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      Foreword   

 The importance of haploidy or single totipotent cell to form a haploid plant is well 
known to plant scientists in the fi eld of agriculture and related disciplines. The work 
on haploidy started in 1921 by A. D. Bergner who reported this fascinating phenom-
enon in  Datura stramonium  L. Since then, numerous fi ndings have been reported in 
various crop species and the efforts to improve doubled haploid production resulted 
in the discovery of various methods like anther culture, isolated microspore culture, 
and wide hybridization. In crop plants, the ability to produce identical/homozygous 
individuals from single cells has dramatically reduced timescale to develop new 
cultivars and doubled haploidy has now become an essential biotechnology tool in 
plant breeding programs. The single cell-culture system provides many opportuni-
ties for process improvement, and genetically identical and physiologically uniform 
single cells are also being used as targets for cell biology, embryology, and genetic 
engineering studies. 

 On planning this monograph, my intent was to discuss the importance of  haploidy 
in a variety of areas from fundamental to applied research and how molecular meth-
ods have been exploited recently to unravel/explore some of the underlying aspects of 
this fascinating developmental phenomenon of doubled haploids. Consequently, the 
brief is divided into six chapters. The introductory chapter (Chap.   1    ) provides infor-
mation to the readers regarding history, production methods, and types of haploids. 
The next three chapters (  2    ,   3    , and   4    ) highlight various steps involved in the production 
of doubled haploids via androgenesis, gynogenesis, and parthenogenesis. The major 
bottlenecks of doubled haploid production like low frequency of green plant produc-
tion and albinism have been discussed in detail along with major achievements that 
have changed the status of many recalcitrant crop species to responsive over the last 
90 years. The use of doubled haploidy in plant breeding program is an effective strat-
egy to achieve homozygosity in one generation and doubled haploid populations are 
being used extensively to map quantitative trait loci/genes of interest. Unicellular 
microspores and haploid embryos are main targets of mutation breeding and genetic 
transformation studies, as discussed in Chap.   5    . Chapter   6     summarizes the brief along 
with future prospects of doubled haploid production. 
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                                  Doubled haploidy is an effi cient and effective research tool to obtain complete 
homozygosity within a heterozygous progeny in a single step. Since its discovery in 
1921, various mechanisms/methods have been developed to produce doubled hap-
loid plants, and the technique is constantly improving. Doubled haploidy has been 
adapted in plant breeding programs for many decades. It is a method of choice in 
crop species that are highly responsive and in which haploid production methodol-
ogy/protocol has been well established. This chapter deals with the history of dou-
bled haploids, production methods, and types of haploids. 

1.1     Overview and History of Haploids 

 The haploid plants are considered sporophytes due to the presence of gametic 
chromosome number ( n ) in the cells. These plants are generally derived from male 
or female gametic cells. In monocots, doubled haploid plants can be produced 
from both male and female gametic cells but in dicot species, the available choice 
is only one cell. The haploids also occur in nature that develop/originate when egg 
cell or synergid directly develop into an embryo without the fusion of male and 
female gametes but these haploids are normally abnormal. Haploid plants have 
been developed in 100 species of angiosperms (Vasil  1997 ) and the phenomenon 
of haploidy is being practiced in many crop species like wheat (Inagaki  2003 ), 
maize (Gaillard et al.  1991 ), barley (Hagberg and Hagberg  1980 ), rice (Bishnoi 
et al.  2000 ), millet (Powell et al.  1975 ), sorghum (Brown  1943 ), oat (Nishiyama 
 1961 ), brassica (Thompson  1974 ), tomato (Kirillova and Bogdanova  1978 ), coca 
(Lanaud  1988 ), and cotton (Turcotte and Feasto  1974 ) for the production of hap-
loids or doubled haploids. The formation of embryo from egg without involve-
ment of sperm cells is called semigamy, and this type of haploidy has been 
observed in cotton where embryo formation takes place from the independent 
division of egg and/or sperm cells. This independent division of egg or sperm cell 

    Chapter 1   
 History, Production Methods, and Types 
of Haploids 



2

(semigamy) is a heritable trait and is controlled by  Se  allele (Hodnett  2006 ). 
In laboratory conditions, embryogenesis is normally achieved by changing envi-
ronmental conditions of anther or microspores by various means, which often 
results in the development of an embryo/multicellular structure as an alternative to 
pollen grain. In case of haploid production, the isolated microspore culture is par-
ticularly important to plant breeders/geneticists due to the presence of embryo-
genic microspores in large number that can develop into hundreds of doubled 
haploid plants under favorable conditions. 

 First overview of haploid production was given by Riley ( 1974 ) who reported 
that haploid production started in 1921 by A. D. Bergner who observed haploidy in 
 Datura stramonium  L. His research work was reported by Blakeslee et al. ( 1922 ). 
Since then, numerous fi ndings of haploid production have been reported in various 
crops like tobacco (Clausen and Goodspeed  1924 ) and wheat (Gaines and Aase 
 1926 ). Due to the importance of haploid production, this phenomenon has increas-
ingly motivated plant breeders/geneticists to investigate various methods of haploid 
production to be able to come up with one that can produce doubled haploids on a 
larger scale (Kimber and Riley  1963 ). These efforts have resulted in the discovery 
of various methods that include wide hybridization, parthenogenesis, alien cyto-
plasm, pollen irradiation, and sparse pollination (Kasha and Maluszynski  2003 ). 
The adoption of haploidy in maize breeding programs was initiated by Chase 
( 1952 ). The maize haploid plants were produced by parthenogenesis that was fol-
lowed by chromosome doubling to make them doubled haploids. The major break-
through in this technique was achieved when Guha and Maheshwari ( 1964 ) 
successfully produced embryos from anthers of  Datura innoxia . Bourgin and Nitsch 
( 1967 ) followed the same procedure and produced haploids in  Nicotiana tabacum  
and  N .  sylvestris . At present, haploid production methods such as isolated micro-
spore culture, anther culture, wide hybridization, and ovule culture are among the 
methods of choice and they are employed in various crops to develop haploids. 
However, response to produce haploids differs greatly from species to species. 
Rapeseed, barley, and tobacco are considered as the most receptive crops to this 
technology, and these crops are often named as “model crops” but even in these crop 
species, haploid production response is mainly genotype dependent. The legumi-
nous crop species are recalcitrant to haploid production. Cereals are highly geno-
type dependent, and the frequency of albino plants is much higher as compared to 
green plants when produced either through anther or isolated microspore culture 
(Holme et al.  1999 ). However, haploid production through wide hybridization has 
resolved the issue of albinism to some extent as “bulbosum method” is being used 
in barley to develop varieties on a larger scale. Similar advantages of wide hybrid-
ization has also been observed in other cereal species like macaroni wheat (Jauhar 
 2003 ), wheat (Inagaki  2003 ), oat (Rines  2003 ), and triticale (Wedzony  2003 ) by 
using maize as a male parent in the crossing. The major drawbacks of wide hybrid-
ization include labor intensive (due to enormous amount of emasculation, crossing 
and embryo rescue), time consuming, and the need for synchronization of male 
(pollen donor) and female plants of different species/genera involved. Other haploid 
production methods like anther culture or isolated microspore culture do not have 
these drawbacks.  

1 History, Production Methods, and Types of Haploids
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1.2     In Vitro Haploid Production Methods 

 A variety of methods have been used to induce embryogenesis in male and female 
gametes to produce double haploids (Fig.  1.1 ). Maluszynski et al. ( 2003 ) compre-
hensively reviewed methods and protocols to produce haploids or doubled haploids 

  Fig. 1.1    Classifi cation and production methods of haploids       

 

1.2  In Vitro Haploid Production Methods
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in many crops. The methods that have been developed to induce embryogenesis are 
androgenesis (including anther culture and isolated microspore culture), gynogen-
esis, wide crossing, parthenogenesis, sparse pollination, pollen irradiation, centro-
mere-mediated genome elimination, alien cytoplasm and seeds with twin embryos. 
In this book, the main focus has been given to four techniques/methods that have 
been widely used to produce doubled haploids on a larger and commercial scale.

•      Androgenesis : It refers to the production of an embryo or zygote that carries chro-
mosomes only from the male parent. In case of androgenesis, embryogenesis is 
induced in anthers or microspores directly or indirectly through callus formation.  

•    Gynogenesis : In this method, unfertilized ovary, or cell of embryo sac or ovule 
directly lead to the development of an embryo.  

•    Wide Crossing : In this method, two distantly related (outside of immediate gene 
pool) parents are crossed. The chromosomes of the pollinator parent are elimi-
nated due to their nonhomology with those of female parent, and the resulting 
embryo contains chromosomes of the female parent only, which are subsequently 
doubled.  

•    Parthenogenesis : It is a type of asexual reproduction in which unfertilized egg 
cell develops into an embryo by semigamy, pseudogamy, or apogamy.     

1.3     Types of Haploids 

 Haploidy refers to the numerical changes in chromosome number that can involve 
whole set of chromosomes (euhaploids) or only a part of it (aneuhaploids). The 
euhaploids will have half the number of chromosomes whether it is derived from a 
diploid or polyploid species. The changes in whole set of chromosomes will give 
rise to monohaploids (2 n  =  x ) and polyhaploids (2 n  = 2 x , 3 x , 4 x , 5 x , …). Therefore, 
polyhaploids can be dihaploids (2 n  = 2 x ), trihaploid (2 n  = 3 x ), tetrahaploid (2 n  = 4 x ), 
pentahaploids (2 n  = 5 x ), and so on. Polyhaploids derived from polyploid species can 
be further divided into autopolyhaploids or allopolyhaploids. Autopolyhaploids 
consists of multiple copies of the basic set of one particular genome (AAAA or 
BBBB) as in case of potato ( Solanum tuberosum  L., 2 n  = 4 x  = 48), whereas allopoly-
haploids have multiple copies of the basic set but from different genomes (ABD) as 
in case of wheat ( Triticum aestivum  L., 2 n  = 6 x  = 42). In contrast to euhaploids, aneu-
haploids may originate by either gain (called as hyperploidy) or loss (hypoploidy) 
of one or more chromosomes. If the gain in chromosome originate from basic set 
( x ), the plants are called as disomic haploids (2 n  =  x  + 1) but if gain in chromosome 
occur from alien species, the plants will be termed as addition haploids (2 n  =  x  + 1 a ). 
The loss of one chromosome form gametic set will be termed as nullisomic haploid 
(2 n  =  x  − 1). Aneuhaploids can also arise by substitution of one or more chromo-
somes (substitution haploids) by exact number from other or alien species 
(2 n  =  x  − 1 + 1). The haploids which do not fi t into the above-mentioned categories 
are termed as misdivision haploids. The classifi cation of haploids (Fig.  1.1 ) has been 
extensively reviewed by Kimber and Riley ( 1963 ) and Gupta ( 2005 ).     

1 History, Production Methods, and Types of Haploids
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                                  Androgenesis is one of the most important methods that have been extensively used 
in plant breeding programs to produce double haploids. It involves the induction of 
microspore embryogenesis that leads to the development of a haploid embryo 
instead of mature pollen grain. The microspore embryogenesis is usually brought 
about by modifying the environmental conditions of anthers/microspores by repro-
gramming their gametophytic pathway towards sporophytic growth and develop-
ment. Under natural conditions, the microspore develops into a mature pollen grain 
that comprises of generative and vegetative nuclei. The generative nucleus develops 
into two sperm nuclei. Thus, the sporophytic development should be started before 
the onset of cell division when the gamete cells in the microspores are still totipo-
tent. However, the embryogenic stage of microspores varies greatly among species 
(Touraev et al.  2001 ). The microspores are amenable to androgenesis and consist of 
haploid ( n ) number of chromosomes and therefore; give rise to haploid plants. 
Androgenesis can be divided into three distinguished steps (1) embryogenesis 
induction (2) regeneration of haploids followed by (3) artifi cial chromosome dou-
bling. The production of haploids or doubled haploids (DH) via androgenesis can be 
achieved either through isolated microspore culture or anther culture. 

2.1     Microspore Culture 

 Microspore culture (pollen culture) offers an opportunity to the plant breeders to 
develop DH plants on a larger scale which enables them to speed up the breeding 
process by fi xing homozygosity in one generation after a cross has been made. 
Thus, cultivar development period can be dramatically reduced with the help of 
isolated microspore culture (IMC) in crop species responsive to this method. The 
IMC involves isolation of immature pollens or microspores from the anthers 
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followed by culturing them on growth media under optimum environmental condi-
tions necessary for their growth and development and to reprogramme their game-
tophytic pathway towards sporophytic by using various kinds of stress treatments. 
This method is preferred over anther culture (Kieffer et al.  1993 ; Arnison and Keller 
 1990 ) due to the following reasons:

•    Anther culture can give rise to diploid plantlets (non-haploids) from anther tis-
sues (wall) along with haploids, whereas in microspore culture plantlets always 
originate from microspores that have haploid number of chromosomes ( n ).  

•   Anther culture is a lengthy, time consuming, and laborious method.  
•   In case of anther culture, anther tissues other than the microspores could have a 

destructive infl uence on the growth and development of a developing microspore 
and to some extent, it deters their developmental process.  

•   The developing microspores have uniform nutrient accessibility during IMC.  
•   Isolated microspore culture provides an opportunity to better track the pathway 

of microspore embryogenesis by monitoring each embryogenesis stage sepa-
rately and to better understand the most important factors contributing towards 
microspore embryogenesis.  

•   Isolated microspore culture offers a platform for targeted mutagenesis and an 
effective gene transfer technique that can direct the breeder/molecular biologists 
to pyramid genes of their interests in a shorter period of time. Moreover, the 
transgenic plants can be identifi ed at a very early stage of their life cycle.  

•   Cell changes studies during a shift from gametophytic to sporophytic pathway 
and the initiation of microspore embryogenesis can be easily performed/tracked 
during IMC.  

•   The embryogenic units are ten times greater in IMC as compared to anther 
culture.    

 Microspore embryogenesis gained enormous importance and attention from the 
breeders after 1960. This technique developed very rapidly when Guha and 
Maheshwari ( 1964 ) discovered that by providing specifi c environmental conditions, 
haploid plants could be easily produced from the anthers of immature pollen grains 
of  Datura innoxia . Nitsch ( 1974 ) used natural shedding phenomenon and success-
fully isolated microspores of  Nicotiana  sp. from its anthers that followed mechanical 
microspores isolation in  Brassica  sp. by Lichter ( 1982 ) before culturing them on 
media to produce haploid plants. This discovery opened a major breakthrough in the 
area of DH production. Since 1960, extensive research studies have been conducted 
to improve the effi ciency of IMC. However, a large number of crop species such as 
legumes are still recalcitrant to microspore culture. Each step of IMC has been inves-
tigated in detail to improve the effi ciency of this technology. A wide range of proto-
cols have been summarized in various crops. Each crop/genotype has its own specifi c 
protocol due to distinct androgenic response to microspore embryogenesis but main 
processes involved in this technique are same (Fig.  2.1 ) that include (1) donor plant’s 
growth and developmental conditions, (2) removal/collection of fl oral organs from 
donor plants, (3) pretreatments, (4) isolation of microspores, (5) composition of 
media, (6) regeneration of haploids and (7) artifi cial chromosome doubling.

