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Preface to the Second Edition

The book Fundamentals of Semiconductor Lasers is a bridge between textbooks
and journal papers on laser diodes (LDs). In the second edition, misprints in the
first edition are corrected, and a multiple-layer model is added in Chap. 3 to
analyze antiguiding. Based on the multiple-layer model, the basics of antiguiding
and several journal papers on single horizontal transverse mode operations in LDs
with antiguiding structures are explained in Chap. 5. In Chap. 6, a journal letter on
single longitudinal mode operations in the first manufactured phase-shifted
DFB-LD is described. The entire manuscript was written using the Systéme
International d’Unités (SI). As a result, Appendix E in the second edition looks
rather more complicated than Appendix E in the first edition. It should be noted
that the manuscripts for the first edition were written in SI units except for
Appendix E, which was written in CGS Gaussian units to express wave equations
in simple formulas. In Appendix H, two definitions of photon density are com-
pared and the rate equations with each definition are derived in order to avoid
confusion when reading journal papers.

Finally, I am very grateful to Dr. Hisako Niko, Springer Japan, for providing an
opportunity for publication of the second edition.

Kusatsu, Japan Takahiro Numai
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Preface to the First Edition

Semiconductor lasers have been actively studied since the first laser oscillation in
1962. Through continuing efforts based on physics, characteristics of semicon-
ductor lasers have been extensively improved. As a result, they are now widely
used. For example, they are used as the light sources for bar-code readers, compact
disks (CDs), CD-ROMs, magneto-optical disks (MOs), digital video disks
(DVDs), DVD-ROMs, laser printers, lightwave communication systems, and
pumping sources of solid-state lasers. From these facts, it may be said that
semiconductor lasers are indispensable for our contemporary life.

This textbook explains the physics and fundamental characteristics of semi-
conductor lasers with regard to system applications. It is aimed at senior under-
graduates, graduate students, engineers, and researchers. The features of this book
are as follows:

1. The required knowledge to read this book is electromagnetism and introductory
quantum mechanics taught in undergraduate courses. After reading this book,
students will be able to understand journal papers on semiconductor lasers
without difficulty.

2. To solve problems in semiconductor lasers, sometimes opposite approaches are
adopted according to system applications. These approaches are compared and
explained.

3. In the research of semiconductor lasers, many ideas have been proposed and
tested. Some ideas persist, and others have faded out. These ideas are compared
and the key points of the persisting technologies are revealed.

4. The operating principles are often the same, although the structures seem to be
different. These common concepts are essential and important; they allow us to
deeply understand the physics of semiconductor lasers. Therefore, common
concepts are emphasized in several examples, which lead to both a qualitative
and a quantitative understanding of semiconductor lasers.

This book consists of two parts. The first part, Chapters 1-4 and reviews fun-
damental subjects such as the band structures of semiconductors, optical transitions,
optical waveguides, and optical resonators. Based on these fundamentals, the

ix



X Preface to the First Edition

second part, Chapters 5-8 explains semiconductor lasers. The operating principles
and basic characteristics of semiconductor lasers are discussed in Chapter 5 More
advanced topics, such as dynamic single-mode lasers, quantum well lasers, and
control of spontaneous emission, are described in Chapters 6-8.

Finally, the author would like to thank Professor emeritus of the University of
Tokyo, Koichi Shimoda (former professor at Keio University), Professor Kiyoji
Uehara of Keio University, Professor Tomoo Fujioka of Tokai University (former
professor at Keio University), and Professor Minoru Obara of Keio University for
their warm encouragement and precious advice since he was a student. He is also
indebted to NEC Corporation, where he started research on semiconductor lasers
soon after graduation from Keio University. Thanks are extended to the entire team
at Springer-Verlag, especially Mr. Frank Ganz, Mr. Frank McGuckin, Ms. Margaret
Mitchell, Mr. Timothy Taylor, and Dr. Hans Koelsch, for their kind help.

Kusatsu, Japan, September 2003 Takahiro Numai
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Chapter 1
Band Structures

1.1 Introduction

Optical transitions, such as the emission and absorption of light, are closely related
to the energies of electrons, as shown in Table 1.1. When electrons transit from high
energy states to lower ones, lights are emitted, and in the reverse process, lights are
absorbed. Note that nonradiative transitions, which do not emit lights, also exist when
electrons transit from high energy states to lower ones. Light emissions, however,
always accompany the transitions of electrons from high energy states to lower ones,
which are referred to as radiative transitions.

Let us consider electron energies, which are the bases of the optical transitions.
Figure 1.1 shows a relationship between atomic spacing and electron energies. When
the atomic spacing is large, such as in gases, the electron energies are discrete and the
energy levels are formed. With a decrease in the atomic spacing, the wave functions
of the electrons start to overlap. Therefore, the energy levels begin to split so as to
satisfy the Pauli exclusion principle. With an increase in the number of neighboring
atoms, the number of split energy levels is enhanced, and the energy differences in
the adjacent energy levels are reduced. In the semiconductor crystals, the number
of atoms per cubic centimeter is of the order of 1022, where the lattice constant is
approximately 0.5 nm and the atomic spacing is about 0.2 nm. As aresult, the spacing
of energy levels is of the order of 1018 V. This energy spacing is much smaller
than the bandgap, which is of the order of electron volts. Therefore, the constituent
energy levels, which are known as the energy bands, are considered to be almost
continuous.

© Springer Japan 2015 1
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Table 1.1 Relationship

- Energy of the electrons Optical transition
between electron energies and - —
optical transitions High — low Emission

Low — high Absorption
A
‘;\‘\‘\‘ 4N states
\\\ 0 electrons
8N states
4N electrons
6N states (2P)
2N electrons

Bandgap 2N states (2S)

2N electrons

Energy of Electrons

Cohesive energy

4N states
4N electrons

- Actual lattice constant

1 >

Atomic Spacing

Fig. 1.1 Relationship between atomic spacing and electron energies for the diamond structure with
N atoms

1.2 Bulk Structures

1.2.1 k- p Perturbation Theory

We study the band structures of the bulk semiconductors, in which constituent atoms
are periodically placed in a sufficiently long range compared with the lattice spacing.

Semiconductors have carriers, such as free electrons and holes, only in the vicinity
of the band edges. As aresult, we would like to know the band shapes and the effective
masses of the carriers near the band edges, and they often give us enough information
to understand fundamental characteristics of the optical transitions. When we focus
on the neighbor of the band edges, it is useful to employ the k - p perturbation theory
[1-4] whose wave vectors ks are near the band edge wave vector kg inside the
Brillouin zone. The wave functions and energies of the bands are calculated with
Ak = k — ko as a perturbation parameter. For brevity, we put kg = 0 in the
following.

The Schrodinger equation in the steady state is written as [5, 6]

h2
[—%Vz + V(r)] Ynk(r) = En(K)ur(r), (1.1)
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where i = h/2m = 1.0546 x 10734 s is Dirac’s constant, h = 6.6261 x 1073*J s
is Planck’s constant, m = 9.1094 x 1073! kg is the electron mass in a vacuum,
V (r) is a potential, Y,k (r) is a wave function, E, (k) is an energy eigenvalue, n is a
quantum number, and k is a wave vector. In the single crystals where the atoms are
placed periodically, the potential V (r) is spatially periodic. Therefore, as a solution
of (1.1), we can consider the Bloch function given by

Yk (r) = e *Tup (r), (1.2)
Unk(r) = g (r + R), (1.3)

where R is a vector indicating the periodicity of the crystal. The theorem that (1.2)
and (1.3) satisfy (1.1) is called the Bloch theorem, which indicates that the wave
function u,x(r) depends on the wave vector k and has the same periodicity as that
of the crystal. Substituting (1.2) into (1.1) results in

hZ
[—%Vz +V(r)+ H’} Un(r) = Ep (k) (r), (1.4
where
k> h
H = ——+ —k-p, (1.5)
2m m
p=—1ihvV. (1.6)

In the k- p perturbation theory, which is only valid for small k, we solve (1.4)
by regarding (1.5) as the perturbation. Note that the name of the k - p perturbation
stems from the second term on the right-hand side of (1.5).

When we consider the energy band with n = 0, the wave equation for the unper-
turbed state with k = 0 is expressed as

h2
[—%Vz + V(r):| uoo(r) = Eo(0)ugo(r). (1.7)

In the following, for simplicity, the wave function u, (r) and the energy E(0)
are represented as u, (k, r) and Ey, respectively.

At first, we consider a nondegenerate case, in which the energy of the state
n is always different from that of the other state n’ (# n). From the first-order
perturbation theory (see Appendix B), the wave function uq(k, r) is given by

R k-
wotk, 1) = up(0,r) + > /E':)_k;o"v'o) a0, (18)
a0 a

(a|V]0) = /ua*(O, r)Vuo(0, r)d’r, (1.9)
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where u, (k, r) is assumed to be an orthonormal function. Here, (| and |0) are the
bra vector and the ket vector, respectively, which were introduced by Dirac. In the
second-order perturbation theory, an energy eigenvalue is obtained as

2k n? (Ol pila)(clp,10)
E() = E S gk > T 1.10
() o+ 2m+m2izj:l/(§:‘) Eo — Eq (10

From (1.10), the reciprocal effective mass tensor is defined as

1 1 0’E 1 2 0|pi 10
(_) === 5ij+_ZM (1.11)
m ij R 8k,~8kj m a0 EO - Ea
With the help of (1.11), (1.10) reduces to
Ek) = Eo + N > DY ki, (1.12)
=Ly ) m y iKj- .

i,j

This equation includes the periodicity of the crystal (potential) in the mass of the
electron as the effective mass. This effective mass is useful to make analysis easier.
For example, in the quantum well (QW) structures, the electrons see both the periodic
potential of the crystal and the quantum well potential. If we express equations using
the effective mass, we have only to consider the quantum well potential, because
the periodic potential of the crystal is already included in the effective mass. This
approximation is referred to as the effective mass approximation.

In the following, we will consider the band structures of semiconductor crystals.
Most semiconductor crystals for semiconductor lasers have a zinc-blende structure,
in which the bottom of the conduction bands is s-orbital-like and the tops of the
valence bands are p-orbital-like. In zinc-blende or diamond structures, the atomic
bonds are formed via sp> hybrid orbitals as follows:

C:(2922p)* - 29)'2p)°

Si: (35)?(3p)? - (35)'3p)°

ZnS : Zn : (3d)'0(4s5)? — Zn>~ : 3d)'0(4s) (4 p)?
S 1 (35)2(3p)* — S 1 B9)'3Ep)}

Therefore, the wave functions for the electrons in the zinc-blende or diamond struc-
tures are expressed as superpositions of the s-orbital function and p-orbital functions.

Let us calculate the wave functions and energies of the bands in the zinc-blende
structures. We assume that both the bottom of the conduction band and the tops of
the valence bands are placed at k = 0, as in the direct transition semiconductors,
which will be elucidated in Sect.2.1. When the spin-orbit interaction is neglected,
the tops of the valence bands are threefold degenerate corresponding to the three
p-orbitals (py, py, p;). Here, the wave functions are written as


http://dx.doi.org/10.1007/978-4-431-55148-5_2
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the s-orbital function for the bottom of the conduction band : u,(r),
the p-orbital functions for the tops of the valence bands :
uy =xf(r), uy=yf(r), u; =zf(r), f(r):aspherical function.

When the energy bands are degenerate, a perturbed wave equation is given by a
linear superposition of us(r) and u; (r) (j = x,y, z) as

uy(k,r) = Aug(r) + Buy(r) + Cuy(r) + Du,(r), (1.13)

where A, B, C, and D are coefficients.
To obtain the energy eigenvalues, we rewrite (1.4) as

h2 2k2
[——V2 + V) + Hé} un(k,r) = [En(k) - ] un(k,r), (1.14)
2m 2m
P52
Hé=ﬁk-p=—ik-v. (1.15)
m m

Note that the unperturbed equation is obtained by setting k = 0 in (1.14), where
E,(0) = E. and ug(0, r) = uy(r) for the conduction band, while E, (0) = E, and
uo(0,r) = u;(r) (j = x, y, z) for the valence bands. Here, E. is the energy of the
bottom of the conduction band, and Ey is the energy of the tops of the valence bands.

Substituting (1.13) into (1.14); multiplying u;*(r), u,*(r), uy*(r), and u;*(r)
from the left-hand side; and then integrating with respect to a volume over the space
leads to

(Hys + Ec — NA+H, B+ H,,C+H,.D=0,

s. sy

HiA+ (Hyy + Ev — M)B + M, ,C +H, D =0,

Hy A+ H, B + (M), + Ey — NC +H|,.D =0, (1.16)
Mo A+ H., B+ H,C + (M., + Ey — \)D =0,
where
Hij = (wilHyluj) = wi* (MY Hyu ; (N drG, j = s, x,y, 2),
1.17)
h2k? (
A=E,(k) — —
2m

Note that the orthonormality of u(r) and u;(r) (j = x, y, z) were used to derive
(1.16).

In (1.16), only when the determinant for the coefficients A, B, C, and D is zero,
we have solutions A, B, C, and D otherthan A = B = C = D = 0. From (1.16)
and (1.17), the determinant is given by
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Pk, 0 E,—)\ =0 (1.18)
P*k, 0 0 Ey—2\
h? Oou; h? 0
p= —i—/us*ﬁd%, P*:—i—/uj* % 3y (1.19)
m Or; m Or;

(J=x,9.2, rx=Xx, ry=Yy, Ir;=2).

The solutions of (1.18) are obtained as

E.+E, R Ee—EN 5"
Eipk) = —5—+ 5 -+ > + k2| P| , (1.20)
h2k?
E34(k) = Ey + —, (1.21)
2m

where (1.17) was used. Figure 1.2 shows the calculated results of (1.20) and (1.21).
It should be noted that the spin-orbit interaction has been neglected and only the
first-order perturbation has been included to derive these equations.

1.2.2 Spin-Orbit Interaction

We consider the band structures by introducing the spin-orbit interaction and the
second-order perturbation. First, let us treat the spin-orbit interaction semiclassically.
As shown in Fig. 1.3, the electron with the electric charge —e = —1.6022 x 10717 C
rotates about the nucleus with the electric charge +Ze. The velocity of the electron
is v, and the distance between the electron and the nucleus is |r|.

If the origin of the reference system is placed at the electron, the nucleus seems
to rotate about the electron with the velocity —v. As a result, due to Biot-Savart’s
law, a magnetic flux density B is produced at the electron, which is written as

Fig. 1.2 Energy of the E
conduction and valence \/
bands. Here, only the N Conduction band
first-order perturbation is E ¢
included; the spin-orbit e
. o Ey
interaction is neglected L k
0
Doubly Valence bands

degenerated
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1o rxv o Ze 1l
B =—1Ze =— — =1
47 3 4r m r3

(1.22)

Here, po is magnetic permeability in a vacuum, and [ is the orbital angular
momentum given by
l=rxp=rxmv. (1.23)

The spin magnetic moment i is expressed as
Hg=——8§=——5, (1.24)
where s is the spin angular momentum and g is the Bohr magneton defined as
eh —24 2
B = = 9.2740 x 10" Am~. (1.25)

As aresult, the interaction energy Hso between the spin magnetic moment pg and
the magnetic flux density B is obtained as

by
Hso=——5 —=1-s, (1.27)

which is half of (1.26). As explained earlier, the spin-orbit interaction generates a
magnetic field at the electron due to the orbital motions of the nucleus, and this field
interacts with the electron’s spin magnetic moment.

Introducing Pauli’s spin matrices o such as

s = 50’, (1.28)

01 0 —i 10
Ux:|:10]’ O'y=|:i Oi|, UZ:[O—I]’ (1.29)

we can write the spin-orbit interaction Hamiltonian Hso as

Fig. 1.3 Motions of the

electron O ~¢
Electron

Nucleus
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Hso=—— —=1-0. (1.30)

If we express the up-spin 1 (s; = h/2) as « and the down-spin | (s, = —h/2)
as 3, they are written in matrix form as

=[] =[] i

Using « and 3, we obtain the following relations:
o,a=aq, o,0=-—0. (1.32)

To treat the spin-orbit interaction, it is convenient to use the spherical polar
coordinate systems. Therefore, we rewrite the spin-orbit interaction Hamiltonian

Hso as
h h lio_+Il_o
Hso=5 &M 10 =2 &) Lo+ ———T), (1.33)
2 2 2
where
o Ze* 1
&) 47 2m? r3
Iy =L +il,, [-=I—il,, (1.34)
oy =0y +ioy, 0 =0y —1ioy.

When this Hgo is added to the perturbation term, the wave equation (1.14) is modified
as

272

2m

2
|:—2h—mV2 + V() +Hy+ Hso] u,(k,ry = |:En(k) -

i| up(k,r). (1.35)

It should be noted that I operates on e*7 in the Bloch function, but this operation
is neglected because the result is much smaller than the other terms.
To solve (1.35), itis useful to represent the wave functions u,, (k, r) in the spherical

polar coordinate systems such as

Us = Uy, )
Ux +1uy X+1y

u - ’
* V2 V2
Uy —iuy Nx—iy

V2 V2

(1.36)

u_ —=

u; ~ z.
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In (1.36), the spherical function f(r) is omitted after ~ to simplify expressions.
Note that \/i in the denominators is introduced to normalize the wave functions.
Using the spherical harmonic function Y;", the wave functions u, u_, and u, are
also expressed as

wo—yl= L3 xHiy 13 g
TN T Vo ey 2 2Vor ’

3 — 1 /3 _;
22ty 13 cegng (1.37)
27T /X _|_y +Z 2 27T
1 3 1 /3
“z—Yl = — = —./—cos0,
2 7T‘/ +y +Z 2 s

where x = rsinf cos ¢, y = rsinfsin ¢, and z = r cos 6.
When we consider the up- and down-spins « and 3, we have eight wave functions
as follows:
use, ugf, Uy, uyf, uza, uf, u_o, u_p.

Therefore, we have to calculate the elements of the 8 x 8 matrix to obtain the energy
eigenvalues from (1.35).
For brevity, we assume that k is directed in the z-direction and put

k; =k, ke =ky,=0. (1.38)
In this case, however, we have only to solve the determinant for the 4 x 4 matrix on

(usar, uy B, uza, u_Q)or (ugf, u_«, u;3, usa) because of the symmetry in the
8 x 8 matrix. This determinant for the 4 x 4 matrix is written as

E.— )\ 0 Pk 0
Ao V2
0 Ey—\— TO %Ao 0
/2 =0, (1.39)
P*k TAO Ey — A 0
Ao
0 0 0 E, — A+ T

where the terms including Ag are the matrix elements of Hgop, and the other terms
are those of ;. Here, using £(r) in (1.34), Ay is defined as
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Fig. 1.4 Energy bands when E
the spin-orbit interaction is
P Ec (k) \\ /Sonduction band

considered under the
first-order perturbation

Ey (k) Heavy hole band

k
0
Eya (k)

4o Light hole band

Ev3 (k)

Split-off band

Ao P h?
0¥ / w b & = = / u_*u_€r) dr

B2 h2
=7 /(ux2 +uy,HEr) dr = ?/uzzf(r)d3r. (1.40)

From (1.39), the energy of valence band 1 is obtained as

Ao RAK2
Eg(k)=E,+ =2+ -~ (1.41)
3 2m

When | P|?k? is small enough, the energy of the conduction band E, reduces to

R2k: P2k (2 1
Ek)=Ec+—+ ——|—+——7), 1.42
R PR (Eg Eg+A0) (142)

where
Ao

Engc—EV—T. (1.43)

Similarly, the energies of valence bands 2 and 3 are given by
E(k) = Ey + 20 4 R 2APIK (1.44)

T T o T T 3E, '

2 h*k? | Pk
Eyzk)=E,—-A - . 1.45
va(k) v 3 0o+ m 3(Eg+A0) ( )

These results, which were obtained under the first-order k- p perturbation, are shown
in Fig. 1.4. From the definition of effective mass in (1.11), the band with energy
Ey1 (k) is referred to as the heavy hole band, and that with E\, (k) is called the light
hole band. 1t should be noted that the heavy hole band and the light hole band are
degenerate at a point k = 0. The band with energy E,3(k) is designated as the
split-off band, and Ay is called the split-off energy.
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If we consider the second-order perturbation, the energies of the valence bands
are given by

Ao 5
Ev1,2(k) =E,+ ? + Ark

12
+ [3221«4 Gt (kfkyz +hy k2 + kﬁkﬁ)] (1.46)
(1> +.2 > —)

2
Ev3(k) = Ey = 240 + Ark?. (1.47)

The coefficients Ay, B>, and C> in (1.46) and (1.47) are experimentally determined
by the cyclotron resonance (see Appendix A). When the second-order perturbation
is included, all the valence bands become upward-convex, as shown in Fig. 1.5, but
degeneracy of the heavy hole band and the light hole band at k = 0 remains.

The preceding analysis treats the direct transition semiconductors where both the
bottom of the conduction band and the tops of the valence bands are placed at k = 0.
In the indirect transition semiconductors, k of the bottom of the conduction band
and that of the tops of the valence bands are different. It should also be noted that
the effective masses depend on the direction of k. Therefore, the band structures are
more complicated.

Let us consider the wave functions of the valence bands under the second-order
perturbation. Due to the spin-orbit interaction, the quantum states are indicated by
Jj = 1 + s where [ is the angular momentum operator and s is the spin operator.
Therefore, as indexes of the wave functions, we use the quantum numbers j and m ;,
which represent the eigenvalues of the operators j and j,, respectively. The relation
between the operators and the eigenvalues is summarized in Table 1.2.

When we express the wave functions as | j, m ), the wave functions are expressed
as

Fig. 1.5 Energy bands when

E
the spin-orbit interaction is Ee (k) \/ '
considered under the Conduction band

second-order perturbation

k
Heavy hole band

Light hole band

Split-off band
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Table 1.2 Relation between

. Operator | Eigenvalue
the operators and eigenvalues 5 5 - -
I (I 4+ 1)k (I =0:s-orbital, [ =1 : p-orbitals)
I, mih, mp=1,0,—1
52 s(s+ DR, s=1/2
Sz mgh, mg =1/2,—1/2
J’ JjU+DR, j=3/2.1/2
J: mih, mj_sp =3/2,1/2,~1/2,-3/2,
mj—ip =1/2,-1/2
for the heavy hole band
3 3
'E’ §>=7|(X+IY)OK)
(1.48)
3 3
‘5, —§> = 7 [(x —1y)5).
for the light hole band
S 1 12za+ (x +1y)0)
-, = )=— o x +1
2 2] T e Y
(1.49)
3 1 1
T 5= —F= 2 - —1i 9
‘2 2> JE' 20— (x —iy)a)
and for the split-off band
L] | (x+iy)f),
— —_ )= — — 1
2 2 f cam vy
(1.50)
- 126 + ( )a).
-, —= — —1i
R «/_ Z X y)a

1.3 Quantum Structures

1.3.1 Potential Well

The semiconductor structures whose sizes are small enough that their qguantum effects
may be significant are called quantum structures.
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The electrons in the quantum structures see both the periodic potential, corre-
sponding to the periodicity of the crystals, and the quantum well potential. Before
studying the energy bands in the quantum structures, we will review the energies and
wave functions of a particle in a square well potential.

Here, we assume that a carrier exists in a square potential well, as shown in
Fig. 1.6. The square potential V (r) is

V(r) =0 inside the well ] . (1.51)

V (r) = oo outside the well

Note that the potential V (r) is not periodic. When the potential well is a cube with
a side L, the boundary conditions for a wave function ¢(x, y, z) are given by

$0,y,2) =¢(L,y,z2) =0
¢(x,0,2) =p(x,L,2) =0 ¢ . (1.52)
o(x,y,0) =¢(x,y,L)=0

Under these boundary conditions, the wave function ¢(x, y, z) and the energy E are
obtained as

2

o(x,y,2) = \/gsin kyx -sinkyy -sink;z, E = 2h—m(kx2 + ky2 + kzz),
k, = "XT” ky = % k, = ”ZT” (enyon. =1,2,3,..).  (153)

Figure 1.7 shows the wave functions ¢s and the energies E's for a one-dimensional
square well potential. As found in (1.53), the energies E are discrete and their values
are proportional to a square of the quantum number n,. Also, with a decrease in L,
an energy separation between the energy levels increases. The wave functions can
take negative values as well as positive ones. The squares of absolute values of the
wave functions show possibilities of existence, so negative values are also allowed
for the wave functions.

Fig. 1.6 Square well o o
potential
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Fig. 1.7 Wave functions ¢s oo oo
and energies Es in a
one-dimensional square well
potential Ep
¢ o< sin (k,x)
En Eocnf
Em:l
0 L

1.3.2 Quantum Well, Wire, and Box

First, we define some technical terms. Figure 1.8 shows the energies of the conduction
band and valence bands for GaAs sandwiched by AlGaAs at a point k = 0.

The low energy regions for the electrons in the conduction band and the holes in
the valence band are called potential wells. Note that, in Fig. 1.8, the vertical line
shows the energy of the electrons, and the energy of the holes decreases with an
increase in the height of the vertical line. In this figure, the potential well for the
electrons in the conduction band and that for the holes in the valence band are both
GaAs. When the width of this potential well L, is of the order of less than several tens
of nanometers, this well is referred to as the guantum well. The bandgaps of AlGaAs
layers placed at both sides of GaAs are higher than that of GaAs. As a result, these
AlGaAs layers function as the energy barriers for GaAs, and they are designated
as the energy barrier layers. At the interfaces of the quantum well and the barriers,
there are the energy difference in the conduction bands AE. and that in the valence
bands AE,, which are called the band offsets.

The periods of the potential for the semiconductor crystals are the lattice constants,
which are of the order of 0.5 nm. In contrast, the thickness of the potential wells or
the barriers in the quantum structures is between the order of nanometers and several
tens of nanometers. Hence, in the quantum structures, the electrons and the holes
see both the periodic potential and the quantum potential. If we use the effective
mass, the effect of the periodic potential is included in the effective mass, as shown

Fig. 1.8 Quantum well L.
structure | |
E;
E, AE.
E,
Eg=1.798 eV Eq=1.424 ¢V
Ehhl
Eua B | a,
EIhZ

Aly;Gay,As GaAs  Aly;Gay,As
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in (1.12), and we have only to consider the quantum potential, which is referred to
as the effective mass approximation.

Under the effective mass approximation, a wave function in the quantum structure
is obtained by a product of the base function 1 and the envelope function ¢. As the
base function, we use a wave function for the periodic potential

V() = e T (1), wnk(r) = g (r + R). (1.54)

As the envelope function, we use a wave function for the quantum potential. For
example, for a cube with the potential shown in Fig. 1.6, ¢ is given by

/8
o(x,y,2) = Y5 sinkyx -sinkyy - sink,z. (1.55)

1.3.2.1 One-Dimensional Quantum Well

Let us consider a sheet with side lengths of L, Ly, and L,. As shown in Fig. 1.9,
we assume that only L, is a quantum size, which satisfies L, < Ly, Ly, ~ L. Such
a structure is called a one-dimensional quantum well.

The energies of the carriers are written as

2 2 EZEXY"'EZ’
h= m
Zm*ﬁ

2 1.56
(nx2 +ny2), E, = %Fnzz. ( )
Z

Eyy =
Here, his Dirac’s constant; m* is the effective mass of the carrier; and ny, ny, and n;
are quantum numbers. If ny, ny, and n; are of the same order, we have Ey, < E.

Figure 1.10 schematically shows the energies of the valence bands in the one-
dimensional quantum well. In this figure, Eyng and Eppp (solid lines) represent the
heavy hole bands, and Ejn; and Ejpp (broken lines) express the light hole bands.
Here, subscripts 1 and 2 are the quantum numbers 7n,s. As shown in Fig. 1.10, the
quantum well structures remove degeneracy of the heavy hole band and the light
hole band at a point k = 0, because the potential symmetry of the quantum wells is
lower than that of the bulk structures.

Let us calculate the density of states in the one-dimensional quantum well. As an
example, we treat the density of states for n, = 1. The density of states is determined
by combinations of n, and n,. When n, and n, are large enough, the combinations
(nyx, ny) fora constant energy E.y are represented by the points on the circumference
of a circle with a radius r, which is given by

Fig. 1.9 One-dimensional
quantum well T
L ”

Ly
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Fig. 1.10 Valence bands in a
one-dimensional quantum
well

E
0
/,/‘\\ Ehhl
//—_\ E,

Ehh2
\\\ Eth
2m*L?
rr=n+ny? = 5 B (1.57)

Because both n, and n, are positive numbers, the number S of the combinations
(nx,ny) is given by the area of the quarter circle with the radius r, as shown in
Fig. 1.11.

From Fig. 1.11, § is expressed as

7 2m* L2 B m*L?
4 m2R2 TV T 27k2

1
S = Zwrz = %(nx2 + nyz) =

E.y. (1.58)

Considering the up- and down-spins, the number of states N is written as

m*L?
N=2§= WEW' (1.59)
Substituting Ey, = E — E,— into (1.59), the electron concentration n for the energy
between zero and E is obtained as

N m*

n——-——-=——
L2L,  wh*L,

(E — E._)). (1.60)

When we define the density of states for the energy between E and E +dE as p1(E),
we have

/pl(E)dE =n. (1.61)

Fig. 1.11 Combinations of ny
ny and ny V

(=R
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Fig. 1.12 Density of states 5
for the one-dimensional =
quantum well for L, = 3nm > -
and m* = 0.08 m (solid line) o 4 Density of states - -
and that for the bulk £ for the bulk 2, -7 P
structures (broken line) S -

= 3 \ -7 -

X s P

D) e

2] it

s ’ P

wn /

T 1,

2 /

'z !

=

)

Ao

0 2 4 6 8

Energy E (eV)

Fig. 1.13 Two-dimensional E L,
quantum well (quantum wire)

From (1.60) and (1.61), we obtain

(E) = dn m*
P1 =1

=, 1.62
E 7wh’L, (1.62)

Similarly, the densities of states for n, = 2, 3, ... are calculated, and the results are
shown in Fig. 1.12.

In Fig. 1.12, L; is 3nm, m™* is 0.08 m where m is the electron mass in a vacuum,
and p1(E) forn, = 1, 2, 3 are indicated as p11, p12, pi13, respectively. It should
be noted that the density of states for the one-dimensional quantum well is a step
function. In contrast, the bulk structures have the density of states such as

(zm*)3/2

172
S B (1.63)

po(E) =

which is proportional to £/ as shown by a broken line, because the number of
states is the volume of 1/8 of the sphere with the radius r.

1.3.2.2 Two-Dimensional Quantum Well (Quantum Wire)

A stripe with Ly > L, L., shown in Fig. 1.13, is designated the two-dimensional
quantum well or the quantum wire. Note that Ly and L, are quantum sizes.
For brevity, if we put L, = L, = L, the energies are written as
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Fig. 1.14 Density of states ~ 5
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Fig. 1.15 Three-dimensional quantum well (quantum box)

E=E.+E,,
h 2 2 h? 72

(1.64)
Ny, Eyz = %ﬁ(l’lyz +I/ZZ2).

For a pair of quantum numbers (ny, n;), the density of states p2(E) is obtained

as
V2m* N 2m* _
p2(E) = ThL2 Ey 12 = W(E — Eyz) 1/2. (1.65)

Figure 1.14 shows the calculated result of (1.65) with L, = 3nm and m* = 0.08 m,
which are the same as in Fig. 1.12. When the energy E is equal to E\,, the density
of states p2(E) is infinity. When E exceeds Ey;, p2(E) decreases in proportion to
(E-FE yz)_l/ 2. As a result, the density of states p, (E) has a saw-toothed shape.

1.3.2.3 Three-Dimensional Quantum Well (Quantum Box)

As shown in Fig. 1.15, a box whose Ly, Ly, and L are all quantum sizes, is named
the three-dimensional quantum well or the quantum box.
For brevity, if we put Ly = L, = L, = L, the energies are written as

E=E.+Ey+E,
oo, oo, o, (1.66)
= 2m* ﬁnx e 2m* ﬁny C T 2m* ﬁnz '
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It should be noted that the energies are completely discrete. The density of states
p3(E) is a delta function, which is written as

p3(E)=2 D O(E—E,—Ey— E). (1.67)

Ny,Ny,Nz

Figure 1.16 shows the number of states per volume and the density of states in the
three-dimensional quantum well.

The energy distributions of the electrons are given by the product of the densities of
states and the Fermi-Dirac distribution functions. With an increase in the dimension
of the quantum wells, the energy bandwidths of the densities of states decrease.
Therefore, the energy distribution of the electron concentrations narrows with an
increase in the dimension of the quantum wells, as shown in Fig. 1.17.

As explained earlier, the energy distribution of the electrons in the quantum struc-
tures is narrower than that in the bulk structures. Therefore, the optical gain concen-
trates on a certain energy (wavelength). As a result, in the quantum well lasers, a low
threshold current, a high speed modulation, a low chirping, and a narrow spectral
linewidth are expected, which will be described in Chap. 7.

1.4 Super Lattices

In the previous section, we studied quantum structures. Here, we consider super lat-
tices, which include array quantum structures and solitary ones. From the viewpoints
of the potential and the period, super lattices are classified as follows.

(@) (b)
= 5
O 14 [
~ >
= o
g 12 d o 4
=
<10 <
> o 3
g ® x
z 6 ° e o <2
7 »
T 4 £
) a1
-g 2 ° ° 5
3 z
0 z
0 2 4 6 8 2 % 2 4 6 8
Energy E (eV) Energy E (eV)

Fig. 1.16 a Number of states per unit volume and b the density of states for the three-dimensional
quantum well (quantum box)
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Fig. 1.17 Energy distribution of electron concentrations in quantum wells. a Bulk structure, b 1-D
quantum structure, and ¢ 2-D quantum structure

Fig. 1.18 Classification of () (b) (©)
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i uuy Uy
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1.4.1 Potential

Figure 1.18 shows three kinds of super lattices. In this figure, the horizontal direction
indicates the position of the layers, and the vertical direction represents the energy of
the electrons. As a result, with an increase in the height of the vertical direction, the
energy of electrons increases and that of the holes decreases. As shown in Fig. 1.18a,
in Type I super lattice, a spatial position of the potential well for the electrons in
the conduction band is the same as that for the holes in the valence band. Therefore,
both electrons and the holes are confined to semiconductor layer B, which has a
narrower bandgap than layer A. In Type II super lattice in Fig. 1.18b, the electrons
in the conduction band are confined to semiconductor layer B, and the holes in the
valence band are confined to semiconductor layer A. In Type III super lattice in
Fig. 1.18c, the energy of the conduction band of semiconductor layer B overlaps that
of the valence band of layer A, which results in the semimetal. Note that in some
articles, Type II and Type III are called Type I’ and Type IL, respectively. The names
other than Type I may be different, but the important point is that the characteristics
of the super lattices are highly dependent on the shapes of the potentials.
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1.4.2 Period

The characteristics of the super lattices also depend on the periods of the constituent
layers. Figure 1.19 shows the relationships between the characteristics of the super
lattices and the thickness of the barriers and wells. When each layer thickness is
larger than several tens of nanometers, only the bulk characteristics are observed. If
the barrier thickness is less than several tens of nanometers, the quantum mechanical
tunneling effect appears, which leads to tunnel diodes (Esaki diodes) or devices using
the resonant tunneling effect. Although the barriers are thick and only the wells are
thin, quantum energy levels are formed in the wells. If such wells are used as the
active layers in the light emitting devices, narrow light emission spectra are obtained.
When both the barriers and the wells are thinner than the order of 10 nm, the wave
functions of a well start to penetrate adjacent wells. As a result, the wave functions
of each well overlap with each other, which produces the minizones and induces the
Bloch oscillations or the negative resistances. As the thickness of both the barriers
and the wells decreases further down to the order of atomic layers, bending of the
Brillouin zones appears, which will transform the indirect transition materials into
the direct transition ones.

1.4.3 Other Features in Addition to Quantum Effects

In order to fabricate the quantum structures, barriers and wells are required. Because
the barriers and wells must have different bandgaps, different kinds of semiconductor
materials are needed. Therefore, the quantum structures are inevitably heterostruc-
tures.

To achieve a low threshold current and a high light emission efficiency in semicon-
ductor lasers, both the carriers and the light should be confined to the active layers
where the light is generated and amplified. Therefore, the double heterostructure, in
which the heterostructures are placed at both sides of the active layer, is adopted in
semiconductor lasers. Figure 1.20 shows the electron energies and refractive indexes
of the double heterostructure. Because the energy barriers exist in the junction bound-
aries, the carriers are confined to well layer B. In addition, the semiconductors
with larger bandgaps generally have smaller refractive indexes. Therefore, light is
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Fig. 1.20 Energies and
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confined to well layer B. As a result, both the carriers and the light are confined to
well layer B, which is used as the active layer.

Finally, we consider a layer epitaxially grown on the semiconductor substrate
whose lattice constant is different from that of the grown layer. When the layer
thickness exceeds the critical thickness, the grown layer is plastically deformed
and the dislocations are induced in it. If the dislocations are generated, the carriers
are dissipated without emitting light. Consequently, characteristics of light emitting
devices become extremely low.

Although the layer thickness is thinner than the critical thickness, the grown layers
are elastically deformed and the dislocations are not generated in the grown layers.
Due to the elastic strains, the atomic spacings of the grown layers change, which
modifies the band structure of the grown layer. This technology is referred to as band-
structure engineering and attracts a lot of attention. Because the quantum structures
have thin layers, they are suitable for band-structure engineering using elastic strains,
and they improve characteristics of semiconductor lasers, which will be explained
in Chap.7.
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Chapter 2
Optical Transitions

2.1 Introduction

Among energy states, the state with the lowest energy is most stable. Therefore, the
electrons in semiconductors tend to stay in low energy states. If they are excited
by thermal energy, light, or electron beams, the electrons absorb these energies and
transit to high energy states. These transitions of the electrons from low energy states
to high energy states are called excitations. High energy states, however, are unstable.
As a result, to take stable states, the electrons in high energy states fransit to low
energy states in certain lifetimes. These transitions of the excited electrons from high
energy states to low energy states are referred to as relaxations. The excitation and
relaxation processes between the valence band and the conduction band are shown
in Fig.2.1.

In semiconductors, the transitions of electrons from high energy states to low
energy states are designated recombinations of the electrons and the holes. In the
recombinations of the electrons and the holes, there are radiative recombinations
and nonradiative recombinations. The radiative recombinations emit photons, and
the energies of the photons correspond to a difference in the energies between the
initial and final energy states related to the transitions. In contrast, in the nonradia-
tive recombinations, the phonons are emitted to crystal lattices or the electrons are
trapped in the defects, and the transition energy is transformed into forms other than
light. The Auger processes are also categorized as nonradiative recombinations. To
obtain high efficiency semiconductor light emitting devices, we have to minimize
the nonradiative recombinations. However, to enhance modulation characteristics,
the nonradiative recombination centers may be intentionally induced in the active
layers, because they reduce the carrier lifetimes (see Sect.5.1).

Let us consider the transitions of the electrons from the bottom of the conduction
band to the top of the valence band. A semiconductor, in which the bottom of the
conduction band and the top of the valence band are placed at a common wave vector
k, is the direct transition semiconductor. A semiconductor, in which the bottom
of the conduction band and the top of the valence band have different k-values,
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is the indirect transition semiconductor. These direct and indirect transitions are
schematically shown in Fig.2.2. In transitions of the electrons, the energy and the
momentum are conserved, respectively. Therefore, the phonons do not take part in
direct transitions. Because the wave vector k of the phonons is much larger than
that of the photons, the phonon transitions accompany the indirect transitions to
satisfy the momentum conservation law. Hence, in the direct transitions, the transition
probabilities are determined by only the electron transition probabilities. In contrast,
in the indirect transitions, the transition probabilities are given by a product of the
electron transition probabilities and the phonon transition probabilities. As a result,
the transition probabilities of the direct transitions are much higher than those of the
indirect transitions. Consequently, the direct transition semiconductors are superior
to the indirect ones for light emitting devices.

2.2 Light Emitting Processes

Light emission due to the radiative recombinations is called the luminescence.
According to the lifetime, the excitation methods, and the energy states related to
the transitions, light emitting processes are classified as follows.
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2.2.1 Lifetime

With regard to the lifetime, there are two light emissions: fluorescence, with a short
lifetime of 107°—-1073 s, and phosphorescence, with a long lifetime of 1073 s to one
day.

2.2.2 Excitation

Luminescence due to optical excitation (pumping) is photoluminescence, which is
widely used to characterize materials. Optical excitation is also used to pump dye
lasers (for example, Rhodamine 6G and Coumalin) and solid-state lasers (e.g., YAG
and ruby). When the photon energy of the pumping light is Aw; and that of the
luminescence is fwy, the luminescence with hws < hwj is called Stokes lumines-
cence and that with fw, > hw; is designated anti-Stokes luminescence. Lumines-
cence caused by electrical excitation is electroluminescence, which has been used for
panel displays. In particular, luminescence by current injection is called injection-
type electroluminescence; it has been used for light emitting diodes (LEDs) and
semiconductor lasers or laser diodes (LDs). In such injection-type optical devices,
the carriers are injected into the active layers by forward bias across the pn junctions.
Note that the current (carrier) injection is also considered the excitation, because it
generates a lot of high energy electrons. The luminescence due to electron beam ir-
radiation is cathodoluminescence, which has been adopted to characterize materials.
The luminescence induced by mechanical excitation using stress is tribolumines-
cence, and that by thermal excitation is thermoluminescence. Luminescence during
a chemical reaction is referred to chemiluminescence; it has not been reported in
semiconductors.

2.2.3 Transition States

Figure2.3 shows light emission processes between various energy states. They
are classified into impurity recombinations, interband recombinations, and exciton
recombinations.

In impurity recombinations, there is recombination between the electron in the
conduction band and the empty acceptor level with the photon energy of iw, , recom-
bination between the electron in the donor level and the hole in the valence band with
the photon energy of fwp, and recombination between the electron in the donor level
and the empty acceptor level with the photon energy of hwpa. By observing light
emissions due to these recombinations at extremely low temperatures, information
on doping characteristics is obtained.
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Fig. 2.3 Light emission
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In interband recombinations between the conduction and valence bands, light
emission in the vicinity of the band edges with the photon energy of iw is dominant.
This band edge emission is used in most LEDs and LDs composed of III-V group
semiconductors.

The exciton recombination, with the photon energy of Awe, is the recombination
of the electron generated by decay of an exciton and the hole in the valence band.

2.3 Spontaneous Emission, Stimulated Emission, and Absorption

Figure 2.4 schematically shows radiations and absorption. In the radiations, there
are spontaneous emission and stimulated emission (or induced emission). As shown
in Fig.2.4a, spontaneous emission is a radiative process in which an excited electron
decays in a certain lifetime and a photon is emitted. Note that spontaneous emission
takes place irrespective of incident lights. In contrast, in the stimulated emission
illustrated in Fig.2.4b, an incident light induces a radiative transition of an excited
electron. The emitted light due to the stimulated emission has the same wavelength,
phase, and direction as the incident light. Therefore, the light generated by the stimu-
lated emission is highly monochromatic, coherent, and directional. In the stimulated
emission, one incident photon generates two photons; one is the incident photon
itself, and the other is an emitted photon due to the stimulated emission. As a result,
the incident light is amplified by the stimulated emission. The absorption depicted in
Fig.2.4c is a process that the electron transits from a lower energy state to a higher
one by absorbing energy from the incident light. Because this transition is induced
by the incident light, it is sometimes called induced absorption. It should be noted
that spontaneous absorption does not exist; this will be explained in Chap. 8.

When a light is incident on a material, the stimulated emission and the absorption
simultaneously take place. In thermal equilibrium, there are more electrons in a lower
energy state than in a higher one, because the lower energy state is more stable than
the higher one. Therefore, in thermal equilibrium, only the absorption is observed
when a light is incident on a material. In order to obtain a net optical gain, we have
to make the number of electrons in a higher energy state larger than in the lower one.
This condition is referred to as inverted population, or, population inversion because
the electron population is inverted compared with that in thermal equilibrium. In
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semiconductors, the population inversion is obtained only in the vicinity of the band
edges by excitation of the electrons through optical pumping or electric current
injection. The population inversion generates many electrons at the bottom of the
conduction band and many holes at the top of the valence bands.

The laser oscillators use fractions of the spontaneous emission as the optical
input and amplify the fractions by the stimulated emission under population inver-
sion. Once the optical gains exceed the optical losses in the laser oscillators, laser
oscillations take place. The term laser is an acronym for “light amplification by
stimulated emission of radiation” and is used as a noun in a laser oscillator. Note
that an emitted light from a laser oscillator is not a laser but a laser light or a laser
beam. As a back formation from laser, “lase” is used as a verb meaning “to emit
coherent light.”

Among semiconductor light emitting devices, LEDs use spontaneous emission
and are applied to remote-control transmitters, switch lights, brake lights, displays,
and traffic signals. In contrast, LDs are oscillators of lights using stimulated emission
and are used as light sources for lightwave communications, compact discs (CDs),
magneto-optical discs (MOs), digital video discs (DVDs), laser beam printers, laser
pointers, bar-code readers, and so on.

2.4 Optical Gains

2.4.1 Lasers

Let us consider the relationships between laser oscillators and optical gains. First,
we review a general oscillator, as shown in Fig.2.5. An oscillator has a gain and
amplifies an input. Also, the oscillator returns a fraction of an output to an input port
through a feedback loop. The returned one is repetitively amplified, and oscillation
starts when a net gain exceeds an internal loss of the oscillator.

Figure 2.6 shows a laser oscillator where a fraction of the spontaneous emission is
used as the input and the optical gain is produced by the stimulated emission. To feed
back light, optical resonators or optical cavities, which are composed of reflectors or
mirrors, are adopted. Due to this configuration, characteristics of lasers (for brevity,
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lasers are used for laser oscillators here) are affected by the optical gains and optical
resonators. Many lasers use optical resonators, but nitrogen lasers, whose optical
gains are very large, can start laser oscillations even without optical resonators. It
should be noted that all semiconductor lasers use optical resonators.

As explained earlier, a fraction of the spontaneous emission is used as the input
of a laser. Note that all the spontaneously emitted lights cannot be used as the input,
because they have different wavelengths, phases, and propagation directions. Among
these lights, only the lights, which have wavelengths within the optical gain spectrum
and satisfy the resonance conditions of the optical resonators, can be the sources of
laser oscillations. Other spontaneous emissions, which do not satisfy the resonance
conditions of optical resonators, are readily emitted outward without obtaining suf-
ficient optical gains for laser oscillations. The lights amplified by the stimulated
emission have the same wavelength, phase, and propagation direction as those of the
input lights. Therefore, the laser lights are highly monochromatic, bright, coherent,
and directional.

2.4.2 Optical Gains

2.4.2.1 Carrier Distribution

We derive equations for the optical gains of semiconductor lasers. We suppose that
many electrons are excited to the conduction band by optical pumping or electrical
current injection. In this condition, the carrier distribution is in nonthermal equilib-
rium, and there are many electrons in the conduction band and many holes in the
valence band. As a result, one Fermi level Er cannot describe the distribution func-
tions of the electrons and holes. In this case, it is useful to determine the distribution
functions by assuming that the electrons in the conduction band and the holes in the
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valence band are separately governed by Fermi—Dirac distribution. For this purpose,
we introduce quasi-Fermi levels Ex. and Ef, defined as

EC_EFC
:N -,
n Cexp( o T )
EFV_EV
= N. e
oo (£ E)
2.1
2 umetkgT \>/? e
Ne=2 T s
2 wmp*ksT \ >/
Ny = 2

Here, n and p are the electron concentration and the hole concentration, respectively;
E. and E, are the energy of the bottom of the conduction band and that of the top
of the valence band, respectively; kg = 1.3807 x 10723 J/K is Boltzmann constant;
T is an absolute temperature; N. and Ny are the effective density of states for the
electrons and that for the holes, respectively; m¢* and my™* are the effective mass of
the electrons and that of the holes, respectively; and / is Planck’s constant.

From (2.1), these quasi-Fermi levels Er; and EFy, are written as

n
Eg. = E;. + kT In (V)’

C

2.2)
Epy = Ey —ksTIn ( 2-).
N

v

We express a distribution function for the electrons in the valence band with the
energy E| as f] and that for the electrons in the conduction band with the energy E>
as f>. Using Ex. and Efy, we can express f] and f> as

1
N = SO E =)/ e DI+ 1
(2.3)
1
H

= expl(Es — Epe) / kg )1+ 1

It should be noted that the distribution function for the holes in the valence band is
given by [1 — f1].
2.4.2.2 Optical Transition Rates

As shown in Fig.2.7, we assume that a light, which has a photon energy of
E>1=E>—E; and a photon density of npn(E21), interacts with a direct-transition
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Fig. 2.7 Schematic model for
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semiconductor. Under this assumption, we calculate the transition rates for the stim-
ulated emission, the absorption, and the spontaneous emission. In Fig.2.7, E is the
energy for the bottom of the conduction band, and E\ is the energy for the top of the
valence band. Note that this figure shows the energy bands for a certain value of k,
and the horizontal line has no physical meaning.

(i) Stimulated Emission Rate
The stimulated emission rate per unit volume ry1(stim) is given by a product of

the transition probability per unit time from E> to E1: By,
the electron concentration in a state with the energy E»>: nj,
the hole concentration in a state with the energy Ei: pi,
the photon density: nph (E21).

The concentration n; of the electron, which occupies a state with the energy E>
in the conduction band, is expressed as

ny = pe(Ez — Eo) f, 2.4

where p.(E2 — E.) is the density of states, which is a function of E; — E., and
f> is the distribution function in (2.3).

The concentration p; of the hole, which occupies a state with the energy E; in
the valence band, is written as

p1 = pv(Ey — ED[1 = f1l, (2.5)

where py(Ey — E1) is the density of states, which is a function of Ey, — E1, and
f1 is the distribution function in (2.3).
Therefore, the stimulated emission rate 7 (stim) is obtained as

r21(stim) = Boyny p1nph(E21)
= Boinph(E21)pe(E2 — Ec)py(Ey — EY) f2[1 = fil. (2.6)
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(ii) Absorption Rate
The absorption rate per unit volume r»(abs) is given by a product of

the transition probability per unit time from E; to E;: Bj2,

the concentration of an empty state with the energy E»: p2,

the electron concentration in a state with the energy E: ny,

the photon density: nph (E21).

The concentration p; of an empty state, which is not occupied by the electrons
with the energy E» in the conduction band, is expressed as

p2 = pe(Ez — EJ[1 — f2]. 2.7)

The concentration n; of the electron, which occupies a state with the energy E
in the valence band, is written as

ny = py(Ey — E1) f1. (2.8)
As a result, the absorption rate 1> (abs) is obtained as
ri2(abs) = Biapaninph(E21)
= Bunpnh(E21)pe(E2 — Ec)pv(Ey — EY) fill — f2]. (2.9)
(iii) Spontaneous Emission Rate

The spontaneous emission rate per unit volume ry1(spon) is independent of the
incident photon density and given by a product of

the transition probability per unit time from E> to Eq: Apy,
the electron concentration in a state with the energy E»>: na,

the hole concentration in a state with the energy Ej: pj.

