K is the harmonic
oscillator Hamiltonian.

d) The Levi-Civita map L is not an equivalence between the Hamiltonian systems
(K,T ∗C0,ω) and (K̃,T ∗C0,ω), because it is not a diffeomorphism. Show that that
vector fields XK on K−1(0) and XK̃ on K̃−1(0) are L -related, that is, TL ◦XK =

XK̃
◦L . Thus the image of an integral curve of XK on K−1(0) under the Levi-Civita

map L is an integral curve of XK̃ on K̃−1(0).

e) On T ∗C0 define a Z2-action generated by (u,v) → (−u,−v). Show that this
action is free, preserves the symplectic form ω , and preserves the Hamiltonian K.
Thus there is an induced Hamiltonian K on (T ∗C0/Z2,ω). Since the map L is
invariant under the Z2-action, it induces an equivalence between the Hamiltonian
systems (K ,T ∗C0/Z2,ω) and (K,T ∗C0,ω). Thus the regularized energy surface
H−1(−k2/2) of the Kepler Hamiltonian is K −1(0) = (S3

2/
√

k
)/Z2, which is real

projective three space RP3.

11. (Kustaanheimo-Stiefel regularization.) Let x = (x1,x2,x3) be a vector in R3
0 =

R3 \ {0} and let z = (z1,z2) ∈ C2
0 = C2 \ {0} = R4 \ {0}. Define the 2× 2 skew

Hermitian matrices

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.
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Let 〈z,w〉= z1w1 + z2w2 be the standard Hermitian inner product on C2. Show that
the mapping

π : C2
0 → R3

0 : z �→ (〈z,σ1(z)〉,〈z,σ2(z)〉,〈z,σ3(z)〉
)
, (113)

is the Hopf map.

a) On C2
0 define an action

ϕ : U(1)×C2
0 → C2

0 :
(
eis,(z1,z2)

) �→ (eisz1,eisz2).

Let T ∗C2
0 = (C2 −{0})×C2. Lift ϕ to a U(1)-action

Φ : S1 ×T ∗C2
0 → T ∗C2

0 :
(
eis,z,w

) �→ (
eisz,eisw

)
.

Define a 1-form θ on T ∗C2
0 by θ = −2i Im〈w,dz〉. Show that Ω = −dθ is a sym-

plectic form on T ∗C2
0 and that Φ is a Hamiltonian action with momentum map

I : T ∗C2
0 → R : (z,w) �→ 2Re〈w,z〉.

Let I0 = I −1(0)\{0}.

b) The map π (113) lifts to the Kustaanheimo-Stiefel map

K S : T ∗C2
0 → T ∗R3

0 : (z,w) �→ (x,y) =(
(〈z,σ j(z)〉),〈z,z〉−1 (Re〈w,σ j(z)〉)

)
, for j = 1,2,3.

The following calculation shows that

(K S )∗(ϑ |I0) = θ |I0, (114)

where ϑ = 〈y,dx〉 is the canonical 1-form on T ∗R3. For every u,w,z ∈ C2

3

∑
j=1

〈u,σ j(z)〉σ j(w) = 2〈w,z〉u−〈u,z〉w. (115)

Interchanging u with z in (115) and subtracting the result from (115) gives

i
3

∑
j=1

Im〈u,σ j(z)〉σ j(w) = 〈w,z〉u−〈w,u〉z− i Im〈u,z〉w. (116)

Taking the inner product of (116) with z and then adding the result to its complex
conjugate gives

3

∑
j=1

Im〈u,σ j(z)〉 Im〈z,σ j(w)〉= Re〈z,w〉Re〈u,z〉−〈z,z〉Re〈u,w〉. (117)

Replacing w in (117) with −iw gives

3

∑
j=1

〈u,σ j(z)〉〈z,σ j(w)〉= Im〈z,u〉Re〈w,z〉−〈z,z〉 Im〈w,u〉. (118)
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Finally, replacing w by dz and u by w in (118) gives

3

∑
j=1

Re〈w,σ j(z)〉 Im〈z,σ j(dz)〉= Im〈z,dz〉Re〈z,w〉−〈z,z〉 Im〈w,dz〉. (119)

Consequently

(K S )∗ϑ = 2i
(

Im〈z,dz〉Re〈z,w〉−〈z,z〉 Im〈w,dz〉
〈z,z〉

)
. (120)

From (120) it follows that (K S )∗(ϑ |I0) = θ |I0.

c) On T ∗R3
0 with coordinates (x,y) and symplectic form ω = ∑i dxi ∧dyi, consider

the time rescaled Kepler Hamiltonian

K̃(x,y) = 1
2 k−1 ‖x‖(‖y‖2 + k2)

whose μk−1-level set corresponds to the −k2/2-level set of the Kepler Hamilto-
nian. Setting u = w in (117) show that on I0 ‖(K S )∗‖y‖2 = 〈w,w〉〈z,z〉−1 and
‖(K S )∗x‖2 = 〈z,z〉. Therefore on I0 we obtain the regularized Hamiltonian

K = (K S )∗K̃ = 1
2 k−1 (〈w,w〉+ k2〈z,z〉). (121)

When k = 1 the regularized Hamiltonian is the harmonic oscillator Hamiltonian on
(T ∗C2,Ω) restricted to the open cone I0. Show that the regularized Hamiltonian
K (121) is invariant under the U(1)-action Φ. Since the mapping K S is not a
diffeomorphism, the harmonic oscillator vector field XK is not equivalent to the
Kepler vector field XK̃ . Show that they are K S -related on I0, that is, on I0 we
have T (K S ) ◦XK = XK̃

◦(K S ). Moreover, show that after dividing out the S1-
action Φ on I0 we obtain an equivalence of Hamiltonian systems. Show that the
orbit space I0/S1 is diffeomorphic to T+S3, the tangent bundle to S3 less its zero
section.

12. (Generalized Kepler equation.) Consider the Ligon-Schaaf map

LS : Σ− ⊆ T0R3 → T+S3
np ⊆ T R4 : (q, p)→ (r,s),

with ϕ = ν−1 〈q, p〉. Show that its inverse is given by

q = μ−1〈s,s〉((sinϕ −〈r,r〉−1/2s4)r̃+ 〈s,s〉−1/2(r4 − cosϕ)s̃
)

p = μ〈s,s〉−1/2( r̃ cosϕ + 〈s,s〉−1/2s̃sinϕ
1− r4 cosϕ −〈s,s〉−1/2s4 sinϕ

)
,

where r = (r̃,r4), s = (s̃,s4) and ϕ is a smooth solution of

ϕ − r4 sinϕ − s4〈s,s〉−1/2 cosϕ = 0.
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13. a) Show that SO(4)-action on an energy surface of the Delaunay vector field is
transitive.

b) Show that the mapping ϑ :
∧2R4 → so(4), defined by ϕ(u∧ v)w = 〈v,w〉u−

〈v,u〉w for every u,v,w∈R4, intertwines the SO(4)-action SO(4)×∧2R4 →∧2R4 :
(A,u∧ v)→ Au∧Av with the adjoint action of SO(4) on so(4).

c) Show that the orbit space (Ch,ωh) of the flow of the Delaunay vector field
on H̃ −1(h) is symplectically diffeomorphic to the coadjoint orbit Oμ through
J̃ (e1,he2) = he∗12 = μ ∈ so(4)∗ with its usual symplectic structure ωOμ , see ex-
ample 3 chapter VI §2.

14. Show that the Hamiltonian vector field Xei corresponding to the ith component of
the eccentricity vector (27) is incomplete. Give a geometric explanation of this
incompleteness. State precisely where the flow of Xei is defined.

15. Given an initial position and momentum of a Keplerian elliptical orbit, determine
the argument of the perihelion, that is, the angle between the line of nodes (= the
line of intersection of the plane of the elliptical orbit and the equitorial plane of the
celestial sphere) and the line joining the foci of the ellipse.



Chapter III

The Euler Top

Mathematically, the motion of the Euler top is described by geodesics of a left invariant
metric on the rotation group SO(3). Physically, the Euler top is a rigid body moving about
its center of mass (which is fixed) without any forces acting on the body.

1 Facts about SO(3)

We begin by reviewing some basic facts about the group of rotations of R3.

1.1 The standard model
On R3 with Euclidean inner product ( , ), the orthogonal group O(3) is the group of linear
maps which preserve the inner product, that is, O ∈ O(3) if and only if for every x,y ∈ R3,
(Ox,Oy) = (x,y). The group of rotations SO(3) of (R3,( , )) is the identity component of
O(3). Equivalently, O ∈ SO(3) if and only if OOt = I and detO = 1. The group SO(3) is
a connected compact Lie group with Lie algebra Te SO(3) = so(3) = {X ∈ gl(3,R) X +
Xt = 0}. X ∈ so(3) if and only if it is a 3× 3 skew symmetric real matrix, that is, for
every x,y ∈ R3, (Xx,y)+(x,Xy) = 0. The Lie algebra so(3) has a Lie bracket [ , ] defined
by the relations

[E1,E2] = E1E2 −E2E1 = E3, [E2,E3] = E1, [E3,E1] = E2,

where {E1,E2,E3} is the standard basis

E1 =

⎛⎝0 0 0
0 0 −1
0 1 0

⎞⎠ , E2 =

⎛⎝ 0 0 1
0 0 0
−1 0 0

⎞⎠, E3 =

⎛⎝0 −1 0
1 0 0
0 0 0

⎞⎠.
Rewritten, the bracket relations read [Ei,E j] = ∑3

k=1 εi jkEk. Here εi jk = 0, if i, j and k are
not distinct. If i, j and k are distinct, εi jk is 1 if i jk is an even permutation of 123 and −1
otherwise.

On so(3) there is an inner product k : so(3)× so(3)→ R, called the Killing metric. The

� Springer Basel 2015
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Integrable Systems, DOI 10.1007/978-3-0348-0918-4_3
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� Killing metric is defined by
k(X ,Y ) =− 1

2 trXY (1)

and has the following properties.

1. k is positive definite.

2. For O ∈ SO(3) let AdO X = OXO−1 ∈ so(3). Then for every X ,Y ∈ so(3) we have
k(AdO X ,AdO Y ) = k(X ,Y ), that is, k is AdO-invariant. In other words, Ad t

O−1 =

k �◦AdO◦k �.

3. For X ,Y,Z ∈ so(3) we have k([Z,X ] ,Y )+ k(X , [Z,Y ]) = 0.

(1.1) Proof:
1. Let X = ∑3

i=1 xiEi. Then

|X |2 = k(X ,X) = − 1
2 tr

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠2

= x2
1 + x2

2 + x2
3 ≥ 0.

Equality holds if and only if X = 0.
2. For O ∈ SO(3), we have

k(AdO X ,AdO Y ) =− 1
2 trOXYO−1 = − 1

2 trXY = k(X ,Y ).

For every X ,Y ∈ so(3) we have k(AdOX ,Y )= k(X ,AdO−1Y ), because k is AdO−1 -invariant.
The preceding equation may be rewritten as

(k �(AdOX))Y = k �(X)(AdO−1Y ) =
(

Ad t
O−1 k �(X)

)
Y

for every Y ∈ so(3). Hence (k �◦AdO)X = (Ad t
O−1◦k �)X for every X ∈ so(3).

3. Since d
dt t=0

Adexp tZW = adZW = [Z,W ] for every Z,W ∈ so(3), differentiating the equa-
tion k(Adexp tZ X ,Adexp tZ Y )= k(X ,Y ) with respect to t and setting t = 0 gives k([Z,X ] ,Y )+
k(X , [Z,Y ]) = 0. �

Define the linear map

i : so(3)→ R3 : X =

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠ �→ x = (x1,x2,x3). (2)

� The map i allows us to do calculations in R3 instead of in so(3). It has the following
properties.

1. i is an isometry from (so(3),k) to (R3,( , )) .
2. i is an isomorphism of the Lie algebra (so(3), [ , ]) with the Lie algebra

(R3,×), where × is the vector product on R3, see exercise 3.
3. i intertwines the adjoint action of SO(3) on so(3) with the usual action of

SO(3) on R3, namely, i(AdOX) = Oi(X).
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(1.2) Proof:
1. For X = ∑3

i=1 xiEi and Y = ∑3
i=1 yiEi,

k(X ,Y ) = x1y1 + x2y2 + x3y3 = (x,y) = (i(X), i(Y )).

2. For X = ∑3
i=1 xiEi and Y = ∑3

i=1 yiEi,

i([X ,Y ]) = i(
3

∑
i, j,k=1

εi jk xiy j Ek) =
3

∑
i, j,k=1

εi jk xiy j ek = x× y = i(X)× i(Y ) = Xy.

3. For O∈ SO(3) define the mapping AO : R3 →R3 : x �→ i(AdO i−1(x)). Then AO ∈O(3),
because

(AOx,AOy) = k(AdO i−1x,AdO i−1y) = k(i−1x, i−1y) = (x,y).

In fact AO ∈ SO(3), because the map σ : SO(3)→ O(3) : O �→ AO is continuous and sends
the identity element into itself. Since σ is a group homomorphism and

Teσ : Te SO(3)→ TeO(3) = Te SO(3) : X �→ i◦adX ◦i−1 = X ,

it follows that σ is the inclusion map. Therefore O = i◦AdO◦i−1, that is, the map i inter-
twines the adjoint action of SO(3) on so(3) with the usual action of SO(3) on R3. �

� We now show that every element in so(3) has a normal form. More precisely, we show
that for every element X ∈ so(3) there is an O ∈ SO(3) such that AdO X = rE1, where
r = |X |.

(1.3) Proof: Using the standard basis {e1,e2,e3} of R3 the matrix of X is ∑3
i=1 xiEi. If X = 0

then X is already in normal form. So suppose that X = 0. Then r = |X | > 0 and the unit
vector x = 1

r (x1,x2,x3) is an eigenvector of X corresponding to the eigenvalue 0. Let Π
be the plane orthogonal to the line spanned by the vector x. Π is invariant under X , for
if y ∈ Π, then Xy ∈ Π because (Xy,x) = −(y,Xx) = 0. On (Π, ( , )|Π) the mapping X |Π
is skew symmetric and has characteristic polynomial λ 2 + r2. Let y ∈ Π be a vector of
unit length. Then {y, 1

r Xy} is an orthonormal basis of Π because (y,Xy) = −(Xy,y) =

−(y,Xy) implies that (y, 1
r Xy) = 0 and ( 1

r Xy, 1
r Xy) = (y,− 1

r2 X2y) = (y,y) = 1. Thus the
matrix O−1 = col(x,y, 1

r Xy) of column vectors is orthogonal. In fact O−1 is in SO(3),
because detcol(x,y, 1

r Xy) = 1
r (x× y,Xy) = 1

r (x× y,x× y) > 0. The matrix of X with
respect to the ordered orthonormal basis {x,y, 1

r Xy} is Y = rE1. Clearly r = |Y |= |X |. �
� As a corollary of the above normal form, we find that for X ∈ so(3) the linear map adX :

so(3)→ so(3) : Y �→ [X ,Y ] has eigenvalues 0,±ir.

(1.4) Proof: For O ∈ SO(3), it follows that AdO(adX )(AdO)
−1 = adAdO X , since

AdO(adX )(AdO)
−1Y = AdO [X ,AdO−1 Y ] = [AdO X ,Y ] .

Therefore adX has the same eigenvalues as adAdO X . Choosing O ∈ SO(3) so that AdO X =
rE1, we see that adX has the same eigenvalues as adrE1 = r adE1 . But adE1 E1 = 0,adE1 E2 =
E3, adE1 E3 =−E2. Therefore the matrix of adrE1 with respect to the basis {E1,E2,E3} is
rE1. Consequently adX has eigenvalues 0,±ir. �



82 The Euler top

1.2 The exponential map
We now derive some basic properties of the exponential mapping

exp : so(3)→ gl(3,R) : X �→
∞

∑
n=0

1
n!

Xn.

� We start by showing that the image of exp is contained in SO(3).

(1.5) Proof: Since X ∈ so(3), it is skew symmetric. So

(expX)t =
∞

∑
n=0

1
n!
(Xt)n =

∞

∑
n=0

1
n!
(−X)n = exp(−X) = (expX)−1.

Therefore the image of exp is contained in O(3). But exp is continuous and exp0 = I.
Hence the image of exp is contained in SO(3). �

� Next we show that for a nonzero X ∈ so(3)

expX = I +
sinr

r
X +

1− cosr
r2 X2, (3)

where r = |X |. Since limr→0
sinr

r = 1 and limr→0
1−cosr

r2 = 1
2 , equation (3) is defined when

X = 0 and gives exp0 = I.

(1.6) Proof: For X ∈ so(3), a calculation shows that its characteristic polynomial is λ 3 + r2λ .
Therefore X3 + r2X = 0, from which the formulæ

X2n+1 = (−1)nr2nX and X2n+2 = (−1)nr2nX2 n ≥ 0

follow by induction. Substituting these expressions into the power series for exp gives
equation (3). �

When |X |= 1 we obtain the special case of (3):

(expsX)y = y+ sins(x× y)+(1− coss)(x× (x× y)), (4)

where x = i(X) and y ∈ R3. Because (expsX)x = x, equation (4) defines a one parameter
group of rotations about the axis x. If {x,y} are orthonormal vectors in R3, then (4)
becomes

(expsX)y = ycoss+(x× y)sins, (5)

since x× (x× y) =−y.

Because the function r2 : so(3)→ R : X �→ k(X ,X) is differentiable, the functions sinr/r
and (1− cosr)/r2 are differentiable. From (3) it follows that exp is differentiable. Next

� we prove the following formula for the derivative of exp:

exp(−X)(DexpX) =
(

1− exp(−adX )
)
/adX . (6)

The right hand side of (6) is to be thought of as a power series in adX .
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(1.7) Proof: Consider the function

Z : R2 → gl(3,R) : (s, t) �→ Z(s, t) = exp(−sX − stY )
∂
∂ t

exp(sX + stY ).

Then Z(0,0) = 0, while

Z(1,0) = exp(−X)
d
dt t=0

exp(X + tY ) = exp(−X)(DexpX)Y.

Differentiating Z(s, t) with respect to s gives

∂
∂ s Z(s, t) = ∂

∂ s (exp(−sX − stY )) ∂
∂ t exp(sX + stY )+ exp(−sX − stY ) ∂ 2

∂ s∂ t exp(sX + stY )

= −exp(−sX − stY )(X + tY ) ∂
∂ t exp(sX + stY )+ exp(−sX − stY ) ∂ 2

∂ t∂ s exp(sX + stY )

= −exp(−sX − stY )(X + tY ) ∂
∂ t exp(sX + stY )+ exp(−sX − stY ) ∂

∂ t

(
(X + tY )exp(sX + stY )

)
= exp(−sX − stY )Y exp(sX + stY ).

Consequently,

Z(1,0) =
∫ 1

0

d
ds

Z(s,0) ds =
∫ 1

0
(exp−sX)Y (expsX) ds =

∫ 1

0
exp(−s adX )Y ds.

The last equality follows because

1. For every s ∈ R the linear map γ(s) : so(3)→ so(3) : Y �→ (exp−sX)Y (expsX)
is invertible.

2. The map γ : R → Gl(so(3),R) : s �→ γ(s) is a one parameter subgroup.

3. γ ′(0) =−adX .

Therefore γ is the one parameter subgroup s �→ exp(−s adX ). Expanding exp(−s adX ) in
a power series in s and integrating with respect to s gives

Z(1,0) =
(
1− 1

2!
adX +

1
3!
(adX )

2 − 1
4!
(adX )

3 + · · ·)Y =

(
1− exp(−adX )

adX

)
Y. �

1.3 The solid ball model
In this subsection we will show that the rotation group SO(3) is homeomorphic to a closed
solid ball in R3 of radius π with antipodal points on its bounding 2-sphere identified. Such
a homeomorphism can be constructed by sending the rotation O to the vector in the solid
ball, which is the axis of rotation of O, normalized so that its length is the amount of
rotation O makes in a right handed sense about its rotation axis. Our proof shows that this
homeomorphism is defined by the exponential map.

Let D3
π = {X ∈ so(3)|k(X ,X) < π2} be an open 3-ball in (so(3),k) of radius π and let

S2
π = {X ∈ so(3)|k(X ,X) = π2} be a 2-sphere of radius π , which is the boundary ∂D3

π of
the 3-ball D3

π . The proof of the solid ball model of SO(3) takes three steps.
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1. The exponential map exp : D3
π ⊆ so(3)→ SO(3) is a diffeomorphism of D3

π onto
its image and is continuous on its closure D3

π .

2. The image of D3
π under the exponential mapping is SO(3).

3. On ∂D3
π = S2

π the exponential map is two to one.

(1.8) Proof:
Step 1.
From (6) we see that the derivative of the exponential map is invertible if and only if the
linear mapping Z = (1− exp(−adX ))/adX is invertible. If X = 0 then ±ir,0 are eigen-
values of adX . Consequently, we find that (1−e−ir)/ir, (eir −1)/ir and 1 are eigenvalues
of Z. For X ∈ D3

π \{0}, 0 < r < π . Hence Z has no zero eigenvalues. If X = 0 then 1,1,1
are eigenvalues of Z. Thus DexpX is invertible for all X ∈ D3

π . It is clearly continuous in
D3

π .

To show that exp is a diffeomorphism of D3
π onto its image, we need only verify that

exp |D3
π is one to one. Toward this end, suppose that for some X ,Y ∈ D3

π we have expX =
expY . Let r = |X | and s = |Y |. Furthermore, suppose that r and s are greater than zero.
The proofs of the other cases are omitted. Then r,s ∈ (0,π). Using (3) we obtain

sinr
r

X +
(1− cosr)

r2 X2 =
sins

s
Y +

(1− coss)
s2 Y 2. (7)

Subtracting (7) from its transpose and then dividing by 2 gives sinr
r X = sins

s Y . Therefore

sin2r =
sin2r

r2 k(X ,X) =
sin2s

s2 k(Y,Y ) = sin2s.

Because r,s ∈ (0,π), it follows that sinr = sins and therefore 1
r X = 1

s Y . Adding (7) to its
transpose and using the preceding equation gives cosr = coss, once we have noted that
X2 = 0. Therefore r = s, since r,s ∈ (0,π). Consequently, X = Y .

From (3) we see that the exponential mapping is continuous on D3
π .

Step 2.
To show that the image of D3

π under the exponential mapping is SO(3), we need the fol-
� lowing normal form for rotations. Given A ∈ SO(3), there is an O ∈ SO(3) such that

AdO A = expθE1 for some θ ∈ [0,π].

(1.9) Proof: Since A ∈ SO(3), A has an eigenvalue +1. This follows from

det(A− I) = det
(
(I −A)tA

)
= det(I −A) = −det(A− I),

which implies det(A− I) = 0. In other words, A leaves the line spanned by the eigenvector
x corresponding to the eigenvalue 1 pointwise fixed. This line is called the axis of rotation
of A. Normalize x so that its length is 1. Let Π be the plane in R3 orthogonal to x. Π is
invariant under A, because if y ∈ Π then (Ay,x) = (Ay,Ax) = (y,x) = 0, that is, Ay ∈ Π.
Therefore A|Π is an orthogonal linear map on (Π,( ,)|Π). Let y be a unit vector in Π.
Then {y,x× y} is an orthonormal basis of Π, because (y,x× y) = detcol(y,x,y) = 0 and
(x×y,x×y) = (x,x)(y,y)− (x,y)2 = 1. With respect to the orthonormal basis {x,y,x×y}
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of R3 the matrix of A is
(

1 0
0 Ã

)
. Since 1 = detA = det Ã = detA|Π, the map A|Π lies

in SO(2). Hence the matrix of A|Π with respect to the orthonormal basis {y,x× y} is
Ã =

(
cosθ ′ −sinθ ′
sinθ ′ cosθ ′

)
for some θ ′ ∈ [0,2π]. If θ ′ ∈ [0,π], we are done. Otherwise, sinθ ′ < 0.

Now use the orthonormal basis {−x,y,y × x}. With respect to the orthonormal basis
{y,y×x} the matrix of A|Π is

(
cosθ ′′ −sinθ ′′
sinθ ′′ cosθ ′′

)
where θ ′′ = 2π −θ ′ ∈ [0,π]. Because either

detcol(x,y,x× y) = (x× y,x× y) > 0, or detcol(−x,y,y× x) = (−x× y,y× x) > 0, the
matrix O−1 formed by taking the vectors {x,y,x×y} or {−x,y,y×x} for its columns lies
in SO(3). Moreover, AdOA = OAO−1 = expθE1, where θ = θ ′ or θ ′′. �

The second step is proved by noting that A = AdO−1(expθE1) = exp(θ AdO−1 E1) and

k(θ AdO−1 E1,θ AdO−1 E1) = θ 2k(E1,E1) = θ 2 ≤ π2.

Step 3.
Suppose that X ,Y ∈ S2

π and expX = expY . Then using (3) we obtain

1+ 2
π2 X2 = expX = expY = 1+ 2

π2 Y 2

which implies that X =±Y . Conversely, if X =±Y then expX = expY . Therefore on S2
π

the exponential mapping is two to one with expX = exp(−X). In other words, exp maps
antipodal points on S2

π to the same element of SO(3).

This establishes the solid ball model of SO(3). �

1.4 The sphere bundle model
In this subsection we describe the sphere bundle model of the rotation group.

Let
T1S2 =

{
(x,y) ∈ T R3 = R3 ×R3 (x,x) = 1, (x,y) = 0 & (y,y) = 1

}
be the unit tangent sphere bundle to the unit 2-sphere S2. In other words, T1S2 is the set
of all ordered pairs of orthonormal vectors in R3. T1S2 is diffeomorphic to the rotation
group SO(3) via the smooth map

ϕ : T1S2 ⊆ T R3 → SO(3)⊆ R9 : (x,y) �→ col(x,y,x× y), (8)

whose smooth inverse is the restriction to SO(3) of the projection

π̂ : R9 → T R3 : A = col(a1,a2,a3) �→ (a1,a2). (9)

T1S2 can be made into a Lie group by pushing forward the Lie group structure on SO(3)
via the mapping π̂ (9). In more detail, define a multiplication · on T1S2 by

(x,y) · (z,w) = π̂
(

col(x,y,x× y) · col(z,w,z×w)
)

=
(

z1x+ z2y+ z3(x× y),w1x+w2y+w3(x× y)
)
.

(10)

Observe that e = (e1,e2) is the identity element of (T1S2, ·).
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Since

T(x,y)(T1S2) =
{
(u,v) ∈ T R3 (x,u) = 0, (u,y)+(x,v) = 0 & (y,v) = 0

}
,

we find that

Te(T1S2) =
{

u =
(
(0,u3,−u2),(−u3,0,u1)

) ∈ T R3 (u1,u2,u3) ∈ R3}. (11)

In other words,

Te(T1S2) =

⎧⎨⎩u = π̂(U) ∈ T R3 U =

⎛⎝ 0 −u3 u2
u3 0 −u1
−u2 u1 0

⎞⎠ ∈ so(3)

⎫⎬⎭ ,

which has the standard basis {ε i = π̂(Ei)}. Define a Lie bracket [ , ] on Te(T1S2) by

[u,v] = π̂([U,V ]), (12)

for u, v ∈ Te(T1S2). In terms of the standard basis {ε i} we obtain the bracket relations
� [ε i,ε j] = ∑k εi jkεk. The following argument shows that (Te(T1S2), [ , ]) is the Lie algebra

of the Lie group (T1S2, ·).
(1.10) Proof: For every (x,y) ∈ T1S2 define left translation by (x,y) as

L(x,y) : T1S2 → T1S2 : (z,w) �→ (x,y) · (z,w) (13)

and right translation by (x,y) by R(x,y) : T1S2 → T1S2 : (z,w) �→ (z,w) · (x,y). Hence we
may define the diffeomorphism

Int(x,y) : T1S2 → T1S2 : (z,w) �→ L(x,y)◦R(x,y)−1(z,w),

which induces the group homomorphism Int : T1S2 → Diff(T1S2) : (x,y) �→ Int(x,y). Here
(Diff(T1S2), ◦) is the group of diffeomorphisms of T1S2 with composition ◦ as multiplica-
tion. Differentiating Int(x,y) at e, we obtain the linear map

Ad(x,y) : Te(T1S2)→ Te(T1S2) : v �→ TeInt(x,y)v = π̂(Adcol(x,y,x×y)V ),

which gives rise to the group homomorphism

Ad : T1S2 → Gl(Te(T1S2),R) : (x,y) �→ Ad(x,y).

Differentiating Ad at e gives the linear map ad : Te(T1S2) → gl(Te(T1S2),R) : u �→ adu,
where

aduv = Te(Ad(x,y)v)u = π̂
(
TI(Adcol(x,y,x×y)V )U

)
= π̂(adUV ) = π̂([U,V ]).

The Lie bracket on Te(T1S2) is defined by [u,v] = aduv, which agrees with (12). �

If we identify the Te(T1S2) with R3 using the mapping

i : Te(T1S2)→ R3 : u =

((
0
u3
−u2

)
,

(
−u3

0
u1

))
�→ u = (u1,u2,u3),
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it follows that i is an isomorphism of the Lie algebra (Te(T1S2), [ , ]) with the Lie algebra
(R3,×), since i(ε i) = ei. In other words, i([u,v]) = i(u)× i(v) for every u,v ∈ Te(T1S2).
Define the Killing metric k on Te(T1S2) as follows. For u,v ∈ Te(T1S2) let

k(u,v) = (i(u), i(v)), (14)

where ( , ) is the Euclidean inner product on R3. The Killing metric k is infinitesimally
Ad-invariant because for t,u,v ∈ Te(T1S2)

k(t, [u,v]) = (i(t), i(u)× i(v)) = (i(t)× i(u), i(v)) = k([t,u],v).

Since T1S2 is connected, it follows that k is Ad-invariant, that is, k(Ad(x,y)u,Ad(x,y)v) =
k(u,v), for every (x,y) ∈ T1S2.

� We now turn to discussing the geometry of the sphere bundle model. One of the advan-
tages of the sphere bundle model of SO(3) is that T1S2 is the total space of an S1-principal
bundle over S2 with bundle projection

τ : T1S2 ⊆ T R3 → S2 ⊆ R3 : (x,y) �→ x. (15)

(1.11) Proof: A calculation shows that for every (v,w) ∈ T(x,y)(T1S2) we have T(x,y)τ(v,w) = v.
Since v ∈ TxS2, it follows that τ is a submersion. In addition, τ is a surjective proper map.
Therefore by the Ehresmann theorems of chapter VIII §2, τ is a locally trivial bundle with
fiber S1.

To show that τ is a principal bundle, see chapter VII §2.2, we argue as follows. Consider
the S1 = R/2πZ-action

Ψ : S1 ×T1S2 → T1S2 :
(
t,(x,y)

) �→ (
x,exp(−tX)y

)
=

(
x,ycos t − (x× y)sin t

)
, (16)

where X is the skew symmetric matrix i−1(x) and i is the map given by (2). The action Ψ
has the following properties.

1. Ψt preserves the fibers of the bundle τ . In other words, Ψt maps the unit circle in
TxS2 into itself.

2. The action Ψ is proper, since S1 is compact.
3. The action Ψ is free, because if (x,y) = Ψt(x,y) = (x,ycos t − (x× y)sin t), then

y= ycos t−(x×y)sin t. Taking the inner product of both sides of this last equation
with y and using the fact that (y,y) = 1, yields 1 = cos t, that is, t = 2π n for some
n ∈ Z. Hence t = e ∈ S1.

Therefore T1S2 is the total space of an S1 principal bundle over the smooth orbit space
V = T1S2/S1 with bundle projection λ : T1S2 → V , see chapter VII ((2.12)). Since τ is
invariant under Ψ, it induces a smooth map σ : V → S2 which makes the diagram 1.4.1
commute. The map σ is surjective because τ is. Also σ is injective, because the fiber
of τ is a unique S1 orbit of Ψ by property 1. Therefore σ is a homeomorphism, since V
is a compact Hausdorff space. To verify that σ is a diffeomorphism, it suffices to show
that for every v ∈V , the tangent map Tvσ : TvV → Tσ(v)S2 is injective, because dimTvV =
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Diagram 1.4.1

T1S2 �id
T1S2

�

λ

�

τ

V � S2
σ

dimTσ(v)S2. Towards this goal suppose that 0 = Tvσ(wv) for some wv ∈ TvV . Since λ is
a surjective submersion, there is a w(x,y) ∈ Tσ(v)(T1S2) such that (T(x,y)λ )w(x,y) = wv and
λ (x,y) = v. Therefore 0 = (Tvσ◦T(x,y)λ )w(x,y) = (T(x,y)τ)w(x,y), since τ = σ◦λ . In other
words

w(x,y) ∈ kerT(x,y)τ = T(x,y)τ−1(x), since τ is a smooth bundle

= T(x,y)λ−1(v), since τ−1(x) and λ−1(v) are the
same S1 orbit

= kerT(x,y)λ , since λ is a smooth bundle.

Therefore wv = 0. Thus τ and λ are isomorphic bundles. In fact they are isomorphic S1

principal bundles, since the horizontal arrows in diagram 1.4.1 are diffeomorphisms and
the map id interwines the S1-action Ψ on T1S2 with itself. �

Now consider the diagram

Diagram 1.4.2

S3 �h
S2

�

ρ

SO(3)

�

π̂

T1S2
�
�
�
�
�
�
�
�
�
��

τ

Here h is the Hopf fibration, see chapter I ((4.2)), π̂ is the map (9) and ρ : S3 → SO(3) is
a two to one covering map, see (17) below.

Claim: The bundle projection τ : T1S2 → S2 is double covered by the Hopf fibration h.

(1.12) Proof: We start by defining the covering map ρ : S3 → SO(3). This involves an extensive
excursion into quaternions.

As a real vector space the set of quaternions H has a basis {1, i, j,k}. Thus every q ∈ H
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can be written uniquely as q = q0 1+ q1 i+ q2 j + q3 k, where (q0,q1,q2,q3) ∈ R4. We
make H into an associative noncommutative algebra by defining a multiplication · on its
basis elements by requiring

1. 1 commutes with i, j and k.
2. i2 = j2 = k2 = −1, i · j =− j · i, j · k =−k · j and k · i =−i · k.
3. i · j = k, j · k = i and k · i = j.

Using properties 1 – 3 and the distributive law, it follows that multiplication is defined
for any two quaternions. For q ∈ H define q by q = q0 1−q1 i−q2 j−q3 k. It is straight-
forward to check that q · p = p · q. The 3-sphere S3 ⊆ H is the set of all quaternions q
such that q · q = 1. Check that S3 is a Lie group under quaternionic multiplication with
identity element e = 1. Identify R3 with the vector subspace of H spanned by the vec-
tors i, j and k. For every q ∈ S3 ⊆ H consider the linear map Lq : R3 → R3 : x �→ q · x · q

� The map Lq is orthogonal.

(1.13) Proof: First observe that for x = x1 i+x2 j+x3 k ∈ R3 ⊆ H we have x ·x = x2
1 +x2

2 +x2
3 =

(x,x), where ( , ) is the Euclidean inner product on R3. Consequently, for x,y ∈ R3 ⊆ H

4(x,y) = (x+ y) · (x+ y)− (x− y) · (x− y).

Since Lq is a linear map, it suffices to show that it is length preserving. We verify this as
follows: Lqx ·Lqx = q · x · x ·q = q ·q · x · x = x · x , since q ·q = 1. �
Thus we have a map

ρ : S3 → O(3) : q �→ Lq. (17)

ρ is a group homomorphism, since

Lp·qx = p ·q · x · p ·q = p · (q · x ·q) · p = (Lp◦Lq)x.

Because L1 = idR3 , ρ is continuous, and because S3 is connected, the image of ρ lies
� in SO(3). The map ρ is a submersion and hence its image is all of SO(3).

(1.14) Proof: By its very definition, ρ is smooth. Because ρ is a group homomorphism, it
suffices to show that Teρ : TeS3 → TI SO(3) = so(3) is bijective. Since (1, i) = (1, j) =
(1,k) = 0, we can identify TeS3 = {y ∈ H|(y,1) = 0} with R3 ⊆ H. Using this identifi-
cation we assert that

Teρ : R3 → so(3) : x = x1 i+ x2 j+ x3 k �→ −2

⎛⎝ 0 −x3 x2
x3 0 −x1
−x2 x1 0

⎞⎠. (18)

To see this, observe that the curves t → eti, t → et j, and t → etk, which lie on S3 and pass
through 1 represent tangent vectors to S3 at e in the direction i, j and k respectively, since
d
dt t=0

eti = i, d
dt t=0

et j = j and d
dt t=0

etk = k. Therefore Teρ(i) is the linear map on R3 given by

x → d
dt t=0

Letix =
d
dt t=0

eti · x · e−ti = i · x− x · i = −2(x3 j− x2k).
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Similarly, Teρ( j) is the linear map x →−2(−x3i+ x1k) and Teρ(k) the linear map x →
−2(x2i− x1 j). This proves (18). Consequently the map Teρ is bijective. Therefore ρ is a
submersion. �

� Next we show that the kernel of ρ is Z2.

(1.15) Proof: Suppose that Lq = idR3 . Then for every x ∈ R3 ⊆ H, we have q · x · q = x, that
is, x · q = q · x. Letting x be succesively i, j and k in the preceding equation, we see that
q = Q1 where Q ∈ R. Since q · q = 1, we have Q2 = 1. Therefore q = ±1. Hence
kerρ = Z2. �

Thus ρ is a two to one covering map. In other words, the twofold covering group of
SO(3) is S3. A geometric way of saying this is that if we act on S3 by the fixed point free
proper Z2-action generated by the map which sends the point q into −q, then the smooth
orbit space, see chapter VII ((2.9)), is SO(3). Thus SO(3) is diffeomorphic to the space
formed by identifying antipodal points on S3, that is, real projective three space RP3.

Diagram 1.4.3

q=y1+x1i+y2 j+x2k �h
Lqi=(y2

1+x2
1−y2

2−x2
2,2(x1y2−x2y1),2(x1x2+y1y2))

�

ρ

Lq=col(Lqi,Lq j,Lqk)

�

π̂

(Lqi,Lq j)
�
�

�
�
�
�
�
�
�
��

τ

We now look at diagram 1.4.3. The top horizontal map h is the Hopf fibration, see chapter
I ((4.2)). The first vertical map ρ is the two to one submersion (17), while the second
vertical map is the diffeomorphism π̂ (9). The diagonal map τ is the bundle projection
(15). From diagram 1.4.3 it follows that diagram 1.4.2 commutes. This proves ((1.12)).
�

� Next we determine the isomorphism type of the bundle τ .

(1.16) Proof: For y ∈ S2, we know that the fiber h−1(y) of the Hopf bundle is a great circle on S3,
see chapter I ((4.2)). Let ρ̃ = π̂◦ρ . From diagram 1.2 it follows that ρ̃(h−1(y)) = τ−1(y).
Moreover, the fiber of ρ̃ is two antipodal points on S3. Therefore, on fibers ρ̃ is a two
to one covering map. Let S1

E be the equator of S2 and let χh : S1
E → S1 ⊆ S3 be the

classifying map of the Hopf fibration, see chapter I. Then ρ̃ ◦χh is a classifying map
χτ : S1

E → S1 ⊆ T1S2 of the bundle τ . We compute the degree of χτ as follows

deg χτ = deg ρ̃ ·deg χh = 2 ·1 = 2.

This determines the homotopy class of χτ and hence the isomorphism type of τ . �
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	 C+

	 C

	 C−

Figure 1.4.1. Solid ball model of SO(3).

We now give a way to visualize the bundle τ , see figure 1.4.1. Think of T1S2 as the
closed solid ball D3 in R3: x2

1 + x2
2 + x2

3 ≤ 1 with points on its boundary S2: x2
1 + x2

2 +
x2

3 = 1 identified by the antipodal mapping R3 → R3 : x �→ −x. Look at the piece of
the hyperboloid H in D3 defined by x2

1 + x2
2 − x2

3 = 1
2 and x2

1 + x2
2 + x2

3 ≤ 1 with waist C
being the circle defined by x2

1 + x2
2 = 1

2 and x3 = 0. This piece H intersects S2 in two
disjoint circles C± : x2

1 + x2
2 =

3
4 with x3 =± 1

2 . Orienting S2 positively induces a positive
orientation on C+ and C−. Under the antipodal map, the closed 2-disk D+ bounded by
the circle C+ is identified with the closed 2-disk D− bounded by the circle C−. Because
the oriented circles C± agree after identification by the antipodal map, H is a 2-torus T 2

in the solid ball model and not a Klein bottle. In fact, H bounds a solid torus ST 1 formed
by identifying the oriented end 2-disks D+ and D− of the solid cylinder x2

1 + x2
2 − x2

3 ≤ 1
2

and x2
1 + x2

2 + x2
3 ≤ 1.

A

C

B

E

D1
� D2

	

A = E

B =C

D

Figure 1.4.2. Solid tori in SO(3).

Claim: T1S2 \ST 1 is a solid torus ST 2.

(1.17) Proof: To see this, consider the slice {x1 = 0}∩ (T1S2 \ST 1) given by the shaded region
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of the left 2-disk in figure 1.4.2. Before identification this slice is two disjoint closed
2-disks D1 and D2. Under the antipodal map, the boundary piece AC of D1 is identified
with the boundary piece EB of D2, thus forming a closed 2-disk D, see the right 2-disk in
figure 1.4.2. The same argument holds for every slice of the solid ball model through the
x3-axis. Therefore T1S2 \ST 1 is diffeomorphic to D×S1, which is a solid torus ST 2. �
We have decomposed T1S2 into the union of two solid tori ST 1 and ST 2 which are identi-
fied along their common boundary T 2 by a map ψ : T 2 → T 2. We now discuss the geom-
etry of the gluing map ψ . Let D be the closed 2-disk defined by x2

1+x2
2 ≤ 1

2 & x3 = 0. Let
Sm

1 and Sm
2 be the boundary ∂D of D and ∂D the boundary of D, respectively, see figure

1.4.3. Clearly ∂D and ∂D are closed curves on the 2-tori ∂ (ST1) and ∂ (ST2), respectively.
Because D and D are contractible in ST1 and ST2, respectively, the curves Sm

1 and Sm
2 are

meridians on ∂ (ST1) and ∂ (ST2), respectively. Consider the light curve S�1 on ∂ (ST1)
drawn in figure 1.4.3. It is the same as the curve S�2 on ∂ (ST2). The curve S�1 is closed,
since it joins the points P and P′ which are antipodal on S2 and hence are identified.
S�1 intersects D once at P. Similarly, the curve S�2 intersects D once at Q. Therefore, S�1
and S�2 are not contractible in ST1 and ST2, respectively. Hence S�1 and S�2 are longitudes on

P

Q

P′













�

S�1 = S�2











�

D

���
���

��

Sm
1






�

�����������������

D

��
��
���

���
���

���
���

���

Sm
2

Figure 1.4.3. Solid tori in the solid ball model of SO(3).

∂ (ST1) and ∂ (ST2), respectively. Thinking of Sm
2 as a curve on ∂ (ST1), we see that Sm

2
intersects D twice with intersection number of the same sign. Consequently, Sm

2 is homo-
topic on ∂ (ST1) to two times S�1. Thus the gluing map ψ : ∂ (ST2) = T 2 → ∂ (ST1) = T 2

takes the longitude S�2 onto the longitude S�1 by the identity map and the meridian Sm
2 onto

a curve on ∂ (ST1) which is homotopic to two times the longitude S�1. We now give a map,
which up to homotopy, is the gluing map ψ . Identify T 2 with R2/Z2 and consider the
linear map

Ψ̃ : R2 → R2 :
(

ξ1
ξ2

)
�→ A

(
ξ1
ξ2

)
=

(
1 0
2 1

) (
ξ1
ξ2

)
.

Geometrically we visualize Ψ̃ as in figure 1.4.4. Since A ∈ Sl(2,Z), the map Ψ̃ preserves
Z2 and hence induces a map Ψ : T 2 → T 2. On T 2 the curves {ξ1 = 0 mod 1} and {ξ2 =
0 mod 1} are a longitude and a meridian, respectively. Under Ψ, the longitude {ξ1 =
0 mod 1} is mapped bijectively onto itself; whereas the meridian {ξ2 = 0 mod 1} is taken
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1

2

Ψ
�

1′2′

Figure 1.4.4. The gluing map of the solid tori in the solid ball model of SO(3).

onto the curve {(ξ1,2ξ1)∈ T 2|ξ1 mod 1}, which is homotopic to two times the longitude
{ξ1 = 0 mod 1}. Thus homotopically Ψ has the same properties as the gluing map ψ .

2 Left invariant geodesics
In this section we present two models for the Euler top: one based on SO(3) and the
other on T1S2. Given a left invariant (dual) metric on the cotangent bundle, we consider
the Hamiltonian formed by taking a cotangent vector to half its length squared. The
pull back by left trivialization of Hamilton’s equations on the cotangent bundle gives the
Euler-Arnol’d equations, whose solutions describe the motion of the top in space.

2.1 Euler-Arnol’d equations on SO(3)×R3

We begin by deriving the Euler-Arnol’d equations for the traditional SO(3) model of the
Euler top.
Suppose that the initial position of the top is the frame {e1,e2,e3} in R3, which we identify
with the identity element e of SO(3). An arbitrary position of the top is given by the frame
{Be1,Be2,Be3}, which is obtained by rotating the initial frame by B. We identify this new
frame with the element B in SO(3). Thus the configuration space of the Euler top is
the rotation group SO(3). The phase space is the cotangent bundle T ∗ SO(3) with its
canonical symplectic form Ω, see chapter VI §2.
To describe the motion of the Euler top we need a Hamiltonian function on phase space.
Towards this end, let ρ be a left invariant (dual) metric on T ∗ SO(3). In other words, for
every A ∈ SO(3), ρ(A) is a nondegenerate inner product on T ∗

A SO(3) such that for every
B ∈ SO(3)

ρ(BA)(αBA,βBA) = ρ(A)(αA,βA). (19)

The cotangent vector αA is defined by the mapping

L : SO(3)× so(3)∗ → T ∗ SO(3) : (A,α) �→ (TALA−1)tα = αA, (20)
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where LA : SO(3)→ SO(3) : B �→ AB is left translation. Thus L is a trivialization of the
cotangent bundle τ : T ∗ SO(3)→ SO(3) : αA �→ A. By definition αA is the momentum of
the top at the position A. From left invariance it follows that ρ is completely determined
by its value at e. Because ρ is nondegenerate, ρ(e) may be written as

ρ(e)(α,β ) = κ((I−1)tα,β ). (21)

Here κ is the (dual) metric on so(3)∗ induced by the Killing metric k (1) on so(3). In
particular, κ is defined by κ(α,β ) = β (k �(α)). The map I : so(3) → so(3), which is
uniquely determined by (21), is k-symmetric and invertible. I is called the moment of
inertia tensor of the Euler top, see exercise 5. Let Ii be the eigenvalues of I. They are
real and nonzero and are called the principal moments of inertia of the top. Below we
will show that we may suppose that the matrix of ρ(e) with respect to the dual basis
{E∗

i = k �(Ei)} of so(3)∗ is diag(I1, I2, I3).

The motion of the Euler top on (T ∗ SO(3),Ω) is given by the integral curves of the Hamil-
tonian vector field XH corresponding to the Hamiltonian

H : T ∗ SO(3)→ R : αA �→ 1
2 ρ(A)(αA,αA). (22)

Because H assigns to a cotangent vector one half its ρ-length squared, the vector field
XH is the geodesic vector field on T ∗ SO(3) associated to the left invariant metric ρ . The
image of an integral curve of XH under the bundle projection τ is a geodesic on SO(3)
for the left invariant metric ρ , see chapter VI §3.

To write out Hamilton’s equations for XH explicitly, we pull back the Hamiltonian system
(H ,T ∗ SO(3),Ω) by left trivialization L (20). We obtain the equivalent Hamiltonian
system (H,SO(3)× so(3)∗,ω), where the Hamiltonian H = L ∗(H ) is

H : SO(3)× so(3)∗ → R : (A,α) �→ 1
2 ρ(e)(α,α) = 1

2 k
(
k �

(
(I−1)tα

)
,k �(α)

)
(23)

and the symplectic form ω = L ∗Ω is

ω(A,α)
(
(TeLAX ,β ),(TeLAY,γ)

)
=−β (Y )+ γ(X)+α([X ,Y ]), (24)

for X ,Y ∈ so(3) and β ,γ ∈ so(3)∗, see chapter VI §2 example 2′. Because

T(A,α)

(
SO(3)× so(3)∗

)
=

{
(TeLAX = AX ,α) X ∈ so(3) and α ∈ so(3)∗

}
,

we may write XH(A,α) = (TeLAX1,α1) for some X1 = X1(A,α) ∈ so(3) and some α1 =
α1(A,α) ∈ so(3)∗. By definition of Hamiltonian vector field,

dH(A,α)(TeLAX2,α2) = ω(A,α)
(
XH(A,α),(TeLAX2,α2)

)
(25)

for every (TeLAX2,α2) ∈ T(A,X)

(
SO(3)× so(3)∗

)
. Differentiating H (23) and using the

definition of ω (24), equation (25) becomes

ρ(e)(α,α2) =−α1(X2)+α2(X1)+α([X1,X2]) (26)
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for every X2 ∈ so(3) and every α2 ∈ so(3)∗. Setting X2 = 0 in (26) gives α2(X1) =

α2(ρ(e)�α) for every α2 ∈ so(3)∗. Hence X1 = ρ(e)�(α). Similarly, setting α2 = 0
in (26) and using X1 = ρ(e)�(α) gives

α1(X2) = α([ρ(e)�(α),X2]) = (ad t
ρ(e)�(α)

α)(X2)

for every X2 ∈ so(3). Hence α1 = ad t
ρ(e)�(α)

α . Consequently, the Hamiltonian vector field

of the Euler top on SO(3)× so(3)∗ is

XH(A,α) =
(
Aρ(e)�(α),ad t

ρ(e)�(α)
α
)
. (27)

If γ : R → SO(3)× so(3)∗ : t �→ (
A(t),α(t)

)
is an integral curve of XH and if A0 is a fixed

� rotation, then γ̃ : R → SO(3)× so(3)∗ : t �→ (
Ã(t),α(t)

)
=

(
A0A(t),α(t)

)
is an integral

curve of XH , because⎛⎝ dÃ(t)
dt

dα(t)
dt

⎞⎠=

⎛⎝A0
dA(t)

dt

dα(t)
dt

⎞⎠=

⎛⎝(
A0A(t)

)
ρ(e)�(α)

adt
ρ(e)�(α)

α

⎞⎠= XH
(
Ã(t),α(t)

)
. �

� We now show how to bring the matrix of ρ(e) into diagonal form.

(2.1) Proof: Under the mapping

j = k �◦i−1 : R3 → so(3)∗ : ei �→ E∗
i , (28)

the inner product ρ(e) on so(3)∗ pulls back to an inner product ρ on R3. For v,w ∈ R3

we have

ρ(v,w) = ρ(e)( j(v), j(w)) = k
(
(k �◦(I−1)t◦k �)(i−1v), i−1w

)
= k

(
i−1((I ′)−1v), i−1(w)

)
, using the k-symmetry of I.

Here I ′ = i◦I◦i−1

= ((I ′)−1v,w).

With respect to the standard basis {ei} of (R3,( , )) the matrix of ρ is invertible and
symmetric. Hence there is a rotation O of R3 such that the matrix of ρ with respect to the
basis {Oei}3

i=1 is diag(I−1
1 , I−1

2 , I−1
3 ). Under the map j, the basis {Oei}3

i=1 becomes the
becomes the basis {Ad t

O−1 E∗
i }3

i=1 of so(3)∗. The matrix of ρ(e) with respect to this basis
is diag(I−1

1 , I−1
2 , I−1

3 ). Classically, this diagonalization procedure is called transforming
the moment of inertia tensor to its principal axes. See exercise 5. �

� This is not quite what we want because the principal axis transformation does not give an
equivalent Hamiltonian system for the motion of the Euler top.

(2.2) Proof: Consider the diffeomorphism RO : SO(3) → SO(3) : A �→ AO of configuration
space given by right translation by O, where O is the rotation constructed in ((2.1)). Phys-
ically, the initial position of the top is the new frame {Oe1,Oe2,Oe3} instead of the frame
{e1,e2,e3} and its general position is {OBe1,OBe2,OBe3} instead of {Be1,Be2,Be3}.
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The diffeomorphism RO lifts to a symplectic diffeomorphism T ∗RO of (T ∗ SO(3),Ω)
given by

T ∗RO : T ∗ SO(3)→ T ∗ SO(3) : αA �→ (TARO−1)tαA.

Pushing the left invariant metric ρ forward by T ∗RO gives a new left invariant metric ρ ′

ρ ′(A)(αA,βA) = ρ(AO)
(
(TARO−1)tαA,(TARO−1)tαA

)
.

Pulling ρ ′ back by the left translation L(AO)−1 we obtain ρ ′(e)(α,β ) = ρ(e)(Adt
O−1 α,

Adt
O−1β ). By construction of the rotation O in ((2.1)), the matrix of ρ ′(e) with respect to

the basis {E∗
i } of so(3)∗ is diag(I−1

1 , I−1
2 , I−1

3 ).

Let (H ′,T ∗ SO(3),Ω) be the Hamiltonian system obtained by pushing forward the orig-
inal Hamiltonian system (H ,T ∗ SO(3),Ω) of the Euler top by the symplectic diffeomor-
phism T ∗RO. Pulling back (H ′,T ∗ SO(3),Ω) by left trivialization L (20) we obtain a
new Hamiltonian system (H ′,SO(3)× so(3)∗,ω) with Hamiltonian

H ′ : SO(3)× so(3)∗ → R : (A,α) �→ 1
2 ρ ′(e)(α,α) (29)

and symplectic form ω (24). With respect to the basis {E∗
i } of so(3)∗, the matrix of ρ ′ is

diag(I−1
1 , I−1

2 , I−1
3 ). �

From now on we will assume that ρ(e) is diag(I−1
1 , I−1

2 , I−1
3 ). Writing α = ∑i piE∗

i and
using the relations (I−1)tE∗

i = I−1
i E∗

i , adt
Ei

E∗
j =−∑3

k=1 εi jkE∗
k , and E∗

i =Et
i , it follows that

the integral curves of XH (27) on (SO(3)× so(3)∗,ω) satisfy the Euler-Arnol’d equations

dA
dt

= A

⎛⎝ 0 −I−1
3 p3 I−1

2 p2
I−1
3 p3 0 −I−1

1 p1
−I−1

2 p2 I−1
1 p1 0

⎞⎠
d
dt

⎛⎝ 0 p3 −p2
−p3 0 p1

p2 −p1 0

⎞⎠ =

⎛⎝ 0 −(I−1
2 − I−1

1 )p1 p2 (I−1
1 − I−1

3 )p1 p3
(I−1

2 − I−1
1 )p1 p2 0 −(I−1

3 − I−1
2 )p2 p3

−(I−1
1 − I−1

3 )p1 p3 (I−1
3 − I−1

2 )p2 p3 0

⎞⎠ .

Pulling the Euler-Arnol’d equations back by the diffeomorphism id × j (28) gives

dA
dt

= A

⎛⎝ 0 −I−1
3 p3 I−1

2 p2
I−1
3 p3 0 −I−1

1 p1
−I−1

2 p2 I−1
1 p1 0

⎞⎠ (30a)

dp
dt

= p× (I ′)−1 p (30b)

on (SO(3)×R3,ω ′ = j∗ω). Here (I ′)−1 p = (I−1
1 p1, I−1

2 p2, I−1
3 p3).

2.2 Euler-Arnol’d equations on T1S2 ×R3

In this section we derive the Euler-Arnol’d equations for the Euler top in the nontraditional
sphere bundle model.
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Before launching into the details, we derive the nontraditional Euler-Arnol’d equations
from the traditional ones, (30a) and (30b), as follows. Let (x,y) ∈ T1S2 and set A =
col(x,y,x× y) in (30a). Taking the first two columns of the both sides of (30a) gives

ẋ = I−1
3 p3y− I−1

2 p2(x× y)

ẏ =−I−1
3 p3x+ I−1

1 p1(x× y).
(31a)

Clearly (30b) remains unchanged:

ṗ = p× (I ′)−1 p. (31b)

Of course this derviation does not show that the Euler-Arnol’d equations in the sphere
� bundle model (31a) – (31b) are in Hamiltonian form. To do this we give an argument

which parallels the derivation in the traditional SO(3) model.

(2.3) Proof: First, let ρ be a left invariant (dual) metric on the Lie group (T1S2, ·). Because of
left invariance, ρ is determined by its value at the identity element e of T1S2. In particular,
for every α,β ∈ T ∗

e (T1S2), the dual of the Lie algebra of T1S2,

ρ(e)(α,β ) = κ((I−1)tα,β ). (32)

Here κ is the (dual) metric on T ∗
e (T1S2), induced by the Killing metric k (14) on Te(T1S2),

is defined by κ(α,β ) = β (k �(α)). The linear map Î : Te(T1S2) → Te(T1S2), which is
uniquely determined by (32), is invertible and k-symmetric. Î is defined by

i
(
Î(u)

)
= I ′

(
i(u)

)
= (I1u1, I2u2, I3u3),

that is, Î(u) =
(
(0, I3u3,−I2u2),(−I3u3,0, I1u1)

)
.

Let

L : T1S2 ×T ∗
e (T1S2)→ T ∗(T1S2) :

(
(x,y),α

) �→ (T(x,y)L(x,y)−1)tα = α(x,y),

where L(x,y) is left translation on (T1S2, ·) by (x,y). L is a trivialization of the cotangent
bundle

τ : T ∗(T1S2)→ T1S2 : α(x,y) �→ (x,y)

by left translation. On T ∗(T1S2) with its canonical symplectic form Ω, consider the Hamil-
tonian

H : T ∗(T1S2)→ R : α(x,y) �→ 1
2 ρ(x,y)

(
α(x,y),α(x,y)

)
. (33)

Pulling back the Hamiltonian system
(
H ,T ∗(T1S2),Ω

)
by the left trivialization L gives

the equivalent Hamiltonian system
(
H,T1S2 ×T ∗

e (T1S2),ω
)
, where the Hamiltonian H =

L ∗H is
H : T1S2 ×T ∗

e (T1S2)→ R :
(
(x,y),α

) �→ 1
2 ρ(e)(α,α) (34)

and symplectic form ω = L ∗Ω is

ω(x,y,α)
(
(TeL(x,y)u,β ),(TeL(x,y)v,γ)

)
=−β (v)+ γ(u)+α([u,v]), (35)
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for u,v ∈ Te(T1S2) and β ,γ ∈ T ∗
e (T1S2).

To compute the Hamiltonian vector field XH , note that XH(x,y,α) =
(
TeL(x,y)x1,α1

)
for

some x1 = x1(x,y,α) ∈ Te(T1S2) and some α1 = α1(x,y,α) ∈ T ∗
e (T1S2). From the defi-

nition of XH it follows that

dH(x,y,α)
(
TeL(x,y)x2,α2

)
= ω(x,y,α)

(
XH(x,y,α),(TeL(x,y)x2,α2)

)
, (36)

for every x2 ∈ Te(T1S2) and every α2 ∈ T ∗
e (T1S2). Differentiating H and using the defini-

tion of ω (35), equation (36) becomes

ρ(e)(α,α2) =−α1(x2)+α2(x2)+α([x1,x2]), (37)

compare with (26). Arguing exactly as in §2.1 we find that

XH(x,y,α) =
(
TeL(x,y)(ρ(e)

�(α)),adt
ρ(e)�(α)

α
)
, (38)

where ρ(e)�(α) = k �◦(Î−1)t . Hence on (T1S2×T ∗
e (T1S2),ω) the Euler-Arnol’d equations

are

d
dt
(x,y) = TeL(x,y)(ρ(e)

�α) (39a)

dα
dt

= ad t
ρ(e)�(α)

α, (39b)

which are Hamilton’s equations for XH . �

To write (39a) and (39b) in a more convenient form, consider the isomorphism

j = k �◦i−1 : R3 → T ∗
e (T1S2) : ei �→ ε∗i .

{ε∗i } is a basis of T ∗
e (T1S2), which is dual basis to the standard basis {ε i} of Te(T1S2),

because
ε∗i (ε�) = k �(i−1(ei))ε� = k(i−1(ei), i−1(e�)) = (ei,e�) = δ �

i .

Pulling XH back by the diffeomorphism

ψ = id× j : T1S2 ×R3 → T1S2 ×T ∗
e (T1S2) : (x,y, p) �→ (x,y,∑

i
piε∗i )

gives a Hamiltonian vector field XH ′ on (T1S2 ×R3,ω ′ = ψ∗ω) with Hamiltonian

H ′ : T1S2 ×R3 → R : (x,y, p) �→ 1
2 ((I

′)−1 p, p) = 1
2

(
I−1
1 p2

1 + I−1
2 p2

2 + I−1
3 p2

3
)
.

� Here H ′ = ψ∗H. Hamilton’s equations for XH ′ are⎧⎪⎪⎨⎪⎪⎩
dx
dt

= I−1
3 p3y− I−1

2 p2(x× y)

dy
dt

=−I−1
3 p3x+ I−1

1 p1(x× y)

(40a)
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dp
dt

= p× (I ′)−1 p, (40b)

where (I ′)−1 p = (I−1
1 p1, I−1

2 p2, I−1
3 p3).

(2.4) Proof: With respect to the bases {ε∗i } of T ∗
e (T1S2) and {ε i} of Te(T1S2) the matrix of

ρ(e)� : T ∗
e (T1S2)→ Te(T1S2) is diag(I−1

1 , I−1
2 , I−1

3 ), because

ε∗�
(
ρ(e)�(ε∗i )

)
= ρ(e)

(
ε∗i ,ε

∗
�

)
= ε∗�

(
k �((Î−1)tε∗i )

)
= ε∗�

(
(k �◦(Î−1)t◦k �)(ε i)

)
= ε∗�((I

′)−1ε i) = ε∗�(I
−1
i ε i).

Writing α = ∑i piε∗� , we see that ρ(e)�(α) = ∑i I−1
i pi ε i. Differentiating the definition of

left translation L(x,y) (13) gives

TeL(x,y)u = π̂(col(x,y,x× y) ·U) =
(
u3y−u2(x× y),−u3x+u1(x× y)

)
,

for u = ∑i uiε i ∈ Te(T1S2). Setting u = ρ(e)�(α) in the above equation and using (39a)
we obtain (40a). To obtain (40b) we first show that ad t

ε i
ε∗j =−∑k εi jk ε∗k . We compute

(ad t
ε i

ε∗j)(ε�) = ε∗j([ε i,ε�]) = ε∗j(∑
k

εi�k εk) = εi� j = −(
∑
k

εi jk ε∗k
)
(ε�).

From (39b) we find that

∑
i

( dp
dt

)
i
ε∗i = ∑

i j
pi(I−1

j p j)ad t
ε j

ε∗i = ∑
i jk

pi(I−1
j p j)εi jk ε∗k = ∑

i
(p× (I ′)−1 p)i ε∗i .

Equating components gives (40b). �

Note that the right hand side of (40a) and (40b) defines a vector field on R9 with coordi-
nates (x,y, p). A calculation shows that T1S2 ×R3 is an invariant manifold of this vector
field.

3 Symmetry and reduction
In this section we discuss the SO(3) symmetry of the Euler top. Using the regular reduc-
tion theorem, see chapter VII ((6.1)), to remove this symmetry, we obtain a Hamiltonian
system on the 2-sphere S2. We show that the integral curves of the reduced Hamiltonian
vector field satisfy Euler’s equations.

3.1 SO(3) symmetry
In this subsection we discuss the natural SO(3) symmetry of the Euler top.

Because the configuration space of the Euler top is the Lie group SO(3), it has a natural
symmetry, namely, the action of SO(3) on itself by left translation

L : SO(3)×SO(3)→ SO(3) : (B,A) �→ LBA = BA. (41)
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This action lifts to an action

L̂ : SO(3)×T ∗ SO(3)→ T ∗ SO(3) : (B,αA) �→ αBA = (TALB−1)tαA, (42)

� where αA = (TALA−1)tα for α ∈ so(3)∗. The action L̂ on (T ∗ SO(3),Ω) is Hamiltonian.

(3.1) Proof: Let ξ ∈ so(3). The infinitesimal generator Xξ (αA) = d
dt t=0̂

Lexp tξ (αA) of the action

L̂ in the direction ξ is the Hamiltonian vector field XJ ξ on (T ∗ SO(3),Ω =−dθ) where

J ξ : T ∗ SO(3)→ R : αA �→ (Xξ θ)(αA). (43)

To see this we observe that the canonical 1-form θ on T ∗ SO(3) is invariant under L̂.
Therefore

0 = LXξ θ = d(Xξ θ)+Xξ dθ = dJ ξ −Xξ Ω,

which implies Xξ = XJ ξ . �

� Next we show that the SO(3)-action L̂ (42) has a coadjoint equivariant momentum map-
ping

J : T ∗ SO(3)→ so(3)∗ : αA �→ (TeRA)
tα, (44)

where R : SO(3)×SO(3)→ SO(3) : (B,A) �→ RBA = AB is right translation.

(3.2) Proof: We begin by finding another expression for the function J ξ (43). Let Xξ (A) =
d
dt t=0

Lexp tξ (A) be the infinitesimal generator of L (41) in the direction ξ . Then

Xξ (A) =
d
dt t=0

exp tξ A =
d
dt t=0

RA exp tξ = TeRAξ .

From the momentum lemma, see chapter VII ((5.7)), it follows that J ξ (αA)=αA(Xξ (A))
=

(
(TeRA)

t(αA)
)
ξ , for every ξ ∈ so(3). Since ξ �→J ξ (αA) is a linear function on so(3),

we may define the mapping J : T ∗ SO(3) → so(3)∗ by J (αA)ξ = J ξ (αA). This
� momentum mapping is coadjoint equivariant, because for B ∈ SO(3) we have

J (L̂BαA) = (TeRBA)
tαBA = (TeRBA)

t(TBAL(BA)−1)tα

= (TBLB−1◦TeRB)
t(TeRA)

t(TALA−1)tα = Adt
B−1J (αA). �

Pulling back the SO(3)-action L̂ (42) by the left trivialization mapping L (20) gives the
action

�̂ : SO(3)× (
SO(3)× so(3)∗

)→ SO(3)× so(3)∗ :
(
B,(A,α)

) �→ (BA,α). (45)

� �̂ is a Hamiltonian action on
(

SO(3)× so(3)∗,ω = L ∗Ω
)

with equivariant momentum
mapping

J = L ∗J : SO(3)× so(3)∗ → so(3)∗ : (A,α) �→ Adt
A−1 α. (46)

(3.3) Proof: To verify (46) we compute

J(A,α) = J
(
L (A,α)

)
= J (αA) = (TeRA)

tαA = (TeRA)
t(TALA−1)tα = Adt

A−1 α.
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Coadjoint equivariance follows because for B ∈ SO(3)

J
(
�̂B(A,α)

)
= J(BA,α) = Ad t

(BA)−1 α = Ad t
B−1(Ad t

A−1 α) = Ad t
B−1 J(A,α). �

We now show that the natural SO(3) symmetry gives rise to conserved quantities for the
� Euler top. First we observe that the Hamiltonian

H : T ∗ SO(3)→ R : αA �→ 1
2 ρ(A)(αA,αA)

is invariant under the SO(3)-action L̂ (42).

(3.4) Proof: We compute. For every B ∈ SO(3) we have

H (L̂BαA) = H (αBA) =
1
2 ρ(BA)(αBA,αBA) =

1
2 ρ(LBA)

(
(TALA−1)tαA,(TALA−1)tαA

)
= 1

2 (L̂
∗
Bρ)(αA) = H (αA), since ρ is left invariant. �

Thus for every ξ ∈ so(3) we see that H (L̂exp tξ αA) = H (αA). Infinitesimalizing gives

0 = dH (αA)Xξ (αA) = dH (αA)XJ ξ (αA) = {J ξ ,H }(αA).

Thus for every ξ ∈ so(3), the ξ -component J ξ of the momentum mapping J (44) is
� an integral of the Hamiltonian vector field XH whose integral curves govern the motion of

the Euler top. In other words, J is an so(3)∗-valued integral of XH . A similar argument
shows that the mapping J (46) is an so(3)∗-valued integral of the Euler-Arnol’d vector
field XH , whose integral curves are solutions of (30a) and (30b).

3.2 Construction of the reduced phase space
In this subsection we construct the reduced phase space, which is obtained after removing
the rotational symmetry of the Euler top.

To start the process of reduction, let μ be a nonzero element of so(3)∗. The μ-level set
J−1(μ) of the momentum map J is {(A,Ad t

Aμ) ∈ SO(3)× so(3)∗ A ∈ SO(3)}. Thus
J−1(μ) is a smooth submanifold of SO(3)× so(3)∗, which is diffeomorphic to SO(3),
because it is the graph of the smooth mapping SO(3)→ so(3)∗ : A �→ Ad t

Aμ .

We now want to find a subgroup of SO(3) which acts on J−1(μ). Because J is coadjoint
equivariant, we look at the isotropy group

SO(3)μ = {B ∈ SO(3)|Ad t
B−1 μ = μ}. (47)

Since Ad t
BAμ =Ad t

AAd t
Bμ =Ad t

Aμ for every B∈ SO(3)μ , it follows that J(BA,Ad t
BAμ) =

J(BA,Ad t
Aμ). Therefore restricting the SO(3)-action �̂ (45) to SO(3)μ × J−1(μ) defines

the action

Φ : SO(3)μ × J−1(μ)→ J−1(μ) :
(
B,(A,Ad t

Aμ)
) �→ (BA,Ad t

Aμ). (48)
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To get a better idea of what the isotropy group SO(3)μ means, apply the map 1
|μ | i◦k � to

both sides of equation Ad t
B−1 μ = μ . This gives

y =
1
|μ| i◦k �(μ) =

1
|μ| i(k �◦Ad t

B−1◦k �)(k �(μ)) = (i◦AdB◦ i−1)(y) = By.

Thus SO(3)μ is the set of all rotations which leave the unit vector y = 1
|μ| i◦k �(μ) fixed.

Physically, |μ|y is the angular momentum vector of the Euler top with respect to a fixed
� frame. Let Y = i−1y and note that |Y | = 1. Next we show that the image of the one

parameter subgroup λ : R → SO(3): t �→ exp tY is the isotropy subgroup SO(3)μ .

(3.5) Proof: By definition, SO(3)μ is a closed subgroup of SO(3) and hence is a compact Lie
group. Its Lie algebra so(3)μ = {X ∈ so(3) ad t

X μ = 0} is one dimensional. To see this
apply the map i◦k � to both sides of the equation defining so(3)μ to obtain

0 = i
(
k �◦ad t

X ◦k �
)
(k �(μ)) = −(i◦adX ◦i−1)(|μ|y)) = −|μ| i(X)× i(Y ),

where the second equality follows since adX is k-skew symmetric. Therefore X and Y are
linearly dependent. Hence dimso(3)μ = 1.

We would be done if we knew that SO(3)μ was connected, because the image of the one
parameter group λ is circle. The following argument shows that SO(3)μ is isomorphic
to SO(2) and hence is connected. Write R3 = span{y}⊕Π, where Π is a plane in R3

orthogonal to the vector y. Π is invariant under every B ∈ SO(3)μ , because B ∈ SO(3)
and By = y. Moreover, B|Π ∈ SO(2), since B ∈ SO(3) implies that B|Π preserves the
length of every vector in Π and 1 = detB =

(
1 0
0 det(B|Π)

)
= det(B|Π). The smooth map

σ : SO(3)μ → SO(2) : B �→ B|Π is a homomorphism of Lie groups. Actually, σ is an

isomorphism. To see that σ is surjective, let B̃∈ SO(2) and choose {w,z} to be a positively
oriented orthonormal basis of Π such that {y,w,z} is a positively oriented orthonormal
basis of R3. Define the linear map B : R3 → R3 by requiring that B sends the positively
oriented ordered orthonormal basis {y,w,z} to the ordered basis {y, B̃w, B̃z}. Clearly B
is an extension of B̃. Since B̃ ∈ SO(2), {B̃w, B̃z} is a positively oriented orthonormal
basis of Π. Hence {y, B̃w, B̃z} is a positively oriented orthonormal basis of R3. Therefore,
B ∈ SO(3)μ . Hence σ is surjective. Because B is the unique rotation which extends B̃,
it follows that σ is injective. Thus σ is an isomorphism. �
We return to discussing the construction of the reduced space. The reduced space Pμ =
J−1(μ)/SO(3)μ is the space of SO(3)μ -orbits on J−1(μ). Since the action Φ (48) on
J−1(μ) is free and proper, Pμ is a smooth symplectic manifold, see chapter VII ((2.9)).

� The following argument shows that Pμ is the SO(3) coadjoint orbit Oμ through μ .

(3.6) Proof: Consider the mapping

πμ : J−1(μ)⊆ SO(3)× so(3)∗ → so(3)∗ : (A,Ad t
Aμ) �→ ν = Ad t

Aμ. (49)

Because the fiber π−1
μ (ν) is a single SO(3)μ -orbit, the image of πμ is the orbit space Pμ .

By definition, πμ(J−1(μ)) is the coadjoint orbit Oμ = {ν = Ad t
Aμ ∈ so(3)∗ A ∈ SO(3)}.

From example 3 of chapter VI §2, we know that the symplectic form ωOμ on Oμ is
ωOμ (ν)(ad t

ξ ν ,ad t
η ν) =−ν([ξ ,η ]), where ξ ,η ∈ so(3). �
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3.3 Geometry of the reduction map
In this subsection we study the geometry of the reduction map πμ (49).

� Our main result is that πμ is double covered by the Hopf fibration.

(3.7) Proof: This follows from ((1.12)) once we prove

Claim: The SO(3)μ principal bundle πμ : J−1(μ)→Oμ is isomorphic to the S1 principal
bundle τ : T1S2 → S2.

(3.8) Proof: We find a succession of principal bundle isomorphisms.

1. We begin by looking at the S1-action ψ : S1 ×SO(3) → SO(3) : (s,A) �→ (expsY )A,
where Y = 1

|μ| k �(μ). Since ψ is free and proper, SO(3) is the total space of an S1-principal
bundle over SO(3)/S1 = S2 with bundle projection σ y : SO(3)→ S2 : A �→ A−1y, where
y = i(Y ). We now show that the principal bundles πμ and σ y are isomorphic. Consider
diagram 3.3.1. Since μ = |μ|k �◦i−1(y) and A ∈ SO(3), it follows that Ad t

Aμ = β1(A−1y),
where β1 = k�◦i. Therefore diagram 3.3.1 commutes. Let B1(A) = (A,Ad t

Aμ). Then

ΦexpsY (B1(A)) =
(
(expsY )A,Ad t

(expsY )Aμ
)
= B1(ψs(A)).

In other words, B1 intertwines the actions ψ and Φ. Because B1 and β1 are diffeomor-
phisms, the principal bundles σ y and πμ are isomorphic.

Diagram 3.3.1

SO(3) � J−1(μ)B1

�

σ y

�

πμ

�S2
|μ|

β1 = k �◦i Oμ

A � (A,Ad t
A(μ))

� �

A−1y � |μ|Ad t
A
(
k �◦i−1(y)

)

2. Consider diagram 3.3.2. Because SO(3) acts transitively on the 2-sphere S2, there is
an O ∈ SO(3) such that Oy = e1. Since (O−1A)−1y = A−1Oy = A−1e1, diagram 3.3.2
commutes. The second to last equality holds since y = O−1e1.

Diagram 3.3.2

SO(3) � SO(3)
B2

�

σ e1

�

σ y

�S2 id
S2

A � O−1A

� �
A−1e1 � A−1e1
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Define the S1 action θ : S1 ×SO(3)→ SO(3) : (s,A) �→ (expsE1)A. Since θ is free and
proper, SO(3) is the total space of an S1 principal bundle over SO(3)/S1 = S2 with bundle
projection σ e1 : SO(3)→ S2 : A �→ A−1e1. Because

B2(θs(A)) = (O−1 expsE1O)O−1A =
(

exps(AdO−1 E1)
)
B2(A)

= (expsY )(B2(A)) = ψs(B2(A)),

the map B2 intertwines the actions θ and ψ . Thus the bundles σ e1 and σ y are isomorphic
principal bundles, since the maps B2 and id are diffeomorphisms.

3. To complete the proof of the claim, consider diagram 3.3.3. Clearly this diagram
commutes. The S1-action Ψ : S1 × T1S2 → T1S2 :

(
s,(x,y)

) �→ (
x,ycoss− (x× y)sins

)
defining the principal bundle τ (15) extends to an S1-action

ϑ : S1 ×SO(3)→ SO(3) :(
s,col(x,y,x× y)t) �→ ⎛⎝ xt

yt coss− (x× y)t sins
yt sins+(x× y)t coss

⎞⎠ = (expsE1) col(x,y,x× y)t ,

ϑ is the same as the action θ . Therefore B3(Ψs(x,y)) = θs(B3(x,y)), that is, B3 inter-
twines the actions θ and Ψ. Since B3 and id are diffeomorphisms, the principal bundles
τ and σ e1 are isomorphic.

Diagram 3.3.3

T1S2 � SO(3)
B3

�

τ

�

σ e1

�S2
id

S2

(x,y) � col(x,y,x× y)t

� �
x � x

Composing the bundle isomorphisms (B3, id), (B2, id) and (B1,β1) shows that the prin-
cipal bundles τ and πμ are isomorphic. �

3.4 Euler’s equations
In this subsection we study the reduced Hamiltonian vector field of the Euler top. This
vector field is obtained by removing the SO(3)μ symmetry of the Hamiltonian vector field
XH (27) restricted to the invariant manifold J−1(μ). The integral curves of the reduced
Hamiltonian vector field satisfy Euler’s equations.

� We start by constructing the reduced Hamiltonian. Observe that the Hamiltonian of the
Euler top

H : SO(3)× so(3)∗ → R : (A,α) �→ 1
2 α

(
(k �(I−1)tα

)
, (50)
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when restricted to the μ-level set of the momentum J, is invariant under the left SO(3)μ -
action Φ (48).

(3.9) Proof: To see this recall that J−1(μ) = {(A,ν = Ad t
Aμ) ∈ SO(3)× so(3)∗ A ∈ SO(3)}.

Therefore we obtain (H|J−1)(μ)(A,ν) = ν
(
k �(I−1)tν

)
. Since ΦB(A,ν) = (BA,ν) for

every B ∈ SO(3)μ , we see that H|J−1(μ) is invariant under the action Φ. �

Thus H|J−1(μ) induces a function Hμ on the SO(3)μ -orbit space J−1(μ)/SO(3)μ = Oμ

defined by π∗
μ Hμ = H|J−1(μ). Here πμ is the reduction mapping

πμ : J−1(μ)⊆ SO(3)× so(3)∗ → Oμ ⊆ so(3)∗ : (A,ν) �→ ν . (51)

Hence the reduced Hamiltonian is Hμ : Oμ ⊆ so(3)∗ →R : ν �→ 1
2 ν

(
k �
(
(I−1)t(ν)

))
. Since

Oμ is a symplectic manifold with symplectic form ωOμ , we obtain the reduced Hamilto-
nian system (Hμ ,Oμ ,ωOμ ).

To see that the integral curves of XHμ on Oμ satisfy Euler’s equations, we need another
model for the reduced system. Consider the diffeomorphism

j̃ = k �◦i−1 : S2
r ⊆ R3 → Oμ ⊆ so(3)∗ : p �→ ν (52)

where S2
r is the 2-sphere of radius r = |μ|. Pulling back the reduced Hamiltonian Hμ by j̃

gives the Hamiltonian

Hr : S2
r ⊆ R3 → R : p = (p1, p2, p3) �→ 1

2 (I
−1
1 p2

1 + I−1
2 p2

2 + I−1
3 p2

3). (53)

� The following calculation shows that ( j̃)∗ωOμ = ωr, where ωr is the symplectic form on
S2

r given by
ωr(p)(p× x1, p× x2) =−(p,x1 × x2), (54)

for x1,x2 ∈ R3.

(3.10) Proof: For some A ∈ SO(3), we may write p = A( j̃−1(μ)). Then

i−1(p) = (i−1◦A−1◦i)
(
k �(μ)

)
= AdA−1(k �(μ)) = k �(Ad t

Aμ) = k �(ν).

Let ξ = i−1(x1). Then

k �(ad t
ξ ν) =−adξ (k

�(ν)) =
[
i−1(p), i−1(x1)

]
= i−1(p× x1).

Similarly, if η = i−1(x2), k �(ad t
η ν) = i−1(p× x2). We compute ( j̃)∗ωOμ as follows:

(( j̃)∗ωOμ )(p)(p× x1, p× x2) = ωOμ ( j̃(p))
(
Tp j̃(p× x1),Tp j̃(p× x2)

)
= ωOμ ( j̃(p))

(
j̃(p× x1), j̃(p× x2)

)
, since j̃ is the restriction of a linear map

= ωOμ (ν)(ad t
ξ ν ,ad t

η ν) = −ν([ξ ,η ]) = − j̃(p)(i−1(x1 × x2))

= −k
(
i−1(p), i−1(x1 × x2)

)
= −(p,x1 × x2). �

The integral curves of the reduced Hamiltonian vector field XHμ on (Oμ ,ωOμ ) satisfy the
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� equations ν̇ = ad t
k �((I−1)t ν)ν , see chapter VII §6.1 example 2. Pulling XHμ back by j̃ gives

the vector field XHr on (S2
r ,ωr) whose integral curves satisfy Euler’s equations

ṗ = p× (I ′)−1 p (55)

in angular momentum coordinates. Here (I ′)−1 p = (I−1
1 p1, I−1

2 p2, I−1
3 p3).

(3.11) Proof: Since XHr is a vector field on S2
r , we may write XHr(p) = p×X for some X =

X(p) ∈ R3. From the definition of Hamiltonian vector field and the symplectic form ωr
(54) we obtain dHr(p)(p× x) =−(p,X × x) for every x ∈ R3. Differentiating (53) gives
dHr(p)(p× x) =

(
(I ′)−1(p), p× x

)
for every x ∈ R3, that is, ((I ′)−1(p)−X)× p = 0.

Consequently, for some λ ∈ R we have X = λ p+(I ′)−1(p). In other words, XHr(p) =
p× (λ p+(I′)−1(p)) = p× (I′)−1(p). Thus the integral curves of XHr satisfy Euler’s
equations (55). �

4 Qualitative behavior of the reduced system
In this section we give a global qualitative description of the solutions of Euler’s equations
(55) on the reduced space S2

r . For a quantitive treatment see exercise 2. This amounts to
finding the topology of the level sets of the reduced Hamiltonian Hr (53).

� We begin by showing that Hr is a Morse function on S2
r with six critical points.

(4.1) Proof: Since S2
r is compact, Hr has a critical point q. Using Lagrange multipliers, we see

that q = (x,y,z) is a solution of the equations

0 = DHr(q)−λDG(q) = (I−1
1 x, I−1

2 y, I−1
3 z)−λ (x,y,z)

0 = G(q) = 1
2 (x

2 + y2 + z2 − r2).

In other words, q lies on the intersection of an eigenspace of the diagonal matrix (I ′)−1 =
diag(I−1

1 , I−1
2 , I−1

3 ) with the 2-sphere S2
r of radius r. From now on we assume that

0 < I−1
3 < I−1

2 < I−1
1 . (56)

Since the eigenvalues of (I ′)−1 are distinct, the eigenspaces corresponding to the eigen-
values I−1

1 , I−1
2 , I−1

3 are spanned by the vectors re1,re2,re3 respectively, which lie on S2
r .

Hence Hr has six critical points ±rei i = 1,2,3 with Lagrange multiplier I−1
i , i = 1,2,3,

respectively. At the critical point q with Lagrange multiplier λ the Hessian of Hr is

HessHr(q) =
(
D2Hr(q)−λD2G(q)

)
TqS2

r

= diag(I−1
1 −λ , I−1

2 −λ , I−1
3 −λ )

TqS2
r

,

see chapter XI §2. Since TqS2
r = kerDG(q) = {v ∈ R3 (v,q) = 0}, the tangent space

T±reiS
2
r is spanned by {e j,ek} where j = i, k = i and k = j. Therefore at ±re1, ±re2, and

±re3, the Hessian of Hr is

diag(I−1
2 − I−1

1 , I−1
3 − I−1

1 ), diag(I−1
1 − I−1

2 , I−1
3 − I−1

2 ), and diag(I−1
1 − I−1

3 , I−1
2 − I−1

3 ),
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respectively. Because (56) holds, we see that q is a nondegenerate critical point. Thus Hr
is a Morse function. In particular, the Morse index of Hr at the critical point ±rei is 2 if
i = 1, 1 if i = 2, and 0 if i = 3. Hence Hr has two maxima, two saddle points and two
minima. �

Figure 4.1. The level sets H−1
r (h). In the left figure 1

2I−1
3 < h < 1

2I−1
2 ;

in the center figure h = 1
2I−1

2 ; and in the right figure 1
2I−1

2 < h < 1
2I−1

1 .

Geometrically the level set H−1
r (h) of the Hamiltonian is the intersection of a triaxial

ellipsoid Eh : 1
2 (I

−1
1 p2

1 + I−1
2 p2

2 + I−1
3 p2

3) = h with the 2-sphere p2
1 + p2

2 + p2
3 = r2, see

figure 4.1.

� To show the pictures in figure 4.1 are qualitatively correct we use Morse theory.

(4.2) Proof: First we show that the 1
2 r2I−1

3 -level set of Hr on S2
r is two points {±re3}. The

point q = (x,y,z) lies on H−1
r ( 1

2 r2I−1
3 ) if and only if

1
2 (I

−1
1 x2 + I−1

2 y2 + I−1
3 z2) = 1

2 r2I−1
3 (57a)

x2 + y2 + z2 = r2. (57b)

Multiplying (57b) by I−1
3 and subtracting the result from two times (57a) gives

(I−1
1 − I−1

3 )x2 +(I−1
2 − I−1

3 )y2 = 0. (58)

Since (56) holds, I−1
1 − I−1

3 > 0, and I−1
2 − I−1

3 > 0. Thus (58) yields x = y = 0. Conse-
quently, z =±r.

Because the critical points {±re3} are nondegenerate minima, we may apply the Morse
lemma, see chapter XI §2, to conclude that for a value of h slightly greater than 1

2 r2I−1
3 ,

the level set H−1
r (h) is diffeomorphic to two disjoint circles, one in the neighborhood

of re3 and the other in the neighborhood of −re3. Thus H−1
r (h) is not connected. A

similar argument shows that for h slightly less than 1
2 r2I−1

1 , the level set H−1
r (h) is

also the disjoint union of two circles near ±re1. Since Hr has no critical values in
I = ( 1

2 r2I−1
3 , 1

2 r2I−1
2 )

⋃· ( 1
2 r2I−1

2 , 1
2 r2I−1

1 ), using the Morse isotopy lemma, see chapter
XI §3, we deduce that for h ∈ I the h-level set of Hr is diffeomorphic to the disjoint
union of two circles.

To describe the remaining level set H−1
r ( 1

2 r2I−1
2 ) we note that q = (x,y,z) lies in the

1
2 r2I−1

2 -level set of Hr if and only if

1
2 (I

−1
1 x2 + I−1

2 y2 + I−1
3 z2) = 1

2 r2I−1
2 (59a)

x2 + y2 + z2 = r2. (59b)
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Multiplying (59b) by I−1
2 and subtracting the result from two times (59a) shows that 0 =

(I−1
2 − I−1

3 )z2 − (I−1
2 − I−1

1 )x2. Thus the 1
2 r2I−1

2 -level set of Hr is the intersection of the

two 2-planes Π± =
{
(x,y,z)∈ R3 (I−1

2 − I−1
3 )1/2z =±(I−1

2 − I−1
1 )1/2x

}
with the 2-sphere

S2
r . Since Π+ = Π− and Π+

⋂
Π− is the line spanned by the vector e2, the level set

H−1
r ( 1

2 r2I−1
2 ) is an algebraic variety Ṽ , which is the union of two circles which intersect

each other at {±re2}. Because {±re2} are nondegenerate saddle points, using the Morse
lemma we see that these circles intersect transversely. This completes the verification of
figure 4.1. �

The information we have obtained about about the topology of the level sets of Hr is
summarized in figure 4.2.

r

h

S0 ×S0

�
�
��

�

˜V

�

S0 ×S1

�������

�

S2

�

pt

���

Figure 4.2. Bifurcation diagram for the level sets of the
reduced Hamiltonian Hr of the Euler top.

Putting all the pictures in figure 4.1 together gives figure 4.3. Since the connected

Figure 4.3. Level sets of Hr on S2.

components of the level sets of Hr on S2
r are orbits of the reduced vector field XHr , figure

4.3 gives a qualitative description of the solutions of Euler’s equations of the Euler top. We
� now verify that the orientations of the integral curves of the vector field XHr on S2

r in figure
4.3 are correct.

(4.3) Proof: By continuity, it suffices to show that the linearization of XHr at (0,0,r) is an
infinitesimal counterclockwise rotation around the positive p3-axis. Differentiating (55)
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gives

DXHr(p1, p2, p3) =

⎛⎝ 0 (I−1
3 − I−1

2 )p3 (I−1
3 − I−1

2 )p2
−(I−1

3 − I−1
1 )p3 0 −(I−1

3 − I−1
1 )p1

(I−1
2 − I−1

1 )p2 (I−1
2 − I−1

1 )p1 0

⎞⎠.
Since T(0,0,r)S2

r is spanned by {e1,e2}, the linearization of XHr at (0,0,r) is

W = DXHr(0,0,r)|T(0,0,r)S2
r =

(
0 −r(I−1

2 − I−1
3 )

r(I−1
1 − I−1

3 ) 0

)
.

Let P =
(

u 0
0 u−1

)
where u = (I−1

2 − I−1
3 )/(I−1

1 − I−1
3 ). A calculation shows that Z =

P−1WP =
(

0 −s
s 0

)
, where s = r

(
(I−1

1 − I−1
3 )(I−1

2 − I−1
3 )

)1/2. Since s > 0, Z is an

infinitesimal counterclockwise rotation about the p3-axis. Hence W is also. A similar
argument handles each of the remaining cases. �

5 Analysis of the energy momentum mapping
In this section we study the energy momentum mapping EM of the Euler top:

EM : SO(3)× so(3)∗ → R× so(3)∗ :
(A,α) �→ (

H(A,α),J(A,α)
)
=

( 1
2 α(k �(I−1)tα),Ad t

A−1 α
)

Our main goal is to determine the topology of its fibers EM−1(h,μ), because these fibers
are invariant under the flow of the Euler-Arnol’d vector field XH , see table 5.1. We also
describe how the fibers EM−1(h,μ) foliate a level set J−1(μ) of constant angular mo-
mentum μ , see figure 5.2.

(h,μ) topology of H−1
r (h) topology of EM−1(h,μ)

(0,0) point SO(3)

h = 1
2 r2I−1

i ,
i = 1,3

two points S1 ⋃· S1 whose double cover
is once linked.

h ∈ I ,r = 0 S1 ⋃· S1 T 2 ⋃· T 2

h = 1
2 r2I−1

2 Ṽ , the union of two
circles on S2 which
intersect transversely
at two points.

W̃ , the union of two T 2 in
SO(3) which intersect along
two circles, whose double
cover is once linked.

Table 5.1 Topology of the fibers of the energy momentum map EM .

� We now reconstruct the fiber EM−1(h,μ) from the h-level set of the reduced Hamiltonian
Hr. Here r = |μ|.

(5.1) Proof: From the definition of the reduced Hamiltonian Hr (53) and the reduction mapping

πr : J−1(μ)⊆ SO(3)× so(3)∗ → S2
r ⊆ R3 : (A,Ad t

Aμ) �→ A−1(i◦k�(μ)
)
, (60)
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we find that

π−1
r (H−1

r (h)) =
(
H|J−1(μ)

)−1
(h) = H−1(h)∩ J−1(μ) = EM−1(h,μ).

Using table 5.1 we obtain the bifurcation diagram figure 5.1. �

|μ|

h

S0 ×S1

�
�
��

�

˜W

�

S0 ×T 2

�������

�

SO(3)

�

SO(3)

���

Figure 5.1. Bifurcation diagram for the energy momentum map of the Euler top.

� The following argument verifies the entries in the third column of table 5.1.

(5.2) Proof: First we find the critical points and critical values of EM . Suppose that μ = 0.
Then J−1(0) = {(A,0) ∈ SO(3)× so(3) A ∈ SO(3)}, which is diffeomorphic to SO(3).
On J−1(0) the Hamiltonian H is the constant function 0. Therefore, every point of J−1(0)
is a critical point of H|J−1(0) and hence is a critical point of EM . The corresponding
critical value of EM is (0,0).

From now on we suppose that μ = 0. Then J−1(μ) is diffeomorphic to SO(3).

Claim : The function

H|J−1(μ) : J−1(μ)→ R : (A,Ad t
Aμ)→ 1

2 k
(
k �(Ad t

Aμ), I−1(k �(Ad t
Aμ))

)
is an SO(3)μ –invariant Bott–Morse function with six nondegenerate critical SO(3)μ -
orbits γ±i = π−1

r (±rei) for i = 1,2,3, two of Morse index 2, 1 and 0 respectively.

(5.3) Proof: By construction H|J−1(μ) = (πr)
∗Hr. Therefore p is a critical point of H|J−1(μ)

if and only if D
(
H|J−1(μ)

)
(p) = DHr(πr(p))Dπr(p) is not surjective. Since πr is a

submersion, p is a critical point if and only if DHr(πr(p)) is not surjective, that is, if
and only if πr(p) is a critical point of Hr. By ((4.1)) the set of critical points of Hr is
{±r ei| i = 1,2,3}. Therefore the six SO(3)μ -orbits γ±i = {π−1

r (±r ei) i = 1,2,3} form
the set of critical points of H|J−1(μ). Since an SO(3)μ -orbit is diffeomorphic to a circle,
the critical set of H|J−1(μ) is the union of six circles γ±i , i = 1,2,3, which correspond to
the critical values 1

2 r2 I−1
i , i = 1,2,3, respectively.

We now show that each of the γ±i is a nondegenerate critical manifold, see chapter XI
§2. Choose an open neighborhood U ±

i of ±rei in S2
r such that the bundle πr : J−1(μ)→

S2
r , when restricted to π−1

r (U ±
i ), is a trivial SO(3)μ principal bundle. Then there is
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a diffeomorphism ϕ±
i : π−1

r (U ±
i ) ⊆ J−1(μ) → U ±

i × SO(3)μ , which intertwines the
SO(3)μ -action Φ (48) on π−1

r (U ±
i ) with the SO(3)μ -action on Ui × SO(3)μ given by(

B,(q,A)
) �→ (q,BA). If we parametrize the SO(3)μ -orbit γ±i by t �→ Φexp tξ±

i
(p±i ) where

ξ±
i ∈ so(3)μ and p±i ∈ γ±i , then ϕ±

i (γ±i ) is parametrized by t �→ (±r ei,exp tξ±
i ). Thus

for fixed t0 the set S ±
i = (ϕ±

i )−1(U ±
i ×{exp t0ξ±}) is a slice to γ±i at γ±i (t0). Since the

mapping πr restricted to S ±
i is a diffeomorphism onto U ±

i , the Morse index of H|J−1(μ)
restricted to S ±

i at γ±i (t0) is the same as the Morse index of Hr at ±rei. Therefore γ±i is
a nondegenerate critical manifold of H|J−1(μ). �
We return to verifying the third column of table 5.1. Suppose that h is a regular value
of the Hamiltonian Hr. Then for h ∈ I = ( 1

2 r2I−1
3 , 1

2 r2I−1
2 )

⋃· ( 1
2 r2I−1

2 , 1
2 r2I−1

1 ) the level
set H−1

r (h) is diffeomorphic to the disjoint union of two circles S1
j . Since each S1

j is null

homotopic in S2
r , the circle S1

j bounds a disk D2
j , which is contractible in S2

r . Therefore, the

bundle πr : J−1(μ)→ S2
r restricted to π−1

r (D2
j) is trivial, that is, π−1

r (D2
j) is diffeomorphic

to D2
j ×S1, see chapter VIII §2. Hence, the manifold EM−1(h,μ) = π−1

r (H−1
r (h)) is the

disjoint union of two 2-tori ∂D2
j × S1. Now suppose that h = 1

2 r2I−1
1 or h = 1

2 r2I−1
3 .

Then the h-level set of Hr is the disjoint union of two points. Therefore, the manifold
EM−1(h,μ) is the disjoint union of two circles, whose double covers are linked once.
This follows because the reduction map πr is double covered by the Hopf map and any
two distinct fibers of the Hopf fibration are linked once. Finally, suppose that h = 1

2 r2I−1
2 .

Then H−1
r (h) is the union of two circles Cj which intersect each other transversely at

±re2. Since each of the circles bounds a contractible disk on S2
r , each set π−1

r (Cj) is a
2-torus T 2

j . Using the Morse lemma, chapter XI §2, we see that these tori intersect each
� other transversely in J−1(μ) along two circles γ±2 . Hence γ±2 is a hyperbolic periodic orbit

of the vector field XH |J−1(μ).

γ+2 ��������

γ−2���
���

�

Figure 5.2. The fibration of J−1(μ) by the level sets of H.

(5.4) Proof: Since (πr)
∗ωr = Ω|J−1(μ), the reduction mapping πr is a symplectic diffeomor-

phism of the slice (S ±
2 ,Ω|(S ±

2 ) onto (U ±
2 ,ωr|U ±

2 ). Therefore the vector field XH |S ±
2

pushes forward under πr to the vector field XHr |U ±
2 , which clearly has a hyperbolic equi-

librium point at ±re2. �
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The union of the two 2-tori π−1
r (Cj) is the variety W̃ = π−1

r (Ṽ ), which is the union of the
closures of the stable and unstable manifolds of the hyperbolic periodic orbits γ+2 and γ−2 .

� The local unstable manifold of γ±2 is not twisted.

(5.5) Proof: To see this, let V ±
2 be an open neighborhood of ±re2 in S2

r . Then the intersection
of V ±

2 with the closure of the local unstable manifold of ±re2 is a contractible subset of
S2

r . Consequently, the closure of the local unstable manifold of γ±2 is a trivial bundle over
S1. Thus it is not twisted. �

This completes verification of the third column of table 5.1. �

� Figure 5.2 is a qualitatively correct picture of the level sets of H on J−1(μ).

(5.6) Proof: Let D ⊆ S2
r be a small closed 2-disk about the north pole (0,0,r) of the 2-sphere

S2
r . Using stereographic projection pr from the north pole, we find that the image of S2

r \D
is the closed 2-disk E in R2, see figure 5.3. Since E is contractible, the bundle πr|π−1

r (E)
is trivial, that is, π−1

r (E) is diffeomorphic to the solid torus S1 ×E. Thus we obtain a
decomposition of J−1(μ), which is diffeomorphic to SO(3), into the union of two solid
tori ST1 = π−1

r (D) and ST2 = π−1
r (E).

(0,0,r)
D

����

3

1 2

4

5
�

pr

∂prD
�
�
�
��

3′
�
�
�
�
���

E
�
�
�
��

1′ 2′

5′
�
�
�
��

4′

�
�
�
�
���

D1

�
�
�
�
���

D2

Figure 5.3. Stereographic projection of the level sets of the reduced Hamiltonian Hr.

Let us investigate more carefully how the solid torus ST2 fits into SO(3). First remove ST2
from the solid ball D3. Clearly, ST2 is homeomorphic to S1 × (D1 ∪D2), which is a solid
torus on the two overlapping 2-disks D1 and D2. The solid torus ST2 is formed by

1. Taking the cylinder C = [0,1]×(D1∪D2) and giving it a number of half
twists.

2. Placing the result in the 3-disk D3 \C .
3. Identifying antipodal points on the two end 2-disks of C and also on

∂ (D3 \C ).
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In figure 5.4 we illustrate this construction when the cylinder C has undergone zero half
twists. The lines AA′, BB′, and CC′ in this figure are the center lines of the cylinders
[0,1]×D1, [0,1]× (D1 ∩D2), and [0,1]×D2, respectively. After antipodal identifica-
tion of the end 2-disks, we obtain two solid tori with center circles AA ′CC ′ and BB′. In
figure 5.4 there are only three fibers which are center circles of solid tori. (Do not for-
get to include the centre circle DD′.) These fibers correspond to critical submanifolds of
H|J−1(μ) of index 0 or 2. According to ((5.3)) there are four such critical submanifolds.

A B C

D D′

A′ B′ C′

Figure 5.4. Replace the cylinder C with no half twists.

Hence figure 5.4 does not describe the foliation of J−1(μ) by level sets of H. An obvious
generalization of the above argument eliminates the possibility of replacing the cylinder
C with an arbitary even number of half twists. Suppose that C is replaced in D3 \C after
an odd number of half twists greater than one. For the sake of argument say three. It is
clear that the curves AA ′,BB ′,CC ′ and DD ′ are center circles of solid tori. However, the
double cover of AA′ and BB′ in S3 has linking number three, see exercise 10. Thus AA′
and BB′ do not correspond to any critical submanifold of H|J−1(μ) because the double
covers of the critical manifolds of H|J−1(μ) have linking number one. Thus we can only
replace C with one half twist.

Whether this is a clockwise or counterclockwise half twist depends on the sign of the
linking number. We determine this sign as follows. Orient SO(3) so that its double cover
S3 is positively oriented. Give the solid tori STi in SO(3) the induced orientation. Orient a
2-disk in STi, which is transverse to the center circle, so that its image under the reduction
map has the same orientation as a solution to Euler’s equations which it contains. This,
together with the orientation of STi, determines the orientation of the center circles A ′A
and B ′B. As integral curves of XH on J−1(μ), the curves A ′A and B ′B are positively
oriented. Hence their double covers in S3, which are integral curves of the harmonic
oscillator on an energy surface, are also positively oriented. Thus their linking number in
S3 is +1. Therefore the cylinder C is given a counterclockwise half twist when looking
in the direction of the positively oriented curve B ′B.

This completes the verification of figure 5.2. �
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6 Integration of the Euler-Arnol’d equations
In this section we integrate the Euler-Arnol’d equations⎧⎪⎪⎨⎪⎪⎩

dx
dt

= I−1
3 p3y− I−1

2 p2(x× y)

dy
dt

= −I−1
3 p3x+ I−1

1 p1(x× y)
(61a)

dp
dt

= p× (I′)−1 p (61b)

in the sphere bundle model (T1S2×R3,ω ′), see §2.2. Here I ′p= (I1 p1, I2 p2, I3 p3). These
solutions describe the motions of the Euler top in space.

We begin by looking at certain invariant manifolds of the Euler-Arnol’d equations. A
straightforward calculation shows that the angular momentum

J ′ : T1S2 ×R3 → R3 : (x,y, p) �→ Ap = col(x,y,x× y)p (62)

and energy

H ′ : T1S2 ×R3 → R : (x,y, p) �→ 1
2 (I

−1
1 p2

1 + I−1
2 p2

2 + I−1
3 p2

3). (63)

are integrals of these equations.

We now choose a better orthonormal basis {ẽ1, ẽ2, ẽ3} of R3 to study the Euler-Arnol’d
equations (61a) and (61b). Let A0 be a rotation which sends the conserved angular mo-
mentum vector �= Ap of magnitude |�| to the vector |�|e3. Let Ã = A0A = col(x̃, ỹ, x̃× ỹ).
Then (x̃, ỹ, p) is a solution of the Euler-Arnol’d equations, where the angular momentum
integral J′ = |�|e3 = �. In what follows we will assume that {ẽ1, ẽ2, ẽ3} is the standard
basis of R3 and drop the tildes on the variables x and y.

Suppose that (h, �) is a regular value of the energy momentum mapping

EM ′ : T1S2 ×R3 → R×R3 : (x,y, p) �→ (
H ′(x,y, p),J ′(x,y, p)

)
.

Then (EM ′)−1(h, �) is diffeomorphic to the disjoint union of two 2-tori. Call one of
them T 2

h,�. Then T 2
h,� is an invariant manifold of the Hamiltonian vector field XH ′ , whose

� integral curves satisfy the Euler-Arnol’d equations. We wish to describe T 2
h,� as a bundle

whose projection map is

π : T 2
h,� ⊆ T1S2 ×R3 → S1

h,� ⊆ S2
|�| ⊆ R3 : (x,y, p) �→ p. (64)

(6.1) Proof: Observe that π(T 2
h,�) is a connected component of the h-level set of the reduced

Hamiltonian H|�| : S2
|�| → R : p �→ 1

2 ((I
′)−1 p, p) and hence is diffeomorphic to a circle

S1
h,�, since h is a regular value of H|�|. S1

h,� is parametrized by a periodic solution of
Euler’s equations (61b).

To find an explicit description of T 2
h,� we begin by solving J ′(x,y, p) = � = |�|e3 for p.

Using (62) we obtain |�|−1 p = (col(x,y,x× y))t e3. In other words,
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x3 = |�|−1 p1 (65a)

y3 = |�|−1 p2 (65b)

x1y2 − x2y1 = |�|−1 p3. (65c)

Substituting (65a) and (65b) into the defining equations of T1S2

x2
1 + x2

2 + x2
3 = 1

x1y1 + x2y2 + x3y3 = 0 (66)
y2

1 + y2
2 + y2

3 = 1

gives

x2
1 + x2

2 = 1−|�|−2 p2
1 (67a)

x1y1 + x2y2 = −|�|−2 p1 p2 (67b)

y2
1 + y2

2 = 1−|�|−2 p2
2. (67c)

Because h is a regular value of the reduced Hamiltonian H|�|, pi = ±|�|ei for i = 1,2,3.
Therefore the right hand side of (67a) is nonzero for every p ∈ S1

h,�. Write (65c) and (67b)
as the linear system (−x2 x1

x1 x2

)(
y1
y2

)
=

( |�|−1 p3

−|�|−2 p1 p2

)
. (68)

Using (67a), we obtain its solution

y1 =− 1
|�|2−p2

1
(p1 p2x1 + |�|p3x2)

y2 =
1

|�|2−p2
1
(|�|p3x1 − p1 p2x2).

(69)

Therefore the 2-torus T 2
h,� is the set of points (x1,x2, |�|−1 p1,y1,y2, |�|−1 p2, p)∈ T1S2×R3

where

x2
1 + x2

2 = 1−|�|−2 p2
1, y1 =− 1

|�|2−p2
1
(p1 p2x1 + |�|p3x2), y2 =

1
|�|2−p2

1
(|�|p3x1 − p1 p2x2),

and p = (p1, p2, p3) lies in the connected component of

I−1
1 p2

1 + I−1
2 p2

2 + I−1
3 p2

3 = 2h and p2
1 + p2

2 + p2
3 = |�|2,

which defines S1
h,�. This gives the desired description of the bundle π (64). �

� Because T 2
h,� is a smooth invariant manifold of XH ′ , the restriction of XH ′ to T 2

h,� is a vector
field whose integral curves satisfy
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ẋ1 = α(p)x1 −β (p)x2 (70a)
ẋ2 = β (p)x1 +α(p)x2 (70b)
ṗ = p× (I ′)−1 p. (70c)

Here p ∈ S1
h,� and

α(p) =− (I−1
3 − I−1

2 ) p1 p2 p3

|�|2 − p2
1

and β (p) =
|�|(I−1

2 p2
2 + I−1

3 p2
3)

|�|2 − p2
1

. (71)

(6.2) Proof: Consider the Euler-Arnol’d equations, (61a) and (61b), subject to the constraints
(66). Restrict these equations to (J ′)−1(�e3). In other words, impose the additional con-
straints (65a) – (65c). Using (65a) and (65b) eliminate x3 and y3 from (61a). We obtain

ẋ1 = I−1
3 p3y1 −|�|−1I−1

2 p2(p2x2 − p1y2) (72a)

ẋ2 = I−1
3 p3y2 −|�|−1I−1

2 p2(p1y1 − p2x1) (72b)

ẏ1 = −I−1
3 p3x1 + |�|−1I−1 p1(p2x2 − p1y2) (72c)

ẏ2 = −I−1
3 p3x2 + |�|−1I−1

1 p1(p1y1 − p2x1) (72d)

together with (70c) and the constraints (65c), (67a – 67b). Restrict (72a – 72d) to (H ′)−1(h).
Since (69) holds on T 2

h,� (a connected component of (J ′)−1(�)∩ (H ′)−1(h)), equations
(72c) and (72d) hold as soon as (72a) and (72b) do. Substituting (69) into (72a) and (72b)
to eliminate y1 and y2 gives (70a) and (70b) where the functions α(p) and β (p) are de-
fined by (71). Clearly, (70c) holds. Since π(T 2

h,�) = S1
h,�, it follows that p ∈ S1

h,�. �

Because of the hierarchical nature of the equations (70a) – (70c), we can solve them as
follows. Let t �→ p(t) be a solution of Euler’s equations (70c), which parametrizes S1

h,�,
see exercise 2. Substituting t �→ p(t) into (70a) and (70b) gives the time dependent linear
system

ẋ1 = α(t)x1 −β (t)x2

ẋ2 = β (t)x1 +α(t)x2,
(73)

where α(t) = α(p(t)) and β (t) = β (p(t)). Introduce polar coordinates r2 = x2
1 + x2

2 and
θ = tan−1 x2

x1
. Then (73) becomes

dθ
dt

= β (t) and
dr
dt

= α(t). (74)

From (67a) we get r2(t) = 1−|�|−2 p2
1(t). Integrating (74) gives

θ(t) =
∫ t

0
β (s) ds+θ(0). (75)
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Therefore,

x1(t) =
√

1−|�|−2 p2
1(t) cosθ(t) and x2(t) =

√
1−|�|−2 p2

1(t) sinθ(t).

Substituting x1(t) and x2(t) into (69) and using (65a) and (65b) gives t �→ (
x(t),y(t), p(t)

)
,

where

x(t) =
(√

1−|�|−2 p2
1(t) cosθ(t),

√
1−|�|−2 p2

1(t) sinθ(t), |�|−1 p1(t)
)

(76a)

y(t) =
(− |�|−2√

1−|�|−2 p2
1(t)

[p1(t)p2(t) cosθ(t)+ |�|p3(t)sinθ(t)],

|�|−2√
1−|�|−2 p2

1(t)
[|�|p3(t)cosθ(t)− p1(t)p2(t) sinθ(t)], |�|−1 p2(t)

)
. (76b)

Note that t �→ (
x(t),y(t), p(t)

)
is a solution of the Euler-Arnol’d equations which lies in

T 2
h,� ⊆ T1S2 ×R3 and under the bundle projection map π (64) maps onto t �→ p(t) which

is a solution of Euler’s equation of energy h and angular momentum �. �
We now give a geometric description of some of the components of the vector field XH ′
on the 2-torus T 2

h,�. Let λ be the one parameter subgroup of (T1S2, ·) defined by

λ : R → T1S2 : t �→ (
(cos t,−sin t,0),(sin t,cos t,0)

)
.

Observe that the image of λ is the isotropy group SO(3)�. Considered as a subgroup
of (T1S2, ·), we see that SO(3)� is diffeomorphic to S1. The one parameter subgroup λ
induces an action

Φ : S1 × (T1S2 ×R3)→ T1S2 ×R3 :
(
t,(x,y), p

) �→ (
λ (t) · (x,y), p

)
= (R̃tx, R̃ty, p), (77)

where R̃t is a counterclockwise rotation about the e3-axis through an angle t. The mo-
mentum mapping of the action Φ is the e3-component of the momentum mapping J′. The
action Φ maps (J′)−1(�) into itself because for (x,y, p) ∈ (J′)−1(�) we have

J′(Φt(x,y, p)) = J′(R̃tx, R̃ty, p) = col(R̃tx, R̃ty, R̃tx× R̃ty)p

= R̃t(col(x,y,x× y)p) = R̃tJ′(x,y, p) = R̃t(|�|e3) = |�|e3 = �.

Because Φ leaves p fixed, it preserves the Hamiltonian H ′. Thus the induced action
Φ ′ = Φ|(S1 ×T 2

h,�) is defined. Also every orbit of the action Φ′ is a fiber of the bundle

π : T 2
h,� ⊆ (J′)−1(�)→ S1

h,� ⊆ S2
� : (x,y, p) �→ p (78)

� and thus belongs to a ruling of T 2
h,� by circles. The infinitesimal generator of the action

Φ′ is the vector field Y = −x2
∂

∂x1
+ x1

∂
∂x2

. The vector field Y is vertical in the bundle π
� because T π Y = 0. For every (x,y, p)∈T 2

h,� the vertical component of the vector XH ′(x,y, p)
is β (p)Y (x,y, p).
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7 The rotation number
In this section we give two ways of finding the rotation number of the flow of the Euler-
Arnol’d equations of the Euler top. The first one is an analytic formula based on the
integration of the Euler-Arnol’d equations given in §6. The second is follows from a
geometric interpretation of the classical Poinsot construction.

7.1 An analytic formula
We begin by deriving an analytic formula for the rotation number. Recall that S1

h,� is a
connected component of the level set of the reduced Hamiltonian Hr on S2

|�| corresponding
to the regular value h. Thus S1

h,� is parametrized by a periodic solution t �→ p(t) of Euler’s
equations of minimal positive period T = T (h, �). Let t �→ θ(t) be the function defined
by (75).

Claim: The quantity 1
2π Δθ(T ) = 1

2π (θ(T )−θ(0)) is the rotation number of the flow of
XH ′ on T 2

h,�.

(7.1) Proof: Because under the bundle map π (78) every integral curve of XH ′ |T 2
h,� projects to

the periodic integral curve S1
h,� of Euler’s equations, every fiber of π is a cross section for

the flow ϕH ′
t of XH ′ on T 2

h,�. From the fact that along S1
h,� the function t �→ β (t) (71) is

strictly positive and bounded away from 0, it follows that the function t �→ θ(t) (75) is
strictly increasing and is unbounded as t �→ ±∞. Therefore for every q ∈ T 2

h,� the image
of the curve t �→ Φ ′

θ(t)−θ(0)(q) is the fiber of the bundle π over p = π(q) ∈ S1
h,�. Since

t �→ p(t) = π(ϕH ′
t (q)) starts at p, parametrizes S1

h,�, and has minimal positive period T ,

we see that ϕH ′
T (q) ∈ π−1(p). Therefore for every q ∈ T 2

h,� there is a minimal τ > 0 such
that

Φ ′
θ(τ)−θ(0)(q) = ϕH ′

T (q). (79)

Below we show that τ = T . Using (79) and the definition of rotation number, it follows
that 1

2π Δθ(T ) = 1
2π

(
θ(T )−θ(0)

)
is the rotation number of the flow of XH ′ on T 2

h,�. �

� We now show that τ = T .

(7.2) Proof: Let
(
ξ (t),η(t),ρ(t)

)
=Φ ′

θ(t)−θ(0)(q)=Φϕ(t)(q) and let
(
x(t),y(t), p(t)

)
=ϕH ′

t (q).
We calculate ξ (t) as follows. From the definition of the action Φ (77), we find that

ξ (t) =
(
x1(0)cosϕ(t)− x2(0)sinϕ(t),x1(0)sinϕ(t)+ x2(0)cosϕ(t),x3(t)

)
,

where q =
(
x(0),y(0), p

)
and p(0) = p. Comparing the above expression for ξ (t) with

the expression for x(t) given in (76a) and looking at their third components, we see that
ξ (t) = x(0) if and only if t = nT , because t �→ p1(t) is periodic with minimal positive
period T . Since τ in (79) is positive and minimal, we conclude that τ = T . �

The rotation number has the following physical interpretation. Recall that the action of
SO(3) on itself under left multiplication by A corresponds to changing the space frame
{e1,e2,e3} to the frame {Ae1,Ae2,Ae3}. When A is in the isotropy group SO(3)|�|e3

, left
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multiplication by A leaves e3 fixed. Thus the action of the isotropy group corresponds
to the Euler top rotating around the e3-axis. Hence the rotation number is the amount of
revolution around the spatial e3-axis the top makes in time T . Here the top has energy h
and angular momentum �= |�|e3.

7.2 Poinsot’s construction
In this subsection we present a modern version of Poinsot’s construction. This construc-
tion leads to another geometric description of the rotation number of the Euler top.

Using the sphere bundle model of the preceding section we define the Poinsot mapping
by

P : (J′)−1(�)⊆ T1S2 ×R3 → R3 : (x,y, p) �→ col(x,y,x× y)(I′)−1 p, (80)

where J′ is the angular momentum mapping J′ : T1S2 → R3 : (x,y, p) �→ col(x,y,x×y). In
the terminology of exercises 4 and 5, the Poinsot mapping assigns to an angular momen-
tum vector of magnitude |�| in the body frame, which corotates with the body, an angular
velocity vector in the space frame of magnitude |�|.
Claim: The image of (EM )−1(h, �) under Poinsot’s mapping P (80) is contained in the
affine subspace A� = {(Ω1,Ω2,

2h
|�| ) (Ω1,Ω2) ∈ R2} of Euclidean 3-space

(
R3,( , )

)
.

(7.3) Proof: Suppose that (x,y, p) ∈ (EM )−1(h, �). Then(
P(x,y, p), �

)
=

(
col(x,y,x× y)(I′)−1 p, |�|e3

)
=

(
(I′)−1 p,col(x,y,x× y)−1(|�|e3)

)
=

(
(I′)−1 p, p

)
, since (x,y, p) ∈ (J′)−1(�)

= 2h, since (x,y, p) ∈ (H ′)−1(h). �

Let C be the orbit of the action Φ′ = Φ|(S1 ×T 2
h,�) (77) through (x,y, p) ∈ T 2

h,�.

Claim: The image of the circle C under the Poinsot mapping P is a geometric circle in
A� of

(
R3,( , )

)
with center at 2h

|�|e3 and radius rad(x,y, p) = ‖P(x,y, p)− 2h
|�|e3‖. Here ‖ ‖

is the norm on R3 associated to the Euclidean inner product ( , ).

(7.4) Proof: For every (x,y, p) ∈ T 2
h,� we have

‖P(Φ′
t(x,y, p))− 2h

|�|e3‖= ‖P
(

col(R̃tx, R̃ty, R̃tx× R̃ty)
)− 2h

|�|e3‖= ‖R̃tP(x,y, p)− 2h
|�|e3‖

= ‖col(x,y,x× y)(I′)−1 p− 2h
|�| R̃

−1
t e3‖= ‖P(x,y, p)− 2h

|�|e3‖. �

Corollary: The radius function rad : EM−1(h, �)→ R : (x,y, p) �→ ‖P(x,y, p)− 2h
|�|e3‖ is

invariant under the S1-action Φ′.

� We now want to show that the image of the 2-torus T 2
h,� under the Poinsot mapping P is

the annulus

A =
{
(Ω1,Ω2,

2h
|�| ) ∈ A� rmin = min

T 2
h,�

rad ≤ |ξ | ≤ max
T 2

h,�

rad = rmax
}
. (81)
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This entails verifying that rmin > 0. As preparation recall that the orbits of the S1-action
Φ are fibers of the reduction mapping

π|�| : (J′)−1
(�)⊆ T1S2 ×R3 → S2

|�| : (x,y, p) �→ p. (82)

Since the radius function rad is invariant under the action Φ, it induces a function rad� on
Sh,� = π|�|

(
EM−1(h, �)

)
.

Claim: For every p ∈ Sh,� we have rad�(p) = ‖Dp− 2h
|�|2 e3‖, where D = (I ′)−1.

(7.5) Proof: For every (x,y, p) ∈ π−1
|�| (p) we have

rad�(p) = rad�
(
π|�|(x,y, p)

)
= rad(x,y, p)

= ‖col(x,y,x× y)(I′)−1 p− 2h
|�|e3‖= ‖(I′)−1 p− 2h

|�|2 col(x,y,x× y)−1(�)‖
= ‖Dp− 2h

|�|2 p‖, since p ∈ (J′)−1(�). �

� Next we show that rad� is strictly positive on Sh,�.

(7.6) Proof: From the preceding claim we see that rad�(p) ≥ 0 for every p ∈ S h,�. Suppose
that rad�(p) = 0 for some p ∈ Sh,�. Then Dp =

( 2h
|�|2

)
p. Therefore 2h

|�|2 is an eigenvalue

of D and hence equals I−1
i for some i ∈ {1,2,3}, that is, h = 1

2 I−1
i |�|2. Thus (h, �) is a

critical value of the energy momentum map EM . This is contrary to our hypothesis. �

To prove the assertion about the image of the Poinsot mapping, from the definition of
rad� it follows that the radius function rad is strictly positive on EM−1(h, �). Since
EM−1(h, �) is compact, rad has a positive minimum. Thus A (81) is an annulus. �

For latter purposes, see ((7.10)), we want to know more about the critical points and
critical values of rad�. Towards this goal, consider the function

R : Sh,� ⊆ S2
|�| → R : p �→ (

(D− 2h
|�|2 )

2 p, p
)
.

Claim: R and rad� have the same critical points with the same Morse index.

(7.7) Proof: Since R is the square of rad�, differentiating we obtain

DR(p)v = 2rad�(p)D rad�(p)v, (83)

for every p∈ S2
|�| and v∈ TpS2

|�|. From (83) it follows that R and rad� have the same critical
points, since rad�(p) is strictly positive on Sh,� ((7.6)). Differentiating (83) gives

D2R(p)(v,w) = 2D rad�(p)vD rad�(p)w+2rad�(p)D2rad�(p)(v,w), (84)

for p ∈ S2
|�| and v,w ∈ TpS2

|�|. If p is a critical point of R on Sh,� then (84) becomes

D2R(p)(v,w) = 2rad�(p)D2rad�(p)(v,w). (85)
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Since rad� is strictly positive on Sh,�, from (85) we see that p is a nondegenerate critical
point of R if and only if it is a nondegenerate critical point of rad�. Moreover, they have
the same Morse index. �

� We now show that R is a Morse function.

(7.8) Proof: Because Sh,� is compact and R is continuous, R has a critical point p= (x0
1,x

0
2,x

0
3).

By Lagrange multipliers, p satisfies(
(D− 2h

|�|2 )
2 +λ1 +λ2D

)
p = 0 (86a)

(p, p) = |�|2 and (Dp, p) = 2h. (86b)

Here D = diag(d1,d2,d3) = (I−1
1 , I−1

2 , I−1
3 ) and d1 > d2 > d3 > 0 (56).

Suppose that all of the components of p are nonzero. Then (86a) becomes

(d1 − 2h
|�|2 )

2 +λ1 +λ2d1 = 0 (87a)

(d2 − 2h
|�|2 )

2 +λ1 +λ2d2 = 0 (87b)

(d3 − 2h
|�|2 )

2 +λ1 +λ2d3 = 0. (87c)

Subtracting (87a) from (87b) and (87b) from (87c) gives

λ2 =−(d1 +d2)+
4h
|�|2 and λ2 =−(d2 +d3)+

4h
|�|2 ,

since d1 − d2 and d2 − d3 are nonzero. Consequently, d1 = d3, which is a contradiction.
Therefore at least one of the components of p is zero.

Now suppose that two components of p are zero, say x0
1 and x0

2. The other cases are similar
and their proof is omitted. Then the equations in (86b) give h = 1

2 d3|�|2. Hence (h, �) is
a critical value of EM . This is a contradiction. Therefore exactly one component of p is
zero.

Suppose that x0
1 = 0. Again the other cases are handled similarly and the details are left

to the reader. Solving (86a) and (86b) we obtain

x0
1 = 0 x0

2 =±
√

2h−d3|�|2
d2 −d3

, x0
3 =±

√
d2|�|2 −2h

d2 −d3
, (88)

when h ∈I1 = ( 1
2 d3|�|2, 1

2 d2|�|2). The argument when h ∈I2 = ( 1
2 d2|�|2, 1

2 d1|�|2) is left
to the reader. Since x0

2 and x0
3 are nonzero, (86a) becomes (87b) and (87c). Solving them

for the Lagrange multipliers λ1 and λ2 we obtain

λ1 = d2d3 − 4h2

|�|4 and λ2 =−(d2 +d3)+
4h
|�|2 . (89)

Therefore (88) is a solution to (86a) and (86b). The set Sh,� = π|�|(EM−1(h, �)) has two
connected components S ε (ε = ±) one of which is the circle S1

h,� = π|�|(T 2
h,�). A glance
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at figure 4.3 shows that for fixed ε the two critical points pε±

x0
1 = 0 x0

2 =±
√

2h−d3|�|2
d2 −d3

, x0
3 = ε

√
d2|�|2 −2h

d2 −d3
,

lie on S ε . The value of R at pε± is 4
|�|2 (

1
2 d2|�|2 −h)(h− 1

2 d3|�|2). At pε± the Hessian of R
is

diag
(
(d1 − 2h

|�|2 )
2 +λ1 +λ2d1,(d2 − 2h

|�|2 )
2 +λ1 +λ2d2,(d3 − 2h

|�|2 )
2 +λ1 +λ2d3

)
Tpε±S ε
.

Since Tpε±S ε = ker
(

x1 x2 x3
d1x1 d2x2 d3x3

)
(0,x0

2,x
0
3)

is spanned by the vector e1, using

(89) it follows that

Hesspε±R =
(
d1 − 1

2 (d2 +d2)
)2 − ( 1

2 (d2 −d3)
)2
.

But 0 < d3 < d2 < d1 which implies that d1 − 1
2 (d2 +d3)> d2 − 1

2 (d2 +d3) =
1
2 (d2 −d3)

> 0. Hence Hesspε±R > 0, that is, pε± is a nondegenerate minimum of R.

In table 7.1 we summarize information about the critical points of the function R. It
follows that R is a Morse function. �

critical points & conditions critical value index

1.
(
0,±

√
2h−d3|�|2

d2−d3
,ε

√
d2|�|2−2h

d2−d3

)
,

if h ∈ I1

4
|�|2 (

1
2 d2|�|2 −h)(h− 1

2 d3|�|2) 0

2.
(
ε
√

2h−d3|�|2
d1−d3

,0,±
√

d1|�|2−2h
d1−d3

)
,

if h ∈ I1

4
|�|2 (

1
2 d1�

2 −h)(h− 1
2 d3|�|2) 1

3.
(±√

2h−d3|�|2
d1−d3

,0,ε
√

d1|�|2−2h
d1−d3

)
,

if h ∈ I2

4
|�|2 (

1
2 d1|�|2 −h)(h− 1

2 d3|�|2) 1

4.
(
ε
√

2h−d2|�|2
d1−d2

,±
√

d1|�|2−2h
d1−d2

,0
)
,

if h ∈ I2

4
|�|2 (

1
2 d1|�|2 −h)(h− 1

2 d2|�|2) 0

Table 7.2.1 Critical points of R and their Morse index.

Using ((7.7)) we deduce that rad� : Sh,� ⊆ S2
|�| → R is a Morse function. Fixing ε and

looking at table 7.1 we see that rad� has two nondegenerate minima and two nondegen-
erate maxima on S ε with corresponding critical values rmin and rmax. From the above
discussion we see that the image of the 2-torus T 2

h,� under the Poinsot mapping P (80) is a
closed annulus A in the affine plane A�, which is bounded by two circles Cmin and Cmax
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with center at 2h
|�|2 e3 and radius rmin and rmax. Moreover, both P−1(Cmin) and P−1(Cmax)

consist of two orbits of the S1-action Φ′, because each orbit is the inverse image under the
reduction map π|�| of a critical point of rad� on S1

h,�. Since the Hessian of rad� is definite
at these critical points, the Poinsot mapping P has a fold singularity along each orbit in
P−1(Cmin) and P−1(Cmax). We leave it as an exercise to deduce from these geometric
facts that T 2

h,� cannot be embedded in R3.

Let C1 be an orbit of the S1-action Φ′ on T 2
h,� whose image under the Poinsot map-

ping P is the oriented circle Cmax ⊆ A�. Then C1 is a cross section for the flow of
XH ′ |T 2

h,�. Hence for p ∈ C1 there is a smallest positive time T = T (h, �) such that q =

ϕH ′
T (p) ∈ C1. Here ϕH ′

t is the flow of XH ′ . Let 1
2π Δθ(T ) be the rotation number of

the flow of XH ′ |T 2
h,�e3

. Under the Poinsot mapping P the image of the integral curve

γ̃ : R → T 2
h,� : t �→ ϕH ′

t (p) of the Hamiltonian vector field XH ′ |T 2
h,� is the curve Γ : R →

A ⊆ R3 : t �→ (P◦γ̃)(t), which is called the herpolhode corresponding to integral curve γ̃ .
The angle Δϑ(T ), subtended by the oriented arc on Cmax between P(p) and P(q), we call

� the herpolhode angle . Note that P(q) is not the first point after P(p) where the curve Γ
meets Cmax, but is the second.

P(p)

P(r)

P(q)

Figure 7.2.1. The herpolhode angle of a solution of the Euler-
Arnol’d equations on a 2-torus in T 2

h,l .

(7.9) Proof: To see this, recall that P−1(Cmax) is the disjoint union of two Φ′ orbits C1 and
C2 on T 2

h,�. Before crossing C1, the curve γ̃ : t �→ ϕH ′
t (p), which starts at p ∈ C1, must

cross C2 transversely, say at the point r. This follows from the fact that every orbit of the
S1-action Φ′ on T 2

h,� is a cross section for the flow of XH ′ |T 2
h,�. Thus P(r)∈Cmax is the first

point where γ̃ crosses C2. A similar argument shows that starting at r the curve γ̃ crosses
C1 for the first time at the point q. Thus P(q) is the second point on Cmax. �
To find the relationship between the rotation number and the herpolhode angle we look
more closely at the geometry of the Poinsot mapping P (80). Recall that the orbits of the
S1-action Φ′ give a ruling of the 2-torus T 2

h,� by circles and that the image of a fiber of
the bundle π : (J′)−1(�)⊆ T1S2 ×R3 → S2

|�| : (x,y, p) �→ p under the Poinsot mapping P is

a geometric circle in the annulus A = {(Ω1,Ω2,
2h
|�| ) ∈ R3 0 < r2

min ≤ Ω2
1 +Ω2

2 ≤ r2
max}.

We now see how P maps a circle S in T 2
h,�, which is transverse to the fibers of the bundle

π (78), into the annulus A . More formally, for p ∈ S2
|�| let C be the circle π−1(p) and
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let S be a circle in T 2
h,�, which is chosen so that {C ,S } is a basis for H1(T 2

h,�,Z). Let

ϑ = tan−1 Ω2
Ω1

be the angular variable in the affine plane A�, which contains the annulus
A , that measures the amount of rotation about the centre of A . We want to compute∫
S P∗ dϑ .

First we give a precise description of S . Let

σ : S2
|�| \ {±�,0,0)} ⊆ R3 → J−1(�)⊆ T1S2 ×R3 :

p =

⎛⎝p1
p2
p3

⎞⎠ �→ (
x,y, p

)
=

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

1
|�|
√

|�|2 − p2
1

−p1 p2

|�|
√
|�|2−p2

1

0 p3√
|�|2−p2

1
1
|�| p1

1
|�| p2

⎞⎟⎟⎟⎟⎠, p

⎞⎟⎟⎟⎠ (90)

� Then σ is a section of the bundle π|π−1(S2
|�| \{(±|�|,0,0)}). The curve S is parametrized

by applying the section σ to the closed integral curve γ : R → S2
� : t �→ p(t) of Euler’s

equations of positive period T and energy h = a|�|2, b|�|2, c|�|2. Here a = I−1
1 , b = I−1

2
and c = I−1

3 . Now

P(σ(p)) = P(x,y, p) = col(x,y,x× y)(I′)−1 p =

⎛⎜⎜⎜⎝
|�|p1√
|�|2−p2

1

(a− 2h
|�|2 )

p2 p3√
|�|2−p2

1

(b− c)

2h
|�|

⎞⎟⎟⎟⎠. (91)

Since P(σ(p)) =
(
(P◦σ)∗(Ω1),(P◦σ)∗(Ω2),

2h
|�|
)
, the point P(σ(p)) lies the annulus A .

Therefore

(P◦σ)∗ dϑ = (P◦σ)∗ d
(

tan−1 Ω2

Ω1

)
= d

(
tan−1 (P◦σ)∗(Ω2)

(P◦σ)∗(Ω1)

)
= d

(
D

p2 p3

p1

)
,

where D = |�|(b−c)
a|�|2−2h

. We now show

∫
S

P∗ dϑ =

⎧⎨⎩ 2π, if c < 2h
|�|2 < b

0, if b < 2h
|�|2 < a.

(92)

(7.10) Proof: First we observe that∫
S

P∗ dϑ =
∫

γ=σ∗S
(P◦σ)∗ dϑ =

∫
γ

dtan−1
(

D
p2 p3

p1

)
.

The last integral above is the variation of the function t �→ Ψ(t) = tan−1
(
D p2(t)p3(t)

p1(t)

)
over

the closed integral curve γ(t) =
(

p1(t), p2(t), p3(t)
)

of Euler’s equations on S2
|�| of period

T and energy h. There are two cases.

CASE 1. c < 2h
|�|2 < b. From exercise 2 we get

p1(t) = Acn(nt;k), p2(t) = Bsn(nt;k), and p3(t) =C dn(nt;k),
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where A2 = 2h−c|�|2
a−c , B2 = 2h−c|�|2

b−c and C2 = a|�|2−2h
a−c . Also

n =

√
(a|�|2 −2h)(b− c) and k =

√
(a−b)(2h−c|�|2)
(b−c)(a|�|2−2h)

.

Because the integral curves of Euler’s equations on S2
|�| are homotopic when h ∈ ( 1

2 c|�|2,
1
2 b|�|2), the variation of the function Ψ over γ does not depend on h. Therefore we
may let h ↘ 1

2 c|�|2. This implies k → 0. So sn(nt;k) → sinnt, cn(nt;k) → cosnt, and

dn(nt;k) → 1. Moreover, D BC
A → D̃ =

√
b−c
a−c and n → ñ =

√
(a− c)(b− c). Therefore

Ψ(t) → Ψ̃(t) = tan−1
(
D̃ tan ñt

)
. The variation of the function Ψ̃ over [− π

2ñ ,
3π
2ñ ] is 2π

because the function D̃ tan ñt is periodic of period 2π
ñ and is strictly monotonic increasing

from −∞ to ∞ on [− π
2ñ ,

π
2ñ ] and [ π

2ñ ,
3π
2ñ ].

CASE 2. b|�|2 < 2h < a|�|2. Again from exercise 2 we get

p1(t) = Adn(nt;k), p2(t) = Bsn(nt;k), and p3(t) =C cn(nt;k),

where A2 = 2h−c|�|2
a−c , B2 = a|�|2−2h

a−b , and C2 = a|�|2−2h
a−c . Also

n =

√
(2h− c|�|2)(a−b) and k =

√
(b−c)(a|�|2−2h)
(a−b)(2h−c|�|2) .

Because the integral curves of Euler’s equations on S2
|�| are homotopic when h ∈ ( 1

2 b|�|2,
1
2 a|�|2), the variation of the function Ψ over γ does not depend on h. Therefore we may let
h ↗ 1

2 a|�|2. This implies k → 0. So sn(nt;k)→ sinnt, cn(nt;k)→ cosnt, and dn(nt;k)→
1. Moreover, D BC

A → D̃ = b−c√
(a−b)(a−c)

and n → ñ =
√

(a− c)(a−b). Therefore Ψ(t)→
Ψ̃(t) = tan−1

( 1
2 D̃sin2ñt

)
. The variation of the function Ψ̃ over [0, 2π

ñ ] is 0 because the
function 1

2 D̃sin2ñt is periodic of period 2π
ñ and is continuous. �

We now prove the relation between the rotation angle of the Δθ(T ) of the solution γ̃ of
the Euler-Arnol’d equations on T 2

h,� of period T and the herpolhode angle Δϑ(T ) in the
annulus A of the herpolhode P◦γ̃ .

Claim: We have

Δθ(T ) = Δϑ(T )−
{

0, if b|�|2 < 2h < a|�|2
2π, if c|�|2 < 2h < b|�|2.

(93)

(7.11) Proof: We begin by constructing an affine frame on T 2
h,�. Applying the section σ (90)

to the periodic integral curve γ of the reduced Hamiltonian vector field XH|�| of energy
h and period T , gives a closed curve [0,T ] → T 2

h,� : t �→ σ(γ(t)) on T 2
h,�. This curve

is transverse to every S1 orbit of the action Φ′, which rule T 2
h,�, and its tangent vector at

σ(γ(t)) is Tt = Tγ(t)σXH|�|(γ(t)), which is nonzero. Set σt = σ(γ(t)) and let Z(Φ′
s(σt)) =
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Tσt Φ′
sTt be the push out of the vector Tt along the ruling s �→ Φ′

s(σt) of T 2
h,� through σt .

� Z is an S1-invariant vector field on T 2
h,� because

TΦ′
s(σt )Φ

′
r Z(Φ′

s(σt)) = TΦ′
s(σt )Φ

′
r Tσt Φ

′
sTt = Tσt (Φ

′
r◦Φ

′
s)Tt

= Tσt Φ
′
r+sTt = Z(Φ′

r+s(σt)) = Z
(
Φ′

r(Φ
′
s(σt))

)
. �

Since

Tσt π
(
XH ′(Φ′

s(σt))−Z(Φ′
s(σt))

)
= XH|�|(Φ

′
s(σt))−XH|�|(Φ

′
s(σt))

= XH|�|(σt)−XH|�|(σt) = 0,

the vector field Z is the horizontal component of the vector field XH ′ on T 2
h,� with respect

to the bundle mapping π (78). Therefore XH ′ −Z is the vertical component of XH ′ |T 2
h,�,

which is equal to β (γ(t))Y (Φ′
s(σt)) at Φ′

s(σt). Thus XH ′ = Z +βY on T 2
h,�.

Now we can describe the relation between the rotation number and the herpolhode angle.
Since the Poinsot map P is equivariant, we get P∗Y = T PY = ∂

∂ϑ . To see this, we compute

P(Φ′
t(x,y, p)) = P(R̃tx, R̃ty, p) = col(R̃tx, R̃ty, R̃tx× R̃ty)(I′)−1 p

= R̃t col(x,y,x× y)(I′)−1 p = R̃tP(x,y, p). �

The evolution of the herpolhode angle ϑ along the integral curve γ : R → S2
� : t �→ γ(t) of

XH|�| is satisfies
dϑ
dt

= 〈dϑ ,P∗XH ′ 〉= 〈dϑ ,P∗Z +β
∂

∂ϑ
〉.

Hence after a period T of γ we get

Δϑ(T ) = ϑ(T )−ϑ(0) =
∫ T

0
〈dϑ ,P∗Z〉(γ(t)) dt +

∫ T

0
β (p(t)) dt.

But by construction of the vector field Z we have P∗Z(γ(t)) =P∗σ∗(XH|�|(γ(t))) =P∗σ∗ dγ
dt .