2 Androgenesis: A Fascinating Doubled Haploid Production Process



9

D
ou

bl
ed

 H
ap

lo
id

 P
ro

du
ct

oi
n

8.
 C

hr
om

os
om

e 
D

ou
bl

in
g

7.
 R

eg
en

er
at

io
n

6.
 M

ic
ro

sp
or

e 
In

du
ct

io
n

1.
 D

on
or

 P
la

nt
s

2.
 F

lo
ra

l O
rg

an
s

3.
 P

re
tr

ea
tm

en
ts

4.
 M

ic
ro

sp
or

e 
Is

ol
at

io
n

B
as

al
 m

ed
iu

m

G
en

ot
yp

e

M
ic

ro
sp

or
e 

st
ag

e

M
et

ho
ds

C
ou

nt
in

g 
un

de
r 

m
ic

ro
sc

op
e

S
oi

l f
er

til
ity

F
re

e 
of

 in
se

ct
s/

pe
st

s/
di

se
as

es
G

ro
w

th
 lo

ca
tio

n 
(g

re
en

/g
la

ss
 h

ou
se

, f
ie

ld
)

T
yp

e

E
ar

ly
 b

ic
el

lu
la

r

N
o.

 o
f s

to
m

at
a

A
nt

im
ito

tic
 a

ge
nt

s
1)

 C
ol

ch
ic

in
e

2)
 2

,6
-D

in
itr

oa
ni

lin
e 

3)
 T

rif
lu

ra
lin

 
4)

 S
ur

fla
n 

5)
 A

m
ip

ro
ph

os
-m

et
hy

l  
6)

 O
ry

za
lin

M
ea

su
rin

g 
ch

lo
ro

pl
as

t s
iz

e

A
dd

iti
ve

s

C
on

di
tio

ni
ng

M
id

 to
 la

te
 u

ni
nu

cl
ea

te

pH

U
ni

ce
llu

la
r 

to
 b

ic
el

lu
la

r

S
oi

l m
oi

su
tr

e
P

ho
to

pe
rio

d
Li

gh
t

T
em

pe
ra

tu
re

H
um

id
ity

E
m

er
ge

nc
e

E
ar

ly
 (

pr
im

ar
y 

til
le

rs
/b

ud
s)

P
la

nt
in

g 
tim

e

La
te

 (
se

co
nd

ar
y 

til
le

rs
/b

ud
s)

H
ea

t s
ho

ck
s

S
ta

rv
at

io
n

Ir
ra

di
at

io
n

C
he

m
ic

al
s

C
ol

d 
sh

oc
ks

S
te

rli
za

tio
n

E
xp

os
ur

e 
tim

e

W
as

hi
ng

C
he

m
ic

al
s

M
er

cu
ry

 c
hl

or
id

e

S
od

iu
m

 h
yp

oc
ho

lo
rid

e

B
le

ac
h

E
th

an
ol

P
ro

ce
du

re

S
he

d
M

ac
er

at
io

n
M

ag
ne

tic
 b

ar
 s

tir
in

g

B
le

nd
in

g

5.
 M

ic
ro

sp
or

e 
P

ur
ifi

ca
tio

n
M

al
to

se
P

er
co

le

S
pe

ed
D

ur
at

io
n

N
o.

 o
f s

pi
ns

M
ed

iu
m

T
yp

e
S

tr
en

th pH

In
cu

ba
tio

n

M
ic

ro
sp

or
e 

de
ns

ity

T
em

pe
ra

tu
re

S
ha

ki
ng

/s
ta

tio
na

ry

O
va

rie
s

F
lo

re
ts

A
ra

bi
no

ga
la

ct
an

s

A
ra

bi
no

ga
la

ct
an

s 
pr

ot
ei

ns

Li
qu

id

S
ol

id

A
m

in
o 

ac
id

s

A
nt

ib
io

tic
s

A
nt

io
xi

da
nt

s

G
ro

w
th

 r
eg

ul
at

or
s

O
sm

ol
al

ity

D
ur

at
io

n

A
ux

in

C
yt

ok
in

in

E
th

yl
en

e

P
he

ny
le

 A
ce

tic
 A

ci
d 

N
ap

ht
ha

le
ne

 A
ce

tic
 A

ci
d

In
do

le
 A

ce
tic

 A
ci

d

A
bs

ci
si

c 
A

ci
d

B
en

zy
la

m
in

op
ur

in
e

2,
4-

D

K
in

et
in

M
an

ni
to

l
P

ol
ye

th
yl

en
e 

gl
yc

ol

N
ut

rie
nt

s

M
in

er
al

s

Ir
on Z
in

c 
su

lp
ha

te

C
op

pe
r 

su
lp

ha
te

C
ar

bo
hy

dr
at

es

V
ita

m
in

s

N
itr

og
en

 s
ou

rc
e

M
ac

ro
 &

 m
ic

ro
 s

al
ts

S
uc

ro
se

M
al

to
se

A
m

m
on

iu
m

 n
itr

at
e

G
lu

ta
m

in
e

S
ilv

er
 n

itr
at

e

O
vu

le
s

G
um

 a
ra

bi
c

La
rc

ol
l

E
m

br
yo

 s
ta

ge
T

em
pe

ra
tu

re
P

ho
to

pe
rio

d

M
ed

iu
m

G
el

lin
g 

ag
en

ts

G
ro

w
th

 r
eg

ul
at

or
s

C
ar

bo
hy

dr
at

e 
co

nc
en

tr
at

io
n

V
ita

m
in

sF
lo

w
 c

yt
om

et
er

M
or

ph
ol

og
ic

al
 o

bs
er

va
tio

ns

H
ea

t s
ho

ck
s

C
ol

d 
sh

oc
ks

D
ou

bl
ed

 H
ap

lo
id

 P
ro

du
ct

oi
n

  F
ig

. 2
.1

  
  St

ep
s 

in
vo

lv
ed

 in
 I

M
C

 to
 d

ev
el

op
 h

ap
lo

id
/d

ou
bl

ed
 h

ap
lo

id
 p

la
nt

s       

 

2.1  Microspore Culture



10

2.1.1       Donor Plant’s Growth and Developmental Conditions 

 The donor plant’s growth and developmental conditions occupy the most important 
position in the whole process of IMC as effi ciency is directly linked to it. If the 
donor plant is free of insects, pests, diseases, absence of nutrient and water defi cien-
cies and environmental stresses like temperature, humidity, and photoperiod, the 
effectiveness of this method can be enhanced to a greater extent. 

 The donor plants are normally grown in optimum conditions to get a healthy crop 
stand e.g., in cereals, strong and vigorous tillers are desirable. Other agronomic prac-
tices like watering and fertilization are done routinely. An improved embryogenic 
response has been observed if donor plants are planted under controlled conditions 
(green house, glass house or control chambers) than plants grown under fi eld condi-
tions. Optimum growth and developmental conditions can be provided to donor 
plants through supply of optimum light, humidity, temperature, and photoperiod 
under controlled conditions that also ensures to minimize disease occurrence and 
infestation due to insects and pests. The growth chamber grown donor plants are 
often preferred over green house plants because higher number of green plants can 
be obtained from them (Dahleen  1999 ). Field grown plants have also been used to 
isolate microspores but less embryogenic response has been observed. Moreover, 
there are greater chances of contamination if donor plants are grown under fi eld con-
ditions. The growing conditions of donor plants have a direct effect not only on the 
embryogenesis but also on the regeneration and the number of green plants. Among 
growth conditions, temperature is of major concern that has been probed in several 
studies. Luk et al. ( 1983 ) reported that an increase in day and night temperature from 
18 to 28 °C and 14 to 25 °C, respectively, in triticale will diminish the regeneration 
process to a greater extent. The plants sown in cold temperature consequently give 
rise to higher number of embryos and green plants (Bernard  1977 ). In this study, cold 
temperature (12–15 °C) gave better response in inducing embryogenesis in triticale. 
On the contrary, no such requirement of cold temperature treatment for donor plants 
of pepper and asparagus has been reported (Lantos et al.  2009 ; Wolyn and Nichols 
 2003 ). If plants are not grown under cold temperature, the stress to isolated anthers 
in the form of cold temperature has proven a strong positive effect on embryogenesis 
(Osolnik et al.  1993 ). Thus, on the basis of these studies it can be deduced that cold 
treatment is not only essential to arrest the gametophytic stage but it also helps in 
improving the entire androgenesis and regeneration developmental processes. 

 Light intensity and its interaction with temperature also affect the physiological 
status of donor plants. A fi ve time decrease in embryogenic response in  Nicotiana 
tabacum  was noticed with increase in photoperiod from 8 to 16 h (Duncan and 
Heberle  1976 ). The status of nitrogen in soil also has a direct relationship with 
embryogenic response in tobacco and it has been observed that donor plants grown 
under starved nitrogen conditions have given enhanced response to IMC as com-
pared to donor plants that were fertilized routinely (Tsay  1982 ). However, specifi c 
recommendations with regards to optimal conditions for the growth and develop-
ment of donor plants are not possible because donor plant requirements vary signifi -
cantly among various crop species. 

2 Androgenesis: A Fascinating Doubled Haploid Production Process
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 The genotype of the donor plants also plays a crucial role in the response of 
microspores to embryogenesis and it not only differs from species to species but 
also varies considerably within species and this is especially true for cereals like 
triticale, barley, wheat, and oat. This intra and inter specifi c variation in embryo-
genic response during IMC differs extensively with some varieties/cultivars/lines of 
a particular genotype/species exhibiting a greater response while others showing no 
response at all, and sometimes differences in microspore embryogenesis within a 
plant are also very high (Phippen and Ockendon  1990 ). The winter and spring geno-
types have given varying degree of response to embryogenesis. In  B .  napus , greater 
embryogenic response was noted in winter cultivars than in spring cultivars (Keller 
et al.  1987a ,  b ). Contradictory results were obtained by Ohkawa et al. ( 1987 ) in 96 
genotypes. Similarly, japonica genotypes in rice are more responsive to androgen-
esis than indica cultivars (Miah et al.  1985 ) and a same trend between  B .  napus  and 
 B .  juncea  has been reported by Chanana et al. ( 2005 ) where the latter carry a poor 
response. In wheat, 32–85.6 % of genotypic variation for embryogenic response 
was observed (Zhou  1996 ) and these differences were 73 % in barley (Torp et al. 
 2001 ). The embryogenic response of genotypes is considered a heritable character 
and embryogenic response can be improved by crossing a non or poor receptive 
cultivar with a well responsive one (Petolino et al.  1988 ). A number of experiments 
have been conducted to investigate the androgenic response of cultivars/lines/variet-
ies in different species so that model species with improved overall response of DH 
production can be identifi ed. The major varieties that have been recognized for their 
better androgenic response are Chris, Pavon 79 and Bob White in wheat (Kasha 
et al.  2003b ), Igri in winter barley (Davies  2003 ), Topas in  B .  napus  (Ferrie et al. 
 1995a ), Narayen, Rupali, Kimberley in chickpea (Croser et al.  2011 ), CV-2 in 
 B .  rapa  (Ferrie et al.  1995a ), Green, Shogun, SDB9 in  B .  oleracea  (Dias  2001 ) and 
CAV-2648 in wild species of red oat (Kiviharju et al.  2004 ).  

2.1.2     Collection of Floral Organs 

 The effi ciency of microspore culture is also dependent on plant age and pollen stage 
at which the fl oral organs are collected from donor plants for microspore isolation. 
A greater androgenic response has been noticed if microspore isolation is done with 
the fl oral organs that emerge fi rst than those appearing in the later life cycle of donor 
plants. A similar trend have been seen in cereal species where primary tillers have 
given a much better response to anther as well as microspore culture than secondary 
and tertiary tillers. However, in  B .  rapa  and  B .  napus , pollen collected or micro-
spores isolated from older plants perform well to the androgenesis than the young 
donor plants (Takahata et al.  1991 ). In a sowing date study on  B .  juncea , it was 
observed that frequency of embryos was increased when fl oral organs were col-
lected from late sown plants than the plants planted at normal sowing date (Agarwal 
and Bhojwani  1993 ). In tobacco plants, a four time variation in the number of green 
plantlets was reported with a variation of 2 mm corolla length (Dunwell  1976 ). 

2.1  Microspore Culture
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The optimum microspore stage that can reprogramme the microspores from game-
tophytic to sporophytic pathway appears to differ among species. In case of  N .  taba-
cum , fi rst pollen grain mitosis or unicellular to bicellular (G 1 ) stage of microspores 
is considered to be the most responsive (Touraev et al.  2001 ) but on the other hand 
microspores between mid-late uni-nucleate or early bicellular are most responsive 
in cereals. The microspores isolated at later stages of pollen grain are normally not 
responsive because they contain starch grains (Sangwan and Sangwannorreel 
 1987a ,  b ), whereas in brassica pollen grains used for microspore isolation already 
contain starch grains    and embryogenesis is successfully induced in them by a well-
timed heat pretreatment (Binarova et al.  1997 ). The DAPI and Acetocarmine stains 
have been extensively employed in tissue culture studies to identify the accurate 
microspore stage prior to their collection or before using them for isolation to induce 
embryogenesis (Fan et al.  1988 ).  

2.1.3     Pretreatments 

 The pretreatments of various types are given to the fl oral organs to induce stresses 
that can ultimately help to switch gametophytic pathway of microspore to sporo-
phytic development (Fig.  2.2 ). The commonly used pretreatments are cold and heat 
shocks, starvations in the form of nitrogen and carbohydrates, irradiation or chemi-
cal treatments that are often given to the fl oral organs like spikes or fl oret buds, 
excised anthers or even to the microspores after their isolation. Pechan and Keller 
( 1989 ) pointed out that pollen irradiation is not a widely adapted stress treatment as 
compared to other pretreatments. There are few species that do not require any pre-
treatment (or stress) for embryogenic induction because their microspores exhibit 
certain kind of natural capability for microspore embryogenesis (Zhou et al.  1991 ). 
However, the frequency of such tendency towards embryogenesis is exceptionally 
low. It is also assumed that the removal of anthers or fl oral organs from the donor 
plant is itself a substantial amount of stress that can guide the fate of microspore 
towards sporophytic development. The pretreatments alone or in combination with 
each other act as triggering factors or as an external stimulus to achieve an optimum 
conversion of microspores from their gametophytic growth to sporophytic pathway. 
It was also observed that animal cells in addition to plant cells also require some sort 
of pretreatment in the form of stress to induce embryogenesis because origin of 
“Dolly,” in case of animal cloning, entails stress pretreatment as one of the major 
component for development of an embryogenic cell in sheep (Zheng  2003 ). 
Puddephat et al. ( 1999 ) found that the donor plant developmental conditions in 
onion had a strong positive infl uence in inducing microspore embryogenesis. The 
pretreatments in the form of cold temperature have shown promising androgenic 
response in barley (Li and Devaux  2003 ), wheat (Indrianto et al.  1999 ), durum 
wheat (Sibi et al.  2001 ) and rice (Bishnoi et al.  2000 ) but on the other hand heat 
treatment enhanced embryogenic response in brassica (Binarova et al.  1997 ), 
tobacco (Touraev et al.  1996b ), cucumbers (Gemes-Juhasz et al.  2002 ), pepper 
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(Barany et al.  2001 ), wheat (Touraev et al.  1996b ) and starvations in the form of 
nitrogen and carbohydrates conferred improved effect in tobacco (Touraev et al. 
 1996a ), barley (Hoekstra et al.  1992 ) and rice (Raina and Irfan  1998 ). The use of 
colchicine and auxin as a pre-treatment has also induced microspore embryogenesis 
in few species (Obert and Barnabas  2004 ). The use of growth regulators such as 
abscisic acid, cytokinin, and auxin have been employed to switch somatic cell 
towards embryogenic cell (Filonova et al.  2000 ) but their transitional response in 
regards to DH production via IMC is not adequate/suffi cient.