Using (2.4) and (2.5), the spontaneous emission rate 71 (spon) is obtained as
ra1(spon) = Azjnapi
= A21pc(Ex — Eo)py(Ey — EY) fo[1 = fil. (2.10)
2.4.2.3 Optical Transition in Thermal Equilibrium

In thermal equilibrium, the carrier distributions are described by one Fermi level Ef,
and the radiations balance the absorption. In other words, a sum of the stimulated
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emission rate and the spontaneous emission rate is equal to the absorption rate. Using
the optical transition rates for the stimulated emission, the spontaneous emission, and

the absorption, we obtain

r21(stim) + r21 (spon) = r2(abs),

Eg. = Epy = Ef. @11
Substituting (2.6), (2.9), and (2.10) into (2.11), we have
nph(Ear) = A1 : (2.12)
Bz exp[Ea1/(kgT)] — Bay
while the blackbody radiation theory gives
nph(E21) = 8 i’ Eor® (2.13)

h3c3 exp[En1/(kgT)] — h3c3”

Here, n, is the effective refractive index of a material, /& is Planck’s constant, and
¢ = 2.99792458 x 108 m/s is the speed of light in a vacuum.
Comparison of (2.12) and (2.13) results in

Ay = Z(E2)B, By = 3212 =B,
8w n Ey (2.14)
Z(Ey) = T
which is known as Einstein’s relation, and A»; is called Einstein’s A coefficient; and
B is called Einstein’s B coefficient. It should be noted that By} = Bjp = B, and A
is proportional to B.
We consider the physical meaning of Z(E>1) in (2.14) in the following. We sup-
pose that a light field Ey is written as

Er = Apexpli(wt —k -1)], (2.15)

where Ag is a complex amplitude, w is an angular frequency, ¢ is a time, k is a
wave vector, and r is a position vector. We also suppose that the periodic boundary
condition is satisfied on the surfaces of a cube with a side length L. Because the
electric fields at x = 0 and x = L are the same, an eigenmode is given by

2
exp(0) = exp(ikL) = 1, - ky = T”nx, (2.16)

where k, is an x-component of the wave vector k and n, is an integer. Similarly, we

obtain
2m 2T
ky = Tl/ly, kz = TVLZ, (217)
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where ny, and n; are integers. Hence, k? =k, + ky2 + k,? is expressed as

2 2
k2=(7;)(m2+nﬂ+nf) (2.18)
Using the effective refractive index n, of the material, the angular frequency w is
given by
k
w=", (2.19)

ny
Therefore, the energy £ = hw is written as

21 he
neL

neL

E=hw= (n2? + ny? 4 n?) (n® +ny” +n A2 (220)

which takes discrete values, because n,, n y» and n; are integers. However, when L
is much larger than the wavelength of the light, n,> + ny2 + n.% becomes a huge
number, and many modes exist near each other. When we consider a sphere with a
radius of R = (n,2 + ny2 + nzz)l/z, the number of combinations (1, ny, n;) is
equal to a volume of the sphere 4 7 R3 /3. For each combination (7, ny, n;), there
exist two modes corresponding to their polarizations, which are perpendicular to
each other. As a result, the number of modes whose energy is placed between 0 and
E is given by

2 X

4w (mELY® 8unSE3 |
= - 2.21)

3 he 3h3¢3

The number of modes with their energies between E and E + dE is obtained as
a derivative of (2.21) with respect to E, which is expressed as

8tn S E? 3
s L°dE. (2.22)
Because a volume of the cube is L3, dividing (2.22) by L gives the number of modes
per unit volume, that is, the mode density m(E) dE as

8 E?
m(E)dE = WdE. (2.23)
From (2.23) and the third equation in (2.14), it is found that we have m(E>|) =
Z(E»>1). This relation suggests that the spontaneous emission takes place for all the
modes with their energy placed between E and E +dE while the stimulated emission
and absorption occur only for the mode corresponding to the incident light.

Note that the derivation of A and B assumes that both o (stim) and rj;(abs) are
proportional to the photon density npp(£21). If we assume that both > (stim) and
r12(abs) are proportional to the energy density of the photons as Einstein did [1],
other formulas for A and B will be obtained.
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2.4.2.4 Definitions of the Mode Density

In the preceding discussion, we explained the mode density m (E) dE with the ener-
gies placed between E and E + dE. Here, we will derive mode densities m (w) dw
with the angular frequencies of a light between w and w 4 dw, and m(v) dv with the
light frequencies between v and v 4 dv. Using the (effective) refractive index of the
material n; and the speed of light in a vacuum ¢, we have

K= nw 2nnrl/' (2.24)
c c

Substituting (2.24) into (2.18) and then calculating a volume 4 7t R3/3 of a sphere
with the radius R = (n,% + ny2 + n.%)1/2 results in

47 nRw? 3 8t nu3

2x —R? = =
73 32 303

L3, (2.25)

where a factor 2 corresponds to the directions of the polarizations. As aresult, dividing
(2.25) by L3 and then differentiating with respect to w or v leads to

3,2 87Ti’lr3V2

m(w)dw = nr2w3 dw, m@)dv = — dv. (2.26)
nlc c

2.4.2.5 Net Stimulated Emission

Let us consider the excited conditions where many free carriers exist. In these non-
thermal equilibrium conditions, radiations do not balance with absorption anymore.
When a light is incident on a material, the stimulated emission and the absorption
simultaneously take place. Therefore, the net stimulated emission rate 7°(stim) is
given by

#O(stim) = r»; (stim) — r12(abs)
= Bnpn(E21)pc(E2 — Ec)py(Ey — ED[f2 — f1]

Ay B - B
= i Ep(E2 = Edp(E — EDLf2 = il 227)

From (2.27), to obtain the ner stimulated emission r®(stim) > 0, we need
2> fi, (2.28)

which indicates the population inversion in the semiconductors. With the help of
(2.3), (2.28) reduces to
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Ere — Epy > Ey — Ey = Epy, (2.29)

which is known as the Bernard—Duraffourg relation. In semiconductor lasers, a

typical carrier concentration for 7%(stim) > 0 is of the order of 10'® cm—3.

2.4.2.6 Net Stimulated Emission Rate and Optical Gains

The optical power gain coefficient per unit length g is defined as

dI
— =gl (2.30)
dz

where [ is the light intensity per unit area and z is a coordinate for a propagation
direction of the light. Because the light intensity is proportional to the square of the
electric field, the amplitude gain coefficient gg, which is the gain coefficient for the
electric field, is given by gg = g/2. From the definition, [ is expressed as

I = v Eynph(E21) = v hwnpn(E21),
_dw c

= _ < 231
v dk ny ( )
dI dng(E
o = VE % = v Ey; rO(stim),

where v is a group velocity of the light in the material, E5; = hw is the photon
energy, and nph(E21) is the photon density.

Here we consider a relationship between the derivatives of / with respect to a
position and a time. Because the position z is a function of the time ¢, we have

dI _drdl (dz)_l dr 14l

dz  dz dr  \dr dr v dt’
(2.32)
dI
@ gl = gv Exinph(E2).
From (2.31) and (2.32), we have the relation
rO(stim) = v gnpn(E). (2.33)

As a result, it is found that a large rO(stim) leads to a large g. Using (2.27), (2.31),
and (2.33), we can also express g as

rO(stim) n,

_ = " Bpe(Er — EQpy(Ey — EDLA — fi1. (2.34)
nph(E21) ¢ c
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From the time-dependent quantum mechanical perturbation theory (see Appen-
dix C), Einstein’s B coefficient in (2.14), which is the transition rate due to the
stimulated emission for a photon in a free space, is given by

—62—h|<1lpl2>|2 (2.35)
- 2m2eon 2 Eaq ' ’
Here, e is the elementary charge; & is Planck’s constant; m is the electron mass; ¢ is
permittivity in a vacuum; 7, is the refractive index of the material; E»; is the photon
energy; p is the momentum operator; and |1) and |2) are the wave functions of the
valence band and the conduction band in a steady state, respectively.

Substituting (2.35) into (2.14), we can write Einstein’s A coefficient as

47 en, Ey

Agy = (1lpI2) . (2.36)

——5 5|
m2egh?c3

Using the dipole moment p, (2.35) and (2.36) can be rewritten as follows: The
momentum operator p is expressed as

dr (2.37)
=m —. .
P dr
As a result, we obtain
1 d .
—(1|p|2) = — (1]r]2) = iw(1|r|2), (2.38)
m dt

where r o« e'“ was assumed. With the help of (2.38), Einstein’s A and B coefficients
are written as

2

me~w 2 T w 2
B=——[(1r2)]* = — |ul*.
Eony Eony
2n,w3
Ay = == |ul%, (2.39)
eohc’
lul® = [(1]er|2)|.

Note that many textbooks on quantum electronics use (2.39) as Einstein’s A
coefficient. Expressions on Einstein’s B coefficient depend on the definitions of
the stimulated emission rate whether it is proportional to the photon density or to the
energy density. In the preceding explanations, Einstein’s B coefficient is defined to
be in proportion to the photon density. Therefore, the quantum mechanical transition
rate for the stimulated emission is equal to Einstein’s B coefficient.

In semiconductors, due to the energy band structures, transitions take place
between various energy states, as shown in Fig.2.8. If we put E;; = E and
E; — E. = E”, the electron energy in the valence band E’ for the allowed transition
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Fig. 2.8 Transition with a
constant photon energy
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is given by E' = E” — E. Therefore, by integrating (2.27) with respect to E”, the
net stimulated emission rate #(stim) in the semiconductors is obtained as

e2h nph(E) [

- = - 2 " ’ mo_ , ”
o E Jy (PR ENpEDLAAET) = FI(EDIAE",

(2.40)
where (2.35) was used. Similarly, the optical power gain coefficient g(E) is given by

rO(stim) =

e2h

Ey=—>+——
&(E) 2m2egn.cE

/0 [(1pI2) P pe(E")py (ENLf2(E") = f1(ENIAE". (2.41)

From (2.10) and (2.36), the spontaneous emission rate ;1 (spon) is expressed as

47 ezan

mZ2egh?c3

oo
/ |(11p12) P pe(E") oy (EN) f2(EN1 = fi(EN]AE".
0
(2.42)
When the excitation is weak, the absorption is observed, and the net absorption
rate r0 (abs) is written as

ra1(spon) =

r0(abs) = r2(abs) — o) (stim) = —r°(stim). (2.43)

Therefore, the optical power absorption coefficient a(E) and the optical power gain
coefficient g(E) are related as

a(E) = —g(E). (2.44)

Figure 2.9 shows the calculated optical power gain coefficient g(E) in (2.41) as a
function of E — E, for the bulk structures with the bandgap energy of £, = 0.8¢€V.
With an increase in the carrier concentration 7, the gain peak shifts toward a higher
energy (shorter wavelength). This shift of the gain peak is caused by the band filling
effect [2], in which the electrons in the conduction band and the holes in the valence
band occupy each band from the band edges. Because higher energy states are more
dense than lower energy states, the optical gain in higher energy states is larger than
that in lower energy ones.
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Here, let us consider the optical power gain coefficient g(£) from other view-
points. In (2.41), p.(E")py(E") is considered to be the density of state pairs related
to the optical transitions. The density of state pairs is also expressed using the law
of momentum conservation (k-selection rule) and the law of energy conservation
(E21 = E» — Eq). Under the k-selection rule, optical transitions take place only
for k = k| = k». Therefore, we can define the density of state pairs or the reduced
density of states preq(E21) as

pred(E21) dE2; = py(E1) dE) = pe(E2) dEs, (2.45)

where
dEy =dE| +dE>. (2.46)

From (2.45) and (2.46), we have

1 1 77!
red (E = . 2.47
Prea(E21) [pV(Elﬁpc(Ez)} 47

If the conduction and valence bands are parabolic, the energies E1 and E, are
written as

h2k?

Ei=E, — , 248

1 \ 2my* ( )
h2k?

Ey=FE.+ ——, (2.49)
2me*

where my™ and m.* are the effective masses of the holes and the electrons, respec-
tively. As aresult, E; and E; are rewritten as
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Fig. 2.10 Optical power 600 5 5
gain coefficient under the _ E.=0.8eV n=25x10" cm
k-selection rule TE 400 o
2 2.0
£ 200
<
@) 1.5
= 0
- 1.0
S - 200 \ \ \
-50 0 50 100 150
E-E, (meV)
m *
E\=E,— —————— (Ey — E,), (2.50)
me* +mh*
mp*
Er)=FE.+————(Ey — Ey). 2.51
e (E21 — Eqg) (2.51)

Also, once the initial state of the optical transitions is given, the final state is
determined by E>; and k. Hence, the number of state pairs per volume associated
with the optical transitions for the photon energies between E»; and Ep1 4+ dE>; is
given by

Pred (E21) [ f2(E21) — f1(E21)] dE3;. (2.52)

We assume that the energy states related to optical transitions have an energy
width of i/7y,, and the spectral shape of Lorentzian such as

1 h/T
L(Ey) = — /Tin

T (Ea — E)? 4 (h/7in)?’ 233

where 7, is the relaxation time due to electron scatterings and transitions. In this
case, the optical power gain coefficient g(E) is expressed as

/0 (1P12) Porea(Ea) [f2(Ea) — fi(Ea)] L(E2) dEa,

(2.54)
which is plotted in Fig.2.10 for the bulk structures with 73, = 10~13s. It is found
that relaxation is equivalent to band tailing, which contributes to optical transitions
inE < E,.

Because f> and [1 — f] are always positive, spontaneously emitted lights distrib-
ute in a higher energy than the gain peak. Figure 2.11 schematically shows spectra for
the stimulated emission (laser light) and the spontaneously emitted lights; its hori-
zontal line indicates photon energy. Note that the photon energies increase due to the
band filling effect with enhancement of the excitation, irrespective of spontaneous
emission or stimulated emission.



40

Fig. 2.11 Stimulated emis-
sion and spontaneous emission
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Chapter 3
Optical Waveguides

3.1 Introduction

An optical beam propagating in a free space expands in beam width with an increase
in propagation distance. The beam divergence angle 6 in radians is expressed as

o~ 3.1)
~ =, .

where A is a light wavelength and d is a beam diameter. For example, if a laser beam
withA = 1 pmand d = 1 mm propagates by 100 m, its beam width expands to about
10 cm. In contrast, the optical waveguide confines lights to itself during propagation
of the lights [1-5].

In typical bulk (double heterostructure) semiconductor lasers, the active layer
thickness is 0.1 pm, the beam width is 0.3 pm, and the cavity length is 300 pm. If
there are no optical waveguides, this beam width expands up to 500 wm by a single-
way propagation, where A is assumed to be 0.5 wm. In semiconductor lasers, only
the active layer has optical gain, and it is extremely inefficient to amplify a beam
with the width of 500 pm by the active layer with the thickness of only 0.1 pm.
Therefore, to amplify lights efficiently, optical waveguides are indispensable for
semiconductor lasers. It should be noted that optical fibers are also representative
optical waveguides.

Figure 3.1 shows cross-sectional views of the optical waveguides. According to the
operating principles, optical waveguides are divided into index guiding waveguides
and gain guiding ones. In index guiding waveguides, a light is confined to a high-
refractive index region, which is surrounded by low-refractive index regions. In
Fig.3.1a, only if the refractive indexes n¢, nc, and ng satisfy ny > nc, ng, a light is
confined to a region with ny. The gain guiding waveguides use the property that only
a gain region amplifies a light, and a light seems to propagate in the gain region. In
Fig.3.1b, a light is confined to a region with the optical gain g;, which is larger than

g and g,.
To consider optical gain, we introduce the complex refractive index

n=n;—ik, (3.2)
© Springer Japan 2015 41

T. Numai, Fundamentals of Semiconductor Lasers,
Springer Series in Optical Sciences 93, DOI 10.1007/978-4-431-55148-5_3



42 3 Optical Waveguides

Fig. 3.1 Cross sections of

a) ne>ng, n b >8>
optical waveguides: a index @) 7>, e (B) 81> 8- &
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UN 8s

where n; is a so-called refractive index and « is the extinction coefficient. Here, we
express the electric field E of a light as

E = Egexpli (ot — kz2)], (3.3)

where Ej is an amplitude, o is an angular frequency of the light, ¢ is a time, k is a
wave number, and z is a coordinate for a propagation direction of the light. Using
the complex refractive index 7 in (3.2), the angular frequency w, and the speed of
light in a vacuum ¢, we can write the wave number k as

nw  ny—ik

k=—=—o. (34)
c c

Substituting (3.4) into (3.3), we have
. nrw wK
E = Epexp [1 (a)t — —z)] - exp (——z), (3.5)
c c

where k¥ > 0 shows the optical loss and k < 0 indicates the optical gain. As a result,
the optical amplitude gain coefficient gg and the extinction coefficient x are related

as
w

g = ——K. (3.6)
c

Note that the optical power gain coefficient g is equal to 2gg, because the light
intensity is proportional to | E|?.

From the viewpoint of shape, optical waveguides are classified into a two-
dimensional optical waveguide, or a planar optical waveguide, and a three-
dimensional optical waveguide, or a strip optical waveguide. The two-dimensional
waveguide has a plane, which is much larger than a wavelength of light and confines
a light one-dimensionally. Only the size of its confinement direction is of the order
of a light wavelength or less. The three-dimensional waveguide confines a light two-
dimensionally, and the sizes along these two confinement directions are of the order
of a light wavelength or less. The remaining direction is the propagation direction of
a light.
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3.2 Two-Dimensional Optical Waveguides

3.2.1 Propagation Modes

Let us consider a two-dimensional waveguide where the guiding layer is sandwiched
by the cladding layer and the substrate, as shown in Fig. 3.2. The refractive indexes of
the guiding layer, the cladding layer, and the substrate are ny, n, and ng, respectively.
To confine a light in the guiding layer, we need n¢ > ng > n, and ny — ng is usually
of the order of from 1073 to 10~!.

Figure 3.3 shows propagation directions of a light when the light enters from the
substrate to the cladding layer through the guiding layer. From Snell’s law, the angles
65, ¢, and 6., which are formed by the interface normals and the directions of the
light, are related to the refractive indexes ns, nf, and n as

ng sin 6y = ng sin 6 = nc sin 6. (3.7

When 6 is equal to /2, a light cannot propagate in the substrate, and the fotal
reflection takes place at the interface of the substrate and the guiding layer. In this
case, the power reflectivity (reflectance) is 100 %. When 6, is equal to 77 /2, the total
reflection takes place at the interface of the cladding layer and the guiding layer.
The minimum value of 6¢ to obtain the total reflection is called the critical angle.
According to 6, = /2, and 6, = /2, we have two critical angles 6¢; and 6¢., which

are expressed as
.1 [ Bs . —1 [ nc
Ofs = sin (—), Ot = sin (—) (3.8)
ng ng

Here, 0 > 6k is satisfied under the assumption of ny > ng > nc.

Corresponding to a value of 6, there are three propagation modes, as shown in
Fig.3.4.

Cladding layer n,
Guiding layer ng

Substrate  ng

Fig. 3.2 Cross section of a two-dimensional optical waveguide

Oc

nf ef

s 6s

Fig. 3.3 Snell’s law
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Fig. 3.4 Propagation modes: a radiation mode, b substrate radiation mode, and ¢ guided mode

(a) 6 < 6. < Ot : Radiation Mode

The light is not confined to the optical waveguide at all.

(b) 6c < 0r < 0% : Substrate Radiation Mode

Total reflection occurs at the interface of the cladding layer and the guiding layer,
while refraction takes place at the interface of the guiding layer and the substrate.
As a result, there exists a light propagating in the substrate.

(c) bgs < 0 < /2 : Guided Mode

At both the interfaces, total reflections occur. A light is completely confined to the
optical waveguide.

Among (a), (b), and (c), the guided mode in (c) is the most important for semi-
conductor lasers and photonic integrated circuits. In (a) and (b), the guided mode
does not exist, and such a condition is referred to as the curoff. Therefore, in the
following, we examine the guided mode in detail.

3.2.2 Three-Layer Model to Analyze Guided Modes

3.2.2.1 Total Reflection

The total reflection is the reflection with |r|> = 1, where r is the amplitude reflectivity.
It should be noted that » depends on the angle of incidence and the direction of
polarization.

Here, we consider a plane wave, and we define the plane of incidence as a plane on
which all the directions of incident light, reflected light, and refracted light coexist.
The transverse electric (TE) mode is a linearly polarized light whose electric field E
is normal to the plane of incidence. The transverse magnetic (TM) mode is a linearly
polarized light whose magnetic field H is normal to the plane of incidence. Figure 3.5
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Fig. 3.5 a TE mode and b (a) (b)
TM mode
E \ H
0 0

shows the TE mode and the TM mode, where the plane of incidence is placed on the
face of the page and only the incident and reflected lights are illustrated.
From the Fresnel formulas, the amplitude reflectivities are given by

ng cos O — v/ne2 — ng? sin? 65
r = 9
TEc . 2, 2<n2 0,

ng cos O + v/ ne ng* sin” Of

(3.9)
ng cos O — vV/ns2 — ng? sin? 6
rTE,S = ) ’
ng cos Oy + v/ng?2 — ng? sin? 6¢
. ne2 cos b — ngv/ne? — ng? sin? 6
TM,C = - ’
ne2 cos b + npv/ne2 — ng? sin? 6 (.10

ns2 cos O — ngyv/ng2 — ng? sin? 6

FTM,s = .
ns2 cos O + ngv/ng2 — ng? sin? 6

Here, subscripts TE and TM show the TE mode and the TM mode, respectively;
subscripts ¢ and s correspond to the reflection at the interface of the cladding layer
and guiding layer and at the interface of the substrate and guiding layer, respectively.

When the total reflections take place, |r|2 = 1 is satisfied, and the amplitude
reflectivities in (3.9) and (3.10) take complex numbers. As a result, we can write the
amplitude reflectivity r as

r =exp(i2¢), (3.11D

where ¢ is the phase shift added to the reflected wave at the interface. In other words,
due to the total reflection, the phase of the reflected wave is shifted at the interface
of the reflection. When we rewrite (3.9) and (3.10) in the form of (3.11), the phase
shifts are expressed as

I’lf2 SiIl2 Gf — nC2
tan ¢TE,C = ’
nfg Cos ef (312)
ne2 sin? O — ng2
tan T =

nf cos bf
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ney/ng? sin? O — nc2

tan ¢v,c =
< ne2 cos 6
_ (3.13)
nevng? sin? O — ng?
tan ¢rm,s = 5 ,
ng* cos O¢

where the subscripts are the same as in (3.9) and (3.11).

3.2.2.2 Guiding Condition

We consider a monochromatic coherent plane wave, which propagates in an optical
waveguide as shown in Fig.3.6. Here, the x-axis is normal to the layer interfaces,
the y-axis is parallel to the layer interfaces, and the z-axis is along the propagation
direction of the light. The thickness of the guiding layer is .
Neglecting a time-dependent factor, we can express the propagating electric field
E as
E = Egexp[—ikong(Ex cos b + zsinb)], (3.14)

where kg = w/c is a wave number in a vacuum, and a sign in front of x corresponds
to the propagation direction of the light (4: toward positive x and —: toward negative
x). The propagation constant  and the phase velocity vy along the z-axis are defined
as
) 1)
B = kongsinfy = —, (3.15)
Up

as shown in Fig.3.7.

If we see a light in a reference system which moves toward the positive z-axis
with a phase velocity v, we observe that a light is multireflected along the x-axis.
Changes in the phase during a roundtrip of the light along the x-axis are given by

x = 0 — h (the first half) : kongh cos 6,
x=h (at the interface of the reflection) : —2¢,,
x = h — 0 (the second half) : kongh cos 6,
x=0 (at the interface of the reflection) : —2¢s.

Fig. 3.6 Coordinate system

for a guided mode n.

T | Z

n y

S

¢
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P = kongsinf;

Fig. 3.7 Propagation constant

Fig. 3.8 Goos-Hinchen shift 27,
" P —
t
ng 6
. ‘ * * ]\ .
P B RO O B e
27, 27,

Because the phase of the wave front shifts after a roundtrip, the lightwave intensity
is modified by interference. Therefore, to obtain a propagating lightwave without
decay, a total phase change in the roundtrip must satisfy

Dkongh cos by — 2¢c — 2¢s =2mm  (m=0,1,2,...), (3.16)

where m is the mode number. Equation (3.16) shows a resonance condition normal
to the z-axis, which is called the transverse resonance condition. From (3.16), it is
found that the angle of incidence 6; for the guided mode takes discrete values.

In summary, the guiding condition is characterized by simultaneously satisfying
the transverse resonance condition (3.16) and the total reflection condition ¢ <
Or < m/2.

3.2.2.3 Goos-Hianchen Shift

When the total reflection takes place, a phase of a lightwave shifts by —2¢ at the
interface of the reflection. Due to this phase shift, an optical path changes at the
reflection interfaces, as shown in Fig.3.8. This shift in the optical path Z is called
the Goos-Hdnchen shift, which is given by

7= 92 (3.17)

dg’
where S is the propagation constant along the z-axis.

At each reflection interface, a lightwave propagates along the interface and has a
component with a decay constant 1/X along the x-axis where X is the penetration
depth. This exponentially decaying wave is designated the evanescent wave, and the
energy does not flow along the x-axis.
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Fig. 3.9 Distribution of light Light Intensity
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With the help of (3.12) and (3.13), the Goos-Hénchen shifts and the penetration
depths are expressed as

koZTEc = (nf2 sin’ Of — nc2)_l/2 - tan 6,

koZtes = (ng” sin® 6 — ng>) V2 - tan 6y, (3.18)
Xon . — ZTE _ ZTEgs
TE,c tan 9f ’ TE,s tan ef ’

N2 N2 !
koZme = (ng? sin? 6 — ne?) ™2 - tan 6y - (— +— - 1) ,
n

2 ong?
-1
N?  N?
koZtwms = (n¢” sin> 6y — n®)'/2 - tan 6 - (—2 +— 1) . (319
ns ng
ZTM,c ZTM,s
XM = TM,s

tan 6f

3.2.2.4 Effective Refractive Index

Using a wave number ky = w/c in a vacuum and the propagation constant 8 along
the z-axis, we define the effective refractive index N as

N = ﬁ = ng¢ sin 6f. (3.20)
ko
This effective refractive index N is considered to be a refractive index of a material
for a plane wave propagating along the z-axis. Because the semiconductor lasers have
optical waveguides within themselves, the effective refractive index N is important
to determine the resonance conditions. Note that the value of N for the guided modes
satisfies

ng < N < ng, 3.21)

where ny > ng was used.
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3.2.2.5 Optical Confinement Factor

We define the optical confinement factor I' as a ratio of the intensity of the light
existing in the relevant layer to the total light intensity.

Because the light intensity distributes as shown in Fig. 3.9, the optical confinement
factor It for the guiding layer (hatched area) is given by

h
/ |E (x)|?dx
=2 (3.22)

/Oo |E(x)|2dx.

—00

Similarly, the optical confinement factors I for the cladding layer and I for the
substrate are written as

00 0
/ |E(x)*dx / |E(x)[dx
=" =2 . (3.23)
/ |E(x)|*dx / |E (x)|2dx

The optical confinement factor I” is important to design optical losses or optical
gains in the optical waveguides. Using I", we can approximately express the effective
refractive index N as

N = I'sng + Itng + Iine. (3.24)

3.2.2.6 Normalized Expressions for Eigenvalue Equation

The equation for the transverse resonance condition (3.16) is called an eigenvalue
equation. By solving (3.16) numerically, we can examine propagation characteristics
of the guided modes. Furthermore, normalizing (3.16) leads to dispersion curves,
which are common to all step-like two-dimensional optical waveguides. To obtain
a normalized expression of the eigenvalue equation, we define the normalized fre-
quency, or the normalized waveguide thickness V, and the normalized waveguide
refractive index b as

V = kohv/ng? — ng2, (3.25)
2

N? — ng
b= S —— (3.26)

In addition, we introduce the asymmetry measure a as

2 2
s —Me (3.27)

a=——=_
ne2 — ng?
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Substituting (3.12), (3.13), and (3.25)—(3.27) into (3.16), we obtain the normalized
eigenvalue equation as

/| b / b
V\/ 1— =mm + tan_l Xs m + tan_l Xc %, (328)

| 1 : TE mode
Xi =

where

(n¢/ni)? : TM mode (i = s, c). (3.29)

It should be noted that the guided modes for the gain guiding waveguides can be
calculated from (3.16) or (3.28), if we replace the refractive index n; (i = s, f, ¢)
with the complex refractive index 7;.

Figure 3.10 shows the normalized dispersion curves for the guided TE modes. If
the waveguide parameters, such as the refractive indexes and the layer thickness, are
given, we can design the optical waveguides using Fig.3.10. For the design of the
optical waveguides, the cutoff condition, in which the guided modes do not exist,
is important. When the angle of incidence 6 is equal to the critical angle 6, the
lightwave is not confined to the guiding layer anymore, and a fraction of the optical
power is emitted to the substrate. In this case, we have N = ng, whichresultsinb = 0
from (3.26). Hence, from (3.28), a normalized frequency for the cutoff condition V,,
is given by

Vip = mm +tan"! xe4/a. (3.30)

For V,, <V < V,,41, the guided modes from the zeroth order to the mth order exist
as shown in Fig. 3.10, and a lower-order mode has a larger b for a common V value.
Therefore, from (3.26), a lower-order mode has a larger effective refractive index,
and the fundamental mode ( = 0) has the largest N among the guided modes.

Figure3.11 shows the electric fields E(x) for fundamental (m = 0), first-order
(m = 1), and second-order (m = 2) TE modes, in which the mth-order TE mode
is indicated by TE,,. See Appendix D for the relationship between the eigenvalue
equations and the light fields.

For symmetric optical waveguides with ng = n., by using V and b, the optical
confinement factor It is also expressed as

Vb +2b
F_«/_+

S S My 3.31
TV b2 63D

3.2.2.7 Coupling of Light into Optical Waveguides

When the total reflections occur at the interfaces, we cannot couple a light into the
guiding layer from the cladding layer or the substrate. Therefore, we introduce the
light from a facet of the optical waveguide, as shown in Fig. 3.12. It should be noted
that the angle of incidence in the guiding layer 6f must satisfy the guiding conditions.
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Fig. 3.10 Normalized ~ 1.0
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In semiconductor lasers, lights are generated in the active layers, and we do
not have to couple a light from outside. However, when semiconductor lasers are
used as optical amplifiers by biasing below threshold, or they are controlled by an
incident light such as in injection locking, lights are introduced from the facets of
semiconductor lasers.
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To 1 T2 T3 ITN—2 TN-1

Nog | N1 | N2 | N3 nnN-i1|nn

Fig. 3.13 Multiple layer optical waveguide

3.2.3 Multiple-Layer Model to Analyze Guided Modes

We consider the light, which propagates along the z-axis in the multiple layer optical
waveguide shown in Fig.3.13. From Maxwell equations, the light fields v, (x) and
Y (x) at the position x and the light fields v, (x;) and v, (x;) at the position x; are
related by the following equation

PN )
[Wx)]_G(x x’)[wz(m} (3-32)

where G(x — x;) is a matrix.

If we assume that an electric field E and a magnetic field H of the light are
expressed by a separation-of-variables procedure, we have ¥y (x) = Ey(x), ¥, (x) =
iZoH;(x) for the TE mode; and vy (x) = ZoHy(x), ¥;(x) = —iE;(x) for the TM
mode. Here, a subscript indicates a component along each coordinate and Zy =

o/ o is the impedance of vacuum.
To define the matrix G(x — x;), we introduce parameters such as

ki =+ ko’ni2 — B2, (3.33)

Vi =/ B — ko’n;2, (3.34)

3.35
n;2 TM mode (3-35)

I 1 TE mode
Gi =
where kg is the wave number of the light in a vacuum, n; is the refractive index of the
ith layer, and f is the propagation constant. It should be noted that the propagation
constant g is calculated by solving the eigenvalue equation described below.

For the ith layer with 8 < kon;, the matrix G(x — x;) is written as
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kogi .
coski(x —x;) ———sink;(x — x;)
G(x —x;) = K ki . (3.36)
——sink;(x — x;) cos ki (x — x;i)

kot

For the ith layer with 8 > kon;, the matrix G(x — x;) is expressed as

kogi .
cosh y; (x — x;) ———sinh y; (x — x;)
G(x —x;) = Vi Vi . (3.37)
———sinh y; (x — x;) coshy; (x — x;)

ko

In (3.36) and (3.37), dependence of the light fields on time 7 is assumed to be exp(iwt)
where w is the angular frequency of the light, and det G(x — x;) = 1 is satisfied.

Since vy (x) and ¥, (x) are tangential components of the light fields, v, (x) and
¥, (x) are continuous at the boundaries, respectively. By using these boundary con-
ditions, ¥y (x0), ¥ (x0), ¥y(xn—1), and ¥, (xy_1) are related as

N—-1
Yy (o) | _ oG- | _ [ A B || ¥yen-1)
[wz<xo>]_ HG( dl)[Wz(xN—l)}_l:C DM%@N_»] (3.38)

where d; = x; — x;_1 is the thickness of the ith layer.

The propagation modes should have field distributions of exp [yo(x — xo)] in
x < xo and exp [—yN (x — xN_l)] in x > xy_1. Here, we assume that dependence
of the light fields on time ¢ is expressed as exp(iwt) where w is the angular frequency
of the light.

The electromagnetic fields E (x, t) and H,(x, t) for the TE mode are assumed
as follows:

Ey(x,1) = Ey(x) exp(iwt) = Egexp [y0(x — xo)] exp(iot) (x < xo), (3.39)
H(x,1) = H.(x) exp(iot) = Hoexp [yo(x — xo)] exp(iwt) (x < xo), (3.40)

Ey(x,1) = Ey(x) exp(iot) = Ey exp [=yy (x — xy—1)]exp(ion) (x> xy-1),
(3.41)

H.(x,1) = H.(x) exp(iot) = Hy exp [—yn(x — xy_1D]expiot) (x > xy_1),
(3.42)

where Eo, Hy, En, and Hy are amplitudes, which are independent of position x and
time 7.

In a uniform optical material, which has magnetic permeability in a vacuum g
usually, one of Maxwell’s equations is written as

OH
VxE=—py . (3.43)
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By inserting (3.39)—(3.42) into (3.43), we obtain

vEo = —ipowHy (x < xop), (3.44)
—yNEN = —ipowHy (x = xn-1). (3.45)

From (3.44) and (3.45), iZoHp and iZoHy are given by

iZoHy = | Ho (—AEO) — —LEO
£0 How JEoo ® (3.46)
C
= —PEy =g x<x0),
w ko
iZoHy = M0 (V_NEN) _ W g
€0 How A Eopo @ (347)
N YN

Ey="—En (x >xNn_1),
ko

where ¢ = 1/./eopo is the speed of light in a vacuum, and ky = w/c is the wave
number of the light in a vacuum. Therefore, the light fields v, (x) and ¥, (x) for the
TE mode are written as

Yy (x) = Ey(x) = Egexp [yo(x — x0)] (x < xo). (3.48)
V. (x) = iZoH,(x) = —Z—SEO exp [o(x — x0)] (x < x0), (3.49)
Yy(x) = Ey(x) = Eyexp[—yn(x —xny—1)] (x = xy_1), (3.50)

V. (x) = iZoH, (x) = %EN exp[—yn(x —xy_1)] (x=xy ). (351

The electromagnetic fields Hy (x, t) and E;(x, t) for the TM mode are assumed
as follows:

Hy(x, 1) = Hy(x)exp(iot) = Hyexp [yo(x — xo) ] exp(iowt) (x <xp).,  (3.52)
E.(x,1) = E.(x) exp(iot) = Egexp [yo(x — x0)] exp(ior) (x < xp), (3.53)

Hy(x,1) = Hy(x)exp(ior) = Hy exp [—yn (x —xy_1)]| exp(iowr) (x > xy_1),
(3.54)

E;(x,1) = E;(x) exp(ior) = Ey exp [~y (x — xy-1)]exp(ior) (x = xy—1).
(3.55)

When the electric current does not flow, one of Maxwell’s equations in a uniform
optical material with the refractive index n; is written as

OE
V x H = gon;> e (3.56)
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By inserting (3.52)—(3.55) into (3.56), we obtain

YoHo = iegno’wEy = ieglowEo (x < xo), (3.57)

—ynHy = ieony?wEy = iegtywEN (x = xn_1). (3.58)

From (3.57) and (3.58), iEg and iE y are given by

iEg = —""Hy (x < x0), (3.59)
goow
iEy = —N Hy (x> xn_1). (3.60)
golNw

Therefore, the light fields vy (x) and v, (x) for the TM mode are written as

Yy (x) = ZoHy(x) = ZoHoexp [yo(x —x0)] (x < xo), (3.61)
Yo (x) = —iE;(x) = — i Hyexp [yo(x — x0)] (x < xo), (3.62)
gobow
Yy (x) = ZoHy(x) = ZoHy exp[—yn(x —xy-1)] (x = xy_1), (3.63)
Yo (x) = —iE;(x) = Ul Hyexp[—yn(x —xy-1)] (x =xy_1). (3.64)
golNw

Inserting (3.48)—(3.51)and (3.61)—(3.64) into (3.38), we have a following eigenvalue
equation
k ko> k
KoON 4 4 p 4 K0TG0N (| koS0 (3.65)
YN YOYN Yo

As dependence of the light fields on time 7, exp(—iwt) is also often used as well as
exp(iwt). If we assume that dependence of the light fields on time ¢ is expressed as
exp(—iwt), the light fields v, (x) and v, (x) are expressed as

for the TE mode
Yy (x) = Ey(x) = Egexp [yo(x —x0)| (x < x0), (3.66)
Vo (x) = iZoH.(x) = Z—gEo exp[yo(x — x0)] (x < x0), (3.67)
Yy (x) = Ey(x) = Ey exp [—yn(x —xy_D] (x> xy_1), (3.68)

Vo (x¥) = iZoH, (x) = —z—’gEN exp[—yn(x —xy-1] (x=xy-1),  (3.69)

and for the TM mode
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Fig. 3.14 Coordinates for a three-dimensional optical waveguide

Yy (x) = ZoHy(x) = ZoHy exp [y0(x — x0)] (x < x0), (3.70)
V() = —iE(x) = —2— Hyexp [yo(x — x0)] (x < x0), (3.71)
gobow
Yy (x) = ZoHy(x) = ZoHy exp[—yn(x —xy-1D] (x = xy_1), (3.72)
V() = —iE.(x) = —— 2 Hy exp[-yn(x —xy_1)] (x> xy_1). (B.73)
golNw

As a result, the eigenvalue equation is given by

ki ko® ki
06N o p_ 0§°0$“NC+ 0%, _

YN YOVN Yo

0. (3.74)

By solving (3.65) or (3.74), we can obtain the propagation constant 8 of the mul-
tiple layer optical waveguide and the filed distribution. If we use complex refractive
index, we can consider optical gain or loss in the optical waveguide. When S’s are
real, the guided modes for the index guiding waveguides exist. When ’s are com-
plex, the guided modes might exist when the optical waveguides have optical gain.
Therefore, in the semiconductor lasers, we have to consider the modes for complex
B’s as well as the guided modes for real 8’s.

3.3 Three-Dimensional Optical Waveguides

As shown in Fig. 3.14, we select a coordinate system in which the propagation direc-
tion of the light is the z-axis, the layer interfaces are normal to the x-axis, and the
layer planes are parallel to the y-axis.

The two-dimensional optical waveguides can confine lights only along the x-
axis, and not along the y-axis. In contrast, the three-dimensional optical waveguides
confine lights along both the x- and y-axes. When these three-dimensional optical
waveguides are adopted in semiconductor lasers, the guided modes are efficiently
amplified, which results in low-threshold, high-efficiency laser operations. However,
analysis of the three-dimensional optical waveguides is more complicated than that
of two-dimensional ones, and we cannot obtain exact analytical solutions. As aresult,
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Fig. 3.15 Effective refractive
index method
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approximate analytical methods or numerical analyses are used to design the three-
dimensional optical waveguides. As approximate analytical methods, we explain
the effective refractive index method and Marcatili’s method. These approximate
methods can be applied to the guided modes, only when an aspect ratio a/h > 1
where £ is the guiding layer thickness and a is the waveguide width, and the guiding
condition is far from the cutoff conditions. If these two conditions are not satisfied,
accuracy of the approximations degrades.

3.3.1 Effective Refractive Index Method

Figure3.15 shows a ridge+ optical waveguide where an upper figure is a top view
and a lower one is a cross-sectional view. Here, a is the waveguide width, % is the film
thickness of the core region, and f is the film thickness of the surrounding regions.

At first, we treat the core region and the surrounding regions separately, and
we regard each region as the two-dimensional optical waveguide. Therefore, the
normalized frequency V and the normalized waveguide refractive index b for each
region are defined as

Fig. 3.16 Marcatili’s method X

11, ny 1

V, ns I, n; IV, ny ] h

II, n,

a
[ ———————————— >
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Vi = kohvng2 — ng2, Vi = ko fV/ne? — ng2, (3.75)
2

th — ns2 Nf2 — ng
bhz—z, bs = 7

— (3.76)
ngs — ng

ng? —ng

where subscripts 4 and f correspond to the core region and the surrounding regions,
respectively; and Ny, and Ny are the effective refractive indexes for each region.

Secondly, we consider that the guiding layer with the refractive index Ny, and
thickness a is sandwiched by the layers with the refractive index N¢, as shown in
the upper figure of Fig.3.15. As a result, the normalized frequency Vy of the three-
dimensional optical waveguide is defined as

Vy = koay/ Nn2 — N¢2. (3.77)

If we express the effective refractive index of the three-dimensional optical waveguide
as Nj, the normalized waveguide refractive index by of the three-dimensional optical
waveguide is given by

st - Nf2

by = ——.
* th — Nf2

(3.78)

Substituting V, and by into (3.28) leads to the dispersion curves for the three-
dimensional optical waveguide.

3.3.2 Marcatili’s Method

Figure 3.16 shows a cross-sectional view of the three-dimensional optical waveguide,
which is seen toward the positive direction of the z-axis. If most of the guided modes
are confined to region I, light field amplitudes drastically decay with an increase in
distance from the interfaces. Therefore, the light intensities distributed in the shaded
areas in Fig. 3.16 are neglected, which is referred to as Marcatili’s method [6]. Under
this assumption, light fields are obtained by solving wave equations.
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Chapter 4
Optical Resonators

4.1 Introduction

As shown in Fig. 4.1, the lasers use a fraction of spontaneously emitted lights as the
input and amplify the fraction by the stimulated emission. To feed back the light, the
optical resonators, or the optical cavities, which consist of reflectors, are adopted.
The resonance conditions of the optical resonators determine lasing conditions such
as a threshold and an oscillation wavelength.

In this chapter, we focus on the optical resonators that are used in the semiconductor
lasers and explain the Fabry-Perot cavity, the distributed feedback (DFB) cavity, and
the distributed Bragg reflector (DBR), which is a component of a resonator.

The optical resonators are divided into three groups whose constituent components
are mirrors, diffraction gratings, and hybrid of mirrors and diffraction gratings.

Figure 4.2 shows the optical resonators comprising the mirrors: the Fabry-Perot
cavity and the ring cavity. The Fabry-Perot cavity consists of two parallel mirrors in
which lights experience repetitive roundtrips. The ring cavity, in contrast, has three
or more mirrors, in which lights propagate clockwise or counterclockwise. These
two optical cavities are also widely used in gas, solid, and dye lasers as well as in
semiconductor lasers. One of the mirrors is often replaced by the diffraction grating
in order to select an oscillation mode. Note that a cleaved facet is used as a mirror
in semiconductor lasers.

Figure 4.3 shows the optical resonators, which use diffraction gratings: the DFB
cavity and the DBR. The DFB cavity has an active layer, which generates a light, and
the optical gain, in its corrugated region, and functions as the optical resonator by
itself. In contrast, the DBR does not have an active layer in its corrugated region and
functions as a reflector, not a resonator. Therefore, the DBR is combined with other
DBRs or the cleaved facets to form optical resonators.

4.2 Fabry-Perot Cavity

The Fabry-Perot laser has an active material inside the Fabry-Perot cavity, as shown
in Fig.4.4a. In the semiconductor lasers, cleaved facets are used as mirrors, as illus-
trated in Fig.4.4b, because lights are reflected at the interface of the air and the
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semiconductor due to a difference in refractive indexes. Note that the cleaved facets
are very flat with the order of atomic layers, and they are much smoother than light
wavelengths. These cleaved facets are often coated with dielectric films to control
the reflectivities or protect the facets from degradation.

Let us consider transmission characteristics of the Fabry-Perot cavity. We assume
that the amplitude reflectivities of the two mirrors are r| and r»; the amplitude trans-
missivities of the two mirrors are #; and #,, as shown in Fig.4.5. As explained in
Chap. 3, these reflectivities and transmissivities depend on the angle of incidence
and the polarization of the light. Here, we suppose that the angle of incidence 6y is
small enough, and we regard r1, 17, t1, and #, as constant.

If we neglect a time-dependent factor, we can write the incident electric field Ej;
through the surface at z = 0 as

w . .
Ei = t1 Egexp |:— (x sinf + z cos 9):| x explgg(xsinf 4+ zcos@)]. (4.1)
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Fig. 4.5 Analytical model for the Fabry-Perot cavity

Here, Eq is an amplitude of the electric field of the incident light, ny is a real part
of the complex refractive index of the material placed between the two mirrors, w is
an angular frequency of the light, ¢ is the speed of light in a vacuum, and g is the
optical amplitude gain coefficient defined in (3.6).

The transmitted electric field E; through the Fabry-Perot cavity is expressed as

in

L
E  =t1thEgexp |:— :w (xsinf + L cos6) + %

2gsL 2ggL
x[1+r1r2exp(—i(5+ Sk )+(r1r2)zexp|:2(—i§+ gEg)]+~-~]
cos

cosf

. L

titr Eg exp |:_1nnw (xsinf + L cosf) + il

c cosf
= =, “4.2)

( . 2gEL)
I —rimexp|—id+
cos 6
where

5= 2ngwlL cos O 43)

c

was introduced.
The incident light intensity Iy and the transmitted light intensity I are related to
the electric fields Eg and E; as
Iy x Ey*Ey, I x E{*E;. 4.4)
Therefore, with the help of (4.2), we obtain

B (1112)* Gy
1+ (r1r)? - G2 — 2r1rGg cos §

I,
4.5)
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Fig. 4.6 Transmission
characteristics for the
Fabry-Perot cavity
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Because the power reflectivities Ry, Ry and the power transmissivities 77, T, are
given by
Ri=ri"ri, Ro=r"rn, Ti=u"n, Th=n"n, (4.6)

we can rewrite (4.5) as

_ T'T>Gq I
1 + GsleRz —2Gs+/R1Rycos 6 0

Iy 4.7)

The angle 6 is given by 6 = 7/2 — ¢, where 0 was defined in Fig.3.6. Hence,
we have cos = sin 6f and (4.3) reduces to

. 2nywlL w

1) =2ntkoL, ko= —, 4.8)

where the effective refractive index N = ny sin 6y = n, was used. When the angle
of incidence 6y is small, as in a fundamental mode, (4.7) results in

_ TGy Io
(1 — Gyov/RiR2)? + 4Gs0/Ri Ry sin’(nckoL)

Iy

(4.9)
Gso = exp(2ggL) = exp(gL),

where (4.8) was used and g is the optical power gain coefficient. Figure4.6 shows
a plot of (4.9) where Ggo = l,and Ry = Ro = R, T1 =T, =T = 098 — R by
assuming that the optical power loss at each mirror is 2 %. The transmissivities have
maximum values at n.kgL = n7 (n: a positive integer) and minimum values at (n +
1/2)m. With anincrease in R, the transmission spectra narrow and the transmissivities
decrease. If the optical power loss at the mirror is null, we have T = 1 — R, which
results in a maximum power transmissivity of 1 (100 %) irrespective of R.


http://dx.doi.org/10.1007/978-4-431-55148-5_3

4.2 Fabry-Perot Cavity 65

4.2.1 Resonance Condition

When the resonance condition is satisfied, the power transmissivity has a peak. From
(4.9), the resonance condition is given by

L L
nokoL = 0% IR 066 = i, (4.10)
C C

where n is a positive integer. From this equation, it is found that the effective refractive
index n; is useful to express the resonance condition. At normal incidence with
0y = 6 = 0, the resonance condition is written as

npwL

= nykol = nm. 4.11)
c

Using a wavelength in a vacuum \g, (4.11) reduces to

Ao

L=n .
2ny

4.12)

Because \g/ny is a wavelength in a material, a product of a positive integer and
a half-wavelength in a material is equal to the cavity length L at the resonance
condition.

4.2.2 Free Spectral Range

The Fabry-Perot cavity is used as a spectrometer, because its transmissivity depends
on a light wavelength. However, two lights whose n koL values are different by nrw
(n: apositive integer) cannot be resolved by the Fabry-Perot cavity, because there is a
common transmissivity for the two lights. When (n — 1/2)7 < nykoL < (n+1/2)7w
is satisfied, a light is not confused by other lights. This region of n koL is called
the free spectral range, because the light is resolved free from other lights. The free
spectral range in an angular frequency wrsr is given by

c
nyL

WFSR = . (4.13)

Using the free spectral range Apsr in a wavelength, wgsr is written as

1 1
WESR = 27C (— — —) (4.14)
Ao Ao+ Arsr

As a result, we have

>\FSR ~ — WFSR- (4. 15)
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4.2.3 Spectral Linewidth

The half width at half maximum (HWHM) is a difference between the wavelength or
the frequency for the maximum transmissivity and that for the half of the maximum
transmissivity. The full width at half maximum (FWHM), which is twice as large as
the HWHM, is a difference between the two wavelengths or frequencies for the half
of the maximum transmissivity.

Let us calculate the spectral linewidth using (4.9). When the transmissivity takes
a maximum value, the resonance condition (4.11) is satisfied. As a result, the denom-

inator in (4.9) reduces to
(1 — Gyov/R1 R)?. (4.16)

When the transmissivity is half-maximum, the denominator in (4.9) is twice (4.16),
and we have

(1 — Gso/R1R2)? + 4G50/ R Ry sin®(nckoL) = 2(1 — Go/R1 R2)?,  (4.17)

which results in

1
sin(nrkgL) = £ ———= (1 — G0V R1R2). (4.18)

2\4/ G502R1R2

Expressing ko = k,, on resonance and ko = k, £ Ak at half-maximum and then
substituting kg = k,,, &= Akg into (4.18) leads to

1
sin(n; AkgL) = ——— (1 — Gov/R1 R2). (4.19)

2\4/ G502R1 Ry
For the spectra in Fig. 4.6, n; AkgL < 1 is satisfied. Hence, (4.19) reduces to

1 —GgovRIR2

Aky = T
2n; L/ G Ri Ry

(4.20)

Using ko = w/c, we can express the HWHM in an angular frequency Awy as

c(l1 — Gso/R1R2)

Awy = cAky = " . 4.21)
2n.L GsoleRz
Therefore, the FWHM Awg, which is twice the HWHM, is given by
1—Gyw+RiR
Awp = 24wy = S0 = G0V RIRY) (4.22)

nLYGo RIRy

Using a wavelength in a vacuum, we can write the FWHM in a wavelength A\r as
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o2 Mo2(1 — Gso/RiR
Mg~ 20 A = 0’ e 2 (4.23)
2mc 2mn: Ly G2 R Ry

4.2.4 Finesse

When we measure a wavelength or a frequency of light, an index of resolution is
given by the finesse. The finesse F is defined as a ratio of the free spectral range to
the FWHM, which is given by

wrsk _ Apsk TV G0’ Ri Ry
Awgp AXN  1—GoJRiR2

where (4.13), (4.15), (4.22) and (4.23) were used. With anincrease in F', the resolution
of a wavelength or a frequency is improved.

F =

(4.24)

4.2.5 Electric Field Inside Fabry-Perot Cavity

Earlier, we considered a relationship between the incident light and the transmitted
light in the Fabry-Perot cavity. In this section, we study the light inside the Fabry-Perot
cavity. When the amplitude reflectivities are r| = r, = r and the amplitude transmis-
sivities are 11 = f, = t, the electric field E inside the Fabry-Perot cavity is written
as

E =t Eqexp(kefr x sin 0) {exp(ker z cos 0) + r explkesr (2L — z) cos 0]}
x [1 + 2 exp(2ketr L cos 0) + r* exp(ékefr L cos 0) -+ - - - ]

_ 1Eq exp(kefr x sin 0) {exp(kefr z cos 0) + r explkesr (2L — z) cos 0]}

, (4.25
1 — 2 exp(2kesr L cos 0) (4.25)
where .
1npWw
ketr = — p + gE. (4.26)

In (4.25), exp(kefr z cos 0) exhibits a forward running wave toward a positive direction
along the z-axis, and explkesr (2L — z) cos 6] expresses a backward running wave
after reflection at a plane with z = L. If we introduce a = r exp(2kegr L cos ), (4.25)
reduces to

(1 — a) exp(kefr z cos 0) + 2a cosh(kegr z cos 0)

E = 1Eo exp(kerr x sin 0) 1 — r2 exp(2kegr L cos 0)
(S

. (4.27)
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In (4.27), the first term in the numerator represents a forward running wave, and the
second term shows a standing wave. From (4.25)—(4.27), the light intensity inside
the Fabry-Perot cavity takes a maximum value when

npwlL nrwl
———cosf =

C C

= nikoL = nm. (4.28)

Here, n is a positive integer, which shows the number of nodes existing between
z =0 and z = L for a standing wave. Note that (4.28) is the same as the resonance
condition (4.10), which indicates that both the transmissivity and the internal light
intensity of the Fabry-Perot cavity have the largest values at the resonance condition.