So∫ T

0
〈dϑ ,P∗Z〉(γ(t)) dt =

∫ T

0
〈(σ∗P∗ dϑ(γ(t)),

dγ
dt

〉 dt =
∫

γ=σ∗S
σ∗P∗ dϑ =

∫
S

P∗ dϑ .

Therefore

Δϑ(T ) =
∫

S
P∗ dϑ +

∫ T

0
β (p(t)) dt =

{
0, if b|�|2 < 2h < a|�|2

2π, if c|�|2 < 2h < b|�|2 +Δθ(T ). �
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8 A twisting phenomenon
In this section we describe and explain a twisting phenomenon which a tennis racket-like
rigid body performs.

Consider a triaxial rigid body with principal axes {ê1, ê2, ê3} fixed to the body at its center
of mass. Suppose that the corresponding principal moments of inertia Ii satisfy 0 < I1 <
I2 < I3. We say that the rigid body is tennis racket-like if it is nearly planar that is,

I3 ≈ I1 + I2, (94)

I3 is approximately equal to I1 + I2, and

I1 � I2, (95)

I1 is much less than I2. Since an old fashioned wooden tennis racket fulfills all of these
conditions nicely, we will talk of a tennis racket.

ê1

ê2

ê3

Figure 8.1. The principal axes of a tennis racket.

The following experiment demonstrates the twisting phenomenon quite dramatically. Take
a tennis racket and mark its faces so that they can be distinguished. Call one rough and the
other smooth. Hold the racket horizontally so that the smooth face is up. Toss the racket
attempting to make it rotate about the intermediate principal axis ê2. After one rotation
catch the racket by its handle. The rough face will almost always be up! Thus the racket
has made a near half twist around its handle.

1

3

5

7

9

11

Figure 8.2. A special heteroclinic orbit, connecting γ+ with γ−, in the
solid ball model of phase space. The numbers correspond to those in
figure 8.3. The moments of inertia are: I1 = 18, I2 = 16 and I3 = 1.
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The problem, of course, is to explain this twisting phenomenon. In what follows we give
a qualitative explanation. Since we are interested in the rotational motion of the racket,
we can forget about the motion of its center of mass. In other words we suppose that the
center of mass of the racket is fixed. The racket rotating around its intermediate prin-
cipal axis ê2 corresponds to one of the hyperbolic period orbits γ±2 of the Euler-Arnol’d
equations of the Euler top with energy h = 1

2 |�|2I−1
2 and angular momentum �= |�|e3, see

figure 8.2. In §5 we showed that γ+2 with γ−2 are heteroclinic, that is, the closure of the
unstable manifold of γ+2 contains γ−2 . Therefore every motion of the tennis racket which
starts “near" γ+2 eventually comes “near" γ−2 . Warning: the racket spinning exactly about
its ê2-axis does not twist at all. Thus we should quantify what we mean by “near". For an
estimate of the size of the region about γ+2 where the racket does not twist, see exercise

1

3

5
7

9

11

Figure 8.3. A special heteroclinic orbit in configura-
tion space at evenly spaced time intervals.

12. Since γ+1 and γ+2 are heteroclinic for every triaxial rigid body, this qualitative feature
of the motion cannot be the whole story why the racket twists. What it does not explain
is why the racket makes a twist when going from γ+2 to γ−2 . To say what we mean by a

e1 e2

e3

ê1

α(t)

ϕ(t)

Figure 8.4. The angles α(t) and ϕ(t).

twist, we must have some reference plane fixed in space. The following discussion shows
that the handle of the racket moves nearly in the plane. Suppose that the racket has
energy h and angular momentum � = |�|e3. Moreover, assume that the principal axis
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frame {ê1, ê2, ê3} and the frame {e1,e2,e3} fixed in space are the same at time t = 0.

Claim. Let the position of the racket be as given in figure 8.1 and let α(t) be the angle
the handle ê1 makes with the e1–e2 plane at time t. Then

0 ≤ tanα(t)≤
√(

I1(2I3h−|�|2))/(I3(|�|2 −2I1h)
)
. (96)

(8.1) Proof: Since the angular momentum of the rigid body is �= |�|e3, its component along the
ê1-axis at time t is p1(t), where t → p(t) =

(
p1(t), p2(t), p3(t))

)
is a solution of Euler’s

equations (55) on S2
|�| of energy h. Thus

|�|−1 p1(t) = |cosϕ(t)| = sinα(t). (97)

Using the explicit solution of Euler’s equations in terms of Jacobi elliptic functions, see
exercise 2, we find that when h ∈ [ 1

2 |�|2I−1
3 , 1

2 |�|2I−1
2 ],

p1(t) =
√(

2h−|�|2I−1
3

)
/
(
I−1
1 − I−1

3

)
cn(nt;k).

Here

n =

√
(I−1

1 − I−1
2 )(2h−|�|2I−1

3 ) and k =

√√√√ (I−1
2 − I−1

3 )(|�|2I−1
1 −2h)

(I−1
1 − I−1

3 )(2h−|�|2I−1
3 )

.

Since |cn(nt;k)| ≤ 1, see exercise 1, we obtain

0 ≤ sinα(t)≤ 1
|�|

√(
2h−|�|2I−1

3

)
/
(
I−1
1 − I−1

3

)
, (98)

which yields (96). Similarly when h ∈ [ 1
2 |�|2I−1

2 , 1
2 |�|2I−1

1 ] we find that

p1(t) =
√(

2h−|�|2I−1
3

)
/
(
I−1
1 − I−1

3

)
dn(ñt; k̃).

Here

ñ =

√
(I−1

2 − I−1
3 )(|�|2I−1

1 −2h) and k̃ =

√√√√ (I−1
1 − I−1

2 )(2h−|�|2I−1
1 )

(I−1
2 − I−1

3 )(|�|2I−1
1 −2h)

.

Since |dn(ñt; k̃)| ≤ 1, we again obtain (98). �

Corollary: For a tennis racket rotating almost about its intermediate axis the angle α(t)
is small for all t.

(8.2) Proof: When the racket rotates nearly around its intermediate axis, h ≈ 1
2 |�|2I−1

2 . Using
(94) the right hand side of (96) is ≈ I1

I2
. This is small because of (95). �

Thus the plane swept out by the handle of the racket is fixed in space. With respect to this
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� plane we can see if the racket twists. To show that the racket does indeed twist, consider
its motion along the unstable manifold of γ+2 as it goes from a neighborhood of γ+2 to a
neighborhood of γ−2 .

(8.3) Proof: Let the position of the racket be as given in figure 8.1. At time t the ê2-component
p2(t) of the angular momentum �= |�|e3 of the racket is

p2(t) = |�|cosϕ(t). (99)

Using exercise 2, the solution t �→ p(t) = (p1(t), p2(t), p3(t)) of Euler’s equation of en-
ergy h = 1

2 |�|2I−1
2 which goes from the hyperbolic equilibrium point |�|e2 along its unsta-

ble manifold to the hyperbolic equilibrium point −|�|e2 is given by

p(t) = |μ|(√ I−1
2 −I−1

3
I−1
1 −I−1

3
sechnt,−tanhnt,

√
I−1
1 −I−1

2
I−1
1 −I−1

3
sechnt

)
. (100)

Here n = |�|
√

(I−1
1 − I−1

2 )(I−1
2 − I−1

3 ). Therefore cosϕ(t) =−tanhnt. From (100) we see that
at t =−∞, p(−∞) = (0, |μ|,0), while at t =∞, p(∞) = (0,−|�|,0). Therefore ϕ(−∞) = 0,
while ϕ(∞) = π . Refering to figure 8.3, this says that the ê2-axis of the racket starts with
e3 vertically above the invariant e1–e2 plane and finishes with −e3 vertically below. Thus
the racket has made a near half twist in going from near γ+2 to near γ−2 along the unstable
manifold. �

To explain the experiment described at the beginning of this section in finer detail we
should show that

1. The racket has enough time perform a twist, that is, the time it takes the handle to
make one revolution is longer than the time it takes to perform a half twist.

2. The racket is likely to be caught after making a half twist.
3. The experiment is repeatable because the handle revolves nearly uniformly.

We refer the reader to the exercise 12 for a treatment of these points.

9 Exercises
1. (Jacobi elliptic functions.) Consider the system of differential equations⎧⎨⎩

ẋ = yz
ẏ = −xz
ż = −k2xy,

(101)

where 0 < k2 < 1. Define the Jacobi elliptic functions as the integral curve

t �→ (
x(t),y(t),z(t)

)
=

(
sn(t;k),cn(t;k),dn(t;k)

)
of (101) which passes through (0,1,1) at t = 0.

a) Show that the functions x2 + y2 and k2x2 + z2 are integrals of (101) and deduce
that

sn2(t;k)+ cn2(t;k) = 1 and k2sn2(t;k)+dn2(t;k) = 1.

The Euler top



III.9 Exercises 131

Consequently, for all t

|sn(t;k)| ≤ 1, |cn(t;k)| ≤ 1 and k′ =
√

1− k2 ≤ dn(t;k)≤ 1.

b) Let x(t) = sn(t;k). From (101) deduce that d t
dx = 1√

(1−x2)(1−k2x2)
> 0 for x ∈

(−1,1). Hence t(x) =
∫ x

0
1√

(1−x2)(1−k2x2)
dx is a smooth inverse of sn(t;k) on

(−1,1). Since t(±1) =±K(k) =±K is finite, t(x) is continuous on [−1,1]. There-
fore, sn(K;k) = 1. Hence cn(K;k) = 0 and dn(K;k) = k′.

c) Show that sn(t;0) = sin t, cn(t;0) = cos t, dn(t;0) = 1 and sn(t;1) = tanh t,
cn(t;1) = sech t, dn(t;1) = sech t.

d) Define

ξ (t) =
cn(t;k)
dn(t;k)

, η(t) =−k′
sn(t;k)
dn(t;k)

, and ζ (t) = k′
1

dn(t;k)
.

Show that t → (ξ (t),η(t),ζ (t)) is an integral curve of (101) passing through (1,0,k′)
at t = 0. Since t → (

sn(t+K;k),cn(t+K;k),dn(t+K;k)
)

is also an integral curve
of (101) passing through (1,0,k′) at t = 0, deduce that

sn(t +K;k) =
cn(t;k)
dn(t;k)

, cn(t +K;k) = −k′
sn(t;k)
dn(t;k)

, and dn(t +K;k) = k′
1

dn(t;k)
.

Conclude that sn(t;k) and cn(t;k) are periodic of period 4K while dn(t;k) is peri-
odic of period 2K.

e) Using the substitution x = iy/
√

1− y2 the integral u =
∫ x

0
1√

(1−x2)(1−k2x2)
dx be-

comes u = i
∫ iy/

√
1−y2

0
1√

(1−y2)(1−(k′)2y2)
dy. Let w = iu. Then y = sn(w;k′). There-

fore

sn(u;k) = i
sn(w;k′)
cn(w;k′)

, cn(u;k) =
1

cn(w;k′)
, and dn(u;k) =

dn(w;k′)
cn(w;k′)

.

Show that sn(w;k′),cn(w;k′) and dn(w;k′) are periodic of period 4K′, 4K′ and 2K′

respectively where K′ =
∫ 1

0
1√

(1−y2)(1−(k′)2y2)
dy. Thus sn, cn and dn have a second

purely imaginary period of 4iK′,4iK′ and 2iK′ respectively.

2. (Euler’s equations on S2
� .) Let x ∈ R3 and let 〈 , 〉 be the Euclidean inner product

on R3. On the 2-sphere S2
� ⊆ R3 given by 〈x,x〉 = �2 show that every vector in

T(x,y,z)S2
� = {ξ ∈ R3| 〈x,ξ 〉= 0} can be written as x×p for some p ∈ R3.

a) Define a 2-form ω� on S2
� by ω�(x)

(
x×p,x× s

)
= 〈x,p× s〉, where p,s ∈ R3.

Show that ω� is the element of surface area of S2
� and that it is a symplectic form.

b) On the symplectic manifold (S2
� ,ω�) consider the Hamiltonian function

H : S2
� ⊆ R3 → R : (x,y,z)→ 1

2 (ax2 +by2 + cz2),
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where a > b > c > 0. Show that the Hamiltonian vector field XH has integral curves
which satisfy Euler’s equations

ẋ = −(b− c)yz
ẏ = (a− c)xz
ż = −(a−b)xy.

(102)

Note that (102) defines a vector field on R3 which has S2
� as an invariant manifold.

c) Integrate Euler’s equations using Jacobi elliptic functions, see exercise 1. In
particular show that

i) When �2b ≥ 2h ≥ �2c,
(
x(t),y(t),z(t)

)
=

(
Acn(nt;k), Bsn(nt;k),

C dn(nt;k)
)
, where

A2 =
2h− c�2

a− c
, B2 =

2h− c�2

b− c
, C2 =

a�2 −2h
a− c

n =
√
(a�2 −2h)(b− c) and k =

√
(a−b)(2h− c�2)

(b− c)(a�2 −2h)
.

ii) When �2a ≥ 2h ≥ �2b,
(
x(t),y(t),z(t)

)
=

(
Adn(nt;k), Bsn(nt;k),

C cn(nt;k)
)
, where

A2 =
2h− c�2

a− c
, B2 =

a�2 −2h
a−b

, C2 =
a�2 −2h

a− c

n =
√
(a−b)(2h− c�2) and k =

√
(b− c)(a�2 −2h)
(a−b)(2h− c�2)

.

The signs of A,B and C above are chosen so that x(t),y(t) and z(t) lie in
one of the connected components of{

x2 + y2 + z2 = �2

ax2 +by2 + cz2 = 2h,

when 2h = �2b. When 2h = �2b all choices of sign are possible.

3. Let × be the vector product and 〈 , 〉 the Euclidean inner product on R3. For x,y,z ∈
R3 show that

a) x× (y× z) = 〈x,z〉y−〈x,y〉z.

b) x× (y× z) = (x× y)× z+ y× (x× z).

c) 〈x,y× z〉= det(col(x,y,z)) = 〈x× y,z〉.
d) 〈x× y,x× y〉+ 〈x,y〉2 = 〈x,x〉〈y,y〉.
e) Let A : R3 → R3 be an invertible linear mapping. Show that A(x× y) =

1
detA (Ax×Ay), for any x,y ∈ R3.

From b) deduce that (R3,×) is a Lie algebra, which is isomorphic to (so(3), [ , ]).
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4. (Coriolis’ theorem.)

a) We establish some terminology which allows us to state Coriolis’ theorem pre-
cisely. Let (V,( , )) be 3-dimensional Euclidean space with its standard inner prod-
uct. A frame of reference F is a positively oriented orthonormal basis { f1, f2, f3}
of V . We say that the vector v ∈ V looks like the vector x ∈ R3 in the frame
F if and only if v = ∑3

i=1 xi fi. Corresponding to the frame F is its coframe
F ∗ = { f ∗1 , f ∗2 , f ∗3 }, where f ∗i ( f j) = δi j. Suppose that A = {a1,a2,a3} is a refer-
ence frame such that the vector v looks like the vector X ∈ R3, that is, v = ∑3

i=1 Xiai.
Let A = (Ai j) be the 3× 3 matrix whose i jth entry Ai j = f ∗i (a j), that is, a j looks
like the jth column of A in the frame F . Show that x = AX .

b) Let A : R → SO(3) : t �→ A(t) = col(a1(t),a2(t),a3(t)). Then A = {a1(t),a2(t),
a3(t)} is a reference frame for V whose jth member a j(t) looks like the jth column
of the matrix A(t) with respect to the fixed frame F . We say that A is a reference
frame which rotates with respect to the fixed frame F . Let x : R → R3 : t �→ x(t)
be a differentiable function. Suppose that Ξ : R →V : t �→ Ξ(t) is a motion in V so
that its position Ξ(t) at time t in the fixed frame F looks like x(t); while is position
in the rotating frame A looks like X(t). Show that x(t) = A(t)X(t).

c) Differentiating the preceding equation gives

dx
d t

= Ȧ(t)X +A(t)
dX
d t

= Ȧ(t)A−1x+A(t)
dX
d t

. (103)

The velocity of t �→ Ξ(t) at time t with respect to the fixed frame F is a vector in V
which looks like dx

d t ; while with respect to the rotating frame it is a vector in V which
looks like dX

d t . The skew symmetric matrix A′(t)A−1(t) ∈ so(3) is an infinitesimal
motion in the fixed frame at time t. The corresponding vector ω = i(Ȧ(t)A−1(t)) in
R3 is the angular velocity at time t with respect to the fixed frame. Show that

dx
d t

−ω(t)× x(t) = A(t)
dX
d t

. (104)

This is Coriolis’ theorem in the fixed frame.

d) Write Ȧ(t)A−1(t) = A(t)
(
A−1Ȧ(t)

)
A−1(t) = AdA(t)

(
A−1(t)Ȧ(t)

)
. Deduce that

ω(t) = A(t)Ω(t), where Ω(t) = i(A−1(t)Ȧ(t)) is the angular velocity at time t with
respect to the rotating frame. Show that (103) can be written as

dx
d t

= A(t)
[

Ω(t)×X +
dX
d t

]
. (105)

This is Coriolis’ theorem in the rotating frame.

5. (Moment of inertia tensor.)

a) A body is a set of points B ⊆ R3 with a mass distribution given by a positive
measure dm, whose support is B and is not contained in any line through the origin.
Assume that the center of mass of the body is at the origin in R3, that is, the first
moments

∫
xi dm of dm are zero for i = 1,2,3. A body is rigid if the Euclidean
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distance between any two of its points does not change when the body is moving.
Let ξ (t,X) be the position of a point X in the body at time t whose position at
time 0 is X . Show that for a rigid body there is a unique A(t) ∈ O(3) such that
ξ (t,X) = A(t)X . Suppose that the curve R → O(3) : t → A(t) is smooth and that
the initial position A(0) of the body is id. Then A(t) ∈ SO(3).

b) Let 〈 , 〉 be the Euclidean inner product on R3. Let A = {a1(t),a2(t),a3(t)},
where A(t) = col

(
a1(t),a2(t),a3(t)

) ∈ SO(3), be a frame, which is corotating with
the body B. The kinetic energy (of rotation) of a rigid body B in the frame A is

K = 1
2

∫
B
〈ξ̇ (t,X), ξ̇ (t,X)〉 dm = 1

2

∫
B
〈ȦX , ȦX〉 dm = 1

2

∫
B
〈A−1ȦX ,A−1ȦX〉 dm.

Now Ω(t) = i
(
A−1Ȧ(t)

) ∈ R3 is the angular velocity of B at time t with respect to
the frame A . Then (A−1Ȧ)X = i(A−1Ȧ)×X = Ω×X . So

K = 1
2

∫
B
〈Ω×X ,Ω×X〉 dm = 1

2

∫
B
〈Ω,Ω〉〈X ,X〉−〈Ω,X〉2 dm.

Let M = (Mi j) = (
∫

XiXj dm) be the matrix of second moments of the mass distri-
bution dm of B. Then M is a symmetric 3× 3 matrix with Mii ≥ 0 for i = 1,2,3.
Show that M =

∫
B X ⊗X∗ dm, where X ⊗X∗ ∈ R3⊗ (R3)∗ = gl(3,R) is defined by

(X ⊗X∗)(Y ) = X∗(Y )X = 〈X ,Y 〉X for every Y ∈ R3. Show that

K = 1
2

(〈Ω,Ω〉 trM−〈MΩ,Ω〉)= 1
2 〈IΩ,Ω〉,

where I : R3 → R3 : ω �→ (trM)ω −Mω is the moment of inertia tensor of B.

c) Let ξ (t,X) = OAX be the position of the body at time t, where O ∈ SO(3). Show
that OX ⊗ (OX)∗ = O(X ⊗X∗)O−1 and deduce that

K = 1
2

(〈Ω,Ω〉 tr(OMO−1)−〈(OMO−1)Ω,Ω〉).
Choose O ∈ SO(3) so that OMOt = diag(M1,M2,M3). Such a rotation O is called
a principal axis transformation. Show that K = 1

2 〈IΩ,Ω〉, where I = diag(I1, I2, I2)
with I1 = M2 +M3, I2 = M1 +M3 and I3 = M1 +M2, which are called the principal
moments of inertia of B. Show that

0 ≤ I1 ≤ I2 + I3, 0 ≤ I2 ≤ I1 + I3, and 0 ≤ I3 ≤ I1 + I2. (106)

d) Let L =
∫
B X × (Ω×X) dm. Show that L = IΩ. So L is the angular momentum

of B in the corotating frame A . Using the notation L instead of p, show that we
can write Euler’s equations ṗ = p× I−1 p as L̇ = L×Ω. Let �=

∫
B x× (ω ×x) dm,

where x = AX and ω = AΩ. Show that �= AL. Hence � is the angular momentum
of B in the fixed frame F = {e1,e2,e3}. Using Coriolis’ theorem and Euler’s
equations show that �̇= 0, that is, � is constant during the motion of B. Conversely,
if we know that �̇= 0, then using Coriolis’ theorem deduce Euler’s equations.

6. Show that every q ∈ H can be written uniquely as α +β · j for some α,β ∈ C =
R+R · i ⊆ H. For every α ∈ C show that j ·α · j = −α . Verify that the map

θ : S3 ⊆ H → SU(2) : α +β · j →
(

α β
−β α

)
is an isomorphism of Lie groups.
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7. (Equation of the herpolhode.) Let γ̃ : R → SO(3)× R3 : t �→ (
Ã(t), p(t)

)
be a

solution of the Euler-Arnol’d equations of motion of the Euler top of energy h
and angular momentum � = |�|e3. Let P be the Poinsot mapping (80). Then
Γ : R → R3 : t �→ P(γ̃(t)) = Ã(t)(I′)−1 p(t) is the herpolhode corresponding to γ̃ .

a) Let Ω(t) = (I′)−1 p(t) and set ω(t) = Ã(t)Ω(t). Then ω(t) is the angular velocity
of the top in the space frame at time t. Show that Γ(t) = ω(t).

b) Let Mi = |�|−1 pi. Using the solution of the Euler-Arnol’d equations (61a) and
(61b), show that Ã(t) = col

(
x(t),y(t),(x× y)(t)

)
, where

x(t) =
(√

1−M2
1 cosθ ,

√
1−M2

1 sinθ ,M1
)

y(t) =
( −1√

1−M2
1

[
M1M2 cosθ +M3 sinθ

]
, 1√

1−M2
1

[
M3 cosθ −M1M2 sinθ

]
,M2

)
(x× y)(t) =

( −1√
1−M2

1

[
M1M3 cosθ −M2 sinθ

]
, −1√

1−M2
1

[
M2 cosθ +M1M3 sinθ

]
,M3

)
.

c) Using ω(t) = Ã(t)Ω(t) and the fact that ∑3
i=1 MiΩi = 2|�|−1h, show that

⎛⎝ω1(t)
ω2(t)
ω3(t)

⎞⎠ =

⎛⎝Ω1 −2|�|−1hM1 −(Ω2M3 −Ω3M2) 0
Ω2M3 −Ω3M2 Ω1 −2|�|−1hM1 0

0 0 1

⎞⎠
⎛⎜⎜⎜⎝

cosθ√
1−M2

1
sinθ√
1−M2

1

2|�|−1h

⎞⎟⎟⎟⎠
=

⎛⎝cosϕ −sinϕ 0
sinϕ cosϕ 0

0 0 1

⎞⎠⎛⎝Rcosθ
Rsinθ
2|�|−1h

⎞⎠=

⎛⎝R(t)cos
(
θ(t)+ϕ(t)

)
R(t)sin

(
θ(t)+ϕ(t)

)
2|�|1h

⎞⎠,

where

R(t)2 = (Ω1−2|�|−1hM1)
2+(Ω2M3−Ω3M2)

2

1−M2
1

= 1
|�|2

(|�|2I−1
1 )2 p2

1+|�|2(I−1
2 −I−1

3 )2 p2 p3

|�|2−p2
1

and
tanϕ(t) = Ω2M3−Ω3M2

Ω1−2|�|−1hM1
=

|�|(I−1
2 −I−1

3 )p2(t)p3(t)

(|�|2I−1
1 −2h)p1(t)

.

d) Show that the herpolhode angle is Δϑ(T ) = Δθ(T ) +Δϕ(T ), where T is the
period of a solution of Euler’s equations of energy h and angular momentum mag-
nitude |�|. Using the results of exercise 1 show that

Δϕ(T ) =
{

0, if I−1
2 |�|2 < 2h < I−1

1 |�|2
2π, if I−1

3 |�|2 < 2h < I−1
2 |�|2.

8. Let T 2 ⊆R4 be a 2-dimensional torus. Suppose that π : T 2 → [0,1]×S1 is a smooth
surjective mapping such that π−1({0}×S1) and π−1({1}×S1) are each the union
of two disjoint circles which are the only singularities of π and are fold points.
Show that T 2 cannot be embedded in R3.

9. Consider T1S2 ⊆ R6 as a Lie group. Give a symplectic form on T R6 whose restric-
tion to T1S2 ×R3 is the canonical symplectic form on T (T1S2) pulled back by left
trivialization.
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10. Consider a vector field on X on a flat 2-torus T 2 = R2/Z2 in R4 whose flow is a
projection of the straight line flow on R4 with slope p/q, where p,q are relatively
prime positive integers. Let j : T 2 → S3 be an embedding. Give a vector field Y on
S3 such that j∗(Y | j(T 2)) = X .

a) Let π : S3 \ {(0,0,0,1)} → R3 be stereographic projection from the north pole.
Show that π(T 2) is a 2-torus in R3. An integral curve γ of Y is called a p-q torus
knot. Draw a picture of π(γ) when (p,q) = (2,3). This knot is called the trefoil.
Draw a picture of the projection of π(γ) on R2 using a convention which distin-
guishes over crossings from under crossings. Here we assume that π(γ) is oriented.
Construct an orientable surface bounded by π(γ) from its planar projection by re-
placing every crossover with a rectangle which has been given a counterclockwise
half twist and whose edges lie on π(γ). Fill in the remaining pieces of π(γ) with
rectangles. Do this for the trefoil knot. Find a different filling procedure which
produces a nonorientable surface bounded by π(γ). Show that the 2-1 torus knot
bounds a Möbius band.

b) Suppose that γ and γ ′ are two distinct integral curves of the vector field X on T 2.
Then γ and γ ′ are called parallel p-q torus knots. Find a formula for the linking
number of π(γ) and π(γ ′).

11. (A geometric formula for the rotation number.) Let Γ : [0,T ]→ S2
|�| : t �→ p(t) be a

periodic solution of period T of Euler’s equations (102) on (S2
|�|,ω = volS2

|�|
), which

has energy h = 1
2 (ap2

1 + bp2
2 + p2

3) with a > b > c > 0 and angular momentum of
magnitude �.

a) Recall that β (p) = |�|(bp2
2+cp2

3)

|�|2−p2
1

. Show that β (p) = 2h
|�| +

2h−a|�|2
|�|

p2
1

|�|2−p2
1
. Deduce

Δθ(T ) =
∫ T

0
β (p(t)) dt = 2h

|�|T − a|�|2−2h
|�|

∫ T

0

p2
1(t)

|�|2 − p2
1(t)

dt.

The above formulae expresses the rotation number of the flow of XH on T 2
h,�e3

as the
sum of a dynamic and a geometric phase.

b) Write the eastern hemisphere of S2
|�| as p1

|�| =
√

1− p2
2

|�|2 −
p2

3
|�|2 and recall that its

volume form σ is 1
|�|

dp2∧dp3
p1

. Show that

σ =− 1
|�| d

(
p1

[
p2 d p3 − p3 dp3

p2
2 + p2

3

])
.

Using Stokes’ theorem show that the unoriented area |A| of the domain D in S2
�

bounded by the curve Γ is given by

1
|�|

∫ T

0
p1(t)

(
p2(t)ṗ3 − p3(t)ṗ2

p2
2(t)+ p2

3(t)

)
dt.

Using Euler’s equations (102) show that |A| is the absolute value of the integral
giving the geometric phase of the rotation number Δθ(T ).

The Euler top



III.9 Exercises 137

c) Determine the oriented area A as follows. Note that σ = −|σ |. If a|�|2 > 2h >

b|�|2, then Γ encloses the positive p1-axis in R3 and is traced out in a clockwise
fashion. Hence Γ has negative orientation. If b|�|2 > 2h > c|�|2 then Γ encloses the
positive p3-axis and it traced out counterclockwise. Thus Γ has a positive orienta-
tion. Use a rotation which takes the positive p3-axis to the positive p1-axis so that
the oriented areas can be compared. Deduce the formula

Δθ(T ) = 2h
|�|T −

{
A, if a|�|2 > 2h > b|�|2

−A, if b|�|2 > 2h > c|�|2.

12. (The twisting phenomenon.) Let {ê1, ê2, ê3} be the principal axes of a triaxial rigid
body with principal moments of inertia 0 < I1 < I2 < I3. Let {e1,e2,e3} be a frame
fixed in space which is the principal axis frame at time t = 0. Assume that the body
is a tennis racket, that is, I3 ≈ I1 + I2 and I1 � I2.

a) (Almost uniform rotation of the handle.) Because the handle ê1 moves nearly in
the e1–e2 plane, see ((8.1)), the amount that its projection on the e1–e2 plane rotates
around the e3-axis is nearly the same as the amount that ê1 rotates around e3. This
latter rotation at time t is θ(t) =

∫ t
0 β (s)ds, where

β (t) = |�|(I−1
2 p2

2(t)+ I−1
3 p2

3(t)
)(|�|2 − p2

1(t)
)−1,

and t �→ p(t) is a periodic solution of Euler’s equations on S2
h,� of energy h and

period T = T (h, �). Prove the following. There is an M > 0 such that for every
t ∈ R we have |θ(t)−β t| ≤ M, where β = 1

T
∫ T

0 β (s)ds. First show that

β (t) =
2h
|�| −

1
|�| (|�|

2I−1
1 −2h)

p2
1(t)

|�|2 − p2
1(t)

. (107)

From the fact the β (t)−β is a periodic function of period T and average value 0
deduce that

|
∫ t

0
(β (s)−β )ds| ≤

∫ T

0
|β (s)−β |ds = M

for every t ∈R. For a tennis racket-like body M is small, when h is close to 1
2 |�|2I−1

2 .
To see this use the triangle inequality to show that

M ≤ 2
|�| (|�|

2I−1
1 −2h)

∫ T

0

p2
1(s)

|�|2 − p2
1(s)

ds. (108)

Using (108) and the fact that |p1(t)| ≤
√(

2h−|�|2I−1
3

)
/
(
I−1
1 − I−1

3

)
, see the proof

of ((8.1)), deduce the estimate: M ≤ 2T (2h−|�|2I−1
3 )/|�|. When h ≈ |�|2/2I2 show

that |�|T ≈ 2π/
√
(I−1

1 − I−1
3 )(I−1

2 − I−1
3 ). Note that the right hand side of the pre-

ceding formula is the period of rotation of the body around its intermediate axis.
Using the fact that the rigid body is tennis racket-like, it follows that M ≈ 4πI1/I2
which is small.
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Use the same kind argument as in estimating the right hand side of (108) to prove
β ≥ 2h

|�| − 1
|�| (2h−|�|2I−1

3 ) = |�|/I3. Thus the time the projection of ê1 on the e1–e2

plane needs to make one revolution about e3 is at most 2πI3/|�|.
b) (Enough time to twist.) From (107) it follows immediately that β ≤ 2h/|�|.
When h = 1

2 |�|2/I2, we find that β ≤ |�|/I2. Therefore the time needed for the
projection of ê1 on the e1–e2 plane to make one revolution about e3 is at least t∗ =
2πI2/|�|. For a tennis racket-like body show that t∗ is larger than the characteristic

twisting time 2π/
√
(I−1

1 − I−1
3 )(I−1

2 − I−1
3 ).

c) (A long time near γ+2 .) Show that the racket moving near the unstable (stable)
manifold of γ+2 (γ−2 ) spends most of its time near γ−2 (γ+2 ). The hyperbolic character
of the periodic orbits γ±2 is essential here.

d) (No twist region.) Consider the function

F(p1, p2, p3) = (I−1
1 − I−1

2 )p2
1 +(I−1

2 − I−1
3 )p2

3

on the energy surface h = 1
2

(
I−1
1 p2

1 + I−1
2 p2

2 + I−1
3 p2

3
)
. The following argument

shows that a tennis racket will not make a half twist if

F(0)< 2I3h(I−1
2 − I−1

3 )e2nt0 , (109)

where t0 =
2πI3
|�| and n = |�|

√
(I−1

2 − I−1
3 )(I−1

1 − I−1
3 ). First show that

Ḟ = LX F = −4(I−1
1 − I−1

3 )(I−1
2 − I−1

3 ) p1 p2 p3,

where X is the Euler vector field X(p) = p× (I′)−1 p on S2
|�|. Using the inequali-

ties |p2| ≤ |�| and |p1 p3| ≤ 1
2 (σ

−1 p2
1 +σ p2

3) with σ =
√

(I−1
2 − I−1

3 )/(I−1
1 − I−1

3 )

deduce that |Ḟ | ≤ 2|�|nF . This inequality integrates to F(t)≤ F(0)e2nt . By a) the
largest time required for the projection of the handle on the e1–e2 plane to make
one revolution is t0 = 2πI3/|�|. Therefore if F(0) is sufficiently small then F(t) is
not very large for t ∈ [0, t0]. Thus we need a bound on F(t) which excludes the oc-
curence of a half twist. From its definition λ = F(p(t)) = F(t) determines a family
of ellipses

E λ : (I−1
1 − I−1

2 )p2
1 +(I−1

2 − I−1
3 )p2

3 = λ .

Show that if for every t ∈ [0, t0] the curve E λ lies in the interior of the ellipse

E : 2h = I−1
1 p2

1 + I−1
3 p2

3

then the integral curve t �→ p(t) of the vector field X on the energy surface does not
cross the {p2 = 0} plane. From I3 − I2 ≤ I2 − I1 deduce the estimate

F(t)≥ I3(I−1
2 − I−1

3 )(I−1
1 p2

1 + I−1
3 p2

3).

Show that Eλ lies in the interior of E if F(t)< 2hI3(I−1
2 − I−1

3 ). Show that if (109)
holds on the energy surface then no twist occurs.

The Euler top



Chapter IV

The spherical pendulum

In this chapter we treat the spherical pendulum as a constrained Hamiltonian system. We
derive Hamilton’s equations and show that there is an axial symmetry which gives rise to
a conserved angular momentum. Thus the spherical pendulum is a Liouville integrable
Hamiltonian system. Using the technique of singular reduction, see chapter VII §7, we
remove the axial symmetry to obtain a Hamiltonian system with one degree of freedom
which we analyze. From the qualitative description of the reduced system we obtain a
complete qualitative picture of the motion of the spherical pendulum. Because of mon-
odromy, the Liouville tori fit together in a nontrivial way. This precludes the existence of
global action coordinates, see chapter XI §1.

1 Liouville integrability

First we recall some standard facts about Hamiltonian systems on T R3, see chapter VI
§3. Let 〈 , 〉 be the Euclidean inner product and × the usual vector product on R3. Let
ζ = (x,y) be canonical coordinates on T R3, that is, the canonical symplectic 2-form is
ω = ∑3

i=1 dxi ∧dyi. Corresponding to a smooth Hamiltonian function H : T R3 → R is its
Hamiltonian vector field XH , whose integral curves satisfy Hamilton’s equations

dx
dt

=
∂H
∂y

dy
dt

=−∂H
∂x

.

(1)

Using the symplectic form ω , we define a Poisson bracket { , }T R3 on C∞(T R3) by

{ f ,g}T R3 = ω(Xf ,Xg) = ∑
i, j

∂ f
∂ζi

∂g
∂ζ j

{ζi,ζ j}T R3 ,

whose structure matrix is ({ζi,ζ j}T R3) =

(
0 I3

−I3 0

)
. In terms of Poisson brackets Hamil-

ton’s equations for XH read

� Springer Basel 2015
R.H. Cushman and L.M. Bates, Global Aspects of Classical
Integrable Systems, DOI 10.1007/978-3-0348-0918-4_4
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ẋ = {x,H}T R3

ẏ = {y,H}T R3 .
(2)

We now describe the spherical pendulum as a constrained Hamiltonian system. First
consider the unconstrained Hamiltonian system (H,T R3,ω) with Hamiltonian

H : T R3 → R : (x,y)→ 1
2 〈y,y〉+ γ 〈x,e3〉. (3)

The integral curves of XH give the motion of a particle of unit mass in R3 under a constant
vertical gravitational force. Choosing an appropriate unit of length, we may assume that
γ = 1. Now constrain the particle to move on the tangent bundle T S2 of the 2-sphere S2 ⊆
R3, which is defined by {(x,y) ∈ T R3 〈x,x〉= 1 & 〈x,y〉= 0}. Then Newton’s equations
of motion are

ẍ+ e3 = λx, (4)

so that the resultant force on the particle is normal to S2. We determine the multiplier λ in
(4) by differentiating the constraint equation 0 = 〈x,x〉−1 twice and then using (4). This
gives

0 = 〈ẋ, ẋ〉+ 〈x, ẍ〉= 〈ẋ, ẋ〉−〈x,e3〉+λ 〈x,x〉= 〈ẋ, ẋ〉−〈x,e3〉+λ .

Thus the constrained equations of motion are

ẍ =−e3 +
(〈x,e3〉−〈ẋ, ẋ〉)x,

which written as a first order system are

ẋ = y
ẏ =−e3 +

(〈x,e3〉−〈y,y〉)x. (5)

Suppose that (x,y) ∈ T S2 and that t �→ (
x(t),y(t)

)
is a solution of (5) starting at (x,y).

Then

d
dt

(〈x,x〉−1
)
= 2〈x, ẋ〉= 2〈x,y〉= 0

d
dt
〈x,y〉= 〈ẋ,y〉+ 〈x, ẏ〉= 〈y,y〉−〈e3,x〉+

(〈x,e3〉−〈y,y〉)〈x,x〉= 0.

� So
(
x(t),y(t)

) ∈ T S2. In other words, T S2 is an invariant manifold of (5).

Next we show that (5) are Hamilton’s equations for the constrained Hamiltonian system
(H|T S2,T S2,ω|T S2), which is the spherical pendulum.

The following argument shows that the 2-form ω|TS2 is symplectic.

(1.1) Proof: Let T0R3 = (R3 \{0})×R3. The constraint functions

c1 : T0R3 → R : (x,y) �→ 〈x,x〉−1 and c2 : T0R3 → R : (x,y) �→ 〈x,y〉
define the function C : T0R3 → R2 : m �→ (

c1(m),c2(m)
)
, whose 0-level set C−1(0) is

the constraint manifold T S2. Since 0 is a regular value of C , the constraint manifold T S2
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is smooth. For every (x,y) ∈ T0R3 the matrix
({ci,c j}T R3(x,y)

)
= 2〈x,x〉

(
0 1
−1 0

)
is

invertible with inverse C = (Ci j) =
1

2〈x,x〉

(
0 −1
1 0

)
. Consequently, the constraint manifold

T S2 is cosymplectic. Therefore ω|T S2 is a symplectic form, see chapter VI ((4.7)). �

Using modified Dirac brackets, see chapter VI §4, we compute Hamilton’s equations for
the constrained Hamiltonian H|T S2 (3) as follows. Let

H∗ = H −
2

∑
i, j=1

({H,ci}T R3 +Hi)Ci j c j (6)

= 1
2 〈y,y〉+ 〈x,e3〉+ 1

2〈x,x〉
(−2〈x,y〉+H1

)〈x,y〉
− 1

2〈x,x〉
(−〈y,y〉+ 〈x,e3〉+H2

)(〈x,x〉−1
)
,

where Hi is in the ideal of the commutative algebra (C∞(T S2), ·) of smooth functions on
T S2 generated by the constraints c j with j = 1,2. Choose H1 = −〈x,y〉(〈x,x〉− 2

)
and

H2 =−(〈x,x〉−1
)(〈y,y〉−〈x,e3〉

)
. Then

H∗(x,y) = 1
2 〈y,y〉+ 〈x,e3〉+ 1

2

(〈y,y〉−〈x,e3〉
)(〈x,x〉−1

)− 1
2 〈x,y〉2.

Using (2), we see that on T0R3 the Hamiltonian vector field XH∗ has integral curves which
satisfy

dx
dt

= y+ y
(〈x,x〉−1

)−〈x,y〉x
dy
dt

=−e3 +
1
2 e3

(〈x,x〉−1
)− (〈y,y〉−〈x,e3〉

)
x+ 〈x,y〉y.

We have XH∗|T S2 = XH|T S2 . Therefore Hamilton’s equations for the spherical pendulum
are given by (5).

We now look at the symmetries of the spherical pendulum. As a physical system in R3,
the spherical pendulum is invariant under a counterclockwise rotation R̃t =

⎛⎝cos t −sin t 0
sin t cos t 0

0 0 1

⎞⎠
through an angle t about the positive x3-axis. Lifting this to T R3 gives the S1-action

Φ : S1 ×T R3 → T R3 : (x,y) �→ (R̃tx, R̃ty). (7)

The infinitesimal generator of the S1-action Φ is the vector field Y (x,y) = d
dt t=0

Φt(x,y),
whose integral curves satisfy

dx
dt

= x× e3

dy
dt

= y× e3.

(8)

Using (1) we see that Y is the Hamiltonian vector field XJ corresponding to the Hamilto-
nian function

J : T R3 → R : (x,y)→ 〈x× y,e3〉= x1y2 − x2y1. (9)
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Thus J is the momentum mapping of the S1-action Φ. Since T S2 is invariant under Φ,
the spherical pendulum has an S1-symmetry, namely, the S1-action Φ|(S1 ×T S2). This
symmetry gives rise to the integral J|T S2, because the Hamiltonian H|T S2 is invariant
under Φ, which implies

{J|T S2,H|T S2}T S2 =−LXJ|T S2 (H|T S2) = 0. (10)

Hence the spherical pendulum is Liouville integrable.

2 Reduction of the S1 symmetry
We remove the S1 symmetry Φ|(S1 × T S2) of the spherical pendulum using singular
reduction, see chapter VII §7. The regular reduction theorem does not apply,
because the S1-symmetry Φ|(S1 × T S2) leaves the points (0,0,±1,0,0,0) fixed. After
reduction we get a one degree of freedom Hamiltonian system on a singular reduced
phase space.

2.1 The orbit space T R3/S1

As a first step in the reduction process we find the invariants of the S1-action Φ (7).

Claim: The algebra R [x,y]S
1

of polynomials on T R3, which are invariant under the S1-
action Φ, is generated by

ξ1 = x1y1 + x2y2 ξ3 =
1
2 (y

2
1 + y2

2 − x2
1 − x2

2) η1 = x3

ξ2 = x1y2 − x2y1 ξ4 =
1
2 (y

2
1 + y2

2 + x2
1 + x2

2) η2 = y3.
(11)

(2.1) Proof: The action Φ fixes every point on the 2-plane

Π =
{
(0,0,η1,0,0,η2) ∈ T R3 (η1,η2) = (x3,y3) ∈ R2}. (12)

Therefore the algebra of polynomials invariant under Φ|(S1 ×Π) is R[x3,y3], the algebra
of polynomials in the variables x3 and y3. The action Φ|(S1 ×T (R2 ×{0})) is

Φ̃ : S1 ×R2 → R2 : (t, x̃, ỹ) �→ (Rt x̃,Rt ỹ),

where x̃ = (x1,x2), ỹ = (y1,y2), and Rt =
(

cos t −sin t
sin t cos t

)
. In other words, Φ̃ is the diagonal

action of SO(2,R) on R2 ×R2. Therefore R[x,y]S
1
= R[x3,y3]⊗R[x̃, ỹ]S

1
. It follows that

R[x̃, ỹ]S
1

is generated by ξi (11) for 1 ≤ i ≤ 4, compare with ((5.2)) of chapter I. �

� The generators ξi, 1 ≤ i ≤ 4 and η j, 1 ≤ j ≤ 2 of R[x,y]S
1

satisfy only one relation

ξ 2
1 +ξ 2

2 +ξ 2
3 = ξ 2

4 , ξ4 ≥ 0, (13)

that defines the semialgebraic variety W ×R2 of R6 = R4 ×R2 with coordinates (ξ ,η).

(2.2) Proof: Use an argument analogous to the one demonstrating ((5.4)) in chapter I. �
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Let

ς : T R3 → R6 : (x,y) �→ (
ξ (x,y),η(x,y)

)
=

(
ξ1(x,y), . . . ,ξ4(x,y),η1(x,y),η2(x,y)

)
(14)

� be the Hilbert map of the S1-action Φ (7). As a set the space of T R3/S1 of S1 orbits is the
semialgebraic variety W ×R2 = ς(T R3) defined by (13).

(2.3) Proof: We need a better description of the fibers of the Hilbert map ς . Let ξ ∈ W and

suppose that ς(x,y) = (ξ ,0) with ξ4+ξ3 = y2
1+y2

2 > 0. Then solving
{

ξ1 = x1y1 + x2y2
ξ2 = x2y1 − x1y2

for (x1,x2) gives
{

x1 = (y1ξ1 − y2ξ2)/(ξ4 +ξ3)
x2 = (y2ξ1 + y1ξ2)/(ξ3 +ξ4)

. Thus ς−1(p)⊆V1 ×{(0,0)} where

V1 =
{
(x1,x2,y1,y2) ∈ T R3 ξ3 +ξ4 > 0 &

{
x1 = (y1ξ1 − y2ξ2)/(ξ4 +ξ3)
x2 = (y2ξ1 + y1ξ2)/(ξ4 +ξ3)

}
.

Using the relation ξ 2
1 +ξ 2

2 = (ξ4 +ξ3)(ξ4 −ξ3), a calculation shows that for every q ∈V1
we have ς(q,0) = (ξ ,0). Consequently, V1 ×{(0,0)}= ς−1(ξ ,0). Clearly V1 ×{(0,0)}
is a single orbit of the S1-action Φ. Under the hypothesis that ξ4 − ξ3 = x2

1 + x2
2 > 0, a

similar argument shows that V2 ×{(0,0)}= ς−1(ξ ,0), where

V2 =
{
(x1,x2,y1,y2) ∈ T R3 ξ4 −ξ3 > 0 &

{
y1 = (x1ξ1 + x2ξ2)/(ξ4 −ξ3)
y2 = (x2ξ1 − x1ξ2)/(ξ4 −ξ3)

}
.

Note that ς−1(0,η) = {(0,0,x3,0,0,y3)∈ T R3 (x3,y3) = (η1,η2)} is an orbit of Φ, being
a fixed point. Thus the image of the Hilbert map ς is the semialgebraic variety W ×R2

(14). Since each fiber of ς is a single S1-orbit of Φ, it follows that W ×R2 is the orbit
space T R3/S1. �

Claim: The orbit space T R3/S1 is homeomorphic to W ×R2 via the mapping ς induced
by the Hilbert map ς .

(2.4) Proof: Let ρ : T R3 → T R3/S1 be the orbit map, which assigns to each (x,y)∈ T R3 the S1

orbit (x,y) = {Φt(x,y) ∈ T R3 t ∈ S1}. Since by definition the Hilbert map ς is invariant
under the S1-action Φ, it induces a map

ς : T R3/S1 →W ×R2 : (x,y) �→ ς(x,y).

The map ς is continuous because the Hilbert map ς is and the orbit map ρ is continuous
and open by definition of the topology of the orbit space T R3/S1, see chapter VII §2.
Since every fiber of the Hilbert map ς is an S1-orbit and ς is surjective, it follows that the
map ς is bijective.

To verify that the inverse of ς is continuous, it is enough to show that the map ς has a
continuous local cross section. Towards this goal consider the mappings

ψ1 : U1 = (W ×R2)\{ξ3 = ξ4}→ T R3 :

(ξ ,η) �→ (
0,

√
ξ4 −ξ3, η1, − ξ2√

ξ4 −ξ3
,

ξ1√
ξ4 −ξ3

,η2
)
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and
ψ2 : U2 = (W ×R2)\{−ξ3 = ξ4}→ T R3 :

(ξ ,η) �→ (− ξ2√
ξ4 +ξ3

,
ξ1√

ξ4 +ξ3
,η1,0,

√
ξ4 +ξ3,η2

)
.

Clearly ψ1 and ψ2 are continuous. Moreover, ς ◦ψ1 = idU1 and ς ◦ψ2 = idU2 . Thus
ψ1 and ψ2 are continuous local sections of ς . However, U1 ∪U2 = (W ×R2) \Π, see
(12). To finish the proof we need to show that ψ1 has a continuous extension ψ1 to
U1 ∪Π, namely, ψ1|Π = idΠ, while ψ1|U1 = ψ1. To see that ψ1 is continuous we argue
as follows. From the relation ξ 2

1 +ξ 2
2 +ξ 2

3 = ξ 2
4 with ξ4 ≥ 0 we get |ξi| ≤ ξ4 for 1 ≤ i ≤ 3

and |ξ j| ≤
√

ξ 2
4 −ξ 2

3 for j = 1,2. From the first of preceding inequalities we obtain√
ξ4 −ξ3 ≤

√
2ξ4; (15a)

while from the second we get

|ξ j|√
ξ4 −ξ3

≤
√

ξ4 +ξ3 ≤
√

2ξ4, for j = 1,2. (15b)

From (15a), (15b), and the definition of the mapping ψ1 it follows that

ψ1(0,0,η1,0,0,η2) = lim
ξ4↘0

(ξ ,η)∈U1

ψ1(ξ ,η) = (0,0,η1,0,0,η2).

Thus ψ1 is continuous as desired. �

2.2 The singular reduced space
In this subsection we construct the singular reduced space.

It is convenient to employ another set of generators for R[x,y]S
1
, namely

σ1 = x3 σ3 = y2
1 + y2

2 + y2
3 σ5 = x2

1 + x2
2

σ2 = y3 σ4 = x1y1 + x2y2 σ6 = x1y2 − x2y1.
(16)

Since T S2 ⊆ T R3 is invariant under the S1-action Φ (7), the defining equations

x2
1 + x2

2 + x2
3 = 1

x1y1 + x2y2 + x3y3 = 0

of T S2 may be expressed in terms of invariants as

σ5 +σ2
1 = 1

σ4 +σ1σ2 = 0. (17a)

Therefore the orbit space T S2/S1 of the S1-action Φ|(S1 × T S2) is the semialgebraic
variety V defined by (17a) and

σ2
4 +σ2

6 = σ5(σ3 −σ2
2 ), σ3 −σ2

2 ≥ 0 & σ5 ≥ 0, (17b)
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which comes from the identity (x1y1+x2y2)
2+(x1y2−x2y1)

2 = (x2
1+x2

2)(y
2
1+y2

2). Using
the invariants (σ1, . . . σ6) as coordinates on R6, (17b) defines a semialgebraic variety
Σ ⊆ R6, which is the image of the Hilbert mapping

σ : T R3 → Σ : (x,y) �→ (
σ1(x,y), . . . ,σ6(x,y)

)
(18)

of the S1-action Φ (7).

Because J|T S2 (9) is the momentum map of the S1-action Φ|(S1 ×T S2), for every j ∈ R
the reduced space Vj = (J|T S2)−1( j)/S1 is the semialgebraic subvariety of V defined by
(17a), (17b), and

σ6 = j. (17c)

Eliminating σ4 and σ5 from (17b) using (17a) and then using (17c) gives the semialgebraic
variety Pj in R3 with coordinates (σ1,σ2,σ3) defined by

σ3(1−σ2
1 )−σ2

2 − j2 = 0, |σ1| ≤ 1 & σ3 ≥ 0. (19)

In other words, the image of Vj under the projection mapping

μ : R6 → R3 :
(
σ1, . . . ,σ6

) �→ (σ1,σ2,σ3) (20a)

is the semialgebraic variety Pj. A straightforward calculation shows that the map

ν j : Pj ⊆ R3 → R6 : (σ1,σ2,σ3) �→
(
λ1, . . . ,λ6

)
=

(
σ1,σ2,σ3,−σ1σ2,1−σ2

1 , j
)

(20b)

is the inverse of μ|Vj. Since the maps μ and ν j are continuous and polynomial, the semi-
algebraic variety Vj is isomorphic to the singular reduced phase space Pj. When j = 0,

σ1

σ2

σ3

σ1

σ2

σ3

Figure 2.2.1. The singular reduced phase space Pj .
In the left figure j = 0, while in the right figure j �= 0.

Pj is diffeomorphic to R2, the diffeomorphism being the graph of the function

σ3 =
j2 +σ2

2

1−σ2
1
, |σ1|< 1.
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When j = 0, P0 is not the graph of a function, because it contains the vertical lines
{(±1,0,σ3) ∈ R3|σ3 ≥ 0}, see figure 2.2.1. P0 is not smooth because (±1,0,0) are
singular points, which correspond to the fixed points (0,0,±1,0,0,0) ∈ T S2 of the
action Φ|(S1 × T S2). However, P0 is homeomorphic to R2, because near each of its
singular points it is a cone on S1 with vertex the singular point.

In fact, P0 is the orbit space of the Z2-action Z2 ×T S1 → T S1 : (x,y) �→ (−x,−y) on T S1,
the tangent bundle of S1. Geometrically, the orbit space T S1/Z2 is obtained by taking
the piece of the cylinder T S1 on or above its equatorial zero section and then identifying
points on the resulting bounding circle which have the same x-coordinate. Physically,
P0 is the phase space T S1 of the mathematical pendulum with points identified by the
Z2-action. This identification is necessary because we can not distinguish positive and
negative velocities in the spherical pendulum. See exercise 6 of the introduction.

From the above discussion we see that singular reduction of the spherical pendulum not
only produces an accurate model of the reduced phase spaces, but also a geometrically
faithful representation of the j → 0 limit.

2.3 Differential structure on Pj

In this subsection we define the space C∞(Pj) of smooth functions on the singular reduced
space Pj. We show that the pair (Pj,C∞(Pj)) is a locally compact subcartesian differential
space, see chapter VII §3.

First we look at the Hilbert map σ : T R3 → Σ ⊆ R6 (18). We say that f : Σ ⊆ R6 → R is
smooth if and only if for every p ∈ Σ there is an open subset Up of p in R6 and a smooth
function fp : Up ⊆ R6 → R such that f |(Σ∩Up) = fp(Σ∩Up). Another way of saying this
is: f is a smooth function on Σ if and only if there is a smooth function F on R6 such that
f = F |Σ. Let C∞

i (Σ) be the collection of smooth functions on Σ. Using a partition of unity
on R6, one can show that every open subset of R6 is the inverse image of an open interval
under a smooth function. Thus every open subset of Σ in the topology induced from R6 is
the inverse image of an open interval under a smooth function on Σ. Because composing
any n-tuple of smooth functions on Σ with a smooth function on Rn results in a smooth
function on Σ, it follows that C∞

i (Σ) is a differential structure. So the pair (Σ,C∞
i (Σ)) is

a differential space, which is a locally compact subcartesian because Σ is a closed subset
of R6. Also σ is a continuous map from the differential space (T R3,C∞(T R3)) to the
differential space (Σ,C∞

i (Σ)).

� We now show that σ is a smooth mapping from (T R3,C∞(T R3)) into (Σ,C∞
i (Σ)).

(2.5) Proof: Towards this goal define the linear map σ∗ : C∞
i (Σ)→C∞(T R3) : f �→ f ◦σ . Since

the map σ is surjective, it follows that σ∗ is injective. To see this, suppose that σ∗ f = 0
for some f ∈C∞

i (Σ). Then for every (x,y) ∈ T R3 we have 0 = f (σ(x,y)). Because σ is
surjective, it follows that f = 0. Therefore σ∗(C∞

i (Σ)), which is isomorphic to C∞
i (Σ), is

a subset of C∞(T R3). Because σ : (T R3,C∞(T R3))→ (Σ,C∞
i (Σ)) is a continuous map of

differential spaces, it follows that the mapping σ is smooth, see chapter VII §3. �
� The above result can be refined somewhat to the statement that σ∗ : C∞

i (Σ)→C∞(T R3)
S1

is an isomorphism. Here C∞(T R3)
S1

is the space of smooth functions on T R3, which are
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invariant under the S1-action Φ (7).

(2.6) Proof: For every f ∈ C∞
i (Σ), the smooth function σ∗ f on T R3 is invariant under the

S1-action Φ. Consequently, σ∗(C∞
i (Σ)) ⊆ C∞(T R3)

S1
. Since Φ is a linear action of the

compact Lie group S1 on T R3, a theorem of Schwarz states that for every smooth S1-
invariant function f̃ on T R3 there is a smooth function F̃ on R6 with coordinates the
invariants σi, 1 ≤ i ≤ 6 such that f̃ = σ∗(F̃ |Σ). In other words, the linear mapping σ∗ :

C∞
i (Σ)→C∞(T R3)

S1
is surjective and hence is an isomorphism. �

Since the action Φ is proper, the orbit space T R3/S1 is a differential space
(
T R3/S1,

C∞(T R3/S1)
)
, see chapter VII §3.2. Here a function f : T R3/S1 → R is smooth if

and only if ρ∗ f is a smooth S1-invariant function on T R3. Recall that ρ : T R3 →
� T R3/S1 is the orbit map of the S1-action Φ. Thus the linear mapping ρ∗ : C∞(T R3/S1)→

C∞(T R3)
S1

is an isomorphism.

Since the Hilbert map σ (18) is invariant under the S1-action Φ, there is an induced map
σ : T R3/S1 → Σ such that σ◦ρ = σ . Also σ∗ : C∞

i (Σ)→C∞(T R3/S1) is an isomorphism
because σ∗ = (ρ∗)−1◦σ∗ and both σ∗ and ρ∗ are isomorphisms. The map

R6 → R6 : (ξ ,η) �→ (σ1, . . . ,σ6) =
(
η1,η2,ξ4 −ξ3 +η2

2 ,ξ1,ξ4 +ξ3,ξ2
)

with inverse

R6 → R6 : (σ1, . . . ,σ6) �→ (ξ ,η) =
(
σ4,σ6,

1
2 (σ5 −σ3 +σ2

2 ),
1
2 (σ5 +σ3 +σ2

2 ),σ1,σ1
)

is a homeomorphism of W ×R2 onto Σ. Precomposing with the homeomorphism ς ((2.4))
shows that σ is a homeomorphism. Thus we have proved

Claim: The differential spaces (Σ,C∞
i (Σ)) and (T R3/S1,C∞(T R3/S1)) are diffeomorphic

via the diffeomorphism σ .

For every j ∈ R the semialgebraic variety Vj of Σ is defined by (17a) and (17c), where
Σ ⊆ R6 is defined by (17b). A function f on Vj is smooth if and only if there is a smooth
function F on R6 such that f = F |Vj. Hence (Vj,C∞

i (Vj)) is a differential space, which is
subcartesian and locally compact because Vj is a closed subset of R6. �
The mapping ν j : Pj ⊆R3 →Vj ⊆R6 (20b) with inverse μ|Vj : Vj ⊆R6 →Pj ⊆R3 (20a) is
a homeomorphism. Define the space C∞(Pj) of smooth functions on Pj to be ν∗

j (C
∞(Vj)).

Then the linear map ν∗
j : C∞

i (Vj)→ C∞(Pj) is surjective. It is also injective, because the
mapping ν j is surjective. Therefore ν∗

j is an isomorphism. We have proved

Claim: For every j ∈ R the differential spaces (Vj,C∞
i (Vj)) and (Pj,C∞(Pj)) are diffeo-

morphic via the diffeomorphism ν j.

Corollary: The differential space (Pj,C∞(Pj)) is locally compact and subcartesian.

� Another way of defining the space of smooth functions on Pj is to say that f ∈C∞
† (Pj) if

and only if there is a smooth function F on R3 with coordinates σi, 1 ≤ i ≤ 3 such that
f = F |Pj.
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(2.7) Proof: Since the mapping μ|Vj (20a) is injective, it follows that the linear mapping
(μ|Vj)

∗ : C∞
† (Pj)→ C∞

i (Vj) is surjective. To see this let g ∈ C∞
† (Pj). Then (μ|Vj)

∗g is a
smooth function on Vj, because the mapping μ|Vj is the inverse of the mapping ν j and
ν∗

j
(
(μ|Vj)

∗g
)
=

(
(μ|Vj)◦ν j

)∗g = g. The linear mapping (μ|Vj)
∗ is injective, because the

mapping μ|Vj is surjective. Therefore (μ|Vj)
∗ is an isomorphism, which is the inverse of

ν j. Consequently,

C∞
† (Pj) = ν∗

j
(
(μ|Vj)

∗C∞
† (Pj)

)
= ν∗

j (C
∞
i (Vj)) =C∞(Pj). �

2.4 Poisson brackets on C∞(Pj)

In this subsection we construct a Poisson bracket { , }Pj
on the space of smooth functions

C∞(Pj) of the reduced space (Pj,C∞(Pj)).

We start by noting that the space C∞(T R3/S1) of smooth S1-invariant functions on the
� symplectic manifold (T R3,ω) is a Poisson subalgebra of the Poisson algebra (C∞(T R3),

{ , }T R3 , ·) of smooth functions on T R3.

(2.8) Proof: If f ,g ∈C∞(T R3)
S1

, then applying the S1-action Φ (7) for every t ∈ S1 we get

Φ∗
t { f ,g}T R3 = Φ∗

t
(
LXg f

)
= LΦ∗

t Xg Φ∗
t f = LXΦ∗

t g
Φ∗

t f = {Φ∗
t f ,Φ∗

t g}T R3 = { f ,g}T R3 . �

Using the invariants {σ1, . . . ,σ6} (16) the structure matrix W
C∞(T R3)S1 for the Poisson

bracket { , }T R3 on C∞(T R3)
S1

is

{A,B}T R3 σ1 σ2 σ3 σ4 σ5 σ6 B

σ1 0 1 2σ2 0 0 0
σ2 -1 0 0 0 0 0
σ3 −2σ2 0 0 2(σ2

2 −σ3) −4σ4 0
σ4 0 0 −2(σ2

2 −σ3) 0 −2σ5 0
σ5 0 0 4σ4 2σ5 0 0
σ6 0 0 0 0 0 0
A

Table 2.4.1. The structure matrix W
C∞(T R3)S1 for { , }T R3 on C∞(T R3)

S1
.

Consider (σ1, . . . ,σ6) to be coordinates on R6. Then the space C∞(R6) of smooth func-
tions on R6 has a Poisson bracket { , }R6 whose structure matrix WC∞(R6) is given by
table 2.4.1. From table 2.4.1 we see that the function C1 = σ2

4 +σ2
6 −σ5(σ3 −σ2

2 ) is
a Casimir element of the Poisson algebra (C∞(R6),{ , }R6 , ·), that is, {C1, f}R6 = 0 for
every f ∈ C∞(R6). Since the semialgebraic variety Σ is defined by C1 = 0 and the in-
equalities σ3 − σ2

2 ≥ 0 & σ3 ≥ 0, the structure matrix WC∞
i (Σ) is equal to the structure

matrix WC∞(R6).

Because T S2/S1 ⊆ T R3/S1, the semialgebraic variety V defined by (17a) and (17b) is
a subvariety of Σ. The Poisson bracket { , }V on C∞(V ) may be computed using the
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Dirac prescription, since
({σ5 +σ2

1 ,σ4 +σ1σ2}R6

)|V = 2. In particular, for every f ,g ∈
C∞(R6) by definition { f |V,g|V}V =

({ f ∗,g∗}R6
)|V , where for h = f or g we have

h∗ = h− 1
2 (σ5 +σ2

1 −1){h,σ4 +σ1σ2}R6 + 1
2 (σ4 +σ1σ2){h,σ5 +σ2

1 −1}R6 .

Therefore the structure matrix WC∞(V ) for the Poisson bracket { , }V on C∞(V ) is given in
table 2.4.2.

{A,B}V σ1 σ2 σ3 σ6 B

σ1 0 1−σ2
1 2σ2 0

σ2 −(1−σ2
1 ) 0 −2σ1σ3 0

σ3 −2σ2 2σ1σ2 0 0
σ6 0 0 0 0
A

Table 2.4.2. The structure matrix WC∞(V ) for { , }V on C∞(V ).

The reduced space Vj is the semialgebraic subvariety of V defined by σ6 = j. As C2 = σ6
is a Casimir element of the Poisson algebra (C∞(V ),{ , }V , ·), the Poisson bracket { , }Vj

on C∞(Vj) is the restriction of the Poisson bracket { , }V to Vj. Consequently, the structure
matrix WC∞(Vj) of the Poisson bracket { , }Vj

on C∞(Vj) is equal to the structure matrix
WC∞(V ) with its last row and column deleted. As Vj is diffeomorphic to the singular
reduced space Pj by the diffeomorphism ν j|Vj (20b), the structure matrix WC∞(Pj) of the
Poisson bracket { , }Pj

on C∞(Pj) is the same as the structure matrix WC∞(Vj).

It is easier to calculate in the ambient space R3 with coordinates (σ1,σ2,σ3) than on the
reduced space Pj. On C∞(R3) define a Poisson bracket { , }R3 whose structure matrix is
given in table 2.4.3.

{A,B}R3 σ1 σ2 σ3 B

σ1 0 1−σ2
1 2σ2

σ2 −(1−σ2
1 ) 0 −2σ1σ3

σ3 −2σ2 2σ1σ3 0
A

Table 2.4.3. The structure matrix WC∞(R3) for { ,}R3 on C∞(R3).

An inspection of table 2.4.3 shows that

{σi,σ j}R3 =
3

∑
k=1

εi jk
∂C
∂σk

,

where C = σ3(1−σ2
1 )−σ2

2 − j2. Note that C = 0 is the defining equation of the reduced
space Pj. Since C is a Casimir element of the Poisson algebra (C∞(R3),{ , }R3 , ·) , the
Poisson bracket { , }Pj

on C∞(Pj) is obtained by restricting { , }R3 to Pj. Thus the structure
matrix WC∞(Pj) of the Poisson bracket { , }Pj

on C∞(Pj) is equal to the structure matrix
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WC∞(R3). From the definition of the Poisson bracket { , }R3 it follows that

{ f ,g}R3 = ∑3
i, j=1

∂ f
∂σi

∂g
∂σ j

{σi,σ j}R3 = ∑3
k=1

(
∑3

i, j=1 εi jk
∂ f
∂σi

∂g
∂σ j

)
∂C
∂σk

= 〈∇ f ×∇g,∇C〉,

for every f ,g ∈ C∞(R3). Here 〈 , 〉 is the Euclidean inner product on R3 and ∇h is the
gradient of h ∈C∞(R3).

2.5 Dynamics on the reduced space Pj

In this subsection we show that after removing the S1-symmetry, the spherical pendulum
gives rise to a reduced Hamiltonian system on the reduced phase space

(
Pj,C∞(Pj)

)
.

Because the Hamiltonian H|T S2 (3) of the spherical pendulum is invariant under the S1-
action Φ|(S1 ×T S2), it induces the function

Hj : R3 → R : (σ1,σ2,σ3) �→ 1
2 σ3 +σ1, (21)

whose restriction to the reduced space Pj is the reduced Hamiltonian. Note that Hj|Pj ∈
C∞(Pj). For every f ∈C∞(R3) the Hamiltonian derivation

−adHj |Pj : C∞(Pj)→C∞(Pj) : f |Pj �→ { f |Pj,Hj|Pj}Pj
=

({ f ,Hj}R3

)|Pj,

which governs the reduced dynamics, has integral curves which satisfy

d( f |Pj)

dt
= { f |Pj,Hj|Pj}Pj

. (22)

Because the Hamiltonian vector field XH|T S2 of the spherical pendulum has a local flow
and the differential space (Pj,C∞(Pj)) is locally compact and subcartesian, it follows that
the derivation −adHj |Pj of C∞(Pj) has a local flow, which is a local one parameter group
of local diffeomorphisms of Pj, see chapter VII §4. A calculation shows that

−adHj |Pj =−(adHj)|Pj =
(
σ2

∂
∂σ1

− ((1−σ2
1 )+σ1σ3)

∂
∂σ2

−2σ2
∂

∂σ3

)|Pj.

The integral curves of the vector field adHj on R3 satisfy

dσ1

dt
= σ2

dσ2

dt
=−(1−σ2

1 )−σ1σ3 (23)

dσ3

dt
=−2σ2,

which leaves the reduced space Pj invariant.

3 The energy momentum mapping
In this section we study the qualitative properties of the energy momentum mapping

EM : T S2 ⊆ T R3 → R2 : (x,y) �→ (H,J) =
( 1

2 (y
2
1 + y2

2 + y2
3)+ x3, x1y2 − x2y1

)
(24)

of the spherical pendulum. In particular, we will determine its set of critical values, its
range, the topology of its fibers, and how these fibers fit together.
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3.1 Critical points of EM

We begin by finding the set CP of critical points of the energy momentum map EM , that
is, the set of points where the derivative of EM has rank < 2.

� First we show that the phase space T S2 ⊆ T R3 of the spherical pendulum, defined by

F1(x,y) = x2
1 + x2

2 + x2
3 −1 = 0 (25a)

F2(x,y) = x1y1 + x2y2 + x3y3 = 0 (25b)

is a submanifold of T R3.

(3.1) Proof: The derivative(
dF1(x,y)
dF2(x,y)

)
=

(
2x1 2x2 2x3 0 0 0
y1 y2 y3 x1 x2 x2

)
has rank 2 on T S2 because the minors [1;4] = 2x2, [2;5] = 2x2

2, and [3;6] = 2x2
3 do not

all vanish since x2
1 + x2

2 + x2
3 = 1. Thus T S2 is a submanifold of T R3 with tangent space

T(x,y)(T S2) = ker
(

dF1(x,y)
dF2(x,y)

)
for every (x,y) ∈ T S2. �

Since

D(EM |T S2)(x,y) =
(

dH(x,y)
dJ(x,y)

)
|T(x,y)(T S2),

the rank of D(EM |T S2) = 0 if and only if for every (x,y) ∈ T S2 we have

dH(x,y)|T(x,y)(T S2) = 0 and dJ(x,y)|T(x,y)(T S2) = 0. (26)

Using the Euclidean inner product 〈 , 〉 on T R3 = R6, we see that the first equation in (26)

is equivalent to dH(x,y)⊥ ker
(

dF1(x,y)
dF2(x,y)

)
. But ker

(
dF1(x,y)
dF2(x,y)

)
is equal to

span{dF1(x,y)}⊥ ∩ span{dF2(x,y)}⊥ =
(

span{dF1(x,y)}+ span{dF2(x,y)}
)⊥

.

So dH(x,y) ∈ span{dF1(x,y),dF2(x,y)}, that is,

(0,0,1,y1,y2,y3) ∈ span{2(x1,x2,x3,0,0,0), (y1,y2,y3,x1,x2,x3)}. (27a)

Similarly, the second equation in (26) is equivalent to

(y2,−y1,0,−x2,x1,0) ∈ span{2(x1,x2,x3,0,0,0), (y1,y2,y3,x1,x2,x3)}. (27b)

Equation (27b) holds if and only if there are real numbers λ and μ such that

(y2,−y1,0,−x2,x1,0) = 2λ (x1,x2,x3,0,0,0)+μ(y1,y2,y3,x1,x2,x3), (28)

that is,

0 = 2λx1 +μy1 (30a) y1 = μx1 (30d)
0 = 2λx2 +μy2 (30b) y2 = μx2 (30e)
1 = 2λx3 +μy3 (30c) y3 = μx3 (30f) .
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Then (30d) – (30f), (25a), and (25b) give

0 = x1y1 + x2y2 + x2y3 = μ(x2
1 + x2

2 + x2
3) = μ.

Therefore equations (30d) – (30f) become y1 = y2 = y3 = 0. If λ = 0, then the right hand
side of equation (28) is the zero vector, whereas the right hand side is a nonzero vector.
This is a contradiction. Hence λ = 0. Therefore equations (30a) and (30b) give x1 = x2 =
0. So x3 =±1, since (25a) holds. Thus p± = (0,0,±1,0,0,0) ∈ T S2 are the only critical

� points of J|T S2. Since (27a) holds at p±, we have dH(p±)|Tp±(T S2) = 0. Thus p± are
the only points on T S2 where D(EM |T S2) has rank 0.

The derivative D(EM |T S2)(x,y) has rank 1 at (x,y) ∈ T S2 if and only if (x,y) = p±
and for some real number λ we have 0 =

(
dJ(x,y) + λ dH(x,y)

)|T(x,y)(T S2), that is,
dJ(x,y)+λ dH(x,y) ∈ span{dF1(x,y),dF2(x,y)}. So for some α,β ∈ R we have

(y2,−y1,0,−x2,x1,0)+λ (0,0,1,y1,y2,y3)= 2α(x1,x2,x3,0,0,0)+β (y1,y2,y3,x1,x2,x3),

that is,

y2 = 2αx1 +βy1 (31a) −x2 +λy1 = βx1 (31d)
−y1 = 2αx2 +βy2 (31b) x1 +λy2 = βx2 (31e)

λ = 2αx3 +βy3 (31c) λy3 = βx3 (31f) .

Then

β = β (x2
1+x2

2+x2
3)= x1(−x2+λy1)+x2(x1+λy2)+x3(λy3)= λ (x1y1+x2y2+x3y3)= 0.

So (31a) – (31f) become

y2 = 2αx1 (32a) −x2 +λy1 = 0 (32d)
−y1 = 2αx2 (32b) x1 +λy2 = 0 (32e)

λ = 2αx3 (32c) λy3 = 0 (32f) .

Suppose that λ = 0. Then equations (32d) and (32e) give x1 = x2 = 0. Thus x3 = ±1,
which using (32c) implies α = 0. Thus equations (32a) and (32b) give y1 = y2 = 0. So
0 = x1y1 + x2y2 + x3y3 =±y3. Thus p± = (0,0,±1,0,0,0) solves (31a) – (31f). But this
is excluded by hypothesis. Therefore λ = 0. Hence y3 = 0 and{

y1 = λ−1x2
y2 = λ−1x1.

(33a)

If α = 0, then equation (32c) gives λ = 0, which is a contradiction. Therefore α = 0. So
x3 =

λ
2α and {

y1 =−2αx2
y2 = 2αx1.

(33b)

Note that x3 =±1, for if x3 =±1, then a short argument shows that (x,y) = p±. But this
is excluded by hypothesis. From equations (33a) and (33b) we get

(2α +λ−1)x1 = 0 = (2α +λ−1)x2. (34)
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If 2α = −λ−1 then (34) gives x1 = x2 = 0. But this implies that (x,y) = p±, which is
excluded. Therefore 2α =−λ−1. So x3 =−λ 2 < 0 and

RE =
{(

x1,x2,−λ 2,λ−1x2,−λ−1x1,0
) ∈ T S2 x2

1 + x2
2 = 1−λ 4 & 0 < λ 2 < 1

}
(35)

is the subset of T S2 \{p±} where D(EM |T S2) has rank 1. In other words, RE= {(x,y)∈
T S2 \{p±} XH|T S2(x,y) = λXJ|T S2(x,y) for some λ ∈ R\{0}}, that is, RE is the collec-
tion of orbits of the vector field XH|T S2 each of which is an orbit of the vector field XJ|T S2

that generates the S1 symmetry of the spherical pendulum. In other words, RE is the set
of relative equilibria. RE has two connected components: RE+ = {(x,y) ∈ RE λ > 0}
and RE− = {(x,y) ∈ RE λ < 0}.

Lemma: On RE+ we have J|T S2 < 0; while on RE− we have J|T S2 > 0.

(3.2) Proof: Suppose that (x,y) ∈ RE+. Using (35) we get J|T S2(x,y) = −λ−1(x2
1 + x2

2) =
−λ−1(1−λ 4)< 0, since 0 < λ 2 < 1 and λ > 0. Similarly, (J|T S2)|RE− > 0. �
Consequently, D(EM |T S2) has rank 2 on T S2 \ (RE∪{p±}). Thus we have proved

Claim: The set of critical points CP of the energy momentum map EM |T S2 of the spher-
ical pendulum is RE∪{p±}.

3.2 Critical values of EM

In this subsection we parametrize the set CV of critical values of the energy momentum
mapping EM of the spherical pendulum. By definition CV is the image of the set of
critical points CP under EM .

We give another description of CV. We show that

Claim: The set of critical values of EM is the set {Δ = 0}, where Δ is the discriminant
of the polynomial P (39), that is, {(h, j) ∈ R2 P has a multiple root in [−1,1]}.

(3.3) Proof: Because the reduction map

ρ j : (J|T S2)−1( j)⊆ T R3 → Pj ⊆ R3 : (x,y) �→ (
σ1,σ2,σ2

)
(36)

is a smooth map onto the differential space (Pj,C∞(Pj)), it follows that (h, j) ∈ R2 is a
critical value of the energy momentum mapping EM if and only if h is a critical value of
the reduced Hamiltonian Hj|Pj. Since Pj is a singular semialgebraic variety Pj, we must
define what we mean by a critical value of Hj. In geometric terms, (h, j)∈ CV if and only
if the 2-plane

Πh : 1
2 σ3 +σ1 = h (37a)

intersects the semialgebraic variety Pj, defined by

σ2
2 + j2 = σ3(1−σ2

1 ), |σ1| ≤ 1 & σ3 ≥ 0, (37b)

at a point σ0 =
(
σ0

1 ,σ
0
2 ,σ

0
3
)

with multiplicity greater than one, see figure 3.2.1. To
explain this last phrase, consider the equation

Q(σ1,σ2) = σ2
2 + j2 −2(h−σ1)(1−σ2

1 ) = 0, (38)
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which is obtained by solving for σ3 in (37a) and then substituting the result into (37b).
The point σ0 ∈ Pj has multiplicity greater than one if and only if the Taylor polynomial
of Q at (σ0

1 ,σ
0
2 ) ∈ [−1,1]×R has no constant or linear terms. This condition is satisfied

if and only if σ2 = σ0
2 = 0 and the polynomial

P(σ1) = 2(h−σ1)(1−σ2
1 )− j2 = 2σ3

1 −2hσ2
1 −2σ1 +2h− j2 (39)

has a multiple root σ0
1 ∈ [−1,1]. �

σ1

σ2

σ3

σ1

σ2

σ3

Figure 3.2.1. The critical level sets of the reduced Hamiltonian Hj on the
reduced space Pj. In the figure on the left j = 0; while in the figure on the
right j �= 0.

Another way to formulate the above discussion goes as follows. The point (h, j) is a
critical value of EM if and only if the line �h

1
2 σ3 +σ1 = h (40)

intersects the curve F

σ3(1−σ2
1 ) = j2, |σ1| ≤ 1 & σ3 ≥ 0 (41)

at a point (σ0
1 ,0,σ

0
3 ) with multiplicity greater than one, see figure 3.2.2. Note that F is

the image of the fold curve of the projection map

π : R3 → R2 : (σ1,σ2,σ3)→ (σ1,0,σ3) (42)

restricted to Pj. Geometrically this means that over every point p in the interior of π(Pj),
the fiber π−1(p) consists of two distinct points; while over every point p on F , the fiber
π−1(p) consists of a point. For the reconstructed level sets of Hj on Pj see figure 3.2.2.
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σ1

σ3

−1 1

σ3 +2σ1 = 2h

σ3 =
j2

1−σ2
1

�

Figure 3.2.1. The critical points of the reduced Hamiltonian Hj on
Pj ∩{σ2 = 0}. In the left figure j = 0 while in the right figure j �= 0.

1

Claim: Let Δ = {(h, j) ∈ R2 P has a multiple root in [−1,1]} be the discriminant of the
polynomial P (39). The discriminant locus {Δ = 0} is parametrized by⎧⎪⎪⎨⎪⎪⎩

h = 3
2 s− 1

2s

j = ± 1√−s
(1− s2),

for s ∈ [−1,0 )∪{1}. (43)

j

h

Figure 3.2.3. The discriminant locus {Δ = 0} in the h– j plane. The set of critical
values of EM is the union of the dark curves, which is EM (RE), and points
(−1,0) and (1,0), which are EM (p∓). The shaded region is the set of regular
values of EM .

(3.4) Proof: For every (h, j) ∈ Δ, the polynomial P (39) factors as

2(σ1 − s)2(σ1 − t) = 2σ3
1 −2(2s+ t)σ2

1 +2(2st + s2)σ1 −2ts2 (44)
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for some s ∈ [−1,1] and t ∈ R. Equating coefficients of (39) and (44) gives

2s+ t = h (45a)

2st + s2 = −1 (45b)

2ts2 = j2 −2h. (45c)

If s = 0, then equation (45b) becomes 0 =−1, which is a contradiction. Therefore s = 0.
Eliminating t from (45a) and (45b) gives the expression for h in (43). Eliminating t from
equations (45a) and (45c) and then using the first equation in (43) to eliminate h gives the
second equation in (43). For j to be real we must have s ∈ [−1,0 )∪{1}. �

A branch B± of the discriminant locus {Δ = 0} is parametrized by (43) with the ± sign
fixed and parameter s ∈ [−1,0 ).

Claim: B± is the curve

j =± 2
9

(
3−h2 +h

√
h2 +3

)√
h+

√
h2 +3 =±B(h), where h ≥−1. (46)

(3.5) Proof: Solving the first equation in (43) for s gives s = 1
3 (h−

√
h2 +3). Substituting this

result into the second equation in (43) gives

j =± 2
√

3
9

1√√
h2 +3−h

(3−h2 +h
√

h2 +3), (47)

which simplifies to the expression for ±B(h) in (46). �

We now verify that figure 3.2.3 is correct. Because ± dB
dh is positive for every h ≥−1, the

branches intersect at most once. Since j = ±B(−1) = 0, the branches B± of {Δ = 0}
join continuously at (−1,0). Because d j

dh h=−1
= ±1, the branches do not join smoothly

at (−1,0), but make an angle of π/2 with each other. The point (1,0) ∈ Δ, which corre-
sponds to the parameter value s = 1, does not lie on either of the branches B±. Hence
(1,0) is an isolated point of Δ and is therefore an isolated critical value of the energy
momentum mapping EM .

The critical values (±1,0) of EM are special, because they correspond to the criti-
cal points (0,0,±1,0,0,0) of EM on T S2, which are fixed points of the S1-symmetry
Φ|(S1 ×T S2) of the spherical pendulum. Under the reduction map ρ j (36) these points
correspond to the singular points (±1,0,0) of the reduced space P0 and hence are critical
points of the reduced Hamiltonian H0. They do not depend on the Hamiltonian, but are a
consequence of symmetry alone.

3.3 Level sets of the reduced Hamiltonian Hj|Pj

Here we describe the qualitative features of the reduced system (Hj|Pj,Pj,{ , }Pj
).

From figure 3.2.2 we can read off the topology of the h-level set of the reduced Hamilto-
nian Hj|Pj on the reduced space Pj. The results are given in table 3.3.1.
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Conditions on (h, j) Topology of (Hj|Pj)
−1(h)

1. j =±B(h), h ≥−1 a point

2. | j|< B(h), h >−1
and (h, j) = (1,0)

a smooth S1

3. (1,0) a topological S1 with a
conical singular point

Table 3.3.1 The topology of the h-level set of the reduced Hamiltonian
Hj|Pj on the reduced phase space Pj.

� We now verify the entries in the second column of table 3.3.1.

(3.6) Proof:
1. When | j| = B(h) and h > −1, the line �h (40) intersects the curve F (41) at a non-
singular point ph, j. Thus the image of the level set (Hj|Pj)

−1(h)) under the projection
mapping π (42) is ph, j Since ph, j ∈ F , we infer that (Hj|Pj)

−1(h) is a point. So h is the
minimum value of Hj|Pj on Pj. Thus the set of (h, j) bounded by the branches B± and
containing the point (1,0) is the range of the energy momentum mapping EM . When
h = −1, we have j = ±B(−1) = 0. The line �−1 meets F at the point p−1,0 = (−1,0).
Thus (H0|P0)

−1(1) is the singular point (−1,0,0) of the reduced space P0.

2. When | j|< B(h), −1 < h and (h, j) = (1,0), the line �h intersects π(Pj) in a closed line
segment Lh, j whose end points lie on F . Over every point in the interior of Lh, j the fiber
of the projection map π consists of two distinct points; while over the end points the fiber
of π is just a single point. Thus (Hj|Pj)

−1(h) = π−1(Lh, j) is a topological circle. Since
(h, j) is a regular value of EM , the value h is a regular value for the reduced Hamiltonian
Hj|Pj. Hence (Hj|Pj)

−1(h) is a smooth circle.

3. When h= 1, the line �1 intersects π(P0) in a closed line segment L1,0. Thus (H0|P0)
−1(1)

= π−1(L1,0) is a topological circle. As a semialgebraic variety in R3, the 1-level set of
H0|P0 is defined by {

σ2
2 = σ3(1−σ2

1 ), |σ1| ≤ 1 & σ3 ≥ 0

1 = 1
2 σ3 +σ1.

(48)

Eliminating σ3 from (48) yields

0 = σ2
2 −4(1−σ1)

2 +2(1−σ1)
3, |σ1| ≤ 1.

Hence (H0|P0)
−1(1) has a nondegenerate tangent cone at the singular point (1,0,0) of

P0. At other points (H0|P0)
−1(1) is smooth. This completes the verification of the second

column of table 3.3.1. �

3.4 Level sets of the energy momentum mapping EM

We are now in position to describe the topology of the fibers of the energy momentum
mapping EM of the spherical pendulum. The results are given in table 3.4.1.
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Conditions on (h, j) Topology of EM−1(h, j)

1. | j|< B(h),−1 < h
and (h, j) = (1,0)

T 2, a smooth 2-torus

2. j =±B(h), h >−1 S1, a smooth circle

3. (−1,0) a point

4. (1,0) T ∗, a 2-torus with a longitudinal
circle pinched to a point.

Table 3.4.1 The topology of EM−1(h).

Before verifying of the entries in the second column of table 3.4.1 we need the

Facts:
1. The reduction mapping

ρ j : J−1( j)→ Pj ⊆ R3 : (x,y)→ (
σ1(x,y),σ2(x,y),σ3(x,y)

)
(49)

is smooth and has fibers ρ−1
j (p) =

{
S1, if Pj is smooth at p

point, otherwise.

2. For every (h, j) in the image of EM we have EM−1(h, j) =
ρ−1

j

(
Hj|Pj)

−1(h)
)
.

(3.7) Proof :
1. Let f be a smooth function on the reduced space Pj. Let σ be the Hilbert map of
the S1-action Φ (7) and let μ : R6 → R3 : (σ1, . . . ,σ6) �→ (σ1,σ2,σ3) be the projection
mapping. Then (μ◦σ)∗ f is a smooth Φ-invariant function on (J|T S2)−1( j). Hence the
linear mapping

(μ◦σ)∗ : C∞(Pj)→C∞(J−1( j))
S1

: f → (
(μ ◦σ)∗ f

)|J−1( j)

is well defined. By construction, the reduction map ρ j : J−1( j) → Pj (49) is equal to
(μ ◦σ)|(J|T S2)−1( j). Therefore (μ◦σ)∗ = ρ∗

j . By definition ρ j is a surjective mapping.

Therefore ρ∗
j is injective. In other words, ρ∗

j
(
C∞(Pj)

) ⊆ C∞(J−1( j))S1
. Thus the re-

duction map ρ j is a smooth mapping between the differential spaces
(
Pj,C∞(Pj)

)
and(

(J|T S2)−1( j),C∞((J|T S2)−1( j)
)S1)

, see chapter VII §3.
2. Because the reduction mapping ρ j is surjective and ρ j

∗(Hj|Pj) = H|J−1( j), we have

EM−1(h, j) = H−1(h)∩ J−1( j) = ρ−1
j

(
(Hj|Pj)

−1(h)
)
. �

If p is a point where the reduced space Pj is nonsingular, then μ−1(p) is a nonsingular
point of Vj and hence is a nonsingular point of the orbit space W ×R2 (13). From ((2.3))
it follows that π−1(μ−1(p)) = π−1

j (p) is a smooth S1. If p is a singular point of Pj, then
π−1(μ−1(p)) is a point of J−1( j) where the isotropy group of the action Φt |J−1( j) is
nontrivial. This can only happen when j = 0 and π−1

0 (p) is a fixed point of Φt |J−1(0).
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� The verification of the second column of table 3.4.1 proceeds as follows.

(3.8) Proof:
1. The conditions on (h, j) in the first entry of the first column of table 3.4.1 are equivalent
to requiring that (h, j) is a regular value of the energy momentum mapping. Hence h is a
regular value of the reduced Hamiltonian Hj on Pj. By table 3.3.1 the level set H−1

j (h)
is diffeomorphic to S1. From ((3.5)) it follows that EM−1(h, j) → H−1

j (h) is a smooth
bundle with projection map ρ j|EM−1(h, j) and fiber S1. Since the reduced space Pj is
homeomorphic to R2, the level set H−1

j (h) bounds a 2-disk which is contractible in Pj to
a point. Thus the bundle ρ j is trivial, see chapter VIII §2. In other words EM−1(h, j) is
a 2-torus T 2

h, j. By construction T 2
h, j is invariant under the flow of the vector fields XH|T S2

and XJ|T S2 . This completes the verification of the entries in the first row of table 3.4.1.
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Figure 3.4.1. The image R of the 2-torus T 2
h, j, where (h, j) is a regular value of

E M , under the bundle projection map πT S2. In the top figure j �= 0 and −1 <

x−3 ≤ x3 ≤ x+3 < 1; in the middle figure j = 0, x−3 = −1, and x+3 = h < 1; in the
bottom figure j = 0, x−3 =−1, x+3 = 1 and h > 1.

Figure 3.4.1 gives a picture of the 2-torus T 2
h, j as some sort of fibration over its image

under the projection map πT S2 : T S2 → S2 : (x,y) �→ x. Recall that the 2-torus T 2
h, j ⊆ T R3

is defined by

x2
1 + x2

2 + x2
3 = 1 (50a)

x1y1 + x2y2 + x3y3 = 0 (50b)
1
2 (y

2
1 + y2

2 + y2
3)+ x3 = h (50c)

x2y1 − x1y2 = j. (50d)

� When (h, j) is a regular value of the energy momentum map EM , the image R of the
2-torus T 2

h, j = EM−1(h, j) under the projection map πT S2 : T S2 → S2 is given in table
3.4.2.
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Conditions on (h, j) R Toplogy of R

1. j = 0 {x ∈ S2 −1 < x−3 ≤ x3 ≤ x+3 < 1} a closed annulus

2. j = 0 & −1 < h < 1 {x ∈ S2 −1 = x−3 ≤ x3 ≤ x+3 ≤ h} D2, a closed 2-disk

3. j = 0 & h > 1 {x ∈ S2 −1 = x−3 ≤ x3 ≤ x+3 = 1} S2

Table 3.4.2 The set R. Here x±3 are roots of (50e) in [−1,1].

(3.9) Proof:
Substituting (50a) – (50d) into the identity

(x1y2 − x2y1)
2 +(x1y1 + x2y2)

2 = (x2
1 + x2

2)(y
2
1 + y2

2)

and simplifying gives

0 ≤ y2
3 = P(x3) = 2(h− x3)(1− x2

3)− j2 (50e)

where |x3| ≤ 1. Consequently, x3 ∈ [x−3 ,x
+
3 ] where P(x±3 ) = 0, x−3 < x+3 , and P(x3) > 0

when x3 ∈ (x−3 ,x
+
3 ). Thus the image of the 2-torus T 2

h, j under the bundle projection map
πT S2 is contained in R = {x ∈ S2 ⊆ R3 x−3 ≤ x3 ≤ x+3 }.

Suppose that x lies in the interior intR of R. Then |x±3 | < 1. Using (50e), which gives
y3 = ε

√
P(x3) with ε2 = 1, we can solve equations (50b) and (50c) to get

y1 =−(1− x2
3)

−1
(

jx2 + εx1x3
√

P(x3)
)

y2 = (1− x2
3)

−1
(

jx1 − εx2x3
√

P(x3)
)
.

(51)

� This shows that when x∈ intR the fiber (πT S2 |T 2
h, j)

−1(x) is the two points
(
x1,x2,x3.y1,y2,

ε
√

P(x3)
)

in T 2
h, j where y1 and y2 are given by (51).

We now verify the entries in the third column of table 3.4.2.

1. j = 0. Then |x3|< 1. So R is a closed annulus in S2 with boundary ∂R= {(x1,x2,x±3 )∈
S2}, which is the disjoint union of two circles: C′, when x3 = x+3 and B′, when x3 = x−3 .
Because |x±3 |< 1 and y3 = ε(P(x±3 ))

1/2 = 0, using equations (51) and (50e) we see that

(πT S2 |T 2
h, j)

−1(∂R) = {(x1,x2,x±3 ,− j
(
1− (x±3 )

2)−1x2, j
(
1− (x±3 )

2)−1x1,0
) ∈ T 2

h, j},

which is the disjoint union of two homologous circles: C, when x3 = x+3 , and B, when
x3 = x−3 , on T 2

h, j. Each is an orbit of the vector field XJ|T S2 on T 2
h, j. Thus πT S2(T 2

h, j) = R.

2. j = 0 and −1 < h < 1. We have x−3 =−1 and x+3 = h. Thus R is a closed 2-disk with
boundary C′ = {(x1,x2,h) ∈ S2}. Because −1 < x+3 = h < 1 and y3 = ε(P(x+3 ))

1/2 = 0
we see that

C = (πT S2 |T 2
h,0)

−1(C′) = {(x1,x2,h,0,0,0) ∈ T 2
h,0 x2

1 + x2
2 = 1−h2 > 0},

which is an orbit of the vector field XJ|T S2 on T 2
h,0. Thus πT S2(T 2

h, j) = R.
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3. j = 0 and 1< h. We have x±3 =±1. Thus R is the 2-sphere S2. Since (0,0,±1,0,0,0)∈
T 2

h,0 and πT S2(0,0,±1,0,0,0) = (0,0,±1), we have shown that πT S2(T 2
h, j) = R.

This completes the verification of the entries in the third column of table 3.4.2. �
� We now reconstruct the 2-torus T 2

h, j from its image R under the mapping π̃ = πT S2 |T 2
h, j.

(3.10) Proof:
CASE 1. j = 0. Then R is a closed annulus with boundary ∂R two disjoint circles B′ and
C′ on S2. Suppose that x is a point in the interior intR of R. Then π̃−1(x) is two points.
If x lies on ∂R, then π̃−1(x) is a point. In other words, T 2

h, j has a fold singularity over ∂R
with fold curve π̃−1(∂R). Thus T 2

h, j is an S0-bundle over intR with S0 pinched to a point
over each point of ∂R. Next we look more closely at the geometry of the mapping π̃ .
Let A′ be the open arc {(0,(1− x2

3)
1/2,x3) ∈ S2} x−3 < x3 < x+3 } on S2. Then the closure

π̃−1(A′) of π̃−1(A′) is a circle A on T 2
h, j, because for every x ∈ A′ ⊆ intR, the fiber π̃−1(x)

is two points; whereas for (0,0,x±3 ) ∈ (A′ \A′) ⊆ ∂R, the fiber π̃−1(0,0,x+3 ) is the point
q = (0,0,x+3 ,0,0,0); while the fiber π̃−1(0,0,x−3 ) is the point q̃ = (0,0,x−3 ,0,0,0). Let
B = π̃−1(B′) and C = π̃−1(C′). Then B and C are circles on T 2

h, j, which are homologous.
Moreover, either {A,B} or {A,C} is a basis of H1(T 2

h, j,Z).

CASE 2. j = 0. This case is more difficult because the geometry of the mapping π̃ is more
complicated. Suppose that −1 < h < 1. Let A′ be the open arc {(0,(1− x2

3)
1/2,x3) ∈

S2 −1 < x3 < h} on S2. For every x ∈ A′ ⊆ intR the fiber π̃−1(x) is the two points

{(0,
√

1− x2
3,x3,0,−εx3

√
2(h− x3),ε

√
2(h− x3)(1− x2

3))},

where ε2 = 1. When x = (0,
√

1−h2,h) ∈ A′ \A′, the fiber π̃−1(x) ∈ π̃−1(A′) \ π̃−1(A′)
is the point q = (0,

√
1−h2,h,0,0,0). To find the rest of π̃−1(A′) first note that the

fiber π̃−1(0,0,−1) is the circle B = {(0,0,−1,y1,y2,0) ∈ T 2
h,0 y2

1 + y2
2 = 2(h+ 1) > 0}.

Geometrically a point on B is a positive tangent ray to S2 at B′ = (0,0,−1) of length√
2(h+1). We say that the mapping π̃ blows up the point B′ to the circle B, because B =

π̃−1(B′). Observe that B is homologous to the circle C = π̃−1(C′) = {(x1,x2,h,0,0,0) ∈
T 2

h,0 x2
1 + x2

2 = 1− h2 > 0}. Now the tangent to the curve (−1,h) → S2 : x3 �→ (0,(1−
x2

3)
1/2,x3), which parametrizes the arc A′, is (0,−x3(1− x2

3)
−1/2,1). The corresponding

positive tangent ray of length
√

2(h+1) to A′ is
(
0,−√

2(h+1)x3,
√

2(h+1)(1− x2
3)
)
.

Thus the tangent ray to A′ at the point B′ is (0,
√

2(h+1),0), which corresponds to the
point q̃ = (0,0,−1,0,

√
2(h+1),0) on the circle B. Consequently, A = {q, q̃}∪ π̃−1(A′)

is a circle on T 2
h,0 which intersects the circle B only at q̃. Note that π̃−1(A′) = A∪B and

that {A,B} is a basis for H1(T 2
h,0,Z) as is {A,C} since A∩C = {q}.

Suppose that h > 1. If x ∈ S2 \ {(0,0,±1)} ⊆ intR, then the fiber π̃−1(x) is two points.
The fiber π̃−1(0,0,−1) is the circle B = {(0,0,−1,y1,y2,0) ∈ T 2

h,0 y2
1 + y2

2 = 2(h−1) >
0}; whereas the fiber π̃−1(0,0,1) is the circle C = {(0,0,1,y1,y2,0) ∈ T 2

h,0 y2
1 + y2

2 =
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2(h− 1) > 0}. Thus the mapping π̃ blows up the points (0,0,−1) and (0,0,1) to the
circles B and C, respectively. Consider the open arc A′, which is parametrized by

(−1,1)→ S2 \{(0,0,±1)} : x3 �→ (0,
√

1− x2
3,x3).

Then the tangent ray to A′ at B′ = (0,0,−1) is (0,
√

2(h−1),0), which corresponds to
the point q̃ = (0,0,−1,0,

√
2(h−1),0) on B; while tangent ray to A′ at C′ = (0,0,1) is

(0,−√
2(h−1),0), which corresponds to the point q = (0,0,−1,0,−√

2(h−1),0) on
C. Consequently, A = {q, q̃}∪ π̃−1(A′) is a circle on T 2

h,0, which intersects B only at q̃ and

C only at q. Note that π̃−1(A′) = A∪B∪C and that {A,B} is a basis for H1(T 2
h,0,Z) as is

{A,C} since A∩C = {q}.

This completes the reconstruction of the torus T 2
h, j from its image R under the bundle

projection πT S2 . �
We return to verifying the entries in the second column of table 3.4.1.

2. To verify the second entry we note that the conditions on (h, j) in the first column are
precisely those for which the h-level set of the reduced Hamiltonian Hj is a nonsingular
point of the reduce space Pj. From ((3.5)) it follows that EM−1(h, j) is a smooth S1.

3. When (h, j) = (−1,0) the line �−1 (40) intersects the curve F (41) at the point
(σ0

1 ,σ
0
3 ) = (−1,0). In other words, the 2-plane Π−1 (37a) intersects the reduced space P0

at the singular point (σ0
1 ,σ

0
2 ,σ

0
3 ) = (−1,0,0). From ((3.5)) it follows that EM−1(1,0) is

the point (0,0,−1,0,0,0) ∈ T R3.

Figure 3.4.2. The pinched 2-torus T ∗ = E M−1(1,0). In the
left figure the 2-torus is pinched along a longitude; in the right
figure the 2-torus is pinched along a merdian.

4. When (h, j) = (1,0) the line �1 intersects ρ(P0) in a closed line segment, whose
end points lie on the fold curve F . One end point is σ0 = (σ0

1 ,σ
0
3 ) = (1,0). Thus

the 2-plane Π1 intersects P0 in a topological circle H−1
0 (1) with singular point p0 =

ρ−1(σ0) = (1,0,0). From ((3.5)) it follows that ρ−1
0 (H−1

0 (1) \ {p0}) → H−1
0 (1) \ {p0}

with projection map ρ0|(H−1
0 (1) \ {p0}) is a bundle with fiber S1. Since H−1

0 (1) \ {p0}
is contractible in P0, the bundle ρ−1

0 (H−1
0 (1) \ {p0}) → H−1

0 (1) \ {p0} is trivial. Thus
ρ−1

0 (H−1
0 (1)\{p0}) is topologically a cylinder S1 ×R. Because p0 is a singular point of

P0, the fiber ρ−1
0 (p0) is a point. Therefore EM−1(1,0) is a one point compactification

of a cylinder, that is, a cylinder with its ends identified to a point. In other words, it is a
2-torus T ∗ with a longitudinal circle pinched to a point. In ((3.11)) below we show that
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ρ−1
0 (p0) = (0,0,1,0,0,0) is a critical point of H|T S2 of Morse index 2. Thus ρ−1

0 (p0) is
a conical singular point of EM−1(0,1).

Another way of describing EM−1(1,0) is a 2-torus with a meridial circle pinched to a
point. To see this project EM−1(h,0) onto the 2-sphere S2 using the bundle projection
πT S2 This gives rise to a 2-disk with boundary {x3 = x+3 = h}. As h ↗ 1, we get x+3 ↗
1. Hence πT S2(EM−1(1,0)) is S2. Moreover, for p ∈ S2 \ {(0,0,1)} the fiber π−1

T S2(p)
consists of two distinct points; while at (0,0,1) the fiber π−1

T S2(0,0,1) is a single point.
From this information we can reconstruct EM−1(1,0), see figure 3.4.2. We find that
it is a surface of revolution formed by rotating a figure eight about an axis through the
crossing point. Topologically this surface is a 2-torus with a meridial circle pinched to
a point. The topological equivalence between a torus with a meridial circle pinched to
a point and a torus with a longitudinal circle pinched to a point cannot be realized by a
homeomorphism of R3 but can be by a homeomorphism of S3.

This completes the verification of table 3.4.1 �

� Next we determine the topology of the energy surfaces H−1(h) of the spherical pendulum.
The results are summarized in table 3.4.3. To verify the entries in the second column of

Conditions Topology of H−1(h)

1. h =−1 point

2. −1 < h < 1 a smooth 3-sphere, S3

3. h = 1 U , a topological 3-sphere

4. h > 1 RP3, real projective 3-space.

Table 3.4.3 Topology of the level sets H−1(h).

table 3.4.3, we use Morse theory. As a submanifold of T R3 with coordinates (x,y), the
tangent bundle T S2 of S2 is defined by

F1(x,y) = x2
1 + x2

2 + x2
3 −1 = 0 (52a)

F2(x,y) = x1y1 + x2y2 + x3y3 = 0. (52b)

On T R3 consider the function H : T R3 → R : (x,y) �→ 1
2 (y

2
1 + y2

2 + y2
3) + x3.

� We now show that H|T S2 is a Morse function.

(3.12) Proof: Because H|T S2 is proper and is bounded below, it has a critical point p = (x,y).
By Lagrange multipliers the critical point p satisfies

DH(x,y)+λ1 DF1(x,y)+λ2 DF2(x,y) = 0, and F1(x,y) = 0, F2(x,y) = 0. (53)

Writing out the first equation in (53) gives

2λ1x1 +λ2y1 = 0 (54a) y1 +λ2x1 = 0 (54d)
2λ1x2 +λ2y2 = 0 (54b) y2 +λ2x2 = 0 (54e)

1+2λ1x3 +λ3y3 = 0 (54c) y3 +λ2x3 = 0 (54f)
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in addition to (52a) and (52b). Therefore

λ2 = λ2(x2
1 + x2

2 + x2
3) =−(x1y1 + x2y2 + x3y3) = 0.

Hence y1 = y2 = y3 = 0. Consequently (54a) – (54c) read

2λ1x1 = 0 (55a)
2λ1x2 = 0 (55b)
2λ1x3 =−1. (55c)

Suppose that λ1 = 0. Then (55c) gives 0=−1, which is a contradiction. Therefore λ1 = 0.
Hence (55a) and (55b) give x1 = x2 = 0. From (52a) we obtain x3 = ε where ε2 = 1; while
from (55c) we obtain λ1 = − 1

2 ε . Thus H|T S2 has two critical points pε = (εe3,0) with
Lagrange multipliers λ1 =

1
2 ε and λ2 = 0.

To show that pε is nondegenerate critical point of H|T S2, first note that the tangent space

Tpε (T S2) to T S2 at pε is ker
(

DF1(pε )
DF2(pε )

)
= ker

(
0 0 2ε 0 0 0
0 0 0 0 0 ε

)
, which is spanned by

the vectors {e1,e2,e4,e5}. Therefore

Q = D2(H|TS2)(pε) =
(
D2H +λ1D2F1 +λ2D2F2

)
Tpε (T S2)

(pε) = diag(−ε,−ε,1,1),

whereupon the critical points pε are nondegenerate. Thus the Morse index of Q is 2 if
ε = 1 or 0 if ε = −1. Hence, p−1 = (−e3,0) is a nondegenerate minimum of H with
corresponding minimum value −1, and p+1 = (e3,0) is a nondegenerate saddle point of
index 2 corresponding to the critical value 1. �

� We now verify the entries in the second column of table 3.4.3.

(3.11) Proof:
1. At the critical value h =−1, the level set (H|T S2)−1(h) is a point.

2. By the Morse lemma, see chapter XI §2, for values of h slightly greater than the
minimum value −1, the h-level set of H|T S2 is diffeomorphic to a 3-sphere S3. Using
the Morse isotopy lemma, see chapter XI §3, it follows that the level set (H|T S2)−1(h) is
diffeomorphic to S3 for every h ∈ (−1,1).

4. For h > 1 we claim that (H|T S2)−1(h) is diffeomorphic to the unit tangent S1 bundle
T1S2 ⊆ R3 ×R3 of the 2-sphere S2. Consider the smooth mapping

ϕ : (H|T S2)−1(h)→ T1S2 : (x,y) �→ (ξ ,η) =
(
x,

y√
2(h− x3)

)
.

The level set (H|T S2)−1(h) ⊆ R3 × R3 is defined by 〈x,x〉 = 1, 〈x,y〉 = 0, and h =
1
2 〈y,y〉+ 〈x,e3〉. A computation shows that (ξ ,η) ∈ ϕ

(
(H|T S2)−1(h)

)
satisfies 〈ξ ,ξ 〉=

1, 〈ξ ,η〉= 0, and 〈η ,η〉= (2h−2x3)
−1〈y,y〉= 1. In other words, the image of ϕ is con-

tained in T1S2. Since τ : T S2 → (H|T S2)−1(h) : (ξ ,η) �→ (
ξ ,η

√
2h−2ξ3

)
is a smooth

inverse of ϕ , the mapping ϕ is a diffeomorphism. Now T1S2 is the set of ordered pairs of
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orthonormal vectors ξ ,η ∈ R3. Extend the ordered pair {ξ ,η} to the positively oriented
ordered orthonormal basis {ξ ,η ,ξ ×η} of R3. Every such basis may be identified with
a rotation of R3, whose matrix is col(ξ ,η ,ξ ×η). Thus

ψ : T1S2 → SO(3) : (ξ ,η) �→ col(ξ ,η ,ξ ×η)

is a smooth map with smooth inverse

σ : SO(3)→ T1S2 : col(ξ ,η ,ζ ) �→ (ξ ,η).

Hence T1S2 is diffeomorphic to SO(3), which in turn is diffeomorphic to real projective
3-space RP3 by ((1.15)) of chapter III.

3. At the critical value h = 1, the level set (H|T S2)−1(1) is an algebraic subvariety U of
T R3 defined by

x2
1 + x2

2 + x2
3 = 1 (56a)

x1y1 + x2y2 + x3y3 = 0 (56b)
1
2 (y

2
1 + y2

2 + y2
3)+ x3 = 1 (56c)

The variety U is singular only at p1 = (0,0,1,0,0,0) because the rank of⎛⎝2x1 2x2 2x3 0 0 0
y1 y2 y3 x1 x2 x3
0 0 1 y1 y2 y3

⎞⎠
is < 3 on U only at p1. Since p1 is a nondegenerate critical point of H|T S2 with Morse
index 2 ((3.11)), from the Morse lemma it follows that there is a neighborhood of p1 in U
which is diffeomorphic to a neighborhood of the vertex 0 of the cone C = {(ξ1,ξ2,η1,η2)
∈ R4 ξ 2

1 + ξ 2
2 = η2

1 +η2
2}. Note that C is a cone on a 2-torus and contains two 2-planes

{(ξ1,ξ2,εξ1,−εξ2 (ξ1,ξ2) ∈ R2} which intersect transversely at 0. Thus U is a topo-
logical manifold, which is smooth except at one point where it has a conical singularity.

We now give a global description of the variety U : first, as a fibration over S2 with projec-
tion mapping π̂ = πT S2 |U . Using (56c) it is straightforward to see that the fiber of π̂ over
a point in S2 \{(0,0,1)} is an S1; while over (0,0,1) it is the point p1. Thus the mapping
π̂ is proper. Consequently, the variety U is compact. U is also connected, because π̂ is a
continuous open mapping and its image is S2, which is connected. Second, we can view
U as the disjoint union of two singular closed solid tori whose boundaries are identified.
Consider the smooth function J|U : U ⊆ T S2 → R : (x,y) �→ x1y2 − x2y1. In ((3.5)) we
showed that (J|U)−1(0) = (J|T S2)−1(0) is a pinched 2-torus T ∗. This singular 2-torus T ∗
is the boundary of the closed singular solid 2-torus ST+ = {(x,y) ∈ U J(x,y) ≥ 0} and
is also the boundary of the closed singular solid 2-torus ST− = {(x,y) ∈U J(x,y) ≤ 0}.
The boundary T ∗

+ of ST+ is a 2-torus with a longitudinal circle pinched to a point; while
the boundary T ∗− of ST+ is a 2-torus with a meridial circle pinched to a point, see figure
3.4.3. We now find the map which glues T ∗

+ to T ∗− so that the closed singular solid tori ST±
form the variety U . We think of the singular 2-torus T ∗

+ as a one point compactification
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Figure 3.4.3. The variety U in S3, which we think of as R3 with a point
added at infinity. The upper and lower parts of the solid cone form the
singular closed solid torus ST+, whose boundary T ∗

+ is the singular 2-torus
with a longitudinal circle pinched to a point, which forms the vertex of the
cone. The exterior of the solid cone is again a solid cone which forms the
singular closed solid torus ST−, whose boundary T ∗− is the singular solid
torus with meridial circle pinched to a point, which is the vertex of the cone.

of the cylinder S1 ×R. The 1-dimensional lattice H1(T ∗
+,Z), which is isomorphic to Z,

is formed from the 2-dimensional lattice Z2 defining the 2-torus T 2 = R2/Z2 by taking
its first component Z × {0}. In other words, T ∗

+ is the one point compactification of
R2/(Z×{0}). Similarly, the singular 2-torus T ∗− is the one point compactification of the
cylinder R2/({0}×Z). Consider the invertible linear mapping

ϕ : Z2 → Z2 :
(

n1
n2

)
�→

(
0 −1
1 0

) (
n1
n2

)
,

which sends the lattice Z×{0} bijectively onto the lattice {0}×Z. Thus the map ϕ
induces a diffeomorphism ϕ̃ of the cylinder S1 ×R onto the cylinder R×S1. The map ϕ̃
extends to a homeomorphism ϕ of the one point compactification of S1 ×R onto the one
point compactification of R×S1. In other words, ϕ is a homeomorphism of the singular

Figure 3.4.4. The bifurcation of the energy surface (H|T S2)−1(h) of the spherical pendu-
lum as h increases through 1. In the left figure 1 < h < 1 and (H|T S2)−1(h) is a smooth
3-sphere; in the middle figure h = 1 and (H|T S2)−1(h) is a topological 3-sphere; in the
right figure h > 1 and (H|T S2)−1(h) is a smooth real projective 3-space.

2-torus T ∗
+ onto the singular 2-torus T ∗−. So ϕ is the desired gluing map. The variety U is

homeomorphic to S3, because every continuous loop in U is contractible to a point, that
is, U is simply connected.

In figure 3.4.4 we give a picture of the bifurcation of the energy surfaces of the spherical
pendulum as the energy h increases through 1. Each energy surface in figure 3.4.4 is
depicted as the union of two closed solid tori. Geometrically, what happens as h ↗ 1 is
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the circle, bounding the shaded disk in the left figure contracts to the vertex of the cone in
the middle figure where h = 1. When h increases past 1 the vertex of this cone reappears
as a shaded disk in the right figure.

This completes the verification of table 3.4.3. �

We have verified the bifurcation diagram for the energy momentum mapping EM of the
spherical pendulum. From figure 3.4.5 it is clear that for regular values of h the energy
level H−1(h) is foliated by 2-tori with two singular S1 fibers.

j

h

���#
#
#
#
#$

S1

��
pt

�
��

T 2
�
���

S3

���
T ∗

	 U

	 RP3

Figure 3.4.5. The bifurcation diagram of the energy momentum
mapping E M of the spherical pendulum.

4 Rotation number and first return time
Suppose that (h, j) is a regular value of EM . In this section we derive formulæ for the
rotation number and time of first return to a cross section for the flow of XH|T S2 on the
2-torus T 2

h, j. We show that the rotation number is a multivalued real analytic function on
the set of regular values of the energy momentum map, while the first return time is a
single valued real analytic function.

4.1 Definition of first return time and rotation number
The first return time is defined as follows. When (h, j) is a regular value of EM , the dif-
ferentials d(H|TS2), d(J|TS2) are linearly independent at every point of T 2

h, j =EM−1(h, j)
and therefore so are the vector fields XH|T S2 and XJ|T S2 . Consider the curve C− =

π−1
T S2({x3 = x−3 }) on T 2

h, j, which is the image of the integral curve t → ϕJ|T S2

t (p) of XJ|T S2

through p. The curve C− is a cross section for the flow ϕH|T S2

t of XH|T S2 on T 2
h, j. Note that

at every r ∈C− the vector field XH|T S2(r) is transverse to C−. Then observe that the image
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of the integral curve Γ : t → ϕH|T S2

t (p) of XH|T S2 through p under the reduction mapping

π j (49) is a periodic integral curve t → ϕHj
t (q) through q = π j(p) of the reduced vector

field XHj of period T > 0. Thus π j(ϕH
T (p)) =ϕHj

T (π j(p)) = q. So ϕH
T (p)∈C− = π−1

j (q).
Thus Γ intersects C− for the first time at t = T . The time T = T (h, j) is called the first
return time.

p′

q′
�

�
�

�
��

2πθ̃

Figure 4.1.1. The rotation number of the image of the integral
curve of vector field XH|T S2 |T 2

h,l under the bundle projection map
πT S2 , which starts at the point p′ = πT S2(p) and ends at the point
q′ = πT S2(q). Both p′ and q′ lie on the image under πT S2 of an
integral curve of XH|T S2 |T 2

h,l on T 2
h,l .

1

Let θ̃ be the smallest positive number such that ϕJ|T S2

2πθ̃
(p) = ϕH|T S2

T (p), see figure 4.1.1.

By definition θ̃ is the rotation number of the flow of XH|T S2 on T 2
h, j. Because XH|T S2 is

invariant under the S1-action generated by the flow of XJ|T S2 , the rotation number and the
time of first return does not depend on the choice of the point p on C−. Since C− can be
an arbitrary integral curve of XJ|T S2 on T 2

h, j, the rotation number and the first return time
depend only on (h, j).

We now derive a formula for the rotation number θ̃ = θh, j. Suppose that j = 0. Then
use the bundle map πT S2 to project an integral curve γ of XH|T S2 on T 2

h, j onto a curve Γ
in the annular region πT S2(EM−1(h, j)) = A of S2. Let xi|A be coordinates on A with
(x1,x2,x3) being coordinates on R3. Furthermore, let θ = tan−1 x2

x1
and x3 be coordinates

� on the universal covering space Ã of A . The following argument shows that a lift Γ̃ of
Γ to Ã satisfies

dθ
dt

=
j

1− x2
3

(57a)

dx3

dt
= ε

√
P(x3), (57b)

with ε2 = 1. How the sign of ε is determined is discussed below.
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(4.1) Proof: By definition of Lie derivative, we find that

dθ
dt

= LXH|T S2 (θ |T S2) =
1

x2
1 + x2

2

(
x1

dx2

dt
− x2

dx1

dt

)
=

x1y2 − x2y1

x2
1 + x2

2
=

j
1− x2

3
.

Also,

dx3

dt
= LXH|T S2 (x3|T S2) = ρ∗

j (LXHj |Pj
σ1) = ρ∗

j (σ2), using (23)

=±ρ∗
j
(√

σ3(1−σ2
1 )− j2

)
, since σ2

2 −σ3(1−σ2
1 )+ j2 is an integral

of XHj with constant value 0

=±ρ∗
j
(√

2(h−σ1)(1−σ2
1 )− j2

)
, since γ(t) ∈ (H|T S2)−1(h), which

gives σ3 = 2(h−σ1)

= ε
√

P(x3),

where ε2 = 1 and P(x3) = 2(h− x3)(1− x2
3)− j2. The sign ambiguity is handled by the

following sign convention. Suppose that γ(t0) = x±3 and that at t0 − δ > 0 for δ > 0 and
small the value of ε is known. Then at time t0 + δ the value of ε is the negative of ε
at t0 − δ . Since θ̇ = 0 and ẋ3(t0) = 0 when Γ̃(t0) ∈ ∂ Ã , the curve Γ̃ has at least first
order contact with ∂ Ã at Γ̃(t0). Because Γ crosses C± = π−1

T S2({x3 = x±3 }) transversely
at Γ(t0) and the mapping πT S2 |T 2

h, j has a fold singularity at γ(t0), the curve Γ̃ has second

order contact with ∂ Ã at Γ̃(t0). The sign convention ensures that the solutions of (57a)
and (57b) in Ã are real analytic. �

Now consider the curve [0,2πθh, j) → T 2
h, j : s �→ ϕJ|T S2

s (p), where p lies in a fold curve
of the projection πT S2 |T 2

h, j. Suppose that the projected curve [0,2πθh, j) → S2 : s �→
πT S2(ϕJ|T S2

s (p)) is an arc of the small circle C− = {x3 = x−3 } on S2, which joins two suc-
cessive points of intersection Γ(0) and Γ(T ) with C−. Let 2πϑh, j be the angle between

� Γ(0) and Γ(T ) as measured from the center of the small circle C−. Then ϑh, j is equal to
the rotation number θh, j.

(4.2) Proof: This follows because

2πϑh, j =
∫ 2πϑh, j

0
dθ =

∫ 2πθh, j

0
LXJ|T S2 θ ds, bydefinitionof rotationnumber

=
∫ 2πθh, j

0
ds = 2πθh, j,

where the second to last equality follows using equation (8) and the definition of θ . �

� We now find a formula for θh, j.

(4.3) Proof: Since P(x3) > 0 for x = (x1,x2,x3) in the interior of A , from (57b) we see that
dx3
dt = 0. Hence for t ∈ (0,T/2)∪(T/2,T ) we may parametrize the curve γ by x3. Chasing

down the minus signs, we find

2πθh, j =
∫ T

0
LXH|T S2 θ dt = −

∫ x−3

x+3

dθ
dx3

dx3 +
∫ x+3

x−3

dθ
dx3

dx3 = 2
∫ x+3

x−3

dθ
dt

dx3
dt

dx3.
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Using (57a) and (57b) we get

2πθ(h, j) = 2πθh, j = 2 j
∫ x+3

x−3

1
(1− x2

3)
√

P(x3)
dx3, (58)

which is the desired formula for the rotation number. Some care needs to be taken in
interpreting (58) when j = 0, for then the integral is infinite. �
We now derive a formula for the first return time T . From the definition of the small circle
C− = {x3 = x−3 } of the annulus A = πT S2(EM−1(h, j)) and the sign convention for ε in
(57b), it follows that the time of first return is

T (h, j) =
∫ x+3

x−3
dt −

∫ x−3

x+3
dt = 2

∫ x+3

x−3

1
dx3
dt

dx3 = 2
∫ x+3

x−3

1√
P(x3)

dx3, (59)

where −1 < x−3 < x+3 < 1 are consecutive roots of P(x3) = 2(h− x3)(1− x2
3)− j2.

We now suppose that (h, j) is a regular value of EM and j = 0. Then 0 = x2y1 − x1y2 =

det
(

x1 y1
x2 y2

)
, that is, the vectors

(
x1
x2

)
and

(
y1
y2

)
are linearly dependent. So there is a

nonzero real number λ such that
{

y1 = λx1
y2 = λx2

. From the equations of motion (5) on

T R3 it follows that
{

ẋ1 = y1 = λx1
ẋ2 = y2 = λx2

. Thus the vertical 2-plane Π ⊆ R3 spanned by the

vectors

⎛⎝x1
x2
0

⎞⎠ and

⎛⎝0
0
1

⎞⎠ is invariant under the image of every integral curve of (5) under

the projection map πT R3 : T R3 → R3 : (x,y) �→ x. Since T S2 is an invariant manifold of
(5), it follows that the image of the integral curve t �→ ϕH|T S2

(p) on T 2
h,0 = EM−1(h,0)

� starting at p under the projection map πT S2 is an arc of the great circle Π∩S2 through the
north and south poles (0,0,±1) and the point 1√

x2
1+x2

2
(x1,x2,0). We need to look at two

cases.

CASE 1. −1 < h < 1. The image of EM−1(h,0) under the bundle projection πT S2 is
the closed 2-disk D on S2 with center at (0,0,−1) and boundary the small circle C+ =
{(x1,x2,h)∈ S2 x2

1+x2
2 = 1−h2 > 0}. Suppose that p = (x1,x2,h,0,0,0)∈ EM−1(h,0),

where πT S2(p) = (x1,x2,h) ∈ C+. Then the time T (h,0) of first return of the integral

curve γ : t �→ ϕH|T S2

t (p) of XH|T S2 on EM−1(h,0) to the closed orbit C = π−1
T S2(C

+) of
XJ|T S2 starting at p is

T (h,0) = 2
∫ h

−1

1√
2(h− x3)(1− x2

3)
dx3.

This follows because the projected curve Γ : t �→ πT S2(ϕH|T S2

t (p)) to D satisfies the dif-
ferential equation ẋ3 = (2(h−x3)(1−x2

3))
1/2 with x−3 =−1 and x+3 = h, and reaches C+

at the point πT S2(p∗) = (−x1,−x2,h) ∈ Π∩C+, where p∗ = (−x1,−x2,h,0, 0,0) ∈ C,
for the first time at T (h,0). Because p∗ = p, the first return time T (h,0) is not the
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period of the integral curve γ , which is indeed 2T (h,0). We now determine the rota-
tion number θ(h,0) of the integral curve γ . Because Γ(T (h,0)) = p∗, which lies in
Π ∩ C+ and is a half of a full rotation about the positive x3-axis from p, it follows

� that πT S2(ϕJ|T S2

±π (p)) = p∗. Thus the rotation number θ(h,0) of γ is ± 1
2 . The next

argument shows how to determine the sign.

(4.4) Proof: Suppose that (h, j) is a regular value of EM as j ↘ 0. Let Cj be a closed orbit of
XJ|T S2 on EM−1(h, j) starting at p j with p j → p. Then for all j > 0 and sufficiently small
the curve C+

j = πT S2(Cj) is homotopic in S2 \ {(0,0,±1)} to the image under πT S2 of a
relative equlibrium in RE+ corresponding to the energy momentum value (B−1

+ ( j), j).
Here B+ is given by (46). The projected relative equilibrium is traversed in an clockwise
direction about the positive x3-axis and thus is negatively oriented. Giving C+ = lim j↘0 C+

j
the same orientation as C+

j , it follows that the plus sign holds, that is, the rotation number
of γ is θ(h,0) = 1

2 . A similar argument shows that if j ↗ 0 then the rotation number of γ
is − 1

2 . �

CASE 2. h > 1. The image of EM−1(h,0) is S2. Suppose that p = (0,0,1,y1,y2,0),
where y2

1 + y2
2 = 2(h− 1). Then p ∈ EM−1(h,0). The time T (h,0) of first return of the

integral curve γ : t �→ ϕH|T S2
(p) of XH|T S2 on EM−1(h,0) to the closed orbit C of XJ|T S2

on EM−1(h,0) starting at p is

T (h,0) = 2
∫ 1

−1

1√
2(h− x3)(1− x2

3)
dx3.

This follows because the projected integral curve Γ : t �→ πT S2(ϕH|T S2

t (p)), which starts
at πT S2(p) = (0,0,1) = p∗, satisfies the differential equation ẋ3 = (2(h− x3)(1− x2

3))
1/2

with x−3 = −1 and x+3 = 1, and Γ reaches p∗ for the first time at T (h,0). Thus γ reaches
C at the point p for the first time at T (h,0). So T (h,0) is the period of γ . The rotation
number θ(h,0) of γ is ±1 and the sign is determined as in ((4.4)).

4.2 Analytic properties of the rotation number
Next we investigate the analytic properties of the rotation number.

Let R be the set of regular values of the energy momentum mapping, see figure 3.2.3. On
� R∨ = R \{ j = 0} the rotation number θ : R∨ → R : (h, j) �→ θh, j (58) is locally a single

valued real analytic function. Because R is not simply connected, θ need not be single
valued on all of R.

(4.5) Proof: Let P(z) = 2(h− z)(1− z2)− j2, where (h, �) ∈ R∨. Consider the 1-form ϖ =
1

(1−z2)
√

P(z)
dz on C∨, the extended complex plane, which is cut along the real axis

between x− and x+ and again between x0 and ∞. Here x±,0 are distinct roots of P with{ −1 < x− < x+ < h < 1 < x0, if −1 < h < 1
−1 < x− < x+ < 1 < h < x0, if h > 1.
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Write
√

P(z) =
√

r−r+r0ei(θ−+θ++θ0)/2, where z− x0,± = r0,±eiθ0,± and 0 ≤ θ0,± < 2π .
With this choice of complex square root on C∨ we see that ϖ is single-valued. It is
meromorphic with a first order pole at z =±1 whose residue Res

z=±1
ϖ at z =±1 is

lim
z→±1

(z∓1)
1

(1− z2)
√

P(z)
=− lim

z→±1

1
z±1

1√
P(z)

=∓ 1
2
√

P(±1)
= i

1
2| j| . (60)

When (h0, j0) ∈ R the polynomial P has three distinct real roots: two in (−1,1) and one
in (1,∞). Thus there is an open neighborhood U0 of (h0, j0) in R∨ where P has zeroes
with the preceding property. For every (h, j) ∈ U0 there is a positively oriented smooth
curve C in C∨ which encircles the cut [x−,x+] and avoids the points h and ±1. We can
rewrite (58) as

θ(h, j) =
j

2π

∫
C

1
(1− z2)

√
P(z)

dz. (61)

Now complexify h, j, and U0. With (h, j0) ∈UC
0 we have

∂θ
∂h

(h, j0) =
j0

2π

∫
C

1
1− z2

∂
∂h

( 1√
2(h− z)(1− z2)− j2

0

)
dz = 0.

Similarly for fixed h0 with (h0, j)∈UC
0 we get ∂θ

∂ j (h0, j) = 0. Using Hartog’s theorem we

deduce that θ is a complex analytic function on UC
0 . This implies that θ is a real analytic

function on U0 =UC
0 ∩R2. So θ is locally a real analytic function on R∨. �

To show that θ can be extended to a locally single valued real analytic function on all
of R, it suffices to show that it remains bounded as j → 0. Thus we need to show that

� for (h, j) ∈ R∨ with −1 < h < 1 we have

lim
j→0±

θ(h, j) =± 1
2 ; (62a)

while for (h, j) ∈ R∨ with h > 1 we have

lim
j→0±

θ(h, j) =±1. (62b)

(4.6) Proof: If we have proved

lim
j↘0

θ(h, j) =
{ 1

2 , if −1 < h < 1
1, if h > 1,

(63a)

then we obtain
lim
j↗0

θ(h, j) =
{ − 1

2 , if −1 < h < 1
−1, if h > 1,

(63b)

because θ(h,− j) = −θ(h, j). Suppose that (h, j) ∈ R ∩{ j > 0} and that −1 < h < 1.
Let C−1 be a positively oriented smooth curve in C∨ which encircles −1. Let C2 be a
positively oriented smooth curve in C∨ which encircles the cut [x−,x+] and h but avoids
C−1. Finally let C3 = C−1 +C2. Then

j
2π

∫
C3

ϖ = j
2π

∫
C−1

ϖ + j
2π

∫
C2

ϖ = j
2π

(
2πi Res

z=−1
ϖ
)
+θ(h, j) =− 1

2 +θ(h, j).
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To show that lim j→0
j

2π
∫
C3

ϖ = 0 we argue as follows. As j → 0 we have x−3 →−1 and
x+3 → h. Thus the contour C3 encircles the cut along the real axis between −1 and h and
avoids 1 by intersecting the real axis between h and 1. So

∣∣∫
C3

ϖ
∣∣= 2

∫ h

−1

1√
2(h− x)(1− x2)

dx ≤
√

2√
1−h2

∫ h

−1

1√
h− x

dx,

since −1 ≤ x ≤ h implies (h− x)(1− x2)≥ (h− x)(1−h2). Changing variables by u2 =
h− x, the last integral above is 2

√
h+1. Thus lim j→0

j
2π

∫
C3

ϖ = 0. So we have proved
(63a), when −1 < h < 1. To prove (63a) when h > 1, let C−1 be a positively oriented
smooth curve in C∨ which encircles −1 and let C1 be a positively oriented smooth curve
in C∨ which encircles 1 and avoids h. Let C2 be a positively oriented smooth curve in C∨

which encircles the cut [x−,x+] and h but avoids C±1. Finally let C3 = C−1 +C1 +C2.
Then

j
2π

∫
C3

ϖ = j
2π

∫
C−1

ϖ + j
2π

∫
C1

ϖ + j
2π

∫
C2

ϖ

= j
2π 2πi [Res

z=−1
ϖ +Res

z=1
ϖ ]+θ(h, j) =−1+θ(h, j).

To show that lim j→0
j

2π
∫
C3

ϖ = 0 we argue as follows. As j → 0 we have x−3 →−1 and
x+3 → 1. Thus the contour C3 encircles the cut along the real axis between −1 and 1 and
avoids h by intersecting the real axis between 1 and h. So

∣∣∫
C3

ϖ
∣∣= 2

∫ 1

−1

1√
2(h− x)(1− x2)

dx ≤
√

2√
h−1

∫ 1

−1

1√
1− x2

dx =

√
2π√

h−1
,

where the inequality follows since −1 ≤ x ≤ 1 < h gives (h−x)(1−x2)≥ (h−1)(1−x2).
Thus lim j→0

j
2π

∫
C3

ϖ = 0. �
We now turn to describing the global real analytic function θ on R which is defined by
analytically continuing the locally defined real analytic functions θ |Ui. Here {Ui} is a
suitable open covering of R. Let R̃ be the universal covering space of R with covering
mapping π : R̃ → R. Then R̃ is a real analytic manifold, which is diffeomorphic to a
2-disk D in R2 because R is diffeomorphic to an annulus. The covering projection π is
real analytic. Each function element θ |Ui lifts to a locally defined real analytic function
element θ̃ |Ũi, j where π(Ũi, j) = Ui and

⋃
Ũi, j = π−1(Ui). Here θ̃ |Ũi, j = (θ ◦π)|Ũi, j.

� Since R̃ is simply connected, there is a single valued real analytic function θ̃ whose local
function elements are θ̃ |Ũi, j.

(4.7) Proof: Let Γ be a simple closed curve in R̃. Then Γ bounds a 2-disk D. Since R̃ is
simply connected, there is a homotopy Γs such that Γ1 = Γ and Γ0 is a point p ∈ D.
Let S =

{
s ∈ [0,1] θ̃ is a single valued real analytic function in the disk Ds bounded by

Γs
}

. Then S is nonempty, because for some (i, j) the point p ∈ Ũi, j. Then there is an
s0 > 0 such that Γs0 ⊆ Ũi, j. Let σ = sup{s ∈ S}. Then σ ≥ s0 > 0. Now suppose that
σ < 1. Cover Γσ with open disks Δk ⊆ Ũi(k), j(k) of radius 3

4 δ with center at the point
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pk ∈ Γσ where for k ≥ 1 the distance between pk−1 and pk is less than δ . Then the disks
Δk pairwise overlap and a finite number of them cover Γσ . There is an s1 < σ such that
Γs1 ⊆ Dσ ∪⋃

kΔk. By definition of σ , the function θ̃ is single valued and real analytic in
Ds1 . By analytic continuation θ̃ is single valued and real analytic on

⋃
kΔk. Therefore, θ̃

is single valued and real analytic on Ds1 ∪
⋃

kΔk, which contains Dσ as a proper subset.
There is an s2 > σ such that Γs2 ⊆ Dσ ∪⋃

kΔk. On Ds2 the function θ̃ is single valued and
real analytic. But this contradicts the definition of σ . Therefore σ = 1. In other words,
the function θ̃ is real analytic and single valued on Γ and hence on all of R̃. �

The above result just states that θ could be a multivalued real analytic function on R.
The following discussion shows that θ is multivalued. We begin by proving

Fact: The variation of θ along an oriented closed curve Γ in R depends only on the
homotopy class of Γ.

(4.8) Proof: Suppose that Γ1 and Γ2 are homotopic positively oriented closed curves in R.
Then the curve γ = Γ1 −Γ2 is null homotopic in R. Since the fundamental group of R is
isomorphic to Z, it is abelian and hence is isomorphic to the first homology group of R.
Therefore γ is the boundary of some domain E in R. Hence∫

Γ1

dθ −
∫

Γ2

dθ =
∫

γ=∂E
dθ =

∫
E

d2θ = 0,

where the second to last equality follows by Stokes’ theorem. �

Next we prove

Claim: Let Γ be a positively oriented curve which generates the fundamental group of R.
As (h, j) makes a circuit around Γ the value of θ decreases by 1.

(4.9) Proof: Using the above fact we may choose Γ to be the positively oriented non-null
homotopic rectangular curve in R ∪{(1,0)} made up of four line segments joining the
points (h1, j0), (h0, j0), (h0,− j0), and (h1,− j0) with h0 < 1 < h1 and j0 > 0. Let Γ j

1 be
the oriented line segment joining the points (h1, j) and (h0, j) and Γ j

2 the oriented line
segment joining (h0,− j) and (h1,− j). Here 0 < j < j0. The curve Γ is homotopic to the
curve Γ j = Γ j

1 ∪S j
0 ∪Γ j

2 ∪S j
1, where S j

1 is the line segment joining (h1,− j) to (h1, j) and
S j

0 is the line segment joining (h0, j) to (h0,− j). Therefore∫
Γ

dθ = lim
j↘0

∫
Γ j

dθ = lim
j↘0

[
2
∫

Γ j
1

dθ +
∫

S j
1

dθ +
∫

S j
0

dθ
]
,

because θ(h,− j) =−θ(h, j) when j = 0
= lim

j↘0

[
2
(
θ(h0, j)−θ(h1, j)

)
+

(
θ(h1, j)−θ(h1,− j)

)
+

(
θ(h0, j)−θ(h0,− j)

)]
=−1,

where the last equality follows from (62a) and the fact that θ is locally real analytic and
hence locally continuous. Hence the variation of θ along Γ in R is −1. �
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4.3 Analytic properties of the first return time
In this subsection we prove some analytic properties of the time T of first return.

� On R∨ the time of first return T : R∨ →R : (h, j) �→ T (h, j) is a local real analytic function.

(4.10) Proof: We use the same choice of complex square root on C∨ and definition of the open
neighborhood U0 of (h0, j0) in R∨ as in ((4.5)). Let C be a positively oriented closed
curve in C∨ which encircles the cut [x−3 ,x

+
3 ] along the real axis and avoids the points ±1

by intersecting the real axis between −1 and x−3 and again between x+3 and 1. Then the
1-form 1√

P(z)
dz is holomorphic along C and T (h, j) =

∫
C

1√
P(z)

dz. Now complexify h,

j and U0. For fixed complex j0 with (h, j0) ∈UC
0 we have

∂T
∂h

(h, j0) =
∫

C

∂
∂h

( 1√
2(h− z)(1− z2)− j2

0

)
dz = 0.

Similarly for fixed complex h0 with (h0, j) ∈ UC
0 we get ∂T

∂ j (h0, j) = 0. Using Hartog’s

theorem, this shows that T is a complex analytic function on UC
0 . Consequently, T is a

real analytic function on U0 =UC
0 ∩R2. So T is locally a real analytic function on R∨. �

� To show that T can be extended to a real analytic function on all of R, it suffices to show
that the function

T (h,0) : (−1,1)∪ (1,∞)→ R : h �→ 2
∫ h∗=min(h,1)

−1

1√
2(h− x)(1− x2)

dx (64)

is real analytic.

(4.11) Proof: Making the successive changes of variables x = cos2θ and u =
√

2
h+1 cosθ in

(64) we get

T (h,0) =−2
√

2
∫ θ∗

π/2

1√
h+1

2 − cos2θ
dθ = 2

√
2
∫ u∗

0

1√
(1−u2)(1− h+1

2 u2)
du,

where θ ∗ = cos−1
√

h∗+1
2 and u∗ =

√
h∗+1
h+1 . Therefore

T (h,0) =

⎧⎪⎨⎪⎩
2
√

2K(
√

h+1
2 ), if −1 < h < 1

4√
h+1

K(
√

2
h+1 ), if h > 1.

For 0 < k < 1 the function K(k) =
∫ 1

0
1√

(1−u2)(1−k2u2)
du is the complete elliptic integral,

which is a real analytic function of k. �
We now prove

Claim: The function T : R →R : (h, j) �→ T (h, j) is a single valued real analytic function.
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(4.12) Proof: The same argument used in ((4.9)) shows that the variation of T along an oriented
closed curve Γ in R depends only on the homotopy class of Γ. Choose the curves Γ and
Γ j as in the argument proving ((4.10)). Then∫

Γ
dT = lim

j↘0

∫
Γ j

dT = lim
j↘0

[∫
Γ j

1

dT +
∫

S j
0

d T +
∫

Γ j
2

dT +
∫

S j
1

dT
]

= lim
j↘0

[(
(T (h0, j)−T (h1, j)

)
+

(
T (h1,− j)−T (h0,− j)

)
+

(
(T (h0,− j)−T (h0, j)

)
+

(
(T (h1, j)−T (h1,− j)

)]
= 0,

where the last equality follows because T is locally real analytic and hence is locally
continuous. Thus T is a single valued real analytic function on R. �

5 Monodromy
In this section we show that over the set R of regular values the fibers of the energy
momentum map EM of the spherical pendulum fit together in a nontrivial way.