2.1.3.1       Cold Pretreatment 

 Cold pretreatment has been used in many crops to induce microspore embryogen-
esis. The cold pretreatment of anthers has a nursing effect on microspores that not 

  Fig. 2.2     Schematic representation of pretreatments/stresses employed during IMC in various 
crops       
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only arrests their normal gametophytic development (Zheng  2003 ) but also assists 
to synchronize the whole developmental progression of microspores (Hu and Kasha 
 1999 ). The cold treatment of spikes for more than 7 days in cereals stimulates the 
microspore embryogenesis and helps to increase the frequency of embryos or mul-
ticellular structures and green plants. A substantial progress in embryogenic effi -
ciency of microspores in cereal crops such as maize (Gaillard et al.  1991 ), triticale 
(Marciniak et al.  2003 ), wheat (Indrianto et al.  1999 ), barley (Sunderland and Xu 
 1982 ), rye (Immonen and Anttila  2000 ) and other crops like citrus (Germana and 
Chiancone  2003 ) and tobacco (Sunderland and Roberts  1979 ) have been done by 
applying cold pretreatment as stress. The chilling temperature helps to decrease the 
degradation of microspores/cells, thereby inhibiting their exposures to the decaying 
material and other toxic substances (Duncan and Heberle  1976 ). In  B .  rapa , cold 
temperature treatment helps to arrest the bicellular microspore stage, thereby 
increasing the frequency of embryogenic microspores exhibiting two equal nuclei. 
Sato et al. ( 2002 ) reported that bicellular microspore stage with two equal nuclei is 
one of the most crucial phase to induce embryogenesis in  B .  rapa . A cold treatment 
of 2–4 days has improved the effectiveness of microspore culture to several folds in 
 B .  napus  whereas it is less helpful in  B .  rapa  and has no effect in  B .  oleracea  
(Gu et al.  2003a ,  b ; Xu et al.  2007 ). The cold pretreatment of spikes in barley helped 
microspore separation from anthers and their free occurrence in the locule 
(Sunderland and Xu  1982 ) whereas it does not have any effect on microspore 
detachment in tobacco because they are previously separated and found free in the 
locule and does not need any pretreatment (Zoriniants et al.  2005 ).  

2.1.3.2     Heat Pretreatment 

 The heat pretreatment has been found as an effi cient embryogenesis inducer. It has 
been used alone or in combination with sugar starvations to achieve maximum out-
put from microspore embryogenesis and has been extensively applied in brassica 
species not only to induce embryogenesis but also to increase the frequency of 
embryo or embryo like structure (ELS) and green plants during IMC. When the fl o-
ret buds of  B .  napus  and  B .  carinata  were treated with heat shocks for 1–4 days at 
32 °C, it activated the process of embryogenesis in all buds used in the experiment 
(Pechan and Smykal  2001 ). However, the heat pretreatment longer than 4 days did 
not show any improvement in the cell division and lowered down the frequency/
number of embryos to a greater extent (Barro and Martin  1999 ). The heat pretreat-
ment (33 °C for 8 h) and treatment of fl oret buds exhibiting microspores at bicellular 
phase/stage at 42 °C in rapeseed showed better results for inducing embryogenesis. 
A gentle heat treatment (33 °C) of rice anthers also resulted in obtaining optimum 
numbers of embryos and green plants (Raina and Irfan  1998 ). In tobacco, mild heat 
shocks as a separate pretreatment or with sugar starvation helped to seize gameto-
phytic development and improved microspore’s reprogramming towards sporophytic 
pathway (Touraev et al.  1996c ). It has been observed that heat shocks cause numer-
ous cell modifi cations/alterations and of these changes, the synthesis/production of 
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highly conserved group of heat shock proteins (HSP) carries an imperative position 
with respect to androgenesis. The production of HSPs is not only linked with heat 
treatments, but they also originate as a result of various motives such as osmotic 
stress, cold treatment, and oxidative stress (Almoguera and Jordano  1992 ; Sabehat 
et al.  1998 ). The HSPs synthesis can take place at different phases of plant growth 
like embryogenesis, fruit maturation (Low et al.  2000 ), pollen grain growth and 
development (Parcellier et al.  2003 ), and germination (Wehmeyer et al.  1996 ). Major 
components of these HSPs, mainly HSP90 and HSP70, are known to produce ele-
vated level of expression right from the initiation of microspore embryogenesis or 
soon after embryogenic induction in  N .  tabacum  (Zarsky et al.  1995 ),  B .  napus  
(Segui-Simarro et al.  2003 ), corn (Gagliardi et al.  1995 ),  Capsicum annuum  (Barany 
et al.  2001 ) and this HSP synthesis continues till the fi rst pollen mitosis. These HSPs 
also obstruct the synthesis of those proteins that are needed for pollen grain growth 
and development. Thus, HSPs play a very crucial role to program the microspores 
from their gametophytic development to sporophytic pathway (Telmer et al.  1993 ). 
These HSPs are also known to play a major role to cope with program cell death 
(PCD) of microspores or microspore’s apoptosis throughout their induction or cul-
ture period when they are subjected to heat shocks (Zoriniants et al.  2005 ).  

2.1.3.3     Starvation 

 The sugar and nitrogen are major components with respect to stresses induced by 
starvation. The starvation stress is always applied to the uniform population of 
immature pollens or microspores mostly during the induction phase when the 
microspores are between mid to late uni-nucleate phase to induce sporophytic 
development. In tobacco, the heat shocks along with sugar and nitrogen starvation 
was given to a homogenous population of microspores between mid to late uninu-
cleate and early bicellular stage that resulted in the induction of microspore embryo-
genesis in greater than 70 % of the microspore. The remaining 30 % microspores 
either died or did not possess/exhibit embryogenic characteristics that can only be 
attributed to the stress application and/or complications in the isolation process 
(Touraev et al.  1996c ). Caredda et al. ( 2000 ) conducted a similar experiment by 
applying 3–4 days cold shocks instead of heat treatment in conjunction with starva-
tion that resulted in enhanced survival rate of microspores to a considerable degree 
and increased the percentage of green versus albino plantlets compared to a treat-
ment where fl oral organs of donor plants were pretreated only with cold for 3–4 
weeks. The signifi cant improvements in barley and wheat microspore cultures were 
reported by replacing sucrose by maltose in the induction medium that elevated the 
rate of metabolism leading to hypoxia and also resulted in increasing ethanol accu-
mulation and lowering energy levels (Indrianto et al.  1999 ; Scott et al.  1995 ). Thus, 
the substitution slowed down the consumption of maltose that gave rise to a starva-
tion stress in the microspores, directing them to initiate sporophytic development 
rather than gametophytic. The utilization of carbohydrates during microspore 
 culture is mainly dependent on the pH and osmotic pressure of the media. 
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The induction of microspores in a media exhibiting low pH levels i.e., between 5.0 
and 6.0 can result in an effective utilization of sucrose and facilitate the conversion 
process of sucrose into starch, thereby leading microspores towards pollen grain 
development following gametophytic pathway. On the other hand, if microspores 
are inducted in a media having pH levels 8.0 or higher, it will considerably reduce 
the sucrose utilization (creating a carbohydrate starvation) and direct the micro-
spores towards sporophytic pathway (Zoriniants et al.  2005 ). Furthermore, a very 
slight variation in sugar contents of induction medium was reported by Zhou et al. 
( 1991 ), suggesting their important role as an osmoticum in the media. These fi nd-
ings were followed by various research studies that reported an enhanced effect of 
medium osmotic pressure on embryogenic development of microspores (Croser 
et al.  2006 ; Ramirez et al.  2001 ). The sugar starvation initiated microspore’s dedif-
ferentiation, leading them towards sporophytic pathway but on the other hand when 
all necessary/required ingredients/nutrients were present in the induction medium, 
it resulted in the redifferentiation of isolated microspores, directing them towards 
normal gametophytic development (Harada et al.  1988 ). The nitrogen starvation 
induced by glutamine has shown a major role to suppress or inhibit the process of 
microspores maturation and enhanced their successful transfer to sporophytic devel-
opment (Kyo and Harada  1986 ). The starvation induced by carbohydrates is known 
to cause various structural and physiological cell modifi cations that comprised of 
(1) inhibition of cell growth, (2) instant/speedy carbohydrate’s intake, (3) reduction 
in the rate of cell respiration, (4) degradation of cell proteins and lipids, (5) rapid 
accumulation of free amino acids and P i , phosphorylholine and (6) reduction in the 
activities of glycolytic enzymes (Yu  1999 ). Principally, these cellular modifi cations 
take place during the entire process of cellular adaptation to carbohydrate starva-
tions. The cellular changes brought about by sugar starvation in tobacco micro-
spores include dedifferentiation of plastids, degradation of starch and lamellar 
structure, emergence of large vacuole, dilution of generative cell wall, rapid decline 
in the size of nucleolus, loss of nuclear pore in the vegetative nuclei and various 
chromatin changes, that have been experienced when tobacco microspores from 
early and mid to bicellular phase are cultured to induce embryogenesis (Garrido 
et al.  1995 ; Kyo and Harada  1990 ). The other cellular changes associated with sugar 
starvation consisted of deregulation in protein kinase activities, decrease in energy 
levels especially in the form of ATPs, decrease in RNA synthesis along with status/
levels of cell/microspore’s respiration and especially these physiological and struc-
tural changes occurred when sucrose was substituted with maltose in the induction 
media (Scott et al.  1995 ; Zarsky et al.  1990 ). Moreover, it is also believed that cell 
cycle arrest along with the activation of HSP gene during tobacco embryogenesis as 
a consequence of stress treatment in the form of sugar starvation not only help to 
preclude PCD of microspores but also increase cell division as compared to cell 
enlargement (Zarsky et al.  1992 ,  1995 ). 

 Based on above discussion, it can be recapitulated that many crop plants require 
stress pretreatment either in the form of cold, heat, or carbohydrates to switch their 
gametophytic development of microspores to sporophytic pathway whereas on the 
other hand the crops that do not require such pretreatment, the physical removal of 
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fl oral buds/spikes/organs from the donor plants produce/generate suffi cient stress 
that can initiate androgenesis in microspores. However, the length of stress plays a 
signifi cant role to induce microspore embryogenesis and to attain high percentage 
of embryos or ELS along with green plants but the accurate motive of how these 
stresses infl uence the degree or pace of androgenesis and regeneration process is 
still unclear. However, it can be contemplated that these pretreatments facilitate the 
overall process of microspore embryogenesis or trigger embryogenesis by creating 
various stresses that bring structural and physiological cellular changes leading 
them towards sporophytic event rather than normal gametophytic pathway of pollen 
grain development.   

2.1.4     Microspore’s Isolation and Purifi cation 

 The fl oral organs such as buds, fl orets, and spikes are treated with chemicals prior 
to microspore isolation in order to eliminate/remove any insect, pest, fungal, or 
bacterial contaminants. The main chemicals used for removal of contaminants are 
bleach, ethanol, sodium hypochlorite, and mercury chloride. However, care must be 
taken with respect to duration of surface sterilization to avoid any lethal effect of 
these chemicals on the microspores. The surface sterilization procedure starts by 
immersing fl oral organs in 75 % ethanol or 10 % bleach for 3–5 min. The fl oral 
organs can also be surface sterilized with 6 % sodium hypochlorite for 15–20 min. 
These surface sterilization procedures are then followed by water (doubled distilled) 
washings (2–3) for about 1–2 min. In few studies, the surface sterilization with 
mercury chloride (0.1 %) has been conducted but it is recommended to avoid it for 
surface sterilization of fl oral organs that are going to be used for isolation of micro-
spores due to its lethal or toxic effect. 

 Four microspore isolation procedures have been reported in various studies that 
include shed microspore, maceration, magnetic bar stirring, and blending. The shed 
microspore method was fi rst reported in  N .  tabacum  by Sunderland and Roberts 
( 1977 ). It comprised of microspores shedding from anthers in liquid media that was 
followed by their induction in a different media separate from anthers to circumvent 
toxic effect of anther (somatic) tissues. The anther tissue is critical to remove and it 
is recommended to keep these tissues away from microspores because they release 
phenolic compounds that have a lethal effect on microspores. Moreover, somatic 
tissues of anthers may lead to development of diploid (2 n ) rather than haploid plant-
lets and may give rise to some complications in the research experiments/trials. This 
isolation method is very simple, easy to follow, avoid any complications for isolation 
and always results in less injury/damage to the microspores but it is more like anther 
culture rather than microspore culture. Since the discovery of shed microspore in 
1977, it was quickly adopted by Datta and Wenzel ( 1987 ) for microspore isolation in 
wheat. The magnetic bar stirring isolation method involves a stirring force to remove 
microspores that are covered by anthers. This isolation procedure is more effi cient 
and effective as compared to natural microspore shedding because it gives higher 
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number of microspores than the shed microspore method (Cho and Zapata  1990 ). 
Lichter ( 1982 ) used glass or Tefl on rod to isolate microspores from anthers in 
 B .  napus  by pestle maceration followed by sieving for purifi cation. Micro blending 
is one of the most widely adopted methods that consist of blending the surface steril-
ized dissected buds or fl orets in mechanical blenders. It removes microspores more 
effectively as compared to previously described procedures. The somatic tissues of 
anthers are effectively removed from microspores by sieving through sterile mesh of 
various sizes (100–200 µm). The mechanical micro blending was fi rst described by 
Swanson et al. ( 1987 ) in  B .  napus , followed by Olsen ( 1991 ) in barley and Mejza 
et al. ( 1993 ) in wheat. Currently, a couple of centrifugations are conducted for 
microspore purifi cation. These centrifugations often involves density gradients such 
as maltose (Kasha et al.  2001 ) or percol (Joersbo et al.  1990 ) to isolate microspores 
that are between mid to late uninucleate or early bicellular phase/stage in case of 
cereals and between unicellular to mid-bicellular phase in case of tobacco. This puri-
fi cation results in obtaining uniform population of isolated microspores that do not 
contain any anther tissue and nonviable microspores. The mechanical micro blend-
ing is considerably important procedure as compared to other methods as it always 
yield more number of viable microspores (75 %) (Gustafson et al.  1995 ). Lately, one 
more isolation procedure has been identifi ed in  Datura metel  by Iqbal and Wijesekara 
( 2007 ) where the anthers    were aseptically removed from their fi laments by opening 
the fl ower buds. Then, these anthers were used to isolate microspores by applying 
various combinations of temperature pulses. Anthers were placed lengthwise on 
 liquid media and squeezed out the microspores by temperature pulse followed by 
removal of anther tissues or debris by using stereo microscope.  