4.3 DFB and DBR

The DFB cavity and the DBR are the optical waveguides, which have diffraction
gratings in them. They feed back lights by spatially modulating the complex refractive
indexes of the optical waveguides. In the Fabry-Perot cavity, the reflection points of
lights are only the facets. In contrast, in the DFB cavity and the DBR, reflection
points of lights are distributed in the optical waveguide as shown in Fig.4.7. The
difference in the DFB cavity and the DBR is that the former has the optical gain in
the corrugated region, and the latter does not. As described earlier, the DFB cavity
functions as the optical resonator, and the DBR forms the optical resonator with other
DBRs or cleaved facets.

4.3.1 Coupled Wave Theory

Because only the difference in the DFB cavity and the DBR is whether there is optical
gain, their characteristics can be analyzed by a common method. In order to treat the
optical gains or losses, we consider an optical waveguide with a complex dielectric
constant €.

When a lightwave is assumed to propagate along the z-axis, a propagation constant
k in the optical waveguide is given by
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Fig. 4.8 Diffraction grating ‘ A ‘
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E= ar—161=50|:nr(z)+1ﬁ] ,
ko

20(z) }

kon(z) (4.29)

where w is an angular frequency of the light; i is magnetic permeability of a material;
ko = w/c is a wave number in a vacuum; 9 = 8.854 x 10~'2 F/m is permittivity
in a vacuum; n.(z) is a real part of a complex refractive index; and a(z) = gg is an
optical amplitude gain coefficient. For the usual optical materials, 1 is almost equal to
magnetic permeability in a vacuum jio = 4 x 10~7 H/m. Because of |a(z)| < ko, a
second-order term of a(z) was neglected in (4.29). Figure4.8 shows a schematic
cross section of the diffraction gratings. The effective refractive index of the optical
waveguide is periodically modulated with a pitch of A by the corrugations formed at
the interface between the two layers with the refractive indexes na and ng (na # np).

Here, we assume that n,(z) and «(z) are sinusoidal functions of z, which are

written as
ne(z) = no + nrp cos(2Boz + 2),

(4.30)
a(z) = ap + ajcos(2foz + £2),
where 2 is a phase at z = 0 and [ is related to the grating pitch A as
7
=—. 4.31
Bo N (4.31)

Under the assumption of n;1 < ny and o < «y, substituting (4.30) into (4.29)
leads to

) ™ )
k(Z)2 = koznro2 + 1 2konoag + 4konro ()\_rl +i
0

aq

> ) cos(20pz + £2). (4.32)

Here, ko = 27/ )\, where \g is a wavelength in a vacuum.
When the refractive index is constant (n,; = 0) and the material is transparent
(g = a1 = 0), the propagation constant k(z) in (4.32) is given by

k(z) = B = kono. (4.33)
In the optical waveguides with corrugations, reflections in Fig.4.7b couple a for-

ward running wave and a backward one. To express this coupling, we define the
coupling coefficient k of the diffraction gratings as
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Tl . Qg
K= +1—,
%) 2

(4.34)

which is important to describe the resonance characteristics of the DFB cavity and
the DBR.
With the help of (4.33) and (4.34), (4.32) reduces to
k(z)* = 3% +i2Bag + 4Bk cos(2fpz + £2). (4.35)

Substituting (4.35) into a wave equation for the electric field E given by

d’E
Z
we obtain
d’E .
=t [ﬁ 12800 + 48k cos(2Boz + Q)] E=0. (4.37)

The electric field E(z), which is a solution of (4.37), is represented by a
superposition of a forward running field E;(z) and a backward one E¢(z) such as

E(z) = Er(2) + Es(2),
Ei(2) = R(z) exp(—i foz2), (4.38)
Es(z) = S(z) exp(ifoz),

where R(z) and S(z) are the field amplitudes of the forward running wave and the

backward one, respectively, and both are functions of z. Inserting (4.38) into (4.37)
gives the wave equations for R and S as follows:

dR . . .
—— 4+ (g —10)R = ikSexp(—if2),

“(‘fs (4.39)
o + (ag —16)S = ikRexp(i£2),
Z
where 0 is defined as ) s
B —Bo
b= — >3- 0. 4.40
7 B = Bo (4.40)

Here, R and S were assumed to be slowly varying functions of z, and the second
derivatives with respect to z were neglected. Because the forward running wave R
and the backward one S are coupled by the coupling coefficient x, (4.39) is called
the coupled wave equation, and a theory based on (4.39) is referred to as the coupled
wave theory [1].

As a wavelength for 6 = 0, we define Bragg wavelength Ag in a vacuum as
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2n0A
Ag = 02 (4.41)
m

where (4.31), (4.33), and (4.40) were used and m is a positive integer designated the
order of diffraction.

Using constants a and b, which are determined by the boundary conditions, general
solutions of (4.37) are given by

E.(z) = [aexp(yz) + pexp(—isf2) - bexp(—vz)] exp(—iFoz),

. _ (4.42)
Es(z) = [pexp(if2) -aexp(yz) + bexp(—vyz)]exp(ifoz),
where
V= (ag —i8)* + K%,
, = Yt (a=id) 4.43)

1K

To continue analyzing, it is useful to introduce a transfer matrix F; [2], which is

defined as © w
E, E (L
[ES(O)} =i [Es(m} (444

Here, L; is the length of a corrugated region and F; is written as
Fii Fi2
F;, = ,
' |: Fo1 Fx

[e%

_'5
F11=[COSh(7Li)— U sinh(vLi)}eXp(iﬁoLi),
vy

Fa

E sinh(yL;) exp[—i (BoL; + £2)], (4.45)
~

ik | .
Py = — > sinh(yL;) expli (BoL; + £2)],

@

Fy = |:cosh(fyL,-) n ! sinh(fyLi)i| exp(—i foLi).
7

When multiple regions are connected in series, as shown in Fig.4.9, the total
transfer matrix F is given by a product of transfer matrixes in all regions such as

F = H F;. (4.46)

If both facets have the power reflectivity of R; and R», the total transfer matrix
FR is given by
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Let us calculate the power transmissivity 7 and the power reflectivity R. When we
assume that the corrugated region length is L and the input is E,(0) with Eg(L) = 0,
the output for the transmission is £, (L) and that for the reflection is E£5(0). From the
definition of the transfer matrix, the power transmissivity 7 and the power reflectivity
R are given by

1 R 2 *Fay

= —), = . (4.48)
Fi1*Fiq F11*Fi;

Figure4.10 shows calculated transmission and reflection spectra of a diffraction
grating. The horizontal line is ) L. = § x L, and the vertical line is the power transmis-
sivity T and the power reflectivity R. Here, it is assumed that the optical waveguide
is transparent (op = o1 = 0), kL = 2, and Ry = Ry = 0. In these spectra, there
is a low-transmissivity (high-reflectivity) region that is symmetrical about L = 0.
This region is called the stop band, because the transmission is stopped.

4.3.2 Discrete Approach

In the DFB cavity and the DBR, the complex refractive indexes are periodically
modulated along the propagation direction of lights. Therefore, they can be analyzed
by the discrete approach, which has been applied to the periodic multilayers.
Figure4.11 shows a model for analysis where a region with a complex refractive
index n; and length 45 and a region with n3 and k3 are alternately placed. The angles
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Fig. 4.11 Analytical model x
in a discrete approach
A
hy b yOo—=>z
n, n; n, ns
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formed by the interface normal and the light propagation directions are supposed to
be 6, and 03 in the former region and the latter region, respectively.

The relationship between the input and output lights is expressed by a character-
istic matrix M, which is defined as

uwoy| U(2)
10y, [10)] w

Here, an electric field E and a magnetic field H are assumed to be expressed by
a separation-of-variables procedure. Hence, U (z) and V (z) show dependence of E
and H on z. As shown in Fig.4.11, we choose the light propagation direction as
a positive z-axis and the plane of incidence as an xz-plane. As a result, we have
U(z) = Ey(z), V(2) = ZoH(z) for the TE mode (E, = E, = 0) and U(z) =
ZoHy(z), V(z) = —Ex(z) for the TM mode (H, = H; = 0), where a subscript
indicates a component along each coordinate; Zg = +/po/¢g is the impedance of
vacuum, (i is magnetic permeability in a vacuum, and £¢ is permittivity in a vacuum.
When we introduce parameters such as

2 2w
B2 = )\—nzhz costh, (3= )\—n3h3 cos 63,
0 0 (4.50)
p2 =npcosbh, p3=n3costs,
the characteristic matrix M, for the TE mode is written as
By —sing By —sing
cos ——sin cos ——sin
M, = 2 2 3 p (4.51)
—ipysinfy cos B —ip3sinf3 cos(s

If the number of periods is N, the total characteristic matrix of the optical
waveguide M is given by
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M:MNZ mip mi2 (4.52)
2 ma; my | ’

To analyze the DFB cavity and the DBR by the discrete approach, it is useful to
put
ny =ng + An, n3 =nyg — An,

A (4.53)

hy=h3=—, 6h=03=0,

2

where n, is an average refractive index of a material; An is a shift of refractive index
from ny9; A is the grating pitch; and L = N A is the corrugated region length. If
0> = 63 = 0, we have common characteristic matrixes for the TE mode and the TM
mode. With the help of (4.52), when the outside of the DFB cavity and the DBR is
the air, the power transmissivity 7 and the power reflectivity R are obtained as

2 2

T =
‘(mu +my2) + (m21 +m22)

(4.54)

_ | m11 +mi2) — (may + mp) 2

| (myy +mi2) + (ma) +ma)

where the boundary conditions at the interfaces for E and H were used. Note that
the obtained 7" and R are derived from Maxwell’s equations. In this process, we have
assumed that E and H are expressed by a separation-of-variables procedure, and
approximations have not been used. For more detailed explanations on the charac-
teristic matrix, see Appendix E.

4.3.3 Comparison of Coupled Wave Theory and Discrete Approach

To clarify the application limits of the coupled wave theory and the discrete approach,
we will compare the results of these two theories. For brevity, we assume that a mate-
rial is transparent (a9 = o1 = 0) and consider the reflectivity at Bragg wavelength
(6 = 0) in the first-order diffraction gratings (m = 1).

4.3.3.1 Coupled Wave Theory

From (4.43), the assumption of avg —i = 0 leads to v = £«. Substituting this result
into (4.45) and (4.48), we obtain the power reflectivity R as

R = tanh®(xL), (4.55)
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where L is the corrugated region length. From (4.55), it is found that « and L are
important to determine the reflectivity of the diffraction gratings.

4.3.3.2 Discrete Approach

When An < ny is satisfied, the power reflectivity R is obtained as

2 )
ARV CAn\2N
R=|1-(M0—2" |4+ (02" , (4.56)
nyo + An ny + An

where (4.51)—(4.54) were used. The second terms in both brackets are approximated

as
4N An/ny
(nr() — An)QN ~ (1 An)4N _ (1 An)"TO/A” /o
nw + An o 110 B 10

An
exp —4N% . 4.57)

With the help of NA = L and (4.41), the exponent of the right-hand side in (4.57)

is written as
An 8An I— 8An

4N = = — 4.58
nro 2n;0A AB ( )
If we put
8An = 27mny (4.59)
and substitute (4.59) into (4.58), we have
A
aNZE T o, (4.60)
nro B

where (4.34) and the assumption of «; = 0 were used. Substituting (4.60) into (4.57)

results in -

—A

(M) ~ e 2L 4.61)
no + An

Inserting (4.61) into (4.56) leads to

1 — e—2xL 2

From (4.55) and (4.62), it is found that the result of the coupled wave theory
agrees with that of the discrete approach when An < ny is satisfied.
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Fig. 4.12 a Uniform grating (a) (b)
and b periodic multilayer

Fig.4.13 Diffraction gratings
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It should be noted that the coupled wave theory assumes that complex refrac-
tive indexes vary sinusoidally, while the discrete approach presumes that complex
refractive indexes change abruptly. Also, in the example for the discrete approach,
two layers were alternately placed. Therefore, with an increase in An, the results of
the coupled wave theory and the discrete approach differ from each other. However,
with an increase in the number of layers in one period so that the complex refractive
indexes may change sinusoidally in one period, the results of the two theories agree
even when An is large. Also, the discrete approach can easily analyze any corru-
gation shape, because one period can be decomposed into many layers. However,
because An in the DFB cavity and the DBR is of the order of 1073, the coupled wave
theory is widely used to analyze or design the DFB cavity and the DBR.

As shown in Fig.4.12, a uniform grating in the DFB cavity or the DBR and
a periodic multilayer seem different in shape. However, they can be analyzed by a
common theory, because the operating principle is common. We should always focus
on the essentials, irrespective of superficial differences.

4.3.4 Category of Diffraction Gratings

From the viewpoint of the pitch and depth, the diffraction gratings are divided into
four groups.

The diffraction grating with uniform pitch and depth, which is shown in Fig. 4.12a,
is a uniform grating. Other diffraction gratings are shown in Fig.4.13. Figure4.13a
is a phase-shifted grating [3, 4] whose corrugations shift in its optical waveguide,
and this grating is especially important for longitudinal single-mode operations in
the DFB-LDs. Figure4.13b is a tapered grating whose corrugation depth is spatially
modulated along the propagation direction of the lights. Figure4.13c is a chirped
grating whose pitch varies along the propagation direction.
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Fig. 4.14 Phase-shifted Pitch A Phase shift —AQ
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4.3.5 Phase-Shifted Grating

The refractive indexes of the optical fibers change according to the wavelengths
of lights, and propagation velocities of lights vary with their wavelengths, which
is referred to as chromatic dispersion. Hence, if semiconductor lasers show multi-
mode operations, optical pulses broaden in the time domain, and finally adjacent
optical pulses overlap each other to limit the transmission of signals. This overlap of
adjacent pulses becomes serious with increases in the transmission distance and the
signal speed. Therefore, longitudinal single-mode semiconductor lasers are required
for long-haul, large-capacity optical fiber communication systems. To achieve sta-
ble single-mode operations, DFB-LDs with phase-shifted gratings or gain-coupled
gratings have been developed. In the following, we will explain the phase-shifted
gratings, which have been used commercially.

4.3.5.1 Transmission and Reflection Characteristics

Figure4.14 shows a schematic structure of the phase-shifted grating, in which the
corrugation phase is shifted by — A2 along the z-axis, and the corrugations in the
uniform gratings are illustrated by a broken line. It should be noted that the nega-
tive sign of the phase shift is related to the definition of the spatial distribution of
the complex refractive index in (4.30).

Let us analyze the phase-shifted gratings using the coupled wave theory. We
suppose that both the pitch and the depth are uniform except in the phase-shifted
region. Figure4.15 shows an analytical model, where the diffraction gratings consist
of two regions, and the phase shift is introduced as a phase jump at the interface of
the two regions.

The transfer matrixes of Regions 1 and 2 are expressed as F'1 and F, respectively.
The phase 2 at the left edge of Region 1 is written as 6. Then the phase 6, at the
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right edge of Region 1 is given by

0y =01 +200L. (4.63)

Due to the phase shift A2, the phase 63 at the left edge of Region 2 is obtained as

03 =0, + A2 =01 +200L + AS2. (4.64)
With the help of (4.48), the transmission and reflection characteristics of the
phase-shifted gratings are given by the transfer matrix F = F| x F».

Figure4.16 shows calculated reflection spectra for kL = 2, where the horizontal
line is 6L = § x L and the vertical line is the power reflectivity. Here, it has been
assumed that a material is transparent and the facet reflectivity is null. The solid
line and broken line correspond to the phase-shifted grating with —A2 = 7 and
the uniform grating with —A$2 = 0, respectively. The characteristic feature of
the phase-shifted grating is that it has a pass band within the stop band, and the
phase-shifted DFB-LDs oscillate at this transmission wavelength. The transmission
wavelength located within the stop band depends on the phase shift. When the phase
shift is 7, the transmission wavelength agrees with Bragg wavelength.

4.3.5.2 Comparison of the Phase-Shifted Grating and the Fabry-Perot
Cavity [5]

Comparing the phase-shifted gratings with the Fabry-Perot cavity, we can understand
a physical meaning of the relationship between the transmission wavelength and the
phase shift.

Figure4.17 schematically shows the Fabry-Perot cavity where the power reflec-
tivity of the mirror is Ry and the cavity length is L. From (4.12), the resonance
condition of the Fabry-Perot cavity is given by

A
L =n—0.
2n;

(4.65)
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Here, n is a positive integer, n, is the effective refractive index of a material, and A is
alight wavelength in a vacuum. Figure 4.18 shows the power reflectivity (reflectance)
Ry of the mirror and the power transmissivity (transmittance) 7 of the Fabry-Perot
cavity as a function of a wavelength . It should be noted that Ry is independent of
A if the dispersions are neglected, and there are sharp peaks for all the wavelengths
satisfying the resonance condition (4.65).

Figure4.19 schematically shows the phase-shifted gratings with a saw-toothed
shape and a rectangular shape. Grating shapes affect the value of «, but the concepts
on the grating pitch are common to both structures. Therefore, to focus on only the
grating pitch, we will consider the rectangular shape in the following.

The phase shift —AS2 is defined as illustrated in Fig.4.19. Such a phase-shifted
grating is regarded as the Fabry-Perot cavity with length L and the two mirrors,
which have wavelength-dependent reflectivities. In this case, a relation between L
and A2 is expressed as

L=>+

>+ a3 (4.66)

s

A AR A( um»
— 1 + ,
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Fig. 4.20 Resonance characteristics of the phase-shifted grating: a reflectance of a mirror and
b transmittance of a cavity

where (4.31) was used. From (4.66), it is found that the cavity length L changes with
the phase shift —A£2, which varies a resonance (transmission) wavelength according
to (4.12). For example, when the phase shift is 7, (4.41) and (4.66) give

AB

L=A=m ,
2ny0

(4.67)

where m is a positive integer called the order of diffraction and n, is the averaged
refractive index. From (4.67), it is found that the resonance wavelength for —A22 = 7
is a product of Bragg wavelength and a positive integer. For the first-order grating
(m = 1), the resonance wavelength is Bragg wavelength.

Figure 4.20 shows the power reflectivity R of the mirror in Fig.4.19 and the power
transmissivity 7T of the phase-shifted grating (cavity) with —A§2 = 7 as afunction of
awavelength. The power reflectivity R of the mirror depends on a wavelength \, and
only the selected wavelength region has high reflectivity. Therefore, only a resonance
wavelength located in the high reflectivity region is selectively multireflected in
the cavity. Also, because the cavity length L is of the order of a wavelength, the
mode spacing (free spectral range) is so large that only one transmission peak exists
within the stop band.

As described earlier, the phase-shifted grating can be qualitatively explained as
the Fabry-Perot cavity. The only difference between the phase-shifted grating and
the Fabry-Perot cavity is the dependence of the mirror reflectivities on a wavelength.

4.3.5.3 Definition of the Phase Shift [6]

There are two definitions of the phase shift in the phase-shifted grating, as shown in
Fig.4.21. In Fig.4.21a, Region 1 (z < 0) and Region 2 (z > 0) shift symmetrically
with respect to z = 0, while in Fig.4.21b, Region 1 does not move and Region 2
(z > 0) shifts at z = 0.

Using the definition in Fig.4.21a, the refractive index n;(z) in Region 1 is
expressed as
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Fig. 4.21 Definition of the phase shift: a Two common phase shifts are introduced in both of
Region 1 and Region 2, and b one phase shift is introduced in Region 2 only

n(z) = nyo + nr1 cos(2foz + A0), (4.68)
whereas the refractive index in Region 2 is written as
ne(z) = ny + nyp cos(2Bpz — A0). (4.69)

When we use the definition in Fig. 4.21b, the refractive index in Region 2 is written
as
n:(2) = ny + ne cos(QBoz + A6 + AS2), (4.70)

where (4.68) was used. Because (4.69) and (4.70) represent the same refractive index,
the two phase shifts A$2 and A6 are related as

A0+ A = 2mm — A6, 4.71)

which reduces to
2A0 + A2 =2mm, 4.72)

where m is an integer.
These two definitions of the phase shift are used in various journal papers or
books. Therefore, we should be careful in discussing a value of the phase-shift.

4.3.6 Fabrication of Diffraction Gratings

In DFB-LDs and DBR-LDs, oscillation wavelengths are just or in the vicinity of
Bragg wavelengths. The oscillation wavelength for the light sources of the optical
fiber transmission systems is 1.3 wm in which the dispersion of the optical fiber
is the smallest, or 1.55 um where the absorption loss of the optical fiber is the
lowest. Because the effective refractive index n;y of the semiconductor lasers is
nearly 3.2, pitches of the first-order grating A are approximately 0.2 pm for a wave-
length of 1.3 wm and 0.24 pm for 1.55 wm from (4.41). Corrugation depth is about
0.1 wm = 100 nm just after the grating fabrication and is reduced to several tens of
nanometers after epitaxial growth of semiconductor layers on the diffraction grating.
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holographic exposure
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This reduction in the grating depth is caused by thermal decomposition of the grating
surface during heating prior to the epitaxial growth.

To fabricate such fine diffraction gratings with high accuracy, holographic expo-
sure [1-15], electron-beam exposure [16], and X-ray exposure [17] systems have
been developed.

4.3.6.1 Holographic Exposure

Holographic exposure systems use interference of two coherent laser beams to make
interference fringe patterns. The obtained interference fringe patterns are transferred
to the photoresists coated on the substrates via developing the photoresists. Finally,
the substrates are etched with the patterned photoresists as the efching masks.

Figure 4.22 shows a principle of the holographic exposure, where solid lines show
wave fronts of two lightwaves and closed circles indicate the points in which the
light intensity is enhanced due to interference. As the wave fronts propagate toward
the substrate, the closed circles propagate along the broken lines. Consequently,
the photoresist regions indicated by arrows are exposed. The grating pitch A is
determined by the spacing of the broken lines.

Figure4.23 shows the angles of incidence 0 and 6, which are formed by the
normals of the substrate plane and the propagation directions of the two laser beams.
The grating pitch A is given by

A= Ae (4.73)
" sinf; +sinb,’ ’

where ). is a wavelength of the incident laser beams.

Figure 4.24 shows an example of the holographic exposure systems. As the light
sources, He-Cd lasers (Ae = 441.6nm, 325nm) or Ar ion lasers (A = 488 nm)
are widely used. A single laser beam emitted from the light source is divided
into two laser beams by a beam splitter, and these two laser beams are expanded.
These expanded beams are collimated and are finally incident on the photoresists
coated on the substrates. To achieve fine patterns with high accuracy, we need high
uniformity in the wave fronts; low fluctuations in the optical paths; high stability in the
wavelength, the phase, and the light intensity of the laser beams; and precise control
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Fig. 4.25 Electron beam exposure

of the angle of incidence. For these purposes, the holographic exposure systems must
be isolated from mechanical vibrations and air flow.

4.3.6.2 Electron Beam Exposure

The electron beam exposure systems scan electron beams on the photoresist in a
vacuum, as shown in Fig.4.25. Scanning of the electron beams and transfer of the
samples are controlled by computers, which results in flexible patterns. The problem
is that exposure time is long. For example, it takes about 10h to draw patterns of the
diffraction grating on a 1 cm? substrate.
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4.3.6.3 X-ray Exposure

Wavelengths of X-rays are short, which leads to small diffraction angles. Hence,
X-rays are suitable to transfer fine patterns of a photomask to the photoresist, as
shown in Fig.4.26. To obtain sufficient X-ray intensity for exposure, synchrotron
radiation is often used, which needs a huge plant. Also, highly reliable photomasks
for the X-ray exposure systems have not yet been developed.

4.3.6.4 Fabrication of Phase-Shifted Grating

The electron beam and X-ray exposure systems are suitable to fabricate various
patterns. These systems, however, have problems on costs and productivity. As a
result, the holographic exposure systems, which have high productivity with low
cost, have attracted a lot of interest. As will be explained in Chap. 6, the most stable
single-mode operations are obtained when the phase-shift is |A§2| = =, which
corresponds to a shift in the length A /2 in the first-order grating. In other words, the
top and bottom of the corrugations are reversed in the optical waveguide.

From the viewpoint of the reverse of the corrugations, positive and negative
photoresists are simultaneously exposed. In a positive photoresist, exposed areas
are removed by development, whereas in a negative photoresist, unexposed areas are
removed. Therefore, by selectively forming the positive photoresist and the negative
photoresist on the substrate, we can obtain a pattern and its reverse on the same plane.
Figure 4.27 shows an example of this method, where SiN is used to prevent chemical
reactions between the positive photoresist and the negative one [8].
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Fig. 4.28 Holographic exposure shifting both wavefronts of the two incident laser beams by using
a a phase-shift plate and b a phase-shift layer with a buffer layer
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Fig. 4.29 Holographic exposure shifting one of the wavefronts of the two incident laser beams by
using a a phase-shift plate and b a hologram

From the viewpoint of the shift in the pitch, wave fronts of the laser beams are
shifted, as shown in Figs.4.28 and 4.29.

In Fig. 4.28, a material with a larger refractive index than air is selectively placed
on the surface of the photoresist to shift both wave fronts of the two incident laser
beams. The lights incident on this material are refracted by Snell’s law, which leads
to a change in the exposed positions. In Fig.4.28a [10], the phase-shift plate is put
on the photoresist. If there is a tiny air gap such as the order of 1 pum between the
phase-shift plate and the photoresist, exposed patterns are heavily degraded due to
multireflections of the laser beams. Hence, precise position control of the phase-shift
plate and the photoresist is required. In Fig.4.28b [11], in contrast, the phase-shift
layer is coated on a buffer layer, which automatically results in no air gap between
the phase-shift layer and the buffer layer.

InFig.4.29, an optical element such as a phase-shift plate or a hologram is inserted
in the optical path for one laser beam to shift one of the wave fronts of the two incident
laser beams. In Fig.4.29a [12], the wave fronts are disturbed due to diffractions at
steps in the phase-shift plate, which reduces the grating formed area. Figure4.29b
[13] uses a hologram to generate a required phase shift on the photoresist, and there
are no distortions in the wave fronts. However, a highly reliable hologram has not
yet been developed.

Figure4.30 shows a replica method [14] where one laser beam is incident on a
replica of a master phase-shifted grating. The fringe patterns, which are formed by
interference of the transmitted light and the diffracted light from the replica, are
transferred to a photoresist.
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Fig. 4.30 Replica method

Because of reproducibility, productivity, a large tolerance in lithography condi-

tions, and costs, the phase-shift method in Fig. 4.28b was first applied to manufacture
phase-shifted gratings. Later, the replica method in Fig. 4.30 was also commercially
used. Recently, electron beam exposure systems have been used in some factories.
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Chapter 5
Fundamentals of Semiconductor Lasers

5.1 Key Elements in Semiconductor Lasers

As shown in Fig.5.1, a laser is composed of an active material, which has optical
gain; and an optical resonator, which feeds back light by its reflectors. In semi-
conductor lasers, the active layers generate spontaneous emission and amplify a
fraction of the spontaneous emission by stimulated emission. As optical resonators,
Fabry-Perot cavities, ring cavities, DFB cavities, and DBRs are used. In this chapter,
we study the fundamental characteristics of semiconductor lasers using Fabry-Perot
LDs, which are shown in Fig. 5.2. Dynamic single-mode lasers such as the DFB-LDs
are discussed in Chap. 6.

In the following, we explain the optical resonator, the pn-junction, and the double
heterostructure (DH), which are indispensable elements in semiconductor lasers.

5.1.1 Fabry-Perot Cavity

As explained in Chap.4, the Fabry-Perot cavity comprises two parallel mirrors. In
semiconductor lasers, cleaved facets such as {011} or {011} surfaces are used as
mirrors, as shown in Fig. 5.2. When a light is normally incident on a facet, the power

reflectivity Ry is given by
2
Nyt — 1
Ry = , 5.1
0 (nrt T 1) (5.1

where n,¢ and 1 are the refractive indexes of the semiconductors and the air, respec-
tively.

When ny is 3.5, Ry is about 31 %. It should be noted that the cleaved facets are
flat of the order of atomic layers, and the surface is smoother than the wavelengths of
lights. Therefore, cleaved facets function as mirrors with high accuracy. To control
the reflectivities or to protect the facets, dielectric films are often coated on the cleaved
facets.
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Fig. 5.2 Fabry-Perot LD

5.1.2 pn-Junction

In semiconductor lasers, in order to inject the carriers into the active layers, the active
layers are placed inside the pn-junctions. Therefore, the active layer is sandwiched
by the p-cladding layer and the n-cladding layer, as shown in Fig.5.3. Applying
a forward bias voltage, which is positive on the p-side and negative on the n-side,
across this pn-junction, the electrons are injected from the n-cladding layer to the
active layer and the holes are injected from the p-cladding layer to the active layer as
shown in Fig. 5.4. As explained in Chap. 2, when the population inversion is generated
by the carrier injection, net stimulated emission is obtained.

Note that the impurities are often undoped in the active layers to achieve high
radiation efficiency. However, in the active layers there are background carriers whose
concentrations depend on epitaxial growth methods. Therefore, the active layers are
not ideal intrinsic semiconductors.

If the impurities are doped in the active layers, the injected carriers combine with
the impurities. Therefore, the carrier lifetime is reduced and the modulation speed
is enhanced (see Sects.5.11 and 5.12). However, the recombinations of the injected
carriers and impurities do not contribute to laser transitions, which decreases the
radiation efficiency. Thus, active layers are sometimes intentionally doped to achieve
high-speed modulations so long as the radiation efficiency is not highly degraded.

p-cladding layer
Active layer

n-cladding layer

Fig. 5.3 Cross section of a pn-junction in semiconductor lasers


http://dx.doi.org/10.1007/978-4-431-55148-5_2

5.1 Key Elements in Semiconductor Lasers 91

P n
<—— Electron

02000000000

000000000

Hole —

Fig. 5.4 Carrier injection in a pn-junction under a forward bias

5.1.3 Double Heterostructure

The heterojunction is a junction consisting of different materials in which materials
with different compositions are also categorized. In contrast, the junction composed
of common material is called the homojunction.

The bandgap energies in semiconductors depend on the constituent elements and
compositions. As aresult, the heterostructures have the energy barriers at the junction
interfaces, and these energy barriers confine the carriers to the well layers. To achieve
efficient recombination of the electrons and holes, these carriers have to be confined
to the active layers. Therefore, the heterostructures are formed at both interfaces of
the active layer. Such a structure is designated the double heterostructure because
there are double heterojunctions.

Figure 5.5 shows the distributions of the energy and refractive index of the double
heterostructure. At the junction interfaces, there are the band offsets AE. for the
conduction band and AE, for the valence band, as shown in Fig.5.5a. Under a
forward bias, the holes are injected from the p-cladding layer to the active layer,
and the electrons are injected from the n-cladding layer to the active layer. The
energy barrier for the holes is AE, at the interface of the n-cladding layer and the
active layer; that for the electrons is AE. at the interface of the p-cladding layer
and the active layer. In many semiconductors, their refractive indexes increase with
a decrease in bandgap energies. Hence, the refractive index of the active layer n, is
usually greater than that of the p-cladding layer n, and that of the n-cladding layer
ny. As a result, a light is efficiently confined to the active layer, which results in a
high light amplification rate.

As described earlier, the double heterostructure confines both the carriers and the
light to the active layer. Therefore, the double heterostructure is indispensable to
achieve excellent characteristics in semiconductor lasers. It should be noted that the
first continuous wave (CW) laser oscillation at room temperature was achieved by
the double heterostructure [1, 2].
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5.2 Threshold Gain

We explain the threshold gain, which is the optical gain required for laser oscillation.
From (4.9), the transmitted light intensity /; and the incident light intensity Iy are
related as
I TGy
Io (1= Gov/RiR2)? +4Gsov/Ri Ry sin® (niko L)
Gy = exp(2ggL) = exp(gL),

(5.2)

where gg is the amplitude gain coefficient for the electric field and g is the optical
power gain coefficient.

Oscillation is a state in which there is an output without an input from outside. As
a result, the oscillation condition is given by Ip = 0 and I; > 0 in (5.2). Therefore,
at the oscillation condition, the denominator in (5.2) is 0, and (5.2) goes to infinity.
Hence, the oscillation condition for the Fabry-Perot LDs is expressed as

Resonance condition : sin(n;kgL) = 0, (5.3)
Gain condition : 1—Gyo+vRi1Ry =0. ’

5.2.1 Resonance Condition

From (5.3), the resonance condition is written as

nrwl

= nkoL = nm, 5.4)
c

where 7 is a positive integer. Using a wavelength in a vacuum X, (5.4) reduces to

A0
L=n—, 5.5
nznr (5.5)
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which is the same as the resonance condition of the Fabry-Perot cavity explained in
Chap. 4. Note that laser oscillation starts at the resonance wavelength nearest to the
gain peak.

5.2.2 Gain Condition

From (5.3), the gain condition is obtained as

1 - Gyv/RiRy =1 —/RiRyexp(gL) = 0. (5.6)

As a result, the optical power gain coefficient g is written as

1 1
:—ln , 5.7
e= 7% 57

where the right-hand side is called the mirror loss.

As described in Chap. 3, the guided modes propagate in the optical waveguides
while confined to the guiding layer (active layer), and the fields of the guided modes
penetrate into the p-cladding layer and the n-cladding layer, as shown in Fig.5.6.
Hence, the light sees optical losses in the p-cladding and n-cladding layers. Therefore,
we have to consider the optical power gain coefficient g for the entire region where
the lights exist.

Using the optical confinement factors, the optical power gain coefficient, and
the optical power loss coefficients of the layers in the optical waveguide, we can
approximately write the optical power gain coefficient g of the optical waveguide as

g= 1,8, — oy — Iyop — Thoy. (5.8)

Here, I, I, and Iy, are the optical confinement factors of the active layer, the p-
cladding layer, and the n-cladding layer, respectively; g, is the optical power gain
coefficient of the active layer; and o, o, and ey, are the optical power loss coefficients
of the active layer, the p-cladding layer, and the n-cladding layer, respectively. It
should be noted that the exact g value is obtained by solving eigenvalue equations,
which include complex refractive indexes.

Fig. 5.6 Distribution of Light Intensity
light intensity in the optical [ 777777
waveguide e

Optical
h e waveguide
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Introducing the internal loss as
aj = oy + Tpap + Thay (5.9)
and substituting (5.9) into (5.8), we have
g=1TI38, — o, (5.10)

where I, g, is the modal gain. Inserting (5.10) into (5.7) results in

1 1 1 1
g =oa;+—1 =ai+— In——, 5.11
agy = i + i3 n Rk, o + 2L n RiR> ( )

which is the threshold gain of the Fabry-Perot LDs. In this equation, the left-hand side
is the threshold gain and the right-hand side is the total loss. Therefore, (5.11) indi-
cates that laser oscillation takes place when optical gain is equal to total loss, which is
the sum of the internal loss and mirror loss. In InGaAsP/InP LDs for lightwave com-
munications, I, g, is 50-60 cm~! because of Rj = Ry = 32 %, L = 250-300 jwm,
and o; = 10-20 cm™!. When electric currents are injected into semiconductor lasers,
laser oscillation starts at the threshold current /i,, which satisfies (5.11).

5.3 Radiation Efficiency

Figure 5.7 schematically shows the current versus light output (/—L) characteris-
tics of the semiconductor lasers. As shown in Fig.5.7, when the injection current
I exceeds the threshold current Iy, laser beams are emitted outward. To evaluate
radiation efficiency of the semiconductor lasers, the slope efficiency and the external
differential quantum efficiency are used.

5.3.1 Slope Efficiency

The slope efficiency Sq; (in units of mW/mA or W/A) per facet is defined as the ratio

of the increase in light intensity AP; (j = 1, 2) to the increase in injection current

Al, which is given by

Sqj = 4% (5.12)
VT Ar '

The slope efficiency for the total light output is obtained as

o _AP+AP AP 5.13)
d,t()t_ AI - A[ ’ .
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Fig. 5.7 Current versus light output characteristics

where AP is an increase in the total light intensity.

5.3.2 External Differential Quantum Efficiency

The external differential quantum efficiency nq (in no units) is defined as the number
of photons emitted outward per injected carrier. The external differential quantum
efficiency nq for the total light output is given by

_AP/ Al _APe_S e (5.14)
= e e ) Al o "M he ’

where w is an angular frequency of the light, & is Dirac’s constant, and e is the
elementary charge.

As shown in (5.11), the total loss is a sum of the internal loss and mirror loss.
For a reference system placed outside the optical cavity, the mirror loss indicates the
light emission rate from the optical cavity. As a result, using the internal quantum
efficiency ni, which is defined as the number of photons emitted inside the optical
cavity per injected carrier, the external differential quantum efficiency ngq is expressed
as

1 1 1
. — 1 1
(Mirror Loss) 2L n RiR> " RiRy
14 = T (Total Loss) = 1 — 1 G139
4+ — In —— 20iL 41
%t " RiR Gl IR R

where the optical losses at the facets due to absorption or scattering were assumed to
be negligible. For n; = 100 %, L = 300 pm, Ry = Ry = 32 %, and o; = 20 cm™ 1,
we have ng = 66 %.
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5.3.3 Light Output Ratio from Facets

We consider the light outputs P and P, from the two facets. As shown in Fig.5.8,
we assume that the light intensities in the vicinity of the facets inside the optical
cavity are P,, Py, P, and Py4; the power reflectivities of the facets are Ry and Ry;
and the power transmissivities of the facets are 71 and 75. Here, the arrows indicate
the propagation directions of the lights. Among the light intensities in a steady state,
we have a relationship such as

Pa:RlPd7Pb:egLPavPc:R2Pby Pd:egLPc» (5.16)

Pr=T\Py, P,=T P, '
where g is the optical power gain coefficient and L is the cavity length. Deleting
P (k =a, b, c,d) from (5.16), we have

P Tiv/R
SL=v2 (5.17)
P Th/ R
Substituting P = P; + P into (5.16) leads to
Ti~/R T>~/R
Py V72 P 2v ol P. (5.18)

= — N P2=—
T\ Ry 4+ Ton/ Ry T/ Ry 4+ Ton/ Ry

Hence, the external differential quantum efficiencies for each light output n4; and
N4> are written as

Udl—&ﬁd ﬂdZ—Lﬂd
TivRy + To/Ry T\W/Ry +To/Ry
where 74 is the external differential quantum efficiency for the total light output.

When the optical losses at the facets are negligibly small, we have 71 = 1 — Ry and
T, =1— Rs.

(5.19)

R, T, R, Tr
Py Py
nal Do
LR
L

Fig. 5.8 Light intensities inside and outside the Fabry-Perot cavity
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5.4 Current Versus Light Output (/-L) Characteristics

We study the current versus light output (/—L) characteristics above and below the
threshold. With an increase in the injection current into semiconductor lasers, the
carrier concentration in the active layer is enhanced. When the carrier concentration
exceeds the threshold carrier concentration, laser oscillation starts and the light output
drastically increases compared to below the threshold. This change in light output
is considered to be a change in the photon density. Therefore, we analyze I-L
characteristics by introducing the rate equations on the carrier concentration and
the photon density in the active layer. Dependence of /—-L on temperature is also
briefly described.

5.4.1 Rate Equations

The electron concentration 7 is defined as n = N/ V,; the photon density S is defined
as § = Npn/ V, where N is the number of the electrons in the active layer, Ny is the
number of the photons, and Vj is the volume of the active layer. If we assume that
the electron concentration n is equal to the hole concentration p, we can write the
rate equations for the carrier concentration n and the photon density S of the laser
light as

s " (5.20)
= — n - —, .

dt ed Ty

ds S n

L _Gms— = . 521
dr (n) Toh + ,BSp & ( )

Here, J is the injection current density, which is an electric current flowing through a
unit area in the active layer; e is the elementary charge; d is the active layer thickness;
G (n) is the amplification rate due to the stimulated emission; t, is the carrier lifetime;
Tph 18 the photon lifetime; By is the spontaneous emission coupling factor; and t; is
the radiative recombination lifetime due to spontaneous emission.

In (5.20), J/(ed) is anincreased rate of the carrier concentration in the active layer;
—G (n)S shows a consumption rate of the carrier concentration due to the stimulated
emission and is proportional to the photon density S; and —n /7, expresses a decay
rate of the carrier concentration in the carrier lifetime 1,,.

In (5.21), G(n)S shows an increased rate of photon density S due to stimulated
emission; —S/7pn 18 a decreased rate of photon density inside the optical cavity
due to absorption and light emission toward the outside of the optical cavity; and
Bsp n/ T represents a coupling rate of spontaneously emitted photons to the lasing
mode, which is a resonance mode of the cavity.

Here, we explain G(n), Ty, Tph, and By in detail. With the transparent carrier
concentration ng, in which a material is transparent, we can approximately write
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G(n) as
G(n) = Igy(n — no), (5.22)

where g is the differential gain coefficient and I7, is the optical confinement factor
of the active layer.

Using the radiative recombination lifetime t, and the nonradiative recombination
lifetime t,r, we can express the carrier lifetime 7, as

L (5.23)

The radiative recombination lifetime 7, is determined by the spontaneous emission
and is not affected by the stimulated emission. The nonradiative recombination life-
time Ty, is related to the recombinations of the injected carriers and the defects or
impurities that do not emit lights.

The photon lifetime T,y is the time during which the photons stay in the optical
cavity; it is expressed as

) , (5.24)

where n; is the effective refractive index and c is the speed of light in a vacuum.
Here, let us derive (5.24). If we put

1 1
ar=oi+ — In

_— (5.25)
2L RiR»

we can write a differential equation for the photon density S with respect to a position

z as
ds

— = —o; S, (5.26)
dz

where the light is assumed to propagate toward a positive z-axis. As a result, a
derivative of the photon density S with respect to a time ¢ is given by

ds dz dS c dS§ c S
=2t 5= 5.27
dt —drdz ompdz ot Ton (5.2

From (5.25) to (5.27), the photon lifetime 7}, in (5.24) is obtained.
The spontaneous emission coupling factor Bqp is defined as

(spontaneous emission coupling rate to the lasing mode)

= . 5.28
Psp (total spontaneous emission rate) ( )

When the spontaneous emission spectrum is assumed to be Lorentzian with the center
angular frequency wg and the FWHM Aw, the spontaneous emission coupling rate
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to the lasing mode per unit time and unit volume ryp, is given by

(Aw/2)?
(0 — wp)? + (Aw/2)%’

(5.29)

I'sp = I'sp0

where rgpo is a coefficient.

To calculate the total spontaneous emission rate, we consider the number of modes
dNp, with two polarizations that exist in a mode volume Viy,; a solid angle for prop-
agation direction d€2; and an angular frequency range dw. When the distribution of
the modes is continuous, as in a free space, d Ny, is given by

dQ nlw?  dQ
dNp = Vimm(w)dw — = Vi do —, (5.30)
4 72c3 41
where (2.26) was used. From (5.29) to (5.30), the total spontaneous emission rate
Ryp is obtained as
Vin (13 2
Rsp = [ rspdNm = repo P (?) wo” Aw. (5.31)

Using (5.28), (5.29), and (5.31), we can express the spontaneous emission coupling
factor fsp, for the angular frequency wq (a wavelength in a vacuum 1) as

ﬂsp =

rg 2w (c )3 1 1 2! r, it 532)

R_Sp T Ve \n, ) 02w - 47203V Ak - 4203V, AL
where I, = V,/ Vp, is the optical confinement factor of the active layer and AA is
the FWHM in units of wavelength. From (5.32), it is found that the spontaneous
emission coupling factor Sy, increases with a decrease in the mode volume Vi, and
the spectral linewidth AX.

5.4.2 Threshold Current Density

Let us calculate the threshold current density Jy, using the rate equations.
First, we consider the rate equations below the threshold, where net stimulated
emission is negligible and S = 0. Therefore, (5.20) reduces to

dn J n
— = — —. 5.33
dt ed 1, ( )

In a steady state (d/df = 0), from (5.33), the carrier concentration n is given by

J (5.34)
n=—r,. .
ed "
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When the carrier concentration n increases from 0 to the threshold carrier concen-
tration ng,, we expect that (5.34) is still satisfied at the threshold. As a result, the
threshold current density Ji, is expressed as

ed
Jh = — Ny (5.35)

n

From (5.35), it is found that a small ng, and a long 7, lead to a low Jy,. Because the
optical confinement factor I of the active layer depends on the active layer thickness
d, the threshold current density ny, is a function of d and there exists an optimum d
value to achieve the lowest Jy,.

Secondly, we calculate the threshold carrier concentration ny, using the rate equa-
tions above the threshold. In usual semiconductor lasers, the spontaneous emission
coupling factor fBqp is of the order of 107>, Therefore, as the first approximation, we
neglect the term Bgpn/1;.

Because (5.21) is valid for any S value in a steady state, we have

1
G(n) = I,gy(n —np) = T—h, (5.36)
P!

where (5.22) was used. Substituting (5.11) and (5.24) into (5.36), we also obtain

C
Gn) = —TI,g,. (5.37)
ny
From (5.36), the carrier concentration 7 in a steady state is given by

(5.38)

n —=

Tagytpn

Because (5.38) is satisfied even at the threshold, the threshold carrier concentration

N, 1s written as
1

Fagofph

In semiconductor lasers, changes in the cavity length, facet reflectivities, and refrac-
tive indexes during laser operation are small, and the right-hand sides of (5.38)
and (5.39) are considered to be constant. Therefore, above the threshold, the carrier
concentration n is clamped on the threshold carrier concentration ng,. Hence, G (n) is
constant above the threshold, as far as the gain saturation and coupling of spontaneous
emission to the lasing mode are neglected.

Substituting (5.39) into (5.35), we have



5.4 Current Versus Light Output (/—L) Characteristics 101

Fig. 5.9 Optical confinement = 1.0
factor 5
£ 08 206
I
= 06 0.4
5 0.3
5 04 02
= 0.1
5 02
@]
=
0
£ 0 0.5 1.0 1.5 2.0
o Active Layer Thickness d (um)

ed ed 1
Jih = _L_—nth=— — +no),

n Tn \ 128 Tph
ed ed 1 (5.40)
A= — no, B=— I }
Tn Tn Fagofph

where it is clearly shown that the threshold current density Ji, depends on the
optical confinement factor I7;. Figure5.9 shows calculated results of I, for
Al,Gaj_,As/GaAs double heterostructures. As shown in Fig.5.9, with an increase
in the active layer thickness d, I', is enhanced. Note that I, is proportional to d?
when d is small.

Figure5.10 shows the threshold current density Ji, as a function of the active
layer thickness d. It is found that Ji, takes a minimum value when d is approximately
0.1 pm. InFig. 5.10, A is a current density, which is required to obtain the population
inversion and is proportional to the active layer thickness d as in (5.40). On the
other hand, B is a current density, in which the optical gain balances the loss in the
optical cavity. For a thin active layer, B is inversely proportional to d, because I} is
proportional to d%. Because Jy, is given by A + B, there exists an optimum d value
to obtain a minimum J,.

5.4.3 Current Versus Light Output (I-L) Characteristics in CW
Operation

5.4.3.1 Without Coupling of Spontaneous Emission to the Lasing Mode

Let us examine changes in the carrier concentration n and photon density S with the
injection current density J. When the spontaneous emission coupling factor By is
small, coupling of spontaneous emission to the lasing mode can be neglected.

Below the threshold, with an increase in J, the carrier concentration n increases
according to (5.34), but the photon density S is 0. Above the threshold, n does not
increase any more and remains at the threshold carrier concentration ng,, while S
drastically increases with J, because the excess carriers (n — ny,) are converted to
photons.
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Fig. 5.10 Dependence of the 15
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From (5.20), the steady-state photon density S above the threshold is obtained as

_ (S
S = Gon (ed - ) (5.41)

Substituting (5.35) and (5.36) into (5.41) results in

S="" g0 (5.42)
ed

In summary, dependence of the carrier concentration n and photon density S on
the injection current density J is expressed as

inJ < Ju:
J
n=—r1t,, S=0; (5.43)
ed
in]z]th:
Jih Tph
=—1, S=— —Jp). 5.44
n=— ed( th) (5.44)

Figure5.11 illustrates the calculated results of (5.43) and (5.44). It is clearly
shown that the carrier concentration n is clamped on ng, above the threshold current
density Ji.
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Fig. 5.11 Carrier
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5.4.3.2 With Coupling of Spontaneous Emission to the Lasing Mode

For brevity, we assume that nonradiative recombination is negligible, which leads
to 1 &~ 1,. In a steady state, when the coupling of spontaneous emission to lasing
mode is included, (5.20) and (5.21) reduce to

J n

— =T,g80(n —np)S + —, (5.45)
ed Tn

S n
— = Tagy(n —np)S + ﬁsp - (5.46)
Tph Tn

where (5.22) was used. Therefore, the carrier concentration n and photon density S
are given by

_ _ ' _Jx2_
"= i (X X Y) , (5.47)
_ 2 _
g P X-vX ¥ (5.48)

Nugotn 2(1 — ) — (X - «/ﬁ) ’

where
J n
X=14-"—fp—, (5.49)
Jtn Nth
J
Y = 4(1 — Byp) —. (5.50)
Jih

Figure5.12 shows the calculated results of (5.47) and (5.48), where solid and
broken lines correspond to By > 0 and Bsp = 0, respectively. Coupling of the
spontaneous emission to the lasing mode lowers n and enhances S, which results in
a vague threshold. When s, < 1, however, the emitted lights below the threshold
are incoherent spontaneous emissions or amplified spontaneous emissions.
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Fig. 5.12 Carrier
concentration n and pho-
ton density S when coupling
of spontaneous emission to
the lasing mode is included

5.4.4 Dependence of I-L on Temperature

Generally, with a rise in temperature, the threshold current density Ji, increases and
external differential quantum efficiency nq decreases, as shown in Fig.5.13. Here,
the horizontal line and the vertical line show the injection current and light output,
respectively.

Dependence of the threshold current density Ji, on a temperature is empirically
expressed as

T
Jih = Jno exp ) (5.51)

where Jing is a coefficient, 7 is the temperature in the active layer or the junction
temperature, and Ty is the characteristic temperature, which indicates dependence
of the threshold current density on the temperature.

A large characteristic temperature Ty seems to result in a small dJi/d7j, which
indicates a good semiconductor laser. However, we must be careful about evaluating
the temperature characteristics of semiconductor lasers by 7y, because a larger Jy,
leads to a greater Tp when dJi,/d7j is constant. Therefore, only when semiconduc-
tor lasers with a common Jy, at the same temperature are compared can Ty be an
appropriate index.

Fig. 5.13 Dependence of 15
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Figure5.14 shows examples of the characteristic temperature 7 for an
AlGaAs/GaAs LD and an InGaAsP/InP LD in pulsed operations. In an AlGaAs/GaAs
LD with an oscillation wavelength of 0.85 wm, Ty is approximately 160 K from 25
to 80 °C. It is considered that an increase in Jy, with an increment in 7j is caused by
broadening the gain spectrum and overflow of the carriers over the heterobarriers. To
reduce the overflow of the carriers over the heterobarriers, we must increase the band
offset AE, between the active and cladding layers. In general, the band offset AE,
should be larger than 0.3 eV to suppress a drastic increase in Jy, with a rise in 7.

The external quantum efficiency g decreases with an increase in Jy,, because
the threshold carrier concentration ny, increases with Ji,, which enhances the free
carrier absorption (see Appendix F).

In an InGaAsP/InP LD with oscillation wavelength of 1.3 pm, 7y is approximately
70K from 25 to 65 °C. This Tj is lower than that of an AlGaAs/GaAs LD because
of efficient overflow of the carriers due to the light effective mass of the electrons
and nonradiative recombinations due to the Auger processes and the valence band
absorptions.

The effective masses of the electrons are 0.070 m for AlGaAs with a bandgap
wavelength of 0.85 pm, and 0.059 m for InGaAsP with a bandgap wavelength of
1.3 wm, where m is the electron mass in a vacuum.

The Auger processes are schematically shown in Fig.5.15 where C, H, L, and S
indicate the conduction band, heavy hole band, light hole band, and split-off band,
respectively. In the Auger processes, there are two processes, CHSH and CHCC. In
the CHSH process, the emitted energy due to a recombination of electron 1 in the
conduction band (C) and hole 2 in the heavy hole band (H) excites electron 3 in the
split-off band (S) to the heavy hole band (H). In the CHCC process, the energy emitted
due to recombination of electron 1 in the conduction band (C) and hole 2 in the heavy
hole band (H) pumps electron 3 in the conduction band (C) to a higher energy state
4 in the conduction band. These processes are three-body collision processes, and a
recombination rate R for the Auger processes is given by
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(b)

Fig. 5.15 Auger processes: a CHSH and b CHCC

(@) (b)

onlee)

2]

Fig. 5.16 Valence band absorption: electron excited to a heavy hole band and b the acceptor level

Ra = Cpnp® + Can®p, (5.52)

where C}, and C, are the Auger coefficients for the CHSH and CHCC processes,
respectively.