5.1 Definition of monodromy
More precisely, let Γ be a closed non-null homotopic curve in R ⊆ R2, which bounds a
2-disk in R2 containing the point (1,0) in its interior. We will show that the 2-torus bundle
EM−1(Γ)→ Γ with bundle projection map EM is nontrivial, that is, it is not isomorphic
to the trivial bundle T 2 × S1 → S1 with bundle projection map being the projection on
the second factor. In other words, the classifying map χ of the bundle EM−1(Γ) → Γ,
which glues together the end 2-tori of the 2-torus bundle EM−1(Γ \ {pt}) → Γ \ {pt},
is not homotopic to the identity map. Note that the bundle EM−1(Γ \ {pt}) is trivial
because Γ\{pt} is contractible. In fact, the map χ∗ induced on the first homology group

H1(EM−1(pt),Z) of the end 2-torus EM−1(pt) by the classifying map χ is
(

1 0
−1 1

)
� with respect to a suitably chosen basis. The map χ∗ is called the monodromy map of the

bundle EM−1(Γ)→ Γ and depends only on the homotopy class of the curve Γ in R.

(5.1) Proof: To see this suppose that Γ̃ is a closed curve in R, which is homotopic to Γ, then the
bundles EM−1(Γ)→ Γ and EM−1(Γ̃)→ Γ̃ are isomorphic. Therefore their classifying
maps are homotopic, which implies that their monodromy maps are equal. �

Claim: The bundle EM−1(Γ)→ Γ is not trivial.

(5.2) Proof: From table 3.4.3 we see that for each h1 > 1 the energy surface (H|T S2)−1(h1)
is diffeomorphic to RP3; while for each −1 < h0 < 1 the energy surface (H|T S2)−1(h0)
is diffeomorphic to S3. Since H1(RP3,Z) = Z2 and H1(S3,Z) = 0, it follows that RP3 is
not even homeomorphic, let alone diffeomorphic, to S3. Suppose that the 2-torus bundle
EM−1(Γ)→ Γ is trivial. Let Γ1 be a curve in R ∩{h > 1}, which separates R into two
connected components, and let Γ0 be a curve in R∩{−1 < h < 1}, which does the same
thing, see figure 5.1.1. Give Γ0 and Γ1 opposite orientations. From the hypothesis that the
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bundle EM−1(Γ)→ Γ is trivial it follows that the manifolds EM−1(Γ0) and EM−1(Γ1)
are diffeomorphic. But EM−1(Γ0) is isotopic to (H|T S2)−1(h0); while EM−1(Γ1) is
isotopic to (H|T S2)−1(h1). Therefore the h0 and h1 level sets of H|T S2 are diffeomorphic,
which is false. Thus the bundle EM−1(Γ)→ Γ is nontrivial. �

j

h

�S3

�
���

Γ0 ���
Γ1

	 RP3

Figure 5.1.1. The geometric situation.

5.2 Monodromy of the bundle of period lattices
In this subsection we construct the bundle P → Γ of period lattices over the closed curve
Γ in the set R of regular values of EM such that its transition maps with respect to a
collection of suitably chosen trivializations are fixed elements of Sl(2,Z). Computing
the variation of these period lattices as the loop Γ is traversed once determines the mon-
odromy map of the 2-torus bundle EM−1(Γ)→ Γ.

For each (h, j) ∈ Γ the fiber Ph, j of the bundle P → Γ of period lattices is the period lat-
tice of the 2-torus EM−1(h, j). The period lattice Ph, j is obtained in the following way.

Let ϕH|T S2

t and ϕJ|T S2

s be the flows of the Hamiltonian vector fields XH|T S2 and XJ|T S2 ,
respectively, of the Liouville integrable system

(
H|T S2,J|T S2,T S2,ω|T S2

)
determined

by the spherical pendulum. Since EM−1(h, j) is smooth, connected, compact submani-

fold of T S2, which is invariant under the commuting flows ϕH|T S2

t and ϕJ|T S2

s , there is an
R2-action given by

Φ : R2 ×EM−1(h, j)→ EM−1(h, j) :
(
(s, t), p

) �→ (
ϕJ|T S2

s ◦ϕH|T S2

t
)
(p). (65)

Fix p0 ∈ EM−1(h, j) and let Lp0 = {(T1,T2) ∈ R2 Φ(T1,T2)(p0) = p0} be the isotropy
group of the action Φ at p0. Because (h, j) is a regular value of EM , the vector fields
XH|T S2 and XJ|T S2 give a basis for each tangent space to EM−1(h, j) and so yield a fram-
ing of EM−1(h, j). Consequently, Φ is a locally transitive action. Since EM−1(h, j) is
connected, the action Φ is transitive. Thus the isotropy group L = Lp0 does not depend on
the point p0. Because EM−1(h, j) is compact, L is a discrete subgroup of (R2,+), which
is a rank 2 is a lattice. The lattice L depends only on (h, j) and is called the period lattice
Ph, j of EM−1(h, j). From transitivity it follows that EM−1(h, j) is diffeomorphic to
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the orbit space R2/Z2 of the linear action of L on R2. In other words, EM−1(h, j) is
diffeomorphic to the 2-torus T 2 = R2/Z2.

We now give an explicit description of the period lattice Ph, j. For fixed (h, j)∈Γ consider
the Hamiltonian functions F1 = 2πJ and F2 =−2πθ(h, j)J +T (h, j)H on T S2. Here we
require that the rotation number θ(h, j) has its principal value, that is, θ(h, j) ∈ [ 0,1).
From the definition of the rotation number θ and the time T of first return we see that the
flows ϕF1

s and ϕF2
t of the Hamiltonian vector fields XF1 and XF2 on T S2 have the following

properties.

1. They commute.
2. They leave EM−1(h, j) invariant.
3. They are periodic of period 1 on EM−1(h, j).

Therefore with respect to the framing

EM−1(h, j)→ TEM−1(h, j) : p �→ span{XJ|T S2(p),XH|T S2(p)},

the period lattice Ph, j is generated by the vectors
(

2π
0

)
and

(−2πθ(h, j)
T (h, j)

)
, which do not

depend on the point p in EM−1(h, j).

We now construct the bundle P → Γ of period lattices over Γ. Because the rotation
number θ is locally a smooth on R, while the time T of first return is a smooth on all of
R, and R is an open subset of R2, which retracts onto Γ, there is a good open covering
U of R which restricts to a good open covering of Γ. This means that there is a covering
{Uα}α∈I of R by open sets Uα , α ∈ I such that

1. Uα , Uα ∩Uβ , Uα ∩Γ, and Uα ∩Uβ ∩Γ are connected and contractible.
2. Uα ∩Uβ ∩U γ =∅.
3. The functions θ α = θ |Uα and T α = T |Uα are smooth and single valued.

Over Uα ∩Γ a parametrization of the bundle P → Γ is given by the smooth family of
lattices

σα :
(
Uα ∩Γ

)×Z2 → ⋃·
(h, j)∈Uα∩Γ

Ph, j :
(
(h, j),

(
n
m

)) �→ n
(

2π
0

)
+m

(−2πθ α (h, j)
T α (h, j)

)
. (66)

Claim: On the overlap Uα ∩Uβ ∩Γ the transition function for the period lattice bundle
P → Γ is

σαβ = σβ ◦σ−1
α : (Uα ∩Uβ ∩Γ)×Z2 → (Uα ∩Uβ ∩Γ)×Z2 :(

(h, j),
(

n
m

)) �→ (
(h, j),gαβ

(
n
m

))
,

(67)

where gαβ ∈ Sl(2,Z), which is specified in (71) below.

(5.3) Proof: For i = 1,2 consider the functions Fα
i : EM−1(Uα)→ R : p �→ Fα

i (p) where

Fα
1 (p) = 2πJ(p) and Fα

2 (p) =−2πθ α(EM (p))J(p)+T α(EM (p))H(p).



IV.5.2 Monodromy of period lattice bundle 179

The flows ϕFα
1

s and ϕFα
2

t of the Hamiltonian vector fields XFα
1

and XFα
2

on the open subset
EM−1(Uα) of T S2 commute, leave EM−1(Uα) invariant, and are periodic of period 1.
Thus Fα

1 and Fα
2 are action variables on EM−1(Uα), see chapter IX §2. So we have a

T 2 = R2/Z2-action

Φα : T 2 ×EM−1(Uα)→ EM−1(Uα) :
(
(s, t), p

) �→ (ϕFα
1

s ◦ϕFα
2

t )(p), (68)

which is proper and free. Therefore EM−1(Uα) is the total space of a principal T 2-
bundle, see chapter VII ((2.12)), with a trivialization τα : EM−1(Uα)→ Uα ×T 2 such
that π1◦τα = EM |EM−1(Uα), where π1 : Uα ×T 2 →Uα is projection on the first factor.
The trivialization τα intertwines the T 2-action (68) with the T 2-action

ϕα : T 2 × (Uα ×T 2)→Uα ×T 2 :
(
(s, t),

(
(h, j),(s′, t ′)

)) �→ (
(h, j),(s+ s′, t + t ′)

)
,

that is,
τα(Φα

(s,t)(p)
)
= ϕα

(s,t)(EM (p)), (69)

for every p ∈ EM−1(h, j) and every (s, t) ∈ T 2. From the intertwining property (69) it
follows that for every (h, j) ∈Uα the tangent T(s,t)(τα)−1

(h, j) of the mapping

(τα)−1
(h, j) : T 2 → EM−1(h, j) : (s, t) �→ (τα)−1((h, j),(s, t)

)
= r

at (s, t) sends the lattice Z2 ⊆ T(s,t)T 2 onto the lattice in TrEM−1(h, j) with basis {XFα
1
(r),

XFα
2
(r)}. But this latter lattice is just the period lattice Ph, j of EM−1(h, j) at r. Since

Ph, j does not depend on the point r ∈ EM−1(h, j), the mapping T(s,t)(τα)−1
h, j does not

depend on (s, t) ∈ T 2. Consequently, the inverse of the parametrization σα (66)

σ−1
α :

⋃·
(h, j)∈Uα∩Γ

Ph, j → (Uα ∩Γ)×Z2 : Ph, j �→
(
(h, j),Tpτα(Ph, j)

)
does not depend on the point p in EM−1(h, j). Therefore for every (h, j) ∈Uα ∩Uβ ∩Γ
we have the partial transition map

ταβ
(h, j) = (π2◦τβ ) ◦(τα)−1

(h, j) : T 2 �→ T 2, (70)

where π2 : Uα ×T 2 → T 2 is projection on the second factor. This partial transition map
has a tangent T(s,t)τ

αβ
(h, j), which does not depend on the point (s, t) ∈ T 2. Moreover, the

map T ταβ
(h, j) is an invertible linear isomorphism of R2 onto itself, which preserves the

lattice Z2. The set of all such linear isomorphisms forms the group Sl(2,Z), which is a
discrete subgroup of the Lie group Sl(2,R). Since Uα ∩Uβ ∩Γ is connected, it follows
that the continuous map

Uα ∩Uβ ∩Γ → Sl(2,Z) : (h, j) �→ T ταβ
(h, j) (71)

is constant, namely, gαβ . Thus the mapping σαβ (67) is the transition map for the bundle
P → Γ of period lattices. �
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� The period lattice bundle P → Γ is isomorphic to the bundle of first homology groups
H1(EM−1(Γ),Z)→Γ of the fibration EM−1(Γ)→Γ. Here we have H1(EM−1(Γ),Z)=⋃·

(h, j)∈Γ
H1(EM−1(h, j),Z).

(5.4) Proof: For every (n,m) ∈ Z2 and every p ∈ EM−1(h, j) with (h, j) ∈ Uα ∩Γ consider
the mapping

ψα : Ph, j → H1(EM−1(h, j),Z) : (nXFα
1
+mXFα

2
)(p) �→ [γ n,m

p ], (72)

where [γ n,m
p ] is the homology class of the closed curve γ n,m

p : t �→ (ϕFα
1

nt ◦ϕFα
2

mt )(p) on
EM−1(h, j). This class does not depend on the point p, because of the transitivity of the
R2-action Φ (65). In addition, the period lattice Ph, j does not depend on the choice of the
point p. Therefore the mapping ψα is well defined. The closed curve γ n,m

p is homotopic

to n times the closed curve γ 1 : [0,1]→ EM−1(h, j) : t �→ ϕFα
1

t (p) followed by m times

the curve γ 2 : [0,1] → EM−1(h, j) : t �→ ϕFα
2

t (p). Thus [γ n,m
p ] = n[γ 1]+m[γ 2]. So the

mapping ψα (72) is linear. Since [γ 1] and [γ 2] generate the lattice H1(EM−1(h, j),Z),
the map ψα is an isomorphism of lattices. Therefore as a bundle map covering the identity
map on Uα ∩Γ, the mapping ψα is an isomorphism of the bundle

⋃·
(h, j)∈Uα∩Γ

Ph, j →Uα ∩Γ onto

the bundle
⋃·

(h, j)∈Uα∩Γ
H1

(
EM−1(h, j),Z

)→Uα ∩Γ. So the bundle of period lattices over Γ is

isomorphic to the bundle of first homology groups assoicated to EM−1(Γ)→ Γ. �

Claim: The monodromy map of the bundle EM−1(Γ)→ Γ with bundle projection map

EM is
(

1 0
−1 1

)
.

(5.5) Proof: We find the monodromy map by computing the variation of the period lattice along
the positively oriented curve Γ in R. First we choose a good open covering {Uα}α∈I of
the set R of regular values of EM so that {Uα}�α=1 is a finite good covering of Γ such
that Uα ∩Uα+1 = ∅ for every 1 ≤ α ≤ �− 1. For (h0, j0) ∈ U1 ∩Γ set θ 1(h0, j0) = 0.
This fixes the global multivalued function θ on R. Then θ �(h0, j0) =−1 by ((4.9)). For
each 1 ≤ α ≤ �− 1 on the overlap Uα ∩Uα+1 we have θ α = θ α+1 and T α = T α+1.
Therefore on Uα ∩Uα+1 the transition map gα,α+1 for the period lattice bundle is the
identity matrix in Sl(2,Z). In other words, there is no variation in the period lattice along
Γ when going from Uα ∩Γ to Uα+1 ∩Γ. Of course the period lattice varies on each Uα .
On the remaining overlap U �∩U1 the period lattice generated by {

(
2π
0

)
,
(−2πθ �(h, j)

T �(h, j)

)
}

is transformed into the period lattice generated by{(
2π
0

)
,
(−2πθ 1(h, j)

T 1(h, j)

)}
=

{(
2π
0

)
,
(−2π

(
θ �(h, j)+1

)
T �(h, j)

)}
, since T is single valued on R

=

{(
2π
0

)
,−

(
2π
0

)
+

(−2πθ �(h, j)
T �(h, j)

)}
.

So when going from U � ∩Γ to U1 ∩Γ the transition map g�,1 for the period lattice bun-

dle is the matrix
(

1 0
−1 1

)
. Hence the monodromy map χ∗ : H1(EM−1(h0, j0),Z) →
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H1(EM−1(h0, j0),Z) of the bundle EM−1(Γ)→ Γ is the variation of the period lattice
around Γ. This variation is just the product g�,1 ∏�−1

α=1 gα,α+1 of the variation on the over-

laps, which is
(

1 0
−1 1

)
. �

We now give a more physical argument to determine the monodromy map of the spherical
pendulum. Let Γ be a positively oriented circle in R with center (1,0) and of radius ε .
Let p± = (±1,0) ∈ Γ. Let Γ± = (±Γ)∩{± j ≥ 0} be closed oriented semicircular arcs of
Γ, which join p+ to p−. Let p± ∈ EM−1(p±). The integral curve γ of the Hamiltonian
vector field XH|T S2 , which starts at p+, is periodic of period T (1+ ε,0), has time of first
return T (1+ ε,0), and has rotation number 0. Also the integral curve δ of the Hamil-
tonian vector field XJ|T S2 starting at p+ is periodic of period 2π with rotation number

0. Therefore the period lattice Pp+ is generated by the vectors
(

2π
0

)
and

(
0

T (1+ ε,0)

)
.

Transported along the arc (Γ−)−1 joining p+ to p− the period lattice Pp+ becomes the

period lattice Pp− , which is generated by the vectors
(

2π
0

)
and

(
π

T (1− ε,0)

)
. This

follows because transporting the first homology class [γ] of EM−1(p+), represented by
the closed curve γ , along (Γ−)−1 results in the homology class [γ−], represented by γ−.
Moreover, γ− is an integral curve of XH|T S2 starting at p− ∈ EM−1(p−) that is periodic
of period 2T (1−ε,0), has first return time T (1−ε,0), and rotation number − 1

2 , because
Γ− \{p±} lies in R ∩{ j < 0}. Also transporting [δ ] along (Γ−)−1 gives [δ−], which is
represented by the integral curve δ−1 of XJ|T S2 starting at p− and is periodic of period 2π
with rotation number 0. Therefore we have constructed an invertible linear map

M− : Pp+ → Pp− :
{(

2π
0

)
,
(

0
T (1+ ε,0)

)}
�→

{(
2π
0

)
,
(

π
T (1− ε,0)

)}
.

Transported along the arc Γ+ joining p+ to p− the period lattice Pp+ becomes the period

lattice Pp− , which is generated by the vectors {
(

2π
0

)
,
( −π

T (1+ ε,0)

)
}. This follows

because transporting the homology class [γ] gives the homology class [γ+], represented
by the curve γ+, which is an integral curve of XH|T S2 starting at p− that is periodic of
period 2T (1− ε,0), has first return time T (1− ε,0), and rotation number 1

2 , because
Γ+ \{p±} lies in R ∩{ j > 0}. Also transporting the homology class [δ ] along Γ+ gives
the homology class [δ−], where δ− is an integral curve of XJ|T S2 starting at p− that is
periodic of period 2π with rotation number 0. Therefore we get an invertible linear map

M+ : Pp+ → Pp− :
{(

2π
0

)
,
(

0
T (1+ ε,0)

)}
�→

{(
2π
0

)
,
( −π

T (1− ε,0)

)}
.

So the invertible linear map

M = (M+)−1◦M− : Pp+ → Pp+ :{(
2π
0

)
,
(

0
T (1+ ε,0)

)}
�→

{(
2π
0

)
,
( −2π

T (1− ε,0)

)
= −

(
2π
0

)
+

(
0

T (1+ ε,0)

)}
has a matrix

(
1 0

−1 1

)
. Since δ and γ are closed curves on EM−1(p+), they represent

the homology classes [δ ] and [γ] which form a basis of H1(EM−1(p+),Z). Thus the
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monodromy map is

M∗ : H1(EM−1(p+),Z)→ H1(EM−1(p+),Z) :
(
[δ ]
[γ]

)
�→

(
1 0

−1 1

)(
[δ ]
[γ]

)
. (73)

Now consider the integral symplectic intersection form 〈 , 〉 on the first homology group
H1(EM−1(p+),Z), which comes from the natural orientation of EM−1(p+) = T 2 =
R2/Z2. This intersection form is defined by

〈[δ ], [δ ]〉= 0, 〈[γ], [γ]〉= 0, and 〈[γ], [δ ]〉= 1.

� Then the monodromy map M∗ (73) associated to a small positively oriented loop Γ around
(1,0) in R satisfies

M∗([λ ]) = [λ ]−〈[λ ], [δ ]〉 [δ ] (74)

for every [λ ] ∈ H1(EM−1(p+),Z), where p+ ∈ Γ. Equation (74) is called the Picard-
Lefschetz formula with δ being the vanishing cycle.

6 Exercises
1. (Weierstrass elliptic functions.) Consider the smooth affine elliptic curve E defined

by {(x,y) ∈ C2 y2 = 4(x− e1)(x− e2)(x− e3)}, where e3 < e2 < e1 and e1 + e2 +

e3 = 0. The compact Riemann surface corresponding to E ⊆ CP1 is a 2-torus C/Λ,
where Λ is a lattice.

a) (The ℘ function.) The Weierstrass ℘ function corresponding to Λ is

℘(μ) =
1

μ2 + ∑
ν∈Λ∗=Λ\{0}

[
1

(μ −ν)2 − 1
ν2

]
. (1)

Prove the following properties.

i. ℘ is meromorphic with poles only on Λ, which are second order. In particular,
℘(μ) = 1

μ2 +O(1).

ii. ℘ is an even function, that is, ℘(−μ) =℘(μ).
iii. ℘ is doubly periodic, that is, ℘(μ +ν) =℘(μ) for every ν ∈ Λ.

iv. For every a,b ∈ C we have the addition formula

℘(a+b) =
1
4

(
℘′(a)−℘′(b)
℘(a)−℘(b)

)2

−℘(a)−℘(b). (2)

Hint: The complex analytic functions W (μ) =℘(μ +b)+℘(μ) and Z(μ) =
1
4

(
℘ ′(μ)−℘ ′(b)
℘(μ)−℘(b)

)2 −℘(μ) have poles only at −b+Λ and 0+Λ and satisfy
1

(μ+c+Λ)2 +O(1), where c = b or 0. Deduce that −Z(μ)+W (μ) is constant

on E ⊆ CP1. From W (a) = 1
(a+b)2 +℘(a)+O(1) deduce (2).
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v∗. Show that π : C → E ⊆ C : μ �→ (
x(μ),y(μ)

)
=

(
℘(μ),℘′(μ)

)
parametrizes

the curve E.

vi. Let μ =−∫ ∞
z

dx
y . With x∈C∨ = (C∪{∞})\([e3,e2]∪ [e1,∞]) we have chosen

the square root in the definition of μ so that for j = 1,2,3 we have x− e j =

r jeiθi , where r j > 0 and 0 ≤ θ j ≤ 2π . Thus y(x) = 2
√

r1r2r3 ei(θ1+θ2+θ3)/2.
Show that the conformal map

℘−1 : {z ∈ C {Imz > 0}→ C : z �→ −
∫ ∞

z

dx
y

(3)

transforms the positively oriented upper half plane onto the interior of the
positively oriented rectangle R with vertices at 0, 1

2 λ ′, − 1
2 λ + 1

2 λ ′, − 1
2 λ being

the image of −∞, e3, e2, and e1, respectively. Here

1
2 λ =

∫ ∞

e1

dx
y

> 0 and 1
2i λ

′ =
∫ e3

−∞

dx
y

> 0. (4)

Show that (3) is the inverse of ℘.

b) (The ζ function.) The Weierstrass ζ function is defined by

ζ (μ) =
1
μ
+ ∑

ν∈Λ∗

(
1

μ −ν
+

1
ν
+

μ
ν2

)
. (5)

Show that

i. ζ ′(μ) =−℘(μ).
ii. Show that ζ is an odd function, that is, ζ (−μ) =−ζ (μ).

iii. The ζ function is quasi-periodic, that is, for every ν ∈ Λ there is a unique
η(ν) ∈ C such that ζ (μ +ν) = ζ (μ)+η(ν).

iv. Show that for every ν ∈ Λ we have ζ ( 1
2 ν) = 1

2 η(ν).
v. Show that

ζ (μ −a)−ζ (μ)+ζ (a) = 1
2

(
℘′(μ)+℘′(a)
℘(μ)−℘(a)

)
. (6)

Hint: The functions W (μ) = 1
2

(
℘ ′(μ)+℘ ′(a)
℘(μ)−℘(a)

)
and Z(μ) = ζ (μ − a)− ζ (μ)

both have poles at 0+Λ and a+Λ, which are first order with residue −1 and
1, respectively. Then compete the proof as in exercise a) iv.

Show that the function η has the following properties.

vi. ν �→ η(ν) is a Z-linear function on Λ.

vii. Let {λ ,λ ′} is a Z-basis for the lattice Λ. Then

λη(λ ′)−λ ′η(λ ) = 2π i, (7)

which is Legendre’s relation. Hint: Integrate ζ around a suitable rectangular
contour.
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c) (The σ function.) Define the Weierstrass σ function by

σ(μ) = μ ∏
ν∈Λ∗

(
1− μ

ν

)
e

μ
ν +

1
2 (

μ
ν )2

. (8)

i. Show that d
dμ logσ = ζ .

ii. Show that for every ν ∈ Λ we have

log
(σ(μ +ν)

σ(μ)

)
= 1

2 ν +η(ν)μ. (9)

2. (Formula for rotation number.) Consider the smooth affine elliptic curve Ẽc
defined by

v2 = p̃c(u) = 2(u2 −1)(c1 −u)− 1
2 c2

2,

where c = (c1,c2) ∈ (R×R≥0)\{discr p̃c = 0}. The polynomial p̃c has three dis-
tinct real roots u j such that −1 < u3 < 0 < u2 < 1 < u1 and is positive on (u3,u2).
The change of variables

u = 2x− 1
3 c1 and v = 2y

transforms the curve Ẽc into the elliptic curve Ec defined by y2 = 4x3 − g2x+ g3,
where g2 =

1
3 c2

1 − 1 and g3 =
1
3 c1 − 1

27 c3
1 − 1

4 c2
2. Ec is in Weierstrass normal form

y2 = 4(x − e1)(x − e2)(x − e3) where for j = 1,2,3 we have e j =
1
2 (u j +

1
3 c1)

with 1
2 (−1 + 1

3 c1) < e3 < e2 < 1
2 (1 + 1

3 c1) < e1 and e1 + e2 + e3 = 0. Let Λc

be the lattice corresponding to Ec with Z-basis {λ ,λ ′} with λ , 1
i λ ′ ∈ R>0. Let

℘ be the Weierstrass elliptic function corresponding to Λc, where ℘(− 1
2 λ ) = e1,

℘(− 1
2 λ + 1

2 λ ′) = e2, and ℘( 1
2 λ ′) = e3. Note that the mapping π : C → Ec ⊆ C2 :

μ �→ (
x(μ),y(μ)

)
=

(
℘(μ),℘′(μ)

)
, which is a parametrization of Ec, is also its

universal covering map.

a) The angular period Θ(c) =
∫ u2

u3
2c2

1−u2
du
v is the rotation number of the spherical

pendulum when (c1,c2) = (h, j). Let Φ̃ = uv+ic2
u2−1

du
v . Show that Φ̃ is a meromorphic

1-form on Ec = Ec ∪{∞} ⊆ CP1 with poles only at P̃1 = (1, ic2), P̃2 = (−1,−ic2),
and ∞ having residues 1, 1, and −2, respectively. Let Γ̃ be a positively oriented
closed loop in C, which encircles the cut [u3,u2] so that ±1 lie in its exterior. Show
that Θ(c) =−i

∫
Γ̃ Φ̃. Changing to x,y variables show that Φ̃ pulls back to a 1-form

Φ on Ec, which can be written as

Φ = ΦP1 +ΦP2 =
1
2

y+ yP1

x− xP1

dx
y
+ 1

2
y+ yP2

x− xP2

dx
y
.

Here P1 = (xP1 ,yP1) =
( 1

2 (1 + 1
3 c1),

1
2 ic2

)
and P2 = (xP2 ,yP2) =

( 1
2 (−1 + 1

3 c1),

− 1
2 ic2

)
. Show that the 1-forms ΦPj are meromorphic on Ec with poles only at

Pj and ∞, which are first order and have residues 1 and −1, respectively.
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b) Let Q = (xQ,yQ) =
(
℘(a),℘′(a)

)
be a point on Ec. Consider the 1-form ΦQ.

Let Γ ′ be a closed loop on Ec, whose universal cover is the closed line segment
μ0 −λ +λ ′,μ0 −λ . The following argument shows that

I =
∫

Γ ′
ΦQ = η(λ ′)a−ζ (a)λ ′ =

∫ xQ

e2

[η(λ ′)+λ ′ x]
dx
y
+π i. (10)

In what follows we use the Weierstrass elliptic functions ℘, η , ζ , and σ associated
to the lattice Λc. Show that the pull back of ΦQ by the universal covering map is
the 1-form

1
2

(℘′(μ)+℘′(a)
℘(μ)−℘(a)

)
dμ = [ζ (μ −a)−ζ (μ)+ζ (a)] dμ. (11)

Using the definition and properties of the σ function, justify each step of the next
calculation.

I =− log
σ(μ0 −a−λ +λ ′)

σ(μ0 −a−λ )
+ log

σ(μ0 −λ +λ ′)
σ(μ0 −λ )

−ζ (a)λ ′

=− log
σ(μ0 −a−λ +λ ′)

σ(μ0 −a)
+ log

σ(μ0 −a−λ )
σ(μ0 −a)

+ log
σ(μ0 −λ +λ ′)

σ(μ0)
− log

σ(μ0 −λ )
σ(μ0)

−ζ (a)λ ′

=−η(−λ +λ ′)(μ0 −a)− 1
2 (−λ +λ ′)+η(−λ )(μ0 −a)− 1

2 λ

+η(−λ +λ ′)μ0 +
1
2 (−λ +λ ′)−η(−λ )μ0 +

1
2 λ −ζ (a)λ ′

= η(λ ′)a−ζ (a)λ ′.

Integrating dI
da = η(λ ′)+λ ′℘(a) from a to e =− 1

2 λ gives

I(a)− I(e) =
∫ a

e

dI
da

da =
∫ a

e
[η(λ ′)+λ ′℘(μ)] dμ =

∫ xQ

e1

[η(λ ′)+λ ′x]
dx
y
.

But

I(e) =
∫

Γ ′
Φ(e1,0) = η(λ ′)e−ζ (e)λ ′ = η(λ ′)(− 1

2 λ )−ζ (− 1
2 λ )λ ′

= 1
2 [η(λ )λ ′ −η(λ ′)λ ] = π i,

using Legendre’s relation.

c) Let Q = (xQ,yQ) =
(
℘(a),℘′(a)

)
be a point on Ec and let Γ be a closed loop

on Ec, whose universal covering is the closed line segment μ0 +λ ′,μ0 −λ +λ ′.
Using an argument similar to the one in b) show that∫

Γ
ΦQ = η(λ )a−ζ (a) =

∫ xQ

e1

[η(λ )+λ x]
dx
y
. (12)

d) Let τ = λ/λ ′. Show that

aη(λ )−ζ (a)λ = τ[aη(λ ′)−ζ (a)λ ′]+2πi
a
λ ′
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and that

2πi
a
λ ′ =

2π i
λ ′

∫ a

− 1
2 λ+ 1

2 λ ′
dμ − τπ i+π i =

2π i
λ ′

∫ xQ

e2

dx
y
− τπ i+π i.

Using (10) and the above formulæ deduce

aη(λ )−ζ (a)λ = τ
∫ xQ

e1

[η(λ ′)+λ ′x]
dx
y
+

2π i
λ ′

∫ xQ

e2

dx
y
+π i. (13)

When a =− 1
2 λ + 1

2 λ ′ we have

aη(λ ′)−ζ (a)λ ′ = (− 1
2 λ + 1

2 λ ′)η(λ ′)−ζ (− 1
2 λ + 1

2 λ ′)λ ′

= (− 1
2 λ + 1

2 λ ′)η(λ ′)− [ 1
2 η(λ ′)− 1

2 η(λ )]λ ′

= 1
2 [η(λ )λ ′ −η(λ ′)λ ] = π i.

Since xQ =℘(a) = e2, equation (13) reads
∫ e2

e1
[η(λ ′)+λ ′x] dx

y = 0. From (12) and
(13) we obtain∫

Γ
ΦQ = τ

∫ xQ

e2

[η(λ ′)+λ ′x]
dx
y
+

2π i
λ ′

∫ xQ

e2

dx
y
+π i. (14)

e) Because xP1 ∈ (−∞,e3) and xP2 ∈ (e2,e1) we may choose a ∈ 0, 1
2 λ ′ and b ∈

− 1
2 λ + 1

2 λ ′,− 1
2 λ so that P1 =

(
℘(a),℘′(a)

)
and P2 =

(
℘(b),℘′(b)

)
. Let Γ be

the loop on Ec obtained by expressing the loop Γ̃ on Ẽc in terms of x,y variables.
The universal cover of Γ is the closed line segment λ ′,−λ +λ ′. Justify each step
of the following calculation.

Θ(c) =−i
∫

Γ
Φ =−i

∫
Γ

ΦP1 − i
∫

Γ
ΦP2

=−i[(a+b)η(λ )− (ζ (a)+ζ (b)λ ] (15)

=−i[(a+b)η(λ )−ζ (a+b)λ + 1
2 i c2λ ],

since ζ (a+b)−ζ (a)−ζ (b) = 1
2

(℘ ′(a)−℘ ′(b)
℘(a)−℘(b)

)
= 1

2 i c2

=−iτ
∫ xQ ′

e2

[η(λ ′)+λ ′x]
dx
y
+

2π
λ ′

∫ xQ ′

e2

dx
y
+ 1

2 c2λ +π. (16)

Here

xQ ′ =℘(a+b) =
1
4

(℘′(a)−℘′(b)
℘(a)−℘(b)

)2 −℘(a)−℘(b) =− 1
4 c2

2 +
1
3 c1. (17)

Since a+b ∈ − 1
2 λ ,− 1

2 λ + 1
2 λ ′, we get λ ′ −a−b ∈ − 1

2 λ + 1
2 λ ′,− 1

2 λ . Therefore
℘(a+b) =℘(a+b−λ ′) =℘(λ ′ −a−b) ∈ [e2,e1].

3. (Estimate for the rotation number.) If (h, �) is a regular values of the energy mo-
mentum map EM of the spherical pendulum, then 2π times the rotation number of
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the flow on the 2-torus EM−1(h, �) is

θ(h, �) = 2�
∫ x+3

x−3

dx3

(1− x2
3)

√
2(h− x3)(1− x2

3)− �2
. (18)

Note that θ(h,−�) = −θ(h, �), when � = 0. The goal of this exercise is to show
that

π < θ(h, �)< 2π, (19)

when � > 0. We will use complex analysis.

a) Let

ω =
� dz

(1− z2)
√

2(h− z)(1− z2)− �2
.

Since −1 < x−3 < x+3 < 1 < x0
3 are real roots of 2(h− z)(1− z2)− �2, we cut the

extended complex plane C̃ along the real axis between x−3 and x+3 and again between
x0

3 and ∞. Choosing the square root as in ((4.5)), we see that ω is a meromorphic 1-
form on C∨ = C̃\([x−3 ,x+3 ]∪ [x0

3,∞]) with first order poles at ±1. Show that Res
z=±1

ω =

1
2 i. Let C1, C3, and C4 be positively oriented closed curves in C∨ which enclose
[x−3 ,x

+
3 ] but not ±1, [x−3 ,x

+
3 ] and −1 but not +1 and [x−3 ,x

+
3 ] and ±1, respectively.

Show that

θ(h, �) =
∫

C1

ω =
∫

C3

ω −2πi Res
z=−1

ω

=
∫

C4

ω −2πi
(
Res

z=−1
ω +Res

z=1
ω
)
=

∫
C4

ω +2π. (20)

Let C2 be the positively oriented curve in C∨ which encloses the cut [x0
3,∞] but not

1. Show that C2 goes from near ∞ to x−3 along the underside of the cut and then
back to the original starting point. Show that the curves C4 and C2 are homotopic
in C∨ \ {±1}. Deduce that∫

C4

ω =
∫

C2

ω = −2
∫ ∞

x0
3

1

(x2
3 −1)

√
2(h− x3)(1− x2

3)− �2
dx3. (21)

Since x0
3 > 1, the integrand in (21) is positive. Therefore from (20) we obtain

θ(h, �)< 2π .

b) Consider the positively oriented vertical line L : z = ξ + iη where η ∈ [−∞,∞],
ξ ∈ (x+3 ,1) and L is closer to x−3 than x+3 , that is, x−3 +ξ < x+3 −ξ . Show that L is
homotopic to C3 in C∨ \ {±1}. Deduce that

θ(h, �) =
∫

C1

ω =
∫

L
ω +π. (22)

Let z = ξ + iη with η ≥ 0. Define θ 0,± and r0,± by z− x0,±
3 = r0,± eiθ 0,±

, where
0 ≤ θ 0,± < 2π . Show that θ−+θ+ > π . Hence π > α(η) = 1

2 (θ
0 +θ−+θ+)>
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π/2. If z = ξ + iη with η < 0, show that α(η) = α(−η). Justify each step of the
following calculation.∫

L
ω =

∫ ∞

−∞

i� dη(
1− (ξ + iη)2

)
eiα(η)

√
2
√

r0r−r+

= 2�
∫ ∞

0

[
(1−ξ 2 +η2)sinα(η)−2ξ η cosα(η)

(1−ξ 2 +η2)2 +4ξ 2η2

]
dη√

2
√

r0r−r+
> 0.

Therefore θ(h, �)> π .

4. Show that there is no homeomorphism of R3 which maps a 2-torus with a meridial
circle pinched to a point to a 2-torus in R3 with a longitudinal circle pinched to a
point.

5. (Horozov’s theorem.) We know that the regular values of the energy momentum
map EM of the spherical pendulum is the set R of (h, �) ∈ R2 such that

h >−1, �2 <
4(3+h2)3/2 +4h(9−h2)

27
, and (h, �) = (1,0). (23)

For (h, �) ∈ R, 2π times the rotation number of the flow of the spherical pendulum
on the 2-torus EM−1(h, �) is

θ(h, �) = 2�
∫ x+3

x−3

dx3

(1− x2
3)

√
2(h− x3)(1− x2

3)− �2
,

where −1 < x−3 < x+3 < 1 < x0
3 where x0,± are roots of 2(h− x3)(1− x2

3)− �2. The
time T (h, �) of first return of the flow of the spherical pendulum to a cross section
on EM−1(h, �) (given by an orbit of the angular momentum vector field) is

T (h, �) = 2
∫ x+3

x−3

dx3√
2(h− x3)(1− x2

3)− �2
.

We know that locally T and θ are real analytic functions in R. The goal of this
exercise is to show that they are coordinates on R, that is, dT ∧ dθ = 0. In other
words, for every (h, �) ∈ R

D = det

⎛⎜⎜⎝
∂T
∂h

∂T
∂�

∂θ
∂h

∂θ
∂�

⎞⎟⎟⎠ = 0. (24)

a) Use a computer to draw the level curves of θ and T . Notice that these curves are
like polar coordinates centered at (1,0) with T being the radial coordinate and θ
the angular coordinate.
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b) Consider the elliptic curve

Γh,� : y2 = 2(h− z)(1− z2)− �2

with (h, �) ∈ R. Let γh,� be a positively oriented curve in the cut extended complex
plane C∨ = C\([x−3 ,x+3 ]∪ [x0

3,∞]), which encloses the cut [x−3 ,x
+
3 ] but not ±1. Note

that T (h, �) =
∫

γh,�
1
y dz and θ(h, �) =

∫
γh,�

� dz
(1−z2)y . Since we can homotope the curve

γh,� in C∨ \{±1} to another without changing T or θ , it follows that we can compute
the partial derivative of T and θ by differentiating under the integral sign. Let
w0 =

∫
γh,�

1
y3 dz and w1 =

∫
γh,�

z
y3 dz. Show that

D = 4
3 (hw0 −w1)(hw1 −w0)− �2w2

0 (25)

by checking the following

i). ∂T
∂h =−∫

γh,�
1−z2

y3 dz = −w0 +
∫

γh,�
z2

y3 dz. But

∫
γh,�

z2

y3 dz = 1
6

∫
γh,�

d(y2 +2hz2 +2z+ �2 −2h)
y3 .

Therefore ∂T
∂h = 2

3 (hw1 − w0).

ii) ∂θ
∂� =

∫
γh,�

�2+y2

(1−z2)y3 dz =
∫

γh,�

2(h−z)(1−z2)
(1−z2)y3 dz. Therefore ∂θ

∂� = 2(hw0 −w1).

iii) ∂θ
∂h = ∂T

∂� = �w0. From (25), we see that we may assume that �≥ 0.

c) Using the translation z = x + 1
3 h and the scaling y = αv and x = βu, where

3β = (3+h2)1/2 and α = β 3/2, show that the elliptic curve Γh,� becomes the elliptic
curve Γp : 1

2 v2 = u3 −3u+ p, where

p = p(h, �) =
2h(9−h2)

(3+h2)3/2 − 27�2

2(3+h2)3/2 .

When (h, �) ∈ R show that −2 < p(h, �)< 2. Also check that

w0 =
β
α3

∫
γp

du
v3 and w1 =

β
α3

∫
γp

βu+h/3
v3 du.

We now explain how the curve γp is chosen. Let C∨ be the extended complex plane
C̃ cut between u− and u+ and again between u0 and ∞. Here u0,± are real roots of
u3 −3u+ p, −2 < p < 2, and u− < u+ < u0. Let γp be a closed positively oriented
curve in C∨ which encloses the cut [u−,u+] but not ±1.

d) Let θ0(p) =
∫

γp
du
v3 and θ1(p) =

∫
γp

u du
v3 . Show that (θ0,θ1) satisfy the Picard

Fuchs equation

6(4− p2)
d

dp

(
θ0
θ1

)
=

(
7p 10
14 5p

) (
θ0
θ1

)
.

Let r(p) = θ0(p)/θ1(p). For p ∈ (−2,2) show that r satisfies the Ricatti equation

3(4− p2)
dr
dp

= 7− pr−5r2 (26)
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and has the following properties.

i). r(−2) = 7/5 and r(2) = 1.

ii). r′(p)< 0 for every p ∈ (−2,2).

To see that ii) holds we argue as follows. First we show that r(p)> 0 for every p ∈
(−2,2). Suppose not. Let p0 ∈ (−2,2) be the smallest zero of r. Then r′(p0)≤ 0.
Using (26), we obtain r′(p0) =

7
3(4−p02)

> 0, which is a contradiction. Suppose that
r′(p0) = 0, for some p0 ∈ (−2,2). Differentiating (26) gives

3(4− p2
0)

d2r
dp2 (p0) =−r(p0)< 0.

Thus every critical point of r is a nondegenerate local maximum. Suppose that for
some p′ ∈ (−2,2), r(p′)< 1. Since r(−2) = 7/5 > 1 = r(2), it follows that r has a
minimum in (−2,2). This is a contradiction. Hence r ≥ 1 on (−2,2). From (26) it
follows that r′(p) = 0 for p ∈ (−2,2) if and only if (p,r(p)) lie on

0 = 7− xy−5y2 −2 ≤ x ≤ 2, & y ≥ 1. (27)

Equation (27) defines a smooth function x → y(x), which is strictly decreasing on
[−2,2] because y′ = −y

10y+x < 0. Note that y(−2) = 7/5 and y(2) = 1. Suppose that
r′(p0) = 0 for some p0 ∈ (−2,2). Then (p0,r(p0)) satisfies (27). Hence r(p0) <
7/5. But r(−2) = 7/5. Because r(p0) is a nondegenerate local maximum, we see
that r has a local minimum in (−2, p0). This is a contradiction. Hence r has no
critical points in (−2,2). Since r(−2) = 7/5 and r(2) = 1, it follows that r′(p)< 0
for every p ∈ (−2,2).

e) Show that w0(p)w1(p)> 0 for every p ∈ (−2,2). Argue as follows. Since

w0(p) = 2
∫ u+

u−

du
(u3 −3u+ p)3/2 ,

we see that w0(p) = 0 for every p ∈ (−2,2). Suppose that for some (h0, �0) ∈ R
with p0 = p(h0, �0) we have w1(p0) = 0. From the definition of w1 we obtain

r(p0) =− h0

3β
=−h0(3+(h0)2)−1/2

.

Therefore r(p0) ≤ 0 when h0 > 0 and 0 ≤ r(p0) ≤ 1
2 when −1 < h ≤ 0. This

contradicts the fact that r(p) ∈ (1,7/5) when p ∈ (−2,2). Therefore w1(p(h, �)) =
0 for every (h, �) ∈ R. Setting h = 0 in the definition of w1 gives

w1( p̃)
w0( p̃)

=
1
β

θ1(p̃)
θ0(p̃)

=
1
β

1
r(p̃)

> 0,

where p̃ = p(0, �). Therefore w0(p)w1(p)> 0 for every p ∈ (−2,2).

f) We show that D (25) is nonzero when (h, �) ∈ R by considering three cases.

CASE 1. h ≤ 0, � > 0. From (e) and (25) it follows that D < 0.



IV.6 Exercises 191

CASE 2. � = 0. When � = 0 the spherical pendulum moves in a plane as if it were
a mathematical pendulum. From the geometric interpretation of θ(h,0) ((4.2)) we
see that

θ(h,0) =
{

π, if −1 < h < 1
2π, if h > 1. (28)

Therefore ∂θ
∂h (h,0) = 0. Now

T (h,0) = 2
∫ x+3

x−3

dx3√
2(h− x3)(1− x2

3)

is the period of the mathematical pendulum as a function of energy. In exercise 3
of the introduction we show that ∂T

∂h (h,0)> 0. Because θ is a real analytic function
on R, we have

θ(h, �) = θ(h,0)+ �
∂θ
∂�

(h,0)+O(�2).

From (28) and exercise 5 it follows that

π < π + �
∂θ
∂�

(h,0)+O(�2)

for (h, �) ∈ R and −1 < h < 1, � = 0. Therefore ∂θ
∂� (h,0) = 0. Similarly, when

h > 1 we find that ∂θ
∂� (h,0) = 0. Therefore D = 0 when �= 0. Setting h = �= 0 in

(25) we see that D < 0. Hence D < 0 when �= 0.

CASE 3. h > 0 and � > 0. Using (25) show that

D = 4
3 βhw2

0 F(p,ν), (29)

where ν = ν(h) = 3β
h and F(p,ν) = r(p)

(
r(p)−2ν

)
+ν p−1. Consider the map-

ping

Ψ : R ∩ (R>)
2 → S =

{
(p,ν) ∈ R2 ν ∈ ( 1

2 ,∞) & p ∈ (−2,(3ν2 −1)v−3)} :

(h, �) �→ (
p(h, �),ν(h)

)
.

Show that Ψ is a diffeomorphism which maps the half-line Ψ({(h,0)|h > 0}) bi-
jectively onto the curve p =

(
3ν2 − 1

)
/v3, ν ∈ ( 1

2 ,∞). To show that F(p,ν) < 0
we argue as follows. For every fixed p0 ∈ (−2,2), the function Fp0(ν) = F(p0,ν),
where ν ∈ S ∩{p = p0} is strictly decreasing. To see this differentiate the defini-
tion of F and obtain ∂Fp

∂ν = −2r(p)+ p. At p = 2, we know that r(2) = 1. Hence
∂F2
∂ν = 0. However,

∂
∂ p

(∂Fp

∂ν
)
=−2r′(p)+1 > 0,

since r′(p)< 0 for every p ∈ (−2,2). Hence
∂Fp0
∂ν < 0 for every p0 ∈ (−2,2). For

any (p0,ν0) ∈ S there is a ν1 ∈ ( 1
2 ,ν0) such that p0 =

(
3ν2

1 −1
)
/ν3

1 . Since Fp0 is
strictly decreasing, F(p0,ν0) < F(p0,ν1). Using (29) and the result of case 2 that
D < 0 when �= 0, we see that F(p,ν1)< 0. Therefore F(p,ν)< 0.



Chapter V

The Lagrange top

1 The basic model
Physically, the Lagrange top is a symmetric rigid body spinning about its figure axis
whose base point is fixed. A constant vertical gravitational force acts on the center of
mass of the top, which lies on its symmetry axis.

e1

e2

e3

Figure 1.1. The Lagrange top.

Mathematically, the top is a Hamiltonian system on the phase space (T SO(3), Ωρ). The
symplectic form Ωρ on T SO(3) is the pull back of the canonical symplectic form Ω on
T ∗ SO(3) by the map ρ � associated to a left invariant metric ρ on SO(3). The metric ρ ,
which is uniquely determined by its value at the identity element e, is given by

ρ(e) : Te SO(3)×Te SO(3) = so(3)× so(3)→ R :(
X ,Y

) �→ k(I(X),Y ) = I1k(X ,Y )+(I3 − I1)k(X ,E3)k(Y,E3).
(1)

Here k is the Killing metric on so(3), see chapter III §1, and the I : so(3) → so(3) is a
k-symmetric linear map. The matrix of I with respect to the standard k-orthonormal basis
{E1,E2,E3} is diag(I1, I1, I3), where Ii are the principal moments of inertia of the top.

� Springer Basel 2015
R.H. Cushman and L.M. Bates, Global Aspects of Classical
Integrable Systems, DOI 10.1007/978-3-0348-0918-4_5
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Because ρ is a metric, I is invertible. We will assume that

0 < I1 < I3. (2)

To make sure that I is the moment of inertia tensor of a physically realizable top, see
exercise 5 in chapter III, we require that

I3 ≤ 2 I1. (3)

The Hamiltonian

H : T SO(3)→ R : XA �→ K (XA)+(τ∗V )(XA), (4)

is the sum of kinetic and potential energy. The kinetic energy K : T SO(3)→ R : XA →
1
2 ρ(A)(XA,XA) is one half the ρ-length squared of a tangent vector to SO(3). The potential
energy V : SO(3)→ R : A �→ χk(AdA E3,E3) measures the height of the center of mass
of the top. To be able to define the Hamiltonian, we must pull back V by the bundle
projection τ : T SO(3)→ SO(3) : XA �→ A so that it is a function on T SO(3).

2 Liouville integrability
In this section we show that the Lagrange top is Liouville integrable, see chapter IX §1.
To do this we need two additional integrals of motion other than the Hamiltonian. These
two extra integrals arise from two rotational symmetries of the top, namely, one about the
vertical axis e3, which is fixed in space, and the other about the figure axis (= symmetry
axis) fixed in the top.
We now investigate these symmetries more carefully. Let S1 =

{
B ∈ SO(3) AdB E3 =

E3
}

. Then S1 acts on the left on T SO(3) by

Φ� : S1 ×T SO(3)→ T SO(3) : (B,XA) �→ TALBXA = XBA. (5)

� Physically this action corresponds to rotating the top about the vertical axis.

(2.1) Proof: To see this let A(t) ∈ SO(3) be the configuration of the top at time t with respect
to the fixed frame {e1,e2,e3} in R3. The figure axis of the top at time t is A(t)e3. Acting
on the top on the left by B ∈ S1, we obtain the new configuration BA(t) Applying the
mapping i : so(3)→ R3, see chapter III ((1.2)), to the condition E3 = AdB E3 defining S1

gives e3 = Be3. Since (BA(t)e3,e3) = (A(t)e3,B−1e3) = (A(t)e3,e3), the angle between
the figure axis and e3 remains invariant under the left S1-action. Thus the left S1-action
corresponds to rotating the top about the vertical axis e3. �

� The action Φ� is Hamiltonian with momentum mapping

J� : T SO(3)→ R : XA �→ ρ(A)(TeRAE3,XA). (6)

Physically, J� is the angular momentum of the top about the e3-axis.
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(2.2) Proof: The formula for the momentum mapping follows from the momentum lemma,
see chapter VII ((5.7)). We provide some details. Let θ be the canonical 1-form on
T ∗ SO(3). First we show that the 1-form θρ = (ρ �)∗θ is invariant under the action Φ�.
For WXA ∈ TXA

(
T SO(3)

)
and B ∈ S1 we have(

(Φ�
B)

∗θρ
)
(XA)WXA = ρ(BA)

(
T τ(TXAΦ�

B)WXA ,XAB
)

= ρ(BA)
(
TALB(T τWXA),TALBXA

)
, since τ ◦Φ�

B = LB ◦τ
= ρ(A)(T τWXA ,XA), by left invariance of ρ
= θρ(XA)WXA .

Second, note that the Lie algebra TeS1 ⊆ so(3) of S1 is spanned by E3. Therefore the
infinitesimal generator of the action S1×SO(3)→ SO(3) : (B,A) �→ BA is the vector field

XSO(3)(A) =
d
dt t=0

(exp tE3)A =
d
dt t=0

RA exp tE3 = TeRAE3

and the infinitesimal generator of Φ� is XT SO(3)(XA) =
d
dt t=0

Φ�
exp tE3

(XA). Since Lexp tE3
◦τ

= τ ◦Φ�
exp tE3

, it follows that T τXT SO(3)(XA) = XSO(3)(A). Therefore

J�(XA) = θρ(XA)(XT SO(3)(XA))

= ρ(A)(T τXT SO(3)(XA),XA) = ρ(A)(XSO(3)(A),XA). �

� To show that S1 is a (left) symmetry of the Lagrange top we need only verify that the
action Φ� preserves the Hamiltonian H .

(2.3) Proof: For B ∈ S1, we have

(Φ�
B)

∗H (XA) = H (XBA) =
1
2 ρ(BA)(XBA,XBA)+χk(AdBA E3,E3)

= 1
2 ρ(A)(XA,XA)+χk(AdA E3,AdB−1 E3) = H (XA). �

Therefore J� is constant on the integral curves of the Hamiltonian vector field XH , that
is, J� is an integral of the Lagrange top.

The group S1 = {B ∈ SO(3)|AdBE3 = E3} also acts on the right on T SO(3) by

Φr : T SO(3)×S1 → T SO(3) : (XA,B) �→ XAB = TARBXA. (7)

� Physically, this action corresponds to a rotation about the figure axis of the top.

(2.4) Proof: To see this, let A(t) ∈ SO(3) be the configuration of the top at time t with respect
to the fixed frame {e1,e2,e3} in R3. Acting on the right by B ∈ S1 gives the new config-
uration A(t)B. Since Be3 = e3, we find that A(t)Be3 = A(t)e3. Thus the figure axis of the
top in the new configuration is the same as in the original configuration. Hence the right
S1-action corresponds to rotating the top about its figure axis. �

� The right S1-action Φr is Hamiltonian with momentum mapping

Jr : T SO(3)→ R : XA �→ ρ(A)(TeLAE3,XA). (8)
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Physically, Jr is the angular momentum of the top about its figure axis.

(2.5) Proof: The argument follows along the same lines as the proof of ((2.2)). We only show
that the 1-form θρ is invariant under Φr. First we verify that the metric ρ (1) is invariant
under the right S1-action Φr, that is,

I ◦ AdB = AdB ◦ I, (9)

for every B ∈ S1. From the definition of ρ(e) and the fact that B ∈ S1, it follows that

ρ(e)(AdB−1 X ,AdB−1 Y ) =

= I1k(AdB−1 X ,AdB−1 Y )+(I3 − I1)k(AdB−1 X ,E3)(AdB−1 Y,E3)

= ρ(e)(X ,Y ), since k is Ad-invariant.

Equation (9) follows because ρ(e)(X ,Y ) = k
(
I(X),Y

)
. The metric ρ is Φr-invariant,

because

ρ(B)
(
TeRBX ,TeRBY

)
= ρ(e)

(
TBLB−1TeRBX ,TBLB−1 TeRB

)
, since ρ is Φ�-invariant

= ρ(e)
(
AdB−1 X ,AdB−1Y

)
= ρ(e)(X ,Y ).

The 1-form θρ is Φr-invariant, because

(Φr)∗θρ(XA)WXA = ρ(AB)
(
T τ(T Φr

BWXA),XAB
)
= ρ(AB)

(
TARB(T τWXA),TARBXA

)
= θρ(XA)(WXA). �

� To show that S1 is a (right) symmetry of the Lagrange top it suffices to verify that the
Hamiltonian H is invariant under Φr.

(2.6) Proof: For B ∈ S1 we have

(Φr
B)

∗H (XA) = H (XAB) =
1
2 ρ(AB)(XAB,XAB)+χk(AdAB E3,E3)

= 1
2 ρ(A)(XA,XA)+χk(AdA AdB E3,E3),

since ρ is Φr-invariant and B ∈ S1

= H (XA), since B ∈ S1. �

Therefore Jr is an integral of the vector field XH .

To complete the argument that the Lagrange top is Liouville integrable, we need only
show that the Poisson bracket of any two of the integrals {H ,J�,Jr} vanishes

� identically. Since J� and Jr are integrals of XH , their Poisson bracket with H vanishes
identically. We now show that the Poisson bracket of J� and Jr vanishes identically.

(2.7) Proof: To see this it suffices to show that Jr is constant on the orbits of Φ�. For B ∈ S1

we have

((Φ�
B)

∗Jr)(XA) = Jr(XBA) = ρ(BA)(TeLBAE3,XBA)

= ρ(BA)(TBLB TeLAE3,TBLBXA)

= ρ(A)(TeLAE3,XA), since ρ is Φ�-invariant
= Jr(XA). �
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3 Reduction of right S1-action
In this section we remove the symmetry about the figure axis of the Lagrange top using
the technique of regular reduction, see chapter VII ((6.1)). After reduction we obtain a
Hamiltonian system with two degrees of freedom which is equivalent to the magnetic
spherical pendulum.

3.1 Reduction to the Euler-Poisson equations
In this subsection we reduce the symmetry given by the right S1-action and obtain a
Hamiltonian system for which Hamilton’s equations are the Euler-Poisson equations.

To find an initial model for the reduced phase space, we follow the proof of the regular
reduction theorem. This constructs the orbit space of the right S1-action Φr (7) on the

� a-level set of the right angular momentum mapping Jr. We start by checking that
J −1

r (a) is a smooth manifold for every a ∈ R.

(3.1) Proof: Pulling back the right S1 Hamiltonian action Φr by the left trivialization

L : SO(3)× so(3)→ T SO(3) : (A,X)→ TeLAX = XA (10)

gives the right S1-action

ϕ r :
(

SO(3)× so(3)
)×S1 → SO(3)× so(3) :

(
(A,X),B

) �→ (AB,AdB−1 X), (11)

because

(AdB−1 X)AB = TeLAB(TBLB−1 TeRBX) = TBLA TeRBX = TARBXA = XAB.

Pulling back the right momentum map Jr (8) by the left trivialization L (10) shows that
the action ϕ r has a momentum mapping

Jr : SO(3)× so(3)→ R : (A,X) �→ Jr(XA)E3 = ρ(e)(X ,E3) = k(I(X),E3). (12)

Because the derivative of Jr at (A,X)

DJr(A,X)(VA,Y ) =
d
dt t=0

Jr(Aexp tV,X + tY ) = ρ(e)(E3,Y )

is a surjective linear mapping from T(A,X)

(
SO(3)× so(3)

)
to R, the level set J−1

r (a) is a
smooth manifold. �

The level set J−1
r (a) is invariant under the action ϕ r, because for every B ∈ S1

Jr(AB,AdB−1 X) = k
(
I(AdB−1 X),E3

)
= k

(
AdB−1(I(X)),E3

)
, using (9)

= k
(
I(X),AdBE3

)
= Jr(A,X).

Therefore ϕ r restricts to an S1-action ϕ r|(S1×J−1
r (a)

)
on J−1

r (a). This induced action is
a free, because if (A,X) = (AB,AdB−1 X), then A = AB, that is, B is the identity element e.
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Hence the space J−1
r (a)/S1 of S1 orbits of ϕ r|(S1 × J−1

r (a)) is a smooth manifold called
the reduced phase space, see chapter VII ((6.1)).

This description of the reduced phase space is somewhat abstract. We now provide a more
concrete model, namely, Pa = {(Z,W ) ∈ so(3)× so(3) k(Z,Z) = 1 & k(Z,W ) = a}.

Claim: Pa is diffeomorphic to J−1
r (a)/S1.

(3.2) Proof: Consider the mapping

πa : J−1
r (a)⊆ SO(3)× so(3)→ Pa : (A,X) �→ (

AdA E3,AdA I(X)
)
= (Z,W ). (13)

The map πa is surjective. To see this suppose that (Z,W ) ∈ Pa. Then there is an A ∈
SO(3) such that AdA E3 = Z. Let X = I−1(AdA−1 W ). Using (13) we see that πa(A,X) =
(Z,W ). We are done once we can show that (A,X) ∈ J−1

r (a). This follows because

Jr(A,X) = k(I(X),E3) = k(AdA−1 W,AdA−1 Z) = k(Z,W ) = a,

since (Z,W ) ∈ Pa. Now πa maps an orbit of ϕ r|(S1 × J−1
r (a)

)
onto a point of Pa

because for every B ∈ S1,

πa(AB,AdB−1 X) =
(

AdAB E3,AdAB I(AdB−1 X)
)

=
(

AdA(AdB E3),AdA AdB I(AdB−1 X)
)

=
(

AdA E3,AdA I(X)
)
, since B ∈ S1 and (9)

= (Z,W ).

Hence πa induces a smooth mapping σa : J−1
r (a)/S1 → Pa such that the diagram 3.1.1

commutes, see chapter VII §2. In diagram 3.1.1 the mapping ρa : J−1
r (a) → J−1

r (a)/S1

is called the orbit map, because it assigns to each point in J−1
r (a) the orbit of the action

ϕ r|(S1 × J−1
r (a)

)
through the given point.

Diagram 3.1.1

J−1
r (a) �πa

Pa

�

ρa

J−1
r (a)/S1

�
�
�
�
�
���

σa

� We now show that σa is a diffeomorphism.

(3.3) Proof: Because πa is surjective, it follows that σa is surjective. To show that σa is
injective, it suffices to verify that the fiber (πa)−1(Z,W ) is a single orbit of ϕ r. To
see this suppose that (A,X) and (C,Y ) lie in the fiber (πa)−1(Z,W ). Then AdA E3 =
AdC E3, that is, B = A−1C ∈ S1. Since AdA I(X) = AdC I(Y ), it follows that AdAI(X) =
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AdAAdBI(Y ) = AdAI(AdBY ). Consequently, Y = AdB−1 X because AdA and I are in-
vertible. Therefore (C,Y ) lies in the same ϕ r|(S1 × J−1

r (a)
)

orbit as (A,X). Next we
show that the inverse of σa is smooth. Because πa is a proper submersion, the bundle
πa : J−1

r (a) → Pa is locally trivial, see chapter VIII ((2.1)). Thus for a suitable open
subset U ⊆ Pa about (Z,W ), the bundle πa restricted to (πa)−1(U ) has a smooth cross
section τ : U → (πa)−1(U ). Therefore on U , we have σa◦(ρa◦τ) = πa◦τ = idU . To
verify that (ρa◦τ)◦σa = id(σa)−1(U ), let r ∈ (σa)−1(U ) and set s = (ρa◦τ)◦σa(r). Then
σa(s) = (σa◦ρa◦τ)

(
σa(r)

)
= σa(r). But σa is injective, so s= r and we are done. There-

fore (σa)−1 = ρa◦τ is smooth. Consequently σa is a diffeomorphism. �

By the regular reduction theorem, see chapter VII ((6.1)), the orbit space J−1
r (a)/S1 has

a symplectic form Ω̃a defined by (ρa)∗Ω̃a = Ωρ |J−1
r (a). Define a 2-form Ωa on Pa by

(πa)∗Ωa = Ωρ |J−1
r (a).

Claim: The mapping σa :
(
J−1

r (a)/S1,Ω̃a
)→ (

Pa,Ωa
)

in diagram 3.1.1 is a symplectic
diffeomorphism.

(3.4) Proof: We have already shown that σa is a diffeomorphism. To show that it is symplectic,
let τ : U → (πa)−1(U ) be a cross section for the trivial bundle πa|((πa)−1(U )

)
. Then

by definition (ρa)∗Ω̃a = Ωρ |J−1
r (a) = (πa)∗Ωa. So on U we have

Ωa = (πa◦τ)∗Ωa = (ρa◦τ)∗Ω̃a =
(
(σa)−1)∗Ω̃a.

Because σa is a diffeomorphism, the 2-form Ωa is nondegenerate. Moreover, Ωa is closed
because

dΩa = d
((
(σa)−1)∗Ω̃a)= (

(σa)−1)∗ dΩ̃a = 0,

since Ω̃a is symplectic and hence is closed. Thus σa is a symplectic diffeomorphism. �

Another way of stating the result of the claim is that (Pa,Ωa) is a model for the reduced
� space (J−1

r (a)/S1,Ω̃a). For latter use we find an explicit expression for the 2-form Ωa.

(3.5) Proof: We begin by calculating the tangent of the mapping πa (13). For (UA,T ) ∈
T(A,X)

(
SO(3)× so(3)

)
we have

T(A,X)πa(UA,T ) =
d
dt t=0

πa(Aexp tU,X + tT )

=
( d

dt t=0
AdAexp tU E3,

d
dt t=0

AdAexp tU (I(X)+ tI(T ))
)

=
(

AdA(adU E3),AdA(adU I(X)+ I(T ))
)

=
(
[AdA U,AdA E3] , [AdA U,AdA I(X)]+AdA I(T )

)
= ξ (A,X ,U,T ).

We compute the 2-form Ωa as follows.

Ωa(AdA E3,AdA I(X))
(
ξ (A,X ,U,T ),ξ (A,X ,R,S)

)
=

= Ωa(πa(A,X))
(
T(A,X)πa(UA,T ),T(A,X)πa(RA,S)

)
= Ωρ(A,X)

(
(UA,T ),(RA,S)

)
, by definition of Ωa
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=−k(I(T ),R)+ k(I(S),U)+ k(I(X), [U,R]),

using (8) in §2 of chapter VI and
ρ(e)� to identify so(3)∗ with so(3).

=−k(AdA I(T ),AdA R)+ k(AdA I(S),AdA I(U))

+ k(AdA I(X), [AdA U,AdA R]). �

We are now ready to compute the reduced Hamiltonian H a on the reduced space (Pa,Ωa).
First we treat the kinetic energy. From the definition of the left trivialization L (10) it
follows that the pull back of the kinetic energy K by L is

K : SO(3)× so(3)→ R : (A,X) �→ 1
2 k(I(X),X) = 1

2 I1k(X ,X)+ 1
2 (I3 − I1)(k(X ,E3))

2.

From the definition of K above we find that

1
2 k(I−1(X),X) = 1

2 I−1
1 k(X ,X)− 1

2 (I
−1
1 − I−1

3 )(k(X ,E3))
2. (14)

Replacing X with AdA−1 W in (14) gives

k
(
I−1(AdA−1 W ),AdA−1 W

)
= 1

2 I−1
1 k(W,W )− 1

2 (I
−1
1 − I−1

3 )
(
k(W,AdA E3)

)2
,

since k is Ad-invariant. By definition of πa (13), the reduced kinetic energy is

K a : Pa → R : (Z,W ) �→ 1
2 I−1

1 k(W,W )− 1
2 (I

−1
1 − I−1

3 )a2 (15)

Pulling back the potential energy V by the left trivialization L , gives the reduced poten-
tial energy

V a : Pa → R : (Z,W ) �→ χ k(Z,E3). (16)

Thus the reduced Hamiltonian H a is

H a : Pa ⊆ so(3)× so(3)→ R : (Z,W )→ 1
2 I−1

1 k(W,W )+χ k(Z,E3). (17)

In (17) we have omitted the additive constant − 1
2 (I

−1
1 − I−1

3 )a2. In other words, if h
is the value of the Hamiltonian H , then the value of the reduced Hamiltonian H a is
ha = h+ 1

2 (I
−1
1 − I−1

3 )a2 .

In order to compute the Hamiltonian vector field of the reduced Hamiltonian H a on
(Pa,Ωa), it is necessary to use another model for the reduced Hamiltonian system

� (H a,Pa, Ωa). The new model (Ha,Pa,ωa) is obtained from the old model by pulling
back by the map i : so(3)→ R3, see chapter III ((1.2)).

(3.6) Proof: The new reduced phase space Pa is
{
(z,w) ∈ R3 ×R3 (z,z) = 1 & (z,w) = a

}
,

where ( , ) is the Euclidean inner product on R3. Here z = i(Z) = i(AdA E3) and w =
i(W ) = i(AdA I(X)). The new symplectic form ωa = i∗Ωa is

ωa(z,w)
(
(u× z,u×w+ t),(r× z,r×w+ s)

)
=−(t,r)+(u,s)+(w,u× r), (18)

where u = i(AdA U) = Ai(U), t = i(AdA I(T )) = Ai(I(T )), r = i(AdA R) = Ai(R) and s =
i(AdA I(S)) = Ai(I(S)). Here we have used the fact that i([AdAU, AdAE3]) = i(AdAU)×
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i(AdAE3) = u× z and similarly i([AdAU,AdAI(X)]) = u×w. Note that (z, t) = 0 and
(z,s) = 0, since (u× z,u×w+ t) and (r× z,r×w+ s) lie in T(z,w)Pa. From (15) we see
that the new reduced kinetic energy is

Ka = i∗K a : Pa → R : (z,w) �→ 1
2 I−1

1 (w,w)− 1
2 (I

−1
1 − I−1

3 )a2; (19)

while from (16) it follows that the new reduced potential energy is

V a = i∗V a : Pa → R : (z,w)→ χ (z,e3) = χ z3. (20)

Therefore, up to an additive constant the reduced Hamiltonian is

Ha = i∗H a : Pa ⊆ R3 ×R3 → R : (z,w) �→ 1
2 I1

−1(w,w)+χ z3. (21)

� Now we are in position to show that for any smooth Hamiltonian H : Pa → R the integral
curves of the Hamiltonian vector field XH on (Pa,ωa) satisfy

ż =
∂H
∂w

× z

ẇ =
∂H
∂w

×w+
∂H
∂ z

× z.

(22)

(3.7) Proof: Write XH(z,w) = (X1 × z,X1 ×w+X2), where (z,X2) = 0 because XH(z,w) ∈
T(z,w)Pa. From the definition of Hamiltonian vector field we find that

dH(z,w)
(
(u× z,u×w+ v)

)
=

= ωa(z,w)
(
(X1 × z,X1 ×w+X2),(u× z,u×w+ v)

)
, (23)

for every (u× z,u×w+ v) ∈ T(z,w)Pa. Using dH = ( ∂H
∂ z ,

∂H
∂w ) and the definition (18) of

the symplectic form ωa, we see that (23) is the same as

(
∂H
∂ z

,u× z)+(
∂H
∂w

,u×w+ v) =−(X2,u)+(X1,v)+(w,X1 ×u). (24)

Set u = 0. Then (24) becomes ( ∂H
∂w ,v) = (X1,v) for every v ∈ R3 such that (z,v) = 0.

This last condition must hold in order that (u× z,u×w+ v) ∈ T(z,w)Pa. Therefore X1 =
∂H
∂w +λ0z for some λ0 ∈ R. Set v = 0. Then (24) becomes

−(
∂H
∂ z

× z,u)− (
∂H
∂w

×w,u) =−(X2,u)+(w× (
∂H
∂w

+λ0z),u)

for every u ∈ R3. Hence X2 =
∂H
∂ z × z+λ0(w× z). Note that (X2,z) = 0 holds automati-

cally. Consequently, the integral curves XH satisfy

ż = (
∂H
∂w

+λ0z)× z =
∂H
∂w

× z

ẇ =
∂H
∂w

×w+λ0(z×w)+
∂H
∂ z

× z+λ0(w× z) =
∂H
∂w

×w+
∂H
∂ z

× z. �
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Actually (22) defines a system of differential equations on R3 ×R3, called the Euler-
Poisson equations of H. Note that the reduced space Pa is an invariant manifold of the
Euler-Poisson equations.

We now show that if we put a nonstandard Poisson structure on C∞(R3 ×R3), then the
Euler-Poisson equations are in Hamiltonian form. Explicitly, define a Poisson bracket
{ , } on C∞(R3 ×R3) whose structure matrix WC∞(R3×R3) is given in table 3.1.1.

{A,B}R3×R3 z1 z2 z3 w1 w2 w3 B
z1 0 0 0 0 z3 −z2
z2 0 0 0 −z3 0 z1
z3 0 0 0 z2 −z1 0
w1 0 z3 −z2 0 w3 −w2
w2 −z3 0 z1 −w3 0 w1
w3 z2 −z1 0 w2 −w1 0
A

Table 3.1.1. Structure matrix WC∞(R3×R3) for { , }R3×R3 on C∞(R3 ×R3).

Setting ζ = (ζ1, · · · ,ζ6) = (z,w) define the Poisson bracket of f ,g ∈C∞(R3 ×R3) by

{ f ,g}R3×R3 = ∑
i, j

∂ f
∂ζi

∂g
∂ζ j

{
ζi,ζ j

}
R3×R3 .

So
(
C∞(R3 ×R3),{ , }, ·) is a Poisson algebra, see chapter VI §4. For H ∈C∞(R3 ×R3)

the integral curves of the Hamiltonian vector field −adH satisfy

ż =−{H,z}R3×R3 =
∂H
∂w

× z

ẇ =−{H,w}R3×R3 =
∂H
∂w

×w+
∂H
∂ z

× z.
(25)

These are the Euler-Poisson equations (22).

Specializing (25) to the case where the Hamiltonian is the reduced Hamiltonian Ha (21)
of the Lagrange top the reduced Hamiltonian vector field has integral curves which satisfy

ż = I−1
1 w× z

ẇ = χe3 × z.
(26)

The solutions of (26) on Pa describe the motion of the Lagrange top after rotation about
its figure axis has been removed. This is a model for the motion of the tip of the figure
axis =(symmetry axis) of the top with a given body angular momentum a.

3.2 The magnetic spherical pendulum
In this subsection we show that after reduction of the right S1 symmetry, the Lagrange top
is equivalent to the magnetic spherical pendulum up to a time rescaling.
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Physically, the magnetic spherical pendulum is a massive electrically charged particle
which moves on a 2-sphere S2 under the combined influence of a constant vertical grav-
itational force and a radial magnetic field of strength a due to a monopole placed at the
center of S2. The appearance of the magnetic term is due to our choice of zero section of
the affine bundle Pa.

Mathematically, the magnetic spherical pendulum is a Hamiltonian system on the phase
space (T S2,Ωa), where T S2 =

{
(x,y) ∈ T R3 (x,x) = 1 & (x,y) = 0

}
is the tangent bun-

dle of S2 and Ωa is the symplectic form

Ωa(x,y)
(
(u,r),(v,s)

)
=−(r,v)+(u,s)+a(x,u× v), (27)

with (u,r),(v,s) ∈ T(x,y)(T S2). Note that Ωa is the sum of the standard symplectic form
on T S2 plus a magnetic term a(x,u× v). Integrating this magnetic term over a domain
on S2 gives a magnetic flux which is proportional to the surface area of the domain. The
Hamiltonian of the magnetic spherical pendulum is

F̃ : T S2 → R : (x,y) �→ 1
2 I−1

1 (y,y)+χ (x,e3). (28)

Claim: The mapping

ϕ : T S2 → Pa : (x,y)→ (x,x× y+ax) = (z,w) (29)

is an equivalence between the time rescaled magnetic spherical pendulum Hamiltonian
system (F̃ ,TS2,Ωa) and the Hamiltonian system (Ha,Pa,ωa) of the Lagrange top after
reduction of the rotational symmetry about its figure axis.

(3.8) Proof: It is straightforward to check that the inverse of ϕ is the smooth mapping Pa →
T S2 : (z,w) �→ (z,w×z). Hence ϕ is a diffeomorphism. We now compute the tangent of ϕ .
From the definition of T S2 it follows that (u,r) ∈ T(x,y)(T R3) is in T(x,y)(T S2) if and only
if in addition to (x,x) = 1 and (x,y) = 0, the conditions (x,u) = 0 and (u,y)+ (x,r) = 0
hold. Differentiating (29) gives

T(x,y)ϕ : T(x,y)(T S2)→ Tϕ(x,y)P
a : (u,r) �→ (u,u× y+ x× r+au)

This expression is not useful because the tangent vector (u,u×y+x× r+au) at Tϕ(x,y)Pa

� is not in the form (ũ× x, ũ× (x× y+ax)+ r̃), where (x, r̃) = 0. The following argument
remedies this by showing that

(u,u× y+ x× r+au) = (ũ× x, ũ× (x× y+ax)+ x× r) (30)

where ũ = x×u. Note that (x,x× r) = 0 in (30).

(3.9) Proof: Since (x,x) = 1 and (x,u) = 0, we find that u = (x×u)× x = ũ× x. Therefore

u× y+ x× r+au = (ũ× x)× y+ x× r+aũ× x

=−ũ(x,y)+ x(ũ,y)+aũ× x+ x× r = x(ũ,y)− y(x, ũ)+aũ× x+ x× r,

since (x,y) = 0 and (x, ũ) = 0
= ũ× (x× y+ax)+ x× r. �
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� Next we show that ϕ ∗ωa = Ωa.

(3.10) Proof: We compute

(ϕ ∗ωa)(x,y)
(
(u,r),(v,s)

)
= ωa(ϕ(x,y))

(
T(x,y)ϕ(u,r),T(x,y)ϕ(v,s)

)
= ωa(x,x× y+ax)

(
(u,u× y+ x× r+au),(v,v× y+ x× s+av)

)
= ωa(z,w)

(
(ũ× z, ũ×w+ r̃),(ṽ× z, ṽ×w+ s̃)

)
,

using (30). Here z = x, w = x× y+ax, ũ = x×u, ṽ = x× v, r̃ = x× r and s̃ = x× s. Thus

(ϕ ∗ωa)(x,y)
(
(u,r),(v,s)

)
=

= −(r̃, ṽ)+(ũ, s̃)+(w, ũ× ṽ), by definition of ωa (18)
= −(x× r,x× v)+(x×u,x× s)+(x× y+ax,(x×u)× (x× v))

= −(r,v)+(u,s)+a(x,u× v),

since (x,u) = (x,v) = 0 and (x,x) = 1. Therefore, ϕ ∗ωa = Ωa. �

To finish proving the equivalence we compute ϕ ∗Ha as follows

(ϕ ∗Ha)(x,y) = 1
2 I−1

1 (x× y+ax,x× y+ax)+χ (x,e3)

= 1
2 I−1

1 (y,y)+χ (x,e3)+
1
2 I−1

1 a2 = F̃ . �

Introduce a new time scale s by setting s= I−1
1 t. Then the Hamiltonian system (F̃ ,TS2,Ωa)

becomes the magnetic spherical pendulum (F,TS2,Ωa) with Hamiltonian

F(x,y) = I1(F̃(x,y)−2I−1
1 a2) = 1

2 (y,y)+λ x3, (31)

where λ = I1χ . �

To find Hamilton’s equations for the integral curves of XF , we consider the magnetic
spherical pendulum to be a constrained Hamiltonian system. Give the manifold M =
T0R3 = (R3 \{0})×R3 the nonstandard symplectic structure defined by the 2-form

Ω̂a(x,y)
(
(u,r),(v,s)

)
=−(v,r)+(s,u)+a(|x|−3x,u× v). (32)

For any smooth function H : T0R3 → R it is straightforward to check that the Hamiltonian
vector field XH on (T0R3,Ω̂a) has integral curves which satisfy

ẋ =
∂H
∂y

ẏ =−∂H
∂x

+a |x|−3x× ∂H
∂y

.

(33)

On (M,Ω̂a) define the constraint functions c1 : M → R : (x,y) �→ (x,x)−1 and c2 : M →
R : (x,y) �→ (x,y). Since 0 is a regular value of the constraint map C : M → R2 : m �→(
c1(m),c2(m)

)
, the constraint set C−1(0) is the smooth manifold T S2. Because the

matrix ({ci,c j}) of Poisson brackets is invertible on M with inverse (Ci j) = 1
(x,x)

(
0 −1
1 0

)
,
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the symplectic form Ω̂a restricted to T S2 is the symplectic form Ωa (32) on T S2. To
compute the Hamiltonian vector field of the Hamiltonian

F̂ : M ⊆ T R3 → R : (x,y) �→ 1
2 (y,y)+λ (|x|−1x,e3) (34)

constrained to T S2, we use the modified Dirac procedure, see chapter VI §4. Note that
F̂ |T S2 is the Hamiltonian F of the magnetic spherical pendulum. To start the Dirac
procedure let F̂∗ = F̂ −∑3

i, j=1({F̂ ,ci}+ F̂i)Ci j c j, where F̂i are smooth functions in the
ideal of (C∞(M), ·) generated by the constraint functions ci. The Poisson bracket { , }
on C∞(M) is computed with respect to the symplectic form Ω̂a. Because {F̂ ,c1} =
−(x,y) and {F̂ ,c2}=−(y,y), we may choose F̂1(x,y) =−(x,y)

(
(x,x)−1

)
and F̂2(x,y) =

−(y,y)
(
(x,x)−1

)
. Then

F̂∗(x,y) = 1
2 (y,y)+λ (|x|−1x,e3)+(y,y)

(
(x,x)−1

)− 1
2 (x,y)

2. (35)

Using (33), it follows that the integral curves of the Hamiltonian vector field XF̂∗ on
(M,Ω̂a) satisfy

ẋ = y+
(
(x,x)−1

)
y− (x,y)x

ẏ = λ |x|−3 x× (x× e3)+(x,y)y− (y,y)x

+ +a |x|−3x× (
y+((x,x)−1)y− (x,y)x

)
.

Since {F̂∗,F1}|T S2 = {F̂∗,F2}|T S2 = 0, we see that T S2 is an invariant manifold of
XF̂∗ . Thus the integral curves of the constrained Hamiltonian vector field XF = XF̂∗|T S2 =

XF̂∗ |T S2 satisfy the equations

ẋ = y

ẏ =−λ e3 +
(
λ (x,e3)− (y,y)

)
x+ax× y,

(36)

which are Hamilton’s equations for the magnetic spherical pendulum. Note that when
a = 0 and λ = 1 (36) reduce to Hamilton’s equations for the spherical pendulum, see
chapter IV equation (5).

4 Reduction of the left S1 action
We complete the reduction of the Lagrange top to a one degree of freedom Hamiltonian
system by removing the left S1-action on the reduced level set J−1

r (a) of the momentum
of the right S1-action. Because this left S1-action has fixed points, the regular reduction
theorem does not hold. We use invariant theory to carry out singular reduction, see chapter
VII §7.

4.1 Induced action on Pa

We show that the left S1-action Φ� (5) on T SO(3) induces a diagonal linear S1-action Δ
(40) on R3 ×R3 and then one on the reduced space Pa.
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We begin by using the left trivialization map L (10) to pull back the left S1-action Φ� (5)
to the S1-action

ϕ� : S1 × (
SO(3)× so(3)

)→ SO(3)× so(3) :
(
B,(A,X)

) �→ (BA,X). (37)

Because the level set J−1
r (a) = {(A,X) ∈ SO(3)× so(3) k(E3, I(X)) = a} is invariant

under ϕ �, the induced action ϕ �|(S1 × J−1
r (a)

)
is defined. Consider the S1-action

δ � : S1 × (
so(3)× so(3)

)→ so(3)× so(3) :
(
B,(Z,W )

) �→ (AdB Z,AdB W ). (38)

The action δ � leaves the reduced space Pa invariant; for if (Z,W ) ∈ Pa, then for
every B∈ S1 we have k(AdB Z,AdB Z) = k(Z,Z) = 1 and k(AdB Z,AdB W ) = k(Z,W ) = a.
Hence (AdB Z,AdB Z) ∈ Pa. Therefore the induced action δ �|(S1 ×Pa) is defined.

Claim: The map

πa : J−1
r (a)⊆ SO(3)× so(3)→ Pa : (A,X) �→ (

AdA E3,AdA I(X)
)
, (39)

intertwines the S1-actions ϕ �|(S1 × J−1
r (a)) and δ �|(S1 ×Pa). In other words, for every

B ∈ S1 we have πa◦
(
ϕ �

B|J−1
r (a)

)
=

(
δ �

B |Pa
)
◦πa.

(4.1) Proof: Let (A,X) ∈ J−1
r (a). Then

πa(ϕ �
B(A,X)

)
=

(
AdB(AdA E3),AdB(AdA I(X))

)
= δ �

B
(
πa(A,X)

)
. �

Using the identification mapping i : so(3)→ R3, see chapter III ((1.2)), the S1-action δ �

becomes
Δ : S1 × (R3 ×R3)→ R3 ×R3 :

(
t,(z,w)

) �→ (R̃t z, R̃tw), (40)

where S1 =
{

Rt ∈ SO(3) t ∈ R
}

with R̃t =
⎛⎝cos t −sin t 0

sin t cos t 0
0 0 1

⎞⎠. Since the reduced space Pa =

{(z,w) ∈ R3 × R3 (z,z) = 1 & (z,w) = a} is invariant under the S1-action Δ, the
� induced action Δ|(S1 ×Pa) is defined. It is Hamiltonian with momentum mapping

Ja
� : Pa ⊆ R3 ×R3 → R : (z,w)→ (e3,w) = w3. (41)

(4.2) Proof: The mapping i intertwines the actions δ �|(S1 ×Pa
)

and Δ|(S1 ×Pa). To find the
momentum mapping of the action δ �|(S1 ×Pa) we pull back the momentum mapping
J� (6) of the left S1-action Φ� (5) by the left trivialization L . We obtain the momentum
map

J� : SO(3)× so(3)→ R : (A,X) �→ k(E3,AdA I(X)) (42)

of the left S1-action ϕ � (37). Because J−1
r (a) and the function J� are invariant under the

right S1-action ϕr (11), the function J�|J−1
r (a) induces a smooth function on the orbit

space J−1
r (a)/S1 = Pa given by

J̃a
� : Pa ⊆ so(3)× so(3)→ R : (Z,W ) �→ k(E3,W ), (43)

� such that (πa)∗J̃a
� = J�|J−1

r (a). We now show that J̃a
� is the momentum mapping of the

S1-action δ � (38).
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(4.3) Proof: Let (Z,W ) ∈ Pa. Then the vector field Y = d
dt

t=0
δ �

t (Z,W ) is the infinitesimal

generator of the S1-action δ �. On J−1
r (a) we have

(πa)∗(Y Ωa) = (πa)∗Y
(
(πa)∗Ωa)= XJ� L ∗(Ωρ),

since the mapping πa intertwines the actions ϕ� on J−1
r (a) and δ � on Pa, (πa)∗Ωa =

Ωρ |J−1
r (a), and XJ� is the infinitesimal generator of the action ϕ�, which is Hamiltonian

with momentum mapping J� (42). Therefore (πa)∗(Y Ωa) = dJ� = (πa)∗(dJ̃a
� ), since

(πa)∗J̃a
� = J� on J−1

r (a). So Y Ωa = dJ̃a
� on Pa, because the mapping πa (39) is surjec-

tive. Thus the S1-action δ � is Hamiltonian with momentum mapping J̃a
� (43). �

To finish the proof of ((4.2)) we pull back the function J̃a
� by the mapping i× i to obtain

Ja
� : Pa ⊆ R3 ×R3 → R : (z,w) �→ (e3,w) = w3. (44)

Ja
� is the momentum mapping of the S1-action Δ (40), because i× i intertwines the actions

δ �|(S1 ×Pa) and Δ|(S1 ×Pa) and i× i is a symplectic diffeomorphism of (Pa,Ωa) onto
(Pa,ωa). �

It is interesting to see what all this means in the magnetic spherical pendulum model. The
unconstrained Hamiltonian F̂ (34) is invariant under the S1-action

S1 × (M = T0R3)→ M :
(
t,(x,y)

) �→ (R̃tx, R̃ty), (45)

where t → R̃t is a one parameter group of rotations about the e3-axis. It is straightforward
to check that the infinitesimal generator of this S1-action is the vector field X(x,y) =
(e3×x, ∂

∂x )+(e3×y, ∂
∂y ). Using (33) and ∂

∂x (|x|−1x,e3) = |x|−3(x×(e3×x)), we see that

X is a Hamiltonian vector field on (M,Ω̂a) corresponding to the Hamiltonian function

Ĵa : M → R : (x,y) �→ (x× y,e3)+a(|x|−1x,e3).

In other words, the S1-action (45) is Hamiltonian with momentum mapping Ĵa. Since T S2

is an invariant manifold of XĴa
, it follows that the S1-action (45) restricted to (T S2,Ω̂a|T S2)

is Hamiltonian with momentum mapping Ja = Ĵa|T S2. Because the unconstrained Hamil-
tonian F̂ (34) and the modified Hamiltonian F̂∗ (35) are invariant under the S1-action (45),
it follows that {F̂ ,Ja}T S2 = {F̂∗, Ĵa}|T S2 = LX F̂∗|T S2 = 0. Thus

Ja : T S2 ⊆ T R3 → R : (x,y) �→ (x× y,e3)+a(x,e3)

is an integral of the constrained Hamiltonian vector field XF on (T S2,Ω̂a|T S2), where F =
F̂ |T S2 : (x,y) �→ 1

2 (y,y)+λ (x,e3) is the Hamiltonian of the magnetic spherical pendulum.

4.2 The orbit space (Ja
� )

−1(b)/S1

We now determine the reduced space of the left S1-action Δ|(S1 ×Pa) on Pa (40). This
action has fixed points pε = ε(0,0,1,0,0,a), where ε2 = 1, because the action Δ (40)
fixes every point of the 2-plane span{e3,e6} in R3 ×R3 = R6 and this 2-plane intersects
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Pa at pε . Since pε ∈ (Ja
� )

−1(εa), we can not apply the regular reduction theorem to find
the reduced phase space of the left S1-action Δ|(S1 ×Pa) on (Ja

� )
−1(εa), because the S1-

action Δ|(S1 ×Pa) is not free. To construct a model for the orbit space (Ja
� )

−1(b)/S1 for
every value b of the momentum map Ja

� (44) we use invariant theory.

Claim: The algebra R[z,w]S
1

of polynomials on R3 ×R3, which are invariant under the
S1-action Δ (40), is generated by the monomials

π1 = z3, π3 = z1w1 + z2w2, π5 = z2
1 + z2

2,

π2 = w3, π4 = z2w1 − z1w2, π6 = w2
1 +w2

2.
(46)

(4.4) Proof: See chapter IV ((2.1)). �

To find a model for the orbit space (R3 ×R3)/S1 of the action Δ let

π : R3 ×R3 → R6 : (z,w) �→ (
π1(z,w), . . . ,π6(z,w)

)
. (47)

� π is the Hilbert map of the S1-action Δ. The image of π is the real semialgebraic variety
V = R2 ×W in R6 with coordinates

(
(π1,π2),(π3, . . . ,π6)

)
defined by

π2
3 +π2

4 = π5π6, where π5 ≥ 0 & π6 ≥ 0. (48)

(4.5) Proof: See chapter IV ((2.2)). �

� V is homeomorphic to the orbit space (R3 ×R3)/S1 via the induced mapping

π : (R3 ×R3)/S1 →V. (49)

(4.6) Proof: See chapter IV ((2.3)). �

The next step is to find the orbit space (Ja
� )

−1(b)/S1. From (44) we see that the level set
(Ja

� )
−1(b) is defined by

z2
1 + z2

2 + z2
3 = 1

z1w1 + z2w2 + z3w3 = a

w3 = b.

(50)

Let Σa,b be the semialgebraic variety in R6 defined by

π2
3 +π2

4 = π5π6, π5 ≥ 0 & π6 ≥ 0

π5 +π2
1 = 1

π3 +π1π2 = a

π2 = b.

(51)

The left hand side of last three equations in (51) comes from expressing the polynomials
on the left hand side of (50) in terms of the invariants (46). From ((4.3)) it follows that
the set Σa,b = π

(
(Ja

� )
−1(b)

)
is the space of S1 orbits of the S1-action Δ|(S1 × (Ja

� )
−1(b)

)
.

Claim: The semialgebraic variety Pa
b of R3 with coordinates σi, 1 ≤ i ≤ 3, defined by

0 = G(σ1,σ2,σ3) = (1−σ2
1 )σ3 −σ2

2 − (a−bσ1)
2 |σ1| ≤ 1 & σ3 ≥ 0 (52)
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is homeomorphic to the variety Σa,b (51), where σ1 = π1, σ2 = π4, and σ3 = π6.

(4.7) Proof: Consider the mapping

λ : R3 → R6 :

σ = (σ1,σ2,σ3) �→ (π1,π2,π3,π4,π5,π6) = (σ1,b,a−bσ1,σ2,1−σ2
1 ,σ3).

(53)

A quick check shows that the mapping π : R6 → R3 : π �→ (π1,π4,π6), when restricted to
Σa,b, is the inverse of λ |Pa

b . Consequently, the varieties Pa
b and Σa,b are homeomorphic,

using the topology induced from R3 and R6, respectively. �

� The variety Pa
b is homeomorphic to the orbit space (Ja

� )
−1(b)/S1.

(4.8) Proof: Consider diagram 4.2.1, where π̃ = (λ−1◦π)|(Ja
� )

−1(b) and ρ̃ is the orbit map,
which assigns to each S1 orbit of Δ|(S1×(Ja

� )
−1(b)

)
a point in the orbit space (Ja

� )
−1(b)/S1.

Diagram 4.2.1.

(Ja
� )

−1(b) �π̃ Pa
b

�

ρ̃

(Ja
� )

−1(b)/S1
�

�
�
�
�
��

σ̃

Since the continuous mapping π̃ is invariant under the S1-action Δ on (Ja
� )

−1(b), it
induces the continuous map σ̃ : (Ja

� )
−1(b)/S1 → Pa

b , which makes diagram 4.2.1 com-
mute. Because each fiber of the bundle map π̃ is a single S1 orbit of Δ on (Ja

� )
−1(b) and

π̃ has a continuous local cross section, it follows that σ̃ is invertible and its inverse is
continuous. Hence σ̃ is a homeomorphism. �

Therefore Pa
b is a model for the singular reduced space (Ja

� )
−1(b)/S1. Figures 4.2.1 and

� 4.2.2 depict the reduced space Pa
b . We check that these figures are qualitatively correct.

(4.9) Proof: When b = εa, the reduced space Pa
b is a smooth manifold diffeomorphic to R2.

σ1

σ2

σ3

Figure 4.2.1. The reduced space Pa
b when b �= εa.
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To see this suppose that σ̃ = (σ̃1, σ̃2, σ̃3) is a singular point of Pa
b . Then

(0,0,0) = DG(σ̃) =
(
2b(a−bσ̃1)−2σ̃1σ̃3,−2σ̃2,1− σ̃2

1
)
. (54)

We obtain σ̃1 = ε , σ̃2 = 0, σ̃3 = εb(a−εb), where ε2 = 1. But G(σ̃) = 0, which gives b=
εa. This contradicts our hypothesis. Hence the reduced space Pa

b is a smooth manifold,
when b = εa. In fact Pa

b is diffeomorphic to R2, because it is the graph of the smooth
function

G : (−1,1)×R → R : (σ1,σ2) �→
(
σ2

2 +(a−bσ1)
2)(1−σ2

1 )
−1, |σ1|< 1.

To see this solve the defining equation (52) of Pa
b for σ3. We check that |σ1|< 1 as follows.

Suppose that σ1 = ε with ε2 = 1. Then equation (52) becomes 0 = σ2
2 +(a−εb)2, which

implies b = εa. But this is a contradiction. Therefore |σ1|< 1, because |σ1| ≤ 1 in (52).

Now suppose that b = εa. Then (ε,0,0) is the only singular point of Pa
εa, if a = 0; while

(±1,0,0) are the only singular points of P0
0 when a = 0. At each singular point (ε,0,0)

the variety Pa
εa has a nondegenerate tangent cone with Morse index 1 given by

0 = a2(1− εσ1)
2 +σ2

2 −2(1− εσ1)σ3.

Since σ3 ≥ 0 on Pa
εa, each conical singularity of Pa

εa is topologically a cone on a circle.
Thus Pa

εa is homeomorphic, but not diffeomorphic, to R2. �

σ1

σ2

σ3

−1 1
σ1

σ2

σ3

−1 1
σ1

σ2

σ3

−1 1

b =−a, a �= 0 a = 0 b = a, a �= 0

Figure 4.2.2. The reduced phase space Pa
εa.

Since the Hamiltonian H a : Pa → R : (z,w) �→ 1
2 I−1

1 (w,w)+χz3 is invariant under the left
S1-action Δ|(S1 × (Ja

� )
−1(b)

)
(40), there is an induced Hamiltonian on Pa

b given by

H a
b : Pa

b ⊆ R3 → R : (σ1,σ2,σ3) �→ 1
2 I−1

1 σ3 +χσ1. (55)

More precisely, (π a
b )

∗H a
b = H a|(Ja

� )
−1(b), where

π a
b : (Ja

� )
−1(b)⊆ Pa → Pa

b :

(z,w) �→ (
σ1(z,w),σ2(z,w),σ3(z,w)

)
= (z3,z2w1 − z1w2,w2

1 +w2
2)

(56)

is the Δ|(S1 × (Ja
� )

−1(b)
)

orbit mapping (λ−1◦π)|(Ja
� )

−1(b). Note that π a
b maps the ha +

1
2 I−1

1 b2 level set of H a onto the ha
b level set of H a

b .
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4.3 Some differential spaces

We start by looking at the Hilbert map π : R3 ×R3 → R6 (47) of the S1-action Δ (40).

Claim: The linear mapping π∗ : C∞(R6)→C∞(R6 ×R6)S1
: f �→ f ◦π is surjective.

(4.10) Proof: Treat the invariant polynomials πi, 1 ≤ i ≤ 6, (46) as coordinates on R6. Since
the S1-action Δ is a linear action of a compact Lie group S1 on R3 ×R3, by Schwarz’s
theorem for each smooth S1-invariant function f on R3 ×R3 there is a smooth function F
on R6 such that π∗F = f . Hence π∗ is surjective. �

The semialgebraic variety V (48) is the image of the Hilbert map π (47). Let F be the
family of functions f : V ⊆ R6 → R such that the function π∗ f is smooth on R3×R3. Let
C∞(V ) be the space of smooth functions on V generated by F . C∞(V ) is a differential
structure on V , see ((3.2)) in chapter VII, which contains F , see ((3.1)) chapter VII. In
fact, F =C∞(V ), see ((3.11)) in chapter VII.

Claim: The linear mapping π∗ : C∞(V ) → C∞(R3 ×R3)S1
is an isomorphism of vector

spaces.

(4.11) Proof: Because π(R3 ×R3) = V , the mapping π∗ is injective. To see this we argue
as follows. If π∗ f = 0 for some f ∈ C∞(V ), then f (π(p)) = 0 for every p ∈ R3 ×R3.
Hence f = 0 on V . By Schwarz’s theorem, for each smooth S1-invariant function f on
R3 ×R3 there is a smooth function F on R6 such that f = π∗(F |V ). Thus the mapping
π∗ is surjective and hence is an isomorphism. �

We give another differential structure on V . We say that a function f : V ⊆ R6 → R is
a member of the family F̃ if and only if there is a smooth function F : R6 → R such
that f = F |V . Let C∞

i (V ) be the space of smooth functions on V generated byF̃ , see
chapter VII §3. Then C∞

i (V ) is a differential structure on V , see ((3.2)) in chapter VII,
which contains F̃ , see ((3.1)) in chapter VII. In fact, F̃ =C∞

i (V ), see ((3.1.3)) in chapter
VII. The identity map on V is a homeomorphism, using ((3.14)) in chapter VII, and the

� differential space topologies on the differential spaces (V,C∞(V )) and (V,C∞
i (V )). The

mapping id∗V : C∞
i (V )→C∞(V ) is an isomorphism of vector spaces.

(4.12) Proof: The mapping id∗V is well defined, for suppose that f ∈ C∞
i (V ). Then there is an

F ∈C∞(R6) such that F |V = f . So π∗ f = π∗(F |V ) ∈C∞(R3 ×R3)
S1

, that is, f ∈C∞(V ).
Hence f = id∗V f , which shows that the map id∗V is well defined and is surjective. It is
injective, because the map idV is surjective. Thus id∗V is an isomorphism. �

Claim: The mapping idV is a diffeomorphism of the differential space (V,C∞(V )) onto
the differential space (V,C∞

i (V )).

(4.13) Proof: This follows immediately from ((4.12)) and the fact that idV is a homeomorphism
of V onto itself, using the differential space topologies on (V,C∞(V )) and (V,C∞

i (V )). �

Let (R3 ×R3)/S1 be the space of orbits of the action Δ with orbit map ρ : R3 ×R3 →
(R3 ×R3)/S1, which assigns to each p ∈ R3 ×R3 the S1-orbit of Δ that passes through p.
A function f : (R3×R3)/S1 → R is smooth if the S1-invariant function ρ∗ f on R3×R3 is
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smooth. Let C∞((R3 ×R3)/S1
)

be the space of smooth functions on (R3 ×R3)/S1. The
� linear mapping ρ∗ : C∞((R3 ×R3)/S1

)→C∞(R3 ×R3)S1
is an isomorphism.

(4.14) Proof: Because the orbit mapping ρ is surjective, the linear mapping ρ∗ is injective. If
f ∈ C∞(R3 ×R3)S1

, then it induces a smooth function f : (R3 ×R3)/S1 → R such that
f = f ◦ρ = ρ∗ f . Hence the mapping ρ∗ is surjective and thus is an isomorphism. �

By definition the Hilbert mapping π (47) is invariant under the S1-action Δ. Therefore
� it induces a mapping π : (R3 ×R3)/S1 → V such that π = π◦ρ . The linear mapping

π∗ : C∞(V )→C∞((R3 ×R3)/S1
)

is an isomorphism.

(4.15) Proof: This follows immediately because the linear maps ρ∗ and π∗ are isomorphisms
and π∗ = (ρ∗)−1◦π∗. �

Since the S1-action Δ (40) is proper, the orbit space and its collection of smooth functions(
(R3 ×R3)/S1,C∞((R3 ×R3)/S1

))
is a differential space, see ((3.6)) in chapter VII.

Claim: The mapping π is a diffeomorphism of the differential space
(
(R3 × R3)/S1,

C∞((R3 ×R3)/S1
)

onto the differential space (V,C∞(V )).

(4.16) Proof: Because the mapping π∗ : C∞(V ) → C∞((R3 ×R3)/S1
)

is an isomorphism, it
suffices to show that the mapping π is a homeomorphism from the orbit space (R3 ×
R3)/S1 onto the semialgebraic variety V . On C∞((R3 ×R3)/S1

)
and C∞(V ) we use the

differential space topology, see chapter VII §3 and §4. We argue as follows. Let U be
an open subset of V . For every p ∈ U there are open intervals Ii, 1 ≤ i ≤ n, such that
∩n

i=1 f−1
i (Ii) is an open subset of V containing p and contained in U . Now

π−1(⋂n

i=1
f−1
i (Ii)

)
=

⋂n

i=1
π−1( f−1

i (Ii)
)
=

⋂n

i=1
(π∗ fi)

−1(Ii),

where the first equality holds because π is injective, since each of its fibers is a single
orbit of the action Δ. But π∗ f ∈ C∞((R3 ×R3)/S1

)
. So π−1(⋂n

i=1 f−1
i (Ii)

)
is an open

subset of π−1(U)⊆V containing π(p). Thus π−1(U) is an open subset of (R3 ×R3)/S1

in the differential space topology. Hence the mapping π is continuous.
Let p ∈U , where U is an open subset of (R3 ×R3)/S1 in the differential space topology.
Then there are open intervals Ii, 1 ≤ i ≤ n, and functions Fi ∈C∞((R3×R3)/S1

)
, 1 ≤ i ≤

n, such that ∩n
i=1F−1

i (U) is an open subset of U containing p. Because π is injective we
find that

π
(⋂n

i=1
F−1

i (U)
)
=

⋂n

i=1
π
(
F−1

i (Ii)
)
=

⋂n

i=1
((π−1)∗Fi)

−1(Ii).

So π
(⋂n

i=1F−1
i (Ii)

)
is an open subset of π(U)⊆V containing π(p). Consequently, π(U)

is an open set. So the map π−1 is continuous. Thus π is a homeomorphism. �

In §3 we have shown that for every a ∈ R the first reduced phase space Pa = {(z,w) ∈
R3 ×R3 (z,z) = 1 & (z,w) = a} is a smooth S1-invariant symplectic submanifold with
symplectic form ωa. We say that f is a smooth S1-invariant function on Pa if there is a
smooth S1-invariant function F on R3 ×R3 such that f = F |Pa. Let C∞(Pa)S1

be the set
of smooth S1-invariant functions on Pa.
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The S1-action Δ|(S1×Pa) is Hamiltonian with momentum mapping J a
� : Pa →R : (z,w) �→

(w,e3) = w3. For every b ∈ R the level set (J a
� )

−1(b) is a smooth S1-invariant sub-

manifold of Pa. Hence the space C∞((J a
� )

−1(b)
)S1

of smooth S1-invariant functions
on (J a

� )
−1(b) is isomorphic to C∞(Pa)S1

/I , where I = I
(
(J a

� )
−1(b)

)
is the ideal

of smooth S1-invariant functions on Pa, which vanish identically on (J a
� )

−1(b). Let
ρ̃ = ρ|(J a

� )
−1(b) : (J a

� )
−1(b) → (J a

� )
−1(b)/S1 be the restriction of the S1-orbit map ρ :

R3×R3 → (R3×R3)/S1 to (J a
� )

−1(b). We say that f is a smooth function on (J a
� )

−1(b)/S1

if there is an F ∈ C∞(R3 ×R3)S1
such that f = F |(J a

� )
−1(b). Note that F |(J a

� )
−1(b) ∈

� C∞((J a
� )

−1(b))S1
. The induced linear map ρ̃∗ : C∞((J a

� )
−1(b)/S1)→C∞((J a

� )
−1(b))S1

is
an isomorphism.

(4.17) Proof: Because the mapping ρ̃ is surjective, it follows that the linear mapping ρ̃∗ is
injective. To verify that ρ̃∗ is surjective, let f ∈ C∞((J a

� )
−1(b))S1

. Then there is an
F ∈ C∞(R3 ×R3)S1

such that f = F |(J a
� )

−1(b). Since F |(J a
� )

−1(b) is an S1-invariant
smooth function on (J a

� )
−1(b), it induces a function F on (J a

� )
−1(b)/S1 such that ρ̃∗(F) =

F |(J a
� )

−1(b) = f . By definition F ∈C∞((J a
� )

−1(b)/S1). Hence ρ̃∗ is surjective. �

Since the S1-action Δ|(S1 × (J a
� )

−1(b)
)

is proper,
(
(J a

� )
−1(b)/S1,C∞((J a

� )
−1(b)/S1

))
is

a differential space, see ((3.8)) chapter VII. The topology on the orbit space (J a
� )

−1(b)/S1

is the differential space topology.

Recall that Σa,b = π
(
(J a

� )
−1(b)

)
, where π is the Hilbert mapping (47). We say that the

function f is a member of the family F if there is a smooth S1-invariant function F on
R3 ×R3 such that τ∗ f = F |J a

� )
−1(b). Here τ = π|J a

� )
−1(b) : J a

� )
−1(b) ⊆ R3 ×R3 →

Σa,b ⊆ R6. Let C∞(Σa,b) be the space of smooth functions on Σa,b generated by F . Then
C∞(Σa,b) is a differential structure on Σa,b, see chapter VII ((3.2)); the topology generated
by F is the same as the topology induced from R6, see ((3.13)); and F = C∞(Σa,b),
see ((3.3)). Because the mapping τ is S1-invariant and surjective with each fiber being
a single S1-orbit of the action Δ|(S1 × (Ja

� )
−1(b)

)
, it follows that the induced mapping

τ : (Ja
� )

−1(b)/S1 → Σa,b, where τ◦ρ̃ = τ , is a homeomorphism, being the restriction of
the homeomorphism π to (Ja

� )
−1(b)/S1. Here we use the differential space topology on

(Ja
� )

−1(b)/S1 and Σa,b, which by ((3.10)) and ((3.14)) of chapter VII are the same as the
quotient topology and the topology induced from R6, respectively. The induced mapping

� τ∗ : C∞(Σa,b)→C∞((Ja
� )

−1(b)/S1
)

is an isomorphism.

(4.18) Proof: Suppose that f ∈C∞(Σa,b). Then there is an F ∈C∞(Pa)S1
such that g=F |(J a

� )
−1(b)

= f ◦τ . But g ∈C∞((J a
� )

−1(b))S1
. So it induces g ∈C∞((Ja

� )
−1(b)/S1). From g◦ρ̃ = g =

f ◦τ = f ◦τ◦ρ̃ , we obtain g = f ◦τ = τ∗( f ), because ρ̃ is surjective. Thus the linear map-
ping τ∗ is well defined and is surjective. It is injective, since the map τ is surjective, and
hence is an isomorphism. �

Thus we have proved

Claim: The mapping τ is a diffeomorphism of the differential space
(
(J a

� )
−1(b)/S1,

C∞((J a
� )

−1(b)/S1
))

onto the differential space
(
Σa,b,C∞(Σa,b)

)
.



214 The Lagrange top

Consider the mappings

λ : R3 → R6 : (σ1,σ2,σ3) �→ (σ1,b,a−bσ1,σ2,1−σ2
1 ,σ3) (57)

and
μ : R6 → R3 : (π1, . . . ,π6) �→ (π1,π4,π6). (58)

Then Pa
b = μ(Σa,b). Since (λ ◦μ)|Σa,b = idΣa,b and (μ◦λ )|Pa

b = idPa
b

, it follows that
μ|Σa,b is a homeomorphism of Σa,b onto Pa

b . Here we use the topology on Σa,b and Pa
b

induced from R6 and R3, respectively. Observe that λ |Pa
b is the inverse of μ|Σa,b. Let

C∞(Pa
b ) = (λ |Pa

b )
∗C∞(Σa,b) be the space of smooth functions on Pa

b . The result ((3.16))
in chapter VII shows that the differential space topology on Σa,b and Pa

b is the same as
the topology induced from R6 and R3, respectively. Thus the mapping μ|Σa,b is a home-
omorphism using the induced topologies. By definition the linear mapping (λ |Pa

b )
∗ :

C∞(Σa,b) → C∞(Pa
b ) is surjective. It is injective because the map λ |Pa

b : Pa
b → Σa,b is

surjective. Hence (λ |Pa
b )

∗ is an isomorphism. This proves

Claim: The mapping λ |Pa
b from the differential space

(
Pa

b ,C
∞(Pa

b )
)

onto the differential
space

(
Σa,b,C∞(Σa,b)

)
is a diffeomorphism.

Corollary: The differential spaces
(
V,C∞(V )

)
,
(
Σa,b,C∞(Σa,b)

)
, and

(
Pa

b ,C
∞(Pa

b )
)

are
subcartesian and locally compact.

(4.19) Proof: Because V , Σa,b, and Pa
b are semialgebraic varieties, they are locally closed in the

topology induced from their ambient real vector space, namely, R6, R6, and R3, respec-
tively. Hence the differential spaces

(
V,C∞(V )

)
,
(
Σa,b,C∞(Σa,b)

)
, and

(
Pa

b ,C
∞(Pa

b )
)

are
subcartesian and locally compact, see §3.2 in chapter VII. �

We give another differential structure on Σa,b, which is a semialgebraic variety in R6.
We say that a function f : Σa,b ⊆ R6 → R is a member of the family F̃ if there is a
smooth function F : R6 → R such that f = F |Σa,b. Let C∞

i (Σa,b) be the space of smooth
functions on Σa,b generated by the family F̃ . By ((3.2)) in chapter VII, C∞

i (Σa,b) is a
differential structure on Σa,b. By ((3.16)) in chapter VII we know that the topology on
Σa,b generated by F̃ is the same as that induced from R6 and from ((3.3)) in chapter VII
it follows that F̃ = C∞

i (Σa,b). Using the differential space topology of (Σa,b,C∞(Σa,b))
and (Σa,b,C∞

i (Σa,b)) from ((3.18)) of chapter VII it follows that the identity map idΣa,b on
Σa,b is a homeomorphism from the differential space (Σa,b,C∞(Σa,b)) onto the differential
space (Σa,b,C∞

i (Σa,b)). The mapping id∗Σa,b
: C∞

i (Σa,b)→ C∞(Σa,b) is an isomorphism of
vector spaces.

� The mapping id∗Σa,b
: C∞

i (Σa,b)→C∞(Σa,b) is an isomorphism.

(4.20) Proof: The mapping id∗Σa,b
is well defined; for suppose that f ∈ C∞

i (Σa,b). Then there
is an F ∈ C∞(R6) such that F |Σa,b = f . So π∗ f = π∗(F)|(Ja

� )
−1(b), where π∗(F) ∈

C∞(R3×R3)S1
. So f ∈C∞(Σa,b). Hence f = id∗Σa,b

f , which shows that the linear mapping
id∗Σa,b

is well defined and is surjective. It is injective because the map idΣa,b is surjective.
�
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We have proved

Claim: The identity map idΣa,b is a diffeomorphism of the differential space
(
Σa,b,C∞(Σa,b)

)
onto the differential space

(
Σa,b,C∞

i (Σa,b)
)
.

We give another definition of differential structure on Pa
b , which is a semialgebraic

variety in R3. We say that the function f : Pa
b ⊆ R3 → R is a member of the family

F̃ if there is a smooth function F : R3 → R such that f = F |R3. Let C∞
i (P

a
b ) be the space

of smooth functions on Pa
b generated by F̃ . By ((3.2)) in chapter VII, C∞

i (P
a
b ) is a differ-

ential structure on Pa
b . From ((3.17)) in chapter VII it follows that F̃ =C∞

i (P
a
b ). Using the

differential space topology on (Pa
b ,C

∞(Pa
b )) and (Pa

b ,C
∞
i (P

a
b )) from ((3.18)) it follows that

the identity map idPa
b

on Pa
b is a homeomorphism from (Pa

b ,C
∞(Pa

b )) onto (Pa
b ,C

∞
i (P

a
b )).

The induced mapping id∗Pa
b

: C∞
i (P

a
b )→C∞(Pa

b ) is an isomorphism of vector spaces.

(4.21) Proof: The proof follows the pattern of ((4.18)) and is left to the reader. �

Because idPa
b

is a homeomorphism of Pa
b into itself using the differential space topology

on the differential spaces (Pa
b ,C

∞(Pa
b ) and (Pa

b ,C
∞
i (P

a
b )), we have proved

Claim: The identity map idPa
b

is a diffeomorphism of the differential space
(
Pa

b ,C
∞(Pa

b )
)

onto the differential space
(
Pa

b ,C
∞
i (P

a
b )

)
.

4.4 Poisson structure on C̃∞(Pa
b )

In this subsection we find a Poisson structure { , }Pa
b

on the space C∞
i (P

a
b ) of smooth

functions on Pa
b , which is equivalent to the Poisson structure { , } on the smooth functions

C∞(Σa,b) of the singular reduced space Σab given by the singular reduction theorem, see
chapter VII §7.

We begin by constructing the Poisson bracket { , }Pa
b

on C∞
i (P

a
b ). On C∞(R3), where R3

has coordinates σi, 1 ≤ i ≤ 3, (53) define a Poisson bracket { , }R3 by the structure matrix
WC∞(R3) given in table 4.4.1.

{A,B}R3 σ1 σ2 σ3 B

σ1 0 (1−σ2
1 ) 2σ2

σ2 −(1−σ2
1 ) 0 2b(a−bσ1)−2σ1σ3

σ3 −2σ2 −2b(a−bσ1)+2σ1σ3 0
A

Table 4.4.1 The structure matrix WC∞(R3) for { , }R3 .

From table 4.4.1 we get {σi,σ j}R3 = ∑3
k=1 εi jk

∂G
∂σk

, where

G(σ1,σ2,σ3) = (1−σ2
1 )σ3 −σ2

2 − (a−bσ1)
2 (59)
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is the defining equation of Pa
b (52). For f ,g ∈C∞(R3) we have

{ f ,g}R3 =
3

∑
i, j=1

∂ f
∂σi

∂g
∂σ j

{σi,σ j}R3 = (grad f ×gradg,gradG).

The proof that { , }R3 satisfies the Jacobi identity is left as an exercise.

Next we define a Poisson bracket { , }Pa
b

on C∞
i (P

a
b ). Let I = I (Pa

b ) be the subset of

smooth functions on R3, which vanish identically on Pa
b . Then I is an ideal in the as-

sociative commutative algebra
(
C∞(R3), ·), where · is pointwise multiplication of smooth

� functions. I is a Poisson ideal in the Poisson algebra E =
(
C∞(R3),{ , }R3 , ·

)
, that is, if

f ∈ I and g ∈C∞(R3) then { f ,g}R3 ∈ I .

(4.22) Proof: For g ∈ C∞(R3) let Xg be the derivation −adg of the Poisson algebra E . For
p ∈ G−1(0) with G ∈C∞(R3) given by (59) there is an αp > 0 such that γp : I = [0,αp)→
R3 : t �→ ϕg

t (p) is the maximal integral curve of the vector field Xg starting at p. Look at
the function G : I → R : t �→ G(ϕg

t (p)). Then

dG

dt
=

dG
dt

(ϕg
t (p)) = (LXg G)(ϕg

t (p)) = {G,g}R3(ϕg
t (p)) = 0,

since G is a Casimir in E . Therefore G is the constant function on I. But G (0)=G(p)= 0,
since p ∈ G−1(0). Thus G(ϕg

t (p)) = 0 for every t ∈ I, that is, γp(I)⊆ G−1(0).

Let p ∈ Pa
b . The set J = {t ∈ [0,αp) ϕg

t (p) ∈ Pa
b } contains 0, since ϕg

0 (p) = p ∈ Pa
b

by hypothesis. Set t ′ = supt∈[0,αp){ϕg
t (p) ∈ Pa

b }. Suppose that t ′ < αp. By defini-
tion of t ′ we have ϕg

t (p) ∈ Pa
b for every t ∈ [0, t ′). Since Pa

b is a closed subset of
R3, we get pt ′ = ϕg

t ′(p) = limt↗t ′ ϕ
g
t (p) ∈ Pa

b . Therefore t ′ ∈ J ⊆ I. Let σ = μ◦τ :
(Ja

� )
−1(b) ⊆ R3 ×R3 → Pa

b ⊆ R3, where τ = π|(Ja
� )

−1(b), π is the Hilbert map (47),
and μ is the projection mapping (58). Then σ is surjective with image Pa

b . Let qt ′ ∈
(Ja

� )
−1(b) such that σ(qt ′) = pt ′ . Since Pa

b is a semialgebraic variety, it is locally closed in
� the induced topology, chapter VII §3. But σ is an open mapping, using the topology on

(Ja
� )

−1(b) induced from R3 ×R3 and the topology on Pa
b induced from R3.

(4.23) Proof: The orbit mapping ρ̃ : (Ja
� )

−1(b) ⊆ R3 ×R3 → (Ja
� )

−1(b)/S1 ⊆ (R3 ×R3)/S1 is
an open mapping, because ρ̃ = ρ|(Ja

� )
−1(b) and ρ is. The mapping τ : (Ja

� )
−1(b)/S1 →

Σa,b ⊆ R6, induced by τ = π|(Ja
� )

−1(b), is a homeomorphism. Thus τ = τ◦ρ̃ is an open
mapping. But μ|Σa,b : Σa,b ⊆ R6 → Pa

b ⊆ R3 is a homeomorphism. Consequently, the
map σ = μ◦τ is an open mapping. �

So for every open neighborhood U of qt ′ in (Ja
� )

−1(b) there is an open neighborhood W
of pt ′ in Pa

b such that σ(U) =W .
Consider the derivation Xσ∗g = −adσ∗g of the Poisson algebra D = (C∞((Ja

� )
−1(b)) =

C∞(R3 ×R3)S1 |(Ja
� )

−1(b),{ , }R3×R3 , ·). Let ϕσ∗g
t be the flow of the vector field Xσ∗g on

R3 ×R3. Because π∗ and μ∗ are Poisson epimorphisms, see ((4.31)) and ((4.37)), the
mapping σ∗ is a Poisson epimorphism of E onto D , being equal to (π∗◦μ∗)|(Ja

� )
−1(b).

Thus σ intertwines the flows ϕσ∗g
t and ϕg

t , that is, σ◦ϕσ∗g
t = ϕg

t ◦σ . Let q = ϕσ∗g
−t ′ (qt ′).
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Then σ(q) =ϕg
−t ′(σ(qt ′)) =ϕg

−t ′(pt ′) = p. There is an open set U in (Ja
� )

−1(b) containing

qt ′ . So there is an open interval I′ ⊆ I, which contains t ′, such that ϕσ∗g
t (q) ∈U for every

t ∈ I′. Thus there is a t ′′ ∈ I′ with t ′′ > t ′ for which ϕσ∗g
t ′′ (q) ∈U . So

ϕg
t ′′(p) = ϕg

t ′′(σ(q)) = σ(ϕσ∗g
t ′′ (q)) ∈ σ(U) =W.

But this contradicts the definition of t ′. Hence t ′ = αp, that is, ϕg
t (p) ∈ Pa

b for every
t ∈ [0,αp).

For every p ∈ Pa
b we have { f ,g}R3(p) = d

dt t=0
f (ϕg

t (p)). But f (ϕg
t (p)) = 0 for every t ∈

[0,αp), since f ∈ I . So { f ,g}R3(p) = 0 for every p ∈ Pa
b , that is, { f ,g}R3 ∈ I . Thus

I is a Poisson ideal of the Poisson algebra E . �

� We now show that D is a Poisson algebra.

(4.24) Proof: Let I = I ((Ja
� )

−1(b)) be the ideal in (C∞(R3 ×R3)
S1
, ·) of functions, which

� vanish identically on (Ja
� )

−1(b). Then I is a Poisson ideal of the Poisson algebra A ′ =

(C∞(R3 ×R3)
S1
,{ , }R3×R3 , ·).

(4.25) Proof: To see this let f ∈ I and g ∈ C∞(R3 ×R3)
S1

. Suppose that Xg = −adg is a
derivation in the Poisson algebra A ′. For p ∈ (Ja

� )
−1(b) let γp : [0,αp)→ (Ja

� )
−1(b) be

the maximal integral curve of Xg starting at p. For i =,1,2,3 let Ci be the Casimirs of A ′,
the intersection of whose 0-level sets define (Ja

� )
−1(b), see (50). Then for each i = 1,2,3

we have
dCi

dt
(γp(t)) = (LXgCi)(γp(t)) = {Ci,g}R3×R3(γp(t)) = 0,

since Ci is a Casimir of A ′. Thus for each i = 1,2,3, Ci is constant on γp. But Ci(p) = 0
for each i = 1,2,3. So γp(I) ⊆ (Ja

� )
−1(b). In other words, (Ja

� )
−1(b) is an invariant

manifold for the vector field Xg for every g ∈C∞(R3 ×R3)S1
.

Now for every p ∈ (Ja
� )

−1(b) we have

{ f ,g}R3×R3(p) = LXg f (p) =
d
dt t=0

f (γp(t)) = 0,

since f vanishes identically on (Ja
� )

−1(b). Therefore { f ,g}R3×R3 ∈ I , that is, I is a
Poisson ideal of A ′. �

We now complete the proof of ((4.24)). Since I is a Poisson ideal of the Poisson algebra

A
′
, we deduce that A

′
/I = (C∞(R3 ×R3)

S1
/I ,{ , }R3×R3 , ·) is a Poisson algebra,

which is equal to D , because

C∞(R3 ×R3)
S1
/I =C∞((Ja

� )
−1(b))

S1
=C∞(R3 ×R3)

S1
|(Ja

� )
−1(b). �

Let ι : Pa
b → R3 be the inclusion mapping. Then the induced map ι∗ : C∞(R3)→C∞

i (P
a

b )
is surjective with kernel I ; for if 0 = ι∗F with F ∈ C∞(R3), then for every p ∈ Pa

b we
have 0 = F(ι(p)) = F(p), that is, F ∈ I . Thus ker ι∗ ⊆ I . Suppose that F ∈ I . Then
F ∈ C∞(R6) and for every p ∈ Pa

b we have 0 = F(p) = F(ι(p)) = (ι∗F)(p). Thus F ∈
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ker ι∗. So I ⊆ ker ι∗ verifying that I = ker ι∗. Therefore ι∗ induces the isomorphism
ι̂ : C∞(R3)/I → C∞

i (P
a

b ) : F +I �→ ι∗F = F |Pa
b . On C∞

i (P
a

b ) define a Poisson bracket
{ , }Pa

b
by

{F |Pa
b ,H|Pa

b }Pa
b
= {F,H}R3 |Pa

b , (60)

� for every F,H ∈ C∞(R3). Note that F |Pa
b , H|Pa

b ∈ C∞
i (P

a
b ) by definition. The bracket

{ , }Pa
b

is well defined.

(4.26) Proof: We argue as follows. Using the isomorphism ι̂ we can write F |Pa
b as F +I and

H|Pa
b as H +I . Then

{F +I ,H +I }R3 = {F,H}R3 +
({I ,H}R3 +{F,I }R3 +{I ,I }R3

)
= {F,H}R3 +I

since I is a Poisson ideal in H . Therefore

{F +I ,H +I }R3 |Pa
b = {F,H}R3 |Pa

b = {F |Pa
b ,H|Pa

b }Pa
b
.

where the first equality above holds because I |Pa
b = 0. In other words, the Poisson

bracket { , }Pa
b

does not depend on the choice of function in C∞(R3)/I which is used to
represent a function in C∞

i (P
a

b ). Thus { , }Pa
b

is well defined. �

We now construct the Poisson bracket { , } on C∞(Pa
b ) given by the singular reduction

theorem, see chapter VII §7. We start by noting that the space C∞(R3 ×R3)S1
of smooth

functions on R3 ×R3, which are invariant under the S1-action Δ (40), is a Lie subalgebra
of the Lie algebra

(
C∞(R3 ×R3),{ , }R3×R3), see table 3.1.1. The first reduced phase

space Pa is the submanifold of R3 ×R3 defined by

C1(z,w) = z2
1 + z2

2 + z2
3 −1 = 0

C2(z,w) = z1w1 + z2w2 + z3w3 −a = 0.
(61)

A function on Pa is smooth if it is the restriction to Pa of a smooth function on R3 ×R3.
Since the functions C1 and C2 in (61) are invariant under the S1-action Δ, so is the sub-
manifold Pa. Thus a smooth function on Pa is invariant under the action Δ|(S1 ×Pa)

if it is the restriction of an Δ-invariant function on R3 × R3 to Pa. Let C∞(Pa)S1
be

the set of smooth S1-invariant functions on Pa. Then
(
C∞(Pa)S1

,{ , }Pa
)

is a Lie sub-
algebra of

(
C∞(Pa),{ , }Pa

)
. Recall that Pa has a symplectic form ωa (18). More-

over, the functions C1 and C2, which define Pa, are Casimirs in the Poisson algebra
A = (C∞(R3 ×R3),{ , }R3×R3 , ·). On C∞(Pa) define a Poisson bracket { , }Pa by

{F |Pa,H|Pa}Pa = {F,H}R3×R3 |Pa,

� for every F,H ∈C∞(R3 ×R3). The Poisson bracket { , }Pa on C∞(Pa) is the same as the
standard one { , } on C∞(Pa) using the symplectic form ωa on Pa.

(4.27) Proof: For 1 ≤ i, j ≤ 3 consider the functions zi = (z,ei) and w j = (w,e j) on R3 ×R3

restricted to Pa. Using (22) we find that the corresponding Hamiltonian vector fields Xzi
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and Xw j on (Pa,ωa) are (ei×z, ∂
∂w ) and (e j×z, ∂

∂ z )+(e j×w, ∂
∂w ), respectively. Therefore

on Pa we get

{zi,z j}Pa = LXz j
zi = 0

{zi,w j}Pa = LXw j
zi = (e j × z,ei) =

3

∑
k=1

εi jkzk

{wi,w j}Pa = LXw j
wi = (e j ×w,ei) =

3

∑
k=1

εi jkwk,

which agree with the entries in table 3.1.1. �

Consequently, B =
(
C∞(Pa),{ , }Pa , ·

)
is a Poisson algebra with the Poisson algebra

B′ =
(
C∞(Pa)S1

,{ , }Pa , ·
)

being a subalgebra.

Let I = I ((Ja
� )

−1(b)) the set of Δ|(S1 ×Pa)-invariant smooth functions on Pa, which
� vanish identically on (Ja

� )
−1(b) = {(z,w)∈ Pa w3 = b}. Then I is a Poisson ideal in the

Poisson algebra B′.

(4.28) Proof: Let Y be the infinitesimal generator of the action Δ|(S1 ×Pa), which has momen-
tum mapping Ja

� (44). Then Y = XJa
�

on (Pa,ωa). Let f ∈ C∞(Pa)S1
and let ϕ f

t be the
flow of the Hamiltonian vector field Xf on (Pa,ωa). For p ∈ (Ja

� )
−1(b) we have

− d
dt t=0

Ja
� (ϕ

f
t (p)) =−(LXf Ja

� )(p) =−{Ja
� , f}Pa(p) = { f ,Ja

� }Pa(p) = (LXJa
�

f )(p)

=
d
dt t=0

f (ϕY
t (p)), where ϕY

t is the flow of Y

= 0, since f is invariant under Δ|(S1 ×Pa).

Therefore Ja
� is constant on the integral curve t �→ ϕ f

t (p) of Xf , which starts at p. So
Ja
� (ϕ

f
t (p)) = Ja

� (p) = b, that is, ϕ f
t (p) ∈ (Ja

� )
−1(b). Consequently, (Ja

� )
−1(b) is an

invariant manifold of Xf . For every h ∈ I we get {h, f}Pa(p) = d
dt t=0

h(ϕ f
t (p)) = 0, since

ϕ f
t (p) ∈ (Ja

� )
−1(b). Thus {h, f}Pa ∈ I . �

For f ,g ∈C∞(Σa,b) define a Poisson bracket { , } on C∞(Σa,b) by

τ∗{ f ,g}= {F,G}Pa |(Ja
� )

−1(b),

where τ∗ f =F |(Ja
� )

−1(b), τ∗g=G|(Ja
� )

−1(b), and F,G∈C∞(Pa)S1
. Here τ = π|(Ja

� )
−1(b),

where π is the Hilbert map (48). Because I = I ((Ja
� )

−1(b)) is a Poisson ideal in the
Poisson algebra B′ =

(
C∞(Pa)S1

,{ , }Pa , ·
)
, the bracket { , } is well defined. In more

detail, suppose that τ∗g = G′|(Ja
� )

−1(b) for some G′ ∈C∞(Pa)S1
. Then G−G′ ∈ I . So

{F,G−G′}Pa |(Ja
� )

−1(b) = 0, which implies that { , } does not depend on the choice of
G representing τ∗g. By skew symmetry of { , }Pa , which implies the skew symmetry of
{ , }, it follows that { , } does not depend on the choice of F representing τ∗ f . The Jacobi
identity holds for { , } because (C∞(Pa,{ , }Pa)) is a Lie algebra.
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The goal of the next few paragraphs is to construct a Poisson isomorphism between the
Poisson algebras C̃ =

(
C∞

i (Σa,b),{ , }Σa,b
, ·) and C =

(
C∞(Σa,b),{ , }, ·

)
. Here { , } is the

Poisson bracket coming from the singular reduction theorem ((7.9)) in chapter VII, when
one reduces the Hamiltonian S1-action Δ|(S1×Pa) on (Pa,ωa) with momentum mapping
Ja
� and reduction mapping τ : (Ja

� )
−1(b)→ Σa,b.

Look at the Hilbert map π : R3 ×R3 → R6 (47) of the S1-action Δ (40). Here we consider
the S1-invariant polynomials πi, 1 ≤ i ≤ 6 (46) to be coordinates on R6. Define a Poisson
bracket { , }R6 on C∞(R6) by the structure matrix WC∞(R6) given in table 4.4.2.

{A,B}R6 π1 π2 π3 π4 π5 π6 B

π1 0 0 0 π5 0 2π4
π2 0 0 0 0 0 0
π3 0 0 0 −π2π5 0 −2π2π4
π4 −π5 0 π2π5 0 2π1π5 2(π2π3 −π1π6)
π5 0 0 0 −2π1π5 0 −4π1π4
π6 −2π4 0 2π2π4 −2(π2π3 −π1π6) 4π1π4 0
A

Table 4.4.2 The structure matrix WC∞(R6) for { , }R6 on C∞(R6).

Claim: The map π∗ : F =
(
C∞(R6),{ , }R6 , ·

) → A ′ =
(
C∞(R3 ×R3)S1

,{ , }R3×R3 , ·
)

is an epimorphism of Poisson algebras.

(4.29) Proof: Using table 4.4.2 a straightforward calculation shows that for every 1 ≤ i, j ≤ 6
we have π∗({πi,π j}R6) = {π∗πi,π∗π j}R3×R3 . This implies that for every f , g ∈C∞(R6)
we have

π∗({ f ,g}R6) = π∗(
6

∑
i, j=1

∂ f
∂πi

∂g
∂π j

{π,π j}R6) =
6

∑
i, j=1

∂ (π∗ f )
∂ (π∗πi)

∂ (π∗g)
∂ (π∗π j)

π∗({π,π j}R6)

=
6

∑
i, j=1

∂ (π∗ f )
∂ (π∗πi)

∂ (π∗g)
∂ (π∗π j)

{π∗πi,π∗π j}R3×R3 = {π∗ f ,π∗g}R3×R3 . �

The image of the submanifold (Ja
� )

−1(b) of R3 ×R3 under the Hilbert map π is the semi-
algebraic variety Σa,b of R6 defined by

C1 = π2
3 +π2

4 −π5π6 = 0, π5 ≥ 0 & π6 ≥ 0

C2 = π5 +π2
1 −1 = 0

C3 = π3 +π1π2 −a = 0
C4 = π2 −b = 0.

The functions Ci, 1 ≤ i ≤ 4, are Casimirs in the Poisson algebra F . Let I = I (Σa,b)
be the ideal of smooth functions in the associative algebra

(
C∞(R6), ·), which vanish

� identically on Σa,b. Then I is a Poisson ideal in the Poisson algebra F .

(4.30) Proof: The argument is similar to the proof of ((4.23)) and is included for completeness.
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For g ∈ C∞(R6) let Xg be the derivation −adg of (C∞(R6, ·). Let C : R6 → R4 : p �→(
C1(p), . . . ,C4(p)

)
. Then C−1(0) = Σa,b, which is connected being the image of the

connected set (Ja
� )

−1(b) under the continuous mapping π . Let p ∈ C−1(0). For some
αp > 0 let γp : I = [0,αp)→ R6 : t �→ ϕg

t (p) be the maximal integral curve of the vector
field Xg starting at p. Look at the mapping Gi : [0,αp) → R : t �→ Ci(ϕg

t (p)) for each
1 ≤ i ≤ 4. Then

dGi

dt
(t) =

dCi

dt
(ϕg

t (p)) = {Ci,g}R6(ϕg
t (p)) = 0,

since Ci is a Casimir in the Poisson algebra F . Therefore Gi is a constant function.
But p ∈ C−1(0). So Gi(p) = Ci(p) = 0. Consequently for every 1 ≤ i ≤ 4 we have
Ci(ϕg

t (p)) = 0, that is, C (ϕg
t (p)) = 0. So γp(I) ∈ C−1(0).

Let p ∈ Σa,b. The set J = {t ∈ [0,αp) ϕg
t (p) ∈ Σa,b} contains 0, since ϕg

0 (p) = p ∈ Σa,b

by hypothesis. Set t ′ = supt∈[0,αp){ϕg
t (p) ∈ Σa,b}. Suppose that t ′ < αp. By defini-

tion of t ′ we have ϕg
t (p) ∈ Σa,b for every t ∈ [0, t ′). Since Σa,b is a closed subset of

R6, we get pt ′ = ϕg
t ′(p) = limt↗t ′ ϕ

g
t (p) ∈ Σa,b. Therefore t ′ ∈ J. Let τ = π|(Ja

� )
−1(b) :

(Ja
� )

−1(b) ⊆ R3 × R3 → Σa,b ⊆ R6, where π is the Hilbert map (47). Then τ is sur-
jective with image Σa,b. Let qt ′ ∈ (Ja

� )
−1(b) such that τ(qt ′) = pt ′ . Since Σa,b is a

semialgebraic variety, it is locally closed in the induced topology, see chapter VII §3.
But τ is an open mapping, using the induced topology on Σa,b, see ((4.23)). So for
every open neighborhood U of qt ′ in (Ja

� )
−1(b) there is an open neighborhood W of pt ′

in Σa,b such that τ(U) = W . Now look at the derivation Xτ∗g = −adτ∗g of the Poisson

algebra D = (C∞((Ja
� )

−1(b))S1
,{ , }R3×R3 , ·). Let ϕτ∗g

t be the flow of the vector field
Xτ∗g on (Ja

� )
−1(b). The mapping τ∗ is a Poisson epimorphism of the Poisson algebra F

onto the Poisson algebra D , see ((4.31)). τ intertwines the flows ϕτ∗g
t and ϕg

t , that is,
τ◦ϕτ∗g

t = ϕg
t ◦τ . Let q = ϕτ∗g

−t ′ (qt ′). Then τ(q) = ϕg
−t ′(τ(qt ′)) = ϕg

−t ′(pt ′) = p. Because
U is an open subset of (Ja

� )
−1(b) containing qt ′ , there is an open interval I′ ⊆ I, which

contains t ′, such that ϕτ∗g
t (q) ∈U for every t ∈ I′. Thus there is a t ′′ ∈ I′ with t ′′ > t ′ for

which ϕτ∗g
t ′′ (q) ∈U . So

ϕg
t ′′(p) = ϕg

t ′′(τ(q)) = τ(ϕτ∗g
t ′′ (q)) ∈ τ(U) =W.

But this contradicts the definition of t ′. Hence t ′ = αp, that is, ϕg
t (p) ∈ Σa,b for every

t ∈ [0,αp).

Let f ∈ I = I (Σa,b). For every p ∈ Σa,b we have { f ,g}R6(p) = d
dt t=0

f (ϕg
t (p)). But

f (ϕg
t (p)) = 0 for every t ∈ [0,αp), since f ∈ I . Therefore { f ,g}R6(p) = 0 for every

p ∈ Σa,b, that is, { f ,g}R6 ∈ I . �

Let i : Σa,b → R6 be the inclusion mapping. Then the induced linear map i∗ : C∞(R6)→
C∞

i (Σa,b) is surjective with kernel I ; because if f̃ ∈C∞
i (Σa,b), then there is F ∈C∞(R6)

such that f̃ = F |Σa,b. For p ∈ Σa,b we have (i∗(F))(p) = F(i(p)). So i∗F = F |Σa,b = f̃ .
Hence i∗ is surjective. Next we show that ker i∗ = I . Suppose that i∗F = 0. Then
F |Σa,b = 0, that is, F ∈I . So ker i∗ ⊆I . If F ∈I , then 0 = F |Σa,b = i∗F . So F ∈ ker i∗,
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that is, I ⊆ ker i∗. Thus the mapping î : C∞(R6)/I →C∞
i (Σa,b) : F +I �→ i∗F = F |Σa,b

is an isomorphism.

On C∞
i (Σa,b) define a Poisson bracket { , }Σa,b

by

{F |Σa,b,H|Σa,b}Σa,b
= {F,H}R6 |Σa,b, (62)

� for every F,H ∈C∞(R6). The bracket { , }Σa,b
is well defined.

(4.31) Proof: The argument follows the pattern of the proof ((4.26)) and uses the fact that I is
a Poisson ideal of F ((4.30)). �

� The identity mapping idΣ on Σa,b induces the isomorphism id∗Σa,b
: C∞

i (Σa,b)→C∞(Σa,b).