2.1.5     Media Composition 

 The basal media like MN6, MS, B5, A2, MMS3, P4, P2, CHB3, NLN, N6, and 
NPB99 has been effectively used in anther and microspores culture in many crop 
species. The NLN (Lichter  1982 ) and MS (Murashige and Skoog  1962 ) with minor 
changes are used for brassica and other allied species, whereas NPB99 (Konzak 
et al.  1999 ), A2 (Touraev et al.  1996b ), and MMS3 (Hu and Kasha  1997 ) are rou-
tinely used during anther or microspore culture in cereal species like wheat, barley, 
and triticale. In early days of androgenesis, solid media using agar as a solidifying 
agent was preferred but as the time progressed, liquid media became a best choice 
to achieve desired results because solid media contains agar that is proven to have 
pollen inhibitory effect in few cases and hinder pollen growth towards embryogen-
esis. On the other hand, liquid media offers no competition for nutrient availability 
among developing embryos or ELS, especially during initial induction/culture 
phase of anthers/microspores. The main problem associated with liquid media is 
microspore sinking that often results in creating an anaerobic environment leading 
towards slower metabolism and decrease in energy production. However, this prob-
lem can be easily solved by adding Ficoll in the media (Cistue et al.  2009 ; Kao 
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 1981 ). The effectiveness of IMC is mainly dependent on the properties and charac-
teristics of induction medium that consists of (1) nutrient constituents like mineral 
substances, carbohydrate, pH, and osmolality; (2) cultural environment like light 
intensity, temperature, photoperiod, and duration of culture; and (3) density of the 
medium. The role of media with respect to microspore culture is twofolds: fi rst, it 
supplies microspores with all necessary nutrients required for their growth and 
development in in vitro and secondly, it also helps to switch their pathway from 
gametophytic to sporophytic. It has been recommended that microspores must be 
provided with all required nutrients rich medium having macro and micro salts, 
carbohydrates, vitamins, nitrogen source, and growth regulators, if required. The 
nutrient concentration and their presence in the media are highly variable and 
depend on the crop species being used. 

 For quite some time, hormones such as potato extract, auxins, coconut milk, 
cytokinins, yeast extract, and ethylene were frequently used in the media (Raghavan 
 1986 ) but recently it has been reported that these growth hormones have a major 
role in callus formation during the process of embryogenesis. The characteristics 
and functions of growth regulators/hormones in media have been investigated in 
detail to see their effect on increasing the effi ciency of embryogenesis in many crop 
species. In cereals like barley, triticale, and wheat, the positive role of Phenyl Acetic 
Acid (PAA), Naphthalene Acetic Acid (NAA), Indole Acetic Acid (IAA), Abscisic 
Acid (ABA), Benzylaminopurine (BAP), 2,4-D, and Kinetin in the media alone or 
in combination with each other to improve entire process of embryogenesis have 
been reported in numerous research studies (Davies  2003 ; Hansen  2000 ; Kasha 
et al.  2001 ; Otani and Shimada  1994 ; Pauk et al.  2003 ). However, these hormones 
have not been used to a larger extent in media being used for microspore culture. 
Antibiotics such as cefotaxime have been successfully used in the microspore 
induction medium to manage/tackle the problem of contamination (Davies  2003 ; 
Lantos et al.  2006 ). Charcoal has also been added to media to control contamination 
or to remove toxin substances due to its absorption capacity but simultaneously it 
also absorbs other crucial nutrients from the media necessary for the development 
of ELS (Gland et al.  1988 ). The addition of antioxidants in media to promote 
embryogenesis has also been examined where glutathione played an important role 
in embryo development (Asif et al.  2013 ; Fletcher et al.  1998 ). Sucrose is a key 
source of carbon in media. The concentration of sucrose differs from one crop spe-
cies to another. Carbohydrates are only source of energy but their role as an osmoti-
cum to maintain a certain osmotic pressure in media cannot be overlooked and as an 
osmoticum, they regulate the movement of nutrients/elements from cells. 

 The media alteration is one the most popular exercise that has been carried out 
for the last 40–50 years to seek maximum output from microspore culture for 
improving androgenic response especially in recalcitrant species. Substitution of 
sucrose by maltose between 60 and 90 g/l in rice, triticale, barley, rye, and wheat 
induction media (Bishnoi et al.  2000 ; Chu et al.  1990 ; Karsai and Bedo  1997 ; Kasha 
et al.  2003a ; Otani and Shimada  1994 ; Pauk et al.  2000 ) have demonstrated improved 
effects but on the other hand sucrose is still being used in Brassica species in a con-
centration of 130 g/l (Pechan and Smykal  2001 ). A signifi cant improvement in the 
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effi ciency of barley embryogenesis has been illustrated by altering the sources of 
organic nitrogen. Olsen ( 1987 ) observed enhanced results by lowering down the 
concentration of ammonium nitrate (NH 4 NO 3 ) and increasing glutamine concentra-
tion in media. This fi nding is still being adopted by researchers and recently gluta-
mine in the concentration of 500 mg/l in media has revealed a positive infl uence on 
barley microspore culture (Kasha and Maluszynski  2003 ; Kasha et al.  2003a ,  b ). 
Glutamine is also a key element to develop DHs in brassica (Hansen  2003 ), rye 
(Pulli and Guo  2003 ), and triticale (Wedzony  2003 ) via microspore culture. In 
durum wheat, glutamine in combination with glutathione has given promising 
results with respect to the frequency of embryos and green plants (Cistue et al. 
 2009 ; Asif et al.  2013 ). The mineral ingredients like Fe, ZnSO 4,  and CuSO 4 , were 
also reported to have a positive effect in inducing embryogenesis and increasing 
ratio of green vs. albino plants in  Hordium vulgare  (Echavarri et al.  2008 ; 
Wojnarowiez et al.  2002 ). Jacquard et al. ( 2009 ) and Prem et al. ( 2008 ) reported a 
positive effect of induction medium supplemented with Cu and AgNO 3 . In a similar 
manner, the supplementation of media with n-butanol also improved embryo yield 
in wheat microspore culture and boosted the frequency of green plants up to 3–5 
times (Soriano et al.  2008 ). In tobacco, embryogenic division of microspores is 
highly reliant on presence of Fe in the induction media. Furthermore, Fe also plays 
a major role in the senescence of anther wall (Vagera and Havranek  1983 ). 

 The pH and osmotic pressure of media are other important factors that play a 
critical role in affecting not only the process of embryogenesis but also help in 
improving regeneration effi ciency of embryos towards green plants. The alteration 
of medium osmoticum is usually done using polyethylene glycol (PEG) and man-
nitol in different concentrations. The occurrence of albinism has been seen to be 
lessened by high osmolality of the medium (Jacquard et al.  2006 ). The media pH is 
normally kept around 6.0, however, slight change is needed depending on crop spe-
cies being used for embryogenesis (Ferrie et al.  1995b ). 

 The IMC in cereals often comprises of induction medium supplemented with 
various types of embryogenic material such as fl orets, ovaries, embryogenic micro-
spores, or ovules that has shown promising results in improving an overall process 
of microspore embryogenesis in wheat, barley, triticale, and rye (Lantos et al.  2009 ). 
Generally, it is assumed that supplementing induction media with these tissues sup-
ply microspores with certain phytohormones and signaling molecules to start/initi-
ate the process of embryogenesis and thus, these tissues contribute towards embryo 
development but main function of this material/tissue in converting microspores to 
embryos is yet not clear. However, it was pointed out that arabinogalactans- proteins/
arabinogalactans exhibit certain stimulatory functions that helped to initiate the pro-
cess of embryogenesis (Letarte et al.  2006 ). The supplemented induction media 
with gum arabic and Larcoll had also shown strong impact in improving wheat 
microspore culture. The addition of Larcoll with or without ovaries in the induction 
medium greatly reduced mortality of microspores. It also provided a genotypic 
independent effect, reduced albinism, and improved green plants regeneration 
(Letarte et al.  2006 ). In barley microspore culture, the addition of fl orets in the 
induction medium had greatly improved androgenesis and had been found more 
successful than ovary co-culture (Lu et al.  2008 ). 
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 The optimum density of microspores in the induction media is another factor that 
ensures their further growth and development and decides the time required to pro-
duce embryos from microspores. In triticale, the microspores density of 3 × 10 4  to 
2 × 10 5  microspores/ml of the induction media is considered optimum for normal 
growth and development of microspores (Eudes and Chugh  2009 ) while densities of 
8–10 × 10 4  microspores/ml for  Capsicum annum  (Kim et al.  2008 ), 4 × 10 4  micro-
spores/ml for  B .  napus  (Huang et al.  1990 ), and 5 × 10 4  microspores/ml for  B .  olera-
cea  (Ferrie et al.  1999 ) are considered ideal.  

2.1.6     Regeneration 

 The development of embryos from microspores can be achieved via indirect/direct 
pathways. Regardless of these pathways, embryos are required to shift from culture 
to regeneration medium in order to achieve a smooth transition/switch from 
embryos/ELS to green plants. Regeneration is always achieved in the presence of 
light. This transition relies on many factors such as age or growth stage of embryos 
at the time of regeneration, regeneration media, light intensity, and temperature dur-
ing regeneration period/phase. The cold treatment below 10 °C during early regen-
eration period (1–3 weeks) and transfer of embryos at cotyledonary stage in brassica 
species has shown promising results (Ferrie  2003 ; Niu et al.  1999 ). However, the 
transition phase of microspores descended embryos (torpedo, early, mid or late 
cotyledonary stage) differs greatly from one species to another. The desiccation of 
embryos prior to their transfer to regeneration medium was recommended by 
Hansen ( 2003 ) who pointed out that desiccation facilitates the process of embryo 
germination. The cold temperature around 10 °C for 7 days during initial phase of 
regeneration has also been suggested for triticale to alleviate the process of transi-
tion, reducing albinism, and enhance the frequency of green plants (Wedzony  2003 ). 
The supplementing regeneration media with vitamins or phytohormones and 
drought stress to the embryoids has also been recommended to ease the overall 
transition from embryos to green plants (Zhang et al.  2006 ).  

2.1.7     Increase in Ploidy Level 

 The number of chromosomes/ploidy level of plantlets produced by IMC can be 
verifi ed/determined by several methods that include (1) counting of chromosomes 
that is mostly done using microspore (2) by measuring chloroplast size and number 
of stomata (guard cells) (3) using fl ow cytometer and (4) through morphological 
observations. A comparison of these methods was done by Sari et al. ( 1999 ) to 
determine ploidy level in water melon. The authors concluded that stomatal or 
guard cell measurement is one of the simplest and easiest methods to fi nd/calculate 
number of chromosomes in plants. Spontaneous chromosome doubling is high in 
few crop species; thus, these species do not require any artifi cial chromosome dou-
bling whereas on the other hand, most crop species need an increase in their ploidy 
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level to covert haploid plants (obtained through IMC or anther culture) to doubled 
haploids that often involve the use of anti-microtubule agents like colchicine. 

 The rate of chromosome doubling is affected by numerous factors such as type 
of genotype, stage of microspores at the time of fl oral organ collection from donor 
plants, pathway of microspore during embryogenesis, pretreatment (cold, heat, or 
starvation), exposure time of microspores/embryos to various chemical agents, con-
centration of chemicals during induction and regeneration phases, and methods of 
application. The history of induced doubling of chromosomes goes back to 1929 
when Lindstorm ( 1929 ) decapitated tomato shoot and discovered that new develop-
ing shoots were tetraploid rather than diploid. This was followed by Randolph 
( 1932 ) who conducted an experiment in maize and induced an artifi cial increase in 
ploidy level by giving heat treatment (using heating pot) to the developing ear shoot. 
This artifi cial chromosome doubling attracted many researchers to design studies/
experiments in order to test different methodologies/protocols to induce chromo-
some doubling in agricultural crops using cold treatments, heat shocks, and antimi-
totic agents. The discovery of colchicine from Gloriosa by Clewer et al. ( 1915 ) 
perfected its use in chromosome doubling and with the passage of time, it became a 
method of choice for artifi cial chromosome doubling (Blakeslee  1939 ) in at least 48 
agricultural crops. Regardless of its extensive exploitation, effectiveness, and appli-
cation in agricultural crops, there are numerous disadvantages associated with its 
usage that include occurrence of mixed polyploids (Pei  1985 ), loss of sterility, 
decrease in fertility, abnormal growth, chromosomes rearrangements, and gene 
mutations (Luckett  1989 ). However, it has been successfully used for chromosome 
doubling to produce/develop DH plants in wheat, sorghum, barley, maize, sugar 
beet, and many other crops. 

 Principally, the doubling of chromosome is achieved by various means/pathways 
that include (1) endomitosis that is referred as “duplication of chromosome number 
without nuclear division,” (2) an interference in cell cycle of plants (3) endoredupli-
cation referred as “chromatids become double without separating from each other” 
(4) C-mitosis referred as “an artifi cially induced abortive nuclear division where 
separation of centromere does not take place in the metaphase stage,” (5) nuclear 
fusion where “one nucleus forms as a result of fusion of two or more nuclei” (Jensen 
 1974 ). The entire cell cycle can be divided into four well-defi ned stages (Francis 
 2007 ): (1) G 1  (Gap 1 ): A post mitotic stage in which cell grows and enlarges and it 
becomes ready for cell division, (2) S (Synthesis): It is characterized by DNA repli-
cation or synthesis, (3) G 2  (Gap 2 ): A pre-mitotic stage, and (4) M (Mitosis): that 
consists of division of a mother cell into two daughter cells. The chemical agents 
that interfere with cell division at the completion of Synthesis/S stage and prior to 
the completion of Mitosis/M has been termed as good agents to increase ploidy 
level in plants (Dhooghe et al.  2011 ). Various pretreatments that have been applied 
to donor plants or microspores to initiate their sporophytic growth have revealed 
explicit results with respect to increase in ploidy levels e.g. pretreatment of fl oral 
organs with mannitol alone or in combination with cold or heat shocks have signifi -
cantly increased the frequency of chromosome doubling in wheat (Li and Devaux 
 2003 ) and rye (Guo and Pulli  2000b ). On the other hand, colchicine treatment alone 

2 Androgenesis: A Fascinating Doubled Haploid Production Process



23

or in combination with heat or cold shocks in the induction medium has also facili-
tated chromosome doubling in  Phleum pretense  (Guo and Pulli  2000a ),  B .  napus  
(Zhao et al.  1996a ,  b ), and Easter lily (Antoine and Beckert  1997 ). Few other anti-
microtubule agents have also been successfully exploited for this purpose that 
include 2,6-Dinitroaniline in watermelon, Trifl uralin in Orange Ball Buddleia, 
Surfl an in  Lilium longifl orum , amiprophos-methyl (APM) in  Dianthus  sp.,  and ory-
zalin in  Solanum  sp. (Greplova et al.  2009 ; Nimura et al.  2006 ; Omran et al.  2008 ; 
Takamura et al.  2002 ; Van  2008 ). These anti-microtubule agents induce chromo-
some doubling by creating hindrance in the separation/segregation of sister chroma-
tids toward poles, inhibit spindle formation and nuclear fusion (Testillano et al. 
 2004 ), and offer extreme affi nity to plant tubulins as compared to the most com-
monly used colchicine. Thus, a very little amount of these anti-microtubule agents 
(mostly in millimole concentration) is required to induce artifi cial chromosome 
doubling (Morejohn and Fosket  1984 ). 

 On the basis of above discussion, it can be concluded that a universal protocol can-
not be identifi ed or developed for artifi cial chromosome doubling mainly due to the 
complexity of the process and its genotypic dependency because anti- microtubule 
agents behave differently in different crops. Therefore, selection of a polyploidizing 
agent is mainly dependent upon the type of genotype being used, stage of cells/cell 
cycle at the time of application, application procedure/method, and exposure time to 
these chemicals. Nevertheless, colchicine is an extensively used and widely adapted 
anti-mitotic agent to induce chromosome doubling in cereal, leguminous, and horticul-
tural crops but the applicator should avoid any contact during its treatment/use mainly 
due to its anticipated lethal and harmful effects on plants and to applicator as well.  