In valence band absorptions, an electron in the split-off band absorbs a light
generated by recombination of an electron in the conduction band and a hole in
the heavy hole band. These absorption processes are shown in Fig.5.16, where an
electron is excited to the heavy hole band and the acceptor level.

With an increase in temperature, the internal quantum efficiency n; decreases due
to the Auger processes and the external quantum efficiency nq is lowered due to the
valence band absorptions and the free carrier absorption. Therefore, light emission
efficiency is reduced with an increase in temperature.

5.5 Current Versus Voltage (I-V) Characteristics

In a steady state, (5.20) and (5.21) reduce to

n 1

_ 5.53
"5 G(n) — tpn ! (©:3)

S=-p
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I =eVa |:G(n)S n i} . (5.54)

Tn

Here, I is the injection current and V4 = Sad is the volume of the active layer in
which Sy is the area of the active layer and d is the active layer thickness.

A flowing current in semiconductor lasers consists of the diffusion current, drift
current, and recombination current. Here, it is assumed that the radiative recombi-
nation is dominant, and the diffusion and drift currents are neglected, as shown in
(5.54).

The carrier concentration # is approximately given by

%
1 = nj exp (Z;BT) , (5.55)

where V is a voltage across the pn-junction and n; is the intrinsic carrier concentration,
which is expressed as

2wk T \/? E
n =2 (T) (memp)>/* exp (— 2kBgT) ) (5.56)

Here, kp is Boltzmann’s constant, 7" is an absolute temperature, / is Planck’s constant,
me and my, are the effective masses of the electron and the hole, respectively, and E,
is the bandgap energy of the active layer.

From (5.53)—(5.55), a relation between the injection current / and the voltage V
is given by

nieeV/2ksT G (ne?V/2k8T) nieeV/2ksT

7 G(nieeV/szT) _ Tphfl 7,

I —eVs [—ﬂs } . (557

which is illustrated in Fig.5.17. In this figure, solid, dotted, and broken lines corre-
spond to the photon lifetimes pnh = 1 ps, 2 ps, and 3 ps, respectively. Here, a sum of a
contact resistance and a bulk resistance is assumed to be 4 2, which is typical in con-
ventional semiconductor lasers. Other physical parameters that are used in this calcu-
lation are B = 1072, n; = 2.7x 10" em™3, 7, = 7, = 1ns, T = 293.15K (20°C),
(3G /dn)p=p, = 2.5 x 107%cm3/s, and Vo = 40pm’® = 4 x 107" cm?. Tt is
also supposed that the transparent carrier concentration is ng = 0.6 ny,, the effective
refractive index is 3.5, and the group velocity v, is 8.57 x 107 cm/s.

5.6 Derivative Characteristics

We can use derivative measurements to precisely detect the threshold current. In the
following, relationships among the threshold current, the derivative light output, and
the derivative electrical resistance are explained.
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Fig. 5.17 Current versus 50
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5.6.1 Derivative Light Output

Using photon density S in the active layer, we can write the internal light intensity
P as
P = hvugSgS, (5.58)

where £ is Planck’s constant, v is an oscillation frequency, vy is a group velocity
of the photons, and Sg is beam area. From (5.58), the derivative light output with
respect to the injection current d P /d[ is written as

apP ds 35S on
S eSS = hoveSg 2 559
a7 VveRByr T VRSB oT (5.59)

Figure 5.18 shows calculated light output and derivative light output as a function
of the injection current where (5.53), (5.54), (5.58), and (5.59) were used. The used
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Fig. 5.18 Current versus light output and derivative light output
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5.6 Derivative Characteristics
parameters are the same as in Fig.5.17. A sharp rise in dP/dI clearly indicates the

threshold current.

5.6.2 Derivative Electrical Resistance

The derivative resistance dV /d[ is expressed as
dv. 9V on
—_— = (5.60)
dl on 91

Figure 5.19 shows calculated /-L and 7-dV /dI characteristics where (5.55)—(5.57)

and (5.60) were used. The parameters used are the same as in Figs.5.17 and 5.18.
As showninFig.5.19a, b, the /-dV /dI curves have kinks at the threshold currents.

Therefore, the threshold currents are determined by the derivative electrical resistance
dV/dI, and this method is especially useful for semiconductor ring or disk lasers

20

with extremely low light output.
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5.7 Polarization of Light

Fabry-Perot LDs, which have bulk active layers, oscillate in the TE mode. As
explained in Chap. 1, the bulk active layers do not have particular quantum mechani-
cal axes. As a result, the optical gains for the bulk active layers have values averaged
with respect to all angles and are independent of the polarization of lights. However,
the facet reflectivities depend on the polarization of lights.

Figure 5.20a schematically shows reflection at a facet of a semiconductor laser in
a zigzag model. We suppose that the effective refractive index of the optical wave-
guide is n/, and the refractive index of the outside of the optical waveguide is np.
This reflection is also considered as the reflection at the interface of a material with
the refractive index np = n’A / cos 6 and that with the refractive index np, as shown
in Fig.5.20b.

When the angle of incidence is 8, Fresnel formulas give the power reflectivities
Rtg and Ry as

0 2 T2 |
na cos@ —+/ng?2 — na?sin
Rrg = |2 =2 : (5.61)
na cos6 4+ /ng2 — na2sin?6
2
2 Vo) 22
ng~cosf — navng- —npa-sin- 0
Rom = |2 AVE A : (5.62)
ng2cosO + nav/ng2 — na2sin® 6

where subscripts indicate the polarization of lights. Figure5.21 shows the power
reflectivity R when laser beams are emitted from GaAs with the refractive index
na = 3.6 to the air with ng = 1. As found in Fig.5.21, a relation Rtg > RtMm 18
kept for all values of 8. Hence, from (5.11), the threshold gains for the TE modes are
lower than those of the TM modes, which results in a start of lasing in the TE modes.
With an increase in 6, i.e., with an increase in the order of modes, Rtg is enhanced.
Therefore, the threshold gains of higher order modes are smaller than those of lower
order modes. However, to minimize the threshold current density the active layer
thickness d should be approximately 0.1 pwm, as shown in Fig. 5.10. In such a small
d, the higher order modes are cut off and only the fundamental mode oscillates.

Note that the light intensity ratio of the TE and TM modes is approximately 1 : 1
below the threshold, because the light emitted below the threshold is the spontaneous
emission.

Fig. 5.20 Reflection at a () (b)

facet: a A three-layer model

and b a single-layer model ] Refractive index | | Refractive index
Active layer 1A ng

Refractive index
ng

Effective refractive
index nly
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Fig. 5.21 Reflectivity for TE 1
and TM modes
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5.8 Parameters and Specifications

There are trade-offs among characteristics of semiconductor lasers, which are deter-
mined by the internal loss «;, power reflectivity at a facet R, cavity length L, active
layer thickness d, and so on. For example, a long L and a large R result in a low
threshold gain I, g, , as shownin (5.11). However, a long L leads to a large volume of
the active layer Va, which results in a large threshold current Iy, = Jii, X Va. Also,
a large R leads to a low power transmissivity 7, which results in a low light out-
put as found in (5.18). Therefore, we need to design semiconductor lasers to satisfy
specifications according to applications.

5.9 Two-Mode Operation

Up to now, for brevity, we have considered single-mode operations and have
neglected the gain saturation. Here, we treat two-mode operations by including self-
saturation and cross-saturation of the optical gains [3-8].

The rate equations for the photon densities S7 and S> in two-mode operations are
given by

S1 = (a1 — 151 — 61282) S1, (5.63)
$r = (@2 — BaS2 — 62151) Sa, (5.64)
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where aj = G; — 1/7,1; is the net amplification rate, G; is the amplification rate,
Tphi 1s the photon lifetime for the ith mode, B; is the self-saturation coefficient, and
0;; is the cross-saturation coefficient (i, j = 1, 2). In a steady state (d/dr = 0), we
obtain

B1S1+ 0128 =y : Ly, (5.65)
B2S2 + 62181 =y Lo, (5.66)

where L and L; indicate lines in Fig.5.22. From small variations analysis, the
coupling constant C is defined as

01202

T BB

(5.67)

According to the value of C, the coupling strengths are classified into three regions
as

C < 1 weak coupling,
C =1 neutral coupling,

C > 1 strong coupling.

Relationships between S and S are summarized in Fig. 5.22. As found in (5.63)
and (5.64), we have S'i < 0 in a region above line L; (i = 1,2), and Si > 0in
a region below line L; (i = 1,2). According to a sign of ;, a stable point of the
photon density S; is determined.

Figure 5.22a, b show the weak coupling (C < 1); in (a), for B1oa/621 < @1 only
mode 1 oscillates and oscillation of mode 2 is inhibited, and in (b), for O1202 /82 <
o1 < Bran /621 mode 1 and mode 2 simultaneously oscillate, which is only allowed
in the weak coupling. If o1 < 61200/ 82, only mode 2 oscillates to prevent mode 1
from oscillating.

Figure 5.22c, d show the neutral coupling (C = 1), and lines L; and L, are
parallel. For fBra1/012 = 6211 /B1 > 2, as shown in Fig.5.22c, d, only mode 1
oscillates and mode 2 cannot oscillate. If Bra1 /6012 = 6211 /B1 < oz, only mode 2
oscillates oscillation of mode 1 suppressed.

Figure 5.22¢, f show the strong coupling (C > 1); in (e), for @ < Pra1/6012
only mode 1 oscillates, and in (f), for for1 /012 < @2 < 62101 /B1, mode 1 or mode
2 oscillates according to the initial values of S; and S;. For example, a change in
the refractive index of the optical waveguide by an applied voltage or an injection
current leads to a bistable operation between S; and S», which is only observed in
the strong coupling. If 611 /81 < a3, only mode 2 oscillates.
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Fig.5.22 Relationships between S; and S>: a and b Weak coupling (6;;/8; = 0.5), ¢ and d neutral
coupling (6;;/B; = 1), and e and f strong coupling (6;;/8; = 2)
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5.10 Transverse Modes

The transverse modes, or lateral modes, show the light intensity distributions along
the axes perpendicular to the cavity axis, which determine the shapes of the laser
beams. The transverse modes are highly dependent on the structures of the optical
waveguides, and the vertical transverse modes display the light intensity distribu-
tions along the axes perpendicular to the active layer plane, whereas the horizontal
transverse modes exhibit the light intensity distributions along the axes parallel to
the active layer plane.

To evaluate the transverse modes, we usually use near-field patterns and far-field
patterns, as shown in Fig. 5.23.

The near-field pattern is the light intensity distributions on a facet; its indexes are
the length of the emission region Wy and W illustrated in Fig.5.23. Usually, the
active layer thickness d is approximately 0.1 wm or less to minimize the threshold
current density, while the active layer width is of the order of 2 um or more to
achieve high reproducibility with high accuracy. As a result, the near-field pattern is
asymmetric, which is long along the axis parallel to the active layer plane and short
along the axis perpendicular to the active layer plane.

The far-field pattern is the light intensity distributions at a position that is far
enough from the facet. As shown in Fig.5.23, its indexes are the radiation angles 6
and 0 , which are independent of the distance between the facet and the detector. This
far-field pattern is considered to be a diffracted pattern of the near-field pattern if the
near-field pattern is regarded as a slit. With a decrease in the size of the slit, the size of
the diffracted patterns increases. Therefore, the far-field patterns are large for small
near-field patterns and small for large near-field patterns. Because of asymmetry in
the near-field patterns, the far-field patterns are also asymmetric with small horizontal
transverse modes and large vertical ones.

When we couple a laser beam to an optical component such as a lens or an
optical fiber, we would like to achieve a large coupling efficiency. For this purpose,
a symmetric laser beam with a narrow radiation angle is required. In this respect,
conventional semiconductor lasers are not optimized, and the optical coupling loss
is minimized by optimizing the optical components or the optical coupling systems.

Fig. 5.23 Near-field and Vertical transverse mode Near-field pattern
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Recently, however, semiconductor lasers with optical waveguides whose thickness
or width is graded along the cavity axes have been demonstrated to enhance the
optical coupling efficiencies. Vertical cavity surface emitting lasers are also suitable to
achieve high optical coupling efficiency because their emitted beams have symmetric
circular shapes with narrow radiation angles (see Chap. 6).

5.10.1 Vertical Transverse Modes

5.10.1.1 Guided Modes

The vertical transverse modes present light intensity distributions along the axes per-
pendicular to the active layer plane. Because the double heterostructures are adopted
in semiconductor lasers, index guiding is established along the axis perpendicular
to the active layer plane. The guiding condition is represented by the eigenvalue
equation for the transverse resonance condition.

Here, we briefly review the key points of the eigenvalue equation, which was
explained in Chap. 3. Figure 5.24 shows an optical waveguide, in which the guiding
layer with the refractive index n¢ and the thickness % is sandwiched by the cladding
layer with the refractive index n. and the substrate with the refractive index ng where
ng > ng > ne.

Because Fabry-Perot LDs with bulk active layers oscillate in the TE modes, we
consider the eigenvalue equation for the TE modes. Using a wave number in a vacuum
ko, the normalized frequency or the normalized waveguide thickness V' is defined as

V = kohv/ng? — ng2. (5.68)

With the help of the effective refractive index N, the normalized waveguide refrac-
tive index btE is defined as

NZ — ns2
brg = —5——. (5.69)
ngs — ng
Also, we introduce the asymmetry measure aTg as
2 2
s M 5.70
ATE = —5 5 (5.70)
ng= —ng

ne

IR

UN

Fig. 5.24 Cross section of an optical waveguide
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Using these normalized parameters, we can express the normalized eigenvalue
equation for the TE modes as

b b
VI — b = mr+tan~) | —E 4 an-! [ETDTE (5.71)

where m is a nonnegative integer, which is called the order of modes.

The important concept in designing optical waveguides is the cutoff condition
in which the guided modes do not exist. When the angle of incidence (= angle of
reflection) in the guiding layer 6 is equal to the critical angle 6, propagated lights
are not confined to the guiding layer and a fraction of the lights are emitted to the
substrate. In this case, we have N = ng, which results in btg = 0 from (5.69). As a
result, from (5.71), the normalized frequency V,, for the mth-order mode to be cut
off is obtained as

Vin = mm + tan™" /arE. (5.72)

For V,, <V < V,,41, the guided modes from the zeroth- to the mth-order modes
exist. In a symmetric optical waveguide with ng = n. where atg = 0 in (5.70),
(5.72) reduces to

Vin = mm. (5.73)

From (5.68) to (5.73), the cutoff guiding layer thickness A in a symmetric optical
waveguide is expressed as

mi mig 21
_ _ T (5.74)
kovne2 —ng?  2y/ne2 —ng? A0

he

where A is a wavelength of a light in a vacuum. From (5.74), with increases in & and
ng? —ng?, higher order modes with large ms can be guided in the optical waveguides.
Using V and b, the optical confinement factor It in the symmetric optical wave-

guide is given by
- Vb +2b

= 5.75
f N ) (5.75)

5.10.1.2 Laser Oscillation in Higher Order Modes

(i) Active Layer Thickness d 2 h.

From (5.74) and (5.75), a relationship of the optical confinement factor 17, for the
mth-order mode and I, for the (m — 1)th-order mode is written as

I, <IT,_q. (5.76)
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When the active layer thickness d is slightly larger than A, a difference in the
reflectivities between the adjacent higher order modes is small. Therefore, from
(5.40), the threshold current density Ju ,, for the mth-order mode and Ji, y,—1 for
the (m — 1)th-order mode are related as

Jim > Jihm—1, (5.77)

which leads to a laser oscillation in the (m — 1)th-order mode, and not the mth-order
mode.

(ii) Active Layer Thickness d > h,

As shown in Fig.5.21, higher order TE modes have larger reflectivities than lower
order ones. Therefore, when the active layer thickness d is much larger than &, a
laser oscillation in the mth-order mode takes place. For an AlGaAs/GaAs LD with
ng = 3.6, (nf —ng)/nf = 5 %, and L9 = 0.85 pm, the cutoff guiding layer thickness
hey, for the mth-order mode is obtained as

hey =038um, heyp =0.76 um, hez = 1.13 pm.

In this case, according to the active layer thickness d, the following laser oscillations
in higher order modes take place:

d > 0.66 um : first-order mode
d > 0.98 um : second-order mode
d > 1.30 wm : third-order mode

In conventional semiconductor lasers, to minimize the threshold current density, the
active layer thickness d is approximately 0.1 jwm, as shown in Fig.5.10. Therefore,
the vertical transverse modes are fundamental modes (m = 0).

5.10.1.3 Near-Field Pattern and Far-Field Pattern

Let us consider the vertical size of the near-field patterns W, and of the far-field
patterns 6 . When the active layer thickness d is larger than a light wavelength in a
material, W shrinks with a decrease in d, because the light emission region narrows.
However, when d is less than a light wavelength in a material, W, increases with a
decrease in d, because the guided lights highly penetrate into the cladding layer and
the substrate.

As described before, the far-field pattern is considered to be a diffracted pattern
of the near-field pattern. As a result, the far-field pattern is large for a small near-field
pattern and is small for a large near-field pattern.
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Figure 5.25 shows the calculated results of W, and 6, for the fundamental TE
mode (m = 0). The horizontal line is the active layer thickness d, and A in the inset
is (nf —ng)/ng. Ford = 0.1 pwm, the radiation angle 6 is approximately 30°, which
is not good enough for optical coupling. However, this value is much smaller than
those of LDs below the threshold or LEDs. This is because the mode for the laser
light is the guided mode, while the spontaneously emitted lights include not only
the guided modes but also the radiation modes, which have various polarizations
and propagation directions. In LEDs, to achieve a relatively narrow radiation angle,
monolithic or hybrid lenses are formed on their light emission surfaces.

5.10.2 Horizontal Transverse Modes

The horizontal transverse modes show the light intensity distributions along the
axes parallel to the active layer plane. To control the horizontal transverse modes,
gain guiding and index guiding, which were explained in Chap. 3, have been used. In
gain guiding, lights propagate only in the optical gain region. In index guiding, lights
propagate in a high refractive index region, which is surrounded by low index regions.
As shown in Table5.1, gain guiding is superior to index guiding in fabrication but
inferior in lasing characteristics.

5.10.2.1 Gain Guiding

In gain guiding structures, optical gain regions are formed by restricting the current
flowing area. For example, electrodes are selectively evaporated.

Ta.ble 51 COInpflI‘iSOl‘l of Stability | Threshold current | Fabrication

gain guiding and index - — -

guiding Gain guiding | Unstable | Large Simple
Index guiding | Stable Small Complicated
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Fig. 5.26 Gain guiding LD: a Cross-sectional view, b distribution of the carrier concentration, and
c distribution of the optical gain

Figure 5.26 shows (a) a cross-sectional view of a gain guiding LD seen from a
facet, (b) distribution of the carrier concentration, and (c) distribution of the optical
gain. The injection current flows from the selectively formed electrode along the
arrows by diffusion. As a result, the carrier concentration is largest at the center of
the stripe, and decreases with an increase in the distance from the center. Therefore,
the center region of the stripe has optical gain and the stripe edges have optical losses.

Here, we consider distribution of the refractive index in the gain guiding structure.
With an increase in injection current, the refractive index changes due to the free
carrier plasma effect, Joule heating in the active layer, and the spatial hole burning.

When the free carriers are induced to vibrate with the frequency of a light, the
phases of the free carrier vibrations shift and cancel out the electrical polarizations
of the lattice atoms. This phenomenon is referred to as the free carrier plasma effect.
A change in the refractive index Ant due to the free carrier plasma effect is given

by
6‘2

Angg = — (5.78)

- e— ()
2m*w2egn;
which is proportional to the injected carrier concentration n. Here, e is the elementary
charge, m* is the effective mass of the free carriers, w is the angular frequency of a
light, &g is permittivity in a vacuum, and n;, is the refractive index when the carriers
are not injected. On the derivation of (5.78), see Appendix F. When the carrier
concentration 7 is of the order of 108 cm—3, a decrease in the refractive index is of
the order of 1073, Because the carrier concentration is large at the center of the stripe,
the refractive index in the center is lower than the surrounding regions according to
(5.78). As a result, the light is not completely confined to the active layer and is
radiated to the surrounding regions, which is called the antiguiding effect.

With an increase in injection current, the active layer is heated by Joule heating.
Therefore, the refractive index increases, and this change An,t is expressed as

Angr = (2 ~5) x 1074AT (5.79)
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where AT is an increase in the temperature of the active layer, which is expressed
in units of Kelvin. As opposed to the free carrier plasma effect, the increase in the
refractive index due to Joule heating of the active layer contributes to confine the
light to the active layer, which is referred to as the guiding effect.

When we further increase the injection current and have a large light output, a lot
of carriers are consumed due to stimulated emission. Because stimulated emission
efficiently takes places at a large optical gain region, the carrier concentration at the
center of the stripe is lower than that of its surrounding regions. This phenomenon
is known as spatial hole burning, which increases the refractive index at the center
region, resulting in a large confinement of the light to the active layer.

As explained earlier, the horizontal distribution of the refractive index is deter-
mined by the free carrier plasma effect, Joule heating of the active layer, and the spatial
hole burning. Hence, the horizontal transverse modes show complicated behaviors,
such as changes in the positions or multiple peaks, according to a value of the injec-
tion current. When the horizontal transverse modes change, kinks are observed in
I-L curves.

In gain guiding structures, wave fronts of the horizontal transverse modes bend
convexly in the propagation direction, while those of the vertical transverse modes
are close to plane waves. As a result, the beam waist, in which the beam diameter is
minimum of the horizontal transverse modes is placed inside the optical cavity, while
that of the vertical transverse modes is located on a facet of a semiconductor laser.
Such a difference in the positions of the beam waists for the vertical and horizontal
transverse modes is called astigmatism. When there is astigmatism, we cannot focus
both the vertical and horizontal transverse modes on a common plane by a oneaxially
symmetric convex lens, and we obtain only defocused images.

5.10.2.2 Index Guiding

Index guiding structures have an intentionally formed refractive index distribution,
as shown in Fig. 5.27. In the index guiding structures, both the horizontal and vertical
transverse modes are close to plane waves, which do not generate astigmatism.

To obtain stable horizontal transverse modes, we need that (1) An; > | Anf| where
An; is adifference in the refractive indexes between the active layer and its surround-

(a) Electrode
Active layer
Electrode
(b)
Refractive
Index
¥
S I I
K
Position

Fig. 5.27 Index guiding LD: a Cross-sectional view and b distribution of the refractive index
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ing layers and An,f is a change in the refractive index due to the free carrier plasma
effect; (2) the cutoff condition for the higher order modes is satisfied; and (3) the active
layer width is shorter than the diffusion length of the carriers. Condition (1) is required
to achieve index guiding even in a high injection current. Condition (2) is introduced
to obtain a single horizontal transverse mode. If there are multiple higher order hori-
zontal transverse modes, mode hopping or the mode competition takes place between
various modes according to operating conditions, which leads to unstable horizontal
transverse modes. To avoid these unstable conditions, only the fundamental hori-
zontal transverse mode should exist in the optical waveguides. Finally, condition
(3) is needed to achieve uniform distributions of the carrier concentration in the
active layer, which reduces spatial hole burning. The active layer width is usually
about 2 um, because the diffusion length of the injected carriers is 2-3 pm from the
viewpoint of reproducibility. To satisfy conditions (1) and (2), An;/n, is approxi-
mately 1072

Up to now, many index guiding structures have been developed to efficiently con-
fine both the carriers and the light to the active layer, and the structures are classified
into three categories: rib waveguides, ridge waveguides, and buried heterostructures
(BHs).

(i) Rib Waveguide

Rib waveguides are optical waveguides with convex or concave regions, which are
suitable for semiconductor lasers whose active layers cannot be exposed to the air by
etching. For example, AlGaAs active layers are easily oxidized in the air, and their
emission efficiencies drastically decrease.

As an example of a rib waveguide, Fig.5.28 shows a plano convex waveguide
(PCW) structure, in which the semiconductor layers are grown on a preetched sub-
strate. Here, solid line a and broken line » show the flowing paths of the electric
currents. Path a is a direction of a forward current across the pn-junction, and the
electrical resistance along this path is low. On the other hand, in path b, the electric
current flows through a pnpn structure (thyristor).

Figure 5.29 shows /-V characteristics in the pn and pnpn structures. When the
applied voltage is below a switching voltage V, a pn-junction inside the pnpn struc-
ture is reversely biased, and the electric current hardly flows. Once the applied volt-
age exceeds Vg, the pnpn structure shows similar 7-V characteristics to those of the
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Fig. 5.29 Current versus (a) I (b) 1
voltage (/-V) characteristics
in a pn and b pnpn structures
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pn-junctions in forward bias. Therefore, by designing Vj to be larger than the applied
voltage across the pn-junction, the electric current hardly flows through path b.
Note that the electric current flowing regions are broad, because a current con-
striction structure is not formed below the p-diffused region. In other words, rib
waveguides are not optimized for confinement of the carriers to the active layers.

(ii) Ridge Waveguide

Ridge waveguides are optical waveguides with a convex region. Because they are
easily fabricated by etching after epitaxial growth, low-cost semiconductor lasers are
expected. When the active layer materials cannot be exposed to the air, etching is
stopped above the active layer, as shown in Fig. 5.30.

(iii) Buried Heterostructure

Buried heterostructures (BHs), in which the active layer is surrounded by regrown
regions, are fabricated as follows: At first, epitaxial layers are grown on a semicon-
ductor substrate, which is followed by etching to form a stripe. This stripe is buried by
the second epitaxial growth and the buried regions prevent the injection current from
flowing. Although fabrication processes are complicated, low-threshold and high-
efficiency operations are obtained because of efficient confinement of the carriers
and light to the active layers. However, because the active layers are exposed to the
air during fabrication, only the active layers insensitive to oxidization are suitable for
buried heterostructures. For example, InGaAsP/InP LDs, which are the light sources
of optical fiber communication systems, frequently adopt buried heterostructures.
Figure 5.31 shows an example of a buried heterostructure. To constrict the current
flowing region, the surrounding regions of the stripe are pnpn structures. Therefore,
the electric current efficiently flows in path a but hardly flows along path b. Also, a
current constriction structure is formed below the p-diffused region, and the carriers
are efficiently injected into the active layer.
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5.10.3 Antiguiding

5.10.3.1 Distribution of Refractive Index and Transverse Mode

In the air, AlGaAs layers are oxidized easily and the oxidized AlGaAs layers cause
degradations in electrical and optical characteristics of semiconductor lasers. Because
AlGaAs layers are oxidized during etching process before epitaxial regrowth to bury
amesa, itis difficult to fabricate buried heterostructures for semiconductor lasers with
AlGaAs layers. Therefore, ridge structures are adopted often for semiconductor lasers
with AlGaAs layers such as semiconductor lasers with the oscillation wavelength of
0.98 wm, which are used as pumping sources of Er-doped optical fiber amplifiers.

In the ridge structures, higher order horizontal transverse modes as well as fun-
damental horizontal transverse mode are confined. As a result, with an increase in
injected current, higher order horizontal transverse modes lase; kinks appear in their
current versus light-output (/-L) curves. The light output where a kink appears is
called kink level. Below the kink level, the fundamental horizontal transverse mode
is obtained; above the kink level, higher order horizontal transverse modes oscil-
late. To increase the kink levels, ridge structures with antiguiding layers have been
proposed [9-16].

Figure 5.32 shows an example of a distribution of a refractive index for antiguiding.
In the center, a region with the highest refractive index n3 exists. Outside the region
with the highest refractive index n.3, two regions with a relatively high refractive
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index np are located via two regions with the lowest refractive index n,;. Here, Wy,
W,, and W3 are width of each region.

In Fig.5.32, by assuming that n;; = 3.190, np = ny; + Anyg, ni3 = 3.202,
Wi = W3 = 0.5um, Wo = 3.3 um, and the wavelength in the vacuum Ag is
0.98 wm, propagation constants By and f; are calculated. Here, f is the propagation
constant for the fundamental horizontal transverse mode and S is that for the first-
order horizontal transverse mode. Figure 5.33 shows the propagation constants Sy
and f; as a function of the difference in the refractive index An,. The dash-dotted and
solid lines indicate By and 1, respectively. Both Sy and B slightly increase with an
increase in An,. It should be noted that solutions of 81 existonlyin0 < An, < 0.58.
In An; > 0.58, B does not exist and the first-order horizontal transverse mode is
cut off due to antiguiding.

Figure 5.34 shows horizontal near field patterns (a) for the fundamental horizontal
transverse mode and (b) for the first-order horizontal transverse mode with An; as a
parameter. The other parameters are the same as those in Fig. 5.33. The solid, broken,
and dash-dotted lines correspond to An, = 0, 5 x 1073, and 1 x 1072, respectively.
It should be noted that the first-order horizontal transverse mode does not exist for
An; = 1x 1072, It is found that intensity of the side lobes increases with an increase
in Any, which indicates that light tends to be antiguided with an increase in Any.

5.10.3.2 Ridge LD with Antiguiding Layers

In the following, simulated laser characteristics for ridge LDs with antiguiding lay-
ers are explained. Figure5.35 shows schematic cross-sectional views of (a) a ridge
structure with steps in both the upper and lower guiding layers, (b) a ridge structure
with steps in only the upper guiding layer, (c) a ridge structure with steps in only
the lower guiding layer, and (d) a conventional ridge structure without steps in either
guiding layer [11].

In Fig.5.35, Aty is the thickness of the steps in the upper guiding layer, At;, is the
thickness of the steps in the lower guiding layer, fq is the thickness of the guiding
layers without steps, and d is the distance from the bottom of the mesa to the bottom
of the upper guiding layer. The width of the rectangular mesas is 3.3 pm, the width
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of the bases is 60 wm, and the length of the cavities is 1,200 pm. The reflectivi-
ties of the front and rear facets are 2 and 90 %, respectively. The refractive index
and the thickness of the n-GaAs substrate are 3.54 and 100 pm, respectively. The
refractive index of the p-Alp.2Gag gAs cladding layer and the refractive index of the
n-Aly.2Gag g As cladding layer are both 3.424. The refractive index and the thickness
of the undoped Alp 15Gag gsAs guiding layers are 3.453 and 200 nm, respectively.
The refractive index and the thickness of the undoped Alg ; Gag 9As barrier layers are
3.482 and 10 nm, respectively. The refractive index and the thickness of the undoped
Alg.03Gag.97As barrier layer are 3.52 and 10nm, respectively. The refractive index
and the thickness of the undoped Ing>Gag gAs strained quantum well (QW) active
layers are 3.65 and 10 nm, respectively. The active region has a separate-confinement
heterostructure (SCH) with Alg 1 Gag9As barrier layers, an Aly03Gag 97As barrier
layer, and double Ing,Gag gAs strained QW active layers. The guiding layers, bar-
rier layers, and active layers are undoped to suppress internal optical loss due to
free-carrier absorption.

In Fig.5.35a—c, the optical confinement of higher order transverses modes to
the center of the mesa is weakened and the modal gain of higher order horizontal
transverse modes decreases, owing to the antiguiding layers with thickness of 7o+ At
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Fig. 5.35 Schematic cross-sectional views of a a proposed ridge structure with steps in both the
upper and lower guiding layers, b a proposed ridge structure with steps in only the upper guiding
layer, ¢ a proposed ridge structure with steps in only the lower guiding layer, and d a conventional
ridge structure without steps in either guiding layer. Here, At, is thickness of the steps in the upper
guiding layer, At, is thickness of the steps in the lower guiding layer, # is thickness of the guiding
layers without steps, and d is the distance from the bottom of the mesa to the bottom of the upper
guiding layer [11] (Copyright © 2009 The Japan Society of Applied Physics)

or ty + Aty in both sides of the mesa. As a result, it is expected that oscillations of
higher order horizontal transverse modes are suppressed even when the injected
current is high. The undoped guiding layers below the mesa shown in Fig.5.35a—c
are thinner than those in the side regions. Therefore, it is expected that the injected
current efficiently flows into the active region below the mesa, and spreading of
the injected current into the side regions is suppressed for the ridge structures with
antiguiding layers, which are shown in Fig.5.35a—c.

Simulated /—L curves are shown in Fig. 5.36. The parameters are the steps in the
guiding layers At, and Aty,, which have the value of 0 or 50nm. It should be noted
that A7, = Atf, = Onm corresponds to the conventional ridge structure, which is
shown in Fig. 5.35d. The distances from the bottom of the mesa to the bottom of the
upper guiding layer d’s are (a) 250 and (b) 300 nm. The kink levels are defined as
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the light output at which the first-order horizontal transverse mode started to oscil-
late. Therefore, the kink levels seem to be relatively low. It should be noted that the
first-order horizontal transverse mode started to oscillate and the second-order or
higher order horizontal transverse modes did not oscillate at the kink levels in
Fig.5.36a, b. The kink levels increase with an increase in the number of steps in
the guiding layers.

Figure 5.37 shows kink level as a function of Af; (i=p or n) for d = (a) 250nm
and (b) 300nm. The closed circles, open circles, and closed triangles represent
Aty = Aty = Ay, Atp = Aty with Aty = 0, and Ay = Aty with Afy = 0,
respectively. For d = 250nm, the kink levels for (Afp, Afy) = (50 nm, 50 nm),
(50 nm, Onm), (Onm, 50nm), and (Onm, Onm) are 175, 142, 106 and 91 mW,
respectively. For d = 300nm, the kink levels for (Afp, Aty) = (50 nm, 50 nm),
(50 nm, Onm), (Onm, 50nm), and (Onm, Onm) are 216, 142, 122, and 90 mW,
respectively. It is found that both Af, and At, increase the kink levels and the con-
tribution of Aty is higher than that of A#,. In addition, the kink level for d = 300nm
increased to a greater degree than that for d = 250 nm with increases in Az, and At,,.
The reason for this is considered as follows: spreading of the injected current for
d = 300nm is larger than that for d = 250 nm. Therefore, spreading of the injected
current for d = 300 nm is more sensitive to Az, and Aty than that for d = 250 nm.
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In the structure shown in Fig.5.35a, the dependence of lasing characteristics on
the space S in the antiguiding layers is theoretically investigated [13]. Here, the
space S is the width of thin guiding layers below the mesa. Simulated /-L curves
are shown in Fig.5.38 with the space S in the antiguiding layers as a parameter.
The dotted, broken, solid, dash-dotted, and dash-double-dotted lines correspond to
S = 0.66, 1.32, 1.98, 2.64, and 3.30 um, respectively. With a decrease in S, the
threshold current decreases because the injected carriers concentrate to the region
below the mesa. At the kink levels, the first-order horizontal transverse mode started
to oscillate and the second-order or higher order horizontal transverse modes did not
oscillate.

The threshold current I, decreases with a decrease in S and saturates below S =
1.98 pwm, because injected carriers are confined to the space regionin 1.98 pm < § <
3.3 wm, and injected carriers overflowed to the steps in § < 1.98 wm. The threshold
current Iy, = 49.1mA at § = 1.98 um is 0.92 times as large as Iy, = 53.2mA
at § = 3.3 wm. When the mesa width is as narrow as 2 pum, kinks in /—L curves
are not obtained. However, the electrical resistance is large at such a narrow mesa
width. To obtain low electrical resistance, the mesa width should be wider, but kinks
in I-L curves tend to appear. In fact, kinks in /—L curves are obtained when the
mesa width is larger than 2.5 pm. From these simulated results, it can be said that
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the proposed ridge structures with antiguiding layers are suitable for ridge structures
with a relatively wide mesa.

Figure 5.39 shows the kink level as a function of the space S in the antiguiding
layers. The kink level has a peak at S = 1.98 wm, and the kink level at $ = 1.98 pm
is 2.18 times as large as that at S = 3.3 um. The reason for this is considered as
follows: In 1.98 um < S < 3.3 wm, injected carriers are confined to the space region,
but spatial hole burning appears. In § < 1.98 wm, injected carriers overflowed to
the steps, but spatial hole burning is negligible because S is shorter than the carrier
diffusion length of 2 pm.

5.10.3.3 Ridge LD with Proton-Implanted Antiguiding Layers

A ridge LD with selectively proton-implanted cladding layers is proposed to increase
kink level and decrease threshold current [14]. In this laser, horizontal trans-
verse modes are confined by the ridge structure; carrier distributions are con-
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trolled by selectively proton-implanted cladding layers. From simulations of lasing
characteristics, it is found that the kink level is higher and the threshold current is
lower than those of the ridge-type semiconductor lasers with antiguiding layers for
horizontal transverse modes [13].

Figure 5.40a shows a schematic cross-sectional view of a ridge structure with
proton-implanted cladding layers; Fig.5.40b shows distributions of the effective
refractive index of the semiconductor laser and doping concentration of the cladding
layers. The light is confined by the distribution of the effective refractive index of
the semiconductor laser; the carriers are confined by the distribution of the doping
concentration of the cladding layers because the flow path of the injected current is
restricted to the doped region in the cladding layers.

InFig. 5.40a, the shaded areas are the proton-implanted regions, At is the thickness
of the proton-implanted regions, S is the space between the proton-implanted regions,
and d is the distance from the bottom of the mesa to the bottom of the upper guiding
layer. The height of the rectangular mesa is 1.55 pm. Active region I has a width
of S; active region II is located beside active region I. The width of the mesa is
3.3 wm, the width of the base is 60 wm, and the length of the cavity is 1,200 pm.
When S is fixed to 3.3 wm, d = 250 nm has resulted in the lowest threshold current.
Therefore, for d = 250 nm, the dependences of kink level and threshold current on
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the space S between the proton-implanted regions are examined. The thickness A¢
of the proton-implanted regions is 50nm. Reflectivities of the front and rear facets
are 2 and 90 %, respectively.

The refractive indexes and the thicknesses are as follows: The refractive index and
the thickness of the n-GaAs substrate are 3.54 and 100 pwm, respectively. The refrac-
tive index of both the p-Alg>Gap gAs cladding layer and n-Alp2GaggAs cladding
layer is 3.424. It is assumed that the refractive index of the proton-implanted regions
of the cladding layers is also 3.424 by controlling annealing condition after proton-
implanted cladding layers. The residual carrier concentration in the proton-implanted
regions is assumed to be 10'3 cm™3. The refractive index and the thickness of undoped
Alg.15Gag g5As guiding layers are 3.453 and 200nm, respectively. The refractive
index and the thickness of undoped Alg 1 Gag 9 As barrier layers are 3.482 and 10 nm,
respectively. The refractive index and the thickness of an undoped Alg 03Gag.97As
barrier layer are 3.52 and 10 nm, respectively. The refractive index and the thickness
of Ing »Gag.gAs QW active layers are 3.65 and 10nm, respectively.

The active regions have an SCH with Aly1GaggAs barrier layers, an
Alg.03Gag 97As barrier layer, and two Ing »Gag gAs strained QW active layers. The
Alg.1Gag 9As and Al 03 Gag 97As barrier layers and the Ing 2Gag g As QW active lay-
ers in the active regions as well as the Alg 15Gag g5As guiding layers are undoped to
reduce internal optical loss due to free-carrier absorption.

Simulated /-L curves are shown in Fig.5.41 with the space S between the
proton-implanted regions as a parameter. The dotted, broken, solid, dash-dotted, and
dash-double-dotted lines correspond to S = 0.66, 1.32, 1.98, 2.64, and 3.30 wm,
respectively. At the kink levels, the first-order horizontal transverse mode started to
oscillate and the second-order or higher order horizontal transverse modes did not
oscillate.

The threshold current Iy, decreases and then increases with a decrease in S, which
reflects the overlapping of the electron distribution below the threshold current and
the horizontal near-field patters for the fundamental mode. The lowest threshold
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current Iy, = 46.8mA at § = 1.98 pm is 0.975 times as large as the largest value of
48.0mA at S = 3.3 wm; 0.95 times as large as the lowest value of 49.1 mA in [13].

Figure 5.42 shows kink level as a function of the space S between the proton-
implanted regions. With a decrease in S, the kink level increases and then decreases.
The kink level peaks at S = 1.98 wm, and the kink level at § = 1.98 um is 2.54
times as large as that at § = 3.3 wm; 1.58 times as large as the highest value in [13].

5.10.3.4 Ridge LD with Modified Proton-Implanted Antiguiding Layers

In the ridge LD with selectively proton-implanted cladding layers, distributions of
the refractive index and the doping concentrations are modified to increase kink
level and decrease threshold current [15]. Light is confined by the proton-implanted
n-Alg»Gap gAs cladding layer; carriers are confined by the proton-implanted p-
AlpGag gAs cladding layer. From simulations, it is found that the kink level is
higher and the threshold current is lower than those of the ridge-type semiconductor
lasers with antiguiding layers for horizontal transverse modes [9—13]. In addition,
it is revealed that they are optimal when the space between the proton-implanted
regions in the p-cladding layer is 1.3 pm.

Figure 5.43a shows a schematic cross-sectional view of a ridge structure with
selectively proton-implanted cladding layers and Fig.5.43b shows distributions of
the effective refractive index of the semiconductor laser and doping concentration
of the cladding layers. The shaded areas are proton-implanted. Here, S;, is the space
between the proton-implanted regions in the p-cladding layer; S, is the space between
the proton-implanted regions in the n-cladding layer.

The refractive index of the proton-implanted n-Alg>Gag gAs cladding layer is
higher than that of n-Alg »Gag gAs cladding layer by 1.5 x 1073 because of the free
carrier plasma effect. The refractive index of the proton-implanted p-Aly2Gag gAs
cladding layer is higher than that of p-Alg »Gag g As cladding layer by only 1.5x 10™#
because of large effective mass of hole. As a result, the distribution of the refrac-
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Fig. 5.43 a Schematic cross-sectional view of a proposed ridge structure with selectively proton-
implanted cladding layers and b distributions of the effective refractive index of the semiconductor
laser and doping concentration of the cladding layers. The shaded areas are undoped. Here, S;, is
the space between the proton-implanted regions in the p-cladding layer; S, is the space between
the proton-implanted regions in the n-cladding layer. The distribution of the refractive index of
the n-cladding layer contributes to the effective refractive index; the distribution of the refractive
index of the p-cladding layer does not contribute to the effective refractive index. The proton-
implanted p-Alp2Gag gAs cladding layer confines carriers [15] (Copyright © 2013 Springer “With
kind permission of Springer Science + Business Media”)

tive index of the n-cladding layer contributes to the effective refractive index; the
distribution of the refractive index of the p-cladding layer does not contribute to
the effective refractive index. The proton-implanted p-Aly2Gag gAs cladding layer
confines carriers. The height of the rectangular mesa is 1.55 pm and the width of the
rectangular mesa is 3.3 wm. The width of the base is 60 pwm, and the length of the
cavity is 1,200 pwm. Reflectivities of the front and rear facets are 2 and 90 %, respec-
tively. This structure can be fabricated by two step proton-implantations after forming
a ridge structure. By controlling accelerating voltage for each proton-implantation,
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Fig. 5.44 Kink level as a function of the space S, between the proton-implanted regions in the
p-cladding layer. The kink level has a maximum value of 603 mW at S, = 1.3 umand S, = 2.3 um.
This kink level is 1.9 times as high as the highest simulated value which was obtained previously [15]
(Copyright © 2013 Springer “With kind permission of Springer Science + Business Media”)

protons are implanted to the designed depth. After proton-implantations, annealing
decreases optical damage, which were confirmed experimentally.

The threshold current /i, has a minimum value of 46.3mA at S, = 1.3 wm and
Sn = 4.3 wm. This value of the threshold current is 99 % of the lowest simulated value
which was obtained in [14]. There is the optimum value for S, to obtain the lowest
threshold current. The reason for this is that the transverse spreading of the carriers is
suppressed most efficiently at S, = 1.3 um. Itis considered that transverse spreading
of the carriers is determined by the ambipolar transverse diffusion by the narrower
space in the cladding layers S;,. The calculated ambipolar transverse diffusion length
L, = 1.35 um is quite similar to S = 1.3 um.

Figure 5.44 shows a kink level as a function of the space S}, between the proton-
implanted regions in the p-cladding layer. The parameter is the space S, between
the proton-implanted regions in the n-cladding layer. The kink level has a maximum
value of 603mW at S, = 1.3 um and S, = 2.3 um. This kink level is 1.9 times as
high as the highest simulated value in [14].

5.10.3.5 Ridge LD with Horizontal Coupling

A ridge LD with horizontal coupling of horizontal transverse modes is proposed to
make the fabrication process simple and achieve kink-free operation [16]. In this
semiconductor laser, a groove is formed in the center of the mesa, and the horizontal
transverse modes of the laser beams are determined by the coupling of the horizontal
transverse modes confined by the two ridges, which are formed in the mesa. From
simulations, it is found that kinks do not appear by optimizing the width and depth
of the groove.
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Fig. 5.45 Schematic cross-sectional view of a proposed ridge structure with horizontal coupling
of horizontal transverse modes. A groove is formed in the center of the mesa and two ridges are
formed. Here, S is the width of the groove in the mesa and the space between the two ridges; 4 is
the depth of the groove in the mesa and the height of the two ridges measured from the bottom of
the groove [16] (Copyright © 2013 Springer “With kind permission of Springer Science + Business
Media”)

Figure 5.45 shows a schematic cross-sectional view of a ridge structure with hor-
izontal coupling of horizontal transverse modes. A grove is formed in the center
of the mesa and two ridges are formed. These two ridges confine horizontal trans-
verse modes, and the horizontal transverse modes are coupled through the groove.
It is expected that the coupling of the fundamental horizontal transverse modes for
each ridge becomes higher than the coupling of the higher order horizontal transverse
modes for each ridge. In Fig. 5.45, S is the width of the groove and the space between
the two ridges; h is the depth of the groove and the height of the two ridges measured
from the bottom of the groove. The height of the mesa is 1.55 um and the width of
the mesa is 3.3 wm. The width of the base is 60 pm, and the length of the cavity is
1,200 pm. Reflectivities of the front and rear facets are 2 and 90 %, respectively.
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Fig. 5.46 Injected current versus light output curves when the depth 4 of the groove in the mesa is
1,000 nm. The parameter is the width S of the groove in the mesa. The highest kink level is obtained
at S = 1.32pum [16] (Copyright © 2013 Springer “With kind permission of Springer Science +
Business Media”)
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Fig. 5.47 Kink levels as a function of the width S of the groove in the mesa. With an increase
in the depth h of the groove, the kink levels increase. For & = 1,200nm, kinks do not appear
in S < 1.98um [16] (Copyright © 2013 Springer “With kind permission of Springer Science +
Business Media”)

Figure 5.46 shows injected current versus total light output characteristics. The
parameter is the width S of the groove in the mesa. The depth / of the groove in the
mesais 1,000 nm. The kink is caused by lasing of the first-order horizontal transverse
mode. The kink level depends on the width S of the groove, and the highest kink
level is obtained at S = 1.32 pum.

The threshold current decreases with an increase in the depth 4 of the groove
in the mesa. For 2 > 500nm, the threshold current decreases with an increase in
the width S of the groove in the mesa. The lowest threshold current for kink-free
operation is obtained at § = 1.98 wm and 47 = 1,200 nm, and its value is 50.2mA,
which is slightly larger than the simulated lowest value of 46.3 mA in [13]. It should
be noted that kinks do not appear in the present paper while kinks appeared in [13].

Figure 5.47 shows the kink levels as a function of the width S of the groove in the
mesa. The parameter is the depth / of the groove in the mesa. With an increase in the
depth & of the groove, the kink levels increase. For 2 < 1,000 nm, the kink levels are
the highest at S = 1.32 pm. For 4 = 1,200 nm, kinks do not appearin § < 1.98 um
up to the injected current of 2 A. From this result, the horizontal transverse modes
are coupled efficiently through the groove in § < 1.98 pm.

5.10.4 Transverse Diffraction Grating

Diffraction gratings are usually utilized to control longitudinal mode in order to
obtain stable single longitudinal mode operation in DFB-LDs and DBR-LDs. From
the viewpoint that the propagation constant for the fundamental horizontal transverse
mode and the propagation constant for the first-order horizontal transverse mode have
different values, it is expected that the horizontal transverse mode is controlled by
the transverse diffraction grating.
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Figure 5.48 shows a cross-sectional view of a ridge LD with a transverse diffrac-
tion grating. Here, it is assumed that the structure in Fig.5.48 has a phase-shifted
transverse diffraction grating with a phase-shift —AQ = m, a pitch of A = 183 nm,
and a depth of d = 100 nm.

Figure 5.49 shows horizontal near field patterns for the first-order horizontal trans-
verse mode with the number of pitches N, as a parameter. The dash-dotted, broken,
and solid lines correspond to Ny = 28, 39, and 55, respectively. With an increase
in Np, the peaks of the horizontal near field patterns for the first-order horizontal
transverse mode move away from the center of the mesa. As a result, the optical gain
for the first-order horizontal transverse mode decreases, leading to suppress laser
oscillation of the first-order horizontal transverse mode.

5.11 Longitudinal Modes

The longitudinal modes, or axial modes, which determine the resonance wavelengths
of the cavity, show the light intensity distributions along the cavity axes. Figure 5.50
shows examples of oscillation spectra for (a) a multimode operation and (b) a single-
mode operation.
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Semiconductor lasers use inferband transitions to obtain the optical gain, and the
optical gain spectrum has a width of about 10 nm. Also, the Fabry-Perot cavities
have a lot of resonance modes, which leads to low mode selectivity. For these two
reasons, Fabry-Perot LDs tend to oscillate in multimodes. However, we do not need
single-mode LDs for applications such as compact discs, laser printers, bar-code
readers, laser pointers, or short-haul optical fiber communication systems, in which
Fabry-Perot LDs are used.

In long-haul, large-capacity optical fiber communication systems, we need single-
mode LDs because the optical fibers have dispersions that their refractive indexes
depend on the wavelengths and modes of the lights. Due to the dispersions, the prop-
agation speed of light changes according to the wavelengths and modes of the lights.
If semiconductor lasers show multimode operations, the optical pulses broaden in
a time domain while propagating the optical fibers. With an increase in the trans-
mission distance and a decrease in the pulse spacing, adjacent optical pulses tend to
overlap each other. As a result, the receivers cannot resolve sequentially transmitted
optical pulses, as shown in Fig.5.51.

To achieve single-longitudinal-mode operations, the DFB-LDs, DBR-LDs, sur-
face emitting LDs, cleaved coupled cavity (C?) LDs have been developed, in which
the optical cavities select only one lasing mode. These single-longitudinal-mode LDs
will be explained in Chap. 6; we focus on the longitudinal modes of Fabry-Perot LDs
in this chapter.

Note that the longitudinal modes change with the transverse modes because the
effective refractive indexes of the optical waveguides depend on the transverse modes.
To achieve single-longitudinal-mode operations, we also have to obtain a single-
transverse mode.
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5.11.1 Static Characteristics of Fabry-Perot LDs

Spacing of the longitudinal modes in Fabry-Perot LDs is the same as the free spectral
range Apsr in (4.15), which is written as

)»()2
A = — 5.80
FSR L (5.80)

where A¢ is a center wavelength of a light, L is the cavity length, and n;, is the
equivalent refractive index, which is the effective refractive index with dispersion,

and is given by i
—— (1 _ ﬂ) . (5.81)

Here, n; is the effective refractive index of the optical waveguide for Ag. Generally,
we have dn;/dA < 0, and the equivalent refractive index ny; is larger than n;. For
*o = 1.55wm, ngy, = 3.5, and L = 300 um, Apsg is 11.4 A.

Figure 5.52 shows a relationship between the gain spectrum and the longitudinal
modes. Fabry-Perot LDs oscillate at the resonance wavelength, which is closest to
the gain peak. As a result, the oscillation wavelength for optical gain A is Aga, and
that for optical gain B is Agp.

With an increase in the carrier concentration n, the refractive index decreases
due to the free carrier plasma effect and increases due to Joule heating of the opti-
cal waveguide. Above the threshold, the carrier concentration in the active layer is
almost constant. Therefore, above the threshold, the free carrier plasma effect does
not change the refractive index, and Joule heating of the active layer enhances the
refractive index with an increase in the injection current /. Hence, the resonance
wavelength shifts to a longer wavelength with I (> Iy,) according to (5.5).