(4.32) Proof: Let f ∈ C∞
i (Σa,b). Then there is F ∈ C∞(R6) such that f = F |Σa,b. Now τ∗ f =

π∗(F)|(Ja
� )

−1(b), where π∗(F) ∈ C∞(R3 ×R3)S1
. So π∗(F)|(Ja

� )
−1(b) is the restriction

of π∗(F)|Pa in C∞(Pa)S1
to (Ja

� )
−1(b). This implies f ∈C∞(Σa,b). Therefore f = id∗Σa,b

f .
Hence the mapping id∗Σa,b

is well defined and is surjective. It is injective because the
mapping idΣa,b is surjective. �

� The mapping id∗Σa,b
is an isomorphism of the Poisson algebra C̃ =

(
C∞

i (Σa,b),{ , }Σa,b
, ·)

onto the Poisson algebra C =
(
C∞(Σa,b),{ , }, ·

)
.

(4.33) Proof: We need only show that for every f , g ∈C∞
i (Σa,b) we have

id∗Σa,b
({ f ,g,}Σa,b

) = {id∗Σa,b
f , id∗Σa,b

g}. (63)

There are f̃ , g̃ ∈C∞(R6) such that f = f̃ |Σa,b and g = g̃|Σa,b. So

id∗Σa,b
({ f ,g}Σa,b

) = id∗Σa,b
({ f̃ , g̃}R6 |Σa,b) = { f̃ , g̃}R6 |Σa,b. (64)

Now τ∗ f = τ∗( f̃ |Σa,b) = (π∗ f̃ )|(Ja
� )

−1(b), where π∗ f̃ ∈ C∞(R3 ×R3)S1
. Also we have

τ∗ f = τ∗(id∗Σa,b
f ) = F̃ |(Ja

� )
−1(b) for some F̃ ∈C∞(R3 ×R3)S1

. So τ∗ f̃ = F̃ +I , where

I = I ((Ja
� )

−1(b)) is the Poisson ideal in A ′ = (C∞(R3 ×R3)S1
,{ , }R3×R3 , ·) of func-

tions in A ′, which vanish identically on (Ja
� )

−1(b). Therefore

τ∗({ f̃ , g̃}R6 |Σa,b) = {τ∗ f̃ ,τ∗g̃}R3×R3 |(Ja
� )

−1(b), since τ
(
(Ja

� )
−1(b)

)
= Σa,b

= {F̃ , G̃}R3×R3 |(Ja
� )

−1(b), since I is a Poisson ideal

= {F̃ |Pa, G̃|Pa}Pa |(Ja
� )

−1(b), by definition of { , }Pa

= π∗({id∗Σa,b
f , id∗Σa,b

g}), by the singular reduction theorem
((7.9)) in chapter VII.

Since τ maps (Ja
� )

−1(b) onto Σa,b and is the restriction of the mapping π to (Ja
� )

−1(b), we
obtain

{ f̃ , g̃}R6 |Σa,b = {id∗Σa,b
f , id∗Σa,b

g}. (65)
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Combining (64) and (65) gives (63) as desired. �

Claim: The mapping λ : R3 → R6 : (σ1,σ2,σ3) �→ (σ1,b,a− bσ1,σ2,1−σ2
1 ,σ3) (57)

induces the mapping λ ∗ : C∞(R6)→ C∞(R3), which is a Poisson map, that is, for every
f ,g ∈C∞(R6) we have

{λ ∗ f ,λ ∗g}R3 = λ ∗({ f ,g}R6). (66)

(4.34) Proof: To verify (66) it suffices to show that for every 1 ≤ i, j ≤ 6 we have

{λ ∗πi,λ ∗π j}R3 = λ ∗({πi,π j}R6). (67)

Using tables 4.4.1 and 4.4.2 and the fact that

λ ∗π1 = σ1, λ ∗π2 = b, λ ∗π3 = a−bσ1, λ ∗π1 = σ2, λ ∗π1 = 1−σ2
1 , λ ∗π1 = σ3,

which follows from the definition of the mapping λ , a straightforward calculation shows
that (67) holds. Thus (67) holds because λ ∗ pulls back the structure matrix WC∞(R6) to the
structure matrix WC∞(R3). �

Corollary: The mapping λ ∗ : F = (C∞(R6),{ , }R6 , ·) → E = (C∞(R3),{ , }R3 , ·) is
an epimorphism of Poisson algebras with right inverse μ∗ : C∞(R3) → C∞(R6), where
μ : R6 → R3 :

(
π1, . . . ,π6

) �→ (
π1,π4,π6

)
.

(4.35) Proof: It suffices to show that the linear mapping λ ∗ is an surjective. For g ∈ C∞(R6)
set f = μ∗g. Then f ∈ C∞(R3). So λ ∗ f = λ ∗(μ∗g) = (μ◦λ )∗g = g, since μ◦λ = idR3 .
Consequently, λ ∗ is surjective. �

� The mapping (λ |Pa
b )

∗ : C∞
i (Σa,b)→ C∞

i (P
a

b ) is a linear Poisson map, that is for every f ,
g ∈C∞

i (Σa,b) we have

{(λ |Pa
b )

∗ f ,(λ |Pa
b )

∗g}Pa
b
= (λ |Pa

b )
∗({ f ,g}Σa,b

). (68)

(4.36) Proof: Because f ∈ C∞
i (Σa,b), there is an F ∈ C∞(R6) such that f = F |Σa,b. So we get

(λ |Pa
b )

∗(F |Σa,b) = (F◦λ )|Σa,b = λ ∗(F)|Pa
b ∈C∞

i (P
a

b ), since λ ∗(F) ∈C∞(R3). Similarly
g = G|Σa,b for some G ∈ C∞(R6) and (λ |Pa

b )
∗(G|Σa,b) = λ ∗(G)|Pa

b ∈ C∞
i (P

a
b ). Now we

compute

{(λ |Pa
b )

∗ f ,(λ |Pa
b )

∗g}Pa
b
= {λ ∗(F)|Pa

b ,λ
∗(G)|Pa

b }Pa
b

= {λ ∗(F),λ ∗(G)}R3 |Pa
b =

(
λ ∗({F,G}R6)

)|Pa
b

=
(
λ ∗({F,G}R6 |Σa,b)

)|Pa
b =

(
λ ∗({F |Σa,b,G|Σa,b}Σa,b

)
)|Pa

b

= (λ |Pa
b )

∗({ f ,g}Σa,b
). �

Note that the map (λ |Pa
b )

∗ is injective, because λ |Pa
b : Pa

b → Σa,b is surjective. Recall that
C∞(Pa

b ) = (λ |Pa
b )

∗C∞(Σa,b) by definition. Define a Poisson bracket { , } on C∞(Pa
b ) by

(λ |Pa
b )

∗({ f ,g}) = {(λ |Pa
b )

∗ f ,(λ |Pa
b )

∗g}, (69)

where f ,g∈C∞(Σa,b). The bracket on the left hand side of (69) is the bracket on C∞(Σa,b);
whereas the bracket on the right hand side is on C∞(Pa

b ). In other words, the Poisson
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bracket { , } on C∞(Σa,b) given by the singular reduction theorem is equivalent to the
Poisson bracket { , } on C∞(Pa

b ), using the linear Poisson isomorphism (λ |Pa
b )

∗.

Claim: The map id∗Pa
b

: G̃ = (C∞
i (P

a
b ),{ , }Pa

b
, ·) → G = (C∞(Pa

b ),{ , }, ·) is an isomor-
phism of Poisson algebras.

(4.37) Proof: It suffices to show that id∗Pa
b
({ f ,g}Pa

b
) = {id∗Pa

b
f , id∗Pa

b
g} for every f ,g ∈C∞

i (P
a

b ).

Note that idPa
b
= (λ |Pa

b )
−1◦idΣa,b

◦(λ |Pa
b ). We compute

{id∗Pa
b

f , id∗Pa
b

g}= {((λ |Pa
b )

∗◦id∗Σa,b
◦((λ |Pa

b )
−1)∗

)
f ,
(
(λ |Pa

b )
∗◦id∗Σa,b

◦((λ |Pa
b )

−1)∗
)
g}

= (λ |Pa
b )

∗({(id∗Σa,b
◦((λ |Pa

b )
−1)∗) f ,(id∗Σa,b

◦((λ |Pa
b )

−1)∗)g})
=

(
(λ |Pa

b )
∗◦id∗Σa,b

)
({((λ |Pa

b )
−1)∗ f ,((λ |Pa

b )
−1)∗g}Σa,b

)

=
(
(λ |Pa

b )
∗◦id∗Σa,b

◦((λ |Pa
b )

−1)∗
)
({ f ,g}Pa

b
) = id∗Pa

b
({ f ,g}Pa

b
). �

5 The Euler-Poisson equations
In this section we describe the invariant manifolds of the Euler-Poisson vector field XHa

(22) on the reduced space Pa by studying the geometry of the energy momentum mapping:

EMa : Pa → R2 : (z,w) �→ (
Ha(z,w),Ja

� (z,w)
)
=

( 1
2 I−1

1 (w,w)+χz3,w3
)

(70)

Because the reduced energy Ha and and angular momentum Ja
� are integrals of XHa , the

fiber (EMa)−1(ha,b) is invariant under the flow of XHa . To understand these invariant
sets, we need to know the following about the energy momentum mapping EMa.

1. What its critical points, critical values, and its range are.
2. What the topology of every fiber (EMa)−1(ha,b) is.
3. How these fibers foliate an energy level set.

We also study the qualitative properties of the image of the integral curves of XHa

restricted to (EMa)−1(ha,b) under the projection τa : Pa ⊆ R3×R3 → S2 ⊆ R3 : (z,w) �→
z, when (ha,b) is a regular value of EMa. These curves on S2 describe the motion of the
tip of the figure axis of the top.

5.1 The twice reduced system
In this subsection we study the qualitative behavior of the twice reduced Hamiltonian
system (Ha

b ,P
a
b ,{ , }Pa

b
).

Recall that the twice reduced space Pa
b is the semialgebraic variety in R3 defined by

G(σ) = σ3(1−σ2
1 )−σ2

2 − (a−bσ1)
2 = 0, where |σ1| ≤ 1 & σ3 ≥ 0 (71)

and the twice reduced Hamiltonian is

Ha
b : Pa

b ⊆ R3 → R : (σ1,σ2,σ3) �→ 1
2 I−1

1 σ3 +χσ1. (72)
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In order to determine the topology of the level set (Ha
b )

−1(ha
b), we first find the criti-

cal points and critical values of Ha
b . Because Pa

b is not necessarily smooth, we use an
algebraic definition of critical point. We say that σ̃ = (σ̃1, σ̃2, σ̃3) is a critical point
of Ha

b corresponding to the critical value ha
b if and only if the 2-plane Π defined by

1
2 I1

−1σ3 + χ σ1 = ha
b intersects the reduced space Pa

b at σ̃ with multiplicity greater than
one. Let α = I1ha

b and β = I1χ and form the polynomial

P(σ1,σ2) = 2(α −βσ1)(1−σ2
1 )−σ2

2 − (a−bσ1)
2

by eliminating σ3 from (71) using the definition of Π. The point σ̃ has multiplicity greater
than one if and only if the Taylor polynomial of P at (σ̃1, σ̃2) has no constant or linear
terms. Therefore, σ̃ is a critical point of Ha

b corresponding to the critical value ha
b if and

only if σ̃2 = 0 and σ̃1 is a multiple root of

W (σ1) = (2α −σ1)(1−σ2
1 )− (a−bσ1)

2 (73)

in [−1,1]. Here we have set β = 1
2 , which can be arranged by a suitable choice of physical

σ1

W

σ−
##%

σ+

##$

σ0
##%

−1 1

σ1

W

−1 1
b =−a, a �= 0 a = 0

(a) (b)

σ1

W

−1 1

σ1

W

α/β
&&'

−1 1
b = a, a �= 0 a = b = 0

(c) (d)

Figure 5.1.1. The graph of W .

� units. Note that σ̃3 = 2α − σ̃1. Every critical point of the twice reduced Ha
b lies on the

curve C = {σ2 = 0}∩Pa
b , which is the fold curve of the projection map ρ : R3 → R2 :

σ = (σ1,σ2,σ3) �→ (σ1,σ3) restricted to Pa
b .

(5.1) Proof: The image of Pa
b under the mapping ρ is the set of points (σ1,σ3) in R2 which

satisfy σ3(1−σ2
1 )−(a−bσ1)

2 ≥ 0, |σ1| ≤ 1 & σ3 ≥ 0. Over every point in the interior of
ρ(Pa

b ) the fiber of ρ|Pa
b consists of two distinct nonsingular points of Pa

b ; while over every
point on the boundary ρ(C ) of ρ(Pa

b ), the fiber is a single point. As is easily checked,
table 5.1.1 gives all the possibilities for ρ(C ). �
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Conditions ρ(C )

1. b =±a, a = 0 σ3 =
(a−bσ1)

2

1−σ2
1

, |σ1|< 1

2. b = a, a = 0 {σ3 =
a2(1−σ1)

1+σ1
, −1 < σ1 ≤ 1}∪{(1,0,σ3)|σ3 ≥ 0}

3. b =−a, a = 0 {σ3 =
a2(1+σ1)

1−σ1
, −1 ≤ σ1 < 1}∪{(−1,0,σ3)|σ3 ≥ 0}

4. b = a = 0 {(±1,0,σ3)|σ3 ≥ 0}∪{(σ1,0,0)||σ1| ≤ 1}

Table 5.1.1.

From (71) and the definition of the 2-plane Π, the point σ̃ = (σ̃1,0, σ̃3) is a critical point

σ1

σ3

−1 1

ρ(C )

���

�α
�
���

(
(

(()
σ1

σ3

−1 1

ρ(C )

���
	

�α	������

σ1

σ3

−1 1

ρ(C )
	

���

�α	
�
��

a �=±b a = b, 0 < a ≤√
2 a = b,

√
2 < a

σ1

σ3

−1 1

ρ(C )
���

	

�α	 






� σ1

σ3

−1 1

ρ(C )

*
**+

��������
�
�
�
�
�
���

�α����� �
�

�
��

**+

a =−b, a > 0 a = b = 0

Figure 5.1.2. Intersection of the line �α with the image of the fold
curve ρ(C ). The points (σ̃1, σ̃3) are large dots. The corresponding
critical point of Ha

b is (σ̃1,0, σ̃3) with critical value α .

of Ha
b |C if and only if the line �α : σ3+σ1 = 2α in the σ1–σ3 plane is tangent to ρ(C ) or

passes through a singular point of ρ(C ). Figure 5.1.2 gives the geometric possibilities.
Next we give a geometric description of the set of critical values of Ha

b , see figure 5.1.4.
In the preceding paragraphs we showed that ha

b = I−1
1 α is a critical value of Ha

b if and
only if

W (σ) = σ3 − (2α +b2)σ2 +(2ab−1)σ +2α −a2 (74)

has a multiple zero in [−1,1]. The set of (a,b,α) ∈ R3 where W has a multiple root in
[−1,1] is the discriminant of W . The discriminant locus of W is {ΔW = 0}. A good way
to present this locus is to give a parametrization

P : U± ⊆ [−1,1]×R →{ΔW = 0} : (s,a) �→ (
a,b±(s,a),α±(s,a)

)
. (75)
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Claim: The domain U± of the parametrization P (75) is defined by

U± = {(s,a) ∈ ([−1,1]×R (1− s2)2(a2 −2s)≥ 0}\{(0,a) ∈ R2 ∓a ≥ 0}.
In other words

U+ =
{
(s,a) ∈ [−1,1]×R s ∈ Ia =

⎧⎨⎩
[−1,0)∪{1}, if a = 0,{

(Ia \{0})∪{1}, if a > 0
Ia ∪{1}, if a < 0,

and

U− =
{
(s,a) ∈ [−1,1]×R s ∈ Ĩa =

⎧⎨⎩
[−1,0)∪{1}, if a = 0,{

Ia ∪{1}, if a > 0,
(Ia \{0})∪{1}, if a < 0,

where Ia = [−1,min{ 1
2 a2,1}].

s

a

−1 1
s

a

−1 1

U− U+

Figure 5.1.3. In the domain U−, which is the shaded area in the left
figure, the nonpositive a-axis is removed; while in the domain U+, which
is the shaded area in the right figure, the nonnegative a-axis is removed.

Then
1. when (s,a) ∈U+, we have

b+(s,a) =

⎧⎨⎩
1√−2s

(1− s2), s ∈ I0

1
2s [a(1+ s2)+(1− s2)

√
a2 −2s], s ∈ Ia, a = 0;

2. when (s,a) ∈U−, we have

b−(s,a) =

⎧⎨⎩ − 1√−2s
(1− s2), s ∈ Ĩ0

1
2s [a(1+ s2)− (1− s2)

√
a2 −2s], s ∈ Ĩa, a = 0;

3. when (s,a) ∈U± we have

α±(s,a) =

{ 1
4 s(1+ s2), s ∈ I0

1
4 [a

2(1− s2)∓a(1− s2)
√

a2 −2s+ s(1+ s2)], s ∈ Ia, a = 0.
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(5.2) Proof: Note that (s, t) ∈ [−1,1]×R lies in ΔW if and only if W (74) can be factored as

(σ − s)2(σ − t) = σ3 − (2s+ t)σ2 +(s2 +2st)σ − s2t. (76)

Equating coefficients in (74) and (76) gives

2s+ t = 2α +b2 (77a)

s2 +2st = 2ab−1 (77b)

s2t = a2 −2α. (77c)

To find b(s,a) add (77a) and (77c) to obtain t = 1
1+s2 (a2+b2−2s), which then substituted

into (77b) gives

Q(b) = 2sb2 −2(1+ s2)ab+2sa2 +(1− s2)2 = 0. (78)

Suppose that s = 0, then Q has real roots if and only if discrQ = 4(1− s2)2(a2 −2s)≥ 0,
that is, if and only if s ∈ (Ia ∪{1})\{0}. Solving (78) for b gives the expressions for b±.
To determine the precise domain of definition of b± we need to look more closely what
happens on the a-axis. When s = 0, (78) becomes 2ab = 1. Since lims→0 b±(s,a) =
(2a)−1 when ∓a > 0, we can extend the domain of definition of b± from {(s,a) ∈
([−1,1]\{0})×R discrQ ≥ 0} to U±.

To find α(s,a) we use t = 1
1+s2 (a2 +b2 −2s) to eliminate t from (77a). We obtain

α =− s2

2(1+s2)
b2 + 1

2(1+s2)
a2 + s3

1+s2 . (79)

Using the expressions for b± in claim (79) gives the expression for α±. �

For a fixed, the curves s �→ γ±(s,a) =
(
b±(s,a),α±(s,a)

)
are pieces of a parametrization

s ∈ ∂U± γ±(s,a)
1. −1 (−a,− 1

2 )

2. 1
2 a2, 0 < |a|<√

2
( 1

4a (4+a4), a2

32 (12−a4)
)

3. 1 (a, 1
2 )

Table 5.1.2. Points where γ+ joins γ−.

of an a-slice of {ΔW = 0}. We now determine how the the curves γ± fit together. A
straightforward calculation gives table 5.1.2, which lists the points where γ+ and γ− join.
We make the following observations. When ∓a ≥ 0 is fixed, γ− is defined and continuous
on Ia ∪{1}. When ±a ≥ 0, lims→0± b± =∓∞ and lims→0± α± = 0. When |a|<√

2, {1}
is an isolated point of Ia ∪{1}. Hence (a, 1

2 ) is an isolated point of γ±. From these facts
and table 5.1.2 we see that each of the curves γi defined below is continuous.

1. When a = 0, let γ1 be the curve formed by joining γ+|[−1,0) to γ−|[−1,0) at
s =−1.

2. When 0 < |a| < √
2, let γ2 be the curve formed by joining γ+|[−1,0) to

γ−|(−1, 1
2 a2] at s =−1 and joining γ−|(−1, 1

2 a2] to γ+|(0, 1
2 a2] at s = 1

2 a2.
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3. When |a| ≥√
2, let γ3 be the curve formed by joining γ+|[−1,0) to γ−|[−1,1]

at s =−1 and γ−|[−1,1] to γ+|(0,1] at s = 1.

Gathering the above information together we have proved

Claim: An a-slice of the discriminant locus {ΔW = 0} of W (74) is γ1∪{(0, 1
2 )}, if a = 0;

γ2 ∪{(a, 1
2 )}, if 0 < |a|<√

2; and γ3, if |a| ≥ √
2.

Recall that α = I1ha
b. Applying the map R2 →R2 : (b,α) �→ (b, I1

−1α) = (b,ha
b) to a fixed

a-slice of {ΔW = 0} gives the set of critical values of the twice reduced Hamiltonian Ha
b

for a fixed value of a, see figure 5.1.4. From the algebraic definition of critical point, it is
clear that a point of the a-slice of ΔW , which lies on the curve γ± is a minimum of I1ha

b.
Thus for a fixed value of a, the range of Ha

b is the set of (b,ha
b) values which lie on or

above the curves given in figure 5.1.4.

b

ha
b (0, 1

2)

���

b

ha
b (a, 1

2)

���

b

ha
b

a = 0 0 < |a|<√
2

√
2 ≤ |a|

Figure 5.1.4. The critical values of the twice reduced Hamiltonian Ha
b for fixed a.

� Next we determine the topology of the level sets of the (twice) reduced Hamiltonian Ha
b .

The results are given in table 5.1.3.

(5.3) Proof: To find the topology of the level sets of Ha
b , we return to the geometric situation

sketched in figure 5.1.2. Because the image of the fold curve C under the projection ρ
bounds a convex subset C of R2, the line �α intersects ρ(C ) in at most two points p1 and
p2, where p2 lies to the right of p1. Let [p1, p2] be the segment of �α lying in C. Then
[p1, p2] = ρ

(
(Ha

b )
−1(ha

b)
)
.

We now verify the entries in the second column to table 5.1.3.
1 and 2. The first and second entries follow from the fact that the fiber of ρ over a singular
point of ρ(C ) is a single point of C .
3 and 4. For the third and fourth entry we observe that ρ−1([p1, p2]) is a pinched S0

bundle, that is, a two point bundle over the interior of [p1, p2] with fiber over p1 and p2
pinched to a point. Thus the ha

b-level set of Ha
b is a topological circle. If ha

b is a regular
value of Ha

b , then (Ha
b )

−1(ha
b) is smooth. Otherwise, p1 = (−1,0) or p2 = (1,0) is the

only singular point of ρ(C ) because the line �1 has negative slope. When p1 = (−1,0)
is a singular point, then b = −a and ha−a = − 1

2 I−1
1 . Hence the ha−a-level set of Ha−a is a

point. When p2 = (1,0) is a singular point, then b = a with |a| < √
2 and ha

a = 1
2 I−1

1 .
Hence the ha

a-level set of Ha
a is the semialgebraic variety

σ1 +σ3 = 1
σ2

2 +a2(1−σ1)
2 −σ3(1−σ2

1 ) = 0, |σ1| ≤ 1 & σ3 ≥ 0.
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Project (Ha
a )

−1(ha
a) onto the σ1–σ2 plane by eliminating σ3. This gives

0 = σ2
2 − (2−a2)(1−σ1)

2 +(1−σ1)
3, |σ1| ≤ 1,

which has a conical singular point (1,0). Hence ρ−1(p2) is a conical singularity of
(Ha

a )
−1(ha

a). �
Topology of Conditions on roots

[p1, p2] (Ha
b )

−1(ha
b) of W , where β = 1

2

1. p1 = p2 is nonsingular
point of ρ(C )

point A double real root
in (−1,1) and no
other root in [−1,1]

2. p1 = p2 is a singular
point of ρ(C )

point A triple real root
at +1 or a double
root at −1 or +1 and
no other root in [−1,1]

3. p1 = p2 and p2 is a
singular point of ρ(C )

A topological S1

which is smooth
except for one
conical singular
point

A double root at 1
with |a|<√

2,
and one other simple
real root in [−1,1]

4. p1 = p2, p1 and p2
are nonsingular
points of ρ(C )

A smooth S1 Two simple real
roots in [−1,1]

Table 5.1.3. Topology of the level sets of Ha
b |Pa

b .

A connected component of a level set of Ha
b on Pa

b is an orbit of the Hamiltonian deriva-
tion −adHa

b |Pa
b
. This derivation is a vector field XHa

b
on the locally compact subcartesian

differential space Pa
b , see chapter VII §4. If p is a critical point of (Ha

b )
−1(ha

b), which
is a nonsingular point of Pa

b , then p is an equilibrium point of XHa
b
. When this is the

case, the usual definitions of elliptic and hyperbolic equilibrium point apply. On the

a =±b a = b �= 0 a = b �= 0 a =−b �= 0 a = b = 0
|a| ≤ √

2 |a|>√
2

Figure 5.1.5. Integral curves of the vector field −adH a
b |Pa

b
on Pa

b .

other hand, if p is a critical point of (Ha
b )

−1(ha
b), which is a singular point of Pa

b , we use
the following definitions. We say that p is an elliptic equilibrium point of −adHa

b |Pa
b

if

for every h̃ slightly larger than ha
b, the h̃-level set of Ha

b is a smooth circle, which shrinks
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to p as h̃ → (ha
b)

+. We say that p is a hyperbolic equilibrium point of −adHa
b |Pa

b
if the

connected component of the ha
b-level set of Ha

b containing p has points which do not lie in
any sufficiently small neighborhood of p. In figure 5.1.4 we sketch the orbits of −adHa

b |Pa
b
.

5.2 The energy momentum mapping
In this subsection we study the geometry of the energy momentum mapping EMa (70) of
the Euler-Poisson vector field XHa (22). First we reconstruct the topology of the (ha,b)-
level set of EMa using table 5.1.3 and some basic facts about the geometry of the reduction
mapping πa

b (56). The results are summarized in table 5.2.1. Second we determine the
topology of the level set (Ha)−1(ha), see table 5.2.2 and show how it is foliated by level
sets of Ja

� .

Topology of Topology of
(Ha

b )
−1(ha

b) (EMa)−1(ha,b) Conditions

1. a nonsingular point
of Pa

b

smooth S1 (a,b,α) ∈ ΔW ,
b =±a, a = 0

2. a singular point
of Pa

b

point b = a, |a| ≥ √
2,

α = 1
2 +

1
2 a2, or b =−a,

α =− 1
2 +

1
2 a2

3. a topological circle
with a conical
singular point

a 2-torus with
a fiber pinched
to a point

b = a, α = 1
2 +

1
2 a2,

|a|<√
2

4. a smooth S1 a smooth 2-torus (ha,b) regular value of EMa

Table 5.2.1. Topology of the level sets of (EMa)−1(ha,b). Here ha =
ha

b +
1
2 I−1

1 b2, α = I1ha
b, and β = I1χ = 1

2 .

Knowing the geometry of the reduction mapping πa
b : (Ja

� )
−1(b)→ Pa

b and the topology
of the ha

b-level set of the twice reduced Hamiltonian Ha
b , we can reconstruct the topol-

ogy of the (ha,b)-level set of EMa because (EMa)−1(ha,b) = (Ha)−1(ha)∩ (Ja
� )

−1(b) =
� (πa

b )
−1

(
(Ha

b )
−1(ha

b)
)
. Here ha

b = ha − 1
2 I−1

1 b2. We now verify table 5.2.1.

(5.4) Proof: The first and third columns of table 5.2.1 are the same as the first and third columns
of table 5.1.3, respectively.

We now check the entries in the second column. Suppose that the ha
b-level set of Ha

b is
a point p. If p is a nonsingular point of Pa

b , then the fiber (πa
b )

−1(p) is a smooth S1;
otherwise it is a point, because it is a fixed point of the left S1 action δ � (38).

4. To verify the fourth entry suppose that (ha,b) = (ha
b +

1
2 I−1

1 b2,b) is a regular value
of EMa which lies in its range. Then ha is a regular value of Ha, which implies that
ha

b is a regular value of Ha
b . Therefore the ha

b-level set of Ha
b is a smooth S1. Let M =

(EMa)−1(ha,b). Since πa
b is a proper smooth submersion of M onto (Ha

b )
−1(ha

b), M
is a smooth S1 bundle over S1, see chapter VIII §2. The total space of this bundle is
connected, because the base and fiber are connected. Moreover, M is orientable because it
is the preimage of 0 under the mapping R3×R3 → R4 : (z,w) �→ (

G1(z,w), . . . ,G4(z,w)
)
,
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where

G1(z,w) = z2
1 + z2

2 + z2
3 −1

G2(z,w) = z1w1 + z2w2 + z3w3 −a

G3(z,w) = 1
2 I−1

1 (w2
1 +w2

2 +w2
3)+χz3 −ha,

G4(z,w) = w3 −b.

Therefore M is a smooth 2-torus. An alternative way to see this, which mimics part of
the proof of the existence of action angle coordinates, see chapter IX §2, goes as follows.
Because (ha,b) is a regular value of EMa, at each m ∈ M the differentials dHa(m) and
dJa

� (m) are linearly independent. Therefore, the vector fields XHa |M and XJa
�
|M are

tangent to M and are linearly independent at each m ∈ M. Since M is compact and
{Ha,Ja

� }Pa = 0, the flows of XHa |M and XJa
�
|M define an R2-action on M which is tran-

sitive. Again because M is compact, the isotropy group L of the R2-action is a rank 2
lattice. Therefore M is diffeomorphic to R2/L which is a 2-torus.

3. We verify the third entry as follows. Suppose that (Ha
b )

−1(ha
b) is a topological circle

with one singular point p = (1,0,0). Then q = (πa
b )

−1(p) is the only singular point of the
variety M. The map πa

b is a proper smooth submersion of M \{q} onto (Ha
b )

−1(ha
b)\{p}.

Since (Ha
b )

−1(ha
b)\{p} is diffeomorphic to R, it follows that M \{q} is diffeomorphic to

a cylinder S1 ×R, see chapter IX §2. An alternative argument which establishes this goes
as follows. Consider the vector fields XHa |(M \{q}) and XJa

�
|(M \{q}). Since the integral

curves of XJa
�

on Pa are periodic and q is an equilibrium point, the flow of XJa
�
|(M \{q}) is

periodic and hence is complete. On the other hand, the only way that the flow of the vector
field XHa |(M\{q}) could be incomplete is for one of its integral curves to reach q in finite
time. But this is impossible, because q is an equilibrium point of XHa . Consequently, the
flows of XHa |(M \{q}) and XJa

�
|(M \{q}) define a transitive R2-action on M \{q}, which

has a rank 1 lattice L as isotropy group. Therefore M \ {q} is diffeomorphic to R2/L
which is a cylinder S1 ×R. Hence M is the one point compactification of a cylinder, that
is, a two dimensional torus with a meridial circle pinched to a point. A more detailed
argument shows that q is a hyperbolic equilibrium point for XHa . Thus q is a conical
singularity of M being the transverse intersection of the stable and unstable manifolds of
q. This completes the verification of table 5.2.1. �

Topology of (Ha)−1(ha) Conditions

1. point ha =−χ + 1
2 I−1

1 a2

2. a smooth three sphere, S3 −χ + 1
2 I−1

1 a2 < ha < χ + 1
2 I−1

1 a2

3. a topological three sphere with
one conical singular point

ha = χ + 1
2 I−1

1 a2

4. unit tangent S1 bundle over S2 ha > χ + 1
2 I−1

1 a2

Table 5.2.2. Topology of the level sets (Ha)−1(ha).

We now determine the topology of the level sets of Ha, see table 5.2.2. We use Morse
theory to verify the entries in table 5.2.2. The space Pa is the preimage of the regular value
(0,0) of the mapping R3×R3 → R2 : (z,w) �→ (

F1(z,w),F2(z,w)
)
, where F1(z,w) = z2

1+



V.5.2 The energy momentum mapping 233

z2
2 + z2

3 −1 and F2(z,w) = z1w1 + z2w2 + z3w3 −a. Consider the function H : R3 ×R3 →
� R : (z,w) �→ 1

2 I−1
1 (w2

1 +w2
2 +w2

3)+ χz3. The following argument shows that Ha = H|Pa

is a Morse function.

(5.5) Proof: Ha is bounded below and is proper. Therefore, Ha has a critical point (z,w) ∈ Pa,
which we find using Lagrange multipliers. At (z,w) we have

DH(z,w)+λ1DF1(z,w)+λ2DF2(z,w) = 0 and F1(z,w) = F2(z,w) = 0.

In other words,

2λ1z1 +λ2w1 = 0, λ2z1 + I−1
1 w1 = 0,

2λ1z2 +λ2w2 = 0, λ2z2 + I−1
1 w2 = 0,

2λ1z3 +λ2w3 +χ = 0, λ2z3 + I−1
1 w3 = 0,

z2
1 + z2

2 + z2
3 = 1, and z1w1 + z2w2 + z3w3 = a. Therefore

λ2 = λ2(z2
1 + z2

2 + z2
3) = −I−1

1 (z1w1 + z2w2 + z3w3) = −I−1
1 a,

which gives wi = azi for i = 1,2,3. Hence

(2λ1 − I−1
1 a2)z1 = 0

(2λ1 − I−1
1 a2)z2 = 0

(2λ1 − I−1
1 a2)z3 +χ = 0.

If 2λ1−I−1
1 a2 = 0, then χ = 0, which is a contradiction. Therefore 2λ1−I−1

1 a2 = 0, which
gives z1 = z2 = 0. Consequently, z3 = ε with ε2 = 1 and w1 = w2 = 0 and w3 = εa. Thus
we have shown that Ha has two critical points pε = ε(e3,ae3) with Lagrange multipliers
λ1 =

1
2 (−εχ + I−1

1 a2) and λ2 =−I−1
1 a.

Next we show that the critical points pε are nondegenerate. The tangent space Tpε Pa is

ker
(

DF1(pε )
DF2(pε )

)
= ker

(
0 0 2ε 0 0 0
0 0 εa 0 0 ε

)
, which is spanned by {e1,e2,e4,e5}. Therefore

D2Ha(pε )=
(
D2H +λ1D2F1 +λ2D2F2

)
Tpε Pa
(pε ) =

⎛⎜⎜⎝
I−1
1 a2 − εχ 0 −aI−1

1 0
0 I−1

1 a2 − εχ 0 −aI−1
1

−aI−1
1 0 I−1

1 0
0 −aI−1

1 0 I−1
1

⎞⎟⎟⎠ .

Since detD2
(
Ha(pε)

)
= χ2I−2

1 = 0, the critical points pε are nondegenerate. Hence Ha

is a Morse function. The characteristic polynomial of D2Ha(pε) is the square of the
polynomial λ 2−((a2+1)I−1

1 −εχ)λ −εχI−1
1 . Thus D2Ha(pε) has two negative and two

positive eigenvalues when ε = 1 and four positive eigenvalues when ε = −1. Therefore
p1 = (e3,ae3) is a nondegenerate saddle point of Ha of Morse index 2 corresponding to
the critical value χ + 1

2 I−1
1 a2; whereas p−1 = (−e3,−ae3) is a nondegenerate minimum

corresponding to the critical value −χ + 1
2 I−1

1 a2. �

� We are now ready to determine the topology of the level sets of Ha using Morse theory.
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(5.6) Proof:
1. When ha =−χ + 1

2 I−1
1 a2, the level set (Ha)−1(ha) is the point p−1.

2. By the Morse lemma, see chapter XI §2, near p−1, the function Ha is equal to
its second derivative at p−1 up to a smooth change of coordinates. Therefore for ha

values slightly greater than −χ + 1
2 I−1

1 a2 the ha-level set of Ha is diffeomorphic to a
three dimensional sphere S3. By the Morse isotopy lemma, see chapter XI §3, for every
ha ∈ (−χ + 1

2 I−1
1 a2,χ + 1

2 I−1
1 a2) the level set (Ha)−1(ha) is diffeomorphic to S3.

4. For ha > χ + 1
2 I−1

1 a2 the ha-level set of Ha is diffeomorphic to the unit tangent S1

bundle T1S2 over S2. In chapter III §1 we have seen that the unit tangent circle bundle T1S2

of S2 is diffeomorphic to real projective 3-space RP3. To check this we view (Ha)−1(ha)
as a bundle over S2 by applying the mapping ϕ : Pa → T S2 : (z,w) �→ (x,y) = (z,w−az).
The total space ϕ

(
(Ha)−1(ha)

)
of this new bundle over S2 is defined by

x2
1 + x2

2 + x2
3 = 1

x1y1 + x2y2 + x3y3 = 0 (80a)
1
2 I−1

1 (y2
1 + y2

2 + y2
3)+χx3 = ha − 1

2 I−1
1 a2. (80b)

Fix a point x on S2. Then (80b) defines a 2-sphere y2
1 + y2

2 + y2
3 = r2, which has positive

radius r =
(
2I1

(
ha − (χx3 +

1
2 I−1

1 a2)
))1/2, since ha > χ + 1

2 I−1
1 a2 ≥ χx3 +

1
2 I−1

1 a2.
Intersecting this 2-sphere with the 2-plane (80a) defines a circle which is tangent to S2

at x. This circle is the fiber over x of the projection map T S2 → S2 : (x,y) �→ x. Hence
ϕ
(
(Ha)−1(ha)

)
is diffeomorphic to T1S2. Thus (Ha)−1(ha) is diffeomorphic to T1S2.

3. At the critical value ha = χ + 1
2 I−1

1 a2, the ha-level set of Ha is the algebraic variety U ,
which is defined by

z2
1 + z2

2 + z2
3 = 1

z1w1 + z2w2 + z3w3 = a
1
2 I−1

1 (w2
1 +w2

2 +w2
3)+χz3 = χ + 1

2 I−1
1 a2,

which is singular only at p1 = (e3,ae3). Because p1 is a nondegenerate critical point of
Morse index 2, the level set (Ha)−1(ha) is locally diffeomorphic to the zero level set of
D2Ha(p1), that is, to a neighborhood of the vertex of the cone defined by z2

1 − z2
2 +w2

1 −
w2

2 = 0. Thus p1 is a conical singularity of U . The variety U is homeomorphic to the

Figure 5.2.1. The variety U in S3.
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3-sphere S3, see figure 5.2.1. To see this we think of S3 as R3 with a point added at
infinity. The upper and lower parts of the solid cone form the singular closed solid torus
ST+, whose boundary T ∗

+ is the singular 2-torus with a longitudinal circle pinched to a
point, which forms the vertex of the cone. The exterior of the solid cone is again a solid
cone which forms the singular closed solid torus ST−, whose boundary T ∗− is the singular
solid torus with meridial circle pinched to a point, which is the vertex of the cone. S3 is
the union of the solid tori ST±, see the proof of point 3 of ((3.11)) in chapter IV.

This completes the verification of table 5.2.2. �

From table 5.2.2 we see that as the value of ha increases through the critical value χ +
1
2 I−1

1 a2, the topology of the ha-level set of Ha changes, see figure 3.4.4 in chapter IV. This
bifurcation is due to monodromy about the isolated critical value (χ + 1

2 I−1
1 a2,a) of the

energy momentum mapping EMa when |a|< 2
√

χI1, see figure 5.1.4. The same argument
used to compute the monodromy in the spherical pendulum, see chapter IV ((5.1)), shows
that for a small circle S1 in the set of regular values of EMa with center at the isolated
critical value the 2-torus bundle (EMa)−1(S1) is nontrivial.

We now discuss how the level sets of angular momentum foliate an energy level set. For
ha ∈ (−χ + 1

2 I−1
1 a2,χ + 1

2 I−1
1 a2) the energy surface (Ha)−1(ha) = S3 is foliated by 2-tori

(Ja
� )

−1(b)∩ S3 as in the harmonic oscillator. When ha > χ + 1
2 I−1

1 a2 the energy surface
(Ha)−1(ha) = RP3 is foliated by 2-tori so that its twofold covering is the same as the
foliation of S3 by 2-tori of the harmonic oscillator, see figure 5.2 in chapter III.

5.3 Motion of the tip of the figure axis
In this subsection we discuss the qualitative behavior of the integral curves of the Euler-
Poisson vector field XHa (26) on the smooth 2-torus T 2

ha,b = (EMa)−1(ha,b). Here (ha,b)
is a regular value of the energy momentum mapping EMa (70). Thinking of the reduced
space Pa, defined by z2

1 + z2
2 + z2

3 = 1 and z1w1 + z2w2 + z3w3 = a, as a bundle over S2

with bundle projection map

τ : Pa ⊆ R3 ×R3 → S2 ⊆ R3 : (z,w) �→ z, (81)

we can view the 2-torus T 2
ha,b ⊆ Pa as a bundle over R = τ(T 2

ha,b) ⊆ S2. Physically, the
image of an integral curve of XHa |T 2

ha,b under the projection τ is the curve in space traced
out by the tip of the figure axis of the Lagrange top. We classify the possible motions of
the tip.

We will begin by describing the various subsets R of S2 which are the image of τ|T 2
ha,b.

Claim: Let z±3 be roots of the polynomial V , see (83) below, which lie in [−1,1]. Then R
is one of the following sets.
1. When b = ±a & a = 0, R is the closed annulus B = {z ∈ S2 ⊆ R3 − 1 < z−3 ≤ z3 ≤
z+3 < 1} with boundary ∂B = {z3 = z±3 }.
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2. When b =−a & a = 0, R is the closed 2-disk D2
− = {z ∈ S2 ⊆ R3 −1 ≤ z3 ≤ z+3 < 1},

which contains the south pole sp = (0,0,−1) of S2, but not the north pole np = (0,0,1),
and has boundary ∂D− = {z3 = z+3 }.

3. When b = a & a = 0, R is the closed 2-disk D2
+ = {z ∈ S2 ⊆ R3 −1 < z−3 ≤ z3 ≤ 1},

which contains the north pole np = (0,0,1) of S2, but not the south pole sp = (0,0,−1),
and has boundary ∂D+ = {z3 = z−3 }.
4. When b = a = 0, R is all of S2.

(5.7) Proof: By construction, the 2-torus T 2
ha,b ⊆ R3 ×R3 is given by

z2
1 + z2

2 + z2
3 = 1 (82a)

z1w1 + z2w2 + z3w3 = a (82b)
1
2 I−1

1 (w2
1 +w2

2 +w2
3)+χz3 = ha (82c)

w3 = b. (82d)

Substituting (81a) – (81d) into (z1w2 − z2w1)
2 = (z2

1 + z2
2)(w

2
1 + w2

2)− (z1w1 + z2w2)
2

gives
0 ≤ (z1w2 − z2w1)

2 = 2(α −β z3)(1− z2
3)− (a−bz3)

2 =V (z3) (83)

with |z3| ≤ 1. Here β = I1χ and α = I1(ha − 1
2 b2) = I1ha

b. Since (ha,b) is a regular value
in the image of EMa, the polynomial V has two simple roots z±3 in [−1,1], see table 5.1.3.
Therefore, τ(T 2

ha,b)⊆ R = {z ∈ S2 −1 ≤ z−3 ≤ z3 ≤ z+3 ≤ 1}.

To finish the argument it suffices to show that R ⊆ τ(T 2
ha,b). A nice way to do this, which

also explains the geometry of the projection mapping τ|T 2
ha,b, is to apply the diffeomor-

phism

ϕ : T 2
ha,b ⊆ R×R3 → R×R3 :

(z,w) �→ (ξ ,η) =
(
z1,z2,z3,−w2 +μ(z3)z2,w1 −μ(z3)z1,w3

) (84)

where

μ(z3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(a−bz3)(1− z2

3)
−1, if b =±a and a = 0

a(1+ z3)
−1, if b = a and a = 0

a(1− z3)
−1, if b =−a and a = 0

0, if b = a = 0.

A calculation shows that ϕ(T 2
ha,b) is the 2-torus T 2 in R3 ×R3 with coordinates (ξ ,η),

which is defined by

ξ 2
1 +ξ 2

2 = 1−ξ 2
3 , (85a)

ξ1η2 −ξ2η1 = 0 (85b)

η2
1 +η2

2 = ν(ξ3) (85c)
η3 = b, (85d)
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where

ν(ξ3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V (ξ3)(1−ξ 2

3 )
−1, if b =±a and a = 0[

2(α −βξ3)(1+ξ3)−a2(1−ξ3)
]
(1+ξ3)

−1, if b = a and a = 0[
2(α −βξ3)(1−ξ3)−a2(1+ξ3)

]
(1−ξ3)

−1, if b =−a and a = 0

2(α −βξ3), if b = a = 0.

Let π be the projection T 2 ⊆ R×R3 → R : (ξ ,η) �→ ξ . For ξ ∈ R, the fiber π−1(ξ ) is
diffeomorphic to the fiber τ−1(ϕ−1(ξ )).

Since ν(ξ3)≥ 0, it follows that ξ3 ∈ [ξ−
3 ,ξ+

3 ], where V (ξ±
3 ) = 0, ξ−

3 < ξ+
3 , and V (ξ3)> 0

when ξ3 ∈ (ξ−
3 ,ξ+

3 ), Therefore π(T 2)⊆ R = {ξ ∈ S2 ⊆ R3 ξ ∈ [ξ−
3 ,ξ+

3 ]}. Suppose that
ξ ∈ intR, the interior of R. Solving (85b) and (85c) gives

η1 = ε
( ν(ξ3)

1−ξ 2
3

)1/2ξ1 and η2 = ε
( ν(ξ3)

1−ξ 2
3

)1/2ξ2, (86)

where ε2 = 1. Thus when ξ ∈ intR, the fiber π−1(ξ ) = (ξ ,η1,η2,b), where η1 and η2
are given by (86).

1. When b =±a & a = 0, we have |ξ3|< 1. Therefore R is a closed annulus B in S2 with
boundary ∂R = {(ξ1,ξ2,ξ±

3 ) ∈ S2}, which is the disjoint union of two circles: C′, where
ξ3 = ξ+

3 and B′, where ξ3 = ξ−
3 . Because ν(ξ±

3 ) = 0, equation (85c) implies that η1 =
η2 = 0. Equation (85d) gives η3 = b. Therefore ∂ (π−1(R)) = {(ξ1,ξ2,ξ±

3 ,0,0,b) ∈ T 2}
is the disjoint union of two circles: C = π−1(C′), when ξ3 = ξ+

3 and B = π−1(B′), when
ξ3 = ξ−

3 . Each circle is an orbit of the vector field ϕ∗XJ a
�

on T 2.

2. When b=−a & a = 0, we have sp= (0,0,−1)∈R but np= (0,0,1) /∈R, since ξ−
3 = 1

but −1 < ξ+
3 < 1. Thus R is a closed 2-disk D2

− with boundary C′ = {(ξ1,ξ2,ξ+
3 ) ∈

S2}. Because ν(ξ+
3 ) = 0, it follows that π−1(C′) is the circle C = {(ξ1,ξ2, ξ+

3 ,0,0,b) ∈
T 2 ξ 2

1 +ξ 2
2 = 1− (ξ+

3 )2 > 0}.

3. When b= a & a = 0, we have np=(0,0,1)∈R but sp=(0,0,−1) /∈R, because ξ+
3 = 1

but −1 < ξ−
3 < 1. Thus R is a closed 2-disk D2

+ with boundary B′ = {(ξ1,ξ2,ξ−
3 ) ∈

S2}. Because ν(ξ−
3 ) = 0, it follows that π−1(B′) is the circle B = {(ξ1,ξ2,ξ−

3 ,0,0,b) ∈
T 2 ξ 2

1 +ξ 2
2 = 1− (ξ−

3 )2 > 0}.

4. When b = a = 0, both np and sp lie in R. So R = S2. �

� We now reconstruct the 2-torus T 2 from its image R under the projection map π .

(5.8) Proof:
CASE 1. b = ±a & a = 0. Then R is a closed annulus B with boundary ∂R which
is two disjoint small circles B′ = {ξ3 = ξ−

3 } ∩ S2 and C′ = {ξ3 = ξ+
3 } ∩ S2 on S2. If

ξ ∈ intR, then π−1(ξ ) is two points; while if ξ ∈ ∂R, then π−1(ξ ) is a point. In other
words, T 2 has a fold singularity over ∂R with fold curve π−1(∂R), which is the disjoint
union of two circles: C = {(ξ1,ξ2,ξ+

3 ,η1,η2,b) ∈ T 2 ξ 2
1 +ξ 2

3 = 1− (ξ+
3 )2 & η2

1 +η2
2 =

ν(ξ+
3 )} and B = {(ξ1,ξ2,ξ−

3 ,η1,η2,b) ∈ T 2 ξ 2
1 +ξ 2

3 = 1− (ξ−
3 )2 & η2

1 +η2
2 = ν(ξ−

3 )}.
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Consequently, T 2 is an S0 bundle over intR with S0 pinched to a point over each point of
∂R. Let A′ be the open arc {(0,(1− ξ 2

3 )
1/2,ξ3) ∈ S2 ξ−

3 < ξ3 < ξ+
3 }. Then the closure

π−1(A′) of π−1(A′) in T 2 is a circle A, because for every ξ ∈ A′ ⊆ intR the fiber π−1(ξ )
is two points; whereas for (0,0,ξ±

3 ) ∈ (A′ \A′) ⊆ ∂R the fiber π−1(0,0,ξ+
3 ) is the point

q= (0,0,ξ+
3 ,0,0,b); while the fiber π−1(0,0,ξ−

3 ) is the point q̃= (0,0,ξ−
3 ,0,0,b). Since

π(q) = q′ and π(q̃) = q̃ ′, we get q̃ ∈ B and q ∈ C. So B and C are circles on T 2, which
are homologous. Moreover, either {A,B} or {A,C} is a basis of H1(T 2,Z).
CASE 2. When b = −a & a = 0. Then R is a closed 2-disk D2

+ with boundary the
circle C′ = {(ξ1,ξ2,ξ+

3 ) ∈ S2 ξ 2
1 + ξ 2

2 = 1− (ξ−
3 )2 > 0}, which contains the south pole

q̃ ′ = (0,0,−1). Let A′ be the open arc {(0,(1−ξ 2
3 )

1/2,ξ3)∈ S2 −1< ξ3 < ξ+
3 < 1}. For

each ξ ∈ A′ ⊆ intR the fiber π−1(ξ ) is two points, namely, (0,(1− ξ 2
3 )

1/2,ξ3,η1,η2,b),

where for i = 1,2 we have ηi = ε
(
ν(ξ3)(1− ξ 2

3 )
−1

)1/2ξi and ε2 = 1. When ξ = (0,
(1− (ξ+

3 )2)1/2,ξ+
3 ), the fiber π−1(ξ ) is the point q = (0,(1− (ξ+

3 )2)1/2,ξ+
3 ,0,0,b) on

C. We now find the rest of π−1(A′). The tangent to the curve (−1,ξ+
3 )→ S2 : ξ3 �→ (0,

(1−ξ 2
3 )

1/2,ξ3), which parametrizes the open arc A′, is (0,−ξ3(1−ξ 2
3 )

−1/2,1). The corre-
sponding positive tangent ray of length

√
2(α +β ) = ν(−1) to A′ at q̃ ′ is (0,

√
2(α +β ),

0). Thus the corresponding affine ray at q̃ ′ is (0,
√

2(α +β ),b), which is associated to the
point q̃ = (0,0,−1,0,

√
2(α +β ),b) on the circle B = {(0,0,−1,η1,η2,b) ∈ T 2 η2

1 +

η2
2 = ν(−1) = 2(α + β ) > 0}. Consequently, A = {q, q̃} ∪ π−1(A′) is a circle on T 2,

which intersects the circle B only at the point q̃. At q̃ ′ = (0,0,−1) the fiber π−1(q̃ ′) is the
circle B. Thus the map π blows up the point q̃ ′ to a circle B. Note that π−1(A′) = A∪B
and that {A,B} is a basis for H1(T 2,Z) as is {A,C}, since A∩C = {q}.

CASE 3. b = a & a = 0. Then R is a closed 2-disk D2
+ with boundary the circle B′ =

{(ξ1,ξ2,ξ−
3 )∈ S2 ξ 2

1 +ξ 2
2 = 1−(ξ−

3 )2 > 0}, which contains the north pole q′ = (0,0,1).
Let A′ be the open arc {(0,(1−ξ 2

3 )
1/2,ξ3) ∈ S2 −1 < ξ−

3 < ξ3 < 1}. For each ξ ∈ A′ ⊆
intR the fiber π−1(ξ ) is the two points (0,(1− ξ 2

3 )
1/2,ξ3,η1,η2,b), where for i = 1,2

ηi = ε
(
ν(ξ3)(1− ξ 2

3 )
−1

)1/2ξi and ε2 = 1. When ξ = (0,(1− (ξ−
3 )2)1/2,ξ−

3 ), the fiber
π−1(ξ ) is the point q̃ = (0,(1− (ξ−

3 )2)1/2,ξ−
3 ,0,0,b) on the circle B. We now find the

rest of π−1(A′). The tangent to the curve (−1,ξ+
3 ) → S2 : ξ3 �→ (0,(1 − ξ 2

3 )
1/2,ξ3),

which parametrizes the open arc A′, is (0,−ξ3(1− ξ 2
3 )

−1/2,1). The corresponding pos-
itive tangent ray of length

√
2(α −β ) = ν(1) to A′ at q′ is (0,

√
2(α −β ),0). Thus

the corresponding affine ray at q′ is (0,
√

2(α −β ),b), which is associated to the point
q = (0,0,−1,0,

√
2(α −β ),b) on the circle C = {(0,0,−1,η1,η2,b) ∈ T 2 η2

1 +η2
2 =

ν(1) = 2(α − β ) > 0}. Consequently, A = {q, q̃} ∪ π−1(A′) is a circle on T 2, which
intersects the circle B only at the point q̃. At q ′ = (0,0,1) the fiber π−1(q ′) is the circle
C. Thus the map π blows up the point q ′ to a circle C. Note that π−1(A′) = A∪B and that
{A,B} is a basis for H1(T 2,Z) as is {A,C}, since A∩C = {q}.

CASE 4. b = a = 0. Then R is the 2-sphere S2 with north pole q′ = (0,0,1) and south
pole q̃ ′ = (0,0,−1). Let A′ be the open arc {(0,(1− ξ 2

3 )
1/2,ξ3) ∈ S2 − 1 < ξ3 < 1}.

For ξ ∈ A′ ⊆ intR, the fiber π−1(ξ ) is two distinct points. At q′ the fiber π−1(q′) is
the circle C = {(0,0,−1,η1,η2,b) ∈ T 2 η2

1 +η2
2 = ν(−1) = 2(α + β ) > 0}; while at
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q̃ ′ = (0,0,−1) the fiber π−1(q̃ ′) is the circle B = {(0,0,−1,η1,η2,b) ∈ T 2 η2
1 +η2

2 =
ν(1) = 2(α −β ) > 0}. The map π blows up the point q′ to the circle C and the point q̃ ′
to the circle B. Thus A = {q, q̃}∪π−1(A′) is a circle on T 2, which intersects the circle C
only at q and intersects the circle B only at q̃. Thus π−1(A′ = A∪B∪C. Moreover, {A,C}
and {A,B} form a basis of H1(T 2,Z). �

q′

q̃ ′

p′

A′
�
��

B′ = {ξ3 = ξ−
3 }�

���

C′ = {ξ3 = ξ+
3 < 1}

���

q′

q̃ ′

p′

A′
�
��

B′ = {ξ3 =−1}  "

C′ = {ξ3 = ξ+
3 < 1}���

p
p

q̃

qA   !

B
  "

C    !
π �

q′

q̃ ′

p′

A′
�
��

B′ = {ξ3 = ξ−
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Figure 5.3.1. The image R of the 2-torus T 2 = ϕ(T 2
ha,b) under the projection map π . Here (ha,b)

is a regular value of EMa. In the top right figure b �= ±a & a �= 0; in the next to top right figure
b = a±a & a �= 0; in the next to bottom right figure b =−a±a & a �= 0; in the bottom right figure
b �= a = 0.

Next we look at the projection of the vector field XHa |T 2
ha,b on R under the bundle pro-

jection τ (81). Consider the strip Ã = [σ−,σ+]×R with coordinates (σ ,ϕ) where z =
(z1,z2,z3)∈R⊆ S2, σ = z3, σ± = z±3 , and ϕ = tan−1 z1

z2
. Then Ã is the universal covering

space of A with covering map π̃ : Ã ⊆ R2 → A ⊆ S2 : (σ ,ϕ) �→ z =
(

cosϕ,sinϕ,σ
)t .

Here A is either the closed annulus B, the blow up of the closed 2-disk D2
±, or S2 blown

up at the north or south pole. Let p ∈ T 2
ha,b and let Γ : t �→ ϕHa

t (p) be the integral curve of

XHa |T 2
ha,b through p. Set γ : R →A : t �→ τ(Γ(t)). Let γ̃ : R → Ã : t �→ τ̃(Γ(t)) be the lift

of γ to Ã . Here τ̃ : Pa → Ã is the map defined by π̃◦τ̃ = τ . So π̃◦γ̃ = γ .
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Claim: The curve γ̃ : R → Ã : t �→ (
σ(t),ϕ(t)

)
satisfies

σ̇ = ηI−1
1

√
V (σ), with η2 = 1 (87a)

ϕ̇ = I−1
1 (b−aσ)(1−σ2)−1 (87b)

where V is given by (83).

(5.9) Proof: We compute. Equation (87a) is obtained as follows:

σ̇ = τ
(
LXHa |T 2

ha ,b
z3
)
= τ

(
(LXHa z3)|T 2

ha,b
)
= τ

((
I−1
1 (z2w1 − z1w2)

)|T 2
ha,b

)
,

using the Euler-Poisson equations ż = I−1
1 w× z, ẇ = χe3 × z for Ha

= ηI−1
1

√
V (τ(z3)), using (83)

= ηI−1
1

√
V (σ).

Equation (87b) is obtained as follows.

ϕ̇ = τ
(
LXHa |T 2

ha ,b
ϕ
)
= τ

(
(z1ż2 − z2ż1)(z2

1 + z2
2)

−1), by definition of ϕ

= τ
(
I−1
1

(
w3(z2

1 + z2
2)− z3(z1w1 + z2w2)

)
(z2

1 + z2
2)

−1),
using the Euler-Poisson equations for Ha

= I−1
1 (b−aσ)(1−σ2)−1, since Γ lies on T 2

ha,b (82a) – (82d). �

The sign ambiguity in (87a) is handled in the following way. The integral curve Γ crosses
each of the curves C± = τ−1({z3 = σ±}) transversely, because C± is an integral curve
of XJa

�
|T 2

ha,b and the vector fields XHa and XJa
�

are linearly independent on T 2
ha,b. Thus the

curve t �→ γ̃(t) =
(
σ(t),ϕ(t)

)
does not stop when it reaches the boundary of Ã , say at

time t0. In other words, dγ̃
dt (t0) = 0.

Claim: Suppose that dγ̃
dt (t0) = 0 and q0 = γ̃(t0) ∈ ∂ Ã , while γ̃(t) lies in the interior intÃ

of Ã for all t slightly smaller than t0. Then one of the following holds.

1. ϕ̇(t0) = 0. Then dγ̃
dt (t0) is an outward normal to ∂ Ã at γ̃(t0).

2. ϕ̇(t0) = 0. Then dγ̃
dt (t0) is tangent to ∂ Ã at γ̃(t0).

(5.10) Proof:
1. Since dγ̃

dt = (σ̇ , ϕ̇) is nonzero at t0 and ϕ̇(t0) = 0, it follows that σ̇(t0) = 0.

2. Observe that continuity implies that ϕ̇ = 0 for points in Ã near q0. Hence near q0 we
may parametrize γ̃ by ϕ instead of t. Using (87a) and (87b) we obtain

dσ
dϕ

=
σ̇
ϕ̇

= η
√

V (σ)

I1ϕ̇
.

Therefore dσ
dϕ = 0 at q0. �

Suppose that γ̃(t0) = σ− or σ+ and for some sufficiently small ε > 0 the value of η at
time t0 −ε is known. Then at time t0 +ε the value of η is defined to be the negative of its
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value at t0 − ε . From ((5.9)) it follows that this sign convention ensures that the image of
γ̃ lies in Ã for all time and is continuous. With this convention in force, equations (87a)
and (87b) do not define a vector field on Ã , because γ̃ may have self intersections. Even
worse, γ̃ may not be smooth, see figure 5.3.6. When Ã is the universal covering space of
the closed annulus B, the fiber τ−1(∂B) is the union of two fold curves C± of τ|T 2

ha,b.

In this case, γ̃ has second order contact with ∂ Ã at γ̃(t0) and is real analytic, although it
still may have self intersections, see figure 5.3.3.

We now determine the rotation number Θ of the flow of XHa restricted to the 2-torus T 2
ha,b.

The closed curve C = C− = τ−1({σ = σ−}) is the image of a periodic integral curve of
XJa

�
on T 2

ha,b ⊆ (Ja
� )

−1(b), since XJa
�

is the infinitesimal generator of the S1-action Δ|(S1 ×
(Ja

� )
−1(b)), which leaves the function z3|T 2

ha,b invariant. Because the vector fields XHa

and XJa
�

are linearly independent at each point of T 2
ha,b, it follows that C is a cross section

for the flow ϕHa
t of XHa |T 2

ha,b. Thus for any p ∈ C there is a smallest T = T (ha,b) > 0

such that ϕHa

T (p) ∈ C . Let ϕJa
�

s be the flow of XJa
�
. By definition of the rotation number Θ

we have ϕJa
�

2πΘ(p) = ϕHa

T (p). Because the flows ϕHa |T 2
h,�t

and ϕJa
� |T 2

h,�s
commute with the

S1-action Δ|(S1 ×T 2
h,�), the rotation number Θ does not depend on the choice of the point

p on the cross section C nor does it depend on the choice of integral curve of XJa
�
|T 2

h,�
giving the cross section. Therefore Θ is a function of h and � alone.

From the choice of the cross section C it follows that τ(C ) is the boundary component of
the closed annulus A corresponding to the lower boundary {σ = σ−} of the closed strip
Ã . Let Γ̂ : [0,2π]→ T 2

ha
b,b

: s �→ϕJa
�

s (p). The lift of τ◦Γ̂ to Ã parametrizes the line segment
on {σ = σ−} which joins γ̃(0) to γ̃(T ). Let ϑ be the difference in the ϕ-coordinates of
γ̃(T ) and γ̃(0).

Claim: ϑ/2π is equal to the rotation number Θ.

(5.11) Proof: We compute.

ϑ/2π =
∫ ϑ/2π

0
dϕ =

∫ Θ

0
(LXJa

�
ϕ) ds =

∫ Θ

0
ds = Θ.

The second to last equality above follows from the Euler-Poisson equations ż = e3×z and
ẇ = e3 ×w for XJa

�
and the definition of the coordinate ϕ . �

� Here is an explicit formula for the rotation number Θ.

2πΘ = 2
∫ σ+

σ−
b−aσ

(1−σ2)
√

V (σ)
dσ . (88)

(5.12) Proof: If σ lies in the interior intÃ of Ã , then V (σ)> 0. Therefore σ̇ = 0 for every σ ∈
intÃ . Suppose that σ(0) = σ−. Then there is a t ′ > 0 such that σ(t ′) = σ+. Moreover,
we may parametrize γ̃ by σ in (σ−,σ+) instead of t ∈ (0, t ′)∪ (t ′,T ). In (87a) choose
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η =−1 for t = ε . Then

2πΘ =
∫ T

0

(
LXHa |T 2

ha ,b
ϕ
)

dt = −
∫ σ−

σ+

dϕ
dσ

dσ +
∫ σ+

σ−
dϕ
dσ

dσ = 2
∫ σ+

σ−
ϕ̇
σ̇

dσ ,

which using (87a) and (87b) gives (88). �
Γ

�
��

˜τ �

˜γ
�
��

Figure 5.3.2. Tangential singularity.

We now describe the qualitative behavior of a solution γ̃ of (87a) and (87a). We assume
that the sign convention is in force. Then γ̃ is defined for all time and lies in Ã . If at
q0 ∈ ∂ Ã we have ϕ̇ = 0, then we say that γ̃ has a tangential singularity at q0. Until
further notice we shall assume that γ̃ has only tangential singularities.

To classify the possible qualitative behaviors of γ̃ , it suffices to look at a time interval when
γ̃ has three successive tangential singularities, say q0 = (σ−,ϕ0) = γ̃(0), q1 = (σ+,ϕ1) =
γ̃(t ′), and q2 = (σ−,ϕ2) = γ̃(T ), see figure 5.3.3. The reason why this suffices is that the
image of γ̃ in Ã is invariant under the translation mapping

trans : Ã → Ã : (σ ,ϕ) �→ (σ ,ϕ +2πΘ).

In more detail, during an elapsed time T the ϕ-coordinate of γ̃ has increased by 2πΘ.
Hence the image of γ̃ is invariant under the translation map trans .

Claim: The possible qualitative behaviors of γ̃ in Ã with only tangential singularities are
given in figure 5.3.3.

(5.13) Proof: We assume that ϕ̇ > 0 at q0. The argument when ϕ̇ < 0 is similar and is omitted.
Since σ̇ = 0 in intÃ , the curves γ̃1 = γ̃ |(0, t ′) and γ̃2 = γ̃ |(t ′,T ) may be parametrized
by σ instead of t. As curves parametrized by σ , γ̃1 and γ̃2 are each a graph of a smooth
function F1 and F2, respectively, which are defined on (σ−,σ+).

ϕ

σ

ϕ0 ϕ1 ϕ2 ϕ0 ϕ1 ϕ2

wavy upward looping

Figure 5.3.3. Possible behaviors of γ̃ having only tangential singularities.

CASE I. Suppose that ϕ̇ > 0 at q1. Then equation (87b) confirms that ϕ̇ > 0 throughout
Ã . Because the sign of ϕ̇ does not change as γ̃ passes through q1, whereas the sign of σ̇
does by our sign convention, the function F1 is strictly increasing; whereas the function
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F2 is strictly decreasing. Thus the closures of the graphs of F1 and F2 intersect only at q1.
Since γ̃ has a tangential singularity at q1, γ̃ is convex downward at q1. A similar argument
shows that γ̃ is convex upward at q0 and q2. Therefore γ|[0,T ] is a wave. Since ϕ2 > ϕ0,
the rotation number Θ = (ϕ2 −ϕ0)/2π of γ̃ is positive.

CASE II. Suppose that ϕ̇ < 0 at q1. From (87a) and (87b) it follows that dϕ
dσ vanishes

exactly once in (σ−,σ+). Suppose that a = 0. From (87b) we see that ϕ̇ has the same
sign as b throughout Ã . But this is contrary to the hypothesis that ϕ̇ changes sign in
Ã . Therefore, a = 0. Suppose that a < 0. From the fact that ϕ̇ > 0 at q0 it follows that
b− aσ− > 0. Therefore b/a < σ−. From the fact that ϕ̇ < 0 at q1, it follows that b−
aσ+ < 0. Therefore b/a > σ+. This is a contradiction because σ+ > σ−. Consequently
a > 0. Since dϕ

dσ has only one zero at σ∗ = b/a, each of the functions F1 and F2 has only
one critical point at σ∗ in (σ−,σ+). Now dF1

dσ and dF2
dσ have opposite signs near q1. To

be specific suppose that dF1
dσ < 0 near q1. The argument for the other case is similar to

the one given below and is omitted. Then dF2
dσ > 0 near q1. It follows that F1 has a strict

maximum at σ∗, whereas F2 has a strict minimum there. Because dF1
dσ < 0 and dF2

dσ > 0 in
(σ∗,σ+], we find that

ϕ1 −F1(σ∗) = F1(σ+)−F1(σ∗) =
∫ σ+

σ∗
dF1

dσ
dσ <

∫ σ+

σ∗
dF2

dσ
dσ

= F2(σ+)−F2(σ∗) = ϕ1 −F2(σ∗),

that is, F1(σ∗)> F2(σ∗). Therefore the point q∗ = (σ∗,F2(σ∗)) does not lie on the graph
of F1. There are three possible locations for q2 relative to the graph of F1, see figure 5.3.4.
Each of the three locations gives rise to a different possible qualitative behavior.

σ

ϕ

σ− σ+

q0

q1

q2
F2
�

F1
�

σ

ϕ

σ− σ+

q0

q1

q2

q∗��

σ∗
��

F1

�

F2

�

σ

ϕ

σ− σ+

q2

q1

q0

q̂q∗

σ∗
�
��

transF1

�

F1
��

F2����

σ

ϕ

σ− σ+

q0 q1

F1
�

F2
�

Case I Case II.1 Case II.2 Case II.3

Figure 5.3.4. The geometric situation.

1. Suppose that q2 lies above the graph of F1. Then q2 and q∗ lie on opposite sides of the
graph of F1. Thus the graph of F2|(σ−,σ∗] crosses the graph of F1 at least once. It crosses
exactly once because F2|(σ−,σ∗] is strictly monotonic. Therefore in Ã the curve γ̃|[0,T ]
makes an upward pointing loop. Note that the rotation number Θ = (ϕ2 −ϕ0)/2π of γ̃ is
positive.

2. Suppose that q2 lies below the graph of F1. Then q2 and q∗ lie on the same side of the
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graph of F1. Note that F1(σ∗) > F1(σ−) = ϕ0, while F2(σ∗) < F2(σ−) = ϕ2. Applying
the translation mapping trans to the graph of F1 gives trans(q0) = q2 and trans(q1) = q̂.
Since F1|(σ−,σ∗ ] is strictly increasing, so is trans(F1|(σ−,σ∗ ]). Because F2|(σ−,σ∗ ]
is strictly decreasing and

trans(F1(σ∗)) = F1(σ∗)+
(
F2(σ−)−F1(σ−)

)
=

(
F1(σ∗)−F1(σ−)

+F2(σ−)> F2(σ−),

it follows that trans(F1(σ∗)) lies above the graph of F2. Since F2(σ+)= q1 > trans(q1) =
q̂ = trans(F1(σ+)), the point q̂ lies below the graph of F2. Thus we find that the graph
of trans(F1|[σ∗,σ+)) crosses the graph of F2 at least once. It crosses exactly once be-
cause F1|[σ∗,σ+) is strictly monotonic and hence trans(F1|[σ∗,σ+)) is strictly mono-
tonic. Therefore in Ã the curve γ̃|[0,T ] makes a downward pointing loop. Note that the
rotation number Θ of γ̃ is negative.

3. Suppose that q2 lies on the graph of F1. Then q2 = q0. Thus the closures of the graphs
of F1 and F2 form a smooth closed curve, which does not have any self intersections. Thus
γ̃|[0,T ] forms a wheel. The rotation number Θ of γ̃ is zero.

� We now show that downward looping and wheeling motion do not occur, because the
rotation number Θ is positive when b/a ∈ (−1,1) and a > 0.

(5.14) Proof: Cut the extended complex plane along the real axis from σ− to σ+ and then
again between σ0 to ∞ thus forming the cut extended complex plane C∨. Let z−σ±,0 =
r±,0eiθ±,0 and choose a complex square root so that√

(z−σ−)(z−σ+)(z−σ0) =
√

r−r+r0 e
1
2 i(θ−+θ++θ0).

For i = 1,2,3 let Ci be a closed positively oriented curves in C∨, where C1 encircles the
cut [σ−,σ+] but avoids the points ±1 and the cut [σ0,∞); C2 encircles the cut [σ−,σ+]
and the points ±1 but avoids the curve C1; and C3 encircles the cut [σ0,∞) but avoids the
curve C2. Note that the real root σ0 of V , which does not lie in [−1,1], is strictly greater
than 1. Let ω = b−az

(1−z2)
√

V (z)
. Then ω is a meromorphic 1-form on C∨ with first order

poles at ε =±1, which have residue Res
z=ε

ω = 1
2 i. This follows from the choice of square

root and the fact that b/a ∈ [−1,1]. Hence by the residue theorem we get∫
C2

ω = 2πi Res
z=−1

ω +2πi Res
z=1

ω +
∫

C1

ω =−2π +
∫

C1

ω.

By Cauchy’s theorem∫
C2

ω =
∫

C3

ω = 2a
∫ ∞

σ0

x−b/a

(x2 −1)
√

V (x)
dx > 0,

since b/a ∈ [−1,1], a > 0 and σ0 > 1. This proves the assertion because 2πΘ =∫
C1

ω . �

This completes the verification of figure 5.3.4. �
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We now translate the motions of γ̃ on Ã into motions γ of the tip of the figure axis of
the top on A . There are two cases: when Ã is the universal covering space of a closed
annulus B or the universal covering space of the closed 2 disk D± blown up at its center.
In the case of the closed annulus, the translation is straightforward and the results are given
in figure 5.3.3. In the case of a disk D2

+ consider the curve γ given in figure 5.3.5 (a), which

γ�
���

q1

Γ
�
���

C+	

C−	

q′0

q′1

q′2

(a) (b)

Figure 5.3.5. (a) The motion of the tip of the figure axis in the closed
2-disk D2

+. (b) The blow up of the motion of (a) in the annulus.

represents a motion of the tip of the figure axis of the top which passes through the north
pole np of S2. Recall that under the blow up map each positive tangent ray to γ at np of
a suitable length after a translation corresponds to a point on the circle C+, which is the
blow up of np. The point q1 on ∂D2

+, after applying the blow up map, corresponds to the
point q′1 on C−. The blow up of the curve γ in D2

+ is the curve Γ in the annulus bounded
by C±. The curve Γ is tangent to C+ at q′0 and q′2, which correspond to the two distinct
positive tangent rays to γ at np. Thus Γ is a wavy motion. From this discussion we see
that the motion of the tip of the figure axis of the top through the north pole is not the
limit of cuspy motion in an annulus whose upper boundary shrinks to the north pole. For
more details see the discussion after ((5.15)) below.

We now turn to discussing singularities of γ̃ which are not tangential. If ϕ̇ = 0 at q0 ∈ ∂ Ã ,
then we say that γ̃ has a nontangential singularity at q0. From ((5.9)) we see that dγ̃

dt (t0) is
an outward pointing normal to ∂ Ã at q0 = γ̃(t0). If in addition ϕ̇ is not identically zero
on A , we say that q is nondegenerate; otherwise we say that it is degenerate.

Claim: A nondegenerate nontangential singularity of γ̃ can only occur on the upper
boundary {σ = σ+} of Ã .

Before giving a formal proof, here is a physical argument using the magnetic spherical
pendulum model. When ϕ̇ = 0, the figure axis of the top is not moving. Hence the Lorentz
force on the electrically charged particle from the magnetic monopole field is zero. Thus
only downward gravity is acting. Since the particle is moving in an annulus, this can only
happen at the upper boundary. Here is the formal proof.

(5.15) Proof: Suppose that γ̃ has a nondegenerate nontangential singularity at q0 = (σ−,ϕ0).
From the definition of this kind of singularity and using (87b) it follows that a = 0,
σ− = b/a and |b/a| < 1. Because σ− is a root of V , from (83) we obtain σ2 = 0. But
τ−1(q0) lies on an integral curve of XHa |T 2

ha,b. Hence its image under the reduction map



246 The Lagrange top

πa
b (56) lies on an integral curve of −adHa

b
, which intersects Pa

b ∩{σ2 = 0}. Since (ha,b)
is a regular value of EMa, from figure 5.1.2 we see that the line �α in the σ1–σ3 plane
defined by σ3 +σ1 = 2α intersects the image of the fold curve ρ(C ) defined by σ3 =
(b− aσ1)(1−σ2

1 )
−1 with |σ1| < 1 in two distinct points (σ+,σ+

3 ) and (σ−,σ−
3 ) with

σ− < σ+, because σ± are simple roots of V in (−1,1). Since σ− = b/a, it follows that
σ−

3 = 0. However, the slope of the line �α is negative and ρ(C ) lies in the half plane
σ3 ≥ 0. Therefore (σ−,σ−

3 ) = (b/a,0) cannot be the left most point of intersection of �α
with ρ(C ). This contradicts the definition of σ−. �

Γ
�
�
���

˜τ �

˜γ
�
�
�
���

Figure 5.3.6. Appearance of a cusp.

Claim: Suppose that q1 = (σ+,ϕ1) ∈ ∂ Ã is a nondegenerate nontangential singularity
of γ̃ . Then γ̃ has a cusp at q1.

(5.16) Proof: From the definition of nondegenerate nontangential singularity and equations
(87a) and (87b) we find that a = 0, σ+ = b/a and |b/a|< 1. Parametrizing γ̃ near q1 by
σ , we obtain

dϕ
dσ

=
a(σ+−σ)

(1−σ2)
√

V (σ)
. (89)

Since T 2
ha,b is a smooth 2-torus, V has two simple real roots σ± in (−1,1) and one real

root σ0 > 1. Therefore V ′(σ+) < 0. Expanding (1−σ2)−1 and V (σ)−1/2 in a Taylor
series about σ+, equation (89) becomes

dϕ
dσ

=
a

(1− (σ+)2)
√−V ′(σ+)

(σ+−σ)1/2 +O
(
(σ+−σ)

)
,

which integrated gives

ϕ(σ) =− 2a

3(1− (σ+)2)
√−V ′(σ+)

(σ+−σ)3/2 +O
(
(σ+−σ)2).

Therefore γ has a cusp at q1. �

Figure 5.3.7. Transition between wavy and looping motion of the tip of the top
without becoming cuspy.
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From the proof of ((5.15)) we see that γ̃ has a cusp singularity if and only if V has two
simple roots σ− and σ+ = b/a in (−1,1) with 0 < |b| < |a|. Consequently the tip of
the figure axis of the top makes a cuspy motion only when Ã is the universal covering
space of the closed annulus B and only at those energy momentum values (ha,a,b) where
α = b

a β , since (b/a,0) lies on �α . Recall that α = I1ha− 1
2 b2 and β = I1χ . Thus the north

pole of S2 is never a cusp point of the motion of the tip of the figure axis.

In figure 5.3.7 we have sketched how the tip of the figure axis can pass from a wavy to an
upward looping motion without passing through a cuspy motion by a continuous variation
in the parameter (ha,a,b) and the initial condition. The motion of the tip in the middle
drawing in figure 5.3.7 is not smooth when parametrized by arc length, even though the
motion disregarding the time parametrization is. This lack of smoothness is due to the
geometric behavior of the projection mapping τ .

Type of motion Conditions The roots σ±

1. wavy b =±a, a = 0, b/a > 0 σ± are simple roots of V
in (−1,1). dϕ

dσ has same
sign at σ±.

2. upward looping b =±a, a = 0, b/a < 0 σ± are simple roots of V
in (−1,1). σ− < b/a &
σ+ > 0. dϕ

dσ has opposite
signs at σ±.

3. cuspy 0 < |b|< |a|, α = β
b
a

σ± are simple roots of V
in (−1,1). σ+ = a/b.
dϕ
dσ = 0 at σ+.

4. through north pole b = a, a = 0, α = β σ− and σ+ = 1 are
simple roots of V in
(−1,1]. dϕ

dσ = 0 at σ±.

5. through south pole b =−a, a = 0, α =−β σ− =−1 and σ+ are
simple roots of V in
[−1,1). dϕ

dσ = 0 at σ±.

6. arc of great circle b = a = 0, |α|< β σ− =−1 and σ+ = α/β
are simple roots of V
in [−1,1).

7. great circle b = a = 0, α > β σ± =±1 are simple
roots of V .

Table 5.3.1. Types of motion of the tip of the figure axis. Here (ha,b)
is a regular value of the energy momentum mapping EMa.

Suppose that γ̃ has a degenerate nontangential singularity in Ã . Then γ̃ moves peri-
odically with period T along a vertical line joining the two boundary components of
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Ã . Since ϕ̇ = 0 on all of Ã , from (87b) it follows that a = b = 0. Hence V (σ) =
2(α − βσ)(1 − σ2). Suppose that α/β < 1. Then V (σ) ≥ 0 for [−1,α/β ]. Hence
σ− = −1 and σ+ = α/β . Thus Ã is the universal covering space of the closed 2-disk
D2
− blown up at the south pole. So the tip of the figure axis periodically traces out an arc

of a great circle on S2 that passes through the south pole of S2. Its rotation number is ± 1
2 .

If α/β > 1, then σ± = ±1. In this case, Ã is the universal covering space of S2 blown
up at the north and south poles. The tip of the figure axis traverses a great circle through
the north and south poles of S2. Its rotation number is ±1.

In table 5.3.1 we summarize the classification of motions of the tip of the figure axis of
the Lagrange top.

6 The energy momentum mapping
In this section we investigate the geometry of the energy momentum mapping

ẼM : T SO(3)→ R3 : XA �→ (
H (XA),Jr(XA)J�(XA)

)
of the Lagrange top. Here H is the Hamiltonian (4), Jr the angular momentum (8) of
the right S1-action, and J� the angular momentum (6) of the left S1-action. Because the
left trivialization mapping L (10) of T SO(3) is a diffeomorphism, it suffices to look at
the geometry of

EM : SO(3)× so(3)→ R3 : (A,X) �→ (
H(A,X),Jr(A,X),J�(A,X)

)
. (90)

Here H = L ∗H is given by (98), Jr = L ∗Jr by (12), and J� = L ∗J� by (42). If we
understand the topology of the fibers EM−1(h,a,b) and how they fit together to form
H−1(h), then we have a complete qualitative picture of the invariant manifolds of the
Hamiltonian vector field XH , whose integral curves give the motions of the Lagrange top.

6.1 Topology of EM−1(h,a,b) and H−1(h)

In this subsection we reconstruct the topology of EM−1(h,a,b) from the topology of
the level set (Ha

b )
−1(ha

b) of the second reduced Hamiltonian (72) and the geometry of
the reduction mapping π : J−1

r (a) → Pa
b . Here the map π is the composition of the

reduction map πa : J−1
r (a) → Pa (13) of the right S1-action (11) and the reduction map

πa
b : (Ja

� )
−1(b) ⊆ Pa → Pa

b (56) of the induced left S1 action (40) on Pa. Reconstruction
is possible because EM−1(h,a,b) = π−1

(
(Ha

b )
−1(ha

b)
)
, where ha

b = h− 1
2 I−1

1 (b2 −a2)−
� 1

2 I−1
3 a2. The results are given in table 6.1.1. We now verify the entries in the third column

of table 6.1.1.

(6.1) Proof:
1and 5. If ha

b is a regular value of Ha
b or a =−b and ha

b =−χ + 1
2 I−1

1 a, then the level set
(Ha

b )
−1(ha

b) bounds a contractible 2-disk in Pa
b . Therefore π−1

(
(Ha

b )
−1(ha

b)
)

is a trivial
2-torus bundle over S1, that is, EM−1(h,a,b) is a smooth 3-torus.
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2. Over every nonsingular point of Pa
b the fiber of the reduction mapping π is a smooth

2-torus.
4. Over a singular point σ̃ of Pa

εa with ε2 = 1 the fiber of π is a circle. This follows
because the fiber (πa

b )
−1(σ̃) is a point p, being a fixed point of the left S1-action on Pa;

while the fiber of (πa)−1(p) is the smooth circle π−1(σ̃).

Topology Topology
Conditions of (Ha

b )
−1(ha

b) of EM−1(h,a,b)

1. ha
b is a regular value

of Ha
b

a smooth S1 a smooth 3-torus T 3

2. V has a multiple root
in (−1,1)

a nonsingular point of Pa
b a smooth 2-torus T 2

3. a = b, ha
b = χ + 1

2 I−1
1 a2,

|a|< 2
√

β
a topological S1 with a
conical singular point

a 3-torus with a normal
crossing along an S1

4. a = b, ha
b = χ + 1

2 I−1
1 a2,

|a| ≥ 2
√

β
a singular point of Pa

a a smooth S1

5. a =−b,
ha

b =−χ + 1
2 I−1

1 a2
a smooth S1 a smooth 3-torus T 3

Table 6.1.1. Topology of EM−1(h,a,b)

3. To verify the third entry suppose that (Ha
a )

−1(ha
a) is a topological circle C with a

conical singular point σ̃ = (1,0,0), which is the singular point of Pa
a . Since C \ {σ̃}

is contractible, π−1(C \ {σ̃}) is diffeomorphic to T 2 ×R. The fiber π−1(σ̃) is a non-
degenerate critical circle of H|(J−1

r (a)∩ J−1
� (b)

)
of Morse index 2 because p is a non-

degenerate critical point of Ha|(Ja
� )

−1(b) of Morse index 2, see ((6.4)). By the Morse
lemma the local stable and unstable manifolds of Ha|(Ja

� )
−1(b) at p are diffeomorphic to

x2
1−x2

2−x2
3 = 0, which is a double cone C =C(S0×S1) on S1. The local stable and unsta-

ble manifolds of π−1(σ̃) are untwisted, because the local stable and unstable manifolds
of p are contractible and a fiber of πa is an S1. Therefore a neighborhood of π−1(σ̃) in the
fiber π−1(C ) is diffeomorphic to S1 ×C, that is, is a double cone on T 2. Consequently,
π−1(C ) is a 3-torus with a normal crossing along the circle π−1(σ̃). In other words,
π−1(C ) is a product of an S1 with a 2-torus with a meridial circle pinched to a point. �

For later purposes, see figure 5.1.5, we note that the singular point σε = ε(1,0,0) ∈ Pa
εa is

a local minimum of Ha
εa, when ε = 1, b = a and |a|> 2

√
β , or when ε =−1 and b =−a,

because σε is an elliptic equilibrium point of −adHa
b
. Under these restrictions it follows

that π−1(σε) is a local minimum for H restricted to J−1
r (a)∩ J−1

� (εa).

We want to determine the topology of the level sets of the Hamiltonian

H : SO(3)× so(3)→ R : (A,X) �→ 1
2 k(I(X),X)+χk(AdA−1 E3,E3).

Let S1 = {B ∈ SO(3) AdB−1 E3 = E3} and consider the S1-action

ϕ� : S1 × (
SO(3)× so(3)

)→ SO(3)× so(3) : (B,(A,X)) �→ (BA,X) (91)
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with orbit mapping

ρ̃ : SO(3)× so(3)→ S2 ×R3 : (A,X) �→ (
Ae3, i(X)

)
= (z,w). (92)

Since H(BA,X)=H(A,X), it follows that H is invariant under the S1-action ϕ�. Therefore
H induces the smooth function

Ĥ : S2 ×R3 → R : (z,w) �→ 1
2 I−1

1 (w2
1 +w2

2)+ I−1
3 w2

3 +χz3,

� where ρ̃∗Ĥ = H. We now show that Ĥ is a Morse function.

(6.2) Proof: Consider the function H̃ : R3 ×R3 → R : (z,w) �→ 1
2 (I

−1w,w) + χ(z,e3) con-
strained to F−1(0), where F : R3×R3 →R : (z,w) �→ (z,z)−1. Here I−1 = diag(I−1

1 , I−1
1 ,

I−1
3 ). Because the fibers of H̃|F−1(0) are compact, the function H̃|F−1(0) is proper and

hence has a critical point (z,w). By Lagrange multipliers, at the critical point (z,w) we
have DH̃(z,w)+λDF(z,w) = 0 and (z,z) = 1, that is,⎧⎪⎪⎨⎪⎪⎩

2λ z1 = 0
2λ z2 = 0

χ +2λ z3 = 0
I−1w = 0

& z2
1 + z2

2 + z2
3 = 1.

If λ = 0, then χ = 0, which is a contradiction. Therefore λ = 0, which implies z1 = z2 = 0.
So z3 = ε , where ε2 = 1 and λ = − 1

2 εχ = λpε . Since I is invertible, we get w = 0.
Therefore pε = (εe3,0) is a critical point of H̃|F−1(0). Now

Tpε (F
−1(0)) = kerDF(pε) = ker(εe3,0) = span{e1,e2,e4,e5,e6}.

So

Hesspε (H̃|F−1(0)) =
(
D2H̃(pε)+λpε D2F(pε)

)
Tpε (F

−1(0))

=
(
diag(0,0,0, I−1

1 , I−1
1 , I−1

3 )− 1
2 εχdiag(2,2,2,0,0,0)

span{e1,e2,e4,e5,e6}
= diag(−εχ,−εχ, I−1

1 , I−1
1 , I−1

3 ),

which is invertible and has Morse index 0 at p−1 and Morse index 2 at p1. Thus Ĥ =
H̃|F−1(0) is a Morse function on F−1(0) = S2 ×R3. �

h Topology of Ĥ−1(h)

1. −χ point

2. −χ < h < χ a smooth S4

3. χ U = (S2 ×D2
)
⋃· S2×S1C(S2 ×S1)

4. h > χ a smooth S2 ×S2

Table 6.1.2. Topology of Ĥ−1(h). The level set U = Ĥ−1(χ) in the third entry is
the disjoint union of the product of a 2-sphere and a closed 2-disk with a closed
cone on a product of a 2-sphere S2 and a circle S1, which are glued together along
their common boundary, which is a product of a 2-sphere S2 and S1.
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(6.3) Proof: We now verify the entries in the second column of table 6.1.2.

1. Because p1 is a nondegenerate minimum of Ĥ on S2 ×R3 with corresponding critical
value −χ , it follows that Ĥ−1(−χ) is a point.
2. Using the Morse lemma near p1, there is a smooth local change of coordinates so that
Ĥ+χ is equal to its positive definite Hessian at p−1. Therefore for every h slightly greater
than −χ , the level set Ĥ−1(h) is diffeomorphic to a 4-sphere S4. By the Morse isotopy
lemma for all −χ < h < χ the level set Ĥ−1(h) is diffeomorphic to S4.
4. For each h > χ let μ : H̃−1(h) ⊆ S2 ×R3 → S2 : (z,w) �→ z. Then μ is a smooth
submersion. For each z ∈ S2 the fiber of the map μ is defined by (I−1w,w) = 2(h− χz3)
where w ∈ R3. Because h > χ and |z3| ≤ 1, we have 2(h− χz3)> 0. Therefore for each
z ∈ S2 the fiber μ−1(z) is diffeomorphic to S2, which is compact. Hence μ is a proper
map and thus exhibits Ĥ−1(h) as a local trivial bundle over S2 with fiber S2. Recall that
smooth bundles over S2 are classified by homotopy classes of maps of an equatorial S1 of
the base S2 into the fiber S2. Since S2 is simply connected, its fundamental group π1(S2)
is the identity element. Therefore the bundle defined by the mapping μ is trivial. In other
words, Ĥ−1(h) is diffeomorphic to S2 ×S2.
3. Consider the function

F : R3 ×R3 → R2 : (z,w) �→ (
H̃(z,w),F(z,w)

)
=

( 1
2 (I

−1w,w)+χz3,(z,z)
)
.

We look at the level set U = Ĥ−1(χ) = F−1(χ,1). First we show that Ĥ−1(χ)\{p1} is
a smooth 4-dimensional manifold. This follows because

DF (z,w) =
(

DH̃(z,w)
DF(z,w)

)
=

(
0 0 χ I−1

1 w1 I−1
1 w2 I−1

3 w3
2z1 2z2 2z3 0 0 0

)
has rank 1 only at (0,0,z3,0,0,0), z3 = 0, that is, only at p1 ∈ Ĥ−1(χ).

By the Morse lemma there is a smooth local change of coordinates near p1 such that
Ĥ − χ is equal to its Hessian diag(−χ,−χ, I−1

1 , I−1
1 , I−1

3 ) near p1. Thus the level set
Ĥ−1(h) near p1 is homeomorphic to the cone C in R5 with coordinates (x1,x2,x4,x5,x6)

defined by −x2
1 − x2

2 + x2
4 + x2

5 + x2
6 = 0. Let D4 be the closed 4-disk in R4 defined by

x2
1+x2

2+x2
4+x2

5+x2
6 ≤ 1. Writing D4

=
⋃

0≤r≤1S4
r =

⋃
0≤r≤1{x2

1+x2
2+x2

4+x2
5+x2

6 ≤ r2}
and noting that C∩S4

r = S1
r/
√

2
×S2

r/
√

2
= {x2

1+x2
2 =

1
2 r2}∪{x2

4+x2
5+x2

6 =
1
2 r2}, it follows

that C∩D4 is topologically a cone C(S1 ×S2) on S1 ×S2 with vertex at p1.

Consider the map

μ̃ = μ|(Ĥ−1(χ)\{p1}) : Ĥ−1(χ)\{p1} ⊆ S2 ×R3 → S2√χ \{χe3} : (z,w) �→ z.

μ̃ is a smooth submersion, which is proper because each of its fibers is a 2-sphere S2,
which is compact. Thus Ĥ−1(χ) \ {p1} is a locally trivial bundle over S2√χ \ {χe3}
with fiber S2. This bundle is trivial because S2√χ \ {χe3} is contractible. Consequently

Ĥ−1(χ)\{p1} is topologically D2 ×S2, the product of an open 2-disk D2 and a 2-sphere
S2. Let D2 be an open 2-disk in S2√χ which contains the point χe3. Then μ̃−1(S2√χ \D2)



252 The Lagrange top

is a smooth submanifold of Ĥ−1(χ), which is diffeomorphic to the product of a closed
2-disk and a 2-sphere and has a boundary S1 × S2. To form U = Ĥ−1(χ) take the dis-
joint union of μ̃−1(S2√χ \D2) and the cone C(S1 ×S2) and glue them together along their

common boundary S1 ×S2.

This completes the verification of table 6.1.2. �

We now give another description of the algebraic variety U = Ĥ−1(χ). First we rescale
the variables (z,w) by (

√χz,
√

I1/2w1,
√

I1/2w2,
√

I3/2w3). In the rescaled variables,
which we call (z,w), the variety U is diffeomorphic to the real algebraic variety Ũ in
S2 ×R3 defined by

w2
1 +w2

2 +w2
3 + z3 = 1 (93a)

z2
1 + z2

2 + z2
3 = 1 (93b)

Ũ is singular only at q = (e3,0). Consider the S1-action

Φ : S1 × (R3 ×R3)→ R3 ×R3 : (t,(z,w)) �→ (R̃t z, R̃tw), (94)

where R̃t =
⎛⎝cos t −sin t 0

sin t cos t 0
0 0 1

⎞⎠, whose algebra of invariant polynomials is generated by

π1 = z3 π3 = z1w1 + z2w2 π5 = 1
2 (w

2
1 +w2

2 − z2
1 − z2

2)

π2 = w3 π4 = z1w2 − z2w1 π6 = 1
2 (w

2
1 +w2

2 + z2
1 + z2

2)

subject to the relation

π2
3 +π2

4 = π2
6 −π2

5 , π6 ≥ 0. (95a)

The variety Ũ is invariant under the S1-action Φ, which leaves the point q fixed. The orbit
space Ũ/S1 is the semialgebraic variety in R6 with coordinates (π1, . . . ,π6) defined by
(95a) and

π5 +π6 +π2
2 +π1 = 1 (95b)

π6 −π5 +π2
1 = 1. (95c)

Solving (95b) for π6+π5 and (95c) for π6−π5 and substituting the result into (95a) gives
the semialgebraic variety Ṽ in R6 defined by

π2
3 +π2

4 = (1−π1 −π2
2 )(1−π2

1 ) (96a)

together with 1 − π1 − π2
2 ≥ 0 (96b) and 1 − π2

1 ≥ 0 (96c). The variety Ṽ is homeo-
morphic to the orbit space Ũ/S1. Moreover, the differential spaces (Ũ/S1,C∞(Ũ)S1

) and
(Ṽ ,C̃∞(Ṽ )) are diffeomorphic.

We now determine the topology of Ṽ . Let D be the subset of R2 with coordinates (π1,π2)
defined by (96b) and (96c), see figure 6.1.1.
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π1

π2

−√
2

−1

√
2

1

E �

F
�
��

D
�

�
��

q̃ = π(q̄)
��

Figure 6.1.1. The darkened region is D , whose boundary is E ∪F , where
E = {(−1,π2) : |π2| ≤

√
2} and F = {(−π2

2 +1,π2) : |π2| ≤
√

2}.

Consider the surjective mapping

π : Ṽ ⊆ R4 → D ⊆ R2 : (π1,π2,π3,π4) �→ (π1,π2).

First we determine the geometry of the map π . Let E = {(−1,π2)∈ ∂D |π2| ≤
√

2}. We
find the fiber π−1(π1,π2) for (π1,π2) ∈ E as follows. Since π1 = −1 on E from (96c)
it follows that π6 −π5 = 0. Then (96a) reads π2

3 +π2
4 = 0, which implies π3 = π4 = 0.

Therefore for |π2| ≤
√

2 we get π−1(−1,π2) = (−1,π2,0,0). Let F = {(−π2
2 +1,π2) ∈

∂D |π2| ≤ 2}. When π1 = −π2
1 + 1 then (95a) reads π2

3 + π2
4 = 0, which gives π3 =

π4 = 0. Therefore for |π2| ≤ 2 we get π−1(−π2
2 +1,π2) = (−π2

2 +1,π2,0,0). Note that
∂D = E ∪F , which is topologically an S1. The above argument shows that π−1(∂D)
is topologically an S1 in Ṽ . The map π̃ = π|(Ṽ \ π−1(∂D)) is a surjective submer-
sion of Ṽ \ π−1(∂D) onto intD . For every (π1,π2) ∈ intD we have 1− π1 − π2

2 > 0
and 1− π2

1 > 0. Therefore the fiber π̃−1(π1,π2), which is defined by π2
3 + π2

4 = (1−
π1 − π2

2 )(1 − π2
1 ), is diffeomorphic to a circle S1. Since S1 is compact, the mapping

π̃ is proper. Therefore for every contractible subset C of D it follows that π̃−1(C ) is
topologically C × S1. Let π0

2 ∈ [0,
√

2). Consider the closed horizontal line segment
�π0

2
= {(π1,π0

2 ) ∈ D − 1 ≤ π1 ≤ −(π−
2 )2 + 1} in D with endpoints Q1 = (−1,π0

2 ) ∈
E and Q2 = (−(π0

2 )
2 + 1,π0

2 ) ∈ F . From what we have already shown, we see that
π̃−1(�π0

2
\ {Q1,Q2}) is topologically a cylinder (0,1)× S1 with each of its endpoints

pinched to a point. In other words, π̃−1(�π0
2
) is topologically a 2-sphere S2. When

π0
2 =

√
2, the fiber π̃−1(−1,

√
2) is a point. Therefore the preimage under the map π̃ of

the closed half 2-disk D ∩{π2 ≥ 0} is a closed cone C(S2) on S2 with boundary π̃−1(�0),
which is an S2. Thus D ∩{π2 ≥ 0} is topologically a closed 3-disk D3

1 with boundary
π̃−1(�0). A similar argument shows that π̃−1(D ∩{π2 ≤ 0}) is also a closed 3-disk D3

2

with boundary π̃−1(�0). Thus Ṽ = π̃−1(D) = D3
1
⋃· S2 D3

2, that is, Ṽ is the disjoint union
of two closed 3-disks D2

1 and D2
2 glued together along their common boundary π̃−1(�0),

which is an S2. So Ṽ is a topological 3-sphere S3.

Because the map π|(Ṽ \ {q}) is smooth except at q = (1,0,0,0), it is a proper submer-
sion of Ṽ \ {q} onto D \ {q̃}, where q̃ = (1,0). The following argument shows that
in a neighborhood of q, the variety Ṽ has a conical singularity, which is a cone C(S2)
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on S2 with vertex at q. For each π0
1 ∈ [0,1] consider the closed vertical line segment

Lπ0
1
= {(π0

1 ,π
0
2 ) ∈ D |π2| ≤

√
1−π1}. Then π−1(intLπ0

1
) is topologically a cylinder

(0,1)× S1; while the fiber over each of its endpoints is a point. Hence π−1(Lπ0
1
) is a

topological 2-sphere S2. Therefore the preimage under the map π of the right half disk
� D ∩{π1 ≥ 0} is a closed cone C(S2) on S2 with vertex at q. This completes the proof that

the semialgebraic variety Ṽ is a topological 3-sphere, which is smooth except at one point
where it has a singularity, which is a cone on S2.

We now look at the variety Ũ . Let

ρ : Ũ ⊆ R3 ×R3 → Ũ/S1 = Ṽ : (z,w) �→ (
π1(z,w), . . . ,π4(z,w)

)
. (97)

Then ρ is the orbit map of the S1-action Φ (94). Except at the singular point p1 of Ũ ,
the map ρ is a smooth surjection of Ũ \{p1} onto Ṽ \{q} with fiber S1. Therefore ρ is a
proper map, which defines a locally trivial S1-fibration of Ũ \{p1} over Ṽ \{q}. Since Ṽ is
topologically a 3-sphere, Ṽ \{q} is contractible. Consequently, Ũ \{p1} is topologically
the product of Ṽ \{q} and S1. Because an open neighborhood of q in Ṽ is topologically
a cone C(S2) on S2, which is contractible, ρ−1(C(S2)) is topologically a cone C(S2 ×S1)

� on S2 × S1. Thus we have shown that Ũ = (D3 × S1)
⋃· S2×S1C(S2 × S1), that is, Ũ is

the disjoint union of the product of a closed 3-disk and S1 with a cone on S2 × S1 glued
together along their common boundary S2×S1. This completes our alternative description
of the algebraic variety U = Ĥ−1(χ).

Next we turn to reconstructing the topology of the level sets of the Hamiltonian

H : SO(3)× so(3)→ R : (A,X) �→ 1
2 k(I(X),X)+χk(AdA−1 E3,E3). (98)

The results are given in table 6.1.3.

h Topology of H−1(h)

1. −χ smooth S1

2. −χ < h < χ a smooth S1 ×S4

3. χ W =U ×S1, see table 6.1.2 for U

4. h > χ a smooth SO(3)×S2

Table 6.1.3. Topology of H−1(h).

� We now verify the entries in the second column of table 6.1.3.

(6.4) Proof: From the fact that Ĥ is a Morse function with two nondegenerate critical points p−1
of index 0 and p1 of index 2, it follows that H is a Bott-Morse function on SO(3)× so(3)
with two nondegenerate critical circles: one ρ̃−1(p−1) of index 0 and the other ρ̃−1(p1)
of index 2. Here the mapping ρ̃ is given by (97).
1. Because −χ is the minimum value of Ĥ, corresponding to the critical point p1, we find
that H−1(ρ̃−1(p−1)) = Ĥ−1(p−1) = −χ . In other words, H−1(−χ) is a smooth circle
ρ̃−1(p−1), which is an orbit of the S1-action ϕ�.
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2. By an equivariant version of the Morse lemma, ρ̃−1(p−1) has a tubular neighborhood
of the form S1 ×N where N is a neighborhood of 0 in R5 in a normal slice to the S1 orbit
ρ̃−1(p−1) of the action ϕ�. Restricting H + χ to the normal slice gives z2

1 + z2
2 +w2

1 +

w2
2 +w2

3 = Hessp−1 Ĥ. Therefore for h values slightly greater than −χ , the h-level set of
H is diffeomorphic to S1 ×S4. From an equivariant version of the Morse isotopy lemma,
it follows that for every −χ < h < χ the h-level set of H is diffeomorphic to S1 ×S4.
4. We now show that for h > χ the h-level set H−1(h) is the total space of an S2-bundle
over SO(3). Consider the projection mapping τ : SO(3)× so(3)→ SO(3) : (A,X) �→ A.
Fix A ∈ SO(3) and suppose that (A,X) ∈ H−1(h). Then

1
2 k(I(X),X) = h−χk(AdA−1 E3,E3)≥ h−χ > 0,

where the first inequality follows because

(k(AdA−1 E3,E3))
2 ≤ k(AdA−1 E3,AdA−1 E3)k(E3,E3) = 1,

using the Cauchy-Schwarz inequality. Thus the fiber (τ|H−1(h))−1(A) is a 2-sphere con-
tained in {A}× so(3). Since SO(3) is a Lie group, the level set H−1(h) is a trivial S2

bundle over SO(3).
3. From H = Ĥ◦ρ̃ it follows that H−1(χ) = ρ̃−1(Ĥ−1(h)). But Ĥ−1(h) =U . So we get
H−1(χ) = ρ̃−1(U) =W . Applying equivariant Morse theory at ρ̃−1(p1), we find that near
ρ̃−1(p1) the level set W is a locally trivial bundle ν over S1 with fiber C(S1×S2). A closer
look at the geometry of W shows that topologically W = S1 ×U . In particular, the bundle
ν over S1 is trivial. We start our analysis by observing that the orbit map ρ̃ : SO(3)×
so(3)→ S2×R3 of the free S1-action ϕ� (91) is smooth, surjective and proper. Moreover,
ρ̃ maps the smooth manifold W \{ρ̃−1(p1)} onto the smooth manifold U \{p1}. Because
a neighborhood U of the singular point p1 of U is a cone C(S2×S1) on S2×S1 with vertex
at p1, the set U is contractible. Thus topologically we have ρ̃−1(U ) =C(S2 ×S1)×S1.
Here {p1}×S1 is the S1-orbit ρ̃−1(p1). Since U = (D2 ×S1)

⋃· S2×S1C(S2 ×S1) and U
have a common boundary, which is topologically S2 ×T 2, the variety W is the disjoint
union of the total space V of an S1-bundle μ over D3 × S1 and C(S2 × S1)× S1 glued
together along their common boundary S2 × T 2. Below we show that the bundle μ is
trivial. This implies that W =U ×S1, as desired.

We now show that V is topologically D3 × T 2. Consider the mapping σ = ρ◦ρ̃ , see
(92) and (97). σ sends W into Ṽ , and is a smooth, surjective, and proper mapping of
W \ {ρ̃−1(p1)} onto Ṽ \ {q} with fiber T 2. Now V = σ−1(π−1(D∩ {π2 ≥ 0})). But
V \ {q} is contractible and π−1(D ∩{π2 ≥ 0}) is a closed 3-disk D

3
in Ṽ . Thus V =

σ−1(D3
) is topologically D3 ×T 2.

This completes the verification of table 6.1.3. �

6.2 The discriminant locus
In this section we examine the set of critical values of the energy momentum mapping
EM (90) of the Lagrange top.
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From the reduction to a one degree of freedom Hamiltonian system, see section 4.4, it fol-
lows that the set of critical values of EM is very closely related to the set of critical values
of the twice reduced Hamiltonian Ha

b (72). More precisely, (h,a,b) is a critical value of
EM if and only if ha

b = h− 1
2 I−1

1 (b2 − a2)− 1
2 I−1

3 a2 is a critical value of Ha
b . In other

words, the polynomial W̃ (σ) = 2(α −βσ)(1−σ2)− (a−bσ)2 with α = I1ha
b and β =

I1χ has a multiple root in [−1,1], see section 6.1. Thus (a,b,α) lies in the discriminant
ΔW̃ of W̃ . In the following we describe the singularities of the discriminant locus

� {ΔW̃}= 0} of W̃ . We start by finding a parametrization of the discriminant locus {ΔW̃ =

0} of the polynomial W̃ .

(6.5) Proof: To simplify the discussion we choose physical units so that β = 1
2 . Then W̃

becomes
W (σ) = σ3 − (2α +b2)σ2 +(2ab−1)σ +2α −a2. (99)

Note that (a,b,α) lies in the discriminant ΔW of W if and only if for (s, t) ∈ [−1,1]×R
the polynomial W can be factored as

(σ − s)2(σ − t) = σ3 − (2s+ t)σ2 +(s2 +2st)σ − s2t.

Therefore

2α +b2 = 2s+ t (100a)

2ab−1 = s2 +2st (100b)

a2 −2α = s2t. (100c)

Thinking of (s, t) as parameters, we solve (100a,b,c) for a,b,α as follows. Adding (100a)
and (100c) to eliminate α together with (100b) gives

a2 +b2 = 2s+ t + s2t (101a)

2ab = s2 +2st +1. (101b)

Adding and subtracting (101a) and (101b) gives

0 ≤ (a+b)2 = (s+1)2(t +1) and 0 ≤ (a−b)2 = (1− s)2(t −1). (102)

s

t

−1 1
−1

1

Figure 6.2.1. The set S of allowable values of (s, t).



V.6.2 The discriminant locus 257

For the inequalities in (102) to hold, (s, t) must lie in the set S , see figure 6.2.1. More
precisely, one of the following holds: (s, t) ∈ (−1,1)× (1,∞), or (1, t) ∈ {1}× [−1,∞),
or (−1, t) ∈ {−1}× [1,∞), or (s,1) ∈ [−1,1]×{1}. Extracting the square root of both
sides of the equations in (102) gives

a+b = ε1(s+1)
√

t +1 and a−b = ε2(1− s)
√

t −1,

where ε2
1 = ε2

2 = 1. Therefore

a(s, t) = 1
2 ε1(s+1)

√
t +1+ 1

2 ε2(1− s)
√

t −1 (103a)

b(s, t) = 1
2 ε1(s+1)

√
t +1− 1

2 ε2(1− s)
√

t −1. (103b)

Substituting (103a) into (100c) we obtain

α(s, t) = 1
4

(
2s+(1− s2)t + ε1ε2(1− s2)

√
t2 −1

)
. (103c)

Therefore for each choice of ε1 and ε2 the map

P : S ⊆ R2 → R3 : (s, t) �→ (
a(s, t),b(s, t),α(s, t)

)
(104)

parametrizes a piece of the discriminant locus {ΔW = 0}. �

Claim: The parametrization (104) is smooth except possibly when (s, t) ∈ ∂S .

(6.6) Proof: Define a smooth function F : R5 → R3 by

(s, t,a,b,α) �→ (
2α +b2 −2s− t,2ab−1− s2 −2st,a2 −2α − s2t

)
.

Then

DF(s, t,a,b,α) =

⎛⎝ −2 −1 0 2b 2
−2s−2t −2s 2b 2a 0
−2st −s2 2a 0 −2

⎞⎠.
Since the [345]-minor of DF is 8(b2 −a2), DF has rank 3 when a2 = b2. By the implicit
function theorem, the level set F−1(0) is the graph of the mapping (104), except possibly
for those values of (s, t) ∈ S where a(s, t)2 = b(s, t)2. Using (102) it is straightforward
to check that a(s, t) = b(s, t) if and only if s = 1 & t ∈ [−1,∞) or s ∈ [−1,1) & t = 1.
Similarly, we see that a(s, t) = −b(s, t) if and only if s = −1 & t ∈ [1,∞) or s = 1 & t =
−1. In other words, a(s, t)2 = b(s, t)2 if and only if (s, t) ∈ ∂S . �

We now investigate the {a = ±b} slices of the discriminant locus {ΔW = 0}. We begin
with the {a = b} slice. Let s = 1. Then (103a) – (103c) become

a = ε
√

1+ t, b = ε
√

1+ t, α = 1
2 (105a)

for ε2 = 1 and t ≥−1. Let t = 1. Then (103a) and (103c) become

a = 1
2 ε

√
2(1+ s), b = 1

2 ε
√

2(1+ s), α = 1
4 +

1
2 s− 1

4 s2 (105b)



258 The Lagrange top

for ε2 = 1 and s ∈ [−1,1]. Thus {b = a} ∩ {ΔW = 0} is parametrized by (105a) and
(105b), see figure 6.2.2.

a

α

−√
2

√
2

Figure 6.2.2. The b = a slice of Δw = 0.

For the {a =−b} slice let s =−1. Then (103a) – (103c) become

a = ε
√

t −1, b =−ε
√

t −1, α =− 1
2 (106a)

with ε2 = 1 and t ≥ 1. For s = 1 and t = 1 we obtain the point

a = 0, b = 0, α = 1
2 . (106b)

Thus {b =−a}∩{ΔW = 0} is parametrized by (106a) and (106b), see figure 6.2.3.

a

α

−1/2

(0,1/2)

Figure 6.2.3. The b =−a slice of Δw = 0.

� Next we analyze the geometry of the discriminant locus {ΔW = 0} near {b =±a}.

(6.7) Proof: First suppose that (a,b,α) lies on the line �ε parametrized by a �→ (a,εa, 1
2 ε) with

ε2 = 1. Set σ = v+ ε and introduce new variables x = ε −2α, y = a− εb, z = b, which
turns the line �ε into the z-axis. Then W (σ) (99) becomes

U(v) = v3 +(2ε + x− z2)v2 +2(εx+ yz)v− y2.

Recall that a cubic polynomial p(u) = au3 +bu2 + cu+d with a = 0 has a multiple zero
if and only if its discriminant Dp vanishes, that is, if and only if

Dp = b2c2 −4ac3 −4b3d −27a2d2 +18abcd = 0. (107)
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Therefore U has a multiple zero if and only if

DU = 4(2ε + x− z2)2(εx+ yz)2 −32(εx+ yz)3 −27y4

+ 4y2(2ε + x− z2)3 −36y2(2ε + x− z2)(εx+ yz) = 0. (108)

Since the constant and linear terms of the Taylor polynomial of DU at (0,0,z) vanish, the
z-axis is in the locus of singular points of {DU = 0}. To find the tangent cone to {DU = 0}
at (0,0,z) in a plane parallel to the x–y plane, which is normal to the z-axis at (0,0,z),
we need to know the terms of degree two in x and y in the Taylor polynomial of DU . A
calculation gives

(2ε − z2)2(x2 +2εzxy+2εy2). (109)

Let ε = 1. At each point of the segment I< = {|z| <√
2} of the z-axis the tangent cone

to {DU = 0} in a normal slice consists of a point. Since (a,b,α) = (0,0, 1
2 ) is an isolated

point of the {a = −b}∩{ΔW = 0}, it follows that (x,y,z) = (0,0,0) is an isolated point
of the intersection of {DU = 0} and the normal slice. Therefore the line segment I<

x

y

z

Figure 6.2.4. The crease singularity of Δw = 0.

is isolated in {DU = 0}. In other words, the line segment parametrized by a �→ (a,a, 1
2 )

for |a|<√
2 forms an isolated one dimensional piece of {ΔW = 0} called the thread. This

thread is perhaps the most remarkable feature of the set of critical values of the energy
momentum mapping of the Lagrange top. At each point of the segment I> = {|z|>√

2}
of the z-axis when ε = −1 or on the z-axis when ε = 1 the tangent cone to {DU = 0} in
the normal slice consists of two intersecting lines. Hence the tangent cone to {DU = 0} at
each point in I> is two transversely intersecting 2-planes. Recall that for (a,b,α) on the
line �−1 or on the line segments �1 when |a|>√

2, the Hamiltonian H|(J−1
r (a)∩J−1

� (εa))
assumes its minimum value. Therefore the tangent cone to {ΔW = 0} forms a crease, see
figure 6.2.4.

Second suppose that (a,b,α) lies along the curve Cε = {ΔW = 0}∩ {b = a}, which is
parametrized by a �→ (

a,a, 1
2 (−a2 +2

√
2εa−1)

)
, where ε2 = 1 and a ∈ I. Here I is the

interval [0,
√

2) if ε = 1 or the interval (−√
2,0] if ε = −1. Set σ = v+1 and introduce

new variables x = 2α +(a2 −2
√

2εa+1), y = a−b, and z = b, which turns Cε into the
segment I of the z-axis. Then W (σ) (99) becomes

U(v) = v3 +(4− x+ y2 +2yz−2ε
√

2y−2ε
√

2z)v2

+2(2− x+ y2 +3yz+ z2 −2ε
√

2y−2ε
√

2z)v− y2.
(110)

A calculation shows that the constant term of the Taylor polynomial of DU vanishes at
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every z in the segment I of the z-axis, whereas the linear terms in the normal slice do not.
Thus {DU = 0} is smooth along I. So the discriminant locus {ΔW = 0} is smooth on Cε .

Finally, suppose that (a,b,α)= (ε
√

2,ε
√

2, 1
2 ). Set σ = v+1 and introduce new variables

x = 1−2α , y = a−b and z = b−ε
√

2. Then (ε
√

2,ε
√

2, 1
2 ) becomes the point (x,y,z) =

(0,0,0) and W (σ) (99) becomes

U(v) = v3 +(x−2ε
√

2z− z2)v2 +2(x+
√

2εy+ yz)v− y2. (111)

We want to describe the discriminant locus {ΔU = 0}, that is, the set of (x,y,z) where U
has a multiple root in [0,2].

Claim: Let DF be the discriminant of the cubic polynomial

F(u) = au3 −bu2 + cu−d2, (112)

where a > 0 and the constant term is a square. Let DG be the discriminant of the special
quartic polynomial

G(u) = u4 − b
2a

u2 +
d√
a

u+(
b2

16a2 − c
4a

). (113)

Then the discriminant loci of F and G are equal, that is, {DF = 0}= {DG = 0}.

(6.8) Proof: Using (107) we see that the discriminant of F is a2DF = 4s3 − 27t2, where s =
1
3 b2−ac and t = 2

27 b3− 1
3 abc+a2d2. For a special quartic polynomial Q(u)= u4+Au2+

Bu+C its discriminant is DQ = 4S3 −27T 2, where S = A2 +12C and T = 2A3 +27B2 −
72AC. For the polynomial G we find that S = 3a−2( 1

3 b2 − ac) and T = 27a−3( 2
27 b3 −

1
3 abc+a2d2). Hence a6

27 DG = a2DF . �

From ((6.8)) it follows that the locus {DU = 0} of multiple zeroes of the cubic polynomial
U (111) is the same as the locus of multiple zeroes of the special quartic polynomial

Y (v) = v4 + 1
2 (x−2ε

√
2z− z2)v2 + yv+ 1

16 (x−2ε
√

2z− z2)2 − 1
2 (x+ ε

√
2y+ yz),

which is the well known swallowtail surface, see figure 6.2.5. The double line of the

x

y

z

Figure 6.2.5. The swallowtail surface {DY = 0} near
(0,0,0), when ε = 1. When ε = −1, the surface must
be reflected in the x-y plane.

the special quartic Q is the union of the line of self intersection given by B = 0 & A2 −
4C = 0 & A ≤ 0 and the whisker given by B = 0 & A2 − 4C = 0 & A ≥ 0. The double
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line of Y is the z–axis, on which Y (v) =
(
v2 − 1

4 (2ε
√

2z+ z2)
)2. On the z-axis Y has a

zero of multiplicity 4 at z = 0 and at z = −2ε
√

2, which are swallowtail points. Y has a
double real root on the z-axis when z ∈ I1, where I1 is either (−∞,−2

√
2)∪ (0,∞) when

ε = 1 or (−∞,0)∪ (0,2
√

2) when ε = −1. Y has a double purely imaginary root on the
z-axis when z ∈ I2, where I2 is either (−2

√
2,0), when ε = 1, or (0,2

√
2), when ε =−1.

Therefore the line of self intersection of {DU = 0} is the union of the segments of the
z-axis where z ∈ I1; whereas the whisker of {DU = 0} is the segment of the z-axis where

x

y

z

Figure 6.2.6. The discriminant locus ΔW = 0 near the
swallowtail point (

√
2,
√

2,1/2), when ε = 1. When ε =

−1, the surface must be reflected in the x-y plane.

z ∈ I2. For the discriminant locus {ΔW = 0} the above discussion translates into the fol-
lowing. The points (a,b,α) = (ε

√
2,ε

√
2, 1

2 ) are swallowtail points. The whisker is the
thread, which is parametrized by a �→ (a,a, 1

2 ) where |a|<√
2. The line of self intersec-

tion is parametrized by a �→ (a,a, 1
2 ) where |a| >√

2. Since the line of self intersection
of {DY = 0} is a crease singularity, the discriminant locus {ΔW = 0} is missing the tail
of the swallowtail surface, see figure 6.2.6. Another way of saying this is that the tail of
the swallowtail surface of {DY = 0} corresponds to multiple roots of Y which do not lie
in [0,2]. In figure 6.2.6 we have sketched the discriminant locus {ΔW = 0} near a swal-
lowtail point. �

Under the mapping (a,b,α) �→ (a,b,h) =
(
a,b, I−1

1 α + 1
2 I−1

1 (b2 − a2) + 1
2 I−1

3 a2
)

the
image of the discriminant locus {ΔW = 0} is the set of critical values of EM , see
figure 6.2.7.

Figure 6.2.7. The set of critical values of the energy
momentum mapping EM of the Lagrange top.
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We end this subsection by describing the motion of the top which corresponds to a fixed
critical value of the energy momentum mapping EM . Suppose that the critical value
(h,a,b) lies on the smooth two dimensional piece of the set of critical values. In phase
space, the motion takes place on a two dimensional torus, see table 6.1.1. In physical
space the top is spinning at a constant speed about its figure axis, which makes a fixed
angle with the vertical axis, while turning uniformly about the vertical axis. In other
words, the top is undergoing regular precession. If the critical value lies on a crease in the
{b =−a} plane, then the top is spinning at a constant speed about its figure axis which is
pointing vertically downward. If the critical value lies on the crease in the {b = a} plane,
then the top is spinning at a constant speed about a figure axis, which is pointing vertically
upward. Here the top is said to be sleeping. This motion is stable because the total energy
of the top on the intersection of the appropriate level sets of the angular momenta is at
a minimum. If the critical value lies on the thread, then the top is either spinning at a
constant speed about its figure axis which is vertical or moving so that it is asymptotic
to this motion as time goes to ±∞. Here the top is said to be waking. This motion is
unstable except at the points where the thread attaches itself to the two dimensional piece
of the set of critical values. At the points of attachment the motion is stable because it
is surrounded by bounded motions which either lie on tori or on the stable or unstable
manifolds of hyperbolic periodic orbits.

6.3 The period lattice

Let R be the set of regular values which lie in the image of the energy momentum
mapping EM . We have shown that if (h,a,b) ∈ R, then EM−1(h,a,b) is a smooth
3-torus T 3

h,a,b. On T 3
h,a,b the motion of the top is the superposition of three circular mo-

tions, namely, a constant spin about its figure axis; a constant precession of its figure axis
about the vertical axis; and a variable up and down nutating motion of its figure axis.
In this subsection we look more closely at how these smooth 3-tori are defined by dis-
cussing the concept of period lattice P(h,a,b) associated to the smooth 3-torus T 3

h,a,b
where (h,a,b) ∈ R.

The period lattice P(h,a,b) is a lattice over Z generated by certain Hamiltonian vector
fields XF . Specifically, for some open neighborhood U of (h,a,b) in R, the function F
lies in the free C∞(U )-module generated by the angular momenta Jr, J�, and the energy
H. Moreover, the flow of the vector field XF |T 3

h′,a′,b′ is periodic of period 1 for every
(h′,a′,b′) ∈ U .

� The following argument constructs a basis for the period lattice P(h,a,b).

(6.9) Proof: Clearly, the vector fields 2πXJr and 2πXJ� on T 3
h,a,b are elements of a basis for

P(h,a,b). To construct the third basis element, note that T 3
h,a,b =(πa

b ◦π
a)−1

(
(Ha

b )
−1(ha

b)
)
,

where πa : J−1
r (a) → Pa is the reduction map of the S1-action ϕ r|(S1 × J−1

r (a)
)

(11)
and πa

b : (Ja
� )

−1(b) ⊆ Pa → Pa
b is the reduction map of the induced S1-action δ � (38)

on Pa. On the smooth 2-torus T 2
ha,b = (πa

b )
−1

(
(Ha

b )
−1(ha

b)
)

the vector field 2πXJa
�

has
a periodic flow of period 1. Note that πa

b (T
3

h,a,b) = T 2
ha,b. Here ha = ha

b +
1
2 I−1

1 b2 and
πa

b ((H
a)−1(ha)) = (Ha

b )
−1(ha

b). Let Θ� be the rotation number of the flow of XHa |T 2
ha,b
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and let T be the period of the flow of −adHa
b

on the circle (Ha
b )

−1(ha
b). From the definition

of rotation number it follows that the vector field T XHa −2πΘ�XJa
�

on T 2
ha,b has a periodic

flow of period 1. Choose a point p on T 3
h,a,b and let C be the image of an integral curve

of XJr through p. Since XJr has a periodic flow on T 3
h,a,b of period 1, C is a closed curve.

Consider an integral curve t �→ γ(t) of the vector field Y = XH − 2πΘ�
T XJ� which starts at

p. Since t �→ πa
b ◦π

a(γ(t)) is a periodic integral curve of −adHa
b

of period T , it follows that
T is the least positive time such that γ(T ) ∈ C . Thus C is a cross section for the flow of
Y on T 3

h,a,b. During the time T the integral curve of XJr , which starts at p, has travelled
through an angle 2πΘr. By construction, the vector field T XH −2πΘ�XJ� −2πΘrXJr has
periodic flow on EM−1(h,a,b) of period 1. Thus the period lattice P(h,a,b) of the
smooth 3-torus EM−1(h,a,b) has a basis {X2πJr , X2πJ� , XT H−2πΘ�J�−2πΘrJr}. �

To give a geometric interpretation of the rotation number Θr, we reduce the Lagrange top
to the Hamiltonian system (Ha

b ,P
a
b ,{ , }Pa

b
) with one degree of freedom. This time we first

reduce by the left S1-action and then by the induced right S1-action. Because the argument
follows along the same lines as that given in §3.1 and §4, we give only the high points,
leaving the details to the reader. Recall that S1 = {B ∈ SO(3)|AdBE3 = E3}. The left
S1-action on T SO(3), given by Φ� : S1 ×T SO(3)→ T SO(3) :

(
B,XA

) �→ XBA, becomes
the action

ϕ� : S1 × (
SO(3)× so(3)

)→ SO(3)× so(3) :
(
B,(A,X)

) �→ (BA,X),

after pulling back by the left trivialization L (10). The action Φ� is Hamiltonian with
momentum mapping J� : T SO(3) → R : XA �→ ρ(e)(AdA−1 E3,X). Under L , the map
J� pulls back to the momentum mapping

J� : SO(3)× so(3)→ R : (A,X) �→ k
(

AdA−1 E3, I(X)
)

of the action ϕ�. Since every value b is a regular value of J�, the level set J−1
� (b) is

a smooth manifold. Because ϕ� acts freely and properly on J−1
� (b), the orbit space

J−1
� (b)/S1 is a smooth manifold. Let Pb = {(Z,W ) ∈ SO(3)× so(3) k(Z,Z) = 1 &

k(Z,W ) = b}. From the fact that the orbit map

πb : J−1
� (b)→ Pb : (A,X) �→ (

AdA−1 E3, I(X)
)
= (Z,W )

is a submersion and every fiber π−1
b (Z,W ) is a single ϕ� orbit, it follows that the orbit

space J−1
� (b)/S1 is diffeomorphic to Pb. By the regular reduction theorem, the reduced

space Pb has a symplectic form

Ωb(Z,W )
(
T πb(− [U,AdA−1 E3] , I(R)),T πb(− [V,AdA−1 E3] , I(S))

)
=

=−k(I(R),V )+ k(I(S),U)+ k(I(Z), [U,V ]),

where the arguments of Ωb(Z,W ) lie in T(z,w)Pa. Under L the Hamiltonian of the
Lagrange top

H : T SO(3)→ R : XA �→ 1
2 ρ(A)(XA,XA)+χk(AdA−1 E3,E3)
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pulls back to H : SO(3)× so(3)→ R : (X ,A) �→ 1
2 k(I(X),X)+ χk(AdA−1 E3,E3). Since

H is invariant under the S1-action ϕ�, it induces a function

H̃b : Pb → R : (Z,W ) �→ 1
2 k(I−1(W ),W )+χk(Z,E3).

If h is the value of H, then hb = h is the value of the reduced Hamiltonian H̃b.

Using the identification map i : so(3) → R3, see chapter III ((1.2)), we obtain a second
model (Hb,Pb,ωb) of the reduced Hamiltonian system (H̃b,Pb,Ωb). Here the reduced
phase space is Pb = {(z,w) ∈ R3 ×R3 (z,z) = 1 & (z,w) = b} with reduction map

πb : J−1
� (b)→ Pb : (A,X) �→ (z,w) =

(
i(Z), i(W )

)
. (114)

The symplectic form is

ωb(z,w)
(
(−u× z,ξ ),(−v× z,η)

)
=−(ξ ,v)+(η ,u)+(w,u× v).

The arguments of ωb(z,w) lie in T(z,w)Pb. The reduced Hamiltonian is

Hb : Pb ⊆ R3 ×R3 → R : (z,w) �→ 1
2 I−1

1 (w2
1 +w2

2)+
1
2 I−1

3 w2
3 +χz3.

On R3 ×R3 Hamilton’s equations are

ż = z× I−1(w) (115a)

ẇ = z×χe3 +w× I−1(w), (115b)

where I−1(w) = (I−1
1 w1, I−1

2 w2, I−1
3 w3), are the left Euler-Poisson equations for Hb. They

are the negative of the right Euler-Poisson equations (22) of §3.1. Restricting the left
Euler-Poisson equations to Pb gives the Hamiltonian vector field XHb of the reduced
Hamiltonian Hb.

The right Hamiltonian action Φr : T SO(3)×S1 → T SO(3) : (XA,B) �→ XAB with momen-
tum mapping Jr : T SO(3)→ R : XA �→ ρ(A)(XA,TeLAE3), when pulled back by the left
trivialization L gives the right Hamiltonian action

ϕ r :
(

SO(3)× so(3)
)×S1 → SO(3)× so(3) :

(
(A,X),B

) �→ (AB,AdB−1 X)

with momentum mapping Jr : SO(3)× so(3)→ R : (A,X) �→ k(I(X),E3). Note that the
induced right S1-action on Pa is the restriction of the diagonal action

Δ : S1 × (R3 ×R3)→ R3 ×R3 :
(
t,(z,w)

) �→ (R̃t z, R̃tw), (116)

where R̃t =

⎛⎝ cos t −sin t 0
sin t cos t 0

0 0 1

⎞⎠. Since Jr is invariant under the left S1 action Φ�, it

induces the function Jb
r : Pb → R : (z,w) �→ w3, which is an integral of the reduced vector

field XHb . Let EMb : Pb → R2 : (z,w) �→ (
Hb(z,w),Jr(z,w)

)
be the energy momentum

mapping of XHb .

After this preparation we are ready to give a geometric interpretation of the angle 2πΘr.
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Claim: Let (hb,a) be a regular value of EMb. On the smooth 2-torus T 2
hb,a

, which is the
(hb,a)-level set of EMb, the rotation number of the flow of XHb is Θr.

(6.10) Proof: Note that the image of the 3-torus T 3
h,a,b under the reduction map πb is a smooth

2-torus T 2
hb,a

. Since T πbXH = XHb
◦πb, T πbXJr = XJb

r
◦πb, and T πbXJ� = 0, we see that the

image of the vector field Y = T XH −2πΘ�XJ� −2πΘrXJr on T 3
h,a,b under T πb is the vector

field Z = (T XHb −2πΘrXJb
r
) ◦πb on T 2

hb,a
. The vector field Z has a periodic flow of period

1 on T 2
hb,a

because the vector field Y belongs to the period lattice P(h,a,b) associated to
the 3-torus T 3

h,a,b. Therefore Θr is the rotation number of XHb on T 2
hb,a

. �

� In order to compute the monodromy in the next subsection, we need an explicit formula
for the rotation number Θr, see (119).

(6.11) Proof: We find a formula for Θr using the same technique as we used to find the rotation
number Θ�, see §5.3. Look at the reduced space Pb as a bundle over S2 with bundle
projection τ : Pb → S2 : (z,w) �→ z. On τ(T 2

hb,a
) introduce coordinates ϕ = tan−1 z2

z1
and

z3. The equations on τ(T 2
hb,a

), which are satisfied by the image of an integral curve of
XHb |T 2

hb,a
under τ , are obtained as follows. From the third component of the first Euler-

Poisson equation (115a) we find that

ż3 = I−1
1 (z1w2 − z2w1)

= ηI−1
1

(
(z2

1 + z2
2)(w

2
1 +w2

2)− (z1w1 + z2w2)
2)1/2

, where η2 = 1

= ηI−1
1

(
(1− z2

3)
(
2I1(h− 1

2 I−1
3 a2 −χz3)

)− (b−az3)
2)1/2 (117)

since

z2
1 + z2

2 + z2
3 = 1,

z1w1 + z2w2 + z3w3 = b,
1
2 I−1

1 (w2
1 +w2

2)+
1
2 I−1

3 w2
3 +χz3 = hb = h

w3 = a

are the defining equations for T 2
hb,a

. From the definition of the angle ϕ we get ϕ̇ = LXHb
ϕ =

(z1ż2 − z2ż1)(z2
1 + z2

2)
−1. Using (115a) we obtain

ϕ̇ =
[
I−1
1 z3(z1w1 + z2w2)− I−1

3 w3(z2
1 + z2

2)
]
(z2

1 + z2
2)

−1

=
[
I−1
1 z3(b−az3)− I−1

3 a(1− z2
3)
]
(1− z2

3)
−1. (118)

Choosing η = −1 and using (117) and (118) shows that the rotation number Θr is given
by

2π Θr = 2
∫ z+3

z−3

ϕ̇
ż3

dz3 = 2
∫ z+3

z−3

z3(b−az3) dz3

(1− z2
3)
√

2(α̃ −β z3)(1− z2
3)− (b−az3)2

−2a
I1

I3

∫ z+3

z−3

dz3√
2(α̃ −β z3)(1− z2

3)− (b−az3)2
, (119)
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where α̃ = I1(h− 1
2 I3

−1a2) and β = I1χ . In addition, z±3 ∈ [−1,1] are roots of the poly-
nomial 2(α̃ −β z3)(1− z2

3)− (b−az3)
2. �

6.4 Monodromy

In this subsection we examine how the 3-torus fibers of EM fit together. Let Γ̃ be a loop
in the set of regular values R of EM , which bounds a disk in R3 that intersects the thread
at one point. The curve Γ̃ is not null homotopic in R. As Γ̃ is traced out once, we will
show that the variation of the period lattice associated to the 3-torus T 3

h,a,b, (h,a,b) ∈ Γ̃,
is nonzero and gives rise to monodromy. Another way to say this is that the level sets of
EM over points in Γ̃ fit together to form a nontrivial smooth 3-torus bundle over Γ̃.

˜Γ

�

Thread
�

�
��

Figure 6.4.1. The loop Γ.

Next we turn to discussing monodromy, which we now define. Let Γ̃ be a loop as
given above. Since EM restricted to EM−1(Γ̃) is a proper submersion, it follows that
EM−1(Γ̃) is a smooth 3-torus bundle over Γ̃. Because I = Γ̃ \ {pt} is contractible, the
bundle EM−1(I) is trivial. Therefore the bundle EM−1(Γ̃) is determined by an ori-
entation preserving diffeomorphism χ of the fiber T 3 = EM−1(pt) into itself, called
the monodromy map, see chapter X §1 or chapter IV §5. The map χ induces the map
χ∗ : H1(T 3,Z) → H1(T 3,Z), which is the monodromy of the bundle EM−1(Γ̃). The
goal of the rest of this subsection is to show that χ∗ =

⎛⎝ 1 0 0
0 1 0
0 1 1

⎞⎠. The map χ is not

homotopic to the identity map on EM−1(pt), because χ∗ is not conjugate in Sl(3,Z) to
the identity map. Consequently, the bundle is nontrivial. This fact was unknown classi-
cally and represents a new qualitative feature of the Lagrange top.

To compute the monodromy, we need to find the variation in the period lattice as (h,a,b)
runs over the closed curve Γ̃. The loop Γ̃ may be smoothly homotoped within R to a loop
Γ in the {b = 0} plane which bounds a disk that intersects the thread at (0,0, 1

2 ). This
homotopy does not change the diffeomorphism type of the three torus bundle. In other
words, the monodromy maps of the bundles EM−1(Γ̃) and EM−1(Γ) are homotopic and

� hence the bundles have the same monodromy. We now find the variation in the period
lattice P(h,a,0) associated to the 3-torus fiber T 3

h,a,0 as (h,a,0) runs once around the
curve Γ, see figure 6.4.2.
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h

a

Γ	

Figure 6.4.2. The curve Γ.

(6.12) Proof: The period lattice P(h,a,0) has a basis

{2πXJr , 2πXJ� , T XH −2πΘ0
r XJr −2πΘ0

�XJ�}, (120)

where Θ0
� = Θ�

b=0
and Θ0

r = Θr
b=0

. From (88) we find that

2πΘ0
� =−2a

∫ σ+

σ−
σ dσ

(1−σ2)
√

2(α −βσ)(1−σ2)−a2
,

where α = I1ha = I1
(
h+ 1

2 (I
−1
1 − I−1

3 )a2
)

and β = I1χ . From (119) we get

2πΘ0
r =−2a

∫ z3
+

z−3

z2
3 dz3

(1− z2
3)
√

2(α̃ −β z3)(1− z2
3)−a2z2

3

−2aI1I−1
3

∫ z3
+

z−3

dz3√
2(α̃ −β z3)(1− z2

3)−a2z2
3

,

where α̃ = I1(h− 1
2 I−1

3 a2). We calculate the variation in the period lattice along Γ by
taking the limit of Γ as a ↘ 0, see figure 6.4.2. Using an argument similar to the one
used in the spherical pendulum, see chapter IV §4, we find that Θ̃� = lima↘0 Θ0

� and
Θ̃r = lima↘0 Θ0

r are equal to − 1
2 if h ∈ (−χ,χ) or −1 if h ∈ (χ,∞). Thus the variation

in Θ0
� and Θ0

r after one loop around Γ is −1. Hence the initial basis (120) of the period
lattice P(h,a,0) becomes the basis

{2πXJr , 2πXJ� ,T XH −2π(Θ0
r −1)XJr −2π(Θ0

� −1)XJ�}, (121)

after running around Γ once. Thus the variation in the bases of P(h,a,0) is given by the

matrix

⎛⎝0 0 0
0 0 0
1 1 0

⎞⎠. Therefore the monodromy of EM−1(Γ), which is the matrix taking

the initial basis of P(h,a,0) into the final basis, is χ∗ =

⎛⎝1 0 0
0 1 0
1 1 1

⎞⎠. Conjugating χ∗ by

P =

⎛⎝1 0 0
1 1 0
0 0 1

⎞⎠ ∈ Sl(3,Z) gives Pχ∗P−1 =

⎛⎝1 0 0
0 1 0
0 1 1

⎞⎠, which is a standard form for the

monodromy mapping of the 3-torus bundle EM−1(Γ).
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7 Hamiltonian Hopf bifurcation
Consider the family of motions of the Lagrange top where the figure axis of the top is ver-
tical and the spin |a| about the figure axis is increased through |a|= 2

√
β . These motions

are interesting because the top goes from unstable to stable motion. In physical terms, the
top has become gyroscopically stabilized. Mathematically, this family of motions corre-
sponds to the set of critical values of the energy momentum mapping where the thread
attaches itself to the two dimensional piece of the discriminant locus and then becomes a
crease. The goal of this section is to show that the top has undergone a Hamiltonian Hopf
bifurcation, which is the mathematical explanation of gyroscopic stabilization.

7.1 The linear Hamiltonian Hopf bifurcation
In this subsection we carry out a linear analysis of the motion of the top when its figure
axis is vertical. We show that the left Euler-Poisson equations undergo a linear Hamilto-
nian Hopf bifurcation.

After reducing the left S1-action on SO(3)× so(3), the motion of the Lagrange top is
governed by the left Euler-Poisson equations on R3 ×R3

ż = z× I−1(w)

ẇ = z×χe3 +w× I−1(w).
(122)

Here I = diag(I1, I1, I3) with 0 < I3 ≤ 2I1, 0 < I1 < I3 and χ > 0. The Euler-Poisson
equations are in Hamiltonian form on (R3 ×R3,{ , }R3×R3) with Hamiltonian

Fb : R3 ×R3 → R : (z,w)→ 1
2 I−1

1 (w2
1 +w2

2)+
1
2 I−1

3 w2
3 +χz3.