2.1.8     Albinism 

 In plants, albinism can be defi ned as lack or defi ciency of green pigment called 
“chlorophyll” or failure to carry out the process of “photosynthesis,” a chemical 
process necessary to synthesize food (carbohydrate) from carbon dioxide (CO 2 ) and 
water (H 2 O) in the presence of sunlight. Albinism eventually results in plant death. 
The process of photosynthesis is initiated by absorbing light energy by round, oval, 
or disc shaped structures/organelles known as chloroplast which consists of chloro-
phyll. Plants store absorbed light in the form of Nicotinamide Adenine Dinucleotide 
Phosphate Hydrogen (NADPH) and Adenosine Triphosphate (ATP). This captured 
light is then used by plants in later stages. Green pigment or chloroplast organelles 
are absent in albino plants and therefore, they are not able to carry out photosynthe-
sis, a process essential for their growth and development. Thus, these plants do not 
reach maturity and die at a very early stage. Albinism is considered a major bottle-
neck in plant genetics and breeding programs that involve interspecifi c crosses or 
wide hybridization to create variation and in plant tissue culture techniques involv-
ing microspore and anther culture particularly in case of cereals such as barley, oat, 
wheat, rice, rye, and triticale. Varying degree of albinism have been described in DH 
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production via anther culture, microspore culture, and wide hybridization that is 
characterized by a partial to total loss of green pigments. Abadie et al. ( 2006 ) con-
ducted an interesting experiment to compare chlorophyll contents of green and 
albino plants and depicted severe dissimilarities. They reported chlorophyll con-
tents of green and albino plants as 2.97 + 0.56 and 1.9 + 5 × 10 −2  µg/mg of fresh 
weight, respectively. Yao and Cohen ( 2000 ) also pointed that albino plants have at 
least 1–6 % less green pigments than green plants. In wheat, the importance of mag-
netic fi eld was studied by Pingping et al. ( 2011 ) to improve an overall chlorophyll 
contents in the leaves of chlorophyll defi cient plants. They reported an increase in 
the chlorophyll content of magnetically treated albino plants, which converted them 
to partially green plants and such plants attained physiological maturity as well. A 
similar study carried out in date palm to investigate the infl uence of magnetic fi eld 
on chlorophyll contents and results showed a substantial improvement in total pig-
ment contents, carotenoid, and chlorophyll a, b due to static magnetic fi eld. However, 
the pigment content increase was extremely reliant on exposure, duration and inten-
sity (Dhawi and Al-Khayri  2008 ). A similar trend in the increase of chlorophyll 
contents in soybean after an exposure to static magnetic fi eld has also been reported 
by Atak et al. ( 2007 ). Mouritzen and Holm ( 1994 ) depicted that during earlier stages 
of plant growth, albino plants can be distinguished from green plants because of 
variations in their plastid DNA as a result of microspores/anthers redifferentiation 
and such plants have irregular chloroplast shape/structures rather than the normal 
that can be differentiated either by amyloplasts or proplastids (undeveloped). 
Therefore, these plants are not able to carry out the process of photosynthesis and 
cannot make carbohydrates for their growth and development. Caredda et al. ( 2000 ) 
described that seedlings/plantlets of albino plants can exploit reserve food only for 
some time and when stored carbohydrates are exhausted, albino plants begin to die 
due to reason that abnormal and undeveloped plastids cannot be switched to the 
functional chloroplasts. The dissimilarities with respect to physiology, structure, 
and behavior of plastids in albino and green plants have also been reported in barley 
(Caredda et al.  2000 ,  2004 ). These fi ndings revealed that genotypes yielding/giving 
green plants exhibit thylakoids (dense and undifferentiated plastids capable of mul-
tiplying quickly and accumulating starch rapidly) while albino plants were devoid 
of thylakoids, defi cient in cytoplasm, plastids were not dividing and starch was 
accumulating in their stroma. Furthermore, plastids in genotypes producing green 
plants were having much higher levels of DNA as compared to other genotypes. 

 The decrease in frequency of albino plants has been achieved by manipulating 
genetics (using different cultivars) as well as by altering growing conditions of 
donor plants. Various aspects like growth and developmental conditions of donor 
plants, genotype, stage of microspores at the time of fl oral organs collection, pre-
treatments, induction duration, microspore pathway, composition of medium, 
embryo age at the time of transfer to regeneration medium, temperature, oxygen, 
and light intensity during induction and regeneration play a crucial role in tackling 
this challenge. The alteration in any of these components will alter the frequency of 
green to albino plants. 

 The cold shocks and starvation for 3–4 days have signifi cantly decreased the 
frequency of albino plants as compared to a longer pretreatment of 3–4 weeks 
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(Kasha et al.  2001 ). In an exciting study in barley, supplementation of induction 
media with CuSO 4  alone or in combination with mannitol enhanced the percentage 
(90 %) of green plants as compared to chlorophyll defi cient plants in a cultivar Igri 
(Cistué et al.  2003 ). It has been suggested that a strong relationship exist between 
microspore sampling stage and frequency of chlorophyll defi cient plants (Caredda 
and Clement  1999 ). The frequency of albino plants increases if the donor plants of 
barley and oat are grown in a temperature less than 15 °C (Collins  1927 ). However, 
an exposure of oat albino mutants to a temperature higher than 20 °C results in 
switching to green plants (Nishiyam and Motoyosh  1966 ). As discussed earlier, 
chlorophyll defi cient plants/plantlets are not capable of making their own food or 
enough carbohydrates to keep and support their growth and development, therefore, 
it has been proposed that raising sugar (especially sucrose) levels/contents of the 
medium can facilitate to solve the problem of albino plants. Saidi et al. ( 1997 ) suc-
cessfully tackled this issue (albinism) in  Triticum turgidum  by manipulating the 
sucrose contents of media and converted albino plants/plantlets to green. The addi-
tion of starch-melibiose and mannitol in medium in combination with cold treat-
ment considerably enhanced green plant frequency in barley (Datta and Potrykus 
 1998 ; Hunter  1987 ). The green pigment content and percentage of green plants have 
also been signifi cantly increased by the addition of glucose and growth hormones 
such as cytokinin, kinetin, IAA, and benzyl adenine (BA) (Broughton  2008 ; Chory 
et al.  1991 ; Nishiyama and Motoyoshi  1966 ) but kinetin and 2,4-D seemed to have 
no infl uence on the green plant percentage especially in triticale (Pauk et al.  2000 ). 
In anther culture or IMC, addition of Ficoll in the liquid induction medium has pre-
vented microspore’s sinking that in turn help to decrease DNA degradation in plas-
tids. Therefore, the addition of Ficoll in induction medium in barley microspore 
culture enhanced the percentage (0 to 50 %) of green plants (Kao et al.  1991 ). The 
same trend of maltose (Redha and Talaat  2008 ) and Ficoll (Zhou et al.  1992 ) has 
been reported in wheat. An interesting aspect in regards to albinism has been high-
lighted in cereals (oat, barley, wheat, and rice) with respect to the collection of fl oral 
organs from donor plants (Reinbothe et al.  2003a ,  b ) where the authors stated that 
collection of fl oral organs from primary tillers give higher number of green plants 
as compared to a collection from secondary or tertiary tillers that might be due to a 
hormonal imbalance in later (secondary or tertiary) tillers that affected the structure 
and behavior of plastids. Moreover, the existence of competition among secondary 
or tertiary tillers for hormones, and nutrients are concentrated in center of root zone 
might be a cause of albinism in later tillers (Casimiro et al.  2003 ) and it is also obvi-
ous because primary tillers are always more productive and healthy than later ones. 

2.1.8.1     Genetics and Genomics of Albinism and Green 
Plant Regeneration 

 A large number of studies have been conducted to identify quantitative trait loci 
(QTL) and genes in several crop plants to increase the percentage of green plants. In 
this regards, QTLs on chromosomes IBL/1RS, 2AL, 2BL, and 5BL have been 
mapped to improve the frequency of green plants in wheat. Among them, QTL 
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mapped on 2AL explicated higher variation (Torp et al.  2001 ; Tuvesson et al.  1989 ). 
In another experiment, two genes controlling embryogenesis have been identifi ed on 
chromosomes 2D and 2A using wheat monosomic lines while 5B, 5A, 4A, and 2B 
carry few minor genes (Zhang and Li  1984 ). Genes controlling frequency of albino 
plants and embryoids have also been mapped on 5B and 5BL respectively (Agache 
et al.  1989 ). Recently, three QTLs were identifi ed on barley chromosomes 6H, 5H, 
and 2H for number and percentage of green plants (Chen et al.  2007 ). It was previ-
ously reported that albinism is controlled by one gene in barley (Collins  1927 ). Two 
QTLs have also been identifi ed on rice chromosomes 1 and 9 as well (He et al.  1998 ) 
to improve green plant percentage. Ekiz and Konzak ( 1991 ) conducted studies in 
wheat using alloplasmic lines exhibiting different plastid but same nuclear genome 
and depicted that plastid genome play a critical role in microspore culture response 
in wheat. The phenomenon of albinism is extremely heritable (Larsen et al.  1991 ) in 
some crops while in others such as wheat (Redha and Talaat  2008 ), low heritability 
has been reported for green plant percentage. However, Chaudhary et al. ( 2003 ) 
argued that it is strongly infl uenced by non-additive and additive type of gene action. 
In a similar study conducted by Moieni and Sarrafi  ( 1995 ), on 49 different wheat 
varieties, high heritabilities ranging from 0.80 to 0.88 were found for characteristics 
such as green plant frequency, embryoid percentage, and frequency of plantlets 
regeneration. The specifi c and general combining abilities of these characteristics 
have also been found to be signifi cant. The investigators demonstrated lowest heri-
tability for albinism proposing that proportion of albino plants can be decreased by 
altering environmental and cultural conditions at various stages during the process 
of microspore culture in wheat. Few other experiments on this aspect highlighted 
that frequency of albino plants is under the control of one gene in soybean, barley, 
and maize (Barwale and Widholm  1987 ; Collins  1927 ; Neuffer et al.  1997 ) while 
two or more loci are involved in peanut (Dwivedi et al.  1984 ). In peanut, cytoplasm 
inheritance has also been shown to control albinism (Branch and Kvien  1992 ).   

2.1.9     Pathways of Microspore Embryogenesis 

 The embryogenic capability in microspores is usually attained by the application of 
different stresses and/or starvation that is followed by a series of steps during which 
the microspores are converted to embryo/embryo like structures. During the process 
of embryogenesis, the microspore goes through several morphological, physiologi-
cal, and cytological changes that are indispensable for their further growth and 
development in in-vitro. This embryogenic process of microspores can be distin-
guished into three distinct phases (1) attainment of embryogenic capability, (2) sev-
eral asymmetric or symmetric cell divisions within exine wall that convert/lead 
microspores to embryo or ELS or sometime called multicellular structures (MCS) 
and (3) development and initiation of a certain pattern in ELS/MCS following exine 
wall disruption. Indrianto et al. ( 2001 ) carried out an interesting experiment to track 
microspores in wheat during the entire process of embryogenesis. They reported 
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that microspores isolated from stress induced anthers were twofold increased in size 
and morphologically diverse as compared to microspores derived from freshly iso-
lated anthers. On the basis of microspore morphology during embryogenesis, they 
divided microspores into three distinct kinds: Type I was characterized as vacuo-
lated microspores because they were exhibiting a huge vacuole that was present in 
the center while their nucleus was pushed/pressed near periphery/cell wall. 
Basically, these types of microspores were non-stressed that are usually present at 
late unicellular stage. Type II was characterized as having fragmented/broken vacu-
ole. Basically, cytoplasmic strands were crossing/passing through vacuole from one 
end to another and these strands were linked to phragmosome (cytoplasmic pocket) 
inside the nucleus. In this type (II) of microspores, cytoplasmic pocket was adjacent 
to cell wall while type III microspores can be easily differentiated from others 
because they were exhibiting a phragmosome in the center. Their study also revealed 
that 62 % of the type III microspores were not embryogenic as they were not capa-
ble to switch their gametophytic pathway to sporophytic and could not develop into 
embryos. On the contrary, this frequency was very less in microspores of type I 
(5 %) and II (23 %). Few other morphological and cytological variations in micro-
spores during embryogenesis including cell enlargement, intine (new cell wall) 
development inside exine, chromatin compaction and decrease in size, amount, and 
magnitude of starch grains and nucleolus have also been reported (Garrido et al. 
 1995 ; Ramirez et al.  2001 ). 

 There are numerous studies that have discussed the pathway and fate of micro-
spores regarding their switching or reprogramming from gametophytic pathway to 
sporophytic. Theories presented in these experiments are basically established on 
the basis of division of generative and vegetative cells. Recently, fi ve potential path-
ways for conversion of embryogenic microspore to embryo or ELS have been pur-
posed by Aionesei et al. ( 2005 ) that are basically a modifi cation or alteration in A, 
B, and C pathways previously defi ned by Sunderland ( 1974 ). A-Pathway is charac-
terized by a symmetrical division of vegetative cells leading towards embryo devel-
opment. However, sometime callus development has also been reported instead of 
embryo formation and this is true especially for cereals like rice (Chen  1977 ), barley 
(Sun  1978 ), and wheat (Wang et al.  1973 ). In this type of pathway, generative cell 
dies at a very initial stage of embryogenesis or goes through a division that results 
in two sperm cells that die ultimately. The A-pathway has been noticed in the 
embryogenesis of  Brassica napus  (Fan et al.  1988 ), wheat (Reynolds  1993 ), and 
tobacco (Sunderla and Wicks  1971 ). B-Pathway is associated with the splitting of 
cell nucleus in two identical vegetative cells, both of them contribute in switching 
towards embryo formation as identifi ed by Indrianto et al. ( 2001 ) in wheat. 
C-Pathway comprised of a merging or fusion of one vegetative and one generative 
cell nucleus or fusion between two vegetative cell nuclei. This Pathway has been 
reported in barley (Yao et al.  1997 ) and  Datura innoxia  (Sunderland  1974 ). 
D-Pathway is an altered type of B-Pathway whereby two broken/divided nuclei 
divide again and again that ultimately lead to production of callus or a haploid 
embryo (Pan et al.  1983 ; Zhu et al.  1978 ). E-Pathway consists of development of an 
embryo from generative nucleus. The repeated division of generative and vegetative 
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nuclei can also give rise to production of an embryo but this embryo will consist 
of higher number of cells from generative than vegetative nuclei (Sun  1978 ). 
The E-Pathway has been noticed in wheat, rice, barley, and  Hyoscyamus niger  
(Pan et al.  1983 ; Qu and Chen  1984 ; Raghavan  1976 ,  1978 ). 

 The preponderance of one pathway over other is governed by several elements. 
In this regard, pretreatments in the form of cold, heat, and starvation or any kind of 
stress play a critical role to decide the fate of microspores (Kasha et al.  2001 ). The 
adaptation of pathway varies considerably among species. Recent advancements in 
video cell tracking system and development of fl ow cytometry will defi nitely assist 
the molecular scientists to improve their understanding on how complex mechanism 
of microspore conversion from gametophytic to sporophytic pathway take place and 
ultimately culminate these microspores to haploid plants.   

2.2     Anther Culture 

 The haploids plants through anther culture are usually obtained via two methods i.e., 
culturing anthers in liquid or semi liquid media that involves pollen separation by 
agitation, and placing anthers on solid media (solidifi cation is usually obtained using 
agar). Basically, surface sterilized buds and fl orets are opened (in vitro) in sterile 
environment followed by anther removal and placing them on liquid or solid medium 
(Sunderland et al.  1984 ). Once the embryo formation is completed, embryos (cul-
ture) are shifted to the regeneration medium under light conditions for organogenic 
differentiation (shoot and root development). This method is very similar to IMC. 
The only difference in microspore culture is the removal of anther tissues or anther 
wall (somatic tissue) to prevent any lethal effect of maternal tissues on embryo 
development; and sometimes, somatic tissue may give rise to a diploid plant rather 
than haploid. Similar to IMC, anther culture also implies numerous pretreatments 
(vary considerably from species to species), surface sterilization, anther dissection, 
and fi nally placing them on induction and regeneration medium. The effectiveness 
of anther culture is highly reliant on growth, developmental conditions and physio-
logical state of donor plants, pollen or microspore stage at the time of anther dissec-
tion, genotype, and media composition. In anther culture, the pollen may give rise to 
callus (indirect embryogenesis) tissues or callus formation as in wheat and rice or 
lead to an embryo (direct embryogenesis) development as in  Brassica  sp. 