With an increase in n, the optical gain spectrum shifts to a shorter wavelength
due to the band filling effect and to a longer wavelength due to Joule heating of the
optical waveguide. The band filling effect is a phenomenon whereby the carriers fill
the energy bands from the bottom, and with an increase in the carrier concentration 7,
the number of carriers with high energy increases. As a result, the optical gain peak
shifts to a higher energy (a shorter wavelength) with an increase in n, as shown in
Figs.2.9 and 2.10. Above the threshold, the carrier concentration is almost constant,
and the band filling effect is not dominant. Therefore, the gain peak shifts to a longer
wavelength due to Joule heating of the optical waveguide with an increase in /.

Asdescribed earlier, with an increase in I above Iy, both the resonance wavelength
and the gain peak shift to longer wavelengths due to Joule heating of the optical
waveguide. Therefore, the oscillation wavelength increases with 7. Here, it should
be noted that the change rate of the resonance wavelength and that of the gain peak
with a temperature 7j are different from each other. Hence, with an increase in / or
T;, the oscillation mode jumps, because the resonance wavelength closest to the gain
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peak at the threshold departs from the gain peak, and other resonance wavelengths
approach the gain peak.

Figure 5.53 shows dependence of the longitudinal modes on the injection current
I. It is found that the longitudinal modes shift to a longer wavelength, and the mode
jumps to the other mode at several values of /. Also, according to an increase or
decrease in I, there exist hysteresis loops. Similar phenomena are observed when
T; is changed and [ is kept constant. The cause of these hysteresis loops is that the
optical gain concentrates on the oscillating longitudinal mode, and the optical gains
for the other modes are suppressed due to coupling of modes as explained in Sect. 5.9.

The carriers, which interact in the oscillation mode, are consumed by the radia-
tive recombination due to the stimulated emission. However, the intraband relaxation
time of the carriers is of the order of 10712~10713 s, and the other carriers promptly
compensate the consumed carriers. Therefore, the number of carriers related to the
unoscillating modes decreases, which reduces the optical gains for the unoscillat-
ing modes. Figure 5.54 schematically shows how the other carriers compensate the
consumed carriers, which exist inside a rectangle.
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5.11.2 Dynamic Characteristics of Fabry-Perot LDs

5.11.2.1 Turn-on Delay Time and Relaxation Oscillation
(1) Turn-on Delay Time

We assume that a step pulsed current is injected into a semiconductor laser. As shown
in Fig. 5.55a, a bias current density Jj, is below the threshold current density Ji,, and
a pulsed current density Jp, is injected to the semiconductor laser at time ¢ = fo, = 0.
Note that the pulse width is much larger than the carrier lifetime 7,,. The carrier
concentration n increases from a bias value ny, with a time constant t,, and reaches
the threshold carrier concentration ny, at ¢ = t4, as shown in Fig.5.55b. This 4 is
called the turn-on delay time, and at t = t4 laser oscillation starts. After the start of
laser oscillation, the carrier concentration n and the photon density S show relaxation
oscillations, as shown in Fig.5.55b, c.
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Let us calculate the turn-on delay time #4 using the rate equations. For simplicity,
we neglect coupling of the spontaneous emission to the lasing mode. Therefore, when
n < ng, the photon density is S = 0. As a result, (5.20) reduces to

dn J n
—=———. (5.82)
dt ed 1,
From the assumption, the current density J is given by
J=Jp-ul)+ Jo,
uy =19 U= (5.83)

1 (t=0).
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Substitution of (5.83) into (5.82) is followed by the Laplace transform. If we
express a Laplace transform of n(z) as N(s) and let n(0) = np = t,Jp/(ed), we

obtain b Sh+h1l 1
sN(s) —n(0) = sN(s) — 222 = 200 2 2 n), (5.84)
ed ed s 1,

Hence, N (s) is written as

1 1 T+ ) wh 1
N(@Es)=(-— . 5.85
(s) (s s—}—tn‘) ed T ed s+1,7! (58)

When we take an inverse Laplace transform of N (s), we have

Jo+Ji Jo+Ji _ _
n(t) = T ( 5;‘ b) u(t) — T ( E;‘ b) e~/ 4 T:)jb et/

s ; (5.86)
_ 5;— b) u(t) — f:‘_dpeft/tn.
Int > 0, we have u(¢) = 1, and then (5.86) is expressed as
J J,
n(t) = ’”d — t”—dpe—’/fn, (5.87)
e e
where

Jo+ =1 (5.88)

At t = 14, the carrier concentration n reaches the threshold carrier concentration
N, and from (5.35) we have

J
n(ty) = ng, = T’; dth. (5.89)

Using (5.87)—(5.89), the turn-on delay time 74 is obtained as

J—UJ
J—Jn

td =1 ]n (590)

For Jy, = 0.8/, J = 1.2Jy, and 7, = 2.5ns, we have ty = 1.7 ns.

To generate high speed optical signals by modulating the injection current into
the semiconductor lasers, the turn-on delay time #q should be short. From (5.90), it
is found that a large bias current density J}, a low threshold current density Ji,, and
a short carrier lifetime t,, are suitable for high-speed modulations.

It is also considered that (5.90) shows a relationship between 74 and 7,,. Hence,
by measuring #4 as a function of J or Jy, we can obtain the carrier lifetime 7,, from
(5.90). This measured result is shown in Fig. 5.56, where the bias current I, is zero.
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(i1) Relaxation Oscillation

Let us calculate a decay coefficient and an oscillation frequency of the relaxation
oscillation.

For brevity, by neglecting coupling of the spontaneous emission to the lasing
mode, we solve the rate equations (5.20) and (5.21). Because there are no exact
analytical solutions, Fig.5.55 was drawn by numerically analyzing (5.20) and (5.21).
However, if we use the small-signal analysis, we can obtain approximate analytical
solutions, which clearly give us their physical meanings. To perform the small-signal
analysis, we express the carrier concentration n, the photon density S, and the current
density J as

n=ne+dén, S=S8+46S, J=Jo+36J > Jn, (5.91)
neo > én, So > 488, Jo > 4J, '
where n¢g, So, Jo are the carrier concentration, the photon density, and the current
density in a steady state, respectively, and én, §S, and 6J are deviations from each
steady-state value. If we assume J, > Jp and exclude several initial sharp peaks in
the relaxation oscillation, the conditions for the small-signal analysis are satisfied.
Here, we put Jo = Jp and 6J = Jj,.
Neglecting coupling of the spontaneous emission to the lasing mode, (5.20) and
(5.21) reduce to

dn J n

@ cms— ™, 5.92
& ed S (5:92)
ds S

—=Gn)S — —. 5.93
5 (n) (5.93)

Tph
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In a steady state (d/d¢ = 0), from (5.91) to (5.93), we have

Ji
2 Gne)So— =2 =0,
ed T

1
G(neo) = .
P

(5.94)

Substituting (5.91) into (5.22) results in

G(n) = G(neo + 8n) = Igy(neo + dn — ng)

G
= Tagy(neo = no) + Iagodn = Gneo) + —-dn. (5.95)

where we have introduced the differential gain, which is defined as

oG
gy=—. 5.96
a80 an ( )
Inserting (5.91) into (5.92) and(5.93) with the help of (5.94) and (5.95) and then
neglecting the second-order small term én - §S, we have the rate equations on the
deviations én and 8§ as

d 8J 8§ 090G dn

—n=—— — — —Spén — —, (5.97)
dt ed Tpn On Ty

d G

—688 = — Spdn. (5.98)
dr on

From (5.98), én is expressed as

1 d

n=———388 (5.99)
(0G/dn)So dr
Substituting (5.97) and (5.99) into a time derivative of (5.98), we have
d25s+ 96 ¢+ L) dsg4 3G 5056 9GS0 s, (5.100)
dr? an 0 7, ) dt n tn  dned ’

This equation shows a relaxation oscillation on the deviation of the photon density
8S. As a result, if we write the decay coefficient as yy and the oscillation angular
frequency as wy, we obtain

0G 1

vw=——>5+—, (5.101)
on T,

2_ G5

(5.102)

w” = .
on Tph
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From (5.102), the relaxation oscillation frequency f; is given by

1 [9G S
fi=— [——. (5.103)
2\ 9n Tpy
Note that the decay coefficient yy is related to the decay time 1. as
1
Yo= —. (5.104)

Tre

To generate high-speed optical signals by modulating the injection currents into
the semiconductor lasers, the optical pulses have to quickly return to their steady-state
values. Therefore, the decay coefficient 3 and the relaxation oscillation frequency
Jr have to be large. From (5.101) to (5.103), it is found that a large differential gain
dG /on, large photon density Sp in a steady state, short carrier lifetime 7,,, and short
photon lifetime 7,y are suitable for high-speed modulations.

Here, we consider a relationship between high-speed modulations and other char-
acteristics. As found in (5.40) and (5.96), a large G /dn leads to a low Jyy,, while
short 7, and 7, increase Jy,. Hence, for simultaneous low-threshold and high-speed
operations, we need to obtain a large dG /dn, which is achieved in the quantum well
LDs (see Chap.7). With regard to system applications, if Sy is large, light intensity
is detected by a receiver even when optical pulses are not transmitted. As a result,
an extinction ratio decreases and a signal-to-noise (S/N) ratio degrades. Therefore,
So should be limited to satisfy specifications of applications.

The decay coefficient yy and the relaxation oscillation frequency f; can also be
expressed using the current density J. From (5.34), the threshold carrier concentration
ny and the transparent carrier concentration ng are written as

Tn

Tn ’
= — J , = — ] , 5.105
Nth od th, 10 od 0 ( )

where J) is the transparent current density, in which a material is transparent. From

(5.39), we have
1

N — Ny = . (5.106)
TIagytph
Substituting (5.96) and (5.105) into (5.106), we obtain
oG ed
= (5.107)

o tutph (Jin— JG)

Inserting (5.42) and (5.107) into (5.101) and (5.103), the decay coefficient yy and
the relaxation oscillation frequency f; are expressed as
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_1 = (5.108)
= T Jih — Jé’ -
1 1 J—J
£ R (5.109)

C 2\ Ttph Jin —

5.11.2.2 Relationship Between the Relaxation Oscillation
and the Longitudinal Modes

As shown in Fig. 5.55b, during the relaxation oscillation, the carrier concentration n
deviates from ng, by about 10 %. Due to this modulation in n, the optical gain and
the refractive index simultaneously change, which alters the longitudinal modes.

First, we consider the optical gain. When the carrier concentration » is larger than
nh, the optical gain g exceeds the threshold gain g, and the longitudinal modes with
the optical gain g > g, show laser operations. Therefore, in the beginning of the
relaxation oscillation, multimode laser oscillations are observed. With a decay in the
relaxation oscillation, the number of the lasing longitudinal modes decreases.

Secondly, we treat the refractive index. The refractive index is modulated by
the free carrier plasma effect. When a deviation in the carrier concentration én is
2 x 107 cm™3, the positions of the longitudinal modes shift to a shorter wavelength
by about 4 A from steady-state values. Such dynamic changes in the longitudinal
modes due to modulations of n are called chirping. When the chirping takes place,
the linewidth of the time-averaged light output spectra broaden, as shown in Fig. 5.57.
Multimode laser operations and chirping are not suitable for long-haul, large-capacity
optical fiber communication systems, because the optical fibers have dispersions, as
described earlier.

It should be noted that the decay time of the relaxation oscillation is of the order
of nanoseconds. Therefore, the effect of Joule heating with timescale longer than
microseconds is negligible.

5.12 Modulation Characteristics

5.12.1 Lightwave Transmission Systems and Modulation

From the viewpoint of light modulations in lightwave transmission systems, there are
an intensity-modulation/direct-detection system and a coherent system. With regard
to modulations of laser beams, there are a direct modulation of semiconductor lasers
and an external modulation using optical modulators.
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5.12.1.1 Intensity-Modulation/Direct-Detection System

Figure 5.58 shows the intensity-modulation/direct-detection system. In this system,
a transmitter sends optical signals by modulating the light intensity, while a receiver
directly detects changes in the light intensity and transforms these optical signals into
electric signals. This system is simpler and more cost-effective than the coherent one.
Therefore, this intensity-modulation/direct-detection system is used in contemporary
optical fiber communication systems. A problem with transmission distance, which
was inferior to the coherent system, has been solved by the advent of optical fiber
amplifiers.
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5.12.1.2 Coherent System

In coherent systems, there are amplitude shift keying (ASK), frequency shift keying
(FSK), and phase shift keying (PSK) systems according to modulations of the laser
beam. As shown in Fig.5.59, the modulated light from a master light source LD
and a light from a slave (local) light source LD, are simultaneously incident on a
receiver. In the receiver, interference of these two laser beams generates an optical
beat signal, which is converted to an electric signal.

With increase in the light output of LD», the S/N ratio is improved, which leads
to long-haul optical fiber communication systems. However, to obtain the optical
beat, we have to prepare two semiconductor lasers, whose laser lights have narrow
spectral linewidths, almost common wavelengths, and the same polarizations. More-
over, we need polarization controllers to achieve the same polarizations, because the
polarization of the lightwave changes with an increase in the propagation distance
due to contortion of the laying optical fibers. Also, electronic circuits in the receiver
are complicated. As a result, the cost of the coherent system is much higher than that
of the intensity-modulation/direct-detection system.

5.12.1.3 Direct Modulation

In direct modulation of semiconductor lasers, the injection currents into semiconduc-
tor lasers are modulated. During direct modulations, multimode operations, chirping,
and changes in the turn-on delay time take place. In short-haul optical fiber communi-
cation systems, as in a building, these problems are not as serious, and the Fabry-Perot
LDs can be used as light sources. In contrast, for long-haul optical fiber communi-
cation systems with a transmission distance of more than several tens of kilometers,
Fabry-Perot LDs cannot satisfy the system specifications. Therefore, the DFB-LDs
showing stable single-longitudinal-mode operations are used as light sources.

In the coherent system, we would like to modulate only one of the amplitude,
frequency, or phase of light. However, they all simultaneously change, when con-
ventional semiconductor lasers are directly modulated. To overcome these problems,
semiconductor lasers containing phase-control regions have been developed.

Fig. 5.59 Coherent system OOptical fiber
? = Q ol

Coupler
LD, Zs Photodetector

LD,
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5.12.1.4 External Modulation

In external modulation of laser beams, the injection currents into semiconductor
lasers are kept constant, and the optical modulators modulate laser beams emitted
from semiconductor lasers. Because the injection currents into semiconductor lasers
are constant, relaxation oscillations do not exist, as opposed to direct modulation.
Therefore, we can avoid multimode operations. Also, with a small change in the
refractive index in the optical modulators, chirping is low. However, there are prob-
lems such as costs and optical coupling efficiencies between the optical modulators
and semiconductor lasers. To overcome these problems, integrated light sources of
the DFB-LDs and optical modulators have been developed and used in contemporary
long-haul, large-capacity optical fiber communication systems.

Optical modulators often use Franz-Keldysh effect or quantum confined Stark
effect (QCSE) as their operating principles. Franz-Keldysh effect is a shift of a
fundamental absorption edge to a longer wavelength with an increase in the bias
voltage of bulk semiconductors. Quantum confined Stark effect is a shift of an exciton
absorption peak to a longer wavelength with an increase in the bias voltage of the
semiconductor quantum structures.

In the following, we focus on direct modulation of semiconductor lasers, because
it is helpful to understand peculiar characteristics of semiconductor lasers.

5.12.2 Direct Modulation

5.12.2.1 Dependence on Modulation Frequency

The relaxation oscillations of semiconductor lasers are analogous to a transient
response theory of electric circuits, while dependence on modulation frequency cor-
responds to an alternating current theory.

When a deviation in the current density §J is related to the steady-state current
density Jo as [6J| < Jo, we can use the small-signal analysis. We assume that a
deviation from Jy is expressed as §J (w)el®. As a result, a deviation in the carrier
concentration 8z and that in the photon density 85 are expressed as 8n = 8n(w)e' !
and 8§ = §S(w)e'®, respectively. Substituting these into (5.97) and (5.98), we have

snw) = — 2 3@ (5.110)
D(w) ed ’
2
__ Tphor §J (w)
38(@) =~ = (5.111)

where
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D(w) = o* — o —iwy, (5.112)
3G 1
w=—>5+—, (5.113)
on Ty
wﬂ:a—G&. (5.114)
on Tph

Note that (5.113) and (5.114) are equal to (5.101) and (5.102), respectively.
If we define a modulation efficiency é(w) as the number of photons generated per
injected electron, & (w) is written as

§ 2 2
§(w) = ‘ M) | _ e fph & , (5.115)
8J(w)/(ed) ID@)|  /(0? — &2)? + 0?12
where (5.111) and (5.112) were used. From (5.115), we obtain
) 2
@ _ o (5.116)

50) (0 — o) + w0l

As found in (5.116), the modulation efficiency § (w) shows resonance characteristics,
and the resonance angular frequency is identical to the relaxation oscillation angular
frequency w;.

Figure 5.60 shows the modulation efficiency §(f) as a function of the modula-
tion frequency f = w/2m with the injection current density J as a parameter. The
modulation efficiency §( f) has a maximum value at a resonance frequency f;, and
8(f) drastically decreases with an increase in f over f;. Therefore, the resonance
frequency f; indicates the highest limit in the modulation frequency. As shown in
(5.109), with an increase in J, f; is enhanced, which results in a large modulation
bandwidth. It should be noted that electrical resistance and capacitance of semicon-
ductor lasers also affect the modulation bandwidth.

5.12.2.2 Analog Modulation and Digital Modulation

In the direct modulations of semiconductor lasers, there are analog modulation and
digital modulation, as shown in Fig.5.61.

Analog modulation transforms a change in the injection current into a change
in light intensity and requires high linearity in the /-L curve. The upper limit in
the modulation frequency is the resonance frequency f;, and the causes of high-
frequency distortions are nonlinearity in the /—L curve and Joule heating during large
amplitude modulations. Typical noises are optical feedback noises induced by the
lights reflected from edges of the optical fibers and the modal noises generated in the
optical fibers. Compared with digital modulation, analog modulation can transmit
more information with lower modulation frequencies, but it is easily affected by
distortions of optical signals during transmissions. As a result, analog modulation
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Fig. 5.61 Analog modulation and digital modulation

is used for short-haul, large-capacity optical fiber communication systems such as
cable televisions (CATVs).



5.12 Modulation Characteristics 153
Original signal 01

RZ signal

1

NRZ signal

Fig. 5.62 RZ and NRZ signals

Digital modulation assigns the signal of 1/0 to ON/OFF of the light intensity.
To obtain the optical pulses, which immediately follow the pulsed currents, DC bias
currents are injected into semiconductor lasers to shorten the turn-on delay time.
Compared with analog modulation, digital modulation is less affected by distortions
of optical signals during transmission. As a result, digital modulation is used for long-
haul, large-capacity optical fiber communication systems. However, to transmit a lot
of information, such as motion pictures, higher modulation frequency than that of
analog modulation is required.

In the following, we explain digital modulation in-depth. According to the original
signals 1 and 0, there are return-to-zero (RZ) signal and nonreturn-to-zero (NRZ)
signal, as shown in Fig.5.62. In the RZ signal, a signal level is returned to zero after
each signal is transmitted, which results in a large S/N ratio. However, we need a short
pulse width, which leads to a high modulation frequency. In the NRZ signal, a signal
level is not returned to zero after each signal is transmitted. Hence, if the original
signal 1 continues, the signal level is kept high until the original signal O appears.
Therefore, the S/N ratio is inferior to that of the RZ signal, but the modulation speed
is not as high as that of the RZ signal.

Now we consider high-speed modulations to transmit large-capacity information.
When the modulation speed is higher than 400 Mb/s, the pulse width is of the order
of nanoseconds. In this case, the number of peaks in the relaxation oscillation for
each optical pulse is at most two, and a steady state does not exist within each pulse.
Hence, a decrease in average light intensity, pattern effect, and multimode operation
takes place.

When the relaxation oscillation is sharp, the light intensity pulses have deep valleys
and the averaged light intensity decreases, which restricts the transmission distance.

The carrier concentration in the active layer changes according to existence or
nonexistence of a preceding optical pulse, which is referred to as the pattern effect.
With a change in the remaining carrier concentration, the bias level is altered, which
modifies the turn-on delay time, as shown in Fig. 5.63. In order to examine the changes
in the optical pulses, an optical signal is formed by superimposing the optical pulses
with the electrical pulses as the reference. This newly formed optical signal is called
the eye pattern, because its waveform resembles an eye when a duty of the pulse is
50 %. When there are large deviations in the turn-on delay time, resolutions in the
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receiver degrade. In this case, the eye patterns collapse and a lot of jitters appear. When
the deviations in the turn-on delay time are small, the eye patterns are wide open.
Therefore, by observing the eye patterns, we can evaluate quality of the transmitted
signals. Figure5.64 shows examples of the eye patterns for modulation speeds of
4 and 2.4 Gb/s with a duty of 50 %. In these examples, the eye patterns are clearly
open, and high-quality transmission characteristics are obtained.
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When the relaxation oscillation takes place, Fabry-Perot LDs show multimode
operations, which restrict the transmission distance due to the dispersions in the
optical fibers. Here, we describe the dispersions in the optical fibers in detail and
evaluate a relationship between the dispersions and the transmission distance.

The optical fibers have mode dispersion, material dispersion, and structural dis-
persion. Mode dispersion is a change in the effective refractive index of the optical
fibers according to a mode, which corresponds to a distribution of light fields. Mate-
rial dispersion, or chromatic dispersion, is a variation in the refractive index of the
optical fibers with a wavelength of light. Structural dispersion is a change in the effec-
tive refractive index of the optical fibers with a wavelength of light for a common
mode; it is caused because the refractive index of the core and that of the cladding
of the optical fibers depend on a wavelength of light.

In long-haul, large-capacity optical fiber communication systems, a fundamental
mode is used and the material dispersion is dominant. Table 5.2 shows the material
dispersions and optical losses of the glass optical fibers for typical wavelengths of
semiconductor lasers.

If five longitudinal modes lase during the relaxation oscillation, the difference in
the longest and shortest wavelengths is approximately 50 A for semiconductor lasers
with a wavelength of 1.55 wm. When this optical signal is transmitted through the
optical fibers by 10 km, the lights arrive at a receiver with a time difference of

2ps/A/km x 50 A x 10km = 1ns, (5.117)

and the optical pulse shape degrades.

Here, we summarize the key points for long-haul, large-capacity optical fiber
communication systems.

For long-haul optical fiber communication systems, we need to use optical fibers
with low material dispersions and low optical losses. A wavelength with the lowest
dispersion is 1.30 um, and a wavelength with the lowest optical loss is 1.55 wm.
Hence, in the conventional optical fiber communication systems, wavelengths of
1.30 and 1.55 pm are used. In Japan, the dispersion-shifted optical fibers whose
lowest dispersion wavelength is shifted from 1.30 to 1.55 wm are used in trunk-line
systems. The light sources are required to show highly stable single-longitudinal-
mode operations with low chirping and large average light output. Therefore, the
DFB-LDs with excellent single-longitudinal-mode operations are adopted.

For large-capacity optical fiber communication systems, we need to shorten the
turn-on delay time and enlarge the relaxation oscillation frequency (resonance fre-
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quency). As a result, DC bias currents are injected into semiconductor lasers. Also,
semiconductor laser structures are designed to reduce capacitance.

Finally, we briefly explain driving circuits of semiconductor lasers. The threshold
current, light output, and oscillation wavelength of semiconductor lasers change
with temperature. Hence, to prevent these changes in characteristics, temperature
control circuits are used in the conventional optical fiber communication systems.
Also, to keep the light output constant, a photodiode is placed at a rear facet of each
semiconductor laser to monitor the light output, and automatic power control (APC)
circuits are adopted.

5.13 Noises

Noises related to semiconductor lasers are as follows.

e Noises Peculiar to Semiconductor Lasers

— Quantum noises:
AM noise (fluctuation in an amplitude of light)
FM noise (fluctuation in a frequency of light)
— Noises on longitudinal modes:
Mode partition noise
Mode hopping noise

e External Noises

— Optical feedback noise
— Noise due to fluctuations in temperature,
driving current, and voltage.

5.13.1 Quantum Noises

5.13.1.1 Fundamental Equations

Amplitude modulating (AM) noise and frequency modulating (FM) noise are quan-
tum noises. They are caused by spontaneous emission in a free space with random
amplitudes, frequencies, and phases of the lights. Figure 5.65 shows a relationship
between spontaneous emission and quantum noises such as AM noise and FM noise.
In addition to spontaneous emission, FM noise is affected by AM noise as follows:
Due to AM noise, the amplitude of the light field fluctuates, which modulates the car-
rier concentration in the active layer and leads to carrier noise. As a result, through
the free carrier plasma effect, the refractive indexes of semiconductors fluctuate,
which results in FM noise. Also, the carrier noise induced by AM noise generates
electric current noise, which changes Joule heating in the active layer. Therefore,
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the refractive indexes of semiconductors fluctuate, which results in FM noise. AM
noise is also altered by the carrier noise induced by AM noise itself.

To analyze the quantum noises, we use semiclassical theory, in which electro-
magnetic fields are treated classically and atomic systems in the fields are considered
quantum mechanically [17].

From Maxwell’s equations, we have an equation for the electric field E in an
optical cavity for semiconductor lasers as

vZE—uoﬁ—usaz—Ewa—z(Pw) (5.118)
at a2 a2 ' '
where ¢ magnetic permeability; o conductivity, which represents the optical losses;
€0 permittivity in a vacuum; 7, a refractive index of the material (¢ = gon,?); P
a polarization of a medium contributing to the laser transition; and p a polarization
source for the spontaneous emission (Langevin source).
To derive (5.118), a vector formula

VxVxXxE=V(V-E)—V’E (5.119)

was used, and V - E = 0 was assumed.
We also suppose that the electric field E and the polarizations P and p are expressed
as

E=Re|> En(en(r)

P =Re Z Py (t)en (r)

(5.120)

p =Re me(t)em(r)
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Here, a spatial distribution function e,, (r) satisfies both the boundary conditions of
the optical cavity and the following relation:

Ve (r) + wp e emr) = 0. (5.121)

Also, e, (r) is orthonormalized as

em™ - endV = Smn Vin, (5.122)
all volume

where Vi, is a mode volume. Substituting (5.120) into (5.118) with the help of (5.121),
taking the inner product with e, *(r), and using (5.122), we obtain

.. 1 . 1 .. .
Ey+ —Ey+ 0,2 Ey = — ~ (Py + ), (5.123)
Tph &

where a dot and a double dot above E,, P,, and p, indicate a first derivative and a
second derivative with respect to a time ¢, respectively; wj, is the resonance angular
frequency of the nth mode; and 7,, = ¢/0 is the photon lifetime of the optical
cavity. Here, we have also assumed p = o, which is usually satisfied in the optical
materials.

The polarization of a medium P, (¢) is related to the electric field E, (¢) as

P,(1) = £ [X“> + X(3)|En(t)|2] E, (). (5.124)

Here, X and X are expressed as

M !
xO =X / eyt e, dV ~ xD =

Vin L
medium
(5.125)
& = 17 o2y a @ O
= V_ (en" -ey)"dV =~ x i,
" medium

where x ) and x @ are the first and third optical susceptibilities, respectively; [ is
the crystal length; L is the cavity length; and Vi, is the mode volume.

Under the assumption of single-mode operation, we express the electric field
E, (#) and the polarization source for the spontaneous emission (Langevin source)
pn(t) as

En(t) = [Ag +8(1)]e!ton+00],

> 5.126
L p gy eitonttom, (>-126)
s 012
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where Ag an averaged amplitude of the electric field, 6 (¢) a deviation in the amplitude
of the electric field from Ag, ¢ (¢) an instantaneous phase, A(t) a random function
representing spontaneous emission, and w,, an average angular frequency of laser
light.

We also assume that §(¢), ¢ (¢), and A(¢) are slowly varying functions compared
with w,,. For brevity, we neglect the carrier fluctuations. We further suppose that

8(r) < Ao, (8(1)) = (¢(1)) = (A1) =0, (5.127)

where (- - - ) shows a time average or an ensemble average.
Substituting (5.124) and (5.126) into (5.123), we obtain

98 9 3402X® a8
2iwp (— +iAg —¢) + (2iwm 2 wm28)

ot ot ne ot
2 2, . %m ) 2v3) O
+wp” — on +1t——(X + A" X )n2 Ao = A1), (5.128)
ph r

where ¢ = g n,2 (n,: arefractive index of the material) was used.
A real part and an imaginary part of the steady-state solution of (5.128) are given
by

(1 243 77!
X Ag X
Om? = wn? [1 + %} : real, (5.129)
nr
2 1 my , m o
Ag- = — & (Xi + —) : imaginary, (5.130)
Xi Wm Tph
where X139 = x 19 _ iXi(1’3).
Therefore, (5.128) reduces to
30 3A0°X° 35 3402wn X Ac(t)
Ag — — L 6=— : real, 5.131
051 P T 2om 131
342X 98 3402w, X" Al
1+ 20 or )2 + 0 OmZi 5= i) : imaginary, (5.132)
n.2 ot 2n,2 20m

where A(t) = A(t) + 1 Aj(r). These equations are the fundamental equations for
noises in the laser light, when the carrier fluctuations are neglected. In (5.131), the
second term on the left-hand side is usually neglected because it is smaller than the
other terms. As a result, the amplitude fluctuation § and the phase fluctuation ¢ are
related to each other by the term including X r(3).
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5.13.1.2 Spectra of a Laser Light

Among the spectra of laser lights, there are a power fluctuation spectrum expressing
the AM noise, a frequency fluctuation spectrum indicating the FM noise, and a field
spectrum. Figure 5.66 shows a measurement system for these spectra. It should be
noted that a spectral linewidth of laser light usually represents a linewidth of the field
spectrum.

To obtain the spectra of laser lights, we first calculate the autocorrelation func-
tions of the fluctuations using (5.131) and (5.132). Then, with the help of Wiener-
Khintchine theorem, we have spectral density functions.

(i) Autocorrelation Function of the Amplitude Fluctuation §(¢)

For a usual laser field, AOZXI(S)/nr2 & 1 is satisfied. As a result, (5.132)
reduces to

3
38 Ai(t) 340%0n X
S hed= 2 o= S S0, (5.133)
dt 2wm 2n;
Taking a Laplace transform of (5.133), we have
Ao+ 1 i[@,1+6(0)]
Test o+ 5(0le Detector Spectrum
laser / analyzer
Reference Erer alAd+24)8(0]  Power fluctuation
laser spectrum
W, €2)
Optical
mixer a ddq;([)
as[Agt+ S(D]E e @ a0l — Limiter Spectrum
Discriminator analyzer
Spectrum J
analyzer Frequency fluctuation
l spectrum
Wao(€2)

Field spectrum
Wi (@)

Fig. 5.66 Measurement system for spectra of a laser light
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Ai(s)

—8(0) + 58(s) + w18(s) = .

5(s) E/a(t) e S dr,
0 (5.134)
Ai(s) E/Ai(t)e—“ dr.

0

Supposing §(0) = 0, (5.134) results in

< Ai(s)
8(s) = ——————. 5.135
© 20 (s + w1) ( )
Taking an inverse Laplace transform of (5.135), we obtain §(¢) as
1 t
8(t) = — / Ai(We 1M gy, (5.136)
2w
0

From (5.136), the autocorrelation function (6(¢z + t)38(¢)) of the amplitude fluc-
tuation §(¢) is given by

t+t t
1
6+ 0500 = 4 [ [ @ataonaoo)
« e~ @1 tHT=A) g =01 (1=22) (5.137)

Here, we assume that the correlation functions of the Langevin sources are written
as

(Ai(A1)Ai(R2)) = (Ar(A1)Ar(A2)) = W - D(A1 — A2),
(Ai(A1)Ar(22)) = (Ar(A1) Ai(R2)) = 0, (5.138)

where D(x) is a § function and W is a coefficient related to the spontaneous emission,
which will be calculated later. Substituting (5.138) into (5.137), we obtain

(8(t +1)8(1)) = e~ @ltl( — g72e1ty, (5.139)

8w wi

As aresult, in a steady state where ¢ is long enough, we have
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(8t +1)8(1)) = el (5.140)

8w, w

(ii) Autocorrelation Function of the Phase Fluctuation ¢ (¢)

The second term on the left-hand side of (5.131) is small enough compared with the
other terms. Therefore, (5.131) reduces to

3¢ 3A02wn X Ac()
Ag =2 4 220 TmBr . 5.141
0% + 2n,2 20m ( )

When ¢ (0) = 0, integration of (5.141) with respect to ¢ results in

?3) ! 4
3 XA
¢(t) = — — r—O /Al()\.) dr _/Ai()\)e_wl(t_k) dx
4 nlw
0 0
l t
- Ar(1) dA, (5.142)
2A00 /
0Wm 5

where (5.136) was used.
From (5.133), (5.138), and (5.142), the autocorrelation function (¢ (z;)¢ (12)) of
the phase fluctuation ¢ (¢) is given by

(<),
Mot)) = ——— (1 +a? 5.143
(B9 (12) = s +“>X[t2 Y (5.143)
Here, we have introduced
X(3)
o= — (5.144)
X(3)

which is called the o parameter or the spectral linewidth enhancement factor.
Using the following relation:

X =X;—-1Xj,

X, =X+ xP|E, 2, (5.145)
1 3

Xi = X{" + X7 |E, 2,

we can rewrite (5.144) as

x® 3X, ax; \7' ax, fox;\ !
*TX® TEL\GEE) T o \ 9 ’ (5:146)
Xi |Epl |E,| n n
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where we have assumed that the light intensity, which is linearly proportional to
|E,|?, is in proportion to the carrier concentration . It should be noted that this «
parameter is important to characterize the spectral linewidth and the optical feedback
noise in the semiconductor lasers.

(iii) Autocorrelation Function of the Angular Frequency Fluctuation Aw (f)

Using the averaged angular frequency w,, and the phase fluctuation ¢ (¢), we can
express the instantaneous angular frequency w(¢) of a laser light as

w(t) = oy, + % (5.147)
ot

As a result, the fluctuation in the angular frequency Aw(¢) is written as

d¢
Aw(t) = w(t) — wy, = e (5.148)
Hence, the autocorrelation function (Aw(#1) Aw(t,)) of the angular frequency fluc-
tuation Aw(t) is obtained as

(Aw () Aw () = () (1))
2
D(t) — 1) + % wje" -l ] . (5.149)

B 4a)mzAOz [

where (5.140), (5.141), and (5.146) were used, and a dot above ¢ represents a first
derivative with respect to time.

(iv) Spectral Density Function

To obtain spectra of laser lights, we calculate the spectral density functions of the
amplitude fluctuation § () and the angular frequency fluctuation Aw (¢) using Wiener-
Khintchine theorem.

From (5.140), the spectral density function Ws(€2) of the amplitude fluctuation
5(t) is obtained as

o0

Ws(Q) = % /(5(: +1)8(1)) e T dr
B w
T A w222 + w2’

(5.150)
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From (5.149), the spectral density function W, (€2) of the angular frequency
fluctuation Aw () is given by

Wip(Q) = % /(Aa)(t + 1) Aw (1)) e ¥ dr

— (1+ o’ ) (5.151)
_47'[(1)m2A02 92+w12 . .

(v) Coefficient W

The generation rate of the spontaneous emission is expressed as E.,hw,, where E¢,
is the number of photons spontaneously emitted to an oscillation mode per time.
The dissipation rate of the spontaneous emission is given by Wy /tpn where Wy is an
energy of the spontaneous emission coupled to the oscillation mode and 7,y is the
photon lifetime. In a steady state, the generation rate is balanced with the dissipation
rate. As a result, we have

Wy = Ecyhwm Tph. (5.152)

The electric field of the spontaneous emission is given by a solution of the fol-
lowing equation:

. 1 . .
En+ —Ey + 0, E, = [Ac(1) +1Ai(0D)] e, (5.153)
Tph

where the polarization due to stimulated emission in (5.123) is neglected and w, ~
wpy, 1s assumed. )
If we suppose E(0) = E(0), as a solution of (5.153), we have

1
E(t) = n /dt[Ar(t) +iAi()]el T e =D/ ginfw,, (t — 7)]. (5.154)

W

0
Hence, (E*(t)E(t)) is given by

t t
1
(E*(E(1) = — / di /dAz 2WD(A) — hp) e/ g(R1422)/QTpn)
w,
" 0 0
X sin[wy, (t — Ap)]sin[wy, (t — X2)]
w
— h (5.155)

w2’
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where (5.138) was used.
With the help of (5.155), a steady-state spontaneous emission energy W is
expressed as

VW
W, = eV (E*(E(®0) = —2
m
(5.156)
Vin = / le,(r)>dV,
where ¢ is the dielectric constant of a material and V,, is the mode volume.

From (5.152) and (5.156), W is obtained as

fiw,> E
W= fm Zev (5.157)

eV

(vi) Intensity Fluctuation Spectrum (AM Noise)

To obtain the intensity fluctuation spectrum, we first clarify a relationship between
the amplitude fluctuation 6(¢) and the intensity fluctuation.
The light emission rate y from the optical cavity through the mirrors is given by

(5.158)

where c is the speed of light in a vacuum, 7, is the refractive index of a material, L
is the cavity length, and R is the power reflectivity of a facet where both facets are
assumed to have common reflectivity.
Let the electric field of the laser light be E,,; then the light output P is expressed
as
P =¢E,’Vmy. (5.159)

From (5.126) and (5.159), an averaged light output Py and the fluctuation in the
light output AP = P — Py are written as

Py = A Vmy, AP =28A08Vimy. (5.160)

From (5.150), (5.157), (5.158), and (5.160), the spectral density function W p (£2)
of the light output fluctuation AP is obtained as
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o0
1 .
Wap(Q) = — /(AP(t +T)AP(1))e 9T dr
T
—0Q
fiwme A> VinEcyy?
=42 A2 V22 Ws(Q) = —2= ¢

hwpEcyPoy — homcEcy PyIn(1/R)

= 5.161
T(Q2 + w?) 7(Q2 + w1 H)n, L ( )

(vii) Frequency Fluctuation Spectrum (FM Noise)

From (5.151), (5.157), (5.158), and (5.160), the spectral density function W, (£2)
of the angular frequency fluctuation Aw (?) is given by

h E 2. .2
Woaw () = wmEcy ( atwi )

dreVoAl \ Pt w2
_ honcEan(/R) (e oo
47 Pyn. L Q + w)?

(viii) Field Spectrum

The field spectrum is most frequently used as the laser light spectrum. Contribution of
the amplitude fluctuation to the correlation function of the electric field is negligibly
small, and the correlation function (E (¢ + t) E(¢)) is given by

1
(E(t + T)E(1)) = I ([E(t+7)+ E*(t +DIE®) + E*(1)])

A02 —iwnT 1A
= e [e7'“mT(e'2?) +c.c.], (5.163)

Ap=¢p(t+71)— ().

The phase fluctuation A¢, which is important to determine the correlation function
(E(t 4+ 1) E(1)), is related to many independent spontaneous emission processes. As
aresult, the distribution of A¢ is given by the Gaussian distribution function g(A¢),

which is defined as
1 __(4¢)?
g(AP) = ————=¢ A7, (5.164)
27 ((Ap)?)

Therefore, we obtain
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(e149) = / g(A9) e'4 d(Ag) = e (407, (5.165)

—00

Because (A¢)2 on the right-hand side of (5.165) is independent of a time 7, we obtain

((Ap)%) = (1 +a?)zl, (5.166)

4w, Ap?

where we have assumed #; = t, = t in (5.143). Substituting (5.165) and (5.166)
into (5.163) results in

(E(t—l—t)E(t))—A—Ozex [—L(l—i-az)hl]cos(w 7) (5.167)
IR Swm2 Ao> " '

With the help of Wiener-Khintchine theorem, the spectral density function W (w)
of the electric field is given by

o0
1 .
Wi (w) = — / (E¢+1)E(@))e'“Tdr
—00
Ap? A
~ 20 @0 , (5.168)
4 (w0 — wp)? + (Awp/2)?
hwpcEqy In(1/R) )
Awy = 1 . 5.169
o APon L (I+a) ( )

From (5.168), the field spectrum is Lorentzian, and the FWHM of the field spectrum
Awq in (5.169), which is called modified Schawlow-Townes linewidth formula, gives
the spectral linewidth for semiconductor lasers. In solid-state or gas lasers, the term

a? can be neglected because a? « 1. In contrast, in semiconductor lasers, the term

a? is needed because @ > 1. It should be noted that the fluctuation in the carrier

concentration was neglected in the derivation of (5.168) and (5.169).
5.13.1.3 Spectral Linewidth Enhancement Factor o

The spectral linewidth enhancement factor « is an important parameter that differ-
entiates semiconductor lasers from other lasers. As shown in (5.146), « is given

by
X, (9X;\ !
a=— (=) . (5.170)
on on

Here, let us express « using the refractive index and the optical gain. Using the
complex refractive index n = n; — ik, the complex dielectric constant £ is written
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as
§ = goit® = sol(ny> — k2) —i2npk] = 0(Xy — i Xi), (5.171)

where
X, =n? — k2, Xi = 2n. (5.172)

In the vicinity of the bandgap in semiconductors n; 3> « is satisfied, and we obtain

0Xr on; oK on;
=2n — — 2k — =~ 2n; , (5.173)
an on on an
0X; 0K ony oK
— =2n; — + 2k — =~ 2ny —. 5.174
on i on +K an i on ( )
Substituting (5.173) and (5.174) into (5.170) leads to
on; [k -1
a=—|— . (5.175)
on \on

Using the extinction coefficient « in (5.171), we can express the optical power gain

coefficient g as

2
g=— " (5.176)
Cc

Also, g is related to G (n) in the rate equations as

Gn) = < g (5.177)

Ny
Using (5.176) and (5.177), we have

oK n 0G

— == . (5.178)
on 2w, on
Substituting (5.178) into (5.175) results in
2w Iy (3G
o= 2Pm T (O (5.179)
ne on \ on

When the optical gain increases with carrier injection (dG/dn > 0) and
Joule heating of the active layer is negligibly small, the refractive index decreases
(0ny/0n < 0) due to the free carrier plasma effect. Hence, « defined in (5.179) is
positive, and the measured values are between 1 and 7. From (5.179), it is found
that we should increase dG/dn to reduce the value of «, which is achieved in the
quantum well LDs explained in Chap. 7.
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5.13.1.4 Suppression of Quantum Noises
The quantum noises derived earlier are summarized as

AM Noise (Intensity Fluctuation Spectrum)

wmcEcy PoIn(1/R)

Wap(Q) = ,
ar(d) (92 + w12, L

(5.180)

FM Noise (Frequency Fluctuation Spectrum)

(5.181)

WAw(Q)zha)mcEcvln(l/R) (1+ o’w? )

47 Pyn L Q% + w2
Spectral Linewidth (of a Field Spectrum)

hwmcEey In(1/R) 5
Awpy = 1 . 5.182
o 2Pon.L (I+a) ( )

From (5.180)—(5.182), to suppress all the quantum noises, we should reduce the
mirrorloss (1/L) In(1/R), for which long cavity length L and large power reflectivity
R are needed. However, the long cavities of the external cavity lasers are less stable
than the cavities of ordinary semiconductor lasers. With a decrease in the spectral
linewidth enhancement factor o, which is achieved in the quantum well LDs, the FM
noise and spectral linewidth are simultaneously reduced. To suppress the quantum
noises, it is also important to stabilize driving circuits and environmental temperature.

5.13.2 Relative Intensity Noise (RIN)

When semiconductor lasers show two-mode operations, the rate equations on the
photon densities S; and S, and the carrier concentration n are written as

ds; n

e (ar — B1S1 — 01282) S1 + ,Bsplt_ + Fi(1), (5.183)
n

ds; n

Pl (062—,3252—92151)Sz+/3sp21—+F2(t), (5.184)
n

dn

1
—=— -G — B1S1 — 0125218
TR [Gi1(n) — B1S1 — 01252184

—[Ga(n) — B2Sr — 021511 52 — Ti +F (). (5.185)

n
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Here, o; = G;(n) — 1/1pyp; is the net amplification rate, G; (n) the amplification rate,
Tphi the photon lifetime, B; the self-saturation coefficient, 6;; the cross-saturation
coefficient, Bsp; the spontaneous emission coupling factor (i, j = 1, 2), 7, the carrier
lifetime, / the injection current, e the elementary charge, and V, the volume of the
active layer. Fluctuations are expressed by the Langevin noise sources Fi, F», and
F,.

The amplification rate G; (n) is given by

0G;

Gi(n) = [—] (n — noj), (5.186)
N=nthj

on

where ng,; is the threshold carrier concentration and n; is the transparent carrier
concentration.

In a steady state with weak coupling (C < 1), there are free-running conditions
where two modes exist simultaneously and a mode-inhibition condition where only
one mode exists. In neutral and strong couplings, there exists only a mode-inhibition
condition, where an oscillation mode suppresses the other mode.

As described earlier, stable simultaneous two-mode operations are obtained only
in the weak coupling. In the following calculation:

2
Bi=Ppr=p, 6p =0y = 5,3 (5.187)

is used as an example. Other typical physical parameters in the semiconductor lasers
are as follows: [0G; /dn]ln=py, = 1070 cm?/s, no; = 6.0 x 107 cm?, Bypi = 1072,
7, = 10, and Tphi = 10712 5. It is supposed that the injection current I is kept
constant but the carrier concentration n fluctuates.

5.13.3 RIN with No Carrier Fluctuations

We express the photon densities S; and S5 as
S1 =810+ 6851(), S = S+ 385(), (5.188)

where S19 and Syg are the average photon densities of mode 1 and mode 2in a steady
state, respectively; and 651 and §S> are the fluctuations of mode 1 and mode 2,
respectively.

When the Fourier transform of §S; (1) is wrltten as 8S; (w), the self-correlation
functions (851 (a))851 (w’)) and (SSz(w)SSz (')} are given by

(881 ()88 (@) = Ss5,(w) - 278(w — &), (5.189)
(82 ()88," () = Ss5,(w) - 278 (e — ). (5.190)
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Using (5.189) and (5.190), we define the relative intensity noises (RINs) per unit
bandwidth as

28
RIN| = Lg‘“) (5.191)
S10
28,
RIN, = Lg“’) (5.192)
S20

In the following, the RIN per unit bandwidth is expressed as the RIN for simplicity.
On the derivation of the RIN, see Appendix G.

Figure 5.67 shows the RIN for single-mode operations as a function of the fre-
quency with the light output P as a parameter for three different values of the
self-saturation coefficient 8. Here, the carrier fluctuations are neglected, that is,
dn(t) = én(w) = 0. With an increase in 8, the RINs in a frequency range less
than 10% Hz are drastically reduced. Also, with an increase in P, a frequency region
with a flat RIN is expanded, because the self-saturation given by —fS P cancels out a
fluctuation in P.

Figure 5.68 shows the RINs for two-mode operations as a function of the frequency
for three values of the light output P; of a main mode when the carrier fluctuations are
neglected. A parameter is the light extinction ratio P>/ P; where P; is the light output
of a submode. With an increase in Pp, the RINs decrease similarly to single-mode
operations. According to P,/ Py, the RINs show complicated behaviors, because the
cross saturation by P, also affects a fluctuation in P;. In a high frequency range over
10'° Hz, however, all lines overlap each other in contrast to Fig. 5.67.

Comparing Fig.5.67c with Fig.5.68 where the self-saturation coefficient S is
common, it can be said that single-mode operations have lower RINs than two-mode
operations.

It should be noted that a peak in the RIN, which was already observed experi-
mentally, does not exist when the carrier fluctuations are neglected. The effect of the
carrier fluctuations on the RIN will be shown in the next section.

5.13.4 RIN with Carrier Fluctuations

Figure 5.69 shows the RINs for single-mode operations as a function of the frequency
with the light output P as a parameter for three values of 8 when the carrier fluctua-
tions are included. It is found that the RIN has a peak, which has been experimentally
observed, as opposed to Fig.5.67. Thus, the carrier fluctuations are essential for a
peak of the RIN. This resonance peak becomes dull when g increases. Therefore,
by measuring resonance bandwidths of the RINs, we can determine a value of the
self-saturation coefficient . Comparing Fig.5.69 with Fig.5.67, it is also revealed
that the RINs are reduced by the carrier fluctuations, and almost-constant RINs are
obtained below the resonance frequency.
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A resonance frequency f; in the RIN for single-mode operations is given by

fr

T om

1 G
on

3G 1
204 ﬂslo([—l} S10 + —). (5.193)
o ,_p, T,

n=nw Tphl

When the light output is low enough or the self-saturation is negligibly small,

(5.193) reduces to
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Fig. 5.68 RIN per unit
bandwidth for two-mode
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carrier fluctuations are
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- 9
on 1,—p, Tphl

which is the same as the resonance frequency of single-mode semiconductor lasers.

Figure 5.70 shows the RIN's for two-mode operations as a function of the frequency
for three values of the light output P; of a main mode when the carrier fluctuations
are considered. A parameter is the light extinction ratio P>/ P, where P, is the light
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output of a submode. It is shown that a peak in the RIN is fairly vague in two-mode
operations, compared with in single-mode operations. With an increase in Pp, the
RINs decrease and show complicated behaviors according to P,/ P; due to cross

saturation.

Comparing Fig.5.69¢ with Fig.5.70, where the self-saturation coefficient g is
common, it is concluded that single-mode operations are superior to simultaneous
two-mode operations from the viewpoint of the RINs.
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Fig. 5.70 RIN per unit
bandwidth for two-mode
operations when the
carrier fluctuations are
included: a P; = 0.1 mW,
b P = 1mW, and ¢

P = 10mW
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5.13.5 Noises on Longitudinal Modes

5.13.5.1 Mode Partition Noise

1010 1011

0% 10’
Frequency (Hz)

The mode partition noise is observed when a longitudinal mode is selected during
multimode operation. This noise is large in low frequencies, as explained in the RINs
for two-mode operations. In multimode LDs, such as Fabry-Perot LDs under pulsed
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operations or the gain guiding LDs, a noise for a total light intensity is comparable
to the noise in single-mode LDs. However, a noise for each longitudinal mode in the
multimode LDs is much larger than the noise in the single-mode LDs. As a result,
the mode partition noise causes a serious problem in mode selective systems such as
the optical fiber communication systems.

The cause of the mode partition noise is that the optical gain is randomly delivered
to each mode during multimode operation. Therefore, to prevent the mode partition
noise, we need single-mode LDs.

5.13.5.2 Mode Hopping Noise

The mode hopping noise is generated when a longitudinal mode in the single-mode
LDs jumps to other modes. This mode hopping is closely related to driving conditions
such as temperature and the injection current. At the time of the mode hopping,
random oscillations between multiple modes are repeated and the noise increases
due to a difference in light intensities between the relevant modes. When there are
two competing modes, the noise is large in a low frequency range below 50 MHz;
when there are three or more competing modes, the noise is large up to higher
frequencies. Note that the mode partition noise is also large during mode hopping.

For analog systems, such as video discs, the RIN has to be lower than —140 dB/Hz,
and for digital systems, such as compact discs (CD-ROMs), the RIN should be lower
than —120 dB/Hz.

The causes of the mode hopping noise are fluctuations of the spontaneous emission
and a propensity for the optical gain to concentrate on the oscillation mode. To avoid
the mode hopping noise, two opposite ways, such as single-mode operations and
multimode operations are used.

To achieve highly stable single-mode operations, bistable LDs or dynamic single-
mode LDs are adopted. Bistable LDs containing saturable absorbers have hysteresis
in I-L curves, which suppresses the mode competition. However, it is difficult for
them to keep stable single-mode operations with large extinction ratio during mod-
ulation. Hence, the bistable LDs are not categorized in the dynamic single-mode
LDs.

For systems without mode selectivity, such as video and compact disks, multimode
operations are also used to reduce mode hopping noise. Multimode operations have
a higher noise level than single-mode operations, but the noise level is stable with
changes in temperature or the injection current. Therefore, the maximum noise level is
lower than the mode hopping noise. To obtain multimode operations, high frequency
modulations and self-pulsations are used. In high frequency modulation, electric
current pulses with a frequency over 600 MHz are injected into Fabry-Perot LDs and
the minimum current is set below the threshold current. The self-pulsations, which
are the pulsed operations under DC bias, are obtained in the Fabry-Perot LDs with
saturable absorbers or combined structures of the index and gain guidings. Due to the
self-pulsations, multimode operations with low coherence take place, which results
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in stable operations against the optical feedback noise. As a result, they are widely
used as light sources for video disks and compact disks.