The structure matrix WC∞(R3×R3) of the Poisson bracket { , }R3×R3 is given in table 7.1.1.

{A,B} z1 z2 z3 w1 w2 w3 B
z1 0 0 0 0 z3 −z2
z2 0 0 0 −z3 0 z1
z3 0 0 0 z2 −z1 0

w1 0 z3 −z2 0 w3 −w2
w2 −z3 0 z1 −w3 0 w1
w3 z2 −z1 0 w2 −w1 0
A

Table 7.1.1. The structure matrix WC∞(R3×R3) of the Poisson bracket { , }R3×R3 .

To simplify matters we rescale the time by setting s = I1t. Then (122) becomes

ż = z× Ĩ−1(w)

ẇ = z×βe3 +w× Ĩ−1(w),
(123)

where Ĩ = diag(1,1,γ), 1 > γ = I1/I3 ≥ 1
2 and β = I1χ > 0. The rescaled Euler-Poisson

equations (123) are in Hamiltonian form on (R3 ×R3,{ , }R3×R3) with Hamiltonian

F̃b : R3 ×R3 → R : (z,w)→ 1
2 (w

2
1 +w2

2)+
1
2 γw2

3 +β z3. (124)
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After reduction of the left S1-action, see §6.3, the motion of the top takes place on the
reduced phase space Pb = {(z,w) ∈ R3 ×R3 (z,z) = 1 & (z,w) = b}, which is defined by
the 0-level sets of C1 = z2

1 + z2
2 + z2

3 − 1 and C2 = z1w1 + z2w2 + z3w3 − b. Sleeping or
waking motion of the top occurs when the left and right S1 angular momenta are equal,
that is, b = a. After reduction, these motions correspond to the point pa = (e3,ae3) on Pa,
which is an equilibrium point of XF̃a

|Pa. Linearizing XF̃a
about pa and then restricting to

Tpa Pa = ker
(

0 0 2 0 0 0
0 0 a 0 0 1

)
= span{e1,e2,e4,e5}

gives the smooth family of 4×4 matrices

a → Ra =

⎛⎜⎜⎝
0 aγ 0 −1

−aγ 0 1 0
0 β 0 a(γ −1)
−β 0 −a(γ −1) 0

⎞⎟⎟⎠. (125)

Since the structure matrix W̃a =W (pa)|Tpa Pa is invertible,

Ωa = (W̃−1
a )t =

⎛⎜⎜⎝
0 −a 0 1
a 0 −1 0
0 1 0 0

−1 0 0 0

⎞⎟⎟⎠
is a symplectic form on Tpa Pa. The matrix Ra is infinitesimally symplectic with respect to
Ωa, that is, Rt

aΩa +ΩaRa = 0, or equivalently Ra ∈ sp(Ωa,R).

|a|< 2
√

β |a|= 2
√

β |a|> 2
√

β

Figure 7.1.1. Movement of the eigenvalues of Ra for a near a0 = 2
√

β .

We now look more closely at the smooth family a �→ Ra. A calculation shows that the
characteristic polynomial of Ra is λ 4 +2αλ 2 +δ 2, where

α = 1
2 a2(γ2 +(1− γ)2)−β and δ =−a2γ(1− γ)+β .

So α +δ = 1
2 a2(2γ −1)2 ≥ 0 and α −δ = 1

2 (a
2 −4β ). Thus the eigenvalues of Ra are⎧⎪⎪⎨⎪⎪⎩

±i
√

α ±√
α2 −δ 2, when |a|> 2

√
β

± 1
2

√
2(
√

δ −α ± i
√

δ +α), when |a|< 2
√

β

± i(2γ −1)
√

β , when |a|= 2
√

β .
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The roots ±i(2γ −1)
√

β are of multiplicity two. As a varies near a0 = 2
√

β , the move-
ment of the eigenvalues of Ra is given in figure 7.1.1.

To understand the fusing of the eigenvalues at a = a0, we examine

R = Ra0 =

⎛⎜⎜⎝
0 2γ

√
β 0 −1

−2γ
√

β 0 1 0
0 β 0 2(γ −1)

√
β

−β 0 −2(γ −1)
√

β 0

⎞⎟⎟⎠.

The matrix R can be written uniquely as a commuting sum of a semisimple matrix S =⎛⎜⎜⎝
0 r 0 0

−r 0 0 0
0 0 0 r
0 0 −r 0

⎞⎟⎟⎠ and a nilpotent matrix N =

⎛⎜⎜⎝
0

√
β 0 −1

−√
β 0 1 0

0 β 0 −√
β

−β 0
√

β 0

⎞⎟⎟⎠. Here r =

(2γ −1)
√

β . Because R is infinitesimally symplectic with respect to the symplectic form

Ω = Ωa0 =

⎛⎜⎜⎝
0 −2

√
β 0 1

2
√

β 0 −1 0
0 1 0 0
−1 0 0 0

⎞⎟⎟⎠ ,

it follows that S and N are also infinitesimally symplectic.

To find the infinitesimally symplectic normal form of R, let e = (0,0,1,0) and set f =
e− 1

2r2 Ω(e,S e)NS e. From S 2+ r2 = 0, N 2 = 0 and Ω(e,N e) =−1, it follows that
Ω( f ,N f ) = −1 and Ω( f ,S f ) = Ω(N f ,S f ) = 0. Consequently { f , 1

r S f ,−N f ,
− 1

r SN f} is a symplectic basis of R4 with respect to the standard symplectic form

ω =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎠. The infinitesimally symplectic normal form of R is

R = P−1
0 RP0 =

⎛⎜⎜⎝
0 −r 0 0
r 0 0 0

−1 0 0 −r
0 −1 r 0

⎞⎟⎟⎠ ,

where P0 = col( f , 1
r S f ,−N f ,− 1

r SN f ).

To see that the smooth family a �→ Ra undergoes a linear Hamiltonian Hopf bifurcation at
a = a0, we first transform it using the smooth coordinate change

a → Qa =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
1
2 a 0 0 1
0 1

2 a −1 0

⎞⎟⎟⎠. (126)

The transformed smooth family is a �→Ua = Q−1
a RaQa, where

Ua =

⎛⎜⎜⎝
0 1

2 a(2γ −1) 1 0
− 1

2 a(2γ −1) 0 0 1
1
4 (4β −a2) 0 0 1

2 a(2γ −1)
0 1

4 (4β −a2) − 1
2 a(2γ −1) 0

⎞⎟⎟⎠ (127)
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and the transformed symplectic form Qt
aΩaQa is ω . At a = a0 the real symplectic linear

map Q = Q−1
a0

P0 ∈ Sp(ω,R) conjugates Ua0 into the normal form R, that is, Q−1Ua0Q =

R. Using Q we transform a �→ Ua into the smooth family a �→ Va = Q−1UaQ, where
Va0 = R.

The following result gives a smooth normal form for the family a �→Va of infinitesimally
symplectic linear maps on (R4,ω).

Claim: Suppose that γ : R → sp(ω,R) : μ �→ Bμ is a smooth family of real infinitesimally
symplectic matrices on (R4,ω) with

B0 =

⎛⎜⎜⎝
0 −b 0 0
b 0 0 0

−1 0 0 −b
0 −1 b 0

⎞⎟⎟⎠ .

For every μ in some open interval I containing 0 there is a smooth family I → Sp(ω,R) :
μ �→ P−1

μ of real linear symplectic mappings which transforms the smooth family γ into
the smooth normal form Γ : I → sp(ω,R) :

μ �→ Pμ Bμ P−1
μ =

⎛⎜⎜⎝
0 −(b+ν1(μ)) ν2(μ) 0

b+ν1(μ) 0 0 ν2(μ)
−1 0 0 −(b+ν1(μ))
0 −1 b+ν1(μ) 0

⎞⎟⎟⎠.

Here νi : I → R : μ �→ νi(μ) is a smooth function with νi(0) = 0.

(7.13) Proof: Consider the mapping

ϕ : R2 ×Sp(ω,R)→ sp(ω,R) :
(
(ν1,ν2),P

)→ P−1(B0 +ν1XS +ν2XM)P.

Here

XS =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ and XM =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

which are both infinitesimally symplectic. Partially differentiating ϕ with respect to
(ν1,ν2) we obtain D1ϕ(0, I)(s, t) t = sXS + tXM . Moreover, the partial derivative of ϕ
at (0, I) with respect to P is D2ϕ(0, I)X = adB0 X where X ∈ TI Sp(ω,R) = sp(ω ,R).
Using the fact that

sp(ω,R) = imadB0 ⊕span{XS,XM}, (128)

which is proved in ((7.14)) below, we see that Dϕ(0, I) is surjective. From the implicit
function theorem, it follows that the image of ϕ contains an open neighborhood U of B0.
Choose an open interval I containing 0 such that for every μ ∈ I, the matrix B(μ) ∈ U .
Again from the implicit function theorem, there are smooth functions νi : I → R : μ �→
νi(μ) with νi(0) = 0 and P : I → Sp(ω,R) : μ �→ P(μ) such that

Bμ = ϕ
(
ν1(μ),ν2(μ),Pμ

)
= P−1

μ
(
B0 +ν1(μ)XS +ν2(μ)XM

)
Pμ

for every μ ∈ I. This proves the claim except for (128). �
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(7.14) Proof: To prove (128) we show that {XS,XM} spans keradXS ∩keradXM and that a com-
plement to imadB0 is given by keradXS ∩keradXM . First observe that keradXS is a Lie
subalgebra of sp(ω ,R) with basis {XM,XN ,XT ,XS} where

XN =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ and XT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ .

This follows because [XT ,XM] = XT XM −XMXT = 2XM , [XT ,XN ] = −2XN , [XM,XN ] =
XT , and [XS,XM] = [XS,XN ] = [XS,XT ] = 0. From these bracket relations we see that the
matrix of adXM |keradXS with respect to the basis {XM,XN ,XT ,XS} is⎛⎜⎜⎝

0 0 −2 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞⎟⎟⎠ .

Therefore the intersection of keradXM and keradXS is spanned by {XM,XS}. Similarly,

adXN |keradXS =

⎛⎜⎜⎝
0 0 0 0
0 0 2 0

−1 0 0 0
0 0 0 0

⎞⎟⎟⎠.
So keradS =

(
keradXM ∩ keradXS

)⊕ (
imadXN ∩ keradXS

)
. Since XS is semisimple, we

have sp(ω,R) = keradXS ⊕ imadXS . Note that in ((7.13)) B0 = bXS −XN . From XSXN =
XNXS and the fact that XN is nilpotent we obtain imadB0 = imadXS ⊕

(
imadXN ∩keradXS

)
.

Consequently, we get sp(ω,R) = imadB0 ⊕
(

keradXM ∩keradXS

)
. This proves (128). �

In the course of the above proof we have shown that the tangent space at B0 to the
Sp(ω,R)-orbit O = {P−1B0P|P ∈ Sp(ω,R)} through B0 is imadB0 . Thus the plane
spanned by XS and XM is transverse to O at B0.

Since Va0 =R, the smooth normal form of the family a �→Va near a0 is the family a �→Ya
where

Ya =

⎛⎜⎜⎝
0 −(r+ν1(a)) ν2(a) 0

r+ν1(a) 0 0 ν2(a)
−1 0 0 −(r+ν1(a))
0 −1 r+ν1(a) 0

⎞⎟⎟⎠. (129)

To compute the smooth functions ν1 and ν2 in (129) observe that the families a �→Ya and
a �→ Ra are smoothly conjugate. Therefore the characteristic polynomial of Ya

λ 4 +2(r+ν1)
2λ 2 +((r+ν1)

2 +ν2)
2

is equal to the characteristic polynomial of Ra

λ 4 +2
( 1

2 a2(γ2 +(γ −1)2)−β
)
λ 2 +

(
β −a2γ(1− γ)

)2
.

Equating coefficients and solving gives

ν1(a) =
√

1
2 a2(γ2 +(γ −1)2)−β − (2γ −1)

√
β
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ν2(a) = − 1
2 (a

2 −4β ).

Note that ν1(a0) = ν2(a0) = 0. Hence Ya0 = R. Since

dYa

da
a=a0

=
dν1

da
a=a0

XS +
dν2

da
a=a0

XM and
dν2

da
a=a0

=−a0 = 0,

the curve a �→Ya crosses the orbit O = {P−1Ya0 P|P∈ Sp(ω,R)} transversely at Ya0 . Thus
the curve a �→Va crosses O transversely at Va0 . Hence the eigenvalues of a small smooth
perturbation of the curve a �→ Ra, such that the new curve lies in sp(ω,R) and passes
through Ra0 , has the same behavior as those of a �→ Ra, see figure 7.1.1. We say that the
curve a �→ Ra undergoes a linear Hamiltonian Hopf bifurcation at a = a0.

7.2 The nonlinear Hamiltonian Hopf bifurcation
In this subsection we show that, after reduction of the left S1-action, the Lagrange top
undergoes a nonlinear Hamiltonian Hopf bifurcation when the left and right angular
momenta are equal and the spin |a| about the figure axis increases through 2

√
β . This

entails finding a smooth family a �→ ψa of local symplectic diffeomorphisms, which for
every a near 2

√
β transforms the reduced Hamiltonian F̃a (124) into a Hamiltonian Ha

whose 4-jet at the origin is in normal form to second order. Specifically, we show that
Ha = H2

a + ε2H4
a +O(ε4), where

H2
a =− 1

2 a(2γ −1)(ξ1η2 −ξ2η1)+
1
2 (η

2
1 +η2

2 )+
1
8 (a

2 −4β )(ξ 2
1 +ξ 2

2 )

and

H4
a = 1

12 (a
2 +2β )(ξ 2

1 +ξ 2
2 )

2 + 1
8 a(14γ −9)(ξ1η2 −ξ2η1)(ξ 2

1 +ξ 2
2 )

+ 1
6 (3γ −2)(ξ1η2 −ξ2η1)

2.

Since 1
12 (a

2 + 2β ) > 0, the Hamiltonian Ha undergoes a nonlinear Hamiltonian Hopf
bifurcation as a increases through 2

√
β . The construction of the symplectic diffeomor-

phism ψa uses techniques from normal form theory. The argument is not straightforward
as we need a constructive version of Darboux’s theorem.

To start our analysis we choose a special parametrization of the reduced space Pa near
pa = (e3,ae3) given by

ϕa : U = D2
1 ×R2 ⊆ R4 → Pa : (x1,x2,y1,y2) �→ (z1,z2,z3,w1,w2,w3)

=
(
x1,x2,(1− x2

1 − x2
2)

1/2,y1,y2,(a− x1y1 − x2y2)(1− x2
1 − x2

2)
−1/2). (130)

Here ϕa(0) = pa and D2
1 is the 2-disc {x2

1 + x2
2 < 1}. The reason why ϕa is special is that

it intertwines the right S1-action on Pa, see (116), with the S1-action

S1 ×R4 → R4 :
(
s,(x,y)

) �→ (Rsx,Rsy), (131)
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where Rs =
(

coss −sins
sins coss

)
. Because the reduced Hamiltonian F̃a (124) is invariant under

the right S1-action on Pa, the Hamiltonian

Ĥa = (ϕa)
∗F̃a : U ⊆ R4 → R : (x,y) �→ 1

2 (y
2
1 + y2

2)+β (1− x2
1 − x2

2)
1/2

+ 1
2 γ

(
a− x1y1 − x2y2

)2
(1− x2

1 − x2
2)

−1 (132)

is invariant under the S1-action (131) on R4.

We now find the induced symplectic structure on an open neighborhood of 0 in U . Recall
that the reduced space Pa is defined by the 0-level sets of the Casimirs z2

1 + z2
2 + z2

3 − 1
and z1w1 + z2w2 + z3w3 − a of the Poisson algebra (C∞(R3 ×R3),{ , }R3×R3 , ·). Thus
the Poisson bracket { , }Pa

on C∞(Pa) is the restriction of { , }R3×R3 on C∞(R3 ×R3) to
C∞(Pa). On C∞(U) define a Poisson bracket { , }U by pulling back { , }Pa

by ϕa, that is,
for f ,g ∈C∞(U)

{ f ,g}U = ϕ∗
a
({(ϕ−1

a )∗ f ,(ϕ−1
a )∗g}Pa

)
.

The structure matrix Ŵ a
C∞(U) of { , }U on C∞(U) is given in table 7.2.1.

{A,B} x1 x2 y1 y2 B

x1 0 0 0
√

1−x2
1−x2

2

x2 0 0 −
√

1−x2
1−x2

2 0
y1 0

√
1−x2

1−x2
2 0 (a−x1y1−x2y2)(1−x2

1−x2
2)

−1/2

y2 −√
1−x2

1−x2
2 0 −(a−x1y1−x2y2)(1−x2

1−x2
2)

−1/2 0
A

Table 7.2.1. The structure matrix Ŵ a
C∞(U)

of { , }U .

Since Ŵ a
C∞(U)(0) is invertible, the Poisson bracket { , }U defines a symplectic structure

Ω̂a(x,y) = ((Ŵ a
C∞(U)(0))

−1) t = (a− x1y1 − x2y2)(1− x2
1 − x2

2)
−3/2 dx1 ∧dx2

−(1− x2
1 − x2

2)
−1/2(dx1 ∧dy2 −dx2 ∧dy1) (133)

on an open neighborhood of 0 in R4. Note that Ω̂a is invariant under the S1-action (131)
on R4. Introduce new variables (ξ ,η) by (x,y)t = Qa(ξ ,η)t , where Qa is given by (126).
The pulled back symplectic form Q∗

aΩ̂a = Ω̃a is

Ω̃a(ξ ,η) =
(
a− 1

2 a(ξ 2
1 +ξ 2

2 )− (ξ1η2 −ξ2η1)
)
(1−ξ 2

1 −ξ 2
2 )

−3/2 dξ1 ∧dξ2

+(1−ξ 2
1 −ξ 2

2 )
−1/2(dξ1 ∧dη1 +dξ2 ∧dη2 −a dξ1 ∧dξ2). (134)

Thus Ω̃a(0) = Qt
aΩ̂a(0)Qa is the standard symplectic form ω = dξ1 ∧dη1 +dξ2 ∧dη2 on

R4. Since Qa commutes with diag(Rs,Rs), the 2-form Ω̃a is invariant under the S1-action
(131) on R4. Pulling back the Hamiltonian Ĥa by Qa gives the S1-invariant Hamiltonian
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H̃a(ξ ,η) = 1
8 a2 (ξ 2

1 +ξ 2
2 )+

1
2 a(ξ1η2 −ξ2η1)+

1
2 (η

2
1 +η2

2 )

+ 1
2 γ

(
a− 1

2 a(ξ 2
1 +ξ 2

2 )− (ξ1η2 −ξ2η1)
)2
(1−ξ 2

1 −ξ 2
2 )

−1

+β (1−ξ 2
1 −ξ 2

2 )
1/2. (135)

Introduce a formal small parameter ε and replace the variables ξ and η by εξ and εη .
Then the blown up Hamiltonian H̃ ′

a(ξ ,η) = 1
ε2 H̃a(εξ ,εη) and the blown up symplectic

form Ω̃′
a(ξ ,η)= 1

ε2 Ω̃a(εξ ,εη) have 4-jet at the origin given by H̃ ′
a = H̃2

a +ε2H̃4
a +O(ε4),

where

H̃2
a = 1

2 (η
2
1 +η2

2 )+
1
8 (a

2 −4β )(ξ 2
1 +ξ 2

2 )

− 1
2 a(2γ −1)(ξ1η2 −ξ2η1) (136)

H̃4
a = 1

8 (aγ2 −β )(ξ 2
1 +ξ 2

2 )
2 − 1

2 aγ (ξ1η2 −ξ2η1)(ξ 2
1 +ξ 2

2 )

+ 1
2 γ (ξ1η2 −ξ2η1)

2 (137)

and Ω̃′
a = Ω̃0

a + ε2Ω̃2
a +O(ε4), where

Ω̃0
a = dξ1 ∧dη1 +dξ2 ∧dη2 = ω (138)

Ω̃2
a =

( 1
2 a(ξ 2

1 +ξ 2
2 )− (ξ1η2 −ξ2η1)

)
dξ1 ∧dξ2

+ 1
2 (ξ

2
1 +ξ 2

2 )(dξ1 ∧dη1 +dξ2 ∧dη2). (139)

We now drop the prime.

From (138) we see that to zeroth order the symplectic form Ω̃a is the standard constant
symplectic form ω . In other words, Ω̃a is flat to zeroth order. Darboux’s theorem, see
chapter VI ((4.8)), states that there is a coordinate change which makes Ω̃a flat to all
orders. However, the usual proof, see chapter VII exercise 13, does not give a constructive
way to find this coordinate change. The goal of the following discussion is to show how
to construct a coordinate change which removes the second order terms in Ω̃a. We begin
by giving a constructive proof of the Poincaré lemma.

Claim: Let A be a diagonalizable linear vector field on Rn with all of its eigenvalues
strictly negative. Let ϕt be the flow of A. Suppose that β is a closed p-form with p ≥ 1 in
a closed ball Br of radius r about 0 in Rn. Then the (p−1)-form α =−∫ ∞

0 ϕ∗
t (A β ) dt

satisfies β = dα in Br.

(7.15) Proof: Note that ϕ∞ = limt→∞ ϕt = 0. The integral defining α exists because every
coefficient of A β is bounded on Br, while the pull back of the differentials by ϕt decay
exponentially. To finish the argument we compute

β =−(ϕ∗
∞β −ϕ∗

0 β ) = −
∫ ∞

0

d
d t

(ϕ∗
t β ) dt =−

∫ ∞

0

d
ds s=0

(ϕ∗
s+tβ ) dt

=−
∫ ∞

0
ϕ∗

t (LAβ ) dt =−
∫ ∞

0
ϕ∗

t
(
A dβ +d(A β )

)
dt
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=−d(
∫ ∞

0
ϕ∗

t (A β ) dt), since dβ = 0 and ϕ∗
t d = dϕ∗

t

= dα. �

Suppose that β is a p-form with coefficients which are homogeneous polynomials of
degree �. Choose A to be the vector field −x1

∂
∂x1

−·· ·− xn
∂

∂xn
. The flow of A is ϕt(x) =

e−t x. The above proof of the Poincaré lemma shows that α =− 1
�+p (A β ).

Before proceeding to state and prove the formal power series version of the Darboux
theorem, we prove the following claim which gives the basic computational tools of
normal form theory.

Claim:
1. Let X be a vector field on Rn on which we have coordinates x = (x1, . . . ,xn). Then the
formal power series in ε given by (expεLX )x = ∑n≥0

εn

n! Ln
X x is the formal flow of X . Here

LX x is the vector whose ith component is the Lie derivative LX xi of the function xi with
respect to X .
2. Suppose that Q is a smooth geometric quantity on Rn such as a function, a vector field,
or a differential form. Then the formal pull back of Q by the time ε map of the flow of X
is given by the formal power series (expεLX )

∗Q = ∑n≥0
εn

n! Ln
X Q.

(7.16) Proof:
1. From the power series for exp it is easy to see that ε �→ expεLX is a one parameter
group. Therefore ε �→ (expεLX )x is a one parameter group of invertible formal power
series mappings on Rn. Since d

dε ε=0
(expεLX )x = LX x = X(x), the one parameter group

ε �→ expεLX is the formal flow of X .
2. We compute

d
dε

(expεLX )
∗Q =

d
dη

η=0

(
exp(ε +η)LX

)∗Q = (expεLX )
∗( d

dη
η=0

(exp ηLX )
∗Q

)
= (expεLX )

∗(LX Q).

Therefore by induction dn

dεn (expεLX )
∗Q = (expεLX )

∗(Ln
X Q). Hence

(expεLX )
∗Q = ∑

n≥0

εn

n!
dn

dεn
ε=0

(expεLX )
∗Q = ∑

n≥0

εn

n!
Ln

X Q. �

The following claim shows how to flatten a formal power series closed 2-form to second
order.

Claim: Let Ω = Ω0+εΩ1+ · · · be a formal power series closed 2-form on R2n with Ω0 a
constant symplectic form. By the Poincaré lemma, there is a formal power series 1-form
α = α0 + εα1 + · · · such that Ω = dα . Define a vector field X by X Ω0 = −α1. Then
changing coordinates by the time ε map of the flow of X flattens Ω to second order.

(7.17) Proof: Applying the coordinate change expεLX to the 1-form α gives

α̂ = (expεLX )
∗α = α + εLX α +O(ε2) = α0 + ε(α1 +LX α0)+O(ε2)
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= α0 + ε d(X α0)+ ε(α1 +X dα0)+O(ε2) = α0 + ε d(X α0)+O(ε2),

since Ω0 = dα0 and X Ω0 =−α1. Hence

(expεLX )
∗Ω = (expεLX )

∗(dα) = d
(
(expεLX )

∗α
)

= dα̂ = dα0 +O(ε2) = Ω0 +O(ε2). �

With these tools at hand we flatten Ω̃a to second order as follows. Clearly Ω̃0
a = dα0

where α0 = ξ1 dη1 + ξ2 dη2. Using the Poincaré lemma and the homogeneity of Ω̃2
a, we

find that Ω̃2
a = dα2

a , where α2
a =− 1

4 (A Ω̃2
a) and A =−ξ1

∂
∂ξ1

−ξ2
∂

∂ξ2
−η1

∂
∂η1

−η2
∂

∂η2
.

A calculation gives

α2
a =

[− 1
8 η1(ξ 2

1 +ξ 2
2 )− 1

8 aξ2(ξ 2
1 +ξ 2

2 )+
1
4 ξ2(ξ1η2 −ξ2η1)

]
dξ1

+
[− 1

8 η2(ξ 2
1 +ξ 2

2 )+
1
8 aξ1(ξ 2

1 +ξ 2
2 )− 1

4 ξ1(ξ1η2 −ξ2η1)
]

dξ2

− 1
8 ξ1(ξ 2

1 +ξ 2
2 ) dη1 − 1

8 ξ2(ξ 2
1 +ξ 2

2 ) dη2.

Clearly α0 is S1 invariant; while α2
a is S1 invariant since A and Ω̃2

a are. Put X2
a =

−(Ω̃0
a)

�(α2
a ). Because −dξi = (Ω̃0

a)
�( ∂

∂ηi
) and dηi = (Ω̃0

a)
�( ∂

∂ξi
), we find that

X2
a =

[− 1
8 η1(ξ 2

1 +ξ 2
2 )− 1

8 aξ2(ξ 2
1 +ξ 2

2 )+
1
4 ξ2(ξ1η2 −ξ2η1)

] ∂
∂η1

+
[− 1

8 η2(ξ 2
1 +ξ 2

2 )+
1
8 aξ1(ξ 2

1 +ξ 2
2 )− 1

4 ξ1(ξ1η2 −ξ2η1)
] ∂

∂η2

− 1
8 ξ1(ξ 2

1 +ξ 2
2 )

∂
∂ξ1

− 1
8 ξ2(ξ 2

1 +ξ 2
2 )

∂
∂ξ2

.

Note that X2
a is S1 invariant. Pulling Ω̃a back by the time ε2 map of the flow of X2

a flattens
Ω̃a to fourth order, that is, Ωa = (expε2LX2

a
)∗Ω̃a = Ω̃0

a +O(ε4) = ω +O(ε4). Since X2
a

is S1 invariant, the time ε2 map of its flow commutes with the S1-action on R4. Therefore
in the flattened coordinates the new Hamiltonian is S1 invariant and is given by

Ha = (expε2LX2
a
)∗H̃a = H̃2

a + ε2(H̃4
a +LX2

a
H̃2

a )+O(ε4) = H 2
a + ε2H 4

a +O(ε4),

where

H 2
a = 1

2 (η
2
1 +η2

2 )+
1
8 (a

2 −4β )(ξ 2
1 +ξ 2

2 )− 1
2 a(2γ −1)(ξ1η2 −ξ2η1)

H 4
a = A(ξ 2

1 +ξ 2
2 )

2 +B(ξ 2
1 +ξ 2

2 )(ξ1η2 −ξ2η1)+
1
4 (2γ −1)(ξ1η2 −ξ2η1)

2

− 1
8 (ξ

2
1 +ξ 2

2 )(η
2
1 +η2

2 ),

A = 1
32 a2, and B = 1

16 a(14γ − 9). Flattening Ωa at order four or higher does not change
the terms through second order in Ha. Since the occurrence of the Hamiltonian Hopf
bifurcation depends only on the terms in Ha up through second order in Ha, we will treat
Ha as a Hamiltonian on (R4,ω).

We now find the normal form of Ha to second order using representation theory. The
algebra of S1 invariant polynomials on (R4,ω) is generated by M = 1

2 (ξ
2
1 + ξ 2

2 ) , N =
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1
2 (η

2
1 +η2

2 ), T = ξ1η1 + ξ2η2, and S = ξ1η2 − ξ2η1. Note that T 2 + S2 = 4MN. Using
the Poisson bracket { , } associated to the symplectic form ω , we find that {M,N,T,S}
form a Lie algebra L with bracket relations {T,M}=−2M, {T,N}= 2N, {M,N}= T ,
and {S,M} = {S,N} = {S,T} = 0. In other words, L is isomorphic to sl(2,R)×
R. Let Q be the vector space of homogeneous quadratic polynomials on L , which is
spanned by {M2,MN,MT,MS,N2,NT,NS,T 2,T S,S2}. On Q we have a representation
of sl(2,R) given by ad : sl(2,R) → gl(Q,R) : X �→ adX . From the theory of represen-
tations of sl(2,R) we know that Q = keradM ⊕ imadN . Explicitly, keradM is spanned
by {M2,MS,S2,4MN −T 2} and imadN is spanned by {adNM2,ad2

NM2, ad3
NM2,ad4

NM2,
adN(MS),ad2

N(MS)}= {−2MT,2T 2 +4MN,12NT,24N2,2ST,2NS}. We have

6MN = (T 2 +2MN)+(4MN −T 2) = −adN(MT )+S2.

Writing Ha in terms of {M,N,S,T} gives

H 2
a = N + 1

4 (a
2 −4β )M− 1

2 a(2γ −1)S

H 4
a = 4AM2 +2BMS+ 1

4 (2γ −1)S2 − 1
2 MN

To remove the term − 1
2 MN from Ha and thus bring Ha into normal form to second order,

we apply the change of coordinates expε2ad 1
12 MT

and obtain

Ha = (expε2ad 1
12 MT

)∗Ha = H 2
a + ε2(H 4

a + ad 1
12 MT

H 2
a )+O(ε4)

= H 2
a + ε2(H 4

a − 1
12 ad

H 2
a
MT )+O(ε4)

= H2
a + ε2[Ha

4 − 1
12 adN(MT )− 1

24 (a
2 −4β )M2]

= H2
a + ε2H4

a +O(ε4).

Here H2
a = H 2

a and

H4
a =

(
4A− 1

24 (a
2 −4β )

)
M2 +2BMS+ 1

6 (3γ −2)S2

= 1
12 (a

2 +2β )M2 + 1
8 a(14γ −9)MS+ 1

6 (3γ −2)S2.

Thus the 4-jet of Ha at the origin is in the proper form for a nonlinear Hamiltonian Hopf
bifurcation.

8 Exercises

1. Let (h, j) be a regular value for the energy momentum mapping EM of the mag-
netic spherical pendulum. Suppose that Γ : R → EM−1(h, j) ⊆ T S2 is an integral
curve of the Hamiltonian vector field XH of the magnetic spherical pendulum. Let
π : TS2 → S2 be the bundle projection.

a) Show that the curvature of γ = π◦Γ is a decreasing function of its height on S2.
Deduce that γ has no downward pointing cusps.
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b)∗ Does the rotation number Θ(h, j) of the flow of XH on EM−1(h, j) satisfy an
estimate of the form C1 < Θ(h, j) < C2 where Ci are positive constants which do
not depend on h or j?

2. Give an argument (not a calculation) why the coefficient of (ξ 2
1 +ξ 2

2 )
2 in the normal

form for the nonlinear Hamiltonian Hopf bifurcation of the Lagrange top does not
depend on the parameter γ = I1/I3.

3. Give a geometric explanation how a cusp catastrophe (= the discriminant locus) of
the generic cubic polynomial F(u) = au3−bu2+cu−d2, where a> 0 and becomes
a swallowtail surface (= the discriminant locus) of the special quartic

G(u) = u4 − b
2a

u3 +
d√
a

u+
(

b
16a2 − c

4a

)
.

In particular, explain why it is essential that the constant term in F is a square.

4. Lift the S1-action

S1 ×R2 → R2 :
(
t,x = (x1,x2)

) �→ Rt

(
x1
x2

)
=

(
cos t −sin t
sin t cos t

) (
x1
x2

)

to a Hamiltonian action S1×T ∗R2 → T ∗R2 :
(
t,(x,y)

) �→ (Rtx,Rty) on (T ∗R2,ω4 =

dx1 ∧ dy1 + dx2 ∧ dy2) with momentum mapping J : T ∗R2 → R : (x,y) �→ x1y2 −
x2y1. Also consider the symplectic action of Z2 on (T ∗R,ω2 = dx1 ∧ dy1) which
is generated by (x1,y1)→ (−x1,−y1). The goal of this exercise is to show that the
singular reduced spaces J−1(0)/S1 and T ∗R/Z2 are isomorphic.

a) Show that the map ψ : T ∗R → J−1(0) ⊆ T ∗R2 : (x1,y1) �→ (x1,0,y1,0) induces
a homeomorphism between T ∗R/Z2 and J−1(0)/S1.

b) Because ψ∗ω4 = ω2, show that ψ∗ : C∞(T ∗R2)
S1 → C∞(T ∗R)Z2 : f �→ f ◦ψ is

an injective Poisson map.

c) Using Schwarz’s theorem show that the polynomials x2
1, y2

1, and x1y1 generate
C∞(T ∗R)Z2 . Because

ψ∗(x2
1 + x2

2) = x2
1, ψ∗(y2

1 + y2
2) = y2

1, and ψ∗(x1y1 + x2y2) = x1y1,

deduce that ψ∗ is surjective and hence is an isomorphism of singular reduced
spaces.

5. Consider the Lagrange top after reduction of the left S1-action, see §6.3. In other
words we look at the reduced Hamiltonian system (Ha,Pa,ωa), which is invariant
under the Hamiltonian right S1-action given by (116). The goal of this exercise
is to carry out singular reduction of this right S1 symmetry near the fixed point
pa = (e3,ae3).

Let ϕa be the coordinate change (130), which maps D1 ×R2 = {x2
1 + x2

2 = 1}×R2

into a neighborhood of pa in Pa. Recall that ϕa intertwines the right S1-action (116)
on Pa with the S1-action (131) on R4. In addition, ϕa pulls back the Hamiltonian
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system (Ha,Pa,ωa) to the Hamiltonian system (Ĥa,R4,Ω̂a), where Ĥa is given by
(132) and Ω̂a by (133).

a) Near pa show that the pull back by ϕa of the momentum map Ja
r : Pa ⊆R3×R3 →

R : (z,w) �→ w3 −a of the right S1-action on Pa is the momentum map

Ĵ a
r : D1 ⊆ R4 → R : (x,y) �→ a− (x1y1 + x2y2)

(
1− (x2

1 + x2
2)
)−1/2

of the S1-action on (R4,Ω̂a).

b) Let π : (Ĵ a)−1(0) → P̃a = (Ĵ a)−1(0)/S1 be the reduction map. Consider the
symplectic map

ψ : T ∗R=R2 → (Ĵ a)−1(0)⊆T ∗R2 =R4 : (q, p) �→ (
q,0,a(1−(1−q2)

1/2
)q−1, p

)
.

Consider the linear Z2-action on R2 generated by ζ : R2 → R2 : (q, p) �→ (−q,−p).
Show that ϑ = π◦ψ is an orbifold chart for P̃a, that is,

1. The mapping ϑ is Z2-invariant.

2. The induced map ϑ : R2/Z2 → P̃a is a diffeomorphism of differential
spaces.

In this chart show that ω̃ = ψ∗Ω̂a = −(1− q2)−1/2 dq∧ dp is a symplectic form
on P̃a.

c) Since Ĥa is invariant under the S1-action, there is an induced Hamiltonian H̃a on
the singular reduced space P̃a. In the orbifold chart (R2,ϑ) show that

H̃a(q, p) = ψ∗Ĥa(q, p) = 1
2 p2 + 1

2 a2(1− (1−q2)1/2)2q−2.

d) Analyze the behavior of the one parameter family of one degree of freedom
Hamiltonian systems (H̃a,R2, ω̃) near (0,0). Can one see if this family has mon-
odromy?
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Chapter VI

Fundamental concepts

In this chapter we describe the basic mathematical structures needed to do Hamiltonian
mechanics. We begin with a section on symplectic linear algebra. The motion of a Hamil-
tonian system takes place on a symplectic manifold, that is, a manifold with a closed non-
degenerate 2-form, called a symplectic form. The symplectic form allows one to turn the
differential of a function, called a Hamiltonian, into a vector field whose integral curves
satisfy Hamilton’s equations. An algebraic way of treating Hamiltonian mechanics is via
Poisson brackets. When the vector space of smooth functions on a symplectic manifold,
which is a Lie algebra under Poisson bracket, is made into an algebra using pointwise
multiplication of smooth functions, we obtain a Poisson algebra. The symplectic formu-
lation of mechanics can be recovered from this Poisson algebra.

1 Symplectic linear algebra
In this section we treat the fundamentals of symplectic linear algebra.

Let V be a finite dimensional real vector space. A skew symmetric bilinear form
σ :V ×V →R is said to be nondegenerate if the linear mapping σ � :V →V ∗ : v �→σ �(v) is
bijective. Here σ �(v) is the linear map σ �(v) : V → R : w �→ σ(v,w). A vector space V on
which is defined a nondegenerate skew symmetric bilinear form σ is called a symplectic
vector space. σ is called the symplectic form on V .

Example 1. Let W be a finite dimensional real vector space and let V =W ×W ∗. Define a
bilinear form σ on V by σ

(
(w,α),(w′,α ′)

)
= α(w′)−α ′(w), for every (w,α),(w′,α ′) ∈

W ×W ∗. (V,σ) is a symplectic vector space. Clearly σ is skew symmetric. We need
only show that σ is nondegenerate. Suppose that for some (w,α) ∈ W ×W ∗ we have
0 = σ �

(
(w,α)

)
(w′,α ′) for every (w′,α ′) ∈ W ×W ∗. In particular, for every w′ ∈ W we

have 0 = σ �
(
(w,α)

)
(w′,0) = σ((w,α),(w′,0)) = α(w′), that is, α = 0. Similarly, for

every α ′ ∈W ∗ we have 0 = σ �
(
(w,α)

)
(0,α ′) =−α ′(w), that is, w = 0. Hence the linear

map σ � is injective. Since dimV ∗ = dimV , σ � is surjective and hence bijective. �

Let (V,σ) be a symplectic vector space and let W be a subspace of V . The symplectic
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282 Fundamental concepts

perpendicular W σ of W in V is the set of all vectors v ∈V such that σ(v,w) = 0 for every
w ∈W . Below we assemble the basic properties of symplectic perpendicularity.

Fact: Let U,W be subspaces of (V,σ).
a) If U ⊆W , then W σ ⊆Uσ .
b) Uσ ∩W σ = (U +W )σ

c) dimV = dimU +dimUσ .
d) U = (Uσ )σ .
e) (U ∩W )σ =Uσ +W σ .

(1.1) Proof:
a) Suppose that v ∈ W σ . Then σ(v,w) = 0 for every w ∈ W and hence for every w ∈ U ,
because U ⊆W . Therefore v ∈Uσ .
b) Suppose that v ∈Uσ ∩W σ . Then σ(v,u) = 0 for every u ∈U and σ(v,w) = 0 for every
w ∈W . So 0 = σ(v,u+w) = σ(v,z) for every z ∈U +W . In other words, v ∈ (U +W )σ ,
that is, Uσ ∩W σ ⊆ (U +W )σ . Because U ⊆ U +W and W ⊆ U +W from a) it follows
that (U +W )σ ⊆ Uσ and (U +W )σ ⊆ W σ . Consequently (U +W )σ ⊆ Uσ ∩W σ . Thus
b) holds.
c) Consider the linear mapping σ̃ : U → (

V/Uσ)∗ : u �→ σ �(u) and let v ∈ V . Since
σ �(u)(v+Uσ ) = σ(u,v+Uσ ) = σ(u,v), the mapping σ̃ is well defined. Suppose that
σ̃(u) = 0 for some u ∈U . Then for every v+Uσ ∈V/Uσ we have 0 = σ̃(u)(v+Uσ ) =
σ(u,v) for every v ∈ V , which implies that u = 0, since σ is nondegenerate. Thus the
linear mapping σ̃ is injective. So dimU ≤ dim

(
V/Uσ)∗ = dim

(
V/Uσ ) = dimV −

dimUσ . Next consider the mapping σ̂ = ι◦σ � : V → U∗, where ι : V ∗ → U∗ is the
inclusion mapping. Now 0 = σ̂(v) for some v ∈ V if and only if for each u ∈ U we
have 0 = σ(v,u), that is, if and only if v ∈ Uσ . Thus Uσ = ker σ̂ . Consequently, the
induced map σ∨ : V/Uσ →U∗ is injective. So dimU∗ ≥ dimV/Uσ , which gives dimU =
dimU∗ ≥ dimV − dimUσ . The above inequalities show that dimV = dimU + dimUσ ,
that is, c) holds.
d) Suppose that u ∈U and v ∈Uσ . Then 0 = σ(u,v), which implies that u ∈ (Uσ )σ . Thus
U ⊆ (Uσ )σ . By c) we have dimU +dimUσ = dimV = dimUσ +dim(Uσ )σ , which gives
dimU = dim(Uσ )σ . Therefore U = (Uσ )σ .
e) We compute

(U ∩W )σ =
(
(Uσ )σ ∩ (W σ )σ)σ

, using d)

=
(
(Uσ +W σ )σ)σ

, using b)
=Uσ +W σ , using d). �

A subspace W of a symplectic vector space (V,σ) is isotropic if and only if W ⊆W σ . In
other words, W is isotropic if and only if σ |(W ×W ) vanishes identically.

Example 2. Let u be a nonzero vector in V and let U be the subspace of V spanned
by u. Then U is isotropic, because σ(u,u) = −σ(u,u) by skew symmetry of σ . Hence
σ(u,u) = 0. �
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Let W be an isotropic subspace of the symplectic vector space (V,σ). W is Lagrangian if
and only if W =W σ .

Fact: Every isotropic subspace of a symplectic vector space (V,σ) is contained in a
Lagrangian subspace.

(1.2) Proof: Let W be an isotropic subspace of (V,σ). If W = W σ we are done. Otherwise,
because W is properly contained in W σ , there is a nonzero vector v in W σ which is not in
W . Let U be the space spanned by v. Then U is isotropic, that is, U ⊆Uσ . As U ⊆W σ , we
deduce that U ⊆ Uσ ∩W σ . From ((1.1a)) and ((1.1d)) it follows that W ⊆ Uσ . Because
W is isotropic, W ⊆ W σ and hence W ⊆ Uσ ∩W σ . Therefore U +W ⊆ Uσ ∩W σ =
(U +W )σ , that is, U +W is isotropic. Because W is properly contained in U +W , after
a finite number of repetitions of the above argument we have constructed a Lagrangian
subspace of (V,σ) which contains W . �

Example 3. If (V,σ) is the symplectic vector space constructed in example 1, it follows
that W ×{0} and {0}×W ∗ are Lagrangian subspaces. �

A subspace W of a symplectic vector space (V,σ) is symplectic if and only if σ |(W ×W )
is nondegenerate. Below we collect together some properties of symplectic subspaces.

Fact:
a) W is symplectic if and only if W ∩W σ = {0}.
b) If W is a symplectic subspace, then so is W σ .
c) Every symplectic vector space (V,σ) is the direct sum of σ -

perpendicular 2-dimensional symplectic subspaces (Vi,σ |(Vi × Vi)),
which have a basis {ei, fi} with respect to which the matrix of σ |(Vi×Vi)

is
(

0 −1
1 0

)
.

d) If Y is a subspace of W which is complementary to W ∩W σ in W , then
Y is symplectic. In fact, Y is a maximal symplectic subspace of (V,σ)
contained in W .

(1.3) Proof:
a) Suppose that w′ ∈ W ∩W σ . Then σ(w′,w) = 0 for every w ∈ W . In other words,
σ �(w′)= 0∈W ∗. As σ |(W ×W ) is nondegnerate, it follows that w′ = 0. Hence W ∩W σ =
{0}. Conversely, suppose that σ �(w′) = 0 ∈W ∗ for some w′ ∈W . Then for every w ∈W ,
we have 0 = σ(w′,w), that is, w′ ∈W σ . Hence w′ ∈W ∩W σ = {0}. Therefore the map
σ � : W →W ∗ is injective and hence surjective because dimW = dimW ∗. Thus σ |(W ×W )
is nondegenerate.
b) Since W is symplectic, {0} = W ∩W σ = (W σ )σ ∩W σ , using ((1.1d)). From a) it
follows that W σ is symplectic.
c) Let v be a nonzero vector in V . Suppose that for every v′ ∈ V , σ(v,v′) = 0. Then
v ∈ V σ . Since σ is nondegenerate, it follows that V ∩V σ = {0} and hence v = 0, which
is a contradiction. Thus there is a v′ ∈ V such that σ(v,v′) = r = 0. Let V1 be the space

spanned by {v, 1
r v′}. The matrix of σ |(V1 ×V1) is

(
0 −1
1 0

)
, which is invertible. In

other words,
(
V1,σ |(V1×V1)

)
is a symplectic subspace of (V,σ). Set W =V σ

1 . Repeat the
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above argument on the symplectic vector space
(
W,σ |(W ×W )

)
. After a finite number of

repetions we find that V = ∑p
i=1⊕Vi where

(
Vi,σ |(Vi ×Vi)

)
are 2 dimensional symplectic

subspaces, which are mutually σ -perpendicular and hence the dimension of V is even.
d) Let U = kerσ |(W ×W ) = {w ∈ W σ(w,w′) = 0 for every w′ ∈W}. Then by defini-
tion U = W ∩W σ . The skew symmetric bilinear form σ |(W ×W ) on W induces a skew
symmetric bilinear form σ̃ on W/U defined by σ̃(w+U,w′+U) = σ(w,w′). This defi-
nition is all right because σ(w,U) = 0 for every w ∈ W and U is a σ |(W ×W )-isotropic
subspace of W . In addition, σ̃ is nondegenerate; for if 0 = σ̃(w+U,w′+U) for every
w′ +U ∈ W/U , then 0 = σ(w,w′) for every w′ ∈ W , that is, w ∈ kerσ |(W ×W ) = U .
So w+U = 0+U . Let Y be a complementary subspace to U in W . Consider the linear
map ϕ : Y →W/U : y �→ y+U . Then ϕ is an isomorphism such that ϕ∗σ̃ = σ |(Y ×Y ).
Consequently, the skew symmetric bilinear form σ |(Y ×Y ) on Y is nondegenerate, that
is, Y is a symplectic subspace of (V,σ).
Suppose that Y ′ is a symplectic subspace of (V,σ) which is contained in W and properly
contains Y . Then dimY ′ > dimY and hence Y ′ ∩W ∩W σ = {0}. This assertion follows
because

dimY +dim(W ∩W σ ) = dimW = dimY ′+dimW ∩W σ −dim(Y ′ ∩W ∩W σ ),

and hence dimY ′ ∩W ∩W σ = dimY ′ −dimY > 0. Let z ∈Y ′ ∩W ∩W σ . Then 0 = σ(z,y′)
for every y′ ∈Y ′ ⊆W . Since Y ′ is symplectic, we deduce that z= 0, that is, Y ′ ∩W ∩W σ =
{0}. This is a contradiction. Therefore Y is a maximal symplectic subspace of (V,σ)
contained in W . �

The following decomposition is called the Witt decomposition,.

Fact: Let (V,σ) be a symplectic vector space and let W be a subspace of V . Then V may
be written as V = X ⊕Y ⊕Z where X ,Y and Z are σ -perpendicular symplectic subspaces
such that W =X⊕(W ∩W σ ), W σ =Y ⊕(W ∩W σ ), and W ∩W σ is a Lagrangian subspace
of Z.

(1.4) Proof: Choose X ⊆W complementary to W ∩W σ , and Y ⊆W σ complementary to W ∩
W σ . Then ((1.3d)) shows that both X and Y are symplectic. Let Z = (X ⊕Y )σ . Then Z is
symplectic as well. Hence V = X ⊕Y ⊕Z is a decomposition of V into σ -perpendicular
symplectic subspaces. W ∩W σ ⊆ Z by construction. Let T be an isotropic subspace of Z
with the properties that T ∩W ∩W σ = {0} and T ⊕ (W ∩W σ ) = R is symplectic. Then
R⊕X ⊕Y is symplectic. To see that R⊕X ⊕Y =V observe that

W = X ⊕ (W ∩W σ )⊆ X ⊕R ⊆ X ⊕Y ⊕R

and
W σ = Y ⊕ (W ∩W σ )⊆ Y ⊕R ⊆ X ⊕Y ⊕R.

Therefore (R⊕X ⊕Y )σ ⊆W ∩W σ ⊆ R. As R ⊆ R⊕X ⊕Y , we find that (R⊕X ⊕Y )σ ⊆
Rσ . So (R⊕X ⊕Y )σ ⊆ R∩Rσ = {0}, because R is symplectic. Therefore V = R⊕X ⊕Y .
Hence dimR = dimZ. As R ⊆ Z, we get R = Z.
We now show that W ∩W σ is a Lagrangian subspace of Z. Since Z = T ⊕ (W ∩W σ ), it
follows that

dimZ = dim(W ∩W σ )+dimT ≤ dim(W ∩W σ )+ 1
2 dimZ,
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because T is an isotropic subspace of the symplectic subspace Z. Therefore 1
2 dimZ ≤

dimW ∩W σ . But W ∩W σ is an isotropic subspace of Z. Hence dim(W ∩W σ )≤ 1
2 dimZ.

Thus 1
2 dimZ = dim(W ∩W σ ), that is, W ∩W σ is a Lagrangian subspace of Z. �

2 Symplectic manifolds
In this section we define the concept of a symplectic manifold.

A symplectic manifold (M,ω) is a pair consisting of a smooth manifold M with a 2-form
ω which is

1. closed, that is, dω = 0;
2. nondegenerate, that is, ω(p) is an nondegenerate skew symmetric bilinear

form on TpM at each p ∈ M. In other words,
(
TpM,ω(p)

)
is a symplectic

vector space.

Example 1. Let V be a real vector space and set M = V ×V ∗. On M define the constant
2-form ω by ω

(
(v,α),(v′,α ′)

)
= α(v′)−α ′(v), see example 1 §1. Then (M,ω) is a

symplectic manifold.

Example 2. Consider the cotangent bundle T ∗N of a smooth manifold N. This is the
phase space of classical mechanics, which is typically the space of all positions and
momenta of a physical system. To show that T ∗N is a symplectic manifold we first define
the canonical 1-form θ by

θα(vα) = α(T τvα). (1)

Here τ : T ∗N → N is the map which assigns to every covector α in T ∗N its point of
attachment τ(α) in N and vα is a vector in the tangent space Tα(T ∗N) to T ∗N at α . The
canonical 2-form or symplectic structure Ω on T ∗N is the 2-form Ω = −dθ . Therefore
Ω is closed. We have not yet shown that Ω is nondegenerate.

α

vα

T τvα

Figure 2.1. The canonical 1-form on T ∗N.

First we prove some general facts. Let ϕ : N → N be a diffeomorphism of N and let
� ϕ̂ : T ∗N → T ∗N : α �→ (Tϕ(τ(α))ϕ−1) tα . Then by definition τ◦ϕ̂ = ϕ◦τ . Also ϕ̂∗θ = θ .

(2.1) Proof: For every α ∈ T ∗N and every vα ∈ Tα(T ∗N) we have(
(ϕ̂∗θ)(α)

)
vα = θ(ϕ̂(α))(Tα ϕ̂(vα)), by definition of pull back

= ϕ̂(α)
(
Tϕ̂(α)τ(Tα ϕ̂(vα))

)
, by definition of θ
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= (Tϕ(τ(α))ϕ−1)tα
(
Tϕ̂(α)τ(Tα ϕ̂(vα))

)
, by definition of ϕ̂

= α
(
(Tϕ(τ(α))ϕ−1)(Tα ϕ(Tα τ(vα)))

)
, since τ◦ϕ̂ = ϕ◦τ gives T τ◦T ϕ̂ = T ϕ◦T τ .

= α(Tα τ(vα)) = θ(α)vα . �

On our way towards showing that Ω is nondegenerate, we first define a connection on
T ∗N. Let X be a vector field on N with local flow ϕX

t and let X̂ be the vector field on T ∗N,
whose infinitesimal generator is ϕ X̂

t = ϕ̂X
t . Then infinitesimalizing τ(ϕ X̂

t (α))=ϕX
t (τ(α))

gives T τ(X̂(α)) = X(τ(α)) for every α ∈ T ∗N. Thus X̂ is a horizontal vector field on
T ∗N for an Ehresmann connection on the bundle τ : T ∗N →N, whose vertical distribution
is defined by α �→ kerTα τ , see (2) below and chapter VIII. Given a 1-form β on N define
the vector field Xβ by

Xβ (α) =
d
dt t=0

(
α + tβ (τ(α))

)
.

Here ϕXβ
t (α) = α + tβ (τ(α)) is the flow of Xβ on T ∗N. Because Tα τ(Xβ (α)) = 0 for

� every α ∈ T ∗N, we say that Xβ is a vertical vector field on T ∗N. At every point α ∈ T ∗N
we have

Tα(T ∗N) = spanR{Xβ (α) β ∈ Ω1(N)}⊕ spanR{X̂(α) X ∈ X (N)}, (2)

where X (N) is the set of vector fields on N and Ω1(N) is the set of 1-forms on N.

We are now in a position to prove

Claim: The canonical 2-form Ω on T ∗N is nondegenerate.

(2.2) Proof: Since T τ(Xβ (α)) = 0, it follows that for every α ∈ T ∗N we have

θ(α)(Xβ (α)) = α
(
T τ(Xβ (α))

)
= 0. (3)

Recall that X is a vector field on N. Let f X (α) = α(X(τ(α))) = θ(α)(X̂(α)). Then f X

is a smooth function on T ∗N. Now

(LXβ f X )(α) =
d
dt t=0

f X(α + tβ (τ(α))
)

=
d
dt t=0

(α + tβ (τ(α)))X(τ(α)), since τ(α + tβ (τ(α))) = τ(α)

= β (τ(α))X(τ(α)) = 〈β |X〉(τ(α)).

So LXβ f X = 〈β |X〉◦τ . For every 1-form β1 and β2 on N we have

dθ(Xβ1 ,Xβ2) = Xβ1 d
(
θ(Xβ2)

)−Xβ2 d
(
θ(Xβ1)

)− [Xβ1 ,Xβ2 ] θ

=−〈θ |[Xβ1 ,Xβ2 ]〉, since θ(Xβi) = 0, using (3)
= 0, (4)

since [Xβ1 ,Xβ2 ] = 0. This follows because the flows ϕXβ1
t and ϕXβ2

t commute. Also

dθ(Xβ , X̂) = Xβ d
(
θ(X̂)

)− X̂ d
(
θ(Xβ )

)− [Xβ , X̂ ] θ
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= LXβ f X −〈θ |[Xβ , X̂ ]〉, using (3) and the definition of f X .

Since θ(Xβ ) = 0 we get

0 = LX̂ (θ(X
β )) = (LX̂ θ)Xβ +θ([X̂ ,Xβ ]) = θ([Xβ , X̂ ]),

because (ϕ X̂
t )∗θ = θ implies LX̂ θ = 0. Therefore

dθ(Xβ , X̂) = LXβ f X = 〈β |X〉◦τ. (5)

Let (x1, . . . ,xm) be local coordinates on N near n. Then {dx1(n), . . . ,dxm(n)} are cood-
inates for T ∗

n N and
{ ∂

∂x1 n
, . . . , ∂

∂xm n

}
are coordinates for TnN. With respect to the basis{

Xdxi(αn),
∂̂

∂xi αn

}m
i=1 of Tαn(T

∗N) the matrix
(

dθ(αn)(Xdxi(αn),
∂̂

∂x j αn
)
)

is the matrix(〈dxi(n)| ∂
∂x j n

〉) =
(
δi j

)
. Thus the matrix of the 2-form Ω at αn is

(
0 I
−I Dαn

)
, where

Dαn =
(

dθ(αn)(
∂̂

∂xi αn
, ∂̂

∂x j αn

)
. Since the matrix of Ω is invertible for every αn ∈ T ∗N,

the 2-form Ω is nondegenerate. �

Example 2′: Suppose that T ∗N is the cotangent bundle T ∗G of a Lie group G. Let g∗ be
the dual to its Lie algebra g. Then τ : T ∗G → G : αg → g is a trivial bundle with bundle
projection τ . A trivialization of T ∗G is given, for example, by left translation

L : G×g∗ → T ∗G : (g,α) �→ (TgLg−1)tα = αg, (6)

where Lg : G → G : h �→ gh is left translation by G. The map L identifies a covector at a
point with a left invariant 1-form, which may be thought of as an element of g∗. Pulling
back the canonical 1-form θ on T ∗G by the mapping L gives the 1-form ϑ = L ∗θ
on G × g∗. Similarly, pulling back the canonical 2-form Ω on T ∗G gives the 2-form
ω = L ∗Ω on G×g∗.

We calculate the 1-form ϑ as follows. First we compute the tangent of the mapping τ ◦L .
For ξ ∈ g and β ∈ g∗, the mapping

ϕ(ξ ,β )
t : G×g∗ → G×g∗ : (g,α) �→ (gexp tξ ,α + tβ )

is the flow of the vector field X (ξ ,β )(g,α) = (TeLgξ ,β ) on G×g∗. Using the left trivial-
ization L , we pull back the action L of left translation to obtain a G-action � on G× g∗
defined by �g(h,α) = (Lgh,α). Note that X (ξ ,β ) is invariant under the action � because

ϕ(ξ ,β )
t

(
�g(h,α)

)
= ϕ(ξ ,β )

t (gh,α) = (ghexp tξ ,α + tβ ) = �g
(
ϕ(ξ ,β )

t (h,α)
)
.

Therefore the tangent of τ ◦L is

T(g,α)(τ ◦L )(TeLgξ ,β ) =
d
dt t=0

τ ◦L
(
ϕ(ξ ,β )

t (g,α)
)
=

d
dt t=0

Lg exp tξ = TeLgξ .

Consequently,
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ϑ(g,α)(TeLgξ ,β ) = θ(L (g,α))
(
T(g,α)L (TeLgξ ,β )

)
= αg

(
T(g,α)(τ ◦L )(TeLgξ ,β )

)
= αg(TeLgξ ) = α(ξ ). (7)

To compute the 2-form ω , we use the formula

−dϑ(X (ξ ,β ),X (η ,γ))=−X (ξ ,β ) d(X (η ,γ) ϑ)+X (η ,γ) d(X (ξ ,β ) ϑ)+ [X (ξ ,β ),X (η ,γ)] ϑ

for the exterior derivative of ϑ . We now calculate each term on the right hand side of the
above equation. For the first term, we find that(

X (ξ ,β ) d(X (η ,γ) ϑ)
)
(g,α) = LX(ξ ,β ) (X (η ,γ) ϑ)(g,α)

=
d
dt t=0

(ϕ(ξ ,β )
t )∗(X (η ,γ) ϑ)(g,α)

=
d
dt t=0

ϑ(gexp tξ ,α + tβ )
(
X (η ,γ)(gexp tξ ,α + tβ )

)
=

d
dt t=0

ϑ(gexp tξ ,α + tβ )(TeLgexp tξ η ,γ) =
d
dt t=0

(α + tβ )(η) = β (η).

The second term is calculated similarly. The third term follows once we notice that

[X (ξ ,β ),X (η ,γ)](g,α) =
d
dt t=0

(
ϕ(η ,γ)
−√

t
◦ϕ(ξ ,β )

−√
t
◦ϕ(η ,γ)√

t
◦ϕ(ξ ,β )√

t

)
(g,α)

=
d
dt t=0

(
gexp

√
tξ exp

√
tη exp−√

tξ exp−√
tη ,α

)
= (TeLg [ξ ,η ] ,0),

as then
ϑ([X (ξ ,β ),X (η ,γ)])(g,α) = ϑ(g,α)(TeLg [ξ ,η ] ,0) = α([ξ ,η ]).

Therefore the 2-form ω on G×g∗ is given by

ω(g,α)
(
(TeLgξ ,β ),(TeLgη ,γ)

)
=−β (η)+ γ(ξ )+α([ξ ,η ]). (8)

From (8) it is immediate that ω is a nondegenerate 2-form on G× g∗. Since ω = L ∗Ω
and Ω is closed, it follows that ω is closed. Hence ω is symplectic. Because L is a
diffeomorphism, we deduce that Ω is symplectic. �

Example 3. Another important example of a symplectic manifold is an orbit Oμ of the
coadjoint action of a Lie group G on the dual g∗ of its Lie algebra g. In more detail, the
coadjoint action of G on g∗ is defined by

Ad∗ : G×g∗ → g∗ : (g,ν)→ Ad t
g−1 ν (9)

where the adjoint action Ad of G on its Lie algebra g is

Ad : G×g→ g : (g,ξ ) �→ d
dt t=0

g exp tξ g−1.
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� The coadjoint orbit Oμ through μ ∈ g∗ is {ν = Ad∗g μ ∈ g∗|g ∈ G}. The following calcu-
lation shows that the tangent space TνOμ to Oμ at ν is {ad t

ξ ν |ξ ∈ g}. It is reasonable that
this should be the case, because this equality is obtained by differentiating the defining
relation of Oμ . Here adξ is the tangent to the mapping Ad in the direction ξ , that is,

adξ : g→ g : η �→ d
dt t=0

Adexp tξ η = [ξ ,η ],

where [ , ] is the Lie bracket on g.

(2.3) Proof: For ξ ∈ g the curve γ ξ : R →Oμ : s �→ Adt
exp−sξ ν lies in Oμ and passes through ν

at s = 0. γ ξ represents the tangent vector −adt
ξ ν to the coadjoint orbit Oμ at the point ν

because d
ds

s=0
γ ξ (s) = d

ds
s=0
Adt

exp−sξ ν = −adt
ξ ν . Therefore TνOμ ⊆{adt

ξ ν |ξ ∈ g}. To prove

the reverse inclusion, for some ξ ∈ g consider the curve Γξ : R → Oμ : s �→ exp(sadt
ξ )μ .

The image of Γξ is contained in Oμ because exp(sadt
ξ )μ = Adt

expsξ μ . Since Γξ (0) = μ
and d

ds Γξ (0) = adt
ξ , we are done. �

For ξ ∈ g define the vector field Xξ on Oμ by Xξ (ν) =−adt
ξ ν . As is easily checked the

flow ϕξ
s of Xξ on Oμ is

ϕξ
s (ν) = Adt

exp−sξ ν . (10)

On Oμ define a 2-form Ω by

Ω(ν)(Xξ (ν),Xη(ν)) =−ν([ξ ,η ]). (11)

Claim: Ω is a symplectic form on the coadjoint orbit Oμ .

(2.4) Proof: First we show that Ω is closed. Recall that the exterior derivative of an n-form Θ
is

dΘ(X0,X1, . . . ,Xn) = ∑n
i=0(−1)i d(Xi Θ)(X0, . . . , X̂i, . . . ,Xn)

+∑0≤i< j≤n(−1)i+ j([Xi,Xj] Θ)(X0, . . . , X̂i, . . . , X̂ j, . . . ,Xn).
(12)

Applying (12) to the 2-form Ω gives

dΩ(Xξ ,Xη ,Xζ ) = d(Xξ Ω)(Xη ,Xζ )+d(Xη Ω)(Xζ ,Xξ )

+ d(Xζ Ω)(Xξ ,Xη)−Ω([Xξ ,Xη ],Xζ )−Ω([Xζ ,Xξ ],Xη)−Ω([Xη ,Xζ ],Xξ ). (13)

Again using (12), this time to compute the exterior derivative of the 1-form Xξ Ω, we
obtain

d(Xξ Ω)(Xη ,Xζ ) = d(Xη (Xξ Ω))Xζ −d(Xζ (Xξ Ω))Xη − [Xη ,Xζ ] (Xξ Ω).

Similarly by cyclically permuting the variables in the above equation gives

d(Xη Ω)(Xζ ,Xξ ) = d(Xζ (Xη Ω))Xξ −d(Xξ (Xη Ω))Xζ − [Xζ ,Xξ ] (Xη Ω)

and

d(Xζ Ω)(Xξ ,Xη ) = d(Xξ (Xζ Ω))Xη −d(Xη (Xζ Ω))Xξ − [Xξ ,Xη ] (Xζ Ω).
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Substituting the above three equations into (13) gives

dΩ(Xξ ,Xη ,Xζ ) = d(Xη (Xξ Ω))Xζ −d(Xζ (Xξ Ω))Xη

− d(Xξ (Xη Ω))Xζ +d(Xζ (Xη Ω))Xξ

+ d(Xξ (Xζ Ω))Xη −d(Xη (Xζ Ω))Xξ . (14)

We calculate the first term in (14) as follows

d(Xη Xξ Ω)(ν)Xζ (ν) =
(
LXζ Ω(Xξ ,Xη)

)
(ν)

=
d

ds s=0
Ω(ϕζ

s (ν))
(
Xξ (ϕζ

s (ν)),X
η(ϕζ

s (ν))
)

=− d
ds s=0

ϕζ
s (ν([ξ ,η ]), using (11)

= adt
ζ ν([ξ ,η ]), using (10)

= ν([ζ , [ξ ,η ]]).

The other terms in (14) follow similarly. Therefore

dΩ(Xξ ,Xη ,Xζ ) = ν([ζ , [ξ ,η ]])−ν([η , [ξ ,ζ ]])−ν([ζ , [η ,ξ ]])
+ν([ξ , [η ,ζ ]])+ν([η , [ζ ,ξ ]])−ν([ξ , [ζ ,η ]])

= 2ν
(
[ζ , [ξ ,η ]]+ [ξ , [η ,ζ ]]+ [η , [ζ ,ξ ]]

)
= 0

by the Jacobi identity. Thus dΩ = 0, which is what we wanted to show.

To see that Ω is nondegenerate, suppose that 0 = Ω(ν)(Xξ (ν),Xη(ν)) for every Xη(ν) =
−adt

η ν ∈ TνOμ . Then from the definition of Ω it follows that for every η ∈ g, we have

0 = ν([ξ ,η ]) = ν(adξ η) = (adt
ξ ν)(η) = −Xξ (ν)(η),

that is, Xξ (ν) = 0, since Xξ (ν) annihilates all of g∗. Consequently Ω is nondegenerate.
Note that Ω is invariant under the coadjoint action of G on Oμ . �

3 Hamilton’s equations
In this section we define the concept of Hamiltonian vector field.

On a symplectic manifold (M,ω), the nondegeneracy of the symplectic form ω implies
that the mapping ω �(p) : TpM → T ∗

p M defined by ω �(p)(v)w=ω(p)(v,w) for v,w∈ TpM
is an isomorphism for every p ∈ M. Denote the inverse of ω �(p) by ω �(p). For each
smooth function f on M we may define the Hamiltonian vector field Xf of the Hamilto-
nian function f by Xf (p) = ω �(p)

(
d f (p)

)
, or equivalently Xf ω = d f .

Example 1. Consider the cotangent bundle T ∗N with its canonical symplectic form Ω.
Suppose that f : T ∗N → R is a smooth function. We calculate a local expression for the
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Hamiltonian vector field Xf as follows. Let U be an open subset of Rn. Then locally
T ∗N is T ∗U = U × (Rn)∗ with bundle projection τ : T ∗U → U : (u,α) → u. From the
definition of the canonical 2-form Ω it follows that for every (u,α) ∈ T ∗U

Ω�(u,α) : T(u,α)(T
∗U) = Rn × (Rn)∗ → T ∗

(u,α)(T
∗U) = (Rn)∗ ×Rn : (v,β ) �→ (

Ω�(u,α)
)
(v,β ),

where Ω�(u,α)

(
v
β

)
is the linear function on T(u,α)(T ∗U) whose value at (w,γ) is given

by =−β (w)+ γ(v), that is, Ω�(u,α)
(

v
β

)
= (−β ,v). Consequently, the local expression

for Ω� is Ω�(u,α)(γ,w) =
(

w
−γ

)
. Locally, the 1-form d f is

d f : T ∗U ⊆ Rn × (Rn)∗ → (Rn)∗ ×Rn : (u,α) �→ (
D1 f (u,α),D2 f (u,α)

)
.

Thus on T ∗N the local expression for the Hamiltonian vector field Xf corresponding to f
is given by

Xf : T ∗U → Rn × (Rn)∗ :

(u,α) �→ Ω�(u,α)
(
D1 f (u,α),D2 f (u,α)

)
=

(
D2 f (u,α),−D1 f (u,α)

)
.

An integral curve γ : I → T ∗U of Xf satisfies Hamilton’s equations

dγ(t)
dt

= Xf (γ(t)) =
(

D2 f (γ(t))
−D1 f (γ(t))

)
. �

Example 2. We derive an expression for the Hamiltonian vector field XK on TN asso-
ciated to the Hamiltonian function K : T N → R : v �→ 1

2 g(x)(v,v), where g is a smooth
nondegenerate metric on N and v ∈ TxN. On T N we use the symplectic form ω = (g�)∗Ω,
where Ω is the canonical 2-form on T ∗N. The mapping g�(x) : TxN → T ∗

x N is defined by
g�(x)(v) : TxN → R : w �→ g(x)(v,w). From the local expression of XK given in (15) below
we see that its integral curves are geodesics for the metric g. Thus XK is the geodesic
vector field associated to the metric g.

We begin by deriving a local expression for the 1-form ϑ on T N defined by ϑ(v)(wv) =
g(x)(Tvτ wv,v). Here v ∈ TxN, wv ∈ TvN and τ : T N → N is the bundle projection. Then
ϑ = (g�)∗θ , where θ is the canonical 1-form on T ∗N. Let U be an open subset of Rn.
Then locally T N is TU =U ×Rn with bundle projection τ : TU →U : (x,v) �→ x. More-
over, the tangent of τ is

T τ : T (TU) = (U ×Rn)× (Rn ×Rn)→ TU =U ×Rn :
(
(x,v),(w,z)

) �→ (x,w).

Therefore, ϑ(x,v)(w,z) = g�(x)(v)w, where ϑ(x,v) is a linear mapping from Rn ×Rn

into R. To find the symplectic form ω on T N we note that ω = (g�)∗Ω = −(g�)∗ dθ =
−d(g�)∗θ = −dϑ . Thus it suffices to compute the exterior derivative of ϑ . This we do
as follows. By definition of exterior derivative

−(
dϑ(x,v)(w1,z1)

)
(w2,z2) =−D1ϑ(x,v)w1(w2,z2)+D2ϑ(x,v)z1(w2,z2)

=−Dg�(x)w1(v,w2)−g�(x)(z1)w2 +Dg�(x)w2(v,w1)+g�(x)(z2)w1
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= ω(x,v)
(
(w1,z1),(w2,z2)

)
,

which is the desired local expression for the symplectic form ω on T N. Now we compute
the local expression for the Hamiltonian vector field XK . On TU the function K is given
by K : U ×Rn ⊆ Rn ×Rn → R : (x,v) �→ 1

2 g(x)(v,v) = 1
2 g�(x)(v)v. Thus the 1-form dK

is

dK(x,v) : Rn ×Rn → R : (w1,z1)→ D1K(x,v)w1 +D2K(x,v)z1 = 1
2 Dg�(x)w1(v,v)+g�(x)(v)z1.

Let XK be the vector field on TU given by

XK : U ×Rn → Rn ×Rn : (x,v) �→ (
X1(x,v),X2(x,v)

)
.

Then for any vector field Y on TU equal to (Y 1,Y 2) we have ω(XK ,Y ) = dK(Y ), by
definition of XK , that is,

−Dg�(x)X1(v,Y 1)−g�(x)(X2)Y 1 +Dg�(x)Y 1(v,X1)+g�(x)(Y 2)X1 =

= 1
2 Dg�(x)Y 1(v,v)+g�(x)(v)Y 2.

Setting Y 1 = 0 in the above equation gives g�(x)(Y 2)X1 = g�(x)(v)Y 2. In other words,
g(x)(Y 2,X1) = g(x)(v,Y 2) for every Y 2. Thus by symmetry and nondegeneracy of g(x)
we obtain X1(x,v) = v. Setting Y 2 = 0 and using X1 = v gives

−Dg�(x)v(v,Y 1)−g�(x)(X2)Y 1(v,v)+Dg�(x)Y 1(v,v) = 1
2 Dg�(x)Y 1(v,v),

which rewritten, using the symmetry property (Dg�(x)X)(Y,Z) = (Dg�(x)X)(Z,Y ), is

g(x)(X2,Y 1) = 1
2

(
Dg�(x)v(Y 1,v)−Dg�(x)v(v,Y 1)−Dg�(x)Y 1(v,v)

)
=−Γ̃(x,v)Y 1.

Therefore we obtain X2(x,v) = −g(x)�
(
Γ̃(x,v)

)
= −Γ(x,v). Hence the local expression

of the vector field XK is
XK(x,v) = (v,−Γ(x,v)). (15)

Since the components of Γ are the usual Christoffel symbols of the metric g, the image
of the integral curves of the geodesic vector field XK under the bundle projection τ are
geodesics on N for the metric g. �

Let ϕ : M → M be a diffeomorphism of the symplectic manifold (M,ω). If ϕ preserves
ω , that is, ϕ∗ω = ω , then ϕ is a symplectic diffeomorphism.

Claim: Let f be a smooth function on (M,ω). The flow ϕ f
t of a Hamiltonian vector field

Xf is a local one parameter group of symplectic diffeomorphisms of (M,ω).

(3.1) Proof: From the definition of the flow of a vector field it follows that t �→ ϕ f
t is a local

one parameter group. To show that ϕ f
t is symplectic, we calculate

LXf ω = Xf dω +d(Xf ω) = d2 f , using the definition of Xf and
the fact that ω is closed

= 0.
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By definition of Lie derivative d
dt (ϕ

f
t )

∗ω = (ϕ f
t )

∗(LXf ω) = 0. We get (ϕ f
t )

∗ω = ω . �

A basic property of a symplectic diffeomorphism is that it maps a Hamiltonian vector
field into another Hamiltonian vector field.

Claim: For every smooth function on the symplectic manifold (M,ω) and for every sym-
plectic diffeomorphism ϕ of (M,ω) into itself we have

ϕ∗Xf = Xϕ∗ f . (16)

(3.2) Proof: We calculate

Xϕ∗ f ω = d(ϕ∗ f ) = ϕ∗ d f = ϕ∗(Xf ω) = ϕ∗Xf ϕ∗ω = ϕ∗Xf ω,

since ϕ is symplectic. Equation (16) follows because ω is nondegenerate. �

Example 3. We derive Hamilton’s equations on the cotangent bundle of a Lie group,
which has been trivialized using left translation. Let G be a Lie group and (T ∗G,Ω) its
cotangent bundle with canonical 2-form Ω. Suppose that H : T ∗G → R is a smooth
function. The Hamiltonian vector field XH on (T ∗G,Ω) corresponding to H is defined
by

dH (α)vα = Ω(α)(XH (α),vα) (17)

for every vα ∈ Tα(T ∗G). Trivialize T ∗G using the mapping L : G×g∗ → T ∗G (6) coming
from left translation. Pulling the Hamiltonian H back by L gives the Hamiltonian H :
G× g∗ → R : (g,α) �→ H (αg). Note that L ∗Ω = ω (8). Using ((3.2)) we find that the
Hamiltonian vector field XH on (G×g∗,ω) is given by XH = L ∗(XH ).

We now derive Hamilton’s equations, which are satisfied by the integral curves of the
vector field XH on G× g∗. In this context Hamilton’s equations are called the Euler-
Arnol’d equations. Partially differentiating H in the directions TeLgη ∈ TgG and β ∈ g∗
gives

dH(g,α)(TeLgη ,β ) = D1H(g,α)TeLgη +β
(
D2H(g,α)

)
,

since D2H(g,α)β = β
(
D2H(g,α)

)
for D2H(g,α) ∈ g∗∗ = g. Because XH(g,α) ∈ TgG×

g∗, we may write
XH(g,α) =

(
TeLgX(g,α),Λ(g,α)

)
. (18)

By definition of XH , we have

dH(g,α)(TeLgη ,β ) = ω(g,α)
(
(TeLgX(g,α),Λ(g,α)),(TeLgη ,β )

)
for any η ∈ g and any β ∈ g∗. Now using (8) the preceding equality reads

D1H(g,α)TeLgη +β (D2H(g,α)) =−Λ(g,α)η +β (X(g,α))+α([X(g,α),η ]). (19)

Setting η = 0 in (19) gives β (D2H(g,α)) = β (X(g,α)) for every β ∈ g∗. Therefore

X(g,α) = D2H(g,α). (20)
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Setting β = 0 in (19) gives D1H(g,α)TeLgη = −Λ(g,α)η +(adt
X α)η , for any η ∈ g.

Using (20), we obtain

Λ(g,α) =−(TeLg)
t(D1H(g,α))+ adt

D2H(g,α) α. (21)

Substituting (20) and (21) into (18) gives the Euler-Arnol’d vector field XH on G× g∗.
The integral curves of XH satisfy the Euler-Arnol’d equations

ġ = TeLg(D2H(g,α))

α̇ = −(TeLg)
t(D1H(g,α))+ ad t

D2H(g,α)α.
(22)

If the Hamiltonian H : T ∗G → R is left invariant, then so is H. Therefore, D1H = 0, so
the Euler-Arnol’d equations for a left invariant Hamiltonian are

ġ = TeLg(D2H(g,α))

α̇ = ad t
D2H(g,α)α. �

4 Poisson algebras and manifolds
In this section we define the notions of a Poisson algebra and a Poisson manifold. This
leads to an algebraic formulation of Hamiltonian mechanics.

A Poisson algebra (A ,{ , }, ·) is a real Lie algebra under the bracket { , } which is also a
commutative ring with unit under the multiplication ·. In addition, for every f ,g,h ∈ A
Leibniz’ rule: { f ,g · h} = h · { f ,g}+ g · { f ,h} holds. Leibniz’ rule simply states that
for every f ∈ A the linear mapping ad f : A → A : g �→ { f ,g} is a derivation. We
call ad f the Hamiltonian derivation associated to f . Thinking of ad f as a formal vector
field, its formal flow is given by ϕ f

t = exp(t ad f ) = ∑∞
n=0

1
n! t

n adn
f . A map ϕ : A → B

is a homomorphism of Poisson algebras if it is a homomorphism of the Lie algebra and
commutative ring structures. A bijective homomorphism of the Poisson algebra A is
an automorphism of A . It is easy to check that the formal flow ϕ f

t is a one parameter
group of automorphisms of A , that is, (ϕ f

t )
∗(g ·h) = (ϕ f

t )
∗g · (ϕ f

t )
∗h and (ϕ f

t )
∗{g,h}=

{(ϕ f
t )

∗g,(ϕ f
t )

∗h}. An element f ∈ A is a Casimir if and only if { f ,g} = 0 for every
g ∈ A . Clearly the unit element of A is a Casimir. If the only Casimir elements are real
multiples of the unit element of A , then A is a nondegenerate Poisson algebra.

We now give some examples of Poisson algebras.

Example 1. Let g∗ be the dual of the finite dimensional Lie algebra g with Lie bracket
[ , ]. For every f ,g ∈C∞(g∗) and every μ ∈ g∗ define a Poisson bracket { , }g∗ by

{ f ,g}g∗(μ) = μ([d f (μ),dg(μ)]). (23)

The right hand side of (23) is well defined since the differential d f (μ) of f at μ is a linear
form on g∗, which we identify with an element of g. To check that (C∞(g∗),{ , }g∗) is a
Poisson algebra, where · is the usual product of smooth functions, we first verify Leibniz’
rule:

{ f ,g ·h}g∗(μ) = μ
(
[d f (μ),d(g ·h)(μ)])
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= μ
(
[d f (μ),g(μ)dh(μ)+h(μ)dg(μ)]

)
=

(
g · { f ,h}g∗ +h · { f ,g}g∗

)
(μ).

We now need only show that { , }g∗ satisfies the Jacobi identity. This is not entirely
straightforward.

Let {xi}, i = 1, . . .n be a basis for g. Identifying (g∗)∗ with g we can think of {xi} as
coordinates on g∗. Since ad f : g∗ → g∗ : h �→ { f ,h}g∗ is a derivation on g∗, it follows
that ad f = ∑n

k=1 fk ∂k for some fk ∈ C∞(g∗). Here ∂k =
∂

∂xk
. Evaluating the preceding

expression for ad f on x j and using the fact that ∂k x j = δ j
k , we obtain fk = { f ,xk}g∗ , that

is,

ad f =
n

∑
k=1

{ f ,xk}g∗ ∂k. (24)

Replacing f in (24) by x j gives

adx j =
n

∑
k=1

{x j,xk}g∗ ∂k. (25)

Hence

{ f ,g}g∗ = ad f g = ∑
k
{ f ,xk}g∗ ∂kg

= −∑
k

adxk f ∂kg = ∑
j,k
{x j,xk}g∗ ∂ j f ∂kg. (26)

In other words, ({x j,xk}g∗) is the structure matrix of the Poisson bracket { , }g∗ .

Claim: (C∞(g∗),{ , }g∗) is a Lie algebra if and only if the coordinate functions xi satisfy
the Jacobi identity, that is, if and only if

{{xi,x j}g∗ ,xk}g∗ = {{xi,xk}g∗ ,x j}g∗ +{xi,{x j,xk}g∗}g∗ (27)

for every 1 ≤ i, j,k ≤ n.

(4.1) Proof: Before launching into the proof we first verify the identity

∑
k
{xk,xi}g∗ {∂k f ,x j}g∗ = ∑

k
{xk,x j}g∗ {∂k f ,xi}g∗ . (28)

We calculate.

∑
k
{xk,xi}g∗ {∂k f ,x j}g∗ = −∑

k
{xk,xi}g∗ adx j ∂k f

=−∑
k,�
{xk,xi}g∗ {x j,x�}g∗ ∂�∂k f = ∑

k
{xk,x j}g∗ {∂k f ,xi}g∗ .

The last equality follows by interchanging the order of summation and partial differenti-
ation, and using (25) and the skew symmetry of { , }g∗ .
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We now prove the claim. Let f ,g,h ∈C∞(g∗). Then

{{ f ,g},h}g∗ = {∑
j,k
{x j,xk}g∗ ∂ j f ∂kg,h}g∗ , using (26)

= ∑
j,k,�

[{{x j,xk}g∗ ,h}g∗ ∂ j f ∂kg+{x j,xk}g∗ {∂ j f ,h}g∗ ∂kg

+ {x j,xk}g∗ {∂kg,h}g∗ ∂ j f
]
, using Leibniz’ rule

= ∑
j,k,�

{{x j,xk}g∗ ,x�}g∗ ∂�h∂ j f ∂kg+

I︷ ︸︸ ︷
∑
j,k,�

{x j,xk}g∗ {∂ j f ,x�}g∗ ∂�h∂kg

+

II︷ ︸︸ ︷
∑
j,k,�

{x j,xk}g∗ {∂kg,x�}g∗ ∂ j f ∂�h, using (24).

Interchanging h and g in the above formula gives

{{ f ,g},h}g∗ = ∑
j,k,�

{{x j,xk}g∗ ,x�}g∗ ∂�g∂ j f ∂kh

+

I′︷ ︸︸ ︷
∑
j,k,�

{x j,xk}g∗{∂ j f ,x�}g∗ ∂�g∂kh+

III︷ ︸︸ ︷
∑
j,k,�

{x j,xk}g∗ {∂kh,x�}g∗ ∂ j f ∂�g .

Since { f ,{g,h}}g∗ =−{ f ,{h,g}}g∗ = {{h,g}, f}g∗ , interchanging f and h gives

{ f ,{g,h}}g∗ = ∑
j,k,�

{{x j,xk}g∗ ,x�}g∗ ∂� f ∂ jh∂kg

+

III′︷ ︸︸ ︷
∑
j,k,�

{x j,xk}g∗ {∂ jh,x�}g∗ ∂� f ∂kg+

II′︷ ︸︸ ︷
∑
j,k,�

{x j,xk}g∗ {∂kg,x�}g∗ ∂ jh∂� f .

Using (28) one can show that the terms I = I′, II = II′, and III = −III′. We will prove
only the last equality.

III = −∑
j,�

∑
k
{xk,x j}g∗ {∂kh,x�}g∗ ∂ j f ∂�g

= −∑
j,�

∑
k
{xk,x�}g∗ {∂kh,x j}g∗ ∂ j f ∂�g, using (28)

= −III′,

replacing k by j, � by k and j by �. Therefore

{{ f ,g},h}g∗ −{{ f ,h},g}g∗ −{ f ,{g,h}}g∗ =

= ∑
j,k,�

[{{x j,xk}g∗ ,x�}g∗ −{{x j,x�}g∗ ,xk}g∗ −{x j,{x�,xk}g∗}g∗
]

∂ j f ∂kg∂�h,

which proves the claim. �
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� We now verify that (27) holds.

(4.2) Proof: By definition

{xi,x j}g∗(μ) = μ
(
[dxi,dx j]

)
= μ

(
[xi,x j]

)
, (29)

because x� are linear functions on g∗. Since (g, [ , ]) is a Lie algebra the Jacobi identity
[[xi,x j],xk] = [[xi,xk],x j]+ [xi, [x j,xk]] holds. Using (29) it follows that the Jacobi identity

{{x j,xk}g∗ ,x�}g∗ = {{x j,x�}g∗ ,xk}g∗ +{x j,{x�,xk}g∗}g∗
holds. �

Hence by ((4.1)) (C∞(g∗),{ , }g∗) is a Lie algebra.

� When g is a semisimple Lie algebra, the Poisson algebra (C∞(g∗),{ , }g∗) is not nonde-
generate.

(4.3) Proof: We need only construct a Casimir element of (C∞(g∗),{ , }g∗ , ·) to prove the
assertion. Recall that g is semisimple if and only if the Killing form k(X ,Y ) = tr(adX adY )
is a nondegenerate symmetric bilinear form on g. The Killing form satisfies k(adZ X ,Y ) =
−k(X ,adZ Y ) for every X ,Y,Z ∈ g because

k(adZ X ,Y ) = tr(ad[Z,X ] adY ) = tr
(

adZ adX −adX adZ)adY
)

= tr
(

adX (adY adZ −adZ adY )
)
,

since tr(ABC) = tr(BCA) for linear maps A,B,C.
= tr(adX ad[Y,Z]) = −k(X ,adZ Y ).

Using the isomorphism k � = (k �)−1 : g∗ → g to identify g∗ with g, the Poisson bracket
{ , }g∗ (23) on C∞(g∗) becomes the Poisson bracket { , }g on C∞(g) defined by { f ,g}g(X)=

k
(
X , [k �(d f (X)),k �(dg(X))]

)
. The following calculation shows that the smooth function

g : g→ R : X �→ 1
2 k(X ,X) is a Casimir element of (C∞(g),{ , }g, ·).

{ f ,g}g(X) = k
(
X , [k �(d f (X)),X)]

)
, by definition of g and { , }g

=−k
(
[X ,X ],k �(d f (X))

)
= 0. �

Example 2. Let (M,ω) be a smooth symplectic manifold. On the space of smooth
functions C∞(M) define a Poisson bracket { , } by { f ,g} = ω(Xf ,Xg) for every f ,g ∈
C∞(M). Here Xf ,Xg are the Hamiltonian vector fields corresponding to the Hamiltonians
f ,g, respectively. It follows that { f ,g}= LXg f =−LXf g. Thus ad f is the derivation −LXf

which may be identified with the Hamiltonian vector field −Xf , since M is a smooth
manifold.

Claim: (C∞(M),{ , }, ·) is a Poisson algebra.

(4.4) Proof: Clearly the bracket { , } is linear in each argument and is skew symmetric. It
remains to show that the derivation property and the Jacobi identity hold. To see that the
bracket is a derivation in each slot, note that

{ f ·g,h}= LXh( f ·g) = (LXh f ) ·g+ f · (LXh g) = { f ,h} ·g+ f · {g,h}.
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Thus the derivation property holds because Leibniz’ rule holds for the Lie derivative. To
show that the Jacobi identity { f ,{g,h}}= {{ f ,g},h}+{g,{ f ,h}} holds we use the fact
that the symplectic form ω is closed. Recall, see (12), that for smooth vector fields X ,Y,Z
on M

dω(X ,Y,Z) = −d(X ω)(Y,Z)+d(Y ω)(Z,X)+d(Z ω)(X ,Y )
−ω([X ,Y ] ,Z)−ω([Y,Z] ,X)−ω([Z,X ] ,Y ). (30)

Letting X =Xf , Y =Xg and Z =Xh, we see that the first three terms in (30) vanish because
d(Xf ω) = d(d f ) = 0. To deal with the next three terms note that X{ f ,g} = −[Xf ,Xg],
because

−[Xf ,Xg] = LXg Xf =
d
dt t=0

(ϕg
t )

∗Xf =
d
dt t=0

X(ϕg
t )

∗ f , by ((3.2))

= XLXg f = X{ f ,g}.

Thus ω(
[
Xf ,Xg

]
,Xh) =−ω(X{ f ,g},Xh) =−{{ f ,g},h}. So

dω(Xf ,Xg,Xh) = {{ f ,g},h}−{{ f ,h},g}+{{g,h}, f}. (31)

Consequently, the closedness of ω implies that Jacobi’s identity holds. �

Corollary: If ϕ : M → M is a symplectic diffeomorphism of (M,ω), then

ϕ∗{ f ,g}= {ϕ∗ f ,ϕ∗g}
for every f ,g ∈C∞(M).

(4.5) Proof: For every m ∈ M we compute

{ϕ∗ f ,ϕ∗g}(m) = ω(m)
(
Xϕ∗ f (m),Xϕ∗g(m)

)
= ω(m)

(
ϕ∗Xf (m),ϕ∗Xg(m)

)
by ((3.2))

= ω(ϕ−1(ϕ(m)))
(
T ϕ−1Xf (ϕ(m)),T ϕ−1Xg(ϕ(m))

)
=

(
(ϕ−1)∗ω

)
(ϕ(m))

(
Xf (ϕ(m)),Xg(ϕ(m))

)
= { f ,g}(ϕ(m))

= ϕ∗({ f ,g})(m). �

M is a Poisson manifold if there is a Poisson bracket { , } on C∞(M) such that (C∞(M),{ , },
� ·) is a Poisson algebra. We now show that the Poisson bracket { , } is determined by the

brackets of local coordinate functions on M.

(4.6) Proof: For a fixed f the map g → { f ,g} is a derivation on C∞(M), and hence may
be represented by a vector field Yf . Thus in local coordinates we have an expression
of the form { f ,g} = ∑i Y i

f ∂ig, where ∂i is the partial derivative with respect to the ith

coordinate function xi and Y i
f = LYf xi. By the skew symmetry of the Poisson bracket we

have a similar expression with f and g interchanged. Therefore we have a local expression
{ f ,g} = ∑i, j Wi j ∂i f ∂ jg. This tells us that the Wi j are components of a skew symmetric
contravariant tensor W of order 2. Because the Poisson bracket { , } satisfies the Jacobi
identity, the components of W satisfy

∑
�

(
∂Wjk

∂x�
Wi�+

∂Wi j

∂x�
Wk�+

∂Wki

∂x�
Wj�

)
= 0. (32)
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If we compute the bracket of our local coordinate functions (x1, . . . ,xn) using the local
expression for the Poisson bracket , we find that {xi,x j}=Wi j. �

The rank of the Poisson structure at a point is the rank of the structure matrix W at the
point.

Claim: A Poisson manifold M is symplectic if and only if the matrix of the Poisson
structure tensor W is everywhere invertible.

(4.7) Proof: Suppose that W is everywhere invertible. Let Xf =W (·,d f ), and define ω by

ω(Xf ,Xg) =W (d f ,dg) = d f (Xg) = { f ,g}. (33)

We only need check that ω is closed and nondegenerate. Since at any point p ∈ M we
have span{d f (p) f ∈ C∞(M)} = T ∗

p M and the matrix (Wi j) is invertible, we see that ω
is nondegenerate. As a corollary, the vector fields Xf span TpM as well. They really are
Hamiltonian vector fields since (33) implies that d f =W−1(Xf , ·) = Xf ω . To see that
ω is closed, we refer to ((4.4)), where we showed that a symplectic manifold (M,ω) gave
a Lie algebra structure to C∞(M) such that

dω(Xf ,Xg,Xh) = { f ,{g,h}}+{{g,h}, f}+{{h, f},g}. (34)

Because W is a Poisson structure tensor, (32) holds and thus the right hand side of (34)
vanishes. Hence dω = 0.

Now suppose that (M,ω) is a symplectic manifold. Let {x1, . . . ,xn} be local coordinates
on (M,ω). Then the structure matrix W has entries Wi j = ω(Xxi ,Xx j). For f ,g ∈C∞(M)
define

{ f ,g}= ∑
i j

Wi j ∂i f ∂ig = W (d f ,dg).

Thus { f ,g}= ω(Xf ,Xg). Since ω is closed, the Poisson bracket { , } satisfies the Jacobi
identity ((4.4)) and thus (32). Suppose that W (d f ,dg) = 0 for every g ∈ C∞(M). Then
0 = ω(m)(Xf (m),Xg(m)) for every m ∈ M. Since span{dg(m) g ∈C∞(M)} = T ∗

mM and
ω(m) is nondegenerate, the vector fields Xg(m) span TmM. From the nondegeneracy
of ω(m) we deduce that Xf (m) = 0 for every m ∈ M. Therefore d f = 0, that is, W is
nondegenerate. This implies that the matrix (Wi j(m)) is invertible for every m ∈ M. �

We now prove a result which gives the local structure of Poisson manifolds

Claim: Suppose that (M,{ ,}) is a Poisson manifold of dimension n, whose structure
tensor W in a neighborhood of p has constant rank k. Then k is even, say k = 2�, and there
are local coordinates about p of the form x = (ξ1, . . . ,ξ�,η1, . . . ,η�, ζ2�+1, . . . ,ζn−2�) such
that

W (x) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 I�

−I� 0

0n−2�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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(4.8) Proof: Pick a chart so that p is mapped to the origin. If the rank of W (0) is zero, then put
W (x) = 0 and we are done. If not, then there are smooth functions ξ̃1 and η1 in a neigh-
borhood of 0 such that {ξ̃1,η1}(0) = 0. This implies LXη1

ξ̃1(0) = 0, and in particular,
that the vector field Xη1(0) = 0. We may find a system of local coordinates (ξ1, . . . ,ξn)

about 0 so that Xη1 =
∂

∂ξ1
by rectifying the vector field Xη1 . Then in this neighborhood

{ξ1,η1}= 1. If the rank of W at 0 is 2 we are done. Otherwise, let N = {x|ξ1 = η1 = 0}.
In a possibly smaller neighborhood, N is a smooth submanifold containing the origin
as dξ1 ∧ dη1 = 0 at 0. Let ϕξ1

t and ϕη1
s denote the flow of Xξ1

and Xη1 , respectively.
We find that they commute as

[
Xξ1

,Xη1

]
= −X{ξ1,η1} = 0. For small enough t and s we

see that U = {u ∈ M u = ϕξ1
t ◦ϕη1

s (v), v ∈ N} is an open neighborhood of N about 0.
Choosing coordinates (x1, . . . ,xn−2) on N, we extend them to functions on U by setting
xi(u) = xi(v). Then (ξ1,η1,x1, . . . ,xn−2) are coordinates on U . Furthermore, the func-
tions xi are invariant under the flows ϕξ1

t and ϕη1
s . Therefore {ξ1,xi} = 0 = {η1,xi}.

As

∂
∂ξ1

({xi,x j}) = LXη1
({xi,x j}) = {LXη1

xi,x j}+{xi,LXη1
x j}

= {{xi,η1},x j}+{xi,{x j,η1}} = 0,

{xi,x j} does not depend on ξ1. Similarly, {xi,x j} does not depend on η1. Therefore
{xi,x j} depends only on (x1, . . . ,xn−2). To finish the argument we just have to check that
we can repeat this argument on N. Identify C∞(N) with the smooth functions on U which
are invariant under the flows of Xξ1

and Xη1 . For these functions define a Poisson structure
{ , }N on N by { f |N,g|N}N = { f ,g}|N. Thus we may continue the argument inductively
on (C∞(N),{ , }N). �

When W is invertible, that is, k = n, the above result gives a local structure theorem for
symplectic manifolds.

An important consequence of ((4.8)) is that in (ξ ,η) coordinates about 0 the Hamiltonian
derivation −ad f for f ∈C∞(Rn) has a local flow which satisfies Hamilton’s equations

ξ̇ j =−{ f ,ξ j}= ∂ f
∂η j

η̇ j =−{ f ,η j}=− ∂ f
∂ξ j

for j = 1, . . . , �. Moreover the flow of −ad f is a local one parameter group of symplectic
diffeomorphisms of (Rn,ω).

Suppose that (M,{ , }1) and (N,{ , }2) are Poisson manifolds. Then ϕ : M → N is a
Poisson map if ϕ∗{ f ,h}2 = {ϕ∗ f ,ϕ∗h}1 for every f ,h ∈ C∞(M). In other words, the
map ϕ∗ : C∞(N)→C∞(M) is a homomorphism of Poisson algebras.

Claim: Let f ∈C∞(N) and ϕ : M → N be a Poisson map. If γ is an integral curve of the
Hamiltonian vector field Xϕ∗ f on M, then ϕ ◦γ is an integral curve of Xf .
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(4.9) Proof: For every h ∈C∞(N) we have

d(ϕ∗h)
dt

(γ(t)) = {ϕ∗h,ϕ∗ f}1(γ(t)), (35)

because γ is an integral curve of Xϕ∗ f . Since ϕ is a Poisson map, (35) is equivalent to

d
dt
(h(ϕ(γ(t))) = ϕ∗{h, f}2(γ(t)) = {h, f}1(ϕ(γ(t))).

Thus ϕ ◦γ is an integral curve of Xf . �

Let (M,{ , }) be a Poisson manifold. A submanifold N of M is a Poisson submanifold if
we can define a Poisson bracket { , }N on N by { f ,g}N = { f ,g}|N, where f and g are
smooth extensions to M of f ,g ∈C∞(N). Equivalently, N is a Poisson submanifold of M
if the inclusion map i : N → M is a Poisson map.

An important consequence of the local classification of Poisson manifolds ((4.8)) is the
following. Define an equivalence relation ∼ on M by declaring p ∼ q if q can be reached
from p by a piecewise smooth curve each segment of which is an integral curve of a
Hamiltonian vector field on M. Then ∼ is an equivalence relation and an equivalence
class is called a leaf of the Poisson structure on M.

Claim: Every leaf on M is a smooth Poisson submanifold of M with a nondegenerate
Poisson bracket.

(4.10) Proof: Because the rank of a tensor is lower semicontinuous, we need only show that the
rank of a Poisson structure is invariant under the flow of a Hamiltonian vector field. Then
we can use the local classification of Poisson manifolds at each point in the leaf, because
the constant rank hypothesis holds on a leaf. The invariance of the rank follows from the
calculation

{{g, f},h}+{g,{h, f}}= {{g,h}, f} = LXf {g,h} = LXf (W (dg,dh))

= (LXf W )(dg,dh)+W (LXf dg,dh)+W (dg,LXf dh)

= (LXf W )(dg,dh)+W (d{g, f},dh)+W (dg,d{h, f})
= (LXf W )(dg,dh)+{{g, f},h}+{g,{h, f}}.

Since this holds for any f ,g,h, it follows that LXf W = 0. Thus the flow of Xf acts by
automorphisms of the Poisson structure. Hence the rank of W is invariant under the flow
of Xf . �

We now discuss how to deal with Poisson brackets and constraints. Let {ci}k
i=1 be smooth

functions on a symplectic manifold (M,ω) and suppose that c ∈ Rk is a regular value of
the map C : M →Rk : p �→ (

c1(p), . . . ,ck(p)
)
. Then N =C−1(c) is a smooth submanifold

of M, called the constraint manifold defined by the constraint functions {ci}k
i=1. If the

matrix
({ci,c j}(p)

)
of Poisson brackets of the constraints is invertible for every p ∈ N,

then we say that N is a cosymplectic submanifold of M.

Claim: If N is a cosymplectic submanifold of a symplectic manifold (M,ω), then ω|N is
a symplectic form on N.
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(4.11) Proof: For each p ∈ N let Vp be the space spanned by the vectors {Xc1(p), . . . ,Xck(p)}.
For every v ∈ TpN we have 0 = dci(p)v = ω(p)(Xci(p),v), which implies Xci(p) ∈
(TpN)ω and hence TpN ⊆ V ω

p . Since the matrix
({ci,c j}(p)

)
=

(
ω(p)(Xci(p),Xc j(p))

)
is invertible, Vp is a symplectic subspace of (TpM,ω(p)) of dimension k, which must be
even. But

dimTpN = dimTpM−dimspan{dc1(p), . . . ,dck(p)}= dimTpM− k

= dimTpM−dimVp = dimV ω
p .

Therefore TpN = V ω
p . Hence TpN is a symplectic subspace of (TpM,ω(p)), that is, ω|N

is nondegenerate. Since d(ω|N) = (dω)|N = 0, ω|N is a symplectic form on N. �

Using the symplectic form ω|N on N, we may define a Poisson bracket { , }N on C∞(N) in
the standard way. We now discuss a way to compute the bracket { , }N using the bracket
{ , } on M. We make use of Dirac brackets, which are defined as follows. Let C = (Ci j) be
the inverse of the matrix ({ci,c j}) of Poisson brackets of the constraint functions. Since
N is cosymplectic, C is defined in an open neighborhood U of N. Let F,G ∈C∞(M). For
every u ∈ U define the Dirac bracket { , }∗ by

{F,G}∗(u) = {F,G}(u)−
k

∑
i, j=1

{F,ci}(u)Ci j(u){c j,G}(u). (36)

To keep the notation simple, in what follows we will suppress the variable u. Before we
can relate the Dirac bracket to the bracket { , }N , we make some preliminary observations.
First note that C∞(N) = C∞(M)/I , where I is the ideal of smooth functions which
vanish identically on N. In other words, f ∈C∞(N) if there is a function F ∈C∞(M) such
that F |N = f . Since the ideal I is generated by the functions {ci}k

i=1, the function f is
represented by F +∑k

i=1 λici = F +I . Second, observe that the constraint function ci is
a Casimir for the Dirac bracket. This follows because for every F ∈C∞(M)

{F,ck}∗ = {F,ck}−∑
i j
{F,ci}Ci j{c j,ck} = {F,ck}−∑

i
{F,ci}δik = 0.

From the above discussion we see that { , }∗|N is well defined on C∞(N) because on N
we have

{F +I ,G}∗ = {F +
k

∑
i=1

λi · ci,G}∗ = {F,G}∗+∑
i
{λi,G}∗ci,

since { , }∗ is a derivation and {ci,G}∗ = 0.
= {F,G}∗+I .

� The following argument shows that

{F |N,G|N}N = {F,G}∗|N (37)

for F,G ∈C∞(M). This is the basic property of the Dirac bracket.
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(4.12) Proof: Let F∗ = F −∑i, j{F,ci}Ci jc j. Then

{F∗,ck}= {F,ck}−∑
i, j
{F,ci}Ci j{c j,ck}+I = {F,ck}−∑

i
{F,ci}δik +I = I ,

that is, {F∗,ck}|N = 0. Consequently, N is an invariant manifold of XF∗ . For every p ∈ N
and every Yp ∈ TpN we have

ω(p)(XF∗(p),Yp) = dF∗(p)Yp = dF(p)Yp = ω(p)(XF∗|N(p),Yp).

From the nondegeneracy of ω|N it follows that

XF∗ |N = XF∗|N . (38)

The next calculation shows that {F∗,G∗}= {F,G}∗+I . Using the definition of F∗ and
G∗ we have

{F∗,G∗} = {F −∑
i, j
{F,ci}Ci jc j,G−∑

k,�
{G,ck}Ck�c�}

= {F,G}−∑
k,�
{G,ck}Ck�{F,c�}−∑

i, j
{F,ci}Ci j{c j,G}

+∑
i jk�

{F,ci}{G,ck}Ci jCk�{c j,c�}+I , by bilinearity and Leibniz’ rule

= {F,G}−∑
i, j
{F,ci}Ci j{c j,G}+I , using ∑Ci j{c j,ck}= δik.

= {F,G}∗+I .

After these preliminaries we verify (37) as follows.

{F,G}∗|N = {F∗,G∗}|N
= (ω|N)(XF∗ |N,XG∗ |N), by definition of { , }.
= (ω|N)(XF∗|N ,XG∗|N) = (ω|N)(XF |N ,XG|N),

using (38) and the definition of F∗ and G∗

= {F |N,G|N}N , by definition of { , }N . �

Note that in the preceding argument we have not used the Jacobi identity for Dirac brack-
ets. Since the Poisson bracket { , }N satisfies the Jacobi identity, the Dirac bracket { , }∗|N
also satisfies the Jacobi identity.

The construction of Dirac brackets in ((4.12)) can be modified by letting

F∗ = F −∑
i, j
({F,ci}+Fi)Ci jc j, (39)

where Fi lies in the ideal generated by {c1, . . . ,ck}. It is straightforward to check that (38)
holds for the modified F∗. This construction we will call modified Dirac brackets. In con-
crete examples it is often necessary to use the freedom in the choice of Fi to simplify F∗.
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5 Exercises
1. (Geodesic vector field.) Let g be a Riemannian metric on a smooth manifold M. In

local coordinates x = (x1, . . . xn) the metric may be written as g = ∑gi j dxi ⊗ dx j.
Let v = (x1, . . . ,xn,v1, . . . vn) be natural coordinates on T M. Show that the pullback
θg by the map g� to T M of the canonical 1-form θ on T ∗M may be written as
θg(v) = ∑gi jvi dx j. Moreover, the pullback Ωg to T M by g� of the canonical 2-
form Ω on T ∗M may be written as

Ωg(v) =−dθg =−∑ ∂gk j

∂xi vk dxi ∧dx j −∑gi j dvi ∧dx j.

Show that the Hamiltonian vector field Zg corresponding to the Hamiltonian func-
tion E : T M → R : v → 1

2 g(v,v) is the geodesic vector field.

2. Let W = ∑i, j Wi j
∂

∂xi
∧ ∂

∂x j
be the structure tensor for a nondegenerate Poisson struc-

ture { , } on R2n with coordinates (x1, . . . ,x2n). In other words W (dxi,dx j) =
{xi,x j}. Show that Xx j = ∑i Wi j

∂
∂xi

. Define a 2-form by Ω = ∑k,�W k� dx� ∧ dxk,
where (W i j) is the inverse of the matrix (Wi j). Show that Ω(Xxi ,Xx j) = {xi,x j}.
Furthermore show that

∑
�

∂Wjk

∂x�
Wi� = ∑

�

∂Wi j

∂x�
W�k +∑

�

∂Wik

∂x�
Wj�. (40)

is equivalent to the Jacobi identity for the Poisson structure { , }. Let

Γk�
j = ∑

mn

∂Wmn

∂x j
W mk W n�.

Show that (40) can be written as Γk�
j +Γ� j

k +Γ jk
� = 0. Deduce that Ω is closed.

3. Let G be a Lie group with a nondegenerate metric which is invariant under left and
right translation. Show that the image of every geodesic on T ∗G under the bundle
projection is a one parameter subgroup of G, if it passes through αe ∈ T ∗

e G.

4. Find the Euler-Arnol’d equations for geodesics of a left invariant metric on the Lie
groups Sl2(R) and S3 = SU(2).



Chapter VII

Systems with symmetry

In this chapter we discuss Hamiltonian systems with symmetry. By a symmetry of a
Hamiltonian system (H,M,ω) we mean a proper action of a Lie group G on a symplectic
manifold (M,ω), which has a momentum mapping J : M → g∗ and preserves the Hamil-
tonian H. We will show that symmetries of a Hamiltonian system give rise to conserved
quantities which are constant along integral curves of the Hamiltonian vector field XH of
H. Using the technique of singular reduction we remove the G symmetry of (H,M,ω) by
constructing a lower dimensional Hamiltonian system (Hμ ,Mμ ,{ , }μ) for each μ in the
image of the momentum mapping J.

1 Smooth group actions
In this section we treat some basic properties of smooth group actions on manifolds. We
discuss in detail the properties of proper actions.

Let G be a Lie group, that is, G is a smooth manifold which is a group such that multi-
plication is a smooth map. A (left) action Φ of G on a smooth manifold M is a smooth
mapping

Φ : G×M → M : (g,m) �→ Φ(g,m) = Φg(m) = Φm(g) = g ·m (1)

such that for every g,h ∈ G and every m ∈ M we have Φgh(m) = Φg(Φh(m)), while for
the identity element e in G we have Φe(m) = m. A succinct way of expressing these
conditions is to say that the mapping G → Diff(M) : g �→ Φg is a homomorphism of G
into the group of diffeomorphisms of M.

For m ∈ M let Om be the orbit of m under the action of G, that is, Om = {Φg(m) g ∈ G}.
Sometimes, when it is convenient, and not at all confusing, we will write G ·m = Om. Let
g be the Lie algebra of G. Then TeΦm(g) is the tangent space to the orbit G ·m at m.

Denote the isotropy group of m by Gm = {g ∈ G Φ(g,m) = m}. Note that Gm is a Lie
group because it is a closed subgroup of G. The Lie algebra of Gm is gm.

� Springer Basel 2015
R.H. Cushman and L.M. Bates, Global Aspects of Classical
Integrable Systems, DOI 10.1007/978-3-0348-0918-4_7
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Claim: Let L be a submanifold of G through e such that g = gm ⊕ TeL and let S be
a submanifold of M through m such that TmM = TmOm ⊕ TmS. Then there is an open
neighborhood L0×S0 of (e,m) in L×S such that Φ|(L0×S0), the restriction of the action
Φ to L0 ×S0, is a diffeomorphism onto an open neighborhood of m in M.

(1.1) Proof: For (ξ ,v) ∈ TeL×TmS we have

T(e,m)(Φ|(L×S))(ξ ,v) = TeΦmξ +TmΦev, by the formula for partial derivatives

= TeΦmξ + v, since Φe is the identity map.

Now T(e,m)Φ|(L×S) is injective; for if 0 = TeΦmξ +v, then v ∈ TmOm∩TmS = {0}, which
follows from our hypothesis, and thus TeΦmξ = 0. But by hypothesis we have kerTeΦm∩
TeL = {0}. Hence ξ = 0. Moreover T(e,m)Φ|(L×S) is surjective because TmM = TmOm +
TmS = TeΦm TeL+TmS. Applying the inverse function theorem concludes the argument.
�

An immediate consequence of the above result is the following.

Corollary: If Φ�(S0)∩S0 =∅ for some � ∈ L0, then �= e.

(1.2) Proof: By hypothesis, there is an s∈ S0 such that Φ�(s)= s′ ∈ S0. But then Φe(s′)=Φ�(s).
In other words, Φ(�,s)=Φ(e,s′). Since Φ is a local diffeomorphism on L0×S0, we obtain
�= e. �

In order to ensure that orbit spaces, treated in the following section, are reasonably well
behaved, some condition must be imposed on the action Φ. A condition which works
well is that the action Φ be proper, that is, the map G×M → M×M : (g,m) �→ (m,g ·m)
is a proper map. As G and M are both manifolds, this means that the inverse image of
a compact set under this map is compact. One might think that it would be more natural
to require that the map G×M → M : (g,m) �→ g ·m = Φ(g,m) be proper. But what we
need is a condition which ensures that nearby points in M may only be mapped into each
other by elements of G which are close to the identity. Actually, properness is somewhat
stronger than this.

Claim: If the G-action is proper, then the isotropy group Gm is compact.

(1.3) Proof: This follows immediately by looking at the inverse image of (m,m). �

A nice feature of a proper action of a Lie group near a fixed point is that it is locally
linearizable. In particular, we have

Claim: For any point m ∈ M there is a Gm-invariant neighborhood U of m ∈ M and a
diffeomorphism ψ : U ⊆ M → TmM such that

1. ψ maps the point m to the origin and its tangent at m is the identity.
2. ψ is Gm-equivariant, that is, for every g ∈ Gm and p ∈U we have

ψ(Φg(p)) = TmΦg(ψ(p)).

In other words, the diffeomorphism ψ locally identifies the Gm-action on M near m with
a linear action of Gm on the vector space TmM.
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(1.4) Proof: For every chart (ϕ,Ũ) on M with ϕ(m) = 0 there is a Gm-invariant open set U
containing m with U ⊆ Ũ , see the exercises. Working in this chart we may identify the
image of the chart map with the tangent space to M at m. We are reduced to the following
situation. There is a compact group G (= isotropy group of 0) acting, not necessarily
linearly, on Rn and the origin is a fixed point. For p ∈ Rn define a map ψ : U ⊆ Rn →
U ′ ⊆ Rn by ψ(p) =

∫
G D2Φ(g−1,0) ·Φ(g, p) dg with dg being Haar measure on G with

vol(G) = 1. In other words, dg is a bi-invariant volume form on G. Now for any h ∈ G
and p ∈U

D2Φ(h,0) ·ψ(p) =
∫

G
D2Φ(h,0) ·D2Φ(g−1,0) ·Φ(g, p) dg

=
∫

G
D2Φ(hg−1,0) ·Φ(g, p) dg

=
∫

G
D2Φ(k−1,0) ·Φ(kh, p) d(kh), changing integration variable by g = kh

=
∫

G
D2Φ(k−1,0) ·Φ(kh, p) dk

=
∫

G
D2Φ(k−1,0) ·Φ(k,Φ(h, p)) dk = ψ(Φ(h, p)).

Thus we have produced a map ψ which intertwines the action of G with an action by
linear maps. Since T0ψ =

∫
G D2Φ(g−1,0)D2Φ(g,0) dg = id, the map ψ is a local diffeo-

morphism. �

Corollary. Let H be a compact subgroup of G and let M[H] = {m ∈ M H ⊆ Gm}. Then
every connected component of M[H] is a smooth submanifold of M. Moreover, the tangent
space TpM[H] at p ∈ M[H] is the set (TpM)H of H-fixed vectors of TpM, that is, (TpM)H =

{vp ∈ TpM TpΦhvp = vp, for every h ∈ H}.

(1.5) Proof: Let V be an open neighborhood of 0 in TpM which is mapped diffeomorphically
onto the open neighborhood U of p in M by ψ−1. The map ψ−1 intertwines the linear
H-action Φ̂ : H × TpM → TpM : (h,vp) �→ TpΦhvp with the H-action Φ̃ = Φ|(H ×M).
Since (TpM)H is clearly a vector subspace of TpM, to show that M[H] is a submanifold
of M it suffices to verify that ψ−1

(
(TpM)H ∩V

)
= U ∩M[H]. If v ∈ (TpM)H ∩V , then

m = ψ−1(v) ∈U and Φ̂h(v) = v for every h ∈ H. Since ψ−1 intertwines the H-actions Φ̂
and Φ̃, it follows that Φh(m)=m for every h∈H, that is, H ⊆Gm. So m∈M[H]. Therefore
ψ−1

(
(TpM)H ∩V

)⊆U ∩M[H]. Now suppose that m ∈U ∩M[H]. Then ψ(m) = v ∈V and
Φh(m) = m for every h ∈ H. Since ψ intertwines the H-actions Φ̃ and Φ̂, we obtain
Φ̂h(v) = v for every h ∈ H, that is, v ∈ (TpM)H . Therefore ψ(U ∩M[H]) ⊆ (TpM)H ∩V .
This proves the desired equality and thus the corollary. �

An important property of proper actions is the existence of a slice. A slice at m for the
action Φ is a smooth submanifold S of M through m such that

1. S is transverse and complementary to the orbit Om of m at the point m,
that is, TmM = TmOm ⊕TmS.

2. For every p ∈ S, the submanifold S is transverse to Op, that is, TpM =
TpOp +TpS.
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3. S is Gm-invariant.
4. For p ∈ S and g ∈ G, if Φg(p) ∈ S then g ∈ Gm.

� We now show that slices exist for proper group actions.

(1.6) Proof: We begin by constructing a candidate slice Sε and then show that properties 1
through 4 hold.
3. For every k ∈ Gm we have Φk ◦Φg(m) = Φk ◦Φg ◦Φk−1(m) = Φkgk−1(m). Therefore for
every ξ ∈ g

TmΦk ◦TeΦmξ =
d
dt t=0

Φk
(
Φm(exp tξ )

)
=

d
dt t=0

Φk(exp tξ )k−1(m).

Since the one parameter subgroups t �→ k(exp tξ )k−1 and t �→ exp t Adk ξ have the same
tangent vector Adk ξ at t = 0, we obtain TmΦk ◦TeΦmξ = TeΦm(Adk ξ ). This implies
that TmΦk leaves TmOm invariant. With respect to a Gm-invariant positive definite inner
product on TmM, the orthogonal complement (TmOm)

⊥ is a Gm-invariant subspace. Using
the local linearizing diffeomorphism ψ of ((1.4)) the submanifold Sε = ψ−1

(
(TmOm)

⊥ ∩
Bε

)
, where Bε is a ball of radius ε in TmM, is Gm-invariant. Thus Sε satisfies property 3.

1. From the argument proving property 3, it follows that TmSε = (TmOm)
⊥. Hence Sε has

property 1.
2. Property 2 is an open condition in Sε as we see from the following argument. Consider
the map Φ̃ : G×S → M : (g,s) �→ Φg(s). Then T(e,s)Φ̃(g×TsS) = TsOs+TsS. By property
1 we see that T(e,m)Φ̃ is surjective. This is an open condition on S, that is, for every s ∈ S
near m, the map T(e,s)Φ̃ is surjective. So TsM = TsOs +TsS. Thus property 2 holds on Sε .
4. Now suppose that property 4 does not hold for any ε > 0. Then there is a sequence
{m j} with m j ∈ S1/ j, m j → m, and a sequence g j ∈ Gm with g j ·m j ∈ S1/ j, which implies
g j ·m → m. By properness, there is a subsequence g jk → g, which we may assume is
just g j itself. Replacing g j by g−1g j we may suppose that {g j} converges to e, but g j ∈
Gm. Choosing H to be a submanifold of G which is transverse to Gm, there is an open
neighborhood V ×W of (e,e) in H ×Gm such that the multiplication (h,k) → hk is a
diffeomorphism onto an open neighborhood of e in G. Thus we may assume that g j =
h jk j. As g j ∈ Gm and k j ∈ Gm, we conclude h j = e for all j. Arguing as above once
more with S1/ j in place of H, we obtain g j ·m j = h j · k j ·m j ∈ S1/ j. Because S1/ j is Gm-
invariant, k j ·m j ∈ S1/ j. But ((1.2)) implies that h j = e. This contradiction establishes
there is an ε > 0 such that property 4 holds. Hence Sε is a slice. �

Claim. Give M[H] the topology induced from that of M. Then MH = {m ∈ M Gm = H}
is an open subset of M[H]. So every connected component of MH is a submanifold of M.

(1.7) Proof: Suppose that p ∈ MH . Let Sp be a slice to the G-action at p. The map ϕ : Sp×L →
M : (s,η) �→ Φexpη(s) with ϕ(p,0) = p and L a complement to h in g is a diffeomorphism
of an open neighborhood W of (p,0) in Sp ×L onto an open neighborhood U of p in M.
Let q ∈ M[H]∩U . Then there is a g ∈ expL and an s ∈ Sp such that Φg(s) = q. Therefore
g−1 Gq g = Gs ⊆ H, where the inclusion follows because Sp is a slice. But q ∈ M[H].
Therefore H ⊆ Gq ⊆ gHg−1. Since H and gHg−1 have the same Lie algebras, it follows
that H = gHg−1 if H is connected. Because the map H �→ gHg−1 is a diffeomorphism,



VII.1 Smooth group actions 309

H and gHg−1 have the same number of connected components, which is finite since H
is compact. From g−1 Gq g = Gs ⊆ H it follows that every connected component of H
is a connected component of gHg−1. Therefore H and gHg−1 have the same connected
components. Hence H = gHg−1, which implies that Gq = H using g−1 Gq g = Gs ⊆ H.
Therefore, q ∈ MH ∩U , that is, M[H] ∩U ⊆ MH ∩U . But MH ⊆ M[H]. So M[H] ∩U =
MH ∩U . �

Let M(H) = G · MH . Then M(H) is the set of points of M of orbit type H. From the
definition of MH it follows that M(H) = {m ∈ M there is a g ∈ G such that gGmg−1 = H}.

� The following argument shows that M(H) is a submanifold of M.

(1.8) Proof: Let m ∈ M(H). Since M(H) = G ·MH , there is a p ∈ MH and a g ∈ G such that
Φg(p) =m. Let L be a complement to h in g. Let Sp be a slice to the G-action Φ at p. Then
the map ϕ : Sp×L → M : (s,η) �→ Φexpη(s) with ϕ(0, p) = p is a local diffeomorphism at
p. Since ϑ = ψ × idL : TpSp×L �→ Sp×L with ϑ(0,0) = (0, p) is a local diffeomorphism,
where ψ−1 is a local diffeomorphism which intertwines the H-action Φ̂ on TpM with the
H-action Φ̃ = Φ|(H ×M) on M, see ((1.4))), the map

θ : TpSp ×L → M : (vp,η) �→ Φexpη(ψ−1(vp))

with θ(0,0) = p is a local diffeomorphism of an open neighborhood W ×V ⊆ TpSp ×L
of (0,0) onto an open neighborhood U = θ(W ×V ) of p in M. Now ψ(MH ∩Sp ∩U) =
ψ(M[H] ∩ Sp ∩U) = Y is the intersection of an open neighborhood of 0 in TpSp with
Tp(M[H]∩Sp). Since G ·MH = M(H), we obtain θ(W ×Y ) = ΦexpW (MH ∩Sp ∩U)∩U =
M(H)∩U . Therefore M(H) is a submanifold of M. �

On the set of all closed subgroups of G define a relation � by saying that K � H if and
only if K is conjugate to H in G. Clearly � is an equivalence relation on the set of
all closed subgroups of G. Thus as H runs over the set of conjugacy classes of closed

� subgroups of G, the orbit types M(H) partition M. The orbit type decomposition of M is
locally finite if the action of G is proper.

(1.9) Proof: We prove the local finiteness of the orbit type decomposition by induction on the
dimension of the group G and the dimension of the manifold M. If G is a finite group
acting on a manifold, the number of conjugacy classes of subgroups is finite. Hence the
orbit type decomposition is finite. Suppose that M is a finite number of points, then the
orbit type decomposition is finite. With these special cases out of the way, we can begin
the induction argument. Let G ·m be the G orbit through m of the proper group action Φ
on M. Since Φ is proper there is a Gm-invariant slice S through the point m. Note that the
dimension of the isotropy group Gm is at most equal to the dimension of G. Because Gm is
compact and leaves m fixed, the Gm-action on S is locally equivalent to the linear isotropy
action Φ̂ : Gm × TmS → TmS. Suppose that the action Φ̂ is trivial, that is, Φ̂h(vm) = vm
for every h ∈ Gm and every vm ∈ TmS. In other words, if p ∈ S then the isotropy group of
a point p on the G-orbit is equal to Gm. Since every G-orbit near G ·m intersects S, the
isotropy group is conjugate in G to Gm, that is, it lies in the equivalence class of the orbit
type decomposition corresponding to (Gm). Hence the orbit type decomposition near
G ·m is locally finite. Now suppose that the action Φ̂ is not trivial. Since Gm is compact,
there is a Gm-invariant Euclidean inner product 〈 , 〉 on TmS. Let Sr be the sphere of radius
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r in (TmS,〈 , 〉). Note that the dimension of Sr is strictly less than the dimension of M.
Since the action Φ̂ is linear, it induces a proper action Ψ : Gm ×Sr → Sr. Repeating
the above argument on the Gm-action Ψ either reduces the dimension of the group or the
dimension of the manifold on which it acts. This completes the induction step and hence
the proof. �

2 Orbit spaces

In this section we describe the space of orbits M/G of a proper group action of G on
a smooth manifold M. In general, M/G is only a topological space. It need not be a
topological manifold. If in addition we assume that the action is free, that is, the isotropy
group at each point is the identity element, then the orbit space is a smooth manifold.

2.1 Orbit space of a proper action

In this subsection we define the orbit space of a Lie group acting properly on a smooth
manifold and give some of its properties.

Let Φ : G×M → M be an action of a Lie group G on a smooth manifold M. We begin by
constructing the orbit space M/G set theoretically. Let m = G ·m be the orbit of the action
Φ through the point m ∈ M. Define the relation ∼ on M by saying that m ∼ m′ if and
only if m and m′ lie on the same G-orbit of Φ. It is easy to check that ∼ is an equivalence
relation on M and thus partitions M into G-orbits. The orbit space M/G is the set of all
G-orbits of Φ on M. Thus the orbit map π : M → M/G : m �→ m is surjective.

We put a topology on M/G, called the quotient topology, by saying that U ⊆ M/G is
open if and only if π−1(U ) is an open subset of M. Let S be a slice at m to the G-action

� Φ. Then S is transverse to the G-orbit G ·m at m. For a suitable open neighborhood S0 ⊆ S
of m, the set π(S0) is an open subset of M/G.

(2.1) Proof: It suffices to show that the union of all G-orbits through S0, namely, π−1(π(S0)) =
G ·S0, is an open subset of M. From ((1.1)) it follows that there is an open neighborhood
G0 of e in G and a Gm-invariant open neighborhood S0 in the slice S at m such that ΦG0(S0)
is an open neighborhood of m in M. Since G is the union of translates {g ·G0|g ∈ G}, the
set G ·S0 is the union of open sets Φg·G0(S0) and hence is open. �

� Let S be a slice for a proper G-action at the point m in M. Then the orbit spaces (G ·S)/G
and S/Gm are homeomorphic.

(2.2) Proof: Consider the map ϕ : (G · S)/G → S/Gm : G · s �→ (G · s)∩ S. By property 4 of a
slice, (G · s)∩ S = Gm · s. Hence ϕ is well defined. Because Gm ⊆ G, it follows that the
Gm orbit Gm · s is contained in the G-orbit G · s. Hence the map ϑ : S/Gm → (G · S)/G :
Gm · s �→ G · s is well defined. It is easy to see that ϑ ◦ϕ = id(G·S)/G and ϕ ◦ϑ = idS/Gm .
Therefore ϕ is bijective.
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We now show that ϕ is a homeomorphism. Let ρ : S → S/Gm be the orbit map for the
Gm-action on S and let π : G · S → (G · S)/G be the orbit map for the G-action on G · S.
Let U be an open set in S/Gm containing the orbit Gm · s. Then ρ−1(U ) =U is an open
set in S containing Gm · s. Since G ·U is an open set in G · S, π(G ·U) is an open set in
(G ·S)/G containing G · s. Thus ϕ is continuous. In fact ϕ is an open map. For suppose
that V is an open set in (G · S)/G containing G · s. Then π−1(V ) = V is an open set in
G ·S. Hence U = V ∩S is an open set in S containing Gm · s. Therefore ρ(U) is an open
set in S/Gm. Hence ϕ is a homeomorphism. �

Claim: If {(m,Φg(m)) ∈ M×M g ∈ G and m ∈ M} is closed, then the orbit space M/G
is Hausdorff.

(2.3) Proof: Suppose that M/G is not Hausdorff, that is, m = m ′ cannot be separated. Let Uk
and Vk be nested neighborhood bases of m and m′ respectively. As m and m ′ cannot be sep-
arated, there is a pk ∈ (G ·Uk)∩(G ·Vk) for each k. Set pk = gk ·mk = hk ·m′

k, where mk ∈Uk

and m′
k ∈ Vk. Then h−1

k gkmk → m′ and consequently the sequence {(mk,h−1
k gkmk)} con-

verges to (m,m′). By hypothesis m′ =Φg(m) for some g∈G. This implies m=m ′, which
is a contradiction. �

Corollary: If the G-action Φ is proper, then M/G is Hausdorff.

(2.4) Proof: Let {(mk,Φgk(mk))} be a sequence of points in M×M which converges to (m,n).
By properness of the action there is a subsequence {(gk� ,mk�)} which converges to (g,m)
in G×M. By continuity of Φ, gk� ·mk� → g ·m. This implies that {(m,g ·m)} ⊆ M×M is
a closed set. Hence by the claim, M/G is Hausdorff. �

Example 1. Let H be a closed subgroup of G. Suppose that (gk,hkgk)→ (g, j) in G×G.
Then hk = (hkgk)g−1

k → jg−1 since G is a Lie group. Thus the action of the closed
subgroup H on G is proper. Consequently, the orbit space G/H is Hausdorff.

Claim: Suppose that G acts properly on M, and that {Uα} is a G-invariant open covering
of M. Then there is a smooth G-invariant partition of unity subordinate to {Uα}.

(2.5) Proof: As M is locally compact and σ -compact, and M/G is Hausdorff, it follows that
M/G is locally compact and paracompact, and hence normal. We can choose a set of
points mk with slices Sk through mk so that {G · Sk} is a locally finite open covering of
M subordinate to {Uα} and π(Sk) is a locally finite open covering of M/G. The local
compactness of M/G implies that the slices Sk may be chosen in such a way that there
are relatively compact sets Vk ⊆ Sk so that {π(Vk)} also cover M/G. On each Sk we
may construct a smooth function f̃k which is positive on Vk and has compact support in
Sk. Define f k to be the average of f̃k over the compact isotropy group Gmk . Let fk be
fk(g ·m) = f k(m) if m ∈ Sk, otherwise = 0. Then fk is a smooth nonnegative function on
M. The proof is completed by setting hk = fk/∑k fk. �

Corollary: Suppose that N is a G-invariant subset of M and f is a smooth function on M
such that f |N is constant on G-orbits. Then there is a smooth G-invariant function F on
M such that F |N = f |N.

(2.6) Proof: First we define a function Fk on each G ·Sk by the following rule. If N ∩Sk = ∅,
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then set Fk = 0. Otherwise, set Fk|Sk = average of f |Sk over Gmk . Note that Fk|(Sk ∩N) =
f |(Sk ∩N). Extend Fk|Sk to G · Sk by the G-action. Letting F = ∑k hkFk where {hk} is a
G-invariant partition of unity subordinate to {G ·Sk} does the job. �

Corollary: Smooth G-invariant functions on M separate orbits, that is, if m and m′ are on
distinct G-orbits of M, then there is a smooth G-invariant function F such that F |Om = 1
and F |Om′ = 0.

(2.7) Proof: Let Sm be a slice to the G-action at m. Suppose that the G-orbit G ·m′ does not
intersect Sm. Then let N =G ·Sm and apply the proof of the above corollary to the function
f which is identically 1 on Om = G ·m. This gives a smooth function F on M which is 1
on Om and 0 on Om′ . Now suppose that q ∈ I = (G ·m′)∩Sm at q. Then q = m since the
G-orbits G ·m and G ·m′ are distinct. By property 4) of a slice, I is just Gm ·q, which is
compact and does not contain m. Hence there is an open set U in Sm which contains m but
does not intersect I . Again apply the proof of the above corollary taking N = G ·U and
letting f be identically equal to 1 on G ·m. This gives a smooth function F on M which is
1 on Om and 0 on Om′ . �

2.2 Orbit space of a free action
In this subsection we show that the orbit space of a proper free group action is a smooth
manifold. In fact, it is the base of a principal bundle whose total space is the original
manifold.

Before proving the result, we consider a germane example, namely, the quotient of a Lie
group by a closed subgroup.

Example 1. Let H be a closed subgroup of a Lie group G. Then the orbit space G/H =
{Hg|g ∈ G} is a smooth manifold.

(2.8) Proof: Choose L ⊆ g such that g = h⊕L. Then there are open neighborhoods Uh and
UL of 0 in h and L such that ϕ : Uh×UL → G : (h, �) �→ exphexp� with ϕ(0,0) = e is a
local diffeomorphism. Since H is a closed subgroup of G, there is an open neighborhood
V of e in G such that V ∩H = expUh. Let U be an open neighborhood of 0 in UL with
compact closure U satisfying exp(U)exp(−U)⊆V . To show that the H-orbit mapping π :
exp(U)⊆G→ π(exp(U))⊆G/H is a homeomorphism, it suffices to show that π is one to
one, since π(exp(U)) is compact and Hausdorff. If π(expu) = π(expu′) for some u,u′ ∈
U , then there is an h∈Uh such that exphexpu= expu′ = exp0expu′. Because ϕ is a local
diffeomorphism, it follows that u = u′ and h = 0. Hence π|exp(U) is a homeomorphism.
From the definition of π it follows that the set π(expUh expU) = π(expU) is open and
contains e = π(e) in G/H. Exactly the same argument applies to the map ϕg = Rg ◦ϕ ,
where Rg : G → G : h �→ hg. This allows us to conclude that every g = π(g) in G/H
has an open neighborhood homeomorphic to an open set in L. Consequently G/H is a
topological manifold.

To show that G/H is a smooth manifold, we construct charts as follows. Let Ug ⊆ G/H
be a set Ug = π(expU g) = eexpU g. Note that G acts on the right on G/H by (Hg,k) �→
Hgk. Define the mapping ψg by ψg : Ug ⊆ G/H → U ⊆ L : eexpug �→ u. The proof is
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complete once we have shown that {(Ug,ψg)|g ∈ G} form an atlas for G/H with smooth
transition functions. To do this form the local section maps σg : Ug → G : eexpug �→
expug. Clearly, π ◦σg = idUg . So σg(Ug) ⊆ π−1(Ug). Furthermore, σg ◦ψ−1

g : U → G :
u �→ expug is a diffeomorphism onto its image σg(Ug) in G. Now ψg = (ψg ◦σ−1

g ) ◦σg.
Since ψg ◦σ−1

g is a diffeomorphism and σg is a homeomorphism, we conclude that ψg is
a homeomorphism.

To prove the smoothness of the transition function ψg′ ◦ψ−1
g : ψg(Ug ∩Ug′)→ ψ ′

g(Ug ∩
Ug′) we argue as follows. Let k ∈ Ug ∩Ug′ . Then there is a unique element h ∈ H such
that hk = k′, where k = σg(k) and k′ = σg′(k). Since multiplication by h is a smooth
map, h−1 ·σg′(Ug′) is a smooth submanifold of G containing k and is transverse to Hk.
Using the local diffeomorphism ϕ̃k : expUh×U →V : (h, �) �→ (hexp�)k, we see that the
image of the submanifold h−1 ·σg′(Ug′) under ϕ̃−1

k is the graph of a smooth mapping ρ :
U ⊆UL → H. Therefore the transition mapping is ψg′ ◦ψg(u) = π2 ◦ ϕ̃−1

k′
(
hϕ̃k(ρ(u),u)

)
,

which is smooth. �
It may help to think of this proof in the following way. In order to show that the transition
map ψg′ ◦ψ−1

g is a diffeomorphism we have by design made it a homeomorphism. The
multiplication by h is a technical device to get things in a single chart so that we can
deduce that the transition map is a local diffeomorphism. A homeomorphism which is
everywhere a local diffeomorphism is a diffeomorphism.

In general, to ensure that the orbit space M/G of a G-action Φ is a smooth manifold, we
need to put very strong conditions on the action. For example, one might hope that if the
dimension of each orbit G ·m is equal to the dimension of the group G, in particular there
are no fixed points, and G acts properly, then M/G is a smooth manifold. Unfortunately
this need not be true, see the example in section 7.1. Recall that a G-action on M is free if
and only if for every m ∈ M the isotropy group Gm is the identity element of G.

Claim: If the action Φ : G×M → M is free and proper, then the orbit space M/G is a
smooth manifold. Moreover, for every m ∈ M/G there is an open neighborhood U of m
in M/G and a diffeomorphism

ψU : U = π−1(U )⊆ M → G×S : m �→ (
ϑU (m),sU (m)

)
(2)

such that for every g ∈ G and m ∈U

ψU (g ·m) =
(
gϑU (m),sU (m)

)
. (3)

(2.9) Proof:
Step 1.
Our first task is construct the diffeomorphisms ψU , because these maps will allow us
to put a smooth structure on M/G. To do this, let S̃ be a smooth submanifold through
m ∈ M such that TmS̃⊕TeΦmg= TmM. As this is an open condition in S̃, there is an open
neighborhood S ⊆ S̃ about m such that TsS⊕TeΦsg= TsM for each s ∈ S.

Claim: For each (g,s) ∈ G×S the action Φ|(G×S) has a bijective tangent map at (g,s).

(2.10) Proof: To see that T(e,s)Φ|(G× S) is injective, suppose that 0 = T(e,s)Φ|(G× S)(ξ ,v) =
TeΦsξ +v for some (ξ ,v)∈ g×TsS. Then v∈ TeΦsg∩TsS = {0}, so v= 0 and TeΦsξ = 0.
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Therefore TeΦs(tξ ) = 0 for all t ∈ R. This implies that s is a fixed point for Φ restricted
to the one parameter subgroup t �→ exp tξ . Because Φ is free, exp tξ = e for all t ∈ R.
Therefore ξ = 0. To see that T(e,s)Φ|(G×S) is surjective, note that

rankT(e,s)Φ|(G×S) = dimTsS+dimTeΦs g−dim(TeΦsg∩TsS) = dimTsM.

Since Φ(g,s) = Φg ◦Φ(e,s), we find that T(g,s)Φ|(G×S) = TsΦg ◦T(e,s)Φ|(G× S). How-
ever, Φg is a diffeomorphism. Thus T(g,s)Φ is bijective. �

From the inverse function theorem it follows that the mapping Φ|(G×S) is a local diffeo-
morphism of G×S onto an open subset U of M.

Claim: Shrinking S if necessary, we can arrange that Φ|(G×S) is injective and hence is
a diffeomorphism.