2.2.1     Genotype, Physiological State, Growth 
and Developmental Stage of Donor Plants 

 Physiological state, growth and developmental conditions and genotype of donor 
plants are among the important factors that decide effi ciency of anther culture 
because these conditions directly interfere with overall effectiveness of embryo-
genic pollen grains (P-grains) by effecting hormonal level and nutritional status of 
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anther tissues (Sunderland and Dunwell  1977 ). It has been reported that donor 
plants grown in  nitrogen starvation conditions often yield embryogenic pollen 
grains. These pollen grains can be easily differentiated by having a large vacuole, 
absence of starch grains, and presence of a thin exine wall (Heberle-Bors  1984 , 
 1989 ). Contrary to IMC, better response has been obtained from fi eld grown donor 
plants as compared to green house plants (Vasil  1980 ). The other developmental 
conditions such as day light, photoperiod intensity, and temperature also infl uence 
anther culture to a considerable degree (Heberle-Bors  1989 ). A varied genetic 
response has also been noticed in several experiments/studies that differ not only 
among species but also within genus, species, and cultivars thereby suggesting its 
major role in anther culture/embryogenesis. Germana ( 2007 ) and Bajaj ( 1980 ) con-
ducted two different studies to identify most responsive cultivar to anther culture. 
They termed 2 out of 23 and 10 out of 20 varieties as responsive in citrus and wheat, 
respectively. In anther culture, the embryogenic time/window of pollen grain con-
sists/starts from the fi rst mitosis which is characterized by vacuolated microspores 
to bi-cellular. However, this embryogenic window is highly variable and depends on 
the genotype being used for anther culture. Moreover, pollen grain loses their 
embryogenic effi ciency when they begin storing/preserving starch in the form of 
grains (Raghavan  1990 ; Touraev et al.  2001 ). The ploidy level of plants obtained 
through anther culture is also infl uenced by the developmental stage of pollen 
grains/microspores at the time of induction. Sopory and Munshi ( 1997 ) depicted 
that microspores at uninucleate stage will give rise to haploid plants while culturing 
of anther having microspores at later stages often yield higher ploidy levels.  

2.2.2     Pretreatments and Media Composition 

 The pretreatments have been categorized as “novel,” “widely used,” and “neglected.” 
The commonly adapted pretreatments are cold and heat shocks, starvation in the 
form of nitrogen and sucrose, heavy metal and chemical treatments, changes in pH, 
humidity, osmotic levels, and water stresses (Shariatpanahi et al.  2006 ). Among 
these pretreatments, temperature shocks have been termed as widely adapted. As 
discussed earlier, the anthers are usually chosen when they exhibit microspores in 
the embryogenic window (between fi rst mitosis to bi-cellular phase), however, a 
little heat (41 °C) pretreatment in  B .  napus  have resulted in acquiring embryogenic 
division in already developed vegetative cells as reported by Binarova et al. ( 1997 ) 
and it also appeared to be helpful in pepper (Barany et al.  2001 ) and  Nicotiana taba-
cum  (Touraev et al.  1996a ,  c ) anther culture. The gamma rays have been success-
fully used as pretreatments for anther culture in barley (Vagera et al.  2004 ) and rice 
(Aldemita and Zapata  1991 ) while colchicine has also been used as pretreatment 
(stress inducer) as well as to double the chromosome number in various crops such 
as wheat, brassica, maize, rice, sugar beet, and sorghum (Germana  2011a ,  b ). 

 The composition of media also occupies an important position in anther culture 
to induce embryogenesis. In this regard, B5, MS, and N6 with minor changes are 
among the widely adapted media. The MS is mostly used in solanaceous crops 

2.2  Anther Culture



30

while N6 has been applied in cereals (Chu  1981 ). Sucrose is a main source of car-
bohydrates and its concentration varies from 6 to 17 %. In anther culture, medium 
having high sucrose concentration have been used in species where culturing of 
tricellular pollen (mature) has given high response (e.g. in cruciferae) (Dunwell and 
Thurling  1985 ) but on the other hand in solanaceous species where bicellular pollen 
is used for anther culture, medium with low concentration of sucrose has given 
optimum results (Dunwell  2010 ). Maltose in the medium has also indicated explicit 
infl uence on anther culture embryogenesis in rye, rice, triticale, barley, and wheat 
(Wedzony et al.  2009 ). Germana and Chiancone ( 2003 ) described explicit fi ndings 
of clementine anther culture using galactose and lactose in medium. The same 
results in clementine have also been reported using sucrose in combination with 
glycerol (Germana et al.  2000 ). The effects of growth hormones have been exten-
sively studied during the last 60–70 years and they have provided exceptional results 
in some recalcitrant species. However, there are few species (belonging to solana-
ceae) that do not need any growth hormones in their culture for embryogenesis. 
There are two main functions of growth hormones in the medium i.e., one is to 
induce embryogenesis (Bajaj  1990 ; Bajaj et al.  1977 ) and other is to identify the fate 
of embryogenic pathway (Ball et al.  1993 ). Various studies have indicated that 
2,4-D help to enhance/promote callus growth while NAA and IAA supports direct 
embryogenesis (Liang et al.  1987 ). The supplementation of medium with poly-
amines has also improved the frequency of embryos in clementine (Chiancone et al. 
 2006 ),  Cucumis sativus  (Kumar et al.  2004 ), and wheat (Rajyalakshmi et al.  1995 ). 
Similar fi ndings in cereal anther culture have also been stated using arabinogalac-
tans (Letarte et al.  2006 ) and ovary co-culturing (Broughton  2008 ). 

 An incredible advancement in anther culture methodology has been achieved in 
crop species such as triticale, wheat, rice, barley, rye, and several others like medici-
nal, vegetables, fruits, ornamental, and woody plants. However, there are still many 
group of species that are termed as recalcitrant to anther culture and legumes are 
considered as one of them (Dunwell  2010 ; Wedzony et al.  2009 ). The up to date prog-
ress and developments of anther culture have been recently reviewed in detail by 
Dunwell ( 2010 ), Germana ( 2011a ,  b ), Touraev et al. ( 2009 ) and Wedzony et al. ( 2009 ).   

2.3     Uniparental Chromosome Removal/Elimination 
or Wide Hybridization 

 The uniparental chromosome elimination or wide hybridization is considered to be 
an important tool not only to produce DH but also to create genetic variation, intro-
duce new species, and for gene transformation studies. It consists of crossing a 
female parent to a distant male exhibiting haploid inducer genes. Intercrossed par-
ents are taxonomically or ecologically similar to each other. During the process of 
intercrossing, chromosomes of pollen donor parent are automatically removed or 
eliminated. Wide hybridization becomes a best method to achieve desired results in 
DH production following the recovery of barley ( Hordeum vulgare ) haploid plants 
involving wide intercrossing using  H .  bulbosum  as a male parent (Kasha and Kao 

2 Androgenesis: A Fascinating Doubled Haploid Production Process



31

 1970 ). During wide hybridization, endosperm is either not developed or poorly 
formed. Thus, embryo must be rescued or cultured in-vitro that otherwise may not 
survive and give rise to a haploid plant. The in-vitro embryo culture provides a con-
ducive environment and nurtures the immature or weak embryos allowing them to 
carry their growth and developmental process. Cereals such as wheat, barley, rice, 
maize, rye, and triticale are amongst the most privileged crops in which wide 
hybridization have been exploited extensively along with microspore and anther 
culture to induce sporophytic embryogenesis. The technique of wide hybridization 
has been effectively used in solanaceous crop species to recover hybrids. The key 
benefi ts of wide hybridization include absence of gametoclonal variation, genotypic 
independence, getting unbiased random gametes for producing mapping popula-
tions, and absence of albino plants or albinism which is especially true for cereals. 

2.3.1     Bulbosum Method 

 The intercrossing of  H .  vulgare  and  H .  bulbosum  involves preferential chromosome 
removal of later parent following fertilization. The completely grown embryos 
(caryopsis) are rescued (in-vitro) before endosperm disintegration, usually 12–14 
days after pollination, to recover hybrids or haploid plants. The chromosome elimi-
nation is genetically controlled and genes involved in the chromosome elimination 
of  H .  bulbosum  chromosomes have been mapped on  H .  vulgare  chromosomes 2 and 
3 (Ho and Kasha  1975 ). It has been further explained that elimination or retention 
of chromosomes is highly genotypic dependent (Pickering  1984 ) and it will only 
take place if the parents are grown in a cold temperature below 18 °C together with 
the application/spray of growth hormones/regulators (like 2,4-D, or Dicamba) after 
1–2 days of pollination as illustrated by Devaux and Pickering ( 2005 ). Chromosomal 
elimination can be tracked by distinct arrangement of species specifi c centromeres 
on multi polar spindles along with the production of nuclear extrusions in initial/
early interphase (Gernand et al.  2005 ; Kim et al.  2002 ; Subrahma and Kasha  1973 ). 
Thus, consecutive cell divisions (mitosis) during the process of embryo develop-
ment results in chromosomal elimination of male parent that give rise to a haploid 
embryo. Barclay ( 1975 ) successfully intercrossed hexaploid wheat with  H .  bulbo-
sum  to develop haploids in hexaploid wheat. However, genotypic dependence to 
some extent and lack of crossability (crossability barrier) with  H .  bulbosum  are 
among the major hurdles to use Bulbosum method in wheat (Snape et al.  1979 ).  

2.3.2     Haploids Using Maize as a Pollen Donor 

 The barriers with respect to crossability have not been reported between crosses of 
maize and wheat. Crossability genes that have been mapped on wheat chromosomes 
i.e.,  Kr1  on 5BL,  Kr2  on 5AL,  Kr3  on 5D, and  Kr4  on 1A are not sensitive; thereby, 
do not create any barriers/hindrance. High frequency of green haploid plants has 
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been obtained using maize as pollen donor (wide hybridizer) not only in wheat but 
also in barley (Furusho et al.  1991 ) and triticale (Wedzony et al.  1998 ). Genotypic 
dependence (to some extent), growth and developmental conditions (Campbell 
et al.  2001 ) and emasculation method (Knox et al.  2000 ) have been illustrated as 
major aspects affecting the frequency of green plants to a greater extent in wheat. 
The spray of growth regulators following pollination (2,4-D or/and Dicamba) or 
injection in last internode have signifi cantly enhanced embryo production (Wedzony 
et al.  1998 ). The frequency of haploid production in oat using maize as a wide 
hybridizer is low (Rines and Dahleen  1990 ) because maize chromosome are not 
completely or entirely removed/eliminated during caryopsis. It often results in the 
production of more polyhaploids than haploids, though; these polyhaploids have 
been exploited in other genetic studies due to their use in the production of aneu-
ploids (Rines  2003 ). Few other species have also been used as a wide hybridizer that 
includes  Zea mays  sp. Mexicana, pearl millet, Job’s-tears ( Coix lachryma - jobi  L.), 
and sorghum (Inagaki and Mujeeb-Kazi  1997 ; Mochida and Tsujimoto  2001 ; Riera- 
Lizarazu et al.  1993 ; Ushiyama et al.  1991 ).  

2.3.3     Haploids Using  Solanum phureja  and Maize Inducer Lines 

 In  Solanum tuberosum  (cultivated tetraploid potato), haploid plants are produced by 
crossing it with a diploid species,  S .  phureja , used as a pollen donor. The cross gives 
rise to a functional endosperm that result from the union of both sperm nuclei with 
central wall of ovule. Maine ( 2003 ) explained that this fusion initiates growth and 
development of unfertilized egg via parthenogenesis. The percentage of haploid 
embryos produced from a cross between  S. tuberosum  and  S .  phureja  is extremely 
low, however, the haploid embryos can be simply differentiated from hybrid ones 
using a colored gene marker. The colored gene markers have been incorporated in 
the haploid embryo by male parent (pollen donor). A similar technique of color 
gene marker is also being used in maize to produce haploid plants that involves 
crossing with haploid inducer line that transmit colored (scorable) gene markers 
like lec1 promoter driving CRC, anthocyanin gene, R-nj, and GFP (US Patent 
20060185033). The genotypes RWS (Geiger and Gordillo  2009 ) and stock 6 (Eder 
and Chalyk  2002 ) have been used commercially to produce haploids on a larger 
scale in maize.      
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                                  Gynogenesis is the least adopted method to produce haploid plants, but it has been 
predominantly exploited in those crops that have shown a very little or no response 
to wide hybridization, microspore, or anther culture (Forster et al.  2007 ). 
Gynogenesis consists of in vitro culture of unfertilized gametes (female) such as 
ovaries or ovules, though occasionally complete fl ower buds have also been used for 
culture. It has been recommended that female gametes or fl ower buds for gynogen-
esis should be collected before anthesis (pollen shedding). However, the collection 
can be made at any time in case of a male sterile or self-incompatible species. For 
collection purposes, stage of microspores is an excellent indicator to identify the 
exact time with respect to female gametes. The procedures of surface sterilization 
are generally used, similar to androgenesis techniques, to sterilize/disinfect. The 
sterilization time and agent differ from one species to another. The donor plants 
grown in cold chambers or green houses mostly need less time to sterilize than 
plants grown under fi eld conditions. Solid medium is the most commonly used 
medium to produce haploids via gynogenesis. It has been recommended to dry the 
ovules that need to be cultured prior to start the excision procedure. The irradiated 
pollen using cobalt-60 has also been used in some tree species to induce gynogen-
esis. The time of application and application dose have been termed as the most 
important factors leading towards gynogenic success. Recently, tetraploid (Germana 
and Chiancone  2001 ) and irradiated (Froelicher et al.  2007 ) pollens have been effec-
tively used to induce gynogenesis in citrus. 

 The work on gynogenesis started in 1964 when Tulecke ( 1964 ) reported callus 
formation from female gametes for the fi rst time. However, the advancement and 
improvement in gynogenesis was much slower than androgenesis. In barley, Noeum 
( 1976 ) gave details of fi rst haploid plant via gynogenesis by culturing ovaries. In 
few crop plants, such as wheat, barley, rice, and maize, doubled haploidy via gyno-
genesis is possible (Gaj  1998 ; Sibi et al.  2001 ; Tang et al.  2006 ; Zhou and Yang 
 1981 ), but androgenesis is a method of choice due to the reason of low embryo 
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production and limited number of cells to manipulate in gynogenesis. Gynogenesis 
has been effectively used in sugar beet ( Beta vulgaris ) and onion ( Allium cepa ) as 
described by Gurel et al. ( 2000 ) and Luthar and Bohanec ( 1999 ), respectively. The 
frequency of haploid production via gynogenesis in angiosperms, cucumber 
(Gemes-Juhasz et al.  2002 ), sweet potato (Kobayashi et al.  1993 ), and in some trees 
(Forster et al.  2007 ) has shown promising results. In sugar beet and onion, gynogen-
esis has been achieved by culturing female gametophyte followed by their regenera-
tion. There is no need to apply pretreatment in case of onion, but a cold shock (8 °C 
for 7 days) to fl oral organs in combination with high temperature treatment at 30 °C 
during culturing is needed in sugar beet to obtain desired results (Michalik et al. 
 2000 ; Wremerth and Levall  2003 ). Major factors that infl uence gynogenesis include 
genotype, developmental stage of female gametophyte or embryo sac, pretreatment, 
composition of media, and induction/cultural conditions. 