As described earlier, it is interesting that two contradictory methods, such as
single-mode operation and multimode operation are used to suppress the mode hop-
ping noise. In optical fiber communication systems, we need dynamic single-mode
LDs, because the optical fibers have mode selectivity due to dispersions. In contrast,
mode selectivity does not exist in video and compact disks. In these applications,
we have to set up optical systems in a small volume, and we need to reduce optical
feedback noise without using optical isolators. Therefore, multimode operations are
suitable for video and compact disks.

5.13.6 Optical Feedback Noise

Optical feedback noise [18] is generated when a laser light emitted from a semicon-
ductor laser is fed back to the semiconductor laser itself. A facet of semiconductor
lasers forms external cavities with reflective external objects, such as optical compo-
nents, optical fibers, and optical disks. These external cavities and the internal cavity
of the semiconductor laser compose coupled cavities, which induce optical feedback
noise.

The optical feedback noise is noticeable even when the relative feedback light
intensity is of the order of 107%. Due to optical feedback noise, the light output
characteristics of the semiconductor laser change intricately, according to the distance
between reflective external objects and the semiconductor laser, the feedback light
intensity, and driving conditions. In static or time-averaged characteristics, the light
intensity, the number of lasing modes, and the light output spectra are modified. In
dynamic characteristics, a noise level and the shape of the light pulse are altered.

5.13.6.1 Fundamental Equations

We analyze the effect of the feedback lights on the characteristics of semiconductor
lasers. Figure 5.71 shows (a) the coupled cavity and (b) its equivalent model. In the
equivalent model, the effect of the external cavity is expressed by the equivalent
amplitude reflectivity zt.

Fig. 5.71 a Coupled cavity (a) (b)

and b its equivalent model
! R, R R R ™k

D Reflective
—_— DE end LD

S N —

Internal cavity External
(LD) cavity
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First, we calculate 7;r. We assume that the power reflectivities for the facets of
the semiconductor laser are R and R, and the power reflectivity for the external
reflector is R3. Let an angular frequency of a laser light be 2 and the roundtrip time
in the external cavity be 7; then the electric field of the reflected light E;e'*¥ is
expressed as

Ere™ = £ [ VR, + (1= Ro)VRye ™

+ (1= R)VRaRy e 2% | (5.195)
where E; e ¥ is the electric field of the incident light.

The third- and higher order terms in [- - - ] of (5.195) correspond to multireflections
in the external cavity. Usually, the power reflectivity of the external reflector R3 is less
than several percent. Therefore, we neglect multireflections in the external cavity.
As a result, 7qf is obtained as

E .
Teff = Er =\/Rz(1+ae_lm),
l

112 .

For Ry =32 %, R3 = 1%, we have a = 0.12.

Secondly, we consider the decay rate for the electric field. Let the power decay
rate in the semiconductor laser itself be yp; then the decay rate for the electric field
Y0/2 is given by

1 1 ¢

1 1
= —a; + —1 , 5.197
2)’0 2 ny (al+2L anRz) ( )

where c is the speed of light in a vacuum, ny is the effective refractive index of the
semiconductor laser in a steady state, ¢; is the internal loss in the semiconductor
laser, and L is the length of the internal cavity.

Using (5.197), we can write the decay rate for the coupled cavity y as

c n 1 ! 1
[— a‘ E— n S
nyQ ) Ri7es?

Yo — ke 19T (5.198)

c c R3
K = a= (1—Ry),[—.
2n.L 2noL Ry

Here, « is the coupling rate of a feedback light to the semiconductor laser, and for
Ry =32%, R3 = 1%, nyy = 3.5, and L = 300 um, we have x = 1.7 x 1010571,
This value is between the decay rate for the carrier concentration 1/1, ~ 10%s™!

1 J—
2V =

N = N =
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and that for the photon density 1/7py ~ 10'2 5!, Using the decay rate y, we can
express an equation for the electric field E as

%Eem’ = [in(n)+%[G(n)—y]]EeiQf, (5.199)

where wy (n) is an angular frequency for the Nth-order resonance mode when the
carrier concentration is n. Substituting (5.198) into (5.199) results in

d 1 .
GEO= [ iloy () — Q]+ 5 [G() — o) ] E(t)+KkE(t —1)e 7, (5.200)

where the second term on the right-hand side shows a contribution of the feedback
light. Note that this equation includes the phase of the laser light. Because the optical
feedback noise is highly dependent on the phase of the feedback light, we use (5.200)
instead of (5.21) to analyze the optical feedback noise.

A rate equation for the carrier concentration 7 is given by

4 GwEp-" (5.201)
i ed . T, '

5.13.6.2 Effect of the Feedback Light on Static Characteristics

We assume that the electric field E takes a steady-state value. From a real part in
(5.200), the amplification rate at the threshold Gy, is given by

G = G(nw) = 10 — 2k cos(27). (5.202)

From an imaginary part in (5.200), the oscillation angular frequency £2 at the thresh-
old is obtained as
oy (ng) = Q + k sin(Q7). (5.203)

Assuming that the steady-state values wy (n¢0), €20, and k¢ satisfy (5.202) and
(5.203), we obtain
G(neo) = yo — 2k, (5.204)

where we have supposed ng, = nco and wy (neo) = €20. Because of the carrier
lifetime 7, ~ 10~ s and the photon lifetime tp, ~ 107 !2 s, the carrier concentration
n does not always take a steady-state value, even though the electric field E is in a
steady state. Hence, if we place

Nih = neo + An, (5.205)

then we can write Gy, as
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G

G = G(neo) + a—An. (5.206)
n

Substituting (5.206) into (5.202), and using (5.204) result in
G\
An =2k T [1 — cos(L27)], (5.207)
n

where we have assumed k = k(o because 1/t, ~ 109s~! and « ~ 101051,
The resonance angular frequency at the threshold wy (ng,) is expressed as

wp (nco) %

N (nth) = on (o) — An. (5.208)
nwo on
Inserting (5.179) and (5.207) into (5.208) leads to
oy (ng) = oy (neg) + arx[1 — cos(21)]. (5.209)

From (5.209), it is found that the spectral linewidth enhancement factor « plays
an important role in the optical feedback noise, in addition to the spectral linewidth
of the semiconductor lasers. Substituting (5.209) into (5.203), we obtain

wy(nep) = QL+ ksin(27) — ak[1 — cos(QT)]. (5.210)

These results are summarized as follows: When the electric field E takes a steady-
state value, the amplification rate at the threshold Gy, is given by

G = G(nm) = yo — 2k cos(R1), (5.211)
and the oscillation angular frequency €2 is obtained as
oy (neo) = 2 + «sin(Q7) — ax[1 — cos(R21)]. (5.212)

The optical feedback noise in semiconductor lasers is larger than that in other
lasers because semiconductor lasers have a larger «, a lower R;, and a shorter L
than other lasers, which leads to a larger «. For example, a gas laser with o < 1,
Ry = 98%, and L ~ 1m has k ~ 105 s~ L, while a semiconductor laser with
o =1-7, R, =32 %, and L ~ 300 um has ¥ ~ 1010s~1.

The terms including trigonometric functions in (5.211) and (5.212) indicate inter-
ference between the light in the semiconductor laser and the feedback light. Due to
this interference, hysteresis accompanies the changes in both the oscillation angular
frequency and the light intensity.

Figure 5.72 shows the resonance angular frequency wy (n¢o) as a function of the
oscillation angular frequency €2 for k7 = | and ¢ = 3. Here, the arrows indicate
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Fig. 5.72 Resonance angular
frequency wy (ngp) versus
oscillation angular frequency
Q

Fig.5.73 Current versus light 25
output (/-L) characteristics

Light Output (arb. units)

82 84 86 88
Injection Current (mA)

the points where 2 jumps due to the nonlinear relationship between the interference
condition and the oscillation angular frequency.

Figure 5.73 shows calculated /—L curves in DC operations with the spectral
linewidth enhancement factor « as a parameter. Here, Joule heating in the active
layer is also considered. Hysteresis in the light intensity, which is shown in Fig. 5.73,
is experimentally observed.
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5.13.6.3 Effect of Feedback Light on Dynamic Characteristics

Using (5.200) and (5.201), we can analyze the effect of the feedback light on the
dynamic characteristics of semiconductor lasers. According to the phase of the
feedback light, the dynamic characteristics show complicated behaviors, such as
chaos and enhancement or suppression of the relaxation oscillation.

5.13.6.4 Enhancement of Noise Due to Feedback Light

The most serious problem caused by feedback light is enhancement of noises. Due
to the feedback light, the quantum noises increase in a certain frequency region.
Moreover, laser oscillations become unstable, and the noise increases in a low fre-
quency range, which is less than several hundred megahertz. The increase in this low
frequency noise is caused by the random mode hopping between the longitudinal
modes in the internal cavity and those in the external cavity.

5.13.6.5 Reducing Optical Feedback Noise

To stabilize a longitudinal mode in the internal cavity, we need single-mode LDs such
as DFB-LDs and bistable LDs. To suppress the interference between the feedback
light and the internal light, we should reduce the coherence of laser light by high
frequency modulation or self-pulsation. To decrease the feedback light intensity, we
require a low coupling rate «, which is achieved by large facet reflectivity and a long
cavity as shown in (5.198). However, a large reflectivity leads to a low light output,
and a long cavity results in a large threshold current. Therefore, the optical isolators
are used to decrease the feedback light intensity in optical fiber communication
systems, but the cost and size of the optical systems increase.

5.14 Degradations and Lifetime

Degradation of semiconductor lasers means that the threshold currents increase and
the external quantum efficiencies decrease, as shown in Fig.5.74. If the degradation
continues, CW laser operations stop.

The causes of the degradation, which depend on the properties of the materials,
are propagation of the crystal defects, changes in the surface condition, destruction
of facets, generation of the point defects, degradation of the ohmic contacts or the
contact layers with the heat sinks, and so on. The speed of degradation is enhanced
with increases in temperature, light output, and injection current.

In automatic power control (APC), the lifetime of semiconductor lasers is usually
defined as a time when the operating current increases up to twice the initial value.
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In InGaAsP/InP LDs used in trunk-line optical fiber communication systems, the
expected lifetime is more than 27 years.

5.14.1 Classification of Degradations

5.14.1.1 Catastrophic Optical Damage

When the temperature at a facet of a semiconductor laser increases up to a melting
point, the light output from the melted facet rapidly falls, which is referred to as
the catastrophic optical damage (COD). The destructed facet never returns to its
original condition. Figure 5.75 schematically shows the catastrophic optical damage.
In AlIGaAs/GaAs LDs, the critical light output density of the COD in CW operations
is of the order of 10® W/cm?. If the active layer is 0.2 wm thick and 5 pm wide, the
critical light output of the COD is only 10 mW.

The process of the catastrophic optical damage is as follows: Crystal surfaces
have a lot of surface energy levels, which lead to nonradiative recombinations. As
a result, the carrier concentration in the vicinity of the facet is too low to generate
optical gain, and this region absorbs laser light. Due to absorption of the laser light,
the temperature at the facet increases and the bandgap shrinks. Hence, the absorption
coefficient at the facet further increases, which accelerates absorption of the laser
light and Joule heating of the facet. Such positive feedback increases the temperature
at the facet up to the melting point (about 1,500 °C in AlGaAs), and the facet melts.

To suppress the COD, the vicinity of the facet should be transparent for the laser
light. Figure 5.76 shows window structures, which use a property that a bandgap in
n-AlGaAs is larger than in p-AlGaAs. In CW operation, the critical light outputs of
window structure LDs are several times higher than those of LDs without windows.
In pulsed operations, the COD level is improved by a factor of ten.

In materials with low nonradiative recombination rate at the surface or high ther-
mal conductivity, the COD levels are high. For example, in InGaAsP/InP LDs, the
COD is not observed even in large light output over 100 mW.

Degradation

—~

Light Output

Injection Current

Fig. 5.74 Degradation of semiconductor lasers
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Light Output

Injection Current

Fig. 5.75 Catastrophic optical damage

5.14.1.2 Dark Line Defects

The dislocations cause dark line defects, which are named after the dark lines
observed in light emission patterns. The dark line defects propagate by growth of the
dislocations with repetitive emissions and absorptions of the point defects or exten-
sion of the dislocations due to movement of the slipped dislocations. Once the dark
lines are generated, the nonradiative recombinations and the absorptions increase.

Among the dislocations, which are the sources of the dark lines, there exist the
(1) penetration dislocations, that is, the dislocations in a substrate extended to the
epitaxial layers; (2) dislocations generated at the interfaces of the heterojunctions;
(3) dislocations based on some deposits, which were formed during epitaxial growth;
(4) misfit dislocations generated above critical thickness due to lattice mismatching;
and (5) dislocations induced by external stresses. To suppress these dislocations,
we need to use high-quality substrates with few dislocations and optimize epitaxial
growth conditions. It should be noted that in InGaAsP/InP LDs, the dislocations
grow slowly and the dark lines do not appear frequently.

5.14.1.3 Facet Degradation

In AlGaAs/GaAs LDs, even when they are placed in Np-ambient or air-proof pack-
ages, the facets are easily oxidized by a fraction of remaining oxygen. In contrast,
the facets of InGaAsP/InP LDs are not readily oxidized. Figure 5.77 shows oxidiza-
tion of the facets. If the facet is oxidized as shown in Fig.5.77a, the laser light is

Window structures

Fig. 5.76 Window-structure LD
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scattered, which leads to a large radiation angle. Also, the oxidized region and its
neighbor have many point defects and impurities, such as oxygen, which become
nonradiative recombination centers. Hence, the threshold current increases, and the
external quantum efficiency decreases. To avoid oxidization of the facets, dielectric
thin films, such as SiO,, Al,O3, and SizNy, are often coated on the facet, as illus-
trated in Fig.5.77b. It should be noted that these dielectric thin films cannot reduce
the dark lines, but the window structures can suppress oxidization of the facets.

Fig. 5.77 Oxidat.ion of a () (b) Dielectric film
facet: a Degradation and b .
protection Active layer J Oxide Active layer

5.14.2 Lifetime

There are two definitions of the lifetime according to the driving conditions. In
automatic power control (APC), the lifetime is a time in which a predetermined
light output is not obtained. Considering the degradations in the longitudinal modes,
transverse modes, and relaxation oscillation, the lifetime is often defined as a time
when the operating current increases up to double the initial value. In automatic
current control (ACC), the lifetime is frequently defined as a time when the light
output decreases down to half of the initial value.

In manufacturing processes of semiconductor lasers, intentionally accelerating
degradation tests called the screening tests are widely used. It is experimentally
confirmed that after the screening tests low degradation LDs have long lifetimes.
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Chapter 6
Dynamic Single-Mode LDs

6.1 Introduction

In order to transmit signals, we modulate a laser light by direct modulation or external
modulation. Note that direct modulation is superior to external modulation in terms
of cost.

Dynamic single-mode LDs are semiconductor lasers, which show single
longitudinal mode operations in direct modulation. Because the optical fibers have
dispersions, dynamic single-mode LDs are key devices for long-haul, large-capacity
optical fiber communication systems. Therefore, the DFB-LDs, the DBR-LDs, the
surface emitting LDs, and the cleaved coupled cavity (C) LDs have been developed.
Because the optical gain spectra of semiconductor lasers have a linewidth on the order
of 10 nm, the optical cavities play important roles to select only one resonance mode
for dynamic single-mode operations. It should be noted that the bistable LDs with
saturable absorbers are not categorized into dynamic single-mode LDs, because they
show single-mode operations only in a steady state and lead to multimode operation
in direct modulation.

6.2 DFB-LDs and DBR-LDs

Distributed feedback (DFB) LDs and distributed Bragg reflector (DBR) LDs have
diffraction gratings in the optical waveguides to achieve high-mode selectivity. As
shown in Fig. 6.1, the DFB-LDs have the active layers in the corrugated regions, and
the DBR-LDs do not have the active layers in the corrugated regions.

The DFB-LDs and DBR-LDs periodically modulate their complex refractive
indexes to achieve optical feedback. The reflection points of the Fabry-Perot LDs
are only the facets, while those of the DFB-LDs and the DBR-LDs are distributed
all over the corrugated regions.

© Springer Japan 2015 187
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6.2.1 DFB-LDs

6.2.1.1 Index-Coupled DFB-LDs

In an index-coupled grating, only a real part of the complex refractive index is
periodically modulated and an imaginary part is uniform. The real part n.(z) is
expressed as

n(2) = ny + 11 cos(2Goz + £2). (6.1)

Here, 7 is a position, §2 is the grating phase at z = 0, and [y is written as

Bo = —, (6.2)

T
A
where A is the grating pitch.

Figure 6.2 shows the index-coupled grating. If we form corrugations on the
interfaces of two layers with refractive indexes na and np(# na), we can peri-
odically modulate the refractive index. Due to this periodical modulation of the
refractive index, a forward running wave and a backward running wave are coupled
to each other, which is indicated by the grating coupling coefficient x given by

TNyl

p= (6.3)

Here, we put a; = 0 in (4.34). The grating coupling coefficient x is an impor-
tant parameter, which represents resonance characteristics of the DFB-LDs and the
DBR-LDs.

(i) Uniform Grating
We consider the oscillation condition of the DFB-LD with a uniform grating, in
which both the depth and the pitch are constant all over the corrugated region. As
shown in Fig. 6.3, we assume that both facets are antireflection (AR) coated, and
reflections at both facets are negligibly low.

When the transmissivity in (4.48) is infinity, the DFB-LD starts to lase. As a result,
from (4.45) and (4.47), the threshold condition of the DFB-LD with a uniform grating
is obtained as

ap—1id

cosh(vL) — sinh(vL) =0, (6.4)

Fig. 6.1 a DFB-LD and b (a) (b)
DBR-LD Active layer Active layer

Laser beam Laser beam Laser beam % Laser beam
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A
T m
LN
Z
Fig. 6.2 Index-coupled grating
Active layer
Laser beam Laser beam

Antireflection films

Fig. 6.3 DFB-LD with a uniform grating

where «y is the amplitude gain coefficient, L is the cavity length, and

7 = (ap —16)* + K7, (6.5)
3% — Bo*
2% B—Bo (6.6)

Here, [ is the propagation constant of a light.

Figure 6.4 shows transmission spectra of a uniform grating for four values of the
optical gain, where oy, is the threshold gain. As found in Fig. 6.4, the DFB-LD with
a uniform grating oscillates in two modes when the reflectivities of both facets are
negligibly low.

When the reflectivities of both facets are not negligible as in the cleaved facets,
the oscillation modes show complicated behaviors according to the grating phases
£2 at the facets. For a certain grating phase, single-mode operations are obtained.
However, the grating pitch is as short as about 0.2 pum, and it is almost impossible to
control the cleaved position of the gratings in manufacturing. Therefore, it is difficult
to obtain single-mode operations in the DFB-LDs with a uniform grating, and a yield
for single-mode operations is less than several percent.

To achieve stable single-mode operations with a high yield, the phase-shifted
DFB-LDs and the gain-coupled DFB-LDs have been developed.

(ii) Phase-Shifted Grating
AsshowninFig. 6.5, the corrugations of the phase-shifted grating are shifted, whereas
the corrugations of the uniform gratings continue as indicated by a broken line. Here,
the phase shift is expressed as — A2 according to the definition of the refractive index
in (6.1).

Let us consider an analytical model that consists of two regions and includes the
phase shift as a phase jump at the interface, as shown in Fig. 6.6. We express a transfer
matrix for region 1 with length of L as F1, and that for region 2 with length of L,
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as F;. Here, we assume that both the pitch and the depth of the corrugations are
constant except in the phase-shifted region, and the optical gain is uniform all over
the grating.

We suppose that both facet reflectivities are negligibly low. If we write the grating
phase £2 at the left edge of region 1 as 6, the grating phase 6, at the right edge of
region 1 is given by
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Fig. 6.7 Calculated 3
amplitude threshold gain oy L KL=2 0O -AR=0
as a function of L = § x L
for three phase-shift values

0y =01 +2P0L. (6.7)

Because of the phase shift A£2 at the interface of regions 1 and 2, the grating phase
03 at the left edge of region 2 is expressed as

03 =0+ A2 =01 +206pL1 + AS2. (6.8)

The threshold condition is given by Fj; = 0, where Fp; is a matrix element of
F = F| x F; and is written as

—1id —1id
|:cosh('yL1) _ 20 sinh(’yLl):| |:cosh('yL2) _ % sinh('yLz)]
K2 .
+ — sinh(yL)) sinh(yLy)e'*? = 0. (6.9)
Y

When the phase-shifted position is located at a center of the optical cavity (L; =
Ly = L/2), (6.9) reduces to

ap —

[cosh('yL) — d sinh('yL)i|

PRI . vL\1?
+ = e —1) |:smh (—)] =0. (6.10)
¥ 2

The first term in (6.10) is the same as the left-hand side in (6.4) for the DFB-LD
with a uniform grating. The second term in (6.10) represents an effect of the phase
shift. Figure 6.7 shows calculated results of the amplitude threshold gain oy, L as a
function of )L = § x L for three phase-shift values.

Laser oscillation starts at a mode with the lowest ag, L. If a difference in the
threshold gain of the oscillation mode and that of other modes is large enough,
highly stable single-mode operations are obtained. For the phase shift A2 = 0 as
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in the uniform grating, two modes have a common lowest threshold gain ay, L, as
indicated by open circles. Therefore, A§2 = 0 results in two-mode operations. For
the phase shift —A$2 = 7/2 shown by open triangles, there is only one mode whose
threshold gain is the lowest, and a single-mode operation is expected. For the phase
shift —A§2 = 7 represented by closed circles, there exists only one mode whose
threshold gain is the lowest at Bragg wavelength. Note that the difference in the
lowest threshold gain and the second-lowest one is largest for —Af2 = m, which
leads to the most stable single-mode operations.
From (4.41), Bragg wavelength Ag in a vacuum, which satisfies § = 0, is given
by
2n A

AB , 6.11)
m

where A is the grating pitch and m is a positive integer, which is called order of
diffraction.

When the phase shift —A$2 is 7 in the first-order gratings (m = 1), the corruga-
tions are shifted by A/2. From (6.11), we have

A AB A

Am A
2 dng 47

)\m = ,
nwo

(6.12)

where ), is a wavelength in a material. From (6.12), the phase shift of 7 corresponds
to a quarter of a wavelength in a material. Therefore, the phase-shifted grating with
—AS$2 = 7 is often called a \/4-shifted grating or a quarter-wavelength-shifted
grating.

Figure 6.8 shows transmission spectra of the \/4-shifted grating for four values
of the optical gain. As found in Fig. 6.8, the A/4-shifted DFB-LD oscillates at Bragg
wavelength located at the center of the stop band and shows highly stable single-mode
operations when the reflectivities at both facets are negligibly low.

According to the light intensity distribution along the cavity axis, the radiative
recombinations are altered and spatial distribution of the carrier concentration is
modified. This phenomenon is designated as the spatial hole burning, and the distri-
bution of the refractive index changes with that of the carrier concentration, which
may lead to a change in the phase shift. Therefore, a grating with a phase shift slightly
altered from 7 is used to achieve —A£2 = m at the operating condition, or the chirped
grating is adopted to reduce the spatial hole burning.

When there are lections at both facets, as in the cleaved facets, the oscillation
modes of the phase-shifted DFB-LDs show complicated behaviors according to the
grating phases at the facets, which is similar to the DFB-LD with a uniform grat-
ing. In addition, stability of single-mode operations is lower than that of the phase-
shifted DFB-LD without reflections at the facets. Therefore, to achieve highly stable
single-mode operations in the phase-shifted DFB-LD, we need antireflection-coated
facets or window structures to reduce reflections at the facets.

Due to the high stability of single-mode operations, the index-coupled DFB-LDs
are used in long-haul, large-capacity optical fiber communication systems such as


http://dx.doi.org/10.1007/978-4-431-55148-5_4

6.2 DFB-LDs and DBR-LDs 193

Fig. 6.8 Transmission T‘
spectrum for a \/4-shifted
grating
KL — 2 OCL = 07
(=omL)
x10 06
0.4

trunk-line optical fiber cable systems in Japan and submarine optical fiber cable
systems between Japan and the United States. Because the phase-shifted DFB-LD
has been developed after the DFB-LD with a uniform grating, both DFB-LDs have
been practically used. However, it is needless to say that stability and reproducibility
of single-mode operations in the phase-shifted DFB-LD are better than those in the
DFB-LD with a uniform grating.

In the following, the first mass-produced phase-shifted DFB-LDs [1] are briefly
explained. Figure 6.9 shows the principle of the fabrication method for the phase-
shifted grating. The dashed arrow represents the path of the intensity peak through
the air. At the interface between the air and the phase-shift layer, the laser beam is
refracted due to Snell’s law. As a result, the path of the intensity peak goes through
the phase-shift layer, as indicated by the solid arrow.
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Fig. 6.9 Principle of the Intensi ak path
fabrication method of a Lacar Bearr t.y pe Wave fronts

phase-shifted grating [1]
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The grating pitch A and the phase-shift —A$2 are given by

Aex
- 2sinfcos ¢’ (©13)
— AR = % |:tan¢—tan (sin(@—i—gb) —sin(9—<zﬁ))i|’ (6.14)
ny

where \¢x is the wavelength of the incident laser beam for the holographic litho-
graphy, 6 is the incident angle, ¢ is the angle of incline, ¢ is the thickness of the
phase-shift layer, and 7 is the refractive of the phase-shift layer.

Figure 6.10 draws the fabrication process of the phase-shifted gratings. Initially, a
novolak-type photoresist whose thickness is 130 nm, is coated onto an InP substrate
using a spin coater. After prebaking of the novolak-type photoresist, the buffer layer,
which is a base compound of a photoresist without light sensitivity, is coated onto
the novolak-type photoresist. Then, the phase-shift layer, which is a photoresist with
the refractive index of n, = 1.75 for the light with A\¢x = 325nm, is coated onto
the buffer layer. The phase-shift layer is exposed using a conventional Hg lamp. By
controlling the exposure time, the novolak-type photoresist is not exposed, because
the phase-shift layer absorbs the UV light emitted from the Hg lamp. After developing
the phase-shift layer, the novolak-type photoresist is exposed using a holographic
exposure whose light source is a He-Cad laser with Aex = 325 nm. The phase-shift
layer absorbs only 20 % of the power of the incident laser beam with \¢x = 325 nm,
the novolak-type photoresist is exposed regardless of the existence of the phase-shift
layer. The incident angle 6 is 44.5° and the angle of incline ¢ is 15.0°. From (6.13),
the grating pitch A is 240nm. From (6.14), the thickness of the phase-shift layer ¢
is 0.4 wm for the \/8-shifted grating with —A£2 = 7/2; and 0.8 wm for the \/4-
shifted grating with —A§2 = 7. After the holographic exposure, the phase-shift layer
and the buffer layer are removed, and then the novolak-type photoresist is developed.
When the InP substrate is patterned by wet etching, a phase-shifted grating is formed.
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Figure6.11 shows a scanning electron micrograph (SEM) of the phase-shifted
grating, which was fabricated for the first time by using the fabrication process
shown in Fig. 6.9. The grating pitch A is 240 nm and the depth is 150 nm. The shape
of the corrugation is triangular with (111)A crystal surfaces.

Figure 6.12 shows a schematic of the structure of a phase-shifted DFB-DC-PBH
laser diode (LD). The cavity length is 300 pwm and the phase-shift position is located at
the center of the cavity. Both facets are antireflection (AR) coated by using SiN, and
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the residual power reflectivity is estimated to be 1 %. In the data book of the photonic
semiconductor devices for 1993 in NEC Corporation [2], which was published in
1992, the phase-shifted DFB-LDs occupy about 20 % of the lineups.

In Fig.6.13, cw I-L characteristics and the light output spectra are shown for a
A/8-shifted DFB-LD. The slope efficiency is 0.20 mW/mA, and the maximum light
output is 42mW. The sub-mode suppression ratio (SMSR) is larger than 35dB. It
should be noted that \/8-shifted DFB-LDs are superior to A/4-shifted DFB-LDs
with regard to the stability of the single-mode operation. Since the phase-shift — A2
increases with an increase in the injection current due to the spatial hole burning
during laser operation, — A2 in the \/8-shifted DFB-LDs comes up to 7; —A£2 in
the \/4-shifted DFB-LDs goes away from 7. Therefore, single longitudinal mode
operations in the \/8-shifted DFB-LDs are more stable than those in the \/4-shifted
DFB-LDs.

Finally, we briefly explain the polarizations of the laser lights in the DFB-LDs.
Because the grating coupling coefficient xTg for the TE mode is larger than that
for the TM mode x1M, the threshold gain for the TE mode is lower than that for
the TM mode. Therefore, the DFB-LDs start to lase in the TE mode. However, a
difference in the threshold gains between the TE and TM modes is smaller than that
of the Fabry-Perot LDs if the reflectivities at both facets are negligibly low. Hence,
to stabilize the polarization of a laser light, quantum well-active layers are frequently
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Fig. 6.14 DBR-LDs: a a ) b )
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adopted to obtain polarization-dependent optical gains, which will be described in
Chap. 7.

6.2.1.2 Gain-Coupled DFB-LDs

In gain-coupled DFB-LDs [3], the optical gain or optical loss is periodically modu-
lated along the cavity axis. They are characterized by stable single-mode operations
even without the phase-shifted gratings and antireflection films coated on the facets.
Also, they are less sensitive to feedback lights than the index-coupled DFB-LDs.
However, there are still problems in fabrication methods and reliability of the devices.

When only the optical gain or loss is periodically modulated, the grating coupling
coefficient  is given by

K= i—, (6.15)

where o is a deviation from a steady-state amplitude gain coefficient cy. If both the
real and imaginary parts of the complex refractive index are periodically modulated
with the same phase, ~ is given by (4.34).

6.2.2 DBR-LDs

In DBR-LDs, the optical gain regions and corrugated regions are separated from each
other. The corrugated regions function as reflectors. As a result, a DBR-LD with a
DBR and cleaved facets and one with two DBRs have been developed, as shown in
Fig.6.14.

Figure 6.15 shows the reflectivities of the cleaved facet and the DBR. The reflec-
tivity Rg for the cleaved facet is considered to be almost independent of a light
wavelength, although Ry is slightly modified by the material dispersion. In contrast,
the reflectivity R for the DBR is high only within the stop band. Because the reso-
nance condition is not always satisfied at Bragg wavelengths, the DBR-LDs do not
always lase at Bragg wavelengths.
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Fig. 6.16 Vertical cavity surface emitting LD

Note that the DFB-LDs are superior to the DBR-LDs in both stability of single-
mode operations and light-output intensity.

As wavelength tunable LDs, DFB- or DBR-LDs with phase-control sections have
been demonstrated. If these LDs are biased just below the threshold, they function
as wavelength tunable resonant optical amplifiers (optical filters).

6.3 Surface Emitting LDs

6.3.1 Vertical Cavity Surface Emitting LDs

Figure 6.16 shows the schematic structure of a vertical cavity surface emitting LD
(VCSEL) [4], in which the active layers and the cladding layers are sandwiched by
the reflectors with multilayers.

A laser light propagates along a normal to the surface of the epitaxial layers.
Therefore, the length of the optical gain region is equal to the active layer thickness,
which is of the order of ten nanometers to several micrometers. In contrast, the length
of the optical gain region in conventional Fabry-Perot LDs or DFB-LDs is on the order
of 300 wm. As aresult, to achieve a low threshold in VCSELSs, we need high reflective
reflectors, for example, with the power reflectivity of 99.5 %. Such a high reflectivity
is achieved by multilayer reflectors, which consist of alternately stacked layers with
different refractive indexes. As explained in Chap. 4, the operating principles behind
the multilayer reflectors and the waveguide DBRs are common, and the multilayer
reflectors used in the VCSELSs are also called DBRs.

Note that the optical cavities of the VCSELSs are short enough to obtain dynamic
single-mode operations. For example, when the refractive index is 3.5 and the cavity
length is 4 m, the oscillation wavelength is 1 um and the free spectral range is 36 nm
from (4.15). This value is larger than the linewidth of the optical gain spectra such
as 10 nm. As a result, there exists only one longitudinal mode in the gain spectrum.

Compared with other dynamic single-mode LDs, the VCSELSs have the following
additional features:

1. It is possible to fabricate monolithic optical cavities, for which cleaving is not
needed.


http://dx.doi.org/10.1007/978-4-431-55148-5_4
http://dx.doi.org/10.1007/978-4-431-55148-5_4

6.3 Surface Emitting LDs 199

2. Itis easy to test devices on wafers before pelletizing.

3. It is easy to couple a laser light to optical components, because circular beams
with small radiation angles are obtained.

4. It is possible to integrate devices by stacking.

5. Because horizontal sizes can be less than several tens of micrometers,

(a) extremely low threshold currents are expected and
(b) the structures are suitable for high-density two-dimensional arrays.

Based on these features, the VCSELSs take a lot of attention as key devices for
parallel optical information processing and parallel lightwave transmissions. Also,
optical functional devices based on the VCSELs have been demonstrated.

6.3.2 Horizontal Cavity Surface Emitting LDs

In the horizontal cavity surface emitting LDs [5, 6], some structures are added to
conventional edge-emitting semiconductor lasers to emit laser lights along a normal
to the epitaxial layer planes. Figure 6.17a and b show the structures where a part of the
epitaxial layers is etched off to form reflection surfaces to emit laser lights. However,
fabrication methods to form low-damage reflectors have yet not been established.
Figure 6.17c has a second-order grating, and a first-order diffracted laser beam is
emitted upward. However, the beam divergence angle is wide, and the diffraction
efficiency of the second-order grating is low.

6.4 Coupled Cavity LDs

The coupled cavity LDs use optical feedback to achieve single-mode operations. As
shown in Fig. 6.18, the external cavity LD with a mirror and with a diffraction grating
and the cleaved coupled cavity (C) LD have been developed.

The external cavity LDs have long cavities, 10 cm or more, and their cavities are
sensitive to mechanical vibrations. Also, only a part of the optical cavity contributes
to modulation of laser lights, which leads to low modulation efficiency. The C3 LDs,
in which the Fabry-Perot LDs are placed in series, have solved all the problems in
the external cavity LDs. However, we need precise control of the injection currents

Fig. 6.17 Horizontal cavity
surface emitting LDs with a
an inclined etched facet, b an (@) 4 (b) 4 (© 4

inclined etched groove, and ¢ ] | :I%
a second-order grating ;l
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(a) (b) (c)

H 7/

Fig. 6.18 Coupled cavity LDs: a external cavity LD (mitror), b external cavity LD (grating), and
c cleaved coupled cavity LD

into the two constituent Fabry-Perot LDs to obtain stable single-mode operations,
and complicated driving electronic circuits are required.

Among dynamic single-mode LDs, only the DFB-LDs are widely used in practical
applications for the reasons described earlier. There are various approaches to solve
problems. However, we should keep in mind that practically used technologies work
for a reason.
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Chapter 7
Quantum Well LDs

7.1 Introduction

Quantum well (QW) LDs [1, 2] are semiconductor lasers whose active layers take
quantum well structures. A QW-LD with one potential well is called the single
quantum well (SQW) LD, and that with plural QWs is named the multiple quantum
well MQW) LD.

As explained in Chap. 1, the density of states of the QW is a step function of the
energy. Therefore, excellent characteristics, such as a low threshold current, high
differential quantum efficiency, high-speed modulation, low chirping, and narrow
spectral linewidth are simultaneously obtained in the QW-LDs.

7.2 Features of Quantum Well LDs

7.2.1 Configurations of Quantum Wells

Figure7.1 shows the configurations of various QWs at the band edge. Figure7.1a
illustrates the SQW, in which the optical confinement factor I, is reduced with a
decrease in the active layer thickness L., as shown in Fig.5.9. This reduction in
I, leads to a drastic increase in the threshold current density Ji, as illustrated in
Fig.5.10. Therefore, to obtain a larger I, than that of the SQW, structures (b)—(e)
have been developed.

Figure7.1b shows the MQW, in which the optical confinement factor I, is en-
larged by forming multiple QWs in the optical confinement region. However, due
to the energy barriers between the adjacent QWs, the carrier injection efficiency
decreases with an increase in the propagation distance of the carriers. Hence, it is
difficult to achieve uniform carrier distribution all over the QWs.

To improve the carrier injection efficiency and the uniformity of the carrier distri-
bution in the MQW, the modified MQW in Fig.7.1c has been developed. The energy
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barriers between the adjacent QWSs are lower than those in the cladding layers, which
results in a high carrier injection efficiency and uniform carrier distribution all over
the QWs.

The separate confinement heterostructure (SCH) exhibited in Fig.7.1d has been
demonstrated to increase the optical confinement factor I, in the SQW. In the ma-
terials conventionally used for semiconductor lasers, the refractive index increases
with a decrease in the bandgap energy. Using this property, the energy potential is
modified by two steps in the SCH structure. The outer potential confines a light to
the QW active layer by the refractive index distribution, while the inner potential
confines the carriers by the energy barriers. Because the potentials to confine the
light and the carriers are separate, this structure is called the SCH.

Figure7.1e illustrates the graded index SCH (GRIN-SCH) whose potential and
refractive index distributions of the outer region are parabolic. In the GRIN-SCH,
the optical confinement factor I is proportional to the active layer thickness L, with
asmall L,, while I, in the SQW is in proportion to L 22. Therefore, when the active
layer is thin, a relatively large I'; is obtained in the GRIN-SCH.

7.2.2 Characteristics of QW-LDs

7.2.2.1 Low Threshold Current

It is important to achieve a low threshold current /i in semiconductor lasers, because
alow Iy, leads to low power consumption. The density of states p(E) per unit energy
per unit area in the SQW is written as

0 *

p(E) =3 s H(E = ). (7.1)

n=1

where E is the energy of the carrier, m* is the effective mass of the carrier, % is the
Dirac’s constant, and H (x) is the Heaviside function or a step function given by

0 : x<0,

Hx) = I Y (7.2)

(a) (b) (c) (d) (e)
e 1 e T T T | S N

I, Juyuyup o Juuuuip _JIn o N

Fig. 7.1 Configurations of quantum wells: a SQW, b MQW, ¢ modified MQW, d SCH, and e
GRIN-SCH
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If the barrier height or barrier thickness is too large for each QW to be independent
of each other, the energy level of the nth subband ¢, is expressed as

(nh)?

=" 7.3
2m*L.> (7.3)

€n

When the barrier height or barrier thickness is large enough to separate each QW,
the density of states p(E) per unit energy per unit area in the MQW is obtained as

*

PE) =N s H(E ). (7.4)
n=1

where N is the number of QWs.

When the barrier height or barrier thickness is small, the wave functions for the
carriers penetrate into the adjacent QWs. Therefore, the QWs are coupled to each
other, and degeneracy is removed to generate N quantum levels per degenerated
quantum level. In this case, the density of states p(E) is given by

o N *
m
pE) =2 > — HE = emo), (7.5)
n=1k=1
where e¢,x (k = 1,2, ..., N) is the energy of the quantum level, which is produced

by the removal of degeneracy.

As described earlier, the densities of states in the QW-LDs are step functions,
which results in narrow optical gain spectra. Hence, the optical gain concentrates
on a certain energy, and the peak gain is enhanced. As a result, a threshold current
density Jy, as low as 1/3 of that of a bulk double heterostructure (DH) LD was
obtained in a QW-LD.

Here, we consider the linear optical gains of the QW-LDs. We assume that the
nonradiative recombinations are negligibly low. Under the k-selection rule, the linear
optical gain g (in units of cm ™) is written as

C w
& o(E,n) = —xa(En),
ny ny

%xl(m) = / S Pl fe(Een) = AELIRT (E. 0 de,  (7.6)

n=0 j—lL.h
2
A, j e h 2 R/ Tin
E,¢) = —F—|M, ; ,
MO = ey M Ve 57 (2

where c is the speed of light in a vacuum; n, is the effective refractive index of the
semiconductor laser; E is the photon energy; w is the angular frequency of a light;
X1 1s an imaginary part of the relative electric susceptibility, and j = h, 1 represents
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the heavy hole (h) and the light hole (1), respectively. In the second equation of (7.6),
)2;” (E, e) is the imaginary part of the relative electric susceptibility for a photon
with the energy E and an electron-hole pair with the energy e. In the third equation
of (7.6), e is the elementary charge, & is Planck’s constant, m is the electron mass in
a vacuum, € is permittivity in a vacuum, Ej is the bandgap energy, |M,, j(e)lg\,e is
a square of the momentum matrix element, and 7y, is the intraband relaxation time.
The reduced density of states for the nth subband pied’n is given by

-1
T +—1 (7.7)
P, = - s .
redn Pen ply

where p¢ , and p{;, » are the density of states for the nth subband in the conduction

band and that in the valence bands, respectively; f.(E.,) and fV(Ei,n) are the
Fermi-Dirac distribution function of the conduction band and that of the valence
bands, respectively. Here, E. , and EY,, are the energy of the conduction band and
that of the valence bands, respectively, and are expressed as

Me€lp +myE + miec,
Een = —Ten (7.8)
me + my

J J
; meey , — mcE + mye
J cCv,n c vEc,n
E{, = ) : (7.9)
me + my

where m¢ and mJ are the effective mass of the electron and that of the holes,
respectively; and e, and €, are the energy of the nth subband in the conduc-
tion band and that in the valence bands, respectively. Figure 7.2a shows the modal
gain gmod = I g as a function of the injection current density J with the number of
QWs N as a parameter. Here, I, is the optical confinement factor of the active layer.

It is found that gmoq takes a different value according to N for a common current
density. Hence, the number of QWs to minimize Jy, depends on the optical loss in the
optical cavity, which is equal to the threshold gain. Also, in the SQW (N = 1), gain
flattening is observed with an increase in the injection current. As shown in Fig.7.2b,
the cause of the gain flattening is that the density of states is a step function. Here,
Ey is a lasing photon energy.

7.2.2.2 Characteristic Temperature

Because the densities of states in the QWs are step functions, changes in the char-
acteristics of the QW-LDs with the temperature are expected to be small. However,
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Fig. 7.2 a Modal gain and b gain flattening

even in a bulk DH-LD, a characteristic temperature 7y as high as 200 K is obtained,
and an advantage of the QW-LDs over the bulk DH-LDs has not been proved yet.

7.2.2.3 Anisotropic Optical Gain

A difference in the optical gains for the TE and TM modes is about 20 cm™! in the
bulk DH-LDs, while it is as large as ~140cm™! in the QW-LDs. In the bulk DH-
LDs, an anisotropic optical gain is generated by the configurations of the optical
waveguides, because the optical confinement factor I, of the TE mode is larger than
that of the TM mode. In the QW-LDs, the anisotropic optical gain is produced by the
selection rule of the optical transitions, which will be explained in the following.

As described in Chap. 1, in the bulk structures, the heavy hole (hh) band with
mj = 3/2,and the light hole (Ih) band with m ; = 1/2 are degenerate at k = 0, while
in the QWs this degeneracy is removed. Figure 7.3 schematically shows the energies
of the valence band. Here, Ey1 and Enp (solid lines) represent the heavy hole bands;
Emnp and Ejny (broken lines) indicate the light hole bands where a subscript 1 or 2 is
a principal quantum number .

It should be noted that the effective masses of the holes in the QWs are dependent
on directions. As shown in Fig. 7.4, if we select a quantization axis as the z-axis, the
effective mass along the z-axis of the heavy hole m, pp* is larger than that of the light
hole m 1n*, while the effective mass on the xy-plane of the heavy hole m .y pn™* is
smaller than that of the light hole m . 1n*. This result is summarized as

along the z-axis: mgpn™ > m; ",
on the xy-plane: myy hh* < My 1n*.
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Fig. 7.3 Valence band in a one-dimensional QW

Fig. 7.4 Quantum well

Because a wave function of the heavy hole distributes in the xy-plane corresponding
to the py- or py-like orbital, the heavy hole moves on the xy-plane more easily than
along the z-axis, which leads to myy nn™ < m; pn*. In contrast, a wave function of
the light hole distributes along the z-axis corresponding to the p.-like orbital, the
light hole moves along the z-axis more easily than on the xy-plane, which results
in m;n* < myyn*. For example, in GaAs, we have m; ™ = 0.377m, m, n* =
0.09m, myy pn* = 0.11m, and myy 1n* = 0.21m, where m is the electron mass in a
vacuum.

7.2.2.4 Wave Function and Momentum Matrix Element

We assume that a wave vector k is directed toward the z-axis and contribution of the
split-off band is negligible. Hence, we consider the heavy hole band and the light
hole band as the valence bands. If we express the up-spin and down-spin as « and f3,
respectively, the wave functions of the conduction band are written as

Isa), |s3). (7.10)

Quantum states of the valence bands are indicated by j, which is a sum of the
angular momentum operator / and the spin operator s when the spin-orbit interaction
is considered. We can express the wave function |j, m;) as

For the heavy hole
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3 3 1 )
‘ —>=—|(X+1y)0z>,
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(7.11)
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ok §>—E|(X 1y)f),
For the light hole
3 1 1 .
‘5 §>=%|220¢+(X+1yw),
(7.12)

31 1 ) .
‘5 —§> = %| B — (x —iy)a),
where j is the eigenvalue of j and m is the eigenvalue of j.

In the following, we will consider the optical transitions between the conduction
band and the valence bands. As shown in (2.41), the optical power gain coefficient g
is in proportion to a square of the momentum matrix element (1| p|2)?. Therefore, to
examine the anisotropic optical gain, we compare the momentum matrix elements
for the optical transitions.

Along each axis, the momentum matrix elements between the conduction band
and the heavy hole band are given by

1
X-axis: —2 \/§M,

V2 1
-axis: +i — «/§M,
g NG
z-axis: 0.
Here, from (1.6) and (1.42), M is defined as

V3M = (s|pilx) = (spyly) = (sIp:lz)

1/2
N B W O )
2me* Ey+ 3 A ’

(7.13)

where m is the electron mass in a vacuum, m.* is the effective mass of the electron
in the conduction band, E, is the bandgap energy, and Ay is the split-off energy due
to the spin-orbit interaction. A coefficient +/3 is introduced so that a matrix element
averaged over all directions of the wave vector kK may be M.
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Fig. 7.5 Direction of a wave
vector k

7.2.2.5 Optical Transitions in QWs

As shown in Fig.7.5, we assume that a quantization axis is the z-axis and a QW
layer is placed on the xy-plane. If a light is supposed to propagate along a positive
direction of the x-axis, an electric field E along the y-axis is the TE mode, and an
electric field E along the z-axis is the TM mode. Because the wave vector k can
take various directions, we express a direction of k in a spherical polar coordinate
system, as shown in Fig.7.5. In this QW, the z-component of k is discrete, whereas
the x- and y-components of k are continuous. For example, if the energy barrier is
infinite, we have k; = nm /L with an integer n.

According to the directions of k, the momentum matrix elements between the
conduction band and the heavy hole band are given by

L
V2

% V3M(cosfsin¢ + i cos ),

L
V2

The square of the optical transition matrix elements is proportional to (1| E - p|2)?,
where E is the electric field. Therefore, only the momentum matrix element with a
component parallel to E contributes to the optical transitions. We consider a wave
vector k, for a quantum number n, and we average the square of the momentum
matrix element all over the directions on the x y-plane by fixing the z-component k;,,
of k,,.

X-axis: «/§M(COSOCOS¢ Fi sin @),
y-axis:

V3M sin 6.

Z-axis:

7.2.2.6 Momentum Matrix Elements Between the Conduction Band
and the Heavy Hole Band in QWs

An average of the squared momentum matrix element (M 2)hh,TE for the TE mode
(E//y) is expressed as
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2w
3mM? 1
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3M? 3M? k.2
= (14 cos?f) = — (l—i-i)

4 4 K2
3M? E
S (1 + _E) (7.14)
n

where E; , is the quantized energy of the nth subband and E,, is the total energy of
the nth subband.
At the subband edge, E; , = E, is satisfied; then we have

3M2
(M?)phTE = - (7.15)

An average of the squared momentum matrix element (M z)hh,TM for the TM mode
(E//z) is given by

(M*)phTM = 3]‘242 sin’f = 3—1‘242 (1 — cos®0)
=¥ (1-’%):%(1— EE;”). (7.16)
As a result, at the subband edge, we obtain
(M?)pn, 7™ = 0. (7.17)

As shown in (7.15) and (7.17), there is a selection rule between the conduction
band and the heavy hole band at the subband edge, that is, only the optical transition
for the TE mode is allowed; that for the TM mode is inhibited.

7.2.2.7 Momentum Matrix Elements Between the Conduction Band
and the Light Hole Band in QWs

An average of the squared momentum matrix element (M 2)1h,TE for the TE mode
(E//y) is obtained as

M2
(M?)ih.TE = e (1 4 cos’0) + M? sin’0

M? E., 5 E.,
=— 1+ =322 )+ M2 (1 - ==2). 7.18
1 ( + E. + £ (7.18)
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Hence, at the subband edge, we have
) M?
(M*)in,TE = - (7.19)

An average of the squared momentum matrix element (M 2 )in, T™ for the TM mode
(E//z) is written as

M2
(M?) it = > sin%0 + 2M? cos*6
M? E E
= (1-=2) yom? =20 (7.20)
2 El‘l El’l
Therefore, at the subband edge, we obtain
(M?)ih v = 2M2. (7.21)

7.2.2.8 Optical Gains in QW-LDs

In Fig. 7.3, the vertical line shows the electron energy, and the hole energy decreases
with an increase in the height. As a result, the concentration of the heavy hole is
larger than that of the light hole. Thus, among the polarization-dependent optical
gaiN ge-hh TE §e-Ih.TE> and ge-1n ™™, We have the following relation

8e-hh,TE > 8e-Ih,TM > &e-Ih,TE,
where subscripts e-hh and e-lh show the recombination of the electron and the heavy
hole and of the electron and the light hole, respectively. As shown earlier, the optical

gain for the TE mode has a maximum value in the optical transition between the
conduction band and the heavy hole band in the QW-LDs.

7.2.2.9 Low-Loss Optical Waveguides
In the QWs, the densities of states are step functions, and the absorption coefficient

at the band edge changes sharply with wavelength. Therefore, the absorption loss in
the optical waveguides with the QWs is lower than that with the bulk DHs.

7.2.2.10 High-Speed Modulation

As shown in (5.103), the relaxation oscillation frequency f; is given by
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fod [PO5

27\ On on (7.22)
In the QW-LDs, based on the step-like densities of states, the differential optical

gain 0G/0n is larger than that in the bulk DH-LDs. Hence, f; in the QW-LDs is

larger than that in the bulk DH-LDs, which leads to high-speed modulations in the

QW-LDs. Figure 7.6 shows a calculated differential optical gain (n;/c)0G/0n as a

function of the quasi-Fermi level of the conduction band EFf.. It is clearly revealed

that the differential optical gain in the QW-LDs is larger than that in the bulk DH-LDs.
From (7.6), the optical gain is simplified as

§=IMep [fe— fil. (7.23)

The QWs modify the density of states p in (7.23), while the intentionally doped
active layers can change [ f. — fy]. For example, p-doped active layers reduce fy,
and a relaxation oscillation frequency of about 30 GHz has been reported.

7.2.2.11 Narrow Spectral Linewidth

From (5.169), the spectral linewidth Awy of a laser light is expressed as

hwmcEey In(1/R) 5
Awp = —meZev T2 , 7.24
wo 2Pon L (I+a9) (7.24)

where the spectral linewidth enhancement factor «, which is also called o parameter,

is given by
2wm Ony (OG\ ! (7.25)
o=— — , .
ne On \ On

I
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Fig. 7.6 Differential optical gain
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as shown in (5.179). Here, n, is the refractive index, n is the carrier concentration,
and G is the amplification rate. As illustrated in Fig. 7.6, the differential optical gain
0G /On inthe QW-LDs is larger than that in the bulk DH-LDs. As aresult, from (7.25),
the absolute value of o in the QW-LDs is small, which leads to a narrow spectral line
width Awg. Figure7.7 shows calculated « values as a function of the quasi-Fermi
level of the conduction band EF.. It is found that v in the QW-LDs is smaller than that
in the bulk DH-LDs. Moreover, a small o leads to low chirping during modulation,
which is suitable for long-haul, large-capacity optical fiber communication systems.