(2.11) Proof: Suppose that for no S0 ⊆ S the map Φ|(G×S0) is one to one. Let {Uk} be a nested
neighborhood base of m in S. Since Φ|(G×S0) is not one to one, there is an sk ∈Uk and a
gk ∈ G bounded away from e such that gk · sk ∈Uk. Therefore gk · sk → m. By properness
of Φ there is a subsequence gk� → g and g ·m = m. This contradicts the freeness of Φ. �

The diffeomorphism

ψU = (Φ|(G×S))−1 : U ⊆ M → G×S : m → (
ϑU (m),sU (m)

)
(4)

intertwines the G-action Φ on U with the G action • on G×S given by g•(h,s) = (gh,s),
that is,

ψU (g ·m) = g•
(

ϑU (m),sU (m)
)
. (5)

Step 2.
Now we want to show that M/G is a topological manifold. We already know that M/G is
paracompact. So it remains to show that each point has a neighborhood homeomorphic
to Euclidean space and that the transition maps are continuous. To do this, let ψU : U ⊆
M/G → S be the mapping with makes diagram 2.1 commute, that is, ψU ◦π = π2 ◦ψU .
Here π2 is projection on the second factor. The map ψU is well defined because of the
way ψU intertwines the G-actions. Now π and π2 are not only continuous but also open

U ⊆ M �ψU G×S

�

π

U ⊆ M/G
�

π2

ψU � S

Diagram 2.1

mappings and ψU is a diffeomorphism. If V is an open subset of S, then ψ−1
U (V ) =

π ◦ψ−1
U ◦π−1

2 (V ) is open. So ψU is continuous. The map ψU is one to one because

ψ−1
U (pt) = π

(
ψ−1

U (G×{pt}))= π(single G-orbit) = pt.
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Chasing the diagram in the opposite direction, the same reasoning as above shows that
ψ−1

U is continuous. Hence ψU is a homeomorphism. By our construction of the charts
(ψU ,U ), on overlaps the transition map is a homeomorphism.

Step 3.
To complete the proof that M/G is a smooth manifold, we only have to check that the
transition maps are diffeomorphisms. Let T be a submanifold of M passing through m′ =
h · m such that the map ψV : V ⊆ M → G × T is a diffeomorphism satisfying (4) and
ψ−1

V (e, t) ∈ T ⊆ M for every t ∈ T . Since U = Φ(G× S) and V = Φ(G×T ), there are
open subsets Ŝ ⊆ S, T̂ ⊆ T such that U ∩V =Φ(G× Ŝ) =Φ(G× T̂ ). We wish to show that
the map θ : Ŝ → T̂ : s �→ t = T̂ ∩ (G · s) is a diffeomorphism. To see this choose s and t so
that s = g · t. Then g · T̂ intersects Ŝ at s and both Ŝ and g · T̂ intersect G · s transversely. In
a local product chart (U,ψU ) adapted to (e,s) so that s ∈ Ŝ has coordinates (e,0), g · T̂ is a
smooth manifold which intersects the origin and is transverse to G×{0}. This means that
Ŝ is diffeomorphic by θ to g · T̂ about s. Hence Ŝ is diffeomorphic to T̂ . Just like in the
example 1, we have a homeomorphism that is everywhere a local diffeomorphism. Hence
the mapping θ is a diffeomorphism. This tells us that the transition map between the
charts (ψU ,U ∩V ) and (ψV ,U ∩V ) of M/G is the smooth map ψV ◦ψ−1

U : s �→ t = θ(s)
because the charts (ψU ,U ∩V ) and (ψV ,U ∩V ) are naturally induced from the charts
(ψU ,U ∩V ) and (ψV ,U ∩V ) by restricting the image of ψU to {e}× Ŝ and the image of
ψV to {e}× T̂ . This concludes the proof that M/G is a smooth manifold. �

Let (P,G,N) be a left principal G-bundle over N. This means that

1. G acts smoothly on P and there is a surjective submersion π : P → N,
called the bundle projection such that π(p) = π(g · p).

2. For each p ∈ P there is an open neighborhood U ⊆ N of p = π(p) and a
G-equivariant diffeomorphism of the form

ψU : π−1(U )→ G×U : p → (
ϑU (p), ψ̂U (p)

)
,

such that π ◦ψ−1
U = idU . The group action on G×U is multiplication

by G on the first factor. The pair (ψU ,π−1(U )) is called a local trivial-
ization of the bundle π : P → N at p.

3. For every pair of local trivializations given by (ψU ,π−1(U )) and
(ψV ,π−1(V )) the transition mapping ψV ◦ψ−1

U : G× (U ∩V )→ G×
(U ∩V ) is a diffeomorphism of the form

ψV ◦ψ−1
U (g,n) =

(
gϑU V (n),n

)
where ϑU V : U ∩V → G is smooth.

Note this is a left principal G-bundle. The modifications for a right principal G-bundle
are straightforward.

Example 2. If H is a closed subgroup of the Lie group G and π is the orbit mapping
π : G → G/H : g �→ Hg then (G,H,π) is a right principal H-bundle. To see this we use
the same notation as in example 1. Define the map ψUG by ψUg : π−1(Ug)→ H ×Ug :
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k �→ (
k(σg ◦π(k))−1,π(k)

)
, where σg : Ug → G : eexpug �→ expug and u ∈U ⊆L . The

map ψUg is well defined because Hk intersects σg(Ug) exactly once, and consequently
is a diffeomorphism. Hence π : G → G/H is a smooth bundle with local trivializations
{(ψUg ,π−1(Ug)

)}. From the definition of the local trivialization it follows that the tran-
sition maps are

ψUg′
◦ψ−1

Ug
: H × (Ug ∩Ug′)→ H × (Ug ∩Ug′) : (h,u) �→ (h′,u) =

(
h(σg(u))(σg′(u))

−1,u)
)
.

This completes the example. �

Example 2 should motivate the proof of our next

Claim: Let G be a Lie group which acts freely and properly on a smooth manifold M.
Then M is a principal G-bundle over the orbit space M/G with orbit mapping π : M →
M/G being the bundle projection.

(2.12) Proof: We use the same notation as in ((2.9)). Observe that the map

ϕU : U = π−1(U )→ G×M/G : m �→ (
ϑU (m),ψ−1

U (sU (m))
)

is a diffeomorphism. Here ψU is the map defined in step 2 of ((2.11)). So ϕU =
(id × ψ−1

U ) ◦ψU . Because it intertwines the G-action, ϕU is a local trivialization. To
finish the argument, we need only show that if (ϕU ,U) and (ϕV ,V ) are local trivializa-
tions of the bundle π : M → M/G, then the transition map ϕV ◦ϕ−1

U is of the form given
in point 3 of the definition of principal bundle. The reason for this is that by design there
is a canonical diffeomorphism of S ⊆ M, with U ⊆ M/G. The computation is

ϕV ◦ϕ−1
U (u)(g,u) = ϕV

(
Φg(ϕ−1

U (e,u))
)
= g•ϕV ◦ϕ−1

U (e,s) =
(
g ·ϑUV (u),u

)
.

Here the value of the transition map ϑUV (u) is defined to be π1 ◦ϕV ◦ϕ−1
U (e,u) where π1

is the projection onto the first factor of G×M/G. �

Example 3. The normalizer N(H) of H in G is {g∈H gHg−1 =H}. Clearly, H ⊆N(H).
Moreover, N(H) is a closed subgroup of G and hence is a Lie group. Because H is a

� normal subgroup of N(H), the coset space N(H)/H is a Lie group. Suppose that MH =
{m ∈ M Gm = H} is not empty. Then g ∈ N(H) if and only if g ·MH = MH .

(2.13) Proof: Suppose that g∈N(H) and m∈MH . Then g ·m∈MH , because Gg·m = gGmg−1 =
Gm, since g ∈ N(H) and H = Gm. Thus g ·m ∈ MH . So g ·MH ⊆ MH . Now g−1 ·m ∈ MH ,
since Gg−1·m = g−1Gm(g−1)−1 = Gm, because g−1 ∈ N(H). Thus g−1 ·MH ⊆ MH . So
MH = g · (g−1 ·MH) ⊆ g ·MH ⊆ MH , which shows that g ·MH = MH . Now suppose that
g · MH = MH . Then for every m ∈ MH we have g · m ∈ MH , that is, Gg·m = Gm. So
gGmg−1 = Gg·m = Gm, that is, g ∈ N(H). �

Claim: The orbit space of the free and proper action of N(H)/H on the smooth manifold
MH is the smooth manifold M(H). The N(H)/H-orbit mapping is π|MH : MH → M(H).

(2.14) Proof: The proof is a consequence of the following results.
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� N(H)/H acts freely and properly on MH .

(2.15) Proof: Because N(H) is a closed subgroup of G, MH is a closed subset M, and the G-
action on M is proper, it follows that the action of N(H)/H on MH is proper. To prove
freeness let m ∈ MH and suppose that g ∈ N(H)m. Then g ·m = m. So g ∈ Gm = H.
Thus N(H)m ⊆ H. Now suppose that g ∈ H = Gm. Then g ·m = m and g ∈ N(H). So
g ∈ N(H)m. Thus N(H)m = H, that is,

(
N(H)/H

)
m = {e}. �

We now look at the mapping π|MH : MH → M = M/G, where π : M → M is the G-orbit
� mapping. First we show that the image of π|MH is the orbit type M(H) = π(M(H)) in the

G-orbit space M.

(2.16) Proof: Suppose that m ∈ M(H). Then there is an m ∈ M(H) such that π(m) = m. But
M(H) = G ·MH . Thus there is g ∈ G such that g ·m ∈ MH . So (π|MH)(g ·m) = π(g ·m) =

π(m) = m, that is m ∈ imπ|MH . Consequently, M(H) ⊆ imπ|MH . Now suppose that m ∈
imπ|MH . Then there is m ∈ MH such that m = π(m). But M(H) = G ·MH ⊇ e ·MH = MH .
So m ∈ M(H), which implies m ∈ M(H). Thus imπ|MH ⊆ M(H). �

� Next we show that each fiber of the mapping π|MH is a unique N(H)/H-orbit on MH .

(2.17) Proof: Let m ∈ M(H). Then
(
π|MH

)−1
(m) ⊆ MH ∩M(H). Let m′, m′′ ∈ (

π|MH
)−1

(m).
Then m′, m′′ ∈MH ∩M(H) and π(m′) = π(m′′) =m. So there is g∈G such that m′′ = g ·m′.
Since m′ and m′′ lie in MH , it follows that g ∈ N(H). Thus

(
π|MH

)−1
(m) = N(H) ·m′

with π(m′) = m. �

The claim ((2.14)) follows by applying ((2.9)). �

Example 4. Let G be a Lie group with a closed subgroup H. Suppose that ρ : H → Gl(V )
is a homomorphism. Define an action of H on G×V by

Ψ : H × (G×V )→ G×V : (h,(g,v))→ (gh−1,ρ(h)v).

Then Ψ is free and proper. Hence the orbit space G×HV is a smooth manifold. The map
π1 : G×V → G intertwines the H-action Ψ with the action of H on G. Hence it induces
a map π : G×HV → G/H on the orbit spaces. π is a locally trivial bundle over G/H
with fiber V and total space G×HV . It is an associated bundle of the principal bundle
G → G/H. �

Recall that MH = {m∈M Gm =H}. Let m∈M. For the proper action Φ : G×M →M we
have TeΦmg= Tm(G ·m). For every g ∈ Gm the linear transformation TmΦg : TmM → TmM
leaves the subspace Tm(G ·m) invariant. Hence we obtain an induced linear action ∗ of the
compact group H = Gm on the vector space E = TmM/Tm(G ·m). Let B be an H-invariant
open subset of E. On G×B we have an action of H defined by

μ : H × (G×B)→ G×B : (h,(g,b)) �→ (gh−1,h ∗b). (6)

This action is free and proper. Therefore the orbit space G×HB of the H-action μ is a
smooth manifold. Because the G-action on G×B defined by

ν : G× (G×B)→ G×B : (g′,(g,b)) �→ (g′g,b) (7)
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commutes with the H-action (6), it induces a G-action on G×HB.

Claim (Tube theorem.) Let m ∈ M and set H = Gm. There is a G-invariant open neigh-
borhood U of m in M, an open H-invariant neighborhood B of the origin in E, and a
diffeomorphism ϕ : G×HB → U , which intertwines the G-action on G×HB with the G-
action on U .

(2.18) Proof: B is identified with a submanifold S of M containing m, called a slice, by a
diffeomorphism ψ , see ((1.4)). ϕ is induced by the mapping G × B → M : (g,b) �→
g ·ψ(b), which is a diffeomorphism. �

3 Differential spaces
In this subsection we discuss the differential geometry of the space of orbits of a proper
action using the concept of a differential space.

3.1 Differential spaces
A differential space is a pair (P,C∞(P)), where P is a topological space and C∞(P) is a set
of continuous real valued functions having the following properties.

1. The sets f−1(I), with f ∈ C∞(P) and I an open interval in R, form a
subbasis for the topology of P.

2. For every positive integer n, every F ∈ C∞(Rn), and every f1, . . . , fn ∈
C∞(P), we have F ◦f ∈C∞(P), where f(p) =

(
f1(p), . . . , fn(p)

) ∈ Rn for
every p ∈ P.

3. If f : P �→ R has the property that for every p ∈ P there is an open neigh-
borhood Up of p in P and a function fp ∈C∞(P) such that f |Up = fp|Up,
then f ∈C∞(P).

The set C∞(P) is called the differential structure of the differential space (P,C∞(P)).

Example. Let P be a smooth manifold with C∞(P) its collection of smooth functions.
Then (P,C∞(P)) is a differential space. �

A way of constructing a differential structure on a set P goes as follows. Let F be a family
of functions on P. Endow P with a topology T generated by a subbasis { f−1(I) f ∈ F
and I an open interval in R}. We say that h ∈C∞

F (P) if and only if for each p ∈ P there is
set U ∈ T containing p, functions f1, . . . , fn ∈ F , and a function F ∈ C∞(Rn) such that
h(u) =

(
F◦( f1, . . . , fn)

)
(u) = F

(
f1(u), . . . , fn(u)

)
for every u ∈ U . We call C∞

F (P) the
space of smooth functions on P generated by F . We call the topology T the differential
space topology on P generated by F .

Fact: F ⊆C∞
F (P).

(3.1) Proof: Let f ∈ F and p ∈ P. Take I to be an open interval in R containing f (p). Then
U = f−1(I), which contains p by construction, is an open subset of P, that is, U ∈ T .
Let F = idR. Then F ∈ C∞(R). Since f (u) = (F◦ f )(u) for every u ∈ U , it follows that
f ∈C∞

F (P). �
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Claim: C∞
F (P) is a differential structure on P, which we call the differential space struc-

ture generated by F .

(3.2) Proof: We verify that C∞
F (P) satisfies the definition of differential structure.

Point 1 is satisfied by the choice of topology T on P.
To prove point 2 let h1, . . . ,hn ∈C∞

F (P) and let F ∈C∞(Rn). By definition for each p ∈ P
there is a U ∈ T containing p, functions fi ji ∈ F for 1 ≤ ji ≤ mi such that hi|U =(
Fi◦( fi1, . . . , fimi)

)|U for every 1 ≤ i ≤ n for some functions Fi ∈C∞(Rmi) for 1 ≤ i ≤ n.
Then (

F◦(h1, . . . ,hn)
)|U = F◦(h1|U, . . . ,hn|U)

= F◦
(
F1◦( f11, . . . , f1m1), . . . ,Fn◦( fn1, . . . , f1mn)

)|U
= F◦(F1, . . . ,Fn)◦

(
( f11, . . . , f1m1), . . . ,( fn1, . . . , fnmn)

)|U.

Since F◦(F1, . . . ,Fn)∈C∞(Rm), where m = m1+ · · ·+mn, and fi ji ∈F for every 1 ≤ ji ≤
mi and 1 ≤ i ≤ n, it follows that F◦(F1, . . . ,Fn) ∈C∞

F (P).
To verify point 3 suppose that the function h : P → R has the property that for every
p ∈ P there is a U ∈ T and a function hp ∈ C∞

F (P) such that h|U = hp|U . By construc-
tion of C∞

F (P) there is a Up ∈ T containing p, functions f 1
p , . . . , f n

p ∈ F , and a function
Fp ∈C∞(Rn) such that hp|Up =

(
Fp◦( f 1

p , . . . , f n
p)
)|Up. Thus h|(U ∩Up) = hp|(U ∩Up) =(

Fp◦( f 1
p , . . . , f n

p)
)|(U ∩Up). So h ∈C∞

F (P). Hence C∞
F (P) is a differential structure on P.

�

When F =C∞(P) we say that T is the differential space topology on P.

Fact: If C∞(P) is a differential structure on P and F =C∞(P), then C∞
F (P) =C∞(P).

(3.3) Proof: By ((3.1)) we have C∞(P) = F ⊆C∞
F (P). Let p ∈ P and let Up be a subset of P

containing p in the topology generated by F . Then Up is an open set in the differential
space topology on the differential space (P,C∞(P)). Suppose that f ∈C∞

F (P). Then there
are functions f1, . . . , fn ∈ F =C∞(P) and a smooth function F on Rn such that for every
u ∈Up we have f (u) =

(
F◦( f1, . . . , fn)

)|Up. But F◦( f1, . . . , fn) ∈C∞(P), because C∞(P)
is a differential structure. Thus f |Up = F◦( f1, . . . , fn)|Up, which implies that f ∈C∞(P),
because C∞(P) is a differential structure. So C∞

F (P)⊆C∞(P). �

If (P,C∞(P)) and (Q,C∞(Q)) are differential spaces, then a smooth mapping ϕ from
(P,C∞(P)) to (Q,C∞(Q)) is a continuous mapping ϕ : P → Q such that ϕ∗(C∞(Q)) ⊆
C∞(P). The map ϕ is a diffeomorphism from (P,C∞(P)) to (Q,C∞(Q)) if ϕ is a home-
omorphism from P onto Q and both ϕ and ϕ−1 are smooth. This is equivalent to the
condition that ϕ is a homeomorphism from P onto Q such that ϕ∗(C∞(Q)) = C∞(P),
because

C∞(Q)⊇ (ϕ−1)∗(C∞(P))⊇ (ϕ−1)∗(ϕ∗(C∞(Q))) = (ϕ ◦ϕ−1)∗(C∞(Q)) =C∞(Q).

Differential spaces and smooth mappings form a category.

Let (P,C∞(P)) be a differential space and let N be a subset of P. Define C∞
i (N) to be

the set of all functions f : N �→ R with the property that for every n ∈ N there is an open
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neighborhood Un of n in P and an fn ∈C∞(P) such that f |(Un ∩N) = fn|(Un ∩N). If we
provide N with the topology induced from that of P, then (N,C∞

i (N)) is a differential
� space, called a differential subspace of the differential space (P,C∞(P)). The inclusion

map i :
(
N,C∞

i (N)
)→ (

P,C∞(P)
)

is a smooth map.

(3.4) Proof: Let f ∈C∞(P). We need only show that i∗ f ∈C∞
i (N) for then i∗(C∞(P))⊆C∞

i (N).
Suppose that n ∈ N. Let Un be an open neighborhood of n in P. Then (i∗ f )|(Un ∩N) =
f |(Un ∩N). So i∗ f ∈C∞

i (N). �

� If N is a closed subset of P, then C∞
i (N) =C∞(P)|N.

(3.5) Proof: Let f ∈C∞
i (N). Since N is a closed subset of P, by the Whitney extension theorem

there is an F ∈C∞(P) such that f = F |N. Thus C∞
i (N)⊆C∞(P)|N. Conversely, suppose

that f = F |N for some smooth function F on P. Then for every p ∈ P and every open
neighborhood Up of p in P we have f |(Up ∩N) = F |(Up ∩N). Therefore f ∈C∞

i (N). So
C∞(P)|N ⊆C∞

i (N). �

If U is an open subset of P, then C∞
i (U) = { f |U f ∈ C∞(P)} = C∞(U). A differential

space (P,C∞(P)) is a smooth manifold if for every p ∈ P there is a nonnegative integer n,
an open subset U of P containing p, and f1, . . . , fn ∈C∞(P) such that the map f : U ⊆ P →
V = f(U)⊆ Rn : p �→ f(p) =

(
f1(p), . . . , fn(p)

)
is a diffeomorphism from the differential

space (U,C∞(U)) onto the differential space (V,C∞
i (V )), seen as a differential subspace of

the differential space (Rn,C∞(Rn)). In other words, (P,C∞(P)) is locally diffeomorphic
to an open subset of Rn with its differential structure being given by restricting smooth

� functions to this open subset. If the topological space P of the differential space (P,C∞(P))
is Hausdorff, locally compact and paracompact, then for every open covering U of P there
is a partition of unity in C∞(P), which is subordinate to U .

(3.6) Proof: If p ∈ P and U is an open neighborhood of p in P, then it follows from property
1 of a differential structure that there is a positive integer n, an open subset W of Rn, and
f1, . . . , fn ∈ C∞(P) such that f−1(W ) ⊆ U . There is a cutoff function F ∈ C∞(Rn) such
that F = 1 on an open neighborhood of f(p) in W and the support of F is a compact subset
K of W . From property 2 of a differential structure it follows that F◦f ∈C∞(P). Also the
support of F◦f is f−1(K), which is a closed subset of U . The set f−1(K) is compact if the
closure of U in P is compact. Therefore, if the topological space P is locally compact,
then there are cutoff functions in C∞(P).
If X is a topological space with F (X) a space of real valued functions on X and U =
{Uj} j∈J is an open covering of X , then a partition of unity in F (X) subordinate to U is
a collection {χ j} j∈J of functions in F (X) having the following properties.

1. For each j ∈ J, the support supp χ of the function χ j is a compact subset
of some Uj ∈ U .

2. The supports {supp χ j} j∈J form a locally finite family of compact sub-
sets of X , whose union is X .

3. ∑ j∈J χ j = 1 on X .

A Hausdorff topological space X is called paracompact if every open covering of X has a
locally finite refinement. If X is Hausdorff and locally compact, then it is paracompact if
and only if every connected component of X is equal to the union of a countable collection
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of compact subsets.

Cutoff functions in F (X) can be used to obtain a partition of unity on X . �

For C∞(P) to be the space of smooth functions on P, we should have a sheaf of locally
defined “smooth functions”. Towards this goal, let U be an open subset of P. Then we
have already defined C∞(U). Moreover, the mapping U →C∞(U), where U ranges over
all open subsets U of P, defines a sheaf of functions on P. The following claim shows that
this sheaf behaves like the sheaf of smooth functions on a manifold.

Claim: Let N be a subset of a smooth paracompact manifold M. N is an embedded
submanifold of M if and only if the identity map from the differential space (N,C∞

i (N))
into the differential space (N,C∞(N)) is a diffeomorphism of differential spaces, that is,
if and only if C∞

i (N) =C∞(N).

3.2 An orbit space as a differential space
Let M = M/G be the orbit space of a proper G-action on a smooth manifold M with G-
orbit map π : M → M and quotient topology, namely, U is an open subset of M if and only
if π−1(U) is an open subset of M.

For every open subset U of M a function f : U ⊆ M → R is smooth if π∗ f (U) :
� π−1(U) ⊆ M → R is smooth. Let C∞(U) be the space of smooth functions on U . For

every m ∈ M and every open neighborhood U of m in M there is a cutoff function χ ∈
C∞(M) such that χ = 1 on an open neighborhood of m and is 0 on the complement of a
compact neighborhood of m in U .

(3.7) Proof: We use the notation of the tube theorem ((2.18)). From the tube theorem with
U = π−1(U) and H = Gm with m ∈ M such that m = π(m) it follows that the mapping
ρ : B/H → U/G : b ∗H �→ ϕ(b) ·G is a homeomorphism. Because H is a compact Lie
group which acts linearly on E = TmM/Tm(G ·m), we may average an arbitrary inner
product on E over H to obtain an H -invariant inner product β on E with norm ‖ ‖. Since
B is an H-invariant open subset of E containing the origin, there is an ε > 0 such that
{‖x‖ ≤ ε} ⊆ B. Moreover, there is a smooth function ψ : R → R : r �→ ψ(r), which
is 1 in an open neighborhood of 0 in R and is 0 when r ≥ ε , Then f : H × B → R :
(h,b) �→ ψ(‖b‖) is a smooth H invariant function. Therefore f induces a smooth function
f̃ : B/H → R, which corresponds to a function g = f̃ ◦ρ−1 ∈ C∞(U) with support in U .
Extending g by 0 outside U gives the cutoff function χ ∈C∞(M). �

Corollary: Paracompactness of M implies that the Hausdorff space M is paracompact.

(3.8) Proof: To see this let C be a connected component of M. Then C = π(C) for some
connected component C of M. Because M is paracompact, C is equal to the union of a
countable number of compact sets Ki. Since the G-orbit map π is continuous, π(Ki) is
compact and their union is C. �
Cutoff functions can now be used to obtain a partition of unity in C∞(M). �

Claim: (M = M/G,C∞(M) =C∞(M/G)) is a differential space and the G-orbit map π is
a smooth mapping from (M,C∞(M)) to the differential space (M,C∞(M)).
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(3.9) Proof: We verify that properties 1–3 defining a differential structure hold for C∞(M).
1. If χ is a cutoff function on M as constructed in ((3.7)), then χ−1(1/2,3/2)⊆U . This
proves property 1.
2. Let f 1, . . . , f n ∈ C∞(M) and let F ∈ C∞(Rn). Then f j

◦π ∈ C∞(M)G, the space of
smooth G-invariant functions on M. Hence F ◦f ◦π ∈C∞(M)G, where f(m) = ( f 1(m), . . . ,
f n(m)) for every m = π(m) ∈ M. Therefore F ◦f ∈C∞(M). This proves property 2.
3. Let f : M �→ R. Suppose that for every m ∈ M there is an open neighborhood Um of m
in M and an f m ∈C∞(M) such that f |Um = f m|Um. Then f ◦π is G-invariant and is equal
to the smooth function f m ◦π on Um = π−1(Um). Here m ∈ m. Because the {Um}m∈M
form an open covering of M, it follows that f ◦π ∈ C∞(M). Therefore f ◦π ∈ C∞(M)G,
which implies that f ∈C∞(M). This proves property 3.

Thus C∞(M) is a differential structure. The G-orbit map π : M → M is a smooth map
from (M,C∞(M)) to (M,C∞(M)) because π∗(C∞(M)) =C∞(M)G ⊆C∞(M). �

Corollary: C∞
i (U) =C∞(U), for any open subset U of M.

(3.10) Proof: Let f : U �→ R be an element of C∞
i (U). Then locally f agrees with an element

of C∞(M). Using the argument which proved property 3 in ((3.9)), it follows that f ◦π ∈
C∞(U)G, where U = π−1(U). Hence f ∈ C∞(U). Conversely, suppose that f : U → R
such that f ◦π ∈ C∞(U)G. Using ((3.7)) we know that for every m ∈ U there is a cutoff
function χm ∈ C∞(M) whose support is a compact subset K of U and which is 1 in an
open neighborhood of m in M. Define f m : M → R by f m = χm · f on U and 0 on
M \U . Then f m = 0 on M \ K = W . Therefore U = π−1(U) and W = π−1(W ) are
open subsets of M = U ∪W . On U we have f m ◦π = (χm ◦π) · ( f ◦π), which is smooth
and G-invariant; while on W we have f m ◦π = 0, which is also smooth and G-invariant.
Therefore f m ∈ C∞(M). But f = f m in an open neighborhood of m ∈ M. Therefore
f ∈C∞

i (U). Consequently, C∞(U) =C∞
i (U). �

Corollary: The differential space topology on M coincides with its orbit space topology.

(3.11) Proof: Let V be an open neighborhood of m in the orbit space topology on M. Using
((3.7)) there is a cutoff function χ ∈ C∞(M) such that χ = 1 in an open neighborhood
of m and is equal to 0 on the complement of a compact neighborhood of m in V . Then
χ−1( 1

2 ,
3
2 ) ⊆ V , that is V contains an open set in the differential space topology on M.

Now let I be a nonempty open interval and let U = f−1(I) for some smooth function f
on M. Then U is an open set in the differential space topology on M. Since π∗ f is a
smooth G-invariant function on M, it follows that π−1(U) = (π∗ f )−1(I) is an open subset
of M. Because π is an open mapping π(π−1(U)) is an open subset of M in the orbit space
topology contained in U . Consequently, the orbit space topology on M and the differential
space topology on M coincide. �

Fact: Let G×M → M : (g,m) �→ g ·m be a proper action of a Lie group G on a smooth
manifold M and let N be a closed G-invariant subset of M endowed with the differential
structure C∞

i (N). For each G-invariant function f ∈C∞
i (N) there is a G-invariant extension

h ∈C∞(M).

(3.12) Proof: By definition a function f : N → R lies in C∞
i (N) if for each n ∈ N there is an
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open neighborhood Un of n of n in N and a function h1 ∈C∞(M) such that f |(Un ∩N) =
h1|(Un ∩N). Since the action of G on M is proper, there is a slice Sn at n for this action.
Without loss of generality we may assume that Sn ⊆ Un. The intersection Un ∩ Sn is a
closed subset of Sn. Since the isotropy group Gn is compact and preserves Sn we may
average the function h2 = h1|(Un ∩ Sn) over Gn and obtain a Gn-invariant extension h3
of f |(Un ∩ Sn) to Sn. The product Sn ×On, where On = G · n is the G-orbit through n, is
a G-invariant neighborhood of n in M. Using the projection map Sn ×On → Sn we pull
back h3 to a smooth G-invariant function hn on Sn ×On. Since N is a closed subset of M,
its complement M \N is open. The open subsets M \N and {Sn ∩N}n∈N form a covering
of M by G-invariant open sets. Using a locally finite subcovering and a subordinate G-
invariant partition of unity, we extend hn to a smooth G-invariant function h on M. �

Using the notation of the tube theorem ((2.18)) we have

Claim: (B/H,C∞(B/H)) and (U/G,C∞(U/G)) are diffeomorphic differential spaces.

(3.13) Proof: On G×B we have the G-action ν (7) with G-orbit map πν . Since every G-orbit
on G×B intersects {e}×B exactly once, the G-orbit space (G×B)/G is diffeomorphic
to B. In particular, the map i : B → (G×B)/G : b �→ πν(e,b) is a diffeomorphism, whose
inverse is given by the smooth map π̃ : (G×B)/G → B, induced from the G-invariant
map π : G×B → B : (g,b) �→ b. On G×B we have an H-action μ (6) whose orbit space
is G×HB. In addition, we have an action of G×H given by

λ : (G×H)× (G×B)→ G×B : ((g′,h),(g,b)) �→ (
(g′)−1g,h∗b

)
.

Because the actions μ and ν commute, there is an induced H-action on the orbit space
(G×B)/G and an induced G-action on G×HB, whose orbit spaces ((G×B)/G)/H and
(G×HB)/G are equal, respectively, to the orbit space (G × B)/(G × H) of the action
λ . Let ϕ : G×HB → U be the G-equivariant diffeomorphism given by the tube theorem
((2.18)). Then ϕ induces the homeomorphism ϕ̃ : (G×HB)/G = (G×B)/(G×H) →
U/G and the isomorphism ϕ∗ : C∞(U) → C∞(G×B)H , which restricts to the isomor-
phism ϕ̃∗ : C∞(U)G →C∞(G×B)G×H . The diffeomorphism i, defined above, induces the
homeomorphism ĩ : B/H → ((G×B)/G)/H = (G×B)/(G×H) and the isomorphism i∗ :
C∞(G×B)G →C∞(B), which restricts to the isomorphism ĩ∗ : C∞(G×B)G×H →C∞(B)H

= C∞(B/H). Therefore ϕ̃ ◦̃i : B/H → U/G is a homeomorphism and ĩ∗ ◦ϕ̃∗ : C∞(U/G)
→C∞(B/H) is an isomorphism. In other words, (B/H,C∞(B/H)) and (U/G,C∞(U/G))
are diffeomorphic differential spaces. �

3.3 Subcartesian spaces
In this section we will show that the orbit space of a proper group action is a subcartesian
differential space.

A differential space (P,C∞(P)) is subcartesian if P is a Hausdorff topological space and
(P,C∞(P)) is locally diffeomorphic to (N,C∞

i (N)), where N is a subset of Rn. In other
words, (P,C∞(P)) is subcartesian if for each p ∈ P there is an open neighborhood U of p
in P, a nonnegative integer n, a subset N of Rn, and a diffeomorphism ψ from (U,C∞(U))
onto (N,C∞

i (N)).
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A subcartesian differential space (P,C∞(P)) is locally compact if and only if for every p ∈
P there is an open neighborhood U of p in P and a diffeomorphism ϕ : U ⊆ P →V ⊆ Rn,
which maps U onto a locally closed subset V .

Using the notation of the tube theorem ((2.18)), we now investigate the orbit space of the
linear action of the compact Lie group H = Gm on the vector space E = TmM/Tm(G ·m).
From classical invariant theory we know that the algebra P(E)H of H-invariant polyno-
mial functions on E is finitely generated, that is, there is a positive integer n and polyno-
mials p1, . . . , pn ∈ P(E) such that every p ∈ P(E)H can be written as p = F(p1, . . . , pn),
where F is a polynomial on Rn. Because the action of H on E is linear, we can choose pi
to be homogeneous of degree di > 0. We may also suppose that n is minimal. We then
say that {pi}n

i=1 is a Hilbert basis of P(E)H and that

σ : E → Rn : x �→ (
p1(x), . . . , pn(x)

)
(8)

is the Hilbert map corresponding to the given Hilbert basis. Because there can be non-
trivial relations among the generators pi, neither the Hilbert basis of E nor the Hilbert
map is unique. Since elements of P(E)H separate H-orbits on E and σ is H-invariant, the
Hilbert map σ induces a continuous bijective map

σ̃ : E/H → Σ = σ(E)⊆ Rn. (9)

The Tarski-Seidenberg theorem states that the image of a semialgebraic set under a poly-
nomial mapping is semialgebraic. Therefore Σ is a semialgebraic subset of Rn. Because
σ(t ·x) = σ(td1 x1, . . . , tdn xn) = (td1 p1(x), . . . , tdn pn(x)) the set Σ is quasi homogeneous in
the sense that if y ∈ Σ then t · y ∈ Σ. In particular, Σ is contactible to the origin in Rn.
Averaging an arbitrary inner product on E over the orbits of the H-action, we obtain an
H-invariant inner product β on E. Since the quadratic function E → R : x �→ β (x,x) is
H-invariant, there is a polynomial P : Rn →R such that β (x,x) =P(σ(x)) for every x∈E.
Consequently, the Hilbert mapping σ (8) is proper. This implies that Σ is a closed subset
of Rn. Because the induced mapping σ̃ (9) is continuous, bijective, and proper, it is a
homeomorphism from the locally compact Hausdorff space E/H onto Σ. So Σ is locally
compact. Thus we have proved

Claim: The orbit space E/H of the H-action on E is homeomorphic to the image Σ of the
Hilbert map σ .

We give the set Σ a differential structure as follows. Let F be the family of functions
f : Σ ⊆ Rn → R such that σ∗ f : E → R is a smooth function on the finite dimensional
real vector space E. Note that σ∗ f is H-invariant. Let C∞

F (Σ) be the space of smooth
functions on Σ generated by F . From ((3.2)) we see that C∞

F (Σ) is a differential structure
on Σ.

� Let T1 be the topology on Σ generated by the family F . Then the topology T1 on Σ is
the same as the topology induced on Σ from Rn.

(3.14) Proof: Let U ∈ T1. Then for every p ∈ U there is a collection of open intervals Ii,
1 ≤ i ≤ n, and smooth functions fi, 1 ≤ i ≤ n, in F such that ∩n

i=1 f−1
i (Ii) ∈ T1 and

contains p. Since fi ∈ F , there is an Fi ∈ C∞(E)H such that Fi = σ∗ fi. By Schwarz’s
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theorem there is a smooth function gi on Rn such that σ∗(gi|Σ) = Fi. So σ∗ fi = σ∗(gi|Σ),
which implies gi|Σ = fi, since the Hilbert mapping σ is surjective. Therefore

⋂n

i=1
f−1
i (Ii) =

⋂n

i=1
(g|Σ)−1

i (Ii) =
( n⋂

i=1

g−1
i (Ii)

)∩Σ.

But ∩n
i=1g−1

i (Ii) is an open subset of Rn. So U is an open subset of Σ in the topology
induced from Rn.

Conversely, let Ũ be an open subset of Σ induced from the topology of Rn. Then there is
an open subset U of Rn such that Ũ =U ∩Σ. Using a partition of unity on Rn, there is a
smooth function f : Rn → R and an open interval I such that U = f−1(I). So σ∗( f |Σ) =
F ∈C∞(E)H , that is, f |Σ ∈ F ⊆C∞(Σ). Consequently, ( f |Σ)−1(I) = f−1(I)∩Σ =U ∩Σ
= Ũ . Thus Ũ ∈ T1. �

Fact: C∞
F (Σ)⊆ F .

(3.15) Proof: Let f ∈ C∞
F (Σ). Then for every p ∈ Σ there is a Ũp ∈ T1, which contains p,

functions f1, . . . , fmp ∈ F , and a function h ∈C∞(Rmp) such that

f |Ũp =
(
h◦( f1, . . . , fmp)

)|Ũp. (10)

Because fi ∈ F , the functions σ∗ fi ∈ C∞(E)H for every 1 ≤ i ≤ mp. Pulling both sides
of (10) back by the Hilbert mapping σ gives

σ∗ f |σ−1(Ũp) = σ∗(h◦( f1, . . . , fmp)
)|σ−1(Ũp) = h◦(σ∗ f1|σ−1(Ũp), . . . ,σ∗ fmp |σ−1(Ũp)

)
=

(
h◦(σ∗ f1, . . . ,σ∗ fmp)

)|σ−1(Ũp).

Thus on σ−1(Ũp) the function σ∗ f is smooth being equal to the smooth H-invariant
function h◦(σ∗ f1, . . . ,σ∗ fmp) on E. By ((3.14)) there is an open subset Up of p in
Rn such that Ũp = Up ∩ Σ. Since the Hilbert map σ : E → Σ is continuous and sur-
jective, the set σ−1(Up ∩ Σ) is an H-invariant open subset of E. Consequently, V =
{Vp = σ−1(Up ∩Σ)}p∈Σ is an open covering of E by H-invariant open sets. By ((2.5))
there is a locally finite covering {Vp ′ }p′∈Σ′⊆Σ of E subordinate to V and H-invariant
smooth functions χp with compact support supp χp ′ in Vp ′ such that ∪p ′∈Σ′ supp χp ′ = E
and ∑p ′∈Σ′ χp ′ = 1 on E. Let G = ∑p ′∈Σ′ χp ′ · (h◦( f1, . . . , fmp ′ )

)
. Then G is a smooth

H-invariant function on E. Since

G|supp χp ′ =
(
h◦( f1, . . . , fmp′ )

)|supp χp ′ = σ∗ f |supp χp ′

for every p ′ ∈ Σ′, it follows that G = σ∗ f on E. In other words, f ∈ F . �

We define another differential structure on the set Σ. Let F̃ be the family of functions
f : Σ ⊆ Rn → R such that there is a smooth function F : Rn → R with F |Σ = f . Let C̃∞(Σ)
be the space of smooth functions on Σ generated by F̃ . Then from ((3.2)) we see that
C̃∞(Σ) is a differential structure on Σ. By definition C̃∞(Σ) =C∞(Rn)|Σ =C∞

i (Σ), where
the second equality follows from ((3.4)).
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� Let T2 be the topology on Σ generated by the family F̃ . Then the topology T2 is the
same as the topology on Σ induced from Rn.

(3.16) Proof: Let Ũ be an open subset of Σ in the topology induced from Rn. Then Ũ =U ∩Σ
for some open subset U of Rn. Using a partition of unity on Rn, one can show that
there is an open interval I and a smooth function F : Rn → R such that F−1(I) = U . So
(F |Σ)−1(I) = F−1(I)∩Σ =U ∩Σ = Ũ . Thus Ũ ∈ T2.

Conversely, suppose that U ∈ T2. Then for every p ∈ U there are open intervals Ii, 1 ≤
i ≤ n, and smooth functions fi ∈ C̃∞(Σ), 1 ≤ i ≤ n, such that ∩n

i=1 f−1(Ii) ∈ T2, contains
p, and is contained in U . But fi = Fi|Σ for some smooth function Fi on Rn. We get

n⋂
i=1

f−1(Ii) =
( n⋂

i=1

f−1(Ii)
)∩Σ =

( n⋂
i=1

(Fi|Σ)−1(Ii)
)∩Σ =

( n⋂
i=1

F−1
i (Ii)

)∩Σ,

where ∩n
i=1F−1

i (Ii) is an open subset of Rn. Therefore U is an open subset of Σ in the
topology induced from Rn. �

Fact: C̃∞(Σ)⊆ F̃ .

(3.17) Proof: Let f ∈ C̃∞(Σ). Then for every p ∈ Σ there is a Ũp ∈ T2 containing p, functions
f1, . . . , fmp ∈ F̃ , and a function F ∈C∞(Rmp) such that f |Ũp =

(
F◦( f1, . . . , fmp)

)|Ũp. By
((3.14)) there is an open subset Up of Rn containing p such that Ũp =Up∩Σ. Since fi ∈ F̃
for 1 ≤ i ≤ mp, there is a smooth function gi on Rn such that fi = gi|Σ. Therefore

f |Ũp =
(
F◦( f1, . . . , fmp)

)|Ũp = F◦( f1|Ũp, . . . fmp |Ũp)

= F◦
(
(g1|Σ)|Up, . . .(gmp |Σ)|Up

)
=

(
F◦(g1, . . . ,gmp)|Σ

)|Ũp,

where F◦(g1, . . . ,gmp) ∈ C∞(Rn). So on Ũp the function f is the restriction of a smooth
function on Rn to Σ. We now use a partition of unity on Rn to piece these local
results together. Since Σ is a closed subset of Rn, the collection UΣ∪{∞} = {Up}p∈Σ ∪U∞,
where U∞ = Rn \ Σ, is an open cover of Rn. Because Rn is paracompact, there is a
subordinate open covering {Up ′ }p ′∈Σ′⊆(Σ∪{∞}) and smooth functions χp ′ with compact
support supp χp ′ in Up ′ such that {supp χp ′ }p ′∈Σ′ is a locally finite covering of Rn and

∑p ′∈Σ′ χp ′ = 1 on Rn. Let G = ∑p ′∈Σ′ χp ′ · (F◦(g1, . . . ,gmp ′ )
)
. Then G is a smooth func-

tion on Rn such that G|(Σ∩ supp χp ′) = f |(Σ∩ supp χp ′) for every p ′ ∈ Σ′. So f = G|Σ,
that is, f ∈ F̃ . �

Claim: The identity map on Σ is a homeomorphism from Σ, using the differential space
topology T1, onto Σ, using the differential space topology T2.

(3.18) Proof: The claim follows because the topologies T1 and T2 on Σ are the same: each
being the same as the topology on Σ induced from Rn. �

We now show that (Σ,C∞
i (Σ)) is a locally compact subcartesian differential space. We use

the notation of the tube theorem ((2.18)). Shrinking B, and thereby also U , if necessary,
we may assume that B = {x ∈ E β (x,x) < c} for some c > 0. Then the map σ̃ (9) is
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a homeomorphism from B/H onto σ(B) = {y ∈ Σ = σ(E) P(y) < c}. Here P is an H-
invariant polynomial which expresses β in terms of the invariant polynomials {pi}n

i=1 on
E. Note that σ(B) is an open semialgebraic subset of the closed semialgebraic subset Σ
of Rn.

Claim: Let φ : B/H →U/G be the diffeomorphism given in ((3.13)). The map σ̃ ◦φ−1 :
(U/G,C∞(U/G))→ (σ(B),C∞

i (σ(B))) is a diffeomorphism of differential spaces.

(3.19) Proof: Let f ∈C∞
i (σ(B)) and b∈ B. Then there is an open neighborhood U of σ(b) in Rn

and a g ∈C∞(Rn) such that f = g on σ(B)∩U . Therefore f ◦σ = g ◦σ is smooth on the
open neighborhood σ−1(U) of b in B. Because this holds for every b ∈ B, we get f ◦σ ∈
C∞

i (B). Since f ◦σ is H-invariant, it follows that σ∗(C∞
i (σ(B))) ⊆ C∞(B)H . Conversely,

the theorem of Schwarz states that C∞(B)H ⊆ σ∗(C∞(Rn)). Let i : σ(B) → Rn be the
inclusion mapping. Then i∗ : C∞(Rn) → C∞

i (σ(B)) is surjective, that is, i∗(C∞(Rn)) =
C∞

i (σ(B)). Since σ = i ◦σ , we obtain

C∞(B)H ⊆ σ∗(C∞(Rn)) = σ∗ ◦i∗(C∞(Rn)) = σ∗(C∞
i (σ(B))).

So C∞(B)H = σ∗(C∞
i (σ(B))). Since the mapping σ̃ : B/H → σ(B) is a homeomorphism,

we deduce that it is a diffeomorphism from (B/H,C∞(B/H)) onto (σ(B),C∞
i (σ(B))).

The claim follows using ((3.13)). �

Because the open sets {U/G} form an open covering of the orbit space M/G we have
proved

Corollary: For a proper action of a Lie group G on a smooth manifold M, the differen-
tial space (M/G,C∞(M/G) = C∞(M)G) is a locally compact subcartesian space. More
precisely, M/G has a covering by open subsets each of which is diffeomorphic as a dif-
ferential space to an open subset of a closed semialgebraic set.

3.4 Stratification of an orbit space by orbit types
In this subsection we investigate the stratification of the orbit space M = M/G of a proper
action of G on a manifold M by orbit types M(H) = M(H)/G.

Using the notation of the tube theorem ((2.18)), consider the G-action

G× (G×HE)→ G×HE :
(
g′,ρ(g,x)

) �→ ρ(g′g,x),

where ρ : G×E → G×HE is the orbit map of the H-action

H × (G×E)→ G×E : (h,(g,x)) �→ (gh−1,h∗x),

� see (6) for the definition of the action ∗. Then Gρ(g,x) = gHxg−1.

(3.20) Proof: To see this suppose that g′ ∈ Gρ(g,x). Then g′ · ρ(g,x) = ρ(g,x) or ρ(g′g,x) =
ρ(g,x). Therefore there is an h ∈ Hx such that (g′gh−1,h∗x) = (g,x), that is, g′gh−1 = g
and h∗x = x. In other words, g′ ∈ gHxg−1. So Gρ(g,x) ⊆ gHxg−1. Conversely, suppose
that g′ ∈ gHxg−1. Then for some h−1 ∈ Hx, we have g′g = gh−1. Therefore g′gh = g and
h∗x = x. Thus g′ ·ρ(g,x) = ρ(g,x), that is, g′ ∈ Gρ(g,x). So gHxg−1 ⊆ Gρ(g,x). �
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Let EH = {x ∈ E h∗x = x for every h ∈ H}= {x ∈ E Hx = H}.

Fact: The orbit type (G×HE)(H) equal to EH .

(3.21) Proof: Suppose that x ∈ EH . Then H = Hx. Therefore for each g ∈ G, we have Gρ(g,x) =

gHxg−1 = gHg−1. In other words, ρ(g,x) ∈ (G×HE)(H). Now if ρ(g,x) ∈ (G×HE)(H),
then Gρ(g,x) ∈ (H), the G conjugacy class of H. But Gρ(g,x) = gHxg−1, so Hx ∈ (H).
However, Hx ⊆ H and Hx has the same dimension and number of connected components
as H, since Hx is conjugate to H in G. Therefore Hx = H, that is, x ∈ EH . �

Claim: Each connected component of each orbit type M(H) in the G-orbit space M is
a smooth manifold, when regarded as a differential subspace of the differential space
(M,C∞(M)). In other words, (M(H),C∞

i (M(H))) is a smooth manifold.

(3.22) Proof: The fact that π(MH) = M(H) in combination with ((3.13)) gives U (H) =U(H)/G =

φ((B∩EH)/H). Here φ is the diffeomorphism given by ((3.13)) and (B∩EH)/H is the
image of B∩EH under the H orbit map on B.

Because H acts linearly on E, it follows that EH is a linear subspace of E. Let F be the
orthogonal complement of E with respect to the H-invariant inner product β . Then F
is H-invariant and F ∩EH = {0}. The mapping EH ×F → E : (x,y) �→ x+ y is a linear
isomorphism, which is H-equivariant if we let H act on EH ×F by

H × (EH ×F)→ EH ×F : (h,(x,y)) �→ (x,h∗y).

If x = (x1, . . . ,x�) is a coordinate system on EH and y = (y1, . . . ,yr) is one on F , then
every polynomial p ∈ P(EH ×F) can be written uniquely as p(x,y) = ∑α xα qα(y), where
α = (αi, . . . ,α�), xα = xα1

1 · · ·xα�
� and qα(y) is a polynomial in y1, . . . ,yr. Since p lies in

P(EH ×F)H implies 1) that qα ∈ P(F)H for every α and 2) that P(E)H is isomorphic
to P(EH ×F)H , it follows that {x1, . . . ,x�,q1, . . . ,qm} is a Hilbert basis of P(E)H , where
{q j}m

j=1 is a Hilbert basis of P(F)H .

The image of B∩EH under the Hilbert map

σ : E = EH ×F → Rn = R�×Rm : (x,y) �→ (x,q1(y), . . . ,qm(y)) (11)

is an open subset of R�×{0}, which is a smooth �-dimensional submanifold. Because
the differential spaces

(
(B∩EH)/H,C∞(B∩EH)H

)
and (σ(B∩EH),C∞(σ(B∩EH))) are

diffeomorphic by ((3.19)) and (σ(B∩EH),C∞(σ(B∩EH))) is diffeomorphic to (U(H)/G,
C∞(U(H)/G)) by ((3.13)), we have proved the claim. �

The orbit types for the action of H on E = EH ×F are of the form EH ×R, where R is an
orbit type for the linear H-action on F . Furthermore, the R>0-action on E of multiplica-
tion by t > 0 commutes with the linear action of H on F . Therefore t ·R = R. Let Sr−1 be
the unit sphere in F with respect to the H-invariant inner product β . Then R → R∩Sr−1

is a bijective map from all orbit types R = {0} to orbit types of the induced H-action on
Sr−1. Using induction on the dimension of Sr−1, it follows that there are only finitely
many H orbit types on Sr−1. Consequently, there are only finitely many H-orbit types for
the action of H on E.
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From the quasihomogeneity of the Hilbert map σ (11), it follows that σ(E) is invari-
ant under the transformation (x1, . . . ,x�,q1, . . . ,qm) �→ (x1, . . . ,x�, td1 q1, . . . , tdmqm), where
d j = degq j. Note that when (q, . . . ,qm) = (0, . . . ,0) then

(x1, . . . ,x�, td1 q1, . . . , tdmqm) = (x1, . . . ,x�,sd1 q1, . . . ,sdmqm),

� when s > 0 and s = t. This shows that each orbit type in σ(E), which is different from
R�×{0} is equal to a product of R� with a submanifold of Rm of dimension greater than
or equal to 1. Therefore each connected component of an orbit type in the orbit space
near a given connected component of a given orbit type has dimension greater than the
dimension of the given connected component of the given orbit type. This proves

Claim: The connected components of orbit types in the orbit space M define a stratifica-
tion S of M, called the orbit type stratification of the orbit space.

Given a semialgebraic variety, it has a primary stratification given by iteratively forming
the semialgebraic set of singular points of the preceding semialgebraic variety.

Claim: In the local model of σ(B)⊆Rn of the orbit space U/G given in ((3.19)), the orbit
type stratification of B/H coincides with the primary stratification of the semialgebraic
set σ(B).

3.5 Minimality of S

In this subsection we show that the orbit type stratification S of the orbit space is minimal
when stratifications are partially ordered by inclusion of the strata.

We begin with some observations. Let q ∈ P(F)H be a homogeneous polynomial of
degree 1. Then q ∈ F∗, which shows that β �(q) ∈ F . The inner product β on F induces
a bijective linear map β � : F → F∗ given by β �(y)y′ = β (y,y′). The inverse of β � is β �.
Since β is H-invariant, it follows that β �(q) ∈ FH = {0}. Therefore q = 0. Consequently,
d j = degq j, where {q j}m

j=1 form a Hilbert basis of P(F)H , is greater than or equal to
2. Because the polynomial F → R : y �→ β (y,y) is H-invariant and of degree 2, we may
choose q1(y) = β (y,y) for every y ∈ F .

Let SF = {y ∈ F q1(y) = 1} be the unit sphere in F with respect to the inner product
β . For each j with 2 ≤ j ≤ m let Cj be the maximum of |q j(y)| with y ∈ SF . When
y∈F \{0}, let t = q1(y)

1/2. Then t−1y∈ SF . Since q j(y) = q j(t(t−1y)) = td j q j(t−1y) and
|q j(t−1y)| ≤Cj, we obtain |q j(y)| ≤ q1(y)

d j/2 Cj, which also holds when y = 0. Therefore
σ(E) is contained in

{(x,q) ∈ R�×Rm q1 ≥ 0 & |q j| ≤Cj q
d j/2
1 for every 2 ≤ j ≤ m}. (12)

Here σ is the Hilbert map given in (11).

Claim: Let I be an open interval in R containing 0 and let γ : I → σ(E)⊆ R�×Rm : t �→
γ(t) = (x(t),q(t)). Suppose that q1(0) = 0 and that q : I → Rm : t �→ q(t) is differentiable
at t = 0. Then q′(0) = 0.
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(3.23) Proof: From the fact that γ(I) ⊆ σ(E) and the inequality |q j| ≤ Cj q
d j/2
1 (12), it follows

that q1(t)≥ 0 for every t ∈ I. Because q1(0) = 0, we see that the function t �→ q1(t) attains
its minimum value at 0. Therefore q′1(0) = 0, that is, q1(t)

t → 0 as t → 0. For each j where
2 ≤ j ≤ m, the fact that γ(I)⊆ σ(E) and inequality (12) imply

|q j(t)|
|t| ≤Cj

q1(t)d j/2

|t| =Cj
q1(t)

t

d j/2

|t|d j/2−1. (13)

The right hand side of (13) converges to 0 as t → 0, because q1(t)
t → 0 as t → 0 and

1
2 d j −1 ≥ 0. Therefore q′j(0) = 0 for every 2 ≤ j ≤ m. �

From ((3.23)) we see that if N is a C1 submanifold of Rn = R�×Rm such that N ⊆ σ(E)
and 0 ∈ N, then T0N ⊆ R�×{0}. In particular, dimN ≤ �. From an earlier argument we
know that all the orbit type strata in σ(E) different from R�×{0} have dimension strictly
greater than �. Therefore no union of R�×{0} with different strata in σ(E) can be a C1

manifold through the origin. This proves

Claim: The orbit type stratification of the orbit space M/G of a proper G-action on M is
minimal, that is, no union of different strata can be a connected smooth manifold in the
differential space (M/G,C∞(M/G)).

Corollary: If M/G is connected, then the differential space (M/G, C∞(M/G)) is a
smooth manifold if and only if there is exactly one orbit type.

4 Vector fields on a differential space
In this section we define what it means to be a vector field on a differential space and then
look at vector fields on the orbit space of a proper action.

4.1 Definition of vector field
Let A be an algebra over R with multiplication ·. A derivation of A is a linear mapping
δ of A into itself such that Leibniz’ rule holds, namely, δ ( f ·g) = (δ f ) ·g+ f · (δg) for
every f ,g ∈ A . We denote the set of all derivations of A by Der(A ). Note that Der(A )
is a Lie algebra with bracket [δ ,δ ′] = δ ◦δ ′ −δ ′ ◦δ for every δ ,δ ′ ∈ DerA .

Example: Let M be a smooth manifold with C∞(M) its space of smooth functions. If X
is a smooth vector field on M, then for every f ∈C∞(M) the Lie derivative LX f of f with
respect to X , namely, LX f : M → R : m �→ 〈d f (m)|X(m)〉, is a smooth function on M.
Moreover, the linear mapping LX : C∞(M)→C∞(M) is a derivation. �

Let (M,C∞(M)) be a differential space, which is not necessarily a smooth manifold, and
let δ ∈ Der(C∞(M)). An integral curve of δ is a smooth mapping γ : I ⊆ R → M, where
I is an interval, such that

d f (γ(t))
d t

= δ ( f )(γ(t)), for every f ∈C∞(M) and every t ∈ I.
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Claim: Let (M,C∞(M)) be a locally compact subcartesian differential space and let δ ∈
Der(C∞(M)). Suppose that for every m ∈ M, there is an open interval I ⊆ R containing 0
and an integral curve γm : I ⊆ R → M of δ such that γm(0) = m. Then:

1. For each m ∈ M there is a unique integral curve γ : Im → M of δ , which
is defined on a maximal open interval Im in R containing 0 such that
γ(0) = m.

2. The set D = {(t,m) ∈ R×M t ∈ Im} is an open subset of R×M and the
map ϕ : D ⊆ R×M → M : (t,m) �→ γm(t) is smooth.

3. For each t ∈ R, the set Dt = {m ∈ M t ∈ Im} is an open subset of M and
the mapping ϕt : Dt → M : m �→ γm(t) is smooth. ϕt is called the flow of
δ at time t.

4. If s, t ∈ R, m ∈ Ds, ϕs(q) ∈ Dt , then m ∈ Dt+s and ϕt(ϕs(m)) = ϕt+s(m).
Therefore ϕt : Dt → M is a diffeomorphism with inverse ϕ−t .

(4.1) Proof:
1. Using the fact that M is locally compact, we may identify a suitable open neighborhood
of m in M with a locally closed subset V of Rn. Let {xi}n

i=1 be coordinate functions
on Rn. There is an open neighborhood Ui of m in Rn and δi ∈ Der(C∞(Ui)) such that
δ (xi) = δi|Ui. Let U = ∩n

i=1Ui and let Xδ : U → Rn be a smooth vector field on U such
that LXδ xi = δi|U . Shrinking U if necessary, we may assume that V ∩U is a closed subset
of U . Let γ : I →V ∩U be an integral curve of δ . Then

dγi(t)
d t

=
dxi(γ(t))

d t
= δ (xi)(γ(t)) = δi(γ(t))

shows that γ is an integral curve of the derivation LXδ , thought of as a smooth vector field
on Rn. Therefore the local existence and uniqueness of integral curves of the smooth
vector field implies the existence and uniqueness of smooth integral curves of Xδ with
prescribed initial value. Consequently, for each m ∈V ∩U there is a unique integral curve
γ : Im → V ∩U of the derivation δ on a maximal open interval Im in R containing 0 with
γ(0) = m.

Let ϕ̃t be the flow at time t of the vector field Xδ on U . Let Ĩ be the maximal domain
of definition of the integral curve t �→ γ̃(t) = ϕ̃t(m) of Xδ with γ̃(0) = m. Next we show
that Im = Ĩ. Now γ̃|Im = γ , so Im ⊆ Ĩ. Suppose that s = sup Im ∈ Ĩ and let r = γ̃(s).
Then r = limt↗s γ̃(t) = limt↗s γ(t) ∈ V ∩U , because γ(t) ∈ V ∩U for every t ∈ Im and
V ∩U is closed in U . The hypothesis that every integral curve of δ is defined on an open
interval, implies that there is an open interval J in R containing 0 and an integral curve
γ̂ : J →V ∩U of δ such that γ̂(0) = r. Therefore

γ̂(t − s) = ϕt−s(r) = ϕt−s(ϕs(q)) = γ̃(t)

for all t ∈ Im ∩ (s+ J). From uniqueness it follows that γ̃ and t �→ γ̂(t − s) piece together
to form an integral curve of δ , which is defined on Im ∩ (s+J). This contradicts the max-
imality of Im. A similar argument shows that if inf Im ∈ Ĩ, then we obtain a contradiction.
Therefore Im = Ĩ. This proves assertion 1.

2. Let D̃ ⊆ R×U be the domain of definition of the flow ϕ̃ : D̃ →U of the smooth vector
field Xδ on U . Let ϕ : D →V ∩U be as defined in assertion 2 of the claim with M replaced
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by V ∩U . The argument of the preceding paragraph shows that D = D̃∩ (R× (V ∩U))
and that ϕ = ϕ̃|D. Because D̃ is an open subset of R×U and the flow ϕ̃ is smooth, it
follows that D is an open subset of R× (V ∩U) and that the mapping ϕ : D → V ∩U is
smooth as a map of differential spaces. Because the preceding two properties are local,
we have shown that the set D, given in statement 2 of the proposition, is an open subset
of R×M and that the mapping ϕ : D → M is smooth. This proves assertion 2.

Assertions 3 and 4 follow using the same arguments as for a smooth vector field on a
smooth manifold. �

Example: Consider the set S = {(x1,x2) ∈ R2 | x2
1 +(x2 −1)2 < 1 or x2 = 0}. The vector

field X = ∂
∂x1

on R2 restricts to a derivation LX of C∞(S). For every x = (x1,x2) ∈ S,
ϕX

t (x) = (x1 + t,x2) for all t ∈ R. Its restriction to S induces ϕ̃t given by ϕ̃t(x1,x2) =
(x1 + t,x2), where{

t ∈ (−x1 −
√

1− (x2 −1)2,−x1 +
√

1− (x2 −1)2), if x2 > 0
t ∈ R, if x2 = 0.

Hence, every integral curve of X on S has an open domain. Nevertheless, ϕ̃t fails to be a
local one-parameter group of local diffeomorphisms of S, because S is not a locally closed
subset of R2. �

Claim ((4.1)) motivates the following definition. Let (M,C∞(M)) be a locally compact
subcartesian space and let δ ∈ Der(C∞(M)). We call δ a vector field on (M,C∞(M)) if
and only if for every m ∈ M there is an open interval I in R containing 0 and an integral
curve γ : I ⊆ R → M of δ such that γ(0) = m. Let X (M,C∞(M)) be the set of all smooth
vector fields on the differential space (M,C∞(M)).

4.2 Vector fields on a stratified differential space
Let (M,C∞(M)) be a differential space. A stratification S of (M,C∞(M)) is a collec-
tion of differential subspaces {S}, of which each stratum S is a smooth submanifold of
(M,C∞(M)), such that

1. S is a locally finite partition of M.
2. For each S ∈ S the closure of S in M is the union of S and {S′ ∈

S dimS′ < dimS}.

Denote a differential space (M,C∞(M)) with the stratification S by (M,S ,C∞(M)).

A stratified vector field W on (M,S ,C∞(M)) is a map which assigns to each stratum S
of the stratification S a smooth vector field WS on S. If f ∈ C∞(M) and S ∈ S , then
f |S ∈C∞(S). Therefore LWS( f |S) ∈C∞(S).

Fact: For every f ∈ C∞(M) the function ∂W f , which assigns to each S ∈ S the smooth
function LWS( f |S) in C∞(S), is a smooth function on M. Moreover, ∂W lies in Der(C∞(M)).

(4.2) Proof: Let m ∈ M. Because f ∈ C∞(M), for every open neighborhood U of m in M, we
have f |U ∈C∞(U). Since the stratification S is a locally finite partition of M, there are a
finite number of strata {S j} j∈J such that S j∩U =∅. Let F =∑ j∈J LWS j

( f |(U∩S j)). Then
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F ∈ C∞(U) because LWS j
( f |(U ∩ S j)) ∈ C∞(U ∩ S j) ⊆ C∞(U), since S j is an embedded

submanifold of (M,C∞(M)). From (∂W f )|(U ∩ S j) = ∑ j∈J LWS j
( f |(U ∩ S j)) = F |(U ∩

S j) it follows that LW f ∈ C∞
i (U) = C∞(U). Therefore ∂W f ∈ C∞(M). Clearly ∂W is a

derivation on C∞(M). �

A stratified vector field W on (M,S ,C∞(M)) is smooth if and only if ∂W f ∈C∞(M) for
every f ∈ C∞(M). Let X ∞(M,S ) be the set of all smooth stratified vector fields on
(M,S ,C∞(M)).

Claim: The map ∂ : X ∞(M,S ) → Der(C∞(M)) : W �→ ∂W is an injective homomor-
phism of Lie algebras. Moreover,

∂ (X ∞(M,S ))⊆ X (M,C∞(M)), (14)

if the differential space (M,C∞(M)) is locally compact and subcartesian.

(4.3) Proof: First we show that the mapping ∂ is injective. Let W ∈ X ∞(M,S ) and suppose
that ∂W = 0. Let S ∈ S , f ∈ C∞(S), and m ∈ S. Then there is an open neighborhood U
of m in M and g ∈C∞(M) such that f |(S∩U) = g|(S∩U). Because ∂W g = 0, we obtain
LWS( f |(S∩U)) = 0. Since this holds for every m ∈ S, we see that LWS f = 0. Because
LWS : X ∞(S) → Der(C∞(S)) is an isomorphism for smooth manifolds, it follows that
WS = 0. Since this holds for every S ∈ S , we deduce that W = 0.

We now show that (14) holds. Let W ∈ X ∞(M,S ) and m ∈ M. Then there is an S ∈ S
with m ∈ S. The smooth vector field WS on S has a smooth integral curve γ : I → S, where
I is an open interval in R containing 0 and γ(0) = m. For any f ∈C∞(M), we know that
f |S is a smooth function on the smooth manifold S. Therefore

d f (γ(t))
dt

= d( f |S)(γ(t))γ ′(t) = d( f |S)(γ(t))WS(γ(t))

= LWS( f |S)(γ(t)) = ∂W f (γ(t)).

So γ is an integral curve of the derivation ∂W with γ(0) = m. Because this holds for
every m ∈ M, the derivation ∂W is a smooth vector field on (M,C∞(M)), that is, ∂W ∈
X (M,C∞(M)). �

4.3 Vector fields on an orbit space
Let G be a Lie group which acts smoothly and properly on a smooth manifold M with
orbit map π : M → M = M/G. Then (M/G,C∞(M/G)) is a differential space, which has
a stratification S by orbit types.

Claim: We have π∗(X (M)G)⊆ X ∞(M,S ).

(4.4) Proof: Let X ∈ X (M)G, that is, X is a smooth G-invariant vector field on M. Then
X(H) = X |M(H) is a smooth vector field on the orbit type M(H). Let X (H) = π∗X(H). Then
X (H) is a smooth vector field on the orbit type M(H) = π(M(H)) in the orbit space M. The
map which assigns to the orbit type M(H) the smooth vector field X (H) defines a smooth
stratified vector field X on (M,S ,C∞(M)) such that π∗X = X . �
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Claim: Using the map ∂ : X ∞(M,S )→ Der(C∞(M)) defined in §4.2, we have

∂X ∞(M,S ) = X (M,C∞(M)). (15)

(4.5) Proof: We begin by observing that the orbit space M is locally compact, since M is and
the orbit map π is continuous, open and surjective. In addition, the differential space
(M,C∞(M)) is subcartesian.

Let X be a smooth vector field on M. For any point m ∈ M, we use the diffeomorphism
ϕ = σ̃ ◦φ−1 of ((3.19)) to identify an open neighborhood U of m in M with the image
σ(B)⊆ Rn of the Hilbert map. We also use the decomposition Rn = R�×Rm so that the
orbit types in σ(E) are of the form R�×R, where R is an orbit type for the action of H
on F . We may assume that σ̃(m) = (0,0) ∈ R�×Rm and that its orbit type corresponds
locally to R�×{0}.

Let X(x,q) = (ẋ, q̇) be a smooth vector field in an open neighborhood of 0 in Rn induced
by the smooth vector field X . Let γ(t) =

(
x(t),q(t)

)
be an integral curve of X defined in

an open interval I of R containing 0 such that q(0) = 0. Because γ(t) ∈ σ(E) for all t ∈ I,
from ((3.23)) it follows that dq(γ(t))

d t (0) = 0. Because integral curves of X are integral
curves of X , it follows that q̇ = 0 when q = 0. In other words, the vector field X is tangent
to S = R�×{0}. Thus X |S near 0 is a smooth vector field W on S. Therefore the integral
curves of X , which are integral curves of X , remain on S when they start on S.

Let f be a smooth function on an open neighborhood of the 0 in Rn. For any integral
curve γ of X , which lies on S, we have

X( f )(γ(t)) =
d f (γ(t))

dt
= ∂W f (γ(t)),

see ((4.3)). Consequently, X( f )|S = ∂W ( f |S). Thus, for every S ∈ S and every m ∈ S,
there is an open neighborhood U of m in M and a smooth vector field WT in T = S∩U such
that for every f ∈ C∞(U) we have X( f )|T = ∂WT ( f |T ). Because the preceding equality
determines WT uniquely in terms of X , the vector fields WT patch together to form a
smooth vector field WS on S. Moreover, every f ∈ C∞(M) we have X( f )|S = ∂WS( f |S).
Because the preceding equality holds for every S ∈ S , we obtain a mapping W̃ : S →
X ∞(M,S ) : S �→ WS, which defines a smooth stratified vector field W̃ on M such that
X = ∂W̃ . Consequently, X (M,C∞(M)) ⊆ ∂X ∞(M,S ). The inclusion ∂X ∞(M,S ) ⊆
X (M,C∞(M)) follows from ((4.3)) with (M,C∞(M)) replaced by (M,C∞(M)). �

In view of ((4.4)) and ((4.5)), we call the set of smooth vector fields on M the space
X (M,C∞(M)) of smooth vector fields on the G orbit space M. These vector fields depend
only on the differential structure C∞(M) of M; whereas the space of induced vector fields
π∗(X ∞(M)G) depends on the manifold structure of M, and the space X ∞(M,S ) of
stratified vector fields on M depends on the stratification S of M by orbit types.

Examples:
1. Let M = R and G = Z2 = {±1}. Then p : R → R≥0 ⊆ R : x �→ x2 is a Z2-invariant
polynomial, which freely generates C∞(R)Z2 . In other words, every smooth even func-
tion is a smooth function of p. Therefore p∗ : C∞(R≥0)→ C∞(R)Z2 is an isomorphism,
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which gives rise to a diffeomorphism of the differential space (R/Z2,C∞(R/Z2)) onto
the differential space (R≥0,C∞(R≥0)). The derivation LW on C∞(R≥0) is a smooth vector
field on C∞(R≥0) if and only if the flow ϕt of W maps 0 into R≥0 for every t in an open
neighborhood of 0 in R. This holds if and only if W (0) = 0. Thus not every derivation of
C∞(R/Z2) is a smooth vector field on R/Z2.
2. Let M = C and G = S1 = {z ∈C |z|= 1}. Suppose that S1 acts on C by multiplication.
Then C∞(C)S1

is generated freely by the real valued function p : C → R≥0 ⊆ R : z �→ zz.
Thus p∗ : C∞(R≥0)→C∞(C/S1) is an isomorphism. So not every derivation of C∞(C/S1)
is a vector field on C/S1, because the inclusion map i : R → C induces a diffeomorphism
of the differential space (C/S1,C∞(C/S1)) onto the differential space (R/Z2,C∞(R/Z2)).
�

5 Momentum mappings
In this section we define the concept of a momentum mapping of a Hamiltonian group
action on a smooth symplectic manifold (M,ω).

5.1 General properties
Let Φ be an action of a Lie group G on a smooth manifold M. For every ξ in the Lie
algebra g of G define a vector field Xξ on M by Xξ (m) = d

dt t=0
Φm(exp tξ ) = TeΦmξ for

every m ∈ M. The vector field Xξ is the infinitesimal generator of Φ in the direction ξ .

Claim: The linear map g→X (M) : ξ �→ Xξ is an antihomomorphism of the Lie algebra
g to the Lie algebra X (M) of vector fields on M.

(5.1) Proof: Linearity is obvious. To verify that the mapping is an antihomomorphism of Lie
algebras we compute

[Xξ ,Xη ](m) =
d
dt t=0

Φ∗
exp tξ Xη(m) =

d
dt t=0

T Φexp−tξ Xη(Φexp tξ (m))

=
d
dt t=0

d
ds s=0

Φexp−tξ ◦Φexpsη ◦Φexp tξ (m)

=
d
dt t=0

d
ds s=0

Φm(exp−tξ expsη exp tξ )

=
d
dt t=0

d
ds s=0

Φm
(

exps(Adexp−tξ η)
)

=
d
dt t=0

XAdexp−tξ η(m) = X−[ξ ,η ](m) = −X [ξ ,η ](m). �

Let (M,ω) be a symplectic manifold. The G-action Φ on (M,ω) is a Hamiltonian G-
action if for every ξ ∈ g the infinitesimal generator Xξ is a Hamiltonian vector field on
(M,ω). In other words, for every ξ ∈ g, there is a smooth function Jξ : M → R such that
Xξ = XJξ .
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� If G is connected, then Φg is a symplectic diffeomorphism for every g ∈ G.

(5.2) Proof: Let ξ ∈ g. Then LXξ ω = Xξ dω +d(Xξ ω) = d(dJξ ) = 0. Therefore

d
dt

Φ∗
exp tξ ω = Φ∗

exp tξ
( d

ds s=0
Φ∗

expsξ ω
)
= Φ∗

exp tξ (LXξ ω) = 0,

which gives Φ∗
exp tξ ω = ω for every ξ ∈ g. Since G is connected, it is generated by an

open neighborhood of e. Therefore Φ∗
gω = ω for every g ∈ G. �

To avoid limiting ourselves to actions of connected Lie groups, we supplement the defi-
nition of Hamiltonian G-action Φ by requiring that Φg be a symplectic diffeomorphism
of (M,ω) for every g ∈ G. We define a mapping J : M → g∗ by J(m)ξ = J ξ (m), where
ξ ∈ g and m ∈ M. This makes sense because ξ �→ J ξ (m) is a linear form on g for every
fixed m ∈ M. The mapping J is a momentum map of the Hamiltonian action Φ.

Claim: If (M,ω) is connected, then the momentum mapping is determined up to an
additive constant μ0 ∈ g∗.

(5.3) Proof: Suppose that J̃ is another momentum map for the Hamiltonian action Φ. Let
J = J− J̃ and fix m ∈ M. For every ξ ∈ g and every vm ∈ TmM we have

(TmJ )(vm)ξ = dJ ξ (m)vm = dJξ (m)vm −dJ̃ ξ (m)vm

= ω(m)
(
XJξ (m)−XJ̃ξ (m),vm

)
= ω(m)

(
Xξ (m)−Xξ (m),vm

)
= 0.

Hence TmJ vanishes for every m ∈ M. Since M is connected, it follows that J = μ0 for
some fixed μ0 ∈ g∗. �

The momentum map J : M → g∗ of the Hamiltonian G-action Φ on (M,ω) is coadjoint
equivariant provided that for every g ∈ G and every m ∈ M

J(Φg(m)) = Adt
g−1 J(m). (16)

� If J : M → g∗ is a coadjoint equivariant momentum mapping, then

J[ξ ,η ](m) = {Jξ ,Jη}(m) (17)

for every ξ , η ∈ g and every m ∈ M.

(5.4) Proof: For every ζ ∈ g infinitesimalizing (16) gives d
ds

s=0
J(Φm(expsζ ))= d

ds
s=0
Adt

exp−sζ J(m),

that is, TmJXζ (m) =−adt
ζ J(m). Consequently for every ξ , η ∈ g we get

−J[ξ ,η ](m) =−J(m)(adξ η) =
(− adt

ξ J(m)
)
η

=
(
TmJXξ (m)

)
η = dJη(m)Xξ (m), since J(m)ζ = Jζ (m)

= dJη(m)XJξ (m) = {Jη ,Jξ}(m). �
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Suppose that the Hamiltonian G-action Φ preserves a Hamiltonian function H on M,
that is, for every g ∈ G, we have Φ∗

gH = H. Then Φ is a symmetry of the Hamiltonian
system (M,ω,H). Symmetries of Hamiltonian systems give rise to conserved quantities.

� More precisely, for every ξ ∈ g the function Jξ is an integral of XH , that is, LXH Jξ = 0.

(5.5) Proof: The map Φ preserves the Hamiltonian H, that is, Φ∗
exp tξ H = H for every ξ ∈ g.

Therefore

0 =
d
dt t=0

Φ∗
exp tξ H = LXξ H, by definition of Xξ

= LX
Jξ H, because Φ is a Hamiltonian action

= {H,Jξ}, by definition of Poisson bracket { , }
=−{Jξ ,H}=−LXH Jξ . �

We now give some examples of momentum mappings.

Example 1: Suppose that ψ is an action of a Lie group G on a configuration space M,
which is a smooth manifold. Then ψ lifts to an action Ψ of G on the phase space T ∗M.
Ψ is defined by Ψg(αm) = (Tmψg−1)

tαm for every αm ∈ T ∗
mM. The action Ψ covers the

action ψ , that is, τ(Ψg(αm)) = ψg(τ(αm)), where τ : T ∗M → M : αm → m is the bundle
projection. To show that Ψ is a Hamiltonian action we need the following

Fact: For every g ∈ G, the mapping Ψg preserves the canonical 1-form θ on T ∗M, see
chapter VI §2.

(5.6) Proof: For vαm ∈ Tαm(T
∗M) and αm ∈ T ∗

mM,(
(Ψg)

∗θ
)
(αm)vαm = θ(Ψgαm)T Ψg vαm

= (Ψgαm)T τ◦T Ψg vαm , by definition of θ
= αm(T ψg−1◦T ψg◦T τ vαm), by definition of the action Ψ

= θ(αm)vαm . �

From this follows the momentum lemma

Claim: For every ξ ∈ g, the infinitesimal generator Xξ of the G-action Ψ in the direction
ξ is the Hamiltonian vector field on (T ∗M,Ω) corresponding to the Hamiltonian function
Jξ : T ∗M → R : αm �→ αm(Xξ (m)). Here Xξ (m) = d

dt t=0
ψexp tξ (m) is the infinitesimal

generator of the G-action ψ on M and Ω is the canonical 2-form on T ∗M.

(5.7) Proof: Since the action Ψ preserves the 1-form θ , LXξ θ = 0. But LXξ θ = Xξ dθ +

d(Xξ θ). Therefore Xξ Ω = −Xξ dθ = d(Xξ θ). Thus Xξ is the Hamiltonian
vector field on (T ∗M,Ω) corresponding to the Hamiltonian function

Jξ : T ∗M → R : αm �→ (Xξ θ)(αm) = αm(Tαmτ Xξ (αm)) = αm(Xξ (m)).

The last equality above follows by differentiating τ(Ψexp tξ (αm)) = ψexp tξ (τ(αm)) =
ψexp tξ (m) and evaluating the resulting expression at t = 0. �
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Claim: The Hamiltonian G-action Ψ has a coadjoint equivariant momentum mapping

J : T ∗M → g∗ : αm �→ (T τ◦TeΨαm)
tαm. (18)

(5.8) Proof: Since

J(αm)ξ = αm
(
Tαm τ Xξ (αm)

)
= αm(Xξ (m)) = Jξ (αm)

and Xξ (m) = XJξ (m), the mapping J (18) is a momentum map for the G-action Ψ on
T ∗M. The map J is coadjoint equivariant, because

J(Ψg(αm))ξ = θ(Ψg(αm))Xξ (Ψg(αm))

= Ψg(αm)
(
T τ◦T Ψg XAdg−1 ξ (αm)

)
, see below

= αm
(
T ψg−1 ◦T ψg ◦T τ XAdg−1 ξ (αm)

)
= J(αm)Adg−1 ξ

= Adt
g−1(J(αm))ξ .

The second equality above follows from the definition of θ and the ensuing calculation

Xξ (Ψg(αm)) =
d
dt t=0

Ψexp tξ ◦Ψg(αm)

=
d
dt t=0

Ψg ◦Ψg−1(exp tξ )g(αm) = T ΨgXAdg−1 ξ
(αm). �

Example 2: Let (V,σ) be a real symplectic vector space. A linear mapping A : V → V
is symplectic if it preserves σ , that is, if A∗σ = σ . Note that a linear symplectic map is
invertible; for if Av= 0, then 0= σ(Av,Aw) = σ(v,w) for every w∈V . Hence v= 0, since
σ is nondegenerate. The set Sp(V,σ) of all real symplectic linear mappings on (V,σ),
is a Lie group because it is a closed subgroup of the Lie group of all invertible linear
mappings of V to itself. Sp(V,σ) is called the real symplectic group. The Lie algebra
sp(V,σ) of Sp(V,σ) is the set of infinitesimally symplectic linear mappings a : V → V ,
that is, σ � ◦a+at ◦σ � = 0.

Define a linear action Φ of Sp(V,σ) on V by Φ : Sp(V,σ)×V → V : (A,v) �→ Av. For
ξ ∈ sp(V,σ) the infinitesimal generator Xξ of Φ in the direction ξ is ξ , because for every
v ∈ V we have Xξ (v) = d

dt t=0
Φexp tξ (v) = ξ (v). Define the mapping J : V → sp(V,σ)∗ by

J(v)ξ = Jξ (v) = 1
2 σ(ξ (v),v) for every ξ ∈ sp(V,σ) and every v ∈V .

Claim: J is a coadjoint equivariant momentum mapping for the linear action Φ.

(5.9) Proof: By definition Jξ is a homogeneous quadratic function on V . Differentiating the
definition of J gives dJξ (v)w = σ(ξ (v),w) = σ(Xξ (v),w) for every v,w ∈ V . In other
words, Xξ is a Hamiltonian vector field on (V,σ) corresponding to the Hamiltonian Jξ .
Suppose that A ∈ Sp(V,σ). Then for every ξ ∈ sp(V,σ) and every v ∈V we have

J(Av)ξ = Jξ (Av) = 1
2 σ

(
ξ (Av),Av

)
= 1

2 σ
(
(A−1ξ A)(v),v

)
= JAdA−1 ξ (v) = J(v)AdA−1 ξ =

(
Adt

A−1(J(v))
)
ξ .
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Hence J is coadjoint equivariant. �

Example 3: Let G be a Lie group with Lie algebra g. The group G acts naturally on itself
by left translation, namely, L : G×G → G : (h,g) �→ Lhg = hg. The action L induces an
action Φ on the cotangent bundle T ∗G given by Φ : G×T ∗G → T ∗G : (h,αg) �→ αhg =
(TgLh−1)tαg. Φ preserves the canonical 1-form θ on T ∗G and therefore the canonical

� symplectic form Ω =−dθ . For ξ ∈ g, the vector field Xξ (αg) = d
dt t=0

Φexp tξ (αg) on (T ∗G,

Ω) is Hamiltonian with Hamiltonian function J ξ : T ∗G → R : αg �→ (TeRg)
t(αg)ξ .

(5.10) Proof: To see this, note that for ξ ∈ g the infinitesimal generator of the action L in the
direction ξ is Xξ (g) = d

dt t=0
Lexp tξ g = d

dt t=0
Rg exp tξ = TeRgξ . Here Rg : G → G : h �→ hg is

right translation by g. Therefore, by the momentum lemma ((5.7)),

J ξ (αg) = αg(TeRgξ ) = (TeRg)
t(αg)ξ .

Thus the function J : T ∗G → g∗ : αg �→ (TeRg)
t(αg) is the momentum mapping of the

action Φ. The mapping J intertwines the action Φ on T ∗G with the coadjoint action of
G on g∗. In other words, J (Φh(αg)) = Adt

h−1 J (αg). �

Using the left trivialization L : G×g∗ → T ∗G : (g,α) �→ (TgLg−1)tα = αg, the G-action
Φ on T ∗G pulls back to the G-action ϕ = L ∗Φ on G×g∗ defined by ϕh(g,α) = (hg,α)
for h ∈ G. Because ϕh preserves the 1-form ϑ = L ∗θ , the vector field Xξ (g,α) =
d
dt t=0

ϕexp tξ (g,α) = (TeRgξ ,0) is Hamiltonian with corresponding Hamiltonian function(
Xξ ϑ

)
(g,α) = ϑ(g,α)Xξ (g,α) = αg(TeRgξ )

= α(TgLg−1 TeRgξ ) = α(Adg−1 ξ ) = (Adt
g−1 α)ξ .

Therefore, the pull back of the momentum mapping J by left trivialization L is the
momentum mapping J : G× g∗ → g∗ : (g,α) �→ Ad t

g−1 α of the action ϕ . Clearly the
mapping J intertwines the G-action ϕ on G×g∗ with the coadjoint action of G on g∗. �

Example 3′: Let H be a closed subgroup of a Lie group G. Then H is a Lie group. Let H
act on G by left translation. The lift of this action to T ∗G has a momentum mapping

JH : T ∗G → h∗ : αg �→ (TeRg)
tαg,

which is coadjoint equivariant. The lift of left translation by G on itself to T ∗G has a
coadjoint equivariant momentum mapping

JG : T ∗G → g∗ : αg �→ (TeRg)
tαg.

Because H is a Lie subgroup of G, we have an inclusion map i : h→ g of Lie algebras.
By duality this becomes the projection π = it : g∗ → h∗. Clearly, JH = π ◦JG. �

Example 4: Let Oμ be the orbit through μ ∈ g∗ of the coadjoint action of G on the dual
g∗ of its Lie algebra g, see chapter VI §2. Clearly Φ : G×Oμ → Oμ : (g,ν) �→ Adt

g−1ν is

a G-action. For every ξ ∈ g, the vector field Xξ (ν) = d
ds

s=0
Adt

exp−sξ ν = −adt
ξ ν is the in-

finitesimal generator of the action Φ in the direction ξ . Recall that in chapter VI ((2.4)) we
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showed that Oμ is a symplectic manifold with symplectic form ωOμ (ν)
(
Xξ (ν),Xη(ν)

)
=

−ν([ξ ,η ]). We now show that Φ is a Hamiltonian action on (Oμ ,ωOμ ). First we verify
that Φg is a symplectic diffeomorphism. We calculate.

(Φ∗
gωOμ )(ν)

(
Xξ (ν),Xη(ν)

)
= ωOμ (Adt

g−1 ν)
(
Adt

g−1(adt
ξ (ν)),Adt

g−1(adt
η(ν))

)
= ωOμ (Adt

g−1ν)
(
adt

Adgξ (Adt
g−1 ν),adt

Adgη(Adt
g−1ν)

)
= −(Adt

g−1 ν)([Adgξ ,Adgη ]) = −ν([ξ ,η ])

= ωOμ (ν)
(
Xξ (ν),Xη(ν)

)
.

Next we show that Xξ is a Hamiltonian vector field on (Oμ ,ωOμ ). Observe that the
definition of ωOμ may be rewritten as

ωOμ (ν)
(
Xξ (ν),Xη(ν)

)
= (adt

η ν)ξ =−Xη(ν)(ξ ) =−ξ (Xη(ν)), (19)

where we have identified g∗∗ with g. Now consider the linear function Jξ : g∗ → R : α �→
−α(ξ ). Then dJξ (α)β =−β (ξ ) =−ξ (β ), again identifying g∗∗ with g. Thus (19) may
be written as ωOμ (ν)

(
Xξ (ν),Xη(ν)

)
= dJξ (ν)Xη(ν). Since TνOμ is spanned by the

vectors Xη(ν) as η ranges over g, it follows that Xξ is the Hamiltonian vector field XJξ .
Thus J : Oμ ⊆ g∗ → g∗ : ν �→ −ν is a momentum mapping for the coadjoint action Φ of
G on g∗. The momentum mapping J is obviously coadjoint equivariant. �

We need the next result in the following section. Suppose that μ ∈ g∗ lies in the image of
a coadjoint equivariant momentum mapping J : M → g∗ of a Hamiltonian action of a Lie
group G on a symplectic manifold (M,ω).

Fact: For every m ∈ M we have

Tm(G ·m) = (ker TmJ)ω(m) (20a)

and for every m ∈ J−1(μ)

Tm(Gμ ·m) = (ker TmJ)∩ (ker TmJ)ω(m). (20b)

(5.11) Proof: We prove (20a) as follows. From the definition of the momentum mapping it
follows that

ω(m)(Xξ (m),v) = dJξ (m)v = (TmJ(v))ξ , (21)

for every ξ ∈ g. If v ∈ ker TmJ, then from (21) we find that ω(m)(Xξ (m),v) = 0 for
every ξ ∈ g. In other words, v ∈ Tm(G ·m)ω(m). Conversely, if v ∈ Tm(G ·m)ω(m), then
ω(m)(Xξ (m),v) = 0 for every ξ ∈ g. Hence from (21) it follows that (TmJ(v))ξ = 0 for
every ξ ∈ g, that is, v ∈ ker TmJ. This establishes (20a).

To prove (20b) we begin by showing that

Tm(Gμ ·m) = Tm(G ·m)∩ker TmJ. (22)

To verify the inclusion ⊆ we argue as follows. Let vm ∈ Tm(Gμ ·m). Then for some ξ
in the Lie algebra gμ of Gμ , vm = Xξ (m). Differentiating the relation J(Φexpsξ (m)) =
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Adt
exp −sξ (J(m)) with respect to s and then setting s = 0 gives

TmJ Xξ (m) =−Xξ
g∗(J(m)) = −Xξ

g∗(μ) = 0, (23)

where Xξ
g∗(μ) = − d

ds
s=0
Adt

exp−sξ μ . The last equality in (23) follows because ξ ∈ gμ .

Therefore Xξ (m) ∈ kerTmJ, which proves Tm(Gμ ·m)⊆ ker TmJ. Since Gμ ⊆ G, we have
Tm(Gμ ·m) ⊆ Tm(G ·m). Therefore the inclusion ⊆ in (22) holds. To prove the reverse
inclusion ⊇ suppose that vm ∈ Tm(G ·m)∩ker TmJ. Then there is a ξ in the Lie algebra of
g such that vm = Xξ (m) = TeΦmξ . Because vm ∈ ker TmJ, it follows from TmJ Xξ (m) =

Xξ
g∗(μ) that Xξ

g∗(μ) = 0, that is, ξ ∈ gμ , the Lie algebra of Gμ . Consequently, vm ∈
Tm(Gμ ·m). This proves (22). Substituting (20a) into (22) gives (20b). �

5.2 Normal form
In this subsection we find a local normal form for a coadjoint equivariant momentum
mapping of a proper Hamiltonian action near a given point in its zero level set. This
normal form is used to show that the zero level set of the momentum mapping is locally
arcwise connected.

Let Φ : G×M → M be a proper Hamiltonian action of a Lie group G on a symplectic
manifold (M,ω) with coadjoint equivariant momentum map J : M → g∗. For μ ∈ g∗ in
the image of J let m be a point in the level set J−1(μ). Let Gm be the isotropy group of
m under the G-action Φ with Lie algebra gm and let Gμ be the isotropy group of μ under
the coadjoint action of G on g∗ with Lie algebra gμ . Note that the linear ω(m)-symplectic
action

Φ̂ : Gm ×TmM → TmM : (h,vm)→ TmΦh vm (24)

has a Gm-coadjoint equivariant momentum mapping Ĵ : TmM → g∗m : vm �→ Ĵ(vm), where
Ĵ(vm)ξ = 1

2 ω(m)(Xξ (vm),vm) for ξ ∈ gm, see example 2 §5.1. Here Xξ is the infinitesi-
mal generator of the Gm-action Φ̂ in the direction ξ .

Before we can state the local normal form of the momentum mapping J, we need the
following decomposition of TmM.

Fact:
TmM = h⊕ (

X ⊕T ∗
m(Gμ ·m)

)
, (25)

where X is a complement to W = (kerTmJ)∩ (kerTmJ)ω(m) in kerTmJ and h is a subspace
of g which is isomorphic to g/gm, that is, h is isomorphic to Tm(G ·m).

(5.12) Proof: Using the Witt decomposition ((1.4)) of chapter VI starting with the subspace
kerTmJ of the symplectic vector space (TmM,ω(m)), we obtain the decomposition TmM =
X ⊕Y ⊕ Z, where X ,Y and Z are the ω(m)-symplectic subspaces of TmM defined by
ker TmJ = X ⊕W , (ker TmJ)ω(m) = Y ⊕W , and Z = (X ⊕Y )ω(m). From the Witt decom-
position it follows that W is a Lagrangian subspace of Z. Therefore Z is isomorphic to
W ⊕W ∗. Thus we may rewrite TmM = X ⊕Y ⊕Z as

TmM = (Y ⊕W )⊕ (X ⊕W ∗) = (ker TmJ)ω(m)⊕ (X ⊕W ∗). (26)
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To finish the proof of (25) we only need note that Tm(G ·m) = (ker TmJ)ω(m) (20a) and
that Tm(Gμ ·m) = (ker TmJ)∩ (ker TmJ)ω(m) = W (20b). �

Corollary: When μ = 0 the decomposition (25) reads

TmM = h⊕X ⊕W ∗, (27)

where h=W = Tm(G ·m).

(5.13) Proof: When μ = 0 the isotropy group Gμ equals G. Therefore from (20a) and (20b) we
obtain (kerTmJ)ω(m) = Tm(G ·m) = Tm(Gμ ·m) = (kerTmJ)∩ (kerTmJ)ω(m). �

Corollary: The spaces X , Y , W and W ∗ in the Witt decomposition

TmM = X ⊕Y ⊕ (W ⊕W ∗) (28)

can be choosen to be Gm-invariant.

(5.14) Proof: Since G ·m is invariant under the Hamiltonian Gm-action Φ|(Gm ×M) on M, it
follows that kerTmJ = Tm(G ·m)ω(m) is invariant under the linear ω(m)-symplectic action
Φ̂. Thus (kerTmJ)ω(m) and W = kerTmJ ∩ (kerTmJ)ω(m) are also invariant under Φ̂. Let
γ be an inner product on TmM. Then averaging over Gm, which is compact because the
G-action is proper, we may assume that γ is Φ̂-invariant. Let X , Y be the orthogonal com-
plement of W in kerTmJ and (kerTmJ)ω(m), respectively. Then X and Y are Φ̂-invariant
ω(m)-symplectic subspaces of (TmM,ω(m)). Therefore Z, which is the orthogonal com-
plement of X ⊕Y in TmM, is a Φ̂-invariant ω(m)-symplectic subspace. Hence we have
obtained the Φ̂-invariant Witt decomposition TmM = X ⊕Y ⊕Z. Since W is a Φ̂-invariant
Lagrangian subspace of Z, its orthogonal complement W⊥ in Z is Φ̂-invariant. Since W⊥
is isotropic and hence Lagrangian, it is isomorphic to W ∗. This proves (28). �

We now are in position to state the local normal form theorem.

Claim: Let m ∈ J−1(0). Using the decomposition (27) we write the tangent space TmM
to M at m as the sum h⊕X ⊕W ∗. Let (η , x, α) be coordinates on TmM with respect to
this decomposition. Then there is a local diffeomorphism ϑ : TmM → M with ϑ(0) = m
and T0ϑ = idTmM such that for every (η ,x,α) sufficiently close to 0, we have

ϑ ∗J(η ,x,α) = Adt
exp−η(Ĵ(x)+α). (29)

Here Ĵ is the momentum mapping for the linear Gm-action Φ̂ (24) on (TmM,ω(m)).

(5.15) Proof:
Step 1.
Since the G-action Φ is proper, the isotropy group Gm is compact. Let γ be a Gm-invariant
Riemannian metric on M. Then the exponential map Exp : TmM → M associated to the
metric γ is a local diffeomorphism with Exp(0) = m such that T0 Exp = idTmM . Because
γ is Gm-invariant, the map Exp intertwines the linear Gm-action Φ̂ on TmM with the Gm-
action Φ|(Gm ×M) on M. Pulling back the symplectic form ω on M by the exponential
map gives a symplectic form σ̂ on a neighborhood of 0 in TmM with σ̂(0) = ω(m). Since
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the map Φh : M → M is a symplectic diffeomorphism for every h ∈ Gm, it follows that
Φ̂h : TmM → TmM is a linear symplectic mapping of (TmM, σ̂). The equivariant Darboux
theorem, see exercise 13, shows that there is a local diffeomorphism ψ : TmM → TmM
with ψ(0) = 0, which pulls back the symplectic form σ̂ to a constant symplectic form
ω(m), commutes with the linear Gm-action Φ̂, and has T0 ψ = idTmM . Thus the local
diffeomorphism ϕ = Exp◦ψ : TmM → M symplectically identifies a neighborhood of 0 in
TmM with a neighborhood of m in M so that the ω-symplectic Gm-action Φ|(Gm ×M)

becomes the linear ω(m)-symplectic Gm-action Φ̂ on TmM.

Step 2.
Using the local diffeomorphism ϕ : TmM → M constructed in step 1, pull back the G-
coadjoint equivariant momentum map J : M → g∗ with J(m)= 0 to obtain a locally defined
Gm-equivariant map J = ϕ∗J : TmM → g∗ with J (0) = 0. Split J into the sum of two
maps as follows. Since the isotropy group Gm is closed, it is a Lie subgroup of G. Thus
the Lie algebra gm of Gm is a subalgebra of g. Hence we have an inclusion map i′ : gm → g.
By duality we obtain a projection map π ′ = (i′)t : g∗ → g∗m. Since Gm is compact, there
is a Gm-coadjoint invariant inner product on g∗. Let h∗ = (g∗m)⊥. Then g∗ = g∗m ⊕h∗ and
there is a projection π ′′ : g∗ → h∗ such that π ′+π ′′ = idg∗ . Write J = π ′◦J +π ′′◦J =
J ′+J ′′. Then J ′ : TmM → g∗m and J ′′ : TmM → h∗ are locally defined Gm-coadjoint
equivariant maps with J ′(0) = π ′(0) = 0 and J ′′(0) = π ′′(0) = 0.

Step 3.
We now analyze the mapping J ′. Since J ′ is Gm-coadjoint equivariant and J ′(0) = 0,
it follows that J ′ is the canonical momentum map Ĵ of the linear symplectic action Φ̂ on
(TmM,ω(m)). Note that the mapping ρ : gm → sp(TmM,ω(m)) : ξ → Xξ is an antihomo-
morphism of Lie algebras. We now study ρ more closely. Because the Witt decomposition
TmM = X ⊕ (W ⊕W ∗) ((5.13)) has summands which are invariant under the linear Gm-
action Φ̂ and because the linear Hamiltonian vector field Xξ is the infinitesimalization of
this action in the direction ξ , it follows that each summand of the Witt decomposition
is invariant under Xξ for every ξ ∈ gm. Since W and W ∗ are Φ̂-invariant Lagrangian
subspaces of Z, W and W ∗ are invariant Lagrangian subspaces of Xξ for every ξ ∈ gm.

� For every α ∈W ∗, we have Ĵ(α) = 0.

(5.16) Proof: Since W ∗ is an Xξ -invariant subspace for every ξ ∈ gm, it follows that Xξ (α) ∈
W ∗ for every ξ ∈ gm. Now ω(m)(Xξ (α),α) = 0, because W ∗ is Lagrangian. Hence
Ĵ(α)ξ = 0 for every ξ ∈ gm. �

� Let α ∈W ∗ and x ∈ X , then Ĵ(α + x) = Ĵ(x).

(5.17) Proof: Let ξ ∈ gm. We compute:

2 Ĵ(α + x)ξ = ω(m)(Xξ (α),α)+ω(m)(Xξ (α),x)+ω(m)(Xξ (x),α)+ω(m)(Xξ (x),x)

= ω(m)(Xξ (x),x), since Xξ (α) ∈W ∗, Xξ (x) ∈ X , W ∗ ⊆ Xω(m), and
W is Lagrangian

= 2 Ĵ(x)ξ . �
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Step 4.
� The mapping J ′′ : TmM → h∗ with J ′′(0) = 0 is a local submersion at 0.

(5.18) Proof: It suffices to show that T0(J
′′|W ∗) is injective, because h∗ = W ∗. Suppose that

there is an α ∈ W ∗ such that 0 = T0J ′′(α) = π ′′(T0J (α)) = π ′′(TmJ(α)). In other
words, TmJ(α) ∈ g∗m. Suppose that TmJ(α) is nonzero, then there is a ζ ∈ gm such that
1 = TmJ(α)ζ = ω(m)(Xζ (α),α). But ω(m)(Xζ (α),α) = 0, since W ∗ is a gm-invariant
Lagrangian subspace of (TmM,ω(m)). This is a contradiction. Therefore TmJ(α)= 0, that
is, α ∈ ker TmJ = X ⊕W . From the decomposition (27) it follows that (X ⊕W )∩W ∗ =
{0}. Therefore α = 0. Hence T0(J

′′|W ∗) is injective. �

Let (x,w,α) be coordinates on TmM = X ⊕W ⊕W ∗. From the above assertion and the
implicit function theorem it follows that there is a local diffeomorphism θ : TmM → TmM
with θ(0) = 0 such that J ′′◦θ is the projection TmM → h∗ = W ∗ : (x,w,α) → α and
θ |(X ⊕W ) = idX⊕W . In other words, for every (x,w,α) ∈ X ⊕W ⊕W ∗ sufficiently close
to 0 we have J ′′(θ(x,w,α)

)
= α and θ(x,w,α) =

(
x,w,θ3(x,w,α)

)
. Therefore

θ ∗J (x,0,α) = J ′(θ(x,0,α))+J ′′(θ(x,0,α)) = J ′(x,0,θ3(x,0,α))+α

= Ĵ(x)+α, using ((5.16)).

Since X ⊕W ∗ is transverse to the G-orbit G ·m at m and h is Tm(G ·m), we can use the
map ϕ constructed in step 1 to define

ϑ : (X ⊕W ∗)×h→ M :
(
(x,α),η

) �→ Φexpη
(
ϕ(θ(x,0,α))

)
.

Note that ϑ(0,0,0) = m. Moreover, ϑ is a local diffeomorphism because T(0,0,0)ϑ =
idTmM . Thus for every u in M near m there is a unique (x,α,η) in (X ⊕W )×h such that
u = ϑ(x,α,η). Hence

J(u) = J
(

expη ·ϕ(θ(x,α))
)
= Adt

exp−η
(
θ ∗J (x,0,α)

)
= Adt

exp−η(Ĵ(x)+α),

which is the desired normal form. �

Corollary: For every μ ∈ g∗ the level set J−1(μ) is locally arcwise connected.

Using the following device, called the shifting trick, we reduce the proof of the corollary to
the case of the 0-level of a coadjoint equivariant momentum mapping of a proper G-action
on M×Oμ . Consider the manifold M ×Oμ with symplectic form Ω = π∗

1 ω − π∗
2 ωOμ .

Here ω is the symplectic form on M and ωOμ is the symplectic form on the G coadjoint
orbit Oμ given in example 3 of chapter VI §2. The map πi is the projection on the ith

factor of M ×Oμ . Define a G-action on M ×Oμ by
(
g,(m,ν)

) �→ (Φg(m),Adt
g−1 ν).

The G-action is proper and has a coadjoint equivariant momentum mapping JM×Oμ :
M×Oμ → g∗, where JM×Oμ (m,ν)ξ = Jξ (m)−ν(ξ ) for every ξ ∈ g.

Fact: Since C∞(J−1
M×Oμ

(0)/G)=C∞
i (J

−1
M×Oμ

(0))G and C∞(J−1(Oμ))/G)=C∞
i (J

−1(Oμ))
G,

we find that
(
J−1

M×Oμ
(0)/G,C∞(J−1

M×Oμ
(0)/G)

)
and

(
J−1(Oμ)/G, C∞(J−1(Oμ)/G)

)
are

diffeomorphic differential spaces.
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(5.19) Proof: We determine the diffeomorphism between the differential spaces as follows.
Restricting the domain of the smooth mapping F1 : M ×Oμ → M : (m,ν) �→ m to the
closed subset J−1

M×Oμ
of M ×Oμ(0) gives a smooth mapping F2 : J−1

M×Oμ
(0)→ M. Since

JM×Oμ (m,ν) = 0 is equivalent to J(m) = ν , it follows that imF2 = J−1(Oμ). Cutting the
map F2 down to its image, we obtain a map F : J−1

M×Oμ
(0) → J−1(Oμ). We now show

that F is smooth. Suppose that f ∈C∞
i (J

−1(Oμ)). For each p ∈ J−1(Oμ) there is an open
neighborhood U of p in M ×Oμ and an h ∈ C∞(M ×Oμ) such that f |(J−1(Oμ ∩U)

)
=

h|(Oμ ∩U). Moreover, V = F−1(U) is an open subset of M ×Oμ . For every q ∈ V we
have F(q) ∈ J−1(Oμ)∩U since the image of F is J−1(Oμ). Also f ◦F(q) = h(F(q)) =
(h◦F)(q). So ( f ◦F)|V = (h◦F)|V . Since h◦F ∈ C∞(M ×Oμ), it follows that f ◦F ∈
C∞

i (J
−1
M×Oμ

(0)). Thus F is smooth. We now construct a smooth inverse to the mapping
F . Consider the smooth map H1 : M → M×g∗ : m �→ (m,J(m)). Restricting the domain
of H1 to J−1(Oμ) gives a smooth map H2 :

(
J−1(Oμ),C∞

i (J
−1(Oμ))

) → M × g∗, whose
image is

(
J−1

M×Oμ
(0),C∞

i (J
−1
M×Oμ

(0))
)
. Cutting H2 down to its image gives a smooth map

H :
(
J−1(Oμ),C∞

i (J
−1(Oμ))

) → (
J−1

M×Oμ
(0), C∞

i (J
−1
M×Oμ

(0))
)
. For each m ∈ J−1(Oμ)

we have F(H(m)) = F(m,J(m)) = m; while for each (m,J(m)) ∈ J−1
M×Oμ

(0) we have

H(F(m,J(m))) = H(m) = (m,J(m)). Therefore H = F−1, which implies that the differ-
ential spaces

(
J−1(Oμ),C∞

i (J
−1(Oμ))

)
and

(
J−1

M×Oμ
(0), C∞

i (J
−1
M×Oμ

(0))
)

are diffeomor-
phic. The maps F1, F2, F and H1, H2, H intertwine the actions of G. Hence they pass
to smooth maps on the corresponding G-orbit spaces, namely, F̃1, F̃2, F̃ and H̃1, H̃2, H̃.
Since H̃ = F̃−1, it follows that

F̃ :
(
J−1

M×Oμ
/G,C∞

i (J
−1
M×Oμ

(0))G)→ (
J−1(Oμ)/G,C∞

i (J
−1(Oμ))

G)
is a diffeomorphism of differential spaces. �

(5.20) Proof of corollary: First we show that J−1
M×Oμ

(0) and J−1(μ) are locally diffeomorphic.
Let U be a neighborhood of μ ∈ Oμ . Suppose that σ : U → G is a section of the bundle
G → G/Gμ such that σ(μ) = e and Adt

σ(ν)−1 μ = ν , see §2 example 1. The map ϕ :

M ×U → M ×U : (m,ν) �→ (
σ(ν) ·m,ν

)
is a local diffeomorphism. For every ξ ∈ g∗

we have

JM×Oμ (ϕ(m,ν))ξ = JM×Oμ (σ(ν) ·m,ν)ξ

= (J(σ(ν) ·m)−ν)(ξ ) =
(
Adt

σ(ν)−1 J(m)−ν
)
ξ .

Thus JM×Oμ (ϕ(m,ν)) = 0 if and only if J(m) = Adt
σ(ν)−1 ν = μ and ν ∈ U . In other

words (JM×Oμ )
−1(0) and J−1(μ)×Oμ are locally diffeomorphic. Because Oμ is locally

arcwise connected, it follows that (JM×Oμ )
−1(0) is locally arcwise connected if and only

if J−1(μ) is. Thus it suffices to prove the corollary when μ = 0. Applying the normal
form ((5.15)) to the value 0 of the coadjoint equivariant momentum mapping J, we see
that u = (x,α,η) ∈ J−1(0) if and only if 0 = Adt

exp−η
(
(Ĵ|X)(x) + α

)
, that is, if and

only if 0 = (Ĵ|X)(x) and α = 0. But Ĵ is the canonical quadratic momentum map of a
linear symplectic Gm-action. Hence (Ĵ|X)−1(0) is a cone in X , which is locally arcwise
connected. Therefore J−1(0) is locally arcwise connected. �
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6 Regular reduction
Reduction is the basic technique in symplectic geometry for removing symmetry from a
Hamiltonian system. In the regular case the reduction theorem reads

Theorem (regular reduction): Let Φ be a free proper action of a Lie group G on
the symplectic manifold (M,ω), which has a coadjoint equivariant momentum mapping
J : M → g∗. Suppose that μ ∈ g∗ lies in the image of J. Then the reduced space
Mμ = J−1(μ)/Gμ is a smooth symplectic manifold with symplectic form ωμ defined by
π∗

μ ωμ = i∗ω . Here πμ : J−1(μ)→ Mμ is the orbit map of the Gμ -action Φ|(Gμ ×J−1(μ))
on M, which is called the reduction map, and i : J−1(μ)→ M is the inclusion map.

6.1 The standard approach
Here we give the standard approach to proving the regular reduction theorem.

(6.1) Proof: First we show that μ is a regular value of J. Since G acts freely and properly
on M and the isotropy group Gμ is a closed Lie subgroup of of G, which leaves the
closed level set J−1(μ) invariant, it follows that Gμ acts freely and properly on J−1(μ).
Thus dimgμ = 0. Let m ∈ J−1(μ). Since Tm(Gμ ·m) = kerTmJ∩(

kerTmJ
)ω(m)

=Wm by
((5.11)), we obtain 0 ≤ dimWm = dimgμ − dimgm. Thus dimgm = 0, since dimgμ = 0.

Hence dimWm = 0, that is, Wm = {0}. So dimTmM = dimkerTmJ + dim
(

kerTmJ
)ω(m).

But using ((5.11)) we get
(

kerTmJ
)ω(m)

= Tm(G ·m) = dimg− dimgm = dimg. Con-
sequently, dimkerTmJ + dimg = dimTmM = dimkerTmJ + dimimTmJ, which implies
dimimTmJ = dimg= dimg∗. In other words, μ is a regular value of J. Hence J−1(μ) is
a smooth submanifold of M, which may not be connected.

The reduced space Mμ is a smooth manifold, because Gμ acts freely and properly on the
smooth manifold J−1(μ). To finish the proof we need only construct the symplectic form
ωμ on Mμ . Since μ is a regular value of J, we have TmJ−1(μ) = kerTmJ. Therefore

Wm = TmJ−1(μ)∩ (TmJ−1(μ))ω(m) = ker
(
ω(m)|TmJ−1(μ)

)
is an ω(m)-isotropic subspace of the symplectic vector space (TmM,ω(m)). Let Vm be
a complement to Wm in TmJ−1(μ). From ((1.3d)) of chapter VI, it follows that Vm is
an ω(m)-symplectic subspace of (TmM,ω(m)). From ((5.11)) we get Wm = Tm(Gμ ·m).
Thus Vm is isomorphic to TmJ−1(μ)/Wm = Tπμ (m)Mμ . Since kerTmπμ = Wm, the sym-
plectic form ω(m)|Vm pushes down under Tmπμ to a nondegenerate 2-form ωμ(πμ(m))
on Tπμ (m)Mμ . In other words, for every m ∈ J−1(μ) we have (π∗

μ ωμ)(m) = i∗ω(m). Now

π∗
μ(dωμ) = d(π∗

μ ωμ) = d(i∗ω) = i∗(dω) = 0,

because ω is closed. Hence dωμ = 0, since πμ is a submersion. Therefore, ωμ is a
symplectic form on Mμ . �

Example 1: Consider the Hamiltonian G-action

Φ : G×T ∗G → T ∗G : (h,αg) �→ αhg = (TeLh−1)tαg
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on the cotangent bundle T ∗G of G with its canonical symplectic form Ω. The action Φ is
the lift to T ∗G of the action L : G×G → G : (h,g) �→ Lhg = hg of left multiplication on G.
From example 3 of §5.1 we see that Φ has a coadjoint equivariant momentum mapping
J : T ∗G → g∗ : αg �→ (TeRg)

t(αg). Pulling back by the left trivialization

L : G×g∗ → T ∗G : (g,α) �→ (TeLg−1)tα = αg, (30)

which is a symplectic diffeomorphism of (G×g∗,ω = L ∗Ω) with (T ∗G,Ω), the action
Φ becomes the G-action

ϕ : G× (G×g∗)→ G×g∗ :
(
h,(g,α)

) �→ (hg,α). (31)

The action ϕ is Hamiltonian with momentum mapping J =L ∗J : G×g∗ → g∗ : (g,α) �→
Adt

g−1 α . We now apply the regular reduction theorem to the action ϕ . First observe that
the action ϕ (31) is free and proper. Next note that for every μ ∈ g∗ the μ-level set of
the momentum mapping J is the smooth manifold {(g,Ad t

g μ) ∈ G×g∗ g ∈ G}. Indeed,
J−1(μ) is diffeomorphic to G, because it is the graph of the smooth mapping g �→ Ad t

g μ .
Now Gμ = {h ∈ G Ad t

h−1 μ = μ} is the isotropy group of the coadjoint action of G on
g∗ at μ . Note that J−1(μ) is Gμ -invariant by the coadjoint equivariance of J. Since the
Gμ -action ϕ|(Gμ × J−1(μ)) on J−1(μ) is free and proper, the orbit space J−1(μ)/Gμ
is a smooth manifold with Gμ -orbit map πμ . Gμ is a closed subgroup of G, which im-
plies that it is a smooth submanifold of G. Moreover, the orbit space G/Gμ is a smooth
manifold. Because the diffeomorphism χ : G → J−1(μ) : g �→ (g,Ad t

g μ) intertwines the
Gμ -action on G with the Gμ -action on J−1(μ), the orbit spaces J−1(μ)/Gμ and G/Gμ

� are diffeomorphic. Next we show that J−1(μ)/Gμ is symplectically diffeomorphic to the
coadjoint orbit Oμ .

(6.2) Proof: Consider the diagram 6.1.1. Here σ is the map induced by πμ and ρ is the

J−1(μ) �πμ
J−1(μ)/Gμ

�

ρ

Oμ
										


σ

Diagram 6.1.1

restriction of the projection map (g,α) �→ α to J−1(μ). Explicitly, ρ(g,Ad t
g μ) = Ad t

g μ .
The image of J−1(μ) under ρ is the coadjoint orbit Oμ through μ . The map σ is injec-
tive because every fiber of the mapping ρ is exactly one Gμ -orbit. To see this, suppose
that ρ(g,Ad t

g μ) = ρ(h,Ad t
h μ). Then Ad t

g μ = Ad t
h μ or μ = Ad t

g−1 Ad t
h μ = Ad t

hg−1 μ .
Whereupon hg−1 ∈ Gμ . Consequently, ϕhg−1(g,Ad t

g μ) = (h,Ad t
h μ), by definition of the

ϕ action. Thus (g,Ad t
g μ) and (h,Ad t

h μ) lie on the same Gμ -orbit. Since πμ is surjective,
σ is surjective and hence is bijective. Because πμ and ρ are smooth and because the
bundle ρ has a smooth local cross section, it follows that σ is smooth. Since J−1(μ) is a
principal Gμ -bundle, it has a smooth local cross section. Therefore σ−1 is smooth. Hence
σ is a diffeomorphism.
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Now we show that the symplectic form σ∗ωμ on the coadjoint orbit Oμ is ωOμ . First we
find the tangent of the mapping ρ . Differentiating the curve s �→ ρ(gexpsξ ,Ad t

gexpsξ μ)
= Ad t

gexpsξ μ and evaluating the derivative at s = 0 gives T(g,ν)ρ(TeLgξ ,ad t
ξ ν) = ad t

ξ ν
with ν = Ad t

gμ , since Ad t
hg = Ad t

gAd t
h and d

dt t=0
Ad t

exp tξ η = ad t
ξ η . We compute σ∗ωμ

as follows.

(σ∗ωμ)(ν)
(

ad t
ξ ν ,adt

η ν
)
=

= (σ∗ωμ)(ρ(g,ν))
(
T(g,ν)ρ(TeLgξ ,ad t

ξ ν),T(g,ν)ρ(TeLgη ,ad t
η ν)

)
=

(
(σ ◦ρ)∗ωμ

)
(g,ν)

(
(TeLgξ ,ad t

ξ ν),(TeLgη ,ad t
η ν)

)
= ω(g,ν)

(
(TeLgξ ,ad t

ξ ν),(TeLgη ,ad t
η ν)

)
,

because σ◦ρ = πμ and π∗
μ ωμ = ω|J−1(μ)

=−(ad t
ξ ν)η +(ad t

η ν)ξ +ν([ξ ,η ]),

by construction of ω , see chapter VI §2 equation (8)
=−ν([ξ ,η ])+ν([η ,ξ ])+ν([ξ ,η ]) =−ν([ξ ,η ]).

Hence the reduced phase space (J−1(μ)/Gμ ,ωμ) is symplectically diffeomorphic to the
coadjoint orbit (Oμ , ωOμ ). �

One of the main motivations for the reduction theorem is to remove symmetries from a
Hamiltonian system (H,M,ω). We say that G is a symmetry of (H,M,ω) if H is in-
variant under a proper free Hamiltonian action of G on the symplectic manifold (M,ω)
with coadjoint equivariant momentum map J : M → g∗. The Hamiltonian H|J−1(μ) in-
duces a smooth function Hμ on the reduced space Mμ , called the reduced Hamiltonian,
which satisfies π∗

μ Hμ = i∗H. Thus we have constructed a reduced Hamiltonian system
(Hμ ,Mμ ,ωμ). Its importance lies in the fact that the vector field XH on J−1(μ) is πμ -
related to the reduced vector field XHμ , that is, T πμ ◦XH = XHμ ◦πμ . This is a precise
statement of what it means to use the symmetry to reduce the number of variables in a
symmetric Hamiltonian system.

(6.3) Proof: To see that π∗
μ Hμ = i∗H holds and that the reduced equations are Hamiltonian, first

look at the given equation of motion on J−1(μ), namely, XH ω = dH. As everything is
Gμ -invariant, we can push XH and H down to Mμ . To push ω down to Mμ , we need to
know that ω is a pull back on J−1(μ). Hence ω must vanish on vectors tangent to Gμ -
orbits. From ((5.11)) we know that kerω|J−1(μ)= Tm(Gμ ·m). Thus we can push ω down
to Mμ . Consequently, the equations of motion pass to the quotient to give XHμ ωμ =
dHμ , because both sides of XH ω = dH vanish on vectors tangent to Gμ -orbits. �

Example 2: An interesting special case of the regular reduction theorem occurs when
the Hamiltonian H on T ∗G is a quadratic function associated to a left invariant metric ρ
on G. In this case the image of the integral curves of the Hamiltonian system under the
bundle projection are geodesics on G, see chapter VI §3 example 3. Explicitly, if ρ∗ is
the metric dual to ρ , it is left invariant. The Hamiltonian

H : T ∗G → R : αg = TeLt
g−1α �→ 1

2 ρ∗(g)(αg,αg) =
1
2 ρ∗(e)(α,α)
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is left invariant. Pulling H back by the left trivialization L (30) gives the Hamiltonian
H : G×g∗ → R : (g,α) �→ 1

2 ρ∗(e)(α,α). The integral curves of XH are the pull back of
integral curves of XH by the left trivialization L . On G× g∗ the integral curves of XH
satisfy the Euler-Arnol’d equations

ġ = TeLg(ρ∗(e))�(α)

α̇ = adt
(ρ∗(e))�(α)

α,

since D2H(g,α)β = ρ∗(e)(α,β ) = (ρ∗(e))�(α)β , see chapter VI §3 example 3. Because
H is invariant under the G-action ϕ (31) on G× g, we may use regular reduction, see
example 1. We obtain a reduced phase space (Oμ ,ωOμ ) with a reduced Hamiltonian
Hμ : Oμ ⊆ g∗ → R : ν = Adt

gμ �→ Hμ(ν). Here Hμ(ν) = H(e,ν) = 1
2 ρ∗(e)(ν ,ν). Since

dHμ(ν)adt
ξ ν = (ρ∗(e))�(ν)adt

ξ ν , the integral curves of the reduced Hamiltonian vector
field XHμ on the reduced space (Oμ ,ωOμ ) satisfy Euler’s equations

ν̇ = adt
(ρ∗(e))�(ν)ν . �

6.2 An alternative approach
In this subsection we give an alternative approach to regular reduction. We first construct
another model Mμ for the reduced space Mμ and then construct a Poisson bracket on its
space of smooth functions.

Recall that μ is a regular value of the momentum map J and that π : M → M/G is the G-
orbit map. Consider the set Mμ = π

(
J−1(μ)

)
= J−1(μ)/G. Let Oμ = {Ad t

g−1 μ g ∈ G}
be the G-coadjoint orbit through μ ∈ g∗. Then

π−1(Mμ) = G · J−1(μ) =
⋃

g∈G

g · J−1(μ) =
⋃

g∈G

J−1(Ad t
g−1 μ) = J−1(Oμ).

So Mμ = J−1(Oμ)/G. Note that Mμ is a closed subset of the reduced space Mμ if the
� coadjoint orbit Oμ is a closed subset of g∗. We now show that Mμ is a smooth manifold.

(6.4) Proof: Because G acts freely and properly on M, the orbit map π of the G-action Φ is
a submersion onto the orbit space M/G. Since J−1(μ) is a smooth submanifold of M,
it follows that π̂ = π|J−1(μ) is a surjective mapping onto Mμ ⊆ M/G with surjective
derivative. Therefore Mμ is a smooth manifold. �

Claim: Mμ is diffeomorphic to the reduced space Mμ = J−1(μ)/Gμ .
(6.5) Proof: Consider diagram 6.2.1. The maps πμ and π are the Gμ and G-orbit maps,

�
�
�
���

π̂πμ

Mμ

J−1(μ)

Mμ�σ

Diagram 6.2.1
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respectively, and π̂ = π|J−1(μ). For every q ∈ J−1(μ) define the map σ : Mμ → Mμ by
Gμ ·q �→ G ·q. Diagram 6.2.1 is commutative, because (σ◦πμ)(q) = σ(Gμ ·q) = G ·q =
π(q) = π̂(q) for every q ∈ J−1(μ).

� The mapping σ is bijective.

(6.6) Proof: Let g ∈ Gμ and q ∈ J−1(μ). The map σ is injective for if σ(Gμ ·q) = σ(Gμ ·q′)
for some q,q′ ∈ J−1(μ), then G · q = G · q′. So there is a g ∈ G such that q′ = g · q.
Consequently, μ = J(q′) = Adt

g−1 J(q) = Adt
g−1 μ , which shows that g ∈ Gμ . Therefore

Gμ ·q = Gμ ·q′, that is, σ is injective. To see that σ is surjective, suppose that G ·q ∈Mμ
for some q ∈ J−1(μ). Then Gμ ·q ∈ Mμ and σ(Gμ ·q) = G ·q. �

� The map σ is a diffeomorphism.

(6.7) Proof: Let g ∈ Gμ and q ∈ J−1(μ), then g ·q ∈ J−1(μ), because J(g ·q) = Ad t
g−1 J(q) =

Ad t
g−1 μ = μ . Therefore π̂(g · q) = π(g · q) = π(q) = π̂(q), that is, the map π̂ is Gμ -

invariant. Since π̂ is smooth, the induced map σ is smooth. Because σ is bijective by
((6.6)), to check that it is a diffeomorphism it suffices to verify that for every q= πμ(q) the
map Tqσ is injective and that dimTqMμ = dimTq̂Mμ , where q̂ = π̂(q). Suppose that for
some ν ∈ TqMμ we have (Tqσ)ν = 0. Since πμ is a submersion, there is a ν ∈ TqJ−1(μ)
such that Tqπμ ν = ν . Thus 0 = Tq(σ◦πμ)ν = Tqπ̂ ν , that is, ν ∈ kerTqπ̂ . Because
diagram 6.2.1 commutes, the map πμ is a surjective submersion with fiber Gμ , and the
map σ is bijective, it follows that the map π̂ is a surjective submersion with fiber Gμ .
More precisely, π̂−1(q̂) = π−1

μ (q). Consequently, kerTqπ̂ = Tqπ̂−1(q̂) = kerTqπμ . Hence
Tqπμ ν = 0, which implies ν = 0. Thus Tqσ is injective. From

dimTqJ−1(μ) = dimimTqπ̂ +dimkerTqπ̂ = dimTq̂Mμ +dimgμ

and
dimTqJ−1(μ) = dimimTqπμ +dimkerTqπμ = dimTqMμ +dimgμ

we deduce that dimTq̂Mμ = dimTqMμ , since q̂ = σ(q). Thus σ is a diffeomorphism. �

With an eye towards singular reduction, we want to construct a Poisson bracket { , }Mμ

on C∞(Mμ). We begin by constructing a Poisson bracket { , }Mμ
on C∞(Mμ). Because

(Mμ ,ωμ) is a smooth symplectic manifold, the Poisson bracket { , }Mμ
on C∞(Mμ) is

defined in the standard way, namely, for every f ,h ∈ C∞(Mμ) we set { f ,h}Mμ
(q) =

ωμ(q)(Xf (q),Xh(q)) for every q ∈ Mμ . We now define a symplectic form ωMμ on Mμ .
Because the map π̂ = σ◦πμ is a surjective submersion, we define ωMμ by setting π̂ ∗ωMμ

= ω|J−1(μ) = i∗ω , where i : J−1(μ)→ M is the inclusion mapping. In other words, for
every u1, u2 ∈ TqJ−1(μ)⊆ TqM we have

ωMμ

(
π̂(q)

)(
Tqπ̂ u1,Tqπ̂ u2

)
= ω(q)

(
u1,u2

)
. (32)

To see that ωMμ is well defined suppose that there is u′1 ∈ TqJ−1(μ) such that Tqπ̂ u′1 =
Tqπ̂ u1. Then u′1 − u1 ∈ kerTq(σ◦πμ) = kerTqπμ , since σ is a diffeomorphism. But

kerTqπμ = Tq(Gμ ·q) = TqJ−1(μ)∩TqJ−1(μ)ω(q). So ω(q)
(
u′1 −u1,u2

)
= 0. Thus ωMμ

is a well defined 2-form on Mμ . It is closed, since π̂ ∗ dωMμ = dπ̂ ∗ωMμ = d(i∗ω) =
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i∗(dω) = 0. The last equality follows because ω is a symplectic form on M. To see that
ωMμ (p) is nondegenerate at every p ∈ Mμ we argue as follows. Suppose that there is a
v1 ∈ TpMμ such that ωMμ (p)

(
v1,v2

)
= 0 for every v2 ∈ TpMμ . Since π̂ is a surjective

submersion, there is a q ∈ J−1(μ) such that π̂(q) = p and there are u1, u2 ∈ TqJ−1(μ)
such that v1 = Tqπ̂ u1 and v2 = Tqπ̂ u2. Therefore for every u2 ∈ TqJ−1(μ) we get

0 = ωMμ (π̂(q))
(
Tqπ̂(q)u1,Tqπ̂(q)u2

)
= ω(q)(u1,u2).

In other words, u1 ∈ TqJ−1(μ)ω(q). Thus u1 ∈ TqJ−1(μ)∩TqJ−1(μ)ω(q)
= Tq(Gμ · q) =

kerTqπμ , which implies v1 = Tqπ̂(q)u1 = Tq(σ◦πμ)u1 = 0. Hence ωMμ (p) is nondegen-
erate. Thus ωMμ is a symplectic form on Mμ . �

Corollary: The map σ : (Mμ ,ωMμ )→ (Mμ ,ωMμ ) is a symplectic diffeomorphism.

(6.8) Proof: We need only show that σ is a symplectic mapping. By definition π̂ ∗ω =
(σ◦πμ)

∗ωMμ = i∗ω . By regular reduction we have π∗
μ ωMμ = i∗ω . So π∗

μ
(
σ∗(ωMμ )

)
= π∗

μ ωMμ , which implies σ∗(ωMμ ) = ωMμ , since πμ is a surjective submersion. �

Let { , }Mμ
be the standard Poisson bracket on C∞(Mμ) coming from the symplectic

form ωMμ on Mμ . From ((6.8)) it follows that σ∗{ f ,h}Mμ
= {σ∗ f ,σ∗h}Mμ

for every f ,
h ∈C∞(Mμ). Consequently,

Corollary: The map σ∗ :
(
C∞(Mμ),{ , }Mμ

, ·)→ (
C∞(Mμ),{ , }Mμ

, ·) is an isomorphism
of Poisson algebras.

7 Singular reduction
In this section we examine the reduction of symmetry of a Hamiltonian systems when
we relax the hypotheses of the regular reduction theorem. In particular, we assume that
the action Φ : G×M → M : (g,m) �→ Φg(m) = g ·m of the Lie group G on the symplec-
tic manifold (M,ω) is proper, Hamiltonian, and has a coadjoint equivariant momentum
mapping J : M → g∗.

7.1 Singular reduced space and reduced dynamics
Singular reduction gives rise to a reduced space which is a locally compact subcartesian
differential space that may not be a smooth manifold.

As a set the singular reduced space Mμ at the value μ ∈ g∗ in the image of the momentum
mapping J is the orbit space π(J−1(μ)), where π : M →M =M/G is the G-orbit mapping.
Using the topology on J−1(μ) induced from the topology of M and the quotient topology
on Mμ , we say that a continuous function f on Mμ is smooth if and only if there is an
smooth G-invariant function F on M such that π∗ f = F |J−1(μ). Let C∞(Mμ) be the
space of smooth functions on Mμ . By definition C∞(Mμ) = C∞(M)G|J−1(μ). From
((3.9)) we see that C∞(M)G is a differential structure on M. Therefore C∞(M)G|J−1(μ) is
a differential structure on Mμ . So

(
Mμ ,C∞(Mμ)

)
is a differential space.
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Because the set J−1(μ) is Gμ -invariant, the action Φ|(Gμ × J−1(μ)) of Gμ on J−1(μ) is
defined. Since J−1(μ) is a closed subset of M, this action is proper with orbit space Mμ ,
which, using the quotient topology, is a Hausdorff topological manifold with Gμ -orbit
map πμ : M → Mμ . We say that a continuous function f on Mμ is smooth if and only if
there is a smooth Gμ -invariant function F̃ on J−1(μ) such that π∗ f = F̃ . Since J−1(μ)
is a closed Gμ -invariant subset of M, using ((2.6)) F̃ may be extended to a smooth Gμ -
invariant function F on M. Consequently, the set C∞(Mμ) = C∞

i (J
−1(μ))Gμ of smooth

functions on Mμ is equal to C∞(M)Gμ |J−1(μ), which by ((3.9)) is a differential structure
on Mμ . To procede we need

Claim: The map σ : Mμ → Mμ : Gμ · q �→ G · q is a diffeomorphism of the differential
space

(
Mμ ,C∞(Mμ)

)
onto the differential space

(
Mμ ,C∞(Mμ)

)
.

(7.1) Proof: In ((6.6)) we have shown that the map σ is bijective. Now we show that σ is a
homeomorphism. Observe that the Gμ -invariant map π̂ = π|J−1(μ) is a continuous open
map. Therefore, the induced map σ is continuous. Let U be an open subset of Mμ . Then
π−1

μ (U) is an open subset of J−1(μ). Since π|J−1(μ) : J−1(μ)→Mμ is an open mapping,
it follows that (σ−1)−1(U) = π̂(π−1(U)) is an open subset of Mμ . Consequently, σ−1

is a continuous mapping. Hence σ is a homeomorphism. From ((3.11)) it follows that
the quotient topology on Mμ and Mμ is equivalent to the differential space topology on
C∞(Mμ) and C∞(Mμ), respectively. Thus the mapping σ is a homeomorphism of the
differential space

(
Mμ ,C∞(Mμ)

)
onto the differential space

(
Mμ ,C∞(Mμ)

)
. To show

that σ is a diffeomorphism we must verify that σ∗(C∞(Mμ)) =C∞(Mμ). First we show
that the mapping σ is smooth, that is, σ∗(C∞(Mμ))⊆C∞(Mμ). For h ∈C∞(M) consider
the function h|Mμ . For q ∈ J−1(μ) with q = π(q) ∈ M, we have

σ∗(h|Mμ)
(
πμ(q)

)
= (h|Mμ)

(
σ(πμ(q))

)
= h(q), since π̂ = σ◦πμ = π|J−1(μ)

= h(π(q)) =
(
(π∗h)|J−1(μ)

)
(q).

Since the function π∗h∈C∞(M) is G-invariant, the function (π∗h)|J−1(μ) is Gμ -invariant
and hence pushes forward to a smooth function on Mμ . Consequently, σ∗(h|Mμ) ∈
C∞(Mμ). Thus σ∗(C∞(Mμ)) ⊆ C∞(Mμ). Before showing that the mapping σ−1 is
smooth we prove

Lemma: For every f ∈C∞(J−1(μ))Gμ and every q ∈ J−1(μ) there is a G-invariant open
neighborhood W of q in M and a function FW ∈ C∞(M)G such that f |(W ∩ J−1(μ)) =
FW |(W ∩ J−1(μ)).

(7.2) Proof: Let f ∈ C∞(J−1(μ))Gμ . For each q ∈ J−1(μ) there is an open neighborhood Uq
of q in M and a smooth function F on M such that f |(Uq ∩ J−1(μ)) = F |(Uq ∩ J−1(μ)).
Let Sq ⊆Uq be a slice for the G-action Φ on M at q. Then Sq is invariant under the action
Φ|(Gq ×M). Here Gq is the isotropy group at q. Now Gq ∩Gμ acts on Sq ∩ J−1(μ) and
leaves f |(Sq∩J−1(μ)) invariant. Let W1 and W2 be Gq-invariant open neighborhoods of q
in Sq such that W1 ⊆W2. There is a nonnegative function χ ∈C∞(Sq) such that χ|W1 = 1
and whose support supp χ is contained in W2. Since Gq is compact we may average
χ · (F |Sq) over Gq to obtain a Gq invariant function F̃ on Sq whose support supp F̃ is
contained in W2. Now G · Sq is a G-invariant open neighborhood of q in M. Since F̃ is
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a Gq-invariant smooth function on Sq, it extends to a unique smooth G-invariant function
F̂ on G · Sq. Let W = G ·W1 and let FW be a smooth function on M, which is equal to F̂
on G ·Sq. Thus F̂ vanishes off of G ·W2. The function FW on M is G-invariant and agrees
with f on W ∩ J−1(μ). �

We return to the proof that σ−1 is smooth. Let f ∈ C∞(Mμ). Then π∗
μ f is a smooth

Gμ -invariant function on J−1(μ). By lemma ((7.2)) for every q ∈ J−1(μ) there is a G-
invariant open neighborhood W of q in M and a smooth G-invariant function FW on M
such that π∗

μ f agrees with FW on W ∩ J−1(μ). Since FW is G-invariant and smooth, it
induces a smooth function FW on M such that π∗FW = FW . For each q ∈W ∩ J−1(μ) we
get

f (πμ(q)) = (π∗
μ f )(q) = FW (q) = (FW |Mμ)(π(q))

= (FW |Mμ)
(
(σ◦πμ)(q)

)
= σ∗(FW |Mμ)(πμ(q)),

where FW |Mμ ∈C∞(Mμ). So

f |(Mμ ∩πμ(W )
)
= (σ∗(FW |Mμ)|

(
Mμ ∩πμ(W )

)
. (33)

Cover M by G-invariant open sets W such that (33) holds. Using a G-invariant par-
tition of unity subordinate to this covering, we conclude that f = σ∗(FW |Mμ). So
f ∈ σ∗(C∞(Mμ)). Thus σ∗(C∞(Mμ)) ⊇ C∞(Mμ). Hence the mapping σ−1 is smooth.
So σ is a diffeomorphism. �

Corollary: The differential space
(
Mμ ,C∞(Mμ)

)
is locally compact and subcartesian.

(7.3) Proof: This follows once we show that the differential space
(
Mμ ,C∞(Mμ)

)
is locally

compact and subcartesian, because by ((7.1)) the differential spaces (Mμ ,C∞(Mμ)) and
(Mμ ,C∞(Mμ)) are diffeomorphic. We start by noting that Gμ is a closed subgroup of
G, which acts properly on Mμ because G does. In what follows we use the follow-
ing notation. Let m ∈ J−1(μ) ⊆ M. Set G = Gμ and H = Gm = (Gμ)m. Let U be a
G-invariant open neighborhood of m in M and let B be an H-invariant open neighbor-
hood of 0 in E = TmM/Tm(Gm ·m). From ((3.13)) we see that the differential spaces
(U/G,C∞(U/G)) are (σ(B),C∞(σ(B))) are diffeomorphic. Here B is an open ball about
the origin in E defined by an H-invariant inner product and σ : E → Rn is the Hilbert
map of the H-action on E. Let ψ : B →U with ψ(0) = m be the diffeomorphism given by
((1.4)), which intertwines the H-action on B with the G-action on U . Since the momentum
map J|U : U ⊆ M → g∗ is G-invariant, the map JU = ψ∗(J|U) : B → g∗ is H-invariant.
Choose a basis {αi}m

i=1 for g∗. Then the components of the mapping JU : B → Rm

are H-invariant smooth functions. Because C∞(B)H = σ∗(C∞(σ(B))), there is a smooth
function jU : σ(B) ⊆ Rn → Rm such that σ∗ jU = JU . Consequently, the differential
space

(
(U ∩ J−1(μ))/G,C∞((U ∩ J−1(μ))/G)

)
is diffeomorphic to the differential space(

σ(B)∩ j−1
U (μ),C∞(σ(B)∩ j−1

U (μ))
)
. Note that σ(B)∩ j−1

U (μ) is a closed subset of Rn.
Since {(U ∩ J−1(μ))/G} is an open covering of Mμ = J−1(μ)/Gμ ⊆ M/Gμ , it follows
that the differential space (Mμ ,C∞(Mμ)) is subcartesian and locally compact. �

We now define a Poisson bracket { , }Mμ
on C∞(Mμ). Let fμ , hμ ∈ C∞(Mμ). Then

π∗
μ fμ , π∗

μ hμ ∈ C∞(J−1(μ)). By ((7.2)) for every q ∈ J−1(μ) there exists a G-invariant
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open neighborhood W of q in M and FW , HW ∈ C∞(M)G such that π∗
μ f |(W ∩ J−1(μ)) =

FW |(W ∩J−1(μ)) and π∗
μ h|(W ∩J−1(μ)) = HW |(W ∩J−1(μ)). For every q ∈W ∩J−1(μ)

let
{ fμ ,hμ}Mμ

(πμ(q)) = {FW ,HW}M(q).

Here { , }M is the standard Poisson bracket on C∞(M)G coming from the symplectic 2-
form ω . To see that { , }Mμ

is well defined, consider the set IW = I (W ∩ J−1(μ)) in
the associative commutative algebra

(
C∞(M)G, ·) of G-invariant smooth functions on M

which vanish identically on W ∩ J−1(μ). Then IW is a Poisson ideal of the Poisson
algebra A =

(
C∞(M)G,{ , }M, ·).

(7.4) Proof: Suppose that ξ ∈ g and f ∈C∞(M)G. For every q ∈ J−1(μ) we have

{ f ,Jξ}M(q) = (LX
Jξ f )(q) = (LXξ f )(q) =

d
dt t=0

f (exp tξ ·q) = d
dt t=0

f (q) = 0,

where the second to last equality above follows because f ∈ C∞(M)G. Thus for every
ξ ∈ g, the smooth function Jξ is constant along the integral curves t �→ ϕ f

t (q) of the
vector field Xf on M starting at q ∈ J−1(μ). So t �→ ϕ f

t (q) lies in J−1(μ) because for
every ξ ∈ g we have

J
(
ϕ f

t (q)
)
ξ = Jξ (ϕ f

t (q)
)
= Jξ (q) = J(q)ξ = μ(ξ ).