3.1     Genotype 

 Haploid production via gynogenesis is dependent on the type of genotype being 
used and is highly variable from one species to another. The induction response 
(no. of embryos) also depends on donor plant’s growth and developmental condi-
tions and quality of female gametophytes at the time of induction. In rice (Rongbai 
et al.  1998 ), onion (Bohanec et al.  1995 ), and wheat (Mdarhri-Alaoui et al.  1998 ), 
genotypic variations with respect to gynogenic success of haploid production have 
been well documented. The variable gynogenic induction frequency has been illus-
trated in onion genotypes of various origins that ranged from 0 to 10 % among 10 
Polish cultivars/varieties (Javornik et al.  1998 ), 0 to 17 % in 22 European accessions 
(Geoffriau et al.  1997 ), and 0 to 22 % among 39 Japanese and American accessions 
(Bohanec and Jakse  1999 ). Furthermore, open pollinated cultivars of  Allium cepa  
showed low response to gynogenesis than inbred lines and F 1  hybrids (Bohanec and 
Jakse  1999 ). A similar genotypic variability was also noted in potato and squash 
cultivars that ranged from 11 to 60 (Kobayashi et al.  1993 ) and 0 to 49 % (Shalaby 
 2007 ), respectively. Higher embryo yield was noted in sugar beet when fl oral organs 
were collected from donor plants grown in glass cabinets/greenhouses compared to 
fi eld grown plants (Lux et al.  1990 ). In the same way, fl orets that developed fi rst on 
lateral branches yielded higher number of embryos as compared to fl orets emerged 
at the later stages i.e. fl orets developed at main stem apex (D’Halluin and Keimer 
 1986a ,  b ). The planting/sowing time also affected embryoid response and it has 
been stated that summer planting favored embryo production in  Beta  sp., whereas 
autumn sowing yielded higher embryos in  Gerbera  sp. (Cappadocia and Ahmim 
 1988 ; Cappadocia et al.  1988 ; Doctrinal et al.  1989 ; Lux et al.  1990 ). In onion, 
female gametophytes collected from very large and small fl owers showed a very 
little response to gynogenic induction than medium ones exhibiting two to four 
nucleate embryo sacs (Musial et al.  2005 ).  
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3.2     Developmental Stage of Female Gametophyte 

 The exact stage of female gametophytic (ovule or ovary) regarding its collection for 
induction is hard to detect. The induction of ovules/ovaries is done on the basis of 
microspore stage or days after anthesis; however, in few cases, fl ower bud’s develop-
mental stage or direct observation of ovaries/ovules has also been performed. Nearly 
mature or mature embryo sac is considered as a good sign to commence the process 
of gynogenesis (Gemes-Juhasz et al.  2002 ; Keller and Korzun  1996 ); however, a 
well-trained and skilled embryologist is needed to determine the exact stage of 
embryo sac. Yang et al. ( 1986 ) confi rmed that in sunfl ower, a well mature embryo sac 
is developed just 2–3 days before anthesis, whereas an excellent response has been 
obtained from unfertilized ovules of “Kyoho” grape wine when they were collected/
excised, 19–20 days before anthesis (Nakajima et al.  2000 ). In the same way, ovaries 
harvested 1 day prior to anthesis in  Cucurbita pepo  resulted maximum embryos 
(Metwally et al.  1998a ,  b ), whereas similar fi ndings have been reported in cucumber 
when excision was done only 6 h prior to anthesis (Gemes-Juhasz et al.  2002 ). The 
embryo sac consists of egg cell, two polar nuclei, antipodal cells, and synergids. In 
most cases, egg cell give rise to haploid embryo but sometimes production of an 
embryo from synergid or antipodal cells has also been documented as in the case of 
rice (Zhou et al.  1986 ) and barley (Noeum  1976 ). In saffron, the excision time of 
ovaries has been linked to stigma development. Ovaries with yellow stigma are con-
sidered one the most responsive stage for gynogenic excision (Bhagyalakshmi  1999 ).  

3.3     Pretreatment 

 The fl oral organs are pretreated in few species which is also considered as an impor-
tant factor to stimulate the process of sporophytic development in female gameto-
phytes. Similar to androgenic methods, starvation, heat, and/or cold shocks are 
given alone or in combination with each other to induce stress conditions. However, 
duration, time, type, and level of pretreatment vary considerably from one species 
to another. In rice, cold treatment at 8 °C for 6–14 days enhanced embryogenic 
response to a greater extent (Rongbai et al.  1998 ) and similar effect of cold treat-
ment has been seen in sugar beet, wheat, and  Salvia sclarea  (Bugara and Rusina 
 1989a ,  b ; Gurel et al.  2000 ; Sibi et al.  2001 ). Yang et al. ( 1986 ) reported that a rapid 
cold shock for 1–2 days at 4 °C also improved embryogenic effi ciency in  Helianthus  
sp. On the other hand, heat treatment for 2–4 days at 33 °C seemed to be effi cient to 
promote sporophytic development of female gametophyte in  Picea sitchensis  
(Baldursson et al.  1993 ). Gemes-Juhasz et al. ( 2002 ) described that heat shock 
(32 °C) is also effective in cucumber to obtain an effective gynogenic response pro-
vided that heat treatment is given during cultural/induction phase. In few species 
such as  Cucurbita pepo  (Metwally et al.  1998a ,  b ), niger (Bhat and Murthy  2007 ), 
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and rice (Zhou et al.  1986 ), there is no need to apply any pretreatment and heat/cold 
shocks have shown detrimental effects in these species. In the same way, high illu-
mination favors onion gynogenesis (Puddephat et al.  1999 ), whereas dark incuba-
tion during induction phase is required in saffron (Bhagyalakshmi  1999 ) and 
cucumber (Gemes-Juhasz et al.  2002 ).  

3.4     Composition of Media 

 The composition of media is also a critical factor that affects success rate of gyno-
genesis to a considerable degree. Media constituents differ not only for regeneration 
and induction phases but also among crops. The media of regeneration phase require 
growth hormones/regulators to promote growth, whereas low concentration or 
sometime even no growth regulators are needed for induction medium. MS, Millers, 
N6, and B5 with minor changes/modifi cations in the sources of growth regulators, 
carbohydrates, and nitrogen are among the most widely adapted media. 

 Sucrose is the most extensively used carbohydrate and its concentration in media 
vary from 58 to 348 mM or 2 to 12 % (Juhasz et al.  1997 ; Mdarhri-Alaoui et al. 
 1998 ). The sucrose in a concentration of 6 % in the media enhanced number of 
embryos and hampered somatic tissue growth in wheat gynogenesis 
(Mukhambetzhanov  1997 ), but its high concentration believed to be benefi cial in 
carnation and has an adverse effect on the frequency of embryos in squash (Sato et al. 
 2000 ). On the other hand, in few species, maltose has been exploited/used rather than 
sucrose (Cordewener et al.  1995 ). For gynogenic haploid production, Cytokinin and 
Auxin have been mainly used in various crop species, but it has been observed that 
novel polyamines gave much better response as compared to growth hormones/regu-
lators in onion and their substitution has indicated better results (Martinez et al. 
 2000 ). Several other growth hormones such as indole-3-acetic acid (IAA) in onion 
(Bohanec et al.  1995 ) and carrot (Kielkowska and Adamus  2010 ), naphthalene acetic 
acid (NAA) in rice (Rongbai et al.  1998 ), coconut water in barley (Castillo and Cistue 
 1993 ), dimethyl sulfoxide (DMSO) in rice (Rongbai et al.  1998 ), and Thidiazuron 
(TDZ) in cucumber (Diao et al.  2009 ) alone or in combination with each other have 
given promising gynogenic results. In wheat, solid medium is preferred over liquid 
because it improves callus growth (Gusakovskaya and Najar  1994 ). 

 A signifi cant amount of research work has been conducted in the area of doubled 
haploidy via gynogenesis over the past few decades. The research papers have 
addressed various aspects of gynogenesis; however, the major focal point has been 
to improve the methodology using responsive genotypes and altering donor plant’s 
conditions, pretreatments, and media composition. Besides many recent gynogen-
esis publications, a very little information exists with respect to molecular and 
genetics of gynogenesis in crop plants. As described earlier, gynogenesis is consid-
ered a method of choice where other methods of doubled haploidy are not available 
or species are irresponsive to other methods. This is especially true in case of onion, 
melon, and sugar beet where signifi cant achievements have been made with 
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gynogenesis because androgenesis via anther culture or IMC is not successful. 
Furthermore, gynogenesis has also proved to be benefi cial in case of male sterile 
plants e.g. haploids via gynogenesis have been effectively developed in photosensi-
tive male sterile line in rice by culturing unfertilized ovaries (Cai et al.  1988 ). The 
problem of albinism in cereals can also be tackled with gynogenesis. In petunia, the 
percentage of nonhaploids were more than haploids using androgenesis (anther cul-
ture) as a method of haploid production, but DeVerna and Collins ( 1984 ) reported 
that 93 % plants were haploids when produced through gynogenesis. Similar fi nd-
ings in rice with the use of gynogenesis have been reported. It is suggested that 
future gynogenesis work should be conducted to improve our knowledge to track 
gynogenic sporophytic pathway and to identify new QTLs or genes associated with 
it. The development and identifi cation of genetic/molecular markers associated with 
higher frequency of embryoids and green plants through gynogenesis will defi nitely 
improve gynogenic doubled haploidy in crop plants to a considerable degree.     
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                                  Haploid plant production via parthenogenesis involves culturing egg cell in the 
embryo sac without any involvement of sperm nuclei. Palmer and Keller ( 2005 ) dif-
ferentiated parthenogenesis from gynogenesis whereby the former involves “the 
normal development of endosperm and embryo formation occurs in vivo,” whereas 
in the case of gynogenesis, endosperm degenerates with the passage of time and 
there is a need to rescue the embryo in the laboratory conditions. Chase ( 1949 ) pro-
duced doubled haploids in maize via parthenogenesis and exploited these haploids 
in his breeding program. He used a color genetic marker (dominant purple) in the 
pollinator to distinguish haploids (colorless) from diploids that followed chromo-
some doubling using a colchicine injection in the scutellar node of maize haploid 
plants. Since parthenogenesis    occurs rarely in nature, it is, therefore, diffi cult to 
distinguish between diploids and haploids. Thus, genetic markers are usually used 
in the pollinators for selection purposes as described by Bordes et al. ( 1997 ) in 
apple. The induction of parthenogenesis is usually brought out by using irradiated 
pollen, heat treatment, and gametocidal chemicals. The pollen was successfully 
treated with heat to produce haploids in maize by Mathur et al. ( 1980 ). The use of 
chemicals to treat pollen is also common and it has also been applied in maize 
(Deanon  1957 ) and brassica (Kitani  1994 ). As described earlier, one of the best 
example of parthenogenesis is the production of haploid plants in cultivated tetra-
ploid potato ( Solanum tuberosum ) species by crossing it with diploid  S .  phureja  
(pollen donor). The genetic control of parthenogenesis has been identifi ed in maize 
and barley where indeterminate gametophyte ( ig ) and  hap  initiator genes are capa-
ble to induce parthenogenesis in maize (Kermicle  1969 ) and barley (Hagberg and 
Hagberg  1980 ), respectively. The frequency of haploids occurrence in nature is very 
low. An auxin test has been identifi ed to estimate the frequency of parthenogenic 
haploids (Mazzucato et al.  1996 ). However, the use of inducer and marker genes 
will defi nitely improve the recovery of haploids to be used or exploit this method to 
breed genotypes on a larger and commercial scale.    

    Chapter 4   
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                                  The use of doubled haploidy has a great impact on plant breeding programs through-
out the world especially to achieve food security on sustainable basis, which is a 
serious concern not only to developing countries but also to developed nations. 
There is a sharp increase in in-vitro studies to improve DH production and method-
ology/protocol (Table  5.1 ). Germana ( 2011 ) reported that 50 % of the barley culti-
vars currently grown in Europe have been developed by means of DH technologies. 
According to Faostat ( 2010 ), Canada is world’s 2nd biggest wheat exporter after 
USA, producing around 23 metric tons wheat every year. In Canada, wheat has been 
classifi ed into nine different classes, out of which Canada Western Red Spring 
(CWRS) is the biggest class. It has been reported that during 2007, 3 out of 5 most 
grown cultivars of CWRS were developed through doubled haploid technology. 
Furthermore, cultivar “AC Andrew” is being grown on an area of 99 % under 
Canada Western Soft White Spring (CWSWS) class and it was also developed via 
anther culture (Dunwell  2010 ). Mapping populations are also being developed 
through DH that offers great potential for genetic studies, molecular analysis, and to 
map DNA markers. It was estimated that around 290 cultivars grown in various 
parts of the world during 2005 were developed through DH techniques (  http://www.
scri.ac.uk/assoc/COST851/DHTable2005.xls    ). Emerging uses of DH technology in 
plant breeding and crop improvement programs have been discussed as follows.

5.1       Homozygosity 

 Homozygosity in crop plants can be fi xed only in one generation with the use of 
doubled haploidy whereas in normal conventional breeding, 6–7 years of continu-
ous selfi ng is required. Therefore, doubled haploidy allows plant breeders and 
geneticists to release a cultivar in 6–7 rather than 10–12 years and this is especially 
true for species where the plants breeders are getting only one crop per year like 
winter wheat. Doubled haploid lines are homozygous and homogeneous; therefore, 
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   Table 5.1    Studies showing improvement/successful doubled haploid production in various species 
during last 5 years   

 Crop  Method  Reference 

 Rice  AC  Bagheri et al. ( 2009 ), Chaitali and Singh ( 2011 ), Chen et al. ( 2010b ), 
Herath and Bandara ( 2011 ), Yang et al. ( 2011 ), Yuan et al. ( 2011 ) 

 Wheat  AC  Barakat et al. ( 2012 ), Broughton ( 2008 ,  2011 ), Danci et al. 
( 2011 ), El-Hennawy et al. ( 2011 ), Hassawi et al. ( 2012 ), 
Islam ( 2010c ), Ljevnaic et al. ( 2009 ), Mozgova et al. ( 2012 ), 
Redha and Suleman ( 2011 ), Redha and Talaat ( 2008 ), Santra 
et al. ( 2012 ), Song et al. ( 2012 ), Soriano et al. ( 2008 ), 
Weyen et al. ( 2012 ), Zhao et al. ( 2012 ) 

 Barley  AC  Belinskaya ( 2010 ), Bilynska and Dulnyev ( 2012 ), Dyulgerova 
et al. ( 2010 ) 

 Triticale  AC  Krzewska et al. ( 2012 ), Mozgova et al. ( 2012 ), Ponitka and 
Slusarkiewicz-Jarzina ( 2011 ), Sun et al. ( 2009 ) 

 Oat  AC  Kiviharju ( 2009 ), Marcinska et al. ( 2013 ) 
 Maize  AC  Jaeger et al. ( 2010 ), Marcinska et al. ( 2013 ), Obert et al. ( 2009 ) 
 Pea  AC  Bobkov ( 2010 ) 
 Linseed  AC  Burbulis and Blinstrubiene ( 2011 ), Burbulis et al. ( 2012 ) 
 Pear  AC  Tang et al. ( 2009 ,  2012 ) 
 Grapevine  AC  Alavijeh et al. ( 2012 ) 
 Eggplant  AC  Basay et al. ( 2011 ), Corral-Martinez and Segui-Simarro ( 2012 ), 

Ellaltoglu et al. ( 2012 ), Salas et al. ( 2011 ,  2012 ) 
 Citrus  AC  Benelli et al. ( 2010 ) 
 Flax  AC  Burbulis et al. ( 2009 ), Mankowska et al. ( 2011 ) 
 Tobacco  AC  Chen et al. ( 2010a ) 
 Asparagus  AC  Ercan and Sensoy ( 2012 ) 
 Alfalfa  AC  Ma and Zhang ( 2008 ), Geng et al. ( 2010 ) 
 Pepper  AC  Grozeva et al. ( 2009 ), Irikova et al. ( 2011a ,  b ), Koleva- Gudeva 

et al. ( 2009 ), Li et al. ( 2012 ), Ochoa-Alejo ( 2012 ), 
Olszewska et al. ( 2011 ), Supena and Custers ( 2011 ), Taskin 
et al. ( 2011 ), Zhao et al. ( 2010 ) 

 Carrot  AC  Gorecka et al. ( 2009 ), Kiszczak et al. ( 2011 ), Krystyna et al. 
( 2010 ), Szafranska et al. ( 2011 ) 

 Brassica sp.  AC  Sayem et al. ( 2010 ) 
 Cotton  AC  Shabana et al. ( 2010 ) 
 Tomato  AC  Motallebi-Azar ( 2010 ), Motallebi-Azar and Panahandeh ( 2010 ), 

Shere and Dhage ( 2009 ) 
 Wheat  IMC  Cistue et al. ( 2009 ), Islam ( 2010a ,  b ), Lantos et al. ( 2009 ), Ren et al. 