7.3 Strained Quantum Well LDs

7.3.1 Effect of Strains

According to group theory, with a decrease in symmetry of the crystals, degeneracy
of the energy band is removed. In the bulk structures for semiconductor lasers, due
to their high symmetry, the heavy hole band and the light hole band are degenerate
at I" point (k = 0). In the QWs, due to their lower symmetry than that of the bulk
structures, degeneracy at k = 0 is removed, as shown in Fig.7.3.

When the strains are applied to semiconductor crystals, symmetry of the
crystals is reduced, and degeneracy of the energy bands is removed. According to the
compressive or tensile strains, the band structures change in different ways. Based
on this principle, band-structure engineering, which modifies the band structures by
intentionally controlling the strains, has been developed. By introducing the strains
into the active layers, we can obtain excellent characteristics, such as a low threshold
current, a high differential quantum efficiency, high-speed modulation, low chirping,
and a narrow spectral linewidth in semiconductor lasers, as in the QW-LDs. With
regard to the optical gain for the TE mode gtg and that for the TM mode gTm, the

« Parameter
[\S]

0 . L L
20 40 60 80 100 120 140

Quasi-Fermi Level Eg. (meV)

Fig. 7.7 Spectral linewidth enhancement factor
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compressive strains in the active layer plane lead to gTg > gTMm, While the tensile
strains result in gTg < gTM-

To induce the strains in semiconductor crystals, an external stress, a difference
in the thermal expansion coefficients of the materials, and a difference in the lattice
constants are used. Especially, a difference in the lattice constants, which is referred
to as lattice mismatching, is frequently adopted, because the most stable strains are
obtained. The lattice mismatching takes place when a semiconductor layer is epitax-
ially grown on the substrate with a different lattice constant from that of the grown
layer. If thickness of the grown layer exceeds the critical thickness, the dislocations
are generated in the grown layer. If the layer thickness further increases up to about
1 w m, which is much larger than the critical thickness, the dislocations are some-
times reduced, and such a thick grown layer can be used as the buffer layer. However,
this thick layer is not suitable for active layers, because the threshold current is large.
When the grown layer is thinner than the critical thickness as in the QWs, the dis-
locations are not generated. Hence, the strained QWs are suitable for band-structure
engineering.

7.3.2 Band-Structure Engineering

7.3.2.1 Epitaxial Growth and Strains

When the epitaxially grown layers are thinner than the critical thickness, the epitaxial
layers are grown on the substrate with their lattice constants matched to that of the
substrate. Therefore, the elastic strains are induced in the epitaxial layers. We assume
that the lattice constant of an epitaxial layer itself is a(x) and the lattice constant of
the substrate is ag. For a(x) > agp, the compressive strain is generated in the grown
layer, while for a(x) < ag, the tensile strain is produced in the grown layer.

The strain fensors are expressed by matrixes using their symmetrical properties.
The matrix elements of the strains €;; consist of the diagonal elements ¢;; called
the hydrostatic strains and the nondiagonal elements €;; (i # j) named the shear
strains.

7.3.2.2 Low Threshold Current

The radii of the curvature of the energy bands, that is, the effective masses of the
carriers, are modified by the strains. With decreases in the effective masses of the car-
riers, the carrier concentration to achieve the population inversion decreases. There-
fore, a low threshold current is obtained, as in the following.

When the electric currents are injected in semiconductor lasers, many electrons
are generated in the conduction band, and many holes are simultaneously produced
in the valence bands. In this case, the carrier distributions are far from thermal
equilibrium. Therefore, we cannot express the distribution functions of the electron
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and the hole with a single Fermi level, Er. As a result, regarding the electrons in the
conduction band and the holes in the valence band independently take the Fermi-
Dirac distributions, and we introduce the quasi-Fermi levels Ef. and Efy, which are
defined as

kT
(7.26)
2rme*kpT \/?
Nc: ( h2 )
v ()
h2

where n and p are the concentrations of the electron and the hole, respectively; E. and
E, are the energies of the bottom of the conduction band and the top of the valence
band, respectively; kp is the Boltzmann constant; T is absolute temperature; N, and
Ny are the effective densities of states for the electron and the hole, respectively; m.*
and mp™* are the effective masses of the electron and the hole, respectively; and 4 is
Planck’s constant.

From (7.26), Er; and EFy are expressed as

n
Eg. = E. +kgT In (F),

C

(7.27)
Epe = Ey —ksTIn ( 2-).
Ny
Hence, we obtain
np
Ege — Epy = Eg + kgT In , Eg=E.—E\y. (7.28)
NcNy
As shown in (2.9), the condition for the population inversion is given by
Epc — Epy > Eg, (7.29)
which reduces to
2rkpT \*
np > NeNy = 4( th ) (me*my*)/2, (7.30)

where (7.26) and (7.28) were used. From (7.30), the transparent carrier concentration
ng is obtained as
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2k T\ />
no =2(7Th—§) (me*mp*)>/4. (7.31)

Therefore, to achieve a low ng leading to a low threshold, m.* and my™* should be
light.
As shown in (1.11), the effective mass tensor m;; of the carrier is written as

1\ 1 9E (7.32)
m); W2 Okiok;’ '

which is related to the radius of the curvature of the band energy. The compressive
strains in the active layer decrease the radius of the curvature of the heavy hole
band in the vicinity of the band edge, which reduces the effective mass of the heavy
hole. As a result, the threshold carrier concentration decreases, and therefore the
Auger recombination rate in (5.52) is also reduced. Furthermore, from the momentum
conservation law and the energy conservation law, the Auger transitions are going
to be inhibited. Hence, the Auger processes are drastically reduced. As a result, a
high light emission efficiency and a low threshold current density are simultaneously
obtained. The strains in the active layers also enhance the differential optical gain
0G /On, which further reduces the threshold carrier concentration.

7.3.2.3 Anisotropic Optical Gain

The tensile strains make the energy of the light hole lower than that of the heavy
hole. When we draw the energy bands with the vertical line as the energy of the
electron, the band edge of the light hole is above that of the heavy hole. As a result,
concentration of the light hole is larger than that of the heavy hole, and the optical gain
for the TM mode is larger than that for the TE mode, which results in laser oscillation
in the TM mode. By optimizing the tensile strains so that the optical gain for the TE
mode and that for the TM mode may take a common value, polarization-independent
semiconductor optical amplifiers have been demonstrated.

7.3.2.4 High-Speed Modulation

The strains in the active layers enhance the differential optical gain G /On, which
leads to high-speed modulations. The compressive strains result in large gain satu-
ration, while the tensile strains lead to low gain saturation with a large optical gain.
Hence, the tensile strains are expected to improve high-speed modulation character-
1stics.
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7.3.2.5 Narrow Spectral Linewidth

The strains increase the differential optical gain 0G/0n and decrease «. Therefore,
a narrow spectral linewidth such as 3.6 kHz has been obtained in a strained QW
A/4-shifted DFB-LD [3].

7.3.3 Analysis

7.3.3.1 Fundamental Equations

We introduce the effect of strains into the Schrédinger equation as the perturbation,
where the unperturbed Hamiltonian is assumed to include the k - p perturbation
and the spin-orbit interaction. This unperturbed Hamiltonian whose base wave func-
tionis | j, m ;) is known as Luttinger-Kohn Hamiltonian [4], while the perturbation
Hamiltonian representing the effect of the strains is called Pikus-Bir Hamiltonian
[5-T7].

7.3.3.2 Luttinger-Kohn Hamiltonian

In Chap. 1, to obtain the eigenenergies of the valence bands, we used the following
Hamiltonian

H ="Ho + Hip + Hso, (7.33)

where H) is the unperturbed Hamiltonian, Hy,, is the k - p perturbation Hamiltonian,
and H, is the spin-orbit interaction Hamiltonian. Using this Hamiltonian H, we
consider a 6 x 6 matrix expressed as

Hi1t Hi2 Hiz Hia His His
Ha1 Hao Hoz Hos Hos Hos
H31 H32 H33 Hzs H3zs Hae

, 7.34
Ha1r Hao Haz Hag Has Has (7.34)
Hs1 Hsz Hs3 Hsq Hss Hse
He1 Hez Hez Hoa Hes Hes

where ‘H;; = (i|H|j) and (i| and | j) are written as
11=(3. 3], @=3. 1. G=03.-3. @=(3-3
51=1(3. 3. 6l=(5-3].10=1]3. 3), 2=1]3. 1), (7.35)
=13 -8 0= 5 -2) 9= 15 8 =154
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Equation (7.34) shows Luttinger-Kohn Hamiltonian for the valence bands, and this
Hamiltonian is used as the unperturbed Hamiltonian to analyze the strains. When
the split-off energy Ay is larger than 0.3 eV as in GaAs, contribution of the split-off
band can be neglected. In this case, Luttinger-Kohn Hamiltonian for the valence
bands Hj k results in a 4 x 4 matrix, which is given by

Hir Hi2 Hiz Hia ap b ¢ 0
_ | Hoat Hoo Hozs Hoa | _ | D" a— 0 ¢
Hix = Hz1t H3o H33 Haa |~ | ¢ 0 a_ —b |’ (7.36)
Ha1 Hao Haz Haa 0 c¢* —b* a4
where
h2
as = 7— [~ F 2k - (n £ k3 + 1),
h2
b=— V3yslky —ikyke, (7.37)

hZI 5 ”n
c=% 3 [’yz(kx —ky )—1273kxky].

Here, 71, 72, and ~3 are Luttinger parameters, and they are related to the effective
masses mp™ and myp* of the heavy hole and the light hole as

1 1
— (71 —2m) = — (heavy hole), (7.38)
m Mk

1 1 .

— (1 +272) = — (lighthole), (7.39)
m min

where m is the electron mass in a vacuum.
We can also express (7.36) as

2

h 5
Hik = E [_ (’71 + E '72) k2 + 2'72(kx21x2 + kyzjyz + kzzjzz)

+ 43 [{kaky MU Ty} + Tk HIy o) + {kzkx}{Jsz}]:| ; (7.40)

where Jy, Jy, and J; are the matrixes represented as
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T 0 J3i 0 0
gL =v3ioo 2i 0
T2 0 —=2i 0 3il’
L 0 0 —=v3i 0
0 V30 0
1{V/30 2 0
== 7.41
Jyzozoﬁ’ (7.41)
L0 0 430
3 0 0 0
J_10100
=510 0-10
| 00 0 -3

In (7.40), {kyky} and {J, J,} are defined as

1 1
(heky) = 5 (keky + kyko), (edy) = 5 Uedy + Ty 0. (7.42)

7.3.3.3 Pikus-Bir Hamiltonian

Pikus-Bir Hamiltonian H, is given by a sum of the orbit-strain interaction Hamil-
tonian Hos and the strain-dependent spin-orbit interaction Hamiltonian Hg. In the
valence bands of the zinc-blende structure, the orbit-strain interaction Hamiltonian
Hos at I" point (k = 0) is written as

Hos = —ai(exx + Eyy +€z2)

) L2 ) L2 5 L2
—3b1 | | Lx 3 Exx + | Ly Y eyy + | L: -5 )=

—/3dy (LxLy + LyLy) €xy — v/3d1 (LyL; + L;Ly) €y,
—N3dy (L;Ly + LyL.) .. (7.43)

The strain-dependent spin-orbit interaction Hamiltonian Hs is expressed as
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Hss = —az(exx + yy + ) (L - 5)

L-s L-s
—3by (Lxsx — T) Exx — 3b2 (Lysy — T) Eyy
L-s
—3by (LzsZ — T) €2z

—/3dy (Lysy + Lysy) exy — v/3dy (Lys; + Lsy) €y,
—3d> (L;sy + Lysz) ezx (7.44)

where Ly, Ly, L;, and L are the orbital angular momentum operators; sy, sy, s, and
s are the spin angular momentum operators; €;; (i, j = x, y, z) is a matrix element
for the strain tensor; and a;, b;, and d; (i = 1, 2) are the deformation potentials.

Because the orbit-strain interaction Hamiltonian Heg is larger than the strain-
dependent spin-orbit interaction Hamiltonian Hgs, the strained QWs are often ana-
lyzed by considering only Hs.

7.3.3.4 Relationship Between Strain and Stress

The strains € and stresses o are both tensors, which are related by

Oij = Zcijkﬁkl = Cijki€kl, (7.45)
k,l

where c;j; is the elastic stiffness constant. Also, on the right-hand side, | is omitted
by promising that we take a sum with regard to a subscript appearing twice, which
is referred to as the Einstein summation convention.

It is useful to express the tensors by the matrixes, because of symmetry in the
tensors. As a coordinate system for the tensors, we use 1, 2, and 3 as indexes. For
example, 1, 2, and 3 correspond to x, y, and z, respectively. Here, we relate indexes
1, 2, and 3 of the tensors to indexes 1, 2, 3, 4, 5, and 6 of the matrixes as follows:

Tensor expression 11 22 33 23,32 31,13 12,21
Matrix element 1 2 3 4 5 6

Therefore, we can rewrite (7.45) as

o= cijej=cijej (i.j=1.2,3,4.56), (7.46)
j
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where
O11 012 013 o11 012 031 o1 06 05
0210202023 | =| 01200023 |=|060204 |, (7.47)
031 032 033 731 023 033 05 04 03
€11 €12 €13 €11 €12 €31 1 2e1 €6 €5
€21 €n €3 | = |€nnenen | =5| € 262 &4 |. (7.48)
€31 €32 €33 €31 €23 €33 €5 €4 2&3

In the zinc-blende structures with symmetry of 43m or Ty, (7.45) reduces to [8, 9]

log cricizerz2 0 0 0 €1
lop) cizeireciz2 0 0 0 1)
o3| _|c2cizerr 0 0 0 €3
os | | O 0 0 cyy O O €4 (7.49)
os 0 0 0 0 cyqa O €5
o6 0 0 0 0 O cg4 €6

7.3.3.5 Bulk Structures

Here, we consider a semiconductor crystal in which biaxial stresses are applied to
the crystal plane due to the lattice mismatching. We assume that the epitaxial layers
are grown along the z-axis, and the layer plane is on the xy-plane. When the lattice
constant of the substrate is ap and that of the epitaxially grown layer itself is a(x),
the strains due to lattice mismatching are given by

ap — a(x)
Gax SEy =Ty T 6 G #0, .50
7.

Exy = Ey; = €z = 0,

where ¢ < 0 corresponds to the compressive strain and € > 0 shows the tensile
strain.

When the biaxial stresses are induced in the layer plane (xy-plane) due to lattice
mismatching, neither the stress along the growth axis (z-axis) nor the shear stresses
are imposed to the epitaxial layer. Therefore, the biaxial stresses are expressed as

Oxx =0yy =0, 075=0,
(7.51)

Oxy = Oy; = 0z = 0.

If we relate indexes 1, 2, and 3 of the tensors to x, y, and z, respectively, and
substitute (7.50) and (7.51) into (7.49), we have
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cricizeiz2 0 0 0
crpeirerz2 0 00
ciacrper; 0 0 O €2z
0 0 0 cyge O O (7.52)
0O 0 0 O C44 0

0 0 0 0 0 caua

SO OO 9 Q9

From (7.52), we obtain
o = (c11 + c12)€ + C12€;2,
(7.53)
0 =2c12e + 11622,

which leads to
2c12

€11

26‘122
o= \c11 +c12— E.
Cl1

€z =

(7.54)

Substituting (7.54) into (7.43) results in

1 2
Hos = —2ay (1 - Cﬁ) e+ 3b; <L22 - § L2) (1 + 2) €. (7.55)

Cl1 Cl1

Here, we consider a matrix Hgy such as

[ (1 Hos|1) (1[Hos|2) (1[Hos|3) (1]Hos|4)
Heo = (2IHos|1) (2|Hos|2) (2IHos|3) (2|Hos|4)
W (3IHos|1) (3IHos|2) (31Hos|3) (3| Hos|4)
| (41 HosI1) (41 HosI2) (4[Hos|3) (4[Hos|4)
_5Ehy —C 0 0 0
_ 0 0Eny +¢ 0 0
B 0 0 0Eny +¢ 0 ’ (7.56)
i 0 0 0 0Eny — ¢
where
0Eny = —2ay (1 — cﬁ) €,
c11
(7.57)

2¢
C=—b (1+J)s,
C11
and (7.35) were used. Equations (7.56) and (7.57) represent the energy shiftsatk = 0,
which indicates that degeneracy of the valence bands is removed.
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Fig. 7.8 Band structures for the bulk Inj_,Ga,As layers grown on an InGaAsP layer, which is
lattice-matched to an InP substrate: a compressive, b lattice matching, and ¢ tensile

The orbit-strain interaction Hamiltonian for the conduction band H is given by
Hse = Cr(exx + Eyy + Ez2), (7.58)

where C is the deformation potential of the conduction band. The energies of the
heavy hole band and the light hole band are given by the eigenvalues of Hyx + Hsy
with the help of (7.36) and (7.56). The energy of the conduction band is obtained as
the eigenvalue of Hyk + Hsc by using (7.36) and (7.58).

Figure 7.8 shows the band structures for the strained bulk In;_,Ga,As layers
grown on an InGaAsP layer, which is lattice-matched to an InP substrate. Here,
C1 = —2a is assumed, and the dislocations are neglected. From Fig. 7.8, it is found
that the compressive strains lower the energy of the heavy hole more than that of the
light hole, and the tensile strains lower the energy of the light hole more than that of
the heavy hole. It should be noted that the energy of the hole is low with an increase
in the height, because the vertical axis represents the energy of the electron.
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Fig. 7.9 Energy bands and optical gains in the strained QWs. Here, the oscillation wavelength is
1.3 pwm, and the InGaAsP well is 10 nm thick for a 1.9 % tensile strain, b lattice matching, and ¢ a
1.4 % compressive strain

7.3.3.6 Strained QWs
In the strained QWs, the Hamiltonian for the valence bands is given by

Hik + Hsy + V(2), (7.59)
where V (z) represents a potential of the QWs, which is expressed as

0 (well),

AEy — §Eyy (barrier). (7.60)

V(z) = [
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If the quantization axis is the z-axis, Schrodinger equation can be solved by
replacing k;, — —i0/0z, under the effective mass approximations. The obtained
results for the energy bands and the optical gains for the heavy hole (HH) and light
hole (LH) are illustrated in Fig.7.9. Here, the oscillation wavelength is 1.3 wm, and
the InGaAsP well is 10 nm thick for a 1.9 % tensile strain, lattice matching, and a
1.4 % compressive strain. As found in Fig. 7.9, the tensile strains enhance the optical
gain for the TM mode, and the compressive strains increase the optical gain for the
TE mode.

7.4 Requirements for Fabrication

The QW-LDs have been in practical use. However, the quantum wire LDs and the
quantum box LDs, whose quantum effects are more significant than those of the
QW-LDs, are still under research because these quantum structures require highly
sophisticated fabrication technologies, which can produce

. highly uniform,

. highly integrated,

. various shaped,

. nanostructures whose quantum effects are significant,
. with low damage,

. in a short time.

AN N AW =

Fluctuations in size obscure the density of states, and the quantum effects are
degraded. Therefore, uniform quantum structures are needed. When we use quantum
wires or quantum boxes in the active layers, the optical gain length is short, because
of their tiny size. However, as shown in (5.11), to obtain a low threshold gain, we
need long optical gain length L, which is only achieved by highly integrated quantum
structures. The fourth requirement is indispensable to quantum structures; the others
are common to all devices.

To satisfy these requirements, selective epitaxial growth and self-organized epi-
taxial growth have attracted a lot of interest.
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Chapter 8
Control of Spontaneous Emission

8.1 Introduction

High energy states are unstable. As a result, the electrons in high energy states transit
to low energy states in a certain lifetime. The radiation associated with this transition
is referred to as spontaneous emission.

Figure 8.1 schematically shows spontaneous emission in semiconductors, which
is the radiative recombination of electrons in the conduction band and holes in the
valence band. It should be noted that spontaneous emission takes place regardless of
incident light, whereas stimulated emission and absorption are induced by incident
light.

According to quantum mechanics, spontaneous emission takes place due to
interactions of atomic systems and the vacuum field. Therefore, spontaneous emis-
sion is considered to be the stimulated emission induced by fluctuations in the vac-
uum field (zero-point vibrations). It should be noted that the term stimulated emission
usually represents the stimulated emission induced by incident light.

As described earlier, spontaneous emission is caused by the interactions of
atomic systems and the vacuum field. As a result, the mode and lifetime of the
spontaneous emission can be modified by controlling the vacuum field with optical
cavities, which is referred to as cavity quantum electrodynamics (QED).

8.2 Spontaneous Emission

8.2.1 Fermi’s Golden Rule

With regard to the spontaneous emission rate, we explain Fermi’s golden rule. As
shown in Fig. 8.2, we consider a two-level system, which consists of a ground state
|gr) with an energy E; and an excited state |ex) with an energy E.x. Here, we assume
that a resonance spectral linewidth of the optical cavity in units of angular frequency
Aw, is much larger than that of the atomic system Aw,. When the spectrum is
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Electron
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Fig. 8.1 Spontaneous emission in semiconductors

Lorentzian, the spectral linewidth is inversely proportional to the lifetime. Hence,
the assumption Aw. > Aw, indicates . < T,, where 7 = 7, is the photon lifetime
and 7, is the lifetime of the atomic transition. Therefore, during the transitions of
atoms from the excited state to the ground state, lights are readily emitted outward
from the optical cavity. Hence, this transition is irreversible, and absorptions do not
take place.

From perturbation theory in quantum mechanics, the transition rate W of an atom
is given by

w=223 2 (@) sink; r)(n+ DF(Eee  Egr  hwp), (8.1
h ; 2Ve

where 7 = h/2 m is Dirac’s constant and & is Planck’s constant; y; is the electric
dipole moment for the /th cavity mode; wy is the angular frequency of the /th cavity
mode; V is the volume of the optical cavity; ¢ is the dielectric constant of a material
in the optical cavity; k; is the wave vector of the /th cavity mode; n; is the photon
density; and F'(Eex Egr  hwy) is a normalized spectral function.

From (8.1), it is found that W > 0 is obtained even when photons do not exist in
the optical cavity (n; = 0). A transition rate for n; = 0 in (8.1) is the spontaneous
emission rate Wy, which is expressed as

Fig. 8.2 Fermi’s golden rule

Eex |ex>
hw
M\
Eg lgry
Spectrum Spectrum
of the atom of the cavity

Angular Frequency
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27 huw; .
Wep = - ZMZ (m) sinlk; r)F(Eex Eg  Twy). (8.2)
I

8.2.2 Spontaneous Emission in a Free Space

A free space can be regarded as an optical cavity whose size is much larger than the
wavelength of a light. Therefore, a spectral distribution of the resonance modes in
the free space is (quasi-)continuous. In this case, a sum with respect to a resonance
mode / in (8.2) is replaced by integration with respect to k. Hence, the spontaneous
emission rate in the free space Wqp, free is Written as

W03nrc3 2

— -, 8.3
T ®.3)

Wsp,free -

where 7, is the refractive index of a material in the optical cavity, u? is the squared
electric dipole moment averaged over all directions of polarizations, wy = (Eex
Egr) /N is the angular frequency of a light, and sin’(k; r) is replaced by the averaged
value 1/2.

In this case, a transition rate for each mode is small, and it is inversely proportional
to the volume of the optical cavity V. The number of modes N contributing to the
optical transitions is proportional to V, and the value of N for usual waveguide-type
LDs is about 10°. As a result, the spontaneous emission rate in the free space Wqp free
is independent of V. Moreover, Wy, free is not affected by the positions of the atoms.
Therefore, the spontaneous emission in the free space seems to be governed by the
properties of the atoms themselves.

8.2.3 Spontaneous Emission in a Microcavity

The microcavity [1] is the optical cavity whose size is of the order of a light wave-
length. Hence, the resonance modes in the microcavity are discrete. From (8.2), when
the spontaneous emission coupling factor is 3, = 1, the spontaneous emission rate
in the microcavity Wgp micro 18 given by

b4 hw; 1 .
Wep.micro = Euzz (W) ( A0 )S1n2(kz r), (8.4)
C

where Aw, is the spectral linewidth of the resonance mode of the optical cavity in
units of angular frequency.

From (8.3) and (8.4), when the angular frequency of the light wy is equal to that
of the /th optical cavity mode w; (wg = w;), the spontaneous emission rate in the
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microcavity Wsp micro. and the spontaneous emission rate in the free space Wy free
are related as

M L 320 1 (1 Y &5
Wep, free 87 ne® V \ Awe
where )\ is the resonance wavelength in a vacuum for the /th optical cavity mode.

From (8.5), itis found that enhancement of the spontaneous emission (Wsp micro >
Wep.tree) happens when the following three conditions are satisfied: (1) The optical
cavity is the microcavity whose size is of the order of a light wavelength (V =~
)\[3 /nrc3), (2) the Q-value of the optical cavity is extremely large (w;/Aw; > 1),
and (3) excited atoms are placed at antinodes of the standing wave in the optical
cavity where sinXk; r)=1.

In contrast, the spontaneous emission is suppressed when the angular frequency
of the light wp and that of the /th optical cavity mode w; are different from each
other (wg # wy). If the excited atoms exist at nodes of the standing wave where
sin¥k; r) =0, spontaneous emission is prohibited because Wyp micro = 0.

8.2.4 Fluctuations in the Vacuum Field

In a system consisting of bosons, such as photons and phonons, the fluctuations in
the vacuum field are generated due to Heisenberg’s uncertainty principle, even when
the bosons do not exist (n; = 0). As a result, there exists a zero-point energy fwy /2
in a resonance mode. The spontaneous emission is induced by these fluctuations in
the vacuum field, and a theory of Cohen-Tannoudji and others [2] will be briefly
explained in the following.

When atoms in the excited state interact with fluctuations in the vacuum field,
optical transitions take place from the excited state to the ground state. The state of
an atom (electron) |¥) is given by a linear combination of the two eigenstates |ex)
and |gr), which is written as

E E
W) = Cex|ex)exp< i%r) +Cg|gr)exp( i%t). (8.6)

The expectation value of the electric dipole moment is expressed as
(Wler|¥W) = Cex*Cg(ex|er|gr) exp(iwot) + h.c., (8.7)

where e is the elementary charge and h.c. shows the Hermite conjugate.

The electric dipole moment, which vibrates with the angular frequency wy, emits
an electromagnetic wave with wg. Also, the emitted electromagnetic wave reacts on
the electric dipole moment. When the atom is in the excited state, the fluctuations in
the vacuum field and the electromagnetic wave interact with the same phase, which
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induces spontaneous emission. While the atom is in the ground state, the interaction
takes place with the antiphase and spontaneous absorption never happens.

8.3 Microcavity LDs

From (2.27), a low mode density and a large spontaneous emission rate result in
a large stimulated emission rate. Hence, a low threshold current is expected in the
microcavity LDs. As shown in (8.5), to enhance spontaneous emission, we need
microcavities with high Q-values. From this viewpoint, the vertical cavity surface
emitting LDs (VCSELs) explained in Sect. 6.3 are suitable for microcavity LDs.

From (5.20) and (5.21), the rate equations for the carrier concentration n and the
photon density S are expressed as

dn _ J Gn)s n (8.8)
it ed V0T '
ds N n

—=Gn)S — 0 — 8.9
dr (n) o + ﬂsp - (8.9)

where J is the injection current density, e is the elementary charge, d is the active
layer thickness, G (n) is the amplification rate due to the stimulated emission, 7, is
the carrier lifetime, 7py is the photon lifetime, and 3p is the spontaneous emission
coupling factor. It should be noted that G (n) includes an effect of enhancement or
suppression of the spontaneous emission caused by the microcavities, and 7 = 7,
is assumed.

When the mode distribution is continuous, from (5.32), the spontaneous emission
coupling factor 3 for a wavelength in a vacuum ) is given by

1 P SR
41203V AN 41203V, AN

ﬁsp = (8.10)

where I, = V,/Vy, is the optical confinement factor of the active layer, V, is the
volume of the active layer, V}; is the mode volume, and A\ is the FWHM of the light
emission spectrum in a wavelength region. From (8.10), a small mode volume Vi
and a narrow FWHM A lead to a large ﬁsp. In microcavities, the mode distribution
is discrete, and (3, has a different form from (8.10), but it is no change that 3
increases with a decrease in V.

Figure 8.3 shows the carrier concentration n and the photon density S in micro-
cavity LDs as a function of the injection current density J. With an increase in Sp,
the threshold current density Jy, decreases and becomes indistinct.

In microcavity LDs, due to enhancement of spontaneous emission, the carrier
lifetime 7, decreases and the stimulated emission rate increases, which enhances
0G /On. As shown in (5.103) and (5.109), the resonance frequency f; is given by
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Therefore, a large f;, which leads to high-speed modulation, is obtained in micro-
cavity LDs. Note that in optical cavities with high Q-values, the photon lifetime 7pn
is large, which reduces f;. Hence, we have to design microcavity LDs according to
the required modulation speed in application systems.

From the preceding explanations, it might be assumed that microcavity LDs have
only benefits. However, they have serious problems in electrical resistance and light
output. Because the size of microcavity LDs is of the order of a wavelength of
a light, their electrical resistances are extremely high. Therefore, with increase in
injection current, large Joule’s heat is generated, which suppresses CW operations at
room temperature. Even though the threshold current is low, due to large electrical
resistance, the power consumptions are not always low, and sometimes they are large.
Also, due to small light emission regions, the light outputs are low.

8.4 Photon Recycling

When electric current is injected into semiconductor lasers, spontaneous emission
takes place. A fraction of this spontaneous emission is used as the seed of a laser light;
this seed is repeatedly amplified in optical cavities by stimulated emission. When the
optical gains exceed the optical losses in the optical cavities, laser oscillations start.

In contrast, spontaneous emission other than the seed of laser light is readily
emitted outward from optical cavities. Therefore, the injected carriers consumed for
such spontaneous emission do not contribute to laser oscillations. In photon recycling,
this wasted spontaneous emission is absorbed, and the carriers are generated [3—6].
Using photon recycling, the carrier concentration in the active layer is larger than that
without photon recycling at the same current level, which results in low threshold
current. This concept of photon recycling resembles the confinement of resonant
radiation in gas lasers.

Figure 8.4a, b schematically shows the light emission spectra and the optical gain
spectra of semiconductor lasers. A peak wavelength in the optical gain spectra is
longer than that in the spontaneous emission spectra. Therefore, the active layer
can absorb the spontaneous emission located in a shorter wavelength region, which
is indicated with slanted lines. Consequently, to achieve efficient photon recycling,
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we should confine the spontaneously emitted lights to the optical cavities. To avoid
wasting the injected carriers, we should also reduce the nonradiative recombination
rates and suppress Joule heating in the active layers so that the carriers may not
overflow to the cladding layers.

From Fig. 8.4, it is found that a large absorption region in a wavelength leads
to efficient photon recycling. As shown in Fig. 8.5, with a decrease in the threshold
gain g, the absorption wavelength region increases. Therefore, semiconductor lasers
with low threshold gain as in Fig. 8.5b are suitable for efficient photon recycling.

Figure 8.6 schematically shows the structure of a vertical cavity surface emitting
LD, which uses photon recycling. To efficiently confine the spontaneous emission in
the optical cavity, the sidewalls of the optical cavity are covered with highly reflective
materials.

In photon recycling, limitations to the size of the optical cavities do not exist, as
opposed to in microcavity LDs. Consequently, when we use photon recycling, we
can avoid an increase in electrical resistance and a decrease in the light output, as
shown in microcavity LDs.

Fig. 8.5 Threshold gain and (a)
photon recycling: a Large Gain
threshold gain and b low 2
threshold gain thF===7° “/\
Absorption Wavelength
Loss
(b)
Gain
8thb---------
Absorption Wavelength
Loss
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Fig. 8.6 Vertical cavity surface emitting LD with photon recycling
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Appendix A
Cyclotron Resonance

A.1 Fundamental Equations

Let us consider the motion of an electron in a magnetic field. As shown in Fig. A.1,
we assume that a uniform magnetic field is applied along the z-axis, and a magnetic
flux density is B(|B| = B;). The Lorentz force acting on the electron in this magnetic
field has only x- and y-components and does not have a z-component.

When the relaxation term is neglected, an equation of motion for the electron in
the magnetic field is given by

d
m=— = _e¢(vxB), (A1)
dr

where m, v, and e are the electron mass, velocity, and elementary charge, respectively.
From (A.1), we obtain

X = —wey, Y= weX, (A2)

where a double dot above x and y shows a second derivative with respect to time,
and

we = ¢B: (A3)

m

is the cyclotron angular frequency.
Assuming x = 0,y = —vg/we, X = v, and y = 0 at¢t = 0 as an initial condition,
and then integrating (A.2) with respect to time result in

X =—welY, Y =weX, (A4)

where a dot above x and y shows a first derivative with respect to time. Substituting
(A.4) into (A.2), we have
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0 y
X

Fig. A.1 Cyclotron motion

i=—wlr, j=-w’y. (A.5)
As a result, the solutions are obtained as

vo . vo

X = —Ssinwet, Y = —— COSWcI. (A.6)
We We

These solutions show the cyclotron motion that is a circular motion with a radius
R = vy /w, about the origin.

When an electromagnetic wave whose electric field is in the xy-plane and the
angular frequency w, is incident on the semiconductors, the electromagnetic wave
is resonantly absorbed by the electrons with cyclotron motions. This phenomenon is
called the cyclotron resonance.

We assume that the effective mass of the carrier is m*, the velocity of the carrier
is v, the charge of the carrier is ¢ (¢ = —e < 0 for the electron and ¢ = +e¢ > 0
for the hole), the electric field is E, the magnetic flux density is B, and the relaxation
time is 7. Then the equation of motion for the carrier is written as

m*v

m (A7)

*SY S (E+vxB)
a !
Using the carrier concentration n, we can express the x- and y-components of the
current density as J; = nqv; (i = x, y). From the Joule losses formula, the absorbed
energy density per unit time P is obtained as

P =Re(J) -Re(E) = %Re(] - E"), (A.8)

where Re indicates a real part. In the following, we consider a right-handed circularly
polarized wave, a left-handed circularly polarized wave, and a linearly polarized
wave. These electromagnetic waves are assumed to propagate along the z-axis and
to have the angular frequency w.
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A.2 Right-Handed Circularly Polarized Wave
The right-handed circularly polarized wave is expressed as
Ey = Epexp(iwt), Ey=iE, = iEgexp(iwt). (A.9)

Substituting (A.9) into (A.7) and using (A.8) results in

o0 Eo?
= A.10
(Ww—we)?12 +1 ( )
where
B
we=1% gy =M1 (A.11)
m m
A.3 Left-Handed Circularly Polarized Wave
The left-handed circularly polarized wave is written as
Ey = Egexp(iwt), Ey=—1E; = —iEgexp(iwr). (A.12)
Substituting (A.12) into (A.7) and using (A.8) leads to
Eq2
7020 (A.13)

P=——
(W w22 +1

A.4 Linearly Polarized Wave

When the linearly polarized wave has an electric field with only an x-component,
which is given by
E, = Egexp(iwt), (A.14)

the absorbed energy density per unit time P is represented as

1, 1 1
P =-0oF . A.15
4 7080 [(w —we)212 +1 + (w+ we)?12 + 1] ( )

Here, the first and second terms correspond to the right-handed circularly polarized
wave and the left-handed circularly polarized wave, respectively.
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A.5S Relationship Between Polarization of a Wave
and an Effective Mass

From (A.11), it is found that we can obtain the effective mass of the carrier by
measuring the cyclotron angular frequency w,. The right-handed circularly polarized
wave is resonantly absorbed by the carrier, which has a positive effective mass with
a positive we, such as the electron in the conduction band in the vicinity of the band
edge. The left-handed circularly polarized wave is resonantly absorbed by the carrier,
which has a negative effective mass with a negative w,, such as the hole in the valence
bands in the vicinity of the band edge.

Finally, we show an example of a value for the cyclotron angular frequency wy.
When the observed effective mass in a magnetic field with the magnetic flux density
of 1G = 107* T is 0.1 m, where m is the electron mass in a vacuum, we 18 1.76 x
108 rad/s, and the cyclotron frequency f. = w/27 is 2.80 x 107 Hz.



Appendix B
Time-Independent Perturbation Theory

We consider the following Schrodinger equation expressed as
Hy = Wep, H=Ho+H, Hour = Exuy, (B.1)

where Ho is an unperturbed Hamiltonian whose solutions are already obtained;
‘H' is a perturbation to Hp; 1) and W are an eigenfunction (wave function) and
an energy eigenvalue for a perturbed steady state, respectively; and u; and Ej are
an orthonormalized eigenfunction and an energy eigenvalue for the unperturbed
Hamiltonian H, respectively.

B.1 Nondegenerate Case

The perturbed eigenfunction and the perturbed energy eigenvalue are assumed to be
expanded in power series of H'. Here, we replace H' by AH’ where ) is a parameter,
and we express 1) and W with the power series of A. In obtaining the final results,
we set A = 1. Under this assumption, 1) and W are written as

Y =1+ Ahr + Nahp + Maps o, (B.2)
W=Wo+ AW, +X2Wa + N3W3 + - . :

Substituting (B.2) into (B.1) and replacing H’ by ANH’, we have

(Ho + AH) (o + A1 + N + Adps + -+ +)
= (Wo + AWy + XN2Wa + X3W3 + - ) (o + Mby + N2ahp + Mabs + - ).
(B.3)
If we assume that (B.3) is satisfied for any value of A, the terms with the common
power series of A on both sides have to be the same, which is expressed as
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A0 (Ho — Wo)tho = 0,

AL (Ho — Wo)yr = (Wh — H)o,

N o (Ho — Wo)ibo = (Wi — H)1 + Ward,

A (Ho — Wolgs = (Wi — H)a + Wathy + Watdo, (B.4)

From (B.1) and the first equation in (B.4), it is found that g is one of the unper-
turbed eigenfunctions uys. Therefore, in the nondegenerate case, we put

o =um, Wo= Ep. (B.5)

As an eigenfunction 95 (s > 0) in a perturbed steady state, we consider a solution
satisfying the dot product given by

wmw>=/w&wd%=o. (B.6)

Under this condition, multiplying both sides of (B.4) by ¢p* from the left and then
integrating with respect to all the space results in

o (wo, H/'(/Jsfl)
’ (vo, ¥o)

where we have used that u;s are orthonormal functions. From (B.5) and (B.7), we
have

= (umv H/ws—l)v (B7)

Wi = (um, H'1po) = (tm, H'ty) = (m|H'|m), (B.8)

from which itis revealed that the first-order perturbation energy W is the expectation
value of H’ for the unperturbed state |m).

Here, by expanding with respect to u,, we write the first-order perturbed eigen-
function 1| as

Y=Y a\Vuy, (B.9)
n

where a,(,l) is the expansion coefficient. If we calculate a,(,l) , an eigenfunction in the

first-order perturbation is obtained. First, let us consider a dot product of u,, and
(B.9). Because u,, is an orthonormal function, we have the following relation

(m|n) = S, (B.10)
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where 9,,,, is the Kronecker delta. Using (B.6), we obtain
b)) = (m| D" aiPin) = > ald (m|n)
n n
=aly) = (o, Y1) = 0. (B.11)
Substituting (B.9) into the second equation in (B.4) results in

> aV (Mo — En)un = (Wi — H )i, (B.12)

where (B.5) was used. Taking a dot product of u; and (B.12) with the help of (B.1)
leads to

a\"(Ey — Ep) = —(k|H|m),

(B.13)
o0 W
k Em — Ex
As aresult, ¢ is written as
n|'H/ |m
1 = Z . (B.14)
Therefore, to the first-order perturbation, the eigenfunction v is given by
(n|H'|m)
W = 1o + 41 —um+Z —, (B.15)

where we have set A = 1.
Putting s = 2 in (B.7), the second-order perturbation energy is obtained as

(m[H'|n) (n|H'|m)
E, —E,

Wa = (u, H't1) = : (B.16)

n

where (B.14) was used. From (B.5), (B.8), and (B.16), to the second-order perturba-
tion, the energy eigenvalue is expressed as

W=Wo+ W+ W

= Ey + (m|H|m) + > (m”?”)_(”'EH iy (B.17)

n
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Finally, let us calculate an eigenfunction in the second-order perturbation. The
second-order perturbed eigenfunction 1, is expanded with u,, as

Uy =" aPuy, (B.18)
n

where a = 0. Substituting (B.5), (B.9), and (B.18) into the third equation in (B.4)
gives

> al? (Ho — Wolun = D alV (Wi — H)uy + Watty. (B.19)

Taking a dot product of uy (k # m) and (B.19) with the help of (B.1) results in

al (Ex — En) = a’ Wi = alV (k| H'|n). (B.20)
n

From (B.8), (B.13), and (B.20), we obtain

@ _ Z (kIH!In)(n|H'|m) (kl'H/lm)(m|H/|m)'

a, (E,, — Ex)(E,, — E,) (Ey — Ep)? (B.21)

As a result, to the second-order perturbation with A = 1, the eigenfunction % is
written as

Y =1+ 1 + Yo
B (k|H|m) (m|HIm)
”’”+Z [ —Ek(l_Em—Ek)

43 WP } _

(B.22)
(Em — ER)(Em — Ey)

In summary, the eigenfunction and the energy eigenvalue in the nondegenerate
case are expressed as

to the first-order perturbation

(n|H'|m)
Y= m+z |_|E tn, (B.23)

W =Wy + Wi = Ey + (m|H'|m), (B.24)



Appendix B: Time-Independent Perturbation Theory 243

to the second-order perturbation

(k|H|m) (m|H'|m)
_”’”Z [ "L (1_ Em—Ek)

(k|H|n)(n|H'|m)
+Z(E ~ E0(Ey —E)}’ (B2

Z mIH [n){ nIH |m)

W = Ey + (m|H'|m (B.26)

B.2 Degenerate Case

In the perturbation theory in the degenerate case, only the zeroth-order eigenfunction
o is different from that of the perturbation theory in the nondegenerate case; other
processes are common.

Here, we assume that the unperturbed eigenfunctions u; and u,, (I # m) have the
same unperturbed energy Wy. As a result, we can write 19 and Wy as

Yo = aiu) + amum, Wo = E;j = Ep. (B.27)

Substituting (B.27) into the second equation in (B.4) and then taking dot products
with u; and u,,, we have

(LR — Wh) ag + ([IH |m)ay, =0,
(B.28)
(mH'\Da; + ((m|H'|m) — W1) ay = 0.

In order that (B.28) may have solutions other than a; = a,,, = 0, the determinant for
the coefficients of ¢; and a,, must be zero, which is expressed as

(UH) = Wr) ((m|H Im) = Wr) = {{[Hjm)(m|H'|l) = 0. (B.29)
Solving (B.29) with respect to Wy, we have
1
Wi = 3 ((H|1) + (m|H|m))
1 1/2
+ 3 [((llH’ll) — (111|’/‘-{’|m))2 + 4(l|H’|m)(m|H’|l)] . (B.30)
From (B.30), it is found that degeneracy is removed in the first-order perturbation,

so long as the terms in [- - - ] do not vanish. When degeneracy is removed and Wj has
two solutions, a; and a,, are obtained from (B.28), and they are used to calculate the
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wave functions. Substituting (B.9) and (B.27) into the second equation in (B.4) and
then taking a dot product with uy (k # [, m), we obtain

ay (Ex = Ep) = —(kIH|m)an — (kI |Da. (B.31)

If we assume that a(l) a,(nl) =0, (B.6) with s = 1 is satisfied. Using a,ﬁl) in (B.31),
we can obtain the elgenfunction to the first-order perturbation.

To the second-order perturbation, substituting (B.27) into the third equation in
(B.4) and then taking dot products with u; and u,,, we have

Z(Z|H/|n>a,§1> —Waa =0,

n

(B.32)
> mH In)a) — Waay, = 0.
Substituting (B.31) into (B.32) leads to
(L/H|n)(n|H'|I) ([H'|n)(n|H'lm)
(Z I E Z T BB 0
(B.33)

([ (n 1) (m [P 1) (n['|m)
2" hm " +(Z En—En Wz)“’" -

n

By solving (B.33), we can obtain the energy eigenvalues to the second-order pertur-
bation.
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Time-Dependent Perturbation Theory

C.1 Fundamental Equation

We consider a time-dependent Schrodinger equation such as

0
iha_lf =My, H="Ho+H ). Hour = Epur. (C.1)

where Hj is an unperturbed steady-state Hamiltonian whose solutions are already
obtained, H’(¢) is a time-dependent perturbation to Hy, v is a perturbed eigenfunction
(wave function), and u; and Ej are an orthonormal eigenfunction and an energy
eigenvalue for Hy, respectively. When H'(r) # 0, transitions take place between the
eigenstates of Hy.

Using a solution for an unperturbed wave equation given by

up, e 1 Ent/h (C.2)

we can expand a solution v as

b= aytyuye B, (C.3)

where a, (t) is a time-dependent expansion coefficient. Substituting (C.3) into (C.1)
results in

Z ihéyu, e 1 Ent/h 4 ZanEnu,, e 1 Ent/h
n n
= Z an [Ho + H’(t)] u, e 1 Ent/h
n

= Z (an Equy, e_i Ent/h + ay (t)H/(t)un e_iEnt/h) s (C4
n
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where a dot above the expansion coefficient a,, denotes a first derivative with respect
to time. From (C.4), we have

Z i By, e Ent/h — Z an(OH (t)uy, e Ent/h, (C.5)
n

n

Taking a dot product of (C.5) and uy leads to

ihage B =" (k[ H (1) |n)ay e 7 Ent /T, (C.6)

n

When we define the Bohr angular frequency wy, as

E, — E
Wk = = ()
we can rewrite (C.6) as
b 1 / i cnl
= — ;(H’H (1)|n)a,e <! (C.8)
Replacing H'(¢) in (C.8) by AH'(t), we expand a, with \ as
a, = a,(,o) + )\a,(ll) + Aza,(lz) 4+ (C.9

Substituting (C.9) into (C.8) gives

(0) —I—)\a(l) 24 (2)

= ﬁ D UKINH 0@ + Aa) + XaP el (C.10)
n

In order that any value of A\ may satisfy (C.10), we need
1 ic
oV =0, ot = = D kIH (1) n)al) e (C.11)
n

From the first equation in (C.11), it is revealed that a; is independent of time in the
zeroth-order perturbation. From the second equation in (C.11), once a lower order
a,ﬁs) is obtained, a next higher order a,ESH) can be calculated. Here, we assume

a” = (klm) = Sgm, (C.12)

which means that the initial state |m) is a definite unperturbed energy state. Using
(C.11) and (C.12), we obtain
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1 .
aﬁ:EmemaWﬁ (C.13)

Assuming that a,ﬁl) is zero before perturbation is applied, that is, a,E]) =0att = —o0,

integrating (C.13) with respect to time results in
1
(1)_L kIH (¢ iwkmt’d/ C.14
4 =— [ kIH(@)m)e r, (C.14)
—0oQ

which is the expansion coefficient for the first-order perturbation.

C.2 Harmonic Perturbation

When a harmonic perturbation is applied at t = 0 and removed at t = 7y, we have
(k|H' (') |m) = 2(k|H|m) sin wt’, (C.15)
where (k|H'|m) is independent of time. Substituting (C.15) into (C.14) leads to

1o
2 .
a?ktim):TE(HquX/smwﬂewm’dﬂ
1
0
kIH i(wim+wio _ Hwrm—w)io _ 1
(KI7 Jm) [e ¢ . (C.16)

ih Wkm + w Wkm — W
On the right-hand side of (C.16), the first term is dominant for wy,, & —w, that is,
E; ~ E,, —hw, and the second term is dominant for wy,, &~ w, thatis, E; ~ E,,+hw.
In other words, to the first-order perturbation, due to the harmonic perturbation
(C.15), Planck’s quantum energy fww is transferred to or received from the system.
When the initial state is |m) and the final state is |k}, let us calculate the probability
that the system is in the final state |k) after the perturbation is removed.
For E; < E,, the first term in (C.16) is dominant, which results in

4(kIH Im) > . 51
(€9 2 __ 2
|ak ([ > l0)| = m S E (ka + W)t() . (C17)

For E; > E,,, the second term in (C.16) is dominant, which leads to

41kIH im) > 51
|a,((])(t > 1)]* = % sin® |:§ (Wkm — W)f0:| . (C.18)



248 Appendix C: Time-Dependent Perturbation Theory

C.3 Transition Probability

Figure C.1 shows a plot of (C.18). Here, we assume that there is a group of final
states |k) whose energy Ej is nearly equal to E,, + hw, and (k|H'|m) is roughly
independent of |k). In this case, the probability of finding the system in one of these
states |k) is obtained by integrating (C.18) with respect to wy,. This integration is
shown by an area enclosed by the horizontal line and the curve in Fig. C.1. The height
of the main peak is proportional to 7y, and the spectral linewidth is in proportion to
fo~'. As a result, the probability of finding the system in one of these states |k) is
proportional to #.

It should be noted that the uncertainty principle is satisfied, because the spectral
linewidth, which represents uncertainty in the energy, is in proportion to fo~!. In
addition, because of Ey ~ E,, + hw, the energy conservation law is also satisfied.
It is interesting that the uncertainty principle and the energy conservation law are
automatically obtained without particular assumptions.

The transition probability per unit time w is given by

_ 1 o 2
w = P la, ' (t > t0)|"p(k) dEg, (C.19)

where p(k) dEy is the number of the final states with the energy between Ej and
Ej +dEj. With an increase in fp, the spectral linewidth decreases, and (k|H'|m) and
p(k) are considered to be approximately independent of E. In this case, (k|H'|m) and
p(k) can be taken outside the integral in (C.19). Therefore, the transition probability
per unit time w is obtained as

o0
4)(k|H'|m)* / sin?[§ (Wim — w)to ]
= " sk hd
v 2t ) (Wrm — w)2 Whan
—00
27 , 2
= Ep(k) [(kIH |m)|~. (C.20)
sin? %(wkm—w)fo %;02
(wkm_a))2
WO — O
_6bn _4m 2m  2m 4m 6m
To To fo To To ty

Fig. C.1 Transition probability
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C.4 Electric Dipole Interaction (Semiclassical Treatment)

A classical Hamiltonian H, for a particle, which has a mass m and an electric charge
—e in an electromagnetic field, is written as

1
He = — (p + eA)* — e,
2m

(C.21)

OA
E=—— V¢,
ot ¢

where E is the electric field, A is the vector potential, and ¢ is the scalar potential.

First, before calculating the transition probability, we will derive (C.21). The
Lagrangian L for a particle with the mass m and the electric charge —e in an elec-
tromagnetic field is given by

1
L= mg* + ep(q) — eq - A(q), (C.22)

where ¢ is a generalized coordinate. Validity of (C.22) will be shown in the following.
The Lagrange equation is expressed as

—— - —=—=0. (C.23)

As an example, we consider an x-component in the xyz-coordinate system. From
(C.22), we have

OL _ i —eA,, (C.24)
ox
dr IL DA, . 0A, . 0A. . OA,
deoL . : , 25
awor ™ e(at T TV %y +Z3z) (€25)
oL 09 (. 0A. _0A, . OA,
I — e r —4 . C.26
ox  Cox e(x ax Y ox Tz Ox ( )

Substituting (C.24)—(C.26) into (C.23) results in

X A . X
mx_e@_e[anij(aA K y)+z(8A _8AZ)]=0 o)

Ox ot oy  Ox dz  Ox
or
dZx E ( B)
m-— = —eLy —e(b X X
dr? o o (C.28)
Ex:——¢— X B =r0tA,

Ox ot
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which is known as the Lorentz equation, and validity of (C.22) has been proved.
Similar results are obtained for the y- and z-components.
Using the Lagrangian L, a momentum p of the particle is defined as

p= a_; = mg — eA. (C.29)
0q

As aresult, the Hamiltonian H for the particle is obtained as

Hp,.¢9)=p-q—L
1
:qu—eq-A—quz—e¢+eq-A

| N
—qu —ep

L prearoes e

which is the same as (C.21).
When V - A = 0 and ¢ = 0, the Schrodinger equation is written as

0
ih a—qf = [Ho + H' ()1,
5 ) (C.3D)
o, , ieh
Ho=——V"+V(@I), Ht)=—A"-V,
2m m
where (C.21) was used. If we express an electric field E as
E =X Eg expli(wt — kz)], (C.32)

where X is a unit vector along the x-axis, the vector potential A is written as

iE
A=% % expli (wr — k2)], (C.33)
which leads to
2 E02
AP =A% Al = —. (C.34)
w

To consider the energy flow, we calculate the Poynting vector S. Using

B = rotA = poH, (C.35)
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where B is the magnetic flux density and H is the magnetic field, we have

I,k 1 ,m 1,
|S| = |EXH| = EE() Mo—w = EE() J0c = EEOEO ngc. (C36)

Here, n; is the refractive index of a material. Because (C.36) is equal to the energy
flow of nyphw c/n;, we obtain

2npphw
Ey? = T2 (C.37)
€0 Ny
where npy, is the photon density. From (C.34) and (C.37), we obtain
2npnh
AP = 22 (C.38)
Eonr” W
Also, (C.31) gives
, ieh e
(kIH'Im) = ——— A (k|V|m) = — A (k|p|m)
m m
d
=ecA m (klrlm) = 1w, A (k|er|m), (C.39)

where the matrix element includes the electric dipole moment er. Therefore, the
transition due to this perturbation is referred to as the electric dipole transition.