Let h ∈ IW and suppose that q ∈W ∩ J−1(μ). Since W is an open subset of M there is a
t ′q > 0 such that ϕ f

t (q) ∈W ∩ J−1(μ) for every t ∈ (−t ′q, t ′q). Consequently,

{h, f}M(q) = (LXf h)(q) =
d
dt t=0

h(ϕ f
t (q)) = 0,

because (−t ′q, t ′q)→ W ∩ J−1(μ) : t �→ ϕ f
t (q) and h ∈ IW . Thus {h, f}M ∈ IW . So IW

is a Poisson ideal of the Poisson algebra A . �

We now show that { , }Mμ
is well defined. Shrinking the G-invariant neighborhood W of

q if necessary, let H ′
W ∈ C∞(M)G such that (π∗

μ hμ)|(W ∩ J−1(μ)) = H ′
W |(W ∩ J−1(μ)).

By construction, the smooth G-invariant function HW −H ′
W on M vanishes identically on

the set W ∩J−1(μ). In other words, HW −H ′
W ∈IW . Therefore {FW ,HW −H ′

W}M ∈IW ,
since IW is a Poisson ideal of A . So on Mμ ∩πμ(W ) the Poisson bracket { fμ ,hμ}Mμ
does not depend on the choice of smooth G-invariant function HW on M which repre-
sents π∗

μ hμ on W ∩ J−1(μ). Since { , }Mμ
is skew symmetric, a similar argument shows

that { fμ ,hμ}Mμ
does not depend on the choice of smooth G-invariant function FW on M

representing π∗
μ fμ on W ∩ J−1(μ). Thus the Poisson bracket { , }Mμ

on C∞(Mμ) is well
defined on Mμ ∩ πμ(W ) and hence on all of Mμ , since we can cover J−1(μ) by open
G-invariant neighborhoods W in M such that ((7.2)) holds.

Claim: The Poisson bracket { , }Mμ
on C∞(Mμ) is nondegenerate.

In order to prove the claim we need the following result.
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Fact: Let αm ∈ T ∗
mM be a covector such that αm(XJξ (m)) = 0 for every ξ ∈ g. Then there

is a smooth G-invariant function f on M such that d f (m) = αm.

(7.5) Proof: Let Sm be a slice at m ∈ M to the G-action Φ on M. Let Gm be the isotropy group at
m. There is a compactly supported smooth function fSm on Sm such that d fSm(m) =αm. To
see this note that by hypothesis αm(Xξ (m)) = 0 for every ξ ∈ g, that is, αm|Tm(G ·m) = 0.
Since TmM = TmSm ⊕Tm(G ·m) and d fSm |Tm(G ·m) = 0, because fSm is a smooth func-
tion on Sm, we only need to find a smooth function fSm on Sm such that d fSm(m)|TmSm =
αm|TmSm. This is straightforward to arrange. We continue with the construction of the
function f . As Gm is compact, we may average fSm over the Gm-action on Sm to ob-
tain a Gm-invariant smooth function f Sm =

∫
Gm

Φ∗
g fSm dμ(g) on Sm with compact sup-

port. Here dμ(g) is Haar measure on Gm which has been normalized so that volGm = 1.
For each ξ ∈ gm we have d(Φ∗

exp tξ fSm)(m) = d( fSm(exp tξ ·m)) = d fSm(m). Therefore
d f Sm(m) = d fSm(m). Now extend f Sm to a smooth G-invariant function f on M with sup-
port contained in G ·Sm by first setting f (g · s) = f Sm(s) for every s ∈ Sm and every g ∈ G
and then setting f |(M \G ·Sm) = 0. By construction we have

d f (m)|TmSm = d f Sm(m)|TmSm = d fSm(m)|TmSm = αm|TmSm.

Since f is G-invariant, it follows that d f (m)|Tm(G ·m) = 0. From our hypothesis we have
αm|Tm(G ·m) = 0. Since TmM = TmSm ⊕Tm(G ·m) it follows that d f (m) = αm. �

(7.6) Proof of the claim: We need to show that if for some h∈C∞(M)G we have {h, f}M|J−1(μ)
= 0 for every f ∈ C∞(M)G, then h|J−1(μ) is locally constant. To verify that h|J−1(μ)
is locally constant, it suffices to show that d

d t (h◦γ)(t) = 0 for every C1 curve t �→ γ(t)
with γ(0) = q ∈ J−1(μ) and γ(t) ∈ J−1(μ), because J−1(μ) is locally arcwise connected
((5.20)). By hypothesis for every q ∈ J−1(μ) we have 0 = { f ,h}M(q) = d f (q)Xh(q).
From fact ((7.5)) it follows that

span{d f (q) ∈ T ∗
q M f ∈C∞(M)G}= Tq(G ·q)◦ = {αq ∈ T ∗

q M αq|T (G ·q) = 0}.

Therefore Xh(q) ∈ span{d f (q) ∈ T ∗
q M f ∈ C∞(M)G}◦ = (

(Tq(G · q))◦)◦ = Tq(G · q) for
every q ∈ J−1(μ). From the definition of the momentum map J we get

ω(γ(t))
(
Xξ (γ(t)),

dγ
dt

)
= dJξ (γ(t))

dγ
dt

=
d
dt
(Jξ ◦γ)(t) = 0, (34)

for every ξ ∈ g. The last equality in (34) follows because γ(t) ∈ J−1(μ) by hypothesis.
Therefore dγ

dt ∈
(
Tγ(t)(G · γ(t)))ω(γ(t)). So

0 = ω(γ(t))
(
Xh(γ(t)),

dγ
dt

)
= dh(γ(t))

dγ
dt

=
d
dt
(h◦γ)(t). �

In order to have dynamics on the singular reduced space Mμ we define a Poisson bracket
{ , }Mμ

on C∞(Mμ) by { f ,h}Mμ
= (σ−1)∗{σ∗ f ,σ∗h}Mμ

, where f , h ∈C∞(Mμ) and σ
is the diffeomorphism of differential spaces given by

(
Mμ ,C∞(Mμ)

)→ (
Mμ ,C∞(Mμ)

)
:

� Gμ · q �→ G · q for every q ∈ J−1(μ). We now show that B =
(
C∞(Mμ), { , }Mμ

, ·) is a
Poisson algebra.
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(7.7) Proof: First we show that
(
C∞(Mμ),{ , }Mμ

)
is a Lie algebra. The bracket { , }Mμ

is
skew symmetric since

{h, f}Mμ
= (σ−1)∗{σ∗ f ,σ∗h}Mμ

=−(σ−1)∗{σ∗h,σ∗h}Mμ
= { f ,h}Mμ

,

for every f , h ∈ C∞(Mμ). It is bilinear because σ∗ is linear and { , }Mμ
is bilinear. The

Jacobi identity holds because for every f , h, k ∈C∞(Mμ) we have

{ f ,{h,k}Mμ
}
Mμ

−{{ f ,h}Mμ
,k}

Mμ
−{h,{ f ,k}Mμ

}
Mμ

=

= (σ−1)∗{σ∗ f ,σ∗{h,k}Mμ
}

Mμ
− (σ−1)∗{σ∗{ f ,h}Mμ

,σ∗k}
Mμ

− (σ−1)∗{σ∗h,σ∗{ f ,k}Mμ
}

Mμ

= (σ−1)∗
({σ∗ f ,{σ∗h,σ∗k}Mμ

}
Mμ

−{{σ∗ f ,σ∗h}Mμ
,σ∗k}

Mμ
−{σ∗h,{σ∗ f .σ∗k}Mμ

}
Mμ

)
= 0,

since the Jacobi identity holds for { , }Mμ
. Thus

(
C∞(Mμ),{ , }Mμ

)
is a Lie algebra. It is

straightforward to check that
(
C∞(Mμ), ·

)
is a commutative, associative algebra. Since

{ f ,h · k}Mμ
= (σ−1)∗{σ∗ f ,σ∗(h · k)}Mμ

= (σ−1)∗
({σ∗ f ,σ∗h}Mμ

·σ∗k+σ∗h · {σ∗ f ,σ∗k}Mμ

)
= { f ,h}Mμ

· k+h · { f ,k}Mμ
,

it follows that B is a Poisson algebra. �

By definition σ∗{ f ,h}Mμ
= {σ∗ f ,σ∗h}Mμ

for every f , h ∈ C∞(Mμ). Since the map
σ :

(
Mμ ,C∞(Mμ)

) → (
Mμ ,C∞(Mμ)

)
is a diffeomorphism of differential spaces it fol-

� lows that σ∗{(σ∗)−1F,(σ∗)−1H}Mμ
= {F,H}Mμ

for every F , H ∈ C∞(Mμ). Thus
σ∗ : B =

(
C∞(Mμ),{ , }Mμ

, ·) → A =
(
C∞(Mμ),{ , }Mμ

, ·) is an isomorphism of Pois-
son algebras. So the mapping σ :

(
Mμ ,C∞(Mμ),{ , }Mμ

)→ (
Mμ ,C∞(Mμ),{ , }Mμ

)
is a

Poisson diffeomorphism of Poisson differential spaces.

Corollary: The bracket { , }Mμ
on C∞(Mμ) is nondegenerate.

(7.8) Proof: Suppose that for some h∈C∞(Mμ) we have {h, f}Mμ
= 0 for every f ∈C∞(Mμ).

Then 0 = {σ∗h,σ∗ f}Mμ
for every σ∗ f ∈ C∞(Mμ). But σ∗ : C∞(Mμ) → C∞(Mμ) is a

linear isomorphism. Since { , }Mμ
is nondegenerate, it follows that σ∗h is locally constant

on Mμ , which implies that h is locally constant on Mμ . So { , }Mμ
is nondegenerate. �

We summarize the preceding discussion in the following

Theorem (singular reduction): Let Φ : G×M → M be an action of a Lie group G on
a smooth symplectic manifold (M,ω). Suppose that this action is proper with orbit map
π : M → M/G and is Hamiltonian with coadjoint equivariant momentum map J : M → g∗.
For every μ ∈ g∗ in the image of J the singular reduced space Mμ = π(J−1(μ)) with its
space of smooth functions C∞(Mμ) is a locally compact subcartesian differential space
with a nondegenerate Poisson bracket { , }Mμ

on C∞(Mμ).



VII.7.1 Singular reduced space and dynamics 357

Corollary: If in addition to the hypotheses of the singular reduction theorem we have a
smooth Hamiltonian function H on M, which is G-invariant, then for every μ in the image
of the G-momentum mapping J there is an induced smooth function Hμ : Mμ → R, called
the reduced Hamiltonian, which gives rise to a reduced vector field XHμ on Mμ , which is
the derivation −adHμ of the Poisson algebra (C∞(Mμ ,{ , }μ , ·).

(7.9) Proof: Let π̂ = π|J−1(μ). Then π̂ : J−1(μ) → Mμ is a smooth surjective mapping.
Because the flow ϕHμ

t of the Hamiltonian vector field XH is G-invariant it preserves the
level set J−1(μ) of the momentum map J and induces a one parameter group of diffeo-
morphisms ϕHμ

t of the locally compact subcartesian space (Mμ ,C∞(Mμ)). Note that
π̂◦(ϕH

t |J−1(μ)) = ϕHμ
t ◦π̂ . To finish the argument we need only show that integral curves

of derivation −adHμ on the Poisson algebra (C∞(Mμ),{ , }μ , ·) C∞(Mμ) are induced
from integral curves of the vector field XH on J−1(μ), because then −adHμ is a vector
field. To see this we argue as follows. For every fμ ∈C∞(Mμ) we have

π̂ ∗((ϕHμ )∗t { fμ ,Hμ}μ
)
=

(
ϕH

t |J−1(μ)
)∗π̂ ∗{ fμ ,Hμ}μ

=
(
ϕH

t |J−1(μ)
)∗({π̂ ∗ fμ , π̂ ∗Hμ}|J−1(μ)

)
by definition of the Poisson bracket on C∞(Mμ)

=
d
dt

(
(ϕH

t |J−1(μ))∗π̂ ∗ fμ
)

because ϕH
t |J−1(μ) is the flow of XH on J−1(μ)

=
d
dt

(
π̂ ∗(ϕHμ

t )∗ fμ
)
= π̂ ∗( d

dt
(ϕHμ

t )∗ fμ
)
,

because the mapping π̂ is smooth.

Consequently, for every fμ ∈C∞(Mμ) we get (ϕHμ
t )∗{ fμ ,Hμ}μ = d

dt t=0
(ϕHμ

t )∗ fμ , since

the mapping π̂ is surjective. Therefore t �→ ϕHμ
t is the flow of the derivation −adHμ . �

Example: The 2:1 resonance. On (R4,ω = ∑2
i=1 dxi ∧ dyi) consider the Hamiltonian

S1 = R/2πZ-action

Φ : S1 ×R4 → R4 :
(
t,(x,y)

) �→
⎛⎜⎜⎝

cos t 0 sin t 0
0 cos2t 0 sin2t

−sin t 0 cos t 0
0 −sin2t 0 cos2t

⎞⎟⎟⎠(
x
y

)
, (35)

which has a momentum mapping

H : R4 → R : (x,y)→ 1
2

[
(y2

1 + x2
1)+2(y2

2 + x2
2)
]
. (36)

Here we have identified the dual of the Lie algebra of S1 with R. The action Φ restricted
to S1 ×H−1(h) is proper since S1 is compact. However, it is not free, because for h > 0
the isotropy group S1

(0,
√

h,0,0)
= {t ∈R/2πZ (0,

√
h,0,0) = (0,

√
h cos2t,0,

√
h sin2t)}=

{0mod 2π, π mod 2π} is isomorphic to Z2. To exhibit the singular reduced space Mh =
H−1(h)/S1 as a semialgebraic variety we use invariant theory. Introducing complex con-
jugate coordinates z j = x j + i y j, z j = x j − i y j for j = 1,2, the action Φ becomes the
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S1-action
Φ̃ : S1 ×C4 → C4 :

(
t,(z,z)

) �→ (eit z1,e2it z2,e−it z1,e−2it z2). (37)

The Hermitian monomial z jzk = z j1
1 z j2

2 zk1
1 zk2

2 is invariant under Φ̃ if and only if j1 +2 j2 −
k1 −2k2 = 0.

Claim: The algebra of Hermitian polynomials ∑c jkz jzk, where c jk = ck j ∈ C, which are
invariant under Φ̃, is generated by the Hermitian monomials z1z1, z2z2, z2

1z2, z2z2
1, which

satisfy the relation (z2
1z2)(z2z2

1) = (z1z1)
2(z2z2) and inequalities z1z1 ≥ 0 and z2z2 ≥ 0.

(7.10) Proof: To show that the monomials z1z1, z2z2, z2
1z2, and z2z2

1 generate the algebra of
invariant Hermitian polynomials, we need to determine all j,k ∈ (Z≥0)

2 such that j1 +
2 j2 − k1 −2k2 = 0. Let n1 = j1 − k1 and n2 = j2 − k2. Then n1 +2n2 = 0. Suppose that
n2 ≥ 0. Then n2 = j2 − k2 and 2n2 =−n1 = k1 − j1. Hence the monomial

z j1
1 zk2+n2

2 z j1+2n2
1 zk2

2 = (z1z1)
j1(z2z2)

k2(z2z2
1)

n2

is invariant. Thus z1z1, z2z2 and z2z2
1 are generators. Now suppose that n2 ≤ 0. Then

n =−n2 ≥ 0, n =−n2 = k2 − j2 and 2n =−2n2 = n1 = j1 − k1. Hence the monomial

z2n+k1
1 z j2

2 zk1
1 zn+ j2

2 = (z1z1)
k1(z2z2)

j2(z2
1z2)

n

is invariant. Thus z1z1, z2z2 and z2
1z2 are generators. Consequently, the algebra of Φ̃-

invariant Hermitian polynomials is generated by the Hermitian monomials z1z1, z2z2, z2
1z2,

and z2z2
1. �

Translating the above result into real coordinates, we have shown that the algebra of real
polynomials in x,y which are invariant under the S1-action Φ (35) is generated by the
monomials

σ1 = Rez2
1z2 = x2(x2

1 − y2
1)+ y2(2x1y1) σ2 = Imz2

1z2 = x2(2x1y1)− y2(x2
1 − y2

1)

σ3 = y2
2 + x2

2 σ4 = y2
1 + x2

1 ,

which satisfy the relation

σ2
1 +σ2

2 = σ3σ2
4 , σ3 ≥ 0, σ4 ≥ 0. (38)

Claim: The orbit space R4/S1 of the S1-action Φ is the semialgebraic variety V defined
by (38).

(7.11) Proof: Consider the Hilbert map

ς : R4 → R4 : (x,y) �→ (
σ1(x,y),σ2(x,y),σ3(x,y),σ4(x,y)

)
.

It suffices to show that for every ξ = (ξ1,ξ2,ξ3,ξ4) ∈ V the fiber ς−1(ξ ) is a single S1

orbit of Φ. Suppose that ξ4 > 0. Then solving the linear equations(
ξ1
ξ2

)
=

(
x2

1 − y2
1 2x1y1

2x1y1 −(x2
1 − y2

1)

)(
x2
y2

)
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gives x2(x1,y1)=
1

ξ 2
4
[(x2

1−y2
1)ξ1+(2x1y1)ξ2] and y2(x1,y1)=

1
ξ 2

4
[(2x1y1)ξ1−(x2

1−y2
1)ξ2].

Thus the fiber ς−1(ξ ) is
{(

x1,y1,x2(x1,y1),y2(x1,y1)
) ∈ R4 x2

1 + y2
1 = ξ4

}
, since

(x2(x1,y1))
2 +(y2(x1,y1))

2 = 1
ξ 2

4
(ξ 2

1 +ξ 2
2 ) = ξ3.

Suppose that ξ4 = 0, then x1 = y1 = 0. Hence ξ1 = ξ2 = 0. So the fiber ς−1(0,0,ξ3,0) =
{(0,0,x2,y2) ∈ R4 x2

2 + y2
2 = ξ3}. Therefore for every ξ ∈V , the fiber ς−1(ξ ) is a single

S1 orbit of Φ. �

σ2σ1

σ3

Figure 7.1. The reduced phase space Mh.

Since the momentum mapping H (36) is S1-invariant, the reduced space Mh = H−1(h)/S1

is defined by (38) and σ4 +2σ3 = 2h. After eliminating σ4, we find that Mh is the semi-
algebraic variety defined by

σ2
1 +σ2

2 = 4σ3(h−σ3)
2, 0 ≤ σ3 ≤ h,

Mh is a compact surface, which is homeomorphic to S2 with a conical singularity at
(0,0,h), since we can rewrite its defining equation as

σ2
1 +σ2

2 −4h(h−σ3)
2 +4(h−σ3)

3 = 0,

see figure 7.1. �

7.2 Stratification of the singular reduced space
In this subsection we show that the image under the G-orbit map π of connected com-
ponents of the intersection of the μ-level set of the momentum map J with the manifold
MH = {m ∈ M Gm = H}, where H is a compact subgroup of G, form a stratification of
the singular reduced space Mμ = π(J−1(μ)) by smooth connected symplectic manifolds.

First we construct the strata of the singular reduced space Mμ . We start by proving

� (MH ,ω|MH) is a smooth symplectic submanifold of (M,ω).

(7.12) Proof: Let p ∈ MH . We begin by showing that TpMH = (TpM)H = {vp ∈ TpM TpΦhvp =

vp for all h ∈ H} is a symplectic subspace of
(
TpM,ω(p)

)
. Because ω is a G-invariant
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symplectic form on M, the form ω(p) is an H = Gp-invariant symplectic form on TpM.
Since H is compact there is an H-invariant inner product γ(p) on TpM. Define the
linear mapping Ap : TpM → TpM by Ap = γ �(p)◦ω�(p). Then jp = Ap(−A2

p)
−1/2 is an

H-invariant almost complex structure on TpM such that j2
p =−idTpM and ω(p)(vp,wp) =

γ(p)( jp(vp),wp) for every vp, wp ∈ TpM. The following argument shows that (TpM)H is
jp-invariant. From the definition vp ∈ (TpM)H if and only if TpΦhvp = vp for every h ∈ H.
Because jp is H-invariant, we get TpΦh jp(vp) = jp(TpΦhvp) = jp(vp). So jp(vp) ∈
(TpM)H , that is, (TpM)H is jp-invariant. The next argument shows that (TpM)H is an
ω(p)|TpMH symplectic subspace of

(
TpM,ω(p)

)
. For some vp ∈ (TpM)H suppose that

0 = ω(p)(vp,wp) for every wp ∈ (TpM)H . Then 0 = γ(p)( jp(vp),wp) for every wp ∈
(TpM)H . This gives jp(vp) = 0 since γ(p) is nondegenerate on (TpM)H . But jp is an
invertible linear map of (TpM)H into itself, so vp = 0, that is, ω(p)|(TpM)H is nondegen-
erate. Since ω is a closed 2-form on M it follows that ω|MH is a closed 2-form on MH .
Therefore (MH ,ω|MH) is a smooth symplectic manifold, which by ((1.7)) is a submani-
fold of (M,ω). �
Let N be a connected component of MH . The stability group StabN of N is {g ∈ G g ·n ∈
N for every n ∈ N}. Now StabN is a closed subgroup, and hence is a Lie subgroup, of the
Lie group N(H) = {g ∈ G g ·MH = MH}. Note that H acts trivially on N, for if n ∈ N
then H ·n = n because N ⊆ MH . Moreover, H is a normal subgroup of StabN . Let h, sN ,
and gN be the Lie algebras of the Lie groups H, StabN , and GN = StabN/H, respectively.
Because H acts trivially on N, we may consider GN to be a subgroup of StabN ⊆ G. The
Lie group GN acts freely and properly on N. Moreover, it preserves the symplectic form
ωN = ω|N.

Claim: The GN-action Φ|(GN ×N) on (N,ωN) has a momentum mapping JN : N → g∗N .

(7.13) Proof: First we define the mapping JN . For each ξ ∈ g we have Xξ ω = dJξ . Because
J : M → g∗ is a momentum mapping. If ξ ∈ h then the vector field Xξ vanishes identically
on N, since H acts trivially on N. Therefore dJξ = 0 on N. Let κ : h→ g be the inclusion
mapping. Then its transpose κ t : g∗ → h∗ is surjective. The preceding argument shows
that the mapping κ t◦(J|N) : N → h∗ is constant. Let λ : h→ sN be the inclusion mapping.
Then its transpose λ t : s∗N → h∗ is surjective. Hence there is jN ∈ s∗N such that λ t( jN) =
κ t◦(J|N). Let ν : sN → g be the inclusion mapping and let η : sN → gN = sN/h be the
canonical projection map. Then kerη is h. Every element of kerη is mapped to 0 by
ν t◦(J|N)− jN : N → s∗N , because ν◦λ = κ implies that λ t◦

(
ν t◦(J|N)− jN

)
= 0∗ ∈ h∗.

Hence there is a unique mapping JN : N → g∗N such that

η t◦JN = ν t◦(J|N)− jN . (39)

We now show that JN is a momentum mapping for the GN-action on N. For each ξ ∈ sN
we have ν(ξ )∈ g. The G-action on M restricted to the one parameter group t �→ exp tν(ξ )
is generated by the vector field Xν(ξ )

M . Similarly, the GN-action on N restricted to the one
parameter group t �→ exp tη(ξ ) is generated by the vector field Xη(ξ )

N on N. On N the G-
action restricted to t �→ expν(ξ ) and the GN-action restricted to t �→ expη(ξ ) coincide.
So Xη(ξ )

N = Xν(ξ )
M |N. Restricting Xν(ξ )

M ω = dJν(ξ ) to N gives

Xη(ξ )
N ωN = d(J|N)ν(ξ ) = d

(
(ν t◦(J|N))(ξ )

)
= d

(
(η t◦JN + jN)(ξ )

)
= dJη(ξ )

N .
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The last equality above follows because jN is a fixed element of s∗N . Hence JN : N → g∗N
is a momentum mapping for the GN-action on N. �

� For every α ∈ g∗N , which lies in the image of JN , every connected component of J−1
N (α)

is a smooth submanifold of N.

(7.14) Proof: Since the GN-action on N is free, it follows that Xξ
N (n) = 0 for every ξ ∈ gN and

every n ∈ N. Therefore d(JN)
ξ (n) = 0 for every ξ ∈ gN and every n ∈ N. Thus for every

n ∈ N the mapping dJN(n) : TnN → g∗N is onto. So for every α ∈ g∗N , which lies in the
image of JN , the α-level set J−1

N (α) is a submanifold of N, which may not be connected.
�

Claim. For every n ∈ N, the connected component of N ∩ J−1(J(n)) and J−1
N (JN(n))

containing the point n coincide.

(7.15) Proof: We have η t◦JN(n) = ν t(J(n))− jN(n) for every n ∈ N. Moreover, we have shown
that jN is a fixed element of s∗N . Since η t : g∗N → s∗N is injective and ν t : g∗ → s∗N is
surjective, it follows that the connected component of N ∩ J−1(J(n)) containing the point
n is a subset of the connected component of J−1

N (JN(n)) containing the point n. Since the
connected components of J−1

N (JN(n)) are submanifolds of N, to complete the proof it suf-
fices to show that the function J is constant on each connected component of J−1

N (JN(n)),
for then a connected component of J−1

N (JN(n)) containing the point n is a subset of a
connected component of N ∩ J−1(J(n)) containing the point n.
Towards this goal let n = {ξ ∈ g Adhξ = ξ for every h ∈ H} and let l = {ξ ∈ g ξ =∫

H Adhξ dh = 0, where
∫

H dh = 1}. Then g = n⊕ l, since for every ξ ∈ g we have ξ =

ξ +(ξ −ξ ) ∈ n+ l; while if ξ ∈ n∩ l, then ξ = ξ = 0. Now decompose the momentum
mapping J|N : N → g∗ into components: Jn : N → n∗ and Jl : N → l∗. If ξ = ξn+ ξl ∈
n⊕ l, then (J|N)ξ = (Jn)ξn +(Jl)ξl .

� For every ζ ∈ l we have Xζ (n) ∈ (TnN)ω(n) for every n ∈ N.

(7.16) Proof: Because ω|N is H-invariant, for every vn ∈ TnN we get

ω(n)
(
Xζ (n),vn

)
=

∫
H

ω(h ·n)(TnΦhXζ (n),TnΦhvn
)

dh

=
∫

H
ω(n)

(
XAdhζ (n),vn

)
dh,

since H acts trivially on N and TnN = (TnMH)
H

= ω(n)
(
X

∫
H Adh−1 ζ dh(n),vn

)
= ω(n)

(
Xζ (n),vn

)
= 0, since ζ = 0 because ζ ∈ l. �

Fact: ξ ∈ n if and only if Xξ (n) ∈ TnN for every n ∈ N.

(7.17) Proof: Suppose that ξ ∈ n. Then for every h ∈ H we have TnΦhXξ (n) = XAdhξ (n). Since
ξ ∈ n, by definition Adhξ = ξ for every h ∈ H. So TnΦhXξ (n) = Xξ (n) for every h ∈ H,
that is, Xξ (n) ∈ (TnMH)

H = TnN. Conversely, suppose that Xξ (n) ∈ TnN. Then for every
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h ∈ H we have Xξ (n) = TnΦhXξ (n) = XAdhξ (n). This implies

Xξ (n) =
∫

H
XAdhξ (n) dh = X

∫
H Adhξ (n) = Xξ (n).

Consequently, Xξ−ξ (n) = 0 for all n ∈ N, that is, Φexp t(ξ−ξ )(n) = n. In other words,

t �→ exp t(ξ − ξ ) is a one parameter subgroup of H. So ξ − ξ = η ∈ h. This yields

η = ξ −ξ = ξ −ξ = 0. Thus η ∈ l. Suppose that η = 0. Then 0 = Xη(n) ∈ (TnN)ω(n).
But ξ ∈ n, which implies that Xξ (n) ∈ TnN. So Xξ (n) = Xξ (n)+Xη(n) /∈ TnN, which
contradicts our hypothesis. Therefore η = 0, that is, ξ = ξ ∈ n. �

We return to proving ((7.15)). For every ξ ∈ n the vector field XJξ is tangent to N. Hence
the G-action Φ restricted to the one parameter group t �→ exp tν(ξ ) preserves N. So
ξ ∈ sN , the Lie algebra of the stability group StabN of N. Using (39) we get (Jn)ξ =

Jν(ξ ) = η t◦Jη(ξ )
N + jN(ξ ), where ν : sN → g is the inclusion mapping and η : sN → gN =

sN/h is the canonical projection map. So Jn = η t◦JN + jN . Since jN is constant on
N, it follows that Jn is constant on level sets of JN . For every n ∈ N and every ξ ∈ l
we have XJξ (n) ∈ (TnN)ω(n). Thus we get dJξ (n)wn = ω(n)(XJξ (n),wn) = 0 for every
wn ∈ TnN. Hence for every n ∈ N we have dJl(n) = 0. So Jl : N → l∗ is constant on N.
Thus J|N = Jn+Jl is constant on level sets of JN and hence on connected components of
(JN)

−1(JN(n)). Hence for every n ∈ N the connected components of (JN)
−1(JN(n)) and

N ∩ J−1(J(n)), which contain the point n, coincide. �

Claim: For every n ∈ N the connected component of N ∩ J−1(J(n)), which contains the
point n is a smooth submanifold of N.

(7.18) Proof: Since the connected component of (JN)
−1(JN(n)) and N ∩ J−1(J(n)), which con-

tains the point n, are equal and every connected component of (JN)
−1(JN(n)) is a smooth

submanifold of N, it follows that the connected component of N ∩ J−1(J(n)), which con-
tains the point n is a smooth submanifold of N. �

We now apply the argument in the proof the regular reduction theorem ((6.1)) to the α
level set of the GN-momentum mapping JN on the smooth symplectic manifold (N,ω|N)
to construct a connected component of a stratum of the singular reduced space.
Because the following arguments are local, we use the shifting trick ((5.19)) to replace the
study of the μ-level set J with the α level set J−1

N (α), where α = JN(n) for some n ∈ N
such that Ĵ(n) = (J|N)(n) = 0.

To start we must verify that for every q ∈ J−1
N (α) we have

Tq(J−1
N (α))∩Tq(J−1

N (α))ω(q) = TqOq, (40)

where Oq = GN · q. Because the momentum mapping JN is not necessarily coadjoint
equivariant, equation (40) does not follow from ((5.11)).

(7.19) Proof: From ((7.15)) we see that Tq(Ĵ−1(0)) = Tq(J−1
N (α)). Therefore (40) is equivalent

to
Tq(Ĵ−1(0))∩Tq(Ĵ−1(0))ω(q) = TqOq, (41)



VII.7.2 Stratification of the singular reduced space 363

for every q ∈ Ĵ−1(0). To establish (41) let Sq be a slice to the GN-action on Ĵ−1(0) at
q, which is defined because Ĵ−1(0) is invariant under the GN-action on N. From the
definition of slice it follows that

Tq(Ĵ−1(0)∩Sq)⊕TqOq = Tq(Ĵ−1(0)). (42)

By construction Tq(Sq∩N)= (TqSq)
HN , the set of HN =(GN)q-fixed vectors in TqSq. Then

we obtain Tq(Ĵ−1(0)∩Sq) = kerTqĴ∩ (TqSq)
HN ⊆ kerTqĴ. Using kerTqĴ = Tq(Ĵ−1(0)) =

Tq(J−1
N (α)) = kerTqJN , which follows from the fact that JN is a GN-momentum mapping,

we get
TqOq = (kerTqJN)

ωq = (kerTqĴ)ω(q) ⊆ Tq(Ĵ−1(0)∩Sq)
ω(q). (43)

Because Ĵ−1(0) is GN-invariant, the GN-orbit Oq through q ∈ N is contained in Ĵ−1(0).
Consequently, TqOq ⊆ Tq(Ĵ−1(0)) = kerTqĴ. So (kerTqĴ)ω(q) ⊆ (TqOq)

ω(q), which
implies

TqOq ⊆ (TqOq)
ω(q), (44)

for every q ∈ Ĵ−1(0), using (43). The next argument shows that Tq(Ĵ−1(0)∩ Sq) is a
symplectic subspace of (TqN,ω(q)). Let jq be an HN-invariant almost complex struc-
ture on TqN, which is constructed in the same way as in the proof of ((7.12)). Then
ω(q)(vq,wq) = γ(q)( jq(vq),wq) for every vq, wq ∈ TqN, where γ is an HN-invariant Rie-
mannian metric on N. For every subspace W of TqN we have (W⊥)ω(q) = jq(W ), be-
cause (W⊥)ω(q) = {uq ∈W ω(q)(uq,vq) = 0 for every vq ∈W⊥}= {uq ∈ TqN jq(uq) ∈

� (W⊥)⊥ =W}= jq(W ). Now ω(q) is nondegenerate on Tq(Ĵ−1(0)∩Sq).

(7.20) Proof: First we show that Tq(Ĵ−1(0)∩Sq) is a jq-invariant subspace of TqN. By construc-
tion of the slice Sq we have TqSq = (TqOq)

⊥. So

jq(kerTqĴ) =
(
(kerTqĴ)⊥

)ω(q)
=

(
(kerTqĴ)ω(q))⊥ = (TqOq)

⊥ = TqSq,

which gives kerTqĴ∩TqSq = jq(TqSq)∩TqSq. Thus kerTqĴ∩TqSq is jq-invariant. Now

Tq(Ĵ−1(0)∩Sq) = kerTqĴ∩ (TqSq)
HN = (kerTqĴ∩TqSq)∩ (TqN)HN .

But (TqN)HN is jq-invariant. Consequently, Tq(Ĵ−1(0)∩ Sq) is jq-invariant, being the
intersection of jq-invariant subspaces. Now suppose that for some uq ∈ Tq(Ĵ−1(0)∩ Sq)

we have ω(q)(uq,vq) = 0 for every vq ∈ Tq(Ĵ−1(0)∩ Sq). Then 0 = γ(q)( jq(uq),vq) for
every vq ∈ Tq(Ĵ−1(0)∩ Sq). But γ(q)|Tq(Ĵ−1(0)∩ Sq) is nondegenerate. So jq(uq) = 0.
However, jq is an invertible linear mapping of Tq(Ĵ−1(0)∩ Sq) into itself. So uq = 0,
which implies that ω(q) is nondegenerate on Tq(Ĵ−1(0)∩Sq). �

We now complete the proof of equation (41). Since Tq(Ĵ−1(0)∩Sq) is an ω(q)-symplectic
subspace of (TqN,ω(q)), so is Tq(Ĵ−1(0)∩Sq)

ω(q). Thus their intersection is the zero vec-
tor. The Witt decomposition of the symplectic vector space

(
Tq(Ĵ−1(0)∩ Sq)

ω(q),ω(q)
)

with respect to the ω(q)-isotropic subspace TqOq is Tq(Ĵ−1(0)∩ Sq)
ω(q) = Z ⊕ Zω(q),

where TqOq
ω(q) = Z ⊕ (

TqOq ∩ (TqOq)
ω(q)

)
= Z ⊕TqOq, Z is a symplectic subspace of
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Tq(Ĵ−1(0)∩Sq), and TqOq is a Lagrangian subspace of Zω(q). Since Zω(q) = TqOq⊕T ∗
q Oq,

it follows that

Tq(Ĵ−1(0)∩Sq)
ω(q) = Z ⊕TqOq ⊕T ∗

q Oq = (TqOq)
ω(q)⊕T ∗

q Oq. (45)

Before finishing the proof of equation (41) we verify

Fact. Let X , Y , and Z be subspaces of a finite dimensional real vector space V such that
Y ⊆ Z and X ∩Z = {0}. Then

(X ⊕Y )∩Z = Y. (46)

(7.21) Proof: Since Y ⊆ X ⊕Y and Y ⊆ Z, we get Y ⊆ (X ⊕Y )∩Z. Now suppose that w ∈ X ⊕Y
and w ∈ Z. Then for some x ∈ X and y ∈ Y we can write w = x+ y. So x = w− y ∈ Z,
because w ∈ Z and y ∈ Y ⊆ Z. Thus x ∈ X ∩ Z = {0}, which shows that w = y ∈ Y .
Consequently, (X ⊕Y )∩Z ⊆ Y , which verfies (46). �

Returning to the proof of (41), we have

Tq(Ĵ−1(0))∩Tq(Ĵ−1(0))ω(q) = (Tq(Ĵ−1(0)∩Sq)⊕TqOq)∩ (Tq(Ĵ−1(0)∩Sq)⊕TqOq)
ω(q)

= (Tq(Ĵ−1(0)∩Sq)⊕TqOq)∩Tq(Ĵ−1(0)∩Sq)
ω(q)∩ (TqOq)

ω(q)

= TqOq,

using (46), since Tq(Ĵ−1(0)∩ Sq)∩
(

Tq(Ĵ−1(0)∩ Sq)
ω(q)

)∩ (TqOq)
ω(q)

)
= {0}; while

from TqOq ⊆ Tq(Ĵ−1(0)∩Sq)
ω(q) using (45), and TqOq ⊆ (TqOq)

ω(q), using (44), we get
TqOq ⊆ Tq(Ĵ−1(0)∩Sq)

ω(q)∩ (TqOq)
ω(q). �

We summarize what we have already shown. We have a free and proper action of a Lie
group GN on a smooth connected symplectic manifold (N,ωN). This group action on
(N,ωN) is Hamiltonian with a momentum mapping JN : N → g∗N such that for α ∈ g∗N
J−1

N (α) is a smooth submanifold of N such that TqJ−1
N (α)∩ (

TqJ−1
N (α)

)ω(q)
= GN ·q for

� every q ∈ J−1
N (α). Let πN : N → N/GN be the GN-orbit mapping. Then π(J−1

N (α)) is a
smooth symplectic submanifold of the smooth manifold N/GN with symplectic form ω̃
where π∗

N(ω̃) = ωN |J−1
N (α).

(7.22) Proof: The GN-action on N leaves the connected component C of N ∩ J−1(0) containing
the point n, which is a smooth submanifold of N, invariant. To see this note that the G-
momentum mapping J is G-coadjoint equivariant, which implies that J is GN-coadjoint
equivariant. Consequently, J−1(0) is GN-invariant. By definition GN leaves N invariant.
Because for some α ∈ g∗N , C is the connected component of J−1

N (α) containing the point
n. Thus GN-action on C leaves C invariant. This action is free and proper, preserves the
symplectic form ωC = ωN |C, and is Hamiltonian with momentum mapping JN |C. Let
πC = πN |C : C → C̃ = C/GN be the GN-orbit map on N restricted to C. Because πC is a
surjective submersion, it follows that C̃ is a connected smooth submanifold of N/GN .
We now show that C̃ is a symplectic manifold. First observe that for every q ∈C we have
kerωC(q) = TqJ−1

N (α)∩ (
TqJ−1

N (α)
)ω(q)

=Wq, which is an ωC(q)-isotropic subspace of
(TqC,ωC(q)) = (TqN,ω(q)). Thus there is an ωC(q)-symplectic subspace Xq of TqN such
that TqC = Xq⊕Wq. Since Wq = Tq(GN ·q) we obtain kerTqπC =Wq. Consequently, TqπC
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maps Xq bijectively onto YπC(q) = TπC(q)C̃. On YπC(q) define a skew symmetric bilinear
form ω̃C̃(πC(q))(x̃πC(q), ỹπC(q)) = ωC(q)(xq,yq), where xq, yq ∈ Xq, TqπC xq = x̃πC(q), and
TqπC yq = ỹπC(q). In other words, π∗

Cω̃C̃ = ωC. Because TqπC : Xq → TπC(q)Xq = TπC(q)C̃
is a bijective linear mapping, we obtain that ω̃C̃ is a nondegenerate 2-form on C̃. Since
π∗

C(dω̃C̃) = dπ∗
C(ω̃C̃) = dωC = 0 and πC is a submersion, it follows that dω̃C̃ = 0. Thus

ω̃C̃ is a symplectic form on C̃. �

The above result completes the proof of

Claim: The singular reduced space (Mμ ,C∞(Mμ)) is stratified by the connected compo-
nent of the smooth symplectic manifolds M(H) = π(J−1(μ)∩MH) = π(J−1(μ)∩M(H)),
where H = Gm for some m ∈ M and M(H) = G ·MH is the orbit type corresponding to H.

� We now show that the flow of a Hamiltonian derivation corresponding to a smooth func-
tion on the singular reduced space Mμ preserves the stratification of Mμ .

(7.23) Proof: First use the shifting trick to reduce to the case where μ = 0. Let f0 be a
smooth function on the symplectic stratum M(H) of M0. Then π∗ f0 = f |J(H) for some
smooth G-invariant function f on M. Here J(H) = G · (J−1(0))∩MH). Let ϕ f

t be the
flow of the vector field Xf . First we verify that ϕ f

t (J(H)) ⊆ J(H). It suffices to show
that ϕ f

t (J−1(0)) ⊆ J−1(0) and ϕ f
t (MH) ⊆ MH . The proof of the former inclusion fol-

lows because f ∈C∞(M)G. To prove the latter inclusion, suppose that p ∈ MH . Because
f ∈C∞(M)G, the flow ϕ f

t and the G-action Φg commute for every g ∈ G. Thus for every
h ∈ H

Φh(ϕ
f

t (p)) = ϕ f
t (Φh(p)) = ϕ f

t (p). (47)

In other words, ϕ f
t (p) ∈ M[H] = {m ∈ M H ⊆ Gm}. Because MH is relatively open in

M[H] ((1.7)), there is an open neighborhood U of p in M such that U ∩MH = U ∩M[H].
Let q ∈ U ∩ MH . Then repeating the argument in (47) shows that ϕ f

t (q) ∈ U ∩ M[H],
that is, ϕ f

t (U ∩MH) ⊆ U ∩M[H]. Because ϕ f
t is a homeomorphism of M, it induces a

homeomorphism of MH in the relative topology. Therefore ϕ f
t (U ∩ MH) is a relative

open subset of M[H] containing ϕ f
t (p). Consequently, ϕ f

t (p) ∈ MH . Thus we obtain
ϕ f

t (J(H)) ⊆ J(H). Because the G-action Φg intertwines the flow ϕ f
t of the vector field Xf

with the flow ϕ f0
t of the Hamiltonian derivation −ad f0 , it follows that the flow ϕ f0

t maps
the stratum M(H) of M0 into itself. �

� The inclusion map ι̃ : (M(H),C∞(M(H)))→ (M0,C∞
i (M0)) is a Poisson map.

(7.24) Proof: Since J(H) is a G-invariant symplectic submanifold of (M,ω), it follows that the
inclusion map i : J(H) → M induces a homomorphism of Poisson algebras

i∗ : (C∞(M)G,{ , }|J(H), ·)→ (C∞(M)G|J(H),{ , }, ·). (48)

Suppose that f0,g0 ∈ C∞(M0), then f0|M0, g0|M0 ∈ C∞
i (M(H)). Moreover, there are

functions f ,g ∈ C∞(M)G such that π∗( f0|M(H)) = f |J(H) and π∗(g0|M(H)) = g|J(H).
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Therefore for every q ∈ J(H) we have

{ f0|M(H),g0|M(H)}M(H)
(π(q)) = { f |J(H),g|J(H)}(q), by definition of { , }M(H)

.

= { f ,g}(q), using (48)
= { f0,g0}0(π(q)), by definition of { , }0.

Thus the induced mapping

ι̃ ∗ : (C∞(M0),{ , }M0
)→ (C∞

i (M(H))),{ , }M(H)
)

is a Poisson map. Here { , }M(H)
is the standard Poisson bracket associated to the sym-

plectic form ω̃M(H)
on the smooth stratum M(H). �

Claim: The decomposition of the singular reduced space Mμ into symplectic strata is
encoded in the Poisson algebra (C∞(Mμ),{ , }μ , ·).

(7.25) Proof: To see this recall that on a connected symplectic manifold the group generated by
the time one maps of the flows of a Hamiltonian vector fields corresponding to smooth
Hamiltonian functions acts transitively. From this and the fact that flows of Hamiltonian
derivations corresponding to smooth Hamiltonian functions on Mμ preserve the decom-
position of Mμ into symplectic strata, it follows that the connected components of sym-
plectic strata of Mμ are equivalence classes of the relation: mμ is equivalent to m′

μ if and
only if there are smooth functions f 1

μ , . . . , f n
μ on Mμ such that the composition of the time

one maps of the flows of −ad f i
μ

maps mμ to m′
μ . �

More precisely we have proved

Corollary: Suppose that Mμ and M ′
μ are singular reduced spaces and that ϕ : Mμ →M ′

μ
is a homeomorphism. If ϕ∗ : C∞(M ′

μ)→C∞(Mμ) is an isomorphism of the Poisson alge-
bra (C∞(M ′

μ),{ , }μ , ·) onto the Poisson algebra (C∞(Mμ),{ , }μ , ·), then ϕ maps a sym-
plectic stratum of the locally compact differential space (Mμ ,C∞(Mμ)) diffeomorphi-
cally onto a symplectic stratum of the locally compact differential space (M ′

μ ,C
∞(M ′

μ)).

8 Exercises
1. Let G be a compact Lie group which acts linearly on Rn. For y,z ∈ Rn suppose that

the G-orbit through y is disjoint from the G-orbit through z. Show that there is a
G-invariant polynomial P on Rn such that P(y) = P(z).

2. Let G be a compact Lie group acting linearly on Rn. Suppose that σ1, . . . ,σr gen-
erate the algebra of G-invariant polynomials on Rn. Then the fiber of the Hilbert
map Φ : Rn → Rr : x �→ (

σ1(x), . . . , σr(x)
)

is a single G-orbit.

3. Give an example of a proper action of a Lie group on a smooth manifold whose
fixed point set is a union of submanifolds of different dimension.
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4. Give a counterexample to the statement: For every symplectic form Ω on T ∗Rn,
which is invariant under an action of a compact Lie group G, there is a local dif-
feomorphism ϕ about 0, which commutes with the G-action, such that ϕ∗Ω is the
standard symplectic form on T ∗Rn near 0.

5. (Linear Hamiltonian vector fields.)

a) Let (V,ω) be a real symplectic vector space. Let Sp(ω,R) be the group of all
linear symplectic isomorphisms of (V,ω). In other words, P ∈ Sp(ω,R) if and only
if P ∈ Gl(V,R) and P∗ω = ω . Show that Sp(ω,R) is a closed subgroup of Gl(V,R)
and hence is a Lie group. Let sp(ω,R) be the set of all p ∈ gl(V,R) such that
ω(pv,w)+ω(v, pw) = 0 for every v,w ∈ V . Show that sp(ω,R) is the Lie algebra
of Sp(ω,R) with Lie bracket [ξ ,η ] = ξ η −ηξ . Let {e1, . . . , en, f1, . . . , fn} be a

basis of V such that the matrix of ω is J2n =
(

0 −In
In 0

)
. Show that R =

(
a b
c d

)
∈ Sp(ω,R) = Sp(2n,R) if and only if RtJ2nR = J2n if and only if atc = cta, btd =

dtb and atd−ctb = 1. Similarly show that r =
(

a b
c d

)
∈ sp(ω,R) = sp(2n,R) if

and only if rtJ2n + J2nr = 0 if and only if d =−at , b = bt and c = ct .

b) Let H : V → R be a homogeneous quadratic function on V , that is, there is a
symmetric bilinear form H̃ on V such that H(v) = 1

2 H̃(v,v). Let XH be the linear
Hamiltonian vector field associated to the Hamiltonian H on (V,ω). Show that
XH ∈ sp(ω,R). Conversely, show that ξ ∈ sp(ω,R) is the linear Hamiltonian vector
field associated to the homogeneous quadratic function v → 1

2 ω(ξ v,v). Let Q be
the vector space of homogeneous quadratic functions on V . For F,G ∈ Q define
their Poisson bracket by {F,G}= ω(XF ,XG). Show that (Q,{ , }) is a Lie algebra
which is isomorphic to (sp(ω,R), [ , ]).

c) The linear symmetry group G of the Hamiltonian system (H,V,ω) where H ∈Q
is the set of all Q ∈ Sp(ω,R) such that Q∗H = H. Show that G is a closed subgroup
of Sp(ω,R) and hence is a Lie group. Show that the Lie algebra g of G is the set
of all ξ ∈ sp(ω,R) such that [ξ ,XH ] = 0. In other words, g is the Lie subalgebra of
all F ∈ Q such that {F,H}= 0.

d) Show that the linear action Φ : G×V → V : (Q,v) → Qv is Hamiltonian with
momentum mapping J : V → g∗ where J(v)ξ = 1

2 ω(ξ v,v) for every ξ ∈ g. Show
that J is coadjoint equivariant. Verify that for every ξ ∈ g the function Jξ : V → R:
v → J(v)ξ is an integral of XH .

6. (The 1p : −1q semisimple resonance.) Consider the quadratic Hamiltonian

H : R2n → R : (x,y)→ 1
2

〈(
I 0
0 I

)(
x
y

)
,

(
x
y

)〉
,

where I = diag(Ip,−Iq).

a) Show that the linear symmetry group G of the Hamiltonian system (H,R2n,ω) is

the set of all R ∈ Sp(2n,R) such that R =
(

a b
−I bI I aI

)
, where a,b ∈ gl(n,R)

satisfy
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(aI )t(I a)+(I b)t(bI ) = In

(bI )t(I a) = (I a)t(bI ).

b) Let I be the matrix of a Hermitian inner product on Cn with respect to the
standard basis. Let U(p,q) be the set of all S ∈ gl(n,C) such that St

I S = I .

Show that the matrix S =
(

a b
c d

)
, where a ∈ gl(p,C), d ∈ gl(q,C), b is a q× p

and c is a p×q complex matrix, lies in U(p,q) if and only if

ata− ctc = Ip

d
t
d −d

t
d = Iq

atb− ctd = 0.

Verify that the map

Θ : G → U(p,q) : R =
(

a b
−I bI I aI

)
→ S = a+ ibI

is an isomorphism of Lie groups.

c) Let u(p,q) be the set of all s ∈ gl(n,C) such that stI +I s = 0. Show that

u(p,q) is the Lie algebra of U(p,q). Show that the matrix s =
(

a b
c d

)
, where

a ∈ gl(p,C), d ∈ gl(q,C), b is a q× p and c is a p× q complex matrix, lies in
u(p,q) if and only if a =−at , c =−b

t
, and d =−d

t
. Show that the Lie algebra g

of the symmetry group G is the set of all r ∈ sp(2n,R) such that r =
(

I a b
−b I a

)
,

where a,b ∈ gl(n,R) satisfy (I a) t =−I a and b = bt . Show that the map

θ : g→ u(p,q) : r =
(

I a b
−b I a

)
→ a+ ibI

is an isomorphism of Lie algebras.

d) Define a Hermitian inner product 〈 , 〉 on u(p,q) by 〈u,w〉 = − 1
2 tr(I wt I u).

Show that 〈 , 〉 is invariant under AdU for every U ∈ U(p,q) and that it is nondegen-
erate. Show that the map

J : Cn = Cp ×Cq → u(p,q) : (z,w)→
(

i(z⊗ zt) z⊗wt

−w⊗ zt i(w⊗wt)

)
is a Hermitian momentum mapping for the linear U(p,q)-action

Φ : U(p,q)×Cn → Cn : (U,ζ )→Uζ .

Here we have identified u(p,q)
∗

with u(p,q) using 〈, 〉. Writing

J(z,w) = i(z, iw)⊗ (z, iw)
t
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deduce that the rank of J(z,w) is at most 1. Hence

(z jzk)(w�wm) = (z jwm)(zkw�)

are the only relations among the quadratic Hermitian integrals⎧⎨⎩ z jzk, 1 ≤ j,k ≤ p;
z jw�, z jw�, 1 ≤ j ≤ p & 1 ≤ �≤ q;
w�wm, 1 ≤ �,m ≤ q

of the Hermitian vector field XH . Show that the U(p,q)-adjoint orbit through
J(z,0), z = 0, J(0,w), w = 0 and J(z,w), z = 0&w = 0 is diffeomorphic to CPp−1,
CPq−1, CPn−1, respectively. Find an expression for the symplectic form on each of
these adjoint orbits.

7. Let S2
� = {x ∈ R3| 〈x,x〉 = �2, � > 0} be the 2-sphere of radius � in R3 with Eu-

clidean inner product 〈 , 〉. Consider the action

Φ : S1 × (S2
� ×S2

� )→ S2
� ×S2

� :
(
t,(x,y)

)→ (Rtx,Rty),

where Rt =

⎛⎝ cos t −sin t 0
sin t cos t 0

0 0 1

⎞⎠. Let Ω = π∗
1 σ2 +π∗

2 σ2, where πi for i = 1,2 is the

projection onto the ith factor and σ2 is the standard volume form on S2
� .

a) Show that Ω is a symplectic form on S2
� ×S2

� and the S1-action Φ is Hamiltonian
with momentum map

J : S2
� ×S2

� → R : (x,y)→ x3 + y3.

Show that � is a regular value of J. Using Morse theory show that J−1(�) is home-
omorphic, and thus diffeomorphic, to a 3-sphere.

b) Show that ±�(e3,e3) are fixed points of the action Φ restricted to J−1(�). Thus
the reduced space M� = J−1(�)/S1 has singularities. Use invariant theory to con-
struct a concrete model of M� as a semialgebraic variety in R3. (Hint: first find the
generators of the algebra of polynomials which are invariant under the action Φ.
Next show that they satisfy one relation and two inequalities. Using the fact that Φ
is an action on S2

� ×S2
� obtain additional relations.)

c) Find the structure matrix of the Poisson bracket on M� and show that it is induced
from a Poisson bracket on R3. Write out the Hamiltonian derivation of a smooth
function on M�.

8. (The p : q resonance.) Let p,q ∈ Z≥ with gcd(p,q) = 1. Consider the resonant
harmonic oscillator on (T R2,ω) given by the Hamiltonian

H2 : T R2 → R : (x,y) �→ 1
2

[
p(y2

2 + x2
2)+q(y2

1 + x2
1)
]
. (49)

a) Show that all orbits of XH2 are periodic of period 2π pq.
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b) Show that the projection of every orbit of energy 1/2 on configuration space R2

is a closed curve, contained in the rectangle R : |x1| ≤ 1/q & |x2| ≤ 1/p, and is
tangent to the horizontal sides of R q-times and the vertical sides of R p times.

c) Show that the algebra of polynomials of T R2 which are invariant under the flow
ϕH

t of XH2 is generated by the polynomials{
σ1 = y2

1 + x2
1

σ2 = y2
2 + x2

2

σ3 = Re [(x1 + i y1)
p(x2 − i y2)

q]

σ4 = Im [(x1 + i y1)
p(x2 − i y2)

q],

subject to the relation

σ2
3 +σ2

4 = σ p
1 σq

2 σ1 ≥ 0, & σ2 ≥ 0. (50)

d) Show that the orbit space Pp,q
h of the S1-action generated by XH2 is defined by

σ2
3 +σ2

4 =

(
2h−σ1

p

)q

σ p
1 0 ≤ σ1 ≤ 2h.

Draw a picture of Pp,q
h for (p,q) = (1,3),(2,3) and (1,4). Find the structure matrix

for the Poisson algebra of smooth functions on Pp,q
h .

9. a) Let Φ : G×V → V be a linear Hamiltonian action of a compact Lie group on
a symplectic vector space (V,ω), see exercise 5. Let J : V → g∗ be the quadratic
momentum mapping of Φ. Choose a set of generators {σ1, . . . ,σk} of the algebra
of invariant polynomials. Embed the reduced space M0 = J−1(0)/G into Rk using
the Hilbert map π : V → Rk : x → (

σ1(x), . . . ,σk(x)
)
. Then there exists a Poisson

bracket on Rk that restricts to the Poisson structure on M 0.

b) Show that the conclusion of a) holds for the linear Hamiltonian action on (R4,ω)
given by the p : q-resonance, see exercise 8.

c)∗ Is this also true for the p1 : p2 : . . . : pn-resonance?

d)∗ Consider the linear Hamiltonian action on (T ∗(R3)n,ω) given by lifting the
diagonal action of SO(3) on n-copies of R3. Let J : T ∗(R3)n → so(3)∗ be the
momentum mapping. Does the conclusion of a) hold for the Poisson structure on
the reduced space J−1(0)/SO(3)?

10. Let Φ : G×M → M : (g,m) �→ g ·m be a Hamiltonian action of a Lie group G on the
smooth symplectic manifold (M,ω). Then for every ξ ∈ g, the Lie algebra of G,
the infinitesimal generator Xξ (m) = d

dt t=0
Φm(exp tξ ) is a Hamiltonian vector field

corresponding to the Hamiltonian function Jξ : M → R, that is, for every m ∈ M
we have Xξ (m) ω(m) = dJξ (m). The rest of this exercise shows that there is an
affine action A : G×g∗ → g∗ of G such that

J(Φg(m)) = A(g,J(m)) (51)

for every g ∈ G and every m ∈ M.
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a) Show that the mapping σ : G→ g∗ : g �→ J(Φg(m))−Adt
g−1 J(m) does not depend

on the choice of m ∈ M. Verify each step of the following calculation. For each
ξ ∈ g we have

d
(
(J◦Φg)

ξ )(m) = TmΦg(Xξ (m)) ω(m) = XAdgξ (m)

= dJAdgξ (m) = d(Adg−1 J)ξ (m),

that is, d
(
J◦Φg −Adt

g−1 J
)
(m) = 0 for every m ∈ M. Hence on connected compo-

nents of M, the function J◦Φg −Adt
g−1 J is constant.

b) Show that for every g, g′ ∈ G we have σ(gg′) = σ(g)+Adt
g−1(σ(g′)). Verify

each step of the following calculation.

σ(gg′) = J◦Φgg′ −Adt
(gg′)−1 J

= (J◦Φg −Adt
g−1 J)◦Φg +Adt

g−1(J◦Φg′ −Adt
(g′)−1 J)

= (J◦Φg −Adt
g−1 J)+Adt

g−1(J◦Φg′ −Adt
(g′)−1 J)

= σ(g)+Adt
g−1 σ(g′).

c) Define the map A : G× g∗ → g∗ : (g,α) �→ Adt
g−1 α +σ(g). Show that A is an

action of G on g∗. Verify that A(e,α) = α for every α ∈ g∗. Using the definition of
A show that A(gg′,α) = A(g,A(g′,α)) as follows

A(gg′,α) = Adt
(gg′)−1 α +σ(gg′) = Adt

g−1(Adt
(g′)−1 α)+σ(g)+Adt

g−1 σ(g′)

= Adt
g−1

(
Adt

(g′)−1 α +σ(g′)
)
+σ(g)

= Adt
g−1 A(g′,α)+σ(g) = A(g,A(g′,α)).

d) Show that (51) holds. We have

A(g,J(m)) = Adt
g−1 J(m)+σ(g)

= Adt
g−1 J(m)+ J(Φg(m))−Adt

g−1 J(m) = J(Φg(m)). (52)

11. (Reduction in stages.)

a) Define the notion of a momentum mapping of a smooth Poisson action of a Lie
group on a singular reduced space.

b) Let G1 and G2 be compact Lie groups acting in a Hamiltonian fashion on the
smooth symplectic manifold (M,ω) with corresponding momentum mappings Ji :
M → g∗ for i = 1,2. Suppose that the actions commute, that is, the group G1 ×G2
acts in a Hamiltonian way on (M,ω) with momentum mapping

J : M → g∗1 ×g∗2 : m → (J1(m),J2(m)).

Show that we may assume that J is G1 × G2 coadjoint equivariant. Show that
J−1(0)/(G1 ×G2) = J̃−1

2 (0)/G2 where J̃2 is the restriction of the function J2 to
J−1

1 (0)/G1. First try proving the special case when all the actions are free and
proper and all the reduced spaces are smooth.
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12. Show that an integral for a Hamiltonian vector field on (T ∗Rn,ω) comes from an
action on the configuration space Rn lifted to an action on the cotangent bundle
T ∗Rn if and only if it is linear in the momenta and the action fixes the zero section.

13. (Equivariant Darboux theorem.) Let G×V →V be a linear action of a compact Lie
group on a real vector space V . Suppose that this action preserves the symplectic
forms ω0 and ω1 on V where ω0(0) = ω1(0). Then there are G-invariant neighbor-
hoods U0 and U1 of 0 and a diffeomorphism ϕ : U0 → U1, which maps 0 to 0 and
commutes with the G-action such that ϕ∗ω1 = ω0. We outline a proof.

a) First we find a G-invariant 1-form ζ on V with the following properties

1. ζ (0) = 0.

2. dζ = ω0 −ω1 on an open G-invariant neighborhood U0 of 0 in V .

Let ψt(v) = (1− t)v be a 1-parameter group of radial contractions on V . Then
ψ0 = idV , ψ1 = 0, ψt(0) = 0, and ψt commutes with the linear action of G on V .
Let η(v) = d

dt t=0
ψt(v) be the vector field on V generated by ψt . Justify each step of

the following calculation.

−(ω1 −ω0) = ψ∗
1 (ω1 −ω0)−ψ∗

0 (ω1 −ω0) =
∫ 1

0

d
dt

(
ψ∗

t (ω1 −ω0) dt

=
∫ 1

0
ψ∗

t
(
Lη(ω1 −ω0)

)
dt

=
∫ 1

0
ψ∗

t
(

d(η (ω1 −ω0))
)

dt, since d(ω1 −ω0) = 0

= d
(∫ 1

0
ψ∗

t (η (ω1 −ω0)) dt
)
= dζ .

Note that ζ (0) = 0 and that ζ is G-invariant because the integrand in the last equal-
ity is G-invariant.

b) Next we construct a diffeomorphism ϕ which fixes 0, commutes with the action
of G and pulls back ω1 to ω0. Define a time dependent vector field ξ on U0 such
that when t is held fixed we have ξt = (tω1 +(1− t)ω0)

�ζ . Let ϑ be the flow of
ξ . By shrinking U0 we can arrange that U0 × [0,1] is in the domain of ϑ . The
next calculation shows that on [0,1] the curve t �→ ϑ ∗

t (tω1 +(1− t)ω0) is constant.
Justify each step of the calculation

d
dt

ϑ ∗
t (tω1 +(1− t)ω0) = ϑ ∗

t
(
Lξ (tω1 +(1− t)ω0)

)
= ϑ ∗

t
(
Lξt+

∂
∂ t
(tω1 +(1− t)ω0)

)
, since ξ = ξt +

∂
∂ t

= ϑ ∗
t
(
Lξt (tω1 +(1− t)ω0)+ω1 −ω0

)
= ϑ ∗

t
(

d(ξt (tω1 +(1− t)ω0))+ξt d(tω1 +(1− t)ω0)+ω1 −ω0
)

= ϑ ∗
t (dζ +ω1 −ω0) = 0.

Therefore on U0 we have ω0 = ϑ ∗
1 ω1. Set ϕ = ϑ1.



Chapter VIII

Ehresmann connections

1 Basic Properties
In this section we define the notion of an Ehresmann connection associated to a surjective
submersion π : M → N. A connection permits a curve in N to be locally lifted to a hor-
izontal curve in M. An Ehresmann connection is good if every smooth curve in N has a
global horizontal lift. For good connections we define the notions of parallel translation
and holonomy.

Let π : M → N be a submersion. Consider two smooth distributions on M called verti-
cal and horizontal. The vertical distribution is defined as Vert : M → T M : m �→ Vertm =
kerTmπ; while the horizontal distribution Horz : M → T M : m �→ Horzm ⊆ TmM, is
defined by a subspace Horzm of TmM which is complementary to Vertm for each m ∈ M.
These distributions give a smooth splitting M → T M : m �→ Horzm⊕Vertm of TmM, which
is called an Ehresmann connection K associated to the submersion π provided that
Tmπ(Horzm) = Tπ(m)N for every m ∈ M.

To see how an Ehresmann connection allows smooth curves in N to be locally lifted to
smooth curves in M, we define the notion of a local horizontal lift of a curve. Let J = [0,ε)
with ε > 0 and let γ : J → N be a smooth curve in N. Suppose that m0 ∈ π−1(γ(0)). A
smooth curve γ̃ : J → M is called the local horizontal lift of γ starting at m0 if and only if

� γ̃(0) = m0, (π ◦ γ̃)(t) = γ(t), and dγ̃
dt ∈ Horz γ̃(t) for every t ∈ J. From these conditions it

follows that the local horizontal lift γ̃ satisfies a system of ordinary differential equations
with a given initial condition and hence is unique.

(1.1) Proof: Let (p,vp) ∈ TM. Choose local coordinates (x1, . . . ,xm,
∂

∂x1
, . . . , ∂

∂xm
) on T M

near (p,vp) such that { ∂
∂xn+1

, . . . , ∂
∂xm

} span kerTxπ . Let (y1, . . . ,yn,
∂

∂y1
, . . . , ∂

∂yn
) be

local coordinates on T N near
(
π(p),Tpπ vp

)
. In these coordinates γ : J → N : t �→(

γ1(t), . . . ,γn(t)
)

and γ̃ : J → M : t �→ (
γ̃1(t), . . . , γ̃m(t)

)
. There is an m×n matrix (ai j(y))

such that for every 1 ≤ i ≤ m we have T π
(

∂
∂xi

)
= ∑n

j=1 ai j(y) ∂
∂y j

. Because π is a sub-

mersion, the matrix (ai j(y)) has rank n. In order that π(γ̃(t)) = γ(t) for t ∈ J, we need
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T π
(

d γ̃
d t (t)

)
= dγ

d t (t). Equivalently,

m

∑
i=1

γ̃ ′
i (t)ai j(γ(t)) = γ ′

j(t) (1)

for every 1≤ j ≤ n. Because the projection mapping ρ : T M → kerT π :
( ∂

∂x1
, . . . , ∂

∂xm

) �→( ∂
∂xn+1

, . . . , ∂
∂xm

)
is surjective, there is an m× (m−n) matrix (bi j(y)) of rank m−n such

that ρ
(

∂
∂xi

)
= ∑m−n

k=1 bik(y) ∂
∂xk

. If γ̃ is locally horizontal, then ρ
(

d γ̃
d t (t)

)
= 0 for every

t ∈ J, that is,
m

∑
i=1

γ̃ ′
i (t)bik(γ(t)) = 0 (2)

for every 1 ≤ k ≤ m−n. Hence (1) and (2) may be written as

m

∑
i=1

γ̃ ′
i (t)ci j(γ(t)) =

(
γ ′

j(t)
0m−n

)
(3)

where for 1 ≤ i ≤ m we have ci j(y) =
{

ai j(y), if 1 ≤ j ≤ n
0, if n+1 ≤ j ≤ m.

Since the m×m matrix

(ci j(y)) has rank m, we may solve (3) and obtain

γ̃ ′
i (t) =

n

∑
j=1

ci j(γ(t))γ ′
j(t) (4)

for 1 ≤ i ≤ m and t ∈ J. Here (ci j(y)) is the inverse of (ci j(y)). Equation (4) is the desired
differential equation for the local horizontal lift. Given the initial condition γ̃(0), equation
(4) has a unique solution. �

A smooth curve γ̃ : [0,1]→ M is a global horizontal lift of a curve γ : [0,1]→ N if it is a
local horizontal lift for every t ∈ [0,1].

Example 1: Consider the Ehresmann connection associated to the surjective submersion
π : R2 → R : (x,y) �→ x defined by the vertical distribution Vert : R2 → T(x,y)R2 : (x,y) �→
span{(0,1)} and the horizontal distribution Horz : R2 → T(x,y)R2 : (x,y) �→ span{(1,y2)}.
Suppose that γ : [0,1] → R : t �→ t. Then the local horizontal lift γ̃ : J → R2 : t �→(
γ̃1(t), γ̃2(t)

)
of γ starting at (0,2) satisfies

γ̃1(t) = π(γ̃(t)) = γ(t) = t, (5)

γ̃1(0) = 0, γ̃2(0) = 2, and d γ̃(t)
d t ∈ span{(1,(γ̃2(t))2}, which is equivalent to

dγ̃1

d t
= λ (t) and

dγ̃2

d t
= λ (t)

(
γ̃2(t)

)2 (6)

for some smooth function λ : J → R. Differentiating (5) gives 1 =
d γ̃1

d t
= λ (t). Hence

the second equation in (6) is
dγ̃2

dt
=

(
γ̃2(t)

)2 (7)
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with initial condition γ̃2(0) = 2. Integrating (7) gives γ̃2(t) = ( 1
2 − t)−1. Thus the local

horizontal lift γ̃ of γ exists only on [0, 1
2 ). Hence γ does not have a global horizontal lift,

since γ̃ is not defined on all of [0,1]. �.

We say that an Ehresmann connection K associated to the surjective submersion
π : M → N is good if every smooth curve γ : [0,1]→ N has a horizontal lift γ̃ : [0,1]→ M
starting at any m0 ∈ π−1(γ(0)). The following claim gives a criterion when there is a
good Ehresmann connection.

Claim: Let M be a connected smooth manifold. If π : M → N is a proper surjective
submersion, then there is a good Ehresmann connection K associated to π .

(1.2) Proof: Since M has a Riemannian metric we may define the horizontal distribution at m ∈
M as the orthogonal complement of the vertical distribution in TmM. In other words, m �→
Horzm = (kerTmπ)⊥, where m �→ Vertm = kerTmπ . Clearly this defines an Ehresmann
connection associated to π .

To show that this connection is good, let γ : [0,1]→ N be a smooth curve. Consider the
set I of t ∈ [0,1] such that γ|[0, t] has a horizontal lift γ̃ defined on [0, t] for every starting
point m ∈ π−1(γ(0)). First we show that I is nonempty. Let m0 ∈ π−1(γ(0)). Because
the local horizontal lift γ̃ of γ starting at m0 satisfies a smooth set of differential equations,
there is an open neighborhood Um0 ⊆ π−1(γ(0)) of m0 whose closure is compact and a
positive time Tm0 such that for every m ∈ Um0 the local horizontal lift of γ starting at
m is defined on (−Tm0 ,Tm0). Since π is a proper map, the fiber π−1(γ(0)) is compact.
Therefore the open covering {Um|m ∈ π−1(γ(0))} has a finite subcovering {Umi}r

i=1. Let
T = mini {Tmi} > 0. Then the local horizontal lift of γ starting at any point of the fiber
π−1(γ(0)) is defined on (−T,T ). In other words, 0 ∈ I . Let τ be the least upper bound
for I . Suppose that τ < 1. Repeating the argument above with the fiber π−1(γ(0))
replaced by the fiber π−1(γ(τ)), we find a T ′ > 0 such that every local horizontal lift
of γ starting at any mτ ∈ π−1(γ(τ)) is defined on (−T ′,T ′). For every m0 ∈ π−1(γ(0))
the horizontal lift of γ starting at m0 has left end point at some mτ ∈ π−1(γ(τ)). This
horizontal lift joins smoothly to the local horizontal lift of γ at mτ , because the domains
of the lifts overlap and local horizontal lifts are unique. The new horizontal lift of γ
formed from this joining process starts at m0 and has left end point in π−1(γ(T ′ + τ)).
But this contradicts the definition of τ . Hence I = [0,1]. �

In what follows we will assume that K is a good Ehresmann connection associated to
the submersion π . Let γ : [0,1]→ N be a smooth path and let γ̃m be a horizontal lift of γ
starting at m ∈ π−1(γ(0)) with respect to the connection K . The mapping

Pγ : π−1(γ(0))→ π−1(γ(1)) : m �→ γ̃m(1)

is called parallel translation along γ with respect to K . Note that for the Ehresmann
connection defined in example 1 no fiber of π can be even locally parallel transported
along any curve. From smooth dependence of solutions of differential equations on initial
conditions, we have

Claim: Let π : M → N be a surjective submersion with a good Ehresmann connection
K . Then along γ the parallel translation Pγ is a diffeomorphism.
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If γ is a closed path, that is, γ(0) = γ(1), then the map Pγ is the holonomy of the Ehres-
mann connection K along the curve γ . Fix a point n ∈ N. Then the set of diffeomor-
phisms {Pγ}, where γ is a smooth closed curve in N with γ(0) = n, generates a group
under composition called the holonomy group of the Ehresmann connection K at n.

Example 2. Consider the mapping

π : R4 → R3 :
(x1,x2,x3,x4)→ (w1,w2,w3) =

(
x2

1 + x2
2 − x2

3 − x2
4,2(x1x4 + x2x3),2(x2x4 − x1x3)

)
.

Then the image of the unit 3-sphere S3 under π is the unit 2-sphere S2. Moreover, the
mapping F = π|S3 : S3 → S2 is the Hopf fibration. Define an Ehresmann connection K
associated to F as follows. The vertical distribution of K at x ∈ S3 is

Vertx = (kerTxπ)∩TxS3 = ker

⎛⎜⎜⎝
x1 x2 −x3 −x4
x4 x3 x2 x1

−x3 x4 −x1 x2
x1 x2 x3 x4

⎞⎟⎟⎠ = span{(−x2,x1,x4,−x3)
t}.

The horizontal distribution of K at x∈ S3 is the intersection of
(

span(−x2,x1,x4,−x3)
t
)⊥

with TxS3. Here X⊥ is the orthogonal complement of the subspace X of R4 with respect
to the Euclidean inner product on R4. Therefore

Horzx = span{(x3,x4,−x1,−x2)
t ,(−x4,x3,−x2,x1)

t}.

It follows from the definition of Vertx and Horzx that Vertx⊕Horzx = TxS3 for every x∈ S3.
Because the rank of Dπ(x) is 2 at every x ∈ R4 \{0}, we have Txπ(Horzx) = TF (x)S2 for
every x ∈ S3. Therefore K is an Ehresmann connection associated to F . Since F is a
proper submersion, this connection is good.

Let γ : [0,T ]→ S2 : t �→ w(t) be a smooth curve with γ(0) = w. Then γ lifts to a horizontal
curve γ̃ : [0,T ] → S3 : t �→ x(t) with γ̃(0) = x. In other words, F (x(t)) = F (γ̃(t)) =

γ(t) = w(t) and d γ̃(t)
d t ∈ Horz γ̃(t) for every t ∈ [0,T ]. The latter condition for a horizontal

lift may be rewritten as ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋ1 = λ1x3 −λ2x4

ẋ2 = λ1x4 +λ2x3

ẋ3 =−λ1x1 −λ2x2

ẋ4 = λ2x1 −λ1x2,

(8)

for some smooth functions λ1 = λ1(t) and λ2 = λ2(t). Assume that x lies in the open
set U1 = {x ∈ S3 x2

3 + x2
4 > 0} = S3 \F−1(1,0,0). Using x2

3 + x2
4 = 1

2 (1−w1) and the
definition of F , we eliminate λ1 and λ2 from the first two equations in (8), and obtain⎧⎨⎩ ẋ3 = (1−w1)

−1(w3ẋ1 −w2ẋ2)

ẋ4 =−(1−w1)
−1(w2ẋ1 +w3ẋ2).

(9)
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From the definition of F , we have
(

x4 x3
−x3 x4

) (
x1
x2

)
= 1

2

(
w2
w3

)
. Because x ∈U1, these equa-

tions may be solved to give{
x1 = x1(x3,x4) = (1−w1)

−1 (−w3x3 +w2x4)

x2 = x2(x3,x4) = (1−w1)
−1 (w2x3 +w3x4).

(10)

Note that

τ1 : F (U1)×S1 = (S2 \{w1 = 1})×{x2
3 + x2

4 =
1
2 (1−w1)}→U1 :(

(w1,w2,w3),(x3,x4)
) �→ (

x1(x3,x4),x2(x3,x4),x3,x4
)

is a local trivialization of the Hopf fibration. Differentiating (10) and substituting the
result into (9) gives{

2(1−w1) ẋ3 =− [(w2ẇ2 +w3ẇ3)x3 − (w3ẇ2 −w2ẇ3)x4 +(1+w1) ẇ1x3]

2(1−w1) ẋ4 = [(w2ẇ3 −w3ẇ2)x3 +(w2ẇ2 +w3ẇ3)x4 +(1+w1) ẇ1x4].
(11)

These are the equations satisfied by the horizontal lift of γ with respect to the connection
K in the local trivialization τ1.

Using (11) we compute the holonomy of the connection K along the equator

γ : [0,2π]→ S2 \{w1 = 1} : t �→ w(t) = (0,cos t,sin t),

traversed in a counterclockwise direction. Since ẇ1 = 0, w2ẇ2 +w3ẇ3 = 0, and w2ẇ3 −
w3ẇ2 = 1, equation (11) becomes {

ẋ3 =
1
2 x4

ẋ4 =− 1
2 x3.

(12)

Using the fact that x2
3 + x2

4 =
1
2 on γ , equation (12) integrates to(

x3(t)
x4(t)

)
=

1√
2

(
cos t/2 sin t/2
−sin t/2 cos t/2

) (
x3(0)
x4(0)

)
.

Therefore parallel transport of the fiber F−1(0,0,1) along the closed curve γ is

P1
t : F−1(0,0,1)→ F−1(γ(t)) : τ1

(
0,0,1,x3(0),x4(0)

)
=

⎛⎜⎜⎝
x4(0)
x3(0)
x3(0)
x4(0)

⎞⎟⎟⎠ �→

τ1
(
0,cos t,sin t,x3(t),x4(t)

)
= 1√

2

⎛⎜⎜⎝
cos3t/2 −sin3t/2 0 0
sin3t/2 cos3t/2 0 0

0 0 cos t/2 sin t/2
0 0 −sin t/2 cos t/2

⎞⎟⎟⎠
⎛⎜⎜⎝

x4(0)
x3(0)
x3(0)
x4(0)

⎞⎟⎟⎠.

In other words, P1
t is a clockwise rotation of the circle F−1(0,0,1) through an angle t/2.

Consequently, the holonomy P1
2π of the connection K along the curve γ is a clockwise

rotation through an angle π .
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Let U2 = {x ∈ S3 x2
1 + x2

2 > 0} = S3 \F−1(−1,0,0). Then F (U2) = S2 \ {w1 = −1}.
The map

τ2 : F (U2)×S1 = (S3 \{w1 =−1})×{x2
1 + x2

2 =
1
2 (1+w1)}→U2 :

{((w1,w2,w3),(x1,x2)
) �→ (

x1,x2,x3(x1,x2),x4(x1,x2)
)
,

where {
x3(x1,x2) = (1+w1)

−1 (−w3x1 +w2x2)

x4(x1,x2) = (1+w1)
−1 (w2x1 +w3x2),

is a local trivialization of the Hopf fibration. The horizontal lift with respect to K of the
equator {w1 = 0}∩ S2 traversed in the clockwise direction, that is, the horizontal lift of
the curve −γ : [0,2π]→ S2 : t �→ γ(2π − t) = (0,cos t,−sin t), satisfies{

ẋ1 = − 1
2 x2

ẋ2 = 1
2 x1.

Thus the parallel translation of F−1(0,0,1) along the curve −γ is the map

P2
t : F−1(0,0,1)→ F−1(− γ(t)

)
= F−1(γ(2π − t)

)
which is a clockwise rotation through an angle 2π − t/2. Thus the holonomy P2

2π of the
connection K along the curve γ is a counterclockwise rotation through an angle −π .

We note that the classifying map of the Hopf fibration is

χ : S1 = {w1 = 0}∩S2 → S1 = F−1(0,0,1) : t �→ (P2
−2π+t)

−1 ◦P1
−t ,

which is a counterclockwise rotation of S1 through an angle t. Hence the degree of the
mapping χ is 1. �

2 The Ehresmann theorems
In this section we prove the Ehresmann fibration and trivialization theorems.

We begin with the fibration theorem.

Claim: Let π : M → N be a proper surjective submersion. Then π is a locally trivial
fibration.

(2.1) Proof: Because π is a proper surjective submersion, there is a good Ehresmann connection
K associated to π . Give N a Riemannian metric. For each n ∈ N, let Bn be an open ball
in TnN about 0 where the exponential map expn : Bn ⊆ TnN → N is a diffeomorphism. Let
Un = expnBn. Then Un is a open neighborhood of n in N. For n′ ∈Un let

γn,n′ : [0,1]→Un ⊆ N : t �→ expntvn′ ,

be the geodesic joining n to n′. In other words, γn,n′(1) = n′. Because expn is a diffeomor-
phism, the vector vn′ ∈ Bn ⊆ TnN is uniquely determined. Let Pγn,n′ : π−1(n)→ π−1(n′)
be parallel translation along γn,n′ using the Ehresmann connection K .
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Consider the mapping

τ : Un ×π−1(n)→ π−1(Un) : (n′,m) �→ Pγn,n′ (m)

and the projection mapping π1 = π|π−1(Un) : π−1(Un) → Un : m �→ π(m). Then τ is a
trivialization of the fibration π1, because for every m ∈ π−1(n) and every n′ ∈Um we have

π1◦τ(n′,m) = π1(Pγn,n′ (m)) = n′, (13)

by definition of parallel translation. To finish the argument we need only show that τ is a
diffeomorphism. Define the smooth mappings

ρ : Un ×π−1(Un)→ π−1(Un) : (n′,m) �→ P−γn,n′ (m)

and
σ : π−1(Un)→Un ×π−1(n) : m �→ (

π1(m),ρ(π1(m),m)
)
.

The following calculation shows that σ ◦τ = idUn×π−1(n). For every n′ ∈ Un and every
m ∈ π−1(n) we have

σ◦τ(n′,m) = σ
(
Pγn,n′ (m)

)
=

(
π1(Pγn,n′ (m)),ρ

(
π1(Pγn,n′ (m)),ρ

(
π1(Pγn,n′ (m)),Pγn,n′ (m)

)))
=

(
n′,ρ(n′,Pγn,n′ (m))

)
, by (13)

=
(
n′,P−γn,n′

◦Pγn,n′ (m)
)
= (n′,m).

Now τ◦σ = idπ−1(Un)
, because for every m ∈ π−1(Un)

τ(σ(m)) = τ
(
π1(m),ρ(π1(m),m)

)
= Pγn,π1(m)

(ρ(π1(m),m))

= Pγn,π1(m)
◦P−γn,π1(m)

(m) = m.

Therefore τ is a diffeomorphism. �

We now prove the trivialization theorem.

Claim: Suppose that π : M → N is a proper surjective submersion and that N is smoothly
contractible, that is, there is a one parameter family of mappings F : [0,1]×N → N such
that

1. Ft is a diffeomorphism for every t ∈ [0,1].
2. F0 = idN .
3. For every n ∈ N, F1(n) = n0 for some fixed n0 in N.

Then the fibration π is trivial, that is, M is diffeomorphic to N ×π−1(n0) and this diffeo-
morphism maps fibers of π onto fibers of π1 : N ×π−1(n0)→ N : (n,m) �→ n.

(2.2) Proof: For n ∈ N consider the curve γn : [0,1]→ N : t → Ft(n), which smoothly joins the
point n to n0. Define the map ϕ : N ×π−1(n0) → M : (n,m) �→ Pγn(m). Following the
same argument used in the proof of the Ehresmann fibration theorem, we see that ϕ is a
diffeomorphism which is fiber preserving. �



380 Ehresmann connections

3 Exercises
1. (Levi-Civita connection.) Let g be a Riemannian metric on M. Let τM : T M → M

be the tangent bundle of M with natural coordinates (xi,vi). The second tangent
bundle τT M : T (T M)→ T M has natural coordinates (xi,vi,Xi,V i). On T M define
two distributions

Horzg : T M → T (T M) : (xi,vi) �→ span{(xi,vi,Xi,−∑
j,k

Γi
jkv jXk)}

and

Vertg : T M → T (T M) : (xi,vi) �→ span{(xi,vi,0,V i +∑
j,k

Γi
jkv jXk)}.

Show that Horzg and Vertg define an Ehresmann connection K g on the bundle
τT M . K g is called Levi-Civita connection. Prove the following properties of K g.

a) The geodesic vector field Zg(xi,vi) = (vi,−∑ j,k Γi
j,kv jvk) lies in Horzg, that is,

for every (x,v) ∈ T M we have Zg(x,v) ∈ Horzg
(x,v).

b) K g is symmetric, that is, j◦Horzg = Horzg, where j(x,v,X ,V ) = (x,X ,v,V ) is
the canonical involution on T (T M).

c) Let Kg : T (T M)→ T M : (xi,vi,Xi,V i) �→ (xi,V i +∑ j,k Γi
jkv jXk). Show that for

every X1,X2 ∈ T(x,v)(T M) the symplectic 2-form Ω on T M is Ωg(x,v)(X1,X2) =

g(x)
(
Kg(X2),TτM(X1)

)− g(x)
(
Kg(X1),TτM(X2)

)
. Thus Horzg

(x,v) and Vertg
(x,v) are

Lagrangian subspaces of the symplectic vector space
(
T(x,v)(T M),Ω(x,v)

)
.

2. (Connections on a principal bundle.)

a) Let Φ : G×P → P : (g,m) �→ Φg(m) = g ·m be a free and proper action of a Lie
group G on a manifold P. Then P is a (left) principal G-bundle over the G-orbit
space M with bundle projection π : P → M given by the orbit map. The bundle π
is locally trivial, that is, for every m ∈ M there is an open neighborhood U and a
diffeomorphism

τ : π−1(U)→ G×U : p �→ (
ϕ(p),π(p)

)
such that ϕ(g · p) = gϕ(p). Show that π−1(π(p)) = {g · p ∈ P g ∈ G}. Let g be
the Lie algebra of G. For a fixed p ∈ P, let σp : g → TpP : ξ → Xξ (p), where
Xξ (p) = d

dt t=0
exp tξ · p. Show that imσp = Tp

(
π−1(p)

)
.

b) A smooth g-valued 1-form ϑ on P is a smooth section of the bundle L(TP,g) =⋃· p∈PL(TpP,g) with bundle projection ρ(L(TpP,g)) = p. A connection on a (left)
principal G-bundle π : P → M is a g-valued 1-form ϑ such that

1. ϑ(p)(σp(ξ )) = ξ for every ξ ∈ g and every p ∈ P.

2. For every g ∈ G and every vp ∈ TpP, we have ϑ
(
Φg(p)

)
(TeΦgvp) =

Adg
(
ϑ(p)(vp)

)
.
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Consider the distributions Vertϑ : P → T P : p �→ span{σp(ξ ) ∈ TpP ξ ∈ g} and
Horzϑ : P → T P : p �→ kerϑ(p). Show that Vertϑ and Horzϑ define an Ehresmann
connection on the bundle π . Show that Horzϑ is G-invariant, that is, for every
p ∈ P and every g ∈ G, we have TeΦg(Horzϑ

p ) = Horzϑ
Φg(p). Conversely, show that

an Ehresmann connection on a principal G-bundle π whose horizontal distribution
is G-invariant determines a g-valued 1-form ϑ which satisfies 1) and 2) above.

c)∗ Show that every connection 1-form on a principal bundle defines an Ehresmann
connection where every curve has a horizontal lift.

3. (Connections on S1 principal bundles.) Let ψ : S1 ×P → P be a proper free action
on a smooth manifold P and let X be the infinitesimal generator of ψ . The orbit
space M of this action is a smooth manifold. The orbit map π : P → M gives P the
structure of an S1 principal bundle. Let θ be a 1-form on P which is ψ-invariant
and for which X θ = 1. Then θ is a connection 1-form on P.

a) Show that X dθ = 0. Since kerT π = span{X} ⊆ kerdθ and dθ is ψ-invariant,
deduce that there is a 2-form Ω on M such that π∗Ω = dθ . Ω is called the curvature
form of θ .

b) (Infinitesimal holonomy formula.) Let ϕ : V ⊆ M → U ⊆ Rn be a chart for M
such that τ : π−1(V ) ⊆ P → U × S1 is a trivialization of the principal bundle π .
Let γ : I × [0,1] → U : (s, t) → γ(s, t) = γs(t) be a family of smooth curves with
γs(0) = u for every s ∈ I = (−ε,ε). For every s ∈ I let Γs : [0,1] → π−1(U) be
the horizontal lift of γ0 with respect to the connection 1-form θ with Γs(0) = p ∈
π−1(u) fixed. In other words, π(Γs(t)) = γs(t) and ∂Γs

∂ t (t) θ(Γs(t)) = 0 for every
(s, t) ∈ I × [0,1]. Suppose that Γs(1) ∈ π−1(u) for every s ∈ I. Then the holonomy
of θ along γs as measured from the point p is the element holγs

p of S1 = R/2πZ such
that ψholγs

p
(p) = Γs(1). Let ∂

∂ s holγs
p be the infinitesimal holonomy vector field on the

fiber π−1(u). Then

∂
∂ s

holγs
p (s) =

∫ 1

0
Ω(γs(t))

(
∂γs

∂ t
(t),

∂γs

∂ s
(t)

)
dt. (14)

Each step of the following calculation takes place in the image of the trivialization
τ . Supply a justification.

0 =
d

ds

(
θ(Γs(t))

∂Γs

∂ t

)
=

(
Dθ(Γs(t))

∂Γs

∂ s

)∂Γs

∂ t
+θ(Γs(t))

∂ 2Γs

∂ s∂ t

=
(
Dθ(Γs(t))

∂Γs

∂ s

)∂Γs

∂ t
− (

Dθ(Γs(t))
∂Γs

∂ t

)∂Γs

∂ s
+

d
dt

(
θ(Γs(t))

∂Γs

∂ s

)
= −dθ(Γs(t))(

∂Γs

∂ t
,

∂Γs

∂ s
)+

d
dt

(
θ(Γs(t))

∂Γs

∂ s

)
= −Ω(γs(t))(

∂γs

∂ t
,

∂γs

∂ s
)+

d
dt

(
θ(Γs(t))

∂Γs

∂ s

)
.

Integrating over t ∈ [0,1] gives

θ(Γs(1))
∂Γs

∂ s
(1) =

∫ 1

0
Ω(γs(t))(

∂γs

∂ t
,

∂γs

∂ s
) dt.
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But ∂Γs
∂ s (1) =

∂
∂ s holγs

p X(Γs(1)) and X(Γs(1)) θ(Γs(1)) = 1. This proves (14).

c) (Hopf bundle.) Let S3 = {(z1,z2) = (x1 + iy1,x2 + iy2) ∈ C2 |z1|2 + |z2|2 = 1}.
Consider the proper free S1 = R/2πZ action ψ : S1 × S3 → S3 :

(
t,(z1,z2)

) �→
(e−it z1,e−it z2). Its orbit space is S2 = {(w1,w2,w3) ∈ R3 w2

1 +w2
2 +w2

3 = 1} and
its orbit map

h : S3 → S2 : (z1,z2) �→
(
2Imz1z2,2Rez1z2, |z1|2 −|z2|2

)
=

=
(
2(x1y2 − x2y1),2(x1x2 + y1y2),x2

1 + y2
1 − x2

2 − y2
2
)

is the Hopf fibration. On C2 = R4 consider the 1-form

θ =− 1
2i
(z1 dz1 + z1 dz2 − z1 dz1 − z2 dz2) = y1 dx1 − x1 dy1 + y2 dx2 − x2 dy2.

Show that ϑ = θ |S3 is a connection 1-form on the principal S1 bundle h. Show
that the distributions Horz : S3 → T S3 : z �→ kerϑ(z) and Vert : S3 → T S3 : z �→
span{X(z)}, where kerϑ(z) is spanned by X1(z)= −y2

∂
∂x1

−x2
∂

∂y1
+y1

∂
∂x2

+x1
∂

∂y2
,

X2(z) = x2
∂

∂x1
−y2

∂
∂y1

−x1
∂

∂x2
+y1

∂
∂y2

, and X(z) = y1
∂

∂x1
−x1

∂
∂y1

+y2
∂

∂x2
−x2

∂
∂y2

,
define the Ehresmann connection associated to ϑ .

The following argument shows that the curvature Ω of the connection 1-form ϑ is
1
2 volS2 . Here volS2 is the standard volume form on S2 defined by volS2(w)(u,v) =
(w,u× v), where w ∈ S2 and u,v ∈ TwS2. Note that

∫
S2 volS2 = 4π . Since H3(S2) =

0, Ω is a closed 2-form. Because dimH2(S2) = 1, there is a λ ∈ R such that
Ω = λ volS2 . To determine λ we must orient S3. Let n(z) = x1

∂
∂x1

+ y1
∂

∂y1
+

x2
∂

∂x2
+ y2

∂
∂y2

be the outward normal to S3 in R4 at z = (x1,y1,x2,y2). Show that
n volR4 =− 1

2 θ ∧dθ . From the fact that − 1
2 (θ ∧dθ)(z)

(
X(z),X1(z),X2(z)

)
= 1,

it follows that volS3 =− 1
2 ϑ ∧dϑ . Since det

(
n(z),X(z),X1(z),X2(z)

)
= 1, the basis

{X(z),X1(z),X2(z)} of TzS3 is positively oriented with respect to volS3 . Show that
Tzh maps {X(z),X1(z),X2(z)} onto the frame {2v1,2v2} on Th(z)S2 where

v1 = (x2
1 + x2

2 − y2
1 − y2

2)
∂

∂w1
+2(x1y1 − x2y2)

∂
∂w2

−2(x1y2 + x2y1)
∂

∂w3

and

v2 = 2(x1y1 + x2y2)
∂

∂w1
+2(x1x2 + y1y2)

∂
∂w2

+(x2
1 + y2

1 − x2
2 − y2

2)
∂

∂w3
.

Since det(h(z),v1,v2)=−1, the frame {2v1,2v2} is negatively oriented with respect
to volS2 . Hence (h∗volS2)(z)(X1(z),X2(z)) = −4. From the fact that dϑ(z)(X1(z),
X2(z)) =−2, it follows that λ = 1

2 . Therefore Ω = 1
2 volS2 .

The following argument computes the holonomy of the connection 1-form ϑ along
the equator γπ/2 of S2. Let D be the closed upper hemisphere, which is positively
oriented with respect to volS2 and is bounded by the positively oriented equator γπ/2.
For each s∈ [0,π/2] let Πs be the plane in R3 passing through u=(1,0,0)∈ S2 with
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normal vector (coss,0,sins). For s∈ (0,π/2] let γs : [0,1]→D be a parametrization
of the ellipse Πs∩D. Note that γ0(t) = u for every t ∈ [0,1]. Thus we have a smooth
family of curves γ : [0,π/2]× [0,1] → D : (s, t) → γs(t). Since the horizontal lift
Γs of γs with respect to the connection ϑ starts at p ∈ h−1(u), the holonomy holγ0

p
along γ0 is 0. Justify each step of the following calculation.

hol
γπ/2
p =

∫ π/2

0

d
ds

holγs
p ds =

∫ π/2

0

∫ 1

0
Ω(γs(t))

(∂γs(t)
∂ t

,
∂γs(t)

∂ s

)
dt ds

=
∫
[0,π/2]×[0,1]

γ∗Ω =
∫

D
Ω = 1

2 volS2(D) = π.

Generalize this argument to show that the holonomy along any closed positively
oriented curve γ on S2 is equal to one half the area on S2 of the 2-disk bounded
by γ .

d) Consider the S1 principal bundle π : T1S2 ⊆ T R3 → S2 ⊆ R3 : (x,y) �→ x on the
unit tangent bundle T1S2 to the 2-sphere S2 with S1-action

ψ : S1 ×T1S2 → T1S2 :
(
t,(x,y)

) �→ (
x,y cos t +(x× y)sin t

)
.

Let θ(x,y) = (x×y, ∂
∂y ) be a 1-form on T R3 where ( , ) is the Euclidean inner prod-

uct on R3. Show that ϑ = θ |T1S2 is a connection 1-form for the principal bundle
π . The vector fields X1(x,y) = (x, ∂

∂y )− (y, ∂
∂x ) and X2(x,y) = (x× y, ∂

∂x ), when
restricted to T1S2 span kerϑ(x,y). Let ω be the symplectic form on T S2 given
by restricting the standard symplectic form on T R3. Orient T S2 using the vol-
ume form volTS2 = ω ∧ω . With respect to the outward normal n(x,y) = (y, ∂

∂y )

at (x,y) ∈ T1S2 in TS2, we have n volT S2 = volT1S2 . Show that T(x,y)π maps the
positively oriented frame {(x×y, ∂

∂y ),X1(x,y),X2(x,y)} of T(x,y)(T1S2) onto the pos-

itively oriented frame {(y, ∂
∂x ),(x× y, ∂

∂x )} of TxS2. Here we are using the standard
volume form volS2 to orient S2. Show that the curvature 2-form Ω of ϑ is equal
to volS2 . Hence the holonomy around the positively oriented equator, as measured
from a point in the fiber over a fixed point on the equator, is 2π . Generalize this
argument to show that the holonomy along any closed positively oriented curve on
S2 is equal to the area on S2 of the 2-disk bounded by γ .



Chapter IX

Action angle coordinates

Here we prove the existence of local action angle coordinates for a Liouville integrable
Hamiltonian system near a compact connected fiber of its integral mapping.

1 Liouville integrable systems
A Hamiltonian system ( f1,M,ω) on a smooth symplectic manifold (M,ω) of dimension
2n is a Liouville integrable system with n-degrees of freedom if there are Poisson commut-
ing functions ( f1, . . . , fn), that is, { fi, f j}= 0, whose differentials are linearly independent
on an open dense subset W of M and whose associated Hamiltonian vector fields Xfi are
complete.

An important result for Liouville integrable systems is the following.

Claim: If ( f1,M,ω) is an n-degree of freedom Liouville integrable Hamiltonian system
with integrals ( f1, . . . , fn), then every connected component of a fiber of the integral map
f : M → Rn : p �→ (

f1(p), . . . , fn(p)
)
, corresponding to a regular value in its image, is

diffeomorphic to a product of a k-torus Tk and Rn−k for some 0 ≤ k ≤ n.

(1.1) Proof: The proof of the claim follows along the lines of step 2 of the proof of the ex-
istence of local action angle coordinates in §2. The Rn-action Ψ (1) on the connected
component Fq of the fiber f−1(q) of the integral map corresponding to a regular value q
exists because the flows of Xfi on Fq are complete. Because this action is transitive, the
isotropy groups are all the same group and are discrete. Using the lemma ((2.2)) we see
that Fq is diffeomorphic to Tn−k ×Rk for some 1 ≤ k ≤ n. �

2 Local action angle coordinates
Here we prove the existence of local action angle coordinates.

Claim: Let (M,ω) be a symplectic manifold of dimension 2n. Suppose that ( f1, . . . , fn)
are Poisson commuting functions. Consider the integral map f : M →Rn : p �→ (

f1(p), . . . ,

� Springer Basel 2015
R.H. Cushman and L.M. Bates, Global Aspects of Classical
Integrable Systems, DOI 10.1007/978-3-0348-0918-4_9

385



386 Action angle coordinates

fn(p)
)
. Suppose that q is a regular value in the image of f and that f−1(q) has a compact

connected component Fq. Then there is a neighborhood V of Fq, an open set U of Rn, and
a diffeomorphism V →U ×Tn : p �→ ( j1, . . . jn,φ1, . . .φn), where Tn is the n-torus Rn/Zn.
The coordinates ji, called the actions, are smooth functions of the integrals fi as are the
coordinates φi, which are called the angles. In action angle coordinates the symplectic
form ω may be written as ω = ∑n

i=1 d ji ∧ dφi. For fixed j = ( j1, . . . , jn) the symplectic
form ω vanishes identically on the n-torus { j}×Tn. Because the dimension of this torus
is 1

2 dimM, it is a Lagrangian manifold.

We may reformulate the existence of action angle coordinates geometrically as follows.
The open neighborhood V has the structure of a symplectic principal bundle with struc-
ture group Tn, Lagrangian fibers, and a Hamiltonian action of the structure group with
momentum map, which is the projection map of the bundle. In addition, a section of
this bundle may be chosen to be Lagrangian so that the action angle variables form a
symplectic chart.

The proof of the claim takes several steps.
1. Show that Fq has a neighborhood V diffeomorphic to U ×Fq.
2. Show that Fq is diffeomorphic to Tn.
3. Define the group action.
4. Define the action variables and show that the action variables are a

momentum map for the group action. This shows that the group action
is Hamiltonian.

5. Construct a Lagrangian section of V .

(2.1) Proof: The steps of the proof are numbered as in the outline above.

Step 1.
Since q is a regular value of f and Fq is a compact component of f−1(q), there is an open
ball U ⊆ Rn containing q which is contained in the set of regular values of f . Because
Fq is a smooth compact submanifold of M, there is an open neighborhood V of Fq whose
closure is compact such that f (V ) ⊆ U . Therefore f̃ = f |V : V → U is a proper sub-
mersion. Applying the Ehresmann fibration and trivialization theorems, see chapter VIII
((2.1)) and ((2.2)), and shrinking U and V if necessary, it follows that f̃ is a trivial smooth
fibration, that is, τ : V → U × f̃−1(u0), where Fq = f̃−1(u0) with u0 = q ∈ U such that
τ−1

({u}× f̃−1(u0)
)
= f̃−1(u).

Step 2.
Let ψ i

t be the flow of the Hamiltonian vector field Xfi . This flow leaves the fibers of the
integral map f , and hence those of f̃ , invariant. Because f̃−1(u) is compact, the flow ψ i

t
on f̃−1(u) is complete. Since { fi, f j} = 0, the flows ψ i

t and ψ j
s commute. Thus we have

an Rn-action

Ψ : Rn × f̃−1(u)→ f̃−1(u) : (t, p) =
(
(t1, . . . , tn), p

) �→ ψ1
t1
◦ · · · ◦ψn

tn(p). (1)

Since the vector fields Xfi | f̃−1(u) are linearly independent, D1Ψ has rank n. Hence the
orbits of Ψ are open. Because f̃−1(u) is foliated by the orbits and is connected, there is
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only a single orbit, that is, Ψ is transitive. Let p̃ ∈ f̃−1(u) and let Ip̃ = {t ∈ Rn Ψ(t, p̃) =
p̃}, be the isotropy group of the action Ψ at p̃. Because f̃−1(u) is compact Ip̃ = {0}.
By transitivity, the isotropy groups at any two points in f̃−1(u) are conjugate and hence
are equal since Ψ is an abelian action. Denote this isotropy group by P f (u) and call it
the period lattice of Ψ at u. Because D1Ψ has rank n, the period lattice P f (u) is a zero
dimensional Lie subgroup of Rn and hence is discrete. We claim that P f (u) is a lattice,
that is, it is a free Z-module with n generators. To see this we prove

Lemma: Let Λ be a nonzero discrete subgroup of Rn. Then for some 1 ≤ k ≤ n there are
k linearly independent vectors λ1, . . . ,λk, called generators, such that

Λ = Zλ1 + · · ·+Zλk. (2)

(2.2) Proof: Since Λ = 0, there is a nonzero vector λ 1 ∈ Λ. Let span{λ 1} be the subspace of
Rn spanned by λ 1. Since Λ∩ span{λ 1} is a discrete group, there is a λ̂1 ∈ Λ∩ span{λ 1}
such that the open line segment {tλ̂1| t ∈ (0,1)} does not intersect Λ∩λ 1. Set λ1 = λ̂1.
Then Zλ1 = Λ∩ span{λ1}. If Λ = Zλ1, then k = 1 and we are done.

Otherwise, let λ 2 ∈ Λ \Zλ1. As before let λ̂2 be a generator of Λ∩ span{λ 2} and let
Pλ1λ̂2

= {s1λ1 + s2λ̂2 s1,s2 ∈ [0,1]} be the parallelogram spanned by λ1 and λ̂2. Suppose

that Pλ1λ̂2
∩Λ contains an infinite number of points λ̃i. Select one, say λ i0 . A finite number

of Z2-translates of Pλ1λ̂i0
cover the parallelogram Pλ1λ̂2

. Hence one of these translates

contains an infinite number of points of Λ. Since Λ is closed under Z2-translations, we
conclude that Pλ1λ̂i0

contains an infinite number of points of Pλ1λ̂2
∩Λ. Repeat the above

argument on the parallelogram Pλ1λ̂i0
. We obtain a sequence of points λ̂i ∈ Pλ1λ̂2

∩Λ
which converges. This contradicts the discreteness of Λ. Hence the parallelogram Pλ1λ̂2
contains only finitely many points of Λ. Therefore it contains a parallelogram Pλ1λ2 such
that Pλ1λ2 ∩Λ contains only the vertices {0,λ1,λ2,λ1+λ2}. Suppose that Zλ1+Zλ2 is not
equal to span{λ1,λ2}∩Λ. Then there is a λ = r1λ1+ r2λ2 ∈ Λ with ri ∈ R\Z. Hence for
some ni ∈ Z with ri −ni ∈ (0,1), the vector μ = λ −n1λ1 −n2λ2 lies in Pλ1λ2 and is not a
vertex. This contradicts the definition of Pλ1λ2 . Therefore Zλ1 +Zλ2 = span{λ1,λ2}∩Λ.
If Λ = Zλ1 +Zλ2, then k = 2 and we are done.

Otherwise repeat a similar argument as above with parallelograms replaced by parallelop-
ipeds. Eventually we obtain a linearly independent set of vectors {λ1, . . . ,λk} such that
(2) holds. �

Corollary: If Rn/Λ is compact, then k = n.

(2.3) Proof: Suppose that 1 ≤ k < n. Then there is a nonzero vector λ ∈ Rn such that λ ∈
span{λ1, . . . ,λk}. Thus for every t ∈ R \ {0} the element μt = tλ +Zλ1 + · · ·+Zλk of
Rn/Λ is a nonzero. Since Rn/Λ is compact, there is a subsequence {ti} in [1,2] such
that {μti} converges to μ ∈ Rn/Λ. Taking another subsequence we may assume that ti
converges to t ′ ∈ [1,2] and that μti converges to μ = ∑k

i=1 riλi +Zλ1 + · · · +Zλk for some
ri ∈ [0,1). Therefore λ = 1

t ′
(
μ +Zλ1 + · · · +Zλk

) ∈ span{λ1, . . . ,λk}, which contradicts
the fact that λ ∈ Λ. Conseqently k = n. �
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From the corollary it follows that the period lattice P f (u) is a lattice. Therefore f̃−1(u)
is diffeomorphic to an n-torus Rn/P f (u).

Step 3.
Because the fibration f̃ is trivial, for every p0 ∈ f̃−1(u0) there is a smooth section σ :
U → f̃−1(U) ⊆ V with σ(u0) = p0, which is a diffeomorphism onto its image. We now
show that the isotropy group varies smoothly with u. Consider the function

Θ : W ×U → U ⊆ Rn : (t,u) �→ σ−1 ◦Ψ(t,σ(u))−u,

where W is an open subset of Rn about t0 ∈ Ip0 \ {0} and U is an open subset of Rn.
Since Ψ(t0, p0) = p0, it follows from the continuity of σ and Ψ that both W and U can
be chosen so that Θ is well defined. Since σ is a diffeomorphism onto its image and D1Ψ
is surjective, D1Θ is surjective. Thus 0 is a regular value of Θ and (t0,u0) ∈ Θ−1(0).
Therefore, near (t0,u0) the set Θ−1(0) is the graph of a smooth function T0 : U → Rn. Let
t0 run through a basis {ti

0} of the period lattice P f (u0). Using the preceeding argument
for i = 1, . . . ,n, we obtain smooth functions T i : U → Rn : u �→ (T i

1(u), . . . ,T
i

n(u)) such
that {T 1(u), . . . ,T n(u)} form a basis of P f (u) which depends smoothly on u ∈ U and
{T i(u0)}= {ti

0}.

Let Yi be a smooth vector field on V whose flow is

Φi : R×V →V : (t, p) �→ Ψ
(
(tT i

1(u), . . . , tT
i

n(u)), p
)
.

Then Yi(p) = ∑n
j=1 T i

j ( f (p))Xfi(p). The flow of Yi is periodic with period one. The vector
fields {Yi} are linearly independent and [Yi,Yj] = 0 since { fi, f j} = 0. Thus the {Φi} are
n commuting flows and define an action of the n-dimensional torus group Tn = Rn/Zn on
f̃−1(U).

By restricting U if necessary, we can arrange that 0 = [ω] ∈ H2( f̃−1(U),R). To see this
we argue as follows. In a neighborhood V of f̃−1(u0) which retracts to f̃−1(u0), (this
exists by virtue of the previous statements about the local fibration) any two-cycle Σ is
homotopic to a cycle Σ′ in the fiber f̃−1(u0). We have

∫
Σ ω =

∫
Σ′ ω = 0, where the first

equality holds because ω is closed and the second because f̃−1(u0) is isotropic. This
shows that the cohomology class of ω vanishes. Thus by de Rham’s theorem there exists
a smooth 1-form ζ on V such that ω =−dζ .

Step 4.
Define ja(p) =

∫ 1
0 (ζ (Ya))◦Φ t

a(p) dt. We assert that the torus action Φ = (Φ1, . . . ,Φn) is
symplectic and has a momentum map j = ( j1, . . . , jn).

To establish the assertion, it is enough to demonstrate this for each Φa individually
because the torus group is abelian. This is established if we can show d ja(p)Z(p) =
ω(p)(Ya(p),Z(p)) for each p ∈ V and each Z(p) ∈ TpV . In other words, the vector field
Ya is the Hamiltonian vector field Xja corresponding to the action ja. Extend Z to a
vector field, also denoted by Z. We can arrange things so that Φ∗

aZ = Z. In particular,
[Ya,Z] = 0. Differentiating the definition of ja and remembering that Z is Φ-invariant
gives d ja(Z) =

∫ 1
0
(

d(ζ (Ya))Z
)
◦Φ t

a dt. In the preceding formula we have dropped the
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reference to p. However,

d(ζ (Ya))Z = LZ(ζ (Ya)) = (LZζ )Ya +ζ (LZYa). (3)

The second term in (3) vanishes since [Z,Ya] = 0. Now

(LZζ )(Ya) = d(Z ζ )Ya +(Z dζ )Ya = LYa(ζ (Z))+ω(Ya,Z).

Since ∫ 1

0
LYa(ζ (Z)) ◦Φ t

a dt =
∫ 1

0

d
dt
(ζ (Z)) ◦Φ t

a dt = 0,

we have d ja(Z) =
∫ 1

0 ω(Ya,Z) ◦Φ t
a dt. Next we show that the integrand in the preceding

formula is invariant under the flow Φa. We calculate

LYa

(
ω(Ya,Z)

)
= LYa

(
(Ya ω)(Z)

)
=

(
Ya LYa ω

)
(Z)

since [Ya,Z] = 0. Furthermore

Ya LYa ω = Ya
(
Ya dω +d(Ya ω)

)
= Ya d(Ya ω)

= Ya d
( n

∑
c=1

T c
a (Xfc ω)

)
= Ya

( n

∑
c=1

dT c
a ∧d fc

)
= 0,

because both the T c
a and fc are constant on the fibers to which Ya is tangent. Since the

integrand is invariant, we have d ja(Z) = ω(Ya,Z), which is precisely what is required to
show that we have a momentum map. Note that the momentum map has rank n because

(d j1 ∧·· ·∧d jn)(Z1, . . . ,Zn) = (ω ∧·· ·∧ω)(Y1, . . . ,Yn,Z1, . . . ,Zn),

and we can certainly choose vector fields Z1, . . . ,Zn so that the vectors Ya(p) and Za(p)
are a basis for TpV .

Step 5.
In order to choose angle variables correctly, it is useful to review first the situation so far.
The results of the previous sections show that V ⊆ M is the total space of a symplectic
principal bundle ρ whose fibers are Lagrangian n-tori Tn. The action of the structure
group Tn is Hamiltonian whose momentum map is the projection map of the bundle,
namely, ρ : V → U ⊆ Rn : p �→ j(p) = ( j1, . . . , jn). About a point j(p) in the base, we
choose a section σ : U → U ×Tn = V : j �→ (

j,σ( j)
)

of the bundle ρ , whose image
determines the origin for the angular coordiantes θ on Tn. On Tn the group operation is
addition.

We now compute the symplectic form ω in the ( j,θ) coordinates. First we calculate

the structure matrix W =

({ jk, j�} { jk,θ�}
{θk, j�} {θk,θ�}

)
of the Poisson bracket on V . We have

{ jk,θ�}=−{θ�, jk}=−LXjk
θ� =−LXθk θ�, since j is the momentum map of the Hamil-

tonian action of Tn on V . Therefore { jk,θ�}=− ∂
∂θk

θ� =−δk�. Also { jk, j�}= LXj�
jk =
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LXθ� jk = 0, since jk is an integral of Xθ� . So the structure matrix W is
(

0 −I
I −F

)
,

where F = (Fk,�) = (−{θk,θ�}). The matrix of ω is (W −1) t =

(
F −I
I 0

)
, that is, ω =

∑�,k F�,k d j�∧d jk +∑� d j�∧dθ�. Because

∂
∂θm

({θk,θ�}) = LXjm
{θk,θ�}= {LXjm

θk,θ�}+{θk,LXjm
θ�}= {δm,k,θ�}+{θk,δm,k}= 0,

the functions F�,k depend only on j1, . . . , jn. Thus the 2-form F = ∑�,k F�,k d j�∧d jk on U
is closed. Shrinking U we may apply the Poincaré lemma to obtain a 1-form A=∑� A� d j�
such that F = dA. Adjusting the section σ , by defining new angle coordinates φ�, using
the map φ� = θ�−A�, moves σ to a Lagrangian section of the bundle ρ . In the coordinates
( j1, . . . , j�,φ1, . . . ,φ�) we have

−
n

∑
�=1

dφ�∧d j� =−
n

∑
�=1

(dθ�−dA�)∧d j� =
n

∑
k,�=1

F�,k d j�∧d jk +
n

∑
�=1

d j�∧dθ� = ω.

This concludes the proof of local action angle coordinates. �

3 Exercise
1. (Period energy relation.) Consider the Hamiltonian system (P,ω,H), where all

the integral curves of the Hamiltonian vectorfield XH on P are periodic of positive
period T . In other words, P is a smooth circle bundle, where the fiber is a periodic
integral curve of XH .

a) Show that the period and the energy H are functionally related, that is, dT ∧dH =
0. Colloquially, the period is constant on a level set of the Hamiltonian. Hint:
rescale XH and show that the resulting vector field is still Hamiltonian.

b) Compute the period energy relation for the Kepler problem. Check its relation
with Kepler’s third law of motion.

2. (Action angle coordinates.) The following version of the action angle coordinate
theorem emphasizes the integral affine structure of the base. Let F : M → B be a
surjective submersion, whose fibers are compact connected Lagrangian submani-
folds of the symplectic manifold (M,ω). Show that for each b ∈ B there is an open
neighborhood V ⊆B of b and coordinates (I,ϕ) = (I1, . . . , In,ϕ1, . . . ,ϕn) on F−1(V )
such that

a) For 1 ≤ j ≤ n each I j factors through F , that is, there are smooth func-
tions x j on B such I j = x j◦F and {dx j}n

j=1 are linearly independent. Each
ϕ j takes values in T = R/Z.

b) The coordinates (I,ϕ) are symplectic, that is, ω|(F |F−1(V )) =

∑n
j=1 dI j ∧dϕ j.

c) The coordinates I are unique up to an integer affine transformation in
Rn

�Gl(n,Z).
d) Given I, the coordinates ϕ are determined by the choice of a Lagrangian

submanfold on which all the ϕ j are zero.



Chapter X

Monodromy

Since the construction of action angle variables is in general local, it is of some interest
to see whether it can be extended to a global one. We do not describe all the obstruc-
tions to having global action angle variables. In this chapter we will discuss the crudest
obstruction to the existence of global action angle coordinates called monodromy.

1 The period lattice bundle

Suppose that we are in the following situation. Let M be a symplectic manifold foliated by
connected Lagrangian n-tori which are the fibers of a surjective smooth map F : M → B.
Then F is a fiber bundle over B with total space M and fiber an n-torus. We wish to de-
termine if F is a product bundle. This we do by constructing a bundle of period lattices
associated to the bundle F . The total space of the associated bundle is P , which is the dis-
joint union

⋃· b∈BPF(b) of the period lattice PF(b) at b of the bundle F . The base of the
� bundle is B and the projection mapping is F : P → B : Pb = PF(b) �→ b. We construct

a local trivialization for F as follows.

(1.1) Proof: Let {Uα} be an open covering of B such that on F−1(Uα) local action angle
coordinates ( j1

α , . . . jn
α ,φ 1

α , . . . φ n
α) exist. In addition, assume that {Uα} is a good covering

of B in the sense of Leray, that is,
1. Uα and Uα ∩Uβ are connected and contractible.
2. Uα ∩Uβ ∩Uγ =∅.

The flows ψ jiα
t of the Hamiltonian vector fields Xjiα

on F−1(Uα) generate a Tn = Rn/Zn-
action

Ψα : Tn ×F−1(Uα)→ F−1(Uα) :
(
(t1, . . . , tn), p

) �→ ψ j1α
t1

◦ · · · ◦ψ jnα
tn (p),

which is free and proper. Therefore, F−1(Uα) is a principal Tn bundle, see chapter VII
((2.12)). Moreover, F−1(Uα) is trivial because Uα is contractible, see chapter VIII §2.
The trivialization τα : F−1(Uα)→Uα ×Tn intertwines the Tn-action Ψα with the affine
action of Tn on itself given by Tn ×Tn → Tn : (s, t) �→ s+ t. Here t = t mod1. From this
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R.H. Cushman and L.M. Bates, Global Aspects of Classical
Integrable Systems, DOI 10.1007/978-3-0348-0918-4_10

391



392 Monodromy

intertwining property we find that for fixed uα ∈Uα the tangent of τ−1
α,uα : Tn → F−1(uα) :

t �→ τ−1
α (uα , t) = p maps the lattice Zn ⊆ TtTn into the lattice in TpF−1(uα) spanned

by the vectors {Xj1α
(p), . . . ,Xjnα (p)}. This latter lattice is the period lattice PF(uα) of

F at F(p) = uα . Since PF(uα) does not depend on the choice of p ∈ F−1(uα), the
tangent of the map τ−1

α,uα does not depend on the point in Tn. Thus a local trivialization of
F |F−1(Uα) is given by

ρα :
⋃

p∈F−1(Uα )

· PF(F(p))→Uα ×Zn : p �→ (
F(p),TpταPF(F(p))

)
. �

� To complete the construction of the bundle F , we find its transition mappings. Towards
this end let

τβ ◦τ−1
α : (Uα ∩Uβ )×Tn → (Uα ∩Uβ )×Tn : (u, t) �→ (

ϕαβ (u),ταβ (u, t)
)

be the transition map for the bundle F |F−1(Uα ∩Uβ ). For u ∈Uα ∩Uβ , the partial tran-

sition mapping ταβ
u : Tn → Tn : t �→ ταβ (u, t) has a tangent map Ttτ

αβ
u which does not

depend on the point t ∈ Tn. Moreover, Tταβ
u is a linear isomorphism of Rn, which pre-

serves the lattice Zn. Since Uα ∩Uβ is connected, we may assume that this isomorphism is
orientation preserving. The collection of all such isomorphisms forms the group Sl(n,Z),
which is a discrete subgroup of Sl(n,R). Because Uα ∩Uβ is connected, it follows from

discreteness and continuity that the map Uα ∩Uβ → Sl(n,Z) : u �→ T ταβ
u is constant, say

gαβ . Consequently, the transition map for the period lattice bundle F |F−1(Uα ∩Uβ ) is

ρβ ◦ρ−1
α : (Uα ∩Uβ )×Zn → (Uα ∩Uβ )×Zn : (u,z) �→ (

ϕαβ (u),g
αβ (z)

)
. �

This completes the construction of the bundle F of period lattices associated to F .

Next we describe the monodromy representation associated to the bundle of period lat-
tices. Let γ : [0,1]→ B be a smooth closed curve in B with starting point b. Restricting
the bundle F to γ gives

F |γ : P|γ =
⋃

u∈γ([0,1])
PF(u)→ γ : PF(u) �→ u,

which is a smooth bundle of period lattices over γ . Since γ is diffeomorphic to a circle,
the isomorphism class of the bundle F |γ is determined by an automorphism g(b) of the
fiber Pb over b. This isomorphism class depends only on the homotopy class of γ in B.
Therefore we have the map π : π1(B)→ Sl(n,Z) : γ �→ g(γ(0)), which is the monodromy
representation of the fundamental group of the base B of the bundle F . If π is not the
identity, that is, if for some smooth loop γ in B the bundle F |γ is not trivial, then the
bundle of period lattices F is said to have monodromy.

The bundle of period lattices is isomorphic to the bundle H1(F−1(B),Z) over B whose
fiber at b ∈ B is the first homology group of the fiber F−1(b) of the n-torus bundle F . The
proof of this assertion is left as an exercise.

We now prove
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Claim: The n-torus bundle F : M → B is not trivial if the associated period lattice bundle
F : P → B has monodromy.

(1.2) Proof: Suppose that the bundle F is trivial. Then over every smooth closed loop γ in B,
the bundle F |γ is trivial. Hence the classifying map χ : F−1(γ(0))→ F−1(γ(0)) of F |γ is
homotopic to the identity map. Thus χ induces the map

χ∗ : H1(F−1(γ(0)),Z)→ H1(F−1(γ(0)),Z),

which is the identity. Therefore the monodromy representation of the period lattice bundle
F : P → B associated to the n-torus bundle F : M → B is the identity. In other words,
the bundle F has no monodromy. Taking the contrapositive proves the claim. �

2 The geometric monodromy theorem
In this section we give a geometric conditions so that the integral mapping of a Liouville
integrable system with a focus-focus equilibrium point has monodromy.

The origin 0 of R4 is a focus-focus equilibrium point of the Liouville integrable system
(h1,h2,R4,ω = dx∧dpx +dy∧dpy) if and only if

1. The vector fields Xh1 and Xh2 vanish at 0, that is, 0 is an equilibrium point of
Xh1 and Xh2 .

2. The space spanned by the linearized Hamiltonian vector fields DXh1(0) and
DXh2(0) is conjugate by a real linear symplectic mapping of (R4,ω) into
itself to the Cartan subalgebra of sp(4,R) spanned by Xq1 and Xq2 , where
q1 = xpx + ypy and q2 = xpy − ypx.

From point 2 we may assume that hi = qi + ri for i = 1,2, where ri is a smooth function
on R4, which is flat to 2nd order at 0, that is, ri ∈ O(2).

The remainder of this section is devoted to proving

Theorem (Geometric monodromy). Let (h1,h2,R4,ω) be a Liouville integrable system
with a focus-focus equilibrium point at 0 ∈ R4. Consider the integral map

F : R4 → R2 : z �→ (
h1(z),h2(z)

)
= (c1,c2). (1)

Note that h1(0) = h2(0) = 0. Suppose that F has the following properties.

1. There is an open neighborhood U of the origin in R2 such that 0 is the only
critical value of the integral map F in U .

2. For every c ∈U \{0} the fiber F−1(c) is compact and connected, and hence
is diffeomorphic to a smooth 2-torus T 2

c .
3. The singular fiber F−1(0) is compact and connected. Moreover, for every

z ∈ F−1(0)\{0} the rank of DF(z) is 2.

Then the smooth 2-torus bundle ρ = F |F−1(Γ) : F−1(Γ)→ Γ over the smooth circle Γ in
U \{0} is nontrivial. For c0 ∈ Γ, using a suitable basis of H1(F−1(c0),Z), the classifying

map of the bundle ρ is
(

1 −1
0 1

)
. Here the 2-torus F−1(c0) is identified with R2/Z2.
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2.1 The singular fiber
In this subsection we show that the singular fiber of the integral mapping F (1) is homeo-
morphic to a once pinched 2-torus.

Let ϕh1
t and ϕh2

s be the flows of the vector fields Xh1 and Xh2 , respectively. The hyper-
bolicity of Xh1 at 0 implies that there is an open ball B in R4 centered at 0 having
radius r such that the local stable W B

s (0) and unstable W B
u (0) manifolds of 0 in B are

smooth connected manifolds, whose tangent space at 0 is the ∓1 eigenspace of the
linear mapping Xq1 , respectively. The global stable (unstable) manifold Ws,u(0) of 0 is⋃

∓t≥0ϕh1
t (W B

s,u(0)). When z∈Ws,u(0) as t →±∞ we have F(z) =F(ϕh1
t (z))→F(0) = 0.

� Thus Ws,u(0)⊆ F−1(0). The following reasoning shows that F−1(0) =Ws(0) =Wu(0).

(2.1) Proof: Since F−1(0) is a compact subset of R4, which is locally invariant under the flow
ϕh1

t , it is globally invariant. Thus ϕh1
t |F−1(0) is defined for every t ∈ R. Because of

hypothesis 3, the set F−1(0)× = F−1(0)\{0} is a smooth 2-dimensional submanifold of
R4. So ϕh1

t (W B
s,u(0)) \ {0}) is an open subset of F−1(0)×. Thus Ws,u(0)× = Ws,u(0) \

{0}=⋃
∓t≥0ϕh1

t (W B
s,u(0)\{0}). The compact set F−1(0) is invariant under the flow ϕh2

s .
Because {h1,h2}= 0, the flows ϕh1

t and ϕh2
s commute, that is, ϕh1

t ◦ϕh2
s = ϕh2

s ◦ϕh1
t . Thus

F−1(0) is invariant under the R2-action

Ξ : R2 ×R4 → R4 :
(
(t,s),z

) �→ ϕh1
t ◦ϕh2

s (z). (2)

So the R2-action Ξ(t,s)|F−1(0) on F−1(0) is defined. Because 0∈R2 is an isolated critical
value of F by hypothesis 1, it follows that 0 ∈ R4 is an isolated equilibrium point of Xh1
and Xh2 . Thus 0 is an isolated fixed point of the R2-action Ξ(t,s)|F−1(0). Moreover, if
z ∈ Ws,u(0), then ϕh1

t (ϕh2
s (z)) = ϕh2

s (ϕh1
t (z)) → ϕh2

s (0) = 0 where t → ±∞. So Ws,u(0)
is invariant under the flow ϕh2

s . Because 0 is a fixed point of the R2-action Ξ(t,s)|F−1(0),
it follows that Ws,u(0)× = Ws,u(0) \ {0} is invariant under both flows ϕh1

t and ϕh2
s . By

hypothesis 2 the vector fields Xh1 and Xh2 are linearly independent at each point of F−1(0)×.
Consequently, each orbit O of the R2-action Ξ(t,s)|F−1(0) is open. Because the comple-
ment of O in F−1(0)× is the union of other R2 orbits of Ξ(t,s)|F−1(0), it is also open.
Thus O is a connected component of F−1(0)×. A similar argument shows that Ws,u(0)×
is an R2-orbit in F−1(0)×. The orbit O is open and closed in F−1(0)×, which implies
that it is open in F−1(0) = F−1(0)× ∪{0}. If 0 is not in the closure of O in R4, then O
is closed in F−1(0). Hence O = F−1(0), because F−1(0) is connected. But 0 ∈ F−1(0),
which is a contradiction. Thus O ∪{0} is a closed subset of R4.

So 0 is the unique limit point in R4 \O of the R2-orbit O . Thus for any O in F−1(0)×,
we know that the closure of O in R4 is O ∪ {0}. In particular, this holds when O =
Ws,u(0). If O is an orbit of the R2-action Ξ(t,s)|F−1(0) and z ∈ O , then the mapping
(s, t) �→ ϕh2

s (ϕh1
t (z)) induces a diffeomorphism of R2/Γz onto O , where Γz = {(s, t) ∈

R2 ϕh2
s (ϕh1

t (z)) = z} is the isotropy group of z. Γz is an additive subgroup of R2, which
does not depend on z. Therefore we will write ΓO instead of Γz. Suppose that O is an
R2-orbit of the action Ξ(t,s)|F−1(0) in F−1(0)× and that ΓO ∩ (R×{0}) = ∅. Then the
flow ϕh1

t of Xh1 would be periodic with period tc > 0. Because periodic integral curves
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of Xh1 , which lie in O and start near 0 leave a fixed neighborhood of 0, have an arbitarily
large period, we deduce that a periodic solution of Xh1 , which starts near 0, must stay
close to 0. Because Xh1 is hyperbolic at 0 it does not have any periodic solutions which
remain close to 0 other than 0. This is a contradiction. So ΓO ∩ (R×{0}) =∅.

Combined with the fact that 0 is the only limit point in R4 \O of O and that O is con-
tained in the compact subset F−1(0) of R4, it follows that for every z ∈ O we have
ϕh1

t (z)→ 0 as t →±∞. In other words, z∈Ws,u(0). Because Ws,u(0)× are R2-orbits of the
action Ξ(t,s)|F−1(0) in F−1(0)×, we find that for every R2-orbit O we have O =Ws(0)× =

Wu(0)×. Consequently, F−1(0)×=Ws(0)×=Wu(0)×, which shows that Ws(0)=Wu(0)=
F−1(0). �
We now prove

Claim In a suitable open neighborhood of 0 in
(
R4,ω = −dα = −d(px dx+ py dy)

)
there is a Hamiltonian vector field XI , associated to the Hamiltonian function I = h2 +
O(2), which has a periodic flow χu. The Hamiltonian I Poisson commutes with the
Hamiltonians h1 and h2.

The proof of the claim procedes with in several steps. First we construct the function I.

By the focus-focus Morse lemma, see the exercise 7, there is a near identity local diffeo-
morphism Φ : (R4,0) �→ (R4,0) : w �→ z = Φ(w) with Φ = id+O(1)2 such that Φ∗qi = hi
for i= 1,2 with q1 = xpx+ypy and q2 = xpy−ypx. Let Y2 be the vector field Φ∗Xq2 . Then
the flow of Y2 is ψs =Φ−1◦ϕq2

s ◦Φ. Hence the integral curve Γw of Y2 starting at w∈B\{0}
is periodic of period 2π . This follows because Γw(s) = ψs(w) = Φ−1

(
ϕq2

s (Φ(w))
)
=

Φ−1(γz(s)), where γz is an integral curve of Xq2 = −y ∂
∂x + x ∂

∂y − py
∂

∂ px
+ px

∂
∂ py

starting
at z = 0, which is periodic of period 2π . Since

LY2 hi = LΦ∗Xq2
hi = Φ∗(LXq2

(Φ−1)∗hi
)
= Φ∗(LXq2

qi) = 0,

the flow ψs of Y2 preserves the level sets of the integral map F (1).

Let

I : (R4,0)→ R : w �→ I(w) =
{ 1

2π
∫

Γw
α, when w = 0
0, when w = 0.

(3)

� Then I = Φ∗K, where

K(z) =
{ 1

2π
∫

γz
(Φ−1)∗α, when z = 0

0, when z = 0.
(4)

(2.2) Proof: The conclusion is obvious when w= 0. Therefore suppose that w = 0. We compute

I(w) =
1

2π

∫
Γw

α =
1

2π

∫ 2π

0
〈α dψt

dt
〉(Γw(t)) dt =

1
2π

∫ 2π

0
〈α(ψt(w)) Y2(ψt(w))〉 dt

=
1

2π

∫ 2π

0
〈α(

Φ−1(ϕq2
t (z))

)
T ΦXq2(ϕ

q2
t (z))〉 dt, since Y2 = Φ∗Xq2

=
1

2π

∫ 2π

0
〈(Φ−1)∗α Xq2〉(ϕq2

t (z))〉 dt =
1

2π

∫ 2π

0
〈(Φ−1)∗α

dϕq2
t

dt
)〉(z) dt
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=
1

2π

∫
γz

(Φ−1)∗α = K(z) = K(Φ(w)). �

� Next we show that I : (R4,0)→ R is smooth near 0.

(2.3) Proof: Let z1 = x+ iy and z2 = px + ipy. Then q2 = Imz1z2 and the flow ϕq2
t of Xq2 is(

t,(z1,z2)
) �→ (eit z1,eit z2). Let D = {ζ ∈ C |ζ | ≤ 1} be the closed unit disk in C with

boundary ∂D = {ζ ∈ C |ζ |= 1}= S1 the unit circle in C. Define the map j : D×C2 →
C2 :

(
ζ ,(z1,z2)

) �→ (ζ z1,ζ z2) with jz : D → C2 : ζ �→ (ζ z1,ζ z2). Using Stokes’ theorem
we have K(z) =

∫
∂D j∗z (Φ−1)∗α =

∫
D j∗z (Φ−1(ω)). Since D is compact and ω , jz are

smooth, it follows that K is smooth near 0. Thus I = Φ∗K is smooth near 0. �

The next few results show that the function I (3) is an action for the integrable system(
h1,h2,R4,ω

)
.

� The function I Poisson commutes with hi for i = 1,2 on F−1(c), where c is a regular value
of the integral map F (1). Note that F−1(c) is a smooth 2-torus T 2

c .

(2.4) Proof: We compute.

{I,hi}= LXhi
I =

∫
Γw

LXhi
α, because we can move Γw by a homotopy in F−1(c)

without changing the integral. The new integral does
not depend on w. So we can take the Lie derivative
under the integral sign

=
∫

Γw

Xhi dα +d(Xhi α)

=
∫

Γw

d(−hi +Xhi α) = 0, since Γw is a closed curve. �

� For all values of c close to but equal to 0 and for all w ∈ T 2
c , the tangent vectors XI(w) and

Xh1(w) to T 2
c at w are linearly independent.

(2.5) Proof: Since Φ = id+O(1)2, we get Φ−1 = id+O(1)2. So (Φ−1)∗α = α +O(1), which
gives

K(z) =
1

2π

∫
γz

(Φ−1)∗α =
( 1

2π

∫
γz

α
)
+O(2) = q2 +O(2). (5)

Therefore
I = Φ∗K = Φ∗q2 +O(2) = h2 +O(2). (6)

Since the vector fields Xh1 and Xh2 are linearly independent near, but not at the origin, so
are the vector fields XI and Xh1 . In particular, the latter vector fields are linearly indepen-
dent on the 2-torus Tc, when c is a regular value of F close to but not equal to 0. �

� For all c close to but not equal to 0, the flow χu of XI on T 2
c is periodic of period TI .

(2.6) Proof: Since {I,hi} = 0 on T 2
c , we get [Xh1 ,XI ] = −X{h1,I} = 0 on T 2

c . Therefore the
flows χu|T 2

c and ϕh1
t |T 2

c commute and are well defined for all (u, t) ∈ R2, because T 2
c is

compact. Thus we have an R2-action

Λ : R2 ×T 2
c → T 2

c :
(
(u, t), p

) �→ χu◦ϕh1
t (p),
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which is transitive since XI(p) and Xh1(p) span Tp(T 2
c ) and T 2

c is connected. Thus the
isotropy group Γp = {(TI ,Th1) ∈ R2 Λ(TI ,Th1 )

(p) = p} is a rank 2 lattice, which does

not depend on the point p. Consequently, the flow χu of XI on T 2
c is periodic of period

TI = TI(c), which is a smooth function of c. �

(2.7) Proof of claim: We are now in position to prove the claim. From equation (6) it follows
that TI = Th2 +O(1) = 2π +O(1). Therefore on a bounded open neighborhood of 0 in
R4 the period TI function of XI is bounded. Hence the limit of a periodic orbit of XI on
T 2

c as c → 0 is periodic. This completes the proof of the claim. �.

We return to describing the singular fiber F−1(0) of the integral map F (1). We prove

Claim: F−1(0) is homeomorphic to a pinched 2-torus, that is, a smooth 2-torus T 2 =
S1 × S1 with one of its generating circles pinched to a point. In other words, F−1(0) is
homomorphic to the one point {0} compactification a cylinder S1 ×R. The singular fiber
at 0 has two transverse tangent planes.

(2.8) Proof: Since the action I Poisson commutes with the integrals hi for i = 1,2, the flow χu
of XI leaves the fiber F−1(0)∩V invariant. Here V ⊆ B is an open neighborhood of 0,
which is invariant under the S1 = R/TIZ-action generated by χu. Note that Ws(0)∩V is
invariant under the flow χu.

We now extend the S1-action χu|(Ws(0)∩V ) to all of Ws(0). Let p ∈Ws(0). Then there is
an open neighborhood Vp of 0 in R4 and a time tp > 0 such that ϕh1

tp (Vp) ⊆ V . For every

p̃ ∈ Vp let χ̂u(p̃) = ϕh1−tp
◦χu◦ϕh1

tp (p̃). Then χ̂u defines an S1-action on an open neighbor-
hood V =

⋃
p∈F−1(0)Vp of F−1(0). To see that the mapping χ̂u of V into itself is well

defined, suppose that q ∈Vp ∩Vp′ , where p′ ∈ F−1(0)\{p}. Then there is a t ′p′ > 0 such

that ϕh1
t ′
p′
(Vp′) ⊆ V . Now ϕh1

u′ (Vp′ ∩Vp) ⊆ ϕh1
u (Vp′ ∩Vp), when u′ > u > 0, since the flow

ϕh1
t |Ws(0) is contracting when t > 0. So we may suppose that t ′p′ > tp. Thus

ϕh1
−t ′

p′
◦χu◦ϕh1

t ′
p′
(q) = ϕh1−tp

◦
(
ϕh1

tp−t ′
p′
◦χu◦ϕh1

t ′
p′−tp

)
◦ϕh1

tp (q) = ϕh1−tp
◦χu◦ϕh1

tp (q) = χ̂u(q),

where the second to last equality follows because the flows χu and ϕh1
t commute on V .

To simplify our notation we drop the hat on the S1-action χ̂u on V . Therefore we have an
R2-action on V defined by

Ξ̃ : R2 ×V → V :
(
(u, t),z

) �→ χu◦ϕh1
t (z). (7)

Note that F−1(0) is invariant under the action Ξ̃ and that 0 is the only fixed point of the
flow χu on F−1(0). So we have an R2-action Ξ̃(u,t)|F−1(0)×. Let ΓO be the isotropy group
for the R2-orbit O = F−1(0)×. Because F−1(0)×, which is diffeomorphic to R2/ΓO , is
not compact, the rank of the lattice ΓO can not be equal to 2. But ΓO = ∅. So ΓO is
isomorphic to Z. Since the flow χu|(V \ {0}) is periodic of period TI , it follows that
ΓO = TIZ. Consequently, F−1(0)× is diffeomorphic to the cylinder R2/ΓO = (R/TIZ)×
R = S1 ×R. Because F−1(0) = F−1(0)× ∪ {0} and {0} is the only limit point of the
closure of F−1(0)× = O in R4, it follows that F−1(0) is homeomorphic to the one point
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compactification of the cylinder S1 ×R. In other words, F−1(0) is homeomorphic to
a smooth 2-torus S1 × S1 with a generating circle pinched to a point. Since the stable
and unstable manifolds of the linear vector field DXh1(0) at 0 are the coordinate 2-planes
{0}×R2 and R2 ×{0}, respectively, in R4, the limits of the tangent planes to F−1(0)×
at 0 exist and are transverse. Thus F−1(0) is a smooth 2-sphere S2, which is immersed in
R4 with a normal crossing at 0. �

2.2 Nearby regular fibers
In this subsection we study the fibers of the integral map F (1) which are close to the
singular fiber F−1(0). The main goal is to prove

Claim: There is an open neighborhood W of F−1(0) which is invariant under the flows
ϕh1

t and χu and an open neighborhood U of 0 in R2 such that the mapping

F |(W \F−1(0)) : W \F−1(0)→U \{0} : p �→ (
h1(p),h2(p)

)
(8)

is a smooth locally trivial fibration. For c ∈ U \ {0} the fiber F−1(c)∩W is a smooth
2-torus that is an orbit of the R2-action Ξ̃ (7).