( 2010 ), Santra et al. ( 2012 ), Shirdelmoghanloo et al. ( 2009 ) 
 Barley  IMC  Esteves et al. ( 2010 ), Jacquard et al. ( 2009a ,  b ), Rodriguez-

Serrano et al. ( 2012 ) 
 Oat  IMC  De Cesaro et al. ( 2009 ), Sidhu and Davies ( 2009 ) 
 Brassica  IMC     Barbulescu et al. ( 2011 ), Belmonte et al. ( 2010 ,  2011 ), Bhowmik 

et al. ( 2011 ), Ghazanfari et al. ( 2012 ), Jo et al. ( 2012 ), Kim and 
Lee ( 2012 ), Lee et al. ( 2011 ), Malik and Krochko ( 2009 ), 
Mohammadi et al. ( 2012 ), Na et al. ( 2009 ,  2011a ,  b ), Nelson 
et al. ( 2009a ,  b ), Prem et al. ( 2012 ), Segui-Simarro et al. ( 2011 ), 
Takahashi et al. ( 2011 ,  2012 ), Takahira et al. ( 2011 ), Wan et al. 
( 2011 ), Wang et al. ( 2011 ), Wen et al. ( 2010 ), Winarto and da 
Silva ( 2011 ), Yadollahi et al. ( 2011 ),    Yuan et al. ( 2011 ,  2012 ), 
Zeng et al. ( 2010 ), Zhang et al. ( 2011 ,  2012 ) 

(continued)
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these lines are ideal in those species where high level of purity is required. Moreover, 
cost related to phenotypic selection, space and time can be dramatically reduced by 
using DH technology because selection is performed in true breeding (homogenous) 
progenies rather than the segregating populations. Eder and Chalyk ( 2002 ) pointed 
out that DH provide a mean of natural selection in maize where haploids plants with 
deleterious/harmful genes die at a very early stage of their life or they are too weak, 

 Crop  Method  Reference 

 Pepper  IMC  Kim et al. ( 2013 ), Lantos et al. ( 2009 ,  2012 ), Supena and 
Custers ( 2011 ), Taskin et al. ( 2011 ) 

 Eggplant  IMC  Corral-Martinez and Segui-Simarro ( 2012 ) 
 Chickpea  IMC  Croser et al. ( 2011 ) 
 Maize  IMC  de Moraes et al. ( 2008 ), Obert et al. ( 2009 ), Testillano et al. ( 2010 ) 
 Triticale  IMC  Dubas et al. ( 2010 ), Zur et al. ( 2009 ) 
 Carrot  IMC  Gorecka et al. ( 2010 ) 
 Cotton  IMC  Poon et al. ( 2012 ) 
 Caraway  IMC  Smykalova et al. ( 2012 ) 
 Rye  IMC  Targonska et al. ( 2013 ) 
 Wheat  Wide crossing  Chen et al. ( 2011 ), Gu et al. ( 2008 ), Khan and Ahmad ( 2011 ), 

Kour et al. ( 2008 ), Prodanovic et al. ( 2008 ), Usha and 
Khanna ( 2010 ), Zhang et al. ( 2011 ), Bouatrous et al. ( 2010 ) 

 Barley  Wide crossing  Houben et al. ( 2011 ) 
 Oat  Wide crossing  Marcinska et al. ( 2013 ) 
 Potato  Wide crossing  Weber et al. ( 2012 ) 
 Chickpea  Wide crossing  Clarke et al. ( 2011 ) 
 Citrus  Wide crossing  Yahata et al. ( 2010 ) 
 Niger  Gynogenesis  Bhat and Murthy ( 2008 ) 
 Onion  Gynogenesis  Forodi et al. ( 2009 ), Hyde et al. ( 2012 ), Liu et al. ( 2010 ) 
 Gentians  Gynogenesis  Doi et al. ( 2011 ) 
 Artichoke  Gynogenesis  Guerrand et al. ( 2012 ) 
 Carrot  Gynogenesis  Kielkowska and Adamus ( 2010 ) 
  Gentiana 

trifl ora  
 Gynogenesis  Pathirana et al. ( 2011 ) 

 Cucurbita  Gynogenesis  Rakha et al. ( 2012 ) 
 Cucumber  Gynogenesis  Suprunova and Shmykova ( 2008 ), Diao et al. ( 2009 ) 
  Beta 

vulgaris  
 Gynogenesis  Tomaszewska-Sowa ( 2010 ) 

 Cotton  Gynogenesis  Kantartzi and Roupakias ( 2009 ) 
 Pumpkins  Parthenogenesis  Berber et al. ( 2012 ) 
 Mandarin  Parthenogenesis  Froelicher et al. ( 2007 ) 
 Snapmelon  Parthenogenesis  Godbole and Murthy ( 2012 ) 
 Walnut  Parthenogenesis  Grouh et al. ( 2011 ) 
 Maize  Parthenogenesis  Liu et al. ( 2009 ), Tyrnov and Smolkina ( 2011 ), Wang et al. 

( 2010 ), Wei et al. ( 2010 ) 
  Pilosella 

rubra  
 Parthenogenesis  Rosenbaumova et al. ( 2012 ) 

 Chinese 
chive 

 Parthenogenesis  Yamashita et al. ( 2012 ) 

 Cucumber  Parthenogenesis  Lotfi  and Salehi ( 2008 ) 

   AC  Anther culture,  IMC  Isolated Microspore Culture  

Table 5.1 (continued)
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sterile and seed setting is not done. Sometime gametophytic embryogenesis leads to 
an enhanced gene expression of some traits that otherwise is not possible to exploit 
in conventional breeding due to a control by recessive alleles in disomic state.  

5.2     Genomics 

 Doubled haploid populations are very useful for genetic studies. Quantitative trait 
loci for many agronomic and quality traits have been identifi ed in many crops using 
DH lines. The discovery of molecular markers has facilitated QTL analysis to a 
greater extent using populations like F 2 , backcross, and Recombinant Inbred Lines 
(RILs), but studies with F 2  or backcross populations cannot be repeated and RILs 
takes longer time to develop due to several cycles (at least six) of selfi ng. Thus, 
populations can be quickly generated/developed through DH technology and such 
populations are also immortal. The fi xed genetic structure of DH population pro-
vides a valuable source that permits breeders to repeat studies across various envi-
ronments, allowing them to fi nd interaction of QTL with the environments and 
measure the exact phenotypic expression of a particular QTL in a given environ-
ment. Recently, a large number of studies have employed DH lines to identify QTLs 
and develop genetic maps that include at least 100 DH populations in four cereal 
species: wheat, barley, rice, and maize. Few recent examples include Fusarium 
Head Blight (FHB) resistance in barley (Ma et al.  2000 ) and wheat (Suzuki et al. 
 2012 ), and plant height, fl owering time (Heidari et al.  2012 ), photoperiod (Sourdille 
et al.  2000 ),  Septoria tritici  blotch resistance (Kelm et al.  2012 ), grain yield (Kuchel 
et al.  2007a ,  b ), and yield components (Cuthbert et al.  2008 ) in wheat   . Chu et al. 
( 2008 ) used DH population and constructed a genetic map in wheat that consisted 
of 632 markers. The distorted segregation has been reported in DH populations 
derived through anther culture in rice but the percentage of markers having distor-
tion was same in F 2 -derived population (Yamagishi et al.  1998 ) and distorted segre-
gation has also been observed in RILs population derived through Single Seed 
Descent (SSD) (Bjornstad et al.  1993 ), thereby not limiting the role of DH popula-
tions in genetics studies. He et al. ( 2001 ) compared molecular marker segregation in 
populations derived through anther culture (DH) and SSD (RIL). They found a dis-
torted segregation of 27.3 % and 18.2 % in RIL and DH populations, respectively. 
The phenotypic evaluation of three DH populations to their respective RIL popula-
tions also showed no signifi cant differences, and Courtois ( 1993 ) urged that both 
approaches are equally effective in developing new cultivars   .  

5.3     Mutation 

 Induced mutations have been used to improve traits and to create genetic variability. 
Maluszynski and Ahloowalia ( 2000 ) reported that 70 % of mutant varieties have 
been directly released for commercial cultivation without any further improvement 

5 Applications and Uses of Haploids



59

through breeding and the rest of 30 % mutants served as parents to obtain desirable 
alleles. Therefore, mutation breeding is an integral part of the conventional breeding 
and is more useful strategy where desired combination of alleles cannot be incorpo-
rated with conventional breeding.    Haploid cells offer an excellent opportunity for 
artifi cial mutation, and mutants can be easily detected/selected. In most cases, chem-
ical mutagens, gamma, ultraviolet (UV), and X-rays have been successfully used to 
induce mutation in haploid cells due to their uniformity and abundance. The opti-
mum time for mutagenesis has been described as 16–24 h after induction of micro-
spores in the culture medium (Huang  1992 ) but the effi ciency varies among species 
and mainly dependent on the type and duration of mutagen treatment. It is desirable 
to apply mutagens before the start of fi rst nuclear division to avoid any heterozygos-
ity and chimerism. Castillo et al. ( 2001 ) found that an application of sodium azide 
(10 −5  to 10 −4  M) to barley microspores for 1 h yielded 8.6–15.6 % mutants. In similar 
studies, ethyl methane sulfonic acid (Lantos et al.  2009 ) and gamma radiations (Chen 
et al.  2001 ) were used to induce mutation in rice anthers right after isolation that lead 
to produce stable mutants. Microspore mutagenesis have been successfully used in 
brassica species to develop cultivars resistant to herbicides (Swanson et al.  1989 ), 
 Alternaria brassicicola  (Ahmad et al.  1991 ), high oleic acid and reduced linoleic and 
fatty acid (Kott  1996 ) and modifi cations in erucic acid (Barro et al.  2001 ).  

5.4     Genetic Transformation 

 The haploid cells during DH production act as an ideal target for genetic transfor-
mation. Transformation can be done on unicellular microspores and haploid 
embryos that will result in a rapid recovery of transgenics with fi xed homozygosity. 
During embryogenesis, transformation can be performed with already established 
methods like microinjection, agrobacterium-mediated DNA delivery, particle bom-
bardment, and electroporation (Touraev et al.  2001 ) but IMC is preferred over other 
methods (like gynogenesis and parthenogenesis) due to high effi ciency of gene 
introduction. Kasha et al. ( 2001 ) urge that gene incorporation in cereals should be 
done prior to nuclear fusion to obtain homozygous transgenic DH plants because 
spontaneous chromosome doubling occurs just after fi rst nuclear division at nuclear 
fusion. The frequency of transgenics using agrobacterium-mediated transformation 
during embryogenesis is very low (Dormann et al.  1995 ; Huang  1992 ) and the 
results are also nonreproducible. However, particle bombardment is one of the best 
methods used for microspores transformation. In  N .  tabacum , 5 out of 10 4  micro-
spores were reporter gene positive (Stöger et al.  1995 ). In a similar study, the authors 
obtained 3.5 wheat transgenic embryos from a population of 10 6  microspores 
(Folling and Olesen  2001 ). The direct DNA transfer during microspore embryogen-
esis has also been employed in various crops, including rapeseed (Miki et al.  1989 ), 
barley (Olsen  1991 ), and tobacco (Resch et al.  2009 ), whereas electroporation and 
PEG-mediated poration has been reported in rapeseed (Jardinaud et al.  1993 ), bar-
ley (Vischi and Marchetti  1997 ), and maize (Fennell and Hauptmann  1992 ). 
Recently, Eudes and Chugh ( 2009 ) and Chugh et al. ( 2009 ) successfully 
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transformed wheat microspores using cell-penetrating peptides with plasmid DNA 
and Chauhan and Khurana ( 2011 ) incorporated  HAV1  gene in wheat to obtain trans-
genic plants with drought-tolerant ability.  

5.5     Synthetic or Artifi cial Seed Production 

 Synthetic or artifi cial seeds are referred as somatic embryos encapsulated in a pro-
tective coating that functionally mimic seed and have the ability to develop into 
normal plants under suitable in-vitro cultural conditions. The encapsulation (protec-
tive coating) is usually achieved using calcium alginate (brown algae) to protect 
somatic embryos during handling and from microorganism and desiccation. The 
whole process starts with the production of mature somatic embryos which are then 
immersed in a bath of calcium salts yielding encapsulated somatic embryos with 
clear hydrated beads. The encapsulation gel also provides required nutrients to the 
developing embryos just like an artifi cial endosperm. This technology has been suc-
cessfully used to generate plants from microspore-derived embryos in wheat (Datta 
and Schmid  1996 ) and barley (Datta and Potrykus  1989 ) along with other monocot 
and dicot species.     
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                                  The importance of doubled haploidy is well known in all fi elds of agriculture and 
related disciplines. The acceleration has been observed in research studies on dou-
bled haploid production over the last 5 years. Major research has been focused to 
change the status of many recalcitrant crops to responsive and to improve the overall 
methodology of doubled haploid production. Several model genotypes have been 
identifi ed in various crops that have led to an overall improvement in the doubled 
haploid production technology. In this regard, IMC has been of special interest to 
the plant breeders, geneticists, and molecular biologist due to the availability of 
embryonic units in a larger number. It is quick and effi cient. Moreover, genetically 
identical and physiologically uniform microspores provide a target for cell biology 
and genetic engineering studies. Molecular studies have led to an increase in our 
knowledge on the pathways by which gametophytic development is converted to 
sporophytic pathway during microspore embryogenesis. The genomic studies have 
identifi ed various genes/QTLs associated with androgenic induction that will help 
for further improvement in the production of doubled haploids. Nevertheless, DH 
technology is a fascinating phenomenon and a powerful tool to speed up the breed-
ing process for cultivar development and thus, can help achieve food security on a 
sustainable basis. Further work on early embryogenesis and especially the induction 
phase using video tracking systems and fl ow cytometry will defi nitely help address 
the challenges.   

    Chapter 6   
 Conclusion 
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