When the perturbation is applied at + = 0 and removed at t = ty, substituting
(C.33) and (C.39) into (C.14) results in

E . i(Wgm+w)to _ 1
B0 iy eike €0 1 (C.40)

(1)
a t>1) =
U hwm Wkm + w

When there is a flow of a photon per unit volume, by substituting (C.40) into
(C.19), we can obtain the transition probability per unit time w as

2
e“h
= |k 2 (Eim = hwim), C.41
w 2m250nr2Ekm [{k|p|m)| (Ekm km) ( )
where the spectral linewidth of |A|? is assumed to be narrow.
It should be noted that the transition probability per unit time w in (C.41) is the
transition rate for the stimulated emission B in (2.35).
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Appendix D
TE Mode and TM Mode

D.1 Fundamental Equation

Figure D.1 shows a two-dimensional optical waveguide in which the guiding layer is
sandwiched between the cladding layer and the substrate. We assume that each layer
is uniform and the refractive indexes of the guiding layer, the cladding layer, and the
substrate are n¢, n¢, and ng, respectively, where ny > ng > n. is satisfied to confine
a light in the guiding layer. In usual optical waveguides, ny — ng is 1073—107".
When the electric current does not flow, Maxwell’s equations are written as

OH , OE
rotE =V XE =—puy—, rotH =V xH =¢on;" — (D.1)

ot o’
where E is the electric field, H is the magnetic field, y¢ is magnetic permeability in
a vacuum, € is permittivity in a vacuum, and n, is the refractive index of a material.
We can also express (D.1) with each component as

OE. OE, OH, OH. OH, , OE,
Dy o M oy T oz T

OE, OE. OH, OH, OH, , OE,

oz ox . Mo Taz T ox MM o (D-2)
OE, OE, OH. OH, OH, , OE.

= &onr

ox oy "o Tax oy o1
We assume that a light propagates toward a positive direction on the z-axis with
a propagation constant (3, and its electric field E and magnetic field H are written as

E = E(x,y) expli(wt — p2)],
H = H(x,y) expli(wt — (2)]. (D.3)
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Fig. D.1 Cross-sectional X
view of a two-dimensional
optical waveguide

Cladding layer nc

Guiding layer n;

Substrate ng

In a two-dimensional optical waveguide with an abrupt index profile as shown in
Fig.D.1, the lightwave along the y-axis is uniform, which results in 9/0y = 0. Also,
from (D.3), we have /0t = iw and 9/0z = —i 3. Therefore, (D.2) reduces to

i1BE, = —iwpoHy,, iBH, = ia?onr2 wEy,
JE, OH,

—iBE, — ao = —iwpoH,, —iBH,— = icon> wEy, (D.4)
OE, OH,
— — —jwpoH., —% = isonrszZ.
Ox Ox

If there are no electric charges, V - E = 0 is satisfied. Hence, with the help of the
vector analysis formula, we obtain

VxVxE=V(V-E)—V[E=-V’E. (D.5)

Substituting (D.1) and (D.3) into (D.5) leads to

2 2,2

0 0 ne-w
—V2E = —jp=— (V x H) = — 2 S E=-"
Moat( x H) Eopon” 53 2

E, (D.6)

where c is the speed of light in a vacuum.

D.2 TE Mode

The electromagnetic wave whose electric field E does not have a component E,
along the propagation direction is called the transverse electric (TE) wave. For a TE
wave with E, = 0, (D.4) reduces to

i1fE, = —iwpoH,, i8H, = icony? WEy,

OH.

—iBE, = —iwuH,, —ifBH, — 5 L =ieon? wEy, (D.7)
X
IE, OH,

— = —iwpupHz, =0.

Ox Ox
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For brevity, if we put H, = 0, (D.7) results in

I6] 1 O0E,
E,=0, Ho=——E, H=-—"—% (D.8)
wpo iwpg Ox

Substituting the first equation in (D.8) into (D.6) leads to

o n? w? o
W E, + ( rc2 - 52) E, = WE‘U + (koznr2 - ﬂz)Ey =0, (D.9)

where kg = w/c.
In summary, the electric field and the magnetic field for the TE mode obey the
following equations given by

o 2 2 2
Ex:EZ:()y WEU_’_(]{O ny _5)E7J:O’
(D.10)
B 1 OE,
Hx:__Ey’ Hy:(), HZ:_- .
WO iwpy Ox

We select a coordinate system, as illustrated in Fig.D.2, and assume that the
angle of incidence is 0f, which is the same as the angle of reflection. If we express
the amplitudes of the electric fields in the cladding layer, the guiding layer, and the
substrate as E., Ef, and E, respectively, the electric field £, is written as

E, = E¢ exp(—7cx) : cladding layer,
Ey = Efcos(kyx + ¢¢) : guiding layer, (D.11)
Ey, = Es exp[vs(x + h)] : substrate,

where

B8 =koN, N = nssinby, (D.12)

Yo = kovV N2 —nc?, ky =kovne? — N2, ~v = kovV N2 — ng2. (D.13)

Fig. D.2 Cross-sectional x
view of a two-dimensional y
optical waveguide
Cladding layer
x=0
/BFP\ Guiding layer
x=-h
Substrate
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Ateach interface, the tangent of the electric field £, and that of the magnetic field

H are continuous. Therefore, we obtain

E. = Efcos ¢., tan¢o. = Z—C: x =0,

X
Es = Ercos(keh — ¢o), tan(keh — o) = Z—S  x=—h.
X

From (D.14) and (D.15), the eigenvalue equation is expressed as

-1 e + tan™! X

koh = + tan
" mm a i

where m is a nonnegative integer. Because the following relation

ky = kongcos ¢, tan” — = ¢, tan

is satisfied, (D.16) is the same as (3.16).

D.3 TM Mode

(D.14)

(D.15)

(D.16)

(D.17)

The electromagnetic wave whose magnetic field H does not have a component H,
along the propagation direction is called the transverse magnetic (TM) wave. For the

TM wave with H, = 0, (D.4) reduces to

iBE, = —iwuoHy, iBH, =icon’ wEy,

OE
—i0Ey — 3 L= —iwpoH,, —ipH, = isonrszU,
. 1 1
O0E, O0H, 2
— =0, — =i E,.
o Ee ieon” wk,
For brevity, if we put £, = 0, (D.18) results in

J6] 1 OH,
H. =0, E,= H, E.=—1ux——,

* T eonlw Y ST jeonslw Ox

1 OE

H, = iE + S

Wl * iwpy Ox
Substituting (D.19) into (D.20) leads to
2

d
57 Myt (ko*ne*> — 8*)H, = 0.

(D.18)

(D.19)

(D.20)

(D.21)
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In summary, the electric field and the magnetic field for the TM mode obey the
following equation given by

p 1 OH,
E,=—" H. E, =0 E.=— 2%
YT eon2w Y ST jeonslw Ox
(D.22)
82 2.2 2
Hy=H, =0, WHg/+(k0nr —6)[‘1?/:0.

If we express the amplitudes of the magnetic fields in the cladding layer, the
guiding layer, and the substrate as Hc, H, and Hg, the magnetic field Hy is written
as

H, = H. exp(—cx) : cladding layer,
Hy, = Hfcos(kyx + ¢) : guiding layer, (D.23)
H, = Hg exp[vs(x + h)] : substrate.

Ateach interface, the tangent of the magnetic field Hy, and that of the electric field
E, are continuous, respectively. Therefore, we obtain

Ye
ne?

k
H. = Hs cos ¢, He=—5 Hisinge: x =0, (D.24)
ng

k
Hy = Hycostkeh — ¢o), 5 Hy = —5 Hysin(keh — ¢o) : x = —h. (D.25)
n ne

N

From (D.24) and (D.25), we obtain the following eigenvalue equation

N N2
keh =mr+tan—' | (Z£) 2| fan—t | (20) 25, (D.26)
ne ky ng kx

where m is a nonnegative integer.
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Characteristic Matrix in Discrete Approach

E.1 Fundamental Equation

When the electric current does not flow, Maxwell’s equations in a uniform optical
material with the refractive index n; and magnetic permeability in a vacuum g are
written as

OE

= (E.1)

VxE:—uog, V x H = egn;

where E is the electric field, H is the magnetic field, and ¢ is permittivity in a
vacuum. We can also express (E.1) with each component as

JE., OE, OH, OH, 0H, , OEy

— Q5 = —HMo > - 5 = E&onr s
oy 0z ot oy 0z ot
0E, OE, OH, OH., OH, , OE,

It ] _ o2 Y E2
0z Ox 05 oz ox M Ty E2)
OE, OE, OH. 0H, OH, , O,

- = —Ho P - = &onr .
ox oy ot 0x dy ot

We assume that a light propagates toward a positive direction on the z-axis, and
dependence of the electric field E and the magnetic field H on time is expressed as
exp(iwt). In this case, we obtain 9/0¢ = iw. Therefore, (E.2) reduces to

OH, 5'Hy ko

8@? _ a;;y = —ikoZoHy, 5= =5t = IZ—O”rZEx’
88sz - a@iz = —ikoZoH,, a(;zx - aalzz =i§—(:)”r2Eyv (E3)
% _ 66? = —ikoZoH;, % - 8@?‘ = i%nrzEz,
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where kyp = w/c is a wave number in a vacuum, ¢ = 1/,/€op0 is the speed of light
in a vacuum, and Zy = +/po/€o is the impedance of vacuum.

E.2 TE Mode

We consider the optical waveguide shown in Fig.D.1. Because the lightwave is
uniform along the y-axis, we have 9/Jy = 0, which results in E, = E; = 0 and
H, = 0 for the TE wave from (D.10). Therefore, (E.3) reduces to

OE OE
L =ikoZoHy, — = —ikoZoH,
0x
(E4)
— - =i—n"E,.
oz ox  zg" Y
From (E.4), we obtain a wave equation as
O*E, OE, OH, OH, -
: =ikoZ — = —k E,. E.5
Ox? 82 M0 0( 0z Ox ) 07t By (E-5)

Here, we assume a separation-of-variables procedure. Substituting E, =
X (x)U(z) into (E.5) and then dividing both sides by E, lead to

—_—— = — = —koznrz. (E.6)
<

From (E.6), if we put

19X 222 1 9*U 2.2 2
? W = —ko ny~ S 9, E a_zz = —k() ny~ COS 9, (E7)
where 6 is defined in Fig. E.1, we can express E,, as
E, = U(z) expli(wt — kon,x sin @) ]. (E.8)

Propagation direction
of light

Fig. E.1 Definition of ¢
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Similarly, we have

ZoH, = V(z) exp[i(wt — konyx sinf) ],

ZoH, = W(z) expli(wt — konyx sin6) ]. (E.9)
Substituting (E.8) and (E.9) into (E.4) results in
dU
— =1ikyV, (E.10)
dz
nesingd-U =W, (E.11)
v . . ’
d—+1k0nrsm0~W= ikon“U. (E.12)
Z
From (E.11) and (E.12), we obtain
dv
— = ikon;>cos?0 - U. (E.13)
dz
Differentiating (E.13) with respect to z with the help of (E.10), we have
d?v )
el + koZn.> cos®0 -V = 0. (E.14)
In summary, a relationship between U and V is written as
d?U d?v
a2 + ko’n,? cos’d - U = 0, e + ko’n.> cos®0 -V =0, (E.15)
dU dv
— = ikoV, — = ikons>cos’>0-U. (E.16)
dz dz
From (E.15) and (E.16), solutions for U and V are expressed as
U = Acos(kon;z cos @) + B sin(kon,z cos ), (E.17)
V = in; cos [ A sin(kgn;z cos 0) — B cos(kon,z cos 6)]. (E.18)

Because (E.15) is a linear differential equation of the second order, we can express
U and V as

U] _[F@ f@][UO
[V(Z):| - |:G(Z) g(z):| [V(O)]’ (E.19)

where

= f(@), Ua=F(2), Vi=g@, V2 =G). (E.20)
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Also, from (E.16), we have the following relation

dUu dU.
LU =ik, =2 =U) = ikVs, (E21)
dz dz
dv dv.
oy = ikom2cos20- Uy, —2 =Vy = ikons2cos*0-Us,  (E.22)
dz dz
from which we obtain
UV — ViU, =0, ViUy’ — UV, =0. (E.23)
As a result, we have
d
d—(Ul Vo — ViUz) = 0. (E.24)
z
Therefore, the following determinant is satisfied:
Uy Uy|
‘ Vv, = constant. (E.25)

As the matrix elements satisfying (E.25), we consider

f0)=G0)=0, F(0)=g0) =1,

(E.26)
F(2)g(z) — f(2)G(z) = 1.
From (E.19) and (E.26), we define the transfer matrix M as
vo | _ U(z) _| 9@ —f@
[V(m} _M[V(z)]’ M= [—G(z) F(2) ] 2D
Also, from (E.17), (E.18), and (E.26), we put
fl2) = i sin(konyz cos ),
nycosf
F(z) = cos(kgn;z cos6), (E.28)

g(z) = cos(konyz cos ),
G(z) = inycos@ - sin(kgn,z cos 6).

If we place
Bi = konyzcos, p; = nycosb, (E.29)



Appendix E: Characteristic Matrix in Discrete Approach 263

Fig. E.2 Propagation of light 1o n, n
in a region with different
refractive indexes )
6
60,
>z
z=0 =2

and substitute (E.28) and (E.29) into (E.27), we can express the transfer matrix M as

M= (E.30)

L
. myy m
—ip;sinf; cosf; 21 122

cos (3; —Lsinﬁi _ [m11m12i|

As shown in Fig. E.2, we consider a light propagating along the arrow in sequen-
tially placed layers with different refractive indexes. The tangent of the electric field
E, and that of the magnetic field H, are continuous at each interface. Therefore,
if we write the tangent components of the electric fields for the incident wave, the
reflected wave, and the transmitted wave as A, R, and T, respectively, the boundary
condition is expressed as

A+R=U0), T=U(z1), (E.31)
po(A—R) =V (), piT =V (z1), (E.32)

where
po =nocosf, p; =njcosb. (E.33)

Here, ng and n| are the refractive indexes of the first and last media, respectively.
From (E.27) and (E.30)—(E.33), we obtain

A+ R = (m +mpp)T, (E.34)
Po(A — R) = (may +moap)T. (E.35)

From (E.34) and (E.35), the amplitude reflectivity r and the amplitude transmissivity
t are given by

_ (my +muap1)po — (ma1 +mayp1)

R

y = — = ’ (E36)
A (my1+mppry)po+ (may +mppr)
T 2

f=— = Po . (E.37)
A (my +mpap1)po + (m21 +manpr)



264 Appendix E: Characteristic Matrix in Discrete Approach

Using the amplitude reflectivity » and the amplitude transmissivity ¢, the power
reflectivity R and the power transmissivity T are expressed as
= ﬂ t *
Do

R=r*r, T t. (E.38)

E.3 TM Mode
For the TM wave, we have E,;, = O and H, = H, = 0from (D.22). Other components

of the TM wave are written as

ZoH, = U(z) expli(wt — konx sin ) ],
E, = —V(2) expli(wt — konx sin6) ], (E.39)
E, = —W(z) expli (wt — konx sin ) ].

Also, from (E.3), we have

OH, ko

—az‘” = _1Z_0nr2EXa

OH, ko

8xy = lz—onrzEz, (E.40)
JEy OE,
= _ = —ikoZoH,
62 Ox 1K0 £ Y

Therefore, we obtain a wave equation

*H, O0°H,  kon? (8Ex OE;,

Ox? 072 ! Zo B

= —ko’n;2H,. E.41
dz ax) 0 Mt My E41)

Substituting (E.39) into (E.41) gives

d*U
= (kony cos 0)>U = 0. (E.42)

Inserting (E.39) into (E.40) results in

dU
— = ikon2V, (E.43)
dz
sinf-U = n,W, (E.44)
v | . .
— +ikgn,sinf - W = ikgU. (E.45)

dz
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From (E.44) and (E.45), we obtain

dv
— = ikgcos?0 - U. (E.46)
dz

Differentiating (E.46) with respect to z with the help of (E.43) results in

d*v

3z + (konx cos 0)*V = 0. (E47)

In summary, a relationship between U and V for the TM mode is written as

d’u d>v
—— 4 ko*n2cos20-U =0, — +ko’ns2cos’0 -V =0, (E.48)
dz? dz2
dU dv
— = ikon?V, — = ikocos?6-U. (E.49)
dz dz

For the TM mode, the transfer matrix M, the amplitude reflectivity r, the amplitude
transmissivity ¢, the power reflectivity R, and the power transmissivity 7 are obtained
by replacing p; for the TE mode with

cos

g = (E.50)

nr



Appendix F
Free Carrier Absorption and Plasma Effect

An equation of motion for the electron in a crystal without a magnetic field is given by

L2 1 dx
where m™* is the effective mass of the electron, 7 is the relaxation time such as the
mean free time of collision, e is the elementary charge, and E is the electric field. If
we assume dependence of x and E on time ¢ is expressed as exp(i wt) where w is the
angular frequency of a light, a position x of the electron is obtained as

____cE (F2)
x_m*(wz—iw/T). '

The polarization P of a material is written as
P = Py+ P;; Py = —nex, (E.3)

where Py is the polarization caused by ionization of atoms constituting the crystal,
and P is the polarization induced by the motion of the electrons. Here, we express
the electric flux density D as

D =¢)E+ P = (e0E + Py) + P| = eoE + P| = €'y E, (F4)

where € is permittivity in a vacuum and ¢ is the dielectric constant of the crystal
based on ionization of the atoms. The dielectric constant £/, which is modified by
the motion of the electrons, is written as

nex
g =¢—igg=¢— —, (E.5)
coE
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where &; and &; are real and imaginary parts of &', respectively. Substituting (F.2)
into (F.5) leads to

ne’ (F6)
Er—EX ————, :
! m*w?2eg
ne’

i —10 (E7)

m*w eoT

where w >> 1/7 was used.
Using the complex refractive index n; — ik, we can express €, and €; as

Er = nr2 — ,‘iz, (E.8)
€i = 2n;K. (F.9)

Therefore, the optical power absorption coefficient o due to free carrier absorption
is obtained as

2w W Ej ne? (E.10)

¢ cne  mrweoneer’

where c is the speed of light in a vacuum.
When the carrier concentration increases by n, we assume that ¢, and n; change
to er + As; and ny + Any, respectively. In this case, we have

2ne Any = Aey. (F.11)
Hence, we obtain
A _ 2
App=t 78 ¢, (F.12)
2n; 2n; 2m*wregn;

which is referred to as the free carrier plasma effect.



Appendix G
Relative Intensity Noise (RIN)

G.1 Rate Equations with Fluctuations

When semiconductor lasers show two-mode operations, the rate equations on the
photon densities S; and S, and the carrier concentration n are expressed as

ds n
=L = (a1 = B1S1 — 01252 S1 + fopi — + Fi (1), (G.1)
dt Tn
dsS, n
e (a2 — (282 — 02181) S2 + ﬁsp2T— + P2 (1), (G.2)
n

dn I

—=——[G — 3181 — 0125218

TR [G1(n) — 318 12521 81

— [Ga(n) — $2Sr — 0215118, — Tﬁ + Fa(1). (G.3)

Here, o; = G;(n) — 1/7py; is the net amplification rate, G; (n) is the amplification
rate, Tpn; is the photon lifetime, 3; is the self-saturation coefficient, 6;; is the cross-
saturation coefficient, ﬂspi is the spontaneous emission coupling factor (i, j = 1, 2),
Tn 18 the carrier lifetime, [ is the injection current, e is the elementary charge, and
Va4 is a volume of the active layer.

Fluctuations are expressed by the Langevin noise sources Fj, F», and Fj,. In
Markoffian approximation, time averages of Fi, F», and F;, satisfy

(Fi(1)) =0, G4
(Fe(O) Fi(t)) = 2Dud(t — 1), (G.5)

where k, [ = 1, 2, and n. The diffusion coefficients Dy; are given by
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n n
Dy1 = Bsp1 —S10, D22 = Bsp2— 520, D12 = Dp1 =0,
Tn Tn

n n n
Dy = ﬁspl —Si0 + ﬁsp2_520 + —, (G.6)
Tn Tn Tn
n n
Din = —Bspt — 810, Dan = —Bsp2— 520,
Tn Tn

where S1p and Sy are the average photon densities of mode 1 and mode 2, respec-
tively.
The amplification rate G;(n) is given by

06,

Gi(n) = [ e

] (n —noi), (G.7)
N=Nthj

where ny; is the threshold carrier concentration and ng; is the transparent carrier
concentration.

G.2 RIN Without Carrier Fluctuations

We express the photon densities S; and S as
S1 = S10+081(t), S2= S20 +952(1), (G.8)

where Sj and Sy¢ are the average photon densities in a steady state, and 6S; and
08> are the fluctuations of mode 1 and mode 2, respectively. Substituting Fourier
transforms

e ¢]

1 ~ .
88i(t) = > / 88 (w) exp(iwt) dw, (G.9)
8Si(w) = / 88; (1) exp(—iwr) dr, (G.10)
F,(t):% / F; (w) exp(iwt) dw, (G.11)
Fi(w) = / F;(t) exp(—iwt) dt, (G.12)

—00
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into (G.1)—(G.3), and then neglecting F(¢), we have

iwdS (W) = —A10S1 (W) — B18SH(w) + Fi(w), (G.13)
iwdSH (W) = —A208 (W) — B2dS| (W) + F>r(w), (G.14)
where
A1 = B1S10, Az = $280, (G.15)
B1 = 612510, B2 = 6215. (G.16)

From (~Gﬁ;13) and (G.14), the self-correlation functions (5S; (w)5§1*(w/ )) and
(082 (w)dSy (w')) are given by

(08168 (W) = S5, (W) - 2m6(w — W), (G.17)
(W? + AHW| — 24, B\ Wip + B> W)
(A1A2 — BiBy —w?)? + w2 (A1 + Ap)?’
(685 (w)88," (W) = S5, (W) - 216 (w — W), (G.19)
(W? + A1) Wa — 2A1 ByWay + B22 W,

Sss, (W) =

(G.18)

Sos, (W) = (A1Az — B1By — w?)? + w2 (A + Ap)?’ (G.20)
where
Wi = (Fi(w)F (), (G.21)
Wy = (B W) F (W), (G.22)
Wiz = (F(w)F (W) (G.23)

In the shot noise Langevin model, the correlation strengths (Fy (w) i (w)) and
(Fr(w)Fy" (w)) are given by

(Fe@)FC @), = D RE+D Ry (G.24)
(B @) = = (X Ru + X Ruc) (G.25)

where R,j' and R, (k = 1, 2) are the rate for the photon to enter the photon reservoirs
and to leave them, respectively; R,:r and R, (k = n) are the rate for the electron to
enter the electron reservoirs and to leave them, respectively; and Ry; and Ry are the
exchange rates.
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As aresult, the correlation strength (P: 1 (W) F 1 *(w)) is obtained as

Wi = (Fi(w)Fi " (w))

1 1 n
=— [(Oﬂ +— + 51810+ 912520) S10 + Bspi —]
Va Tphl Tn
1 S
- (Oé1 N _> Sio (G.26)
Tph1 /) Va
Similarly, we have
~ ~ 1 S$20
Wo={(RWwk W)>2{a+—)—, (G.27)
Th2/) Va
~ ~ S10820
Wiz = (Fl(w) 2 (W) > (012 + 621) Vi o War. (G.28)

Using (G.18) and (G.20), we define the relative intensity noises (RINs) per unit
bandwidth as

2855,w) 2 (W4 A)Wi — 24, B Wia + Bi*W,

RIN; = = , G.29
: S10? S102 (A1A2 — Bi By — w?)? + W2(A| + A2)? ( )
28, 2 2L AWy — 241 BaWay + B2W
RIN, — 6S2§W) -2 (W + AW, 212 2 §1+ ) 12. (G.30)
$20 S20” (A1Az — B1By — w?) +w=(A1 + Ap)
G.3 RIN with Carrier Fluctuations
We express the carrier concentration n as
n =ne + on(t), (G.31)

where n.q is the carrier concentration in a steady state and dn is the fluctuation in
the carrier concentration. Their Fourier transforms are written as
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5n(t):%/5ﬁ(w)exp(iwt)dw, (G.32)
di(w) = / on(t) exp(—iwr) dr, (G.33)
F,,(z):% / F(w) exp(iwt) dw, (G.34)
Fp(w) = / F (1) exp(—iwt) dr. (G.35)

Substituting (G.9)—(G.12) and (G.32)—(G.35) into (G.1)—-(G.3), we have

iwdS) (W) = —A18S)(w) — B16S2(w) + C16i(w) + Fi(w), (G.36)
1wdSH (W) = —A208 (W) — BdS1(w) + C2dii(w) + Fr(w), (G.37)
{wdii(w) = —G1(ne0)dS1 (W) — G2(11¢0)S2(w)
+ C30i(w) + Fp(w), (G.38)
where

Ci = [@] Sp0 4 201 (G.39)

on n=ng T
C, = [@] Sho + p P2 (G.40)

on n=np Tn

1

C;=C +C2+T—. (G40

n

From 5(5.36)—(G.38), the self-correlation functions (651(w)5§1*(w/)) and
(082 (w)dS, (w')) are given by

(681 @)3S) (W) = Sss,(w) - 2m8(w — ), (G.42)

5951 () = |X1Xy — Y112

x {1 X2* W) — (X2*Y) + X2¥1*)Wia

+IViIPW2+121 X2 — ZoY1 P W,

+[X2"(Z1X2 — ZoYh) + X2(Z1 X2 — ZoY1)* W,
—INM"(Z1 X2 — ZoY1) + Y1(Z1 X2 — Z2Y1)* W2}, (G43)
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(652 (W)08:" (W) = Ss5, W) - 276 (W — W), (G.44)

P T - P
x {|V2PWi — (X1*Y2 + X1 125 Wi

+IX1PWa + 1 22X) = Z1Va P W,

— (22 X1 — Z1Y2) + Ya(Z2 X1 — Z1Y2) Wy,
+[X1"(Z2X1 — Z112) + X1(Z2X1 — Z1Y2)* W2}, (G.45)

where
. C1Gi(nco)
X = A _ G.46
1= iw+ A1+ 01 Cs ( )
) CrGa(nco)
X, = A . G.47
2=1iw+ Ay + o1 G ( )
C1G2(neo)
YI=8B _— G.48
1 1+ o1 G ( )
C2G1(neo)
Y» =B —_ G.49
2 >+ o1 Cs ( )
Cy
7| = ——, G.50
! iw+ C3 ( )
G
Iy = ————, G.51
2T 0T G G:5h
- ~ % 21y
Wy = (Fp(w)Fy, (W) = R (G.52)
eVa
Win = (FLW)Fy (W) = =W, (G.53)
Wan = (B (W) F,” () = —Wa. (G.54)
Using (G.43) and (G.45), we obtain the RINs per unit bandwidth as
28
RIN; = “f”
S1o
. 2 1
S0 1 X1 X2 — Y 1o
x {|X2* Wi — (X2*Y) + XY F)Wpo
+VPWo + | Z1Xo — ZaY1 P W,
+ [X2*(Z1X2 — ZoY1) + X2(Z1 X2 — ZoY1)*IWi,
— N"(Z1X2 — ZoY1) + YI(Z1 X2 — Z2Y1) TWa,}, (G.55)
28,
RIN, = 55_22“’)

$20
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. 2 1
507 1X1Xa — V1 Ysf?
x (|22 Wy — (X1*Y2 + X1 25)Wia
+IX1PWa + | Z2X1 — Z1 Yl W,
— (22 X1 — Z1Y2) 4+ Ya(Z2 X1 — Z1Y2)* 1Wh

+ [X1*(Z2X1 — Z1Y2) + X1(Za X1 — Z1Y2)¥1Wa,).

275

(G.56)



Appendix H

Rate Equations: Comparison of Two Definitions
of the Photon Density

H.1 Rate Equations for the Number of the Photons Npp

Prior to comparing two definitions of the photon density, we show the rate equations
for the number of the carriers and the number of the photons, because they are the
bases of the rate equations for the carrier concentration and the photon density.

If we assume that the number of the electrons N is equal to the number of the
holes P, the rate equations for the number of the carriers N and the number of the
photons Npy of the laser light are given by

dN 1 GN N
- _Gm _
dt e ph Th
1 N
= - —gm)RNph — —, (H.1)
e T
dNph N

Nph

= GW)Ny — =22 -

dr (n) Nph oh +5sp =
Nph N

= g(m)WNph — —= + By —. (H.2)
Tph Tr

Here, I is the injection current flowing through the active layer; e is the elementary
charge; G (n) = g(n) I} is the mode amplification rate due to the stimulated emission;
g(n) is the amplification rate in the active layer due to the stimulated emission; n
is the carrier concentration; I is the optical confinement factor of the active layer;
T, is the carrier lifetime; 7y, is the photon lifetime; (3;p is the spontaneous emission
coupling factor; and 7y is the radiative recombination lifetime due to the spontaneous
emission.

In (H.1), /e is an increased rate of the number of the carriers in the active layer;
—G(n)Nph = —g(n) 'y Nph shows a consumption rate of the number of the carriers
due to the stimulated emission. It should be noted that only the photons existing in
the active layer contribute to the stimulated emission; the number of the photons
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existing in the active layer is denoted by I"y Npy. The third term in the right-hand side
in (H.1), —N/7,, expresses a decay rate of the number of the carriers in the carrier
lifetime 7,,.

In (H.2), G(n)Nph = g(n)I3Nph shows an increased rate of the number of the
photons Nph due to the stimulated emission; —Nph/7ph is a decreased rate of the
number of the photons inside the optical cavity due to the absorption and light
emission toward the outside of the optical cavity; and 3sp N /7; represents a coupling
rate of spontaneously emitted photons to the lasing mode, which is a resonance mode
of the cavity.

H.2 Rate Equations for the Photon Density S = Npn/ Va

The carrier concentration 7 is defined as n = N/ V,; the photon density S is defined
as § = Npn/Va where N is the number of the carriers in the active layer, Npj, is the
number of the photons, and Vj is the volume of the active layer.

Dividing the both sides of (H.1) by the volume of the active layer V,, the left-hand
side and the right-hand side are written as

1dN _d(N/Vy) _ dn

Left-hand side = — — = ———~ = — (H.3)
Va dt dr dt
. . 1 (1 N
Right-hand side = — | — — G(n)Nph — —
Vale Tn
1/V. N, N/V,
— /Va —G@n) ph #
e Va Tn
J n
-~ _Gm)S — —. (H.4)
ed Th

Here, J = I/A is the injection current density, which is an electric current flowing
through a unit area in the active layer, A is the area of the active layer,d = V,/A is
the thickness of the active layer.

Dividing the both sides of (H.2) by the volume of the active layer V,, the left-hand
side and the right-hand side are expressed as

1 dNph  d(Npn/Va)  dS

Left-hand side = =—, (H.5)
V, dr dt dt
. . 1 Nph N
Right-hand side = — | G(n)Nph — —— + Bep —
Va Tph Tr
N, Npnh/ V: N/V,
— Gy Nen _ Non/Va + Byp /Va
Va Tph Tr
S n
=G(n)S — —+ Bp —. (H.6)
Tph Tr
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From (H.3)-(H.6), we obtain the following rate equations

WL G- L (H.7)
dt  ed Tn ’
ds S n

which are shown in (5.20) and (5.21), respectively.

H.3 Rate Equations for the Photon Density s = Nph/ Vi

The carrier concentration n is defined as n = N/ V,; the photon density s is defined
as s = Nph/Vm where N is the number of the carriers in the active layer, Npy is
the number of the photons, Vj, is the volume of the active layer, and Vy, is the mode
volume. The optical confinement factor of the active layer I, is givenby Iy = V,/ Viy.

Dividing the both sides of (H.1) by the volume of the active layer V,, the left-hand
side and the right-hand side are written as

. 1 dN d(N/V,) dn
Left-hand sidle = —— = — = —, H.9
cii-hand side V, dt dt dt (H9)

11 N
Right-hand side = — |:— — gm) 3 Nph — —:|

Vale Th

Ve Ve N N/

B Vi Va Tn
J n

=— —g(n)s — —. (H.10)
ed T

Here, J = I/A is the injection current density, which is an electric current flowing
through a unit area in the active layer, A is the area of the active layer,d = V,/A is
the thickness of the active layer.

Dividing the both sides of (H.2) by the mode volume Vy,, the left-hand side and
the right-hand side are expressed as

I dNph  d(Npn/Vm) _ ds

Left-hand side = = =, H.11
cli-and side Vi dt dr dr ( )
1 N, N
Right-hand side = — |:g(n)FaNph _ ey Bsp —]
Vm Tph Tr
Npon  Npn/ Vi N/V,
= g(}’l)ra_p S - +/Bsp / =
Vi Tph T
K n
- ag(n)s - + Faﬂsp -, (le)
Tph Tr
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where N/ Vi = (N/ V) - (Va/ Vi) = nl} was used.
From (H.9)-(H.12), we obtain the following rate equations

dn _ J - n (H.13)

dt ea I° T '

ds s n

d_ = lgn)s — — + Faﬁsp —- (H.14)
1t Tph Tr

Using the transparent carrier concentration n¢, in which a semiconductor is trans-
parent, the amplification rate due to the stimulated emission g(n) can be approxi-
mately written as

g(n) = go(n — no), (H.15)
where g is the differential gain coefficient, which is defined as

dg
= —, H.1
90 =3, (H.16)

By using the small-signal analysis, approximate analytical solutions can be ob-
tained from (H.13) and (H.14). To proceed the small-signal analysis, we put the
carrier concentration n, the photon density s, and the current density J as follows:

n=ne+on, s=so+9s, J=Jyg+3J > Jp, (H.17)
neo > on, so > 0s, Jo > 0J, ’
where n¢o, so, Jo are steady state values of the carrier concentration, the photon
density, and the current density, respectively; dn, ds, and §J are the deviations from
each steady-state value.

Neglecting coupling of the spontaneous emission to the lasing mode, (H.13) and
(H.14) are reduced to

dn _ J - n (H.18)
dt e TVPT L ‘
ds s

— =Tg(n)s — —. (H.19)
dr Tph

In a steady state (d/d¢ = 0), substituting (H.17) into (H.18) and (H.19) leads to

Jo neo
= — g(neo)so — — =0, (H.20)
ed Th
1
Ig(ne) = —. (H.21)
Tph

Substituting (H.17) into (H.15) results in
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g(n) = g(nep + on) = go(neo + on — no)

0
=%mw—mnwwn=me+5§m (H.22)

where (H.16) was used.

Inserting (H.17) into (H.18) and (H.19) with the help of (H.20)-(H.22) and then
neglecting the second-order small term dn - ds, the rate equations on the deviations
on and ds are written as

—n=—— —— — —=s90n — —, H.23
dr " ed Iympn  On soon T ( )
d g

—0s = Ih— . H.24
” ds aanso(Sn ( )

By removing dn from (H.23) and (H.24), we have

d? dg 1 dg so g so
— 0 —0s + ——0d0s = Ih——4J. H.25
dr? s+(8 SO+7_”) +8n7ph A0 ed ( )

From (H.25), the decay coefficient 7, the decay time 7y, and the oscillation angular
frequency w; are written as

9 11

o= Ssg 4+ — = —, (H.26)
on Tn  Tre
9

wl =290 (H.27)
on Tph

From (H.27) and (H.21), the relaxation oscillation frequency f; is given by

1 [dg so 1 dg
— | =2 — — [ Thg(neo) == s0. H.28
2r\ Onpn 2w 9(nc0) on 50 ( )
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A
Absorption, 1, 26, 31
induced, 26
rate, 31
Absorption loss, 81
ACC, see automatic current control (ACC)
« parameter, 162
Alternating current theory, 150
AM noise, see amplitude modulating (AM)
noise
Amplitude modulating (AM) noise, 156
Amplitude shift keying (ASK), 149
Analog modulation, 151
Angle of incidence, 44
Anisotropic optical gain, 205
Antiguiding, 123
-effect, 119
Antiguiding effect, 119
Antireflection (AR), 188, 195
Anti-Stokes luminescence, 25
APC, see automatic power control (APC)
Aspect ratio, 57
Astigmatism, 120
Asymmetry measure, 49
Auger process, 23, 105
Autocorrelation function, 160
Automatic current control (ACC), 185
Automatic power control (APC), 156, 182,
185
Axial mode, 137

B

Band edge emission, 26

Band filling effect, 37

Band offset, 14, 91
Band-structure engineering, 212
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Bandgap, 1
Base function, 15
Beam waist, 120
Bernard-Duraffourg relation, 35
BH, see buried heterostructure (BH)
Bias, 141
Biaxial stress, 220
Biot-Savart’s law, 6
Bistable LD, 176
Blackbody radiation theory, 32
Bloch function, 3
Bloch oscillation, 21
Bloch theorem, 3
Bohr angular frequency, 246
Bohr magneton, 7
Boltzmann constant, 29
Bra vector, 4
Bragg wavelength, 70, 192
Brillouin zone, 2

bending of, 21
Buffer layer, 213
Bulk, 2
Buried heterostructure (BH), 122

C
(C3) LD, see cleaved coupled cavity (3
LD
Carrier concentration, 97
threshold, 100
Carrier distribution, 28
Carrier lifetime, 90, 97
Carrier noise, 156
Catastrophic optical damage (COD), 183
Cathodoluminescence, 25
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distributed feedback (DFB), 61

283

Springer Series in Optical Sciences 93, DOI 10.1007/978-4-431-55148-5



284

Fabry-Perot, 61
optical, 27, 61
ring, 61
Cavity quantum electrodynamics (QED),
227
Characteristic matrix, 73
Characteristic temperature, 104
Chemiluminescence, 25
Chirped grating, 76
Chirping, 147
Chromatic dispersion, 77, 155
Cladding layer, 43
Cleaved coupled cavity (C?) LD, 199
Cleaved facet, 61
COD, see catastrophic optical damage
(COD)
Coherent, 147
Complex refractive index, 41
Compressive strain, 213
Confinement of resonant radiation, 232
Coupled cavity, 177
Coupled wave equation, 70
Coupled wave theory, 70
Coupling coefficient, 69
Coupling rate of a feedback light to the semi-
conductor laser, 178
Critical angle, 43
Critical thickness, 22, 213
Crystal defect, 182
Current versus light output (/-L), 97
Cutoff, 44
condition, 50
Cyclotron angular frequency, 235
Cyclotron motion, 236
Cyclotron resonance, 11, 236

D
Dark line defect, 184
DBR, see distributed Bragg reflector (DBR)
DBR-LD, see distributed Bragg reflector
(DBR) LD
Decay coefficient, 145
Decay rate, 178
Decay time, 146
Deformation potential, 219
Degenerate, 4
Degradation, 182
¢ function, 161
Density of states, 15
effective, 29
Derivative
electrical resistance, 107, 109

Index

light output, 107, 108
measurement, 107
Deviation, 144
DFB, see distributed feedback (DFB)
DFB-LD, see distributed feedback (DFB)
LD
Diagonal element, 213
Diamond structure, 4
Dielectric film, 62
Differential gain, 145
Diffracted pattern, 114
Diffraction grating, 61, 187
Diffusion length, 121
Digital modulation, 151, 153
Dipole moment, 36
Dirac’s constant, 3
Direct modulation, 147, 149
Direct transition, 11, 23
Discrete, 1
Discrete approach, 72
Dislocation, 22, 184
Dispersion, 81, 138
chromatic, 77, 155
material, 155
mode, 155
structual, 155
Dispersion curve, 49
Distributed bragg reflector (DBR), 61
Distributed Bragg reflector (DBR) LD, 187
Distributed feedback (DFB), 61
Distributed feedback (DFB) LD, 187
Double heterostructure, 21, 91
Duty, 153
Dynamic single-mode LD, 187

E
Effective density of states, 29
Effective mass, 4
approximation, 4
Effective mass approximation, 15
Effective refractive index, 48
method, 57
Eigenvalue equation, 49
Einstein summation convention, 219
Einstein’s A coefficient, 32
Einstein’s B coefficient, 32
Einstein’s relation, 32
Elastic strain, 22, 213
Electric current noise, 156
Electric dipole moment, 251
Electric dipole transition, 251
Electroluminescence, 25



Index

injection-type, 25
Electron-beam exposure, 82
Emission, 1

induced, 26

spontaneous, 26

stimulated, 26
Energy band, 1
Energy barrier, 91
Energy barrier layer, 14
Energy eigenvalue, 3
Energy level, 1
Ensemble average, 159
Envelope function, 15
Equivalent refractive index, 139
Etching mask, 82
Evanescent wave, 47
Excitation, 23
Excited state, 227
Exciton, 25, 150
Exciton recombination, 26
External cavity, 177
External cavity laser, 169
External cavity LD, 199
External differential quantum efficiency, 95
External modulation, 147, 150
Extinction coefficient, 42
Extinction ratio, 146
Eye pattern, 153

F
Fabry-Perot cavity, 61
Facet, 50
Far-field pattern, 114
Feedback, 27
Fermi level, 28
quasi-, 29
Fermi’s golden rule, 227
Fermi-Dirac distribution, 29
Field spectrum, 160
Finesse, 67
Fluorescence, 25
FM noise, see amplitude modulating (FM)
noise
Forward bias, 90
Franz-Keldysh effect, 150
Free carrier absorption, 105
Free carrier plasma effect, 119
Free space, 41, 229
Free spectral range, 65
Frequency fluctuation spectrum, 160
Frequency modulating (FM) noise, 156
Frequency shift keying (FSK), 149
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Fresnel formulas, 45, 110

Full width at half maximum (FWHM), 66

Fundamental mode, 117

FWHM, see full width at half maximum
(FWHM)

G
Gain
optical, 27
Gain flattening, 204
Gain guiding, 41, 118
Gaussian distribution function, 166
Goos-Hinchen shift, 47
Graded index SCH (GRIN-SCH), 202
Grating
chirped, 76
phase-shifted, 76
tapered, 76
uniform, 76
GRIN-SCH, see graded index SCH (GRIN-
SCH)
Ground state, 227
Group theory, 212
Guiding effect, 120
anti-, 119
Guiding layer, 43

H

Half width at half maximum (HWHM), 66

Harmonic perturbation, 247

Heat sink, 182

Heaviside function, 202

Heavy hole band, 10

Heterojunction, 91

Heterostructure, 21

double, 21,91

High frequency modulation, 176

Holographic exposure, 82

Homojunction, 91

Horizontal cavity surface emitting LD, 199

Horizontal transverse mode, 114, 118

HWHM, see half width at half maximum
(HWHM)

Hybrid orbital, 4

Hydrostatic strain, 213

Hysteresis, 180

Hysteresis loop, 140

I
I-L, see current versus light output (/-L)
Impedance of vacuum, 52, 73, 260
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Impurity recombination, 25

Incident light, 44

Index guiding, 41

Index-coupled grating, 188

Indirect transition, 11, 24

Induced absorption, 26

Induced emission, 26

Injection locking, 51

Injection-type electroluminescence, 25

Intensity fluctuation spectrum, 165

Intensity-modulation/direct-detection, 148

Intentionally accelerating degradation tests,
185

Interaction energy, 7

Interband recombination, 26

Interband transition, 138

Interference fringe pattern, 82

Internal loss, 94

Internal quantum efficiency, 95

Intraband relaxation time, 140, 204

Intrinsic, 90

Inverse Laplace transform, 143

Inverted population, 26

I-V, 106

K

k-selection rule, 38, 203
Ket vector, 4

Kink, 120

k - p perturbation theory, 2

L
Lagrange equation, 249
Lagrangian, 249
A/4-shifted grating, 192
Laplace transform, 143
Laser, 27
Lateral mode, 114
Lattice mismatching, 213
Left-handed circularly polarized wave, 237
Lifetime, 182
Light hole band, 10
Linearly polarized light, 44
Linearly polarized wave, 237
Longitudinal mode, 137
Lorentz equation, 250
Lorentz force, 235
Lorentzian, 39, 98, 167
Luminescence, 24
anti-Stokes, 25
cathodo-, 25
chemi-, 25

Index

electro-, 25

injection-type electro-, 25

photo-, 25

Stokes, 25

thermo-, 25

tribo-, 25
Luttinger parameter, 217
Luttinger-Kohn Hamiltonian, 216, 217

M

Magnetic flux density, 6

Marcatili’s method, 57

Material dispersion, 155

Maxwell’s equations, 53, 54, 74, 253, 259

Microcavity, 229

Minizone, 21

Mirror, 27, 61

Mirror loss, 93

Modal gain, 204

Mode competition, 121

Mode density, 33

Mode dispersion, 155

Mode hopping, 121

Mode number, 47

Mode partition noise, 175

Mode volume, 158

Modified MQW, 201

Modified Schawlow-Townes linewidth for-
mula, 167

Modulation efficiency, 151

MQW-LD, see multiple quantum well
MQW) LD

Multimode operation, 137

Multiple quantum well (MQW) LD, 201

N

Near-field pattern, 114

Negative resistance, 21

Node, 68

Noise, 156

Nondiagonal element, 213
Nonradiative recombination, 23
Nonradiative recombination lifetime, 98
Nonradiative transition, 1
Nonreturn-to-zero (NRZ), 153
Nonthermal equilibrium, 28
Normalized frequency, 49
Normalized waveguide thickness, 49
NRZ, see nonreturn-to-zero (NRZ)



Index

(o)
Ohmic contacts, 182
Optical cavity, 27, 61
Optical confinement factor, 49
Optical fiber, 41
Optical fiber amplifier, 148
Optical gain, 27
Optical isolator, 177
Optical resonator, 27, 61
Optical transition, 1
Optical waveguide, 41
planar, 42
strip, 42
three-dimensional, 42, 56
two-dimensional, 42
Orbit-strain interaction Hamiltonian, 218
Orbital angular momentum, 7
Orbital angular momentum operator, 219
Order of diffraction, 71, 192
Orthonormalize, 158
Oscillation, 92
Overflow, 105

P
Pattern effect, 153
Pauli exclusion principle, 1
Pauli’s spin matrices, 7
Penetration depth, 47
Periodic multilayer, 72
Periodic potential, 13
Perturbation, 239
Perturbation parameter, 2
Perturbation theory
k-p,2
first-order, 3
second-order, 4
Phase shift, 45
Phase shift keying (PSK), 149
Phase velocity, 46
Phase-shifted grating, 76
Phonon, 23
Phosphorescence, 25
Photoluminescence, 25
Photon, 23
Photon density, 97
Photon lifetime, 97
Photon recycling, 232
Photoresist, 82
Pikus-Bir Hamiltonian, 216, 218
Planar optical waveguide, 42
Planck’s constant, 3
Plane of incidence, 44
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Plane wave, 44
Pn-junction, 121

Pnpn structure, 121

Point defect, 184
Polarization, 44
Polarization controller, 149
Population inversion, 26
Potential well, 14

Power fluctuation spectrum, 160
Poynting vector, 250
Propagate, 41

Propagation constant, 46
Propagation mode, 43

Q

Quantum box, 18

Quantum confined stark effect (QCSE), 150

Quantum noise, 156

Quantum number, 3

Quantum structures, 12

Quantum well (QW), 4, 14
one-dimensional, 15
three-dimensional, 18
two-dimensional, 17

Quantum well (QW) LD, 201

Quantum wire, 17

Quarter wavelength shifted grating, 192

Quasi-Fermi level, 29

QW, see quantum well (QW)
strained, 213

QW-LD, see quantum well (QW) LD

R
Radiation, 26
Radiative recombination, 23
Radiative recombination lifetime, 97
Radiative transition, 1
Rate
absorption, 31
spontaneous emission, 31
stimulated emission, 30
transition, 30
Rate equations, 97, 277
Reciprocal effective mass tensor, 4
Recombination, 23
impurity, 25
nonradiative, 23
radiative, 23
Reflected light, 44
Reflector, 27
Refracted light, 44



288

Refractive index, 41
complex, 41
Relative electric susceptibility, 203
Relative intensity noise (RIN), 171, 272
Relaxation, 23
Relaxation oscillation, 141
Resonance angular frequency, 151
Resonance condition, 65, 92
Resonant tunneling effect, 21
Resonator, 27
Return-to-zero (RZ), 153
Rib waveguide, 121
Ridge, 57
Ridge-waveguide, 122
Right-handed circularly polarized wave, 237
Ring cavity, 61
Running wave, 68
RZ, see return-to-zero (RZ)

S
S/N ratio, see signal-to-noise (S/N) ratio
Saturable absorber, 176
Scalar potential, 249
SCH, see separate confinement heterostruc-
ture (SCH)
Schrédinger equation, 2
Screening tests, 185
Selection rule, 209
Self-pulsation, 176
Semiclassical theory, 157
Semimetal, 20
Separate  confinement  heterostructure
(SCH), 202

Separation-of-variables procedure, 260
Shear strain, 213
Signal-to-noise (S/N) ratio, 146
Single crystal, 3
Single quantum well (SQW) LD, 201
Single-mode operation, 137
Slope efficiency, 94
Small-signal analysis, 144
Snell’s law, 43
Spatial hole burning, 119, 192
Spectral density functions, 160
Spectral linewidth, 66, 160
Spectral linewidth enhancement factor, 162
Spherical polar coordinate systems, 8
Spin

angular momentum, 7

magnetic moment, 7
Spin angular momentum operator, 219
Spin-orbit interaction, 6

Index

Hamiltonian, 7
Split-off band, 10
Split-off energy, 10
Spontaneous emission, 26, 31
rate, 31
Spontaneous emission coupling factor, 97
SQW-LD, see single quantum well (SQW)
LD
Standing wave, 68
Steady state, 99
Step function, 202
Stimulated emission, 26, 30
rate, 30
Stokes luminescence, 25
Stop band, 72
Strain, 212
compressive, 213
elastic, 22
hydrostatic, 213
shear, 213
tensile, 213
Strain-dependent ~ spin-orbit interaction
Hamiltonian, 218
Strained QW, 213
Stress, 213
Strip optical waveguide, 42
Structural dispersion, 155
Sub-mode suppression ratio (SMSR), 196
Substrate, 43
Super lattice, 19
Type I, 20
Type I1, 20
Type 111, 20
Surface emitting LD
horizontal cavity, 199
vertical cavity, 198
Synchrotron radiation, 84

T
Tapered grating, 76
TE mode, 44
Tensile strain, 213
Tensor, 213
Thermal equilibrium, 26
Thermoluminescence, 25
Three-dimensional optical waveguide, 42,
56
Threshold
carrier concentration, 100
Threshold current
density, 99
Thyristor, 121



Index

Time-average, 159
Time-dependent quantum mechanical per-
turbation theory, 36

Time-dependent Schrodinger equation, 245
TM mode, 44
Total reflection, 43
Transfer matrix, 71, 262
Transient response theory, 150
Transition

direct, 11, 23

indirect, 11, 24

nonradiative, 1

optical, 1

radiative, 1
Transition rate, 30
Transmission characteristics, 62
Transverse electric (TE) mode, 44
Transverse magnetic (TM) mode, 44
Transverse mode, 114

horizontal, 114, 118

vertical, 114, 115
Transverse resonance condition, 47
Triboluminescence, 25
Tunneling effect, 21

resonant, 21
Turn-on delay time, 141
Two-dimensional optical waveguide, 42
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U

Undoped, 90

Uniform grating, 76
Unperturbed Hamiltonian, 239

v

Valence band absorption, 105

VCSEL, see vertical cavity surface emitting
LD (VCSEL)

Vector potential, 249

Vertical cavity surface emitting LD, 198

Vertical transverse mode, 114, 115

w

Wave function, 2

Wave vector, 2
‘Wiener-Khintchine theorem, 160
Window structure, 183

X
X-ray exposure, 82

Z
Zinc-blende structure, 4
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