(2.9) Proof: Let B be an open ball in R4 centered at 0, which is chosen small enough so that
its boundary ∂B intersects F−1(0) in two circles W B

s,u(0)∩ ∂B. We can also arrange that
all the orbits of R2-action Ξ̃ (7) are 2-dimensional and all of its orbits near 0 intersect
∂B in two circles which are close to the circles W B

s,u(0)∩ ∂B. The set F−1(0) \B is a
compact smooth manifold with boundary Ws,u(0)∩∂B. Thus F−1(0)\B is diffeomorphic
to a compact cylinder S1 × [0,1]. Using a suitable 2-dimensional fibration transverse to
F−1(0)\B and the facts that the rank of DF(z) is 2 for every z ∈ F−1(0)\B and that the
tangent vectors Xh1(z) and XI(z) are linearly independent, we find that there is an open
neighborhood N ⊆ V of F−1(0)\B in R4 \B, an open neighborhood U of 0 in R2, and
a diffeomorphism ν : N → (

F−1(0)\B
)×U such that

a) F |N = π2◦ν , where π2 :
(
F−1(0)\B

)×U →U is the projection map on the
2nd factor.

b) For every z ∈ N the vectors Xh1(z) and XI(z) are tangent to (F |N )−1(c),
where F(z) = c and c ∈U , and are linearly independent.

c) The fibers of F |N intersect ∂B in two circles, which are close to the circles
(F−1(0)\B)∩∂B.

Consider the local R2-action Ξ̃(u,t)|B. Its orbits through N ∩B intersect ∂B in two circles,
which coincide with the intersection of the fibers of F |N and ∂B, because F is constant
on R2-orbits. Let W be the union of R2-orbits in B, which intersect N ∩ ∂B, N , and
{0}. The union of R2-orbits through N ∩ ∂B is an open subset of B, which contains a
small open neighborhood of 0 in R4. This follows because by hyperbolicity the integral
curves of Xh1 at distance δ from 0 enter and leave B at points on ∂B, which are at a
distance O(δ ) from ∂B∩Ws,u(0). Thus W is an open neighborhood of F−1(0) in R4

such that F−1(c)∩W is equal to the union of F−1(c)∩N and the R2-orbit in B through
F−1(c)∩ ∂B for every c ∈ U \ {0}. Hence the smooth mapping F |W : W → U \ {0} is
proper and surjective with connected fibers. The invariance of F under the local R2-action
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Ξ̃|B together with the fact that for every z ∈ N ∩ ∂B the rank of DF(z) is 2, implies
that for each point z on an R2-orbit, which intersects N ∩ ∂B, the rank of DF(z) is 2.
Therefore the map F |(W \F−1(0)) is a surjective submersion onto U \{0}. Consequently,
the fibration given by (8) is a locally trivial fibration with compact connected fibers.

We now show that each fiber of the fibration (8) is a smooth 2-torus. Let c∈U \{0}. Since
the flows ϕh1

t and χ I
u leave the fibers F−1(c)∩W invariant and their flows are complete,

they define an R2-action

Ξ̂ : R2 × (
W \F−1(0)

)→W \F−1(0) :
(
(u, t),z)→ χu◦ϕh1

t (z) (9)

on W \ F−1(0). Because the vector fields Xh1 and Y , whose flow is χu, are linearly
independent on W \ (F−1(0)∩W ), the R2-orbit O is an open subset of a fiber F−1(c)∩W
of the fibration (8). Since F−1(c)∩W is connected, we get O = F−1(c)∩W . Now O
is diffeomorphic to R2/ΓO and O = F−1(c)∩W is compact. Therefore Γc = ΓO is a
2-dimensional lattice in R2. Consequently, O = F−1(c)∩W is a smooth 2-dimensional
torus T 2

c . �

Let Σξ be the image of a smooth local section σ : U \{0} →W \F−1(0) of the fibration
(8) at ξ ∈ F−1(0)×, which is invariant under the flow of XI . Because TI is a primitive
period of the integral curve u �→ χu(ξ ) of XI , it is a primitive period for every integral
curve u �→ χu(ξ ′) of XI , where ξ ′ ∈ Σξ ∩F−1(U \{0}) and U is a sufficiently small open
neighborhood of 0 in R2. Thus for every c ∈U \{0}, we have (TI ,0) ∈ Γc.

Let ξ1 ∈ W B
s (0) and ξ2 ∈ W B

u (0). Let Σξi ⊆ B be the image of a smooth section of the
smooth fibration (8) at ξi, which is invariant under the action χu. For c ∈ U \ {0} it
follows that F−1(c)∩W ∩ Σξi is diffeomorphic to a circle Ci(c), which is an orbit of
the action χu. For each z(c) ∈ C2(c) there is a smallest positive time t1(c) such that
the integral curve t �→ ϕh1

t1(c)

(
z(c)

)
of Xh1 starting at z(c) lies in C1(c). In other words,

� y(c) = ϕh1
t1(c)

(
z(c)

) ∈ C1(c). As z(c) traces out C2(c) once, y(c) traces out C1(c) once.

(2.10) Proof: Since the circles Ci(c) bound a subset of F−1(c), which is diffeomorphic to a
closed cylinder S1 × [0,1] =

⋃· z(c)∈C2(c){ϕh1
t
(
z(c)

) ∈ F−1(c) t ∈ [0, t1(c)]}, the result
follows by construction. �

2.3 Monodromy
In this subsection we show that the torus bundle of (8) has mondromy.

For c ∈ U \ {0} let z(c) ∈ C2(c) = F−1(c)∩W ∩Σξ2
. Then γ1(c) : S1 → F−1(c) : u �→

χu
(
z(c)

)
is a circle, which represents the first member δ1(c) of an ordered basis of H1 =

H1
(
F−1(c),Z

)
. The mapping U \{0}→ ⋃· c∈U\{0}H1(F−1(c),Z) : c �→ δ1(c) is a smooth

function. When c encircles {0} in U \ {0} we return to the same element of H1. Thus
δ1(c) is an eigenvector of the monodromy mapping M : H1 → H1 corresponding to the
eigenvalue 1

Look at the R2-action Ξ̂ (9) on W \F−1(0). Consider the map which assigns to each
(u, t) in the isotropy group Γc the homology class of the curve γ : [0,1]→ F−1(c) : s �→
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χsu◦ϕh1
st (z), where z ∈ F−1(c)∩W . This mapping induces an isomorphism taking Γc

to H1(F−1(c),Z). We know that (TI ,0) ∈ Γc corresponds to δ1(c). To find the second
member δ2(c) of the ordered basis of H1(F−1(c), Z) observe that the projection map
(u, t) �→ t sends Γc onto a subset of Γc of the form {0}× tc Z, where tc > 0 is a unique
real number. An element (−u, tc) ∈ Γc corresponds to the homology class δ2(c). In
terms of integral curves of XI |(F−1(c)∩B) and Xh1 |F−1(c) this means the following. Let
C1(c)⊂ F−1(c)∩B be an S1 orbit of the flow χu of XI |(F−1(c)∩B) through z̃(c). Since
the vector field Xh1 |F−1(c) is transverse to C1(c), there is a smallest positive time t(c)
such that w̃(c) = ϕh1

t(c)

(
z̃(c)

) ∈ C1(c). Moreover, there is a u(c) ∈ S1 = R/TIZ such that

χ−u(c)
(
ϕh1

t(c)(z̃(c))
)
= z̃(c). So

(−u(c), t(c)
) ∈ Γc, which corresponds to δ2(c).

We now investigate how δ2(c) varies as a function of c ∈ U \ {0}. Let t2(c) be the first
positive time such that ϕh1

t2(c)
(y(c)) = w(c) ∈ C2(c), where y(c) = ϕh1

t1(c)

(
z(c)

) ∈ C1(c)
and z(c) ∈ C2(c). Then t(c) = t1(c)+ t2(c). As z(c) winds around the circle C2(c) once,
using ((2.10)) it follows that y(c) winds around the circle C1(c) once. Because ϕh1

t2(c)
is a

continuous surjective mapping of C1(c) to C2(c), it follows that the winding number of
the mapping

μ : U \{0}→ C2(c) : c �→ w(c) = ϕh1
t2(c)

(y(c)) (10)

is an integer k. Therefore after c encircles 0 once in U , the resulting homology class
M δ2(c)+kδ1(c) becomes δ2(c) Consequently, the monodromy operator M : H1 → H1
sends δ1(c) to δ1(c) and δ2(c) to δ2(c)− kδ1(c). In other words, with respect to the

ordered basis {δ1(c),δ2(c)} of H1
(
F−1(c),Z

)
the matrix of M is

(
1 −k
0 1

)
. We have

� shown that the monodromy integer k is determined by the local behavior of the integral
curves of the vector fields Xh1 and XI in the open ball B centered at 0 in R4.

To compute the integer k we use the inverse of the local diffeomorphism Φ of (R4,ω =
−dα) into itself, given by the focus-focus Morse lemma to reduce the calculation to the
focus-focus case near the origin. Let B′ = {z = (x,y, px, py)∈ R4 x2+y2+ p2

x + p2
y < r2}

be an open ball in R4 centered at the origin such that Ṽ = Φ−1(B′) is an open subset of
R4 containing 0 such that B ⊆ Ṽ . Let α ′ = (Φ−1)∗α and set ω ′ = −dα ′ = (Φ−1)∗ω .
Since Φ = id+O(1)2, it follows that ω ′ is nondegenerate and hence is a symplectic form
on B′. Thus the map Φ : (Ṽ ,ω|Ṽ )→ (B′,ω ′|B′) is a symplectic diffeomorphism, that is,
Φ∗(ω ′|B′) = ω|Ṽ . Pull back the Hamiltonian vector fields Xh1 and XI on (Ṽ ,ω|Ṽ ) by Φ−1

to Hamiltonian vector fields

(Φ−1)∗Xh1 = X ′
(Φ−1)∗h1

= X ′
q1

and (Φ−1)∗XI = X ′
(Φ−1)∗I = X ′

K ,

see (4). The local flows (ϕ ′)q1
t of X ′

q1
and (χ ′)K

u of X ′
K in B′ preserve the level sets

Q−1(c)∩B′, where Q(z) =
(
q1(z),q2(z)

)
, since for i = 1,2 we have

LX ′
q1

qi = L(Φ−1)∗Xh1
(Φ−1)∗hi = (Φ−1)∗(LXh1

hi) = 0, because {h1,hi}= 0

and

LX ′
K

qi = L(Φ−1)∗XI
(Φ−1)∗hi = (Φ−1)∗(LXI hi) = 0, because {I,hi}= 0.
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Note that Q−1(c)∩B′ = Φ−1
(
F−1(c)∩ Ṽ

)
. Moreover, the local flow (χ ′)K

u is periodic
of period TI . Let δ̃1(c) = (Φ−1)∗δ1(c) and observe that the homology class k δ̃1(c) in
H1(Q−1(c),Z) is represented by the closed curve

μ ′ : U \{0}→ Φ−1(C2(c)
)

: c �→ Φ−1◦μ(c), (11)

which has winding number k.

Let δ ∈ [0,1]. Consider the homotopy αδ = α +(1−δ )
(
α ′ −α

)
of 1-forms on B′, where

α ′ = (Φ−1)∗α . Then α0 = α ′ and α1 = α . Consequently, we obtain the homotopy
ωδ = ω +(1−δ )

(
(Φ−1)∗ω −ω

)
of 2-forms such that ω0 = (Φ−1)∗ω = ω ′ and ω1 = ω .

Now Φ = id+O(1)2 implies Φ−1(α) = α +O(1). So αδ = α +O(1) and thus ωδ =
ω +O(1). Thus ωδ is nondegenerate on B′. For z ∈ B′ let

Kδ (z) =
{ 1

2π
∫

γδ
z

αδ , if z = 0
0, if z = 0.

Then K0 = K (4) and K1 = 1
2π

∫
γz

α = q2. Moreover Kδ = 1
2π

∫
γz

(
α +O(1)

)
= q2+O(2)

on B′. Let Xδ
f be the Hamiltonian vector field on (R4,ωδ ) associated to the smooth

function f on R4. For i = 1,2 we have

LXδ
qi

Kδ = 1
2π

∫
γz

LXδ
qi

αδ = 1
2π

∫
γz

[
Xδ

qi
dαδ +d(Xδ

qi
αδ )

]
= 1

2π
∫

γz
d
(−qi +Xδ

qi
αδ )= 0,

since γz is a closed curve in B′. Thus {Kδ ,qi}δ = 0. This implies that the integral curves
of the vector fields Xδ

Kδ and Xδ
q1

, which start on Q−1(c)∩B′, lie on Q−1(c)∩B′ for all time
since Q−1(c)∩B′ is compact, being diffeomorphic to the smooth 2-torus Φ−1(F−1(c))
in Φ−1(B′). From Xδ

qi
= Xqi +O(1) in B′ it follows that Xδ

q1
(p) and Xδ

Kδ (p) are linearly

independent at every p ∈ Q−1(c)∩B′. Thus the flows (ϕδ )q1
t and (χδ )Kδ

u of the vector
fields Xδ

q1
and Xδ

Kδ on Q−1(c)∩B′, respectively, define an R2-action

R2 ×Q−1(c)∩B′ → Q−1(c)∩B′ :
(
(t,u), p

) �→ (ϕδ )t◦(χδ )Kδ
u (p),

whose isotropy group does not depend on p and is a rank 2 lattice, because Q−1(c)∩B′

is compact. Thus the flow (χδ )Kδ
u of the vector field Xδ

Kδ on Q−1(c)∩ B′ is periodic
for all c ∈ U \ {0} of period T δ

Kδ = T δ
Kδ (c), which is a smooth function of c. Note that

T 0
K0(c) = TK(c) = TI(c).

Observe that the circle C2(c) = (Φ−1)∗C2(c) in Q−1(c)∩B′, which is a periodic orbit of
X0

K0 = X ′
K on (B′,ω0|B′ = ω ′|B′) of period TK = TI , deforms during the homotopy to a

circle Cδ
2 (c), which is a periodic orbit of Xδ

Kδ on Q−1(c)∩B′. Since the local flow (ϕδ )q1
t

of Xδ
q1

on (B′,ωδ |B′) is defined, we can follow the definition of the mapping μ ′ (11) to
define the deformed mapping μδ : U \{0} →Cδ

2 (c). In more detail, let yδ (c) ∈C1(c) =
Φ−1(C1(c)) such that yδ (c) = Φ−1(y(c)), where y(c) ∈ C1(c). Define tδ

2 (c) to be the first
positive time so that (ϕδ )q1

tδ
2 (c)

(yδ (c)) ∈C2(c). Then

μδ : U \{0}→C2(c) : c �→ (ϕδ )q1
tδ
2 (c)

(yδ (c)) = Φ−1((ϕδ )h1
tδ
2 (c)

(y(c))
)
.
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Note that μ0 = μ ′ and that the winding number of μδ is k for every δ ∈ [0,1], since the
mapping μδ is obtained from the mapping μ ′ by a homotopy. At δ = 1 we are looking
at the focus-focus model (q1,q2,R4,ω) near the origin. In the following paragraph we
calculate the winding number of μ1.

In complex coordinates z = (z1,z2) on C2 = R4, where z1 = x+ i y and z2 = px + i py we
have q1(z) = Rez1z2 and q2(z) = Imz1z2. Let Q = q1 + iq2 = z1z2 and c = c1 + i c2. The
flow of Xq1 is ϕq1

t (z) = (et z1,e−t z2) and the flow of Xq2 is ϕq2
s (z) = (eisz1,eisz2). Choose

a fixed 0 < ε < r, where r is the radius of the ball B′ = {(z1,z2) ∈ C2 |z1|2 + |z2|2 < r2}
centered at 0 ∈ R4. Note that the local stable manifold W B′

s (0) at 0 of Xq1 is {0}×C;
while local unstable manifold W B′

u (0) at 0 of Xq1 is C×{0}. Let

C1(c) = {(z1,z2) ∈ C2 z1z2 = c & |z1|= ε}= {(z1,ε−2cz1) ∈ C2 |z1|= ε}.

Then C1(c) is a circle in Q−1(c)∩ ({|z1| = ε}×C)∩B′, being the image of the integral
curve of Xq2 which starts at y0(c) = (ε,ε−1c). Similarly, let

C2(c) = {(z1,z2) ∈ C2 z1z2 = c & |z2|= ε}= {(ε−2cz2,z2) ∈ C2 |z2|= ε}.

Then C2(c) is a circle in Q−1(c)∩ ({C×|z2| = ε})∩B′, being the image of the integral
curve of Xq2 which starts at (ε−1c,ε). Let y(c) =

(
y1(c),y2(c)

) ∈ C1(c). Consider the
integral curve γ : R → Q−1(c)∩B′ : t �→ ϕq1

t
(
y(c)

)
=

(
e t y1(c),e−t y2(c)

)
of Xq1 . Now

ϕq1
t
(
y(c)

) ∈ C2(c) if and only it |e−t y2(c)| = ε . So the first time that the integral curve
γ intersects C2(c) is t2(c) = ln 1

ε |y2(c)|. In particular, when y(c) = y0(c) = (ε,ε−1c) ∈
C1(c), we obtain t0

2 (c) = lnε−2|c|. So w0(c) = ϕq1
t0
2 (c)

(y0(c)) =
(
e t0

2 (c)ε,e−t0
2 (c)ε−1c

)
=

(ε−1|c|,ε c
|c| ). Since C1(c) is an orbit of Xq2 , any point y(c) ∈ C1(c) may be written as

eiscy0(c) for some sc ∈ [0,2π). Therefore we find that

μ1 : U \{0}→C2(c) : c �→ w(c) = ϕq1
t2(c)

(y(c)) = ϕq1
t2(c)

(eiscy0(c))

=
(
eisce t2(c)ε,eisce−t2(c)ε−1c

)
= (eiscε−1|c|,eisc ε c

|c| ),

since t2(c) = ln |ε−1eiscε−1c|= t0
2 (c). Because sc ∈ [0,2π), the mapping μ1 has winding

number 1, that is, the integer k is 1.

This completes the proof of the geometric monodromy theorem. �

3 The hyperbolic circular billiard
In this section we discuss the simplest Hamiltonian system with monodromy, namely, the
hyperbolic circular billiard.

3.1 The basic model
The hyperbolic circular billiard is the Hamiltonian system

(
P,ω,H

)
with phase space

P = D ×R2 = {(x,y) ∈ R2 x2 + y2 < r2
max}×R2, having coordinates z = (x,y, px, py),
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symplectic form ω = dx∧dpx +dy∧d py, and Hamiltonian

H : P → R : z �→ 1
2 (p2

x + p2
y)− 1

2V (x,y).

Here V (x,y) =
{

x2 + y2, when (x,y) ∈ D
∞, when (x,y) ∈ ∂D .

The Hamiltonain vector field XH governs

the motion of a particle of mass 1 in a repulsive quadratic potential of height 1
2 r2

max with
a wall at the circle ∂D = {(x,y) ∈ R2 x2 + y2 = r2

max}.

To fix the motion of the particle, we must specify what happens when the particle reaches
the point P = (x,y) on the wall ∂D . We assume that at P the momentum p = (px, py)
of the particle undergoes a reflection in the line �P tangent to ∂D at P. This reflection is
uniquely determined by requiring that the radial component pr of the momentum p at P
becomes −pr, the radial component of the momentum p′ = (p′x, p′y) after reflection. Let

ϕq = tan−1 y
x
, ϕp = tan−1 py

px
, and ϕ ′

p′ = tan−1 p′y
p′x

.

Moreover, let α be the positive angle between the vector p and the line �P and let β be

α β

p = (px, py)

p′ = (p′x, p′y)

�
��� P = (x,y)

pr

−pr

lp

Figure 3.1.1. The geometric situation.

the positive angle between the vectors (x,y) and p, whose tails have been moved to P.
The following relations are geometrically obvious, see figure 3.1.1.(

p′x
p′y

)
=

(
cos2α −sin2α
sin2α cos2α

) (
px
py

)
, ϕp = ϕq +β , ϕp′ = ϕp +2α, 2(α +β ) = π.

At the point P we have the mapping

Φ : ∂D ×R2 → ∂D ×R2 : (x,y, px, py) �→ (x,y, p′x, p′y) =
= (x,y, px cos2α − py sin2α, px sin2α + py cos2α),

(12)

which corresponds to the reflection at P in the wall ∂D in configuration space.

The phase space P is invariant under the S1-symmetry given by

Ψ : S1 ×P → P :
(
t,(x,y, px, py)

) �→ (
Rt

(
x
y

)
,Rt

(
px
py

))
,
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where Rt =

(
cos t −sin t
sin t cos t

)
. This S1-action is Hamiltonian with momentum mapping

J : P ⊆ R4 → R : (x,y, px, py) �→ xpy − ypx. (13)

Since the Hamiltonian H is invariant under the S1-action Ψ, the angular momentum J is a
conserved quantity.

Fact. The angle of reflection α is a smooth function of rmax, the energy e of the particle,
and the magnitude j of its angular momentum. Explicitly,

tanα = 1
j

√
r2

max(2e+ r2
max)− j2. (14)

(3.11) Proof: The identity (xpx + ypy)
2 + (xpy − ypx)

2 = (x2 + y2)(p2
x + p2

y) for the given
motion in P of the particle at the point P reads (xpx + ypy)

2 + j2 = r2
max(p2

x + p2
y).

Since the energy of the particle at P is e = 1
2 (p2

x + p2
y)− 1

2 r2
max, we get xpx + ypy =√

r2
max(2e+ r2

max)− j2. Now α = π/2− (ϕp −ϕq). So tanα = cot(ϕp −ϕq). But

tan(ϕp −ϕq) = tan
(
tan−1 py

px
− tan−1 y

x

)
=

xpy − ypx

xpx + ypy
=

j
xpx + ypy

,

from which (14) follows. �
We extend the motion of the particle on P = D ×R2 to P = D ×R2 by noting that
the map Φ (12) preserves energy and angular momentum. The extended motion is only
continuous at the point of reflection.

x

y

x

y

(a) (b)

Figure 3.1.2. The motion of the circular billiard in configuration space.

3.2 Reduction of the S1 symmetry
We extend the S1-symmetry Ψ on P real analytically to P ⊆ R4. To construct the
reduced space we use invariant theory. The algebra of S1-invariant polynomials on P is
generated by the polynomials

R = 1
2 (x

2 + y2), T = 1
2 (p2

x + p2
y), J = xpy − ypx, and K = 1

2 (xpy + ypx)

restricted to P . These polynomials satisfy the relation

T R = K2 + 1
4 J2, 0 ≤ R ≤ Rmax =

1
2 r2

max & T ≥ 0. (15)
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The semialgebraic variety in R4 with coordinates (T,R,J,K) defined by (15) is the orbit
space P = P/S1. The reduced space P j = (J−1( j)∩P)/S1 ⊆ R3 is defined by

C(T,R,K) = T R−K2 − 1
4 j2 = 0, 0 ≤ R ≤ Rmax & T ≥ 0, (16)

see figure 3.2.1(a). The image of P j under the projection mapping ρ : R3 →R2 : (K,Y,X) �→
(X ,Y ) is given in figure 3.2.1(b).

X

Y

K

ρ
�

X

Y

R

T

(a) (b)

Figure 3.2.1. The reduced space P j is shown in (a) and its
image under the mapping ρ is shown in (b). In both cases
X = 1

2(T +R) and Y = 1
2(T −R).

The S1-reduced Hamiltonian is

Hj : P j ⊆ R3 → R : (T,R,K) �→ T −R. (17)

3.3 Partial reconstruction
After partial reconstruction, corresponding to the motion of the particle up to the first
reflection, we obtain table 3.3.1, which gives the topology of the e-level set H−1

j (e) of the

Conditions Topology of H−1
j (e)

1. j = 0, e = 1
4 R−1

max j2 −Rmax point = ( 1
4 R−1

max j2,Rmax,0)
2. j = 0, e > 1

4 R−1
max j2 −Rmax a closed interval with end points in Γ j

3. j = 0, e =−Rmax point = (0,Rmax,0)
4. j = 0, −Rmax < e < 0 or e > 0 a closed interval with end points in Γ0

4. j = 0, e = 0 a closed interval with an angle at (0,0,0)
whose end points lie in Γ0

Table 3.3.1. The topology of H−1
j (e).

reduced Hamiltonian Hj. Let Γ j be the parabola

P j ∩{R = Rmax}= {(R−1
maxK2 + 1

4 R−1
max j2,Rmax,K) ∈ P K ∈ R}.

When the level set H−1
j (e) is a point, this point is a critical point p of the reduced Hamil-

tonian Hj on the reduced space P j and e is a critical value of Hj. It reconstructs to a
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relative equilibrium of the hyperbolic circular billiard. When P j is smooth at p, the rel-
ative equilibrium is a circle; otherwise, it is a point. The locus of critical values of Hj
in the energy momentum plane is the union of the parabola e = 1

4 R−1
max j2 −Rmax and the

point (0,0).

3.4 Full reconstruction
The discussion in §3.3 describes the topology of the fibers of the energy momentum map-
ping E M of the hyperbolic circular billiard up to an including the first contact of the
particle with the wall. To describe what happens after reflection at the wall, which is
given by the mapping Φ (12), we need to know what happens to the functions H, J, and
K.

Fact. We have Φ∗T = T , Φ∗R = R, Φ∗J = J, and Φ∗K =−K.

(3.12) Proof: Clearly Φ∗R = R. We compute

(Φ∗H)(z) = H(z′) = 1
2

(
(p′x)

2 +(p′y)
2 − 1

2 (x
2 + y2)

)
= 1

2 (p2
x + p2

y)− 1
2 (x

2 + y2), because p′ = R2α p, where R2α ∈ SO(2)

= H(z).

But H = T −R. So Φ∗T = T . Next because the vector p′ is obtained by a planar rotation
of the vector p, the vectors J(z′) = (p′x, p′y)× (x,y) and J(z) = (px, py)× (x,y) have the
same direction. We now show that J(z′) and J(z) have the same magnitude. By definition

|J(z′)|= |xp′y − yp′x|= |(xpy − ypx)cos2α − (xpx + ypy)sin2α|.

But tanα = (xpy − ypx)(xpx + ypy)
−1. So xpy − ypx = Dsinα and xpx + ypy = Dcosα ,

where D =
√
(xpy − ypx)2 +(xpx + ypy)2 =

√
x2 + y2

√
p2

x + p2
y , which gives

|J(z′)|= D|sinα cos2α − cosα sin2α|= D|sinα |= |xpy − ypx|= |J(z)|.

Therefore Φ∗J = J. Lastly,

−K(z′) =−〈(−x,−y),(p′x, p′y)〉=
√

x2 + y2
√
(p′x)2 +(p′y)2 cosβ

=
√

x2 + y2
√

p2
x + p2

y cosβ = 〈(x,y),(px, py)〉= K(z). �

So the mapping Φ (12) induces the mapping

Φ : P j ⊆ R3 → P j ⊆ R3 : (R,T,K) �→ (R,T,−K). (18)

When (e, j) is a regular value of the reduced Hamiltonian Hj, the map Φ interchanges the
ends of H−1

j (e). So we may use Φ to identify the ends of H−1
j (e) to obtain a topological

circle. Consequently, after reconstruction, the (e, j)-level set of the energy momentum
mapping of the full motion of the particle is a topological 2-torus. Similarly, we may
identify the ends of H−1

0 (0) to obtain a topological circle passing through the origin.
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Hence after reconstruction we find that the (0,0)-level set of the energy momentum map
of the full motion is topologically a once pinched 2-torus, that is, a 2-torus with the circle
pinched to a point, which is mapped to the origin under the S1-reduction mapping. When
(e, j) lies on the parabola e = 1

4 R−1
max j2 −Rmax, then e is a critical value of the reduced

Hamiltonian Hj (17) and H−1
j (e) is a relative equilibrium, see §3.3. This verifies the

entries in table 3.4.1.

Conditions Topology of (e, j)-level set
1. j = 0, e = 1

4 R−1
max j2 −Rmax S1

2. j = 0, e > 1
4 R−1

max j2 −Rmax T 2

3. j = 0, e =−Rmax point = (0,0,0,0)
4. j = 0, −Rmax < e < 0 or e > 0 T 2

4. j = 0, e = 0 T ∗, a once pinched 2-torus

Table 3.4.1. The topology of (e, j)-level set of full energy momentum mapping.

Thus the energy momentum mapping of the hyperbolic circular billiard satisfies the
hypotheses of the monodromy theorem. So it has nontrivial monodromy around a small
loop in the set of regular values, which encircles the origin.

3.5 The first return time and rotation angle
In this subsection we compute the first return time and rotation number of a full motion
of the hyperbolic billiard on the smooth 2-torus T 2

e, j = EM−1(e, j).

In order to compute the time Tper it takes an integral curve γ : [−Tper/2,Tper/2]→H−1
j (e) :

t �→ γ(t) of the reduced equations of motion to go from one end of H−1
j (e) to the other,

we first find an explicit expression for γ . We begin by determining the reduced equations
of motion on the reduced space Pj. Since

{T,R}=−2K =
∂C
∂K

, {R,K}= R =
∂C
∂T

, and {K,T}= T =
∂C
∂R

,

where C is given by (16), it follows that the vector field −adHj on R3 is

Ṫ = {T,Hj}= {T,T −R}= 2K

Ṙ = {R,Hj}= 2K (19)
K̇ = {K,Hj}= T +R.

The reduced phase space P j is an invariant subset of the vector field −adHj . So the
reduced vector field XHj on P j has integral curves which satisfy (19). Equations (19) are
equivalent to

K̈ = Ṫ + Ṙ = 4K (20a)
Ṙ = 2K (20b)

Ḣ j = Ṫ − Ṙ = 0. (20c)
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Equation (20c) integrates to
T = R+ e. (21)

Fact. Let

Tper = cosh−1

[
2Rmax + e√

e2 + j2

]
. (22a)

Then the integral curve of the reduced equations of motion (19), which starts at the
end (Rmax + e, 1

2

√
4R2

max +4eRmax − j2 − e
2 ,

1
2

√
4R2

max +4eRmax − j2) of H−1
j (e) at time

−Tper/2, is given by

γ :[−Tper/2,Tper/2]→ H−1
j (e)⊆ P j : t �→ γ(t) =

(
T (t),R(t),K(t)

)
=

( 1
2

√
e2 + j2 cosh2t + e

2 ,
1
2

√
e2 + j2 cosh2t − e

2 ,
1
2

√
e2 + j2 sinh2t

)
(22b)

(3.13) Proof: First, we show that t �→ γ(t) is a solution of (20a) – (20c). This follows
because Ṙ(t)=

√
e2 + j2 sinh2t = 2K(t), K̈(t)= 4K(t) and Ḣ j = Ṫ −Ṙ=

√
e2 + j2sinh2t

−
√

e2 + j2sinh2t = 0. Now γ(t) ∈ H−1
j (e) for every t ∈ [−Tper/2,Tper/2] because

T (t)R(t)−K2(t) = 1
4 (e

2 + j2)cosh22t − 1
4 e2 − 1

4 (e
2 + j2)sinh22t = 1

4 j2,

T (t) ≥ 0 for every t ∈ [−Tper/2,Tper/2] and 0 ≤ R(t) ≤ R(Tper/2) = Rmax. Moreover,
T (t)−R(t) = e. Since Rmax =

1
2

√
e2 + j2 cosh2(Tper/2)− e/2, we find that γ(Tper/2) is

an end point of H−1
j (e) in P j. �

In the full motion the ends of H−1
j (e) are joined together and correspond to a circle on the

unreduced 2-torus T 2
e, j, which is an an integral curve C of the angular momentum vector

field XJ |T 2
e, j. Thus the unreduced motion on T 2

e, j, which is sent to γ by the reduction
mapping, starts at a point on C and after a time Tper returns for the first time to C .

Next we compute the rotation angle on T 2
e, j of the full motion of XH . Now

ϕ̇q = LXH ϕq = {ϕq,H}= {tan−1 y
x
, 1

2 (p2
x + p2

y)− 1
2 (x

2 + y2)}= xpy − ypx

x2 + y2 =
j

2R
.

So the rotation angle Θ(e, j), when j = 0, of the flow of XH on T 2
e, j is

Θ(e, j) =
∫ Tper

0
ϕ̇q dt = 2

∫ Rmax

Rmin

j
2R

dR
Ṙ

= 2 j
∫ Rmax

Rmin

dR
2R(2K)

, using (20c). From (22a) we get
Rmin =−e/2+ 1

2

√
e2 + j2

=
j
2

∫ Rmax

Rmin

dR

R
√
(R+ e/2)2 − 1

4 (e
2 + j2)

, since K2 = T R− 1
4 j2 =

(R+ e)R− 1
4 j2, using (21).
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We now calculate the integral giving Θ(e, j). Successively let R = u−1, v = 2e
j − ju, and

α2 = 4(1+ e2

j2 ). Then

j dR

2R
√
(R+ e/2)2 − 1

4 (e
2 + j2)

=
− j du√

4(1+ e2

j2 )− ( 2e
j − ju)2

=
dv√

α2 − v2
= d

(
sin−1 v

α
)
.

Therefore

Θ(e, j) = sin−1

⎛⎝2 e
j − jR−1

2
√

1+ e2

j2

⎞⎠ Rmax

Rmin

=±(
sin−1

(
eRmax − 1

2 j2

Rmax
√

e2 + j2

)
+

π
2
)
, if ± j > 0,

since
eRmin− 1

2 j2

Rmin
√

e2+ j2
=−1

= 2tan−1

[
e+

√
e2 + j2

j

√
2Rmax + e−

√
e2 + j2

2Rmax + e+
√

e2 + j2

]
. (23)

Taking limits in (23) we find that Θ(e,0+) = π , when j ↘ 0 and Θ(e,0−) = −π , when
j ↗ 0. Note that Θ(e,− j) =−Θ(e, j).

3.6 The action functions
In this subsection we find the action functions for the hyperbolic billiard.

Because the vector field 1
2π XJ on T 2

e, j has a periodic flow ϕJ
2π t of period 1, the rescaled

angular momentum 1
2π J|T 2

e, j (13) is a globally defined action.

The second action for the hyperbolic circular billiard is given by I =
∫

Γ〈p,dq〉, where
Γ : R → T 2

e, j : s �→ ϕH
Tper(e, j)s

◦ϕJ
−Θ(e, j)

2π s
(m) for m ∈ T 2

e, j is an integral curve of the vector

field Tper(e, j)XH − Θ(e, j)
2π XJ on T 2

e, j. Because ϕH
Tper(e, j)

◦ϕJ
−Θ(e, j)

2π
(m) = m for every m ∈ T 2

e, j,

Γ is a closed curve on T 2
e, j. Moreover, Γ is homotopic on T 2

e, j to the curve Γ1 : [0,1] →
T 2

e, j : t �→ ϕH
Tper(e, j)t

(m) followed by Γ2 : [0,1]→ T 2
e, j : t �→ ϕJ

−Θ(e, j)
2π t

(
ϕH

Tper(e, j)
(m)

)
.

We now compute the action I. By definition

I(e, j) =
∫

Γ
〈p,dq〉=

∫
Γ1

〈p,dq〉+
∫

Γ2

〈p,dq〉

=
∫ 1

0 〈p,LTperXH q〉 dt +
∫ 1

0 〈p,L− Θ(e, j)
2π XJ

q〉 dt =
∫ Tper

0 〈p,LXH q〉 dt +
∫− Θ(e, j)

2π
0 〈p,LXJ q〉 dt

=
∫ Tper

0 〈p,{q,H}〉 dt +
∫− Θ(e, j)

2π
0 〈p,{q,J}〉 dt =

∫ Tper
0 〈p, p〉 dt +

∫− Θ(e, j)
2π

0 〈(px, py),(−y,x)〉 dt

=
∫ Tper

0
2T dt − j

2π
Θ(e, j)

But K̇ = {K,H}= T +R = 2T − e, since H = T −R = e. So

I(e, j) =
∫ Tper/2

−Tper/2
(K̇ + e) dt − j

2π Θ(e, j) = 2
(
K(Tper/2)−K(0)

)
+ eTper − j

2π Θ(e, j)
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=
√

4Rmax(Rmax + e)− j2 + eTper(e, j)− j
2π Θ(e, j), (24)

where Tper(e, j) is given by (22a) and Θ(e, j) by (23).

4 Exercises
1. (Mondromy as holonomy.) Let P2n be the phase space of a Liouville integrable

system with integral map F : P → Rn.

a) Let f : U → Rn be a local set of action variables on the open set U ⊆ Rn. Pull
back the standard flat connection ∇XY = DY ·X on Rn by the mapping f . Show that
the pulled back connection ∇∗

X in U is ∇∗
XY = DY ·X +D f−1 ·D2 f (X ,Y ). Deduce

that ∇∗
XY defines a covariant derivative in U .

b) Let g : V → Rn be another set of local action variables. If we define ∇ in V as in
part a), show that the two covariant derivatives agree on U ∩V . (Hint: how are the
two sets of action variables related?)

c) Show that the construction in a) and b) defines a flat connection on the set R of
regular values of F , where one can define local action variables.

d) Show that the holonomy of the connection defined in part c) has the same matrix
representation, in a suitable basis, as the monodromy of the bundle F |F−1(R) :
F−1(R)→ R.

2. (Particle in a champagne bottle potential.) On (T R2,ω = dx1 ∧ dy1 + dx2 ∧ dy2)
consider the Hamiltonian

H : T R2 → R : (x,y) �→ 1
2 (y

2
1 + y2

2)− 1
2 (x

2
1 + x2

2)+
1
2 (x

2
1 + x2

2)
2.

The Hamiltonian vector field XH describes the motion of a particle in a circularly
symmetric double well potential. The Hamiltonian H is invariant under the lift of
this S1-action to T R2. Show that (0,0) is an isolated critical value of the energy
momentum mapping EM . Let Γ be a circle in the range of EM which encircles
(0,0). Suppose that Γ lies in the set of regular values of EM . Show that the 2-torus

bundle EM−1(Γ) has monodromy
(

1 −1
0 1

)
.

3. (Monodromy as toral accumulation.) On T ∗R3 with coordinates (q, p)= (q1,q2,q3,
p1, p2, p3) and symplectic form ω = ∑3

i=1 dqi ∧ dpi the three dimensional cham-
pagne bottle system is given by the Hamiltonian

H : T ∗R3 → R : (q, p) �→ 1
2 (p2

1 + p2
2 + p2

3)+(q2
1 +q2

2 +q2
3)

2 − (q2
1 +q2

2 +q2
3).

Rotational invariance of H implies that the angular momentum J : T ∗R3 → R :
(q, p) �→ q× p is conserved.

a) Find the topology of every fiber of the energy momentum mapping. In particular,
show that the fiber (h, j) with h > 0 and j = 0 is diffeomorphic to a circle bundle
over the real projective plane. This bundle is the circle bundle associated to the
canonical line bundle over the projective plane.
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b) Show that the the exceptional fibers with h = hmin = 0 and j = 0 are smooth
Lagrangian manifolds.

c) Show that the three dimensional champagne bottle Hamiltonian system does not
have monodromy.

d)∗ Thinking of the three dimensional champagne bottle as a superintegrable Hamil-
tonian system, explain how the monodromy can be seen as a Chern class of a bundle
of isotropic 2-tori over a 2-sphere. Show that these 2-tori accumulate at j = 0 and
induce the monodromy of the 2-dimensional champagne bottle subsystem.

4. (Fractional monodromy.) On (T ∗R2 =R4,ω) with coordinates (x,y)= (x1,x2,y1,y2)
and symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2 consider the Hamiltonian system
(H,R4,ω), where for ε positive and small we have

H : R4 → R : (x,y) �→
√

2
(
2x1y1x2 +(x2

1 − y2
1)y2

)
+ ε(x2

1 + y2
1)(x

2
2 + y2

2). (25)

H is invariant under the flow of the Hamiltonian vector field XJ where J : R4 → R :
(x,y) �→ 1

2 (x
2
1 +y2

1)− (x2
1 +y2

2) is the Hamiltonian of the 1 : −2 resonant oscillator.

a) Show that the system (H,J,R4,ω) is Liouville integrable with integral mapping
F : R4 → R2 : (x,y) �→ (

J(x,y),H(x,y)
)
= ( j,h).

b) Show that the set of critical values of F is the union of the image C = {( j,0) ∈
R2 0 < − j < 1

2 ε−2} of the curve C1 : [0,∞) → R2 : s �→ (−s,0) and the image
D of the curve C1 : [ 1

2 ε−2,∞) → R2 :
(
3s+O(ε),−24εs2 +O(ε)

)
. The union of

the curves Ci for i = 1,2 parametrizes the discriminant locus of the polynomial
π2

2 +
(
h− (π2

1 − j2)
)− (π2

1 − j2)(π1 + j) = 0, where π1 ≥ | j|. Here

j = 1
2 |z1|2 −|z2|2, π1 =

1
2 |z1|2 + |z2|2, π2 =

√
2Re(z2

1z2), and π3 =
√

2Im(z2
1z2)

with zk = xk + iyk for k = 1,2 are generators of the algebra of polynomials on R4,
which are invariant under the S1 generated by the flow of XJ . They are subject to
the relation G(π) =−2π2

2 −2π2
3 +4(π1 − j)(π1 + j)2 = 0 with π1 ≥ | j|.

c) Show that the image I of the integral map F is the region of R2 on or above
the union of the graphs of C and D and that the set Rreg of regular values of F is
I \ (C ∪D). Prove each of the following facts. The fiber of F over a point on
C \ {(0,0)} is a curled 2-torus, formed by taking a compact cylinder on a figure
eight and then identifying its ends after making a half a revolution. The fiber over
(0,0) is a once piched 2-torus. The fiber over every point of D is a circle. The fiber
over every point in Rreg is a smooth 2-torus. Use this information to draw a picture
of the bifurcation diagram of F .

d) Use invariant theory to carry out reduction of the S1-symmetry generated by XJ .
Show that the orbit space J−1( j)/S1 is the semialgebraic variety Pj in R3 defined
by G(π) = 2(π1 + j)2(π1 − j)− 2π2

2 − 2π2
3 = 0 and π1 ≥ | j|. The S1-invariant

Hamiltonian H induces a function Hj : R3 →R : π =(π1,π2,π3) �→ π3+ε(π2
1 − j2).

The reduced Hamiltonian is Hj|Pj. Using {π1,π2}= ∂G
∂π3

=−4π3, {π2,π3}= ∂G
∂π1

=
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2(π1 + j)(3π1 − j), and {π3,π1} = ∂G
∂π2

= −4π2, show that the reduced equations
of motion are the restriction of

π̇1 = {π1,Hj}= 4π2

π̇2 = {π2,Hj}= 2(π1 + j)(3π1 − j)+8επ1π3

π̇3 = {π3,Hj}=−8επ1π2

to Pj.

e) On the smooth 2-torus F−1( j,h) = J−1( j)∩H−1(h) where ( j,h) ∈ Rreg show
that the time of first return of an integral curve of XH |T 2

( j,h) to the periodic orbit γ of
XJ |T 2

( j,h) is

T ( j,h) = 1
2

∫ π+
1

π−
1

dπ1

π2
= 1

2

∫ π+
1

π−
1

dπ1√
S j,h(π1)

,

where S j,h(π1) =
(
(π2

1 − j2)(π1 + j)− (
h − ε(π2

1 − j2)
)2)1/2 and S j,h(π±

1 ) = 0.
Show that T ( j,h)→ ∞ as ( j,h)→ C . Verify that the rotation angle of the flow of
XH |T 2

( j,h) is

Θ( j,h) = 4h
∫ π+

1

π−
1

1
j+π1

dπ1√
S j,h(π1)

and that for j ∈ (− 1
2 ε−2,0) we have limh→0± Θ( j,h) =±π/2+ sin−1(ε

√
2| j|).

f) Let Γ be a circle in the image of F which encloses the origin and avoids hitting
D . The bundle ρ : F−1(Γ)→ Γ of fibers of F is not locally trivial because the fiber
over c0 ∈ Γ∩C is not a smooth 2-torus. In spite of this we can still compute the
monodromy of the induced bundle ρ∗ :

⋃· c∈ΓH1(F−1(c),Z)→ Γ by continuously
transporting a suitable basis of H1(F−1(c),Z) as c traverses Γ from c0 to c0.

We now construct a continuous family of cycles of F−1(c) as c traces out Γ using
integral curves of vector fields. The vector field XH is not suitable on F−1(c0)
because T (c)→∞ as c→ c0. Look at the vector field X on R4\{x= y1 = 0} defined
by (x2

1 + y2
1)

−1XH . Show that X is incomplete on R4 \ {x = y1 = 0}, commutes
with XJ and leaves F−1(c) \ {x = y1 = 0} invariant for every c in the image I
of F . Moreover, the time τ of first return of X on F−1(c) with respect to XJ is
smooth for every c ∈ I and is continuous on C . Show that the rotation angle
Θ̂ of X on F−1(c) is equal to the rotation angle Θ(c) of XH on F−1(c) for every
c ∈ Rreg. Let X1(ξ ) = 2πXJ(ξ ) and X2(ξ ) = τ(F(ξ ))X(ξ )−Θ(F(ξ ))X(ξ ) for
every ξ ∈ R4 \ {x = y1 = 0}. Show that on F−1(c) for c ∈ Rreg the vector fields
Xk, k = 1,2 are smooth, linearly independent, and have flows which are periodic of
period 1. For k = 1,2 let βk(c) : [0,1]→ T 2

c = F−1(c) : t �→ ϕXk
t (ξ ) where c ∈Rreg.

Then the homology classes [βk(c)] for k = 1,2 form a basis of H1(T 2
c ,Z). Let

[0,1] → R2 : u �→ Γ(u) be a parametrization of the curve Γ with u∗ ∈ (0,1) such
that Γ(u∗) = c0. Look at the vector field Zu(ξ ) = −ϑ(u)XJ(ξ ) + τ(Γ(u))X(ξ )
where ξ ∈ R4 \{x = y1 = 0}. Here

ϑ : [0,1]→ R : u �→
⎧⎨⎩ Θ(Γ(u))−π, if u ∈ [0,u∗)

limu→u∗ Θ(Γ(u)), if u = u∗
Θ(Γ(u)), if u ∈ (u∗,1].
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Show that the function ϑ is continuous at u∗. Let γ1(u) = β1(Γ(u)). To define the
cycle γ2(c) we need the following construction. Consider the initial points ξ±(u) =(± (

π+
1 (u) + j(u)

)1/2
,0,0, h(u)−ε(π+

1 (u)2− j(u))2
√

2(π+
1 (u)+ j(u))

)
, where Γ(u) =

(
j(u),h(u)

)
and

π+(u) =maxH−1
j(u)(h(u))

π1. Let γ2(u) be the union of the curves γ±2 (u), where γ±2 (u) :

[−1/2,1/2] → F−1(Γ[0,1]) : t �→ ϕZu
t (ξ±(u)). Show that when u ∈ [0,u∗) the

curves γ±(u) join together smoothly to form a closed curve because γ+2 (∓1/2) =
γ−2 (±1/2) = χ±; when u = u∗ we have χ+ = χ− = χ∗. So γ2(u∗) is smooth
closed curve with a normal crossing at χ∗; when u ∈ (u∗,1] we have γ±2 (−1/2) =
γ±2 (1/2) = χ̃± and χ̃+ = χ̃−. So γ2(u) is a disjoint union of two smooth closed
curves. Show that the homology classes in H1(F−1(Γ(u)),Z), which vary con-
tinuously as u crosses u∗ are precisely those which lie in the index 2 sublattice
H1(T 2

Γ(u),Z) of H1(F−1(Γ(u)),Z) spanned by [γ1(u)] and [γ2(u)], when u = u∗.

g) We now compute the monodromy map μ : H1(T 2
Γ(0),Z) → H1(T 2

Γ(0),Z) along
the curve Γ. The cycle basis {β1(c), β2(c)} of T 2

c with c = Γ(u) with u = u∗ is
independent of the parameter u. So {β1(c0), β2(c0)} is a basis of H1(F−1(c0),Z).
Show that [γ2(0)] = [β1(0)]+2[β2(0)] and [γ2(1)] = 2[β2(1)] = 2[β2(0)] by drawing
a picture of γ2(u) on F−1(Γ(u)) = T 2

Γ(u) when u = u∗. Since [γ1(0)] = [γ1(1)] show
that the monodromy mapping μ sends the basis {[β1(0)], [β1(0)] + 2[β2(0)]} to
the basis {[β1(0)],2[β2(0)]}. Thus with respect to the basis {[β1(0)],2[β2(0)]} of
H1(T 2

Γ(0),Z) the matrix of the linear fractional monodromy μ is
(

1 −1
0 1

)
. Observe

that the off diagonal entry in the fractional monodromy matrix can not be removed
by a change of basis of H1(T 2

Γ(0),Z).

h) (Geometric fractional monodromy theorem.) Let (F1,F2,R4 = T ∗R2,ω) be a
two degree of freedom Liouville integrable system with a proper integral mapping
F : R4 → R2 : (x,y) �→ (

F1(x,y),F2(x,y)
)

with the following properties

1. 0 is a critical value of F such that F−1(0) is connected and F1|F−1(0) has
no critical points.

2. The critical points of F on F−1(0) are transversely nondegenerate.

3. The critical set C of F on F−1(0) is exactly one periodic orbit γ0 of XF1 .

4. If Σ is a two dimensional Poincaré section for γ0, then p = Σ∩ γ0 is a hyper-
bolic critical point of F |Σ.

5. F is invariant under a globally defined Hamiltonian S1-action.

6. There is a closed path Γ : [0,1] → Rreg : u �→ Γ(u) such that Γ crosses the
set C V of critical values of F exactly once at u∗ ∈ (0,1) and Γ(u) ∈ Rreg if
u = u∗. Here Rreg is the set of regular values of F in its image.

Then the set of cycles of H1(F−1(Γ(u)),Z) with u ∈ [0,1] that can be continued
through C V form an index 2 subgroup H1(F−1(c),Z) of H1(F−1(c),Z). With
respect to a suitable basis of H1(F−1(Γ(0),Z) the matrix of the monodromy map-
ping is

(
1 0

k− 1
2 1

)
for some integer k. Check that the integral map in sections a) –
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g) above satisfy the hypotheses of the geometric fractional monodromy theorem.
Prove this theorem trying to generalize the results of this example. Why does the
integer k appear in the matrix of the monodromy mapping?

5. (Quadratic spherical pendulum.) On T S2 ⊆ T R3 with symplectic form ω|T S2 con-
sider the Hamiltonian

H : T S2 ⊆ T R3 → R : (x,y) �→ 1
2 (y

2
1 + y2

2 + y2
3)+

1
2 bx2

3 + cx3 +d.

The Hamiltonian vector field XH describes the motion of a particle on a 2-sphere S2

under a force coming from a potential V (x) = 1
2 bx2

3 + cx3 +d. The Hamiltonian is
invariant under the Hamiltonian S1-action S1×T S2 → T S2 :

(
t,(x,y)

) �→ (R̃tx, R̃ty),
where R̃t =

⎛⎝cos t −sin t 0
sin t cos t 0

0 0 1

⎞⎠, which has momentum mapping J : T S2 → R : (x,y) �→
x1y2 − x2y1.

a) Verify that the energy momentum mapping

EM : T S2 → R2 : (x,y) �→ (
H(x,y),J(x,y)

)
is a proper mapping. Show that discriminant Δ of the energy momentum map-
ping is {(h, j) ∈ R2 P(z) = 2

(
h−V (z)

)
(1− z2)− j2 has a double root}. Show that

the discriminant locus {Δ = 0} is parametrized by the curve γ �± : I j → R2 : s �→(
h(s),± j(s)

)
, where

h(s) = bs2 + 3
2 cs− 1

2 cs−1 − 1
2 b+d and j(s) =±(1− s2)

√
−s−1(bs+ c) (26)

where

CASE I. 0 < |b| ≤ c and s ∈ I1 = [−1,0)∪{1}.

CASE II. 0 < c < b and s ∈ I2 = {−1}∪ [−cb−1,0)∪{1}.

CASE III. 0 < c < b and s ∈ I3 = {−1}∪ [−cb−1,0)∪{1}.

When c = 0 the discriminant locus is the union of the curve 2(h−d) = j2 and the
point ( 1

2 b,0) when b > 0 or the union of the curves 2(h−d) =−|b|±2 j
√|b| with

| j| ≤−b and 2(h−d)≥ b when b< 0. Note that when b= 0 the quadratic spherical
pendulum is the spherical pendulum.

b) In case I show that the bifurcation diagram of the energy momentum map is the
same as that of the spherical pendulum. Compute the monodromy of the 2-torus
bundle over a circle in the set of regular values enclosing the isolated critical value.
In case III show that the energy momentum map has two isolated critical values
where the fiber corresponding to ( 1

2 b± |c|,0) is a singly pinched 2-torus. Again
compute the monodromy of the bundle over a circle enclosing one of the isolated
critical values. What is it when the circle encloses both critical values? When
c = 0 the fiber corresponding to ( 1

2 b,0) is a doubly pinched 2-torus. Compute the
monodromy of the bundle of 2-tori over a circle which encloses the critical value.

The remainder of this exercise considers the case II. The set of critical values con-
sists of the union of the image of the curves γ1± parametrized by s ∈ [−1,0) which
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join together at P = ( 1
2 b− c+ d,0), and the image of the curves γ2± which join

the point B0 = (0,d − c2b−1) to D = (0, 1
2 b+ c+ d). Show that these curves are

smooth except at one point B± =
(± j(s∗),h(s∗)

)
with s∗ ∈ (cb−1,1) where they

have a cusp. Thus the union of the image of γ2− and γ2
+ bound a triangle T with

cusps at the vertices at B0,± and curved smooth sides B0B± = γ2±([−cb−1,s∗]) and
B−B+ = γ 2−([s∗,1))∪ (−γ 2

+)([s
∗,1)).

c) Using invariant theory and singular reduction show that the range of the energy
momentum mapping R lies in the interior of the region bounded by the union of
the image of γ1− and γ1

+. The triangle T lies in the interior of the region R. Verify
the entries in the second column of the following table.

Conditions on p Fiber of EM−1(p)
p = P {pt}
p ∈ γ1±([−1,0)) S1

p ∈ B−B+ bitorus = a compact cylinder on a figure
eight with its ends identified

p ∈ B0B± S1 ⋃· T 2±
p ∈ B0,± {pt}∪T 2±
p ∈ intT T 2−

⋃· T 2
+

p ∈ R \T T 2

Because of the geometry of the energy momentum mapping EM given in the table
above, we say that the quadratic spherical pendulum is an integrable system with a
swallowtail.

d) On each connected component of EM−1(intT ) construct an action function
I, whose limit on the side C = B−B+ of the triangle T with EM fiber a bitorus
coincides with the limit of the action on R \ (∂R ∪T ).

e) Consider the bipath in R \∂R made up of two continuous paths Γ±, which start
at the point A ∈R \ (∂R∪T ), cross the locus C at the point C, and when in intT
have inverse image under EM which lie in

⋃· T 2±. Then Γ± exits T and returns
in R \ (∂R ∪T ) to the point A. At A we begin with a basis {b(A), g0(A)} of an
index 2 subgroup H1(T 2

A = EM−1(A),Z) of H1(T 2
A ,Z). Here b(A) is the cycle on

T 2
A generated by a periodic orbit of XJ and g0(A) is the cycle on T 2

A generated by a
periodic orbit of XI . Parallel transport these cycles along Γ±. As we approach C ∈
C outside of T show that g0 approaches a limit g0(C). Let g0(C±) be the limit of
cycles in T 2± as we approach C along Γ± from intT . Show that g0(C) = g0(C−)+
g0(C+) in H1(EM−1(C),Z). Show that when g0(C±) is parallel transported along
Γ± back to the point A it returns to g0(A). Show that as the cycle b(A) is parallel
transported from A along Γ± back to A it returns to b(A).

f) Starting at A with the basis {2b(A), g0(A)} of cycles on T 2
A after parallel trans-

lation along Γ± and returning to A, we obtain two copies of the same fiber T 2
A with

the same homology basis {b(A), g0(A)}. Merging these bases by adding to get
the basis {2b(A), 2g0(A)} of H1(T 2

A ,Z). This gives the bidromy transformation
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μ : H1(T 2
A ,Z) → H1(T 2

A ,Z), which sends the basis {2b(A), g0(A)} to the basis
{2b(A),2g0(A)}. Thus μ has the bidromy matrix

(
1 0
0 2

)
. Let k ∈ Z. Using the ba-

sis {2b(A), gk(A) = g0(A)+ kb(A)} of H1(T 2
A ,Z) show that the bidromy matrix is(

1 0
− k

2 2

)
. Deduce that bidromy is different from fractional monodromy.

6. (Scattering monodromy.) Consider the hyperbolic oscillator (Burkes’ egg), which
is a Hamiltonian system on T ∗R2 = R4 with coordinates (x,y) = (x1,x2,y1,y2)
and nonstandard symplectic form Ω = dx1 ∧ dx2 − dy1 ∧ dy2 corresponding to the
Hamiltonian

v : R4 → R : (x,y) �→ x1y1 + x2y2. (27)

a) Show that u : R4 → R : (x,y) �→ 1
2 (x

2
1+x2

2−y2
1−y2

2) is an integral of the Hamilto-
nian vector field Xv and has a periodic flow ϕu

r of period 2π . The system (v,u,R4,Ω)
is Liouville integrable with energy momentum mapping EM : R4 → R2 : (x,y) �→(
v(x,y),u(x,y)

)
= (h, �), which has (0,0) as an isolated critical value. Show that

the bundle EM|(R4 \EM−1(0,0)
)

: R4 \EM−1(0,0)→ R2 \ {(0,0)} is trivial be-
cause the action angle coordinate mapping

Ψ̃ :
(
(S1 ×R)× (R2 \{(0,0)}),Ω̂ = dt ∧dh+dr∧d�

)→ (
R4 \EM−1(0,0),Ω

)
:(

(r, t),(h, �)
) �→ ϕv

t ◦ϕ
u
r (�+

1
2 ,h,h,−�+ 1

2 ) (28)

is a symplectic diffeomorphism. Thus the hyperbolic oscillator has no Hamiltonian
monodromy.

b) Consider the circle S = {(h, �) ∈ R2 h2 + �2 = R2, R > 0}. Show that the map-
ping

σ : S → EM−1(S) : (h, �) �→ (�+ 1
2 ,h,h,−�+ 1

2 ) (29)

is a section of the bundle ρ = EM|(EM−1(S)
)

: EM−1(S)→ S. Look at the family
of curves s �→ Γσ(s) on EM−1(S), where Γσ(s)(t) = ϕv

t (σ(s)) is an integral curve of
Xv which starts at σ(s). Show that the image of Γσ(s) under the cotangent bundle
projection map π : R4 → R2 : (x,y) �→ x is the curve

t �→ γs(t) =
(
(�+ 1

2 )cosh t +(−�+ 1
2 )sinh t,h(cosh t − sinh t)

)
,

whose image is the branch Hs of a hyperbola given by x2(hx1 − �x2) =
1
2 h2, where

±x2 ≥ 0 if ±h ≥ 0. Show that the outgoing asymptotic direction of Hs is (1,0);
while the incoming asymptotic direction is (h2+�2)−1/2(�,h). Define the scattering
angle ϑs to be the angle corresponding to the counter clockwise rotation which
sends the outgoing asymptotic direction of Hs to its incoming asymptotic direction.
Show that ϑs = tan−1 h

� . Let s∗ = (0,−R) ∈ S. Show that

ϑs∗+ = lim
s∈S∩{h≥0}→s∗

ϑs = 2π and ϑs∗− = lim
s∈S∩{h≤0}→s∗

ϑs = 0. (30)

Thus as s traverses the circle S in a clockwise fashion starting and finishing at
s∗ = (0,−R), the scattering angle ϑs increases by 2π . This variation in the scat-
tering angle is called the scattering monodromy of the hyperbolic oscillator. In
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the remainder of this exercise we give a phase space interpretation of scattering
monodromy.

c) The map Ψ̃ (28) restricts to a diffeomorphism Ψ : (S1 ×R)× S → EM−1(S),
which intertwines the S1-action

ψ : S1 × (
(S1 ×R)×S

)→ (S1 ×R)×S :
(
r′,((r, t),s)

) �→ (
(r′+ r, t),s

)
with the S1-action ϕu

r′ |EM−1(S). Consequently, we get the S1-principal bundle

ρ̃ : EM−1(S)→ EM−1(S)/S1 = S×R : p = Ψ
(
(r, t),s

) �→ (s, t) =
(
EM(p), t),

which is trivial, because σ̃(s, t)=ϕv
t (σ(s)) is a section. Let S×= S\{s∗=(0,−R)}.

Consider the trivial S1-principal bundle ρ× : EM−1(S×)→ S××R given by ρ× =
ρ|EM−1(S×). Let dϑ = (x2

1 + x2
2)

−1
(
x1 dx2 − x2 dx1) be the angle 1-form on R2 \

{(0,0)}. Let θ =−π∗(dϑ)|EM−1(S×) be a 1-form on EM−1(S×), where π : R4 →
R2 : (x,y) �→ x. Show that θ is a closed 1-form with Xu θ = 1, which is invariant
under the S1-action ϕu

r |EM−1(S×). Hence θ is a connection 1-form on the S1-
principal bundle ρ×. The scattering phase Θ(s) of the curve Γσ(s) on EM−1(S×) is∫

Γσ(s)
θ . Verify each step of the following calculation.

Θ(s) =
∫

Γσ(s)

θ =−
∫

Γσ(s)

π∗ dϑ =−
∫

γs=π(Γσ(s))
dϑ

=−
∫ ∞

−∞
γ∗s dϑ = ϑ(γs(−∞))−ϑ(γs(∞)) = ϑs.

The last equality above follows because the curve γs traces out the branch Hs of the
hyperbola, whose incoming asymptotic direction is (h2 + �2)−1/2(�,h) has angle
ϑ(γs(−∞)) = tan−1 h

� , and whose outgoing asymptotic direction is (1,0) has angle
ϑ(γs(∞)) = 0.

d) Let S̃× be the image of S× under the section σ precomposed with the injec-
tion map is : S → S × R : s �→ (s,0). Then Γσ(s) is the integral curve of Xv on
EM−1(S̃×), which starts at σ(s) ∈ S̃×. The infinitesimal elevation of the curve
Γσ(s) on EM−1(S̃×) with respect to the 1-form θ is dθ

dt = (Xv θ)
(
Γσ(s)(t)

)
. The

elevation of Γσ(s) is
∫ ∞
−∞ θ̇ dt. Verify each step of the following calculation.

Θ(s) =
∫

Γσ(s)

θ =
∫ ∞

−∞
θ
(
Γσ(s)(t)

)dΓσ(s)

dt
dt =

∫ ∞

−∞
θ
(
Γσ(s)(t)

)
Xv

(
Γσ(s)(t)

)
dt

=
∫ ∞

−∞
(Xv θ)

(
Γσ(s)(t)

)
dt =

∫ ∞

−∞
θ̇ dt =

∫ ∞

0
θ̇ dt +

∫ 0

−∞
θ̇ dt

=
∫ ∞

0
θ̇ dt −

∫ ∞

0
θ̇ d(−t) = p+(s)− p−(s),

where p+(s) is the elevation of the curve [0,∞)→ EM−1(S×) : t �→ ϕv
t
(
σ(s)

)
and

p−(s) is the elevation of the curve [0,∞)→ EM−1(S×) : t �→ ϕv−t
(
σ(s)

)
. Using (30)

show that

lim
s→s∗+

(
p+(s)− p−(s)

)
= 2π and lim

s→s∗−

(
p+(s)− p−(s)

)
= 0. (31)
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We now give a geometric interpretation of the elevations p±(s). We say that two
integral curve of Xv on EM−1(S) are equivalent at ±∞ if they are asymptotic to
each other as t →±∞. An equivalence class is called an end at ±∞. Show that each
integral curve of Xv on EM−1(S) has exactly two ends, noting that because the flows
of the vector fields Xu and Xv on EM−1(S) define an affine structure on EM−1(s)
for each s ∈ S and distinct level sets of EM are disjoint, no distinct integral curves
of Xv on EM−1(S) are asymptotic to each other. Therefore the integral curve Γσ(s)
has exactly two ends p±(s∗±), which lie on the circle C± at ±∞ consisting of the
ends of the integral curves of Xv, which start on S̃. Since

Θ(s∗+)−Θ(s∗−) =
(

p+(s∗+)− p−(s∗+)
)− (

p+(s∗−)− p−(s∗−)
)
= 2π,

using (31), again we have shown that the scattering monodromy of the hyperbolic
oscillator is 2π .

e) The following argument shows that the scattering monodromy of the family s �→
Γσ(s) does not depend on the choice of the connection 1-form on the S1-principal
bundle ρ×. Let ψ be a connection 1-form on ρ× whose scattering phase on each
integral curve of Xv is uniformly bounded. Because the period of the 1-form i∗s (ψ −
θ) over every integral curve of Xu on EM−1(s) with s ∈ S vanishes, the 1-form
i∗s (ψ −θ) is exact, that is, there is a smooth function fs such that i∗s ψ = i∗s θ +d fs.
The function fs is S1-invariant and the mapping S× →C0(S×) : s �→ fs is continuous
and uniformly bounded. Show that the infinitesimal elevation of the curve Γσ(s)

with respect to i∗s ψ is di∗s ψ
dt = dθ

dt +
d fs
dt . This yields the scattering phase

Φ(s) =
∫ ∞

−∞
˙i∗s ψ dt =

∫ ∞

−∞
θ̇ dt +

∫ ∞

−∞
ḟs dt = Θ(s)+

(
fs(p+)− fs(p−)

)
.

Taking the limit as s → s∗±, using (31) and the fact that fs∗± is a continuous 2π
periodic function on the circle C− show that Φ(s∗+)−Φ(s∗−) = Θ(s∗+)−Θ(s∗−) =
2π , as desired.

f) Letting rmax → ∞ show that the hyperbolic circular billiard of §3 becomes the
hyperbolic oscillator. Taking the limit as Rmax → ∞ show that the rotation num-
ber of the circular billiard becomes the scattering angle of the oscillator. Give a
geometric argument which shows why the monodromy in the hyperbolic circular
billiard becomes the scattering monodromy in the hyperbolic oscillator.

g) Using Levi-Civita regularization, show that the two degree of freedom Kepler
problem for a repulsive gravitational potential becomes the hyperbolic harmonic
oscillator. Deduce that the 2-degree of freedom scattering Kepler problem has scat-
tering monodromy.

7. (Burke’s egg (poached).) The problem is the same as in the hyperbolic oscillator
except that we add a magnetic term to the symplectic structure. More explicitly, the
phase space of the problem is T ∗R2 with coordinates (x1,x2,y1,y2) and symplectic
form Ω = (x2

1+x2
2)dx1∧dx2+dx1∧dy1+dx2∧dy2. The Hamiltonian is H(x,y) =

1
2

(
y2

1 + y2
2
)− (x2

1 + x2
2). Prove the following.

a) The problem is Liouville integrable.
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b) The origin is an isolated critical value of the energy momentum mapping.

c) The topology of the fiber of a regular value of the energy momentum mapping is
a 2-torus T 2. Show that every fiber of the energy momentum mapping is compact.
Show that the projection of every orbit of XH onto configuration space is bounded.

d) Show that the monodromy is nontrivial even though the topology of the energy
surfaces does not change when the value of the energy passes through 0.

8. (Focus-focus Morse lemma.) The focus-focus model is an integrable Hamiltonian
system on T ∗R2 with coordinates (x,y, px, py), symplectic form ω0 = dx∧ dpx +
dy∧dpy, and integrals q1 = xpx+ypy and q2 = xpy−ypx. The goal of this exercise
is to prove the focus-focus Morse lemma:

Let Ω be an open neighborhood of 0 in T ∗R2 = R4. For i = 1,2 suppose that
hi ∈C∞(Ω), where hi = qi + ri with ri ∈ O(2), that is, ri ∈C∞(Ω) and is flat to 2nd

order at 0. Then there is a local diffeomorphism Φ : (R4,0) → (R4,0), which is
near the identity, that is, Φ = id+O(1)2, such that Φ∗hi = qi for i = 1,2.

We need two preliminary results

a) For every u = (u1,u2) ∈ C∞(Ω)2 with ui ∈ O(2) for i = 1,2, there is a smooth
vector field Y = Y (u) ∈ X (Ω) such that

〈(dq1,dq2) Y (u)〉= u. (32)

Here X (Ω) is the set of smooth vector fields on Ω. We outline the proof of (32).
Let Y = a ∂

∂x + b ∂
∂y + c ∂

∂ px
+ d ∂

∂ py
, where a,b,c,d ∈ C∞(Ω). A calculation shows

that (32) is equivalent to u = u1 + iu2 = αz2 +β z1, where α = a+ ib, β = c+ id,
z1 = x+ i y, and z2 = px + i py. Note that u = u(z1,z2,z1,z2) is a smooth complex
valued function near 0 and u(0) = 0. Consequently,

αz2 +β z1 +αz2 +β z1 = u+u = z2v2 + z1v1 + z2v2 + z1v1, (33)

for some smooth complex valued functions v1, v2 on Ω. Use Taylor’s theorem with
integral remainder and the fact that u(0) = 0 to prove the second equality in (33).
Set α = v2 and β = v1 solves (33). Then a = Rev2, b = −Imv2, c = Rev1, and
d = Imv1 solves (32).

b) Let A = Ψ◦dR, where R ∈ O(2). Here Ψ(u) = Y (u), where Y is the solution
of (32). Then for every t ∈ [0,1] the linear operator id− tA : X (Ω) → X (Ω) is
invertible for a suitable open neighborhood Ω of 0 in R4. The proof of this result
goes as follows. From the result a) and the fact that dR ∈ O(1) deduce that the
coefficients in the matrix of A with respect to the basis { ∂

∂x ,
∂
∂y ,

∂
∂ px

, ∂
∂ py

} are flat

at 0. For a suitable Ω deduce that supz∈Ω‖A(z)‖ < 1
2 . Conclude that id− tA is

invertible for all t ∈ [0,1].

c) (Proof of the focus-focus Morse lemma.) We use Moser’s path method to con-
struct the diffeomorphism Φ as the time 1 map of the flow ϕX

t of a time
dependent vector field X with time variable t ∈ [0,1]. Consider the interpolation
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Ht = (1− t)Q+ tH, where Q = (q1,q2) and H = (h1,h2). We want the vector field
X to satisfy

(ϕX
t )∗H = Q. (34)

Differentiating (34) with respect to t gives

0 = (ϕX
t )∗

[∂Ht

∂ t
+LXt Ht

]
, where Ht(x,y, px, py) =H (x,y, px, py, t) and

Xt(x,y, px, py) = X(x,y, px, py, t)

= (ϕX
t )∗

[−Q+H −Xt dHt
]
.

Thus we need to find an open neighborhood Ω of 0 in R4, where we can solve

dHt(Xt) = Q−H = R ∈ O(2). (35)

Let A = Ψ◦dR, where Ψ(u) = Y (u) is the vector field constructed in a). By b) we
can shrink Ω so that the operator id− tA : X (Ω) → X (Ω) is invertible for all
t ∈ [0,1]. For every V ∈ X (Ω) we have

dQ(A(V )) = dQ(Ψ(dR(V ))) = dR(V ). (36)

Let X(x,ξ , t) = (id− tA)−1Ψ(R). Justify each step in the following calculation.

d(Ht)(Xt) = dQ(Xt)− t dR(Xt) = dQ(Xt)− t dQ(A(Xt))

= dQ
(
(id− tA)X

)
= dQ

(
Ψ(R)

)
= R.

So Xt solves (35). Since Xt(0) = 0 we can shrink Ω so that the flow ϕX
t is defined

for every t ∈ [0,1]. Thus Φ = ϕX
1 = id+O(1)2 is a local diffeomorphism of (R4,0)

into itself. Moreover, Q = Φ∗H1 = Φ∗H, as desired.

9. (Monodromy and Seifert manifolds.) Consider the circle S1 defined by j2 +h2 = 1
4

in the image of the integral map F of the particle in a champagne bottle potential,
see exercise 2. Show that S1 lies in the set of regular values of F .

a) Show that F−1(S1) is a smooth compact connected orientable 3-manifold M3.

b)∗ Let π : V 2 → M3 → S1 be a bundle with fiber V 2 a compact orientable surface
of genus g, total space M3 a compact orientable 3-manifold and base space a circle
S1. Let A be the 2g×2g matrix induced on H1(M3,Z) by the monodromy map of
the bundle. Show that H1(V 2,Z) is isomorphic to Z⊕ coker(A− I). When π is
the bundle V 2 → M3 F→ S1 with F the energy momentum map given in exercise 2,
show that V 2 is diffeomorphic to a 2-torus.

c)∗ Show that the flow of the angular momentum vector field in exercise 2 allows
one to realize F−1(S1) as the total space M3 of a principal circle bundle ρ : S1 →
M3 �→W 2 with base space a smooth compact connected 2-manifold W 2. Show that
H1(W 2,Z) is isomorphic to Z/eZ⊕Z. Compute the Euler class e of the bundle
ρ . Show that W 2 is diffeomorphic to a 2-torus. Obtain this result using invariant
theory.

d) Identify M3 as a Siefert manifold.
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10. Give an example of a T 3-bundle π over S2 which is not trivial. Is there an integrable
Hamiltonian system on (T R3,ω), whose momentum mapping has 0 ∈ R3 as an
isolated critical value, which gives rise to the bundle π?

a)∗ Describe the image of the energy momentum mapping.

b)∗ Describe the topology of the fibers of the energy momentum mapping.

c)∗ Do global action angle coordinates exist for this problem?



Chapter XI

Basic Morse theory

In this chapter we give an introduction to basic Morse theory. We define the notion of
the Hessian of a smooth function at a critical point on a smooth manifold and show that
if it is nondegenerate then there are local coordinates in which the function is equal to
its second derivative. We also prove the Morse isotopy lemma which gives a criterion
when two suitable level sets of a smooth function are diffeomorphic. We conclude the
chapter by extending the notion of nondegenerate critical point to a nondegenerate critical
submanifold.

1 Preliminaries
In this section we review the concepts of a smooth function and a smooth manifold in Rn.
We show that if 0 is a regular value of a smooth function then its zero level set is a smooth
manifold. We prove the Lagrange multiplier criterion satisfied by the critical points of
a real valued smooth function restricted to a manifold which is a level set of a smooth
function.

Let U ⊆ Rm be an open set. The function f : U ⊆ Rm → Rk is smooth if for x ∈ U and
every n ∈ Z≥0, the nth derivative Dnf (x) of f at x exists. If V ⊆ Rm is a closed set,
then f : V ⊆ Rm → Rk is smooth if there is an open set U containing V and a smooth
function F : U ⊆ Rm → Rk such that F |V = f . A smooth function f : V ⊆ Rm → Rk is a
diffeomorphism if it is one to one and its inverse is smooth on f (V ).

A set M ⊆ Rn is a k-dimensional smooth manifold if for every m ∈ M there is an open
set U ⊆ Rn containing m and a diffeomorphism ϕ : U ∩M →V ⊆ Rk. The pair (U,ϕ) is
called a coordinate chart at m and the pair (V,ϕ−1) is called a local parametrization of
M at m.

Claim: Suppose that F : Rm × Rk → Rk is a smooth mapping with F(0,0) = 0 and
D2F(0,0) is an isomorphism. Then there is an open set U in Rm containing 0, an open
set V in Rk containing 0, and a smooth function g : U ⊆ Rm →V ⊆ Rk such that

F−1(0)∩ (U ×V ) = (grg)(U) =
{
(u,g(u)) ∈ Rm ×Rk u ∈U

}
.

� Springer Basel 2015
R.H. Cushman and L.M. Bates, Global Aspects of Classical
Integrable Systems, DOI 10.1007/978-3-0348-0918-4_11
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Here grg is the graph of g. Restated, the conclusion says that F(u,g(u)) = 0 for every
u ∈U , that is, locally F−1(0) is the graph of a smooth function.

(1.1) Proof: Define the mapping

H : Rm ×Rk → Rm ×Rk : (z,w) �→ (
z,F(z,w)

)
= (x,y).

Then H(0,0) = (0,0) and DH(x,y) =
(

I 0
D1F(x,y) D2F(x,y)

)
. Since D2F(0,0) is a linear

isomorphism, DH(0,0) is a linear isomorphism of Rm × Rk. By the inverse function
theorem, H is a local diffeomorphism of Rm ×Rk, that is, there is an open set U ′ in Rm

containing 0 and an open set V ′ in Rk containing 0 such that the open set U ′ ×V ′ is
mapped onto U ×V by H and on U ×V the function H has a smooth inverse. Let

π2 : Rm ×Rk → Rk : (x,y) �→ y

be projection on the second factor. By definition of H we have π2 ◦H(z,w) = F(z,w). For
(x,y) ∈U ×V the mapping H−1 is defined. Therefore y = π2(x,y) = F ◦H−1(x,y), where
H−1(x,y) = (z,w). In other words, after changing coordinates by H−1, the function F is
locally the projection π2. Write H−1(x,y) =

(
h1(x,y),h2(x,y)

)
. Using the definition of H

it follows that

(x,y) = H◦H−1(x,y) =
(

h1(x,y),F(h1(x,y),h2(x,y))
)
. (1)

Hence h1(x,y) = x ∈U . Setting y = 0 in (1) we obtain 0 = F
(

x,h2(x,0)
)

for every x ∈U .
Let g : U ⊆ Rm →V ⊆ Rk : u → h2(u,0). Then for every u ∈U we have F(u,g(u)) = 0,
that is, F−1(0)∩ (U ×V ) = grg. Since H−1 is differentiable, g is also. �

Corollary 1: If F : Rm+k → Rk is smooth with F(0) = 0 and DF(0) : Rm+k → Rk is
surjective, then near 0 the set F−1(0) is the graph of a smooth function.

Another way to state the conclusion of the above corollary is that the zero level set of F
near 0 is an m-dimensional manifold, if DF(0) is surjective.

Let F : Rm+k → Rk be a smooth mapping. If DF(x) is not surjective, then x is a critical
point of F . If for every x ∈ F−1(z), the derivative DF(x) is surjective, then z is a regular
value of F . Note that if z is not in the image of F , then z is a regular value. If z is not a
regular value, then z is a critical value of F .

Corollary 2: If z is a regular value of the smooth mapping F : Rm+k → Rk, then F−1(z)
is an m-dimensional manifold.

Example 1: Let f : R3 → R : (x,y,z) → x2 + y2 + z2 − 1. Then D f : R3 → (R3)∗ :
(x,y,z) �→ 2(x,y,z) is not surjective if and only if (x,y,z) = (0,0,0). But (0,0,0) ∈ f−1(0).
Thus 0 is a regular value of f . Hence f−1(0) is a 2-dimensional manifold called the unit
2-sphere. �

Example 2: Let O(n) be the set of all n× n real matrices A such that AAt = I. Then
O(n) is the set of all orthogonal matrices. We now show that O(n) is a smooth manifold.
Let F : gl(n,R) → Symn(R) : A �→ AAt − I, where Symn(R) is the set of all n× n real
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symmetric matrices. Differentiating F gives DF : gl(n,R)→ L
(

gl(n,R),Symn(R)
)

with
DF(A)B = ABt +BAt , where B ∈ gl(n,R). Suppose that F(A) = 0 and let C ∈ Symn(R).
Then B = 1

2CA solves the equation DF(A)B = C. Therefore, for every A ∈ F−1(0) the
derivative of F at A is surjective, that is, 0 is a regular value of the mapping F . Thus O(n)
is a manifold of dimension 1

2 n(n−1). �

Claim: Let g : Rm ×Rk → R be a smooth function and let 0 be a regular value of the
smooth function f : Rm ×Rk → Rk. If x ∈ f−1(0) is a critical point of g| f−1(0), then for
some linear function λ : Rk → R,

Dg(x)+λD f (x) = 0. (2)

(1.2) Proof: We assume that D2 f (x) is an isomorphism. Let ϕ : Rm → Rk be a smooth function
such that grϕ : U ⊆ Rm → f−1(0)∩ (U ×ϕ(U))⊆ Rm ×Rk with grϕ(0) = (0,ϕ(0)) = x
is a local parametrization of f−1(0) at x. Look at the function g ◦grϕ : U ⊆ Rm → R :
y �→ g(y,ϕ(y)). Because grϕ is a local diffeomorphism and Dg(x) is not surjective, the
function g◦grϕ has a critical point at 0, that is,

0 = D(g◦grϕ)(0) = D1g(0,ϕ(0))+D2g(0,ϕ(0))Dϕ(0) = D1g(x)+D2g(x)Dϕ(0). (3)

For every y ∈ U , we have f (y,ϕ(y)) = 0, which differentiated and evaluated at 0 gives
D1 f (x) +D2 f (x)Dϕ(0) = 0. But D2 f (x) is an isomorphism. So we obtain Dϕ(0) =
−(

D2 f (x)
)−1 ◦D1 f (x), which substituted into (3) gives

0 = D1g(x)− (
D2g(x) ◦(D2 f (x))−1)D1 f (x). (4)

Define a linear map λ : Rk → R, by λ = −D2g(x) ◦
(
D2 f (x)

)−1 called the Lagrange
multiplier. Then (4) and the definition of λ may be written as 0 = Dg(x) + λD f (x),
because

Dg(x)+λD f (x) =
(
D1g(x)+λD1 f (x),D2g(x)+λD2 f (x)

)
= (0,0). �

Example 3. Let ( , ) be the Euclidean inner product on Rn+1 and let S : Rn+1 → R : x �→
(x,x)−1. Because 0 is a regular value of S, the unit n-sphere Sn is the manifold S−1(0).
Consider the function Q : Rn+1 → R : x �→ (x,Ax), where A : Rn+1 → Rn+1 is linear and
symmetric, that is, for every y,z ∈ Rn+1, (y,Az) = (Ay,z). Because S−1(0) is compact,
Q|Sn has a critical point, say x. Using Lagrange multipliers ((1.2)), we find that x satisfies{

0 = DQ(x)−λDS(x)

0 = S(x).

Since DQ(x)h = 2(x,Ah) and DS(x)h = 2(x,h), we see that for every h ∈ Rn+1{
0 = (x,Ah)−λ (x,h) = ((A−λ )x,h)
0 = (x,x)−1,

which implies (A−λ )x = 0 and (x,x) = 1. Thus x is an eigenvector of A of unit length.
If x is a unit length eigenvector of A corresponding to a simple real eigenvalue λ , ±x is a
critical point of Q|Sn. More generally, if λ is an eigenvalue of A of geometric multiplicity
m+1 ≤ n+1, that is, the dimension of the space of eigenvectors Vλ corresponding to the
eigenvalue λ is m+1, then Q|Sn has a critical set which is a unit m-sphere Sm ⊆Vλ . �
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2 The Morse lemma
In this section, we prove the Morse lemma. We define the Hessian of a function on a
manifold at a critical point and give a formula for computing it using Lagrange multipliers.

Suppose that x is a critical point of a smooth function f : Rm → R. The Hessian of f at x
is the symmetric bilinear mapping D2 f (x) where D2 f : Rm → Symm(R) : x �→ ( ∂ 2 f

∂xi∂x j

)
. If

the m×m matrix D2 f (x) is invertible, then x is a nondegenerate critical point of f . If all
the critical points of f are nondegenerate, then f is a Morse function. We now prove the
Morse lemma.

Claim: Suppose that 0 is a nondegenerate critical point of a smooth function f : Rm → R
with f (0) = 0. Then there is an open set U ⊆ Rm with 0 ∈ U and a diffeomorphism
ϕ : U ⊆Rm →Rm with ϕ(0) = 0 such that f ◦ϕ−1(y) = 1

2 D2 f (0)(y,y) for every y∈ ϕ(U).

(2.2) Proof: We start by computing the Taylor series of f at 0 to second order with integral
remainder:

f (x) =
∫ 1

0

d
dt

f (tx) dt, by the fundamental theorem of calculus
and the fact that f (0) = 0

= − d
dt

f (tx)(1− t)
0

1
+

∫ 1

0
(1− t)

d2

dt2 f (tx) dt,

by partial integration

= D f (0)x+
(∫ 1

0
(1− t)D2 f (tx) dt

)
(x,x)

= B(x)(x,x),

where B(x) is the quadratic function
∫ 1

0 (1− t)D2 f (tx) dt. The last equality above follows
because D f (0) = 0. Note that B(0) = 1

2 D2 f (0) is invertible because 0 is a nondegenerate
critical point of the function f .

Let ϕ(x) = R(x)x, where R(x) is an m×m matrix depending smoothly on x such that
R(0) = I. We must determine R(x) so that

B(x)(x,x) = f (x) = B(0)
(
R(x)x,R(x)x

)
(5)

for all x in some open neighborhood U of 0. Towards this goal let

F : Rm ×gl(m,R)→ Symm(R) : (x,R) �→ RtB(0)R−B(x). (6)

Then F(0, I) = 0. Differentiating F with respect to R and evaluating at (0, I) gives
D2F(0, I)S= StB(0)+B(0)S. D2F(0, I) is surjective because for any given C ∈ Symm(R),
choose S = 1

2 B(0)−1C. We see that D2F(0, I)S =C. Therefore, by ((1.1)), there is an open
neighborhood U of 0 in Rm and a differentiable function R : U ⊆ Rm → gl(m,R) : x �→
R(x) with R(0) = I such that F(x,R(x)) = 0 for every x ∈U . Shrinking U , if needed, we
may assume that R(x) is invertible for every x ∈U . Thus ϕ is a diffeomorphism of U . �

Let M be a smooth manifold and F : M → R a smooth function. Suppose that p ∈ M is a
critical point of F . Define the Hessian of F at p as follows. Let ϕ : U ⊆ Rm → M with
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ϕ(0) = p be a local parametrization of M. Then the Hessian of F at p is the symmetric
bilinear form on the tangent space TpM given by

(HesspF)(vp,wp) = D2(F ◦ϕ)(0)(v,w) (7)

The curves t → ϕ(tv) and t → ϕ(tw) represent the tangent vectors vp and wp to M at p.

We now look at what happens to (7) when we change the local parametrization. Suppose
that ϕ̃ : U ⊆ Rm → M with ϕ̃(0) = p is another local parametrization for M. Let ψ =
ϕ−1 ◦ ϕ̃ . Then

D2(F ◦ ϕ̃)(0) = D2((F ◦ϕ)◦ψ
)
(0) = D

(
D(F ◦ϕ)(ψ(0)) ·Dψ(0)

)
= D2(F ◦ϕ)(ψ(0))

(
Dψ(0),Dψ(0)

)
+D(F ◦ϕ)(ψ(0)) ·D2ψ(0) (8)

= D2(F ◦ϕ)(0)
(
Dψ(0),Dψ(0)

)
,

where the second equality above follows by the chain rule, the third equality because ·
is bilinear and the last equality because ψ(0) = 0 and D(F ◦ϕ)(ψ(0)) = 0, since p is a
critical point of F . Thus

D2(F ◦ ϕ̃)(0)(v,w) = D2(F ◦ϕ)(0)
(

Dψ(0)v,Dψ(0)w
)
. (9)

Here the curves t → ϕ(t Dψ(0)v) and t → ϕ(t Dψ(0)w) represent the tangent vectors
vp and wp in the local parametrization ϕ̃ . From (9) we see that the invariants of the
Hessian such as its nondegeneracy (= its invertibility), its Morse index (= its number
of negative eigenvalues) and signature (= the difference of its number of positive and
negative eigenvalues), do not depend on the choice of parametrization.

Claim: Let 0 be a regular value of the smooth function f : Rn → Rk and suppose that
g : Rn → R is a smooth function. If x ∈ f−1(0) is a critical point of g| f−1(0) : f−1(0)⊆
Rn → R with Lagrange multiplier λ : Rk → R, that is,

Dg(x)+λ ◦D f (x) = 0, (10)

then the Hessian of g| f−1(0) at x is(
D2g(x)+λ ◦D2 f (x)

)
Tx f−1(0), (11)

where Tx
(

f−1(0)
)
= kerD f (x).

(2.3) Proof: Let ϕ : U ⊆ Rn−k → f−1(0) with ϕ(0) = x be a local parametrization of f−1(0)
at x. Then

D2(g ◦ϕ)(0) = D2g(x)
(
Dϕ(0),Dϕ(0)

)
+Dg(x)D2ϕ(0), (12)

using (8). Since ϕ is a local parametrization of f−1(0), for every y ∈U we have

λ ◦ f (ϕ(y)) = 0. (13)

Differentiating (13) twice and evaluating at 0 gives
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0 = D2((λ ◦ f ) ◦ϕ)(0)

= D2(λ ◦ f )(x)
(
Dϕ(0),Dϕ(0)

)
+D(λ ◦ f )(x)D2ϕ(0),

= D2(λ ◦ f )(x)
(
Dϕ(0),Dϕ(0)

)−Dg(x)D2ϕ(0). (14)

The second equality above follows from (8). Equation (14) follows because the map λ is
linear, which implies that D(λ ◦ f )(x) = λ ◦D f (x), and because of (10). Adding (12) and
(14) gives

D2(g ◦ϕ)(0)(v,w) = D2(g+λ ◦ f )(x)(Dϕ(0)v,Dϕ(0)w).

Since the linear map Dϕ(0) : T0Rn−k → Tx
(

f−1(0)
)

is an isomorphism, we obtain

Hessx g| f−1(0) = D2(g+λ ◦ f )(x) Tx
(

f−1(0)
)
. �

Example 3 (continued): From (11) it follows that the Hessian of Q|Sn at the critical point
x is (

D2Q(x)+λD2S(x)
)

kerDS(x) = 2(A−λ )| 〈x〉⊥,

where 〈x〉⊥ = {y ∈ Rn+1|(y,x) = 0}. Since ker(A−λ )| 〈x〉⊥ has dimension dimVλ −1, x
is a nondegenerate critical point of Q|Sn if and only if λ is a simple real eigenvalue of A.
Suppose that all the eigenvalues λi for i = 1, . . . ,n+ 1 of A are real and simple and that
λn+1 > λn > · · · > λ1. Let xi be unit eigenvectors corresponding to the eigenvalues λi.
The Hessian of Q|Sn at ±xi with respect to the basis {e1,e2, . . . êi, . . . ,en+1} is the n× n
matrix diag(λn+1 −λi, . . . ,λi+1 −λi, λi−1 −λi, . . . ,λ1 −λi), which is invertible and has
i− 1 negative eigenvalues. In other words, ±xi is a nondegenerate critical point of Q|Sn

of Morse index i−1. Hence Q|Sn is a Morse function with 2(n+1) critical points. �

Suppose that f : M ⊆ Rm → R is a smooth function with a critical set P which is a mani-
fold. We say that P is a nondegenerate critical manifold of f if

1. TpP ⊆ kerD2 f (p) for every p ∈ P.
2 D2 f (p)|NpP is nondegenerate for every p ∈ P, where NpP is any sub-

space of TpM such that TpM = TpP⊕NpP.

In other words, the tangent space to P at the point p is contained in the kernel of the
Hessian of f at p for every p∈P and the Hessian of f restricted to a normal space at p∈P
in M is nondegenerate. A smooth function whose critical set is made up of nondegenerate
critical submanifolds is called a Bott-Morse function.

Example 3 (continued). Suppose that λi is an eigenvalue of A of multiplicity m+ 1 <
n+ 1. List the eigenvalues of A in a nonincreasing order with a mulitiple eigenvalue
being listed as many times as its multiplicity. Then the m-sphere

{
x ∈ Rn+1 (A−λi)x =

0 and (x,x) = 1
}

is a critical manifold of Q|Sn. For x ∈ Sm let NxSm = Vλi
⊥. Then the

Hessian of Q|NxSm is the (n−m)× (n−m) matrix diag(λn+1 −λi, . . . ,λi+1 −λi, λi−1 −
λi, . . .λ1 − λi), which is invertible and has Morse index n−m− j where j is the first
occurrence of the eigenvalue λi. Therefore Sm is a nondegenerate critical submanifold of
Q. Hence Q is a Bott-Morse function on Sn. �
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3 The Morse isotopy lemma
In this section we prove the Morse isotopy lemma, which gives a useful criterion when
two regular level sets of a smooth function are diffeomorphic.

Claim: Let f : M → R be a proper smooth function. If [a,b] is a nonempty closed interval
contained in the set of regular values in the image of f , then f−1(a) is smoothly isotopic
to f−1(b), that is, there is a smooth one parameter family of diffeomorphisms ψ : [0,1]×
M →M such that for every t ∈ [0,1], ψt : f−1(a)→ f−1(a+t(b−a)) is a diffeomorphism.

(3.1) Proof: The idea of the proof is to push the level set f−1(a) to the level set f−1(b) along
the integral curves of the gradient vector field associated to f .

First we define the gradient vector field associated to f . Using a partition of unity, we
can define a smooth Riemannian metric 〈 , 〉 on the manifold M. Since the metric is
nondegenerate, the mapping 〈 , 〉� : TmM → T ∗

mM : vm �→ 〈vm, · 〉 is an isomorphism for
every m ∈ M. Making use 〈 , 〉� we convert the 1-form d f : M → T ∗M to a vector field
X f on M, called the gradient vector field associated to f . Explicitly, X f is defined by
d f (m)vm = 〈X f (m),vm〉 for every m ∈ M and vm ∈ TmM. Suppose that a is a regular value
of f . Then at every m ∈ f−1(a), we have X f (m) ∈ Tm

(
f−1(a)

)⊥. This follows because
a is a regular value of f implies that Tm f−1(a) = ker d f (m). Hence 0 = d f (m)vm =
〈X f (m),vm〉 for every vm ∈ Tm f−1(a).
Because f is a proper mapping, f−1([a,b]) = K is a compact subset of M. Since [a,b]
contains no critical values of f , the gradient vector field X f does not vanish on K. Let
X̃(m) = 〈X f (m),X f (m)〉−1X f (m). Let U be an open subset of M containing K whose
closure is compact. Using a partition of unity, there is a smooth function ρ : M → R,
which is 1 on K and 0 outside U . Consider the vector field X = ρX̃ . Since X is a smooth
vector field on M which vanishes outside a compact subset, it is complete, that is, its flow
ϕ : R×M → M is a one parameter group of diffeomorphisms of M. Now

d
dt

f (ϕt(m)) = d f (ϕt(m))X(ϕt(m)) = d f (ϕt(m))ρ(ϕt(m))X̃(ϕt(m)) = ρ(ϕt(m)). (15)

Suppose that ϕt(m) ∈ K, that is, f (ϕt(m)) ∈ [a,b]. From the definition of ρ it follows that

d
dt

f (ϕt(m)) = 1. (16)

Integrating (16) gives t �→ f (ϕt(m)) = t + f (m). Therefore ϕb−a : M → M is a diffeomor-
phism which maps f−1(a) onto f−1(b). Moreover

ψ : [0,1]×M → M : (t,m) �→ ϕa+t(b−a)(m)

is a smooth isotopy of f−1(a) onto f−1(b). �

We now apply the Morse lemma and the Morse isotopy lemma to prove a characterization
of the n-sphere.

Claim: Let M be a compact smooth n-dimensional manifold without a boundary. Suppose
that f is a Morse function on M with two critical points both of which are nondegenerate.
Then M is homeomorphic to the n-sphere Sn.
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(3.2) Proof: Let p± be the critical points of f . We may assume that f has a maximum value
c+ at the point p+ and a minimum value c− at the point p−. By the Morse lemma, there
are coordinates (x1, . . . ,xn) in an open neighborhood U+ of p+ with 0 corresponding to
p+ such that

f |U+(x1, . . . ,xn) = c+− x2
1 −·· ·− x2

n.

Thus there is a b < c+ such that f−1([b,c+]) = D+ is a neighborhood of p+ which is
diffeomorphic to a closed n-disk. Similarly, there is an a> c− such that f−1([c−,a]) =D−
is diffeomorphic to a closed n-disk containing p−. We may assume that a < b. Note that
∂D+ and ∂D− are diffeomorphic to an (n − 1)-sphere Sn−1. Because the function f
restricted to f−1([a,b]) is proper and has no critical values, it follows from the Morse
isotopy lemma that f−1([a,b]) is diffeomorphic to Sn−1 × [a,b].
Let Sn ⊆ Rn+1 be the standard unit n-sphere in Euclidean n+ 1-space with q± its north
and south poles respectively. Let V± be polar cap open neighborhoods of q± which are
diffeomorphic to open n-disks B±, respectively. Set C = Sn − (B+ ∪ B−). Then C is
diffeomorphic to Sn−1 × [0,1]. Note that ∂C = ∂B+ ∪ ∂B−. Let h0 : D+ → B+ be a
diffeomorphism of the closed n-disk. Extend the diffeomorphism h0|∂D+ : ∂D+ → ∂B+

of (n− 1)-spheres to a diffeomorphism h̃0 : ∂D+× [a,b]→ ∂B+× [0,1] of cylinders on
Sn−1. This gives rise to the diffeomorphism ĥ0 : f−1([a,b]) → C, which extends to a
diffeomorphism h1 : D+ ∪ f−1([a,b]) → B+ ∪C. Identify f−1(a) with Sn−1. Hence we
are left with extending the diffeomorphism h̃2 = h1| f−1(a) : f−1(a)→ ∂B− of Sn−1 into
itself to a homeomorphism h2 of the closed n-disk Dn to B− where ∂Dn

= Sn−1. This is
done by defining

h2(x) =
{

|x| h̃2(x/|x|), if x = 0
0, if x = 0.

The function h2 maps the radial segment [0,y] where y ∈ Sn−1 linearly onto the line seg-
ment [0, h̃2(y)] in Dn. The map h2 extends the diffeomorphism h1 to a homeomorphism
between M and Sn−1. �

The example of an exotic 7-sphere shows that it is not always possible to extend a diffeo-
morphism of a 7-sphere to a diffeomorphism of the 8-disk.

4 Exercise
1. a) Find a Morse function f on real projective 2-space RP2 with three critical points,

one of index 0, 1 and 2.

b) How many orbits of the gradient vector field of f join critical points of index 0 or
2 with critical points of index 1? Take a sphere in the local unstable manifold of the
critical point of index 1. Use the flow of the gradient vector field of f to transport
this sphere until it intersects a sphere in the local stable manifold of the critical
point of index 0. What is its intersection number? Answer a similar question for a
sphere in the local stable manifold of the critical point of index 1.

c)∗ Using ideas from b) find a decomposition of RP2 into cells together with the
degrees of their attaching maps. From this compute the cohomology ring of RP2

with integer coefficients.
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Foreword and introduction

page ix par. 3. three body problem. See for instance Xia [298] or [299].
page xv par. 5. three critical points. For a construction of a function on a two dimensional
torus with three critical points see Banchoff and Takens [18].

Harmonic oscillator

page 3 par. 2 energy momentum mapping. This program for analyzing the energy mo-
mentum mapping was started by Smale [252] who suggested that studying the regular
values was enough. The importance and physical significance of the critical values was
missed. Indeed by studying popular texts such as Goldstein [108] one realizes that many
physically interesting motions occur precisely at the critical values.
page 7 par. 1 quadratic integrals. Our treatment of the U(2)-momentum mapping follows
Cushman [55] and Cushman and Rod [68]. In [143] Jauch and Hill observed that in quan-
tum mechanics the degeneracy of the spectrum of the harmonic oscillator Hamiltonian is
due to the U(2) symmetry.
page 12 par. 2 Hopf mapping. Dulock and McIntosh in [89] observed that there was a
mapping from integral curves of the harmonic oscillator of a fixed energy onto a 2-sphere,
each point of which was on a unique such integral curve. They also noted that this orbit
map was the Hopf fibration.
page 13 par. 1 Hopf fibration. The first paper on the Hopf fibration is that of Hopf [134].
Our definition of the Hopf fibration differs from that defined by Hopf.
page 15 par. 1 linking number. There are many equivalent definitions of linking number.
For some, which are different from the one used in the text, see Milnor [200].
page 19 par. 2 classifying map. For the definition of the classifying map of a bundle with
base space a sphere, see Steenrod [266].
page 20 par. 3 invariant theory. Arnol’d [10] seems to be the first one to have seen
that a Hamiltonian invariant under the flow of the harmonic oscillator induces dynamics
on the reduced space which are given by a generalized Euler equation. See Cushman
and Rod [68] for a detailed treatment of reduction for such Hamiltonian functions. This
result is basic to studying perturbations of the harmonic oscillator. See the papers [52]
of Churchill, Kummer, and Rod, [130] of Henon and Heiles, [56] of Cushman, [154] of
Kummer, and [54] of Cotter.
page 21 par. 3 Claim ((5.2)). The proof that there is only one relation follows that of
Billera, Cushman and Sanders [40].
page 23 par. 3 prime ideal. For definitions of the terms from commutative algebra used
in this and the next paragraph see Hungerford [137].
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page 23 par. 2 Hilbert Nullstellensatz. For a proof of the Nullstellensatz see Mumford
[211].
page 23 par. 3 Schwarz. For a proof of Schwarz’ theorem on smooth invariants see
Schwarz [246] or Mather [195]. In Bierstone [39] one can find a transparent proof.
page 26 par. 0 linking number. This exercise is taken from Bott and Tu [45, p. 230].
page 27 par. 1 Hopf invariant. This exercise is taken from Bott and Tu [45, p. 228].
page 28 par. 0 Hopf invariant of Hopf map. This exercise is a modified version of one in
Bott and Tu [45, p. 238] .
page 30 par. 1 Fubini-Study. See Arnol’d [12, p. 343] for a derivation of the Fubini-Study
Hermitian metric on CPn−1.

Geodesics on S3

page 32 par. 3 constrained. Our discussion of constrained motion follows Moser [210]
and Dirac [84].
page 36 par. 0 dual pairs. The term dual pairs was introduced by Howe [136]. See Cush-
man and Sanders [72] for an example of the use of dual pairs in studying perturbations of
the geodesic flow on the 3-sphere. The subject of perturbations of the geodesic flow on
the 3-sphere has a vast literature being essentially the main topic of celestial mechanics,
see §4 of the text for an explanation of the relation between the Kepler problem and the
geodesic flow. A nice example is given in [58] by Cushman. Some classic references
are Delaunay [81], Hill [132], Lagrange [160], Poincaré [229], Levi-Civita [172] and
Birkhoff [41]. For a survey of normalization techniques in the study of perturbations of
the geodesic flow see Cushman [60].
page 40 par. 1 smooth function. This is the smooth analogue of the Hilbert Nullstellensatz
of algebraic geometry.
page 41 par. 7 Kepler’s problem. For Kepler’s treatment see [148]. For more modern
treatments see Guillemin and Sternberg [118] and Cordani [53]. A good historical study
of Kepler’s astronomical work may be found in Stephenson [267]. For Newton’s treatment
of the Kepler problem see his Principia [217] Book 1, paragraph 3, propositions XI, XII
and XIII.
page 43 par. 1 eccentricity vector. The term eccentricity vector is due to Duistermaat.
It is also called the Laplace-Runge-Lenz vector [162], but actually was discovered by J.
Hermann [131] and J. Bernoulli [34]. See Goldstein [109] for a historical discussion. The
eccentricity vector was first written down as a vector using quaternions by Hamilton [127]
in 1845.
page 48 par. 6 where on the orbit. Our discussion of where the particle is at a given time
on its elliptical orbit follows Pollard [232]. For another interesting treatment see Souriau
[264] who uses an integrated version of the equation defining the eccentric anomaly. This
reduces the integration of the Kepler problem to a four dimensional system of linear dif-
ferential equations.
page 51 par. 1 regularization. The process of removing the incompleteness of the flow
of the Kepler vector field has a long history. It begins with Levi-Civita [173, 174] in the
context of removing binary collisions in the restricted three body problem and is followed
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by the spinor regularization of Kustaanheimo and Stiefel [158]. In the text we use Moser’s
mapping [209], which is a modification of the tangent of the stereographic projection map,
to regularize the bounded Keplerian motion energy level by energy level. This works
because of a theorem of Hamilton [126]. Moser’s method is essentially the same as the
one used in quantum mechanics by Fock [103], Bargmann [20] and Pauli [226], which
explains the SO(4) symmetry in the spectrum of the hydrogen atom. See also Bander and
Itzykson [19], Bacry [17], and Iosifescu and Scutaru [140]. See Kaplan [147] for an early
discussion of the topology of the 2-body problem.
page 51 par. 2 virial group. A comprehensive discussion of the relation of the virial group
and Kepler’s third law may be found in Stephenson [267].
page 56 par. 2 regularization. Regularization of the Keplerian motion for all negative
energies at once was first done by Souriau [263] and independently by Ligon and Schaaf
[181]. See also Cushman and Duistermaat [62] and more recently Marle [190]. Our
discussion leans heavily on the paper of Heckman and de Laat [128].
page 69 par. 3 positive energy. Some references relating the Kepler problem to the
geodesic flow are Belbruno [33], Kummer [156], and Osipov [222].
page 70 par. 2 Hamilton’s theorem. The original proof of Hamilton’s theorem was given
by Hamilton [126] in 1847. Other proofs may be found in Milnor [201], Anosov [4], and
van Haandel and Heckman [279]. The observation [61] that the arc of the velocity circle
traced out by a hyperbolic motion subtends an angle equal to the scattering angle of the
hyperbola seems to be new.
page 74 par. 3 coadjoint orbit. We note that analogous formulæ (up to ± signs) hold for
the positive energy case as well as the case of a repulsive potential. When you get stuck
some good references to consult are Gyorgyi [123] and Souriau [264].
page 75 par. 3 Kustaanheimo-Stiefel. Our approach to Kustaanheimo-Stiefel regulariza-
tion of the Kepler problem follows the treatment of Kummer [157]. See also Kustaan-
heimo and Stiefel [158] , Baumgarte [32], and van der Meer [278].

Euler top

page 79 par. 2 Euler top. Euler [100] was the first to treat the motion of a force free rigid
body with one point fixed. We call this rigid body problem the Euler top. More modern
treatments can be found in Whittaker [291, p.144–155] and Pars [225, p.216–224].
page 79 par. 2 geodesics. The model of the Euler top as a geodesic flow of a left invariant
metric on the rotation group is due to Arnol’d [10]. This chapter can be considered as an
attempt to make his ideas explicit and provide more detail than Iacob [139]. For general-
izations of the Euler top to Lie groups other than the rotation group see Mischenko and
Fomenko [205].
page 82 par. 5 derivative of the exponential function. The proof of the formula for the
derivative of the exponential map is taken from Freudenthal and de Vries [104]. See also
Tuynman [275].
page 83 par. 0 solid ball model. We know of no good reference for the solid ball model of
the rotation group, even though every topologist knows it.
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page 85 par. 3 sphere bundle model. The structure of the sphere bundle model of the
rotation group as a Lie group is not the standard one of a closed subgroup of Gl(3).
page 88 par. 3 double covered. The fact that the bundle projection from the unit tangent
sphere bundle of the 2-sphere to the 2-sphere is double covered by the Hopf fibration is
vital for understanding the qualitative properties of the energy momentum mapping of the
Euler top.
page 95 par. 2 principal axes. The Lie theoretic meaning of the principal axis transforma-
tion seems to be new.
page 96 par. 2 Euler-Arnol’d. The derivation of the Euler-Arnol’d equations in the sphere
bundle model seems to be new.
page 112 par. 3 level sets of H. The picture in figure 5.2 of the foliation of a level set of
angular momentum by energy level sets is new.
page 114 par. 4 integrate. The integration of the Euler-Arnol’d equations, which describe
the motion of the Euler top in space, is usually done using Euler angles, see Whittaker
[291] or Pars [225]. A discussion of the various conventions used for matrices, angular
velocities, and Euler angles can be found in Synge [272]. When properly restricted, Euler
angles form a chart for the rotation group. At least three such charts are needed to form
an atlas for the rotation group. The trouble with the usual approach toward integrating
the Euler-Arnol’d equations is that it is not obvious which motions of the top are left out
when one uses only one chart. This difficulty is avoided when one uses the sphere bundle
model.
page 123 par. 0 herpolhode. The projected integral curve was called the herpolhode by
Poinsot [230]. It comes from the Greek word herpes meaning snake. Poinsot drew a pic-
ture of a snakelike herpolhode by which he meant coiled up like a snake. Routh [241, §9
p.472] gives a proof that the herpolhode has no inflection points for a physically realizable
Euler top. Thus the herpolhode is actually snakelike. Routh says that Darboux [78] was
the first to show this. Whittaker [291] leaves this as an exercise (# 29 on page 174) and
refers to Lecornu [165] for a short proof. The data used to compute the herpolhode in fig-
ure 7.1 is: the moments of inertia of the body are I1 = 1, I2 = 2, and I3 = 2.9; |�|= 1; the
initial pair of orhonormal vectors (x,y) =

( 1√
2
,0, 1√

2
,0,1,0

)
; the initial condition for Eu-

ler’s equations is (I−1
1 p1, I−1

2 p2, I−1
3 p3) =

( 1√
2
,0, 1

2.9
√

2

)
with energy h = .344; the Euler

period is 17, and the rotation number is 1.1666.
page 123 par. 0 second. This geometric interpretation of the rotation number is basi-
cally that given by Arnol’d [10] and Iacob [139]. They both overlooked the fact that two
isotropy orbits project onto a single boundary component of the annulus. Thus the rota-
tion number is the angle between every second point of contact of the projected integral
curve with a fixed boundary component of the annulus and not every point of contact.
page 125 par. 0 relation. This angle formula was first proved in Bates, Cushman, and
Savev [25]. Another angle theorem can be found in Goodman and Robinson [107]. There
is also an interesting account in Zhuravlev [302].
page 127 par. 1 twisting. This twisting phenomenon is well known to physicists, although
its first published explanation seems to be Ashbaugh, Chicone, and Cushman [15]. Our
exposition follows theirs quite closely, except we do not use Euler angles. The solid ball
model pictures in figure 8.2 are taken from Cushman and Hoveijn [66]. For a movie of
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the twisting tennis racket see Murrell [212].
page 130 par. 3 Jacobi elliptic functions. This exercise is taken from Tricomi [274].
page 131 par. 0 Euler’s equations. This exercise is taken from Lawden [164].
page 136 par. 0 geometric formula. The geometric formula for the rotation number has a
long pedigree. MacCullagh gave a geometric interpretation in [186] with a refinement in
[187]. The formula modulo 2π appears in Levi [175] and Montgomery [207]. A splitting
similar to the dynamic and geometric phase appears in Poinsot [230]. The text follows
Bates, Cushman, and Savev [25].
page 137 par. 0 phenomenon. This exercise is taken from Ashbaugh, Chicone, and Cush-
man [15].

Spherical pendulum

page 139 par. 139 spherical pendulum. According to Whittaker [291, p.104], the spher-
ical pendulum was first treated by Lagrange [159] and was first integrated using elliptic
functions by Jacobi [141] in 1839. This seems to overlook the fact that Huygens [138]
understood the relative equilibria many years earlier than 1673, when he published his
results about them. See the discussion in Yoder [300]. A modern analytic treatment of
the spherical pendulum can be found in Whittaker [291, p.104–105]. Nice pictures of the
orbits may be found in Webster [283].
page 142 par. 1 singular reduction. Arms, Cushman and Gotay [7] were the first to apply
the technique of singular reduction to the spherical pendulum.
page 143 par. 4 Claim ((2.3)). This claim is a special case of the general fact, see Poénaru
[228, p.20–21], that the orbit space of a linear action of a compact Lie group on some
Euclidean space is homeomorphic to the image of its Hilbert map.
page 146 par. 0 orbit space. The model of the zero level set of angular momentum as an
orbit space of a two element group on T S1 may be found in Lerman, Montgomery, and
Sjamaar [167].
page 146 par. 2 smooth functions. The use of subcartesian differential spaces in describing
the smooth functions, the Poisson structure, and vector fields on the singular reduced
space can be found in Śniatycki [255].
page 150 par. 1 energy momentum mapping. The geometry of the energy momentum
map follows the treatment in Duistermaat [86] and Cushman [57]. The relative equilibria
were found by Huygens [138]. The importance of their orientation on the different con-
nected components of the set of relative equilibria was noted by Heckman [129]. For a
description of the closed orbits on regular tori see Emch [99].
page 165 par. 1 level set. The fact that the 1-level set of the energy is a topological 3-
sphere is seems to be new.
page 172 par. 0 Hartog’s theorem. For a proof of Hartog’s theorem see Gunning [120,
p.15].
page 176 par. 2 monodromy map. We give three proofs for the existence of monodromy
for the spherical pendulum. The first one due to Cushman [57] only shows that the mon-
odromy is nontrivial. An analytic one due to Duistermaat [86] and a geometric one due
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to Heckman [129] compute the monodromy matrix. For another proof using Picard Lef-
schetz techniques see Zou [303]. Monodromy is a topological phenomenon which was
classically unknown. Presumably this is a consequence of the linguistic curiosity that
notions of global geometry require the language of modern geometry. Monodromy can
not be observed experimentally by examining a single trajectory of the spherical pendu-
lum, since it is a property of the way in which trajectories fit together. It can be observed in
a series of experiments where the angular momentum and energy vary along a loop in the
energy angular momentum plane which encloses the isolated critical value (h, j) = (1,0).
One sees the monodromy as the increase in the angle θ(h, j) by 2π . See Gavrilov [106]
and Beukers and Cushman [37] for a complex analytic treatment of monodromy. In [119]
Guillemin and Uribe give a spectral treatment of monodromy.
page 182 par. 2 Weierstrass. For more details about Weierstrass elliptic functions see
Whittaker and Watson [292].
page 184 par. 2 formula. The text follows closely the unpublished manuscript [36] of
Beukers.
page 186 par. 2 Whittaker’s formula. Formula (15) differs from the formula given by
Whittaker in [291, p.106] (where � = g = h = 1 and a = λ , b = μ) because we have
chosen a different complex square root and a different inverse for ℘.
page 186 par. 3 rotation number. The inequality 1

2 < θ(h, �)/2π < 1 for the rotation
number in the spherical pendulum was first proved by Puiseux in [234]. Our proof of
θ(h, �)< 2π follows that of M.-A. de Saint-Germain [244], which in turn is based on an
idea of Hadamard [124]. Our proof of θ(h, �)> π follows that of Alex Weinstein [284].
page 188 par. 2 coordinates. This theorem is due to Horozov [135] and was unknown
classically. Our proof follows his with some modifications.
page 188 par. 3 polar coordinates. For a discussion of the global properties of Horozov’s
mapping, see Cushman and Sniatycki [75].
page 190 par. 0 properties. For an idea how to prove i) see Cushman and Sanders [71].

Lagrange top

page 193 par. 0 Lagrange top. The Lagrange top was studied by Lagrange [159, p.261].
Since then studies of the top are a legion. Some standard works are Golubev [110],
Leimanis [166], Routh [241], and Klein and Sommerfeld [150]. Whittaker [291, p.155–
63] gives a very analytic treatment. Goldstein [108] has a nice (but incomplete) qualitative
treatment. Pars [225, p.113–117;152–57] has a thorough discussion which is a mixture of
analysis and qualitative argument. See also [235] by Ratiu and van Moerbeke.
page 202 par. 3 magnetic spherical pendulum. The fact that reducing the right S1 ac-
tion for the Lagrange top leads to the magnetic spherical pendulum was first shown by
Novikov [219, p.30–31]. The identification of the symplectic form of the reduced La-
grange top as the standard symplectic form on T S2 plus a magnetic term is a special case
of the cotangent reduction theorem of Kummer [155]. This theorem does not provide an
explicit expression for the equivalence mapping.
page 205 par. 3 Hamiltonian system. Our treatment of the reduction of the Lagrange
top to a system with one degree of freedom follows the treatment of reduction of the S1

symmetry of the magnetic spherical pendulum given by Bates and Cushman [23].
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page 210 par. 3 tangent cone. For the definition of the tangent cone to an algebraic variety
see Brieskorn and Knörrer [47].
page 235 par. 5 motion of the axis. A proof that the classification of the possible motions
of the axis is complete does not seem to be available in the classical literature on tops
and gyroscopes. Many authors such as Goldstein [108] draw pictures sans supporting
arguments. Goldstein’s pictures do not give all the possibilities as Pars [225, p.152–57]
shows in figures 9b) - f) on page 157. See also Webster [283]. Deimel [80, p. 84] cites
Hadamard [124] for the proof of the nonexistence of a downward loop. Deimel’s physical
argument for the nonexistence of downward cusps is too soft for us.
page 239 par. 2 blow up map. For more details on the geometry of the blow up map see
Brieskorn and Knörrer [47, p. 486–89].
page 244 par. 4 rotation number. Our proof that the rotation number is positive follows
that of Hadamard [124].
page 248 par. 3 reconstructing the topology. The reconstruction of the topology of the
singular energy momentum level sets is new. It completes the analysis of Iacob [139] and
Tatarinov [273].
page 260 par. 4 discriminant of cubic and quartic. For the proofs of these facts about
discriminants see Brieskorn and Knörrer [47, p.186–190].
page 260 par. 8 swallowtail surface. For more information about the swallowtail sur-
face see Poston and Stewart [233]. Our discriminant locus consists of the real points of
the complex discriminant and is not the locus of multiple real roots of the real quartic.
This means that our swallowtail surface has a whisker of multiple purely imaginary roots
whereas the locus of multiple real roots does not.
page 260 par. 8 monodromy. The fact that the energy momentum map of the Lagrange top
has monodromy was first proved in Cushman and Knörrer [67].
page 268 par. 3 gyroscopically stabilized. See Klein and Sommerfeld [150] for a discus-
sion of gyroscopic stabilization.
page 269 par. 5 Linearizing. A complete linear analysis of gyroscopic stability can not be
found in such classical sources as Routh [241] or Webster [283], because the necessary
symplectic linear algebra was not known until 1937, see Williamson [293].
page 270 par. 3 normal form. For more details on normal forms for real infinitesimally
symplectic linear maps see Burgoyne and Cushman [49] and [50].
page 271 par. 3 smooth normal form. Arnol’d in [11] introduced the concept of smooth
(versal) normal form for a smooth family of matrices.
page 273 par. 2 Hamiltonian Hopf bifurcation. Guillemin [115] observed that there was
a Hamiltonian Hopf bifurcation in the Lagrange top. His unpublished notes inspired the
treatment in Cushman and van der Meer [76]. For a full treatment of the Hamiltonian
Hopf bifurcation see van der Meer [276].
page 275 par. 4 Poincaré lemma. Our proof of the Poincaré lemma follows Duistermaat
[85].
page 279 par. 3 explanation. For a complete explanation of how the cusp becomes a
swallowtail see van der Meer [277].
page 279 par. 6 Lift. This exercise is due to E. Lerman [168].
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page 279 par. 9 goal. This exercise is due to E. Lerman [169].

Fundamental Concepts

page 284 par. 3 Witt. In [296] Witt proved the Witt decomposition for symmetric bilinear
forms. Artin [14, p. 120-1] noted that Witt’s proof also works for symplectic forms.
page 285 par. 3 symplectic manifold. It is a vexing historical question trying to answer
who was the first to recognize explicitly that symplectic geometry was the basic under-
lying mathematical structure in Hamiltonian mechanics. For linear Hamiltonian systems
the credit seems due to Wintner [295]. For nonlinear Hamiltonian systems the question
is not so easily answered. The earliest paper we know of, which gives a modern defini-
tion of a Hamiltonian vector field as a differential operator, is by Slebodzinski [251]. In
[51] Cartan gives a modern treatment of Hamilton’s equations from the variational point
of view. Even though he used exterior differential calculus, there is no mention of the
symplectic structure of phase space. Later, symplectic structures were studied by Ehres-
mann and his school: Libermann [97, 176], Gallissot [105], Lichnerowicz [178], Souriau
[258] and Reeb [238], [239], [240]. The term “symplectic geometry” seems to have been
coined by Souriau [259] . All this activity did not bring symplectic geometry and its re-
lation to mechanics to the attention of the working mathematician. Mackey [188] makes
it clear that the symplectic formulation of mechanics was “understood” by 1963. This
formulation was used extensively by Sternberg in his 1964 book [269]. In a widely cir-
culated but unpublished letter in 1965 Palais [224] explained the symplectic formulation
of Hamiltonian mechanics. Shortly after this the classic books by Abraham and Mars-
den [1], Arnol’d [12] and Souriau [262] appeared popularizing the symplectic geometric
treatment of mechanics. See also Moser’s memoir [208].
page 285 par. 7 symplectic structure. Lagrange [159] was the first to use the symplectic
form in mechanics. In his case, the form was pulled back to the tangent bundle. He also
proved its invariance under the flow of the Hamiltonian vector field. This was pointed
out to us by J. Duistermaat. The symplectic form on a coadjoint orbit is often called
the Kostant-Kirillov-Souriau form after Kostant [153], Kirillov [149] and Souriau [262].
However, it was discovered by Lie [180].
page 286 par. 1 Let X . The proof in the text of the nondegeneracy of the canonical 2-form
is due to J. Rawnsley [236].
page 288 par. 2 symplectic form. The symplectic form on the left trivialization of the
cotangent bundle of a Lie group is a basic formula of Hamiltonian mechanics.
page 290 par. 4 Hamiltonian vector field. Lagrange [159] was the first one to write down
Hamilton’s equations for Hamiltonians of the form kinetic plus potential. He also wrote
the equations of motion for perturbations of the Kepler problem in Hamiltonian form.
However, he did not write down Hamilton’s equations for a general Hamiltonian. For an
interesting discussion of this see Weinstein [286]. Poisson [231, p.343] wrote down the
action corresponding to a Lagrangian and then obtained one half of Hamilton’s equations.
Hamilton [125] wrote the equations of motion in Hamiltonian form.
page 291 par. 1 geodesic vector field. Our derivation of the equations satisfied by the
integral curves of the geodesic vector field follows Lang [161]. See also Besse [35].
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page 292 par. 1 Christoffel symbol. For more details on the Christoffel symbols see Spivak
[265].
page 297 par. 1 Poisson bracket. Poisson brackets were first written down by Poisson in
[231, p.266]. Again it was Lie [180] who discovered that they gave a Lie algebra structure
on the space of smooth functions.
page 298 par. 1 because. Our proof follows that of Duistermaat [85].
page 298 par. 2 structure tensor. The fact that the closedness of the 2-form ω is equivalent
to the Jacobi identity was observed by Jost [144].
page 298 par. 5 Poisson manifold. The term “Poisson manifold” is due to Lichnerowicz
[179]. Weinstein proved most of their basic properties in [287] and [289]. The concept
of a Poisson manifold is due to Lie [180, section 62 volume 2]. For a discussion of Lie’s
contributions to symplectic geometry see Weinstein [288] and Bloch and Ratiu [42].
page 300 par. 1 continue the argument. The purely local character of this result was
established by Gromov [114].
page 300 par. 3 Claim ((4.8)). This result is called Darboux’s theorem after Darboux [77],
even though it was known to Liouville. For a discussion of this see Lützen [185]. Our
proof follows that of Arnol’d [12] and Weinstein [287].
page 303 par. 3 identity. Actually the requirement that c is a regular value of the constraint
mapping C is not needed to show that the Dirac bracket satisfies the Jacobi identity. It is
only necessary that the matrix C is invertible for every n ∈ C−1(0). For details we refer
to Dirac [84].

Systems with symmetry

page 305 par. 5 closed subgroup. For a proof of the fact that a closed subgroup of a Lie
group is itself a Lie group, see Adams [2].
page 306 par. 7 linearizability. The local linearizablity of a proper action is called Bochner’s
lemma, see Bochner [43].
page 307 par. 3 slice. In [223] Palais proved the slice theorem. Our definition of a slice is
slightly different from Palais’. Our proof follows that of Duistermaat and Kolk [88].
page 309 par. 4 local finiteness. Our proof of the local finiteness of the orbit type decom-
position follows Palais [223].
page 311 par. 7 partition of unity. The proof of the existence of a G-invariant partition of
unity subordinate to a G-invariant open covering follows that given in Palais [223].
page 313 par. 5 free and proper. The proof that the orbit space of a proper free action is a
smooth manifold follows along the lines of Duistermaat and Kolk [88].
page 315 par. 3 principal G-bundle. For another definition see Steenrod [266].
page 318 par. 2 differential space. The concept of a differential space is due to Sikorski
[248]. See also Śniatycki [255].
page 318 par. 5 differential structure. Sikorski [248] defined the differential structure
C∞(P) as a family of functions satisfying point 2 of the definition. He used point 1 to
define a topology on P and imposed point 3 as a compatibility condition.
page 320 par. 2 Whitney extension theorem. This theorem was proved by Whitney in
[290].
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page 321 par. 4 submanifold. This result can be found in [64].
page 321 par. 11 orbit space. This result is due to Cushman and Śniatycki [74].
page 323 par. 1 diffeomorphic. This result is due to Cushman and Śniatycki [74].
page 327 par. 2 theorem of Schwarz. This result is due to Schwarz [246].
page 329 par. 5 primary stratification. This result is due to Bierstone [39].
page 330 par. 3 minimal. In [38] Bierstone shows that the stratification of the orbit space
of a proper action is minimal.
page 331 par. 1 vector field. The notion of a vector field on a locally compact differential
space is due to Śniatycki [254].
page 357 par. 8 stratified vector field. Schwarz [247] has shown that equality holds in
claim ((4.2)).
page 336 par. 1 momentum map. The notion of a momentum mapping goes back at least
to Lie [180]. In volume 2 he shows that the momentum map is canonical (page 300),
equivariant with respect to some linear action (page 329), and that its image is invariant
under the coadjoint action, provided that the rank of the momentum mapping is constant
(page 338). The momentum map was formally defined by Souriau in [260] who studied
its equivariance properties in [261]. Souriau discussed the momentum mapping at length
in [262] as did Kostant in [153, p.187]. For a historical discussion see Bloch and Ratiu
[42]. The French term of Souriau for momentum map is “moment”. Hence the alternative
English term “moment map”. The term “momentum mapping” seems to have been first
used by Cushman [55].
page 337 par. 6 integral. The fact that the G-momentum mapping of a G-invariant Hamil-
tonian is invariant under the flow of the Hamiltonian vector field is often called Noether’s
theorem because of [218].
page 338 par. 1 coadjoint equivariance. The coadjoint equivariance of the momentum
mapping was known to Lie [180, volume 2, chapter 20] but its importance for understand-
ing the topological structure of integral manifolds of mechanical systems was emphasized
by Smale [252].
page 341 par. 2 normal form. Our proof of the normal form of a momentum mapping
follows that given by Arms, Gotay and Jennings [8], which in turn is based on that of
Arms, Marsden, and Moncrief [9]. For other proofs see Marle [190] and Guillemin and
Sternberg [117].
page 344 par. 6 shifting trick. The proof of the global shifting trick for differential spaces
is due to Śniatycki [255].
page 345 par. 1 locally connected. The proof of the local shifting trick is standard and
seems to have first appeared in print in Guillemin and Sternberg [117]. However, it was
certainly “known” to experts before that. See the discussion at the end of Arms [5].
page 346 par. 4 regular reduction. The regular reduction theorem has a long history going
back to at least Jacobi [142] when he eliminated the node in the three body problem. The
modern global formulation is due to Meyer [197] and Marsden and Weinstein [194]. For
a sampling of other applications of regular reduction see Marsden and Ratiu [193] and
Marsden, Motgomery, and Ratiu [192].
page 346 par. 2 regular value. For another proof that if the isotropy group at μ acts locally
freely on J−1(μ) then μ is a regular value see Guillemin and Sternberg [117].

Notes



441

page 354 par. 4 nondegenerate. Our proof of the nondegeneracy of the Poisson bracket
follows Arms, Cushman and Gotay [7] and uses clarifications suggested by Lerman.
page 356 par. 6 singular reduction. The first paper on singular reduction was Arms, Mars-
den and Moncrief [9] who considered the singular reduced space as a set and studied its
decomposition into connected symplectic manifolds. Early papers and books on singular
reduction using only the fact that the group action is proper and Hamiltonian can be found
in Ratiu and Ortega [221], Śniatycki, Schwarz and Bates [256], and Bates and Lerman
[28]. A modern treatment using Sussmann’s theorem can be found in Śniatycki [255].
A discussion of singular reduction for a Hamiltonian action of a compact group can be
found in Sjamaar and Lerman [250]. The construction of a smoothness structure for the
singular reduced space and a Poisson bracket on its smooth functions was first given by
Arms, Cushman, and Gotay [7]. Our argument showing that the singular reduced space
is a locally compact subcartestian differential space follows Śniatycki [255]. Examples
using the technique of singular reduction (but with no proofs) had been given before the
appearance of [7] by Cushman [59] and van der Meer [276]. Recent articles with addi-
tional examples are Cushman [60], Cushman and Sjamaar [73] and Lerman, Montgomery,
and Sjamaar [167]. A rather complete survey and comparison of early theories of singular
reduction may be found in Arms, Gotay, and Jennings [8]. Of these early papers we note
the following: Śniatycki [253], Śniatycki and Weinstein [257], Gotay [111], Gotay and
Bos [113] Arms [6], Gotay [112], and Wilbour and Arms [294].
page 357 par. 8 reduced vector field. Our proof that the derivation corresponding to the
reduced Hamiltonian is a vector field uses the definition of a vector field on a locally
compact differential space due to Śniatycki [255].
page 366 par. 2 encoded. The result that the stratification of the singular reduced space is
determined by its Poisson structure is due to Sjamaar and Lerman [250]. Another proof
using Sussmann’s theorem [271] can be found in Śniatycki [255].

Ehresmann connections

page 373 par. 2 Ehresmann connection. For the idea of a fibration see Ehresmann’s paper
[95]. The basic notion of Ehresmann connection was defined by Ehresmann in [96]. We
follow the exposition of Zou [303]. It is amazing that no detailed arguments establishing
the basic properties of an Ehresmann connection are available in texts on differential
geometry.
page 373 par. 5 local horizontal lift. Our proof of the existence of a local horizontal lift
follows that indicated by Wolf in [297].
page 375 par. 5 parallel translation. Local parallel translation need not exist for every
Ehresmann connection. Some authors finesse this by making it part of the definition.
page 379 par. 2 trivialization theorem. The Ehresmann trivialization theorem is a special
case of the basic property of bundles called covering homotopy theorem, which is due to
Steenrod [266].
page 381 par. 5 holonomy. This formula is due to Schlesinger [245] although it is often
credited to Ambrose and Singer [3].
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Action angle coordinates

page 385 par. 2 Liouville integrable. The earliest version of this theorem appears in
Jacobi [141, p. 252] in the sense that n independent commuting integrals provide a com-
plete solution to the Hamilton-Jacobi equation and thus would reduce the integration of
Hamilton’s equations to quadratures. This is a purely local procedure. Early authors
did not discuss tori, although ones sees quasiperiodic motions in the special cases they
treated. Jacobi’s result was rediscovered by Liouville [182]. For a more detailed dis-
cussion of this see Lützen [185]. Mineur [202, 203] seems to be the first to have given
a modern statement of the action angle coordinate theorem, which formulated the con-
clusion that in every integrable system, where the integral map has compact fibers, all
nearby solutions are quasiperiodic. Until Vu Ngoc pointed it out in [281], Mineur’s work
had been forgotten, see Miranda and Zung [204]. In 2009 J. Duistermaat noted that there
were some gaps in Mineur’s proofs. The first well known modern statement and proof of
the action angle coordinates theorem is due to Arnol’d and Avez [13]. Some hypotheses
in the theorem, equivalent to the openness of the set of compact components, the func-
tional independence of the actions and the exactness of the symplectic form were later
removed by Jost [145] as well as Markus and Meyer [189]. The proof of Markus and
Meyer was streamlined by Duistermaat [86] whose proof in turn was shortened by Bates
and Śniatycki [29]. Other proofs of varying degrees of completeness appear in Abra-
ham and Marsden [1], Audin [16], Guillemin and Sternberg [117] and Liebermann and
Marle [177]. For generalizations to integrable systems on Poisson manifolds, see [163] by
Laurent-Gengoux, Miranda, and Vanhaecke, to singular integrable systems may be found
in Eliasson [98], Knörrer [151, 152], and Vu Ngoc and Wacheux [282], and to partially
integrable systems see Nekhoroshev [213].
page 386 par. 2 Proof. Our proof of the existence of local action angle coordinates follows
Bates and Śniatycki [29] with a bit more detail.
page 388 par. 3 de Rham’s theorem. For a proof see de Rham [79].
page 390 par. 2 action-angle theorem. A proof of the theorem in this exercise can be
found in the paper [184] by Lukina, Takens, and Broer.

Monodromy

page 391 par. 2 obstructions. All the obstructions for finding global action angle coordi-
nates are described by Duistermaat in [86]. An example of the Chern class obstruction is
given in Bates [21].
page 391 par. 2 monodromy. Our treatment of the monodromy obstruction follows the
period lattice construction of Duistermaat [86]. A Čech approach has been given by
Bates [21]. There are many interesting Liouville integrable systems which have been
proved to have monodromy, namely, the spherical pendulum by Duistermaat [86] and
Cushman [57]; the Lagrange top by Cushman and Knörrer [67]; the Hamiltonian Hopf
bifurcation by van der Meer [276, p.83] and Duistermaat [87]; the champagne bottle by
Bates [22]; the magnetic spherical pendulum [23] by Bates and Cushman; the hydrogen
atom in orthogonal electric and magnetic fields by Cushman and Sadovskii [69, 70] and
by Efstathiou and Sadovskii [93]; the swing spring by Cushman, Dullin and Giacobbe
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[65]; a system of coupled angular momenta by Sadovskii and Zhilinskii [242]; and a spin
oscillator by Vu Ngoc and Pelayo [227]. The confluence of two focus-focus points has
been studied by Bates and Zou [31], see also Zou [303], and by Efstathiou in the quadratic
spherical pendulum [91]. The papers [82] by Delos, Dhont, Sadovskii, and Zhilinskii
and [102] by Fitch, Weidner, Parazzoli, Dullin, and Lewandowski, report experimental
verification of monodromy in certain specific Hamiltonian systems.
page 392 par. 1 bundle of period lattices. Because the transitition functions for the charts
of the bundle of period lattices are elements of Sl(n,Z) on the base B, we say that B has
an integer affine structure. This structure was studied by Zung in [304] and Kantonistova
in [146]. For an integrable system with monodromy the affine structure was interpreted
as a lattice defect by Zhilinskii in [301]. An affine model of the space of actions for a
Liouville integrable system was given by Bates and Fassò in [26].
page 393 par. 3 Geometric monodromy. The first proofs of the geometric monodromy
theorem given by Lerman and Umanskii [170, 171] and also by Matveev [196] did not
leave much of an impression. However, the one of Zung [305, 306] did. The argument
in the text follows that of Cushman and Duistermaat [63] except that it does not use the
hyperbolic linearization result [268] of Sternberg or the linearization lemma of Bochner
[43]. Instead it uses the focus-focus Morse lemma of Vu Ngoc and Wacheux [282] to
construct a Hamiltonian S1-action near the focus-focus point. This idea, due to Zung
[305], is crucial to our proof.
page 402 par. 3 hyperbolic billiard. The treatment of the hyperbolic billiard in the text
follows the article [82] of Delos, Dhont, Sadovskii, and Zhilinskii.
page 410 par. 2 champagne bottle. See Bates [22] for more details about the motion in
the champagne bottle potential.
page 410 par. 4 accumulation of tori. See [27] by Bates and Fassò for more details. For
more information about the definition and geometry of a superintegrable Hamiltonian
system see Fassò [101] and Dazord and Delzant [83].
page 411 par. 1 fractional monodromy. The first paper on fractional monodromy is [214]
by Nekhoroshev,, Sadovskii and Zhilinskii. Fuller details are given in [215]. An analytic
treatment of fractional monodromy for an integrable perturbation of the 1 : −2 resonant
oscillator can be found in [92] by Efstathiou, Cushman and Sadovskii. In [216] Nekhoro-
shev described fractional monodromy for an arbitrary resonance. A treatment of fractional
monodromy by Gauss-Manin connections is given in [270] by Sugny, Mardes̆ić, Pelletier,
Jehrane, and Jauslin. In the paper [48] by Broer, Efstathiou, and Lukina one can find the
first statement and proof of the geometric fractional monodromy theorem.
page 414 par. 1 quadratic spherical pendulum. For a detailed treatment of the quadratic
spherical pendulum see Efstathiou [91, p.87–111]. The notion of bidromy is due to
Sadovskii and Zhilinskii [243]. Our exercise follows the treatment in [94] of Efstathiou
and Sugny. Other relevant papers are [280] by de Verdière and Vu Ngoc and [304] by
Zung.
page 416 par. 1 scattering monodromy. This exercise is taken from the paper [24] of Bates
and Cushman.
page 416 par. 3 scattering angle. Our definition of the scattering angle differs from the
usual one given in physics, namely, the angle as measured from the incoming asymptote,
thought of as a ray from the origin, to the outgoing asymptote, see Synge [272, figure 18,
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p.73]. The problem with the usual definition of scattering angle is that it does not vary
continuously as a function of h and �; whereas using our definition it does.
page 418 par. 1 scattering Kepler problem. The fact that the two degree of freedom scat-
tering Kepler problem has scattering monodromy was observed by Dullin and Waalkens
in [90] who seemed to be unaware of [24].
page 419 par. 1 focus-focus Morse lemma. Except for section a, the proof in the text of
the focus-focus Morse lemma follows that of Vu Ngoc and Wacheux [282].
page 420 par. 3 Seifert manifold. See Orlik [220] and Montesinos [206] for more details.
page 420 par. 4 Euler class. See the paper [249] by Shastri and Zvengrowski.

Morse theory

page 424 par. 2 inverse function. For a proof of the inverse function theorem see Loomis
and Sternberg [183].
page 425 par. 9 claim ((1.2)). This claim is usually referred to as the Lagrange multiplier
theorem.
page 426 par. 3 Morse lemma. The proof we give here is attributed to Hörmander. For
other proofs see Milnor [199] and Weinstein [285].
page 428 par. 2 nondegenerate critical manifold. The definition of a nondegenerate criti-
cal manifold was given by Bott [44].
page 429 par. 6 Morse isotopy lemma. The proof of the Morse isotopy lemma follows that
given by Milnor in [199, p.12].
page 429 par. 4 one parameter group. For a proof of the existence of a flow for a vector
field see Loomis and Sternberg [183].
page 429 par. 7 two nondegenerate critical points. This result is attributed by Milnor
[199] to Reeb [237]. Our proof follows Hirsch [133, p.154–55].
page 430 par. 3 exotic 7-sphere. J. Milnor [198] gave an example of a 7-sphere which was
not diffeomorphic to the standard 7-sphere. E. Brieskorn [46] gives explicit polynomials
which give rise to every exotic 7-sphere.
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[248] R. Sikorski, Wstęp do geometrii różniczkowej [Introduction to differential geome-
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